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Abstract 

It is only recently that people have looked at problems from the on-line perspec-

tive. The concept itself is attractive since a large number of problems in real life 

have to dealt with in an on-line fashion. 

In this thesis we considered the k-sevyev problem and its variants. It is the 

single problem that has spurred the most interest in this field. Previous attacks 

on this and other on-line problems, say the metrical task systems, involved 

a potential function, a numerical invariant that enables the inductive proof. 

Our technique is based on more complex invariants, which provide valuable 

information about the structure of the reachable work functions. As a result, 

we prove an upper bound of 2A; — 1 which is the best we can prove at this point, 

although we conjecture that the true worst case behavior of the work function 

algorithm is k. 

In the Chapter 3 we deal with a generalization of the A;-server problem, in 

which the servers are unequal. Each of the servers is assigned a positive weight. 

For any metric space, we extend our Work Function Algorithm to give a nearly 

optimal upper bound. 

In order to study the amount of improvement that can be achieved if the fu-

ture is partially known, we introduce a new model of lookahead for our /c-server 

algorithm. We show that strong lookahead has practical as well as theoreti-

cal importance and significantly improves the competitiveness of our k-seiYei 

algorithm. This is the first model of lookahead having such properties. 
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Finally, we study a sub-class of memoryless server algorithms with 2 servers 

on the real line and show that there is a unique algorithm in this sub-class whose 

competitive factor is best possible on the real line. 
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Chapter 1 

Introduction 

Suppose that you occasionally have to travel from your place of work to meet 

your business associates in a nearby town. The number of times you have to 

make this trip (by bus, say) is not known to you in advance. The decision you 

have to make is whether you should buy tickets each time you travel or buy a 

monthly pass. The monthly pass can be bought anytime during the month, but 

is valid only till the end of the month in which it was bought. The cost of the 

monthly pass is equal to the cost of 5 trips, say. 

The problem here is that supposing you buy a monthly pass, and then it so 

happens that circumstances warrant your travel only twice that month, or that 

you decide against a monthly pass for the month and end up traveling up to 

20 days that month! Clearly if you do know the number of times you are going 

to travel then you are in a position to spend an optimal amount of money on 

travel, but what do you do otherwise? 

One solution here is to buy a monthly pass as soon as you know that you are 

going to make your 5th trip. It is easy to see that using this strategy, we never 

spend more than twice (in fact, no more than nine-fifths) the optimal amount 

of money. Also, it is not too difficult to show that there are situations which 

can force any decision maker to spend at least nine-fifths the optimal amount of 
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Chapter 1 Introduction 

money. 

The situation we discussed above is typical of the kinds of questions one 

studies in on-line algorithms, where one has to make decisions without knowing 

the full input. 

In general, an on-line algorithm receives a sequence of requests and has to 

respond to each request as soon as it is received. In serving each request, the 

algorithm incurs a cost. An off-line algorithm, on the other hand, may wait 

until all requests have been received before determining its responses. The on-

line model is in fact more practical in many situations: scheduling, where one 

must schedule jobs on processors as they arrive, or bin packing, where one must 

pack items into bins as soon as one receives them. Applications are numerous: 

analyzing the use of data structures, resource allocation in operating systems, 

etc. 

1.1 Performance analysis of on-line algorithms 

How does one compare or rank algorithms that perform the same task? This 

is a crucial question in the design and analysis of algorithms. We discuss the 

current trends, especially with respect to on-line algorithms. 

The empirical approach to this problem consists of coding the algorithm in 

a programming language and running it on different instances on a computer. 

One can then "judiciously" choose test instances and compare algorithms by 

running them on these test instances. 

The so called theoretical approach, which will be the focus in this thesis, 

consists of finding bounds on the amount of resources used (e.g. time, memory, 

space, etc.) by the algorithm as a function of the size of the input. Another 

parameter of interest is the equality of output produced. Typically, in this case, 

one restricts the class of algorithms; for instance we can restrict the time taken 
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Chapter 1 Introduction 

by the algorithm, and then ask the question "how good a solution can one 

produce?". 

In the classical off-line model, one usually considers only algorithms that 

find "optimal" solutions, and here an important criterion is time. A class of 

problems (the class P) that are considered “tractable” are problems for which 

one can produce an optimal solution in time bounded by a polynomial in the 

input size. 

Suppose now that we are interested in algorithms that run in polynomial 

time but which give us a good approximate solution. We do not care about the 

time taken by the algorithm as long as it can be bounded by a polynomial in 

the input size. The parameter of importance is the quality of the approximation 

produced. How do we compare such algorithms? The classical solution to this 

problem is to compare the solution produced by the algorithm to the optimal 

solution produced by an algorithm that could take as much time as it likes. In 

fact the quantity of importance is the worst case ratio of the solution produced 

by the algorithm to the optimal solution. This is a quantity which can be used 

to compare various algorithms. 

The situation is very similar when one considers on-line algorithms. The time 

an algorithm takes to make its decision is not of prime importance. Belady [1], 

Graham [29] and Sleator and Tarjan [49] suggested comparing the performance 

of on-line algorithms to an optimal off-line algorithm for the same problem. Such 

an analysis is term competitive analysis. Informally, in competitive analysis, we 

say that the on-line algorithm is good if its performance on any sequence of 

requests is to within some small factor of the performance of the optimal off-line 

algorithm. 

More formally, let A be an on-line algorithm for a problem H. For an input 

instance (or a sequence of requests) a, let A{(J) denote the value of the output 

produced by A^ and let OVT{(T) denote the value of the output produced by the 
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Chapter 1 Introduction 

optimal off-line algorithm. The performance ratio denoted by p从cr) is defined 

to be 二欲 ) . T h e performance function or the competitive ratio, denoted p乂n), 

is defined for each integer n to be the maximum of over all inputs cr of 

size n. The term competitive ratio is more widely used, especially when f u ⑷ 

is independent of n. When the competitive ratio of an algorithm is a, we will 

frequently refer to the algorithm as being a-competitive. 

A more general framework for considering on-line algorithms is the request-

answer games [2], [3], [46], [47]. In such a game, the algorithm competes against 

an "adversary." The adversary supplies the next chunk of input to the algorithm, 

who now has to process it. 

1.2 Randomized algorithms 

We will, in many cases, consider the power that randomization provides in on-

line algorithm design. By randomized algorithms we mean algorithms which 

make random choices in the course of their execution. As a result, the behavior 

of the algorithm can be random even on a single fixed input. The idea is to 

prove that such an algorithm works well on every input with high probability. 

It is important to distinguish this from the probabilistic analysis of algorithms, 

where we study the behavior of a (possibly deterministic) algorithm when the 

input to the algorithm is chosen from a probability distribution. In this later 

style of analysis, we might be able to prove that an algorithm works well with 

high probability on a randomly chosen input or, in a sense, that it works well 

on almost all inputs. Such results are thus somewhat weaker than the results 

we wish to prove for randomized algorithms (although they are not necessarily 

easier to prove.) 

In this case, the costs are the expected values of the associated random 

variables and the definition of competitive ratio now also depends on the power 
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Chapter 1 Introduction 

given to the adversary. 

1.3 Types of adversaries 

We distinguish between three types of adversaries. 

Oblivious adversary This adversary must determine the request 

sequence in advance, i.e. he could base his 

example on the algorithm, but must fix the 

entire example before the start of the game. 

Adapt ive on-line adversary An adaptive on-line adversary can base the 

next request on the algorithm's answer to the 

previous requests, but then serves it himself 

immediately. 

Off-line adversary An off-line adversary makes the next request 

based on the algorithm's answers to previous 

ones and serves them optimally at the end. 

First, it can be easily argued that for deterministic algorithms these ad-

versaries are equally powerful. Also it is easily seen that we have listed the 

adversaries in order of their increasing power. Note that though the off-line cost 

for the oblivious adversary does not depend on the coin tosses of the algorithm, 

the off-line cost in the case of both the adaptive adversaries is a random vari-

able, since the requests presented will depend on the previous coin-tosses of the 

algorithm. 

In many cases, as will see, randomization seems to provide a remarkable 

amount of power, especially against the oblivious adversary. Throughout this 

thesis, whenever we deal with randomized on-line algorithms, we will implicitly 

be dealing with oblivious adversaries. 
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These various types of adversaries were defined by Raghavan and Snir [46], 

.47] and studied in more detail by Ben-David et al. [2], [3]. The following 

theorems are due to them. The first essentially states that randomization does 

not help against the off-line adversary. 

Theorem 1 ([2], [3]) If there is a randomized strategy that is a-competitive 

against any off-line adversary, then there also exists an a-competitive determin-

istic algorithm. 

The next theorem is quite surprising. It relates the power of the adversaries. 

T h e o r e m 2 ([2], [3]) If there exists an a-competitive randomized on-line strat-

egy against any adaptive on-line adversary and a (3-competitive randomized on-

line strategy against any oblivious adversary, then there is an a . [5-competitive 

deterministic strategy. 

1.4 Overview of the results 

In Chapter 2 we give a deterministic competitive k-server algorithm for all k 

and all metric spaces. This settles the fc-server conjecture [42], [43] up to the 

competitive ratio at most 2k — 1. 

A generalization of the /c-server problem [42], [43] in which the servers are 

unequal, is dealt with in Chapter 3. In this weighted server model each of the 

servers is assigned a positive weight. The cost associated with moving a server 

equals the product of the distance traversed and the server weight. We give 

an exponential — l)-competitive algorithm for any set of weights and any 

metric spaces. 

In Chapter 4, we introduce a new model of lookahead for on-line /c-server 

problem. We show that strong lookahead has practical as well as theoretical 
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Chapter 1 Introduction 

importance and significantly improves the competitive ratios of the Â -server 

problem. 

Chapter 5 is motivated by the need for fast algorithms for on-line problems, 

many of which require algorithms to provide solutions in real-time. We give a 

sub-class of memoryless server algorithms with 2 servers on the real line and 

show that there is a unique algorithm in this sub-class whose competitive factor 

is best possible on the real line. 

Finally, we conclude the thesis with some consequences of our work and some 

future directions for the /c-server problem in Chapter 6. 
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Chapter 2 

The A:-server problem 

2.1 Introduction 

Competitive algorithms were introduced by Sleator and Tarj an [49] in the context 

of searching a linked list of elements and paging problems. They sought a worst 

case complexity measure for on-line algorithms that have to make decisions based 

upon current events without knowing what the future holds. The immediate 

problem is that on-line algorithms are incomparable; on-line algorithm A may 

be better than another on-line algorithm B for one sequence of events but B may 

be better than A for another sequence of events. The conceptual breakthrough in 

'49] was to compare the algorithms, not to each other, but to a globally optimal 

algorithm that knows the request sequence in advance. Formally speaking, let A 

be an on-line algorithm for a problem [1. For an input instance (or a sequence 

of requests) a, let A{CF) denote the value of the output produced by A, and 

let OVT{CR) denote the value of the output produced by the optimal off-line 

algorithm. The performance ratio denoted by PA{O') is defined to be 二 裝 ) . 

This performance function or competitive ratio, denoted by ^^(n), is defined for 

each integer n to be the maximum of p^(o-) over all inputs a of size n. The term 

competitive ratio is more widely used, especially when is independent of 
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Chapter S The weighted k-server problem 

n. When the competitive ratio of an algorithm is a, we will frequently refer to 

the algorithm as being a-competitive. The competitive ratio may depend on the 

size and parameters of the problem. Algorithms are called competitive if the 

competitive ratio is independent of the problem or if the dependency is probably 

unavoidable. 

This chapter is organized as follows. We surveyed related work in the next 

two sections. In Section 4，we introduced some definitions needed in the rest 

of this chapter. We discussed the algorithm in Section 5 and investigated its 

competitiveness in the final section. 

2.2 Related Work 

Sleator and Tarj an gave competitive algorithms for managing a linked list of 

elements and for paging. Karlin et al [38] later gave competitive algorithms for 

snoopy caching. 

Borodin et al. [9], [10] generalized the concept to arbitrary task systems. 

Task systems capture a very large set of on-line problems but the generality of 

task systems implies that task systems cannot perform very well relative to an 

optimal off-line (prescient) algorithm. Borodin et al [9], [10] gave an upper 

bound on the competitive ratio of any task system and showed that some task 

systems have a matching lower bound. The competitive ration upper bound 

for task systems depends on the number of states of the system. For a limited 

set of task systems, Manasse et al [42], [43] later gave a decision procedure to 

determine if a given on-line algorithm is c-competitive. 

