
Evolutionary program induction directed by logic grammars
] THESIS
•i f
I

Presented to the Department of Computer Science of The Chinese
University of Hong Kong in partial fulfillment of the requirements for

the Degree of Doctor of Philosophy

by
•."、.、： / / Z ‘ . � . ‘ /y 7:. � , / ... ’

f I ^ . , S “ � … V 丨
\

--〜••；,-,广.. ..
\ 、•、- ： ^ V' \ 1 • ‘

.： ‘ •” /

'‘,.〜…….、，

Wong Man Leung

June 1995

梦
«
£

ABSTRACT
Program induction generates a computer program with the desired behavior for a given
set of situations. Genetic Programming (GP) and Inductive Logic Programming (ILP)
are two of the approaches for program induction. GP is a method of automatically
inducing S-expressions in Lisp to perform specified tasks while ILP involves the
construction of logic programs from examples and background knowledge.

Since their formalisms are very different, these two approaches cannot be
integrated easily although their properties and goals are similar. If they can be combined
in a common framework, then their techniques and theories can be shared and their
problem solving power can be enhanced.

This thesis describes a framework that integrates GP and ILP based on a
formalism of logic grammars. A system called LOGENPRO (the LOgic grammar based
GENetic PROgramming system) is developed. This system has been tested on many
problems in program induction, knowledge discovery from databases, and meta-level
learning. These experiments demonstrate that the proposed framework is powerful,
flexible, and general.

Experiments are performed to illustrate that programs in different programming
languages can be induced by LOGENPRO. The problem of inducing programs can be
formulated as a search for a highly fit program in the space of all possible programs.
This thesis shows that the search space can be specified declaratively by the user in the
framework. Moreover, the formalism is powerful enough to represent context-sensitive
information and domain-dependent knowledge. This knowledge can be used to
accelerate the learning speed and/of improve the quality of the programs induced.

Page 3

Knowledge discovery systems induce knowledge from datasets which are huge,
noisy (incorrect), incomplete, inconsistent, imprecise (fuzzy), and uncertain. The
problem is that existing systems use a limiting attribute-value language for representing
the training examples and induced knowledge. Furthermore, some important patterns
are ignored because they are statistically insignificant. LOGENPRO is employed to
induce knowledge from noisy training examples. The knowledge is represented in first-
order logic program. The performance of LOGENPRO is evaluated on the chess
endgame domain. Detailed comparisons with other ILP systems are performed. It is
found that LOGENPRO outperforms these ILP systems significantly at most noise
levels. This experiment indicates that the Darwinian principle of natural selection is a
plausible noise handling method which can avoid overfitting and identify important
patterns at the same time.

An Adaptive Inductive Logic Programming (Adaptive ILP) system is
implemented using LOGENPRO as the meta-level learner. The system performs better
than FOIL in inducing logic programs from perfect and noisy training examples. The
result is very encouraging as it suggests that LOGENPRO can successfully evolve a
high performance ILP system.

Page 4

ACKNOWLEDGMENTS
I am very grateful to Dr. K. S. Leung who is my thesis advisor. He gave me his trust
from the beginning to the end of my thesis. He gave excellent supervision and sound
critiques of this project. I would also like to thank the members of the thesis committee:
Professor Watada, Dr. Horace Ip, Dr. Jimmy Lee, and Dr. M. H. Wong. They
provided valuable suggestions to improve the thesis. I acknowledge the members of the
soft computing group: Dr. Y. Leung, Dr. T. C. Chan, Dr. K. S. Leung, and Clement
Lee for their suggestions and interesting ideas. Danny Luk and H. K. Chan are very
kind to proofread the drafts of the thesis.

I would like to acknowledge the Department of Computer Science and
Engineering of the Chinese University of Hong Kong and the Croucher Foundation for
the support of this research project.

Ill

Table of Contents
List of Figures iii List of Tables vi Chapter 1 : Introduction 1 1.1. Automatic programming and program induction 1 1.2. Motivation 6 1.3. Contributions of the research 8 1.4. Outline of the thesis 11 Chapter 2 : An Overview of Evolutionary Algorithms 13 2.1. Evolutionary algorithms 13 2.2. Genetic Algorithms (GAs) 15 2.2.1. The canonical genetic algorithm 16 2.2.1.1. Selection methods 21 2.2.1.2. Recombination methods 24 2.2.1.3. Inversion and Reordering 27 2.2.2. Implicit parallelism and the building block hypothesis 28 2.2.3. Steady state genetic algorithms 32 2.2.4. Hybrid algorithms 33 2.3. Genetic Programming (GP) 34 2.3.1. Introduction to the traditional GP 34 2.3.2. Automatic Defined Function (ADF) 41 2.3.3. Module Acquisition (MA) 44 2.3.4. Strongly Typed Genetic Programming (STGP) 49 2.4. Evolution Strategies (ES) 50 2.5. Evolutionary Programming (EP) 55 Chapter 3 : Inductive Logic Programming 59 3.1. Inductive concept learning 59 3.2. Inductive Logic Programming (ILP) 62 3.2.1. Interactive ILP. 64 3.2.2. Empirical ILP 65 3.3. Techniques and methods of ILP 67 Chapter 4 : Genetic Logic Programming and Applications 7 4 4.1. Introduction 74 4.2. Representations of logic programs 76 4.3. Crossover of logic programs 81 4.4. Genetic Logic Programming System (GLPS) 87 4.5. Applications 90 4.5.1. The Winston's arch problem 91 4.5.2. The modified Quinlan's network reachability problem 92 4.5.3. The factorial problem 95 Chapter 5 : The logic grammars based genetic programming system (LOGENPRO) 100 5.1. Logic grammars 101 5.2. Representations of programs 103 5.3. Crossover of programs I l l 5.4. Mutation of programs 126 5.5. The evolution process of LOGENPRO 130 5.6. Discussion 132 Chapter 6 : Applications of LOGENPRO 134 6.1. Learning functional programs 134 6.1.1. Learning S-expressions using LOGENPRO 134 6.1.2. The DOT PRODUCT problem 137 6.1.2. Learning sub-functions using explicit knowledge 143 6.2. Learning logic programs 148

Page 6

6.2.1. Learning logic programs using LOGENPRO 148 6.2.2. The Winston's arch problem 151 6.2.3. The modified Quinlan's network reachability problem 153 6.2.4. The factorial problem 154 6.2.5. Discussion 155 6.3. Learning programs in C 155 Chapter 7 : Knowledge Discovery in Databases 159 7.1. Inducing decision trees using LOGENPRO 160 7.1.1. Decision trees 160 7.1.2. Representing decision trees as S-expressions 164 7.1.3. The credit screening problem 166 7.1.4. The experiment 168 7.2. Learning logic program from imperfect data 174 7.2.1. The chess endgame problem 177 7.2.2. The setup of experiments 178 7.2.3. Comparison of LOGENPRO with FOIL 180 7.2.4. Comparison of LOGENPRO with BEAM-FOIL 182 7.2.5. Comparison of LOGENPRO with mFOILl 183 7.2.6. Comparison of LOGENPRO with mFOIL2 184 7.2.7. Comparison of LOGENPRO with mF0IL3 185 7.2.8. Comparison of LOGENPRO with mFOIL4 186 7.2.9. Comparison of LOGENPRO with mFOILS 187 7.2.10. Discussion 188 7.3. Learning programs in Fuzzy Prolog 189 Chapter 8 : An Adaptive Inductive Logic Programming System 192 8.1. Adaptive Inductive Logic Programming 192 8.2. A generic top-down ILP algorithm 196 8.3. Inducing procedural search biases 200 8.3.1. The evolution process 201 8.3.2. The experimentation setup 202 8.3.3. Fitness calculation 203 8.4. Experimentation and evaluations 204 8.4.1. The member predicate 205 8.4.2. The member predicate in a noisy environment 205 8.4.3. The multiply predicate 206 8.4.4. The uncle predicate 207 8.5. Discussion 208 Chapter 9 : Conclusion and Future Work 210 9.1. Conclusion 210 9.2. Future work 217 9.2.1. Applying LOGENPRO to discover knowledge from databases 217 9.2.2. Learning recursive programs 218 9.2.3. Applying LOGENPRO in engineering design 220 9.2.4. Exploiting parallelism of evolutionary algorithms 222 Reference 227 Appendix A 237

Page 7

List of Figures
Figure 2.1

Crossover of CGA. A one-point crossover operation is performed on two parent, 1100110011 and 0101010101，at the fifth crossover location. Two offspring, 1100110101 and 0101010011 are produced 19
Figure 2.2

Mutation of CGA. A mutation operation is performed on a parent
1100110101 at the first and the last bits. The offspring 0100110100 is
produced 20

Figure ,2.3
The effects of a two-point (multi-point) crossover. A two-point
crossover operation is performed on two parent, 11001100 and
01010101，between the second and the sixth locations. Two offspring,
11010100 and 01001101，are produced 24 Figure 2.4
The effects of a uniform crossover. A uniform crossover operation is
performed on two parent, 1100110011 and 0101010101，and two
offspring will be generated. This figure only shows one of them
(1101110001) 25

Figure 2.5
The effects of an inversion operation. An inversion operation is
performed on the parent, 1100110101，between the second and the sixth
locations. An offspring, 1111000101，is produced 27 Figure 2.6 The hyperplane space 29

Figure 2.7 A parse tree of the program 35
Figure 2.8 The effects of crossover operation. A crossover operation is performed on two parental programs, (* (+ 0.5 X) (+ X Y)) and

(/ (+ X Y) (* (- X Z) X)). The shaded areas are exchanged and two
offspring generated are 39

Figure 2.9
The effects of a mutation operation. A mutation operation is performed on the program (* (+ 0.5 X) (+ X Y)). The shaded area of the parental program is changed to a program fragment (/ (+ Y 4) Z) and the offspring program (* (/ (+ Y 4) Z) (+ X Y)) is produced 41 Figure 2.10 A template for programs with two ADFs 42 Figure 2.11 A partial ordering of the template shown in figure 2.10 44 Figure 2.12 Module acquired by depth compression, (a) The program (+ (- (/ (+ X Y) (-(*(- Z 1) 2) 1)) Y) (* X Y)) is compressed to (+ (module 1 (- Z 1) 2) (* X Y)). The program fragment compressed is enclosed in dashed lines, (b) The parse tree of the module acquired by MA. (c) The corresponding lisp program of the module acquired 45 Figure 2.12 (Cont.) 46

Page 8

Figure 2.13
The effects of leaf compression for the example in figure 2.12. (a) The program (+ (- (/ (+ X Y) (- (* (-Z 1) 2) 1)) Y) (* X Y)) is compressed to (+ (module2 X Y Z 1 2 1 Y) (* X Y)). The program fragment compressed is enclosed in dashed lines, (b) The parse tree of the module acquired by MA. (c) The corresponding Lisp program of the module acquired 47 Figure 2.13 (Cont.) 48 Figure 4.1
A forest of AND-OR trees that represents a logic program, (a) The representation of the predicate cup. (b) The representation of the predicate stable, (c) The representation of the predicate liftable 78 Figure 4.1 (Cont.) 79

Figure 4.2 The And-Or trees of the program Progi 84 Figure 4.3 The And-Or trees of the program Prog2 85
Figure 4.4 Performance for the Winston's Arch problem 92
Figure 4.5 Performance for the modified network reachability problem 95
Figure 4.6 Performance for the factorial problem 99
Figure 5.1 A derivation tree of the S-expression in Lisp (* (/ W 1.5) (/ W 1.5) (/ W 1.5)) 104
Figure 5.2 Another derivation tree of the S-expression in Lisp

(* (/ W 1.5) (/ W 1.5) (/ W 1.5)) 110
Figure 5.3

The derivations tree of the primary parental program (+ (- Z 3.5)(-
Z 3.8) (/ Z 1.5)) 115

Figure 5.4 The derivations tree of the secondary parental program (* (/ W 1.5) (+ (- W 11) 12) (- W 3.5)) 116
Figure 5.5

A derivation tree of the offspring produced by performing crossover between the primary sub-tree 2 of the tree in figure 5.3 and the secondary sub-tree 15 of the tree in figure 5.4 121 Figure 5.6 A derivation tree of the offspring produced by performing crossover between the primary sub-tree 3 of the tree in figure 5.3 and the secondary sub-tree 16 of the tree in figure 5.4 122 Figure 5.7 A derivation tree generated from the non-terminal exp-l(Z) 129 Figure 5.8 A derivation tree of the offspring produced by performing mutation of the tree in figure 5.3 at the sub-tree 3 130 Figure 6.1 The fitness curves showing the best fitness values for the DOT PRODUCT problem 140 Figure 6.2 The performance curves showing (a) cumulative probability of success P(M, i) and (b) I(M，i, z) for the DOT PRODUCT problem 142

Page 9

Figure 6.3
The fitness curves showing the best fitness values for the sub-function
problem 146

Figure 6.4 The performance curves showing (a) cumulative probability of success P(M, i) and (b) I(M, i, z) for the sub-function problem 147 Figure 6.5 Fitness curve for the problem of inducing a C program 157
Figure 6.6 Performance curves for the problem of inducing programs in C 158
Figure 7.1 A decision tree 162 Figure 7.2 Comparison between LOGENPRO, FOIL, BEAM-FOIL, and mFOILl 181
Figure 7.3 Comparison between LOGENPRO, mFOILl, mF0IL2, mFOIL3, and mFOIL4 184
Figure 7.4 Comparison between LOGENPRO, mF0IL2, and mFOILS 187
Figure 7.5 A fuzzy network 189 Figure 8.1 The logical organization of an adaptive ILP system 194
Figure 8.2 The evolution process of the adaptive ILP system 202
Figure 8.3 The learning curves of good and poor ILP learner 204 Figure 8.4 Learning curves for the member problem 205
Figure 8.5 Learning curves for the member problem in a noisy environment 206
Figure 8.6 Learning curves for the multiply problem 207
Figure 8.7 Learning curves for the uncle problem 207

V

List of Tables
Table 2.1 The elements of a genetic algorithm 16
Table 2.2 The canonical genetic algorithm 17 Table 2.3 A high-level description of GP 36
Table 2.4 An algorithm for generating a random parse tree 37 Table 2.5 Algorithm for structure-preserving crossover 43
Table 2.6

The algorithm of (|a,+l)-ES 51
Table 2.7 A high-level description of EP 56
Table 3.1 Supervised inductive learning of a single concept 61
Table 3.2 Definition of Empirical ILP 65
Table 4.1 The algorithm for generating an initial program randomly 80 Table 4.2 The high-level description of GLPS 89
Table 5.1 A logic grammar 101 Table 5.2 A logic program obtained from translating the logic grammar presented

in table 5.1 107
Table 5.3 The crossover algorithm of LOGENPRO 112 Table 5.4 The algorithm that checks whether the offspring produced by

LOGENPRO is valid 113
Table 5.5

The algorithm that checks whether a conclusion deduced from a rule is
consistent with the direct parent of the primary sub-tree 114

Table 5.6
The mutation algorithm 127

Table 5.7 A high-level algorithm of LOGENPRO 132 Table 6.1 A template for learning S-expressions using the LOGENPRO 135
Table 6.2 The logic grammar for the DOT PRODUCT problem 138 Table 6.3 The logic grammar for the sub-function problem 145 Table 6.4 A template for learning logic programs using LOGENPRO 149 Table 6.5 The logic grammar for the Winston's arch problem 152 Table 6.6 The modified logic grammar for the Winston's arch problem 153

Page 11

Table 6.7 The logic grammar for the modified Quinlan's network reachability
problem 154

Table 6.8 The logic grammar for the factorial problem 154 Table 6.9 The logic grammar for learning programs in C 156 Table 7.1 (a) A set of training examples, (b) The types and the sets of attribute
values of the attributes 161

Table 7.2
(a) An S-expression that represents the decision tree in figure 7.1. (b)
The class definition of the training and testing examples, (c) A definition
of the primitive function outlook-test 165 Table 7.3 The attribute names, types, and values attributes of the credit screening
problem 167

Table 7.4 The class definition of the training and testing examples 169
Table 7.5 Logic grammar for the credit screening problem 170
Table 7.6 Results of the decision trees induced by LOGENPRO for the credit screening problem. The first column shows the generation in which the best decision tree is found. The second column contains the classification accuracy of the best decision tree on the training examples.

The third column shows the accuracy on the testing examples 173 Table 7.7 Results of various learning algorithms for the credit screening problem 174
Table 7.8 The parameter values of different instances of mFOIL examined in this

section 176
Table 7.9 The logic grammar for the chess endgame problem 179 Table 7.10 The averages and variances of accuracy of LOGENPRO, FOIL, BEAM-FOIL, and different instances of mFOIL at different noise levels 180
Table 7.11 The logic grammar for inducing programs in Fuzzy Prolog 191 Table 8.1 The definition of Adaptive BLP 193 Table 8.2 A generic top-down ILP algorithm 197 Table 8.3 A hill-climbing 'Clause-Construct' algorithm 199
Table 8.4 A logic grammar for learning procedural search bias 201

Page 12

Chapter 1 Introduction
Program induction is a method for automatic programming. The relation between them
is discussed in the first section. The next section describes the motivation of this thesis
and where the main theme of this thesis on evolutionary approach fits in the overall
picture of automatic programming. The contributions of this research are summarized in
section 1.3. The last section is an outline of the thesis.

1.1. Automatic programming and program induction

The software life cycle consists of the tasks of requirement acquisition, specification
formation, software analysis, design, implementation, verification, validation and
documentation. Researchers in the field of automatic programming investigate how to
automate these tasks. The ultimate goal of automatic programming is to solve current
software development problems by eliminating most of the software engineers currently
required. This approach only requires the users to write specifications for what they
want and a fully automatic system then systematically generate programs satisfying
these specifications. These specifications can be complete or partial, formal or informal.
Program generators have been successfully developed for a number of specific narrow
application domains.

However, an end-user oriented, general purpose, and fully automatic system is
still not a realistic goal. Rich and Waters (1988) identify several myths of automatic
programming and indicate three achievable approaches to automatic programming.
These approaches are:

• Non-end-user oriented: This approach tries to automate the tasks of
program analysis, design, development, verification and documentation.

Page 1

• Narrow domain: This approach focuses on a narrow enough domain
so that it is possible to construct a fully automatic system that can
communicate with the user directly.

• Semi-automatic: This approach attempts to provide various tools to
assist in different aspects of programming. It also integrates these tools
and improves the performance of individual tools.

An automatic programming system can be classified by either the types of
specifications provided by the user or the mechanisms employed to generate executable
programs from specifications (Rich and Waters 1988). Specifications can be described
in different natural languages, special-purpose languages, very high-level languages,
formal specification languages, and examples describing the inputs and the
corresponding outputs of the desired programs.

Natural languages are efficient and convenient means for performing
communication between the user and an automatic programming system. However,
current researches in natural language processing still cannot provide effective and
satisfactory natural language interface for this purpose.

Special-purpose languages provide domain-specific symbols, graphics and
terminologies for the user and a system to communicate the requirement and the
feedback effectively. However, special-purpose languages are essentially domain-
specific and they are useless outside their domains of applications.

Very high-level languages extend current high-level languages by adding
powerful abstract data types such as stacks, binary trees and sets. They also incorporate
notations from formal logic, such as quantification over sets, to facilitate the formation
of specifications.

Page 2

Many formal specification languages are based on logic. Since logic is the most
powerful and general formal description language known, it provides a good
communication medium between the user and a system. However, most interesting
problems in general logical systems are intractable and complex logical formulas are
difficult to generate and understand. Consequently, these formal specification languages
usually introduce restrictions and extensions to make logic more tractable to machine
and human.

An effective way for specifying the behavior of a program is to enumerate
examples describing the inputs and the corresponding outputs of the target program.
This method is attractive because it is an easy and natural means for communicating
with an automatic programming system. Moreover, the user can modify the
specification easily by changing the examples. Other people can also effortlessly
understand the behavior of the program generated by examining the set of examples.

The mechanisms employed to generate programs can be classified into
procedural, deductive, inductive, transformational, knowledge-based, and inspection
methods.

Procedural methods require some programmers to write a special-purpose
program satisfying the specification provided by the user. Although they are the
simplest and the most successful methods, they fail to automate the process of program
generation.

If the specification can be formulated as a theorem stating the relation between
the inputs and the corresponding outputs, then the problem of generating a program
satisfying the specification is equivalent to finding a constructive proof of the
satisfiability of the specification. Thus, any method of automated deduction can be used
to support automatic programming. Deductive methods search for an inference path

Page 3
/

from some initial states to a goal representing the specification. Since the search space is
extremely large and the current deductive systems cannot control the search process
effectively, these systems cannot discover complex proofs.

Inductive methods perform program induction from partial specifications, such
as examples. They perform inductive inference which generalizes partial specifications
to produce computer programs that can produce the desired behavior for a given set of
situations. For example, if the program to be induced is a pure function and the
specification is represented as a set of inputs and the corresponding set of outputs. A
program induction system must search for programs having the same behavior of the
target function in a search space of all possible programs. The function can be
represented in any programming languages such as C, Lisp, ML, and Prolog or in
mathematical logic such as lambda calculus and first-order logic.

One major dimension to classify program induction systems is by the kinds of
information employed in the specifications (Olsson 1995). At one extreme are systems
that use traces of computation or sets of positive and negative examples. Biermann
(1972) demonstrated that flowcharts and Turing machines can be induced from example
traces. Summers (1977)，Biermann and Smith (1979) described systems that create
programs in Lisp from examples of their behaviors. Inductive logic programming
systems (Muggletion 1992) induce logic programs from examples. At the other extreme
are genetic programming systems that use specifications represented as fitness functions
to drive the evolution of programs in Lisp (Koza 1992; 1994，Kinnear 1994b).

Transformational methods apply a sequence of transformations to convert a
specification represented in a very high-level language into a low-level implementation.
The three components of a transformation are a pattern, a set of logical applicability
conditions, and an action. When an instance of the pattern is found in the specification,
the conditions are checked to determine whether the transformations can be employed.

Page 4

If the conditions are satisfied, the action is evaluated to compute a new section of code,
which is used to replace the code matched by the pattern.

A sequence of transformations forms a transformational rewrite cycle. At each
step, a transformation is selected and applied to a specification to produce a modified
specification. The above process is repeated until some condition is satisfied.
Transformal methods search for a sequence of transformations from the initial
specification to a satisfactory low-level implementation. Since the search space is
extremely large and the current transformational systems cannot control the search
process effectively, these systems suffer from the same problem of deductive and
inductive systems.

Knowledge-based methods improve the efficiency of software development by
providing knowledge-based software assistance and the software development becomes
a knowledge-intensive process (Goldberg 1986). A knowledge-based assistant
provides an interactive interface for the development process and enforces the semantic
consistency of the program generated from the specification provided by the user. It
encodes knowledge of the programming process and domain-specific knowledge to
assist the software developer. A knowledge-based assistant compiles a formal, high-
level specification into an efficient low-level implementation by the repeated application
of correctness-preserving transformations. Since the software developer can make
decision on how to perform transformations, the search problem is partially solved.

The idea of inspection methods is to produce programs by inspection rather than
by reasoning from first principles. If knowledge of programming cliches are available.
A program can be constructed by recognizing cliches in the specification and then
choosing among various implementations of the identified cliche. The three components
of a cliche are: a skeleton, roles whose contents vary from one occurrence to the others,
and constraints on what can fill the roles. The process of identifying cliches in the

Page 5

specification and selecting implementation of the cliche can be viewed as a search
problem in a very large search space. Consequently, a fully automatic, inspection
system suffers from the same control problem in deductive, inductive, and
transformational systems. For this reason, existing inspection systems are only semi-
automatic (Rich and Waters 1990).

1.2. Motivation

As described in the previous section, search is an important research topic in program
induction in particular and automatic programming in general. Search methods in
Artificial Intelligence can be classified into weak and strong methods. Weak methods
encode search strategies that are task independent and consequently less efficient.
Strong methods are rich in task-specific knowledge that a programmer or knowledge
engineer places explicitly into the search mechanism. Strong methods tend to be
narrowly focused but fairly efficient in their abilities to identify domain-specific
solutions. Strong methods often use one or more weak methods working underneath
the task-specific knowledge. Since the knowledge to solve the problem is usually
represented explicitly within the problem solver's knowledge base as search strategies
and heuristics, there is a direct relation between the quality of knowledge and the
performances of strong methods (Angeline 1993; 1994).

Different strong methods have been introduced to guide the search for the
desired programs. However, these strong methods may not always work because they
may trap the program induction systems in local maxima. In order to overcome this
problem, weak methods or backtracking will be invoked if the systems find that they
encounter troubles in the process of searching for satisfactory programs. The problem
is that these approaches are very inefficient.

Page 6
r

The alternatives are evolutionary algorithms, a kind of weak methods, which
conducts parallel searches. Evolutionary algorithms perform both exploitation of the
most promising solutions and exploration of the search space. It is featured to tackle
hard search problems and thus it may be applicable to program induction. Although
there are many researches in evolutionary algorithms, there is no study in representing
domain-specific knowledge for evolutionary algorithms to produce evolutionary strong
methods for the problem of program induction.

Moreover, existing program induction systems are limited in the programming
languages in which the induced programs are expressed. For example, Koza proposed
(1992; 1994) Genetic Programming (GP) systems which can only induce programs
represented as S-expressions in Lisp. Inductive Logic Programming (ILP) systems can
only produce logic programs (Muggletion 1992). Since the formalisms of these two
approaches are so different, these two approaches cannot be integrated easily although
their properties and goals are similar. If they can be combined in a common framework,
then many of the techniques and theories obtained in one approach can be applied in the
other one. The combination can greatly enhance the overall problem solving power and
the information exchange between these fields.

These observations lead us to propose and develop a framework combining GP
and ILP that employs evolutionary algorithms to induce programs. The framework is
driven by logic grammars and is powerful enough to represent context-sensitive
information and domain-specific knowledge that can accelerate the learning of
programs. It is also very flexible and programs in various programming languages such
as Lisp, Prolog, Fuzzy Prolog and C can be induced.

Page 7

13. Contributions of the research

The contributions of the research are listed here in the order that they appear in the
thesis:

• The Genetic Logic Programming System (GLPS) is a novel system
developed to combine the implicitly parallel search power of GP and
knowledge representation power of first-order logic. GLPS can learn
function free first-order logic programs with constants. It takes the
advantages of existing ILP and GP systems while avoids the
disadvantages of them. The experiments demonstrate that GLPS is a
promising alternative to other ILP systems. Since GLPS uses the same
representation of other ILP systems, it is possible to combine GLPS
with them.

• The work in GLPS leads to the idea that a logic program can be
represented as a forest of AND-OR trees. This representation method
facilitates the generation of the initial population of logic programs and
the operations of various genetic operators such as crossover and
reproduction. A representation-dependent but domain-independent
crossover operator is also introduced.

• From the experience gained in developing and applying GLPS, we
propose a novel, flexible and general framework based on a formalism
of logic grammars. A system called LOGENPRO (The LOgic grammar
based GENetic PROgramming system) is developed. It is found that
programs in different programming languages can be expressed as
derivation trees. This representation method facilitates the generation of
the initial population of programs and the operations of various genetic
operators such as crossover and mutation. We introduce two effective

Page 8

and efficient genetic operators which guarantee only valid offspring are
produced.

• We have demonstrated that LOGENPRO can emulate traditional GP
(Koza 1992) easily. Traditional GP has a limitation that all the variables,
constants, arguments for functions, and values returned from functions
must be of the same data type. This limitation leads to the difficulty of
inducing even some rather simple and straightforward functional
programs. It is found that knowledge of data type can be represented
easily in LOGENPRO to alleviate the above problem. An experiment is
performed to show that LOGENPRO can find a solution much faster
than GP and the computation required by LOGENPRO is much smaller
than that of GP. Another advantage of LOGENPRO is that it can
emulate the effect of Strongly Type Genetic Programming (STOP)
effortlessly (Montana 1993).

• Automatic discovery of problem representation primitives is one of the
most challenging research areas in Genetic Programming. We have
illustrated how to apply LOGENPRO to emulate Automatically Defined
Functions (ADF) proposed by Koza. ADF is one of the approaches that
have been proposed to acquire problem representation primitives
automatically (Koza 1992; 1994). We have performed an experiment to
demonstrate that, by employing various knowledge about the problem
being solved, LOGENPRO can find a solution much faster than ADF
and the computation required by LOGENPRO is much smaller than that
of ADF. This experiment also shows that LOGENPRO can emulate the
effects of STGP and ADF simultaneously and effortlessly.

• Knowledge discovery systems induce knowledge from datasets which
are frequently noisy (incorrect), incomplete, inconsistent, imprecise
(fuzzy) and uncertain (Leung and Wong 1991a; 1991b; 1991c). We
employ LOGENPRO to combine evolutionary algorithms and a variation

Page 9

of FOIL, BEAM-FOIL, in learning logic programs from noisy datasets.
Detailed comparisons between LOGENPRO and other ILP systems have
been conducted using the chess endgame problem. It is found that
LOGENPRO outperforms these ILP systems significantly at most noise
levels.

• Imprecise and uncertain examples are frequent in real world
environment, because many everyday examples are denoted in linguistic
terms which are essentially imprecise and uncertain. However, there are
very few studies on the issue of inducing knowledge from imprecise and
uncertain datasets. We have used LOGENPRO to acquire knowledge
from imprecise and uncertain training examples stored in a fuzzy
relational database. The induced knowledge is represented as a program
in Fuzzy Prolog (Li and Liu 1990). To the knowledge of the authors,
LOGENPRO is currently the only system that can learn program in
Fuzzy Prolog.

• We have formulated the problem of adaptive inductive logic
programming and proposed an adaptive ILP system that can evolve
during learning based on evolutionary algorithms. The logical
organization of this system have been designed and a prototype has been
developed.

• We have demonstrated the meta-level learner, a component of our
adaptive ILP system, can be implemented by applying LOGENPRO.
The meta-level learner induces search biases which affect the
performance of the adaptive ILP system in learning logic programs. It
has been demonstrated that the induced biases are better than that of
FOIL on many standard learning tasks. This result is surprising because
the search biases of the Adaptive ILP system are initialized by a random
process. These biases are normally poor, but the process of natural
selection and evolution can successfully evolve a good bias.

Page 10
/ •

1.4. Outline of the thesis

In chapter 2，we will first introduce a class of weak methods called evolutionary
algorithms. Subsequently, four kinds of these algorithms, namely Genetic Algorithms
(GAs), Genetic Programming (GP), Evolution Strategies (ES), and Evolutionary
Programming (EP), will be discussed in turn.

We will describe another approach of program induction, Inductive Logic
Programming (ILP), that investigates the construction of logic programs from training
examples and background knowledge in chapter 3. A brief introduction to inductive
concept learning will be presented first. Then, two approaches of the ILP problem will
be discussed followed by an introduction to techniques and methods of ILP.

The Genetic Logic Programming System (GLPS) will be described in chapter 4.
The results of some applications will also be presented. The material of this chapter
have been published in a number of papers (Wong and Leung 1994a; 1994b; 1995b).

A novel, flexible and general framework that can combine GP and ILP will be
described in chapter 5. A high-level description of LOGENPRO (The LOgic grammar
based GENetic PROgramming system) will be presented. We will also discuss the
representation method of programs, the crossover operator, and the mutation operator.

We will illustrate how to apply LOGENPRO to emulate GP and GLPS in
chapter 6. Furthermore, we will demonstrate that LOGENPRO can induce programs in
imperative programming languages such as C.

Three applications of LOGENPRO in acquiring knowledge from databases will
be discussed in chapter 7. The knowledge acquired can be expressed in different

Page 11

knowledge representations such as decision tree, decision list, production rule, first-
order logic and Fuzzy Prolog. In the first application, LOGENPRO is used to induce
knowledge represented in decision trees from a real-world database. In the second
application, we apply LOGENPRO to combine genetic search methods and FOIL to
induce knowledge from noisy datasets. The acquired knowledge is represented as a
logic program. The performance of LOGENPRO is evaluated on the chess endgame
problem and detailed comparisons to other ILP systems are given. In the third
application, LOGENPRO is employed to acquire knowledge from imprecise and
uncertain training examples stored in a fuzzy relational database. The induced
knowledge is represented as a program in Fuzzy Prolog.

In chapter 8，we will describe an adaptive ILP system that employs
LOGENPRO to improve itself during the problem solving process. The problem to be
solved here is to induce logic programs from training examples. The definition of the
problem of adaptive inductive logic programming will be formulated first. We will then
present a generic top-down ILP algorithm, a meta-level learner that induces search
biases, and the results of the experiments conducted. The material of this chapter have
been published in a paper (Wong and Leung 1995a). Finally, we will summarize the
results and the original contributions of this thesis in the last chapter. A number of
suggestions for future research will also be given.

Page 12

Chapter 2 An Overview on Evolutionary Algorithms
In the previous chapter, We have presented the problem of program induction as
conducting a search in the space of all possible programs. The search can be
accomplished by various techniques including general weak methods and domain-
specified strong methods. In this chapter, we will first introduce a class of general weak
methods called evolutionary algorithms. Subsequently, four kinds of evolutionary
algorithms, namely Genetic Algorithms (GAs), Genetic Programming (GP), Evolution
Strategies (ES), and Evolutionary Programming (EP), will be discussed in turn.

2.1. Evolutionary algorithms

Evolutionary algorithms are weak search and optimization techniques inspired by
natural evolution (Angeline 1993; 1994). Weak methods are a category of problem
solving methods studied in the field of Artificial Intelligence (AI). In contrast to strong
methods, weak methods are more general and widely applicable in different domains
(Nilson 1980, Newell and Simon 1972). Weak methods do not employ problem-
dependent search operators and make no commitment to specific credit assignment
methods.

Problem solving methods conduct their tasks by traversing the search space of
the problem. They should identify blame and/or credit (credit assignment) on the
components of each search point encountered in the search space (Minsky 1963,
Winston 1992). This information evaluates the qualities of all components of a search
point, their interaction, and their impact on the overall quality of the search point.
Problem solving methods apply this information to determine how to combine and

Page 13

manipulate different components from the current or past search points to produce the
next search point. Thus, good credit assignment methods direct the future search
towards promising regions. An efficient problem solving method embodies an excellent
credit assignment method for the problem and manipulates components of various
search points to traverse the search space. However, it is often difficult to design an
appropriate credit assignment method for a particular problem represented in a specific
representation.

On the other hand, strong methods employ domain-dependent credit assignment
techniques, search strategies, and heuristics to strengthen the efficiency and ability of
problem solving. They contains a significant amount of domain-specific knowledge.
This knowledge can be represented procedurally or declaratively. A procedural problem
solver finds an analytic solution for a problem by executing a sequence of hard-wired
instructions. Thus, its knowledge is represented procedurally. A knowledge-based
system (Buchanan and Shortliffe 1984) solves a problem by performing inferences.
The inferences are carried out by the inference engine of the system according to the
knowledge stored declaratively in the knowledge base of the system. The knowledge
usually takes the forms of heuristic rules, frames, semantic nets and first-order logic
(Leung and Wong 1990). This specific knowledge allows the problem solvers to find
accurate solutions quickly.

Traditional weak methods are inspired by observations of human performance
(Newell and Simon 1972, Winston 1992，Pearl 1984). They includes depth-first
search, breadth-first search, best-first search, generate and test, hill climbing, mean-
ends analysis, constraint satisfaction, and problem reduction.

On the other hand, evolutionary algorithms are inspired from the idea of
achieving intelligent behavior of humans through a search and learning method
(Angeline 1993; 1994). They employ the principle of natural selection and evolution to

Page 14

achieve the goals of function optimization and machine learning. In general,
evolutionary algorithms include any population-based algorithm that uses selection and
recombination operators to generate new search points in a search space. They include
genetic algorithms (Holland 1992, Goldberg 1989，Davis 1991)，genetic programming
(Koza 1992; 1994, Kinnear 1994b), evolutionary programming (Fogel et al. 1966,
Fogel 1992), and evolution strategies (Schewefel 1981, Back et al. 1991).

The various kinds of evolutionary algorithms differ mainly in the evolution
models assumed, the evolutionary operators employed, the selection methods, and the
fitness functions used (Fogel 1994). Genetic Algorithms (GAs) and Genetic
Programming (GP) model evolution at the level of genetic. They emphasize the
acquisition of genetic structures at the symbolic level and regularities of the solutions.
On the other hand, the idea of optimization is used in Evolution Strategies (ES) and the
structures being optimized are the individuals of the population. Various behavioral
properties of the individuals are parametrized and their values evolved as an
optimization process. Evolutionary Programming (EP) uses the highest level of
abstraction by emphasizing the adaptation of behavioral properties of various species.
The following sections describe the four kinds of evolutionary algorithms.

2.2. Genetic Algorithms (GAs)

Genetic algorithms (GAs) are general search methods that use the analogies from
natural selection and evolution. These algorithms encode a potential solution to a
specific problem in a simple string of alphabets called a chromosome and apply
reproduction and recombination operators to these chromosomes to create new
chromosomes. The applications of GAs include function optimization, problem
solving, and machine learning (Goldberg 1989). The elements of a genetic algorithm
are listed in table 2,1.

Page 15

• an encoding mechanism for solutions to the problem,
• a population of chromosomes representing the solutions'
• a mechanism to generate the initial population of solutions'
• an evaluation function that rates the solutions in terms of

their fitness values,
• a probabilistic selection mechanism that models Darwin's

survival of the fittest principle,
• genetic operators that alter the composition of the

offspring during reproduction, and
• parameter values such as the population size, and the

probabilities of applying genetic operators that control a
GA.

Table 2.1: The elements of a genetic algorithm

2.2.1. The canonical genetic algorithm

Consider a parameter optimization problem where we must optimize a set of variables
either to maximize some targets such as profits, or to minimize costs or some measures
of errors. The goal is to maximize or minimize some functions, say F(Xi, X2, ...，XJ,

by varying the parameters. The encoding mechanism is essential in genetic algorithms
because it determines the means of representing the optimization problem's variables. In
the Canonical Genetic Algorithm (CGA), binary bit strings are used to represent values
of various parameter variables being optimized. Thus, the variables are discretied and
the range of the discretiation corresponds to some power of 2. The discretization should
have enough resolution to represent the solution adequately. If the optimization problem
involves real variables, the value of each real variable is first linearly mapped to an
integer defined in a specified integer range encoded using a fixed number of binary bits.
The binary codes of all variables are concatenated to form a binary string. This binary
string is also called the genotype or the chromosome while the set of encoded
parameters is called the phenotype of the individual.

The CGA for solving this kind of optimization problems is shown in table 2.2.
The algorithm starts with an initial population Pop(O). Each chromosome of the
population will be a binary string of length L which corresponds to the problem

Page 16

encoding (Holland 1992，Schaffer 1987). The initial population is usually generated
randomly using a uniform distribution.

• Assign 0 to generation t.
• Initialize a population of chromosomes Pop{t).
• Evaluate the fitness of each chromosome in the Pop(t).
• While the termination function is not true do

• Select chromosomes from Pop(t) and store them into
Pop(t') according to a scheme based on the fitness
values.

• Recombine the chromosomes in Pop(t') and store the
produced offspring into Pop{t").

• Perforin simple mutation to the chromosomes in Pop (t")
and store the mutated chromosomes into Pop(t+1).

• Evaluate the fitness of each individual in the next
population P(t+1)

• Increase the generation t by 1•
• Return an individual as the answer. Usually, the best

individual will be returned.

