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Abstract 

Existing interval constraint logic programming languages, such as BNR Prolog, 

work under the framework of interval narrowing and are deficient in solving 

general systems of constraints over real, which constitute an important class of 

problems in engineering and other applications. In this thesis, we suggest to 

separate linear constraint solving from non-linear constraint solving. Two im-

plementations of an efficient interval linear equality constraint solver, which are 

based on generalized interval Gaussian elimination and the incremental precon-

ditioned interval Gauss-Seidel method, are proposed. We show how the solvers 

can be adapted to incremental execution and incorporated into a constraint logic 

programming language already equipped with a non-linear solver based on in-

terval narrowing. The two solvers share common interval variables, interact and 

cooperate in a round-robin fashion during computation, resulting in an efficient 

interval constraint arithmetic language CIAL. The CIAL prototypes, based on 

CLP(T^), are constructed and compared favourably against several major inter-

val constraint logic programming languages. 
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Chapter 1 

Introduction 

Current status of Prolog arithmetic suffers from two deficiencies. First, the 

system predicate "is" [56] is functional in nature. It is incompatible with the re-

lational paradigm of logic programming. Second, real numbers are approximated 

by floating-point numbers. Roundoff errors induced by floating-point arithmetic 

destroy the soundness [41] of computation. The advent of constraint logic pro-

gramming [31] presents a solution to the first problem but the implementation 

of CLP languages, such as CLP(T^) [32], are mostly based on floating-point 

arithmetic. The second problem remains. 

The languages CAL [2] and RISC-CLP(尺)[30] use symbolic algebraic meth-

ods to refrain from floating-point operations. Algebraic methods guarantee the 

soundness of numerical computation but they are time-consuming. 

Previous efforts in the sub-symbolic camp, such as BNR Prolog [51], employ 

interval methods [45] and belong to the family of consistency techniques [42]. 

The main idea is to narrow the set of possible values of the variables of arbitrary 

real constraints using approximations of arc-consistency [10]. We collectively call 

these techniques interval narrowing. Interval narrowing has been shown to be 

applicable to critical path scheduling [51], X-ray diffraction crystallography [53], 
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Chapter 1 Introduction 

boolean constraint solving [9], and disjunctive constraint solving [9, 54]. How-

ever, interval narrowing is deficient in handling systems of linear constraints over 

real domain. 

For example, interval narrowing fails to solve such simple systems as “ { X + 

Y = — Y = 6}." Cleary [16] proposes a form of case analysis technique [57], 

domain splitting, as a remedy. Domain splitting partitions an interval into 

two, visits one, and visits the other upon backtracking. This backtracking tree 

search is expensive to perform. Furthermore, interval narrowing may sometimes 

fail or take a long time to detect inconsistency of linear systems. Thus, interval 

narrowing is opted for improvement in terms of efficiency. 

Our work is motivated by the inadequacy of interval narrowing for interval 

linear constraint solving. The goal is to design a sound and efficient interval 

linear constraint solving method for CLP languages. We suggest to separate 

linear equality constraint solving from inequality and non-linear constraint solv-

ing. This separation calls for an employment of two constraint solvers: a linear 

solver and a non-linear solver. The linear solver consists of symbolic transforma-

tion and numerical method. The symbolic transformation of constraints helps 

to achieve a global analysis of the system of constraints; while variables are 

narrowed by the numerical method. The precisions of solutions and the speed 

of convergence are improved with the cooperation of the two techniques. The 

non-linear solver employs interval narrowing with splitting to solve inequalities 

and non-linear constraints. 

1.1 Related Work 

Prolog III [17], CAL [2], and RISC-CLP(Tl) [30] use symbolic algebraic methods 

to solve arithmetic constraints. Prolog III1 employs a simplex algorithm to 
1 Prolog III provides the option of using floating-point arithmetic, although the default is 

rational arithmetic. 
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Chapter 1 Introduction 

handle arithmetic over rational numbers. CAL computes over two domains: 

the real numbers and Boolean algebra with symbolic values. Constraints are 

solved by using Buchberger algorithm for computing Grobner bases [11]. RISC-

CLP(T^) deals with non-linear arithmetic constraints by using Grobner basis 

and Partial Cylindrical Algebraic Decomposition [29, 12]. 

In the sub-symbolic camp, Cleary [16] introduces “logical arithmetic," a re-

lational version of interval arithmetic, into Prolog. He describes distinct al-

gorithms, one for each kind of constraint over intervals, that narrow intervals 

associated with a constraint by removing values that do not satisfy the con-

straint. A constraint relaxation cycle is needed to coordinate the execution of 

the narrowing algorithms for a network of constraints. BNR-Prolog [51] and 

its sequel CLP(BNR) [9] provide relational interval arithmetic in a way that is 

loosely based on Cleary's pre-publication idea, differing somewhat in particu-

lars. Sidebottom and Havens [54] design and implement a version of relational 

interval arithmetic in the constraint reasoning system Echidna [26]. Based on 

hierarchical consistency techniques [43], Echidna can handle unions of disjoint 

intervals. Lhomme [40] analyzes the complexity of consistency techniques for 

numeric CSP's and proposes partial consistency techniques, whose complexi-

ties can be tuned by adjusting the bound width of the resulting intervals. Lee 

and van Emden [38, 39] generalize Cleary's algorithms for narrowing intervals 

constrained by any relations p on I(lR)n. They also show how the generalized 

algorithm can be incorporated in CLP(7^) [32] and CHIP [19] in such a way 

that the languages' logical semantics is preserved. Lee and Lee [37] propose an 

integration of constraint interval arithmetic into logic programming at the War-

ren Abstract Machine (WAM) [3] level. Benhamou et al [8] replaces the usual 

interval narrowing operator of previous interval CLP languages by an operator 

based on interval Newton method to speed up non-linear constraint solving. 

3 



Chapter 1 Introduction 

1.2 Organizations of the Dissertation 

The thesis is organized as follows. In chapter 2, we provide the theoretical back-

ground to this thesis. We outline the concepts of relational interval arithmetic, 

followed by a description of interval narrowing and interval splitting. The op-

erational semantics of ICLP(7^) [38], which is shared by our proposed interval 

constraint logic programming system, is also presented. In chapter 3，we give a 

detailed discussion of the limitations of interval narrowing and interval splitting. 

We verify our assertion empirically by running experiments on some interval nar-

rowing based systems. In chapter 4, we show how to extend ICLP(7^) with an 

efficient linear constraint solver, resulting in a new interval CLP system, CIAL 

(for Constraint Interval Arithmetic Language). The architecture of CIAL and 

the interaction among modules are explained. In chapter 5, we give two pro-

posals for a sound and efficient linear solver. They are based on adaptation of 

the Gaussian elimination procedures and the Gauss-Seidel method to incremen-

tal interval constraint solving respectively. The soundness of the two proposed 

solvers are also established. In chapter 6, we describe several prototype imple-

mentations of CIAL and compare them to other major interval CLP systems. 

In chapter 7, we summarize our contributions and shed light on further work. 

1.3 Notations 

This thesis involves several kinds of variables, including logical variables (in 

CIAL) and mathematical variables (in algebra), which are either in interval or 

real domains. To facilitate subsequent discussions, we fix some notations. 

Constraints in CIAL are over real numbers. An interval is represented by an 

appropriate pair of inequality constraints bounding the value of a logical variable, 

which represents an unknown real number. We denote logical variables by such 

typewriter-like upper case letters as X，Y and Z. For example, { X � 3，X < 6} 
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Chapter 1 Introduction 

denotes the relation X G (3,6]. Mathematical interval variables (or constants) 

referring to non-empty floating-point intervals are denoted by upper (or lower) 

case letters with superscript / , while real variables (or constants) are denoted 

by ordinary upper (or lower) case letters. 

Upper case letters in boldface denote matrices, e.g. A = (a^^B1 = (b1-), 

etc. Column vectors are denoted by arrowed letters, such as X = (Xi，…，Xn)T^ 

where the superscript T indicates the transpose of a matrix. We overload the E 

symbol to denote summation in the real, floating-point, and interval domains. 

The exact meaning of the symbol can be inferred from the context of where the 

symbol appears. 

5 



Chapter 2 

Overview of ICLP � 

This chapter provides the theoretical background to this thesis. The basics of 

interval arithmetic, in both functional and relational forms, are presented. We 

then describe the syntax and semantics of the ICLP(T^) language [38], which is 

an extension of CLP(T^) with relational interval arithmetic. Most of the above 

materials are adopted from [38, 36, 39] except those otherwise specified. 

2.1 Basics of Interval Arithmetic 

The manuscripts [45, 4] provide good introduction to interval analysis. Let ]R be 

the set of real numbers and F the set of floating-point numbers. Mathematically, 

a real interval is a segment, possibly infinite, of the real line and can be defined 

by an ordered pair of real numbers a < b, where a is the lower bound and b is 

the upper bound. For those intervals without upper bound or lower bound, we 

use the symbols —oo and +oo as bounds respectively. Note that —oo and +oo 

can only be used with open bounds. An interval is represented by the usual 

mathematical notation, such as [1,10) which denotes the set {a; | 1 < a; < 10}. 

We differentiate, between real intervals and floating-point intervals. The bounds 

of the elements of the former are real numbers; while the bounds of elements of 

6 



Chapter 2 Overview of ICLP(1Z) 

the latter are restricted to floating-point numbers. 

The set of real intervals, I(M), is defined by, 

I(JR) = {(a,6] \aeMU{-oo},belR}U{[a,b) \ a e lR,b e 1R U { + o o } } U 

{[a,6] I a,be ]R}U{{a,b) | a e MU{-oo},be M U { + o o } } . 

The set of floating-point intervals is denoted by 1(F). We can verify that 

/ ( F ) C I(1R). 

If . ^ {+,—, X , / } , the corresponding floating-point interval operations are 

denoted by, 
炉 = { a . 6 I a G A^beB1}. 

In the case of interval division, 0，we assume that B1 does not contain 0. 

The basic idea of interval arithmetic is to compute inclusions of arithmetic 

functions of intervals, and guarantee that the interval outputs will always include 

all the real solutions. When realizing interval computation on a computer, care 

must be taken since only a finite subset of real numbers can be exactly repre-

sented. Floating-point interval is not closed under the basic interval arithmetic 

operators,㊉，㊀and 0. To preserve the inclusion property, rounded interval 

arithmetic [45], which is a modification of exact interval arithmetic, is intro-

duced. 

If an endpoint of an interval is not a member of IF, rounding is made. The 

rounded floating-point interval is always wider than the original one. Since 

rounding often occurs in machine computation, we must keep the rounded 

interval as close to its original real interval as possible. We round the non-

representable endpoint to the adjacent floating-point number (round towards 

+oo for upper bound and towards —oo for lower bound). This operation can be 

formally expressed by the outward-rounding function, : I [IB) I(JF). If J1 

is a non-empty real interval, 

^J1) = nu1' e i^n i J1 ^ J1'}-

7 



Chapter 2 Overview of ICLP(1Z) 

The outward-rounding function gives the tightest floating-point interval contain-

ing J . 

2.2 Relational Interval Arithmetic 

Cleary [16] introduces "logical arithmetic" by defining distinct primitive arith-

metic constraints over intervals, which remove the values of intervals that do 

not satisfy the constraints. Lee [36] generalizes Cleary's algorithms to interval 

reduction, which is applicable to any arithmetic relation p on I(lR)n. Interval 

reduction can only work on a single constraint. In practice, several constraints 

interact with one another in a system. A relaxation algorithm is designed to 

coordinate the application of interval reduction on a set of interval constraints. 

2.2.1 Interval Reduction 
—^ 

An interval constraint is of the form (p, I1), where p is a relation on JRn and 

fi =c • • •, > is a tuple of floating-point intervals. The constraint 
enforces that 

彐不 G / / such that p{XuX2,…holds. 

Given the above interval constraint, we try to eliminate the values of each vari-

able that do not satisfy the constraint. Interval reduction effects such an infea-

sible value elimination. 

Interval reduction is defined as an input-output pair. We associate the input 

n-ary constraint n set-valued functions: 

Fi(P)�S(,..., …，S^) 

=TTiiiSl X . . . X X mip) X 对+1 X ….X 纪)门p), 

where i = 1, . . . ,n, the are intervals, and 7Ti is the projection function 

defined by 

MP) = ..•，〜）€ p}. 

8 



Chapter 2 Overview of ICLP(R) 

� ‘ . . . 

擁—— 
1 1 h ^ I 1 1 • 

h - J 1 — ^ —J1 ’— 

Figure 2.1: Interval Reduction on a Constraint ( P , < / V J 〉 ） 

Each function gives the set of possible values for the i-th argument of p if the 

values of all other arguments are restricted to • • •, …，纪 . T h e 

output of interval reduction is defined as, 

fl•二�hi1:�, where i f = • _ ( ! � , … , H •., O ) . 

If any of the if is empty, interval reduction fails and we can conclude that the 

constraint (p, I1) is inconsistent 

Geometrically, interval reduction can be interpreted as intersecting the re-

lation p with the Cartesian product of / / , and then projecting the result onto 

each coordinate axis. Figure 2.1 shows interval reduction on a simple constraint 

(p, < I1, J1 >) . The initial floating-point intervals are I1 and J1. The straight-

lined region denotes I1 x J1 and the shaded region denotes the relation p. The I1 

and J1' are the resultant floating-point intervals after the application of interval 

reduction. 
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Chapter 2 Overview of ICLP(1Z) 

2.2.2 Arithmetic Primitives 

A relational interval arithmetic system must support some primitive relational 

arithmetic operators, such as addition, multiplication and inequalities. The 

other complicated constraints can be built from these primitives1. 

To have a primitive operator on a relation p, two conditions must hold. 

First, we need to know how to calculate each function F‘(p) associated with 

the relation p � S e c o n d , in interval arithmetic, we should guarantee intervals 

are closed under all the defined operators. Therefore, the functions Fi(p) must 

map from intervals to intervals. A relation which does not satisfy the above 

conditions can be decomposed into a set of simplier relations. 

We only present the primitive relations which are essential to this thesis. 

Two of them, l inearn and square, are newly defined for the implementation of 

our constraint interval arithmetic language. 

Inequalities 

l e = {{x, y) I % 2/ G 沢,冗 S y} I t 二 {{x, y) \ x,y G JR,x <y\ 

The functions Fi(le) and F2(le) are: 

r I (-00,61 i f / f 二（a, 6] or [a，6] 
F1(le)(/2 /) = 1 � ， � 

I (—cxo, b) if I2 二 {a,b) or [a, b) 

I J [a,+00) if I[ = [a, b] or [a, b) 
F2{le)(Ii) 二 < 

I (a,+00) if I{ = (a, b] or (a, 6). 

Similarly, the functions Fi ( l t ) and F 2 ( l t ) are: 

Fi(lt)(/2J) 二（-oo,b) if _ _ [a,b] or [a,b) or (a,b] or (a,b) 

F2(lt)(l[) 二 (a,+oo) if _ = [a, 6] or [a, 6) or (a, 6] or (a, 6). 
1 Users can write the constraints in more convenient notation, such as > 5*Y，" 

but they are eventually translated to conjunctions of primitive constraints, possibly with the 
aid of extra variables. 

10 



Chapter 2 Overview of ICLP(1Z) 

It is trivial to see that F,(le) and i^(lt) map from real intervals to real intervals. 

Linear Equality 

Cleary [16] proposes a 3-ary add primitive, 

add = {(x, y,z) \ oc,y,z e M,co + y = zj. 

This design is too restrictive and may cause unnecessary decompositions of con-

straints. We give a more general relation l inearn here. For n > 2, 

l inearn = {{xu x2, | cu c2, • • •, cn, cn+1 G JR, 

CiXi + c2x2 h cnxn = cn+1}. 

The function i^( l inearn ) ( / 1 / , . . . , H . . . ,巧) i s : 

F,( l inearn ) ( /1 J ,…, iU： …，0 = (C(cn+1) 0 £ ( ^ ) O / / ) ) 0 咖 丨 

(2.1) 

To show that the function F,(linearn) always gives real intervals, we only 

need to consider the 0 part of definition (2.1) since real intervals are closed 

under ㊉,㊀ and (g). In definition (2.1), is a real number. We can verify easily 

that 0 朱 ^{ci) and A1 0 B1 e I{M) if 0 ^ B1. 

Multiplication 

mult = {(x,y^z) \ x,y,z 6 ]R,xy = z} 

The mult constraint is complicated since it involves both interval multiplication 

and division. The result of division can be a union of two disjoint intervals in 

general. This does not satisfy the criterion that the function of primitive relation 

must map from real intervals to real intervals. 

Cleary [16] suggests to decompose mult into mult+ and mult" , where 

mult+ = {(冗，y’ z) I rc, y，么 G 况,z > 0, zy = 么 } 

mult" 二 y,么)丨 rr, y,之 G 况,$ < 0, xy = z}. 

11 



Chapter 2 Overview of ICLP(1Z) 

We perform interval reduction on one partition and the another one is visited 

upon backtracking or under user control. 

