
DESIGN OF DISK CACHE FOR HIGH
PERFORMANCE COMPUTING

B Y

VINCENT, K W A N CHI W A I

JUNE 1 9 9 5

I

SUPERVISED B Y

D R . C H I - H U N G CHI

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE D E G R E E OF M A S T E R OF PHILOSOPHY

DEPARTMENT OF C O M P U T E R SCIENCE
* *.

T H E CHINESE UNIVERSITY OF HONG HONG

； { { y

Abstract

The investigation of reducing disk I / O is an important issue today because large volume

of disk data are stored and retrieved frequently. The access t ime of a disk is usually

much slower than that of the memory system. Traditional method using in the CPU

cache has been applied to the disk cache and got an acceptable result. The main focus

in this thesis is to design an effective caching strategy that can maximize the cache

performance in limited cache size. The difference between CPU cache and disk cache

is discussed. We also introduce new algorithms to further reduce the disk access time.

Besides, a more accurate method to measure the performance of disk cache is provided.

If the disk access can overlap the program execution, the cache system will have t ime

to get some sectors 'on the fly'. Traditional cache design stores all requested sectors

in the cache and cannot make use of this overlapping advantage. A cache partitioning

model is proposed to achieve this advantage. The cache is divided into Branch Target

Cache and Prefetch Buffer. Wi th the assist of the proposed algorithms, Alternative

Storing Sectors Technique and Storing Enough Sectors Technique, the performances of

our models outperform that of the s tandard, unified cache with prefetch on miss, by

15%-30%.

t a,

i

Acknowledgement

I gratefully acknowledge the support and encouragement from Dr. Chi-Hung Chi, with-

out whom this thesis could not have been completed. I also thank my committee, Dr.

Wei-Min Zheng, Dr. Gilbert Young and Dr. Ada Fu for their efforts in making thought-

ful comments on this thesis.

I must thank Kevin Chan, Vico Chong and Sunny Lee for their kind help on proof-

reading this thesis. Thanks also go to all the friends in the department : Yung Chan,

Chi-Sum Ho, Chi-Kwim Kan, Chong-Meng Lee, Keith Mak, Alywin Yu and Jeffrey

Cheung. Keith and Meng provide many technical supports on the computing environ-

ment. Yung, Sum, Kan and Jeffrey have told me many interesting stories in the leisure

time. Alywin has helped me to setup the computer on my desk.

Besides, I must express my sincere gratitude to my father, mother, two brothers

and my girlfriend, Grace, for their support. I must give a special thank to Grace for

her nice dinners and for her staying with me to work on this thesis.

« «.

ii

Contents

Abstract i

Acknowledgement ii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 I /O System 2

1.2 Disk Cache 4

1.3 Dissertation Outline 5

2 Related Work 7

2.1 Prefetching 7

2.2 Cache Partitioning 9

2.2.1 Hardware Assisted Mechanism 9

2.2.2 Software Assisted Mechanism 10

2.3 Replacement Policy 12

2.4 Caching Write Operation 13

2.5 Others 14

2.6 Summary 15

3 Methodology and Models 17

3.1 Performance Measurement 17

3.1.1 Partial Hit ‘ 17

iii

3.1.2 Time Model 17

3.2 Terminology 19

3.2.1 Transfer Block 19

3.2.2 Multiple-sector Request 19

3.2.3 Dynamic Block, Heading Sectors and Content Sectors 20

3.2.4 Heading Reuse and Non-heading Reuse 22

3.3 New Models 23 “

3.3.1 Unified Cache with Always Prefetch 24

3.3.2 Partitioned Cache: Branch Target Cache and Prefetch Buffer 25

3.3.3 BTC + PB with Alternative Storing Sector Technique， 29

3.3.4 BTC + PB with ASST Applying to Dynamic Block 34

3.3.5 BTC + PB with Storing Enough Head Technique 35

3.4 Impact of Block Size 38

4 Trace Driven Simulation _. 41

4.1 Simulation Environment 41

4.2 Two Kinds Of Disk 43

4.3 Control Models 43

4.3.1 Model 1: No Cache 43

4.3.2 Model 2: Unified Cache without Prefetch 44

4.3.3 Model 3: Unified Cache with Prefetch on Miss 44

4.4 Two Comparison Standards 45

4.5 Trace Properties 46

5 Performance Evaluation of Common Disk 54

5.1 The Effect Of Cache Size 54

5.1.1 Trends of Absolute Reduction in Time 55

5.1.2 Trends of Relative Reduction in Time 55

5.2 The Effect Of Block Size 68

5.2.1 Trends of Absolute Reduction in Time 68

5.2.2 Trends of Relative Reduction in Time “ … 7 3

5.3 The Effect Of Set Associativity 77

iv

5.3.1 Trends of Absolute Reduction in Time 77

5.4 The Effect Of Start-up Time Cl 79

5.4.1 Trends of Absolute Reduction in Time 80

5.4.2 Trends of Relative Reduction in Time 80

5.5 The Effect Of Transfer Time C2 83

5.5.1 Trends of Absolute Reduction in Time 83

5.5.2 Trends of Relative Reduction in Time 83

5.5.3 Impact of 02=0 .5 on Cache Size 86

5.5.4 Impact of C2=0.5 on Block Size 87

5.6 The Effect Of Prefetch Buffer Size , 90

5.7 Others 93

5.7.1 In The Case of Very Small Cache with Large Block Size 93

5.7.2 Comparing Performance of Model 6 and Model 7 94

5.8 Conclusion 95
I

5.8.1 The Number of Actual Sectors Transferred between Disk and Cache . 95

5.8.2 The Efficiency of Our Models on Common Disk 96

6 Performance Evaluation of High Performance Disk 98

6.1 Difference Between Common Disk And High Performance Disk 98

6.2 The Effect Of Cache Size 99

6.2.1 Trends of Absolute Reduction in Time 99

6.2.2 Trends of Relative Reduction in Time 99

6.3 The Effect Of Block Size 103

6.3.1 Trends of Absolute Reduction in Time 105

6.3.2 Trends of Relative Reduction in Time 105

6.4 The Effect Of Start-up Time C l 110

6.4.1 Trends of Relative Reduction in Time 110

6.5 The Effect Of Transfer Time C2 110

6.5.1 Trends of Relative Reduction in Time 112

6.5.2 Impact of C2=0.5 on Cache Size 112

6.5.3 Impact of C2=0.5 on Block Size 116

V

6.6 Conclusion 117

7 Conclusions and Future Work 119

7.1 Conclusions 119

7.2 Future Work 122

Bibliography 123

I

vi

List of Tables

3.1 The Un-stored Sectors for C2=2 and C2=1.5 32

4.1 Number of Requests for the Four Traces 47

4.2 Number of Sectors per Request 48

4.3 Frequency of Displacement 48

4.4 Frequency of Dynamic Block Size for Access 49

4.5 Frequency of 1-sector Dynamic Block Size and Request 50

4.6 Frequency of the Largest and Most Frequent Dynamic Block 51
I'

4.7 Ten Topmost Largest I /O Percentage of Dynamic Blocks 52

5.1 Maximum and Minimum Relative Performance of Model 4 (C2 = 1.5) 58 •

5.2 Maximum and Minimum Relative Performances of Model 7 (C2 = 1.5) 62

5.3 Maximum and Minimum Relative Performances of Model 7 (Prefetch Time = 0) 64

5.4 Maximum Relative Performance of Model 7 65

5.5 Hit Ratio and Disk Access Time Ratio for Model 7 72

5.6 Actual Number of Sectors Transferred for Dbase when Varying Block Size . . 73

5.7 Behavior of Model 2 in IM Cache Size for Excel Trace 94

5.8 Absolute Performance of Varying Cache Size of Model 6 and Model 7 95

5.9 Actual Number of Sectors Transferred between Disk and Cache 96

6.1 Relative Performance of Model 7 for two kinds of disks 102

vii

List of Figures

1.1 I/O System Model 2

2.1 Logical flow of SLRU cache lines 13

3.1 Multiple-sector Request 19

3.2 Formation of Dynamic Block 20

3.3 Heading Sectors and Content Sectors 22

3.4 Two Different Kinds of Reuse 23

3.5 Flow Chart of Model 4 : 25

3.6 Partitioned Cache: BTC + PB 26

3.7 Flow Chart of Model 5 27

3.8 Problem of Storing First Block in BTC 28

3.9 Alternative Storing Sector Technique (ASST), Cl=3, C2=2 29

3.10 Flow Chart of Model 6 and Model 7 33

3.11 Applying ASST to Multiple-sector Request and Dynamic Block (Cl=5, C2=2) 34

3.12 Storing Some Heading Sectors for Each Request 35

3.13 Problem of Storing Starting Head of Each Request to 1-sector Requests . . . 36

3.14 Storing Enough Head Technique (SEHT), Cl=10, C2=2 37

3.15 Flow Chart of Model 8 39

4.1 Flow Chart of Model 1 44

4.2 Flow Chart of Model 2 45

4.3 Flow Chart of Model 3 46

5.1 Absolute Performance of Varying Cache Size . . . 56

5.2 Relative Performance of Varying Cache Size (without Model 5) 57

viii

5.3 Trend of Relative Performance of Model 7 and Model 8 59

5.4 Killing of Correct Prefetch 61

5.5 Relative Performance of Varying Cache Size with Prefetch Time=0 63

5.6 Relative Performance of Varying Cache Size 67

5.7 Absolute Performance of Varying Block Size 69

5.8 A 4-sector Request in Block Size of 4 sectors 70

5.9 A 8-sector Request in Block Size of 8 sectors 71

5.10 Relative Performance of Varying Block Size (without Model 5) 74

5.11 Relative Performance of Varying Block Size 76

5.12 Absolute Performance of Varying Set Associativity 78

5.13 Absolute Performance of Varying Start-up Time Cl 81

5.14 Relative Performance of Varying Start-up Time Cl 82

5.15 Absolute Performance of Varying Transfer Time C2 84

5.16 Relative Performance of Varying Transfer Time C2 85

5.17 Absolute Performance of Varying Cache Size when C2=0.5 87

5.18 Relative Performance of Varying Cache Size when C2=0.5 88

5.19 Absolute Performance of Varying Block Size when C2=0.5 91

5.20 Relative Performance of Varying Block Size when C2=0.5 92

5.21 Absolute Reduction in Time of Varying Prefetch Buffer Size 93

6.1 Absolute Performance of Varying Cache Size 100

6.2 Relative Performance of Varying Cache Size (without Model 5) 101

6.3 Relative Performance of Varying Cache Size 104

6.4 Absolute Performance of Varying Block Size 106

6.5 Relative Performance of Varying Block Size (without Model 5) 107

6.6 Relative Performance of Varying Block Size 109

6.7 Relative Performance of Varying Start-up Time Cl I l l

6.8 Relative Performance of Varying Transfer Time C2 113

6.9 Absolute Performance of Varying Cache Size when C2=0.5 114

6.10 Relative Performance of Varying Cache Size when 02=0.5 115

6.11 Absolute Performance of Varying Block Size when C2=0.5 116

ix

6.12 Relative Performance of Varying Block Size when C2=0.5 117

/ . ‘ •

， . ‘ . 、 " . . . - -

. ‘4.

. A . <

i . ： ； … / ,；

. . . I , ; : . -Li: . , V

• •圓 -

• •

r. ••‘

. “«.
--丨 .•

‘) ‘

“

‘ ^ 、 • - “

, > •‘

•：,“ . .

V

- V . « 〜 ’

« •

X

• • ：......

•• - V :-、
...,-:‘4..

•

Chapter 1

Introduction

Relative speed gap between the disk and the main memory is increasing. With increas-

ing computational power of the CPU and with the trend for parallel processing, the

rate of data consumption is getting higher. The size of the data set that a program op-

erates on is also increasing. For example, in query applications, hundreds of gigabytes

of data, are scanned to determine the answer. Even worse, sometimes slower disks are

used because of the cost. All these are reflected by the following facts:

• For high-end servers and high performance computers, the increasing rate for

MIPS is about 10%-20% while the increasing rate for DASD (direct address

device, e.g. disk) is about 40%-60%.

• For high end data servers and enterprise systems, about 60%-70% of the system

cost is spent on DASD.

• Disk caching is attracting more and more attentions.

It is expected that the system performance bottleneck will be on I /O instead of

the computing power of processors. This is because microprocessor speed has been

increasing at an extremely fast rate. For example, over 100 MIPS processors are very

common. It is expected that processors with throughput of 300-500 MIPS will be

available in the coming two years. On the other hand, although the size of disk storage

is increasing greatly in this few years, the disk access time does not have any great

1

Chapter 1 Introduction 2

breakthrough. Therefore, the speed of the disk cannot catch up the fastly increasing

CPU speed, and makes disk I /O become a performance bottleneck.

1.1 I /O System

Magnetic disk has its advantages to store information. It has a large capacity. It

is significantly cheaper than higher performance alternatives and provides permanent ~

storage. On the other hand, access t ime of disk is slow when compared with the rest of

the computer system. Disk is slower than DRAM (Dynamic Random Access Memory)

in both access t ime and transfer time. Disk is a result of economic consideration and

limited current technology. If fast, reliable and cheap storage were available, slow disk

access would have disappeared.

1
L O P U

L Z . I

Memory ,

_ _ I p -
1 ‘i “
I L i

Disk Cache

f w

Disk
Storage

Figure 1.1: I/O System Model

Figure 1.1 shows the general relationship between a running process in memory,

the disk cache and the disk storage. The number of disk I / O requests from the process

is r and w, and it depends on the nature of the application. The r ' and w' are the

actual disk I / O requests between the disk cache and the disk. Reducing the values of

r' and w' means that fewer da ta are needed to be transferred between the disk cache

and the disk storage. Since the disk is a slow device, reducing the traffic can increase

Chapter 1 Introduction 3

the overall performance.

There are two parameters that determine the impact of disk I /O on overall system

performance. One is the amount of time waiting for each I/O to complete, and the

other is the number of disk I /O operations performed. If a process performs a large

number of disk I /O and the time to complete an I /O is long, the performance of the

overall system must be poor no matter how good the performance of other parts of

the system is. The role of the disk cache is to reduce the number of disk I /O, so the

average disk access time decreases.

The disk access time can be estimated as

Disk access time = Cl + C2 * n

where CI is the start-up time of the disk which includes the seek time and rotational

delay; C2 is the disk transfer time, i.e. the time to transfer one sector; and n is the

number of sectors in a request. This equation is, in fact, not accurate for an individual

request. However, over a large sample, this equation can be considered as average

approximation of the time of each request.

Using more arms and disk platter can reduce the start-up time and the transfer time.

Studies [Ng91, MK89] show that using two arms can reduce the average rotational

latency to one-fourth of a revolution, instead of a half revolution. Synchronously

interleaving of data across several disks can also reduce the transfer t ime [Kim86,

GMS88]. The technology of Redundant Arrays of Inexpensive Disks (RAID) provides

a high performance and very reliable way to stripe data across multiple disks [PGK88,

CGK+88, KOP+89]. It can also increase the overall reliability because of the cost-

effective redundant feature.

Many techniques have been developed to improve the disk access time, but they

cannot overcome the fact that disk is still slower than the rest of the computer system.

Disk I /O is still the bottleneck of the overall system performance.

Chapter 1 Introduction 4

1,2 Disk Cache

Disk cache serves as a buffer between the process in memory and the physical device.

The earliest study about disk cache was reported in 1968 [SV68]. All the disk requests

go to the cache system first and the cache system will decide how to process them. If

the requested sectors are found in cache, no physical I /O operation is performed. This

also means that the average access time of I /O is reduced. Disk cache also reduces the

amount of time that a. process spends on disk accessing.

All modern operating systems use disk cache to reduce disk accesses. For instance,

Unix has an inode buffer to cache the (inode and directory) information of files and

has a buffer cache to cache data in files [Bac86]. Cache can be located in three possible

locations: a cache in host, a cache in the device storage controller, or a cache in the

drive itself.

Current disk caching techniques are n^t as good as we want. Most of current

research efforts on caching are on on-chip caching and memory chip design. Old tech-

niques such as hardware oriented one block/sector look ahead are still being used in

controlling disk cache. However, in on-chip cache design, new techniques have already

been developed to improve cache performance by a significant amount, e.g. cache parti-

tioning, software assisted data prefetching, smart hardware oriented data prefetching,

etc. Furthermore, traditional disk cache design often emphasizes on cache hit rate for

one level in the memory hierarchy. Very little effort has been spent to study the perfor-

mance of disk cache in terms of the execution time on a multi-level memory hierarchy

system.

The hit ratio of disk cache is generally 70%-90%. It is very low when compared

with the hit ratio (>90%) in memory cache. This difference is due to the poor disk

cache management to capture the locality of disk access. In this thesis, we will examine

new caching algorithms which are expected to produce a better performance and to

use the disk cache in a more efficient way.
I .

Our project aims to design a general disk cache strategy that is simple and cheap

Chapter 1 Introduction 5

enough to be incorporated in hardware, and can fully utilize the limited cache size.

The main idea is that by proper overlapping data fetching and program execution,

some sectors can be discarded and so they are not stored in the cache. When these

un-stored sectors are requested, they can be retrieved during program execution. So,

this method can effectively enlarge the cache size. To achieve this propose, we have

incorporated a cache partitioning and newly designed algorithms to build a disk cache _

architecture. The basic contributions of our research are summarized as follows:

• Discover that a highly sequential property has been exhibited in the traced data.

• Discover that always prefetch performs much better than currently used prefetch-

ing mechanisms in disk cache design such as prefetch on miss.

• Design a. disk cache architecture based on CPU cache partitioning technique

and new algorithms to control the < îsk cache in order to further improve the

performance of always prefetch.

• Build a simulator to investigate the performance characteristics of the designed

disk cache models in various kinds of disks.

• Compare the pros and cons of using the designed disk cache architecture and

algorithms to enhance the performance of disk I /O.

• The designed models perform much better than the traditional ones in a wide

range of cache size.

1.3 Dissertation Outline

The outline of the rest of the thesis is as follows:

• Chapter 2 describes the previous work on cache design.

• Chapter 3 gives a detail description of the newly proposed models, including the

disk cache architecture and the control algorithms.

Chapter 1 Introduction 6

• Chapter 4 describes the trace driven simulation environment and analyzes the

trace data in detail. Highly sequential property of the traced data is shown in

the analysis.

• Chapter 5 evaluates the performances of our proposed models for common disks.

Various simulation results are presented with detail discussion of the pros and

cons of different models. ~

• Chapter 6 evaluates the performances of our proposed models for high perfor-

mance disks.

• Chapter 7 gives the conclusion and suggests future extension of our work.

Chapter 2

Related Work

Since cache performance depends on a wide range of design and implementation pa-

rameters, many efforts have been paid to study the impact of these parameters on

processor caches [Smi82, Prz90]. Disk cache is generally much larger, in volume, than

CPU cache and often has a lower hit rate but many of the same design principles apply.

A comprehensive study in disk cache w îs discussed in [Smi85]. Trace driven simu-

lation is used to show, among other results, that cache sizes on the order of 8 Mbytes

can service 80%-90% of all disk requests [Smi85]. A simple prefetching strategy is also

explored to load block i+1 into the cache when block i is referenced, but concludes

that it is not uniformly effective for all types of files. Besides, it proposed to perform

intelligent prefetching based on the user types (system, interactive, batch) and the file

types (temporary, system, paging). However, it is difficult to incorporate Smith's sug-

gestion in many cache designs due to the requirement of either analyzing the program

or accepting user advices in advance.

2.1 Prefetching

Prefetching is a very common method that incorporates into a cache design. Prefetch-

ing means fetch before actual reference. This method fetches some sectors before the

sectors are actually referenced. Therefore, if the prefetched sectors are actually refer-

enced, it will reduce the time of a process to wait for accessing the disk, and so will

increase the execution speed of a process. However, if the prefetched sectors are not be

7

__ Chapter 2 Related Work 8

referenced, they will still occupy the cache space. Then cache is polluted because they

kick out some useful data. Therefore, the usefulness of prefetching highly depends on

whether the mechanism can capture the access property of the requested data. Much

work has been done to improve the hit rate of prefetching. Prefetch on miss, prefetch

on hit and always prefetch are three commonly known prefetching methods [Smi82 .

Prefetch on miss triggers prefetching action when there is cache miss. Prefetch on hit

triggers prefetching action when there is cache hit. Always prefetch triggers prefetching

action when there is a request. For currently used disk caches, they only incorporate

prefetch on miss as their prefetching mechanism. They sometimes do not incorporate

any explicit prefetching mechanisms but they rely on the implicit prefetching property

of a large block size. For instance of using a large block size, a request of one sector

will let a whole disk track to be loaded in the cache.

The traditional prefetching mechanism is One Block Look-ahead (OBL). It loads
I '

sector i+1 into the cache when the sector i is referenced [Smi85]. This prefetching

algorithm is based on spatial locality. However, in modern file system design, the data

may not be continuous on disk, i.e. fragmentation may occur. Therefore, OBL may not

be a good mechanism to capture spatial locality, i.e. sector i+1 may not contain data

that continue from sector i. This is the problem of the logical continuity not matching

the physical continuity. To solve this problem, maintaining an adaptive table of most

probable successors for each disk block was proposed [GAN93]. Each successor is tagged

with a weight which indicates the likelihood that it will be referenced given that its

parent is referenced. This table and associated weights are used to control the prefetch

mechanism. Unlike sequential prefetching, this algorithm functions well when logically

successive disk blocks are not physically adjacent on the disk. However, the overhead

of the large size of the adaptive table may make the algorithm impractical.

An adaptive prefetch design based on the run-time caching statistics of files was

proposed [SL090]. Cache hit histories that are produced by prefetching are used as

a measure of the file access sequentialities and are used to determine the dynamic

prefetching length. More disk blocks are prefetched for transition that has a tendency

__ Chapter 2 Related Work 9

to produce additional cache hits. Prefetch lengths are reduced for transition that

generates poor cache hit histories. This method can improve the cache utilization

and prefetch efficiency. However, to implement this function, a prefetch id is needed

to attach each data block to represent the prefetch type, demand or prefetch, of the

block. This may involves design overheads for maintaining the prefetch id and screening

various cache hits. _

2.2 Cache Partitioning

Prefetching is a very useful technique because it can reduce the disk access time. On

the other hand, it has a tradeoff that the prefetched data flush out the original data, i.e.

the previously captured access pattern. Besides, some prefetched data may be useless

but they still flush out the data, in the cache. For instance, after a huge sequential access

like playing an animation, whole cache wilt be occupied by the prefetched data of the

animation and the prefetched data are usually useless afterward. Then the cache will

be like in a cold start situation. To eliminate the problem of previously captured access

pattern being flushed out, cache partitioning technique has been proposed. The basic

idea of cache partitioning is that the prefetched data should be placed in a separated

buffer so that they cannot affect the previously captured access pattern.

2.2.1 Hardware Assisted Mechanism

CPU cache also has this kind of prefetch problem when there is a loop accessing a

large array. To eliminate this problem in CPU cache in hardware and to preserve

the advantage of prefetching, a small fully-associative cache [Jou90], was presented to

improve the CPU cache performance. There are three methods to fill the small cache:

miss caching, victim caching and stream buffers. For miss caching, the data store in

both the original cache and the small cache on cache miss. If data are replaced in the

original cache but can find in the small cache, it can still provide a faster response to

the requests. For victim caching, it stores the data which are flushed out from the

__ Chapter 2 Related Work 10

original cache. Simulation shows that the small cache needs only 1 to 5 entries to

effectively remove conflict misses. The stream buffer stores the prefetched data on a

cache miss. It is operated in a, FIFO way. Simulation shows that the stream buffer can

reduce 72% of instruction cache misses and 25% of data, cache misses.

Branch target cache/buffer is another product of CPU cache partitioning. A branch

target cache/buffer can reduce the performance penalty of branches in pipelined pro- _

cessors by predicting the path of the branch and caching information used by the

branch. Two issues are needed to be solved: a branch resolution scheme to de-

cide the direction and target of a branch early in the pipeline, thus allowing tar-

get instruction fetch to start, and mechanisms to minimize the impact of unpre-

dictable branches. Many efforts have been paid to study the branch target cache

;DA95, CG94, Gon94, PS93, PSR92, BF91 .

Branch target cache/buffer has been widely used in CPU cache design. For in-
I

stance, Intel Pentium and Am29000 CPU have already incorporated this technique for

instruction reference only. Branch target cache is used to store the first block of the

non-sequential reference. Therefore, for each branch, the next instruction is probably

in the branch target cache. The execution time is then reduced. This technique has

been really incorporated in the CPU cache design but it has rarely been considered to

be used in disk cache design.

2.2.2 Software Assisted Mechanism

Most caches are controlled by hardware technology. However, hardware has very little,

or even no, information about a running process. This may lead to inefficiently uti-

lize the cache. If more information is required, expensive and complicated hardware

is needed. Therefore, software-assisted mechanism becomes another aspect in cache

design. Since software has more information about the program execution, it is very

suitable to act as a guide to control the cache.

A small prefetch buffer to support the software-assisted prefetching was proposed in

CPU cache [KL91, CMCH91]. Simulation shows that this approach greatly improves

__ Chapter 2 Related Work 11

the cache performance. Therefore, placing the data in a small buffer does not affect

the effectiveness of prefetching. Using a small buffer to store the prefetched data is

commonly used in CPU cache. However, it has rarely been considered to be used in

disk cache.

For currently used disk caches, they generally use an unified cache approach. How-

ever, analog to the concept of software-assisted mechanism in CPU cache, disk cache _

can also use the operating system to provide more information for cache control. The

most typical information is the file access statistics. Many cache partitioning algo-

rithms have been proposed according to the file usage and they usually give satisfactory

results.

