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Abstract 

The investigation of reducing disk I / O is an important issue today because large volume 

of disk data are stored and retrieved frequently. The access t ime of a disk is usually 

much slower than that of the memory system. Traditional method using in the CPU 

cache has been applied to the disk cache and got an acceptable result. The main focus 

in this thesis is to design an effective caching strategy that can maximize the cache 

performance in limited cache size. The difference between CPU cache and disk cache 

is discussed. We also introduce new algorithms to further reduce the disk access time. 

Besides, a more accurate method to measure the performance of disk cache is provided. 

If the disk access can overlap the program execution, the cache system will have t ime 

to get some sectors 'on the fly'. Traditional cache design stores all requested sectors 

in the cache and cannot make use of this overlapping advantage. A cache partitioning 

model is proposed to achieve this advantage. The cache is divided into Branch Target 

Cache and Prefetch Buffer. Wi th the assist of the proposed algorithms, Alternative 

Storing Sectors Technique and Storing Enough Sectors Technique, the performances of 

our models outperform that of the s tandard, unified cache with prefetch on miss, by 

15%-30%. 
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Chapter 1 

Introduction 

Relative speed gap between the disk and the main memory is increasing. With increas-

ing computational power of the CPU and with the trend for parallel processing, the 

rate of data consumption is getting higher. The size of the data set that a program op-

erates on is also increasing. For example, in query applications, hundreds of gigabytes 

of data, are scanned to determine the answer. Even worse, sometimes slower disks are 

used because of the cost. All these are reflected by the following facts: 

• For high-end servers and high performance computers, the increasing rate for 

MIPS is about 10%-20% while the increasing rate for DASD (direct address 

device, e.g. disk) is about 40%-60%. 

• For high end data servers and enterprise systems, about 60%-70% of the system 

cost is spent on DASD. 

• Disk caching is attracting more and more attentions. 

It is expected that the system performance bottleneck will be on I /O instead of 

the computing power of processors. This is because microprocessor speed has been 

increasing at an extremely fast rate. For example, over 100 MIPS processors are very 

common. It is expected that processors with throughput of 300-500 MIPS will be 

available in the coming two years. On the other hand, although the size of disk storage 

is increasing greatly in this few years, the disk access time does not have any great 

1 



Chapter 1 Introduction 2 

breakthrough. Therefore, the speed of the disk cannot catch up the fastly increasing 

CPU speed, and makes disk I /O become a performance bottleneck. 

1.1 I /O System 

Magnetic disk has its advantages to store information. It has a large capacity. It 

is significantly cheaper than higher performance alternatives and provides permanent ~ 

storage. On the other hand, access t ime of disk is slow when compared with the rest of 

the computer system. Disk is slower than DRAM (Dynamic Random Access Memory) 

in both access t ime and transfer time. Disk is a result of economic consideration and 

limited current technology. If fast, reliable and cheap storage were available, slow disk 

access would have disappeared. 

1 
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Figure 1.1: I/O System Model 

Figure 1.1 shows the general relationship between a running process in memory, 

the disk cache and the disk storage. The number of disk I / O requests from the process 

is r and w, and it depends on the nature of the application. The r ' and w' are the 

actual disk I / O requests between the disk cache and the disk. Reducing the values of 

r' and w' means that fewer da ta are needed to be transferred between the disk cache 

and the disk storage. Since the disk is a slow device, reducing the traffic can increase 
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the overall performance. 

There are two parameters that determine the impact of disk I /O on overall system 

performance. One is the amount of time waiting for each I/O to complete, and the 

other is the number of disk I /O operations performed. If a process performs a large 

number of disk I /O and the time to complete an I /O is long, the performance of the 

overall system must be poor no matter how good the performance of other parts of 

the system is. The role of the disk cache is to reduce the number of disk I /O, so the 

average disk access time decreases. 

The disk access time can be estimated as 

Disk access time = Cl + C2 * n 

where CI is the start-up time of the disk which includes the seek time and rotational 

delay; C2 is the disk transfer time, i.e. the time to transfer one sector; and n is the 

number of sectors in a request. This equation is, in fact, not accurate for an individual 

request. However, over a large sample, this equation can be considered as average 

approximation of the time of each request. 

Using more arms and disk platter can reduce the start-up time and the transfer time. 

Studies [Ng91, MK89] show that using two arms can reduce the average rotational 

latency to one-fourth of a revolution, instead of a half revolution. Synchronously 

interleaving of data across several disks can also reduce the transfer t ime [Kim86, 

GMS88]. The technology of Redundant Arrays of Inexpensive Disks (RAID) provides 

a high performance and very reliable way to stripe data across multiple disks [PGK88, 

CGK+88, KOP+89]. It can also increase the overall reliability because of the cost-

effective redundant feature. 

Many techniques have been developed to improve the disk access time, but they 

cannot overcome the fact that disk is still slower than the rest of the computer system. 

Disk I /O is still the bottleneck of the overall system performance. 
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1,2 Disk Cache 

Disk cache serves as a buffer between the process in memory and the physical device. 

The earliest study about disk cache was reported in 1968 [SV68]. All the disk requests 

go to the cache system first and the cache system will decide how to process them. If 

the requested sectors are found in cache, no physical I /O operation is performed. This 

also means that the average access time of I /O is reduced. Disk cache also reduces the 

amount of time that a. process spends on disk accessing. 

All modern operating systems use disk cache to reduce disk accesses. For instance, 

Unix has an inode buffer to cache the (inode and directory) information of files and 

has a buffer cache to cache data in files [Bac86]. Cache can be located in three possible 

locations: a cache in host, a cache in the device storage controller, or a cache in the 

drive itself. 

Current disk caching techniques are n^t as good as we want. Most of current 

research efforts on caching are on on-chip caching and memory chip design. Old tech-

niques such as hardware oriented one block/sector look ahead are still being used in 

controlling disk cache. However, in on-chip cache design, new techniques have already 

been developed to improve cache performance by a significant amount, e.g. cache parti-

tioning, software assisted data prefetching, smart hardware oriented data prefetching, 

etc. Furthermore, traditional disk cache design often emphasizes on cache hit rate for 

one level in the memory hierarchy. Very little effort has been spent to study the perfor-

mance of disk cache in terms of the execution time on a multi-level memory hierarchy 

system. 

The hit ratio of disk cache is generally 70%-90%. It is very low when compared 

with the hit ratio (>90%) in memory cache. This difference is due to the poor disk 

cache management to capture the locality of disk access. In this thesis, we will examine 

new caching algorithms which are expected to produce a better performance and to 

use the disk cache in a more efficient way. 
I . 

Our project aims to design a general disk cache strategy that is simple and cheap 
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enough to be incorporated in hardware, and can fully utilize the limited cache size. 

The main idea is that by proper overlapping data fetching and program execution, 

some sectors can be discarded and so they are not stored in the cache. When these 

un-stored sectors are requested, they can be retrieved during program execution. So, 

this method can effectively enlarge the cache size. To achieve this propose, we have 

incorporated a cache partitioning and newly designed algorithms to build a disk cache _ 

architecture. The basic contributions of our research are summarized as follows: 

• Discover that a highly sequential property has been exhibited in the traced data. 

• Discover that always prefetch performs much better than currently used prefetch-

ing mechanisms in disk cache design such as prefetch on miss. 

• Design a. disk cache architecture based on CPU cache partitioning technique 

and new algorithms to control the < îsk cache in order to further improve the 

performance of always prefetch. 

• Build a simulator to investigate the performance characteristics of the designed 

disk cache models in various kinds of disks. 

• Compare the pros and cons of using the designed disk cache architecture and 

algorithms to enhance the performance of disk I /O. 

• The designed models perform much better than the traditional ones in a wide 

range of cache size. 

1.3 Dissertation Outline 

The outline of the rest of the thesis is as follows: 

• Chapter 2 describes the previous work on cache design. 

• Chapter 3 gives a detail description of the newly proposed models, including the 

disk cache architecture and the control algorithms. 
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• Chapter 4 describes the trace driven simulation environment and analyzes the 

trace data in detail. Highly sequential property of the traced data is shown in 

the analysis. 

• Chapter 5 evaluates the performances of our proposed models for common disks. 

Various simulation results are presented with detail discussion of the pros and 

cons of different models. ~ 

• Chapter 6 evaluates the performances of our proposed models for high perfor-

mance disks. 

• Chapter 7 gives the conclusion and suggests future extension of our work. 



Chapter 2 

Related Work 

Since cache performance depends on a wide range of design and implementation pa-

rameters, many efforts have been paid to study the impact of these parameters on 

processor caches [Smi82, Prz90]. Disk cache is generally much larger, in volume, than 

CPU cache and often has a lower hit rate but many of the same design principles apply. 

A comprehensive study in disk cache w îs discussed in [Smi85]. Trace driven simu-

lation is used to show, among other results, that cache sizes on the order of 8 Mbytes 

can service 80%-90% of all disk requests [Smi85]. A simple prefetching strategy is also 

explored to load block i+1 into the cache when block i is referenced, but concludes 

that it is not uniformly effective for all types of files. Besides, it proposed to perform 

intelligent prefetching based on the user types (system, interactive, batch) and the file 

types (temporary, system, paging). However, it is difficult to incorporate Smith's sug-

gestion in many cache designs due to the requirement of either analyzing the program 

or accepting user advices in advance. 

2.1 Prefetching 

Prefetching is a very common method that incorporates into a cache design. Prefetch-

ing means fetch before actual reference. This method fetches some sectors before the 

sectors are actually referenced. Therefore, if the prefetched sectors are actually refer-

enced, it will reduce the time of a process to wait for accessing the disk, and so will 

increase the execution speed of a process. However, if the prefetched sectors are not be 

7 



__ Chapter 2 Related Work 8 

referenced, they will still occupy the cache space. Then cache is polluted because they 

kick out some useful data. Therefore, the usefulness of prefetching highly depends on 

whether the mechanism can capture the access property of the requested data. Much 

work has been done to improve the hit rate of prefetching. Prefetch on miss, prefetch 

on hit and always prefetch are three commonly known prefetching methods [Smi82 . 

Prefetch on miss triggers prefetching action when there is cache miss. Prefetch on hit 

triggers prefetching action when there is cache hit. Always prefetch triggers prefetching 

action when there is a request. For currently used disk caches, they only incorporate 

prefetch on miss as their prefetching mechanism. They sometimes do not incorporate 

any explicit prefetching mechanisms but they rely on the implicit prefetching property 

of a large block size. For instance of using a large block size, a request of one sector 

will let a whole disk track to be loaded in the cache. 

The traditional prefetching mechanism is One Block Look-ahead (OBL). It loads 
I ' 

sector i+1 into the cache when the sector i is referenced [Smi85]. This prefetching 

algorithm is based on spatial locality. However, in modern file system design, the data 

may not be continuous on disk, i.e. fragmentation may occur. Therefore, OBL may not 

be a good mechanism to capture spatial locality, i.e. sector i+1 may not contain data 

that continue from sector i. This is the problem of the logical continuity not matching 

the physical continuity. To solve this problem, maintaining an adaptive table of most 

probable successors for each disk block was proposed [GAN93]. Each successor is tagged 

with a weight which indicates the likelihood that it will be referenced given that its 

parent is referenced. This table and associated weights are used to control the prefetch 

mechanism. Unlike sequential prefetching, this algorithm functions well when logically 

successive disk blocks are not physically adjacent on the disk. However, the overhead 

of the large size of the adaptive table may make the algorithm impractical. 

An adaptive prefetch design based on the run-time caching statistics of files was 

proposed [SL090]. Cache hit histories that are produced by prefetching are used as 

a measure of the file access sequentialities and are used to determine the dynamic 

prefetching length. More disk blocks are prefetched for transition that has a tendency 
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to produce additional cache hits. Prefetch lengths are reduced for transition that 

generates poor cache hit histories. This method can improve the cache utilization 

and prefetch efficiency. However, to implement this function, a prefetch id is needed 

to attach each data block to represent the prefetch type, demand or prefetch, of the 

block. This may involves design overheads for maintaining the prefetch id and screening 

various cache hits. _ 

2.2 Cache Partitioning 

Prefetching is a very useful technique because it can reduce the disk access time. On 

the other hand, it has a tradeoff that the prefetched data flush out the original data, i.e. 

the previously captured access pattern. Besides, some prefetched data may be useless 

but they still flush out the data, in the cache. For instance, after a huge sequential access 

like playing an animation, whole cache wilt be occupied by the prefetched data of the 

animation and the prefetched data are usually useless afterward. Then the cache will 

be like in a cold start situation. To eliminate the problem of previously captured access 

pattern being flushed out, cache partitioning technique has been proposed. The basic 

idea of cache partitioning is that the prefetched data should be placed in a separated 

buffer so that they cannot affect the previously captured access pattern. 

2.2.1 Hardware Assisted Mechanism 

CPU cache also has this kind of prefetch problem when there is a loop accessing a 

large array. To eliminate this problem in CPU cache in hardware and to preserve 

the advantage of prefetching, a small fully-associative cache [Jou90], was presented to 

improve the CPU cache performance. There are three methods to fill the small cache: 

miss caching, victim caching and stream buffers. For miss caching, the data store in 

both the original cache and the small cache on cache miss. If data are replaced in the 

original cache but can find in the small cache, it can still provide a faster response to 

the requests. For victim caching, it stores the data which are flushed out from the 
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original cache. Simulation shows that the small cache needs only 1 to 5 entries to 

effectively remove conflict misses. The stream buffer stores the prefetched data on a 

cache miss. It is operated in a, FIFO way. Simulation shows that the stream buffer can 

reduce 72% of instruction cache misses and 25% of data, cache misses. 

Branch target cache/buffer is another product of CPU cache partitioning. A branch 

target cache/buffer can reduce the performance penalty of branches in pipelined pro- _ 

cessors by predicting the path of the branch and caching information used by the 

branch. Two issues are needed to be solved: a branch resolution scheme to de-

cide the direction and target of a branch early in the pipeline, thus allowing tar-

get instruction fetch to start, and mechanisms to minimize the impact of unpre-

dictable branches. Many efforts have been paid to study the branch target cache 

;DA95, CG94, Gon94, PS93, PSR92, BF91 . 

Branch target cache/buffer has been widely used in CPU cache design. For in-
I 

stance, Intel Pentium and Am29000 CPU have already incorporated this technique for 

instruction reference only. Branch target cache is used to store the first block of the 

non-sequential reference. Therefore, for each branch, the next instruction is probably 

in the branch target cache. The execution time is then reduced. This technique has 

been really incorporated in the CPU cache design but it has rarely been considered to 

be used in disk cache design. 

2.2.2 Software Assisted Mechanism 

Most caches are controlled by hardware technology. However, hardware has very little, 

or even no, information about a running process. This may lead to inefficiently uti-

lize the cache. If more information is required, expensive and complicated hardware 

is needed. Therefore, software-assisted mechanism becomes another aspect in cache 

design. Since software has more information about the program execution, it is very 

suitable to act as a guide to control the cache. 

A small prefetch buffer to support the software-assisted prefetching was proposed in 

CPU cache [KL91, CMCH91]. Simulation shows that this approach greatly improves 
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the cache performance. Therefore, placing the data in a small buffer does not affect 

the effectiveness of prefetching. Using a small buffer to store the prefetched data is 

commonly used in CPU cache. However, it has rarely been considered to be used in 

disk cache. 

For currently used disk caches, they generally use an unified cache approach. How-

ever, analog to the concept of software-assisted mechanism in CPU cache, disk cache _ 

can also use the operating system to provide more information for cache control. The 

most typical information is the file access statistics. Many cache partitioning algo-

rithms have been proposed according to the file usage and they usually give satisfactory 

results. 

An adaptive algorithm was proposed to partition a fully associative disk cache that 

were shared by several identifiable processes [TSW92]. The partition algorithm alters 

the cache size dynamically in response to changes in the access pattern — the miss 

rate of each process. The partitioning model is evaluated on a trace of 1.6 million disk 

I /O accesses directed to 13 physical disks sharing one cache and its associated cache 

controller. The partitioned cache performs slightly better than the unified cache by 1% 

to 2% increase in hit ratio. A queueing network model is set up and shows that such 

the 1% to 2% increase in hit ratio can provide a significant decrease in disk response 

time in a system with a heavy throughput of I /O requests. 

An attribute cache is another kind of cache partitioning [RF93, Ric94]. The at-

tribute cache uses the workload characteristics (the file access pattern) to determine 

the appropriate cache configuration for a given cache size. It captures the statisti-

cally distinct behavior of the workload. The attribute cache is divided into various 

parts that is efficiently tailored to different types of files such as inodes, directories, 

executable and data. The trace driven simulation shows that Inodes and Directories 

occupy 80% of all file requests. They are small and have a highly temporal access 

pattern. A significant amount of space should be allocated to capture these requests. 

This portion of the cache should have small blocks to effectively capture the temporal 
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nature. Small executables and datafiles have temporal access patterns but large exe-

cutables and datafiles have sequential access patterns. A temporal subcache which has 

small block size is assigned to small executables and datafiles. A sequential subcache 

which has large block size is assigned to large files. The attribute cache can reduce 

the miss ratio by 25%-60% depending on the cache size when comparing with a UNIX 

style cache. _ 

2.3 Replacement Policy 

Replacement policy is another important issue in cache design. The most commonly 

used policy is least recently used (LRU) algorithm. LRU algorithm replaces the entry 

that has not been used in the longest time. LRU algorithm is simple and easy to 

implement in general. Although it is a commonly used policy, it may not be suitable in 

all situations. For example, LRU treats fetched data and prefetched data as the same 

weight so that many useless prefetched data flush out useful data. Therefore, variations 

of LRU algorithm are proposed to tackle this problem. 