Table 2.2: The canonical genetic algorithm

Each chromosome in Pop(O) is then evaluated and assigned a fitness value by a
fitness function. The fitness function is sometimes called the evaluation function or the
objective function. It provides a measure of performance (fitness value) of a
chromosome by evaluating the set of parameters represented in the chromosome. The
fitness function first decodes the parameter values encoded in the chromosome to form
the phenotype of the individual. The problem-dependent phenotype is then evaluated by
the fitness function to determine the fitness of the corresponding chromosome. The
evaluation of a chromosome representing a set of parameters is independent of the
evaluation of any other chromosome. In the CGA, relative fitness is defined as fi/ f
where fi is the fitness value associated with chromosome i and / is the average fitness
of all the chromosomes in the population.

Each generation of the CGA is a three stage process which starts with the
current population Pop(t). Selection is applied to the current population to create an
intermediate population Pop(t'). Recombination (crossover) is then applied to the
Pop(t') to create another intermediate population Pop(t"). Then mutation is employed to

Page 17

create the next population Pop(t+l) from the intermediate population P(t"). The process
starting from the current population Pop(t) to the next population Pop(t+l) establishes
one generation in the execution of the genetic algorithm. This basic implementation of
genetic algorithms is also referred to as a Simple Genetic Algorithm (SGA) by
Goldberg (1989). For the first generation, the current population Pop(t) is also the
initial population Pop(O). It produces the next population Pop(l) and the execution
proceeds to the next generation. This process iterates until the termination function is
satisfied. During each generation, the relative fitness values fi/fof all chromosomes
are first evaluated, and then selection is carried out.

The selection process models Darwin's survival of the fittest principle. In the
CGA, a fitter chromosome reproduces a higher number of offspring and thus has a
higher chance of propagating its genetic materials to the subsequent generation. In
fitness proportionate selection scheme, a chromosome with a relative fitness value
fi/ f is allocated fi/ f offspring. Thus a chromosome with a fitness value higher than
the average is allocated more than one offspring, while a chromosome with a fitness
value smaller than the average is allocated less than one offspring. The relative fitness
value represents the expected number of offspring of a chromosome. Since it is
impossible to produce fractional numbers of offspring, some chromosomes have to
produce a higher number of offspring than their relative fitness values and some less
than their relative fitness values. The current population Pop(t) can be viewed as a
mapping onto a roulette wheel, where each chromosome is represented by a slice of the
roulette wheel that corresponds proportionally to its relative fitness value. By repeatedly
spinning the roulette wheel, chromosomes are chosen using stochastic sample with
replacement to fill the intermediate population Pop(t'). The spinning process iterates
until it has generated the entire Pop(t'). Thus, this selection scheme is also called the
roulette wheel selection. This method generates a large sampling errors because the final
number of offspring allocated to a chromosome may vary significantly from its relative

Page 18

fitness. The allocated number of offspring approaches the expected number only if the
population size is very large.

After selection has been carried out, the construction of the intermediate
population Pop(t') is completed and recombination can occur. This can be viewed as
generating another intermediate population Pop(t") form Pop(t'). Crossover is applied
to randomly paired chromosomes with a crossover probability denoted as pc. In other
words, a pair of chromosomes is first picked randomly, these chromosomes are then
recombined with probability pc to produce two offspring that are inserted into the
intermediate population Pop(t"). If recombination has not been performed, copies of the
two picked chromosomes are inserted into Pop(t").

1 1 0 0 1 I 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1
0 1 2 3 4 、 6 7 8 9 1 0 3 1 2 3 4 5 6 7 8 9 1 0

The first parent ^rossover^^^^ The first offspring

o| 1 I o | 1 I o | il o| 1 I o| 1 I I。M 0 M 。] 1 I。卜 M 「
丨0 1 2 3 4 \ 6 7 8 9 1 0 0 1 2 3 4 6 7 8 9 1 0

The second parent The second offspring

Figure 2.1: Crossover of CGA. A one-point crossover operation is
performed on two parent, 1100110011 and 0101010101, at
the fifth crossover location. Two offspring, 1100110101
and 0101010011 are produced.

Consider the two chromosomes 1100110011 and 0101010101. These
chromosomes may represent possible solutions to some parameter optimization
problem. For one-point crossover, a single crossover location is selected randomly.
Since the length L of the chromosomes in this example is 10，a crossover location can
assume values in the range between 1 to 9 (L-1). Assume the fifth location of

Page 19

chromosomes is chosen as the crossover location. By swapping the fragments between
the two parents, the crossover operator produces the two offspring 11001:10101 and
01010:10011 where the symbol":" is used here to denote the crossover location (figure
2.1).

After recombination is performed, other genetic operations are applied to the
intermediate population Pop(t") to generate the next population Pop(t+l). In the CGA,
only simple mutation can be applied. For each bit of each chromosome in the Pop(t"), it
is mutated with some low probability pm. There are two different implementations of
mutation. The first mutation flips the bit value from 1 to 0 or vice versa, while the
second one randomly selects a value from 0 and 1 to fill the mutated bit. Thus, for the
latter one, there is only 0.5 probability that the bit value is really modified even if it has
been selected for mutation. The mutated chromosome is then placed in the Pop(t+l).
The CGA treats mutation as a secondary operator with the role of restoring lost genetic
material. For example, suppose all the chromosomes in a population have converged to
a 1 at a given position, and the optimal solution has a 0 at that position. In this case,
crossover cannot regenerate a 0 at that position but mutation can. Figure 2.2 depicts that
the chromosome 1100110101 is modified to 0100110100 by flipping the first and the
last bits.

Mutation ^ ^ 1
1 1 0 0 1 1 0 1 0 1 ^ ^ 0 1 0 0 1 M 0 1 0 0

0 1 2 3 4 5 6 7 8 9 1 0 0 1 2 3 4 5 6 7 8 9 1 0

The original chromosome The mutated chromosome

Figure 2.2: Mutation of CGA. A mutation operation is performed on a
parent 1100110101 at the first and the last bits. The
offspring 0100110100 is produced.

Page 20

The about evolution process iterates until the termination criteria are satisfied.
The algorithm is terminated after a fixed number of generations are attempted, the
available computational resources are consumed, or satisfactory solutions are found.

GAs can be viewed as performing both exploration of new regions in the search
space and exploitation of already sampled regions. The question is then on the balance
between these two competing methods. The performance of GAs is significantly
affected by the choice of different parameter values such as the crossover and mutation
rates and the population size. The optimal choice of parameter values has been
investigated extensively using empirical and analytical techniques. Grefenstette (1986)，

DeJong and Spears (1990) respectively propose two different sets of parameter values
that are competent in general.

In addition to fitness proportionate selection, one-point crossover, and simple
mutation described above, other techniques have been investigated in other genetic
algorithms. The following sub-sections present these techniques.

2 . 2 . 1 . 1 . Selection methods

In fitness proportionate selection, the expected number of offspring is usually not an
integer, but only integer numbers of offspring can be allocated. Thus, there is an
intrinsic discrepancy between the allocated and the expected number of offspring. The
remainder stochastic sampling method is proposed to achieve a distribution of offspring
very close to the corresponding expected number of offspring.

In the remainder stochastic sampling method, the relative fitness value fi/ f of
each chromosome i is evaluated first. If this value is greater than 1.0，the integer portion
of this number indicates how many copies of that chromosome are directly placed in the
intermediate population Pop(t'). All chromosomes (including those with relative fitness

Page 21

less then 1.0) then place additional copies of themselves in the intermediate population
Pop(t') with a probability corresponding to the fractional portion of their relative fitness
values. This selection method is unbiased and is efficiently implemented using a
technique known as Stochastic Universal Sampling (Baker 1987).

Fitness proportionate selection has other problems. In the first few generations,
the population typically has a low average fitness value, but it is common to have a few
extraordinary chromosomes. Fitness proportionate selection allocates a large number of
offspring to these chromosomes. These dominant chromosomes cause premature
convergence. A different situation appears in the later stages when the population
average fitness value is close to the best fitness value. There may be significant
diversity within the population, but approximately equal numbers of offspring are
allocated to all chromosomes because the variance in their fitness values is very small.
Fitness scaling techniques, rank-based selection, and tournament selection can
overcome these problems.

Fitness scaling techniques readjust fitness values of chromosomes (Grefenstette
1986，Goldberg 1989). Forrest (1990) presents a survey of current scaling techniques
which include linear scaling, sigma truncation and power law scaling. Linear scaling
computes the scaled fitness value as / ' = afi + b where fi is the fitness value of the ith
chromosome, f i is the scaled value, and a and b are appropriate constants. In each
generation, a and b are calculated to ensure that the maximum value of the scaled
fitness values is a small number, say 1.5 or 2.0，times of the average fitness value of
the population. Then the maximum number of offspring allocated to a particular
chromosome is 1.5 or 2.0. Sometimes the scaled fitness values may become negative
for chromosomes that have fitness values far smaller than the average fitness value of
the population. In this case, a and b must be recomputed to avoid negative fitness
values.

Page 22

The sigma truncation scheme calculates the scaled fitness value as
/' = f i - { f - ccr) where / is the average fitness value of the population, <7 is the
standard derivation of the fitness values in the population, and c is a small constant
typically ranging from 1 to 3. Chromosomes whose fitness values are less than c
standard deviations from the / are discarded.

The power law scaling finds some specified power of the fitness fi. The scaled
fitness is f i = fi. The k value is in general problem-dependent and may be modified
during a run to stretch or shrink the range of fitness values.

The problem of fitness scaling techniques is that some parameter values (a, b,
c ,0V k) must be determined in order to use them effectively. However, it is not trivial
to decide these values. Baker (1985) proposes rank-based selection that is non-
parametric. In this method, the chromosomes of a population is sorted according to
their fitness values. Each chromosome is allocated the number of offspring that is a
function of its rank. Usually, the number of offspring varies linearly with the rank of a
chromosome. Whitley (1989) shows that significant improvements can be obtained
with the selection method.

Tournament selection approximates the behavior of ranking. In a m-ary
tournament, m chromosomes are selected randomly using a uniform distribution from
the current population after evaluation. The best of the m chromosomes is then placed in
the intermediate Pop(t'). This process is repeated until Pop(t') is filled. Goldberg and
Deb (1991) show analytically that 2-ary tournament selection is the same in expectation
as ranking using a linear 2.0 bias. If a winner is chosen probabilistically from a
tournament of 2，then the ranking is linear and the bias is proportional to the probability
with which the best chromosome is selected.

Page 23

2 . 2 . 1 . 2 . Recombination methods

4 4
The first parent The first offspring

Two-point Crossover

4 4
The second offspring The second parent

Figure 2.3: The effects of a two-point (multi-point) crossover�A two-
point crossover operation is performed on two parent,
11001100 and 01010101，between the second and the sixth
locations. Two offspring, 11010100 and 01001101, are
produced.

The CGA uses one-point crossover. However, many other crossover mechanisms have
been devised, often involving more than one crossover location. In two-point (multi-

Page 24

point) crossover, chromosomes are regarded as rings formed by joining the two ends
together. To exchange a segment from one ring with that from another one requires the
selection of two (multiple) crossover locations as depicted in figure 2.3.

One-point crossover can be viewed as two-point crossover with one of the
crossover locations fixed at the beginning of the chromosome. Hence two-point
crossover is more general than one-point crossover. Researchers now agree that two-
point crossover is generally better than one-point crossover.

Crossover Mask
1 1 0 0 1 1 0 1 0 1

0 1 2 3 4 5 6 7 8 9 10

The first parent ^ ,
1 1 0 0 1 1 0 0 1 1

0 1 2 3 4 5 6 7 8 9 10

The offspring

1 1 0 1 1 1 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 A A A A
The second parent

0 1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8 9 10

Figure 2.4: The effects of a uniform crossover. A uniform crossover
operation is performed on two parent, 1100110011 and
0101010101，and two offspring will be generated. This
figure only shows one of them (1101110001).

Uniform crossover exchanges bits of a chromosome rather than fragments. A
crossover mask is first randomly generated. At each position in the offspring, the

Page 25

genetic material is obtained from either one of the parents. If there is a 1 in the
crossover mask, the genetic material is copied from the first parent, otherwise it is
obtained from the second parent. The process is repeated with the parents exchanged to
produce the second offspring (figure 2.4).

An extensive comparison of different crossover methods has been performed
(Eshelman et al. 1989). One-point, two-point, multi-point, and uniform crossover were
theoretically analyzed in terms of positional and distributional bias, and empirically
evaluated on several problems. A crossover method has positional bias if the probability
that a bit is swapped depends on its position in the chromosome. The crossover
method has a distributional bias if the distribution of the number of bits exchanged by
the method is non-uniform. One-point crossover exhibits the maximum positional bias
and the least distributional bias. At the other extreme, uniform crossover has the least
positional bias and the maximum distributional bias. The empirical experiment showed
that there was no more than about 20% difference in performances among the methods.

In an order-based problem, such as the traveling salesman problem, gene values
are fixed and the fitness value depends on the order in which gene values appear. The
above crossover techniques cannot be used because they will produce invalid offspring.
Goldberg (1989) describes Partially Matched crossover (PMX) for this kind of
problems. In PMX, it is the orders in which gene values appear are exchanged.
Offspring have genes which inherit ordering information from each parent. This avoids
the generation of offspring which violate problem constraints. Syswerda (1991b) and
Davis (1991) describe other order-based operators including enhanced edge
recombination, order crossover, cycle crossover, and position-based crossover.
Starkweather et al. (1991) compares these operator using the traveling salesman
problem and the job shop scheduling problem. They find that the effectiveness of
different operators is problem-dependent.

Page 26

Many other techniques have also been suggested. Several methods investigate
the idea of biasing the crossover locations at some more probable chromosome
positions (Schaffer and Morishma 1987, Holland 1987，Davidor 1991, Levenick 1991，

Louis and Rawlins 1991). GAs learn which sites should be favored for crossover. This
information is stored in a punctuation string, which is itself part of the chromosome,
and so is crossed over and propagated to offspring. Thus, good punctuation strings
which lead to fit offspring will be propagated through the population.

2 . 2 . 1 . 3 . Inversion and Reordering

The purpose of reordering is to attempt to find gene orderings which have better
evolutionary potential (Goldberg 1989). Inversion (Holland 1992) works by reversing
the order of genes between two randomly selected positions in a chromosome. The
operation of an inversion is illustrated in figure 2.5.

The original chromosome

1 1 j 0 0 1 1 I 0 1 0 1

0 1 2 3 4 5 6 7 8 9 1 0

Inversion

口 I
1 1 1 1 0 - 0 I 0 1 0 1

0 1 2 3 4 5 6 7 8 9 1 0

The modified chromosome

Figure 2.5: The effects of an inversion operation. An inversion
operation is performed on the parent, 1100110101, between
the second and the sixth locations. An offspring,
1111000101， is produced.

Page 27

Goldberg and Bridges (1990) analyze a reordering operator on a very small task
and show that it has advantages. Reordering also greatly expands the search space
because GAs must also find good gene orderings. Thus, much more time is required
for finding the solutions of the problem.

Meta-GAs (Grefenstette 1986) can be used to leam gene orderings. A meta-GA
has a population where each member is itself a GA. Each individual GA is configured
to solve the same problem, but using different gene orderings. The fitness of each
individual is determined by running the GA, and examining the time required to
converge. Meta-GAs are very computationally expensive to run and are worthwhile
only if the results obtained can be reused many times.

2.2.2. Implicit parallelism and the building block
hypothesis

Genetic algorithms work by implicitly sampling hyperplane partitions of a search space.
This sampling process results in a robust, efficient, and complex search method
(Holland 1992). Consider a problem that can be encoded in 3 bits. The search points of
this problem can be represented as a cube with the string 000 at the origin (figure 2.6).
The corners of this cube are numbered by binary bit strings and all adjacent comers are
labeled by strings that differ by exactly one bit. The front plane of the cube contains all
the points that begin with 0. If the character ”*” is used to represent a wild card match
symbol, then this plane can be represented by the special string 0**. Strings that
contain ”*" are referred to as schemata and each schema H represents a hyperplane in
the search space. The order of a hyperplane refers to the number of actual bit values that
appear in its schema. Thus, 1** is order one while 111 is order three. The order of a
schema H is denoted as o(H).

Page 28

110 111

011

100

DOO

Figure 2.6: The hyperplane space

A chromosome or bit string matches a particular schema if that bit string can be
constructed from the schema by replacing the "*" symbol with the appropriate bit value.
All bit strings that match a particular schema are contained in the hyperplane represented
by the schema. These bit strings are called instances of the schema. The defining bits in
a schema is the bits of a schema that have values of either 0 or 1. The defining length of
a schema is based on the distance between the first and the last defining bits in the
schema. Let Ii is the index of the position of the leftmost defining bit while Ir is the
index of the position of the rightmost defining bit. The defining length is Ir - Ii. Thus,
the defining length of *1**101*1* is 9 - 2 = 7. The defining length of a schema H is
denoted by 1(H).

Assume that the length of a binary string is L. Since there are L positions in a
particular string and each position can be either the bit value contained in the string or
the "*” symbol, the number of different combinations is The special string of all "*”
symbols represents the whole search space and is not counted as a hyperplane of the
space. Thus a binary string is a member of - 1 different hyperplanes. For each of the
L positions in the scheme, the value can be either "*"，1，or 0’ so there are 3L different

Page 29

schemata. The schema of all ”*” symbols is also excluded. Thus there are - 1
different schemata in the entire search space.

In genetic algorithms, the population stores a number of sample points and these
sample points provide information about numerous implicit schemata. Moreover, low
order schemata should be sampled by numerous points in the population. Since many
schemata are sampled implicitly when a chromosome of the population is evaluated, a
much more number of schemata are sampled than the number of chromosomes
contained in the population. The statistical information about any particular subset of
schemata is obtained from the cumulative effects of evaluating a population of
chromosomes. It results in implicit parallelism of genetic algorithms (Holland 1992).
Implicit parallelism implies that many schema competitions are simultaneously solved in
parallel. The theory suggests that through the process of reproduction and
recombination, the competing schemata increase or decrease their instances in the
population according to the relative fitness values of the chromosomes that lie in those
schemata. Because genetic algorithms operate on populations of chromosomes, the
number of instances of a schema can be obtained directly from the population.

The schema theorem (Holland 1992) suggests that the distribution of
chromosomes in each schema should change according to the average fitness value of
the chromosomes in the population that are contained in the corresponding hyperplane.
Thus, even though a genetic algorithm never explicitly evaluates any particular schema,
it should change the distribution of chromosomes as if it had evaluated.

Genetic algorithms process many schemata implicitly in parallel when selection
acts on the population. The true average fitness value of a particular schema is the
average of the fitness values of all chromosomes that lie in the hyperplane corresponds
to the schema. In a given population, an estimate of the average fitness value of a
schema is evaluated by averaging the fitness values of all chromosomes in the

Page 30

population covered by the schema. Hence, the estimate varies with the population's
composition from one generation to another. According to the schema theorem, the
number of copies of chromosomes that actually fall in a particular hyperplane after
selection should approximate the expected number of copies that should fall in that
hyperplane. Thus the estimate of the average fitness value becomes more accurate when
the algorithm proceeds.

GAs can be viewed as performing simultaneous competition among schemata to
increase the numbers of their instances in the population. Assume that the optimal
chromosomes can be obtained by combining schemata with short defining lengths and
high average fitness values. These schemata are called building blocks.

The genetic operators generate, promote, and combine building blocks to create
optimal chromosomes. Crossover tends to preserve the genetic materials present in the
chromosomes to be crossed. Thus, when the chromosomes to be crossed are similar,
the probability of generating new building blocks reduces. Mutation is not a
conservative operator and can generate radically new building blocks. Selection
provides the favorable bias toward building blocks with higher fitness values and
ensures that they increase their instances from generation to generation.

Crossover is the most crucial feature that differs GA from other evolutionary
algorithms such as evolution strategy and evolutionary programming. GAs assume that
crossover can combine good building blocks from different chromosomes to produce
better offspring. This assumption is called the building block hypothesis. For some
objective functions to be optimized, very bad chromosomes can be generated from good
building blocks. These objective functions are referred to as deceptive functions
(Goldberg 1987).

Page 31

The schema theorem provides only a lower bound that holds for only a few
generations into the future. Without considering what is simultaneously happening to
the other schemata being processed by genetic algorithms, it is impossible to predict the
number of instances of a particular schema over multiple generations. The schema
theorem does not provide an accurate picture of the behavior of genetic algorithms and
cannot predict how a particular schema is processed over time (Whitley 1993).

Currently, many researchers are studying the exact behavior of executable
models of genetic algorithms. Goldberg (1987) analyzes the exact effects of one-point
crossover on order 2 schemata using a number of equations. He also formulates the
minimal deceptive problem under this framework. These equations are then generalized
to handle schemata of any order (Whitley et al. 1992). These equations are based on the
idea of generating gain and loss chromosomes in a systematic way. Bridges and
Goldberg (1987) formalize the notion of generator for gain and loss chromosomes for
one-point crossover. Vose and Liepins (1991) develop an executable model of the
canonical genetic algorithm. Nix and Vose (1992) use markov chains to extend the
Vose and Liepins model to include finite population models. The executable model
presented by Whitley (1993) is a special case of the Vose and Liepins model. An
extensive survey of different executable models is described by Vose (1993).

2.2.3. Steady state genetic algorithms

In a steady state genetic algorithm, two parents are selected for recombination and
produce only one offspring at a time. The offspring is then placed immediately back
into the population. Moreover, offspring does not replace its parents, but rather some
relatively less fit member of the population. Steady state genetic algorithms have more
variance than the canonical genetic algorithm with respect to the hyperplane sampling
behavior. Therefore, they are more susceptible to sampling error and genetic drift. The
advantage is that the best chromosomes found in the search space are maintained in the

Page 32

population. The search conducted by these algorithms is more aggressive and effective
(Syswerda 1989; 1991a, Holland 1992).

Genitor (Whitley 1989) is an implementation of a steady state genetic algorithm.
In Genitor, the worst chromosome in the population is replaced by the offspring just
created. The accumulation of improved chromosomes in the population is thus
monotonic. Goldberg and Deb (1991) shows that the method of replacing the worst
member in the population results in a much higher selective pressure than the method of
random replacement. Genitor applies rank-based selection rather than fitness
proportionate selection. The advantage of rank-based selection is that it maintains a
stable selective pressure over the course of search.

2.2.4. Hybrid algorithms

Although genetic algorithms are robust and general problem solving methods, they are
usually not the most effective ones on any particular domain (Davis 1991). Therefore,
combining genetic algorithms and other problem-specific strong methods may result in
some general, robust, and effective problem solving systems. Many researchers use
non-binary encoding and problem-specific recombination operators to strengthen the
capability of traditional genetic algorithms (Davis 1991，Michalewicz 1994).
Muhlenbein (1991; 1992) describes a parallel genetic algorithm that employs local hill-
climbing techniques to speed up the search.

A hybrid genetic algorithm typically performs well on optimization and other
search problems because it is performing local hill-climbing from multiple points in the
search space. Unless the function to be optimized is severely multi-modal or the
problem to be solved is highly irregular, it is likely that some points are in the basin of
attraction of the global solution. In this case, hill-climbing is a fast and effective form of
search. In general, the local search methods can find a small number of significant

Page 33

improvements of a point (chromosome) without dramatically modify its syntactic
structure. Thus, a hybrid algorithm affects hyperplane sampling, but does not disrupt it
completely. In this case, a hybrid algorithm takes the benefits of both the problem-
specific search methods and the implicit parallelism of genetic algorithms.

23. Genetic Programming (GP)

Genetic Programming (GP) is an extension of GAs (Koza 1992; 1994). The main
difference between them is the representation of the structure they manipulate and the
meanings of the representation. GAs usually operate on a population of fixed-length
binary strings. GP typically operate on a population of parse trees which usually
represent computer programs. A parse tree is represented as a rooted, point-labeled tree.
Since GP concerns with the behavior of computer programs, the definition of
phenotype in GP is more abstract than that in GAs.

2.3.1. Introduction to the traditional GP

Most computer programs can be easily understood as performing a sequence of
functions to arguments. Most language compilers first translate a given program into a
parse tree and then generate a sequence of elementary assembly or machine instructions
that can be executed on a target computer (Aho and Ullman 1977). Thus, parse trees are
natural representations of computer programs and GP induces Lisp programs
represented as parse trees.

In Lisp, a program is also called a S-expression and all operations of it are
implemented as function calls. A function call consists of a list of elements enclosed by
parentheses. The first element within the list is the name of the function and the other
elements are arguments to the function. To represent a function call as a parse tree, the
function name is the root of the parse tree while the arguments are the children at the

Page 34

next level down the parse tree. The arguments may be variables, constants, or other
function calls. In the latter case, these function calls are again represented as parse trees
and they form sub-trees of the parental parse tree. For example, the program
(* (+ X (/ Y 1 . 5)) (- Z 0 . 3)) can be represented as the parse tree in
figure 2.7.

There are two sets of nodes in a parse tree. The internal nodes are called
primitive functions while the leaf nodes are called terminals. In figure 2.7, the sets of
primitive functions and terminals are {+, *, / } and {X, Y' Z, 1 . 5 , 0 .3}
respectively. The terminals can be viewed as the inputs to the program being induced.
They might include the independent variables and the set of constants. The primitive
functions are combined with the terminals or simpler function calls to form more
complex function call. The above procedure of combination iterates to produce a
program. The arity of a function f, arity(f), is the number of arguments of it.

© ®
© ®

Figure 2.7: A p a r s e t r e e of t h e p r o g r a m
(* (+ X (/ Y 1 . 5)) (- z 0 . 3))

Page 35

The set of primitive functions might include arithmetic operators and
transcendental functions. In fact, there is no limit to the complexity of the primitive
functions used. Koza (1992; 1994) demonstrates iteration, functions with side-effect,
and a wide variety of problem-specific functions. It is important that the function set has
the closure property. That is, each primitive function should be able to accept any
terminal or the output from any function as inputs. To apply GP to a problem, the user
must determine:

• the set of primitive functions F,
• the set of terminals T,
• the fitness function,
• the parameters for controlling the run,
• the method for designating a result, and
• the termination function.

• Assign 0 to generation t.
• Initialize a population Pop(t) of programs composed of the

primitive functions and terminals.
• Evaluate the fitness of each program in the Pop(t).
• While the termination function is not satisfied do

• Create a new population Pop(t+1) of programs by
employing the selection, crossover, mutation, and
other genetic operations.

• Evaluate the fitness of each individual in the next
population P(t+1)

• Increase the generation t by 1.
. Return the program that is identified by the method of

result designation as the solution of the run

Table 2.3: A high-level description of GP

The fitness function, the controlling parameters, the method for designating a
result, and the termination function are similar to those of GAs. GP usually generates
an initial population of programs randomly. Programs in the population are then
manipulated by various genetic operators to produce a new population of programs.
These operations include crossover, mutation, permutation, editing, encapsulation, and

Page 36

decimation (Koza 1992). The process of proceeding from one population to the next
population is called a generation. A high level description of GP is given in table 2.3.

The creation of an initial random population is a random search of the search
space for computer programs. A parse tree is generated randomly by first selecting a
function from F to be the label for the root of the tree. Whenever a point of a tree is
labeled with a function f from F, arity(f) lines are created from that point and an element
from F u T is randomly selected to be the label for the endpoint of each line. If a
function is selected, the above process continues recursively. Otherwise, the point
becomes a leaf node of the tree and the generation process is terminated for that point.
The algorithm for generating a random parse tree is shown in table 2.4.

Generate-tree(root?, max-depth, generation-method, F, T) {
if root?

set the root of the tree to a randomly selected function from F
else if max-depth is equal to 1 then

set the root of the tree to a randomly selected terminal from T
else if generation-method is “Full" then

set the root of the tree to a randomly selected function from F
else set the root to a randomly selected element from C = F U T
for each line go out from the root
generate a sub-tree with the call
Generate-tree (False, max-depth - 1, generation-method, F, T)
and attach it to the endpoint of the line

return he root
}
main()

{ Generate-Tree{ True, max-depth, generation-method, F, T) }

Table 2.4: An algorithm for generating a random parse tree

The parameter max-depth in the above algorithm controls the maximum depth of
the random tree being generated. The parameter generation-method can be either "Full"
or "Grow" corresponding to the two different generation methods proposed by Koza
(1992). For a parse tree generated by the full method, the length along any path from

Page 37

the root to a leaf is the same no-matter which path is taken. Parse trees generated by the
grow method need not satisfy this constraint. Koza employs a method called "ramped-
half-and-half" to generate an initial population. It uses the full method to generate half
of the members of the population and the grow method to produce the other half. The
maximum depth is varied between two and a user-specified constant MAX-INITIAL-
TREE-DEPTH. This approach generates trees of different shapes and sizes.

Each program in the population is measured in terms of how well it performs in
the particular problem. In GP, three measures of fitness are used. Raw fitness is the
measurement of fitness that is stated in the natural terminology of the program. For
example, raw fitness in a pattern recognition program can be either the number of
patterns that are classified correctly or the number of misclassified patterns. Which one
should be used depends on the nature of the problem.

Raw fitness is usually evaluated over a set of fitness cases. They provide a basis
for evaluating the performance of a program over a number of different representative
situations. For the above example, fitness cases are different patterns that are classified
by a program.

The standardized fitness transforms the raw fitness so that smaller value is
always a better value. Transformation can be achieved by different means. Since the
standardized fitness may not lie between 0 and 1, adjustment is performed to converse it
into the adjusted fitness in the desired range. The adjusted fitness is obtained by
a. = where s. is the standardized fitness of the program i and â is the 1 1 + Si 1
corresponding adjusted fitness. The adjusted fitness has the benefit of strengthening the
selective pressure when the population converges. The same effects can be achieved by
selection methods other than fitness proportionate selection such as tournament and
rank-based selections. Hence, the adjusted fitness is not used for these selection
methods.

Page 38

The first parent The first offspring

Crossover

A A
© © © ©

The second parent The second offspring

Figure 2.8: The effects of crossover operation. A crossover operation is
p e r f o r m e d on two p a r e n t a l p r o g r a m s ,
(* (+ 0 . 5 X) (+ X Y)) and (/ (+ X Y) (* (-

X Z) X)) • The shaded areas are exchanged and two
offspring generated are: (* (- X Z) (+ X Y)) and
(/ (+ X Y) (* (+ 0 . 5 X) X))•

The evolution process of GP is similar to that of GAs. Another key difference
between them is the details of different genetic operations because these operations must
now manipulate parse trees rather than fixed-length strings in GAs. Crossover of two
parental trees in GP is achieved by making two duplications of the trees first to form
two intermediate offspring. Then two crossover points are selected from the

Page 39

intermediate offspring, one within each tree. Two crossover points are required because
trees are usually of different sizes and shapes from one another. The final offspring are
obtained by exchanging sub-trees under the selected crossover points at the intermediate
sub-trees. The produced offspring are usually different in sizes and shapes from their
parent and from one another. The effects of the crossover operation are depicted in
figure 2.8..

The syntactic correctness of the offspring is guaranteed because of the closure
property of the set of primitives. However, the generated programs may be meaningless
because they may perform semantically invalid (such as division by zero), redundant or
useless operations. In order to avoid the problem of executing invalid operation, the
semantics of the primitives is redefined to handle this situation. For example, the
primitive, protected division %，normally returns the quotient. However, if division by
zero is attempted, the function returns 1.0.

In GP, mutation is considered to be of relatively less important operation. First,
a copy of a single parental tree is made. Then a mutation point is randomly selected
from the copy, which will be either a leaf node or a sub-tree. The leaf node or sub-tree
at the mutation point is replaced by a new leaf node or sub-tree generated randomly.
The effects of the mutation operation are depicted in figure 2.9.

Page 40

• 》 M u t a t i o n 一 ^ ^

@ ®© © ^ ® © ©
The parent /

The mutated offspring

Figure 2.9: The effects of a mutation operation. A mutation operation is
performed on the program (* (+ 0 . 5 X) (+ X Y)) .

The shaded area of the parental program is changed to a
program fragment (/ (+ Y 4) Z) and the offspring

program (* (/ (+ Y 4) Z) (+ X Y)) is produced.

2.3.2. Automatic Defined Function (ADF)

Automatic Defined Function (Koza 1992; 1994) and module acquisition (Angeline
1993； 1994) have been proposed in GP to learn problem representation automatically.
This sub-section describes Automatic Defined Function (ADF) and the next sub-section
discusses Module Acquisition (MA).

Each program in the population contains multiple parts. One part, called the
result-producing branch, is evaluated to produce the result of the program. Other parts
are definitions of one or more sub-functions (ADFs) that may be called by the result-
producing branch. These parts are called the function-defining branches. The
expressions for the result-producing and the function-defining branches evolve

Page 41

simultaneously to find complete programs that can solve the problem. The result-
producing branch can call the ADFs, and some of the ADFs can invoke others. In order
to prevent infinite recursive calls among ADFs, a partial ordering of the ADFs is
defined. A higher order sub-function can only call the ADFs with lower order.

Since various primitives and terminals may be used in the bodies of different
branches. A template is required to restrict the evolution of programs. A template for
programs with two ADFs, ADFO and ADFl, is shown in figure 2.10. Only the parts of
the template shown in bold-face are evolvable.

(progn
(defun ADFO (argO argl arg2)

<evolvable component with branch type 1>)
(defun ADFl (argO argl)

<evolvable component with branch type 2>)
(values

<evolvable component with branch type 3>))

branch type primitive functions terminals
1 + - * argO argl arg2
2 + - * ADFO argO argl
3 + - * ADFO ADFl X Y Z

Figure 2.10: A template for programs with two ADFs

The function-defining branches begin with the function symbol defun. In a Lisp
system, the two funct ion-defining branches will be evaluated and produce the
definitions of the two sub-functions ADFO and ADFl. The result-producing branch
begins with the function symbol values. The expression represented in the result-
producing branch will be executed and the result of the expression will be returned. If
the expression invokes ADFO and/or ADFl, the definitions of these sub-functions are
applied to find the result. The function progn connects the two function-defining
branches and the result-producing branch. It evaluates each branch in turn and returns
the result obtained by executing the last branch, i.e. the result-producing branch.

Page 42

The template defines different function and terminal sets that will be used in
various branches of the programs. Thus ordinary crossover operator cannot be used
here. In order to generate valid offspring from crossover, each branch is assigned a
specific branch number called branch type and the structure-preserving crossover is
used to create offspring from parents. The idea of this crossover is that any evolvable
node anywhere in the whole program is randomly selected as the crossover point of the
first parent. Then, the crossover point of the second parent is randomly chosen from
among points of the same type. The algorithm for structure-preserving crossover is
shown in table 2.5.

1. Find all evolvable sub-trees of the first parental tree
and store them into a global variable PRIMARY-SUB_TREES.

2. Find all evolvable sub-trees of the second parental tree
and store them into a global variable SECONDARY-SUB-
TREES .

3. If PRIMARY-SUB-TREES is not empty, select randomly a sub-
tree from it using a uniform distribution. Otherwise,
terminate the algorithm without generating any offspring
program.

4. Designate the sub-tree selected as SEL-PRIMARY-SUB-TREE
and remove it from PRIMARY-SUB-TREES.

5. Find a sub-tree from SECONDARY- SUB -TREES such that its
. type is the same as that of SEL-PRIMARY-SUB-TREE.

5, 工f a sub-tree can be found in step 6, produce two
offspring by exchange the two sub-trees selected.
Otherwise, goto step 3.

Table 2.5: Algorithm for structure-preserving crossover

In order to use ADF, the user must determine:
• the number of function-defining branches in the overall program,
• the number of arguments possessed by each function-defining branch,
• the function and terminal sets of each function-defining branch and the

result-producing branch, and
• the partial ordering of the ADFs.

The user specifies the partial ordering of the ADFs implicitly by determining the
primitive function set of each function-defining branch. For example, the function set of

Page 43

ADFl of the template in figure 2.5 contains the sub-function ADFO. Thus, ADFl can
invoke ADFO. Similarly, since the function set of the result-producing branch contains
the sub-functions ADFO and ADFl, it can invoke ADFO and ADFl. The partial
ordering of the template shown in figure 2.10 is depicted in figure 2.11.

lower order
ADFO (s沙-function) A 7 i

ADF1 (sutĵ ĵ ĵ ĵ lî ^^ l̂̂ ^^^ I

Result-producing branch (main function) higher order

Figure 2.11: A partial ordering of the template shown in figure 2.10

It must be mentioned that the ADFs are local to each program. When a
invocation to a particular sub-function, say ADFO, is moved by crossover from one
program to another, it refers to a new ADFO in the new program.

2.3.3. Module Acquisition (MA)

Module Acquisition (MA) is another approach of learning problem
representation (Angeline 1993; 1994，Angeline and Pollack 1992; 1993). It produces a
library of unique modules dynamically. These modules are globally defined and thus
extend the function set of all programs. MA operates like a new genetic operator for the
ordinary GP. A module is acquired by selecting a sub-tree within an existing program
and defining it as a globally defined module. Two methods are proposed to extract a
module from a program. In depth compression, the selected sub-tree is trimmed off a

Page 44

random depth to form a module. The parts of the sub-tree that are trimmed become the
parameters of the module (figure 2.12).

Q Q
/务 ^ 》

K 、 、 、 、 ^

© ©

(a)

Figure 2.12: Module acquired by depth compression, (a) The program
(+ (- (/ (+ X Y) (- (* (- Z 1) 2) 1)) Y)

(* X Y)) is compressed to (+ (modulel (- Z 1) 2)

(* X Y)). The program fragment compressed is enclosed
in dashed lines, (b) The parse tree of the module acquired
by MA. (c) The corresponding lisp program of the module
acquired.

Page 45

Q ©

A
(b)

(defun modulel (argO argl) (- (/ (+ X Y) (- (* argO argl) 1)) Y))
(c) Figure 2.12: (Cont.)

Consider the example shown in figure 2.12，the shaded sub-tree has been
selected as a module. The trim depth determines the point below which the sub-trees are
considered as parameters of the module. For this example, the expression (- Z 1)
and the constant 2 are actual parameters of the module acquired. The shaded sub-tree is
stored into the module library as modulel with two formal parameters. The shaded sub-
tree of the original program is replaced by an invocation of the acquired module.

Another modularization method is leaf compression. In this method, the leaf
nodes of the selected sub-tree become the formal parameters of the module. The effects
of if for the example in figure 2.12 are depicted in figure 2.13.

Page 46

Q 0
, 災 〉 》

© ©"/务/① K
(a)

Figure 2.13: The effects of leaf compression for the example in figure
2.12. (a) The program (+ (- (/ (+ X Y) (- (* (-
Z 1) 2) 1)) Y) (* X Y)) is compressed to (+

(module2 X Y Z 1 2 1 Y) (* X Y)) . T h e program

fragment compressed is enclosed in dashed lines, (b) The
parse tree of the module acquired by MA. (c) The
corresponding Lisp program of the module acquired.

Page 47

o ©

^ o

^ ^ ©

(b)
(defun module2 (argO arg l arg2 arg3 arg4 arg5 arg6)

(- (/ (+ argO arg l)
(- (* (一 arg2 arg3) arg4) argS))

arg6))

(c)

Figure 2.13: (Cont.)

Modules in the library do not evolve, and are retained as long as any program
applies them. Initially, there is only one reference to the module at the original program.
If the module contributes good fitness to the overall program, the program would
produce more offspring in the later generations and these offspring would refer to the
module.

In order to modify the genetic materials of some modules, the module expansion
operator takes a program and expands all the module invocations in it to create a new

Page 48

program with no module reference. This operation allows the genetic materials in a
module to participate again in the evolution process.

Kinnear (1994) presents an intensive comparison between ADF (one template is
used only) and MA. Their effects on the likelihood of evolving a correct solution to the
EVEN-4-PARITY problem is contrasted. ADF has a significant improvement while MA
fails to accelerate the learning. It is found that ADF creates a particular form of
structural regularity that strongly increases the probability of learning a correct solution.
This form of structural regularity is not present in MA. Kinnear proposes a new genetic
operator based on the operators of MA. This operator, modular crossover, can produce
the same kind of structural regularity for the EVEN-4-PARITY problem.