An adaptive algorithm was proposed to partition a fully associative disk cache that

were shared by several identifiable processes [TSW92]. The partition algorithm alters

the cache size dynamically in response to changes in the access pattern — the miss

rate of each process. The partitioning model is evaluated on a trace of 1.6 million disk

I /O accesses directed to 13 physical disks sharing one cache and its associated cache

controller. The partitioned cache performs slightly better than the unified cache by 1%

to 2% increase in hit ratio. A queueing network model is set up and shows that such

the 1% to 2% increase in hit ratio can provide a significant decrease in disk response

time in a system with a heavy throughput of I /O requests.

An attribute cache is another kind of cache partitioning [RF93, Ric94]. The at-

tribute cache uses the workload characteristics (the file access pattern) to determine

the appropriate cache configuration for a given cache size. It captures the statisti-

cally distinct behavior of the workload. The attribute cache is divided into various

parts that is efficiently tailored to different types of files such as inodes, directories,

executable and data. The trace driven simulation shows that Inodes and Directories

occupy 80% of all file requests. They are small and have a highly temporal access

pattern. A significant amount of space should be allocated to capture these requests.

This portion of the cache should have small blocks to effectively capture the temporal

__ Chapter 2 Related Work 12

nature. Small executables and datafiles have temporal access patterns but large exe-

cutables and datafiles have sequential access patterns. A temporal subcache which has

small block size is assigned to small executables and datafiles. A sequential subcache

which has large block size is assigned to large files. The attribute cache can reduce

the miss ratio by 25%-60% depending on the cache size when comparing with a UNIX

style cache. _

2.3 Replacement Policy

Replacement policy is another important issue in cache design. The most commonly

used policy is least recently used (LRU) algorithm. LRU algorithm replaces the entry

that has not been used in the longest time. LRU algorithm is simple and easy to

implement in general. Although it is a commonly used policy, it may not be suitable in

all situations. For example, LRU treats fetched data and prefetched data as the same

weight so that many useless prefetched data flush out useful data. Therefore, variations

of LRU algorithm are proposed to tackle this problem.

LRU algorithm has a problem that the cache can be occupied by lines that are ac-

cessed only once, flushing out lines that have a higher probability of being reused. Seg-

mented Least Recently Used (SLRU) is proposed to eliminate this problem [KLW94 .

SLRU cache is divided into two segments: a probationary segment and a protect seg-

ment. Probationary segment holds the sectors that cause cache misses. When a sector

in the probationary segment is referenced again, it will be transferred to the protect

segment. Therefore, the protect segment holds only the sectors that were referenced

twice or more times. This can prevent those sectors, that were referenced once, flush

out all the data in the cache. The LRU line of protect segment will transfer to the

most resently used (MRU) space of the probationary segment if the protect segment

needs space to store new data. The structure of SLRU cache is shown in Figure 2.1

from [KLW94 .
« • .

__ Chapter 2 Related Work 13

I -書
Most recently used …，

！ 1
！ Protect segment ‘ -j

Least recently used | I

Discarded lines
Misses

i

1 Most recently used | -

. .—- — • 1 Hits :
Probationary segment | ——-

Least recently used

Discarded lines

Figure 2.1: Logical flow of SLRU cache lines

2.4 Caching Write Operation

Write operation is different from read opemtion because improper t reatment of write

may cause inconsistency and loss of data. However, caching write operations can let

the process to run more smoothly because it does not need to wait the I /O to complete.

There are many kinds of write operations such as write back and write through. Write

back means that the written data, are placed in the cache and will be written to the

disk later. Write through means that the written data are immediately written to disk.

Write back usually gives a better performance than write through. However, write

back cache may cause data loss in system failure. Therefore, protection mechanism

such as using SRAM (Static RAM) instead of DRAM to store the data was proposed

to prevent da ta loss.

Write-only disk cache was proposed to optimize the write operation [S090, OS92 .

A single surface write-only disk cache model [S090] was developed to approximate a

system with small amounts of disk cache or a system of parallel transfer disks where all

read/wri te heads can simultaneously transfer data. A multi-surface model [OS92] was

developed to study large disk cache systems and investigate the interference between
I

conflicting sectors on different disk surfaces during disk transfers. Write-only disk cache

__ Chapter 2 Related Work 14

has an advantage that writes can be performed at little or no cost by piggybacking them

on reads.

Periodic update write policy [CS92] is widely used in existing computer systems. It

writes dirty cache blocks to disk on a periodic basis. The periodic update concept arises

from a need to balance the generation of I /O traffic with the potential loss of data due

to system failure. The response time for read operations under the periodic update _

policy was compared with that using write through policy in [CS92]. It concluded that

the performance of periodic update write policy is better only if the cache system has

achieved a sufficiently high write hit ratio.

Redundant disk arrays are gaining increased attention as a feasible I /O organization

because it is cheap and reliable. In these I /O systems, reads and writes have different

performance impacts to the systems [Recl92]. When any data are written to the disk

system, the corresponding parity information needs to be updated on the disks. To
I

update the parity information, we need to read the old version of the data, XOR this

with the old parity information on the disk and the new data, and store the new parity

onto the disk. So, one write request results in four I /O operations. Hence the writes to

the system cause significant overload on the system. An deeply analysis of read/write

characteristics of the I /O workloads was presented in [Red92 .

2.5 Others

Hit ratio is a commonly used indicator to the performance of a disk cache but it may be

contrasted against the cache overhead. Cache overhead may reduce the performance

gain, or may even lead to a poor performance. Therefore, using cache overhead to

calculate the lower bound of hit ratio was proposed [Hos92]. Besides, analyzing an I /O

tracing could also calculate the average hit ratio [Hos92 .

The performance of disk cache was studied in fileserver based distributed computer

systems [ME90]. Cache in distributed systems involves additional design decisions due
I ,

__ Chapter 2 Related Work 15

to the presence of both workstation and fileserver caches. Disk cache replacement poli-

cies for network fileservers were also studied [WEB93] and showed that the common

least recently used (LRU) policy, which is known to work well on standalone disked

workstations and at client workstations in distributed systems, is inappropriate at a

fileserver. Simple frequency based approaches, e.g. least frequently used (LFU) algo-

rithm, do better. If the frequency based policy takes file type into account, it can offer _

additional improvements.

2.6 Summary

Prefetching is an attractive method to improve the cache performance. Many kinds

of prefetching, such as prefetch on miss, prefetch on hit, always prefetch and adap-

tive prefetch by access pattern, have been proposed. However, prefetching may bring

some undesirable data into the cache and flush out useful data. In CPU cache, cache

partitioning technique has been used to solve this problem. In disk cache, an unified

cache approach is generally used and there is very little consideration in cache parti-

tioning. Besides, cache partitioning can be used to capture different access pattern.

For instance, we can partition the disk cache according to different types of file, such

as directory, data, executable,..., etc.

Cache replacement policy mainly uses Least Recently Used (LRU) algorithm. Other

algorithms, such as Segmented Least Recently Used (SLRU) and frequency variation

of LRU, have been proposed to increase the efficiency. Those algorithms are mainly

based on the ordinary LRU algorithm.

Write policies of disk cache have been examined. Some common ones are periodic

write, write back and write through. Redundant disk arrays have been investigated

to provide a more reliable and cheap storage environment. Moreover, disk cache has

also been studied in different platforms, such as distributed system, fileserver and

workstation.
» »

Old techniques, such as unified cache approach and prefetch on miss mechanism,

__ Chapter 2 Related Work 16

have been applied to the currently used disk caches. Some disk caches even do not have

any prefetching mechanisms but use the implicit prefetching property of large block

to act as a substitute. In CPU cache, many new techniques have been developed to

improve the cache performance on those old techniques.

In this project, always prefetch is chosen as the basis of the new models. Cache

partitioning technique, similar to that in CPU cache, will be used to overcome the .

problem of prefetching. Prefetched data have less chance to flush out useful stored

data in cache now. This aspect has seldom been considered in previous studies. Since

algorithms to control the partitioned disk cache have rarely been discussed, new policies

will also be designed to control the partitioned disk cache.

I

Chapter 3

Methodology and Models

3.1 Performance Measurement

3.1.1 Partial Hit

Hit/Miss model is commonly used to justify the effectiveness of a cache design. A

request to cache is a hit if the referenced sectors are in cache. Otherwise, it is a miss.

However, due to cache prefetching, the definition of miss becomes ambiguous. There

are situations where the demanded sectors are being prefetched from the disk to the

cache but the transfer is not finished yet. We cannot count this situation as cache hit

because it needs to pay time penalty. Also, we cannot count this as cache miss because

the time penalty needed to pay is less than the cache miss penalty. Therefore, the

concept of partial hit is introduced to describe this kind of situation.

Partial hit means that the requested sectors are being prefetched from the disk, i.e.

the sectors are coming on the way. The occurrence of partial hit is due to the slow

data bus speed and the limited bandwidth. Since the penalty of a partial hit is not

constant, we need a time model to accurately measure the disk performance.

3.1.2 Time Model

Accurate modeling of the disk access is a key point to analyze result in simulation.

Using time model can eliminate the fuzziness of the concept of partial hit and can
«V »

provide a clear and accurate way to show the performance.

17

一 Chapter 3 Methodology and Models 18

Assumption:

When a request of multiple sectors is issued, the process can use the transferred sec-

tors while the system can transfer the next sectors asynchronously. This assumes the

overlapping between program execution and data fetching.

Let

the time to consume one sector be Jw; the time between sending out a request and

transferring the first sector from the disk be Cl; the transfer time per sector be C2. "

For one request of N consecutive sectors, the transfer time of these all sectors from

disk to memory is CI + C2 * N.

The total time to transfer and use up all sectors in one request without any disk

cache is

Total Time per Request介。disk cache = C\ + C'2 * N Tu* N

where the Time is the total access time inaluding transferring and consuming all the

requested sectors.

However, when there is disk cache, the time can potentially be much smaller. Con-

sider the case when there is cache hit, Cl and C2 can be eliminated. Since the time to

transfer data from disk cache to memory is so small that can be neglected, we have

Total Time per Request cache hit = Tu ^ N

Using a time counter, we can accurately get the time to indicate the situation of partial

hit. The total time of a partial hit is between Tu * N and C l + C2 * yV + Tix* N.

For convenience, we set Tu to 1 and all values of Cl and C2 are normalized with the

actual consumption time Tu. This normalization is only used to simplify the simulation

and without any loss of generality. In our simulation, we use the disk access time to

measure the performance of different models.

»

一 Chapter 3 Methodology and Models 19

3.2 Terminology

3.2.1 Transfer Block

A transfer block is the basic unit of data transfer between disk and disk cache. It can

contain multiple sectors. For example, a disk is designed to transfer 4-sector block at

one time. If there is a request just for one sector, the whole 4-sector transfer block

will be transferred. If there is a request of 2 sectors and these 2 sectors map to one ~

transfer block, only 1 transfer block (4 sectors) will be transferred. However, if these

2 sectors map to two continuous transfer blocks, the two transfer blocks (8 sectors) all

need to be transferred. For disk I /O, a request may contain many transfer blocks. In

the following discussion, we generally set the (transfer) block size to 1 for convenience.

All the following discussions also apply to block size larger than 1 sector. We only

need to map the sectors to the corresponding transfer blocks. Then adjust the t ime to

transfer one block to be C2*N, instead of tl̂ ie transfer t ime C2 of 1 sector, where N is

number of sectors per transfer block.

3.2.2 Multiple-sector Request

, 1

2
A disk request can demand
multiple sectors at one time.

This exhibits a highly sequential 3
property in one request.

4

‘ 5

Figure 3.1: Multiple-sector Request

Unlike CPU memory request, a disk request can request more than one da tum/sec tor

as shown in Figure 3.1. A multiple-sector request exhibits highly sequential property

in just one request. We can make use of this property to improve the performance
> •

of disk cache. If the program execution can overlap the fetching of requested sectors,

一 Chapter 3 Methodology and Models 20

some sectors do not need to be stored in the cache now. Those un-stored sectors can

be fetched by the cache system during program execution.

Due to the slow data bus, large number of beginning sectors must be stored in the

cache first. While the process uses those cached sectors, the remaining sectors can be

prefetched. For one multiple-sector request, its size is N,.. Some beginning sectors,

say its size is N^, need to be stored in the cache and the rest can be fetched from

disk directly during program execution. In practical, the number of sectors, N^, that “

need to be stored first is generally larger than number of requested sectors, N � i n one

request, i.e. N^ < N^. So, the idea of un-storing some sectors cannot be applied to this

case. This idea needs a larger block of continuous sectors to operate.-

3.2.3 Dynamic Block, Heading Sectors and Content Sectors

— 1

A request of sector 1
to sector 4 3

4 The 3 successive requests
I 二 一 can be combined to form a

A request of sector 5 T 1 — … large dynamic block. The
dynamic block exhibits

higher sequential property
6 than multiple-sector request

7

A request of sector 6 ~
to sector 10 ^

9

10

Figure 3.2: Formation of Dynamic Block

When we analyze the disk traces to see whether there is relationship between 2

successive requests, we have found that they might be sequential. Therefore, we define

all blocks between 2 non-sequential requests as a Dynamic Basic Block, or simply

Dynamic Block as shown in Figure 3.2. Detail discussion on Dynamic block and its

property on the traced data can be found in Section 4.5. For instance, many successive

1-sector requests can be combined to form a large dynamic block. From Table 4.5 in

一 Chapter 3 Methodology and Models 21

Chapter 4, the percentages of 1-sector requests which cannot be combined as dynamic

block are 1.62% for Access trace, 19.06% for Dbase trace, 13.07% for Excel trace and

37.53% for Word trace. The small percentages illustrate that many successive requests

can be combined to form a large dynamic block.

We can utilize this highly sequential property to improve the performance of a cache

design. Since the next request is highly predictable, it might not need to be stored in

cache if the prefetching is fast enough to get it. However, due to the slow data bus, _

the cache system still needs to store some sectors in order to provide enough time to

prefetch other sectors in the same dynamic block. Therefore, the importance of each

sector in a. dynamic block is different according to this point of view. If the cache stores

enough sectors so that the cache system has enough time to get the next sectors, the

next sector does not need to be stored in cache.

This is similar to the case of a multiple-sector request. We can reduce disk access

time by overlapping the program execution and the fetching of sectors from disk. A
I

block can be roughly divided into two parts: heading sectors and content sectors as

shown in Figure 3.3. Heading sectors are the first few sectors that are stored in cache.

When a process is using the heading sectors, some content sectors will be fetched from

disk simultaneously. The size of heading sectors depends on the chosen algorithm. This

is an important idea of the newly proposed algorithms and it will be discussed more

detail in Section 3.3.

The difference between a dynamic block and a multiple-sector request is that the

size of a dynamic block, N^, can be much larger than that of a multiple-sector request,

Nr. Therefore, we can treat a dynamic block to be a very large multiple-sector request.

For the case of multiple-sector request, N’’ is less than the number of heading sectors Ns

that need to be stored in cache, and the idea of overlapping data, fetching and program

execution may not apply. However, for dynamic block, N^ is larger than Ns because of

the large size of a dynamic block. The idea of overlapping data fetching and program

execution can apply more efficiently.

一 Chapter 3 Methodology and Models 22

— — I

3 Heading Sectors that need
.…丨...I •:、丨~~- to be stored in cache so that

A dynamic block of 丨 there is enough t ime to get
sector 1 to sector 10. It ^ ’ ， the remaining sectors during

may be combined by — : : . . program execution,
many requests. e

7 ； ‘

- — — — — — • • Content Sectors that may
8 not need to be stored in the _

cache because there is
enough t ime to get them

10 while the program uses the
heading sectors

Figure 3.3: Heading Sectors and Content Sectors

3.2.4 Heading Reuse and Non-heading Reuse

Before we discuss our new models of disk cache, we have to introduce a new concept

about the reuse of data. The reuse pat tern •；̂f a dynamic block can be divided into two

types: heading reuse and non-heading reuse as shown in Figure 3.4.

Heading reuse of a dynamic block is defined as that the first heading block of the

current dynamic block is equal to the first heading block of some previously formed

dynamic block in the cache. The 'previous' dynamic block may not be exactly the

same as the current one. In Figure 3.4, there were some requests forming a dynamic

block of sector 1 to sector 5. Now there are some requests forming a dynamic block of

sector 1 to sector 5 again, or sector 1 to sector 4 , . . . , etc. All these requests are said

to be heading reuse.

Non-heading reuse is defined as that the first heading block of the current dynamic

block is not equal to the first heading block of all previously formed dynamic blocks in

the cache. In Figure 3.4, there were some requests forming a dynamic block of sector 1

to sector 5. Now there are some requests forming a dynamic block of sector 3 to sector

5, or sector 2 to sector 3 , . . . , etc. Then these requests are said to be non-heading reuse.

For traditional algorithms of disk cache, they do not consider whether the request
» •

一 Chapter 3 Methodology and Models 23

Some requests formed
a dynamic block of
sector 1 tO| sector 5

Heading | |
Reuse i

r — Sector 1 丨

！

Non-heading
I Some requests form a , Reuse

dynamic block of sector Sector 2
1 to sector 4 丨 Some requests form a

‘ d y n a m i c block just of

i sector 2 to sector 3 一

Sector 3 - — 一

i
j

Sector 4

1

Sector 5

I

Figure 3.4: Two Different Kinds of Reuse

is heading reuse. However, the basis of our proposed algorithms is that the fetching of

sectors can be overlapped the program execution. It divides requests /dynamic blocks

into heading part and content part . The heading part will be stored in the cache in

order to provide enough t ime to fetch the rest. Depending on the algorithms, the

content part may not be stored in the cache. As a, result of a non-heading request

occurs, the requested sectors may not be in cache and our algorithms need to pay t ime

penalty to get them. The frequency of heading reuse and non-heading reuse will affect

the performance of the proposed algorithms.

3.3 New Models

The traced disk access pa t tern shows a strong sequential property. Hence prefetching

should be useful to reduce the average disk access time. In fact, we have chosen

always prefetch technique to incorporate into our proposed models. Besides, by proper

overlapping the program execution with the prefetching of data , we expect that the

cache performance can be improved. To prevent flushing out useful data by prefetching,

-Chapter 3 Methodology and Models 24

we adopt the technique of cache partitioning. It divides the cache into two parts: one

part is similar to an ordinary cache and another part is a small buffer. The small

buffer is used to store the prefetched data in order to reduce the cache pollution clue to

inaccurate prefetching. The following models are based on the CPU cache partitioning

technique with newly designed algorithms to control the flow of data into these two

parts of the cache.

Model names of the newly designed models are given in here for convenience and _

for consistency to the simulation. Model 4 is set to unified cache with always prefetch.

Model 5 is set to the basic partitioned cache model as discussed in Section 3.3.2. Model

6 is set to the partitioned cache with ASST applying to each request as discussed in

Section 3.3.3. Model 7 is set to the partitioned cache with ASST applying to each

dynamic block as discussed in Section 3.3.4. Model 8 is set to the partitioned cache

with SEHT as discussed in Section 3.3.5.

3.3.1 Unified Cache with Always Prefetch

This is not a newly designed model. However, it is different from currently used

disk caches because it uses always prefetch to take the following blocks/sectors. For

traditional disk caches, they only use prefetch on miss or large block size to take the

following blocks/sectors. From the analysis of the traced data, we discover that there

is highly sequential property in the I /O requests as discussed in Section 4.5. Therefore,

we expect that the performance of always prefetch must be better than that of prefetch

on miss, and this has been verified by our simulation.

This model triggers the prefetching mechanism by each block reference. This

model always prefetches data, from disk after or during each block reference. This

is a very aggressive method. If the next requested blocks/sectors matches the prefetch-

ing blocks/sectors, always prefetch can further reduce the disk access time. On the

other hand, always prefetch has the higher chance to increase cache pollution. This

model is named as Model 4 in the simulation.
» »

一 Chapter 3 Methodology and Models 25

A disk request from
process

/ \
NO / Are the y E S
j \ blocks in
r \ cache?

\ ‘ I
\ / I

Are the blocks YES
—- — on the way of / 1 I » ««

prefetching? Get the blocks

from cache. -
1 , instead of disk ！

Wait the I ！

Read blocks _ comming
from disk I requested I

blocks I ！

i I .

• ；
Return blocks to — «

1 i 」 丨 Prefetch
-、•-，. ； following blocks

Return blocks to 1 . Return blocks to from disk if they •
process and place the i process and place the are not in cache

blocks in cache Prefetch I blocks in cache
following blocks I

I from disk if they ‘
are not in cache ‘ | ,

I. J I 1
• J i

I Place the prefetching
I blocks in cache

Place the prefetching
blocks in cache

Figure 3.5: Flow C h a r t of Model 4

3.3.2 Partitioned Cache: Branch Target Cache and Prefetch Buffer

In the analysis of the disk traces, we have observed that there is a highly sequential

property in the disk access pat tern. Detail discussion can be found in Section 4.5.

In order to overlap the program execution with the prefetching of data, it might be

possible that the cache system can just store the heading blocks/sectors of a dynamic

block and let the prefetching system get the remaining ones. The prefetched ones will

be stored in a small buffer and will be discarded after they are used. This basic model

partit ions the cache into a Branch Target Cache (BTC) and a Prefetch Buffer (PB).

BTC is a cache with its size like ordinary cache while PB is a small buffer. PB is

exactly like the fetch buffer proposed in CPU cache [Jou90, KL91, CMCH91]. And our

一 Chapter 3 Methodology and Models 26

models are built on this partitioned cache architecture. Figure 3.6 shows the BTC and

PB.

To Main Memory To Main Memory

A •

i
土 .

i
I

r

Traditional Disk v Branch Target , Prefetch
Cache Cache (BTC) | Buffer (PB) •

I , � -
•
I ：

‘ ^ J
i ！
, I

1 1
T »

To Harddisk To Harddisk

Figure 3.6: Partitioned Cache: BTC + PB

Branch target cache stores only those sectors which cause cache misses. Due to

the incorporation of always prefetch technique, only the first block/sector of a dynamic

block causes cache miss. Others will just cause partial hits. So the branch target cache

stores only the first block of each dynamic block. The main purpose of BTC is that

the cache tries to contain the requested data at each branch reference.

Prefetch buffer is a small buffer. It is used to store the prefetched data. Because

of its small size, the data, inside it will be replaced very quickly. Since data fetching

can overlap the program execution, storing prefetched sectors in PB can eliminate the

problem that the prefetched data flush out useful da ta in the ordinary cache. The

replacement policy of prefetch buffer is LRU algorithm.

The operation of this basic model is as shown in Figure 3.7. When there is cache hit,

the demanded blocks will return to the process. The cache system starts to prefetching

the following sectors. All these sectors will be stored in PB. When there is partial hit,

all the prefetched sectors are also stored in PB. When there is cache miss, the first

block of the demanded blocks is checked whether it is the start ing of a dynamic block.

If it is the starting of a dynamic block, it will be stored in BTC. Otherwise, it will be

一 Chapter 3 Methodology and Models 27

A disk request from
process

八
Are the \

NO blocks in
r — — \ BTCor “

^ x y
f^Q Are the blocks YES

on the way of 1 I » 一
prefetching? Get the blocks

from BTC or PB,
i 「 I instead of disk

I ‘ Wait the i
Read blocks — — coming

from disk I | requested ；

[丨 blocks ；

• •.—� I I i
； ！ I I

i i O 1
I Return blocks to *
I I process j Prefetch

J ^ ^ J ^ i I 4 J ^ following blocks
i ！ . from disk if they

Return blocks to 「一》— — »- , Return blocks to are not in BTC |
process, place the first Prefetch 1 process and place the o rPB ,

block of the current following blocks : blocks 丨nPB
dynamic block in BTC from disk if they

and others go to PB are not in BTC 丨

or PB I
I i

t

： j Place the prefetching
I I blocks in PB

J L,

Place the prefetching
blocks in PB

Figure 3.7: Flow Chart of Model 5

stored in the PB. The cache system will then prefetch the following blocks which will

be stored in PB.

The large BTC stores only the first block of each non-sequential reference and all

prefetched data are captured by the PB. This combination can eliminate the problem of

flushing out useful da ta for inaccurate prefetching, and may provide good performance

at each branch reference. Since the B T C stores more first blocks than the ordinary

unified cache, the effective cache size of the proposed model is greatly enlarged when

comparing with the case of unified cache.

On the other hand, owing to the slow da ta bus and the limited bandwidth, the disk

cache system actually does not have enough t ime to prefetch the sequential referenced

一 Chapter 3 Methodology and Models 28

sectors. Even though the next sector has very high chance to be referenced, the first

block of each non-sequential reference in BTC cannot provide enough time for the

prefetching to finish. This is why partial hit occurs so often. The prefetched data

can only be on the way and the cache system still pays a time penalty to prefetch

requested data. Besides, if the branch target cache just stores the first block of each

non-sequential reference, situation of iioii-heading reuse might occur. Branches might

j u m p directly to the content block of previous dynamic blocks. These branches cannot .

be handled by BTC because the branched data are not stored in the BTC during

previous request.

Some requests may begin at this
fir:;t soctor sector. Then for large first block, it

- - - may have enough time to fetch
— following blocks.

•

A first block that — •
stored in BTC 一 • 。 ,

Some requests may reference the
- • nearly last sector. Then, no matter

• # - - how large the first block is, there is
— —last sector — always not enough time to fetch

I following blocks.

Figure 3.8: Problem of Storing First Block in BTC

The problem of not enough t ime for prefetching cannot be solved with large block

size. This is because a reference may j u m p to any part of the block, e.g. the near end of

the block. As a result, only small portion of the first block can be used to provide t ime

for prefetching in this case. The situation is shown in Figure 3.8. Besides, large block

size may lead to fewer heading blocks to be stored in cache, and it makes a problem of

inefficiently utilizing the cache.