The definitions of the functions 只(mult+) and F,(mult") [39] are, 

I î muit+x̂ )̂ = (u 0 id n 
:: F 2 ( m u l t + ) ( / 1 7 , / 3 I ) =对 0 (打 f1 贝+) 

1 F ^ m i l t ^ l l l i ) 二 （ / f f l 沢 + ) ③ 打 

I 朽 ( i rmlt - ) (4 对）二（忍 0 忍 ) f l 沢一 

| F2(mult-)(II1ji) = li<d\li^1R-) 

I 巧(mult-)(打，忍）二（打n沢—）③尽 

The and ET in the above equations denote the non-negative and negative 

part of 1R representatively. 

Real interval is shown to be closed under both the Fi(mult+) and F,(mult"). 

Square 

It is well-known that interval arithmetic suffers from the variable dependency 

problem [22] that causes it to produce inaccurate results. When a given variable 

occurs more than once in an interval computation, it is treated as a different 

variable in each occurrence. This causes widening of the computed intervals. A 

simple example is the fact that if X1 = [—a, a], 

X1 ^X1 = [ - a 2 , a2] + [0, a2] unless a = 0. 

The effect of variable dependency problem cannot be eliminated in general. 

However, it can be alleviated if we can recognize the variable identities in some 

simple cases. We introduce the relation square 

square = { (x ,y) \ x^y e JR^x2 = y}. 

12 



Chapter 2 Overview of ICLP(1Z) 

The user should specify (square, < X,Y >) instead of (mult, < X,X,Y > ) to 

get a sharp result. A runtime optimization can also be implemented. When a 

mult constraint is encountered, we check the instantiation pattern of variables 

and determine if the mult should be replaced by a square. 

Similar to mult, the square relation does not map from real intervals to real 

intervals. We partition it into square+ and square", where, 

square. = {(>, y) \ x,y e lR,x> 0, x2 = y} 

square" = y) \ x,y e ]R,x < 0,x2 = y}. 

The functions Fi(square+) and F2(square+) are: 

^(square+)( /2 J) = ( @ ( 对 门 沢 + ) ) 

F 2 ( s q u a r e + ) ( / 1 / ) = 

where 

Similarly, we have for the relation square": 

F.isquare-Xli) = [0,0]㊀（@ (/2J f ]沢+) ) 

F2(square-)(/1I) = (I( 0 如 JR+ 

It is obvious that the real intervals are closed under the © operator. It follows 

that the functions F,(square+) and ^(square - ) map from real intervals to real 

intervals. 

2.2.3 Interval Narrowing and Interval Splitting 

Interval reduction only applies to individual constraint. In practice, there are 

usually more than one constraint in a relational interval arithmetic system, re-

sulting in a constraint network. The constraints will interact with one another by 

13 



Chapter 2 Overview of ICLP(1Z) 

let A be an active list which contains active constraints 
let P be a passive list which contains stable constraints 

while A is not empty 
—• 

remove a constraint (p, I1) from A 
—^ —* 

apply interval reduction on (p, I1) to obtain I1' 
i f interval reduction fails then 

exit with failure 
else 

if I1 半 f1' then 
replace I1 by I1' 

—* 

for each constraint (g, J1) in P 
if I1 and J1 share narrowed variable (s) then 

remove (g, J1) from P and append it to A 
endif 

endforeach 
endif 

endif 
append (p, I1) to the end of P 

endwhile 

Algorithm 2.1: Relaxation Algorithm 

sharing intervals. We need an algorithm to coordinate the execution of interval 

reduction to narrow the interval constraints in a constraint network. 

An interval constraint (p, I1) is stable if applying interval reduction on I1 

results in I1, otherwise it is active. A network is stable if all the constraints in-

side are stable. A relaxation algorithm (Algorithm 2.1) reduces a network into a 

stable one. The relaxation algorithm is similar to the arc-consistency algorithm 

AC-3 [42]. The use of interval reduction to narrow interval constraints is not 

mandatory, but can be replaced by any appropriate domain restriction opera-

tor [36]. We refer to the relaxation algorithm with interval reduction operator 
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Chapter 2 Overview of ICLP(1Z) 

let Q be a split queue which contains variables that specified to split 

while Q contains narrowable intervals 
partition the first narrowable interval in Q, say V1, into F/ and V2 

trail V/ 
replace V1 by V/ 
invoke interval narrowing 
if interval narrowing fails then 

perform, backtracking 
endif 

endwhile 
dump solutions 
perform backtracking 

Algorithm 2.2: Interval Narrowing with Splitting 

as interval narrowing2^ 

Interval narrowing sometimes fails to narrow intervals to useful widths. Inter-

val splitting is a divide-and-conquer algorithm used for obtaining sharp solution 

intervals. An interval is narrowable if its width is larger than or equal to a user-

defined value. Upon invocation of splitting on a narrowable interval, the interval 

is partitioned into two halves3. We first visit one half, while the remaining half 

is visited upon backtracking or under user-control. The procedure of interval 

narrowing with splitting is shown as algorithm 2.2. 
2 Different definitions are used in [36，9], In [36], interval narrowing refers to the inter-

val reduction operator described here, while relaxation algorithm is assumed to have interval 
reduction as the domain restriction operator all the time. Interval reduction and interval nar-
rowing described here are named as narrowing function and narrowing algorithm respectively 
in [9]. . 

3An interval can be partitioned in different ways. Cleary [16] discusses two predicates, 
linear_split/l and exp_split/l, which partition intervals at different points. In the imple-
mentation of our language, we always partition an interval at its mid-point. 
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Chapter 2 Overview of ICLP(1Z) 

2.3 Syntax and Semantics 

ICLP(T^) and CLP(T^) share .the same syntax and declarative semantics [31，32]. 

An interval constraint in ICLP(T^) is expressed as, 

I Xi g e i l p{xu...,xn), 

where Xi G / / is an appropriate pair of inequalities. The operational semantics 

is based on the generalized derivation [36], which is shown as the following. 

Let P be an interval CLP program and G0 be a goal in the form E ？ - 0 , A, 

where E is a set of stable constraints, 0 is a set of active constraints and A is a 

set of atoms. Initially E is empty. A derivation step that reduces a goal Gp to 

another Gp+i follows: 

• 7 € A and the program P contains a rule R,H 0 ' , A' , that the head 

atom H can be unified with 7, i.e. HO = jO . G is 

• Gp+i is the sequence of G' with the set of constraints (E U 0)没 replaced 

by Fnf((t,{JQ)0'), where Fnf is a normal function that maps from set of 

constraints to set of constraints in such a way that 

I ^ P Na^x 3 ~ 胸 納 》 . 

Theorem 2.3.1 [36]: If C' is obtained from C using interval reduction on p, 
/ / 

where C is Xx G h,. • .�Xn G In, • .,Xn) and C' is Xx G / r , … � X n e In, 

p(Xi,...,Xn), then 
— � 3 ( C ) 妗 一 〜 3 ( C ' ) . 

• 
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Chapter 2 Overview of ICLP(1Z) 

Theorem 2.3.1 shows that interval reduction transforms an interval constraint 

into another one with the same solution space. Interval narrowing, which per-

forms interval reduction repeatedly on interval constraints in a constraint net-

work, is therefore a normal-form function. 

A generalized Mx derivation is a sequence of goals, possibly infinite. A 

derivation is successful if it is finite and the last goal is empty; finitely-failed 

if it is finite but the last goal has one or more atoms. The generalized Mx 

derivation ends with a floundered goal if the last goal has one or more stable 

constraints. Floundered goal gives "incomplete" solutions and should be inter-

preted as conditional answers [44]. Suppose a non-empty goal ,Gnis 

derived from f - Go and 0 is a composition of all the substitutions. The clause 

(Gq Gi, • • •, Gn)0 is a conditional answer to the original goal. 

17 



Chapter 3 

Limitations of Interval 

Narrowing 

Interval narrowing with splitting is a common constraint solving technique used 

in interval constraint logic programming languages [39, 37, 9, 51]. Our experi-

ments show that, in general, this technique is impractical in solving some classes 

of problems in terms of both computation time and storage. We try to solve 

a set of randomly generated systems of linear equations in several interval nar-

rowing based systems. None of them can give useful solutions (with width less 

than or equal to 1) for dense linear systems (without zero-coefficients) of rank 

greater than 5. For sparse linear systems (up to 60% of coefficients are zeros), 

only those of rank less than 11 can be solved. We give a detailed discussion of 

the limitations of interval narrowing in this chapter. 

3.1 Computation Inefficiency 

Interval narrowing can be classified as a fixed-point iterative method. Its conver-

gence depends highly on the initial bounds of variables and the form of interval 

constraints. A detailed analysis and discussion can be found in [48]. We give a 
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Chapter 3 Limitations of Interval Narrowing 

Y 

X=-Y I X=Y 

/1 \ 

Figure 3.1: Interval Narrowing on { X = Y, X = - Y } 

geometrical interpretation to illustrate the convergence of interval narrowing on 

a simple linear system. 

Figure 3.1 shows interval narrowing on the following system 

{X = Y,X = ~Y} (3.1) 

with initial bounds X,Y e [—50,50]. Recall that interval narrowing on a con-

straint (p, < I � , … > ) can be defined as the projection of the intersection 

of the Cartesian product of / / and the relation p. As shown in figure 3.1, the 

intersections are two diagonals of the initial guess region and they always project 

onto the initial bounds of variables. Thus, no value can be eliminated. More 

generally, given the system (3.1) with initial bounds X G [-a,b],Y G [—c’</], 

where a, 6, c,d > 0, interval narrowing can never give solution which is sharper 

than 

X,Y ^： [— min(a, 6, c, d), min(a, b, c, d)}. 

Interval splitting is a divide-and-conquer algorithm for obtaining sharper 
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Chapter 3 Limitations of Interval Narrowing 

interval solutions but it is expensive to perform. The efficiency of interval nar-

rowing with splitting depends on its interval subdividing method and search 

strategy. To use some ad-hoc subdividing methods and search strategies, some 

special constraints may be solved more efficiently [51]. 

Interval splitting is impractical for 3 main reasons: 

• Interval splitting is implemented using a Prolog backtracking-like mecha-

nism. A choice point is created for each splitting. In the worst case, no 

partition can be rejected in each splitting and all the choice points are 

accumulated. If we split n variables xu •. •, xn, each into rn partitions, 

it requires (m — l)n times trailing spaces of all variables. Since we usually 

split intervals to desirable narrow width, m is large and interval narrowing 

with splitting is demanding in memory space. 

• We may be unable to obtain sharp results for a system of constraints by 

invoking splitting on only a variable. Splitting one more variable into d 

partitions requires d times execution of interval narrowing in the worst 

case. This increases the computation time rapidly. 

• Although special interval subdiyiding methods and search strategies may 

improve the efficiency of interval narrowing with splitting, in general, they 

cannot be known in advance. 

We justify our claims using some experimental results. We solve a set of systems 

of linear constraints, 

A X 二 'h where A = (a^-), X = (Xi), b =;(麵.a^ + 0, b • 0, 

andXi G [-10000,10000] 

for 1 < < n, 

on BNR Prolog [52], CLP(BNR) [9], Echidna [54] and ICL [37] with splitting. All 

coefficients ay and bi are randomly generated non-zero floating-point numbers. 
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The results fo| each problem size n are the average of three different sets of test 

data and are summarized in table 3.1 and table 3.2. The “一” symbol indicates 

that the test fails: either the system halts abruptly (trail/stack overflow) or fails 

to give solutions with width less than 1. The precision of the answers are set 

to 10 decimal places for CLP(BNR) and ICL, 5 decimal places for BNR Prolog, 

and the highest precision (precision(30) [55]) for Echidna. 

Table 3.1 gives the computation time for problem size ranging from 1 to 

6. The computation efficiency of these systems decreases rapidly as n grows. 

When n = 4, Echidna consumes more than 100MB memory and then halts 

abruptly. CLP (BNR) cannot solve any set of test data with interval narrowing 

and splitting alone. We have to further apply two predicates absolve/1 and 

presolve/1, which are designed for solving single non-point solutions and com-

plex problems [50]. Two sets of test data are solved. When n = 5, ICL and BNR 

Prolog can solve only one of the three sets of test data in about 3.5 minutes and 

2.6 hours respectively. When n > 6, all the tested systems either halt abruptly 

or give wide resultant intervals (with width greater than 1000)1. 

Table 3.2 gives the total of interval operations involved. We only consider 

the ICL system since we cannot access similar benchmarks for other systems. 

It is interesting to find that it involves nearly three hundred thousand interval 

operations in solving a small system (n 二 5) of constraints. 

The experiments described deal with linear systems without zero-coefficients. 

Linear systems from real-life applications, however, are usually sparse. We in-

troduce sparsity into randomly generated linear systems by fixing a certain per-

centage of coefficients to be zero. In our experiments, we test systems with 

respectively 20%, 40%, and 60% zero-coefficients2. The randomly generated 

iThis experiment does not imply that interval narrowing is incapable of solving any system 
of linear constraints with rank greater than 5. Some large systems with special properties, 
e.g. strictly diagonal dominant, still can be solved even without using interval splitting (see 
corollary 5.2.6 in chapter 5). 

2We exclude the systems with 80% zero-coefficients since such randomly generated linear 
systems are usually inconsistent. 
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“ \n = l \ n = 2\ n = 3 \ n = A n = h n = 6 
BNR P r o l o g ^ 8 9 m s 17.36s 976.28s 9 2 3 4 . 0 7 s * = _ 

CLP(BNR) 10ms 37ms 1.69 s 4.80sf — 
ICL 11ms 28ms 7.45s 111.77s 210.02s* 一 

Echidna§ | 0s | 0s | 127s — — I — 

— — 
Table 3.1: Average Computation Time in Solving AX = b 

谷 D u e to the lack of built-in timing predicate, the time is rounded to the nearest sec-
ond. 
本BNR Prolog runs on a Macintosh II while the other systems run on a SUN SPARCsta-
tion 10 with higher precision. BNR Prolog's results should not be directly compared 
with others. We are interested in its rate of increase, however. 
"•"The result is the average computation time of two sets of test data. 
*The result is the computation time for only one set of test data. 

add iruilt+ mult- s p l i t t i n g 
0 1 1 o ~ 

n = 2 70 50 87 0 
n = 3 3.95 x 104 2.24 x 104 3.95 x 104 44 
n = 4 6.01 x 105 3.75 x 105 5.10 x 105 145 
n 二 5 1.27 x 106* 6.67 x 105* 9.99 x 105* 111* 
n = 6 — — - ~ 二 

—* 

Table 3.2: Average Number of Interval Operations in Solving AX = b m ICL 
*It is the number of interval operations for only one set of test data. 
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linear sparse systems are again solved on the previous four interval narrowing 

based systems. The results, each of which is the average of three different sets 

of test data, are summarized in table 3.3 and table 3.4. 

The performance of interval narrowing with splitting has not been improved 

significantly when 20% to 40% of the coefficients are replaced by zeros randomly. 

Even for sparse linear systems with 60% zero-coefficients, only systems of rank 

less than 11 can be solved. On the other hand, interval narrowing (even without 

splitting) gives sharp solutions efficiently for linear systems with triangular coef-

ficient matrices, which have less than 50% of coefficients are zeros. This behavior 

shows that the efficiency of interval narrowing depends highly on such properties 

of the coefficient matrices as the distribution of zero-coefficients, rather than the 

number of zero-coefficients. 

The experiments presented so far are limited to linear constraint solving. 

Benhamou et al [8] give examples on non-linear constraint solving. They show 

that the growth of number of interval operations involved in non-linear constraint 

solving in interval narrowing based systems is exponential with respect to the 

problem size. We conclude that interval narrowing with splitting is inefficient 

in interval constraint solving. 

3.2 Inability to Detect Inconsistency 

As stated in section 2.3, answers obtained from interval narrowing should be 

regarded as conditional. A set of inconsistent constraints can be narrowed to 

become stable without inconsistency being found. A simple example is, 

� 'A + 1 = D (CO 

, A + B = D ( � (3.2) 
• A e [o,po) 

� B e ( -oo ,0] . 
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20% zeros | 40% zeros 60% zeros 
n = 5 2661.45s 8̂ 62s 0.14s 
n = Q 一 95.95s 4.70s 
n = 7 — 3620.35s1" 13.76s 
n = S — — 26.05s 
n = 9 —— 1298.21s 
n = 10 — — 3451.14s 
n = 11 — 一 一 

(a) BNR Prolog* 

一 20% zeros 40% zeros 60% zeros 
n = 5 1.84s* L97s 0.13s 
n = 6 —— 0.64s* 0.44s 
n = 7 — — 1.90s 
n 二 8 — — 1.37s 
n 二 9 — — 3.21s 
n = 10 — — 8.78s* 
n = 11 一 —— ~~~ 

(b) CLP(BNR) 

20% zeros 40% zeros 60% zeros 
n = 5 25.63st 2.47s 0.01s 
n 二 6 — 16.54s1" 0.32s 
n = 7 — 121.58s* 0.13s* 
n = 8 — — 2.27s 
n 二 9 一 — 24.54s 
n = 10 一 — 9.97s* 
n = 11 一 .、 一 一 

(c) ICL 

Table 3.3: Average Time in Solving Sparse AX = b 

^BNR Prolog runs on a Macintosh II while the other systems run on a SUN SPARCsta-
tion 10 with higher precision. BNR Prolog's results should not be directly compared 
with others. 
txhe result is the average computation time of two sets of test data. 
*The result is the computation time for only one set of test data. 
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20% zeros 40% zeros 60% zeros 
n = 5 1305s* 7 l8? 
n = 6 — 130s* 49s 
n = 7 — — 274s 
n 二 8 — — 1570s* 
n = 9 — — 1909s* 
n = 10 — — —— 
n = 11 一 — —— 

(d) Echidna§ 

Table 3.4: Average Time in Solving Sparse AX = b (cont.) 

