DESIGN OoF DisKk CACHE FOR HIGH
PERFORMANCE COMPUTING

By
VINCENT, KwAN CHI WAI

JUNE 1995

SUPERVISED BY
DRr. CHI-HuUNG CHI

A THESIS
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE

THE CHINESE UNIVERSITY OF HONG HONG






Abstract

The investigation of reducing disk I/O is an important issue today because large volume
of disk data are stored and retrieved frequently. The access time of a disk is usually
much slower than that of the memory system. Traditional method using in the CPU
cache has been applied to the disk cache and got an acceptable result. The main focus
in this thesis is to design an effective caching strategy that can maximize the cache
performance in limited cache size. The difference between CPU cache and disk cache
is discussed. We also introduce new algorithms to further reduce the disk access time.
Besides, a more accurate method to measu'lre the performance of disk cache is provided.

If the disk access can overlap the program execution, the cache system will have time
to get some sectors ‘on the fly’. Traditional cache design stores all requested sectors
in the cache and cannot make use of this overlapping advantage. A cache partitioning
model is proposed to achieve this advantage. The cache is divided into Branch Target
Cache and Prefetch Buffer. With the assist of the proposed algorithms, Alternative
Storing Sectors Technique and Storing Enough Sectors Technique, the performances of

our models outperform that of the standard, unified cache with prefetch on miss, by

15%-30%.
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Chapter 1

Introduction

Relative speed gap between the disk and the main memory is increasing. With increas-
ing computational power of the CPU and with the trend for parallel processing, the
rate of data consumption is getting higher. The size of the data set that a program op-
erates on is also increasing. For example, in query applications, hundreds of gigabytes
of data are scanned to determine the answer. Even worse, sometimes slower disks are

used because of the cost. All these are reflected by the following facts:

e For high-end servers and high performance computers, the increasing rate for
MIPS is about 10%-20% while the increasing rate for DASD (direct address
device, e.g. disk) is about 40%-60%.

e For high end data servers and enterprise systems, about 60%-70% of the system

cost is spent on DASD.
e Disk caching is attracting more and more attentions.

It is expected that the system performance bottleneck will be on 1/0 instead of
the computing power of processors. This is because microprocessor speed has been
increasing at an extremely fast rate. For example, over 100 MIPS processors are very
common. It is expected that processors with throughput of 300-500 MIPS will be
available in the coming two years. On the other hand, although the size of disk storage

is increasing greatly in this few years, the disk access time does not have any great
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breakthrough. Therefore, the speed of the disk cannot catch up the fastly increasing

CPU speed, and makes disk I/O become a performance bottleneck.

1.1 I/O System

Magnetic disk has its advantages to store information. It has a large capacity. It
is significantly cheaper than higher performance alternatives and provides permanent
storage. On the other hand, access time of disk is slow when compared with the rest of
the computer system. Disk is slower than DRAM (Dynamic Random Access Memory)
in both access time and transfer time. Disk is a result of economic consideration and

limited current technology. If fast, reliable and cheap storage were available, slow disk

access would have disappeared.
W2PU

Memory

‘ Disk Cache
¢ | w

| Disk
i Storage

Figure 1.1: 1/O System Model

Figure 1.1 shows the general relationship between a running process in memory,
the disk cache and the disk storage. The number of disk 1/O requests from the process
is r and w, and it depends on the nature of the application. The r’ and w’ are the
actual disk I/O requests between the disk cache and the disk. Reducing the values of
" and w’ means that fewer data are needed to be transferred between the disk cache

and the disk storage. Since the disk is a slow device, reducing the traffic can increase
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the overall performance.

There are two parameters that determine the impact of disk I/O on overall system
performance. One is the amount of time waiting for each I/O to complete, and the
other is the number of disk I/O operations performed. If a process performs a large
number of disk I/O and the time to complete an 1/0O is long, the performance of the
overall system must be poor no matter how good the performance of other parts of

the system is. The role of the disk cache is to reduce the number of disk 1/0, so the

average disk access time decreases.

The disk access time can be estimated as
Disk access time = C1 + C2*n

where C1 is the start-up time of the disk which includes the seek time and rotational
delay; C2is the disk transfer time, i.e. the time to transfer one sector; and n is the
number of sectors in a request. This equati:)n is, in fact, not accurate for an individual
request. However, over a large sample, this equation can be considered as average
approximation of the time of each request.

Using more arms and disk platter can reduce the start-up time and the transfer time.
Studies [Ng91, MK89] show that using two arms can reduce the average rotational
latency to one-fourth of a revolution, instead of a half revolution. Synchronously
interleaving of data across several disks can also reduce the transfer time [Kim86,
GMS88]. The technology of Redundant Arrays of Inexpensive Disks (RAID) provides
a high performance and very reliable way to stripe data across multiple disks [PGKSS,
CGK*88, KOP*89]. It can also increase the overall reliability because of the cost-
effective redundant feature.

Many techniques have been developed to improve the disk access time, but they
cannot overcome the fact that disk is still slower than the rest of the computer system.

Disk 1/0 is still the bottleneck of the overall system performance.
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1.2 Disk Cache

Disk cache serves as a buffer between the process in memory and the physical device.
The earliest study about disk cache was reported in 1968 [SV68]. All the disk requests
go to the cache system first and the cache system will decide how to process them. If
the requested sectors are found in cache, no physical I/O operation is performed. This
also means that the average access time of 1/0 is reduced. Disk cache also reduces the
amount of time that a process spends on disk accessing.

All modern operating systems use disk cache to reduce disk accesses. For instance,
Unix has an inode buffer to cache the (inode and directory) information of files and
has a buffer cache to cache data in files [Bac86]. Cache can be located in three possible
locations: a cache in host, a cache in the device storage controller, or a cache in the
drive itself.

Current disk caching techniques are not as good as we want. Most of current
research efforts on caching are on on-chip caching and memory chip design. Old tech-
niques such as hardware oriented one block/sector look ahead are still being used in
controlling disk cache. However, in on-chip cache design, new techniques have already
been developed to improve cache performance by a significant amount, e.g. cache parti-
tioning, software assisted data prefetching, smart hardware oriented data prefetching,
etc. Furthermore, traditional disk cache design often emphasizes on cache hit rate for
one level in the memory hierarchy. Very little effort has been spent to study the perfor-
mance of disk cache in terms of the execution time on a multi-level memory hierarchy
system.

The hit ratio of disk cache is generally 70%-90%. It is very low when compared
with the hit ratio (>90%) in memory cache. This difference is due to the poor disk
cache management to capture the locality of disk access. In this thesis, we will examine
new caching algorithms which are expected to produce a better performance and to

use the disk cache in a more efficient way.

Our project aims to design a general disk cache strategy that is simple and cheap
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enough to be incorporated in hardware, and can fully utilize the limited cache size.
The main idea is that by proper overlapping data fetching and program execution,
some sectors can be discarded and so they are not stored in the cache. When these
un-stored sectors are requested, they can be retrieved during program execution. So,
this method can effectively enlarge the cache size. To achieve this propose, we have
incorporated a cache partitioning and newly designed algorithms to build a disk cache

architecture. The basic contributions of our research are summarized as follows:

e Discover that a highly sequential property has been exhibited in the traced data.

e Discover that always prefetch performs much better than currently used prefetch-

ing mechanisms in disk cache design such as prefetch on miss.

e Design a disk cache architecture based on CPU cache partitioning technique
and new algorithms to control the disk cache in order to further improve the

performance of always prefetch.

e Build a simulator to investigate the performance characteristics of the designed

disk cache models in various kinds of disks.

e Compare the pros and cons of using the designed disk cache architecture and

algorithms to enhance the performance of disk 1/0.
o The designed models perform much better than the traditional ones in a wide
range of cache size.
1.3 Dissertation Outline
The outline of the rest of the thesis is as follows:
e Chapter 2 describes the previous work on cache design.

o Chapter 3 gives a detail description of the newly proposed models, including the

disk cache architecture and the control algorithms.
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e Chapter 4 describes the trace driven simulation environment and analyzes the
trace data in detail. Highly sequential property of the traced data is shown in

the analysis.

e Chapter 5 evaluates the performances of our proposed models for common disks.
Various simulation results are presented with detail discussion of the pros and

cons of different models.

e Chapter 6 evaluates the performances of our proposed models for high perfor-

mance disks.

e Chapter 7 gives the conclusion and suggests future extension of our work.



Chapter 2

Related Work

Since cache performance depends on a wide range of design and implementation pa-
rameters, many efforts have been paid to study the impact of these parameters on
processor caches [Smi82, Prz90]. Disk cache is generally much larger, in volume, than
CPU cache and often has a lower hit rate but many of the same design principles apply.

A comprehensive study in disk cache was discussed in [Smi85]. Trace driven simu-
lation is used to show, among other results, that cache sizes on the order of 8 Mbytes
can service 80%-90% of all disk requests [Smi85]. A simple prefetching strategy is also
explored to load block i+1 into the cache when block i is referenced, but concludes
that it is not uniformly effective for all types of files. Besides, it proposed to perform
intelligent prefetching based on the user types (system, interactive, batch) and the file
types (temporary, system, paging). However, it is difficult to incorporate Smith’s sug-
gestion in many cache designs due to the requirement of either analyzing the program

or accepting user advices in advance.

2.1 Prefetching

Prefetching is a very common method that incorporates into a cache design. Prefetch-
ing means fetch before actual reference. This method fetches some sectors before the
sectors are actually referenced. Therefore, if the prefetched sectors are actually refer-
enced, it will reduce the time of a process to wait for accessing the disk, and so will

increase the execution speed of a process. However, if the prefetched sectors are not be

b |
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referenced, they will still occupy the cache space. Then cache is polluted because they
kick out some useful data. Therefore, the usefulness of prefetching highly depends on
whether the mechanism can capture the access property of the requested data. Much
work has been done to improve the hit rate of prefetching. Prefetch on miss, prefetch
on hit and always prefetch are three commonly known prefetching methods [Smi82].
Prefetch on miss triggers prefetching action when there is cache miss. Prefetch on hit
triggers prefetching action when there is cache hit. Always prefetch triggers prefetching
action when there is a request. For currently used disk caches, they only incorporate
prefetch on miss as their prefetching mechanism. They sometimes do not incorporate
any explicit prefetching mechanisms but they rely on the implicit préfetching property
of a large block size. For instance of using a large block size, a request of one sector
will let a whole disk track to be loaded in the cache.

The traditional prefetching mechanism is One Block Look-ahead (OBL). It loads
sector i+1 into the cache when the sector i is referenced [Smi85]. This prefetching
algorithm is based on spatial locality. However, in modern file system design, the data
may not be continuous on disk, i.e. fragmentation may occur. Therefore, OBI may not
be a good mechanism to capture spatial locality, i.e. sector i4+1 may not contain data
that continue from sector i. This is the problem of the logical continuity not matching
the physical continuity. To solve this problem, maintaining an adaptive table of most
probable successors for each disk block was proposed [GAN93]. Each successor is tagged
with a weight which indicates the likelihood that it will be referenced given that its
parent is referenced. This table and associated weights are used to control the prefetch
mechanism. Unlike sequential prefetching, this algorithm functions well when logically
successive disk blocks are not physically adjacent on the disk. However, the overhead
of the large size of the adaptive table may make the algorithm impractical.

An adaptive prefetch design based on the run-time caching statistics of files was
proposed [SLO90]. Cache hit histories that are produced by prefetching are used as
a measure of the file access sequentialities and are used to determine the dynamic

prefetching length. More disk blocks are prefetched for transition that has a tendency
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to produce additional cache hits. Prefetch lengths are reduced for transition that
generates poor cache hit histories. This method can improve the cache utilization
and prefetch efficiency. However, to implement this function, a prefetch id is needed
to attach each data block to represent the prefetch type, demand or prefetch. of the

block. This may involves design overheads for maintaining the prefetch id and screening

various cache hits.

2.2 Cache Partitioning

Prefetching is a very useful technique because it can reduce the disk access time. On
the other hand, it has a tradeoff that the prefetched data flush out the original data, i.e.
the previously captured access pattern. Besides, some prefetched data may be useless
but they still flush out the data in the cache. For instance, after a huge sequential access
like playing an animation, whole cache wilkbe occupied by the prefetched data of the
animation and the prefetched data are usually useless afterward. Then the cache will
be like in a cold start situation. To eliminate the problem of previously captured access
pattern being flushed out, cache partitioning technique has been proposed. The basic
idea of cache partitioning is that the prefetched data should be placed in a separated

buffer so that they cannot affect the previously captured access pattern.

2.2.1 Hardware Assisted Mechanism

CPU cache also has this kind of prefetch problem when there is a loop accessing a
large array. To eliminate this problem in CPU cache in hardware and to preserve
the advantage of prefetching, a small fully-associative cache [Jou90], was presented to
improve the CPU cache performance. There are three methods to fill the small cache:
miss caching, victim caching and stream buffers. For miss caching, the data store in
both the original cache and the small cache on cache miss. If data are replaced in the
original cache but can find in the small cache, it can still provide a faster response to

the requests. For victim caching, it stores the data which are flushed out from the
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original cache. Simulation shows that the small cache needs only 1 to 5 entries to
effectively remove conflict misses. The stream buffer stores the prefetched data on a
cache miss. It is operated in a FIFO way. Simulation shows that the stream buffer can
reduce 72% of instruction cache misses and 25% of data cache misses.

Branch target cache/buffer is another product of CPU cache partitioning. A branch
target cache/buffer can reduce the performance penalty of branches in pipelined pro-
cessors by predicting the path of the branch and caching information used by the
branch. Two issues are needed to be solved: a branch resolution scheme to de-
cide the direction and target of a branch early in the pipeline, thus allowing tar-
get instruction fetch to start, and mechanisms to minimize the impact of unpre-
dictable branches. Many efforts have been paid to study the branch target cache
[DA95, CG94, Gon94, PS93, PSR92, BFI1].

Branch target cache/buffer has been widely used in CPU cache design. For in-
stance, Intel Pentium and Am29000 CPU have already incorporated this technique for
instruction reference only. Branch target cache is used to store the first block of the
non-sequential reference. Therefore, for each branch, the next instruction is probably
in the branch target cache. The execution time is then reduced. This technique has
been really incorporated in the CPU cache design but it has rarely been considered to

be used in disk cache design.

2.2.2 Software Assisted Mechanism

Most caches are controlled by hardware technology. However, hardware has very little,
or even no, information about a running process. This may lead to inefficiently uti-
lize the cache. If more information is required, expensive and complicated hardware
is needed. Therefore, software-assisted mechanism becomes another aspect in cache
design. Since software has more information about the program execution, it is very
suitable to act as a guide to control the cache.

A small prefetch buffer to support the software-assisted prefetching was ptoposed in

CPU cache [KL91, CMCH91]. Simulation shows that this approach greatly improves
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the cache performance. Therefore, placing the data in a small buffer does not affect
the effectiveness of prefetching. Using a small buffer to store the prefetched data is
commonly used in CPU cache. However, it has rarely been considered to be used in
disk cache.

For currently used disk caches, they generally use an unified cache approach. How-
ever, analog to the concept of software-assisted mechanism in CPU cache, disk cache
can also use the operating system to provide more information for cache control. The
most typical information is the file access statistics. Many cache partitioning algo-
rithms have been proposed according to the file usage and they usually give satisfactory
results. |

An adaptive algorithm was proposed to partition a fully associative disk cache that
were shared by several identifiable processes [TSW92]. The partition algorithm alters
the cache size dynamically in response to changes in the access pattern — the miss
rate of each process. The partitioning model is evaluated on a trace of 1.6 million disk
[/O accesses directed to 13 physical disks sharing one cache and its associated cache
controller. The partitioned cache performs slightly better than the unified cache by 1%
to 2% increase in hit ratio. A queueing network model is set up and shows that such
the 1% to 2% increase in hit ratio can provide a significant decrease in disk response
time in a system with a heavy throughput of 1/0 requests.

An attribute cache is another kind of cache partitioning [RF93, Ric94]. The at-
tribute cache uses the workload characteristics (the file access pattern) to determine
the appropriate cache configuration for a given cache size. It captures the statisti-
cally distinct behavior of the workload. The attribute cache is divided into various
parts that is efficiently tailored to different types of files such as inodes, directories,
executable and data. The trace driven simulation shows that Inodes and Directories
occupy 80% of all file requests. They are small and have a highly temporal access
pattern. A significant amount of space should be allocated to capture these requests.

This portion of the cache should have small blocks to effectively capture the temporal
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<~

nature. Small executables and datafiles have temporal access patterns but large exe-
cutables and datafiles have sequential access patterns. A temporal subcache which has
small block size is assigned to small executables and datafiles. A sequential subcache
which has large block size is assigned to large files. The attribute cache can reduce

the miss ratio by 25%-60% depending on the cache size when comparing with a UNIX

style cache.