To solve this problem of insufficient t ime for prefetching, BTC should not only store

the first block, but also some of the following blocks in order to ensure enough time

for da ta prefetching. To make the cache partitioning design suitable for disk cache to

use, and to eliminate the problems of traditional BTC and PB, we have invented new

algorithms to control the flow of data/sectors into BTC and PB. •

一 Chapter 3 Methodology and Models 29

This basic model is named as Model 5 in the simulation. It acts as a, control exper-

iment to our newly proposed models because our models are built on it. Model 1 to

Model 4 are the models of unified cache for performance comparison in the simulation

and will be discussed in Section 4.3. Model 6 to Model 8 are the newly proposed models

and will be discussed in the following sections.

3.3.3 B T C + PB with Alternative Storing Sector Technique

The cache system has enough
time to get these sectors, so they

are placed in PB.

, \ \ .
、 \

^ • ‘二••”了— j——» 1 - J ~ « , 1

t t f 2 4 ,5 6 7 8 9 10 11 12 13 14 • • 睡

…I • 泰 4 — » — — r ^ ^ t~~^ ^«—^ ‘

丨 . 二 — — — 丨 L . �

： i �. \ ：： \
To Compensate C2 ‘ \ ‘；

To compensate C1 These sectors are stored in

I BTC in order to keep enough
J time to get the next sectors.

Starting head,
stored in BTC

Figure 3.9: Alternative Storing Sector Technique (ASST), Cl=3, C2=2

The problem of the basic model is that the t ime penalty of getting the next sector

is large due to the slow data bus and the limited bandwidth. Therefore, a new method

is introduced to arrange the sectors going into B T C or PB. This new method, called

the Alternative Storing Sector Technique (ASST), is introduced to rearrange sectors

going into BTC or PB. Since the ASST applies to a block of sequential sectors, it can

apply either to multiple-sector requests, or dynamic blocks. In this section, the ASST

will be applied to multiple-sector requests, i.e. per request block basis.

ASST not only stores the first heading block/sector that causes the cache miss into

the BTC, but also stores some content blocks/sectors of each dynamic block in BTC

一 Chapter 3 Methodology and Models 30

in order to allow the cache system to fetch the remaining sectors without paying time

penalty. In ASST, whether a sector needs to be stored in BTC is determined by the

fixed parameters - start-up time Cl and transfer time C2. The sectors that do not

need to be stored in BTC is termed as 'un-stored\ but they will still be stored in PB.

To illustrate the operation of the ASST, let us consider a case shown in Figure 3.9.

Cl is now equal to 3. C2 is equal to 2 and Tu are equal to 1. Since Tu is equal to 1, the

cache system must store 3 (value of Cl) sectors in the cache in order to compensate for _

Cl . However, after the first three sectors are used, the cache system has just started

to transfer the forth sector. So, the cache system needs to store extra 2 sectors (value

of C2) in order to compensate the time of transferring the first un-stored (sixth) sector.

Therefore, the size of 'starting head'of a block of request is equal to 5 (C1+C2) sectors.

The five sectors are needed to be stored in BTC so that it can compensate the time

needed to transfer the first un-stored (sixth) sector.

After the first un-stored (sixth) sector arrives, the process starts to use it. Note
I '

that the sixth sector is stored in PB because there is enough time to get it in each

reuse. If the seventh sector has already been stored in BTC, the cache system can also

pass it to the process. During the processing of the sixth and seventh sectors, it has

enough time to get the eighth sector. Therefore, the eighth sector does not need to be

stored in BTC, i.e. the eighth sector is the second un-stored sector. Similarly, if the

ninth has also already been stored in BTC, during the time of the processing the eighth

and ninth sectors, the cache system has enough time to get the tenth sector. Therefore,

following the same argument, the un-stored sectors are 6th, 8th, 10th, 12th,.. .，and

so on.

Therefore, which sectors needed to be stored in BTC can be determined from the

hardware parameters, i.e. Cl and C2. The size of starting head is [C1+C2] where

C1+C2] is the ceiling of C1+C2. Then which of the next sectors needed to be stored

in BTC depends on the value of C2—Tu, and follows the rule that the cache system

should store enough previous sectors in order to prefetch the next un-stored sector. In

processing of the prefetched sector will also contribute the time (i.e. the use-up time)

一 Chapter 3 Methodology and Models 31

to get the next un-stored sector. Therefore, the operation of ASST can be summarized

by the following procedure. Let there be a time counter TC; [x] be the ceiling of x.

Procedure ASST
BEGIN

reset the counter to zero
storing the starting head, [C1+C2] sectors, in BTC
TC 二 [C1+C2] - (C1+C2)
DO until no more sectors in the block

IF TC > C2 “
TC = TC - C2 + Tu
current sector does not need to be stored in BTC

ELSE
TC = TC + Tu
current sector has to be stored in BTC

ENDIF
ENDDO

END

When TC > C2, there is enough accumulated time to get the next sectors and so

the next sector is not needed to be stored in« BTC. The equation TC — TC — C2 + Tu

means that the cache system has to pay t ime to get the un-stored sectors, i.e. TC — C2.

However, after getting this sector, it will also contribute a use-up time Tu to get the

following sectors. Therefore, the total time changes from TC to TC — C2-\- Tu. When

TC < C2, the sector must be stored in BTC in order to accumulate time to fetch

the next one. The stored sector will contribute a use-up time Tu. So, the total time

changes from TC to TC + Tu.

To incorporate the ASST algorithm into hardware, a time counter is needed to

count the time as shown in the ASST procedure. For each arriving sector, we have to

update the counter and check whether the sector needs to be stored in BTC. Then for

each new request, the counter is reset to zero in this model. The operations are simple,

so the time of calculations can be ignored when comparing with the slow disk access

time. As an example of applying the ASST algorithms, Table 3.1 shows un-stored

sectors for C2=2 and C2=1.5 when C l = 3 .

ASST can fully utilize the idle data bus. It uses always prefetch as its basis. BTC

一 Chapter 3 Methodology and Models 32

Un-stored sectors
C2=2 6th, 8th, 10th, 12th, 14th, . . .

C2=1.5 6th, 7th, 10th, 11th, 14th, 15th , . . .

Table 3.1: The Un-stored Sectors for C2=2 and C2=L5

stores some heading and content sectors, the prefetching system can have enough time

to get the rest before they are needed. Therefore, this 'un-stored' ones do not need to _

be stored in the BTC. They are only stored in the prefetch buffer. When the process

requests them, a hit in the prefetch buffer will occur. Cache pollution for BTC due

to prefetching will be greatly reduced because the prefetched data will go to the PB

instead. Useful blocks of data, can remain in the BTC. Besides, BTC stores blocks

from more dynamic blocks now and the problem of not enough t ime to do prefetching

is minimized.

The operation of this model is shown in Figure 3.10. When there is cache hit, the
I

demanded blocks will be returned to the process. The cache system starts to prefetch

the following sectors. All these sectors will be stored in BTC or PB according to

applying ASST to each request separately. When there is cache miss, the first block is

fetched from disk and all the following sectors are prefetched from disk due to always

prefetch. All the fetched and prefetched sectors are stored in BTC or PB according to

applying ASST to each request. When there is partial hit, the sectors are also stored

in BTC or PB according to applying ASST to each request.

In this model, the Alternative Storing Sector Technique applies to each request

separately. Since CI is usually very large, the starting head calculated from ASST
contains many sectors. Consequently, requests of a small number of sectors are com-

pletely stored in the BTC and the cache system cannot gain the advantage of PB. In

applying ASST, the size of starting head is fixed and which content sectors needed to

be stored in BTC are also predefined. If the block which ASST operates is large, more

sectors will not need to be stored in BTC, and the cache space to store a request is

reduced. In other words, the cache size is effectively enlarged. However, if the' request

一 Chapter 3 Methodology and Models 33

block is not large, ASST cannot show its effectiveness. In this model, ASST is applied

on the request block which may not fully utilize the power of ASST as shown in Fig-

ure 3.11. We will discuss this problem in detail in the next Section 3.3.4. This model

is named as Model 6 in the simulation.

A disk request from
process

Are the
blocks in YES
BTC or - — . 丨

PB?
t , ,. . -T

/ i Get the blocks
/ from BTC or PB,

NO Z ^ r e the blocks yES instead of disk
on the way of I

• prefetching? ‘

\ , 丨 I

t »_. ！ Prefetch
Wait the ！ j following blocks

Read blocks — _ _ comming 一、：^ from disk if they
from disk requested Return blocks to are not in BTC

I blocks process or PB

I i i ‘ ；

！ ！ ； I

‘ • I • ‘

According to ASST, | According to ASST, According to ASST,
store the blocks in BTC Prefetch store the blocks in BTC store the blocks in BTC

or PB. and return following blocks PB. and return or PB. and return
blocks to process from disk if they blocks to process blocks to process

are not in BTC
o r P B

According to ASST,
store the blocks in BTC

or PB, and return
blocks to process

Figure 3.10: Flow Chart of Model 6 and Model 7

、- • .

一 Chapter 3 Methodology and Models 34

3.3.4 B T C + PB with ASST Applying to Dynamic Block

- - - 1 權:::... — —

If ASST applies to each 「 — — . 二 ； ‘ heading sectors
‘ ‘， 4 1 丨 that need to be stored

r e q u e s t s e p a r a t e l y , a l l _ _ _ _ _ _ _ 4 广 - . … .
M K 丨丨..丨丨.1丨丨丨.丨.丨丨• , . , m t h e c a c h e

r e q u e s t e d s e c t o r s n e e d t o c ^ ^ .. • * 汽 汽 t
\ ‘ . . o T ^ 5 a c c o r d i n g t o A S S T .

b e s t o r e d 丨n t h e B T C _ — ^ ^ 」 , i ^

because the size of each ‘ I 1 g
request is smaller than the ® i
size of heading sectors for 丨 ‘ ” , ！ ： ^ J ‘ If ASST applies to a large _

each request. , . … … ^ block, these two sectors
I I " I I I ； i d o n o t n e e d t o b e s t o r e d

' g ' I 9 j i — because storing the
； ~ ^ 丨 heading sectors can leave

I I _ _ _ 1 ° _ , e n o u g h t i m e t o f e t c h t h e s e

10 two sectors.

Figure 3.11: Applying ASST to Multiple-sector Request and Dynamic Block (Cl=5, C2=2)

There are many small requests in the traced disk I /O. The most frequent one is the

1-sector request. Therefore, applying ASST tq every request causes all small requests to

be stored in the BTC completely. In the previous Section 3.2.3, we have mentioned that

there are high interrelationship between successive requests. Many successive requests,

including 1-sector requests, can be combined to form a. larger block of sequential sectors,

i.e. dynamic block. Therefore, we propose to apply ASST on a dynamic block basis

because the block that ASST can apply on will be large. Figure 3.11 shows the situation

of ASST applying to multiple-sector request and dynamic block for C l = 5 and C2=2.

This model is very similar to the previous model except that the ASST applies to

each dynamic block. So, the flowchart of this model is the same as the previous model

as shown in Figure 3.10. The operation is also very similar to the previous case. The

procedure of ASST is nearly the same except tha t the t ime counter, TC, will only be

reset at each start ing of a dynamic block, i.e. at each non-sequential reference. This

is different from the case of previous model that the t ime counter TC will be reset

for each request. This difference can improve the cache performance greatly. The

comparison of performance of the previous model, Model 6, and this model can be

found in Section 5.7.2. This model is named as Model 7 in the simulation.

一 Chapter 3 Methodology and Models 35

3.3.5 B T C + PB with Storing Enough Head Technique

In the simulation, we have observed that the performance of the basic model, Model

5, is quite good in the case of very small cache size. This better performance of

Model 5 reveals that heading sectors are more important than the content sectors.

This is because Cl is generally much larger than C2. Missing the first heading block

causes C1+C2 time penalty while missing a content block causes C2—Tu time penalt,y.

Therefore, there is a simple idea that if the cache system just stores some heading

sectors of each request in the BTC, it may provide a good performance. No any

content sectors of a request are stored in the BTC, i.e. all content sectors of a request

are stored in PB.

If the cache system stores only some heading sectors of each request, it will pro-

duce a t ime penalty in each reuse because the BTC has not stored enough sectors to

provide enough t ime to prefetch the remaining sectors. On the other hand, BTC can

store heading sectors from more requests, i.e.. the effective cache size is enlarged more.

Therefore, there is a competition between storing heading sectors from more requests

and the t ime penalty paid for getting remaining sectors. The situation is shown in

Figure 3.12.

All the remaining sectors will not be stored
in BTC. Small time penalty is needed to

pay for getting these sectors.
1

i
Just store the 'redefined' j
heading sectors in BTC |

I 7 1 ；
彳 >•] I ~T ~ i f — 厂 - ！

1、*丨:2 ： 3 4 5 6 7 8 j 9 I
i I

\ ;.——…7‘」

A request of 9 sectors

Figure 3.12: Storing Some Heading Sectors for Each Request

一 Chapter 3 Methodology and Models 36

Since the idea is applied to each request, the size of starting head [Cl+C‘2"| for

ASST is too large and nearly all requests will be completely stored in the BTC. This

is because the size of each request is generally less than f C l + C 2] sectors. Therefore,

the size of the starting head should be reduced. The number of starting sectors of each

request that will be stored in BTC is redefined:

… r , , , Start up time Ci
bize oj starting head = — sectors

Transfer time C2 ~

This equation is a compromise between minimizing the size of starting head and the

time penalty for each reuse. The equation defines that the total transfer t ime of the

stored starting head (N sectors) when there is no cache, i.e. C2*N, is equal to the start-

up t ime CI. By this equation, the size of the starting head is reduced and starting

heads from more requests can be stored in BTC.

Successive 1-sector requests form a
large dynamic, block

, 夕 ? .

Z / /
X' / — ^ _

1 2 3 4 5 6 7 8 9 10

• ： _ _ _ _ I l l

丫 "”"- V

i

All requests are stored in BTC according to the
algorithm of storing the starting head of each request.

Figure 3.13: Problem of Storing Starting Head of Each Request to 1-sector Requests

However, the above idea has a problem that all 1-sector requests go to BTC as shown

in Figure 3.13. Since the most frequent request size is 1 sector, the above idea is nearly

useless. To solve this problem and make the idea useful, we incorporate the method of

^SST applying to dynamic block in this idea. Note that the basic idea is still to store

only the start ing head of each request. For instance, there are many successive 1-sector

一 Chapter 3 Methodology and Models 37

requests and they can be combined to a larger dynamic block. When ASST applies to

this dynamic block, some 1-sector requests need not be stored in BTC. Therefore, this

method can reduce the number of 1-sector requests stored in BTC. Applying ASST to

dynamic block can also reduce the storing of many small size requests.

A request of 9 sectors Successive 1 -sector requests

八 一 、 -

\ - • • • • \
、、 厂 \ , , \

F~~ r �.""""I -11 ip r~-)r—'i
' t I I • ！ • • j ' I • • 丨

1 2 3 4 5 6 7 8 I 9 I 10 11 12 13 丨 14 15 . 16 I 17 18 19

- J — I � : “ i . i i j I J 1 — � — , � 一 [j � � � I L J L J L j u j
I T “ --了- ‘

Just store the 'redefined' Some requests are not stored in BTC when applying
heading sectors in BTC ASST to the whole dynamic block, i.e. the cache

system can discard some 1-sector requests.
All the remaining sectors are

‘ not be stored in BTC. 1 ：

All requests combine to form a large dynamic block

Figure 3.14: Storing Enough Head Technique (SEHT), Cl二 10, C2=2

Therefore, by combining the above two ideas: storing only the starting head of each

request and applying ASST to each dynamic block, we can introduce a new algorithm,

called Storing Enough Heads Technique (SEHT). The two criteria of SEHT are

1. The sector is a heading sector (the redefined one) of a request.

2. The sector is needed to be stored according to ASST applying to the current

dynamic block.

A sector will be stored in BTC according to SEHT only if the sector satisfies the

above two criteria simultaneously. Storing Enough Head Technique (SEHT) stores the

redefined heading sectors of each request, except that those un-stored sectors predicted

by applying ASST to the current dynamic block. Consider an example of application

一 Chapter 3 Methodology and Models 38

of SEHT in Figure 3.14. By applying the first criteria to each request, there is a group

of sectors (Group 1) that should be stored in BTC. Then apply the second criteria to

the current dynamic block and get another group of sectors (Group 2) that should be

stored in BTC. Intercepting the two groups, Group 1 and Group 2, we will get the

sectors that need to be stored in BTC according to the SEHT. That means a sector

must satisfies the two criteria simultaneously in order to be stored in BTC. All other

sectors are stored in PB. “

The operation of this model is similar to the Model 7 except that the algorithm

to control the flow of sectors to BTC or PB is different. The flowchart of this model

is shown in Figure 3.15. To incorporate SEHT into hardware is also simple. Only

the heading sectors of each request have chance to be stored in BTC and the size of

heading sectors is fixed. In addition, for each request, apply ASST to the currently

formed dynamic block and check whether the current sector is needed to be stored. If

the sector fulfills both requirements, it will be stored in BTC. Otherwise, the sector

will be stored in PB.

This method introduces time penalty even for a cache hit because it stores fixed/limited

amount of heading blocks for each request, neglecting how large the block of a request

is. Therefore, SEHT can effectively increase more cache space to store more data from

different branches than that of ASST. On the other hand, its tradeoff is the small time

penalty for each request. This model is named as Model 8 in the simulation.

3.4 Impact of Block Size

In previous discussion, block size is generally set to 1 sector. The new algorithms can

also suit to the cases of block size larger than 1 sector with simple modification. The

basic modification is to change the basic unit of transfer to a N-sector block, instead of

1-sector block. All sectors are mapped to their corresponding transfer block. Besides,

the transfer time of the basic block changes to C2*N, instead of the original C2 for 1-

sector block. Furthermore, the use-up time of the basic block changes to Tu*N, "instead

一 Chapter 3 Methodology and Models 39

A disk request from
process

Are the
blocks in 、YES

I BTC or ‘ \
I PB? …

\ Get the blocks ~
\ from BTC or PB, —

NO Are the blocks YES instead of disk
on the way of >••• -丨 . ‘

\ prefetching?

\ ； T — —
I \ ！ , ’ Prefetch
I Wait the ！ following blocks

Read blocks 丨 comming .--、）， from disk if they
‘ from disk i requested Return blocks to are not in BTC

——」 . blocks _____ process or PB '

I
I

J丄
According to SEHT, J * According to SEHT, According to SEHT,

store the blocks in BTC ‘ ,，Prete^c^h store the blocks in BTC store the blocks in BTC
or PB, and return ollowing b ocks or PB, and return or PB, and return
blocks to process from disk if they blocks to process blocks to process

are not in BTC
orPB

o
According to SEHT,

store the blocks in BTC
or PB, and return
blocks to process

Figure 3.15: Flow Chart of Model 8

of the original Tu for 1-sector block. For instance, the size of starting head of SEHT

is changed as follow:

n- r . 1 , Start up time Cl
bize oj starting head = — sectors

Trans fer time C2 * Block Size

Following similar argument, the start ing head of ASST should contain [C1/N+C2"

blocks where N is the block size. However, there is a problem as shown in Figure 3.8

for the first start ing block when the block size is larger than 1 sector. The requested

sectors may locate at the end of the first starting block. Therefore, in order to maintain

enough t ime to prefetch the un-stored blocks, we may need to conservatively define the

一 Chapter 3 Methodology and Models 40

size of starting head to be [C l / N + C 2] + 1 blocks. If a more accurate timing for the

ASST is needed, the cache system should store enough number of blocks so that the

time to use up the requested sectors in those block is equal to, or just greater than,

'C1+C2*N]. The time [Cl+C2*N] means that the total use-up time of the requested

sectors in the stored heading blocks should compensate the startup time of the disk

and the transfer time of the first block. Below is a simple modification, of the ASST

algorithm to suit the case of block size larger than 1 sector. ~

Procedure ASST
BEGIN

reset the counter to zero
storing enough heading blocks to cover [C1+C2*N].
TC = the use up time provided by the stored heading block — ["C1+C2*N]
DO until no more blocks

IF TC > C2*N
TC = TC - C2*N + Tu*N
current block does not need to be stored in BTC

ELSE ,
TC = TC + Tu*N
current block has to be stored in BTC

ENDIF
ENDDO

END

»

Chapter 4

Trace Driven Simulation

4.1 Simulation Environment

In the simulation, we have traced the disk I /O of four applications under Microsoft

Windows environment. The applications that we have used to get the traces are Mi-

crosoft Access, Microsoft Excel, Microsoft Word and Dbase for Windows. We have

used a 486 personal computer with 4M RAM'to obtain the traces. Millions of requests

have been collected.

Before discussing the result, we should know the assumptions of the simulation:

1. By proper overlapping the program execution and the data fetching, when the

process is using some sectors, the cache system can transfer the remaining sec-

tors asynchronously. Therefore, the computing environment must support asyn-

chronously I /O operations.

2. The simulator treats write operation same as read operation and ignores the

actual writing back of data.

3. The use-up time Tu is normalized to 1. All other timing values, e.g. start-up

time Cl and transfer time C2, are the ratios to actual value of the use-up time.

4. Branch Target Cache is a n-way set associative cache. Within each set, the

replacement policy follows LRU (Least Recently Used) algorithm. Prefetch buffer
»

is a fully associative cache. Its replacement policy also follows LRU.

41

‘Chapter ^ Trace Driven Simulation 42

5. The cache line size is set to the transfer block size.

6. Time for searching the cache and time for killing a prefetch is negligible.

The parameters of the simulation are as follow:

• The data format of a record in the trace is shown as below:

<action, cylinder, sector, head, drive, number of s e c t o r s �

action equals to 0 and 1 means read and write operations respectively.

• Cache size takes the values of IM, 2M, 4M and 8M.

• PB size = O.IM, therefore, BTC size = Cache size - O.lM.

• Block size takes the values of 1 sector, 2 sectors, 4 sectors and 8 sectors.
I

• Set associativity takes the values of 1-way, 2-way and 4-way.

• Start-up time Cl takes the values of 5, 10, 15 and 20 for the case of common disk

and it takes the values of 1, 2, 3 and 4 for the case of high performance disk.

• Transfer time C2 takes the values of 0.5, 1 and 1.5.

• Eight models have been simulated. Model 1 to Model 4 are the models for

performance comparison and will be discussed in Section 4.3. Model 5 is the

control model of cache partitioning technique. Model 6 to Model 8 are the newly

proposed models. Model 5 to Model 8 have been discussed in Section 3.3. The

eight models are as follows:

- M o d e l 1: No Cache

- M o d e l 2: Unified Cache without Prefetch

- M o d e l 3: Unified Cache with Prefetch on Miss

- M o d e l 4: Unified Cache with Always Prefetch

‘Chapter ^ Trace Driven Simulation 43

—Model 5: Partitioned Cache: BTC + PB

- M o d e l 6: BTC + PB with ASST Applying on Request

—Model 7: BTC + PB with ASST Applying on Dynamic Block

- M o d e l 8： BTC + PB with SEHT

4.2 Two Kinds Of Disk -

In the simulation, we have simulated two kinds of disk. They are Common Disk and

High Performance Disk. We categorize different kinds of disks by the values of the

start-up time Cl , the transfer t ime C2 and the use-up time Tu. For common disk and

high performance disk, the transfer t ime C2 is set to near the use-up t ime Tu because

it is on a high performance computing environment.

For common disk, the start-up t ime Cl is much larger than the transfer C2. For

high performance disk, the start-up t ime C i is near the transfer t ime C2. Cl and

C2 play an important role in our newly proposed algorithms, ASST and SEHT. Their

values control the size of the starting head and how many sectors have to be stored in

BTC. Therefore, we will examine the effect of our cache models on common disk and

high performance disk.

4.3 Control Models

To compare the performance of the new models, we have also simulated four models

for comparison: no cache (Model 1), unified cache without prefetch (Model 2), unified

cache with prefetch on miss (Model 3) and unified cache with always prefetch (Model

4). They are the common models used in current disk cache programs.

4.3.1 Model 1: No Cache

This model acts as a boundary model because having cache should performs bet ter
»

than no cache. Therefore, it gives the upper bound of the time. The timing can be

‘Chapter ̂ Trace Driven Simulation 44

calculated very easily. Each request causes the sectors to be read from the disk and

transferred to the process. Therefore, the disk access time per request is equal to Cl

+ C2 * N, where Cl is the start-up t ime of the disk; C2 is the transfer time for one

sector from disk to memory; N is the number of the requested sectors.

A disk request from
process

厂

I
I Read blocks

from disk

Return blocks to
process

I

Figure 4.1: Flow Char t of Model 1

4.3.2 Model 2: Unified Cache without Prefetch

This model is commonly used in current disk cache design. For cache hit, it passes the

blocks/sectors from cache to process. For cache miss, it gets the blocks/sectors from

disk to cache and then from the cache to process. When the cache is full, the LRU

replacement strategy is used. Note tha t it only has cache hit and cache miss, but does

not have any partial hit.

4.3.3 Model 3: Unified Cache with Prefetch on Miss

This model is also commonly used in current disk cache design. Prefetching mechanism

is only triggered by cache miss. When a cache miss occurs, requested blocks will be

fetched from disk. Then some following blocks will be prefetched to the cache. For

cache hit, this model passes the blocks from cache to the process and does no^.trigger

any disk action.

‘ C h a p t e r ^ Trace Driven Simulation 45

A disk request from
process

I
\
I

Are the

NO blocks in ：

cache?
I I I /
I / I
1 i ~ , *—— -- I

Read blocks (Set the blocks
from disk from cache’

instead of disk !

i I
i

I
i ！ -

Return blocks to Return blocks to
process and place the process

blocks in cache

Figure 4.2: Flow Chart of Model 2
t

4.4 Two Comparison Standards

One of the comparison standard is to compare with the model of no cache. We use an

absolute reduction in time to show the performance of all the models. The higher the

absolute reduction in t ime is, the more the absolute performance of a model is. The

absolute reduction in t ime is defined as

Aj , . , , • . r Time of no cache — Time of our model _ Absolute reduction in time = * 100%
Time of no cache

where the time is the total process stall time due to the disk access.

