
A Performance Study on Dynamic
Load Balancing Algorithms

i
B Y

SAU-MING L A U
I

J A N U A R Y 1 9 9 5

R E V I S E D ON J U N E 1 9 9 5

i
I

i I
1
i

S U P E R V I S E D B Y
！

I D R . CHIN L U

1 j
j

A T H E S I S
I

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE D E G R E E OF M A S T E R OF P H I L O S O P H Y

I DIVISION OF C O M P U T E R SCIENCE

I T H E C H I N E S E U N I V E R S I T Y OF H O N G HONG
i “

OA

~ ~ U N I V E R S I T Y I
会 ^ ： 妙 ^ .

To my parents.

To my Jacqueline.

I'

Abstract

This thesis presents a performance study on dynamic load balancing algorithms", which

strive to use the current (or near current) system load information to balance the workload

among the processing nodes in a distributed system. Design issues of dynamic load

balancing algorithms are also discussed. The major result of this study is a new concept

of workload distribution called the batch assignment. The possibility of adopting both

task assignment and task migration as the workload distribution mechanisms in dynamic

load balancing algorithms is also studied.

We found that an adaptive s.vmmetricaJly-initiated polling-based location policy ex-

hibits the filtering e f f e c t , which avoids inappropriate processing nodes to be selected for

task transfer negotiations. This provides stability to the system at low and high system

loads. However, the filtering effect causes an adverse effect called the processor thrash-

ing^ which results in reduced workload distribution and wasted processing capacity in

the system. To put an adaptive symmetrically-initiated polling-based location policy into

practical use therefore requires processor thrashing to be resolved.

Another design issue of dynamic load balancing algorithms is the ability to adapt to

different task arrival patterns. In particular, the ability to resolve congestions in systems

subjected to bursty task arrival patterns efficiently is desired. Most existing load balancing

algorithms are in lack of such ability.

In an attempt to solve these two issues, the batch assignmenl; approach is proposed.

Batch assignment is based on the tight integration of three components:

1. A batch transfer policy, which allows a number of tasks to be transferred as a single

batch from a sender to a receiver. It can smooth out workload imbalance with

i

significantly less negotiation sessions, and thus CPU and communication overheads

are reduced to a minimum. It is the primary vehicle for resolving congestions in

systems with bursty task arrivals. Central to the batch transfer policy are three

heuristic-based “Batch Size Determination Rules''' which govern the decision on the

optimal batch size.

2. The “ Guarantee and Reservation Protocolwhich together with the batch transfer

policy, obtains the mutual agreement between a sender and a receiver on the optimal

batch size. The central idea of the GR Protocol is two fold: (1) A sender node has

to declare the number of tasks that it guarantees to send to a receiver; and (2)

A receiver employs a "quota" scheme for reserving processing capacity for task

batches from senders. The GR Protocol can avoid a receiver from being flooded due

to incoming task batches. It is the primary vehicle in resolving processor thrashing.

3. An adaptive symmetrically-initiated location policy based on the approach proposed

by Shivaratri and Krueger in [SK90 .

On the other hand, we show that although task migration in general costs more than

task assignment, it can be used as an alternative workload distribution mechanism to

augment task assignment for providing extra performance improvement. This is in con-

trast to the common belief that task assignment should be the sole workload distribution

mechanism in dynamic load balancing.

Lastly, we show how a heterogeneous system can be modeled with a set of 3-tuples

(Mi, Throughputi, V'i), and how task type compositions imposed on the system can be

modeled with a set of 4-tuples (山’ u;i“, /“ A‘). We explain why the measurement of work-

load of a processing node cannot simply be based on the number of tasks residing in

the node. Instead, we defined the node weight as a basis for workload measurement.

We also show that a task selection scheme should cater for any difference in processing

throughputs between a sender node and a receiver node. This is important in ma,king the

most efficient use of a sender-receiver negotiation session. In particular, we model batch

composition as a Subset-Sum Problem and a greedy solution has been proposed.

ii

Acknowledgement

I would like to express my deepest gratitude to my research advisor, Dr. Chin LU. Her

advices and constant encouragement contributed a great deal in this research work. I

would also like to thank Dr. Chi-Hung CHI and Dr. Man-Hon WONG for their efforts in

making comments on this thesis.

I am also grateful to all the friends I met in the Department of Computer Science,

CUHK. Their encouragement, companions, and most importantly, their patience to my

poor temper, made my life in CUHK delightful. Special thanks are expressed to Chi-Lok

CHAN, Wing-Chung CHAN, and.,Kei-Fu MAK, who are always willing to accompany me

during my difficult time; and to Karmen CHUI and Kelvin CHAK, who gave me valuable

comments on Chapters 1 to 4.

Finally, I must dedicate this work to my family members, especially my parents, and

to my girl friend Jacqueline. Their understanding, encouragement, support and patience

make this thesis possible. I really do not know how can I return all the things I owe them.

Sau-Ming LAU.

J a n u a r y 1995.

Thesis revised on June 1995.

» »

iii

Contents

Abstract j

Acknowledgement iii

List of Tables viii

List of Figures x

1 Introduction i

2 Basic Concepts and Related Work 9

2.1 Components of Dynamic Load Balancing Algorithms 10

2.2 Classification of Load Balancing Algorithms 11

2.2.1 Casavant and Kuhl's Taxonomy 12

3 System Model and Assumptions 1 9

3.1 The System Model and Assumptions 19

3.2 Survey on Cost Models 21

3.2.1 Eager, Lazowska, and Zahorjan's Model 22

3.2.2 Shivaratri, Krueger, and Singhal's Model 23

3.3 Our Cost Model 24

3.3.1 Design Philosophy 24

3.3.2 Polling Query Cost Model 25

3.3.3 Load State Broadcasting Cost Model 26

3.3.4 Task Assignment Cost Model 7 27

3.3.5 Task Migration Cost Model 28

3.3.6 Execution Priority 29

3.3.7 Simulation Parameter Values 31

3.4 Performance Metrics 33

iv

4 A Per formance S t u d y on Load Information Dissemination Strategies 36

4.1 Algorithm Descriptions 37

4.1.1 Transfer Policy 37

4.1.2 Information Policy 40

4.1.3 Location Policy 40

4.1.4 Categorization of the Algorithms 43

4.2 Simulations and Analysis of Results 43

4.2.1 Performance Comparisons 4 4

4.2.2 Effect of Imbalance Factor on AWLT Algorithms 49

4.2.3 Comparison of Average Performance 52

4.2.4 Raw Simulation Results 54

4.3 Discussions 5 5

5 Resolving Processor Thrash ing with B a t c h Assignment 56

5.1 The GR.batch Algorithm 57

5.1.1 The Guarantee and Reservation Protocol 57

5.1.2 The Location Policy 58

5.1.3 Batch Size Determination 60

5.1.4 The Complete GR.batch Description 62

5.2 Additional Performance Metrics 66

5.3 Simulations and Analysis of Results 67

5.4 Discussions 7 3

6 Apply ing B a t c h Ass ignment to S y s t e m s with B u r s t y Task Arrival P a t t e r n s 75

6.1 Bursty Workload Pattern Characterization Model 76

6.2 Algorithm Descriptions 7 7

6.2.1 The GR.batch Algorithm 7 7

6.2.2 The SK.single Algorithm 77

6.2.3 Summary of Algorithm Properties 77

6.3 Analysis of Simulation Results 7 7

6.3.1 Performance Comparison r 7 9

6.3.2 Time Trace 80

6.4 Discussions 80

7 A Pre l iminary S t u d y on Task Ass ignment A u g m e n t e d with Migrat ion 87

7.1 Algorithm Descriptions 87

viii

7.1.1 Information Policy 88

7.1.2 Location Policy 88

7.1.3 Transfer Policy 88

7.1.4 The Three Load Balancing Algorithms 89

7.2 Simulations and Analysis of Results 90

7.2.1 Even Task Service Time 90

7.2.2 Uneven Task Service Time 9 4

7.3 Discussions 9 9

8 Assignment Augmented with Migration Revisited 100

8.1 Algorithm Descriptions 100

8.1.1 The GR.BATCH.A Algorithm 101

8.1.2 The SK.SINGLE.AM Algorithm : 101

8.1.3 Summary of Algorithm Properties 101

8.2 Simulations and Analysis of Results 101

8.2.1 Performance Comparisons 102

8.2.2 Effect of Workload Imbalance 105

8.3 Discussions '' 106

9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 108

9.1 Heterogeneous System Model 109

9.1.1 Processing Node Specification 110

9.1.2 Task Type Specification m

9.1.3 Workload State Measurement 112

9.1.4 Task Selection Candidates 1 1 3

9.2 Algorithm Descriptions 115

9.2.1 First Category — The SK.single Variations 115

9.2.2 Second Category — The GR.batch Variation Modeled with SSP 117

9.3 Analysis of Simulation Results 123

10 Conclusions and Future Work 127

Bibliography 131

Appendix A System Model Notations and Definitions 131
Appendix A. 1 Processing Node Model 131

Appendix A.2 Cost Models , 132

vi

Appendix A.3 Load Measurement 134

Appendix A.4 Batch Size Determination Rules 135

Appendix A.5 Bursty Arrivals Modeling 135

Appendix A.6 Heterogeneous Systems Modeling 135

A p p e n d i x B Shivaratri and Krueger 's Location Policy 137

I

vii

List of Tables

3.1 Typical parameter values used for our simulation study 31

3.2 Comparisons between our cost models and those described in section 3.2 33

4.1 The 3-level load measurement scheme used in AWLT and AWOLT algorithms 38

4.2 Classification of AWLT and AWOLT algorithms according to policy types 43

4.3 Values of simulation parameters used for studying performance of AWLT and AWOLT

algorithms — presented in Figure 4.3 and 4.4 44

4.4 Values of simulation parameters used in the simulations presented in Figures 4.6 50

5.1 The 3-level load measurement scheme based on effective load, ELi 59

5.2 Values of simulation parameter^ used in the simulations for studying GR.batch and SK.single.

Simulation results are presented in Figure 5.8 on page 68 69

5.3 Summary of properties of GR.batch and SK.single 69

6.1 Summary of properties of GR.batch and SK.single 78

6.2 Values of simulation parameters used in the simulations presented in Figure 6.2 to 6.4. . . 78

7.1 The 3-level load measurement scheme used in algorithms A, AM^ and AMT. Ki is the

number of tasks residing in node Pi 88

7.2 Values of simulation parameters used in the simulations presented in Figure 4.3 and 4.4. . 92

7.3 Processing node type definitions for modeling a system with uneven task service time

requirements 95

7.4 System type definitions for modeling a system with uneven task service time 96

7.5 Values of simulation parameters used in the simulations for studying uneven task service

time systems 9了

7.6 LL system type performance of algorithms A, AM, and AMT. Simulation parameters

shown in Table 7.5 9 7

7.7 LM system type performance of algorithms 成 AM, and AMT. Simulation parameters

shown in Table 7.5 - gg

viii

7.8 LH system type performance of algorithms A, AM, and AMT. Simulation parameters

shown in Table 7.5 98

7.9 ML system type performance of algorithms A, AM, and AMT. Simulation parameters

shown in Table 7.5 98

7.10 MM system type performance of algorithms A, AM, and AMT. Simulation parameters

shown in Table 7.5 98

8.1 Summary of properties of SK.SINGLE.A, SK.SINGLE.AM and GR.BATCH.A. . . . 102

8.2 Values of simulation parameters used in the simulations presented in Figure 8.1. 102

9.1 3-level load measurement scheme based on weighted effective load, WE Li 114

9.2 Values of simulation parameters used in the simulations for studying the performance of

SK.Single.First, SK.Single.BestFit, and GR.SSP.Greedy 125

尊’

、 * •

ix

List of Figures

1.1 Logical flow of the research work and the outline of the thesis : . 6

2.1 A dynamic load balancing algorithm can be regarded as a resource management function,

which deals with processes and processors. Adapted from [CK88] 10

2.2 Hierarchical portion of Casavant and Kuhl's Taxonomy. Bold-faced classes represent our

research interests. Adapted from [CK88] 13

3.1 Model of a processing node 20

3.2 Time Sequence Diagram — A scenario showing that a CPU is released after a polling

message has been injected into the communication network 26

3.3 Time Sequence Diagram — A scenario illustrating the execution priority within a process-

ing node 30

4.1 Functions MaxAssignQ and NumAssign{) for determining the desired batch size t. . . . 41

4.2 The role of MaxAssign{) and NumAssignQ in determining the batch size b 42

4.3 Performance of AWOLT algorithms. Values of simulation parameters are given in Table

4.3 on page 44 45

4.4 Performance of AWLT algorithms. Values of simulation parameters are given in Table 4.3.

on page 44 46

4.5 Distribution of arrival rates under varying imbalance factors. Log Normal Distribution

with mean 0.5. Generated by SimScript II.5 for 30 processing nodes {N = 30) 50

4.6 Effect of imbalance factor on performance of AWLT algorithms. Simulation parameters

are shown in Table 4.4 on page 50 51

4.7 Average performance of the AWLT and AWOLT algorithms. Simulation parameters are

shown in Table 4.3 on page 44. Average performance is taken to be the mean of the

performance results of the component algorithms within each category 53

5.1 MaxAssign{) and NumAssign{) for determining the desired batch size t — based on ELi. 61

5.2 Function ReceiverNewEL{) for estimation of receiver's new effective -load 61

xiii

5.3 Sender-initiated component of the GR.batch algorithm 63

5.4 Sender-initiated component of the GR.batch algorithm — Procedure FT 64

5.5 Sender-initiated component of the GR.batch algorithm — Procedure 64

5.6 Receiver-initiated component of the GR.batch algorithm 65

5.7 Receiver-initiated component of the GR.batch algorithm 一 Procedure X4 66

5.8 Performance comparisons between GR.batch and SK.single. Simulation parameters shown

in Table 3.1 68

6.1 Characterization of bursty workload pattern by 4-tuple (r, a, (3,7) ~ . 76

6.2 Task response time of GR.batch and SK.single in systems subjected with bursty workload

arrivals. Simulation parameters used are shown in Table 6.2 on page 78 82

6.3 Task response time standard deviation of GR.batch and SK.single in systems subjected

with bursty workload arrivals. Simulation parameters used aire shown in Table 6.2 on page

78 83

6.4 Queue length standard deviation of GR.batch and SK.single in systems subjected with

bursty workload arrivals. Simulation parameters used are shown in Table 6.2 on page 78. 84

6.5 Trace of node Pi 's mean task response time — GR.batch and SK.single in systems sub-

jected with bursty workload arrivals. Simulation parameters used are shown in Table 6.2

on page 78, except the following: a = 0.01，/? = 300, 7 = 1 85

6.6 Trace of node Pi 's queue length — GR.batch and SK.single in systems subjected with

bursty workload arrivals. Simulation parameters used are shown in Table 6.2 on page 78,

except the following: a = 0.01, /? = 300，7 = 1 86

7.1 Comparison of system performance of algorithms A, AM, and AMT. Simulation param-

eters used are shown in Table 7.2 91

7.2 Effect of receiver-timeout on performance of AMT. Simulation parameters used identical

to those shown in Table 7.2 on page 92, except that receiver-timeout is now a variable. . . 95

8.1 Performance of GR.BATCH.A, SK.SINGLE.AM, and SK.SINGLE.A. Simulation

parameters used shown in Table 8.2 103

8.2 Effect of system imbalance on performance of GR.BATCH.A. Reference algorithm is

SK.SINGLE.A. Simulation parameters used identical to those in Table 8.2, except that

imbalance factor is a variable 應

9.1 Example illustrating the intuitive meaning of Weighted Effective Load, WE Li 113

9.2 Conceptual model of task selection in task assignment algorithms 115

xi

9.3 Sender-initiated component of the GFt.SSP.Greedy algorithm. Steps marked with * rep-

resent major modifications for adapting to the system heterogeneity 120

9.4 Sender-initiated component of the GFt.SSP.Greedy algorithm — Procedure Yl. Steps

marked with * represent major modifications for adapting to the system heterogeneity. . . 121

9.5 Sender-initiated component of the GFt.SSP.Greedy algorithm 一 Procedure X2. Steps

marked with * represent major modifications for adapting to the system heterogeneity. . . 121

9.6 Receiver-initiated component of the GFt.SSP.Greedy algorithm. Steps marked with *

represent major modifications for adapting to the system heterogeneity . 122

9.7 Receiver-initiated component of the GR.SSP.Greedy algorithm 一 Procedure 1(4. Steps

marked with * represent major modifications for adapting to the system heterogeneity. . . 123

9.8 MaxAssignQ and NumAssign{) for determining P 124

9.9 Function ReceiverNewWEL{) for estimation of receiver's new effective load based on

max^ and 6 124

9.10 Performance oi SK.Single.First, SK.Single.BestFit and GR.SSP.Greedy 126

xii

Chapter 1

Introduction

In a distributed computing system (DCS) where a set of processing nodes are connected by

a local area network, some nodes tend to have higher task arrival rates than others [TL89

ML87]. It is desirable for such workload imbalance to be smoothed out so as to make

use of the computing capacity of idle or lightly loaded nodes. Thus the CPU utilization

and total system throughput can be maximized while the average task response time can

be minimized. Load balancing algorithms try to accomplish this objective by distributing

tasks among processing nodes so that the workload on each node is approximately the

same.

The two most commonly used workload distribution mechanisms are task assignment

and task migration. Task assignment refers to the initial placement of tasks to processing

nodes. Task migration is the dynamic relocation of an executing task to another processing

node. With task migration, the task being migrated is suspended. The execution state of

the task is then captured and transferred to a remote node, where the task resumes its

execution. Typically, the execution state of a task consists of a virtual memory image,

a process control block, I/O buffers, messages, file pointers, timers, and so on [Smi88

SKS92]. The constituent state of a task varies widely with different operating systems.

In general, task migration costs more than task assignment in terms of both CPU and

communication overheads [Smi88 .

Load balancing algorithms can be divided into static and dynamic. With static load

balancing algorithms, there is a priori assignment of processes to processing nodes. The
».

1

Chapter 1 Introduction

‘ current state of the distributed system is not taken into consideration [Bok79] [Bok87

ST85] [L088]. With dynamic load balancing algorithms, the current (or near current)

system load information is taken into account to decide where in the network a task should

be processed. Many dynamic algorithms have been discussed [EL86a] [EL86b] [NXG85

SS84] [Zho88]. This thesis focuses on dynamic load balancing algorithms only.

Besides, load balancing algorithms can be either adaptive or non-adaptive. An adap-

tive algorithm is one which changes its decision making policies dynamically according

to the previous and current behavior of the distributed system, whereas the policies in a

non-adaptive algorithm are fixed, regardless the current or past system behavior.

One of the objectives of this study is to measure the performance of different dynamic

load balancing algorithms. As there is a diversity of different load balancing algorithms,

which have very different system models, assumptions, and design objectives, it is rather

difficult to have a fair comparison between the relative merits among these algorithms.

Therefore, an important step in this research work is to develop a system model which
I'

serves as a common framework, so that different load balancing algorithms can be com-

pared objectively. Moreover, the performance and efficiency metrics for assessing load

balancing algorithms have to be selected and designed carefully.

The second objective of this study is to design dynamic load balancing algorithms

which are practical to be implemented in terms of both performance and efficiency. Due

to communication delays, a complete and up-to-date picture of workload states of a dis-

tributed system may never be obtained. Thus an important design issue of dynamic load

balancing algorithms is to study how the local view of the system workload states can be

maintained at a node. In general, there are two major methods of doing this: one which

assumes the existence of a local load table which stores the load states of all the nodes

in the distributed system; and one which relies on polling for gathering workload state

information.

Among polling algorithms, adaptive symmetrically-initiated algorithms are the most

promising [SK90] [LL94]. In such algorithms, both senders and receivers can initiate

the search for transfer partners. However, this kind of algorithms Exhibit a phenomenon

Chapter 1 Introduction

« called processor thrashing, which means that a number of processing nodes poll for (or

even transfer tasks to) the same potential transfer partner node simultaneously. Processor

thrashing is found to have adverse effects on the system performance. In particular,

certain amount of processing capacity is wasted because of the limited degree of workload

distribution in the system. This issue has not been extensively studied in literatures

however, for example, numerical measurement of the degree of processor thrashing has

not been proposed. To resolve processor thrashing is another important design issue of

dynamic load balancing algorithms.

Most existing load balancing algorithms rely on the assumption that the workload

arrival pattern to the processing nodes in the distributed system is rather stable. Such

algorithms cannot provide satisfactory performance when the system is injected with

bursty task arrival patterns. This is because such algorithms cannot resolve congestions

occurring in the processing nodes exhibiting bursty task arrivals efficiently. The usability

of such algorithms is therefore limited to systems with stable workload pattern. The ability

to adapt to both stable and bursty task arrival patterns is another design objective of our

dynamic load balancing algorithms.

Currently, most load balancing literatures focus either on the interprocessor protocols

for the identification of appropriate transfer partners, or on the measurement of processor

workload. It is assumed that only a single task can be transferred during each sender-

receiver negotiation session, either by task assignment or by task migration. To transfer

a certain amount of workload, multiple sender-receiver negotiation sessions are required.

We refer to this approach as the single task assignment/migration. In contrast, we de-

velop a new task transfer approach, namely the batch assignment. Batch assignment is

an adaptive mechanism which allows a number of tasks to be transferred as a single batch

from a sender to a receiver for each single sender-receiver negotiation session. The batch

size (the number of tasks contained in a task batch) is determined dynamically according

to the relative busyness between the sender and the receiver. Batch transfer can avoid

the unnecessary CPU and communication overheads injected by multiple sender-receiver

negotiation sessions when a number of tasks have to be transferred between a pair of

Chapter 1 Introduction

‘ processing nodes. It is proved that in terms of both task response time and system pre-

dictability, the batch assignment approach performs significantly better than algorithms

which allow only single task transfer. To summarize, the different workload distribution

approaches that we study in this thesis are: (1) single task assignment, (2) single task

migration, (3) batch assignment, and (4) combinations of these.

The design and study of the batch assignment approach represents one line of our

research work. Another line of this research is the study of the possibility of adopting

both task assignment and task migration as the workload distribution mechanism in a

load balancing algorithm. Most of the existing load balancing algorithms assume that

task assignment is the sole workload distribution mechanism because it costs much less

than task migration. However, we are interested in investigating situations where task

migration can be used as an alternative workload transfer mechanism to augment task

assignment for providing extra performance improvement. This is particularly important

when a sender can find no appropriate "fresh" task for remote assignment, in which case

the heavily loaded sender has no way to share the spare processing capacity of potential

receivers if only task assignment is allowed.

We are thus now having two alternative approaches for improving the performance of

load balancing algorithms. One is the batch assignment approach and the other is the

adoption of task migration. As task migration is scarcely supported in today's distributed

operating systems, we are also interested in knowing the relative merits between these

two approaches.

Lastly, we will apply our batch assignment algorithm to heterogeneous systems in

which processing nodes of the distributed system may have different processing through-

puts and may be functionally incompatible to each other. We will show how we can

measure the relative workload of the heterogeneous processing nodes and how we can

modify the batch assignment approach to adapt to the heterogeneity.

The rest of this thesis is organized as follows. Chapter 2 discusses how we perceive

load balancing as a resource allocation problem. The major components of a dynamic

load balancing algorithm are then described. Classification schemes of dynamic load

Chapter 1 Introduction

balancing algorithms are also discussed. In Chapter 3, we present the system model,

which serves as a common framework assumed by all the load balancing algorithms that

we study. Performance and efficiency metrics for assessing load balancing algorithms are

also discussed. In Chapter 4, we present a performance study on two different categories

of load information dissemination strategies: one which assumes the existence of local

load tables and one which does not. In Chapter 4, we also introduce the preliminary

version of the batch assignment approach. In Chapter 5, the batch assignment approach

is modified and combined with a new sender-receiver negotiation protocol called the GR

Protocol. The resulting new batch assignment approach is applied to solve the problem

of processor thrashing. In Chapter 6, the new batch assignment approach is applied to

systems with bursty task arrival patterns. A bursty workload pattern characterization

model is also presented in this chapter. Chapters 7 and 8 represent another line of our

research. In Chapter 7, we present a preliminary study on the possibility of adopting both

task assignment and task migration as the workload distribution mechanism in a load

balancing algorithm. This approach is compared with the batch assignment approach in

Chapter 8. In Chapter 9, we will show how we can modify the batch assignment algorithm

for application to heterogeneous systems. Chapter 10 is the conclusion.

The organization of this thesis is shown in Figure 1.1. The upper grey bar signifies

that all the algorithms we study in chapters 5-9 are adaptive, symmetrically-initiated,

and are based on polling. The lower grey bar signifies that chapters 5, 6, 8 and 9 are

based on the batch assignment approach and the GR protocol.

».

Chapter 1 Introduction

f \
Background Concepts and Related Work

(Chapter 2)

v 乂

广 V

Design of System Models & Performance Metrics

(Chapters)
\ ‘

V ^ i
f -N C \

Study on Information Preliminary Study

Policy: With Vs Without on

Local Load Table Batch Assignment
(Chapter 4) (Chapter 4) V. ‘ ^ V '

/ r�JtVA4aptpve,\Symmep:icaUy-Initiated; Polling Based

V
• ‘ (^

Preliminary Study on

V C ' r . ' H -r-rrr：-.. rr-- ； 岡 Task Assignment +
. V , , : Batch Assignment + GR Protocol � . •‘ .] Task Migration

: - ‘ � . ， ‘ 、 . ’ . ： . (C h a p t e r 7)
V y

V V V �l
/• \ /• \ (N

Applying Batch Assignment Applying Batch Assignment Assignment + Migration

For Resolving To Systems with Revisited - Comparing

Processor Thrashing Bursty Task Arrivals with Batch Assignment

(Chapters) J [(Chapter 6) J [(Chapter 8) ^

�l
广 \

Applying Batch Assignment To Heterogeneous Systems

With Different Job Classes

(Chapter 9)
V J

• — \

Conclusion
\ f

Figure 1.1: Logical flow of the research work and the outline of the thesis.

Chapter 1 Introduction

‘ Publ icat ions

1. Chin Lu and Sau-Ming Lau.

"A Performance Study on Load Balancing Algorithms with Process Migration".

In Proceedings, IEEE TENCON 1994, pages 357-364, Singapore, August 1994.

Abstract -

In this paper, we present a performance study on three different load balancing

algorithms. The first algorithm employs only task assignment, whereas the other

two allow both task assignment and migration. We conclude that although task

migration usually costs more than task assignment, under some situations it can

augment task assignment to provide extra performance improvement. This is be-

cause task migration provides an alternate mechanism for distributing workload

in a distributed system. The performance improvement by using this approach

is especially significant when a heavily-loaded node has no appropriate tasks for

assignment.

2. Chin Lu and Sau-Ming Lau.

"An Adaptive Load Distribution* Algorithm for Systems with Bursty Task Arrivals".

In Proceedings, Thirteenth lASTED International Conference for Applied Informatics,

Austria, February 1995.

Abstract -

Usually heuristic-based load balancing algorithms cannot provide satisfactory per-

formance with bursty task arrivals because they assume stable arrival patterns. In

this paper, we present an adaptive load balancing algorithm, which employs the

new Batch Transfer Approach. This approach allows a number of tasks to be trans-

ferred as a single batch, coupled with a protocol to obtain mutually agreed batch

size between a sender and a receiver. Simulations show that: (1) In terms of the

system mean task response time, our algorithm provides significant improvement

when the system is not saturated. (2) Our algorithm can always improve the sys-

tem predictability. (3) Our algorithm ensures a stable range of both mean queue

length and mean task response time.

3. Chin Lu and Sau-Ming Lau.

"An Adaptive Algorithm for Resolving Processor Thrashing in Load Distribution".

Concurrency: Practice and Experience^ 7(7), October 1995. Special issue on dynamic
參

resource management in distributed systems; Accepted for publication.

Chapter 1 Introduction

‘ Abstract —

Processor thrashing in load distribution refers to the situation when a number of

nodes try to negotiate with the same target node simultaneously. The performance

of dynamic load balancing algorithms can be degraded because processor thrash-

ing can lead to receiver node overdrafting, thus causing congestions at a receiver

node and reduction of workload distribution. In this paper, we present an adaptive

algorithm for resolving processor thrashing in load distribution. The algorithm is

based on the integration of three components: (1) a batch task assignment policy,

which allows a number of tasks to be transferred as a single batch from a sender

to a receiver, (2) a negotiation protocol to obtain a mutual agreement between a

sender and a receiver on the batch size, and (3) an adaptive symmetrically-initiated

location policy to select a potential transfer partner. Simulations reveal that our

algorithm provides a significant performance improvement at high system load be-

cause the algorithm can avoid processor thrashing so that CPU capacity is more

fully utilized.

I

Chapter 2

Basic Concepts and Related Work

Resource allocation is one of the major issues of resource management in operating sys-

tems. In a DCS, this complex problem is further complicated by the physical distribution

of resources, communication delays, redundancy of resources, possibility of partial failures

of resources, and by the lack of accurate global state information [Gos91, pp. 439]. Goscin-

ski defined a resource as a reusable, relatively stable hardware or software component of

a computer system that is useful to system users or their processes. He distinguished two

types of resources [Gos91, pp. 440]:

• Physical resources 一 which are the permanent physical components of a computer

system, such as processor, main memory, I/O devices, and external memory.

• Logical resources — which are collections of information stored within physical re-

sources, such as processes, files, shared programs and data.

A load balancing algorithm can be regarded as a special kind of distributed process

scheduling algorithms with the objective to balance the workload between processors.

Since processor is an especially important type of physical resource, a load balancing

algorithm can therefore be formulated as a resource management function [CK88] [Gos91 .