Manasse et al. [42], [43] generalized the paging problem to the k-server 

problem. The on-line A;-server problem may be defined as follows: We are given 

a metric space M and k servers which move among the points oi M. Repeatedly, 

a request, a point x in the metric space, is given. In response to this request, 
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Chapter S The weighted k-server problem 

we must choose one of the k servers and move it from its current location to x, 

incurring a cost equal to the distance from its current location to x. Note that the 

paging problem with k page slots in memory and n pages overall is isomorphic 

to the A:-server problem on a metric space with n points and a uniform distance 

matrix (except with zeros on the diagonals). Let $ = {A{k,M)} be a family 

of on-line A;-server algorithms for the metric space M，where k ranges over all 

positive integers, and M ranges over all possible metric spaces. A is called 

competitive if there exists a sequence (Ji, a�，•.. such that for each metric space 

M, and for each k, A(k, M) is ct(crA;)-competitive. The competitive ratio for the 

algorithm of [9], [10] depends on the number of points in the metric space. 

Another version of the A:-server problem is to charge for "time" rather than 

"transport." If we assume that all servers move at some common speed and 

allow all servers to move simultaneously then the off-line problem becomes one 

of minimizing the total time spent to serve the requests, subject to the limitation 

that requests are served in order of arrival. The on-line algorithm may position 

its servers to deal with future events but obtain the next request only when the 

current event is dealt with. We call this version of the problem the min-time 

server problem. 

Manasse et al [42], [43] gave a lower bound for the competitive ratio of 

any on-line A:-server algorithm: for any deterministic /c-server algorithm and any 

metric space with more than k points there exits a sequence of requests such 

that the cost of the on-line algorithm is no less than k times the cost of an 

optimal off-line algorithm, minus an additive term. 

Manasse et al. [42], [43] also conjectured that this lower bound is tight, up 

to an additive item. This conjecture is known as the k-server conjecture. They 

constructed A;-competitive algorithms for all metric spaces if A; = 2 and for all 

(h + l)-point metric spaces. (Other competitive 2-server algorithms were later 

given by Chrobak and Larmore [13], [16], by Fiat et al [24], [25], Irani and 
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Chapter S The weighted k-server problem 

Rubinfeld [34] and by Turpin [52].) 

Prior to our result, only the additional case k — 3 was solved for general met-

ric spaces using the randomized UAIZMOMXC algorithm suggested by Ragha-

van and Snir [46], [47]. This is due to Berman et al, [4]. The competitive ratio 

is bounded by [45]. Recently, Grove [30] showed that UAnMONlC is 

(9(A;2^)-competitive. The competitive ratio for randomized on-line algorithms is 

described as an expectation. It is important to make precise the definition of 

the worst case competitive ratio for randomized algorithms. This can be done 

in terms of an adversarial game with various assumptions on the strength of 

the adversary. UAKMOMXC uses randomization rather weakly; the random-

ization is used to select the next move but is not used to “hide，，the on-line 

configuration from the adversary designing the sequence. The lower bound of k 

from [42] [43] holds for such randomized algorithms. 

A general result of Ben-David et al. [2] [3] gave a non-constructive proof that 

the existence of any randomized on-line algorithm, which uses randomization of 

the form used by HAHMOAfXC, implies the existence of a deterministic on-line 

algorithm, at the cost of squaring the competitive ratio. Randomized algorithms 

that uses randomization to hide the on-line configuration from the adversary are 

dealt with by Fiat et al [23], McGeocah and Sleator [44], and Karlin et al [36], 

[37]. 

Competitive fc-server algorithms were discovered for specific metric spaces. 

Specifically, Chrobak et al gave /c-competitive deterministic on-line algorithms 

for points on a line [12] and for points on a tree [15]. Randomized on-line algo-

rithms were discovered for resistive graphs by Coppersmith et al. [19], [20] and 

points on a circle by Coppersmith et al. [19], [20] and Karp [40]. A determinis-

tic competitive k-sevvei algorithm for the circle was recently discovered by Fiat 

et al [26]. Chrobak et al. [12] also proved that the optimal off-line /c-server 

problem, is equivalent to network flow problems and thus has a polynomial-time 
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Chapter S The weighted k-server problem 

solution. 

The definition of the competitive ratio in [42], [43] allows an additive term 

in addition to the ratio; i.e. the on-line algorithm is allowed to perform some 

(constant) amount of work for free. The analysis of the line and tree algorithms 

above [12], [15] requires this additive term. The analysis gives an additive term 

if the initial configuration does not have all servers starting at one common 

point. This term depends on the initial distances between the servers. While the 

analysis is clearly overly pessimistic, neither of these algorithms is ^-competitive 

if one discards the additive term. 

Fiat et al [23] introduced the concept of an on-line algorithm competitive 

against a set of on-line algorithms. The idea is to combine two on-line algorithms 

to obtain a third algorithm which has the advantage of both, at least to within 

some ratios. The new algorithm can be viewed as some kind of M X M operator 

on the two input algorithms. For the paging problem, Fiat et al [23] showed 

that the M工J\f operation is possible and gave tight bounds on what is not. 

Performing a MXJ\f operation for other metric spaces is left as an open problem. 

2.3 The Evolution of Work Function Algorithm 

In this section we introduce what we call the work function strategy for the 

k-server problem that is the building block of our algorithm mentioned later. 

This strategy has been independently proposed by Karloff et al. [4], [11], 

12] who called it the Opt-based Algorithm, and by McGeoch and Sleator [42], 

43] who called it the Better-late-than-never Algorithm. 

Chrobak and Larmore [17] extended their work and gave an algorithm for 

k servers that they called the Work Function Algorithm. Based on their over-

helming empirical evidence, they conjectured that their algorithm is optimal; 

i.e. k competitive. However, they could only give a complete proof of the case 

12 
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for k 二 2. 

Xhey defined a work function to be a non-negative real-valued function u : 

R^ (where A^X is the set of all multisets of order k within a set X , 

yW is a given metric space and R+ is the set of non-negative reals) such that, 

for any two server configurations X and Y, 

u;{X) — u;(V) < X K 

They called this the slope condition. Intuitively, (^{X) can be thought as a 

conditional obligation of the strategy - the amount of cost the adversary must 

have incurred if he is at configuration X . Let W M be the set of all work function 

(for simplicity we write W when M is understood.) 

If u; is work function and X, Y are configurations, we say that X dominates 

Y if a;(y) = (JL}{X)^XY\ i.e. the conditional obligation of the adversary if he is 

at Y is the maximum possible consistent with his obligation if he is at X. When 

that holds, the adversary is always at least as well off to be at X as to be at 

Y. We say that X is a support configuration of u if it is not dominated by any 

other configuration, and we say that to is finitary if ^(a;), the set of all support 

configurations, is finite, and if every configuration is dominated by some support 

configuration. If u is finitary, it is characteristized by its values on its support, 

and an adversary can do no better than to always have its servers at a support 

configuration. 

We say that u; is a cone if /^(a;) has just one element. If a work function 

is a cone, an algorithm "knows" the location of the adversary servers. A cone 

with support X will be denoted by x^ or often simply by X it does not lead 

to confusion. Clearly, x-^(^) = ^ ^ or, using the simplified notation, = 

XY. Sometimes we also refer to x ^ as the characteristic function of X. 

If u; is a work function and r G M, we define a work function u; A r, the 
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Chapter S The weighted k-server problem 

update of to by r, by: 

{lo 八 r )⑷=mm{cc ; ( y ) + XY}. 

An equivalent formulation of the update operator, which seems more com-

plex, but is actually easier to use, is: 

‘ujiX) ifx G X ; 
( c c M r ) ⑷ — 

A r ) ( y ) + XY} otherwise. 

\ 

Property 1 If either formulation ofuAr, the minimum can be taken over only 

the k choices of Y which lie in Y U { r } . 

Property 2 IF X e ^(o;八 r、，then r e X. 

Property 3 If lo is finitary，then u f\r is finitary. 

Informally, if LJ is the system of conditional obligations of the adversary, then 

ioAris the new system of conditional obligations after one more request, r. The 

update operator can be extended to arbitrary sequences by setting cj 八 e = u; 

(where e is the empty sequence) and 

0；八（p . r ) 二（a;八 p)八 n 

Most often it is convenient to deal with functions whose infimum is zero, and 

thus they also define another operator, 

(a;Ar)(X) = (to A r)(X) - i n % 八:r). 

As with 八，the operator A can be extended to sequences of requests in an 

obvious way. In order to simplify the notation we will often omit the parenthesis 

and write cu 八 and u;Ag(X). 

By an easy argument on m, we have: 

14 
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Let S be the current server configuration, and r the new 

request point. Then update the current work function by 

u) Ar to and move one server to r so that the quantity 

SS' + is minimized，where S' is the configuration 

after the move. Alternatively，u can he the current offset 

function, since the difference is a constant. In this case, 

the update step is coAr —> uo, 

Figure 2.1: Chrobak and Larmore's Work Function Algorithm 

Property 4 If X G A^M, 讯 6 AT, and Y G t\Q), then 

We can now define the Work Function Algorithm in Figure 2.3. 

The algorithm keeps tracks of a current work function u. Initially the servers 

are on some 

configuration S^ and cj = (remember that we identify X G A^Ai 

with its characteristic function x义.） 

Interestingly, the update step of Chrobak and Larmore's algorithm can be 

done after S' is chosen instead of before, or in parallel. The reason is that 

cj 八 r(J^) = a;(X) for any r e X. 

Theorem 3 ([17]) The space complexity of Chrobak and Larmore's algorithm 

is the maximum cardinality ofK{uj), over all offset functions to that occur during 

the computation. If \ M \= n, that does not exceed the number of multisets in 

M of order k which contain a specific point, which is ( 二 ) while M is infinite, 

it does not exceed 丄)(where m is the number of requests.) 

Theorem 4 ([17]) The time complexity is dominated by the time needed to 

update the current work function. If\ M |= n，that time complexity is 二》) 

for each step. If M is infinite，it is for the tth step. 

Theorem 5 ([17]) The work Function Algorithm is 2-competitive for k — 2. 
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2.4 Definitions 

We define and describe A;-server algorithms that work on any specific metric 

space. The underlying metric space M = (C, d), where C stands for a configu-

ration and d is the distance measure, will usually be omitted from the definitions. 

Our definitions of 1，2 and 6 below are equivalent to the definitions in [42] and 

.43] • The definition of competitiveness against other algorithms follows [23 . 

Definit ion 1 A k-server algorithm starts in some initial k-server configuration 

Co and deals with a sequence of sequence a = cri,o"2,... A configuration is 

a multiset of k points occupied by the k servers in the metric space. The request 

a is a sequence of points in the metric space. The k-server algorithm selects a 

sequence of configurations ( ^2 , . . . , C\a\ such that a,- G Ci. We say that such 

an algorithm serves a. 

Note that configurations are denoted by capital letters. For sets A, B let 

A-B denotes their difference. We use A + a for A U {a} and A - a for A-{a}. 

Definit ion 2 An on-line k-server algorithm starts in some initial k-server con-

figuration Co and deals with a sequence of requests cr = CTI, <72, • • •, The 

request sequence is presented element by element. Following the presentation of 

request (Ji, the on-line k-server algorithm selects a configuration Ci such that 

(Ti G Ci. The configuration Ci does not depend on requests • • • , 

Definit ion 3 A minimal match between two configurations Ci and Cj is the 

minimal distance to move from Ci to Cj. We denote the minimal match between 

the two configurations by D{Ci^ Cj). 

Definit ion 4 Suppose a k-server algorithm A is given a request sequence a = 

CTi, (72,.. •，CR\a\' and an initial configuration Cq. Let f = 1，2,. • . , | a |，be the 

configurations selected by A. A fixed numbering of A，s servers is a labeling of the 
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points in each < = 1, 2，•.., | o* with distinct labels chosen from {1, 2，..., A;} 

such that for 1 < i < | cr there exists a minimal match of Ci and Ci-i such 

that all matched pairs of points have the same label We say that the request (Ti 

is served by server s iff ai is labeled s in Ci. We say that a server s moves from 

a point p to a point q iff p is labeled s in configuration Ci and q is labeled s in 

configuration Cj and i < j . 

Definit ion 5 A k-server algorithm A is lazy，iff for every request sequence a 二 

cTi, (72, •••, and for every initial configuration Co the following holds. Let 

i = 1,2, • • • , I cr I, be the configurations selected by A. Then，for every i， 

i < i <\ a if (Ti e Ci-i, then Ci 二 and if ai 茫 Ci-i, then there exists 

p G Ci-i such that Ci = Ci-i — p en. 

Definit ion 6 The cost associated with a k-server algorithm A given an initial 

configuration Co and a request sequence a is denoted by, 

IH 
costA{Co, (j) = ^ M{Ci, Ci-i). 

i=i 

Definit ion 7 Where c e 飛，cm on-line k-server algorithm A is said to be a-

competitive against an algorithm B iff for every request sequence a and for every 

initial configuration Co, 

costy[{Co^ a) < a ' (t)-

The infimum of all such c is called the competitive ratio of A against B. 

