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Abstract 

This thesis presents two algorithms for soft Self-Organizing Map (SSOM) called 

S SO Ml and S SOM2. Their constructions are motivated by the ordering property 

manifested by Self-Organizing Map (SOM) and the nature of soft competition mani-

fested by Maximum Likelihood Competitive Learning (MLCL) and Fuzzy Competi-

tive Learning (FCL). By studying the relationship between the algorithm of compet-

itive learning and SOM, a mechanism for ordered map formation is proposed. Based 

on the introduction of such mechanism, the idea of neighborhood interaction, the 

algorithms of MLCL and FCL are modified to form SOM-like algorithms: SSOMi 

and SSOM2. 

These algorithms {SSOMi and SSOM2) in addition with SOM are then applied 

to solve two problems including (i) uncovering the neighborhood amongst different 

vowels and (ii)minimizing the channel noise effect for vowel data transmission. It is 

found that SSOMi is not feasible to construct the cluster relationship while SOM 

and SSOM2 can construct such relationship based on a simple heuristic labeling 

scheme. In the problem of vowel data transmission, it is experimented that the 

performance of SSOMi and SSOM2, in the sense of quantization error and the 

changes of quantization error with respect to channel noise variance, are comparable 

to that of using SOM. 

Moreover, this thesis provides some results on the convergence analysis on the 

three algorithms discussed. In particular, the proof on the convergence of the one 

dimensional SOM will be proven. It is shown that the convergence can be locally 
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almost sure even if the neighborhood size is not finite. Furthermore, if the input data 

is uniformly distributed, an energy function can be defined. Equivalent the energy 

function to Lyapunov function, the convergence of SOM is proven to be globally 

almost sure. 

iv 



1 

Contents 

1 Introduct ion 1 

1.1 Motivation 1 

1.2 Idea of SSOM 3 

1.3 Other Approaches 3 

1.4 Contribution of the Thesis 4 

1.5 Outline of Thesis 5 

2 Self-Organizing M a p 7 

2.1 Introduction 7 

2.2 Algorithm of SOM 8 

2.3 Illustrative Example 10 

2.4 Property of SOM 14 

2.4.1 Convergence property 14 

2.4.2 Topological Order 15 

2.4.3 Objective Function of SOM 15 

2.5 Conclusion 17 

3 Algor i thms for Soft Self-Organizing M a p 18 

3.1 Competitive Learning and Soft Competitive Learning 19 

3.2 How does SOM generate ordered map? 21 

3.3 Algorithms of Soft SOM 23 

V 



3.4 Simulation Results 25 

3.4.1 One dimensional map under uniform distribution 25 

3.4.2 One dimensional map under Gaussian distribution 27 

3.4.3 Two dimensional map in a unit square 28 

3.5 Conclusion 30 

4 Appl icat ion to Uncover Vowel Relat ionship 31 

4.1 Experiment Set Up 32 

4.1.1 Network structure 32 

4.1.2 Training procedure 32 

4.1.3 Relationship Construction Scheme 34 

4.2 Results 34 

4.2.1 Hidden-unit labeling for SSOM2 34 

4.2.2 Hidden-unit labeling for SOM 35 

4.3 Conclusion 37 

5 Appl icat ion to vowel data transmiss ion 42 

5.1 Introduction 42 

5.2 Simulation 45 

5.2.1 Setup 45 

5.2.2 Noise model and demodulation scheme 46 

5.2.3 Performance index 46 

5.2.4 Control experiment: random coding scheme 46 

5.3 Results 47 

5.3.1 Null channel noise {a — 0) 47 

5.3.2 Small channel noise (0 < o" < 1) 49 

5.3.3 Large channel noise (1 < a < 7) 49 

5.3.4 Very large channel noise {a > 7) 49 

5.4 Conclusion 50 

vi 



6 Convergence Analysis 53 

6.1 Kushner and Clark Lemma 53 

6.2 Condition for the Convergence of Jon's Algorithm 54 

6.3 Alternative Proof on the Convergence of Competitive Learning . . . . 56 

6.4 Convergence of Soft SOM 58 

6.5 Convergence of SOM 60 

7 Conclus ion 61 

7.1 Limitations of SSOM 62 

7.2 Further Research 63 

A Proof of Coro l lary 1 65 

A.l Mean Average Update 66 

A.2 Case 1: Uniform Distribution 68 

A.3 Case 2: Logconcave Distribution 70 

A.4 Case 3: Loglinear Distribution 72 

B Different Senses of ne ighborhood 79 

B.l Static neighborhood: Kohonen's sense 79 

B.2 Dynamic neighborhood 80 

B.2.1 Mou-Yeung Definition 80 

B.2.2 Martinetz et al. Definition 81 

B.2.3 Tsao-Bezdek-Pal Definition 81 

B.3 Example 82 

B.4 Discussion 84 

C Supp lementary to C h a p t e r 4 86 

D Quadrature Ampl i tude Modulat ion 92 

D.l Amplitude Modulation 92 

D.2 QAM 93 

vii 



Bibl iography 99 

viii 



List of Tables 

2.1 The changing of the ViS value in the first fifteen iterations 11 

5.1 The performance of transmission system. The results are obtained by 

using SSOMi , S S O M ) and SOM. The performance index Ei 51 

5.2 The performance of transmission system in the sense of mean square 

error. The results are obtained by using random coding technique. 

The performance index Ei 52 

B.l Definition of NIF l3i(x) when x is presented. ^ is a small number. . . 82 

ix 



List of Figures 

2.1 The changing of the weight values for the illustrative example. The 

vertical axis indicates the value of the weight while the horizontal axis 

indicates the number of training step. In (a) and (b), a{t) is set to 

a constant value 0.1. The weight values at the first fifteen iterations 

are shown in (a), (b) shows the changing of weight values within 1500 

iterations 12 

2.2 The changing of the weight values for the illustrative example. The 

vertical axis indicates the value of the weight while the horizontal axis 

indicates the number of training step. In (a) a{t) is set to a constant 

value 0.05. In (b), a(力）=0.01 13 

2.3 The changing of the weight values for the illustrative example. The 

vertical axis indicates the value of the weight while the horizontal axis 

indicates the number of training step. In (a) a � is set to a constant 

value 0.01. In (b), a{t) = 0.1. Noting that the initial conditions of ViS 

are different 13 

3.1 Structure of competitive learning 19 

3.2 Network structure of SOM. 23 

X 



3.3 The plots of change of Vi of the SSOMi under uniform distribution. 

f3{t) is set to be a constant during each run. The horizontal axis in-

dicates the number of iteration while the vertical axis indicates the 

value of each of ”” (a) � 二 1，(b) f3{t) = 0.75, (c) f3{t) = 0.5, (d) 

f3{t) = 0.25, (e) f3{t) = 0.1 and (f) f3{t) = 0. The value of are set 

to be: = 0.5, 1；2(0) = 0.9，？;3(0) = 0.2, ^；4(0) = 0.4 and ^；5(0) = 0.1. 26 

3.4 The plots of change of Vi of the SSOMi under Gaussian distribution, 

where mean is 0.5 and variance is 0.1. f3{t) is set to be a constant 

during each run. (a) f3{t) = 1, (b) f3{t) = 0.75, (c) f3{t) = 0.5, (d) 

f3{t) 二 0.25, ( e ) 剛 = 0 . 1 and (f) f3{t) = O.The value of are set to 

be: vi{0) = 0.5, ？;2(0) = 0.9, ^；3(0) = 0.2, 二 0.4 and ^；5(0) = 0.1. 

The horizontal axis is corresponding to the number of iteration while 

the vertical axis is corresponding to the weight value 27 

3.5 The evolution of the SSOMi under uniform distribution, (a) The map 

is randomly initialized and r = 0.02. (b) and (c) indicate the map 

formed after 10^ and 1.5 x 10^ iteration respectively. The ordered map 

is formed after 2 x 10^ iteration and remained unchanged afterward. . 28 

3.6 The evolution of the SSOM2 under uniform distribution. The neigh-

borhood used is the eight neighbor type. Initially, the map is randomly 

initialized, (a), (b) and (c) indicate the resultant shape of the map af-

ter 2 X 10^ and 6 x iteration respectively. The ordered map is 

formed after 10 x iteration. And the shape of the map remains 

unchanged afterward 29 

4.1 The network for the experiment. It is a three layer network with two 

input nodes, one hundred hidden node and ten output node. The 
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Chapter 1 

Introduction 

The principal objective of this thesis is to construct two algorithms called Soft Self-

Organizing Map I (SSOMi) and Soft Self-Organizing Map II {SSOM2). They can 

generate soft-competition-based neighborhood preserved map. In sequel, the algo-

rithms are applied to uncover the relationship amongst different vowels and minimize 

the channel noise effect in vowel data transmission. In this chapter, we will mainly 

present the behind motivation of this thesis and the contributions of this thesis. 

Four sections are included in this chapter. In the first section, the motivation will 

be presented. Then, the methodology of the construction of such SSOM algorithm will 

be discussed in section two with remarks on certain similar approaches. To clarify the 

contribution of the thesis, section three concisely lists out all the new results obtained 丨 
t 

including new algorithms, possible applications and theoretical supplement. Finally, 

we outline the thesis in section four. 

1.1 Motivation 

Self-Organizing Map (SOM) is an unsupervised learning algorithm resembling the 

structure and learning of sensory maps in the mammalian brain due to its mani-

festation of neighborhood preserved map and its vector quantization ability. It was 
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Chapter 1 Introduction 

proposed early by Willshaw and Malsburg in a somewhat different structure [48, 49 . 

Lately, Kohonen proposed the current algorithm and applied it to engineering prob-

lems such as speech recognition [20] and the construction of semantic map [37]. Re-

cently, SOM has even been applied to many other areas including motor control [38], 

traveling salesman problem [1], channel noise reduction [25] and etc. Nowlan and 

Jou proposed two soft competition^ algorithms: Maximum Likelihood Competitive 

Learning (MLCL) [33] and Fuzzy Competitive Learning (FCL) [16]. The former one 

represents an algorithm of neural network while the latter one represents an algorithm 

of fuzzy clustering^. Although MLCL and FCL are from two rather different areas, 

their mechanism share one common property: the boundaries of the resultant clusters 

are "soft" in nature. 

The advantage of soft boundary can be illustrated by some of recent papers. 

In [33], Nowlan applied MLCL to classify vowel data and demonstrated that the 

correct classification ratio attended by MLCL was higher than that from SOM. In 

50] Yair et.al. applied this algorithm^ to generate codebook for Gauss-Markov data. 

Similarly, in [7], Chung and Lee applied FCL to vowel data classification and found 

that the performance of FCL in vowel data classification was better than competitive 

learning and Learning Vector Quantization. Therefore, it is speculated that the good 

results indicated in these papers are essentially due to the soft boundary nature of the ‘ 
. . I 

clustering algorithms utilized. However, as we mentioned previously, there are some 丨 

problems which cannot be solved by soft competition, for instance, construction of ‘ 

semantic map for syntactic analysis [37] and the minimization of channel noise effect 

in image transmission [25] as they needs topological preserved map. 

As both soft competition algorithms and SOM have their own contributions, it is 

interesting to ask whether we can merge them together or not. Thus the resultant 

iHere and after, each time we use the term soft competition, we actually refer to MLCL and 
FCL. 

2It is remarked that the reason why FCL is being considered in this thesis is not due to its soft 
boundary nature. 

3ln [50], they called MLCL as soft competition. 
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Chapter 1 Introduction 

algorithm can possess all the good features from both soft competition and SOM. In 

the rest of the thesis, the merging algorithm will be presented. 

1.2 Idea of SSOM 

To accomplished such merging algorithm, there are two possible approaches. The 

first approach is to extend the algorithms of MLCL and FCL to SOM-like algorithms 

by introducing the process of neighborhood interaction. The method is as follows: 

We first examine the mechanism of SOM and competitive learning and figure out 

how competitive learning can be extended to SOM. Based on this cue, we extend the 

algorithms of MLCL and FCL in such a way as that of competitive learning dcA 

The second approach is to extend the mechanism of SOM by modifying the com-

petition mechanism to soft competition. The method is as follows: We first figure out 

the competition mechanism in the algorithm of SOM. Then we replace this competi-

tion algorithm by soft competition algorithm and keep the neighborhood interaction 

mechanism unchange. 

Though these two approaches seem distinct, their resultant methodologies are the 

same: to merge the algorithm of SOM with soft competition, strictly speaking, to ； 

merge the algorithm of SOM with MLCL and FCL. 

i 1' 

1.3 Other Approaches 

In the recent years, many researchers have proposed different approaches to merge 

topological order and soft competition. Durbin et.al. [10] proposed a model called 

Elastic network to solve TSP. Once the training is finished, elastic net manifests 

4ln fact, there is an alternative method to realize such idea. It is came from Elastic net. The 
method can be treated as a regularization problem since the objective function consists of a term 
corresponding to the objective function of MLCL and another term corresponding to the distance 
between neighborhood neurons. Along the same line, we can extend any other clustering algorithm 
in the same way as long as objective function for the clustering algorithm exists. 

3 



Chapter 1 Introduction 

topological ordered property. Pal et.al. [34] proposed a classifier which used Self-

Organizing Map (SOM) as part of the network structure. The proposed classifier 

was similar to counter-propagation network proposed by Hecht-Nielsen [14]. Mitra 

et.al. [30] proposed a self-organizing fuzzy classifier (SOFC) which is similar to the 

algorithm of SOM. SOFC is responsible to classify the batch of data into clusters and 

using the topological ordering property to reveal the neighborhood structure amongst 

clusters. Pham et.al. [35] and Vuorimaa [46] defined a SOM-based training procedure 

to obtain the cluster centers. Then, based on the result obtained after the first phase, 

they construct the fuzzy sets. 

Pal et.al. and Mitra et.al. increase the number of fan-in by a factor of three in 

order to incorporate the concept of linguistic variable. Although the structure can 

be revealed using their approaches, the structure cannot reflect to the original input 

data space. The algorithms of Pham et.al. and Vuorimaa are too heuristic. In such 

case, they are difficult to be analyzed and evaluated. Amongst all, only elastic net 

does not suffer from their problems. Besides, Yullie has provided a vigorous analysis 

on the statistic-mechanical property to elastic net. However, the usefulness of this 

method is in so far restricted to one-dimensional map. 

1.4 Contribution of the Thesis ； 
i 

According to the previous discussion, hopefully, SSOM should be able to reveal the . 

neighborhood relationship amongst clusters (due to soft competition). Furthermore, 

SSOM can be applied to data transmission with the aid of ordering property. Fortu-

nately, it does. In addition with other supplementary results, below lists the contri-

bution of the thesis: 

1. D e v e l o p m e n t of S S O M 

(a) SSOMi and SSOM2 are constructed. 

(b) Ordering property of both models are demonstrated by simulation. 
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Chapter 1 Introduction 

(c) Convergence property of both models are proven using the technique of 

stochastic approximation and perturbation method. 

2. Theoret ica l supp lement to S O M 

(a) Following the approach of Bouton and Pages [4], the convergence of ID 

SOM is proven to be almost sure even if the neighborhood set size is not 

finite. 

(b) Applying Krasovskii method [18], an energy function is constructed for 

the ID SOM when the input data distribution is uniform. Hence, the 

convergence of ID SOM under such conditions is globally almost sure. 

3. Theoret ica l supp lement to F C L and C L 

(a) Applying the technique of stochastic approximation, the sufficient condi-

tion ensuring the convergence of FCL is globally almost sure is derived. 