On the other hand, a load balancing algorithm itself can be regarded as a logical resource

on its own. Thus it can also be referred to as a resource management resource [CK88]. The

functionality of this management resource can be described in terms of three components:

(1) Consumer(s)- (2) Resource(s)., and (3) Policy/Policies. With a dynamic load balancing

9

^ Chapter 2 Basic Concepts and Related Work 10

� a l g o r i t h m , consumers represent the processes to be scheduled; resources represent the

available processors in the DCS; and policies represent the decision strategies used in

the dynamic load balancing algorithm. One can observe the behavior of a dynamic load

balancing algorithm in terms of how its policies affect the resources and consumers. This

relationship between dynamic load balancing algorithms, consumers, and resources is

shown in Figure 2.1.

Dynamic
Load Balancing

Algorithms
> >

Consumers Policies Resources
(Processes) (Processors)

t

Figure 2.1: A dynamic load balancing algorithm can be regarded as a resource management
function, which deals with processes and processors. Adapted from [CK88].

2.1 Components of Dynamic Load Balancing Algorithms

A dynamic load balancing algorithm is composed of three parts:

• Transfer Policy —

A transfer policy has two components: (1) Algorithm Initiation Scheme, which

determines whether a node should initiate a sender-receiver negotiation session for

task distribution; and (2) Task Selection Scheme, which selects the task(s) to be

transferred from among a set of candidate tasks.

• Location Policy —

which attempts to find an appropriate processing node as a partner for task transfer.

This is also called host selection. There are three basic types of location policies:

^ Chapter 2 Basic Concepts and Related Work 11

‘ (1) Sender-initiated, in which congested nodes search for lightly loaded nodes to

which tasks can be transferred; (2) Receiver-initiated, in which lightly loaded nodes

search for congested nodes from which tasks can be transferred; and (3) Symmetri-

cally-initiated, in which both senders and receivers can initiate the search for transfer

partner.

• Information Policy —

which determines (1) what information about the load states in the distributed

system is needed; and (2) how such information is to be collected or distributed.

Information policy is also called load information dissemination strategy.

It must be noted that these three components of a load balancing algorithm are not

independent of each other. Rather, they interact with each other in a tightly coupled

manner [Gos91].

I

2.2 Classification of Load Balancing Algorithms

The first taxonomy of load balancing algorithms was proposed by Casey [Cas81]. This

hierarchical taxonomy reflects research results up to 1980. Since then a large number of

additional distinguishing features have been identified. These features allow further dif-

ferentiation between approaches to workload distribution. One such feature is associated

with the type of node that takes the initiative in starting workload distribution. Based

on this, Wang and Morris [WM85] presented a dichotomy taxonomy of load balancing

algorithms. They classified load balancing algorithms into source-initiative and server-

initiative. 1 Wang and Morris also characterized load balancing algorithms according to

the degree of information dependency involved.

Another taxonomy was proposed by Casavant and Kuhl [CK88]. Their taxonomy not

only agrees with Casey's classification, but also provides a more detailed and complete look

at distributed scheduling, in which load balancing is a special case which strives to balance

1 Source-initiative and server-initiated algorithms are also known as sender-initiative and receiver-
initiative algorithms respectively in some literatures [EL86b] [EL86a]. •.

^ Chapter 2 Basic Concepts and Related Work 12

‘ the workload among the processing nodes in a distributed system. In this section, we look

into some details of Casavant and Kuhl's taxonomy. Some useful taxonomies proposed

by other researchers are also presented where appropriate.

2.2.1 Casavant and Kuhl 's Taxonomy

Casavant and Kuhl's taxonomy is a hybrid of:

• Hierarchical classification scheme 一

used as far as possible to reduce the total number of classes; and

• Flat classification scheme —

used when the descriptors of the system may be chosen in any arbitrary order.

2.2.1.1 Hierarchical Classification S c h e m e

The structure of the hierarchical portion of Casavant and Kuhl's classification is shown

in Figure 2.2.

• Local versus Global —

Local scheduling determines the allocation of a processor among its local processes.

It has been described in many literatures [Mil87]. Global scheduling is responsible

for the allocation of processes to processors in the distributed system. Therefore,

dynamic load balancing algorithms are dealing with global scheduling.

• Stat ic versus D y n a m i c —

This choice indicates the time at which scheduling decisions are made. With static

load balancing algorithms, there is a priori assignment of processes to processors.

The current state of the distributed system is not taken into consideration. The

principal advantage of static load balancing is its simplicity because system state

information need not be maintained. However, it fails to adjust to fluctuations in

the system workload pattern. Therefore, static load balancing algorithms are not

suitable for systems subjected with bursty task arrival patterns. The design of static

^ Chapter 2 Basic Concepts and Related Work 28

‘

local global

static dynamic

optimal sub-optimal physically physically
distributed non-distributed

\ .
euristic cooperative non-cooperative

-

optimal sub-optimal

/ /V
/ approximate heuristic

力
enumerative graph mathematical queuing

theory .programming theory

Figure 2.2: Hierarchical portion of Casavant and Kuhl's Taxonomy. Bold-faced classes repre-

sent our research interests. Adapted from [CK88].

load balancing algorithms is pioneered by Shahid H. Bokhari [Bok79]. More recent

works include [Bok87], [ST85] and [L088:.

With dynamic load balancing, the more realistic assumption is made that very little

a priori knowledge is available about the resource needs of a process. Schedul-

ing decisions are made dynamically using the information of current system state.

Making a dynamic load balancing decision is much more complicated than finding a

static one because gathering and maintaining system state information are needed.

However, dynamic load balancing can potentially achieve better performance than

static load balancing.

In this research, we focus only on dynamic load balancing. The static subtree in the

taxonomy is therefore ignored.

^ Chapter 2 Basic Concepts and Related Work 29

‘ • Physical ly Distr ibuted versus Physical ly Non-Distr ibuted —

This issue involves whether the authority and responsibility for making global dy-

namic load balancing decisions physically reside in a single processor {physically

non-distributed) or whether the work involved in making the decisions physically

distributed among the processors.

The most important feature of the non-distributed approach is its simplicity. How-

ever, it suffers from three drawbacks: (1) The functional capacity of any centralized

scheduling server is bounded; (2) A centralized server implies a bottleneck to which

and from which messages are sent and thus the system state maintained in the server

may not be up-to-date; and (3) A centralized server implies a single point of failure.

In this research, we focus on global dynamic physically distributed load balancing

algorithms.

The immediate design issue generated by the distributed nature of this category of

algorithms is the relationship between the distributed decision components. This is

discussed in the following point.

• Cooperat ive versus Non-Cooperat ive —

The question here is the degree of autonomy which each processor has in determining

its load balancing decisions. If processors make decisions independently of each

other, the load balancing algorithm is said to be non-cooperative. In this case,

because the processors act as autonomous entities, they are oriented only towards

individual goals. As a result, the load balancing decisions may contradict each other

and generate performance conflicts.

If the load balancing algorithm involves cooperation between independent proces-

sors, the load balancing algorithm is said to be cooperative. The majority of global

dynamic physically distributed load balancing algorithms are cooperative in nature.

In this research, we are primarily focusing on global dynamic physically distributed

cooperative algorithms. ,

^ Chapter 2 Basic Concepts and Related Work 15

• Optimal versus Sub-Opt imal —

In the case that all information regarding the state of the system as well as the

resource needs of a process are known, an optimal load balancing decision can be

made by applying some criterion functions. Examples of optimization measures for

criterion functions are minimization of total process completion time, and maximiza-

tion of system throughput. There are four commonly used methods for finding an

optimal scheduling decisions: (1) enumerative, (2) graph theory, (3) mathematical

programming, and (4) queuing theory.

If only partial information is available or the load balancing problem is computation-

ally infeasible, suboptimal solutions may be sought for. Obviously, global dynamic

optimal load balancing decisions are difficult to achieve because of the lack of an

accurate system state picture.

In this research, we focus on global dynamic physically distributed cooperative sub-

optimal algorithms. •

• Approx imate versus Heur is t ic —

The approximate approach may use the same model for finding a load balancing

decision as used in the optimal approach. However, searching for a load balancing

"solution" does not cover the whole solution space. Instead, the goal is to find a

satisfactory one. This helps to reduce the computation time taken.

The most distinguishing feature of heuristic load balancing algorithms is that they

make use of special parameters which affect the system in indirect ways. Such

parameters has an impact on the overall service that users (customers) receive, but

cannot be directly related to system performance. It is our intuition that leads us

to believe that using such parameters will improve system performance.

In this research, we focus on global dynamic physically distributed cooperative sub-

optimal heuristic algorithms.

» • •

^ Chapter 2 Basic Concepts and Related Work 16

‘ 2.2.1.2 Flat Classification Scheme

Casavant and Kuhl's flat classification is used when the descriptors of the system may

be chosen in any arbitrary order. Some other useful taxonomies proposed by researchers

other than Casavant and Kuhl are also discussed in this section.

• Adapt ive Versus Non-adaptive ——

An adaptive load balancing algorithm is one in which the policies and parameters of

the algorithm change dynamically according to the previous and current behavior

of the system. In other words, previous decisions and their effects on system perfor-

mance are taken into consideration by the load balancing algorithm. An example

adaptive load balancing algorithm is described by Stankovic and Sidhu in [SS84 .

This adaptive algorithm evaluates multiple parameters by using a McCulloch-Pitts

neuron.

In contrast to an adaptive load balancing algorithm, a non-adaptive load balancing
I

algorithm is one which does not necessarily modify its basic control mechanism

on the basis of the history of system activities. In other words, the policies and

parameters of the algorithm are fixed, regardless of the current system load states.

• Source-Init iative Versus Server-Init iat ive —

Wang and Morris [WM85] proposed a taxonomy of load balancing algorithms which

is based on the type of a node that takes the initiative in the global search for a

lightly-loaded or heavily-loaded processing nodes. If the source (overloaded) node

is responsible for finding a remote location for process execution, the strategy is

called source-initiative {sender-initiated). If a server (lightly-loaded) node looks

for and requests processes from overloaded processing nodes, the strategy is called

server-initiative (receiver-initiated). Comparative studies of these two types of algo-

rithms had been made by Eager et al. [EL86b] [EL86a]. Some algorithms adopt both

source-initiative and server-initiative approaches and are classified as symmetrically-

initiated. An example of symmetrically-initiated algorithms is presented by Shiv-

aratri and Krueger in [SK90 .

^ Chapter 2 Basic Concepts and Related Work 17

• B idd ing —

The concept behind the bidding approach is the negotiation between processors

and the submission of bids for contracts. Each processor is responsible for two

roles with respect to the bidding process: manager and contractor. The manager

represents the task in need of a location to execute, whereas the contractor represents

a processor which is able to do work for other nodes. The bidding approach works

as follows. The manager announces the existence of a task in need of execution by

a task announcement. It then receives bids from the other nodes (contractors). The

manager evaluates the bids and awards contracts to the most appropriate node(s)

by sending tasks to it. Bidding is a sender-initiated approach.

• Draf t ing —

The drafting approach is the converse of the bidding approach and is receiver-

initiated. A sender-receiver negotiation session starts when a potential receiver

announces the availability of its spare processing capacity. Potential sender nodes

then send request messages to the receiver, who then evaluates the requests and

make an offer to one or more of the sender nodes for receiving tasks from them.

• Classification Based on the Level of Informat ion D e p e n d e n c y —

Another taxonomy is based on the level of information dependency that is embodied

in a load balancing algorithm. The level of information dependency refers to the

degree to which a source node needs to know the states of servers; or a server

needs to know the states of sources. Wang and Morris identified seven levels of

information dependency in [WM85]. The information levels have been arranged so

that the information of a higher level subsumes that of lower levels. One can expect

that an increase in the level of information dependency allows the construction of

algorithms which provide better performance. This is only true to some extent

because at some stage: (1) The increased amount of information exchange implies

increases in communication costs and delay time, which may make such information

essentially outdated; and (2) Higher computation overhead becomes necessary in

^ Chapter 2 Basic Concepts and Related Work 18

‘ processing such information. Therefore, two important design issues of dynamic

load balancing algorithms are the appropriate level of information dependency, and

the efficient use of available state information for attaining the best performance

improvement.

I

• . •.

Chapter 3

System Model and Assumptions

As mentioned in Chapter 2, many dynamic load balancing algorithms have been proposed

； E L 8 6 a l [EL86b] [NXG85] [SS84] [Zho88]. These algorithms are designed for very different

system models with very different assumptions. Some literatures even do not provide

adequate description about their system models. It is rather difficult to have a fair

comparison between the relative merits among these algorithms. Therefore, we develop a

system model which serves as a conimon framework with which different load balancing

algorithms can be compared objectively.

3.1 The System Model and Assumptions

The distributed system model described here applies to most current local area networks

where every single processing node is an autonomous machine. The network is fully

connected logically. In other words, a processing node is reachable from any other node

in the network. We define the node at which a new application task arrives as the arrival

node of the task, and the node on which a task executes as the resident node of that

task. In principle, task assignment algorithms bind an arrival task to a resident node.

If the resident node is the same as the arrival node, the assignment is said to be local.

Otherwise, the assignment is said to be remote. Similar description can be made for task

migration — local execution versus remote execution.

The analytical model of each node consists of three FIFO queues: the task queue, the

service queue, and the threshold queue, as shown in Figure 3.1. The task queue and the

19

‘ Chapter 3 System Model and Assumptions 20

tasks migrated ‘ ‘ tasks migrated
to remote node from remote node

unfinished tasks
waiting for next

> I I I I CPU slice

Service Queue

> I I I I ~ ： I I I I >
local task arrival 丨 I I 丨 ‘ ‘ ‘ ‘ finished task

Task Queue Threshold Queue
tasks assigned tasks assigned

to remote node from remote node

Figure 3.1: Model of a processing node

threshold queue both have infinite capacity. The service queue has a fixed capacity and

can hold at most Q � t a s k s at any one time.

When local tasks arrive, they go to the task queue to become candidates for task

assignment. A task may be assigned' either locally by entering the local threshold queue,

or remotely by entering the threshold queue on a remote node. Unlike many proposed

assignment algorithms which bind a locally arrived task permanently upon its arrival

EL86b] [EL86a] [SK90], we allow a task to stay in the task queue until it is either assigned

remotely or assigned locally by going into the local threshold queue. In other words, a

task may be considered for remote assignment multiple times. In this way, we have a

greater flexibility in controlling the workload of a processing node. Once a task enters

the threshold queue, it cannot be reassigned to another node. That is, we do not allow

task reassignment. This is important in avoiding a task from continuous shifting among

the nodes in the system, in which case unnecessary C P U and communication overheads

are imposed and the response time of the task may become exceedingly high.

A task in the threshold queue can get the C P U only when another task has completed

its execution and thereby frees an empty slot in the service queue, or when the workload

of the node is low enough that spare slots in the service queue exist. Tasks in the service

queue are processed by the C P U in round robin. A task can hold the C P U for at most a

‘ Chapter 3 System Model and Assumptions 21

fixed time slice, Tcpu, each time. If a task cannot finish within its time slice, it will go

to the end of the service queue, where it waits for its next CPU time slice.

Tasks in the service queue are candidates for migration. A task migration algorithm

selects the appropriate task from the service queue and saves its execution states, which

are then transferred to a remote node. The migrated task {migrant) will have its execution

states restored on the destination host, and then be put in the service queue to resume

its execution. -

The existence of the task queue, the threshold queue and the service queue effectively

divides a processing node into two halves — (1) the external part represented by the

task queue; and (2) the internal part represented by the threshold queue and the service

queue. Tasks residing in the external part are not bound permanently, whereas tasks

residing in the internal part will be executed in that particular processing node, at least

for one CPU time slice. This allows clear identification of candidate tasks for assignment

and migration.

We assume that task arrivals on a node Pi have independent Poisson distribution with

mean arrival rate Aj. Suppose there are N processing nodes in the distributed system,

the mean arrival rates of the N nodes (i.e. {Ai, A2,AAT}) have a log normal distribution

with mean \o and standard deviation (T\. This distribution characterizes the fact that

different nodes may be subjected to different workloads. The standard deviation (CTA) of

this distribution is a quantitative measure of the load imbalance of the distributed system,

and is referred to as the imbalance factor. Within a node Pi, the CPU time needed for

completing a task {task service time) has an exponential distribution with a mean of Si.

3.2 Survey on Cost Models

Many of existing literatures on study of dynamic load balancing algorithms made an overly

simplifying assumptions that the execution and communication overhead of dynamic load

balancing algorithms are negligible. As Kremien and Kramer pointed out in [KK92], such

‘ Chapter 3 System Model and Assumptions 22

‘ a n assumption does not reveal a practical situation. We believe that non-negligible execu-

tion and communication overhead should always be assumed in studying the performance

and efficiency of dynamic load balancing algorithms. In this section, we describe two cost

models proposed by some famous researchers in this area. We will compare these two

models with the one we propose in a later section.

3.2.1 Eager, Lazowska, and Zahorjan's Model

Eager et al. studied the effect of information dependency on the performance of dynamic

load balancing algorithms in [EL86b]. They also compared the performance of sender

and receiver-initiated algorithms in [EL86a]. In their model, task arrivals are in Poisson

distribution and task service demands in each processor are independently exponentially

distributed. Also, mean task service demand is chosen as one time unit. This allows

response times to be reported in units of task service demand. These are usual practice

in performance modeling work. In Pager et al.,s model, the only cost being considered

was the CPU overhead associated with transferring a task to its destination host. The

CPU cost associated with polling was neglected. Network communication costs for both

task transfer and polling were simply neglected.

• Task Arrivals

Task arrival rate of each processing node is in an independent Poisson Distribution

with mean A.

• Task Service D e m a n d

Task service demand of each processing node is in an independent exponential dis-

tribution with the mean equals to one second.

• C P U Overhead

- O n l y CPU overhead for transferring a task is considered and is taken to be 0.1

second in most cases.

- T a s k transfer CPU costs in the range 0.01 to 0.10 are also studied.

‘ Chapter 3 System Model and Assumptions 23

- A s Eager et al. stated in [EL86b]:

“...the average cost of task transfer C, although non-negligible, can be
expected to be quite low relative to the average cost of task processing S; the
range of 1-10 percent seems to include the cases of greatest interest."

• Communicat ion Delay

Network communication delay for both task transfer and polling are simply ne-

glected.

3.2.2 Shivaratri, Krueger , and Singhal's Model

Shivaratri et al. discussed load distribution in detail in [SK90] and [SKS92]. A rather de-

tailed simulation model has been proposed. The most notable characteristics of their cost

model is that CPU and communication overhead for processing and transferring polling

messages are assumed to be non-negligible. Similar assumption is made for task transfer.

Their simulation model and values of their simulation parameters are summarized below.
»

• Task Arrivals

Task arrival rate of each processing node is in an independent Poisson Distribution

with mean A.

• Task Service D e m a n d

Task service demand of each processing node is in an independent exponential dis-

tribution with the mean equals to one second.

• C P U Overhead

- C P U overhead for send/receive a polling message = 0.003 second

- C P U overhead for task assignment (single task) = 0.02 se€ond

— C P U overhead for task migration (single task) = 0.1 second

• Communicat ion Delay

- N e t w o r k Bandwidth = 10 MBits per second ‘

‘ Chapter 3 System Model and Assumptions 24

‘ - N u m b e r of Nodes = 40

- A s s u m i n g 8 kbytes has to be transferred for each task assignment (single task),

� . ‘ • T̂ 1 r rp 1 A . , 8 * 1024 * 8 bits
Communication Delay lor 丄 a s k Assignment = ——

10 * 10® bits per second
= 0 . 0 0 7 second

- A s s u m i n g 200 kbytes has to be transferred for each task migration (single task),

Communication Delay for Task Migration =——^^^ 皿 ‘ _ _ ？ — —
10 * 10® bits per second

= 0 . 1 6 second

3.3 Our Cost Model

As Kremien and Kramer noted in [KK92], modeling CPU overhead and network delay is

essential for the correct assessment of both performance and efficiency of dynamic load

balancing algorithms. To design a cost model at the appropriate level of complexity is of

utmost importance.

3.3.1 Design Phi losophy

Eager et aL,s work described in section 3.2.1 represents a major step in designing cost

model for dynamic load balancing algorithms. They emphasized the importance of task

assignment CPU overhead, which is expressed as a fraction of task service demand. How-

ever, they failed to account for the CPU overhead involved in processing polling activities.

As we shall see in chapter 4’ pure sender and receiver-initiated load balancing algorithms ^

have substantial effect on the level of CPU overhead, and thus affect task response time

significantly. In our cost model, CPU overhead of polling activities and load state enquiry

activities are both considered and expressed in terms of percentage of unit CPU time.

Another drawback of Eager et a/.'s model is that network communication delay is

completely neglected. Eager et ai. illustrated that under reasonable assumptions, network

iQr the sender and receiver-initiated components of a hybrid non-adaptive algorithm.

‘ Chapter 3 System Model and Assumptions 25

‘u t i l i zat ion due to dynamic load balancing activities lies in the order of 3 percent for a

system with 100 nodes connected with a 10 Mbit network. They concluded that such

network bandwidth requirement is insignificant and can therefore be neglected. However,

although the network utilization can be neglected, the delay experienced by the messages

transferred via the network cannot. A car running in an almost empty freeway does not

mean that it can arrive its destination instantly. In fact, communication delay is one of the

major characteristics of distributed systems, and is the dominant factor in the design of

information policy of dynamic load balancing algorithms. As Philp commented in [Phi90],

communication delay has a substantial effect on the accuracy of load state information,

which in turn affects the scheduling decisions of load balancing algorithms directly. In our

cost model, communication delay for all messages exchanged are taken into account. In

modeling the communication delay, current network utilization is not considered however.

This is because Eager et al already proved that network utilization due to dynamic load

balancing activities can be neglected. Communication delay therefore depends only on

the nature of the message to be transmitted.

3.3.2 Polling Q u e r y Cost Mode l

In attempting to locate a transfer partner, a query message may need to be sent to the

potential transfer partner to obtain its consent, or to enquire its load state. This operation

is called polling. We assume that the CPU overhead in processing a polling message is

non-negligible and that both the sender and the receiver of the polling message have the

same CPU overhead. This CPU overhead is denoted by CPUpoiiing.

Definition 1 The CPU overhead associated with sending or receiving a polling
message is non-negligible and is represented by the parameter CPU•polling-

Furthermore, the communication delay for transmitting the polling message is assumed

to be non-negligible. Since a polling message is inherently short, we assume that only

one message injection cost Fpoiung is needed. The communication delay for transmitting

a polling message is therefore defined as: - ‘ “

‘ Chapter 3 System Model and Assumptions 26

Communication

Sender of Polling Message Network Receiver of Polling Message

Start user task j execution

Polling required; preempt taskj ………

• CPU polling
Resume taskj ^.11

DELAY polling I \
\ Start user task k execution ~

{ 3 Receive polling message： preempt task k

Task) finished U •

• Prepare reply message

.• . J ^ Resume task k

I / n
DBr•；« poiiin, i / User task execution

丨Z u
Receive reply message A f

• LJ. Task k finished •
• • Polling / simple reply
• • processing

%

Figure 3.2: Time Sequence Diagram — A scenario showing that a CPU is released after a
polling message has been injected into the communication network.

Definition 2 The communication delay experienced by a polling message con-
sists of a single message injection cost FpoiUng^ plus the propagation delay D,
and is represented by DELAY—iing:

DELAYpolling = Fpolling + D

Note that once a polling message has been processed by the CPU (with overhead CPUpoiiing),

the CPU is released from the polling message. The communication delay of the polling

message then becomes independent of its sender node. This is illustrated by the time-

sequence diagram in Figure 3.2. "

3.3.3 Load State B r o a d c a s t i n g Cost M o d e l

Some of the algorithms we study maintain a load table locally in each node. To update a
、 »

load table, load information is exchanged by broadcasting of load information messages.

‘ Chapter 3 System Model and Assumptions 27

‘ S i n c e such a message is also very small as in the case of polling messages, we assume

that load state broadcasting shares similar cost model. Note that each of the receivers

of a load state broadcasting message has to spend certain CPU overhead {CPUpoUing) in

processing the message. Network bandwidth consumption, however, remains the same

because there is only one message.

Definition 3 The CPU overhead associated with sending or receiving a load
state broadcasting message is non-negligible and is represented by the p a r a m - “
Cter C PUpoUing •

Definition 4 The communication delay experienced by a load state broad-
casting message consists of a single message injection cost FpoiUng-, plus the
propagation delay D, and is denoted by DELAYbroadcasting •

D E LAYbroadcasting = F—ling + D

3.3.4 Task Assignment Cost M b del

Task assignment involves the transfer of a "fresh" task from one host to another. The

CPU overhead involved is significantly higher than that of polling activities. We assume

that both the sender and the receiver of the transferred task(s) share the same amount

of CPU cost. Besides, some of the algorithms that we studied employ a new approach of

task transfer called batch assignment. Batch assignment allows a number of tasks to be

transferred as a single batch from a sender to a receiver. ^

Definition 5 The batch size of a task batch is the number of tasks contained
in the task batch.

Batch size has a crucial effect on the CPU cost in processing (composing and decomposing)

a task batch. Obviously, the larger the batch size, the higher the CPU cost. The task

transfer CPU cost is defined as follows.

2Most load balancing literatures focus on sender-receiver negotiation protocols and the measurement
of workload. It is assumed that only a single task can be transferred for each sender-receiver negotiation
session. Batch assignment therefore is a new concept in the study of load balancing algorithms. Detail
of batch assignment will be presented in later chapters.

‘ Chapter 3 System Model and Assumptions 28

Definition 6 The CPU cost associated with task assignment is non-negligible
and is represented by CPUassignment, which is defined as follows:

Ba

CPUassignment ~ Cassign + Cpack * � : U
i=l

where Cassign and Cpack are constants representing the CPU time for running
the assignment algorithm, and the CPU time for composing/decomposing each
task message packet, respectively. The value Ba is the number of tasks con-
tained in the task batch. The value li represents the number of message packets _
generated for a task i. This is referred to as the task code length of i. Within
a node, li has an independent exponential distribution with mean I assign- The
term E 么 k therefore represents the total number of message packets gener-
ated for the task batch.

The communication delay for transmitting a task batch is also assumed to be non-

negligible and is also significantly higher than that of polling activities.

Definition 7 The communication delay experienced by an assignment task
batch relates to its batch size and is defined as follows:

Ba

D ELAYassignment ~
i=l

where Ftask is the time needed for injecting a single task transfer message
packet into the communication channel.

3.3.5 Task Migration Cost Model

Task migration involves the transfer of an executing task from one host to another. The

CPU overhead involved is higher than that of task assignment because of the high cost of

task image saving and restoration, etc. As in the case of task assignment and polling, we

assume that the sender and the receiver of the transferred task(s) have the same amount

of CPU cost, which is defined as follows.

‘ Chapter 3 System Model and Assumptions 29

Definition 8 The CPU cost associated with task migration is non-negligible
and is represented by CPUmigration-, which is defined as follows:

Bm ,
C PU migration ~ Cmigrate + Cpack *�二

where Cmigrate represents the CPU cost for running migration algorithms,
including migrant selection, task image saving/restoration, etc. Within
each node, Cmigrate has an independent exponential distribution with mean
Cmigrateo- This distribution characterizes the fact that some migrations impose _
more CPU overhead because of more opened files, more established communi-
cation channels, and more allocated memory, etc. The value Bm is the number
of migrants in the task batch. The value /• represents the number of message
packets generated for a migrant i. This is referred to as task state length of
i. Within a node, /• has an independent exponential distribution with mean
Imigrate- The term I'i therefore represents the total number of message
packets generated for the migrants.

The communication delay for transmitting a migration task batch is also assumed to be

non-negligible.

Definition 9 The communication delay experienced by a migration task batch
relates to its batch size and is defined as follows:

Bm

D E L/ AYlyiigj^dtion _
i=l

where Ftask is the time needed for injecting a single task transfer message
packet into the communication channel.

3.3.6 Execut ion Pr ior i ty

We assume that executions related to load balancing (polling, assignment, migration,

etc.) have a higher priority than normal user tasks. An user task in execution will be

suspended when a load balancing algorithm has to be invoked. Executions related to load

balancing are themselves scheduled in FIFO discipline. A user task will not be resumed

until all pending executions related to load balancing have been finished, including those

generated in the course of suspension of the preempted user task. Figure 3.3 depicts a
».

scenario showing the execution priority in a node.

^Chapter 3 System Model and Assumptions 30 ''
� j

I

Start user task j execution

• Polling execution P2
Execute polling P2 — • 1 I M

Resume task j B 丨 I I I I 丨

Preempt task j： process reply for P1 ………< - ' ^ j f ， Reply for PI

Polling request from other node
Process polling request »— W i l l i

^ ^ ^ H < Reply for P2; task assignment
Process reply for P2 ^ ^

Task Assignment Execution — _

I I I I I I User task execution

Resume task j I Polling / simple reply
• processing

I Task Assignment execution

Figure 3.3: Time Sequence Diagram — A scenario illustrating the execution priority within a
processing node.

» »

‘ Chapter 3 System Model and Assumptions 31

3.3.7 Simulation P a r a m e t e r Values

Table 3.1 shows the typical parameter values we used for our simulation study. Based

on those parameter values, the values of various CPU and communication costs of our

cost model are derived below. A comparison between our cost model and those described

above in section 3.2 are then given in Table 3.2.