Definit ion 8 An on-line k-server algorithm A serving requests in a metric 

space M is said to be c-competitive iff for every k-server algorithm B serv-

ing requests in M, A is c-competitive against B. For a metric space M, an 

infinite sequence of algorithms Ai,A2, • • •, A , • ••； where for every k, k > l , Ak 

is an on-line k-server algorithm serving requests in M； is said to he competitive 

iff there exists a function a{k) of k alone such that for every k, k > I , Ak is 

a{k)-competitive. 
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Note that this definition is similar to the definition in [42] and [43] excluding 

the additive term that we disallow. Any algorithm that is competitive by this 

definition is also competitive to [42] and [43 . 

Definit ion 9 At any stage we denote by w{X) the optimal cost of servicing the 

requests so far and ending up at the configuration X; the function w defined from 

the set of all configurations to the positive real numbers is called work function. 

Definit ion 10 A function w is called convex if for all configurations A, B there 

exists a bijection h : A B such that for all bipartitions of A into X, Y, we 

have, 

w{A) + w{B) > w[X U h{Y)) + w{h{X) U Y) (2.1) 

2.5 The Work Function Algori thm 

Suppose ab denote the distance between points a and b. 

Fact 1 If w is the current work function then the resulting work function w丨 

after servicing a new request r is， 

w\X) = 一：r + r) + rx}. 
XEX 

Notice that when X includes the request r then w\X) = w{X). Because r 

belongs to X -x-i-r we have that w'{X - a: + r) = w{X-xi-r). Consequently, 

w\X) = m i n 工 - x + r) + rx}. 

From this we get, 

Fact 2 If w is the current work function and r is the last request then VX; 

= - x + r) + rx}. 

From Definitions 3 and 9, we have, 
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Let w be a work function and let the on-line algorithm 

be in configuration A. Assume that r is requested and 

let w' be the resulting work function. The work function 

algorithm moves the server from a point a e A tor that 

minimizes w'{A') + ra, where A! = A — a + r is the 

resulting configuration. 

Figure 2.2: Our Work Function Algorithm 

Fact 3 For a work function w and two configurations X, Y, 

w{X) <w{Y)^D{X,Y). 

Consider a work function w and the resulting work function w' after a new 

request r. By Fact 3 we get, 

u / pO = min{w;(X - x r ) r x } > w{X). 
xEX 

So we have, 

Fact 4 Let w be the current work function and let w' be the resulting work 

function after request r. Then V X : w\X) > w{X). 

We assume that initially both the off-line algorithm and the on-line algorithm 

start at the same configuration, Xi. Moreover, without loss of generality we may 

assume that when the game concludes they are at the same configuration X j , 

otherwise by repeatedly requesting points in Xj the on-line algorithm can be 

forced to converge to it without increasing the off-line cost. It follows from these 

assumptions that the off-line cost is Wf{Xf)-Wi{Xi), where Wi, wj are the initial 

and the final work function, respectively. 

Notice that since r e A' we can replace w\A') with w[A') in the above 

definition. The cost of the on-line algorithm is ra. Define the off-line pseudocost 
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to be — w{A). By summing over all moves, the total off-line pseudocost 

is equal to the total off-line cost. 

Consider the sum of the off-line pseudocost and the on-line cost, 

u/⑷-w{A) + ra. 

By the definition of the work function algorithm, this is equal to w'{A)— 

Trivially, this quantity is bounded by the maximum over all possible 

configurations. So, we have that the off-line pseudocost plus the on-line cost is 

bounded above by, 

max{u/pO - —X)} . 
X 

We call this quantity the full cost of a move. The total full cost is the sum 

of the full cost of each move. Clearly, by the definition of the competitive ratio 

we have: 

Fact 5 If the total full cost is bounded above by a 1 times the off-line cost plus 

a constant then the work function algorithm is a-competitive. 

The advantage of using full cost instead of real cost is that we don't have to 

deal at all with the position of the algorithm. Instead, we have only to show that 

a certain inequality holds for the work function, for all sequences of requests. 

The following lemma provides a stronger version of the convexity condition. 

Lemma 1 If there exists a bijection h that satisfies the conditions in the above 

definition then there exists a bijection h* that satisfies the same conditions and 

/i*⑷=X for all X e An B. 

Proof. Please refer to Appendix A. • 

2.6 The Competit ive Analysis 

Lemma 2 Work functions are convex. 
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Proof. We use induction on the number of requests: 

If Xi is the initial configuration and Wi is the initial work function then for 

all configurations X\ w{X) — Xi). 

So, we have, 

w{A) + w{B) = D{A,X,) + D{B,X,). 

Fix two minimum matchings D{A,Xi) and D{B,Xi). Each point Xj in Xi 

is matched to a point aj in A and bj in B. Obviously, by mapping a] to bj we 

obtain a bijection that satisfies the requirements of the lemma. 

Assume that w is convex. It suffices to show that after the next request r 

the resulting w' is also convex. 

By Fact 1, 

w\A) - w{A 一 a + r) + m , 

for some a £ A and, 

w\B) = w(B — b + r) + rb, 

for some b E B. 

By induction, w is convex and let h be the bijection from A — a + r to 

B - 6 + r in the convexity condition. According to Lemma 1 we may assume 

that h{r) = r. 

Consider now the bijection h' \ A ^ B such that, 

hix) \i X ^ a 

h'{x) = 
b if X = a 

and a bipartition of A into X and Y. 

Without lost of generality assume that a & X • 

We have, 

w'{A) + w\B) = w{A - a + r) + w{B - b r ) ^ ra ^ rb 

- =w{X - a + r U y ) + w{B - b r ) ^ ra i-rb 
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> w{X-a + r U h{Y)) + w(h[X - a + r) U F) + ra + r6 

二 — — a + r U h\Y)) + w{h\X) - 6 + r U F ) + ra + r6 

> w\XUh'{Y))^w\h\X)[JY) 

where the first inequality is based on the convexity of w and the second one on 

Fact 1. So, w, is convex and the lemma follows. • 

Now we use the convexity condition to prove the following two Lemmata. In 

fact, we use the weaker condition, 

Wae A-B : w{A) + w{B) > min{(A — a + 6) + w{B — 6 + a)}. 
BeB 

We need the following definition first. 

Definit ion 11 A configuration A is called minimizer of a point a with respect 

to w, if a / inA and A minimizes the expression w{X) — J2xex ax，that is 

w{A) - a 工 = — EO^GX 

L e m m a 3 Let w be a convex work function. Consider a new request at r and 

the resulting work function w'. If A is a minimizer of r with respect to w then 

A is also a minimizer of r with respect to w'. 

Proof. It suffices to show that for all configurations B, r ^ B: 

w'{B) w\A) — Yu ra. 

beB , aeA 

Using Fact 1, we get, 

mm{w(B — + r) + — E rb} > min{i(;(A - a + r) + ra - ^ ra}. 

印 tts a'GA aGA 

Or equivalently, for all b' G B, 

- + r) + r6' - ^ > - a r) ra' - Y^ ra}. 

, beB a'ed aGA 
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We add w{A) to both sides, 

w{B-b'+r)^w{A)i-rb'-Y,rb > ra} ( 2 . 2 ) 
beB A'EA AGA 

Because A is a minimizer of r with respect to w, we have, 

w(A) - Era < w{B a' - h') E rb 
aeA beB+a'-b' 

-hra' - E ra < w(B + a, — b') + - E rb. 
AGA beB 

From this and the convexity condition, 

w(B - + r) + w{A) > mm{w{B -h' ^ a') + w{A — a, + r )} . 

we get (2.2). 

This completes the proof. • 

L e m m a 4 With the hypotheses of Lemma 3 the full cost is achieved on A, that 

is, 

w\A) 一 w{A) = m^x{w'{X) - w{X)}. 
X 

Proof. It suffices to show, for all configurations B, r 苦 B, then 

w\A) + w{B) > w'{B) + w{A). 

Rewriting w'{A) and w'{B) as in Fact 1 we get, 

m:m{wiA - a + r) + ar + w[B)} > - " + r) + h'r + w{A)}. 

a'eA b'eB 

Or equivalently, for all a! G A, 

w(A — a ^r) ar + wiB) 

> m:m{w{B — + r) + h'r + (2.3) 
b'EB 

From the hypotheses we get, 

w(A) - T.ra < w{A - a' ^ h') - E ra ^ 

w{A) + < w{A -a'^ + 
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Substituting this to (2.3)，it becomes: 

w(A - a' + r) + w{B) > min{w;(A 一 a, + b') + w{B - V + r)} 

which holds because w is convex. • 

Lemmata 3 and 4 can be combined into the following lemma. 

L e m m a 5 Let w be a convex work function and let w' be the resulting work 

function after request r. Then any minimizer A of r with respect to w is also 

a minimizer of r with respect to w' and the full cost of servicing the request r 

occurs on A. 

For configurations U 二 {u i , . . .，Uk} and Bi = {6山•..，bik}^ i = 1 , … ， k . 

Let , \ 
k / k \ 

^{w, Bk) = kw{U) + 切W — j y 山 “ . 

i=l \ j=l ) 

Let denote its minimum value over all configurations U and B“ i = 

1 h 

L e m m a 6 For any work function w, the minimum value U\ Bi)…,Bk) 

is achieved for r 二 Ui，for some i, where r is the last request. 

Proof. By Fact 2, for some i G 1 …k: 

w{U) = w{U — Ui + r) -f rui. 

If we substitute this to 少 O，U, B ! , B k ) , using the k triangle inequalities 

rui — Uibij > -rbij we get, 

少(w;, Bk) > 少(u;, U — + …,Bk) 

and the lemma follows since, 

r e U — Ui r. 

• 
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Theorem 6 The work function algorithm is {2k — 1)-competitive. 

Proof. Consider a convex work function w and let w' be the resulting work 

function after request r. 

By Lemma 6 the minimum value of 屯(u/, U,Bi,..., Bk) is achieved for Ui = 

r, for some i. Let A be a minimizer of r with respect to w. Then by Lemma 5, 

A is also a minimizer of r with respect to w, and it is not difficult to see that the 

minimum value of 少 B k ) is unaffected if we fix Bi 二 A. Fix the 

remaining points Uj and bij, where 少(i</，U, B i , . . . ,Bk ) achieves its minimum. 

Let 少̂ /̂,少秘 denote the values of 少 on these points with respect to w' and w. 

Obviously, 

- ^{w) > 屯yy —少切. 

Using Fact 4，we have, 

Putting these together, we get, 

- > w\A) 一 w{A). 

Because A is a minimizer of r with respect to w, according to Lemma 5 the 

full cost is w\A) — w(A). Thus, we conclude that the full cost to serve request 

r is bounded above by - ^(w). Summing over all moves we get that the 

total full cost is bounded above by ^(wf) - ^(wi), where Wi and wj are the 

initial and the final work functions, respectively. 

Let Xi and Xj be the initial and final configurations. We have, 

^Wf) < ^{wj, Xj.Xf,…，X/) = 2kwj{Xf) — 2C{Xf) < 2kwf{Xf), 

where C{X) denotes the sum of all distances between the points of X. Initially, 

for all configurations X , Wi{X) 二 and it is not difficult to see that 

= -2C(Xi). Consequently, the full cost is at most 2kwf(Xf) + 2C(X,). 
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Because the off-line cost is WF(Xf), the total full cost is bounded above by 2k 

times the off-line cost plus a constant depending only on the initial configura-

tion. Using Fact 5, we conclude that the work function algorithm is {2k — 1)-

competitive. • 
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Chapter 3 

The weighted A;-server problem 

3.1 Introduct ion 

In this chapter we deal with a generalization of the A;-server problem, in which 

the servers are unequal In the weighted server model each of the servers is 

assigned a positive weight. The cost associated with moving a server is the 

product of the distance traversed and the server weight. 

An on-line weighted server algorithms is called competitive if the competitive 

ratio depends only on the number of servers, and is independent of the server 

weights. 

Weighted servers on the uniform metric space model problems that use mem-

ories that have differing read/write costs, e.g. E^PROM memories that can be 

read from in microseconds but require many milliseconds for write operations. 

The problem we define is to determine what computations should be stored in 

fast write memories and what computations should be stored in slow write mem-

ories. We assume that the time to read from the different memories are similar. 

This is true in practice. 

The justification for using different classes of memory is that the VLSI chip 

area for memory is inversely proportional to the write time to that memory. 
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Typical memories such as RAM, E^PROM, and R O M differ by orders of magni-

tude in their area and write time requirements. The read times of the different 

memories are very similar. For example, modern smart cards have a chip with 

102 bytes of RAM, 10^ bytes of E^PROM, and 10^ bytes of ROM, with write 

times of microseconds, milliseconds and infinity, respectively. The chip area 

used by the different memories is dominated by the RAM requirements, with 

E^PROM and ROM both using approximately equal areas. 

The points in the metric space correspond to intermediate computations. 

The different weights represent the different types of memory. These is a server 

of weight w for every slot of memory that requires w time for a write operation. 

If a server resides on a point, then that intermediate computation resides in that 

slot of memory. 

