
INTERVAL LINEAR CONSTRAINT SOLVING IN
CONSTRAINT LOGIC PROGRAMMING

B Y

CHONG-KAN CHIU

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF M A S T E R OF PHILOSOPHY
DIVISION OF COMPUTER SCIENCE T H E CHINESE UNIVERSITY OF HONG HONG DECEMBER 1 9 9 4

V

Z

 〜

/
r
^
《

钵

f

 ̂

,

-
7
6

/

^
^
p
.
.

’

一

/

,

,

f
f

 ̂

i
 -

/

^
 r

彻

看"一.

w
 -

Abstract

Existing interval constraint logic programming languages, such as BNR Prolog,

work under the framework of interval narrowing and are deficient in solving

general systems of constraints over real, which constitute an important class of

problems in engineering and other applications. In this thesis, we suggest to

separate linear constraint solving from non-linear constraint solving. Two im-

plementations of an efficient interval linear equality constraint solver, which are

based on generalized interval Gaussian elimination and the incremental precon-

ditioned interval Gauss-Seidel method, are proposed. We show how the solvers

can be adapted to incremental execution and incorporated into a constraint logic

programming language already equipped with a non-linear solver based on in-

terval narrowing. The two solvers share common interval variables, interact and

cooperate in a round-robin fashion during computation, resulting in an efficient

interval constraint arithmetic language CIAL. The CIAL prototypes, based on

CLP(T^), are constructed and compared favourably against several major inter-

val constraint logic programming languages.

ii

Declaration

The work in this thesis is independent and original work of the author, except

where explicit reference to the contrary has been made. No portion of the work

referred to in this thesis has been submitted in support of an application for

another degree or qualification of this or any other university or institution of

education.

Author:

Chong-kan Chiu

December 25, 1994

iii

Partial Copyright License

I hereby grant the right to lend my dissertation to users of the Chinese Uni-

versity of Hong Kong Library, and to make single copies only for such users

or in response to a request from the Library of any other university, or similar

institution, on its behalf or for one of its users. I further agree that permission

for extensive copying of this dissertation for scholarly purposes may be granted

by me or a member of the University designated by me. It is understood that

copying of this dissertation for financial gain shall not be allowed without my

written permission.

Author:

Chong-kan Chiu

December 25, 1994

iv

Acknowledgements

There are always a number of people that have helped out in one way or another.

I am very grateful to all of them. There are some whom I would like to give

special thanks.

My warmest thanks to my supervisor Dr. Jimmy Ho-man Lee, who has given

invaluable support in developing these ideas. His faith in my approach kept my

spirit alive during many months of darkness. He read several drafts of this thesis

indefatigably, page to page, and provided me comments which went to change

my presentation.

I hardly know how to acknowledge Tak-wai Lee. He has taken time away

from his research to help and talk with me at all hours. I thanks for numerous

inspiring discussions we had.

I have benefitted from interactions with the roommates in my office, includ-

ing Siu-man Hsieh, Kwong-ip Liu, and Anthony Yiu-cheung Tang. They have

provided an intellectual atmosphere and have made my life happy here.

Thanks to my colleagues for their good company. Here I include Chung-

yuen Li, Chi-lok Chan, and Bobby Bo-ming Tong. But I do always remember

the smiles of the rest.

My gratefulness further goes to Dr. Ho-fung Leung, Dr. Alex Siu-chi Hsu,

and Prof. Spiro Michaylov, who provided many constructive comments on this

thesis.

I am indebted to Prof. Joxan Jaffar, Prof. R. Baker Kearfott, and Dr. Roland

v

Yap for e-mail discussions. Access to CLP(尺)，BNR Prolog, CLP(BNR), ICL,

and Echidna is also gratefully acknowledged.

This work would not have been possible without generous financial support.

I thank The Chinese University of Hong Kong for offering me Postgraduate

Studentship in the past two years.

This thesis is dedicated to my family, who encourage me throughout these

years. Without you, I would not have had the stamina to go though all these

hard days.

vi

Contents

1 Introduction 1

1.1 Related Work 2

1.2 Organizations of the Dissertation 4

1.3 Notations 4

2 Overview of ICLP(7e) 6

2.1 Basics of Interval Arithmetic 6

2.2 Relational Interval Arithmetic 8

2.2.1 Interval Reduction 8

2.2.2 Arithmetic Primitives 10

2.2.3 Interval Narrowing and Interval Splitting 13

2.3 Syntax and Semantics 16

3 Limitations of Interval Narrowing 18

3.1 Computation Inefficiency 18

3.2 Inability to Detect Inconsistency 23

3.3 The Newton Language 27

4 Design of CIAL 30

4.1 The CIAL Architecture 30

4.2 The Inference Engine . 31

4.2.1 Interval Variables 31

vii

4.2.2 Extended Unification Algorithm 33

4.3 The Solver Interface and Constraint Decomposition 34

4.4 The Linear and the Non-linear Solvers 37

5 The Linear Solver 40

5.1 An Interval Gaussian Elimination Solver 41

5.1.1 Naive Interval Gaussian Elimination 41

5.1.2 Generalized Interval Gaussian Elimination 43

5.1.3 Incrementality of Generalized Gaussian Elimination . . . 47

5.1.4 Solvers Interaction 50

5.2 An Interval Gauss-Seidel Solver 52

5.2.1 Interval Gauss-Seidel Method 52

5.2.2 Preconditioning 55

5.2.3 Increment ality of Preconditioned Gauss-Seidel Method . 58

5.2.4 Solver Interaction 71

5.3 Comparisons . 72

5.3.1 Time Complexity 72

5.3.2 Storage Complexity 73

5.3.3 Others 74

6 Benchmarkings 76

6.1 Mortgage 78

6.2 Simple Linear Simultaneous Equations 79

6.3 Analysis of DC Circuit 80

6.4 Inconsistent Simultaneous Equations 82

6.5 Collision Problem 82

6.6 Wilkinson Polynomial 85

6.7 Summary and Discussion 86

6.8 Large System of Simultaneous Equations 87

viii

6.9 Comparisons Between the Incremental and the Non-Incremental

Preconditioning 89

7 Concluding Remarks 93

7.1 Summary and Contributions 93

7.2 Future Work 95

Bibliography 97

ix

List of Tables

3.1 Average Computation Time in Solving AX = b 22

3.2 Average Number of Interval Operations in Solving A X 二 f in ICL 22

3.3 Average Time in Solving Sparse AX = b 24

3.4 Average Time in Solving Sparse AX = b (cont.) 25

3.5 Traces of A, B and D (Without Splitting) 26

3.6 Traces of A, B and D (With Splitting) 27

5.1 A Summary of Comparisons between Two Linear Solvers 75

6.1 A Summary of Comparisons 90

6.2 A Summary of Comparisons (cont.) 91

6.3 Speedup by Using the Incremental Preconditioning Algorithm . 92

x

List of Figures

2.1 Interval Reduction on a Constraint (p , < / J , J J >) 9

3.1 Interval Narrowing on {X = Y,X = —F} 19

4.1 An CIAL Architecture 31

4.2 The Heap Representations of Interval Variables 32

5.1 Preconditioned Interval Gauss-Seidel Method on Simple Equa-

tions 58

5.2 Partition of the Preconditioner P and the Coefficient Matrix A1 63

6.1 A Simple DC Circuit 80

6.2 The curves y = Uliii^ + i) and y = -EX19 85

xi

List of Algorithms

2.1 Relaxation Algorithm • 14

2.2 Interval Narrowing with Splitting 15

4.1 Constraint Decomposition Procedure 36

4.2 Interaction Scheme for Two Solvers 39

5.1 Incremental Update Procedure for the IUPZ Matrix 60

xii

Chapter 1

Introduction

Current status of Prolog arithmetic suffers from two deficiencies. First, the

system predicate "is" [56] is functional in nature. It is incompatible with the re-

lational paradigm of logic programming. Second, real numbers are approximated

by floating-point numbers. Roundoff errors induced by floating-point arithmetic

destroy the soundness [41] of computation. The advent of constraint logic pro-

gramming [31] presents a solution to the first problem but the implementation

of CLP languages, such as CLP(T^) [32], are mostly based on floating-point

arithmetic. The second problem remains.

The languages CAL [2] and RISC-CLP(尺)[30] use symbolic algebraic meth-

ods to refrain from floating-point operations. Algebraic methods guarantee the

soundness of numerical computation but they are time-consuming.

Previous efforts in the sub-symbolic camp, such as BNR Prolog [51], employ

interval methods [45] and belong to the family of consistency techniques [42].

The main idea is to narrow the set of possible values of the variables of arbitrary

real constraints using approximations of arc-consistency [10]. We collectively call

these techniques interval narrowing. Interval narrowing has been shown to be

applicable to critical path scheduling [51], X-ray diffraction crystallography [53],

1

Chapter 1 Introduction

boolean constraint solving [9], and disjunctive constraint solving [9, 54]. How-

ever, interval narrowing is deficient in handling systems of linear constraints over

real domain.

For example, interval narrowing fails to solve such simple systems as “ { X +

Y = — Y = 6}." Cleary [16] proposes a form of case analysis technique [57],

domain splitting, as a remedy. Domain splitting partitions an interval into

two, visits one, and visits the other upon backtracking. This backtracking tree

search is expensive to perform. Furthermore, interval narrowing may sometimes

fail or take a long time to detect inconsistency of linear systems. Thus, interval

narrowing is opted for improvement in terms of efficiency.

Our work is motivated by the inadequacy of interval narrowing for interval

linear constraint solving. The goal is to design a sound and efficient interval

linear constraint solving method for CLP languages. We suggest to separate

linear equality constraint solving from inequality and non-linear constraint solv-

ing. This separation calls for an employment of two constraint solvers: a linear

solver and a non-linear solver. The linear solver consists of symbolic transforma-

tion and numerical method. The symbolic transformation of constraints helps

to achieve a global analysis of the system of constraints; while variables are

narrowed by the numerical method. The precisions of solutions and the speed

of convergence are improved with the cooperation of the two techniques. The

non-linear solver employs interval narrowing with splitting to solve inequalities

and non-linear constraints.

1.1 Related Work

Prolog III [17], CAL [2], and RISC-CLP(Tl) [30] use symbolic algebraic methods

to solve arithmetic constraints. Prolog III1 employs a simplex algorithm to
1 Prolog III provides the option of using floating-point arithmetic, although the default is

rational arithmetic.

2

Chapter 1 Introduction

handle arithmetic over rational numbers. CAL computes over two domains:

the real numbers and Boolean algebra with symbolic values. Constraints are

solved by using Buchberger algorithm for computing Grobner bases [11]. RISC-

CLP(T^) deals with non-linear arithmetic constraints by using Grobner basis

and Partial Cylindrical Algebraic Decomposition [29, 12].

In the sub-symbolic camp, Cleary [16] introduces “logical arithmetic," a re-

lational version of interval arithmetic, into Prolog. He describes distinct al-

gorithms, one for each kind of constraint over intervals, that narrow intervals

associated with a constraint by removing values that do not satisfy the con-

straint. A constraint relaxation cycle is needed to coordinate the execution of

the narrowing algorithms for a network of constraints. BNR-Prolog [51] and

its sequel CLP(BNR) [9] provide relational interval arithmetic in a way that is

loosely based on Cleary's pre-publication idea, differing somewhat in particu-

lars. Sidebottom and Havens [54] design and implement a version of relational

interval arithmetic in the constraint reasoning system Echidna [26]. Based on

hierarchical consistency techniques [43], Echidna can handle unions of disjoint

intervals. Lhomme [40] analyzes the complexity of consistency techniques for

numeric CSP's and proposes partial consistency techniques, whose complexi-

ties can be tuned by adjusting the bound width of the resulting intervals. Lee

and van Emden [38, 39] generalize Cleary's algorithms for narrowing intervals

constrained by any relations p on I(lR)n. They also show how the generalized

algorithm can be incorporated in CLP(7^) [32] and CHIP [19] in such a way

that the languages' logical semantics is preserved. Lee and Lee [37] propose an

integration of constraint interval arithmetic into logic programming at the War-

ren Abstract Machine (WAM) [3] level. Benhamou et al [8] replaces the usual

interval narrowing operator of previous interval CLP languages by an operator

based on interval Newton method to speed up non-linear constraint solving.

3

Chapter 1 Introduction

1.2 Organizations of the Dissertation

The thesis is organized as follows. In chapter 2, we provide the theoretical back-

ground to this thesis. We outline the concepts of relational interval arithmetic,

followed by a description of interval narrowing and interval splitting. The op-

erational semantics of ICLP(7^) [38], which is shared by our proposed interval

constraint logic programming system, is also presented. In chapter 3，we give a

detailed discussion of the limitations of interval narrowing and interval splitting.

We verify our assertion empirically by running experiments on some interval nar-

rowing based systems. In chapter 4, we show how to extend ICLP(7^) with an

efficient linear constraint solver, resulting in a new interval CLP system, CIAL

(for Constraint Interval Arithmetic Language). The architecture of CIAL and

the interaction among modules are explained. In chapter 5, we give two pro-

posals for a sound and efficient linear solver. They are based on adaptation of

the Gaussian elimination procedures and the Gauss-Seidel method to incremen-

tal interval constraint solving respectively. The soundness of the two proposed

solvers are also established. In chapter 6, we describe several prototype imple-

mentations of CIAL and compare them to other major interval CLP systems.

In chapter 7, we summarize our contributions and shed light on further work.

1.3 Notations

This thesis involves several kinds of variables, including logical variables (in

CIAL) and mathematical variables (in algebra), which are either in interval or

real domains. To facilitate subsequent discussions, we fix some notations.

Constraints in CIAL are over real numbers. An interval is represented by an

appropriate pair of inequality constraints bounding the value of a logical variable,

which represents an unknown real number. We denote logical variables by such

typewriter-like upper case letters as X，Y and Z. For example, { X � 3，X < 6}

4

Chapter 1 Introduction

denotes the relation X G (3,6]. Mathematical interval variables (or constants)

referring to non-empty floating-point intervals are denoted by upper (or lower)

case letters with superscript / , while real variables (or constants) are denoted

by ordinary upper (or lower) case letters.

Upper case letters in boldface denote matrices, e.g. A = (a^^B1 = (b1-),

etc. Column vectors are denoted by arrowed letters, such as X = (Xi，…，Xn)T^

where the superscript T indicates the transpose of a matrix. We overload the E

symbol to denote summation in the real, floating-point, and interval domains.

The exact meaning of the symbol can be inferred from the context of where the

symbol appears.

5

Chapter 2

Overview of ICLP �

This chapter provides the theoretical background to this thesis. The basics of

interval arithmetic, in both functional and relational forms, are presented. We

then describe the syntax and semantics of the ICLP(T^) language [38], which is

an extension of CLP(T^) with relational interval arithmetic. Most of the above

materials are adopted from [38, 36, 39] except those otherwise specified.

2.1 Basics of Interval Arithmetic

The manuscripts [45, 4] provide good introduction to interval analysis. Let]R be

the set of real numbers and F the set of floating-point numbers. Mathematically,

a real interval is a segment, possibly infinite, of the real line and can be defined

by an ordered pair of real numbers a < b, where a is the lower bound and b is

the upper bound. For those intervals without upper bound or lower bound, we

use the symbols —oo and +oo as bounds respectively. Note that —oo and +oo

can only be used with open bounds. An interval is represented by the usual

mathematical notation, such as [1,10) which denotes the set {a; | 1 < a; < 10}.

We differentiate, between real intervals and floating-point intervals. The bounds

of the elements of the former are real numbers; while the bounds of elements of

6

Chapter 2 Overview of ICLP(1Z)

the latter are restricted to floating-point numbers.

The set of real intervals, I(M), is defined by,

I(JR) = {(a,6] \aeMU{-oo},belR}U{[a,b) \ a e lR,b e 1R U { + o o } } U

{[a,6] I a,be]R}U{{a,b) | a e MU{-oo},be M U { + o o } } .

The set of floating-point intervals is denoted by 1(F). We can verify that

/ (F) C I(1R).

If . ^ {+,—, X , / } , the corresponding floating-point interval operations are

denoted by,
炉 = { a . 6 I a G A^beB1}.

In the case of interval division, 0，we assume that B1 does not contain 0.

The basic idea of interval arithmetic is to compute inclusions of arithmetic

functions of intervals, and guarantee that the interval outputs will always include

all the real solutions. When realizing interval computation on a computer, care

must be taken since only a finite subset of real numbers can be exactly repre-

sented. Floating-point interval is not closed under the basic interval arithmetic

operators,㊉，㊀and 0. To preserve the inclusion property, rounded interval

arithmetic [45], which is a modification of exact interval arithmetic, is intro-

duced.

If an endpoint of an interval is not a member of IF, rounding is made. The

rounded floating-point interval is always wider than the original one. Since

rounding often occurs in machine computation, we must keep the rounded

interval as close to its original real interval as possible. We round the non-

representable endpoint to the adjacent floating-point number (round towards

+oo for upper bound and towards —oo for lower bound). This operation can be

formally expressed by the outward-rounding function, : I [IB) I(JF). If J1

is a non-empty real interval,

^J1) = nu1' e i^n i J1 ^ J1'}-

7

Chapter 2 Overview of ICLP(1Z)

The outward-rounding function gives the tightest floating-point interval contain-

ing J .

2.2 Relational Interval Arithmetic

Cleary [16] introduces "logical arithmetic" by defining distinct primitive arith-

metic constraints over intervals, which remove the values of intervals that do

not satisfy the constraints. Lee [36] generalizes Cleary's algorithms to interval

reduction, which is applicable to any arithmetic relation p on I(lR)n. Interval

reduction can only work on a single constraint. In practice, several constraints

interact with one another in a system. A relaxation algorithm is designed to

coordinate the application of interval reduction on a set of interval constraints.

2.2.1 Interval Reduction
—^

An interval constraint is of the form (p, I1), where p is a relation on JRn and

fi =c • • •, > is a tuple of floating-point intervals. The constraint
enforces that

彐不 G / / such that p{XuX2,…holds.

Given the above interval constraint, we try to eliminate the values of each vari-

able that do not satisfy the constraint. Interval reduction effects such an infea-

sible value elimination.

Interval reduction is defined as an input-output pair. We associate the input

n-ary constraint n set-valued functions:

Fi(P)�S(,..., …，S^)

=TTiiiSl X . . . X X mip) X 对+1 X ….X 纪)门p),

where i = 1, . . . ,n, the are intervals, and 7Ti is the projection function

defined by

MP) = ..•，〜）€ p}.

8

Chapter 2 Overview of ICLP(R)

� ‘ . . .