Table 3.1: Typical parameter values used for our simulation study. “

Parameter Value ~| Parameter | Value

"Qo p O II CPUpolling 0.005
Tcpu 0.2 FpoUing 0.001
N 30 Ftask 0.005.
(7A 1 D 0.01

J o [i Cpack 0.003
C assign 0.002
^migrate 0.05
�assign 5
^migrate ^

I'

• Polling CPU overhead (constant):

CPU—ling = 0.005

• Polling communication delay:

DELAYpolling = Fpolling + D

=0.001 4-0.01

= 0 . 0 1 1

• Load state broadcasting communication delay:

D E LAYbroadcasting = Fpolling + D

=0 . 001+0 . 01

= 0 . 0 1 1 ‘

‘ Chapter 3 System Model and Assumptions 32

. • Task assignment CPU overhead (single task):

Ba

CPUassignment — Cassign + Cpack *〉: li

1=1

= 0 . 0 0 2 + 0.003 * 5

= 0 . 0 1 7

• Task assignment communication delay (single task):

Ba

DELAYassignment = {Ftask * U) + D
i=l

= 0 . 0 0 5 * 5 + 0.01

= 0 . 0 3 5 -

• Task migration CPU overhead (single task):

Bm ,
CPUmigration : Cmigrate + Cpack *〉:々

• i=l
= 0 . 0 5 + 0.003 * 7

= 0 . 0 7 1

• Task migration communication delay (single task):

B

DELAYrmgration = (/^tasfc * E + ^

i=l

= 0 . 0 0 5 * 7 + 0.01

= 0 . 0 4 5

» ».

‘ Chapter 3 System Model and Assumptions 33

“ Table 3.2: Comparisons between our cost models and those described in section 3.2.

Eager et al. Shivaratri et al. Our Model
Parameter Value/Remark Value/Remark Symbol Value/Remark

“Number of Nodes 20 11 40 N I 30 —
Task Arrival Rate Independent Independent mean = A Independent

Poisson Poisson Poisson
Distribution Distribution Distribution

Task Service Size mean = 1 time mean = 1 time mean = S 5 = 1 time unit;
unit; unit; Independent
Independent Independent Exponential
Exponential Exponential Distribution
Distribution Distribution

Network Bandwidth Local area 10 MBits per � Local area
broadcast second local broadcast
channel, e.g. area network channel, e.g.
Ethernet Ethernet

CPU overhead for neglected 0.003 time unit CPUpoiUng 0.005 time unit
send/receive a polling
message
CPU overhead for task 0.01 - 0.10 0.02 time unit C P U assignment 0.017 time unit
assignment (single
task)
CPU overhead for task only task 0.1 time unit C P U m i g r a t e 0.071 time unit
migration (single task) assignment had ‘

been considered
Communication delay neglected neglected D E L A Y p o i u n g 0.011
for polling message
Communication delay neglected 0.007 time unit DELAYassignment 0.035
for task assignment
(single task)
Communication delay neglected 0.16 time unit D E L A Y m i g r a t e 0.045 time unit
for task migration
(single task)

3.4 Performance Metrics

Performance is a quantitative measure of the absolute behavior of an algorithm, usually

in terms of mean task response time and total system throughput. Efficiency is a relative

term to describe the cost and overhead paid to attain a certain level o f performance. In

analyzing a load balancing algorithm, both performance and efficiency should be studied.

This is because an algorithm which provides good performance in the expense of intoler-

able amount of overhead does not have much practical value. In this section, we describe

the performance metrics used in analyzing the behavior of load balancing algorithms.

‘ Chapter 3 System Model and Assumptions 34

Some of these metrics are detailed by Kremien and Kramer in [KK92 .

1. Mean Task Response T i m e —

Minimization of mean task response time is the primary performance objective

of our load balancing algorithms. In some literatures, an ideal system with zero

algorithm execution overhead and zero communication delay is also compared and

being regarded as a lower bound. However, this is not a fair comparison since

the ideal system can never be achieved. Using such an ideal system as the lower

bound causes mis-interpretation about the available room for further improvement.

Comparison of performance should always be based on the same system model and

assumptions.

2. S tandard Deviation of Task Response T i m e s —

This performance metric measures the fairness of service because it indicates how

much each individual task can expect its response time can differ from a mean
I

value of the system, regardless of its arrival node. In other words, it measures the

predictability of the system. A successful load balancing algorithm should increase

both system throughput and system predictability.

3. P e r f o r m a n c e Ratio —

n r 丄. metric(REF) - metric(LB) , �
reriormance ratio = (3.1)

metric(REF) �)

where metric{) is the performance or efficiency metric under study; REF is the

reference algorithm; and LB is the load balancing algorithm being studied. The

subtraction should be in the order that a positive performance ratio indicates an

improvement in system performance. The closer the performance ratio to 1, the

better the performance of the LB algorithm with reference to REF. A negative

performance ratio indicates a degradation in system performance.

4. Percentage C P U Overhead —

This efficiency metric measures the percentage of total CPU time spent on running

‘ Chapter 3 System Model and Assumptions 35

. a load balancing algorithm. It measures the level of CPU overhead injected by an

load balancing algorithm to attain the corresponding performance improvement.

5. Net C P U Utilization —

This performance metric equals to the observed CPU utilization minus the percent-

age CPU overhead imposed by running load balancing algorithms. It measures the

effectiveness of a load balancing algorithm in making maximal CPU utilization for

processing user application tasks.

6. R e m o t e Execut ion Percentage —

This efficiency metric measures the percentage of tasks executed remotely, either

through assignment or migration. Zhou et al. found that only a small percentage

of remote execution is needed for achieving a significant performance gain [ZF87 .

Percentage remote execution has two components: percentage assignment and per-

centage migration.
I

7. Channel Utilization —

This efficiency metric measures the communication overhead injected by a load

balancing algorithm, including polling and task transfer messages. A successful

load balancing algorithm should not only maximize the total system throughput,

but also struggles to reduce the communication overhead injected.

8. Hit Rat io —

The ratio of successful polling decisions to the total number of polls sent out. It

measures the quality of scheduling decisions made by a load balancing algorithm.

The exact definitions of a hit and a miss depend on the particular negotiation

protocols of an algorithm.

Chapter 4

A Performance Study on Load

Information Dissemination

Strategies

Recall that a load information dissemination strategy deals with the way load state in-

formation of processing nodes are distributed. There are two major categories of load

information dissemination strategies:

• In the first category, each node maintains a system load table, which stores the load

states of all the nodes in the distributed system. To find a potential sender/receiver,

the location policy needs only to examine the local load table only.

• The second category of load information dissemination strategies assumes no load

table. Load information must be exchanged on demand by polling. Eager et al.

studied the effect of complexity of such algorithms on the system performance

EL86b]. They concluded that complex strategies is of little benefit over simple

use of state information.

However, the relative merits between these two categories of load information dissemina-

tion strategies are not clear. In this chapter, we present a performance study of two sets

of dynamic load balancing algorithms which differ in their load information dissemination

strategies: . •

36

‘Chapter \ A Performance Study on Load Information Dissemination Strategies 37

. • AWLT (Algor i thms with load t a b l e) —

Algorithms in this category assume the use of a locally maintained load table which

stores the load states of all the processing nodes in the distributed system.

• AWOLT (Algorithms without load t a b l e) —

Algorithms in this category do not assume the existence of load tables and load

information of other processing nodes must be obtained by polling.

In addition to the study of load information dissemination strategies, we will also introduce

the batch assignment.

4,1 Algorithm Descriptions

In this section, we present the two sets of algorithms used. Within each category, different

location policies are used. Besides, some algorithms adopt the batch assignment approach.

4.1.1 Transfer Policy •

Recall that a transfer policy contains two parts: (1) algorithm initiation policy; and

(2) task selection scheme. All the algorithms studied in this chapter share the same

algorithm initiation policy described below. The task selection scheme is different — some

algorithms allow only single task assignment whereas others allow batch assignment.

4.1.1.1 Algor i thm Initiation Policy

Task assignments are needed whenever a node is regarded as a potential sender or as a

potential receiver. This in turn depends on the load state of a node. It has been shown

that precise numerical load measurements do not yield significant performance advantage

when compared to simple load index [EL86b] [NXG85]. Therefore it is sufficient to use a

3-level load measurement scheme to describe the busyness of a node. The three load levels

are H-load (high load), N-load (normal load), and L-load (light load). A node in H-load

is regarded as a potential sender, whereas a node in L-load is a potential receiver. The

definitions of these load states are given in Table 4.1. Intuitively, if the total number of

‘Chapter \ A Performance Study on Load Information Dissemination Strategies 38

tasks residing in a node Pi, denoted as Ki, is not greater than a designated lower-threshold.

Pi is regarded as in L-load. If Ki is greater than a designated upper—threshold, Pi is

regarded as in H-load. Otherwise, the node is normally loaded. For our simulation study

presented in this chapter, we define upper-threshold as [Qo-\-2). Thus, if the service queue

is full and at least one task is waiting in either the task queue or the threshold queue,

the node is regarded as in H-load. Sender-initiated negotiation starts whenever a local

task arrival triggers its arrival node into the H-load state. Receiver-initiated negotiation,

starts if a task completion makes that node in L-load state.

Let Ki = total number of tasks residing in the node Pi
Qo = service queue capacity
lower-threshold = simulation parameter “
upper Jhreshold = {Qo + 2)

Table 4.1: The 3-level load measurement scheme used in AWLT and AWOLT algorithms.

Load State Criteria
L-load Ki < lower Jhreshold
N-load lower Jhreshold < Kj < upper Jhreshold
H-load Ki > upper Jhreshold

4.1.1.2 New Task Transfer Approach — Batch Assignment (First Version)

All the existing load balancing algorithms assume the use of single task transfer (either

assignment or migration). In this section, we introduce a new concept in the study of

load balancing, namely the batch assignment. Batch assignment allows a number of tasks

to be transferred as a single batch from a sender to a receiver for each single sender-

receiver negotiation session. Batch assignment therefore makes a more efficient use of a

negotiation session. To transfer a certain amount of workload, batch assignment injects

less CPU and communication overhead because less negotiation sessions are required.

The determination of the appropriate batch size is a critical issue in batch assignment.

This is governed by three Batch Size Determination Rules. The aim of these rules is to

‘Chapter \ A Performance Study on Load Information Dissemination Strategies 39

avoid excessive task transfer, which may make the receiver node more heavily loaded than

the sender node after the batch assignment. These three rules are stated below.

Let max = maximum number of tasks the receiver is willing to accept

t = number of tasks the sender is willing to send to the receiver

Rule 1: After accepting max tasks, the receiver should not be in H-load,
neglecting new arrivals and departures during the negotiation and task ..
transfer operations.

Rule 2: After transferring t tasks, the sender node should not be in L-load.

Rule 3: After transferring t tasks, the expected total number of tasks in
the receiver should not be greater than the total number of tasks in the
sender, neglecting new arrivals and departures of the receiver.

The values of max and t are determined by two functions: MaxAssign{) and Num.AssignO,

respectively. Note that MaxAssignC) is used by a receiver, and NumAssign{) is used by
I'

a sender. These two functions are presented in Figure 4.1. Figure 4.2 shows the invoca-

tion of these two functions by a sender and a receiver. For sender-initiated negotiations,

a sender node first selects the target potential receiver node by its location policy. A

polling message will be sent to the target potential receiver. The potential receiver node,

upon receiving the polling message, invokes the function MaxAssignQ to determine the

value max, the maximum number of tasks the receiver is willing to accept. Note that

the function MaxAssign() depends only on the current workload of the receiver and the

designated upper .threshold. It does not need to know the workload of the sender. The

value of max will then be sent to the sender as an acknowledgement (ack) message. The

sender node, upon receiving this ack message, invokes the function NumAssign��to de-

termine the value t, the number of tasks the sender is willing to send to the receiver. Note

that the function NumAssign��requires the function parameter max, which is used for

estimating the workload of the receiver. Tasks are then selected from the task queue of

the sender node to compose the task batch, which will then be sent to the receiver. Note

that the task selection scheme may select less than t tasks for remote assignment. The

‘Chapter \ A Performance Study on Load Information Dissemination Strategies 40

final batch size measured in terms of number of tasks is denoted by b. Receiver-initiated

negotiations take a similar way.

4.1.2 Information Policy

The second component of a load balancing algorithm is the information policy, which

contains two parts: (1) content of load information, and (2) the information dissemination

strategy. For the algorithms we studied in this chapter, load information content is simply-

the load state of a node as defined in section 4.1.1.1, — either H-load, N-load or L-load. For

information dissemination strategy, AWLT algorithms maintain local load tables which

store the load states of all other nodes. To update the load tables, a node broadcasts

its new load state whenever its load state changes. In AWOLT algorithms, no load table

is assumed. Instead, algorithms must poll for load information if remote assignment is

being considered.

I'

4.1.3 Location Policy

AWLT and AWOLT each consists of five different algorithms. The algorithms are care-

fully designed to cover both sender-initiated and receiver-initiated approaches. In order

to compare the effect of the existence of a load table, the two sets of algorithms are sym-

metrical in the sense that each algorithm in one category has a counterpart in another

category. Because of this symmetry, we will not repeat the algorithm description for

each set.

1. Single Sender Cyclic Ass ignment - SSCA.with, SSCA.without

These are sender-initiated single task assignment algorithms. When a sender con-

siders a remote assignment, it negotiates with a target node for getting the consent.

The target node is selected as follows. For the AWLT algorithm [SSCA.with),

nodes are selected in a cyclic manner and the load information maintained in the

local load table are referenced. If a node is not in L-load, it is discarded and another

node is selected. Thus the load table serves as a filter in target nodfe selection. The

‘ C h a p t e r \ A Performance Study on Load Information Dissemination Strategies 41

MaxAssign{) NumAssign{)

Let Kr = Number of tasks currently residing Let Kg = Number of tasks residing in the
, in the receiver sender when the polling/ack mes-

Let Kj. = Number of tasks residing in the re- sage is received
ceiver after the task transfer Let t = Number of tasks sender x is willing

to send to the receiver

If max tasks are relocated,
, By Rule 2,

Kj. w Kr + max
Kg — t > lower Jhreshold

By Rule 1,
, t < Ks — lower Jhreshold (4.2)

/i; < upper Jhreshold , .
— Using equation (4.1), sender node estimates Kr

Thus, from max as follows.

max < upper Jhreshold — Kr Kr « upper Jhreshold - max

Taking the largest possible value, By Rule 3,

max = upper.threshold — Kr (4.1) Kr + t < Kg —t

For the load state criteria defined in Table 4.1, Thus,

max = (Q � + 2) - AV � < Ks + max - upper Jhreshold (斗 3)

For the load state criteria defined in Table 4.1,

Ks + max - Qo - 2
I \

_ 2
Of course,

t < max (4.4)

t is taken to be the largest integer satisfying the

inequalities (4.2) to (4.4).

F i g u r e 4.1: Functions MaxAssign{) and NumAssign{) for determining the'desired batch size
t.

» ‘ .

‘ C h a p t e r \ A Performance Study on Load Information Dissemination Strategies 42

Sender-Initiated Receiver-Initiated
Sender

^\Polling z Receiver
^ ^ Polling: < m a x > / ^ max = MaxAssign()

Receiver ^^^
^ max = MaxAssignQ „ , Z

^ ^ Sender
^ ^ ' ^ c k : <max> t=NumAssign(max)

Sender b=Task Elect ion
t=NumAssign(max) ^ ^ T r a n s f e r : <b t a s k s �

b=Task Elect ion

<b t a s k s � ^ Receiver

^^ Receiver ~

Figure 4.2: The role of MaxAssignQ and NumAssign{) in determining the batch size b.

location policy stops if either probe-limit trials have been made or no L-load node

is found in the load table. Similarly, for the AWOLT algorithm (SSCA.without),

nodes are polled in a cyclic manner. However, no filtering can be made and thus all

nodes (except the sender itself) in the system are potential target nodes.

2. Single Receiver Cyclic Ass ignment - SRCA.wiih, SRCA.without

The single receiver cyclic assignment algorithms are similar to the single sender

cyclic assignment algorithms {SSCA)^ except that they are receiver-initiated.

3. Batch Receiver Cyclic Ass ignment - BRCA.with, BRCA.without

These receiver-initiated algorithms are very similar to SRC A algorithms except that

the batch assignment approach as described in section 4.1.1.2 is being employed.

Note that these two algorithms are counterparts to SRC A. with and SRCA.without.

They serve to compare the performance between single task assignment and batch

assignment.

4. Single S y m m e t r i c a l Cyclic Ass ignment — SXCA.with, SXGA.without

These symmetrically-initiated algorithms are combinations of the SSCA and the

SRC A algorithms. Algorithm SSCA is initiated when a local task arrival triggers

its arrival node into the H-load state. Algorithm SRC A is initiated when a task
« ».

completion makes that node in L-load state.

‘ C h a p t e r \ A Performance Study on Load Information Dissemination Strategies 43

. 5 . Batch S y m m e t r i c a l Cyclic Ass ignment — BXCA.with, BXCA.without

These symmetrically-initiated algorithms are combinations of the S S C A and the

BRCA algorithms. Algorithm SSCA is initiated when a local task arrival triggers

its arrival node into the H-load state. Algorithm BRCA is initiated when a task

completion makes that node in L-load state. BXCA algorithms can also be regarded

as the batch assignment counterparts of SXCA algorithms.

4.1.4 Categorization of the Algor i thms

Table 4.2 gives a detailed classification of the algorithms in term of policy types.

Table 4.2: Classification of AWLT and AWOLT algorithms according to policy types

.. II Sender- Receiver- Symmetrically- Single/Batch
Algorithms Initiated Initiated Initiated Assignment

AWLTSSCA.with II V I II S
SRCA.with — yj — S —
BRCA.with — 7 — B ——
SXCA.with — s j — S —
BXCA.with II \j S/B

AWOLT SSCA.without 11 ^ S
SRCA.without — J S —
BRCA.without B —
SXCA.with^^ 一 一 V S —
BXCA.without x/ S/B

4»2 Simulations and Analysis of Results

According to the algorithms presented in section 4.1, we have run numerous simulations

with different parameter values using SimScript 11.5. This section describes and analyses

the simulation results.

‘ C h a p t e r \ A Performance Study on Load Information Dissemination Strategies 44

4.2.1 Per formance Comparisons

Figure 4.3 and Figure 4.4 present the performance of the AWLT and AWOLT algorithms

respectively. The values of the simulation parameters used in these particular sets of

simulations are presented in Table 4.3.

Table 4.3: Values of simulation parameters used for studying performance of AWLT and
AWOLT algorithms 一 presented in Figure 4.3 and 4.4.

Parameter Value Parameter Value

~Qo p O CPUpolling 0.005

Tcpu 0.2 Fpolling 0.001
N 30 Ftask 0 .005

(7a 1 D 0.01
So 1 Cpack 0.003
lower-threshold 5 C assign 0.002
upper-threshold Qo + 2 Lssign 5
probe-limit 5

I'

Performance Improvement

Figure 4.3(a) and Figure 4.4(a) depict the average task response time of all the algorithms.

Compare with a system running no load balancing algorithm, the average response time

improvement is roughly 23 times for both AWLT and AWOLT algorithms. (The data

for not using load balancing algorithms are not shown in the figures as they are out of

the range in the figures.) Similarly, the CPU utilization is increased for both sets of

algorithms as shown in Figure 4.3(b) and Figure 4.4(b). The most significant reason for

the increase of CPU utilization is that idle machines and lightly loaded machines are

more fully utilized. This also accounts for the improvement in response time. However,

the increased CPU utilization is partly contributed by the overhead of running the load

balancing algorithms as shown in Figure 4.3(c) and Figure 4.4(c). In any case, the net

CPU utilization still outperforms a system without load balancing algorithm, as shown

in Figure 4.3(d) and Figure 4.4(d).

Figure 4.3(e) and Figure 4.4(e) show the standard deviation of response time for the

‘ C h a p t e r \ A Performance Study on Load Information Dissemination Strategies 45

‘ , . 7 7 7 - - I n
70 . SSCA.wilhout / / / / / • z : , ' - /

SRCA.without - + … / / / 95 . y i *， • ‘ / SSCA.wilhout -
BRCA.withoul / / / x A x ' - " / SRCA.without

60 • SXCA.wiihout / r y / - yX- / BRCA.without -O…
BXCA.wi ihout / / J / / •备 / SXCA.wiihout

/Lyy / 90 • /A' y BxcA.wiihout -‘••
I 如 - M/ / • I /

i: 虞/ : i ： ^ :
' � • / z ' ' ' '

0 I ‘ ‘ ^ 1 70 L ‘ ‘ ‘ ‘ ^ ‘ ‘ ‘
0.85 0.9 0.95 1 1.05 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

Mean Arrival Rutc Mean Arrival Rale

(a) Response Time (b) CPU Utilization -

16 广 姆 贫 ‘ ‘ ‘ I 湖 I ‘ ‘ , . “ : : : : 丄 - 二 力 二 “ ： 二 龙 ~

14 • / SSCA.without 95 -
/ ‘<>::�乏、•：•�\ SRCA.without … ；fy
/ � � � • • � • � B R C A . w i i h o u l •… f

12 - 礼 . . / � S n \ SXCA.without 90 - y
/ .'..la BXCA.without

f l ！ : : / . .
6 • W ^ V 5 75 - / z ' - . SSCA.wiihoot 一 • I in义yy 之 / m ' SRCA.without -和一

/ —翼’ B R C A. without 务••
A . X 70 I f X S X C A . without

�� X B X C A . without 一 .
^ ^ � � \ 声 no L B

2 - � � - � “ - ..Z
0 I • • • _ • J _ _ • 60 > ‘―̂ ‘ ‘ ‘ ‘ •
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0.7 0.8 0,9 1 1.1 1.2 1.3 1.4

Mean Arrival Rate Mean Arrival Rale

(c) Percentage CPU Overhead •, (d) Net CPU Utilization = Measured CPU Uti-
lization - C P U Overhead

,oo| . . 1 /I 厂 丨 ‘ ' I r ^ — ‘ — ‘ — ‘ — ‘ —
// f /SSCA.wilhout “

f / /SRCA.without 一…
� , � / / / • BRCA.without o - SSCA.wilhout S • / / / / SXCA.wiihout • “ ^ ^ SRCA.without - •

.9 / / I ！ BXCA.without • ‘ - . \ B R C A. without 任…
•1 / / \ SXCA.without £ / i / / X BXCA.wiihoui
】《>. I / • 芸 \ •

r_J/ . V ,
20 ~̂ T • 0.2 • U' •
0 1 , , . , J … 一 一 一 • 蜜
0.8 0.85 0.9 0.95 丨 1.05 丨 0 0.2 0.4 0.6 0.8 丨 1.2 1.4

Mean A n i v u l Rate Mean Arrival Rate
(e) Response Time Standard Deviation (f) Hit Ratio

40 I 1 1 1 1 1 -r— 1 25 I 1 . . 1 1 1
广 * 麵 k

35 . SSCA.wiihoui
V. SRCA-wiihout -•”•

一 20 • / 双 . S 遂 : B R C A . w i t h o u l •办… .
30 • 二 、 兔 . . � � < � ^ X SXCA.without -H

/ � � \ B X C A . w U h o u i - ‘ - -

i ： 广 \ : t.l 、 ：

s SSCA.without ° I
I SRCA.without — … V 秦 7 Z

10 • / BRCA.wiihout � � a
I SXCA.without 5 - .

5 I BXCA.without

oi—i ‘ ‘ ‘ . . ‘ 1 0 1 • * _ • —Ote …
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 I 1 .2 1.4

Mean Arrival Rule Mean Arrival Rate

(g) Remote Execution Percentage (h) Channel Overhead in Terms of Mean Number
of Messages in Channel

F i g u r e 4 .3 : Performance of AWOLT algorithms. Values of simulation parameters are given in

Table 4.3 on page 44.

‘ C h a p t e r \ A Performance Study on Load Information Dissemination Strategies 46

80 I 1 1——7 7~ry 77 1 丨⑷[‘ ‘ t • » B ̂ • " “‘ ' ' ' ‘ |
‘ 7 / / // i ^ z

70- SSCA.wiih ,/ X / /.•'• • /•/ / .只• � � ” • .L SRCA.with ―… / / / /O 95 - i ' ,••• SSCA.with -BRCA.with Z / / / / / / / SRCA.w,ih ―… 60 • SXCA.wiih H Z X J / / /A/ /• BRCA-with — BXCA.wilh -‘-• / X 乂 // /7/ , SXCA.w,th

1： / / / / : 1：# -

0 , vol . . I
0.85 0.9 0.95 I 1.05 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 Mean Arrival Rate Mean Arrival Rate

(a) Response Time (b) CPU Utilization _

16 , , , r . -| '00 ‘ • . . .

14 • , SSCA.wilh — - 95 . -A SRCA.with … A BRCA.with _

1： : !：:： / —
4 ,声 V \ 岸 BXCA wiih

2 . � ‘ 4 • 65. , Z - - .
°0 0.2 0.4 0.6 0.8 1 1.2 1.4 0.7 0.8 0.9 1 l-l '-2 " 1.4 Mean Arrival Rale Mean Arrival Rate

(c) Percentage CPU Overhead (d) Net CPU Utilization = Measured CPU Uti-
lization - C P U Overhead

"I ‘ 7 I 7 ~ [i s一一I 丨II' • ' •
I / / /; SRCA.with -+… . V „ I / / ； BRCA.wiih . 0 8 . \ (• SSCA-with . •. 0 80 • / / / I; SXCA.with - “ ® \ ^ SRCA.wiih ••… •g / / / / / BXCA.wilh —- • N ^ ^ \ T BRCÂwith o…

1 I / / i ft.:�� �� V SXCA.wiih
t f i / ••�. �� �� 1 BXCA.wiih -‘---

L_ J / / j : C [
20 • 0 2 • I -

0 I . 1 ol—i ‘~—~‘ ‘ ‘ ‘ ‘
0.8 0.85 0.9 0.95 1 1 05 1.1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Mean Anival Rule Mean Arrival Rate

(e) Response Time Standard Deviation (f) Hit Ratio

40 [, , , r- . 1 25 I
35 . SSCA-wiih

. •̂ '•'•'dMT̂ \ SRCA wilh W 20 • BRCA.wiih O…
30 . I L K SXCA.with

^ ^ BXCA.wilh -‘--

r. \ . . I-
！： \ ： I,�. -

If SSCA.with -̂― / SRCA.with 10 - / BRCA.wiih .份…
/ SXCA.wiih 5 , • j BXCA.wilh -̂""'iiSSw-

I ol „
O 0.2 0.4 0.6 0.8 I 1.2 1.4 0 0.2 0.4 0.6 0 8 1 1 2 1.4 Mean Arrival Rate Mean Arrival Rate

(g) Remote Execution Percentage (h) Channel Overhead in T>rms of Mean Number
of Messages in Channel

^ ' i gure 4A: Performance of AWLT algorithms. Values of simulation parameters are given in

Table 4.3. on page 44

‘Chapter \ A Performance Study on Load Information Dissemination Strategies 47

algorithms. The average improvement of this performance metric compared to a system

without load balancing algorithm is roughly 17 times for both AWLT and AWOLT al-

gorithms. (Again, the data for not using load balancing algorithms is not shown, in the

figures as they are out of the range.) This indicates that a system using load balanc-

ing algorithms not only provides a faster response time, users can also expect a more

predictable response time.

P e r f o r m a n c e of AWOLT Algor i thms

Figure 4.3(a) shows that the pure sender-initiated algorithm {SSCA.without) performs the

best at system loads up to around 0.93. At higher system loads, the pure receiver-initiated

algorithms {SRCA. without and BRCA.without) outperform SSC A. without. This agrees

with many published work on load balancing algorithms study and can be explained as

follows. At low system load, the probability that a sender node finds a receiver node is

high. This is reflected in the high hit ratio of SSC A. without as shown in Figure 4.3(f).

This also explains why the CPU overhead and channel overhead of SSC A. without at low

system load are very low as shown in Figure 4.3(c) and (h). At high system load, most

nodes are heavily loaded and the probability that a sender node finds a receiver node is low.

This results in the decreasing hit ratio for sender-initiated algorithms. A sender node may

need to poll many times (but up to probe-limit) before it can find a receiver or abandon

the polling operation. The CPU and channel overhead of sender-initiated algorithms go

up with the system load, thus worsening the already busy sender nodes. Some literatures

refer to such pollings with low hit ratio as indiscriminate probings (pollings) [SK90]. On

the other hand, for receiver-initiated algorithms at low system loads, the probability that

a receiver node finds a sender node is low. This explains the high CPU overhead and low

hit ratio of SRC A. without and BRC A. without as shown in Figure 4.3(c) and (f). At high

system loads, a receiver has no problem in finding a sender node. This accounts for the

decreasing CPU and channel overheads of receiver-initiated algorithms.

The symmetrically-initiated cyclic assignment algorithms {*XCA.without) are essen-

tially non-intelligent combination of the sender- and receiver-initiated components. Thus,
» * •

‘Chapter \ A Performance Study on Load Information Dissemination Strategies 48

the CPU and channel overhead are more or less the sum of the two components. Their

performance is therefore the worst among AWOLT algorithms.

The above results indicate that if polling is being used as the information dissemi-

nation strategy, neither pure sender-initiated nor pure receiver-initiated algorithms are

satisfactory over the whole range of system load. To remedy such intrinsic weakness of

these two kinds of algorithms, an adaptive algorithm which alters its scheduling policy

according to current system load can be used [SK90]. Or, we can use the load table,

approach as in AWLT algorithms.

Comparison Between the Two Categories

The most notable difference between the two categories of algorithms is in the CPU

overhead and channel overhead (Figure 4.3(c), (h) and Figure 4.4(c), (h)). For AWOLT

algorithms, both CPU and channel overhead change with system load. The trend de-

pends on the nature of the particular algorithm. For pure receiver-initiated algorithms

{SRCA,without and BRCA.without), both the CPU and channel overhead are relatively

large at low system load. They are decreasing with increasing system load however. The

pure sender-initiated algorithm (SSCA.without) has the reverse trend. These trends are

a direct result of the indiscriminate pollings discussed earlier. Symmetrically-initiated

algorithms have a trend more or less as the addition of their individual sender-initiated

and receiver-initiated components.

