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ABSTRACT 
Program induction generates a computer program with the desired behavior for a given 
set of situations. Genetic Programming (GP) and Inductive Logic Programming (ILP) 
are two of the approaches for program induction. GP is a method of automatically 
inducing S-expressions in Lisp to perform specified tasks while ILP involves the 
construction of logic programs from examples and background knowledge. 

Since their formalisms are very different, these two approaches cannot be 
integrated easily although their properties and goals are similar. If they can be combined 
in a common framework, then their techniques and theories can be shared and their 
problem solving power can be enhanced. 

This thesis describes a framework that integrates GP and ILP based on a 
formalism of logic grammars. A system called LOGENPRO (the LOgic grammar based 
GENetic PROgramming system) is developed. This system has been tested on many 
problems in program induction, knowledge discovery from databases, and meta-level 
learning. These experiments demonstrate that the proposed framework is powerful, 
flexible, and general. 

Experiments are performed to illustrate that programs in different programming 
languages can be induced by LOGENPRO. The problem of inducing programs can be 
formulated as a search for a highly fit program in the space of all possible programs. 
This thesis shows that the search space can be specified declaratively by the user in the 
framework. Moreover, the formalism is powerful enough to represent context-sensitive 
information and domain-dependent knowledge. This knowledge can be used to 
accelerate the learning speed and/of improve the quality of the programs induced. 
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Knowledge discovery systems induce knowledge from datasets which are huge, 
noisy (incorrect), incomplete, inconsistent, imprecise (fuzzy), and uncertain. The 
problem is that existing systems use a limiting attribute-value language for representing 
the training examples and induced knowledge. Furthermore, some important patterns 
are ignored because they are statistically insignificant. LOGENPRO is employed to 
induce knowledge from noisy training examples. The knowledge is represented in first-
order logic program. The performance of LOGENPRO is evaluated on the chess 
endgame domain. Detailed comparisons with other ILP systems are performed. It is 
found that LOGENPRO outperforms these ILP systems significantly at most noise 
levels. This experiment indicates that the Darwinian principle of natural selection is a 
plausible noise handling method which can avoid overfitting and identify important 
patterns at the same time. 

An Adaptive Inductive Logic Programming (Adaptive ILP) system is 
implemented using LOGENPRO as the meta-level learner. The system performs better 
than FOIL in inducing logic programs from perfect and noisy training examples. The 
result is very encouraging as it suggests that LOGENPRO can successfully evolve a 
high performance ILP system. 
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Chapter 1 Introduction 
Program induction is a method for automatic programming. The relation between them 
is discussed in the first section. The next section describes the motivation of this thesis 
and where the main theme of this thesis on evolutionary approach fits in the overall 
picture of automatic programming. The contributions of this research are summarized in 
section 1.3. The last section is an outline of the thesis. 

1.1. Automatic programming and program induction 

The software life cycle consists of the tasks of requirement acquisition, specification 
formation, software analysis, design, implementation, verification, validation and 
documentation. Researchers in the field of automatic programming investigate how to 
automate these tasks. The ultimate goal of automatic programming is to solve current 
software development problems by eliminating most of the software engineers currently 
required. This approach only requires the users to write specifications for what they 
want and a fully automatic system then systematically generate programs satisfying 
these specifications. These specifications can be complete or partial, formal or informal. 
Program generators have been successfully developed for a number of specific narrow 
application domains. 

However, an end-user oriented, general purpose, and fully automatic system is 
still not a realistic goal. Rich and Waters (1988) identify several myths of automatic 
programming and indicate three achievable approaches to automatic programming. 
These approaches are: 

• Non-end-user oriented: This approach tries to automate the tasks of 
program analysis, design, development, verification and documentation. 
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• Narrow domain: This approach focuses on a narrow enough domain 
so that it is possible to construct a fully automatic system that can 
communicate with the user directly. 

• Semi-automatic: This approach attempts to provide various tools to 
assist in different aspects of programming. It also integrates these tools 
and improves the performance of individual tools. 

An automatic programming system can be classified by either the types of 
specifications provided by the user or the mechanisms employed to generate executable 
programs from specifications (Rich and Waters 1988). Specifications can be described 
in different natural languages, special-purpose languages, very high-level languages, 
formal specification languages, and examples describing the inputs and the 
corresponding outputs of the desired programs. 

Natural languages are efficient and convenient means for performing 
communication between the user and an automatic programming system. However, 
current researches in natural language processing still cannot provide effective and 
satisfactory natural language interface for this purpose. 

Special-purpose languages provide domain-specific symbols, graphics and 
terminologies for the user and a system to communicate the requirement and the 
feedback effectively. However, special-purpose languages are essentially domain-
specific and they are useless outside their domains of applications. 

Very high-level languages extend current high-level languages by adding 
powerful abstract data types such as stacks, binary trees and sets. They also incorporate 
notations from formal logic, such as quantification over sets, to facilitate the formation 
of specifications. 
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Many formal specification languages are based on logic. Since logic is the most 
powerful and general formal description language known, it provides a good 
communication medium between the user and a system. However, most interesting 
problems in general logical systems are intractable and complex logical formulas are 
difficult to generate and understand. Consequently, these formal specification languages 
usually introduce restrictions and extensions to make logic more tractable to machine 
and human. 

An effective way for specifying the behavior of a program is to enumerate 
examples describing the inputs and the corresponding outputs of the target program. 
This method is attractive because it is an easy and natural means for communicating 
with an automatic programming system. Moreover, the user can modify the 
specification easily by changing the examples. Other people can also effortlessly 
understand the behavior of the program generated by examining the set of examples. 

The mechanisms employed to generate programs can be classified into 
procedural, deductive, inductive, transformational, knowledge-based, and inspection 
methods. 

Procedural methods require some programmers to write a special-purpose 
program satisfying the specification provided by the user. Although they are the 
simplest and the most successful methods, they fail to automate the process of program 
generation. 

If the specification can be formulated as a theorem stating the relation between 
the inputs and the corresponding outputs, then the problem of generating a program 
satisfying the specification is equivalent to finding a constructive proof of the 
satisfiability of the specification. Thus, any method of automated deduction can be used 
to support automatic programming. Deductive methods search for an inference path 
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from some initial states to a goal representing the specification. Since the search space is 
extremely large and the current deductive systems cannot control the search process 
effectively, these systems cannot discover complex proofs. 

Inductive methods perform program induction from partial specifications, such 
as examples. They perform inductive inference which generalizes partial specifications 
to produce computer programs that can produce the desired behavior for a given set of 
situations. For example, if the program to be induced is a pure function and the 
specification is represented as a set of inputs and the corresponding set of outputs. A 
program induction system must search for programs having the same behavior of the 
target function in a search space of all possible programs. The function can be 
represented in any programming languages such as C, Lisp, ML, and Prolog or in 
mathematical logic such as lambda calculus and first-order logic. 

One major dimension to classify program induction systems is by the kinds of 
information employed in the specifications (Olsson 1995). At one extreme are systems 
that use traces of computation or sets of positive and negative examples. Biermann 
(1972) demonstrated that flowcharts and Turing machines can be induced from example 
traces. Summers (1977)，Biermann and Smith (1979) described systems that create 
programs in Lisp from examples of their behaviors. Inductive logic programming 
systems (Muggletion 1992) induce logic programs from examples. At the other extreme 
are genetic programming systems that use specifications represented as fitness functions 
to drive the evolution of programs in Lisp (Koza 1992; 1994，Kinnear 1994b). 

Transformational methods apply a sequence of transformations to convert a 
specification represented in a very high-level language into a low-level implementation. 
The three components of a transformation are a pattern, a set of logical applicability 
conditions, and an action. When an instance of the pattern is found in the specification, 
the conditions are checked to determine whether the transformations can be employed. 
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If the conditions are satisfied, the action is evaluated to compute a new section of code, 
which is used to replace the code matched by the pattern. 

A sequence of transformations forms a transformational rewrite cycle. At each 
step, a transformation is selected and applied to a specification to produce a modified 
specification. The above process is repeated until some condition is satisfied. 
Transformal methods search for a sequence of transformations from the initial 
specification to a satisfactory low-level implementation. Since the search space is 
extremely large and the current transformational systems cannot control the search 
process effectively, these systems suffer from the same problem of deductive and 
inductive systems. 

Knowledge-based methods improve the efficiency of software development by 
providing knowledge-based software assistance and the software development becomes 
a knowledge-intensive process (Goldberg 1986). A knowledge-based assistant 
provides an interactive interface for the development process and enforces the semantic 
consistency of the program generated from the specification provided by the user. It 
encodes knowledge of the programming process and domain-specific knowledge to 
assist the software developer. A knowledge-based assistant compiles a formal, high-
level specification into an efficient low-level implementation by the repeated application 
of correctness-preserving transformations. Since the software developer can make 
decision on how to perform transformations, the search problem is partially solved. 

The idea of inspection methods is to produce programs by inspection rather than 
by reasoning from first principles. If knowledge of programming cliches are available. 
A program can be constructed by recognizing cliches in the specification and then 
choosing among various implementations of the identified cliche. The three components 
of a cliche are: a skeleton, roles whose contents vary from one occurrence to the others, 
and constraints on what can fill the roles. The process of identifying cliches in the 
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specification and selecting implementation of the cliche can be viewed as a search 
problem in a very large search space. Consequently, a fully automatic, inspection 
system suffers from the same control problem in deductive, inductive, and 
transformational systems. For this reason, existing inspection systems are only semi-
automatic (Rich and Waters 1990). 

1.2. Motivation 

As described in the previous section, search is an important research topic in program 
induction in particular and automatic programming in general. Search methods in 
Artificial Intelligence can be classified into weak and strong methods. Weak methods 
encode search strategies that are task independent and consequently less efficient. 
Strong methods are rich in task-specific knowledge that a programmer or knowledge 
engineer places explicitly into the search mechanism. Strong methods tend to be 
narrowly focused but fairly efficient in their abilities to identify domain-specific 
solutions. Strong methods often use one or more weak methods working underneath 
the task-specific knowledge. Since the knowledge to solve the problem is usually 
represented explicitly within the problem solver's knowledge base as search strategies 
and heuristics, there is a direct relation between the quality of knowledge and the 
performances of strong methods (Angeline 1993; 1994). 

Different strong methods have been introduced to guide the search for the 
desired programs. However, these strong methods may not always work because they 
may trap the program induction systems in local maxima. In order to overcome this 
problem, weak methods or backtracking will be invoked if the systems find that they 
encounter troubles in the process of searching for satisfactory programs. The problem 
is that these approaches are very inefficient. 
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The alternatives are evolutionary algorithms, a kind of weak methods, which 
conducts parallel searches. Evolutionary algorithms perform both exploitation of the 
most promising solutions and exploration of the search space. It is featured to tackle 
hard search problems and thus it may be applicable to program induction. Although 
there are many researches in evolutionary algorithms, there is no study in representing 
domain-specific knowledge for evolutionary algorithms to produce evolutionary strong 
methods for the problem of program induction. 

Moreover, existing program induction systems are limited in the programming 
languages in which the induced programs are expressed. For example, Koza proposed 
(1992; 1994) Genetic Programming (GP) systems which can only induce programs 
represented as S-expressions in Lisp. Inductive Logic Programming (ILP) systems can 
only produce logic programs (Muggletion 1992). Since the formalisms of these two 
approaches are so different, these two approaches cannot be integrated easily although 
their properties and goals are similar. If they can be combined in a common framework, 
then many of the techniques and theories obtained in one approach can be applied in the 
other one. The combination can greatly enhance the overall problem solving power and 
the information exchange between these fields. 

These observations lead us to propose and develop a framework combining GP 
and ILP that employs evolutionary algorithms to induce programs. The framework is 
driven by logic grammars and is powerful enough to represent context-sensitive 
information and domain-specific knowledge that can accelerate the learning of 
programs. It is also very flexible and programs in various programming languages such 
as Lisp, Prolog, Fuzzy Prolog and C can be induced. 
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13. Contributions of the research 

The contributions of the research are listed here in the order that they appear in the 
thesis: 

• The Genetic Logic Programming System (GLPS) is a novel system 
developed to combine the implicitly parallel search power of GP and 
knowledge representation power of first-order logic. GLPS can learn 
function free first-order logic programs with constants. It takes the 
advantages of existing ILP and GP systems while avoids the 
disadvantages of them. The experiments demonstrate that GLPS is a 
promising alternative to other ILP systems. Since GLPS uses the same 
representation of other ILP systems, it is possible to combine GLPS 
with them. 

• The work in GLPS leads to the idea that a logic program can be 
represented as a forest of AND-OR trees. This representation method 
facilitates the generation of the initial population of logic programs and 
the operations of various genetic operators such as crossover and 
reproduction. A representation-dependent but domain-independent 
crossover operator is also introduced. 

• From the experience gained in developing and applying GLPS, we 
propose a novel, flexible and general framework based on a formalism 
of logic grammars. A system called LOGENPRO (The LOgic grammar 
based GENetic PROgramming system) is developed. It is found that 
programs in different programming languages can be expressed as 
derivation trees. This representation method facilitates the generation of 
the initial population of programs and the operations of various genetic 
operators such as crossover and mutation. We introduce two effective 
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and efficient genetic operators which guarantee only valid offspring are 
produced. 

• We have demonstrated that LOGENPRO can emulate traditional GP 
(Koza 1992) easily. Traditional GP has a limitation that all the variables, 
constants, arguments for functions, and values returned from functions 
must be of the same data type. This limitation leads to the difficulty of 
inducing even some rather simple and straightforward functional 
programs. It is found that knowledge of data type can be represented 
easily in LOGENPRO to alleviate the above problem. An experiment is 
performed to show that LOGENPRO can find a solution much faster 
than GP and the computation required by LOGENPRO is much smaller 
than that of GP. Another advantage of LOGENPRO is that it can 
emulate the effect of Strongly Type Genetic Programming (STOP) 
effortlessly (Montana 1993). 

• Automatic discovery of problem representation primitives is one of the 
most challenging research areas in Genetic Programming. We have 
illustrated how to apply LOGENPRO to emulate Automatically Defined 
Functions (ADF) proposed by Koza. ADF is one of the approaches that 
have been proposed to acquire problem representation primitives 
automatically (Koza 1992; 1994). We have performed an experiment to 
demonstrate that, by employing various knowledge about the problem 
being solved, LOGENPRO can find a solution much faster than ADF 
and the computation required by LOGENPRO is much smaller than that 
of ADF. This experiment also shows that LOGENPRO can emulate the 
effects of STGP and ADF simultaneously and effortlessly. 

• Knowledge discovery systems induce knowledge from datasets which 
are frequently noisy (incorrect), incomplete, inconsistent, imprecise 
(fuzzy) and uncertain (Leung and Wong 1991a; 1991b; 1991c). We 
employ LOGENPRO to combine evolutionary algorithms and a variation 
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of FOIL, BEAM-FOIL, in learning logic programs from noisy datasets. 
Detailed comparisons between LOGENPRO and other ILP systems have 
been conducted using the chess endgame problem. It is found that 
LOGENPRO outperforms these ILP systems significantly at most noise 
levels. 

• Imprecise and uncertain examples are frequent in real world 
environment, because many everyday examples are denoted in linguistic 
terms which are essentially imprecise and uncertain. However, there are 
very few studies on the issue of inducing knowledge from imprecise and 
uncertain datasets. We have used LOGENPRO to acquire knowledge 
from imprecise and uncertain training examples stored in a fuzzy 
relational database. The induced knowledge is represented as a program 
in Fuzzy Prolog (Li and Liu 1990). To the knowledge of the authors, 
LOGENPRO is currently the only system that can learn program in 
Fuzzy Prolog. 

• We have formulated the problem of adaptive inductive logic 
programming and proposed an adaptive ILP system that can evolve 
during learning based on evolutionary algorithms. The logical 
organization of this system have been designed and a prototype has been 
developed. 

• We have demonstrated the meta-level learner, a component of our 
adaptive ILP system, can be implemented by applying LOGENPRO. 
The meta-level learner induces search biases which affect the 
performance of the adaptive ILP system in learning logic programs. It 
has been demonstrated that the induced biases are better than that of 
FOIL on many standard learning tasks. This result is surprising because 
the search biases of the Adaptive ILP system are initialized by a random 
process. These biases are normally poor, but the process of natural 
selection and evolution can successfully evolve a good bias. 
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1.4. Outline of the thesis 

In chapter 2，we will first introduce a class of weak methods called evolutionary 
algorithms. Subsequently, four kinds of these algorithms, namely Genetic Algorithms 
(GAs), Genetic Programming (GP), Evolution Strategies (ES), and Evolutionary 
Programming (EP), will be discussed in turn. 

We will describe another approach of program induction, Inductive Logic 
Programming (ILP), that investigates the construction of logic programs from training 
examples and background knowledge in chapter 3. A brief introduction to inductive 
concept learning will be presented first. Then, two approaches of the ILP problem will 
be discussed followed by an introduction to techniques and methods of ILP. 

The Genetic Logic Programming System (GLPS) will be described in chapter 4. 
The results of some applications will also be presented. The material of this chapter 
have been published in a number of papers (Wong and Leung 1994a; 1994b; 1995b). 

A novel, flexible and general framework that can combine GP and ILP will be 
described in chapter 5. A high-level description of LOGENPRO (The LOgic grammar 
based GENetic PROgramming system) will be presented. We will also discuss the 
representation method of programs, the crossover operator, and the mutation operator. 

We will illustrate how to apply LOGENPRO to emulate GP and GLPS in 
chapter 6. Furthermore, we will demonstrate that LOGENPRO can induce programs in 
imperative programming languages such as C. 

Three applications of LOGENPRO in acquiring knowledge from databases will 
be discussed in chapter 7. The knowledge acquired can be expressed in different 
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knowledge representations such as decision tree, decision list, production rule, first-
order logic and Fuzzy Prolog. In the first application, LOGENPRO is used to induce 
knowledge represented in decision trees from a real-world database. In the second 
application, we apply LOGENPRO to combine genetic search methods and FOIL to 
induce knowledge from noisy datasets. The acquired knowledge is represented as a 
logic program. The performance of LOGENPRO is evaluated on the chess endgame 
problem and detailed comparisons to other ILP systems are given. In the third 
application, LOGENPRO is employed to acquire knowledge from imprecise and 
uncertain training examples stored in a fuzzy relational database. The induced 
knowledge is represented as a program in Fuzzy Prolog. 

In chapter 8，we will describe an adaptive ILP system that employs 
LOGENPRO to improve itself during the problem solving process. The problem to be 
solved here is to induce logic programs from training examples. The definition of the 
problem of adaptive inductive logic programming will be formulated first. We will then 
present a generic top-down ILP algorithm, a meta-level learner that induces search 
biases, and the results of the experiments conducted. The material of this chapter have 
been published in a paper (Wong and Leung 1995a). Finally, we will summarize the 
results and the original contributions of this thesis in the last chapter. A number of 
suggestions for future research will also be given. 
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Chapter 2 An Overview on Evolutionary Algorithms 
In the previous chapter, We have presented the problem of program induction as 
conducting a search in the space of all possible programs. The search can be 
accomplished by various techniques including general weak methods and domain-
specified strong methods. In this chapter, we will first introduce a class of general weak 
methods called evolutionary algorithms. Subsequently, four kinds of evolutionary 
algorithms, namely Genetic Algorithms (GAs), Genetic Programming (GP), Evolution 
Strategies (ES), and Evolutionary Programming (EP), will be discussed in turn. 

2.1. Evolutionary algorithms 

Evolutionary algorithms are weak search and optimization techniques inspired by 
natural evolution (Angeline 1993; 1994). Weak methods are a category of problem 
solving methods studied in the field of Artificial Intelligence (AI). In contrast to strong 
methods, weak methods are more general and widely applicable in different domains 
(Nilson 1980, Newell and Simon 1972). Weak methods do not employ problem-
dependent search operators and make no commitment to specific credit assignment 
methods. 

Problem solving methods conduct their tasks by traversing the search space of 
the problem. They should identify blame and/or credit (credit assignment) on the 
components of each search point encountered in the search space (Minsky 1963, 
Winston 1992). This information evaluates the qualities of all components of a search 
point, their interaction, and their impact on the overall quality of the search point. 
Problem solving methods apply this information to determine how to combine and 
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manipulate different components from the current or past search points to produce the 
next search point. Thus, good credit assignment methods direct the future search 
towards promising regions. An efficient problem solving method embodies an excellent 
credit assignment method for the problem and manipulates components of various 
search points to traverse the search space. However, it is often difficult to design an 
appropriate credit assignment method for a particular problem represented in a specific 
representation. 

On the other hand, strong methods employ domain-dependent credit assignment 
techniques, search strategies, and heuristics to strengthen the efficiency and ability of 
problem solving. They contains a significant amount of domain-specific knowledge. 
This knowledge can be represented procedurally or declaratively. A procedural problem 
solver finds an analytic solution for a problem by executing a sequence of hard-wired 
instructions. Thus, its knowledge is represented procedurally. A knowledge-based 
system (Buchanan and Shortliffe 1984) solves a problem by performing inferences. 
The inferences are carried out by the inference engine of the system according to the 
knowledge stored declaratively in the knowledge base of the system. The knowledge 
usually takes the forms of heuristic rules, frames, semantic nets and first-order logic 
(Leung and Wong 1990). This specific knowledge allows the problem solvers to find 
accurate solutions quickly. 

Traditional weak methods are inspired by observations of human performance 
(Newell and Simon 1972, Winston 1992，Pearl 1984). They includes depth-first 
search, breadth-first search, best-first search, generate and test, hill climbing, mean-
ends analysis, constraint satisfaction, and problem reduction. 

On the other hand, evolutionary algorithms are inspired from the idea of 
achieving intelligent behavior of humans through a search and learning method 
(Angeline 1993; 1994). They employ the principle of natural selection and evolution to 
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achieve the goals of function optimization and machine learning. In general, 
evolutionary algorithms include any population-based algorithm that uses selection and 
recombination operators to generate new search points in a search space. They include 
genetic algorithms (Holland 1992, Goldberg 1989，Davis 1991)，genetic programming 
(Koza 1992; 1994, Kinnear 1994b), evolutionary programming (Fogel et al. 1966, 
Fogel 1992), and evolution strategies (Schewefel 1981, Back et al. 1991). 

The various kinds of evolutionary algorithms differ mainly in the evolution 
models assumed, the evolutionary operators employed, the selection methods, and the 
fitness functions used (Fogel 1994). Genetic Algorithms (GAs) and Genetic 
Programming (GP) model evolution at the level of genetic. They emphasize the 
acquisition of genetic structures at the symbolic level and regularities of the solutions. 
On the other hand, the idea of optimization is used in Evolution Strategies (ES) and the 
structures being optimized are the individuals of the population. Various behavioral 
properties of the individuals are parametrized and their values evolved as an 
optimization process. Evolutionary Programming (EP) uses the highest level of 
abstraction by emphasizing the adaptation of behavioral properties of various species. 
The following sections describe the four kinds of evolutionary algorithms. 

2.2. Genetic Algorithms (GAs) 

Genetic algorithms (GAs) are general search methods that use the analogies from 
natural selection and evolution. These algorithms encode a potential solution to a 
specific problem in a simple string of alphabets called a chromosome and apply 
reproduction and recombination operators to these chromosomes to create new 
chromosomes. The applications of GAs include function optimization, problem 
solving, and machine learning (Goldberg 1989). The elements of a genetic algorithm 
are listed in table 2,1. 
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• an encoding mechanism for solutions to the problem, 
• a population of chromosomes representing the solutions' 
• a mechanism to generate the initial population of solutions' 
• an evaluation function that rates the solutions in terms of 

their fitness values, 
• a probabilistic selection mechanism that models Darwin's 

survival of the fittest principle, 
• genetic operators that alter the composition of the 

offspring during reproduction, and 
• parameter values such as the population size, and the 

probabilities of applying genetic operators that control a 
GA. 

Table 2.1: The elements of a genetic algorithm 

2.2.1. The canonical genetic algorithm 

Consider a parameter optimization problem where we must optimize a set of variables 
either to maximize some targets such as profits, or to minimize costs or some measures 
of errors. The goal is to maximize or minimize some functions, say F(Xi, X2, ...，XJ, 

by varying the parameters. The encoding mechanism is essential in genetic algorithms 
because it determines the means of representing the optimization problem's variables. In 
the Canonical Genetic Algorithm (CGA), binary bit strings are used to represent values 
of various parameter variables being optimized. Thus, the variables are discretied and 
the range of the discretiation corresponds to some power of 2. The discretization should 
have enough resolution to represent the solution adequately. If the optimization problem 
involves real variables, the value of each real variable is first linearly mapped to an 
integer defined in a specified integer range encoded using a fixed number of binary bits. 
The binary codes of all variables are concatenated to form a binary string. This binary 
string is also called the genotype or the chromosome while the set of encoded 
parameters is called the phenotype of the individual. 

The CGA for solving this kind of optimization problems is shown in table 2.2. 
The algorithm starts with an initial population Pop(O). Each chromosome of the 
population will be a binary string of length L which corresponds to the problem 
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encoding (Holland 1992，Schaffer 1987). The initial population is usually generated 
randomly using a uniform distribution. 

• Assign 0 to generation t. 
• Initialize a population of chromosomes Pop{t). 
• Evaluate the fitness of each chromosome in the Pop(t). 
• While the termination function is not true do 

• Select chromosomes from Pop(t) and store them into 
Pop(t') according to a scheme based on the fitness 
values. 

• Recombine the chromosomes in Pop(t') and store the 
produced offspring into Pop{t"). 

• Perforin simple mutation to the chromosomes in Pop (t") 
and store the mutated chromosomes into Pop(t+1). 

• Evaluate the fitness of each individual in the next 
population P(t+1) 

• Increase the generation t by 1• 
• Return an individual as the answer. Usually, the best 

individual will be returned. 

Table 2.2: The canonical genetic algorithm 

Each chromosome in Pop(O) is then evaluated and assigned a fitness value by a 
fitness function. The fitness function is sometimes called the evaluation function or the 
objective function. It provides a measure of performance (fitness value) of a 
chromosome by evaluating the set of parameters represented in the chromosome. The 
fitness function first decodes the parameter values encoded in the chromosome to form 
the phenotype of the individual. The problem-dependent phenotype is then evaluated by 
the fitness function to determine the fitness of the corresponding chromosome. The 
evaluation of a chromosome representing a set of parameters is independent of the 
evaluation of any other chromosome. In the CGA, relative fitness is defined as fi/ f 
where fi is the fitness value associated with chromosome i and / is the average fitness 
of all the chromosomes in the population. 

Each generation of the CGA is a three stage process which starts with the 
current population Pop(t). Selection is applied to the current population to create an 
intermediate population Pop(t'). Recombination (crossover) is then applied to the 
Pop(t') to create another intermediate population Pop(t"). Then mutation is employed to 
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create the next population Pop(t+l) from the intermediate population P(t"). The process 
starting from the current population Pop(t) to the next population Pop(t+l) establishes 
one generation in the execution of the genetic algorithm. This basic implementation of 
genetic algorithms is also referred to as a Simple Genetic Algorithm (SGA) by 
Goldberg (1989). For the first generation, the current population Pop(t) is also the 
initial population Pop(O). It produces the next population Pop(l) and the execution 
proceeds to the next generation. This process iterates until the termination function is 
satisfied. During each generation, the relative fitness values fi/fof all chromosomes 
are first evaluated, and then selection is carried out. 

The selection process models Darwin's survival of the fittest principle. In the 
CGA, a fitter chromosome reproduces a higher number of offspring and thus has a 
higher chance of propagating its genetic materials to the subsequent generation. In 
fitness proportionate selection scheme, a chromosome with a relative fitness value 
fi/ f is allocated fi/ f offspring. Thus a chromosome with a fitness value higher than 
the average is allocated more than one offspring, while a chromosome with a fitness 
value smaller than the average is allocated less than one offspring. The relative fitness 
value represents the expected number of offspring of a chromosome. Since it is 
impossible to produce fractional numbers of offspring, some chromosomes have to 
produce a higher number of offspring than their relative fitness values and some less 
than their relative fitness values. The current population Pop(t) can be viewed as a 
mapping onto a roulette wheel, where each chromosome is represented by a slice of the 
roulette wheel that corresponds proportionally to its relative fitness value. By repeatedly 
spinning the roulette wheel, chromosomes are chosen using stochastic sample with 
replacement to fill the intermediate population Pop(t'). The spinning process iterates 
until it has generated the entire Pop(t'). Thus, this selection scheme is also called the 
roulette wheel selection. This method generates a large sampling errors because the final 
number of offspring allocated to a chromosome may vary significantly from its relative 
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fitness. The allocated number of offspring approaches the expected number only if the 
population size is very large. 

After selection has been carried out, the construction of the intermediate 
population Pop(t') is completed and recombination can occur. This can be viewed as 
generating another intermediate population Pop(t") form Pop(t'). Crossover is applied 
to randomly paired chromosomes with a crossover probability denoted as pc. In other 
words, a pair of chromosomes is first picked randomly, these chromosomes are then 
recombined with probability pc to produce two offspring that are inserted into the 
intermediate population Pop(t"). If recombination has not been performed, copies of the 
two picked chromosomes are inserted into Pop(t"). 

1 1 0 0 1 I 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 
0 1 2 3 4 、 6 7 8 9 1 0 3 1 2 3 4 5 6 7 8 9 1 0 

The first parent ^rossover^^^^ The first offspring 

o| 1 I o | 1 I o | il o| 1 I o| 1 I I。M 0 M 。 ] 1 I。卜 M 「 
丨0 1 2 3 4 \ 6 7 8 9 1 0 0 1 2 3 4 6 7 8 9 1 0 

The second parent The second offspring 

Figure 2.1: Crossover of CGA. A one-point crossover operation is 
performed on two parent, 1100110011 and 0101010101, at 
the fifth crossover location. Two offspring, 1100110101 
and 0101010011 are produced. 

Consider the two chromosomes 1100110011 and 0101010101. These 
chromosomes may represent possible solutions to some parameter optimization 
problem. For one-point crossover, a single crossover location is selected randomly. 
Since the length L of the chromosomes in this example is 10，a crossover location can 
assume values in the range between 1 to 9 (L-1). Assume the fifth location of 
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chromosomes is chosen as the crossover location. By swapping the fragments between 
the two parents, the crossover operator produces the two offspring 11001:10101 and 
01010:10011 where the symbol":" is used here to denote the crossover location (figure 
2.1). 

After recombination is performed, other genetic operations are applied to the 
intermediate population Pop(t") to generate the next population Pop(t+l). In the CGA, 
only simple mutation can be applied. For each bit of each chromosome in the Pop(t"), it 
is mutated with some low probability pm. There are two different implementations of 
mutation. The first mutation flips the bit value from 1 to 0 or vice versa, while the 
second one randomly selects a value from 0 and 1 to fill the mutated bit. Thus, for the 
latter one, there is only 0.5 probability that the bit value is really modified even if it has 
been selected for mutation. The mutated chromosome is then placed in the Pop(t+l). 
The CGA treats mutation as a secondary operator with the role of restoring lost genetic 
material. For example, suppose all the chromosomes in a population have converged to 
a 1 at a given position, and the optimal solution has a 0 at that position. In this case, 
crossover cannot regenerate a 0 at that position but mutation can. Figure 2.2 depicts that 
the chromosome 1100110101 is modified to 0100110100 by flipping the first and the 
last bits. 

Mutation ^ ^ 1 
1 1 0 0 1 1 0 1 0 1 ^ ^ 0 1 0 0 1 M 0 1 0 0 

0 1 2 3 4 5 6 7 8 9 1 0 0 1 2 3 4 5 6 7 8 9 1 0 

The original chromosome The mutated chromosome 

Figure 2.2: Mutation of CGA. A mutation operation is performed on a 
parent 1100110101 at the first and the last bits. The 
offspring 0100110100 is produced. 
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The about evolution process iterates until the termination criteria are satisfied. 
The algorithm is terminated after a fixed number of generations are attempted, the 
available computational resources are consumed, or satisfactory solutions are found. 

GAs can be viewed as performing both exploration of new regions in the search 
space and exploitation of already sampled regions. The question is then on the balance 
between these two competing methods. The performance of GAs is significantly 
affected by the choice of different parameter values such as the crossover and mutation 
rates and the population size. The optimal choice of parameter values has been 
investigated extensively using empirical and analytical techniques. Grefenstette (1986)， 

DeJong and Spears (1990) respectively propose two different sets of parameter values 
that are competent in general. 

In addition to fitness proportionate selection, one-point crossover, and simple 
mutation described above, other techniques have been investigated in other genetic 
algorithms. The following sub-sections present these techniques. 

2 . 2 . 1 . 1 . Selection methods 

In fitness proportionate selection, the expected number of offspring is usually not an 
integer, but only integer numbers of offspring can be allocated. Thus, there is an 
intrinsic discrepancy between the allocated and the expected number of offspring. The 
remainder stochastic sampling method is proposed to achieve a distribution of offspring 
very close to the corresponding expected number of offspring. 

In the remainder stochastic sampling method, the relative fitness value fi/ f of 
each chromosome i is evaluated first. If this value is greater than 1.0，the integer portion 
of this number indicates how many copies of that chromosome are directly placed in the 
intermediate population Pop(t'). All chromosomes (including those with relative fitness 
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less then 1.0) then place additional copies of themselves in the intermediate population 
Pop(t') with a probability corresponding to the fractional portion of their relative fitness 
values. This selection method is unbiased and is efficiently implemented using a 
technique known as Stochastic Universal Sampling (Baker 1987). 

Fitness proportionate selection has other problems. In the first few generations, 
the population typically has a low average fitness value, but it is common to have a few 
extraordinary chromosomes. Fitness proportionate selection allocates a large number of 
offspring to these chromosomes. These dominant chromosomes cause premature 
convergence. A different situation appears in the later stages when the population 
average fitness value is close to the best fitness value. There may be significant 
diversity within the population, but approximately equal numbers of offspring are 
allocated to all chromosomes because the variance in their fitness values is very small. 
Fitness scaling techniques, rank-based selection, and tournament selection can 
overcome these problems. 

Fitness scaling techniques readjust fitness values of chromosomes (Grefenstette 
1986，Goldberg 1989). Forrest (1990) presents a survey of current scaling techniques 
which include linear scaling, sigma truncation and power law scaling. Linear scaling 
computes the scaled fitness value as / ' = afi + b where fi is the fitness value of the ith 
chromosome, f i is the scaled value, and a and b are appropriate constants. In each 
generation, a and b are calculated to ensure that the maximum value of the scaled 
fitness values is a small number, say 1.5 or 2.0，times of the average fitness value of 
the population. Then the maximum number of offspring allocated to a particular 
chromosome is 1.5 or 2.0. Sometimes the scaled fitness values may become negative 
for chromosomes that have fitness values far smaller than the average fitness value of 
the population. In this case, a and b must be recomputed to avoid negative fitness 
values. 
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The sigma truncation scheme calculates the scaled fitness value as 
/' = f i - { f - ccr) where / is the average fitness value of the population, <7 is the 
standard derivation of the fitness values in the population, and c is a small constant 
typically ranging from 1 to 3. Chromosomes whose fitness values are less than c 
standard deviations from the / are discarded. 

The power law scaling finds some specified power of the fitness fi. The scaled 
fitness is f i = fi. The k value is in general problem-dependent and may be modified 
during a run to stretch or shrink the range of fitness values. 

The problem of fitness scaling techniques is that some parameter values (a, b, 
c ,0V k) must be determined in order to use them effectively. However, it is not trivial 
to decide these values. Baker (1985) proposes rank-based selection that is non-
parametric. In this method, the chromosomes of a population is sorted according to 
their fitness values. Each chromosome is allocated the number of offspring that is a 
function of its rank. Usually, the number of offspring varies linearly with the rank of a 
chromosome. Whitley (1989) shows that significant improvements can be obtained 
with the selection method. 

Tournament selection approximates the behavior of ranking. In a m-ary 
tournament, m chromosomes are selected randomly using a uniform distribution from 
the current population after evaluation. The best of the m chromosomes is then placed in 
the intermediate Pop(t'). This process is repeated until Pop(t') is filled. Goldberg and 
Deb (1991) show analytically that 2-ary tournament selection is the same in expectation 
as ranking using a linear 2.0 bias. If a winner is chosen probabilistically from a 
tournament of 2，then the ranking is linear and the bias is proportional to the probability 
with which the best chromosome is selected. 
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2 . 2 . 1 . 2 . Recombination methods 

4 4 
The first parent The first offspring 

Two-point Crossover 

4 4 
The second offspring The second parent 

Figure 2.3: The effects of a two-point (multi-point) crossover�A two-
point crossover operation is performed on two parent, 
11001100 and 01010101，between the second and the sixth 
locations. Two offspring, 11010100 and 01001101, are 
produced. 

The CGA uses one-point crossover. However, many other crossover mechanisms have 
been devised, often involving more than one crossover location. In two-point (multi-
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point) crossover, chromosomes are regarded as rings formed by joining the two ends 
together. To exchange a segment from one ring with that from another one requires the 
selection of two (multiple) crossover locations as depicted in figure 2.3. 

One-point crossover can be viewed as two-point crossover with one of the 
crossover locations fixed at the beginning of the chromosome. Hence two-point 
crossover is more general than one-point crossover. Researchers now agree that two-
point crossover is generally better than one-point crossover. 

Crossover Mask 
1 1 0 0 1 1 0 1 0 1 

0 1 2 3 4 5 6 7 8 9 10 

The first parent ^ , 
1 1 0 0 1 1 0 0 1 1 

0 1 2 3 4 5 6 7 8 9 10 

The offspring 

1 1 0 1 1 1 0 0 0 1 

0 1 2 3 4 5 6 7 8 9 10 A A A A 
The second parent 

0 1 0 1 0 1 0 1 0 1 
0 1 2 3 4 5 6 7 8 9 10 

Figure 2.4: The effects of a uniform crossover. A uniform crossover 
operation is performed on two parent, 1100110011 and 
0101010101，and two offspring will be generated. This 
figure only shows one of them (1101110001). 

Uniform crossover exchanges bits of a chromosome rather than fragments. A 
crossover mask is first randomly generated. At each position in the offspring, the 
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genetic material is obtained from either one of the parents. If there is a 1 in the 
crossover mask, the genetic material is copied from the first parent, otherwise it is 
obtained from the second parent. The process is repeated with the parents exchanged to 
produce the second offspring (figure 2.4). 

An extensive comparison of different crossover methods has been performed 
(Eshelman et al. 1989). One-point, two-point, multi-point, and uniform crossover were 
theoretically analyzed in terms of positional and distributional bias, and empirically 
evaluated on several problems. A crossover method has positional bias if the probability 
that a bit is swapped depends on its position in the chromosome. The crossover 
method has a distributional bias if the distribution of the number of bits exchanged by 
the method is non-uniform. One-point crossover exhibits the maximum positional bias 
and the least distributional bias. At the other extreme, uniform crossover has the least 
positional bias and the maximum distributional bias. The empirical experiment showed 
that there was no more than about 20% difference in performances among the methods. 

In an order-based problem, such as the traveling salesman problem, gene values 
are fixed and the fitness value depends on the order in which gene values appear. The 
above crossover techniques cannot be used because they will produce invalid offspring. 
Goldberg (1989) describes Partially Matched crossover (PMX) for this kind of 
problems. In PMX, it is the orders in which gene values appear are exchanged. 
Offspring have genes which inherit ordering information from each parent. This avoids 
the generation of offspring which violate problem constraints. Syswerda (1991b) and 
Davis (1991) describe other order-based operators including enhanced edge 
recombination, order crossover, cycle crossover, and position-based crossover. 
Starkweather et al. (1991) compares these operator using the traveling salesman 
problem and the job shop scheduling problem. They find that the effectiveness of 
different operators is problem-dependent. 
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Many other techniques have also been suggested. Several methods investigate 
the idea of biasing the crossover locations at some more probable chromosome 
positions (Schaffer and Morishma 1987, Holland 1987，Davidor 1991, Levenick 1991， 

Louis and Rawlins 1991). GAs learn which sites should be favored for crossover. This 
information is stored in a punctuation string, which is itself part of the chromosome, 
and so is crossed over and propagated to offspring. Thus, good punctuation strings 
which lead to fit offspring will be propagated through the population. 

2 . 2 . 1 . 3 . Inversion and Reordering 

The purpose of reordering is to attempt to find gene orderings which have better 
evolutionary potential (Goldberg 1989). Inversion (Holland 1992) works by reversing 
the order of genes between two randomly selected positions in a chromosome. The 
operation of an inversion is illustrated in figure 2.5. 

The original chromosome 

1 1 j 0 0 1 1 I 0 1 0 1 

0 1 2 3 4 5 6 7 8 9 1 0 

Inversion 

口 I 
1 1 1 1 0 - 0 I 0 1 0 1 

0 1 2 3 4 5 6 7 8 9 1 0 

The modified chromosome 

Figure 2.5: The effects of an inversion operation. An inversion 
operation is performed on the parent, 1100110101, between 
the second and the sixth locations. An offspring, 
1111000101， is produced. 
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Goldberg and Bridges (1990) analyze a reordering operator on a very small task 
and show that it has advantages. Reordering also greatly expands the search space 
because GAs must also find good gene orderings. Thus, much more time is required 
for finding the solutions of the problem. 