LRU algorithm has a problem that the cache can be occupied by lines that are ac-

cessed only once, flushing out lines that have a higher probability of being reused. Seg-

mented Least Recently Used (SLRU) is proposed to eliminate this problem [KLW94 . 

SLRU cache is divided into two segments: a probationary segment and a protect seg-

ment. Probationary segment holds the sectors that cause cache misses. When a sector 

in the probationary segment is referenced again, it will be transferred to the protect 

segment. Therefore, the protect segment holds only the sectors that were referenced 

twice or more times. This can prevent those sectors, that were referenced once, flush 

out all the data in the cache. The LRU line of protect segment will transfer to the 

most resently used (MRU) space of the probationary segment if the protect segment 

needs space to store new data. The structure of SLRU cache is shown in Figure 2.1 

from [KLW94 . 
« • . 
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Figure 2.1: Logical flow of SLRU cache lines 

2.4 Caching Write Operation 

Write operation is different from read opemtion because improper t reatment of write 

may cause inconsistency and loss of data. However, caching write operations can let 

the process to run more smoothly because it does not need to wait the I /O to complete. 

There are many kinds of write operations such as write back and write through. Write 

back means that the written data, are placed in the cache and will be written to the 

disk later. Write through means that the written data are immediately written to disk. 

Write back usually gives a better performance than write through. However, write 

back cache may cause data loss in system failure. Therefore, protection mechanism 

such as using SRAM (Static RAM) instead of DRAM to store the data was proposed 

to prevent da ta loss. 

Write-only disk cache was proposed to optimize the write operation [S090, OS92 . 

A single surface write-only disk cache model [S090] was developed to approximate a 

system with small amounts of disk cache or a system of parallel transfer disks where all 

read/wri te heads can simultaneously transfer data. A multi-surface model [OS92] was 

developed to study large disk cache systems and investigate the interference between 
I 

conflicting sectors on different disk surfaces during disk transfers. Write-only disk cache 
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has an advantage that writes can be performed at little or no cost by piggybacking them 

on reads. 

Periodic update write policy [CS92] is widely used in existing computer systems. It 

writes dirty cache blocks to disk on a periodic basis. The periodic update concept arises 

from a need to balance the generation of I /O traffic with the potential loss of data due 

to system failure. The response time for read operations under the periodic update _ 

policy was compared with that using write through policy in [CS92]. It concluded that 

the performance of periodic update write policy is better only if the cache system has 

achieved a sufficiently high write hit ratio. 

Redundant disk arrays are gaining increased attention as a feasible I /O organization 

because it is cheap and reliable. In these I /O systems, reads and writes have different 

performance impacts to the systems [Recl92]. When any data are written to the disk 

system, the corresponding parity information needs to be updated on the disks. To 
I 

update the parity information, we need to read the old version of the data, XOR this 

with the old parity information on the disk and the new data, and store the new parity 

onto the disk. So, one write request results in four I /O operations. Hence the writes to 

the system cause significant overload on the system. An deeply analysis of read/write 

characteristics of the I /O workloads was presented in [Red92 . 

2.5 Others 

Hit ratio is a commonly used indicator to the performance of a disk cache but it may be 

contrasted against the cache overhead. Cache overhead may reduce the performance 

gain, or may even lead to a poor performance. Therefore, using cache overhead to 

calculate the lower bound of hit ratio was proposed [Hos92]. Besides, analyzing an I /O 

tracing could also calculate the average hit ratio [Hos92 . 

The performance of disk cache was studied in fileserver based distributed computer 

systems [ME90]. Cache in distributed systems involves additional design decisions due 
I , 
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to the presence of both workstation and fileserver caches. Disk cache replacement poli-

cies for network fileservers were also studied [WEB93] and showed that the common 

least recently used (LRU) policy, which is known to work well on standalone disked 

workstations and at client workstations in distributed systems, is inappropriate at a 

fileserver. Simple frequency based approaches, e.g. least frequently used (LFU) algo-

rithm, do better. If the frequency based policy takes file type into account, it can offer _ 

additional improvements. 

2.6 Summary 

Prefetching is an attractive method to improve the cache performance. Many kinds 

of prefetching, such as prefetch on miss, prefetch on hit, always prefetch and adap-

tive prefetch by access pattern, have been proposed. However, prefetching may bring 

some undesirable data into the cache and flush out useful data. In CPU cache, cache 

partitioning technique has been used to solve this problem. In disk cache, an unified 

cache approach is generally used and there is very little consideration in cache parti-

tioning. Besides, cache partitioning can be used to capture different access pattern. 

For instance, we can partition the disk cache according to different types of file, such 

as directory, data, executable,..., etc. 

Cache replacement policy mainly uses Least Recently Used (LRU) algorithm. Other 

algorithms, such as Segmented Least Recently Used (SLRU) and frequency variation 

of LRU, have been proposed to increase the efficiency. Those algorithms are mainly 

based on the ordinary LRU algorithm. 

Write policies of disk cache have been examined. Some common ones are periodic 

write, write back and write through. Redundant disk arrays have been investigated 

to provide a more reliable and cheap storage environment. Moreover, disk cache has 

also been studied in different platforms, such as distributed system, fileserver and 

workstation. 
» » 

Old techniques, such as unified cache approach and prefetch on miss mechanism, 
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have been applied to the currently used disk caches. Some disk caches even do not have 

any prefetching mechanisms but use the implicit prefetching property of large block 

to act as a substitute. In CPU cache, many new techniques have been developed to 

improve the cache performance on those old techniques. 

In this project, always prefetch is chosen as the basis of the new models. Cache 

partitioning technique, similar to that in CPU cache, will be used to overcome the . 

problem of prefetching. Prefetched data have less chance to flush out useful stored 

data in cache now. This aspect has seldom been considered in previous studies. Since 

algorithms to control the partitioned disk cache have rarely been discussed, new policies 

will also be designed to control the partitioned disk cache. 

I 



Chapter 3 

Methodology and Models 

3.1 Performance Measurement 

3.1.1 Partial Hit 

Hit/Miss model is commonly used to justify the effectiveness of a cache design. A 

request to cache is a hit if the referenced sectors are in cache. Otherwise, it is a miss. 

However, due to cache prefetching, the definition of miss becomes ambiguous. There 

are situations where the demanded sectors are being prefetched from the disk to the 

cache but the transfer is not finished yet. We cannot count this situation as cache hit 

because it needs to pay time penalty. Also, we cannot count this as cache miss because 

the time penalty needed to pay is less than the cache miss penalty. Therefore, the 

concept of partial hit is introduced to describe this kind of situation. 

Partial hit means that the requested sectors are being prefetched from the disk, i.e. 

the sectors are coming on the way. The occurrence of partial hit is due to the slow 

data bus speed and the limited bandwidth. Since the penalty of a partial hit is not 

constant, we need a time model to accurately measure the disk performance. 

3.1.2 Time Model 

Accurate modeling of the disk access is a key point to analyze result in simulation. 

Using time model can eliminate the fuzziness of the concept of partial hit and can 
«V » 

provide a clear and accurate way to show the performance. 

17 
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Assumption: 

When a request of multiple sectors is issued, the process can use the transferred sec-

tors while the system can transfer the next sectors asynchronously. This assumes the 

overlapping between program execution and data fetching. 

Let 

the time to consume one sector be Jw; the time between sending out a request and 

transferring the first sector from the disk be Cl; the transfer time per sector be C2. " 

For one request of N consecutive sectors, the transfer time of these all sectors from 

disk to memory is CI + C2 * N. 

The total time to transfer and use up all sectors in one request without any disk 

cache is 

Total Time per Request介。disk cache = C\ + C'2 * N Tu* N 

where the Time is the total access time inaluding transferring and consuming all the 

requested sectors. 

However, when there is disk cache, the time can potentially be much smaller. Con-

sider the case when there is cache hit, Cl and C2 can be eliminated. Since the time to 

transfer data from disk cache to memory is so small that can be neglected, we have 

Total Time per Request cache hit = Tu ^ N 

Using a time counter, we can accurately get the time to indicate the situation of partial 

hit. The total time of a partial hit is between Tu * N and C l + C2 * yV + Tix* N. 

For convenience, we set Tu to 1 and all values of Cl and C2 are normalized with the 

actual consumption time Tu. This normalization is only used to simplify the simulation 

and without any loss of generality. In our simulation, we use the disk access time to 

measure the performance of different models. 

» 
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3.2 Terminology 

3.2.1 Transfer Block 

A transfer block is the basic unit of data transfer between disk and disk cache. It can 

contain multiple sectors. For example, a disk is designed to transfer 4-sector block at 

one time. If there is a request just for one sector, the whole 4-sector transfer block 

will be transferred. If there is a request of 2 sectors and these 2 sectors map to one ~ 

transfer block, only 1 transfer block (4 sectors) will be transferred. However, if these 

2 sectors map to two continuous transfer blocks, the two transfer blocks (8 sectors) all 

need to be transferred. For disk I /O, a request may contain many transfer blocks. In 

the following discussion, we generally set the (transfer) block size to 1 for convenience. 

All the following discussions also apply to block size larger than 1 sector. We only 

need to map the sectors to the corresponding transfer blocks. Then adjust the t ime to 

transfer one block to be C2*N, instead of tl̂ ie transfer t ime C2 of 1 sector, where N is 

number of sectors per transfer block. 

3.2.2 Multiple-sector Request 

, 1 

2 
A disk request can demand 
multiple sectors at one time. 

This exhibits a highly sequential 3 
property in one request. 

4 

‘ 5 

Figure 3.1: Multiple-sector Request 

Unlike CPU memory request, a disk request can request more than one da tum/sec tor 

as shown in Figure 3.1. A multiple-sector request exhibits highly sequential property 

in just one request. We can make use of this property to improve the performance 
> • 

of disk cache. If the program execution can overlap the fetching of requested sectors, 
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some sectors do not need to be stored in the cache now. Those un-stored sectors can 

be fetched by the cache system during program execution. 

Due to the slow data bus, large number of beginning sectors must be stored in the 

cache first. While the process uses those cached sectors, the remaining sectors can be 

prefetched. For one multiple-sector request, its size is N,.. Some beginning sectors, 

say its size is N^, need to be stored in the cache and the rest can be fetched from 

disk directly during program execution. In practical, the number of sectors, N^, that “ 

need to be stored first is generally larger than number of requested sectors, N � i n one 

request, i.e. N^ < N^. So, the idea of un-storing some sectors cannot be applied to this 

case. This idea needs a larger block of continuous sectors to operate.-

3.2.3 Dynamic Block, Heading Sectors and Content Sectors 

— 1 

A request of sector 1 
to sector 4 3 

4 The 3 successive requests 
I 二 一 can be combined to form a 

A request of sector 5 T 1 — … large dynamic block. The 
dynamic block exhibits 

higher sequential property 
6 than multiple-sector request 

7 

A request of sector 6 ~ 
to sector 10 ^ 

9 

10 

Figure 3.2: Formation of Dynamic Block 

When we analyze the disk traces to see whether there is relationship between 2 

successive requests, we have found that they might be sequential. Therefore, we define 

all blocks between 2 non-sequential requests as a Dynamic Basic Block, or simply 

Dynamic Block as shown in Figure 3.2. Detail discussion on Dynamic block and its 

property on the traced data can be found in Section 4.5. For instance, many successive 

1-sector requests can be combined to form a large dynamic block. From Table 4.5 in 
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Chapter 4, the percentages of 1-sector requests which cannot be combined as dynamic 

block are 1.62% for Access trace, 19.06% for Dbase trace, 13.07% for Excel trace and 

37.53% for Word trace. The small percentages illustrate that many successive requests 

can be combined to form a large dynamic block. 

We can utilize this highly sequential property to improve the performance of a cache 

design. Since the next request is highly predictable, it might not need to be stored in 

cache if the prefetching is fast enough to get it. However, due to the slow data bus, _ 

the cache system still needs to store some sectors in order to provide enough time to 

prefetch other sectors in the same dynamic block. Therefore, the importance of each 

sector in a. dynamic block is different according to this point of view. If the cache stores 

enough sectors so that the cache system has enough time to get the next sectors, the 

next sector does not need to be stored in cache. 

This is similar to the case of a multiple-sector request. We can reduce disk access 

time by overlapping the program execution and the fetching of sectors from disk. A 
I 

block can be roughly divided into two parts: heading sectors and content sectors as 

shown in Figure 3.3. Heading sectors are the first few sectors that are stored in cache. 

When a process is using the heading sectors, some content sectors will be fetched from 

disk simultaneously. The size of heading sectors depends on the chosen algorithm. This 

is an important idea of the newly proposed algorithms and it will be discussed more 

detail in Section 3.3. 

The difference between a dynamic block and a multiple-sector request is that the 

size of a dynamic block, N^, can be much larger than that of a multiple-sector request, 

Nr. Therefore, we can treat a dynamic block to be a very large multiple-sector request. 

For the case of multiple-sector request, N’’ is less than the number of heading sectors Ns 

that need to be stored in cache, and the idea of overlapping data, fetching and program 

execution may not apply. However, for dynamic block, N^ is larger than Ns because of 

the large size of a dynamic block. The idea of overlapping data fetching and program 

execution can apply more efficiently. 
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.…丨...I •:、丨~~- to be stored in cache so that 

A dynamic block of 丨 there is enough t ime to get 
sector 1 to sector 10. It ^ ’ ， the remaining sectors during 

may be combined by — : : . . program execution, 
many requests. e 

7 ； ‘ 

- — — — — — • • Content Sectors that may 
8 not need to be stored in the _ 

cache because there is 
enough t ime to get them 

10 while the program uses the 
heading sectors 

Figure 3.3: Heading Sectors and Content Sectors 

3.2.4 Heading Reuse and Non-heading Reuse 

Before we discuss our new models of disk cache, we have to introduce a new concept 

about the reuse of data. The reuse pat tern •；̂f a dynamic block can be divided into two 

types: heading reuse and non-heading reuse as shown in Figure 3.4. 

Heading reuse of a dynamic block is defined as that the first heading block of the 

current dynamic block is equal to the first heading block of some previously formed 

dynamic block in the cache. The 'previous' dynamic block may not be exactly the 

same as the current one. In Figure 3.4, there were some requests forming a dynamic 

block of sector 1 to sector 5. Now there are some requests forming a dynamic block of 

sector 1 to sector 5 again, or sector 1 to sector 4 , . . . , etc. All these requests are said 

to be heading reuse. 

Non-heading reuse is defined as that the first heading block of the current dynamic 

block is not equal to the first heading block of all previously formed dynamic blocks in 

the cache. In Figure 3.4, there were some requests forming a dynamic block of sector 1 

to sector 5. Now there are some requests forming a dynamic block of sector 3 to sector 

5, or sector 2 to sector 3 , . . . , etc. Then these requests are said to be non-heading reuse. 

For traditional algorithms of disk cache, they do not consider whether the request 
» • 
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Figure 3.4: Two Different Kinds of Reuse 

is heading reuse. However, the basis of our proposed algorithms is that the fetching of 

sectors can be overlapped the program execution. It divides requests /dynamic blocks 

into heading part and content part . The heading part will be stored in the cache in 

order to provide enough t ime to fetch the rest. Depending on the algorithms, the 

content part may not be stored in the cache. As a, result of a non-heading request 

occurs, the requested sectors may not be in cache and our algorithms need to pay t ime 

penalty to get them. The frequency of heading reuse and non-heading reuse will affect 

the performance of the proposed algorithms. 

3.3 New Models 

The traced disk access pa t tern shows a strong sequential property. Hence prefetching 

should be useful to reduce the average disk access time. In fact, we have chosen 

always prefetch technique to incorporate into our proposed models. Besides, by proper 

overlapping the program execution with the prefetching of data , we expect that the 

cache performance can be improved. To prevent flushing out useful data by prefetching, 
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we adopt the technique of cache partitioning. It divides the cache into two parts: one 

part is similar to an ordinary cache and another part is a small buffer. The small 

buffer is used to store the prefetched data in order to reduce the cache pollution clue to 

inaccurate prefetching. The following models are based on the CPU cache partitioning 

technique with newly designed algorithms to control the flow of data into these two 

parts of the cache. 

Model names of the newly designed models are given in here for convenience and _ 

for consistency to the simulation. Model 4 is set to unified cache with always prefetch. 

Model 5 is set to the basic partitioned cache model as discussed in Section 3.3.2. Model 

6 is set to the partitioned cache with ASST applying to each request as discussed in 

Section 3.3.3. Model 7 is set to the partitioned cache with ASST applying to each 

dynamic block as discussed in Section 3.3.4. Model 8 is set to the partitioned cache 

with SEHT as discussed in Section 3.3.5. 