The another baseline is to compare with Model 5, unified cache with prefetch on

miss. This is a common method used in current disk cache design. The relative

performance to Model 3 can give us insight to the effectiveness of our models. The

indicator of this relative performance is relative reduction in time which is defined as

Relative reduction in time =乃爪e of Model 3——Time of our model * 。̂。义
Time of Model 3

The higher the relative reduction in t ime is, the more the relative performance of a

model over that of Model 3 is.

‘Chapter ^ Trace Driven Simulation 46

A disk request from
process

I
I

i

ii
/ \

N O ARE the Y E S
- blocks in

• \ cache?

\ , :

、-' ！

NO Are the blocks 、 Yes | ^
r — on the way of 〉 1 I ~ * ^

i prefetching? Get the blocks ；

, from cache,
I » ” y I i 1 instead of disk

i 、’ Wait the I ！

Read blocks comming
‘ f r o m disk 1 requested 丨 I
丨 — 」 丨 blocks

1 •

I Return blocks to
process

Return blocks to , _ t Return blocks to
process and place the ‘ process and place the

blocks in cache , „ ^ blocks in cache
following blocks
from disk if they
are not in cache

I

! ！
I

, I

Place the prefetching
blocks in cache

Figure 4.3: Flow Chart of Model 3

The simulation results are generally represented by the values of absolute reduction

in t ime and relative reduction in time.

4.5 Trace Properties

Before we go into the detail of the simulation result, we should have a throughout

understanding of the traced data first. The total number of requests for the four traces

is shown in Table 4.1. The distinct number of sectors requested is the distinct number

of sectors tha t the trace has been touched. It ignores how many times of those sectors

were touched. On the other hand, the total number of sectors requested is the total

‘ C h a p t e r ^ Trace Driven Simulation 47

Access Dbase Excel Word
Total number of r e q u e s t s 6 , 0 5 1 , 4 9 1 1 , 9 3 9 , 1 1 9 1 , 0 2 7 , 3 0 1 1 , 7 9 7 , 5 6 1
Total number of sectors 10,518,494 10,195,308 5,652,077 2,547,843

requested
Distinct number of sectors 105,124 63,606 36,209 80,659

requested
Average reuse ratio 100.06 160.29 156.10 31.59

Table 4.1: Number of Requests for the Four Traces ‘

number of sectors that transferred between disk and memory if the cache system does

not exist. The average reuse ratio is the ratio of total number of sectors requested over

distinct number of sectors requested. The average reuse ratio gives some idea on the

reuse property of a sector.

By analyzing the requests in these four traces, we have found that there are many

multiple-sector requests and the number of sectors per request is not small. The number

of sectors per request can be as large as 127 as shown in Table 4.2. It is very different

from the CPU reference request because CPU does not issue a request for a large

block of data from the memory. This also implies that disk accesses exhibit a highly

sequential property in one request. This is very important in disk cache design, and

we would expect that always prefetch will give better result than prefetch on miss.

Although there are many requests for a large number of sectors, the most frequent

number of sectors per request is still 1 sector. On the other hand, from the analy-

sis of the displacement between each request, we have found that many requests are

continuous f rom the previous one. Displacement between two requests is defined as

the starting address of the current request minus the ending address of the previous

request.

displacement — starting address of current request—ending address of pervious request

Table 4.3 is the summary of the displacements from -1 to 3 for the four traces.

The continuous percentage is the percentage of the frequency for displacement=1

over the total frequency for all displacements. The continuous percentages range from

‘Chapter ^ Trace Driven Simulation 48

No. of sector / request Access Dbase Excel Word
1 4,809,434 1,112,830 513 ,0611 ,660 ,561
2 277 23,946 14,202 2,234
3 303 28,930 10,489 4,357 -
4 1,173,568 23,738 10,424 83,103
5 205 13,453 11,192 750
6 172 17,885 5,850 608
7 198 9,484 8,181 761
8 7,722 360,927 266,360 21,127
參 參 參 參 參

79 • • 2 •
93 2 11 •
m 28

Table 4.2: Number of ？)ectors per Request

Displacement Access Dbase Excel Word
~ m r ^ 4,372

0 158 4,099 562 2,921
1 4,145,545 878,829 565,827 959,655
2 89,416 49,089 435 6,606
3 83,422 2,263 266 7,534

Continuous Percentage 68.50% 45.32% 55.08% 53.39%

Table 4.3: Frequency of Displacement

» »

‘Chapter ̂ Trace Driven Simulation 49

45% for Excel to about 69% for Access. This shows that many requests will follow the

previous requests, and the accuracy of always prefetch will be very high.

Since there is high inter-relation between requests from the above analysis, we

expect that requests can be virtually coalesced to form a request for larger block of

sectors. This coalescing block will further reflect the sequential property of a trace.

The coalescing block is named as Dynamic Block since its size varies. Although the

most frequent size of a request is 1 sector, the most frequent dynamic block size is not

equal to 1 sector. The frequencies of dynamic block sizes for Access trace is partial

shown in Table 4.4. The frequencies of dynamic block sizes for other traces are similar

to this and thus are not shown here.

Dynamic Block Size Frequency Combined Frequency
1 (1,77955) (2,47) (3,8) (4,11) (5,4) (6,3) (8,2)
2 75,915 (1,23) (2,75887) (3,3) (4,1) (5,1)
3 274,358 • (1,12) (2,57) (3,274289)
4 1,208,044 (1,1000213) (2,63) (3,102) (4,207666)
5 22,456 (1,25) (2,42) (3,91) (4,36) (5,22262)
6 13,454 (1,4) (2,49) (3,78) (4,19) (6,13304)
7 11,382 (1,15) (2,56) (3,55) (4,30) (5,1) (7,11225)
8 26,892 (1,7342) (2,6494) (3,32) (4,28) (8,12996)
9 11,001 (1,3) (2,12) (3,64) (4,35) (5,1) (6,1) (7,1) (9,10884)
10 10,951 (1,2) (2,28) (3,44) (4,31) (7,1) (10,10845)

• • 參

• • 參

63 9 (4,9)
64 1929 (4,1918) (5,11)
^ 2

Table 4.4: Frequency of Dynamic Block Size for Access

The number pair in the third column of Table 4.4 is the combined frequency. It

shows the dynamic block size is combined from how many requests and its frequency.

(Number of requests coalesced to form a dynamic block, Frequency)‘

‘ C h a p t e r ^ Trace Driven Simulation 50

For instance, a dynamic block of 5 sectors can be combined from 5 one-sector

requests and this kind of combination occurs 22262 times, i.e. (5,22262). It can also be

just 1 request of five sectors and this kind of combination occurs 25 times, i.e. (1,25).

Beside, a dynamic block of 5 sectors can be formed by 3 requests that may be 1 request

of one sector and 2 requests of two sectors, or 2 requests of one sector and 1 request

of three sectors, or …，etc. This kind of combination of dynamic block of 5 sectors

from 3 requests occurs 91 times, i.e. (3,91). Therefore, same dynamic block size can be

combined from various numbers of requests. For another example, a dynamic block of

10 sectors can be formed from 4 requests that may be 2 requests of three sectors and

2 requests of two sectors, or 1 request of five sectors, 1 request of three sectors and 2

requests of one sector, or . . . , etc. This combination of a lO-sector dynamic block from

4 requests occurs 31 times, i.e. (4,31).

We have observed that many requested blocks combine together to form a larger

dynamic block. Table 4.5 shows the number oY 1-sector dynamic block and the number

of 1-sector request.

Access Dbase Excel Word
1-sector Dynamic Block 78,031 212,072 67,053 623,146

1-sector Request 4,809,434 1,112,830 513,061 1,660,561
Uncombined Percentage 1.62% 19.06% 13.07% 37.53%

Table 4.5: Frequency of 1-sector Dynamic Block Size and Request

The uncombined percentage is defined as

rr , . , r, , Freouencu of l-sector dynamic block �
Uncombined P recent age = * 100%

Frequency o f l-sector request

The uncombined percentage means the percentage of 1-sector requests, that do not

part icipate in forming a dynamic block, over the total number of 1-sector request.

Therefore, it can illustrate the interrelationship between successive requests. If more

successive requests can be combined to form a dynamic block, the uncombined per-

centage will be smaller. Since the uncombined percentage is very small, from 1.62%

‘Chapter ̂ Trace Driven Simulation 51

for Access to 37.53% for Word. Therefore, for each 1-sector request, it has very high

chance to have relation with the previous or the next one. So always prefetch should

give a very good performance in this case because the sequential property of the data

is very strong.

There is an interesting property in Table 4.4. We observed that even for dynamic

block of 1 sector, it can be combined from more than 1 request. In our analysis, we

have treated the case that displacement = 0, i.e. start address of current request =

end address of previous request, can also be coalesced to a. single dynamic block.

Therefore, if two or more successive requests refer to the same sector, they will combine

to form a single dynamic block of 1 sector. The successive requests for the same sector

are due to read-then-immediately-write and write-then-immediately-read properties.

The most frequent and the largest dynamic block size (in sectors) for the four traces

are shown in Table 4.6.

I

Access Dbase Excel Word
Largest dynamic block size 93 1,024 ^ i f i

Frequency 2 51 1 28
Most frequent dynamic block size 4 8 8 1

Frequency 1,208,044 310,636 230,621 623,416

Table 4.6: Frequency of the Largest and Most Frequent Dynamic Block

In general, the frequency of the dynamic block size initially increases as the dynamic

block size increases from 1 sector. The frequency reaches its maximum rapidly and then

decreases. The decreasing rate of the frequency of the dynamic block size is different for

the four traces. The decreasing rates for Access and Word are fast but the decreasing

rates for Dbase and Excel are slow. For Dbase and Excel, since their decreasing rates

are slow, we would expect that the performance of our algorithms on them are better

than that on Access and Word. This is because more large dynamic blocks are available.

Table 4.7 shows the ten topmost largest I /O percentage dynamic blocks for the four

‘Chapter ̂ Trace Driven Simulation 52

traces. The I /O percentage of a dynamic block is defined as

I/O percentage = dynamzc block size . frequency *
total number of sectors requested

which shows the percentage of the total I /O time that various dynamic block sizes

occupy when there is no cache. This measurement can more accurately show the

sequential property of a trace than just look at the frequency of the dynamic block

size. From the I /O percentage, we have observed that larger blocks utilize more I /O

although their requested frequencies are not higher than those of small blocks.

Access Dbase
Freq. I /O perc. DB. Freq. I /O p e r厂

1 , 2 0 8 , 0 4 4 8 3 1 0 , 6 3 6 2 4 . 3 7 %
23 52,773 11.54% 16 40,355 6.33%
3 274,358 7.83% 14 30,201 4.15%

48 12,616 5.76% 26 16,226 4.14%
32 8,417 2.56% .17 19,264 3.21%
8 26,892 2.05% 75 4,342 3.19%
16 12,134 1.85% 60 4,657 2.74%
12 13,108 1.50% 15 17,822 2.62%
2 75,915 1.44% 2 124,306 2.44%
18 7,577 1.30% 1 212,072 2.08%

Excel Word
Freq. I /O perc. DB. Freq. I /O perc.

~~8 230,621 32.64% 1 6 2 3 , 1 4 6 2 4 . 4 6 %
16 10,754 3.04% 8 65,687 20.63%
32 4,719 2.67% 28 4,957 5.45%
33 4,478 2.61% 6 22,816 5.37%
57 2,055 2.07% 12 8,867 4.18%
39 2,937 2.03% 4 20,812 3.27%
49 2,222 1.93% 5 16,615 3.26%
31 3,444 1.89% 16 4,484 2.82%
54 1,858 1.78% 52 1,340 2.73%
26 3,822 1.76% 7 9,582 2.63%

Table 4.7: Ten Topmost Largest I/O Percentage of Dynamic Blocks

By the concept of dynamic block, we can visualize the highly sequential property of

disk access because many requests coalesce to form a larger block. If we take dynamic

‘Chapter ^ Trace Driven Simulation 53

block size into account, it can help to optimize our algorithms because we use the

highly sequential property of the I /O requests to provide more large blocks that our

algorithms operate on. This kind of combining several successive requests into a larger

block has rarely considered by the traditional disk cache design.

I

Chapter 5

Performance Evaluation of

Common Disk

For common disk, the start-up time Cl is much larger than the transfer time C2. In

the following discussion, we generally choose Cl = 10 and C2=1.5. Tu is always set to

1 in order to act as the reference point. Th? values 10 and 1.5 are the ratios of the

actual values of Cl and C2 to the actual value of Tu. All other timing values are also

ratios to Tu.

We focus mainly on the absolute and relative performance of 4 different models:

unified cache with always prefetch (Model 4), the basic model of partitioned cache

(Model 5), partitioned cache with ASST applying to dynamic block (Model 7) and

partitioned cache with SEHT (Model 8). The model of partitioned cache with ASST

applying to each request, Model 6, is generally omitted in the discussion because its

performance is generally poorer than that of Model 7. The comparison of performance

of Model 6 and Model 7 will be discussed separately in Section 5.7.2.

5.1 The Effect Of Cache Size

As varying the cache size, we choose a fixed reference point for other cache parameters.

54

Chapter 5 Performance Evaluation of Common Disk 55

Block Size = 1 sector

Set Associativity = 1 way

Start-up Time Cl = 10

Transfer Time C2 二 1.5

This set of parameters will generally be fixed on the above values throughout the

discussion of the effect of cache size. ‘

In the simulation, we have examined cache sizes of IM, 2M, 4M and 8M .

5.1.1 Trends of Absolute Reduction in Time

We have observed that the absolute reduction increases for all models as the cache size

increases which can be illustrated from Figure 5.1. The absolute performance increases

because large cache size implies that more data, can be stored in cache.

I

5.1.2 Trends of Relative Reduction in Time

For clarity of graph, we omit the Model 5 in Figure 5.2. This is because the performance

of Model 5 generally has a large gap with other models and we omit it to manifest the

performances of other models.

5.1.2.1 Performance Of Model 4

Figure 5.2 shows that the relative performance of Model 4 gradually increases when the

cache size increases. However, the increase is not large when the cache size increases

from IM to 8M. This is because the main difference between Model 4 and Model 3

is the method of getting the next block/sector. This difference will mainly reduce C2

rather than the large Cl . Besides, since C2 is equal to 1.5, there is not enough time

to get the next one, so each correct prefetch will reduce the transfer time. However,

the time penalty Cl of cache miss for fresh reference usually dominates the access

time. Therefore, the increase of relative performance of Model 4 is little. The relative

performance of Model 4 is shown in the Table 5.1.

�hapter 5 Performance Evaluatioii of Common Disk 56

AbioluU Riducllon In Timt vi. Cichi Sl« (CUIO. C2.1.5) Abtoluli Rtductlon in Tim* vt. Cicht Sl» (Cl.tO. C2.t.5)

； — ‘—— “
W.00% - . r—I - ^B—t M.OO*lt " —.- • _

iMTJB - m ：
70.00�—— ？ - a ^ H — ^B 70 00�一 TZFT—̂ B̂ • — J
" “ � - i 圓 - H I £ ： — i n i " 偏 - � … : B
麵- 一 M - I f l m = 二 �~� I I -麗 mm- 」̂=二：

• •19 I s I I 叫 • - I ： BuoMii
制 卜 H H J I “ I I — — —i =
� - i _ - n ‘ I - I I- _ - -k

• _ — _ I I I i ^

讓 I — D II I 諷 • 11
I I「•丨•晒 IIM I IM I •翔_ I •穩• i 0肌國•通__ I • M I •Im • I • 二

1 Z < B 1 7 4 fi
CichiSlit CichiSbi

I
(a) Access (b) Dbase

AbioluU Rtduction In Tlm« vi. Ctcht Sizt (Ct.lO. C2«t.5) Abioluti Riduction in Tim* vt. Cich* Sizi (CU10. C2>1.5)

9 0 . 0 0 、 • — 96 00% 1 — —

00.00、- - - - • SK -厕蕃國-； i
94.00% — - I

_ rfB I _ r T l S 一 I
讓 — — ： i] I 瞧 頁 - - l i r a - Y I I i ;
60,00% … � - I 夕 _r t i I -

J1 h RE I •一 随 、 ‘ I 讓 - ：議
舰 - 1 1 - ‘ - ‘ ' = 一 i I = 1

_ _ ^ • • ； I 8800、- S • _ — I - I UlMttt
— I I I � i - • = I I I =
: j I :: I : :
dillllillillH III 1 HI ' ' ' » t 2 . ,

CKhiSI» OckiSlu

(c) Excel (d) Word

Figure 5.1: Absolute Performance of Varying Cache Size

Chapter 5 Performance Evaluation of Common Disk 57

Relative Rtduction In Tlma vi. Cschft Sizi (C1.10, C2=1.5) RiUlivt Reduction InTlmt v». Cacht SIz* (CIslO C2=li)

Riduction 1 2 4 8 j | t 〉，
2000\ j — _ _ I 1

. 2 嫩 ... —_ BUod«Ul I T 1 •Mo4n‘

. |oMod«l7| 丨 • Kj
-400% —————— — ____ - .. _ —_ ^ ^ 气、 L ^ l 丨

: » k y
•6,00% — — — < * - ^ ^ l i ^ y !

’ 0 00% i p n , M ^ ^]

•fl 00s — — — — —- —_ . — i ！^si ^^^^

— —钃 i f — 1 ^
•1000、 . hr̂ry .--! Bn| 轉 t^m jĝ 聲 ^J
”咖 1— J m IM I M m , m m__m _ !

CKhiSiM CKh«Sbt

(a) Access (b) Dbase

Rditlv, Riductlon InTtnn vi. Cich* Slzt (Cl»10. C2.1.5) Rilatlve Rtduction InTlmt vt. CkIm SI» (CI.10,02=1 i)

,s肌 —] ~ s • i
Ip^： "00*, — — — — • — 1

瞧 k�~ --H _ ——• 乡 ^ f

: : 遍 : : - = R ：
•5.00% — 一」 • M o c W ? '帆 • ' 發 、 - — — • — — 醒 （ ^ |OUo<J»l7

V i f e _ S 關 i i I ^
-10.00N — U - i 600% — ̂ Ummm~驟 M S 邏 | t

,舰 ^ i 圓 譽 _ ’ . 1 “ I

•19.00% ——— — . ； I Ipfc^i BSQ • r：̂ i

I 驪 I m 譯一驪 A - - _ 、？

•20.00% —— —： I ^^讓 爹：： >̂；：：：：>：- ^^^B -N t:、?‘

二 I Mm 一 I-- i 麗 _
観 —.— — ！

CKktSUi
(c) Excel (d) Word

Figure 5.2: Relative Performance of Varying Cache Size (without Model 5)

, »

Chapter 5 Performance Evaluation of Common Disk 58

Access Dbase Excel Word
Performance Max. Min. Max. Min. Max. Min. Max. Min.

Cache size M IM Wl IM m IM M I M "
Percentage reduction in time 6% 3% 11% 7% 11% 2% 10% 7%

^percentage 3% 4% 9% 3%

Table 5.1: Maximum and Minimum Relative Performance of Model 4 (C2 二 1.5) .

If there is enough time to get the next one, the situation is different. As shown in

the graph of zero prefetch time, Figure 5.5, the relative performance slightly increases

first and then slightly decrease. The increase is due to the above reason that always

prefetch reduces more the transfer t ime when the cache size is small. Since it is zero

prefetch t ime now, all partial hit will transfer to hit. When the cache size increases,

more useful da ta stores in the cache. Therefore, the difference between the cache miss

of Model 4 and that of Model 3 decreases. The performance of Model 4 approaches

that of Model 3. So, the relative performance drops.

The positive relative performance of Model 4 shows that always prefetch is better

than prefetch on miss. For Model 3, it is a conservative algorithm to prefetch the

next sector only on miss. For non-sequential reference, Model 3 takes less useless next

sectors to the cache. For highly sequential reference, Model 3 just takes one next and

then wait to another miss to get another next one, so this will lower the performance

of the system. On the other hand, Model 4 always prefetches the next sectors. For

non-sequential reference, it puts too many useless next sectors to the cache. For highly

sequential reference, Model 4 gets the correct next one, so the reduction of I /O time is

greater. Now, for all traces, they exhibit a highly sequential property. The prefetched

sector is very likely to be referenced soon. This can be shown from the formation of

dynamic block in Section 4.5. Therefore, always prefetch can perform well.

> •

Chapter 5 Performance Evaluation of Common Disk 59

5.1.2.2 Performance Of Model 7 And Model 8

We have observed that the trends of Model 7 and Model 8 are similar in Figure 5.2.

When the cache size increases, their relative performances increase. Up to a certain

limit，about 8M cache size, their relative performances drop. Figure 5.3 shows the

general trend.

* Trend of relative
I performance of our models

Relative
Performance

I

Small Cache Size

Cache Size

丨 Very Large Cache Size

Figure 5.3: Trend of Relative Performance of Model 7 and Model 8

From the graph of absolute performance, Figure 5.1, we note that there is actual

reduction in t ime when the cache size increases. Therefore, the dropped relative perfor-

mances mean that the increase in absolute reductions in t ime of Model 7 and Model 8

is just less than that of Model 3. This is the property of Model 7 and Model 8 because

they are built for small/limited cache. It is the situation where the cache is not large

enough to hold the current working data set. To maximize the performance under

this situation, we discard some content blocks in order to store more distinct starting

heads. Then by proper overlapping the program execution and the da ta fetching, the

cache system can have enough t ime to get the un-stored sectors. In other words, Model

7 and Model 8 effectively shift the performance of a small cache to look like a. larger

ordinary cache. This can be verified by the fact that there is an increase in -relative

performance when the cache size is increased from IM to 4M.

Chapter 5 Performance Evaluation of Common Disk 60

When the cache size increases to 8M, the relative performances of Model 7 and

Model 8 drop because the cache becomes large enough to hold much more useful data,

[e . not only the heading sectors but also the content sectors. The contribution of the

enlarged cache size by Model 7 and Model 8 becomes less effective. That means the

extra stored blocks cannot obtain advantage but the compulsorily discarded sectors

may provide bad effect on the performance. Therefore, there is a fall in the relative -

performance.

There are five factors affecting the performances of Model 7 and Model 8 when

compared with the performance of Model 3:

1- the increase in the number of distinct starting heads stored in the cache

2. how many heading reuses

3. how many correct prefetches are killed due to the slow data bus, i.e. there is not

enough time to get those prefetched sectors before a demand fetch arrives

4- the size of the cache when comparing with the working set of a trace

5. the time difference between reuses

For the first factor, the more starting heads are stored in the BTC, the more chances

are for cache hits. In ideal case, i.e. all reuses are in heading base, the performance

of Model 7 and Model 8 must be better than the others. However, there are actually

some non-heading reuses, so the stored blocks in BTC cannot provide enough time to

prefetch the remaining sectors. Therefore, there is time penalty for each non-heading

reuse. The performances of Model 7 and Model 8 will drop when the effect of non-

whole block reuse accumulates to a certain level. The third factor is another tradeoff of

Model 7 and Model 8. The two models discard some contents of a dynamic block and

rely on the I /O bus to get the un-stored parts from the disk. There will be a situation

that an un-stored part is being prefetched from the disk but another request comes

to get other sectors. The prefetch must be killed in order to serve the demand fetch.

Chapter 5 Performance Evaluation of Common Disk 61

However, if the killed prefetched part will be used in very soon, the killing behavior

will make the performance poor.

- , • „ When the process is using ^ .
— . sector l a n d sector 2. the ⑷ k

cache system prefetches Cache
1,1 • I... , sector 3.

. . 丨 ，

2(0tored) -」 WhenprBf0tching,ector ？ ^
3, another request

‘ ‘ com" for anothor 謹 ^
»»ctor, say aectorll. _ . . '

3《un-stored) i Th. pr^McNng of ‘ | , 3 ,

•ector 3 /• killed _
immediately and ttw |

cache yfm starts to \\

— 一 • 广 ' c t o r | ^

If th» pnMching tector PJ
3 Win, In fact, be t/«*d ||

亡， i very toon, this will kill a f |
丨 ored) | c o r r « f prefetch. | •

6 (stored) Dbk

Figure 5.4: Killing of Correct Prefetch
I

The killing of correct prefetches has the consequence that it will downgrade the

performances of Model 7 and Model 8. The killing effect will also accumulate as

the cache size increases. Therefore, when the cache size becomes large enough and

the accumulated effect of killing correct prefetches becomes dominant, the relative

performances of Model 7 and Model 8 drop. However, theoretically, the killing of

correct prefetches can be prevented because it is due to the fact that prefetching is not

fast enough, i.e. the data bus is slow and has limited bandwidth. This is the limitation

of current bus speed and bandwidth. If the bus speed becomes faster and faster, this

factor will be greatly reduced. In an extreme case, if the prefetch were infinitely fast,

this factor would be completely eliminated.

The cache size is a very important factor for Model 7 and Model 8. When the

cache size is too small, the extra stored start ing heads do not have t ime to be reused

before they are replaced by other sectors, i.e. the t ime between reuses cannot co-operate

with the cache size. Besides, in this t ime, the disadvantages of the models still exist.

Therefore, the relative performances of Model 7 and Model 8 are poor in very small

cache size. A threshold must exist so tha t the extra stored start ing heads become

Chapter 5 Performance Evaluation of Common Disk 62

useful and then the relative performances increase greatly. However, the threshold

varies greatly because it highly depends on the properties of the traces. We can only

observe its effect from the result of simulation.

When the cache size becomes very large, the accumulated disadvantages become

dominant and the effectively increased cache size becomes less important . Therefore,

the relative performances of Model 7 and Model 8 drop dramatically. They may even be -

poorer than Model 3 although all models have an increase in absolute reduction in time.

However, when the cache is in intermediate size, the increase in relative performance

can be as high as 29%.