Meta-GAs (Grefenstette 1986) can be used to leam gene orderings. A meta-GA 
has a population where each member is itself a GA. Each individual GA is configured 
to solve the same problem, but using different gene orderings. The fitness of each 
individual is determined by running the GA, and examining the time required to 
converge. Meta-GAs are very computationally expensive to run and are worthwhile 
only if the results obtained can be reused many times. 

2.2.2. Implicit parallelism and the building block 
hypothesis 

Genetic algorithms work by implicitly sampling hyperplane partitions of a search space. 
This sampling process results in a robust, efficient, and complex search method 
(Holland 1992). Consider a problem that can be encoded in 3 bits. The search points of 
this problem can be represented as a cube with the string 000 at the origin (figure 2.6). 
The corners of this cube are numbered by binary bit strings and all adjacent comers are 
labeled by strings that differ by exactly one bit. The front plane of the cube contains all 
the points that begin with 0. If the character ”*” is used to represent a wild card match 
symbol, then this plane can be represented by the special string 0**. Strings that 
contain ”*" are referred to as schemata and each schema H represents a hyperplane in 
the search space. The order of a hyperplane refers to the number of actual bit values that 
appear in its schema. Thus, 1** is order one while 111 is order three. The order of a 
schema H is denoted as o(H). 
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110 111 

011 

100 

DOO 

Figure 2.6: The hyperplane space 

A chromosome or bit string matches a particular schema if that bit string can be 
constructed from the schema by replacing the "*" symbol with the appropriate bit value. 
All bit strings that match a particular schema are contained in the hyperplane represented 
by the schema. These bit strings are called instances of the schema. The defining bits in 
a schema is the bits of a schema that have values of either 0 or 1. The defining length of 
a schema is based on the distance between the first and the last defining bits in the 
schema. Let Ii is the index of the position of the leftmost defining bit while Ir is the 
index of the position of the rightmost defining bit. The defining length is Ir - Ii. Thus, 
the defining length of *1**101*1* is 9 - 2 = 7. The defining length of a schema H is 
denoted by 1(H). 

Assume that the length of a binary string is L. Since there are L positions in a 
particular string and each position can be either the bit value contained in the string or 
the "*” symbol, the number of different combinations is The special string of all "*” 
symbols represents the whole search space and is not counted as a hyperplane of the 
space. Thus a binary string is a member of - 1 different hyperplanes. For each of the 
L positions in the scheme, the value can be either "*"，1，or 0’ so there are 3L different 
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schemata. The schema of all ”*” symbols is also excluded. Thus there are - 1 
different schemata in the entire search space. 

In genetic algorithms, the population stores a number of sample points and these 
sample points provide information about numerous implicit schemata. Moreover, low 
order schemata should be sampled by numerous points in the population. Since many 
schemata are sampled implicitly when a chromosome of the population is evaluated, a 
much more number of schemata are sampled than the number of chromosomes 
contained in the population. The statistical information about any particular subset of 
schemata is obtained from the cumulative effects of evaluating a population of 
chromosomes. It results in implicit parallelism of genetic algorithms (Holland 1992). 
Implicit parallelism implies that many schema competitions are simultaneously solved in 
parallel. The theory suggests that through the process of reproduction and 
recombination, the competing schemata increase or decrease their instances in the 
population according to the relative fitness values of the chromosomes that lie in those 
schemata. Because genetic algorithms operate on populations of chromosomes, the 
number of instances of a schema can be obtained directly from the population. 

The schema theorem (Holland 1992) suggests that the distribution of 
chromosomes in each schema should change according to the average fitness value of 
the chromosomes in the population that are contained in the corresponding hyperplane. 
Thus, even though a genetic algorithm never explicitly evaluates any particular schema, 
it should change the distribution of chromosomes as if it had evaluated. 

Genetic algorithms process many schemata implicitly in parallel when selection 
acts on the population. The true average fitness value of a particular schema is the 
average of the fitness values of all chromosomes that lie in the hyperplane corresponds 
to the schema. In a given population, an estimate of the average fitness value of a 
schema is evaluated by averaging the fitness values of all chromosomes in the 
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population covered by the schema. Hence, the estimate varies with the population's 
composition from one generation to another. According to the schema theorem, the 
number of copies of chromosomes that actually fall in a particular hyperplane after 
selection should approximate the expected number of copies that should fall in that 
hyperplane. Thus the estimate of the average fitness value becomes more accurate when 
the algorithm proceeds. 

GAs can be viewed as performing simultaneous competition among schemata to 
increase the numbers of their instances in the population. Assume that the optimal 
chromosomes can be obtained by combining schemata with short defining lengths and 
high average fitness values. These schemata are called building blocks. 

The genetic operators generate, promote, and combine building blocks to create 
optimal chromosomes. Crossover tends to preserve the genetic materials present in the 
chromosomes to be crossed. Thus, when the chromosomes to be crossed are similar, 
the probability of generating new building blocks reduces. Mutation is not a 
conservative operator and can generate radically new building blocks. Selection 
provides the favorable bias toward building blocks with higher fitness values and 
ensures that they increase their instances from generation to generation. 

Crossover is the most crucial feature that differs GA from other evolutionary 
algorithms such as evolution strategy and evolutionary programming. GAs assume that 
crossover can combine good building blocks from different chromosomes to produce 
better offspring. This assumption is called the building block hypothesis. For some 
objective functions to be optimized, very bad chromosomes can be generated from good 
building blocks. These objective functions are referred to as deceptive functions 
(Goldberg 1987). 
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The schema theorem provides only a lower bound that holds for only a few 
generations into the future. Without considering what is simultaneously happening to 
the other schemata being processed by genetic algorithms, it is impossible to predict the 
number of instances of a particular schema over multiple generations. The schema 
theorem does not provide an accurate picture of the behavior of genetic algorithms and 
cannot predict how a particular schema is processed over time (Whitley 1993). 

Currently, many researchers are studying the exact behavior of executable 
models of genetic algorithms. Goldberg (1987) analyzes the exact effects of one-point 
crossover on order 2 schemata using a number of equations. He also formulates the 
minimal deceptive problem under this framework. These equations are then generalized 
to handle schemata of any order (Whitley et al. 1992). These equations are based on the 
idea of generating gain and loss chromosomes in a systematic way. Bridges and 
Goldberg (1987) formalize the notion of generator for gain and loss chromosomes for 
one-point crossover. Vose and Liepins (1991) develop an executable model of the 
canonical genetic algorithm. Nix and Vose (1992) use markov chains to extend the 
Vose and Liepins model to include finite population models. The executable model 
presented by Whitley (1993) is a special case of the Vose and Liepins model. An 
extensive survey of different executable models is described by Vose (1993). 

2.2.3. Steady state genetic algorithms 

In a steady state genetic algorithm, two parents are selected for recombination and 
produce only one offspring at a time. The offspring is then placed immediately back 
into the population. Moreover, offspring does not replace its parents, but rather some 
relatively less fit member of the population. Steady state genetic algorithms have more 
variance than the canonical genetic algorithm with respect to the hyperplane sampling 
behavior. Therefore, they are more susceptible to sampling error and genetic drift. The 
advantage is that the best chromosomes found in the search space are maintained in the 
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population. The search conducted by these algorithms is more aggressive and effective 
(Syswerda 1989; 1991a, Holland 1992). 

Genitor (Whitley 1989) is an implementation of a steady state genetic algorithm. 
In Genitor, the worst chromosome in the population is replaced by the offspring just 
created. The accumulation of improved chromosomes in the population is thus 
monotonic. Goldberg and Deb (1991) shows that the method of replacing the worst 
member in the population results in a much higher selective pressure than the method of 
random replacement. Genitor applies rank-based selection rather than fitness 
proportionate selection. The advantage of rank-based selection is that it maintains a 
stable selective pressure over the course of search. 

2.2.4. Hybrid algorithms 

Although genetic algorithms are robust and general problem solving methods, they are 
usually not the most effective ones on any particular domain (Davis 1991). Therefore, 
combining genetic algorithms and other problem-specific strong methods may result in 
some general, robust, and effective problem solving systems. Many researchers use 
non-binary encoding and problem-specific recombination operators to strengthen the 
capability of traditional genetic algorithms (Davis 1991，Michalewicz 1994). 
Muhlenbein (1991; 1992) describes a parallel genetic algorithm that employs local hill-
climbing techniques to speed up the search. 

A hybrid genetic algorithm typically performs well on optimization and other 
search problems because it is performing local hill-climbing from multiple points in the 
search space. Unless the function to be optimized is severely multi-modal or the 
problem to be solved is highly irregular, it is likely that some points are in the basin of 
attraction of the global solution. In this case, hill-climbing is a fast and effective form of 
search. In general, the local search methods can find a small number of significant 
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improvements of a point (chromosome) without dramatically modify its syntactic 
structure. Thus, a hybrid algorithm affects hyperplane sampling, but does not disrupt it 
completely. In this case, a hybrid algorithm takes the benefits of both the problem-
specific search methods and the implicit parallelism of genetic algorithms. 

23. Genetic Programming (GP) 

Genetic Programming (GP) is an extension of GAs (Koza 1992; 1994). The main 
difference between them is the representation of the structure they manipulate and the 
meanings of the representation. GAs usually operate on a population of fixed-length 
binary strings. GP typically operate on a population of parse trees which usually 
represent computer programs. A parse tree is represented as a rooted, point-labeled tree. 
Since GP concerns with the behavior of computer programs, the definition of 
phenotype in GP is more abstract than that in GAs. 

2.3.1. Introduction to the traditional GP 

Most computer programs can be easily understood as performing a sequence of 
functions to arguments. Most language compilers first translate a given program into a 
parse tree and then generate a sequence of elementary assembly or machine instructions 
that can be executed on a target computer (Aho and Ullman 1977). Thus, parse trees are 
natural representations of computer programs and GP induces Lisp programs 
represented as parse trees. 

In Lisp, a program is also called a S-expression and all operations of it are 
implemented as function calls. A function call consists of a list of elements enclosed by 
parentheses. The first element within the list is the name of the function and the other 
elements are arguments to the function. To represent a function call as a parse tree, the 
function name is the root of the parse tree while the arguments are the children at the 

Page 34 



next level down the parse tree. The arguments may be variables, constants, or other 
function calls. In the latter case, these function calls are again represented as parse trees 
and they form sub-trees of the parental parse tree. For example, the program 
(* (+ X ( / Y 1 . 5 ) ) ( - Z 0 . 3 ) ) can be represented as the parse tree in 
figure 2.7. 

There are two sets of nodes in a parse tree. The internal nodes are called 
primitive functions while the leaf nodes are called terminals. In figure 2.7, the sets of 
primitive functions and terminals are {+, *, / } and {X, Y' Z, 1 . 5 , 0 .3} 
respectively. The terminals can be viewed as the inputs to the program being induced. 
They might include the independent variables and the set of constants. The primitive 
functions are combined with the terminals or simpler function calls to form more 
complex function call. The above procedure of combination iterates to produce a 
program. The arity of a function f, arity(f), is the number of arguments of it. 

© ® 
© ® 

Figure 2.7: A p a r s e t r e e of t h e p r o g r a m 
(* (+ X ( / Y 1 . 5 ) ) ( - z 0 . 3 ) ) 
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The set of primitive functions might include arithmetic operators and 
transcendental functions. In fact, there is no limit to the complexity of the primitive 
functions used. Koza (1992; 1994) demonstrates iteration, functions with side-effect, 
and a wide variety of problem-specific functions. It is important that the function set has 
the closure property. That is, each primitive function should be able to accept any 
terminal or the output from any function as inputs. To apply GP to a problem, the user 
must determine: 

• the set of primitive functions F, 
• the set of terminals T, 
• the fitness function, 
• the parameters for controlling the run, 
• the method for designating a result, and 
• the termination function. 

• Assign 0 to generation t. 
• Initialize a population Pop(t) of programs composed of the 

primitive functions and terminals. 
• Evaluate the fitness of each program in the Pop(t). 
• While the termination function is not satisfied do 

• Create a new population Pop(t+1) of programs by 
employing the selection, crossover, mutation, and 
other genetic operations. 

• Evaluate the fitness of each individual in the next 
population P(t+1) 

• Increase the generation t by 1. 
. Return the program that is identified by the method of 

result designation as the solution of the run 

Table 2.3: A high-level description of GP 

The fitness function, the controlling parameters, the method for designating a 
result, and the termination function are similar to those of GAs. GP usually generates 
an initial population of programs randomly. Programs in the population are then 
manipulated by various genetic operators to produce a new population of programs. 
These operations include crossover, mutation, permutation, editing, encapsulation, and 
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decimation (Koza 1992). The process of proceeding from one population to the next 
population is called a generation. A high level description of GP is given in table 2.3. 

The creation of an initial random population is a random search of the search 
space for computer programs. A parse tree is generated randomly by first selecting a 
function from F to be the label for the root of the tree. Whenever a point of a tree is 
labeled with a function f from F, arity(f) lines are created from that point and an element 
from F u T is randomly selected to be the label for the endpoint of each line. If a 
function is selected, the above process continues recursively. Otherwise, the point 
becomes a leaf node of the tree and the generation process is terminated for that point. 
The algorithm for generating a random parse tree is shown in table 2.4. 

Generate-tree(root?, max-depth, generation-method, F, T) { 
if root? 

set the root of the tree to a randomly selected function from F 
else if max-depth is equal to 1 then 

set the root of the tree to a randomly selected terminal from T 
else if generation-method is “Full" then 

set the root of the tree to a randomly selected function from F 
else set the root to a randomly selected element from C = F U T 
for each line go out from the root 
generate a sub-tree with the call 
Generate-tree (False, max-depth - 1, generation-method, F, T) 
and attach it to the endpoint of the line 

return he root 
} 
main() 

{ Generate-Tree{ True, max-depth, generation-method, F, T) } 

Table 2.4: An algorithm for generating a random parse tree 

The parameter max-depth in the above algorithm controls the maximum depth of 
the random tree being generated. The parameter generation-method can be either "Full" 
or "Grow" corresponding to the two different generation methods proposed by Koza 
(1992). For a parse tree generated by the full method, the length along any path from 
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the root to a leaf is the same no-matter which path is taken. Parse trees generated by the 
grow method need not satisfy this constraint. Koza employs a method called "ramped-
half-and-half" to generate an initial population. It uses the full method to generate half 
of the members of the population and the grow method to produce the other half. The 
maximum depth is varied between two and a user-specified constant MAX-INITIAL-
TREE-DEPTH. This approach generates trees of different shapes and sizes. 

Each program in the population is measured in terms of how well it performs in 
the particular problem. In GP, three measures of fitness are used. Raw fitness is the 
measurement of fitness that is stated in the natural terminology of the program. For 
example, raw fitness in a pattern recognition program can be either the number of 
patterns that are classified correctly or the number of misclassified patterns. Which one 
should be used depends on the nature of the problem. 

Raw fitness is usually evaluated over a set of fitness cases. They provide a basis 
for evaluating the performance of a program over a number of different representative 
situations. For the above example, fitness cases are different patterns that are classified 
by a program. 

The standardized fitness transforms the raw fitness so that smaller value is 
always a better value. Transformation can be achieved by different means. Since the 
standardized fitness may not lie between 0 and 1, adjustment is performed to converse it 
into the adjusted fitness in the desired range. The adjusted fitness is obtained by 
a. = where s. is the standardized fitness of the program i and â  is the 1 1 + Si 1 
corresponding adjusted fitness. The adjusted fitness has the benefit of strengthening the 
selective pressure when the population converges. The same effects can be achieved by 
selection methods other than fitness proportionate selection such as tournament and 
rank-based selections. Hence, the adjusted fitness is not used for these selection 
methods. 
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The first parent The first offspring 

Crossover 

A A 
© © © © 

The second parent The second offspring 

Figure 2.8: The effects of crossover operation. A crossover operation is 
p e r f o r m e d on two p a r e n t a l p r o g r a m s , 
(* (+ 0 . 5 X) (+ X Y ) ) and ( / (+ X Y) (* ( -

X Z) X) ) • The shaded areas are exchanged and two 
offspring generated are: ( * ( - X Z) (+ X Y) ) and 
( / (+ X Y) (* (+ 0 . 5 X) X) )• 

The evolution process of GP is similar to that of GAs. Another key difference 
between them is the details of different genetic operations because these operations must 
now manipulate parse trees rather than fixed-length strings in GAs. Crossover of two 
parental trees in GP is achieved by making two duplications of the trees first to form 
two intermediate offspring. Then two crossover points are selected from the 
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intermediate offspring, one within each tree. Two crossover points are required because 
trees are usually of different sizes and shapes from one another. The final offspring are 
obtained by exchanging sub-trees under the selected crossover points at the intermediate 
sub-trees. The produced offspring are usually different in sizes and shapes from their 
parent and from one another. The effects of the crossover operation are depicted in 
figure 2.8.. 

The syntactic correctness of the offspring is guaranteed because of the closure 
property of the set of primitives. However, the generated programs may be meaningless 
because they may perform semantically invalid (such as division by zero), redundant or 
useless operations. In order to avoid the problem of executing invalid operation, the 
semantics of the primitives is redefined to handle this situation. For example, the 
primitive, protected division %，normally returns the quotient. However, if division by 
zero is attempted, the function returns 1.0. 

In GP, mutation is considered to be of relatively less important operation. First, 
a copy of a single parental tree is made. Then a mutation point is randomly selected 
from the copy, which will be either a leaf node or a sub-tree. The leaf node or sub-tree 
at the mutation point is replaced by a new leaf node or sub-tree generated randomly. 
The effects of the mutation operation are depicted in figure 2.9. 
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• 》 M u t a t i o n 一 ^ ^ 
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The parent / 

The mutated offspring 

Figure 2.9: The effects of a mutation operation. A mutation operation is 
performed on the program (* (+ 0 . 5 X) (+ X Y ) ) . 

The shaded area of the parental program is changed to a 
program fragment ( / (+ Y 4) Z) and the offspring 

program (* ( / (+ Y 4) Z) (+ X Y) ) is produced. 

2.3.2. Automatic Defined Function (ADF) 

Automatic Defined Function (Koza 1992; 1994) and module acquisition (Angeline 
1993； 1994) have been proposed in GP to learn problem representation automatically. 
This sub-section describes Automatic Defined Function (ADF) and the next sub-section 
discusses Module Acquisition (MA). 

Each program in the population contains multiple parts. One part, called the 
result-producing branch, is evaluated to produce the result of the program. Other parts 
are definitions of one or more sub-functions (ADFs) that may be called by the result-
producing branch. These parts are called the function-defining branches. The 
expressions for the result-producing and the function-defining branches evolve 
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simultaneously to find complete programs that can solve the problem. The result-
producing branch can call the ADFs, and some of the ADFs can invoke others. In order 
to prevent infinite recursive calls among ADFs, a partial ordering of the ADFs is 
defined. A higher order sub-function can only call the ADFs with lower order. 

Since various primitives and terminals may be used in the bodies of different 
branches. A template is required to restrict the evolution of programs. A template for 
programs with two ADFs, ADFO and ADFl, is shown in figure 2.10. Only the parts of 
the template shown in bold-face are evolvable. 

(progn 
(defun ADFO (argO argl arg2) 

<evolvable component with branch type 1>) 
(defun ADFl (argO argl) 

<evolvable component with branch type 2>) 
(values 

<evolvable component with branch type 3>)) 

branch type primitive functions terminals 
1 + - * argO argl arg2 
2 + - * ADFO argO argl 
3 + - * ADFO ADFl X Y Z 

Figure 2.10: A template for programs with two ADFs 

The function-defining branches begin with the function symbol defun. In a Lisp 
system, the two funct ion-defining branches will be evaluated and produce the 
definitions of the two sub-functions ADFO and ADFl. The result-producing branch 
begins with the function symbol values. The expression represented in the result-
producing branch will be executed and the result of the expression will be returned. If 
the expression invokes ADFO and/or ADFl, the definitions of these sub-functions are 
applied to find the result. The function progn connects the two function-defining 
branches and the result-producing branch. It evaluates each branch in turn and returns 
the result obtained by executing the last branch, i.e. the result-producing branch. 
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The template defines different function and terminal sets that will be used in 
various branches of the programs. Thus ordinary crossover operator cannot be used 
here. In order to generate valid offspring from crossover, each branch is assigned a 
specific branch number called branch type and the structure-preserving crossover is 
used to create offspring from parents. The idea of this crossover is that any evolvable 
node anywhere in the whole program is randomly selected as the crossover point of the 
first parent. Then, the crossover point of the second parent is randomly chosen from 
among points of the same type. The algorithm for structure-preserving crossover is 
shown in table 2.5. 

1. Find all evolvable sub-trees of the first parental tree 
and store them into a global variable PRIMARY-SUB_TREES. 

2. Find all evolvable sub-trees of the second parental tree 
and store them into a global variable SECONDARY-SUB-
TREES . 

3. If PRIMARY-SUB-TREES is not empty, select randomly a sub-
tree from it using a uniform distribution. Otherwise, 
terminate the algorithm without generating any offspring 
program. 

4. Designate the sub-tree selected as SEL-PRIMARY-SUB-TREE 
and remove it from PRIMARY-SUB-TREES. 

5. Find a sub-tree from SECONDARY- SUB -TREES such that its 
. type is the same as that of SEL-PRIMARY-SUB-TREE. 

5, 工f a sub-tree can be found in step 6, produce two 
offspring by exchange the two sub-trees selected. 
Otherwise, goto step 3. 

Table 2.5: Algorithm for structure-preserving crossover 

In order to use ADF, the user must determine: 
• the number of function-defining branches in the overall program, 
• the number of arguments possessed by each function-defining branch, 
• the function and terminal sets of each function-defining branch and the 

result-producing branch, and 
• the partial ordering of the ADFs. 

The user specifies the partial ordering of the ADFs implicitly by determining the 
primitive function set of each function-defining branch. For example, the function set of 
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ADFl of the template in figure 2.5 contains the sub-function ADFO. Thus, ADFl can 
invoke ADFO. Similarly, since the function set of the result-producing branch contains 
the sub-functions ADFO and ADFl, it can invoke ADFO and ADFl. The partial 
ordering of the template shown in figure 2.10 is depicted in figure 2.11. 

lower order 
ADFO (s沙-function) A 7 i 

ADF1 (sutĵ ĵ ĵ ĵ lî ^^ l̂̂ ^^^ I 

Result-producing branch (main function) higher order 

Figure 2.11: A partial ordering of the template shown in figure 2.10 

It must be mentioned that the ADFs are local to each program. When a 
invocation to a particular sub-function, say ADFO, is moved by crossover from one 
program to another, it refers to a new ADFO in the new program. 

2.3.3. Module Acquisition (MA) 

Module Acquisition (MA) is another approach of learning problem 
representation (Angeline 1993; 1994，Angeline and Pollack 1992; 1993). It produces a 
library of unique modules dynamically. These modules are globally defined and thus 
extend the function set of all programs. MA operates like a new genetic operator for the 
ordinary GP. A module is acquired by selecting a sub-tree within an existing program 
and defining it as a globally defined module. Two methods are proposed to extract a 
module from a program. In depth compression, the selected sub-tree is trimmed off a 
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random depth to form a module. The parts of the sub-tree that are trimmed become the 
parameters of the module (figure 2.12). 

Q Q 
/务 ^ 》 

K 、 、 、 、 ^ 

© © 

(a) 

Figure 2.12: Module acquired by depth compression, (a) The program 
(+ (- (/ (+ X Y) (- (* (- Z 1) 2) 1) ) Y) 

(* X Y)) is compressed to (+ (modulel (- Z 1) 2) 

(* X Y)). The program fragment compressed is enclosed 
in dashed lines, (b) The parse tree of the module acquired 
by MA. (c) The corresponding lisp program of the module 
acquired. 
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A 
(b) 

(defun modulel (argO argl) ( - ( / (+ X Y) ( - ( * argO argl) 1)) Y)) 
(c) Figure 2.12: (Cont.) 

Consider the example shown in figure 2.12，the shaded sub-tree has been 
selected as a module. The trim depth determines the point below which the sub-trees are 
considered as parameters of the module. For this example, the expression ( - Z 1) 
and the constant 2 are actual parameters of the module acquired. The shaded sub-tree is 
stored into the module library as modulel with two formal parameters. The shaded sub-
tree of the original program is replaced by an invocation of the acquired module. 

Another modularization method is leaf compression. In this method, the leaf 
nodes of the selected sub-tree become the formal parameters of the module. The effects 
of if for the example in figure 2.12 are depicted in figure 2.13. 
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Figure 2.13: The effects of leaf compression for the example in figure 
2.12. (a) The program (+ ( - ( / ( + X Y ) ( - ( * ( -
Z 1) 2) 1 ) ) Y) (* X Y) ) is compressed to ( + 

(module2 X Y Z 1 2 1 Y) (* X Y ) ) . T h e program 

fragment compressed is enclosed in dashed lines, (b) The 
parse tree of the module acquired by MA. (c) The 
corresponding Lisp program of the module acquired. 
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(b) 
(defun module2 (argO arg l arg2 arg3 arg4 arg5 arg6) 

( - ( / (+ argO arg l ) 
( - ( * (一 arg2 arg3) arg4) argS)) 

arg6)) 

(c) 

Figure 2.13: (Cont.) 

Modules in the library do not evolve, and are retained as long as any program 
applies them. Initially, there is only one reference to the module at the original program. 
If the module contributes good fitness to the overall program, the program would 
produce more offspring in the later generations and these offspring would refer to the 
module. 

In order to modify the genetic materials of some modules, the module expansion 
operator takes a program and expands all the module invocations in it to create a new 
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program with no module reference. This operation allows the genetic materials in a 
module to participate again in the evolution process. 

Kinnear (1994) presents an intensive comparison between ADF (one template is 
used only) and MA. Their effects on the likelihood of evolving a correct solution to the 
EVEN-4-PARITY problem is contrasted. ADF has a significant improvement while MA 
fails to accelerate the learning. It is found that ADF creates a particular form of 
structural regularity that strongly increases the probability of learning a correct solution. 
This form of structural regularity is not present in MA. Kinnear proposes a new genetic 
operator based on the operators of MA. This operator, modular crossover, can produce 
the same kind of structural regularity for the EVEN-4-PARITY problem. 

2.3.4. Strongly Typed Genetic Programming (STGP) 

One limitation of GP is the requirement of the closure property of the set of primitive 
functions. In Strongly Typed Genetic Programming (STGP), all the variables, 
constants, arguments, and returned valued can be of any data type provided that these 
data types have been defined by the user (Montana 1993). One application of it is to 
generate a program that uses both scalars and vectors. 

STGP requires that the output from each function or terminal be given a data 
type and that the inputs of each function take certain types. The implementation 
differences between GP and STGP are the generation methods of the initial population 
and the crossover operators. In STGP, the generation method of the initial population 
must comply to the type restrictions and the crossover operator must occur between 
functions and/or terminals of the same type. 

Programs in the initial population are generated in a way such that the arguments 
of each function in each tree have the required data types. Crossover is implemented by 
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randomly selecting a node from one parental tree and then randomly selecting node 
from the second parental tree until it is of the same type as the first node. 

An extension to STGP which makes it easier to use is the concept of generic 
functions, which are not true strongly typed functions, but rather templates for classes 
of such functions. A template of a function can take a variety of different data types and 
return values of a variety of different types. The only constraint is that for any particular 
set of argument types, a generic function must return a value of a well-defined type. A 
generic function is instantiated to a particular instance of function by specifying a set of 
input argument types. 

2.4. Evolution Strategies (ES) 

In Evolution Strategies (ES), the individual model of evolution is typified (Rechenberg 
1973，Schwefel 1981, Back et al. 1991). In these techniques, the emphasis is on the 
improvement of a behavior that is rated well by the fitness function rather than on the 
acquisition of building blocks with high fitnesses. By concentrating on optimizing the 
behavior, the representation and reproduction heuristics must create objects that are 
behaviorally similar to their parents but not necessarily structurally similar. However, 
the acquisition of an appropriate behavior should be easier since the effects on behavior 
have been modeled in the reproduction operators. 

ES consider an individual to be composed of a set of traits, each of which is a 
feature. The interaction between the features is typically unknown. As a result, ES use 
fixed-length, real-valued strings to represent individuals. Each position marks a 
separate behavioral trait. The adherence to fixed-length strings alleviates the problem of 
how to manipulate the structure in order to preserve behavioral similarity between 
parents and their offspring. Different operators have been defined to manipulate the 
contents of strings to create offspring that are behaviorally similar. 
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1. An initial population Pop(0) of m members is created. 
Each member Cj is an ordered pair (Xj, Oj) where X is a 
real-valued vector storing the object variables Xj j ‘ 
1 < j < L for the objective function F, Gj is also a real-
valued vector containing L independent strategy variables 
Gj j , 1 < j < L . The value of each object variable Xj j is 
selected randomly from a feasible range. The values of 
(Ti’j , 1 < j < L are usually equal for all elements Cj, 
l < i < | L l . 

2. Set t to 0. • 
3. Create an intermediate population Pop(t') with m+1 

elements. The first m elements are obtained from Pop(t). 
4. Create a new offspring e 二+i using a recombination 

operator r on Pop(t) , i . e . e二+i = (X�+i, (J“i) = r(Pop(t)). 
5. Create an offspring e二using a mutation operator m on 

e;+i, i.e. e;:+i=(X;:+i，o;:+i) = m(e;+i).. 
6. Store to Pop (t ‘). 
7. Select the best m elements from Pop (t ‘ ) using the 

selection operator s and store them to the new population 
Pop(t+1). Thus it contains only m elements. 

8. Increase t by 1. 
9. If the termination function is not true, goto step 3. 
10. Return an element of the last population as the result of 

the run. 

Table 2.6: The algorithm of (|i+l)-ES 

ES originate from Germany for applications in real-valued function optimization 
(Rechenberg 1973, Schwefel 1981). The problem is defined as finding the real-valued 
vector X with L numbers that minimizes or maximizes an objective function 

t 

F(X): RL R. There are various evolution strategies that are different in their models 
of evolution. The one called (^i+l)-ES is presented in table 2.6. 

Different recombination methods have been proposed (Schewefel 1981). They 
can be classified into non-global and global. In the former class, two elements 
ê  = (Xa，aj and e^ = (X^, a j are selected from the current population P o p � using a 
uniform distribution. For the simplest recombination, no actual crossover will be 
performed. In other words, X;.! 二 Xa and = ĉ a-
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For the discrete recombination operator, a number of uniform random values 
Uj ’ 1 < j < L are generated and e^i is obtained according to the following equation: 

IX 丨 if U.<0.5 
, 一 a, J J x _ ’ j = k i if Ui >0.5 

�b’j J and 
, if Uj<0 .5 

On+i’j=iob,j i f U j > 0 . 5 
where 1 < j < L. 

For the intermediate recombination operator, e'— is obtained according to the 
following equation: 

X“i，j =5(Xa，j +Xb，j) 
and 

where 1 < j < L. 

In the global recombinations, L pairs of elements j ^ L are 
selected randomly using a uniform distribution. For the global discrete recombination 
operator, a number of uniform random value U』， l< j<L are created and e'叫 is 
obtained according to the following equations. 

, 'Xaj’j if Uj<0 .5 
j if U i > 0 . 5 

bj，J J 
and 

, 一 J(jaj’j if Uj<0 .5 
c“i，j 二 W i if Ui>0.5 

Dj，J J where 1 < j < L. 

For the global intermediate recombination, is obtained according to the 
following equations: 
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^n+lj = 识 aj’j+Xbj,j, 
and 

, 1/ \ 
� + i , j =办， j + ^ M ) 
where 1 < j < L. 

The mating parents for the global recombination of component x'_，j and G “ i � 
are chosen anew from the population. Thus, it causes a high mixing of the genetic 
materials of the whole population. Global recombinations address the difficulty of pre-
mature convergence in ES systems. 

According to the biological observation that offspring are similar to their parents 
and that smaller modifications occur more often than larger ones. To achieve the similar 
effects in ES, the element e�+i obtained by applying mutation operation on element e'州 

is specified as: 
x;:+i，j=x;+i’j+N(0,CT;+i,j) , l < j < L 

and 
if r〈去 

V 

where N(0, a) is a Gaussian random number with mean of zero and standard deviation 
a, Cd and ĉ  are constants, and r is the ratio of successful mutations to all mutation. A 
mutation is successful if the mutated offspring performs better than its parent. The idea 
here is to change the strategy variables dynamically until r is 1/5. 

Rechenberg (1973) calculated the convergence rate of a ES system for some 
model functions and found that the convergence rate is optimized if r is equal to 1/5. 
Thus，he suggested the 1/5 rule: The ratio of successful mutations to all mutation should 
be 1/5. If it is greater than 1/5 then increase a by multiplying a constant ĉ，if it is less 
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than 1/5 then decrease a by multiplying a constant c^. When this rule decreases the 
standard deviation, the search becomes more focused, with generated offspring being 
generally closer to their parents in value. When the standard deviation is increased, the 
search is broadened so that offspring might be further from their parents. Schewefel 
(1981) suggests that c^ and ĉ  should be 0.82 and 1/0.82 respectively. 

The selection operator chooses the best |i elements from |i+l elements 
according to the objective function F. The termination function determines whether the 
optimization has been found or the computational resources are all consumed. Different 
methods can be used to implement the termination function and these methods are 
usually domain-dependent. 

The simplest and oldest ES model is denoted as (1+1)-ES. The difference 
between it and (|i+l)-ES is that the population Pop(t) contains only one element and 
only recombination will be performed. It can be designated as a kind of probabilistic 
gradient search technique. There are two main drawbacks of (1+1)-ES: The 
convergence rate is slow because the standard deviations are equal in each dimension; 
The procedure is susceptible to stagnation at local minima because of the brittleness of 
the gradient search. 

In the (11+入)-ES, the population size is still |X, but X offspring are created at 
each generation from |X parents. All \i+X elements compete for survival, with the best |i 
elements selected to survive in the next generation. Consequently, step 3 in table 2.6 is 
changed to: 

3’. Create an intermediate population Pop(t') with \i+X elements. The first \i 
elements are obtained from Pop(t). 

Page 54 



In the (|i, ？i)-ES, only the ？i offspring compete for survival, and the \i parents 
are replaced each generation. The lifetime of every element is limited to a single 
generation. Thus, step 3 in table 2.6 is changed to: 

3 ”. Create an intermediate population Pop(t') with X elements. 

Because of the nature of this model, X must be greater than or equal to In the 
(|X+入)-ES and (|X,入)-ES’ steps 4 through 6 in table 2.6 are repeated for X times to 
create X offspring. The mutation operator is also extended to allow for meta-control 
over the evolution process. Let e�+i = ( X ; ” b e the offspring generated by the 
recombination operator. The mutation operator creates the offspring e�+i = (X二” 
according to the following equations: 

and 
x;:+i，j=x;+i，j+N(0，<+i,j) , l < j < L 

where Aa is a meta-control parameter. It allows the user to have more control over the 
distribution of trials. It should be emphasized that in all models other than (1+1)-ES, 
more than one parent are participated in the recombination. Since the strategy variables 
a . j , 1 < j < L are all stored in each element e^，l<i<|i, these strategy variables are 
also involved in the recombination and evolution. These models allow strategy variables 
to adapt to the landscape of the objective function and thus trials can be distributed in a 
more appropriate way. 

2.5. Evolutionary Programming (EP) 

Evolutionary Programming (EP) is a stochastic optimization strategy similar to GAs 
(Fogel et al. 1966，Fogel 1994). It emphasizes the behavioral linkage between parents 
and their offspring rather than seeking to emulate specific genetic operators as observed 
in nature. It is a useful method of optimization when other techniques such as gradient 
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descent or direct, analytical methods are not possible. EP is suitable for difficult 
combinatoric and real-valued function optimization problems in which the fitness 
landscapes are rugged and have many locally optimal solutions. 

• Set t to 0. 
• Create an initial population of trials Pop(t) randomly. . 
• Each trial in the population Pop(t) is assessed by computing 

its fitness. 
• While a threshold for iteration is not exceeded and 

a satisfying solution has not been found do 
• Each solution in Pop(t) can produce one or more 

offspring. Each of these offspring is mutated 
according to a distribution of mutation types' ranging 
from minor to extreme with a continuum of mutation 
types in between. The severity of mutation is judged 
on the basis of the functional change imposed on the 
parent. The mutated offspring are stored in the 
intermediate population Pop{t') • 

• A stochastic tournament is usually held to determine N 
solutions to be retained for the Pop(t+1) of 
solutions. Occasionally, selection is performed 
deterministically. There is no requirement that the 
population size be held constant, 

. E a c h trial in the population Pop(t+1) is assessed by 
computing its fitness. 

• Increase t by 1. 
• Return an element of the last population as the result of 

the run. Usually the best one is returned. 

Table 2.7: A high-level description of EP 

EP employs a model of evolution at a higher abstraction than GAs, GP, and ES. 
It models the reproductive relationship between species behavior in successive 
generations (Fogel 1994). The reproductive operators used in EP are a form of 
mutations that attempt to preserve behavioral similarity between offspring and their 
parents (Fogel 1992). The motivation for behavioral similarity is taken directly from 
biology where an offspring is generally similar to its parent at the behavioral level with 
only slight variations. These variations can be modeled by assuming that the 
distribution of potential offspring resembles a normal distribution around the parent's 
behavior in the fitness landscape. On the other hand, GAs cannot guarantee such a 
distribution because it emphasizes on structural similarity. 
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For EP, there is an underlying assumption that a fitness landscape can be 
characterized in terms of variables, and that there is an optimum solution in terms of 
these variables. A high-level description of EP is depicted in table 2.7. 

There are two important differences between EP and GAs. Firstly, there is no 
constraint on the representation. The CGA involves encoding the problem solutions as 
fixed-length binary strings. In EP, the representation follows from the problem. For 
example, a neural network can be represented in the same manner as it is implemented. 
Thus the mutation operation does not demand and assume any particular encoding 
method. 

Secondly, the mutation operators simply change aspects of the parent according 
to a statistical distribution. Minor modifications in the behavior of the offspring occur 
more frequently than substantial variations in the behavior of the offspring. 
Furthermore, the severity of mutations is often reduced as the global optimum is 
approached. In the Meta-Evolutionary technique, the variance of the mutation 
distribution is subject to modification by a fixed variance mutation operator and evolves 
along with the solutions (Fogel 1994). 

EP and ES share many similarities. Typically, they operate on the real-valued 
representations when solving real-valued function optimization problems Multivariate 
zero mean Gaussian mutations are applied to each parent in a population and a selection 
mechanism is applied to determine which solutions are maintained. Both approaches 
encode information on how to distribute new trials in the elements of the population and 
allow evolution to adapt this information. Most of the theoretical results on asymptotic 
convergence and convergence rate developed for ES or EP also apply directly to the 
other. 
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There are two main differences between ES and EP. Firstly, EP typically uses 
stochastic tournament selection while ES typically uses deterministic selection in which 
the worst solutions are eliminated from the population based directly on their fitness 
values. Secondly, EP is an abstraction of evolution at the level of reproductive 
populations (i.e., species) and thus recombination mechanisms are generally 
inapplicable because recombination does not occur between species. In contrast, ES is 
an abstraction of evolution at the level of individual behavior. Since genetic information 
can be encoded in an individual to affect its behavior, recombination is reasonable. 
Different recombination operators of ES have been discussed in the previous section. 
The effectiveness of such recombination operators depends on the problem at hand. 
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Chapter 3 Inductive Logic Programming 
In the previous chapter, we present an overview on evolutionary algorithms. Another 
approach of program induction is Inductive Logic Programming (ILP) that investigates 
the construction of logic programs from training examples and background knowledge. 
ILP is a new research field that combines the techniques and theories from inductive 
concept learning and logic programming. ILP systems are more powerful than 
traditional attribute-value based learning systems because the formers use an expressive 
first-order logic framework to represent the concepts acquired and employ background 
knowledge to facilitate the learning. ILP has strong theoretical foundation from 
computational learning theory and logic programming. It has very impressive 
applications in scientific discovery, knowledge acquisition and logic program synthesis 
(Muggletion 1994, Bratko and King 1994). In this chapter, we will present a brief 
introduction to inductive concept learning first. Two approaches for ILP are discussed 
in the second section followed by an introduction to techniques and methods of ILP. 

3.1. Inductive concept learning 

The goal of machine learning is to develop techniques and tools for building intelligent 
learning machines. In other words, learning machines can improve themselves to 
perform more efficiently and/or more accurately. They can also increase their abilities to 
process more problems. Symbol-level learning is used to characterize the kind of 
learning that increases the efficiency of the system while knowledge-level learning 
improves the accuracy and/or coverage of the system (Dietterich 1986). Machine 
learning paradigms include inductive, deductive, genetic-based and connectionist 
learning (Michalski et al. 1983; 1986b, Kodratoff and Michalski 1990，Shavlik and 
Dietterich 1990，Carbonell 1989). Multistrategy learning integrates several learning 
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paradigms (Michalski and Tecuci 1994). This chapter focuses on supervised, inductive 
learning of a single concept. If U is a universal set of observations, a concept C is 
formalized as a subset of observations in U. Inductive concept learning finds 
descriptions for various target concepts from positive and negative training instances of 
these concepts. In single concept learning, a target concept description is induced from 
training instances labeled positive and negative. In multiple concept learning, more than 
one target concept are being learned simultaneously, training examples are labeled by 
various concept names representing their categories. 