2.3.4. Strongly Typed Genetic Programming (STGP)

One limitation of GP is the requirement of the closure property of the set of primitive
functions. In Strongly Typed Genetic Programming (STGP), all the variables,
constants, arguments, and returned valued can be of any data type provided that these
data types have been defined by the user (Montana 1993). One application of it is to
generate a program that uses both scalars and vectors.

STGP requires that the output from each function or terminal be given a data
type and that the inputs of each function take certain types. The implementation
differences between GP and STGP are the generation methods of the initial population
and the crossover operators. In STGP, the generation method of the initial population
must comply to the type restrictions and the crossover operator must occur between
functions and/or terminals of the same type.

Programs in the initial population are generated in a way such that the arguments
of each function in each tree have the required data types. Crossover is implemented by

Page 49

randomly selecting a node from one parental tree and then randomly selecting node
from the second parental tree until it is of the same type as the first node.

An extension to STGP which makes it easier to use is the concept of generic
functions, which are not true strongly typed functions, but rather templates for classes
of such functions. A template of a function can take a variety of different data types and
return values of a variety of different types. The only constraint is that for any particular
set of argument types, a generic function must return a value of a well-defined type. A
generic function is instantiated to a particular instance of function by specifying a set of
input argument types.

2.4. Evolution Strategies (ES)

In Evolution Strategies (ES), the individual model of evolution is typified (Rechenberg
1973，Schwefel 1981, Back et al. 1991). In these techniques, the emphasis is on the
improvement of a behavior that is rated well by the fitness function rather than on the
acquisition of building blocks with high fitnesses. By concentrating on optimizing the
behavior, the representation and reproduction heuristics must create objects that are
behaviorally similar to their parents but not necessarily structurally similar. However,
the acquisition of an appropriate behavior should be easier since the effects on behavior
have been modeled in the reproduction operators.

ES consider an individual to be composed of a set of traits, each of which is a
feature. The interaction between the features is typically unknown. As a result, ES use
fixed-length, real-valued strings to represent individuals. Each position marks a
separate behavioral trait. The adherence to fixed-length strings alleviates the problem of
how to manipulate the structure in order to preserve behavioral similarity between
parents and their offspring. Different operators have been defined to manipulate the
contents of strings to create offspring that are behaviorally similar.

Page 50

1. An initial population Pop(0) of m members is created.
Each member Cj is an ordered pair (Xj, Oj) where X is a
real-valued vector storing the object variables Xj j ‘
1 < j < L for the objective function F, Gj is also a real-
valued vector containing L independent strategy variables
Gj j , 1 < j < L . The value of each object variable Xj j is
selected randomly from a feasible range. The values of
(Ti’j , 1 < j < L are usually equal for all elements Cj,
l < i < | L l .

2. Set t to 0. •
3. Create an intermediate population Pop(t') with m+1

elements. The first m elements are obtained from Pop(t).
4. Create a new offspring e 二+i using a recombination

operator r on Pop(t) , i . e . e二+i = (X�+i, (J“i) = r(Pop(t)).
5. Create an offspring e二using a mutation operator m on

e;+i, i.e. e;:+i=(X;:+i，o;:+i) = m(e;+i)..
6. Store to Pop (t ‘).
7. Select the best m elements from Pop (t ‘) using the

selection operator s and store them to the new population
Pop(t+1). Thus it contains only m elements.

8. Increase t by 1.
9. If the termination function is not true, goto step 3.
10. Return an element of the last population as the result of

the run.

Table 2.6: The algorithm of (|i+l)-ES

ES originate from Germany for applications in real-valued function optimization
(Rechenberg 1973, Schwefel 1981). The problem is defined as finding the real-valued
vector X with L numbers that minimizes or maximizes an objective function

t

F(X): RL R. There are various evolution strategies that are different in their models
of evolution. The one called (^i+l)-ES is presented in table 2.6.

Different recombination methods have been proposed (Schewefel 1981). They
can be classified into non-global and global. In the former class, two elements
ê = (Xa，aj and e^ = (X^, a j are selected from the current population P o p � using a
uniform distribution. For the simplest recombination, no actual crossover will be
performed. In other words, X;.! 二 Xa and = ĉ a-

Page 51

For the discrete recombination operator, a number of uniform random values
Uj ’ 1 < j < L are generated and e^i is obtained according to the following equation:

IX 丨 if U.<0.5
, 一 a, J J x _ ’ j = k i if Ui >0.5

�b’j J and
, if Uj<0 .5

On+i’j=iob,j i f U j > 0 . 5
where 1 < j < L.

For the intermediate recombination operator, e'— is obtained according to the
following equation:

X“i，j =5(Xa，j +Xb，j)
and

where 1 < j < L.

In the global recombinations, L pairs of elements j ^ L are
selected randomly using a uniform distribution. For the global discrete recombination
operator, a number of uniform random value U』， l< j<L are created and e'叫 is
obtained according to the following equations.

, 'Xaj’j if Uj<0 .5
j if U i > 0 . 5

bj，J J
and

, 一 J(jaj’j if Uj<0 .5
c“i，j 二 W i if Ui>0.5

Dj，J J where 1 < j < L.

For the global intermediate recombination, is obtained according to the
following equations:

Page 52

^n+lj = 识 aj’j+Xbj,j,
and

, 1/ \
� + i , j =办， j + ^ M)
where 1 < j < L.

The mating parents for the global recombination of component x'_，j and G “ i �
are chosen anew from the population. Thus, it causes a high mixing of the genetic
materials of the whole population. Global recombinations address the difficulty of pre-
mature convergence in ES systems.

According to the biological observation that offspring are similar to their parents
and that smaller modifications occur more often than larger ones. To achieve the similar
effects in ES, the element e�+i obtained by applying mutation operation on element e'州

is specified as:
x;:+i，j=x;+i’j+N(0,CT;+i,j) , l < j < L

and
if r〈去

V

where N(0, a) is a Gaussian random number with mean of zero and standard deviation
a, Cd and ĉ are constants, and r is the ratio of successful mutations to all mutation. A
mutation is successful if the mutated offspring performs better than its parent. The idea
here is to change the strategy variables dynamically until r is 1/5.

Rechenberg (1973) calculated the convergence rate of a ES system for some
model functions and found that the convergence rate is optimized if r is equal to 1/5.
Thus，he suggested the 1/5 rule: The ratio of successful mutations to all mutation should
be 1/5. If it is greater than 1/5 then increase a by multiplying a constant ĉ，if it is less

Page 53

than 1/5 then decrease a by multiplying a constant c^. When this rule decreases the
standard deviation, the search becomes more focused, with generated offspring being
generally closer to their parents in value. When the standard deviation is increased, the
search is broadened so that offspring might be further from their parents. Schewefel
(1981) suggests that c^ and ĉ should be 0.82 and 1/0.82 respectively.

The selection operator chooses the best |i elements from |i+l elements
according to the objective function F. The termination function determines whether the
optimization has been found or the computational resources are all consumed. Different
methods can be used to implement the termination function and these methods are
usually domain-dependent.

The simplest and oldest ES model is denoted as (1+1)-ES. The difference
between it and (|i+l)-ES is that the population Pop(t) contains only one element and
only recombination will be performed. It can be designated as a kind of probabilistic
gradient search technique. There are two main drawbacks of (1+1)-ES: The
convergence rate is slow because the standard deviations are equal in each dimension;
The procedure is susceptible to stagnation at local minima because of the brittleness of
the gradient search.

In the (11+入)-ES, the population size is still |X, but X offspring are created at
each generation from |X parents. All \i+X elements compete for survival, with the best |i
elements selected to survive in the next generation. Consequently, step 3 in table 2.6 is
changed to:

3’. Create an intermediate population Pop(t') with \i+X elements. The first \i
elements are obtained from Pop(t).

Page 54

In the (|i, ？i)-ES, only the ？i offspring compete for survival, and the \i parents
are replaced each generation. The lifetime of every element is limited to a single
generation. Thus, step 3 in table 2.6 is changed to:

3 ”. Create an intermediate population Pop(t') with X elements.

Because of the nature of this model, X must be greater than or equal to In the
(|X+入)-ES and (|X,入)-ES’ steps 4 through 6 in table 2.6 are repeated for X times to
create X offspring. The mutation operator is also extended to allow for meta-control
over the evolution process. Let e�+i = (X ; ” b e the offspring generated by the
recombination operator. The mutation operator creates the offspring e�+i = (X二”
according to the following equations:

and
x;:+i，j=x;+i，j+N(0，<+i,j) , l < j < L

where Aa is a meta-control parameter. It allows the user to have more control over the
distribution of trials. It should be emphasized that in all models other than (1+1)-ES,
more than one parent are participated in the recombination. Since the strategy variables
a . j , 1 < j < L are all stored in each element e^，l<i<|i, these strategy variables are
also involved in the recombination and evolution. These models allow strategy variables
to adapt to the landscape of the objective function and thus trials can be distributed in a
more appropriate way.

2.5. Evolutionary Programming (EP)

Evolutionary Programming (EP) is a stochastic optimization strategy similar to GAs
(Fogel et al. 1966，Fogel 1994). It emphasizes the behavioral linkage between parents
and their offspring rather than seeking to emulate specific genetic operators as observed
in nature. It is a useful method of optimization when other techniques such as gradient

Page 55

descent or direct, analytical methods are not possible. EP is suitable for difficult
combinatoric and real-valued function optimization problems in which the fitness
landscapes are rugged and have many locally optimal solutions.

• Set t to 0.
• Create an initial population of trials Pop(t) randomly. .
• Each trial in the population Pop(t) is assessed by computing

its fitness.
• While a threshold for iteration is not exceeded and

a satisfying solution has not been found do
• Each solution in Pop(t) can produce one or more

offspring. Each of these offspring is mutated
according to a distribution of mutation types' ranging
from minor to extreme with a continuum of mutation
types in between. The severity of mutation is judged
on the basis of the functional change imposed on the
parent. The mutated offspring are stored in the
intermediate population Pop{t') •

• A stochastic tournament is usually held to determine N
solutions to be retained for the Pop(t+1) of
solutions. Occasionally, selection is performed
deterministically. There is no requirement that the
population size be held constant,

. E a c h trial in the population Pop(t+1) is assessed by
computing its fitness.

• Increase t by 1.
• Return an element of the last population as the result of

the run. Usually the best one is returned.

Table 2.7: A high-level description of EP

EP employs a model of evolution at a higher abstraction than GAs, GP, and ES.
It models the reproductive relationship between species behavior in successive
generations (Fogel 1994). The reproductive operators used in EP are a form of
mutations that attempt to preserve behavioral similarity between offspring and their
parents (Fogel 1992). The motivation for behavioral similarity is taken directly from
biology where an offspring is generally similar to its parent at the behavioral level with
only slight variations. These variations can be modeled by assuming that the
distribution of potential offspring resembles a normal distribution around the parent's
behavior in the fitness landscape. On the other hand, GAs cannot guarantee such a
distribution because it emphasizes on structural similarity.

Page 56

For EP, there is an underlying assumption that a fitness landscape can be
characterized in terms of variables, and that there is an optimum solution in terms of
these variables. A high-level description of EP is depicted in table 2.7.

There are two important differences between EP and GAs. Firstly, there is no
constraint on the representation. The CGA involves encoding the problem solutions as
fixed-length binary strings. In EP, the representation follows from the problem. For
example, a neural network can be represented in the same manner as it is implemented.
Thus the mutation operation does not demand and assume any particular encoding
method.

Secondly, the mutation operators simply change aspects of the parent according
to a statistical distribution. Minor modifications in the behavior of the offspring occur
more frequently than substantial variations in the behavior of the offspring.
Furthermore, the severity of mutations is often reduced as the global optimum is
approached. In the Meta-Evolutionary technique, the variance of the mutation
distribution is subject to modification by a fixed variance mutation operator and evolves
along with the solutions (Fogel 1994).

EP and ES share many similarities. Typically, they operate on the real-valued
representations when solving real-valued function optimization problems Multivariate
zero mean Gaussian mutations are applied to each parent in a population and a selection
mechanism is applied to determine which solutions are maintained. Both approaches
encode information on how to distribute new trials in the elements of the population and
allow evolution to adapt this information. Most of the theoretical results on asymptotic
convergence and convergence rate developed for ES or EP also apply directly to the
other.

Page 57

There are two main differences between ES and EP. Firstly, EP typically uses
stochastic tournament selection while ES typically uses deterministic selection in which
the worst solutions are eliminated from the population based directly on their fitness
values. Secondly, EP is an abstraction of evolution at the level of reproductive
populations (i.e., species) and thus recombination mechanisms are generally
inapplicable because recombination does not occur between species. In contrast, ES is
an abstraction of evolution at the level of individual behavior. Since genetic information
can be encoded in an individual to affect its behavior, recombination is reasonable.
Different recombination operators of ES have been discussed in the previous section.
The effectiveness of such recombination operators depends on the problem at hand.

Page 58

Chapter 3 Inductive Logic Programming
In the previous chapter, we present an overview on evolutionary algorithms. Another
approach of program induction is Inductive Logic Programming (ILP) that investigates
the construction of logic programs from training examples and background knowledge.
ILP is a new research field that combines the techniques and theories from inductive
concept learning and logic programming. ILP systems are more powerful than
traditional attribute-value based learning systems because the formers use an expressive
first-order logic framework to represent the concepts acquired and employ background
knowledge to facilitate the learning. ILP has strong theoretical foundation from
computational learning theory and logic programming. It has very impressive
applications in scientific discovery, knowledge acquisition and logic program synthesis
(Muggletion 1994, Bratko and King 1994). In this chapter, we will present a brief
introduction to inductive concept learning first. Two approaches for ILP are discussed
in the second section followed by an introduction to techniques and methods of ILP.

3.1. Inductive concept learning

The goal of machine learning is to develop techniques and tools for building intelligent
learning machines. In other words, learning machines can improve themselves to
perform more efficiently and/or more accurately. They can also increase their abilities to
process more problems. Symbol-level learning is used to characterize the kind of
learning that increases the efficiency of the system while knowledge-level learning
improves the accuracy and/or coverage of the system (Dietterich 1986). Machine
learning paradigms include inductive, deductive, genetic-based and connectionist
learning (Michalski et al. 1983; 1986b, Kodratoff and Michalski 1990，Shavlik and
Dietterich 1990，Carbonell 1989). Multistrategy learning integrates several learning

Page 59

paradigms (Michalski and Tecuci 1994). This chapter focuses on supervised, inductive
learning of a single concept. If U is a universal set of observations, a concept C is
formalized as a subset of observations in U. Inductive concept learning finds
descriptions for various target concepts from positive and negative training instances of
these concepts. In single concept learning, a target concept description is induced from
training instances labeled positive and negative. In multiple concept learning, more than
one target concept are being learned simultaneously, training examples are labeled by
various concept names representing their categories.

In machine learning, formal languages for describing observations and concepts
are called object and concept description languages respectively. Typically, object
description languages are attribute-value pair descriptions and first-order languages of
Horn clauses. Concepts can be described extensionally or intensionally. A concept is
described extensionally by listing the descriptions of all of its instances (observations).
Thus extensional concepts are represented in the object description language. On the
other hand, intensional concepts are expressed in a separate concept description
language that permits compact and concise concept descriptions. Typical concept
description languages are decision trees, decision lists, production rules, and first-order
logic.

Inductive concept learning can be viewed as searching the space of hypothesis
descriptions. A bias is a mechanism employed by a learning system to constrain the
search for target hypotheses. A search bias determines how to conduct the search in the
hypothesis space while a language bias determines the size and structure of the
hypothesis space.

A strong search bias, such as the hill-climbing search strategy, employs existing
knowledge about the size and structure of the hypothesis space to exploit promising
solutions of the space, thus it can find the target concept quickly. But it may trap the

Page 60

system in a local maximum. A weak search bias, such as depth-first and breath-first
search, explores the space completely; the learner is guaranteed to find the target
concept that can be represented by the concept description language. Nevertheless, a
weak bias is very inefficient. In other words, the search bias introduces the
efficiency/completeness tradeoff into a learning system.

A strong language bias defines a less expressive description language such as
the prepositional logic. The hypothesis space created by the bias is comparatively
smaller and the learning can be performed more efficiently. But the learner may fail to
find the target concept which is not contained in the small hypothesis space. A weak
bias defines a larger space and thus the target concept is more likely to be expressible in
the space. The disadvantage is that the learner is less efficient. The language bias
introduces the efficiency/expressiveness tradeoff into a learning system.

Given:
-A set E of positive E+ and negative E一 examples of a
concept C.
-Concept description language L.
-Search and language bias.
-Background knowledge B.

Find: .
A complete and consistent hypothesis H represented in
the language L.

A hypothesis H is complete if every positive example
e G E+ is covered by it with respect to(w.r.t.) B.

A hypothesis H is consistent if no negative example e
6 E~ is covered by it w.r.t. B.

Table 3.1: Supervised inductive learning of a single concept

Background knowledge B is a prior knowledge that can be used by either the
search bias to direct the search more efficient, or the language bias to express the
hypothesis space in a more natural and concise way. If a learning system is not
provided with some a prior knowledge about the learning problem, it must learn
exclusively from training examples. However, difficult learning problems typically

Page 61

require a lot of knowledge. The task of supervised inductive learning of a single
concept C is formulated in table 3.1.

3.2. Inductive Logic Programming (ILP)

Relational concept learning induces a new relation for the target concept (i.e., the target
predicate) from training examples and known relations from the background
knowledge. An ILP system is a relational concept learner. The training examples, the
hypothesis space, and the background knowledge are represented in first-order Horn
clause languages (Muggleton and Feng 1990). Tradeoffs between expressiveness and
efficiency are introduced by some additional restrictions on these languages. This
section describes two approaches of ILP, interactive and empirical ILP. Muggletion and
De Raedt (1994) present a comprehensive introduction of theory and methods of ILP.
Before presenting these approaches, the terminology of logic programming is described
first (Lloyd 1987).

The alphabet of a first-order language contains predicate symbols, function
symbols and variables. A predicate symbol is a lower case letter followed by a string of
lower case letters and/or digits. A function symbol is a lower case letter followed by a
string of lower case letters and/or digits. A variable is an upper case letter followed by a
string of lower case letters and/or digits.

A term is a variable or a function. A function is a function symbol immediately
followed by a sequence of terms enclosed in a pair of parentheses. The number of terms
in the sequence is the arity of the function. For example, f (g ' h (X, Y) , X) is a
function of arity 3 where f，g, and h are function symbols, X and Y are variables. A
constant is a function of arity 0. Thus g is a constant.

Page 62

An atomic formula, or atom, is a predicate symbol immediately followed by a
sequence of terms enclosed in a pair of parentheses. The number of terms in the
sequence is the arity of the atomic formula. For example, m o t h e r (X' Y) is an atom
of arity 2 where m o t h e r is a predicate symbol and X and Y are variables.

A literal can be classified as either a positive literal or a negative literal. A
positive literal L is an atomic formula while a negative literal -iL is the symbol i
followed by an atomic formula. A clause is a formula of the form
VXi,X2,...,Xm(Li V L2V...vLn) where Li, 1 < i < n are literals and Xi,X2,...,Xm are

v a r i a b l e s o c c u r r i n g in t h e c l a u s e . A c l a u s e
VXi，X2，...，Xm(LivL2V_vLiV"iLi + iv~iLi + 2V_V"nLn) can be represented as
LivL2V_vLi — Li + iALi + 2"..ALn. The previous clause can be written as
Li,L2,...，Li<~Li + i，Li + 2，...，Ln where commas on the left-hand side of <- denote
disjunctions while commas on the right-hand side represent conjunctions.

A definite program is a set of definite program clause. A definite program
clause, VXi,X2，...，Xm(TV"iLiv~iL2V—v~iLn), is a clause which contains exactly
one positive literal. It can be represented as the form T — Li，L2，.",Ln where T and Li,
1 < i < n are atomic formulae. The positive literal T in a definite program clause is
called the head or goal of the clause. The sequence of literals Li, 1 < i < n is called the
body of the clause. A Horn clause is a clause which contains at most one positive
literal. Thus a Horn clause can be either a definite program clause or a definite goal: a
clause with no positive literal. A definite goal can be represented as the form
—Li，L2,."，Ln where Li, 1 < i < n are atomic formulae. A positive unit clause is a
definite program clause with an empty body. It is called a fact in Prolog and is denoted
simply as T.

A normal program is a set of program clauses. A program clause is a clause of
the form T <- Li，L2，."，Ln where T is an atom and Li, 1 < i < n are positive or

Page 63

negative literals. In the programming language Prolog, literals of the form n o t L are
allowed in the body of a clause, where L is an atom and n o t is interpreted under the
negation-as-failure rule (Clark 1978).

A predicate definition is a set of program clauses with the same predicate
symbol (and arity) in their heads. A set of clauses is called a theory and represents the
conjunction of the clauses. A well-formed formula is a literal, a clause and a theory. A
well-formed formula or term is ground if and only if there is no variable in the formula
or term.

3.2.1. Interactive ILP

Interactive ILP is often used in incremental and interactive theory revision (De Raedt
1992). An Interactive ILP system is provided with six inputs: 1) a set of correct
examples E that has been examined before, 2) correct background knowledge B，3) an
incorrect theory T, 4) a concept description language L, 5) a new positive or negative
training example e，and 6) a teacher that can answer questions generated by the system.
The system modifies the definition of T and creates a new theory T, such that it is
complete and consistent with respect to all examples seen (i.e. E u {e}) and the
background knowledge B.

Shapiro (1983) introduced the idea of refinement operators in the MIS system
which is used to structure the search space of program clauses. The system searches the
space in a breadth-first top-down manner. CLINT (De Raedt 1992，De Raedt and
Bruynooghe 1989; 1992) generates its own learning examples and asks questions about
their classifications. It is featured with the applications of integrity constraints and its
ability in changing concept description language dynamically.

Page 64

Most interactive ILP systems are based on special forms of the general theory of
inverse resolution introduced in CIGOL (Muggleton and Buntine 1988, Muggleton
1992). The three operators of CIGOL are absorption, intraconstruction and truncation.
Absorption generalizes program clauses, intraconstruction learns definitions of new
predicates and truncation generalizes unit clauses. The concept of absorption is first
introduced by Sammut and Baneji (1986) in their MARVIN system. Wirth (1989)
suggests two operators which are similar to absorption and intraconstruction. Rouveirol
(1991; 1992) introduces a saturation procedure which overcomes some problems of
absorption and truncation.

3.2.2. Empirical ILP

The task of empirical ILP is usually concerned with learning a single target concept
from a given set of training examples and background knowledge. The task of empirical
ILP is formulated in table 3.2.

Given:
-A set E of positive E+ and negative E_ training
examples of the target predicate p. Training examples
are represented as ground atoms
-A concept description language L
-Search and language bias.
-Background knowledge B

Find： …
A definition H for the target predicate p expressible
in L such that H is complete and consistent with
respect to (w.r.t.) the training examples E and the
background knowledge B

H is complete if every positive example e+ in E+ is
covered by H w.r.t. the background knowledge B. i.e.
B U H 卜 e+

H is consistent if no negative example e- in E" is
covered by H w.r.t. the background knowledge B. i.e.
B U H I类 e_

Table 3.2: Definition of Empirical ILP

Page 65

The background knowledge B provides definitions of known predicates qi
which can be used in the definition of the target predicate p. It also provides additional
information to ease the search of the definition of p. This information includes argument
types, symmetry of predicates in pairs of arguments, input/output modes, rule models,
predicate sets, parametrized languages, integrity constraints, determinations and any
knowledge that can modify the operation of the search and language bias.

In the definition, a training example is covered by H given background
knowledge B if e is a logical consequence of B u H. This notion of coverage is called
intensional coverage (Lavrac and Dzeroski 1994). It allows the background knowledge
B to include normal clauses and ground facts. For a particular concept description
language L, an appropriate proof procedure must be used to check whether an example
is entailed by B u H. The SLD-resolution proof procedure with bounded or
unbounded depth is usually employed to determine whether a training example is
entailed (Lloyd 1987). In depth-bounded SLD-resolution, unresolved goals in the SLD-
proof tree at depth h are not expanded and are treated as failed. MIS (Shapiro 1983) and
CIGOL (Muggleton and Buntine 1988) use this proof procedure to prevent infinite
loops . '

On the other hand, extensional coverage can also be used. In this case,
extensional background knowledge B containing only ground facts must be employed
to determine whether an example e is covered (Shapiro 1983). A hypothesis H
extensionally covers an example e with respect to an extensional background
knowledge B if there exists a clause T <- Li，L2，...，Ln in H and a substitution 6 such
tha tT0=e and {Li，L2，.",Ln}0 c B . I f the background knowledge B provided by the
users contains non-ground clauses, the empirical ILP systems have to transform it into
a ground model of the background knowledge. The model contains all true ground facts
that can be derived from the background knowledge by a SLD-proof tree of depth less
than the depth-bound h (Shapiro 1983).

Page 66

Empirical ILP systems include FOIL (Quinlan 1990; 1991)，GOLEM
(Muggleton and Feng 1990), LINUS (Lavrac and Dzeroski 1994), mFOIL (Lavrac and
Dzeroski 1994)，RX (Tangkitvanich and Shimura 1992)，MORAL (Morik et al. 1993)，

and ML-SMART (Bergadano et al. 1991). FOCL (Pazzani and Kibler 1992) is an
extension of FOIL that combines ILP and explanation based learning. CHAM
(Kijsirikul et al. 1992a) is an improvement of FOIL by applying a better search
heuristic. CHAMP (Kijsirikul et al. 1992b) is an extension of CHAM that can invent
useful predicates in learning relations. CHILLIN (Zelle et al. 1994) combines learning
methods of GOLEM, FOIL, and CHAMP.

33. Techniques and methods of ILP

An existing empirical ILP system can be classified into either a bottom-up or top-down
learner. Bottom-up systems search for program clauses by considering generalizations.
They start from the most specific clause that covers a positive training example and then
generalize the clause until it cannot be further generalized without covering some
negative examples. Two common generalization techniques are relative least general
generalization (rlgg) introduced by Plotkin (1970) and inverse resolution proposed by
Muggletion and Buntine (1988). Muggletion (1992) introduces a unifying framework
covering both relative least general generalization and inverse resolution, based on the
notion of a most specific inverse resolvent.

A successful representative of this class is GOLEM (Muggletion and Feng
1990). GOLEM is based on the construction of relative least-general generalizations
which forces the background knowledge to be expressed extensionally as a set of
ground facts. This ground model of background knowledge can be excessively large,
and the clauses constructed from such models can grow explosively. To tackle this
problem, Muggleton and Feng (1990) introduce the notion of ij-determination and

Page 67

employ the language bias of inducing only ij-determinate clauses. GOLEM is also
sensitive to the distribution of training examples. If only a random sample of positive
training examples is presented, the induced hypothesis of the target predicate is
incomplete. Thus, GOLEM may fail to produce general and accurate hypotheses.

Top-down methods apply specialization operators to learn program clauses by
searching from general to specific. A specialization operator s produces a set of clauses
C permitted by the language bias from a clause c. It typically computes only the set of
most general specializations of a clause c under 0-subsumption (Plotkin 1970). Most
general specializations can be obtained by performing syntactic and/or semantic
operations on the clause c (Shapiro 1983). Two basic syntactic operations on a clause
are:

• applying a substitution 6 to the clause, and
• adding a literal to the body of the clause.

One of the most famous empirical top-down ILP system is FOIL (Quinlan 1990;
1991，Cameron-Jones and Quinlan 1993; 1994). It employs the techniques and
methods applied in traditional attribute-value based learning systems. It also borrows
the idea of specialization operators from MIS (Shapiro 1983) and the method of
determining coverage of examples from ML-SMART (Bergadano et al. 1991).

FOIL is restricted to learning function-free program clauses. In other words,
constants and functions cannot appear in the induced clauses. The body of a clause is a
conjunction of positive or negative literals. Literals in the body have either a predicate
symbol qi from the background knowledge B, or the target predicate symbol p. This
implies that recursive clauses can be learned. When learning clauses with recursive
literals, care must be taken to avoid infinite recursion. FOIL deals with this issue by
attempting to establish an ordering on the arguments which may appear in a literal.
Many sophisticated methods of finding an ordering on the arguments have been

Page 68

proposed (Cameron-Jones and Quinlan 1993; 1994). For each literal in the body of a
clause, at least one of the variables in the arguments of the literal must appear in the
head of the clause or in one of the literals to its left.

Training examples are function-free ground facts represented as a set of constant
tuples. Background knowledge B consists of extensional predicate definitions. Each
extensional predicate definition is a finite set of constant tuples representing the concept
of the predicate. FOIL uses extensional background knowledge for efficiency reasons.
Top-down algorithms can easily use intensionally defined background predicates to
evaluate various competing hypotheses. An extension of FOIL, FOCL (Pazzani and
Kibler 1992)，allows background knowledge to be represented intensionally.

The FOIL algorithm is composed of three main phases. In the first phase, FOIL
generates negative examples by applying the closed-world assumption if no negative
example is provided. The second phase is the example covering loop. It implements the
covering algorithm of AQ and INDUCE (Michalski 1983). The loop constructs a
hypothesis by repeatedly performing the following operations:

• construct a clause,
• refine the clause by removing irrelevant literals from the clause,
• add the refined clause to the hypothesis H, and
• remove the positive examples covered by the clause from the set of

positive training examples
until all the positive examples are covered or no more clause can be constructed. The
last phase further refines the induced hypothesis H by eliminating irrelevant clauses
from the hypothesis. The definitions of irrelevant literal and irrelevant clause are
presented by Quinlan (1990).

The procedure that constructs a clause is the most important one in the FOIL
algorithm. It starts from the most general clause and repeatedly specializes it by adding

Page 69

a literal to the body of the clause. The clause construction loop continues until a
consistent clause covering at least one remaining positive example is found or no more
specialization can be performed. During each iteration of the loop，a clause c can be
refined by appending different literals to it. FOIL determines which one to be used by
employing an information-based heuristics.

If the training examples are imperfect, FOIL may fail to find a consistent clause
that covers some positive examples or it may find an overfitting clause that covers only
a very few number of positive examples. Usually, these overfitting clauses cannot
characterize the regularities in the training examples.

In FOIL, the noise handling mechanism is the encoding length restriction. The
idea is that the number of bits required to encode the clause should never exceed the
total number of bits needed to indicate explicitly the positive training examples covered
by the clause. Thus, if a clause covers r positive examples out of n examples in the
training set. The number of bits available to encode the clause is log2 (n) + log! (). If

V J
there is no bit available for adding another literal, but the clause has more than 85%
accurate, it is retained in the induced set of clauses, otherwise the clause is deleted. In
the latter case, the clause construction procedure fails to produce a clause and it causes
the termination of the FOIL algorithm. This heuristics avoids overfitting the training
examples because insignificant literals are excluded from clauses of the inducing
hypothesis. The obtained hypothesis is usually smaller, simpler, more accurate, and
more comprehensible. Dzeroski and Lavrac (Dzeroski and Lavrac 1993) argue that the
encoding length restriction has two deficiencies. In exact domains, it sometimes prevent
FOIL from learning complete description. In noisy domains, it allows very specific
clauses.

FOIL has been extended to allow literals that bind a variable to a constant to
appear in the body of a clause (Quinlan 1991，Cameron-Jones and Quinlan 1993;

Page 70

1994). Other improvements include determinate literals, types and mode declarations of
predicates, and advanced post-processing methods.

A fundamental weakness of FOIL is that recursive hypotheses are evaluated by
employing the positive training examples as a model of the target predicate being
learned. When the examples are incomplete over the domain of interest, they provide an
incorrect model and FOIL has difficulty in learning even simple recursive concepts
(Cohen 1993).

mFOIL (Lavrac and Dzeroski 1994) is largely based on the FOIL algorithm.
The main difference is that mFOIL uses a different search heuristics and an improved
noise-handling mechanism. Another major difference is the beam search strategy used
in mFOIL as opposed to the hill-climbing search used in FOIL. To reduce its search
space, mFOIL uses some additional information, such as the symmetry and different
variables constraints. Several parameters are used in mFOIL, which determine the
search heuristics used, the width of the beam in the beam search and the level of
significance applied to the induced clauses.

mFOIL employs an accuracy estimate as its search heuristics. The accuracy
estimate may be the Laplace estimate or the more sophisticated m-estimate (Cestnik
1990). Both estimates have been found to be useful in improving noise-handling
abilities of at tr ibute-value learning systems (Cestnik and Bratko 1991，Clark and
Boswell 1991). If a clause c covers n(c) training examples, out of which n+(c) are
positive, its expected accuracy can be estimated by either the Laplace estimate

n+<v�本 1 n+ (c) + m * a - prior - prob+ ,
A(c) = n (c) +1 or the m-estimate A(c) = —— where

n(c) + 2 n(c) + m
a - prior - prob+ is the a prior probability of the positive class and is estimated by the
relative frequency of positive examples in the whole training set.

Page 71

It uses a beam search method to find a significant clause. The clause
construction procedure starts with the a clause having an empty body. During the
search, the best clause and a small set of promising clauses are stored in the beam. At
each iteration of the clause construction loop, the significant refinements of each clause
c in the beam are evaluated using their expected accuracy. The best of their significant
improvements constitute the new beam. A significant improvement of a clause c is a
refinement c, of the clause c such that A(c') > A(c) and c' passes the significance test.
The search for a clause terminates when the new beam becomes empty. The best clause
found so far is retained in the hypothesis if its expected accuracy is better than the
default accuracy. The default accuracy, estimated from the entire training set by the
relative frequency estimate, is the probability of the more frequent of the positive or
negative classes.

The significance test used in mFOIL is based on the likelihood ratio statistic
(Kalbfleish 1979). Assume that the training set has n+ positive examples and n"
negative examples. If a clause c cover n(c) examples, n+(c) of which are positive, the
value of the statistic can be calculated as follows:

- f prob+(c)) �汝 1 f prob"(c)) LikelihoodRatio 二 2*n(c)* prob^(c) * l o g ^ — J + prob � * l og^pr io r — prob.

where
prob (c) = — — , n(c)
prob (c) = — — , n(c)

+ , a - prior — prob == r，and ^ n+ + iT
n"

a 一 prior 一 prob" = — r
This statistic is distributed approximately as a ；distribution with one degree of
freedom. If its value is above a specified significance threshold, the clause is
significant.

Page 72

The covering algorithm of AQ and INDUCE (Michalski 1983) is used in
mFOIL. Program clauses are constructed repetitively. The stopping criteria of the
example covering loop terminate the search for clauses when too few positive examples
are left for generating a significant clause or no significant clause can be found with
expected accuracy greater than the default accuracy.

We have given overviews on evolutionary algorithms and ILP in the last and the
current chapters respectively. From next chapter onwards, we shall detail the original
contributions of this thesis.

Page 73

Chapter 4 Genetic Logic Programming and Applications
4.1. Introduction

As discussed in chapter 3，there have been increasing interests in systems that induce
first-order logic programs. The task of inducing logic programs can be formulated as a
search problem (Mitchell 1982) in a search space of logic programs. Various systems,
such as FOIL (Quinlan 1990; 1991), FOCL (Pazzani and Kibler 1992，Pazzani et al.
1991)，CIGOL (Muggleton and Buntine 1988), and GOLEM (Muggleton and Feng
1990)，differ mainly in the search strategies and heuristics used to guide the search for
the correct program. Most systems are based on a greedy search strategy. They generate
a sequence of logic programs from general to specific (or from specific to general) until
a consistent target program is found. Each program in the sequence is obtained by
specializing or generalizing the previous one. For example, FOIL applies the hill
climbing search strategy guided by an information-gain heuristics to search programs
from general to specific ones.

However, these strategies and heuristics are not always applicable because they
may trap the systems in local maxima. In order to overcome this problem, non greedy
strategies should be adopted. Moreover, other learning paradigms such as
reinforcement learning (Sutton 1988; 1992，Tesauro 1992, Lin 1992, Kaelbling 1993)
and strategy learning cannot be achieved by ordinary ILP systems.

An alternative is Genetic Programming (GP)，a very general and domain-
independent program induction method. It has impressive applications in symbolic
regression, learning of control and game playing strategies, evolution of emergent

Page 74

behavior, evolution of subsumption, automatic programming, concept learning,
induction of subroutines and hierarchy of a program, and meta-level learning (Koza
1992; 1994，Kinnear 1994b, Wong and Leung 1995a). Although it is very general, it
has little theoretical foundation. Even the most well-established theory of Genetic
Algorithms, the schema theory (Holland 1992，Goldberg 1989)，cannot be applied
directly to GP. The shortcomings of GP are summarized as follows:

• The semantics of the program created are unclear because (a) the
semantics of some primitive functions such as LEFT, RIGHT and
MOVE (Koza 1992) are difficult to define, and (b) various execution
models can be used to execute the programs generated. Thus the
semantics of the programs depends on the underlying execution model.
It is possible to create two identical programs with different semantics
because the underlying execution models are different.

• The underlying execution model must be defined before programs can
be created. It means that the users must have some ideas of the
solutions.

• It is difficult, if not impossible, to generate recursive programs
• The sub-functions inventing mechanism is restrictive (Koza 1994). In

Automatic Defined Function (ADF), the user must decide how many
sub-functions should be created, the number of formal arguments in
each sub-function and whether these sub-functions can invoke one
another.

• A special execution model must be used to run programs with iteration.
This model imposes a restriction on where iterations can be introduced
in the final programs. This requirement implies that the user must know
in advance that the programs being found have iteration.

Since ILP and GP have their own pros and cons, this observation motivates the
integration of the two approaches. The Genetic Logic Programming System (GLPS) is

Page 75

the first attempt (Wong and Leung 1994a; 1994b; 1995b) to achieve this goal. It is a
novel framework for combining the implicitly parallel search power of GP and
knowledge representation power of first-order logic. The shortcomings mentioned
above could also be alleviated or eliminated. Currently, GLPS can learn function free
first-order logic programs with constants. Section 4.2 presents a description of the
mechanism used to generate the initial population of programs. One of the genetic
operators, crossover, is detailed in section 4.3. Section 4.4 presents a high level
description of GLPS. The results of some applications are presented in section 4.5.

4.2. Representations of logic programs

GLPS uses first-order logic to represent background knowledge and training examples
and can induce logic programs by genetic search. In this section, we present the
representation method of logic programs. GLPS allows atomic formula with variables
and constants but does not allow them to contain function symbols.

In GLPS, populations of logic programs are genetically bred using the
Darwinian principle of survival and reproduction of the fittest along with a genetic
crossover operation appropriate for mating logic programs. The fundamental difficulty
in GLPS is to represent logic programs appropriately so that initial population can be
generated easily and the genetic operator such as crossover and reproduction can be
performed effectively. A logic program can be represented as a forest of AND-OR
trees. The leaves of an AND-OR tree are positive or negative literals generated using the
predicate symbols and terms of the problem domain. For example, consider the
following logic program:

Page 76

CI : cup(X) ：- i n s u l a t e — h e a t (X) , s t a b l e (X) ,
l i f t a b l e (X) .

C2: cup (X) ： - paper—cup (X).
C3 : s t a b l e (X) ：- b o t t o m (X, B) , f l a t (B).
C4: s t a b l e (X) : - bo t tom(X, B) , c o n c a v e (B) .
C5 : s t a b l e (X) ：- has—suppor t (X) .
C6: l i f t a b l e (X) ：- ha s (X , Y) , h a n d l e (Y).
C7: l i f t a b l e (X) : - s m a l l (X) , made_from (X, Y),

low—density (Y).