2.3 Replacement Policy

Replacement policy is another important issue in cache design. The most commonly
used policy is least recently used (LRU) algorithm. LRU algorithm replaces the entry
that has not been used in the longest time. LRU algorithm is simple and easy to
implement in general. Although it is a commonly used policy, it may not be suitable in
all situations. For example, LRU treats fet¢thed data and prefetched data as the same
weight so that many useless prefetched data flush out useful data. Therefore, variations
of LRU algorithm are proposed to tackle this problem.

LRU algorithm has a problem that the cache can be occupied by lines that are ac-
cessed only once, flushing out lines that have a higher probability of being reused. Seg-
mented Least Recently Used (SLRU) is proposed to eliminate this problem [KLW94].
SLRU cache is divided into two segments: a probationary segment and a protect seg-
ment. Probationary segment holds the sectors that cause cache misses. When a sector
in the probationary segment is referenced again, it will be transferred to the protect
segment. Therefore, the protect segment holds only the sectors that were referenced
twice or more times. This can prevent those sectors, that were referenced once, flush
out all the data in the cache. The LRU line of protect segment will transfer to the
most resently used (MRU) space of the probationary segment if the protect segment
needs space to store new data. The structure of SLRU cache is shown in Figure 2.1

from [KLW94].
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Figure 2.1: Logical flow of SLRU cache lines

2.4 Caching Write Operation

Write operation is different from read operution because improper treatment of write
may cause inconsistency and loss of data. However, caching write operations can let
the process to run more smoothly because it does not need to wait the I/O to complete.
There are many kinds of write operations such as write back and write through. Write
back means that the written data are placed in the cache and will be written to the
disk later. Write through means that the written data are immediately written to disk.
Write back usually gives a better performance than write through. However, write
back cache may cause data loss in system failure. Therefore, protection mechanism
such as using SRAM (Static RAM) instead of DRAM to store the data was proposed
to prevent data loss.

Write-only disk cache was proposed to optimize the write operation [SO90, 0S92].
A single surface write-only disk cache model [SO90] was developed to approximate a
system with small amounts of disk cache or a system of parallel transfer disks where all
read/write heads can simultaneously transfer data. A multi-surface model [0S92] was
developed to study large disk cache systems and investigate the interferenc.e between

conflicting sectors on different disk surfaces during disk transfers. Write-only disk cache
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has an advantage that writes can be performed at little or no cost by piggybacking them
on reads.

Periodic update write policy [CS92] is widely used in existing computer systems. It
writes dirty cache blocks to disk on a periodic basis. The periodic update concept arises
from a need to balance the generation of 1/0 traffic with the potential loss of data due
to system failure. The response time for read operations under the periodic update
policy was compared with that using write through policy in [CS92]. It concluded that
the performance of periodic update write policy is better only if the cache system has
achieved a sufficiently high write hit ratio.

Redundant disk arrays are gaining increased attention as a feasible I /O organization
because it is cheap and reliable. In these I/O systems, reads and writes have different
performance impacts to the systems [Red92]. When any data are written to the disk
system, the corresponding parity information needs to be updated on the disks. To
update the parity information, we need to ;ead the old version of the data, XOR this
with the old parity information on the disk and the new data, and store the new parity
onto the disk. So, one write request results in four 1/O operations. Hence the writes to

the system cause significant overload on the system. An deeply analysis of read/write

characteristics of the I/O workloads was presented in [Red92].

2.5 Others

Hit ratio is a commonly used indicator to the performance of a disk cache but it may be
contrasted against the cache overhead. Cache overhead may reduce the performance
gain, or may even lead to a poor performance. Therefore, using cache overhead to
calculate the lower bound of hit ratio was proposed [Hos92]. Besides, analyzing an 1/0
tracing could also calculate the average hit ratio [Hos92].

The performance of disk cache was studied in fileserver based distributed computer

systems [ME90]. Cache in distributed systems involves additional design decisions due
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to the presence of both workstation and fileserver caches. Disk cache replacement poli-
cies for network fileservers were also studied [WEB93] and showed that the common
least recently used (LRU) policy, which is known to work well on standalone disked
workstations and at client workstations in distributed systems, is inappropriate at a
fileserver. Simple frequency based approaches, e.g. least frequently used (LFU) algo-

rithm, do better. If the frequency based policy takes file type into account, it can offer

additional improvements.

2.6 Summary

Prefetching is an attractive method to improve the cache performance. Many kinds
of prefetching, such as prefetch on miss, prefetch on hit, always prefetch and adap-
tive prefetch by access pattern, have been proposed. However, prefetching may bring
some undesirable data into the cache and flush out useful data. In CPU cache, cache
partitioning technique has been used to solve this problem. In disk cache, an unified
cache approach is generally used and there is very little consideration in cache parti-
tioning. Besides, cache partitioning can be used to capture different access pattern.
For instance, we can partition the disk cache according to different types of file, such
as directory, data, executable,..., etc.

Cache replacement policy mainly uses Least Recently Used (LRU) algorithm. Other
algorithms, such as Segmented Least Recently Used (SLRU) and frequency variation
of LRU, have been proposed to increase the efficiency. Those algorithms are mainly
based on the ordinary LRU algorithm.

Write policies of disk cache have been examined. Some common ones are periodic
write, write back and write through. Redundant disk arrays have been investigated
to provide a more reliable and cheap storage environment. Moreover, disk cache has
also been studied in different platforms, such as distributed system, fileserver and

workstation.

Old techniques, such as unified cache approach and prefetch on miss mechanism,
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have been applied to the currently used disk caches. Some disk caches even do not have
any prefetching mechanisms but use the implicit prefetching property of large block
to act as a substitute. In CPU cache, many new techniques have been developed to
improve the cache performance on those old techniques.

In this project, always prefetch is chosen as the basis of the new models. Cache
partitioning technique, similar to that in CPU cache, will be used to overcome the
problem of prefetching. Prefetched data have less chance to flush out useful stored
data in cache now. This aspect has seldom been considered in previous studies. Since
algorithms to control the partitioned disk cache have rarely been discussed, new policies

will also be designed to control the partitioned disk cache.



Chapter 3

Methodology and Models

3.1 Performance Measurement

3.1.1 Partial Hit

Hit/Miss model is commonly used to justify the effectiveness of a cache design. A
request to cache is a hit if the referenced sectors are in cache. Otherwise, it is a miss.
However, due to cache prefetching, the definition of miss becomes ambiguous. There
are situations where the demanded sectors are being prefetched from the disk to the
cache but the transfer is not finished yet. We cannot count this situation as cache hit
because it needs to pay time penalty. Also, we cannot count this as cache miss because
the time penalty needed to pay is less than the cache miss penalty. Therefore, the
concept of partial hit is introduced to describe this kind of situation.

Partial hit means that the requested sectors are being prefetched from the disk, i.e.
the sectors are coming on the way. The occurrence of partial hit is due to the slow
data bus speed and the limited bandwidth. Since the penalty of a partial hit is not

constant, we need a time model to accurately measure the disk performance.

3.1.2 Time Model

Accurate modeling of the disk access is a key point to analyze result in simulation.
Using time model can eliminate the fuzziness of the concept of partial hit and can

provide a clear and accurate way to show the performance.

17
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Assumption:
When a request of multiple sectors is issued, the process can use the transferred sec-
tors while the system can transfer the next sectors asynchronously. This assumes the
overlapping between program execution and data fetching.
Let
the time to consume one sector be Tu; the time between sending out a request and
transferring the first sector from the disk be C1; the transfer time per sector be C2.
For one request of N consecutive sectors, the transfer time of these all sectors from

disk to memory is C1 + C2x N.

The total time to transfer and use up all sectors in one request without any disk

cache is

Total Time per Request,, gisk cache = C1+C2% N +Tux N

where the Time is the total access time ingluding transferring and consuming all the
requested sectors.

However, when there is disk cache, the time can potentially be much smaller. Con-
sider the case when there is cache hit, C'1 and C2 can be eliminated. Since the time to

transfer data from disk cache to memory is so small that can be neglected, we have
Total Time per Request uepe pit = Tu*x N

Using a time counter, we can accurately get the time to indicate the situation of partial

hit. The total time of a partial hit is between Tu+ N and C1 4 C2* N + Tu* N.
For convenience, we set Tu to 1 and all values of C'/ and C2 are normalized with the

actual consumption time Tu. This normalization is only used to simplify the simulation

and without any loss of generality. In our simulation, we use the disk access time to

measure the performance of different models.
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3.2 Terminology

3.2.1 Transfer Block

A transfer block is the basic unit of data transfer between disk and disk cache. It can
contain multiple sectors. For example, a disk is designed to transfer 4-sector block at
one time. If there is a request just for one sector, the whole 4-sector transfer block
will be transferred. If there is a request of 2 sectors and these 2 sectors map to one
transfer block, only 1 transfer block (4 sectors) will be transferred. However, if these
2 sectors map to two continuous transfer blocks, the two transfer blocks (8 sectors) all
need to be transferred. For disk 1/0, a request may contain many transfer blocks. In
the following discussion, we generally set the (transfer) block size to 1 for convenience.
All the following discussions also apply to block size larger than 1 sector. We only
need to map the sectors to the corresponding transfer blocks. Then adjust the time to
transfer one block to be C2*N, instead of the transfer time C2 of 1 sector, where N is

number of sectors per transfer block.

3.2.2 Multiple-sector Request

< 1
: | 2
A disk request can demand PR
multiple sectors at one time. | 5
This exhibits a highly sequential |
property in one request. . 3

Figure 3.1: Multiple-sector Request

Unlike CPU memory request, a disk request can request more than one datum /sector
as shown in Figure 3.1. A multiple-sector request exhibits highly sequential property
in just one request. We can make use of this property to improve the performance

of disk cache. If the program execution can overlap the fetching of requested sectors.
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some sectors do not need to be stored in the cache now. Those un-stored sectors can
be fetched by the cache system during program execution.

Due to the slow data bus, large number of beginning sectors must be stored in the
cache first. While the process uses those cached sectors, the remaining sectors can be
prefetched. For one multiple-sector request, its size is N,. Some beginning sectors,
say its size is Nj, need to be stored in the cache and the rest can be fetched from
disk directly during program execution. In practical, the number of sectors, Ny, that
need to be stored first is generally larger than number of requested sectors, N, in one

request, i.e. N, < Ny. So, the idea of un-storing some sectors cannot be applied to this

case. This idea needs a larger block of continuous sectors to operate.

3.2.3 Dynamic Block, Heading Sectors and Content Sectors

——

\
A request of sector 1 !-_
to sector 4 \ 3
] 4 The 3 successive requests
o can be combined to form a
— large dynamic block. The
f r5 — 5 } :
Athauest of:secio {_ = 5| dynamic block exhibits
——m higher sequential property
= 1 6 [ than multiple-sector request
| P — —_ 1 {
| 74
Arequestof sector6 | [ =
to sector 10 | L ° |
| o2

Figure 3.2: Formation of Dynamic Block

When we analyze the disk traces to see whether there is relationship between 2
successive requests, we have found that they might be sequential. Therefore, we define
all blocks between 2 non-sequential requests as a Dynamic Basic Block, or simply
Dynamic Block as shown in Figure 3.2. Detail discussion on Dynamic block and its
property on the traced data can be found in Section 4.5. For instance, many successive

l-sector requests can be combined to form a large dynamic block. From Table 4.5 in



_Chapter 3 Methodology and Models 21

4

Chapter 4, the percentages of 1-sector requests which cannot be combined as dynamic
block are 1.62% for Access trace, 19.06% for Dbase trace, 13.07% for Excel trace and
37.53% for Word trace. The small percentages illustrate that many successive requests
can be combined to form a large dynamic block.

We can utilize this highly sequential property to improve the performance of a cache
design. Since the next request is highly predictable, it might not need to be stored in
cache if the prefetching is fast enough to get it. However, due to the slow data bus,
the cache system still needs to store some sectors in order to provide enough time to
prefetch other sectors in the same dynamic block. Therefore, the importance of each
sector in a dynamic block is different according to this point of view. If the cache stores
enough sectors so that the cache system has enough time to get the next sectors, the
next sector does not need to be stored in cache.

This is similar to the case of a multiple-sector request. We can reduce disk access
time by overlapping the program execution and the fetching of sectors from disk. A
block can be roughly divided into two par{s: heading sectors and content sectors as
shown in Figure 3.3. Heading sectors are the first few sectors that are stored in cache.
When a process is using the heading sectors, some content sectors will be fetched from
disk simultaneously. The size of heading sectors depends on the chosen algorithm. This
is an important idea of the newly proposed algorithms and it will be discussed more
detail in Section 3.3.

The difference between a dynamic block and a multiple-sector request is that the
size of a dynamic block, N4, can be much larger than that of a multiple-sector request,
N,.. Therefore, we can treat a dynamic block to be a very large multiple-sector request.
For the case of multiple-sector request, N, is less than the number of heading sectors N
that need to be stored in cache, and the idea of overlapping data fetching and program
execution may not apply. However, for dynamic block, Ny is larger than N, because of
the large size of a dynamic block. The idea of overlapping data fetching and program

execution can apply more efficiently.
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Figure 3.3: Heading Sectors and Content Sectors

3.2.4 Heading Reuse and Non-heading Reuse

Before we discuss our new models of disk cache, we have to introduce a new concept
about the reuse of data. The reuse pattern ¢f a dynamic block can be divided into two
types: heading reuse and non-heading reuse as shown in Figure 3.4.

Heading reuse of a dynamic block is defined as that the first heading block of the
current dynamic block is equal to the first heading block of some previously formed
dynamic block in the cache. The ‘previous’ dynamic block may not be exactly the
same as the current one. In Figure 3.4, there were some requests forming a dynamic
block of sector 1 to sector 5. Now there are some requests forming a dynamic block of
sector 1 to sector 5 again, or sector 1 to sector 4,..., etc. All these requests are said
to be heading reuse.

Non-heading reuse is defined as that the first heading block of the current dynamic
block is not equal to the first heading block of all previously formed dynamic blocks in
the cache. In Figure 3.4, there were some requests forming a dynamic block of sector 1
to sector 5. Now there are some requests forming a dynamic block of sector 3 to sector
5, or sector 2 to sector 3,..., etc. Then these requests are said to be non-heading reuse.

For traditional algorithms of disk cache, they do not consider whether the request
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Figure 3.4: Two Different Kinds of Reuse

is heading reuse. However, the basis of our proposed algorithms is that the fetching of
sectors can be overlapped the program execution. It divides requests/dynamic blocks
into heading part and content part. The heading part will be stored in the cache in
order to provide enough time to fetch the rest. Depending on the algorithms, the
content part may not be stored in the cache. As a result of a non-heading request
occurs, the requested sectors may not be in cache and our algorithms need to pay time
penalty to get them. The frequency of heading reuse and non-heading reuse will affect

the performance of the proposed algorithms.

3.3 New Models

The traced disk access pattern shows a strong sequential property. Hence prefetching
should be useful to reduce the average disk access time. In fact, we have chosen
always prefetch technique to incorporate into our proposed models. Besides, by proper
overlapping the program execution with the prefetching of data, we expect that the

cache performance can be improved. To prevent flushing out useful data by prefetching,
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we adopt the technique of cache partitioning. It divides the cache into two parts: one
part is similar to an ordinary cache and another part is a small buffer. The small
buffer is used to store the prefetched data in order to reduce the cache pollution due to
inaccurate prefetching. The following models are based on the CPU cache partitioning
technique with newly designed algorithms to control the flow of data into these two
parts of the cache.

Model names of the newly designed models are given in here for convenience and
for consistency to the simulation. Model 4 is set to unified cache with always prefetch.
Model 5 is set to the basic partitioned cache model as discussed in Section 3.3.2. Model
6 is set to the partitioned cache with ASST applying to each request as discussed in
Section 3.3.3. Model 7 is set to the partitioned cache with ASST ‘applying to each
dynamic block as discussed in Section 3.3.4. Model 8 is set to the partitioned cache

with SEHT as discussed in Section 3.3.5.

3.3.1 Unified Cache with Always Prefetch

This is not a newly designed model. However, it is different from currently used
disk caches because it uses always prefetch to take the following blocks/sectors. For
traditional disk caches, they only use prefetch on miss or large block size to take the
following blocks/sectors. From the analysis of the traced data, we discover that there
is highly sequential property in the I/O requests as discussed in Section 4.5. Therefore,
we expect that the performance of always prefetch must be better than that of prefetch
on miss, and this has been verified by our simulation.