In machine learning, formal languages for describing observations and concepts 
are called object and concept description languages respectively. Typically, object 
description languages are attribute-value pair descriptions and first-order languages of 
Horn clauses. Concepts can be described extensionally or intensionally. A concept is 
described extensionally by listing the descriptions of all of its instances (observations). 
Thus extensional concepts are represented in the object description language. On the 
other hand, intensional concepts are expressed in a separate concept description 
language that permits compact and concise concept descriptions. Typical concept 
description languages are decision trees, decision lists, production rules, and first-order 
logic. 

Inductive concept learning can be viewed as searching the space of hypothesis 
descriptions. A bias is a mechanism employed by a learning system to constrain the 
search for target hypotheses. A search bias determines how to conduct the search in the 
hypothesis space while a language bias determines the size and structure of the 
hypothesis space. 

A strong search bias, such as the hill-climbing search strategy, employs existing 
knowledge about the size and structure of the hypothesis space to exploit promising 
solutions of the space, thus it can find the target concept quickly. But it may trap the 
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system in a local maximum. A weak search bias, such as depth-first and breath-first 
search, explores the space completely; the learner is guaranteed to find the target 
concept that can be represented by the concept description language. Nevertheless, a 
weak bias is very inefficient. In other words, the search bias introduces the 
efficiency/completeness tradeoff into a learning system. 

A strong language bias defines a less expressive description language such as 
the prepositional logic. The hypothesis space created by the bias is comparatively 
smaller and the learning can be performed more efficiently. But the learner may fail to 
find the target concept which is not contained in the small hypothesis space. A weak 
bias defines a larger space and thus the target concept is more likely to be expressible in 
the space. The disadvantage is that the learner is less efficient. The language bias 
introduces the efficiency/expressiveness tradeoff into a learning system. 

Given: 
-A set E of positive E+ and negative E一 examples of a 
concept C. 
-Concept description language L. 
-Search and language bias. 
-Background knowledge B. 

Find: . 
A complete and consistent hypothesis H represented in 
the language L. 

A hypothesis H is complete if every positive example 
e G E+ is covered by it with respect to(w.r.t.) B. 

A hypothesis H is consistent if no negative example e 
6 E~ is covered by it w.r.t. B. 

Table 3.1: Supervised inductive learning of a single concept 

Background knowledge B is a prior knowledge that can be used by either the 
search bias to direct the search more efficient, or the language bias to express the 
hypothesis space in a more natural and concise way. If a learning system is not 
provided with some a prior knowledge about the learning problem, it must learn 
exclusively from training examples. However, difficult learning problems typically 

Page 61 



require a lot of knowledge. The task of supervised inductive learning of a single 
concept C is formulated in table 3.1. 

3.2. Inductive Logic Programming (ILP) 

Relational concept learning induces a new relation for the target concept (i.e., the target 
predicate) from training examples and known relations from the background 
knowledge. An ILP system is a relational concept learner. The training examples, the 
hypothesis space, and the background knowledge are represented in first-order Horn 
clause languages (Muggleton and Feng 1990). Tradeoffs between expressiveness and 
efficiency are introduced by some additional restrictions on these languages. This 
section describes two approaches of ILP, interactive and empirical ILP. Muggletion and 
De Raedt (1994) present a comprehensive introduction of theory and methods of ILP. 
Before presenting these approaches, the terminology of logic programming is described 
first (Lloyd 1987). 

The alphabet of a first-order language contains predicate symbols, function 
symbols and variables. A predicate symbol is a lower case letter followed by a string of 
lower case letters and/or digits. A function symbol is a lower case letter followed by a 
string of lower case letters and/or digits. A variable is an upper case letter followed by a 
string of lower case letters and/or digits. 

A term is a variable or a function. A function is a function symbol immediately 
followed by a sequence of terms enclosed in a pair of parentheses. The number of terms 
in the sequence is the arity of the function. For example, f ( g ' h (X, Y) , X) is a 
function of arity 3 where f，g, and h are function symbols, X and Y are variables. A 
constant is a function of arity 0. Thus g is a constant. 
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An atomic formula, or atom, is a predicate symbol immediately followed by a 
sequence of terms enclosed in a pair of parentheses. The number of terms in the 
sequence is the arity of the atomic formula. For example, m o t h e r (X' Y) is an atom 
of arity 2 where m o t h e r is a predicate symbol and X and Y are variables. 

A literal can be classified as either a positive literal or a negative literal. A 
positive literal L is an atomic formula while a negative literal -iL is the symbol i 
followed by an atomic formula. A clause is a formula of the form 
VXi,X2,...,Xm(Li V L2V...vLn) where Li, 1 < i < n are literals and Xi,X2,...,Xm are 

v a r i a b l e s o c c u r r i n g in t h e c l a u s e . A c l a u s e 
VXi，X2，...，Xm(LivL2V_vLiV"iLi + iv~iLi + 2V_V"nLn) can be represented as 
LivL2V_vLi — Li + iALi + 2"..ALn. The previous clause can be written as 
Li,L2,...，Li<~Li + i，Li + 2，...，Ln where commas on the left-hand side of <- denote 
disjunctions while commas on the right-hand side represent conjunctions. 

A definite program is a set of definite program clause. A definite program 
clause, VXi,X2，...，Xm(TV"iLiv~iL2V—v~iLn), is a clause which contains exactly 
one positive literal. It can be represented as the form T — Li，L2，.",Ln where T and Li, 
1 < i < n are atomic formulae. The positive literal T in a definite program clause is 
called the head or goal of the clause. The sequence of literals Li, 1 < i < n is called the 
body of the clause. A Horn clause is a clause which contains at most one positive 
literal. Thus a Horn clause can be either a definite program clause or a definite goal: a 
clause with no positive literal. A definite goal can be represented as the form 
—Li，L2,."，Ln where Li, 1 < i < n are atomic formulae. A positive unit clause is a 
definite program clause with an empty body. It is called a fact in Prolog and is denoted 
simply as T. 

A normal program is a set of program clauses. A program clause is a clause of 
the form T <- Li，L2，."，Ln where T is an atom and Li, 1 < i < n are positive or 
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negative literals. In the programming language Prolog, literals of the form n o t L are 
allowed in the body of a clause, where L is an atom and n o t is interpreted under the 
negation-as-failure rule (Clark 1978). 

A predicate definition is a set of program clauses with the same predicate 
symbol (and arity) in their heads. A set of clauses is called a theory and represents the 
conjunction of the clauses. A well-formed formula is a literal, a clause and a theory. A 
well-formed formula or term is ground if and only if there is no variable in the formula 
or term. 

3.2.1. Interactive ILP 

Interactive ILP is often used in incremental and interactive theory revision (De Raedt 
1992). An Interactive ILP system is provided with six inputs: 1) a set of correct 
examples E that has been examined before, 2) correct background knowledge B，3) an 
incorrect theory T, 4) a concept description language L, 5) a new positive or negative 
training example e，and 6) a teacher that can answer questions generated by the system. 
The system modifies the definition of T and creates a new theory T, such that it is 
complete and consistent with respect to all examples seen (i.e. E u {e}) and the 
background knowledge B. 

Shapiro (1983) introduced the idea of refinement operators in the MIS system 
which is used to structure the search space of program clauses. The system searches the 
space in a breadth-first top-down manner. CLINT (De Raedt 1992，De Raedt and 
Bruynooghe 1989; 1992) generates its own learning examples and asks questions about 
their classifications. It is featured with the applications of integrity constraints and its 
ability in changing concept description language dynamically. 
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Most interactive ILP systems are based on special forms of the general theory of 
inverse resolution introduced in CIGOL (Muggleton and Buntine 1988, Muggleton 
1992). The three operators of CIGOL are absorption, intraconstruction and truncation. 
Absorption generalizes program clauses, intraconstruction learns definitions of new 
predicates and truncation generalizes unit clauses. The concept of absorption is first 
introduced by Sammut and Baneji (1986) in their MARVIN system. Wirth (1989) 
suggests two operators which are similar to absorption and intraconstruction. Rouveirol 
(1991; 1992) introduces a saturation procedure which overcomes some problems of 
absorption and truncation. 

3.2.2. Empirical ILP 

The task of empirical ILP is usually concerned with learning a single target concept 
from a given set of training examples and background knowledge. The task of empirical 
ILP is formulated in table 3.2. 

Given: 
-A set E of positive E+ and negative E_ training 
examples of the target predicate p. Training examples 
are represented as ground atoms 
-A concept description language L 
-Search and language bias. 
-Background knowledge B 

Find： … 
A definition H for the target predicate p expressible 
in L such that H is complete and consistent with 
respect to (w.r.t.) the training examples E and the 
background knowledge B 

H is complete if every positive example e+ in E+ is 
covered by H w.r.t. the background knowledge B. i.e. 
B U H 卜 e+ 

H is consistent if no negative example e- in E" is 
covered by H w.r.t. the background knowledge B. i.e. 
B U H I类 e_ 

Table 3.2: Definition of Empirical ILP 
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The background knowledge B provides definitions of known predicates qi 
which can be used in the definition of the target predicate p. It also provides additional 
information to ease the search of the definition of p. This information includes argument 
types, symmetry of predicates in pairs of arguments, input/output modes, rule models, 
predicate sets, parametrized languages, integrity constraints, determinations and any 
knowledge that can modify the operation of the search and language bias. 

In the definition, a training example is covered by H given background 
knowledge B if e is a logical consequence of B u H. This notion of coverage is called 
intensional coverage (Lavrac and Dzeroski 1994). It allows the background knowledge 
B to include normal clauses and ground facts. For a particular concept description 
language L, an appropriate proof procedure must be used to check whether an example 
is entailed by B u H. The SLD-resolution proof procedure with bounded or 
unbounded depth is usually employed to determine whether a training example is 
entailed (Lloyd 1987). In depth-bounded SLD-resolution, unresolved goals in the SLD-
proof tree at depth h are not expanded and are treated as failed. MIS (Shapiro 1983) and 
CIGOL (Muggleton and Buntine 1988) use this proof procedure to prevent infinite 
loops . ' 

On the other hand, extensional coverage can also be used. In this case, 
extensional background knowledge B containing only ground facts must be employed 
to determine whether an example e is covered (Shapiro 1983). A hypothesis H 
extensionally covers an example e with respect to an extensional background 
knowledge B if there exists a clause T <- Li，L2，...，Ln in H and a substitution 6 such 
tha tT0=e and {Li，L2，.",Ln}0 c B . I f the background knowledge B provided by the 
users contains non-ground clauses, the empirical ILP systems have to transform it into 
a ground model of the background knowledge. The model contains all true ground facts 
that can be derived from the background knowledge by a SLD-proof tree of depth less 
than the depth-bound h (Shapiro 1983). 
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Empirical ILP systems include FOIL (Quinlan 1990; 1991)，GOLEM 
(Muggleton and Feng 1990), LINUS (Lavrac and Dzeroski 1994), mFOIL (Lavrac and 
Dzeroski 1994)，RX (Tangkitvanich and Shimura 1992)，MORAL (Morik et al. 1993)， 

and ML-SMART (Bergadano et al. 1991). FOCL (Pazzani and Kibler 1992) is an 
extension of FOIL that combines ILP and explanation based learning. CHAM 
(Kijsirikul et al. 1992a) is an improvement of FOIL by applying a better search 
heuristic. CHAMP (Kijsirikul et al. 1992b) is an extension of CHAM that can invent 
useful predicates in learning relations. CHILLIN (Zelle et al. 1994) combines learning 
methods of GOLEM, FOIL, and CHAMP. 

33. Techniques and methods of ILP 

An existing empirical ILP system can be classified into either a bottom-up or top-down 
learner. Bottom-up systems search for program clauses by considering generalizations. 
They start from the most specific clause that covers a positive training example and then 
generalize the clause until it cannot be further generalized without covering some 
negative examples. Two common generalization techniques are relative least general 
generalization (rlgg) introduced by Plotkin (1970) and inverse resolution proposed by 
Muggletion and Buntine (1988). Muggletion (1992) introduces a unifying framework 
covering both relative least general generalization and inverse resolution, based on the 
notion of a most specific inverse resolvent. 

A successful representative of this class is GOLEM (Muggletion and Feng 
1990). GOLEM is based on the construction of relative least-general generalizations 
which forces the background knowledge to be expressed extensionally as a set of 
ground facts. This ground model of background knowledge can be excessively large, 
and the clauses constructed from such models can grow explosively. To tackle this 
problem, Muggleton and Feng (1990) introduce the notion of ij-determination and 
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employ the language bias of inducing only ij-determinate clauses. GOLEM is also 
sensitive to the distribution of training examples. If only a random sample of positive 
training examples is presented, the induced hypothesis of the target predicate is 
incomplete. Thus, GOLEM may fail to produce general and accurate hypotheses. 

Top-down methods apply specialization operators to learn program clauses by 
searching from general to specific. A specialization operator s produces a set of clauses 
C permitted by the language bias from a clause c. It typically computes only the set of 
most general specializations of a clause c under 0-subsumption (Plotkin 1970). Most 
general specializations can be obtained by performing syntactic and/or semantic 
operations on the clause c (Shapiro 1983). Two basic syntactic operations on a clause 
are: 

• applying a substitution 6 to the clause, and 
• adding a literal to the body of the clause. 

One of the most famous empirical top-down ILP system is FOIL (Quinlan 1990; 
1991，Cameron-Jones and Quinlan 1993; 1994). It employs the techniques and 
methods applied in traditional attribute-value based learning systems. It also borrows 
the idea of specialization operators from MIS (Shapiro 1983) and the method of 
determining coverage of examples from ML-SMART (Bergadano et al. 1991). 

FOIL is restricted to learning function-free program clauses. In other words, 
constants and functions cannot appear in the induced clauses. The body of a clause is a 
conjunction of positive or negative literals. Literals in the body have either a predicate 
symbol qi from the background knowledge B, or the target predicate symbol p. This 
implies that recursive clauses can be learned. When learning clauses with recursive 
literals, care must be taken to avoid infinite recursion. FOIL deals with this issue by 
attempting to establish an ordering on the arguments which may appear in a literal. 
Many sophisticated methods of finding an ordering on the arguments have been 
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proposed (Cameron-Jones and Quinlan 1993; 1994). For each literal in the body of a 
clause, at least one of the variables in the arguments of the literal must appear in the 
head of the clause or in one of the literals to its left. 

Training examples are function-free ground facts represented as a set of constant 
tuples. Background knowledge B consists of extensional predicate definitions. Each 
extensional predicate definition is a finite set of constant tuples representing the concept 
of the predicate. FOIL uses extensional background knowledge for efficiency reasons. 
Top-down algorithms can easily use intensionally defined background predicates to 
evaluate various competing hypotheses. An extension of FOIL, FOCL (Pazzani and 
Kibler 1992)，allows background knowledge to be represented intensionally. 

The FOIL algorithm is composed of three main phases. In the first phase, FOIL 
generates negative examples by applying the closed-world assumption if no negative 
example is provided. The second phase is the example covering loop. It implements the 
covering algorithm of AQ and INDUCE (Michalski 1983). The loop constructs a 
hypothesis by repeatedly performing the following operations: 

• construct a clause, 
• refine the clause by removing irrelevant literals from the clause, 
• add the refined clause to the hypothesis H, and 
• remove the positive examples covered by the clause from the set of 

positive training examples 
until all the positive examples are covered or no more clause can be constructed. The 
last phase further refines the induced hypothesis H by eliminating irrelevant clauses 
from the hypothesis. The definitions of irrelevant literal and irrelevant clause are 
presented by Quinlan (1990). 

The procedure that constructs a clause is the most important one in the FOIL 
algorithm. It starts from the most general clause and repeatedly specializes it by adding 
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a literal to the body of the clause. The clause construction loop continues until a 
consistent clause covering at least one remaining positive example is found or no more 
specialization can be performed. During each iteration of the loop，a clause c can be 
refined by appending different literals to it. FOIL determines which one to be used by 
employing an information-based heuristics. 

If the training examples are imperfect, FOIL may fail to find a consistent clause 
that covers some positive examples or it may find an overfitting clause that covers only 
a very few number of positive examples. Usually, these overfitting clauses cannot 
characterize the regularities in the training examples. 

In FOIL, the noise handling mechanism is the encoding length restriction. The 
idea is that the number of bits required to encode the clause should never exceed the 
total number of bits needed to indicate explicitly the positive training examples covered 
by the clause. Thus, if a clause covers r positive examples out of n examples in the 
training set. The number of bits available to encode the clause is log2 (n) + log! ( ). If 

V J 
there is no bit available for adding another literal, but the clause has more than 85% 
accurate, it is retained in the induced set of clauses, otherwise the clause is deleted. In 
the latter case, the clause construction procedure fails to produce a clause and it causes 
the termination of the FOIL algorithm. This heuristics avoids overfitting the training 
examples because insignificant literals are excluded from clauses of the inducing 
hypothesis. The obtained hypothesis is usually smaller, simpler, more accurate, and 
more comprehensible. Dzeroski and Lavrac (Dzeroski and Lavrac 1993) argue that the 
encoding length restriction has two deficiencies. In exact domains, it sometimes prevent 
FOIL from learning complete description. In noisy domains, it allows very specific 
clauses. 

FOIL has been extended to allow literals that bind a variable to a constant to 
appear in the body of a clause (Quinlan 1991，Cameron-Jones and Quinlan 1993; 
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1994). Other improvements include determinate literals, types and mode declarations of 
predicates, and advanced post-processing methods. 

A fundamental weakness of FOIL is that recursive hypotheses are evaluated by 
employing the positive training examples as a model of the target predicate being 
learned. When the examples are incomplete over the domain of interest, they provide an 
incorrect model and FOIL has difficulty in learning even simple recursive concepts 
(Cohen 1993). 

mFOIL (Lavrac and Dzeroski 1994) is largely based on the FOIL algorithm. 
The main difference is that mFOIL uses a different search heuristics and an improved 
noise-handling mechanism. Another major difference is the beam search strategy used 
in mFOIL as opposed to the hill-climbing search used in FOIL. To reduce its search 
space, mFOIL uses some additional information, such as the symmetry and different 
variables constraints. Several parameters are used in mFOIL, which determine the 
search heuristics used, the width of the beam in the beam search and the level of 
significance applied to the induced clauses. 

mFOIL employs an accuracy estimate as its search heuristics. The accuracy 
estimate may be the Laplace estimate or the more sophisticated m-estimate (Cestnik 
1990). Both estimates have been found to be useful in improving noise-handling 
abilities of at tr ibute-value learning systems (Cestnik and Bratko 1991，Clark and 
Boswell 1991). If a clause c covers n(c) training examples, out of which n+(c) are 
positive, its expected accuracy can be estimated by either the Laplace estimate 

n+<v�本 1 n+ (c) + m * a - prior - prob+ , 
A(c) = n (c) +1 or the m-estimate A(c) = —— where 

n(c) + 2 n(c) + m 
a - prior - prob+ is the a prior probability of the positive class and is estimated by the 
relative frequency of positive examples in the whole training set. 
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It uses a beam search method to find a significant clause. The clause 
construction procedure starts with the a clause having an empty body. During the 
search, the best clause and a small set of promising clauses are stored in the beam. At 
each iteration of the clause construction loop, the significant refinements of each clause 
c in the beam are evaluated using their expected accuracy. The best of their significant 
improvements constitute the new beam. A significant improvement of a clause c is a 
refinement c, of the clause c such that A(c') > A(c) and c' passes the significance test. 
The search for a clause terminates when the new beam becomes empty. The best clause 
found so far is retained in the hypothesis if its expected accuracy is better than the 
default accuracy. The default accuracy, estimated from the entire training set by the 
relative frequency estimate, is the probability of the more frequent of the positive or 
negative classes. 

The significance test used in mFOIL is based on the likelihood ratio statistic 
(Kalbfleish 1979). Assume that the training set has n+ positive examples and n" 
negative examples. If a clause c cover n(c) examples, n+(c) of which are positive, the 
value of the statistic can be calculated as follows: 

- f prob+(c) ) �汝 1 f prob"(c) ) LikelihoodRatio 二 2*n(c)* prob^(c) * l o g ^ — J + prob � * l og^pr io r — prob. 

where 
prob (c) = — — , n(c) 
prob ( c ) = — — , n(c) 

+ , a - prior — prob == r，and ^ n+ + iT 
n" 

a 一 prior 一 prob" = — r 
This statistic is distributed approximately as a ；distribution with one degree of 
freedom. If its value is above a specified significance threshold, the clause is 
significant. 
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The covering algorithm of AQ and INDUCE (Michalski 1983) is used in 
mFOIL. Program clauses are constructed repetitively. The stopping criteria of the 
example covering loop terminate the search for clauses when too few positive examples 
are left for generating a significant clause or no significant clause can be found with 
expected accuracy greater than the default accuracy. 

We have given overviews on evolutionary algorithms and ILP in the last and the 
current chapters respectively. From next chapter onwards, we shall detail the original 
contributions of this thesis. 
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Chapter 4 Genetic Logic Programming and Applications 
4.1. Introduction 

As discussed in chapter 3，there have been increasing interests in systems that induce 
first-order logic programs. The task of inducing logic programs can be formulated as a 
search problem (Mitchell 1982) in a search space of logic programs. Various systems, 
such as FOIL (Quinlan 1990; 1991), FOCL (Pazzani and Kibler 1992，Pazzani et al. 
1991)，CIGOL (Muggleton and Buntine 1988), and GOLEM (Muggleton and Feng 
1990)，differ mainly in the search strategies and heuristics used to guide the search for 
the correct program. Most systems are based on a greedy search strategy. They generate 
a sequence of logic programs from general to specific (or from specific to general) until 
a consistent target program is found. Each program in the sequence is obtained by 
specializing or generalizing the previous one. For example, FOIL applies the hill 
climbing search strategy guided by an information-gain heuristics to search programs 
from general to specific ones. 

However, these strategies and heuristics are not always applicable because they 
may trap the systems in local maxima. In order to overcome this problem, non greedy 
strategies should be adopted. Moreover, other learning paradigms such as 
reinforcement learning (Sutton 1988; 1992，Tesauro 1992, Lin 1992, Kaelbling 1993) 
and strategy learning cannot be achieved by ordinary ILP systems. 

An alternative is Genetic Programming (GP)，a very general and domain-
independent program induction method. It has impressive applications in symbolic 
regression, learning of control and game playing strategies, evolution of emergent 
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behavior, evolution of subsumption, automatic programming, concept learning, 
induction of subroutines and hierarchy of a program, and meta-level learning (Koza 
1992; 1994，Kinnear 1994b, Wong and Leung 1995a). Although it is very general, it 
has little theoretical foundation. Even the most well-established theory of Genetic 
Algorithms, the schema theory (Holland 1992，Goldberg 1989)，cannot be applied 
directly to GP. The shortcomings of GP are summarized as follows: 

• The semantics of the program created are unclear because (a) the 
semantics of some primitive functions such as LEFT, RIGHT and 
MOVE (Koza 1992) are difficult to define, and (b) various execution 
models can be used to execute the programs generated. Thus the 
semantics of the programs depends on the underlying execution model. 
It is possible to create two identical programs with different semantics 
because the underlying execution models are different. 

• The underlying execution model must be defined before programs can 
be created. It means that the users must have some ideas of the 
solutions. 

• It is difficult, if not impossible, to generate recursive programs 
• The sub-functions inventing mechanism is restrictive (Koza 1994). In 

Automatic Defined Function (ADF), the user must decide how many 
sub-functions should be created, the number of formal arguments in 
each sub-function and whether these sub-functions can invoke one 
another. 

• A special execution model must be used to run programs with iteration. 
This model imposes a restriction on where iterations can be introduced 
in the final programs. This requirement implies that the user must know 
in advance that the programs being found have iteration. 

Since ILP and GP have their own pros and cons, this observation motivates the 
integration of the two approaches. The Genetic Logic Programming System (GLPS) is 
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the first attempt (Wong and Leung 1994a; 1994b; 1995b) to achieve this goal. It is a 
novel framework for combining the implicitly parallel search power of GP and 
knowledge representation power of first-order logic. The shortcomings mentioned 
above could also be alleviated or eliminated. Currently, GLPS can learn function free 
first-order logic programs with constants. Section 4.2 presents a description of the 
mechanism used to generate the initial population of programs. One of the genetic 
operators, crossover, is detailed in section 4.3. Section 4.4 presents a high level 
description of GLPS. The results of some applications are presented in section 4.5. 

4.2. Representations of logic programs 

GLPS uses first-order logic to represent background knowledge and training examples 
and can induce logic programs by genetic search. In this section, we present the 
representation method of logic programs. GLPS allows atomic formula with variables 
and constants but does not allow them to contain function symbols. 

In GLPS, populations of logic programs are genetically bred using the 
Darwinian principle of survival and reproduction of the fittest along with a genetic 
crossover operation appropriate for mating logic programs. The fundamental difficulty 
in GLPS is to represent logic programs appropriately so that initial population can be 
generated easily and the genetic operator such as crossover and reproduction can be 
performed effectively. A logic program can be represented as a forest of AND-OR 
trees. The leaves of an AND-OR tree are positive or negative literals generated using the 
predicate symbols and terms of the problem domain. For example, consider the 
following logic program: 
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CI : cup(X) ：- i n s u l a t e — h e a t ( X ) , s t a b l e ( X ) , 
l i f t a b l e ( X ) . 

C2: cup (X) ： - paper—cup (X). 
C3 : s t a b l e (X) ：- b o t t o m (X, B) , f l a t (B). 
C4: s t a b l e ( X ) : - bo t tom(X, B) , c o n c a v e ( B ) . 
C5 : s t a b l e ( X ) ：- has—suppor t (X) . 
C6: l i f t a b l e (X) ：- ha s (X , Y) , h a n d l e (Y). 
C7: l i f t a b l e (X) : - s m a l l (X) , made_from (X, Y), 

low—density (Y). 

In this chapter, the syntax of the logic programming language Prolog is used to 
present logic programs. In comparison with the definitions of logic programs discussed 
in section 3.2, the symbol — is replaced by the symbol ： - and every clause of a 
Prolog program must be ended with a full stop. The labels such as CI and C2 before 
colons are names used to identify the clauses. These labels and colons are not parts of 
the logic program. 

For the above example, the set of predicate symbols is { c u p , 
i n s u l a t e _ h e a t , s t a b l e , l i f t a b l e , paper一cup, b o t t o m , f l a t , 
c o n c a v e , has一 suppor t , h a s , h a n d l e , s m a l l , made—from, 
l o w一d e n s i t y } and the set of terms is {X, Y, B}. This program can be 
represented as in figure 4.1. 
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cup(X) 

© 

02 

[Al^D J paper_cup(X) 

insulate_heat(X) A ^ j ^ A A 
stable(X) liftable(X) (a) 

stable(X) 

/ \ has_support(X) c5 

( A N D ] C3 ( A N ^ c4 

X A 
bottom(X, B) flat(B) bottom(X，B) concave(B) 

(b) 

Figure 4.1: A forest of AND-OR trees that represents a logic program. 
(a) The r epresenta t ion of the predicate c u p . (b) The 
r e p r e s e n t a t i o n of the predicate s t a b l e , (c) The 
representation of the predicate l i f t a b l e . 
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Iiftable(?x) 

A A 
has(X, Y) handle(Y) ^ 

「 A N D ) low—density(Y) 

A 
small(X) made—from(X，Y) 

(c) 

Figure 4.1: (Cont.) 

Since a logic program can be represented by a forest of AND-OR trees, we can 
randomly generate a forest of AND-OR trees for the program and randomly fill the 
leaves of these trees with literals of the problem. The high-level description of the 
algorithm used to generate an initial population is depicted in table 4.1. 

For the above example, if the target predicate symbol is cup, the predicate 
symbols for sub-concepts are s t a b l e and l i f t a b l e , and the set of terms is {X' 
Y, B}. The algorithm generates the following logic programs: 
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CI’： cup(X) ：- bo t tom(Y) , h a n d l e ( B ) . 
C2 ‘ : cup(X) : - s m a l l ( X ) • i n su l a t e—hea t (Y) • 
C3 ‘ : s t a b l e ( B ) ：- cup (B) , p a p e r _ c u p ( X ) , f l a t ( Y ) , 

f l a t ( X ) . 
C4‘： l i f t a b l e ( X ) : - l i f t a b l e ( Y ) • 
C5‘： l i f t a b l e ( Y ) : - concave(Y)• 

Input: 
Preds ： The set of predicate symbols such as {pi' P2 / ... •‘ Pn) 
Terms: The set of terms such as { ti, t2, •..' t^} 
Target: A special predicate syinbol in Preds that indicates the 

target concept to be induced 
Sub: A set of predicate symbols in Preds that indicate the • 

sub-concepts to be learned. If there is no sub-concept in 
the target logic program, then Sub is an empty set. 

Depth: It specifies the maximum depth of the AND-OR trees to be 
generated. 

Balance: It is a parameter that controls whether balance or 
unbalance AND-OR trees will be generated. 

Output: 

A forest of AND-OR trees representing a logic program. 

Comment： 

All predicate symbols represent operational concepts that must be 
defined by either extensional tuples or built-in operations. 

Function Generate-Trees(Preds, Terms, Target, Sub, Depth, Balance) 

{ • Let ALL-CONCEPTS := {Target} U Sub. 

• Initialize FOREST to an empty set. 
• Generate a set of literal LITERALS using the predicate symbols 

in Preds and terms in Terms. 
• For all concepts C in ALL-CONCEPTS do 

• Create an AND-OR tree for the current concept C. The 
leaves of the AND-OR tree are selected from LITERALS. 

• store the AND-OR tree for the current concept C into 
FOREST. 

• Return (FOREST). 
} 
Table 4.1: The algorithm for generating an initial program randomly. 

Alternatively, an initial population of logic programs can be induced by other 
learning systems, such as FOIL (Quinlan 1990), using a portion of the training 
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examples. If there are more than one representation for a logic program, one of them 
will be selected randomly. 

43. Crossover of logic programs 

We can apply crossover to the components of a logic program including the whole logic 
program, the rules, the clauses, and the antecedent literals. In GLPS, the terms of 
literals cannot be exchanged. Thus crossover components are referred to by a list of 
numbers. The list can have at most three elements: 

1. {} refers to the whole logic program. 
2. {m} refers to the mth rule in the program. A rule has one or more 

clauses. 
3. {m, n'} refers to a clause or a number of clauses of the mth rule in the 

program where n' is a node number of the corresponding sub-tree. For 
instance, let the rrfî  rule has Nm clauses which are arranged in an OR-
tree as follows: 

入 
於八。 

• 3 ( ^ 4 

入 
Each leaf in the tree represents a clause. In the example, the tree has six 
clauses, i.e. Nm = 6. There are 11 nodes in the tree, and the number of 
nodes is denoted by N’m. n' in the list {m，n,} is between 0 and N’m-i. 

Page 81 



Thus, {m, n'} represents a clause if n' corresponds to a leaf node. It 
refers to a set of clauses if n' corresponds to an internal node in the tree. 

4. {m, n, 1'} refers to a literal or a set of literals of the nth clause of the nfi^ 
rule where 1' is also a node number of the corresponding sub-tree. For 
example, let the clause has Lm，n antecedent literals. These literals are 
arranged in an AND-tree as follows: 

^ ^ 0 

(an^ 1 • s 

AU m 5 

八 
參 3 • 4 # 6 參 7 

Each leaf in the tree represents an antecedent literal and there are 5 
antecedent literals, i.e. Lm，n = 5. Let the number of nodes in an AND 
tree be Lm,n which is 9 for the above tree. The third number in {m, n, 
1'} can have value between 0 and L’m，n - 1. {m, n，1’} represents a 
literal if 1' refers to a leaf node. It is a set of literals if 1’ refers to an 
internal node. 

There are four kinds of crossover points represented by the above lists of 
numbers. Two crossover points are compatible if their representations (i.e. lists) have 
the same number of elements. In GLPS, crossover between two parental programs can 
only occur at c o m p a t i b l e crossover points. Consider the logic program Progi 
represented in Horn clauses: 
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CI: cup(X) ：- i n s u l a t e — h e a t ( X ) , s t a b l e ( X ) , 
l i f t a b l e ( X ) . 

C2 : cup (X) : - paper—cup (X). 
C3 ： s t a b l e (X) ：- b o t t o m (X, B) , f l a t (B). 
C4: s t a b l e ( X ) : - bo t tom(X, B) , c o n c a v e ( B ) . 
C5： s t a b l e ( X ) ：- has—suppor t (X) . 
C6： l i f t a b l e ( X ) : - has (X, Y), h a n d l e ( Y ) . 
C7： l i f t a b l e ( X ) ：- s m a l l ( X ) , made—from(X, Y), 

low—densi ty(Y) . 
and the logic program Prog2： 

CI ‘ ： cup(X) ：- i n s u l a t e _ h e a t ( X ) ' s t a b l e ( X ) . 
C 2 ' : s t a b l e ( X ) : - bo t tom(X, B) , f l a t ( B ) , 

c o n c a v e ( B ) , has—suppor t (X)• 

The forests of AND-OR trees of Progi and Prog2 are depicted respectively in figures 
4.2 and 4.3. 
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Rule for cup(X) - The first rule of the program 

cup(X) c1 c2 

Q o pape?-Lp(X) 

cT c2 1 ^ ^ ^ 2 

— 入 
stable(X) liftable(X) 

Rule for stable(X) - The second rule of the program 
stable(X) c3 c4 ^ 

has—::—) 

• 八 1 八 2 
c5 bottom(X,B) flat(B) bottom(X, B) concave(B) 

c3 c4 

Rule for liftable(X) • The third rule of the program 

liftable(X) ^ ^ 

2 八 2 
^ 。7 has(X, Y) handle(Y) (and)1 > 
⑦ c/ low-density(Y) 

A 
small(X) made-from(X, Y) 

Figure 4.2: The And-Or trees of the program Progi. 
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Rule for cup(X) - The first rule of the program 

cup(x) cr 

C ; � © � 

insulate_heat(X) stable(X) 

Rule for stable(X) - The second rule of the program 

stable(X) 

• 0 c2_ 
c2' ( ^ 0 

bottom(X, B) flat(B) concave(B) has_support(X) 

Figure 4.3: The And-Or trees of the program Prog2. 

If the crossover points are empty lists {}, the offspring are identical to their 
parents and the crossover operation degenerates to reproduction. Thus, GLPS has no 
independent reproduction operation. There is a parameter Pq which controls the 
probability of reproduction. 

The parameter Pi controls the probability of a list with only one element being 
generated. For instance, if the crossover points are {2} and {2}, the offspring are: 
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CI: cup(X) ：- i n s u l a t e — h e a t ( X ) , s t a b l e ( X ) , 
l i f t a b l e ( X ) . 

C2: cup (X) ： - paper—cup (X). 
C2 ‘ : s t a b l e (X) : - b o t t o i n ( X , B) , f l a t ( B ) , 

c o n c a v e ( B ) , h a s — s u p p o r t ( B ) • 
C6: l i f t a b l e ( X ) : - has (X , Y), h a n d l e ( Y ) . 
C7: l i f t a b l e (X) ：- s m a l l (X) , made_from(X, Y), 

low—densi ty(Y) . 
and 

CI • ： cup(X) ：- i n s u l a t e — h e a t ( X ) , s t a b l e ( X ) • 
C3 : s t a b l e (X) : - b o t t o n i ( X , B) , f l a t ( B ) . 
C4 : s t a b l e ( X ) : - b o t t o m ( X , B) , c o n c a v e ( B ) . 
C5 : s t a b l e ( X ) : - h a s — s u p p o r t (X) • 

Here, the exchanged program fragments are depicted in bold-face. The 
parameter P2 determines the probability that a list of two elements is generated. If the 
crossover points are {2, 1} for Progi and {2，0} for Prog2, the offspring are: 

CI : cup(X) ：- i n s u l a t e _ h e a t ( X ) , s t a b l e ( X ) , 
l i f t a b l e ( X ) . 

C2: cup(X) ••- p a p e r _ c u p ( X ) . 
C2 ‘ : s t a b l e (X) : - b o t t o i n ( X , B) , f l a t ( B ) , 

c o n c a v e ( B ) , h a s一 s u p p o r t ( X ) • 
C5: s t a b l e ( X ) : - has一suppor t (X) . 
C6: l i f t a b l e ( X ) ：- has (X, Y) , hand le (Y) • 
C7: l i f t a b l e (X) : - s m a l l (X) , made_from(X, Y), 

low—density (Y). 
and 
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CI: cup(X) ：- i n s u l a t e — h e a t ( X ) , s t a b l e ( X ) , 
C3 : stable(X) : - bottom(X, B), flat(B). 
C4: stable(X) : - bottom(X, B) , concave(B). 

The parameter P3 determines the probability that a list of three elements is 
created. If the crossover points are {2，3，0} for Progi and {2, 0，1} for Prog2, the 
offspring are: 

CI： cup(X) ：- insulate—heat(X), stable(X)' 
liftable(X). 

C2 : cup (X) : - paper_cup (X) • 

C3: stable (X) :- bottom (X, B) , flat (B). 
C4： stable (X) ：- bottom(X, B) , flat (B). 
C5: stable (X) :- has—support (X) • 
C6: lif table (X) ：- has (X, Y) , handle (Y). 
C7: lif table (X) :- small (X) , made_from(X, Y)' 

1ow 一density(Y)• 

and 
CI ‘ ： cup(X) :- insulate—heat(X), stable(X). 

C2 ' : stable (X) : - bottom(X, B) , concave (B), 
concave(B), has—support(X)• 

Hence, the crossover operation has many effects depending on the crossover 
points and only generates syntactically valid logic programs. 

4.4. Genetic Logic Programming System (GLPS) 

This section presents the evolutionary process performed by GLPS. It starts with an 
initial population of first-order logic programs generated randomly, induced by other 
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learning systems, or provided by the user. The initial logic programs are composed of 
predicate symbols, terms and atomic formulas of the problem domain. An atomic 
formula can be defined extensionally as a list of tuples for which the formula is true or 
intensionally as a set of Horn clauses that can compute whether the formula is true. 
Intensional atomic formulas can also be standard built-in formulas that perform 
arithmetic, input/output and logical functions etc. 

For concept learning (DeJong et al. 1993, Janikow 1993, Greene and Smith 
1993)，each individual logic program in the population is measured in terms of how 
well it covers positive examples and excludes negative examples. This measure is the 
fitness function of GLPS. Typically, each logic program is run over a number of 
training examples so that its fitness is measured as the total number of misclassified 
positive and negative examples. Sometimes, if the distribution of positive and negative 
examples is extremely uneven, this fitness function is not good enough to focus the 
search. For example, assume that there are 2 positive and 10000 negative examples, if 
the number of misclassified examples is used as the fitness function, a logic program 
that deduces everything are negative will have very good fitness. Thus, in this case, the 
fitness function should be a weighted sum of the total numbers of misclassified positive 
and negative examples. GLPS can also learn logic programs computing arithmetic 
functions such as square root or factorial. In this case, the fitness function calculates the 
difference between the outputs found by the logic program and the target arithmetic 
function. 

The initial logic programs in generation 0 are normally incorrect and have poor 
performances. However, some individuals in the population will be fitter than others. 
The Darwinian principle of reproduction and survival of the fittest and the genetic 
operation of sexual crossover are used to create new offspring population of programs 
from the current population. The reproduction operation involves selecting a program 
from the current population of programs and allowing it to survive by copying it into 
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the new population. The selection is based on either fitness (fitness proportionate 
selection) or tournament (tournament selection). 

Input： 
Preds: The set of predicate symbols such as {pi, P2/ Pn) 
Terms: The set of terms such as { ti, t2, W ) 
Target: A special predicate symbol in Preds that indicates the 

target concept to be induced 
Sub: A set of predicate syinbols in Preds that indicate the 

sub-concepts to be learned. If there is no sub-concept in 
the target logic programs, then Sub is an empty set. 

Depth: It specifies the maximum depth of the AND-OR trees to be 
generated. 

Balance： It is a parameter that controls whether balance or 
unbalance AND-OR trees will be generated, 

t The termination function, 
f The fitness function. 

Output: 
A logic program induced by GLPS. 

Function GLPS(Preds, Terms, Target, Sub, Depth, Balance, t, f) { 
• generation := 0. 

• Initialize a population Pop(generation) of logic programs. They 
are generated by calling the function 
Generate-Trees(Preds, Terms, Target, Sub, Depth, Balance), 
provided from the user, or generated by other learning systems. 

• Execute each logic program in the Pop(generation) and assign it 
a fitness value according to the fitness function f.. The 
fitness value of a program measures how well it covers positive 
examples and excludes negative examples. 

• While the termination function t is not satisfied do 
• Create a new population Pop(generation+l) of programs by 

employing the crossover and the mutation. The operations 
are applied to logic programs chosen by either fitness 
proportionate selection or tournament selection. 

• Evaluate the fitness of each individual in the next 
population Pop(generation+l) 

• generation := generation +1. 
• Return the best logic program found in any generation of a run. 

} 

Table 4.2: The high-level description of GLPS. 

The genetic process of crossover is used to create two offspring programs from 
the parental programs selected by either fitness proportionate selection or tournament 
selection. The parental programs are usually of different sizes and shapes and the 
offspring programs are composed of the clauses and the literals from their parents. 
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These offspring programs are typically of different sizes and shapes from their parents. 
The new generation replaces the old generation after the reproduction and crossover 
operations are performed on the old generation. The fitness value of each program in 
the new generation is estimated and the above process is iterated over many generations 
until the termination criterion is satisfied. 