The request sequence a 二（JI，(J2, . . c on s i s t s of points that represent read 

access to some intermediate computation. If such an intermediate result is in 

memory then we access it free of charge, if not, then it has to be recomputated 

and stored in some class of memory. Serving a request with a server of least 

weight corresponds to placing that result in fast memory. The weights are 

normalized to represent the relative costs of recomputing an intermediate value, 

and writing to the different classes of memory. 

It is trivial to obtain a competitive ratio depending on the ratio between 

the weights, using any competitive /c-server algorithm. The natural question 

relating to this problem is whether the competitive ratio depends only upon k. 

Followed the idea of work function we defined in Chapter 2, we give a 

— l)-competitive algorithm for every metric space and every set of weights 

associated with the servers. 

This chapter is organized as follows. In Section 2, we discuss related work 

and particularly, we give Fiat and Ricklin's algorithm in Section 3. In Section 

4 we give our weighted k-sevyev algorithm on any metric space and present its 

28 



Chapter 3 The weighted k-server problem 

competitive analysis in the subsequent section. 

3.2 Related Work 

Lee's model [41] is the first piece of work to deal with the weighted server problem 

with result that depends on the servers' weights. He gave a lower bound of 

k • ^^^^ and an upper bound for the uniform metric space of k • where 
Wavg ^^ ^min 

Wmin and Wavg are the minimal weight and the average weight, respectively. 

Fiat and Ricklin [27] improved Lee's work and gave a 22。⑷-competitive A;-server 

algorithm for the uniform metric space and any set of weights associated with 

those k servers. Moreover, they used the MXJV operator [24], [25] to design an 

•⑷)_competitive deterministic and an 0 { P . log A;)-competitive randomized 

A;-server algorithms for the case where the weights are either 1 or w. This is the 

first application of the randomized MXM operator. 

3.3 Fiat and Ricklin's Algor i thm 

We describe Fiat and Ricklin's algorithm SAMVCZk [27], [28] inductively. 

For simplicity, we define the following functions, that range over positive 

integers: c(%) 二 and /(z) = . c ( l ) . . . — 1) • c(z). Note that for all i > 1; 

we have: 

c(z + l) >5-c(z)2； 

and 

/(z + l ) > 5 . / ( z ) . c ( z + l). 

Let wi <W2 < " • < Wkhe the sequence of weights associated with the servers. 

We transform these weights into normalized weights Wi,W2, - • - ,Wk with the 

property that wi^i is divisible by 2 • (1 + • wi. 
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L e m m a 7 Any competitive weighted server algorithm for the normalized weights 

implies a competitive weighted algorithm for the original weights. 

Proof. We stratch Fiat and Ricklin's main idea of proof. The did the transfor-

mation inductively, choosing Wi = Wi and wi^i to be the smallest multiple of 

2 . (1 + c(z)) . Wi, greater than Wi^i. It is now simple arithmetic to verify that 

应 < /(0，for all 2. Given a a-competitive algorithm for the normalized weights, 

it implies an {f{k) . a)-competitive algorithm for the original weights. This fol-

lows because the on-line algorithm cost is smaller with the original weights than 

with the normalized weights and the adversary with the normalized weights pays 

almost f{k) times more than the adversary witht he original weights. 

This completes the proof. • 

For A: = 1 they ran the greedy 1-server algorithm. They defined a phase 

of SAMVCSi to be 2(c(l) + 1) requests. For k > 2, SAMVCEK operates as 

follows. 

The pseudo-code for the Fiat and Ricklin's algorithm appears in Figure 3.2. 
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Divide the process of the algorithm into phases. Every 

phase is independent of all previous requests. A phase 

is divided into c{k) + 1 sub-phases. The first sub-phase 

begins by moving the server of weight Wk to an arbitrary 

point. Now, run SAMVCSk-i with the k — llighter 

servers, until the cost incurred by SAMVCEk-i reaches 

Wk' For every point x, charge(x) is the total num-

ber of requests invoked on x. Let P be the set of all 

points requested during the execution of SAMVCEk-i-

/ / I P |< c(k)，let S = P; otherwise, take S to be the 

set of the c{k) points of maximal charge during the ex-

ecution of SAMVC8k-i- The rest of the SAMVCSk 

phase consists of c{k) sub-phases，each of which starts 

by moving the server of weight Wk to an unmarked point 

in S，and marking that point. Next，the sub-phase runs 

SAMVCSk-i with thek — l lighter severs，until the cost 

incurred by SAMVCSk-i reaches Wk- The number of 

sub-phases in a phase of SAMVCSk is always c{k) + 1, 
even if the number of points in S is smaller than c{k). 

If there are no unmarked points in S, simply move the 

server of weight Wk to an arbitrary point in the metric 

space. 

Figure 3.1: Fiat and Ricklin's Algorithm 
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3.4 The Work Function Algor i thm 

Suppose ab denote the distance between points a and b and a be the weight of 

the server a. 

Fact 6 If w is the current work function then the resulting work function w, 

after servicing a new request r is: 

w'(X) = mm{w{X — x -{-r) -{- x • rx}. 
x£X 

Notice that when X includes the request r then w\X、二 Because r 

belongs to X - X + r we have that w\X - x + r) = w{X-x + r). Consequently, 

w\X) ：= min 托 -x^t)-\-x- rx}. From this we get: 

Fact 7 If w is the current work function and r is the last request then \/X : 

w{X) = min托X{川(X - x ^ r) + x - rx}. 

From Definitions 3 and 9 in previous chapter, we have: 

Fact 8 For a work function w and two configurations X, Y: 

w{X) <w{Y) + D{X,Y). 

Consider a work function w and the resulting work function w' after a new 

request r. By Fact 8 we get: 

w'{X) = (义-x + r) + x • rx} > w{X) 
xEX 

So we have: 

Fact 9 Let w be the current work function and let w' be the resulting work 

function after request r. Then VX : w'{X) > w{X). 
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begin 

do forever 

call phasek{wi^...，Wk)] 

end 

end 

phasei{wi) 

begin 

for z = 1 to 2(c(l) + 1) do 

wait; 

upon request on a point p; 

move the Wi server to p; 

end 

end 

phaseki^vih,... ,^k、 

begin 

move the Wk server to an arbitrary point; 

call sub — phasek{wi^ •.. , Wk)； 

for every point x, let charge(x) equal the number of requests 

invoked on x during the sub-phase; 

let P = {p : charge{p) > 0}; 

if (I P \< c{k)) 

then 

let = P 

else 

let S equal the set of c{k) points of maximal charge; 

for 2' == 1 to c{k) do 

choose an arbitrary point, x G 

move the Wk server to x; 

call sub — phasek{wi^..•，Wk) 
if I 5 |> 1 
then remove x from S； 

end 

end 
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sub — phasek{wi^ …’ Wk) 

begin 

run SAMVCSk- i{wi , . . . , Wk) until the cost 

incurred reaches Wk] 

end 

Figure 3.2: Fiat and Ricklin's Algorithm 

Let w be a work function and let the on-line algorithm 

be in configuration A. Assume that r is requested and let 

w' be the resulting work function. The work funct ion 

a lgor i thm moves the server from a point a E A to r 

that minimizes w\A') + a . ra , where A ' = A — a + r is 

the resulting configuration. 

Figure 3.3: Work Function Algorithm 

We assume that initially both the off-line algorithm and the on-line algorithm 

start at the same configuration, Xi. Moreover, without loss of generality we may 

assume that when the game concludes they are at the same configuration X j , 

otherwise by repeatedly requesting points in Xj the on-line algorithm can be 

forced to converge to it without increasing the off-line cost. It follows from these 

assumptions that the off-line cost is WF(Xf) - Wi(Xi), where Wi, wj are the initial 

and the final work function, respectively. 

Notice that since r G we can replace w'(A') with w(A') in the above 

definition. The cost of the on-line algorithm is a • ra. Define the off-line pseudo-

cost to be w'{A') — w{A). By summing over all moves, the total off-line pseudo-

cost is equal to the total off-line cost. Consider the sum of the off-line pseudo-cost 

and the on-line cost: 
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w'{A') - w{A) + a . ra 

By the definition of the work function algorithm, this is equal to w'{A)— 

w{A). Trivially, this quantity is bounded by the maximum over all possible 

configurations. So, we have that the off-line pseudo-cost plus the on-line cost is 

bounded above by: 

— w{X)} 
X 

We call this quantity the full cost of a move. The total full cost is the sum 

of the full cost of each move. Clearly, by the definition of the competitive ratio 

we have: 

Fact 10 If the total full cost is bounded above hy a ^ \ times the off-line cost 

plus a constant then the work function algorithm is a-competitive. 

The advantage of using full cost instead of real cost is that we don't have to 

deal at all with the position of the algorithm. Instead, we have only to show that 

a certain inequality holds for the work function, for all sequences of requests. 

3.5 The Competit ive Analysis 

L e m m a 8 Work functions are convex. 

Proof. We use induction on the number of requests. 

If Xi is the initial configuration and Wi is the initial work function then for 

all configurations X : w{X) = D{X,Xi). So, we have: 

w{A) + w{B) = D(A, X,) + B(B, X,). 
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Fix D{A,Xi) and D{B,Xi). Each point Xj in Xi is matched to a point aj 

in A and bj in B. Obviously, by mapping aj to bj we obtain a bijection that 

satisfies the requirements of the lemma. 

Assume that w is convex. It suffices to show that after the next request r 

the resulting w, is also convex. 

By Fact 6, 

w\A) = w{A — a ^ r) ^ a ' ra^ 

for some a £ A and, 

w'{B) = w{B -6 + r)H-5- rb, 

for some b £ B. 

By induction, w is convex and let h be the bijection from A - a + r to 

B - b-\- r m the convexity condition. According to Lemma 1 we may assume 

that h{r) = r. 

Consider now the bijection h' : A B such that 

h{x) if x^a 

h [X)= < 
b if X = a 

\ 

and a bipartition of A into X and Y. 

Without lost of generality assume that a e X. We have: 

w'{A) + w'{B) = w{A 一 a + r ) + w{B - b r ) + a - ra-i-b • rb 

=w{X - a + r U F ) + w{B - b r ) ^ a • ra i-b - rb 

> w{X-a + rU h{Y)) + w{h{X - a + r) U F ) + a • ra + 5 • r6 

二 w{X - a + r U h\Y)) + w{h\X) - b r UY) i-a - ra + b - rb 

> w\X U h\Y)) + w'{h\X) U Y) 

where the first inequality is based on the convexity of w and the second one on 

Fact 6. So, w' is convex and the lemma follows. • 
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Now we use the convexity condition to prove the following two lemmata. In 

fact, we use the weaker condition: 

\/ae A- B : i(;(A) + w{B) > min{u;(A - a + 6) + w{B - 6 +a)} 
h^B 

We need the following definition first. 

Defini t ion 12 A configuration A is called the min imizer of a point a with 

respect to w, if a 苦 A and A minimizes the expression w{X) — T^^^x 工 .工 , i . e ' , 

w[A) — X - ax = minx{w;(X) - Ea;GX a: . ax}. 

L e m m a 9 Let w be a convex work function. Consider a new request at r and 

the resulting work function w', If A is a minimizer of r with respect to w then 

A is also a minimizer of r with respect to w'. 

Proof. It suffices to show that for all configurations B, r 苦 B: 

w\B) - J 2 b ' r b > w\A) - Y^a-ra 

beB a£A 

Using Fact 6, we get: 

min{u;( B - h ' ^ r ) ^ h ' ' r h ' - y ^ h - r h } > mm{w;(A - a + r) + a • ra - « ' 
b'eB、 t^B a'e] aeA 

Or equivalently, G B: 

w(B - y r) -i- b' ' rb' - "^b • rb > mm{w{A _ a, + r) + a, . — ^ a . ra} 

beB a'ei ae^ 

We add w{A) to both sides: 

w(B-y-hr)^w{A)-\-b''rU-J2 b.rb > m i i i { f a.ra} 
beB a'M 

(3.1) 

Because A is a minimizer of r with respect to w: 

w(A) — a.ra < w(B + a' — — E b . rb 

w(A) + a,. ra' — a . ra < w[B + a' - U) + b' • rb' - b . rb 
aeA beB 
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From this and the convexity condition: 

w{B - + r) + w{A) > mm{w{B - b' a') + w{A -a + r)} 
a'^A 

we get (3.1). 

This completes the proof. • 

L e m m a 10 With the hypothesis of Lemma 9 the full cost is achieved on A; i.e. 

w\A) — w{A) = max{i(/pO w{X)} 
X 

Proof. It suffices to show, for all configurations B, r 孝 B: 

w\A) + w{B) > w\B) + w{A) 

Rewriting w'{A) and w'{B) as in Fact 6 we get: 

mm{w(A - a' + r) + a • ra' + w{B)} > mm{w(B - + r ) + • rb' + 
a'eA b'eB 

Or equivalently，Va' G A: 

w{A — a' + r) + a' . ra/ + w{B) > — + r) + . rb' + (3.2) 

From the hypothesis we get: 

w(A) — a'ra < w{A - a, + — E a • ra 
^ aeA — aeA-a'+h' 

w{A) + h' • rh' < w{A -a' 6') + a' ‘ ro! 