擁——
1 1 h ^ I 1 1 •

h - J 1 — ^ —J1 ’—

Figure 2.1: Interval Reduction on a Constraint (P , < / V J 〉 ）

Each function gives the set of possible values for the i-th argument of p if the

values of all other arguments are restricted to • • •, …，纪 . T h e

output of interval reduction is defined as,

fl•二�hi1:�, where i f = • _ (! � , … , H •., O) .

If any of the if is empty, interval reduction fails and we can conclude that the

constraint (p, I1) is inconsistent

Geometrically, interval reduction can be interpreted as intersecting the re-

lation p with the Cartesian product of / / , and then projecting the result onto

each coordinate axis. Figure 2.1 shows interval reduction on a simple constraint

(p, < I1, J1 >) . The initial floating-point intervals are I1 and J1. The straight-

lined region denotes I1 x J1 and the shaded region denotes the relation p. The I1

and J1' are the resultant floating-point intervals after the application of interval

reduction.

9

Chapter 2 Overview of ICLP(1Z)

2.2.2 Arithmetic Primitives

A relational interval arithmetic system must support some primitive relational

arithmetic operators, such as addition, multiplication and inequalities. The

other complicated constraints can be built from these primitives1.

To have a primitive operator on a relation p, two conditions must hold.

First, we need to know how to calculate each function F‘(p) associated with

the relation p � S e c o n d , in interval arithmetic, we should guarantee intervals

are closed under all the defined operators. Therefore, the functions Fi(p) must

map from intervals to intervals. A relation which does not satisfy the above

conditions can be decomposed into a set of simplier relations.

We only present the primitive relations which are essential to this thesis.

Two of them, l inearn and square, are newly defined for the implementation of

our constraint interval arithmetic language.

Inequalities

l e = {{x, y) I % 2/ G 沢,冗 S y} I t 二 {{x, y) \ x,y G JR,x <y\

The functions Fi(le) and F2(le) are:

r I (-00,61 i f / f 二（a, 6] or [a，6]
F1(le)(/2 /) = 1 � ， �

I (—cxo, b) if I2 二 {a,b) or [a, b)

I J [a,+00) if I[= [a, b] or [a, b)
F2{le)(Ii) 二 <

I (a,+00) if I{ = (a, b] or (a, 6).

Similarly, the functions Fi (l t) and F 2 (l t) are:

Fi(lt)(/2J) 二（-oo,b) if _ _ [a,b] or [a,b) or (a,b] or (a,b)

F2(lt)(l[) 二 (a,+oo) if _ = [a, 6] or [a, 6) or (a, 6] or (a, 6).
1 Users can write the constraints in more convenient notation, such as > 5*Y，"

but they are eventually translated to conjunctions of primitive constraints, possibly with the
aid of extra variables.

10

Chapter 2 Overview of ICLP(1Z)

It is trivial to see that F,(le) and i^(lt) map from real intervals to real intervals.

Linear Equality

Cleary [16] proposes a 3-ary add primitive,

add = {(x, y,z) \ oc,y,z e M,co + y = zj.

This design is too restrictive and may cause unnecessary decompositions of con-

straints. We give a more general relation l inearn here. For n > 2,

l inearn = {{xu x2, | cu c2, • • •, cn, cn+1 G JR,

CiXi + c2x2 h cnxn = cn+1}.

The function i^(l inearn) (/ 1 / , . . . , H . . . ,巧) i s :

F,(l inearn) (/1 J ,…, iU： …，0 = (C(cn+1) 0 £ (^) O / /)) 0 咖 丨

(2.1)

To show that the function F,(linearn) always gives real intervals, we only

need to consider the 0 part of definition (2.1) since real intervals are closed

under ㊉,㊀ and (g). In definition (2.1), is a real number. We can verify easily

that 0 朱 ^{ci) and A1 0 B1 e I{M) if 0 ^ B1.

Multiplication

mult = {(x,y^z) \ x,y,z 6]R,xy = z}

The mult constraint is complicated since it involves both interval multiplication

and division. The result of division can be a union of two disjoint intervals in

general. This does not satisfy the criterion that the function of primitive relation

must map from real intervals to real intervals.

Cleary [16] suggests to decompose mult into mult+ and mult" , where

mult+ = {(冗，y’ z) I rc, y，么 G 况,z > 0, zy = 么 }

mult" 二 y,么)丨 rr, y,之 G 况,$ < 0, xy = z}.

11

Chapter 2 Overview of ICLP(1Z)

We perform interval reduction on one partition and the another one is visited

upon backtracking or under user control.

The definitions of the functions 只(mult+) and F,(mult") [39] are,

I î muit+x̂)̂ = (u 0 id n
:: F 2 (m u l t +) (/ 1 7 , / 3 I) =对 0 (打 f1 贝+)

1 F ^ m i l t ^ l l l i) 二 （ / f f l 沢 +) ③ 打

I 朽 (i rmlt -) (4 对）二（忍 0 忍) f l 沢一

| F2(mult-)(II1ji) = li<d\li^1R-)

I 巧(mult-)(打，忍）二（打n沢—）③尽

The and ET in the above equations denote the non-negative and negative

part of 1R representatively.

Real interval is shown to be closed under both the Fi(mult+) and F,(mult").

Square

It is well-known that interval arithmetic suffers from the variable dependency

problem [22] that causes it to produce inaccurate results. When a given variable

occurs more than once in an interval computation, it is treated as a different

variable in each occurrence. This causes widening of the computed intervals. A

simple example is the fact that if X1 = [—a, a],

X1 ^X1 = [- a 2 , a2] + [0, a2] unless a = 0.

The effect of variable dependency problem cannot be eliminated in general.

However, it can be alleviated if we can recognize the variable identities in some

simple cases. We introduce the relation square

square = { (x ,y) \ x^y e JR^x2 = y}.

12

Chapter 2 Overview of ICLP(1Z)

The user should specify (square, < X,Y >) instead of (mult, < X,X,Y >) to

get a sharp result. A runtime optimization can also be implemented. When a

mult constraint is encountered, we check the instantiation pattern of variables

and determine if the mult should be replaced by a square.

Similar to mult, the square relation does not map from real intervals to real

intervals. We partition it into square+ and square", where,

square. = {(>, y) \ x,y e lR,x> 0, x2 = y}

square" = y) \ x,y e]R,x < 0,x2 = y}.

The functions Fi(square+) and F2(square+) are:

^(square+)(/2 J) = (@ (对 门 沢 +))

F 2 (s q u a r e +) (/ 1 /) =

where

Similarly, we have for the relation square":

F.isquare-Xli) = [0,0]㊀（@ (/2J f]沢+))

F2(square-)(/1I) = (I(0 如 JR+

It is obvious that the real intervals are closed under the © operator. It follows

that the functions F,(square+) and ^(square -) map from real intervals to real

intervals.

2.2.3 Interval Narrowing and Interval Splitting

Interval reduction only applies to individual constraint. In practice, there are

usually more than one constraint in a relational interval arithmetic system, re-

sulting in a constraint network. The constraints will interact with one another by

13

Chapter 2 Overview of ICLP(1Z)

let A be an active list which contains active constraints
let P be a passive list which contains stable constraints

while A is not empty
—•

remove a constraint (p, I1) from A
—^ —*

apply interval reduction on (p, I1) to obtain I1'
i f interval reduction fails then

exit with failure
else

if I1 半 f1' then
replace I1 by I1'

—*

for each constraint (g, J1) in P
if I1 and J1 share narrowed variable (s) then

remove (g, J1) from P and append it to A
endif

endforeach
endif

endif
append (p, I1) to the end of P

endwhile

Algorithm 2.1: Relaxation Algorithm

sharing intervals. We need an algorithm to coordinate the execution of interval

reduction to narrow the interval constraints in a constraint network.

An interval constraint (p, I1) is stable if applying interval reduction on I1

results in I1, otherwise it is active. A network is stable if all the constraints in-

side are stable. A relaxation algorithm (Algorithm 2.1) reduces a network into a

stable one. The relaxation algorithm is similar to the arc-consistency algorithm

AC-3 [42]. The use of interval reduction to narrow interval constraints is not

mandatory, but can be replaced by any appropriate domain restriction opera-

tor [36]. We refer to the relaxation algorithm with interval reduction operator

14

Chapter 2 Overview of ICLP(1Z)

let Q be a split queue which contains variables that specified to split

while Q contains narrowable intervals
partition the first narrowable interval in Q, say V1, into F/ and V2

trail V/
replace V1 by V/
invoke interval narrowing
if interval narrowing fails then

perform, backtracking
endif

endwhile
dump solutions
perform backtracking

Algorithm 2.2: Interval Narrowing with Splitting

as interval narrowing2^

Interval narrowing sometimes fails to narrow intervals to useful widths. Inter-

val splitting is a divide-and-conquer algorithm used for obtaining sharp solution

intervals. An interval is narrowable if its width is larger than or equal to a user-

defined value. Upon invocation of splitting on a narrowable interval, the interval

is partitioned into two halves3. We first visit one half, while the remaining half

is visited upon backtracking or under user-control. The procedure of interval

narrowing with splitting is shown as algorithm 2.2.
2 Different definitions are used in [36，9], In [36], interval narrowing refers to the inter-

val reduction operator described here, while relaxation algorithm is assumed to have interval
reduction as the domain restriction operator all the time. Interval reduction and interval nar-
rowing described here are named as narrowing function and narrowing algorithm respectively
in [9]. .

3An interval can be partitioned in different ways. Cleary [16] discusses two predicates,
linear_split/l and exp_split/l, which partition intervals at different points. In the imple-
mentation of our language, we always partition an interval at its mid-point.

15

Chapter 2 Overview of ICLP(1Z)

2.3 Syntax and Semantics

ICLP(T^) and CLP(T^) share .the same syntax and declarative semantics [31，32].

An interval constraint in ICLP(T^) is expressed as,

I Xi g e i l p{xu...,xn),

where Xi G / / is an appropriate pair of inequalities. The operational semantics

is based on the generalized derivation [36], which is shown as the following.

Let P be an interval CLP program and G0 be a goal in the form E ？ - 0 , A,

where E is a set of stable constraints, 0 is a set of active constraints and A is a

set of atoms. Initially E is empty. A derivation step that reduces a goal Gp to

another Gp+i follows:

• 7 € A and the program P contains a rule R,H 0 ' , A' , that the head

atom H can be unified with 7, i.e. HO = jO . G is

• Gp+i is the sequence of G' with the set of constraints (E U 0)没 replaced

by Fnf((t,{JQ)0'), where Fnf is a normal function that maps from set of

constraints to set of constraints in such a way that

I ^ P Na^x 3 ~ 胸 納 》 .

Theorem 2.3.1 [36]: If C' is obtained from C using interval reduction on p,
/ /

where C is Xx G h,. • .�Xn G In, • .,Xn) and C' is Xx G / r , … � X n e In,

p(Xi,...,Xn), then
— � 3 (C) 妗 一 〜 3 (C ') .

•

16

Chapter 2 Overview of ICLP(1Z)

Theorem 2.3.1 shows that interval reduction transforms an interval constraint

into another one with the same solution space. Interval narrowing, which per-

forms interval reduction repeatedly on interval constraints in a constraint net-

work, is therefore a normal-form function.

A generalized Mx derivation is a sequence of goals, possibly infinite. A

derivation is successful if it is finite and the last goal is empty; finitely-failed

if it is finite but the last goal has one or more atoms. The generalized Mx

derivation ends with a floundered goal if the last goal has one or more stable

constraints. Floundered goal gives "incomplete" solutions and should be inter-

preted as conditional answers [44]. Suppose a non-empty goal ,Gnis

derived from f - Go and 0 is a composition of all the substitutions. The clause

(Gq Gi, • • •, Gn)0 is a conditional answer to the original goal.

17

Chapter 3

Limitations of Interval

Narrowing

Interval narrowing with splitting is a common constraint solving technique used

in interval constraint logic programming languages [39, 37, 9, 51]. Our experi-

ments show that, in general, this technique is impractical in solving some classes

of problems in terms of both computation time and storage. We try to solve

a set of randomly generated systems of linear equations in several interval nar-

rowing based systems. None of them can give useful solutions (with width less

than or equal to 1) for dense linear systems (without zero-coefficients) of rank

greater than 5. For sparse linear systems (up to 60% of coefficients are zeros),

only those of rank less than 11 can be solved. We give a detailed discussion of

the limitations of interval narrowing in this chapter.

3.1 Computation Inefficiency

Interval narrowing can be classified as a fixed-point iterative method. Its conver-

gence depends highly on the initial bounds of variables and the form of interval

constraints. A detailed analysis and discussion can be found in [48]. We give a

18

Chapter 3 Limitations of Interval Narrowing

Y

X=-Y I X=Y

/1 \

Figure 3.1: Interval Narrowing on { X = Y, X = - Y }

geometrical interpretation to illustrate the convergence of interval narrowing on

a simple linear system.

Figure 3.1 shows interval narrowing on the following system

{X = Y,X = ~Y} (3.1)

with initial bounds X,Y e [—50,50]. Recall that interval narrowing on a con-

straint (p, < I � , … >) can be defined as the projection of the intersection

of the Cartesian product of / / and the relation p. As shown in figure 3.1, the

intersections are two diagonals of the initial guess region and they always project

onto the initial bounds of variables. Thus, no value can be eliminated. More

generally, given the system (3.1) with initial bounds X G [-a,b],Y G [—c’</],

where a, 6, c,d > 0, interval narrowing can never give solution which is sharper

than

X,Y ^： [— min(a, 6, c, d), min(a, b, c, d)}.

Interval splitting is a divide-and-conquer algorithm for obtaining sharper

19

Chapter 3 Limitations of Interval Narrowing

interval solutions but it is expensive to perform. The efficiency of interval nar-

rowing with splitting depends on its interval subdividing method and search

strategy. To use some ad-hoc subdividing methods and search strategies, some

special constraints may be solved more efficiently [51].

Interval splitting is impractical for 3 main reasons:

• Interval splitting is implemented using a Prolog backtracking-like mecha-

nism. A choice point is created for each splitting. In the worst case, no

partition can be rejected in each splitting and all the choice points are

accumulated. If we split n variables xu •. •, xn, each into rn partitions,

it requires (m — l)n times trailing spaces of all variables. Since we usually

split intervals to desirable narrow width, m is large and interval narrowing

with splitting is demanding in memory space.

• We may be unable to obtain sharp results for a system of constraints by

invoking splitting on only a variable. Splitting one more variable into d

partitions requires d times execution of interval narrowing in the worst

case. This increases the computation time rapidly.

• Although special interval subdiyiding methods and search strategies may

improve the efficiency of interval narrowing with splitting, in general, they

cannot be known in advance.

We justify our claims using some experimental results. We solve a set of systems

of linear constraints,

A X 二 'h where A = (a^-), X = (Xi), b =;(麵.a^ + 0, b • 0,

andXi G [-10000,10000]

for 1 < < n,

on BNR Prolog [52], CLP(BNR) [9], Echidna [54] and ICL [37] with splitting. All

coefficients ay and bi are randomly generated non-zero floating-point numbers.

20

Chapter 3 Limitations of Interval Narrowing

The results fo| each problem size n are the average of three different sets of test

data and are summarized in table 3.1 and table 3.2. The “一” symbol indicates

that the test fails: either the system halts abruptly (trail/stack overflow) or fails

to give solutions with width less than 1. The precision of the answers are set

to 10 decimal places for CLP(BNR) and ICL, 5 decimal places for BNR Prolog,

and the highest precision (precision(30) [55]) for Echidna.

Table 3.1 gives the computation time for problem size ranging from 1 to

6. The computation efficiency of these systems decreases rapidly as n grows.

When n = 4, Echidna consumes more than 100MB memory and then halts

abruptly. CLP (BNR) cannot solve any set of test data with interval narrowing

and splitting alone. We have to further apply two predicates absolve/1 and

presolve/1, which are designed for solving single non-point solutions and com-

plex problems [50]. Two sets of test data are solved. When n = 5, ICL and BNR

Prolog can solve only one of the three sets of test data in about 3.5 minutes and

2.6 hours respectively. When n > 6, all the tested systems either halt abruptly

or give wide resultant intervals (with width greater than 1000)1.

Table 3.2 gives the total of interval operations involved. We only consider

the ICL system since we cannot access similar benchmarks for other systems.

It is interesting to find that it involves nearly three hundred thousand interval

operations in solving a small system (n 二 5) of constraints.

The experiments described deal with linear systems without zero-coefficients.

Linear systems from real-life applications, however, are usually sparse. We in-

troduce sparsity into randomly generated linear systems by fixing a certain per-

centage of coefficients to be zero. In our experiments, we test systems with

respectively 20%, 40%, and 60% zero-coefficients2. The randomly generated

iThis experiment does not imply that interval narrowing is incapable of solving any system
of linear constraints with rank greater than 5. Some large systems with special properties,
e.g. strictly diagonal dominant, still can be solved even without using interval splitting (see
corollary 5.2.6 in chapter 5).

2We exclude the systems with 80% zero-coefficients since such randomly generated linear
systems are usually inconsistent.

21

Chapter 3 Limitations of Interval Narrowing

“ \n = l \ n = 2\ n = 3 \ n = A n = h n = 6
BNR P r o l o g ^ 8 9 m s 17.36s 976.28s 9 2 3 4 . 0 7 s * = _

CLP(BNR) 10ms 37ms 1.69 s 4.80sf —
ICL 11ms 28ms 7.45s 111.77s 210.02s* 一

Echidna§ | 0s | 0s | 127s — — I —

— —
Table 3.1: Average Computation Time in Solving AX = b

谷 D u e to the lack of built-in timing predicate, the time is rounded to the nearest sec-
ond.
本BNR Prolog runs on a Macintosh II while the other systems run on a SUN SPARCsta-
tion 10 with higher precision. BNR Prolog's results should not be directly compared
with others. We are interested in its rate of increase, however.
"•"The result is the average computation time of two sets of test data.
*The result is the computation time for only one set of test data.

add iruilt+ mult- s p l i t t i n g
0 1 1 o ~

n = 2 70 50 87 0
n = 3 3.95 x 104 2.24 x 104 3.95 x 104 44
n = 4 6.01 x 105 3.75 x 105 5.10 x 105 145
n 二 5 1.27 x 106* 6.67 x 105* 9.99 x 105* 111*
n = 6 — — - ~ 二

—*

Table 3.2: Average Number of Interval Operations in Solving AX = b m ICL
*It is the number of interval operations for only one set of test data.

22

Chapter 3 Limitations of Interval Narrowing

linear sparse systems are again solved on the previous four interval narrowing

based systems. The results, each of which is the average of three different sets

of test data, are summarized in table 3.3 and table 3.4.

The performance of interval narrowing with splitting has not been improved

significantly when 20% to 40% of the coefficients are replaced by zeros randomly.