In this chapter, the syntax of the logic programming language Prolog is used to
present logic programs. In comparison with the definitions of logic programs discussed
in section 3.2, the symbol — is replaced by the symbol ： - and every clause of a
Prolog program must be ended with a full stop. The labels such as CI and C2 before
colons are names used to identify the clauses. These labels and colons are not parts of
the logic program.

For the above example, the set of predicate symbols is { c u p ,
i n s u l a t e _ h e a t , s t a b l e , l i f t a b l e , paper一cup, b o t t o m , f l a t ,
c o n c a v e , has一 suppor t , h a s , h a n d l e , s m a l l , made—from,
l o w一d e n s i t y } and the set of terms is {X, Y, B}. This program can be
represented as in figure 4.1.

Page 77 .

cup(X)

©

02

[Al^D J paper_cup(X)

insulate_heat(X) A ^ j ^ A A
stable(X) liftable(X) (a)

stable(X)

/ \ has_support(X) c5

(A N D] C3 (A N ^ c4

X A
bottom(X, B) flat(B) bottom(X，B) concave(B)

(b)

Figure 4.1: A forest of AND-OR trees that represents a logic program.
(a) The r epresenta t ion of the predicate c u p . (b) The
r e p r e s e n t a t i o n of the predicate s t a b l e , (c) The
representation of the predicate l i f t a b l e .

Page 78

Iiftable(?x)

A A
has(X, Y) handle(Y) ^

「 A N D) low—density(Y)

A
small(X) made—from(X，Y)

(c)

Figure 4.1: (Cont.)

Since a logic program can be represented by a forest of AND-OR trees, we can
randomly generate a forest of AND-OR trees for the program and randomly fill the
leaves of these trees with literals of the problem. The high-level description of the
algorithm used to generate an initial population is depicted in table 4.1.

For the above example, if the target predicate symbol is cup, the predicate
symbols for sub-concepts are s t a b l e and l i f t a b l e , and the set of terms is {X'
Y, B}. The algorithm generates the following logic programs:

Page 79

CI’： cup(X) ：- bo t tom(Y) , h a n d l e (B) .
C2 ‘ : cup(X) : - s m a l l (X) • i n su l a t e—hea t (Y) •
C3 ‘ : s t a b l e (B) ：- cup (B) , p a p e r _ c u p (X) , f l a t (Y) ,

f l a t (X) .
C4‘： l i f t a b l e (X) : - l i f t a b l e (Y) •
C5‘： l i f t a b l e (Y) : - concave(Y)•

Input:
Preds ： The set of predicate symbols such as {pi' P2 / ... •‘ Pn)
Terms: The set of terms such as { ti, t2, •..' t^}
Target: A special predicate syinbol in Preds that indicates the

target concept to be induced
Sub: A set of predicate symbols in Preds that indicate the •

sub-concepts to be learned. If there is no sub-concept in
the target logic program, then Sub is an empty set.

Depth: It specifies the maximum depth of the AND-OR trees to be
generated.

Balance: It is a parameter that controls whether balance or
unbalance AND-OR trees will be generated.

Output:

A forest of AND-OR trees representing a logic program.

Comment：

All predicate symbols represent operational concepts that must be
defined by either extensional tuples or built-in operations.

Function Generate-Trees(Preds, Terms, Target, Sub, Depth, Balance)

{ • Let ALL-CONCEPTS := {Target} U Sub.

• Initialize FOREST to an empty set.
• Generate a set of literal LITERALS using the predicate symbols

in Preds and terms in Terms.
• For all concepts C in ALL-CONCEPTS do

• Create an AND-OR tree for the current concept C. The
leaves of the AND-OR tree are selected from LITERALS.

• store the AND-OR tree for the current concept C into
FOREST.

• Return (FOREST).
}
Table 4.1: The algorithm for generating an initial program randomly.

Alternatively, an initial population of logic programs can be induced by other
learning systems, such as FOIL (Quinlan 1990), using a portion of the training

Page 80

examples. If there are more than one representation for a logic program, one of them
will be selected randomly.

43. Crossover of logic programs

We can apply crossover to the components of a logic program including the whole logic
program, the rules, the clauses, and the antecedent literals. In GLPS, the terms of
literals cannot be exchanged. Thus crossover components are referred to by a list of
numbers. The list can have at most three elements:

1. {} refers to the whole logic program.
2. {m} refers to the mth rule in the program. A rule has one or more

clauses.
3. {m, n'} refers to a clause or a number of clauses of the mth rule in the

program where n' is a node number of the corresponding sub-tree. For
instance, let the rrfî rule has Nm clauses which are arranged in an OR-
tree as follows:

入
於八。

• 3 (^ 4

入
Each leaf in the tree represents a clause. In the example, the tree has six
clauses, i.e. Nm = 6. There are 11 nodes in the tree, and the number of
nodes is denoted by N’m. n' in the list {m，n,} is between 0 and N’m-i.

Page 81

Thus, {m, n'} represents a clause if n' corresponds to a leaf node. It
refers to a set of clauses if n' corresponds to an internal node in the tree.

4. {m, n, 1'} refers to a literal or a set of literals of the nth clause of the nfi^
rule where 1' is also a node number of the corresponding sub-tree. For
example, let the clause has Lm，n antecedent literals. These literals are
arranged in an AND-tree as follows:

^ ^ 0

(an^ 1 • s

AU m 5

八
參 3 • 4 # 6 參 7

Each leaf in the tree represents an antecedent literal and there are 5
antecedent literals, i.e. Lm，n = 5. Let the number of nodes in an AND
tree be Lm,n which is 9 for the above tree. The third number in {m, n,
1'} can have value between 0 and L’m，n - 1. {m, n，1’} represents a
literal if 1' refers to a leaf node. It is a set of literals if 1’ refers to an
internal node.

There are four kinds of crossover points represented by the above lists of
numbers. Two crossover points are compatible if their representations (i.e. lists) have
the same number of elements. In GLPS, crossover between two parental programs can
only occur at c o m p a t i b l e crossover points. Consider the logic program Progi
represented in Horn clauses:

Page 82

CI: cup(X) ：- i n s u l a t e — h e a t (X) , s t a b l e (X) ,
l i f t a b l e (X) .

C2 : cup (X) : - paper—cup (X).
C3 ： s t a b l e (X) ：- b o t t o m (X, B) , f l a t (B).
C4: s t a b l e (X) : - bo t tom(X, B) , c o n c a v e (B) .
C5： s t a b l e (X) ：- has—suppor t (X) .
C6： l i f t a b l e (X) : - has (X, Y), h a n d l e (Y) .
C7： l i f t a b l e (X) ：- s m a l l (X) , made—from(X, Y),

low—densi ty(Y) .
and the logic program Prog2：

CI ‘ ： cup(X) ：- i n s u l a t e _ h e a t (X) ' s t a b l e (X) .
C 2 ' : s t a b l e (X) : - bo t tom(X, B) , f l a t (B) ,

c o n c a v e (B) , has—suppor t (X)•

The forests of AND-OR trees of Progi and Prog2 are depicted respectively in figures
4.2 and 4.3.

Page 83 .

Rule for cup(X) - The first rule of the program

cup(X) c1 c2

Q o pape?-Lp(X)

cT c2 1 ^ ^ ^ 2

— 入
stable(X) liftable(X)

Rule for stable(X) - The second rule of the program
stable(X) c3 c4 ^

has—::—)

• 八 1 八 2
c5 bottom(X,B) flat(B) bottom(X, B) concave(B)

c3 c4

Rule for liftable(X) • The third rule of the program

liftable(X) ^ ^

2 八 2
^ 。7 has(X, Y) handle(Y) (and)1 >
⑦ c/ low-density(Y)

A
small(X) made-from(X, Y)

Figure 4.2: The And-Or trees of the program Progi.

Page 84

Rule for cup(X) - The first rule of the program

cup(x) cr

C ; � © �

insulate_heat(X) stable(X)

Rule for stable(X) - The second rule of the program

stable(X)

• 0 c2_
c2' (^ 0

bottom(X, B) flat(B) concave(B) has_support(X)

Figure 4.3: The And-Or trees of the program Prog2.

If the crossover points are empty lists {}, the offspring are identical to their
parents and the crossover operation degenerates to reproduction. Thus, GLPS has no
independent reproduction operation. There is a parameter Pq which controls the
probability of reproduction.

The parameter Pi controls the probability of a list with only one element being
generated. For instance, if the crossover points are {2} and {2}, the offspring are:

Page 85

CI: cup(X) ：- i n s u l a t e — h e a t (X) , s t a b l e (X) ,
l i f t a b l e (X) .

C2: cup (X) ： - paper—cup (X).
C2 ‘ : s t a b l e (X) : - b o t t o i n (X , B) , f l a t (B) ,

c o n c a v e (B) , h a s — s u p p o r t (B) •
C6: l i f t a b l e (X) : - has (X , Y), h a n d l e (Y) .
C7: l i f t a b l e (X) ：- s m a l l (X) , made_from(X, Y),

low—densi ty(Y) .
and

CI • ： cup(X) ：- i n s u l a t e — h e a t (X) , s t a b l e (X) •
C3 : s t a b l e (X) : - b o t t o n i (X , B) , f l a t (B) .
C4 : s t a b l e (X) : - b o t t o m (X , B) , c o n c a v e (B) .
C5 : s t a b l e (X) : - h a s — s u p p o r t (X) •

Here, the exchanged program fragments are depicted in bold-face. The
parameter P2 determines the probability that a list of two elements is generated. If the
crossover points are {2, 1} for Progi and {2，0} for Prog2, the offspring are:

CI : cup(X) ：- i n s u l a t e _ h e a t (X) , s t a b l e (X) ,
l i f t a b l e (X) .

C2: cup(X) ••- p a p e r _ c u p (X) .
C2 ‘ : s t a b l e (X) : - b o t t o i n (X , B) , f l a t (B) ,

c o n c a v e (B) , h a s一 s u p p o r t (X) •
C5: s t a b l e (X) : - has一suppor t (X) .
C6: l i f t a b l e (X) ：- has (X, Y) , hand le (Y) •
C7: l i f t a b l e (X) : - s m a l l (X) , made_from(X, Y),

low—density (Y).
and

Page 86 .

CI: cup(X) ：- i n s u l a t e — h e a t (X) , s t a b l e (X) ,
C3 : stable(X) : - bottom(X, B), flat(B).
C4: stable(X) : - bottom(X, B) , concave(B).

The parameter P3 determines the probability that a list of three elements is
created. If the crossover points are {2，3，0} for Progi and {2, 0，1} for Prog2, the
offspring are:

CI： cup(X) ：- insulate—heat(X), stable(X)'
liftable(X).

C2 : cup (X) : - paper_cup (X) •

C3: stable (X) :- bottom (X, B) , flat (B).
C4： stable (X) ：- bottom(X, B) , flat (B).
C5: stable (X) :- has—support (X) •
C6: lif table (X) ：- has (X, Y) , handle (Y).
C7: lif table (X) :- small (X) , made_from(X, Y)'

1ow 一density(Y)•

and
CI ‘ ： cup(X) :- insulate—heat(X), stable(X).

C2 ' : stable (X) : - bottom(X, B) , concave (B),
concave(B), has—support(X)•

Hence, the crossover operation has many effects depending on the crossover
points and only generates syntactically valid logic programs.

4.4. Genetic Logic Programming System (GLPS)

This section presents the evolutionary process performed by GLPS. It starts with an
initial population of first-order logic programs generated randomly, induced by other

Page 87 .

learning systems, or provided by the user. The initial logic programs are composed of
predicate symbols, terms and atomic formulas of the problem domain. An atomic
formula can be defined extensionally as a list of tuples for which the formula is true or
intensionally as a set of Horn clauses that can compute whether the formula is true.
Intensional atomic formulas can also be standard built-in formulas that perform
arithmetic, input/output and logical functions etc.

For concept learning (DeJong et al. 1993, Janikow 1993, Greene and Smith
1993)，each individual logic program in the population is measured in terms of how
well it covers positive examples and excludes negative examples. This measure is the
fitness function of GLPS. Typically, each logic program is run over a number of
training examples so that its fitness is measured as the total number of misclassified
positive and negative examples. Sometimes, if the distribution of positive and negative
examples is extremely uneven, this fitness function is not good enough to focus the
search. For example, assume that there are 2 positive and 10000 negative examples, if
the number of misclassified examples is used as the fitness function, a logic program
that deduces everything are negative will have very good fitness. Thus, in this case, the
fitness function should be a weighted sum of the total numbers of misclassified positive
and negative examples. GLPS can also learn logic programs computing arithmetic
functions such as square root or factorial. In this case, the fitness function calculates the
difference between the outputs found by the logic program and the target arithmetic
function.

The initial logic programs in generation 0 are normally incorrect and have poor
performances. However, some individuals in the population will be fitter than others.
The Darwinian principle of reproduction and survival of the fittest and the genetic
operation of sexual crossover are used to create new offspring population of programs
from the current population. The reproduction operation involves selecting a program
from the current population of programs and allowing it to survive by copying it into

Page 88

the new population. The selection is based on either fitness (fitness proportionate
selection) or tournament (tournament selection).

Input：
Preds: The set of predicate symbols such as {pi, P2/ Pn)
Terms: The set of terms such as { ti, t2, W)
Target: A special predicate symbol in Preds that indicates the

target concept to be induced
Sub: A set of predicate syinbols in Preds that indicate the

sub-concepts to be learned. If there is no sub-concept in
the target logic programs, then Sub is an empty set.

Depth: It specifies the maximum depth of the AND-OR trees to be
generated.

Balance： It is a parameter that controls whether balance or
unbalance AND-OR trees will be generated,

t The termination function,
f The fitness function.

Output:
A logic program induced by GLPS.

Function GLPS(Preds, Terms, Target, Sub, Depth, Balance, t, f) {
• generation := 0.

• Initialize a population Pop(generation) of logic programs. They
are generated by calling the function
Generate-Trees(Preds, Terms, Target, Sub, Depth, Balance),
provided from the user, or generated by other learning systems.

• Execute each logic program in the Pop(generation) and assign it
a fitness value according to the fitness function f.. The
fitness value of a program measures how well it covers positive
examples and excludes negative examples.

• While the termination function t is not satisfied do
• Create a new population Pop(generation+l) of programs by

employing the crossover and the mutation. The operations
are applied to logic programs chosen by either fitness
proportionate selection or tournament selection.

• Evaluate the fitness of each individual in the next
population Pop(generation+l)

• generation := generation +1.
• Return the best logic program found in any generation of a run.

}

Table 4.2: The high-level description of GLPS.

The genetic process of crossover is used to create two offspring programs from
the parental programs selected by either fitness proportionate selection or tournament
selection. The parental programs are usually of different sizes and shapes and the
offspring programs are composed of the clauses and the literals from their parents.

Page 89

These offspring programs are typically of different sizes and shapes from their parents.
The new generation replaces the old generation after the reproduction and crossover
operations are performed on the old generation. The fitness value of each program in
the new generation is estimated and the above process is iterated over many generations
until the termination criterion is satisfied.

The algorithm will produce populations of programs which tend to exhibit
increasing average fitness in producing correct answers for the training examples.
GLPS returns the best logic program found in any generation of a run as the result. A
high-level description of GLPS is presented in table 4.2.

4.5. Applications

An implementation of GLPS is completed. It is implemented in CLOS (Common Lisp
Object System). It has been tested on various CLOS implementations and different
hardware platforms including CMU Common Lisp on a SparcStation, Lucid Common
Lisp on a DecStation and MCL on a Macintosh.

Three applications on learning solved by GLPS are given below as
demonstrations, namely, the Winston's arch problem (Winston 1975), the modified
Quinlan's network reachability problem (Quinlan 1990)，and the factorial problem. Five
runs are performed for each problem. The parameters Pq, Pi, ?2 and P3 are 0.0，0.1,
0.3 and 0.6 respectively. The maximum number of generations of each run is 50 for the
first two problems and 20 for the third problem.

Page 90

4.5.1. The Winston's arch problem

In this learning task, the objective is to learn the nature of arches from examples
(Winston 1975). The domain has several operational relations. A relation is operation if
it is represented extensionally. The operational relations are as follows:

• s u p p o r t s (A, B) - A supports B
• l e f t - o f (A, B) - - A i s on the left of B
• t o u c h e s (A, B) - A touches B
• b r i c k (A) -- A is a brick
• wedge (A) -- A is a wedge
• p a r a l l e l - p i p e d (A) - A is a brick or a wedge.

The non-operational relation a r c h (A' B' C) contains all tuples <A, B, C>
that form an arch with lintel A. There are 2 positive and 1726 negative training
examples. Since the number of negative examples is much larger than that of positive
examples, the standardized fitness is the weighted sum of the number of misclassified
examples. Each misclassified positive example has weight 863 while the negative one
has weight 1. The predicate symbols are the operational and non-operational predicates
described. The set of terms is {A, B' C} and the population size is 1000. The
maximum number of generations is 50. GLPS can find a near correct program within 2
generations. One of the best programs induced is:

a r c h (A , B, C) ：- l e f t - o f (C , B) , w e d g e (C) .
a r c h (A , B, C) ：- l e f t - o f (B , C) , s u p p o r t s (B , A) .

The standard solution of this problem is:
a r c h (A, B, C) : - l e f t - o f (B, C) , s u p p o r t s (B, A) ,

n o t t o u c h e s (B , C) .

Page 91

and it is similar to the second clause of the program induced. The completely correct
program cannot be induced by GLPS because negative antecedent literals are not
allowed in the preliminary implementation. Figure 4.4 delineates the best, average, and
worst standardized fitnesses for increasing generations.

Winston's Arch ProblenTl % Av?ragl
* Worst J

10000-j—I

{ AAAi I AAA A ik AAAinflrA
1000——V —

s 100-

i V)
10

i l l _ I _ _ I _ _ u
0 10 20 30

Generation

Figure 4.4: Performance for the Winston's Arch problem.

4.5.2. The modified Quinlan's network reachability
problem

The network reachability problem is originally proposed by Quinlan (Quinlan 1990),
the domain involves a directional network such as the one depicted as follows:

Page 92

The structural information of the network is represented by the literal
l i n k e d - t o (X, Y) denoting that a node X is directly linked to a node Y. The
extension of linked-to(X, Y) is:

linked-to(X, Y) = {<0, 1>, <1, 2>, <2, 3>, <3, 4>}

Here, the learning task is to induce a logic program that determines whether a
node X can reach another node Y. This problem can also be formulated as finding the
intensional definition of the relation c a n - r e a c h (X, Y) given its extension. Its
extensional definition is:

can-reach(X, Y) 二 {<0, 1>, <0, 2>, <0, 3>, <0, 4>,

<1, 2>, <1, 3>, <1, 4>, <2, 3>,

<2, 4>, <3, 4>}

The tuples of this relation are the positive training examples, and the negative
training examples are generated using the close-world assumption. Thus the extensional
definition of the relation n o t c a n - r e a c h (X, Y) is:

not can-reach(X, Y) = {<0, 0>, <1, 0>, <1, 1>, <2, 0>,
<2, 1>, <2, 2>, <3, 0>, <3, 1>,

<3, 2>, <3, 3>, <4, 0>, <4, 1>,

<4, 2>, <4, 3>, <4, 4>}

In this experiment, the predicate symbols are c a n - r e a c h and linked-to.
The symbol c a n - r e a c h represents the target concept while l i n k e d - t o is an
operational concept. The set of terms is {X, Y, Z}. The population size is 1000 and
the standardized fitness is the total number of misclassified training examples. The
maximum number of generations is 50. Since the symbol c a n - r e a c h is in the set of
predicate symbols, it is possible to evolve a non-terminating recursive program such as
the following one:

can-reach(X, Y) :- can-reach(Y, X).

Page 93

In order to avoid this problem, an execution time limit is set. If an evolved logic
program fails to complete within five seconds, the inference engine will terminate the
program and GLPS will assign the worst standardized fitness value, 25, to it.

GLPS can find a perfect program that covers all positive examples while
excludes all negative ones within a few generations. One program found is:

c a n - r e a c h (X , Y) : - l i n k e d - t o (Z , Y) , l i n k e d - t o (X , Z) •
c a n - r e a c h (X , Y) ：- l i n k e d - t o (X , Y) , l i n k e d - t o (X , Z) .
c a n - r e a c h (X , Y) ：- c a n - r e a c h (X , Z) , c a n - r e a c h (Z , Y) .

This program can be simplified to:
c a n - r e a c h (X , Y) : - 1 i n k e d - t o (X , Z) , 1 i n k e d - t o (Z , Y)•
c a n - r e a c h (X , Y) : - 1 i n k e d - t o (X , Y)•
c a n - r e a c h (X , Y) ：- c a n - r e a c h (X , Z) , c a n - r e a c h (Z , Y)•

The first clause of this program declares that a node X can reach node Y if there
is another node Z that directly connects them. The second clause declares that a node X
can reach a node Y if they are directly connected. The third clause is recursive, it
expresses that a node X can reach a node Y if there is another node Z, such that Z is
reachable from X and Y is reachable from Z. In fact, this program is semantically
equivalent to the standard solution:

c a n - r e a c h (X, Y) ：- 1 i n k e d - t o (X, Y) •
c a n - r e a c h (X , Y) ：- l i n k e d - t o (X , Z) , c a n - r e a c h (Z , Y) .

This experiment demonstrates that GLPS can learn recursive program naturally
and effectively. Recursive functions are difficult to learn in Koza's GP (Koza 1992).
This experiment shows the advantage of GLPS over GP. Figure 4.5 depicts the best,
average, and worst standardized fitness values for increasing generations.

Page 94

Simplified network problem I •Averagl
Population size 1000 • * Worst I

2 0 I I—I

15
<u
；

1 10-�^««^
I ••象 (n 5- -li^Q

Q ' •••••••• 一— ••圓••_••••••••_" • • • •- " - "— 1__ 10 20 30 40 50
Generation

Figure 4.5: Performance for the modified network reachability problem.

4.5.3. The factorial problem

This experiment learns the relation f a c t o r i a l (X' Y) where Y is the factorial of X.
The predicate symbols are f a c t o r i a l , p l u s , and m u l t i p l i c a t i o n . The symbol
f a c t o r i a l represents the target concept while p l u s and m u l t i p l i c a t i o n are
built-in predicates that perform arithmetic operations. The literal f a c t o r i a l (X' Y)
finds the factorial of X and assigns the result to Y if X is instantiated and Y is not
instantiated. It is satisfied if Y is the factorial of X if X and Y are instantiated. The literal
is not satisfied if X and Y are not instantiated.�

The literal p l u s (X, Y, Z) finds the sum of X and Y and assigns the output
to Z if X and Y are instantiated and Z is not instantiated. It finds the difference of Z and
X and assigns the result to Y if X and Z are instantiated and Y is not instantiated. It
calculated the difference of Z and Y and assigns the output to X if Z and Y are
instantiated and X is not instantiated. If X，Y and Z are all instantiated, the literal

Page 95

p l u s (X, Y, Z) is satisfied if the sum of X and Y is equal to Z. The literal is not
satisfied if more than one variable is not instantiated.

The literal m u l t i p l i c a t i o n (X, Y, Z) finds the product of X and Y and
assigns the output to Z if X and Y are instantiated and Z is not instantiated. It divides Z
by X and assigns the result to Y if X and Z are instantiated and Y is not instantiated. It
divides Z by Y and assigns the output to X if Z and Y are instantiated and X is not
instantiated. If X，Y and Z are all instantiated, the literal m u l t i p l i c a t i o n (X' Y'
Z) is satisfied if the product of X and Y is equal to Z. The literal is not satisfied if more
than one variable is not instantiated or division by zero is attempted.

The set of terms is {0, 1, 2, W, X, Y, Z}. The population size is 1000
and the maximum number of generations is 20. The standardized fitness of a program is
defined as follows:

• • ri 7 ,prog_factorial{i) - factorial{i)
ymin[l, abs (,善.)J
^ jactorial{i)

where i is the input value;

factorial(i) returns the correct result for the input i;

prog—factorial(i) returns the result of the logic program

for the input i

In this experiment, we uses five fitness cases for i from 0 to 4. In order to
prevent the problem of non-terminating recursive programs, any evolved program that
fails to finish within 100 seconds will be terminated and the worst standardized fitness
value, 5, is assigned to this program. A logic program is invoked through the goal
f a c t o r i a l (X, Y) where X is instantiated to a value between 0 and 4 while Y must
be unbound. Since the search space of this problem is extremely large, a number of
incorrect initial clauses are used to create the initial population of programs. An

Page 96

individual program contains a random subset of clauses from these incorrect initial
clauses. The clauses are as follows:

factorial(0, 1) ：- plus(l, 1, 2) •

factorial(1, 1) ：- plus(l, 1, 2).

factorial(X, Y) :- plus(Z, 1, X), plus(X, Y Z)•

factorial(X, Y) :- plus(Z, X' Y) factorial(Z' W)'

m u l t i p l i c a t i o n (W , X, Y) .
factorial(1, 1) ：- plus(l, 1' 2)'

m u l t i p l i c a t i o n (X , X, Y)•
factorial (X, Y) :- plus(Z, 1, X)'

m u l t i p l i c a t i o n (Z , Z, W),
m u l t i p l i c a t i o n (W , X, Y)•

f a c t o r i a l (X , Y) : - f a c t o r i a l { Z , W),
m u l t i p l i c a t i o n (W , X, Y),
m u l t i p l i c a t i o n (X , Y, Z)•

factorial (X, Y) :- plus (X, X, W),

m u l t i p l i c a t i o n (W , W, Z) ,
m u l t i p l i c a t i o n (Z , X, Y) .

factorial(X, Y) :- multiplication(X, X, W),

factorial(W, Z), plus(Z, X, Y)•

During one of the runs, the correct logic program is induced in the eighth
generation. The program is

Page 97

factorial (0, 1) ：- pliis(l, 1, 2) •

factorial(X, Y) :- factorial(Z, W),

multiplication(W, X, Y),

multiplication(X, Y, Z)•

factorial(X, Y) :- plus(Z, X' Y)' factorial(Z, W)'

multiplication(W, X, Y)•

factorial(0, 1) :- multiplication(W, 0, 1)•

factorial (X, Y) ：- multiplication(W' X' Y)'

multiplication(W, X, Y),

multiplication(X, Y, Z).

factorial(1, 1) :- plus(l, 1, 2),
multiplication(X, X, Y)•

factorial (X, Y) :- plus (Z, 1, X) , factorial (Z, W),

multiplication(W, X, Y).

factorial (X, Y) :- plus(Z, 1, X), plus (X, Y' Z).

It seems that the above program will execute infinitely because of the second
clause. In fact, the inference engine can check immediately that this clause cannot be
satisfied. The variables Z and W in the second clause are unbound when the sub-goal
f a c t o r i a l (Z, W) is invoked. Since f a c t o r i a l (A, B) fails if A and B are
unbound, the sub-goal f a c t o r i a l (Z, W) fails and the second clause will not cause
infinite recursion.

As described previously, the logic program is invoked through the goal
f a c t o r i a l (X, Y) where X is instantiated to a value between 0 and 4 while Y must
be unbound. Thus, the third clause of the program will fail because two of the variables
of the sub-goal plus (Z, X, Y) are unbound. Similarly, the fifth and the sixth

Page 98

clauses will also fail. To comprehend the behavior of the program, we remove these
clauses and simplify the program to:

factorial(0, 1) ：- plus(l' 1' 2).

factorial(0, 1) ：- multiplication (W, 0, 1).

factorial (X, Y) :- plus(Z, 1, X), factorial (Z, W),

m u l t i p l i c a t i o n (W , X, Y)•
factorial (X, Y) :- plus(Z, 1, X), plus (X, Y, Z).

Since the second clause in the simplified program cannot be satisfied in every
situation, it is removed from the program too. Although the last clause is incorrect, it
will never be used during execution, so it can be deleted too. The final program is:

factorial(0, 1) ：- plus(1, 1' 2).
factorial(X, Y) :- plus(Z, 1, X), factorial(Z, W),

multiplication(W, X, Y)•

which is a correct logic program to find the factorial of a number. Figure 4.6 depicts the
average of the best, average, and worst standardized fitness values over 5 runs against
increasing generations.

Factorial Problem! Z Z l Z l J
Population size 1000 | U Avĉ Worst |

6 ::::::mmmmmrnmmmAm::::::；：：：：：：；；；：：；：̂：；：：；；：：；̂ :::::凝落：丨丨：丨:::::gj顔：漏__

I 4 -^― —…丨‘'。丨-— — — — £ TJ
S 3- — — ~ 一 ~ _ _ _ _ _ _ •2
CO TJ
a 2 — — — — —

1 — — — — 〜 , • 嗜 ‘ *

0 I I 丨
0 5 10 15 20

Generation

Figure 4.6: Performance for the factorial problem. Page 99
/

Chapter 5 The logic grammars based genetic programming system (LOGENPRO)
GLPS described in the previous chapter achieves the goal of combining GP and ILP.
However, GLPS can only induce logic programs. In theory, programs in any
programming language can be represented as parse trees. Hence, GP should be able to
learn programs in any programming languages. In practice, the process of translating
programs in some languages to the corresponding parse trees is not trivial. Since the
syntax of Lisp is so simple and uniform that the translation can be done easily,
programs evolved by GP are usually expressed in Lisp.

In this chapter, we propose a novel, flexible, and general framework that
combines GP and ILP. This framework is based on a formalism of logic grammars and
a system called LOGENPRO (The LOgic grammar based GENetic PROgramming
system) is developed. LOGENPRO can learn programs in various programming
languages.

The first section is an introduction to logic grammars. Section 5.2 presents a
representation method of programs and a description of the mechanism used to generate
the initial population of programs. One of the genetic operators, crossover, is detailed in
section 5.3. Another genetic operator, mutation, is presented in the subsequent section.
In section 5.5，we present a high-level description of LOGENPRO. The last section is a
discussion.

Page 100

5.1. Logic grammars

The LOgic grammars based GENetic PROgramming system (LOGENPRO) can induce
programs in various programming languages such as Lisp, C, and Prolog. Thus,
LOGENPRO must be able to accept grammars of different languages and produce
programs in them. Most modern programming languages are specified in the notation
of BNF (Backus-Naur form) which is a kind of context-free grammars (CFGs).
However, LOGENPRO is based on logic grammars because CFGs (Hopcroft and
Ullman 1979，Lewis and Rapadimitrion 1981) are not expressive enough to represent
context-sensitive information of some languages and domain-dependent knowledge of
the target program being induced. This section introduces the formalism of logic
grammars.

Logic grammars are the generalizations of CFGs. Their expressivenesses are
much more powerful than those of CFGs, but equally amenable to efficient execution.
In this thesis, logic grammars are described in a notation similar to that of definite
clause grammars (Pereira and Warren 1980, Pereira and Shieber 1987，Sterling and
Shapiro 1986). The logic grammar for some simple S-expressions in table 5.1 will be
used throughout this chapter. More logic grammars for S-expressions can be found in
the next chapter. Grammars for some logic programming languages can be found in
chapters 6 and 7. �

1： start -> [(*], exp{W), exp(W), exp(W),[)].
2: start -> {member(?x, [W, Z])} , [(*], exp-1(?x),

exp-1(?x), exp-1(?x),[)].
3: start -> {meitiber {?x, [W, Z]) } , [(+] , exp-1 (?x),

exp-1(?x), exp-l(?x),[)].
4: exp(?x) -> [{/ ？X 1.5)]•
5: exp-1(?x) -> {random(l,2,?y)}, [(/ ？x ？y)].
6: exp-1 (?x) -> {randoin(3, 4, ?y) } , [(- ？x ？y)].
7： exp-1(W) -> [(+ (- W 11) 12)].

Table 5.1: A logic grammar

Page 101

A logic grammar differs from a CFG in that the logic grammar symbols,
whether terminal or non-terminal, may include arguments. The arguments can be any
term in the grammar. A term is either a logic variable, a function or a constant. A
variable is represented by a question mark ？ followed by a string of letters and/or
digits. A function is a grammar symbol followed by a bracketed n-tuple of terms and a
constant is simply a 0-arity function. Arguments can be used in a logic grammar to
enforce context-dependency. Thus, the permissible forms for a constituent may depend
on the context in which that constituent occurs in the program. Another application of
arguments is to construct tree structures in the course of parsing, such tree structures
can provide a representation of the semantics of the program.

The terminal symbols, which are enclosed in square brackets, correspond to the
set of words of the language specified. For example, the terminal [(- ？x ？y)]
creates the constituent (- 1 . 0 2 . 0) of a program if ？ x and ？y are instantiated
respectively to 1.0 and 2.0. Non-terminal symbols are similar to literals in Prolog,
e x p - 1 (？x) in table 5.1 is an example of non-terminal symbol. Commas denote
concatenation and each grammar rule ends with a full stop.

The right-hand side of a grammar rule may contain logic goals and grammar
symbols. The goals are pure logical predicates for which logical definitions have been
given. They specify the conditions that must be satisfied before the rule can be applied.
For example, the goal member (?x , [W, Z]) in table 5.1 instantiates the variable
？X to either W or Z if ？x has not been instantiated, otherwise it checks whether the
value of ？ X is either W or Z. If the variable ？ y has not been bound, the goal
random (1, 2 , ？y) instantiates ？y to a random floating point number between 1
and 2. Otherwise, the goal checks whether the value of ？y is between 1 and 2.

Page 102

Domain-dependent knowledge can be represented in logic goals. For example,
consider the following grammar rule:

a-useful-program -> first-component(？X)‘
{ i s - u s e f u l (? X , ？Y)},
second-component(？Y).

This rule states that a useful program is composed of two components. The first
component is generated from the non-terminal f i r s t - c o m p o n e n t (？X). The logic
variable ？ X is used to store semantic information about the first component produced.
The logic goal then determines whether the first component is useful according to the
semantic information stored in ？X. Domain-dependent knowledge about which
program fragments are useful is represented in the logical definition of this predicate. If
the first component is useful, the logic goal i s - u s e f u l (？X' ？Y) is satisfied and
some semantic information is stored into the logic variable ？ Y. This information will be
used in the non-terminal second-component (？Y) to guide the search for a good
program fragment as the second component of a useful program.

The special non-terminal s t a r t corresponds to a program of the language. In
table 5.1, some grammar symbols are shown in bold-face to identify the constituents
that cannot be manipulated by genetic operators. For example, the last terminal symbol
[)] o f the second rule is revealed in bold-face because every S-expression must be
ended with a ’)’. The number before each rule is a label for later discussions. It is not
part of the grammar.

5.2. Representations of programs

The fundamental contribution of LOGENPRO is in the representations of programs in
different programming languages appropriately so that initial population can be
generated easily and the genetic operators such as reproduction, mutation, and
crossover can be performed effectively. A program can be represented as a derivation

Page 103

tree that shows how the program has been derived from the logic grammar.
LOGENPRO applies deduction to randomly generate programs and their derivation
trees in the language declared by the given grammar. These programs form the initial
population. For example, the program (* (/ W 1 .5) (/ W 1 .5) (/ W 1 . 5))
can be generated by LOGENPRO given the logic grammar in table 5.1. It is derived
from the following sequence of derivations:

start => [(*] exp(W) exp(W) exp(W)[)]

=> [(*] [(/ W 1.5)] exp(W) exp(W)[)]

=> [(*] [(/ W 1.5)] [(/ W 1.5)] exp(W)

[)]
=> [(*] [(/ W 1.5)] [(/ W 1.5)]

[(/ W 1 . 5)] [)]
=> [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))]

This sequence of derivations can be represented as the derivation tree depicted in figure
5.1.

start

[(*] e x p (W) exp(W) f e x p (W) [)] |

I I . I I I
[{/ ？X 1 .5)] [(/ ？X 1.5)]I [(/ ？X 1.5)] I

{？x/W} {？x/W} [{?x/W} I

Figure 5.1: A derivation tree of the S-expression in Lisp
(* (/ W 1.5) (/ W 1.5) (/ W 1.5))

Page 104

In literature, the terms of derivation trees and parse trees are usually used
interchangeably. However, we will use the term derivation trees to refer to the tree
structures in our framework and the term parse trees to refer to those in GP. The
bindings of logic variables are shown in italic font and enclosed in a pair of braces. The
sub-trees enclosed in a dashed rectangular are frozen. In other words, they are
generated by bold-faced grammar symbols and they cannot be modified by genetic
operators.

One advantage of logic grammars is that they specify what is a legal program
without any explicit reference to the process of program generation and parsing.
Furthermore, a logic grammar can be translated into an efficient logic program that can
generate and parse the programs in the language declared by the logic grammar (Pereira
and Warren 1980, Pereira and Shieber 1987, Abramson and Dahl 1989). In other
words, the process of program generation and parsing can be achieved by performing
deduction using the produced logic program. Consequently, the program generation
and analysis mechanisms of LOGENPRO can be implemented using a deduction
mechanism based on the logic programs translated from the grammars. In the following
paragraphs, we discuss the method of implementing LOGENPRO using a Prolog-like
logic programming language.

The differences between the logic programming language used and Prolog are
listed as follows:

• A variable is represented by a question mark ？ followed by a string of
letters and/or digits.

• The elements of a list can be separated by either commas or spaces. For
example, [a b c] and [a , b , c] are equivalent.

• A pair of • | ' is used to represent a frozen terminal symbol. For
example, the symbol [)] in the second rule of the grammar in table 5.1
is translated into |) .

Page 105

• A pair of braces encloses a sequence of logic goals appearing in a logic
grammar.

• If there are a number of clauses Ci, C2, Cn that match a goal G, the
ordering of evaluating these clauses is determined randomly.

Using the difference list approach (Sterling and Shapiro 1986)，a grammar rule
of the form:

Ao -> Al, A2, . • • , An.
is translated into a logic program clause of the form:

Ao ‘ : - Al • , A2 • , . . . , An • •
in the logic programming language. Here, if Ai，for some i between 0 and n, is a non-
terminal with M arguments, then Ai ‘ is a literal with M+3 arguments. The predicate
symbols of Ai and Ai ‘ are the same. For example, Ai is translated into
e x p (? X , ？Tree , ？Sj , ？S j+1)，for some j，if Ai is e x p (?X) . The literal
exp (？X, ？Tree, ？Sj, ？ S j +1) states that the sequence of symbols between ？Sj
and ？Sj+i is a sentence of the category represented by the non-terminal symbol
exp (？X) • The derivation tree of the sentence is stored in the logic variable ？Tree.

A terminal symbol such as [a b c] is translated to a literal with 3 arguments:
c o n n e c t ([a b c] , ？Sj , ？Sj+i) , for some j. The predicate c o n n e c t is
defined as:

connect(?A, ？SO, ？SI) :- append(？A, ？SI, ？SO).

This predicate declares that the list of symbols stored in the logic variable ？ A can be
found in the sequence of symbols between ？SO and ？SI.

If Ak, for some k between 1 and n, is a pair of braces enclosing a sequence of
pure logic goals, i.e., A^ has the form of {Go , Gi, . • • . , Gm)，then Ak ‘ is
obtained from Ak by removing the pair of braces.

Page 106

1- ： s tar t (tree (start , [(*], ？El, ？E2, frozen (?E3) , |) |) ,
？SO, ？S5)
：- connect([(*], ？SO, ？SI),

exp{W, ？El, ？SI, ？S2),
exp(W, ？E2, ？S2, ？S3),
exp(W, ？E3, ？S3, ？S4),
connect([)], ？S4, ？S5).

2‘： start(tree(start, {member(?x, [W, Z])}, [(*],
？El, ？E2, frozen{?E3), |)|),?S0, ？S5)
：- member (?x, [W, Z]),

connect([(*], ？SO, ？SI),
exp-l(?x, ？El, ？SI, ？S2),
exp-l(?x, ？E2, ？S2, ？S3),
exp-l(?x, ？E3, ？S3, ？S4),
connect([)], ？S4, ？S5).