The algorithm will produce populations of programs which tend to exhibit 
increasing average fitness in producing correct answers for the training examples. 
GLPS returns the best logic program found in any generation of a run as the result. A 
high-level description of GLPS is presented in table 4.2. 

4.5. Applications 

An implementation of GLPS is completed. It is implemented in CLOS (Common Lisp 
Object System). It has been tested on various CLOS implementations and different 
hardware platforms including CMU Common Lisp on a SparcStation, Lucid Common 
Lisp on a DecStation and MCL on a Macintosh. 

Three applications on learning solved by GLPS are given below as 
demonstrations, namely, the Winston's arch problem (Winston 1975), the modified 
Quinlan's network reachability problem (Quinlan 1990)，and the factorial problem. Five 
runs are performed for each problem. The parameters Pq, Pi, ?2 and P3 are 0.0，0.1, 
0.3 and 0.6 respectively. The maximum number of generations of each run is 50 for the 
first two problems and 20 for the third problem. 
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4.5.1. The Winston's arch problem 

In this learning task, the objective is to learn the nature of arches from examples 
(Winston 1975). The domain has several operational relations. A relation is operation if 
it is represented extensionally. The operational relations are as follows: 

• s u p p o r t s (A, B) - A supports B 
• l e f t - o f (A, B) - - A i s on the left of B 
• t o u c h e s (A, B) - A touches B 
• b r i c k (A) -- A is a brick 
• wedge (A) -- A is a wedge 
• p a r a l l e l - p i p e d (A) - A is a brick or a wedge. 

The non-operational relation a r c h (A' B' C) contains all tuples <A, B, C> 
that form an arch with lintel A. There are 2 positive and 1726 negative training 
examples. Since the number of negative examples is much larger than that of positive 
examples, the standardized fitness is the weighted sum of the number of misclassified 
examples. Each misclassified positive example has weight 863 while the negative one 
has weight 1. The predicate symbols are the operational and non-operational predicates 
described. The set of terms is {A, B' C} and the population size is 1000. The 
maximum number of generations is 50. GLPS can find a near correct program within 2 
generations. One of the best programs induced is: 

a r c h ( A , B, C) ：- l e f t - o f ( C , B ) , w e d g e ( C ) . 
a r c h ( A , B, C) ：- l e f t - o f ( B , C ) , s u p p o r t s ( B , A ) . 

The standard solution of this problem is: 
a r c h (A, B, C) : - l e f t - o f (B, C) , s u p p o r t s (B, A ) , 

n o t t o u c h e s ( B , C ) . 

Page 91 



and it is similar to the second clause of the program induced. The completely correct 
program cannot be induced by GLPS because negative antecedent literals are not 
allowed in the preliminary implementation. Figure 4.4 delineates the best, average, and 
worst standardized fitnesses for increasing generations. 
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Figure 4.4: Performance for the Winston's Arch problem. 

4.5.2. The modified Quinlan's network reachability 
problem 

The network reachability problem is originally proposed by Quinlan (Quinlan 1990), 
the domain involves a directional network such as the one depicted as follows: 
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The structural information of the network is represented by the literal 
l i n k e d - t o (X, Y) denoting that a node X is directly linked to a node Y. The 
extension of linked-to(X, Y) is: 

linked-to(X, Y) = {<0, 1>, <1, 2>, <2, 3>, <3, 4>} 

Here, the learning task is to induce a logic program that determines whether a 
node X can reach another node Y. This problem can also be formulated as finding the 
intensional definition of the relation c a n - r e a c h (X, Y) given its extension. Its 
extensional definition is: 

can-reach(X, Y) 二 {<0, 1>, <0, 2>, <0, 3>, <0, 4>, 

<1, 2>, <1, 3>, <1, 4>, <2, 3>, 

<2, 4>, <3, 4>} 

The tuples of this relation are the positive training examples, and the negative 
training examples are generated using the close-world assumption. Thus the extensional 
definition of the relation n o t c a n - r e a c h (X, Y) is: 

not can-reach(X, Y) = {<0, 0>, <1, 0>, <1, 1>, <2, 0>, 
<2, 1>, <2, 2>, <3, 0>, <3, 1>, 

<3, 2>, <3, 3>, <4, 0>, <4, 1>, 

<4, 2>, <4, 3>, <4, 4>} 

In this experiment, the predicate symbols are c a n - r e a c h and linked-to. 
The symbol c a n - r e a c h represents the target concept while l i n k e d - t o is an 
operational concept. The set of terms is {X, Y, Z}. The population size is 1000 and 
the standardized fitness is the total number of misclassified training examples. The 
maximum number of generations is 50. Since the symbol c a n - r e a c h is in the set of 
predicate symbols, it is possible to evolve a non-terminating recursive program such as 
the following one: 

can-reach(X, Y) :- can-reach(Y, X). 
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In order to avoid this problem, an execution time limit is set. If an evolved logic 
program fails to complete within five seconds, the inference engine will terminate the 
program and GLPS will assign the worst standardized fitness value, 25, to it. 

GLPS can find a perfect program that covers all positive examples while 
excludes all negative ones within a few generations. One program found is: 

c a n - r e a c h ( X , Y) : - l i n k e d - t o ( Z , Y ) , l i n k e d - t o ( X , Z) • 
c a n - r e a c h ( X , Y) ：- l i n k e d - t o ( X , Y ) , l i n k e d - t o ( X , Z ) . 
c a n - r e a c h ( X , Y) ：- c a n - r e a c h ( X , Z ) , c a n - r e a c h ( Z , Y ) . 

This program can be simplified to: 
c a n - r e a c h ( X , Y) : - 1 i n k e d - t o ( X , Z ) , 1 i n k e d - t o ( Z , Y)• 
c a n - r e a c h ( X , Y) : - 1 i n k e d - t o ( X , Y)• 
c a n - r e a c h ( X , Y) ：- c a n - r e a c h ( X , Z ) , c a n - r e a c h ( Z , Y)• 

The first clause of this program declares that a node X can reach node Y if there 
is another node Z that directly connects them. The second clause declares that a node X 
can reach a node Y if they are directly connected. The third clause is recursive, it 
expresses that a node X can reach a node Y if there is another node Z, such that Z is 
reachable from X and Y is reachable from Z. In fact, this program is semantically 
equivalent to the standard solution: 

c a n - r e a c h (X, Y) ：- 1 i n k e d - t o (X, Y) • 
c a n - r e a c h ( X , Y) ：- l i n k e d - t o ( X , Z ) , c a n - r e a c h ( Z , Y ) . 

This experiment demonstrates that GLPS can learn recursive program naturally 
and effectively. Recursive functions are difficult to learn in Koza's GP (Koza 1992). 
This experiment shows the advantage of GLPS over GP. Figure 4.5 depicts the best, 
average, and worst standardized fitness values for increasing generations. 
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Figure 4.5: Performance for the modified network reachability problem. 

4.5.3. The factorial problem 

This experiment learns the relation f a c t o r i a l (X' Y) where Y is the factorial of X. 
The predicate symbols are f a c t o r i a l , p l u s , and m u l t i p l i c a t i o n . The symbol 
f a c t o r i a l represents the target concept while p l u s and m u l t i p l i c a t i o n are 
built-in predicates that perform arithmetic operations. The literal f a c t o r i a l (X' Y) 
finds the factorial of X and assigns the result to Y if X is instantiated and Y is not 
instantiated. It is satisfied if Y is the factorial of X if X and Y are instantiated. The literal 
is not satisfied if X and Y are not instantiated.� 

The literal p l u s (X, Y, Z) finds the sum of X and Y and assigns the output 
to Z if X and Y are instantiated and Z is not instantiated. It finds the difference of Z and 
X and assigns the result to Y if X and Z are instantiated and Y is not instantiated. It 
calculated the difference of Z and Y and assigns the output to X if Z and Y are 
instantiated and X is not instantiated. If X，Y and Z are all instantiated, the literal 
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p l u s (X, Y, Z) is satisfied if the sum of X and Y is equal to Z. The literal is not 
satisfied if more than one variable is not instantiated. 

The literal m u l t i p l i c a t i o n (X, Y, Z) finds the product of X and Y and 
assigns the output to Z if X and Y are instantiated and Z is not instantiated. It divides Z 
by X and assigns the result to Y if X and Z are instantiated and Y is not instantiated. It 
divides Z by Y and assigns the output to X if Z and Y are instantiated and X is not 
instantiated. If X，Y and Z are all instantiated, the literal m u l t i p l i c a t i o n (X' Y' 
Z) is satisfied if the product of X and Y is equal to Z. The literal is not satisfied if more 
than one variable is not instantiated or division by zero is attempted. 

The set of terms is {0, 1, 2, W, X, Y, Z}. The population size is 1000 
and the maximum number of generations is 20. The standardized fitness of a program is 
defined as follows: 

• • ri 7 ,prog_factorial{i) - factorial{i) 
ymin[l, abs ( ,善. )J 
^ jactorial{i) 

where i is the input value; 

factorial(i) returns the correct result for the input i; 

prog—factorial(i) returns the result of the logic program 

for the input i 

In this experiment, we uses five fitness cases for i from 0 to 4. In order to 
prevent the problem of non-terminating recursive programs, any evolved program that 
fails to finish within 100 seconds will be terminated and the worst standardized fitness 
value, 5, is assigned to this program. A logic program is invoked through the goal 
f a c t o r i a l (X, Y) where X is instantiated to a value between 0 and 4 while Y must 
be unbound. Since the search space of this problem is extremely large, a number of 
incorrect initial clauses are used to create the initial population of programs. An 
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individual program contains a random subset of clauses from these incorrect initial 
clauses. The clauses are as follows: 

factorial(0, 1) ：- plus(l, 1, 2) • 

factorial(1, 1) ：- plus(l, 1, 2). 

factorial(X, Y) :- plus(Z, 1, X), plus(X, Y Z)• 

factorial(X, Y) :- plus(Z, X' Y) factorial(Z' W)' 

m u l t i p l i c a t i o n ( W , X, Y) . 
factorial(1, 1) ：- plus(l, 1' 2)' 

m u l t i p l i c a t i o n ( X , X, Y)• 
factorial (X, Y) :- plus(Z, 1, X)' 

m u l t i p l i c a t i o n ( Z , Z, W), 
m u l t i p l i c a t i o n ( W , X, Y)• 

f a c t o r i a l ( X , Y) : - f a c t o r i a l { Z , W), 
m u l t i p l i c a t i o n ( W , X, Y), 
m u l t i p l i c a t i o n ( X , Y, Z)• 

factorial (X, Y) :- plus (X, X, W), 

m u l t i p l i c a t i o n ( W , W, Z) , 
m u l t i p l i c a t i o n ( Z , X, Y) . 

factorial(X, Y) :- multiplication(X, X, W), 

factorial(W, Z), plus(Z, X, Y)• 

During one of the runs, the correct logic program is induced in the eighth 
generation. The program is 
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factorial (0, 1) ：- pliis(l, 1, 2) • 

factorial(X, Y) :- factorial(Z, W), 

multiplication(W, X, Y), 

multiplication(X, Y, Z)• 

factorial(X, Y) :- plus(Z, X' Y)' factorial(Z, W)' 

multiplication(W, X, Y)• 

factorial(0, 1) :- multiplication(W, 0, 1)• 

factorial (X, Y) ：- multiplication(W' X' Y)' 

multiplication(W, X, Y), 

multiplication(X, Y, Z). 

factorial(1, 1) :- plus(l, 1, 2), 
multiplication(X, X, Y)• 

factorial (X, Y) :- plus (Z, 1, X) , factorial (Z, W), 

multiplication(W, X, Y). 

factorial (X, Y) :- plus(Z, 1, X), plus (X, Y' Z). 

It seems that the above program will execute infinitely because of the second 
clause. In fact, the inference engine can check immediately that this clause cannot be 
satisfied. The variables Z and W in the second clause are unbound when the sub-goal 
f a c t o r i a l (Z, W) is invoked. Since f a c t o r i a l (A, B) fails if A and B are 
unbound, the sub-goal f a c t o r i a l (Z, W) fails and the second clause will not cause 
infinite recursion. 

As described previously, the logic program is invoked through the goal 
f a c t o r i a l (X, Y) where X is instantiated to a value between 0 and 4 while Y must 
be unbound. Thus, the third clause of the program will fail because two of the variables 
of the sub-goal plus (Z, X, Y) are unbound. Similarly, the fifth and the sixth 
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clauses will also fail. To comprehend the behavior of the program, we remove these 
clauses and simplify the program to: 

factorial(0, 1) ：- plus(l' 1' 2). 

factorial(0, 1) ：- multiplication (W, 0, 1). 

factorial (X, Y) :- plus(Z, 1, X), factorial (Z, W), 

m u l t i p l i c a t i o n ( W , X, Y)• 
factorial (X, Y) :- plus(Z, 1, X), plus (X, Y, Z). 

Since the second clause in the simplified program cannot be satisfied in every 
situation, it is removed from the program too. Although the last clause is incorrect, it 
will never be used during execution, so it can be deleted too. The final program is: 

factorial(0, 1) ：- plus(1, 1' 2). 
factorial(X, Y) :- plus(Z, 1, X), factorial(Z, W), 

multiplication(W, X, Y)• 

which is a correct logic program to find the factorial of a number. Figure 4.6 depicts the 
average of the best, average, and worst standardized fitness values over 5 runs against 
increasing generations. 
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Chapter 5 The logic grammars based genetic programming system (LOGENPRO) 
GLPS described in the previous chapter achieves the goal of combining GP and ILP. 
However, GLPS can only induce logic programs. In theory, programs in any 
programming language can be represented as parse trees. Hence, GP should be able to 
learn programs in any programming languages. In practice, the process of translating 
programs in some languages to the corresponding parse trees is not trivial. Since the 
syntax of Lisp is so simple and uniform that the translation can be done easily, 
programs evolved by GP are usually expressed in Lisp. 

In this chapter, we propose a novel, flexible, and general framework that 
combines GP and ILP. This framework is based on a formalism of logic grammars and 
a system called LOGENPRO (The LOgic grammar based GENetic PROgramming 
system) is developed. LOGENPRO can learn programs in various programming 
languages. 

The first section is an introduction to logic grammars. Section 5.2 presents a 
representation method of programs and a description of the mechanism used to generate 
the initial population of programs. One of the genetic operators, crossover, is detailed in 
section 5.3. Another genetic operator, mutation, is presented in the subsequent section. 
In section 5.5，we present a high-level description of LOGENPRO. The last section is a 
discussion. 
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5.1. Logic grammars 

The LOgic grammars based GENetic PROgramming system (LOGENPRO) can induce 
programs in various programming languages such as Lisp, C, and Prolog. Thus, 
LOGENPRO must be able to accept grammars of different languages and produce 
programs in them. Most modern programming languages are specified in the notation 
of BNF (Backus-Naur form) which is a kind of context-free grammars (CFGs). 
However, LOGENPRO is based on logic grammars because CFGs (Hopcroft and 
Ullman 1979，Lewis and Rapadimitrion 1981) are not expressive enough to represent 
context-sensitive information of some languages and domain-dependent knowledge of 
the target program being induced. This section introduces the formalism of logic 
grammars. 

Logic grammars are the generalizations of CFGs. Their expressivenesses are 
much more powerful than those of CFGs, but equally amenable to efficient execution. 
In this thesis, logic grammars are described in a notation similar to that of definite 
clause grammars (Pereira and Warren 1980, Pereira and Shieber 1987，Sterling and 
Shapiro 1986). The logic grammar for some simple S-expressions in table 5.1 will be 
used throughout this chapter. More logic grammars for S-expressions can be found in 
the next chapter. Grammars for some logic programming languages can be found in 
chapters 6 and 7. � 

1： start -> [(*], exp{W), exp(W), exp(W),[)]. 
2: start -> {member(?x, [W, Z] )} , [(*], exp-1(?x), 

exp-1(?x), exp-1(?x),[)]. 
3: start -> {meitiber {?x, [W, Z] ) } , [ ( + ] , exp-1 (?x), 

exp-1(?x), exp-l(?x),[)]. 
4: exp(?x) -> [{/ ？X 1.5)]• 
5: exp-1(?x) -> {random(l,2,?y)}, [(/ ？x ？y)]. 
6: exp-1 (?x) -> {randoin(3, 4, ?y) } , [ (- ？x ？y)]. 
7： exp-1(W) -> [(+ (- W 11) 12)]. 

Table 5.1: A logic grammar 
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A logic grammar differs from a CFG in that the logic grammar symbols, 
whether terminal or non-terminal, may include arguments. The arguments can be any 
term in the grammar. A term is either a logic variable, a function or a constant. A 
variable is represented by a question mark ？ followed by a string of letters and/or 
digits. A function is a grammar symbol followed by a bracketed n-tuple of terms and a 
constant is simply a 0-arity function. Arguments can be used in a logic grammar to 
enforce context-dependency. Thus, the permissible forms for a constituent may depend 
on the context in which that constituent occurs in the program. Another application of 
arguments is to construct tree structures in the course of parsing, such tree structures 
can provide a representation of the semantics of the program. 

The terminal symbols, which are enclosed in square brackets, correspond to the 
set of words of the language specified. For example, the terminal [ ( - ？x ？y)] 
creates the constituent ( - 1 . 0 2 . 0 ) of a program if ？ x and ？y are instantiated 
respectively to 1.0 and 2.0. Non-terminal symbols are similar to literals in Prolog, 
e x p - 1 ( ？x) in table 5.1 is an example of non-terminal symbol. Commas denote 
concatenation and each grammar rule ends with a full stop. 

The right-hand side of a grammar rule may contain logic goals and grammar 
symbols. The goals are pure logical predicates for which logical definitions have been 
given. They specify the conditions that must be satisfied before the rule can be applied. 
For example, the goal member (?x , [W, Z] ) in table 5.1 instantiates the variable 
？X to either W or Z if ？x has not been instantiated, otherwise it checks whether the 
value of ？ X is either W or Z. If the variable ？ y has not been bound, the goal 
random (1, 2 , ？y) instantiates ？y to a random floating point number between 1 
and 2. Otherwise, the goal checks whether the value of ？y is between 1 and 2. 
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Domain-dependent knowledge can be represented in logic goals. For example, 
consider the following grammar rule: 

a-useful-program -> first-component(？X)‘ 
{ i s - u s e f u l ( ? X , ？Y)}, 
second-component(？Y). 

This rule states that a useful program is composed of two components. The first 
component is generated from the non-terminal f i r s t - c o m p o n e n t (？X). The logic 
variable ？ X is used to store semantic information about the first component produced. 
The logic goal then determines whether the first component is useful according to the 
semantic information stored in ？X. Domain-dependent knowledge about which 
program fragments are useful is represented in the logical definition of this predicate. If 
the first component is useful, the logic goal i s - u s e f u l (？X' ？Y) is satisfied and 
some semantic information is stored into the logic variable ？ Y. This information will be 
used in the non-terminal second-component ( ？Y) to guide the search for a good 
program fragment as the second component of a useful program. 

The special non-terminal s t a r t corresponds to a program of the language. In 
table 5.1, some grammar symbols are shown in bold-face to identify the constituents 
that cannot be manipulated by genetic operators. For example, the last terminal symbol 
[ ) ] o f the second rule is revealed in bold-face because every S-expression must be 
ended with a ’)’. The number before each rule is a label for later discussions. It is not 
part of the grammar. 

5.2. Representations of programs 

The fundamental contribution of LOGENPRO is in the representations of programs in 
different programming languages appropriately so that initial population can be 
generated easily and the genetic operators such as reproduction, mutation, and 
crossover can be performed effectively. A program can be represented as a derivation 
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tree that shows how the program has been derived from the logic grammar. 
LOGENPRO applies deduction to randomly generate programs and their derivation 
trees in the language declared by the given grammar. These programs form the initial 
population. For example, the program (* ( / W 1 .5 ) ( / W 1 .5 ) ( / W 1 . 5 ) ) 
can be generated by LOGENPRO given the logic grammar in table 5.1. It is derived 
from the following sequence of derivations: 

start => [(*] exp(W) exp(W) exp(W)[)] 

=> [(*] [(/ W 1.5)] exp(W) exp(W)[)] 

=> [(*] [(/ W 1.5)] [(/ W 1.5)] exp(W) 

[ ) ] 
=> [(*] [ (/ W 1.5) ] [ (/ W 1.5)] 

[ ( / W 1 . 5 ) ] [ ) ] 
=> [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))] 

This sequence of derivations can be represented as the derivation tree depicted in figure 
5.1. 

start 

[ ( * ] e x p (W) exp(W) f e x p (W) [ ) ] | 

I I . I I I 
[{/ ？X 1 .5)] [(/ ？X 1.5)]I [(/ ？X 1.5)] I 

{？x/W} {？x/W} [ {?x/W} I 

Figure 5.1: A derivation tree of the S-expression in Lisp 
(* (/ W 1.5) (/ W 1.5) (/ W 1.5)) 
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In literature, the terms of derivation trees and parse trees are usually used 
interchangeably. However, we will use the term derivation trees to refer to the tree 
structures in our framework and the term parse trees to refer to those in GP. The 
bindings of logic variables are shown in italic font and enclosed in a pair of braces. The 
sub-trees enclosed in a dashed rectangular are frozen. In other words, they are 
generated by bold-faced grammar symbols and they cannot be modified by genetic 
operators. 

One advantage of logic grammars is that they specify what is a legal program 
without any explicit reference to the process of program generation and parsing. 
Furthermore, a logic grammar can be translated into an efficient logic program that can 
generate and parse the programs in the language declared by the logic grammar (Pereira 
and Warren 1980, Pereira and Shieber 1987, Abramson and Dahl 1989). In other 
words, the process of program generation and parsing can be achieved by performing 
deduction using the produced logic program. Consequently, the program generation 
and analysis mechanisms of LOGENPRO can be implemented using a deduction 
mechanism based on the logic programs translated from the grammars. In the following 
paragraphs, we discuss the method of implementing LOGENPRO using a Prolog-like 
logic programming language. 

The differences between the logic programming language used and Prolog are 
listed as follows: 

• A variable is represented by a question mark ？ followed by a string of 
letters and/or digits. 

• The elements of a list can be separated by either commas or spaces. For 
example, [a b c] and [a , b , c] are equivalent. 

• A pair of • | ' is used to represent a frozen terminal symbol. For 
example, the symbol [) ] in the second rule of the grammar in table 5.1 
is translated into | ) . 

Page 105 



• A pair of braces encloses a sequence of logic goals appearing in a logic 
grammar. 

• If there are a number of clauses Ci, C2, Cn that match a goal G, the 
ordering of evaluating these clauses is determined randomly. 

Using the difference list approach (Sterling and Shapiro 1986)，a grammar rule 
of the form: 

Ao -> Al, A2, . • • , An. 
is translated into a logic program clause of the form: 

Ao ‘ : - Al • , A2 • , . . . , An • • 
in the logic programming language. Here, if Ai，for some i between 0 and n, is a non-
terminal with M arguments, then Ai ‘ is a literal with M+3 arguments. The predicate 
symbols of Ai and Ai ‘ are the same. For example, Ai is translated into 
e x p ( ? X , ？Tree , ？Sj , ？S j+1)，for some j，if Ai is e x p ( ?X) . The literal 
exp (？X, ？Tree, ？Sj, ？ S j +1) states that the sequence of symbols between ？Sj 
and ？Sj+i is a sentence of the category represented by the non-terminal symbol 
exp (？X) • The derivation tree of the sentence is stored in the logic variable ？Tree. 

A terminal symbol such as [a b c] is translated to a literal with 3 arguments: 
c o n n e c t ( [a b c ] , ？Sj , ？Sj+i) , for some j. The predicate c o n n e c t is 
defined as: 

connect(?A, ？SO, ？SI) :- append(？A, ？SI, ？SO). 

This predicate declares that the list of symbols stored in the logic variable ？ A can be 
found in the sequence of symbols between ？SO and ？SI. 

If Ak, for some k between 1 and n, is a pair of braces enclosing a sequence of 
pure logic goals, i.e., A^ has the form of {Go , Gi, . • • . , Gm)，then Ak ‘ is 
obtained from Ak by removing the pair of braces. 
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1- ： s tar t (tree (start , [(*], ？El, ？E2, frozen (?E3) , | ) | ) , 
？SO, ？S5) 
：- connect([(*], ？SO, ？SI), 

exp{W, ？El, ？SI, ？S2), 
exp(W, ？E2, ？S2, ？S3), 
exp(W, ？E3, ？S3, ？S4), 
connect([)], ？S4, ？S5). 

2‘： start(tree(start, {member(?x, [W, Z])}, [(*], 
？El, ？E2, frozen{?E3), |)|),?S0, ？S5) 
：- member (?x, [W, Z]), 

connect([(*], ？SO, ？SI), 
exp-l(?x, ？El, ？SI, ？S2), 
exp-l(?x, ？E2, ？S2, ？S3), 
exp-l(?x, ？E3, ？S3, ？S4), 
connect([)], ？S4, ？S5). 

3’： start(tree(start, {member(?x, [W, Z])}, [ ( + ], 
？El, ？E2, frozen(?E3), |)|),?S0, ？S5) 
：- meniber {?x, [W, Z]), 

connect([(+], ？SO, ？SI), 
exp-l(?x, ？El, ？SI, ？S2), 
exp-l(?x, ？E2, ？S2, ？S3), 
exp-l(?x, ？E3, ？S3, ？S4), 
connect([)], ？S4, ？S5). 

4'： exp(?x, tree(exp(?x), [(/ ？x 1 . 5 ) ] ) ' ? S 0 ' ？SI) 
：- connect{[{/ ？x 1 . 5 ) ] , ？SO, ？SI). 

5 ‘ : exp-1{?x, tree(exp-1(?x), {random(1'2,?y)}' 
[(/ ？X ？Y)]),?SO, ？SI) 

：- random{1, 2, ？y), 
connect([(/ ？x ？y)], ？SO, ？SI). 

6‘: exp-1{?x, tree(exp-1(?x), {random(3,4,？y)}, 
[(-？X ？y)]),?S0, ？SI) 

：— random{3, 4, ？y), 
connect([(- ？x ？y)], ？SO, ？SI). 

7'： exp-1(W, tree(exp-1(W), [{+ (- W 11) 12)]),?S0, ？SI) 
: - connect([(+ (- W 11) 12)], ？SO, ？SI). 

Table 5.2: A logic program obtained from translating the logic 
grammar presented in table 5.1 

This method of translating a logic grammar into a logic program is common in 
the field of natural language processing (Pereira and Warren 1980, Pereira and Shieber 
1987, Abramson and Dahl 1989). The original idea of this approach is to rephrase the 
special purpose formalism of CFGs into a general purpose first-order predicate logic 
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(Kowalski 1979, Colmerauer 1978, Pereira and Warren 1980). This approach is 
further refined and generalized to Define Clause Grammars (DCGs) which can handle 
the properties of context-dependency of natural languages effectively. 

Since DCGs, a kind of logic grammars, can be translated into efficient logic 
programs automatically, parsers and generators for the corresponding natural languages 
can be obtained easily. In other words, researchers in the field of natural language 
processing only declare the grammar for a particular natural language, and the 
translation process will produce the corresponding parser and generator for them. 
Moreover, for some cases, the same logic program can be used as both a parser and 
generator at the same time. 

For example, the grammar depicted in table 5.1 can be translated into the logic 
program presented in table 5.2. In the clause 1' of the logic program shown in table 
5 . 2 , t h e c o m p o u n d t e r m 
t r e e ( s t a r t , [ (*] , ？El, ？E2, f r o z e n (?E3) , | ) | ) indicates that it is a 
tree with a root labeled as s t a r t . The children of the root include the terminal symbol 
[(* ] ’ a tree created from the non-terminal exp (W) ’ another tree created from the non-
terminal exp (W), a frozen tree generated from the non-terminal e x p (W), and the 
frozen terminal | ) . 

Thus, a derivation tree can be generated randomly by issuing the following 
query: 

？- start(?T, ？S,[]). 

This goal can be satisfied by deducing a sentence that is in the language specified by the 
grammar. One solution is: 

？S = [ (* (/ W 1.5) (/ W 1.5) (/ W 1.5))] 

and the corresponding derivation tree is: 
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？T = t r e e ( s t a r t , [ ( * ] , 
tree(exp(W), [(/ W 1.5)]), 

tree(exp(W), [(/ W 1.5)]), 

frozen(tree(exp(W), [(/ W 1.5)])), 

1)1) 

This is exactly a representation of the derivation tree shown in figure 5.1. In 
fact, the bindings of all logic variables and other information are also maintained in the 
derivation trees to facilitate the genetic operations that will be performed on the 
derivation trees. 

Alternatively, initial programs can be induced by other learning systems such as 
f o i l (Quinlan 1990; 1991) or given by the user. LOGENPRO analyzes each program 
and creates the corresponding derivation tree. If the language is ambiguous, multiple 
derivation trees can be generated. LOGENPRO produces only one tree randomly. For 
example, the program (* ( / W 1 . 5 ) ( / W 1 . 5 ) ( / W 1 . 5) ) can also be 
derived from the following sequence of derivations: 

start => (member (?x, [W, Z] ) } [(*] exp-1 (?x) 

exp-1(?x) exp-1(?x)[)] 

=> [(*] exp-1(W) exp-1(W) exp-1(W)[)] 

=> [(*] {random(1, 2, ？y)} [(/ W ？y)] 

exp-1(W) e x p - 1 ( W ) [ ) ] 
=> [ (*] [ ( / W 1 .5 ) ] e x p - 1 (W) e x p - 1 ( W ) [ ) ] 
=> [ (*] [ ( / W 1 . 5 ) ] 

{random(1, 2, ？y)} [(/ W ？y)] 

exp-1(W)[)] 
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二> [ ( * ] [ ( / w 1 . 5 ) ] [ ( / W 1 . 5 ) ] 
exp-l(W)[)] 

二> [(*] [(/ W 1.5)] [(/ W 1.5)] 

{random(1, 2, ？y)} [(/ W ？y)][)] 

=> [ (*] [ ( / W 1 . 5 ) ] [ ( / W 1 . 5 ) ] 
[ ( / W 1 . 5 ) ] [ ) ] 

=> [ (* (/ W 1 .5 ) ( / W 1 .5 ) ( / W 1 . 5 ) ) ] 
The derivation tree of this sequence of derivations is depicted in figure 5.2. The ？yl, 
？y2，and ？y3 in the figure are different instances of the logic variable ？y appearing in 
the same or different rules in the grammar. 

start 

{member {?x, / X I [)] 

义 N 
[(*] exp-l(?x) exp-l(?x) j exp-1(?x) | 

{？x/W} {？x/W) 丨 {？x/W} i / \ ^ ^ 
/ \ 1 [(/ ？X ？y3)] i / \ 1 {？x/W, ？y3/1.5}\ / \ I 

/ \ I {randomd, 2, ？y3) } j 
{random! 1, 2, ？yl) } {randomd, 2, ？y2) } \ | {？y3/1.5} | 

\ 
[{/ ？X ？yl)] [(/ ？X ？y2)] {?x/W, ？yl/1.5} {？x/W, ？y2/1.5} 

Figure 5.2: Another derivation tree of the S-expression in Lisp 
(* (/ W 1.5) (/ W 1.5) (/ W 1.5)) 
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Using the logic program in table 5.2, a given program such as 
(* ( / w 1 . 5 ) ( / W 1 . 5 ) ( / W 1 . 5 ) ) can be analyzed using the following 
query: 

？- start(?T, [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))], [])• 

The given program is correct if the above goal can be satisfied and the corresponding 
derivation tree will be bound to the logic variable ？T. As demonstrated previously, the 
logic grammar in table 5.1 is ambiguous and thus the corresponding logic program may 
produce multiple derivation trees for a given program. Since the search strategy of the 
underlying deduction mechanism selects randomly one clause to explore with 
backtracking from all unifiable clauses, the sequence of generating the derivation trees 
of a particular program is also random. Consequently, LOGENPRO takes the first tree 
returned from the query to represent the given program. 

5丄 Crossover of programs 

The crossover is a sexual operation that starts with two parental programs and the 
corresponding derivation trees. One program is designated as the primary parent and 
the other one as the secondary parent. The derivation trees of the primary and 
secondary parents are called the primary and secondary derivation trees respectively. 
The algorithm in table 5.3 is used to produce an offspring program. 

Consider two parental programs generated randomly from the grammar in table 
5.1. The primary parent is (+ ( - Z 3 . 5 ) ( - Z 3 . 8 ) ( / Z 1 . 5) ) and the 
secondary parent is (* ( / W 1 . 5 ) (+ ( - W 11) 12) ( - W 3 . 5) ). The 
corresponding derivation trees are depicted in figures 5.3 and 5.4 respectively. In the 
figures, the shadowed numbers identify sub-trees of these derivation trees, while the 
underlined numbers indicate the grammar rules used in deducing the corresponding 
sub-trees. 
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Input： , 
P : The primary derivation tree. 
S： The secondary derivation tree. 

Output: 
Return a new derivation tree if a valid offspring can be obtained 
by performing crossover, otherwise return false. 

Function crossover(P, S) { 

1. Find all sub-trees of the primary derivation tree P and 
• store them into a global variable PRIMARY-SUB-TREES' 

excluding the primary derivation tree' all logic goals, 
and frozen sub-trees• 

2. Find all sub-trees of the secondary derivation tree S and 
store them into a global variable SECONDARY-SUB-TREES, 
excluding all logic goals and frozen sub-trees. 

3. If the variable PRIMARY-SUB-TREES is not empty, select 
randomly a sub-tree from it using a uniform distribution. 
Otherwise, terminate the algorithm without generating any 
offspring program. 

4. Designate the sub-tree selected as the SEL-PRIMARY-SUB-
tree and the root of it as the PRIMARY-CROSSOVER-POINT. 
Remove the SEL-PRIMARY-SUB-TREE from the variable 
PRIMARY-SUB-TREES• 

5. Copy the variable SECONDARY-SUB-TREES to the temporary 
variable TEMP-SECONDARY-SUB-TREES. 

6 If the variable TEMP-SECONDARY-SUB-TREES is not empty, 
select randomly a sub-tree from it using a uniform 
distribution. Otherwise, go to step 3. 

7. Designate the sub-tree selected in step 6 as the SEL-
SECONDARY-SUB-TREE. Remove it from the variable TEMP-
SECONDARY-SUB-TREES. 

8. If the offspring produced by performing crossover between 
the SEL-PRIMARY-SUB-TREE and the SEL-SECONDARY-SUB-TREE 
is invalid according to the grammar, go to step 6. The 
validity of the offspring generated can be checked by the 
procedure is-valid(P, SEL-PRIMARY-SUB-TREE, SEL-
S ECONDARY-SUB-TREE) • 

9. Copy the genetic materials of the primary parent P to the 
offspring, remove the SEL-PRIMARY-SUB-TREE from it and 
then impregnating a copy of the SEL-SECONDARY-SUB-TREE at 
the PRIMARY-CROSSOVER-POINT. 

10. Perforin some house-keeping tasks and return the offspring 
program. } 

Table 5.3: The crossover algorithm of LOGENPRO 
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Input： 
P： The primary derivation tree 
P-sub-tree: The sub-tree in the primary derivation tree that is 

selected to be crossed over. 
S-sub-tree: The sub-tree in the secondary derivation tree that 

is selected to be crossed over. 

Output： 
Return true if the offspring generated is valid, otherwise return 
false. 

Function is_valid(P, P-sub-tree, S-sub-tree) 

{ 11. Find all siblings of the P-sub-tree in P and store them 
into the global variable SIBLINGS-

12. For each sub-tree in the variable SIBLINGS' perform the 
following sub-steps: 

• store the bindings of the sub-tree to the global 
variable BINDINGS. 

• For each logic variable in the variable BINDINGS 
that is not instantiated by the sub-tree, remove 
it from the variable BINDINGS. 

• Modify the bindings of the sub-tree. 
13. Modify the bindings of the S-sub-tree. A logic variable 

is retained only if it is instantiated in the S-sub-tree. 
14. If there is a rule in the grammar such that: 

• it is satisfied by the sub-trees in the variable 
SIBLINGS and the S-sub-tree, 

. the sub-trees in the variable SIBLINGS and the S-
sub-tree are used exactly once, 

• the sub-trees are applied in the same order as that 
in the original rule of the primary derivation 
tree, and 

• a consistent conclusion C is deduced from the rule. 
The conclusion is consistent if the function 
is-consistent(P, PARENT, C) returns true where 
PARENT is the parent of the P-sub-tree. The 
function is-consistent is presented in table 5.5. 

then the offspring generated will be valid. Otherwise, 
the offspring will be invalid. 

} 

Table 5.4: The algorithm that checks whether the offspring produced 
by LOGENPRO is valid. 
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Input： 
P： The primary derivation tree. 
PARENT: The parent of the primary sub-tree. 
C： The conclusion. 

Output: 
Return true if the conclusion C is consistent, otherwise return 
false. 

Comment: 
This operation can be viewed as performing a tentative crossover 
between PARENT and C and then determining whether the tentative 
offspring produced is valid. Here, PARENT is treated as the 
primary sub-tree while C is treated as the secondary sub-tree of 
the tentative crossover operation. The main difference between 
this algorithm and that in table 5.4 is that all rule applications 
in all ancestors of PARENT must be maintained. 

Function is-consistent(P, PARENT, C) { 
15. If PARENT is the root of P then 

if c is labeled with the symbol start then 
return true 

else false. 
16. Find all siblings of PARENT in P and store them into the 

global variable SIBLINGS. 
17. For each sub-tree in the variable SIBLINGS, perform the 

following sub-steps： 
• Store the bindings of the sub-tree to the global 

variable BINDINGS. 
• For each logic variable in the variable BINDINGS 

that is not instantiated by the sub-tree, remove 
it from the variable BINDINGS. 

• Modify the bindings of the sub-tree. 
18. Let the grammar rule applied in the parent node of PARENT 

as RULE. 
If the following conditions are satisfied: 

• RULE is satisfied by the sub-trees in the variable 
SIBLINGS and C, 

• the sub-trees in SIBLINGS and C are used exactly 
once and the ordering of applications is 
maintained, and 

• a consistent conclusion C ‘ is deduced from RULE. 
The conclusion is consistent if the function 
is-consistent(P,. GRANDPARENT, C ‘ ) returns true 
where GRANDPARENT is the parent node of PARENT. 

then 
return true 

else 
return false. } 

Table 5.5: The algorithm that checks whether a conclusion deduced 
from a rule is consistent with the direct parent of the 
primary sub-tree. 
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13 2 
start 

{member {?x, [ W , Z ] / [)] 

2 / e 6 ^ I \ 5 

『（+1 exp-1(?x) exp-1(?x) | exp-1{?x) 1 (?x/Z} {?x/Z} I {？x/Z} I 

/ \ I 卜 11 I 
/ \ i [{/ ?x ？y3)] i 

/ \ I {？x/Z, ？y3/1.5}\ 
/ \ I 10 I 

4 / 7 \ I {randomd, 2, ？yS) } | 

{random(3, 4, ？yl) } {random。，4, ？y2) } \ | {？y3/1.5} | 
5 8 \ 

[(-？X ？yl)] [(- ？X ？y2)] 
{？x/Z, ？yl/3.5} ？y2/3.8} 

Figure 5.3: The derivations tree of the primary parental program (+ ( -
Z 3 . 5 ) (- Z 3 . 8 ) ( / Z 1 . 5 ) ) 
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13 2 
start 

14 ^ ^ ^ ^ ^ ^ ^ I 24 
{member (?x, [W,Z])} / \ 1 [ ) ] 

15 1 6 / 5 19 t I 2 l \ 6 
[(*] exp-1(?x) exp-1(?x) j exp-1(?x) | 

{?x/m {？x/W} I 的 

/ 卜 I 
/ [(- ？X ？Y2)]囊 

/ I 22 
1 7 / 20 I {randomO, 4, ？y2) } | 

{randomd, 2, ？yl) } [(+ (- W 11) 12))] | {？y2/3.5} | 
18 

[(/ ？X ？yl)] 
{？x/W, ？yl/1.5} 

Figure 5.4: The derivations tree of the secondary parental program 
(* (/ W 1 . 5 ) (+ (- W 11) 12) (- W 3 . 5 ) ) 
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In step 1 of the crossover algorithm, the global variable PRIMARY-SUB-
TREES contains the sub-trees 2，3，S, 6，and 鬆，.The primary derivation tree (i.e. the 
sub-tree 0), the sub-trees 1, 4 , 1 , and 10 that contain logic goals, and the frozen sub-
trees 9, 10, n , and 12 are excluded. The whole primary derivation tree cannot be 
mated because it must be generated from the grammar symbol s t a r t . If the symbol 
s t a r t is not recursive (i.e. s t a r t does not appear on the right hand side of a rule), 
the whole secondary derivation tree must be chosen for crossover. Thus, the offspring 
program must be a copy of the secondary parental program. In fact, the same effect can 
be obtained by reproducing the secondary parental program. 

The sub-trees containing logic goals are eliminated for two reasons. Firstly, the 
crossover algorithm can be greatly simplified if logic goals are prevented from 
performing crossover. Secondly, logic goals specify the conditions that must be 
satisfied before the rule can be applied and/or the computations that should be done. 
Hence, from the viewpoint of natural selection and reproduction, the interpretation of 
crossover between logic goals is unclear and unnatural. Thus this kind of operations is 
avoided. 