This model triggers the prefetching mechanism by each block reference. This
model always prefetches data from disk after or during each block reference. This
is a very aggressive method. If the next requested blocks/sectors matches the prefetch-
ing blocks/sectors, always prefetch can further reduce the disk access time. On the
other hand, always prefetch has the higher chance to increase cache pollution. This

model is named as Model / in the simulation.
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Figure 3.5: Flow Chart of Model 4

3.3.2 Partitioned Cache: Branch Target Cache and Prefetch Buffer

In the analysis of the disk traces, we have observed that there is a highly sequential
property in the disk access pattern. Detail discussion can be found in Section 4.5.
In order to overlap the program execution with the prefetching of data, it might be
possible that the cache system can just store the heading blocks/sectors of a dynamic
block and let the prefetching system get the remaining ones. The prefetched ones will
be stored in a small buffer and will be discarded after they are used. This basic model
partitions the cache into a Branch Target Cache (BTC) and a Prefetch Buffer (PB).
BTC is a cache with its size like ordinary cache while PB is a small buffer. PB is

exactly like the fetch buffer proposed in CPU cache [Jou90, KL91, CMCH91]. And our
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models are built on this partitioned cache architecture. Figure 3.6 shows the BTC and

To Main Memory To Main Memory
.
A
Traditional Disk — | Branch Target Prefetch
Cache m | Cache (BTC) Buffer (PB)
=
- —
.
A2 ¥ v
v v
To Harddisk To Harddisk

Figure 3.6: Partitioned Cache: BTC + PB

Branch target cache stores only those sectors which cause cache misses. Due to
the incorporation of always prefetch technique, only the first block/sector of a dynamic
block causes cache miss. Others will just cause partial hits. So the branch target cache
stores only the first block of each dynamic block. The main purpose of BTC is that
the cache tries to contain the requested data at each branch reference.

Prefetch buffer is a small buffer. It is used to store the prefetched data. Because
of its small size, the data inside it will be replaced very quickly. Since data fetching
can overlap the program execution, storing prefetched sectors in PB can eliminate the
problem that the prefetched data flush out useful data in the ordinary cache. The
replacement policy of prefetch buffer is LRU algorithm.

The operation of this basic model is as shown in Figure 3.7. When there is cache hit,
the demanded blocks will return to the process. The cache system starts to prefetching
the following sectors. All these sectors will be stored in PB. When there is partial hit,
all the prefetched sectors are also stored in PB. When there is cache miss, the first
block of the demanded blocks is checked whether it is the starting of a dynamic block.

If it is the starting of a dynamic block, it will be stored in BTC. Otherwise, it will be
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Figure 3.7: Flow Chart of Model 5

stored in the PB. The cache system will then prefetch the following blocks which will

be stored in PB.

The large BTC stores only the first block of each non-sequential reference and all

prefetched data are captured by the PB. This combination can eliminate the problem of

flushing out useful data for inaccurate prefetching, and may provide good performance

at each branch reference. Since the BTC stores more first blocks than the ordinary

unified cache, the effective cache size of the proposed model is greatly enlarged when

comparing with the case of unified cache.

On the other hand, owing to the slow data bus and the limited bandwidth, the disk

cache system actually does not have enough time to prefetch the sequential referenced
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sectors. Even though the next sector has very high chance to be referenced, the first
block of each non-sequential reference in BTC cannot provide enough time for the
prefetching to finish. This is why partial hit occurs so often. The prefetched data
can only be on the way and the cache system still pays a time penalty to prefetch
requested data. Besides, if the branch target cache just stores the first block of each
non-sequential reference, situation of non-heading reuse might occur. Branches might
jump directly to the content block of previous dynamic blocks. These branches cannot
be handled by BTC because the branched data are not stored in the BTC during

previous request.

Some requests may begin at this
sector. Then for large first block, it

— ‘f & ==
___first sector [ may have enough time to fetch
5 following blocks.
-
A first block that i b
stored in BTC .
Some requests may reference the
e nearly last sector. Then, no matter
L o :
. ] how large the first block is, there is
L] last sector always not enough time to fetch

following blocks.
Figure 3.8: Problem of Storing First Block in BTC

The problem of not enough time for prefetching cannot be solved with large block
size. This is because a reference may jump to any part of the block, e.g. the near end of
the block. As a result, only small portion of the first block can be used to provide time
for prefetching in this case. The situation is shown in Figure 3.8. Besides, large block
size may lead to fewer heading blocks to be stored in cache, and it makes a problem of
inefficiently utilizing the cache.

To solve this problem of insufficient time for prefetching, BTC should not only store
the first block, but also some of the following blocks in order to ensure enough time
for data prefetching. To make the cache partitioning design suitable for disk cache to
use, and to eliminate the problems of traditional BTC and PB, we have invented new

algorithms to control the flow of data/sectors into BTC and PB.
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This basic model is named as Model 5 in the simulation. It acts as a control exper-
iment to our newly proposed models because our models are built on it. Model 1 to
Model 4 are the models of unified cache for performance comparison in the simulation
and will be discussed in Section 4.3. Model 6 to Model 8 are the newly proposed models

and will be discussed in the following sections.

3.3.3 BTC + PB with Alternative Storing Sector Technique

The cache system has enough
time to get these sectors, so they
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j
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BTC in order to keep enough
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\

Starting head,
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Figure 3.9: Alternative Storing Sector Technique (ASST), C1=3, C2=2

The problem of the basic model is that the time penalty of getting the next sector
is large due to the slow data bus and the limited bandwidth. Therefore, a new method
is introduced to arrange the sectors going into BTC or PB. This new method, called
the Alternative Storing Sector Technique (ASST), is introduced to rearrange sectors
going into BTC or PB. Since the ASST applies to a block of sequential sectors, it can
apply either to multiple-sector requests, or dynamic blocks. In this section, the ASST
will be applied to multiple-sector requests, i.e. per request block basis.

ASST not only stores the first heading block/sector that causes the cache miss into

the BTC, but also stores some content blocks/sectors of each dynamic block in BTC
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in order to allow the cache system to fetch the remaining sectors without paying time
penalty. In ASST, whether a sector needs to be stored in BTC is determined by the
fized parameters - start-up time Cl and transfer time C2. The sectors that do not
need to be stored in BTC is termed as ‘un-stored’, but they will still be stored in PB.

To illustrate the operation of the ASST, let us consider a case shown in Figure 3.9.
C1 is now equal to 3. C2 is equal to 2 and Tu are equal to 1. Since Tu is equal to 1, the
cache system must store 3 (value of C1) sectors in the cache in order to compensate for
C1. However, after the first three sectors are used, the cache system has just started
to transfer the forth sector. So, the cache system needs to store extra 2 sectors (value
of C2) in order to compensate the time of transferring the first un-stored (sixth) sector.
Therefore, the size of ‘starting head’of a block of request is equal to 5 l(Cl+C2) sectors.
The five sectors are needed to be stored in BTC so that it can compensate the time
needed to transfer the first un-stored (sixth) sector.

After the first un-stored (sixth) sector arrives, the process starts to use it. Note
that the sixth sector is stored in PB becal;se there is enough time to get it in each
reuse. If the seventh sector has already been stored in BTC, the cache system can also
pass it to the process. During the processing of the sixth and seventh sectors, it has
enough time to get the eighth sector. Therefore, the eighth sector does not need to be
stored in BTC, i.e. the eighth sector is the second un-stored sector. Similarly, if the
ninth has also already been stored in BTC, during the time of the processing the eighth
and ninth sectors, the cache system has enough time to get the tenth sector. Therefore,
following the same argument, the un-stored sectors are 6th, 8th, 10th, 12th...., and
$o on.

Therefore, which sectors needed to be stored in BTC can be determined from the
hardware parameters, i.e. C1 and C2. The size of starting head is [C1+C2] where
[C14C2] is the ceiling of C14C2. Then which of the next sectors needed to be stored
in BTC depends on the value of C2—Tu, and follows the rule that the cache system
should store enough previous sectors in order to prefetch the next un-stored sector. In

processing of the prefetched sector will also contribute the time (i.e. the use-up time)
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to get the next un-stored sector. Therefore, the operation of ASST can be summarized

by the following procedure. Let there be a time counter TC; [x] be the ceiling of x.

Procedure ASST
BEGIN
reset the counter to zero
storing the starting head, [C1+4C2] sectors, in BTC
TC = [C1+C2] - (C14C2)
DO until no more sectors in the block
IF TC > C2
TC =TC-C2 + Tu

current sector does not need to be stored in BTC

ELSE
TC = TC 4+ Tu
current sector has to be stored in BTC
ENDIF
ENDDO

END

When T'C > C2, there is enough accumulated time to get the next sectors and so
the next sector is not needed to be stored ine BT C. The equation T7C = TC — C2+ Tu
means that the cache system has to pay time to get the un-stored sectors, i.e. T'C'— (2.
However, after getting this sector, it will also contribute a use-up time T'u to get the
following sectors. Therefore, the total time changes from T'C' to TC — C2 + T'u. When
TC < C2, the sector must be stored in BTC in order to accumulate time to fetch
the next one. The stored sector will contribute a use-up time Tu. So, the total time
changes from T'C' to T'C' + Tu.

To incorporate the ASST algorithm into hardware, a time counter is needed to
count the time as shown in the ASST procedure. For each arriving sector, we have to
update the counter and check whether the sector needs to be stored in BTC. Then for
each new request, the counter is reset to zero in this model. The operations are simple,
so the time of calculations can be ignored when comparing with the slow disk access
time. As an example of applying the ASST algorithms, Table 3.1 shows un-stored

sectors for C2=2 and C2=1.5 when C1=3.

ASST can fully utilize the idle data bus. It uses always prefetch as its basis. BTC
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Un-stored sectors
9=2 6th, Sth, 10th, 12th, 14th,...
C2=1.5 | 6th, 7th, 10th, 11th, 14th, 15th,...

Table 3.1: The Un-stored Sectors for C2=2 and C2=1.5

stores some heading and content sectors, the prefetching system can have enough time
to get the rest before they are needed. Therefore, this ‘un-stored’ ones do not need to
be stored in the BTC. They are only stored in the prefetch buffer. When the process
requests them, a hit in the prefetch buffer will occur. Cache pollution for BTC due
to prefetching will be greatly reduced because the prefetched data will go to the PB
instead. Useful blocks of data can remain in the BTC. Besides, BTC stores blocks
from more dynamic blocks now and the problem of not enough time to do prefetching
is minimized.

The operation of this model is shown in Figure 3.10. When there is cache hit, the
demanded blocks will be returned to the pro;ess. The cache system starts to prefetch
the following sectors. All these sectors will be stored in BTC or PB according to
applying ASST to each request separately. When there is cache miss, the first block is
fetched from disk and all the following sectors are prefetched from disk due to always
prefetch. All the fetched and prefetched sectors are stored in BTC or PB according to
applying ASST to each request. When there is partial hit, the sectors are also stored
in BTC or PB according to applying ASST to each request.

In this model, the Alternative Storing Sector Technique applies to each request
separately. Since C1 is usually very large, the starting head calculated from ASST
contains many sectors. Consequently, requests of a small number of sectors are com-
pletely stored in the BTC and the cache system cannot gain the advantage of PB. In
applying ASST, the size of starting head is fixed and which content sectors needed to
be stored in BTC are also predefined. If the block which ASST operates is large, more
sectors will not need to be stored in BTC, and the cache space to store a request is

reduced. In other words, the cache size is effectively enlarged. However, if the request
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block is not large, ASST cannot show its effectiveness. In this model, ASST is applied
on the request block which may not fully utilize the power of ASST as shown in Fig-
ure 3.11. We will discuss this problem in detail in the next Section 3.3.4. This model

1s named as Model 6 in the simulation.
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— on the way of : =
‘ prefetching?
M
S, (RN v Prefetch
‘ ‘ Wait the following blocks |
Read blocks | comming - from disk if they |
from disk | requested Retum blocks to are notin BTC
o S | bloc:gs process or PB
| |
Al i )
According to ASST, P' . " According to ASST, According to ASST,
store the blocks In BTC i eIch | store the blocks in BTC store the blocks in BTC
or PB, and retum | ::’0:‘ dis%?i'ol:t: or PB, and return or PB, and retum
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Figure 3.10: Flow Chart of Model 6 and Model 7
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3.3.4 BTC + PB with ASST Applying to Dynamic Block
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Figure 3.11: Applying ASST to Multiple-sector Request and Dynamic Block (C1=5, C2=2)

There are many small requests in the traced disk I/0O. The most frequent one is the
l-sector request. Therefore, applying ASST tq every request causes all small requests to
be stored in the BT C completely. In the previous Section 3.2.3, we have mentioned that
there are high interrelationship between successive requests. Many successive requests,
including 1-sector requests, can be combined to form a larger block of sequential sectors,
i.e. dynamic block. Therefore, we propose to apply ASST on a dynamic block basis
because the block that ASST can apply on will be large. Figure 3.11 shows the situation
of ASST applying to multiple-sector request and dynamic block for C1=5 and C2=2.

This model is very similar to the previous model except that the ASST applies to
each dynamic block. So, the flowchart of this model is the same as the previous model
as shown in Figure 3.10. The operation is also very similar to the previous case. The
procedure of ASST is nearly the same except that the time counter, T'C', will only be
reset at each starting of a dynamic block, i.e. at each non-sequential reference. This
is different from the case of previous model that the time counter T'C' will be reset
for each request. This difference can improve the cache performance greatly. The
comparison of performance of the previous model, Model 6, and this model can be

found in Section 5.7.2. This model is named as Model 7 in the simulation.
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3.3.5° BTC + PB with Storing Enough Head Technique

In the simulation, we have observed that the performance of the basic model, Model
5, is quite good in the case of very small cache size. This better performance of
Model 5 reveals that heading sectors are more important than the content sectors.
This is because C1 is generally much larger than C2. Missing the first heading block
causes C14-C2 time penalty while missing a content block causes C2—Tu time penalty.
Therefore, there is a simple idea that if the cache system just stores some heading
sectors of each request in the BTC, it may provide a good performance. No any
content sectors of a request are stored in the BTC, i.e. all content sectors of a request
are stored in PB.

If the cache system stores only some heading sectors of each request, it will pro-
duce a time penalty in each reuse because the BTC has not stored enough sectors to
provide enough time to prefetch the remaining sectors. On the other hand, BTC can
store heading sectors from more requests, i.erthe effective cache size is enlarged more.
Therefore, there is a competition between storing heading sectors from more requests

and the time penalty paid for getting remaining sectors. The situation is shown in

Figure 3.12.

All the remaining sectors will not be stored
in BTC. Small time penalty is needed to
pay for getting these sectors.

Just store the 'redefined'
heading sectors in BTC
|

A request of 9 sectors

Figure 3.12: Storing Some Heading Sectors for Each Request
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Since the idea is applied to each request, the size of starting head [C1+C2] for
ASST is too large and nearly all requests will be completely stored in the BTC. This
is because the size of each request is generally less than [C14+C2] sectors. Therefore,
the size of the starting head should be reduced. The number of starting sectors of each
request that will be stored in BTC is redefined:

Start up time C1

Size of starting head = : — seclors
Transfer time C?2

This equation is a compromise between minimizing the size of starting head and the
time penalty for each reuse. The equation defines that the total transfer time of the
stored starting head (N sectors) when there is no cache, i.e. C2*N, is equal to the start-
up time C1. By this equation, the size of the starting head is reduced and starting

heads from more requests can be stored in BTC.

Successive 1-sector requests form a
large dynamic,block

All requests are stored in BTC according to the
algorithm of storing the starting head of each request.

Figure 3.13: Problem of Storing Starting Head of Each Request to 1-sector Requests

However, the above idea has a problem that all 1-sector requests go to BTC as shown
in Figure 3.13. Since the most frequent request size is 1 sector, the above idea is nearly
useless. To solve this problem and make the idea useful, we incorporate the method of
ASST applying to dynamic block in this idea. Note that the basic idea is still to store

only the starting head of each request. For instance, there are many successive 1-sector
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requests and they can be combined to a larger dynamic block. When ASST applies to
this dynamic block, some 1-sector requests need not be stored in BTC. Therefore, this
method can reduce the number of 1-sector requests stored in BTC. Applying ASST to

dynamic block can also reduce the storing of many small size requests.

A request of 9 sectors Successive 1-sector requests

| T
1l2(3 (4|5 6&7;8 9 10 11]12;13J14‘15 16 17 18
(% W L Lo f. _|

|
e e

Just store the 'redefined' Some requests are not stored in BTC when applying
heading sectors in BTC ASST to the whole dynamic block, i.e. the cache
\ system can discard some 1-sector requests.

All the remaining sectors are
not be stored in BTC. v 0

All requests combine to form a large dynamic block

Figure 3.14: Storing Enough Head Technique (SEHT), C1=10, C2=2

Therefore, by combining the above two ideas: storing only the starting head of each
request and applying ASST to each dynamic block, we can introduce a new algorithm,

called Storing Enough Heads Technique (SEHT). The two criteria of SEHT are

1. The sector is a heading sector (the redefined one) of a request.

2. The sector is needed to be stored according to ASST applying to the current

dynamic block.