4. Appl icat ion of S S O M 

(a) SSOM is applied to construct the neighborhood relationships amongst clus-

ters. ,； 

(b) SSOM is applied to data transmission� ： 

'if' 
‘ 

1.5 Outline of Thesis 

This thesis is organized into seven chapters and four Appendices. This chapter 

presents the motivation and the basic ideas of SSOM. In chapter two, the mech-

anism and properties of SOM will be presented. The mechanisms of competitive 

learning, soft competitive learning and algorithms of soft SOM will be elucidated in 

chapter three. The ordering property of SSOM is demonstrated by several simulation 

examples. Then, SSOM is applied to solve two problems. In chapter four, SSOM is 
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Chapter 1 Introduction 

applied to reveal the relationship amongst clusters. In chapter five, SSOM is com-

bined with quadrature amplitude modulation (QAM) scheme to transmit vowel data. 

Preliminary theoretical study on the convergence of SSOM, SOM, CL and FCL will 

be presented in chapter six. Then conclusion follows in chapter seven. Appendix A 

provides the proof of Corollary 1 and 2, which are stated in Chapter 2. Appendix B 

discusses different sense of neighborhood which can help to understand the definition 

of SSOM. Appendix C includes some figures supplemented to the results discussed in 

chapter four. Appendix D gives a brief review on QAM. 

ji 
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Chapter 2 

Self-Organizing Map 

This chapter reviews the model of SOM. The convergence and ordering properties 

will be discussed based on several illustrative examples. Mathematical discussion on 

the convergence property will be presented in Chapter 7 and Appendix A � A f t e r 

an introduction given in the first section. The mechanism of SOM will briefly be 

described in section two. Then, in section three, a some examples are provided to 

illustrate the behavior and the properties of SOM. The purpose of these three sections 
：1 

is to visualize the mechanism of SOM. Section four and section five summarize current ’ 

results on the convergence, ordering and cost function of SOM. Finally, a conclusion 

will be presented in section six. 丨丨 
V 

知 

2.1 Introduction 

As evidence from neural science [17], human brain exhibits topological ordered map 

in a number of place in the cerebral cortex such as retinotopic map in the visual 

cortex, somatotopic neural map in the somatosensory cortex, tonotopic neural map 

and motor map. According to the property of topological ordering, researchers have 

proposed many different models to mimic such neural maps. Willshaw and Von der 

i ln Chapter 7, the local convergence proof on higher dimensional map is shown. In Appendix A, 
the convergence of one dimensional map is elucidated. 
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Chapter 2 Self-Organizing Map 

Malsburg first proposed a model of retinotopic map [48], [49] and demonstrated the 

ordering property through simulations. Since then, many other models have also been 

proposed to accomplish such MAP [19] [27] and [45]. Self-Organizing Map (SOM) is 

one of the simpliest model and widely applied�. However, there are limitations in the 

application of SOM: there is no complete analysis on the convergence and ordering 

properties of SOM. Besides, in so far, there is no energy function has been proven to 

be its cost function. Therefore, it becomes not so possible to evaluate the performance 

of SOM analytically based on the criteria mean square error. The following sections 

will be devoted to the description of the model of SOM and its properties. Certainly, 

not all of them, codevector density for instance, will be discussed due to the scope 

of this thesis. Only some of the crucial property related to the development of Soft 

Self-Organizing Map will be introduced. 

2.2 Algorithm of SOM 

Generally, SOM is a two layered neural network. Each of the nodes in the in-

put layer receives input signal and transmits to the second layer through weights 

(synapses). Suppose there are 5 input nodes, we denote the input data by x = , 

{xi, X2,..., Xs)'̂  G Bf and the values of weights connecting input to zth output node r 
J) 

by Vi 二（”a,低…，”is)T G Rs. Each of the node in the second layer collects all ‘ 

the signal fed from the first layer and output a signal, say yi. Consider there are c ^ 

neurons at the output layer. They are indexed by 1 , 2 , c . Once the x is fed to the 

network, each of the output nodes will give out a signal either one or zero depended 

on the Euclidean distance between x and vf. 

1 if \\x I < \\x — Vj\\ for all i + j. 
Vi = . 一 

0 otherwise. 
\ 

2See [38] and the reference listed. 
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Chapter 2 Self-Organizing Map 

Unless the data is equal distance from two weights vector, there is one and only one 

output node will give out one. So, this mechanism is also called winner-take-all The 

output one node will be called the winner. 

While the SOM is in learning, the weight vectors will be modified according to 

these output values. The learning mechanism can be summarized in the following 

four steps [21]: 

S t e p 1 Select randomly one sample, x, from the stationary sample space, f[x). 

S t e p 2 Evaluate the winning output neuron, Ith output node, by evaluating \\x — 

vi\\ = min�:r — Vi\ 

S t e p 3 Modify the weight vectors by 

f v,{t) ^ a{t)A{t)[x{t) - v,{t)] ifie Ni 
Vi[t + 1) = < 丄） 

Vi{t) otherwise 
\ 

S t e p 4 Goto Step 1. 

Here N! in (2.1) is a set which defines the weight vectors to be updated. A • � is a 

scalar function of time and |z — /|. It determines the relative update step size for the 

zth weight vector. a{t) is the updating step size. Usually, • is a decreasing function 

of \i — /| and a � decreases to zero as t oc. Adopted from [51], Nj is called the 
丨, 

neighborhood interacting set (NIS). and Ai{t) is called the neighborhood interacting 

function. 

Example 1 Consider that there are six output nodes. Their corresponding weight vectors 

are denoted by vi,v2, vs, V4, v^, vq. We can define the NIS and NIF as the following: Ni = 

{1, 2}, N2 = {1, 2, 3}, N3 = {2, 3,4}, Ph = {3,4，5}, N五-{4, 5, 6}, N^ = {5, 6} and A, - 1. 

Example 2 Consider the output nodes are arranged as a two dimensional mesh. The 

winner node is denoted by IJ. The NIS can be defined as that 

/ - 1, J - 1 / - I , J / —1,J+1 

Nij= / , J —1 /, J /, J + 1 

7 + 1, J - 1 / + 1 , J / + 1 , J + 1 

9 



Chapter 2 Self-Organizing Map 

and the NIF can be defined as that 

A湖= I 純 ） 订 口 I (2.2) 
� _ ifieNi-{i}. 

If the map is three by three, the NIF can be written by 

_ _ ^ _ _ 測 0 _ A ) � 

_ _ 0 _ _ _ Q _ _ 

0 0 0 0 0 0 0 0 0 

_ _ o"[ _ _ _ 0 ftW _ 
_ _ Q _ _ _ Q _ _ 

_ _ o1 _ _ _ 0 "1(0 

0 0 0 0 0 0 0 0 0 
_ _ 0 _ _ _ Q _ _ 

_ _ ^ _ _ _ 0 _ 

Ignoring the boundary nodes, the inner node is surrounded by eight neighboring nodes. 

Therefore, this type of NIS is called eight-neighbor type. 

2.3 Illustrative Example � 
>1 

For clarity, here gives a simple example to illustrate the mechanism of SOM learning 

and to describe its properties numerically and graphically. The SOM is constituted 

by one input node and five output nodes. The weights are denoted by Vi,V2, vs, V4 and 

？;5. The input sample set consists of two elements {0.25,0.75}. The probability mass 

function is given by /(0.25) 二 /(0.75) = 0.5. Initially, the weight values are set as 

following: vi{0) = 0.5, ”2(0) = 0.1, vsiO) = 0.7, 1；4(0) = 0.3 and v^iO) 二 0.9. The step 

size a(t) = 0.1. The NIF, A, 二 1 and the NIS are defined as {1,2}, {1,2, 3}, {2, 3’ 4}, 

{3,4,5} and {4,5} respectively. The values of in the first fifteen iterations are 

10 
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tabulated in Table 2.1. The first column indicates the number of iterations. The 

second column indicates the winning node at the corresponding step. The input to 

the SOM is shown in the third column. The values of ViS are indicated from the 4th 

column to 8th column. In the first iteration, the element x 二 0.25 is selected. At 

that time, is the closest weight vector. Hence, node four is the winner node. 

In sequel, Vs, v^ and v̂  are changing according to Step 3. Graphically, these update 

manifests two phenomena simultaneously: (i)the input x attracts the winner and its 

neighborhood to move towards itself and (ii)the winner and its neighborhood are 

getting closer. Figure(2.1a) plots the values of vis in the first fifteen iterations. As ？;4 

and v^ are neighbor, they tend to getting closer. Similar situation happens to Vi, V2 

and V3. 

Winner Input 外 ^ ^ ^ 
~0 - : 0.5000 0.1000 0.7000 0.3000 0.9000 

1 4 0.2500 0.5000 0.1000 0.6550 0.2950 0.8350 
2 5 0.7500 0.5000 0.1000 0.6550 0.3405 0.8265 
3 5 0.7500 0.5000 0.1000 0.6550 0.3814 0.8188 
4 5 0.7500 0.5000 0.1000 0.6550 0.4183 0.8120 
5 5 0.7500 0.5000 0.1000 0.6550 0.4515 0.8058 
6 2 0.2500 0.4750 0.1150 0.6145 0.4515 0.8058 
7 2 0.2500 0.4525 0.1285 0.5780 0.4515 0.8058 
8 5 0.7500 0.4525 0.1285 0.5780 0.4813 0.8002 . 
9 2 0.2500 0.4322 0.1406 0.5452 0.4813 0.8002 ；| 

10 5 0.7500 0.4322 0.1406 0.5452 0.5082 0.7952 . 
11 2 0.2500 0.4140 0.1516 0.5157 0.5082 0.7952 . 
12 2 0.2500 0.3976 0.1614 0.4891 0.5082 0.7952 
13 5 0.7500 0.3976 0.1614 0.4891 0.5324 0.7907 
14 2 0.2500 0.3829 0.1703 0.4652 0.5324 0.7907 
15 5 0.7500 0.3829 0.1703 0.4652 0.5541 0.7866 

Table 2.1: The changing of the ViS value in the first fifteen iterations. 

Repeating the steps for several hundreds of iterations, V4 and v̂  merge together 

at 0.75. The vi,v2 and V3 merge together at the value 0.25. As a result, topological 

order is formed since ？;1 = 1；2 = 仍 � � = 诉 - H o w e v e r , when the learning steps are 

11 



Chapter 2 Self-Organizing Map 
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(a) (b) 

Figure 2.1: The changing of the weight values for the illustrative example. The 
vertical axis indicates the value of the weight while the horizontal axis indicates the 
number of training step. In (a) and (b), a{t) is set to a constant value 0.1. The 
weight values at the first fifteen iterations are shown in (a), (b) shows the changing 
of weight values within 1500 iterations. 

repeated until the 646th iteration, it is found vs gets out from the value 0.25 and 

increases to about 0.5, Figure(2.1b). 

If the value of a is changed to a smaller value, the resultant ViS are difference. 

Figure(2.2) shows the cases when a = 0.05 and a = 0.01 respectively. It is found 

that ordering cease in the former case while the ordering preservation is manifested 
I丨々  ‘： 

in the latter case. �丨 

In all three cases, ordering property is manifested. However, it is not always the ； 

case. For instance, Figure(2.3) shows one case where ordering property is ceased. 

Here, NIS and NIF are defined in the same way as above. The data set is the same. 

But the initial condition is different. Figure(2.3a) shows the case when a{t) = 0.01. 

Figure(2.3b) shows the case when a{t) = 0.1. 

According to these examples, four observations can be noted: (l)If the network pa-

rameters and initial conditions are set appropriately, topological map can be formed. 

(2 )S0M can converge to a stationary state. (3)There are more than one station-

ary state that SOM can be reach. (4)Larger step size can enhance the formation of 
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Figure 2.2: The changing of the weight values for the illustrative example. The 
vertical axis indicates the value of the weight while the horizontal axis indicates the 
number of training step. In (a) a{t) is set to a constant value 0.05. In (b), a{t) = 0.01. 

1| ！ ！ 1| ^ ！ 
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Figure 2.3: The changing of the weight values for the illustrative example. The 
vertical axis indicates the value of the weight while the horizontal axis indicates the 
number of training step. In (a) a{t) is set to a constant value 0.01. In (b), a{t) = 0.1. 
Noting that the initial conditions of '̂̂ s are different. 
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topological map. 

2.4 Property of SOM 

2.4.1 Convergence property 

Although the mechanism of SOM is very simple, there is no proof on the convergence 

property except on certain simple cases [4] [8] [11] [21] [22] [28] [36] [42] [51 . 

Ritter and Schulten treated it as a Markovian process. They derived Fokker-

Planck approximated equation for SOM and arrived with an approximated equation 

for the mean average update [36]. Hence they showed that SOM can converge to 

stationary state. 

T h e o r e m 1 (Ritter and Schulten [36]) Suppose that Po{t) 二 (h{t�= 1 for all 

t and V* be an asymptotic equilibrium state, then the necessary and sufficient con-

ditions for the local convergence of SOM are: (i) lim“oo Sla{s)ds = oo and (U) 

• • • 

Others applied the so-called Gladyshev Theorem to show that the convergence of � 
J丨 

ID or 2D SOM is locally almost sure if the input distribution is uniform [8] [22] [28] jv 

[51]. � 

Recently, Bouton et.al. [4] proved that the convergence of SOM, under nonuniform 

distribution, is almost sure. 

T h e o r e m 2 (Bouton and Pages [4] [8]) Consider 1-D SOM which po{t) = pi{t)= 

1 for all t，the convergence is locally almost sure if either 

• the distribution of the data is uniform, i.e. f{x) 二 1 

• the distribution of the data is logconcave or 

14 
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• the distribution of the data is loglinear. 

And a{t) should satisfies that X^S：。�(力)=oo and 以2(f) < oo. 

• • • 

Following the same idea as Bouton et.al. we can extend the convergence proof 

to the case that the NIF is decreasing outward and the size of NIS is any large. As 

the proof is lengthy, the corollary is stated below while the proof is presented in 

Appendix. 

C o r o l l a r y 1 Consider 1-D SOM which > • • • > A > 0 /or all t, where I > 1 

the convergence is almost sure if a{t) satisfies the conditions of Theorem 2 and the 

input distribution is either uniform, logconcave or loglinear. Furthermore, if the input 

distribution is uniform, the convergence is globally almost sure. 

• 

2.4.2 Topological Order 

One promising property of SOM is that SOM can organize to an ordered map which 

reveals the intrinsic relationship amongst the training clusters. It has been demon-
I-" _ 

strated by hte illustrative example. However, the analysis on this property, in so far, [jr 
• D 

is restricted to one-dimensional map. One critical reason is due to the lacking of jt 

formal defintion of "order" in higher dimensional map. 

2.4.3 Objective Function of S O M 

Besides the lacking of formal definition of "order", SOM is suffered from the lack of 

objective function. So that, on one hand, the performance of SOM is hard to compared 

with other algorithms analytically. On the other hand, it reveals one reason why the 

convergence proof of SOM is not yet completed. Anyway, there are two special cases 

under which we can define the objective function for SOM. 

15 
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Firstly, suppose the po{t) = 1 and f3i{t) 0 for all k • Q, the objective function 

of self organizing map can be defined by 

J = E E \\x-v,ff{x)dx. (2.3) 

It is just the same as the objective function of LBG [26] or competitive learning 

.15], if the NIF is decreasing to zero. That is to say, one special case of SOM can 

be treated as LSE-based algorithm. However, when the NIF is not decreasing, it is 

difficult to construct such an objective function. Tolat [42] tried to define neuronal 

energy function, which is tried to generalize the proof to high dimension. However, 

the energy functions are not the true energy functions. So, it cannot reflect the true 

mechanism of SOM. Recently, Erwin et.al. [11] claimed that the global objective 

function for SOM does not exist. 