Even for sparse linear systems with 60% zero-coefficients, only systems of rank

less than 11 can be solved. On the other hand, interval narrowing (even without

splitting) gives sharp solutions efficiently for linear systems with triangular coef-

ficient matrices, which have less than 50% of coefficients are zeros. This behavior

shows that the efficiency of interval narrowing depends highly on such properties

of the coefficient matrices as the distribution of zero-coefficients, rather than the

number of zero-coefficients.

The experiments presented so far are limited to linear constraint solving.

Benhamou et al [8] give examples on non-linear constraint solving. They show

that the growth of number of interval operations involved in non-linear constraint

solving in interval narrowing based systems is exponential with respect to the

problem size. We conclude that interval narrowing with splitting is inefficient

in interval constraint solving.

3.2 Inability to Detect Inconsistency

As stated in section 2.3, answers obtained from interval narrowing should be

regarded as conditional. A set of inconsistent constraints can be narrowed to

become stable without inconsistency being found. A simple example is,

� 'A + 1 = D (CO

, A + B = D (� (3.2)
• A e [o,po)

� B e (-oo ,0] .

23

Chapter 3 Limitations of Interval Narrowing

20% zeros | 40% zeros 60% zeros
n = 5 2661.45s 8̂ 62s 0.14s
n = Q 一 95.95s 4.70s
n = 7 — 3620.35s1" 13.76s
n = S — — 26.05s
n = 9 —— 1298.21s
n = 10 — — 3451.14s
n = 11 — 一 一

(a) BNR Prolog*

一 20% zeros 40% zeros 60% zeros
n = 5 1.84s* L97s 0.13s
n = 6 —— 0.64s* 0.44s
n = 7 — — 1.90s
n 二 8 — — 1.37s
n 二 9 — — 3.21s
n = 10 — — 8.78s*
n = 11 一 —— ~~~

(b) CLP(BNR)

20% zeros 40% zeros 60% zeros
n = 5 25.63st 2.47s 0.01s
n 二 6 — 16.54s1" 0.32s
n = 7 — 121.58s* 0.13s*
n = 8 — — 2.27s
n 二 9 一 — 24.54s
n = 10 一 — 9.97s*
n = 11 一 .、 一 一

(c) ICL

Table 3.3: Average Time in Solving Sparse AX = b

^BNR Prolog runs on a Macintosh II while the other systems run on a SUN SPARCsta-
tion 10 with higher precision. BNR Prolog's results should not be directly compared
with others.
txhe result is the average computation time of two sets of test data.
*The result is the computation time for only one set of test data.

24

Chapter 3 Limitations of Interval Narrowing

20% zeros 40% zeros 60% zeros
n = 5 1305s* 7 l8?
n = 6 — 130s* 49s
n = 7 — — 274s
n 二 8 — — 1570s*
n = 9 — — 1909s*
n = 10 — — ——
n = 11 一 — ——

(d) Echidna§

Table 3.4: Average Time in Solving Sparse AX = b (cont.)

§Due to the lack of built-in timing predicate in Echidna, the results are rounded to
the nearest seconds.
txhe result is the average computation time of two sets of test data.
*The result is the computation time for only one set of test data.

Equations (Ci) and (C2) imply B = I, which contradicts with the fourth con-

straint B e (- o o , 0]. The history of the values of A, B and D after each narrow-

ing step is summarized in table 3.5. The traces show that variable B is never

changed during narrowing. Variable A forces the lower bound of variable D to

increase towards +oo in the narrowing of C\. Variables A and D interchange

their roles when constraint C2 is activated. Since a floating-point number in

"double" has only 16 significant digits3, the lower bounds of A and D can never

reach the largest floating-point number, but a number near 1.0 x 1016 4. Both A

and D are narrowed in an extremely slow rate. This explains why such a trivial

system takes a long time to stablize.

When interval narrowing stablizes, we invoke interval splitting on the 3 vari-

ables. Splitting B accelerates the interval narrowing; while splitting on the
3We assume that the two bounds of an interval are represented by floating-point numbers

in the "double" format.
4In floating-point arithmetic, a + 1. = a if a is a sufficiently large number, e.g. 1.0 x 1016.

25

Chapter 3 Limitations of Interval Narrowing

Constraint in Narrowing A G B G D G
C[� [0:, oo) (- 0 0 , 0] [l ,oo)
C2 [1 ,00) (- 0 0 , 0 丨 [l，oo)
Ci - [l,oo) (-00，0丨 [2，oo)
C2 [2 ,00) (- oo , 0] [2,oo)
Cx [2,oo) (- oo ,0] [3，00)
C2 [3,oo) (- oo ,0] [3，00)
Ci [3,00) (- oo ,0] [4,oo)
C2 [4 , 0 0) (- oo ,0] [4,00)

I: ； ： ： ；

Ci [1.0 x 1 0 1 6 - l , o o) (—00 , 0] [1.0 x 1 0 1 6 , 0 0)
C2 [1 .0xl01 6 ,oo) (- oo ,0] [1 .0xl0 1 6 ,oo)
Ci [1.0 x 1016, oo) (—00,0] [1.0 x 1016,oo)

Table 3.5: Traces of A, B and D (Without Splitting)

variables A and D forces their lower bounds to reach the largest floating-point

number. The history of the variables after each interval narrowing with splitting

(splitting in the sequence of A, B and D) is shown in table 3.6. The symbols v,

0 0 " and oo= denote a negative, the largest and the second largest floating-point

number respectively.

From the last entry in the traces, we find that interval narrowing ends with

[00一, 0 0) + (- o o , —oo—] = [00", 0 0) . This is due to the fact that, by setting the

negative rounding direction, the addition of any number and the largest floating-

point number results in the largest floating-point number itself, in the IEEE

floating-point standard. Inconsistency cannot be detected even when interval

splitting is applied.

In our experiment on system (3.2), BNR Prolog and ICL do not terminate

in 90 minutes. CLP(BNR) returns "yes" even when interval splitting is applied

since interval narrowing stops after only a few iterations. Echidna returns also

"yes" with default precision due to the similar reason and exits abruptly with

26

Chapter 3 Limitations of Interval Narrowing

Constraint in Narrowing - A G B G D ^
C[[1.0xl016，oo) F ^ O] [1 .0xl0 1 6 ,oo)

I . ： - . ； ： ： ；

Ci [oo=,oo) (- 0 0 , 0] [oo= ,oo)
I: ‘ . ； ； ‘： ；

Gx [oo",oo) (-00 ,0] [00-, 00)
I . ； : i :

C21 [oo~, 00) (-00, Z/] [oo~,oo)
I.;. . : - . : . : ； + : c

2
 [0 0 - , 0 0) (- o o , - o o ~] [0 0 - , 0 0)

Table 3.6: Traces of A, B and D (With Splitting)

The symbols 1/, 00" and oo= denote a negative, the largest and the second largest
floating-point number respectively.

high precision.

An explanation for this phenomenon is as follows. In system (3.2), the con-

straint B = 1 can only be identified by considering the 2 equations as a whole.

However, relaxation algorithm is a local consistency algorithm. Only a constraint

is considered in each reduction step. Detection of the inconsistency, however,

requires a global view of the constraint system. Therefore, interval narrowing

fails to detect the trivial inconsistency of (3.2).

This example exhibits two important shortcomings of interval narrowing.

First, interval narrowing is "incomplete" in detecting inconsistency. Second, it

may take a long time to stablize on an obviously inconsistent system.

3,3 The Newton Language

Benhamou et al [8] show recently an improvement on interval narrowing. The

results are implemented in the Newton language. In this section, we outline

27

Chapter 3 Limitations of Interval Narrowing

their work and shows that their improvement applies only to interval non-linear

constraint solving, but not to linear constraints. The details of Benhamou et

a/'s experiments and analysis are beyond the scope of this thesis. We refer the

readers to [8].
Benhamou et al replace the interval reduction operator in interval narrowing

by a Newton reduction operator, which is a variant of the interval Newton
—*

method. Given an interval constraint (E o 0 , / J) as described in section 2.2.1,

where E is an arithmetic term and o is a relational symbol from { = , > } , the

Newton reduction operator is defined as an input-output pair5:

Input : (EoQ,< II … J i >) , where / / € . 辆 and M ^ W

Output : g = < I f , I f >，where if = // 门 侧 風 傅 華 》 ’ //)).

Ei(Xi) is obtained by replacing the variables X i , . . . , X “ i , 不 + i , . . . X n and the

real arithmetic operators in E by .. •, / / _ ” / & , … , g and the correspond-

ing interval arithmetic operators; while E\(Xi) is the derivative of Ei(Xi) with

respect to X“ The function N* is defined as,

i V * (跽 ⑷ ’ 躺) ， / /) = 4 (k>l)

where Jq 二 / /

= e (c P t (j /)) © 跽(e(Cpt(j/))) 0 E^jf)

Jk = Jfc-1,
(3.3)

where cpt is a function that gives the mid-point of input interval.

In the following, we show that the Newton reduction operator degenerates

to the interval reduction operator when solving interval linear constraints. For

a general linear constraint

ciXi + c2X2-h .. • + cnXn = cn + i , where Ci, . . . , c n + i ,X i , ...,XnelR,
5In order to have consistent notations throughout this thesis, the notations used here are

different from those in [8].

28

Chapter 3 Limitations of Interval Narrowing

we have
n

跽(足）二 e � � 足 ㊀ 阶 n + 1) ® 酵 _ ‘ 零 勢

Substituting Ei(Xi) into definition (3.3), we get
n

J/+1 = e (cp t (j /))㊀ (e � 0 e (c p t (j /)) ㊀ 彻 n+0© E 胸 觀 —)

n

3=1,j^i
n

3 (m e E 腕 / /) _ 。 • （3.4)
j=i,j � I �

Since the calculation of J/+1 in (3.4) is independent of J/ , the function iV* can

be simplified as
n

TV*(及(足),政(足),//)2(办n+1)e E 勵 麵 妹 (3'5)

The right-hand side of (3.5) is the same as the associated function F,-(linearn) of

relation l inear as stated in section 2.2.2. We expect that the Newton algorithm

usually gives wider results than those obtained from interval narrowing due to

the variable dependency problem.

29

Chapter 4

Design of CIAL

Our work is motivated by the inadequacy of interval narrowing for interval lin-

ear constraint solving. We propose to extend ICLP(灭)with an efficient linear

constraint solver, resulting in a new interval constraint logic programming sys-

tem, CIAL (for Constraint Interval Arithmetic Language). The syntax and

semantics of CIAL are almost identical to those of ICLP(尺),except that the

relational symbol “二” is replaced by “二:=”. In this chapter, we outline the

modules of CIAL and explain how they interact. Unification between interval

variables and other types of data, and decomposition of interval constraints will

also be discussed. The design and implementation of efficient linear solvers will

be illustrated in chapter 5.

4.1 The CIAL Architecture

Figure 4.1 gives an overview of the CIAL architecture. The input and the engine

components are adaptation of a Prolog interpreter. Their functions include uni-

fication, goal reduction, and delivery of constraints collected at each derivation

step to the solver interface. The interface In turn decomposes and distributes

the constraints to the linear solver and the non-linear solver accordingly.

30

Chapter 4 Design of CIAL

Input

'V
Engine

———(n———
I y CIAL Solver I

Solver j
Interface j I “ i, ,1

I (D) I Non-linear ^ t〒ar \ Solver ——> Solver ,
I L (E)
L 1
Figure 4.1: An CIAL Architecture

In the following, we describe each component of the architecture and the

interaction between the two solvers in more details.

4.2 The Inference Engine

The structure of the engine resembles that of a standard structure-sharing Prolog ’

interpreter [3]. Equations between Prolog terms are handled by a standard

unification algorithm. Since constraints in CIAL are over real numbers, logical

variables in constraints denote unknown real numbers. We refer to those logical

variables as interval variables. The introduction of interval variables calls for an

extension of the standard unification algorithm.

4.2.1 Interval Variables

A logical variable X becomes an interval variable when it is involved in such

simple inequality constraints as “X > 3,X < 6," or such equality constraints as

31

Chapter 4 Design of CIAL

Upper Bound (u)

！ Lower Bound (I)

1 _ ^H
Point to / Point to ^
constraint — � constraint
临 HAG 1 K 1 丨对 HAG ^ ： ^)

An interval variable with An interval variable with
associated interval (u，l) associated interval (- OO, OO)

Figure 4.2: The Heap Representations of Interval Variables

“X + 2 * Y = : = Z，X * X = : = Y." In the first example, we say that the interval

(3,6] is associated with the variable X. Semantically，an interval variable is an

ordinary logical variable. We distinguish interval variables from logical variables

purely for implementation efficiency.

Resembling domain variables in finite-domain languages [57], e.g. CHIP [1,

19], an interval variable is represented as a variable with an associated inter-

val. Its heap representation is shown in figure 4.2, where ITAG is a new tag

introduced for interval variables. Each interval variable in CIAL keeps a list of

constraints in which the variable appears. When an interval variable is narrowed,

we can locate and wake up its related constraints efficiently via the constraint

list. By waking up a constraint, we mean moving the constraint from the passive

list to the active list, This list is important since interval variables are modified

often during computation.

32

Chapter 4 Design of CIAL

4.2.2 Extended Unification Algorithm

Additional binding mechanisms are defined for unification between:

• an interval variable and a free variable

We simply bind the free variable to the interval variable. No constraint

solver will be invoked.

• an interval variable and an interval variable

To unify two interval variables X and Y, we compute the intersection of

their associated intervals. If the intersection J1 is non-empty, we choose

one of X and Y (for efficiency reason, we choose the variable which does

not require trailing, if possible), say X, and bind it to the other, Y in this

case. Then we replace the associated, interval of the chosen variable X by

the intersection J1. Otherwise, failure is reported.

拳 an interval variable and a number

We treat a number as an interval variable, the associated interval of which

has the number as closed upper and lower bounds. Thus, unification be-

tween a number and an interval variable can be performed in the same

way as unification between two interval variables.

眷 an interval variable and other terms

Failure is reported.

When two interval variables are unified successfully, their constraint lists are

merged and all related constraints are waken up.

33

Chapter 4 Design of CIAL

4.3 The Solver Interface and Constraint De-

composition

The design of the CIAL solver interface is similar to that of CLP(T^) [32]. The

solver interface is called from the inference engine whenever a constraint con-

tains an arithmetic term. If the input constraint contains any number that can-

not be represented exactly as a floating-point number, the number will be first

outward-rounded to an interval. The constraint is then simplified by evaluating

the arithmetic expression. For example, the constraint "3+9-2*X= :=Y+4*X" is

simplified to “12=: =Y+6*X." If the simplified constraint is an equality with only

one variable, it is resolved in the interface according to the extended unification

algorithm. In all other cases, the input constraint will be decomposed and then

distributed to the linear and the non-linear constraint solver accordingly.

CLP(T^) differentiates between directly solvable constraints and hard con-

straints [44]. The former is solved by either Gaussian elimination (for linear

equalities) or Simplex method (for linear inequalities) once they are collected,

while the latter is delayed from consideration until they become linear. We

do otherwise in CIAL. We do not delay any constraint.. Once constraints are

collected in a derivation step, they will be narrowed in either the linear or the

non-linear solvers. To maximize the efficiency of constraint solving, we classify

constraints into three categories.

An interval is non-narrowable if its width is less than a user-defined value

or if it cannot be further split in the underlying floating-point system (i.e. when

the lower and upper bounds of the interval are "adjacent" in the floating-point

line). Otherwise the interval is narrowable. A variable is non-narrowable if its

associated interval is non-narrowable. Otherwise, the variable is narrowable.

A constant is either a floating-point number or a non-narrowable variable. A

narrowable variable is a linear term. The multiplication of several terms is

34

Chapter 4 Design of CIAL

also a linear term if it involves only constants and at most one linear term.

Otherwise, the product is a non-linear term. A linear constraint contains only

summation of linear terms and constants, while a non-linear constraint contains

only summation of non-linear terms and constants. A constraint is mixed if it

contains both linear and non-linear terms.

In CIAL, linear constraint goes directly to the linear constraint solver with-

out being pre-processed. A non-linear constraint is first partitioned into a set

of convex primitives, as described in [16], and then delivered to the non-linear

solver. For a mixed constraint, we decompose it into a linear constraint and

a set of non-linear constraints. The resultant constraints are handled as ordi-

nary linear or non-linear constraints. The decomposition procedure is shown in

algorithm 4.1.

To improve the efficiency of linear constraint solving, we pass the linear

constraint T0 l U k x Tk) to the non-linear solver instead of the lin-

ear solver. Interval linear constraint solving usually involves variable elimina-

tion [20, 25，48], which is a time consuming symbolic algorithm. If we deliver

the constraint T0 二：二 EJk=i(^k x Tk) to the linear solver, the temporary vari-

ables Tk, for A; = 1 ,2 , . . . , j , are unique there and they can never be eliminated.

Thus, such a delivery does not help to give sharper results, but only increases

the number of symbolic operations unnecessarily.

We illustrate our constraint decomposition procedure by considering the fol-

lowing query,

？- 3*X + 5*Y — (X + Y) * (6 - Z) + Z * Z 10,

X + Y = := 20, X * Y * Z = : = 12.

The underlined constraints are generated during decomposition.

1. The first constraint is linearized and we have

3 * X + 5 * Y - T1 + T2 二：二 10, T1 (X + Y) * (6 — Z),T2 二 Z * Z,

X + Y = : = 20, X * Y * Z 二:= 12.

35

Chapter 4 Design of CIAL

1. We linearize a mixed constraint by replacing all non-linear terms, each by
a temporary variable. Each of the non-linear terms and its corresponding
temporary variable are associated by the relational symbol “二：=”，result-
ing in a new non-linear constraint.

2. The linearized constraint is in the form,

i
/ (X ^ . - ^ X n) + X T k) ,

k=l

where / (X i , . . . ,X n) is a linear arithmetic term involving only pro-
gram/query variables, Xi's are program/query variables, c is a constant,
Tk's are the temporary variables introduced to replace non-linear terms,
and 5a； = 1 or —1 for k = 1,2，…,j.

3. The linearized constraint is then partitioned into two by separating the
program/query variables from the temporary variables,

j
/ (X j v . ^Xn) 二：二 c + T0 and T0 二 ： 二 外 X Tk).

k=l

4. We pass the constraint /(X l 5 •. •, Xn) = : = c + T0 to the linear solver. The
constraint T�二：二 相 x Tk) and all non-linear constraints are parti-
tioned into primitives and they are delivered to the non-linear solver.

Algorithm 4.1: Constraint Decomposition Procedure

Note that the term (X + Y) * (6 - Z) should not be further translated into

6 * X + 6 * Y - Z * (X + Y)

which introduces one more occurrence of the variables X and Y. Such a

translation aggravates the effect of the variable dependency problem.