A sector will be stored in BTC according to SEHT only if the sector satisfies the
above two criteria simultaneously. Storing Enough Head Technique (SEHT) stores the
redefined heading sectors of each request, except that those un-stored sectors predicted

by applying ASST to the current dynamic block. Consider an example of application



Chapter 3 Methodology and Models 38

of SEHT in Figure 3.14. By applying the first criteria to each request. there is a group
of sectors (Group 1) that should be stored in BTC. Then apply the second criteria to
the current dynamic block and get another group of sectors (Group 2) that should be
stored in BTC. Intercepting the two groups, Group 1 and Group 2, we will get the
sectors that need to be stored in BTC according to the SEHT. That means a sector
must satisfies the two criteria simultaneously in order to be stored in BTC. All other
sectors are stored in PB.

The operation of this model is similar to the Model 7 except that the algorithm
to control the flow of sectors to BTC or PB is different. The flowchart of this model
is shown in Figure 3.15. To incorporate SEHT into hardware is also simple. Only
the heading sectors of each request have chance to be stored in BTC and the size of
heading sectors is fixed. In addition, for each request, apply ASST to the currently
formed dynamic block and check whether the current sector is needed to be stored. If
the sector fulfills both requirements, it will ke stored in BTC. Otherwise, the sector
will be stored in PB.

This method introduces time penalty even for a cache hit because it stores fixed /limited
amount of heading blocks for each request, neglecting how large the block of a request
is. Therefore, SEHT can effectively increase more cache space to store more data from
different branches than that of ASST. On the other hand., its tradeoff is the small time

penalty for each request. This model is named as Model 8 in the simulation.

3.4 Impact of Block Size

In previous discussion, block size is generally set to 1 sector. The new algorithms can
also suit to the cases of block size larger than 1 sector with simple modification. The
basic modification is to change the basic unit of transfer to a N-sector block, instead of
l-sector block. All sectors are mapped to their corresponding transfer block. Besides,
the transfer time of the basic block changes to C2*N, instead of the original C2 for 1-

sector block. Furthermore, the use-up time of the basic block changes to Tu*N, instead
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Figure 3.15: Flow Chart of Model 8

of the original Tu for 1-sector block. For instance, the size of starting head of SEHT

is changed as follow:

Start up time C1

' tarting head =
Surea] Bating e Transfer time C2 % Block Size

sectors

Following similar argument, the starting head of ASST should contain [C1/N+C2]
blocks where N is the block size. However, there is a problem as shown in Figure 3.8
for the first starting block when the block size is larger than 1 sector. The requested
sectors may locate at the end of the first starting block. Therefore, in order to maintain

enough time to prefetch the un-stored blocks, we may need to conservatively define the
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size of starting head to be [C1/N+C2]+1 blocks. If a more accurate timing for the
ASST is needed, the cache system should store enough number of blocks so that the
time to use up the requested sectors in those block is equal to, or just greater than,
[C14C2*N]. The time [C14+C2*N] means that the total use-up time of the requested
sectors in the stored heading blocks should compensate the startup time of the disk
and the transfer time of the first block. Below is a simple modification of the ASST

algorithm to suit the case of block size larger than 1 sector.

Procedure ASST
BEGIN
reset the counter to zero
storing enough heading blocks to cover [C1+C2*N].
TC = the use up time provided by the stored heading block — [C1+C2*N]
DO until no more blocks
IF TC > C2*N
TC = TC - C2*N + Tu*N
current blockdoes not need to be stored in BTC
ELSE
TC = TC 4+ Tu*N
current block has to be stored in BTC
ENDIF
ENDDO
END

v



Chapter 4
Trace Driven Simulation

4.1 Simulation Environment

In the simulation, we have traced the disk I/O of four applications under Microsoft
Windows environment. The applications that we have used to get the traces are Mi-
crosoft Access, Microsoft Excel, Microsoft Word and Dbase for Windows. We have

used a 486 personal computer with 4AM RAM'to obtain the traces. Millions of requests

have been collected.

Before discussing the result, we should know the assumptions of the simulation:

1. By proper overlapping the program execution and the data fetching, when the
process is using some sectors, the cache system can transfer the remaining sec-
tors asynchronously. Therefore, the computing environment must support asyn-

chronously I/0O operations.

2. The simulator treats write operation same as read operation and ignores the

actual writing back of data.

3. The use-up time Tu is normalized to 1. All other timing values, e.g. start-up

time C1 and transfer time C2, are the ratios to actual value of the use-up time.

4. Branch Target Cache is a n-way set associative cache. Within each set, the
replacement policy follows LRU (Least Recently Used) algorithm. Prefetch buffer

is a fully associative cache. Its replacement policy also follows LRU.

41
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5. The cache line size is set to the transfer block size.
6. Time for searching the cache and time for killing a prefetch is negligible.
The parameters of the simulation are as follow:

e The data format of a record in the trace is shown as below:
<action, cylinder, sector, head, drive, number of sectors>

action equals to 0 and 1 means read and write operations respectively.
o Cache size takes the values of 1M, 2M, 4M and 8M.
e PB size = 0.1M, therefore, BTC size = Cache size - 0.1M.

e Block size takes the values of 1 sector, 2 sectors, 4 sectors and 8 sectors.

e Set associativity takes the values of 1-way, 2-way and 4-way.

e Start-up time C1 takes the values of 5, 10, 15 and 20 for the case of common disk

and it takes the values of 1, 2, 3 and 4 for the case of high performance disk.

o Transfer time C2 takes the values of 0.5, 1 and 1.5.

e Bight models have been simulated. Model 1 to Model 4 are the models for
performance comparison and will be discussed in Section 4.3. Model 5 is the
control model of cache partitioning technique. Model 6 to Model 8 are the newly
proposed models. Model 5 to Model 8 have been discussed in Section 3.3. The

eight models are as follows:

— Model 1: No Cache
— Model 2: Unified Cache without Prefetch
— Model 3: Unified Cache with Prefetch on Miss

— Model 4: Unified Cache with Always Prefetch
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Model 5: Partitioned Cache: BTC + PB

— Model 6: BTC + PB with ASST Applying on Request

Model 7: BTC + PB with ASST Applying on Dynamic Block

Model 8: BTC + PB with SEHT

4.2 Two Kinds Of Disk

In the simulation, we have simulated two kinds of disk. They are Common Disk and
High Performance Disk. We categorize different kinds of disks by the values of the
start-up time C1, the transfer time C2 and the use-up time Tu. For common disk and
high performance disk, the transfer time C2 is set to near the use-up time Tu because
it is on a high performance computing environment.

For common disk, the start-up time C1 is much larger than the transfer C2. For
high performance disk, the start-up time C2 is near the transfer time C2. C1 and
C2 play an important role in our newly proposed algorithms, ASST and SEHT. Their
values control the size of the starting head and how many sectors have to be stored in
BTC. Therefore, we will examine the effect of our cache models on common disk and

high performance disk.

4.3 Control Models

To compare the performance of the new models, we have also simulated four models
for comparison: no cache (Model 1), unified cache without prefetch (Model 2), unified
cache with prefetch on miss (Model 3) and unified cache with always prefetch (Model

4). They are the common models used in current disk cache programs.

4.3.1 Model 1: No Cache

This model acts as a boundary model because having cache should performs better

than no cache. Therefore, it gives the upper bound of the time. The timing can be
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calculated very easily. Each request causes the sectors to be read from the disk and
transferred to the process. Therefore, the disk access time per request is equal to C1
+ C2 * N, where C1 is the start-up time of the disk; C2 is the transfer time for one

sector from disk to memory; N is the number of the requested sectors.

A disk request from
process

Read blocks |
from disk

[ |
|
| |
Il
Return blocks to

process

Figure 4.1: Flow Chart of Model 1

4.3.2 Model 2: Unified Cache without Prefetch

This model is commonly used in current disk cache design. For cache hit, it passes the
blocks/sectors from cache to process. For cache miss, it gets the blocks/sectors from
disk to cache and then from the cache to process. When the cache is full, the LRU

replacement strategy is used. Note that it only has cache hit and cache miss. but does

not have any partial hit.

4.3.3 Model 3: Unified Cache with Prefetch on Miss

This model is also commonly used in current disk cache design. Prefetching mechanism
is only triggered by cache miss. When a cache miss occurs, requested blocks will be
fetched from disk. Then some following blocks will be prefetched to the cache. For

cache hit, this model passes the blocks from cache to the process and does not.frigger

any disk action.
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Figure 4.2: Flow Chart of Model 2

4.4 Two Comparison Standardé

One of the comparison standard is to compare with the model of no cache. We use an
absolute reduction in time to show the performance of all the models. The higher the
absolute reduction in time is, the more the absolute performance of a model is. The

absolute reduction in time is defined as

Time of no cache — Time of our model
Time of no cache

Absolute reduction in time =

* 100%
where the time is the total process stall time due to the disk access.

The another baseline is to compare with Model 3, unified cache with prefetch on
miss. This is a common method used in current disk cache design. The relative
performance to Model 3 can give us insight to the effectiveness of our models. The
indicator of this relative performance is relative reduction in time which is defined as

Time of Model 3 — Time of our model
Time of Model 3

The higher the relative reduction in time is, the more the relative performance of a

model over that of Model 3 is.

Relative reduction in time =

* 100%
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Figure 4.3: Flow Chart of Model 3

The simulation results are generally represented by the values of absolute reduction

in time and relative reduction in time.

4.5 Trace Properties

Before we go into the detail of the simulation result, we should have a throughout
understanding of the traced data first. The total number of requests for the four traces
is shown in Table 4.1. The distinct number of sectors requested is the distinct number
of sectors that the trace has been touched. It ignores how many times of those sectors

were touched. On the other hand, the total number of sectors requested is the total
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Access Dbase Excel Word
Total number of requests | 6,051,491 | 1,939,119 | 1,027,301 | 1,797,561
Total number of sectors | 10,518,494 | 10,195,308 | 5,652,077 | 2,547,843
requested
Distinct number of sectors | 105,124 63,606 36,209 80,659
requested
Average reuse ratio 100.06 160.29 156.10 31.59

Table 4.1: Number of Requests for the Four Traces

number of sectors that transferred between disk and memory if the cache system does
not exist. The average reuse ratio is the ratio of total number of sectors requested over
distinct number of sectors requested. The average reuse ratio gives some idea on the
reuse property of a sector.

By analyzing the requests in these four traces, we have found that there are many
multiple-sector requests and the number of sectors per request is not small. The number
of sectors per request can be as large as 127 as shown in Table 4.2. It is very different
from the CPU reference request because CPU does not issue a request for a large
block of data from the memory. This also implies that disk accesses exhibit a highly
sequential property in one request. This is very important in disk cache design, and
we would expect that always prefetch will give better result than prefetch on miss.

Although there are many requests for a large number of sectors, the most frequent
number of sectors per request is still  sector. On the other hand, from the analy-
sis of the displacement between each request, we have found that many requests are
continuous from the previous one. Displacement between two requests is defined as

the starting address of the current request minus the ending address of the previous

request.

displacement = starting address of current request—ending address of pervious request

Table 4.3 is the summary of the displacements from -1 to 3 for the four traces.
The continuous percentage is the percentage of the frequency for. displacement=1

over the total frequency for all displacements. The continuous percentages range from
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No. of sector / request | Access Dbase Excel Word
1 4,809,434 | 1,112,830 | 513,061 | 1,660,561
2 277 23,946 14,202 2,234
3 303 28,930 10,489 4,357
4 1,173,568 | 23,738 10,424 83,103
5 205 13,453 11,192 750
6 172 17,885 5,850 608
7 198 9,484 8,181 761
8 7,722 360,927 | 266,360 | 21,127
o o o o o
79 o ° 2 °
93 2 11 °
127 28
Table 4.2: Number of Sectors per Request
Displacement Access Dbase | Excel | Word
-1 359 1,027 786 4,372
0 158 4,099 562 2,921
1 4,145,545 | 878,829 | 565,827 | 959,655
2 89,416 | 49,089 435 6,606
3 83,422 2,263 266 7,534
Continuous Percentage | 68.50% | 45.32% | 55.08% | 53.39%

Table 4.3: Frequency of Displacement
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45% for Excel to about 69% for Access. This shows that many requests will follow the

previous requests, and the accuracy of always prefetch will be very high.

Since there is high inter-relation between requests from the above analysis, we

expect that requests can be virtually coalesced to form a request for larger block of

sectors. This coalescing block will further reflect the sequential property of a trace.

The coalescing block is named as Dynamic Block since its size varies. Although the

most frequent size of a request is 1 sector, the most frequent dynamic block size is not

equal to 1 sector. The frequencie's of dynamic block sizes for Access trace is partial

shown in Table 4.4. The frequencies of dynamic block sizes for other traces are similar

to this and thus are not shown here.

Dynamic Block Size | Frequency Combined Frequency

1 78,031 (1,77955) (2,47) (3.8) (4,11) (5,4) (6,3) (8,2)
2 75,915 (1,23) (2,75887) (3,3) (4,1) (5,1)
3 274,358 v (1,12) (2,57) (3,274289)
4 1,208,044 (1,1000213) (2,63) (3,102) (4,207666)
5 22,456 (1,25) (2,42) (3,91) (4,36) (5,22262)
6 13,454 (1,4) (2.49) (3,78) (4,19) (6,13304)
7 11,382 (1,15) (2,56) (3,55) (4,30) (5,1) (7,11225)
8 26,892 (1,7342) (2,6494) (3,32) (4,28) (8,12996)
9 11,001 (1,3) (2,12) (3,64) (4,35) (5,1) (6,1) (7,1) (9,10884)
10 10,951 (1,2) (2,28) (3,44) (4,31) (7,1) (10,10845)
o . o
] ° L]
o ° o
63 9 (4,9)
64 1929 (4,1918) (5,11)

L 93 2 (1,2)

Table 4.4: Frequency of Dynamic Block Size for Access

The number pair in the third column of Table 4.4 is the combined frequency. It

shows the dynamic block size is combined from how many requests and its frequency.

(Number of requests coalesced to form a dynamic block, Frequency)
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For instance, a dynamic block of 5 sectors can be combined from 5 one-sector
requests and this kind of combination occurs 22262 times, i.e. (5,22262). It can also be
just 1 request of five sectors and this kind of combination occurs 25 times, i.e. (1,25).
Beside, a dynamic block of 5 sectors can be formed by 3 requests that may be 1 request
of one sector and 2 requests of two sectors, or 2 requests of one sector and 1 request
of three sectors, or ..., etc. This kind of combination of dynamic block of 5 sectors
from 3 requests occurs 91 times, i.e. (3,91). Therefore, same dynamic block size can be
combined from various numbers of requests. For another example, a dynamic block of
10 sectors can be formed from 4 requests that may be 2 requests of three sectors and
2 requests of two sectors, or 1 request of five sectors, 1 request of three sectors and 2
requests of one sector, or ..., etc. This combination of a 10-sector dynamic block from
4 requests occurs 31 times, i.e. (4,31).

We have observed that many requested blocks combine together to form a larger

dynamic block. Table 4.5 shows the number of 1-sector dynamic block and the number

of 1-sector request.

Access Dbase Excel Word
l-sector Dynamic Block | 78,031 212,072 | 67,053 | 623,146
l-sector Request 4,809,434 | 1,112,830 | 513,061 | 1,660,561
Uncombined Percentage | 1.62% 19.06% | 13.07% | 37.53%

Table 4.5: Frequency of 1-sector Dynamic Block Size and Request

The uncombined percentage is defined as

Frequency of 1-sector dynamic block

Uncombined Precentage =
Frequency of 1-sector request

* 100%

The uncombined percentage means the percentage of 1-sector requests, that do not
participate in forming a dynamic block, over the total number of 1-sector request.
Therefore, it can illustrate the interrelationship between successive requests. If more
successive requests can be combined to form a dynamic block, the uncombined per-

centage will be smaller. Since the uncombined percentage is very small, from 1.62%
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for Access to 37.53% for Word. Therefore, for each 1-sector request, it has very high
chance to have relation with the previous or the next one. So always prefetch should
give a very good performance in this case because the sequential property of the data
is very strong.

There is an interesting property in Table 4.4. We observed that even for dynamic
block of 1 sector, it can be combined from more than 1 request. In our analysis, we
have treated the case that displacement = 0, i.e. start address of current request =
end address of previous request, can also be coalesced to a single dynamic block.
Therefore, if two or more successive requests refer to the same sector, they will combine
to form a single dynamic block of 1 sector. The successive requests for the same sector
are due to read-then-immediately-write and write-then-immediately-read properties.

The most frequent and the largest dynamic block size (in sectors) for the four traces

are shown in Table 4.6.

Access Dbase | Excel Word
Largest dynamic block size 93 1,024 398 127
Frequency 2 51 1 28
Most frequent dynamic block size | 8 8 1
Frequency 1,208,044 | 310,636 | 230,621 | 623,416

Table 4.6: Frequency of the Largest and Most Frequent Dynamic Block

In general, the frequency of the dynamic block size initially increases as the dynamic
block size increases from 1 sector. The frequency reaches its maximum rapidly and then
decreases. The decreasing rate of the frequency of the dynamic block size is different for
the four traces. The decreasing rates for Access and Word are fast but the decreasing
rates for Dbase and Excel are slow. For Dbase and Excel, since their decreasing rates
are slow, we would expect that the performance of our algorithms on them are better
than that on Access and Word. This is because more large dynamic blocks are available.