3.3.1 Unified Cache with Always Prefetch 

This is not a newly designed model. However, it is different from currently used 

disk caches because it uses always prefetch to take the following blocks/sectors. For 

traditional disk caches, they only use prefetch on miss or large block size to take the 

following blocks/sectors. From the analysis of the traced data, we discover that there 

is highly sequential property in the I /O requests as discussed in Section 4.5. Therefore, 

we expect that the performance of always prefetch must be better than that of prefetch 

on miss, and this has been verified by our simulation. 

This model triggers the prefetching mechanism by each block reference. This 

model always prefetches data, from disk after or during each block reference. This 

is a very aggressive method. If the next requested blocks/sectors matches the prefetch-

ing blocks/sectors, always prefetch can further reduce the disk access time. On the 

other hand, always prefetch has the higher chance to increase cache pollution. This 

model is named as Model 4 in the simulation. 
» » 
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Figure 3.5: Flow C h a r t of Model 4 

3.3.2 Partitioned Cache: Branch Target Cache and Prefetch Buffer 

In the analysis of the disk traces, we have observed that there is a highly sequential 

property in the disk access pat tern. Detail discussion can be found in Section 4.5. 

In order to overlap the program execution with the prefetching of data, it might be 

possible that the cache system can just store the heading blocks/sectors of a dynamic 

block and let the prefetching system get the remaining ones. The prefetched ones will 

be stored in a small buffer and will be discarded after they are used. This basic model 

partit ions the cache into a Branch Target Cache (BTC) and a Prefetch Buffer (PB). 

BTC is a cache with its size like ordinary cache while PB is a small buffer. PB is 

exactly like the fetch buffer proposed in CPU cache [Jou90, KL91, CMCH91]. And our 
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models are built on this partitioned cache architecture. Figure 3.6 shows the BTC and 

PB. 

To Main Memory To Main Memory 
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• 
I ： 

‘ ^ J 
i ！ 
, I 

1 1 
T » 

To Harddisk To Harddisk 

Figure 3.6: Partitioned Cache: BTC + PB 

Branch target cache stores only those sectors which cause cache misses. Due to 

the incorporation of always prefetch technique, only the first block/sector of a dynamic 

block causes cache miss. Others will just cause partial hits. So the branch target cache 

stores only the first block of each dynamic block. The main purpose of BTC is that 

the cache tries to contain the requested data at each branch reference. 

Prefetch buffer is a small buffer. It is used to store the prefetched data. Because 

of its small size, the data, inside it will be replaced very quickly. Since data fetching 

can overlap the program execution, storing prefetched sectors in PB can eliminate the 

problem that the prefetched data flush out useful da ta in the ordinary cache. The 

replacement policy of prefetch buffer is LRU algorithm. 

The operation of this basic model is as shown in Figure 3.7. When there is cache hit, 

the demanded blocks will return to the process. The cache system starts to prefetching 

the following sectors. All these sectors will be stored in PB. When there is partial hit, 

all the prefetched sectors are also stored in PB. When there is cache miss, the first 

block of the demanded blocks is checked whether it is the start ing of a dynamic block. 

If it is the starting of a dynamic block, it will be stored in BTC. Otherwise, it will be 
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Figure 3.7: Flow Chart of Model 5 

stored in the PB. The cache system will then prefetch the following blocks which will 

be stored in PB. 

The large BTC stores only the first block of each non-sequential reference and all 

prefetched data are captured by the PB. This combination can eliminate the problem of 

flushing out useful da ta for inaccurate prefetching, and may provide good performance 

at each branch reference. Since the B T C stores more first blocks than the ordinary 

unified cache, the effective cache size of the proposed model is greatly enlarged when 

comparing with the case of unified cache. 

On the other hand, owing to the slow da ta bus and the limited bandwidth, the disk 

cache system actually does not have enough t ime to prefetch the sequential referenced 
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sectors. Even though the next sector has very high chance to be referenced, the first 

block of each non-sequential reference in BTC cannot provide enough time for the 

prefetching to finish. This is why partial hit occurs so often. The prefetched data 

can only be on the way and the cache system still pays a time penalty to prefetch 

requested data. Besides, if the branch target cache just stores the first block of each 

non-sequential reference, situation of iioii-heading reuse might occur. Branches might 

j u m p directly to the content block of previous dynamic blocks. These branches cannot . 

be handled by BTC because the branched data are not stored in the BTC during 

previous request. 

Some requests may begin at this 
fir:;t soctor sector. Then for large first block, it 

- - - may have enough time to fetch 
— following blocks. 

• 

A first block that — • 
stored in BTC 一 • 。 , 

Some requests may reference the 
- • nearly last sector. Then, no matter 

• # - - how large the first block is, there is 
— —last sector — always not enough time to fetch 

I following blocks. 

Figure 3.8: Problem of Storing First Block in BTC 

The problem of not enough t ime for prefetching cannot be solved with large block 

size. This is because a reference may j u m p to any part of the block, e.g. the near end of 

the block. As a result, only small portion of the first block can be used to provide t ime 

for prefetching in this case. The situation is shown in Figure 3.8. Besides, large block 

size may lead to fewer heading blocks to be stored in cache, and it makes a problem of 

inefficiently utilizing the cache. 

To solve this problem of insufficient t ime for prefetching, BTC should not only store 

the first block, but also some of the following blocks in order to ensure enough time 

for da ta prefetching. To make the cache partitioning design suitable for disk cache to 

use, and to eliminate the problems of traditional BTC and PB, we have invented new 

algorithms to control the flow of data/sectors into BTC and PB. • 
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This basic model is named as Model 5 in the simulation. It acts as a, control exper-

iment to our newly proposed models because our models are built on it. Model 1 to 

Model 4 are the models of unified cache for performance comparison in the simulation 

and will be discussed in Section 4.3. Model 6 to Model 8 are the newly proposed models 

and will be discussed in the following sections. 

3.3.3 B T C + PB with Alternative Storing Sector Technique 

The cache system has enough 
time to get these sectors, so they 

are placed in PB. 

, \ \ . 
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Figure 3.9: Alternative Storing Sector Technique (ASST), Cl=3, C2=2 

The problem of the basic model is that the t ime penalty of getting the next sector 

is large due to the slow data bus and the limited bandwidth. Therefore, a new method 

is introduced to arrange the sectors going into B T C or PB. This new method, called 

the Alternative Storing Sector Technique (ASST), is introduced to rearrange sectors 

going into BTC or PB. Since the ASST applies to a block of sequential sectors, it can 

apply either to multiple-sector requests, or dynamic blocks. In this section, the ASST 

will be applied to multiple-sector requests, i.e. per request block basis. 

ASST not only stores the first heading block/sector that causes the cache miss into 

the BTC, but also stores some content blocks/sectors of each dynamic block in BTC 
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in order to allow the cache system to fetch the remaining sectors without paying time 

penalty. In ASST, whether a sector needs to be stored in BTC is determined by the 

fixed parameters - start-up time Cl and transfer time C2. The sectors that do not 

need to be stored in BTC is termed as 'un-stored\ but they will still be stored in PB. 

To illustrate the operation of the ASST, let us consider a case shown in Figure 3.9. 

Cl is now equal to 3. C2 is equal to 2 and Tu are equal to 1. Since Tu is equal to 1, the 

cache system must store 3 (value of Cl) sectors in the cache in order to compensate for _ 

Cl . However, after the first three sectors are used, the cache system has just started 

to transfer the forth sector. So, the cache system needs to store extra 2 sectors (value 

of C2) in order to compensate the time of transferring the first un-stored (sixth) sector. 

Therefore, the size of 'starting head'of a block of request is equal to 5 (C1+C2) sectors. 

The five sectors are needed to be stored in BTC so that it can compensate the time 

needed to transfer the first un-stored (sixth) sector. 

After the first un-stored (sixth) sector arrives, the process starts to use it. Note 
I ' 

that the sixth sector is stored in PB because there is enough time to get it in each 

reuse. If the seventh sector has already been stored in BTC, the cache system can also 

pass it to the process. During the processing of the sixth and seventh sectors, it has 

enough time to get the eighth sector. Therefore, the eighth sector does not need to be 

stored in BTC, i.e. the eighth sector is the second un-stored sector. Similarly, if the 

ninth has also already been stored in BTC, during the time of the processing the eighth 

and ninth sectors, the cache system has enough time to get the tenth sector. Therefore, 

following the same argument, the un-stored sectors are 6th, 8th, 10th, 12th,.. .，and 

so on. 

Therefore, which sectors needed to be stored in BTC can be determined from the 

hardware parameters, i.e. Cl and C2. The size of starting head is [C1+C2] where 

C1+C2] is the ceiling of C1+C2. Then which of the next sectors needed to be stored 

in BTC depends on the value of C2—Tu, and follows the rule that the cache system 

should store enough previous sectors in order to prefetch the next un-stored sector. In 

processing of the prefetched sector will also contribute the time (i.e. the use-up time) 
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to get the next un-stored sector. Therefore, the operation of ASST can be summarized 

by the following procedure. Let there be a time counter TC; [x] be the ceiling of x. 

Procedure ASST 
BEGIN 

reset the counter to zero 
storing the starting head, [C1+C2] sectors, in BTC 
TC 二 [C1+C2] - (C1+C2) 
DO until no more sectors in the block 

IF TC > C2 “ 
TC = TC - C2 + Tu 
current sector does not need to be stored in BTC 

ELSE 
TC = TC + Tu 
current sector has to be stored in BTC 

ENDIF 
ENDDO 

END 

When TC > C2, there is enough accumulated time to get the next sectors and so 

the next sector is not needed to be stored in« BTC. The equation TC — TC — C2 + Tu 

means that the cache system has to pay t ime to get the un-stored sectors, i.e. TC — C2. 

However, after getting this sector, it will also contribute a use-up time Tu to get the 

following sectors. Therefore, the total time changes from TC to TC — C2-\- Tu. When 

TC < C2, the sector must be stored in BTC in order to accumulate time to fetch 

the next one. The stored sector will contribute a use-up time Tu. So, the total time 

changes from TC to TC + Tu. 

To incorporate the ASST algorithm into hardware, a time counter is needed to 

count the time as shown in the ASST procedure. For each arriving sector, we have to 

update the counter and check whether the sector needs to be stored in BTC. Then for 

each new request, the counter is reset to zero in this model. The operations are simple, 

so the time of calculations can be ignored when comparing with the slow disk access 

time. As an example of applying the ASST algorithms, Table 3.1 shows un-stored 

sectors for C2=2 and C2=1.5 when C l = 3 . 

ASST can fully utilize the idle data bus. It uses always prefetch as its basis. BTC 
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Un-stored sectors 
C2=2 6th, 8th, 10th, 12th, 14th, . . . 

C2=1.5 6th, 7th, 10th, 11th, 14th, 15th , . . . 

Table 3.1: The Un-stored Sectors for C2=2 and C2=L5 

stores some heading and content sectors, the prefetching system can have enough time 

to get the rest before they are needed. Therefore, this 'un-stored' ones do not need to _ 

be stored in the BTC. They are only stored in the prefetch buffer. When the process 

requests them, a hit in the prefetch buffer will occur. Cache pollution for BTC due 

to prefetching will be greatly reduced because the prefetched data will go to the PB 

instead. Useful blocks of data, can remain in the BTC. Besides, BTC stores blocks 

from more dynamic blocks now and the problem of not enough t ime to do prefetching 

is minimized. 

The operation of this model is shown in Figure 3.10. When there is cache hit, the 
I 

demanded blocks will be returned to the process. The cache system starts to prefetch 

the following sectors. All these sectors will be stored in BTC or PB according to 

applying ASST to each request separately. When there is cache miss, the first block is 

fetched from disk and all the following sectors are prefetched from disk due to always 

prefetch. All the fetched and prefetched sectors are stored in BTC or PB according to 

applying ASST to each request. When there is partial hit, the sectors are also stored 

in BTC or PB according to applying ASST to each request. 

In this model, the Alternative Storing Sector Technique applies to each request 

separately. Since CI is usually very large, the starting head calculated from ASST 
contains many sectors. Consequently, requests of a small number of sectors are com-

pletely stored in the BTC and the cache system cannot gain the advantage of PB. In 

applying ASST, the size of starting head is fixed and which content sectors needed to 

be stored in BTC are also predefined. If the block which ASST operates is large, more 

sectors will not need to be stored in BTC, and the cache space to store a request is 

reduced. In other words, the cache size is effectively enlarged. However, if the' request 
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block is not large, ASST cannot show its effectiveness. In this model, ASST is applied 

on the request block which may not fully utilize the power of ASST as shown in Fig-

ure 3.11. We will discuss this problem in detail in the next Section 3.3.4. This model 

is named as Model 6 in the simulation. 
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Figure 3.10: Flow Chart of Model 6 and Model 7 
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3.3.4 B T C + PB with ASST Applying to Dynamic Block 
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Figure 3.11: Applying ASST to Multiple-sector Request and Dynamic Block (Cl=5, C2=2) 

There are many small requests in the traced disk I /O. The most frequent one is the 

1-sector request. Therefore, applying ASST tq every request causes all small requests to 

be stored in the BTC completely. In the previous Section 3.2.3, we have mentioned that 

there are high interrelationship between successive requests. Many successive requests, 

including 1-sector requests, can be combined to form a. larger block of sequential sectors, 

i.e. dynamic block. Therefore, we propose to apply ASST on a dynamic block basis 

because the block that ASST can apply on will be large. Figure 3.11 shows the situation 

of ASST applying to multiple-sector request and dynamic block for C l = 5 and C2=2. 

This model is very similar to the previous model except that the ASST applies to 

each dynamic block. So, the flowchart of this model is the same as the previous model 

as shown in Figure 3.10. The operation is also very similar to the previous case. The 

procedure of ASST is nearly the same except tha t the t ime counter, TC, will only be 

reset at each start ing of a dynamic block, i.e. at each non-sequential reference. This 

is different from the case of previous model that the t ime counter TC will be reset 

for each request. This difference can improve the cache performance greatly. The 

comparison of performance of the previous model, Model 6, and this model can be 

found in Section 5.7.2. This model is named as Model 7 in the simulation. 
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3.3.5 B T C + PB with Storing Enough Head Technique 

In the simulation, we have observed that the performance of the basic model, Model 

5, is quite good in the case of very small cache size. This better performance of 

Model 5 reveals that heading sectors are more important than the content sectors. 

This is because Cl is generally much larger than C2. Missing the first heading block 

causes C1+C2 time penalty while missing a content block causes C2—Tu time penalt,y. 

Therefore, there is a simple idea that if the cache system just stores some heading 

sectors of each request in the BTC, it may provide a good performance. No any 

content sectors of a request are stored in the BTC, i.e. all content sectors of a request 

are stored in PB. 

If the cache system stores only some heading sectors of each request, it will pro-

duce a t ime penalty in each reuse because the BTC has not stored enough sectors to 

provide enough t ime to prefetch the remaining sectors. On the other hand, BTC can 

store heading sectors from more requests, i.e.. the effective cache size is enlarged more. 

Therefore, there is a competition between storing heading sectors from more requests 

and the t ime penalty paid for getting remaining sectors. The situation is shown in 

Figure 3.12. 
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Figure 3.12: Storing Some Heading Sectors for Each Request 
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Since the idea is applied to each request, the size of starting head [Cl+C‘2"| for 

ASST is too large and nearly all requests will be completely stored in the BTC. This 

is because the size of each request is generally less than f C l + C 2 ] sectors. Therefore, 

the size of the starting head should be reduced. The number of starting sectors of each 

request that will be stored in BTC is redefined: 

… r , , , Start up time Ci 
bize oj starting head = — sectors 

Transfer time C2 ~ 

This equation is a compromise between minimizing the size of starting head and the 

time penalty for each reuse. The equation defines that the total transfer t ime of the 

stored starting head (N sectors) when there is no cache, i.e. C2*N, is equal to the start-

up t ime CI. By this equation, the size of the starting head is reduced and starting 

heads from more requests can be stored in BTC. 
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, 夕 ? . 

Z / / 
X' / — ^ _ 

1 2 3 4 5 6 7 8 9 10 

• ： _ _ _ _ I l l 

丫 "”"- V 

i 
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Figure 3.13: Problem of Storing Starting Head of Each Request to 1-sector Requests 

However, the above idea has a problem that all 1-sector requests go to BTC as shown 

in Figure 3.13. Since the most frequent request size is 1 sector, the above idea is nearly 

useless. To solve this problem and make the idea useful, we incorporate the method of 

^SST applying to dynamic block in this idea. Note that the basic idea is still to store 

only the start ing head of each request. For instance, there are many successive 1-sector 
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requests and they can be combined to a larger dynamic block. When ASST applies to 

this dynamic block, some 1-sector requests need not be stored in BTC. Therefore, this 

method can reduce the number of 1-sector requests stored in BTC. Applying ASST to 

dynamic block can also reduce the storing of many small size requests. 

A request of 9 sectors Successive 1 -sector requests 
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Just store the 'redefined' Some requests are not stored in BTC when applying 
heading sectors in BTC ASST to the whole dynamic block, i.e. the cache 

system can discard some 1-sector requests. 
All the remaining sectors are 

‘ not be stored in BTC. 1 ： 

All requests combine to form a large dynamic block 

Figure 3.14: Storing Enough Head Technique (SEHT), Cl二 10, C2=2 

Therefore, by combining the above two ideas: storing only the starting head of each 

request and applying ASST to each dynamic block, we can introduce a new algorithm, 

called Storing Enough Heads Technique (SEHT). The two criteria of SEHT are 

1. The sector is a heading sector (the redefined one) of a request. 

2. The sector is needed to be stored according to ASST applying to the current 

dynamic block. 