2. We minimize the number of temporary variables in the linearized con-

straint,

3*X + 5*Y — T1 + T2 = : = 10,

36

Chapter 4 Design of CIAL

by partitioning itrinto two,

3 * X + 5 * Y + TO = : = 10, TO 二：二 - T 1 + T2, T1 (X + Y) * (6 - Z),

T2 = : = Z * Z, X + Y =:二 20, X * Y * Z =:二 12.

3. We further decompose the two non-linear constraints,

T 1 =:二（X + Y) * (6 - Z)，X * Y * Z 1 2 ，

into a set of convex primitive constraints.

3 * X + 5 * Y + T0 二：二 10, TO - T 1 + T2, T4 二：二 X + Y, T5 二 6 — Z,

T1 = : = T 4 氺 T5, T2 Z * Z，X + Y 20, X * Y = : = T3, T3 * Z 二：二 12.

4. The linear constraints,

3 * X + 5 * Y + T0 二 10,X + Y =:二 20,

are passed to the linear constraint solver, while the others,

TO 二 - T 1 + T2, T4 二X + Y, T5 二 6 — Z, T1 = : 二 T4 * T5,

T2 二：二 Z * Z,X * Y T3,T3 * Z 12,

are delivered to the non-linear constraint solver.

4.4 The Linear and the Non-linear Solvers

In traditional interval constraint logic programming languages, all interval con-

straints are solved under a uniform framework, interval narrowing. To improve

the efficiency of interval constraint solving, we separate linear equality constraint

solving from inequality and non-linear constraint solving in CIAL.

CIAL consists of two constraint solvers, a linear constraint solver and a

noil-linear constraint solver. The former is responsible only for linear equality

constraints. Non-linear constraints and inequalities belong to the latter. The

37

Chapter 4 Design of CIAL

non-linear constraint solver employs interval narrowing with splitting as the

constraint solving technique. The details of constraint solving in the linear solver

are discussed in chapter 5. We only outline the main idea here. As described

in chapter 3, interval narrowing, which guarantees only local consistency of a

system of constraints, is deficient in linear constraint solving. Our linear solver

performs global analysis of linear systems by dividing a constraint solving step

into two phases. In the first phase, constraints are transformed once they are

collected. Global analysis of the linear system is achieved in this transformation.

For example, the forward and backward substitutions are such transformations

in Gaussian elimination. After all constraints in a derivation step are collected,

the associated intervals of variables are narrowed in the second phase by using

a domain restriction operator, which maintains local consistency of a single

constraint. The application of the domain restriction operations on constraint

network is coordinated by relaxation algorithm (algorithm 2.1). This phase is

similar to interval narrowing except that a different domain restriction operator

from interval reduction is used.

The employment of more than one solver in CIAL calls for an interaction

scheme. We explain in algorithm 4.2 how the two solvers cooperate in one

constraint solving step. Letters in parentheses refer to the labels in figure 4.1.

Steps 2 and 5-6 correspond to the two phases of the linear constraint solving.

Since the transformation method and domain restriction operator depend on the

linear constraint solving technique employed, these two steps should be treated

as black boxes here. They will be further elaborated in the next chapter.

A non-linear primitive constraint is sent to the linear solver only when the

constraint becomes linear and it does not contain any temporary variable. Prim-

itive constraints with temporary variables always stay in the non-linear solver

since they usually cannot help to eliminate any variable in the constraints in the

38

Chapter 4 Design of CIAL

let LA and NA be two active lists which contain active constraints in the linear
and the non-linear solvers respectively.

1. A new interval constraint will be resolved in the solver interface if possi-
ble. Otherwise, if the constraint is non-linear or mixed, it is decomposed
into a conjunction of primitive constraints, or a linear constraint and a
conjunction of primitive constraints respectively (A) •

2. The linear constraint is sent to the linear solver, transformed, and ap-
pended to LA (B).

3. The set of primitive constraints is sent to the non-linear solver and ap-
pended to NA (C).

4. After all constraints in a derivation step are collected, the linear constraint
solver will be invoked first.

5. Remove a linear constraint from LA and apply a domain restriction op-
eration on it. If any of the variables in the linear constraint is changed,
constraints sharing that variable in the linear and the non-linear solvers
will be appended to LA and NA respectively (D).

6. Repeat step 5 until LA becomes empty.

7. In the non-linear solver, we apply interval narrowing to make all the con-
straints there become stable. If a variable is further narrowed and it is also
involved in some linear constraints, those constraints will be appended to
LA (E).

8. Repeat steps 5 to 7 in a round-robin fashion until both LA and NA become
empty.

Algorithm 4.2: Interaction Scheme for Two Solvers

linear solver1.

iWe assume that variable elimination is part of the interval linear constraint solving
algorithm 化丨

39

Chapter 5

The Linear Solver

A good linear solver should satisfy the following criteria:

1. The linear solver must be amenable to ef^cient incremental execution. The

complexity of adding and solving a new constraint should be affected more

by the form of the new constraint, rather than of the constraints already

collected in the linear solver [44].

2. Linear constraint solving in the linear solver must be substantially more

efficient than interval narrowing.

3 . Solutions given by the solver must be sound and accurate. The former

criterion implies that the real solutions should always fall into the answer

intervals. To satisfy the latter, the widths of answer intervals should be

less than a reasonable value, say 0.001.

In this chapter, we present two proposals [15, 14] to implement such a lin-

ear constraint solver. The first, generalized interval Gaussian elimination, is

a new combination of CLP(7^) technology [44] and centered form [45]. This

method always yields better results than naive interval Gaussian elimination.

The second is a commonly-used iterative interval method, preconditioned in-

terval Gauss-Seidel method [22, 33, 34, 35], These two methods, as originally

40

Chapter 5 The Linear Solver

designed, operate in the batch mode: all the constraints are collected before

solving takes place. In this chapter, we discuss how they can be adapted to

incremental execution for use in a CLP system. We conclude this chapter by

comparing the two approaches.

5.1 An Interval Gaussian Elimination Solver

Motivated by the Success of the linear solver of CLP(^), our first proposed lin-

ear solver is also an adaptation of the Gaussian elimination procedure. There

are several variants of Gaussian elimination procedure for solving linear equali-

ties [58]. An interval version of any of them can be obtained by simply replac-

ing each ordinary arithmetic operator by the corresponding interval arithmetic

counterpart. Answers generated using this naive approach, however, will not be

as sharp as possible, in general, due to outward rounding and variable depen-

dency problem. The former is unavoidable in performing interval arithmetic in

a floating-point system. Generalized interval arithmetic by Hansen [24] presents

a way to reduce the effect of the latter.

5.1.1 Naive Interval Gaussian Elimination

We begin with a quick review of the general form of the Gaussian elimination
—>

method in the real number domain. Let A be an n X n real matrix and b be an

n-tuple real vector. To solve

AX = & where A — (a^) for = 1,2, • • •

we perform the Gaussian elimination step (described in (5.1)) n — 1 times. In

the k-ih step, we eliminate the elements aik for i > k by subtracting a suitable

multiple of the another row. This procedure, known as forward substitution, is

41

Chapter 5 The Linear Solver

effected as,

I ^ = 4 - 1) … � (5 1)
I 4) = k < j < n ,nd A; + 1 < z < n

I; � 炉 - 1) —疋一1}(必一1)^^1))，k<j<n^nd k ^ l < i < n

The superscript k denotes the results obtained from the A;-th Gaussian elimina-

tion step. Eventually, the original equation AX 二 S will be transformed into an

upper triangular form, which can be solved by backward substitution, defined by
n

Xi = (bi — a i j X ^ / a u f o r i = n , n — 1 , . . •, 2 , 1 .

With pivoting [46], this simple algorithm works well in the real domain. If the

elements of A and b are intervals，the algorithm performs poorly due to the

variable dependency problem.
J

The variable dependency problem is caused by the fact that multiple occur-

rences of a given variable in an interval computation are treated as a different

variable in each occurrence. This widens the computed interval unnecessarily.

As shown in (5.1), the naive Gaussian elimination procedure contains multiple

occurrences of almost all coefficients during forward substitution. The simplest

examples for illustrating the dependency problem are and A / 0 A / . It can

be checked easily that [0,0] g ㊀ and [1,1] ^ A1 Q) A1 in general. Consider
1 the following simple system of interval linear equations of two variables:
I

(

J a{x (8) X 1 © a[2 (g) Y1 = if

I I a\x (8) © a\2 (8) Y1 = b\.
Its associated analytical solution is

i X1 = {b[(g) a\2 a[2) 0 (a [x (g) a r22 © a { 2 (g) aT21)

1 Y1 = (a^ <g)b^Q (g) b[) 0 {a[x 0 ar22 © a{2 <S> a^).

42

Chapter 5 The Linear Solver

The variable dependency problem occurs in the calculation of the value of each

variable. Substituting the coefficients with example concrete data, we get the

following system of equalities.

, J [3.0002,3.0003] [4.0005,4.0006] = [1,1] (5 2)
f 1 [2.0001,2.0002] ㊉[1.0002,1.0003] 二 [2,2]

Solving the above system using naive interval Gaussian elimination yields the

following results.

f X1 = (1.39966625…，1.40028177…）

V I F 1 = (—0.80016132...，—0.79975469…）

In the following, we show that better results can be obtained by adopting oper-

ators from generalized interval arithmetic in Gaussian elimination.

5.1.2 Generalized Interval Gaussian Elimination

The interval Gaussian elimination procedure is well studied [23, 4, 22, 25]. A

well-known algorithm, known as preconditioned interval Gaussian elimination,

is proposed by Hansen [23]. Preconditioned Gaussian elimination transforms the
外T •

coefficient matrix A1 to a near identity matrix I1 before applying naive inter-

val Gaussian elimination. Since all subdiagonal elements are nearly zeroes, the

variable dependency effect are highly reduced. We do not employ this algorithm

in our CIAL linear solver since it is difficult to adapt the algorithm for efficient

incremental execution. In Gaussian elimination, an upper triangular matrix is

obtained in the symbolic forward substitution phase. Adding an additional con-

straint to the system in preconditioned interval Gaussian elimination, however,

may change all the elements in the coefficient matrix I1. The upper triangular

matrix is difficult to update incrementally if most of the elements in the matrix

43

Chapter 5 The Linear Solver

I1 are changed, especially in the interval context1. Calculating the updated up-

per triangular matrix from scratch involves re-doing all the symbolic operations.

This is time-consuming.

We propose an alternative procedure, generalized interval Gaussian elimina-

tion, to reduce the effect of the variable dependency problem in Gaussian elim-

ination. In general, this method cannot give as sharp results as preconditioned

interval Gaussian elimination, but always performs better than naive interval

Gaussian elimination. The method can also tackle some classes of problems

that cannot be handled by interval narrowing based system [15].

A generalized interval Gaussian elimination procedure is obtained by replac-

ing ordinary arithmetic operators in an ordinary Gaussian elimination procedure

by the corresponding generalized interval arithmetic operators [24], which are

described as follows.

In generalized interval arithmetic, an interval X1 二 [a，6] is represented as a

generalized interval of the form,

W ㊉ [- c , c] (8) Z1 where y - c = a, y + c = 6, W 二 [y，y] and Z1 = [1，1].

Suppose X\ =泞㊉[-c“q]OZ/fo“ = If an interval is computed

using the n X/ ' s , the resulting interval is also expressed as a generalized interval,
n

X i + 1 = Y j i + 1 ㊉乙 ([- C ” C ”] ® Zn+l,r)^ 2
r = l

where and are numerical intervals computed from the Y^s and ZJ 's

of the n input intervals in ordinary interval arithmetic operators. Note that each

generalized interval keeps as many subterms as the number of intervals that it

depends on. These subterms provide information to locate multiple occurrences

of a variable during computation, so as to reduce the effect of the variable

dependency problem.
l^he corresponding problem in real domain is usually somewhat easier [21] since we do not

need to consider the dependency problem.
2We abuse the notation to denote interval summation.

44

I .

Chapter 5 The Linear Solver

The basic generalized interval arithmetic operators,㊉5 (addition), Qg (sub-

traction), ®9 (multiplication) and (dg (division), are defined [24] in the following.

Generalized Interval Addition

If Xi = X\ ©5 Xj, then
n

_ = I f � Yf © 麵 一 c r] (8) (Zl 0 Z]r))
r = 1

where

I Yi � �

Generalized Interval Subtraction

I If = X / ㊀ / X / , then
n

x i 二 y ! ㊀ 片 ㊉ E ([- c � M � (总 ㊀ 塔) ）

r=l

where
Y ^ Y / Q Y ^ Z i ^ Z l e Z 1 ^

I

Generalized Interval Multiplication

I If Xi = Xj ®g X], then
n

X^Y/^Y/㊉cr，cv]�(松③路㊉片⑭总)）
r = l
n n

㊉ E X X [- 仏 ， � Zl 0 Zxjs)
r=l 5=1

where
n

Y,1 = Y ! ® Y ^ Y , ^ c 2 r \ ® Z i r ® Z l)
r = l

n

Z l = ' Y l ® Z] r ® Y l ® Z l r ^ Z l ® X： ([- c s , c s] 0 4)
5=1,

45

Chapter 5 The Linear Solver

Generalized Interval Division

I If 幻 二 X / 0 5 X / , then
n

x i = y,1 (d Y j e ^ (y / ®
r = l

n

0 {¥/ ® {Y/ © 〜M ③硌))）
S = 1

where

Yk1 = y/^yf

n

5=1

We give a simple example to show how the effect of the variable dependency

problem can be totally eliminated (without counting the extremely small errors

introduced by outward-rounding) in an expression with only generalized interval

addition and subtraction. Suppose we want to compute X^ = X[Qg X{㊉“X2

with X[= [—4,8] and X\ = [6,8]. We have

p X{ = [2，2]®[—6，6](g),[l，l]

X\ = [7,7]㊉[-1,1] 0 [1,1]

Yi 二 F / © y / © Yl = [2,2] © [7,7] ® [7,7] = [2,2]
I z L = z ' n e z i , © z i , = [i, l] © [o, o] © [o, o] - [i, 1]

zi2 = z{2 © zi2 © Zi2 = [0,0] © [1,1] © [1,1] = [0,0]
2

S = 1

Therefore, we get X^ 二 X f 二 [-4 ,8] instead of [一6,10], which is obtained using

ordinary interval arithmetic. Note that if multiplication or division is involved,

the dependency problem effect cannot be eliminated but only reduced.

Solving the system of linear equation (5.2) using generalized interval Gaus-

sian Elimination yields a sharper result.

i X1 _ (1.39981395..., 1.40013404...)

_ 1 二（—0.80010553..., -0.79981048…）

46

Chapter 5 The Linear Solver

Implementation Consideration

In our implementation of generalized interval Gaussian elimination, we outward-

round the real coefficients in the original (before transformation) system of equa-

tions into intervals .([^,6,]). Those intervals will then be treated as different

logical variables with associated bounds represented as generalized intervals,

XI G 片 ㊉ HQ,C ‘](8)Z/

^ 华 ， 华] ① 0 ⑴ (5 . 3)
2 2 Z z

A generalized interval is in centered form [45] and usually cannot be exactly

stored on a computer (i.e, the center point ^ or the quasi-width ^ cannot

be exactly represented as a floating-point). We modify equation (5.3) as follows.

Xi € . 松 ㊉ 1 , 1]) ⑭ 锊

二 [“ 华 宇)] � (m a 称 宇)) , 咖 (毕) - 叫) ）

刎 - 1 , 1]) � M] (5 . 4)

In equation (5.4), (f and p are functions that round a real number to its nearest

and right [49] adjacent floating-point number respectively. We can easily verify

that the modified generalized interval obtained from equation (5.4) is a superset

of that obtained from equation (5.3). Our experimental results show that using

these widened interval coefficients in generalized interval Gaussian elimination

still gives sharper solutions than applying naive interval Gaussian elimination

to the original linear system.

5.1.3 Incrementality of Generalized Gaussian Elimina-

tion

As stated before, incremental execution capability is essential for a good linear

solver in constraint logic programming languages. In the following, we present

47

Chapter 5 The Linear Solver

an adaptation of the generalized Gaussian elimination procedure to incremental

execution and its interaction with the non-linear solver.

Our algorithm is based on that of CLP(尺）[32]. Many parts of the CIAL

linear solver, such as trailing and backtracking, can be implemented in a similar

fashion. We present only the components that differ from their counterparts

in CLP(T^) : detection of redundancy / inconsistency of newly added linear

equation and the selection of non-parametric variables.

All linear equations in the linear solver will be stored in parametric solved

form [44] X = E?=i (c r X Tr) + c n + i , where X is a non-parametric variable, Tr，s

are parametric variables, and c r 's and c n + 1 are non-narrowable interval variables

that we treat as constants. Assume that we have a collection of consistent linear

equations {EUE2,…丑n-i) in solved form and a new linear equation En is added.

Let Cn be the result of substituting out all the non-parametric variables in En.

Detection of Inconsistency/Redundancy

Let Cn be in the form 0 二 / (Ti) .

1. If / (T i) does not contain 0, it implies that the new equation En is incon-

sistent with the stored constraints. Backtracking is needed.

2. If / (T i) = 0, the new equality is implied by the stored constraints and this

new constraint can be removed.

3. A linear constraint is said to be fixed if all its parametric variables (Ti)

are non-narrowable. If Cn is fixed and / (T i) contains 0, En is also redun-

dant. The redundancy of Cn cannot be concluded if any of the variables

is narrowable, it is because 0 may be excluded from the value of / (T i) in

the further narrowing of some variables.

48

Chapter 5 The Linear Solver

Selection of Non-parametric Variables

The candidates of non-parametric variable must not have coefficients containing

0. If there is no variable satisfying this criterion, it implies that Cn cannot be

solved by generalized Gaussian elimination. We simply move it to the non-linear

solver.

1. If Cn contains new variable(s) that is not currently in the linear solver,

choose one of them as the non-parametric variable. This saves the efforts

of backward substitution.

2. If Cn contains only parametric variable(s), choose one which appears in the

non-linear solver. This criterion is on the contrary to the corresponding

rule in CLP(T^), which tries to select a variable that does not appear in

the inequality solver [32]. CIAL hopes that the variables in non-linear

constraints can be further narrowed with the aid of linear solver, while

CLP(T^) tries to avoid invocation of the inequality solver.

3. Otherwise, choose the parametric variable with maximum width because

it will most probably be narrowed in interval propagation, in general.

Simple Optimizations

In the linear solver, backward substitution is an important step since it can help

to eliminate variables and obtain sharper intervals for non-parametric variables.