Table 4.7 shows the ten topmost largest 1/O percentage dynamic blocks for the four
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traces. The I/O percentage of a dynamic block is defined as

dynamac block size * frequency

[/O percentage = * 100%

total number of sectors requested
which shows the percentage of the total I/O time that various dynamic block sizes
occupy when there is no cache. This measurement can more accurately show the
sequential property of a trace than just look at the frequency of the dynamic block
size. From the I/O percentage, we have observed that larger blocks utilize more I /O

although their requested frequencies are not higher than those of small blocks.

Access Dbase ,

DB. Freq. |1/O perc. || DB. | Freq. |I/O perc.
4 | 1,208,044 | 45.94% 8 1310,636 | 24.37%
23 52,773 11.54% 16 | 40,355 6.33%
3 274,358 7.83% 14 | 30,201 4.15%
48 12,616 5.76% 26 16,226 4.14%
32 8,417 2.56% A7 | 19,264 3.21%
8 26,892 2.05% 75| 4,342 3.19%
16 12,134 1.85% 60 4,657 2.74%
12 13,108 1.50% 15 17,822 2.62%
2 75,915 1.44% 2 124,306 2.44%
18 1,577 1.30% 1 |212,072 | 2.08%

Excel Word

DB. Freq. I/O perc. || DB. | Treq. |1/O perc.
8 230,621 32.64% | 623,146 | 24.46%
16 10,754 3.04% 8 | 65,687 | 20.63%
32 4,719 2.67% 28 4,957 5.45%
33 4478 2.61% 6 | 22,816 5.37%
57 2,055 2.07% 12 | 8,867 4.18%
39 2,937 2.03% 4 | 20,812 3.27%
49 2,222 1.93% 5 | 16,615 3.26%
31 3,444 1.89% 16 | 4,484 2.82%
54 1,858 1.78% 52 | 1,340 2.73%
26 3,822 1.76% 7 9,582 2.63%

Table 4.7: Ten Topmost Largest 1/0 Percentage of Dynamic Blocks

By the concept of dynamic block, we can visualize the highly sequential property of

disk access because many requests coalesce to form a larger block. If we take dynamic
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block size into account, it can help to optimize our algorithms because we use the
highly sequential property of the I/O requests to provide more large blocks that our
algorithms operate on. This kind of combining several successive requests into a larger

block has rarely considered by the traditional disk cache design.



Chapter 5

Performance Evaluation of

Common Disk

For common disk, the start-up time C1 is much larger than the transfer time C2. In
the following discussion, we generally choose C1=10 and C2=1.5. Tu is always set to
I in order to act as the reference point. The values 10 and 1.5 are the ratios of the
actual values of C1 and C2 to the actual value of Tu. All other timing values are also
ratios to Tu.

We focus mainly on the absolute and relative performance of 4 different models:
unified cache with always prefetch (Model 4), the basic model of partitioned cache
(Model 5), partitioned cache with ASST applying to dynamic block (Model 7) and
partitioned cache with SEHT (Model 8). The model of partitioned cache with ASST
applying to each request, Model 6, is generally omitted in the discussion because its
performance is generally poorer than that of Model 7. The comparison of performance

of Model 6 and Model 7 will be discussed separately in Section 5.7.2.

5.1 The Effect Of Cache Size

As varying the cache size, we choose a fixed reference point for other cache parameters.

54
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Block Size = 1 sector
Set Associativity = 1 way
Start-up Time C1 = 10

Transfer Time C2 = 1.5

This set of parameters will generally be fixed on the above values throughout the

discussion of the effect of cache size.

In the simulation, we have examined cache sizes of 1M, 2M, 4M and 8M .

5.1.1 Trends of Absolute Reduction in Time

We have observed that the absolute reduction increases for all models as the cache size
increases which can be illustrated from Figure 5.1. The absolute performance increases

because large cache size implies that more data can be stored in cache.
5.1.2 Trends of Relative Reduction in Time
For clarity of graph, we omit the Model 5 in Figure 5.2. This is because the performance

of Model 5 generally has a large gap with other models and we omit it to manifest the

performances of other models.

5.1.2.1 Performance Of Model 4

Figure 5.2 shows that the relative performance of Model 4 gradually increases when the
cache size increases. However, the increase is not large when the cache size increases
from 1M to 8M. This is because the main difference between Model 4 and Model 3
is the method of getting the next block/sector. This difference will mainly reduce C2
rather than the large C1. Besides, since C2 is equal to 1.5, there is not enough time
to get the next one, so each correct prefetch will reduce the transfer time. However,
the time penalty C1 of cache miss for fresh reference usually dominates the access
time. Therefore, the increase of relative performance of Model 4 is little. The relative

performance of Model 4 is shown in the Table 5.1.
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Access Dbase Excel Word
Performance Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min.
Cache size SM | IM | 8M | IM | 8M [ IM | 8M | 1M
Percentage reduction in time | 6% | 3% | 11% | 7% | 11% | 2% | 10% | 7%
dpercentage 3% 4% 9% 3%

Table 5.1: Maximum and Minimum Relative Performance of Model 4 (C2 = 1.5)

[f there is enough time to get the next one, the situation is different. As shown in
the graph of zero prefetch time, Figure 5.5, the relative performance slightly increases
first and then slightly decrease. The increase is due to the above reason that always
prefetch reduces more the transfer time when the cache size is small. Since it is zero
prefetch time now, all partial hit will transfer to hit. When the cache size increases,
more useful data stores in the cache. Therefore, the difference between the cache miss
of Model 4 and that of Model 3 decreases. Whe performance of Model 4 approaches
that of Model 3. So, the relative performance drops.

The positive relative performance of Model 4 shows that always prefetch is better
than prefetch on miss. For Model 3, it is a conservative algorithm to prefetch the
next sector only on miss. For non-sequential reference, Model 3 takes less useless next
sectors to the cache. For highly sequential reference, Model 3 just takes one next and
then wait to another miss to get another next one, so this will lower the performance
of the system. On the other hand, Model 4 always prefetches the next sectors. For
non-sequential reference, it puts too many useless next sectors to the cache. For highly
sequential reference, Model 4 gets the correct next one, so the reduction of 1/0 time is
greater. Now, for all traces, they exhibit a highly sequential property. The prefetched
sector is very likely to be referenced soon. This can be shown from the formation of

dynamic block in Section 4.5. Therefore, always prefetch can perform well.
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5.1.2.2 Performance Of Model 7 And Model 8

We have observed that the trends of Model 7 and Model 8 are similar in Figure 5.2.
When the cache size increases, their relative performances increase. Up to a certain
limit, about 8M cache size, their relative performances drop. Figure 5.3 shows the

general trend.

Trend of relative
performance of our models

Relative
Pefformance

Small Cache Size

Cache Size

Very Large Cache Size

Figure 5.3: Trend of Relative Performance of Model 7 and Model 8

[rom the graph of absolute performance, Figure 5.1, we note that there is actual
reduction in time when the cache size increases. Therefore. the dropped relative perfor-
mances mean that the increase in absolute reductions in time of Model 7 and Model 8
is just less than that of Model 3. This is the property of Model 7 and Model 8 because
they are built for small/limited cache. 1t is the situation where the cache is not large
enough to hold the current working data set. To maximize the performance under
this situation, we discard some content blocks in order to store more distinct starting
heads. Then by proper overlapping the program execution and the data fetching, the
cache system can have enough time to get the un-stored sectors. In other words, Model
7 and Model 8 effectively shift the performance of a small cache to look like a larger
ordinary cache. This can be verified by the fact that there is an increase in relative

performance when the cache size is increased from 1M to 4M.
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When the cache size increases to 8M, the relative performances of Model 7 and
Model 8 drop because the cache becomes large enough to hold much more useful data,
i.e. not only the heading sectors but also the content sectors. The contribution of the
enlarged cache size by Model 7 and Model 8 becomes less effective. That means the
extra stored blocks cannot obtain advantage but the compulsorily discarded sectors
may provide bad effect on the performance. Therefore, there is a fall in the relative

performance.

There are five factors affecting the performances of Model 7 and Model 8 when
compared with the performance of Model 3:

L. the increase in the number of distinct starting heads stored in the cache

2. how many heading reuses

3. how many correct prefetches are killed due to the slow data bus, i.e. there is not

enough time to gel those prefetched sectors before a demand fetch arrives
4. the size of the cache when comparing with the working set of a trace

5. the time difference between reuses

For the first factor, the more starting heads are stored in the BTC, the more chances
are for cache hits. In ideal case, i.e. all reuses are in heading base, the performance
of Model 7 and Model 8 must be better than the others. However, there are actually
some non-heading reuses, so the stored blocks in BTC cannot provide enough time to
prefetch the remaining sectors. Therefore, there is time penalty for each non-heading
reuse. The performances of Model 7 and Model 8 will drop when the effect of non-
whole block reuse accumulates to a certain level. The third factor is another tradeoff of
Model 7 and Model 8. The two models discard some contents of a dynamic block and
rely on the I/0 bus to get the un-stored parts from the disk. There will be a situation
that an un-stored part is being prefetched from the disk but another request comes

to get other sectors. The prefetch must be killed in order to serve the demand fetch.
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However, if the killed prefetched part will be used in very soon, the killing behavior

will make the performance poor.

When the process is using
1 (Gorec) sactor 1 and sector 2, the B ool
cache system prefaiches

1 sector 3.

2 (stored) When prefetching sector

3, another request
comes for mother
sector, say sector 11,

| Jun-stored) = The prefetching of
sector 3 Is killed
immediately and the
cache system starts to
get the demanded sector

4 (stored) 1.

! f the prefetching sector
| 3 will, In fact, be used

very soon, this will kill a
§ (un-stored) correct prefetch.

6 (stored)

Figure 5.4: Killing of Correct Prefetch

The killing of correct prefetches has the consequence that it will downgrade the
performances of Model 7 and Model 8. The killing effect will also accumulate as
the cache size increases. Therefore, when the cache size becomes large enough and
the accumulated effect of killing correct prefetches becomes dominant, the relative
performances of Model 7 and Model 8 drop. However, theoretically, the killing of
correct prefetches can be prevented because it is due to the fact that prefetching is not
fast enough, i.e. the data bus is slow and has limited bandwidth. This is the limitation
of current bus speed and bandwidth. If the bus speed becomes faster and faster, this
factor will be greatly reduced. In an extreme case, if the prefetch were infinitely fast,
this factor would be completely eliminated.

The cache size is a very important factor for Model 7 and Model 8. When the
cache size is too small, the extra stored starting heads do not have time to be reused
before they are replaced by other sectors, i.e. the time between reuses cannot co-operate
with the cache size. Besides, in this time, the disadvantages of the models still exist.
Therefore, the relative performances of Model 7 and Model 8 are po‘or in ver.y small

cache size. A threshold must exist so that the extra stored starting heads become
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useful and then the relative performances increase greatly. However, the threshold
varies greatly because it highly depends on the properties of the traces. We can only
observe its effect from the result of simulation.

When the cache size becomes very large, the accumulated disadvantages become
dominant and the effectively increased cache size becomes less important. Therefore,
the relative performances of Model 7 and Model 8 drop dramatically. They may even be
poorer than Model 3 although all models have an increase in absolute reduction in time.
However, when the cache is in intermediate size, the increase in relative performance

can be as high as 29%.

Access Dbase Excel Word
Performance Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min.
Cache size 2M, 4M | 8M AM IM | 2M | 8M | 2M IM
Percentage reduction in time | 3% | -10% | 29% | 6% | 16% |-29% | 16% | 6%

Table 5.2: Maximum and Minimum Relative Performances of Model 7 (C2 = 1.5)

The maximum and minimum relative performances of Model 7 for different traces
are shown in Table 5.2. The relative performance of Model 8 is similar. From Ta-
ble 5.2, the maximum relative performance usnally occurs in 2M or 4M cache size. The
minimum usually occurs in 1M or 8M cache size. The minimum value can drop to
negative, e.g. -10% for Access and -29% for Excel. The negative values are due to the
accumulated effect of the second and third factors that have been discussed before.

However, for the third factor of killing correct prefetch, it can be eliminated by the
zero prefetch time, i.e. infinitely fast prefetching, because it is due to the slow bus speed
and the limited bandwidth. Therefore, we have simulated the effect of zero prefetch
time in order to investigate how large the effect of the third factor plays in the cache
system. Note that the felch time is still equal to 1.5. Figure 5.5 shows the relative

performances of different models for zero prefetch time.

The simulation of the zero prefetch time shows that there are actual occurrences of
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killing correct prefetch. Table 5.3 shows the maximum and minimum relative perfor-

mances of Model 7 when the prefetch time is equal to zero.

Access Dbase Excel Word
Performance Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min.
Cache size 2M | 8M | 4M IM | 2M | 8M | 2M | 8M
Percentage reduction in time | 7% | 2% | 13% | 6% | 11% | -5% | 9% | 6%

Table 5.3: Maximum and Minimum Relative Performances of Model 7 (Prefetch Time = 0)

The negative relative performance for Access has been eliminated, so the effect of
killing correct prefetch is quite important in the Access trace. On the other hand, the
negative relative performance for Excel still exists even in zero prefetch time although
the relative performance increases from -27% to -5%. So the reason is not just in
the factor of killing correct prefetch. Another reason is that the entire working set
of Excel has gone into the 8M cache. This can be illustrated from the hit ratio of
Model 2, unified cache without any prefetching technique, which is 95% in a 4-way set
associative 8M cache. Model 7 and Model 8 discard some contents of each dynamic
block compulsorily. For very large cache size that can capture almost all reuses, an
enlarged cache size does not mean anything. The accumulated effect of non-heading
references becomes dominant and this factor cannot be eliminated in our algorithms.
Therefore, the relative performance for Excel drops to negative value. In fact, the trend
for the drop of relative performance to negative value is also expected in the other two

traces, Dbase and Word. However, the cache size is not large enough to show this effect

for Dbase and Word.

5.1.2.3 Comparing Performance Of Model 7 And Model 8 With Model 4

The relative performance of Model 4 is sometimes much poorer than that of Model
7 and Model 8, especially when the cache size is about 2M to 4M. A¢ the range of
intermediate cache size, Model 7 and Model 8 have the advantage of always prefetch

which can capture the highly sequential property of the traces. The extra stored blocks in
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BTC by ASST or SEHT can be reused effectively. Besides, PB can reduce the pollution

due to prefetching. Therefore, the relative performances of Model 7 and Model 8 can

be boosted up greatly. Table 5.4 shows the maximum relative performances of Model

7. The performances of Model 8 are similar to that of Model 7.

Cache size

Maximum relative Maximum relative Ratio:

performance of Model 7 | performance of Model 4 ﬁfiﬂiﬁ

Access 2M 3% 4% 0.75
Dbase 4M 30% 10% 3
Excel 2M 17% 6% 3
Word 2M 16% 7% 2

Table 5.4: Maximum Relative Performance of Model 7

At the maximum throughput, the relative performances of Model 7 and Model 8 can
double, or even triple that of Model 4. This reveals the fact that the new algorithms,
ASST and SEHT, are very useful in the intermediate cache size. However. the case is
different for Access. Even in the maximum relative performance, the performances of
Model 7 and Model 8 are still worst than that of Model 4. This can be explained by
the fact that there are too many occurrences of killing correct prefetch and too many
non-heading reuses for Access. The un-stored parts of a block cannot be accurately
prefetched. Therefore, the performances of Model 7 and Model 8 become poor for
Access.

Besides, for 1M cache size, the relative performances of Model 7 and Model 8 are
usually lower than that of Model 4. This is due to the fact that the threshold of
the models have not been exceeded in 1M cache size. Therefore, the extra stored
starting blocks cannot be effectively used and the factors of disadvantages lower the
performance.

In conclusion, always prefetch is a useful technique to disk cache. Model 7 and
Model 8 are designed for the limited cache size when compared with the data size. From
the simulation results, Model 7 and Model 8 can perform very good in the inter.me(liate

cache size, about 2M to 4M, because the effectively enlarged cache size can store more
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starting blocks. Those blocks can be used effectively by ASST and SEHT and this gain
can cover the disadvantages of the models. The relative performances of Model 7 and

Model 8 can even double/triple that of Model 4.

5.1.2.4 Performance Of Model 5

We have omitted Model 5 to get a clearer discussion in before. Now, let us focus on
the relative performance of Model 5. Figure 5.6 shows the relative performances for
the four models, including Model 5 for different traces. We have observed that the
performance of Model 5 is worse than that of Model 3, i.e. negative values, except in
small cache size for Excel trace and Word trace.