Similarly, the sub-trees 13，IS, 16, 1 鬆，19, and 2 0 are assigned to the 
global variable SECONDARY-SUB-TREES in step 2. In the next step, a sub-tree in 
the variable PRIMARY-SUB-TREES is selected randomly using a uniform distribution 
because the variable is not empty. Assume that the sub-tree 2，the SEL-PRIMARY-
SUB-TREE, is selected. Thus, it is removed from the variable PRIMARY-SUB-
TREES in step 4. A copy of the variable SECONDARY-SUB-TREES is made and 
stored into the global variable TEMP-SECONDARY-SUB-TREES in step 5. 

Steps 6 to 8 form a loop that finds an appropriate sub-tree from the variable 
TEMP-SECONDARY-SUB-TREES. A sub-tree, SEL-SECONDARY-SUB-TREE, is 
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appropriate if a valid offspring can be obtained by executing crossover between the 
SEL-PRIMARY-SUB-TREE and the S E L - S E C O N D A R Y - S U B - T R E E . If no 
appropriate sub-tree can be found in this loop, the algorithm returns back to step 3 to 
find another SEL-PRIMARY-SUB-TREE. Assume that the sub-tree IS is chosen as 
the SEL-SECONDARY-SUB-TREE. Step 8 determines whether a valid offspring can 
be obtained. It is the most complicate procedure in this algorithm and it is delineated in 
table 5.4 and explained in the following paragraphs. 

In step 11 of the algorithm shown in table 5.4，the sub-trees 1，3，6, 9, and 12 
are found to be the siblings of the SEL-PRIMARY-SUB-TREE 2 and stored into the 
global variable SIBLINGS. The SIBLINGS can be thought as the context around the 
PRIMARY-CROSSOVER-POINT and the context's consistency has to be checked and 
computed. The purpose of step 12 is to remove the bindings established solely by the 
SEL-PRIMARY-SUB-TREE which will be deleted by the crossover operation. To 
achieve this goal, the bindings of each sub-tree in the variable SIBLINGS is modified 
so that only the bindings established by itself is retained. The bindings instantiated by a 
sub-tree can be found easily using the techniques of explanation-based learning 
(DeJong 1993，Mitchell et al 1986，DeJong and Mooney 1986). For example, the 
bindings {？x/Z} of the sub-tree 1 need not be modified because the logic variable ？x 

is instantiated to the value Z by the logic goal member ( ? x , [W, Z] ). The bindings 
{？x/Z} of the sub-tree 3 is changed to an empty list because the logic variable ？ x is 
bound to the value Z by the sub-tree 1. Similarly, the bindings {？x/Z} of the sub-
trees 6 and 9 are changed to empty lists. The bindings of the sub-tree 12 is not 
changed because it is already empty. 

In step 13，the bindings of the SEL-SECONDARY-SUB-TREE is modified so 
that only the bindings established by itself is retained. The purpose is to identify the 
effect of the sub-tree on the logic variables. In this example, since the grammar symbol 
of the SEL-SECONDARY-SUB-TREE IS has no argument, its bindings is empty. In 
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fact, the primary and secondary derivation trees are pre-processed by LOGENPRO 
using an algorithm based on the techniques of Explanation-Based Learning (EBL). The 
algorithm finds the bindings established solely by the corresponding sub-trees of the 
derivation trees. The results are stored in the sub-trees so that they can be retrieved in 
constant time Q . Thus the time complexity of step 12 is 0(n) where n is the number of 
sub-trees in the global variable SIBLINGS. Similarly, the time complexity of step 13 is 
0(1). 

In step 14，the second grammar rule is satisfied by the sub-trees in SIBLINGS 
and the SEL-SECONDARY-SUB-TREE. Moreover, this rule reaches the conclusion 
s t a r t which is consistent with the requirement of the parent, the sub-tree 0, of the 
SEL-PRIMARY-SUB-TREE. Thus, the offspring generated is valid. The procedure 
that checks whether a conclusion is consistent is presented in table 5.5. 

In step 9 of the crossover algorithm in table 5.3，the offspring is generated. In 
the next step, it is returned as the solution after some house-keeping tasks have been 
performed. The house-keeping tasks update the bindings and the rule numbers of the 
sub-trees of the offspring. The offspring program of this example is ( * ( -

Z 3 . 5 ) ( - Z 3 . 8 ) ( / Z 1 . 5 ) ) and its derivation tree is shown in figure 5.5. 
It is interesting to find that the sub-tree 21 has the rule number 2. This indicates that the 
sub-tree is generated by the second grammar rule rather than the third rule applied to the 
primary parent. The second rule must be used because the terminal symbol [ ( + ] is 
changed to [ (* ] and only the second rule can create the terminal [ (* ] . In fact, this 
situation is identified in step 14 of the function i s - v a l i d and a record is maintained 
so that the rule number can be changed to 2 by the house-keeping procedure. 

In another example, the same primary and secondary parents are used. Assume 
that the SEL-PRIMARY-SUB-TREE 3 is selected in step 3 and the SEL-
SECONDARY-SUB-TREE 16 is chosen in step 7 of the crossover algorithm. Now, 
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the siblings of the SEL-PRIMARY-SUB-TREE 3 are the sub-trees 1,2, 6, 9，and 12. 
Although the SEL-PRIMARY-SUB-TREE has the bindings {？x/Z},the instantiation 
of the logic variable ？x to value Z is done by the sub-tree 1. In other words, the SEL-
PRIMARY-SUB-TREE has not established any binding. In step 12 of the function 
i s - v a l i d , the bindings {？x/Z} of the sub-tree 1 is not modified because the logic 
variable ？x is instantiated to the value Z by the logic goal member ( ? x ' [ W' Z ] ) . 
The bindings of the sub-trees 2 and 12 are not changed because they are already 
empty. The bindings {？x/Z} of the sub-trees 6 is changed to an empty list because the 
logic variable ？x is bound to the value Z by the sub-tree 1. Similarly, the bindings 
{？x/Z} of the sub-tree 9 is changed to an empty list. 

The SEL-SECONDARY-SUB-TREE has the bindings {？x/W}, but the 
instantiation of ？x is performed by the sub-tree 14. Thus, the bindings of the SEL-
SECONDARY-SUB-TREE is changed in step 13 to an empty list (i.e. the logic 
variable ？x is not instantiated). In step 14，since the third rule satisfies all requirements, 
a valid offspring can be created. 

The offspring program is (+ ( / Z 1 . 5 ) ( - Z 3 . 8 ) ( / Z 1 . 5 ) ) and 
its derivation tree is depicted in figure 5.6. It should be emphasized that the constituent 
from the secondary parent is changed from ( / W 1 . 5 ) to ( / Z 1 . 5 ) in the 
offspring. This must be modified because the logic variable ？x in the sub-tree 41 is 
instantiated to Z in the sub-tree 39. The house-keeping procedure modifies the bindings 
of 41 in order to achieve this effect. This example demonstrates the use of logic 
grammars to enforce contextual-dependency between different constituents of a 
program. 
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13 2 
start 

{member {?x, [W,Z] ) } / \ j [)] (wzpy \ 
27 / 28 / 6 31 ^ I 3 4 \ 5 
「（*1 exp-1(?x) exp-1(?x) ！ exp-1{?x) | 

{？x/Z} I {？x/Z} I 

/ \ I 卜 I 
/ \ I [ ( / ? x ？ y 3 ) ] 毫 / \ ！ {？x/Z, ？y3/1.5}\ / \ I 35 I 

29 / 32 \ I {randomd, 2, ？y3) } | 
{randomO, 4, ？yl)} {random(3, 4, ？y2) } \ I {？y3/1.5} i 

{？yl/3.5} {？y2/3.8} N^一———————j 
30 3 3 � 

[(-？X ？yl)] [(- ？X ？Y2)] 
r?x/Z, ？yl/3.5} ？y2/3.8} 

Figure 5.5: A derivation tree of the offspring produced by performing 
crossover between the primary sub-tree 2 of the tree in 
figure 5.3 and the secondary sub-tree Hi of the tree in figure 5.4 
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13 2 
start 

39 ^ ^ V T ^ ^ S O 
{member(?x, [W,Z] ) } / \ ^ [)] i 

” \ 
40 X 41 / 5 44 ^ \ K 5 
[(+1 exp-1(?x) exp-1(?x) | exp-1(?x) 1 

{？x/Z} {？^/Z} I {？x/Z} \ 

/ \ I 卜 I 
/ \ 1 [(/ ?x ？y3)] 1 / \ I "x/Z, ？y3/1.5}\ 

42 / 45 \ I {randomd, 2, ？y3) } ！ 

{randomd, 2, ？yl) } {random(3, 4, ？y2) } \ | {？y3/1.5} '' 
43 46 \ 

[{/ ？X ？yl)] [(_ ？X ？y2)] 
{?x/Z, ？yl/1.5} ？y2/3.8} 

Figure 5.6: A derivation tree of the offspring produced by performing 
crossover between the primary sub-tree 3 of the tree in 
figure 5.3 and the secondary sub-tree 1(6 of the tree in 
figure 5.4 

As a further example, the same primary and secondary parents are used. 
Assume that the SEL-PRIMARY-SUB-TREE 6 is selected in step 3 of the crossover 
algorithm and the SEL-SECONDARY-SUB-TREE 19 is chosen in step 7. The variable 
aSIBLINGS contains the sub-trees 1，2，3，9，and 12. In step 12 of the function 
i s - v a l i d， t h e bindings {？x/Z} of the sub-tree 1 is not modified. The bindings of 
the sub-trees 2 and 12 are not modified because they are already empty. The bindings 
{？x/Z} of the sub-trees 3 and 9 are changed to empty lists because the logic variable 
？X is bound to thp value Z by the sub-tree 1. 
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The SEL-SECONDARY-SUB-TREE 19 has the bindings {？x/W}. This sub-
tree is generated from the rule 7 and the application of this rule will instantiate the logic 
variable ？x to the value W. In other words, the SEL-SECONDARY-SUB-TREE 
performs the instantiation of ？x to W. Thus, the bindings of the SEL-SECONDARY-
SUB-TREE is not changed in step 13. It must be mentioned that the sub-tree 14 also 
instantiates ？x to W. Since the two sub-trees bind ？ x to the same value W, this situation 
is valid. In step 14，no rule can be satisfied by the sub-trees in the variable SIBLINGS 
and the SEL-SECONDARY-SUB-TREE. Thus, the two sub-trees 6 and 19 cannot be 
mated. The reason is that the same logic variable ？x must be instantiated to different 
values Z and W: the sub-tree 19 requires the variable ？x to be instantiated to W while ？x 
must be instantiated to Z in the context of the primary parent. The function i s - v a l i d 
in table 5.4 can determine this situation and avoid the crossover algorithm from 
generating an offspring by exchanging the two sub-trees. Thus, only valid offspring 
can be produced and this operation can be achieved effectively. 

In the following paragraphs, we estimate the time complexity of the crossover 
algorithm. Let the numbers of sub-trees in the primary and secondary derivation trees 
are respectively Np and Ns. The numbers of sub-trees in the global variables 
PRIMARY-SUB-TREES and SECONDARY-SUB-TREES are respectively Np and 
Ns'. Assume that the depth of the primary derivation tree is Dp (Depth starts from 0). 
Hence there are Dp rule applications along the longest path from the root to the leaf 
node. Let R be the grammar rule having the largest number of symbols on its right 
hand side. Then S is the number of symbols on the right hand side of R. 

Since the most time-consuming operation of the crossover algorithm is step 8 
which calls the function i s - v a l i d . We concentrate on the time complexity of this 
step first. In the worst case, this step will calls i s - v a l i d for Np'*Ns' times. In each 
execution of the function i s - v a l i d , the purpose of steps 11 to 13 is to find the 
bindings established solely by the SEL-SECONDARY-SUB-TREE and the siblings of 
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the SEL-PRIMARY-SUB-TREE. Since the total number of sub-trees to be examined 
must be equal to or smaller than S, the steps can be completed in S*Cr time, where Cr 
is the constant time to retrieve the bindings established solely by a particular sub-tree of 
the sub-trees being examined. 

Step 14 is a loop that finds a grammar rule that can be satisfied. Suppose that 
the parent of the SEL-PRIMARY-SUB-TREE generates program fragments belonging 
to the category CAT. The loop examines all grammar rules for the category CAT. If 
there are Nr rules for CAT, step 14 repeats for Nr times. 

In each iteration of step 14，the first three operations check whether the rule is 
satisfiable. These operations can be viewed as determining whether the SEL-
SECONDARY-SUB-TREE and the sub-trees in the global variable SIBLINGS are 
unificable according to the rule (Mooney 1989). Since an efficient, linear time algorithm 
exist for unification (Paterson and Wegman 1978). These operations can be completed 
in 0(S) time (Mooney 1989). 

The last operation of step 14 applies the function i s - c o n s i s t e n t whose 
time complexity depends on the depth Dc of the PRIMARY-CROSS OVER-POINT， 

where Dc < Dp. There are three cases to be considered. Firstly, Dc cannot be equal to 
zero because the whole primary derivation tree cannot be crossed over with the SEL-
SECONDARY-SUB-TREE. Secondly, if Dc is equal to 1，the function i s -
c o n s i s t e n t can be completed in constant time Ci because step 15 will be executed. 
Lastly, if Dc is greater than or equal to 2，the function i s - c o n s i s t e n t will 
recursively check the rules from the grandparent of the SEL-PRIMARY-SUB-TREE to 
the root of the primary derivation tree, to determine whether the rules are satisfied. As 
described previously, steps 16 and 17 can be completed in S*Cr time and each rule can 
be checked in 0(S) time. In the worst case, the recursive process iterates for Dc times. 
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Hence the func t ion i s - c o n s i s t e n t can be completed in 
[(Dc - 1 ) * (0(S) + S * Cr) + Ci] time. 

In summary, each execution of the function i s - v a l i d requires Tis-valid time 
which is presented in follows: 

Tis - valid = S * C r + N r * [ 0 ( S ) + ((Dc 一 1) * ( 0 ( S ) + S * Cr) + Cl)] 

In the worst case, the depth Dc of the PRIMARY-CROSSOVER-POINT is 
equal to Dp. Then the worst case time complexity of the function i s - v a l i d is: 

Tis - valid = S * C r + N r * [ 0 ( S ) + ((Dp " 1) * ( 0 ( S ) + S * Cr) + Cl)] 
and the worst case time complexity of the crossover algorithm is: 

丄 crossover 一 Np*Ns'*Tis-valid + T i + T2 + T3 + T4 
where Ti is the time used to perform steps 1 and 2, T2 is the time employed to execute 
steps 3 and 4，T3 is the execution time for steps 5 to 7，and T4 is the time consumed by 
steps 9 and 10. 

Obviously, Ti depends on the sizes of the primary and secondary derivation 
trees, thus its complexity is 0(Np + Ns). If the sub-trees in the variable PRIMARY-
SUB-TREES are permuted randomly using an O(Np') algorithm (Gormen et al. 1990) 
before executing steps 3 and 4, these steps can be completed in T2 = O(Np') time. 
Similarly, steps 5，6，and 7 can be completed in T3 = 0(Np'*Ns') time. T4 depends on 
the sizes of the primary and secondary derivation trees, thus its complexity is 
0 ( N p + Ns). 

Assume that the first term of the above equation is much larger than the other 
terms, then the worst case time complexity is approximated by the following equation: 

Tcrossover = 0(Np *Ns'*Dp*S*Nr). 
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m(Dp+i) - 1 
If the primary derivation tree is a complete m-ary tree, then — ~ j = Np. In other 

words, Dp is of the order of logm(Np). Furthermore, S and Nr are fixed for a given 
grammar. Thus, the worst case time complexity of the crossover algorithm is: 

Tcrossover = 0(Np *Ns,*logm(Np)). 

Since the computation time consumed by performing crossover is insignificant 
when compare with the time used in evaluating the fitness of each program in the 
population. The issue of computational complexities of various crossover algorithms 
has not been addressed by other researchers in the field of Genetic Programming. In 
fact, it is easy to calculate that the worst case time complexity of the structure-
preserving crossover algorithm (table 2.5) of ADF (Koza 1994) is 0(Npi*Np2)，where 
Npi and Np2 are respectively the sizes of the parental parse trees. Similarly, the 
crossover algorithm of STGP (Montana 1993) has the same complexity. Although the 
crossover algorithm of LOGENPRO is slightly slower than other algorithms by 
0(logm(Np)), it is much more general and powerful than other algorithms. 

5.4. Mutation of programs 

The mutation operation in LOGENPRO introduces random modifications to programs 
in the population. Mutation is asexual and operates on only one program each time. A 
program in the population is selected as the parental program. The selection is based on 
various methods such as fitness proportionate and tournament selections. The algorithm 
in table 5.6 is used to produce an offspring program by mutation. 
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Input： 
P： The derivation tree of the parental program 

Output: 
Return a new derivation tree if a valid offspring can be obtained 
by performing mutation, otherwise return false. 

Function mutation(P) 

{ 1. Find all sub-trees of the derivation tree P of the 
parental program and store them into a global variable 
SUB-TREES, excluding all frozen sub-trees, logic goals' 
and terminal symbols 

2. If SUB-TREES is not empty, select randomly a sub-tree 
from the SUB-TREES using a uniform distribution. 
Otherwise, terminate the algorithm without generating any 
offspring. 

3. Designate the sub-tree selected as MUTATED-SUB-TREE. The 
root of the MUTATED-SUB-TREE is called the MUTATE-POINT. 
Remove the MUTATED-SUB-TREE from the variable SUB-TREES. 
The MUTATED-SUB-TREE must be generated from a non-
terminal symbol of the grammar. Designate this non-
terminal symbol as NON-TERMINAL. The NON-TERMINAL may 
have a list of arguments called ARCS. 

4. For each argument in the ARGS, if it contains some logic 
variables, determine whether these variables are 
instantiated by other constituent of the derivation tree. 
If they are, bind the instantiated value to the variable. 
Otherwise, the variable is unbounded. Store the modified 
bindings to a global variable NEW-BINDINGS. 

5. Create a new non-terminal symbol NEW-NON-TERMINAL from 
the NON-TERMINAL and the bindings in the variable NEW-
BINDINGS . 

6 • Try to generate a new derivation tree NEW-SUB-TREE from 
the NEW-NON-TERMINAL using the deduction mechanism 
provided by LOGENPRO. 

7. If a new derivation tree can be successfully created, the 
offspring is obtained by deleting the MUTATED-SUB-TREE 
from a copy of the parental derivation tree P and then 
impregnating the NEW-SUB-TREE at the MUTATE-POINT. Otherwise-, go to step 3. } � 

Table 5.6: The mutation algorithm 
Bfu" 

P； 

1 For example, assume that the program being mutated is (+ (- Z 3 . 5 ) ( -
Z 3 . 8 ) ( / Z 1 . 5 ) ) and the corresponding derivation tree is depicted in figure 

: 5.3. In step 1 of the mutation algorithm, the global variable SUB-TREES contains the 
sub-trees 3，and 6. The frozen sub-trees 9, 1©，11，and 12 are excluded. The sub-
trees 1，4，and 1 are also excluded because they contain logic goals of the grammar and 

Page 127 
V' 



thus should not be modified by genetic operations. The sub-trees 2，S, and Z 
containing terminal symbols are eliminated for two reasons. First, the mutation 
algorithm is significantly simplified if terminal symbol need not be modified. Second, 
the effect of mutating terminal symbols can be emulated by the crossover operation. 
Recalling the example described in the previous section, the primary sub-tree 2 are 
crossed with the secondary sub-tree IS to generate the offspring (* (- Z 3 • 5 ) ( -

z 3 . 8 ) ( / Z 1 . 5 ) ) . This offspring can be seen as the result of mutating the 
terminal symbol [ ( + ] to the [ (* ] • 

In step 2，a sub-tree in the variable SUB-TREES is selected randomly using a 
uniform distribution if the SUB-TREES is not empty. Otherwise, the mutation 
algorithm terminates without generating any modified program because no valid 
mutation can be found. In normal situation, this should not occur because it is almost 
always possible to select the whole derivation tree as the one to be mutated. The whole 
tree cannot be chosen only if it is frozen. The effect of mutating the whole tree, the 
sub-tree • in this example, is equivalent to generating a new program from scratch. A 
new program can be created successfully if the language specified by the grammar 
contains at least one program (this must be true for a grammar to be useful) and enough 
computational resources such as computer memory are available. Thus, the algorithm 
will fail to find a mutation only if the whole derivation tree is frozen or not enough 
computational resources are available. 

Assume that the sub-tree 3 is selected as the MUTATED-SUB-TREE in step 2. 
In the next step, the sub-tree 3 is removed from the variable SUB-TREES. The 
NON-TERMINAL and the ARGS are e x p - 1 (？x) and { ？x} respectively. Since the 
logic variable ？ x is instantiated to Z in the sub-tree 1 by the logic goal 

member (?x, [W, Z ] ) , the bindings { ？x/Z } are stored into the variable 

NEW-BINDINGS in step 4. 
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In step 5, the new non-terminal NEW-NON-TERMINAL e x p - 1 (Z) is 
created. Using this mechanism, contextual-dependent information can be transmitted 
between different parts of a program. In step 6，a new derivation tree for the 
S-expression ( / Z 1 . 9 ) can be obtained from the non-terminal symbol e x p - 1 (Z) 
using the fifth rule of the grammar. This derivation tree is displayed in figure 5.7. 

exp-1(?x) 
{？x/Z} 

八 
{randomd, 2, ？yl) } [(/ ？x ？yl)] 

{？yl/1.9} {？x/Z, ？yl/1.9} 

Figure 5.7: A derivation tree generated from the non-terminal 
e x p - 1 ( Z ) 

Since the NEW-SUB-TREE can be found, a new offspring is obtained by 
duplicating the genetic materials of its parental derivation tree, followed by deleting the 
MUTATED-SUB-TREE from the duplication, and then pasting the NEW-SUB-TREE 
at the MUTATE-POINT. The derivation tree of the offspring (+ (/ Z 1 . 9 ) ( -

Z 3 . 8 ) ( / Z 1 . 5 ) ) can be found in figure 5.8. 

LOGENPRO has an efficient implementation of the mutation algorithm. 
Moreover, an inference engine has been developed for deducing derivation trees (or 
programs) from a logic grammar given. Thus, only valid mutations can be performed 
and this operation can be achieved effectively and efficiently. 
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13 2 
start 

5 2 ^ ^ ^ ^ \ p ^ ： ： ： ^ : — - ] 

{member (?x, [W,Z] ) } / \ | [)] 

53 54 /5 57 6 | \ 5 
[(+] exp-l(?x) exp-l{?x) J exp-l(?x) ！ 

{?x/Z} I {？x/Z} I 

/ \ I 卜 I 
/ \ I [(/ ?x ?y3)] 1 / \ I {?x/Z, ？y3/1.5}\ / \ I 61 

55 / 58 \ I {randomd, 2, ？yS) } | 
{randomd, 2, ？yl) } {random(3, 4, ？y2) } \ | {？y3/1.5} j 

56 59 \ 
[{/ ？X ？yl)] [(- ？X ？y2)] {?x/Z, ？yl/1.9} {？x/Z, ？y2/3.8} 

Figure 5.8: A derivation tree of the offspring produced by performing 
mutation of the tree in figure 5.3 at the sub-tree 3 

5.5. The evolution process of LOGENPRO 

The problem of inducing S-expressions or logic programs can be formulated as a 
search for a highly fit program in the space of all possible programs (Mitchell 1982). In 
GP, this space is determined by the syntax of S-expressions in Lisp and the sets of 
terminals and functions. The search space of ILP is determined by the syntax of logic 
program and the background knowledge. Thus, the search space is fixed once these 
elements are decided. On the other hand, the search space can be specified declaratively 
under the framework proposed because the space is determined by the logic grammar 
given. 
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LOGENPRO starts with an initial population of programs generated randomly, 
induced by other learning systems, or provided by the user. Logic grammars provide 
declarative descriptions of the valid programs that can appear in the initial population. A 
fitness function must be defined by the user to evaluate the fitness values of the 
programs. Typically, each program is run over a set of fitness cases and the fitness 
function estimates its fitness by performing some statistical operations (e.g. average) to 
the values returned by this program. 

Since each program generated in the evolution process must be executed. A 
compiler or interpreter for the corresponding programming language must be available. 
This compiler or interpreter is called by the fitness function to compile or interpret the 
created programs. LOGENPRO can guarantee only that valid programs in the language 
specified by the logic grammar will be generated. However, it cannot ensure that the 
produced programs can be successfully compiled or interpreted if the appropriate 
compiler/interpreter is not provided by the user. Thus, the user must be very careful in 
designing the logic grammar and the fitness function. 

The evolution process of LOGENPRO is similar to that of GLPS described in 
chapter 4. A high-level algorithm of LOGENPRO is presented in table 5.7. The main 
difference between the two systems is in their genetic operators. The crossover operator 
of LOGENPRO generates at most one offspring from two parental programs selected. 
The mutation operator creates a modified offspring program from a parental program 
selected. Moreover, a particular logic grammar is used to restrict the offspring 
programs that can be produced by these genetic operators. 
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Input： 
Grammar： It is a logic grammar that specifies the search space of 

programs. 
t The termination function, 
f The fitness‘function. 

Output： 
A logic program induced by LOGENPRO. 

Function LOGENPRO(Grammar, t, f) { 
• Translate the Grammar to a logic program. 

• generation := 0. 

• Initialize a population Pop(generation) of programs. They are 
generated by issuing the query ？-start(？Tree, ？S ‘ [])' 
provided from the user, or generated by other learning systems. 
If a program, Prog, is provide by the user or generated by 
other learning systems, the program is translated to a 
derivation tree using the query ？-start(?Tree, ？P, []) where ？P 
contains the program Prog. 

• Execute each program in the Pop(generation) and assign it a 
fitness value according to the fitness function f. 

• While the termination function t is not satisfied do 
• Create a new population Pop(generation+1) of programs by 

employing the reproduction, the crossover and the 
mutation. The operations are applied to programs chosen 
by either the fitness proportionate or tournament 
selections• 

• Evaluate the fitness of each individual in the next 
population Pop(generation+1) 

• generation := generation + 1. 
• Return the best program found in any generation of the run. 

} 

Table 5.7: A high-level algorithm of LOGENPRO 

5.6. Discussion 

We have proposed a framework for combining GP and ILP. This framework is based 
on a formalism of logic grammars. The formalism can represent context-sensitive 
information and domain-dependent knowledge. It is also very flexible and programs in 
various programming languages such as Lisp, Prolog, Fuzzy Prolog, and C can be 
induced. 
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Since the framework is very flexible, different representations employed in 
other inductive learning systems can be specified easily. It facilitates the integration of 
LOGENPRO with other learning systems. One approach is to incorporate the learning 
techniques of other systems into LOGENPRO. These techniques include information 
guided hill-climbing (Quinlan 1990; 1991)，explanation-based generalization (DeJong 
and Mooney 1986, Mitchell et al. 1986, Ellman 1989), explanation-based specialization 
(Minton 1989) and inverse resolution (Muggleton 1992). LOGENPRO can also invoke 
these systems as front-ends to generates the initial population. The advantage is that 
they can quickly find important and meaningful components (genetic materials) and 
embody these components into the initial population. The following chapters will 
illustrate some of these points clearly. 
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Chapter 6 Applications of LOGENPRO 
LOGENPRO is a flexible and general program induction system. In the first section, 
the method of emulating Genetic Programming (GP) using LOGENPRO is illustrated. 
In section 6.2, it is demonstrated that the learning problems solved by GLPS can also 
be handled by LOGENPRO. In the last section, we illustrate that LOGENPRO can 
induce programs in imperative programming languages such as C. Experimental results 
by LOGENPRO are presented and compared with similar methods where appropriate. 

6.1. Learning functional programs 

It seems that the framework proposed in the previous chapter is rather complicated but 

powerful. Consequently, the question of whether this framework can be applied easily 
arises. In the first sub-section, we show that this framework can emulate GP (Koza 
1992; 1994) easily in learning S-expressions. A template is provided to facilitate the 
application of the framework. It must be emphasized that the example used in the first 
sub-section is deliberately constructed as simple as possible to illustrate the point. More 
realistic applications can be found in the following sub-sections. 

6.1.1. Learning S-expressions using LOGENPRO 

A logic grammar template for learning S-expressions using the framework is depicted in 
table 6.1. To apply the template for a particular problem, various sets of terminals and 
primitive functions will substitute for the identifiers in italics. 
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10: start -> function. 
11： s-exp -> term. 
12: s-exp -> function. 

13a: function -> function-0. 
13b: function -> function-1. 
13c: function -> function-2. 

13n: function -> function-n. 

14a: function-0 -> [(], op-0,[)]. 
14b： function-1 -> [(], op-1, s-exp, [)]• 
14c: function-2 -> [(], op-2, s-exp, s-exp,[)]. 

14n: function-n -> [(], op-n, s-exp, ..•‘ s-exp,[)]. 

15: term -> { member (？w,�TERMINAL SET>) }' [？w]. 

16a: op-0 -> { member (?w, <FUNCTION SET-0>) }' [？w]. 
16b: op-1 -> { member {?w,�FUNCTION SET-}' [？w]. 
16c： op-2 -> { member (?w, <FUNCTION SET-2>) }, [？w]. 

16n: op-n -> { member (?w, <FUNCTION SET-n>) }' [？w]. 

Table 6.1: A template for learning S-expressions using the 
LOGENPRO 

Consider the problem of learning S-expressions such as ( -
(* Z X) (+ Y Z) ) . Using the terminology of GP, the set of primitive functions 

for this problem contains arithmetic operators +, -，and *. Each of them takes two 
arguments as inputs. The terminal set is {X, Y, Z}. The terminals can be treated as 
input arguments of the S-expression being learned. 

It is observed that a S-expression is either a terminal or a function invocation. 
Thus a S-expression can be specified by the grammar rules 11 and 12 of the template in 
table 6.1. A function call consists of a list of elements enclosed by a pair of 
parentheses. The first element of the list is the name of the function and the other 
elements are arguments of the function. These arguments are also S-expressions. Since 
the primitives of a problem may have different numbers of arguments, there are a 
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variety of function invocations. This fact can be specified by the grammar rules 13a, 
13b,…，13n, and 14a, 14b,…，14n. 

Since an S-expression containing only a terminal is usually excluded from 
consideration as a solution. This fact is declared by the grammar rule 10 which specifies 
that the target solution must be a function invocation. The non-terminal symbol t e r m 
specifies the terminal set of the problem domain. For the problem studied in this sub-
section, the terminal set is represented as: 

term -> { member (?w, [X, Y, Z] ) }, [？w] • 

where the goal member (?w, [X, Y, Z] ) instantiates the logic variable ？xto one 

of the value in the list [ X, Y, Z ] . This grammar rule is obtained from rule 15 in the 
template by replacing the identifier <TERMINAL SET> with [X, Y, Z]. 

The non-terminal symbols o p - O， o p - l ,…， o p - n in the template specify 
primitive functions with different numbers of arguments. They represent the primitive 
function set of the problem domain. For the above problem, all primitives have two 
arguments, thus only o p - 2 will be used. It is represented by the following rule: 

o p - 2 - > { member (?w, [ + , *] ) }, [？w]. 

This rule is obtained from the grammar rule 16c in the template by replacing the 
identifier�FUNCTION SET-2> with [ +, - ， * ] . Other non-terminal symbols such 
as o p - O , o p - l , o p - 3 ,…， o p - n will be used if the problem domain requires 
primitives with the corresponding numbers of arguments. In summary, the logic 
grammar for the example is: 
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start -> function, 

s-exp -> term, 

s-exp -> function, 

function -> function-2• 

function-2 -> [(], op-2, s-exp, s-exp, [)]• 

term -> { member (?w, [X, Y, Z] ) }, [？w]. 

op-2 -> { member (?w, [ + , -, *]) }, [？w] • 

6.1.2. The DOT PRODUCT problem 

In this sub-section, we describe how to use LOGENPRO to emulate Koza's GP (Koza, 
1992). Koza's GP has a limitation that all the variables, constants, arguments for 
functions, and values returned from functions must be of the same data type. This 
limitation leads to difficulties in inducing even some rather simple and straightforward 
functional programs. For example, one of these programs calculates the dot product of 
two given numeric vectors of the same size. Let X and Y be the two input vectors, then 
the dot product is obtained by the following S-expression: 

(apply (function +) (mapcar (function *) X Y)) 

Let us use this example for illustrative comparisons below. To induce a 
functional program using LOGENPRO, we have to determine the logic grammar, the 
fitness cases, the fitness function, and the termination criterion. The logic grammar for 
learning functional programs is given in table 6.2. In this grammar, we employ the 
argument of the grammar symbol s - e x p r to designate the data type of the result 
returned by the S-expression generated from the grammar symbol. For example, 

(mapcar (function +) X 

(mapcar (function *) X Y)) 
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is generated from the grammar symbol s - e x p r ( [ l i s t , n u m b e r , n ] ) because it 
returns a numeric vector of size n. Similarly, the symbol s - e x p r ( n u m b e r ) can 
produce (apply (function *) X) that returns a number. 

start -> s-expr(number). 
s-expr ( [list, number, ？n] ) -> [ (mapcar ( f u n c t i o n ] ' op2, 

[ ) ] , 
s-expr([list, number, ？n]), 
s-expr([list, number, ？n]),[)]. 

s-expr( [list, number, ？n] ) -> [ (mapcar ( f u n c t i o n ] ' opl, 
[ ) ] , 
s-expr([list, number, ？n]),[)]. 

s-expr([list, number, ？n]) -> term([list, number, ？n]). 
s-expr(number) -> term(number). 
s-expr (number) -> [ (apply ( f u n c t i o n ] , op2, 

[ ) ] , 
s-expr([list, number, ？n]),[)]. 

s-expr(number) - > [ ( ] , op2 ' s-expr(number), 
s-expr(number), [ ) ]• 

s-expr(number) _ > [ ( ] , opl, s-expr(number),[)]. 
op2 _ > [ + ] . 
op2 -> [ - ] . 
op2 - > [ * ] . 
op2 - > [ % ] • 
opl -> [ protected-log ]. 
terni( [list, number, n] ) -> [ X ] • 
term( [list, number, n] ) -> [ Y ]• 
term( number ) -> { random(-10, 10, ？a) }' [？a ]• 

Table 6.2: The logic grammar for the DOT PRODUCT problem 

The terminal symbols +，-, and * represent functions for ordinary addition, 
subtraction, and multiplication respectively. The symbol % represents function that 
normally returns the quotient. However, if division by zero is attempted, the function 
returns 1.0. The symbol p r o t e c t e d - l o g is a function that calculates the logarithm 
of the input argument x if x is larger than zero, otherwise k returns 1.0. The logic goal 
random ( - 1 0 , 10 , ？a) generates a random floating point number between -10 and 
10 and instantiates ？a to the random number generated 

Ten random fitness cases are used for training. Each case is a 3-tuples <Xi, Yi, 
Zi>, where 1 <i<10, Xi and Yi are vectors of size 3，and Zi is the corresponding dot 
product. The fitness function calculates the sum, taken over the ten fitness cases, of the 

Page 138 



absolute values of the difference between Zi and the value returned by the S-expression 
for Xi and Yi. A fitness case is said to be covered by a S-expression if the value 
returned by it is within 0.01 of the desired value. A S-expression that covers all training 
cases is further evaluated on a testing set containing 1000 random fitness cases. 
LOGENPRO will stop if the maximum number of generations of 100 is reached or a 
S-expression that covers all testing fitness cases is found. 

For Koza's GP framework, the terminal set T is {X, Y' E} where E is the 
ephemeral random floating point constant. E takes on a different random floating point 
value between -10.0 and 10.0 whenever it appears in an individual program in the 
initial population. The function set F is { p r o t e c t e d + ' p r o t e c t e d - ' 
p r o t e c t e d * , p r o t e c t e d % , p r o t e c t e d - l o g , v e c t o r + , v e c t o r - , 
v e c t o r * , v e c t o r % , v e c t o r - l o g , a p p l y + , a p p l y - , a p p l y * , 
a p p l y % } , taking 2，2, 2，2, 1，2，2，2, 2, 1，1，1, 1，and 1 arguments respectively. 

The primitive functions p r o t e c t e d.， p r o t e c t e d - , and p r o t e c t e d * 
respectively perform addition, subtraction, and multiplication if the two input 
arguments X and Y are both numbers. Otherwise, they return 0. The function 
p r o t e c t e d % returns the quotient. However, if division by zero is attempted or the 
two arguments are not numbers, p r o t e c t e d % returns 1.0. The function 
protected-log finds the logarithm of the argument X if X is a number larger than 

zero. Otherwise, p r o t e c t e d - l o g returns 1.0. 

The functions v e c t o r + , v e c t o r - , v e c t o r * , and v e c t o r % respectively 
perform vector addition, subtract, multiplication, and division if the two input 
arguments X and Y are numeric vectors with the same size, otherwise they return zero. 

If the input argument X is a numeric vector, the primitive function v e c t o r - l o g 
performs the following S-expression: 

(mapcar (function protected-log) X), 
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otherwise it returns zero. The functions a p p l y + , a p p l y - , a p p l y * , and a p p l y % 
respectively perform the following S-expressions if the input argument X is a numeric 
vector: 

(apply (function protected+) X), 

(apply (function protected-) X), 

(apply (function protected*) X) and 

(apply (function protected%) X), 

otherwise they return zero. 

The fitness cases, the fitness function, and the termination criterion are the same 
as those used by LOGENPRO. Three experiments are performed. The first one 
evaluates the performance of LOGENPRO using a population of 100 programs. The 
other two experiments evaluate the performance of Koza's GP using respectively 
populations of 100 and 1000 programs. In each experiment, over sixty trials are 
attempted and the results are summarized in figure 6.1. The figure delineates the best 
standardized fitness values for increasing generations for the three experiments. From 
the curves in figures 6.1, LOGENPRO has superior performance than that of GP. 

• GP: Population = 100 | 
A GP: Population = 1000 | 

120"! O Logenpro: Population =100 | 

I 
^ o o o o o o o o o o a s 

H C N C O 寸 m o 卜 OOONON 
Generation 

Figure 6.1: The fitness curves showing the best fitness values for the 
DOT PRODUCT problem 
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Statistical measure are also collected to estimate the computational effort E 
required to yield satisfactory programs to the problem with a high probability (Koza 
1992). We estimate E empirically from a series of runs. Each run is made using a 
particular fixed population size M and a particular fixed maximum number of generation 
G. 

Since all evolutionary algorithm are non-deterministic, not all runs are 
successful in producing satisfactory programs by generation G. Consequently, a 
probabilistic method is used to compute the number of fitness evaluations required. For 
non-trivial problem, fitness evaluations consume a significant fraction of the 
computational resources required. Thus, the number of fitness evaluations is a 
reasonable measure of computational effort consumed. 

We can empirically estimate the probability Y(M, i) that a run yields, for the first 
time, at least one satisfactory program using a population size M on generation i. P(M, 
i) is then computed to estimate the cumulative probability that a particular run produces 
satisfactory programs by generation i. Thus, the probability of generating satisfactory 
programs by generation i at least once in R independent runs is 1 - [1 一 P(M，i)J . If we 
want to find satisfactory programs with a certain specified probability z, then it must be 
that z < l-[l-P(M，i)]R. The minimum number of independent runs R required by 

� log(l - z) 1 generation i with a high probability z is R = R(M，i，z) > ——— . After log(l-P(M，i)) 
obtaining R(M, i, z), we can compute the total number of fitness evaluations I(M, i, z) 
that is required to yield satisfactory programs by generation i with probability z for a 
population size M. In other words, I(M，i,z) = M*(i + l)*R(M，i，z). 

The computational effort E required for a particular problem with a pre-specified 
probability z is the minimal value of I(M, i, z), over all the generations i between 0 and 
G. 
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Figure 6.2: The performance curves showing (a) cumulative probability 
of success P(M, i) and (b) I(M, i, z) for the DOT 
PRODUCT problem 

The curves in figure 6.2(a) show the experimentally observed cumulative 
probability of success P(M, i) of solving the problem by generation i using a 
population of M programs. The curves in figure 6.2(b) show the number of programs 
I(M, i, z) that must be processed to produce a solution by generation i with a 
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probability z. Throughout this chapter, the probability z is set to 0.99. The curve for 
GP with a population of 100 programs is not depicted because the values is extremely 
large. For the LOGENPRO curve, I(M, i, z) reaches a minimum value of 8800 at 
generation 21. On the other hand, the minimum value of I(M, i, z) for GP with 
population size of 1000 is 66000 at generation 1. LOGENPRO can find a solution 
much faster than GP and the computation (i.e. I(M, i，z)) required by LOGENPRO is 
much smaller than that of GP. 

The idea of applying knowledge of data type to accelerate learning has been 
investigated independently by Montana (1993) in his Strongly Typed Genetic 
Programming (STGP). He presents three examples involving vector and matrix 
manipulation to illustrate the operations of STGP. However, he has not compared the 
performances between traditional GP and STGP. One advantage of LOGENPRO is that 
it can emulate the effects of STGP effortlessly. Moreover, the logic grammar can be 
used to specify other domain knowledge to drive the learning process more effectively 
and efficiently. 