Access Dbase Excel Word
Performance Max. Min. Max. Min. ~Max. Min. Max. Min.

Cache size 2M, 4 M m 4M IM m 8M 2M i W
Percentage reduction in t ime 3% -10% 29% 6% 16% -29% 16% 6%

I '

Table 5.2: Maximum and Minimum Relative Performances of Model 7 (C2 = 1.5)

The maximum and minimum relative performances of Model 7 for different traces

are shown in Table 5.2. The relative performance of Model 8 is similar. From Ta-

ble 5.2, the maximum relative performance usually occurs in 2M or 4M cache size. The

minimum usually occurs in IM or 8M cache size. The minimum value can drop to

negative, e.g. -10% for Access and -29% for Excel. The negative values are due to the

accumulated effect of the second and third factors that have been discussed before.

However, for the third factor of killing correct prefetch, it can be eliminated by the

zero prefetch time, i.e. infinitely fast prefetching, because it is due to the slow bus speed

and the limited bandwidth. Therefore, we have simulated the effect of zero prefetch

time in order to investigate how large the effect of the third factor plays in the cache

system. Note that the fetch time is still equal to 1.5. Figure 5.5 shows the relative

performances of different models for zero prefetch time.

The simulation of the zero prefetch t ime shows that there are actual occurrences of

Chapter 5 Performance Evaluation of Common Disk 63

h Tim. « . C.ch. S I " . P- . l .tch Tim. . 0 (Acc•叫 R.I.II.. R.ductioi, In Tim. « . C c h . Tim,. P,.l.ich Tln,.^ (Db...)

10.00% - — ？0 00、 —

s m H - 一 ^ E - - - ^ B 10.00、 — 角 — - 一 ...：i _ i

� • + _ i - ^ ^ T ' l P
國 — 彻 、 — ^ - o 醒 i

: ——.1 _iI I ^ 喜 - - - 1 -
• l o m — … 一 [gMod«tt[j g i Qij融 I

•15.00% � — . . — .

i
•20.00% — — — — •” — — , J B J

•50 00、 . m I

•25,00% L - ...J ‘
•W.WN ——- — — — -••__..

Cicht Sizt • ,

CKhl Sl»

(a) Access (b) Dbase

丨“Tim, Tim., P..f.tch Tlm..O (Ek. I) R.Ltl . . R.ducllor. In Tim. . . . Cch. Th... P»t.tch (Word)

20.00* .—— _... 14 帆 _ _ •
10 00% - - e ‘ frrrrn _ , _ ^ ^

|%>\： • 12 00、 --• .- .-. • -• - — -- i

隱 H — j ,00% I m~T]— i
" _ ^ 圓 _ r n - r a

— • —…一 = ; J - n f S -1%, 二
w 國 • H ^ j "1 {|oul|

• M 、 1 4 00% — ； ^ I . ,.J

一——- —— m _ �,> y} � i ：•：
. »肌 - - 0 00% M i i i ^ A . . ^ ^ 1 I I

侧 、 —.-...... — - 隱 J i

Cck.Slu

(c) Excel (d) Word

Figure 5.5: Relative Performance of Varying Cache Size with Prefetch Time=0

« »

Chapter 5 Performance Evaluation of Common Disk 64

killing correct prefetch. Table 5.3 shows the maximum and minimum relative perfor-

mances of Model 7 when the prefetch t ime is equal to zero.

Access Dbase Excel Word
Performance Max. MinT Max. M T ^ Max. Min. Max. Min.

Cache size 2M m 4M IM m m m 8 M ~
Percentage reduction in t ime 7% 2% 13% 6% 11% -5% 9% 6% -

Table 5.3: Maximum and Minimum Relative Performances of Model 7 (Prefetch Time = 0)

The negative relative performance for Access has been eliminated, so the effect of

killing correct prefetch is quite important in the Access trace. On the other hand, the

negative relative performance for Excel still exists even in zero prefetch t ime although

the relative performance increases from -27% to -5%. So the reason is not just in

the factor of killing correct prefetch. Another reason is that the entire working set

of Excel has gone into the 8M cache. This can be illustrated from the hit ratio of

Model 2, unified cache without any prefetching technique, which is 95% in a 4-way set

associative 8M cache. Model 7 and Model 8 discard some contents of each dynamic

block compulsorily. For very large cache size that can capture almost all reuses, an

enlarged cache size does not mean anything. The accumulated effect of non-heading

references becomes dominant and this factor cannot be eliminated in our algorithms.

Therefore, the relative performance for Excel drops to negative value. In fact, the trend

for the drop of relative performance to negative value is also expected in the other two

traces, Dbase and Word. However, the cache size is not large enough to show this effect

for Dbase and Word.

5.1.2.3 Comparing Performance Of Model 7 And Model 8 W i t h Model 4

The relative performance of Model 4 is sometimes much poorer than that of Model

7 and Model 8, especially when the cache size is about 2M to 4M. At the range of
« »

intermediate cache size, Model 7 and Model 8 have the advantage of always prefetch

磁ch can capture the highly sequential property of the traces. The extra stored blocks in

Chapter 5 Performance Evaluation of Common Disk 65

BTC by ASST or SEHT can be reused effectively. Besides, PB can reduce the pollution

due to prefetching. Therefore, the relative performances of Model 7 and Model 8 can

be boosted up greatly. Table 5.4 shows the maximum relative performances of Model

7. The performances of Model 8 are similar to that of Model 7.

Cache size Maximum relative Maximum relative Ratio: .
performance of Model 7 performance of Model 4

Access m Wo Wo 0.75
Dbase 4M 30% 10% 3
Excel 2M 17% 6% 3
Word 2M im 7% . 2

Table 5.4: Maximum Relative Performance of Model 7

At the maximum throughput , the relative performances of Model 7 and Model 8 can

double, or even triple that of Model 4. This reveals the fact that the new algorithms,

ASST and SEHT, are very useful in the intermediate cache size. However, the case is

different for Access. Even in the maximum relative performance, the performances of

Model 7 and Model 8 are still worst than that of Model 4. This can be explained by

the fact that there are too many occurrences of killing correct prefetch and too many

non-heading reuses for Access. The un-storecl parts of a block cannot be accurately

prefetched. Therefore, the performances of Model 7 and Model 8 become poor for

Access.

Besides, for IM cache size, the relative performances of Model 7 and Model 8 are

usually lower than that of Model 4. This is due to the fact tha t the threshold of

the models have not been exceeded in IM cache size. Therefore, the extra stored

starting blocks cannot be effectively used and the factors of disadvantages lower the

performance.

In conclusion, always prefetch is a useful technique to disk cache. Model 7 and

Model 8 are designed for the limited cache size when compared with the data size. From

the simulation results, Model 7 and Model 8 can perform very good in the intermediate

cache size, about 2M to 4M, because the effectively enlarged cache size can store more

Chapter 5 Performance Evaluation of Common Disk 66

starting blocks. Those blocks can be used effectively by ASST and SEHT and this gain

can cover the disadvantages of the models. The relative performances of Model 7 and

Model 8 can even double/triple that of Model 4.

5.1.2 .4 Performance Of Model 5

We have omitted Model 5 to get a clearer discussion in before. Now, let us focus on -

the relative performance of Model 5. Figure 5.6 shows the relative performances for

the four models, including Model 5 for different traces. We have observed that the

performance of Model 5 is worse than that of Model 3, i.e. negative values, except in

small cache size for Excel trace and Word trace.

The performance of Model 5 is poor because it stores only the first heading block of

each dynamic block in the BTC and lets the cache system get the following blocks. This

produces a large extra time penalty needed to pay for each reuse. For large cache, Model

5 underuses the cache because it compulsorily discards the all remaining blocks although

there are enough spaces to hold them. Therefore, the extra time penalty paid is greater.

Model 5 is a control model and it directly used the CPU cache partitioning technique

without any modification. The disadvantages of this model have been discussed in

Section 3.3.2. This indirectly shows that there are some differences with disk cache

and CPU cache. The techniques in CPU cache may need modify before they are applied

to disk cache design.

For Excel trace, the hit ratio for IM cache size is only 10% for unified cache, e.g.

Model 2. This is a very low value and shows that ordinary cache store very little useful

data. Almost all the time, the cache system needs to take the requested data from

disk. The algorithm of Model 5 dramatically enlarges the cache size, i.e. data from

more dynamic blocks can be stored in the cache by only storing the first block of each

non-sequential reference. Therefore, more cache hits can occur. The time saving due to

more cache hits compensates the extra time penalty paid to take the remaining blocks

from disk. “

For Word trace, the most frequent dynamic block size is 1 sector. Model 5 can

^hapter 5 Performance Evaluation of Common Disk 67

R»latlv» Rtductlon In TImo vi. Cacha Slz« (ClrlO, 02=1.5) Relatlv* Rtductton InTltn* vi. CKh« Sizi {C1:10. C2>U)

. ,瞧 , M J . • m^r^ m^M • 旧 _ j J _

2 瞧 • I
.30.00、 ' • ' ' ' • • • ••- -SOOON ‘ ~ • ---• ^^H —

•Models t ^ m •； •uixietS
•40m — 丨 … , R i d u c t i o n ^ B ； I

iOMod«l7 :GModtl7
iOM 想 :QUo4*ff'

•50.00% — — — .10000\ I - — (

•7000% • • • • -_ • —• - ’ ’ ，，&0 00、 i
I

80 WA ‘‘
I

•SO.00% — .20000., — — 1
Cich«Slzi CtcktSlzt

尊

(a) Access (b) Dbase

R»l»tWi Rtducllon In Tlm«v». Ctche Slz« (CUlO, C2«1.5) Ritatlvi Rtduction In Tim* vs. Cach* Sizt (CUIO. C2s1i)

om -~M—B . rn^r-m . wm "抓 •
2 ^ ^ ^ —— — ~ - - •

…一―— • __rf|
_ • , iooo\ ^ J / -3—- ！ :•_‘' J J mM A • H n

•Models I B ^ H B B •Mod.it .100.00、 — —- —. soo\ - - • ^ B ^ B ^ B B ^ H H — . i •_卿_= lOMoitel； ^ ^ m ^ H H • GMo<M7

• • • 丨 OM 滅

•200.00、 — — — —

J — •••"•. .20.00% 1 - J
CKh*SI» CichiSlzt

(c) Excel (d) Word

Figure 5.6: Relative Performance of Varying Cache Size

» ‘ .

Chapter 5 Performance Evaluation of Common Disk 68

do a good job because it does not pick any useless next sectors to the BTC, and the

next sectors all go to the PB. For other models, the control algorithms place some next

sectors in the BTC so cause cache pollution in this case. Therefore, Model 5 shows an

extra-ordinarily good performance.

5.2 The Effect Of Block Size -

As varying the block size, we choose a fixed reference point for other cache parameters.

Cache Size = 4M

Set Associativity = 1 way

Start-up Time Cl = 10

Transfer Time C2 =： 1.5

This set of parameters will be fixed on the above values throughout the discussion of

the effect of block size. In the simulation, we have examined block sizes of 1 sector, 2

sectors, 4 sectors and 8 sectors.

5.2.1 Trends of Absolute Reduction in Time

We have observed that in general, the absolute reduction decreases as the block size

increases which is shown in the Figure 5.7.

The decrease in the absolute reduction means that the absolute performance is

poorer in larger block size. Besides, there is an obvious drop in absolute performance

when the block size increases from 4 sectors to 8 sectors for all traces.

Block size has an effect of implicit prefetching. Many current designs of disk cache

using very large block size since they have not incorporated the ability of explicit

prefetching technique. Large block gets many adjacent sectors of the requested one

to the cache. These sectors are hoped to be referenced later. For instance, requesting

a sector will let the whole disk track to be fetched to the cache. Large block size is
* •

proved to be very useful in current design due to its implicit prefetching property.

�hapter 5 Performance Evaluatioii of Common Disk 69

Abioluti Htductlon In Tim* vi. Block Size (Cl0, C2:1.5) AbaoluU Reduction In TImt vi. Block Sl2t (CUI0, .5)

匪 J l P i 瞧 ...———1——1——：
ji00% — — • - — i MOO、• • - - H ^ ^ H !

腿 I J l - l 1 職 I ^ • “ ^

應 I - I- JM H 二丨 " 肌 ； 一 • 一
lUductbn „ _ • • ： MOO、- ^ H — W H - B B ^ B - ： DUodtU

“ " � 1 1 = : . 1 1 ms
： 1 1 1 1 ：丨 I 里 •

1 2 4 B 1 2 4 1
Block Sl2« Block SIzi •

(a) Access (b) Dbase

AbiotuU Rtductlon In Tlm« VB. Block Slz« (CUIO, C2xl.5) Abtolul* Riduction inTlmi vt. Block SIzi (ClxlO, C2iU)

；om — - jn i "肌 J l ^ l — � H 一 一 I W~^
rn m ««)% - - i ^ H -- 丨 敎 i

处的、 “ • ‘ •Model3, MOO、 - S ^ H - … _ ^ ——• V fl- ： ImI^q!

] t l i h l _
0,00% ItH, L 圓 I iM I • I 欄 I 糾 抓 m W B IB HIH ：

1 2 < B 1 2 4 8
Block SI" Block Siii

(c) Excel (d) Word

Figure 5.1: Absolute Performance of Varying Cache Size

Chapter 5 Performance Evaluation of Common Disk 70

However, our models have already incorporated the technique of always prefetch.

If the block size is too large, it may cause serious cache pollution, i.e. there are too

many useless data placed in the cache so useful data, are kicked out. On the other

hand, if the adjacent data are useful and will be referred soon, increasing block size

causes more cache hits. Therefore, when always prefetching technique combines with

the small block size, it can improve the performance. However, when the block size is -

too large, the combined technique takes too many other sectors to the cache and does

not know whether those sectors are useful.

Now, let us consider a case for a request of 4 sectors and using a 4-sector block

size. The most satisfactory result is that the data in a transfer block exactly matches

the requested 4 sectors. However, this is not the case in general. On average, the case

is like Figure 5.8. A request for n sectors, where n is also equal to the block size, is

usually across two transfer blocks.
I

Transfer Block 1 Transfer Block 2

Sector 1 Sector 2 Sector 3 《Sector 4 Sector 5 Sector 6 Sector 7 Sector 8

V \ , , z V
These previous sectors A 4-sector request for These next sectors have
have less chance to be sector 3-6 greater chance to be

referenced later referenced later

Figure 5.8: A 4-sector Request in Block Size of 4 sectors

In Figure 5.8, the previous sectors, sector 1 and sector 2, have less chance to be

referenced later. Therefore, these two sectors pollute the cache. The next sectors,

sector 7 and sector 8, have higher chance to be referenced later. Therefore, these two

sectors may reduce the disk access time. As the block size increases, more and more

previous and next sectors go into the cache. To determine the usefulness of these

Chapter 5 Performance Evaluation of Common Disk 71

sectors, it highly depends on the reference pattern of a particular application.

From analyzing each trace, the most frequent dynamic block sizes are usually not

greater than 8 sectors. In the above example, the next sectors, sector 7 and sector

8, have higher chance to be referenced soon because the total number of sector is not

greater than 8 after combined with the requested sectors. However, for an 8-sector

block size, the situation is different. Consider a case of a request of 8 sectors and the ~

block size is also equal to 8 sectors. As discussed before, the situation is like Figure 5.9.

Transfer Block 1 Transfer Block 2

— _ p — . _ j — . 丨 1 ~ 1 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 1 5 | 16 i

‘ I I

I . .1 . 1 I 1 I . 1 I I 1 I I
• 、\ ‘ ：

\ L ^ ^ _ _

丨
I

I I i \ ‘
I I
！ ！

These previous sectors A 8-sector request for These next sectors have
have less chance to be sector 5-12 less chance to be

referenced later referenced later because
the dynamic block is
rarely greater than 8

Figure 5.9: A 8-sector Request in Block Size of 8 sectors

The previous sectors are useless as before. The next sectors are also useless in this

situation because the combined effect gives a dynamic block size larger than 8 which

rarely appears in the four traces. Therefore, when two blocks are placed in the cache,

almost a whole block is useless. This causes the poorer performance for 8-sector block

size.

From the above result, since we use always prefetch as our basis, 1-sector block size

gives the most satisfactory result. 1-sector block size can also give a full control of the

cache block in the cache system. While the block size increases, more useless sectors

will be fetched into the cache as discussed above. Those useless sectors stick with the
» •

useful sectors and occupy entries in the cache. In turn, less space is left for useful

data. So a large fetched block will also have chance to pollute the cache. Therefore, for

Chapter 5 Performance Evaluation of Common Disk 72

1-sector block size, it can ensure that the fetched/prefetched blocks have higher chance

to be useful.

Moreover, we have observed that Model 5 is not like other models, the performance

of Model 5 may not decrease as the block size increases. This is due to the fact that

Model 5 stores only the first starting block of each non-sequential reference, i.e. the first

block of each dynamic block. It needs to pay very high time penalty even for a cache ~

hit. However, as the block size increases, the first starting block becomes larger. The

penalty of each cache hit is reduced. So, the effect of bringing imdesired sectors into

the cache can be compensated.

5.2.1.1 Difference Between Hit Ratio And Access Time

We have chosen the absolute reduction in time and the relative reduction in time to

indicate the performance of a model. The reason of choosing access time rather than

hit ratio is that it can provide a better insight of the performance of the model. This

can be illustrated from Table 5.5 that shows the hit ratio and disk access time ratio of

Model 7 for different block size.

Access Dbase Excel Word
Block size Hit ratio Time ratio Hit ratio Time ratio Hit ratio Time ratio Hit ratio Time ratio

~ 1 sector 77.93% 0.2089 80.31% 0.1673 63.'18% 0.2713 84.46% 0.0661
2 sectors 84.35% 0.2276 80.13 0.1883 64.94% 0.2933 90.31% 0.0673
4 sectors 89.20% 0.2459 81.64% 0.2259 66.90% 0.3579 93.34% 0.0663
8 sectors 91.83% 0.2774 82.28% 0.3183 70.04% 0.4769 96.08% 0.0896

Table 5.5: Hit Ratio and Disk Access Time Ratio for Model 7

The Time ratio is defined as

T. t. Total disk access time of a model
Total disk access time of no cache

Therefore, the larger the time ratio is, the poorer the performance is. In Table 5.5,

as the block size increases, the hit ratio increases. Increasing hit ratio indicates that

increasing block size is very useful because more requested data are in the cache.

However, the time ratio also increases. That means the actual traffic between disk and

Chapter 5 Performance Evaluation of Common Disk 73

cache is heavier as the block size increases. Therefore, choosing a large block size is

not intelligent because it imposes a heavier traffic between disk and cache. From this

situation, we have observed that hit ratio can only give a rough understanding on the

performance of a model. Time ratio gives a more concrete understanding on the traffic

between disk and cache, which in turn is an accurate indicator of the performance of

a model. -

Besides, from the above analysis, we have observed that increasing block size has its

advantage to capture the spatial locality of references. But owing to the fact that it also

takes some extra useless sectors in the cache, it increases the total access time to the

disk. This can further verify by the actual number of sectors transferred between disk

and cache when the block size varies. Figure 5.6 shows the actual number of sectors

transferred for Dbase trace (Cache Size=4M, Cl = 10, C2=1.5, Set Associativity=2-

way). The number of transferred sectors generally increases when the block sizes
I-

increases.

Model BS=1-sector BS=2-sectors BS=4-sectors BS=8-sectoi�s
2 1,944,730 2,240,546 2,573,892 3,751,840
3 1,955,952 2,266,172 2,587,868 3,764,824
4 1,967,134 2,290,496 2,639,212 3,855,064
5 8,497,649 8,539,820 7,647.628 7,491,760
6 2,039,514 2,254,532 2,398,484 3,443,088
7 1,928,586 2,226,166 2,375,272 3,425,904
8 1,909,416 2,235,700 2,357,828 3,215,992

Table 5.6: Actual Number of Sectors Transferred for Dbase when Varying Block Size

5.2.2 Trends of Relative Reduction in Time

5.2.2.1 Performance Of Model 4, Model 7 And Model 8

The relative performance is the absolute performance of a model compared with the

absolute performance of Model 3. Although the absolute reduction decreases in general,

Chapter 5 Performance Evaluation of Common Disk 74

Reliltvt Reduction In Tim* v». Block Slzt (CUlO, C2:t>S) Relitlvi Reduction In Timt vs. Bbck SUt (CUIO, CZ^ii)

irr-n i

^ — ^ 3。oo\ I — — 審 - ijy.
• - -- ... - • - 1 .V...;.:: I

7 00.. —ri-一 8 J 職—— 囊 BH 厂 .
• - — - - — 一 _ I

、, •？J » 瞧 一 r iî sr；
500、 - 隱 J “ 一~I UUomI Rtdvcln, S"： 卜 < DUom\ 0M�_ J » ‘ L« QWtxtols'

^ , J - - % • - - M

截 • y — §] 4 ^ >1

I : m m l
1 2 4 S 1 2 4 a

Block SiM 丨iMkSlM

»

(a) Access (b) Dbase

Rilillv* Rtduction In TImt vi. Block Sizi (CIslO, C2>1i) Rtlitlvt Rtducllon In TImi vi. Block Sl»(C1，10. C2*1i)

_ I~ I 1 - I
• •;•；：• . 30.00V -- • •*< —：

i l I I
mm 、、公 •••• ？5 00% -

’ 。 _ _ 终 P|a 资、

• "帆 - m \ 'M)
8on - ^ H ^ - - DMo(hl7 Rtducllon H j : 、‘ OUod»l7 ^

—m > m 圓寇邏弯。蜃 I
H ',�\ 10 00% B9 V； — - ^

_ I ‘ -‘ • 圓 画 m
J 1 • W I • I I I • 丨 丨 � i l l 1 KH i 1,1 i I I

i * i t J 4 8
BlockSl» BkockSlii

(c) Excel (d) Word

Figure 5.10: Relative Performance of Varying Block Size (without Model 5)

. ».

Chapter 5 Performance Evaluation of Common Disk 75

the relative reduction can increase. This means that the drop in performance of a

model is less than that of Model 3.

The trends of relative reduction in time are quite similar for different models. When

the block size changes from 1 sector to 4 sectors, there is an increase in the relative

reduction in time for different models. Although the absolute reduction in time de-

creases, the effect of slightly larger size of the prefetched block has the advantage that -

the adjacent data will be referenced soon (refer to the discussion in the Trends of ab-

solute reduction in time). The increase in relative performance verifies that there are

actual use of those adjacent data.

The relative reduction in time for all models generally drops when the block size

increases to 8 sectors. The drop in 8-sector block size is due to the reason explained

before. There are too many useless sectors being prefetched together with useful sec-

tors. Those useless sectors pollute the cache more for the models using always prefetch
I'

technique.

For Model 7 and Model 8, the increase in relative reduction in time is greater than

that of Model 4. The amplitude of increase for Model 7 and Model 8 is larger because

they have a prefetch buffer to store the prefetched sectors. Those prefetched sectors

will be flushed out very rapidly due to the small size of PB. Therefore, PB can reduce

the effect of cache pollution, i.e. reduce the number of useless sectors going into the

BTC.

5.2.2.2 Performance Of Model 5

We have omitted Model 5 to get a clearer discussion in before. Now, let us focus on

the performance of Model 5. Figure 5.11 is plotting for relative performance, including

Model 5, for different traces.

For all traces, the relative performance of Model 5 is better and better as the block

size increases. This is because Model 5 underuses the cache by storing only the first

heading block of each dynamic block. Now, as the block size increases, the first heading

block will contain more sectors and in turn, more sectors in each dynamic block are

“Chapter 5 Performance Evaluation of Common Disk 76

Rel»tivt Reduction In Tim畚 vi. Block Size (CUlO, C2s1.5) RtlatWt Rtduction in Tim* v i Block SIzi (C1=10. C2=1i)

_ m • 厂 、 • 厂 r"fn r-pi r - n m
500% 画 < - - • 一 、 、 “ — — ^ I : :

. 脈 —— ^ ^ 二 ― 00. M^A] U 1:1 bJ U
n<ditclloo i ' " " I ' " Briucllon _ . H I m o ^ ,

-.…- i M H 二二:
丨嶋"II _ i 丨OM»WI:

碰 I
.20肌-.-..- 1 ••

•？5.COS - I - ' • — - • i i

Block SIh 丨 Block SIM

(a) A c c e s s (b) D b a s e

FUlitiv* Reduction In Tlm» vi. Block Size (Cl.lO, C2«U) Ritiilvt Rtductlon In Tim* vi. Block Sizt (CU10, C2s1i)

細•， .,_•+•.- I 4S.00\ >

？ooos — igU J ‘0飢 i

I ~ r a r ^ B

— pit _ _ m wBi I 3&00N -，一-

’ • M |~B •— 1 " • 一 厂 ‘ • z f i j -i
• 1 I _I1 ^ J J . I M I I 隱 - ― … 1 L

Rtducllon 國 ^ ® |BMVi.M； »00\ - ——叫 IM。叫
H 」•Models； . n

.,0嫩 • m ^ oMô .7 ，遣 W f l ^ » n —"^：

圓 迎一 J f - i—
•2000% . -- — - — IIBB jfeĵ l̂ ？V

國 i s m - f j H ^ i :: ,

•3om --— — 10 00% ——hJ |M r Jt - 1
•40飢 — • B B ^ - 9 I ' 3 - 条

•50.00% —— — — 1 2 < J
flIockSli 丨 丨 lotkSiM

(c) Excel (d) Word

Figure 5.11: Relative Performance of Varying Block Size

» • .

Chapter 5 Performance Evaluation of Common Disk 77

stored in the cache under Model 5. Therefore, the time penalty of getting the next

sector is smaller and then the relative performance is better. However, Model 5 is

still below the standard in many cases except for the case of 8-sector block size. For

8-sector block size, Model 5 can be better than the standard owing to the fact that the

most frequent dynamic block sizes are under 8 sectors. If the system stores 8 sectors

as a whole each time, nearly all dynamic blocks are stored in the cache. The system -

will not need to pay too much time penalty to get the remaining sectors (comparing

with the case of block size equal to 1 and storing only the first block). Therefore, more

cache hits occur and there is greater reduction in time.