For AWLT algorithms, both CPU and channel overhead increase with the system load

until some point where the system becomes saturated. After the saturation point, they

decrease and converge rapidly. This trend reflects that load tables function as a filter to

avoid indiscriminate pollings. Few H-load nodes can be found in load tables at low system

load and few L-load nodes can be found in load tables at high system load. Inappropriate

nodes are avoided from being considered as the targets for getting transfer consent.

Another major difference is in the hit ratio (Figure 4.3(f) and 4.4(f)). It can be seen

that the hit ratio of AWLT algorithms is always better than that of AWOLT algorithms.

This again reflects the filtering effect of load tables.

‘Chapter \ A Performance Study on Load Information Dissemination Strategies 49

Per formance of Batch Assignment Algori thms

Figure 4.3(a) k (e) and Figure 4.4(a) k (e) show that the batch assignment algorithms,

BRCA.without and BRCA.with, have the best performance in terms of both task response

time and standard deviation of task response time. This is because whenever a receiver

node finds a sender node, BRCA algorithms can remove a batch of tasks from the sender

in a single negotiation session. Load imbalance is smoothed out efficiently. This is re-

flected in the relatively high remote execution percentage of BRCA algorithms (when,

compared to their single task assignment counterparts, SRCA algorithms), as shown in

Figure 4.3(g) and Figure 4.4(g). Since less polling cycles are needed, BRCA algorithms

have relatively low CPU and channel overheads (again, compared to SRC A. without), as

shown in Figure 4.3(c) and (h). All these mean that BRCA algorithms are making the

most efficient use of available CPU capacity. This is shown in Figure 4.3(d) and Fig-

ure 4.4(d). In summary, batch assignment BRCA algorithms can smooth out workload

imbalance efficiently through a higher percentage of task transfer with minimum CPU

and communication overheads. In terms of both performance and efficiency, batch task

assignment is promising.

4.2.2 Effect of Imba lance Factor on AWLT Algor i thms

Imbalance factor is a quantitative measure of the degree of workload imbalance. In order

to study how the algorithms perform under different degrees of workload imbalance, a set

of simulations are conducted with different imbalance factors ax = {0.01,1.00, and^.OO}.

Figure 4.5 depicts the distribution of task arrival rates with the three different imbalance

factors. It can be seen that with small imbalance factor (0.01), all the nodes in the system

have very close mean task arrival rates. As the imbalance factor increases, the distribution

of task arrival rates are more dispersed. This means that a few nodes tend to have a much

higher task arrival rate than the others. In such case, more task relocations are needed for

attaining a workload balance among the nodes. Figure 4.6 shows the effect of imbalance

factor on the performance of AWLT algorithms. Corresponding simulation parameters

are shown in Table 4.4. We have the following observations. ’ •

‘Chapter \ A Performance Study on Load Information Dissemination Strategies 50

18 I 1 1 1 1 1 1 1 1 1

1 6 - -

14 - I m b a l a n c e Fa c t o r=0 .01 -
I m b a l a n c e F a c t o r = l .OO
I m b a l a n c e F a c t o r = 3 .OO

1 2 - -

lO] _

J" 8 -

6 -丨 -

4 MA.— -
\AK\ ！、、

o AAA • • • 八 • • A .
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 T a s k A r r i v a l R a t e

Figure 4 .5: Distribution of arrival rates under varying imbalance factors. Log Normal Distri-

bution with mean 0.5. Generated by SimScript II.5 for 30 processing nodes (N = 30).

Table 4 .4: Values of simulation parameters used in the simulations presented in Figures 4.6.

Parameter Value Parameter Value

~Qo p O CPU—ling 0.005
Tcpu 0 . 2 FpoUing 0 . 0 0 1
N 30 • Ftask 0.005
G\ variable D 0.01
So 1 Cpack 0.003
lowerJhreshold 5 Cassign 0.002
upper-threshold Qo + 2 Lssign 5
probe-limit 5

1. Figure 4.6(a) shows that for a small imbalance factor ((JA = 0.01), the performance

of AWLT algorithms is very close to the theoretical performance of a M/M/1 system,

that is, saturation occurs at system load of 1.0. In fact, Figure 4.6(d) shows that

the net CPU utilization is very close to 100% when the system load is above 1.0,

for (7\ = 0.01. This can be explained as follows. For small imbalance factor, the

task arrival rates of the processing nodes in the system are very close. Most of the

nodes therefore have the same load state most of the time. At low system load, a

receiver node can hardly find a sender node. Similarly, at high system load, a sender

node can hardly find a receiver node. Thus, there are not many task relocations.

This is shown in Figure 4.6(e) as a very small percentage remote execution when

(JA = 0.01. Because of the small number of task relocations, CPU overhead and

‘ C h a p t e r \ A Performance Study on Load Information Dissemination Strategies 51

1 I ill '1 I I -
80 . " . 80 - - V X -

Imbalance Faclor=0.01 ！ j / Imbalance FaciorxsO.Ol ..••>' /
Iinbaluncc Factors 1.00 • I f Imbalance Faclor=1.00 .-•>'
Imbalance Faclorss3.00 o•… ？ / Imbalance Factora3.00

r // . r X
11 s 奶 - ~

20. U / 20- ^ ^
0 —"•‘ t t t t t • _ . 1 o i * ^ ‘ ‘ ‘ ‘

0 0.2 0.4 0.6 0.8 丨 1.2 0 0.2 0.4 0.6 0.8 1 1.2
Mean Arrival Rate Mean Arrival Rate

(a) Response Time (b) Percentage CPU Utilization

16 I . . . ' 1 I � I ‘ ‘ • ,
1 一 - 一 一

14 - / H • 90 - 一 -
12 • Imbalance HuciorsO.Ol A 圾. V ® " Imbalance Factoi-al.OO / \ \

Imbalance Fuctor«3.00 … / J \ •• 5 80 • ^ ^ T

!：： /少,V.......:卜/
Z I 60 < Imbalance FactorBO.Ol -••一

/ / I Imbalance Factor-1 .()()
4 • y^ y • \ � � • Imbalance Factor=3.00 o-•• 0 1 . 1 , , I , ^ ^ S ^ . . . _ _ _ . . — . . ^

0 0.2 0.4 0.6 0.8 1 1.2 0.6 0.7 0.8 0.9 I 1.1 1.2
Mean Arrival Rate Mean Arrival Rate

(c) Percentage C P U Overhead (d) Net C P U Utilization

60 I . , . . . 1 1.2 I . 1 1 . 1 1

Imbuluncc Huclor-0.01
Imbulancc Factors 1.0() pq

50 • Imbalance Factor=3.(X) •«> •• . 1 • Imbalance Factora=0.01 •这 ^
.0- " "Qo Imbalance Factonsl.OO 边 \

••• ‘.. Imbalance Factor=3.(X) • • ta
•.a.. •••ta., 0

6 40 • 0.8 • /• V

I 1 / , � � ‘ . . .

I / z \ e / \ �
/ / z'z

1�- // • �.2 - Z Z -
o. 1/ 0 . . : � : . - I I .

0 0.2 0.4 0.6 0.8 丨 1.2 0 0.2 0.4 0.6 0.8 丨 1.2
Mean Arrival Rate Mean Arrival Rate

(e) Percentage Remote Execution (f) Channel Overhead

Figure 4.6: Effect of imbalance factor on performance of AWLT algorithms. Simulation pa-
rameters are shown in Table 4.4 on page 50.

»

‘Chapt e r \ A Performance Study on Load Information Dissemination Strategies 52

. channel utilization associated with task relocations are also small. These are shown

in Figure 4.6(c) and Figure 4.6(f), respectively.

2. Figure 4.6(a) shows that as the imbalance factor increases, the performance of AWLT

algorithms degrades. This can be explained as follows. For larger imbalance factors,

the task arrival rates of the processing nodes are more dispersed. That is, some

nodes tend to have significantly larger task arrival rates than others. We can expect

that more task relocations are needed in order to maintain the workload balance.

Figure 4.6(e) shows that as the imbalance factor increases, the percentage remote

executions also increases. Similar trend can be observed for CPU and channel

overhead, as shown in Figure 4.6(c) and (f) respectively. Because of the larger C P U

overhead, less C P U capacity is available for user task processing. This is shown

in Figure 4.6(d) as a decreasing net CPU utilization as imbalance factor increases.

The reduced processing capacity accounts for the increasing task response time as

imbalance factor increases. Another reason for the increased task response time is

that a large portion (around 30% when a\ = 1.00 at system load 0.9, and around

55% when a\ = 3.00 at system load 0.9) of tasks are executed remotely. These task

experienced time delay due to assignment algorithm execution and communication

delay via the network.

4.2.3 C o m p a r i s o n of A v e r a g e P e r f o r m a n c e

Figure 4.7 shows a comparison of the average performance of AWLT and AWOLT algo-

rithms. The simulation parameters associated with the simulations are identical to those

shown in Table 4.3 on page 44. We have the following performance observations.

At low to medium load (up to 0.75), the two categories have identical performance

in terms of task response time. At high system load, AWOLT algorithms perform better

than AWLT algorithms. This can be attributed to three reasons.

» .

‘Chapte r \ A Performance Study on Load Information Dissemination Strategies 53

7 1 0 0 I 1 . 1 1 >
r X
5 85 - / A W L T — •
£ / A W O L T …

厂 V 1
0 I ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1 7 0 ‘ ‘ ‘ ‘

0.7 0 .75 0 .8 0 . 8 5 0 .9 0 .95 1 1.05 1.1 0.7 0 .8 0 .9 1 1.1 1.2 1.3
Mean Air ivul Rate M e a n Arrival Rate

(a) Response T i m e (b) Net C P U Utilization -

14 I . . 1 . . . 1 20 I . . T .

AWLT — 广 “ 〜 � \

.2 - r - � A ™ . • I

.0-； \ \ \ A . ；：：/ \ \ :
” I / \ ^ \ A W L T

rf X \ . l;:i . \
：̂' / ^ ： «：：
J ̂ -r^ ：]

0 0 .2 0.4 0 .6 0.8 1 1.2 1.4 0 0 . 2 0.4 0 . 6 0 .8 1 1.2 1.4
Mean Arrival Kate Mean Arrival Rale

(c) Percentage CPU Overhead (d) Channel Overhead

Figure 4.7: Average performance of the A W L T and A W O L T algorithms. Simulation param-
eters are shown in Table 4.3 on page 44. Average performance is taken to be the mean of the
performance results of the component algorithms within each category.

1. AWLT — Less C P U capacity is being used for processing user tasks:

From Figure 4.7(c), it can be seen that for system loads below 0.75, AWLT algo-

rithms have a lower CPU overhead than AWOLT algorithms. In this range of loads,

the system has enough spare capacity to accommodate the overhead introduced by

running the load balancing algorithms without imposing adverse effect on the mean

task response time. The difference in amount of overhead is virtually insignificant.

This results in the identical mean task response time.

Beyond system load 0.75, the system is becoming saturated and the system is less

stable than before. In AWLT algorithms, frequent exchanges of load information

messages are needed. This results in the high C P U overhead of AWLT algorithms

as shown in Figure 4.7(c). This means that in AWLT algorithms, less CPU capacity

‘Chapt e r \ A Performance Study on Load Information Dissemination Strategies 54

. is available for processing user tasks, as shown in Figure 4.7(b).

2. AWLT — Out-dated Load Information in Load Tables:

For both categories of algorithms, a sender or a receiver needs to get the consent

from its counterpart before task transfer can take place. Conceptually, in AWOLT

algorithms, the polling process is a combination of load state query and transfer

negotiation. This means that the polling operation tries to locate a node which

is appropriately loaded and to negotiate with that node for the task transfer. In “

AWLT algorithms, host selection from load tables may not be helpful unless the

load information stored is up-to-date. Due to communication delay, this may not

be the case however. This problem is particularly serious if the network is heavily

congested or the communication delay is high.

3. AWLT — Higher Chance of Processor Thrashing:

In AWLT algorithms, the filtering effect of load tables limits the number of potential

target nodes from which a node can get consent for task transfer. This results in

a phenomenon called processor thrashing, which refers to the situation where a

number of sender nodes try to negotiate with the same potential receiver node

simultaneously, or vice versa. Processor thrashing results in the adverse effect of

wasted negotiations (low hit ratio) and wasted CPU capacity (high C P U overhead)

which otherwise can be utilized for processing user tasks. Since host selection in

AWOLT algorithms is more dispersed, the workload may be more evenly distributed.

On the other hand, Figure 4.7(d) shows that AWLT algorithms have much lower channel

overhead then AWOLT algorithms. This simply reflects: (1) the indiscriminate pollings

of AWOLT algorithms at high and low system loads; and (2) the broadcasting nature of

the channel results in efficient distribution of load state information. "

4.2.4 R a w S i m u l a t i o n R e s u l t s

We have run numerous simulations to study the performance of A W O L T and AWLT
»

algorithms. However, due to the limitation of length, we are not able to show all the

‘Chapt e r \ A Performance Study on Load Information Dissemination Strategies 55

simulation results in this chapter. Instead, the simulation results of AWOLT and AWLT

algorithms are shown in Appendix C and Appendix D respectively.

4«3 Discussions

For algorithms that make reference to load tables (AWLT algorithms), both CPU and

channel overheads exhibit a regular pattern — increases with the system load until system

saturation, and then drops and converges rapidly at higher system loads. The pattern ~

can be attributed to the filtering effect of the load table, which limits the number of

potential target nodes from which a node can get consent of task transfer. However, the

performance of AWLT algorithms is limited by the following three factors:

1. High C P U overhead for load information broadcasting;

2. Out-of-date load information due to communication delay; and

3. Processor thrashing. *

The results suggest that maintaining a load table in a broadcasting channel environment

does not provide performance advantage over the use of polling. However, if channel

utilization is a concern, sacrificing system performance for reducing channel overhead

may worth consideration.

On the other hand, neither pure sender-initiated nor pure receiver-initiated polling

algorithms are satisfactory over the whole range of system load. To remedy such intrinsic

weakness of these two kinds of polling algorithms, an adaptive symmetrically-initiated

polling-based location policy, which also exhibits the filtering effect can be used. An

example of such location policy is proposed by Shivaratri and Krueger in [SK90]. However,

because of the filtering effect, processor thrashing can be expected. To put this kind of

location policy into practical use, the problem of processor thrashing have to be resolved.

This is the major theme of the next chapter.

».

Chapter 5

Resolving Processor Thrashing with.

Batch Assignment

In the last chapter, we pointed out that an adaptive symmetrically-initiated location

policy suffers from the phenomenon of processor thrashing. Processor thrashing can

result in at least two adverse effects:

爆’

• The workload in the system may not be as evenly distributed as desired.

• A receiver node may exceed its processing capacity because of congestion at the

receiver node due to over-drafting.

In this chapter, we attempt to remedy the problem of processor thrashing by modifying

and applying the batch assignment approach proposed in the last chapter. This new batch

assignment algorithm is labeled as the GR.batch algorithm, which is based on the tight

integration of three components:

1. The batch task transfer policy, which allows a number of tasks to be transferred as

a single batch from senders to receivers.

2. A sender-receiver negotiation protocol, referred to as the Guarantee and Reservation

Protocol (or GR Protocol for short), which together with the batch transfer policy

The content of this chapter has been accepted for publication by Concurrency: Practice and Expe-
rience-, Special issue on dynamic resource management in distributed systems; October, 1995, volume 7,
number 7 [LL95a]. .

56

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 57

. obtains the mutual agreement between a sender and a receiver on the optimal batch

size. The central idea of the GR protocol is two fold: (1) A sender node has to

declare a guarantee value to a potential receiver. This value signifies the number of

tasks the sender node guarantees to send to the potential receiver. (2) The potential

receiver employs a "quota" scheme for reserving processing capacity for task batches

from sender nodes. This GR protocol is the primary vehicle for resolving processor

thrashing.

3. An adaptive symmetrically-initiated location policy based on the adaptive location

policy proposed by Shivaratri and Krueger in [SK90]. The key feature of the policy

is to utilize the information gathered during pollings to keep track of recent workload

states of processing nodes. Such workload information serves as a filter to cut off

inappropriate polling candidates and thus avoids indiscriminate pollings.

5.1 The GR.batch Algorithm

This section describes the three policy components of GR.batch. Refer to Figures 5.3-5.7

for the complete GR.batch algorithm.

5.1.1 T h e Guarantee and Reservat ion Protocol

The GR Protocol is our primary vehicle to reduce processor thrashing. The basic idea

of the GR protocol is as follows. When a sender-receiver pair is going to be formed, the

sender has to declare the number of tasks it guarantees to send to the receiver. The

receiver, based on such a guarantee value, determines the number of tasks it is willing to

accept from the sender. The receiver reserves this number as a "quota" for the sender.

When making negotiation with other senders, the receiver takes into account such quotas

in measuring its load states and in deciding the number of tasks it is willing to accept

from them. When tasks are received from the original sender, the corresponding quota is

released. Of course, when measuring the workload state, the receiver takes into account

these newly arrived remote tasks. The GR protocol requires the use of two attributes for

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 58

each processing node:

Reservation Value: of a node Pi, denoted as RESi, is the total number of
tasks that Pi has agreed to accept from other sender nodes.

Guarantee Value: of a node Pi, denoted as GURi, is the total number of tasks
that Pi has guaranteed to transfer to other receiver nodes.

Based on RESi, GURi, and the number of tasks currently residing in a node Pi, we can

define the workload of Pi as follows. -

Effective Load: of a node Pi, denoted as ELi, is defined as ELi = Ki + RESi —
GU Ri, where Ki is the number of tasks currently residing in Pi, including those
in the task queue, in the threshold queue, and those partially completed tasks
residing in the service queue of Pi.

5.1.2 T h e Location Policy

The location policy of the GR.batch algorithm uses the idea of the adaptive location

policy proposed by Shivaratri and Kruege,r [SK90]. This location policy is adaptive in the

sense that it uses the receiver-initiated approach at high system load and uses the sender-

initiated approach at low system load. Such algorithm initiation strategy is in accordance .

with the performance study done by Eager et al. [EL86a]. The original Shivaratri and

Krueger’s adaptive location policy is described in detail in Appendix B. The essence of

the location policy is as follows.

The key feature of the location policy is to utilize the information gathered during

both sender-initiated and receiver-initiated pollings to keep track of the recent load states

of other nodes. The load information maintained by a node Pi is stored in three local

list structures. The first list, SListi, contains the ids of those processing nodes that have

identified themselves as potential senders. The second list, RListi, contains the ids of

those processing nodes that have identified themselves as potential receivers. The third

list, NListi, contains the ids of those processing nodes that have identified themselves as

normally loaded, thus requiring no task transfer. The head of each list always contains

the node id with the most recent load information. Thus, when a sender-initiated polling
*

session is to be started, the location policy selects the node id at the head of its RList

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 59

as the potential receiver. Conversely, when a receiver-initiated polling session is to be

started, the location policy selects the node id at the head of its SList as the potential

sender. After a negotiation target has been identified, negotiation is carried out by the

GR protocol.

The invocation of a polling session on a node is triggered by the node's change of load

state. To determine the load state of a node, we use the 3-level load measurement scheme

to describe the logical fullness of the queues in a node. Again, the three load levels are _

H-load, N- load, and L-load. Since the G R Protocol is used, the load state of a node is

measured by the effective load of the node. Table 5.1 gives the relationship between the

3-level load measurement scheme and the effective load. Again, sender-initiated polling

sessions start whenever a local task arrival triggers its arrival node into the H-load state;

while receiver-initiated polling sessions start if a task completion puts that node in L-load

state.

Table 5.1: The 3-level load measurement scheme based on effective load, ELi.
Load State Criteria

L-load ELi < lower Jhreshold
N-load lower Jhreshold < ELi < upper Jhreshold
H-load ELi > upper Jhreshold

�j

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 60

5.1.3 Batch Size Determinat ion

The three batch size determination rules are restated below.

Let max = maximum number of tasks a receiver is willing to accept

t — number of tasks a sender is willing to send to the receiver

Rule 1: After accepting max tasks, the receiver should not be in H-load,
neglecting new arrivals and departures during the negotiation and task
transfer operations. “

Rule 2\ After transferring t tasks, the sender node should not be in L-load.

Rule 3: After transferring t tasks, the expected total number of tasks in
the receiver should not be greater than the total number of tasks in the
sender, neglecting new arrivals and departures of the receiver.

Again, the values of max and t are determined by the two functions: MaxAssign{) and

NumAssign(), respectively. However, these functions are modified to cater for the fact

that the effective load is being used to measure the workload of a processing node. These

two modified functions are illustrated in Figure 5.1.

To determine the size of a task batch, a sender node P^ declares the number of tasks,

g, it guarantees to send to receiver Py in the polling message. Next, the receiver node

determines max by calling MaxAssignQ. The values of max and g are then compared,

and reservation r made by receiver Py is taken to be either max or g, whichever is smaller.

Both max and r are sent to the sender P^ as an ack message. The function NumAssign{)

is called by the sender to determine t, which is compared with r to determine the final

batch size b. The value of b is taken to be either t or r, whichever is smaller. Note the

integration of the GR protocol and the three rules in determining the size of a task batch.

After transferring a task batch to the receiver, the sender estimates the receiver's new

effective load with the function ReceiverNewEL(). Such estimation is based on max

and the batch size b. The function ReceiverNewEL{) is illustrated in Figure 5.2. The

estimated effective load of the receiver is than used for modifying the list structures of

the sender, and thus maintains the load information stored in the sender.‘

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 61

MaxAssign() NumAssign{)

Let ELy = Current effective load of receiver y Let EL: = Effective load of sender x when the
Let EL'y = Estimated effective load of receiver polling message is received

y after task transfer Let t = Number of tasks sender x is willing
to send to the receiver.

If max tasks are relocated,
, By Rule 2’

ELy « ELy + max
ELx — t> lowerJhreshold

By R u l e 1， -
I t < ELx — lowerJhreshold (5.2)

ELy < upper Jhreshold
Using equation (5.1), sender node x estimates

Thus, ELy from max as follows.

max < upper Jhreshold - ELy ELy w upper Jhreshold - max (5.3)

Taking the largest possible value, By R u l e 3,

max = upper Jhreshold — ELy (5.1) ELy -\-t< ELx — t

Thus,

ELx + — upper Jhreshold
t < (5 . 4)

Of course,
t < max (5.5)

t is taken to be the largest integer satisfying the

inequalities (5.2), (5.4), and (5.5).

F i g u r e 5 . 1 : MaxAssign{) and NumAssign{) for determining the desired batch size t — based
on ELi.

Let EL'y = estimated effective load of y

Let ELy = estimated new effective load of y after accepting b tasks

By equation (5.3):

ELy « upper Jhreshold — max

ELy « ELyi-b
=upper Jhreshold — max + b (5.6)

F i g u r e 5.2: Function Receiver New EL () for estimation of receiver's new effective load.
1. »

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 62

5.1.4 T h e Complete GR.batch Description

Figure 5.3 to 5.5 illustrate the sender-initiated component of the GR.batch algorithm.

Figure 5.6 to 5.7 illustrate the receiver-initiated component.

Intentionally left blank.
I

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 63

Sender x
P r o c e d u r e X I

1. Target node selection —

target node y = head of RListx

2. Dete rmine g u a r a n t e e value g ~

g — (n u m b e r of tasks in task q u e u e of x)-GURx

3. GUR: = GURx + g

4. EL:c = Kx + RESx 一 GURa： P 11 r1 A
5. Send a poll ing message to y J T ^ l i e Q I 1 0 Q 6 y

E n d P r o c e d u r e Y l

1. Lists u p d a t e —

R e m o v e x f rom whatever list it is in and

^^^^ a d d it to the head of SListy,

P O L L I N G : g 2. If y is N O T a receiver {ELy • L - load)

goto p r o c e d u r e Yl
Endif

3. D e t e r m i n e reservation value r —
^s^ max = MaxAsszgnQ

{max if max < g
g otherwise

4. RESy = RESy + r

5. ELy = Ky + RESy 一 GURy
6. Send an ack m e s s a g e to x

E n d

Sender x . /
P r o c e d u r e X 2 /

1 . GURx^GURcc — g /

2. Dete rmine b a t c h size b /
t = NumAssignO / ACK: g, m a x , r

^ _ r f lit <r /

" “ \ r otherwise /

3. Select 6 tasks (or less) /

If NO task can b e se lected

goto p r o c e d u r e X2
Endif

4. Transfer b t asks to y

{K^ = Ka： - 6)
5. ELx = Kx + RESx 一 GUR^o
6. List u p d a t e —

E s t i m a t e y’s new effect ive load s t a t e b y func - T R A N S F E R : tasks, b’ r’ EL:
tion ReceiverNewEL{),
Move y to the head of the a p p r o p r i a t e list of

X accordingly. ^ ^

7. Init iate a n o t h e r poll ing session b y going to pro-

cedure X I unless ei ther:

a. probe — limit is exceeded; or 11 1 i

b. RListx is e m p t y ; or r O H e d 1 1 0 0 6 y

c. X is no longer a s e n d e r {ELx H — load) P r o c e d u r e Y 2 —

E n d 1. Lists u p d a t e —

Move X to the head of the appropr ia te list

a c c o r d i n g to ELx-

2. A p p e n d b t a sks onto the threshold q u e u e

(K'y = Ky + b)
3. RESy = RESy - r

4. ELy = Ky + RESy 一 GURy
E n d

�. *

F i g u r e 5 . 3 : Sender-initiated component of the GR.batch algorithm

^ ^ ^ ^ a p t e r 5 Resolving Processor Thrashing with Batch Assignment 64

Polled node y
^ ^ P r o c e d u r e Yl

1. Send a nack message to x, p iggybacking
NACK： g, Ely ELy

Sender x
P r o c e d u r e X 3 “

1. Lists u p d a t e —

Move y to the head of the appropr ia te list ac-
cording to ELy

2. GURx = GURx — g

3. EL: = Kx + RES：, 一 GURx
4. Initiate another polling session by going to pro-

cedure X I unless either:

a. probe 一 limit is exceeded; or

b. RListx is e m p t y ; or

c. X is no longer a sender {ELx ^ H — load)

E n d

F i g u r e 5A: Sender-initiated component of the GR.batch algorithm 一 Procedure Yl

I '

Sender x
P r o c e d u r e X2

1. ELa： = ELa： + RESx 一 GURoc
2. List u p d a t e —

E s t i m a t e y,s new effective load s tate by func-

tion Receiver NewEL{).
Move y to the head of the appropr ia te list of

X accordingly.

3. Send a nack message to y，piggybacking E L x

4. Initiate another polling session by going to pro-

cedure X I unless either: NACK. r EL
a. probe — limit is exceeded; or ‘ , 工

b. RListx is e m p t y ; or

c. X is no longer a sender {ELx 丰 H — load)

E n d �

Polled node y
P r o c e d u r e Y 3

1. Lists u p d a t e —

Move X to the head of the appropr ia te list

according to E L x

2. RESy = RESy - r

3. ELy = Ky + RESy - GURy
E^

F i g u r e 5.5: Sender-initiated component of the GR.batch algorithm — Procedure X 2
» .

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 65

Receiver node y
P r o c e d u r e Y 4

1. Lists u p d a t e —

/ T a r g e t node x is selected as follows. If

SListy is not empty, choose the node at

the head of SListy. Otherwise, if NListy
is not empty, choose the last node from

NListy. Otherwise, choose the last node

f rom RListy.

2. Determine reservation value r —

r = max = MaxAssign()

3. RESy = RESy + r 一

4. Ely = Ky + RESy 一 GURy
5. Send a polling message to x

E n d

Polled node x
P r o c e d u r e X 4

1. Determine batch size b
t — NumAssignQ

^^ r < iit<r
— \ 广 otherwise

2. Select 6 tasks (or less)

If NO task can be selected N ^ •

goto procedure X4
Endif \

3. Transfer b tasks to y

= K工 一 b) \
4. ELa： = Kx + RES: - GUR:c \ T R A N S F E R : tasks, b，r，EL:
5. Lists u p d a t e — ^ ^

E s t i m a t e y,s new effective load s ta te by func-

tion ReceiverNewEL{).
Move y to the head of the appropr ia te list of

X accordingly.

E n d \

Receiver node y
P r o c e d u r e Y 5

1. Lists u p d a t e —

Move X to the head of the appropr ia te list

according to E L x .

2. A p p e n d 6 tasks onto the threshold q u e u e

(Ky=Ky+b)

3. RESy = RESy — r 一

4. ELy = Ky + RESy — GURy
5. Initiate another polling session by going to pro-

cedure Y 4 unless either:
a. probe 一 limit is exceeded; or

b. X is no longer a sender

c. No node d e e m e d a p p r o p r i a t e

can be selected for polling.

E n d

Figure 5 .6: Receiver-initiated component of the GR.batch algorithm

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 66

Polled node x
P r o c e d u r e X4

1. Lists u p d a t e —
Est imate y’s new effective load state by func-
tion Receiver NewELO,
Move y to the head of the appropriate list of
X according to this.

2. Send a nack message to y，piggybacking E L x -

E n d

\ -

NACK： r, EL. Receivei�node y
P r o c e d u r e Y 6

1. Lists u p d a t e —
Move X to the head of the appropriate list

^ ^ according to E L x .

2. RESy = RESy - r '

3. ELy = Ky + RESy 一 GURy
4. Initiate another polling session by going to pro-

cedure Y 4 unless either:

a. probe 一 limit is exceeded; or

b. X is no longer a sender

c. No node deemed appropriate

can be selected for polling.
E n d

Figure 5 . 7 : Receiver-initiated component of the GR.batch algorithm — Procedure XA

5.2 Additional Performance Metrics

In addition to those performance metrics defined in Chapter 3, we define two additional

metrics for measuring the degree of processor thrashing. Two different types of processor

thrashing can be identified: sender thrashing and receiver thrashing. The former refers

to the phenomenon when a particular potential sender is being polled by a number of

receiver nodes simultaneously. The latter refers to the phenomenon when a particular

potential receiver is being polled by a number of sender nodes simultaneously. To have a

quantitative measure of processor thrashing as exhibited by an adaptive load balancing

algorithm, we define the sender thrashing coefficient, and receiver thrashing coefficient,

K , as follows.
* •

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 67

=W (5.7)
where N is the number of nodes in the system; 广 is the total number of times that node

Pi has been polled by receiver nodes as if it is a sender during the simulation time; and

is the mean of S'f" over all the processing nodes in the distributed system. ^ Thus,

Vs is in fact the coefficient of variation of the variable S^. Similarly, we can define the

receiver thrashing coefficient as follows.