3’： start(tree(start, {member(?x, [W, Z])}, [(+],
？El, ？E2, frozen(?E3), |)|),?S0, ？S5)
：- meniber {?x, [W, Z]),

connect([(+], ？SO, ？SI),
exp-l(?x, ？El, ？SI, ？S2),
exp-l(?x, ？E2, ？S2, ？S3),
exp-l(?x, ？E3, ？S3, ？S4),
connect([)], ？S4, ？S5).

4'： exp(?x, tree(exp(?x), [(/ ？x 1 . 5)]) ' ? S 0 ' ？SI)
：- connect{[{/ ？x 1 . 5)] , ？SO, ？SI).

5 ‘ : exp-1{?x, tree(exp-1(?x), {random(1'2,?y)}'
[(/ ？X ？Y)]),?SO, ？SI)

：- random{1, 2, ？y),
connect([(/ ？x ？y)], ？SO, ？SI).

6‘: exp-1{?x, tree(exp-1(?x), {random(3,4,？y)},
[(-？X ？y)]),?S0, ？SI)

：— random{3, 4, ？y),
connect([(- ？x ？y)], ？SO, ？SI).

7'： exp-1(W, tree(exp-1(W), [{+ (- W 11) 12)]),?S0, ？SI)
: - connect([(+ (- W 11) 12)], ？SO, ？SI).

Table 5.2: A logic program obtained from translating the logic
grammar presented in table 5.1

This method of translating a logic grammar into a logic program is common in
the field of natural language processing (Pereira and Warren 1980, Pereira and Shieber
1987, Abramson and Dahl 1989). The original idea of this approach is to rephrase the
special purpose formalism of CFGs into a general purpose first-order predicate logic

Page 107

(Kowalski 1979, Colmerauer 1978, Pereira and Warren 1980). This approach is
further refined and generalized to Define Clause Grammars (DCGs) which can handle
the properties of context-dependency of natural languages effectively.

Since DCGs, a kind of logic grammars, can be translated into efficient logic
programs automatically, parsers and generators for the corresponding natural languages
can be obtained easily. In other words, researchers in the field of natural language
processing only declare the grammar for a particular natural language, and the
translation process will produce the corresponding parser and generator for them.
Moreover, for some cases, the same logic program can be used as both a parser and
generator at the same time.

For example, the grammar depicted in table 5.1 can be translated into the logic
program presented in table 5.2. In the clause 1' of the logic program shown in table
5 . 2 , t h e c o m p o u n d t e r m
t r e e (s t a r t , [(*] , ？El, ？E2, f r o z e n (?E3) , |) |) indicates that it is a
tree with a root labeled as s t a r t . The children of the root include the terminal symbol
[(*] ’ a tree created from the non-terminal exp (W) ’ another tree created from the non-
terminal exp (W), a frozen tree generated from the non-terminal e x p (W), and the
frozen terminal |) .

Thus, a derivation tree can be generated randomly by issuing the following
query:

？- start(?T, ？S,[]).

This goal can be satisfied by deducing a sentence that is in the language specified by the
grammar. One solution is:

？S = [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))]

and the corresponding derivation tree is:

Page 108

？T = t r e e (s t a r t , [(*] ,
tree(exp(W), [(/ W 1.5)]),

tree(exp(W), [(/ W 1.5)]),

frozen(tree(exp(W), [(/ W 1.5)])),

1)1)

This is exactly a representation of the derivation tree shown in figure 5.1. In
fact, the bindings of all logic variables and other information are also maintained in the
derivation trees to facilitate the genetic operations that will be performed on the
derivation trees.

Alternatively, initial programs can be induced by other learning systems such as
f o i l (Quinlan 1990; 1991) or given by the user. LOGENPRO analyzes each program
and creates the corresponding derivation tree. If the language is ambiguous, multiple
derivation trees can be generated. LOGENPRO produces only one tree randomly. For
example, the program (* (/ W 1 . 5) (/ W 1 . 5) (/ W 1 . 5)) can also be
derived from the following sequence of derivations:

start => (member (?x, [W, Z]) } [(*] exp-1 (?x)

exp-1(?x) exp-1(?x)[)]

=> [(*] exp-1(W) exp-1(W) exp-1(W)[)]

=> [(*] {random(1, 2, ？y)} [(/ W ？y)]

exp-1(W) e x p - 1 (W) [)]
=> [(*] [(/ W 1 .5)] e x p - 1 (W) e x p - 1 (W) [)]
=> [(*] [(/ W 1 . 5)]

{random(1, 2, ？y)} [(/ W ？y)]

exp-1(W)[)]

Page 109

二> [(*] [(/ w 1 . 5)] [(/ W 1 . 5)]
exp-l(W)[)]

二> [(*] [(/ W 1.5)] [(/ W 1.5)]

{random(1, 2, ？y)} [(/ W ？y)][)]

=> [(*] [(/ W 1 . 5)] [(/ W 1 . 5)]
[(/ W 1 . 5)] [)]

=> [(* (/ W 1 .5) (/ W 1 .5) (/ W 1 . 5))]
The derivation tree of this sequence of derivations is depicted in figure 5.2. The ？yl,
？y2，and ？y3 in the figure are different instances of the logic variable ？y appearing in
the same or different rules in the grammar.

start

{member {?x, / X I [)]

义 N
[(*] exp-l(?x) exp-l(?x) j exp-1(?x) |

{？x/W} {？x/W) 丨 {？x/W} i / \ ^ ^
/ \ 1 [(/ ？X ？y3)] i / \ 1 {？x/W, ？y3/1.5}\ / \ I

/ \ I {randomd, 2, ？y3) } j
{random! 1, 2, ？yl) } {randomd, 2, ？y2) } \ | {？y3/1.5} |

\
[{/ ？X ？yl)] [(/ ？X ？y2)] {?x/W, ？yl/1.5} {？x/W, ？y2/1.5}

Figure 5.2: Another derivation tree of the S-expression in Lisp
(* (/ W 1.5) (/ W 1.5) (/ W 1.5))

Page 110

Using the logic program in table 5.2, a given program such as
(* (/ w 1 . 5) (/ W 1 . 5) (/ W 1 . 5)) can be analyzed using the following
query:

？- start(?T, [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))], [])•

The given program is correct if the above goal can be satisfied and the corresponding
derivation tree will be bound to the logic variable ？T. As demonstrated previously, the
logic grammar in table 5.1 is ambiguous and thus the corresponding logic program may
produce multiple derivation trees for a given program. Since the search strategy of the
underlying deduction mechanism selects randomly one clause to explore with
backtracking from all unifiable clauses, the sequence of generating the derivation trees
of a particular program is also random. Consequently, LOGENPRO takes the first tree
returned from the query to represent the given program.

5丄 Crossover of programs

The crossover is a sexual operation that starts with two parental programs and the
corresponding derivation trees. One program is designated as the primary parent and
the other one as the secondary parent. The derivation trees of the primary and
secondary parents are called the primary and secondary derivation trees respectively.
The algorithm in table 5.3 is used to produce an offspring program.

Consider two parental programs generated randomly from the grammar in table
5.1. The primary parent is (+ (- Z 3 . 5) (- Z 3 . 8) (/ Z 1 . 5)) and the
secondary parent is (* (/ W 1 . 5) (+ (- W 11) 12) (- W 3 . 5)). The
corresponding derivation trees are depicted in figures 5.3 and 5.4 respectively. In the
figures, the shadowed numbers identify sub-trees of these derivation trees, while the
underlined numbers indicate the grammar rules used in deducing the corresponding
sub-trees.

Page 111

Input： ,
P : The primary derivation tree.
S： The secondary derivation tree.

Output:
Return a new derivation tree if a valid offspring can be obtained
by performing crossover, otherwise return false.

Function crossover(P, S) {

1. Find all sub-trees of the primary derivation tree P and
• store them into a global variable PRIMARY-SUB-TREES'

excluding the primary derivation tree' all logic goals,
and frozen sub-trees•

2. Find all sub-trees of the secondary derivation tree S and
store them into a global variable SECONDARY-SUB-TREES,
excluding all logic goals and frozen sub-trees.

3. If the variable PRIMARY-SUB-TREES is not empty, select
randomly a sub-tree from it using a uniform distribution.
Otherwise, terminate the algorithm without generating any
offspring program.

4. Designate the sub-tree selected as the SEL-PRIMARY-SUB-
tree and the root of it as the PRIMARY-CROSSOVER-POINT.
Remove the SEL-PRIMARY-SUB-TREE from the variable
PRIMARY-SUB-TREES•

5. Copy the variable SECONDARY-SUB-TREES to the temporary
variable TEMP-SECONDARY-SUB-TREES.

6 If the variable TEMP-SECONDARY-SUB-TREES is not empty,
select randomly a sub-tree from it using a uniform
distribution. Otherwise, go to step 3.

7. Designate the sub-tree selected in step 6 as the SEL-
SECONDARY-SUB-TREE. Remove it from the variable TEMP-
SECONDARY-SUB-TREES.

8. If the offspring produced by performing crossover between
the SEL-PRIMARY-SUB-TREE and the SEL-SECONDARY-SUB-TREE
is invalid according to the grammar, go to step 6. The
validity of the offspring generated can be checked by the
procedure is-valid(P, SEL-PRIMARY-SUB-TREE, SEL-
S ECONDARY-SUB-TREE) •

9. Copy the genetic materials of the primary parent P to the
offspring, remove the SEL-PRIMARY-SUB-TREE from it and
then impregnating a copy of the SEL-SECONDARY-SUB-TREE at
the PRIMARY-CROSSOVER-POINT.

10. Perforin some house-keeping tasks and return the offspring
program. }

Table 5.3: The crossover algorithm of LOGENPRO

Page 112

Input：
P： The primary derivation tree
P-sub-tree: The sub-tree in the primary derivation tree that is

selected to be crossed over.
S-sub-tree: The sub-tree in the secondary derivation tree that

is selected to be crossed over.

Output：
Return true if the offspring generated is valid, otherwise return
false.

Function is_valid(P, P-sub-tree, S-sub-tree)

{ 11. Find all siblings of the P-sub-tree in P and store them
into the global variable SIBLINGS-

12. For each sub-tree in the variable SIBLINGS' perform the
following sub-steps:

• store the bindings of the sub-tree to the global
variable BINDINGS.

• For each logic variable in the variable BINDINGS
that is not instantiated by the sub-tree, remove
it from the variable BINDINGS.

• Modify the bindings of the sub-tree.
13. Modify the bindings of the S-sub-tree. A logic variable

is retained only if it is instantiated in the S-sub-tree.
14. If there is a rule in the grammar such that:

• it is satisfied by the sub-trees in the variable
SIBLINGS and the S-sub-tree,

. the sub-trees in the variable SIBLINGS and the S-
sub-tree are used exactly once,

• the sub-trees are applied in the same order as that
in the original rule of the primary derivation
tree, and

• a consistent conclusion C is deduced from the rule.
The conclusion is consistent if the function
is-consistent(P, PARENT, C) returns true where
PARENT is the parent of the P-sub-tree. The
function is-consistent is presented in table 5.5.

then the offspring generated will be valid. Otherwise,
the offspring will be invalid.

}

Table 5.4: The algorithm that checks whether the offspring produced
by LOGENPRO is valid.

Page 113

Input：
P： The primary derivation tree.
PARENT: The parent of the primary sub-tree.
C： The conclusion.

Output:
Return true if the conclusion C is consistent, otherwise return
false.

Comment:
This operation can be viewed as performing a tentative crossover
between PARENT and C and then determining whether the tentative
offspring produced is valid. Here, PARENT is treated as the
primary sub-tree while C is treated as the secondary sub-tree of
the tentative crossover operation. The main difference between
this algorithm and that in table 5.4 is that all rule applications
in all ancestors of PARENT must be maintained.

Function is-consistent(P, PARENT, C) {
15. If PARENT is the root of P then

if c is labeled with the symbol start then
return true

else false.
16. Find all siblings of PARENT in P and store them into the

global variable SIBLINGS.
17. For each sub-tree in the variable SIBLINGS, perform the

following sub-steps：
• Store the bindings of the sub-tree to the global

variable BINDINGS.
• For each logic variable in the variable BINDINGS

that is not instantiated by the sub-tree, remove
it from the variable BINDINGS.

• Modify the bindings of the sub-tree.
18. Let the grammar rule applied in the parent node of PARENT

as RULE.
If the following conditions are satisfied:

• RULE is satisfied by the sub-trees in the variable
SIBLINGS and C,

• the sub-trees in SIBLINGS and C are used exactly
once and the ordering of applications is
maintained, and

• a consistent conclusion C ‘ is deduced from RULE.
The conclusion is consistent if the function
is-consistent(P,. GRANDPARENT, C ‘) returns true
where GRANDPARENT is the parent node of PARENT.

then
return true

else
return false. }

Table 5.5: The algorithm that checks whether a conclusion deduced
from a rule is consistent with the direct parent of the
primary sub-tree.

Page 114

13 2
start

{member {?x, [W , Z] / [)]

2 / e 6 ^ I \ 5

『（+1 exp-1(?x) exp-1(?x) | exp-1{?x) 1 (?x/Z} {?x/Z} I {？x/Z} I

/ \ I 卜 11 I
/ \ i [{/ ?x ？y3)] i

/ \ I {？x/Z, ？y3/1.5}\
/ \ I 10 I

4 / 7 \ I {randomd, 2, ？yS) } |

{random(3, 4, ？yl) } {random。，4, ？y2) } \ | {？y3/1.5} |
5 8 \

[(-？X ？yl)] [(- ？X ？y2)]
{？x/Z, ？yl/3.5} ？y2/3.8}

Figure 5.3: The derivations tree of the primary parental program (+ (-
Z 3 . 5) (- Z 3 . 8) (/ Z 1 . 5))

Page 115

13 2
start

14 ^ ^ ^ ^ ^ ^ ^ I 24
{member (?x, [W,Z])} / \ 1 [)]

15 1 6 / 5 19 t I 2 l \ 6
[(*] exp-1(?x) exp-1(?x) j exp-1(?x) |

{?x/m {？x/W} I 的

/ 卜 I
/ [(- ？X ？Y2)]囊

/ I 22
1 7 / 20 I {randomO, 4, ？y2) } |

{randomd, 2, ？yl) } [(+ (- W 11) 12))] | {？y2/3.5} |
18

[(/ ？X ？yl)]
{？x/W, ？yl/1.5}

Figure 5.4: The derivations tree of the secondary parental program
(* (/ W 1 . 5) (+ (- W 11) 12) (- W 3 . 5))

Page 116

In step 1 of the crossover algorithm, the global variable PRIMARY-SUB-
TREES contains the sub-trees 2，3，S, 6，and 鬆，.The primary derivation tree (i.e. the
sub-tree 0), the sub-trees 1, 4 , 1 , and 10 that contain logic goals, and the frozen sub-
trees 9, 10, n , and 12 are excluded. The whole primary derivation tree cannot be
mated because it must be generated from the grammar symbol s t a r t . If the symbol
s t a r t is not recursive (i.e. s t a r t does not appear on the right hand side of a rule),
the whole secondary derivation tree must be chosen for crossover. Thus, the offspring
program must be a copy of the secondary parental program. In fact, the same effect can
be obtained by reproducing the secondary parental program.

The sub-trees containing logic goals are eliminated for two reasons. Firstly, the
crossover algorithm can be greatly simplified if logic goals are prevented from
performing crossover. Secondly, logic goals specify the conditions that must be
satisfied before the rule can be applied and/or the computations that should be done.
Hence, from the viewpoint of natural selection and reproduction, the interpretation of
crossover between logic goals is unclear and unnatural. Thus this kind of operations is
avoided.

Similarly, the sub-trees 13，IS, 16, 1 鬆，19, and 2 0 are assigned to the
global variable SECONDARY-SUB-TREES in step 2. In the next step, a sub-tree in
the variable PRIMARY-SUB-TREES is selected randomly using a uniform distribution
because the variable is not empty. Assume that the sub-tree 2，the SEL-PRIMARY-
SUB-TREE, is selected. Thus, it is removed from the variable PRIMARY-SUB-
TREES in step 4. A copy of the variable SECONDARY-SUB-TREES is made and
stored into the global variable TEMP-SECONDARY-SUB-TREES in step 5.

Steps 6 to 8 form a loop that finds an appropriate sub-tree from the variable
TEMP-SECONDARY-SUB-TREES. A sub-tree, SEL-SECONDARY-SUB-TREE, is

Page 117

appropriate if a valid offspring can be obtained by executing crossover between the
SEL-PRIMARY-SUB-TREE and the S E L - S E C O N D A R Y - S U B - T R E E . If no
appropriate sub-tree can be found in this loop, the algorithm returns back to step 3 to
find another SEL-PRIMARY-SUB-TREE. Assume that the sub-tree IS is chosen as
the SEL-SECONDARY-SUB-TREE. Step 8 determines whether a valid offspring can
be obtained. It is the most complicate procedure in this algorithm and it is delineated in
table 5.4 and explained in the following paragraphs.

In step 11 of the algorithm shown in table 5.4，the sub-trees 1，3，6, 9, and 12
are found to be the siblings of the SEL-PRIMARY-SUB-TREE 2 and stored into the
global variable SIBLINGS. The SIBLINGS can be thought as the context around the
PRIMARY-CROSSOVER-POINT and the context's consistency has to be checked and
computed. The purpose of step 12 is to remove the bindings established solely by the
SEL-PRIMARY-SUB-TREE which will be deleted by the crossover operation. To
achieve this goal, the bindings of each sub-tree in the variable SIBLINGS is modified
so that only the bindings established by itself is retained. The bindings instantiated by a
sub-tree can be found easily using the techniques of explanation-based learning
(DeJong 1993，Mitchell et al 1986，DeJong and Mooney 1986). For example, the
bindings {？x/Z} of the sub-tree 1 need not be modified because the logic variable ？x

is instantiated to the value Z by the logic goal member (? x , [W, Z]). The bindings
{？x/Z} of the sub-tree 3 is changed to an empty list because the logic variable ？ x is
bound to the value Z by the sub-tree 1. Similarly, the bindings {？x/Z} of the sub-
trees 6 and 9 are changed to empty lists. The bindings of the sub-tree 12 is not
changed because it is already empty.

In step 13，the bindings of the SEL-SECONDARY-SUB-TREE is modified so
that only the bindings established by itself is retained. The purpose is to identify the
effect of the sub-tree on the logic variables. In this example, since the grammar symbol
of the SEL-SECONDARY-SUB-TREE IS has no argument, its bindings is empty. In

Page 118

fact, the primary and secondary derivation trees are pre-processed by LOGENPRO
using an algorithm based on the techniques of Explanation-Based Learning (EBL). The
algorithm finds the bindings established solely by the corresponding sub-trees of the
derivation trees. The results are stored in the sub-trees so that they can be retrieved in
constant time Q . Thus the time complexity of step 12 is 0(n) where n is the number of
sub-trees in the global variable SIBLINGS. Similarly, the time complexity of step 13 is
0(1).

In step 14，the second grammar rule is satisfied by the sub-trees in SIBLINGS
and the SEL-SECONDARY-SUB-TREE. Moreover, this rule reaches the conclusion
s t a r t which is consistent with the requirement of the parent, the sub-tree 0, of the
SEL-PRIMARY-SUB-TREE. Thus, the offspring generated is valid. The procedure
that checks whether a conclusion is consistent is presented in table 5.5.

In step 9 of the crossover algorithm in table 5.3，the offspring is generated. In
the next step, it is returned as the solution after some house-keeping tasks have been
performed. The house-keeping tasks update the bindings and the rule numbers of the
sub-trees of the offspring. The offspring program of this example is (* (-

Z 3 . 5) (- Z 3 . 8) (/ Z 1 . 5)) and its derivation tree is shown in figure 5.5.
It is interesting to find that the sub-tree 21 has the rule number 2. This indicates that the
sub-tree is generated by the second grammar rule rather than the third rule applied to the
primary parent. The second rule must be used because the terminal symbol [(+] is
changed to [(*] and only the second rule can create the terminal [(*] . In fact, this
situation is identified in step 14 of the function i s - v a l i d and a record is maintained
so that the rule number can be changed to 2 by the house-keeping procedure.

In another example, the same primary and secondary parents are used. Assume
that the SEL-PRIMARY-SUB-TREE 3 is selected in step 3 and the SEL-
SECONDARY-SUB-TREE 16 is chosen in step 7 of the crossover algorithm. Now,

Page 119

the siblings of the SEL-PRIMARY-SUB-TREE 3 are the sub-trees 1,2, 6, 9，and 12.
Although the SEL-PRIMARY-SUB-TREE has the bindings {？x/Z},the instantiation
of the logic variable ？x to value Z is done by the sub-tree 1. In other words, the SEL-
PRIMARY-SUB-TREE has not established any binding. In step 12 of the function
i s - v a l i d , the bindings {？x/Z} of the sub-tree 1 is not modified because the logic
variable ？x is instantiated to the value Z by the logic goal member (? x ' [W' Z]) .
The bindings of the sub-trees 2 and 12 are not changed because they are already
empty. The bindings {？x/Z} of the sub-trees 6 is changed to an empty list because the
logic variable ？x is bound to the value Z by the sub-tree 1. Similarly, the bindings
{？x/Z} of the sub-tree 9 is changed to an empty list.

The SEL-SECONDARY-SUB-TREE has the bindings {？x/W}, but the
instantiation of ？x is performed by the sub-tree 14. Thus, the bindings of the SEL-
SECONDARY-SUB-TREE is changed in step 13 to an empty list (i.e. the logic
variable ？x is not instantiated). In step 14，since the third rule satisfies all requirements,
a valid offspring can be created.

The offspring program is (+ (/ Z 1 . 5) (- Z 3 . 8) (/ Z 1 . 5)) and
its derivation tree is depicted in figure 5.6. It should be emphasized that the constituent
from the secondary parent is changed from (/ W 1 . 5) to (/ Z 1 . 5) in the
offspring. This must be modified because the logic variable ？x in the sub-tree 41 is
instantiated to Z in the sub-tree 39. The house-keeping procedure modifies the bindings
of 41 in order to achieve this effect. This example demonstrates the use of logic
grammars to enforce contextual-dependency between different constituents of a
program.

Page 120

13 2
start

{member {?x, [W,Z]) } / \ j [)] (wzpy \
27 / 28 / 6 31 ^ I 3 4 \ 5
「（*1 exp-1(?x) exp-1(?x) ！ exp-1{?x) |

{？x/Z} I {？x/Z} I

/ \ I 卜 I
/ \ I [(/ ? x ？ y 3)] 毫 / \ ！ {？x/Z, ？y3/1.5}\ / \ I 35 I

29 / 32 \ I {randomd, 2, ？y3) } |
{randomO, 4, ？yl)} {random(3, 4, ？y2) } \ I {？y3/1.5} i

{？yl/3.5} {？y2/3.8} N^一———————j
30 3 3 �

[(-？X ？yl)] [(- ？X ？Y2)]
r?x/Z, ？yl/3.5} ？y2/3.8}

Figure 5.5: A derivation tree of the offspring produced by performing
crossover between the primary sub-tree 2 of the tree in
figure 5.3 and the secondary sub-tree Hi of the tree in figure 5.4

Page 121

13 2
start

39 ^ ^ V T ^ ^ S O
{member(?x, [W,Z]) } / \ ^ [)] i

” \
40 X 41 / 5 44 ^ \ K 5
[(+1 exp-1(?x) exp-1(?x) | exp-1(?x) 1

{？x/Z} {？^/Z} I {？x/Z} \

/ \ I 卜 I
/ \ 1 [(/ ?x ？y3)] 1 / \ I "x/Z, ？y3/1.5}\

42 / 45 \ I {randomd, 2, ？y3) } ！

{randomd, 2, ？yl) } {random(3, 4, ？y2) } \ | {？y3/1.5} ''
43 46 \

[{/ ？X ？yl)] [(_ ？X ？y2)]
{?x/Z, ？yl/1.5} ？y2/3.8}

Figure 5.6: A derivation tree of the offspring produced by performing
crossover between the primary sub-tree 3 of the tree in
figure 5.3 and the secondary sub-tree 1(6 of the tree in
figure 5.4

As a further example, the same primary and secondary parents are used.
Assume that the SEL-PRIMARY-SUB-TREE 6 is selected in step 3 of the crossover
algorithm and the SEL-SECONDARY-SUB-TREE 19 is chosen in step 7. The variable
aSIBLINGS contains the sub-trees 1，2，3，9，and 12. In step 12 of the function
i s - v a l i d， t h e bindings {？x/Z} of the sub-tree 1 is not modified. The bindings of
the sub-trees 2 and 12 are not modified because they are already empty. The bindings
{？x/Z} of the sub-trees 3 and 9 are changed to empty lists because the logic variable
？X is bound to thp value Z by the sub-tree 1.

Page 122

The SEL-SECONDARY-SUB-TREE 19 has the bindings {？x/W}. This sub-
tree is generated from the rule 7 and the application of this rule will instantiate the logic
variable ？x to the value W. In other words, the SEL-SECONDARY-SUB-TREE
performs the instantiation of ？x to W. Thus, the bindings of the SEL-SECONDARY-
SUB-TREE is not changed in step 13. It must be mentioned that the sub-tree 14 also
instantiates ？x to W. Since the two sub-trees bind ？ x to the same value W, this situation
is valid. In step 14，no rule can be satisfied by the sub-trees in the variable SIBLINGS
and the SEL-SECONDARY-SUB-TREE. Thus, the two sub-trees 6 and 19 cannot be
mated. The reason is that the same logic variable ？x must be instantiated to different
values Z and W: the sub-tree 19 requires the variable ？x to be instantiated to W while ？x
must be instantiated to Z in the context of the primary parent. The function i s - v a l i d
in table 5.4 can determine this situation and avoid the crossover algorithm from
generating an offspring by exchanging the two sub-trees. Thus, only valid offspring
can be produced and this operation can be achieved effectively.

In the following paragraphs, we estimate the time complexity of the crossover
algorithm. Let the numbers of sub-trees in the primary and secondary derivation trees
are respectively Np and Ns. The numbers of sub-trees in the global variables
PRIMARY-SUB-TREES and SECONDARY-SUB-TREES are respectively Np and
Ns'. Assume that the depth of the primary derivation tree is Dp (Depth starts from 0).
Hence there are Dp rule applications along the longest path from the root to the leaf
node. Let R be the grammar rule having the largest number of symbols on its right
hand side. Then S is the number of symbols on the right hand side of R.

Since the most time-consuming operation of the crossover algorithm is step 8
which calls the function i s - v a l i d . We concentrate on the time complexity of this
step first. In the worst case, this step will calls i s - v a l i d for Np'*Ns' times. In each
execution of the function i s - v a l i d , the purpose of steps 11 to 13 is to find the
bindings established solely by the SEL-SECONDARY-SUB-TREE and the siblings of

Page 123

the SEL-PRIMARY-SUB-TREE. Since the total number of sub-trees to be examined
must be equal to or smaller than S, the steps can be completed in S*Cr time, where Cr
is the constant time to retrieve the bindings established solely by a particular sub-tree of
the sub-trees being examined.

Step 14 is a loop that finds a grammar rule that can be satisfied. Suppose that
the parent of the SEL-PRIMARY-SUB-TREE generates program fragments belonging
to the category CAT. The loop examines all grammar rules for the category CAT. If
there are Nr rules for CAT, step 14 repeats for Nr times.

In each iteration of step 14，the first three operations check whether the rule is
satisfiable. These operations can be viewed as determining whether the SEL-
SECONDARY-SUB-TREE and the sub-trees in the global variable SIBLINGS are
unificable according to the rule (Mooney 1989). Since an efficient, linear time algorithm
exist for unification (Paterson and Wegman 1978). These operations can be completed
in 0(S) time (Mooney 1989).

The last operation of step 14 applies the function i s - c o n s i s t e n t whose
time complexity depends on the depth Dc of the PRIMARY-CROSS OVER-POINT，

where Dc < Dp. There are three cases to be considered. Firstly, Dc cannot be equal to
zero because the whole primary derivation tree cannot be crossed over with the SEL-
SECONDARY-SUB-TREE. Secondly, if Dc is equal to 1，the function i s -
c o n s i s t e n t can be completed in constant time Ci because step 15 will be executed.
Lastly, if Dc is greater than or equal to 2，the function i s - c o n s i s t e n t will
recursively check the rules from the grandparent of the SEL-PRIMARY-SUB-TREE to
the root of the primary derivation tree, to determine whether the rules are satisfied. As
described previously, steps 16 and 17 can be completed in S*Cr time and each rule can
be checked in 0(S) time. In the worst case, the recursive process iterates for Dc times.

Page 124

Hence the func t ion i s - c o n s i s t e n t can be completed in
[(Dc - 1) * (0(S) + S * Cr) + Ci] time.

In summary, each execution of the function i s - v a l i d requires Tis-valid time
which is presented in follows:

Tis - valid = S * C r + N r * [0 (S) + ((Dc 一 1) * (0 (S) + S * Cr) + Cl)]

In the worst case, the depth Dc of the PRIMARY-CROSSOVER-POINT is
equal to Dp. Then the worst case time complexity of the function i s - v a l i d is:

Tis - valid = S * C r + N r * [0 (S) + ((Dp " 1) * (0 (S) + S * Cr) + Cl)]
and the worst case time complexity of the crossover algorithm is:

丄 crossover 一 Np*Ns'*Tis-valid + T i + T2 + T3 + T4
where Ti is the time used to perform steps 1 and 2, T2 is the time employed to execute
steps 3 and 4，T3 is the execution time for steps 5 to 7，and T4 is the time consumed by
steps 9 and 10.

Obviously, Ti depends on the sizes of the primary and secondary derivation
trees, thus its complexity is 0(Np + Ns). If the sub-trees in the variable PRIMARY-
SUB-TREES are permuted randomly using an O(Np') algorithm (Gormen et al. 1990)
before executing steps 3 and 4, these steps can be completed in T2 = O(Np') time.
Similarly, steps 5，6，and 7 can be completed in T3 = 0(Np'*Ns') time. T4 depends on
the sizes of the primary and secondary derivation trees, thus its complexity is
0 (N p + Ns).

Assume that the first term of the above equation is much larger than the other
terms, then the worst case time complexity is approximated by the following equation:

Tcrossover = 0(Np *Ns'*Dp*S*Nr).

Page 125
/ f

m(Dp+i) - 1
If the primary derivation tree is a complete m-ary tree, then — ~ j = Np. In other

words, Dp is of the order of logm(Np). Furthermore, S and Nr are fixed for a given
grammar. Thus, the worst case time complexity of the crossover algorithm is:

Tcrossover = 0(Np *Ns,*logm(Np)).

Since the computation time consumed by performing crossover is insignificant
when compare with the time used in evaluating the fitness of each program in the
population. The issue of computational complexities of various crossover algorithms
has not been addressed by other researchers in the field of Genetic Programming. In
fact, it is easy to calculate that the worst case time complexity of the structure-
preserving crossover algorithm (table 2.5) of ADF (Koza 1994) is 0(Npi*Np2)，where
Npi and Np2 are respectively the sizes of the parental parse trees. Similarly, the
crossover algorithm of STGP (Montana 1993) has the same complexity. Although the
crossover algorithm of LOGENPRO is slightly slower than other algorithms by
0(logm(Np)), it is much more general and powerful than other algorithms.

5.4. Mutation of programs

The mutation operation in LOGENPRO introduces random modifications to programs
in the population. Mutation is asexual and operates on only one program each time. A
program in the population is selected as the parental program. The selection is based on
various methods such as fitness proportionate and tournament selections. The algorithm
in table 5.6 is used to produce an offspring program by mutation.

Page 126

Input：
P： The derivation tree of the parental program

Output:
Return a new derivation tree if a valid offspring can be obtained
by performing mutation, otherwise return false.

Function mutation(P)

{ 1. Find all sub-trees of the derivation tree P of the
parental program and store them into a global variable
SUB-TREES, excluding all frozen sub-trees, logic goals'
and terminal symbols

2. If SUB-TREES is not empty, select randomly a sub-tree
from the SUB-TREES using a uniform distribution.
Otherwise, terminate the algorithm without generating any
offspring.

3. Designate the sub-tree selected as MUTATED-SUB-TREE. The
root of the MUTATED-SUB-TREE is called the MUTATE-POINT.
Remove the MUTATED-SUB-TREE from the variable SUB-TREES.
The MUTATED-SUB-TREE must be generated from a non-
terminal symbol of the grammar. Designate this non-
terminal symbol as NON-TERMINAL. The NON-TERMINAL may
have a list of arguments called ARCS.

4. For each argument in the ARGS, if it contains some logic
variables, determine whether these variables are
instantiated by other constituent of the derivation tree.
If they are, bind the instantiated value to the variable.
Otherwise, the variable is unbounded. Store the modified
bindings to a global variable NEW-BINDINGS.

5. Create a new non-terminal symbol NEW-NON-TERMINAL from
the NON-TERMINAL and the bindings in the variable NEW-
BINDINGS .

6 • Try to generate a new derivation tree NEW-SUB-TREE from
the NEW-NON-TERMINAL using the deduction mechanism
provided by LOGENPRO.

7. If a new derivation tree can be successfully created, the
offspring is obtained by deleting the MUTATED-SUB-TREE
from a copy of the parental derivation tree P and then
impregnating the NEW-SUB-TREE at the MUTATE-POINT. Otherwise-, go to step 3. } �

Table 5.6: The mutation algorithm
Bfu"

P；

1 For example, assume that the program being mutated is (+ (- Z 3 . 5) (-
Z 3 . 8) (/ Z 1 . 5)) and the corresponding derivation tree is depicted in figure

: 5.3. In step 1 of the mutation algorithm, the global variable SUB-TREES contains the
sub-trees 3，and 6. The frozen sub-trees 9, 1©，11，and 12 are excluded. The sub-
trees 1，4，and 1 are also excluded because they contain logic goals of the grammar and

Page 127
V'

thus should not be modified by genetic operations. The sub-trees 2，S, and Z
containing terminal symbols are eliminated for two reasons. First, the mutation
algorithm is significantly simplified if terminal symbol need not be modified. Second,
the effect of mutating terminal symbols can be emulated by the crossover operation.
Recalling the example described in the previous section, the primary sub-tree 2 are
crossed with the secondary sub-tree IS to generate the offspring (* (- Z 3 • 5) (-

z 3 . 8) (/ Z 1 . 5)) . This offspring can be seen as the result of mutating the
terminal symbol [(+] to the [(*] •

In step 2，a sub-tree in the variable SUB-TREES is selected randomly using a
uniform distribution if the SUB-TREES is not empty. Otherwise, the mutation
algorithm terminates without generating any modified program because no valid
mutation can be found. In normal situation, this should not occur because it is almost
always possible to select the whole derivation tree as the one to be mutated. The whole
tree cannot be chosen only if it is frozen. The effect of mutating the whole tree, the
sub-tree • in this example, is equivalent to generating a new program from scratch. A
new program can be created successfully if the language specified by the grammar
contains at least one program (this must be true for a grammar to be useful) and enough
computational resources such as computer memory are available. Thus, the algorithm
will fail to find a mutation only if the whole derivation tree is frozen or not enough
computational resources are available.

Assume that the sub-tree 3 is selected as the MUTATED-SUB-TREE in step 2.
In the next step, the sub-tree 3 is removed from the variable SUB-TREES. The
NON-TERMINAL and the ARGS are e x p - 1 (？x) and { ？x} respectively. Since the
logic variable ？ x is instantiated to Z in the sub-tree 1 by the logic goal

member (?x, [W, Z]) , the bindings { ？x/Z } are stored into the variable

NEW-BINDINGS in step 4.

Page 128

In step 5, the new non-terminal NEW-NON-TERMINAL e x p - 1 (Z) is
created. Using this mechanism, contextual-dependent information can be transmitted
between different parts of a program. In step 6，a new derivation tree for the
S-expression (/ Z 1 . 9) can be obtained from the non-terminal symbol e x p - 1 (Z)
using the fifth rule of the grammar. This derivation tree is displayed in figure 5.7.

exp-1(?x)
{？x/Z}

八
{randomd, 2, ？yl) } [(/ ？x ？yl)]

{？yl/1.9} {？x/Z, ？yl/1.9}

Figure 5.7: A derivation tree generated from the non-terminal
e x p - 1 (Z)

Since the NEW-SUB-TREE can be found, a new offspring is obtained by
duplicating the genetic materials of its parental derivation tree, followed by deleting the
MUTATED-SUB-TREE from the duplication, and then pasting the NEW-SUB-TREE
at the MUTATE-POINT. The derivation tree of the offspring (+ (/ Z 1 . 9) (-

Z 3 . 8) (/ Z 1 . 5)) can be found in figure 5.8.

LOGENPRO has an efficient implementation of the mutation algorithm.
Moreover, an inference engine has been developed for deducing derivation trees (or
programs) from a logic grammar given. Thus, only valid mutations can be performed
and this operation can be achieved effectively and efficiently.

Page 129

13 2
start

5 2 ^ ^ ^ ^ \ p ^ ： ： ： ^ : — -]

{member (?x, [W,Z]) } / \ | [)]

53 54 /5 57 6 | \ 5
[(+] exp-l(?x) exp-l{?x) J exp-l(?x) ！

{?x/Z} I {？x/Z} I

/ \ I 卜 I
/ \ I [(/ ?x ?y3)] 1 / \ I {?x/Z, ？y3/1.5}\ / \ I 61

55 / 58 \ I {randomd, 2, ？yS) } |
{randomd, 2, ？yl) } {random(3, 4, ？y2) } \ | {？y3/1.5} j

56 59 \
[{/ ？X ？yl)] [(- ？X ？y2)] {?x/Z, ？yl/1.9} {？x/Z, ？y2/3.8}

Figure 5.8: A derivation tree of the offspring produced by performing
mutation of the tree in figure 5.3 at the sub-tree 3

5.5. The evolution process of LOGENPRO

The problem of inducing S-expressions or logic programs can be formulated as a
search for a highly fit program in the space of all possible programs (Mitchell 1982). In
GP, this space is determined by the syntax of S-expressions in Lisp and the sets of
terminals and functions. The search space of ILP is determined by the syntax of logic
program and the background knowledge. Thus, the search space is fixed once these
elements are decided. On the other hand, the search space can be specified declaratively
under the framework proposed because the space is determined by the logic grammar
given.

Page 130

LOGENPRO starts with an initial population of programs generated randomly,
induced by other learning systems, or provided by the user. Logic grammars provide
declarative descriptions of the valid programs that can appear in the initial population. A
fitness function must be defined by the user to evaluate the fitness values of the
programs. Typically, each program is run over a set of fitness cases and the fitness
function estimates its fitness by performing some statistical operations (e.g. average) to
the values returned by this program.

Since each program generated in the evolution process must be executed. A
compiler or interpreter for the corresponding programming language must be available.
This compiler or interpreter is called by the fitness function to compile or interpret the
created programs. LOGENPRO can guarantee only that valid programs in the language
specified by the logic grammar will be generated. However, it cannot ensure that the
produced programs can be successfully compiled or interpreted if the appropriate
compiler/interpreter is not provided by the user. Thus, the user must be very careful in
designing the logic grammar and the fitness function.

The evolution process of LOGENPRO is similar to that of GLPS described in
chapter 4. A high-level algorithm of LOGENPRO is presented in table 5.7. The main
difference between the two systems is in their genetic operators. The crossover operator
of LOGENPRO generates at most one offspring from two parental programs selected.
The mutation operator creates a modified offspring program from a parental program
selected. Moreover, a particular logic grammar is used to restrict the offspring
programs that can be produced by these genetic operators.

Page 131
I •

Input：
Grammar： It is a logic grammar that specifies the search space of

programs.
t The termination function,
f The fitness‘function.