5.3 The Effect Of Set Associativity

As varying the set associativity, we choose a fixed reference point for other cache

parameters. ‘

Cache Size = 4M

Block Size = 1 sector

Start-up Time Cl = 10

Transfer Time C2 = 1.5

In the simulation, we have examined 1-way, 2-way and 4-way set associativities.

5.3.1 Trends of Absolute Reduction in T ime

We have observed that when the set associativity increases, the absolute reduction in

time increases. This is shown in Figure 5.12.

When a block must go in exactly one place in the cache, the placement scheme is

called direct mapped or 1-way set associative. When a block can be placed anywhere

in the cache, the placement scheme is called fully associative. The intermediate design

is called n-way set associative. In a set associative cache, there is a fixed number of
»

locations where each block can be placed. A set associative cache with n locations for

a block is called an n-way set associative cache or its set associativity equal to n. Each

^hapter 5 Performance Evaluation of Common Disk 78

Abiolule RtducUon In TImtvi. Stt Ai»ocl«tlvlty (CtslO, C2.1.5) Abiolut* Reduction in Ttm« vt. Stt Atioclilivlty (ClxtO, C2=1.5)

瞧—Jiiii—Ji一RI I F t . 瞧 VI PI Ji—PI—i — 一

.::J|J J np p
74 00、 ——- F ^ H - - Q^oMS ftiductiOfl I t 众 W^m] QUoiltIS

: l 1 i l i � " 1
68.00% _ • I • • • I 圓 III mmm ,國丨：•释•丨 � 帆 ‘ W _ . _WM • 遍 U I • ! �

1 2 4 t 2 4
S«l Assoc bilivlty $«t A«oc»thilt)f

I
(a) Access (b) Dbase

AbioluU Rtducllon in Timt v». S*t Aiioclitivtty (Cl.lO, C2.1.5) Absolut* Reduction In Timi v«. S*t AMOclattvltY (Cl.lO, C2=1.5)

瞧 ^ j ： ： ： ^ ^ ^ ^ ^ ^ ^ -

隱 ― I - J - J 隱 I H I HI
— _ • — • 1 」 同 1 1 1 J H ' J n ^ ^

H M 議 ^ 國 霪 i。U。<̂丨S R.d她n • B E A I ^ I ： QUodtlS

: | I l i i - i m i 1 1 H E

l i i l i i l ： l l i l l l
‘ Z ^ 1 2 4

SitAiiocbttvlty S«tAMOctit)vltr

(c) Excel (d) Word

Figure 5.12: Absolute Performance of Varying Set Associativity

Chapter 5 Performance Evaluation of Common Disk 79

block now maps to a unique set in the cache, and a block can be placed in any entries

of that set.

We have observed that increasing set associativity can help to increase the perfor-

mances of all models. This is a fact that increasing the set associativity can reduce

the collisions for competing the same entry and can improve the hit ratios of caching

models. Fully associative scheme is the best one because each block can store in any

place in the cache. Direct mapped scheme is the worst one because each block can go

in only one place in the cache. In the case of direct mapped, if there is another block

that must go in an entry, the previous stored block must be replaced even if there are

other free entries in the cache.

On the other hand, there is a disadvantage if the cache system uses a large set as-

sociativity or full set associativity. The time of searching the cache becomes significant

and must be taken into account. The accumulated effect of searching time increases
I '

greatly when the set associativity increases because this time is counted for each search.

Therefore, in general, cache systems use less than 8-wa,y set associativity in order to

reduce the time for searching.

Therefore, set associativity is the parameter for real implementation. It is quite

independent of which model is chosen. Using large set associativity can improve the

hit ratio but increases the search time.

5.4 The Effect Of Start-up Time C l

As varying the start-up time Cl , we choose a fixed reference point for other cache

parameters.

Cache Size 二 4M

Set Associativity = 1 way

Block Size = 1 sector

Transfer Time C2 = 1.5 . ..-

Chapter 5 Performance Evaluation of Common Disk 80

In the simulation, the values of Cl that we have examined are 5, 10, 15, 20. Note that

these values are the ratios of actual values of the start-up time to the use-up time.

5.4.1 Trends of Absolute Reduction in Time

Figure 5.13 shows the absolute reduction in time of all models for different traces.

Remind that the actual time of disk access for all models increases as Cl increases. _

This is because the time penalty paid for each cache miss is higher. However, when we

calculate the absolute reduction in time, the result of one value of Cl cannot compare

with the result of another Cl because their bases are different, i.e. the total disk access

times for different Cl are different. Therefore, the trends of absolute reduction can be

in any shape. So, Figure 5.13 is just for reference.

5.4.2 Trends of Relative Reduction in Time
I

Figure 5.14 shows the trends of relative reduction in time for different models.

When Cl increases, the relative performances of Model 4, Model 7 and Model 8

decreases because the time needed to pay for each cache miss dominates. It covers the

effect of other timing factors. Different kinds of prefetching become less important when

comparing with the overhead of the start-up time Cl . Therefore, the performances of

Model 4, Model 7 and Model 8 tend to the performance of Model 3. This can be

verified by the fact that the relative performances drop as Cl increases.

Start-up time Cl determines the size of starting head that should be stored in

BTC for Model 7 and Model 8. As Cl increases, the size of starting head is increased.

So, fewer extra starting heads can be put into BTC. Therefore, the performances of

Model 7 and Model 8 must tend to Model 4. This can be verified by the fact that the

amplitude of decreasing performances of Model 7 and Model 8 is larger than that of

Model 4. The trend of the relative performance of Model 5 is decreasing because of

similar reason in the case of Model 7 and Model 8.

^Chapter 5 Performance Evaluation of Common Disk 81

AbsoluM Reduction In Tlm» vi. Cl Abtolutt Reduction Hi TImi vi. Cl

: 誦： I Er : I 11 籠 ’ I 面:E
：： I I E , ： - i ： ： ,

：ill I t ：： 1 1 . 1 : 1
s 10 IS M s <0 »

Cl Cl
I '

(a) Access (b) Dbase

""I"" I" Tim. «•. Cl Absolut. Reduction In Tim. .. Cl
關、 - , MM、

»«"• - - j a — — — i 83m——-t^b r j t ^ B — J

: 邏 : _ I I H

I t ff m : l i 1 1 11
”㈤、‘1- • II _ _ _ 撒 _ 僅

i B i l l t l i l i ‘ ‘‘ » 5 » 15 „
C1 C1

(C) Excel (d) Word

Figure 5.13: Absolute Performance of Varying Start-up Time Cl

^Chapter 5 Performance Evaluation of Common Disk 82

RtlAtW* Reduction In Time vi. Cl Rtl«tiv« Rtduction tn Tlmt vi. Cl

1000、 — — — — — — - — — — — eo oo\ r~ — — — 、’

sm 國—rT~l I - t . ‘�"—[fj--
.5 00% 國 I -…隱-— MV I 一 —--

.……_ 1 - — n - J , _ _ � < « � 1 且 Si H _ V, S, W ！ fii^
• ism - _ i IMntslsj MlicUcn j .X; ‘ ；̂、 I 卜Mc)*IS:

•10m • — — 1一—•—H- l E j ！ ―― — I y — -二丨

: 圓 ‘ §-— 叫-； 飞 一 I——誦--
™ fl 40 m - - - i — I H i

• _ _ _ 丨
•40 M 、 1 ~ • " … - — — — - - - - - 40(j0\ 1 ,, .

Cl Cl

(a) Access (b) Dbase

FUlitiv* Rtduction In Tlmt vi. Cl R«litiv« Rtducllon In Tlmi vi. Cl
30,00% — ———•— — 扣00、 ^

r - ^ I
？0 00% - . 18 00*, I ,—-- —. - • • -

、 嫩1 厂
10"00% — - - — 專 ——^ ™ , i 16 00、j

0.00. i J l A : f - -
圏 ‘ ‘ H I rali —— r — ^ - .丨

.10肌 國 H—- -i "“•"," • % lUoO*!'
_ _ i •Mod.isi """''i - -m 一 — r r r

墨一I — — — 圏 — � � - n i -- -
•" 一 圓 圓-： ， _ ri � _
•誦 一I 隱---i ‘"、： ^ ：: - HI 1 •

麵——：— 1 , : i _ m \ \ m 11— _ I
墨丄 一 ：丨 5 to „

Cl Cl

(c) Excel (d) Word

Figure 5.14: Relative Performance of Varying Start-up Time Cl

• ».

Chapter 5 Performance Evaluation of Common Disk 83

5.5 The Effect Of Transfer Time C2

As varying the transfer time C2, we choose a fixed reference point for other cache

parameters.

Cache Size - 4M

Set Associativity = 1 way

Block Size = 1 sector

Start-up Time Cl = 10

In the simulation, the values of C2 that we have examined are 0.5, 1, 1.5. Note that

these values are the ratios of actual values of the transfer time to the use-up time.

5.5.1 Trends of Absolute Reduction in Time

Similar to the case of varying Cl , we cannot compare adjacent sets in a graph because

the bases are different. Therefore, Figure 5.15 is just for reference.

5.5.2 Trends of Relative Reduction in Time

Figure 5.16 shows the relative reduction in time for different models when varying C2.

Model 4, Model 7 and Model 8 exhibit same patterns for all traces in varying C2. As

C2 increases from 0.5 to 1, the relative performances increase for all models in all traces.

As C2 increases from 1 to 1.5, the relative performances decrease dramatically. Remind

that the value of C2 is the ratio of the actual value to the use-up time. Therefore, there

are two cases in these values that are C2 less than or equal to 1, and C2 larger than 1.

The value of C2 less than and equal to 1 means that there is enough time to get the

next sectors/blocks when the first sector/block has already been placed in the cache.

On the other hand, the value of C2 larger than 1 means that there is not enough time

to get the next sectors/blocks if only the first sector/block has already placed in the

cache.

For C 2 < : 1 ’ only the first block needs to pay the time penalty in cache miss because

the following one has enough time to be transferred when the process is using the first

s
 二
二

 i
f
s
m

4

如

卯

账

她

狄

舰

狄

 •

 •

 a
 g
 • •

 1

糾

；

I

I

 i

 j

 —

 ！：

“
一
-
i
l
i
j
^
 „

:

一

；

 -

 ̂
^

 S

m

 ̂̂
^
h
^
h
^
b
k
k

站

 ̂

 f
l
l
^
^
K
^
K
K
S

沉
 m

j

 I

1

"

一

 ！：

 i

 1
"

 w

 ̂

j

；

 _一---—1_這
 ̂

 j

 f
r
^
^
H
^

 ̂

 •

I

帆

肌

肌

帆

帆

I

肌

帆

肌

饥

帆

帆

帆

肌

帆

肌

b

肌

奶

帆

肌

肌

 ̂

w

w

w

恥

 M

 l

 «

 «

 ̂

 «

 M

 K

 M

 ̂

 r
^

^
 』

 -

 S

^
 .

 •

n
 -
m

 二
=

謡

 H
I

脱

o
 I
B

 •

 a

 •
 •

 B

 £
一

 I
B

 •

 •

 a

 •

 B

 •一

 ̂

>

 j—
g
g
g
a
p
p
i
p

 I

』

沾

 』
_
T
i
i
1
J
4
i
l
-
_

•

一

一

d

 A

g

 f

 -

！

 c

M
 f

 I

 -

 E

J

^

細

 ̂̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
^

 N

編

 ̂̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
^

 ̂

 e

m

 t
i
h
i
^
i
^

 r
l
H
I
H
B
I
i

 F

-

肌

肌

肌

肌

帆

帆

g

帆

帆

帆

帆

帆

肌

帆

帆

.

帆

帆

如

帆

帆

 m

帆

 m

I
t

‘Chapter 5 Performance Evaluation of Common Disk 85

in T丨VI. C2 R.M.. fl.ductloi. In Tim. vi. C2

扣.帆 - 60 00% ———— ••

15.00% H M _ 〉 _ 一 ^

H I—nn 9h 、义 «ooN ！ —I 儀i 一―—

: i : n t t - i = = : � • - I — m
" L i p 一 4 i

——_——— - 1 — … - H i • •.
.’• I 1 - - ̂ 舰 i …_——— - I —
•15.00、 p m — — - - H H

HH —- ^B
. _ 、 U —一 I HH
.好肌 H 1 8 别帆… H j
•30.00〜 — - - - .„„,, j •nftn* 丨 • • • I

.~ ‘ 40 oo\ - — —— ；
“ c:

I
(a) Access (b) Dbase

丨n “ R.l.tl.. R.<luctl.n In Tim. ,.. C2

； '0oo\ — — •..

‘ � � r~rn ^ ^ F l ^
• H 35 00% --—…… - . - P M ^ I 冑 I ,

3_ ——^H— 乂• - - •办 t sBI ®
- — • — I ~ | — j • T 瞧 【 邏 藝 .

• — - — — s r -wi 1 _ r f l � m i — - - - -
一 m b i m f 一 H I Wm m ^

Hl̂ * j^S i OModel?! 一 ^H ^ i jQM«M7|
•10她 — ----̂ p i 捕I …r mm r aSi - 丨 I�磁
•20,00% — . .. i n . i - ^ J I H ^ P ^ S H t

m • - \ r s < r..
•30 00% — " I - — • • — . . .BS^B i tK ijWwW .- t̂ii B ^Bj^H “々义、

H H V [y i i
國 0 佩 M W M _ _ i i l ^ H �

棚、丄 —…一_腿.— J OS ‘ ^ ^

“ c>

(c) Excel (d) Word

Figure 5.16: Relative Performance of Varying Transfer Time C2

V •、

Chapter 5 Performance Evaluation of Common Disk 86

one. For C2>1, not only the first block needs to pay a time penalty, but all the following

ones also need to pay a time penalty in cache miss. This is because there is not enough

time to get the following one when the process is using the first one. Therefore, we

expect that the performances of the models are much better for C2< = 1 than that for

C2>1. Our expectation is verified in Figure 5.16.

As C2 increases from 0.5 to 1, the relative performances always increase for all

models because the time penalty for getting the sectors/blocks slightly increases for

each cache miss. And the standard model, Model 3, has more cache misses than that

of Model 4, Model 7 and Model 8 because it only prefetches next sectors on miss. The

increase in relative performance also shows that always prefetch is better than prefetch

on miss in this case.

The trend of the relative performance of Model 5 is similar to the cases of Model

4, Model 7 and Model 8 as discussed above.
I

5.5.3 Impact of C 2 = 0 . 5 on Cache Size

Transfer time C2=0.5 means that there is enough time to get the next sector when the

process is using the current one. This is very different from the case of C2=1.5 because

C2=1.5 means that there is not enough time to get the next sector. Therefore, we

expect that there is some impacts on other cache parameters. The most obvious one

is the large increase in the relative reduction in time for C2=0.5 when comparing with

that in the case of C2=1.5. The relative reduction usually at least doubles the value in

the case of C2=1.5. This is due to the fact that always prefetch can cause more cache

hits than prefetch on miss in this highly sequential and fast fetching situation.

However, not all parameters will be affected by changing C2 from 1.5 to 0.5. For in-

stance, the general effect of cache size has not been changed by varying C2. Figure 5.17

shows the absolute reduction in time and Figure 5.18 shows the relative reduction in

time. The trends are very similar to that in the case of 02=1.5. For relative reduction

in time, C2=0.5 has similar effect of zero prefetch time as shown in Figure'5.5. The

negative relative performances of Model 7 and Model 8 in Access and Excel are reduced

Chapter 5 Performance Evaluation of Common Disk 87

clue to enough t ime for prefetching. Besides，Figure 5.18 verifies that there is a large

increase in relative reduction in t ime when comparing with the case of C2=1.5. The

general trend remains the same as the case of C2=1.5.

Abiolirt» Reduction in TImt vi. Ciche SIz* (CMO. C2:0.5) Abioluti Rtduction in TImt vt. Ctchi SIzi (CIslO, C2x0.5)

90.00% T - M OOS 1 .

BO.00% • - - - . - 抑的、-. ^ — — I

7000� —""n -J^H- 70 00、- --

赚 I _ — —+ 9 « ”” T T M • •一 - _一丨
sooo% - IB— � 'H~~ � ^^B - MM" - 'ottoaew'

Riductlon � I M j ^ ^ B � H H 。她 Rtd-clbn f • J | . • 翻 'aUo4.lS

：：I： f . I :斜•丨：i 十經
l l i l i l i l l l l l i l i l l l l l

1 2 4 8 1 2 4 1
CiChtSiZt CicMStu

(a) Access (b) Dbase
I

Abtolut* Reduction In Tim* vt.Cich* Sizt (C1 雄 10, C2，0.S) Abioluta Rtduction ki Timt vi. Cicht Slzi (CIslO, 02*0.5)

瞧 1 ^Jl—一.....i 瞧 I
W.00% — - 一 - ^ „

: M 00% - • - - - I • 1
70.00% — - 1 _ _ • , I 1

j • “ � n — J T m I ^

“ I mom\ 厂 • J n ^m 9 ； auo4.i4

I • - I ——• , 一 n i Quod«ti

. 1 : : i i l i f
} 2 * i 1 2 4 8

Cichi $IW Ciclti Silt

(c) Excel (d) Word

Figu re 5.17: Absolute Performance of Varying Cache Size when C2=0.5

5.5.4 Impact of C2=0.5 on Block Size

Figure 5.19 shows the absolute reduction in t ime for the four traces. The- t rends of

some models are different from the case of C2=1.5. For the case of C2=L5, there is a

Chapter 5 Performance Evaluation of Common Disk 88

Ralitivt Rtduction in Tim* vi. Cacht SIzi (Cl slO, C2=0.5) Rtlitivt Rtductlon In Tlm» vi. Ctch« SIm (Cl «10. C2«0.5)

: : — • 平 p i j i a i i a
— — — — — - — I ' ' — I … — 一 1

她cHon d̂liX] 洲、‘-… — . —ode;/
• Models 丨 •Md4>IS

•40 帆 一 — QModel； 她 " j • jouo t̂；

I GModtlS "6000、I- 'QUoMi

•100 00、--

•12000、

.100.00% L.— - - -•……- - — •U0.00\ J ^
CachiSlii CichtSUi

(a) Access (b) Dbase

Relillvfl FUduct丨on In Tlmi vi.Cachi Sizi (01*10,02=0.5} Reiativi Reduction In Tlm« «. CichB Sl» (CUIO. C2s0.5}

: I
joooN - - - — H H B n i

_ — — — mm • y 喊 國 - , _ _

• 三 : : = = = = : : 二 I iJ I _ _ I ；： -
.80 00、 — — — — — ' S t 關 ^ ' ^ M i 圈 , 圏

- — 圓 漏 圏 - m 驪 - J - 隱 -
•loom — — — — — — — — — — ！ ^ M ^ "：' ^

_ _ 9 H — w t N 翳-
•120 00% —~— i l ^ m 同 F ^ H 闘 }••‘ 纖

一 1 11 m _ • _ 画 H yJ i
•160 00% -I 1 ^ 4 8

CichiSIx* CKk* Sb«
(c) Excel (d) Word

Figure 5.18: Relative Performance of Varying Cache Size when C2 :0 .5

« • .

Chapter 5 Performance Evaluation of Common Disk 89

general decrease in absolute reduction in time. However, now for the case of C2=0.5,

there can be an increase in absolute reduction in time for Model 5, Model 6, Model 7

and Model 8.

For Model 2, Model 3 and Model 4, their trends are similar to the case of C2=1.5.

Their absolute reductions in time decrease when the block size increases. This is due

to the reason discussed in the case of C2=1.5 in Section 5.2.1. Block size has a function

of implicit prefetching. When the adjacent sectors will be referenced soon, large block

size will provide an advantage. However, if the extra stored sectors are not used, they

occupy the cache and cause pollution. Now, Model 2, Model 3 and Model 4 store all the

requested blocks. Increasing the block size may bring more useless data in the cache

although some sectors may have chance to reference later. Therefore, the disadvantage

covers the advantage of large block size.

Model 5 has a more obvious increase in absolute reduction in time when the block

size increases. It is very different from the case of C2=1.5 that it just maintains in

a slightly increasing/decreasing state. Model 5 stores only the first starting block of

each dynamic block. As the block size increases, the first starting block size is larger.

So the time penalty paid for each cache hit reduced. Since C2=0.5, there is no extra

transfer penalty needed for cache miss, i.e. the cache system needs only to pay for

the start-up penalty, when data fetching overlaps the program execution. Therefore,

the absolute time of disk access for Model 5 decreases as the block size increases, i.e.

absolute reduction in t ime increases.

For C2=0.5, Model 7 and Model 8 become nearly the same because they both store

only the starting head (some heading sectors) for each dynamic block. Therefore, more

starting heads can be placed in the cache. For C2=1.5, it is not enough time to get all

the remaining sectors by only storing the starting head in BTC, so cache entries need

to store the some content sectors. The overhead of including some useless sectors in

a large block size (see Figure 5.8) will cover the advantage of getting useful adjacent

sectors by a large block size. On the other hand, as discussed above, there js no need

to pay extra transfer t ime for C2二0.5 by proper overlapping the program execution

Chapter 5 Performance Evaluation of Common Disk 90

and data fetching. We just need to pay the start-up penalty. For Model 7 and Model 8,

they have PB to store the prefetched sectors in order to reduce cache pollution due to

large block size, which is very useful as discussed in the case of C2=1.5. However, for

C2=0.5, it does not need to worry the second sectors if the first one has already been

gotten/stored. Therefore, guessing the first one becomes more important for C2=0.5.

Model 7 and Model 8 can already store more first one than other models. However,

they cannot guess other first one. Larger block size may help to capture other first

ones. Therefore, Model 7 and Model 8 may have a.n increase in absolute performance

when the block size increases.

Figure 5.20 shows the relative reduction in time for the four traces. The general

trend is similar to the case of C2=1.5.

5.6 The Effect Of Prefetch Buffer Size
I

As varying the prefetch buffer size, we choose a fixed reference point for other cache

parameters.

Cache Size = 4M

Set Associativity = 1 way

Block Size = 1 sector

Start-up Time Cl 二 10

Transfer Time C2 = 1.5

In the simulation, the sizes of prefetch buffer that we have examined are 0.05M, O.IM,

0.2M, 0.3M and 0.4M.

The prefetch buffer is a small, temporary storage of the prefetched sectors. Its size

should be small because all useful data should already be placed in the branch target

cache. Now we examine the impact of the prefetch buffer size on Model 7. The impact

on Model 8 is similar.

Figure 5.21 shows the absolute reduction in time of Model 7 versus PB size. We

note that a small PB size is enough for Model 7. Although increasing the PB size

Chapter 5 Performance Evaluation of Common Disk 91

Abiolute Reduction In Tim* vi. Block SIzt (C1a!0. C2s0.5) Abiolut* Reduction in Tim* vt. Block SIzt (ClzlO. C2s0.5)

76 00% 一 … … 70m 一"j r~ - -jjĵ H-i
"00% 一 I ' -̂ Ĵ • - 60 00», — -BB- - • 、 ^

舰 m 9 . oMod— 赚- l ^ n • B- ^ IH •uod.u
Rtducllon m H mim 丨 口丨^丨 一ci_�" f H ^HH mm 丨 ouoMSj

腳 、 _ • _ _ 1E • I I . I • 三 I
68飢- - | H IH"‘ I 9 ~ i H »»•• - | l _ — — _.—

_ l l i ： 1 瞧 l l I I 1
… 丨 U • J L … I ： J m

位 肌 謂 hmmm , 画 i,.；,— , BM h mwm i — 丨 o.肌 BW r — IM PI— — I'mmm HI I W L
t 2 4 a 1 ? 4 g

Biock Sill Block Stz«
I

(a) Access (b) Dbase

AbioluU Riduclion In Time vi. Block Sl» (CUIO. C2【0.S) Abtolult RiducUon In Tlmi vi. Block Sl» (CIslO, C2«0i)

70 00% . . - . . - - — t 96.00、— - - .nHj^f^B —

瞧 . — - - - - - — j B 一 沾 肌 一 — — _ r f l M 厂 I — —

1 ‘ 1 —: i ‘ mp\ …1 fT I' —iH I P
40.00�- H~~̂ m D1 n«d«cll«H i I B i QUodtIS

、擊 1 1 _ 二 丨 J i J J : - - -

： ： i ： 1 1 : | I I I f
IM IIH l l l l 圓I釅 Jm丨_ ilW II_mMj

^ 2 * 6 ^ 2 A I

Block Sl{« BiMkStM

(c) Excel (d) Word

Figure 5.19: Absolute Performance of Varying Block Size when C2=0.5

» » .

Chapter 5 Performance Evaluation of Common Disk 92

Rilillvt Riductlon In TImi vt. Block Sl» (Cl.tO, C2=0i) RiUtlvt Rtducllon In Tlm> «i. Block Sl2« (CU10, C2=0i)

— — J - J - 3�m . ^ - ；V ~Z-
B̂ \ J BB 麵 iH il |H ？om -B|| - - - 9- ~ — -~— ^ -

H—i 1 二 「， J I - I r
.500% -.. - m ！ DModei? 0帆 MB - — ^ ' Wl7

™ 丨 loModelsl _ 國 • ® ^ 'OUcKtofl'

•10 00% — — — - — - - - - • - 1 � 帆 â m

•1500% - - - i iH

•30.00N — • — -40 00\ ^ — — — — •‘•••
Block Sl» 丨 tockSlM

I

(a) Access (b) Dbase

R«lattv« Riductlon in Tim* vi. Block SIz* (CI.IO, C2，fl.5) Rttattvt Rtduction in Timt vi. Block Siz* (Cl«10.02=05)

40m 6000\ - - 1
I ” m I

3om ， H — som 圃 1 1 】 — —

瞧 一 r H ~ i T l I" i • ^ 缝 i ^ ^ r J Tf-

_ l H : I - _ •

：它:::J : M 删 — J
Btock SIzt Block$iu

(c) Excel (d) Word

Figure 5.18: Relative Performance of Varying Cache Size when C2:0 .5

« • .