§Due to the lack of built-in timing predicate in Echidna, the results are rounded to 
the nearest seconds. 
txhe result is the average computation time of two sets of test data. 
*The result is the computation time for only one set of test data. 

Equations (Ci) and (C2) imply B = I, which contradicts with the fourth con-

straint B e ( - o o , 0]. The history of the values of A, B and D after each narrow-

ing step is summarized in table 3.5. The traces show that variable B is never 

changed during narrowing. Variable A forces the lower bound of variable D to 

increase towards +oo in the narrowing of C\. Variables A and D interchange 

their roles when constraint C2 is activated. Since a floating-point number in 

"double" has only 16 significant digits3, the lower bounds of A and D can never 

reach the largest floating-point number, but a number near 1.0 x 1016 4. Both A 

and D are narrowed in an extremely slow rate. This explains why such a trivial 

system takes a long time to stablize. 

When interval narrowing stablizes, we invoke interval splitting on the 3 vari-

ables. Splitting B accelerates the interval narrowing; while splitting on the 
3We assume that the two bounds of an interval are represented by floating-point numbers 

in the "double" format. 
4In floating-point arithmetic, a + 1. = a if a is a sufficiently large number, e.g. 1.0 x 1016. 

25 



Chapter 3 Limitations of Interval Narrowing 

Constraint in Narrowing A G B G D G 
C[ � [0:, oo) ( - 0 0 , 0 ] [l ,oo) 
C2 [1 ,00) ( - 0 0 , 0 丨 [l，oo) 
Ci - [l,oo) (-00，0丨 [2，oo) 
C2 [2 ,00) ( - oo , 0 ] [2,oo) 
Cx [2,oo) ( - oo ,0 ] [3，00) 
C2 [3,oo) ( - oo ,0 ] [3，00) 
Ci [3,00) ( - oo ,0 ] [4,oo) 
C2 [ 4 , 0 0 ) ( - oo ,0 ] [4,00) 

I: ； ： ： ； 

Ci [1.0 x 1 0 1 6 - l , o o ) (—00 , 0 ] [1.0 x 1 0 1 6 , 0 0 ) 
C2 [1 .0xl01 6 ,oo) ( - oo ,0 ] [1 .0xl0 1 6 ,oo) 
Ci [1.0 x 1016, oo) (—00,0] [1.0 x 1016,oo) 

Table 3.5: Traces of A, B and D (Without Splitting) 

variables A and D forces their lower bounds to reach the largest floating-point 

number. The history of the variables after each interval narrowing with splitting 

(splitting in the sequence of A, B and D) is shown in table 3.6. The symbols v, 

0 0 " and oo= denote a negative, the largest and the second largest floating-point 

number respectively. 

From the last entry in the traces, we find that interval narrowing ends with 

[00一, 0 0 ) + ( - o o , —oo—] = [00", 0 0 ) . This is due to the fact that, by setting the 

negative rounding direction, the addition of any number and the largest floating-

point number results in the largest floating-point number itself, in the IEEE 

floating-point standard. Inconsistency cannot be detected even when interval 

splitting is applied. 

In our experiment on system (3.2), BNR Prolog and ICL do not terminate 

in 90 minutes. CLP(BNR) returns "yes" even when interval splitting is applied 

since interval narrowing stops after only a few iterations. Echidna returns also 

"yes" with default precision due to the similar reason and exits abruptly with 
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Constraint in Narrowing - A G B G D ^ 
C[ [1.0xl016，oo) F ^ O ] [1 .0xl0 1 6 ,oo ) 

I . ： - . ； ： ： ； 

Ci [oo=,oo) ( - 0 0 , 0 ] [oo= ,oo) 
I: ‘ . ； ； ‘： ； 

Gx [oo",oo) ( -00 ,0 ] [00-, 00) 
I . ； : i : 

C21 [oo~, 00) (-00, Z/] [oo~,oo) 
I.;. . : - . : . : ； + : c

2
 [ 0 0 - , 0 0 ) ( - o o , - o o ~ ] [ 0 0 - , 0 0 ) 

Table 3.6: Traces of A, B and D (With Splitting) 

The symbols 1/, 00" and oo= denote a negative, the largest and the second largest 
floating-point number respectively. 

high precision. 

An explanation for this phenomenon is as follows. In system (3.2), the con-

straint B = 1 can only be identified by considering the 2 equations as a whole. 

However, relaxation algorithm is a local consistency algorithm. Only a constraint 

is considered in each reduction step. Detection of the inconsistency, however, 

requires a global view of the constraint system. Therefore, interval narrowing 

fails to detect the trivial inconsistency of (3.2). 

This example exhibits two important shortcomings of interval narrowing. 

First, interval narrowing is "incomplete" in detecting inconsistency. Second, it 

may take a long time to stablize on an obviously inconsistent system. 

3,3 The Newton Language 

Benhamou et al [8] show recently an improvement on interval narrowing. The 

results are implemented in the Newton language. In this section, we outline 
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their work and shows that their improvement applies only to interval non-linear 

constraint solving, but not to linear constraints. The details of Benhamou et 

a/'s experiments and analysis are beyond the scope of this thesis. We refer the 

readers to [8]. 
Benhamou et al replace the interval reduction operator in interval narrowing 

by a Newton reduction operator, which is a variant of the interval Newton 
—* 

method. Given an interval constraint (E o 0 , / J ) as described in section 2.2.1, 

where E is an arithmetic term and o is a relational symbol from { = , > } , the 

Newton reduction operator is defined as an input-output pair5: 

Input : (EoQ,< II … J i >) , where / / € . 辆 and M ^ W 

Output : g = < I f , I f >，where if = // 门 侧 風 傅 華 》 ’ //)). 

Ei(Xi) is obtained by replacing the variables X i , . . . , X “ i , 不 + i , . . . X n and the 

real arithmetic operators in E by .. •, / / _ ” / & , … , g and the correspond-

ing interval arithmetic operators; while E\(Xi) is the derivative of Ei(Xi) with 

respect to X“ The function N* is defined as, 

i V * ( 跽 ⑷ ’ 躺 ) ， / / ) = 4 (k>l) 

where Jq 二 / / 

= e ( c P t ( j / ) ) © 跽(e(Cpt(j/))) 0 E^jf) 

Jk = Jfc-1, 
(3.3) 

where cpt is a function that gives the mid-point of input interval. 

In the following, we show that the Newton reduction operator degenerates 

to the interval reduction operator when solving interval linear constraints. For 

a general linear constraint 

ciXi + c2X2-h .. • + cnXn = cn + i , where Ci, . . . , c n + i ,X i , ...,XnelR, 
5In order to have consistent notations throughout this thesis, the notations used here are 

different from those in [8]. 
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we have 
n 

跽(足）二 e � � 足 ㊀ 阶 n + 1 ) ® 酵 _ ‘ 零 勢 

Substituting Ei(Xi) into definition (3.3), we get 
n 

J/+1 = e ( cp t ( j / ) )㊀ ( e � 0 e ( c p t ( j / ) ) ㊀ 彻 n+0© E 胸 觀 — ) 

n 

3=1,j^i 
n 

3 ( m e E 腕 / / ) _ 。 • （3.4) 
j=i,j � I � 

Since the calculation of J/+1 in (3.4) is independent of J/ , the function iV* can 

be simplified as 
n 

TV*(及(足),政(足),//)2(办n+1)e E 勵 麵 妹 (3'5) 

The right-hand side of (3.5) is the same as the associated function F,-(linearn) of 

relation l inear as stated in section 2.2.2. We expect that the Newton algorithm 

usually gives wider results than those obtained from interval narrowing due to 

the variable dependency problem. 
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Chapter 4 

Design of CIAL 

Our work is motivated by the inadequacy of interval narrowing for interval lin-

ear constraint solving. We propose to extend ICLP(灭)with an efficient linear 

constraint solver, resulting in a new interval constraint logic programming sys-

tem, CIAL (for Constraint Interval Arithmetic Language). The syntax and 

semantics of CIAL are almost identical to those of ICLP(尺),except that the 

relational symbol “二” is replaced by “二:=”. In this chapter, we outline the 

modules of CIAL and explain how they interact. Unification between interval 

variables and other types of data, and decomposition of interval constraints will 

also be discussed. The design and implementation of efficient linear solvers will 

be illustrated in chapter 5. 

4.1 The CIAL Architecture 

Figure 4.1 gives an overview of the CIAL architecture. The input and the engine 

components are adaptation of a Prolog interpreter. Their functions include uni-

fication, goal reduction, and delivery of constraints collected at each derivation 

step to the solver interface. The interface In turn decomposes and distributes 

the constraints to the linear solver and the non-linear solver accordingly. 
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Input 

'V 
Engine 

———(n——— 
I y CIAL Solver I 

Solver j 
Interface j I “ i, ,1 

I (D) I Non-linear ^ t〒ar \ Solver ——> Solver , 
I L (E) 
L 1 
Figure 4.1: An CIAL Architecture 

In the following, we describe each component of the architecture and the 

interaction between the two solvers in more details. 

4.2 The Inference Engine 

The structure of the engine resembles that of a standard structure-sharing Prolog ’ 

interpreter [3]. Equations between Prolog terms are handled by a standard 

unification algorithm. Since constraints in CIAL are over real numbers, logical 

variables in constraints denote unknown real numbers. We refer to those logical 

variables as interval variables. The introduction of interval variables calls for an 

extension of the standard unification algorithm. 

4.2.1 Interval Variables 

A logical variable X becomes an interval variable when it is involved in such 

simple inequality constraints as “X > 3,X < 6," or such equality constraints as 
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Upper Bound (u) 

！ Lower Bound (I) 

1 _ ^H 
Point to / Point to ^ 
constraint — � constraint 
临 HAG 1 K 1 丨对 HAG ^ ： ^ ) 

An interval variable with An interval variable with 
associated interval (u，l) associated interval ( - OO, OO) 

Figure 4.2: The Heap Representations of Interval Variables 

“X + 2 * Y = : = Z，X * X = : = Y." In the first example, we say that the interval 

(3,6] is associated with the variable X. Semantically，an interval variable is an 

ordinary logical variable. We distinguish interval variables from logical variables 

purely for implementation efficiency. 

Resembling domain variables in finite-domain languages [57], e.g. CHIP [1, 

19], an interval variable is represented as a variable with an associated inter-

val. Its heap representation is shown in figure 4.2, where ITAG is a new tag 

introduced for interval variables. Each interval variable in CIAL keeps a list of 

constraints in which the variable appears. When an interval variable is narrowed, 

we can locate and wake up its related constraints efficiently via the constraint 

list. By waking up a constraint, we mean moving the constraint from the passive 

list to the active list, This list is important since interval variables are modified 

often during computation. 
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4.2.2 Extended Unification Algorithm 

Additional binding mechanisms are defined for unification between: 

• an interval variable and a free variable 

We simply bind the free variable to the interval variable. No constraint 

solver will be invoked. 

• an interval variable and an interval variable 

To unify two interval variables X and Y, we compute the intersection of 

their associated intervals. If the intersection J1 is non-empty, we choose 

one of X and Y (for efficiency reason, we choose the variable which does 

not require trailing, if possible), say X, and bind it to the other, Y in this 

case. Then we replace the associated, interval of the chosen variable X by 

the intersection J1. Otherwise, failure is reported. 

拳 an interval variable and a number 

We treat a number as an interval variable, the associated interval of which 

has the number as closed upper and lower bounds. Thus, unification be-

tween a number and an interval variable can be performed in the same 

way as unification between two interval variables. 

眷 an interval variable and other terms 

Failure is reported. 

When two interval variables are unified successfully, their constraint lists are 

merged and all related constraints are waken up. 
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4.3 The Solver Interface and Constraint De-

composition 

The design of the CIAL solver interface is similar to that of CLP(T^) [32]. The 

solver interface is called from the inference engine whenever a constraint con-

tains an arithmetic term. If the input constraint contains any number that can-

not be represented exactly as a floating-point number, the number will be first 

outward-rounded to an interval. The constraint is then simplified by evaluating 

the arithmetic expression. For example, the constraint "3+9-2*X= :=Y+4*X" is 

simplified to “12=: =Y+6*X." If the simplified constraint is an equality with only 

one variable, it is resolved in the interface according to the extended unification 

algorithm. In all other cases, the input constraint will be decomposed and then 

distributed to the linear and the non-linear constraint solver accordingly. 

CLP(T^) differentiates between directly solvable constraints and hard con-

straints [44]. The former is solved by either Gaussian elimination (for linear 

equalities) or Simplex method (for linear inequalities) once they are collected, 

while the latter is delayed from consideration until they become linear. We 

do otherwise in CIAL. We do not delay any constraint.. Once constraints are 

collected in a derivation step, they will be narrowed in either the linear or the 

non-linear solvers. To maximize the efficiency of constraint solving, we classify 

constraints into three categories. 

An interval is non-narrowable if its width is less than a user-defined value 

or if it cannot be further split in the underlying floating-point system (i.e. when 

the lower and upper bounds of the interval are "adjacent" in the floating-point 

line). Otherwise the interval is narrowable. A variable is non-narrowable if its 

associated interval is non-narrowable. Otherwise, the variable is narrowable. 

A constant is either a floating-point number or a non-narrowable variable. A 

narrowable variable is a linear term. The multiplication of several terms is 
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also a linear term if it involves only constants and at most one linear term. 

Otherwise, the product is a non-linear term. A linear constraint contains only 

summation of linear terms and constants, while a non-linear constraint contains 

only summation of non-linear terms and constants. A constraint is mixed if it 

contains both linear and non-linear terms. 

In CIAL, linear constraint goes directly to the linear constraint solver with-

out being pre-processed. A non-linear constraint is first partitioned into a set 

of convex primitives, as described in [16], and then delivered to the non-linear 

solver. For a mixed constraint, we decompose it into a linear constraint and 

a set of non-linear constraints. The resultant constraints are handled as ordi-

nary linear or non-linear constraints. The decomposition procedure is shown in 

algorithm 4.1. 

To improve the efficiency of linear constraint solving, we pass the linear 

constraint T0 l U k x Tk) to the non-linear solver instead of the lin-

ear solver. Interval linear constraint solving usually involves variable elimina-

tion [20, 25，48], which is a time consuming symbolic algorithm. If we deliver 

the constraint T0 二：二 EJk=i(^k x Tk) to the linear solver, the temporary vari-

ables Tk, for A; = 1 ,2 , . . . , j , are unique there and they can never be eliminated. 

Thus, such a delivery does not help to give sharper results, but only increases 

the number of symbolic operations unnecessarily. 

We illustrate our constraint decomposition procedure by considering the fol-

lowing query, 

？- 3*X + 5*Y — (X + Y ) * ( 6 - Z ) + Z * Z 10, 

X + Y = := 20, X * Y * Z = : = 12. 

The underlined constraints are generated during decomposition. 

1. The first constraint is linearized and we have 

3 * X + 5 * Y - T1 + T2 二：二 10, T1 (X + Y) * (6 — Z),T2 二 Z * Z, 

X + Y = : = 20, X * Y * Z 二:= 12. 
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1. We linearize a mixed constraint by replacing all non-linear terms, each by 
a temporary variable. Each of the non-linear terms and its corresponding 
temporary variable are associated by the relational symbol “二：=”，result-
ing in a new non-linear constraint. 

2. The linearized constraint is in the form, 

i 
/ ( X ^ . - ^ X n ) + X T k ) , 

k=l 

where / (X i , . . . ,X n ) is a linear arithmetic term involving only pro-
gram/query variables, Xi's are program/query variables, c is a constant, 
Tk's are the temporary variables introduced to replace non-linear terms, 
and 5a； = 1 or —1 for k = 1,2，…,j. 

3. The linearized constraint is then partitioned into two by separating the 
program/query variables from the temporary variables, 

j 
/ ( X j v . ^Xn) 二：二 c + T0 and T0 二 ： 二 外 X Tk). 

k=l 

4. We pass the constraint /(X l 5 •. •, Xn) = : = c + T0 to the linear solver. The 
constraint T�二：二 相 x Tk) and all non-linear constraints are parti-
tioned into primitives and they are delivered to the non-linear solver. 

Algorithm 4.1: Constraint Decomposition Procedure 

Note that the term (X + Y) * (6 - Z) should not be further translated into 

6 * X + 6 * Y - Z * ( X + Y) 

which introduces one more occurrence of the variables X and Y. Such a 

translation aggravates the effect of the variable dependency problem. 