Substituting this to (3.2)，it becomes: 

w{A — a' + r) + w{B) > mm{io(A - a + b') + w{B -h' ^ r)} 

which holds because w is convex. • 

Lemmata 9 and 10 can be combined into the following lemma. 

L e m m a 11 Let w be a convex work function and let w' be the resulting work 

function after request r . Then any minimizer A of r with respect to w is also 

a minimizer of r with respect to w' and the full cost of servicing the request r 

occurs on A. 
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For configurations U = {wi , . . . , Uk} and Bi — {6‘ i , . . . , bik}, i = 1 , . . . , A:, let 

A; / k \ 

^{w, U,Bh...,Bk) = k'w{U) + ^ — t u r uAj 

\ / 

Let 屯(w) denote its minimum value over all configurations U and Bi, i = 

1 h 

L e m m a 1 2 For any work function w, the minimum value o/少(it;, U) Bi” .., Bk) 

is achieved for r = Ui，for some i, where r is the last request. 

Proof. By Fact 7, for some i G {1 . . . fc}: 

w{U) 二 w{U — Ui + r) + Ui. rui 

If we substitute this to 切(w, U, B^,..., Bk), using the k triangle inequalities 

Ui . {rUi - Uibij) > -rhij, we get: 

^{w,仏 Bi,..., Bk) > 屯(w, U — m + Bk) 

and the lemma follows since r e U — Ui r. • 

Theorem 7 The work function algorithm is — 1)-competitive. 

Proof. Consider a convex work function w and let w' be the resulting work 

function after request r. 

By Lemma 12 the minimum value of ,U, Bi,…，Bk) is achieved for 

Ui 二 r, for some i. Let A be a minimizer of r with respect to w. Then by Lemma 

11, A is also a minimizer of r with respect to w' and it is not di伍cult to see that 

the minimum value of 少(>'，U,Bi,...,Bk、is unaffected if we fix B, 二 A. Fix the 

remaining points Uj and bij, where 屯(w、U,B”.. . , Bk) achieves its minimum. 

Let denote the values of 屯 on these points with respect to w' and w. 

Obviously, 

—少(M) > K — 
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Using Fact 9, we have, 

Putting these together, we get, 

- > w'{A) w{A). 

Because A is a minimizer of r with respect to w, according to Lemma 11 the 

full cost is w'{A) — w{A). Thus, we conclude that the full cost to serve request 

r is bounded above by 屯(u/)-屯(w). Summing over all moves we get that the 

total full cost is bounded above by ^ (w/) - ^(w^i), where Wi and Wf are the 

initial and the final work functions, respectively. 

Let Xi and Xf be the initial and final configurations. We have: 

^Wf) < Xj) = 2k'wf{Xf) - 2C(Xf) < 2k'wf{Xf) 

where C{X) denotes the product of the sum of all distances between the points 

of X and the weight of the server moved to serve the request r. Initially, for all 

configurations X , = D(X’Xi) and it is not difficult to see that 二 

-2C{Xi). Consequently, the full cost is at most 2k^Wf{Xf) + Because 

the off-line cost is Wf{Xf), the total full cost is bounded above by times the 

off-line cost plus a constant depending only on the initial configuration. Using 

Fact 10, we conclude that the work function algorithm is - l)-competitive. 
• 
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Chapter 4 

The Influence of Lookahead 

4.1 Introduct ion 

In this chapter we study the influence of lookahead on on-line algorithms. The 

only advantage an off-line algorithm has over an on-line one is its ability to see 

the future. It might be expected that allowing an on-line algorithm accesses to 

some finite requests in advance would result in improving its performance relative 

to that of the off-line algorithm. It follows from the fact that "experience is the 

best teacher" in our personal lives. 

An important question is, what improvement can be achieved in terms of 

competitiveness, if an on-line algorithm knows not only the present request to 

be served, but also some future requests. This issue is fundamental from both 

the practical and the theoretical points of view. In the k-sexvei systems (e.g. any 

modern memory system, etc.) some requests usually wait in line to be processed 

by A;-server algorithms. One reason is that requests do not necessarily arrive one 

after the other, but rather in blocks of possibly variable size. Furthermore, if 

several processes run on a computer, it is likely that some of them incur page 

faults which then wait for service. Many memory systems are also equipped 

with different prefetching mechanisms; i.e. on a request not only the currently 
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accessed page but also some related pages which are expected to be asked next 

are demanded to be in fast memory. Thus each request generates a number of 

additional requests. In fact, some paging algorithms used in practice make use 

of lookahead [51]. In the theoretical context a natural question is: Is it worth to 

know the future? 

Contrary to the expectation of "experience is the best teacher", as far as 

the competitiveness is concerned, no finite lookahead is sufficient for any im-

provement in the performance of an on-line algorithm. What is the reason for 

this discrepancy between daily practice and what should be expected from a 

measure of success for on-line algorithms? The answer is twofold. First, in real 

life situations there is usually a correlation between past and future. Second, in 

practice there is a always a limitation on computational resources so that not 

all possible pre-computation is available. 

This chapter is organized as follows. In Section 2, we discuss related work and 

discuss the role of lookahead in Section 3. The CRU algorithm with lookahead 

is given in Section 4 while its competitive analysis is presented in the subsequent 

section. 

4.2 Related Work 

Previous research on lookahead in on-line algorithms has mostly addressed dy-

namic location problems and on-line graph problems [18], [31], [32], [35]; only 

very little is known in the area of the /c-server problem with lookahead. 

Consider the intuitive model of lookahead, which we call pseudo-lookahead. 

Let / > 1 be an integer. We say that an on-line k-server algorithm has a 

pseudo-lookahead, if it sees the present request to be served and the next I future 

requests. It is well known that this model cannot improve the competitiveness 
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of any on-line k-sevYev algorithm. If an on-line /c-server algorithm has pseudo-

lookahead, then an adversary that constructs a request sequence can simply 

replicate each request I times in order to make the lookahead useless. 

T h e o r e m 8 For every on-line pseudo-lookahead k-server algorithm A there ex-

ists a fully on-line (i.e. lookahead 1 = 1) algorithm B achieving exactly the same 

competitive ratio. 

Proof . Let B respond to any sequence of requests O•二 CTI, (J2, • . . , by simulat-

ing 乂，s behavior on a^ = . . . , <7i，.. •, cr?,..., o"2,..., (̂ 亡，•.., It is straight-

。 、 " ^ ‘ ‘ “ 
I times I times I times 

forward to note that, 

This completes the proof. • 

It should be noted that this simple argument remains valid when the on-line 

algorithm is allowed to choose its sequences with the help of a random source 

(and the cost of serving a sequence is defined as the average cost over the bits 

generated by that source.) 

The only result known on the /c-server problem with lookahead has been 

developed by Young [53]. According to Young, a /c-server algorithm is on-line 

with a resource-bounded lookahead of size I if it sees the present request and the 

maximal sequence of future requests for which it will incur I misses. Young gave 

deterministic and randomized on-line /c-server algorithms with resource-bounded 

lookahead I which are max(罕，2)-competitive and 2(/n(f) + l)-competitive, re-

spectively. However, the model of resource-bounded lookahead is unrealistic in 

practice. 

4.3 The Role of /-lookahead 

We now introduce a new model of lookahead which has practical as well as 

theoretical importance. As we shall see, this model can significantly improve 
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The on-line algorithm sees the present request and a 

sequence of future requests. This sequence contains I 

pairwise distinct requests which also differ from the cur-

rent request. More precisely, when serving request at, 

the algorithm knows requests crt+i, .. •，cr", where 

t' = min{s > t : I • • • , crJ | = / + 1}. The 

request (Js, where s > f is not seen by the on-line 

algorithm at time t. 

Figure 4.1: /-lookahead 

the competitiveness of any fc-server algorithm. Let a = o"i,o"2’...，o"m be a 

request sequence of length m, and at denote the request at time t. For a given 

set S, let I 5 I denote the cardinality of S and / > 1 be an integer. 

l-lookahead is motivated by the observation that in request sequences gener-

ated by real programs, for example, subsequences of consecutive requests gener-

ally contain a number of distinct pages. Furthermore, l-lookahead is of interest 

in the theoretical context when we ask how significant it is to know part of the 

future. An adversary may replicate requests in the lookahead, but nevertheless 

it has to reveal some really significant information on future requests. 

In the following, we always assume that an on-line algorithm has a l-lookahead, 

where I > 1. If a request sequence o•二 CTI，<72, ...，（7爪 is given, then for all t > 1, 

we define a value A,. 

If 

{ a , , 叫 1, . . . , CFm} I < / + 1, 

then 

At 二 m; 

otherwise 

Xt = min{t' > t : \ {at, cr^+i，...，ov} | 二 / + 1}. 
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Assume k > 3 and I < k — 2. If the request point r 

is currently occupied by any of the k servers, then no 

server moves; otherwise, serve r using that server that 

was least recently moved to serve a request in the past. 

Figure 4.2: The CRUi Algorithm 

The lookahead Lt at time t is defined as: 

Lt = {(J5 : s = t, t + 1, • • •, At]--

We say that a request at is in the lookahead of time t if at E Lt-

4.4 The CnU Algor i thm with /-lookahead 

Unless otherwise stated, we assume in the following that our algorithm is lazy; 

i.e. it only moves a server on a miss. 

4.5 The Competit ive Analysis 

Let cr = (Ji, (72,' • • .cr-m be a request sequence of length m. Without loss of 

generality, both CRUI and OVT start with an empty configuration and that 

on the first k misses, they move all of their k servers to serve the requests. 

Furthermore, we assume that a contains at least I + 1 distinct requests, where 

I <k-2. 

F o “ = l ,2 ’- . . ,A i —l，let 

IM = 1, 

and for 玄：=Ai，Ai + 1 , . . . , m, let 

IM = max{t' < t : I {ov, ov+i, • • • , cr̂ } | = / + 1}. 

45 



Chapter 4 The Influence of Lookahead 

Define 

风二 {(7s : <5 = lit, lit + I , - . . "} . 

In other words, for a given time t, the set Mt contains the last I + 1 requests. 

After a request at time t, where f = 1，2’..., m，we denote the set of requests 

contained in CRUi,s configuration by ScizUi,t and the set of requests contained 

in OVVs configuration by SovTf Note that SCRU^Q and Sovr,o are the set of 

requests in the initial configurations; i.e. 

Scnuuo = Sovr,o — 0 . 

We assign a cost to each different request, say x. Such cost will be updated 

if X is requested at time t. Let be the cost of x after time t. 

If X ^ Scnua or X G Lt, then, 

rjx,t 0 . 

Let j = I Scnui,t - U |. Assign a cost from the range [IJ] to each request 

in Scnui,t — Lt such that for any two requests, x,y £ ScnUut — Lt and 

Vx,t < riy,t, 

iff the last request to x occurred earlier than the last request to y. 

For t — 1,2，…，m，let 

St = Scnuut — {Mt U Lt U Sovr,t)-

We now define the potential function: 

xeSt 

Intuitively, St contains those requests which cause CTUAi to have a higher 

cost than OVT. Instead of the requests x G St, OVT can keep those requests 

which are not contained in ScnUi,t but will be requested in the future. The cost 
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rjj:,t of a request x e St equals the number of misses that CRUi must incur before 

it can move a server at x. 

For the analysis of our algorithm, we partition the request sequence cr into 

a number of phases, from phase 0 to phase p，such that the phase 0 contains at 

most I + 1 distinct requests and the phase z, where z = 1,2, • • • follows: 

1. Let t̂- and 巧 denote the beginning and the end of the phase z, respectively. 

Phase i contains exactly I + 1 distinct requests; i.e. 

{cr々 ，cr”+l, . . • I = / + 1. 

2. For all x G ScnUi,t-_, - {U- U we have: 

r]x,t^ <k - I - 2. 

In the following, we use mathematical induction reversely to decompose a. 

That is, we partition the request sequence starting at the end of a. Suppose 

that we have already constructed phases z + 1, i + 2, • • • We show how to 

generate the phase i. Let t^^ 二 力 — L (We let g = m at the beginning of the 

decomposition.) Now we set t 二 and compute Scnui,t-i — Lt. 

If ScRUi,t-i — Lt 寺论,then let y be the most recent request in ScnUut-i — Lt. 

We consider two cases. 

1. I f - L, = 0 or if Sc7ZUi,t-i - ^ 0 and y G Sovr,t-u then let 

tb 二 t and call the phase i 二 ap, CTt^+n a type 1 phase. 

2. If Scnui,t-i - I t ^ 0 and y ^ Sovr,t-i then let where t' < t, be the 

time when OVT moves the server at y most recently. Let t^- = f and call 

the phase i 二 cr和 ” ...，cr 巧 a type 2 phase. 