Chapter 5 Performance Evaluation of Common Disk 93

Absolute Reduct ion in T ime vs. Prefetch Butter Size

100.00% 1 j

9���% ：二

80.00% • • ^ —
70.00%

60.00% r ,
~•—Access ！

R e d u c t i o n —»—Dbase
50.00% Excel I -

…Word I

40.00%

30.00%

20.00%

10.00% --

0.00% i
0.05M 0.1M 0.2M 0.3M 0.4M

Prefetch Buf fer Size

Figure 5.21: Absolute Reduction in Time of Varying Prefetch Buffer Size

I

may cause a slight increase in performance, it highly depends on the properties of the

traces. Therefore, choosing a small PB size is suitable.

5.7 Others

5.7.1 In The Case of Very Small Cache with Large Block Size

For the Excel trace, it exhibits a very strange behavior in IM cache when block size

is equal to 8 sectors. The hit ratio is only about 10% for unified cache in this case.

We have observed a strange fact that the total access t ime of Model 2, unified cache

without prefetch, is larger than that of no cache.

The numbers under Time ratio are the ratios of the total access t ime needed for

Model 2 over the total access t ime of no cache. When the ratio is larger than 1, it

indicates that the performance of having a cache is worse than tha t of no cache. This is

due to the fact that the block size is too large. So many nearby sectors are transferred

as a whole to the cache. However, the cache size is too small. Those nearby sectors

may not have chance to be referenced before they are replaced. Then the cache system

Chapter 5 Performance Evaluation of Common Disk 94

Cl I C2 I Time ratio
5 0.5 1.0204
5 1 1.0698

1.5 1.1023
" T F " 0 X 0.9778

10 1 1.0276
10 1.5 1.0624
15 0.5 — 0.9479 -

1 0.9961
15 1.5 1.0313
20 0.5 0.9258

~ W 1 ~ 0.9717
20 1.5 1.0064 •

Table 5.7: Behavior of Model 2 in IM Cache Size for Excel Trace

needs extra t ime to get the adjacent sectors that will not be used. This case manifests

the disadvantage of large block size. Thef efore, choosing a suitable configuration in

cache design is very important .

However, this greater than 1 property only observed in the Excel trace, but not in

other traces. For other traces, their hit ratios are at least about 50% so more data are

being reused even in IM cache.

5.7.2 Comparing Performance of Model 6 and Model 7

We have not discussed the performance of Model 6 throughout this chapter because its

performance is usually worse than that of Model 7 as shown in all graphs of absolute

performances. Model 6 and Model 7 use the same policy, ASST, except that ASST in

Model 6 applys to each request separately while the ASST in Model 7 applys to dynamic

block. This is the difference between request block and dynamic block. Dynamic block

provides an environment of larger block size for our algorithms to operate. This shows

that the concept of dynamic block is useful in cache design. The difference between

applying ASST to each request and to each dynamic block has been discussed in detail

in Section 3.3.2 and Section 3.3.3.

Chapter 5 Performance Evaluation of Common Disk 95

Access Dbase Excel Word
Cache Size Model 6 Model 7 —Model 6 Model 7 Model 6 Model—7 Model 6 Model 7

1 70.84% 70.92% 59.74% 60.13% 46.70% 48.89% 89.47% 89.69%
2 74.06% 74.11% 71.02% 71.61% 59.68% 62.12% 91.95% 92.03%
4 79.07% 79.11% 83.24% 83.27% 71.30% 72.87% 93.38% 93.39%
8 84.805 84.75% 89.63% 89.76% 82.11% 82.80% 95.05% 94.99%

Table 5.8: Absolute Performance of Varying Cache Size of Model 6 and Model 7

Table 5.8 shows the absolute performance of varying cache size of Model 6 and

Model 7. Other parameters are fixed as block s ize=l , set associat ivi ty=l , Cl = 10 and

C2=1.5. The absolute performance of Model 7 is usually bet ter than that of Model

6 except in 8M cache size. This is the situation like Model 7 comparing with Model

4. In very large cache size, the cache is large enough to hold the useful data but

Model 7 compulsorily discards more contents sectors than Model 6. There are more

accumulated disadvantages of killing correct prefetch and non-heading reuse for Model

7 in 8M cache. Therefore, models that store more sectors for each request can perform

better in 8M cache.

5.8 Conclusion

5.8.1 The Number of Actual Sectors Transferred between Disk and Cache

Consider the following case:

Cache Size = 4M

Block Size = 1 sector

Set Associativity = 2 way

Start-up Time Cl = 10

Transfer Time C2 = 2

Table 5.9 shows the number of sectors transferred between disk and cache. We have

noted that the numbers of sectors transferred for Model 4, Model 7 and Model 8 are

approximately equal to that of Model 2 and Model 3. This means that always prefetch

technique does not impose a heavy traffic between disk and cache. On the other hand,

Chapter 5 Performance Evaluation of Common Disk 96

always prefetch can reduce the traffic in some cases. So it is a very suitable technique

to incorporate into disk cache design. However, current methods usually do not include

the always prefetch technique.

Access Excel Dbase Word
Model 2 2,350,300 1,944,730 1,852,463 414,742
Model 3 2,363,061 1,955,952 1,855,170 414,807 .
Model 4 2,373,182 1,967,134 1,859,585 415,076
Model 5 2,749,506 8,497,649 4,929,358 471,906
Model 6 2,372,007 2,039,514 2,117,421 419,053
Model 7 2,366,317 1,928,586 1,940,305 417,119
Model 8 2,362,100 1,909:416 1,890,052 416,170

Table 5.9: Actual Number of Sectors Transferred between Disk and Cache

5.8.2 The Efficiency of Our Models on Common Disk
•

In conclusion, always prefetch is a very useful technique to capture the highly sequen-

tial property of disk access pattern. Simulation verifies that ASST and SEHT can

increase the performance of a cache system on the basis of always prefetch. Model 7

and Model 8 usually outperform other models in the intermediate cache size, such as

2M to 4M. The relative performances of Model 7 and Model 8 can double/tr iple the

relative performance of Model 4. This satisfies our aim that the cache can be more ef-

fectively utilized by the cache partitioning architecture and the newly proposed control

mechanisms when the cache size is limited.

The factors tha t increase the performance of Model 7 and Model 8 are summarized

below:

• intermediate cache size, e.g. 2M to 4M

• small block size, e.g. 1 sector

• large set associativity of the cache, e.g. 4-way set associative • -

• small prefetch buffer size

Chapter 5 Performance Evaluation of Common Disk 97

• more occurrences of heading reuse

• less occurrences of killing correct prefetch

t

Chapter 6

Performance Evaluation of High

Performance Disk

High Performance disk is characterized by the start-up time Cl that is slightly larger

than the transfer time C2. Also, Cl and C2 are both near the value of Tu. In the

following discussion, we generally choose and C2=1.5. Tu is always set to 1 in

order to act as the reference point. In fact, the values 2 and 1.5 are the ratios of the

actual values of Cl and C2 to the actual value of Tu. All other timing values are also

ratios to Tu.

We focus mainly on the performances of 4 different models: Model 4, Model 5,

Model 7 and Model 8. The parameters that we will discuss are the cache size, the

block size, the start-up time Cl and the transfer time C2. Others are the same as

the case of common disk, so we will not discuss again. In fact, the being discussed

parameters are also quite similar to the case of common disk.

6.1 Difference Between Common Disk And High Performance

Disk

The difference between common disk and high performance disk is mainly in the value

of Cl . C2 for both kinds of disk can take small values. High performance disk has

smaller Cl than common disk. Cl controls the response time of a disk. As Cl becomes

98

Chapter 6 Performance Evaluation of High Performance Disk 99

smaller, the disk responses faster. Therefore, we define the disk having small Cl and C2

as high performance disk. Cl controls the size of the starting head in our algorithms.

As Cl approaches C2, the size of the starting head is closer to the size of the stored

content blocks. As Cl and C2 become smaller, the size of starting head also decreases.

Besides, the time penalty of missing a, sector is less than that in case of common disk

because the start-up time Cl is smaller. Therefore, these factors may have impacts

on the performances of Model 5, Model 6, Model 7 and Model 8 because these models

have different treatment to starting heads and content blocks.

6.2 The Effect Of Cache Size

As varying the cache size, we choose a fixed reference point for other cache parameters.

Block Size = 1 sector

Set Associativity = 1 way

Start-up Time Cl = 2

Transfer Time C2 = 1.5

In the simulation, we have examined the cache sizes of IM, 2M, 4M and 8M.

6.2.1 Trends of Absolute Reduction in Time

We have observed that the absolute reduction in time increases for all models as the

cache size increases which can be illustrated from Figure 6.1. This is similar to the

result in the case of common disk. This is because large cache can store more data,

including that has been stored in the smaller cache. Therefore, the cache hit rate must

be increased, and disk access time can be further reduced.

6.2.2 Trends of Relative Reduction in Time

For clarity of graph, we omit the Model 5 in Figure 6.2. From the graph of absolute

performance, Figure 6.1, we note that there are actual reduction in time when the cache

size increases. Therefore, the dropped relative performances mean that the increase in

Chapter 6 Performance Evaluation of High Performance Disk 100

Abiolult Reduction In Tint* vi. Cach« SIzt (C1x2, C2=1.5) AbwIuU Reduction in Timi vi. CkIw Sl» {CU2, C2xl.5)

咖 � • j lOOOOS r - — —

90,0(ft> _ _ i'OOO'' i - -

M i l l ir fdl 潘
60胁 MM— KV - IMod-ai 60 00V i- -- ‘ ̂ M-；

- _ � _ - = 叫 J _ Ir I l b ：

1 1 i i i i 1 1 1
1 2 4 B 1 ' * •

Clch.SI»
I

(a) Access (b) Dbase

Abioluli Reduction In Tim* vi. Cicht Sizi (C1s2. C2<1.5) Abiolutt Rtductlon in Timt vi. CkIm SIzi (C1=2. C2.1.5)

SOOON - I

8000% ' ' Z M ' " … 1 “ • —- -J~T- •—丨

塵 H I
1 2 4 8 1 2 * B

CKhtSti* Cich.Stll
(c) Excel (d) Word

Figure 6.1: Absolute Performance of Varying Cache Size

« »»

Chapter 6 Performance Evaluation of High Performance Disk 101

absolute reductions in t ime of Model 7 and Model 8 is less than that of Model 3 as the

cache size increases.

Rslatlvt Rtduction in Tim* vi. Cftcht SIzi (C1=2’ C2s1.S) fUlattv. Rtduction in Tim* v i . C K h t Si2i {CU2, Ct*\S)

1600% i
‘ • I 6000% — - ：• “

14.00、— ••- - - .：.••; •； ,ni,.ii,.

—1 i I _ r r
]2.00% •+. - - - 40.00\ • ,| — ~ : -— 、、. •——t

、 . • —.ii i

lo.on 一 删 一 — — - - — . - — — • - ifî f̂ _ I ~ ..：̂ f \
R.duclk>n H ~ I _ ： aMod.17 3000、 ——. :: ' ' _ ."OMwWT

8OCX ^^ ••- - 丨°"。叫 ：

6,00% H I a — — ： I - 的帆 」 .-1 洛 — — — — 各 _

• • i —— - - - “ 1 n m • m 场

i�’ ， • 國 1 - ^ ； mm

l l T 广 J 圓：：1 i ‘
1 2 4 8 \ 1 i I

Cich* sm CKhiSiit

(a) Access (b) Dbase

Rtlatlv* Rtduction In TImi vi. Cicht SIzi (Cl>2. C2.1.5) RtlilNt Riduction In Tim. vi. Cich« Slzt (C1.2. C2.1i)
I

I J j j
40 00、 1 I j

I ？S.M\ - p I — • .
3500、… - -

厂Ii 厂 厂 •
30.00、 ！ 2000\ • ••” .-..-- ：

25.00%. S H < |bmo<»»14' RtduclioB i :|Uod«l4

Rtduction H H DModei?! 15 00\ r^ ' • J @ … B : loM̂WT!

:_應 iJlMi
1 2 4 8 \ t * i

CichtSlli CKhiSlli
(c) Excel (d) Word

Figure 6.2: Relative Performance of Varying Cache Size (without Model 5)
6.2.2.1 Performance Of Model 4, Model 7 And Model 8

The trend of relative performance of Model 4 is exactly the same as the case of common

disk. Figure 6.2 shows tha t the relative performance of Model 4 'gradually increases

when the cache size increases. However, the increase is very little although the cache

Chapter 6 Performance Evaluation of High Performance Disk 102

size increases 8 times, i.e. from IM to 8M. The reason is discussed in Section 5.1.2.1 in

the case of common disk.

The trends of Model 7 and Model 8 are also similar to the case of common disk.

The relative reduction in time first increases when the cache size increases. However,

when the cache size changes to 8M, there is generally a drop in relative performance.

On the other hand, the relative performance does not drop to negative values now. It

is very different from the case of common disk that there are negative performances of

Model 7 and Model 8 in 8M cache for Access and Excel traces as shown in Figure 5.2.

As discussed in the chapter 5 of common disk, the negative performance is due to

accumulation of the bad effects of killing correct prefetch and non-heading reuse. For

high performance disk, since Cl is smaller, the size of starting head decreases. More

requests can now be stored in the cache, i.e. the effective cache size increases further

than that in case of common disk. The further enlarged size lo wers the effects of the

previous two bad factors. Therefore, the relative performance does not drop to negative

value. Besides, The relative performances of Model 7 and Model 8 can be three to four

times higher than that of Model 4 for Dbase and Excel as shown in Figure 6.1.

Our models perform more efficiently in high performance disk. This can be illus-

trated from the fact that the value of relative performance percentage is much larger

than that in case of common disk. For instance, the values of the relative reduction in

time of Model 7 in 4M cache size for the two kinds of disks are listed in Table 6.1.

Trace Common disk High performance disk
Access Wo
Dbase 29% 47%
Excel 11% 33%
Word 14% ^

Table 6.1: Relative Performance of Model 7 for two kinds of disks

The performance of Model 8 is now generally better than Model 7. This is because

Model 8 stores smaller amount of blocks for a fixed number of requests' than that

of Model 7, and so Model 8 can store more data from more requests, i.e. effectively

Chapter 6 Performance Evaluation of High Performance Disk 103

enlarges more the cache size than Model 7. Since Cl is small, the time penalty paid for

each miss is less than that in the case of common disk. The reuses (cache hit) of the

extra stored blocks cover the disadvantage of missing some content sectors. Therefore,

if the effectively increased cache size of Model 8 can capture sufficiently more reuses,

it can outperformance other models.

6.2.2.2 Performance Of Model 5

We have omitted Model 5 to get a clearer discussion in before. Now, let us focus on

the relative performance of Model 5. Figure 6.3 shows the relative performances of the

four models, including Model 5, for different traces.

The trend of Model 5 is similar to the case of common disk. However, the relative

performance of Model 5 is much better than that in the case of common disk. Model

5 can outperform Model 3 in small cache size, e.g. IM cache size for all traces. This
I

can be explained by the fact that for high performance disk, storing more requests can

cover the disadvantage of referencing the un-stored sectors because the time penalty

paid for each miss is not very large now. Besides, storing more requests can increase

cache hits. In small cache size, the cache may not store enough data to capture reuses

if all requested sectors are stored in the cache. Now, Model 5 stores only the first block

of each non-sequential reference and the time penalty of getting the remaining sectors

are smaller than that in the case of common disk. Therefore, Model 5 can perform

better than Model 3 clue to these advantages in small cache size.

However, for Model 5, it stores only the first heading block of a request. No matter

hit or miss, it needs to pay more time penalty than other models. So its performance

cannot be as good as Model 7 and Model 8. However, the extra stored requests can

improve the performance and let Model 5 outperform Model 3 in small cache size.

6.3 The Effect Of Block Size

As varying the block size, we choose a fixed reference point for other cache parameters.

Chapter 6 Performance Evaluation of High Performance Disk 104

Rtlalht Riducllon InTlmi vi. Cachi Sl2i (CU2, C2.1.5) B ' l " " " H«<luc1ion In TImt vi.CKhi Sin (CU2. C2.1.5)

—- -…—-- 画-rfe- I
mm ^ ^ ^ B 50.00、- — f ^ - - - - .-- - —-

, 5 t H BUodaU Rtdnctton i H j BUodtM
她 " m .Models m \ • 嶋

•&鹏 —— ““ -so仍•， m— — —-
國 OUod«IB ™ i OUoMt
B B •100.00、 - -• — — — — - —•

HI -15000% •—-- ——

•30 m •.‘•"- - - .200 00、̂ —

CiehiSiM CiehtSUt

I

(a) Access (b) Dbase

Rilallvi Rtducllon In Timi vi. Cache Sizt (C1.2. C2.1.5) ReUttv* Rtducllon InTimt v». CKhi SIzt (C1x2. C2:U)

0 0 0 % - 丨 “ … 踊 ： IBD 一 i i i HL - • -J~~1i «oo\ - • - 圓 — — ® pn - • - …

， X 狐I 洲 r
柳卜———— 1,__ I n 麗 _ •

Riductkff 1 BMotieU Rt4«ctkiit MM g M ： j

.1 瞧 — i E j r V J 圓：. . _ 1:二I
iooo\ i M I _ 翻 ^ ^ 圖

•ISOOÔ ————————— — •'• -• < B ^ ^ ^ H i^^gHj

- --1 iIh III IMIL
.25000% -.“••—..... ••••’ — ‘ 1 2 < 8

CichtSlii Cachi Stz*

(c) Excel (d) Word

Figure 6.3: Relative Performance of Varying Cache Size

Chapter 6 Performance Evaluation of High Performance Disk 105

Cache Size = 4M

Set Associativity = 1 way

Start-up Time Cl = 2

Transfer Time C2 = 1.5

In the simulation, we have examined the block sizes of 1 sector, 2 sectors, 4 sectors and

8 sectors. ~

6.3.1 Trends of Absolute Reduction in Time

We have observed that in general, the absolute reduction decreases as the block size

increases which is shown in Figure 6.4.

The trend of varying block size is also similar to the case of common disk. The

decrease in the absolute reduction means that the absolute performance is poorer in

larger block size. ,

Moreover, we observe that Model 5 is not like other models, the performance of

Model 5 may not decrease as the block size increases. This is due to the fact that

Model 5 stores only the first starting block of a dynamic block. It needs to pay higher

time penalty even to a cache hit. However, as the block size increases, the first starting

block becomes larger. The large block size can provide more time to get the remaining

sectors. The penalty of each cache hit is reduced. So, the effect of bringing undesired

sectors into the cache can be compensated.

6.3.2 Trends of Relative Reduction in Time

6.3.2.1 Performance Of Model 4, Model 7 And Model 8

The trend is also very similar to the case of common disk. The relative performance

is the absolute performance of a model compared with the absolute performance of

Model 3. Although the absolute reduction decreases in general, the relative reduction

Chapter 6 Performance Evaluation of High Performance Disk 106

Abaolut* Reduction in TImi vs. Block 5l2« {C1>2, C2«1.5} , Abioluti fltduction In Timi vi. Block SIzi {CU2. C2=1.5)

80,00% - - 的 嫩 — m M

：：ti _ _遍网：：捕盧崖丨
I 通 设 m M 、：•藝 i lUodcIS MOC； - - MH - BMH l_Mod»l3.

50 00% 一。Rtduclion ’ fg^^g \

••：- I I I I I ： J I | | T I

J T P L L L L L L L I
1 ? 4 6 1 Z 4 B

Block Sl2» 丨 twkSiM

I

(a) Access (b) Dbase

Abioluli Reduction In Time vi. Block SIm (01=2. C2st.5) Abiolutt Rtductlon inTlmt vt. Block SIzi (CU2. C2=t.5)

JO,QQ〜 - 一 MOON1 - 1

JH 5.00、 ‘ 1

瞧—ilffl j t H — 隱 l i ^ r f r i - -—.J •

•1:1 •棚� •"itî H : H i I - I tSP
50,00% - — .歎 ，褒-DModeH »00、-漏 ^ B « - - • ！̂ « — IHH-； DUodtU

i l l l ! : ' I m m
t 2 4 8 1 2 4 1

Block SIZI Block Slz«
(c) Excel (d) Word

Figure 6.4: Absolute Performance of Varying Block Size

» •.

Chapter 6 Performance Evaluation of High Performance Disk 107

Relttiv* Rtduction In TImt vi. Block Siz« (CU2. C2»t .S) RtducMon In Tlmi vi. Block Siz* {CU2. C2:1.5)

國 5000V - 茫

16.00% -- - j r - -- - --1 I 、絮 織

q 臞 n i 3 r s n
14.00% 、 _ » i 灘

，攀,i > •..:、、.：：:.、 .::..:i.:V:. 40 0(A i —— .'•，.路----.. ——.

tooos - ' H H ' ' ' lOModtl；! 30 00V W — * ^•"一 Ollod

— f " ： I = J ；J - i - I 一 … - I

三 I H H i l l l i i M M i i l
1 2 4 1 1 2 i B

Block Sli« itotkiia

(a) Access • (b) Dbase

Rtlillvt Rtducllon In Tim* vi. Block SIzt {C1.2, C2»l .5) Rtduction In TImi v«. Block S\i% (CU2, C2.1.5)

朽 的 、 4S00\ r - — - -

‘ r i p -H
40 00% n j — I i woo*, j --• —- • "1

\ 4 r W i i
35,00% 》 — 1 - - •• — 35DOS •• i 、；

3om M H 瞧 g U g 8 麵 ^

瞧—— W B 一： •一 臂 -國國――國 翳—麗 考约
fl.ductlon n 國 H I ； 口Mo<W7 Muclion I | ^ ^ 醒 哲 織 ， L 國 M

：二 H H : I T F T 广 ： 1 H 1 1 | R

411114111，：： J I I I i l l I
1 2 4 6 1 2 4 8

Bk>ck Sl2» Block Slu

(c) Excel (d) Word

Figure 6.5: Relative Performance of Varying Block Size (without Model 5)

« »,

Chapter 6 Performance Evaluation of High Performance Disk 108

can increase. This means that the performance of a, model is much better than that of

Model 3 at this situation.

Unlike the case of common disk, the increase in relative reduction of Model 7 and

Model 8 is not large. Large block size has an effect of implicit prefetching. It can

increase the chance of correct prefetch of adjacent sectors. On the other hand, large

block size may bring many useless sectors into the cache and may kick out useful sectors.

As discussed previously, the time penalty of a miss is smaller. Model 7 and Model 8

can further enlarge the cache size than that in the case of common disk because Cl

is small. Therefore, the extra increased cache size may be enough to capture reuses.

If the block size increases little, it may help to capture more reuses. However, if the

block size increases too large, it brings too many useless data, in the cache. The useless

data stick with useful data in a, block and make the performance poor. This can justify

by the fact that the increase in the relative reduction in time is not too obvious as

the block size increases. However, the drop is much dramatic than that in the case of

common disk.

6.3.2.2 Performance Of Model 5

We have omitted Model 5 to get a clearer discussion in before. Now, let us focus on

the performance of Model 5. Figure 6.6 are plotting for the relative performances of

the four models, including Model 5 for different traces.

In general, the relative performance of Model 5 is better and better as the block

size increases. This is because Model 5 underuses the cache by only storing the first

heading block of each non-sequential reference in BTC. Therefore, there is not enough

time to prefetch the remaining data. Now, as the block size increases, the first heading

block contains more sectors and in turn, more sectors of a dynamic block are stored in

the cache under Model 5. So the relative performance is better .

The difference from the case of common disk is that the relative performance of

Model 5 can sometimes be better than Model 3 in block size other than 8 sectors. This

shows that for high performance disk, small Cl , the time penalty for each cache miss

Chapter 6 Performance Evaluation of High Performance Disk 109

Relative Reduction In Tlm« vi. Block SIM {CU2. C2xl.5) R«littv« Reduction InThnt vi. Block SIM (CU2, C2.1.5)

j ^

I^M 1 4000\ :..:，): 、. '.•'：•'.•• — —j
• — _ _ — _ r.:::::‘： I

16.00、 • 一 一 - “ 1 _ ….

n m |H- H~ H • — — =™ i 扣M、 .. 二i .f: —!

舰 I - 一 1
1 2 4 S -SOOOV L —

Stock Sill BtockSiit

I

(a) Access (b) Dbase

Rfttath/s Rtduction In Tim* vt. Block Sl» (CU2. C2=1.5) FUl»tlvt Rtduction In TImt v». Block SIzt (C1.2, C2«1.S|

SO 00% T - — —— so 00% 1HH ••！

ri 麗 I
4000% — ... 4SOO% - • - - ""‘ “ ^ H \

� 5 r f - 门 — l ~ n I
3QQ(j、 、< “— 4000、 . ^^H

… ^ I — j j ^ J - r d 腿 -1 J I n n

•10.00、 “ •"’- — - 一 ~ — — i ^m : •‘•

權 I 一-1 : : _ • I • ‘
" I 1 - • ； • t • _

. -1 M • II m n i l ,
•50.00\ i" J 1 2 4 B

Block Sb» Block Siu

(c) Excel (d) Word

Figure 6.6: Relative Performance of Varying Block Size

, •.

Chapter 6 Performance Evaluation of High Performance Disk 110

is smaller. Model 5 enlarges the effective cache size dramatically. The extra stored

sectors contribute more cache hits and they lower the disadvantage of referencing the

un-stored sectors.

6.4 The Effect Of Start-up Time Cl

As varying the start-up time Cl , we choose a, fixed reference point for other cache

parameters.