Secondly, consider an one dimensional SOM. If (a) the input data is scalar and 

the distribution is uniform and (b) > • • • > A > 0 where / � 1 , then 

J = t h 如 ( 2 . 4 ) 

is the object function, where 

f [T-”i)J\x)dT+ f (:r-iH)/(x�dx +…. (2.5) : 
Jni 

r ；i/ 
+ / {x - vi)f{x)dx p 

J 叫+1 r 
L: 

/ i 2 ( 外， . . .， < )二 / (X-V2)f(X)dT+ (> — + . . . (2.6) 

+ / {x - V2)f{x)dx 

= f {x - v,)f{x)dx + ...+ / {x - v,)f{x)dx (2.7) 

16 
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+ (X - Vi)f{x)dx + / {x - Vi)f{x)dx 

+ ... + / {x - Vi)f{x)dx 
J^z + l 

hc{vi, ...,!；。）=/ {x - Vc)f{x)dx + ...+ / {x - Vc)f{x)dx, ( 2 .8 ) 
Jn^-i 拟 c 

where = - < min/̂ 卢 — T h e derivation of such objective function 

is in the proof of the case 1 of corollary 1. The idea of proof is based on Krasovskii 

method [18]. The derivation of such objective function is given in Appendix A. As 

energy function can be defined, the convergence of SOM defined in this case can be 

proven to be almost sure. 

2.5 Conclusion 

In this chapter, we have briefly reviewed the model of SOM. Its network structure 

and its learning mechanism. To clarify the mechanism, a simple example is given. 

Moreover, these examples illustrate the ordering and convergence behavior of SOM. 

Some theoretical results on these issues are discussed as well. In summary, SOM is a 
_ f 

simple neural network model and it resembles the map property of cerebral cortex in �‘ 

our brain. However, it suffers from the lack of completed analytical proof on each of , 

its properties including convergence and ordering. 

Even though, we have added on some new results on both the convergence proof 

and objective function for SOM, there are lot of work have to be done to accomplish 

a complete theoretical analysis and to explore the topological ordering property to 

other models. 
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Chapter 3 

Algorithms for Soft 

Self-Organizing Map 

This chapter presents two algorithms for Soft Self Organizing Map and demonstrates 

their ordering properties using three simulation examples. In the first section, the 

mechanisms of competitive learning, Maximum Likelihood Competitive Learning and 

Fuzzy Competitive Learning will be described. Then, the relationship between the 

algorithms of SOM and simple competitive learning will be discussed in section three. 

It aims at of indicating a cue explaining why SOM can generate neighborhood pre-

served map but competitive learning cannot. Using this cue, MLCL and FCL are .丨'J 

extended to two soft algorithms of SOM: SSOMi and SSOM2. These algorithms 

will be presented in section four. In section five, simulation results are provided 

to illustrate the ordering properties of both algorithms. Hence a conclusion will be 

presented in section six. 
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3.1 Competitive Learning and Soft Competitive 

Learning 

The proposing of competitive learning can be traced back to the time when Frank 

Rosenblatt invented Perception. In [39], Rosenblatt proposed a class of Perception 

model to explain the information processing and storage in our brain. One model 

called 7-perceptron is exactly the modern time competitive learning algorithm [15 . 

Briefly, the mechanism of competitive learning can be described using Figure(3.1). 

yi y2 Vi Vc 

T 
X 

Figure 3.1: Structure of competitive learning. rj 
u丨丨 
‘,j 

Suppose that there are c neurons in the output layer. The output of the neurons (丨 

are denoted by yi,…，yc. Each neurons receives signal from the input layer. The 

response of the neuron is defined by 
‘ 

1 if �一 t ;办 ) | | S minA；卢 ⑴一 � I I . . x 
yz{t} 二 . （d.丄J 

0 otherwise. 
\ 

The learning of the weights, Vi is defined by 

v,{t + 1) = v,{t) + a{t)y,{t){x{t) — (3.2) 

where a{t) satisfies the conditions: � a{t)dt 二 oo and f ^ a^{t)dt < oo. 
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Suppose that the pdf of x is denoted by /⑷，the objective function of competitive 

learning is given by 

J = E / \\x-v,\\'f{x)dx, (3.3) 

where = {x : \\x — < miriA；卢 — Vk\\}. Hence, competitive learning is just the 

on-line complement of LBG algorithm [26 . 

In competitive learning, it can conceive that the response of neuron is a charac-

teristic function indicating the degree of winning of that neuron in the competition. 

If the neuron is winner, its degree will be one. If it is loser, the degree will be 

zero. In another words, each neuron can only either be winner or loser. The decision 

whether the neuron is winner or not is hard decision and the competition is called 

hard decision. 

Instead of defining the competition in a hard way, Nowlan and Jou recently pro-

posed algorithms which are incorporated with the concept of soft competition: 

眷 

v,{t + 1 ) = 幽 + a{t)y,{x{t) — v,{t)), (3.4) 

where 

y如，V” ” . . . , - c ) = 厂 外 ||2/0 (3.5) . 

and t > 0 : ,,丨丨 

；i i 
丨J 

• .!::: 
V办 + 1) = V,{t) + a{t)yr{x - v,{t)) (3.6) 

where , 
[ c -1)]-1 

= E � ： 2 (3.7) 
k=i \ 丄 _ uk / 

— —' 

and m � 1 . 

The former algorithm is Nowlan's maximum likelihood competitive learning while 

the latter one is Jou's fuzzy competitive learning. Their algorithm share one common 

feature. There is no absolute winner or loser. Each neuron is winner. The value 
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of the characteristic function is not binary but any value between zero and one, i.e. 

Ui G [0,1]. Essentially, their algorithms can be written in the following general form: 

Hi = yi{x,”i,U2,...,”c), 

Mt + 1) = v,(t) + a(t)F(y,(t))(x(t) — (3.8) 

where F{yi{t)) is a monotone increasing function defined on [0,1] and a{t) satisfies 

the conditions, f ^ a(t)dt = oo and /J^ a'^{t)dt < oo. Then, in case of Nowlan's 

algorithm, F{yi) = yi. In case of Jou's algorithm, F{yi) = y f . 

Intuitively, as their algorithms are different, both algorithms minimize different 

objective function except at the limiting case when m = 1+ and f = 0+. In case of 

Nowlan's algorithm, the objective function is defined by 
• Q 

Jt = - f log ^ e x p f{x)dx. (3.9) 
J u=i -

In case of Jou's algorithm, the objective function is defined by 
� 1 1 —m 

c r. c / ™ — 2 \ m-1 

Jm = E f E 2 \ \ x - V , r f { x ) d x . (3.10) 
雄 —• 

3.2 How does SOM generate ordered map? 

In order to modify MLCL and FCL we need to understand how SOM generates 
• 

ordered map. In sequel, we may find out some cues so that we can modify the Rj 

algorithms of Nowlan and Jou in such a way. Ignoring the conditions of a(t), the 

algorithms of SOM and CL are given as follows: Without loss of generality, we consider 

the SOM a one dimensional map and suppose that x,Vi G Vz G R. For SOM, 

‘v,{t) ^ a{t)[x{t) - v,{t)] i f z G Nj 
+ 1 ) 二 4 、。.丄丄J 

Vi[t) otherwise 
\ 

and for CL, 

(v,{t) + a{t)[x{t) - v,{t)] if 2 = / 
Vi[t + 1 ) = < . {6.1Z.) 

Vi(t) otherwise, 
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where I is defined by / = argmini{||x(t) — N j is the neighborhood interacting 

set. For example, Ni = {1,2}, N2 = {1,2,3}, N3 = {2,3,4} and so on. If we define 

yi{t) as that 

( 

1 if ||x(t)-巧(t)|| < min^^,- \\x{t) - Vk{t)\\ 
yi{t)= . (丄丄句 

0 otherwise, 
\ 

we can re-formulate the mechanism of SOM and CL in the following way: 

+ 1) = v,{t) + a{t)[x(t) 一 vi{t)]z,{t), (3.14) 

where Zi{t) = EATGTV, 2/A：�. 

Thus if Ni 二 {z}, (3.14) reduces to CL. If N, = {i - + 1}，then (3.14) 

reduces to SOM. Therefore, we can define a three-layered network to mimic SOM, 

Figure(3.2), with the first two layers constituting the competitive learning network. 

Between the yi layer and Zi layer, the associated weights are not fully connected but 

partially connected. The value of each weight connection is one. Certainly, it does 

not mean that SOM is a three-layered network. 

If gij denotes the value of the weight connecting yi and Zj, gij = 1 if [z - j| < 1 

and zero otherwise, then the cue that makes SOM generate ordered map can be ； 

conceived as the existence of the associated weights, the gijS, connecting y-layer and ,；•；; 

么-layer. Using this cue, we can imagine that the ordering map can still be generated 丨、丨 
i:�’. 

if the lower layer is replaced by MLCL or FCL instead. This is the idea that will be U 

elucidated in the rest of the paper. 

It is worthy to note that although our discussion concern solely on the one dimen-

sional map and the value of the weights associating y-z layers is one, the principle 

still holds for the case when the map is a higher dimensional map and the value of 

the weights are decreasing outward, i.e. ga > gi,i±i 2 gi，i±2 and so on. 

22 



Chapter 3 Algorithms for Soft Self-Organizing Map 

•I i L • • 

II 眷 參 春 C L 丨 

X 

Figure 3.2: Network structure of SOM. 

3.3 Algorithms of Soft SOM 

According to our preliminary analysis, it is found that the formation of topological 

map is due to the existence of association between the y-layer and z-layer. That 

is, from the definition of g小 we can extend the algorithms of MLCL and FCL to 

SSOMi and SSOM2. Again, without loss of generality, we assume that the SSOMi 

and SSOM2 are one dimensional mapi. Assuming that G{t) = {gij)cxc is a toeplitz 

matrix satisfying the condition gu > Qij for all i < j , their learning algorithms can 

be stated as shown below: 

S S O M 1 For all 二 1,2，…’ c， 

v,{t + 1) = v,{t) + a{t)[x{t) — v,{t)]z,{t), (3.15) ： 
T ‘ 
i'j 
丨引 

where z办)二 ；E/cgtv, 9zkyk{t) and U 

expHI … ( 3 . 1 6 ) 

for all T � 0 . 

S S O M 2 For all i 二 1,2,… 

v,{t + 1) = v,{t) + a{t)[x{t) 一 v,{t)]z,{t), (3.17) 

iNote that the index of Vi, yi and Zi will be changed to (i,j) in case the map is defined as a two 
dimensional mesh and and N(ij) 二 {(i , i ) , (i 士 1, j 士 1)，•士 1), (i 士 1，j)} 
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where Zi{t) = T^k讽 giky]^{t�and 

yi(x,”i’...，Vc) = ^ (3.18) 

for all m > 1. 

In equilibrium, the cluster centers ViS will be given by Vi = 焚 ： ⑷ . I n case of 

SSOMi^ Vi is given by 
IlxT.keN,xgikyk{x) ^ • ；; 

‘ Eo： T.keN^gikyk[x) ’ 

for all z = 1 , 2 , . . . ,c. In case of SSOM2, Vi is given by 

仏—iEôDceiv,似J/rO)， 

for alH = l , 2 , . . . , c . Either SSOMi or SSOM2 can be treated as a generalized model 

of CL and SOM. It can transform to any one of them by modifying the parameter 

T (or m) and reducing the size of neighborhood to singleton, i.e. Ni = { i } � F o r 

clarity, we assume that gij = 1 if - j\ < 1. Without loss of generality, we discuss 

how SSOMi can change to other algorithms. If r > 0 and N, 二 {i}, it reduces 

to MLCL. If T 二 0+ and JSk 二 {G, it reduces to competitive learning. K t = 0+ 

and Ni = {z - + 1}, it reduces to SOM. Similar discussion on the relationship 
丨_;"‘： ‘'i-j 

between SSOM2 and other algorithms can follow the same way. ；Vj 
i::丨 

As in the case of SOM, a complete theoretical analysis on the above algorithms, 备j 

SSOMi and SSOM2, is very difficult. Therefore the topological ordering property 

can only be demonstrated by the simulation results as given in the next section. 
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3.4 Simulation Results 

The first example demonstrates the capability of SSOM in handling one dimensional 

data. The matrix G{t) is defined as: G{t) = ( " i j � ) c x c , where 

1 if i = j. 

恥⑴=j m if ji = i . (3-19) 

0 otherwise. 
\ 

while in the second example, two dimensional data is handled. The matrix G 二 

(gij,rs)cc X cc is defined as follows: 
( 

1 if ij = rs. 

g^s 二 m yrs e N溯Y (3.20) 

0 otherwise. 
\ 

3.4.1 One dimensional map under uniform distribution 

In this example, the SSOM consists of five weight vectors. The input data is uniformly 

distributed on [0,1]. Initially, the weight vectors are in random position within [0,1 . 

For all t > 0, P{t) in equation (3.19) is set to be a constant. a{t) is set to be 0.01. 

As the results of SSOMi and SSOM2 are similar except that the training time is ,:� 
11 ..iii 

different, only the results obtained by algorithm SSOMi are displayed in Figure(3.3). � j 
if j 

From the figures, we can make the following observations: (i)As f3{t) decreases, the jj 

spread of 卜 1(00) — will increase. (ii)When f3{t) > 0.5, it is possible to obtain 

ordered map within two thousand times of iteration even the initial map is not in 

order. (iii)As f3{t) decreases, the time to reach ordering becomes longer. (iv)As P{t) 

decreases, the fluctuation of v送 also decreases. (v)When f3{t) < 0.5, no ordering map 

can be obtained within two thousand times of iteration. 
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Figure 3.3: The plots of change of Vi of the SSOMx under uniform distribution. f3{t) 
is set to be a constant during each run. The horizontal axis indicates the number of 
iteration while the vertical axis indicates the value of each of Vi. (a) f3{t) = 1, (b) 
_ = 0.75, (c) m 二 0.5，(d) m = 0.25, (e) � = 0 . 1 and (f) � = 0 . The value 
of are set to be: vi{0) 二 0.5, 1；2(0) 二 0.9, ”3(0) 二 0.2, ̂；4(0) 二 0.4 and v^{0) = 0.1. 
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Figure 3.4: The plots of change of Vi of the SSOMi under Gaussian distribution, 
where mean is 0.5 and variance is 0.1. _ is set to be a constant during each run. 
(a) m = 1, (b) m = 0.75, (c) m = 0 . 5 , � m = 0 . 2 5 , � _ = 0-l and 
(f) (3{t) = O.The value of are set to be: ”i(0) 二 0.5, ̂；2(0) = 0.9, ”3(0) = 0.2, 
1；4(0) = 0.4 and ^；5(0) 二 0.1. The horizontal axis is corresponding to the number of 
iteration while the vertical axis is corresponding to the weight value. 

丨.丨 

3.4.2 One dimensional map under Gaussian distribution 丨彳 

In this example, the setting of the parameters are the same as last example except " 

that the input data is in Gaussian distribution. The mean of the distribution is 

0.5 while the variance is 0.1. The results are shown in Figure(3.4). It is observed 

that when > 0.5, SSOMi can converge to an ordered map within 2000 time of 

iterations. Besides, the weight values get closer if /? is set larger. Worthy noting that, 

when = 0, the resultant weight values is similar to the first simulation example. 
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Figure 3.5: The evolution of the SSOMi under uniform distribution, (a) The map 
is randomly initialized and r = 0.02. (b) and (c) indicate the map formed after 10^ 
and 1.5 X 104 iteration respectively. The ordered map is formed after 2 x 10^ iteration 
and remained unchanged afterward. 