This can in turn re-activate constraints containing the non-parametric variables

in the non-linear solver. Backward substitution is, however, also both time and

memory consuming. In such cases as {X = Y + Z, Y = A}, the transformation to

eliminate Y is fruitless computation. This kind of backward substitution should

be delayed. We propose two simple optimizations.

• Backward substitution will not be performed between two constraints if

they do not share any common parametric variable.

49

Chapter 5 The Linear Solver

• A constraint will not be used for backward substitution if it contains an

unbound parametric variable X (i.e. X G (-00 , 00)) and X does not appear

as parametric variable in the constraint being substituted.

5.1.4 Solvers Interaction

In this section, we show how generalized interval Gaussian elimination is aug-

mented with interval narrowing to handle incomplete systems. The enhanced

linear constraint solving step interact with the non-linear solver to form a com-

plete constraint solving step.

A linear system may have more unknown variables than equations. Such

systems do not have point solutions for each variable even in the real domain.

For example, { X � 1，X < 5，X + Y 二 20} has solutions {X G (1,5), Y G (15,19)}.
We call them incomplete systems.

In the generalized interval Gaussian elimination procedure, interval prop-

agation proceeds unidirectionally from parametric variables to non-parametric

variables instead of being relational as in interval narrowing. This functional

propagation works well if there are as many independent equality constraints as

the number of variables. In the case of incomplete systems, the extra parametric

variables will never be narrowed. We tackle this problem by combining general-

ized interval Gaussian elimination and interval narrowing in a linear constraint

solving step. Non-parametric variables are narrowed by interval propagation

in interval Gaussian elimination, while parametric variables are narrowed by

interval narrowing.

The following steps replace the steps 2 and 5 in algorithm 4.2 to yield a

complete constraint solving step. The step 2 performs constraint transformation;

while the associated intervals of interval variables are narrowed in the step 5.

50

Chapter 5 The Linear Solver

2 , The linear constraint is sent to the linear solver and transformed by gen-

eralized interval Gaussian elimination. If it is either inconsistent or re-

dundant, the solver reports failure or removes the constraint respectively.

Otherwise, the new linear constraint and the constraints modified in back-

ward substitutions are appended to the active list LA (B).

5 . Remove a linear constraint from LA. The value of the non-parametric

variable of jthe constraint is narrowed by interval propagation from the

parametric variables; while the values of its parametric variables are nar-

rowed by interval narrowing. If any of the parametric variables is changed,

the constraints in both solvers that share that variable will be appended

to LA and NA accordingly. Changing non-parametric variable will never

activate other linear constraints but only non-linear constraints (D), since

no non-parametric variables can appear as parametric variables in other

linear constraints.

We show the soundness of solutions given by the generalized interval Gaus-

sian elimination solver and the termination of the above constraint solving step

in the following theorems.

Theorem 5.1.1: Generalized interval Gaussian elimination preserves all solu-

tions of a linear interval system. The solutions given by the generalized interval

Gaussian elimination solver are sound.

Proof ： From the inclusion monotonicity property of generalized interval arith-

metic [24] and the correctness of Gaussian elimination. •

Theorem 5.1.2: The constraint solving step in algorithm 4.2 with the gener-

alized interval Gaussian elimination solver always terminates.

51

Chapter 5 The Linear Solver

Proof : Inconsistency can be revealed either in the inconsistency detection

phase in generalized interval Gaussian elimination or from empty intervals ob-

tained in the narrowing of interval variables. In both cases, the solvers report

failure and the constraint solving step terminates.

Otherwise, the two solvers narrow variables in active constraints (i.e. con-

straints in active lists), which will be removed from active lists after narrowing.

A constraint will be appended to active list in either the cases where the con-

straint is transformed or some variables in the constraint are narrowed. Con-

straint transformation will only be performed when some new constraints are

added to the system. The number of constraint transformation depends on

the number of input constraints, which is always finite. Since the number of

floating-point is limited, no variable can be narrowed infinitely. It follows that

the constraint solving step must terminate eventually. •

5.2 An Interval Gauss-Seidel Solver

In many applications, we have some crude bounds on the solution of a linear

system A1 0 f J 二 京.Such a system can be solved efficiently by using some

iterative methods. Preconditioned interval Gauss-Seidel method is an iterative

method being widely-used in interval computation [48, 22, 33, 34]. We explain

how it can be adapted for interval linear constraint solving in CIAL.

5.2.1 Interval Gauss-Seidel Method
T — —

Let the i-th equation in A1 (g) X J = b1 be

n

i=i

52

Chapter 5 The Linear Solver

and we have initial bounds on all variables. The interval Gauss-Seidel method

works by updating each variable Xi by
n

对—収Q E (4 ③ 对 门 w (5 .5)

I . i=i

in an iterative fashion. If, at any step, any variable becomes the empty interval,

then we conclude that the system has no solution.

In an iterative method, a system usually takes more than one iterating cycle

to converge. In addition, since we are considering constraint solving in a single

processor machine, only one equation can be examined at a time in sequence.

The previously computed values can be used as soon as they are available.

Assuming that variable updates are coordinated in a naive round-robin fashion,

a sequential version of interval Gauss-Seidel is suggested to be [6]

x^ —欣 e E (4 ® 片⑷)e E H 0 xf-1))) 0 ‘) n x!" (5.6)
The superscript (k - 1) of X � � ” indicates that the variable is obtained in

the (k — l)-th iterating cycle. The interval Gauss-Seidel method terminates

when all variables remain unchanged after an iteration or when the difference

between the new and last computed Value of each variable is less than a user-

defined number. This sequential Gauss-Seidel method is also called the method

of successive displacements [6].

Convergence

Definition 5.2.1 [48]: A sequence of intervals converges iff both the lower and

upper bounds converge. •

Definition 5.2.2 [48]: The hull of the solution set of a linear system is the set

of tightest intervals that enclosing the solution of the linear system. •

53

Chapter 5 The Linear Solver

In general, interval Gauss-Seidel method cannot be guaranteed to converge

to the hull of the solution set of a linear system. We should not expect that

it will give sharper results than interval narrowing either since interval Gauss-

Seidel method can be considered as “partial” interval narrowing. The following

lemmas show these claims.

Definition 5.2.3 [48]: The magnitude of an interval I1 二 is defined as

magi^I1) = max({l\, while its mignitude is defined as migfj1�= min(\l\, |w|),

where \a\ denotes the absolute value of real number a. An interval matrix A 1 =

(a1- .) is said to be strictly diagonal dominant if,
n

mig{a Iii) > YJ m a 9 (a i k) f o r 纟 = 1 , . . •，几

•

Lemma 5.2.4 [48]: Interval Gauss-Seidel method is guaranteed to converge to

the hull of the solution set3 of a linear system if the coefficient matrix of the

linear system is strictly diagonal dominant. •

Lemma 5.2.5: Let A1 X1 = b1 be a system of interval linear equalities. If

X I a n d X'1 are the solutions obtained from interval narrowing and the interval

Gauss-Seidel method respectively, then X1 C X'1.

Proof : There exists two differences between the interval Gauss-Seidel method

and interval narrowing.

First, the interval Gauss-Seidel method considers an interval linear equal-

ity as a whole, while interval narrowing decomposes it into a conjuncture of

primitives. Constraint decomposition introduces temporary variables. Each

temporary variable, say T, occurs twice and appears as in either the form

{ T 二 A , B , c 二 T • D} or {T 二 A • B，C • D == T} (The symbol denotes + , -，X
3If floating-point interval arithmetic is employed, the solutions obtained are usually slightly

wider than the hull of the solution set since outward-rounding is made.

54

Chapter 5 The Linear Solver

or /) . The variable T at the left-hand side only serves as a container in interval

propagation and it is not involved in any interval computation. No variable de-

pendency effects or rounding-errors will be introduced. This syntactic difference

only leads to different narrowing steps or iterating cycles, but never affects the

sharpness of the results.

Although both methods use interval propagation to narrow interval variables,

interval propagation in the interval Gauss-Seidel method proceeds unidirection-

ally from subdiagonal variables to diagonal variables instead of being relational

as in interval narrowing. It follows that X1 C X'1. •

Corollary 5.2.6: Interval narrowing is guaranteed to converge to the hull of

the solution set of a linear system if the original coefficient matrix (before de-

composition) of the linear system is strictly diagonal dominant.

Proof : From lemma 5.2.4 and lemma 5.2.5. •

5.2-2 Preconditioning

As stated in lemma 5.2.4, interval Gauss-Seidel method on a system with strictly

diagonal dominant coefficient matrix always converges, but this criterion may

not be satisfied in a general system. Hence, one may attempt to transform the

system into an equivalent system in the sense that the new system contains all

solutions of the original system, but is-strictly diagonal dominant. Precondition-

ing effects such a transformation.

Preconditioning is usually done by multiplying a suitable real matrix P to

the original system. Instead of solving A1 二 b1, we deal with the following

system:

P 0 A1 (8) = P (g) 61 (5.7)

55

Chapter 5 The Linear Solver

We call P the preconditioner. Hansen [23] suggests an inverse mid-point ma-

trix as preconditioner which is shown to be optimal [13] in the sense that the

preconditioned system gives the tightest bounds of the solutions of the original

system. Let A denote the real mid-point matrix of A1 . We define

dij = (� + Uij)/2 where A1 二（fc,叫])and A = (知 ）

for 二 1，2,…，n.

We then compute the inverse of A using, say row reduction, in high precision

floating-point arithmetic. The real A " 1 is used as the preconditioner P in

equation (5.7).

Convergence

Lemma 5.2.7: Let A1 ^ X1 = b1 be a linear system where A1 is obtained by

applying outward-rounding on a real matrix A. The inverse mid-point precon-

ditioned interval Gauss-Seidel method gives solutions which are slightly wider

than the hull of the solution set of A1 ® X1 � b1.

Proof : The inverse mid-point preconditioned interval Gauss-Seidel method

can be divided into two phases: performing preconditioning with an inverse

mid-point preconditioner and applying interval Gauss-Seidel method on the pre-

conditioned system.

Since all elements in A1 are obtained by applying outward-rounding on real

numbers, their widths should not be wider than the width between two ad-

jacent floating-point numbers. Multiplying such an interval matrix A by its

inverse mid-point matrix4 yields a near identity matrix, which is always strictly

diagonal dominant. From lemma 5.2.4, we know that the interval Gauss-Seidel

method always converges to the hull of the solution set of the preconditioned
4The exact inverse mid-point matrix is non-representable, in general. We use an approxi-

mation instead.

56

Chapter 5 The Linear Solver

system. However, due to effect of overestimation (to be discussed later), the

preconditioned system usually have slightly wider solutions than the original sys-

tem. It follows that the inverse mid-point preconditioned interval Gauss-Seidel

method gives solutions which are slightly wider than the hull of the solution set

of A 1 (g) = b1. •

Intuitively, we can expect that this preconditioned interval Gauss-Seidel

method gives accurate results. Since A—1 ® A1 is near identity, the width of

the summation of all sub-diagonal terms a1- (g) X] in equation (5.6) tends to be

very small. The diagonal variables are narrowed to be sharp.

Overestimation

Since preconditioning involves many interval multiplications, small errors will

be introduced due to outward-rounding. A preconditioned system usually has

slightly wider solutions than the original system and these additional pseudo-

solutions are called overestimation [47]. Overestimation destroys the complete-

ness of inconsistency detection in interval Gauss-Seidel method since an incon-

sistent system of constraints may become consistent after preconditioning.

A formal analysis of overestimation requires such knowledge as mappings [48]

and fixpoint theorems [47], and is beyond the scope of this thesis. Readers may

refer to [47, 48] for details.

We end this section by explaining how the simple system {X = Y,X = - Y }

in section 3.1 can be solved by the preconditioned Gauss-Seidel method without

using splitting.

Preconditioning transforms the equations {X = Y,X = - Y } (figure 5.1(a))

to { X = 二 0} (figure 5.1(b)), which are the two axes. Even without giving

any initial bounds for the two variables, the preconditioned interval Gauss-Seidel

method gives the exact answers { X = 0,F = 0} in one iterating cycle. If we

apply the preconditioned interval Gauss-Seidel method on general linear systems,

57

Chapter 5 The Linear Solver

^——7K——^ 1 …x

/ t\ I
丨 -fO

(a) (b)

Figure 5.1: Preconditioned Interval Gauss-Seidel Method on Simple Equations

initial bounds are usually necessary and it may take several iterating cycles to

converge.

5.2.3 Incrementality of Preconditioned Gauss-Seidel

Method
The adaptation of the preconditioned interval Gauss-Seidel method for efficient

incremental execution is more complicated than that for generalized interval

Gaussian elimination. It involves the incremental update of preconditioner, ap-

plication of preconditioning, and detection of inconsistency and redundancy. A

tradeoff between speed and space is also an important consideration in imple-

menting trailing and backtracking. We discuss the stated issues in this section.

Incremental Update of Preconditioner

We adopt the optimal preconditioner, inverse mid-point matrix as stated in

section 5.2.2. Assume that we have a collection of r interval linear equalities of

58

Chapter 5 The Linear Solver

c variables. The mid-point coefficient matrix A is thus an r x c matrix. The

entries in A, which are mid-points of intervals, cannot be represented exactly on

computer in general. We can simply round them to their nearest floating-point

numbers. The small errors introduced in the mid-point matrix do not affect the

convergence of the preconditioned system significantly.

Constraints are generated and submitted to the constraint solver incremen-

tally In a constraint logic programming system. The linear system present in

the solver do not necessarily have a square matrix in general. We present how

the preconditioner can be computed from such a rectangular matrix.

For the case where c < r, it implies that some equalities are either redun-

dant or inconsistent to the system. Those equalities will be located by another

algorithm using heuristic (to be discussed later) and they should not be used in

the calculation of the inverse. We disregard this case.
Otherwise, we have c > r. We define a corresponding rectangular identity

matrix J by

J = (jkl), where jki = 1 for k = I, jki = 0 for fc 会 /

for 1 <k <r and I < I < c.

The preconditioner P is computed by row reducing the combined matrix [A|J]

until the the first r columns of A becomes the identity matrix I. The required

preconditioner P resides in the first r columns of the original J matrix5. There-

fore, the row reduced matrix has the form [I|U|P|Z], where I is the r x r identity

matrix, U is an r X (c - r) matrix to be used for future update of the precondi-

tioner, Z is an r X (c 一 r) zero matrix. We call [I|U|P|Z] the IUPZ matrix.

Incremental calculation of the row reduction transformation is achieved by

adapting the familiar incremental Gaussian elimination of CLP(^) [44]. Assume

that we have a collection of r interval linear equalities of c variables with r < c.

When a new linear equality, whose mid-point coefficients are denoted by mr+1，

5Note that P is an r x r matrix.

59

Chapter 5 The Linear Solver

1. The IUPZ matrix X is augmented to r + 1 rows by appending an extra
row where

二 m r + 1“ for I <1 <c
x r W 二 0 for c + l < / < 2 c a n d / ^ c + r + l

= 1 for I = c + r + 1.

2. We subtract the (r + l)-st row of X from suitable multiples of the first r
rows such that the first V columns of the (r + l)-st row becomes zeros.

3. If c > r + 1，we permute the (r + l)-st column of X with one chosen from
the (r + 2)-nd to c-th columns, say the 5-th one. The chosen column must
satisfy the following criteria:

• the component x r + h s must be greater than a small user-defined value.
• the column should have as little zeros as possible.

We also permute the (c + r + l)-st with the (c + s)-th column accordingly.
All permutations are recorded to guarantee that their associated variables
in the constraints can be identified.

4. We subtract the first r rows from a suitable multiple of the (r + l)-st row
SUch that the (r + l)-st columns of the first r rows becomes zeros.

Algorithm 5.1: Incremental Update Procedure for the IUPZ Matrix

is added, the IUPZ matrix, X = {xki) for 1 < fc < r, 1 < / < c, is updated

incrementally as in algorithm 5.1.

The calculation should be performed in high precision floating-point arith-

metic. The updated (r + 1) x (r + 1) preconditioner resides in the (c + l)-st to

+ r + l)_st columns of the IUPZ matrix X . We perform permutations in the

update procedure for two reasons.

First, since the preconditioner is computed in floating-point arithmetic, to

reduce the roundoff errors, we should avoid placing an extremely small floating-

point in the diagonal of the matrix. Although roundoff errors introduced in the

60

Chapter 5 The Linear Solver

calculation of preconditioner can never destroy the inclusion property of the pre-

conditioned system, the coefficient matrix of the preconditioned system may not

be strictly diagonal dominant. Thus, the preconditioned interval Gauss-Seidel

method may fail to converge. This phenomenon becomes more visible if the

mid-point coefficient matrix is ill-conditioned [5]. The column permutation in

our update algorithm is similar to pivoting in numerical methods. The difference

is that the former only requires the diagonal coefficients to be greater than a

small user-defined value, while the latter always puts the largest component of

a row in the diagonal.

The second criterion, which is to choose a column with as little zeros as

possible, is for efficiency only. Recall that when we apply the interval Gauss-

Seidel method on a collection of r constraints, only the values of the r variables

in the diagonal will be updated. For systems where there are more variables than

constraints, extra variables need to be narrowed by interval narrowing, which

is time-consuming. A simple way to reduce the number of such extra variables

is to include as many non-zero components as possible in the first r columns of

the IUPZ matrix in the calculation of the preconditioner.

Detection of Inconsistency/Redundancy

There is no general method to detect redundancy in an iterative method, espe-

cially in the interval context. Inconsistency is revealed if an empty intersection

is produced by applying the preconditioned Gauss-Seidel method directly to

the system. However, overestimation prevents us from detecting all possible

inconsistency.

In the implementation of an interval linear constraint solver, we must not

use inconsistent or redundant constraints in computing the preconditioner. In-

tuitively, a system, with redundant or inconsistent constraints often have more

61

Chapter 5 The Linear Solver

constraints than the number of unknown variables. Selecting the “wrong” sub-

set of equalities for preconditioning produces a poor preconditioner in the sense

that the preconditioned system may fail to converge.

We use a simple heuristic to locate inconsistent and redundant equalities.

Incremental calculation of a matrix inverse involves forward substitution (steps

1 and 2 in algorithm 5.1). If we find that after forward substitution on, say,

the (r + l)-st constraint during the calculation of the inverse of the mid-point

coefficient matrix A, all of A's remaining c � r coefficient mid-points are less

than a small user-defined value, say 10—8，then we conclude that the (r + l)-st

constraint is either "redundant" or “inconsistent.” Inconsistent and redundant

constraints are both regarded as fruitless to preconditioning and will not be

employed in the preconditioning process.

Note that our proposed method is only a heuristics. Constraints concluded

to be redundant or inconsistent may indeed be independent and consistent.

Simply disregarding these constraints can result in excessively relaxed answer

constraints. Current practice in the CIAL system is to transfer these constraints

to the non-linear solver for further scrutiny.