A sector will be stored in BTC according to SEHT only if the sector satisfies the 

above two criteria simultaneously. Storing Enough Head Technique (SEHT) stores the 

redefined heading sectors of each request, except that those un-stored sectors predicted 

by applying ASST to the current dynamic block. Consider an example of application 
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of SEHT in Figure 3.14. By applying the first criteria to each request, there is a group 

of sectors (Group 1) that should be stored in BTC. Then apply the second criteria to 

the current dynamic block and get another group of sectors (Group 2) that should be 

stored in BTC. Intercepting the two groups, Group 1 and Group 2, we will get the 

sectors that need to be stored in BTC according to the SEHT. That means a sector 

must satisfies the two criteria simultaneously in order to be stored in BTC. All other 

sectors are stored in PB. “ 

The operation of this model is similar to the Model 7 except that the algorithm 

to control the flow of sectors to BTC or PB is different. The flowchart of this model 

is shown in Figure 3.15. To incorporate SEHT into hardware is also simple. Only 

the heading sectors of each request have chance to be stored in BTC and the size of 

heading sectors is fixed. In addition, for each request, apply ASST to the currently 

formed dynamic block and check whether the current sector is needed to be stored. If 

the sector fulfills both requirements, it will be stored in BTC. Otherwise, the sector 

will be stored in PB. 

This method introduces time penalty even for a cache hit because it stores fixed/limited 

amount of heading blocks for each request, neglecting how large the block of a request 

is. Therefore, SEHT can effectively increase more cache space to store more data from 

different branches than that of ASST. On the other hand, its tradeoff is the small time 

penalty for each request. This model is named as Model 8 in the simulation. 

3.4 Impact of Block Size 

In previous discussion, block size is generally set to 1 sector. The new algorithms can 

also suit to the cases of block size larger than 1 sector with simple modification. The 

basic modification is to change the basic unit of transfer to a N-sector block, instead of 

1-sector block. All sectors are mapped to their corresponding transfer block. Besides, 

the transfer time of the basic block changes to C2*N, instead of the original C2 for 1-

sector block. Furthermore, the use-up time of the basic block changes to Tu*N, "instead 
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Figure 3.15: Flow Chart of Model 8 

of the original Tu for 1-sector block. For instance, the size of starting head of SEHT 

is changed as follow: 

n- r . 1 , Start up time Cl 
bize oj starting head = — sectors 

Trans fer time C2 * Block Size 

Following similar argument, the start ing head of ASST should contain [C1/N+C2" 

blocks where N is the block size. However, there is a problem as shown in Figure 3.8 

for the first start ing block when the block size is larger than 1 sector. The requested 

sectors may locate at the end of the first starting block. Therefore, in order to maintain 

enough t ime to prefetch the un-stored blocks, we may need to conservatively define the 
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size of starting head to be [ C l / N + C 2 ] + 1 blocks. If a more accurate timing for the 

ASST is needed, the cache system should store enough number of blocks so that the 

time to use up the requested sectors in those block is equal to, or just greater than, 

'C1+C2*N]. The time [Cl+C2*N] means that the total use-up time of the requested 

sectors in the stored heading blocks should compensate the startup time of the disk 

and the transfer time of the first block. Below is a simple modification, of the ASST 

algorithm to suit the case of block size larger than 1 sector. ~ 

Procedure ASST 
BEGIN 

reset the counter to zero 
storing enough heading blocks to cover [C1+C2*N]. 
TC = the use up time provided by the stored heading block — ["C1+C2*N] 
DO until no more blocks 

IF TC > C2*N 
TC = TC - C2*N + Tu*N 
current block does not need to be stored in BTC 

ELSE , 
TC = TC + Tu*N 
current block has to be stored in BTC 

ENDIF 
ENDDO 

END 

» 



Chapter 4 

Trace Driven Simulation 

4.1 Simulation Environment 

In the simulation, we have traced the disk I /O of four applications under Microsoft 

Windows environment. The applications that we have used to get the traces are Mi-

crosoft Access, Microsoft Excel, Microsoft Word and Dbase for Windows. We have 

used a 486 personal computer with 4M RAM'to obtain the traces. Millions of requests 

have been collected. 

Before discussing the result, we should know the assumptions of the simulation: 

1. By proper overlapping the program execution and the data fetching, when the 

process is using some sectors, the cache system can transfer the remaining sec-

tors asynchronously. Therefore, the computing environment must support asyn-

chronously I /O operations. 

2. The simulator treats write operation same as read operation and ignores the 

actual writing back of data. 

3. The use-up time Tu is normalized to 1. All other timing values, e.g. start-up 

time Cl and transfer time C2, are the ratios to actual value of the use-up time. 

4. Branch Target Cache is a n-way set associative cache. Within each set, the 

replacement policy follows LRU (Least Recently Used) algorithm. Prefetch buffer 
» 

is a fully associative cache. Its replacement policy also follows LRU. 

41 
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5. The cache line size is set to the transfer block size. 

6. Time for searching the cache and time for killing a prefetch is negligible. 

The parameters of the simulation are as follow: 

• The data format of a record in the trace is shown as below: 

<action, cylinder, sector, head, drive, number of s e c t o r s � 

action equals to 0 and 1 means read and write operations respectively. 

• Cache size takes the values of IM, 2M, 4M and 8M. 

• PB size = O.IM, therefore, BTC size = Cache size - O.lM. 

• Block size takes the values of 1 sector, 2 sectors, 4 sectors and 8 sectors. 
I 

• Set associativity takes the values of 1-way, 2-way and 4-way. 

• Start-up time Cl takes the values of 5, 10, 15 and 20 for the case of common disk 

and it takes the values of 1, 2, 3 and 4 for the case of high performance disk. 

• Transfer time C2 takes the values of 0.5, 1 and 1.5. 

• Eight models have been simulated. Model 1 to Model 4 are the models for 

performance comparison and will be discussed in Section 4.3. Model 5 is the 

control model of cache partitioning technique. Model 6 to Model 8 are the newly 

proposed models. Model 5 to Model 8 have been discussed in Section 3.3. The 

eight models are as follows: 

- M o d e l 1: No Cache 

- M o d e l 2: Unified Cache without Prefetch 

- M o d e l 3: Unified Cache with Prefetch on Miss 

- M o d e l 4: Unified Cache with Always Prefetch 
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—Model 5: Partitioned Cache: BTC + PB 

- M o d e l 6: BTC + PB with ASST Applying on Request 

—Model 7: BTC + PB with ASST Applying on Dynamic Block 

- M o d e l 8： BTC + PB with SEHT 

4.2 Two Kinds Of Disk -

In the simulation, we have simulated two kinds of disk. They are Common Disk and 

High Performance Disk. We categorize different kinds of disks by the values of the 

start-up time Cl , the transfer t ime C2 and the use-up time Tu. For common disk and 

high performance disk, the transfer t ime C2 is set to near the use-up t ime Tu because 

it is on a high performance computing environment. 

For common disk, the start-up t ime Cl is much larger than the transfer C2. For 

high performance disk, the start-up t ime C i is near the transfer t ime C2. Cl and 

C2 play an important role in our newly proposed algorithms, ASST and SEHT. Their 

values control the size of the starting head and how many sectors have to be stored in 

BTC. Therefore, we will examine the effect of our cache models on common disk and 

high performance disk. 

4.3 Control Models 

To compare the performance of the new models, we have also simulated four models 

for comparison: no cache (Model 1), unified cache without prefetch (Model 2), unified 

cache with prefetch on miss (Model 3) and unified cache with always prefetch (Model 

4). They are the common models used in current disk cache programs. 

4.3.1 Model 1: No Cache 

This model acts as a boundary model because having cache should performs bet ter 
» 

than no cache. Therefore, it gives the upper bound of the time. The timing can be 
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calculated very easily. Each request causes the sectors to be read from the disk and 

transferred to the process. Therefore, the disk access time per request is equal to Cl 

+ C2 * N, where Cl is the start-up t ime of the disk; C2 is the transfer time for one 

sector from disk to memory; N is the number of the requested sectors. 

A disk request from 
process 
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I Read blocks 

from disk 

Return blocks to 
process 

I 

Figure 4.1: Flow Char t of Model 1 

4.3.2 Model 2: Unified Cache without Prefetch 

This model is commonly used in current disk cache design. For cache hit, it passes the 

blocks/sectors from cache to process. For cache miss, it gets the blocks/sectors from 

disk to cache and then from the cache to process. When the cache is full, the LRU 

replacement strategy is used. Note tha t it only has cache hit and cache miss, but does 

not have any partial hit. 

4.3.3 Model 3: Unified Cache with Prefetch on Miss 

This model is also commonly used in current disk cache design. Prefetching mechanism 

is only triggered by cache miss. When a cache miss occurs, requested blocks will be 

fetched from disk. Then some following blocks will be prefetched to the cache. For 

cache hit, this model passes the blocks from cache to the process and does no^.trigger 

any disk action. 
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Figure 4.2: Flow Chart of Model 2 
t 

4.4 Two Comparison Standards 

One of the comparison standard is to compare with the model of no cache. We use an 

absolute reduction in time to show the performance of all the models. The higher the 

absolute reduction in t ime is, the more the absolute performance of a model is. The 

absolute reduction in t ime is defined as 

Aj , . , , • . r Time of no cache — Time of our model _ Absolute reduction in time = * 100% 
Time of no cache 

where the time is the total process stall time due to the disk access. 

The another baseline is to compare with Model 5, unified cache with prefetch on 

miss. This is a common method used in current disk cache design. The relative 

performance to Model 3 can give us insight to the effectiveness of our models. The 

indicator of this relative performance is relative reduction in time which is defined as 

Relative reduction in time =乃爪e of Model 3——Time of our model * 。̂。义 
Time of Model 3 

The higher the relative reduction in t ime is, the more the relative performance of a 

model over that of Model 3 is. 
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Figure 4.3: Flow Chart of Model 3 

The simulation results are generally represented by the values of absolute reduction 

in t ime and relative reduction in time. 

4.5 Trace Properties 

Before we go into the detail of the simulation result, we should have a throughout 

understanding of the traced data first. The total number of requests for the four traces 

is shown in Table 4.1. The distinct number of sectors requested is the distinct number 

of sectors tha t the trace has been touched. It ignores how many times of those sectors 

were touched. On the other hand, the total number of sectors requested is the total 
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Access Dbase Excel Word 
Total number of r e q u e s t s 6 , 0 5 1 , 4 9 1 1 , 9 3 9 , 1 1 9 1 , 0 2 7 , 3 0 1 1 , 7 9 7 , 5 6 1 
Total number of sectors 10,518,494 10,195,308 5,652,077 2,547,843 

requested 
Distinct number of sectors 105,124 63,606 36,209 80,659 

requested 
Average reuse ratio 100.06 160.29 156.10 31.59 

Table 4.1: Number of Requests for the Four Traces ‘ 

number of sectors that transferred between disk and memory if the cache system does 

not exist. The average reuse ratio is the ratio of total number of sectors requested over 

distinct number of sectors requested. The average reuse ratio gives some idea on the 

reuse property of a sector. 

By analyzing the requests in these four traces, we have found that there are many 

multiple-sector requests and the number of sectors per request is not small. The number 

of sectors per request can be as large as 127 as shown in Table 4.2. It is very different 

from the CPU reference request because CPU does not issue a request for a large 

block of data from the memory. This also implies that disk accesses exhibit a highly 

sequential property in one request. This is very important in disk cache design, and 

we would expect that always prefetch will give better result than prefetch on miss. 

Although there are many requests for a large number of sectors, the most frequent 

number of sectors per request is still 1 sector. On the other hand, from the analy-

sis of the displacement between each request, we have found that many requests are 

continuous f rom the previous one. Displacement between two requests is defined as 

the starting address of the current request minus the ending address of the previous 

request. 

displacement — starting address of current request—ending address of pervious request 

Table 4.3 is the summary of the displacements from -1 to 3 for the four traces. 

The continuous percentage is the percentage of the frequency for displacement=1 

over the total frequency for all displacements. The continuous percentages range from 
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No. of sector / request Access Dbase Excel Word 
1 4,809,434 1,112,830 513 ,0611 ,660 ,561 
2 277 23,946 14,202 2,234 
3 303 28,930 10,489 4,357 -
4 1,173,568 23,738 10,424 83,103 
5 205 13,453 11,192 750 
6 172 17,885 5,850 608 
7 198 9,484 8,181 761 
8 7,722 360,927 266,360 21,127 
參 參 參 參 參 

79 • • 2 • 
93 2 11 • 
m 28 

Table 4.2: Number of ？)ectors per Request 

Displacement Access Dbase Excel Word 
~ m r ^ 4,372 

0 158 4,099 562 2,921 
1 4,145,545 878,829 565,827 959,655 
2 89,416 49,089 435 6,606 
3 83,422 2,263 266 7,534 

Continuous Percentage 68.50% 45.32% 55.08% 53.39% 

Table 4.3: Frequency of Displacement 

» » 
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45% for Excel to about 69% for Access. This shows that many requests will follow the 

previous requests, and the accuracy of always prefetch will be very high. 

Since there is high inter-relation between requests from the above analysis, we 

expect that requests can be virtually coalesced to form a request for larger block of 

sectors. This coalescing block will further reflect the sequential property of a trace. 

The coalescing block is named as Dynamic Block since its size varies. Although the 

most frequent size of a request is 1 sector, the most frequent dynamic block size is not 

equal to 1 sector. The frequencies of dynamic block sizes for Access trace is partial 

shown in Table 4.4. The frequencies of dynamic block sizes for other traces are similar 

to this and thus are not shown here. 

Dynamic Block Size Frequency Combined Frequency 
1 (1,77955) (2,47) (3,8) (4,11) (5,4) (6,3) (8,2) 
2 75,915 (1,23) (2,75887) (3,3) (4,1) (5,1) 
3 274,358 • (1,12) (2,57) (3,274289) 
4 1,208,044 (1,1000213) (2,63) (3,102) (4,207666) 
5 22,456 (1,25) (2,42) (3,91) (4,36) (5,22262) 
6 13,454 (1,4) (2,49) (3,78) (4,19) (6,13304) 
7 11,382 (1,15) (2,56) (3,55) (4,30) (5,1) (7,11225) 
8 26,892 (1,7342) (2,6494) (3,32) (4,28) (8,12996) 
9 11,001 (1,3) (2,12) (3,64) (4,35) (5,1) (6,1) (7,1) (9,10884) 
10 10,951 (1,2) (2,28) (3,44) (4,31) (7,1) (10,10845) 

• • 參 

• • 參 

63 9 (4,9) 
64 1929 (4,1918) (5,11) 
^ 2 

Table 4.4: Frequency of Dynamic Block Size for Access 

The number pair in the third column of Table 4.4 is the combined frequency. It 

shows the dynamic block size is combined from how many requests and its frequency. 

(Number of requests coalesced to form a dynamic block, Frequency)‘ 
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For instance, a dynamic block of 5 sectors can be combined from 5 one-sector 

requests and this kind of combination occurs 22262 times, i.e. (5,22262). It can also be 

just 1 request of five sectors and this kind of combination occurs 25 times, i.e. (1,25). 

Beside, a dynamic block of 5 sectors can be formed by 3 requests that may be 1 request 

of one sector and 2 requests of two sectors, or 2 requests of one sector and 1 request 

of three sectors, or …，etc. This kind of combination of dynamic block of 5 sectors 

from 3 requests occurs 91 times, i.e. (3,91). Therefore, same dynamic block size can be 

combined from various numbers of requests. For another example, a dynamic block of 

10 sectors can be formed from 4 requests that may be 2 requests of three sectors and 

2 requests of two sectors, or 1 request of five sectors, 1 request of three sectors and 2 

requests of one sector, or . . . , etc. This combination of a lO-sector dynamic block from 

4 requests occurs 31 times, i.e. (4,31). 

We have observed that many requested blocks combine together to form a larger 

dynamic block. Table 4.5 shows the number oY 1-sector dynamic block and the number 

of 1-sector request. 

Access Dbase Excel Word 
1-sector Dynamic Block 78,031 212,072 67,053 623,146 

1-sector Request 4,809,434 1,112,830 513,061 1,660,561 
Uncombined Percentage 1.62% 19.06% 13.07% 37.53% 

Table 4.5: Frequency of 1-sector Dynamic Block Size and Request 

The uncombined percentage is defined as 

rr , . , r, , Freouencu of l-sector dynamic block � 
Uncombined P recent age = * 100% 

Frequency o f l-sector request 

The uncombined percentage means the percentage of 1-sector requests, that do not 

part icipate in forming a dynamic block, over the total number of 1-sector request. 

Therefore, it can illustrate the interrelationship between successive requests. If more 

successive requests can be combined to form a dynamic block, the uncombined per-

centage will be smaller. Since the uncombined percentage is very small, from 1.62% 
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for Access to 37.53% for Word. Therefore, for each 1-sector request, it has very high 

chance to have relation with the previous or the next one. So always prefetch should 

give a very good performance in this case because the sequential property of the data 

is very strong. 