= ^ ^

= = (5.8)

Intuitively, Vs and Vr measure the degree, of dispersion of receiver-initiated and sender-

initiated polling activities respectively. A small value of Vs (K) signifies that most nodes

receive more or less the same amount of receiver-initiated (sender-initiated) pollings. This

in turn implies a larger degree of dispersion of receiver-initiated (sender-initiated) polling

activities and thus a lower degree of sender (receiver) thrashing.

5.3 Simulations and Analysis of Results

In the simulations, an algorithm that uses the original Shivaratri and Krueger's location

policy with single task assignment is used as a reference for comparing with the GR.batch

algorithm. We label this algorithm as SK.single. The properties of these two algorithms

are summarized in Table 5.3. The performance of the algorithms are compared by simula-

tions. Figure 5.8 shows graphically the performance of the two algorithms. Table 5.2 gives

the values of the simulation parameters used for the simulations. We have the following

observations and analysis on their performance.

1 O f - _ / ^ 1 - 1 ‘ ..

— N

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 68

100 1~； 100 1 1 . 1 1 1 n ^^ • ！- • “
1 / •…—..—…— ^ -

80 /• t-- / Z'''
GR.batch -«— / \ /

I 60 —SK:single 二 二 / / ； — — j 卯 . ： . . . J / .

§ I / 1 5 85 - I......pi \ I i
a I / i g / Gk.batch 丨一
差 - I ‘ I y i U ^̂ / ! SK.single -

0 ‘ ‘ 70 ^ ‘ i ‘ ‘
0.5 0.6 0.7 0.8 0.9 1 丨.1 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

System Load System Load _
(a) Response Time (b) Net CPU Utilization

5.5 ! 1.1 ——‘ 1——！——I
5 八 J — 為] !._

. . GR.batch — jf^'' \ „ „ GR.batch - \

I 4 - ：立 — — |0.8 “.......——’...........—.......左—.... — . V ^ ‘ i -...-‘—
含 3 . 5 • ： 、打 ‘ S 0 . 7 J^ \r~-T

1 矮:E ：赛^

.... ... ： II / ’ ：

* I / ： i ！ i ‘
0.5 ‘ 1 0.1 ‘ ‘ ‘ ‘ ‘ ‘

0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4
System Load System Load

(c) Percentage CPU Overhead (d) Channel Overhead
‘ 1 1 1 2.5 • 1 1 1 1

1 8 — 證 1 / r ^ - i i : : — � —- 亡 .

r — . . 一 I I I . I 一1 — 7 — - — .
G / C J

3 4 . ！ ！ / I — i I
I ； I 05 ! I —

2 —；........”......:—�:.....:.._..,.....； ‘ I 一卜一

0 i 1 1 qI .^-r—r^^^i i i i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 丨.2 1.4

System Load System Load
(e) Batch Size (f) Polling Efficiency

3.5 I —̂I 1 j j 1 1 1 3.5 I 1 1 1 1 j ！

. 3 \ j 3 —.
0 \ GR.batch i .sa f ^ S .
S , , \ SK.single - g / / TV
5 2.5 - |V g 2.5 • I j ^•V
1 ^ | \ I ^ ^ Ij " j X
I ‘ \ 1 I GR.batch — V
p 'V H // SK.single I—- X
g X \—...f I 一........—.”..... —...".........X—..“

I I X ___ I , r I \
0.5 ‘ i 1 i 0.5 ‘ ^ i i ‘ 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4
System Load System Load

(g) Receiver Thrashing Coefficient (h) Sender Thrashing Coefficient

Figure 5.8: Performance comparisons between GR.batch and SK.single. Simulation parame-
ters shown in Table 3.1.

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 69

Table 5.2: Values of simulation parameters used in the simulations for studying GR.batch and
SK.single. Simulation results are presented in Figure 5.8 on page 68.

Parameter Value Parameter Value

I v pO 11 CPUpolling 0.005

Qo 30 Fpolling 0.001
Tcpu 0.1 Ftask 0.005
(7A 3 D 0.005
So 1 Cpack 0.003
lower-threshold 5 Cassign 0.002
upper Jhreshold 20 1� 5
probe-limit 5

Table 5 .3: Summary of properties of GR.batch and SK.single

Location Load Transfer GR
Algorithm Policy M easurement Mode Protocol

GR.batch Shivaratri and Krueger's Based on effective load, A batch of tasks for Used
Location Policy modified ELi. Refer to table 5.1 on each transfer session

page 59.
SK.single Shivaratri and Krueger's Based on actual number of Single task for each Not used

Location Policy unmodi- tasks residing in a node, transfer session
fied Ki. Pi,efer to table 4.1 on

page 38.

Observation One — SK.single and GR.batch have identical p e r f o r m a n c e at low

s y s t e m load.

Figure 5.8(a), shows that SK.single and GR.batch have identical performance in terms

of mean task response time up to system load 0.63. As we can see from Figure 5.8(e),

the average batch size of GR.batch at low system load is very close to 1. This means that

GR.batch at low system load is roughly identical to single task assignment. However, the

use of the GR Protocol in GR.batch produces more message exchanges. This explains the

higher CPU and channel overhead as shown in Figure 5.8(c) and (d) respecti-vely. Since the

system at low system load has enough spare capacity to handle the extra overhead, the GR

Protocol does not have adverse effect on the system performance. In fact, Figure 5.8(b)

shows that at low system load, the two algorithms provide identical net CPU utilization,

meaning that the extra overhead imposed by the GR Protocol consumes only those CPU

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 70

capacity which would be otherwise unused.

Observation Two 一 GR.batch provides a much higher per formance saturation

point than that of SK.single.

Figure 5.8(a) shows that beyond system load 0.8, SK.single becomes saturated and

its performance degrades exponentially. Algorithm GR.batch, however, still provides a

good performance and it becomes saturated at a significantly higher system load. As

Figure 5.8(b) shows, GR.batch has a much higher net CPU utilization than SK.single at

higher system load. The difference in net CPU utilization means that with SK.single,

the CPU capacity of some lightly loaded nodes is not fully used. In other words, system

workload in the case of SK.single is not as evenly distributed as in'the case of GR.batch.

With SK.single, those lightly loaded receivers receives only one task at a time. Therefore,

the load imbalance is smoothed out slower than when GR.batch is used. Another reason

for the uneven workload distribution in the case of SK.single is the phenomenon of

processor thrashing. With SK.single, there is a possibility that tasks from different

senders are sent to the same receiver, letting the spare CPU capacity of other potential

receivers unused. Since GR.batch can utilize the system capacity more fully than that of

the SK.single, the better average response time is easy to understand.

Observation T h r e e — At high s y s t e m load, GR.batch has lower channel and

C P U overhead.

Figure 5.8(d) shows the channel overhead of the two algorithms. At low system load,

the channel overhead of GR.batch is slightly higher than that of SK.single. At high

system load, the reverse occurs. Similar pattern is exhibited by the level of CPU overhead,

as shown in Figure 5.8(c). The higher channel and CPU overhead of SK.single at high

system load can be explained by two reasons: (1) With SK.single, a larger portion of

polling sessions fail to locate a transfer partner because of the effect of processor thrashing.

Except those where probe-limit has been reached, each of the failed polling sessions causes

another new polling session to be initiated, in an attempt to search for another transfer

partner. Thus, a lot more polling sessions are injected. (2) When compared to GR.baich,

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 71

algorithm SK.single requires more polling sessions for transferring the same amount of

workload between processing nodes. This is reflected in its significantly lower polling

efficiency at high system load, as shown in Figure 5.8(f).

Observation Four — GR.batch exhibits a lower level of receiver thrashing through-

out the whole range of s y s t e m load.

Figure 5.8(g) shows the variation of receiver thrashing coefficient. It can be seen

that as system load increases, SK.single exhibits a decreasing receiver thrashing until

system load 0.8, beyond which the level of receiver thrashing remains relatively stable at

Vr ~ 1. GR.batch also exhibits a decreasing receiver thrashing at low system load until

the trough at around 0.62 is reached. After the trough, the level of receiver thrashing

increases gradually until it becomes stable at system load 1.0. Note that GR.batch always

exhibits a lower receiver thrashing before system saturation. Note also that at high system

load, the two algorithms exhibit virtually identical level of receiver thrashing.

At low system load, most processing nodes are lightly loaded potential receivers. There

are only a few sender nodes. With SK.single, the probability that a sender node being

bound by a particular receiver node is high. This is because the receiver has enough

spare capacity to serve the sender. Therefore, at low system load, there are only a few

actual receiver nodes to which sender-initiated pollings are targeted. This explains the

high receiver thrashing at low system load. With GR.batch, a sender node is slightly

more likely to search for another receiver after transferring a batch of tasks to its current

transfer partner . T h i s is b e c a u s e the task b a t c h m a y b e large e n o u g h to use up all t h e

spare capacity of the receiver node, in which case, function Receiver New EL {) avoids

that receiver node to be polled again immediately. Sender-initiated pollings are more

distributed in the case of GR.batch and thus the lower receiver thrashing when compared

to SK.single. As discussed before, the mean batch size of GR.batch at low system load

is very close to 1. This implies that the probability that the particular receiver becomes

saturated is low. This explains why receiver thrashing of GR.batch at low system load is

still relatively high, though much lower than that of SK.single. , •

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 72

• The decreasing receiver thrashing as exhibited by the two algorithms can be attributed

to two reasons: (1) As system load increases, the number of sender nodes in the system

increases. More receiver nodes are needed to serve the sender nodes. By its definition,

receiver thrashing obviously decreases. (2) As system load increases, the spare capacity of

those potential receivers diminishes, while the amount of surplus tasks in senders increases.

The probability that a receiver becomes saturated and thus a sender node has to search

for another transfer partner grows. Sender-initiated pollings are more distributed and -

hence the decreasing receiver thrashing.

With SK.single, the system becomes saturated beyond system load 0.8. The adaptive

location policy empties the RLists and thus sender-initiated pollings are avoided. Further

increase in system load worsens the already congested sender nodes. However, the amount

of sender-initiated pollings is not affected. This explains the stable receiver thrashing after

system saturation at 0.8. With GR.batch, receiver thrashing decreases with increasing

system load until it reaches a minimum at 0.62. The increasing receiver thrashing beyond
I'

this point can be explained by the reduced number of potential receivers as system load

increases. As in the case of SK.single, after the system becomes saturated, sender-

initiated pollings are avoided and thus the stable receiver thrashing.

Observation Five ——GR.batch and SK.single exhibit a growing sender thrashing

at low s y s t e m load.

Figure 5.8(h) shows the variation of sender thrashing coefficient. At low system load

(below 0.4 in GR.batch and below 0.5 in SK.single), both algorithms exhibit a growing

sender thrashing as system load increases. At low system load, the amount of surplus

tasks in sender nodes is small. The probability that a sender node becomes normally

loaded after transferring a task(s) to its receiver is high. Since the new load state (real

load in SK.single] effective load in GR.batch) of the sender node is piggybacked on the

task transfer messages, the receiver is likely to move the sender node from its SList to the

head of its NList, thus avoiding the node from being polled again immediately. Instead,

another node will be selected as the target. Receiver-initiated pollings .are therefore

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 73

highly distributed at low system load, thus the low sender thrashing at low system load.

As system load increases, the probability that a sender node remains in H-load state after

task transfer grows. A receiver is therefore more likely to be bound to a particular sender.

Receiver-initiated pollings become less distributed, thus the growing sender thrashing as

system load increases.

Observation Six — GR.batch exhibi ts a fast decreasing sender thrashing at

m e d i u m to high sys tem load.

Beyond system load 0.8, SK.single exhibits a relatively high sender thrashing (Vg ^

2.9), which decreases very gradually. This can be explained as follows. With SK.single,

the system becomes saturated beyond system load 0.8. The amount of surplus tasks in

a sender is large enough to bind a particular receiver. The number of receivers in the

system becomes small. Receiver-initiated pollings are therefore targeted to only a few

sender nodes, thus the high sender thrashing. Further increase in system load worsens

the already congested sender nodes, without significant effect on the dispersiveness of

receiver-initiated pollings. This explains the stable sender thrashing at high system load,

in the case of SK.single.

Beyond system load 0.4, sender thrashing of GR.batch is always lower than that of

SK.single. This can be explained by the fact that with GR.batch, a batch of tasks are

removed from a sender during each successful polling session. The probability that the

sender becomes normally loaded afterwards is therefore higher than that of SLC.single,

which allows only single task transfer. As explained before, the piggybacked new load

state of the sender node allows the receiver to select another node for polling, thus the

lower sender thrashing when compared to SK.single.

5.4 Discussions

Simulations reveal that the GR.batch algorithm provides significant performance improve-

ment at high system loads because the CPU capacity is more fully utilized. This can be

attributed to the reduced processor thrashing exhibited by the algorithm. The algorithm

^^^^apter 5 Resolving Processor Thrashing with Batch Assignment 74

also exhibits performance advantage for a highly imbalanced system as batch assignment

can smooth out workload imbalance quickly when compared to the single task assignment

approach. Less polling sessions are needed for transferring the same number of tasks and

therefore channel overhead is reduced.

I

Chapter 6

Applying Batch Assignment to

Systems with Bursty Task Arrival

Patterns

Most existing heuristic-based load distribution algorithms rely on the assumption that

the workload arrival pattern in a distribiited system is rather stable. Such algorithms

cannot provide satisfactory performance when the system is injected with bursty workload

patterns. This is because congestions in those processing nodes subjected with bursty task

arrivals cannot be resolved efficiently. This results in at least four adverse effects:

1. The total system throughput is limited because tasks in the bursty processing nodes

are not redistributed efficiently, resulting in wasted processing capacity in those

potential receiver nodes.

2. The mean task response time of the bursty processing nodes will be exceedingly

high because tasks have to wait for a very long time before they are either processed

locally or being assigned to a remote node.

3. The standard deviation of task response time of the whole system will be undesirably

large. This is a direct result of (2) above. This also implies that the predictability

and fairness of the system are poor.

The content of this chapter has been published in Proceedings, Thirteenth lASTED International
Conference on Applied Informatics, February, 1995, Austria [LL95b].

75

^hapter 6 Applying Batch Assignment to Systems with Bursty Task Arrival Patterns 76

'4. To resolve congestions in those bursty nodes, many negotiation sessions are necessary

between the bursty nodes and the potential receivers. This injects extra overhead

to both the bursty nodes and the communication channel, and thus further worsens

the poor situation of the bursty nodes.

The usability of such algorithms is therefore limited to systems with stable workload

pattern. In this chapter, we attempt to apply the GR.batch algorithm proposed in the

last chapter to systems subjected with bursty task arrival patterns.

6.1 Bursty Workload Pattern Characterization Model

We characterize the bursty workload pattern of a system by using a 4-tuple, (T,a,/?,7),

where T is the number of nodes exhibiting bursty task arrivals. The other three compo-

nents are defined below.

Burst Frequency, a,: is defined as the reciprocal of the inter-burst period,
which is the mean time between successive burst arrivals.

Burst Amplitude, p,: is the number of tasks arrived locally to a bursty pro-
cessing node per unit time during a task arrival burst.

Burst Duration, 7,: is the duration of a task arrival burst.

This 4-tuple characterization of bursty workload pattern is depicted in Figure 6.1.

Bursty Arrivals

I — ； — ~ M ^ ‘

a 7 ^ 7 Time

Figure 6.1: Characterization of bursty workload pattern by 4-tuple (r, a , / ? , 7) .

^hapter 6 Applying Batch Assignment to Systems with Bursty Task Arrival Patterns 77

6.2 Algorithm Descriptions

The algorithms that we compare are the GR.batch and SK.single as described in the pre-

vious chapter. For completeness, we briefly mention the features of these two algorithms

below.

6.2.1 T h e GR.batch Algori thm

In GR.batch, task assignment is the sole workload distribution mechanism. The algorithm

employs the batch transfer approach and the GR protocol for obtaining mutual agreement

on batch size. Tightly coupled with the GR protocol is an adaptive location policy which

selects target nodes for polling and which maintains load information of other nodes

locally. The complete GR.batch algorithm has been described in section 5.1.4 on page 62.

6.2.2 T h e SK.single Algor i thm

The second algorithm, which is used as a r'eference for comparison, is the SK.single algo-

rithm. It allows only single task transfer, meaning that only one task can be transferred

during each sender-receiver negotiation session. Therefore, the GR protocol, and the node

attributes GU Ri and RE Si, are no longer necessary. Measurement of load state of node

Pi is based on the actual number of tasks residing in it. The location policy and nego-

tiation protocol are the same as the symmetrically adaptive location policy proposed by

Shivaratri and Krueger in [SK90 .

6.2.3 S u m m a r y of Algor i thm P r o p e r t i e s

The properties of the two algorithms are summarized in Table 6.1.

6.3 Analysis of Simulation Results

The performance of the two algorithms are studied by simulations. Table 6.2 shows the

values of the simulation parameters used. Figures 6.2 to 6.4 present the performance

comparisons of the two algorithms. , ‘

^hapter 6 Applying Batch Assignment to Systems with Bursty Task Arrival Patterns 78

T a b l e 6.1: Summary of properties of GR.batch and SK.single
Location Load Transfer GR

Algorithm Policy Measurement Mode Protocol

GR.batch Shivaratri and Krueger's Based on effective load, A batch of tasks for Used
Location Policy modified ELi. Refer to table 5.1 on each transfer session -•

page 59.
SK.single Shivaratri and Krueger's Based on actual number of Single task for each Not used

Location Policy unmodi- tasks residing in a node, transfer session
fied Ki. Refer to table 4.1 on

pag;e 38.

I

T a b l e 6.2: Values of simulation parameters used in the simulations presented in Figure 6.2 to
6.4.

Parameter Value Parameter Value Parameter Value

~Qo [30 CPUpolling 0.005 f a 0.01
Tcpu 0.2 FpoUing 0.001 (3 variable

N 30 Ftask 0.005 7 1
o-A 2.0 D 0.01 variable

So 1 Cpack 0.003
lower-threshold 5 Cassign 0.002
upper-threshold 2 / 3 * Q � = 20 lassign 5
probeJimit 5 '

^hapter 6 Applying Batch Assignment to Systems with Bursty Task Arrival Patterns 79

6.3.1 Per formance Comparison

1. Figure 6.2 shows the mean task response times of the two algorithms with different

burst amplitudes. When the system is lightly loaded, GR.batch provides perfor-

mance advantage over SK.single at burst amplitudes 300 and 500. It has poorer

performance than SK.single when the bursty amplitude is 100 however. These show

that GR.batch provides performance improvement for a lightly loaded system with

high enough burst amplitude. This can be attributed to the GR.batch^s ability in ~

smoothing out the congestions at those processing nodes subjected with bursty task

arrivals. When the burst amplitude is small, congestions are not serious and the

extra overhead introduced by the batch assignment approach and the GR protocol

cannot be justified by the gain in batch transfers.

When the system is moderately loaded, GR.batch however does not have any per-

formance advantage over SK.single. For small burst amplitude (/? = 100), the

performance of the two algorithms dre very close. For larger burst amplitudes, the

system is essentially saturated. There is no point in applying the batch assignment

approach because at most time the batch size is close to one. The extra overhead

of the batch assignment approach and the GR protocol account for the poorer per-

formance of GR.batch.

When the system is heavily loaded, the two algorithms give essentially identical

performance result. This is because the system is highly saturated and thus neither

GR.batch nor SK.single can improve the situation.

2. Figure 6.3 shows the task response time standard deviations of the two algorithms

with different burst amplitudes. When the system is lightly loaded, GR.batch pro-

vides performance advantage over SK.single, regardless the magnitucle of the burst

amplitude. This can be explained by the fact that with GR.batch, tasks residing in

those congested nodes are quickly relocated to other processing nodes and get pro-

cessed. Their queueing time is therefore significantly reduced. This in turn results
» »

in the smaller response time standard deviation because queueing time is a major

^hapter 6 Applying Batch Assignment to Systems with Bursty Task Arrival Patterns 80

component of task response time. We say that the predictability of the system is

highly improved.

An important observation from Figure 6.3(a) is that task response time standard

deviation can also be improved even though the burst amplitude is relatively small.

Again, when the system becomes saturated, neither GR.batch and SK.single can

improve the situation. This results in the identical performance of the two algo-

rithms at heavily loaded situations.

3. As in the case of response time standard deviation, queue length standard deviation

is highly reduced because congestions in the task queue of those bursty nodes are

removed. Thus queue length standard deviation has a similar trend as in the case

of response time standard deviation. This is shown in Figure 6.4

6.3.2 T i m e Trace
I

Figure 6.5 shows the time trace of the mean task response time of a processing node (Pi)

subjected with bursty task arrivals. It can be seen that as T increases, the difference be-

tween the performance of the two algorithms grows. When r equals 8, the response time

associated with SK.single grows continuously with time, whereas the response time asso-

ciated with GR.batch remains stable. This can be explained as follows. With SK.single,

congestions in those bursty nodes are not resolved quick enough. The length of the task

queue therefore grows without bound as shown in Figure 6.6(c). This results in the con-

tinuously increasing response time. With GR.batch, congestions in those bursty nodes

are resolved efficiently by the batch transfer approach and the task queue length remains

stable.

6.4 Discussions

The key findings of the performance characteristics of GR.batch when applied to a system

subjected with bursty task arrivals are:

^hapter 6 Applying Batch Assignment to Systems with Bursty Task Arrival Patterns 81

1. In terms of mean task response time, GR.batch provides significant improvement

for a non-saturated system with large enough burst amplitude.

2. In terms of task response time standard deviation and queue length standard devia-

tion, GR.batch shows significant improvement for a non-saturated system, regardless

the burst amplitude. In other words, the system predictability and fairness of service

are improved.

3. GR.batch ensures stable task response time and queue length for a system subjected

with bursty task arrivals. With single task transfer, these two performance metrics

grow continuously with time because congestions are not resolved efficiently.

I-

•.

^hapter 6 Applying Batch Assignment to Systems with Bursty Task Arrival Patterns 82

~ ‘ ~ ‘ ~ ~ ‘ ~ ‘ ~ ‘ ~ ~ ‘ ‘ ~ I ~ so I ~ . I ~ . ‘ ~ I ~ . ~ . ~ I ~ 250 I ~ ~ , ~ , , ~ , ~ , ~ , ~ ~ , ~ , ~ ~

,,, ：：/ GR.baich GRbaidi M • Stsmgl̂ . , SKanjlc — Stsnjle —

E: z i: I 丨 ： /

2' ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ——I 1 1 1 1 1 1 1 Q^T I ,
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 (i 7 « « in NunteoIBumy Nodes NurateofB 啤 Note NrnntaofB̂Note "‘

Lightly Loaded Moderately Loaded Heavily Loaded

(Ao = 0.2, = 2.0) (Ao = 0.7’ "A = 2.0) (Ao = 0.9, = 2.0)

(a) (3 = 100

遍 1 1 1 1 1 1 1 1 450 1 , 1 1 1 , 1 , 450 1 , , ~ - , 1 . _ _

™ " 一 CR.ba.ch ^ GR todi 一
, SK-anglc — 柳 . S l U i g k j ^

/ , / / ' ,
t / / f // r - /

I™. / / . I - • / / I - X

: ： /
~ ‘ ~ ‘ ‘ ~ ‘ ~ ‘ ‘ ~ ‘ ‘ ~ _ ^ — — . _ _ . _ . _ _ , _ _ , _ _ , _ _ 0 ' ~ ‘ ~ I _ . _ ‘ _ _ . _ _ . . . I 2 3 4�‘51 6 M , 7 8 9 10 ' 2 3 4 5 6 7 8 9 1(1 1 2 3 4 5 6 7 8 9 W

Numte of Buray Nocks NurataofBuray Nodes NuntaolBmNodo
Lightly Loaded

Moderately Loaded Heavily Loaded

(b) = 300

. 1 1 1 1 1 r- 1 , 600 1 1 r - 1 , 1 , , 500

GR taich^ G R i a d i - ^ GRtauh 一

- f r � • ^ .. X
I： / : L. / T . r- Z .
卜 / , J ~ � r /
1.50. j I I 珊 . r /

I j / . . /
Ô ""' I ~ ‘ ~ ‘ ‘ ~ ~ ‘ ~ ‘ ~ ‘ ~ I — ~ I _ I _ _ I _ _ , _ . . .„f . , . -

1 2 5 < 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 Id 7 s o m

Lightly Loaded Moderately Loaded Heavily Loaded

(c) P = 500

Figure 6.2: Task response time of GR.batch and SK.single in systems subjected with bursty
workload arrivals. Simulation parameters used are shown in Table 6.2 on page 78.

^hapter 6 Applying Batch Assignment to Systems with Bursty Task Arrival Patterns 83

181 1 1 1 1 1 1 1 1 1 140 [1 1 , 1 ,—— , _ ^ 350 , , , , I

GR,bai(;h - - GR.baich — GRbaich乂

丨- r r /
s ,� . . r . . t /

y . - J _
s ' ~ ~ ‘ ~ ‘ ~ ‘ ~ ‘ ~ ‘ ~ ‘ ~ ‘ ~ ‘ ~ QI ‘ ‘ ^~~1~I_II_I_ p i r
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 i 2 3 4 5 6 7 i 0 10 NuntoofBuNjNoA-s NuJcB̂ Noto

Lightly Loaded Moderately Loaded Heavily Loaded
(Ao = 0.2’ (7a = 2.0) (Ao = 0 . 7 ， = 2.0) (A � = 0.9’ = 2.0)

(a) (3 = 100

糊 ‘ ‘ ‘ ‘ ‘ 1 1 -T 60(1 1 1 1 1 1 I , , 700 ‘

™•"‘— GRbaich — GRbadi —
350 • S I C — — , , : S l t s > . g k ^ SlLaagW ^

F r f r X i：
I: //: f: / : t/

0 ' ‘ ‘ ^ ^ ~ ‘ ~ ‘ ~ ‘ ~ ‘ 1 ‘ — — . _ . _ . _ _ . _ . _ _ . _ _ o t _ . _ _ . _ . _ , _ _ , _ _ . . .

‘ ^ ‘ ^ >, ‘ , ‘ ‘ ‘ ‘“ I 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
NumteofBuray Nocks Nunito of Bijrsy Nodes NumtoofBitsi)'Nodes

Lightly Loaded Moderate ly Loaded Heavily Loaded

(b) P = 200

咖 I ‘ ‘ ‘ ‘ ‘ ‘ ‘] 700 I 1 1 1 . 1 1 . 1——^ 800 [, , , , _ • , • •

/ f l ^ ^
h r/ . r Z h

r- f . V / : r/ .
r. / . h J r /

Y 叫
0 1 — 1 1 1 I I I

I 2 3 4 5 6 7 8 9 10 I 2 3 4 S 6 7 g 9 ,o , , , . , g , ,„

Lightly Loaded Moderate ly Loaded Heavily Loaded

(c) p 二 300
Figure 6.3: Task response time standard deviation of GR.batch and SK.single in systems
subjected with bursty workload arrivals. Simulation parameters used are shown .in Table 6.2 on
page 78.

^ h a p t e r 6 Applying Batch Assignment to Systems with Bursty Task Arrival Patterns 84

" I ~ ~ ‘ ~ ‘ ~ ‘ ‘ ~ ~ ‘ ~ ‘ ‘ ~ ~ ‘ ~ 180 I ~ 1 ~ I I ~ ~ I ~ . ~ . ~ , ~ , ~ MO I ~ , — , _ , _ , _ , , , _ , _
™ " 二 OR bach — GR toch —

. S l tMgle—, 160 . Stangk — , SUsiiigk —

• ./..' / 500 . ^
Z 则• !j

r /.z p- I • 一 . .

t X : f： : r- / |‘Z 乂 t I： I". / .
2 , // 100 • /

^ 2" , 一 . / -
~ ‘ ~ ‘ ~ ‘ ~ ‘ ~ ‘ ‘ ~ ‘ ‘ I o t — t — r _ , H - r " ^ •_<_I n 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 ， 龙 i � i e o m N 齒啊 N̂les " ‘ ‘ ‘ " ‘

Lightly Loaded Moderately Loaded Heavily Loaded
(Ao = 0.2’ = 2.0) (Ao = 0.7’ = 2.0) (A � = 0.9’ = 2.0)

(a) (3 = 100

r. , / . L. r. Z
! / . I // r - /

t / / ； t / : \
Lightly Loaded Moderately Loaded Heavily Loaded

(b) P = 200

侧 I ‘ ‘ ‘ ‘ ‘ 1 ‘ 1 1 3000 1 , 1 1 , , , . 1 3500 I , 1

GRbalcli GRbadi t：^ � d k^a ‘

細. ^ ^ _ 撇.

// r / / r
！ \ r [K /
r \ . / . I /

y.... _. y
‘ 2 ‘ 、 丄 « “ 。 … 二 二 7 … 。 - … ， 二 ; J S ‘ •»

Lightly Loaded Moderately Loaded Heavily Loaded

(c) P = 300

Figure 6.4: Queue length standard deviation of GR.batch and SK .single in
systems subjected

with bursty workload arrivals. Simulation parameters used are shown in Table 6.2 on page 78.