6.1.2. Learning sub-functions using explicit knowledge 

Automatic discovery of problem representation primitives is certainly one of the most 
challenging research areas in Genetic Programming. Automatically Defined Functions 
(ADF) is one of the approaches that have been proposed to acquire problem 
representation primitives automatically (Koza 1992; 1994). In ADF, each program in 
the population contains an expression, called the result-producing branch, and 
definitions of one or more sub-functions which may be invoked by the result-producing 
branch. The result-producing branch is evaluated to produce the fitness of the program. 
A constrained syntactic structure and some special genetic operators are required for the 
evolution of the programs. To employ the approach, the user must provide explicit 
knowledge about the number of automatically defined sub-functions, the number of 
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arguments of each sub-functions, and the allowable terminal and function sets for each 
sub-function. In this sub-section, we demonstrate how to use LOGENPRO to emulate 
Koza's ADF approach. Moreover, other knowledge such as argument types can also be 
applied to speed up the learning task. 

In this experiment, LOGENPRO is expected to learn a sub-function that 
calculates dot product and employ this sub-function in the main program. In other 
words, it is expected to induce the following S-expression: 

(progn , 

(defun ADFO (argO argl) 

(apply (function +) (mapcar (function *) argO argl))) 

(+ (ADFO X Y) (ADFO Y Z))) 

The logic grammar for this type of problem is depicted in table 6.3. We employ 
the argument of the grammar symbol to designate the data type of the result returned by 
the S-expression generated from the grammar symbol. The terminal symbols +，-，and 

* represent functions that perform ordinary addition, subtraction, and multiplication 
respectively. Ten random fitness cases are used for training. Each case is a 4-tuples 
<Xi, Yi, Zi, Ri>, where 1 <i<10, Xi, Yi and Zi are vectors of size 3，and Ri is the 
corresponding desired result. The fitness function calculates the sum, taken over the ten 
fitness cases, of the absolute values of the difference between Ri and the value returned 
by the S-expression for Xi, Yi, and Zi. A fitness case is said to be covered by a 

S-expression if the value returned by it is within 0.01 of the desired value. A 
S-expression that covers all training cases is further evaluated on a testing set 
containing 1000 random fitness cases. LOGENPRO will stop if the maximum number 
of generations of 50 is reached or a S-expression that covers all testing fitness cases is 
found. 
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start -> [ (progn (defun ADFO ], 
[(argO argl)], 
s-expr2(number),[)], 
s-expr(number), [)]• 

s_expr( [list, number, ？n] ) -> [ (mapcar (function ], op2, 
[ ) ] , 
s-expr([list, number, ？n]), 
s-expr([list, number, ？n]),[)]. 

s-expr([list, number, ？n]) -> term([list, number, ？n])• 
s-expr (number) -> [ (apply (function ], op2, 

1 ) 1 , 
s-expr([list, number, ？n]),[)]. 

s-expr(number) _ > [ ( ] , op2 , s-expr(number), 
s-expr(number), [ ) ] • 

s-expr(number) _> [ (ADFO ], 
s-expr ( [list, nuinber, ？n]), 
s-expr([list, n u m b e r ? n ] ) , [ ) ] . 

term([list, number, n]) -> [ X ]. 
terin( [list, number, n] ) -> [ Y ]. 
term([list, number, n]) -> [ Z ]. 
s-expr2 ( [list, number, ？n] ) -> [ (mapcar (function ], op2, 

[ ) ] , 
s-expr2{[list, number, ？n]), 
s-expr2([list, number, ？n]),[)]. 

s-expr2([list, number, ？n]) -> term2([list, number, ？n]). 
s-expr2 (number) -> [ (apply (function ], op2, I ) 1 r 

s-expr2{[list, number, ？n]),[)]. 
s-expr2(number) - > [ ( ] , op2 , s-expr2(number), 

s-expr2(number), [ ) ]• 
terin2 { [list, number, n] ) -> [ argO ]. 
term2{[list, number, n]) -> [ argl ]. 
op2 -> [ + ]. 
op2 - > [ - ] . 
op2 - > [ * ] . 

Table 6.3: The logic grammar for the sub-function problem 

For Koza's ADF framework, the terminal set Tq for the automatically defined 
function (ADFO) is {a rgO , a r g l } and the function set Fq is { p r o t e c t e d . ‘ 
p r o t e c t e d - , p r o t e c t e d * , v e c t o r + , v e c t o r - , v e c t o r * , a p p l y + , 
a p p l y - , apply*}，taking 2，2, 2，2，2，2，1，1，and 1 arguments respectively. The 
terminal set TV for the result producing branch is {X, Y, Z} and the function set Fr is 

{ p r o t e c t e d + , p r o t e c t e d - , p r o t e c t e d * , v e c t o r . , v e c t o r - , 
v e c t o r * , a p p l y +, a p p l y - , a p p l y * , ADFO }，taking 2, 2, 2，2，2，2, 1, 1, 
1，and 2 arguments respectively. The primitive functions have already been defined in 
the previous sub-section. The fitness cases, the fitness function, and the termination 
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criterion are the same as the ones used by LOGENPRO. We evaluate the performances 
of LOGENPRO and Koza's ADF using populations of 100 and 1000 programs 
respectively. 

-A GP with ADF: Population = 1 0 0 ^ 
140p O Logenpro: Population = 100 _ 
120 " M — 

丞 1 0 0 ^ 

I 8 0 - ~ ~ — 

“ — — 
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。 — （N m 寸 

Generation 

Figure 6.3: The fitness curves showing the best fitness values for the 
sub-function problem 

Thirty trials are attempted and the results are summarized in figures 6.3 and 6.4. 
Figure 6.3 shows, by generation, the fitness of the best program in a population. These 
curves are found by averaging the results obtained in thirty different runs using various 
random number seeds and fitness cases. From these curves, LOGENPRO has superior 
performance than that of ADF. The curves in figure 6.4(a) show the experimentally 
observed cumulative probability of success P(M, i) of solving the problem by 
generation i using a population of M programs. The curves in figure 6.4(b) show the 
number of programs I(M, i, z) that must be processed to produce a solution by 
generation i with a probability z of 0.99. The curve for LOGENPRO reaches a 
minimum value of 4900 at generation 6. On the other hand, the minimum value of 
I(M, i, z) for ADF is 5712000 at generation 41. This experiment clearly shows the 
advantage of LOGENPRO. By employing various knowledge about the problem being 

Page 146 



solved, LOGENPRO can find a solution much faster than ADF and the computation 
(i.e. I(M, i, z)) required by LOGENPRO is much smaller than that of ADF. 

么 GP with ADF: Population = 1000 | 
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Figure 6.4: The performance curves showing (a) cumulative probability 
of success P(M，i) and (b) I(M，i, z) for the sub-function 
problem 

This experiment demonstrates that LOGENPRO can emulate Koza's ADF and 
represent easily the knowledge needed for using ADF. Moreover, LOGENPRO can 
employ other knowledge such as argument types in a unified framework. It has 
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superior performance than that of Koza's ADF when more domain-dependent 
knowledge is available. One advantage of LOGENPRO is that it can emulate the effects 
of STGP and ADF simultaneously and effortlessly. 

6.2. Learning logic programs 

In the first sub-section below, we show that this framework can easily emulate GLPS 
in learning logic programs. In the discussion, the terminologies of logic programming 
are used. A logic grammar template is also provided to facilitate the application of the 
framework. 

In the following sub-sections, we describe how to use LOGENPRO to learn 
logic programs. To induce a logic program using LOGENPRO, we have to determine 
the logic grammar, the fitness function, the termination criterion, the population size, 
the maximum number of generations, and the probabilities of applying various genetic 
operations. Three examples are given to show that LOGENPRO can emulate GLPS in 
solving the learning problems described in chapter 4. Five runs are performed on each 
problem. The maximum number of generations of each run is 50 for the first two 
problems and is 20 for the third problem . 

6.2.1. Learning logic programs using LOGENPRO 

A template for learning logic programs using the framework is shown in table 6.4. To 
apply the template for a particular problem, various variables, constants, predicate 
symbols, and function symbols will substitute for the identifiers in italics. 
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f 

20: start -> clauses. 
21: clauses -> clauses, clauses. 
22: clauses -> clause� 

23: clause -> consq, [:-], antes, [•]• 
24: clause -> consq, [•]. 
25: consq _> literal. 
26: antes -> antes, ['], antes. 
27: antes -> ante. 
28: ante -> literal. 
29: ante -> [not], literal. 
30a： literal -> literal-0. 
30b： literal -> literal-1. 

3On： literal -> literal-n. 
31a： literal-0 -> lit-0. 
31b： literal-1 -> lit-1, [(], term,[)]. 

3In: literal-n -> lit-n, [(], term, ..., term,[)]. 
32: term -> {member (?w'�BASIC ELEMENTS〉））, [？w]. 
33: term -> function. 
34a: function -> function-0 
34b: function -> function-1. 

34n: function -> function-n. 
35a: function-0 -> funct-0. 
35b: function-1 -> funct-l, [(]' term' [)]• 

35n: function-n -> funct-n, [(], term, ..., term,[)]. 
36a: funct-0 -> {member{？w, <function set-0>)}, [？w]. 
3 6b： funct-l -> {member(？w, 〈function set-l>)}, [？w]. 

36n: funct-n -> {member(？w, <function set-n>)}, [？w]. 
37a: lit-0 -> {member(?w, 〈predicate set-0>)}, [？w]. 
37b: lit-1 -> {member(?w, 〈predicate set-l>)}, [？w]. 

37n： lit-n _> {member(？w, 〈predicate set-n>)}, [？w]. 

Table 6.4: A template for learning logic programs using LOGENPRO 

To employ LOGENPRO to induce logic programs, basic elements such as 
variables and constants must be identified first. These elements are usually domain-
dependent. Consider the following logic program: 

cup(X) ：- i n s u l a t e _ h e a t ( X ) , s t a b l e ( X ) , l i f t a b l e ( X ) . 
cup(X) ：- paper一cup(X)• 
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This logic program determines whether an object X is a cup. There are only one variable 
X in this program. Thus, for this program, the following grammar rule specifies the 
basic elements: 

term -> {member (?w, [X] ) } , [？w]. 
This rule is obtained from the grammar rule 32 in the template by substituting the 
replacing <BASTC ELEMENTS> with [X]. 

A function is a function symbol followed by a bracketed n-tuple of terms. It is 
specified by the grammar rules 34a, 34b,…，34n and 35a, 35b, ."，35n. The non-
terminal symbols f u n c t i o n - 0， f u n c t i o n - 1，…， f u n c t i o n - n in these rules 
represent functions of various arities. The non-terminal symbols f u n c t - 0 , f u n c t - 1 , 
. . . ， f u n c t - n in the grammar rules 36a，36b, . . .，36n represent different sets of 
function symbols. A function is also a term, this fact is declared by rule 33. For 
learning the above logic program, it does not use functions. Consequently, the above 
corresponding grammar rules are not included in the specification of this program. 

An atomic formula is a predicate symbol immediately followed by a bracketed n-
tuple of terms. It is represented by the grammar rules 30a, 30b, ...，30n and 31a, 31b, 
...，31n. The non-terminal symbols l i t e r a l - 0， l i t e r a l - 1 ,…， l i t e r a l - n in 
these grammar rules represent predicates (literals) of various arities. The non-terminal 
symbols l i t - 0， l i t - 1 , ...，lit-n in grammar rules 37a, 37b, 37n represent 
various sets of predicate symbols. Because the above logic program contains only 
predicates having one argument, the grammar rules 30b and 31b in the template are 
used. The following rule: 

lit-1 -> {member(?w, [cup, insulate—heat, 

stable, liftable, 

paper一cup])},[？w]• 
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is obtained from rule 37b by replacing〈predicate set-l> with the list [ c u p , 
insulate一heat, s t a b l e , l i f t a b l e , p a p e r — c u p ] . This rule is also used 
in the specification of the program. 

A logic program is composed of a number of Horn clauses. This fact is 
specified by the grammar rules 20,21, and 22. A clause with an empty body is called a 
unit clause. It represents facts of the problem domain. Since the above program has not 
unit clauses, only rule 23 is included in the specification of the program. If unit clauses 
are allowed in the program being induced, rule 24 should be included. The non-terminal 
symbols c o n s q and a n t e s in rule 23 represent the head and body of a clause 
respectively. The grammar rule 25 represents that the head of a clause is a positive 
literal. The body of a clause consists of a sequence of one or more antecedents. It is 
represented by rules 26 and 27. Finally rules 28 and 29 specify that an antecedent can 
be a positive or a negative literal. 

6.2.2. The Winston's arch problem 

The logic grammar for the problem described in sub-section 4.5.1 is depicted in table 
6.5. It is derived from the logic grammar template presented in table 6.4. Moreover, 
some grammar rules are combined to simplify the grammar. The logic goal 
n o t - e q u a l (？x, ？y) in the grammar ensures that the logic variables ？x and ？y are 
not instantiated to the same value. The population size is 1000 and the maximum 
number of generations is 50. The fitness function and the fitness cases are the same as 
those used in sub-section 4.5.1. LOGENPRO can find a almost correct program within 
2 generations. One of the best programs induced is: 

a r c h ( A , B, C) : - l e f t - o f ( C , B ) , w e d g e ( C ) . 
a r c h ( A , B, C) : - l e f t - o f ( B , C ) , s u p p o r t s ( B , A ) . 
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I 

start -> clauses, 
clauses -> clauses, clauses. 
clauses -> clause. 
clause -> consq, [:-]' antes' [•]. 
consq -> [arch(A, B, C]. 
antes -> antes, [,], antes. 
antes -> ante. 
ante -> {member(?x,[A, B, C])}, 

{member (?y, [A, B, C] ) }, 
{not-equal(?x, ？y)}, 
literal(?x, ？y). 

ante -> {member (?x, [A, B, C] ) }, 
literal(?x). 

literal(?x, ？y) -> [supports(?x' ？y)]. 
literal(?x, ？y) -> [left-of(?x, ？y)]. 
literal{?x, ？y) -> [touches{?x, ？y)]• 
literal(?x) -> [brick(?x)]. 
literal{？x) -> [wedge(?x)]. 
literal(?x) -> [parallel-piped(?x)]. 

Table 6.5: The logic grammar for the Winston's arch problem 

Since the standard solution of this problem uses some negative literals, the 

correct program cannot be found by employing the grammar in table 6.5. If the 

modified grammar in table 6.6 is applied. The following correct program can be 

obtained: 

arch(?A, ？B, ？C) :- left-of(?B, ？C), supports(?B, ？A)' 

not touches(?B, ？C). 

This example illustrates that different formulations of a learning problem can be 

attempted easily using different logic grammars. 
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start -> clauses. 
clauses -> clauses, clauses. 
clauses -> clause. 
clause -> consq, [:-], antes' [•]. 
consq -> [arch (A, B, C] • 
antes -> antes, [,], antes. 
antes -> ante. 
ante -> {member (?x, [A, B, C] ) }, 

{member (?y, [A, B, C] ) } 
{not-equal{？x, ？y)}, 
literal(?x, ？y). 

ante -> {member (?x, [A, B, C] ) }, 
literal(?x). 

literal(?x, ？y) -> [supports(?x' ？y)]. 
literal(?x, ？y) -> [not supports(?x, ？y)]. 
literal(?x, ？y) -> [left-of(?x, ？y)]. 
literal(?x, ？y) -> [not left-of(?x, ？y)]. 
literal(?x, ？y) -> [touches(?x' ？y)]. 
literal{?x, ？y) -> [not touches(?x, ？y)]. 
literal(?x) -> [brick(?x)]. 
literal(?x) -> [not brick(?x)]• 
literal(?x) -> [wedge(?x)]. 
literal(?x) , —> [not wedge(?x)]. 
literal(?x) -> [parallel-piped(?x)]. 
literal(？x) -> [not parallel-piped(?x)]. 

Table 6.6: The modified logic grammar for the Winston's arch problem 

6.2.3. The modified Quinlan's network reachability 
problem 

The logic grammar for solving the problem described in sub-section 4.5.2 is shown in 
table 6.7. In this experiment, the population size is 1000. The standardized fitness is the 
total number of misclassified training examples. The maximum number of generations 
is 50. LOGENPRO can find a perfect program that covers all positive examples while 
excludes all negative ones within a few generations. One of the correct programs found 
is: 

c a n - r e a c h ( A , B) : - l i n k e d - t o ( A , B ) . 
c a n - r e a c h ( A , B) ：- l i n k e d - t o ( A , C ) , c a n - r e a c h ( C , B ) . 
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start -> clauses, 
clauses -> clauses, clauses. 
clauses -> clause. 
clause -> consq, [:-]' antes, [•]. 
consq -> [can-reach(A, B)]. 
antes -> antes, [,], antes. 
antes -> ante. 
ante -> {member {?x, [A, B, C] ) }, 

{member(?y,[A, B, C])} 
{not-equal(?x, ？y)}, 
literal(?x, ？y). 

literal(?x, ？y) -> [linked-to{?x, ？y)]• 
literal(?x, ？y) -> [can-reach(?x, ？y)]• 

Table 6.7: The logic grammar for the modified Quinlan's network 
reachability problem 

6.2.4. The factorial problem 

This experiment learns the relation factorial (X' Y) where Y is the factorial of X. 
The predicate symbols are f a c t o r i a l , p l u s , and m u l t i p l i c a t i o n . The logic 
grammar of this problem is depicted in table 6.8. The population size is 1000 and the 
maximum number of generations is 20. The fitness functions, the fitness cases, and the 
initial incorrect clauses are the same as those presented in sub-section 4.5.3. 

start -> clauses. 
clauses -> clauses, clauses. 
clauses -> clause. 
clause -> consq, [:-], antes' [•]. 
consq -> {member (?x, [0, 1, 2, X, Y] ) }, 

{member(?y, [0, 1, 2, X, Y])}, 
[factorial(?x, ？y)]. 

antes -> antes, [,], antes, 
antes -> ante. 
ante -> {member (?x, [0, 1, 2, W, X, Y, Z] ) }, 

{member(?y,[0, 1, 2, W, X, Y, Z])} 
{member (?z, [0, 1, 2, W, X, Y, Z] ) } 
literal(?x, ？y, ？z). 

literal (?x, ？y, ？z) -> [plus (?x, ？y, ？z)]. 
literal {?x, ？y, ？z) -> [multiplication ( ？x, ？y, ？z)]. 

Table 6.8: The logic grammar for the factorial problem 
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During one of the runs, the correct logic program is induced in the twelve 
generation. It is shown as follows: 

factorial (0, 1) :-plus(l, 1, 2). 

factorial(X, Y) :- plus(Z, 1, X), 

factorial(Z, W), 

multiplication(W, X, Y). 

6.2.5. Discussion 

From the above examples, LOGENPRO can be viewed as an automatic programming 
platform on which formal specifications and program induction can be combined. Logic 
grammars are formal specifications that describe which programs are valid. 
LOGENPRO employs deduction to generate the initial population of program from the 
logic grammar given and uses induction to produce offspring from parental programs. 

6.3. Learning programs in C 

In this section, we employ LOGENPRO to perform symbolic regression. The target 
program calculates the function value f(X, Y) for the two input arguments and outputs 
the result. The function f(X, Y) is ((X+Y)2-Y) and the population size used in this 
experiment is 500. The ten fitness cases are 3-tuples <Xi, Yi, f(Xi, Yi)>, where 
l< i<10 and Xi, Yi are random integers between 0 and 10. The fitness function 
calculates the sum, taken over the ten fitness cases, of the absolute values of the 
difference between f(Xi, Yi) and the value returned by the generated C program using 
Xi and Yi as the inputs. A fitness case is said to be covered by a program if the value 
returned by it is within 0.01 of the desired value. LOGENPRO terminates if the 
maximum number of generations, which is 50，is reached or a C program that covers 
all fitness cases is found. It must be emphasized that the goal of this section is to 
demonstrate the possibility of learning programs in some imperative languages. Hence, 
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the symbolic regression problem is deliberately constructed as simple as possible so as 
to illustrate the point clearly. 

start -> preamble, statements, outputs. 
statements -> statements, statements. 
statements -> statement. 
statement -> id, [=], expression, [；]• . 
expression -> [(], expression, op, expression, [)]• 
expression -> id. 
op -> [ + ]. 
op -> [-]. 
op -> [*]. 
id -> [X]. id -> m . 
id -> [Z] • 
preamble -> [#include <stdio.h>]' 

[#include <stdlib.h>], 
[main(argc, argv)], 
[int argc; char **argv;], 
[{ int X Y; float Z;], 
[ X = atoi(argv[l]);], 
[ Y = atoi(argv[2]);], 
[ Z = 0.0;]. 

outputs -> [ printf("\n%f", Z)]. 

Table 6.9: The logic grammar for learning programs in C 

The logic grammar for this problem is shown in table 6.9. In this grammar, 
only simple assignment statement can be generated. This restriction is enforced only to 
limit the size of the search space for the problem so that solutions can be found using 
the available computational resources. In fact, the search space will be extremely large 
if the complete grammar for the C programming language is used. In this grammar, the 
symbol p r e a m b l e produces statements that declare and initialize variables used in the 
program. On the other hand, the symbol o u t p u t s creates a statement that prints the 
final result of the program. In one successful run of LOGENPRO, the following 
correct C program is found in generation 4: 
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# i n c l u d e < s t d i o . h > 
# i n c l u d e < s t d l i b . h > 
m a i n ( a r g c , a r g v ) 
i n t argc； c h a r * * a r g v ; 
{ i n t X, Y; f l o a t Z; 

X = a t o i ( a r g v [ l ] ) ; 
Y 二 atoi(argv[2]); 

Z 二 0.0; 

Z = ( ( (X-Z) + ( (Y*Y) + ( ( (X+X) *Y) - Y ) ) ) ; 
p r i n t f ( " \ n % f Z ) ； } 

The p rogram is correc t because the ass ignment s ta tement 
Z = (((X-Z)*Z) + ((F*F) + (((X + X)*7)-F))) can be simplified to 

Z = + F V 2XY - F as the variable Z is initialized to 0.0. The statement can be 
further simplified to Z = (X + Y f - Y which is the desired statement. 

40"— 醫 Logenpro | 
^ 30-
弓 2Q. \ � 

罢 —— 
H (N CO 寸 

Generation 

Figure 6.5: Fitness curve for the problem of inducing a C program 
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Figure 6.6: Performance curves for the problem of inducing programs 

in C 

Twenty trials are attempted using different random number seeds and fitness 
cases. The results are summarized in figures 6.5 and 6.6. Figure 6.5 shows, by 
generation, the fitness of the best program in a population. Figure 6.6 shows the 
performance curves when the population size M is 500 and the probability z is 0.99. 
The value of I(M, i, z) reaches a minimum value of 21000 at generation 5. 
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Chapter 7 Knowledge Discovery in Databases 
Knowledge discovery in databases is concerned with the non-trivial extraction of 

implicit, previously unknown, and potentially useful information from data stored in 
databases (Frawley et al. 1991，Piatetsky-Shapiro and Frawley 1991). The knowledge 
acquired can be expressed in different knowledge representations such as decision 
trees, decision lists, production rules, and first-order logic programs. In the first 
section, we employ LOGENPRO to induce knowledge represented in decision trees 
from a real-world database. 

Knowledge discovery systems induce knowledge from datasets which are 
frequently noisy (incorrect), incomplete, inconsistent, imprecise (fuzzy), and uncertain 
(Leung and Wong 1991a; 1991b; 1991c). In the second section, we employ 
LOGENPRO to combine evolutionary algorithms and FOIL (Quinlan, 1990) to induce 
knowledge represented as logic programs from noisy datasets. 

There are very few studies on the issue of inducing knowledge from imprecise 
and uncertain datasets. Unfortunately, imprecise and uncertain examples are norms 
rather than exceptions in real world, because many everyday examples are denoted in 
linguistic terms which are essentially imprecise and uncertain. In the third section, we 
use LOGENPRO to acquire knowledge from imprecise and uncertain training examples 
stored in a fuzzy relational database. The induced knowledge is represented as a 
program in Fuzzy Prolog (Li and Liu 1990). 
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7.1. Inducing decision trees using LOGENPRO 

In this section, we illustrate the application of LOGENPRO in inducing decision trees. 
The first sub-section contains a brief introduction to decision trees. We describe how to 
represent decision trees as S-expressions in sub-section 7.1.2 . The credit screening 
problem used in the experiment is explained in the subsequent sub-section. We then 
present the results of the experiment in sub-section 7.1.4. 

7.1.1. Decision trees 

Decision trees are a means of representing knowledge acquired by a learning system. 
Quinlan (1986) presented a simple example of the ID3 learning system for inducing a 
decision tree that classifies whether the weather of a Saturday morning is good or not. 
ID3 is a hierarchical classification system for learning a decision tree from a finite 
number of training examples. The training examples and the learned decision tree are 
depicted in table 7.1 and figure 7.1 respectively. 

The set of training examples in table 7.1 contains 14 objects representing 
characteristics of Saturday mornings. These characteristics are represented by four 
nominal attributes, namely temperature, humidity, outlook, and windy. An attribute can 
be classified into three kinds: nominal, linear and structural attributes (Michalski 1983): 

• Nominal attribute: The value set consists of independent symbols and no 
structure is assumed to relate the values in the domain. 

• Linear attribute: The value set is an ordered set. Attributes measured on 
ordinal, interval, ratio, and absolute scales are special cases of linear 
attribute. 

• Structured attribute: The value set has a tree structure that reflects the 
generalization relation between the values. 
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The sets of attribute values for temperature, humidity, outlook, and windy are 

respectively {hot, mild, cool}, {high, normal}, {sunny, overcast' 

rain}，and {true, false}. An example is positive if it represents that the weather 

of the Saturday morning is good, otherwise it is negative. 

temperatur humidity outlook windy class 
e 

1 hot high sunny false -
2 hot high sunny true -
3 hot high overcast false + 
4 mild high rain false + 
5 cool normal rain false + 
6 cool normal rain true -
7 cool normal overcast true + 
8 mil high sunny false -
9 cool normal sunny false + 
10 mild normal rain false + 
11 mild normal sunny true + 
12 mild high overcast true + 
13 hot normal overcast false + 
14 mild high rain true -

(a) 

attribute name attribute type attribute__values_ 
temperature nominal {hot, mild, cool} 
humidity nominal {high, normal} 
outlook nominal {sunny, overcast, 

rain} 
windy nominal {true, false} 
class nominal {positive, negative} 

(b) 

Table 7.1: (a) A set of training examples, (b) The types and the sets of 
attribute values of the attributes. 
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Figure 7.1: A decision tree 

A decision tree consists of nodes and branches. Each non-terminal (internal) 
node represents a decision. The starting node is usually referred to as the root node. 
Depending on the result of the decision of a non-terminal node, the tree will branch to 
another node. Finally, a terminal (leaf) node is reached, and the classification is 
decided. For example, node 1 in figure 7.1 is the root node and nodes 2 and 4 are the 
other non-terminal nodes. There is an attribute name in each non-terminal node. It 
indicates the attribute on which the decision will be made. Nodes 3，5，6，7, and 8 are 
terminal nodes. There are numbers in each terminal node, they indicates the training 
examples that will be classified to the node. The sign，+ or after each number shows 
the class of the corresponding training example. 

Assume that we want to predict the weather of a Saturday morning using the 
decision tree in figure 7.1. The characteristics of this morning are summarized as 
follows: 
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temperature humidity outlook windy 
cool normal sunny true 

The classification process starts from node 1 in figure 7.1. In this node, a decision is 
made and the process branches to node 2 because the value of the attribute outlook is 
sunny. Another test is performed on node 2 and the process proceeds to the terminal 
node 6. The classification process predicts that the weather of this morning is good 
because all training examples in node 6 are positive. 

A binary decision returns either true or false and only two branches can leave 
the corresponding decision node. For example, node 4 in figure 7.1 is a binary decision 
node. Node 2 can be transformed into a binary decision node by setting the test to either 
humidity = high, or humidity = normal. Non-binary decisions are also used. In these 
cases, more than two branches may leave a non-binary decision node. For example, 
node 1 in figure 7.1 is a non-binary decision node. A decision performed at a node 
results in a partition of two or more disjoint sets that cover every possibility, i.e., any 
new cases must fall into one of the disjoint subsets.. 

For any decision tree, a path leads to a terminal node corresponding to a 
decision rule that is a conjunction of the tests along this path. If there are multiple paths 
for a given class, then these paths represent disjunctions. For example, there are three 
paths in figure 7.1 for the positive class. Thus, there are three decision rules for this 
class and they are: 

• if outlook is overcast then class is positive. 
• if outlook is sunny and humidity is normal then class is positive. 
• if outlook is rainy and not windy then class is positive. 

All paths in any decision tree are mutually exclusive. Thus, for any new case, one and 
only one path in the tree will always have to be satisfied. 
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A decision tree is induced by selecting some starting feature, splitting the 
training set into disjoint sets according to the selected feature, and then repeating the 
process for all subsequent nodes. A node becomes terminal and is not splitted further 
when all members of the training examples in the node belongs to one class. 
Alternatively, a node becomes terminal when the number of training examples in the 
remnant group falls below some minimum threshold, and the node is assigned to the 
class having the greatest frequency at the node. The simplest method for splitting the 
nodes into disjoint groups is to partition the data by the distinct values of the feature. 

However, this splitting method can lead to poor classification. The difficulty 
arises with linear attributes such as height. Because the set of attribute values of a linear 
attribute is usually very large or even infinite, it is unreasonable to base predications 
solely on the values that appear in a small training set. For example, if no one in the 
training set has height of 68 inches, then a new case with height of 68 inches might not 
be classified correctly when the attribute height is used in the decision tree. Thus, the 
values of a linear attribute should be divided into discrete intervals. The optimal sizes of 
and number of intervals are usually unknown and they are estimated by the learning 
systems. Arithmetic tests, such as (Ai > Aij) or (Ai < Aij) where Ai is a linear attribute 
and Aij is a value within the range of the attribute, can produce intervals that cover more 
effectively the range of values, and improve the classification performance of the 
induced decision tree. The learning systems such as AKA-1 and AKA-2 (Leung and 
Wong 1991a; 1991b; 1991c) can generate this kind of decision tests. 

7.1.2. Representing decision trees as S-expressions 

Koza (1992) presented a method to represent decision trees as S-expressions. For 
example, the decision tree in figure 7.1 is represented as the S-expression in table 
7.2(a). 

Page 164 



(outlook-test 
(humidity-test 'negative 'positive) 
'positive 
(windy-test ‘negative 'positive)) 

(a) 

(defclass EXAMPLES {) 
{(temperature ：accessor temperature) 
；;The value of the attribute temperature can be either hot, mild, 

or cool. 
(humidity ：accessor humidity) 
；；The value of the attribute humidity can be either high, or 

normal. 
(outlook ：accessor outlook) 
；；The value of the attribute outlook can be either sunny, 

overcast, or rain, 
(windy :accessor windy))) 
；;The value of the attribute windy can be either true, or false. 

(b) 
(defun outlook-test (argl arg2 arg3) 

(cond ((equal (outlook X) ‘sunny) argl) 
(equal (outlook X) ‘overcast) arg2) 
( t a rg3) ) ) 

(C) 

Table 7.2: (a) An S-expression that represents the decision tree in 
figure 7.1. (b) The class definition of the training and 
testing examples, (c) A definition of the primitive function 
outlook-test. 

In the S-expression, the constants such as p o s i t i v e and n e g a t i v e 
representing the class names in this problem. These constants form the set of terminals 
in GP. On the other hand, the attribute-testing functions such as outlook-test and 
windy-test are obtained by transforming each of the attributes in the problem into a 
function. Thus, there are as many attribute-testing functions as there are attributes. 
These functions form the set of primitive functions in GP. 
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Consider the attribute outlook, it can assume one of three possible values. 
Therefore, the function o u t l o o k - t e s t has three arguments and operates in the 
following way: 

• if the value of the attribute outlook of the current example is sunny, the 
function returns its first argument as its return value; 

• if the value of the attribute outlook of the current example is overcast, 
the function returns its second argument as its return value; 

• if the value of the attribute outlook of the current example is rainy, the 
function returns its third argument as its return value; 

The implementation of the function o u t l o o k - t e s t is depicted in table 7.2(c). In this 
implementation, X is a global variable that stores the current example being evaluated. 

Since an example belongs to the class EXAMPLES depicted in table 7.2(b), the S-
expression ( o u t l o o k X) returns the value of the attribute outlook of the example 
stored in X. T h e constants sunny and overcast represent the attribute values of the 

attribute outlook. 

To classify a new example, it is first stored into the global variable X. It is then 
presented to an S-expression representing a decision tree. The function at the root of the 
tree tests the designated attribute of the example and then executes the particular 
argument designated by the outcome of the test. If the designated argument is a 
constant, the function returns the corresponding class names (i.e. p o s i t i v e or 
n e g a t i v e ) . If the designated argument is another function, the above process is 
repeated until a constant is returned. In summary, the S-expression is a representation 
of a decision tree that classifies an example into one of the classes. 

7.1.3. The credit screening problem 
The aim of this problem is to induce decision trees or rules for assessing applications 
for credit cards. This problem has been studied by Quinlan in his ID3 and C4.5 systems 
(Quinlan 1987; 1992). The original dataset of this problem was provided by Quinlan 
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and stored in the UCI Repository of Machine Learning Databases and Domain 
Theories. The dataset has been modified in the Statlog project (Michie et al. 1994) so 
that one of the 15 attributes is removed. The modified dataset has a good mix of 
attributes of different types. There are 690 instances, 14 attributes and two class names. 
There are 307 positive instances (44.5%) and 383 negative instances (55.5%). 

Attribute name Attribute type Attribute values 
Al nominal {a, b} 
A2 linear 13.75 - 80.25 
A3 linear 0 - 2 8 
A4 nominal {g, P, gg) 
A5 nominal {c, d, cc, i, j, k, 

m, r, q, w, x, e, aa, ff } 
A6 nominal {v, h, bb, j, n, z, 

dd, ff, o} 
A7 linear 0 - 2 8.5 
A8 nominal {t, f} 
A9 nominal {t, f } 
AlO linear 0 - 6 7 
All nominal {t, f} 
A12 nominal {g, P, s} 
A13 linear 0 - 2000 
A14 linear 0 - 100001 

class nominal {positive, negative} 

Table 7.3: The attribute names, types, and values attributes of the 
credit screening problem 

All attribute names, class names, and attribute values have been changed to 
meaningless symbols to protect confidentiality of the data. Thus, interpretations of the 
induced decision trees or rules are relatively difficult. This dataset is interesting because 
there is a good mix of attribute types: linear, nominal with small numbers of values, 
and nominal with larger numbers of values. The attribute names, types, and values are 
depicted in table 7.3. There are 37 instances (5%) having one or more missing attribute 
values. The frequencies of missing values from different attributes are summarized as 
follows: 
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Attribute name Frequency 
Al 12 
A2 12 
A4 6 
A5 9 
A6 9 
A13 13 

For our purposes, we replaced the missing values by the overall medians or means. 

7.1.4. The experiment 

In this sub-section, we describe how to use LOGENPRO to induce decision trees for 
the credit screening problem. The representation scheme described in sub-section 7.1.2 
is not used directly because it can only express decisions on nominal attributes. To 
handle linear attributes using the representation, we must first transform these attributes 
into nominal attributes by assigning disjoint intervals of values to various symbols. 
Thus, the sizes and the number of intervals must be determined before applying the 
representation scheme to the credit screening problem. 

For example, the range of the values of the attribute A2 is between 13.75 and 
80.25. By examining the distribution of the attribute values, the range may be divided 
into two mutual exclusive intervals: from inclusive 13.75 to exclusive 40; from 
inclusive 40 to inclusive 80.25. The transformed attribute can be represented as the 
following attribute-testing function A2-test: 

(defun A2-test (argl arg2) 

(if (>= (A2 X) 40) 

arg2 

argl)) 

In this function, X is a global variable that stores the current example being evaluated. 
Since an example belongs to the class EXAMPLES depicted in table 7.4，the 
S-expression (A2 X) returns the value of the attribute A 2 of the example stored in X. 

The function A2 - t e s t has two arguments and operates in the following way: 
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• if the value of the attribute A2 is greater than or equal to 40，the function 
returns its second argument as its return value; 

• Otherwise, the function returns its first argument as its return value; 

(defclass EXAMPLES () {(Al :accessor Al) 
(A2 :accessor A2) 
(A3 ：accessor A3) 
(A4 :accessor A4) 
{A5 ：accessor A5) 
(A6 :accessor A6) 
(A7 :accessor A l ) 
(A8 ：accessor A8) 
(A9 :accessor A9) 
(AlO :accessor AlO) 
(All :accessor All) 
(A12 ：accessor A12) 
{A13 :accessor A13) 
(A14 ：accessor A14))) 

Table 7.4: The class definition of the training and testing examples. 

The major problem of this representation is that one or more intervals must be 
determined before performing induction. If the sizes and the number of intervals are 
inappropriate, they will greatly reduce the performance of the learning system. In order 
to tackle this problem, we decide that the number of intervals of all linear attributes is 
fixed to two, and allow the sizes of these intervals to adjust dynamically during the 
evolution process. 

Thus, the following attribute-testing function A2 - t e s t is used in our 
representation: 

(defun A2-test (exp argl arg2) 

(if (>= (A2 X) exp) 

arg2 

argl)) 
This function has three arguments and operates in the following way: 
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• if the value of the attribute A2 is greater than or equal to the value of the 
first argument, the function returns its third argument as its return value; 

• Otherwise, the function returns its second argument as its return value; 
From this function, we can observe that the first argument e x p must return a numerical 
value while the other two arguments, a r g l and a r g 2 , must return a class name. In 
other words, data types must be used to guarantee only appropriate S-expressions can 
appear as a particular argument of a particular primitive function. 

start -> node. 
node -> [ (Al ] , node, n o d e , [ ) ] . 
node -> [ (A2 ] , exp, node, n o d e , [ ) ] . 
node -> [ (A3 ] , exp, node, n o d e , [ ) ] . 
node -> [ {A4 ] , node, node, node [ ) ] . 
node -> [ (A5 ], node, node, node, node' 

node, node, node, node, node, 
node, node, node, node, n o d e , [ ) ] . 

node -> [ (A6 ], node, node, node, node, 
node, node, node, node, n o d e , [ ) ] . 

node -> [ (A7 ] , exp, node, node, [ ) ] • 
node -> [ {A8 ], node, n o d e , [ ) ] . 
node -> [ (A9 ] , node, n o d e , [ ) ] . 
node -> [ (AlO ], exp, node, n o d e , [ ) ] . 
node -> [ (All ] , node, n o d e , [ ) ] . 
node -> [ (A12 ] , node, node, n o d e , [ ) ] . 
node -> [ (A13 ] , exp, node, n o d e , [ ) ] . 
node -> [ (A14 ] , exp, node, n o d e , [ ) ] . 
node -> [ positive ]• 
node -> [ negative ] 
exp -> [ ( ], op, exp, e x p , [ ) ] . 
op - > [ + ] . 
op - > [ - ] • 
op - > [ * ] . 
op - > [ % ] • 
exp -> { random(-10, 10, ？a) } , [ ？a ] • 

Table 7.5: Logic grammar for the credit screening problem. 

To induce a functional program using LOGENPRO, We have to determine the 
logic grammar, the fitness cases, the fitness functions, and the termination criterion. 
The logic grammar for the credit screening problem is given in table 7.5. In this 
grammar, we employ the grammar symbol e x p to designate the S-expression that 
returns a numerical value and the grammar symbol n o d e to designate the S-expression 
that returns a class name. 
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The terminal symbols +, and * represent functions that perform ordinary 
addition, subtraction, and multiplication respectively. The symbol % represents function 
that normally returns the quotient. However, if division by zero is attempted, the 
function returns 1.0. The logic goal r a n d o m (-10, 10' ？a) generates a random 
floating point number between -10 and 10 and instantiates ？a to the random number 
generated. 

A 10-fold cross-validation procedure is employed in this problem. In a general 
n-fold cross-validation procedure, the examples are randomly divided into n mutually 
exclusive test partitions of approximately equal size. The examples not found in a 
particular test partition are used for training, and the resulting decision tree is tested on 
the corresponding test partition. The above train and test procedure is repeated n times 
until all test partitions are examined. The average classification accuracy over all n test 
partitions is the cross-validated classification accuracy. Breiman et al. (1984) have 
evaluated their CART system extensively with vary numbers of partitions, and 10-fold 
cross-validation seemed to be adequate and accurate. 

Since there are 690 examples in the credit screening dataset, each test partition 
contains 69 examples and the other 621 examples form the training set. In other words, 
10 independent experiments are attempted. In each experiment, LOGENPRO induces a 
decision tree using 621 examples as the fitness cases and we estimate the classification 
accuracy of the induced decision tree using the remaining testing examples. 

The fitness function measures how well a genetically evolved decision tree 
classifies the fitness cases. When an evolved decision tree in the population is tested 
against a particular fitness case, the outcome can be either a true positive, a true 
negative, a false positive, or a false negative. 
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The correlation coefficient (Matthews 1975) indicates how much better a 
particular decision tree is than a random classifier. A correlation coefficient C of 1.0 
indicates perfect agreement between the decision tree and the fitness cases; a coefficient 
of-1.0 indicates total disagreement; a coefficient of 0.0 indicates that the decision tree is 
not better than a random classifier. For a two-classes classification problem, the 
correlation coefficient can be computed as: 

NtpNt„-N 尔Nf„ 
- 批 + N f 爲 + N J ( N t p + N J (Ntp +Nfp) 

where N中 is the number of true positives, is the number of true negatives, N p̂ is 
the number of false positives, and is the number of false negatives. The coefficient 
is set to 0 if the denominator is 0. 