2. We minimize the number of temporary variables in the linearized con-

straint, 

3*X + 5*Y — T1 + T2 = : = 10, 
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by partitioning itrinto two, 

3 * X + 5 * Y + TO = : = 10, TO 二：二 - T 1 + T2, T1 (X + Y) * (6 - Z), 

T2 = : = Z * Z, X + Y =:二 20, X * Y * Z =:二 12. 

3. We further decompose the two non-linear constraints, 

T 1 =:二（X + Y ) * ( 6 - Z )，X * Y * Z 1 2 ， 

into a set of convex primitive constraints. 

3 * X + 5 * Y + T0 二：二 10, TO - T 1 + T2, T4 二：二 X + Y, T5 二 6 — Z, 

T1 = : = T 4 氺 T5, T2 Z * Z，X + Y 20, X * Y = : = T3, T3 * Z 二：二 12. 

4. The linear constraints, 

3 * X + 5 * Y + T0 二 10,X + Y =:二 20, 

are passed to the linear constraint solver, while the others, 

TO 二 - T 1 + T2, T4 二X + Y, T5 二 6 — Z, T1 = : 二 T4 * T5, 

T2 二：二 Z * Z,X * Y T3,T3 * Z 12, 

are delivered to the non-linear constraint solver. 

4.4 The Linear and the Non-linear Solvers 

In traditional interval constraint logic programming languages, all interval con-

straints are solved under a uniform framework, interval narrowing. To improve 

the efficiency of interval constraint solving, we separate linear equality constraint 

solving from inequality and non-linear constraint solving in CIAL. 

CIAL consists of two constraint solvers, a linear constraint solver and a 

noil-linear constraint solver. The former is responsible only for linear equality 

constraints. Non-linear constraints and inequalities belong to the latter. The 
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non-linear constraint solver employs interval narrowing with splitting as the 

constraint solving technique. The details of constraint solving in the linear solver 

are discussed in chapter 5. We only outline the main idea here. As described 

in chapter 3, interval narrowing, which guarantees only local consistency of a 

system of constraints, is deficient in linear constraint solving. Our linear solver 

performs global analysis of linear systems by dividing a constraint solving step 

into two phases. In the first phase, constraints are transformed once they are 

collected. Global analysis of the linear system is achieved in this transformation. 

For example, the forward and backward substitutions are such transformations 

in Gaussian elimination. After all constraints in a derivation step are collected, 

the associated intervals of variables are narrowed in the second phase by using 

a domain restriction operator, which maintains local consistency of a single 

constraint. The application of the domain restriction operations on constraint 

network is coordinated by relaxation algorithm (algorithm 2.1). This phase is 

similar to interval narrowing except that a different domain restriction operator 

from interval reduction is used. 

The employment of more than one solver in CIAL calls for an interaction 

scheme. We explain in algorithm 4.2 how the two solvers cooperate in one 

constraint solving step. Letters in parentheses refer to the labels in figure 4.1. 

Steps 2 and 5-6 correspond to the two phases of the linear constraint solving. 

Since the transformation method and domain restriction operator depend on the 

linear constraint solving technique employed, these two steps should be treated 

as black boxes here. They will be further elaborated in the next chapter. 

A non-linear primitive constraint is sent to the linear solver only when the 

constraint becomes linear and it does not contain any temporary variable. Prim-

itive constraints with temporary variables always stay in the non-linear solver 

since they usually cannot help to eliminate any variable in the constraints in the 
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let LA and NA be two active lists which contain active constraints in the linear 
and the non-linear solvers respectively. 

1. A new interval constraint will be resolved in the solver interface if possi-
ble. Otherwise, if the constraint is non-linear or mixed, it is decomposed 
into a conjunction of primitive constraints, or a linear constraint and a 
conjunction of primitive constraints respectively (A) • 

2. The linear constraint is sent to the linear solver, transformed, and ap-
pended to LA (B). 

3. The set of primitive constraints is sent to the non-linear solver and ap-
pended to NA (C). 

4. After all constraints in a derivation step are collected, the linear constraint 
solver will be invoked first. 

5. Remove a linear constraint from LA and apply a domain restriction op-
eration on it. If any of the variables in the linear constraint is changed, 
constraints sharing that variable in the linear and the non-linear solvers 
will be appended to LA and NA respectively (D). 

6. Repeat step 5 until LA becomes empty. 

7. In the non-linear solver, we apply interval narrowing to make all the con-
straints there become stable. If a variable is further narrowed and it is also 
involved in some linear constraints, those constraints will be appended to 
LA (E). 

8. Repeat steps 5 to 7 in a round-robin fashion until both LA and NA become 
empty. 

Algorithm 4.2: Interaction Scheme for Two Solvers 

linear solver1. 

iWe assume that variable elimination is part of the interval linear constraint solving 
algorithm 化丨 
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The Linear Solver 

A good linear solver should satisfy the following criteria: 

1. The linear solver must be amenable to ef^cient incremental execution. The 

complexity of adding and solving a new constraint should be affected more 

by the form of the new constraint, rather than of the constraints already 

collected in the linear solver [44]. 

2. Linear constraint solving in the linear solver must be substantially more 

efficient than interval narrowing. 

3 . Solutions given by the solver must be sound and accurate. The former 

criterion implies that the real solutions should always fall into the answer 

intervals. To satisfy the latter, the widths of answer intervals should be 

less than a reasonable value, say 0.001. 

In this chapter, we present two proposals [15, 14] to implement such a lin-

ear constraint solver. The first, generalized interval Gaussian elimination, is 

a new combination of CLP(7^) technology [44] and centered form [45]. This 

method always yields better results than naive interval Gaussian elimination. 

The second is a commonly-used iterative interval method, preconditioned in-

terval Gauss-Seidel method [22, 33, 34, 35], These two methods, as originally 
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designed, operate in the batch mode: all the constraints are collected before 

solving takes place. In this chapter, we discuss how they can be adapted to 

incremental execution for use in a CLP system. We conclude this chapter by 

comparing the two approaches. 

5.1 An Interval Gaussian Elimination Solver 

Motivated by the Success of the linear solver of CLP(^), our first proposed lin-

ear solver is also an adaptation of the Gaussian elimination procedure. There 

are several variants of Gaussian elimination procedure for solving linear equali-

ties [58]. An interval version of any of them can be obtained by simply replac-

ing each ordinary arithmetic operator by the corresponding interval arithmetic 

counterpart. Answers generated using this naive approach, however, will not be 

as sharp as possible, in general, due to outward rounding and variable depen-

dency problem. The former is unavoidable in performing interval arithmetic in 

a floating-point system. Generalized interval arithmetic by Hansen [24] presents 

a way to reduce the effect of the latter. 

5.1.1 Naive Interval Gaussian Elimination 

We begin with a quick review of the general form of the Gaussian elimination 
—> 

method in the real number domain. Let A be an n X n real matrix and b be an 

n-tuple real vector. To solve 

AX = & where A — (a^) for = 1,2, • • • 

we perform the Gaussian elimination step (described in (5.1)) n — 1 times. In 

the k-ih step, we eliminate the elements aik for i > k by subtracting a suitable 

multiple of the another row. This procedure, known as forward substitution, is 
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effected as, 

I ^ = 4 - 1 ) … � (5 1) 
I 4 ) = k < j < n ,nd A; + 1 < z < n 

I; � 炉 - 1 ) —疋一1}(必一1)^^1))，k<j<n^nd k ^ l < i < n 

The superscript k denotes the results obtained from the A;-th Gaussian elimina-

tion step. Eventually, the original equation AX 二 S will be transformed into an 

upper triangular form, which can be solved by backward substitution, defined by 
n 

Xi = (bi — a i j X ^ / a u f o r i = n , n — 1 , . . •, 2 , 1 . 

With pivoting [46], this simple algorithm works well in the real domain. If the 

elements of A and b are intervals，the algorithm performs poorly due to the 

variable dependency problem. 
J 

The variable dependency problem is caused by the fact that multiple occur-

rences of a given variable in an interval computation are treated as a different 

variable in each occurrence. This widens the computed interval unnecessarily. 

As shown in (5.1), the naive Gaussian elimination procedure contains multiple 

occurrences of almost all coefficients during forward substitution. The simplest 

examples for illustrating the dependency problem are and A / 0 A / . It can 

be checked easily that [0,0] g ㊀ and [1,1] ^ A1 Q) A1 in general. Consider 
1 the following simple system of interval linear equations of two variables: 
I 

( 

J a{x (8) X 1 © a[2 (g) Y1 = if 

I I a\x (8) © a\2 (8) Y1 = b\. 
Its associated analytical solution is 

i X1 = {b[ (g) a\2 a[2) 0 ( a [ x (g) a r22 © a { 2 (g) aT21) 

1 Y1 = (a^ <g)b^Q (g) b[) 0 {a[x 0 ar22 © a{2 <S> a^). 
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The variable dependency problem occurs in the calculation of the value of each 

variable. Substituting the coefficients with example concrete data, we get the 

following system of equalities. 

, J [3.0002,3.0003] [4.0005,4.0006] = [1,1] ( 5 2 ) 
f 1 [2.0001,2.0002] ㊉[1.0002,1.0003] 二 [2,2] 

Solving the above system using naive interval Gaussian elimination yields the 

following results. 

f X1 = (1.39966625…，1.40028177…） 

V I F 1 = (—0.80016132...，—0.79975469…） 

In the following, we show that better results can be obtained by adopting oper-

ators from generalized interval arithmetic in Gaussian elimination. 

5.1.2 Generalized Interval Gaussian Elimination 

The interval Gaussian elimination procedure is well studied [23, 4, 22, 25]. A 

well-known algorithm, known as preconditioned interval Gaussian elimination, 

is proposed by Hansen [23]. Preconditioned Gaussian elimination transforms the 
外T • 

coefficient matrix A1 to a near identity matrix I1 before applying naive inter-

val Gaussian elimination. Since all subdiagonal elements are nearly zeroes, the 

variable dependency effect are highly reduced. We do not employ this algorithm 

in our CIAL linear solver since it is difficult to adapt the algorithm for efficient 

incremental execution. In Gaussian elimination, an upper triangular matrix is 

obtained in the symbolic forward substitution phase. Adding an additional con-

straint to the system in preconditioned interval Gaussian elimination, however, 

may change all the elements in the coefficient matrix I1. The upper triangular 

matrix is difficult to update incrementally if most of the elements in the matrix 
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I1 are changed, especially in the interval context1. Calculating the updated up-

per triangular matrix from scratch involves re-doing all the symbolic operations. 

This is time-consuming. 

We propose an alternative procedure, generalized interval Gaussian elimina-

tion, to reduce the effect of the variable dependency problem in Gaussian elim-

ination. In general, this method cannot give as sharp results as preconditioned 

interval Gaussian elimination, but always performs better than naive interval 

Gaussian elimination. The method can also tackle some classes of problems 

that cannot be handled by interval narrowing based system [15]. 

A generalized interval Gaussian elimination procedure is obtained by replac-

ing ordinary arithmetic operators in an ordinary Gaussian elimination procedure 

by the corresponding generalized interval arithmetic operators [24], which are 

described as follows. 

In generalized interval arithmetic, an interval X1 二 [a，6] is represented as a 

generalized interval of the form, 

W ㊉ [ - c , c] (8) Z1 where y - c = a, y + c = 6, W 二 [y，y] and Z1 = [1，1]. 

Suppose X\ =泞㊉[-c“q]OZ/fo“ = If an interval is computed 

using the n X/ ' s , the resulting interval is also expressed as a generalized interval, 
n 

X i + 1 = Y j i + 1 ㊉乙 ( [ - C ” C ” ] ®  Zn+l,r)^ 2 
r = l 

where and are numerical intervals computed from the Y^s and ZJ 's 

of the n input intervals in ordinary interval arithmetic operators. Note that each 

generalized interval keeps as many subterms as the number of intervals that it 

depends on. These subterms provide information to locate multiple occurrences 

of a variable during computation, so as to reduce the effect of the variable 

dependency problem. 
l^he corresponding problem in real domain is usually somewhat easier [21] since we do not 

need to consider the dependency problem. 
2We abuse the notation to denote interval summation. 
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The basic generalized interval arithmetic operators,㊉5 (addition), Qg (sub-

traction), ®9 (multiplication) and (dg (division), are defined [24] in the following. 

Generalized Interval Addition 

If Xi = X\ ©5 Xj, then 
n 

_ = I f � Yf © 麵 一 c r ] (8) (Zl 0 Z]r)) 
r = 1 

where 

I Yi � � 

Generalized Interval Subtraction 

I If = X / ㊀ / X / , then 
n 

x i 二 y ! ㊀ 片 ㊉ E ( [ - c � M � ( 总 ㊀ 塔 ) ） 

r=l 

where 
Y ^ Y / Q Y ^ Z i ^ Z l e Z 1 ^ 

I 

Generalized Interval Multiplication 

I If Xi = Xj ®g X], then 
n 

X^Y/^Y/㊉cr，cv]�(松③路㊉片⑭总)） 
r = l 
n n 

㊉ E X X [ - 仏 ， � Zl 0 Zxjs) 
r=l 5=1 

where 
n 

Y,1 = Y ! ® Y ^ Y , ^ c 2 r \ ® Z i r ® Z l ) 
r = l 

n 

Z l = ' Y l ® Z ] r ® Y l ® Z l r ^ Z l ® X： ( [ - c s , c s ] 0 4 ) 
5=1, 
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Generalized Interval Division 

I If 幻 二 X / 0 5 X / , then 
n 

x i = y,1 ( d Y j e ^ ( y / ® 
r = l 

n 

0 {¥/ ® {Y/ © 〜M ③硌))） 
S = 1 

where 

Yk1 = y/^yf 

n 

5=1 

We give a simple example to show how the effect of the variable dependency 

problem can be totally eliminated (without counting the extremely small errors 

introduced by outward-rounding) in an expression with only generalized interval 

addition and subtraction. Suppose we want to compute X^ = X[ Qg X{㊉“X2 

with X[ = [—4,8] and X\ = [6,8]. We have 

p X{ = [2，2]®[—6，6](g),[l，l] 

X\ = [7,7]㊉[-1,1] 0 [1,1] 

Yi 二 F / © y / © Yl = [2,2] © [7,7] ® [7,7] = [2,2] 
I z L = z ' n e z i , © z i , = [i, l] © [o, o] © [o, o] - [i, 1] 

zi2 = z{2 © zi2 © Zi2 = [0,0] © [1,1] © [1,1] = [0,0] 
2 

S = 1 

Therefore, we get X^ 二 X f 二 [ -4 ,8] instead of [一6,10], which is obtained using 

ordinary interval arithmetic. Note that if multiplication or division is involved, 

the dependency problem effect cannot be eliminated but only reduced. 

Solving the system of linear equation (5.2) using generalized interval Gaus-

sian Elimination yields a sharper result. 

i X1 _ (1.39981395..., 1.40013404...) 

_ 1 二（—0.80010553..., -0.79981048…） 
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Implementation Consideration 

In our implementation of generalized interval Gaussian elimination, we outward-

round the real coefficients in the original (before transformation) system of equa-

tions into intervals .([^,6,]). Those intervals will then be treated as different 

logical variables with associated bounds represented as generalized intervals, 

XI G 片 ㊉ HQ,C ‘](8)Z/ 

^ 华 ， 华 ] ① 0 ⑴ ( 5 . 3 ) 
2 2 Z z 

A generalized interval is in centered form [45] and usually cannot be exactly 

stored on a computer (i.e, the center point ^ or the quasi-width ^ cannot 

be exactly represented as a floating-point). We modify equation (5.3) as follows. 

Xi € . 松 ㊉ 1 , 1 ] ) ⑭ 锊 

二 [ “ 华 宇 ) ] � ( m a 称 宇 ) ) , 咖 ( 毕 ) - 叫 ) ） 

刎 - 1 , 1 ] ) � M ] ( 5 . 4 ) 

In equation (5.4), (f and p are functions that round a real number to its nearest 

and right [49] adjacent floating-point number respectively. We can easily verify 

that the modified generalized interval obtained from equation (5.4) is a superset 

of that obtained from equation (5.3). Our experimental results show that using 

these widened interval coefficients in generalized interval Gaussian elimination 

still gives sharper solutions than applying naive interval Gaussian elimination 

to the original linear system. 

5.1.3 Incrementality of Generalized Gaussian Elimina-

tion 

As stated before, incremental execution capability is essential for a good linear 

solver in constraint logic programming languages. In the following, we present 
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an adaptation of the generalized Gaussian elimination procedure to incremental 

execution and its interaction with the non-linear solver. 

Our algorithm is based on that of CLP(尺）[32]. Many parts of the CIAL 

linear solver, such as trailing and backtracking, can be implemented in a similar 

fashion. We present only the components that differ from their counterparts 

in CLP(T^) : detection of redundancy / inconsistency of newly added linear 

equation and the selection of non-parametric variables. 

All linear equations in the linear solver will be stored in parametric solved 

form [44] X = E?=i (c r X Tr) + c n + i , where X is a non-parametric variable, Tr，s 

are parametric variables, and c r 's and c n + 1 are non-narrowable interval variables 

that we treat as constants. Assume that we have a collection of consistent linear 

equations {EUE2,…丑n-i) in solved form and a new linear equation En is added. 