Chapter 6 Applying Batch Assignment to Systems with Bursty Task Arrival Patterns 85

45 r\

4o - ——•——
3 : 5 ^ _

30 -

公 C 3 I - ^ . b > 4 \ t c
t 自 _ f S I C - s i n g l e

1 2 � - _
15 - - -
lO f

:J -
° 1500 2000

(a) Number of Bursty Nodes, r = 5
6 0 I — ,

f 3 0 jf

I SIC.single
2 0 - I

1 � L i • _
O 5 00 ipoo 1500 2000

1
(b) Number of Bursty Nodes, r = 6

4 5 0 , •

4 0 0 - " “

350 —

300 - .一

爸 一 - 一 “
2 5 0 - 一--一

J ^ O O - 一 乂 一 s i n g l e

1 50 - , '''
一 一 —

1 O O -

5 0 “

O � 500 1500 2000

(c) Number of Bursty Nodes, r = 8

Figure 6 .5: Trace of node Pi ,s mean task response time — GR.batch and SK.single in systems
subjected with bursty workload arrivals. Simulation parameters used are shown in Table 6.2 on
page 78, except the following: a 二 0.01, (5 = 300, 7 = 1.

�’ » .

^ h a p t e r 6 Applying Batch Assignment to Systems with Bursty Task Arrival Patterns 86

:III HI 丨⑴I IH销

i:::: JJIlU 誦
O 5 0 0 , 1 0 ^ 0 1 5 0 0 2 0 0 0

(a) Number of Bursty Nodes, t = 5

O 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0
T i m e

(b) Number of Bursty Nodes, r = 6

3 0 0 0 厂 •

• ； 。 o o - 卜广-、、卜、/���-t��: -
S" i � � � J ―‘
^500 - • I

異 广〜/、、广J _
1 0 0 0 一 r - —

I W G K - b t t t c h — [----J S F C . s i i n g l e

3 00 - 广 � - � J� _
o r ^ K i ^ f x r x f v K i\ K K K i\ f\ r \ (

O ^ J ^ x ^ o o ' � ' \ I 2 0 0 0

(c) Number of Bursty Nodes, r = 8

F i g u r e 6 .6: Trace of node P i ' s queue length — GR.batch and SK.single in systems subjected
with bursty workload arrivals. Simulation parameters used are shown in Table 6.2 on page 78,
except the following: a = 0.01, (3 = 300，7 = 1.

Chapter 7

A Preliminary Study on Task

Assignment Augmented with

Migration

The two most commonly used mechanisms in task relocations are task assignment and

task migration. Our primary objective in the study presented in this chapter is to inves-

tigate situations where migration can augment assignment to provide extra performance

improvement. We present a performance study on three different load balancing algo-

rithms. All of these algorithms use the same information and location policy. They differ

only in the transfer policy, task selection in particular. The first algorithm (A) employs

only task assignment, whereas the second (AM) and the third (AMT) allow both task

assignment and migration. The third algorithm differs from the second in that a timer

is used for initiating the load balancing algorithm, in addition to the usual event trigger-

ing by task arrivals and task completions. Single task transfer is assumed by all these

algorithms.

7.1 Algorithm Descriptions

This section presents the information, transfer, and location policies used in the load

The content of this chapter has been published in Proceedings, IEEE TENCON 1994’ pages 357-364,
August, 1994 [LL94]. .

«‘ ‘ •

87

‘ Chapter 7 A Preliminary Study on Task Assignment Augmented with Migration 88

balancing algorithms. Recall that the three algorithms (A, A M , and AMT) share the

same information and location policies.

7.1.1 Information Policy

Again, load information content exchanged between processing nodes is based on the 3-

level load measurement scheme. The definitions of load states are given in Table 7.1.

Note that lowerJhreshold is defined as 沟�,while upper Jhreshold is defined as ^Qo- ~

Again, sender-initiated negotiation sessions start whenever a local task arrival triggers its

arrival node into the H-load state. Receiver-initiated negotiation sessions start if a task

completion puts that node in L-load state.

Table 7 . 1 : T h e 3-level load measurement scheme used in algorithms A, A M , and AMT. Ki is
the number of tasks residing in node Pi.

Load State Criteria
L-load K i < \Qo

l ^ a d < iQo
I T l o a d K i > I Q , -

7.1.2 Location Policy

Again, the location policy is based on the adaptive symmetrically-initiated location policy

proposed by Shivaratri and Krueger [SK90]. Note however that since only single task

transfer is allowed, the GR protocol is not necessary.

7.1.3 Transfer Policy

There are two components in a transfer policy: (1) algorithm initiation scheme; and

(2) task selection scheme. The algorithm initiation schemes of the three algorithms are

identical — task relocation is needed whenever a node is either in H-load or in L-load.

Task selection scheme is different among the algorithms however, depending on the allowed

‘ Chapter 7 A Preliminary Study on Task Assignment Augmented with Migration 89

task distribution mechanism (assignment versus migration).

7.1.3.1 Task Selection for Ass ignment

All the tasks in the task queue of a processing node are candidates for task assignment.

These candidate tasks are selected in FIFO discipline by the task selection scheme. That

is, we always select the first task in the task queue for remote assignment.

7.1.3.2 Task Selection for Migrat ion

Tasks in the service queue are candidates for migration if the following two criteria are

satisfied:

1. The candidate task is locally assigned.

2. The estimated remaining execution time of the candidate task is larger than the

estimated overhead (measured in t\me) if it is migrated. The remaining execution

time of the candidate task p, denoted as RETp, with arrival node Pj and accumulated

execution time, AETp, is estimated as follows.

RETp = Sj — AETp (7.1)

where Sj is the mean task service time of node Pj. The correct selection of a task

for migration depends largely on the accuracy of the estimation of RETp.

7.1.4 T h e T h r e e Load Balanc ing Algor i thms

• Algor i thm A —

This algorithm employs only task assignment but not migration.

• Algor i thm AM —

This algorithm allows both task assignment and migration. Task assignment has

precedence over migration. That is, migration takes place only if the sender node

finds no appropriate task for assignment. ‘ ‘

‘ Chapter 7 A Preliminary Study on Task Assignment Augmented with Migration 90

� • Algori thm AMT —

This algorithm is identical to algorithm AM except that a receiver-timeout mecha-

nism is used. The mechanism ensures that the receiver-initiated negotiation is in-

voked whenever a node has been in the L-load state for longer than receiver-timeout,

which is an algorithm design parameter. This mechanism avoids a potential receiver

from remaining idle for a prolonged period without searching for a task to receive.

7.2 Simulations and Analysis of Results

We divided our experiments into two different cases:

1. Even Task Service T i m e —

All the processing nodes in the distributed system have the same mean task service

time requirement, that is Si = 1, z G {1,2,...,_/V}. In other words, all the tasks

throughout the whole system logically belong to the same class. Task arrival rates

are however characterized by the log normal distribution (A^ T̂A), as described in

section 3.1 on page 19.

2. Uneven Task Service T i m e —

Processing nodes are subjected to two different classes of tasks, one with longer task

service time requirement, and the other with normal task service time requirement.

Moreover, task arrival rates between the nodes may be different.

7.2.1 Even Task Service T i m e

Table 7.2 shows the simulation parameters used in the simulation study. Figure 7.1 shows

the comparisons of performance of the three load balancing algorithms.

7.2.1.1 P r i m a r y P e r f o r m a n c e Compar isons

1. Figure 7.1(a) shows that both AM and AMT perform better than algorithm A

under the whole range of system load. The difference is more significant when the
. ».

system load is high (around mean arrival rate 0.9 to 1.0). In fact the system with

‘ Chapter 7 A Preliminary Study on Task Assignment Augmented with Migration 91

30 1 ~ — , . . ~ 1 1—1 1 5 0 I i ‘ I P
A ^ 9 A

am — i AM —
A M T ••o•… 4 5 - I" A M T . o - "

25 - _ i
I 40 - j

！2�. . 卜 I _
I M 30 - -

t - J y . ！
10 • ^ “......

15 a … • … B I m ffl ‘
5 I I « 1 ‘ 1 1 0 ^ ‘ ‘

0.6 0.7 0.8 0.9 1 \.l 0.6 0.7 08 0.9 1 1.1
Meun Arrival Rmc Mean A m v a l Rate ~

(a) Response T i m e (b) Response T i m e S t a n d a r d Deviation

100 f 1 1 D.^t——» ' 7 I I ‘ ‘ ‘ ‘ ‘

. Z A - A —

兆 ，;, A M T … 6 - j i T I A M T o … .

94- 5- , , ^

8()()‘8 0.R5 0 .9 0 . 9 5 丨 丨.05 1.1 0 .2 0.4 0.6 0,8 1 \.2 1,4 1.6
Meun A r r i va l Kale Mean A i r i v a l Rale

(c) C P U Util ization (d) Percentage C P U Overhead

I j . 1 1 > ' 1 8 I 1 i T- > ‘ ‘

0 9 • ^ A M … . A M ― …
r A M T 务 . 7 • . . . t r - A M T o … •

0.8 • • .议••... • • • • . ？

0 0 . 2 0 .4 0 .6 0 .8 丨 1.2 1.4 1.6 0 0 . 2 0 .4 0 . 6 0 .8 I 1.2 1.4 1 6
Mean Arrival Rale Mean Arrival Rale

(e) Hit Rat io (f) Channel Utilization in Terms of Mean N u m b e r
of Messages in Channel

50 I , . . , … I ' 1
A 一

4 5 - ,少 • ‘ V a m .个… .
0.Z A M T

： ： :

/ I
0 0 .2 0 .4 0 .6 0 .8 1 1.2 1.4 1.6

Mean Arrival Rate
(g) R e m o t e Execut ion Percentage

Figure 7 . 1 : Comparison of system performance of algorithms A, A M , and AMT. Simulation parameters used are shown in Table 7.2.

‘ Chapter 7 A Preliminary Study on Task Assignment Augmented with Migration 92

Table 7 .2: Values of simulation parameters used in the simulations presented in Figure 4.3 and

4.4.

Parameter Value ~~| | Parameter | Value —

CPUpolling 0.005

TCPU 0 . 2 F^oiUng 0 . 0 0 1
N 30 Ftask 0.005
(7A 2 D 0.01
So 1 Cpack 0.003
lower Jhreshold l/3*Qo = 10 Cassign 0.002
upper-threshold 2/3 * Qo = 20 Cmigrate 0.05
probeJimit 5 lassign 5
receiver-timeout 3 Imigrate 7

either AM or AMT becomes saturated at higher system load 1) when compared

with algorithm A 0.92). The primary reason behind this observation is that the

available processing power of the distributed system is more fully utilized with AM

and AMT. This is shown in Figuue 7.1(c) as higher mean CPU utilizations. This

can be explained by the fact that task migrations provide an alternate mechanism

for task relocations when a busy node has no appropriate fresh task for assignment.

2. A close examination of Figure 7.1(a) reviews that algorithm AMT performs better

than AM at low to medium system load. This difference diminishes when the

system load becomes high. This can be explained as follows. At low system load,

the majority of nodes are lightly loaded. The time period between two successive

task completions in a lightly loaded node may be very long. With algorithm AM,

receiver-initiated searching therefore occurs infrequently. A lightly loaded node

may remain idle or nearly idle for a long time. The processing power of the node

is wasted. With algorithm AMT, such waste of processing power is avoided by

the receiver-timeout mechanism. This is shown in Figure 7.1(c) where AMT has a

higher CPU utilization, and in Figure 7.1(g) a higher remote execution percentage.

At high system load, the receiver-timeout mechanism has no need to trigger extra

receiver-initiated task transfers because the probability that the >receiver-timeout

‘ C h a p t e r 7 A Preliminary Study on Task Assignment Augmented with Migration 93

period expires is small. This accounts for the identical performance of algorithms

AM and AMT at high system load.

3. Figure 7.1(b) shows that both algorithms AM and AMT have significantly lower

response time standard deviation when compared with algorithm A. This means

that AM and AMT provides fairer services.

4. Figure 7.1(d) shows a comparison of the percentage CPU overhead between the

three algorithms. Algorithms AM and AMT have higher CPU overhead before

the system is saturated at about 0.9. There are two reasons for this. The first

reason is that because of task migrations, AM and AMT have larger number of

tasks relocations, which impose non-negligible CPU overhead. This is shown in

Figure 7.1(g) as a higher remote execution percentage. Another reason is the smaller

hit ratio which means a larger portion of pollings have been failed, Figure 7.1(e).

These two reasons also account for the higher channel utilization of AM and AMT
%

as shown in Figure 7.1(f). When the system is saturated, the C P U overhead imposed

by algorithm A becomes the highest among the three. This is because algorithm A

has a lower hit ratio at high system load. More polling sessions are introduced until

the probe-limit is reached or a complementary node is found. This is reflected in

the higher channel utilization.

5. Figure 7.1(f) shows that all the three algorithms have low channel utilization at

low system load. The channel utilizations grow steadily with the system load until

a peak where task relocations occur most frequently. After the peak, the channel

utilizations steadily drop with increasing system load. This reflects the fact that all

of the three algorithms adapt itself to the system load.

At low system load, most of the nodes are potential receivers and few are senders.

While a sender has no problem in locating a receiver, most of the receiver-initiated

pollings are failed. This may not have an adverse effect on the system performance

however because there is spare processing capacity to cope with the extra overhead.

‘ Chapter 7 A Preliminary Study on Task Assignment Augmented with Migration 94

Also, the failed receiver-initiated pollings have the positive effect of updating the

RLists of the polled nodes.

At high system load, most of the nodes are potential senders and few are potential

receivers. An initial high rate of failure of sender-initiated pollings results in the

removal of entries from RLists. Eventually sender-initiated pollings are prevented

because there is no entry in RLists.

7.2.1.2 Effect of receiver-timeout

Figure 7.2 shows the effect of receiver-timeout on the performance of algorithm AMT.

It can be seen that a small receiver-timeout value does not result in significantly better

response time than a large value. In fact, an exceedingly small value (in our case 1) may

result in poorer system performance as shown in Figure 7.2(a). The effect of receiver-

timeout on channel utilization is significant at low system load however, as shown in

Figure 7.2(b). This can be explained us follows. At low system load, the probability

that a receiver finds a sender successfully is low. A small receiver-timeout value results

in frequent polling sessions. Most of these pollings fail to locate a sender and cause many

unnecessary polling messages to be injected into the network. This also causes extra

CPU overhead. The difference diminishs at high system load because the effect of the

receiver-timeout mechanism is lost at high system load. From Figure 7.2, the optimal

receiver-timeout is 3.

7.2.2 Uneven Task Service T i m e

Simulation results presented in the previous section assume that all processing nodes

are subjected with tasks having identical mean service time requirement. However, we

are also interested in situations where a few nodes generate "long" tasks while the rest

generate "normal" tasks. We therefore run a number of simulations to study the sys-

tem performance under such situations. To do so, we define six different node types to

characterize the workload pattern of a node. The processing node type definitions are

‘ Chapter 7 A Preliminary Study on Task Assignment Augmented with Migration 95

30 1 1 1 p 16 , , , 1 -I 1 1

R c « i v c r T , m c o u . = 01 一 t 二 二 二
R c c d v « T " n c o m = 03 - + … 1 4 - S 二 ' i 二 召 = 二 ： M . < » “ . .

I 20- • 一 一 〜 ^

5 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘
0.6 0.7 0.8 0.9 1 1.1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Mean Arrival Rate Mean Arrival Rate

(a) Response T i m e (b) Channel Utilization in T e r m s of Mean
N u m b e r of Messages in Channel

Figure 7.2: Effect of receiver-timeout on performance of AMT. Simulation parameters used
identical to those shown in Table 7.2 on page 92, except that receiver-timeout is now a variable.

given in Table 7.3. Each node type is defined by its mean task service time and its

mean task arrival rate. For example, a node which generates long tasks in low rate is

denotes as "Long-Low", a node which generates normal tasks in medium rate is denoted

as "Normal-Medium", and so on. ‘

Table 7 .3: Processing node type definitions for modeling a system with uneven task service
time requirements.

Node Type Task Service Time Arrival Rate

Long-Low 10 0.20
Long-Medium 10 0.60
Long-High 0.95
Normal-Low 1 ^
Normal-Medium 1 0.60
Normal-High 1 0.95

Table 7.4 defines different system types by specifying the component node types. In

all system types defined, there are five nodes that generate long tasks and 25 nodes that

generate normal tasks. We label the system type by specifying the arrival rate of these

two kinds of nodes. For example, a system in which the long task nodes have low arrival

rate and the normal task nodes have medium arrival rate is labeled as LM; a system in
•.

‘ Chapter 7 A Preliminary Study on Task Assignment Augmented with Migration 96

Table 7.4: System type definitions for modeling a system with uneven task service time.

System Type Node Type Number

LL Long-Low 5
Normal-Low 25

LM Long-Low 5
Normal-Medium 25

LH Long-Low 5
Normal-High 25

ML Long-Medium 5
Normal-Low 25 ~

MM Long-Medium 5
Normal-Medium 25

MH Long-Medium 5
Normal-High 25

HL Long-High 5
Normal-Low 25

HM Long-High 5
Normal-Medium 25

~1IH Long-High 5
Normal-High 25

which both types of nodes have high arrival rate is labeled as HH; and so on.

Tables 7.6-7.8 show that the performance of algorithm AM (but not AMT) is marginally

better than that of algorithm A for a system consisting of a few nodes that generate long

task in low arrival rate, whereas other nodes have low to medium load. Table 7.9 shows

that algorithms AM and AMT have a performance improvement of about 24% over algo-

rithm A. Table 7.10 shows an even larger performance improvement of about 30%. From

these, we can conclude that for a system which consists of a few long task nodes at low

to medium load (while the other nodes are not heavily loaded), algorithm AM has per-

formance advantage over algorithm A. This can be explained as follows. In system MM

for example, the probability that the five Long-Low nodes become heavily loaded is high.

This is because it takes a relatively long time to finish a long task. These heavily loaded

nodes do not have appropriate candidates for assignment because their assignment queue

may be empty in due course. With algorithm A, potential receivers have no way to share

their surplus workload. With algorithms AM or AMT^ the workload can be shared by

migrating the executing tasks from the Long-Low nodes to the potential receivers. This

‘Chapter 7 A Preliminary Study on Task Assignment Augmented with Migration 97

Table 7 .5 : Values of simulation parameters used in the simulations for studying uneven task
service time systems.

Parameter Value Parameter Value

~Qo [30 CPUpoUing 0.005
TCPU 0 . 2 Fpoiung 0 . 0 0 1

N 30 Ftask 0.005
(with different service time D 0.01
and arrival rate combinations) Cpack 0.003

^̂A 2 C assign 0.002 “
So variable Cmigrate 0.05
lowerJhreshold 1/3 * Qo = 10 lassign 5
upper-threshold 2/3 * Q � = 20 Imigrate 7
probe-limit 5
receivertimeout 3

accounts for the higher CPU utilization and remote execution percentage. As the work-

load of normal task nodes increases, the probability that they become a potential receiver

diminishes. By the time a receiver-initiated polling arrives at a long task node, the node

may have accumulated enough workload that tasks are waiting in its task queue. In such

case, assignment takes place rather than migration. This explains why when the normal

tasks nodes have high arrival rates, algorithms AM or AMT do not perform better than

algorithm A.

Table 7.6: LL system type performance of algorithms A, A M , and AMT. Simulation param-
eters shown in Table 7.5.

" T B R e s p o n s e % C P U % CPU % R e m o t e % % Hit Channel
Alg. Time Util. Overhead Exec. Assignment Migration Ratio Util.

^A 10.77 34.59 1.531 0.599 0.599 � 0.003 2.339
AM 10.64 34.59 1.540 0.609 0.348 0. 260 0.002 2.345
AMT 12.89 36.49 3.467 1.877 1.255 0.622 0.004 5.275

I .

‘ Chapter 7 A Preliminary Study on Task Assignment Augmented with Migration 9 8

Table 7.7: LM system type performance of algorithms A, AM, and AMT. Simulation param-
eters shown in Table 7.5.

" T B Response % CPU % CPU % Remote % % Hit Channel
Alg. Time Util. Overhead Exec. Assignment Migration Ratio Util.

~~A ^ 69.90 3.586 0.696 : 5 l 7 6
AM 5.98 69.93 3.619 0.716 0.503 0.213 0.003 5.511
AMT 6.31 70.84 4.552 0.923 0.668 0.256 0.004 6.929

Table 7.8: LH system type performance of algorithms A, AM, and AMT. Simulation param-
eters shown in Table 7.5.

~LB R e s p o n s e % C P U % CPU % R e m o t e % % Hit Channel
Alg. Time Util. Overhead Exec. Assignment Migration Ratio Util.

~A 99.51 4.101 r m r m : 0.0096.246
AM 10.61 99.54 4.143 1.258 0.953 0.304 0.008 6.270
AMT 11.27 99.64 4.234 1.312 0.957 0.355 0.008 6.402

I

Table 7.9: ML system type performance of algorithms A, AM, and AMT. Simulation param-
eters shown in Table 7.5.

T B R e s p o n s e % C P U % CPU % R e m o t e % % Hit Channel
Alg. Time Util. Overhead Exec. Assignment Migration Ratio Util.

=4 23.33 68.20 2.183 26.533 26.533 � 0.130 3.130

AM 17.72 68.78 2.638 27.971 17.386 10.584 0.099 3.362
AMT 17.33 70.26 4.104 28.668 20.460 8.208 0.068 5.702

Table 7.10: MM system type performance of algorithms A, AM, and AMT. Simulation
parameters shown in Table 7.5.

~LB R e s p o n s e % C P U % CPU % R e m o t e % % Hit Channel
Alg. Time Util. Overhead Exec. Assignment Migration Ratio Util.

^ 40.81 98.39 2.300 10.713 10.713 � 0.104 3.329 二
AM 28.25 99.42 0.955 11.312 7.041 4.271 0.278 0.847
AMT 28.76 99.41 0.985 11.450 6.961 4.489 0.275 0.861

Chapter 7 A Preliminary Study on Task Assignment Augmented with Migration 99

7,3 Discussions

We found that the algorithms which employ both task assignment and migration perform

significantly better than the one which only allows task assignment. We can conclude that

although task migration usually costs more than task assignment, under some situations, it

can augment task assignment to provide extra performance improvement. This is because

task migration provides an alternate mechanism for workload distribution in a distributed

system. The performance improvement by using this approach is especially significant

when a heavily-loaded node finds no appropriate tasks for assignment. In contrast to the

common belief, task assignment augmented with task migration is a promising approach

to dynamic load balancing.

I

Chapter 8

Assignment Augmented with

Migration Revisited ——

Comparing with Batch Assignment

In Chapter 7, we presented a preliminary study on combining task assignment and migra-

tion. We found that algorithms which employ both task assignment and migration as the

transfer mechanism perform significantly better than algorithms which allow only assign-

ment. However, task migration is costly and not widely supported in today's distributed

operating systems. On the other hand, in Chapter 5, we introduced the batch assignment

algorithm GR.batch. We found that batch assignment provides impressive performance

advantage and is promising to be a practical load distribution algorithm. In this chapter,

we attempt to compare the performance of these two approaches.

8.1 Algorithm Descriptions

The first algorithm that we study in this chapter is the GR.batch algorithm described

in section 5.1. For the sake of convenience, we rename it as GR.BATCH.A to signify

that this algorithm employs the GR protocol and the batch assignment approach, and

that it allows only task assignment. The second algorithm is the AM algorithm described

in the last chapter. Similarly, AM is renamed as SK.SINGLE.AM to signify that the

algorithm adopts the original Shivaratri and Krueger's location policy, us'es the single task

100

Chapter 8 Assignment Augmented with Migration Revisited 一Comparing with Batch Assignment 101

transfer approach, and allows both assignment and migration as the transfer mechanism.

8.1.1 T h e GR.BATCH.A A lgor i thm

In GR.BATCH.A, task assignment is the sole workload distribution mechanism. It em-

ploys the batch transfer approach and the GR protocol for obtaining mutual agreement

on batch size. Tightly coupled with the GR protocol is an adaptive location policy which

selects target nodes for polling and which maintains load information of other nodes lo-

cally. Measurement of load state is based on the effective load of a node, denoted as ELi.

The complete GR.BATCH.A algorithm has been described in section 5.1.4 on page 62.

8.1.2 T h e SK.SINGLE.AM A l g o r i t h m

Unlike GR.BATCH.A, algorithm SK.SINGLE.AM employs both task assignment and

task migration as its workload distribution mechanisms. However, it allows only single

task transfer. Therefore, the GR protoqol, and the node attributes GURi and RESi, are

no longer necessary. Measurement of load state is based on the actual number of tasks

residing on a node, denoted as Ki. The location policy and negotiation protocol are the

same as the symmetrically-initiated adaptive location policy as described by Shivaratri

and Krueger in [SK90].

8.1.3 S u m m a r y of A l g o r i t h m P r o p e r t i e s

In the simulations, an algorithm which uses the original Shivaratri and Krueger's location

policy, and which allows only single task assignment is used as a reference for comparing

with the GR.BATCH.A and SK.SINGLE.AM algorithms. We label this algorithm as

SK.SINGLE.A. The properties of these three algorithms are summarized in Table 8.1.

8.2 Simulations and Analysis of Results

The performance of the algorithms were studied by simulations. Table 8.2 shows the

Chapter 8 Assignment Augmented with Migration Revisited 一Comparing with Batch Assignment 102

Table 8.1: Summary of properties of SK.SINGLE.A, SK.SINGLE.AM and GR.BATCH.A.

Workload

Location Load Distribution Transfer GR

Algorithm Policy Measurement Mechanism Mode Protocol

SK.SINGLE.A Shivaratri and Based on actual Assignment Single task for each Not used
Krueger’s Location number of tasks only transfer session
Policy unmodified residing in a node,

Kl
SK.SINGLE.AM Shivaratri and Based on actual Assignment Single task for each Not used

Krueger's Location number of tasks plus transfer session
Policy unmodified residing in a node, Migration

K^ -
GR.BATCH.A Shivaratri and Based on effective Assignment A batch of tasks for Used

Krueger's Location load, ELi. only each transfer session

Policy modified | I

simulations parameters used. Figure 8.1 shows the performance of the two algorithms.

We have the following observations and analysis on their performance.

Table 8.2: Values of simulation parameters used in the simulations presented in Figure 8.1.

Parameter Value Parameter Value

~Qo p O CPUpolling 0.005

Tcpu 0 . 2 Fpoiung 0 . 0 0 1
N 3 0 F t a s k 0 . 0 0 5

(J A 3 D 0 . 0 1

S o 1 C p a c k 0 . 0 0 3

lower-threshold l/3*Qo = 10 C assign 0.002

upper-threshold 2/3 * (̂。二 20 Cmigrate 0.05

probeJimit 5 Lssign 5
^migrate ^

8.2.1 P e r f o r m a n c e Comparisons

1. From Figure 8.1(a), it can be seen that SK.SINGLE.AM and GR.BATCH.A have

comparable performance throughout the whole range of system load. These two

algorithms become saturated at system load 0.97. The algorithm SK.SINGLE.A

has comparable performance with the other two algorithms up to system load 0.92,

after which it becomes saturated.

Chapter 8 Assignment Augmented with Migration Revisited 一Comparing with Batch Assignment 103

5 0 I , 1 1 , 1 ~ , TT i 1 100 p . , ^

45 - II - 95 .
4 0 • SK.SINGLE.A ； _ .

SK.SINOLE.AM I 9 0 - Z ^
GR.BATCH.A • � … “

I- II Z
§ 25 - jj = 8 0 - SK.SINGLE.A .
1 ：/ ？ SK.SINGLE.AM …
2 il U / GR.BATCH.A o …

20 • •位.••.-•J I 75 - 样.

15 • • ？ ？ 7 0 Z

1 0 - •

65 -

”

0 J 1 « 1 1 • ‘ 1 60 “ ‘ ‘ ‘ ‘ 1
0,7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

Mean Ar r i va l Rate Mean A m v a l Rate

(a) Response Time (b) Net CPU Utilization

7 I 1 1 9 I - I ‘ ‘ ‘ ‘

^ . . o - o o q g • S K . S I N G L E . A " -
6 • S K . S I N O L E . A .jd i , S K . S I N G L R . A M ― … .，-••• b

SK.SINGLE.AM … G R . B A T C H . A o … ，o*
GR.BATCH.A cj ••. � 7 • ® -

5 - ,..••• \ - 1

！：： I：：

O 0 . 2 0 . 4 0 . 6 0 . 8 丨 O 0 . 2 0 . 4 0 , 6 0 . 8 I
Mcun A n i v a l Rule Mean A i t i v . 1 Rale

(c) Percentage CPU Overhead (d) Channel Overhead

4.5 I . . • ' ' 1 ^ I — ‘ ‘ ‘ ‘ ^ ^ ^ ^ ^ ‘ ， •

4 • / • 45 - ^ ^ ： ： ： ： ! . ^ , ^

rt' 40 - 一 • • 广 .

3.5 • SK.SINGLK.A ~ 口 尸 / ^C：^. SK.SINOLK.AM •+••• 丨妨 ， Z Z ^ 3 OR BATCH A 务" 35 - / / ‘
. I 1 30 - •

I f . 1 r ‘
® / ^ 20 • I SK.SINGLE.A

/ SK.SINGLK.AM • + ” .
1 5 - J> ' 15 - / GR.BATCH.A o

I 9 "？ ？ ？ ？ 二 參 • • 寺 • • •， /

。：丨 / I I . _ :LL__,__,__,__^
0 0.2 0.4 0 .6 0.8 i 0 0 .2 0.4 0 .6 0.8 1

Mean Arrival Rale Mean Arrival Rate

(e) Batch Size (f) Remote Execution Percentage

F i g u r e 8.1: Performance of GR.BATCH.A, SK.SINGLE.AM, and SK.SINGLE.A. Simu-
lation parameters used shown in Table 8.2.