The performance of Model 5 is poor because it stores only the first heading block of
each dynamic block in the BT'C and lets the cache system get the following blocks. This
produces a large extra time penalty needed to pay for each reuse. For large cache, Model
5 underuses the cache because it compulsorily discards the all remaining blocks although
there are enough spaces to hold them. Therefore, the extra time penalty paid is greater.
Model 5 is a control model and it directly used the CPU cache partitioning technique
without any modification. The disadvantages of this model have been discussed in
Section 3.3.2. This indirectly shows that there are some differences with disk cache
and CPU cache. The techniques in CPU cache may need modify before they are applied
to disk cache design.

For Excel trace, the hit ratio for 1M cache size is only 10% for unified cache, e.g.
Model 2. This is a very low value and shows that ordinary cache store very little useful
data. Almost all the time, the cache system needs to take the requested data from
disk. The algorithm of Model 5 dramatically enlarges the cache size, i.e. data from
more dynamic blocks can be stored in the cache by only storing the first block of each
non-sequential reference. Therefore, more cache hits can occur. The time saving due to
more cache hits compensates the extra time penalty paid to take the remaining blocks

from disk.

For Word trace, the most frequent dynamic block size is 1 sector. Model 5 can
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do a good job because it does not pick any useless next sectors to the BTC, and the
next sectors all go to the PB. For other models, the control algorithms place some next
sectors in the BTC so cause cache pollution in this case. Therefore, Model 5 shows an

extra-ordinarily good performance.

5.2 The Effect Of Block Size

As varying the block size, we choose a fixed reference point for other cache parameters.

Cache Size = 4M
Set Associativity = | way
Start-up Time C1 = 10
Transfer Time C2 = 1.5

This set of parameters will be fixed on the above values throughout the discussion of
the effect of block size. In the simulation, we have examined block sizes of 1 sector. 2

sectors, 4 sectors and 8 sectors.

5.2.1 Trends of Absolute Reduction in Time

We have observed that in general, the absolute reduction decreases as the block size
increases which is shown in the Figure 5.7.

The decrease in the absolute reduction means that the absolute performance is
poorer in larger block size. Besides, there is an obvious drop in absolute performance
when the block size increases from 4 sectors to 8 sectors for all traces.

Block size has an effect of implicit prefetching. Many current designs of disk cache
using very large block size since they have not incorporated the ability of explicit
prefetching technique. Large block gets many adjacent sectors of the requested one
to the cache. These sectors are hoped to be referenced later. For instance, requesting
a sector will let the whole disk track to be fetched to the cache. Large block size is

proved to be very useful in current design due to its implicit prefetching property.
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However, our models have already incorporated the technique of always prefetch.
If the block size is too large, it may cause serious cache pollution, i.e. there are too
many useless data placed in the cache so useful data are kicked out. On the other
hand, if the adjacent data are useful and will be referred soon, increasing block size
causes more cache hits. Therefore, when always prefetching technique combines with
the small block size, it can improve the performance. However, when the block size is
too large, the combined technique takes too many other sectors to the cache and does
not know whether those sectors are useful.

Now, let us consider a case for a request of 4 sectors and using a 4-sector block
size. The most satisfactory result is that the data in a transfer block -exactly matches
the requested 4 sectors. However, this is not the case in general. On average, the case
is like Figure 5.8. A request for n sectors, where n is also equal to the block size, is

usually across two transfer blocks.

Transfer Block 1 Transfer Block 2
i
Sector 1 | Sector2 | Sector 3 | Sector 4 Sector5 | Sector6 | Sector 7 | Sector 8 ‘
‘TJ ]
\ )
Ve

These previous sectors A 4-sector request for These next sectors have

have less chance to be sector 3-6 greater chance to be

referenced later referenced later

Figure 5.8: A 4-sector Request in Block Size of 4 sectors

In Figure 5.8, the previous sectors, sector 1 and sector 2, have less chance to be
referenced later. Therefore, these two sectors pollute the cache. The next sectors,
sector 7 and sector 8, have higher chance to be referenced later. Therefore, these two
sectors may reduce the disk access time. As the block size incx‘easeé, more and more

previous and next sectors go into the cache. To determine the usefulness of these
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sectors, it highly depends on the reference pattern of a particular application.

Irom analyzing each trace, the most frequent dynamic block sizes are usually not
greater than 8 sectors. In the above example, the next sectors, sector 7 and sector
8, have higher chance to be referenced soon because the total number of sector is not
greater than 8 after combined with the requested sectors. However, for an 8-sector
block size, the situation is different. Consider a case of a request of 8 sectors and the

block size is also equal to 8 sectors. As discussed before, the situation is like Figure 5.9.

Transfer Block 1 Transfer Block 2
—— T ” g = S . ’
11‘213 4 5 6 1 8 | { 9 |10 11]12‘13 14 15 16
Ll [ 46 S Y SR P =t
. A Ad v - -
l |
| |
| i
These previous sectors A 8-sector request for These next sectors have
have less chance to be sector 5-12

less chance to be
referenced later because
the dynamic block is
rarely greater than 8

referenced later

Figure 5.9: A 8-sector Request in Block Size of 8 sectors

The previous sectors are useless as before. The next sectors are also useless in this
situation because the combined effect gives a dynamic block size larger than 8 which
rarely appears in the four traces. Therefore, when two blocks are placed in the cache,
almost a whole block is useless. This causes the poorer performance for 8-sector block
size.

From the above result, since we use always prefetch as our basis, 1-sector block size
gives the most satisfactory result. 1-sector block size can also give a full control of the
cache block in the cache system. While the block size increases, more useless sectors
will be fetched into the cache as discussed above. Those useless sectors stick with the
useful sectors and occupy entries in the cache. In turn, less space.is left f(')r useful

data. So a large fetched block will also have chance to pollute the cache. Therefore, for
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I-sector block size, it can ensure that the fetched/prefetched blocks have higher chance
to be useful.

Moreover, we have observed that Model 5 is not like other models, the performance
of Model 5 may not decrease as the block size increases. This is due to the fact that
Model 5 stores only the first starting block of each non-sequential reference, i.e. the first
block of each dynamic block. It needs to pay very high time penalty even for a cache
hit. However, as the block size increases, the first starting block becomes larger. The
penalty of each cache hit is reduced. So, the effect of bringing undesired sectors into

the cache can be compensated.

5.2.1.1 Difference Between Hit Ratio And Access Time

We have chosen the absolute reduction in time and the relative reduction in time to
indicate the performance of a model. The reason of choosing access time rather than
hit ratio is that it can provide a better insight of the performance of the model. This
can be illustrated from Table 5.5 that shows the hit ratio and disk access time ratio of

Model 7 for different block size.

Access Dbase Excel Word
Block size | Hit ratio | Time ratio | Hit ratio | Time ratio | Hit ratio | Time ratio | Hit ratio | Time ratio
1 sector 77.93% 0.2089 80.31% 0.1673 63.48% 0.2713 84.46% 0.0661
2 sectors 84.35% 0.2276 80.13 0.1883 64.94% 0.2933 90.31% 0.0673
4 sectors 89.20% 0.2459 81.64% 0.2259 66.90% 0.3579 93.34% 0.0663
8 sectors 91.83% 0.2774 82.28% 0.3183 70.04% 0.4769 96.08% 0.0896

Table 5.5: Hit Ratio and Disk Access Time Ratio for Model 7

The Time ratio is defined as

; . Total disk access time of a model
Time ratio = :

Total disk access time of no cache

Therefore, the larger the time ratio is, the poorer the performance is. In Table 5.5,
as the block size increases, the hit ratio increases. Increasing hit ratio indicates that
increasing block size is very useful because more requested data are in the cache.

However, the time ratio also increases. That means the actual traffic between disk and
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cache is heavier as the block size increases. Therefore, choosing a large block size is
not intelligent because it imposes a heavier traffic between disk and cache. From this
situation, we have observed that hit ratio can only give a rough understanding on the
performance of a model. Time ratio gives a more concrete understanding on the traffic
between disk and cache, which in turn is an accurate indicator of the performance of
a model.

Besides, from the above analysis, we have observed that increasing block size has its
advantage to capture the spatial locality of references. But owing to the fact that it also
takes some extra useless sectors in the cache, it increases the total access time to the
disk. This can further verify by the actual number of sectors transferfed between disk
and cache when the block size varies. Figure 5.6 shows the actual number of sectors
transferred for Dbase trace (Cache Size=4M, C1=10, C2=1.5, Set Associativity=2-

way). The number of transferred sectors generally increases when the block sizes
S

increases.

Model | BS=1-sector | BS=2-sectors | BS=4-sectors | BS=8-sectors
2 1,944,730 2,240,546 2,573,892 3,751,840
3 1,955,952 2,266,172 2,587.868 3,764,824
4 1,967,134 2,290,496 2,639,212 3,855,064
5 8,497,649 8,539,820 7,647.628 7,491,760
6 2,039,514 2,254,532 2,398,484 3,443,088
7 1,928,586 2,226,166 2,375,272 3,425,904
8 1,909,416 2,235,700 2,357,828 3,215,992

Table 5.6: Actual Number of Sectors Transferred for Dbase when Varying Block Size

5.2.2 Trends of Relative Reduction in Time

5.2.2.1 Performance Of Model 4, Model 7 And Model 8

The relative performance is the absolute performance of a model compared with the

absolute performance of Model 3. Although the absolute reduction decreases in general,
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Relative Reduction in Time vs, Block Size (C1x10, C2015)

Relative Reduction in Time va. Block Size (C1210, C2215)

Mo San

Block Stae

(b) Dbase

(a) Access

Relative Reduction In Time vs. Block Size (C1210, C2:15)

Relative Reduction in Time va, Block Size (C1210, C2:15)

Block Size

(d) Word

(c) Excel

Figure 5.10: Relative Performance of Varying Block Size (without Model 5)
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the relative reduction can increase. This means that the drop in performance of a
model is less than that of Model 3.

The trends of relative reduction in time are quite similar for different models. When
the block size changes from 1 sector to 4 sectors, there is an increase in the relative
reduction in time for different models. Although the absolute reduction in time de-
creases, the effect of slightly larger size of the prefetched block has the advantage that
the adjacent data will be referenced soon (refer to the discussion in the Trends of ab-
solute reduction in time). The increase in relative performance verifies that there are
actual use of those adjacent data.

The relative reduction in time for all models generally drops whén the block size
increases to 8 sectors. The drop in 8-sector block size is due to the reason explained
before. There are too many useless sectors being prefetched together with useful sec-

tors. Those useless sectors pollute the cache more for the models using always prefetch

technique.

For Model 7 and Model 8, the increase in relative reduction in time is greater than
that of Model 4. The amplitude of increase for Model 7 and Model 8 is larger because
they have a prefetch buffer to store the prefetched sectors. Those prefetched sectors
will be flushed out very rapidly due to the small size of PB. Therefore, PB can reduce

the effect of cache pollution, i.e. reduce the number of useless sectors going into the

BTC.

5.2.2.2 Performance Of Model 5

We have omitted Model 5 to get a clearer discussion in before. Now, let us focus on
the performance of Model 5. Figure 5.11 is plotting for relative performance, including
Model 5, for different traces.

For all traces, the relative performance of Model 5 is better and better as the block
size increases. This is because Model 5 underuses the cache by storing only the first
heading block of each dynamic block. Now, as the block size increases, the first heading

block will contain more sectors and in turn, more sectors in each dynamic block are
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stored in the cache under Model 5. Therefore, the time penalty of getting the next
sector is smaller and then the relative performance is better. However, Model 5 is
still below the standard in many cases except for the case of 8-sector block size. For
8-sector block size, Model 5 can be better than the standard owing to the fact that the
most frequent dynamic block sizes are under 8 sectors. If the system stores 8 sectors
as a whole each time, nearly all dynamic blocks are stored in the cache. The system
will not need to pay too much time penalty to get the remaining sectors (comparing
with the case of block size equal to 1 and storing only the first block). Therefore, more

cache hits occur and there is greater reduction in time.

5.3 The Effect Of Set Associativity

As varying the set associativity, we choose a fixed reference point for other cache

parameters.

Cache Size = 4M
Block Size = 1 sector
Start-up Time C1 = 10

Transfer Time C2 = 1.5

In the simulation, we have examined 1-way, 2-way and 4-way set associativities.

5.3.1 Trends of Absolute Reduction in Time

We have observed that when the set associativity increases, the absolute reduction in
time increases. This is shown in Figure 5.12.

When a block must go in exactly one place in the cache, the placement scheme is
called direct mapped or 1-way set associative. When a block can be placed anywhere
in the cache, the placement scheme is called fully associative. The intermediate design
is called n-way set associative. In a set associative cache, there is a fixed number of
locations where each block can be placed. A set associative cache with n locations for

a block is called an n-way set associative cache or its set associativity equal to n. Each
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block now maps to a unique set in the cache, and a block can be placed in any entries
of that set.

We have observed that increasing set associativity can help to increase the perfor-
mances of all models. This is a fact that increasing the set associativity can reduce
the collisions for competing the same entry and can improve the hit ratios of caching
models. Fully associative scheme is the best one because each block can store in any
place in the cache. Direct mapped scheme is the worst one because each block can go
in only one place in the cache. In the case of direct mapped, if there is another block
that must go in an entry, the previous stored block must be replaced even if there are
other free entries in the cache.

On the other hand, there is a disadvantage if the cache system uses a large set as-
sociativity or full set associativity. The time of searching the cache becomes significant
and must be taken into account. The accumulated effect of searching time increases
greatly when the set associativity increases because this time is counted for each search.
Therefore, in general, cache systems use less than 8-way set associativity in order to
reduce the time for searching.

Therefore, set associativity is the parameter for real implementation. It is quite
independent of which model is chosen. Using large set associativity can improve the

hit ratio but increases the search time.

5.4 The Effect Of Start-up Time C1

As varying the start-up time C1, we choose a fixed reference point for other cache

parameters.

Cache Size = 4M
Set Associativity = 1 way
Block Size = 1 sector

Transfer Time C2 = 1.5
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In the simulation, the values of C1 that we have examined are 5, 10, 15, 20. Note that

these values are the ratios of actual values of the start-up time to the use-up time.

5.4.1 Trends of Absolute Reduction in Time

Figure 5.13 shows the absolute reduction in time of all models for different traces.
Remind that the actual time of disk access for all models increases as C1 increases.
This is because the time penalty paid for each cache miss is higher. However, when we
calculate the absolute reduction in time, the result of one value of C1 cannot compare
with the result of another C1 because their bases are different, i.e. the total disk access
times for different C1 are different. Therefore, the trends of absolute r'eduction can be

in any shape. So, Figure 5.13 is just for reference.

5.4.2 Trends of Relative Reduction in Time

Figure 5.14 shows the trends of relative reduction in time for different models.

When C1 increases, the relative performances of Model 4, Model 7 and Model 8
decreases because the time needed to pay for each cache miss dominates. It covers the
effect of other timing factors. Different kinds of prefetching become less important when
comparing with the overhead of the start-up time C1. Therefore, the performances of
Model 4, Model 7 and Model 8 tend to the performance of Model 3. This can be
verified by the fact that the relative performances drop as C1 increases.

Start-up time C1 determines the size of starting head that should be stored in
BTC for Model 7 and Model 8. As C1 increases, the size of starting head is increased.
So, fewer extra starting heads can be put into BTC. Therefore, the performances of
Model 7 and Model 8 must tend to Model 4. This can be verified by the fact that the
amplitude of decreasing performances of Model 7 and Model § is larger than that of
Model 4. The trend of the relative performance of Model 5 is decreasing because of

similar reason in the case of Model 7 and Model 8.
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5.5 The Effect Of Transfer Time C2

As varying the transfer time C2, we choose a fixed reference point for other cache

parameters.

Cache Size = 1M
Set Associativity = 1 way
Block Size = 1 sector

Start-up Time C1 = 10

In the simulation, the values of C2 that we have examined are 0.5, 1, 1.5. Note that

these values are the ratios of actual values of the transfer time to the use-up time.

5.5.1 Trends of Absolute Reduction in Time

Similar to the case of varying C1, we cannot compare adjacent sets in a graph because
.

the bases are different. Therefore, Figure 5.15 is just for reference.

5.5.2 Trends of Relative Reduction in Time

Figure 5.16 shows the relative reduction in time for different models when varying C2.

Model 4, Model 7 and Model 8 exhibit same patterns for all traces in varying C2. As
(2 increases from 0.5 to 1, the relative performances increase for all models in all traces.
As C2 increases from 1 to 1.5, the relative performances decrease dramatically. Remind
that the value of C2 is the ratio of the actual value to the use-up time. Therefore, there
are two cases in these values that are C2 less than or equal to 1, and C2 larger than 1.
The value of C2 less than and equal to 1 means that there is enough time to get the
next sectors/blocks when the first sector/block has already been placed in the cache.
On the other hand, the value of C2 larger than 1 means that there is not enough time
to get the next sectors/blocks if only the first sector/block has already placed in the
cache.