Cache Size = 4M

Set Associativity = 1 way

Block Size = 1 sector

Transfer Time C2 二 1.5

In the simulation, the values of Cl that we have examined are 1, 2, 3 and 4. Note that

these values are the ratios of actual values of the start-up time to the use-up time.

6.4.1 Trends of Relative Reduction in Time

Figure 6.7 shows the relative reduction in time for varying Cl . The effect is exactly

the same as the case of common disk. When Cl increases, the relative performances

of Model 4, Model 5, Model 7 and Model 8 decrease because the time penalty paid for

each cache miss dominates.

6.5 The Effect Of Transfer Time C2

As varying the start-up time C2, we choose a fixed reference point for other cache

parameters.

Cache Size = 4M

Set Associativity 二 1 way

Block Size 二 1 sector • •

Start-up Time Cl = 10

Chapter 6 Performance Evaluation of High Performance Disk 111

Relativfi Reduction In TItna vi. Cl R*ductk>n In T I m t C l

r h ！ r H p H _ j i �

顏 - - 1 «oo、— - ^ 吟 … 厂 • 厂 — …

— t — w — — — — — — 丨 … I ！ T ! • ： i — 1 1

一 • I 1 • � i : = 一 1 謹 曙 - _ 圓 丨二
'肌— I H M j 誦—WT ‘‘—~I t " fe ..腿I i - -鍾一 . 圓—'丨一
0 0 0 、 — - L i s f f i ^ _ _ . _ B B ^ ^ — ‘ . . ^ ^ ― — ^ I 40 00% ‘ _ 醒 - - - 疆 - • - ^ ^ S n

”二 ： - 群 丨 」 1 - I L L
.1000、 .BO OOS L -

Ct Cl

I

(a) Access (b) Dbase

Relative Reduction in Tlm« vt.Cl 只》丨》1丨《 AwJucHon In Tlmt v». Cl

5000% 1 - - 35 WS T— - — — — 1
' I — I i

• 丨
40.00% — B^ES _.-__.•_. ：

_ , rrrr-i 30 OOS T-H - • i
I~ IJ ^ I“

30.00% ：響 —麵: : - - — ^ ^ \ m I * 圍 i 网 i ^T I ： 2soo\ — -•- Uid r̂ - 1
20 OOS - 、 - - 『 ^ ^ i rnmm •••• f " V^^ ^ ^

- I ——f— i — — I 一 - 1 g i i i l a i

棚―I i 1 1一―—I I " 棚 I r m I
•40 OOS -- B B f ^ — •- I i i ^ l^s^ ^ BTHgM
•M 佩 1 ！ 3 <

Cl Cl

(c) Excel (d) Word

Figure 6.7: Relative Performance of Varying Start-up Time Cl

«

Chapter 6 Performance Evaluation of High Performance Disk 112

In the simulation, the values of C2 that we have examined are 0.5, i , 1.5. Note that

these values are the ratios of actual values of transfer time to the use-up time.

6.5.1 Trends of Relative Reduction in Time

Figure 6.8 shows the relative reduction in time for varying C2. The trends of Model

4, Model 7 and Model 8 are also exactly the same as the case of common disk. As _

C2 increases from 0.5 to 1, the relative performances of the models increase. As C2

increases from 1 to 1.5, the relative performances decrease dramatically.

However, for Model 5, its relative performance can now be better than Model 3

when C2<=1. C 2 < = 1 means that there is enough time to get the next sectors after

getting the first sector. Therefore, the miss penalty is much smaller than that of C2>1.

Besides, Cl is small, so the size of the starting head is also small, approximately

2 sectors. Model 5 always stores the first block of a dynamic block. In this case,

the block size is equal to 1. Therefore, the time penalty of reuse is also very small.

Furthermore, Model 5 dramatically increases the effective cache size which can store

more requests in BTC. The extra stored requests can capture more reuses, so Model 5

can outperform Model 3.

6.5.2 Impact of C 2 = 0 . 5 on Cache Size

Figure 6.9 shows the absolute reduction in time of varying cache size when C2=0.5.

Model 5 outperforms other models in IM cache size. This is the effect of small Cl

so the starting block is very small. Also, C2=0.5 means that there is enough time to

get next sectors if the first sector/block has been stored in BTC. In small cache size,

there is not enough space to capture the reuses. Therefore, by ignoring some contents

sectors, the cache can store more requests and can capture more cache hits. Model 5

is the most vigorous one to discard sectors and let the cache system to get them by

overlapping with the program execution. Therefore, in the situation of smaller time

penalty of miss, Model 5 can outperform other models. Following the same argument,

we predict that the performances of Model 7 and Model 8 are also good.

Chapter 6 Performance Evaluation of High Performance Disk 113

Rslativ* Rtduction in TImi vt. C2 Rtlatlv« Rtductlofi In Tlm» vt. C2

國 ‘ r—1 门丨
45 00\ - - •- jWaa — 1 M M

^ ^ 1 | B 60 00% f-……— —— 衫 •- ……
40,00% •----^^a- "“ - --- •； K̂.： j . •••

H H <000�I —^̂ nH — �
35 00% - " M B — — — — I l̂ f̂fifl <
3 0 肌 - H ^ ― - - A — _ 2000、! � , � • g H ^ “ — 二 — -

丨：- M I — — - P M i 1 -U-.：：：
• - 藉 丨 _ ' | 。s < B s 丨‘一

卿、…mm - … t • m — i m
IK'HB �” ‘ fe IS9 ^^ -20.00% — WM

,0 00% g H ’ ^ ' H I I — ta- 劝胁 1 H

:iil wr El B--U ii ’ -… •…
O S t 丨 5 -BOOON ^ -"•• ‘

Cl “

I
(a) Access (b) Dbase

Rclatlvt Rtduction in Tim* vt. C2 R»ductkm in Timt *«. C2

too 00% 1 80 OON T - -

• d H " !

BO.OOS ---……—-. . - - - - • _ ••~； 70 00、I .

6000S - .imi———...--—..... "帆 l ^ m ~ a H " — —

_ …HH m — 1 1 3 m | — 一 i

—JH 二 • \ � s ^！ “： in - m ijs
HHl t�: IB 30m I jHI P^H --- i …论…：

眺一 r̂̂ 一‘- ” 隱 » “ . _ _ ______ r ^ J
.2000、 — --^m i 下 B«E 論 ^njll r^inl

_ 職、 r JB O h
•4om BH" ‘ D aB| 卜 PMHU

�„�i • I I m m h- i n M I
•6000% J - OS 1 IS

C2 Cl

(c) Excel (d) Word

Figure 6.8: Relative Performance of Varying Transfer Time C2

»

Chapter 6 Performance Evaluation of High Performance Disk 114

Abiolult Rsduction In Tlmt vfl. Cicht Size (C1:2, C2xO.S) Abiohrti Rwluctlon In Tlmt vt. CkK* 5U« (CU2, C2s0.5)

9000% — •• ~ - - - j ' ' 0 00\ — — - • --- —

8000%—FĤ H "'^B—- ^^H- 8ooo\! 7~rV J ？IWB— ^ ^ ^

flj • _ I p H [l i . I j l l _ � -

： I 1 I | i J l l f I i i
i l H I B H I 棚 _ _

I 2 4 B 1 2 4 i
Cichi Sl» CichtSiti

I

(a) Access (b) Dbase

Absolut* Riductlon In Timi vi. Cach* Sizi (C1.2, C2-0.5) Abiolut. Rtduction In TIim vi. CKh. SUt (C1.2, C2.0i)

60.00% - • - ^ — ̂ ^ ^ H • r—a^s^n

： ： 塞 着 蕭 塵 ， ’ 4 — f l r f f l J t J l p
6000* ^̂ m • m IMoMO so00*, • t^^B - Wm . HH-； IM̂telS

誦 l i l h _
1 2 4 0 1 2 4 B

Caeht Stxi Cadit Stit
(c) Excel (d) Word

Figure 6.9: Absolute Performance of Varying Cache Size when C2=0.5

« • .

Chapter 6 Performance Evaluation of High Performance Disk 115

Figure 6.10 shows the relative reduction in time for varying cache size when C2=0.5.

The trend of relative performance is the same as the case of C2=1.5. However, the

relative performance of Model 5 is much better than that in the case of C2=1.5. The

reason is discussed as above.

Rtlallve Rtduction In Tlm» vi. Cachi Sl2« (CU2, C2=0.S> (UI«I1Y« Rtduction In Tim, VI CKHI SIM (CU2, C2rt.5)

謹 — — — I——) 瞧 f—_—.——rfl"”."IrM"!
WSSi i 91 SOOON ' ； ••- • - . •： .:、、 -

_ 圓 … • � _ I I - - r - . - _ I : fe

細 : _ | | | | | | | | _

•10.00\ - - I 2 4 I

CichiSii* CKMStH

I

(a) Access (b) Dbase

RtlitNi Riductlon in TIma vi. Cichi SIzi [CU2, C2>0.5) R.Uliv. Riductlon In Tim. vi. CkH i Slzt {C1.2. C2.0.5)

‘ M I " ‘ —~M' ^ : I , _ _ i —

： 1 - i； - I 1 ®
: j J - - f l … • 1 i :

: l M i i l m :—IJL—IILIL
•10,00% ••-•+-• 1 2 * 1

CKhi SIxi CkMSHi

(c) Excel (d) Word

Figure 6.10: Relative Performance of Varying Cache Size when 02=0.5

Chapter 6 Performance Evaluation of High Performance Disk 116

6.5.3 Impact of C2=0.5 on Block Size

Figure 6.11 shows the absolute reduction in t ime for varying block size when C2=0.5.

This situation is similar to the case of C2=1.5 except that the performance of Model

5 is much better . The reason is discussed in the previous Section 6.5.2.

Abioluti Riducllon In TIma vt. Block Slu (Cl-!!, C2̂ 0.S) B«duclion In Tim. vt. Block Slu (Ct.2. C2.0.5) _

90 00%, - - - ."..i J ' j j j j j ^ ^ r u j t a

• ^HH •漏 vm^ •麵 ̂ H ; MOOS - • - -• L ——-i^M -

i l 勝 i m
1 ? 4 e t ! ' '

Block Sill I 丨l«HSi»
(a) Access (b) Dbase

Abtolut« R«ductlon InTimevi. Block Slz« (CU2, C2=0.5) AbioUiU Riducllon In TImi vi. Block Slw (C1«2, Cl^S)
sows r - r W f c

iltffll t 誦 [: : � l : y

膽騰
1 2 4 6 1 ? < 8

Block Sl2« Block Six.

(c) Excel (d) Word
Figure 6.11: Absolute Performance of Varying Block Size when C2=0.5

Figure 6.12 shows the relative reduction in t ime of varying block size when C2=0.5.

The trend of relative performances of Model 4, Model 7 and Model 8 decreases while

that of Model 5 can increase. The reason is discussed in Section 5.5.4 in the case of

Chapter 6 Performance Evaluation of High Performance Disk 117

common disk.

Rilitlv. Riducllon In TImt vi. Block Sl» (C1=2, C2=0.5) •“»• R«luctlon In Tim. vi. Block Slu (C1.2. C2=0.5)

n ilrTl » 1 rP r i
m<s - m - — — 的 . — — ；;, ' 1 p g ---..

-H— 醒— • , 参. J

3om --BS H ^Bh •

1 :�' —ttfcr — ： 锱 ！ | i J I -

i m i l l M
1 ? 1 e ‘ t ' t B

Block Si» Block SiM
(a) Access (b) Dbase

Rtlitiv* Rtducllon In Timi vs. Block Slz» (Cl:2. C2=0.5) Rtductlon In Tim* «. Block SIzt (CU2. C2=0.5)

gQ jjjj^ ...,,.",.,,„-., 60.00\ •

臓—— , 的帆 1

二— • i l l m " T i d H - f l 1 1 ^
40.00% -mm amm. - - a - — • ^m • WBM ：： • ！̂ _

1 1 1 1 I I n
iIjJL JL i i JL i

\ i i t ^ t t t

Block SIzt BJ«kSti«

(c) Excel (d) Word

Figure 6.12: Relative Performance of Varying Block Size when C2=0.5

6.6 Conclusion

High performance disk provides a bet ter environment to ASST and SEHT to work on.

Since C l is small, the starting head is small and so more start ing heads can be stored

in BTC. Also, the t ime penalty of each cache miss is smaller than tha t in. the case of

common disk. Therefore, the tradeoffs of the ASST and SEHT become less important .

Chapter 6 Performance Evaluation of High Performance Disk 118

This can be verified by the fact that the relative performances of Model 7 and Model 8

for high performance disk can triple their relative performances in the case of common

disk as shown in Table 6.1. Besides, the performance of Model 5 is also better than

that in the case of common disk. This also can be explained by the above reasons. The

most suitable configuration for the best efficiency of the proposed models is similar to

the case of common disk and summarized in below again:

• intermediate cache size, e.g. 2M to 4M

• small block size, e.g. 1 sector

• large set associativity of the cache, e.g. 4-way set associative

• small prefetch buffer size

• more occurrences of heading reuse
I

• less occurrences of killing correct prefetch

Chapter 7

Conclusions and Future Work

7.1 Conclusions

We have discovered that always prefetch performs better than currently used prefetch

oil miss mechanism because disk access exhibits a highly sequential pattern. The

sequential property can be visualized from the formation of large dynamic block size
I

as shown in Table 4.7.

To further improve the cache performance, we have designed few models that are

based on the cache partitioning technique and using proposed algorithms to place data

in different parts of the cache. The cache is divided into 2 parts: Branch Target

Cache (BTC) and Prefetch Buffer (PB). The original algorithm (Model 5) stores the

blocks/sectors causing cache misses in BTC and stores all prefetched blocks/sectors in

PB. Model 5 is like a cache partitioning model used in CPU cache [JouOOj. The newly

proposed algorithms are the Alternative Storing Sectors Technique (ASST) applying

to request block (Model 6) and to dynamic block (Model 7) respectively, and the

Storing Enough Heads Technique (SEHT) (Model 8). ASST and SEHT are to discard

some sectors that need not be stored in the cache by proper overlapping the program

execution and the data fetching. The un-stored data are fetched by the cache system

during the program execution. The algorithms are designed so that there is l i t t le/no

time penalty when retrieving the un-stored sectors. Since the algorithms discard some

sectors, the cache can store more data from more requests. Therefore, the.algorithms

can enlarge the effective cache size.

119

Chapter 7 Conclusions and Future Work 120

To evaluate these algorithms, we have conducted a simulation study. Our approach

is to examine their absolute performances, and relative performances when comparing

with the base. We have chosen the base of comparison to be unified cache with prefetch

on miss (Model 3). We have also simulated two commonly used algorithms such as

unified cache without prefetch (Model 2) and unified cache with always prefetch (Model

4) for comparison.

Model 7 and Model 8 have very good performances under a suitable configuration.

The suitable configuration is a medium, cache size (about 2M to 4M), 1-sector block

size, higher set associativity (about 4-way to 8-way), and small PB size (about 0.1KB).

Their relative performances can double/triple that of Model 4. This shows that some

sectors can actually be discarded if the data fetching can overlap the program execution.

This, in turn, has an effect of enlarging the cache size, i.e. the performance of a small

cache is as good as an ordinary cache with larger size. For different kinds of disks,

the performances of Model 7 and Model 8'still perform well under this configuration.

Therefore, we conclude that partitioning the cache into two parts is very useful. ASST

and SEHT are good and effective algorithms to control the BTC and PB.

On the other hand, ASST and SEHT have their tradeoff. If the cache size is large

enough to hold the working set, their performances will be poor because some sectors

are compulsorily discarded. Besides, the accumulated effects of killing correct prefetch

and non-heading reuse also lower the performance. If the cache size is too small, the

extra stored sectors do not have chance to be reused before they are flushed out. The

advantage of enlarged cache size cannot be exploited but the disadvantages of the

algorithms still exist. So, the performances of Model 7 and Model 8 are poor when the

cache size is too small. There should be a threshold such that beyond the threshold,

the extra stored sectors can be reused effectively.

Model 7 and Model 8 perform poorly when tlie cache size is too small or too

large. This is not surprising because the aim of this project is to design effective cache

mechanisms so that they can fully utilize the cache when the cache size is limited. The

mechanisms perform well in the medium range of cache size. We have verified this view

Chapter 7 Conclusions and Future Work 121

from the simulation result. Nowadays, multimedia and database applications become

more and more popular. The data size is increasing rapidly but the increase in cache

size cannot catch up with this speed. Our newly designed models will be very suitable

in this situation.

Other parameters also affect the efficiency of different models. An important one

is the block size. In current disk cache design, block size is usually set to a large value

because this have the effect of implicit prefetching. Current design rarely incorporates

the technique of always prefetch. If the block size is large enough, a larger extent

of the spatial locality of the references can be captured. However, large block size

may bring too many useless data, together into the cache. From the simulation, we

observe that the performances of Model 7 and Model 8 generally decrease when the

block size increases. This is because Model 7 and Model 8 have already incorporated

always prefetch mechanism. Always prefetch has the ability to capture spatial locality.

Therefore, using a large block size in an 'always prefetch environment manifests the

disadvantages of large block size and degrades the performance.

In the simulation, we have also verified that increasing set associativity improves

the performance. However, increasing set associativity increases the time of searching

the cache for each request.

From the value of actual sectors transferred, a.s shown in Table 5.9, we have found

that always prefetch does not impose a. heavy traffic in the data bus. Always prefetch

may reduce the traffic if the trace exhibits a. highly sequential property. Therefore,

always prefetch is a practical method to improve the performance of a cache.

In conclusion, traditional disk cache design uses very old techniques that were built

for CPU cache. It rarely considered the highly sequential interrelationship between

successive disk I /O requests. In this project, we have designed a disk cache partitioning

architecture controlled by newly proposed algorithms. The main idea is that by proper

overlapping the data fetching and the program execution, the cache system can discard

some sectors, i.e. some requested sectors need not be stored in BTC. The un-stored

sectors can be retrieved by prefetching during program execution. Simulation shows

Chapter 7 Conclusions and Future Woi^k 122

that the relative performances of the newly proposed models are better than that of

unified cache with always prefetch, i.e. Model 4, by as high as 30% in a medium cache

size configuration. We conclude that the models are very useful in the design of disk

cache.

7.2 Future Work

More traces should be collected from other filesystems to verify the superior perfor-

mance of the proposed models because the MSDOS filesystem is just one of the many

existing filesystems. A more precise simulation should be done to get more accurate

performance metrics for disk cache in multi-tasking environment. Besides, there are

many write policies such as write back or write through with/without write allocate

and periodic update. Their effects on the performances of the proposed algorithms

should also be examined.

> *,

Bibliography

'Bac86j Maurice J. Bach. The Design of the UNIX Operating System. Prentice-Hall,

Inc., Englewood Cliffs, New Jersey, 1986.

BF91] B.K. Bray and M.J. Flynn. Strategies for Branch Target .Buffer. In Procee^/-

ings of the 24th International Symposium on Microarchitecture. MICRO 24,

pages 42-50, 1991.

_CG94] B. Calder and D. Grunwald. Fast and Accurate Instruction Fetch and
t

Branch Prediction. In Proceddings the 21st Annual International Sympo-

sium on Computer Architecture, pages 2-11, 1994.

;CGK+88] Peter Chen, Garth Gibson, Randy H. Katz, David A. Patterson, and Mar-

tin Schulze. Two papers on RAIDS. Technical Report UCB/CSD 88/479,

University of California, Berkeley, December 1988.

;CMCH91] William Y. Chen, Scott A. Mahlke, Pohua P. Chang, and Wen-mei W.

Hwu. Data Access Microarchitectures for Superscalar Processors. In Con-

ference Proceedings, The 24th International Symposium on Microarchitec-

ture, pages 69-73, 1991.

CS92] Scott D. Carson and Sanjeev Setia. Analysis of the Periodic Update

Write Policy For Disk Cache. IEEE Transactions on Software Engineering,

18(l):44-54, January 1992.

» * ,

123

DA95] S. Diivvuru and S. Arya. Evaluation of a Branch Target Address Cache.

In Proceddings of the Twenty-Eighth Hawaii International Conference on

System Sciences, volume 1, pages 173-180, 1995.

GAN93] Knut Stener Grimsrud, James K. Archibald, and Brent E. Nelson. Multiple

Prefetch Adaptive Disk Caching. IEEE Transactions on Knowledge and

Data Engineering, 5(1):88—103, February 1993. ~

GMS88] Hector Garcia,-Molina and K. Salem. Disk Striping. Technical report,

Computer Research Report, Princeton University, 1988.

Gon94] A.M. Gonzalez. Design and Evaluation of an Instruction Cache for Reduc-

ing the Cost of Branches. Performance Evaluation^ 20:83-96, May 1994.

:Hos92] Andy Hospoclor. Hit Ratio of Caching Disk Buffers. In COMPCON Spring

1992. Thirty-Seventh IEEE Computer Society International Conference’

pages 427-432, 1992.

Jou90] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch Buffers. In Con-

ference Proceedings, The 17th International Symposium on Computer Ar-

chitecture, pages 364-373, May 1990.

Kim86] Michelle Y. Kim. Synchronized Disk Interleaving. IEEE Transactions on

Computer, C-35(ll):978-988, November 1986.

KL91] Alexander C. Klaiber and Henry M. Levy. An Architecture for Software-

controlled Data Prefetching. In Conference Proceedings, The 18th Interna-

tional Conference on Computer Architecture, pages 43-53, 1991.

KLW94] Ramakrishna Karedla, J. Spencer Love, and Bradley G. Wherry. Caching

Strategies to Improve Disk System Performance. COMPUTER, 27(3):38-
»•

46, March 1994.

124

KOP+89] Randy H. Katz, John K. Ousterhout, David A. Patterson, Peter Chen, Ann

Chervenak, Rich Drews, Garth Gibson, Ed Lee, Ken Lutz, Ethan Miller,

and Mendal Rosenblum. A project on high performance I /O subsystems.

Computer Architecture News, 17(5):24-31, September 1989.

ME90] Dwight J. MakarofF and Dr. Derek L. Eager. Disk Cache Performance for

Distributed Systems. In Proceedings. The 10th International Conference ~

on Distributed Computing Systems, pages 212-219, 1990.

MK89] Y. Manolopoulos and J.G. Kollias. Performance of a two headed disk

system when serving database queries uiicler the scan policy. ACh4 Trans-

actions on Database Systems, 14(3):425 442, September 1989.

Ng91] Spencer W. Ng. Improving Disk Performance Via Latency Reduction.

IEEE Transactions on Computers, 40(l):22-30, January 1991.

OS92] Cyril U. Orji and Jon A. Solworth. Write-Only Disk Cache Experiments

On Multiple Surface Disks. In Proceedings. ICCI '92. Fourth International

Conference on Computing Information, pages 385-388, 1992.

PGK88] David A. Patterson, Garth Gibson, and Randy H. Kaltz. A Case for Re-

dundant Arrays of Inexpensive Disks. Technical Report UCB/CSD 88/477,

University of California, Berkeley, December 1988.

:Prz90] S.A. Przybylski. Cache and Mejnory Hierarchy Design. Morgan Kaufman

Publishers, San Mateo, Calif., 1990.

:PS93] C.H. Perleberg and A.J. Smith. Branch Target Buffer Design and Opti-

mization. IEEE Transactions on Computers, 42:396-412, April 1993.

:PSR92] S.T. Pan, K. So, and J.T. Rahmeh. Correlation-based Branch Prediction.

In Conference Record of The Twenty-Sixth Asilomar Conference on Signals,

Systems and Computer, volume 1, pages 51-55, 1992.

125

Red92] A.L. Narasimha Reddy. Reads and Writes: When I /Os Aren't Quite the

Same. In Proceedings of the Twenty-Fifth Hawaii International Conference

on System Sciences, pages 84-92, 1992.

RF93] Kathy J. Richardson and Michael J. Flynii. Strategies to Improve I /O

Cache Performance. In Proceedings of the Twenty-Sixth Hawaii Interna-

tional Conference on System. Sciences, pages 31-39, 1993. ~

Ric94] Kanthy J. Richardson. I /O Characterization and Attr ibute Caches for Im-

proved I /O System Performance. Technical report, Departments of Elec-

trical Engineering and Computer Science, Standford University, 1994.

SL090] F. Warren Shih, Tze-Chiang Lee, and Shauchi Ong. A File-Based Adap-

tive Prefetch Caching Design. In Proceedings. 1990 IEEE International

Conference on Computer Desicin: VLSI in Computer and Rocessors, pages

463-466, 1990.

Smi82] Alan Jay Smith. Cache Memories. ACM Computing Surveys, 14(3):473-

530, September 1982.

Smi85] Alan Jay Smith. Disk Cache—Miss Ratio Analysis and Design Considera-

tions. ACM Transactions on Computer Systems, 3(3), August 1985.

S090] J. Solworth and C. Orji. Write-Only Disk Caches. In Proceedings of the

International Conference of the ACM SIGMOD, pages 123-132, May 1990.

SV68] D.A. Stevenson and W.H. Vermillion. Core Storage as a Slave Memory for

Disk Storage Devices. In Proceedings of the INFORMATION PROCESS-

ING ，68 Conference, pages F86-F91, 1968.

；TSW92] Dominique Thiebaut , Harold S. Stone, and Joel L. Wolf. Improving Disk

Cache Hit-Ratios Through Cache Partitioning. IEEE Transactions on

Computers, 41(6):665-676, June 1992.

126

WEB93] D.L. Willick, D.L. Eager, and R.B. Bunt. Disk Cache Replacement Policies

for Network Fileservers. In Proceedings of the 13th International Conference

on Distributed Computing Systems, pages 2-11, 1993.

I

127

«.

‘ •,

*

• •

» i.

I

• . . . 、 •

I

» ‘

.1 ‘

. ‘ ‘ ， . .

.... •• .•,
.

•. . • ‘ .

hbSEEiDDD

_圓11111
saLjejqtn >IH门：）

、