Let Cn be the result of substituting out all the non-parametric variables in En. 

Detection of Inconsistency/Redundancy 

Let Cn be in the form 0 二 / (Ti ) . 

1. If / (T i ) does not contain 0, it implies that the new equation En is incon-

sistent with the stored constraints. Backtracking is needed. 

2. If / (T i ) = 0, the new equality is implied by the stored constraints and this 

new constraint can be removed. 

3. A linear constraint is said to be fixed if all its parametric variables (Ti) 

are non-narrowable. If Cn is fixed and / (T i ) contains 0, En is also redun-

dant. The redundancy of Cn cannot be concluded if any of the variables 

is narrowable, it is because 0 may be excluded from the value of / (T i ) in 

the further narrowing of some variables. 
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Selection of Non-parametric Variables 

The candidates of non-parametric variable must not have coefficients containing 

0. If there is no variable satisfying this criterion, it implies that Cn cannot be 

solved by generalized Gaussian elimination. We simply move it to the non-linear 

solver. 

1. If Cn contains new variable(s) that is not currently in the linear solver, 

choose one of them as the non-parametric variable. This saves the efforts 

of backward substitution. 

2. If Cn contains only parametric variable(s), choose one which appears in the 

non-linear solver. This criterion is on the contrary to the corresponding 

rule in CLP(T^), which tries to select a variable that does not appear in 

the inequality solver [32]. CIAL hopes that the variables in non-linear 

constraints can be further narrowed with the aid of linear solver, while 

CLP(T^) tries to avoid invocation of the inequality solver. 

3. Otherwise, choose the parametric variable with maximum width because 

it will most probably be narrowed in interval propagation, in general. 

Simple Optimizations 

In the linear solver, backward substitution is an important step since it can help 

to eliminate variables and obtain sharper intervals for non-parametric variables. 

This can in turn re-activate constraints containing the non-parametric variables 

in the non-linear solver. Backward substitution is, however, also both time and 

memory consuming. In such cases as {X = Y + Z, Y = A}, the transformation to 

eliminate Y is fruitless computation. This kind of backward substitution should 

be delayed. We propose two simple optimizations. 

• Backward substitution will not be performed between two constraints if 

they do not share any common parametric variable. 
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• A constraint will not be used for backward substitution if it contains an 

unbound parametric variable X (i.e. X G ( -00 , 00)) and X does not appear 

as parametric variable in the constraint being substituted. 

5.1.4 Solvers Interaction 

In this section, we show how generalized interval Gaussian elimination is aug-

mented with interval narrowing to handle incomplete systems. The enhanced 

linear constraint solving step interact with the non-linear solver to form a com-

plete constraint solving step. 

A linear system may have more unknown variables than equations. Such 

systems do not have point solutions for each variable even in the real domain. 

For example, { X � 1，X < 5，X + Y 二 20} has solutions {X G (1,5), Y G (15,19)}. 
We call them incomplete systems. 

In the generalized interval Gaussian elimination procedure, interval prop-

agation proceeds unidirectionally from parametric variables to non-parametric 

variables instead of being relational as in interval narrowing. This functional 

propagation works well if there are as many independent equality constraints as 

the number of variables. In the case of incomplete systems, the extra parametric 

variables will never be narrowed. We tackle this problem by combining general-

ized interval Gaussian elimination and interval narrowing in a linear constraint 

solving step. Non-parametric variables are narrowed by interval propagation 

in interval Gaussian elimination, while parametric variables are narrowed by 

interval narrowing. 

The following steps replace the steps 2 and 5 in algorithm 4.2 to yield a 

complete constraint solving step. The step 2 performs constraint transformation; 

while the associated intervals of interval variables are narrowed in the step 5. 

50 



Chapter 5 The Linear Solver 

2 , The linear constraint is sent to the linear solver and transformed by gen-

eralized interval Gaussian elimination. If it is either inconsistent or re-

dundant, the solver reports failure or removes the constraint respectively. 

Otherwise, the new linear constraint and the constraints modified in back-

ward substitutions are appended to the active list LA (B). 

5 . Remove a linear constraint from LA. The value of the non-parametric 

variable of jthe constraint is narrowed by interval propagation from the 

parametric variables; while the values of its parametric variables are nar-

rowed by interval narrowing. If any of the parametric variables is changed, 

the constraints in both solvers that share that variable will be appended 

to LA and NA accordingly. Changing non-parametric variable will never 

activate other linear constraints but only non-linear constraints (D), since 

no non-parametric variables can appear as parametric variables in other 

linear constraints. 

We show the soundness of solutions given by the generalized interval Gaus-

sian elimination solver and the termination of the above constraint solving step 

in the following theorems. 

Theorem 5.1.1: Generalized interval Gaussian elimination preserves all solu-

tions of a linear interval system. The solutions given by the generalized interval 

Gaussian elimination solver are sound. 

Proof ： From the inclusion monotonicity property of generalized interval arith-

metic [24] and the correctness of Gaussian elimination. • 

Theorem 5.1.2: The constraint solving step in algorithm 4.2 with the gener-

alized interval Gaussian elimination solver always terminates. 
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Proof : Inconsistency can be revealed either in the inconsistency detection 

phase in generalized interval Gaussian elimination or from empty intervals ob-

tained in the narrowing of interval variables. In both cases, the solvers report 

failure and the constraint solving step terminates. 

Otherwise, the two solvers narrow variables in active constraints (i.e. con-

straints in active lists), which will be removed from active lists after narrowing. 

A constraint will be appended to active list in either the cases where the con-

straint is transformed or some variables in the constraint are narrowed. Con-

straint transformation will only be performed when some new constraints are 

added to the system. The number of constraint transformation depends on 

the number of input constraints, which is always finite. Since the number of 

floating-point is limited, no variable can be narrowed infinitely. It follows that 

the constraint solving step must terminate eventually. • 

5.2 An Interval Gauss-Seidel Solver 

In many applications, we have some crude bounds on the solution of a linear 

system A1 0 f J 二 京.Such a system can be solved efficiently by using some 

iterative methods. Preconditioned interval Gauss-Seidel method is an iterative 

method being widely-used in interval computation [48, 22, 33, 34]. We explain 

how it can be adapted for interval linear constraint solving in CIAL. 

5.2.1 Interval Gauss-Seidel Method 
T — — 

Let the i-th equation in A1 (g) X J = b1 be 

n 

i=i 
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and we have initial bounds on all variables. The interval Gauss-Seidel method 

works by updating each variable Xi by 
n 

对—収Q E ( 4 ③ 对 门 w (5 .5) 

I . i=i 

in an iterative fashion. If, at any step, any variable becomes the empty interval, 

then we conclude that the system has no solution. 

In an iterative method, a system usually takes more than one iterating cycle 

to converge. In addition, since we are considering constraint solving in a single 

processor machine, only one equation can be examined at a time in sequence. 

The previously computed values can be used as soon as they are available. 

Assuming that variable updates are coordinated in a naive round-robin fashion, 

a sequential version of interval Gauss-Seidel is suggested to be [6] 

x^ —欣 e E (4 ® 片⑷)e E H 0 xf-1))) 0 ‘ ) n x!" (5.6) 
The superscript (k - 1) of X � � ” indicates that the variable is obtained in 

the (k — l)-th iterating cycle. The interval Gauss-Seidel method terminates 

when all variables remain unchanged after an iteration or when the difference 

between the new and last computed Value of each variable is less than a user-

defined number. This sequential Gauss-Seidel method is also called the method 

of successive displacements [6]. 

Convergence 

Definition 5.2.1 [48]: A sequence of intervals converges iff both the lower and 

upper bounds converge. • 

Definition 5.2.2 [48]: The hull of the solution set of a linear system is the set 

of tightest intervals that enclosing the solution of the linear system. • 
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In general, interval Gauss-Seidel method cannot be guaranteed to converge 

to the hull of the solution set of a linear system. We should not expect that 

it will give sharper results than interval narrowing either since interval Gauss-

Seidel method can be considered as “partial” interval narrowing. The following 

lemmas show these claims. 

Definition 5.2.3 [48]: The magnitude of an interval I1 二 is defined as 

magi^I1) = max({l\, while its mignitude is defined as migfj1�= min(\l\, |w|), 

where \a\ denotes the absolute value of real number a. An interval matrix A 1 = 

(a1- .) is said to be strictly diagonal dominant if, 
n 

mig{a Iii) > YJ  m a 9 ( a i k )  f o r 纟 = 1 , . . •，几 

• 

Lemma 5.2.4 [48]: Interval Gauss-Seidel method is guaranteed to converge to 

the hull of the solution set3 of a linear system if the coefficient matrix of the 

linear system is strictly diagonal dominant. • 

Lemma 5.2.5: Let A1 X1 = b1 be a system of interval linear equalities. If 

X I a n d X'1 are the solutions obtained from interval narrowing and the interval 

Gauss-Seidel method respectively, then X1 C X'1. 

Proof : There exists two differences between the interval Gauss-Seidel method 

and interval narrowing. 

First, the interval Gauss-Seidel method considers an interval linear equal-

ity as a whole, while interval narrowing decomposes it into a conjuncture of 

primitives. Constraint decomposition introduces temporary variables. Each 

temporary variable, say T, occurs twice and appears as in either the form 

{ T 二 A , B , c 二 T • D} or {T 二 A • B，C • D == T} (The symbol denotes + , -，X 
3If floating-point interval arithmetic is employed, the solutions obtained are usually slightly 

wider than the hull of the solution set since outward-rounding is made. 
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or / ) . The variable T at the left-hand side only serves as a container in interval 

propagation and it is not involved in any interval computation. No variable de-

pendency effects or rounding-errors will be introduced. This syntactic difference 

only leads to different narrowing steps or iterating cycles, but never affects the 

sharpness of the results. 

Although both methods use interval propagation to narrow interval variables, 

interval propagation in the interval Gauss-Seidel method proceeds unidirection-

ally from subdiagonal variables to diagonal variables instead of being relational 

as in interval narrowing. It follows that X1 C X'1. • 

Corollary 5.2.6: Interval narrowing is guaranteed to converge to the hull of 

the solution set of a linear system if the original coefficient matrix (before de-

composition) of the linear system is strictly diagonal dominant. 

Proof : From lemma 5.2.4 and lemma 5.2.5. • 

5.2-2 Preconditioning 

As stated in lemma 5.2.4, interval Gauss-Seidel method on a system with strictly 

diagonal dominant coefficient matrix always converges, but this criterion may 

not be satisfied in a general system. Hence, one may attempt to transform the 

system into an equivalent system in the sense that the new system contains all 

solutions of the original system, but is-strictly diagonal dominant. Precondition-

ing effects such a transformation. 

Preconditioning is usually done by multiplying a suitable real matrix P to 

the original system. Instead of solving A1 二 b1, we deal with the following 

system: 

P 0 A1 (8) = P (g) 61 (5.7) 
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We call P the preconditioner. Hansen [23] suggests an inverse mid-point ma-

trix as preconditioner which is shown to be optimal [13] in the sense that the 

preconditioned system gives the tightest bounds of the solutions of the original 

system. Let A denote the real mid-point matrix of A1 . We define 

dij = ( � + Uij)/2 where A1 二（fc,叫 ] )and A = ( 知 ） 

for 二 1，2,…，n. 

We then compute the inverse of A using, say row reduction, in high precision 

floating-point arithmetic. The real A " 1 is used as the preconditioner P in 

equation (5.7). 

Convergence 

Lemma 5.2.7: Let A1 ^ X1 = b1 be a linear system where A1 is obtained by 

applying outward-rounding on a real matrix A. The inverse mid-point precon-

ditioned interval Gauss-Seidel method gives solutions which are slightly wider 

than the hull of the solution set of A1 ® X1 � b1. 

Proof : The inverse mid-point preconditioned interval Gauss-Seidel method 

can be divided into two phases: performing preconditioning with an inverse 

mid-point preconditioner and applying interval Gauss-Seidel method on the pre-

conditioned system. 

Since all elements in A1 are obtained by applying outward-rounding on real 

numbers, their widths should not be wider than the width between two ad-

jacent floating-point numbers. Multiplying such an interval matrix A by its 

inverse mid-point matrix4 yields a near identity matrix, which is always strictly 

diagonal dominant. From lemma 5.2.4, we know that the interval Gauss-Seidel 

method always converges to the hull of the solution set of the preconditioned 
4The exact inverse mid-point matrix is non-representable, in general. We use an approxi-

mation instead. 
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system. However, due to effect of overestimation (to be discussed later), the 

preconditioned system usually have slightly wider solutions than the original sys-

tem. It follows that the inverse mid-point preconditioned interval Gauss-Seidel 

method gives solutions which are slightly wider than the hull of the solution set 

of A 1 (g) = b1. • 

Intuitively, we can expect that this preconditioned interval Gauss-Seidel 

method gives accurate results. Since A—1 ® A1 is near identity, the width of 

the summation of all sub-diagonal terms a1- (g) X] in equation (5.6) tends to be 

very small. The diagonal variables are narrowed to be sharp. 

Overestimation 

Since preconditioning involves many interval multiplications, small errors will 

be introduced due to outward-rounding. A preconditioned system usually has 

slightly wider solutions than the original system and these additional pseudo-

solutions are called overestimation [47]. Overestimation destroys the complete-

ness of inconsistency detection in interval Gauss-Seidel method since an incon-

sistent system of constraints may become consistent after preconditioning. 

A formal analysis of overestimation requires such knowledge as mappings [48] 

and fixpoint theorems [47], and is beyond the scope of this thesis. Readers may 

refer to [47, 48] for details. 

We end this section by explaining how the simple system {X = Y,X = - Y } 

in section 3.1 can be solved by the preconditioned Gauss-Seidel method without 

using splitting. 

Preconditioning transforms the equations {X = Y,X = - Y } (figure 5.1(a)) 

to { X = 二 0} (figure 5.1(b)), which are the two axes. Even without giving 

any initial bounds for the two variables, the preconditioned interval Gauss-Seidel 

method gives the exact answers { X = 0,F = 0} in one iterating cycle. If we 

apply the preconditioned interval Gauss-Seidel method on general linear systems, 
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Figure 5.1: Preconditioned Interval Gauss-Seidel Method on Simple Equations 

initial bounds are usually necessary and it may take several iterating cycles to 

converge. 

5.2.3 Incrementality of Preconditioned Gauss-Seidel 

Method 
The adaptation of the preconditioned interval Gauss-Seidel method for efficient 

incremental execution is more complicated than that for generalized interval 

Gaussian elimination. It involves the incremental update of preconditioner, ap-

plication of preconditioning, and detection of inconsistency and redundancy. A 

tradeoff between speed and space is also an important consideration in imple-

menting trailing and backtracking. We discuss the stated issues in this section. 

Incremental Update of Preconditioner 

We adopt the optimal preconditioner, inverse mid-point matrix as stated in 

section 5.2.2. Assume that we have a collection of r interval linear equalities of 
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c variables. The mid-point coefficient matrix A is thus an r x c matrix. The 

entries in A, which are mid-points of intervals, cannot be represented exactly on 

computer in general. We can simply round them to their nearest floating-point 

numbers. The small errors introduced in the mid-point matrix do not affect the 

convergence of the preconditioned system significantly. 

Constraints are generated and submitted to the constraint solver incremen-

tally In a constraint logic programming system. The linear system present in 

the solver do not necessarily have a square matrix in general. We present how 

the preconditioner can be computed from such a rectangular matrix. 

For the case where c < r, it implies that some equalities are either redun-

dant or inconsistent to the system. Those equalities will be located by another 

algorithm using heuristic (to be discussed later) and they should not be used in 

the calculation of the inverse. We disregard this case. 
Otherwise, we have c > r. We define a corresponding rectangular identity 

matrix J by 

J = (jkl), where jki = 1 for k = I, jki = 0 for fc 会 / 

for 1 <k <r and I < I < c. 

The preconditioner P is computed by row reducing the combined matrix [A|J] 

until the the first r columns of A becomes the identity matrix I. The required 

preconditioner P resides in the first r columns of the original J matrix5. There-

fore, the row reduced matrix has the form [I|U|P|Z], where I is the r x r identity 

matrix, U is an r X (c - r) matrix to be used for future update of the precondi-

tioner, Z is an r X (c 一 r) zero matrix. We call [I|U|P|Z] the IUPZ matrix. 

Incremental calculation of the row reduction transformation is achieved by 

adapting the familiar incremental Gaussian elimination of CLP(^) [44]. Assume 

that we have a collection of r interval linear equalities of c variables with r < c. 

When a new linear equality, whose mid-point coefficients are denoted by mr+1， 

5Note that P is an r x r matrix. 
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1. The IUPZ matrix X is augmented to r + 1 rows by appending an extra 
row where 

二 m r + 1“ for I <1 <c 
x r W 二 0 for c + l < / < 2 c a n d / ^ c + r + l 

= 1 for I = c + r + 1. 

2. We subtract the (r + l)-st row of X from suitable multiples of the first r 
rows such that the first V columns of the (r + l)-st row becomes zeros. 