Since C ranges between -1.0 and 1.0，standardized fitness is defined as 
1 - C 

. Thus, a standardized fitness value ranges between 0.0 and 1.0. A 

standardized fitness value of 0 indicates perfect agreement between the decision tree and 
the training examples. On the other hand, a value of 1.0 indicates total disagreement. A 
value of 0.5 shows that the decision tree is not better than a random classifier. 

In each of the ten experiment, LOGENPRO induces a decision tree using a 
population size of 300. LOGENPRO will stop if the maximum number of generations 
of 50 is reached or a decision tree that has a standardized fitness below 0.01 is found. 
The decision tree evolved in any generation that has the smallest standardized fitness 
value is returned as the result of the run. The best decision tree induced by 
LOGENPRO is further evaluated on the training examples and the testing examples to 
obtain the corresponding classification accuracy. The results of the ten experiments are 
summarized in table 7.6. 
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Generation Accuracy (train) Accuracy (test) 
“ 0 0.857 0.870 

14 0.850 0.928 
26 0.873 0.754 
32 0.862 0.884 
45 0.860 0.870 
2 0.849 0.928 
25 0.868 0.797 
4 0.858 0.826 
28 0.852 0.913 
22 0.863 0.812 

Average 0.859 0.858 
/ 

Table 7.6: Results of the decision trees induced by LOGENPRO for 
the credit screening problem. The first column shows the 
generation in which the best decision tree is found. The 
second column contains the classification accuracy of the 
best decision tree on the training examples. The third 
column shows the accuracy on the testing examples. 

Michie et al. (1994) has performed a series of experiments in the Statlog project. 
In these experiments, they compared the performances of different learning systems for 
the credit screening problem. The results are summarized in table 7.7. 

By comparing the results in table 7.6 and those in table 7.7, we find that Cal5, 
ITrule, Discrim, Logdisc, and DIPOL92 perform better than LOGENPRO. Cal5 and 
ITrule learns decision trees/rules and their classification accuracy is over 86%. The 
classification accuracy of Discrim, Logdisc, and DIPOL92 is all 85.9%, The 
differences in accuracy between them and LOGENPRO are only 0.1%. Since the 
detailed information of the accuracy of these systems is not available, it cannot be 
concluded that whether the differences in accuracy are significant. 

Page 173 



On the other hand, LOGENPRO performs better than CART, RBF, CASTLE, 
NaiveBay, IndCART, Back-propagation, C4.5, SMART, Baytree, k-NN, NewID, 
AC2, LVQ, ALLOC80, CN2, and Quadisc for the credit screening problem. 
Interestingly, LOGENPRO is better than C4.5 and CN2, two systems that have been 
reported in the literature (Quinlan 1992, Clark and Niblett 1989) about their outstanding 
performances in inducing decision trees/rules. The difference is 1.3% for C4.5 and is 
6.2% for CN2. 

Algorithm Accuracy (train) Accuracy (test) 
Cal5 0.868 ~0.869 
ITrule 0.838 0.863 
Discrim 0.861 0.859 
Logdisc 0.875 0.859 
DIPOL92 0.861 0.859 

LOGENPRO 0.859 0.858 
CART 0.855 0.855 
RBF 0.893 0.855 

CASTLE 0.856 0.852 
NaiveBay 0.864 0.849 
IndCART 0.919 0.848 

Back-propagation 0.913 0.846 
C4.5 0.901 0.845 
SMART 0.910 0.842 

Baytree 1.000 0.829 
k-NN 1.000 0.819 
NewID 1.000 0.819 
AC2 1.000 0.819 
LVQ 0.935 0.803 

ALLOC80 0.806 0.799 
CN2 0.999 0.796 

Quadisc 0.815 0.793 

Table 7.7: Results of various learning algorithms for the credit 
screening problem. 

7.2. Learning logic program from imperfect data 

In knowledge discovery from databases, we emphasize the need for learning from 
huge, incomplete, and imperfect datasets (Piatetsky-Shapiro and Frawley 1991). The 
various kinds of imperfections in data are listed as follows: 
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• random noise in training examples and background knowledge; 
• the number of training examples is too small; 
• the distribution of training examples fails to reflect the underlying 

distribution of instances of the concept being learned; 
• an inappropriate example description language is used: some important 

characteristics of examples are not represented, and/or irrelevant 
properties of examples are provided; 

• an inappropriate concept description language is used: it does not contain 
an exact description of the target concept; and 

• there are missing values in the training examples. 

Existing inductive learning systems employ noise-handling mechanisms to cope 
with the first five kinds of data imperfections. Missing values are usually handled by a 
separate mechanism. These noise-handling mechanisms are designed to prevent the 
induced concept from overfitting the imperfect training examples by excluding 
insignificant patterns (Lavrac and Dzeroski 1994). They include tree pruning in CART 
(Breiman et al. 1984), rule truncation in AQ15 (Michalski et al. 1986a) and significant 
test in CN2 (Clark and Niblett 1989). However, these mechanisms may ignore some 
important patterns because they are statistically insignificant. 

Moreover, these learning systems use a limiting attribute-value language for 
representing the training examples and induced knowledge. This representation limits 
them to leam only prepositional descriptions in which concepts are described in terms 
of values of a fixed number of attributes. Currently, only a few relation learning 
systems such as FOIL and mFOIL address the issue of learning from imperfect data. 

In this section, we describe the application of LOGENPRO to learn logic 
programs from noisy and imperfect training examples. Empirical comparisons of 
LOGENPRO with FOIL (the publicly available version of FOIL, version 6.0，is used 
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in this experiment) and with mFOIL (Lavrac and Dzeroski 1994) in the domain of 
learning illegal chess endgame positions from noisy examples are presented. 

As described in section 3.3，mFOIL is based on FOIL that has adapted several 
features from CN2 (Clark and Niblett 1989), such as the use of the Laplace and m-
estimate as a search heuristics and the use of significance testing as a stopping criterion. 
Moreover, mFOIL uses beam search and can apply mode and type information to 
reduce the search space. The parameters that can be set by a user are listed as follows: 

• the beam width, 
• the search heuristics, 
• the value of m if m-estimate is used as the search heuristics, 
• the significance threshold used in the significance test, and 
• the concept description language: it determines whether negative literals 

can appear in the body of a clause. 

A number of different instances of mFOIL have been tested on the chess 
endgame problem. Their parameter values are summarized in table 7.8. 

beam search m significance Is 
width heuristics threshold negative 

literal 
used? 

inFOILl 5 m-estimate 0.01 0 yes 
mF0IL2 5 ra-estimate 0.01 0 no 
mF0ILi3 10 m-estimate 0.01 0 yes 
mF0IL4 10 m-estimate 0.01 0 no 
inFOILS 5 m-estimate 0.01 6.35 no 

Table 7.8: The parameter values of different instances of mFOIL 
examined in this section. 

In this section, LOGENPRO employs a variation of FOIL to find the initial 
population of logic programs. Thus, it uses the same noise-handling mechanism of 
FOIL. The variation is called BEAM-FOIL because it uses a beam search method rather 
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than the greedy search strategy of FOIL. BEAM-FOIL produces a number of different 
logic programs when it terminates and the best program among them is the solution of 
the problem. The logic programs created by BEAM-FOIL are used by LOGENPRO to 
initialize the first generation. In order to study the effects of the genetic operations 
performed by LOGENPRO on the initial programs provided by BEAM-FOIL, a 
comparison between them is also discussed. 

The chess endgame problem is presented in the following sub-section. The 
experimental setup is detailed in sub-section 7.2.2. We compare LOGENPRO with 
other learning systems in the subsequent sub-sections. 

7.2.1. The chess endgame problem 

In the chess endgame problem, the setup is white king and rook versus black king 
(Quinlan 1990). The target concept illegal(WKf, WKr, WRf, WRr, BKf, BKr) states 
whether the positions where the white king at (WKf, WKr), the white rook at (WRf, 
WRf), and the black king at (BKf, BKr) are not a legal white-to-move position. 

The background knowledge is represented by two predicates, adjacent(X, Y) 
and less_than(W, Z), indicating that rank/file X is adjacent to rank/file Y and rank/file 
W is less than rank/file Z respectively. 

There are 11000 examples in the dataset (3576 positive and 7424 negative 
examples). Muggleton et al. (1989) used smaller datasets to evaluate the performances 
of CIGOL and DUCE for the chess endgame problem. There were five small sets of 
100 examples each and five large sets of 1000 examples each. In other words, there 
were 5500 examples in total. Each of the sets was used as a training set. The induced 
programs obtained from a small training set was tested on the 5000 examples from the 
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large sets, the programs obtained from each large training set was tested on the 
remaining 4500 examples. 

7.2.2. The setup of experiments 

In each experiment of the ten experiments performed, the training set contains 1000 
examples (336 positive and 664 negative examples) and the disjoint testing set has 
10000 examples (3240 positive and 6760 negative examples). These training and 
testing sets are selected from the dataset using different seeds for the random number 
generator. 

Different amounts of noise are introduced into the training examples in order to 
study the performances of different systems in learning logic programs from noisy 
environment. To introduce n% of noise into argument X of the training examples, the 
value of argument X is replaced by a random value of the same type from a uniform 
distribution, independent to noise in other arguments. For the class variable, n% 
positive examples are labeled as negative ones while n% negatives examples are labeled 
as positive ones. Noise in an argument is not necessarily incorrect because it is chosen 
randomly, it is possible that the correct argument value is selected. In contrast, noise in 
classification implies that this example is incorrect. Thus, the probability for an example 
to be incorrect is 1 - {[(1 - n%) + n% * - f * (1 - n%)}. For each experiment, the 

8 

percentages of introduced noise are 5%, 10%, 15%, 20%, 30%, and 40%. Thus, the 
probabilities for an example to be noisy are respectively 27.36%, 48.04%, 63.46%, 
74.78%, 88.74% and 95.47%. Background knowledge and testing examples are not 
corrupted with noise. 

A chosen level of noise is first introduced in the training set. Logic programs are 
then induced from the training set using LOGENPRO, FOIL, different instances of 
mFOIL, and BEAM-FOIL. Finally, the classification accuracy of the learned logic 
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programs is estimated on the testing set. For BEAM-FOIL, the size of beam is ten and 
thus ten logic programs are returned. The best one among the programs returned is 
designated as the solution of BEAM-FOIL. 

start -> clauses, 
clauses -> clauses, clauses. 
clauses -> clause. 
clause -> consq, [:-], antes' [•]. 
consq -> [illegal(WKf, WKr, WRf, WRf, BKf, BKr)]. 
antes -> antes, [,], antes, 
antes -> ante. 
ante -> {member(?x,[WKf, WKr, WRf, WRf, BKf, BKr])}, 

{member(?y,[WKf, WKr, WRf, WRf, BKf, BKr])}, 
literal(?x, ？y). 

literal (?x, ？y) -> [？x 二 ？y]. 
literal{?x, ？y) -> [ not ？x = ？y] • 
literal(?x, ？y) -> [ adjacent{?x, ？y)]. 
literal(?x, ？y) -> [ not adjacent(?x, ？y)]. 
literal(?x, ？y) -> [ less—than(?x, ？y)]. 
literal(?x, ？y) -> [ not less—than(?x, ？y)]. 

Table 7.9: The logic grammar for the chess endgame problem. 

LOGENPRO uses the logic grammar in table 7.9 to solve t problem. In the 
grammar, [ a d j a c e n t ( ? x , ？y) ] and [ l e s s一 t h a n ( ? x , ？y) ] are terminal 
symbols. The logic goal member (?x , [WKf, WKr, WRf, WRr' BKf ‘ BKr ]) 
will instantiate logic variable ？ x of the grammar to either WKf, WKr, WRf, WRr, BKf， 

or BKr, the logic variables of the target logic program. 

The population size for LOGENPRO is 10 and the maximum number of 
generations is 50. In fact, different population sizes have been tried and the results are 
still satisfactory even for a very small population. This observation is interesting and it 
demonstrates the advantage of combining inductive logic programming and 
evolutionary algorithms using the proposed framework. The fitness function of 
LOGENPRO evaluates the number of training examples misclassified by each 
individual in the population. Since LOGENPRO is a probabilistic system, five runs of 
each experiment are performed and the average of the classification accuracy of these 
five runs is returned as the classification accuracy of LOGENPRO for the particular 

Page 179 
{ 



experiment. In other words, fifty runs of LOGENPRO have been performed in total. 
The results of these systems are summarized in table 7.10 . The performances of these 
systems are compared using the one-tailed paired Mest with 0.05% level of 
significance. 

Noise Level 
0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 3 0 0 . 4 0 

LOGENPRO (Average) 0~996 0~983 0.855 0.733 0.670 
variance O.OOE+00 7.74E-06 2.96E-04 7.85E-04 2.57E-03 2.47E-03 1.44E-04 

foil (Average) 0.996 0.898 0.819 0.761 0.693 0.596 0.529 
Variance O.OOE+00 5.07E-04 6.56E-04 5.15E-04 5.30E-04 3.35E-04 3.11E-04 

beam-foil (Average) 0.996 0.802 0.757 0.744 0.724 0.685 0.674 
variance O.OOE+00 7.07E-04 1.62E-04 1.88E-04 2.00E-04 1.40E-04 1.04E-04 

mFOILl (Average) 0.985 0.796 0.792 0.758 0.730 0.705 0.686 
variance O.OOE+00 3.67E-04 3.30E-04 3.60E-04 1.29E-04 1.83E-04 8.94E-05 

niP0IL2 (Average) 0.985 0.883 0.845 0.815 0.785 0.719 0.685 
variance O.OOE+00 5.15E-05 7.29E-05 3.12E-04 2.15E-04 1.39E-04 1.30E-04 

mPOILS (Average) 0.892 0.807 0.791 0.765 0.733 0.704 0.693 
variance 1.97E-16 2.46E-04 5.15E-04 4.02E-04 8.10E-05 8.72E-05 1.33E-04 

inF0IL4 (Average) 0.985 0.932 0.888 0.842 0.798 0.713 0.680 
Variance O.OOE+00 7.47E-05 9.16E-05 9.26E-04 3.09E-04 1.41E-04 3.05E-04 

inFOILS (Average) 0.896 0.836 0.805 0.771 0.723 0.068 0.000 
Variance 1.97E-16 7.83E-04 1.05E-04 1.89E-04 9.81E-04 4.69E-02 O.OOE+00 

Table 7.10: The averages and variances of accuracy of LOGENPRO, 
FOIL, BEAM-FOIL, and different instances of mFOIL at 
different noise levels. 

7.2.3. Comparison of LOGENPRO with FOIL 

The classification accuracy of both systems degrades seriously as the noise level 
increases (figure 7.2). The classification accuracy of LOGENPRO decreases smoothly 
when the noise level is on or below 0.15. It reduces from 0.996 to 0.938, a 5.8% 
decrement. There are sudden drops of accuracy when the noise level is between 0.15 
and 0.40. It falls from 0.938 to 0.670, a 28.5% reduction. The accuracy of FOIL 
decreases rapidly when the noise level is on or below 0.20. It drops from 0.996 to 
0.693，a 30.4% reduction. The decrease slightly slows down between the noise levels 
of 0.20 and 0.40. It drops from 0.693 to 0.529，a 23.7% reduction. 
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Figure 7.2: Comparison between LOGENPRO, FOIL, BEAM-FOIL, and 
mFOILl 

The results are statistically evaluated using the one-tailed paired r-test. For each 
noise level, the classification accuracy is compared to test the null hypothesis against the 
alternative hypothesis. The null hypothesis states that the difference in accuracy is zero 
at the 0.05% level of significance. On the other hand, the alternative hypothesis declares 
that the difference is greater than zero at the 0.05% level of significance. The t-statistics 
are listed as follows: 

Noise Level 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 30 0 . 40 
t-statistics NA 12.59 17.78 19.33 14.17 8.07 26.82 

The t-statistics at the 0.00 noise level is not available because the variances are 
very small (near zero). The t-statistics at the 0.05 noise level is 12.59 which is greater 
than the critical value of 4.78. Thus, we can reject the null hypothesis and assert that the 
classification accuracy of LOGENPRO is higher than that of FOIL. Similarly, the 
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classification accuracy of LOGENPRO at the noise levels between 0.05 and 0.40 is 
significantly higher than that of FOIL. The largest difference reaches 0.177 at the 0.15 
noise level. 

7.2.4. Comparison of LOGENPRO with BEAM-FOIL 

The classification accuracy of BEAM-FOIL degrades seriously as the noise level 
increases (figure 7.2). There is a significant fall in accuracy of BEAM-FOIL when the 
noise level is increased from 0.0 to 0.05. It reduces from 0.996 to 0,802, a more than 
19.4% of decrement. It falls from 0.802 to 0.757 between the noise levels of 0.05 and 
0.10，a smaller reduction (5.6%) is encountered in this interval. The decrease slows 
down between the noise levels of 0.10 and 0.40. The accuracy drops from 0.757 to 
0.674 in this interval. The reduction is about 11%. The results of the one-tailed paired t-
test are listed as follows: 

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40 
t-statistics NA 22.20 33.82 21.91 9.19 3.26 -0.81 

The t-statistics at the 0.00 noise level is not available because the variances are 
very small (near zero). The t-statistics at the 0.05 noise level is 22.20 which is greater 
than the critical value of 4.78. Thus, we can assert that the classification accuracy of 
LOGENPRO is higher than that of BEAM-FOIL. Similarly, the classification accuracy 
of LOGENPRO at the noise levels between 0.10 and 0.20 is significantly higher than 
that of BEAM-FOIL. At the noise level of 0.30，the accuracy of LOGENPRO is higher 
than that of BEAM-FOIL, but the difference is not significant because the t-statistics is 
only 3.26 which is smaller than the critical threshold. On the other hand, the accuracy 
of BEAM-FOIL at the noise level of 0.40 is higher than that of LOGENPRO, but the 
difference is insignificant because the absolute value of -0.81 is smaller than the critical 
value. This comparison indicates that the genetic operations of LOGENPRO can 
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actually improve the logic programs generated by other learning systems such as 
BEAM-FOIL. 

7.2.5. Comparison of LOGENPRO with mFOILl 

We compare LOGENPRO with mFOILl to mFOIL5 (see section 3.3) one by one in 
this and the following sub-sections. The parameters of this instance are presented in 
table 7.8. Lavrac and Dzeroski (1994) compare the performances of mFOILl with 
FOIL2.0, a version of FOIL, for the chess endgame problem using the smaller dataset 
described in sub-section 7.2.1. They find that mFOILl outperforms FOIL2.0 at all 
noise levels. Our results depicted in figure 7.2 are inconsistent with those obtained by 
Lavrac and Dzeroski. We find that FOIL outperforms mFOILl at the noise levels of 
0.05 and 0.1. On the other hand, mFOILl has better performance when the noise level 
is over 0.1. The inconsistency may be explained because we employ an improved 
version of FOIL, FOIL6.0, and larger sets of training and testing examples. 

There is a significant fall in accuracy of mFOILl (figure 7.2) when the noise 
level is changed from 0.0 to 0.05. It reduces from 0.985 to 0.796，a more than 19% of 
decrement. It falls from 0.796 to 0.792 between the noise levels of 0.05 and 0.10，a 
very small reduction (0.5%) is encountered in this interval. The drop slows down 
between the noise levels of 0.10 and 0.40. The accuracy falls from 0.792 to 0.686 in 
this interval. The reduction is only 13%. The results of the one-tailed paired t-test are 
listed as follows: 

Noise Level 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 30 0 . 40 
t-statistics3.03E+0829.35 22.78 16.17 7.52 2.27 -3.92 

Since t-statistics at the 0.00 noise level is very large, we can assert that the 
classification accuracy of LOGENPRO is higher than that of mFOILl. The difference is 
about 0.01. The t-statistics at the 0.05 noise level is 29.35 which is greater than the 
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critical value of 4.78. Thus, the classification accuracy of LOGENPRO at this noise 
level is significantly higher than that of mFOILl, with a difference of 0.19. Similarly, 
the classification accuracy of LOGENPRO at the noise levels between 0.10 and 0.20 is 
significantly higher than that of mFOILl. At the noise level of 0.30, the accuracy of 
LOGENPRO is higher than that of mFOIL by about 0.03, but the difference is not 
significant because the t-statistics is only 2.27 which is smaller than the critical 
threshold. On the other hand, the accuracy of mFOILl at the noise level of 0.40 is 
higher than that of LOGENPRO, the difference is not significant because the absolute 
value of -3.92 is smaller than the critical value. The difference is about 0.014. 

7.2.6. Comparison of LOGENPRO with mFOIL2 

LOGENPRO 
1.1 -X — mFOILl 

mF0IL2 
. “ m F 0 I L 3 
U _ _ _ _ _ _ _ _ _ _ mF0IL4 

0.6 I I I 
0 0.05 0.1 0.15 0.2 0.3 0.4 

Noise Level 

Figure 7.3: Comparison between LOGENPRO, mFOILl, mFOIL2, 
mFOIL3, and mFOIL4 

The accuracy of mFOIL2 (figure 7.3) decreases smoothly between the noise levels 0.0 
to 0.20. It drops from 0.985 to 0.785，which is a more than 20% reduction. The 
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decrement slightly slows down between the noise levels of 0.20 and 0.40. It drops 
from 0.785 to 0.685, with a 12.7% reduction. The results of the one-tailed paired f-test 
are listed as follows: 

Noise Level 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 30 0 . 40 
t-statistics3.03E+0835.38 17.29 14.98 5.15 1.11 -3.37 

Since t-statistics at the 0.00 noise level is very large, we can assert that the 
classification accuracy of LOGENPRO is significantly higher than that of mF0IL2. The 
difference is about 0.01. The t-statistics at the 0.05 noise level is 35.38 which is greater 
than the critical value of 4.78. Thus, the classification accuracy of LOGENPRO at this 
noise level is significantly higher than that of mFOIL2 with the difference of 0.1. 
Similarly, the classification accuracy of LOGENPRO at the noise levels between 0.10 
and 0.20 is significantly higher than that of mF0IL2. At the noise level of 0.30, the 
accuracy of LOGENPRO is higher than that of mFOIL2 by about 0.014，but the 
difference is not significant because the t-statistics is only 1.11 which is smaller than the 
critical threshold. On the other hand, the accuracy of mF0IL2 at the noise level of 0.40 
is higher than that of LOGENPRO, the difference is insignificant because the absolute 
value of -3.37 is smaller than the critical value. The difference is about 0.015. 

7.2.7. Comparison of LOGENPRO with mFOIL3 

The accuracy of mFOIL3 (figure 7.3) at the noise level of 0.00 is only 0.892. The 
accuracy of mFOIL5 decreases smoothly when the noise levels between 0.0 and 0.15. 
It drops from 0.892 to 0.765, with a more than 14.5% reduction. The accuracy reduces 
slightly between the noise levels of 0.15 and 0.40. It drops from 0.765 to 0.693，with a 
more than 9% reduction. The results of the one-tailed paired 广test are listed as follows: 

Noise Level 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 30 0 . 40 
t-statistics NA 32.20 20.31 17.06 8.15 2.06 -4.90 
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The t-statistics at 0.00 noise level is not available because the variances are very 
small (near zero). The t-statistics at the 0.05 noise level is 32.20 which is greater than 
the critical value of 4.78. Thus, the classification accuracy of LOGENPRO is 
significantly higher than that of mFOIL3. The difference is about 0.17. Similarly, the 
classification accuracy of LOGENPRO at the noise levels between 0.10 and 0.20 is 
significantly higher than that of mFOIL3. At the noise level of 0.30，the accuracy of 
LOGENPRO is higher than that of mF0IL3, but the difference is not significant. On the 
other hand, the accuracy of mFOIL3 at the noise level of 0.40 is significantly higher 
than that of LOGENPRO. The difference is about 0.02. 

7.2.8. Comparison of LOGENPRO with mFOIL4 

The accuracy of mFOIL4 (figure 7.3) decreases slightly when the noise level increases 
from 0.0 to 0.15. It drops from 0.985 to 0.842, with a more than 14% reduction. The 
accuracy reduces smoothly between the noise levels of 0.15 and 0.40. It drops from 
0.842 to 0.680，with a more than 19% reduction. The results of the one-tailed paired t-
test are listed as follows: 

Noise Level 0.00 0.05 0. 10 0.15 0.20 0.30 0.40 
t-statistics3.03E+0821.59 13.05 9.95 4.37 1.23 -1.65 

The classification accuracy of LOGENPRO at the noise level 0.00 is 
significantly higher than that of mF0IL4. The difference is about 0.01. The t-statistics 
at the 0.05 noise level is 21.59 which is greater than the critical value of 4.78. Thus, the 
classification accuracy of LOGENPRO is significantly higher than that of mFOIL4. The 
difference is about 0.05. Similarly, the classification accuracy of LOGENPRO at the 
noise levels between 0.10 and 0.15 is significantly higher than that of mF0IL4. At the 
noise levels of 0.20 and 0.30，the accuracy of LOGENPRO is higher than that of 
mF0IL4, but the differences are not significant. On the other hand, the accuracy of 
mFOIL4 at the noise level of 0.40 is higher than that of LOGENPRO, but the difference 
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is insignificant because the absolute value of -1.65 is smaller than the critical value. The 
difference is about 0.01 • 

7.2.9. Comparison of LOGENPRO with mFOILS 
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Figure 7.4: Comparison between LOGENPRO, mFOIL2, and mFOILS. 

The accuracy of mFOILS at the noise levels of 0.00，0.30，and 0.40 is not acceptable. 
By comparing mFOILS with mFOIL2 (figure 7.4)，we can conclude that the 
significance threshold for noise-handling affects the performance of mFOIL severely 
(see table 7.8). The accuracy of mFOIL5 decreases slowly from the noise levels of 0.0 
to 0.2. It drops from 0.896 to 0.723，a more than 19% reduction. There is a sudden 
drop in accuracy from 0.723 at the noise level of 0.20 to 0.0 at the noise level of 0.40. 
The results of the one-tailed paired Mest are listed as follows: 

Noise Level 0.00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 30 0 . 40 
t-statistics NA 16.99 22.29 16.44 8.12 10.23176.37 
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The t-statistics at the 0.00 noise level is not available because the variances are 
very small (near zero). The t-statistics at the 0.05 noise level is 16.99 which is greater 
than the critical value of 4.78. Thus, the classification accuracy of LOGENPRO at this 
noise level is significantly higher than that of mFOIL5. The difference is about 0.15. 
Similarly, the classification accuracy of LOGENPRO at the noise levels between 0.10 
and 0.40 is significantly higher than that of mFOIL5. 

7.2.10. Discussion 

In this section, we employ LOGENPRO to combine evolutionary algorithms and 
BEAM-FOIL, to learn logic programs. The performance of LOGENPRO in a noisy 
domain has been evaluated by using the chess endgame problem. Detailed comparisons 
between LOGENPRO and other ILP systems have been conducted. It has found that 
LOGENPRO outperforms these ILP systems significantly at most noise levels. These 
results are surprising because the LOGENPRO uses the same noise-handling 
mechanism of FOIL by initializing the population with programs created by BEAM-
FOIL. 

One possible explanation of the better performance of LOGENPRO is that the 
Darwinian principle of survival and reproduction of the fittest is a good noise handling 
method. It avoids overfitting noisy examples, but at the same time, it finds interesting 
and useful patterns from these noisy examples. This result is very encouraging and we 
plan to apply LOGENPRO to combine evolutionary algorithms with other learning 
systems such as GOLEM (Muggletion and Feng 1990), LINUS (Lavrac and Dzeroski 
1994)，and mFOIL (Lavrac and Dzeroski 1994) for solving problem. 
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73. Learning programs in Fuzzy Prolog 

The goal of this experiment is to induce a Fuzzy Prolog program that describes the 
fuzzy relation c a n - r e a c h intensionally. The set of training examples and the 
background knowledge are stored in a fuzzy relational database. Li and Liu (1990) 
described the detailed definitions of the syntax and semantics of Fuzzy Prolog and the 
properties of fuzzy relational databases. To the knowledge of the authors, LOGENPRO 
is currently the only system that can learn programs in Fuzzy Prolog. 

Consider the fuzzy network in figure 7.5, and this network represents the fuzzy 
relation l i n k e d - t o (X, Y) that denotes node X is directly linked to node Y with a 
truth value f, where f e (0，1]. In the network, the edges represent the instances of the 
l i n k e d - t o relation and the number on an edge is the truth value of the corresponding 

instance. For example, the truth value of the instance l i n k e d - t o ( 0 ' 1) is 0.9. 

© © 

。_9 0.88 

>.85 0 . 9 Z 0.95 

0 0 ^ © 

Figure 7.5: A fuzzy network 
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A fuzzy relation is associated with a n-ary fuzzy predicate and can be described 
extensionally as a set of ordered pairs. The extensional representations of fuzzy 
relations can be stored in a fuzzy relational database. For example, the fuzzy relation 
1 i n k e d - t o (X, Y) can be stored in a database as: 
linked-to(X, Y) = {(<0,1>, 0.9), (<0,3>, 0.8), (<1,2>, 0.85), 

(<3,2>, 0.9),(<3,4>, 0.8), (<4,5>, 0.88), 
(<4,6>, 0.7), (<6,8>, 0.95), (<7,6>, 0.9), 
(<7,8>, 0.95) } 

The first element of an ordered pair is a n-tuple of constants that satisfies the associated 
fuzzy predicate. The second element of the ordered pair is the corresponding truth 
value. 

Other fuzzy relations can be obtained from the fuzzy network. One of them is 
c a n - r e a c h (X, Y) which is represented explicitly as: 
can-reach(X, Y) = {(<0,1>, 0.9), (<0,2>, 0.765), (<0,3>' 0.85)' 

(<0,4>, 0.72), (<0,5>, 0.648), (<0,6>, 0.567), 
(<0,8>, 0.510), (<1,2>, 0.85), (<3,2>, 0.9) 
(<3,4>, 0.8), (<3,5>, 0.72), (<3,6>, 0.63), 
(<3,8>, 0.567), (<4,5>, 0.88), ((4,6>, 0.7) 
((4,8>, 0.63), (<6,8>, 0.95), (<7,6>, 0.9), 
(<7,8>, 0.95) } 

The negative instances of this relation can be found using the close world 
assumption (Li and Liu, 1990). Thus, the set of negative instances is: 

{(<0,0>, 0), (<0,7>, 0), (<1,0>, 0), (<1,1>, 0), (<1,3>, 0), 
(<1,4>, 0), (<1,5>, 0), {<1,6>, 0), (<1,7>, 0), (<1,8>, 0), 
(<2,0>, 0), (<2,1>, 0), (<2,2>, 0), (<2,3>, 0), (<2,4>, 0), 
(<2,5>, 0), (<2,6>, 0), (<2,7>, 0), (<2,8>, 0), (<3,0>, 0), 
(<3,1>, 0), (<3,3>, 0), (<3,7>, 0), (<4,0>, 0), (<4,1>, 0), 
(<4,2>, 0), (<4,3>, 0), (<4,4>, 0), (<4,7>, 0), (<5,0>, 0), 
(<5,1>, 0), (<5,2>, 0), (<5,3>, 0), (<5,4>, 0), (<5,5>, 0), 
(<5,6>, 0), (<5,7>, 0), (<5,8>, 0), (<6,0>, 0), (<6,1>, 0), 
(<6,2>, 0), (<6,3>, 0), (<6,4>, 0), (<6,5>, 0), {<6,6>, 0), 
(<6,7>, 0), (<7,0>, 0), (<7,1>, 0), (<7,2>, 0), (<7,3>, 0), 
(<7,4>, 0), (<7,5>, 0), (<7,7>, 0), (<8,0>, 0), (<8,1>, 0), 
(<8,2>, 0), (<8,3>, 0), (<8,4>, 0), (<8,5>, 0), (<8,6>, 0), 
(<8,7>, 0), (<8,8>, 0)} 

The 19 positive and 62 negative instances are used as the fitness cases. The 
fitness function finds the sum, taken over all 81 fitness cases, of the absolute values of 
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the difference between the desired truth value and the truth value returned by the 
generated program. A fitness case is said to be covered by a program if the truth value 
returned is within 0.05 of the desired value. LOGENPRO terminates if the maximum 
number of generations of 25 is reached or a Fuzzy Prolog program that covers all 
fitness cases is found. The logic grammar for this problem is shown in table 7.11. In 
this grammar, the background knowledge is represented by the fuzzy relation 
l i n k e d - t o (X, Y) stored in a fuzzy relational database and the predicate 
r andom (0 , 1 , ？A) is a logic goal. 

start -> clauses. 
clauses -> clauses, clauses. 
clauses -> clause. 
clause -> {random(0, 1' ？A)}' 

consq, [：-(？A)], antes, [•]. 
consq -> [can-reach(X, Y)]. 
antes -> antes, [,], antes. 
antes -> ante. 
ante -> {member{?A,[W, X, Y, Z])}, 

{member(?B,[W, X, Y, Z])}, 
literal(?A, ？B). 

literal(?A, ？B) -> [ linked-to(?A, ？B)]. 
literal(?A, ？B) -> [ can-reach(?A, ？B) ]• 

Table 7.11: The logic grammar for inducing programs in Fuzzy Prolog 

A number of trials have been performed using a population size of 100. Correct 
programs can be found in all trials. The following correct and simplified program is 
found in one trial: 

can-reach (X, Y) ：- (I) linked-to (X, Y). 

can-reach(X, Y) :- (0.9) linked-to(X, Z), 

can-reach(Z, Y). 
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Chapter 8 An Adaptive Inductive Logic Programming System 
In chapter 4, we have described the Genetic Logic Programming System (GLPS) that 
employs evolutionary algorithms to induce logic programs. In chapters 5，6，and 7, we 
have discussed LOGENPRO and demonstrated that LOGENPRO outperforms other 
ILP systems for learning logic programs in a noisy domain. 

However, LOGENPRO and other ILP systems cannot improve themselves 
automatically. In this chapter, we describe an Adaptive Inductive Logic Programming 
(Adaptive ILP) system that evolves using evolutionary algorithms. The definition of 
adaptive inductive logic programming is formulated in the first section. We present a 
generic top-down ILP algorithm in section 8.2. A meta-level learner that induces search 
bias is described in section 8.3. Section 8.4 delineates the experimentation and some 
evaluations of the system followed by a discussion. 

8.1. Adaptive Inductive Logic Programming 

As described chapter 3, an ILP system is a relational concept learner that induces a new 
relation for the target concept (i.e., the target predicate) from training examples and 
known relations from the background knowledge B. The training examples, the 
hypothesis space and the background knowledge are represented in first-order Horn 
clause languages (Muggleton and Feng 1990). 

An Adaptive Inductive Learning Programming (Adaptive ELP) system is an ILP 
system that can improve itself on the learning capability. It maintains various sets of 
background knowledge and biases. It improves itself by modifying its biases and 
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background knowledge. A hypothesis space for learning is defined through the concept 
description language, the language bias and the background knowledge. Therefore, by 
changing the language bias and the background knowledge, the size and structure of the 
hypothesis space can be modified accordingly. The search strategy and heuristics are 
changed if the system's search biases are modified. Here, we formulate the task of an 
Adaptive ILP system in table 8.1. 

Given: 
-A set E of positive E+ and negative E_ training 
examples of the target predicate p. Training examples 
are represented as ground atoms 
-A concept description language L 
-A set of learning biases BIASES 
-A set of various background knowledge BKs 

Find: 
-A modified set of learning biases BIASES‘ 
-A modified set of background knowledge BKs‘ 
-A concept definition H for the target predicate p 
expressible in L such that H is complete and 
consistent with respect to (w.r.t.) the training 
examples E and a background knowledge B in BKs 

H is complete if every positive example e+ in E+ is 
covered by H w.r.t. the background knowledge B. i.e. 
B U H 1= e+ 

H is consistent if no negative example e~ in E~ is 
covered by H w.r.t. the background knowledge B. i.e. 
B U H l̂t e~ 

Table 8.1: The definition of Adaptive ILP 

The logical organization of our adaptive ILP system is depicted in figure 8.1. Its 
components are introduced as follows: 

(1) External interface: It provides a user-friendly interface between the 
system and users. It accepts training examples, a set B K s of 
background knowledge, and a set BIASES of biases and transfers 
them through the learning controller to the example database, BKbase 
and biases base respectively. The interface also provides commands for 
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users to query about the results of an adaptive learning task and to 
directly control the operations of the learning controller. 

External Interface T1 H___ _ _ 

Example 
database j 

iMeta-Level M ， 丨 " c a l ILP 
Learner • Learner 

^ Data flow 

^ ^ Control flow 

Figure 8.1: The logical organization of an adaptive ILP system 

(2) Biases base: It is a knowledge base that stores all learning biases. Biases 
can be retrieved, added, deleted, and modified through the interface of 
this knowledge base. 

(3) BKbase: It stores various background learning knowledge that can be 
used in inductive learning. Background knowledge can be retrieved, 
added, deleted, and modified through the interface of BKbase. Since 
each entity of it is in fact a complex structure representing background 
knowledge, BKbase is implemented using object-oriented techniques. 

(4) Examples database: It stores the training examples. 
(5) Empirical ILP learner. It induces a logic program from the training 

examples, given a concept description language, a specific background 
knowledge, a search bias and a language bias. A search of the 
hypothesis space can be performed bottom-up or top-down. Bottom-up 
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techniques start from the training examples and search the space by 
employing various generalization operators. Top-down techniques start 
from the most general concept descriptions, and search the space by 
using various specialization operators. Top-down techniques are better 
suited for learning from imperfect examples because a large number of 
data are available in every specialization step and the system can employ 
various statistical techniques to decide how to perform the 
specialization. Moreover, top-down search can easily be guided by the 
search bias. In section 8.2，a generic top-down ILP algorithm is 
described. 

(6) Meta-level learner: It learns search biases, language biases, and 
background knowledge. Search and language biases can be represented 
declaratively or procedurally. If biases are expressed in a first-order 
language, the problem of learning biases can be formulated as an 
empirical ILP problem and thus the empirical ILP system described in 
(5) can be used. In section 8.3，we apply LOGENPRO to implement a 
meta-level learner that induces procedural biases. Background 
knowledge can be modified by introducing new predicate definitions or 
adding the definition of the current target predicate. For the former case, 
if the introduced predicates can facilitate the learning of the current target 
predicate, the introduced predicates can be viewed as sub-concepts (or 
sub-functions). In sub-section 6.1.2, we showed that LOGENPRO can 
effectively induce sub-functions and thus it can be used for this 
purpose. The induced sub-concepts are remembered in order to improve 
the learning of similar predicates in the future. For the latter case, the 
induced definition of the current target predicate is stored to facilitate the 
learning of higher level predicates. It can also learn other meta-
knowledge such as the conditions under which various learning biases 
and background knowledge can be employed. Since the meta-level 
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learner performs a variety of learning tasks, it is implemented as a multi-
strategy learning system. 

(7) Learning controller: It is a knowledge-based system that controls the 
empirical ILP learner and the meta-level learner. The knowledge used by 
the learning controller can be updated by the meta-level learner. 

8.2. A generic top-down ILP algorithm 

This section presents a generic top-down ILP algorithm based on FOIL (Quinlan 1990; 
1991). The algorithm is depicted in table 8.2. The algorithm consists of three steps. In 
the pre-processing step, missing argument values in training examples are handled by 
assigning default or random values to them. A training example will be removed if it 
has too many missing values. If there are no or inadequate negative examples in the 
training set, they can be generated. Different ways of creating negative examples have 
been proposed (Lavrac and Dzeroski 1994). 

The second step performs the construction of a program. This step employs 
four local variables: Ecur ren t (Current training examples set), E ‘ current (Updated 
training examples set), P (Current program) and P ‘ (Modified program). The main 
component of this step is the covering loop which implements Michalski's covering 
algorithm (Michalski et al. 1986a). The covering loop construct a program by iteratively 
executing the following sub-steps: 

(a) Construct a clause that covers some positive examples in Ecurrent . 
(b) Append the clause to the current program P and generate a modified 

program P ‘. 
(c) Remove all positive examples from Ecurrent which are covered by P ‘ 

with respect to the background knowledge B. 
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Input： 
E ： Training examples 
L： The concept description language 
BIASsearch: The search bias 
BIASiang: The language bias 
B： Background knowledge 
T： The target concept 

Output: 
A program P which contains a set of program clauses. Each clause 
C G L. 

Function ILP(E, L, BIASsearch, BIASiang. B' T) 

(1) Pre-processing of the training examples E and producing a 
modified set of examples E,: E' := Preprocessing(E). 