Incremental Application of Preconditioning

Preconditioning involves the multiplication of a point preconditioner matrix and

an interval matrix, which is of 0{n3) complexity6, where n is the rank of the

preconditioner. Without incremental application, we need to re-compute the

preconditioned system from scratch whenever new equalities are added in every

derivation step. In the worst case (i.e. when only exactly one new equality is

collected in each derivation step and the entire preconditioner is modified), the
6We do not consider such special divide-and-conquer matrix multiplication algorithms as

Strassen's algorithm (0(n2.81)) [18]. Those algorithms usually introduce multiple occurrences
of variables and require the dimension of the matrix to be a power of 2. The latter can double
the storage in the worst case.

62

Chapter 5 The Linear Solver

f I V > I \ • I ^

0 (n x n) 卜 一 0 A\(nxn) j = R1一）j R l — >

‘ M (lxn) [N(lxl)J \ A3(lxn) I A4(lx(c_n)) J (R3(lxn) ！ R4_-«•)�

Figure 5.2: Partition of the Preconditioner P and the Coefficient Matrix A 1

whole constraint solving algorithm has complexity 0{n4). We give an incremen-

tal adaptation of preconditioning application of order 0(n3).

Let O' (g) A ' 1 0 f 1 == O' 0 0 be a preconditioned system with n constraints.

Without loss of generality, we assume that one new constraint is added to the

system. Our goal is to make use of the previously calculated O ' � A'1 and O' 0b'1

to compute some parts of the new preconditioned system P(g)A ^ X 1 = P(g)6J.

Note that A 1 differs from A'1 by only an extra last row.

Consider the computation of P 0 A1 . We partition the new preconditioner

P, the new coefficient matrix A1 , and their product as shown in figure 5.2. The

product matrix R 1 can be calculated by the following equations:

B\ 二 O 0 A i e L (g) A 基

O N
= M (8) A i © N ® A^

R^ = M 0 © N 0 A^

All terms in (5.8), except O ® and O ® can be calculated in 0(n2) time.
j I

We concentrate on the computation of O (g) A x and O 0 A 2 .

The row reduced IUPZ matrix has the form [I|U|0'|Z] before a new con-

straint is added. Let O' = {olm) f o r i <l,m<n and (叫)the first column of U.

The situation of the IUPZ matrix when a new constraint is added is depicted in

63

Chapter 5 The Linear Solver

(5.9).

1 0 … 0 ui • • • on ol2 ‘ • ‘ o'ln 0 …

0 1 … 0 u2 … ‘ o22 …心 0 …
• • • • • • • • • ••參 . . . 參 . _ • • • ••鲁 眷

0 0 … 1 un … 心 义 2 … 0 …
an+i,i an+i,2 • • • . . .

 0 0
 • • •

 0 1
 一

I::. (5-9)
To update the preconditioner incrementally, we apply row reduction to the

left matrix in (5.9), while the same operations are performed to the right matrix.

The first (n + 1) columns of the left matrix will be transformed to an identity

matrix eventually if the new constraint is independent and consistent to the

system. An intermediate state of the row reduction procedure is:

1 0 … 0 wi … o ' n o12 … o l n 0 …

0 1 … 0 u2 …o'21 o22 • • • o'2n 0 . . .

0 0 … 1 un … o n l on2 ••• onn 0 …

0 0 . . . 0 1 . . . h h . . . tn 艺 n+l • • • •

where U's are some intermediate values. The updated (n + 1) X (n + 1) precon-

ditioner P is

o'n — Ulti d12 — Ulh ‘ . . °ln ~~ Ultn —Ultn-\-l

o21 — u2ti o22 — u2t2 …o2n — w2tn —u2tn+i
p — .. . … … … … （5.10)

o'nl - unti on2 - unt2 • • • Onn - Untn —untn+i

t\ ... tn tn+l
mm

What we have described is the analytic solution of P, which depends by no

means on the mode, real or floating-point, of the arithmetic operators. Assuming

that we are using real (interval) arithmetic, we can establish the following equal-

ity and inclusion relationships. We decompose the upper-left n xn sub-matrix

64

Chapter 5 The Linear Solver

O of P as follows.

0 = 0' - U 2 x (h t 2 … t n) . (5.11)

\ Un J

It follows that O 0 A^ and O (g) A^ can be approximated7 by

(U l \

O O A i CO'(g) A\ ㊀ 购 ⑭((h t
2
 ... t

n
)0 A j) (5.12)

、〜)
f U l \

C o ' (8) e U2 (8)((ti t2 ... tn)(g) A^). (5.13)

\ un j

using the subdistributivity8 and associativity9 [45] properties of interval arith-

metic. Unfortunately, none of (5.11), (5.12), and (5.13) hold under floating-

point (interval) arithmetic since associativity and subdistributivity are no longer

guaranteed.

The right-hand-sides of (5.12) and (5.13) contain 0'<S)A\ and slight

supersets of which are available from the previous preconditioned system. The

multiplication of a vector and a matrix is an 0(n2) operation. Thus the compu-

tation of the right-hand-sides of (5.12) and (5.13) is also of 0(n2) complexity.

We adapt this more efficient method to precondition the system instead of using

p a s defined in (5.10). In the following we state the preconditioning procedure

before showing the correctness of the procedure.
7 A floating-point number a can be regarded as a point interval [a, a]. Thus O can be

regarded as a matrix of point intervals.
(g) {B1 ㊉ CJ) CA^B1 e A1 ^ C1.

9 (A7 ^B^^C1 =AX <^(BT C1).

65

Chapter 5 The Linear Solver

The first step is to widen each component of the floating-point vector (ui,u2, •..,

by a small amount, say le"12 . The result is an interval vector (u[: u1” … , u 1 ^ .

We define C\ and C\ as follows.

f: ‘ l u I A
ui

C1! = o ' (8) A [e 2 (8) {{h t2 ...tn)® A l) (5.14)

[u i J

(u[\
UI

C^ 二 O' (g) A !㊀ 2 (E) {{ti t2 … t n) (8) A《） （5.15)

\<)
We modify the left-hand-side of the preconditioned system by replacing the

calculation of R^ and The new calculation is:

Ri 二 c l ® L ® A x 3 (5 1 6)

We call the new left-hand-side of the preconditioned system (obtained from

(5.8) and (5.16)), K 1 � X1. The next step is to find an appropriate floating-

point preconditioner P' to multiply b1, the criterion being that P ; (g)r A 1 C K 1 ,

where the symbol (g)r denotes the real interval multiplication. We propose P '

to be P with the O part (as shown in figure 5.2) replaced by O n e w defined as

follows.

卜 0
ui

O n e w G o ' Qi
 2

 (h t2 ... tn), (5.17)

\Un I

where the symbol Bi and denote the inward-rounded subtraction and multi-

plication respectively. The definition of inward-rounding follows.
66

Chapter 5 The Linear Solver

Definition 5.2.8: If J1 is a non-empty real interval, the inward-rounding

function rj : I(1R) — 1(F) is defined as,

； rjiJ1) = [j{j'IeI(F)\fICJ1}.

•

Lemma 5.2.9:

iu{\
ui

O n e w ®r A1! C O' 0 A i ㊀ 2 ® ((“ h ... tn) ® A x)

\uIn j

UI
Onew (g)rA^ C O ' O A ^ © � ((h t2 . . . tn) 0 A 2)

\ ui J

Proof : From equation (5.17), we have

(u { \

O
n e w

 G O'㊀‘
 2

 欧 (h 力2 … t n) .

V ui)

Let the symbols (g)r and denote the real interval multiplication and subtrac-

tion respectively. It follows,

ui
O

n
e w A i C (O ' © i

 2

 {h t2 • . • tn)) (g)
r
 A i

V Un J
67

Chapter 5 The Linear Solver

l : (u { \

ui T

C (O' e r 2 . 0r (h t2 ... tn)) (8)r A x

\ ui J

卜 0
C o ' (g)r A i © r (2 {tl h . • • tn))⑧r

\ ui J

ui

= O ' (g)
r
 A

1

! Q
r

 2

 0r ((tl h … t
n
) 0r A^)

V /

(u { \

UI

C ㊀ 2 (8) ((̂ 1 t
2
 ... t

n
) ® A i)

\ui j

Similarly, we can show

(u { \

ui

O n e w Or A ^ C o ' (8) A | e . 2 0 ((艺 1 尤2 … L) � A
2
)

\ ui J

•

Thus, P ; satisfies the criterion. The definition of O n e w also explains why we

need to widen the components of the (u i , u n) T vector: this is to facilitate the

computation using inward-rounding so that there will be less chance of "rounding

68

Chapter 5 The Linear Solver

inwardly" into empty intervals. Experiments show that each element in the

resttltant matrix at the right-hand-side of (5.17) contains several floating-point

numbers so that the matrix O n e w can be easily found. In the case where some

elements in the resultant matrix are empty intervals, we can further widen the

vector (ui, u 2 , . . . ,

Therefore, the preconditioned system is K1 X1 = Pf ® b1. The following

lemma and theorem show the correctness result of our incremental precondition-

ing procedure.

Lemma 5.2.10: Given two systems A1 ® X1 = b1 and K 1 � 二 P � b1. If

P 0 r A 1 C K 1 , then the solutions of Ax(8)XJ = b1 are contained in the solutions

of K 1 (g) X 1 = P 0 b1.

T — —
Proo f : Preconditioning guarantees that the solutions of A ® X1 = b1 are

contained in the solutions of P (g)r A1 0 X 1 = P ®r b1. Since P (g)r A 1 C K 1

and P (g)r C P (g) b1, from the inclusion monotonicity of interval arithmetic,

we know that the solutions of P 0 r A1 (8) X1 = P 0r b1 are contained in the

solutions of K 1 (8) X 1 = P 0 b1. It follows that the solutions of A ® X1 = h1

are contained in the solutions of K 1 ® X1 = •

Theorem 5.2.11: Assume that we have a linear system with n equalities of n

variables. The incremental preconditioned interval Gauss-Seidel method has the

worst case complexity 0{n3). The incremental method preserves all solutions of

an interval linear system.

Proof : The preconditioner update algorithm is a variant of incremental Gaus-

sian elimination, which has the worst case complexity 0(n3).

The preconditioned system is updated incrementally in 0(n2) time whenever

a new constraint is added. In the worst case, only one new equality is collected

in each derivation step, the incremental preconditioned interval Gauss-Seidel

69

Chapter 5 The Linear Solver

method has complexity 0(n3) .

From lemmas 5.2.9 and 5.2.10, the incremental method preserves all solutions

of an interval linear system. •�

Trailing

There is always a tradeoff between storage and speed in implementing trailing.

The state before the last choice point can be restored in higher speed if more

data are trailed, but more storage is consumed. This phenomenon becomes more

visible in CIAL since interval arithmetic is more demanding than floating-point
arithmetic in terms of both storage and speed.

We have several kinds of data in the preconditioned interval Gauss-Seidel

solver: the original system of constraints, the associated interval bounds for

interval variables, the preconditioner, and the preconditioned system. The orig-

inal constraints will not be changed so they should never be involved in trailing.

To maintain certain level of incremental execution in a constraint logic pro-

gramming language, we trail the interval bounds and the preconditioner. Since

the floating-point preconditioner is updated incrementally using a variant of the

incremental Gaussian elimination procedure, trailing the preconditioner should

not consume much more memory than trailing constraints in CLP(T^).

Trailing the preconditioned system suffers from a large space utilization.

Consider a system with n equalities of n variables. It takes at least 16 bytes1 to

store an interval and thus an equality occupies 16n bytes. In the worst case, i.e.

when only one new equality is collected in each derivation step and the entire

preconditioner is modified, we need to trail n(n + l) /2 constraints in total. It

requires (n2(n + 1)/128)KB.
A problem of size n = 100 takes about 7MB storage space. Doubling the

problem size rapidly increases the space utilization to about 61MB, which is

i o W e a s s u m e that the bounds of an interval are stored as double floating-point numbers.

70

Chapter 5 The Linear Solver

demanding.

In our design of the preconditioned interval Gauss-Seidel linear solver, we

do not trail any entry of the preconditioned system. Upon backtracking, the

preconditioned constraints will be re-computed if necessary. This design is based

on the assumption that there are usually some new constraints added to the

system after backtracking. It is inevitable to re-apply preconditioning on some

constraints even if they are trailed. Thus, the overhead are reduced.

5.2.4 Solver Interaction

The following steps replace the steps 2 and 5 in in algorithm 4.2 to yield a

complete constraint solving step in CIAL. Preconditioning in the step 2 serves

as constraint transformation. The associated intervals of interval variables are

narrowed in the step 5.

2. If any rows of the preconditioner are restored from trail in backtracking,

we re-apply preconditioning on the corresponding constraints. Otherwise,

the preconditioner and the preconditioned system are updated incremen-

tally to include the new linear constraint. All modified preconditioned

constraints are appended to the active list LA (B).

5. Assume that we have collected r linear equality constraints of c variables.

Remove a preconditioned linear constraint from the active list LA, say the

k-th one of the linear system, the value of the k-th variable is updated

using equation (5.6); while the (r + l)-st to the c-th variables are narrowed

by interval narrowing. If any of the variables is changed, the constraints

in both solvers that share that variable will be appended to LA and N A

accordingly (D).

Theorem 5.2.12: The constraint solving step in algorithm 4.2 with the in-

cremental preconditioned interval Gauss-Seidel solver always terminates. The

71

Chapter 5 The Linear Solver

system is either inconsistent or stable.

Proof : Since the input constraints are finite, the preconditioner and the

preconditioned system update procedures will not be invoked infinitely. In-

terval Gauss-Seidel method can be considered as "partial" interval narrowing

(lemma 5.2.5). Since interval narrowing always terminates with an inconsis-

tent or a stable system [36], it follows that the constraint solving step always

terminates. The system is also either inconsistent or stable. •

5.3 Comparisons

We have presented how the two proposed linear solvers can be adapted for

Incremental execution. The soundness of the solvers has also been proved. We

show their efficiency and accuracy by some expermental results in the next

chapter. Before moving on to the benchmarking results, we give some theoretical

comparisons between the generalized interval Gaussian elimination solver and

the incremental preconditioned interval Gauss-Seidel linear solver.

5.3.1 Time Complexity

The incremental preconditioned interval Gauss-Seidel method is of complexity

0(n3). However, when it is incorporated into a linear solver without any pre-

conditioned systems being trailed, the constraint solving procedure of the linear

solver has a different complexity. Consider a general system of n equalities with

n unknown variables. In the best case, no constraints are retracted in back-

tracking, the constraint solving procedure shares the same complexity as the in-

cremental preconditioned interval Gauss-Seidel method, which is of complexity

0(n3) . In the worst case, some constraints are retracted and all elements in the

preconditioner are modified in backtracking. Since no preconditioned systems

72

Chapter 5 The Linear Solver

are trailed, the previous preconditioned system cannot be restored. Thus the

preconditioned system cannot be updated incrementally. We need to apply pre-

conditioning from scratch whenever a new constraint is added. The constraint

solving procedure is of complexity 0(n4).

Generalized interval Gaussian elimination is based on incremental Gaussian

elimination and generalized interval arithmetic. The former technique has the

same complexity as Gaussian elimination, which is of 0(n3). Recall that a

generalized interval keeps all intervals that it depends on during calculation.

The complexity of a generalized interval operation is in 0(n) of its counterpart

in ordinary interval arithmetic. The complexity of generalized interval Gaussian

elimination is 0(n4).

5.3.2 Storage Complexity

Assume that an interval occupies p storage space. We need np storage to store an

interval linear equality of n variables. In the case where no trailing is involved, a

system of n equalities takes n2p storage. On the contrary, if we need to trail all

the collected constraints whenever a new constraint is added, there are totally

n{n - l) / 2 constraints to store and they occupy n2(n — l)p/2 storage.

In generalized interval Gaussian elimination, a generalized interval coefficient

is a list of ordinary intervals. Thus, the storage complexity of the generalized

interval Gaussian elimination is of 0{n3) in the best case and of 0{n4) in the

worst case.

In the incremental preconditioned interval Gauss-Seidel method, elements

of the preconditioner are floating-point numbers. Storing a floating-point pre-

conditioner requires only half of the storage for storing a system of interval

constraints. The storage complexity of the incremental preconditioned interval

Gauss-Seidel method is of 0(n2) in the best case and of 0(n 3) in the worst case.

If the preconditioned system is also trailed, five times of the storage is required.

73

Chapter 5 The Linear Solver

The order of complexity remains unchanged.

5.3.3 Others

Besides the time and storage complexities, there exists some minor differences

between the two constraint solving methods.

The preconditioned interval Gauss-Seidel method and preconditioned inter-

val Gaussian elimination give similar sharp results [48]. Since preconditioned in-

terval Gaussian elimination always works better than generalized interval Gaus-

sian elimination, we can expect that the incremental preconditioned interval

Gauss-Seidel method also works better than generalized interval Gaussian elim-

ination. Both of them are, however, incomplete in detecting inconsistency due to

overestimations introduced by outward-rounding. The solutions given by these

two methods should be interpreted as conditional answers.

For a system where there are as many independent equalities as variables,

generalized interval Gaussian elimination can give solutions without requiring

any initial bounds on the variables. Interval Gauss-Seidel method is an iterative

method. Initial bounds for some variables are inevitable in general11.

In short, the incremental preconditioned interval Gauss-Seidel method is

compared favourably against generalized interval Gaussian elimination.

1 initial bounds on variables can still be omitted in some special cases.

74

Chapter 5 The Linear Solver

“ I] Generalized Interval Incremental Preconditioned
Gaussian Elimination Solver Interval Gauss-Seidel Solver

" Soundness Yes Yes
Completeness No N o

Time (Best) 0(n4) 0(n3)
Time (Worst) 0(n4) 0{n4)
Storage (Best) 0(n3) 0{n)

Storage (Worst) 0{n4) 0(n)
Accuracy Low High

Initial Bounds Not necessary Necessary

Table 5.1: A Summary of Comparisons between Two Linear Solvers

75

Chapter 6

Benchmarkings

In order to demonstrate the feasibility of our proposal, we have constructed

several CIAL prototypes using the C programming language. Since CIAL has

much in common with CLP(^), we decided to use CLP(尺)as the backbone

of our implementation and tried to adopt as much original CLP(尺)code as

possible.

We use ICLP(^) as our first prototype implementation. The bounds of the

interval variables are expressed as inequality constraints in CLP(^). Although

CLP(尺)can express interval constraints well, it fails to narrow the intervals.

We embed interval narrowing for solving interval constraints. The resultant

prototype is, however, only four to five times faster than the ICLP(尺)meta-

interpreter [38]. To achieve the goal of efficient constraint solving, we decide to

re-use only the Prolog engine part of CLP(尺)in our subsequent CIAL prototype

implementations.