Output：
A logic program induced by LOGENPRO.

Function LOGENPRO(Grammar, t, f) {
• Translate the Grammar to a logic program.

• generation := 0.

• Initialize a population Pop(generation) of programs. They are
generated by issuing the query ？-start(？Tree, ？S ‘ [])'
provided from the user, or generated by other learning systems.
If a program, Prog, is provide by the user or generated by
other learning systems, the program is translated to a
derivation tree using the query ？-start(?Tree, ？P, []) where ？P
contains the program Prog.

• Execute each program in the Pop(generation) and assign it a
fitness value according to the fitness function f.

• While the termination function t is not satisfied do
• Create a new population Pop(generation+1) of programs by

employing the reproduction, the crossover and the
mutation. The operations are applied to programs chosen
by either the fitness proportionate or tournament
selections•

• Evaluate the fitness of each individual in the next
population Pop(generation+1)

• generation := generation + 1.
• Return the best program found in any generation of the run.

}

Table 5.7: A high-level algorithm of LOGENPRO

5.6. Discussion

We have proposed a framework for combining GP and ILP. This framework is based
on a formalism of logic grammars. The formalism can represent context-sensitive
information and domain-dependent knowledge. It is also very flexible and programs in
various programming languages such as Lisp, Prolog, Fuzzy Prolog, and C can be
induced.

Page 132
/ '

5

Since the framework is very flexible, different representations employed in
other inductive learning systems can be specified easily. It facilitates the integration of
LOGENPRO with other learning systems. One approach is to incorporate the learning
techniques of other systems into LOGENPRO. These techniques include information
guided hill-climbing (Quinlan 1990; 1991)，explanation-based generalization (DeJong
and Mooney 1986, Mitchell et al. 1986, Ellman 1989), explanation-based specialization
(Minton 1989) and inverse resolution (Muggleton 1992). LOGENPRO can also invoke
these systems as front-ends to generates the initial population. The advantage is that
they can quickly find important and meaningful components (genetic materials) and
embody these components into the initial population. The following chapters will
illustrate some of these points clearly.

Page 133

Chapter 6 Applications of LOGENPRO
LOGENPRO is a flexible and general program induction system. In the first section,
the method of emulating Genetic Programming (GP) using LOGENPRO is illustrated.
In section 6.2, it is demonstrated that the learning problems solved by GLPS can also
be handled by LOGENPRO. In the last section, we illustrate that LOGENPRO can
induce programs in imperative programming languages such as C. Experimental results
by LOGENPRO are presented and compared with similar methods where appropriate.

6.1. Learning functional programs

It seems that the framework proposed in the previous chapter is rather complicated but

powerful. Consequently, the question of whether this framework can be applied easily
arises. In the first sub-section, we show that this framework can emulate GP (Koza
1992; 1994) easily in learning S-expressions. A template is provided to facilitate the
application of the framework. It must be emphasized that the example used in the first
sub-section is deliberately constructed as simple as possible to illustrate the point. More
realistic applications can be found in the following sub-sections.

6.1.1. Learning S-expressions using LOGENPRO

A logic grammar template for learning S-expressions using the framework is depicted in
table 6.1. To apply the template for a particular problem, various sets of terminals and
primitive functions will substitute for the identifiers in italics.

Page 134

10: start -> function.
11： s-exp -> term.
12: s-exp -> function.

13a: function -> function-0.
13b: function -> function-1.
13c: function -> function-2.

13n: function -> function-n.

14a: function-0 -> [(], op-0,[)].
14b： function-1 -> [(], op-1, s-exp, [)]•
14c: function-2 -> [(], op-2, s-exp, s-exp,[)].

14n: function-n -> [(], op-n, s-exp, ..•‘ s-exp,[)].

15: term -> { member (？w,�TERMINAL SET>) }' [？w].

16a: op-0 -> { member (?w, <FUNCTION SET-0>) }' [？w].
16b: op-1 -> { member {?w,�FUNCTION SET-}' [？w].
16c： op-2 -> { member (?w, <FUNCTION SET-2>) }, [？w].

16n: op-n -> { member (?w, <FUNCTION SET-n>) }' [？w].

Table 6.1: A template for learning S-expressions using the
LOGENPRO

Consider the problem of learning S-expressions such as (-
(* Z X) (+ Y Z)) . Using the terminology of GP, the set of primitive functions

for this problem contains arithmetic operators +, -，and *. Each of them takes two
arguments as inputs. The terminal set is {X, Y, Z}. The terminals can be treated as
input arguments of the S-expression being learned.

It is observed that a S-expression is either a terminal or a function invocation.
Thus a S-expression can be specified by the grammar rules 11 and 12 of the template in
table 6.1. A function call consists of a list of elements enclosed by a pair of
parentheses. The first element of the list is the name of the function and the other
elements are arguments of the function. These arguments are also S-expressions. Since
the primitives of a problem may have different numbers of arguments, there are a

Page 135

variety of function invocations. This fact can be specified by the grammar rules 13a,
13b,…，13n, and 14a, 14b,…，14n.

Since an S-expression containing only a terminal is usually excluded from
consideration as a solution. This fact is declared by the grammar rule 10 which specifies
that the target solution must be a function invocation. The non-terminal symbol t e r m
specifies the terminal set of the problem domain. For the problem studied in this sub-
section, the terminal set is represented as:

term -> { member (?w, [X, Y, Z]) }, [？w] •

where the goal member (?w, [X, Y, Z]) instantiates the logic variable ？xto one

of the value in the list [X, Y, Z] . This grammar rule is obtained from rule 15 in the
template by replacing the identifier <TERMINAL SET> with [X, Y, Z].

The non-terminal symbols o p - O， o p - l ,…， o p - n in the template specify
primitive functions with different numbers of arguments. They represent the primitive
function set of the problem domain. For the above problem, all primitives have two
arguments, thus only o p - 2 will be used. It is represented by the following rule:

o p - 2 - > { member (?w, [+ , *]) }, [？w].

This rule is obtained from the grammar rule 16c in the template by replacing the
identifier�FUNCTION SET-2> with [+, - ， *] . Other non-terminal symbols such
as o p - O , o p - l , o p - 3 ,…， o p - n will be used if the problem domain requires
primitives with the corresponding numbers of arguments. In summary, the logic
grammar for the example is:

Page 136

start -> function,

s-exp -> term,

s-exp -> function,

function -> function-2•

function-2 -> [(], op-2, s-exp, s-exp, [)]•

term -> { member (?w, [X, Y, Z]) }, [？w].

op-2 -> { member (?w, [+ , -, *]) }, [？w] •

6.1.2. The DOT PRODUCT problem

In this sub-section, we describe how to use LOGENPRO to emulate Koza's GP (Koza,
1992). Koza's GP has a limitation that all the variables, constants, arguments for
functions, and values returned from functions must be of the same data type. This
limitation leads to difficulties in inducing even some rather simple and straightforward
functional programs. For example, one of these programs calculates the dot product of
two given numeric vectors of the same size. Let X and Y be the two input vectors, then
the dot product is obtained by the following S-expression:

(apply (function +) (mapcar (function *) X Y))

Let us use this example for illustrative comparisons below. To induce a
functional program using LOGENPRO, we have to determine the logic grammar, the
fitness cases, the fitness function, and the termination criterion. The logic grammar for
learning functional programs is given in table 6.2. In this grammar, we employ the
argument of the grammar symbol s - e x p r to designate the data type of the result
returned by the S-expression generated from the grammar symbol. For example,

(mapcar (function +) X

(mapcar (function *) X Y))

Page 137

is generated from the grammar symbol s - e x p r ([l i s t , n u m b e r , n]) because it
returns a numeric vector of size n. Similarly, the symbol s - e x p r (n u m b e r) can
produce (apply (function *) X) that returns a number.

start -> s-expr(number).
s-expr ([list, number, ？n]) -> [(mapcar (f u n c t i o n] ' op2,

[)] ,
s-expr([list, number, ？n]),
s-expr([list, number, ？n]),[)].

s-expr([list, number, ？n]) -> [(mapcar (f u n c t i o n] ' opl,
[)] ,
s-expr([list, number, ？n]),[)].

s-expr([list, number, ？n]) -> term([list, number, ？n]).
s-expr(number) -> term(number).
s-expr (number) -> [(apply (f u n c t i o n] , op2,

[)] ,
s-expr([list, number, ？n]),[)].

s-expr(number) - > [(] , op2 ' s-expr(number),
s-expr(number), [)]•

s-expr(number) _ > [(] , opl, s-expr(number),[)].
op2 _ > [+] .
op2 -> [-] .
op2 - > [*] .
op2 - > [%] •
opl -> [protected-log].
terni([list, number, n]) -> [X] •
term([list, number, n]) -> [Y]•
term(number) -> { random(-10, 10, ？a) }' [？a]•

Table 6.2: The logic grammar for the DOT PRODUCT problem

The terminal symbols +，-, and * represent functions for ordinary addition,
subtraction, and multiplication respectively. The symbol % represents function that
normally returns the quotient. However, if division by zero is attempted, the function
returns 1.0. The symbol p r o t e c t e d - l o g is a function that calculates the logarithm
of the input argument x if x is larger than zero, otherwise k returns 1.0. The logic goal
random (- 1 0 , 10 , ？a) generates a random floating point number between -10 and
10 and instantiates ？a to the random number generated

Ten random fitness cases are used for training. Each case is a 3-tuples <Xi, Yi,
Zi>, where 1 <i<10, Xi and Yi are vectors of size 3，and Zi is the corresponding dot
product. The fitness function calculates the sum, taken over the ten fitness cases, of the

Page 138

absolute values of the difference between Zi and the value returned by the S-expression
for Xi and Yi. A fitness case is said to be covered by a S-expression if the value
returned by it is within 0.01 of the desired value. A S-expression that covers all training
cases is further evaluated on a testing set containing 1000 random fitness cases.
LOGENPRO will stop if the maximum number of generations of 100 is reached or a
S-expression that covers all testing fitness cases is found.

For Koza's GP framework, the terminal set T is {X, Y' E} where E is the
ephemeral random floating point constant. E takes on a different random floating point
value between -10.0 and 10.0 whenever it appears in an individual program in the
initial population. The function set F is { p r o t e c t e d + ' p r o t e c t e d - '
p r o t e c t e d * , p r o t e c t e d % , p r o t e c t e d - l o g , v e c t o r + , v e c t o r - ,
v e c t o r * , v e c t o r % , v e c t o r - l o g , a p p l y + , a p p l y - , a p p l y * ,
a p p l y % } , taking 2，2, 2，2, 1，2，2，2, 2, 1，1，1, 1，and 1 arguments respectively.

The primitive functions p r o t e c t e d.， p r o t e c t e d - , and p r o t e c t e d *
respectively perform addition, subtraction, and multiplication if the two input
arguments X and Y are both numbers. Otherwise, they return 0. The function
p r o t e c t e d % returns the quotient. However, if division by zero is attempted or the
two arguments are not numbers, p r o t e c t e d % returns 1.0. The function
protected-log finds the logarithm of the argument X if X is a number larger than

zero. Otherwise, p r o t e c t e d - l o g returns 1.0.

The functions v e c t o r + , v e c t o r - , v e c t o r * , and v e c t o r % respectively
perform vector addition, subtract, multiplication, and division if the two input
arguments X and Y are numeric vectors with the same size, otherwise they return zero.

If the input argument X is a numeric vector, the primitive function v e c t o r - l o g
performs the following S-expression:

(mapcar (function protected-log) X),

Page 139

otherwise it returns zero. The functions a p p l y + , a p p l y - , a p p l y * , and a p p l y %
respectively perform the following S-expressions if the input argument X is a numeric
vector:

(apply (function protected+) X),

(apply (function protected-) X),

(apply (function protected*) X) and

(apply (function protected%) X),

otherwise they return zero.

The fitness cases, the fitness function, and the termination criterion are the same
as those used by LOGENPRO. Three experiments are performed. The first one
evaluates the performance of LOGENPRO using a population of 100 programs. The
other two experiments evaluate the performance of Koza's GP using respectively
populations of 100 and 1000 programs. In each experiment, over sixty trials are
attempted and the results are summarized in figure 6.1. The figure delineates the best
standardized fitness values for increasing generations for the three experiments. From
the curves in figures 6.1, LOGENPRO has superior performance than that of GP.

• GP: Population = 100 |
A GP: Population = 1000 |

120"! O Logenpro: Population =100 |

I
^ o o o o o o o o o o a s

H C N C O 寸 m o 卜 OOONON
Generation

Figure 6.1: The fitness curves showing the best fitness values for the
DOT PRODUCT problem

Page 140

Statistical measure are also collected to estimate the computational effort E
required to yield satisfactory programs to the problem with a high probability (Koza
1992). We estimate E empirically from a series of runs. Each run is made using a
particular fixed population size M and a particular fixed maximum number of generation
G.

Since all evolutionary algorithm are non-deterministic, not all runs are
successful in producing satisfactory programs by generation G. Consequently, a
probabilistic method is used to compute the number of fitness evaluations required. For
non-trivial problem, fitness evaluations consume a significant fraction of the
computational resources required. Thus, the number of fitness evaluations is a
reasonable measure of computational effort consumed.

We can empirically estimate the probability Y(M, i) that a run yields, for the first
time, at least one satisfactory program using a population size M on generation i. P(M,
i) is then computed to estimate the cumulative probability that a particular run produces
satisfactory programs by generation i. Thus, the probability of generating satisfactory
programs by generation i at least once in R independent runs is 1 - [1 一 P(M，i)J . If we
want to find satisfactory programs with a certain specified probability z, then it must be
that z < l-[l-P(M，i)]R. The minimum number of independent runs R required by

� log(l - z) 1 generation i with a high probability z is R = R(M，i，z) > ——— . After log(l-P(M，i))
obtaining R(M, i, z), we can compute the total number of fitness evaluations I(M, i, z)
that is required to yield satisfactory programs by generation i with probability z for a
population size M. In other words, I(M，i,z) = M*(i + l)*R(M，i，z).

The computational effort E required for a particular problem with a pre-specified
probability z is the minimal value of I(M, i, z), over all the generations i between 0 and
G.

Page 141

• GP: Population = 100 i
A GP: Population = 1000 |
O Logenpro: Population = 100 I

I o . s j ^ ^ ^ - ^ - ^ ^ m m M m ^ ^
茂 0.6 jC^ —

I 0.2-
£ 0 钢 j { _ g m � , l i p f fflPiillW

Generation
(a)

"A GP: Population = 1000 |
O Logenpro: Population = 100 |

j 讓 2 100000- ^ ^ — — —

J
；I 1000
占 r-H (N c n ^ invot^ OOONON

Generation
(b)

Figure 6.2: The performance curves showing (a) cumulative probability
of success P(M, i) and (b) I(M, i, z) for the DOT
PRODUCT problem

The curves in figure 6.2(a) show the experimentally observed cumulative
probability of success P(M, i) of solving the problem by generation i using a
population of M programs. The curves in figure 6.2(b) show the number of programs
I(M, i, z) that must be processed to produce a solution by generation i with a

Page 142

probability z. Throughout this chapter, the probability z is set to 0.99. The curve for
GP with a population of 100 programs is not depicted because the values is extremely
large. For the LOGENPRO curve, I(M, i, z) reaches a minimum value of 8800 at
generation 21. On the other hand, the minimum value of I(M, i, z) for GP with
population size of 1000 is 66000 at generation 1. LOGENPRO can find a solution
much faster than GP and the computation (i.e. I(M, i，z)) required by LOGENPRO is
much smaller than that of GP.

The idea of applying knowledge of data type to accelerate learning has been
investigated independently by Montana (1993) in his Strongly Typed Genetic
Programming (STGP). He presents three examples involving vector and matrix
manipulation to illustrate the operations of STGP. However, he has not compared the
performances between traditional GP and STGP. One advantage of LOGENPRO is that
it can emulate the effects of STGP effortlessly. Moreover, the logic grammar can be
used to specify other domain knowledge to drive the learning process more effectively
and efficiently.

6.1.2. Learning sub-functions using explicit knowledge

Automatic discovery of problem representation primitives is certainly one of the most
challenging research areas in Genetic Programming. Automatically Defined Functions
(ADF) is one of the approaches that have been proposed to acquire problem
representation primitives automatically (Koza 1992; 1994). In ADF, each program in
the population contains an expression, called the result-producing branch, and
definitions of one or more sub-functions which may be invoked by the result-producing
branch. The result-producing branch is evaluated to produce the fitness of the program.
A constrained syntactic structure and some special genetic operators are required for the
evolution of the programs. To employ the approach, the user must provide explicit
knowledge about the number of automatically defined sub-functions, the number of

Page 143

arguments of each sub-functions, and the allowable terminal and function sets for each
sub-function. In this sub-section, we demonstrate how to use LOGENPRO to emulate
Koza's ADF approach. Moreover, other knowledge such as argument types can also be
applied to speed up the learning task.

In this experiment, LOGENPRO is expected to learn a sub-function that
calculates dot product and employ this sub-function in the main program. In other
words, it is expected to induce the following S-expression:

(progn ,

(defun ADFO (argO argl)

(apply (function +) (mapcar (function *) argO argl)))

(+ (ADFO X Y) (ADFO Y Z)))

The logic grammar for this type of problem is depicted in table 6.3. We employ
the argument of the grammar symbol to designate the data type of the result returned by
the S-expression generated from the grammar symbol. The terminal symbols +，-，and

* represent functions that perform ordinary addition, subtraction, and multiplication
respectively. Ten random fitness cases are used for training. Each case is a 4-tuples
<Xi, Yi, Zi, Ri>, where 1 <i<10, Xi, Yi and Zi are vectors of size 3，and Ri is the
corresponding desired result. The fitness function calculates the sum, taken over the ten
fitness cases, of the absolute values of the difference between Ri and the value returned
by the S-expression for Xi, Yi, and Zi. A fitness case is said to be covered by a

S-expression if the value returned by it is within 0.01 of the desired value. A
S-expression that covers all training cases is further evaluated on a testing set
containing 1000 random fitness cases. LOGENPRO will stop if the maximum number
of generations of 50 is reached or a S-expression that covers all testing fitness cases is
found.

Page 144

start -> [(progn (defun ADFO],
[(argO argl)],
s-expr2(number),[)],
s-expr(number), [)]•

s_expr([list, number, ？n]) -> [(mapcar (function], op2,
[)] ,
s-expr([list, number, ？n]),
s-expr([list, number, ？n]),[)].

s-expr([list, number, ？n]) -> term([list, number, ？n])•
s-expr (number) -> [(apply (function], op2,

1) 1 ,
s-expr([list, number, ？n]),[)].

s-expr(number) _ > [(] , op2 , s-expr(number),
s-expr(number), [)] •

s-expr(number) _> [(ADFO],
s-expr ([list, nuinber, ？n]),
s-expr([list, n u m b e r ? n]) , [)] .

term([list, number, n]) -> [X].
terin([list, number, n]) -> [Y].
term([list, number, n]) -> [Z].
s-expr2 ([list, number, ？n]) -> [(mapcar (function], op2,

[)] ,
s-expr2{[list, number, ？n]),
s-expr2([list, number, ？n]),[)].

s-expr2([list, number, ？n]) -> term2([list, number, ？n]).
s-expr2 (number) -> [(apply (function], op2, I) 1 r

s-expr2{[list, number, ？n]),[)].
s-expr2(number) - > [(] , op2 , s-expr2(number),

s-expr2(number), [)]•
terin2 { [list, number, n]) -> [argO].
term2{[list, number, n]) -> [argl].
op2 -> [+].
op2 - > [-] .
op2 - > [*] .

Table 6.3: The logic grammar for the sub-function problem

For Koza's ADF framework, the terminal set Tq for the automatically defined
function (ADFO) is {a rgO , a r g l } and the function set Fq is { p r o t e c t e d . ‘
p r o t e c t e d - , p r o t e c t e d * , v e c t o r + , v e c t o r - , v e c t o r * , a p p l y + ,
a p p l y - , apply*}，taking 2，2, 2，2，2，2，1，1，and 1 arguments respectively. The
terminal set TV for the result producing branch is {X, Y, Z} and the function set Fr is

{ p r o t e c t e d + , p r o t e c t e d - , p r o t e c t e d * , v e c t o r . , v e c t o r - ,
v e c t o r * , a p p l y +, a p p l y - , a p p l y * , ADFO }，taking 2, 2, 2，2，2，2, 1, 1,
1，and 2 arguments respectively. The primitive functions have already been defined in
the previous sub-section. The fitness cases, the fitness function, and the termination

Page 145

criterion are the same as the ones used by LOGENPRO. We evaluate the performances
of LOGENPRO and Koza's ADF using populations of 100 and 1000 programs
respectively.

-A GP with ADF: Population = 1 0 0 ^
140p O Logenpro: Population = 100 _
120 " M —

丞 1 0 0 ^

I 8 0 - ~ ~ —

“ — —
20 _ ^ < g S B 7 j : (� � a » � (� � “ � � � t m u T O L u » � . (< ((XT 0' jjiimirigmi ii ii^i ii ii iii^ii iiiiiij^jiiiiiiii

。 — （N m 寸

Generation

Figure 6.3: The fitness curves showing the best fitness values for the
sub-function problem

Thirty trials are attempted and the results are summarized in figures 6.3 and 6.4.
Figure 6.3 shows, by generation, the fitness of the best program in a population. These
curves are found by averaging the results obtained in thirty different runs using various
random number seeds and fitness cases. From these curves, LOGENPRO has superior
performance than that of ADF. The curves in figure 6.4(a) show the experimentally
observed cumulative probability of success P(M, i) of solving the problem by
generation i using a population of M programs. The curves in figure 6.4(b) show the
number of programs I(M, i, z) that must be processed to produce a solution by
generation i with a probability z of 0.99. The curve for LOGENPRO reaches a
minimum value of 4900 at generation 6. On the other hand, the minimum value of
I(M, i, z) for ADF is 5712000 at generation 41. This experiment clearly shows the
advantage of LOGENPRO. By employing various knowledge about the problem being

Page 146

solved, LOGENPRO can find a solution much faster than ADF and the computation
(i.e. I(M, i, z)) required by LOGENPRO is much smaller than that of ADF.

么 GP with ADF: Population = 1000 |

丞 0.7 ..::::.:: ,',’..-"mrrnrrmrv
§ 0 . 6 ^ ^ ^ ^ ^ ^ ^ ^ o o s S E ™ ™ ™ ^ ^ ^
i 0 . 5 —
！ 0.4 ̂

— ^ p̂ 0 . 1 - - ^

Generation
(a)

GP with ADF: Population 二 1000^
Q Logenpro: Pogulation = 100 I

1 looooooa
o 1OOOOOG ~ Oh D
o lOOOOG —

书 >B 1000' j j i i i imi j j imi i i i j j i i i i i i i i a immj j i i i i im
— (N cn 寸

Generation
(b)

Figure 6.4: The performance curves showing (a) cumulative probability
of success P(M，i) and (b) I(M，i, z) for the sub-function
problem

This experiment demonstrates that LOGENPRO can emulate Koza's ADF and
represent easily the knowledge needed for using ADF. Moreover, LOGENPRO can
employ other knowledge such as argument types in a unified framework. It has

Page 147

superior performance than that of Koza's ADF when more domain-dependent
knowledge is available. One advantage of LOGENPRO is that it can emulate the effects
of STGP and ADF simultaneously and effortlessly.

6.2. Learning logic programs

In the first sub-section below, we show that this framework can easily emulate GLPS
in learning logic programs. In the discussion, the terminologies of logic programming
are used. A logic grammar template is also provided to facilitate the application of the
framework.

In the following sub-sections, we describe how to use LOGENPRO to learn
logic programs. To induce a logic program using LOGENPRO, we have to determine
the logic grammar, the fitness function, the termination criterion, the population size,
the maximum number of generations, and the probabilities of applying various genetic
operations. Three examples are given to show that LOGENPRO can emulate GLPS in
solving the learning problems described in chapter 4. Five runs are performed on each
problem. The maximum number of generations of each run is 50 for the first two
problems and is 20 for the third problem .

6.2.1. Learning logic programs using LOGENPRO

A template for learning logic programs using the framework is shown in table 6.4. To
apply the template for a particular problem, various variables, constants, predicate
symbols, and function symbols will substitute for the identifiers in italics.

Page 148

f

20: start -> clauses.
21: clauses -> clauses, clauses.
22: clauses -> clause�

23: clause -> consq, [:-], antes, [•]•
24: clause -> consq, [•].
25: consq _> literal.
26: antes -> antes, ['], antes.
27: antes -> ante.
28: ante -> literal.
29: ante -> [not], literal.
30a： literal -> literal-0.
30b： literal -> literal-1.

3On： literal -> literal-n.
31a： literal-0 -> lit-0.
31b： literal-1 -> lit-1, [(], term,[)].

3In: literal-n -> lit-n, [(], term, ..., term,[)].
32: term -> {member (?w'�BASIC ELEMENTS〉））, [？w].
33: term -> function.
34a: function -> function-0
34b: function -> function-1.

34n: function -> function-n.
35a: function-0 -> funct-0.
35b: function-1 -> funct-l, [(]' term' [)]•

35n: function-n -> funct-n, [(], term, ..., term,[)].
36a: funct-0 -> {member{？w, <function set-0>)}, [？w].
3 6b： funct-l -> {member(？w, 〈function set-l>)}, [？w].

36n: funct-n -> {member(？w, <function set-n>)}, [？w].
37a: lit-0 -> {member(?w, 〈predicate set-0>)}, [？w].
37b: lit-1 -> {member(?w, 〈predicate set-l>)}, [？w].

37n： lit-n _> {member(？w, 〈predicate set-n>)}, [？w].

Table 6.4: A template for learning logic programs using LOGENPRO

To employ LOGENPRO to induce logic programs, basic elements such as
variables and constants must be identified first. These elements are usually domain-
dependent. Consider the following logic program:

cup(X) ：- i n s u l a t e _ h e a t (X) , s t a b l e (X) , l i f t a b l e (X) .
cup(X) ：- paper一cup(X)•

Page 149

This logic program determines whether an object X is a cup. There are only one variable
X in this program. Thus, for this program, the following grammar rule specifies the
basic elements:

term -> {member (?w, [X]) } , [？w].
This rule is obtained from the grammar rule 32 in the template by substituting the
replacing <BASTC ELEMENTS> with [X].

A function is a function symbol followed by a bracketed n-tuple of terms. It is
specified by the grammar rules 34a, 34b,…，34n and 35a, 35b, ."，35n. The non-
terminal symbols f u n c t i o n - 0， f u n c t i o n - 1，…， f u n c t i o n - n in these rules
represent functions of various arities. The non-terminal symbols f u n c t - 0 , f u n c t - 1 ,
. . . ， f u n c t - n in the grammar rules 36a，36b, . . .，36n represent different sets of
function symbols. A function is also a term, this fact is declared by rule 33. For
learning the above logic program, it does not use functions. Consequently, the above
corresponding grammar rules are not included in the specification of this program.

An atomic formula is a predicate symbol immediately followed by a bracketed n-
tuple of terms. It is represented by the grammar rules 30a, 30b, ...，30n and 31a, 31b,
...，31n. The non-terminal symbols l i t e r a l - 0， l i t e r a l - 1 ,…， l i t e r a l - n in
these grammar rules represent predicates (literals) of various arities. The non-terminal
symbols l i t - 0， l i t - 1 , ...，lit-n in grammar rules 37a, 37b, 37n represent
various sets of predicate symbols. Because the above logic program contains only
predicates having one argument, the grammar rules 30b and 31b in the template are
used. The following rule:

lit-1 -> {member(?w, [cup, insulate—heat,

stable, liftable,

paper一cup])},[？w]•

Page 150

is obtained from rule 37b by replacing〈predicate set-l> with the list [c u p ,
insulate一heat, s t a b l e , l i f t a b l e , p a p e r — c u p] . This rule is also used
in the specification of the program.

A logic program is composed of a number of Horn clauses. This fact is
specified by the grammar rules 20,21, and 22. A clause with an empty body is called a
unit clause. It represents facts of the problem domain. Since the above program has not
unit clauses, only rule 23 is included in the specification of the program. If unit clauses
are allowed in the program being induced, rule 24 should be included. The non-terminal
symbols c o n s q and a n t e s in rule 23 represent the head and body of a clause
respectively. The grammar rule 25 represents that the head of a clause is a positive
literal. The body of a clause consists of a sequence of one or more antecedents. It is
represented by rules 26 and 27. Finally rules 28 and 29 specify that an antecedent can
be a positive or a negative literal.

6.2.2. The Winston's arch problem

The logic grammar for the problem described in sub-section 4.5.1 is depicted in table
6.5. It is derived from the logic grammar template presented in table 6.4. Moreover,
some grammar rules are combined to simplify the grammar. The logic goal
n o t - e q u a l (？x, ？y) in the grammar ensures that the logic variables ？x and ？y are
not instantiated to the same value. The population size is 1000 and the maximum
number of generations is 50. The fitness function and the fitness cases are the same as
those used in sub-section 4.5.1. LOGENPRO can find a almost correct program within
2 generations. One of the best programs induced is:

a r c h (A , B, C) : - l e f t - o f (C , B) , w e d g e (C) .
a r c h (A , B, C) : - l e f t - o f (B , C) , s u p p o r t s (B , A) .

Page 151

I

start -> clauses,
clauses -> clauses, clauses.
clauses -> clause.
clause -> consq, [:-]' antes' [•].
consq -> [arch(A, B, C].
antes -> antes, [,], antes.
antes -> ante.
ante -> {member(?x,[A, B, C])},

{member (?y, [A, B, C]) },
{not-equal(?x, ？y)},
literal(?x, ？y).

ante -> {member (?x, [A, B, C]) },
literal(?x).

literal(?x, ？y) -> [supports(?x' ？y)].
literal(?x, ？y) -> [left-of(?x, ？y)].
literal{?x, ？y) -> [touches{?x, ？y)]•
literal(?x) -> [brick(?x)].
literal{？x) -> [wedge(?x)].
literal(?x) -> [parallel-piped(?x)].

Table 6.5: The logic grammar for the Winston's arch problem

Since the standard solution of this problem uses some negative literals, the

correct program cannot be found by employing the grammar in table 6.5. If the

modified grammar in table 6.6 is applied. The following correct program can be

obtained:

arch(?A, ？B, ？C) :- left-of(?B, ？C), supports(?B, ？A)'

not touches(?B, ？C).

This example illustrates that different formulations of a learning problem can be

attempted easily using different logic grammars.

Page 152

I

start -> clauses.
clauses -> clauses, clauses.
clauses -> clause.
clause -> consq, [:-], antes' [•].
consq -> [arch (A, B, C] •
antes -> antes, [,], antes.
antes -> ante.
ante -> {member (?x, [A, B, C]) },

{member (?y, [A, B, C]) }
{not-equal{？x, ？y)},
literal(?x, ？y).

ante -> {member (?x, [A, B, C]) },
literal(?x).

literal(?x, ？y) -> [supports(?x' ？y)].
literal(?x, ？y) -> [not supports(?x, ？y)].
literal(?x, ？y) -> [left-of(?x, ？y)].
literal(?x, ？y) -> [not left-of(?x, ？y)].
literal(?x, ？y) -> [touches(?x' ？y)].
literal{?x, ？y) -> [not touches(?x, ？y)].
literal(?x) -> [brick(?x)].
literal(?x) -> [not brick(?x)]•
literal(?x) -> [wedge(?x)].
literal(?x) , —> [not wedge(?x)].
literal(?x) -> [parallel-piped(?x)].
literal(？x) -> [not parallel-piped(?x)].

Table 6.6: The modified logic grammar for the Winston's arch problem

6.2.3. The modified Quinlan's network reachability
problem

The logic grammar for solving the problem described in sub-section 4.5.2 is shown in
table 6.7. In this experiment, the population size is 1000. The standardized fitness is the
total number of misclassified training examples. The maximum number of generations
is 50. LOGENPRO can find a perfect program that covers all positive examples while
excludes all negative ones within a few generations. One of the correct programs found
is:

c a n - r e a c h (A , B) : - l i n k e d - t o (A , B) .
c a n - r e a c h (A , B) ：- l i n k e d - t o (A , C) , c a n - r e a c h (C , B) .

Page 153

start -> clauses,
clauses -> clauses, clauses.
clauses -> clause.
clause -> consq, [:-]' antes, [•].
consq -> [can-reach(A, B)].
antes -> antes, [,], antes.
antes -> ante.
ante -> {member {?x, [A, B, C]) },

{member(?y,[A, B, C])}
{not-equal(?x, ？y)},
literal(?x, ？y).

literal(?x, ？y) -> [linked-to{?x, ？y)]•
literal(?x, ？y) -> [can-reach(?x, ？y)]•

Table 6.7: The logic grammar for the modified Quinlan's network
reachability problem

6.2.4. The factorial problem

This experiment learns the relation factorial (X' Y) where Y is the factorial of X.
The predicate symbols are f a c t o r i a l , p l u s , and m u l t i p l i c a t i o n . The logic
grammar of this problem is depicted in table 6.8. The population size is 1000 and the
maximum number of generations is 20. The fitness functions, the fitness cases, and the
initial incorrect clauses are the same as those presented in sub-section 4.5.3.

start -> clauses.
clauses -> clauses, clauses.
clauses -> clause.
clause -> consq, [:-], antes' [•].
consq -> {member (?x, [0, 1, 2, X, Y]) },

{member(?y, [0, 1, 2, X, Y])},
[factorial(?x, ？y)].

antes -> antes, [,], antes,
antes -> ante.
ante -> {member (?x, [0, 1, 2, W, X, Y, Z]) },

{member(?y,[0, 1, 2, W, X, Y, Z])}
{member (?z, [0, 1, 2, W, X, Y, Z]) }
literal(?x, ？y, ？z).

literal (?x, ？y, ？z) -> [plus (?x, ？y, ？z)].
literal {?x, ？y, ？z) -> [multiplication (？x, ？y, ？z)].

Table 6.8: The logic grammar for the factorial problem

Page 154

During one of the runs, the correct logic program is induced in the twelve
generation. It is shown as follows:

factorial (0, 1) :-plus(l, 1, 2).

factorial(X, Y) :- plus(Z, 1, X),

factorial(Z, W),

multiplication(W, X, Y).

6.2.5. Discussion

From the above examples, LOGENPRO can be viewed as an automatic programming
platform on which formal specifications and program induction can be combined. Logic
grammars are formal specifications that describe which programs are valid.
LOGENPRO employs deduction to generate the initial population of program from the
logic grammar given and uses induction to produce offspring from parental programs.

6.3. Learning programs in C

In this section, we employ LOGENPRO to perform symbolic regression. The target
program calculates the function value f(X, Y) for the two input arguments and outputs
the result. The function f(X, Y) is ((X+Y)2-Y) and the population size used in this
experiment is 500. The ten fitness cases are 3-tuples <Xi, Yi, f(Xi, Yi)>, where
l< i<10 and Xi, Yi are random integers between 0 and 10. The fitness function
calculates the sum, taken over the ten fitness cases, of the absolute values of the
difference between f(Xi, Yi) and the value returned by the generated C program using
Xi and Yi as the inputs. A fitness case is said to be covered by a program if the value
returned by it is within 0.01 of the desired value. LOGENPRO terminates if the
maximum number of generations, which is 50，is reached or a C program that covers
all fitness cases is found. It must be emphasized that the goal of this section is to
demonstrate the possibility of learning programs in some imperative languages. Hence,

Page 155

r

the symbolic regression problem is deliberately constructed as simple as possible so as
to illustrate the point clearly.

start -> preamble, statements, outputs.
statements -> statements, statements.
statements -> statement.
statement -> id, [=], expression, [；]• .
expression -> [(], expression, op, expression, [)]•
expression -> id.
op -> [+].
op -> [-].
op -> [*].
id -> [X]. id -> m .
id -> [Z] •
preamble -> [#include <stdio.h>]'

[#include <stdlib.h>],
[main(argc, argv)],
[int argc; char **argv;],
[{ int X Y; float Z;],
[X = atoi(argv[l]);],
[Y = atoi(argv[2]);],
[Z = 0.0;].

outputs -> [printf("\n%f", Z)].

Table 6.9: The logic grammar for learning programs in C

The logic grammar for this problem is shown in table 6.9. In this grammar,
only simple assignment statement can be generated. This restriction is enforced only to
limit the size of the search space for the problem so that solutions can be found using
the available computational resources. In fact, the search space will be extremely large
if the complete grammar for the C programming language is used. In this grammar, the
symbol p r e a m b l e produces statements that declare and initialize variables used in the
program. On the other hand, the symbol o u t p u t s creates a statement that prints the
final result of the program. In one successful run of LOGENPRO, the following
correct C program is found in generation 4:

Page 156

r

i n c l u d e < s t d i o . h >
i n c l u d e < s t d l i b . h >
m a i n (a r g c , a r g v)
i n t argc； c h a r * * a r g v ;
{ i n t X, Y; f l o a t Z;

X = a t o i (a r g v [l]) ;
Y 二 atoi(argv[2]);

Z 二 0.0;

Z = (((X-Z) + ((Y*Y) + (((X+X) *Y) - Y))) ;
p r i n t f (" \ n % f Z) ； }

The p rogram is correc t because the ass ignment s ta tement
Z = (((X-Z)*Z) + ((F*F) + (((X + X)*7)-F))) can be simplified to

Z = + F V 2XY - F as the variable Z is initialized to 0.0. The statement can be
further simplified to Z = (X + Y f - Y which is the desired statement.

40"— 醫 Logenpro |
^ 30-
弓 2Q. \ �

罢 ——
H (N CO 寸

Generation

Figure 6.5: Fitness curve for the problem of inducing a C program

Page 157

r

圓 Probability of Success I • Individuals to be processed I gn

1 1 | ‘ ~ ~ ~ ^ ^ 1 0 0 I
I 0.8—了 H g
^ 0 .6- -60 o ‘

I 0 . 4 - 4 0 I ?

圣 O^yiiiiiiiiiiiiiiiMiiiiiiiiiiiniiiiiimmiiNi 0 i
2 S 笑 寸 S-

Generation
Figure 6.6: Performance curves for the problem of inducing programs

in C

Twenty trials are attempted using different random number seeds and fitness
cases. The results are summarized in figures 6.5 and 6.6. Figure 6.5 shows, by
generation, the fitness of the best program in a population. Figure 6.6 shows the
performance curves when the population size M is 500 and the probability z is 0.99.
The value of I(M, i, z) reaches a minimum value of 21000 at generation 5.

Page 158

I

Chapter 7 Knowledge Discovery in Databases
Knowledge discovery in databases is concerned with the non-trivial extraction of

implicit, previously unknown, and potentially useful information from data stored in
databases (Frawley et al. 1991，Piatetsky-Shapiro and Frawley 1991). The knowledge
acquired can be expressed in different knowledge representations such as decision
trees, decision lists, production rules, and first-order logic programs. In the first
section, we employ LOGENPRO to induce knowledge represented in decision trees
from a real-world database.

Knowledge discovery systems induce knowledge from datasets which are
frequently noisy (incorrect), incomplete, inconsistent, imprecise (fuzzy), and uncertain
(Leung and Wong 1991a; 1991b; 1991c). In the second section, we employ
LOGENPRO to combine evolutionary algorithms and FOIL (Quinlan, 1990) to induce
knowledge represented as logic programs from noisy datasets.

There are very few studies on the issue of inducing knowledge from imprecise
and uncertain datasets. Unfortunately, imprecise and uncertain examples are norms
rather than exceptions in real world, because many everyday examples are denoted in
linguistic terms which are essentially imprecise and uncertain. In the third section, we
use LOGENPRO to acquire knowledge from imprecise and uncertain training examples
stored in a fuzzy relational database. The induced knowledge is represented as a
program in Fuzzy Prolog (Li and Liu 1990).