3. If c > r + 1，we permute the (r + l)-st column of X with one chosen from 
the (r + 2)-nd to c-th columns, say the 5-th one. The chosen column must 
satisfy the following criteria: 

• the component x r + h s must be greater than a small user-defined value. 
• the column should have as little zeros as possible. 

We also permute the (c + r + l)-st with the (c + s)-th column accordingly. 
All permutations are recorded to guarantee that their associated variables 
in the constraints can be identified. 

4. We subtract the first r rows from a suitable multiple of the (r + l)-st row 
SUch that the (r + l)-st columns of the first r rows becomes zeros. 

Algorithm 5.1: Incremental Update Procedure for the IUPZ Matrix 

is added, the IUPZ matrix, X = {xki) for 1 < fc < r, 1 < / < c, is updated 

incrementally as in algorithm 5.1. 

The calculation should be performed in high precision floating-point arith-

metic. The updated (r + 1) x (r + 1) preconditioner resides in the (c + l)-st to 

+ r + l)_st columns of the IUPZ matrix X . We perform permutations in the 

update procedure for two reasons. 

First, since the preconditioner is computed in floating-point arithmetic, to 

reduce the roundoff errors, we should avoid placing an extremely small floating-

point in the diagonal of the matrix. Although roundoff errors introduced in the 
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calculation of preconditioner can never destroy the inclusion property of the pre-

conditioned system, the coefficient matrix of the preconditioned system may not 

be strictly diagonal dominant. Thus, the preconditioned interval Gauss-Seidel 

method may fail to converge. This phenomenon becomes more visible if the 

mid-point coefficient matrix is ill-conditioned [5]. The column permutation in 

our update algorithm is similar to pivoting in numerical methods. The difference 

is that the former only requires the diagonal coefficients to be greater than a 

small user-defined value, while the latter always puts the largest component of 

a row in the diagonal. 

The second criterion, which is to choose a column with as little zeros as 

possible, is for efficiency only. Recall that when we apply the interval Gauss-

Seidel method on a collection of r constraints, only the values of the r variables 

in the diagonal will be updated. For systems where there are more variables than 

constraints, extra variables need to be narrowed by interval narrowing, which 

is time-consuming. A simple way to reduce the number of such extra variables 

is to include as many non-zero components as possible in the first r columns of 

the IUPZ matrix in the calculation of the preconditioner. 

Detection of Inconsistency/Redundancy 

There is no general method to detect redundancy in an iterative method, espe-

cially in the interval context. Inconsistency is revealed if an empty intersection 

is produced by applying the preconditioned Gauss-Seidel method directly to 

the system. However, overestimation prevents us from detecting all possible 

inconsistency. 

In the implementation of an interval linear constraint solver, we must not 

use inconsistent or redundant constraints in computing the preconditioner. In-

tuitively, a system, with redundant or inconsistent constraints often have more 
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constraints than the number of unknown variables. Selecting the “wrong” sub-

set of equalities for preconditioning produces a poor preconditioner in the sense 

that the preconditioned system may fail to converge. 

We use a simple heuristic to locate inconsistent and redundant equalities. 

Incremental calculation of a matrix inverse involves forward substitution (steps 

1 and 2 in algorithm 5.1). If we find that after forward substitution on, say, 

the (r + l)-st constraint during the calculation of the inverse of the mid-point 

coefficient matrix A, all of A's remaining c � r coefficient mid-points are less 

than a small user-defined value, say 10—8，then we conclude that the (r + l)-st 

constraint is either "redundant" or “inconsistent.” Inconsistent and redundant 

constraints are both regarded as fruitless to preconditioning and will not be 

employed in the preconditioning process. 

Note that our proposed method is only a heuristics. Constraints concluded 

to be redundant or inconsistent may indeed be independent and consistent. 

Simply disregarding these constraints can result in excessively relaxed answer 

constraints. Current practice in the CIAL system is to transfer these constraints 

to the non-linear solver for further scrutiny. 

Incremental Application of Preconditioning 

Preconditioning involves the multiplication of a point preconditioner matrix and 

an interval matrix, which is of 0{n3) complexity6, where n is the rank of the 

preconditioner. Without incremental application, we need to re-compute the 

preconditioned system from scratch whenever new equalities are added in every 

derivation step. In the worst case (i.e. when only exactly one new equality is 

collected in each derivation step and the entire preconditioner is modified), the 
6We do not consider such special divide-and-conquer matrix multiplication algorithms as 

Strassen's algorithm (0(n2.81)) [18]. Those algorithms usually introduce multiple occurrences 
of variables and require the dimension of the matrix to be a power of 2. The latter can double 
the storage in the worst case. 
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Figure 5.2: Partition of the Preconditioner P and the Coefficient Matrix A 1 

whole constraint solving algorithm has complexity 0{n4). We give an incremen-

tal adaptation of preconditioning application of order 0(n3). 

Let O' (g) A ' 1 0 f 1 == O' 0 0 be a preconditioned system with n constraints. 

Without loss of generality, we assume that one new constraint is added to the 

system. Our goal is to make use of the previously calculated O ' � A'1 and O' 0b'1 

to compute some parts of the new preconditioned system P(g)A ^ X 1 = P(g)6J. 

Note that A 1 differs from A'1 by only an extra last row. 

Consider the computation of P 0 A1 . We partition the new preconditioner 

P, the new coefficient matrix A1 , and their product as shown in figure 5.2. The 

product matrix R 1 can be calculated by the following equations: 

B\ 二 O 0 A i e L ( g ) A 基 

O N 
= M (8) A i © N ® A^ 

R^ = M 0 © N 0 A^ 

All terms in (5.8), except O ® and O ® can be calculated in 0(n2) time. 
j I 

We concentrate on the computation of O (g) A x and O 0 A 2 . 

The row reduced IUPZ matrix has the form [I|U|0'|Z] before a new con-

straint is added. Let O' = {olm) f o r i <l,m<n and (叫)the first column of U. 

The situation of the IUPZ matrix when a new constraint is added is depicted in 
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(5.9). 

1 0 … 0 ui • • • on ol2 ‘ • ‘ o'ln 0 … 

0 1 … 0 u2 … ‘ o22 …心 0 … 
• • • • • • • • • ••參 . . . 參 . _ • • • ••鲁 眷 

0 0 … 1 un … 心 义 2 … 0 … 
an+i,i an+i,2 • • • . . .

 0 0
 • • •

 0 1
 一 

I::. (5-9) 
To update the preconditioner incrementally, we apply row reduction to the 

left matrix in (5.9), while the same operations are performed to the right matrix. 

The first (n + 1) columns of the left matrix will be transformed to an identity 

matrix eventually if the new constraint is independent and consistent to the 

system. An intermediate state of the row reduction procedure is: 

1 0 … 0 wi … o ' n o12 … o l n 0 … 

0 1 … 0 u2 …o'21 o22 • • • o'2n 0 . . . 

0 0 … 1 un … o n l on2 ••• onn 0 … 

0 0 . . . 0 1 . . . h h . . . tn 艺 n+l • • • • 

where U's are some intermediate values. The updated (n + 1) X (n + 1) precon-

ditioner P is 

o'n — Ulti d12 — Ulh ‘ . . °ln ~~ Ultn —Ultn-\-l 

o21 — u2ti o22 — u2t2 …o2n — w2tn —u2tn+i 
p — .. . … … … … （5.10) 

o'nl - unti on2 - unt2 • • • Onn - Untn —untn+i 

t\ ... tn tn+l 
mm 

What we have described is the analytic solution of P, which depends by no 

means on the mode, real or floating-point, of the arithmetic operators. Assuming 

that we are using real (interval) arithmetic, we can establish the following equal-

ity and inclusion relationships. We decompose the upper-left n xn sub-matrix 

64 



Chapter 5 The Linear Solver 

O of P as follows. 

0 = 0' -  U 2 x ( h t 2 … t n ) . (5.11) 

\ Un J 

It follows that O 0 A^ and O (g) A^ can be approximated7 by 

( U l \ 

O O A i CO'(g) A\ ㊀ 购 ⑭((h t
2
 ... t

n
)0 A j ) (5.12) 

、〜) 
f U l \ 

C o ' (8) e U2 (8)((ti t2 ... tn)(g) A^). (5.13) 

\ un j 

using the subdistributivity8 and associativity9 [45] properties of interval arith-

metic. Unfortunately, none of (5.11), (5.12), and (5.13) hold under floating-

point (interval) arithmetic since associativity and subdistributivity are no longer 

guaranteed. 

The right-hand-sides of (5.12) and (5.13) contain 0'<S)A\ and slight 

supersets of which are available from the previous preconditioned system. The 

multiplication of a vector and a matrix is an 0(n2) operation. Thus the compu-

tation of the right-hand-sides of (5.12) and (5.13) is also of 0(n2) complexity. 

We adapt this more efficient method to precondition the system instead of using 

p a s defined in (5.10). In the following we state the preconditioning procedure 

before showing the correctness of the procedure. 
7 A floating-point number a can be regarded as a point interval [a, a]. Thus O can be 

regarded as a matrix of point intervals. 
(g) {B1 ㊉ CJ) CA^B1 e A1 ^ C1. 

9 (A7 ^B^^C1 =AX <^(BT C1). 
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The first step is to widen each component of the floating-point vector (ui,u2, •.., 

by a small amount, say le"12 . The result is an interval vector (u[ : u1” … , u 1 ^ . 

We define C\ and C\ as follows. 

f: ‘ l u I A 
ui 

C1! = o ' (8) A [ e 2 (8) {{h t2 ...tn)® A l ) (5.14) 

[ u i J 

(u[ \ 
UI 

C^ 二 O' (g) A !㊀ 2 (E) {{ti t2 … t n ) (8) A《） （5.15) 

\< ) 
We modify the left-hand-side of the preconditioned system by replacing the 

calculation of R^ and The new calculation is: 

Ri 二 c l ® L ® A x 3 ( 5 1 6 ) 

We call the new left-hand-side of the preconditioned system (obtained from 

(5.8) and (5.16)), K 1 � X1. The next step is to find an appropriate floating-

point preconditioner P' to multiply b1, the criterion being that P ; (g)r A 1 C K 1 , 

where the symbol (g)r denotes the real interval multiplication. We propose P ' 

to be P with the O part (as shown in figure 5.2) replaced by O n e w defined as 

follows. 

卜 0 
ui 

O n e w G o ' Qi
 2

 (h t2 ... tn), (5.17) 

\Un I 

where the symbol Bi and denote the inward-rounded subtraction and multi-

plication respectively. The definition of inward-rounding follows. 
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Definition 5.2.8: If J1 is a non-empty real interval, the inward-rounding 

function rj : I(1R) — 1(F) is defined as, 

； rjiJ1) = [j{j'IeI(F)\fICJ1}. 

• 

Lemma 5.2.9: 

iu{\ 
ui 

O n e w ®r A1! C O' 0 A i ㊀ 2 ® ( ( “ h ... tn) ® A x ) 

\uIn j 

UI 
Onew (g)rA^ C O ' O A ^ © � ( ( h t2 . . . tn) 0 A 2 ) 

\ ui J 

Proof : From equation (5.17), we have 

( u { \ 

O
n e w

 G O'㊀‘
 2

 欧 ( h 力2 … t n ) . 

V ui ) 

Let the symbols (g)r and denote the real interval multiplication and subtrac-

tion respectively. It follows, 

ui 
O

n
e w A i C ( O ' © i

 2

 {h t2 • . • tn)) (g)
r
 A i 

V Un J 
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l : ( u { \ 

ui T 

C (O' e r 2 . 0r (h t2 ... tn)) (8)r A x 

\  ui J 

卜 0 
C o ' (g)r A i © r ( 2 {tl h . • • tn))⑧r 

\ ui J 

ui 

= O ' (g)
r
 A

1

! Q
r

 2

 0r ((tl h … t
n
) 0r A^) 

V / 

( u { \ 

UI 

C ㊀ 2 (8) ((̂ 1 t
2
 ... t

n
) ® A i ) 

\ui j 

Similarly, we can show 

( u { \ 

ui 

O n e w Or A ^ C o ' ( 8 ) A | e . 2 0 ((艺 1 尤2 … L ) � A
2
) 

\  ui J 

• 

Thus, P ; satisfies the criterion. The definition of O n e w also explains why we 

need to widen the components of the ( u i , u n ) T vector: this is to facilitate the 

computation using inward-rounding so that there will be less chance of "rounding 
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inwardly" into empty intervals. Experiments show that each element in the 

resttltant matrix at the right-hand-side of (5.17) contains several floating-point 

numbers so that the matrix O n e w can be easily found. In the case where some 

elements in the resultant matrix are empty intervals, we can further widen the 

vector (ui, u 2 , . . . , 

Therefore, the preconditioned system is K1 X1 = Pf ® b1. The following 

lemma and theorem show the correctness result of our incremental precondition-

ing procedure. 

Lemma 5.2.10: Given two systems A1 ® X1 = b1 and K 1 � 二 P � b1. If 

P 0 r A 1 C K 1 , then the solutions of Ax(8)XJ = b1 are contained in the solutions 

of K 1 (g) X 1 = P 0 b1. 

T — — 
Proo f : Preconditioning guarantees that the solutions of A ® X1 = b1 are 

contained in the solutions of P (g)r A1 0 X 1 = P ®r b1. Since P (g)r A 1 C K 1 

and P (g)r C P (g) b1, from the inclusion monotonicity of interval arithmetic, 

we know that the solutions of P 0 r A1 (8) X1 = P 0r b1 are contained in the 

solutions of K 1 (8) X 1 = P 0 b1. It follows that the solutions of A ® X1 = h1 

are contained in the solutions of K 1 ® X1 = • 

Theorem 5.2.11: Assume that we have a linear system with n equalities of n 

variables. The incremental preconditioned interval Gauss-Seidel method has the 

worst case complexity 0{n3). The incremental method preserves all solutions of 

an interval linear system. 

Proof : The preconditioner update algorithm is a variant of incremental Gaus-

sian elimination, which has the worst case complexity 0(n3). 

The preconditioned system is updated incrementally in 0(n2) time whenever 

a new constraint is added. In the worst case, only one new equality is collected 

in each derivation step, the incremental preconditioned interval Gauss-Seidel 
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method has complexity 0(n3) . 

From lemmas 5.2.9 and 5.2.10, the incremental method preserves all solutions 

of an interval linear system. •� 

Trailing 

There is always a tradeoff between storage and speed in implementing trailing. 

The state before the last choice point can be restored in higher speed if more 

data are trailed, but more storage is consumed. This phenomenon becomes more 

visible in CIAL since interval arithmetic is more demanding than floating-point 
arithmetic in terms of both storage and speed. 

We have several kinds of data in the preconditioned interval Gauss-Seidel 

solver: the original system of constraints, the associated interval bounds for 

interval variables, the preconditioner, and the preconditioned system. The orig-

inal constraints will not be changed so they should never be involved in trailing. 

To maintain certain level of incremental execution in a constraint logic pro-

gramming language, we trail the interval bounds and the preconditioner. Since 

the floating-point preconditioner is updated incrementally using a variant of the 

incremental Gaussian elimination procedure, trailing the preconditioner should 

not consume much more memory than trailing constraints in CLP(T^). 

Trailing the preconditioned system suffers from a large space utilization. 

Consider a system with n equalities of n variables. It takes at least 16 bytes1 to 

store an interval and thus an equality occupies 16n bytes. In the worst case, i.e. 

when only one new equality is collected in each derivation step and the entire 

preconditioner is modified, we need to trail n(n + l ) /2 constraints in total. It 

requires (n2(n + 1)/128)KB. 
A problem of size n = 100 takes about 7MB storage space. Doubling the 

problem size rapidly increases the space utilization to about 61MB, which is 

i o W e a s s u m e that the bounds of an interval are stored as double floating-point numbers. 

70 



Chapter 5 The Linear Solver 

demanding. 

In our design of the preconditioned interval Gauss-Seidel linear solver, we 

do not trail any entry of the preconditioned system. Upon backtracking, the 

preconditioned constraints will be re-computed if necessary. This design is based 

on the assumption that there are usually some new constraints added to the 

system after backtracking. It is inevitable to re-apply preconditioning on some 

constraints even if they are trailed. Thus, the overhead are reduced. 

5.2.4 Solver Interaction 

The following steps replace the steps 2 and 5 in in algorithm 4.2 to yield a 

complete constraint solving step in CIAL. Preconditioning in the step 2 serves 

as constraint transformation. The associated intervals of interval variables are 

narrowed in the step 5. 

2. If any rows of the preconditioner are restored from trail in backtracking, 

we re-apply preconditioning on the corresponding constraints. Otherwise, 

the preconditioner and the preconditioned system are updated incremen-

tally to include the new linear constraint. All modified preconditioned 

constraints are appended to the active list LA (B). 

5. Assume that we have collected r linear equality constraints of c variables. 

Remove a preconditioned linear constraint from the active list LA, say the 

k-th one of the linear system, the value of the k-th variable is updated 

using equation (5.6); while the (r + l)-st to the c-th variables are narrowed 

by interval narrowing. If any of the variables is changed, the constraints 

in both solvers that share that variable will be appended to LA and N A 

accordingly (D). 