We have completed three different CIAL prototypes, all of which are based

on CLP(T^) Version 1.2 [28]. The solver interface and the two solvers (the linear

solver and the non-linear solver) are implemented from scratch. We also modify

the unification algorithm of the Prolog engine to cope with unification between

interval variables and other terms.

76

Chapter 6 Benchmarkings

CIAL (Alpha) [15], which consists of about 2800 extra lines of C code, em-

ploys generalized interval Gaussian elimination in its linear solver. The proposed

preconditioned interval Gauss-Seidel method has been incorporated into CIAL

1.x (Beta) [14]. CIAL 1.0 (Beta), which is implemented in about 3000 extra lines

of code, is being freely distributed to the public for experimental use, but the

solver lacks incremental execution. Although the preconditioner is constructed

incrementally, the preconditioned system (multiplying the preconditioner and

the interval coefScient matrix) are re-computed at every derivation step. We

further embed the incremental preconditioning algorithm in CIAL 1.1 (Beta) to

improve its efficiency.

The three prototypes use interval narrowing with splitting in solving inequal-

ity and non-linear constraints.

In this chapter, we compare our three CIAL prototypes with BNR Prolog

v3.1.0 [7, 52], CLP(BNR) (or BNR Prolog v4.2.3) [50, 9], Echidna Version 0.947

beta [55, 54], ICL [37], and CLP(尺）Version 1.2 [28, 32] over seven numerical

examples of various types: the well-known mortgage program [28] which comes

with the CLP(尺)distribution, a simple system of simultaneous equations in

two variables, analysis of a simple DC circuit, inconsistent simultaneous equa-

tions, the ball collision problem [30]，the famous Wilkinson polynomial [30], and

two large systems of linear equations. The examples range from purely linear

constraints, to a mixture of linear and non-linear constraints, and to purely non-

linear constraints. BNR Prolog runs on an Apple Mac II (� 2 VAX MIPS with

5MB Ram) and the other systems run on a SUN SPARCstation 10 model 30 (�

49 VAX MIPS with 32MB Ram).
We conclude this chapter by giving a comparison of the performance between

CIAL 1.0 (Beta) and CIAL 1.1 (Beta). It shows how the efficiency of linear

constraint solving is improved by an incremental preconditioning algorithm.

77

Chapter 6 Benchmarkings

6.1 Mortgage

The mortgage program [28] is a standard example from CLP(T^) for relating the

principal, number of months, interest rate, outstanding balance and monthly

payment in a mortgage. We rewrite it in CIAL syntax.

mg(P,T,I,B,MP)：-

T =":= 1,

B =:= P + (I*P - MP).

mg(P,T,I,B,MP)

T >= 2，

TA =:= (1 + I)*P - MP,

TB =:= T ~ 1,

mg(TA,TB,I,B,MP).

Given the following query,

？ - m g (9 9 9 9 9 , 1 0 , 0 . 0 1 , B , 5 0 0 0) .

CLP(T^) responds as follows:

B = 58150 .

The above answer is unsound due to round-off errors. Echidna suffers from

the same problem by giving answer 58150.03. Upon the same query, all three

CIAL prototypes and ICL give a fairly sharp inclusion of the answer,

B € (5 8 1 5 0 . 0 4 5 2 1 3 3 9 2 5 , 5 8 1 5 0 . 0 4 5 2 1 3 3 9 2 9) .

78

Chapter 6 Benchmarkings

CLP(BNR) agrees with our answer with a slightly lower precision. BNR Prolog

returns an interval with wide width.

There is no need for constraint solving, linear or non-linear, with the particu-

lar query instantiation. The computation involved is straight value propagation.

This example illustrates the problem of roundoff error.

6.2 Simple Linear Simultaneous Equations

This example is to exhibit the inadequacy of interval narrowing for handling

linear systems. Let us consider the following simple system in two unknowns.

X +Y 二 5

< X - Y = 6

X,Y G (- o o , + o o) .
s. 、

All of BNR Prolog, CLP (BNR), Echidna, and ICL cannot narrow any of the

variables when no initial bound is given. When we give them an initial guess of,

say, X,Y G [—1000,1000], they return

X € [-989,1000], YG [-995,994].

All CIAL prototypes1 return

X G [5.5, 5.5], YG [-0 .5 , -0 .5] .

which is the same exact solution returned by CLP(7^).

It is interesting to note that the first four systems are able to return slightly

less accurate solutions when interval splitting is employed.
iQIAL 1.0 (Beta) and CIAL 1.1 (Beta) use iterative method (Gauss-Seidel method) to solve

constraints after symbolic pre-processing (preconditioning). Initial bounds for some variables
are usually necessary, although they can be omitted in this example.

79

Chapter 6 Benchmarkings

6.3 Analysis of DC Circuit

Electrical engineering is an important application area for constraint logic pro-

gramming [27]. Consider the simple DC circuit in figure 6.1. We are interested

in the currents passing through the resistors,

j �

/ R8 R9 \ • _ < Wv -AA^- ->
+ ^T 丨9 Z

v iJ|Ri 令 4

. r 7 /
• 1 -tvw •

“丨 7

Figure 6.1: A Simple DC Circuit

Assume that V 二 10 volts and Ri 二 i Q for i 二 1,2,…，9. The following

system of linear equations are obtained from nodal and mesh analysis.

， I s - I i - 1 2 - 工 8 二 0 , h 二 10

— I S + I L + I 7 二 0 � 2 I 2 - 3 I 3 — 8 I 8 = 0

I 2 + I 3 - I 5 二 0 ， 3 I 3 + 5 I 5 — 9 I 9 二 0

_ l 3 _ l 4 + I 8 _ I 9 二 0 ， - 4 I 4 + 6I6 + 9I9 二 0

14 + l 6 - I 7 二 0 ， - I i + 4 I 4 + 7l7 + 8 I
8
 = 0

1 5 — 工 6 + 工 9 二 0
\

There are 11 linear equations but only 10 unknown variables. The redundant

80

Chapter 6 Benchmarkings

equation cannot be located in advance, however. CIAL (Alpha) gives the fol-

lowing results in 1.11s.

I s G (1 0 . 8 2 8 2 9 8 5 7 7 2 , 1 0 . 8 2 8 2 9 8 5 7 7 3)

e [10.0000000000,10.0000000000]

1 2 G (0 . 5 6 9 0 8 9 8 4 6 0 , 0 . 5 6 9 0 8 9 8 4 6 1)

1 3 g (- 0 . 3 1 1 8 3 0 0 5 2 7 , —0 .3118300526)

1 4 G (0 . 5 3 2 0 6 0 0 2 7 2 , 0 . 5 3 2 0 6 0 0 2 7 3)

1 5 G (0 . 2 5 7 2 5 9 7 9 3 4 , 0 . 2 5 7 2 5 9 7 9 3 5)

1 6 g (0 . 2 9 6 2 3 8 5 4 9 9 , 0 . 2 9 6 2 3 8 5 5 0 0)

1 7 G (0 . 8 2 8 2 9 8 5 7 7 2 , 0 . 8 2 8 2 9 8 5 7 7 3)

1 8 G (0 . 2 5 9 2 0 8 7 3 1 2 , 0 . 2 5 9 2 0 8 7 3 1 3)

1 9 e (0 . 0 3 8 9 7 8 7 5 6 5 , 0 . 0 3 8 9 7 8 7 5 6 6)

CLP(灭)responds in less than 1/60 second. CLP(灭)，s efficiency over CIAL

(Alpha) is due to the fact that interval symbolic operations, i.e. interval for-

ward and backward substitutions, are time-consuming. The solutions given by

CLP(T^) are, however, unsound.

With initial value [-100,100] for all variables, both CIAL 1.0 (Beta) and

CIAL 1.1 (Beta) give the same results as in CIAL (Alpha) and in less than 1/60

second.

By splitting 4 variables (l s , Ii , I2 , Is), ICL exits abruptly after 2 minutes

of execution; Echidna (in high precision) and BNR Prolog cannot terminate in

2 a n d 24 hours respectively. CLP(BNR) cannot give any solution (except I i)

with width less than 100, although all variables are specified to split.

This example demonstrates the inability of interval narrowing with splitting

to solve even small systems of linear constraints.

81

Chapter 6 Benchmarkings

6.4 Inconsistent Simultaneous Equations

The following ad hoc constraint system is obviously inconsistent, since B and C

should be equal with value either 1 or -2 according to the first three constraints.

Neither value is, however, consistent with the initial bound of B.

A + C 二 D

A + B = D
<

C (C + 1) = 2

� A G (0 , o o) , B G (- o o , - 5)

With interval splitting on all variables, CLP(BNR) returns “yes;” ICL and BNR

Prolog do not terminate in 1 hour; Echidna returns “yes” with default precision

and exits abruptly with high precision. CLP(尺)gives "maybe" with answer

constraints.

All three CIAL prototypes can detect the inconsistency without using split-

ting but with the cooperation of two solvers.

It is interesting to find that given the constraint C (C + 1) = 2, none of

CLP (BNR)，BNR Prolog, and Echidna can calculate the value of C without

using splitting, even initial guess [-100,100] is given.

6.5 Collision Problem

We demonstrate the non-linear constraint solving ability of CIAL in the two

subsequent examples.
This collision problem and the following program are adopted from [30]. The

program describes two objects, one stationary cubic wall and a ball moving along

a quadratic space curve. It tries to find the time that the ball hits the wall.

82

Chapter 6 Benchmarkings

°/0 object_A/3 descr ibes the shape of the wall

o b j e c t J l (X , Y , Z) : -

X <= 0,

Y <= 0,

Z <= 0.

®/0 object_B/3 describes the shape of the b a l l

o b j e c t _ E (X , Y , Z) : -

X2 + Y2 + Z2 =:= 1.

°/0 center_B/4 gives the pos i t i on of the center of the b a l l

°/0 at time T
centerJB(T,Cx,Cy,Cz) : -

Cx =:= T2 - 10，

Cy =:= 2*T - 10,

Cz =:= T2 - 7*T + 10.

% object_E-moving/4 gives the point (X，Y，Z) that i s in the

°/0 b a l l at time T

object_B.moving(T,X,Y,Z)

center_B(T,Cx,Cy,Cz)，

object_B(X-Cx，Y-Cy，Z-Cz),

Given the following query,

7 - t >= 0，object_A(X,Y,Z) , object_B�oving(T，X，Y，Z).，

all CIAL prototypes give the result,

T G (1.6972243622,3.3166247904).

It is the same as the results obtained from RISC-CLP(Real) [30], which employs

83

Chapter 6 Benchmarkings

symbolic algebraic method for constraint solving.

I f T < = 3 , I T > = 3 ,

f.v \ T 2 _ 7 T + 9 < = o. 1 T 2 - 1 1 < = 0 .

RISC-CLP(Real) cannot solve the above quadratic equations. We use some

algebra packages to solve the two systems. The union of the answers are

T G (1.6972243622,3.3166247904).

CIAL cannot give this sharp result if we do not use the square primitive

constraint.

Both BNR Prolog, CLP(BNR), and ICL return similar results as CIAL. This

is predictable since their solvers are also based on interval narrowing. Echidna

returns a wide answer at low precision and exits abruptly at higher precision.

For efficiency reason, CLP(尺)does not provide non-linear constraint solving.

All non-linear arithmetic constraints are classified as hard constraints, which will

be considered only when they become linear [44]. In this example, since no non-

linear constraints can become linear, they are delayed indefinitely. The output

of CLP(尺）is

0 <= T,

X <= 0,

Y <= 0,

Z <= 0,

_ _ t l 2 * _tl2 _ (Y - 2*T + 10) * (Y - 2*T + 10) + 1 = -tlO * -t lO,

- _ t l2 + Z + 7*T - 10 = T * T,

- _ t l0 + X + 10 = T * T.

84

Chapter 6 Benchmarkings

x1013 x1013 _——__
1 | | 丨丨‘ ‘ ' I ' ‘ ‘ II | | | I 111 I I | [' '

0.8- I 0 8 \

0.6- \ �.6.�

0.4- \ °4 \

°o- — : 、 � � � � " “

-0.6 - _

•0.8- | . E = 2̂(-23) | * -0-8" I • E = 2�-40) | ‘
^ ‘ I 1 -18 -16 -14 -12 -10t~%~i i 0 "1 -20 -18 -16 -14 -12 -10 ^ >6 -4 0

j (a) (b)
Figure 6.2: The curves y 二 + 0 and y 二 -EX19

6.6 Wilkinson Polynomial

This example describes the famous Wilkinson polynomial equation. The prob-

lem is to find the real roots of the following equation.
20

e x 1 9 = °
i=i

L e t 丑 二 0. The real roots of this unperturbed polynomial in the closed

interval [—20，—10] are -20,-19,-18，-17,-16,-15,14,-13,-12,-11,-10, respectively.

A slight perturbation of the polynomial by 五二 2—23 removes all roots in

[—20, —10], as shown in figure 6.2(a) which consists of the curves Y 二

and y = -EX19. CIAL returns no answers as expected.

When E 二 2"40 (Figure 6.2(b)), the three CIAL prototypes find all solutions

with 10 decimal place accuracy by using interval splitting.

X € (- 1 0 . 0 0 0 0 0 6 9 0 6 9 - 1 0 . 0 0 0 0 0 6 9 0 6 8 . . .)

X € (- 1 0 . 9 9 9 9 5 7 7 6 1 9 . . . ， - 1 0 . 9 9 9 9 5 7 7 6 1 8 . • •)

X € (- 1 2 . 0 0 0 1 8 0 5 7 9 4 …， - 1 2 . 0 0 0 1 8 0 5 7 9 3 • •.)

85

Chapter 6 Benchmarkings

X 6 (- 1 2 . 9 9 9 4 4 9 5 3 5 7 •. • , - 1 2 . 9 9 9 4 4 9 5 3 5 6 • • •)

X G (- 1 4 . 0 0 1 2 1 3 2 5 3 0 … ， - 1 4 . 0 0 1 2 1 3 2 5 2 9 • . .)

X G (- 1 4 . 9 9 8 0 7 3 8 1 8 5 . . • , - 1 4 . 9 9 8 0 7 3 8 1 8 4 . . •)

X G (— 1 6 . 0 0 2 1 8 9 4 0 9 4 . . . , - 1 6 . 0 0 2 1 8 9 4 0 9 3 . •.)

X G (- 1 6 . 9 9 8 2 6 6 6 5 8 2 . . . , - 1 6 . 9 9 8 2 6 6 6 5 8 1 • . .)

X G (- 1 8 . 0 0 0 9 0 4 7 5 8 0 . . . , - 1 8 . 0 0 0 9 0 4 7 5 7 9 . . .)

X G (- 1 8 . 9 9 9 7 1 8 8 3 5 7 . . . , - 1 8 . 9 9 9 7 1 8 8 3 5 6 • . .)

Echidna cannot terminate in 15 minutes for E 二 2一23. For E 二 纩 4 0 , it aborts

abnormally for default precision and does not give any solution in 15 minutes

for higher precision. ICL, BNR Prolog, and CLP(BNR) return similar results

a s those of CIAL in both cases. CLP(尺)delays all the constraints and gives

X <= - 1 0 ,

- 2 0 <= X，

- E * X * X * X * X * X * X * X * X * X * X * X * X * X *

X * x * X * X * X * X = (X + 1) * (x + 2) * (X + 3) *

(X + 4) * (X + 5) * (X + 6) * (X + 7) * (X + 8) * (X + 9) *

(X + 1 0) * (X + 1 1) * (X + 1 2) * (X + 1 3) * (X + 1 4) *

(X + 1 5) * (X + 1 6) * (X + 1 7) * (X + 1 8) * (X + 1 9) *

(X + 2 0) .

6.7 Summary and Discussion

The last example on large-scale linear systems is beyond the capability of the in-

t e r v a l narrowing based systems, i.e. ICL, BNR Prolog, CLP(BNR), and Echidna.

We compare only the three CIAL prototypes and CLP(^). Before going into

the last example, we summarize the previous benchmarking results in table 6.1

and table 6.2，and give a brief discussion.

86

Chapter 6 Benchmarkings

The CIAL solvers subsume the symbolic constraint solving method (Gaussian

elimination or preconditioning) and the interval narrowing technology. CLP(T^)

delays non-linear constraints from consideration and interval narrowing fails to

handle even small system of linear constraints, as shown in section 6.3. Thus,

CLP (灭) ,BNR Prolog, CLP (BNR), Echidna, and ICL are deficient in solving

mixtures of linear and non-linear constraints. A simple example can be obtained

by adding the constraint I x (l x 一 1) 二 I s to the system in section 6.3.

6.8 Large System of Simultaneous Equations

The following program describes a randomly generated system of linear con-

straints with rank=50.

test (X0,Xl ,X2 , . . . ,X49)：-

a random generated constraint with 50 variables,

f a i l .

t ：-

X0>= -10000,X0<=10000,

Xl>= -10000,Xl<=10000, • •
• • • •

X49>= -10000,X49<=10000,

5 random generated constraints with 50 variables，

pl(X0 ,Xl ,X2, . . . ,X49).

pl (X0,Xl ,X2, . . . ,X49)

test (X0，Xl，X2，...，X49) .

pl (X0,Xl ,X2, . . . ,X49)

5 random generated constraints with 50 variables,

p 2 (X 0 , X l , X 2 , . . . , X 4 9) .

87

Chapter 6 Benchmarkings

• » •
• • •
• « •

p9(X0,Xl,X2, . . . , X 4 9) : -

test (X0，Xl，X2，...，X49) .

p9(X0，Xl，X2，...，X49)：-

5 random generated constraints with 50 variables.

The program contains predicates test /50 , t / 0 , pl /50, ••., p9/50. The top

level predicate of the program is t / 0 , which sets the initial bounds of all vari-

ables and calls pl /50. Each subsequent pi /50 predicate definition consists of

two clauses. The first clause calls the test /50 predicate, which submits a new

constraint to the constraint solver and always fails. This is to exercise the trail-

t ing and backtracking capability of CIAL. The second clause submits five extra

constraints to the solver and calls predicate p (i+ l) / 50 . That means that the

call patterns of the pi /50 predicates form a "chain" and five constraints are

added to the constraint solver in each derivation step.
CIAL 1.0 (Beta) gives the solutions with 10 decimal place accuracy in 34.3s,

while CIAL 1.1 (Beta) solves the system with the same precision in 36.2s.

CLP(尺)responds in 3.7s. It is about ten times faster than CIAL since interval

computation is time-consuming, especially for setting IEEE rounding directions

a n d detecting exceptions. The solutions given by CLP(尺)are, however, un-

sound. Many of them are different from the real solutions at the fourth or fifth

decimal place. It is also interesting to find that CIAL (Alpha) cannot narrow

a n y of the variables due to the growth of width of the coefficients.