< • -

Chapter 8 Assignment Augmented with Migration Revisited 一Comparing with Batch Assignment 104

At high system load, both GR.BATCH.A and SK.SINGLE.AM have a much

higher net CPU utilization than SK.SINGLE.A (97% versus 92%), as shown in

Figure 8.1(b). This means that the system capacity can be more fully utilized

with GR.BATCH.A and SK.SINGLE.AM. This is the primary reason for the

performance advantage of these two algorithms over SK.SINGLE.A at high system

load.

In the case of SK.SINGLE.A, since around 8% of the system capacity is wasted,

we know that the capacity of some lightly loaded nodes is not used. In other words,

the workload in the system is not evenly distributed. This can be attributed to

three reasons:

• A sender, after pairing with a potential receiver, may find no appropriate task

in its task queue for assignment. Since assignment is the only workload distri-

bution mechanism available in SK.SINGLE.A, the sender node has no way to
尊,

transfer its surplus tasks to the receiver. This is reflected in its smaller remote

execution percentage as shown in Figure 8.1(f).

• With the original Shivaratri and Krueger's location policy, a receiver can easily

be bound to a particular sender. If so happens that the sender hardly finds

an appropriate task for remote assignment to the receiver, the spare capacity

of the potential receiver will be wasted. Again, this is reflected in its smaller

remote execution percentage as shown in Figure 8.1(f).

• A number of senders may poll a receiver simultaneously. The receiver may

become flooded with incoming remote tasks, resulting in a significant degrada-

tion of performance. This phenomenon is known as processor thrashing, and is

further worsened by the fact that a receiver can easily be bound to a particular

sender.

2. Figure 8.1(a) shows that for system load below the saturation point oi SK.SINGLE.A,

the performance of GR.BATCH.A is slightly poorer than that of SK.SINGLE.A

Chapter 8 Assignment Augmented with Migration Revisited 一Comparing with Batch Assignment 105

or SK.SINGLE.AM. This can be explained as follows. Figure 8.1(e) shows that

within this range of system load, the average batch size of GR.BATCH.A is very

close to 1. This implies that the batch transfer approach does not provide addi-

tional performance advantage. However, the GR protocol imposes additional CPU

overhead. This is shown in Figure 8.1(c). This extra overhead is accounted for the

slightly poorer performance of GR.BATCH.A at low system load.

3. Figure 8.1(d) shows the CPU overhead of the algorithms. It can be seen that at low

system load, the CPU overhead of GR.BATCH.A and SK.SINGLE.AM is higher

than that of SK.SINGLE.A. At high system load, the reverse occurs.

At low system load, the extra CPU overhead of GR.BATCH.A is due to the ad-

ditional messages generated by the G R protocol. The higher C P U overhead of

SK.SINGLE.AM simply reflects the higher costs involved in task migration, as

compared to task assignment. The higher CPU overhead of SK.SINGLE.A at

high system load is due to the fact that some pollings are not successful in locating

a transfer partner because of processor thrashing. This causes even more polling

messages to be created, and thus higher C P U overhead.

Figure 8.1(d) shows that channel overhead exhibits a similar pattern. This can be

explained similarly.

8.2.2 E f f e c t of W o r k l o a d I m b a l a n c e

Figure 8.2 shows the effect of system imbalance on the performance of GR.BATCH.A.

We have the following observations and analysis on their performance.

1. Figure 8.2(a) shows that under all the imbalance factors studied, GR.BATCH.A

has a poorer performance than SK.SINGLE.A at low system loads. This can

be explained as follows. In this range of system load, GR.BATCH.A does not

provide extra CPU utilization as is shown in Figure 8.2(b). When taking the extra

overhead introduced by the G R protocol into consideration, it is clear that the net

Chapter 8 Assignment Augmented with Migration Revisited 一Comparing with Batch Assignment 106

1 I 1 1 1 1 1 0.14 I 1 , r 1

^ \ 0.12 - Imbalance Factor = 0.01 ~ / \ -
0.8 - Imbalance F a c t o r » 0 . 0 1 - • — •• \ ^ Imbalance Factor = 1.00 / \，. ..

Imbaluncc Factor = 1.00 / /' \ 5 Imbalance Factor = 3.00 o … /
•B Imbalance Factor = 3.00 •o- -- / / \ oS 0.1 • Imbalance Facior = 5.00 - /
u Imbalance Factor = 5 . 0 0 -h— T / \K \ ^ / ：

I 0.6 - / f i 0 08 _ f •••••••

卜 // /\\ ' i:: /
-0.2 ‘ ‘ ^ 1 -0.02 ‘ ‘ ‘

0.6 0.7 0.8 0.9 1 1.1 0.6 0.7 0,8 0.9 1
Mciin Airivnl Rate Mean Airival Rule •

(a) Response Time Performance Ratio (b) Net CPU Utilization Performance Ratio

Figure 8.2: Effect of system imbalance on performance of GR.BATCH. A. Reference algorithm
is SK.SINGLE.A. Simulation parameters used identical to those in Table 8.2, except that
imbalance factor is a variable.

CPU capacity available for processing user tasks is reduced. This accounts for the

poorer task response time exhibited by GR.BATCH.A at low system loads.

2. Figure 8.2(a) shows that with imbalance factor 0.01, GR.BATCH.A has a poorer

performance than SK.SINGLE.A throughout the whole range of system load. The

workload homogeneity implies that single task transfer is enough and the additional

overhead associated with GR.BATCH.A is not compensated for.

As the imbalance factor increases, the bell-shaped area with which GR.BATCH.A

exhibits positive response time performance ratio increases. This reveals the ability

of GR.BATCH.A in handling a highly imbalanced system.

Since we found a similar performance characteristics with the algorithm SK.SINGLE.AM,

we do not show its performance results here.

8.3 Discussions ‘

We found that both GR.BATCH.A and SK.SINGLE.AM have significant performance

advantage over the use of a single task assignment algorithm SK.SINGLE.A. This

shows that (1) task migration can be used as an alternative workload distribution mech-
• .

anism for augmenting task assignment to provide extra performance improvement; and

Chapter 8 Assignment Augmented with Migration Revisited 一Comparing with Batch Assignment 107

(2) the batch assignment approach can boost up the uti l izat ion of the system capaci ty

by resolving the problem of processor thrashing. Moreover, these two algorithms have

comparable per formance over the whole range of sys tem load, wi th SK.SINGLE.AM

performs sl ightly bet ter in terms of both task response t i m e and a lgor i thm overhead. T h e

choice a m o n g these two algorithms largely depends on whether task migrat ion is sup-

ported. A s task migrat ion is scarcely supported in t o d a y ' s distr ibuted operat ing systems,

we conclude that the batch assignment approach is a s imple and pract ica l approach to

load balancing.

I '

Chapter 9

Applying Batch Transfer to

Heterogeneous Systems with Many

Task Classes

All of the previous studies assume that the distributed system is homogeneous, meaning

that all processing nodes are functionally equivalent. In other words, tasks arrived at any

node can be executed in any processing nodes in the system, not only in the arrival node.

In this chapter, we attempt to apply the batch assignment approach to heterogeneous

systems. Our model of heterogeneous systems has two major characteristics:

• Processing nodes have different processing throughputs.

• Tasks are divided into different classes. Each class is identified by its service time

demand and its task code length.

The algorithms that we study in this chapter are variations of GR.batch and SK.single,

which are described in Chapter 5. (Refer to Table 5.3 on page 69.) These algorithms

have been modified for the characteristics of our heterogeneous systems. In particular,

task selection schemes are modified to cater for the difference in processing throughputs

between transfer pairs. This is necessary because the processing time required by a task

z when being executed in node Pi may be different from that when z is executed in node

Pj. The algorithms that we study are divided into two categories: ‘

108

__ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 109

• The first category consists of variations of the SK.single algorithm.

• The second category consists of a single algorithm which is a variation of the

GR.batch algorithm. Task selection for composing a task batch is modeled as a

Subset-Sum Problem (SSP) [MT90]. The objective of the composition scheme is to

make maximal use of the allowed batch size b by selecting a subset from among the

candidate tasks in the task queue. Greedy approach is used to find the approximate

solutions for the SSP.

9.1 Heterogeneous System Model

In our homogeneous system model as defined in section 3.1 on page 19, all processing

nodes are assumed to be identical. Implicitly defined in the homogeneous model is that

the service rate of the nodes is one task per unit time. i For our purpose, we identify two

different types of heterogeneous systems.
I

• In the first type, the processing nodes in the system are functionally identical, mean-

ing that tasks arriving at any node can be executed in any other nodes in the system.

In other words, the nodes are “binary compatible,, to each other. Different process-

ing nodes may have different processing throughputs however. That is, processing

throughput heterogeneity is being focused.

• The second type of heterogeneous systems is more restricted. Nodes in the system

are not binary compatible to each other and thus tasks arriving at a node can be

assigned remotely to only a subset of other nodes in the system — those which

are functionally equivalent to the arrival node. That is, both processing throughput

heterogeneity and functional heterogeneity are being focused. ,

For the sake of clarity, we will only study the first type of heterogeneous systems.

1 Recall that within a node P,-, the task service time of those locally arrived tasks has an exponential
distribution with mean Si. For an "even task service time system," 5,- is a constant with the value So.
Therefore, the service rate of the nodes in the homogeneous system is S � t a s k s per unit time. In the
simulations, So equals to 1. ‘

_ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 110

9.1.1 Process ing Node Specification

A heterogeneous system is characterized by the composition of node types. We can define

a node type Mi by a 3-tuple (M ,̂ Throughputi, tpi)^ where Throughputi is the processing

throughput, and ipi is the number of nodes of type Mi in the heterogeneous system.

Suppose that there are m different node types. The heterogeneous system can then be

represented as a set of 3-tuples:

{{Ml, Throughputi, V ' l) ? � M 2 , T h r o u g h p u t 2 , i h) , . . •, (M^m, Throughputm, V'm)} (9.1)

We denote the set { 1 , 2 , . . . , m} as M. The total number of processing nodes in the system

is given by:

Total Number of Nodes = ^ 也 (9.2)
ieM

Furthermore, it is important to cater for the difference in processing throughputs between

the transfer partners during sender-receiver negotiations. We therefore define the Relative

Processing Throughput as follows.

Relative Processing Throughput: of node type x with respect to node type y,
denoted as r̂ ŷ, is defined as the ratio of the processing throughput of node
type X to that of node type y. That is,

Throughput^

工 y Throughput” •

Based on the relative processing throughput, we can define the Relative Processing Through-

put Matrix as follows.

Relative Processing Throughput Matrix: R 二 is a m by m matrix, where
Vij is the relative processing throughput of node type i with respect to node
type j.

In subsequent discussion, we will need to refer to the relative processing throughput

between two processing nodes. We will use the same notation as for the relative processing

throughput between node types. That is, if there are two processing nodes with ids Pi

and Pj, without ambiguous, rij refers to the relative processing throughput of the node

type of Pi with respect to the node type of Pj.

Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 111

9.1.2 Task T y p e Specification

Tasks in our heterogeneous model are divided into different categories. Each category

is characterized by its service time requirement (i.e. the CPU time needed for complet-

ing its execution) and its task code length (i.e. the number of messages generated if the

task is assigned remotely). Furthermore, each task type has its individual arrival rate

to a processing node. Since processing nodes may have different processing throughputs,

the service time requirement should be "calibrated" according to a particular node type.

Throughout the study, node type Mi is always used as the reference for calibration pur-

pose. Thus, if task type Ji has a service time requirement of 10, a task of type Ji will take

10 units of time to be completed when being executed in node type Mi. We can define a

task type Ji by a 4-tuple (Jj, tuî i, Aj), where wî i is the service time requirement with

respect to node type Mi； k is the task code length; and A!- is the arrival rate of task type

Ji to a processing node. Suppose there are n different task types in the system. The task

type composition of the system can then be represented as a set of 4-tuples:

{(-^l,"^!,!,^!, Ai),(J2, 1̂ 1,2, ̂ 2,^2), . . . An)} (9.4)

We denote the set { 1 , 2 , . . . , n} as J, The total task arrival rate at a node when calibrated

with node type M � i s given by:

Total Task Arrival Rate at a node = y^ Xj ‘ wij (9.5)
jeJ ‘

The total task arrival rate in the system when calibrated with node type Mi is given by:

Total Task Arrival Rate in the system = ' • (9.6)
ieM jeJ

The total service rate of the system when calibrated with node type Mi is given by:

Total Service Rate in the system = ^ • ni (9.7)
ieM

Saturation of the system occurs if

E • E Xj • 〜 〉 也 . r a . .， （9.8)
ieM jeJ ieM

Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 112

9.1.3 Workload State Measurement

Our previous measure of workload of a node is based on the number of tasks residing in

the node. The validity of such a scheme relies on the fact that there is only one type of

tasks. In the heterogeneous system model, tasks are divided into different classes. Some

of the tasks may have a very long task service time, while the others may have a short

one. Counting only the number of tasks residing in a node for determining the node's

load state is inadequate for a heterogeneous system. Instead, the "weight" of the tasks

should also be taken into consideration. Recall that we denote the total number of tasks

residing in a node Pi, including those in the task queue, in the threshold queue, and in

the service queue, by / i � . I n order to measure the workload of a node, we define a new

processing node attribute called the node weight as follows.

Node Weight: of a node Pi, denoted by Wî is defined as the sum of the
remaining service time requirements of the tasks residing in Pi, measured
with reference to Pi. That is,

t̂ z = ru . ^ (9.9)
jeK,

where Wij is the remaining service time requirement of task j with respect
to node type Mi. For a task residing in the task queue or in the threshold
queue, w i j equals to Wij since the task has never been executed. For a task
in the service queue, Wij equals to Wij minus the accumulated processing time
received by the task so far.

Intuitively, processing node Pi maintains the variable Wi. When a task arrive, either

locally or remotely, the weight of the task with reference to node Pi is added to the variable

Wi. Conversely, when a task is assigned remotely, or when the task has completed its

execution in Pi, the weight of the task is deducted from Wi. Based on the node weight of

a node, we can define the weighted effective load as follows. _

Weighted Effective Load: of a node P“ denoted as WELi , is defined as the
node weight of Pi plus the reservation value and minus the guarantee value of
Pi, That is,

WELi 二 M̂ i + RESi - GUR, (9.10)

where RESi and GU Ri are the reservation value and the guarantee value of
node Pi respectively.

Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 113

I L L U S T R A T I O N

Suppose the processing nodes in a heterogeneous system is defined by the following set of 3-tuples:

{ (M I , 5 , 1) , (M 2 , 3 0 , 2) , (M 3 , 5 0 , 1) }

That is, there is one node of type Mi , which has a processing throughput of 5 unit; 2 nodes of type
M2, which has a processing throughput of 30 units; and 1 node of type M3, which has a processing
throughput of 50 units. Suppose there are four types of tasks as defined by the following set of
4-tuples:

{(JI, 1’ 10,0.5), (J2, 5,10’ 0.2), (J3,15,50，0.2), (J4,100’ 30，0.01), }

Consider node P3 of type M2. Let the set of tasks residing in node P3 as:

A'3 = {JI, JI, J2, J3, JA]-

K3 can be rewritten in terms of service time requirements of tasks as:

/i3 = {1 , 1 ,5 ,15 ,100} .

For simplicity, assume that RES3 and GUR3 are zero. The weighted effective load of node P3 can be
calculated as:

WELs = ri2- Y^ wij + RES3 - GURz
jeK^

Throuqhputi ,, �
二 ^ 1 + 1 + 5 + 1 5 + 1 0 0 + 0 - 0

Throughput^

= I - - 1 2 2
30

= 2 0 . 3

The intuitive meaning of the value 20.3 is as follows. If those tasks residing in node P3 were executed
in a node of type Mi , which is used as a reference for calibration purpose, the total service time
required for completing them is 122 time unit. Since node P3, which is of type M2, is six times faster
than a node of type Mi,尸3 only requires 1/6 of 122 time units for completing the tasks. Therefore,
as long as node P3 is concerned, the tasks apparently take 20.3 time units for completion.

Figure 9.1: Example illustrating the intuitive meaning of Weighted Effective Load, WELi.

Figure 9.1 provides an example illustrating the intuitive meaning of the definition of

WELi . Based on the weighted effective load, we can define the 3-level load measurement

scheme as shown in Table 9.1.

9.1.4 Task Selection Candidates "

A task selection scheme (part of the transfer policy) is responsible for selecting the task(s)

to be sent to the transfer partner. All the tasks residing in a task queue are candidates

for task assignment. In principle, task selections are made in a FIFO order: (1) For single

__ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 114

Table 9.1: 3-level load measurement scheme based on weighted effective load, WELi.

Load State Criteria

L-load WELi < lower Jhreshold
N-load lower Jhreshold < WELi < upper Jhreshold
H-load WELi > upper—threshold

task assignment, the first task in the task queue is selected. (2) For batch task assignment,

tasks are selected one by one, starting from the first task in the task queue, until the size

of the task batch is fulfilled. However, in some of the algorithms that we study in this

chapter, tasks may be selected in arbitrary order from the task queue. To derive the

"best" selection decision requires all the tasks in the task queue to be examined. This

may be prohibitively inefficient and may inject unnecessary extra overhead to the already

busy sender nodes. Therefore, we have to limit the number of tasks that are eligible for

consideration during task selection. This can be done as follows.

We denote the set of tasks residing in the task queue of node Pi by Z :

Zi = { l , 2 , . . . , / e i } (9.11)

where ki is the total number of tasks residing in the task queue of node Pi.

Let T] = The maximum number of tasks that can be considered by the selection

scheme; algorithm design parameter.

Zî r) = The set of candidate tasks that are eligible for consideration by the

selection scheme.

ki,” = The size of 么，”.

The value of ki’” is determined as follows:

‘

7? i f 77 < ki "
hn = . (9.12)

I ki otherwise

Therefore,

Z,,, = (9.13)

__ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 115

Tasks in the set Z:，” are subjected to the task selection scheme for consideration.

For Single Task Assignment:

Let j = The task selected for assignment.

j e z � (9.14)

For Batch Task Assignment:
Let Zi = The set of tasks selected by the selection scheme, i.e. the task batch.

Zi = {j:l<J< k j C Zi,, C Z, (9.15)

The conceptual model of task selection is depicted in Figure 9.2.

Single Task Assignment:
n；；；： ； ： Task Selection i c. 7 „

I Tasks residing in TQ I S u b j e c t — _ The ^et of candidate Scheme ^ B a t c h ' k k Assignment:

Zi = {1 ,2,...,/Ci} 二 {1’2’...，fc,’”} = { j : 1 < j <

Figure 9.2: Conceptual model of task selection in task assignment algorithms.

9.2 Algorithm Descriptions

In this section, we describe the three categories of algorithms that we study in this chapter.

9.2.1 First Category — T h e SK.single Variat ions

This category contains two variations of the SK.single algorithm, which has been de-

scribed in Section 5.3 on page 67. In brief, these algorithms employ the original Shivaratri

and Krueger's location policy, allow only single task assignment, and use the actual num-

ber of task residing in a node for measuring the load state. Note that these algorithms

fail to adapt their workload measurement schemes to cater for the difference in service

__ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 116

time requirements of different task classes, nor the difference in processing throughput

between transfer partners.

Algor i thm 1 — SK.Single.First

This algorithm is identical to the SK.single, which is renamed for maintaining the consis-

tency in naming scheme. The qualifier "First" signifies that the selection scheme always

selects the first task in the task queue for remote assignment, regardless the type of the

task and the type of the receiver node.

Algor i thm 2 — SK.Single.BestFit

This algorithm is similar to SK.Single.First, except that the selection scheme selects the

"Best Fit" task in the task queue for remote assignment. The selection scheme is stated

as follows.

Let j = the task selected for remote assignment

Fx = the sender node •

Py = the potential receiver node

Minimize \wij • riy — 1|, j G (9.16)

Intuitively, the first rj tasks in the task queue of the sender node Pj； are examined. The

task whose service time requirement with respect to the receiver node Py is closest to 1 is

selected. The heuristic we used here is: All we know about the sender-receiver negotiation

is that the receiver agreed to accept one task, or more accurately, one unit of service time

requirement with respect to the receiver's processing throughput. Selecting a task with

service time requirement less than 1 unit may waste the spare processing capacity of the

receiver node, and thus making the negotiation session less efficient. Selecting a task with

service time requirement greater than 1 unit may overload the receiver. Thus, the best

"guess" here is one unit of service time requirement with respect to the receiver node.

__ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 117

9.2.2 Second Category — T h e GR.batch Variation Modeled with S S P

This category contains a single algorithm labeled as GR.SSP.Greedy, which is a variation

of the GR.batch algorithm. The GR.batch algorithm is modified to adapt to the system

heterogeneity. In particular, the determination of batch size has to cater for any difference

in processing throughputs between the sender and the receiver. For example, when a

sender Px guarantees to send g tasks to a receiver Py, this actually means (g . r^y) unit

of CPU capacity to Py. Similarly, when a sender determines the desired batch size,

the reservation value received from the receiver should be calibrated according to the

processing throughput of the sender itself.

Besides, as different task classes have different service time requirements, it is no

longer appropriate to measure batch size in terms of the number of tasks in a task batch.

Instead, batch size should be measured in terms of the total service time requirements of

all the tasks in the task batch. These all arise the problem of task batch composition. In

GR.SSP.Greedy, task selection for composing a task batch is modeled as a Subset-Sum

Problem (SSP) [MT90]. The objective of the task batch composition scheme is to make

the maximal use of the allowed batch size b by selecting a subset of tasks from among the

candidate tasks in the task queue. A greedy approach is used to solve the SSP and thus

the algorithm is labeled as GR.SSP.Greedy.

S S P Task B a t c h Composi t ion Scheme:

With the original GR.batch algorithm, we select b tasks in the assignment queue of the

sender node in a FIFO manner. The value of b is derived partly with the reservation r,

i.e. the number of tasks the receiver has reserved for the sender. (Refer to section 5.1.3 on

page 60.) When applied to a heterogeneous system, the value r is first adjusted according

to the relative processing throughputs between the transfer partner, before it is used for

deriving the value of b. After the batch size b has been determined, we have to select

tasks to be transferred to the receiver node. Since different classes of tasks have different

service time requirements, we have to select the appropriate set of tasks so as to make

the maximal use of the batch size b. In this way, we are making the most efficient use of a

__ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 118

negotiation session. To achieve this, we formulate the task selection scheme for composing

a task batch as a subset-sum problem as follows.

Given a set of tasks 么，” = { 1 , 2 , . . . , ki，”) and a maximum batch size 6’ with

Wi’j = service time requirement of task j with respect to node Pi, j G Zi’”, (9.17)

select a subset of tasks zi C Zi’” whose total service time requirement with respect toJ

node Pi is closet to, without exceeding, b, i.e.

Maximize b= 比i,j . Xj (9.18)

jez‘’”

Subject to • < (9.19)
j 口

Xj = 0 or 1, j e Zi^rj = { l , 2 , . . . , / c i , J , (9.20)

where

1 if task j is selected
Xj = (9.21)

0 otherwise

The most immediate approach to the heuristic solution of the above formulation of

SSP is the greedy approach [MT90], which consists of examining the candidate tasks, Z“”，

in a FIFO order and inserting each task into the task batch Zi if it fits. To guarantee

a worst-case performance of 1/2, the task with the largest service time requirement will

be considered as a possible alternative solution. The task selection procedure is shown

below.

__ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 119

Procedure Selection.SSP.Greedy
Input: 6’ � ’
Output: 6, Zi, (xj)
BEGIN

6 := 0;
£i := <f>',
b := 6;
r ••= 1；

FOR j := 1 TO ki，rj DO
IF Wij > b -

Xj := 0;
ELSE

工j •= 1;
Zi —ji u i；

b :=b — Wij',
ENDIF
IF Wij > Wi’j.

r •= i；
ENDIF

ENDDO
6 ：= 6 — 6 ;

IF Wij» > h
FOR j := 1 to ki,fi DO

Xj := 0;
ENDDO
Xj* := 1;
b ：= Wij*',

：二 {j}；

ENDIF
END

Figures 9.3- 9.7 depict the complete GR.SSP.Greedy algorithm. The basic skele-

ton of the algorithm is similar to the GR.batch algorithm. Note that the superscripts

of max”, and r^ signify that the value of g is calibrated with respect to node P̂；,

whereas the value of max is calibrated with respect to node P们 and so on. Further-

more, the functions MaxAssign() and NumAssign() are modified to^cater for the sys-

tem heterogeneity. These two modified functions are depicted in Figure 9.8. The function

ReceiverNewEL()^ which is used by a sender to estimate the receiver's new effective load

in the original GR.batch algorithm, is modified and renamed as ReceiverNewWEL{).

This new function is depicted in Figure 9.9. < • ‘

Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 120

Sender x
P r o c e d u r e X I

1. Target node selection 一

target node y == head of RListx
2‘* Determine guarantee value g : —

g"" = GUR:
3. GURx = GURcc + g工
4.* WEL. = + RES：. - Polled node v
5. Send a polling message to y r U i i e U l l U U t ； y

E n d . P r o c e d u r e Y l
1. Lists u p d a t e — ‘

^Sw Remove x f rom whatever list it is in and

add it to the head of SListy.
POLLING: g: 2. If y is N O T a receiver^M^ELy — load)

goto procedure Yl
^ S ^ ^ Endif

3.* Determine reservation value r^:
max^ = MaxAssign{)

y _ (m a x ^ if m a x ^ < g : . rxy

~ \ ' rxy otherwise

4. RESy = RESy + ry
5.* WELy = V^y + RESy 一 GURy
6. Send an ack message to x

E n d

. /
Sender x /
P r o c e d u r e X 2 f

1. GUR:c = GUR广 g"" /

2.* Determine ba tch size 6 / ACK: m a x ^ , r^
t = NumAssign{) /

^ …ry 工 /

\ r衫• Vyx otherwise /

3.* Select b tasks (or less) ^

If NO task can be selected

goto procedure X2
Endif

4. Transfer 6 tasks to y

5.* WEL^ = M̂ z + RES^ 一 GUR工
6. List u p d a t e —

E s t i m a t e y，s new effective load s ta te by func- T R A N S F E R : tasks, ^ ^ W E L ^

tion Receiver New EL {). ^^
" Move y to the head of the appropr ia te list of

X accordingly.

7. Init iate another polling session by going to pro-

cedure X I unless either:

a. probe — limit is exceeded; or

b. RListoc is e m p t y ; or 11 1 i

c. X is no longer a sender {WEL：^ + 11- load) 丄 Oiiecl IlOde y 一

E n d P r o c e d u r e Y 2

1. Lists u p d a t e —

Move X to the head of the appropr ia te list

according to W E L x -

2. A p p e n d t ransferred tasks to the threshold q u e u e

3. RESy 二 RESy - ry
4.* WELy = Wy + RESy - GURy

E n d ,

Figure 9.3: Sender-initiated component of the GR.SSP.Greedy algorithm. Steps marked with
* represent major modifications for adapting to the system heterogeneity.

__ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 121

Polled node y
Z P r o c e d u r e V l

1. Send a nack message to x, p iggybacking
NACK: WELy ^ ^ v^EL；,

Senderx
P r o c e d u r e X 3 _

1. Lists u p d a t e —

Move y to the head of the a p p r o p r i a t e list ac-

cording to WELy
2. GUR:c = GUR:c - g工
3.* WELa： + RES工-GUR工

4. Init iate a n o t h e r polling session by going to pro-

cedure X I unless either:

a. probe — limit is exceeded; or

b. RListx is e m p t y ; or

c. X is no longer a sender {WELx • H — load)
E n d

Figure 9.4: Sender-initiated component of the GR.SSP.Greedy algorithm — Procedure Yl.
Steps marked with * represent major modifications for adapting to the system heterogeneity.

»

Sender x
P r o c e d u r e X2

L* WELa： = + RE So： 一 GURa：

2. List u p d a t e —

E s t i m a t e y’s new effective load s t a t e by func-

tion Receiver New EL{).

Move y to the head of the a p p r o p r i a t e list of

X accordingly.

3. Send a nack m e s s a g e to y, p i g g y b a c k i n g W E L x

4. Init iate a n o t h e r poll ing session by going to pro- ^ ^

c e d u r e X I unless either: NACK: r衫 WEL

a. probe — limit is exceeded; or ^ ^ ’

b. RListx is e m p t y ; or

c. X is no longer a sender {WELx 丰 H — load)
E n d �

Polled node y
P r o c e d u r e Y 3

1. Lists u p d a t e —

Move X to the head of t h e a p p r o p r i a t e list

accord ing to WELx
2. RESy - RESy 一 ry

3.* WELy = VVy + RESy - GURy
E n d

Figure 9 .5: Sender-initiated component of the GR.SSP.Greedy algorithm — Procedure X2.
Steps marked with * represent major modifications for adapting to the system heterogeneity.

__ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 122

Receiver node y
P r o c e d u r e Y 4

1. Lists u p d a t e —

/ T a r g e t node x is selected as follows. If

SListy is not empty, choose the node at

the head of SListy, Otherwise, if NListy
is not empty, choose the last node from

NListy. Otherwise, choose the last node

f rom RListy,

2. Determine reservation value r^ —
r^ = max^ = MaxAssign{)

3. RESy 二 RESy + r̂ ^ 一

4.* WELy + RESy - GURy
5. Send a polling message to x

E d

Polled node x
P r o c e d u r e X 4

1.* Determine batch size
t = NumAssign{)

/ t i f t ^ r , :
\ r衫.Vyx otherwise N^

2.* Select b tasks (or less)

If NO task can be selected

goto procedure X4
Endif \

3. Transfer 6 tasks to y

4.* WELa： = + RESa： - GUR: T R A N S F E R : tasks, r^, WEL：：

5. Lists u p d a t e — ^ ^

Es t imate y’s new effective load s ta te by func-

tion Receiver New EL{).
Move y to the head of the appropr ia te list of

X accordingly.