Page 159

7.1. Inducing decision trees using LOGENPRO

In this section, we illustrate the application of LOGENPRO in inducing decision trees.
The first sub-section contains a brief introduction to decision trees. We describe how to
represent decision trees as S-expressions in sub-section 7.1.2 . The credit screening
problem used in the experiment is explained in the subsequent sub-section. We then
present the results of the experiment in sub-section 7.1.4.

7.1.1. Decision trees

Decision trees are a means of representing knowledge acquired by a learning system.
Quinlan (1986) presented a simple example of the ID3 learning system for inducing a
decision tree that classifies whether the weather of a Saturday morning is good or not.
ID3 is a hierarchical classification system for learning a decision tree from a finite
number of training examples. The training examples and the learned decision tree are
depicted in table 7.1 and figure 7.1 respectively.

The set of training examples in table 7.1 contains 14 objects representing
characteristics of Saturday mornings. These characteristics are represented by four
nominal attributes, namely temperature, humidity, outlook, and windy. An attribute can
be classified into three kinds: nominal, linear and structural attributes (Michalski 1983):

• Nominal attribute: The value set consists of independent symbols and no
structure is assumed to relate the values in the domain.

• Linear attribute: The value set is an ordered set. Attributes measured on
ordinal, interval, ratio, and absolute scales are special cases of linear
attribute.

• Structured attribute: The value set has a tree structure that reflects the
generalization relation between the values.

Page 160

The sets of attribute values for temperature, humidity, outlook, and windy are

respectively {hot, mild, cool}, {high, normal}, {sunny, overcast'

rain}，and {true, false}. An example is positive if it represents that the weather

of the Saturday morning is good, otherwise it is negative.

temperatur humidity outlook windy class
e

1 hot high sunny false -
2 hot high sunny true -
3 hot high overcast false +
4 mild high rain false +
5 cool normal rain false +
6 cool normal rain true -
7 cool normal overcast true +
8 mil high sunny false -
9 cool normal sunny false +
10 mild normal rain false +
11 mild normal sunny true +
12 mild high overcast true +
13 hot normal overcast false +
14 mild high rain true -

(a)

attribute name attribute type attribute__values_
temperature nominal {hot, mild, cool}
humidity nominal {high, normal}
outlook nominal {sunny, overcast,

rain}
windy nominal {true, false}
class nominal {positive, negative}

(b)

Table 7.1: (a) A set of training examples, (b) The types and the sets of
attribute values of the attributes.

Page 161

一 P S ^
I outlook I

^̂：：：：̂
(humidity j 盟 ） ） （ w i n d y)

y 4 g h \normal y ^ u e N^ s e

@ 0 0
Figure 7.1: A decision tree

A decision tree consists of nodes and branches. Each non-terminal (internal)
node represents a decision. The starting node is usually referred to as the root node.
Depending on the result of the decision of a non-terminal node, the tree will branch to
another node. Finally, a terminal (leaf) node is reached, and the classification is
decided. For example, node 1 in figure 7.1 is the root node and nodes 2 and 4 are the
other non-terminal nodes. There is an attribute name in each non-terminal node. It
indicates the attribute on which the decision will be made. Nodes 3，5，6，7, and 8 are
terminal nodes. There are numbers in each terminal node, they indicates the training
examples that will be classified to the node. The sign，+ or after each number shows
the class of the corresponding training example.

Assume that we want to predict the weather of a Saturday morning using the
decision tree in figure 7.1. The characteristics of this morning are summarized as
follows:

Page 162

temperature humidity outlook windy
cool normal sunny true

The classification process starts from node 1 in figure 7.1. In this node, a decision is
made and the process branches to node 2 because the value of the attribute outlook is
sunny. Another test is performed on node 2 and the process proceeds to the terminal
node 6. The classification process predicts that the weather of this morning is good
because all training examples in node 6 are positive.

A binary decision returns either true or false and only two branches can leave
the corresponding decision node. For example, node 4 in figure 7.1 is a binary decision
node. Node 2 can be transformed into a binary decision node by setting the test to either
humidity = high, or humidity = normal. Non-binary decisions are also used. In these
cases, more than two branches may leave a non-binary decision node. For example,
node 1 in figure 7.1 is a non-binary decision node. A decision performed at a node
results in a partition of two or more disjoint sets that cover every possibility, i.e., any
new cases must fall into one of the disjoint subsets..

For any decision tree, a path leads to a terminal node corresponding to a
decision rule that is a conjunction of the tests along this path. If there are multiple paths
for a given class, then these paths represent disjunctions. For example, there are three
paths in figure 7.1 for the positive class. Thus, there are three decision rules for this
class and they are:

• if outlook is overcast then class is positive.
• if outlook is sunny and humidity is normal then class is positive.
• if outlook is rainy and not windy then class is positive.

All paths in any decision tree are mutually exclusive. Thus, for any new case, one and
only one path in the tree will always have to be satisfied.

Page 163

A decision tree is induced by selecting some starting feature, splitting the
training set into disjoint sets according to the selected feature, and then repeating the
process for all subsequent nodes. A node becomes terminal and is not splitted further
when all members of the training examples in the node belongs to one class.
Alternatively, a node becomes terminal when the number of training examples in the
remnant group falls below some minimum threshold, and the node is assigned to the
class having the greatest frequency at the node. The simplest method for splitting the
nodes into disjoint groups is to partition the data by the distinct values of the feature.

However, this splitting method can lead to poor classification. The difficulty
arises with linear attributes such as height. Because the set of attribute values of a linear
attribute is usually very large or even infinite, it is unreasonable to base predications
solely on the values that appear in a small training set. For example, if no one in the
training set has height of 68 inches, then a new case with height of 68 inches might not
be classified correctly when the attribute height is used in the decision tree. Thus, the
values of a linear attribute should be divided into discrete intervals. The optimal sizes of
and number of intervals are usually unknown and they are estimated by the learning
systems. Arithmetic tests, such as (Ai > Aij) or (Ai < Aij) where Ai is a linear attribute
and Aij is a value within the range of the attribute, can produce intervals that cover more
effectively the range of values, and improve the classification performance of the
induced decision tree. The learning systems such as AKA-1 and AKA-2 (Leung and
Wong 1991a; 1991b; 1991c) can generate this kind of decision tests.

7.1.2. Representing decision trees as S-expressions

Koza (1992) presented a method to represent decision trees as S-expressions. For
example, the decision tree in figure 7.1 is represented as the S-expression in table
7.2(a).

Page 164

(outlook-test
(humidity-test 'negative 'positive)
'positive
(windy-test ‘negative 'positive))

(a)

(defclass EXAMPLES {)
{(temperature ：accessor temperature)
；;The value of the attribute temperature can be either hot, mild,

or cool.
(humidity ：accessor humidity)
；；The value of the attribute humidity can be either high, or

normal.
(outlook ：accessor outlook)
；；The value of the attribute outlook can be either sunny,

overcast, or rain,
(windy :accessor windy)))
；;The value of the attribute windy can be either true, or false.

(b)
(defun outlook-test (argl arg2 arg3)

(cond ((equal (outlook X) ‘sunny) argl)
(equal (outlook X) ‘overcast) arg2)
(t a rg3)))

(C)

Table 7.2: (a) An S-expression that represents the decision tree in
figure 7.1. (b) The class definition of the training and
testing examples, (c) A definition of the primitive function
outlook-test.

In the S-expression, the constants such as p o s i t i v e and n e g a t i v e
representing the class names in this problem. These constants form the set of terminals
in GP. On the other hand, the attribute-testing functions such as outlook-test and
windy-test are obtained by transforming each of the attributes in the problem into a
function. Thus, there are as many attribute-testing functions as there are attributes.
These functions form the set of primitive functions in GP.

Page 165

Consider the attribute outlook, it can assume one of three possible values.
Therefore, the function o u t l o o k - t e s t has three arguments and operates in the
following way:

• if the value of the attribute outlook of the current example is sunny, the
function returns its first argument as its return value;

• if the value of the attribute outlook of the current example is overcast,
the function returns its second argument as its return value;

• if the value of the attribute outlook of the current example is rainy, the
function returns its third argument as its return value;

The implementation of the function o u t l o o k - t e s t is depicted in table 7.2(c). In this
implementation, X is a global variable that stores the current example being evaluated.

Since an example belongs to the class EXAMPLES depicted in table 7.2(b), the S-
expression (o u t l o o k X) returns the value of the attribute outlook of the example
stored in X. T h e constants sunny and overcast represent the attribute values of the

attribute outlook.

To classify a new example, it is first stored into the global variable X. It is then
presented to an S-expression representing a decision tree. The function at the root of the
tree tests the designated attribute of the example and then executes the particular
argument designated by the outcome of the test. If the designated argument is a
constant, the function returns the corresponding class names (i.e. p o s i t i v e or
n e g a t i v e) . If the designated argument is another function, the above process is
repeated until a constant is returned. In summary, the S-expression is a representation
of a decision tree that classifies an example into one of the classes.

7.1.3. The credit screening problem
The aim of this problem is to induce decision trees or rules for assessing applications
for credit cards. This problem has been studied by Quinlan in his ID3 and C4.5 systems
(Quinlan 1987; 1992). The original dataset of this problem was provided by Quinlan

Page 166

and stored in the UCI Repository of Machine Learning Databases and Domain
Theories. The dataset has been modified in the Statlog project (Michie et al. 1994) so
that one of the 15 attributes is removed. The modified dataset has a good mix of
attributes of different types. There are 690 instances, 14 attributes and two class names.
There are 307 positive instances (44.5%) and 383 negative instances (55.5%).

Attribute name Attribute type Attribute values
Al nominal {a, b}
A2 linear 13.75 - 80.25
A3 linear 0 - 2 8
A4 nominal {g, P, gg)
A5 nominal {c, d, cc, i, j, k,

m, r, q, w, x, e, aa, ff }
A6 nominal {v, h, bb, j, n, z,

dd, ff, o}
A7 linear 0 - 2 8.5
A8 nominal {t, f}
A9 nominal {t, f }
AlO linear 0 - 6 7
All nominal {t, f}
A12 nominal {g, P, s}
A13 linear 0 - 2000
A14 linear 0 - 100001

class nominal {positive, negative}

Table 7.3: The attribute names, types, and values attributes of the
credit screening problem

All attribute names, class names, and attribute values have been changed to
meaningless symbols to protect confidentiality of the data. Thus, interpretations of the
induced decision trees or rules are relatively difficult. This dataset is interesting because
there is a good mix of attribute types: linear, nominal with small numbers of values,
and nominal with larger numbers of values. The attribute names, types, and values are
depicted in table 7.3. There are 37 instances (5%) having one or more missing attribute
values. The frequencies of missing values from different attributes are summarized as
follows:

Page 167

Attribute name Frequency
Al 12
A2 12
A4 6
A5 9
A6 9
A13 13

For our purposes, we replaced the missing values by the overall medians or means.

7.1.4. The experiment

In this sub-section, we describe how to use LOGENPRO to induce decision trees for
the credit screening problem. The representation scheme described in sub-section 7.1.2
is not used directly because it can only express decisions on nominal attributes. To
handle linear attributes using the representation, we must first transform these attributes
into nominal attributes by assigning disjoint intervals of values to various symbols.
Thus, the sizes and the number of intervals must be determined before applying the
representation scheme to the credit screening problem.

For example, the range of the values of the attribute A2 is between 13.75 and
80.25. By examining the distribution of the attribute values, the range may be divided
into two mutual exclusive intervals: from inclusive 13.75 to exclusive 40; from
inclusive 40 to inclusive 80.25. The transformed attribute can be represented as the
following attribute-testing function A2-test:

(defun A2-test (argl arg2)

(if (>= (A2 X) 40)

arg2

argl))

In this function, X is a global variable that stores the current example being evaluated.
Since an example belongs to the class EXAMPLES depicted in table 7.4，the
S-expression (A2 X) returns the value of the attribute A 2 of the example stored in X.

The function A2 - t e s t has two arguments and operates in the following way:

Page 168

• if the value of the attribute A2 is greater than or equal to 40，the function
returns its second argument as its return value;

• Otherwise, the function returns its first argument as its return value;

(defclass EXAMPLES () {(Al :accessor Al)
(A2 :accessor A2)
(A3 ：accessor A3)
(A4 :accessor A4)
{A5 ：accessor A5)
(A6 :accessor A6)
(A7 :accessor A l)
(A8 ：accessor A8)
(A9 :accessor A9)
(AlO :accessor AlO)
(All :accessor All)
(A12 ：accessor A12)
{A13 :accessor A13)
(A14 ：accessor A14)))

Table 7.4: The class definition of the training and testing examples.

The major problem of this representation is that one or more intervals must be
determined before performing induction. If the sizes and the number of intervals are
inappropriate, they will greatly reduce the performance of the learning system. In order
to tackle this problem, we decide that the number of intervals of all linear attributes is
fixed to two, and allow the sizes of these intervals to adjust dynamically during the
evolution process.

Thus, the following attribute-testing function A2 - t e s t is used in our
representation:

(defun A2-test (exp argl arg2)

(if (>= (A2 X) exp)

arg2

argl))
This function has three arguments and operates in the following way:

Page 169

• if the value of the attribute A2 is greater than or equal to the value of the
first argument, the function returns its third argument as its return value;

• Otherwise, the function returns its second argument as its return value;
From this function, we can observe that the first argument e x p must return a numerical
value while the other two arguments, a r g l and a r g 2 , must return a class name. In
other words, data types must be used to guarantee only appropriate S-expressions can
appear as a particular argument of a particular primitive function.

start -> node.
node -> [(Al] , node, n o d e , [)] .
node -> [(A2] , exp, node, n o d e , [)] .
node -> [(A3] , exp, node, n o d e , [)] .
node -> [{A4] , node, node, node [)] .
node -> [(A5], node, node, node, node'

node, node, node, node, node,
node, node, node, node, n o d e , [)] .

node -> [(A6], node, node, node, node,
node, node, node, node, n o d e , [)] .

node -> [(A7] , exp, node, node, [)] •
node -> [{A8], node, n o d e , [)] .
node -> [(A9] , node, n o d e , [)] .
node -> [(AlO], exp, node, n o d e , [)] .
node -> [(All] , node, n o d e , [)] .
node -> [(A12] , node, node, n o d e , [)] .
node -> [(A13] , exp, node, n o d e , [)] .
node -> [(A14] , exp, node, n o d e , [)] .
node -> [positive]•
node -> [negative]
exp -> [(], op, exp, e x p , [)] .
op - > [+] .
op - > [-] •
op - > [*] .
op - > [%] •
exp -> { random(-10, 10, ？a) } , [？a] •

Table 7.5: Logic grammar for the credit screening problem.

To induce a functional program using LOGENPRO, We have to determine the
logic grammar, the fitness cases, the fitness functions, and the termination criterion.
The logic grammar for the credit screening problem is given in table 7.5. In this
grammar, we employ the grammar symbol e x p to designate the S-expression that
returns a numerical value and the grammar symbol n o d e to designate the S-expression
that returns a class name.

Page 170

The terminal symbols +, and * represent functions that perform ordinary
addition, subtraction, and multiplication respectively. The symbol % represents function
that normally returns the quotient. However, if division by zero is attempted, the
function returns 1.0. The logic goal r a n d o m (-10, 10' ？a) generates a random
floating point number between -10 and 10 and instantiates ？a to the random number
generated.

A 10-fold cross-validation procedure is employed in this problem. In a general
n-fold cross-validation procedure, the examples are randomly divided into n mutually
exclusive test partitions of approximately equal size. The examples not found in a
particular test partition are used for training, and the resulting decision tree is tested on
the corresponding test partition. The above train and test procedure is repeated n times
until all test partitions are examined. The average classification accuracy over all n test
partitions is the cross-validated classification accuracy. Breiman et al. (1984) have
evaluated their CART system extensively with vary numbers of partitions, and 10-fold
cross-validation seemed to be adequate and accurate.

Since there are 690 examples in the credit screening dataset, each test partition
contains 69 examples and the other 621 examples form the training set. In other words,
10 independent experiments are attempted. In each experiment, LOGENPRO induces a
decision tree using 621 examples as the fitness cases and we estimate the classification
accuracy of the induced decision tree using the remaining testing examples.

The fitness function measures how well a genetically evolved decision tree
classifies the fitness cases. When an evolved decision tree in the population is tested
against a particular fitness case, the outcome can be either a true positive, a true
negative, a false positive, or a false negative.

Page 171

The correlation coefficient (Matthews 1975) indicates how much better a
particular decision tree is than a random classifier. A correlation coefficient C of 1.0
indicates perfect agreement between the decision tree and the fitness cases; a coefficient
of-1.0 indicates total disagreement; a coefficient of 0.0 indicates that the decision tree is
not better than a random classifier. For a two-classes classification problem, the
correlation coefficient can be computed as:

NtpNt„-N 尔Nf„
- 批 + N f 爲 + N J (N t p + N J (Ntp +Nfp)

where N中 is the number of true positives, is the number of true negatives, N p̂ is
the number of false positives, and is the number of false negatives. The coefficient
is set to 0 if the denominator is 0.

Since C ranges between -1.0 and 1.0，standardized fitness is defined as
1 - C

. Thus, a standardized fitness value ranges between 0.0 and 1.0. A

standardized fitness value of 0 indicates perfect agreement between the decision tree and
the training examples. On the other hand, a value of 1.0 indicates total disagreement. A
value of 0.5 shows that the decision tree is not better than a random classifier.

In each of the ten experiment, LOGENPRO induces a decision tree using a
population size of 300. LOGENPRO will stop if the maximum number of generations
of 50 is reached or a decision tree that has a standardized fitness below 0.01 is found.
The decision tree evolved in any generation that has the smallest standardized fitness
value is returned as the result of the run. The best decision tree induced by
LOGENPRO is further evaluated on the training examples and the testing examples to
obtain the corresponding classification accuracy. The results of the ten experiments are
summarized in table 7.6.

Page 172

Generation Accuracy (train) Accuracy (test)
“ 0 0.857 0.870

14 0.850 0.928
26 0.873 0.754
32 0.862 0.884
45 0.860 0.870
2 0.849 0.928
25 0.868 0.797
4 0.858 0.826
28 0.852 0.913
22 0.863 0.812

Average 0.859 0.858
/

Table 7.6: Results of the decision trees induced by LOGENPRO for
the credit screening problem. The first column shows the
generation in which the best decision tree is found. The
second column contains the classification accuracy of the
best decision tree on the training examples. The third
column shows the accuracy on the testing examples.

Michie et al. (1994) has performed a series of experiments in the Statlog project.
In these experiments, they compared the performances of different learning systems for
the credit screening problem. The results are summarized in table 7.7.

By comparing the results in table 7.6 and those in table 7.7, we find that Cal5,
ITrule, Discrim, Logdisc, and DIPOL92 perform better than LOGENPRO. Cal5 and
ITrule learns decision trees/rules and their classification accuracy is over 86%. The
classification accuracy of Discrim, Logdisc, and DIPOL92 is all 85.9%, The
differences in accuracy between them and LOGENPRO are only 0.1%. Since the
detailed information of the accuracy of these systems is not available, it cannot be
concluded that whether the differences in accuracy are significant.

Page 173

On the other hand, LOGENPRO performs better than CART, RBF, CASTLE,
NaiveBay, IndCART, Back-propagation, C4.5, SMART, Baytree, k-NN, NewID,
AC2, LVQ, ALLOC80, CN2, and Quadisc for the credit screening problem.
Interestingly, LOGENPRO is better than C4.5 and CN2, two systems that have been
reported in the literature (Quinlan 1992, Clark and Niblett 1989) about their outstanding
performances in inducing decision trees/rules. The difference is 1.3% for C4.5 and is
6.2% for CN2.

Algorithm Accuracy (train) Accuracy (test)
Cal5 0.868 ~0.869
ITrule 0.838 0.863
Discrim 0.861 0.859
Logdisc 0.875 0.859
DIPOL92 0.861 0.859

LOGENPRO 0.859 0.858
CART 0.855 0.855
RBF 0.893 0.855

CASTLE 0.856 0.852
NaiveBay 0.864 0.849
IndCART 0.919 0.848

Back-propagation 0.913 0.846
C4.5 0.901 0.845
SMART 0.910 0.842

Baytree 1.000 0.829
k-NN 1.000 0.819
NewID 1.000 0.819
AC2 1.000 0.819
LVQ 0.935 0.803

ALLOC80 0.806 0.799
CN2 0.999 0.796

Quadisc 0.815 0.793

Table 7.7: Results of various learning algorithms for the credit
screening problem.

7.2. Learning logic program from imperfect data

In knowledge discovery from databases, we emphasize the need for learning from
huge, incomplete, and imperfect datasets (Piatetsky-Shapiro and Frawley 1991). The
various kinds of imperfections in data are listed as follows:

Page 174

• random noise in training examples and background knowledge;
• the number of training examples is too small;
• the distribution of training examples fails to reflect the underlying

distribution of instances of the concept being learned;
• an inappropriate example description language is used: some important

characteristics of examples are not represented, and/or irrelevant
properties of examples are provided;

• an inappropriate concept description language is used: it does not contain
an exact description of the target concept; and

• there are missing values in the training examples.

Existing inductive learning systems employ noise-handling mechanisms to cope
with the first five kinds of data imperfections. Missing values are usually handled by a
separate mechanism. These noise-handling mechanisms are designed to prevent the
induced concept from overfitting the imperfect training examples by excluding
insignificant patterns (Lavrac and Dzeroski 1994). They include tree pruning in CART
(Breiman et al. 1984), rule truncation in AQ15 (Michalski et al. 1986a) and significant
test in CN2 (Clark and Niblett 1989). However, these mechanisms may ignore some
important patterns because they are statistically insignificant.

Moreover, these learning systems use a limiting attribute-value language for
representing the training examples and induced knowledge. This representation limits
them to leam only prepositional descriptions in which concepts are described in terms
of values of a fixed number of attributes. Currently, only a few relation learning
systems such as FOIL and mFOIL address the issue of learning from imperfect data.

In this section, we describe the application of LOGENPRO to learn logic
programs from noisy and imperfect training examples. Empirical comparisons of
LOGENPRO with FOIL (the publicly available version of FOIL, version 6.0，is used

Page 175

in this experiment) and with mFOIL (Lavrac and Dzeroski 1994) in the domain of
learning illegal chess endgame positions from noisy examples are presented.

As described in section 3.3，mFOIL is based on FOIL that has adapted several
features from CN2 (Clark and Niblett 1989), such as the use of the Laplace and m-
estimate as a search heuristics and the use of significance testing as a stopping criterion.
Moreover, mFOIL uses beam search and can apply mode and type information to
reduce the search space. The parameters that can be set by a user are listed as follows:

• the beam width,
• the search heuristics,
• the value of m if m-estimate is used as the search heuristics,
• the significance threshold used in the significance test, and
• the concept description language: it determines whether negative literals

can appear in the body of a clause.

A number of different instances of mFOIL have been tested on the chess
endgame problem. Their parameter values are summarized in table 7.8.

beam search m significance Is
width heuristics threshold negative

literal
used?

inFOILl 5 m-estimate 0.01 0 yes
mF0IL2 5 ra-estimate 0.01 0 no
mF0ILi3 10 m-estimate 0.01 0 yes
mF0IL4 10 m-estimate 0.01 0 no
inFOILS 5 m-estimate 0.01 6.35 no

Table 7.8: The parameter values of different instances of mFOIL
examined in this section.

In this section, LOGENPRO employs a variation of FOIL to find the initial
population of logic programs. Thus, it uses the same noise-handling mechanism of
FOIL. The variation is called BEAM-FOIL because it uses a beam search method rather

Page 176

than the greedy search strategy of FOIL. BEAM-FOIL produces a number of different
logic programs when it terminates and the best program among them is the solution of
the problem. The logic programs created by BEAM-FOIL are used by LOGENPRO to
initialize the first generation. In order to study the effects of the genetic operations
performed by LOGENPRO on the initial programs provided by BEAM-FOIL, a
comparison between them is also discussed.

The chess endgame problem is presented in the following sub-section. The
experimental setup is detailed in sub-section 7.2.2. We compare LOGENPRO with
other learning systems in the subsequent sub-sections.

7.2.1. The chess endgame problem

In the chess endgame problem, the setup is white king and rook versus black king
(Quinlan 1990). The target concept illegal(WKf, WKr, WRf, WRr, BKf, BKr) states
whether the positions where the white king at (WKf, WKr), the white rook at (WRf,
WRf), and the black king at (BKf, BKr) are not a legal white-to-move position.

The background knowledge is represented by two predicates, adjacent(X, Y)
and less_than(W, Z), indicating that rank/file X is adjacent to rank/file Y and rank/file
W is less than rank/file Z respectively.

There are 11000 examples in the dataset (3576 positive and 7424 negative
examples). Muggleton et al. (1989) used smaller datasets to evaluate the performances
of CIGOL and DUCE for the chess endgame problem. There were five small sets of
100 examples each and five large sets of 1000 examples each. In other words, there
were 5500 examples in total. Each of the sets was used as a training set. The induced
programs obtained from a small training set was tested on the 5000 examples from the

Page 177

large sets, the programs obtained from each large training set was tested on the
remaining 4500 examples.

7.2.2. The setup of experiments

In each experiment of the ten experiments performed, the training set contains 1000
examples (336 positive and 664 negative examples) and the disjoint testing set has
10000 examples (3240 positive and 6760 negative examples). These training and
testing sets are selected from the dataset using different seeds for the random number
generator.

Different amounts of noise are introduced into the training examples in order to
study the performances of different systems in learning logic programs from noisy
environment. To introduce n% of noise into argument X of the training examples, the
value of argument X is replaced by a random value of the same type from a uniform
distribution, independent to noise in other arguments. For the class variable, n%
positive examples are labeled as negative ones while n% negatives examples are labeled
as positive ones. Noise in an argument is not necessarily incorrect because it is chosen
randomly, it is possible that the correct argument value is selected. In contrast, noise in
classification implies that this example is incorrect. Thus, the probability for an example
to be incorrect is 1 - {[(1 - n%) + n% * - f * (1 - n%)}. For each experiment, the

8

percentages of introduced noise are 5%, 10%, 15%, 20%, 30%, and 40%. Thus, the
probabilities for an example to be noisy are respectively 27.36%, 48.04%, 63.46%,
74.78%, 88.74% and 95.47%. Background knowledge and testing examples are not
corrupted with noise.

A chosen level of noise is first introduced in the training set. Logic programs are
then induced from the training set using LOGENPRO, FOIL, different instances of
mFOIL, and BEAM-FOIL. Finally, the classification accuracy of the learned logic

Page 178

programs is estimated on the testing set. For BEAM-FOIL, the size of beam is ten and
thus ten logic programs are returned. The best one among the programs returned is
designated as the solution of BEAM-FOIL.

start -> clauses,
clauses -> clauses, clauses.
clauses -> clause.
clause -> consq, [:-], antes' [•].
consq -> [illegal(WKf, WKr, WRf, WRf, BKf, BKr)].
antes -> antes, [,], antes,
antes -> ante.
ante -> {member(?x,[WKf, WKr, WRf, WRf, BKf, BKr])},

{member(?y,[WKf, WKr, WRf, WRf, BKf, BKr])},
literal(?x, ？y).

literal (?x, ？y) -> [？x 二 ？y].
literal{?x, ？y) -> [not ？x = ？y] •
literal(?x, ？y) -> [adjacent{?x, ？y)].
literal(?x, ？y) -> [not adjacent(?x, ？y)].
literal(?x, ？y) -> [less—than(?x, ？y)].
literal(?x, ？y) -> [not less—than(?x, ？y)].

Table 7.9: The logic grammar for the chess endgame problem.

LOGENPRO uses the logic grammar in table 7.9 to solve t problem. In the
grammar, [a d j a c e n t (? x , ？y)] and [l e s s一 t h a n (? x , ？y)] are terminal
symbols. The logic goal member (?x , [WKf, WKr, WRf, WRr' BKf ‘ BKr])
will instantiate logic variable ？ x of the grammar to either WKf, WKr, WRf, WRr, BKf，

or BKr, the logic variables of the target logic program.

The population size for LOGENPRO is 10 and the maximum number of
generations is 50. In fact, different population sizes have been tried and the results are
still satisfactory even for a very small population. This observation is interesting and it
demonstrates the advantage of combining inductive logic programming and
evolutionary algorithms using the proposed framework. The fitness function of
LOGENPRO evaluates the number of training examples misclassified by each
individual in the population. Since LOGENPRO is a probabilistic system, five runs of
each experiment are performed and the average of the classification accuracy of these
five runs is returned as the classification accuracy of LOGENPRO for the particular

Page 179
{

experiment. In other words, fifty runs of LOGENPRO have been performed in total.
The results of these systems are summarized in table 7.10 . The performances of these
systems are compared using the one-tailed paired Mest with 0.05% level of
significance.

Noise Level
0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 3 0 0 . 4 0

LOGENPRO (Average) 0~996 0~983 0.855 0.733 0.670
variance O.OOE+00 7.74E-06 2.96E-04 7.85E-04 2.57E-03 2.47E-03 1.44E-04

foil (Average) 0.996 0.898 0.819 0.761 0.693 0.596 0.529
Variance O.OOE+00 5.07E-04 6.56E-04 5.15E-04 5.30E-04 3.35E-04 3.11E-04

beam-foil (Average) 0.996 0.802 0.757 0.744 0.724 0.685 0.674
variance O.OOE+00 7.07E-04 1.62E-04 1.88E-04 2.00E-04 1.40E-04 1.04E-04

mFOILl (Average) 0.985 0.796 0.792 0.758 0.730 0.705 0.686
variance O.OOE+00 3.67E-04 3.30E-04 3.60E-04 1.29E-04 1.83E-04 8.94E-05

niP0IL2 (Average) 0.985 0.883 0.845 0.815 0.785 0.719 0.685
variance O.OOE+00 5.15E-05 7.29E-05 3.12E-04 2.15E-04 1.39E-04 1.30E-04

mPOILS (Average) 0.892 0.807 0.791 0.765 0.733 0.704 0.693
variance 1.97E-16 2.46E-04 5.15E-04 4.02E-04 8.10E-05 8.72E-05 1.33E-04

inF0IL4 (Average) 0.985 0.932 0.888 0.842 0.798 0.713 0.680
Variance O.OOE+00 7.47E-05 9.16E-05 9.26E-04 3.09E-04 1.41E-04 3.05E-04

inFOILS (Average) 0.896 0.836 0.805 0.771 0.723 0.068 0.000
Variance 1.97E-16 7.83E-04 1.05E-04 1.89E-04 9.81E-04 4.69E-02 O.OOE+00

Table 7.10: The averages and variances of accuracy of LOGENPRO,
FOIL, BEAM-FOIL, and different instances of mFOIL at
different noise levels.

7.2.3. Comparison of LOGENPRO with FOIL

The classification accuracy of both systems degrades seriously as the noise level
increases (figure 7.2). The classification accuracy of LOGENPRO decreases smoothly
when the noise level is on or below 0.15. It reduces from 0.996 to 0.938, a 5.8%
decrement. There are sudden drops of accuracy when the noise level is between 0.15
and 0.40. It falls from 0.938 to 0.670, a 28.5% reduction. The accuracy of FOIL
decreases rapidly when the noise level is on or below 0.20. It drops from 0.996 to
0.693，a 30.4% reduction. The decrease slightly slows down between the noise levels
of 0.20 and 0.40. It drops from 0.693 to 0.529，a 23.7% reduction.

Page 180

"•“ LOGENPRO
1.1-1 FOIL

BEAM-FOIL
mFOILl

I 0 . 7 — ！

0 . 6 - — - ~ ~ - ~ “ ‘ ~ — — ~ " " " " " " " ~ _ 一

0 0.05 0.1 0.15 0.2 0.3 0.4
Noise Level

Figure 7.2: Comparison between LOGENPRO, FOIL, BEAM-FOIL, and
mFOILl

The results are statistically evaluated using the one-tailed paired r-test. For each
noise level, the classification accuracy is compared to test the null hypothesis against the
alternative hypothesis. The null hypothesis states that the difference in accuracy is zero
at the 0.05% level of significance. On the other hand, the alternative hypothesis declares
that the difference is greater than zero at the 0.05% level of significance. The t-statistics
are listed as follows:

Noise Level 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 30 0 . 40
t-statistics NA 12.59 17.78 19.33 14.17 8.07 26.82

The t-statistics at the 0.00 noise level is not available because the variances are
very small (near zero). The t-statistics at the 0.05 noise level is 12.59 which is greater
than the critical value of 4.78. Thus, we can reject the null hypothesis and assert that the
classification accuracy of LOGENPRO is higher than that of FOIL. Similarly, the

Page 181

classification accuracy of LOGENPRO at the noise levels between 0.05 and 0.40 is
significantly higher than that of FOIL. The largest difference reaches 0.177 at the 0.15
noise level.

7.2.4. Comparison of LOGENPRO with BEAM-FOIL

The classification accuracy of BEAM-FOIL degrades seriously as the noise level
increases (figure 7.2). There is a significant fall in accuracy of BEAM-FOIL when the
noise level is increased from 0.0 to 0.05. It reduces from 0.996 to 0,802, a more than
19.4% of decrement. It falls from 0.802 to 0.757 between the noise levels of 0.05 and
0.10，a smaller reduction (5.6%) is encountered in this interval. The decrease slows
down between the noise levels of 0.10 and 0.40. The accuracy drops from 0.757 to
0.674 in this interval. The reduction is about 11%. The results of the one-tailed paired t-
test are listed as follows:

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40
t-statistics NA 22.20 33.82 21.91 9.19 3.26 -0.81

The t-statistics at the 0.00 noise level is not available because the variances are
very small (near zero). The t-statistics at the 0.05 noise level is 22.20 which is greater
than the critical value of 4.78. Thus, we can assert that the classification accuracy of
LOGENPRO is higher than that of BEAM-FOIL. Similarly, the classification accuracy
of LOGENPRO at the noise levels between 0.10 and 0.20 is significantly higher than
that of BEAM-FOIL. At the noise level of 0.30，the accuracy of LOGENPRO is higher
than that of BEAM-FOIL, but the difference is not significant because the t-statistics is
only 3.26 which is smaller than the critical threshold. On the other hand, the accuracy
of BEAM-FOIL at the noise level of 0.40 is higher than that of LOGENPRO, but the
difference is insignificant because the absolute value of -0.81 is smaller than the critical
value. This comparison indicates that the genetic operations of LOGENPRO can

Page 182

actually improve the logic programs generated by other learning systems such as
BEAM-FOIL.

7.2.5. Comparison of LOGENPRO with mFOILl

We compare LOGENPRO with mFOILl to mFOIL5 (see section 3.3) one by one in
this and the following sub-sections. The parameters of this instance are presented in
table 7.8. Lavrac and Dzeroski (1994) compare the performances of mFOILl with
FOIL2.0, a version of FOIL, for the chess endgame problem using the smaller dataset
described in sub-section 7.2.1. They find that mFOILl outperforms FOIL2.0 at all
noise levels. Our results depicted in figure 7.2 are inconsistent with those obtained by
Lavrac and Dzeroski. We find that FOIL outperforms mFOILl at the noise levels of
0.05 and 0.1. On the other hand, mFOILl has better performance when the noise level
is over 0.1. The inconsistency may be explained because we employ an improved
version of FOIL, FOIL6.0, and larger sets of training and testing examples.

There is a significant fall in accuracy of mFOILl (figure 7.2) when the noise
level is changed from 0.0 to 0.05. It reduces from 0.985 to 0.796，a more than 19% of
decrement. It falls from 0.796 to 0.792 between the noise levels of 0.05 and 0.10，a
very small reduction (0.5%) is encountered in this interval. The drop slows down
between the noise levels of 0.10 and 0.40. The accuracy falls from 0.792 to 0.686 in
this interval. The reduction is only 13%. The results of the one-tailed paired t-test are
listed as follows:

Noise Level 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 30 0 . 40
t-statistics3.03E+0829.35 22.78 16.17 7.52 2.27 -3.92

Since t-statistics at the 0.00 noise level is very large, we can assert that the
classification accuracy of LOGENPRO is higher than that of mFOILl. The difference is
about 0.01. The t-statistics at the 0.05 noise level is 29.35 which is greater than the

Page 183

critical value of 4.78. Thus, the classification accuracy of LOGENPRO at this noise
level is significantly higher than that of mFOILl, with a difference of 0.19. Similarly,
the classification accuracy of LOGENPRO at the noise levels between 0.10 and 0.20 is
significantly higher than that of mFOILl. At the noise level of 0.30, the accuracy of
LOGENPRO is higher than that of mFOIL by about 0.03, but the difference is not
significant because the t-statistics is only 2.27 which is smaller than the critical
threshold. On the other hand, the accuracy of mFOILl at the noise level of 0.40 is
higher than that of LOGENPRO, the difference is not significant because the absolute
value of -3.92 is smaller than the critical value. The difference is about 0.014.

7.2.6. Comparison of LOGENPRO with mFOIL2

LOGENPRO
1.1 -X — mFOILl

mF0IL2
. “ m F 0 I L 3
U _ _ _ _ _ _ _ _ _ _ mF0IL4

0.6 I I I
0 0.05 0.1 0.15 0.2 0.3 0.4

Noise Level

Figure 7.3: Comparison between LOGENPRO, mFOILl, mFOIL2,
mFOIL3, and mFOIL4

The accuracy of mFOIL2 (figure 7.3) decreases smoothly between the noise levels 0.0
to 0.20. It drops from 0.985 to 0.785，which is a more than 20% reduction. The

Page 184

decrement slightly slows down between the noise levels of 0.20 and 0.40. It drops
from 0.785 to 0.685, with a 12.7% reduction. The results of the one-tailed paired f-test
are listed as follows:

Noise Level 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 30 0 . 40
t-statistics3.03E+0835.38 17.29 14.98 5.15 1.11 -3.37

Since t-statistics at the 0.00 noise level is very large, we can assert that the
classification accuracy of LOGENPRO is significantly higher than that of mF0IL2. The
difference is about 0.01. The t-statistics at the 0.05 noise level is 35.38 which is greater
than the critical value of 4.78. Thus, the classification accuracy of LOGENPRO at this
noise level is significantly higher than that of mFOIL2 with the difference of 0.1.
Similarly, the classification accuracy of LOGENPRO at the noise levels between 0.10
and 0.20 is significantly higher than that of mF0IL2. At the noise level of 0.30, the
accuracy of LOGENPRO is higher than that of mFOIL2 by about 0.014，but the
difference is not significant because the t-statistics is only 1.11 which is smaller than the
critical threshold. On the other hand, the accuracy of mF0IL2 at the noise level of 0.40
is higher than that of LOGENPRO, the difference is insignificant because the absolute
value of -3.37 is smaller than the critical value. The difference is about 0.015.

7.2.7. Comparison of LOGENPRO with mFOIL3

The accuracy of mFOIL3 (figure 7.3) at the noise level of 0.00 is only 0.892. The
accuracy of mFOIL5 decreases smoothly when the noise levels between 0.0 and 0.15.
It drops from 0.892 to 0.765, with a more than 14.5% reduction. The accuracy reduces
slightly between the noise levels of 0.15 and 0.40. It drops from 0.765 to 0.693，with a
more than 9% reduction. The results of the one-tailed paired 广test are listed as follows:

Noise Level 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 30 0 . 40
t-statistics NA 32.20 20.31 17.06 8.15 2.06 -4.90

Page 185

The t-statistics at 0.00 noise level is not available because the variances are very
small (near zero). The t-statistics at the 0.05 noise level is 32.20 which is greater than
the critical value of 4.78. Thus, the classification accuracy of LOGENPRO is
significantly higher than that of mFOIL3. The difference is about 0.17. Similarly, the
classification accuracy of LOGENPRO at the noise levels between 0.10 and 0.20 is
significantly higher than that of mFOIL3. At the noise level of 0.30，the accuracy of
LOGENPRO is higher than that of mF0IL3, but the difference is not significant. On the
other hand, the accuracy of mFOIL3 at the noise level of 0.40 is significantly higher
than that of LOGENPRO. The difference is about 0.02.