We further try to solve a larger system. It is similar to the previous one but

there are 100 linear constraints in total. Constraints are added to the constraint

solver two at a time in each derivation step.
With 10 decimal place accuracy, CIAL 1.0 (Beta) and CIAL 1.1 (Beta) re-

spond in 1312.6s and 1091.2s respectively. CLP(尺)solves the system in 104.2s.

88

Chapter 6 Benchmarkings

Again, CIAL (Alpha) cannot narrow any of the variables.

This example demonstrates the efficiency and practicality of the incremental

preconditioned interval Gauss-Seidel method in the CIAL linear solver. Also, it

shows that generalized interval Gaussian elimination fails to tackle large systems

of linear equations effectively.

6.9 Comparisons Between the Incremental and

the Non-Incremental Preconditioning

We end this chapter by comparing the performance of CIAL 1.0 (Beta) and

CIAL 1.1 (Beta). The only difference between these two systems is that the latter

employs an incremental preconditioning technique in its linear solver, while the

former does not.
We modify the program in section 6.8. The first clause in all the p i /n

predicate definitions are removed. It implies that no trailing or backtracking

will be involved in the execution of the program. Also, the program is changed

to only one constraint can be collected in a derivative step.

Table 6.3 shows the speedup in interval linear constraint solving with incre-

mental preconditioning for problem size ranging from 10 to 100. As expected,

CIAL 1.1 exhibits a near linear speedup over CIAL 1.0 as the problem size grows.

Solutions given by CIAL 1.1 are slightly wider than those obtained from

CIAL 1.0. We find that the solutions given by CIAL 1.1, however, still reach 8

decimal places of accuracy in general.

89

Chapter 6 Benchmarkings

II C L P (B N R) B N R Prolog ICL Echidna
v3.1.0

Mortgage~~II sound r e s u l t s o u n d wide sound result unsound re-
r e s u lt suit 58150.03
[58149,58151]

Simple almost n o a l m o s t no" almost no almost. no
System narrowing narrowing narrowing narrowing
Simple sound result sound r e s u l t s o u n d result sound result
System
with
Splitting
DC Circuit almost almost no almost no almost. no

narrowing narrowing narrowing narrowing
DC Circuit sound not terminate exit abruptly not terminate
with but very wide in 24 hours in 2 hours
splitting result
Inconsistent cannot detect not terminate not terminate cannot detect
System in 1 hour in 1 hour
Collision sound result sound result sound r e s u l t e x i t abruptly

at high pre-
cision & give
wide result at
low precision

Wilkinson no solution no solution no so lut ion"" not terminate
(2一23) in 15 minutes
Wilkinson "sound result sound r e s u l t s o u n d result exit abruptly

一 4 0 � at default pre-
cision & not
terminate in
15 minutes at
high precision

Table 6.1: A Summary of Comparisons

90

Chapter 6 Benchmarkings

II CIAL (Alpha) CIAL 1.0 CIAL 1.1 CLP(尺)
(Beta) (Beta)

MortgageII sound result"" sound r e s u l t s o u n d result unsound
result 58150

Simple sound result sound r e s u l t s o u n d result sound result
System

" S i ^ " N / A " N / A N / A N / A
System
with
Splitting -
DC Circuit give sound re- give sound re- give sound re- give unsound

suit in 1.11s suit in � l / 6 0 s suit in � l / 6 0 s result in
� l / 6 0 s

DC Circuit "nTA _ " n 7 A
with
splitting —
Inconsistent can detect can detect can detect cannot detect
System -z~：
Collision sound result sound result sound result floundering__
Wi lk inson”no solution no solution no solution floundering
(2 - 2 3)
Wilkinson sound result sound result sound result floundering
(2-40) 1 �

Table 6.2: A Summary of Comparisons (cont.)

91

Chapter 6 Benchmarkings

Rank [I CIAL 1.0 (Beta) CIAL 1.1 (Beta) || Speedup || CLP(尺）

10 035^ I 1 ^ 0 0 I I 0.01s
20 2.87s 2.20s 1.30 0.08s
30 12.99s 8.28s 1.57 0.35s
40 38.50s 24.33s 1.58 0.93s
50 85.06s 48.94s 1.74 2.51s
60 171.73s 92.74s 1.85 6.19s
70 371.58s 198.71s 1.87 8.93s
80 544.25s 283.93s 1.92 17.52s
90 838.93s 417.11s 2.01 34.56s
100 1259.81s 607.91s || 2.07 || 39.07s

Table 6.3: Speedup by Using the Incremental Preconditioning Algorithm

92

Chapter 7

Concluding Remarks

7.1 Summary and Contributions

In this thesis, we have discussed the deficiencies of interval narrowing with split- ；

ting. Our experiments show that interval narrowing based systems fail to solve

even small problems efficiently and effectively. Thus interval narrowing with

splitting is impractical in solving general interval constraints over real domain

(Chapter 3). We propose to separate linear equality constraint solving from

inequality and non-linear constraint solving. This idea is realized in our new

interval constraint logic programming system, CIAL (for Constraint Interval

Arithmetic Language), which shares the same declarative and operational seman-

tics as those of ICLP(尺)[38] (Chapter 2). We have designed an architecture

for CIAL and established the interaction among the modules in the architec-

ture. Unification between interval variables and other terms are handled in an

extended unification algorithm. Input arithmetic constraints are decomposed

into linear equalities and a set of convex primitive constraints. The former is

handled by the linear solver; while we apply interval narrowing on the latter in

the non-linear s o l v e r (Chapter 4). We have extended and generalized two linear

93

Chapter 7 Concluding Remarks

constraint solving techniques in interval computation for interval linear equal-

ity constraint solving, resulting in generalized interval Gaussian elimination and

the incremental preconditioned interval Gauss-Seidel method. These techniques

have been implemented in the CIAL linear constraint solvers (Chapter 5). We

have constructed three CIAL prototypes with different linear solvers and com-

pared them with several major interval constraint logic programming languages.

The performance of the different prototypes are presented (Chapter 6).

The contribution of our work is three-fold. First, we have derived two prac-

tical interval linear equality solvers. The solvers are adapted for incremental

execution. Their correctness have also been established. Of the two proposed lin-

ear constraint solving methods, the incremental preconditioned interval Gauss-

Seidel method is of 0{n3) complexity, which is the same as the ordinary Gaussian

elimination in solving system of equations. Solutions given by the incremental

preconditioned interval Gauss-Seidel method are, however, slightly wider than

those obtained from the non-incremental method. Our large scale experiments

show that the solutions given by this incremental method still reach 8 decimal

places of accuracy in general.
Second, we have shown how an interval linear solver can be incorporated into

a system which has already had a non-linear solver based on interval narrowing.

We have derived a constraint decomposition procedure and an interaction scheme

for the two solvers. Input constraints are divided into two categories, which will

be sent to two solvers accordingly： The two solvers share common variables,

interact in a round-robin fashion, and cooperate towards solving a system of

numerical constraints. We have shown the termination of the interaction scheme.

Third, we have constructed three prototypes of CIAL and compared them

with one another, as well as with several existing interval constraint logic pro-

gramming languages. Of the three prototypes, CIAL 1.1 (Beta) has been shown

94

Chapter 7 Concluding Remarks

to be the most efficient one in solving large scale linear systems. On the compar-

isons of CIAL and other existing systems, CIAL is all rounded: all prototypes

are substantially more efficient and can solve more classes of problems than any

other existing systems when used alone.

7.2 Future Work

A number of questions remain to be investigated. First, the linear solver can

only handle linear equalities. It would be interesting to investigate how lin-

ear inequalities can be accommodated. We believe that our proposed linear

equality constraint solving methods, especially the incremental preconditioned

interval Gauss-Seidel method, can be generalized to h a n d l e inequalities. Second,

Benhamou et al [8] replace interval narrowing by a Newton reduction operator,

which shows an improvement in non-linear constraint solving. However, precon-

ditioning has not been included. It is worthwhile to study if our incremental

preconditioning technique can be applied to further improve the Newton reduc-

tion operator.

On the theoretical side, it would be interesting to study the level of inter-

val consistency attainable in generalized interval Gaussian elimination and the

preconditioned interval Gauss-Seidel method. Both of them should reach a con-

sistency level falling between box consistency and hull consistency [8].

Concerning implementations, our CIAL prototypes have much to be desired.

First, the CIAL architecture is rudimentary. Further optimizations, such as

the techniques used for CLP(尺)，might be applicable to CIAL. Second, the cur-

r e n t prototypes implement constraint solvers as independent modules separating

from the Prolog engine. Communications between the solvers and the Prolog

engine incur high overhead. Backtracking also becomes a costly operation. We

95

Chapter 7 Concluding Remarks

expect that the work of Lee and Lee [37] can be used as basis to integrate the in-

terval constraint solving and the Prolog engine at the Warren Abstract Machine

(WAM) level. Third, built-in predicates in CIAL are limited. To apply CIAL

on real-life problems (e.g. scheduling), more relations, such as max/2, min/2,

s in /1 , asin/1 [50], should be provided.

To establish the practicality of our approach, we need to try CIAL on more

real-life applications, e.g. job shop scheduling, process planning, assembly line

balancing, temporal and spatial reasoning, multiagent planning, finite element

modeling, circuit design, etc.

96

Bibliography

[1] A. Aggoun and N. Beldiceanu. Overview of the CHIP compiler system. In

Proceedings of the Eighth International Conference on Logic Programming,

Paris, France, 1991.

[2] A. Aiba, K. Sakai, Y. Sato, D.J. Hawley, and R. Hasegawa. Constraint logic

programming language C AL. In Proceedings of the International Conference

on Fifth Generation Computer Systems 1988, pages 263-276, Tokyo, Japan,

1988.

[3] H. Ait-Kaci. Warren's Abstract Machine: A Tutorial Reconstruction. The

MIT Press, 1991.

[4] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Aca-

demic Press, 1983.

[5] K.E. Atkinson. An Introduction to Numerical Analysis. John Wiley k Sons,

1978.

減 R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donate, J. Dongarra，V. Ei-

jkhout，R. Pozo，C. Romine, and H. van der Vorst. Templates for the

Solution of Linear Systems: Building Blocks for Iterative Methods. Society

for Industrial k Applied Mathematics, 1993.

[7] Bell-Northern Research Ltd. BNR Prolog Reference Manual, 1988.

97

[8] F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP (Intervals) re-

visited. In Logic Programming: Proceedings of the 1994 International Sym-

posium^ Ithaca, USA, 1994.

[9] F. Benhamou and W.J. Older. Applying interval arithmetic to real, integer

and boolean constraints. (Submitted to) Journal of Logic Programming,

1994.

[10] C. Bessiere. Arc-consistency and arc-consistency again. AI Journal,

65(1):179-190, 1994.

[11] B. Buchberger. Grobner bases: An algorithmic method in polynomial ideal

theory. In N.K. Bose, editor, Recent Trends in Multidimensional Systems

Theory, chapter 6. D. Riedel Publ. Comp., 1983.

[12] B. Buchberger and H. Hong. Speeding-up quantifier elimination by Gr6bner

bases. Technical Report 91-06.0, Research Institute for Symbolic Compu-

tation, Johannes Kepler University, A-4040 Linz, Austria, 1991.

[13] X. Chen and D. Wang. On the optimal properties of the Krawczyk-type

interval operator. International Journal of Computer Mathematics, 29(2-

4):235—245, 1989.

[14] C.K. Chiu and J.H.M. Lee. Interval linear constraint solving using the

preconditioned interval Gauss.-Seidel method. In Workshop on Constraint

Languages/Systems and their use in Problem Modelling, Ithaca, USA, 1994.

[15] C.K. Chiu and J.H.M. Lee. Towards practical interval constraint solving

in logic programming. In Logic Programming: Proceedings of the 1994

International Symposium, Ithaca, USA, 1994.

[16] J.G. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125-149,

1987.

98

[17] A. Colmerauer. An introduction to Prolog III. Communications of the

ACM, 33(7):69-90, July 1990.

[18] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.

The MIT Press, eighth edition, 1992.

[19] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and

F. Berthier. The constraint logic programming language CHIP, In Proceed-

ings of tfie International Conference on Fifth Generation Computer Sys-

tems, Tokyo, Japan, 1988.

[20] D.M. Gay. Solving interval linear equations. SIAM Journal on Numerical

Analysis, 19(4):858-870, 1982.

[21] W.W. Hager. Updating the inverse of a matrix. SIAM Review, 31(2):221-

239，June 1989.

[22] E. Hansen. Global Optimization using Interval Analysis. Marcel Dekker,

Inc., 1992.

[23] E.R. Hansen. Interval arithmetic in matrix computations. SIAM Journal

on Numerical Analysis, 2:308^20, 1965.

[24] E.R. Hansen. A generalized interval arithmetic. In Interval Mathematics,

pages 7-18, 1975.

[25] E.R. Hansen. Bounding the solution of interval linear equations. SIAM

Journal on Numerical Analysis, 29(5):1493-1503, October 1992.

[26] W.S. Havens, S. Sidebottom, J. Jones, M. Cuperman, and R. Davison.

Echidna constraint reasoning system: Next-generation expert system tech-

nology. Technical Report CSS-IS TR 90-09, Centre for Systems Science,

Simon Fraser University, Burnaby, B.C., Canada, 1990.

99

[27] N. Heintze, S. Michaylov, and P. Stuckey. CLP(T^) and some electrical engi-

neering problems. Journal of Automated Reasoning, 9(2):231-260, October

1992.

[28] N.C. Heintze, J. Jaffar，S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The

CLP(11) Programmer's Manual Version 1.2. IBM Thomas J Watson Re-

search Center, 1992.

[29] H. Hong: Improvements in CAD-Based Quantifier Elimination. PhD thesis,

The Ohio State University, 1990.

[30] H. Hong. Non-linear real constraints in constraint logic programming. In

Proceedings of the Second International Conference on Algebraic and Logic

Programming, 1992.

[31] J. Jaffar and J-L. Lassez. Constraint logic programming. Conference Record

of the Fourteenth Annual ACM Symposium on Principles of Programming

Languages, 1987.

[32] J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The CLP(灭）lan-

g u a g e and system. In ACM Transactions on Programming Languages and

Systems, volume 14, pages 339-395, 1992.

[33] R.B. Kearfott. Preconditioners for the interval Gauss-Seidel method. SIAM

Journal on Numerical Analysis, 27(3):804-822, June 1990.

[34] R.B. Kearfott, C. Hu, and M. Novoa. A review of preconditioners for the

interval Gauss-Seidel method. Interval Computations, l(l):59-85, 1991.

[35] R.B. Kearfott and Xing Z. An interval step control for continuation meth-

ods. SIAM Journal on Numerical Analysis, 31(3):892—914, June 1994.

100

[36] J.H.M. Lee. Numerical Computation As Deduction In Constraint Logic

Programming. PhD thesis, Department of Computer Science, Logic Pro-

gramming Laboratory, University of Victoria, Victoria, Canada, 1992.

[37] J.H.M. Lee and T.W. Lee. A WAM-based abstract machine for interval

constraint logic programming. In Proceedings of the Sixth IEEE Interna-

tional Conference on Tools with Artificial Intelligence, New Orleans, USA,

1994.

[38] J.H.M. Lee and M.H. van Emden. Adapting CLP(尺)to floating-point arith-

metic. In Proceedings of the International Conference on Fifth Generation

Computer Systems 1992, volume 16, pages 996-1003, Tokyo, Japan, 1992.

[39] J.H.M. Lee and M.H. van Emden. Interval computation as deduction in

CHIP. Journal of Logic Programming, 16:255-276, 1993.

[40] 0 . Lhomme. Consistency techniques for numeric CSPs. In Proceedings of

the 13th International Joint Conference on Artificial Intelligence, 1993.

[41] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second

edition, 1987.

[42] A.K. Mackworth. Consistency in networks of relations. AI Journal, 8(1):99-

118, 1977.

[43] A.K. Mackworth, J.A. Mulder, and W.S. Havens. Hierarchical arc consis-

tency: Exploiting structured domains in constraint satisfaction problems.

Computational Intelligence, 1:118-126, 1985.

[44] S. Michaylov. Design and Implementation of Practical Constraint Logic

Programming Systems. PhD thesis, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA, U.S.A, August 1992.

[45] R.E. Moore. Interval Analysis. Prentice-Hall, 1966.

101

[46] J.LI. Morris. Computational Methods in Elementary Numerical Analysis.

John Wiley k Sons, 1983.

[47] A. Neumaier. Overestimation in linear interval equations. SIAM Journal

on Numerical Analysis, 24(1):207—214, February 1987.

[48] A. Neumaier. Interval Methods for Systems of Equations. Cambridge Uni-

versity Press, 1990.

[49] Members of the Radix-Independent Floating-point Arithmetic Work-

ing Group. IEEE standard for radix-independent floating-point arithmetic.

Technical Report ANSI/IEEE Std 854-1987, The Institute of Electrical and

Electronics Engineers, New York, USA, 1987.

[50] W. Older. Constraints in BNR Prolog. Technical Report Draft 01, Software

Engineering Centre, Bell-Northern Research, Ottawa, Canada, 1993.

[51] W. Older and A, Vellino. Extending Prolog with constraint arithmetic on

real intervals. In Proceedings of the Canadian Conference on Computer &

Electrical Engineering, Ottawa, Canada, 1990.

[52] W. Older and A. Vellino. Constraint arithmetic on real intervals. In

A. Colmerauer and F. Benhamou, editors, Constraint Logic Programming:

Selected Research. MIT Press, 1992.

[53] W.J. Older. The application of relational arithmetic to X-ray diffraction

crystallography. Technical Report 89001, Software Engineering Centre,

Bell-Northern Research, Ottawa, Canada, 1989.

[54] G. Sidebottom and W.S. Havens. Hierarchical arc consistency for disjoint

real intervals in constraint logic programming. Computational Intelligence,

8(4):601-623, 1992.

102

[55] S. Sidebottom, W. Havens, and S. Kindersley. Echidna Constraint Reason-

ing System (Version 1): Programming Manual. Expert Systems Laboratory,

Simon Fraser University, British Columbia, Canada, 2.0 edition, 1992.

[56] L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, second

edition, 1994.

[57] p. Van Hentenryck. Constraint Satisfaction in Logic Programming. The

MIT Press, London, England, 1989.

[58] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University

Press, 1965.

103

1

-
�

^
 .V

 -

 -

 -

 s

.
A
 .

•

.

丨

-

「

•

 -

 I

-
-
.
.
-
A
t

 .
 •

 ...

 ,
 -

 ®

 -

-

C U H K L i b r a r i e s

0DD7340SE