E n d \

Receiver node y
P r o c e d u r e Y 5

1. Lists u p d a t e —

Move X to the head of the a p p r o p r i a t e list

according to WELx-
2. A p p e n d t ransferred tasks onto the threshold q u e u e

3. RESy 二 RESy - ry
4.* WELy = Wy + RESy - GURy
5. Initiate another polling session by going to proce-

dure Y 4 unless either:

a. probe 一 limit is exceeded; or

b. X is no longer a sender

c. No node d e e m e d a p p r o p r i a t e can b e selected for

polling.

E n d

»

F i g u r e 9.6: Receiver-initiated component of the GR.SSP.Greedy algorithm. Steps marked

with * represent major modifications for adapting to the system heterogeneity.

Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 123

Polled node x
P r o c e d u r e X4

1. Lists update —

Est imate y's new effective load state by func-
tion Receiver NewEL{),
Move y to the head of the appropriate list of
X according to this.

2. Send a nack message to y, piggybacking WELx^

E n d

\ -
NACK： , Receiver node y

P r o c e d u r e Y 6
1. Lists update —

Move X to the head of the appropriate list
^ according to WELx-

2. RESy = RESy — ry
3.* WELy = Wy-\- RESy — GURy
4. Initiate another polling session by going to pro-

cedure Y 4 unless either:
a. probe — limit is exceeded; or
b. X is no longer a sender
c. No node deemed appropriate can be se-

lected for polling.
• E n d

F i g u r e 9.7: Receiver-initiated component of the GR.SSP.Greedy algorithm — Procedure
Steps marked with * represent major modifications for adapting to the system heterogeneity.

9.3 Analysis of Simulation Results

It must be noted the performance of the algorithms largely depends on the processing

node compositions and the task classes imposed on the system. The simulation results

presented in this section therefore serve only to provide some cues to the usability of the

algorithms. Figure 9.10 presents a comparison of the performance of the three algorithms.

Simulation parameters used are given in Table 9.2. '

1. Figure 9.10(a) shows the performance of the three algorithms under a system with

homogeneous processing nodes having a single task class. It can be seen that

SK.Single.First and SK.Single.BestFit have identical performance. As there is

only one single task class, the task selection scheme of both algorithms therefore

__ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 124

MaxAssign{) NurnAssignQ

Let WELy = Current weighted effective load of re- Let WEL：, = Weighted effective load of sender a: when

I ceiver y the polling message is received
Let WELy = Estimated weighted effective load of re- Let = Weight of tasks sender x is willing to send

ceiver y after task transfer to the receiver.

If max没 tasks are relocated, By R u l e 2

« WBL, + maxy WEL! - P > lower.threshold ~

By R u l e 1' e < WEL^ - lower.threshold (9.23)

WEL' < uvper.threshold y^ing equation (9.22)，sender node x estimates ELy
y — from max as follows.

Thus,

WELy ^ upper.threshold 一 max^ (9.24)

max^ < upper Jhreshold - WELy g ^ R u l e 3

Taking the largest possible value, 腳乙紋 + 《 ： � < 腳乙工 _ 广

max没=聊er-threshold - WELy (9.22) rpĵ ^̂

. X � WELx + max 权-upper Jhreshold

•‘ - TTT；； (9.25)

Of course,

< max^ . ryx (9.26)

t : is taken to be the largest integer satisfying the in-

equalities (9.23), (9.25), and (9.26).

F i g u r e 9.8: MaxAssign() and NumAssign{) for determining

Let WELy = estimated weighted effective load of y

Let WELy = estimated new weighted effective load of y after accepting 6 tasks

By equation (9.24):
WELy « upper Jhreshold - max^

^ELI « WELy

=upper Jhreshold - max^ + 6 • r̂ y (9.27)

F i g u r e 9.9: Function RecewerNewWEL() for estimation of receiver's new effective load based
on maxy and h.

__ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 125

always selects the first task in the task queue for remote assignment. The two

algorithms are essentially identical.

At low (Al = 0.3) and medium (Ai = 0.6) system loads, GR.SSP.Greedy has

comparable performance to the other two algorithms. This is because the system

in both cases has large enough spare processing capacity and the difference between

the algorithms is insignificant.

At high system loads (Ai = 0.9), GR.SS P.Greedy performs slightly poorer than

the other two algorithms. This can be attributed to the extra overhead of the batch

transfer approach and the GR protocol. Besides, as the system is homogeneous,

the benefit of GR.SS P.Greedy in considering both processing nodes types and task

classes in its batch composition scheme is not exhibited.

2. Figure 9.10(b) shows the performance of the three algorithms under a system with

heterogeneous processing nodes and multiple task classes.

In the first task composition, there is a task type with exceedingly large service

time requirement (500) and low arrival rate (0.1). Among the three algorithms,

GR.SS P.Greedy performs the best in terms of task response time (12.91); whereas

SK.Single.BestFit performs the worst with a task response time of 20.06. Similar

result is found for the third task composition (response time 29.97 Vs 50.48).

Table 9.2: Values of simulation parameters used in the simulations for studying the performance
of SK.Single.First, SK.Single.BestFit, and GR.SS P.Greedy.

Parameter Value Parameter Value

飞。 [3 0 CPUpomng 0.005

TCPU 0.2 Fpomng 0.001
lowerJhreshold 1/3 * Q � = 10 Ftask 0.005
upper-threshold 2/3 * = 20 D 0.01
probeJimit 5 Cpack 0.003

Cassign 0.002

__ Chapter 9 Applying Batch Transfer to Heterogeneous Systems with Many Task Classes 126

Task 1 II Response \ CPU \ % CPU H i t % Remote Channel
Composition || Algorithms Time Util. Overhead Ratio Execution Overhead

{(Ji,1,5,0.3)} II SK.Single.First [rL42 31.91 2.611 fO fO 3.995
SK.Single.BestFit 1.42 31.91 2.611 0 0 3.995
GR.SS P.Greedy 1.42 31.91 2.610 0 0 3.993

{(Ji,1,5,0.6)} SK.Single.First ^ 63.64 4.669 0 0 77l44
SK.Single.Best Fit 2.65 63.64 4.669 0 0 7.144
GR.SS P.Greedy 2.63 63.57 4.668 0 0 7.143

{(Ji,1,5,0.9)} SK.Single.First 1 3 l 6 93.05 4 . 9 2 5 ： 0 4 8
SK.Single.BestFit 13.16 93.05 4.925 0.007 1.048 7.507

II GR.SS P.Greedy || 13.56 92.73 4.965 0.006 0.669 7.604

(a) Homogeneous Processors Composition: { (M i , 1, 30)}
Subjected to single task type at different arrival rates.

I

Task [j Response CPU % CPU Hit ~ % Remote Channel
Composition || Algorithms Time Util. Overhead Ratio Execution Overhead

{ (J i , 1 , 5 , 0 . 3) , I I SK.Single.First17.67 9 6 . 1 0 1 . 0 2 5 0 . 2 2 0 3 0 . 3 0 5 [Y m
(<72,0.1’ 5’ 0.3)， SK.Single.BestFit 20.06 97.15 0.924 0.305 36.226 1.162

(J3,500,5,0.1)} GR.SSP.Greedy 12.91 92.97 3.014 0.347 5.269 4.619
{(Ji,1,5,0.3), SK.Single.First 405.26 99.500.029 O J ^ o l ^
(72,0.1,5,0.3), SK.Single.BestFit 405.26 99.50 0.029 0.190 0.602 0.420
(J3,500,5,0.3)} GR.SSP.Greedy 409.40 99.50 0.320 0.050 0.574 0.221
{(Ji,1,5,0.3), SK.Single.First 5 ^ 8 O g ^ ^ T M l 0l03
(J2,0.1，5,0.3), SK.Single.BestFit 54.84 99.34 0.096 0.383 6.294 0.116

(J3,1000,5,0.1)} II GR.SSP.Greedy 29.97 99.26 1.557 0.036 1.038 2.383

(b) Heterogeneous Processor C o m p o s i t i o n : { (M i , 1 ,30) , (M 2 , 1 0 0 , 5) , (M 3 , 0 . 0 1 , 5) }

S u b j e c t e d to different task composit ions.

F i g u r e 9 .10: Performance of SK.Single.First, SK.Single.BestFit and GR.SSP.Greedy

Chapter 10

Conclusions and Future Work

This thesis presented a comparative study on the performance of different dynamic load

balancing algorithms. Issues regarding the design of dynamic load balancing algorithms

are also discussed. Dynamic load balancing algorithms strive to use the current (or near

current) system load information to balance the workload among the processing nodes

in a distributed system by distributing tasks among the processing nodes. The potential

benefits that may be achieved by load balancing algorithms include the minimization of

task response time, and the maximization of CPU utilization and total system throughput.

The major work that we have done are summarized below:

1. The design of a system model which serves as a common framework with which

different dynamic load balancing algorithms can be compared objectively.

2. The study of load information dissemination strategies.

3. The development of the new task transfer approach, namely the batch assignment.

4. The application of the batch assignment approach in resolving processor thrashing.

5. The application of the batch assignment approach in resolving congestions in sys-

tems subjected with bursty task arrival patterns.

6. The study of the possibility of combining task assignment and task migration for

pursuing extra performance improvement.
» * .

127

Chapter 10 Conclusions and Future Work 128

7. The application of batch assignment to heterogeneous distributed systems with

many task classes.

T h e S t u d y of Load Information Dissemination Strategies

In Chapter 4, we studied two different load information dissemination strategies: one

with the presence of locally maintained load tables, and one which relies on polling for

gathering load information of other processing nodes. We found that the presence of a

load table avoids inappropriate processing nodes to be selected by a location policy and

thus maintains system stability at low and high system loads. We refer to this as the fil-

tering e f f e c t . Adaptive symmetrically-initiated polling-based location policy, such as the

one proposed by Shivaratri and Krueger in [SK90], also exhibits the filtering effect and

indiscriminate pollings are avoided. However, the filtering effect imposes an adverse effect

called processor thrashing to the system. Processor thrashing means that a number of
t -

nodes poll for the same processing node simultaneously. It results in reduced workload dis-

tribution and thus reduced CPU utilization. To put an adaptive symmetrically-initiated

polling-based location policy into practical use therefore requires processor thrashing to

be resolved.

T h e Batch Ass ignment Approach

The batch assignment approach allows a number of tasks to be transferred as a single

batch from a sender to a receiver with only a single sender-receiver negotiation session. It

can therefore smooth out workload imbalance in an efficient manner. Since significantly

less negotiation sessions are required for distributing the same amount of workload, batch

assignment is more efficient in terms of both CPU and communication overheads. Central

to the batch assignment approach are three Batch Size Determination Rules, which avoid

a task batch receiver from being flooded by an incoming task batch. We found that

the batch assignment approach provides promising performance results. Also, the CPU
« »

and communication overheads injected by using this approach are relatively small, when

Chapter 10 Conclusions and Future Work 129

compared to the traditional single task transfer approach.

We have also developed the Guarantee and Reservation Protocol which attempts to

obtain the mutual agreement between a sender and a receiver on the optimal batch size.

The central idea of the GR Protocol is two fold: (1) A sender node has to declare the

number of tasks that it guarantees to send to a receiver; and (2) A receiver employs a

"quota" scheme for reserving processing capacity for task batches from senders. It is the

primary vehicle in resolving processor thrashing. This has been shown in Chapter "5.

In Chapter 6, the batch assignment approach has been applied to systems subjected

with bursty task arrival patterns. Since algorithms using the traditional single task trans-

fer approach cannot resolve congestions in such systems, the performance exhibited by

them are not satisfactory and the system predictability is very poor. In contrast, the batch

transfer approach can resolve congestions efficiently because significantly less polling ses-

sions are needed for detracting the workload of those congested nodes.

t

Assignment A u g m e n t e d W i t h Migrat ion

In Chapter 7, we successfully showed that although task migration in general costs

more than task assignment, it can be used to augment task assignment for achieving extra

performance improvement. This is in contrast to the common belief that task assignment

should be the sole workload distribution mechanism in dynamic load balancing. This

approach has been compared with the batch assignment approach in Chapter 8, where

we found that they have comparable performance.

Batch Ass ignment in Hete rogeneous S y s t e m s

In Chapter 9, we showed how heterogeneous systems can be modeled with a set of

3-tuples {Mi,Speedi,il)i), and how task type compositions can be modeled with a set of

4-tuples [J i , w � i , l i , X i � . In addition, we explained why the measurement of workload of a

processing node cannot be based on the number of tasks residing in the node. Instead,

we defined the node weight as a basis for workload measurement. ‘

Chapter 10 Conclusions and Future Work 130

We also modified and applied the batch assignment approach to such heterogeneous

systems. We showed that the task selection scheme should cater for the difference in

processing speeds between a sender node and a receiver node. This is important in making

the most efficient use of a sender-receiver negotiation session. In particular, we modeled

batch composition as a Subset-Sum Problem and a greedy solution has been proposed.

Future Work

• Although we have run numerous simulations (of which a very small portion is shown

in this thesis), the performance of the batch assignment approach should be studied

more rigorously with a diverse set of simulation parameters. This is important in

identifying situations where batch assignment is or is not appropriate.

• Since both batch transfer and task assignment augmented with migration are promis-

ing approaches for dynamic foad balancing, it may be possible to combine the two

for further improving system performance. This will mean a new task selection

scheme, which should employ task assignment as long as possible to avoid unneces-

sary extra overhead due to task migration. In other words, task migration should be

used restrictly. In addition, message structures which allow a task batch to consists

of both type of transfer mechanisms have to be developed.

• The validity of our findings may be further proved by measurements. This will

involve the implementation of an actual system which supports dynamic workload

distribution. In general, we may have two different approaches of doing this: (1)

Implementation in the operating systems level; and (2) Implementation on top of

cluster programming toolsets such as PVM [CG90] and p4 [BL92 .

Bibliography
BL92] R. Butler and E. Lusk. “User，s Guide to the p4 Programming System". Argonne

National Laboratory, 1992. Technical Report ANL-92/17.

Bok79] Shahid H. Bokhari. "Dual Processor Scheduling with Dynamic Reassignment".

IEEE Transactions on Software Engineering, SE-5(4):326-334, July 1979.

Bok87] Shahid H. Bokhari. “Assignment Problems in Paralld and Distributed Comput-

ing". Kluwer Academic Publishers, 1987.

Cas81] L. M. Casey. "Decentralized Scheduling". The Australian Computer Journal,

13(2):58-63, 1981.

CG90] N. Carriero and D. Gelernter. "How to Write Parallel Programs: A First

Course". Cambridge: MIT Press, 1990.

CK88] Thmoas L. Casavant and Jon G. Kuhl. "A Taxonomy of Scheduling in General-

Purpose Distributed Computing Systems". IEEE Transactions on Software

Engineering, 14(2): 141-154, February 1988.

EL86a] D. L. Eager and E. D. Lazowska. “A Comparison of Receiver-Initiated and

Sender-Initiated Adaptive Load Sharing". Performance Evaluation, 6:53-68,

1986. ‘

EL86b] D. L. Eager and E. D. Lazowska. "Adaptive Load Sharing in Homogeneous

Distributed Systems". IEEE Transactions on Software Engineering, SE-12(5),

May 1986. , ..

131

Gos91] A. Goscinski. “Distributed Operating Systems — The Logical Design”. Addison-

Wesley, 1991.

KK92] 0. Kremien and J. Kramer. "Methodical Analysis of Adaptive Load Sharing

Algorithms". IEEE Transactions on Parallel and Distributed Systems, 3(6):747-

760, November 1992.

LL94] Chin Lu and Sau-Ming Lau. "A Performance Study on Load Balancing "Algo-

rithms with Process Migration". In Proceedings, IEEE TENCON 1994, pages

357-364, Singapore, August 1994.

LL95a] Chin Lu and Sau-Ming Lau. "An Adaptive Algorithm for Resolving Processor

Thrashing in Load Distribution". Concurrency: Practice and Experience^ 7(7),

October 1995. Special issue on dynamic resource management in distributed

systems; Accepted for publication.
I

LL95b] Chin Lu and Sau-Ming Lau. "An Adaptive Load Distribution Algorithm for

Systems with Bursty Task Arrivals". In Proceedings, Thirteenth I AS TED In-

ternational Conference for Applied Informatics, Austria, February 1995.

Lo88] Virginia Mary Lo. "Heuristic Algorithms for Task Assignment in Distributed

Systems". IEEE Transactions on Computers, 37(11):1384-1397, November

1988.

Mil87] Milan Milenkovic. "Operating Systems — Concepts and Design”. McGraw-Hill,

1987.

:ML87] M. W. Mutka and M. Livny. "Scheduling Remote Processing Capacity in a

Workstations-Processor Bank Computing System". In Proceedings, the 7th In-

ternational Conference on Distributed Computing Systems, pages 2-9, 1987.

:MT90] Silvano Martello and Paolo Toth. "Knapsack Problems — Algorithms and Com-

puter Implementations". John Wiley k Sons, 1990. ‘

132

；NXG85] L. M. Ni, C. W. Xu, and T. B. Gendreau. “Drafting Algorithm - A Dynamic

Process Migration Protocol for Distributed Systems". In Proceedings, the 5th

International Conference on Distributed Computing Systems, pages 539-546.

IEEE, 1985.

Phi90] Ian R. Philp. "Dynamic Load Balancing in Distributed Systems". In Proceed-

ings, IEEE 1990 SouthEast Conference, pages 304-307, 1990.

SK90] N. G. Shivaratri and P. Krueger. "Two Adaptive Location Policies for Global

Scheduling Algorithms". In Proceedings, The 10th International Conference on

Distributed Computing Systems, pages 502-509, May 1990.

SKS92] N. G. Shivaratri, P. Krueger, and M. Singhal. "Load Distributing for Locally

Distributed Systems". IEEE Computer, pages 33-44, December 1992.

Smi88] Jonathan M. Smith. "A Survey of Process Migration Mechanisms". Operating

Systems Review, 22(3):28-40, July 1988.

SS84] John A. Stankovic and Inderjit S. Sidhu. "An Adaptive Bidding Algorithm

for Processes, Clusters, and Distributed Groups". In Proceedings, The 4th In-

ternational Conference on Distributed Computing Systems, pages 13-18, May

1984.

ST85] Chien-Chung Shen and Wen-Hsiang Tsai. "A Graph Matching Approach to

Optimal Task Assignment in Distributed Computing Systems Using a Minimax

Criterion". IEEE Transactions on Computers, c-34(3):197-203, March 1985.

:TL89] Marvin M. Theimer and Keith A. Lantz. “Finding Idle Machines in a

Workstation-Based Distributed Systems". IEEE Transactions on Software En-

gineering, 15(11), November 1989.

;WM85] Y. T. Wang and Robert J. T. Morris. "Load Sharing in Distributed Systems".

IEEE Transactions on Computers, c-34(3), March 1985. ‘

133

ZF87] S. Zhou and D. Ferrari. "A Measurement Study of Load Balancing Perfor-

mance" . In Proceedings, The 7th International Conference of Distributed Com-

puting Systems, pages 490-497. IEEE, 1987.

Zho88] S. Zhou. “A Trace-Driven Simulation Study of Dynamic Load Balancing". IEEE

Transactions on Software Engineering, 14(9): 1327—1341, S e p t e m b e r 1988.

I

134

Appendix A

System Model Notations and

Definitions

Appendix A.l Processing Node Model

Notation Meaning/Description

Qo Capacity of service queue
TCPU CPU Time Slice
N Number of processing node in the DCS
Pi A processing node with id i
A,. Mean task arrival rate of node Pi
Ao Mean task arrival rate of N nodes ：

CT入 Standard deviation of task arrival rates of N nodes; also called
imbalance factor

Si Mean task service time of node P,-

蠢

135

Appendix A System Model Notations and Definitions 136

Appendix A.2 Cost Models

Notation Meaning/Description

CPU polling CPU overhead associated with sending or receiving a polling message

Fpoiiing Time needed for injecting a polling message into the communication channel
DELAYpoiiing Communication delay experienced by a polling message
DELAYbroadcasting Communication delay experienced by a load state broadcasting message
CPUassign CPU cost associated with task assignment
Cassign CPU cost in running assignment algorithm
Cpack CPU cost for composing/decomposing each task message packet
li Number of message packets generated for an assignment task i _
I as sign Mean of li in a processing node
Ba Batch size in an assignment batch
CPUmigration CPU cost associated with task migration
Cmigrate CPU cost in running migration algorithm
Cmigrate� Mean of Cmigrate
/• Number of message packets generated for a migration task i
�migrate Mean of in a processing node
Bm Batch size in a migration batch
D Propagation delay in communication channel
Ft ask Time needed for injecting a single task message packet into the communi-

cation channel

Definition 1 The CPU overKead associated with sending or receiving a polling
message is non-negligible and is represented by the parameter CPUpolling.

Definition 2 The communication delay experienced by a polling message con-
sists of a single message injection cost Fpoiung, plus the propagation delay D,
and is represented by DELAYpoiung'

DELAYpoiiing = Fpoiiing + D

Definition 3 The CPU overhead associated with sending or receiving a load
state broadcasting message is non-negligible and is represented by the param-
eter C PUpolling-

Definition 4 The communication delay experienced by a load state broad-
casting message consists of a single message injection cost Fpoiung-, plus the
propagation delay D, and is denoted by DELAYkroadcasting

D E LAYiroadcasting — FpoUing + ‘

Appendix A System Model Notations and Definitions 137

Definition 5 The batch size of a task batch is the number of tasks contained
in the task batch.

Definition 6 The CPU cost associated with task assignment is non-negligible
and is represented by CPUassignment, which is defined as follows:

Ba ~

CPUassignment — Cassign + Cpack * ^^ U
i=l

where Cassign and Cpack are constants representing the CPU time for running
the assignment algorithm, and the CPU time for composing/decomposing each
task message packet, respectively. The value Ba is the number of tasks con-
tained in the task batch. The value k represents the number of message packets
generated for a task i. This is referred to as the task code length of i. Within
a node, U has an independent exponential distribution with mean lassign- The
term Ylf=i h therefore represents the total number of message packets gener-
ated for the task batch.

I

Definition 7 The communication delay experienced by an assignment task
batch relates to its batch size and is defined as follows:

Ba
D E LAYassignment — (Ftask

i=i

where Ftask is the time needed for injecting a single task transfer message
packet into the communication channel.

»

Appendix A System Model Notations and Definitions 138

“ Definition 8 The CPU cost associated with task migration is non-negligible
and is represented by CPUmigration, which is defined as follows:

Bm ,
CPUmigration — Cmigrate + Cpack *

1=1

where Cmigrate represents the CPU cost for running migration algorithms,
including migrant selection, task image saving/restoration, etc. Within
each node, Cmigrate has an independent exponential distribution with mean
Cmigrateo- This distribution characterizes the fact that some migrations impose-
more CPU overhead because of more opened files, more established communi-
cation channels, and more allocated memory, etc. The value Bm is the number
of migrants in the task batch. The value I- represents the number of message
packets generated for a migrant i. This is referred to as task state length of
i. Within a node, /• has an independent exponential distribution with mean
I migrate- The term I'i therefore represents the total number of message
packets generated for the migrants.

Definition 9 The communication delay experienced by a migration task batch
relates to its batch size and is defined as follows:

Bm
D E LAYmigration = {Ffask

1=1

where Ftask is the time needed for injecting a single task transfer message
packet into the communication channel.

Appendix A.3 Load Measurement

Reservation Value: of a node Pi, denoted as RESi, is the total number of
tasks that Pi has agreed to accept from other sender nodes.

Guarantee Value: of a node Pi, denoted as GURi, is the total number of tasks
that Pi has guaranteed to transfer to other receiver nodes.

Effective Load: of a node Pi, denoted as ELi, is defined as ELi 二 Ki-\-RE Si —
GU Ri, where Ki is the number of tasks currently residing in Pi, including those
in the task queue, in the threshold queue, and those partially completed tasks
residing in the service queue of 尸“

» »

Appendix A System Model Notations and Definitions 139

Appendix A.4 Batch Size Determination Rules

Rule 1: After accepting max tasks, the receiver should not be in H-load,
neglecting new arrivals and departures during the negotiation and task transfer
operations.

Rule 2\ After transferring i tasks, the sender node should not be in L-load.

Rule 3: After transferring t tasks, the expected total number of tasks in the
receiver should not be greater than the total number of tasks in the sender,
neglecting new arrivals and departures of the receiver. -

Appendix A.5 Bursty Arrivals Modeling

Burst Frequency, a,\ is defined as the reciprocal of the inter-burst period,
which is the mean time between successive burst arrivals.

Burst Amplitude, 13,: is the number of tasks arrived locally to a bursty pro-
cessing node per unit time during a task arrival burst.

Burst Duration, 7，： is the duration of a task arrival burst.

Appendix A.6 Heterogeneous Systems Modeling

Relative Processing Throughput: of node type x with respect to node type y,
denoted as r^y, is defined as the ratio of the processing throughput of node
type X to that of node type y. That is,

Throughput^

巧 Throughputy

Relative Processing Throughput Matrix: R = [r̂ j] is a m by m matrix, where
rij is the relative processing throughput of node type i with respect to node
type j .

Node Weight: of a node Pi, denoted by t y “ is defined as the sum of the
remaining service time requirements of the tasks residing in 尸 “ measured
with reference to Pi. That is,

= ru ‘
jeK,

where Wij is the remaining service time requirement of task j with respect
to node type Mi. For a task residing in the task queue or in the threshold
queue, Wij equals to Wij since the task has never been executed. For a task
in the service queue, Wij equals to wij minus the accumulated processing time
received by the task so far.

Appendix A System Model Notations and Definitions 140

Weighted Effective Load: of a node Pi, denoted as W E L i , is defined as the
node weight of Pi plus the reservation value and minus the guarantee value of
Pi. That is,

WELi = ly, + RESi — GURi

where RESi and GU Ri are the reservation value and the guarantee value of
node Pi respectively.

I

%

Appendix B

Shivaratri and Krueger's Location
Policy

Shivaratri and Krueger's symmetrically-initiated location policy is shown on the next

page. Note that it has been rephased to adapt to our system model. However, the

essence is no difference from [SK90 .

I

141

Appendix B Shivaratri and Krueger，s Location Policy 142

Data Structures Receiver-Initiated Negotiation
A node i has three ordered lists - RLisU SLisU Receiver node r does the following,
and NListi. RListi contains the ids of nodes that , , , ,
have identified themselves to i as potential r e - � P^^^e a selected node j to determme if it is
ceivers. SLisU contains the ids of nodes that have ^ sender, j is selected as follows. If SLisU is not
identified themselves to i as potential senders, empty, j is the first entry in SLisU. Otherwise, if
NListi contains the ids of nodes that identified NList” is not empty, j is the last entry m N LisU.

themselves to i as normally loaded. The informa- Otherwise，j is the last entry in RLisU
tion maintained by these lists may not be up-to- The contents of the lists may be changed durmg
date. However, the heads of the lists always con- the current negotiation session because of other
tain the most recent information received. The negotiations executing in parallel Nodes_that
lists are maintained by the location policy and join SLisU m this way may be probed in the cur-
this is discussed later. rent session. Nodes that join ATLzsf. or RLisU

in this way are not considered tor probing. See
Initialization. Initially all nodes assume that [SK90] for details,
every other node is idle and is therefore a receiver.
For node i, RLisU = i + 1 . i+2,’ n, 1, ...’ i - � If J responds that it is a sender accept the
1; SListi = null- NLisU = null; where n is the task relocated from j. Move j to the head of the
number of nodes in the DCS. This ordering for appropriate list depending on the new load state
RListi helps dispersing initial negotiation activ- of j , which is piggybacked on the reply message
ity among the nodes. from j. Then stop.

. . . [We deliberately use the work "relocate" to reveal
Sender-Initiated Negotiation the fact that the task may be assigned remotely or

Sender node s does the following. migrated from node j.]

(1) If RLists is empty, stop. • [This is a hit.]
Else, probe the node, say j , at the head of RListg，
to determine if j is a receiver. � If J is not a sender, move it to the head of

either RListr or NListr, depending on the reply
(2) If i identifies itself as a receiver, return the id from j. Start another probing by going to step
j to the transfer policy and stop. i unless if either r has probed probe-limit nodes
[The transfer policy selects the appropriate task without success, if all the nodes that might be
for assignment / migration and transfers that task considered for probing have been probed (see step
to node j. Assignment always has higher prece- 1)，or if r is no longer a potential receiver.
dence over migration.] [This is a miss.]

/T/ns IS a hit.] Probed node j does the following.

(3) If i is not a receiver, move it to the head of (i) jf j identifies itself as a sender, and an ap-
either SLists or NList” depending on the reply propriate task for assignment / migration can be
from j. Start another probing by going to step found，transfer the task to r. Piggybacking j 's
1 unless if either s has probed probe-limit nodes new load state.
without success, if RLists is empty, or if s is no
longer a potential sender, probe-limit is an a l g o - � If J is not a sender or no appropriate task for
rithm design parameter. assignment / migration can be found, send a reply

message to r indicating i h e current load state of
[This is a miss.] j. Remove r from whatever list it is in and add
_ , , 1 . 1 „ „ it to the head of RList j.
Probed node j does the following. •‘

(1) On receipt of the probing message from sender
node s, remove s from whatever list it is in and
add it to the head of SListj.

(2) Send a reply message to s indicating the cur- ..
rent load state of j , which is determined by the
transfer policy.

t •‘

D END C

• • . :•••‘‘

• - .

- I , .

• • - -

‘ .••• . •‘

f , •

V �
. *

• I •

i

« « - .

• . � . - • •

‘ ‘ . J ‘

‘ … . •

“

〜 . ‘二 �
- 一 ‘

一.
• • - •• r

： . 1 “

‘ •

<M

CUHK Libraries

圓_1_11111
DDD733flflM