3.4.3 Two dimensional map in a unit square 
丨丨 

In this example, a 6 by 6 SSOM are initialized randomly inside a unit square. The p；： 

input data is distributed uniformly inside the unit square. 8-neighbor type is used. |lj 

/3(t) in (3.20) is set to be 1 and a(t) is 0.05. For the case of SSOMi, the ordered map 

can be formed after 20000 iteration. Figure(3.5) displays the map structures at the 0, 

10000, 15000 and 20000 iterations. For the case of SSOM2, the results are displayed 

in Figure(3.6). The map structures formed at 0, 20000, 60000 and 100000 are shown. 

Two observations can be noted from the above experiment: (i)The convergence 

rate of SSOMi is faster than that of SSOM2. From the experiment, the time con-

sumed by SSOM2 is 5 times the time consumed by SSOMi. (ii)The size of the map 
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(a) Initial (b) After 20000 
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Figure 3.6: The evolution of the SSOM2 under uniform distribution. The neighbor- j:: 
hood used is the eight neighbor type. Initially, the map is randomly initialized, (a). 
(b) and (c) indicate the resultant shape of the map after 2 x 10^ and 6 x 10^ iteration 
respectively. The ordered map is formed after 10 x 10^ iteration. And the shape of 
the map remains unchanged afterward. 
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generated by SSOMi is larger than the one generated by SSOM2. 

3.5 Conclusion 

In summary, this chapter presents two algorithms for Soft Self Organizing Map and 

demonstrates their ordering properties using three simulation examples. They are 

inspired by the ordering property manifested by Self-Organizing Map (SOM) and the 

soft competition nature of Maximum Likelihood Competitive Learning (MLCL) and 

Fuzzy Competitive Learning (FCL). By studying the mathematical formulations of 

competitive learning and SOM, a cue for the formation of neighborhood preserved 

map is suggested. Using this cue, MLCL and FCL are used to derived two SOM-like 

algorithms: SSOMi and SSOM2. Simulation results based on one dimension and 

two dimension data are provided to illustrate their ordering properties. 

Although SSOMi and SSOM2 show ordering properties, there is still difficulty 

in using SSOMi. It is found that there is no simple method to tune the value of 

r. We have carried out a number of simulations with different values of r. It was 

found that SSOMi cannot generate topological map once r is greater than 0.15. In 

case of SSOM2, we have set m = 1.5 and m = 3. It was found that topological 

map still can be generated. Furthermore, there is no analytical proof for the ordering 

and convergence of both algorithms except that the neighborhood set os reduced to ! j 

singleton, i.e. MLCL and FCL respectively. ！-丨 
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Chapter 4 

Application to Uncover Vowel 

Relationship 

In the last chapter, we have derived two soft versions for Self-Organizing Map (SOM), 

called SSOMi and SSOM2, and demonstrated its ordering property through simula-

tions. Due to the ordering property manifested by SSOMi and SSOM2, SSOMi and 

SSO2 are likely applied to reveal the topological structure of a set of data, strictly 

the vowel data. In our preliminary study, it is found that not both SSOMi and 

SSOM2 can uncover the neighborhood relationship among different classes of vowel 

provided by Peterson and Barney^ The algorithm of SSOMi is not feasible to do so. 丨 

So, in this chapter, our principal concern is akin to the implementation of SSOM2 

to uncover the vowel relationship. The following sections are devoted to present the 

detail of this application. In the first section, the experimental set up including the 

network structure, training procedure and relationship construction scheme will be 

elucidated in section two. Then the results of the experiment will be given in section 

three. In which, the reason why SSOMi is not appropriate to be implemrnted will 

be explained. In section four, the conclusion will be presented. 

l it is a benchmark database which is located in the UCI machine learning repository. 
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4.1 Experiment Set Up 

Peterson-Barney vowel database is used as the training set. The database consists 

of a digitized version of the first and second formant frequencies of ten vowels for 

multiple male and female speakers. As in [33] and [31], the first and second formant 

frequencies are used for the experiments. It is remarked that our principal concern is 

to uncover the vowel relationship. 

4.1.1 Network structure 

The structure of the network is similar to the counter-propagation-network (CPN) 

"14]. Figure(4.1) shows the network structure for this experiment. It consists of 

three layers: input, hidden and output. There are two units in the input layer, 

hundred units in the hidden layer and ten units in the output layer. The hidden 

units are constructed as a ten by ten 2D mesh. The input-hidden weights, ViS, are 

determined by the algorithm of SSOM2 (or SOM), i.e. equation (3.17). The hidden-

output weights are determined by the method of minimum square error which will be 

elucidated shortly. 

4.1.2 Training procedure 
• I ' j 

The training of this network is divided into two phases: (i) input-hidden weight 
！-J 

evaluation and (ii) hidden-output weight evaluation. Denote x e R'^ he the input 

data,印’J) e R he the output of ijth hidden unit and t;( ,�)G be the input-hidden 

weight. In the first phase, the value of t;(‘,j) are evaluated based on the algorithm of 

SSOM2 (or SOM). For simplicity, a � = 0 . 1 and N � � = { i ± 1, J•士 1), ( h j 士 

l)，（z±l,j)} at the first 152000 iterations. After that, a{t) 二 0.01 and 7V(。）= {(z,j)} 

for another 152000 iterations. Once the first phase training is finished, the vowel data 
have been partitioned into hundred clusters. 

Then 7V(。）= {(z, j ) } and the values of Vij are frozen. (At that time, if a vowel 
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0.1 Oo Ok oio 

� . H i d d e n 

• I I • Input 

X 

Figure 4.1: The network for the experiment. It is a three layer network with two input 
nodes, one hundred hidden node and ten output node. The input-hidden weights, VijS, 
are determined by using either SOM or SSOM2 while the hidden-output weights, 
W, are determined by using the method of minimum square error. Here, i j e 

data X is fed to the input, each of the hidden units will output a value, Zi” In case 

of SSOM2, z^j{x) e [0,1]. In case of SOM, G {0,1}. In either case, we can 

observed that E � . � � = ! • ) Suppose that the total number of output node, c, is 

ten, we denote O = (oi . . . o^)^ G R^^ be the output of the network, W be the hidden-

output weight matrix, Z = (2:11^12 .. • 知 a n d C î = (10 . . . 0 ) 了 ， = (01. . . 0广， . ..， 

QIO 二 (00 •. . be the output of network corresponding to the ten classes. In the ; 

second phase, each of vowel data is fed to input, the values of z“s are evaluated and 1 | 

output from the hidden layer to the output layer. The output of the ten output units, ; 

o^s, are compared with the target values. The error is backpropagated to modify the 

hidden-output weights. Suppose that the square error contributed by data x is given 

by e^ = thus the total square error is E r -W Z{x)\\^. Therefore, 

using the method of minimum square error, W can be determined using the following 

formulae: _i 

w 二 作 剛 ） 咖 ： . 
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4.1.3 Relationship Construction Scheme 

Using the aforementioned network structure and training steps, we obtain a vowel 

classifier. Based on this classifier, the following heuristic steps are taken to reveal the 

vowel relationship: (i)The hidden-output weight is set to be one if it is larger than a 

threshold. Otherwise, it is set to be zero. (ii)The hidden unit is assigned to be class 

i if the weight connecting it to the zth output node is one. (iii)If there is a hidden 

unit which is assigned to more than one class, set threshold to a larger value and 

repeat the first two steps. If each hidden unit is assigned to at most one class, then 

go to next step, (iv)Class i and class j are neighborhood in the data space if they 

are neighborhood in the organizing map. 

4.2 Results 

Figure(4.2) and (4.3) display the clustering results of SSOM2 and SOM after the 

first phase training. The input data are normalized. The circles are corresponding 

to the location of the cluster centers while the edges connecting circles indicate the 

neighborhood structure of the hidden units. In order to label the hidden units, we 

need to know the hidden-output weight values. 

丨 ； 

4.2.1 Hidden-unit labeling for SSOM2 
U 

Figure(4.4) shows the mesh plot of the weight values connecting the hidden units to 

the first output u n i t � . It is found that large weight values are usually localized in a 

small region. The same property exists in the weights connecting the hidden units 

to other output units. Then following the hidden-unit labeling scheme (step(i) and 

step(ii) in the relationship construction scheme), the labeling CssoM2 of the hidden 

2 For the rest of the other mesh plots are shown in Appendix C. 
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units are: 

9 9 9 - - - - 1 1 1 

- - 9 - - 10 2 2 - 1 

7 8 8 - - - - 2 2 1 

7 7 8 8 - 10 3 - 2 -

7 7 5 10 - - - - 2 1 
〔SSOM2 — • (4.1) 

- - 5 - - - 3 3 1 1 

- - - - 4 4 - 3 2 1 

6 6 - 5 - 4 - 3 - 2 

- - - 5 5 4 4 - 3 -

6 6 6 5 - 4 4 4 3 -

Here the threshold is set to be one. The interpretation of this matrix is as following. 

Consider the element in the third column forth row, the value is 8. This means that 

the cluster represented by ？;(3,4) is belongs to the 8 t h vowel. If the element is a dash, 

it means that the corresponding cluster is unclassified. 

4.2.2 Hidden-unit labeling for S O M 

Figure(4.5) shows the weight values connecting the hidden units to the first output 

unit. Similar to the case of SSOM2, it is found that the weight values which are 

greater than zeros are usually localized in a small region. Then following the same 

hidden-unit labeling scheme and the threshold is set to be 0.7, the labeling CsoM of • 
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the hidden units are: 

6 6 6 - - 7 7 7 - 9 

6 6 6 - - - 8 8 9 9 

- - - 5 5 - 8 8 - 9 

5 5 - - - 10 - - - 9 

5 - 4 4 10 10 10 - - -

JCsom 二 . （4.2) 

- - 4 4 - - 一 2 2 — 

- 4 4 4 3 - 2 2 2 1 

4 4 一 - 3 - - 2 1 1 

4 4 3 3 3 3 2 2 1 1 

4 4 3 3 - - 2 2 1 1 

Similarly, the value of each of the element indicates the class of the corresponding 

cluster belongs to. Based on the labeling matrix obtained previously, we can obtain 

the relational matrix 1lssoM2 and 1ZsoM as following: 

1 1 0 0 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 0 1 

0 1 1 1 0 0 0 0 0 1 

0 0 1 1 1 0 0 0 0 0 
•vj 

0 0 0 1 1 1 0 1 0 1 : 
兄SSOM2 二 ， F 

0 0 0 0 1 1 0 0 0 0 •“ 

0 0 0 0 0 0 1 1 0 0 

0 0 0 0 1 0 1 1 1 1 

0 0 0 0 0 0 0 1 1 0 

0 1 1 0 1 0 0 1 0 1 
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1 1 0 0 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 0 1 

0 1 1 1 0 0 0 0 0 0 

0 0 1 1 1 0 0 0 0 1 

0 0 0 1 1 1 0 0 0 1 
兄 SOM = . 

0 0 0 0 1 1 0 0 0 0 

0 0 0 0 0 0 1 1 1 0 

0 0 0 0 0 0 1 1 1 1 

0 0 0 0 0 0 1 1 1 0 

0 1 0 1 1 0 0 1 0 1 — 」 

These matrix indicate the neighborhood relationship between different vowels. If the 

value of the zjth element is equal to one, then i class and j class are neighborhood. 

If the value is zero, then they are not neighborhood. 

4.3 Conclusion 

In summary, this chapter has presented a simple method of uncovering the relationship 

amongst clusters of vowel data. Furthermore, as the ordered map (the hidden layer) 

is predefined as a lower dimensional mesh, the relationship obtained manifests a 

lower dimension relationship between cluster. Although our principal concern is not ,春j 
I丨i 

to construct a vowel classifier with very high classification rate, it is worthwhile to 一 

point out that the rate of correct classification of SSOM2 and SOM are 0.76 and 

0.76 respectively which are far below the performance of using MLCL as indicated in 

33]. The reason for this poor performance is remained to be investigated. Finally, 

it should note that the idea expressed in this chapter can actually be applied to 

those cluster based fuzzy model identification techniques [41, 5]. In particular, if 

the clustering technique is FCL (or FCM [2]) based, SSOM2 can directly applied. In 

case other clustering technique is implemented, equation (3.17) needed to be modified 
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圓 
q I 1 !• • ' I . » I I 1 1 1 1 — ~ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 4.2: The resultant of SSOM2 after training. The circles are corresponding to 
the location of Vij. The edges connecting two circles indicate that the corresponding 
nodes are neighborhood in the hidden layer. Observed that there are some edges 
crossing over. So, the resultant map is not a nice topological map. 

accordingly. 
'"1 丨丨 

； . 
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1 1 1 1 —I 1 1 1 1 1 
• • • • • 
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0.8 y ：. ' -

_ 
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Figure 4.3: The resultant of SOM after training. The circles are corresponding to 
the location of Vij. The edge connecting two circles indicate that the corresponding 
nodes are neighborhood in the hidden layer. Observed that there is no edges crossing 
over in the resultant map. 
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Figure 4.4: The mesh plot of the weights connection the hundred hidden unit to the 
first output using SSOM2 as input-hidden layer. 
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. . . • . • • . 

； 
0 0 

Figure 4.5: The mesh plot of the weights connection the hundred hidden unit to the 
first output using SOM as input-hidden layer. 
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Chapter 5 

Application to vowel data 

transmission 

In this chapter, we further apply these algorithms in the transmission of vowel data 

under a noisy channel. The quantizer codebook is generated by using SSOMi and 

SSOM2 and embedded into modulation system. The overall system performance of 

using SSOMi and SSOM2 in transmitting Peterson-Barney vowel data are compared 

with that of using SOM, in the sense of data reconstruction error. Simulation results 

indicate that (i)in higher channel noise level, the reconstruction error committed by 

using SSOMi is smaller; (ii) while in lower channel noise level, the error committed ：̂ 

by using SOM will be smaller. In the next section, the data transmission problem ： 

and the motivation of using soft self-organizing map in generating codebook will be 

elucidated. Then the simulation and the main results will be described in section two 

and three. The conclusion will be presented in section four. 

5.1 Introduction 

To build a transmission system, the following steps are usually undertaken to transmit 

and receive a batch of data [40]: (Quantization and Encoding) A vector quantizer is 
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n{t) 

X Quantization v{x) Modulation ' S ( t \ i Demodulation 
__^ and ^ _•(——V—• and _ ^ 

Encoding (QAM) Decoding 

Figure 5.1: The block diagram of a simple transmission system. 

designed to divide the data space into a number of partitions, … E a c h of 

these partitions is represented by a representative vector, vi,.. Once a data x 

is going to be sent, the quantizer will classify x into one of these partitions based 

on nearest neighbor scheme: If Vi is the closest representative vector to x, x e Vi 

and the data x is encoded by symbol i. (Modulation) The code of the data x is 

passed to the modulator. The modulator then generates and transmits a waveform 

s{t) to the communication channel, usually noisy. {Demodulation and Decoding) In 

the destination side, the receiver demodulates the contaminated signal s{t) + n{t) 

and gives out a code. Based on this code, the approximation of data x, v{x) is 

reconstructed. Figure(5.1) shows the block diagram of a simple transmission system. 

In traditional approach, the design of the vector quantizer is independent of the 

design of the modulator in such transmission system. Recently, Leung [25] has put 

them as a whole for consideration: the vector quantizer is generated by using Self-
. ,：,：] 

Organizing Map (SOM) while the modulator is designed based on quadrature ampli- 二 i 

tude modulation (QAM). In this chapter, we follow the same idea as suggested by 

him to design the transmission system. Apart from using SOM to train the quantizer, 

we apply two algorithms of soft SOM to build such quantizer. And their performance 
are evaluated. 