(2) Let Ecurrent ; 
Let P := {}; 
Repeat 

-Let C := T — ; 
-Find a specialization c' of C. This step constructs a 
clause C‘ from C by calling Clause-Construct(C' 
Ecurrent, B, L, BIASsearch, BIASiang) •‘ 
-If a specialization can be found 

-Add C‘ to P to produce a new program P . i.e. 
p' ： = P U {C'}; I 
-Remove all positive examples covered by P from 
Ecurrent to get an updated training set E' 
E ‘ current := Ecurrent " ( positive examples in 
Ecurrent covered by P’ w.r.t. the background 
knowledge B}; 

- L e t E c u r r e n t ：二 E current ‘ 
-Let P P' 

Else 
-Set the flag No -More -Improvement to true; 

Until 
The Covering termination criterion is satisfied, i.e. 
covering-termination (P, No-Mojre-Improvement, Ecurrent, B) 
returns true; 

(3) Post-processing the program P and producing P‘. i.e. 
P‘ ：= Post-processing(P); 
Return(P'); 

Table 8.2: A generic top-down ILP algorithm 

The covering loop terminates if the terminating conditions are satisfied. A 
typical condition is that either all positive examples are covered or no more 
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improvement can be achieved by searching for a new clause. The final step attempts to 
improve the accuracy of the program induced when classifying unseen examples and to 
simplify the program. 

The covering loop calls the 'Clause-Construct' function which is the core of the 
generic algorithm. The function constructs a clause C^ = T l i , I 2 ' . . • ‘ 
In starting from the most general clause Co = T — with an empty body. A sequence 
of clauses Co, Ci , C2，C3,….，C^ are generated by a number of specialization steps. 

At each step, the current clause C i = T — l i , I 2 / • • • ' l i is refined by 
appending a specific literal 1 to its body. A literal 1 � • is constructed from the 
background knowledge B restricted by the concept description language L and 
language bias BIASiang . The language may limit I j to be function-free while 
BIASiang may prevent new variable to be introduced in 1 j . The aim of the procedure 
is to find a clause which covers most positive examples while excludes all or most 
negative examples. In a hill-climbing search, the procedure keeps the current best 
clause and refines it using the estimated best specialization at each step, until the 
stopping condition is satisfied. A hill-climbing 'Clause-Construct' algorithm is 
presented in table 8.3. 

The 'Clause-Construct' function calls the 'Find-Extension' function to find the 
extension E ! of the current training examples given the partially developed clause Ci 
= T ( X i , X2, • . • , X^) — l i , I2 , • • • , l i and the background 
knowledge B. Each training example < x i , X2 , . • • , Xn> is a n-tuple where x j , 
1 <i<n, are some constants. To find the extension, the function initializes a clause Co = 
T (Xi, X2, . • • , Xn), then the literal l i is added to the body of Co to produce a 
new clause Ci. The literal l i is either of the form Xj = Xk, Xj 本 X^, Pm (Yi, Y2' 
. . . ,YSm) or n o t Pj7](Yi, Y2, . . . ,YSm). 
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Input： 
C： An initial clause C = T — 
Ecurrent: The current training examples 
B： Background knowledge 
L： The concept description language 
BIASgea rch : The s e a r c h b i a s 

BIASiang: The language bias 
Output: , . 

A clause that covers some positive examples in Ecurrent while 
excludes all or most negatives examples in Ecurrent 

Function Clause-Construct (C, Ecurrent' B' L' BIASgearch/ 
BIASiang) 

There is a scoring function stored in BIASsearch, save this 
function to scoring; 
Repeat 

-Set BEST to a bad literal such as X = X where X is a 
variable appearing in the head of the clause; 
-Set Best-score to 0; 
-Find the extension Ei of Ecurrent using the clause C w.r.t. 
B. i.e. Ei := Find-Extension(C, Ecurrent, B); 
-Let rî  be the number of positive tuples in Ei； 

-Let W厂 be the number of negative tuples in E^; 
-Current-information : = 一 l o g z O 广 / O广 + n^))； 
-For all literal 1 from B that satisfy the constraints 
imposed by the language L and bias BIASiang 

-Set C' = C U {1}； I 
-Find the extension Ei+i of Ecurrent using the clause c' 
i.e. Ei+i : = Find-Extension (C ' , Ecurrent / B); 
-Let n'l̂^ be the nuniber of positive tuples in Ei+i； 

-Let 打【；1 be the number of negative tuples in Ei+i； 

-Let the number of positive tuples in E^ that have been 
represented by one or more tuples in E^+i be n广; 
-Find the score of the literal 1 by using the scoring 

__̂  + function i.e. literal-score : = scoring (n̂  ' , ' 
Current-information)； 
-If literal-score > Best-score then 

-BEST 1; 
-Best-score := literal-score； 

-If BEST =二 X=X then 
- No -More - Improvement : = true; 

Else 
-Append BEST to the body of C; 

Until Clause-Termination (C, No-More-Improvement, Ecurrent' B) 
is true; 

Post-processing the clause C to find an improvement i.e. 
C‘ := Find-Improvement(C); 
If Acceptable(C') 

-Return(C’）； 
Else 

-Return{No-Specialization-Can-Be-Found)； 

Table 8.3: A hill-climbing ’Clause-Construct, algorithm 
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If the literal contains k new variables, the arity of each tuple in the generated 
training set E i increases to (n + k). E i can be found by performing a natural join of 
Ecurrent with the relation corresponding to literal li. The process is repeated for 
literals I2，I3,..., l i until the extension E i is found. 

The most important component of the hill-climbing 'Clause-Construct' 
algorithm is the 'scoring' function that estimates the performance of each literal. An 
accurate estimation directs the search towards the global maxima while a misleading one 
traps the system into local-maxima. By providing different 'scoring' functions to the 
generic ILP algorithm, various learning algorithms can be generated. The performances 
of a good and a bad learners can be significant different as shown in section 8.3. 

8.3. Inducing procedural search biases 

In this section, LOGENPRO is used in the meta-level learner to induce procedural 
search biases (i.e. the ’scoring' function). In order to employ LOGENPRO, a logic 
grammar must be defined. It is depicted in table 8.4. 

In the grammar, the terminal symbols n - p o s - i - p l u s - 1 , 
n - n e g — i — p l u s — 1，and n - p o s - i represent respectively 行 广 + ! ， a n d n^^. With 
reference to the algorithms in tables 8.2 arid 8.3, assume that E i is the extension of 
current training examples Ecur ren t by current clause Ci, n^ and n； are respectively 
the number of positive and negative tuples in E i . E i can be extended by using the 
literal 1 to E i + i . n̂ ^̂  and w二 1 are respectively the number of positive and negative 
tuples in E i+ i . w广 is the number of positive tuples in E i that have been represented 
by one or more tuples in E i+ i . The terminal symbol c u r r e n t - i n f o r m a t i o n is 
defined as -logiO广 / O广 + " � ) ) . 
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start -> function, 
s-exp -> term, 
s-exp -> function. 

function -> [(], opl, s-exp' [)]• 
function -> [(], op2, s-exp, s-exp,[)]. 

opl -> [ protected-log ]. 
op2 - > [ + ] • 
op2 -> [ - ] . 
op2 - > [ * ] . 
op2 -> [ % ]. 
op2 -> [ info ]. 

term -> [ n-pos-i-plus-1 ]• 
term _> [ n-neg-i-plus-1 ]. 
term -> [ n-pos-i ]. 
term -> [ current-information ]. 
term -> { random(-10, 10, ？a) } , [ ？a ] . 

Table 8.4: A logic grammar for learning procedural search bias 

The terminal symbols +，-, and * represent functions that perform ordinary 
addition, subtraction, and multiplication respectively. The symbol % represents function 
that normally returns the quotient. However, if division by zero is attempted, the 
function returns 1.0. The symbol p r o t e c t e d - l o g is a function that calculates the 
logarithm of the input argument x if x is larger than zero, otherwise it returns 1.0. The 
symbol i n f o represents the basic function that calculates -log2(X / (X + F)) given X 
and Y as inputs. The logic goal random ( - 1 0 , 10 , ？a) generates a random floating 
point number between -10 and 10 and instantiates ？ a to the random number generated 

8.3.1. The evolution process 

The evolution process of the Adaptive ILP system is depicted in figure 8.2. Firstly, the 
Biases base is initialized with a population of different 'scoring' functions generated 
randomly using the logic grammar depicted in table 8.4. To estimate the fitness of a 
specific 'scoring' function, it is combined with the generic top-down ILP learner to 
produce a specific ILP learner. The performance of this ILP learner is then evaluated by 

Page 201 



using a fitness function. This measure is assigned as the fitness of the specific 'scoring' 
function. LOGENPRO employs crossover, selection, mutation, and other genetic 
operators to generate potentially better functions. The modified functions are stored in 
the Biases base and the whole evolution process iterates until the best function is found 
or no computational resource is available. Some induced functions (procedural search 
biases) are given in appendix A. 

Biases 
Base 

Initial Modified 
Biases Biases 

i 
LOGENPRO M 

Bias Performance 
of bias 

^ Empirical ILP 
Learner 

k k 
BKbase Example 

database 

Figure 8.2: The evolution process of the adaptive ILP system 

8.3.2. The experimentation setup 

In this chapter, learning curves are used to estimate the performances of various 
learning systems. The example space is divided randomly into disjoint training and 
testing sets. The learner is trained on progressively larger portions of the training set 
and the performance of the induced logic program is estimated on the disjoint testing 
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set. This process of dividing, training, and testing is repeated for 20 trials and the 
results are averaged to generate a learning curve. 

As a running example, we use a traditional problem discussed in the literature 
(Muggleton and Feng 1990). In the problem of learning the list predicate member, the 
data consist of all lists of lengths 0 to 3 defined over three constants. The background 
knowledge B contains definitions of list construction predicates: null which holds for 
an empty list and component which decomposes a list into its head and tail. The 
example space contains 75 positive and 45 negative examples. The training sets contain 
20 to 52 examples, one-half of each training set is positive examples. The testing set 
consists of 45 positive and 15 negative examples. 

8.3.3. Fitness calculation 

Adjusted and normalized fitness values are used as in Koza (1992). They are calculated 
from the raw fitness which is estimated by the fitness function. Various fitness 
functions have been tried and two of them are described here. The impact of fitness 
function on the generality of the evolved function is also demonstrated. The problem 
domain of learning the member predicate is used here. 

For the first fitness function, a random set of 24 positive and 21 negative 
examples is used. A specific 'scoring' function is combined with the generic top-down 
ILP learner to produce a specific ILP learner called Adapted-ILP hereafter. Adapted-
ILP induces a logic program using the random example set. The quality of the induced 
logic program is evaluated by counting the total number of misclassified examples from 
the same training set. This measure is used as the raw fitness of the specific 'scoring' 
function. Using this fitness function, only poor 'scoring' functions have been evolved. 
The learning curve of a poor learner is depicted in figure 8.3. 
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For the second fitness function, the raw fitness is developed in several steps. At 
the beginning of each generation, four instances of the learning task are created 
randomly from the member domain. Each learning task has a training and a disjoint 
testing data. The training set contains 20 positive and 20 negative examples. For each 
learning task, a specific Adapted-ILP induces a logic program from the training set and 
the logic program is evaluated by counting the number of misclassified examples from 
the testing set. The performance of the Adapted-ILP is the sum of numbers of 
misclassified examples for all learning tasks. This measure is then used as the raw 
fitness of the corresponding 'scoring' function. This fitness function can force the 
evolution of good 'scoring’ functions. The learning curve of a good learner is shown in 
figure 8.3. 

—X- Poor ILP learner 
h o - Good ILP leamerl 

g 0.85 誦 — — — 一 — 瞧 

< 0 . 8 誦 一 — — " ^ 、 一 — 一 酬 

0 • 7 5 1 ^ i } C^^ I 
O . T H ~ I ~ ~ I ~ ~ ~ ~ ~ M 

20 24 28 32 36 40 44 48 52 
Training size 

Figure 8.3: The learning curves of good and poor ILP learner 

8.4. Experimentation and evaluations 

This section compares the performance of the adaptive ILP system with that of FOIL 
which is a famous ILP system (Quinlan 1990). Standard learning tasks in the literature 
are used in these experiments (Quinlan 1990，Muggleton and Feng 1990). 
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8.4.1. The member predicate 

The learning curves for this problem are depicted in figure 8.4. It is interested to find 
that the adaptive ILP system has higher accuracy than FOIL. The difference is 
significant at 5% level of significance when the training size is less than 36. 

一 X — Foil 
—D™ The Adaptive ILP system 

0.95 i p q — 

O . 7 5 M ~ ~ ~ ~ M 
20 24 28 32 36 40 44 48 52 

Training size 
Figure 8.4: Learning curves for the member problem 

8.4.2. The member predicate in a noisy environment 

Difference amount of noise is introduced into the training examples in order to study the 
performances of both systems in learning programs in noisy environment. To introduce 
n% of noise into the examples, n% positive examples are labeled as negative ones while 
n% negative examples are labeled as positive ones. In this experiment, the percentages 
of introduced noise are 10% (0.1) and 40% (0.4). Their learning curves are 
summarized in figure 8.5. The adaptive ILP system performs better than FOIL at all 
noise level. 
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Figure 8.5: Learning curves for the member problem in a noisy 

environment 

8.4.3. The multiply predicate 

In the problem of learning the arithmetic predicate multiply (Muggletion and Feng 
1990), the data contain integers in the range from zero to ten. The background 
knowledge is composed of definitions for arithmetic predicates plus, decrement, zero, 
and one. The example space has 73 positive and 1258 negative examples respectively. 
The training sets consist of 400 to 500 examples, one-tenth of each training set is 
positive and the remainder is negative. The learning curves for multiply are presented in 
figure 8.6. The Adaptive ILP system performs better than FOIL when the size of 
training set is less than 460. The difference is significant at 5% level of significance. 
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Figure 8.6: Learning curves for the multiply problem 

8.4.4. The uncle predicate 
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Figure 8.7: Learning curves for the uncle problem 
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Another traditional testbed for relational learners is the domain of family relationships 
(Quinlan 1990). In this experiment, the uncle predicate is induced and the background 
predicates are parent, sibling, married, male, Sind female. The learning curves are 
presented in figure 8.7. 

8.5. Discussion 

In this chapter, we have proposed an Adaptive Inductive Logic Programming system 
which is composed of an external interface, a biases base, a knowledge base of 
background knowledge, an example database, an empirical ILP learner, a meta-level 
learner, and a learning controller. In our implementation of the Adaptive Inductive 
Logic Programming system, the empirical ILP learner performs top-down search in the 
hypothesis space defined by the concept description language, the language bias and the 
background knowledge. The search is directed by search biases which can be induced 
and refined by LOGENPRO. 

It has been demonstrated that the induced bias is better than that of FOIL on 
many standard learning tasks. From these experiments, it can be concluded that the 
Adaptive ILP system has superior learning ability compared to FOIL. Since they are 
different in their search biases only, the result implies that the search bias induced by 
LOGENPRO is better than that of FOIL for the learning problems. This result is 
surprising because the search biases of the Adaptive ILP system are initialized by a 
random process. These biases are normally poor, but the process of natural selection 
and evolution can successfully evolve a good bias. 

It is important to mention that the induced search biases are rather general 
because they have reasonable performances on many traditional learning problems. For 
future work, in order to find a general, efficient, and effective bias, a large number of 
learning tasks of different kinds, such as the member, append’ quick sort, ackermann, 
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uncle, and grandfather problems, of various characteristics should be used. This 
adaptive learning approach, though computationally intensive, is rather exciting, as it 
opens up many opportunities for creating or improving learning algorithms. 

/ 
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Chapter 9 Conclusion and Future Work 
9.1. Conclusion 

The goal of program induction is to create computers that can learn to solve problems 
without being explicitly programmed. A means to achieve this goal is to allow 
computers to generate computer programs in different programming languages from 
specifications. The advantage of inducing computer programs rather than other high-
level abstractions such as binary chromosomes, formal grammars, and semantic 
networks is that computer programs are flexible and executable. Computer programs 
are flexible because their sizes, shapes, and structural complexities are not restricted in 
advance. In contrast, these properties of programs are emerged during the learning 
process as a result of the demands of the problem. In order to learn computer programs, 
a program induction system should search the solutions in the space of all possible 
programs. However, the space is extremely large and the traditional weak search 
methods clearly cannot solve the problem. Thus, some adaptive and intelligent search 
methods are required. 

An intelligent search method starts with one or more search points (structures) 
in the search space, evaluates the performances of the current structures for solving the 
problem at hand, and then employs the information about the performances to determine 
how to proceed the search in the space. As described in chapter 2，evolutionary 
algorithms have these properties and thus they are intelligent and effective. 
Nevertheless, they are weak methods without domain-specific knowledge hard-wired in 
the methods. 
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In chapter 3，we have introduced some ILP systems which can be classified into 
top-down and bottom-up systems. Most existing ILP systems applies strong search 
methods obtained by combining some greedy search strategies and heuristics. Various 
systems differ mainly in the strong methods used to guide the search for the desired 
programs. The problem is that these strong methods are not always applicable because 
they may trap the systems in local maxima. Moreover, other learning paradigms such as 
reinforcement learning (Sutton 1988; 1992, Tesauro 1992，Lin 1992, Kaelbling 1993) 
and strategy learning cannot be achieved by ILP systems. 

Since evolutionary algorithms are effective weak methods, we have proposed 
the idea of combining the effective search power of evolutionary algorithms and the 
knowledge representation power of first-order logic. In chapter 4，we have described a 
novel system called the Genetic Logic Programming System (GLPS) that realizes the 
idea. GLPS can learn function free first-order logic programs with constants. It takes 
the advantages of existing ILP and GP systems while avoids the disadvantages of them. 
We have devised a new method so that a logic program can be represented as a forest of 
AND-OR trees. This representation method facilitates the generation of the initial 
population of logic programs and the operations of various genetic operators such as 
crossover and reproduction. A number of applications of GLPS have been successfully 
implemented. They are the Winston's arch problem, the modified Quinlan's network 
reachability problem, and the factorial problem. These applications have demonstrated 
that GLPS is a promising alternative to other ILP systems. Since GLPS uses the same 
representation of other ILP systems, it is possible to combine GLPS with them. 

Although GLPS can induce logic programs, it cannot accept domain-specific 
knowledge in order to perform knowledge-intensive and evolutionary search. 
Moreover, existing program induction systems are limited in the programming 
languages in which the induced programs are expressed. For example, GP systems can 
only induce programs represented as S-expressions in Lisp. ILP systems can only 
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produce logic programs. Since the formalisms of the above two kinds of systems are so 
different, they cannot be integrated easily although their properties and goals are 
similar. If they can be combined in a common framework, then their techniques and 
theories can be shared and their problem solving power can be enhanced. 

In chapter 5，we have proposed a novel, flexible, and general framework that 
combines GP and ILP. Moreover, the search space can be specified declaratively under 
this framework. This framework is based on a formalism of logic grammars and a 
system called LOGENPRO (The LOgic grammar based GENetic PROgramming 
system) has been developed. The formalism is powerful enough to represent context-
sensitive information and domain-dependent knowledge. The knowledge can be used to 
accelerate the learning of programs. The formalism is also very flexible and programs in 
various programming languages such as Lisp, Prolog, Fuzzy Prolog, and C can be 
induced. We have demonstrated that programs in different programming languages can 
be expressed as derivation trees. This representation method facilitates the generation of 
the initial population of programs and the operations of various genetic operators such 
as crossover and mutation. The novel and effective methods of performing the 
crossover and mutation operations have been described. They guarantee that only valid 
offspring will be generated. 

We have demonstrated that LOGENPRO can be used easily in Chapter 6. 
Furthermore, it has been shown that programs in Lisp, Prolog, and C can be induced. 
Firstly, a logic grammar template is provided to facilitate the application of 
LOGENPRO to emulate GP and two experiments have been performed. In the first 
experiment, it has been shown that knowledge of data type can be represented easily in 
LOGENPRO. We have illustrated that LOGENPRO alleviates the problem in traditional 
GP that all the variables, constants, arguments for functions, and values returned from 
functions must be of the same data type. The experiment has proven that LOGENPRO 
can find a solution much faster than GP and the computation required by LOGENPRO 

Page 212 



is much smaller than that of GP. Thus, LOGENPRO can emulate the effects of 
Strongly Type Genetic Programming (STGP) effortlessly (Montana 1993). 

In the second experiment, we have illustrated how to apply LOGENPRO to 
emulate Automatically Defined Functions (ADF) proposed by Koza (1992; 1994). 
Automatic discovery of problem representation primitives is one of the most important 
research areas in Genetic Programming. ADF is one of the approaches that have been 
proposed to acquire problem representation primitives automatically. We have found 
that LOGENPRO can learn a program much faster than ADF and the computation 
required by LOGENPRO is much smaller than that of ADF. This experiment has 
shown that LOGENPRO can emulate the effects of STGP and ADF simultaneously and 
effortlessly. It has also been proven that our framework can transform evolutionary 
weak methods to strong methods by incorporating various knowledge about the 
problem being solved. 

Secondly, we have shown that LOGENPRO can easily emulate GLPS in 
learning logic programs. A logic grammar template has been provided to facilitate the 
application of LOGENPRO. We have performed three experiments to show that 
LOGENPRO can emulate our GLPS. The experiment described in sub-section 6.2.2 
has also demonstrated the advantage of LOGENPRO. Since different formulations of a 
learning problem can be experimented easily with different logic grammars to find the 
most appropriate one, LOGENPRO can handle some learning problems, such as the 
Winston's arch problem, that cannot be solved completely by GLPS. 

Thirdly, we have employed LOGENPRO to perform symbolic regression to 
illustrate that LOGENPRO can induce programs in the C programming language. We 
have demonstrated the possibility of learning programs in some imperative languages. 
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Knowledge discovery in databases is an important and promising research field 
in computer science and artificial intelligence (Frawley et al. 1991, Piatetsky-Shapiro 
and Frawley 1991). We have presented three applications of LOGENPRO in acquiring 
knowledge from databases in chapter 7. These applications have demonstrated the 
advantages of LOGENPRO over other learning systems. In the first application, we 
have employed LOGENPRO to induce knowledge represented in decision trees from a 
real-world database and compared the results obtained by Michie et al. (1994) for the 
same problem. We have found that Cal5, ITrule, Discrim, Logdisc and DIPOL92 
perform better than LOGENPRO marginally. Since the detailed information about the 
accuracy of the former systems is not available, it cannot be concluded that whether the 
differences in accuracy are significant. On the other hand, LOGENPRO performs better 
than CART, RBF, CASTLE, NaiveBay, IndCART, Back-propagation, C4.5, 
SMART, Baytree, k-NN, NewID, AC2, LVQ, ALLOC80, CN2, and Quadisc for the 
problem. Interestingly, LOGENPRO is better than C4.5 and CN2, two systems that 
have been reported in the literature (Quinlan 1992, Clark and Niblett 1989) about their 
outstanding performances in inducing decision trees or rules. 

In the second application, we have employed LOGENPRO to combine 
evolutionary search methods and a variation of FOIL, BEAM-FOIL, in learning logic 
programs. Since noise handling mechanisms are very important research topics in 
knowledge discovery in databases, we have evaluated the performance of LOGENPRO 
in inducing knowledge from noisy datasets using the chess endgame problem. Detailed 
comparisons between LOGENPRO and other ILP systems have been conducted. It has 
been found that LOGENPRO outperforms these ILP systems significantly at most noise 
levels. These results are surprising because the LOGENPRO uses the same noise-
handling mechanism of FOIL by initializing the population with programs created by 
BEAM-FOIL. One possible explanation of the better performance of LOGENPRO is 
that the Darwinian principle of survival and reproduction of the fittest is a good noise 
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handling method. It avoids overfitting noisy examples, but at the same time, it can find 
interesting and useful patterns from these noisy examples. 

Imprecise and uncertain examples are frequent in real world environment, 
because many everyday examples are denoted in linguistic terms which are essentially 
imprecise and uncertain. However, there are very few studies on the issue of inducing 
knowledge from imprecise and uncertain datasets. In the third application, we have 
successfully used LOGENPRO to acquire knowledge from imprecise and uncertain 
training examples stored in a fuzzy relational database. The induced knowledge is 
represented as a program in Fuzzy Prolog (Li and Liu 1990). To the knowledge of the 
authors, LOGENPRO is currently the only system that can learn programs in Fuzzy 
Prolog. 

Existing ILP systems cannot improve themselves automatically. In chapter 8， 

we have proposed an adaptive ILP system that can improve itself during the learning 
process. The adaptive ILP system is composed of an external interface, a biases base, a 
knowledge base of background knowledge, an example database, an empirical ILP 
learner, a meta-level learner, and a learning controller. An implementation of the 
adaptive ILP system has been completed. In this implementation, the empirical ILP 
learner performs top-down search in the hypothesis space defined by the concept 
description language, the language bias, and the background knowledge. The search is 
directed by search biases which can be induced and refined by LOGENPRO. 

It has been demonstrated that the adaptive ILP system performs better than 
FOIL in inducing logic programs from perfect or noisy training examples. The 
experimentation has illustrated the benefit of an adaptive ILP system over existing ILP 
systems because the former can improve itself automatically. The result implies that the 
search bias induced by LOGENPRO is better than that of FOIL, which is designed by a 
top researcher in the field. Consequently, LOGENPRO is a promising technique for 
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implementing a meta-level learning system. The result is very encouraging as it 
suggests that the process of natural selection and evolution can successfully evolve a 
high performance ILP system. This adaptive learning approach, though computationally 
intensive, is rather exciting, as it opens up many opportunities for creating or improving 
learning algorithms. 

The field of program induction investigates the problem of inducing computer 
programs in different programming languages from specifications. Different ways have 
been proposed to present specifications. They are natural language, special-purpose 
languages, very high-level languages, formal specification languages, and examples. 
They have their own pros and cons, and it is beneficial to combine their advantages 
while preventing their disadvantages. 

Our LOGENPRO can be viewed as a system that accepts specifications in 
different ways: A logic grammar is a partial specification in a formal specification 
language that describes which programs are valid; A fitness function represents another 
partial specification using examples (i.e. fitness cases) and/or very high-level 
languages, and it evaluates different programs allowed by the logic grammar. 
Moreover, LOGENPRO employs deduction to generate the initial population of 
program from the logic grammar given and uses induction to produce offspring from 
parental programs. The inductive methods have been implemented in the form of 
genetic operators such as crossover and mutation. Thus, LOGENPRO employs both 
deduction and induction to find appropriate programs from the extremely large search 
space. The effectiveness and efficiency of LOGENPRO can be attributed to this 
insightful combination of various ways of specifications and different inference 
mechanisms. 

Page 216 



9.2. Future work 

The future work can be classified into four categories: applying LOGENPRO to 
discover knowledge from databases; learning recursive programs; applying 
LOGENPRO in engineering design; and exploiting parallelism of evolutionary 
algorithms. These categories are detailed in the following sub-sections. 

9.2.1. Applying LOGENPRO to discover knowledge from 
databases 

In section 7.2, we have shown that LOGENPRO can successfully induce knowledge 
represented as logic programs from noisy datasets. We have also found that the noise 
handling ability of LOGENPRO is better than many existing ILP systems. Since 
training examples stored in everyday databases are usually imperfect, a very important 
research area in knowledge discovery in databases investigates how to improve the 
noise handling mechanisms of learning algorithms. 

One can use LOGENPRO on extracting knowledge from other datasets of the 
field. One can also combine LOGENPRO with other learning systems such as GOLEM 
(Muggletion and Feng 1990)，LINUS (Lavrac and Dzeroski 1994)，and mFOIL (Lavrac 
and Dzeroski 1994) to explore the possibility of further improvement on its learning 
ability. 

We have demonstrated in section 7.3 that LOGENPRO can acquire imprecise 
and uncertain knowledge represented as programs in Fuzzy Prolog from fuzzy 
relational databases. Although the result is very promising, it seems that the example 
shown in that section is rather simple. It is believed that LOGENPRO can be applied to 
acquire knowledge represented in Fuzzy Prolog from real-world databases. We have 
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applied the Automatic Knowledge Acquisition and Refinement System (AKARS) to 
induce a complicated real-life knowledge base incorporated with fuzzy concepts from 
medical training examples (Leung and Wong 1991a; 1991b). The induced knowledge is 
used in a medical expert system which deals with the problem of rupture of membranes. 
The limitation of AKARS is that only prepositional production rules extended with 
fuzzy concepts can be acquired. Thus, one could try to apply LOGENPRO to learn 
knowledge represented in a more expressive language (i.e. Fuzzy Prolog) using the 
medical training examples. 

9.2.2. Learning recursive programs 

One of the most important and challenging areas of research in evolutionary algorithms 
is to investigate ways to successfully apply evolutionary algorithms to larger and more 
complicated problems. As discussed in sub-section 6.1.2，one approach to make a 
given problem more tractable is to discover problem representations automatically. 
Koza (1994) uses the even-n-parity problem to demonstrate extensively that his 
approach of Automatic Function Definition (ADF) can facilitate the solution of the 
problem. 

The boolean even-n-parity function of n boolean arguments return T (True) if an 
even number of its arguments are T，otherwise it returns NIL (False). Since there are n 
boolean arguments Di, D2，...，Dn involved in the problem, they form the terminal set. 
The function set {AND, OR, NAND，NOR} contains four two-argument primitive 
boolean functions. 

Koza shows that an even-7-parity problem can be solved using ADF. He finds 
that about 1440000 individuals, I(M, i, z), should be evaluated to obtain at least one 
solution with 99% probability (see sub-section 6.1.1 to find out how to obtain this 
number). Unfortunately, the solutions found by ADF can only solved the even-n-parity 
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for a particular value of n. If a different value of n is used, ADF must be used again to 
find other programs that can solve the new even-n-parity problem. 

Clearly, the solution found is not general enough to solve all even-n-parity 
problem for n greater than or equal to zero. A better solution should be recursive such 
as the following one: 

(defun parity (L) 
(if (null L) 

T 
(NAND 

(OR (first L) 
(NAND (parity (rest L)) T)) 

(NAND (first L) 
(NAND 

(AND T 
(parity (rest L))) 

T))))) 
In this recursive program, the argument L is a list of boolean values. Any number of 
boolean values can exist in the list L. In fact, this program can solve all even-n-parity 
problem for n greater than or equal to zero. To evolve this function, the terminal set 
must contain the argument L, the truth value T and the truth value NIL. The function set 
Fis : 

F = {if, null, first, rest, parity' AND, OR, 

NAND, NOR}. 

Moreover, the above program can be simplified to: 
(defun parity (L) 

(if (null L) 
T 

(xor (first L) (parity (rest L))))) 
(defun xor (a b) 

(AND (OR a b) (NAND a b))) 
Since the simplified program invokes a sub-function x o r which is not available in the 
function set, it must be learned simultaneously with the main program. It seems that this 
problem can be solved because we have already shown in sub-section 6.1.2 that 
LOGENPRO can emulate ADF. Thus, one should investigate how to apply 
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LOGENPRO to learn recursive programs with different difficulties and properties. 
There are many inductive learning systems such as THESYS (Summers 1977) and 
ADATE (Olsson 1995) that can induce recursive functional programs efficiently. 
Therefore, one could try to implement these techniques on LOGENPRO. 

9.2.3. Applying LOGENPRO in engineering design 

The field of engineering design methodologies is one of the most active fields of 
research in mechanical engineering (Roston 1994). Engineering design is the systemic, 
intelligent generation and evaluation of specifications for artifacts whose form and 
function achieve stated objectives and satisfy specified constraints (Dym 1992). It is 
observed that this definition fits well with that of automatic programming. 

Pahl and Beitz (1984) introduced a systematic approach to engineering design. 
This approach decomposes the design process into four phases: clarification of the task, 
conceptual design, embodiment design, and detailed design. It is believed that 
LOGENPRO can be applied in the last three phases to assist the designer. One of the 
fundamental problems is how to represent different designs generated in various 
phases. It is important that these representations can be translated into other 
representations, including a final physical instantiation of the artifact being designed. 

There are numerous representation methodologies. The function logic method of 
value analysis is one of the most general representation methods (Sturges et al. 1992). 
In this method, objects and classes of objects are represented by a hierarchy of noun-
verb pairs. The disadvantages of this method are that it lacks some of the formality of 
other methods and it is difficult to be implemented in a computer. Cagan and Agogino 
(1987) proposed to represent the concept of designing from the basic and underlying 
principles. However, it is difficult to generalize this method for more complicated 
designs. 
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Another means of representation is formal grammars. Stiny (1980) develops the 
concept of shape grammars which are used to describe planar shapes. It has been 
shown that graph grammars are equivalent to other types of formal grammars (Gips and 
Stiny 1980). Mullins and Rinderle (1991) presented the reasons for employing formal 
grammars for engineering design. 

Tanaka presented a method to understand the functions of electronic circuits 
(1993). A circuit is viewed as a sentence and its elements as words. Circuit structures 
are defined by rules written in a logic grammar called Definite Clause Set Grammar 
(DCSG). The advantage of this approach is that circuit designs can be analyzed 
automatically. 

Reddy and Cogan (1994) used shape grammars and simulated annealing to 
solve a variety of design program. They showed that a grammatical representation of an 
artifact and a means of intelligent search can be used to generate optimal designs. 
Roston (1994) extended their work using an evolutionary algorithm. Strongly Typed 
Genetic Programming (Montana 1993)，to search for optimal designs represented in a 
context-free grammar. 

We believe that LOGENPRO is a better approach for engineering design 
because context-sensitive information and domain-specific knowledge can be 
represented to accelerate the intelligent search process. This property has been 
established in section 6.1. Moreover, LOGENPRO is a flexible enough to induce 
programs in various special-purpose languages that represent the designs of artifacts. 

Page 221 



9.2.4. Exploiting parallelism of evolutionary algorithms 

For almost all practical applications of LOGENPRO, most computation time is 
consumed in evaluating the fitness of each program in the population since the genetic 
operators of LOGENPRO can be performed efficiently. The fitness evaluation process 
is time-consuming for the following reasons: 

• It is required to interpret or compile each program in the population. 
• It is necessary to compute fitness over several different fitness cases in 

order to obtain an accurate estimate of the fitness of a program. For 
example, consider the problem of learning search biases for an adaptive 
ILP system. Many different problems of learning logic programs should 
be used to estimate the fitness of a search bias. In other words, these 
problems of learning logic programs, such as the member problem and 
the uncle problem, are the fitness cases for the problem of learning 
search bias. 

• It is required to perform complicate and time-consuming computation to 
get a fitness value for a single fitness case. Consider the above example 
again, the search bias to be evaluated and a set of training examples are 
provided first. Then, LOGENPRO invokes a top-down or bottom-up 
algorithm to solve the problem of inducing a logic program from the set 
of training examples. Usually, several minutes are required to find a 
satisfactory logic program. After a logic program is induced, the logic 
program must be evaluated using another set of testing examples. In 
normal situation, this process takes about a few minutes because the 
testing set usually contains hundreds or even thousands of examples. 
The accuracy of the learned logic program on the testing set forms the 
fitness value of the search bias for a single fitness case. Thus, it is clear 
that several minutes or even hours are needed to find the fitness value. 
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Memory availability is another important problem of LOGENPRO because the 
population usually has a large number of programs. Moreover, since programs are 
represented as derivation trees of varying sizes, shapes and structures. This 
representation method requires more memory to store programs than that used in GP. 

There is a relation between the difficulty of the problem to be solved and the size 
of the population. In order to solve substantial and real-world problems, a population 
size of thousands and a longer evolution process are usually required. A larger 
population and a longer evolution process imply a more number of fitness evaluation 
must be conducted and more memory are required. In other words, a lot of 
computational resources are required to solve substantial and practical problems. 
Usually, this requirement cannot be fulfilled by normal workstations. 

Fortunately, these time-consuming fitness evaluations can be performed 
independently for each program in the population and programs in the population can be 
distributed among multiple computers. Thus, we plan to develop a parallel version of 
LOGENPRO. 

Evolutionary algorithms have a high degree of inherent parallelism which is one 
of the motivation of studies in this field. In natural populations, thousands or even 
millions of individuals exist in parallel and these individuals operates independently 
with a little cooperation and/or competition among them. This suggests a degree of 
parallelism that is directly proportional to the population size used in evolutionary 
algorithms. There are different ways of exploiting parallelisms in evolutionary 
algorithms. We plan to study the possibility of parallelizing LOGENPRO using four 
different approaches. They are master-slave models, improved-slave models, massively 
parallel evolutionary algorithms, and island models. 
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The most direct way to implement a parallel evolutionary algorithm is to 
implement a global population in the master processor. The master sends each 
individual to a slave processor and let the slave to find the fitness value of the 
individual. After the fitness values of all individuals are obtained, the master processor 
selects some individuals from the population using some selection method, performs 
some genetic operations, and then creates a new population of offspring. The master 
sends each individual in the new population to a slave again and the above process is 
iterated until the termination criterion is satisfied. 

Master-slave models can be improved easily using the tournament selection. 
Another direct way to implement a parallel evolutionary algorithm is to implement a 
global population and use the tournament selection. As described in sub-section 
2.2.1.1，the tournament selection approximates the behavior of ranking. Assume that 
the population size N is even and there are more than N/2 processors. N/2 slave 
processors are selected and are numbered from 1 to N/2. A processor selected from the 
remaining processors maintains the global population and implements an algorithm that 
controls the overall evolution process and the other N/2 slave processors. Each slave 
processor performs two independent m-ary tournaments. In each tournament, m 
individuals are sampled randomly form the global population. These m individuals are 
evaluated in the slave processor and the winner is kept. Since there are two 
tournaments, the two winners produced can be crossed in the slave processor to 
generate two offspring. The slave processor may perform further modifications to the 
offspring. The offspring are then sent back to the global population and the master 
processor proceeds to the next generation if all offspring are received from the N/2 
slave processors. 

Massively parallel evolutionary algorithms explore the computing power of 
massively parallel computers such as the Maspar. To explore the power of this kind of 
computers, one can assign one individual to each processor, and allow each individual 
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to seek a mate close to it. A global random mating scheme is inappropriate because of 
the limitation of the communication abilities of these computers. Each processor can 
select probabilistically an individual in its neighborhood to mate with. The selection is 
based on the fitness proportionate selection, the ranking, the tournament selection, or 
other selection methods proposed in the literature. Only one offspring is produced and 
becomes the new resident at that processor. The common property of different 
massively parallel evolutionary algorithms is that selections and mating are typically 
restricted to a local neighborhood. 

Island models can fully explore the computing power of course grain parallel 
computers such as the Sparc 2000 and distributed workstations. Assume that we have 
20 high performance processors, such as the ultrasparc processors, and have a 
population of 4000 individuals. We can divide the total population down into 20 
subpopulations (islands or demes) of 200 individuals each. Each processor can then 
execute a normal evolutionary algorithm such as LOGENPRO on one of these 
subpopulations. Occasionally, the subpopulations would swap a few individuals. The 
migration allows subpopulations to share genetic material (Whitley and Starkweather 
1990，Gorges-Schlenter 1991，Tanese 1989，Starkweather et al. 1991). 

Since there are 20 independent evolutionary searches occur concurrently, these 
searches will be different to a certain extent because the initial subpopulations will 
impose a certain sampling bias. Moreover, genetic drift will tend to drive these 
subpopulations in different directions. By employing migration, island models are able 
to exploit differences in the various subpopulations. These differences maintain genetic 
diversity of the whole population and thus can prevent the problem of premature 
convergence. We plan to exploit a number of variations of island models. These 
variations investigate the effects of subpopulations with different sizes or even dynamic 
sizes, asynchronous migration, dynamic number of migrating individuals, 
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subpopulations with different fitness functions, adaptive migration methods, and 
cooperative/competitive co-evolution. 
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Appendix A Some procedural search biases induced by the Adaptive ILP system 
1. Biases (with current - information and Info) 
(% (+ (% nf+i CURRENT—工NFORMATION) 

(-CURRENT-INFORMATION 1.9389733)) 
(* (- (+ ‘1 <+i) (* 仏了+1 -1.2297009)) n" 1)) 
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(INFO 
(+ 
(PROTECTED-LOG 
(+ CURRENT-INFORMATION 

(INFO 
((% (PROTECTED-LOG CURRENT—工NFORMATION) 

(% CURRENT—工NFORMATION CURRENT—INFORMATION)) 
(- (+ CURRENT-INFORMATION CURRENT-INFORMATION) 

(+ -2.415241 CURRENT-INFORMATION))) 

"�+1) 
(+ 

(+ 
(+ 

(INFO 
(+ 
(PROTECTED-LOG 
(+ CURRENT-INFORMATION 

(+ (PROTECTED-LOG CURRENT-INFORMATION) 
CURRENT-INFORMATION))) 

(% "�+1 "�+1)) 
(+ 
(+ (PROTECTED-LOG n:�) 

(INFO 
(% 

(INFO n ' l 
(-(INFO CURRENT-INFORMATION -0.17352863) 

CURRENT-INFORMATION)) 
2.477609) 

3.603527)) 
(PROTECTED-LOG 

(+ (+ (+ "�+1 - 1 . 8 0 4 0 3 2 7 ) (INFO n"^)) 
< + ) ) ) ) o 

(INFO (% - 3 . 5 1 1 9 4 2 . 4 7 7 6 0 9 ) 3 . 6 0 3 5 2 7 ) ) 
凡「+1)) -
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2. Biases (without current - information and Info) 
(-
(PROTECTED-LOG 
(+ 
(* (+ < (- (% 1) <+)) 3.1308892) 
n；)) 

(% (* ̂ r.i 
(PROTECTED-LOG 

( * ( + ( % "�+1 < + ) 
(+ (% "�+1 n；) n；)))) 

< 1 < + ) ) ) 
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