There is an interesting property in Table 4.4. We observed that even for dynamic 

block of 1 sector, it can be combined from more than 1 request. In our analysis, we 

have treated the case that displacement = 0, i.e. start address of current request = 

end address of previous request, can also be coalesced to a. single dynamic block. 

Therefore, if two or more successive requests refer to the same sector, they will combine 

to form a single dynamic block of 1 sector. The successive requests for the same sector 

are due to read-then-immediately-write and write-then-immediately-read properties. 

The most frequent and the largest dynamic block size (in sectors) for the four traces 

are shown in Table 4.6. 

I 

Access Dbase Excel Word 
Largest dynamic block size 93 1,024 ^ i f i 

Frequency 2 51 1 28 
Most frequent dynamic block size 4 8 8 1 

Frequency 1,208,044 310,636 230,621 623,416 

Table 4.6: Frequency of the Largest and Most Frequent Dynamic Block 

In general, the frequency of the dynamic block size initially increases as the dynamic 

block size increases from 1 sector. The frequency reaches its maximum rapidly and then 

decreases. The decreasing rate of the frequency of the dynamic block size is different for 

the four traces. The decreasing rates for Access and Word are fast but the decreasing 

rates for Dbase and Excel are slow. For Dbase and Excel, since their decreasing rates 

are slow, we would expect that the performance of our algorithms on them are better 

than that on Access and Word. This is because more large dynamic blocks are available. 

Table 4.7 shows the ten topmost largest I /O percentage dynamic blocks for the four 
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traces. The I /O percentage of a dynamic block is defined as 

I/O percentage = dynamzc block size . frequency * 
total number of sectors requested 

which shows the percentage of the total I /O time that various dynamic block sizes 

occupy when there is no cache. This measurement can more accurately show the 

sequential property of a trace than just look at the frequency of the dynamic block 

size. From the I /O percentage, we have observed that larger blocks utilize more I /O 

although their requested frequencies are not higher than those of small blocks. 

Access Dbase 
Freq. I /O perc. DB. Freq. I /O p e r厂 

1 , 2 0 8 , 0 4 4 8 3 1 0 , 6 3 6 2 4 . 3 7 % 
23 52,773 11.54% 16 40,355 6.33% 
3 274,358 7.83% 14 30,201 4.15% 

48 12,616 5.76% 26 16,226 4.14% 
32 8,417 2.56% .17 19,264 3.21% 
8 26,892 2.05% 75 4,342 3.19% 
16 12,134 1.85% 60 4,657 2.74% 
12 13,108 1.50% 15 17,822 2.62% 
2 75,915 1.44% 2 124,306 2.44% 
18 7,577 1.30% 1 212,072 2.08% 

Excel Word 
Freq. I /O perc. DB. Freq. I /O perc. 

~~8 230,621 32.64% 1 6 2 3 , 1 4 6 2 4 . 4 6 % 
16 10,754 3.04% 8 65,687 20.63% 
32 4,719 2.67% 28 4,957 5.45% 
33 4,478 2.61% 6 22,816 5.37% 
57 2,055 2.07% 12 8,867 4.18% 
39 2,937 2.03% 4 20,812 3.27% 
49 2,222 1.93% 5 16,615 3.26% 
31 3,444 1.89% 16 4,484 2.82% 
54 1,858 1.78% 52 1,340 2.73% 
26 3,822 1.76% 7 9,582 2.63% 

Table 4.7: Ten Topmost Largest I/O Percentage of Dynamic Blocks 

By the concept of dynamic block, we can visualize the highly sequential property of 

disk access because many requests coalesce to form a larger block. If we take dynamic 
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block size into account, it can help to optimize our algorithms because we use the 

highly sequential property of the I /O requests to provide more large blocks that our 

algorithms operate on. This kind of combining several successive requests into a larger 

block has rarely considered by the traditional disk cache design. 

I 



Chapter 5 

Performance Evaluation of 

Common Disk 

For common disk, the start-up time Cl is much larger than the transfer time C2. In 

the following discussion, we generally choose Cl = 10 and C2=1.5. Tu is always set to 

1 in order to act as the reference point. Th? values 10 and 1.5 are the ratios of the 

actual values of Cl and C2 to the actual value of Tu. All other timing values are also 

ratios to Tu. 

We focus mainly on the absolute and relative performance of 4 different models: 

unified cache with always prefetch (Model 4), the basic model of partitioned cache 

(Model 5), partitioned cache with ASST applying to dynamic block (Model 7) and 

partitioned cache with SEHT (Model 8). The model of partitioned cache with ASST 

applying to each request, Model 6, is generally omitted in the discussion because its 

performance is generally poorer than that of Model 7. The comparison of performance 

of Model 6 and Model 7 will be discussed separately in Section 5.7.2. 

5.1 The Effect Of Cache Size 

As varying the cache size, we choose a fixed reference point for other cache parameters. 

54 
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Block Size = 1 sector 

Set Associativity = 1 way 

Start-up Time Cl = 10 

Transfer Time C2 二 1.5 

This set of parameters will generally be fixed on the above values throughout the 

discussion of the effect of cache size. ‘ 

In the simulation, we have examined cache sizes of IM, 2M, 4M and 8M . 

5.1.1 Trends of Absolute Reduction in Time 

We have observed that the absolute reduction increases for all models as the cache size 

increases which can be illustrated from Figure 5.1. The absolute performance increases 

because large cache size implies that more data, can be stored in cache. 

I 

5.1.2 Trends of Relative Reduction in Time 

For clarity of graph, we omit the Model 5 in Figure 5.2. This is because the performance 

of Model 5 generally has a large gap with other models and we omit it to manifest the 

performances of other models. 

5.1.2.1 Performance Of Model 4 

Figure 5.2 shows that the relative performance of Model 4 gradually increases when the 

cache size increases. However, the increase is not large when the cache size increases 

from IM to 8M. This is because the main difference between Model 4 and Model 3 

is the method of getting the next block/sector. This difference will mainly reduce C2 

rather than the large Cl . Besides, since C2 is equal to 1.5, there is not enough time 

to get the next one, so each correct prefetch will reduce the transfer time. However, 

the time penalty Cl of cache miss for fresh reference usually dominates the access 

time. Therefore, the increase of relative performance of Model 4 is little. The relative 

performance of Model 4 is shown in the Table 5.1. 
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Figure 5.1: Absolute Performance of Varying Cache Size 
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Figure 5.2: Relative Performance of Varying Cache Size (without Model 5) 
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Access Dbase Excel Word 
Performance Max. Min. Max. Min. Max. Min. Max. Min. 

Cache size M IM Wl IM m IM M I M " 
Percentage reduction in time 6% 3% 11% 7% 11% 2% 10% 7% 

^percentage 3% 4% 9% 3% 

Table 5.1: Maximum and Minimum Relative Performance of Model 4 (C2 二 1.5) . 

If there is enough time to get the next one, the situation is different. As shown in 

the graph of zero prefetch time, Figure 5.5, the relative performance slightly increases 

first and then slightly decrease. The increase is due to the above reason that always 

prefetch reduces more the transfer t ime when the cache size is small. Since it is zero 

prefetch t ime now, all partial hit will transfer to hit. When the cache size increases, 

more useful da ta stores in the cache. Therefore, the difference between the cache miss 

of Model 4 and that of Model 3 decreases. The performance of Model 4 approaches 

that of Model 3. So, the relative performance drops. 

The positive relative performance of Model 4 shows that always prefetch is better 

than prefetch on miss. For Model 3, it is a conservative algorithm to prefetch the 

next sector only on miss. For non-sequential reference, Model 3 takes less useless next 

sectors to the cache. For highly sequential reference, Model 3 just takes one next and 

then wait to another miss to get another next one, so this will lower the performance 

of the system. On the other hand, Model 4 always prefetches the next sectors. For 

non-sequential reference, it puts too many useless next sectors to the cache. For highly 

sequential reference, Model 4 gets the correct next one, so the reduction of I /O time is 

greater. Now, for all traces, they exhibit a highly sequential property. The prefetched 

sector is very likely to be referenced soon. This can be shown from the formation of 

dynamic block in Section 4.5. Therefore, always prefetch can perform well. 

> • 
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5.1.2.2 Performance Of Model 7 And Model 8 

We have observed that the trends of Model 7 and Model 8 are similar in Figure 5.2. 

When the cache size increases, their relative performances increase. Up to a certain 

limit，about 8M cache size, their relative performances drop. Figure 5.3 shows the 

general trend. 

* Trend of relative 
I performance of our models 

Relative 
Performance 

I 

Small Cache Size 

Cache Size 

丨 Very Large Cache Size 

Figure 5.3: Trend of Relative Performance of Model 7 and Model 8 

From the graph of absolute performance, Figure 5.1, we note that there is actual 

reduction in t ime when the cache size increases. Therefore, the dropped relative perfor-

mances mean that the increase in absolute reductions in t ime of Model 7 and Model 8 

is just less than that of Model 3. This is the property of Model 7 and Model 8 because 

they are built for small/limited cache. It is the situation where the cache is not large 

enough to hold the current working data set. To maximize the performance under 

this situation, we discard some content blocks in order to store more distinct starting 

heads. Then by proper overlapping the program execution and the da ta fetching, the 

cache system can have enough t ime to get the un-stored sectors. In other words, Model 

7 and Model 8 effectively shift the performance of a small cache to look like a. larger 

ordinary cache. This can be verified by the fact that there is an increase in -relative 

performance when the cache size is increased from IM to 4M. 
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When the cache size increases to 8M, the relative performances of Model 7 and 

Model 8 drop because the cache becomes large enough to hold much more useful data, 

[e . not only the heading sectors but also the content sectors. The contribution of the 

enlarged cache size by Model 7 and Model 8 becomes less effective. That means the 

extra stored blocks cannot obtain advantage but the compulsorily discarded sectors 

may provide bad effect on the performance. Therefore, there is a fall in the relative -

performance. 

There are five factors affecting the performances of Model 7 and Model 8 when 

compared with the performance of Model 3: 

1- the increase in the number of distinct starting heads stored in the cache 

2. how many heading reuses 

3. how many correct prefetches are killed due to the slow data bus, i.e. there is not 

enough time to get those prefetched sectors before a demand fetch arrives 

4- the size of the cache when comparing with the working set of a trace 

5. the time difference between reuses 

For the first factor, the more starting heads are stored in the BTC, the more chances 

are for cache hits. In ideal case, i.e. all reuses are in heading base, the performance 

of Model 7 and Model 8 must be better than the others. However, there are actually 

some non-heading reuses, so the stored blocks in BTC cannot provide enough time to 

prefetch the remaining sectors. Therefore, there is time penalty for each non-heading 

reuse. The performances of Model 7 and Model 8 will drop when the effect of non-

whole block reuse accumulates to a certain level. The third factor is another tradeoff of 

Model 7 and Model 8. The two models discard some contents of a dynamic block and 

rely on the I /O bus to get the un-stored parts from the disk. There will be a situation 

that an un-stored part is being prefetched from the disk but another request comes 

to get other sectors. The prefetch must be killed in order to serve the demand fetch. 
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However, if the killed prefetched part will be used in very soon, the killing behavior 

will make the performance poor. 

- , • „ When the process is using ^ . 
— . sector l a n d sector 2. the ⑷ k 

cache system prefetches Cache 
1,1 • I... , sector 3. 

. . 丨 ， 
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Figure 5.4: Killing of Correct Prefetch 
I 

The killing of correct prefetches has the consequence that it will downgrade the 

performances of Model 7 and Model 8. The killing effect will also accumulate as 

the cache size increases. Therefore, when the cache size becomes large enough and 

the accumulated effect of killing correct prefetches becomes dominant, the relative 

performances of Model 7 and Model 8 drop. However, theoretically, the killing of 

correct prefetches can be prevented because it is due to the fact that prefetching is not 

fast enough, i.e. the data bus is slow and has limited bandwidth. This is the limitation 

of current bus speed and bandwidth. If the bus speed becomes faster and faster, this 

factor will be greatly reduced. In an extreme case, if the prefetch were infinitely fast, 

this factor would be completely eliminated. 

The cache size is a very important factor for Model 7 and Model 8. When the 

cache size is too small, the extra stored start ing heads do not have t ime to be reused 

before they are replaced by other sectors, i.e. the t ime between reuses cannot co-operate 

with the cache size. Besides, in this t ime, the disadvantages of the models still exist. 

Therefore, the relative performances of Model 7 and Model 8 are poor in very small 

cache size. A threshold must exist so tha t the extra stored start ing heads become 
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useful and then the relative performances increase greatly. However, the threshold 

varies greatly because it highly depends on the properties of the traces. We can only 

observe its effect from the result of simulation. 

When the cache size becomes very large, the accumulated disadvantages become 

dominant and the effectively increased cache size becomes less important . Therefore, 

the relative performances of Model 7 and Model 8 drop dramatically. They may even be -

poorer than Model 3 although all models have an increase in absolute reduction in time. 

However, when the cache is in intermediate size, the increase in relative performance 

can be as high as 29%. 

Access Dbase Excel Word 
Performance Max. Min. Max. Min. ~Max. Min. Max. Min. 

Cache size 2M, 4 M m 4M IM m 8M 2M i W 
Percentage reduction in t ime 3% -10% 29% 6% 16% -29% 16% 6% 

I ' 

Table 5.2: Maximum and Minimum Relative Performances of Model 7 (C2 = 1.5) 

The maximum and minimum relative performances of Model 7 for different traces 

are shown in Table 5.2. The relative performance of Model 8 is similar. From Ta-

ble 5.2, the maximum relative performance usually occurs in 2M or 4M cache size. The 

minimum usually occurs in IM or 8M cache size. The minimum value can drop to 

negative, e.g. -10% for Access and -29% for Excel. The negative values are due to the 

accumulated effect of the second and third factors that have been discussed before. 

However, for the third factor of killing correct prefetch, it can be eliminated by the 

zero prefetch time, i.e. infinitely fast prefetching, because it is due to the slow bus speed 

and the limited bandwidth. Therefore, we have simulated the effect of zero prefetch 

time in order to investigate how large the effect of the third factor plays in the cache 

system. Note that the fetch time is still equal to 1.5. Figure 5.5 shows the relative 

performances of different models for zero prefetch time. 

The simulation of the zero prefetch t ime shows that there are actual occurrences of 
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killing correct prefetch. Table 5.3 shows the maximum and minimum relative perfor-

mances of Model 7 when the prefetch t ime is equal to zero. 

Access Dbase Excel Word 
Performance Max. MinT Max. M T ^ Max. Min. Max. Min. 

Cache size 2M m 4M IM m m m 8 M ~ 
Percentage reduction in t ime 7% 2% 13% 6% 11% -5% 9% 6% -

Table 5.3: Maximum and Minimum Relative Performances of Model 7 (Prefetch Time = 0) 

The negative relative performance for Access has been eliminated, so the effect of 

killing correct prefetch is quite important in the Access trace. On the other hand, the 

negative relative performance for Excel still exists even in zero prefetch t ime although 

the relative performance increases from -27% to -5%. So the reason is not just in 

the factor of killing correct prefetch. Another reason is that the entire working set 

of Excel has gone into the 8M cache. This can be illustrated from the hit ratio of 

Model 2, unified cache without any prefetching technique, which is 95% in a 4-way set 

associative 8M cache. Model 7 and Model 8 discard some contents of each dynamic 

block compulsorily. For very large cache size that can capture almost all reuses, an 

enlarged cache size does not mean anything. The accumulated effect of non-heading 

references becomes dominant and this factor cannot be eliminated in our algorithms. 

Therefore, the relative performance for Excel drops to negative value. In fact, the trend 

for the drop of relative performance to negative value is also expected in the other two 

traces, Dbase and Word. However, the cache size is not large enough to show this effect 

for Dbase and Word. 

5.1.2.3 Comparing Performance Of Model 7 And Model 8 W i t h Model 4 

The relative performance of Model 4 is sometimes much poorer than that of Model 

7 and Model 8, especially when the cache size is about 2M to 4M. At the range of 
« » 

intermediate cache size, Model 7 and Model 8 have the advantage of always prefetch 

磁ch can capture the highly sequential property of the traces. The extra stored blocks in 
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BTC by ASST or SEHT can be reused effectively. Besides, PB can reduce the pollution 

due to prefetching. Therefore, the relative performances of Model 7 and Model 8 can 

be boosted up greatly. Table 5.4 shows the maximum relative performances of Model 

7. The performances of Model 8 are similar to that of Model 7. 

Cache size Maximum relative Maximum relative Ratio: . 
performance of Model 7 performance of Model 4 

Access m Wo Wo 0.75 
Dbase 4M 30% 10% 3 
Excel 2M 17% 6% 3 
Word 2M im 7% . 2 

Table 5.4: Maximum Relative Performance of Model 7 

At the maximum throughput , the relative performances of Model 7 and Model 8 can 

double, or even triple that of Model 4. This reveals the fact that the new algorithms, 

ASST and SEHT, are very useful in the intermediate cache size. However, the case is 

different for Access. Even in the maximum relative performance, the performances of 

Model 7 and Model 8 are still worst than that of Model 4. This can be explained by 

the fact that there are too many occurrences of killing correct prefetch and too many 

non-heading reuses for Access. The un-storecl parts of a block cannot be accurately 

prefetched. Therefore, the performances of Model 7 and Model 8 become poor for 

Access. 