The reason why we follow Leung's idea can be explained as following. Consider 

that the QAM is a 16-ary with waveforms defined by Sij{t) 二 aicostoj + ajSinuJct, 

where a,- 二 1.5 - (Z - 1) and LJ�is the carrier frequency. The quantizer consists 

of sixteen codevectors, { ^ i , 1^12,…’ which are generated by using SOM. While 
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this quantizer is implemented in QAM, the following codevector-waveform assignment 

(CWA) is defined: Vij Sij. Usually, we also denote Sij as a two dimensional vector 

in the signal space: Sij = (a^, aj). In sequel, if Vij and Vrs are neighborhood in the 

sense of SOM, Sij and Srs are neighborhood in the signal space. Consequently, if x 

is classified as zjth partition and being transmitted by the waveform Sij = 

to a noisy channel, the reconstructed codevector at the destination will probably be 

neighborhood of Vij according to the fact that the received waveform should not be too 

far from Sij. As a result, the distance between x and v^j should not be large. Hence the 

reconstruction error will be smaller. On the contrary, in case SOM is not applied, 'sij 

and Srs are neighborhood' could not imply 'vij and Vrs are neighborhood'. So, the error 

contributed by \\x - will probably be large. Therefore, the total reconstruction 

error using non-map type training algorithm, Frequency sensitive competitive learning 

(FSCL) for instance, will be large [25 • 

Although Leung has shown promising result, we would like to further reduce the 

reconstruction error by substituting the algorithms of SSOMi and SSOM2 to SOM in 

the generation of codebook for QAM. This substitution is motivated by three current 

results : In [50], Yair et.al. showed that better codebook can be accomplished by using 

soft competition (i.e. Maximum Likelihood Competitive Learning (MLCL) )• In [33], 

Nowlan applied MLCL to classify vowel data and found that the misclassification rate 

is far below than using other neural network approach including SOM. Similar result | 
: i 

was claimed by Chung and Lee [7]. They applied Fuzzy Competitive Learning (FCL) - � 

to classify vowel data and found that the missclassification rate is lower than that of 

LVQ and FSCL. Based on their results, it is reasonable to induce that using the soft 

boundary technique (MLCL or FCL) in clustering or clustering based classification 

may achieve better performance. In conclusion, the combination of soft competition 

mechanism with topological ordering mechanism may improve the performance of 

data transmission under noise channel. 
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i L 
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Figure 5.2: The location of the waveforms are defined regularly in the signal space. 
Each solid circle represents one waveform. 

5.2 Simulation 

5.2.1 Setup 

As SSOMi, SSOM2 and SOM can cluster data in an ordered fashion, three different 

codebooks are generated by using SSOM^ SSOM2 and SOM respectively. Half of 

the database is used for training. Each of these codebooks contains 100 codevec-

tors. Each organized map is defined as 10 by 10 mesh. We denote the codevectors 

by 1；12，…,1̂ 10,10. The QAM is designed as 100-ary. The waveforms are defined :: i 

regularly in the signal space: = 1 , 2 , . . . , 10,<s”•⑴ 二 aicoscoct + a]smuJct, where 

= 4.5 — (i — 1). The CWA is simply defined by associating Sij to Vij. For in-

stance, to transmit the codevector V23, the waveform 3.5cosuJct + 2.5sinujct will be 

sent, Figure(5.2) shows the locations of the waveforms in the signal space. 
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5.2.2 Noise model and demodulation scheme 

Without loss of generality, the channel noise is modeled as a two-dimensional additive 

white Gaussian noise (AWGN), i.e. n = (ni,n2), where E{ni{t)} = E{n2{t)} = 0 

and E{nl{t)} = E{nl{t)} = c/K Here a is the standard deviation of the channel noise 

in each dimension. When a data x is transmitted to the destination, the following 

steps will be simulated: {i)x Vij{x) {x is quantized to one of the codevectors in 

the codebook.), (ii)仏j 4 Sij{t) (The corresponding waveform will be transmitted.), 

{in)sij ^ s = Sij + (ni,n2) (AWGN is added to the transmitted waveform.) and 

(iv)5 Vij (The received waveform is demodulated^). 

5.2.3 Performance index 

To evaluate the performance of the three algorithms in data transmission, the follow-

ing performance index is considered: 

1 N 2 
El = yZl (而）— 

z — 1 

where N is the total number of training data. With reference to Figure(5.1), v{xi) is 

the output signal after demodulation and decoding. Xi is the input to the quantizer 

and v{xi) is the input to the modulator. The former index measures the mean square 
‘ .'j 

reconstruction error. Smaller the valuer of Ei, the better the transmission system. ；| 

5.2.4 Control experiment: random coding scheme 

In order to demonstrate the advantage of topological order. A control experiment 

is carried out. The set up is the same as above except that the CWA is defined 

arbitrary. We call it random coding scheme (RC). In such case, the neighborhood 

preservation property is ceased. If the quantized vector V23 and V24 are fed to the 

1 Remind that can be written as The demodulation scheme is defined as following: 
If ||s — SijW < ||s — for all r, s = 1,2, . . . ,10, the corresponding Vij will be treated as the 

reconstruction of x. 
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Figure 5.3: The resultant maps of SSOMi{Mt), S'5'OM2(middle) and SOM(right) 
after training. 

encoder consecutively, the outcome will no more be (2, 3) and (2,4). Instead, they may 

be (5，9) and (1,10) which are depended on definition of the one to one corresponding. 

5.3 Results 

To clarify the discussion, the resultant codebooks generated by SSOMi, SSOM2 and 

SOM are displayed in Figure(5.3). Remark that the maps obtained are different from 

those displayed in the last chapter since the size of the training set is just in size 

compared with the experiment carried in the last chapter. The locations of the small 

circles are corresponding to the locations of the code vectors. The edges indicate the 

neighborhood relationship between codevectors, which are defined a priori. The dots 

are corresponding to the locations of the vowel data. We set the standard deviation of 

the channel to 29 different values: 0.0,0.1,0.2, . . .2 .0 and : 3 , 4 , . . . 10. Twenty-nine :丨 

sets of experiments are then carried out. The resultant Ei are plotted against the 

channel noise standard deviation in Figure(5.4). The numerical data of tabulated in 

the following tables, Table 5.1 to Table 5.2. 

5.3.1 Null channel noise (a ：= 0) 

While the channel noise is null, the reconstruction error is purely quantization error. It 

is found that the quantization error committed by SSOMi is the largest: Ei = 0.0479. 
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Figure 5.4: The performance of transmission system against channel noise. The � 

horizontal axis is corresponding to channel noise variance while the veritcal axis is - ‘ 
corresponding to the average mean square error, The results obtained by using 
SOM are indicated by line (1). The results obtained by using SSOMi are indicated 
by line (3). The results obtained by using SSOM2 are indicated by line (2). The 
solid lines are corresponding to the case when the codevector waveform assignment 
follows neighborhood preservation scheme. While the dash lines are corresponding to 
the case when the codevector waveform assignment is random. 
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The quantization error generated by using SOM is the smallest, Ei — 0.03. 

5.3.2 Small channel noise (0 < a < 1) 

For the case that ordered map is implemented as the quantizer, Figure(5.4), it is 

experimented that the reconstruction error of the system is dominated by the quan-

tization error when the channel noise level is low, i.e. a < 1. For the case that the 

ordering topology is ceased the situation is the similar but the reconstruction error 

is dominated by the quantization error only when a < 0.35. In summary, when the 

channel noise is small, the order of the reconstruction error Ei is that 

Ei{SOM) < Ei{SS0M2) < Ei{SSOMi) < E八RC), 

when RC stands for random coding scheme. 

5.3.3 Large channel noise (1 < a < 7) 

When the standard deviation of the channel noise is between 1 to roughly 7, the 

performance of ordered map is still better than random coding: 

EiiSSOM,) < E^{SS0M2) < Ei{SOM) < Ei{RC). 

；'： ,'i； 

5.3.4 Very large channel noise {a > 7) 

When the channel noise is very large, it is found that the mean square error obtained 

by all three algorithms are similar. While their results are compared with random 

coding scheme, it is found that the error obtained are larger. A possible reason for 

this aspect is due to the locations of the codevectors. However, very large channel 

noise seems to be infeasible in real situation. This results are just for reference. 
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5.4 Conclusion 

In summary, we have presented one important application of the Soft SOM in this 

chapter. It is to implement Soft SOM as the quantizer in the data communication 

system. Combine the QAM modulation technique, it is demonstrated that the recon-

struction error can largely be reduced when the channel noise level is low. Besides, 

it is found that overall system performance is less noise sensitive. For example, if we 

set 五1 二 0.1 as a reference limit, it is found that the channel noise tolerated by using 

random code technique is less than 0.3. In case of ordered map technique, it increases 

to a value larger than one. Moreover, when the channel noise is very large, i.e. larger 

than 7, it is observed that all three ordering technique cannot help to reduce the 

reconstruction error due to channel noise. 

,I 
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一S.D. SOM SSOM2 SSOW 
0.0000 0.0300 0.0357 0.0479 
0.1000 0.0300 0.0357 0.0479 
0.2000 0.0312 0.0368 0.0487 
0.3000 0.0384 0.0438 0.0542 
0.4000 0.0491 0.0527 0.0617 
0.5000 0.0579 0.0604 0.0685 
0.6000 0.0658 0.0678 0.0746 
0.7000 0.0736 0.0733 0.0800 
0.8000 0.0807 0.0800 0.0853 
0.9000 0.0878 0.0859 0.0899 
1.0000 0.0940 0.0918 0.0945 
1.1000 0.1005 0.0976 0.0998 
1.2000 0.1073 0.1032 0.1045 
1.3000 0.1133 0.1089 0.1091 
1.4000 0.1207 0.1151 0.1140 
1.5000 0.1274 0.1207 0.1178 
1.6000 0.1338 0.1253 0.1224 
1.7000 0.1409 0.1317 0.1260 
1.8000 0.1461 0.1371 0.1305 
1.9000 0.1524 0.1420 0.1354 
2.0000 0.1591 0.1475 0.1392 
3.0000 0.2156 0.1965 0.1784 
4.0000 0.2614 0.2353 0.2121 
5.0000 0.2981 0.2673 0.2409 •'! 

6.0000 0.3292 0.2934 0.2617 
7.0000 0.3491 0.3113 0.2809 
8.0000 0.3695 0.3277 0.2957 
9.0000 0.3835 0.3402 0.3086 

10.0000 0.3945 0.3487 0.3167 

Table 5.1: The performance of transmission system. The results are obtained by 

using SSOMi, SSOM2 and SOM. The performance index Ei. 
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—S.D. SOM SSOM2 SSOMi 
0.0000 0.0300 0.0357 0.0479 
0.1000 0.0300 0.0357 0.0479 
0.2000 0.0366 0.0425 0.0534 
0.3000 0.0794 0.0861 0.0888 
0.4000 0.1373 0.1460 0.1351 
0.5000 0.1833 0.1905 0.1710 
0.6000 0.2191 0.2240 0.1994 
0.7000 0.2431 0.2473 0.2197 
0.8000 0.2638 0.2659 0.2339 
0.9000 0.2776 0.2775 0.2486 
1.0000 0.2888 0.2868 0.2575 
1.1000 0.3005 0.2957 0.2644 
1.2000 0.3069 0.3018 0.2728 
1.3000 0.3138 0.3060 0.2784 
1.4000 0.3198 0.3107 0.2832 
1.5000 0.3242 0.3107 0.2869 
1.6000 0.3272 0.3143 0.2904 

1.7000 0.3327 0.3163 0.2949 

1.8000 0.3345 0.3165 0.2963 

1.9000 0.3351 0.3190 0.2986 

2.0000 0.3384 0.3206 0.2996 

3.0000 0.3499 0.3287 0.3101 

4.0000 0.3564 0.3315 0.3113 

5.0000 0.3605 0.3323 0.3105 ：：] 

6.0000 0.3624 0.3340 0.3102 | 

7.0000 0.3636 0.3353 0.3106 ‘ 

8.0000 0.3652 0.3376 0.3111 

9.0000 0.3679 0.3362 0.3115 

10.0000 0.3673 0.3379 0.3114 

Table 5.2: The performance of transmission system in the sense of mean square error. 
The results are obtained by using random coding technique. The performance index 

El. 
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Chapter 6 

Convergence Analysis 

This chapter discusses certain theoretical results on the convergence of the competitive 

learning, soft competitive learning, SOM and Soft SOM. The technique is based on 

the application of Kushner-Clark Lemma and the Lyapunov indirect method. The 

first section states the Kushner-Clark Lemma. The convergence conditions of Jon's 

algorithm are presented in second section. For our best knowledge, no researcher has 

proven these conditions yet. In section 3, we extend the result obtained in section 2 

to provide an alternative proof on the convergence of competitive learning. Section 

4 presents one of the main results of this thesis: the convergence of SSOM. Based 

on the same approach as section 3, we extend the result in section 4 to prove the 

convergence of SOM which is presented in section 5. | 

6.1 Kushner and Clark Lemma 

The following Lemma is adopted from [23]. For the sake of application, some irrelevant 

terms and conditions are ignored in order to simplify the convergence proof. To see 

the completed version of the Lemma and its proof, please refer to [23 . 

L e m m a 1 (Theorem 2.3.1 of [23]) Let {Mt} be given by 

Mt+i 二 Mi + ath{Mt) + atCf 

53 



Chapter 6 Convergence Analysis 

And assume that 

K C l h{.) is continuous R^ valued function on R\ 

K C 2 at is a sequence of positive real numbers such that oo and Et a? < oo -

K C 3 {e^} is a sequence of R" valued random variables and such that for each 5 > 0 

lim P < sup I cqti 卜 0, 
“ � [ m > t 口 t J 

Suppose that {Mt} is bounded with probability one. Let M�be a locally asymptotically 

stable solution to 

M = h[M), 

with domain of attraction DA{Mo)- Then if A C DA{Mo) such that Mt G A, we have 

Mt Mo as n ^ oo. 

• • • 

6.2 Condition for the Convergence of Jou’s Algo-

rithm 

T h e o r e m 3 The convergence of Jou's fuzzy competitive learning algorithm, (3.6) and j 
• .1 

(3.7)^ is almost sure. 

(Proof) We assume that all Vi are bounded. Consider equations: (3.6) and (3.7), the 

associated different equation is that 

2 順 咖 - ( 6 . 1 ) 
OVi 

And it is just the case that 
dvi — dJm 
dt dvi ‘ 
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This is a descent algorithm which ^ < 0. According to Lyapunov indirect method, 

Jm is the Lyapunov function and there exists Ds = {V|V V G [0,1]"",势 二 0}, where 

V = (^1,^2, . . -.Vc)^-

Next, it is going to checked that (3.6) satisfies condition KCl to KC3 of Kushner 

and Clark Lemma. Denote h{V) = ("i(V)，/i2(V)，…，hc{V)f, where 

h,{V) =-2E[yr{x){x - (6.2) 

Moreover, let us denote e = (e!, £2, . . . , Cc)^, where 

aO = -2yr{x){x - v,{t)) - h,{V). (6.3) 

Since we can fix the a � according to A.2, for instance 减 < 00 and ^k 二 ⑷， 

and then check that h{V) is continuous function. The major proof is A.3. From (6.3), 

we can define a stochastic process by 
TT 

i 二 n 

Obviously, E[S^+i] 二 {5；} is a Martingale Process. Based on Martingale In-

equality [9], 

P ( sup I E a(z)e(V, x(z))| > . } < 
l7r>n i 二n ) 

for all £ � 0 . As h{V) and M are bounded, e{V,x) is bounded. Hence, 

{ T T ) ŷOO 2 

—i=n J :丨 

where ks is a constant. Moreover, Ett < � implies that 
00 

lim y a l = 0 . 
k二n 

Therefore, 

] im P s u p l E a(z>(V, x(z))l > s\ < j im 
LTT̂ n i 二几 ) 

implies that 

lim P {sup 1 X： 2 4 二 0. 
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It satisfies A.3. According to Kushner and Clark Lemma, it can be concluded that 

the convergence of FCL is almost sure. Besides, linin^oo V{n) G Ds, where Dg is the 

stable invariant set. 