L e m m a 13 Phase 0 contains at most I + 1 distinct requests. 
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Proof . We show that the phase 0 is a type 1 phase. This immediately implies 

that the phase 0 contains at most I + 1 requests. If the phase 0 was a type 2 

phase, then OVT had moved a server on the first request di. However, this is 

impossible because the initial configuration is empty and on the first k misses 

both CKUi and OVT move the servers to serve those requests. 

This completes the proof. • 

L e m m a 14 Every phase i, I <i <p is found on the above partition. 

Proof . Consider an arbitrary phase z, where 1 < z < p. Let t = If 

ScTUAut-i — Lt ^ then let y be the most recent request in ScRUi,t-i — Lt and 

t”, where t,, < t, be the time when y was requested most recently. If the phase 

i is a type 2 phase, then let f , where f < t - 1, be the time when OVT moves 

the server at y most recently. (Since y 0 Sovr,t-i, we have f , < t < t — 1.) 

We show that phase i contains exactly I + 1 requests. For a type 1 phase 

there is nothing to show. Suppose that the phase i is a type 2 phase. Then 

t^ = t'. Let s G \t't — 11 be arbitrary and x be the request at time 5. We need 
2 L J 

to show X ^ Lt-

Assume x ^ Lt. Then by the definition of y, we have x 0 Scnui,t-i] i.e. x is 

evicted by CRUi at some time G Since y is not evicted by CTUAi 

at time s' and y's most recent request is at time 力” < s, we must have: 

y G Ls> 

Q {ov，...’crH’cr“...，(J�} 

= … ， O - F - I } U LF. 

But y 运{(TV, • . . i} and y ^ Lt, by the definition of f , and y. Thus 

X ^ Lt IS impossible. We conclude that the phase i contains exactly I + 1 

distinct requests. 
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Consider an arbitrary request x such that: 

^ G - {Lib U Sovr,t-_J-

If rĵ  fe = 0, then the fact clearly holds. Therefore we assume rjcc,tf > 1- By 

our partition, L七b contains all requests which are contained in the phase i. Since 

> 1, we have, 

X G Scnui,t^ — Lte, ^ ‘ t t 

and hence, 

X ^ L^B U L̂ e 

2 Ls, 

for all 5 G [ t l t l . 

Thus, x is a candidate for eviction by ClUAi throughout the phase z, but is 

not evicted. This implies immediately that all requests in the phase i; i.e. all 

requests in L^b, also belong to CTUAî  

Using a very similar analysis we can show that y ^ x and y G SazUi,tf. Hence 

we have identified I + 2 requests in which, at time t̂ -, are requested later 

than X. At time each of these requests has a cost of 0 or a cost which is 

greater than that of x. Thus, ry工’< k — I — 2. 

This completes the proof. • 

Using the partition of a generated above, we can evaluate CTUAî s amortized 

cost on a. First we bound the increase in potential EJ^i ^t — ̂ t-i- Then we 

estimate CTUAis actual cost in each phase of a. 

For t = 1,2 • • • ,m, we define 

Nt = St — St-u 

where 

So = ScnUi,o — {Mo U LQU Sovr,o), 
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and 

Mo = Lo = 0. 

L e m m a 15 If x e N” then, rj^^^t < k — I — 1. 

Proof. By the definition of Nt, we have, 

X e Scnui,t 一 {Mt U LtU Sovr,t)-

Since x ^ Mt, request x is not in the interval [/̂ t, t] and hence, 

X G ScnUu^it-i-

We have x 茫 Mt U Lt which implies x 朱 Ls, for all s where /Us < s < t. Thus, 

X is a candidate for eviction by CRUi throughout the interval but is 

not evicted. It follows that all requests in Mt must be in Scnu“t. Note that 

Mt contains I + 1 requests because OVT does not move any server before the 

(k + l)-st miss. At time t, all requests in Mt have a cost of 0 or a cost which is 

greater than Ws,t' Thus, Ws,t < k — I — I. 

This completes the proof. • 

L e m m a 16 If x G St-iHSt, then rj…> r/工，t. In particular, if CRUi incurs a 

miss at time t, then rj^^t-i > Vx,t' 

Proof. Note that by the definition of St-i and St, we have, 

X G Sc7ZUi,t-i — Lt-i 

and 

X G Scnui,t — Lf. 

Hence, 

r]x,t-i > 1 
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and 

rix,t > 1-

Let y, where y x, be a request such that r}y,t_i = 0 and riy，t > 0. Then, we 

have 

Otherwise, if Wy,t—i > 0 and w^̂ t̂-i < Wy’t-i, then, we have 

Wy,t = 0, 

or 

As a result, 

Vx,t-i > rix,t 

Now suppose that CRUi incurs a miss at time t. Then, at t, CKUi moves 

the server at z, where z ^ x, whose last request occurred earlier than x's last 

request. 

Hence, 

1 < riz,t-i < 'nx,t-i-

Consequently, x's cost must decrease after the server at z is moved; i.e. 

rh’t-i > rix,t-

This completes the proof. • 

Lemma 15 implies that at any time t where 1 < t < m, a request x e Nt can 

cause an increase in potential of at most k — I — 1. 

Thus, for every t, / < t < m, we have: 

^t - ^t-i = J2 ” — ，̂亡—1 
xESt xE.St-1 

= + ⑷ - " ‘ 1 ) - H " ‘ 1 
cceNt xeSt-inSt xeSt-i-St 

= ( k - l - l ) -{Ntl-Wt 
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where 

Wt = T丨+ T? + T? 

V = I：工eNt(k - I — 1 - ih，t) 

=J2xeSt-i-St{ 'nx,t-i) ' 

Corollary 1 For all t 二 1,2,... ,m， 

TJ > 0 

T? > 0 (4.1) 

T? > 0. 

Proof. Clearly, Tj > 0 and T【> 0. The inequality T】> 0 follows from Lemma 

16. 

This completes the proof. • 

Next we estimate EJli I ^t | and derive a bound on ET=i 屯t _ ^t-i- To each 

element x G Nt, we assign the most recent move of the server at x by OTT. 

More formally, we let, 

m 

X = {{x,t) e[jNtX [ l ,m] : X G Nt}. 
t=i 

We define a function f : X [l,m]. For {x,t) e X we define 

f{x,t) = max{s < t : OVT moves the server at x at time s}. 

Note that f is well-defined. Now we describe the two properties of the 

function f . 

Property 5 The function f is injective. 

Property 6 Let {x,t) G f{x,t) = t, and t G [tlt'^], where 0 < i < p- If 

I = 0, then t' G [4，切.Z/z > 1, then t' G 切 . 

/ 
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These two properties are useful when bounding actual cost in each 

phase of a. 

Let Torr be the set of all f G [l,m] such that OVT moves a server at time 

t. Let T‘打 二 : {x,t) G X}. Since f is injective and hence; 

m 

E I iVt 丨 = I X I = I T“T . 
t=l 

Thus, by Equation (4.1), we obtain: 

m 饥 

E $厂 = (fc — / — 1) I T ‘ t I — E 爪. （4.2) 

t=i i二1 

Now we bound CTUAi's actual cost in each phase of a. For < 二 0，1，...，p, let 

Ccnui,i be the actual cost CRUi incurs in serving the phase z, and let Covr,i be 

the cost OVT incurs in serving the phase i. 

Furthermore, let 

Tq^J- — Tovt — TQ^J-

and, for z•二 0 , 1 , … l e t 

Tq打,i 二 {Z G T各vT : ^ ^ — 

L e m m a 17 CCNU^O 二 COTT,Q. 

Proof. It follows from the fact that the phase 0 contains at most I ^ 1 < k 

distinct requests and that on the first k misses, both CKUi and OVT move 

their severs to serve those requests. 

This completes the proof. • 

Suppose Caiu”i > 1. Let 

Ci 二丨 Scnua-_, — {Lt^ U Sovr,t-_J • 

For X G Nt, where t G [t^^], let 

二 /c - / - 1 -
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For X G St-i n St, let 

= - r]x,t. 

For X € St-i — St, let 

= ”工,t-i-

Note that, 

— • 丫1 
丄 i — l^xeNt 丄 a;，f 

^t — ^xeSt-inSt 

= J2xeSt-i-St 

Corollary 2 

T ^ > 0 : G N, 

T l , > 0 : Vx G ^t-i n (4.3) 

T^, > 1 : Vx G St-i - St 

Proof. The inequality T̂ ’，> 0 follows from Lemma 15. Lemma 16 implies 

T^, > 0. If X e St-I - St, then, 

X G Scnui,t-i — Lt-i 

and hence, 

1 < ŵ t̂-i =飞It. 

This completes the proof. • 

Lemma 18 f G T另p冗“r 

Proof. For t 二 巧一”《约 + 1，. •.，仏 let x 车 St. 

Since x G Scnih,卜^ —(丄々 U Sovr^t^)^ we have x ^ SovT,tf_r 

Let t' : max{5 < 巧 _ i : OVT moves the server at x at time s}. By our 

partition, phase i contains exactly I + 1 distinct requests and Properties 5 and 

6, we can show that t' > 约―工 and t'贫 T^ypj： Thus, t, G 丁 各 打 ’ “ . 

This completes the proof. • 
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L e m m a 19 f G [t^^] and T '̂ > 1 : j G {1,2,3}. 

Proof. Let tmin be the smallest t G {ti-i：. • . , t^} such that s G St. 

If tmin = we define 力十 to be the time when CRUi incurs the first miss 

during phase i. If t^) = 0, then x ^ S^u Hence, there must exist a t,, where 

t\ < f < such that X G 1 — St丨.Thus, T【,y > 1. If = 1，then 

X G St\-i n St\- By Lemma 16, we have T【力t > 1. 

I f trmn > 力?-1，then T ^ ^ > 1. Suppose 二 k-l-1. By our 

partition, we have rŷ îf <k-l - 2. It is simple to show that there must exist a 

f e {trmn + 1，. . .， S U c h that > 1 OI T【,,，> 1. 

This completes the proof. • 

L e m m a 20 产 

a- <1 I + £ 

Proof. For each request G ScTZUi,tf_, — (^i U we claim that either: 

1. by Lemma 18, 3f G T^Tr,i-i such that OVT moves the server at x at f; 

or 

2. by Lemma 19, G [约，tf] and a j G {1,2,3} such that T 二 > 1. 

From Corollary 2, we have, 

a <1 I + E 爪 . 
t=t\ 

This completes the proof. • 

L e m m a 21 For i 二 1,2,..、p, 

Genu I,i < CovrA I 了gpT’i-i I + XI 
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Proof . Consider a fixed z G {1, • ' ' 

If CcnUui — 0, then the inequality clearly holds because, according to Corol-

lary 1, VFt>Ofor a lH G [t^t']. 

So suppose CaiUi,i ^ 1. Let 

Ci = I - {Lfb U Sovr,t-__J . 

And we have, 

CcTzui,i < Covr.i + Ci. 

Consider a request x G — {L̂ î  U Sovr,t^_J- By Lemmata 18 and 

19, we have 
t! 

Ccnui,i < CoTr,i+ I T q 打 , “ i | + ^ Wt. 

This completes the proof. • 

Now we can estimate CTUA^s amortized cost. 

Theorem 9 CTUAi is {k - I)-competitive. 

Proof . Applying Equations (4.2), Lemmata 17 and 21, we can show: 
p m 

Ccnuu^ + - = ； E C乙尺的 + 少f 一 少 1 ) 
i=0 t=l 

p p—1 m 

< E + E I T l v r , I + E ^ ^ -

m 

t=i 

Corollary 1 implies that Wt > 0 for all t G [4,樣 . 

Hence, 

Genu I,a + 歪M —少0 < Covr,a^ I ^ o p r + (fc — / _ 1) I T^vr 

< {k — l)Covr,<r-

This completes the proof. • 
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Chapter 5 

Space Complexity 

5.1 Introduct ion 

This chapter is motivated by the need for fast algorithms for on-line problems. 

On-line problems arise quite often, and quite naturally in computer science. The 

dynamic nature of these problems demands that algorithms for these problems 

make decisions without full knowledge of the impact of these decisions on the 

future performance of the algorithms. Many real life problems, such as paging 

and scheduling problems, are on-line problems. The A:-server problem [42], [43 

is a variation of the generalized formulation of on-line problems. Usually it 

receives requests from a finite metric space and requires algorithms which need 

to effectively deal with extremely large number of requests within minuscule 

time frames. Thus, algorithms for such problem need to provide good solutions 

in real time. We can argue, then, that algorithms that require arbitrarily large 

unbounded amounts of scratch space; e.g. algorithms that physically store and 

use information about all the past requests to describe how to serve the current 

request, could not possibly schedule service in real time, thus rendering them 

impractical for such on-line problems. 
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From a practical standpoint, an important requirement of an on-line algo-

rithm is that it maintain very little state information (memory) from the past, 

and that its response to each request be easy to compute. For example, the 

CRU caching algorithm must maintain the order of the last access to each line 

in an associative set, for each associative set. Such state memory is expensive 

and slow to update in hardware, for associative set size larger that 2, as pointed 

out by So and Rechtschaffen [50]. For CRU paging, one would have to maintain 

the order of the last access to each physical memory frame (since physical mem-

ory is fully associative) - this is not feasible. Perhaps an alternative to large 

state memory is randomization. We refer here to algorithms that make prob-

abilistic choices during execution, with their performance studied under worst 

case inputs. On-line randomized fc-server algorithms have attracted scant atten-

tion prior to our work [2], [3], [7], [19], [20], [30], [36], [37], [40], [44], [45J, [46], 

47]. Previous theoretical studies have not touched on this issue of the memory 

resources required by a deterministic on-line /c-server algorithm. 