Besides, for IM cache size, the relative performances of Model 7 and Model 8 are 

usually lower than that of Model 4. This is due to the fact tha t the threshold of 

the models have not been exceeded in IM cache size. Therefore, the extra stored 

starting blocks cannot be effectively used and the factors of disadvantages lower the 

performance. 

In conclusion, always prefetch is a useful technique to disk cache. Model 7 and 

Model 8 are designed for the limited cache size when compared with the data size. From 

the simulation results, Model 7 and Model 8 can perform very good in the intermediate 

cache size, about 2M to 4M, because the effectively enlarged cache size can store more 
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starting blocks. Those blocks can be used effectively by ASST and SEHT and this gain 

can cover the disadvantages of the models. The relative performances of Model 7 and 

Model 8 can even double/triple that of Model 4. 

5.1.2 .4 Performance Of Model 5 

We have omitted Model 5 to get a clearer discussion in before. Now, let us focus on -

the relative performance of Model 5. Figure 5.6 shows the relative performances for 

the four models, including Model 5 for different traces. We have observed that the 

performance of Model 5 is worse than that of Model 3, i.e. negative values, except in 

small cache size for Excel trace and Word trace. 

The performance of Model 5 is poor because it stores only the first heading block of 

each dynamic block in the BTC and lets the cache system get the following blocks. This 

produces a large extra time penalty needed to pay for each reuse. For large cache, Model 

5 underuses the cache because it compulsorily discards the all remaining blocks although 

there are enough spaces to hold them. Therefore, the extra time penalty paid is greater. 

Model 5 is a control model and it directly used the CPU cache partitioning technique 

without any modification. The disadvantages of this model have been discussed in 

Section 3.3.2. This indirectly shows that there are some differences with disk cache 

and CPU cache. The techniques in CPU cache may need modify before they are applied 

to disk cache design. 

For Excel trace, the hit ratio for IM cache size is only 10% for unified cache, e.g. 

Model 2. This is a very low value and shows that ordinary cache store very little useful 

data. Almost all the time, the cache system needs to take the requested data from 

disk. The algorithm of Model 5 dramatically enlarges the cache size, i.e. data from 

more dynamic blocks can be stored in the cache by only storing the first block of each 

non-sequential reference. Therefore, more cache hits can occur. The time saving due to 

more cache hits compensates the extra time penalty paid to take the remaining blocks 

from disk. “ 

For Word trace, the most frequent dynamic block size is 1 sector. Model 5 can 
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do a good job because it does not pick any useless next sectors to the BTC, and the 

next sectors all go to the PB. For other models, the control algorithms place some next 

sectors in the BTC so cause cache pollution in this case. Therefore, Model 5 shows an 

extra-ordinarily good performance. 

5.2 The Effect Of Block Size -

As varying the block size, we choose a fixed reference point for other cache parameters. 

Cache Size = 4M 

Set Associativity = 1 way 

Start-up Time Cl = 10 

Transfer Time C2 =： 1.5 

This set of parameters will be fixed on the above values throughout the discussion of 

the effect of block size. In the simulation, we have examined block sizes of 1 sector, 2 

sectors, 4 sectors and 8 sectors. 

5.2.1 Trends of Absolute Reduction in Time 

We have observed that in general, the absolute reduction decreases as the block size 

increases which is shown in the Figure 5.7. 

The decrease in the absolute reduction means that the absolute performance is 

poorer in larger block size. Besides, there is an obvious drop in absolute performance 

when the block size increases from 4 sectors to 8 sectors for all traces. 

Block size has an effect of implicit prefetching. Many current designs of disk cache 

using very large block size since they have not incorporated the ability of explicit 

prefetching technique. Large block gets many adjacent sectors of the requested one 

to the cache. These sectors are hoped to be referenced later. For instance, requesting 

a sector will let the whole disk track to be fetched to the cache. Large block size is 
* • 

proved to be very useful in current design due to its implicit prefetching property. 
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However, our models have already incorporated the technique of always prefetch. 

If the block size is too large, it may cause serious cache pollution, i.e. there are too 

many useless data placed in the cache so useful data, are kicked out. On the other 

hand, if the adjacent data are useful and will be referred soon, increasing block size 

causes more cache hits. Therefore, when always prefetching technique combines with 

the small block size, it can improve the performance. However, when the block size is -

too large, the combined technique takes too many other sectors to the cache and does 

not know whether those sectors are useful. 

Now, let us consider a case for a request of 4 sectors and using a 4-sector block 

size. The most satisfactory result is that the data in a transfer block exactly matches 

the requested 4 sectors. However, this is not the case in general. On average, the case 

is like Figure 5.8. A request for n sectors, where n is also equal to the block size, is 

usually across two transfer blocks. 
I 

Transfer Block 1 Transfer Block 2 

Sector 1 Sector 2 Sector 3 《Sector 4 Sector 5 Sector 6 Sector 7 Sector 8 

V \ , , z V 
These previous sectors A 4-sector request for These next sectors have 
have less chance to be sector 3-6 greater chance to be 

referenced later referenced later 

Figure 5.8: A 4-sector Request in Block Size of 4 sectors 

In Figure 5.8, the previous sectors, sector 1 and sector 2, have less chance to be 

referenced later. Therefore, these two sectors pollute the cache. The next sectors, 

sector 7 and sector 8, have higher chance to be referenced later. Therefore, these two 

sectors may reduce the disk access time. As the block size increases, more and more 

previous and next sectors go into the cache. To determine the usefulness of these 
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sectors, it highly depends on the reference pattern of a particular application. 

From analyzing each trace, the most frequent dynamic block sizes are usually not 

greater than 8 sectors. In the above example, the next sectors, sector 7 and sector 

8, have higher chance to be referenced soon because the total number of sector is not 

greater than 8 after combined with the requested sectors. However, for an 8-sector 

block size, the situation is different. Consider a case of a request of 8 sectors and the ~ 

block size is also equal to 8 sectors. As discussed before, the situation is like Figure 5.9. 

Transfer Block 1 Transfer Block 2 

— _ p — . _ j — . 丨 1 ~ 1 I 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 1 5 | 16 i 

‘ I I 

I . .1 . 1 I 1 I . 1 I I 1 I I 
• 、\ ‘ ： 

\ L ^ ^ _ _ 

丨 
I 

I I i \ ‘ 
I I 
！ ！ 

These previous sectors A 8-sector request for These next sectors have 
have less chance to be sector 5-12 less chance to be 

referenced later referenced later because 
the dynamic block is 
rarely greater than 8 

Figure 5.9: A 8-sector Request in Block Size of 8 sectors 

The previous sectors are useless as before. The next sectors are also useless in this 

situation because the combined effect gives a dynamic block size larger than 8 which 

rarely appears in the four traces. Therefore, when two blocks are placed in the cache, 

almost a whole block is useless. This causes the poorer performance for 8-sector block 

size. 

From the above result, since we use always prefetch as our basis, 1-sector block size 

gives the most satisfactory result. 1-sector block size can also give a full control of the 

cache block in the cache system. While the block size increases, more useless sectors 

will be fetched into the cache as discussed above. Those useless sectors stick with the 
» • 

useful sectors and occupy entries in the cache. In turn, less space is left for useful 

data. So a large fetched block will also have chance to pollute the cache. Therefore, for 
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1-sector block size, it can ensure that the fetched/prefetched blocks have higher chance 

to be useful. 

Moreover, we have observed that Model 5 is not like other models, the performance 

of Model 5 may not decrease as the block size increases. This is due to the fact that 

Model 5 stores only the first starting block of each non-sequential reference, i.e. the first 

block of each dynamic block. It needs to pay very high time penalty even for a cache ~ 

hit. However, as the block size increases, the first starting block becomes larger. The 

penalty of each cache hit is reduced. So, the effect of bringing imdesired sectors into 

the cache can be compensated. 

5.2.1.1 Difference Between Hit Ratio And Access Time 

We have chosen the absolute reduction in time and the relative reduction in time to 

indicate the performance of a model. The reason of choosing access time rather than 

hit ratio is that it can provide a better insight of the performance of the model. This 

can be illustrated from Table 5.5 that shows the hit ratio and disk access time ratio of 

Model 7 for different block size. 

Access Dbase Excel Word 
Block size Hit ratio Time ratio Hit ratio Time ratio Hit ratio Time ratio Hit ratio Time ratio 

~ 1 sector 77.93% 0.2089 80.31% 0.1673 63.'18% 0.2713 84.46% 0.0661 
2 sectors 84.35% 0.2276 80.13 0.1883 64.94% 0.2933 90.31% 0.0673 
4 sectors 89.20% 0.2459 81.64% 0.2259 66.90% 0.3579 93.34% 0.0663 
8 sectors 91.83% 0.2774 82.28% 0.3183 70.04% 0.4769 96.08% 0.0896 

Table 5.5: Hit Ratio and Disk Access Time Ratio for Model 7 

The Time ratio is defined as 

T. t. Total disk access time of a model 
Total disk access time of no cache 

Therefore, the larger the time ratio is, the poorer the performance is. In Table 5.5, 

as the block size increases, the hit ratio increases. Increasing hit ratio indicates that 

increasing block size is very useful because more requested data are in the cache. 

However, the time ratio also increases. That means the actual traffic between disk and 
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cache is heavier as the block size increases. Therefore, choosing a large block size is 

not intelligent because it imposes a heavier traffic between disk and cache. From this 

situation, we have observed that hit ratio can only give a rough understanding on the 

performance of a model. Time ratio gives a more concrete understanding on the traffic 

between disk and cache, which in turn is an accurate indicator of the performance of 

a model. -

Besides, from the above analysis, we have observed that increasing block size has its 

advantage to capture the spatial locality of references. But owing to the fact that it also 

takes some extra useless sectors in the cache, it increases the total access time to the 

disk. This can further verify by the actual number of sectors transferred between disk 

and cache when the block size varies. Figure 5.6 shows the actual number of sectors 

transferred for Dbase trace (Cache Size=4M, Cl = 10, C2=1.5, Set Associativity=2-

way). The number of transferred sectors generally increases when the block sizes 
I-

increases. 

Model BS=1-sector BS=2-sectors BS=4-sectors BS=8-sectoi�s 
2 1,944,730 2,240,546 2,573,892 3,751,840 
3 1,955,952 2,266,172 2,587,868 3,764,824 
4 1,967,134 2,290,496 2,639,212 3,855,064 
5 8,497,649 8,539,820 7,647.628 7,491,760 
6 2,039,514 2,254,532 2,398,484 3,443,088 
7 1,928,586 2,226,166 2,375,272 3,425,904 
8 1,909,416 2,235,700 2,357,828 3,215,992 

Table 5.6: Actual Number of Sectors Transferred for Dbase when Varying Block Size 

5.2.2 Trends of Relative Reduction in Time 

5.2.2.1 Performance Of Model 4, Model 7 And Model 8 

The relative performance is the absolute performance of a model compared with the 

absolute performance of Model 3. Although the absolute reduction decreases in general, 
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the relative reduction can increase. This means that the drop in performance of a 

model is less than that of Model 3. 

The trends of relative reduction in time are quite similar for different models. When 

the block size changes from 1 sector to 4 sectors, there is an increase in the relative 

reduction in time for different models. Although the absolute reduction in time de-

creases, the effect of slightly larger size of the prefetched block has the advantage that -

the adjacent data will be referenced soon (refer to the discussion in the Trends of ab-

solute reduction in time). The increase in relative performance verifies that there are 

actual use of those adjacent data. 

The relative reduction in time for all models generally drops when the block size 

increases to 8 sectors. The drop in 8-sector block size is due to the reason explained 

before. There are too many useless sectors being prefetched together with useful sec-

tors. Those useless sectors pollute the cache more for the models using always prefetch 
I' 

technique. 

For Model 7 and Model 8, the increase in relative reduction in time is greater than 

that of Model 4. The amplitude of increase for Model 7 and Model 8 is larger because 

they have a prefetch buffer to store the prefetched sectors. Those prefetched sectors 

will be flushed out very rapidly due to the small size of PB. Therefore, PB can reduce 

the effect of cache pollution, i.e. reduce the number of useless sectors going into the 

BTC. 

5.2.2.2 Performance Of Model 5 

We have omitted Model 5 to get a clearer discussion in before. Now, let us focus on 

the performance of Model 5. Figure 5.11 is plotting for relative performance, including 

Model 5, for different traces. 

For all traces, the relative performance of Model 5 is better and better as the block 

size increases. This is because Model 5 underuses the cache by storing only the first 

heading block of each dynamic block. Now, as the block size increases, the first heading 

block will contain more sectors and in turn, more sectors in each dynamic block are 
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stored in the cache under Model 5. Therefore, the time penalty of getting the next 

sector is smaller and then the relative performance is better. However, Model 5 is 

still below the standard in many cases except for the case of 8-sector block size. For 

8-sector block size, Model 5 can be better than the standard owing to the fact that the 

most frequent dynamic block sizes are under 8 sectors. If the system stores 8 sectors 

as a whole each time, nearly all dynamic blocks are stored in the cache. The system -

will not need to pay too much time penalty to get the remaining sectors (comparing 

with the case of block size equal to 1 and storing only the first block). Therefore, more 

cache hits occur and there is greater reduction in time. 

5.3 The Effect Of Set Associativity 

As varying the set associativity, we choose a fixed reference point for other cache 

parameters. ‘ 

Cache Size = 4M 

Block Size = 1 sector 

Start-up Time Cl = 10 

Transfer Time C2 = 1.5 

In the simulation, we have examined 1-way, 2-way and 4-way set associativities. 

5.3.1 Trends of Absolute Reduction in T ime 

We have observed that when the set associativity increases, the absolute reduction in 

time increases. This is shown in Figure 5.12. 

When a block must go in exactly one place in the cache, the placement scheme is 

called direct mapped or 1-way set associative. When a block can be placed anywhere 

in the cache, the placement scheme is called fully associative. The intermediate design 

is called n-way set associative. In a set associative cache, there is a fixed number of 
» 

locations where each block can be placed. A set associative cache with n locations for 

a block is called an n-way set associative cache or its set associativity equal to n. Each 
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Figure 5.12: Absolute Performance of Varying Set Associativity 
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block now maps to a unique set in the cache, and a block can be placed in any entries 

of that set. 

We have observed that increasing set associativity can help to increase the perfor-

mances of all models. This is a fact that increasing the set associativity can reduce 

the collisions for competing the same entry and can improve the hit ratios of caching 

models. Fully associative scheme is the best one because each block can store in any 

place in the cache. Direct mapped scheme is the worst one because each block can go 

in only one place in the cache. In the case of direct mapped, if there is another block 

that must go in an entry, the previous stored block must be replaced even if there are 

other free entries in the cache. 

On the other hand, there is a disadvantage if the cache system uses a large set as-

sociativity or full set associativity. The time of searching the cache becomes significant 

and must be taken into account. The accumulated effect of searching time increases 
I ' 

greatly when the set associativity increases because this time is counted for each search. 

Therefore, in general, cache systems use less than 8-wa,y set associativity in order to 

reduce the time for searching. 

Therefore, set associativity is the parameter for real implementation. It is quite 

independent of which model is chosen. Using large set associativity can improve the 

hit ratio but increases the search time. 

5.4 The Effect Of Start-up Time C l 

As varying the start-up time Cl , we choose a fixed reference point for other cache 

parameters. 

Cache Size 二 4M 

Set Associativity = 1 way 

Block Size = 1 sector 

Transfer Time C2 = 1.5 . ..-
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In the simulation, the values of Cl that we have examined are 5, 10, 15, 20. Note that 

these values are the ratios of actual values of the start-up time to the use-up time. 

5.4.1 Trends of Absolute Reduction in Time 

Figure 5.13 shows the absolute reduction in time of all models for different traces. 

Remind that the actual time of disk access for all models increases as Cl increases. _ 

This is because the time penalty paid for each cache miss is higher. However, when we 

calculate the absolute reduction in time, the result of one value of Cl cannot compare 

with the result of another Cl because their bases are different, i.e. the total disk access 

times for different Cl are different. Therefore, the trends of absolute reduction can be 

in any shape. So, Figure 5.13 is just for reference. 

5.4.2 Trends of Relative Reduction in Time 
I 

Figure 5.14 shows the trends of relative reduction in time for different models. 

When Cl increases, the relative performances of Model 4, Model 7 and Model 8 

decreases because the time needed to pay for each cache miss dominates. It covers the 

effect of other timing factors. Different kinds of prefetching become less important when 

comparing with the overhead of the start-up time Cl . Therefore, the performances of 

Model 4, Model 7 and Model 8 tend to the performance of Model 3. This can be 

verified by the fact that the relative performances drop as Cl increases. 

Start-up time Cl determines the size of starting head that should be stored in 

BTC for Model 7 and Model 8. As Cl increases, the size of starting head is increased. 

So, fewer extra starting heads can be put into BTC. Therefore, the performances of 

Model 7 and Model 8 must tend to Model 4. This can be verified by the fact that the 

amplitude of decreasing performances of Model 7 and Model 8 is larger than that of 

Model 4. The trend of the relative performance of Model 5 is decreasing because of 

similar reason in the case of Model 7 and Model 8. 
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5.5 The Effect Of Transfer Time C2 

As varying the transfer time C2, we choose a fixed reference point for other cache 

parameters. 