Theorem 5.2.12: The constraint solving step in algorithm 4.2 with the in-

cremental preconditioned interval Gauss-Seidel solver always terminates. The 
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system is either inconsistent or stable. 

Proof : Since the input constraints are finite, the preconditioner and the 

preconditioned system update procedures will not be invoked infinitely. In-

terval Gauss-Seidel method can be considered as "partial" interval narrowing 

(lemma 5.2.5). Since interval narrowing always terminates with an inconsis-

tent or a stable system [36], it follows that the constraint solving step always 

terminates. The system is also either inconsistent or stable. • 

5.3 Comparisons 

We have presented how the two proposed linear solvers can be adapted for 

Incremental execution. The soundness of the solvers has also been proved. We 

show their efficiency and accuracy by some expermental results in the next 

chapter. Before moving on to the benchmarking results, we give some theoretical 

comparisons between the generalized interval Gaussian elimination solver and 

the incremental preconditioned interval Gauss-Seidel linear solver. 

5.3.1 Time Complexity 

The incremental preconditioned interval Gauss-Seidel method is of complexity 

0(n3). However, when it is incorporated into a linear solver without any pre-

conditioned systems being trailed, the constraint solving procedure of the linear 

solver has a different complexity. Consider a general system of n equalities with 

n unknown variables. In the best case, no constraints are retracted in back-

tracking, the constraint solving procedure shares the same complexity as the in-

cremental preconditioned interval Gauss-Seidel method, which is of complexity 

0(n3 ) . In the worst case, some constraints are retracted and all elements in the 

preconditioner are modified in backtracking. Since no preconditioned systems 
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are trailed, the previous preconditioned system cannot be restored. Thus the 

preconditioned system cannot be updated incrementally. We need to apply pre-

conditioning from scratch whenever a new constraint is added. The constraint 

solving procedure is of complexity 0(n4). 

Generalized interval Gaussian elimination is based on incremental Gaussian 

elimination and generalized interval arithmetic. The former technique has the 

same complexity as Gaussian elimination, which is of 0(n3). Recall that a 

generalized interval keeps all intervals that it depends on during calculation. 

The complexity of a generalized interval operation is in 0(n) of its counterpart 

in ordinary interval arithmetic. The complexity of generalized interval Gaussian 

elimination is 0(n4). 

5.3.2 Storage Complexity 

Assume that an interval occupies p storage space. We need np storage to store an 

interval linear equality of n variables. In the case where no trailing is involved, a 

system of n equalities takes n2p storage. On the contrary, if we need to trail all 

the collected constraints whenever a new constraint is added, there are totally 

n{n - l ) / 2 constraints to store and they occupy n2(n — l)p/2 storage. 

In generalized interval Gaussian elimination, a generalized interval coefficient 

is a list of ordinary intervals. Thus, the storage complexity of the generalized 

interval Gaussian elimination is of 0{n3) in the best case and of 0{n4) in the 

worst case. 

In the incremental preconditioned interval Gauss-Seidel method, elements 

of the preconditioner are floating-point numbers. Storing a floating-point pre-

conditioner requires only half of the storage for storing a system of interval 

constraints. The storage complexity of the incremental preconditioned interval 

Gauss-Seidel method is of 0(n2) in the best case and of 0(n 3 ) in the worst case. 

If the preconditioned system is also trailed, five times of the storage is required. 
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The order of complexity remains unchanged. 

5.3.3 Others 

Besides the time and storage complexities, there exists some minor differences 

between the two constraint solving methods. 

The preconditioned interval Gauss-Seidel method and preconditioned inter-

val Gaussian elimination give similar sharp results [48]. Since preconditioned in-

terval Gaussian elimination always works better than generalized interval Gaus-

sian elimination, we can expect that the incremental preconditioned interval 

Gauss-Seidel method also works better than generalized interval Gaussian elim-

ination. Both of them are, however, incomplete in detecting inconsistency due to 

overestimations introduced by outward-rounding. The solutions given by these 

two methods should be interpreted as conditional answers. 

For a system where there are as many independent equalities as variables, 

generalized interval Gaussian elimination can give solutions without requiring 

any initial bounds on the variables. Interval Gauss-Seidel method is an iterative 

method. Initial bounds for some variables are inevitable in general11. 

In short, the incremental preconditioned interval Gauss-Seidel method is 

compared favourably against generalized interval Gaussian elimination. 

1 initial bounds on variables can still be omitted in some special cases. 
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“ I] Generalized Interval Incremental Preconditioned 
Gaussian Elimination Solver Interval Gauss-Seidel Solver 

" Soundness Yes Yes 
Completeness No N o 

Time (Best) 0(n4 ) 0(n3) 
Time (Worst) 0(n4) 0{n4) 
Storage (Best) 0(n3) 0{n ) 

Storage (Worst) 0{n4) 0(n ) 
Accuracy Low High 

Initial Bounds Not necessary Necessary 

Table 5.1: A Summary of Comparisons between Two Linear Solvers 

75 



Chapter 6 

Benchmarkings 

In order to demonstrate the feasibility of our proposal, we have constructed 

several CIAL prototypes using the C programming language. Since CIAL has 

much in common with CLP(^), we decided to use CLP(尺)as the backbone 

of our implementation and tried to adopt as much original CLP(尺)code as 

possible. 

We use ICLP(^) as our first prototype implementation. The bounds of the 

interval variables are expressed as inequality constraints in CLP(^). Although 

CLP(尺)can express interval constraints well, it fails to narrow the intervals. 

We embed interval narrowing for solving interval constraints. The resultant 

prototype is, however, only four to five times faster than the ICLP(尺)meta-

interpreter [38]. To achieve the goal of efficient constraint solving, we decide to 

re-use only the Prolog engine part of CLP(尺)in our subsequent CIAL prototype 

implementations. 

We have completed three different CIAL prototypes, all of which are based 

on CLP(T^) Version 1.2 [28]. The solver interface and the two solvers (the linear 

solver and the non-linear solver) are implemented from scratch. We also modify 

the unification algorithm of the Prolog engine to cope with unification between 

interval variables and other terms. 
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CIAL (Alpha) [15], which consists of about 2800 extra lines of C code, em-

ploys generalized interval Gaussian elimination in its linear solver. The proposed 

preconditioned interval Gauss-Seidel method has been incorporated into CIAL 

1.x (Beta) [14]. CIAL 1.0 (Beta), which is implemented in about 3000 extra lines 

of code, is being freely distributed to the public for experimental use, but the 

solver lacks incremental execution. Although the preconditioner is constructed 

incrementally, the preconditioned system (multiplying the preconditioner and 

the interval coefScient matrix) are re-computed at every derivation step. We 

further embed the incremental preconditioning algorithm in CIAL 1.1 (Beta) to 

improve its efficiency. 

The three prototypes use interval narrowing with splitting in solving inequal-

ity and non-linear constraints. 

In this chapter, we compare our three CIAL prototypes with BNR Prolog 

v3.1.0 [7, 52], CLP(BNR) (or BNR Prolog v4.2.3) [50, 9], Echidna Version 0.947 

beta [55, 54], ICL [37], and CLP(尺）Version 1.2 [28, 32] over seven numerical 

examples of various types: the well-known mortgage program [28] which comes 

with the CLP(尺)distribution, a simple system of simultaneous equations in 

two variables, analysis of a simple DC circuit, inconsistent simultaneous equa-

tions, the ball collision problem [30]，the famous Wilkinson polynomial [30], and 

two large systems of linear equations. The examples range from purely linear 

constraints, to a mixture of linear and non-linear constraints, and to purely non-

linear constraints. BNR Prolog runs on an Apple Mac II ( � 2 VAX MIPS with 

5MB Ram) and the other systems run on a SUN SPARCstation 10 model 30 ( � 

49 VAX MIPS with 32MB Ram). 
We conclude this chapter by giving a comparison of the performance between 

CIAL 1.0 (Beta) and CIAL 1.1 (Beta). It shows how the efficiency of linear 

constraint solving is improved by an incremental preconditioning algorithm. 
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6.1 Mortgage 

The mortgage program [28] is a standard example from CLP(T^) for relating the 

principal, number of months, interest rate, outstanding balance and monthly 

payment in a mortgage. We rewrite it in CIAL syntax. 

mg(P,T,I,B,MP)：-

T =":= 1, 

B =:= P + (I*P - MP). 

mg(P,T,I,B,MP) 

T >= 2， 

TA =:= (1 + I)*P - MP, 

TB =:= T ~ 1, 

mg(TA,TB,I,B,MP). 

Given the following query, 

？ - m g ( 9 9 9 9 9 , 1 0 , 0 . 0 1 , B , 5 0 0 0 ) . 

CLP(T^) responds as follows: 

B = 58150 . 

The above answer is unsound due to round-off errors. Echidna suffers from 

the same problem by giving answer 58150.03. Upon the same query, all three 

CIAL prototypes and ICL give a fairly sharp inclusion of the answer, 

B € ( 5 8 1 5 0 . 0 4 5 2 1 3 3 9 2 5 , 5 8 1 5 0 . 0 4 5 2 1 3 3 9 2 9 ) . 
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CLP(BNR) agrees with our answer with a slightly lower precision. BNR Prolog 

returns an interval with wide width. 

There is no need for constraint solving, linear or non-linear, with the particu-

lar query instantiation. The computation involved is straight value propagation. 

This example illustrates the problem of roundoff error. 

6.2 Simple Linear Simultaneous Equations 

This example is to exhibit the inadequacy of interval narrowing for handling 

linear systems. Let us consider the following simple system in two unknowns. 

X +Y 二 5 

< X - Y = 6 

X,Y G ( - o o , + o o ) . 
s. 、 

All of BNR Prolog, CLP (BNR), Echidna, and ICL cannot narrow any of the 

variables when no initial bound is given. When we give them an initial guess of, 

say, X,Y G [—1000,1000], they return 

X € [-989,1000], YG [-995,994]. 

All CIAL prototypes1 return 

X G [5.5, 5.5], YG [ -0 .5 , -0 .5] . 

which is the same exact solution returned by CLP(7^). 

It is interesting to note that the first four systems are able to return slightly 

less accurate solutions when interval splitting is employed. 
iQIAL 1.0 (Beta) and CIAL 1.1 (Beta) use iterative method (Gauss-Seidel method) to solve 

constraints after symbolic pre-processing (preconditioning). Initial bounds for some variables 
are usually necessary, although they can be omitted in this example. 
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6.3 Analysis of DC Circuit 

Electrical engineering is an important application area for constraint logic pro-

gramming [27]. Consider the simple DC circuit in figure 6.1. We are interested 

in the currents passing through the resistors, 

j � 

/ R8 R9 \ • _ < Wv -AA^- -> 
+ ^T 丨9 Z 

v iJ|Ri 令 4 

. r 7 / 
• 1 -tvw • 

“丨 7 

Figure 6.1: A Simple DC Circuit 

Assume that V 二 10 volts and Ri 二 i Q for i 二 1,2,…，9. The following 

system of linear equations are obtained from nodal and mesh analysis. 

， I s - I i - 1 2 - 工 8 二 0 , h 二 10 

— I S + I L + I 7 二 0 � 2 I 2 - 3 I 3 — 8 I 8 = 0 

I 2 + I 3 - I 5 二 0 ， 3 I 3 + 5 I 5 — 9 I 9 二 0 

_ l 3 _ l 4 + I 8 _ I 9 二 0 ， - 4 I 4 + 6I6 + 9I9 二 0 

14 + l 6 - I 7 二 0 ， - I i + 4 I 4 + 7l7 + 8 I
8
 = 0 

1 5 — 工 6 + 工 9 二 0 
\ 

There are 11 linear equations but only 10 unknown variables. The redundant 
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equation cannot be located in advance, however. CIAL (Alpha) gives the fol-

lowing results in 1.11s. 

I s G ( 1 0 . 8 2 8 2 9 8 5 7 7 2 , 1 0 . 8 2 8 2 9 8 5 7 7 3 ) 

e [10.0000000000,10.0000000000] 

1 2 G ( 0 . 5 6 9 0 8 9 8 4 6 0 , 0 . 5 6 9 0 8 9 8 4 6 1 ) 

1 3 g ( - 0 . 3 1 1 8 3 0 0 5 2 7 , —0 .3118300526) 

1 4 G ( 0 . 5 3 2 0 6 0 0 2 7 2 , 0 . 5 3 2 0 6 0 0 2 7 3 ) 

1 5 G ( 0 . 2 5 7 2 5 9 7 9 3 4 , 0 . 2 5 7 2 5 9 7 9 3 5 ) 

1 6 g ( 0 . 2 9 6 2 3 8 5 4 9 9 , 0 . 2 9 6 2 3 8 5 5 0 0 ) 

1 7 G ( 0 . 8 2 8 2 9 8 5 7 7 2 , 0 . 8 2 8 2 9 8 5 7 7 3 ) 

1 8 G ( 0 . 2 5 9 2 0 8 7 3 1 2 , 0 . 2 5 9 2 0 8 7 3 1 3 ) 

1 9 e ( 0 . 0 3 8 9 7 8 7 5 6 5 , 0 . 0 3 8 9 7 8 7 5 6 6 ) 

CLP(灭)responds in less than 1/60 second. CLP(灭)，s efficiency over CIAL 

(Alpha) is due to the fact that interval symbolic operations, i.e. interval for-

ward and backward substitutions, are time-consuming. The solutions given by 

CLP(T^) are, however, unsound. 

With initial value [-100,100] for all variables, both CIAL 1.0 (Beta) and 

CIAL 1.1 (Beta) give the same results as in CIAL (Alpha) and in less than 1/60 

second. 

By splitting 4 variables ( l s , Ii , I2 , Is), ICL exits abruptly after 2 minutes 

of execution; Echidna (in high precision) and BNR Prolog cannot terminate in 

2 a n d 24 hours respectively. CLP(BNR) cannot give any solution (except I i ) 

with width less than 100, although all variables are specified to split. 

This example demonstrates the inability of interval narrowing with splitting 

to solve even small systems of linear constraints. 
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6.4 Inconsistent Simultaneous Equations 

The following ad hoc constraint system is obviously inconsistent, since B and C 

should be equal with value either 1 or -2 according to the first three constraints. 

Neither value is, however, consistent with the initial bound of B. 

A + C 二 D 

A + B = D 
< 

C ( C + 1 ) = 2 

� A G ( 0 , o o ) , B G ( - o o , - 5 ) 

With interval splitting on all variables, CLP(BNR) returns “yes;” ICL and BNR 

Prolog do not terminate in 1 hour; Echidna returns “yes” with default precision 

and exits abruptly with high precision. CLP(尺)gives "maybe" with answer 

constraints. 

All three CIAL prototypes can detect the inconsistency without using split-

ting but with the cooperation of two solvers. 

It is interesting to find that given the constraint C (C + 1) = 2, none of 

CLP (BNR)，BNR Prolog, and Echidna can calculate the value of C without 

using splitting, even initial guess [-100,100] is given. 

6.5 Collision Problem 

We demonstrate the non-linear constraint solving ability of CIAL in the two 

subsequent examples. 
This collision problem and the following program are adopted from [30]. The 

program describes two objects, one stationary cubic wall and a ball moving along 

a quadratic space curve. It tries to find the time that the ball hits the wall. 
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°/0 object_A/3 descr ibes the shape of the wall 

o b j e c t J l ( X , Y , Z ) : -

X <= 0, 

Y <= 0, 

Z <= 0. 

®/0 object_B/3 describes the shape of the b a l l 

o b j e c t _ E ( X , Y , Z ) : -

X2 + Y2 + Z2 =:= 1. 

°/0 center_B/4 gives the pos i t i on of the center of the b a l l 

°/0 at time T 
centerJB(T,Cx,Cy,Cz) : -

Cx =:= T2 - 10， 

Cy =:= 2*T - 10, 

Cz =:= T2 - 7*T + 10. 

% object_E-moving/4 gives the point (X，Y，Z) that i s in the 

°/0 b a l l at time T 

object_B.moving(T,X,Y,Z) 

center_B(T,Cx,Cy,Cz)， 

object_B(X-Cx，Y-Cy，Z-Cz), 

Given the following query, 

7 - t >= 0，object_A(X,Y,Z) , object_B�oving(T，X，Y，Z).， 

all CIAL prototypes give the result, 

T G (1.6972243622,3.3166247904). 

It is the same as the results obtained from RISC-CLP(Real) [30], which employs 
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symbolic algebraic method for constraint solving. 

I f T < = 3 , I T > = 3 , 

f.v \ T 2 _ 7 T + 9 < = o. 1 T 2 - 1 1 < = 0 . 

RISC-CLP(Real) cannot solve the above quadratic equations. We use some 

algebra packages to solve the two systems. The union of the answers are 

T G (1.6972243622,3.3166247904). 

CIAL cannot give this sharp result if we do not use the square primitive 

constraint. 

Both BNR Prolog, CLP(BNR), and ICL return similar results as CIAL. This 

is predictable since their solvers are also based on interval narrowing. Echidna 

returns a wide answer at low precision and exits abruptly at higher precision. 

For efficiency reason, CLP(尺)does not provide non-linear constraint solving. 