Motivated by the above consideration, we restrict ourselves to the /c-server 

problem on finite metric spaces and focus our attention on the memoryless k-

server algorithms; i.e. algorithms that do not maintain any book-keeping infor-

mation about past service, but only use the current configuration of servers and 

the position of the next request to schedule service. Naturally, a memoryless 

algorithm, if shown to be strongly competitive, is a resource optimal, on-line 

strategy for the problem. 

This chapter is organized as follows. In Section 2, we discuss related work. 

Definitions and notation are stated in Section 3. In Section 4 we give a memo-

ryless 2-server algorithm on a simple, infinite metric space and present the main 

result with the proof in the subsequent section. 
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5.2 Related Work 

The study of deterministic competitive algorithms has concentrated on compet-

itiveness; i.e. comparing on-line algorithms to optimal off-line algorithms on any 

sequence of operations. Published algorithms proven to be competitive invari-

ably have pessimal response time; i.e. their worst case operation time is as bad 

as possible. 

The known 2-competitive deterministic algorithms for two servers by Man-

asse et al. [42], [43] and Chrobak and Larmore [14] are very space- and time-

consuming. If the given metric space has m points, their the algorithms need 

0 (m) space and 0 (m) time per each request. Thus on a sequence of n requests 

in an arbitrary metric space, the space needed is 0(n) and the total time is 

0(n2). Clearly, no server system can allow such delays in practice. 

This has motivated research to find faster competitive algorithms for two 

servers. Chrobak and Larmore [13], [16] improved those results and presented 

a 4-competitive 2-server algorithm with time complexity 0(1) per each request. 

This algorithm is also 2-competitive, and thus optimal, when the underlying 

metric space is a tree. 

Recently, Estiville-Castro and Sherk [22] proved that any k-server algorithm 

on a line segment of length I with response time has a competitive ratio 

of at least n (^ ) . 

5.3 Preliminaries 

We consider a 2-server algorithm operating in a simple, infinite metric space: 

the Euclidean (real) line,况丄.Define the signed Euclidean distance, xy, between 

any two points, x,y eUHohey- x. The cost incurred by a 2-server algorithm 

moving a server from point x to y is the absolute value of xy. 

We let a = (71,(72, •• • ,0-n denote a finite sequence of requested points. For a 
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request sequence a, and for each integer i > 0, a' denotes the request sequence 

(7 repeated i times. A 2-server algorithm, A^ has its servers labeled by 5i and 

S2. At any stage, the servers respectively occupy points x and y with x < y; 

we denote this canonically by saying that A is in the configuration {x,y}. For 

any configuration F = {x,y}, we denote by T{F) the quantity xy > 0. Without 

loss of generality, we assume that server si never crosses server s) at any stage 

of the algorithm. Also, when there is no confusion, we shall sometimes identify 

the label of a server with the point in 况工 that it currently covers. 

Suppose that algorithm A starts at some configuration F and subsequently 

gets a request sequence a. Then A{F, a) is defined as the configuration after A 

has served cr; the associated cumulative cost of serving a is denoted by Ca{F, a). 

We define Covr{F,a) to be the optimal cost of serving the sequence a starting 

from the configuration F. 

Defini t ion 13 Let c> I. The on-line algorithm A is said to he a-competitive 

on ^^ iff for any starting configuration F, there exists a real constant c such 

that for any request sequence a, we have: 

Cx{F, (T)<a' Covr{F, a) + c. 

5.4 The TWO Algori thm 

Intuitively, a deterministic, on-line 2-server algorithm is memoryless iff it serves 

the current request based solely on the position of the request and the current 

configuration of its two servers. We further restrict our algorithm on 况丄 as 

follows. 

Definit ion 14 A memoryless 2-server algorithm A on the Euclidean space 况工 is 

said to be uniform iff there exists real constants fh and P2 such that the following 

holds. For X < y, let A be in the configuration {x,y}, and let r e ^^ be the 
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next requested point which is distinct from x and y. Also, let di be the signed 

distance moved by the server serving r, let d】be the signed distance moved by 

the other server, and let /Sr =繁. 

1, If r lies outside the closed interval [x, y] on 况i (i.e. r < x or r > y), then 

Pr 二 Pi. 

2. If r lies inside the closed interval [x,y] on 况工 ( i .e . x < r < y), then 

Pr = P2. 

Note that a uniform strategy does not depend on the location of the points 

in the current server configuration and the current request, but only on the 

constants jSi and "2. This assumption is quite reasonable, and perhaps desir-

able: memoryless on-line server algorithms should have succinct descriptions and 

should adopt strategies unencumbered by any exceptional behavior. The defini-

tion of uniformity can be probably generalized to higher dimensional Euclidean 

metric spaces. To our knowledge, all the memoryless on-line server strategies 

studied in the literature satisfy Definition 14, when restricted to the space 况1. 

The algorithm is depicted in Figure 5.4. 

5.5 Competit ive Analysis 

Observe that T W O is a uniform algorithm according to Definition 14’ with 

constants fii = 0 and = — 1. 

In order to bound the amortized cost of our algorithm, we first establish 

some results that delineate the consequences of 2-competitiveness of a uniform 

2-server algorithm. Combining these results we can give a complete proof of our 

main result. 

Our competitiveness results for TWO are established in the framework of 

a game between the player, T W O , and an arbitrary adversary, AW. The 
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At any stage, let F = {x,y} (with x < y) be a con-

figuration of TWO and let the next point requested be 

r 贫 I n response, TWO performs exactly one of 

the following two actions depending on r. 

1. If r is not in the closed interval [x,y] on the real 

line, then move the server nearest to r (breaking 

ties arbitrarily) to serve the request without moving 

the other server. 

2. If r is in the closed interval [x, y], then serve the 

request with the server closer to r, while simul-

taneously moving the other server towards r by 

the same distance. In other words, the next con-

figuration attained by our algorithm is given by 

{r,x y - r] if r - x < y - r and is given by 

{x + y — r, r}, otherwise. 

Figure 5.1: The TWO Algorithm 
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adversary has its own two servers labeled as ai and «2； if the adversary's current 

configuration is {x'^ y'} with x' < y', then servers ai and a] respectively cover 

the points x' and y'. In general, the game proceeds in rounds; a round begins 

with the adversary specifying the next request and serving the request with one 

of its servers. The players completes the round by serving the request with one 

of its servers. To establish a contradiction to the assumed 2-competitiveness of 

the player, it suffices to show that from any given starting configuration F, the 

adversary has a strategy such that on a suitably chosen request sequence a, the 

quantity Crwo{F, a) - a - CAVV[F, a) is greater than c, where c is the constant 

depending on F in Definition 13 (with a 二 2) for the player. 

Given a sufficiently small real constant e > 0, we define two configurations Fi 

and F2 to be e-aligned iff Fi and F2 have one common point, and the remaining 

pair of corresponding points are no more than e distance apart. Our first propo-

sition shows that the adversary can always force a a-competitive player T W O 

to reach a configuration that is e-aligned with the adversary's configuration. We 

remark that the claim holds for any metric space, not just 况1. 

L e m m a 22 Suppose that TWO is a a-competitive 2-server algorithm. Let F 

be any configuration, let x and y be any two distinct points. Then，for any 

chosen e > 0, there exists an integer i > 1 such that the configurations {x,y} 

and TyVO{F,{x,yy) are e-aligned. 

Proof. Otherwise, we can construct an adversary AW that stays in the con-

figuration {x,y}] each subsequent request will cause TWO to incur cost greater 

than e while AW incurs no cost. The ratio of TW(9's cost to AVV's cost thus 

grows unboundedly, contradicting Definition 13. 

This completes the proof. • 

Lemma 23 Let a > 0 be a constant and TWO be a uniform 2-server algorithm 

over the metric space 况1. Suppose that there is an adversary AW such that for 
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any starting configuration F = {x, y}^ there is a constant e > 0 depending on F 

and a request sequence a such that the following holds. 

1. T{TyV0{F,(7))>T{F). 

2. ryVO{F,a) and AVV{F,a) are e-aligned. 

3. Cryvo{F, a) - a • CAVV{F, a) > a . e. 

Then, TWO is not a-competitive on 况 i . 

Proof. Assume that the three conditions in the hypothesis hold, and by way of 

contradiction, let TWO satisfy Definition 13 with the constant c. Let FQ = F 

and Fi = {xi,yi} denote the configuration T>VC>(Fo, cr). From Condition 1, if 

t 二 ^^ then t > 1. Now, define a similarity transformation F on 况i given by 

r(^) = t'(z-x) + xi. Note that F maps the points x and y to the points Xi and 

respectively. Moreover, for any distinct points r, G 况i, V{r)T{r') = t . rr'. 

With a slight abuse of notation, for any sequence a', we let r (a ) denote the 

ordered request sequence obtained by applying the transformation F to each 

requested point in a . 

The adversary AW adopts the following strategy. Starting at configuration 

FQ, it first provides the request sequence CTQ = to TWO. Then, it 

provides sequences (Ji, ̂ 72,.. .，such that cr,- = where i > 1. The serving 

policy for AW is straightforward. If it uses a server 丄 on any request r in CTQ, 

then for every i > 1, AW uses that same server for the corresponding request, 

r'(r), in the sequence (J“ 

Now, since TyVO{Fo,a) = {x^yi}, it follows that the player incurs no cost 

on the last two requests in CTQ, while from Condition 2, we conclude that the 

adversary can reach configuration {xi,y2} after processing CTQ, such that 

CAVV{FO, ao) < CAVV{FO, cr) + e. 

l it is easy to see that AW need only move one server per request. 
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Therefore, using Condition 3，we have CTQ) — a . CAVV{FO-> "O) = > 0. 

Since T W O is a uniform algorithm, it follows that the distances moved by 

servers on each request in V{ao) are t times the distances moved by the servers on 

the corresponding request in ctq. In general, for i > 0, let a^ = X̂o, cr” … ， d e -

note the cumulative request sequence up to stage i, and let = TWC^(Fo, cr^), 

the configuration of TWO after processing sequence A\ From the above discus-

sion, the following equation holds for i > 0. 

Crwo{Fi, ai) - a . CUpv(F“ = S • f . 

From this, we can conclude that for i > 0, then: 

i 

Crwo{Fo, a') - a . Cavv{Fo, a') = J . E 

Since 5 > 0 and t > 1, the right hand side of the above equation grows 

unboundedly with increasing i and will eventually exceed the constant c. This 

contradicts the assumption that TWO is a-competitive. 

This completes the proof. • 

Without loss of generality, we assume that the player starts from the config-

uration {0, L}, for some positive real number L. 

L e m m a 24 Let ^ be a -competitive algorithm with constants f3i and P2. From 

any starting configuration {0, L}, if 2 gets a request at some point r € then 

^ schedules the server that is closer to r to serve that request at r. 

Proof . Let {0, L} be the starting configuration of 这，for some L 〉 0 . Since 这，s 

servers never cross each other, it follows that when r < 0 or when r > L，the 

servers closer to r, respectively, si and 52, serve these requests. 

Suppose r < L — r] i.e. r is in the open interval [0, L] and is closer to Si. 

Proving by contradiction, suppose that 这 schedules the server s) to move to r. 

The adversary chooses the strategy of serving a request with its closer server, 

and provides the following set of requests. 
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1. Request r. 

2. Choose a positive e < ^(丄广),and request L + r + e. 

3. For some finite z > 1, request the sequence r, L + + e, •. •, r, L + r + 

i times 

until the player's servers are e-aligned at the configuration {r, L -f r + e} 

by Lemma 22. 

Simple calculations show that the player incurs a cost of at least 2L + e while 

the adversary's cost is exactly 2r + e; hence C^ - 2CAVV > 2e on the above 

sequence. Since the adversary and the player end up e-aligned, it follows that 

the player's servers must be at least a distance of L apart. This satisfies all three 

conditions of Lemma 23, and we conclude that ^ is not 2-competitive. Hence, 

the closer server Si must have served the initial request at r. 

This completes the proof. • 

L e m m a 25 If 泛 is 2-competitive，then the constant f3i — 0. 

Proof. Let F = {0, L} be the initial configuration of Suppose that 这 gets a 

request at the point r 二 2L. Arguing by contradiction, when 0, ^ moves 

server 5i to the point y = f^L, since 52 must serve that request at r by Lemma 

24. 