Cache Size - 4M 

Set Associativity = 1 way 

Block Size = 1 sector 

Start-up Time Cl = 10 

In the simulation, the values of C2 that we have examined are 0.5, 1, 1.5. Note that 

these values are the ratios of actual values of the transfer time to the use-up time. 

5.5.1 Trends of Absolute Reduction in Time 

Similar to the case of varying Cl , we cannot compare adjacent sets in a graph because 

the bases are different. Therefore, Figure 5.15 is just for reference. 

5.5.2 Trends of Relative Reduction in Time 

Figure 5.16 shows the relative reduction in time for different models when varying C2. 

Model 4, Model 7 and Model 8 exhibit same patterns for all traces in varying C2. As 

C2 increases from 0.5 to 1, the relative performances increase for all models in all traces. 

As C2 increases from 1 to 1.5, the relative performances decrease dramatically. Remind 

that the value of C2 is the ratio of the actual value to the use-up time. Therefore, there 

are two cases in these values that are C2 less than or equal to 1, and C2 larger than 1. 

The value of C2 less than and equal to 1 means that there is enough time to get the 

next sectors/blocks when the first sector/block has already been placed in the cache. 

On the other hand, the value of C2 larger than 1 means that there is not enough time 

to get the next sectors/blocks if only the first sector/block has already placed in the 

cache. 

For C 2 < : 1 ’ only the first block needs to pay the time penalty in cache miss because 

the following one has enough time to be transferred when the process is using the first 
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one. For C2>1, not only the first block needs to pay a time penalty, but all the following 

ones also need to pay a time penalty in cache miss. This is because there is not enough 

time to get the following one when the process is using the first one. Therefore, we 

expect that the performances of the models are much better for C2< = 1 than that for 

C2>1. Our expectation is verified in Figure 5.16. 

As C2 increases from 0.5 to 1, the relative performances always increase for all 

models because the time penalty for getting the sectors/blocks slightly increases for 

each cache miss. And the standard model, Model 3, has more cache misses than that 

of Model 4, Model 7 and Model 8 because it only prefetches next sectors on miss. The 

increase in relative performance also shows that always prefetch is better than prefetch 

on miss in this case. 

The trend of the relative performance of Model 5 is similar to the cases of Model 

4, Model 7 and Model 8 as discussed above. 
I 

5.5.3 Impact of C 2 = 0 . 5 on Cache Size 

Transfer time C2=0.5 means that there is enough time to get the next sector when the 

process is using the current one. This is very different from the case of C2=1.5 because 

C2=1.5 means that there is not enough time to get the next sector. Therefore, we 

expect that there is some impacts on other cache parameters. The most obvious one 

is the large increase in the relative reduction in time for C2=0.5 when comparing with 

that in the case of C2=1.5. The relative reduction usually at least doubles the value in 

the case of C2=1.5. This is due to the fact that always prefetch can cause more cache 

hits than prefetch on miss in this highly sequential and fast fetching situation. 

However, not all parameters will be affected by changing C2 from 1.5 to 0.5. For in-

stance, the general effect of cache size has not been changed by varying C2. Figure 5.17 

shows the absolute reduction in time and Figure 5.18 shows the relative reduction in 

time. The trends are very similar to that in the case of 02=1.5. For relative reduction 

in time, C2=0.5 has similar effect of zero prefetch time as shown in Figure'5.5. The 

negative relative performances of Model 7 and Model 8 in Access and Excel are reduced 
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clue to enough t ime for prefetching. Besides，Figure 5.18 verifies that there is a large 

increase in relative reduction in t ime when comparing with the case of C2=1.5. The 

general trend remains the same as the case of C2=1.5. 
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Figu re 5.17: Absolute Performance of Varying Cache Size when C2=0.5 

5.5.4 Impact of C2=0.5 on Block Size 

Figure 5.19 shows the absolute reduction in t ime for the four traces. The- t rends of 

some models are different from the case of C2=1.5. For the case of C2=L5, there is a 
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general decrease in absolute reduction in time. However, now for the case of C2=0.5, 

there can be an increase in absolute reduction in time for Model 5, Model 6, Model 7 

and Model 8. 

For Model 2, Model 3 and Model 4, their trends are similar to the case of C2=1.5. 

Their absolute reductions in time decrease when the block size increases. This is due 

to the reason discussed in the case of C2=1.5 in Section 5.2.1. Block size has a function 

of implicit prefetching. When the adjacent sectors will be referenced soon, large block 

size will provide an advantage. However, if the extra stored sectors are not used, they 

occupy the cache and cause pollution. Now, Model 2, Model 3 and Model 4 store all the 

requested blocks. Increasing the block size may bring more useless data in the cache 

although some sectors may have chance to reference later. Therefore, the disadvantage 

covers the advantage of large block size. 

Model 5 has a more obvious increase in absolute reduction in time when the block 

size increases. It is very different from the case of C2=1.5 that it just maintains in 

a slightly increasing/decreasing state. Model 5 stores only the first starting block of 

each dynamic block. As the block size increases, the first starting block size is larger. 

So the time penalty paid for each cache hit reduced. Since C2=0.5, there is no extra 

transfer penalty needed for cache miss, i.e. the cache system needs only to pay for 

the start-up penalty, when data fetching overlaps the program execution. Therefore, 

the absolute time of disk access for Model 5 decreases as the block size increases, i.e. 

absolute reduction in t ime increases. 

For C2=0.5, Model 7 and Model 8 become nearly the same because they both store 

only the starting head (some heading sectors) for each dynamic block. Therefore, more 

starting heads can be placed in the cache. For C2=1.5, it is not enough time to get all 

the remaining sectors by only storing the starting head in BTC, so cache entries need 

to store the some content sectors. The overhead of including some useless sectors in 

a large block size (see Figure 5.8) will cover the advantage of getting useful adjacent 

sectors by a large block size. On the other hand, as discussed above, there js no need 

to pay extra transfer t ime for C2二0.5 by proper overlapping the program execution 
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and data fetching. We just need to pay the start-up penalty. For Model 7 and Model 8, 

they have PB to store the prefetched sectors in order to reduce cache pollution due to 

large block size, which is very useful as discussed in the case of C2=1.5. However, for 

C2=0.5, it does not need to worry the second sectors if the first one has already been 

gotten/stored. Therefore, guessing the first one becomes more important for C2=0.5. 

Model 7 and Model 8 can already store more first one than other models. However, 

they cannot guess other first one. Larger block size may help to capture other first 

ones. Therefore, Model 7 and Model 8 may have a.n increase in absolute performance 

when the block size increases. 

Figure 5.20 shows the relative reduction in time for the four traces. The general 

trend is similar to the case of C2=1.5. 

5.6 The Effect Of Prefetch Buffer Size 
I 

As varying the prefetch buffer size, we choose a fixed reference point for other cache 

parameters. 

Cache Size = 4M 

Set Associativity = 1 way 

Block Size = 1 sector 

Start-up Time Cl 二 10 

Transfer Time C2 = 1.5 

In the simulation, the sizes of prefetch buffer that we have examined are 0.05M, O.IM, 

0.2M, 0.3M and 0.4M. 

The prefetch buffer is a small, temporary storage of the prefetched sectors. Its size 

should be small because all useful data should already be placed in the branch target 

cache. Now we examine the impact of the prefetch buffer size on Model 7. The impact 

on Model 8 is similar. 

Figure 5.21 shows the absolute reduction in time of Model 7 versus PB size. We 

note that a small PB size is enough for Model 7. Although increasing the PB size 



Chapter 5 Performance Evaluation of Common Disk 91 

Abiolute Reduction In Tim* vi. Block SIzt (C1a!0. C2s0.5) Abiolut* Reduction in Tim* vt. Block SIzt (ClzlO. C2s0.5) 

76 00% 一 … … 70m 一"j r~ - -jjĵ H-i 
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Absolute Reduct ion in T ime vs. Prefetch Butter Size 
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Figure 5.21: Absolute Reduction in Time of Varying Prefetch Buffer Size 

I 

may cause a slight increase in performance, it highly depends on the properties of the 

traces. Therefore, choosing a small PB size is suitable. 

5.7 Others 

5.7.1 In The Case of Very Small Cache with Large Block Size 

For the Excel trace, it exhibits a very strange behavior in IM cache when block size 

is equal to 8 sectors. The hit ratio is only about 10% for unified cache in this case. 

We have observed a strange fact that the total access t ime of Model 2, unified cache 

without prefetch, is larger than that of no cache. 

The numbers under Time ratio are the ratios of the total access t ime needed for 

Model 2 over the total access t ime of no cache. When the ratio is larger than 1, it 

indicates that the performance of having a cache is worse than tha t of no cache. This is 

due to the fact that the block size is too large. So many nearby sectors are transferred 

as a whole to the cache. However, the cache size is too small. Those nearby sectors 

may not have chance to be referenced before they are replaced. Then the cache system 
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Cl I C2 I Time ratio 
5 0.5 1.0204 
5 1 1.0698 

1.5 1.1023 
" T F " 0 X 0.9778 

10 1 1.0276 
10 1.5 1.0624 
15 0.5 — 0.9479 -

1 0.9961 
15 1.5 1.0313 
20 0.5 0.9258 

~ W 1 ~ 0.9717 
20 1.5 1.0064 • 

Table 5.7: Behavior of Model 2 in IM Cache Size for Excel Trace 

needs extra t ime to get the adjacent sectors that will not be used. This case manifests 

the disadvantage of large block size. Thef efore, choosing a suitable configuration in 

cache design is very important . 

However, this greater than 1 property only observed in the Excel trace, but not in 

other traces. For other traces, their hit ratios are at least about 50% so more data are 

being reused even in IM cache. 

5.7.2 Comparing Performance of Model 6 and Model 7 

We have not discussed the performance of Model 6 throughout this chapter because its 

performance is usually worse than that of Model 7 as shown in all graphs of absolute 

performances. Model 6 and Model 7 use the same policy, ASST, except that ASST in 

Model 6 applys to each request separately while the ASST in Model 7 applys to dynamic 

block. This is the difference between request block and dynamic block. Dynamic block 

provides an environment of larger block size for our algorithms to operate. This shows 

that the concept of dynamic block is useful in cache design. The difference between 

applying ASST to each request and to each dynamic block has been discussed in detail 

in Section 3.3.2 and Section 3.3.3. 
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Access Dbase Excel Word 
Cache Size Model 6 Model 7 —Model 6 Model 7 Model 6 Model—7 Model 6 Model 7 

1 70.84% 70.92% 59.74% 60.13% 46.70% 48.89% 89.47% 89.69% 
2 74.06% 74.11% 71.02% 71.61% 59.68% 62.12% 91.95% 92.03% 
4 79.07% 79.11% 83.24% 83.27% 71.30% 72.87% 93.38% 93.39% 
8 84.805 84.75% 89.63% 89.76% 82.11% 82.80% 95.05% 94.99% 

Table 5.8: Absolute Performance of Varying Cache Size of Model 6 and Model 7 

Table 5.8 shows the absolute performance of varying cache size of Model 6 and 

Model 7. Other parameters are fixed as block s ize=l , set associat ivi ty=l , Cl = 10 and 

C2=1.5. The absolute performance of Model 7 is usually bet ter than that of Model 

6 except in 8M cache size. This is the situation like Model 7 comparing with Model 

4. In very large cache size, the cache is large enough to hold the useful data but 

Model 7 compulsorily discards more contents sectors than Model 6. There are more 

accumulated disadvantages of killing correct prefetch and non-heading reuse for Model 

7 in 8M cache. Therefore, models that store more sectors for each request can perform 

better in 8M cache. 

5.8 Conclusion 

5.8.1 The Number of Actual Sectors Transferred between Disk and Cache 

Consider the following case: 

Cache Size = 4M 

Block Size = 1 sector 

Set Associativity = 2 way 

Start-up Time Cl = 10 

Transfer Time C2 = 2 

Table 5.9 shows the number of sectors transferred between disk and cache. We have 

noted that the numbers of sectors transferred for Model 4, Model 7 and Model 8 are 

approximately equal to that of Model 2 and Model 3. This means that always prefetch 

technique does not impose a heavy traffic between disk and cache. On the other hand, 



Chapter 5 Performance Evaluation of Common Disk 96 

always prefetch can reduce the traffic in some cases. So it is a very suitable technique 

to incorporate into disk cache design. However, current methods usually do not include 

the always prefetch technique. 

Access Excel Dbase Word 
Model 2 2,350,300 1,944,730 1,852,463 414,742 
Model 3 2,363,061 1,955,952 1,855,170 414,807 . 
Model 4 2,373,182 1,967,134 1,859,585 415,076 
Model 5 2,749,506 8,497,649 4,929,358 471,906 
Model 6 2,372,007 2,039,514 2,117,421 419,053 
Model 7 2,366,317 1,928,586 1,940,305 417,119 
Model 8 2,362,100 1,909:416 1,890,052 416,170 

Table 5.9: Actual Number of Sectors Transferred between Disk and Cache 

5.8.2 The Efficiency of Our Models on Common Disk 
• 

In conclusion, always prefetch is a very useful technique to capture the highly sequen-

tial property of disk access pattern. Simulation verifies that ASST and SEHT can 

increase the performance of a cache system on the basis of always prefetch. Model 7 

and Model 8 usually outperform other models in the intermediate cache size, such as 

2M to 4M. The relative performances of Model 7 and Model 8 can double/tr iple the 

relative performance of Model 4. This satisfies our aim that the cache can be more ef-

fectively utilized by the cache partitioning architecture and the newly proposed control 

mechanisms when the cache size is limited. 

The factors tha t increase the performance of Model 7 and Model 8 are summarized 

below: 

• intermediate cache size, e.g. 2M to 4M 

• small block size, e.g. 1 sector 

• large set associativity of the cache, e.g. 4-way set associative • -

• small prefetch buffer size 
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• more occurrences of heading reuse 

• less occurrences of killing correct prefetch 

t 



Chapter 6 

Performance Evaluation of High 

Performance Disk 

High Performance disk is characterized by the start-up time Cl that is slightly larger 

than the transfer time C2. Also, Cl and C2 are both near the value of Tu. In the 

following discussion, we generally choose and C2=1.5. Tu is always set to 1 in 

order to act as the reference point. In fact, the values 2 and 1.5 are the ratios of the 

actual values of Cl and C2 to the actual value of Tu. All other timing values are also 

ratios to Tu. 

We focus mainly on the performances of 4 different models: Model 4, Model 5, 

Model 7 and Model 8. The parameters that we will discuss are the cache size, the 

block size, the start-up time Cl and the transfer time C2. Others are the same as 

the case of common disk, so we will not discuss again. In fact, the being discussed 

parameters are also quite similar to the case of common disk. 

6.1 Difference Between Common Disk And High Performance 

Disk 

The difference between common disk and high performance disk is mainly in the value 

of Cl . C2 for both kinds of disk can take small values. High performance disk has 

smaller Cl than common disk. Cl controls the response time of a disk. As Cl becomes 

98 
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smaller, the disk responses faster. Therefore, we define the disk having small Cl and C2 

as high performance disk. Cl controls the size of the starting head in our algorithms. 

As Cl approaches C2, the size of the starting head is closer to the size of the stored 

content blocks. As Cl and C2 become smaller, the size of starting head also decreases. 

Besides, the time penalty of missing a, sector is less than that in case of common disk 

because the start-up time Cl is smaller. Therefore, these factors may have impacts 

on the performances of Model 5, Model 6, Model 7 and Model 8 because these models 

have different treatment to starting heads and content blocks. 

6.2 The Effect Of Cache Size 

As varying the cache size, we choose a fixed reference point for other cache parameters. 

Block Size = 1 sector 

Set Associativity = 1 way 

Start-up Time Cl = 2 

Transfer Time C2 = 1.5 

In the simulation, we have examined the cache sizes of IM, 2M, 4M and 8M. 

6.2.1 Trends of Absolute Reduction in Time 

We have observed that the absolute reduction in time increases for all models as the 

cache size increases which can be illustrated from Figure 6.1. This is similar to the 

result in the case of common disk. This is because large cache can store more data, 

including that has been stored in the smaller cache. Therefore, the cache hit rate must 

be increased, and disk access time can be further reduced. 

6.2.2 Trends of Relative Reduction in Time 

For clarity of graph, we omit the Model 5 in Figure 6.2. From the graph of absolute 

performance, Figure 6.1, we note that there are actual reduction in time when the cache 

size increases. Therefore, the dropped relative performances mean that the increase in 
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Figure 6.1: Absolute Performance of Varying Cache Size 

« »» 



Chapter 6 Performance Evaluation of High Performance Disk 101 

absolute reductions in t ime of Model 7 and Model 8 is less than that of Model 3 as the 

cache size increases. 
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Figure 6.2: Relative Performance of Varying Cache Size (without Model 5) 
6.2.2.1 Performance Of Model 4, Model 7 And Model 8 

The trend of relative performance of Model 4 is exactly the same as the case of common 

disk. Figure 6.2 shows tha t the relative performance of Model 4 'gradually increases 

when the cache size increases. However, the increase is very little although the cache 
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size increases 8 times, i.e. from IM to 8M. The reason is discussed in Section 5.1.2.1 in 

the case of common disk. 

The trends of Model 7 and Model 8 are also similar to the case of common disk. 