For C2<=1, only the first block needs to pay the time penalty in cache miss because

the following one has enough time to be transferred when the process is using the first



_Chapter 5 Performance Evaluation of Common

(VL p—

0o

o0

0w

0ws

Reduction
0N

NN |-

00N

0o

Absolute Reduction n Time vs. C2

(a) Access

Absobate Reduction In Time vs. C2

(c) Excel

AT

L]
Oadeid

| |Oveges

LI
Buoses
|Wuoten

Ll

Blsded

| |OVodeld

Olsdels
Blsded

Al T

Wusden

Absolute Reduction in Time va. C2

(b) Dbase

Absolute Reduction in Time va. C2

T ]

(d) Word

Figure 5.15: Absolute Performance of Varying Transfer Time (2

Buond

—(

Ouessit
OVt
Bucae
Buesel?
B

Buosel
L]
Cuaoed
DVosess
LEE
BVoked

L



_Chapter 5 Performance Evaluation of Common Disk 85

Relative Reduction In Time ve. €2 Relative Reduction In Time va.C2
008 —_— - 0N - - — _ B
15008 — P
3 0o 1 4
1008 - Pt { ™ it
i &4
s00% - ": ) - NoA 'z‘f — o Lis
Iy ¢ ‘1 i 44
1123 X
oeon { b |
s omWN | - - - i,
Reduction Byt s BVosd
A00% LU Recoction BVosd
|DVssel? . OVose?
0008 - i Duosel i - . S OVoss
5o 1 “on -
200 __ ;
4008 ¢ ——
25008
200 T J P -
€@ aQ
'
(a) Access (b) Dbase
Relative Reduction in Time vs. C2 Relative Reduction In Time vs. C2
SIV—— 0N - - - -
| 5
7
& |
3
B,
Foss
| ")'d
[
BVosu """ Biosa
| muesen e | dnpend
DVos? ¥ OVosell
| Ovosve g ’ 1 : Queat
| b
rh
2008 - e — b
K% S AR S - | i3
08— —_
S0008 }

(c) Excel (d) Word

Figure 5.16: Relative Performance of Varying Transfer Time C2



_Chapter 5 Performance Evaluation of Common Disk 86

one. For C2>1, not only the first block needs to pay a time penalty, but all the following
ones also need to pay a time penalty in cache miss. This is because there is not enough
time to get the following one when the process is using the first one. Therefore, we
expect that the performances of the models are much better for C2<=1 than that for
C2>1. Our expectation is verified in Figure 5.16.

As C2 increases from 0.5 to 1, the relative performances always increase for all
models because the time penalty for getting the sectors/blocks slightly increases for
each cache miss. And the standard model, Model 3, has more cache misses than that
of Model 4, Model 7 and Model 8 because it only prefetches next sectors on miss. The
increase in relative performance also shows that always prefetch is better than prefetch

on miss in this case.

The trend of the relative performance of Model 5 is similar to the cases of Model

4, Model 7 and Model 8 as discussed above.

5.5.3 Impact of C2=0.5 on Cache Size

Transfer time C2=0.5 means that there is enough time to get the next sector when the
process is using the current one. This is very different from the case of C2=1.5 because
(C2=1.5 means that there is not enough time to get the next sector. Therefore, we
expect that there is some impacts on other cache parameters. The most obvious one
is the large increase in the relative reduction in time for C2=0.5 when comparing with
that in the case of C2=1.5. The relative reduction usually at least doubles the value in
the case of C2=1.5. This is due to the fact that always prefetch can cause more cache
hits than prefetch on miss in this highly sequential and fast fetching situation.
However, not all parameters will be affected by changing C2 from 1.5 to 0.5. For in-
stance, the general effect of cache size has not been changed by varying C2. Figure 5.17
shows the absolute reduction in time and Figure 5.18 shows the relative reduction in
time. The trends are very similar to that in the case of C2=1.5. For relative reduction
in time, C2=0.5 has similar effect of zero prefetch time as shown in Figure'5.5. The

negative relative performances of Model 7 and Model 8 in Access and Excel are reduced
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due to enough time for prefetching. Besides, Figure 5.18 verifies that there is a large
increase in relative reduction in time when comparing with the case of C2=1.5. The

general trend remains the same as the case of C2=1.5.
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5.5.4 Impact of C2=0.5 on Block Size

Figure 5.19 shows the absolute reduction in time for the four traces. The trends of

some models are different from the case of C2=1.5. For the case of C2=1.5, there is a



_Chapter 5 Performance Evaluation of Common Disk

Relative Reduction In Time va. Cache Size (C1a10, C2:0.5)

Y, S — - ST R

0N

Retuction

o — - —

RTTY L —

Cachatine

(a) Access

Relative Reduction in Time va. Cache Size (C1210, C2:0.5)

Qun

=
8
b

oS

nuA

40N

K0

40008

A0

900N

160 00N

L

| Wyt
| lovesw
| uesa

CachaSie

(c) Excel

Figure 5.18: Relative Performance of Varying Cache Size when C2=0.5

0o

N

L

ot

AU ¢+

UL

008

WA

“on

BOA

m\‘

LY

Relative Reduction Ia Time va. Cacha Size (C1210,C2+05)

Cache Size

(b) Dbase

Relative Reduction in Time va. Cache Size (C1210, C2:0.5)

3

i

5 .'_j‘.

> L

% — i

‘ Vi
Coche Sue

(d) Word




_Chapter 5 Performance Evaluation of Common Disk 89

general decrease in absolute reduction in time. However, now for the case of C2=0.5,
there can be an increase in absolute reduction in time for Model 5, Model 6, Model 7
and Model 8.

For Model 2, Model 3 and Model 4, their trends are similar to the case of C2=1.5.
Their absolute reductions in time decrease when the block size increases. This is due
to the reason discussed in the case of C2=1.5 in Section 5.2.1. Block size has a function
of implicit prefetching. When the adjacent sectors will be referenced soon, large block
size will provide an advantage. However, if the extra stored sectors are not used, they
occupy the cache and cause pollution. Now, Model 2, Model 3 and Model 4 store all the
requested blocks. Increasing the block size may bring more useless data in the cache
although some sectors may have chance to reference later. Therefore, the disadvantage
covers the advantage of large block size.

Model 5 has a more obvious increase in absolute reduction in time when the block
size increases. It is very different from the case of ('2=1.5 that it just maintains in
a slightly increasing/decreasing state. Model 5 stores only the first starting block of
each dynamic block. As the block size increases, the first starting block size is larger.
So the time penalty paid for each cache hit reduced. Since (C2=0.5, there is no extra
transfer penalty needed for cache miss, i.e. the cache system needs only to pay for
the start-up penalty, when data fetching overlaps the program execution. Therefore,
the absolute time of disk access for Model 5 decreases as the block size increases, i.e.
absolute reduction in time increases.

For C2=0.5, Model 7 and Model 8 become nearly the same because they both store
only the starting head (some heading sectors) for each dynamic block. Therefore, more
starting heads can be placed in the cache. For C2=1.5, it is not enough time to get all
the remaining sectors by only storing the starting head in BTC, so cache entries need
to store the some content sectors. The overhead of including some useless sectors in
a large block size (see Figure 5.8) will cover the advantage of getting useful adjacent
sectors by a large block size. On the other hand, as discussed above, there js no need

to pay extra transfer time for C2=0.5 by proper overlapping the program execution
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and data fetching. We just need to pay the start-up penalty. For Model 7 and Model 8,
they have PB to store the prefetched sectors in order to reduce cache pollution due to
large block size, which is very useful as discussed in the case of C2=1.5. However, for
(02=0.5, it does not need to worry the second sectors if the first one has already been
gotten/stored. Therefore, guessing the first one becomes more important for C2=0.5.
Model 7 and Model 8 can already store more first one than other models. However,
they cannot guess other first one. Larger block size may help to capture other first
ones. Therefore, Model 7 and Model 8 may have an increase in absolute performance
when the block size increases.

Figure 5.20 shows the relative reduction in time for the four traces. The general

trend is similar to the case of C2=1.5.

5.6 The Effect Of Prefetch Buffer Size

As varying the prefetch buffer size, we choose a fixed reference point for other cache

parameters.

Cache Size = 4M
Set Associativity = 1 way
Block Size = 1 sector

Start-up Time C1 = 10

Transfer Time C2 = 1.5

In the simulation, the sizes of prefetch buffer that we have examined are 0.05M, 0.1M,
0.2M, 0.3M and 0.4M.

The prefetch buffer is a small, temporary storage of the prefetched sectors. Its size
should be small because all useful data should already be placed in the branch target
cache. Now we examine the impact of the prefetch buffer size on Model 7. The impact
on Model 8 is similar.

Figure 5.21 shows the absolute reduction in time of Model 7 versus PB size. We

note that a small PB size is enough for Model 7. Although increasing the PB size
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Absolute Reduction In Time vs, Block Size (C1210, C2:0.5)
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may cause a slight increase in performance, it highly depends on the properties of the

traces. Therefore, choosing a small PB size is suitable.

5.7 Others

5.7.1 In The Case of Very Small Cache with Large Block Size

For the Excel trace, it exhibits a very strange behavior in 1M cache when block size
is equal to & sectors. The hit ratio is only about 10% for unified cache in this case.
We have observed a strange fact that the total access time of Model 2, unified cache
without prefetch, is larger than that of no cache.

The numbers under Time ratio are the ratios of the total access time needed for
Model 2 over the total access time of no cache. When the ratio is larger than 1, it
indicates that the performance of having a cache is worse than that of no cache. This is
due to the fact that the block size is too large. So many nearby sectors are transferred
as a whole to the cache. However, the cache size is too small. Those nearby sectors

may not have chance to be referenced before they are replaced. Then the cache system
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C1 | C2 | Time ratio
5 10.5 1.0204
511 1.0698
5 | 1.5 1.1023
10 1 0.5 0.9778
10 | 1 1.0276
10 | 1.5 1.0624
15 | 10.5 0.9479
151 1 0.9961
15 | 1.5 1.0313
20 | 0.5 0.9258
20 | 1 0.9717
20 | 1. 1.0064

(W71

Table 5.7: Behavior of Model 2 in 1M Cache Size for Excel Trace

needs extra time to get the adjacent sectors that will not be used. This case manifests
the disadvantage of large block size. Thetefore, choosing a suitable configuration in
cache design is very important.

However, this greater than 1 property only observed in the Excel trace, but not in
other traces. For other traces, their hit ratios are at least about 50% so more data are

being reused even in 1M cache.

5.7.2 Comparing Performance of Model 6 and Model 7

We have not discussed the performance of Model 6 throughout this chapter because its
performance is usually worse than that of Model 7 as shown in all graphs of absolute
performances. Model 6 and Model 7 use the same policy, ASST, except that ASST in
Model 6 applys to each request separately while the ASST in Model 7 applys to dynamic
block. This is the difference between request block and dynamic block. Dynamic block
provides an environment of larger block size for our algorithms to operate. This shows
that the concept of dynamic block is useful in cache design. The difference between

applying ASST to each request and to each dynamic block has been discussed in detail
in Section 3.3.2 and Section 3.3.3.
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Access Dbase Excel Word
Cache Size | Model 6 | Model 7 | Model 6 | Model 7 | Model 6 | Model 7 | Model 6 | Model 7
1 70.84% | 70.92% | 59.74% | 60.13% | 46.70% | 48.89% | 89.47% | 89.69% |
2 74.06% 74.11% | 71.02% 71.61% | 59.68% | 62.12% | 91.95% | 92.03%
4 79.07% | 79.11% | 83.24% | 83.27% | 71.30% | 72.87% | 93.38% | 93.39%
8 84.805 84.75% | 89.63% 89.76% 82.11% 82.80% 95.05% | 94.99%

Table 5.8: Absolute Performance of Varying Cache Size of Model 6 and Model 7

Table 5.8 shows the absolute performance of varying cache size of Model 6 and
Model 7. Other parameters are fixed as block size=1, set associativity=1, C1=10 and
(2=1.5. The absolute performance of Model 7 is usually better than that of Model
6 except in 8M cache size. This is the situation like Model 7 comparing with Model
4. In very large cache size, the cache is large enough to hold the useful data but
Model 7 compulsorily discards more contents sectors than Model 6. There are more
accumulated disadvantages of killing correct prefetch and non-heading reuse for Model
7 in 8M cache. Therefore, models that store more sectors for each request can perform

better in 8M cache.

5.8 Conclusion

5.8.1 The Number of Actual Sectors Transferred between Disk and Cache

Consider the following case:

Cache Size = 1M
Block Size = 1 sector
Set Associativity = 2 way
Start-up Time C1 = 10

Transfer Time C2 = 2

Table 5.9 shows the number of sectors transferred between disk and cache. We have
noted that the numbers of sectors transferred for Model 4, Model 7 and Model 8 are
approximately equal to that of Model 2 and Model 3. This means that always prefetch

technique does not impose a heavy traffic between disk and cache. On the other hand,
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always prefetch can reduce the traffic in some cases. So it is a very suitable technique
to incorporate into disk cache design. However, current methods usually do not include

the always prefetch technique.

Access Excel Dbase Word
Model 2 | 2,350,300 | 1,944,730 | 1,852,463 | 414,742
Model 3 | 2,363,061 | 1,955,952 | 1,855,170 | 414,807
Model 4 | 2,373,182 | 1,967,134 | 1,859,585 | 415,076
Model 5 | 2,749,506 | 8,497.649 | 4,929,358 | 471,906
Model 6 | 2,372,007 | 2,039,514 | 2,117,421 | 419,053
Model 7 | 2,366,317 | 1,928,586 | 1,940,305 | 417,119
Model 8 | 2,362,100 | 1,909,416 | 1,890,052 | 416,170

Table 5.9: Actual Number of Sectors Transferred between Disk and Cache

5.8.2 The Efficiency of Our Models on Common Disk

In conclusion, always prefetch is a very useful technique to capture the highly sequen-
tial property of disk access pattern. Simulation verifies that ASST and SEHT can
increase the performance of a cache system on the basis of always prefetch. Model 7
and Model 8 usually outperform other models in the intermediate cache size, such as
2M to 4M. The relative performances of Model 7 and Model 8 can double/triple the
relative performance of Model 4. This satisfies our aim that the cache can be more ef-
fectively utilized by the cache partitioning architecture and the newly proposed control
mechanisms when the cache size is limited.

The factors that increase the performance of Model 7 and Model 8 are summarized

below:
e intermediate cache size, e.g. 2M to 4M
¢ small block size, e.g. 1 sector
o large set associativity of the cache, e.g. 4-way set associative

e small prefetch buffer size
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e more occurrences of heading reuse

e less occurrences of killing correct prefetch



Chapter 6

Performance Evaluation of High

Performance Disk

High Performance disk is characterized by the start-up time C1 that is slightly larger
than the transfer time C2. Also, C1 and C2 are both near the value of Tu. In the
following discussion, we generally choose ('1=2 and (2=1.5. Tu is always set to 1 in
order to act as the reference point. In fact, the values 2 and 1.5 are the ratios of the
actual values of C1 and C2 to the actual value of Tu. All other timing values are also
ratios to Tu.

We focus mainly on the performances of 4 different models: Model 4, Model 5,
Model 7 and Model 8. The parameters that we will discuss are the cache size, the
block size, the start-up time C1 and the transfer time C2. Others are the same as
the case of common disk, so we will not discuss again. In fact, the being discussed

parameters are also quite similar to the case of common disk.

6.1 Difference Between Common Disk And High Performance

Disk

The difference between common disk and high performance disk is mainly in the value
of C1. C2 for both kinds of disk can take small values. High performance disk has

smaller C1 than common disk. C1 controls the response time of a disk. As C1 becomes

98
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smaller, the disk responses faster. Therefore, we define the disk having small C1 and C2
as high performance disk. C1 controls the size of the starting head in our algorithms.
As C1 approaches C2, the size of the starting head is closer to the size of the stored
content blocks. As C1 and C2 become smaller, the size of starting head also decreases.
Besides, the time penalty of missing a sector is less than that in case of common disk
because the start-up time C1 is smaller. Therefore. these factors may have impacts
on the performances of Model 5, Model 6, Model 7 and Model 8 because these models

have different treatment to starting heads and content blocks.

6.2 The Effect Of Cache Size

As varying the cache size, we choose a fixed reference point for other cache parameters.

Block Size = 1 sector
Set Associativity = 1 way
Start-up Time Cl = 2
Transfer Time C2 = 1.5

In the simulation, we have examined the cache sizes of 1M, 2M, 4M and 8M.

6.2.1 Trends of Absolute Reduction in Time

We have observed that the absolute reduction in time increases for all models as the
cache size increases which can be illustrated from Figure 6.1. This is similar to the
result in the case of common disk. This is because large cache can store more data,
including that has been stored in the smaller cache. Therefore, the cache hit rate must

be increased, and disk access time can be further reduced.

6.2.2 Trends of Relative Reduction in Time

For clarity of graph, we omit the Model 5 in Figure 6.2. From the graph of absolute
performance, Figure 6.1, we note that there are actual reduction in time whehn the cache

size increases. Therefore, the dropped relative performances mean that the increase in
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absolute reductions in time of Model 7 and Model 8 is less than that of Model 3 as the

cache size increases.