• 

C o r o l l a r y 2 The convergence condition for the Jou's fuzzy competitive learning al-

gorithm is that 

• < oo and 

• Er^ i (̂ k = oo. 

In [6] and [16], the authors did not prove the convergence of FCL is almost sure. 

Hence, the condition on the step size is not provided. They only set the step size, 

a(t), equal to a small constant which cannot guarantee that the convergence is almost 

sure. 

6.3 Alternative Proof on the Convergence of Com-

petitive Learning 

Using the above theorems, it is possible to extend the result to prove that the conver- 丨 

gence of competitive learning is almost sure. The mechanism of competitive learning 

is stated as (2.1) by setting Ni 二 {/}. In such case, 

^ = (6.4) 

where g^{V{t)) 二 — Vi)f{x)dx. From (6.2), 

lim h{V{ty,m) = g{V{t)). (6.5) 

T h e o r e m 4 Once the assumption of Lemma 1 are satisfied, the convergence of (64) 

is almost sure. 
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(Proof) In the same approach as Lemma 1, the only need to prove is to show that 

(6.4) is stable. So what we need to prove is that 

lim 

is the Lyapunov function of (6.4). According to (6.5), 

lim lim Vh(t + At) = lim Vg{t ^ At), 

where and are the solutions of Jou's algorithm and CL with initial con-

ditions Vh{t) = Vg{t)' Moreover, as JmiV) is continuos for all m > 1, 

lim lim Jm{Vh{t + At)) = lim + At)), 
At—Om~>l+ At^O 

and 

lim lim J^Vhit + At)) = lim^ lim + At)) 

Hence 

lim lim [MV,{t + At) - MYgimlim lim [Jm{Vh{t + At) - JmiVhit))]. 

So that, 

A™0 ~At 爪一 1+AWO At 
< 0. (6.6) 1 

Hence 

i l im. J 属 ⑴ ) < 0 . 
at m-)-l + 

The system (6.4) is stable and the convergence of competitive learning is almost sure. 

And the proof is completed. 

• 
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6.4 Convergence of Soft SOM 

The proof of convergence of soft SOM is based on the application of Kushner-Clark 

Lemma (Lemma 1) and the following Lemma. 

L e m m a 2 Consider a stable gradient system， 

-|^ = !乂(0 =聊))， （6.7) 

where J is the lyapunov function of the system. The perturbated system is given by 

±v(t)^h{v{t))^f3{t)Piym (6.8) 

If (i) limt^oo 二 0 for all t > to, and (ii) \\P{V{t))\\ < oo then (6.8) can converge 

to stable state. 

(Proof) Let e{t) be the difference of the stable system and the perturbated system, 

e � is given by 

Ik � II 二 II f m p { y { ^ ) ) d s i 
•ho 

Since 剛 > 0 and P{V{t)) is bounded, 

\\e{t)\\ < M f P{s)ds 
Jio 

where M 二 max\\P{V{t))\\. 

dJ _ 

lit = WH 
二 -h^{v){h{v)+mp{y)) 

二 - p{t)h^{V)P{V) (6.9) 

as t oo, � z e r o . Hence 蟹 < 0. As (6.7) is stable, (6.8) is also a stable system 

as to is sufficient large. And the proof is completed. 

• • • 
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Now, the mechanism of SSOM2 can be defined as following: 
_ — 

v,{t + 1) = v,{t) + a{t) yr{x;V{t))^f3{t) J： vTi^'Mt))(冗—”“印，（6.10) 

. keNM^} . 

where V{t) 二 ( ” i ⑴ ， . . . , a { t ) satisfies the assumptions of Lemma 1 and f3(t) 

satisfies the assumptions of 2. 

C o r o l l a r y 3 The convergence ofSSOM] (6.10) is almost sure ifa{t) and 刚 satisfy 

the assumptions of Lemma 1 and Lemma 2 respectively. 

(Proof) Denote 

明t)) 二 (障⑴),...,M咽 r 

and 

P ( 咽 二 ( P 肩 ) ) ’ … . 肩 ) ) , ， 

where 

and 

p^{v{t)) = E ？ / r ( 调 ) ) ( … 碰 
keN^\{i} 

Based on Lemma 2, 
jv{t) = h{v{t))+mp{y{t)) ；I 

is a stable system as t is sufficiently large. Then using Lemma 1, SSOMi converges J 

almost sure. The proof is completed. 

• 

In the same manner, if y人x) is defined as the way in Nowlan's MLCL, the mech-

anism SSOMi can be written as that 

V,{t1) = v,{t) ^ a{t) m{x-,V{t)) + m [ yk{x-,V{t)) {x-v,{t)), (6.11) 
L keNMi} . 

the convergence is again almost sure. 
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C o r o l l a r y 4 The convergence of SSOMi (6.11) is almost sure if a{t) and f3{t) satisfy 

the assumptions of 2 and Lemma 1 respectively. 

• 

6.5 Convergence of SOM 

As m 1+, (6.10) reduces to the algorithm of SOM. Hence, the convergence of 

SOM can be proven using the same approach as in the proof of competitive learning. 

Without loss of generality, the convergence property of SOM is stated below without 

proof. 

C o r o l l a r y 5 The convergence of SOM, where a{t) and satisfy the assumptions 

of Lemma 2 and Lemma 1 respectively, is almost sure. 

• 

it j 
, , 1 
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Chapter 7 

Conclusion 

We have presented a softing version of SOM and demonstrated the ordering property 

through a number of simulations and applications. As SSOM is an extension of SOM 

and soft competition (MLCL and FCL), the algorithms of SOM, MLCL and FCL 

were studied. (Note that the motive of using FCL is due to its soft competition 

nature but not its fuzzy background.) Based on the relationship between SOM and 

competitive learning, a simple scheme of modification of MLCL and FCL is proposed 

to form SOM-like MLCL {SSOMi) and SOM-like FCL {SSOM2). 

The application of SSOM in cluster analysis has been presented. It is shown that 

SSOMi'is unable to reveal the intrinsic structure of a batch of data although MLCL 

itself is outperformed in vowel data classification. On the other hand, although SOM 

is poorly performed in vowel data classification, SOM manifests two advantages: (i) ‘ 

The values of hidden-output weight are between zero and one. (ii) Localization effect 

is shown in the hidden-output weights which can help to sketch the neighborhood 

relationship amongst clusters of labeled data. 

SSOM is also applied to reduce the channel noise effect in data communication. 

The method of the combination of topological map and QAM in data transmission 

has been proposed by C.S.Le皿g [24] [25]. Here, we follow the steps Leung proposed. 

It is found that SSOMi is better noise tolerated than SSOM2 and SOM when the 
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channel noise level is high. When the channel noise level is low, SOM is the best. 

Note that the performance of SOM, SSOMi and SSOM2 rely on the shapes of the 

organized maps. The results reported in this thesis is just an example. 

Apart from the development of the model SSOM, this thesis provides certain 

theoretical results supplementary to the model of SOM. In the Appendix A, we follow 

the approach of Bouton and Pages [4] to prove that the convergence of ID SOM is 

almost sure even if the neighborhood set size is not finite. Besides, an energy function 

is constructed for the ID SOM when the input data distribution is uniform. Hence, 

the convergence of ID SOM is globally almost sure if the input data distribution is 

uniform. 

The convergence of higher dimension SOM, SSOM, FCL and CL has been dis-

cussed in chapter six. Denote a{k) to be the step size, we proved that if Oi{k)= 

0 0 and J]二 1 a^{k) < 00, then the convergence of FCL and CL are globally almost 

sure. In case of SOM and SSOM, we prove that the convergence are locally almost 

sure. 

7.1 Limitations of SSOM 

There are three limitations in the application of SSOM in clustering: 
‘J 
•1 

• Universa l Approx imat ion In Chapter four, although the capability of SSOM 

in revealing the topological relationship has been demonstrated, an assumption ‘ 

on the approximation capability has been made. We assume that the hybrid 

network shown in Figure(4.1) is universal approximators. In fact, this assump-

tion can only be valid for the cases when SSOMi and SOM are implemented as 

the input-hidden layer. For SSOMi, the hybrid network behaves the same as 

Radial Basis Function net. The output is the summation of radial basis func-

tion (3.5). Hence the universal approximation property is guarantee [47]. For 

SOM, as the output of each of the hidden unit is rectangular, so it is possible 
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to prove the universal approximation property using the same technique as in 

47]. As a result, both SSOMi and SOM implemented hybrid networks are 

universal approximators. However, in so far, there is no proof on the universal 

approximation property of using (3.7) as basis function, for the best knowledge 

of the author. The conclusion that we made in Chapter four is therefore based 

on the assumption that the hybrid network, shown in Figure(4.1), implemented 

by SSOM2 can be an universal approximator. 

• O r d e r i n g P r o p e r t y In this thesis, we have not presented any theoretical proof 

on the ordering property of SSOM and SOM. The ordering property is solely 

demonstrated by simulation examples and application examples. Be aware that 

all the examples shown are in the dimension of two. 

• C o m p u t a t i o n a l S p e e d As the competition mechanism is soft, the time con-

sumed for building a map is much longer than using the convention winner-

take-all rule. The reason can be conceived as following. Suppose the map size 

'isnxn and eight-neighbor is implemented. In case of SOM, ignoring the time 

for finding the winner and the identification of neighborhood, the number of 

node to be updated is nine. Assume that the NIF is a step function with value 

one, no more mathematical operation. In case of SSOM, the number of node to 
‘I 

be updated isnxn. For each of the node, eight addition-operation are required. : 

As a result, extra addition-operation are needed which make the training 1 

time for SSOM is much longer than SOM. 

7.2 Further Research 

According to the last section, it is obvious that one possible further research is to do a 

bit theoretical analysis on the property of SSOM. Besides, using SSOM in construction 

of relational matrix, we have to define the training in two-phases fashion. The hidden-

output weights are determined after the clustering is finished. It comes out a problem 
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when the number of data is very large. In this case, an on-line training seems to be 

necessary. 

I 
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Appendix A 

Proof of Corollary 1 

Essentially, this Appendix is devoted to the proof of Corollary 1. The proof of Corol-

lary is in fact an implication of Corollary 1. The proof of Corollary 1 is divided into 

three sections, from the second section to the forth section according to the distribu-

tion discussed: uniform, logconcave and loglinear. When the input data distribution 

is uniform, an energy function can be constructed by using Krasovskii method to 

show that the convergence is global. The extension on the recent results are listed 

following for clarity: 

• Extension of Bouton-Pages results [4] [8] on the convergence of 1-D Map to the 

case when the size of neighborhood is any large (Corollary 1). 

• Simplifying the proof of Bouton-Pages Theorem [4] on the log-concave input 

distribution case by introducing the Trushkin Lemma [43] (Corollary 1). 

• Extension of Bouton-Pages [4] result on uniform input distribution by con-

struction an objective function using Krasovskii method [18]. Hence, the global 

convergence of SOM can be guaranteed. 

This Appendix is composed of four sections. In the first section, the mean update 

of the SOM mechanism is derived. Following the same technique as in Bouton-

Pages paper [4], the convergence proof on the uniform, logconcave and loglinear input 
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distribution cases are presented in section two. In section two, two new results are 

also presented as well: (i) the size of neighborhood can be any large and (ii) the 

convergence of one dimensional SOM is globally almost sure. The case of logconcave 

input distribution and loglinear distribution are proven in section three and four 

respectively. 

A.l Mean Average Update 

Since input x is a random variable, the updating of V{t) is indeed a stochastic recur-

sive algorithm. Suppose that the distribution of x is f{x), the mean average update 

is that 

E[V{t + 1)] = V[t) + a � L A{x, V)lxu 一 V{t)]f{x)dx, 

where 
c 

k=l 

Here ^k{x{t)) is an indicator function defined as 

/ 

1 if \\x{t) - Vk{t)\\ 二 m^n^\\x{t) - v,{t)\ 

0 otherwise 
V 

Since [0,1] 二 (jk=i 仏， 

E[V{t + 1)] = V{t) + a � ^ f — V{t)]f{x)dx, (A.l) : 
k=i 州 k 

where f{x) is the probability density function of And the algorithm of SOM can 

also be rewritten as 

V{t + 1) 二 VXO + 咖[聊))- 刺， （A.2) 

where 

h{V) = I 八“饥—V�] /�Jt (A-3) 
k=l •^� 
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and 

e{V{t), x{t)) = A(x, V)[x{t)u - V{t)]-亡 / — V{t)]f{x)dx. (A.4) 
k=l JUk 

Furthermore, denote h(y) — {hi{V)^ h2{V),..., hc{V))^ where 

h,{V) = pJ {x - vi)f{x)dx + / {x-v,)f{x)dx^... (A.5) 

+ f^i {x - Vi)f{x)dx 
•^叫+1 

h2{V) = Pi ( [x - V2)f{x)dx + / {x-V2)f{x)dx^ ... ( A . 6 ) 

+ A / {x - V2)f{x)dx 

hAV) 二 / �x — ”i)f(^x)dx + ,.. + (hl {x - v,)f{x)dx (A.7) 

+ po f 0 — v,)f{x)dx + / {x- v,)f{x)dx 

+ ... + " / / {x - Vi)f{x)dx 

i 
鲁 《 » 

hJV) 二 pi f {x Vc)f{x)dx + /?/_! / {x - Vc)f{x)dx + . . . (A.8) 

+ po I {x - Vc)f{x)dx. 
Jnc 

Hence h{V) can be rewritten as 

h{V) = (A—/?l)/^(o)� + ( / ^ � / y / ^ � � + •. �A)/^(M)�⑴⑵，（A.9) 
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where " � ( V ) 二 ... ’ hi^^V))^ for all 1 < fc < /, and 

Vt+k+^i+k+l 
fo (x - Vi)f(x)dx VI <z<k-hl 

� J ” 卜 乂 一 （ 工 - v ^ x ^ yk + i < i < c - k - i . (A.io) 
2 

- Vi)f{x)dx \/c-k-l<i<c 
2 

We obtain the associated differential equation 

I , 二 h(V). (A. l l ) 

for SOM algorithm and the invariant set Dc = {V\\/V G Da.HV) = 0}. 