All non-linear arithmetic constraints are classified as hard constraints, which will 

be considered only when they become linear [44]. In this example, since no non-

linear constraints can become linear, they are delayed indefinitely. The output 

of CLP(尺）is 

0 <= T, 

X <= 0, 

Y <= 0, 

Z <= 0, 

_ _ t l 2 * _tl2 _ (Y - 2*T + 10) * (Y - 2*T + 10) + 1 = -tlO * -t lO, 

- _ t l2 + Z + 7*T - 10 = T * T, 

- _ t l0 + X + 10 = T * T. 
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x1013 x1013 _——__ 
1 | | 丨丨‘ ‘ ' I ' ‘ ‘ II | | | I 111 I I | [ ' ' 

0.8- I 0 8 \ 

0.6- \ �.6.� 

0.4- \ °4 \ 

°o- — : 、 � � � � " “ 

-0.6 - _ 

•0.8- | . E = 2̂(-23) | * -0-8" I • E = 2�-40) | ‘ 
^ ‘ I 1 -18 -16 -14 -12 -10t~%~i i 0 "1 -20 -18 -16 -14 -12 -10 ^ >6 -4 0 

j (a) (b) 
Figure 6.2: The curves y 二 + 0 and y 二 -EX19 

6.6 Wilkinson Polynomial 

This example describes the famous Wilkinson polynomial equation. The prob-

lem is to find the real roots of the following equation. 
20 

e x 1 9 = ° 
i=i 

L e t 丑 二 0. The real roots of this unperturbed polynomial in the closed 

interval [—20，—10] are -20,-19,-18，-17,-16,-15,14,-13,-12,-11,-10, respectively. 

A slight perturbation of the polynomial by 五二 2—23 removes all roots in 

[—20, —10], as shown in figure 6.2(a) which consists of the curves Y 二 

and y = -EX19. CIAL returns no answers as expected. 

When E 二 2"40 (Figure 6.2(b)), the three CIAL prototypes find all solutions 

with 10 decimal place accuracy by using interval splitting. 

X € ( - 1 0 . 0 0 0 0 0 6 9 0 6 9 - 1 0 . 0 0 0 0 0 6 9 0 6 8 . . . ) 

X € ( - 1 0 . 9 9 9 9 5 7 7 6 1 9 . . . ， - 1 0 . 9 9 9 9 5 7 7 6 1 8 . • •) 

X € ( - 1 2 . 0 0 0 1 8 0 5 7 9 4 …， - 1 2 . 0 0 0 1 8 0 5 7 9 3 • •.) 
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X 6 ( - 1 2 . 9 9 9 4 4 9 5 3 5 7 •. • , - 1 2 . 9 9 9 4 4 9 5 3 5 6 • • •) 

X G ( - 1 4 . 0 0 1 2 1 3 2 5 3 0 … ， - 1 4 . 0 0 1 2 1 3 2 5 2 9 • . . ) 

X G ( - 1 4 . 9 9 8 0 7 3 8 1 8 5 . . • , - 1 4 . 9 9 8 0 7 3 8 1 8 4 . . •) 

X G ( — 1 6 . 0 0 2 1 8 9 4 0 9 4 . . . , - 1 6 . 0 0 2 1 8 9 4 0 9 3 . •.) 

X G ( - 1 6 . 9 9 8 2 6 6 6 5 8 2 . . . , - 1 6 . 9 9 8 2 6 6 6 5 8 1 • . . ) 

X G ( - 1 8 . 0 0 0 9 0 4 7 5 8 0 . . . , - 1 8 . 0 0 0 9 0 4 7 5 7 9 . . . ) 

X G ( - 1 8 . 9 9 9 7 1 8 8 3 5 7 . . . , - 1 8 . 9 9 9 7 1 8 8 3 5 6 • . . ) 

Echidna cannot terminate in 15 minutes for E 二 2一23. For E 二 纩 4 0 , it aborts 

abnormally for default precision and does not give any solution in 15 minutes 

for higher precision. ICL, BNR Prolog, and CLP(BNR) return similar results 

a s those of CIAL in both cases. CLP(尺)delays all the constraints and gives 

X <= - 1 0 , 

- 2 0 <= X， 

- E * X * X * X * X * X * X * X * X * X * X * X * X * X * 

X * x * X * X * X * X = (X + 1 ) * (x + 2 ) * (X + 3 ) * 

(X + 4) * (X + 5) * (X + 6) * (X + 7 ) * (X + 8) * (X + 9 ) * 

(X + 1 0 ) * (X + 1 1 ) * (X + 1 2 ) * (X + 1 3 ) * (X + 1 4 ) * 

(X + 1 5 ) * (X + 1 6 ) * (X + 1 7 ) * (X + 1 8 ) * (X + 1 9 ) * 

(X + 2 0 ) . 

6.7 Summary and Discussion 

The last example on large-scale linear systems is beyond the capability of the in-

t e r v a l narrowing based systems, i.e. ICL, BNR Prolog, CLP(BNR), and Echidna. 

We compare only the three CIAL prototypes and CLP(^). Before going into 

the last example, we summarize the previous benchmarking results in table 6.1 

and table 6.2，and give a brief discussion. 
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The CIAL solvers subsume the symbolic constraint solving method (Gaussian 

elimination or preconditioning) and the interval narrowing technology. CLP(T^) 

delays non-linear constraints from consideration and interval narrowing fails to 

handle even small system of linear constraints, as shown in section 6.3. Thus, 

CLP (灭 ) ,BNR Prolog, CLP (BNR), Echidna, and ICL are deficient in solving 

mixtures of linear and non-linear constraints. A simple example can be obtained 

by adding the constraint I x ( l x 一 1) 二 I s to the system in section 6.3. 

6.8 Large System of Simultaneous Equations 

The following program describes a randomly generated system of linear con-

straints with rank=50. 

test (X0,Xl ,X2 , . . . ,X49)：-

a random generated constraint with 50 variables, 

f a i l . 

t ：-

X0>= -10000,X0<=10000, 

Xl>= -10000,Xl<=10000, • • 
• • • • 

X49>= -10000,X49<=10000, 

5 random generated constraints with 50 variables， 

pl(X0 ,Xl ,X2, . . . ,X49). 

pl (X0,Xl ,X2, . . . ,X49) 

test (X0，Xl，X2，...，X49) . 

pl (X0,Xl ,X2, . . . ,X49) 

5 random generated constraints with 50 variables, 

p 2 ( X 0 , X l , X 2 , . . . , X 4 9 ) . 
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• » • 
• • • 
• « • 

p9(X0,Xl,X2, . . . , X 4 9 ) : -

test (X0，Xl，X2，...，X49) . 

p9(X0，Xl，X2，...，X49)：-

5 random generated constraints with 50 variables. 

The program contains predicates test /50 , t / 0 , pl /50, ••., p9/50. The top 

level predicate of the program is t / 0 , which sets the initial bounds of all vari-

ables and calls pl /50. Each subsequent pi /50 predicate definition consists of 

two clauses. The first clause calls the test /50 predicate, which submits a new 

constraint to the constraint solver and always fails. This is to exercise the trail-

t ing and backtracking capability of CIAL. The second clause submits five extra 

constraints to the solver and calls predicate p ( i+ l ) / 50 . That means that the 

call patterns of the pi /50 predicates form a "chain" and five constraints are 

added to the constraint solver in each derivation step. 
CIAL 1.0 (Beta) gives the solutions with 10 decimal place accuracy in 34.3s, 

while CIAL 1.1 (Beta) solves the system with the same precision in 36.2s. 

CLP(尺)responds in 3.7s. It is about ten times faster than CIAL since interval 

computation is time-consuming, especially for setting IEEE rounding directions 

a n d detecting exceptions. The solutions given by CLP(尺)are, however, un-

sound. Many of them are different from the real solutions at the fourth or fifth 

decimal place. It is also interesting to find that CIAL (Alpha) cannot narrow 

a n y of the variables due to the growth of width of the coefficients. 

We further try to solve a larger system. It is similar to the previous one but 

there are 100 linear constraints in total. Constraints are added to the constraint 

solver two at a time in each derivation step. 
With 10 decimal place accuracy, CIAL 1.0 (Beta) and CIAL 1.1 (Beta) re-

spond in 1312.6s and 1091.2s respectively. CLP(尺)solves the system in 104.2s. 
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Again, CIAL (Alpha) cannot narrow any of the variables. 

This example demonstrates the efficiency and practicality of the incremental 

preconditioned interval Gauss-Seidel method in the CIAL linear solver. Also, it 

shows that generalized interval Gaussian elimination fails to tackle large systems 

of linear equations effectively. 

6.9 Comparisons Between the Incremental and 

the Non-Incremental Preconditioning 

We end this chapter by comparing the performance of CIAL 1.0 (Beta) and 

CIAL 1.1 (Beta). The only difference between these two systems is that the latter 

employs an incremental preconditioning technique in its linear solver, while the 

former does not. 
We modify the program in section 6.8. The first clause in all the p i /n 

predicate definitions are removed. It implies that no trailing or backtracking 

will be involved in the execution of the program. Also, the program is changed 

to only one constraint can be collected in a derivative step. 

Table 6.3 shows the speedup in interval linear constraint solving with incre-

mental preconditioning for problem size ranging from 10 to 100. As expected, 

CIAL 1.1 exhibits a near linear speedup over CIAL 1.0 as the problem size grows. 

Solutions given by CIAL 1.1 are slightly wider than those obtained from 

CIAL 1.0. We find that the solutions given by CIAL 1.1, however, still reach 8 

decimal places of accuracy in general. 
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II C L P ( B N R ) B N R Prolog ICL Echidna 
v3.1.0 

Mortgage~~II sound r e s u l t s o u n d wide sound result unsound re-
r e s u lt suit 58150.03 
[58149,58151] 

Simple almost n o a l m o s t no" almost no almost. no 
System narrowing narrowing narrowing narrowing 
Simple sound result sound r e s u l t s o u n d result sound result 
System 
with 
Splitting 
DC Circuit almost almost no almost no almost. no 

narrowing narrowing narrowing narrowing 
DC Circuit sound not terminate exit abruptly not terminate 
with but very wide in 24 hours in 2 hours 
splitting result 
Inconsistent cannot detect not terminate not terminate cannot detect 
System in 1 hour in 1 hour 
Collision sound result sound result sound r e s u l t e x i t abruptly 

at high pre-
cision & give 
wide result at 
low precision 

Wilkinson no solution no solution no so lut ion"" not terminate 
(2一23) in 15 minutes 
Wilkinson "sound result sound r e s u l t s o u n d result exit abruptly 

一 4 0 � at default pre-
cision & not 
terminate in 
15 minutes at 
high precision 

Table 6.1: A Summary of Comparisons 
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II CIAL (Alpha) CIAL 1.0 CIAL 1.1 CLP(尺) 
(Beta) (Beta) 

MortgageII sound result"" sound r e s u l t s o u n d result unsound 
result 58150 

Simple sound result sound r e s u l t s o u n d result sound result 
System 

" S i ^ " N / A " N / A N / A N / A 
System 
with 
Splitting -
DC Circuit give sound re- give sound re- give sound re- give unsound 

suit in 1.11s suit in � l / 6 0 s suit in � l / 6 0 s result in 
� l / 6 0 s 

DC Circuit "nTA _ " n 7 A 
with 
splitting — 
Inconsistent can detect can detect can detect cannot detect 
System -z~： 
Collision sound result sound result sound result floundering__ 
Wi lk inson”no solution no solution no solution floundering 
(2 - 2 3) 
Wilkinson sound result sound result sound result floundering 
(2-40) 1 � 

Table 6.2: A Summary of Comparisons (cont.) 
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Rank [I CIAL 1.0 (Beta) CIAL 1.1 (Beta) || Speedup || CLP(尺） 

10 035^ I 1 ^ 0 0 I I 0.01s 
20 2.87s 2.20s 1.30 0.08s 
30 12.99s 8.28s 1.57 0.35s 
40 38.50s 24.33s 1.58 0.93s 
50 85.06s 48.94s 1.74 2.51s 
60 171.73s 92.74s 1.85 6.19s 
70 371.58s 198.71s 1.87 8.93s 
80 544.25s 283.93s 1.92 17.52s 
90 838.93s 417.11s 2.01 34.56s 
100 1259.81s 607.91s || 2.07 || 39.07s 

Table 6.3: Speedup by Using the Incremental Preconditioning Algorithm 
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Chapter 7 

Concluding Remarks 

7.1 Summary and Contributions 

In this thesis, we have discussed the deficiencies of interval narrowing with split- ； 

ting. Our experiments show that interval narrowing based systems fail to solve 

even small problems efficiently and effectively. Thus interval narrowing with 

splitting is impractical in solving general interval constraints over real domain 

(Chapter 3). We propose to separate linear equality constraint solving from 

inequality and non-linear constraint solving. This idea is realized in our new 

interval constraint logic programming system, CIAL (for Constraint Interval 

Arithmetic Language), which shares the same declarative and operational seman-

tics as those of ICLP(尺)[38] (Chapter 2). We have designed an architecture 

for CIAL and established the interaction among the modules in the architec-

ture. Unification between interval variables and other terms are handled in an 

extended unification algorithm. Input arithmetic constraints are decomposed 

into linear equalities and a set of convex primitive constraints. The former is 

handled by the linear solver; while we apply interval narrowing on the latter in 

the non-linear s o l v e r (Chapter 4). We have extended and generalized two linear 
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constraint solving techniques in interval computation for interval linear equal-

ity constraint solving, resulting in generalized interval Gaussian elimination and 

the incremental preconditioned interval Gauss-Seidel method. These techniques 

have been implemented in the CIAL linear constraint solvers (Chapter 5). We 

have constructed three CIAL prototypes with different linear solvers and com-

pared them with several major interval constraint logic programming languages. 

The performance of the different prototypes are presented (Chapter 6). 

The contribution of our work is three-fold. First, we have derived two prac-

tical interval linear equality solvers. The solvers are adapted for incremental 

execution. Their correctness have also been established. Of the two proposed lin-

ear constraint solving methods, the incremental preconditioned interval Gauss-

Seidel method is of 0{n3) complexity, which is the same as the ordinary Gaussian 

elimination in solving system of equations. Solutions given by the incremental 

preconditioned interval Gauss-Seidel method are, however, slightly wider than 

those obtained from the non-incremental method. Our large scale experiments 

show that the solutions given by this incremental method still reach 8 decimal 

places of accuracy in general. 
Second, we have shown how an interval linear solver can be incorporated into 

a system which has already had a non-linear solver based on interval narrowing. 

We have derived a constraint decomposition procedure and an interaction scheme 

for the two solvers. Input constraints are divided into two categories, which will 

be sent to two solvers accordingly： The two solvers share common variables, 

interact in a round-robin fashion, and cooperate towards solving a system of 

numerical constraints. We have shown the termination of the interaction scheme. 

Third, we have constructed three prototypes of CIAL and compared them 

with one another, as well as with several existing interval constraint logic pro-

gramming languages. Of the three prototypes, CIAL 1.1 (Beta) has been shown 
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to be the most efficient one in solving large scale linear systems. On the compar-

isons of CIAL and other existing systems, CIAL is all rounded: all prototypes 

are substantially more efficient and can solve more classes of problems than any 

other existing systems when used alone. 

7.2 Future Work 

A number of questions remain to be investigated. First, the linear solver can 

only handle linear equalities. It would be interesting to investigate how lin-

ear inequalities can be accommodated. We believe that our proposed linear 

equality constraint solving methods, especially the incremental preconditioned 

interval Gauss-Seidel method, can be generalized to h a n d l e inequalities. Second, 

Benhamou et al [8] replace interval narrowing by a Newton reduction operator, 

which shows an improvement in non-linear constraint solving. However, precon-

ditioning has not been included. It is worthwhile to study if our incremental 

preconditioning technique can be applied to further improve the Newton reduc-

tion operator. 

On the theoretical side, it would be interesting to study the level of inter-

val consistency attainable in generalized interval Gaussian elimination and the 

preconditioned interval Gauss-Seidel method. Both of them should reach a con-

sistency level falling between box consistency and hull consistency [8]. 

Concerning implementations, our CIAL prototypes have much to be desired. 

First, the CIAL architecture is rudimentary. Further optimizations, such as 

the techniques used for CLP(尺)，might be applicable to CIAL. Second, the cur-

r e n t prototypes implement constraint solvers as independent modules separating 

from the Prolog engine. Communications between the solvers and the Prolog 

engine incur high overhead. Backtracking also becomes a costly operation. We 
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expect that the work of Lee and Lee [37] can be used as basis to integrate the in-

terval constraint solving and the Prolog engine at the Warren Abstract Machine 

(WAM) level. Third, built-in predicates in CIAL are limited. To apply CIAL 

on real-life problems (e.g. scheduling), more relations, such as max/2, min/2, 

s in /1 , asin/1 [50], should be provided. 

To establish the practicality of our approach, we need to try CIAL on more 

real-life applications, e.g. job shop scheduling, process planning, assembly line 

balancing, temporal and spatial reasoning, multiagent planning, finite element 

modeling, circuit design, etc. 
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