Relative Reduction in Time va, Cache Size (C152, C241.5) Relative Reduction in Time va. Cache Size (C122, C2415)
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Figure 6.2: Relative Performance of Varying Cache Size (without Model 5)

6.2.2.1 Performance Of Model 4, Model 7 And Model 8

The trend of relative performance of Model 4 is exactly the same as the case of common
disk. Figure 6.2 shows that the relative performance of Model 4 gradually increases

when the cache size increases. However, the increase is very little although the cache
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size increases 8 times, i.e. from 1M to 8M. The reason is discussed in Section 5.1.2.1 in
the case of common disk.

The trends of Model 7 and Model 8 are also similar to the case of common disk.
The relative reduction in time first increases when the cache size increases. However,
when the cache size changes to 8M, there is generally a drop in relative performance.
On the other hand, the relative performance does not drop to negative values now. It
is very different from the case of common disk that there are negative performances of
Model 7 and Model 8 in 8M cache for Access and Excel traces as shown in Figure 5.2.
As discussed in the chapter 5 of common disk, the negative performance is due to
accumulation of the bad effects of killing correct prefetch and non-heading reuse. For
high performance disk, since C1 is smaller, the size of starting head decreases. More
requests can now be stored in the cache, i.e. the effective cache size increases further
than that in case of common disk. The further enlarged size lowers the effects of the
previous two bad factors. Therefore, the relative performance does not drop to negative
value. Besides, The relative performances of Model 7 and Model 8 can be three to four
times higher than that of Model 4 for Dbase and Excel as shown in Figure 6.1.

Our models perform more efficiently in high performance disk. This can be illus-
trated from the fact that the value of relative performance percentage is much larger
than that in case of common disk. For instance, the values of the relative reduction in

time of Model 7 in 4M cache size for the two kinds of disks are listed in Table 6.1.

Trace | Common disk | High performance disk
Access 3% 15%
Dbase 29% 47%
Excel 11% 33%
Word 14% 23%

Table 6.1: Relative Performance of Model 7 for two kinds of disks

The performance of Model 8 is now generally better than Model 7. This is because
Model 8 stores smaller amount of blocks for a fixed number of requests than that

of Model 7, and so Model 8 can store more data from more requests, i.e. effectively
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enlarges more the cache size than Model 7. Since C1 is small, the time penalty paid for
each miss is less than that in the case of common disk. The reuses (cache hit) of the
extra stored blocks cover the disadvantage of missing some content sectors. Therefore,
if the effectively increased cache size of Model 8 can capture sufficiently more reuses,

it can outperformance other models.

6.2.2.2 Performance Of Model 5

We have omitted Model 5 to get a clearer discussion in before. Now, let us focus on
the relative performance of Model 5. Figure 6.3 shows the relative performances of the
four models, including Model 5, for different traces.

The trend of Model 5 is similar to the case of common disk. However, the relative
performance of Model 5 is much better than that in the case of common disk. Model
5 can outperform Model 3 in small cache size, e.g. 1M cache size for all traces. This
can be explained by the fact that for high ikrformance disk, storing more requests can
cover the disadvantage of referencing the un-stored sectors because the time penalty
paid for each miss is not very large now. Besides, storing more requests can increase
cache hits. In small cache size, the cache may not store enough data to capture reuses
if all requested sectors are stored in the cache. Now, Model 5 stores only the first block
of each non-sequential reference and the time penalty of getting the remaining sectors
are smaller than that in the case of common disk. Therefore, Model 5 can perform
better than Model 3 due to these advantages in small cache size.

However, for Model 5, it stores only the first heading block of a request. No matter
hit or miss, it needs to pay more time penalty than other models. So its performance
cannot be as good as Model 7 and Model 8. However, the extra stored requests can

improve the performance and let Model 5 outperform Model 3 in small cache size.

6.3 The Effect Of Block Size

As varying the block size, we choose a fixed reference point for other cache parameters.
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Relative Reduction in Time vs. Cache Skze (C122, C2:15)
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Cache Size = 4M
Set Associativity = 1 way
Start-up Time C1 = 2
Transfer Time C2 = 1.5

In the simulation, we have examined the block sizes of 1 sector, 2 sectors, 4 sectors and

8 sectors.

6.3.1 Trends of Absolute Reduction in Time

We have observed that in general, the absolute reduction decreases as the block size
increases which is shown in Figure 6.4.
The trend of varying block size is also similar to the case of common disk. The

decrease in the absolute reduction means that the absolute performance is poorer in
larger block size. :

Moreover, we observe that Model 5 is not like other models, the performance of
Model 5 may not decrease as the block size increases. This is due to the fact that
Model 5 stores only the first starting block of a dynamic block. It needs to pay higher
time penalty even to a cache hit. However, as the block size increases, the first starting
block becomes larger. The large block size can provide more time to get the remaining

sectors. The penalty of each cache hit is reduced. So, the effect of bringing undesired

sectors into the cache can be compensated.

6.3.2 Trends of Relative Reduction in Time

6.3.2.1 Performance Of Model 4, Model 7 And Model 8

The trend is also very similar to the case of common disk. The relative performance
is the absolute performance of a model compared with the absolute performance of

Model 3. Although the absolute reduction decreases in general, the relative reduction
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can increase. This means that the performance of a model is much better than that of
Model 3 at this situation.

Unlike the case of common disk, the increase in relative reduction of Model 7 and
Model 8 is not large. Large block size has an effect of implicit prefetching. It can
increase the chance of correct prefetch of adjacent sectors. On the other hand, large
block size may bring many useless sectors into the cache and may kick out useful sectors.
As discussed previously, the time penalty of a miss is smaller. Model 7 and Model 8
can further enlarge the cache size than that in the case of common disk because Cl
is small. Therefore, the extra increased cache size may be enough to capture reuses.
If the block size increases little, it may help to capture more reuses. However, if the
block size increases too large, it brings too many useless data in the cache. The useless
data stick with useful data in a block and make the performance poor. This can justify
by the fact that the increase in the relative reduction in time is not too obvious as
the block size increases. However, the drop is much dramatic than that in the case of

common disk.

6.3.2.2 Performance Of Model 5

We have omitted Model 5 to get a clearer discussion in before. Now, let us focus on
the performance of Model 5. Figure 6.6 are plotting for the relative performances of
the four models, including Model 5 for different traces.

In general, the relative performance of Model 5 is better and better as the block
size increases. This is because Model 5 underuses the cache by only storing the first
heading block of each non-sequential reference in BTC. Therefore, there is not enough
time to prefetch the remaining data. Now, as the block size increases, the first heading
block contains more sectors and in turn, more sectors of a dynamic block are stored in
the cache under Model 5. So the relative performance is better.

The difference from the case of common disk is that the relative performance of
Model 5 can sometimes be better than Model 3 in block size other than 8 sectors. This

shows that for high performance disk, small C1, the time penalty for each cache miss
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Figure 6.6: Relative Performance of Varying Block Size
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is smaller. Model 5 enlarges the effective cache size dramatically. The extra stored
sectors contribute more cache hits and they lower the disadvantage of referencing the

un-stored sectors.

6.4 The Effect Of Start-up Time C1

As varying the start-up time Cl, we choose a fixed reference point for other cache

parameters.

Cache Size = 4M
Set Associativity = 1 way

Block Size = 1 sector

Transfer Time C2 = 1.5

In the simulation, the values of C1 that we have examined are 1, 2, 3 and 4. Note that

these values are the ratios of actual values of the start-up time to the use-up time.

6.4.1 Trends of Relative Reduction in Time

Figure 6.7 shows the relative reduction in time for varying C1. The effect is exactly
the same as the case of common disk. When C1 increases, the relative performances
of Model 4, Model 5, Model 7 and Model 8 decrease because the time penalty paid for

each cache miss dominates.

6.5 The Effect Of Transfer Time C2

As varying the start-up time C2, we choose a fixed reference point for other cache

parameters.

Cache Size = 4M
Set Associativity = 1 way

Block Size = 1 sector

Start-up Time C1 = 10
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In the simulation, the values of C2 that we have examined are 0.5, 1, 1.5. Note that

these values are the ratios of actual values of transfer time to the use-up time.

6.5.1 Trends of Relative Reduction in Time

Figure 6.8 shows the relative reduction in time for varying C2. The trends of Model
4, Model 7 and Model 8 are also exactly the same as the case of common disk. As
(2 increases from 0.5 to 1, the relative performances of the models increase. As C2
increases from 1 to 1.5, the relative performances decrease dramatically.

However, for Model 5, its relative performance can now be better than Model 3
when C2<=1. C2<=1 means that there is enough time to get the next sectors after
getting the first sector. Therefore, the miss penalty is much smaller than that of C2>1.
Besides, Cl is small, so the size of the starting head is also small, approximately
2 sectors. Model 5 always stores the first block of a dynamic block. In this case,
the block size is equal to 1. Therefore, the time penalty of reuse is also very small.
Furthermore, Model 5 dramatically increases the effective cache size which can store
more requests in BTC. The extra stored requests can capture more reuses, so Model 5

can outperform Model 3.

6.5.2 Impact of C2=0.5 on Cache Size

Figure 6.9 shows the absolute reduction in time of varying cache size when C2=0.5.
Model 5 outperforms other models in 1M cache size. This is the effect of small C1
so the starting block is very small. Also, C2=0.5 means that there is enough time to
get next sectors if the first sector/block has been stored in BTC. In small cache size,
there is not enough space to capture the reuses. Therefore, by ignoring some contents
sectors, the cache can store more requests and can capture more cache hits. Model 5
is the most vigorous one to discard sectors and let the cache system to get them by
overlapping with the program execution. Therefore, in the situation of smaller time
penalty of miss, Model 5 can outperform other models. Following the same argument,

we predict that the performances of Model 7 and Model 8 are also good.
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Figure 6.10 shows the relative reduction in time for varying cache size when C2=0.5.
The trend of relative performance is the same as the case of C2=1.5. However, the
relative performance of Model 5 is much better than that in the case of C2=1.5. The

reason is discussed as above.

Relative Reduction In Time va. Cache Size (C122, C2:0.5) Relative Reduction In Tima va. Cache Size (C12. C2:0.5)
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6.5.3 Impact of C2=0.5 on Block Size

Figure 6.11 shows the absolute reduction in time for varying block size when C2=0.5.
This situation is similar to the case of C2=1.5 except that the performance of Model

5 is much better. The reason is discussed in the previous Section 6.5.2.
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Figure 6.12 shows the relative reduction in time of varying block size when C2=0.5.
The trend of relative performances of Model 4, Model 7 and Model 8 decreases while

that of Model 5 can increase. The reason is discussed in Section 5.5.4 in the case of
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common disk.
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6.6 Conclusion

High performance disk provides a better environment to ASST and SEHT to work on.

Since C1 is small, the starting head is small and so more starting heads can be stored

in BTC. Also, the time penalty of each cache miss is smaller than that in‘the case of

common disk. Therefore, the tradeoffs of the ASST and SEHT become less important.
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This can be verified by the fact that the relative performances of Model 7 and Model 8
for high performance disk can triple their relative performances in the case of common
disk as shown in Table 6.1. Besides, the performance of Model 5 is also better than
that in the case of common disk. This also can be explained by the above reasons. The

most suitable configuration for the best efficiency of the proposed models is similar to

the case of common disk and summarized in below again:

e intermediate cache size, e.g. 2M to 4M

small block size, e.g. 1 sector

large set associativity of the cache, e.g. 4-way set associative

small prefetch buffer size

e more occurrences of heading reuse

e less occurrences of killing correct prefetch
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Conclusions and Future Work

7.1 Conclusions

We have discovered that always prefetch performs better than currently used prefetch
on miss mechanism because disk access exhibits a highly sequential pattern. The
sequential property can be visualized from the formation of large dynamic block size

as shown in Table 4.7.

To further improve the cache performance, we have designed few models that are
based on the cache partitioning technique and using proposed algorithms to place data
in different parts of the cache. The cache is divided into 2 parts: Branch Target
Cache (BTC) and Prefetch Buffer (PB). The original algorithm (Model 5) stores the
blocks/sectors causing cache misses in BTC and stores all prefetched blocks/sectors in
PB. Model 5 is like a cache partitioning model used in CPU cache [Jou90]. The newly
proposed algorithms are the Alternative Storing Sectors Technique (ASST) applying
to request block (Model 6) and to dynamic block (Model 7) respectively, and the
Storing Enough Heads Technique (SEHT) (Model 8). ASST and SEHT are to discard
some sectors that need not be stored in the cache by proper overlapping the program
execution and the data fetching. The un-stored data are fetched by the cache system
during the program execution. The algorithms are designed so that there is little/no
time penalty when retrieving the un-stored sectors. Since the algorithms discard some
sectors, the cache can store more data from more requests. Therefore, the.algorithms

can enlarge the effective cache size.

119
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To evaluate these algorithms, we have conducted a simulation study. Our approach
is to examine their absolute performances, and relative performances when comparing
with the base. We have chosen the base of comparison to be unified cache with prefetch
on miss (Model 3). We have also simulated two commonly used algorithms such as
unified cache without prefetch (Model 2) and unified cache with always prefetch (Model
4) for comparison.

Model 7 and Model 8 have very good performances under a suitable configuration.
The suitable configuration is a medium cache size (about 2M to 4M), I-sector block
size, higher set associativity (about -way to 8-way), and small PB size (about 0.1KB).
Their relative performances can double/triple that of Model 4. This shows that some
sectors can actually be discarded if the data fetching can overlap the program execution.
This, in turn, has an effect of enlarging the cache size, i.e. the performance of a small
cache is as good as an ordinary cache with larger size. For different kinds of disks.
the performances of Model 7 and Model §'still perform well under this configuration.
Therefore, we conclude that partitioning the cache into two parts is very useful. ASST
and SEHT are good and effective algorithms to control the BTC and PB.

On the other hand, ASST and SEHT have their tradeoff. If the cache size is large
enough to hold the working set, their performances will be poor because some sectors
are compulsorily discarded. Besides, the accumulated effects of killing correct prefetch
and non-heading reuse also lower the performance. If the cache size is too small, the
extra stored sectors do not have chance to be reused before they are flushed out. The
advantage of enlarged cache size cannot be exploited but the disadvantages of the
algorithms still exist. So, the performances of Model 7 and Model 8 are poor when the
cache size is too small. There should be a threshold such that beyond the threshold,
the extra stored sectors can be reused effectively.

Model 7 and Model 8 perform poorly when the cache size is too small or too
large. This is not surprising because the aim of this project is to design effective cache
mechanisms so that they can fully utilize the cache when the cache size is limited. The

mechanisms perform well in the medium range of cache size. We have verified this view
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from the simulation result. Nowadays, multimedia and database applications become
more and more popular. The data size is increasing rapidly but the increase in cache
size cannot catch up with this speed. Our newly designed models will be very suitable
in this situation.

Other parameters also affect the efficiency of different models. An important one
is the block size. In current disk cache design, block size is usually set to a large value
because this have the effect of implicit prefetching. Current design rarely incorporates
the technique of always prefetch. If the block size is large enough, a larger extent
of the spatial locality of the references can be captured. However, large block size
may bring too many useless data together into the cache. From the simulation, we
observe that the performances of Model 7 and Model 8 generally decrease when the
block size increases. This is because Model 7 and Model 8 have already incorporated
always prefetch mechanism. Always prefetch has the ability to capture spatial locality.
Therefore, using a large block size in an ‘always prefetch environment manifests the
disadvantages of large block size and degrades the performance.

In the simulation, we have also verified that increasing set associativity improves
the performance. However, increasing set associativity increases the time of searching
the cache for each request.

From the value of actual sectors transferred, as shown in Table 5.9, we have found
that always prefetch does not impose a heavy traffic in the data bus. Always prefetch
may reduce the traffic if the trace exhibits a highly sequential property. Therefore,
always prefetch is a practical method to improve the performance of a cache.

In conclusion, traditional disk cache design uses very old techniques that were built
for CPU cache. It rarely considered the highly sequential interrelationship between
successive disk 1/0 requests. In this project, we have designed a disk cache partitioning
architecture controlled by newly proposed algorithms. The main idea is that by proper
overlapping the data fetching and the program execution, the cache system can discard
some sectors, i.e. some requested sectors need not be stored in BTC. The un-stored

sectors can be retrieved by prefetching during program execution. Simulation shows
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that the relative performances of the newly proposed models are better than that of
unified cache with always prefetch, i.e. Model 4, by as high as 30% in a medium cache
size configuration. We conclude that the models are very useful in the design of disk

cache.

7.2 Future Work

More traces should be collected from other filesystems to verify the superior perfor-
mance of the proposed models because the MSDOS filesystem is just one of the many
existing filesystems. A more precise simulation should be done to get more accurate
performance metrics for disk cache in multi-tasking environment. Besides, there are
many write policies such as write back or write through with/without write allocate
and periodic update. Their effects on the performances of the proposed algorithms

should also be examined. .
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