We construct an adversary AW that is initially in the configuration {0, L}. 

On getting the request at r, AW moves to the configuration {0,2L}. At this 

stage, the player's configuration is {y, 2L}, the absolute distance between Si and 

52 is 2L - y, the player's cost is L+ | y | and the adversary's cost is exactly L. 

Now, AW chooses a positive constant, e, such that e 〈 条 | " I，and selects 

one of the following strategies depending on the sign of y. 

1. If y > 0 then AW requests the point a: = L -f | - e and serves the request 

with server a<2. Next, AVV requests the sequence of points 
i times 
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for some i > 1 until the player's servers are e-aligned at the configuration 

{0, x} by Lemma 22. 

2. If y < 0 then AW requests the point x = L+'^^e and serves the request 

with server ai. Next, AVV requests the sequence of points x, 2L • • • , x^ 2L 

i times 

for some i > 1 until the player's servers are e-aligned at the configuration 

{x^ 2L} by Lemma 22. 

When y > 0 (respectively, when y < 0), it is easy to see that the point x 

is closer to the player's server (respectively, S2.) By Lemma 24, ^ is obliged 

to move 5i (respectively, 52) to serve the request at x when y > 0 (respectively, 

when y < 0.) However, the adversary serves x with its server a) (respectively, 

ai.) In both cases, the final configuration reached by the player's servers is 

such that the distance between 这，s servers is greater than L. Hence, to apply 

Lemma 23 and contradict the 2-competitiveness of 这，it only remains to show 

that Cs — 2CAVV > 2e for the above sequence of requests. 

If y > 0, careful counting establishes that the net cost to the player before 

e-alignment at {0，x} is at least 4L+|-e while the adversary's cost is 2 L - | + e. 

Hence, — 2CAVV > f - 3e > 2e, since e 〈器 . 

Likewise, if y < 0, then 这，s net cost before e-alignment with AVV at con-

figuration {x,2L} is at least 4L — f — e, while the adversary incurs a cost of 

+ I + e. Hence, CQ — 2CAVV > - 3e > 2e, since e < 音 〈 孕 . 

Applying Lemma 23 yields the desired contradiction that 这 is not 2-competitive. 

Thus, Pi = 0; i.e. the other server does not move at all. 

This completes the proof. • 

L e m m a 26 If 3 is 2-competitive, then the constant fh = 

Proof. At the outset, we note that Lemma 24 and the fact that servers never 

cross, together imply that fh > —1. Otherwise, in configuration {0, L}, if the 
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request is at r such that i+个伪丨 < r < 奢，then server Si serves, but the servers 

will cross each other. 

For the sake of contradiction, let p2 be strictly greater than —1. Let {0, L] 

be the initial configuration of ^ and AW. If 这 gets a request at the point 

r 〉 I , it serves r using s] (by Lemma 24) but simultaneously moves Si to a 

point y < L - r (since > -1). Depending on ft, AW selects between the 

following two strategies; in both cases, AW uses a suitably chosen positive 

constant e < | whose value is made explicit later in the analysis. 

1. If > 0, then AW chooses a positive constant e < requests r 二眷 + e， 

and serves r with its farther server ai. The next request is now placed 

at the point x = ^ + 2e, and AW serves it with the server a飞.Finally, 

AW requests the sequence • - , r, x for some i > 1 until the player's 

i times 

servers are e-aligned at the configuration {r, x} by Lemma 22. 

2. If -1 < A < 0, then AW chooses another positive constant e < f , 

requests r = f + e, and serves r with its farther server ai, incurring a cost 

of I + e. The next request is to the point = 21/ + y’ and AW serves 

it with the server a^. The point, t = L + y + e, is requested next and 

served by AW with its server a!. Finally, AW requests the sequence 

x + + some i > 1 until the player's servers are e-aligned 
V ^ 

i times „ 

at the configuration {t,x + 2e} by Lemma 22. AW serves the first request 

to X 4- 2e with its server a). 

We now analyze each of the above cases and determine appropriate values for 

the constants chosen above. First, suppose that fh > 0. On the request sequence 

chosen by A W , Lemma 25 implies that ^ must serve the second request at x 

with its server 52, without moving the server 5i. Hence, the total cost of ^ is at 

least 2L + e + 2. | y \ while AW incurs a cost of L + 3e. Since y = p2、t 一 f ) 

by uniformity, the adversary's choice of a constant e < ^ ^ < f forces e to be 
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less than | | y |. This ensures that C^ - 2CAVV > 2e; applying Lemma 23 yields 

the desired contradiction to the 2-competitiveness of 

Otherwise, suppose that -1 < < 0. By Lemmata 24 and 25, ^ uses the 

server s飞 for providing service for each of the first three requests to r, x and t 

respectively. Counting net cost, we can see that the cost to ^ will be at least 

5L + — e while the adversary incurs cost equal to 2L + 2y + 3e. Recall that 

by uniformity, y = - f ) . Hence, by choosing a constant e < “9^盆[ < 鲁， 

the adversary can ensure that e < Consequently, - 2CAVV > 2e, and 

the contradiction follows from the conditions of Lemma 23. 

This completes the proof. • 

Theorem 10 TWO is the only uniform, 2-competitive algorithm with 2 servers 

on 况1. 

Proof. Lemmata 25 and 26 together establish the theorem. 口 

5.6 Remarks 

It is not clear how one could extend the uniformity assumption to arbitrary 

spaces. We believe, therefore, that it is very unlikely that the A:-server conjecture 

will be resolved by a uniform algorithm. In other words, a general /c-competitive 

on-line k-sevvei algorithm will probably need to track at least some past history. 
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Conclusions 

6.1 Summary of Our Results 

It is only recently that people have looked at problems from the on-line perspec-

tive. The concept itself is attractive since a large number of problems in real 

life have to dealt with in an on-line fashion. In this thesis we considered the 

A:-server problem and its variants. It is the single problem that has spurred the 

most interest in this field. Previous attacks on this and other on-line problems, 

say the metrical task systems [9], [10], involved a potential function, a numeri-

cal invariant that enables the inductive proof. Our technique is based on more 

complex invariants, which provide valuable information about the structure of 

the reachable work functions. As a result, we prove an upper bound of 2k - I 

which is the best we can prove at this point, although we conjecture that the 

true worst case behavior of the work function algorithm is k, like [17]. In the 

Chapter 3 we deal with a generalization of the k-seiyev problem, in which the 

servers are unequal. Each of the servers is assigned a positive weight. For any 

metric space, we extend our Work Function Algorithm to give a nearly opti-

mal upper bound. In order to study the amount of improvement that can be 

achieved if the future is partially known, we introduce a new model of lookahead 
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for our /c-server algorithm. We show that strong lookahead has practical as well 

as theoretical importance and significantly improves the competitiveness of our 

/c-server algorithm. This is the first model of lookahead having such properties. 

Finally, we study a sub-class of memoryless server algorithms with 2 servers on 

the real line and show that there is a unique algorithm in this sub-class whose 

competitive factor is best possible on the real line. 

6.2 Recent Results 

As with most research fields, survival of the field depends on finding interesting 

problems. Therefore, we present a short survey of results related to the subject 

matter of this thesis that were obtained recently. 

6.2.1 The Adversary Models 

One possible drawback of the current focus may be that the models of adversaries 

that have been considered do not model real life situations with any deal of 

accuracy. This could be because in many cases in practice some correlation 

exists in the input data. With this in mind, there have been suggestions to 

consider other kinds of adversaries; for instance, an adversary who gets to draw 

requests according to any probability distribution on the inputs, but has to 

decide beforehand what the distribution is. It could be worthwhile exploring 

what kinds of adversaries model real life situations. It is also conceivable that 

the correct set of restrictions on the adversary may be problem-dependent. One 

problem that has been seen perhaps the most attention of this kind has been the 

paging problem. The paging problem is a special case of the k-server problem, 

where all the distances in the metric space are one. This problem was first 

studied by Sleator and Tar j an in this framework [49]. Recent works by Borodin 

et al. [8], Irani et al. [33] and Karlin et al. [39] consider this problem with 
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restrictions on the adversary's power. 

The Sleator and Tarjan's result [49] conflict with practical experience on 

paging in at least two ways. First, TITO and C7UA have the same competi-

tiveness, even though in practice CKLi usually outperforms TXTO. Secondly, 

CRU usually incurs much less than k times the optimal number of faults, even 

though its competitiveness is k. The reason for the practical success of CRU 

has long been known: most programs exhibit locality of reference [1], [21], [48 . 

Motivated by these observations, Borodin et al. [8] proposed a technique 

for incorporating locality of reference into the traditional Sleator and Tarjan's 

framework. Their notion of an access graph 工 limits the set of request sequences 

the adversary is allowed to make. 

T h e o r e m 11 ([8l) On any undirected access graph G, Ccnu{G,k) < 

where k stands for the number of pages of fast memory, 

Irani et al. [33] extended Borodin et a/.'s result and gave an algorithm that 

is strongly competit ive on directed access graphs. 

Based on Karlin et a/.'s findings，Markov paging offers a better theoretical 

abstraction for locality of reference in real programs. Unlike those models men-

tioned above, there is no adversary generating the reference string, much as in 

a real program.. Further, certain simple properties of real programs, such as 

the fact that a data-dependent loop typically gets executed many times before 

exiting, can be modeled well. Therefore, they gave an on-line paging algorithm 

that is efficiently computable and achieves a fault rate within a constant times 

the best possible, on every Markov chain. 

1 An access graph for a program is a graph that has a vertex for each page that the program 

can reference. Locality of reference is imposed by the edge relation - the pages that can be 

referenced after a page p are just neighbors of p in the graph or p itself. 
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6.2-2 On-line Performance-Improvement Algorithms 

For many non-trivial on-line problems, even the best possible on-line algorithm 

has a large competitive ratio. Sometimes, lookahead does not always help im-

prove their competitiveness. Thus a new challenge in the on-line problems is to 

design an algorithm that on each application not only is competitive, but also 

acquires useful information that helps improve future competitiveness. 

That is, if the algorithm obtains some partial information about the input 

(e.g. future page requests, or obstacles that lie ahead in the scene), it may able 

to improve its competitiveness. For instance such partial information may be 

available when the algorithm is repeatedly applied to the same problem instance, 

and on each application it can only see a portion of the input. This gives 

rise to the possibility that on each application, the algorithm can accumulate 

information, and use it to improve its competitiveness on future applications. 

Blum and Chalasani [5], [6] consider the design of on-line algorithms whose 

performance provably converges quickly to that of the optimal off-line algorithm 

upon repeated application to a problem. In particular, they developed such 

algorithms for some natural problems in robot navigation and paging. 

Suppose a program repeatedly generates the same sequence of page requests. 

This may happen for instance when the program is inside a loop. A natural ques-

t ion to ask is: Can one design a paging algorithm whose performance improves 

as the request sequence is repeated more times? This is non-trivial in many 

real computer systems, where the pager is sleepy; i.e. it only "wakes up" when 

there is a page fault, then decides which page to evict from fast memory, then 

goes back to sleep. Thus, one each iteration the pager only knows the requests 

that resulted in page faults, so it only has partial information about the request 

sequence. There is thus the possibility that the pager can accumulated infor-

mation about the request sequence and improve its performance as the request 

sequence is repeated more times. 
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For the special case of this problem whose k pages are in fast memory (or 

cache) and there are only k pages total, they gave an algorithm for a sleepy 

pager which has the following behavior when the same page request sequence 

cr is repeated. (They assumed that on each iteration the pager knows the time 

relative to the start of the request sequence.) 

T h e o r e m 12 ([6]) For every t, the average t-iteration competitive ratio is at 

most 42 . J [Ig t] when t <k, and at most 42 • [Ig k] when t > k. 
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Proof of Lemma 1 

L e m m a 1 If there exists a bijection h that satisfies the conditions in the above 

definition then there exists a bijection h本 that satisfies the same conditions and 

二 for all X e An B, 

Proof. Let be a bijection from A to B that satisfies the conditions of the 

definition above and it maps the maximum number of elements in A fl ^ to 

themselves. Assume that for some a e A H B we have h{a) ^ a. Define a 

bijection h! that agrees with h everywhere except that, 

二 a h\h-\a)) = h{a). 

Consider now a bipartition of A into X and V and assume without lost of 

generality that h-'(a) E X. If a 6 X then h(X) = h\X) and h{Y) = h'{Y) and 

Inequality (2.1) holds. Otherwise, if a ^ X then let = X + a and y ' = F - a 

and we have, 

w{A) + w{B) > w{X'Uh{Y'))^w{h{X')UY') 

二 U h'{Y)) + w{h\X) U Y) 

Thus, h' satisfies the convexity condition. Notice h' maps at least one more 

element in A fl B to itself than h. This contradicts the assumption that h maps 
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the maximum number of elements in A fl B to themselves. So, we can conclude 

that h{a) = a for all a G A fl B, proving the lemma. 口 
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