A.2 Case 1: Uniform Distribution 

Substitute f{x) 二 1 into (A.IO), we get 

{Vi + V2){V2 - ^Vi) 

{Vi + — 2 + ^3) 

" (0 )00 二 (巧+ —(”2 —2”3 + ⑷ . (A.12) 

,I 
I 

(yc-2 + Vc){Vc-2 — 2 t ; c - l + Vc) 丨 

_ {Vc-1 -3t;c) _ 

When fc 二 1,2，...，/, 

h f \ v ) 二 (£) {Vi^k + — {Vi+k + V^+k+l) (A.13) 

for 1 < i < fc; 

二 (备)+ —巧-A：-1 — •̂“） （A.14) 

X {vi+k + Vi+k+i - + Vi—k—i + ” “ ) 
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for k-\-l<i<c — k — \ and 

hf\v) = ( 2 - - ”卜k) ( 2 — 如 + + V卜k) ( A . 1 5 ) 

for c — k < i < n. Recall that 

明=：^：(凡-1-释⑷⑷. 
k=l 

Taking partial derivative of (A.13) to (A.15), it can no difficult to check that 乂 

is negative definite whenever Pi > ft+i for all 0 < z < / and the fact that 

\/l <i <k Qi+k^i - Qi-k > Qi+k+i — ”i 

\ / k ^ l < i < c - k - l Qi+k+i — Qi-k = {qi^k+i — ^i) + (仏.-qi-k) (A.16) 

Mc-k <i <c ĝ +Ar+i — qi-k > (巧—qi-k), 

for all 0 < A: < /. Hence is strictly negative definite whenever I > 0. Let us 

construct an scalar function J{V) 二 /1了(^)"(1/). Obviously, it is greater than zero 

and J{V) 二 0 when h{V) 二 0. Taking the derivative of J{V) with respect to t, 

印)[(，f+(T)]"�（A.17) 

Since is strictly negative definite, < 0 and equality holds if and only 

if h{V) = 0. Therefore it can be concluded that J{V) is a Lyapunov function for 

(A.11). In other word, (A.11) is a gradient system minimizing J{V) when f{x) 二 1. 

Similar to case 1, there exists D^ C Dc such that l imf—� V{t) 二 where e Ds C 

Dc. Furthermore, is asymptotically stable in large. Using the same argument as j 

Bouton and Page, the convergence of SOM is globally almost sure in the sense of 

Kushner and Clark. And the proof is completed. 

• 

The construction of J{V) is actually based on Krasovskii method [18]. Other 

approachs to the proof on this case have been done by a number of researchers [4] [8 

.211 [28] but all of them only show that the stability is local. Moreover, they assume 

that A•二 1 for a i n = 0 , 1 , . . . , / — 1 except [28]. In [28], they prove only that f3o > Pi 

and A 二 0 for all i > 2. 
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A.3 Case 2: Logconcave Distribution 

To visualize the proof, we consider a smaller size map where c = 5. Hence, 

h{V) = ( h ^ ( V ) , h 2 ( V ) , h s ( V ) , h 4 V ) , h s ( V ) f , ( A . 1 8 ) 

where 

h . ( V ) = [ {x - v,)f{x)dx, ( A . 1 9 ) 

for all z = 1,2,3,4,5. Recall that f l , = - [ ！ f o r all 

2 < fc < c - 1 and He =卜广 ,丄 ] . H e n c e 

hi = hi{vi,v2,v3), 

h2 = 

hs = / i 3 ( ” l ,巧 , ” 3 , U 4 ,仍)， 

/l4 二 h4(v2,V3,V4), 

and 

Taking the partial derivative of equation(A.18) with respect to V, we get the Jacobian 

matrix 

^ 一 i 
尿 = W 5 X 5 … 

dhi 也 ^ 0 0 
dvi dv2 dvs 
rj dh2 dh2 dh� Q 

dv2 dvs dv4 
二 ^ dh：, dhs dhz ^ (A.20) 
— dvi dv2 dv3 dv4 dvs 

PI 9/i4 dh4 dh4 n 
U dv2 dv3 dv4 

n n M i ̂  M i 
U ^ dv3 dv4 dv5 _ 

where 

二 —广+”〜(和 
OVi Jo 
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d h i _ d h i _ 1 -h v^ \ (V2 + V3\ 

^ " ̂  " 2 V̂  � P \ 2 J 

dh2 

^ = 一 / p(x)dx 
dv2 Jo 

dh<2 _ dh2 _ 1 + V4 \ I'vs + 
冗= • = 3 V 2 ” V P V 2 ； 

dh3 d h s 1 f v i 4- V2 \ f v i + V2\ 
= 二 — 1；3 p 

dvi dv2 2 V 2 2 y 

— — I P I O/ I UJX 

dvs Jivi+V2)/2 

dh3 _ _ d h 3 _ l fVA + ”5 _ A + 
•̂二 •二 3 v"^ ”” P V 2 y 

dh4 dh4 l / ” 2 + ”3 � fV2^V3\ 
__- 二 二 V4 p ——-—— 
d v 2 d v 3 2 V 2 y V 2 y 

^^ = — f p [x) dx 
dv4 J{V2+VS)/2 

d h s dhs 1 fV3 + \ f V 3 ^ V 4 \ 
— — — Dr. n 

d v s ~ d v ^ 2 V 2 乂 厂 、 2 乂 

^ ^ = — f p{x) dx 
dvs J{v3+V4)/2 I： 

. . 1 

To justify the stability of the equilibrium points, we put M � i n t o the Jacobian matrix 丨 

at those equilibrium points, According to Trushkin Lemma (Theorem 5), it can 

be easily shown that §： is strictly diagonal dominant matrix with negative diago-

nal elements. Based on the Gerschgorin's Theorem (see section 7.3 of [12])’ it can 

be shown that all the eigenvalues of § are strictly in the negative complex plane. 

Therefore, it can conclude that all the equilibrium points are asymptotically stable 

by using Lyapunov linearization method [18]. Hence the proof is completed. 
• 
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Without loss of generality, the proof can be extended to Nj in any size by using the 

following Trushkin Lemma [43]: 

T h e o r e m 5 (Trushkin Lemma[43]) If a continuous function f{x) is defined on a 

closed interval [a, b], where either —oo < a < b < +oo or —oo < a < b < +oo, 

f{x) > 0 for every x G (a, 6), /(—oo) = / ( + o o ) = 0 and 

Zq = f f{x)dx < +00, 

J a 

fb 
Zi = xf{x)dx < +00, 

J a 

then if log f{x) is a concave function on the interval (a, h) then 

Zo > f{a){Z^/Zo 一 a) + f{b){b - ZJZo). 

A.4 Case 3: Loglinear Distribution 

While the distribution is loglinear, only local stability is achieved. The proof is 

accomplished by substitution 
f{x) -二 coe灯 

into equation (A. l l ) ’ where cq 二 [/o exp{sx)dxY' and 5 + 0. For simplicity, we only 

prove the case that c 二 5 and / 二 1. However, the proof can easily be extended 

to whatever c � 0 and / � 1 . Before analysis the behavior of (A. l l ) for loglinear 

distribution, let us deduce several equations which are useful for the proof. First of 
all, consider that 

/ ^ 

"(a, b, ”）二 Co f {x - v) exp{sx)dx. (A.21) 
J a 

Note that (A.21) is h, if we put a = q卜k, h 二 g终fc+i and 二 i^” Differentiate (A.21) 

with respect to v, a and b, 

^ = — (expOa) — exp(s6)), 
ov s 
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芸 = — c � ( a — v) exp(sa), 

and 

= Co{b-v)exp{sb). 

Integrating (A.21) by part and set /z(a, 5, i；) = 0, the solution, v, is given by 

^ — bexp{sb) - aexp{sa) _ 1 (A 22) 
exp(56) — exp{sa) s 

With the above equalities, we can proceed to the proof. In order to illustrate clearly 

the step of proof, we set c = 5 and 0 < < ？;2(0) < ？;3(0) < < 1^5(0) < 1, 

rq2 
vi = Co / (x — exp{sx)dx] 

Jo 
rqz 

V2 = Co / (a: — '̂ 2) ex]){sx)dx; 
Jo 

rqA 
心S 二 Co {x — -Us) exp{sx)dx] 

jgi 

V^ — cq f (x — V4) exp(sx)dx; 
人2 

= Co / (x — V5) exp(sx)dx. 

The Jacobian matrix at the equilibrium point, V ,̂ is that 

dhi dhi dh� Q Q 
dvi dv2 dv3 

Q dh2 dh2 dh2 Q . 
dv2 dvz dv4 ij 

色 ,_ a/i.s dhs dhs dhs dhz ] 
^y _ dvi dv2 dv3 dv4 dvs 

Q 9/1.4 dh4 dh4 Q 
dv2 dvs dv4 

Q Q ^ ^ ^ 

_ dv3 dv4 dv5 J 

where 
dhi _ exp{sqo) - exp{sq2) 

dvi s ‘ 
dhi dhi 1, N / X 

OV2 OVs Z 

dh2 — exp{sqo) - exp(>g3) — ‘ - ‘’ 

dv2 S 
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dh2 dh2 I, � , � 

dhs dhs 1 � / � 
‘ 仍-仍)exp(叫 0 , 

dhs exp{sqi) — exp(<sg4) 
彻3 5 ‘ 

dhs dhs 1 
^ = ^ = —巧)exp(5g4), 
OV4 ov^ 2 

dh4 dh4 1, \ / \ 

dv2 dv3 2 

dh^ — exp(<sg2) — exp{sqs) 

dv4 s ‘ 
dhs dh^ 1 X / X 

7 = ^ = - O T E — ^^5)exp(sQ3), 
ovs dv4 2 

dhs — exp(>sg3) - exp{sqs) 

dv^ s 
According to Theorem 1, 0 < vi{t) < ” 2 � < V3� < ” 4 � < 外⑴ < 1 for all t > 0. 

As 5 ̂  0, it is found that < 0 for all 1 < z < 5 and > 0, where i + j. In 

particular, the matrix is a band matrix which looks like 
__ -

- + + 0 0 

0 - + + 0 
+ + — + + • 

0 + + - 0 j 

0 0 + + - 丨 

Where，-，denotes the element is negative while ,+，denotes a positive element. It can 

then show that the sum of each row is negative. It is stated as following lemma. 

L e m m a 5: If f{x) is loglinear, then 舞 < 0 /or all l<i<b. 

(Proof) Before proceed to the proof of Lemma 5, we need the following three Lemma. 

L e m m a A l : e^ - 1 - y > 0 for all y G ( — 0 0 , + 0 0 ) . Equality holds if and only if 
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(Proof) Set f{y) — e^ —1 —y, the derivative of f{y) with respect to y is that 若 二 — 

Since 若=0 if and only y = 0. As 若�0, /(O) is a local minimum. Hence it is 

global minimum. As a result, f{y) > 0 for all y and f{y) = 0 if and only if y 二 0. 

Hence the proof is completed. 

• 

L e m m a A2 : For all k ^ 0 and a G (0,1]； 

, � 1 - a ^ 
咖 = + 巧 < 0 . 

(Proof) Rewrite gi, we obtain that 

(1 — -l)-\-ka 
仍⑷二 . 

First we consider the case A; > 0. Under this case, - 1 ) � 0 for all a G (0，1, 

According to Lemma Al , 

+ = - ( e ' ' - i f - - 1) + ka 

< — — 1)2 — + 

= — ( e - — 1)2 一 — 

二 一 — i ) ( � _ l + 圳 I 丨 
I 

< 0. 
„ i 

(A.23) 

Hence gi{a) <0'dk>0. Next we consider k <0. Similar, we get that 一 1) > 0 

for all a G (0,1]. Again, according to Lemma Al, 

{1 - - I) + ka < (1 - - 1) + (e^^ - 1) 

二 2(1 - 1) 

< 0, 

(A.24) 
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for all a ^ 0. Therefore gi{a) < 0 for all a G (0,1]. The proof is completed. 

• 

L e m m a A3: For all k ^ 0 and 0 < a < b < 1, 

g 賴 = 一 — e - - I + T < 0 . 

(Proof) Similar to the proof of Lemma A2, we consider two cases, k > Q and A: < 0. 

After manipulation on («, b), we get that 

—-k{b - 咖+6) + e�e胁 一 e^") e胁— 
仍 ） 二 k(e 姊—e^) k ^ 

Ma+b) , � e^b — ka 

(A.25) 

As 5 > a > 0 and from Lemma Al, g2{a, 6) < 0 for all k > 0. Next, we consider the 

case that k < 0. When k < 0，e咖州 > 0. - > 0 and ^ ^ ^ whenever 

h> a. According to Lemma Al, e补—• - 1 + - a) > 0. Therefore, g2(a,b) < 0 

when A; > 0. As a result, g2{a, 6) < 0 for all A; 0 and the proof is completed. 

• 
,I 
.1 

(Proof of Lemma 5) Adding all the elements within each row, and put the value of ； 

. . . , derived from (A.22), we get the following equalities. 
5 f)L psqo 一 pSq2 

^ 二 ^ — — e — — 外 ) e 叫 2 
彻 J s 

_ 1 - + 92 (A.26) 
— 5 e 叫2 一 1 

5 psqo — (.sqz 

‘ = + (A.27) 
s e 柳一1 
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5 Bh-^ psqi _ psq4 
E ? ^ = - ^ + (仍 - - - ^；3)6叫4 

j=l 卯 j 

=竺 ( e叫 i - e叫4 ) (A.28) 
5 

A dh^ e叫 2 _ e叫 5 

= ^ ^ + ( … 

j=i � J 

= f e - g5)e咖+卯)_ f + ^ (A.29) 
6 叫5 — e 叫2 s s 

5 dh� e叫3 一 gsgs 
[ ， = - ^ + 们 
^ dvj s 

) 二 3 ) — c + ^ (A.30) 
gsg5 — esqs g 5 

According to Lemma A2 and A3, 

线〈。’ 

j=i ] 

J二1 J 

and 

E尝 <�• j 
Moreover, (e叫i — e叫彳)> 0 if 5 < 0 and (e叫i — e叫 ‘)< 0 if 3 > 0. 乾 < 0. 

Hence, 

台加J 

for all 1 < 2 < 5 if f{x) is loglinear and the proof is completed. 

The general case of Lemma 5 is stated as following lemma. 

L e m m a 5,: If f{x) is loglinear, then E-=i < 0 for all I < i < c. 
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In addition to the fact that the diagonal elements of the matrix are negative, it is 

concluded that all the eigenvalues of Jacobian matrix are located in the negative 

half plane. So, the equilibrium of (A. l l ) is again asymptotically stable. Hence the 

proof of Corollary 1 is completed. 

‘ ( 

1:1 
1 
] 
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Different Senses of neighborhood 

Recently, many researchers have tried to explore the idea of neighborhood interaction 

to other clustering algorithm. As a result, they brought out different definitions of 

neighborhood and neighborhood interacting functions (NIF) other than Kohonen's 

original definition. As the model discussed in this thesis applies the concept of neigh-

borhood interaction, it is necessary to clarify what sense of neighborhood is being 

applied. In general, the senses of neighborhood can be divided into two classes: 

static and dynamic. 

B.l Static neighborhood: Kohonen's sense 
! 

It is the simplest sense of neighborhood which is defined by T.Kohonen for his SOM ^ 

model. This definition can be stated as follows. For simplicity, only ID Map will be 

considered but it does not loss the generality. 

Definit ion 1 (Kohonen [21]) The neighborhood interacting set (NIS) is defined as 

yVj 二 {/ _ 1, /，/ + 1} for I is not at the boundary. While I =1, Ni = {1,2}. While 

I 二 N，Ni 二 {N — The NIF, f3^{k) is defined as follows: 
( 

1 i/卜• — S 1 � 

_ 二 \ . (B.l) 
0 otherwise. 

\ 
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Apart from fixing the function as a step function, Kohonen also defined the NIF in 

Gaussian shape: 

Def in i t ion 2 ( K o h o n e n [21]) The NIS is defined as Definition 1 but the NIF, ft(fc) 

is defined by l3i{k) 二 exp( —(z — kY). 

In both of the above definitions, their common feature is that their definitions on the 

neighborhood interacting set are independent of the Euclidean distance between the 

input vector x and the weight vector. 