The relative reduction in time first increases when the cache size increases. However, 

when the cache size changes to 8M, there is generally a drop in relative performance. 

On the other hand, the relative performance does not drop to negative values now. It 

is very different from the case of common disk that there are negative performances of 

Model 7 and Model 8 in 8M cache for Access and Excel traces as shown in Figure 5.2. 

As discussed in the chapter 5 of common disk, the negative performance is due to 

accumulation of the bad effects of killing correct prefetch and non-heading reuse. For 

high performance disk, since Cl is smaller, the size of starting head decreases. More 

requests can now be stored in the cache, i.e. the effective cache size increases further 

than that in case of common disk. The further enlarged size lo wers the effects of the 

previous two bad factors. Therefore, the relative performance does not drop to negative 

value. Besides, The relative performances of Model 7 and Model 8 can be three to four 

times higher than that of Model 4 for Dbase and Excel as shown in Figure 6.1. 

Our models perform more efficiently in high performance disk. This can be illus-

trated from the fact that the value of relative performance percentage is much larger 

than that in case of common disk. For instance, the values of the relative reduction in 

time of Model 7 in 4M cache size for the two kinds of disks are listed in Table 6.1. 

Trace Common disk High performance disk 
Access Wo 
Dbase 29% 47% 
Excel 11% 33% 
Word 14% ^ 

Table 6.1: Relative Performance of Model 7 for two kinds of disks 

The performance of Model 8 is now generally better than Model 7. This is because 

Model 8 stores smaller amount of blocks for a fixed number of requests' than that 

of Model 7, and so Model 8 can store more data from more requests, i.e. effectively 
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enlarges more the cache size than Model 7. Since Cl is small, the time penalty paid for 

each miss is less than that in the case of common disk. The reuses (cache hit) of the 

extra stored blocks cover the disadvantage of missing some content sectors. Therefore, 

if the effectively increased cache size of Model 8 can capture sufficiently more reuses, 

it can outperformance other models. 

6.2.2.2 Performance Of Model 5 

We have omitted Model 5 to get a clearer discussion in before. Now, let us focus on 

the relative performance of Model 5. Figure 6.3 shows the relative performances of the 

four models, including Model 5, for different traces. 

The trend of Model 5 is similar to the case of common disk. However, the relative 

performance of Model 5 is much better than that in the case of common disk. Model 

5 can outperform Model 3 in small cache size, e.g. IM cache size for all traces. This 
I 

can be explained by the fact that for high performance disk, storing more requests can 

cover the disadvantage of referencing the un-stored sectors because the time penalty 

paid for each miss is not very large now. Besides, storing more requests can increase 

cache hits. In small cache size, the cache may not store enough data to capture reuses 

if all requested sectors are stored in the cache. Now, Model 5 stores only the first block 

of each non-sequential reference and the time penalty of getting the remaining sectors 

are smaller than that in the case of common disk. Therefore, Model 5 can perform 

better than Model 3 clue to these advantages in small cache size. 

However, for Model 5, it stores only the first heading block of a request. No matter 

hit or miss, it needs to pay more time penalty than other models. So its performance 

cannot be as good as Model 7 and Model 8. However, the extra stored requests can 

improve the performance and let Model 5 outperform Model 3 in small cache size. 

6.3 The Effect Of Block Size 

As varying the block size, we choose a fixed reference point for other cache parameters. 
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•ISOOÔ  ————————— — •'• -• < B ^ ^ ^ H i^^gHj 

- --1 iIh III IMIL 
.25000% -.“••—..... ••••’ — ‘ 1 2 < 8 

CichtSlii Cachi Stz* 

(c) Excel (d) Word 

Figure 6.3: Relative Performance of Varying Cache Size 
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Cache Size = 4M 

Set Associativity = 1 way 

Start-up Time Cl = 2 

Transfer Time C2 = 1.5 

In the simulation, we have examined the block sizes of 1 sector, 2 sectors, 4 sectors and 

8 sectors. ~ 

6.3.1 Trends of Absolute Reduction in Time 

We have observed that in general, the absolute reduction decreases as the block size 

increases which is shown in Figure 6.4. 

The trend of varying block size is also similar to the case of common disk. The 

decrease in the absolute reduction means that the absolute performance is poorer in 

larger block size. , 

Moreover, we observe that Model 5 is not like other models, the performance of 

Model 5 may not decrease as the block size increases. This is due to the fact that 

Model 5 stores only the first starting block of a dynamic block. It needs to pay higher 

time penalty even to a cache hit. However, as the block size increases, the first starting 

block becomes larger. The large block size can provide more time to get the remaining 

sectors. The penalty of each cache hit is reduced. So, the effect of bringing undesired 

sectors into the cache can be compensated. 

6.3.2 Trends of Relative Reduction in Time 

6.3.2.1 Performance Of Model 4, Model 7 And Model 8 

The trend is also very similar to the case of common disk. The relative performance 

is the absolute performance of a model compared with the absolute performance of 

Model 3. Although the absolute reduction decreases in general, the relative reduction 
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can increase. This means that the performance of a, model is much better than that of 

Model 3 at this situation. 

Unlike the case of common disk, the increase in relative reduction of Model 7 and 

Model 8 is not large. Large block size has an effect of implicit prefetching. It can 

increase the chance of correct prefetch of adjacent sectors. On the other hand, large 

block size may bring many useless sectors into the cache and may kick out useful sectors. 

As discussed previously, the time penalty of a miss is smaller. Model 7 and Model 8 

can further enlarge the cache size than that in the case of common disk because Cl 

is small. Therefore, the extra increased cache size may be enough to capture reuses. 

If the block size increases little, it may help to capture more reuses. However, if the 

block size increases too large, it brings too many useless data, in the cache. The useless 

data stick with useful data in a, block and make the performance poor. This can justify 

by the fact that the increase in the relative reduction in time is not too obvious as 

the block size increases. However, the drop is much dramatic than that in the case of 

common disk. 

6.3.2.2 Performance Of Model 5 

We have omitted Model 5 to get a clearer discussion in before. Now, let us focus on 

the performance of Model 5. Figure 6.6 are plotting for the relative performances of 

the four models, including Model 5 for different traces. 

In general, the relative performance of Model 5 is better and better as the block 

size increases. This is because Model 5 underuses the cache by only storing the first 

heading block of each non-sequential reference in BTC. Therefore, there is not enough 

time to prefetch the remaining data. Now, as the block size increases, the first heading 

block contains more sectors and in turn, more sectors of a dynamic block are stored in 

the cache under Model 5. So the relative performance is better . 

The difference from the case of common disk is that the relative performance of 

Model 5 can sometimes be better than Model 3 in block size other than 8 sectors. This 

shows that for high performance disk, small Cl , the time penalty for each cache miss 
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is smaller. Model 5 enlarges the effective cache size dramatically. The extra stored 

sectors contribute more cache hits and they lower the disadvantage of referencing the 

un-stored sectors. 

6.4 The Effect Of Start-up Time Cl 

As varying the start-up time Cl , we choose a, fixed reference point for other cache 

parameters. 

Cache Size = 4M 

Set Associativity = 1 way 

Block Size = 1 sector 

Transfer Time C2 二 1.5 

In the simulation, the values of Cl that we have examined are 1, 2, 3 and 4. Note that 

these values are the ratios of actual values of the start-up time to the use-up time. 

6.4.1 Trends of Relative Reduction in Time 

Figure 6.7 shows the relative reduction in time for varying Cl . The effect is exactly 

the same as the case of common disk. When Cl increases, the relative performances 

of Model 4, Model 5, Model 7 and Model 8 decrease because the time penalty paid for 

each cache miss dominates. 

6.5 The Effect Of Transfer Time C2 

As varying the start-up time C2, we choose a fixed reference point for other cache 

parameters. 

Cache Size = 4M 

Set Associativity 二 1 way 

Block Size 二 1 sector • • 

Start-up Time Cl = 10 
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In the simulation, the values of C2 that we have examined are 0.5, i , 1.5. Note that 

these values are the ratios of actual values of transfer time to the use-up time. 

6.5.1 Trends of Relative Reduction in Time 

Figure 6.8 shows the relative reduction in time for varying C2. The trends of Model 

4, Model 7 and Model 8 are also exactly the same as the case of common disk. As _ 

C2 increases from 0.5 to 1, the relative performances of the models increase. As C2 

increases from 1 to 1.5, the relative performances decrease dramatically. 

However, for Model 5, its relative performance can now be better than Model 3 

when C2<=1. C 2 < = 1 means that there is enough time to get the next sectors after 

getting the first sector. Therefore, the miss penalty is much smaller than that of C2>1. 

Besides, Cl is small, so the size of the starting head is also small, approximately 

2 sectors. Model 5 always stores the first block of a dynamic block. In this case, 

the block size is equal to 1. Therefore, the time penalty of reuse is also very small. 

Furthermore, Model 5 dramatically increases the effective cache size which can store 

more requests in BTC. The extra stored requests can capture more reuses, so Model 5 

can outperform Model 3. 

6.5.2 Impact of C 2 = 0 . 5 on Cache Size 

Figure 6.9 shows the absolute reduction in time of varying cache size when C2=0.5. 

Model 5 outperforms other models in IM cache size. This is the effect of small Cl 

so the starting block is very small. Also, C2=0.5 means that there is enough time to 

get next sectors if the first sector/block has been stored in BTC. In small cache size, 

there is not enough space to capture the reuses. Therefore, by ignoring some contents 

sectors, the cache can store more requests and can capture more cache hits. Model 5 

is the most vigorous one to discard sectors and let the cache system to get them by 

overlapping with the program execution. Therefore, in the situation of smaller time 

penalty of miss, Model 5 can outperform other models. Following the same argument, 

we predict that the performances of Model 7 and Model 8 are also good. 
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Figure 6.10 shows the relative reduction in time for varying cache size when C2=0.5. 

The trend of relative performance is the same as the case of C2=1.5. However, the 

relative performance of Model 5 is much better than that in the case of C2=1.5. The 

reason is discussed as above. 
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Figure 6.10: Relative Performance of Varying Cache Size when 02=0.5 
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6.5.3 Impact of C2=0.5 on Block Size 

Figure 6.11 shows the absolute reduction in t ime for varying block size when C2=0.5. 

This situation is similar to the case of C2=1.5 except that the performance of Model 

5 is much better . The reason is discussed in the previous Section 6.5.2. 
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Figure 6.11: Absolute Performance of Varying Block Size when C2=0.5 

Figure 6.12 shows the relative reduction in t ime of varying block size when C2=0.5. 

The trend of relative performances of Model 4, Model 7 and Model 8 decreases while 

that of Model 5 can increase. The reason is discussed in Section 5.5.4 in the case of 
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common disk. 
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Figure 6.12: Relative Performance of Varying Block Size when C2=0.5 

6.6 Conclusion 

High performance disk provides a bet ter environment to ASST and SEHT to work on. 

Since C l is small, the starting head is small and so more start ing heads can be stored 

in BTC. Also, the t ime penalty of each cache miss is smaller than tha t in. the case of 

common disk. Therefore, the tradeoffs of the ASST and SEHT become less important . 
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This can be verified by the fact that the relative performances of Model 7 and Model 8 

for high performance disk can triple their relative performances in the case of common 

disk as shown in Table 6.1. Besides, the performance of Model 5 is also better than 

that in the case of common disk. This also can be explained by the above reasons. The 

most suitable configuration for the best efficiency of the proposed models is similar to 

the case of common disk and summarized in below again: 

• intermediate cache size, e.g. 2M to 4M 

• small block size, e.g. 1 sector 

• large set associativity of the cache, e.g. 4-way set associative 

• small prefetch buffer size 

• more occurrences of heading reuse 
I 

• less occurrences of killing correct prefetch 



Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

We have discovered that always prefetch performs better than currently used prefetch 

oil miss mechanism because disk access exhibits a highly sequential pattern. The 

sequential property can be visualized from the formation of large dynamic block size 
I 

as shown in Table 4.7. 

To further improve the cache performance, we have designed few models that are 

based on the cache partitioning technique and using proposed algorithms to place data 

in different parts of the cache. The cache is divided into 2 parts: Branch Target 

Cache (BTC) and Prefetch Buffer (PB). The original algorithm (Model 5) stores the 

blocks/sectors causing cache misses in BTC and stores all prefetched blocks/sectors in 

PB. Model 5 is like a cache partitioning model used in CPU cache [JouOOj. The newly 

proposed algorithms are the Alternative Storing Sectors Technique (ASST) applying 

to request block (Model 6) and to dynamic block (Model 7) respectively, and the 

Storing Enough Heads Technique (SEHT) (Model 8). ASST and SEHT are to discard 

some sectors that need not be stored in the cache by proper overlapping the program 

execution and the data fetching. The un-stored data are fetched by the cache system 

during the program execution. The algorithms are designed so that there is l i t t le/no 

time penalty when retrieving the un-stored sectors. Since the algorithms discard some 

sectors, the cache can store more data from more requests. Therefore, the.algorithms 

can enlarge the effective cache size. 

119 
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To evaluate these algorithms, we have conducted a simulation study. Our approach 

is to examine their absolute performances, and relative performances when comparing 

with the base. We have chosen the base of comparison to be unified cache with prefetch 

on miss (Model 3). We have also simulated two commonly used algorithms such as 

unified cache without prefetch (Model 2) and unified cache with always prefetch (Model 

4) for comparison. 

Model 7 and Model 8 have very good performances under a suitable configuration. 

The suitable configuration is a medium, cache size (about 2M to 4M), 1-sector block 

size, higher set associativity (about 4-way to 8-way), and small PB size (about 0.1KB). 

Their relative performances can double/triple that of Model 4. This shows that some 

sectors can actually be discarded if the data fetching can overlap the program execution. 

This, in turn, has an effect of enlarging the cache size, i.e. the performance of a small 

cache is as good as an ordinary cache with larger size. For different kinds of disks, 

the performances of Model 7 and Model 8'still perform well under this configuration. 

Therefore, we conclude that partitioning the cache into two parts is very useful. ASST 

and SEHT are good and effective algorithms to control the BTC and PB. 

On the other hand, ASST and SEHT have their tradeoff. If the cache size is large 

enough to hold the working set, their performances will be poor because some sectors 

are compulsorily discarded. Besides, the accumulated effects of killing correct prefetch 

and non-heading reuse also lower the performance. If the cache size is too small, the 

extra stored sectors do not have chance to be reused before they are flushed out. The 

advantage of enlarged cache size cannot be exploited but the disadvantages of the 

algorithms still exist. So, the performances of Model 7 and Model 8 are poor when the 

cache size is too small. There should be a threshold such that beyond the threshold, 

the extra stored sectors can be reused effectively. 

Model 7 and Model 8 perform poorly when tlie cache size is too small or too 

large. This is not surprising because the aim of this project is to design effective cache 

mechanisms so that they can fully utilize the cache when the cache size is limited. The 

mechanisms perform well in the medium range of cache size. We have verified this view 
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from the simulation result. Nowadays, multimedia and database applications become 

more and more popular. The data size is increasing rapidly but the increase in cache 

size cannot catch up with this speed. Our newly designed models will be very suitable 

in this situation. 

Other parameters also affect the efficiency of different models. An important one 

is the block size. In current disk cache design, block size is usually set to a large value 

because this have the effect of implicit prefetching. Current design rarely incorporates 

the technique of always prefetch. If the block size is large enough, a larger extent 

of the spatial locality of the references can be captured. However, large block size 

may bring too many useless data, together into the cache. From the simulation, we 

observe that the performances of Model 7 and Model 8 generally decrease when the 

block size increases. This is because Model 7 and Model 8 have already incorporated 

always prefetch mechanism. Always prefetch has the ability to capture spatial locality. 

Therefore, using a large block size in an 'always prefetch environment manifests the 

disadvantages of large block size and degrades the performance. 

In the simulation, we have also verified that increasing set associativity improves 

the performance. However, increasing set associativity increases the time of searching 

the cache for each request. 

From the value of actual sectors transferred, a.s shown in Table 5.9, we have found 

that always prefetch does not impose a. heavy traffic in the data bus. Always prefetch 

may reduce the traffic if the trace exhibits a. highly sequential property. Therefore, 

always prefetch is a practical method to improve the performance of a cache. 

In conclusion, traditional disk cache design uses very old techniques that were built 

for CPU cache. It rarely considered the highly sequential interrelationship between 

successive disk I /O requests. In this project, we have designed a disk cache partitioning 

architecture controlled by newly proposed algorithms. The main idea is that by proper 

overlapping the data fetching and the program execution, the cache system can discard 

some sectors, i.e. some requested sectors need not be stored in BTC. The un-stored 

sectors can be retrieved by prefetching during program execution. Simulation shows 
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that the relative performances of the newly proposed models are better than that of 

unified cache with always prefetch, i.e. Model 4, by as high as 30% in a medium cache 

size configuration. We conclude that the models are very useful in the design of disk 

cache. 

7.2 Future Work 

More traces should be collected from other filesystems to verify the superior perfor-

mance of the proposed models because the MSDOS filesystem is just one of the many 

existing filesystems. A more precise simulation should be done to get more accurate 

performance metrics for disk cache in multi-tasking environment. Besides, there are 

many write policies such as write back or write through with/without write allocate 

and periodic update. Their effects on the performances of the proposed algorithms 

should also be examined. 

> *, 
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