B.2 Dynamic neighborhood 

Using above definitions, some researchers find that that static neighborhood is not 

flexible enough to form a good data manifold for some special type of input data set 

such as sphere data. Therefore some researchers attempted to define neighborhood 

in a dynamic sense [3] [29] [32]. In these cases, the neighborhood set of a SOM are 

updated after a number of training cycles. 

B.2.1 Mou-Yeung Definition 

In [32], the neighborhood set is update after every predetermined number of iterations. ‘ 

The neighborhood relationship is constructed using the following definition: 

Def in i t ion 3 ( M o u a n d Y e u n g [32]) Node i and node j are neighborhood if and 

only if 丨卜— ”』2 < 11̂ , - + II叫 一 for all k + z , j . And the NIF 酬访 

defined by 
1 i and k are neighbor � 

剛 二 . (B.2) 
0 otherwise. 

Instead of defining the neighborhood in term of the distance amongst v^s, 
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B.2.2 Martinetz et al. Definition 

Bezdek et al. [3] and Martinetz et al. [29] defined the neighborhood set in term of 

difference between the location of input x and the location of weight vectors ViS. The 

idea is that. Once a data vector x is presented, the winner is the one closest to x, say 

node I. Then the first neighborhood of node I is the second closest to x. Then the 

second neighborhood of node I is the third closest and etc. Under such circumstance, 

each neighbor of I will be marked with a value called neighborhood ranking value. 

The definition of neighborhood ranking is defined as following: 

D e f i n i t i o n 4 ( N e u r a l G a s [29]) Consider that v^, be the vector being closest to 

X, then the neighborhood set is defined as ... , where ”巧 is the sec-

ond closest to X, The neighborhood ranking value is defined as a function of lu， 

As 7U is a function of a: and V, A is also a function of x and V. Besides, Pi < fij if 

i > j. If \\x - oo, Pi is still non-zero. 

B.2.3 Tsao-Bezdek-Pal Definition 

Similarly, Tsao et.al. [44] defined the neighborhood sense in the same manner: 

Def in i t i on 5 (Tsao-Bezdek-Pa l [44]) Consider that v^^ be the vector being closest ! 
I 

to X, then the neighborhood set is defined as {t^i，”兀2,…,”兀c}. The NIF is defined 

as a function of iVi, 
ft⑷二 j i I f ' 二 L (B-3) 

^ otherwise, 
\ 

where ^ is a number smaller than 1. 

In order to visualize the similarity and difference among all these definitions of neigh-

borhood, let us have a simple example. 
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B.3 Example 

Suppose that the a ID map consists of six nodes, Figure B.l. The input data x is 

indicated by the black solid circle while ViS are indicated by hollow circles. In this 

example, V4 is obviously the closest to x. hence, no matter using which definition, node 

4 is the winner. However, based on different senses of neighborhood, the neighborhood 

set of node 4 are different. 

In the sense of Kohonen, N4 二 {3,4，5}. In the sense of Mou-Yeung, N4 = {2,4, 5}. 

In the sense of Neural Gas and Tsao-Bezdek-Pal, N4 二 {4,2,5,6,1,3}, where the 

location reflects the ranking. But, due to their different in the definitions of NIF, the 

values of are different. The values are listed on the table. 

V5 X V4 V2 

G e # - 0 - e e — o 

Figure B.l: An example of ID Map. 

"Definition I / I p2 P3 fh fh [ 
Def. 1 4 0 0 1 1 1 ^ 
Def. 2 4 e-9 e - i 1 e - i 
Def. 3 4 0 1 0 1 1 0 

Def. 4 4 e-4 e - i e-^ 1 e-飞 e"^ ： 

Def. 5 I 4 I ( i i 1 i i 

Table B.l: Definition of NIF 队工、when x is presented. ^ is a small number. 

To contrast the different between different definitions, the neighborhood interact-

ing values are shown in Figure(B.2). 
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(a) (b) 

0.8. / \ • 0.8. / \ E / \ ：： J \ 
ni i . . • \ 0® ‘ ‘ ^ 

2 3 4 5 1 2 3 4 5 

(c) (d) 

Figure B.2: The neighborhood interacting functions defined by (a) uniform function, 
(b) Gaussian function, (c) Mou-Yemig definition and (d) Neural gas definition. 
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B.4 Discussion 

Actually, there are many ways to combine the concept of neighborhood interaction to 

the algorithms of Maximum Likelihood Competitive Learning and Fuzzy Competitive 

Learning. Figure B.3 indicates some possible extensions. However, not all of them 

are considered in this thesis in order to implement the softing version of SOM. 

Def • 1 Def.2 Def.3 Def.4 {/} 

Hard SOM SOM Mou- Neural CL 
Yeung Gas 

Bezdek SSOM SSOM FCL 

RBF SSOM SSOM MLCL 

Figure B.3: The suggested combinations. , 

The reasons can be explained as following. The senses of Mou-Yeung and Neural 

Gas are not considered since both senses of neighborhood are defined in a dynamic 

way so that in some cases the global information of neighborhood may be lost. For 

example, under Mou-Yemig，s definition, the map has to be constructed time after 

time. There will be a serious problem when the data set consists of two isolated 

clusters which are separated far apart: The map will be separated into two. In this 

case, it cannot identify the neighborhood relationship between clusters. Under Neural 

Gas's definition, the situation is even worst since the neighborhood relationship is 
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totally lost. Besides, the compuatational cost on the construction of neighborhood 

sets for each of the neuron is also very high. So, in the design of , we define the sense 

of neighborhood as one of the Kohonen's definition, Def.l. 

.I 
! 
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Supplementary to Chapter 4 

(a) (b) 

0 0 

(c) � 

Figure C. l : The mesh plot of the weights connection the hundred hidden 皿it to the 
Ist(a), 2nd(b), 3rd(c) and 4th(d) outputs using SSOMi as input-hidden layer. It 
is observed that the value of the connection weights are very large, in an order of 
magnitude of five. Besides, the weights exhibit no localization effect. 
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0 0 0 0 

(e) ⑴ 

(g) � 

0 0 

(i) � 

Figure C.2: The mesh plot of the weights connection the hundred hidden unit to 
the 5th(e), 6th(f), 7th(g), 8th(h), 9th(i) and lOth(j) outputs using SSOM^ as input-
hidden layer. It is observed that the value of the connection weights are very large, 
in an order of magnitude of five. Besides, the weights exhibit no localization effect. 
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0 0 ° ° 

(a) (b) 

(c) � 
i 
！ 

Figure C.3: The mesh plot of the weights connection the hundred hidden unit to the 
Ist(a), 2nd(b), 3rd(c) and 4th(d) outputs using SSOM2 as input-hidden layer. It is 
observed that the weights with large value are localized. 
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. . . . . . . ： ...: •..:』 

0 0 0 0 

(e) (f) 

0 0 ° ° 

(g) � 

0 0 0 0 

(i) � 

Figure C.4: The mesh plot of the weights connection the hundred hidden unit to 
the 5th(e), 6th(f), 7th(g), 8th(h), 9th(i) and lOth(j) outputs using S S O M ) as input-
hidden layer. It is observed that the weights with large value are localized. 

89 



Appendix C Supplementary to Chapter 4 

(a) (b) 

隱 _ . 
(c) � 

i j 

Figure C.5: The mesh plot of the weights connection the hundred hidden unit to the 
Ist(a), 2nd(b), 3rd(c) and 4th(d) outputs using SOM as input-hidden layer. It is 
observed that the weights with large value are localized. 
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. . . . . . . . . . . . . • • • • • • " " ... 
....... • .._.. ,.•••-' ： ••-•.. 

••••• .... .-••-：• 

1 . . . •••••••-...； 

1、 0.8-... • ； T 

0.8、... . • ： . . ： ： ；... . • •；••• . ••： ... • • • 

(e) ⑴ 

(g) � 

0 0 0 0 

(i) � 

Figure C.6: The mesh plot of the weights connection the hundred hidden unit to the 
5th(e), 6th(f), 7th(g), 8th(h), 9th(i) and l O t h � outputs using SOM as input-hidden 
layer. It is observed that the weights with large value are localized. 
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Quadrature Amplitude 

Modulation 

Quadrature amplitude modulation (QAM) is one of the technique for multisymbol 

transmission. In one of the simulated experiment, this modulation technique is com-

bined with the clustering algorithm proposed 一 the Soft Self Organizing Map - to 

demonstrate the gain due to topological order. Here we give only a very brief intro-

duction to QAM. For further detail, please refers to [40 . 

D.l Amplitude Modulation 

QAM is essentially an extension of amplitude modulation (AM) which is used in 

radio broadcasting. The principle can be described as following. Suppose that the 

broadcast station would like to transmit a speech signal, say to the audience. 

Based on amplitude modulation technique, the broadcast signal will be formed by 

multiplying the speech signal with a carrier wave, say c � 二 sm(wj), in the way 

as that s(t)c(t). In the receiver side, this speech signal is reconstructed by using the 

relation s(t) = Jj^ s{t)c{t)c{t)dt. Figure(D.l) show a simple example. The speech 

signal is low frequency sinusoidal function. It is modulated through a high frequency 
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carrier wave. The resultant broadcast signal is shown in Figure(D.lc). 

(a) Carrier Wave 
1 [： 1 1 1 1 1 1 1 “ " " " r — 1 J 

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 
0 -

1 V V V V V V V V V V V V V V V V V V V V V V V V l i V U V U V l M 
- I L 1 I 1 I J I I I 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
(b) Speech 

. 1 1 1 1 1 1 I I 1 

- 1 1 I I 1 I I I I 1 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

(c) Transmitted Signal 

-2 -y V V V ^ V V 
v y I " I I V V V I I V 1V__： 1 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure D.l: A simple example showing the idea of amplitude modulation: (a) the 
carrier wave c(t) 二 smCSOOO, (b) the speech signal s{t) = sin{20t) and (c) the 
broadcast signal {2 ̂  sin{20t))sin{200t). 

D.2 QAM 

QAM extends the idea of amplitude modulation and provides a simple modulation 

method for the transmission of digital signal. Imagine that a sequence of binary 

signal, say 00101101, is going to be sent out. We can treat this sequence in the same 

way as speech. Then using the amplitude modulation technique to form the broadcast 

signal. Suppose the carrier wave is also c{t) 二 sin(200t), the modulation steps can 

be described as following: 

• { 0 0 1 0 1 1 0 1 } - ^ s{t) = { - 1 - 1 1 - 1 1 1 - 1 1}., 
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• the amplitude of the broadcast signal is {1 1 3 1 3 3 1 3}. 

Obviously, it is a Bi-level amplitude modulation since each digit can represent two 

possible cases only. Figure(D.2) shows the waveforms of the corresponding signals 

during modulation. 

(a) Carrier Wave 
. 1 1 1 i 1 1 1 ‘ ~ ： 7 ： y y Oft y (ly y yy y y y y y y u 
0 -

—1 [； I I I I I 1 I 1 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

(b) Binary Signal 
1 1 1 I I 1 I I — I ‘ I 

1 -

0 - _ 

-1 I I I I I I 1 1 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

(c) Broadcast Signal 
5[- 1 1 1 1 1 1 I I ‘ 

0 ywww\J\ 謹 fwv\J\l\ 議 議 fw\/\l\ 瞧 
\l \l \J \J VVVVvVVv V v v I 

(-1 I 1 1 1 1 1 ‘ ‘ ‘ 
“0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure D.2: Transmission of sequence of binary signal using amplitude modulation: 
(a) the carrier wave c(t) 二 sin(200t), (b) the binary signal and (c) the broadcast 
signal. 

Instead of modulating the signal bit by bit, it is possible to modulate the sig-

nal two-bit by two-bit. In the above example, the transmission sequence becomes 

{00 10 11 01}. As the possible event generated by two-bits are four, 00, 01, 10 and 

11 respectively, two alternative schemes can be applied. The first one is Four-level 

scheme. According to the following encoding scheme: 

• 00 - 1 . 5 , 

• 01 —0.5, 
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• 10 + 0 . 5， 

• 1 1 + 1 . 5 , 

we obtain the waveforms as Figure(D.3). 

(a) Carrier Wave 

1 [t\ ‘ 1 1 i 1 1 1 1 I 

0 -

-1 r I I I I J I I 1 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

(b) Encoded Signal 
21 1 1 1 1 1 1 1 1 I 

0 - ： 

I I 1 I 1 1 • 1 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

(c) Broadcast Signal 

51 1 1— 1 1 1 1 1 I I 

V V V V V V V V 
CL . I I 1 1 ‘ 1 1 ‘ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure D.3: Transmission of sequence of binary signal using amplitude modulation: 
(a) the carrier wave c(t) 二 stn(200t), (b) the encoded signal and (c) the broadcast 
signal. 

An alternative is to modulate the signal based on QAM. Figure(D.4) shows the 

structure of a QAM transmitter. 

Instead of using single si皿soidal wave as the carrier wave, the carrier wave of QAM 

is composed of two orthogonal sinusoidal waves, coswj and sinwj. The broadcast 

signal is then the superposition of two modulated sinusoidal waves, a^coswct+ksinwj. 

Similar to 4-level method, we assign each of the four possible signal combinations by 

an encoding scheme: 

• 00 (ai 二 - M l 二 -1) , 
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cos Wet 

I h ^ o - Y ^ 
Binary Buffer \ QAM 
input 1 output 

^ and ( + I • 
Encoder 

sinWct 

Figure D.4: Simple diagram of a QAM transmitter. 

• 01 (ai 二 — l A = +1)， 

• 10 (ai 二 + 1 A 二 —1), 

• 11 ^ («1 二 + 1 A 二 +1). 

Figure(D.5) shows the corresponding waveforms. 

It is useful to represent encoded signal in a two-dimensional diagram by locat-

ing the various po int s�a”b i ) . The signal points are said to be represent a signal 

constellation. Figure(D.6) shows the signal constellations of the above QAM. : 

Suppose that a, and b, can be assigned to be either one of { - 1 . 5 —0.5 +0.5 +1.5}， 

we can design a 16-symbol QAM constellation, Figure(D.7). 

As the locations of the waveforms are in regular mesh, it is possible to assign 

these waveforms to a organizing map which is defined in the same mesh structure. 

Figure(D.8) shows the idea of this assignment. This assignment method is the way 

that we apply to vowel data transmission. 
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(a) Carrier Wave 

1 Fa ‘ ‘ 1 1 1 i 1 1 I I 

0 [ 

" i - V l / l / V V l / V V V V V l / V V V V l / V V V V V V V V V V V l / V l / ^ l 
— I [； I I I i 1 I I I 1 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

(b) Encoded Signal 
1 1 1 I I 丨 I 丨 . 丨 .！ 

1 _ I r 

0 - I _ 

-1 I I I I I I I—-—I 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

(c) Broadcast Signal 
21 1 I 1 1 1 1 1 I I 

謹議編編編誦國編謹(！謹 
0 I 

J \j \l \l \l \J \l \l v V v V v V v v V y V v V v v V i ' V V v v v l / l / 
oL I I I I 1 1 1 1 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure D.5: Transmission of sequence of binary signal using QAM: (a) the carrier 
wave c(t) 二 <s:in(200t), (b) the encoded signal (solid line is the signal of a(t) while the 
dash-dot line is the signal of b(t) and (c) the broadcast signal.). 

sinWct 

• 1 參 

COSWct 

# 1參 

Figure D.6: The signal constellation of the above QAM scheme. 
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參 眷 鲁 參 

鲁 眷 參 參 

書 參 參 參 

參 鲁 參 參 

Figure D.7: The signal constellation of the 16-symbol QAM scheme. 

Signal Space 

Input Data Space 
Figure D.8: The idea of codevector waveform assignment. 
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