7.2.8. Comparison of LOGENPRO with mFOIL4

The accuracy of mFOIL4 (figure 7.3) decreases slightly when the noise level increases
from 0.0 to 0.15. It drops from 0.985 to 0.842, with a more than 14% reduction. The
accuracy reduces smoothly between the noise levels of 0.15 and 0.40. It drops from
0.842 to 0.680，with a more than 19% reduction. The results of the one-tailed paired t-
test are listed as follows:

Noise Level 0.00 0.05 0. 10 0.15 0.20 0.30 0.40
t-statistics3.03E+0821.59 13.05 9.95 4.37 1.23 -1.65

The classification accuracy of LOGENPRO at the noise level 0.00 is
significantly higher than that of mF0IL4. The difference is about 0.01. The t-statistics
at the 0.05 noise level is 21.59 which is greater than the critical value of 4.78. Thus, the
classification accuracy of LOGENPRO is significantly higher than that of mFOIL4. The
difference is about 0.05. Similarly, the classification accuracy of LOGENPRO at the
noise levels between 0.10 and 0.15 is significantly higher than that of mF0IL4. At the
noise levels of 0.20 and 0.30，the accuracy of LOGENPRO is higher than that of
mF0IL4, but the differences are not significant. On the other hand, the accuracy of
mFOIL4 at the noise level of 0.40 is higher than that of LOGENPRO, but the difference

Page 186
/

is insignificant because the absolute value of -1.65 is smaller than the critical value. The
difference is about 0.01 •

7.2.9. Comparison of LOGENPRO with mFOILS

LOGENPRO
-A- mF0IL2

1 • n"""" mFOIL5

I� • —
Q .KfMMMN iWWiiwWiWMWOWttJwWiWiWiW ĴiwWW nWWWwWiifcMSwNwioMwJWWWWWwJw MW«MMM>MMM«M0M>IMMHV««K*J« >MWMIMWM I \

I o . ‘ — \

o - j “ 1 I i i ^ T
0 0.05 0.1 0.15 0.2 0.3 0.4

Noise Level

Figure 7.4: Comparison between LOGENPRO, mFOIL2, and mFOILS.

The accuracy of mFOILS at the noise levels of 0.00，0.30，and 0.40 is not acceptable.
By comparing mFOILS with mFOIL2 (figure 7.4)，we can conclude that the
significance threshold for noise-handling affects the performance of mFOIL severely
(see table 7.8). The accuracy of mFOIL5 decreases slowly from the noise levels of 0.0
to 0.2. It drops from 0.896 to 0.723，a more than 19% reduction. There is a sudden
drop in accuracy from 0.723 at the noise level of 0.20 to 0.0 at the noise level of 0.40.
The results of the one-tailed paired Mest are listed as follows:

Noise Level 0.00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 30 0 . 40
t-statistics NA 16.99 22.29 16.44 8.12 10.23176.37

Page 187

The t-statistics at the 0.00 noise level is not available because the variances are
very small (near zero). The t-statistics at the 0.05 noise level is 16.99 which is greater
than the critical value of 4.78. Thus, the classification accuracy of LOGENPRO at this
noise level is significantly higher than that of mFOIL5. The difference is about 0.15.
Similarly, the classification accuracy of LOGENPRO at the noise levels between 0.10
and 0.40 is significantly higher than that of mFOIL5.

7.2.10. Discussion

In this section, we employ LOGENPRO to combine evolutionary algorithms and
BEAM-FOIL, to learn logic programs. The performance of LOGENPRO in a noisy
domain has been evaluated by using the chess endgame problem. Detailed comparisons
between LOGENPRO and other ILP systems have been conducted. It has found that
LOGENPRO outperforms these ILP systems significantly at most noise levels. These
results are surprising because the LOGENPRO uses the same noise-handling
mechanism of FOIL by initializing the population with programs created by BEAM-
FOIL.

One possible explanation of the better performance of LOGENPRO is that the
Darwinian principle of survival and reproduction of the fittest is a good noise handling
method. It avoids overfitting noisy examples, but at the same time, it finds interesting
and useful patterns from these noisy examples. This result is very encouraging and we
plan to apply LOGENPRO to combine evolutionary algorithms with other learning
systems such as GOLEM (Muggletion and Feng 1990), LINUS (Lavrac and Dzeroski
1994)，and mFOIL (Lavrac and Dzeroski 1994) for solving problem.

Page 188
{

73. Learning programs in Fuzzy Prolog

The goal of this experiment is to induce a Fuzzy Prolog program that describes the
fuzzy relation c a n - r e a c h intensionally. The set of training examples and the
background knowledge are stored in a fuzzy relational database. Li and Liu (1990)
described the detailed definitions of the syntax and semantics of Fuzzy Prolog and the
properties of fuzzy relational databases. To the knowledge of the authors, LOGENPRO
is currently the only system that can learn programs in Fuzzy Prolog.

Consider the fuzzy network in figure 7.5, and this network represents the fuzzy
relation l i n k e d - t o (X, Y) that denotes node X is directly linked to node Y with a
truth value f, where f e (0，1]. In the network, the edges represent the instances of the
l i n k e d - t o relation and the number on an edge is the truth value of the corresponding

instance. For example, the truth value of the instance l i n k e d - t o (0 ' 1) is 0.9.

© ©

。_9 0.88

>.85 0 . 9 Z 0.95

0 0 ^ ©

Figure 7.5: A fuzzy network

Page 189

A fuzzy relation is associated with a n-ary fuzzy predicate and can be described
extensionally as a set of ordered pairs. The extensional representations of fuzzy
relations can be stored in a fuzzy relational database. For example, the fuzzy relation
1 i n k e d - t o (X, Y) can be stored in a database as:
linked-to(X, Y) = {(<0,1>, 0.9), (<0,3>, 0.8), (<1,2>, 0.85),

(<3,2>, 0.9),(<3,4>, 0.8), (<4,5>, 0.88),
(<4,6>, 0.7), (<6,8>, 0.95), (<7,6>, 0.9),
(<7,8>, 0.95) }

The first element of an ordered pair is a n-tuple of constants that satisfies the associated
fuzzy predicate. The second element of the ordered pair is the corresponding truth
value.

Other fuzzy relations can be obtained from the fuzzy network. One of them is
c a n - r e a c h (X, Y) which is represented explicitly as:
can-reach(X, Y) = {(<0,1>, 0.9), (<0,2>, 0.765), (<0,3>' 0.85)'

(<0,4>, 0.72), (<0,5>, 0.648), (<0,6>, 0.567),
(<0,8>, 0.510), (<1,2>, 0.85), (<3,2>, 0.9)
(<3,4>, 0.8), (<3,5>, 0.72), (<3,6>, 0.63),
(<3,8>, 0.567), (<4,5>, 0.88), ((4,6>, 0.7)
((4,8>, 0.63), (<6,8>, 0.95), (<7,6>, 0.9),
(<7,8>, 0.95) }

The negative instances of this relation can be found using the close world
assumption (Li and Liu, 1990). Thus, the set of negative instances is:

{(<0,0>, 0), (<0,7>, 0), (<1,0>, 0), (<1,1>, 0), (<1,3>, 0),
(<1,4>, 0), (<1,5>, 0), {<1,6>, 0), (<1,7>, 0), (<1,8>, 0),
(<2,0>, 0), (<2,1>, 0), (<2,2>, 0), (<2,3>, 0), (<2,4>, 0),
(<2,5>, 0), (<2,6>, 0), (<2,7>, 0), (<2,8>, 0), (<3,0>, 0),
(<3,1>, 0), (<3,3>, 0), (<3,7>, 0), (<4,0>, 0), (<4,1>, 0),
(<4,2>, 0), (<4,3>, 0), (<4,4>, 0), (<4,7>, 0), (<5,0>, 0),
(<5,1>, 0), (<5,2>, 0), (<5,3>, 0), (<5,4>, 0), (<5,5>, 0),
(<5,6>, 0), (<5,7>, 0), (<5,8>, 0), (<6,0>, 0), (<6,1>, 0),
(<6,2>, 0), (<6,3>, 0), (<6,4>, 0), (<6,5>, 0), {<6,6>, 0),
(<6,7>, 0), (<7,0>, 0), (<7,1>, 0), (<7,2>, 0), (<7,3>, 0),
(<7,4>, 0), (<7,5>, 0), (<7,7>, 0), (<8,0>, 0), (<8,1>, 0),
(<8,2>, 0), (<8,3>, 0), (<8,4>, 0), (<8,5>, 0), (<8,6>, 0),
(<8,7>, 0), (<8,8>, 0)}

The 19 positive and 62 negative instances are used as the fitness cases. The
fitness function finds the sum, taken over all 81 fitness cases, of the absolute values of

Page 190

the difference between the desired truth value and the truth value returned by the
generated program. A fitness case is said to be covered by a program if the truth value
returned is within 0.05 of the desired value. LOGENPRO terminates if the maximum
number of generations of 25 is reached or a Fuzzy Prolog program that covers all
fitness cases is found. The logic grammar for this problem is shown in table 7.11. In
this grammar, the background knowledge is represented by the fuzzy relation
l i n k e d - t o (X, Y) stored in a fuzzy relational database and the predicate
r andom (0 , 1 , ？A) is a logic goal.

start -> clauses.
clauses -> clauses, clauses.
clauses -> clause.
clause -> {random(0, 1' ？A)}'

consq, [：-(？A)], antes, [•].
consq -> [can-reach(X, Y)].
antes -> antes, [,], antes.
antes -> ante.
ante -> {member{?A,[W, X, Y, Z])},

{member(?B,[W, X, Y, Z])},
literal(?A, ？B).

literal(?A, ？B) -> [linked-to(?A, ？B)].
literal(?A, ？B) -> [can-reach(?A, ？B)]•

Table 7.11: The logic grammar for inducing programs in Fuzzy Prolog

A number of trials have been performed using a population size of 100. Correct
programs can be found in all trials. The following correct and simplified program is
found in one trial:

can-reach (X, Y) ：- (I) linked-to (X, Y).

can-reach(X, Y) :- (0.9) linked-to(X, Z),

can-reach(Z, Y).

Page 191

Chapter 8 An Adaptive Inductive Logic Programming System
In chapter 4, we have described the Genetic Logic Programming System (GLPS) that
employs evolutionary algorithms to induce logic programs. In chapters 5，6，and 7, we
have discussed LOGENPRO and demonstrated that LOGENPRO outperforms other
ILP systems for learning logic programs in a noisy domain.

However, LOGENPRO and other ILP systems cannot improve themselves
automatically. In this chapter, we describe an Adaptive Inductive Logic Programming
(Adaptive ILP) system that evolves using evolutionary algorithms. The definition of
adaptive inductive logic programming is formulated in the first section. We present a
generic top-down ILP algorithm in section 8.2. A meta-level learner that induces search
bias is described in section 8.3. Section 8.4 delineates the experimentation and some
evaluations of the system followed by a discussion.

8.1. Adaptive Inductive Logic Programming

As described chapter 3, an ILP system is a relational concept learner that induces a new
relation for the target concept (i.e., the target predicate) from training examples and
known relations from the background knowledge B. The training examples, the
hypothesis space and the background knowledge are represented in first-order Horn
clause languages (Muggleton and Feng 1990).

An Adaptive Inductive Learning Programming (Adaptive ELP) system is an ILP
system that can improve itself on the learning capability. It maintains various sets of
background knowledge and biases. It improves itself by modifying its biases and

Page 192

background knowledge. A hypothesis space for learning is defined through the concept
description language, the language bias and the background knowledge. Therefore, by
changing the language bias and the background knowledge, the size and structure of the
hypothesis space can be modified accordingly. The search strategy and heuristics are
changed if the system's search biases are modified. Here, we formulate the task of an
Adaptive ILP system in table 8.1.

Given:
-A set E of positive E+ and negative E_ training
examples of the target predicate p. Training examples
are represented as ground atoms
-A concept description language L
-A set of learning biases BIASES
-A set of various background knowledge BKs

Find:
-A modified set of learning biases BIASES‘
-A modified set of background knowledge BKs‘
-A concept definition H for the target predicate p
expressible in L such that H is complete and
consistent with respect to (w.r.t.) the training
examples E and a background knowledge B in BKs

H is complete if every positive example e+ in E+ is
covered by H w.r.t. the background knowledge B. i.e.
B U H 1= e+

H is consistent if no negative example e~ in E~ is
covered by H w.r.t. the background knowledge B. i.e.
B U H l̂t e~

Table 8.1: The definition of Adaptive ILP

The logical organization of our adaptive ILP system is depicted in figure 8.1. Its
components are introduced as follows:

(1) External interface: It provides a user-friendly interface between the
system and users. It accepts training examples, a set B K s of
background knowledge, and a set BIASES of biases and transfers
them through the learning controller to the example database, BKbase
and biases base respectively. The interface also provides commands for

Page 193

users to query about the results of an adaptive learning task and to
directly control the operations of the learning controller.

External Interface T1 H___ _ _

Example
database j

iMeta-Level M ， 丨 " c a l ILP
Learner • Learner

^ Data flow

^ ^ Control flow

Figure 8.1: The logical organization of an adaptive ILP system

(2) Biases base: It is a knowledge base that stores all learning biases. Biases
can be retrieved, added, deleted, and modified through the interface of
this knowledge base.

(3) BKbase: It stores various background learning knowledge that can be
used in inductive learning. Background knowledge can be retrieved,
added, deleted, and modified through the interface of BKbase. Since
each entity of it is in fact a complex structure representing background
knowledge, BKbase is implemented using object-oriented techniques.

(4) Examples database: It stores the training examples.
(5) Empirical ILP learner. It induces a logic program from the training

examples, given a concept description language, a specific background
knowledge, a search bias and a language bias. A search of the
hypothesis space can be performed bottom-up or top-down. Bottom-up

Page 194

techniques start from the training examples and search the space by
employing various generalization operators. Top-down techniques start
from the most general concept descriptions, and search the space by
using various specialization operators. Top-down techniques are better
suited for learning from imperfect examples because a large number of
data are available in every specialization step and the system can employ
various statistical techniques to decide how to perform the
specialization. Moreover, top-down search can easily be guided by the
search bias. In section 8.2，a generic top-down ILP algorithm is
described.

(6) Meta-level learner: It learns search biases, language biases, and
background knowledge. Search and language biases can be represented
declaratively or procedurally. If biases are expressed in a first-order
language, the problem of learning biases can be formulated as an
empirical ILP problem and thus the empirical ILP system described in
(5) can be used. In section 8.3，we apply LOGENPRO to implement a
meta-level learner that induces procedural biases. Background
knowledge can be modified by introducing new predicate definitions or
adding the definition of the current target predicate. For the former case,
if the introduced predicates can facilitate the learning of the current target
predicate, the introduced predicates can be viewed as sub-concepts (or
sub-functions). In sub-section 6.1.2, we showed that LOGENPRO can
effectively induce sub-functions and thus it can be used for this
purpose. The induced sub-concepts are remembered in order to improve
the learning of similar predicates in the future. For the latter case, the
induced definition of the current target predicate is stored to facilitate the
learning of higher level predicates. It can also learn other meta-
knowledge such as the conditions under which various learning biases
and background knowledge can be employed. Since the meta-level

Page 195

learner performs a variety of learning tasks, it is implemented as a multi-
strategy learning system.

(7) Learning controller: It is a knowledge-based system that controls the
empirical ILP learner and the meta-level learner. The knowledge used by
the learning controller can be updated by the meta-level learner.

8.2. A generic top-down ILP algorithm

This section presents a generic top-down ILP algorithm based on FOIL (Quinlan 1990;
1991). The algorithm is depicted in table 8.2. The algorithm consists of three steps. In
the pre-processing step, missing argument values in training examples are handled by
assigning default or random values to them. A training example will be removed if it
has too many missing values. If there are no or inadequate negative examples in the
training set, they can be generated. Different ways of creating negative examples have
been proposed (Lavrac and Dzeroski 1994).

The second step performs the construction of a program. This step employs
four local variables: Ecur ren t (Current training examples set), E ‘ current (Updated
training examples set), P (Current program) and P ‘ (Modified program). The main
component of this step is the covering loop which implements Michalski's covering
algorithm (Michalski et al. 1986a). The covering loop construct a program by iteratively
executing the following sub-steps:

(a) Construct a clause that covers some positive examples in Ecurrent .
(b) Append the clause to the current program P and generate a modified

program P ‘.
(c) Remove all positive examples from Ecurrent which are covered by P ‘

with respect to the background knowledge B.

Page 196

Input：
E ： Training examples
L： The concept description language
BIASsearch: The search bias
BIASiang: The language bias
B： Background knowledge
T： The target concept

Output:
A program P which contains a set of program clauses. Each clause
C G L.

Function ILP(E, L, BIASsearch, BIASiang. B' T)

(1) Pre-processing of the training examples E and producing a
modified set of examples E,: E' := Preprocessing(E).

(2) Let Ecurrent ;
Let P := {};
Repeat

-Let C := T — ;
-Find a specialization c' of C. This step constructs a
clause C‘ from C by calling Clause-Construct(C'
Ecurrent, B, L, BIASsearch, BIASiang) •‘
-If a specialization can be found

-Add C‘ to P to produce a new program P . i.e.
p' ： = P U {C'}; I
-Remove all positive examples covered by P from
Ecurrent to get an updated training set E'
E ‘ current := Ecurrent " (positive examples in
Ecurrent covered by P’ w.r.t. the background
knowledge B};

- L e t E c u r r e n t ：二 E current ‘
-Let P P'

Else
-Set the flag No -More -Improvement to true;

Until
The Covering termination criterion is satisfied, i.e.
covering-termination (P, No-Mojre-Improvement, Ecurrent, B)
returns true;

(3) Post-processing the program P and producing P‘. i.e.
P‘ ：= Post-processing(P);
Return(P');

Table 8.2: A generic top-down ILP algorithm

The covering loop terminates if the terminating conditions are satisfied. A
typical condition is that either all positive examples are covered or no more

Page 197

improvement can be achieved by searching for a new clause. The final step attempts to
improve the accuracy of the program induced when classifying unseen examples and to
simplify the program.

The covering loop calls the 'Clause-Construct' function which is the core of the
generic algorithm. The function constructs a clause C^ = T l i , I 2 ' . . • ‘
In starting from the most general clause Co = T — with an empty body. A sequence
of clauses Co, Ci , C2，C3,….，C^ are generated by a number of specialization steps.

At each step, the current clause C i = T — l i , I 2 / • • • ' l i is refined by
appending a specific literal 1 to its body. A literal 1 � • is constructed from the
background knowledge B restricted by the concept description language L and
language bias BIASiang . The language may limit I j to be function-free while
BIASiang may prevent new variable to be introduced in 1 j . The aim of the procedure
is to find a clause which covers most positive examples while excludes all or most
negative examples. In a hill-climbing search, the procedure keeps the current best
clause and refines it using the estimated best specialization at each step, until the
stopping condition is satisfied. A hill-climbing 'Clause-Construct' algorithm is
presented in table 8.3.

The 'Clause-Construct' function calls the 'Find-Extension' function to find the
extension E ! of the current training examples given the partially developed clause Ci
= T (X i , X2, • . • , X^) — l i , I2 , • • • , l i and the background
knowledge B. Each training example < x i , X2 , . • • , Xn> is a n-tuple where x j ,
1 <i<n, are some constants. To find the extension, the function initializes a clause Co =
T (Xi, X2, . • • , Xn), then the literal l i is added to the body of Co to produce a
new clause Ci. The literal l i is either of the form Xj = Xk, Xj 本 X^, Pm (Yi, Y2'
. . . ,YSm) or n o t Pj7](Yi, Y2, . . . ,YSm).

Page 198

Input：
C： An initial clause C = T —
Ecurrent: The current training examples
B： Background knowledge
L： The concept description language
BIASgea rch : The s e a r c h b i a s

BIASiang: The language bias
Output: , .

A clause that covers some positive examples in Ecurrent while
excludes all or most negatives examples in Ecurrent

Function Clause-Construct (C, Ecurrent' B' L' BIASgearch/
BIASiang)

There is a scoring function stored in BIASsearch, save this
function to scoring;
Repeat

-Set BEST to a bad literal such as X = X where X is a
variable appearing in the head of the clause;
-Set Best-score to 0;
-Find the extension Ei of Ecurrent using the clause C w.r.t.
B. i.e. Ei := Find-Extension(C, Ecurrent, B);
-Let rî be the number of positive tuples in Ei；

-Let W厂 be the number of negative tuples in E^;
-Current-information : = 一 l o g z O 广 / O广 + n^))；
-For all literal 1 from B that satisfy the constraints
imposed by the language L and bias BIASiang

-Set C' = C U {1}； I
-Find the extension Ei+i of Ecurrent using the clause c'
i.e. Ei+i : = Find-Extension (C ' , Ecurrent / B);
-Let n'l̂^ be the nuniber of positive tuples in Ei+i；

-Let 打【；1 be the number of negative tuples in Ei+i；

-Let the number of positive tuples in E^ that have been
represented by one or more tuples in E^+i be n广;
-Find the score of the literal 1 by using the scoring

__̂ + function i.e. literal-score : = scoring (n̂ ' , '
Current-information)；
-If literal-score > Best-score then

-BEST 1;
-Best-score := literal-score；

-If BEST =二 X=X then
- No -More - Improvement : = true;

Else
-Append BEST to the body of C;

Until Clause-Termination (C, No-More-Improvement, Ecurrent' B)
is true;

Post-processing the clause C to find an improvement i.e.
C‘ := Find-Improvement(C);
If Acceptable(C')

-Return(C’）；
Else

-Return{No-Specialization-Can-Be-Found)；

Table 8.3: A hill-climbing ’Clause-Construct, algorithm

Page 199

If the literal contains k new variables, the arity of each tuple in the generated
training set E i increases to (n + k). E i can be found by performing a natural join of
Ecurrent with the relation corresponding to literal li. The process is repeated for
literals I2，I3,..., l i until the extension E i is found.

The most important component of the hill-climbing 'Clause-Construct'
algorithm is the 'scoring' function that estimates the performance of each literal. An
accurate estimation directs the search towards the global maxima while a misleading one
traps the system into local-maxima. By providing different 'scoring' functions to the
generic ILP algorithm, various learning algorithms can be generated. The performances
of a good and a bad learners can be significant different as shown in section 8.3.

8.3. Inducing procedural search biases

In this section, LOGENPRO is used in the meta-level learner to induce procedural
search biases (i.e. the ’scoring' function). In order to employ LOGENPRO, a logic
grammar must be defined. It is depicted in table 8.4.

In the grammar, the terminal symbols n - p o s - i - p l u s - 1 ,
n - n e g — i — p l u s — 1，and n - p o s - i represent respectively 行 广 + ! ， a n d n^^. With
reference to the algorithms in tables 8.2 arid 8.3, assume that E i is the extension of
current training examples Ecur ren t by current clause Ci, n^ and n； are respectively
the number of positive and negative tuples in E i . E i can be extended by using the
literal 1 to E i + i . n̂ ^̂ and w二 1 are respectively the number of positive and negative
tuples in E i+ i . w广 is the number of positive tuples in E i that have been represented
by one or more tuples in E i+ i . The terminal symbol c u r r e n t - i n f o r m a t i o n is
defined as -logiO广 / O广 + " �)) .

Page 200

start -> function,
s-exp -> term,
s-exp -> function.

function -> [(], opl, s-exp' [)]•
function -> [(], op2, s-exp, s-exp,[)].

opl -> [protected-log].
op2 - > [+] •
op2 -> [-] .
op2 - > [*] .
op2 -> [%].
op2 -> [info].

term -> [n-pos-i-plus-1]•
term _> [n-neg-i-plus-1].
term -> [n-pos-i].
term -> [current-information].
term -> { random(-10, 10, ？a) } , [？a] .

Table 8.4: A logic grammar for learning procedural search bias

The terminal symbols +，-, and * represent functions that perform ordinary
addition, subtraction, and multiplication respectively. The symbol % represents function
that normally returns the quotient. However, if division by zero is attempted, the
function returns 1.0. The symbol p r o t e c t e d - l o g is a function that calculates the
logarithm of the input argument x if x is larger than zero, otherwise it returns 1.0. The
symbol i n f o represents the basic function that calculates -log2(X / (X + F)) given X
and Y as inputs. The logic goal random (- 1 0 , 10 , ？a) generates a random floating
point number between -10 and 10 and instantiates ？ a to the random number generated

8.3.1. The evolution process

The evolution process of the Adaptive ILP system is depicted in figure 8.2. Firstly, the
Biases base is initialized with a population of different 'scoring' functions generated
randomly using the logic grammar depicted in table 8.4. To estimate the fitness of a
specific 'scoring' function, it is combined with the generic top-down ILP learner to
produce a specific ILP learner. The performance of this ILP learner is then evaluated by

Page 201

using a fitness function. This measure is assigned as the fitness of the specific 'scoring'
function. LOGENPRO employs crossover, selection, mutation, and other genetic
operators to generate potentially better functions. The modified functions are stored in
the Biases base and the whole evolution process iterates until the best function is found
or no computational resource is available. Some induced functions (procedural search
biases) are given in appendix A.

Biases
Base

Initial Modified
Biases Biases

i
LOGENPRO M

Bias Performance
of bias

^ Empirical ILP
Learner

k k
BKbase Example

database

Figure 8.2: The evolution process of the adaptive ILP system

8.3.2. The experimentation setup

In this chapter, learning curves are used to estimate the performances of various
learning systems. The example space is divided randomly into disjoint training and
testing sets. The learner is trained on progressively larger portions of the training set
and the performance of the induced logic program is estimated on the disjoint testing

Page 202
/

set. This process of dividing, training, and testing is repeated for 20 trials and the
results are averaged to generate a learning curve.

As a running example, we use a traditional problem discussed in the literature
(Muggleton and Feng 1990). In the problem of learning the list predicate member, the
data consist of all lists of lengths 0 to 3 defined over three constants. The background
knowledge B contains definitions of list construction predicates: null which holds for
an empty list and component which decomposes a list into its head and tail. The
example space contains 75 positive and 45 negative examples. The training sets contain
20 to 52 examples, one-half of each training set is positive examples. The testing set
consists of 45 positive and 15 negative examples.

8.3.3. Fitness calculation

Adjusted and normalized fitness values are used as in Koza (1992). They are calculated
from the raw fitness which is estimated by the fitness function. Various fitness
functions have been tried and two of them are described here. The impact of fitness
function on the generality of the evolved function is also demonstrated. The problem
domain of learning the member predicate is used here.

For the first fitness function, a random set of 24 positive and 21 negative
examples is used. A specific 'scoring' function is combined with the generic top-down
ILP learner to produce a specific ILP learner called Adapted-ILP hereafter. Adapted-
ILP induces a logic program using the random example set. The quality of the induced
logic program is evaluated by counting the total number of misclassified examples from
the same training set. This measure is used as the raw fitness of the specific 'scoring'
function. Using this fitness function, only poor 'scoring' functions have been evolved.
The learning curve of a poor learner is depicted in figure 8.3.

Page 203

For the second fitness function, the raw fitness is developed in several steps. At
the beginning of each generation, four instances of the learning task are created
randomly from the member domain. Each learning task has a training and a disjoint
testing data. The training set contains 20 positive and 20 negative examples. For each
learning task, a specific Adapted-ILP induces a logic program from the training set and
the logic program is evaluated by counting the number of misclassified examples from
the testing set. The performance of the Adapted-ILP is the sum of numbers of
misclassified examples for all learning tasks. This measure is then used as the raw
fitness of the corresponding 'scoring' function. This fitness function can force the
evolution of good 'scoring’ functions. The learning curve of a good learner is shown in
figure 8.3.

—X- Poor ILP learner
h o - Good ILP leamerl

g 0.85 誦 — — — 一 — 瞧

< 0 . 8 誦 一 — — " ^ 、 一 — 一 酬

0 • 7 5 1 ^ i } C^^ I
O . T H ~ I ~ ~ I ~ ~ ~ ~ ~ M

20 24 28 32 36 40 44 48 52
Training size

Figure 8.3: The learning curves of good and poor ILP learner

8.4. Experimentation and evaluations

This section compares the performance of the adaptive ILP system with that of FOIL
which is a famous ILP system (Quinlan 1990). Standard learning tasks in the literature
are used in these experiments (Quinlan 1990，Muggleton and Feng 1990).

Page 204

8.4.1. The member predicate

The learning curves for this problem are depicted in figure 8.4. It is interested to find
that the adaptive ILP system has higher accuracy than FOIL. The difference is
significant at 5% level of significance when the training size is less than 36.

一 X — Foil
—D™ The Adaptive ILP system

0.95 i p q —

O . 7 5 M ~ ~ ~ ~ M
20 24 28 32 36 40 44 48 52

Training size
Figure 8.4: Learning curves for the member problem

8.4.2. The member predicate in a noisy environment

Difference amount of noise is introduced into the training examples in order to study the
performances of both systems in learning programs in noisy environment. To introduce
n% of noise into the examples, n% positive examples are labeled as negative ones while
n% negative examples are labeled as positive ones. In this experiment, the percentages
of introduced noise are 10% (0.1) and 40% (0.4). Their learning curves are
summarized in figure 8.5. The adaptive ILP system performs better than FOIL at all
noise level.

Page 205

| - X - Foil (0.1) r
The Adaptive ILP system (0.1)

1 Foil (0.4)
The Adaptive ILP system (0.4)

0 . 9 _ [j j

0 . 6 ； ^ ^ ‘ ‘ — —

0.5' I I I I I 1 I ' ' '
20 24 28 32 36 40 44 48 52

Training size
Figure 8.5: Learning curves for the member problem in a noisy

environment

8.4.3. The multiply predicate

In the problem of learning the arithmetic predicate multiply (Muggletion and Feng
1990), the data contain integers in the range from zero to ten. The background
knowledge is composed of definitions for arithmetic predicates plus, decrement, zero,
and one. The example space has 73 positive and 1258 negative examples respectively.
The training sets consist of 400 to 500 examples, one-tenth of each training set is
positive and the remainder is negative. The learning curves for multiply are presented in
figure 8.6. The Adaptive ILP system performs better than FOIL when the size of
training set is less than 460. The difference is significant at 5% level of significance.

Page 206

一 X - Foil
— T h e Adaptive ILP system

_ 0 .8 /

^ J_
0 . 7 圓 X ~ X ^) /
0 . 6 M 1 1 r

400 420 440 460 480 500
Training size

Figure 8.6: Learning curves for the multiply problem

8.4.4. The uncle predicate

一 X - Foil
l .OSpi � - D - The Adaptive ILP system

^ 一 r 一 腳

I 0 .9 \ — ^

< 0.85 - y f ‘ ’ ― -

0 .&

0 . 7 5 H 1 H
50 70 90 110 130 150

Training size

Figure 8.7: Learning curves for the uncle problem

Page 207

Another traditional testbed for relational learners is the domain of family relationships
(Quinlan 1990). In this experiment, the uncle predicate is induced and the background
predicates are parent, sibling, married, male, Sind female. The learning curves are
presented in figure 8.7.

8.5. Discussion

In this chapter, we have proposed an Adaptive Inductive Logic Programming system
which is composed of an external interface, a biases base, a knowledge base of
background knowledge, an example database, an empirical ILP learner, a meta-level
learner, and a learning controller. In our implementation of the Adaptive Inductive
Logic Programming system, the empirical ILP learner performs top-down search in the
hypothesis space defined by the concept description language, the language bias and the
background knowledge. The search is directed by search biases which can be induced
and refined by LOGENPRO.

It has been demonstrated that the induced bias is better than that of FOIL on
many standard learning tasks. From these experiments, it can be concluded that the
Adaptive ILP system has superior learning ability compared to FOIL. Since they are
different in their search biases only, the result implies that the search bias induced by
LOGENPRO is better than that of FOIL for the learning problems. This result is
surprising because the search biases of the Adaptive ILP system are initialized by a
random process. These biases are normally poor, but the process of natural selection
and evolution can successfully evolve a good bias.

It is important to mention that the induced search biases are rather general
because they have reasonable performances on many traditional learning problems. For
future work, in order to find a general, efficient, and effective bias, a large number of
learning tasks of different kinds, such as the member, append’ quick sort, ackermann,

Page 208

uncle, and grandfather problems, of various characteristics should be used. This
adaptive learning approach, though computationally intensive, is rather exciting, as it
opens up many opportunities for creating or improving learning algorithms.

/

Page 209
f

Chapter 9 Conclusion and Future Work
9.1. Conclusion

The goal of program induction is to create computers that can learn to solve problems
without being explicitly programmed. A means to achieve this goal is to allow
computers to generate computer programs in different programming languages from
specifications. The advantage of inducing computer programs rather than other high-
level abstractions such as binary chromosomes, formal grammars, and semantic
networks is that computer programs are flexible and executable. Computer programs
are flexible because their sizes, shapes, and structural complexities are not restricted in
advance. In contrast, these properties of programs are emerged during the learning
process as a result of the demands of the problem. In order to learn computer programs,
a program induction system should search the solutions in the space of all possible
programs. However, the space is extremely large and the traditional weak search
methods clearly cannot solve the problem. Thus, some adaptive and intelligent search
methods are required.

An intelligent search method starts with one or more search points (structures)
in the search space, evaluates the performances of the current structures for solving the
problem at hand, and then employs the information about the performances to determine
how to proceed the search in the space. As described in chapter 2，evolutionary
algorithms have these properties and thus they are intelligent and effective.
Nevertheless, they are weak methods without domain-specific knowledge hard-wired in
the methods.

Page 210
/

In chapter 3，we have introduced some ILP systems which can be classified into
top-down and bottom-up systems. Most existing ILP systems applies strong search
methods obtained by combining some greedy search strategies and heuristics. Various
systems differ mainly in the strong methods used to guide the search for the desired
programs. The problem is that these strong methods are not always applicable because
they may trap the systems in local maxima. Moreover, other learning paradigms such as
reinforcement learning (Sutton 1988; 1992, Tesauro 1992，Lin 1992, Kaelbling 1993)
and strategy learning cannot be achieved by ILP systems.

Since evolutionary algorithms are effective weak methods, we have proposed
the idea of combining the effective search power of evolutionary algorithms and the
knowledge representation power of first-order logic. In chapter 4，we have described a
novel system called the Genetic Logic Programming System (GLPS) that realizes the
idea. GLPS can learn function free first-order logic programs with constants. It takes
the advantages of existing ILP and GP systems while avoids the disadvantages of them.
We have devised a new method so that a logic program can be represented as a forest of
AND-OR trees. This representation method facilitates the generation of the initial
population of logic programs and the operations of various genetic operators such as
crossover and reproduction. A number of applications of GLPS have been successfully
implemented. They are the Winston's arch problem, the modified Quinlan's network
reachability problem, and the factorial problem. These applications have demonstrated
that GLPS is a promising alternative to other ILP systems. Since GLPS uses the same
representation of other ILP systems, it is possible to combine GLPS with them.

Although GLPS can induce logic programs, it cannot accept domain-specific
knowledge in order to perform knowledge-intensive and evolutionary search.
Moreover, existing program induction systems are limited in the programming
languages in which the induced programs are expressed. For example, GP systems can
only induce programs represented as S-expressions in Lisp. ILP systems can only

Page 211

produce logic programs. Since the formalisms of the above two kinds of systems are so
different, they cannot be integrated easily although their properties and goals are
similar. If they can be combined in a common framework, then their techniques and
theories can be shared and their problem solving power can be enhanced.

In chapter 5，we have proposed a novel, flexible, and general framework that
combines GP and ILP. Moreover, the search space can be specified declaratively under
this framework. This framework is based on a formalism of logic grammars and a
system called LOGENPRO (The LOgic grammar based GENetic PROgramming
system) has been developed. The formalism is powerful enough to represent context-
sensitive information and domain-dependent knowledge. The knowledge can be used to
accelerate the learning of programs. The formalism is also very flexible and programs in
various programming languages such as Lisp, Prolog, Fuzzy Prolog, and C can be
induced. We have demonstrated that programs in different programming languages can
be expressed as derivation trees. This representation method facilitates the generation of
the initial population of programs and the operations of various genetic operators such
as crossover and mutation. The novel and effective methods of performing the
crossover and mutation operations have been described. They guarantee that only valid
offspring will be generated.

We have demonstrated that LOGENPRO can be used easily in Chapter 6.
Furthermore, it has been shown that programs in Lisp, Prolog, and C can be induced.
Firstly, a logic grammar template is provided to facilitate the application of
LOGENPRO to emulate GP and two experiments have been performed. In the first
experiment, it has been shown that knowledge of data type can be represented easily in
LOGENPRO. We have illustrated that LOGENPRO alleviates the problem in traditional
GP that all the variables, constants, arguments for functions, and values returned from
functions must be of the same data type. The experiment has proven that LOGENPRO
can find a solution much faster than GP and the computation required by LOGENPRO

Page 212

is much smaller than that of GP. Thus, LOGENPRO can emulate the effects of
Strongly Type Genetic Programming (STGP) effortlessly (Montana 1993).

In the second experiment, we have illustrated how to apply LOGENPRO to
emulate Automatically Defined Functions (ADF) proposed by Koza (1992; 1994).
Automatic discovery of problem representation primitives is one of the most important
research areas in Genetic Programming. ADF is one of the approaches that have been
proposed to acquire problem representation primitives automatically. We have found
that LOGENPRO can learn a program much faster than ADF and the computation
required by LOGENPRO is much smaller than that of ADF. This experiment has
shown that LOGENPRO can emulate the effects of STGP and ADF simultaneously and
effortlessly. It has also been proven that our framework can transform evolutionary
weak methods to strong methods by incorporating various knowledge about the
problem being solved.

Secondly, we have shown that LOGENPRO can easily emulate GLPS in
learning logic programs. A logic grammar template has been provided to facilitate the
application of LOGENPRO. We have performed three experiments to show that
LOGENPRO can emulate our GLPS. The experiment described in sub-section 6.2.2
has also demonstrated the advantage of LOGENPRO. Since different formulations of a
learning problem can be experimented easily with different logic grammars to find the
most appropriate one, LOGENPRO can handle some learning problems, such as the
Winston's arch problem, that cannot be solved completely by GLPS.

Thirdly, we have employed LOGENPRO to perform symbolic regression to
illustrate that LOGENPRO can induce programs in the C programming language. We
have demonstrated the possibility of learning programs in some imperative languages.

Page 213

Knowledge discovery in databases is an important and promising research field
in computer science and artificial intelligence (Frawley et al. 1991, Piatetsky-Shapiro
and Frawley 1991). We have presented three applications of LOGENPRO in acquiring
knowledge from databases in chapter 7. These applications have demonstrated the
advantages of LOGENPRO over other learning systems. In the first application, we
have employed LOGENPRO to induce knowledge represented in decision trees from a
real-world database and compared the results obtained by Michie et al. (1994) for the
same problem. We have found that Cal5, ITrule, Discrim, Logdisc and DIPOL92
perform better than LOGENPRO marginally. Since the detailed information about the
accuracy of the former systems is not available, it cannot be concluded that whether the
differences in accuracy are significant. On the other hand, LOGENPRO performs better
than CART, RBF, CASTLE, NaiveBay, IndCART, Back-propagation, C4.5,
SMART, Baytree, k-NN, NewID, AC2, LVQ, ALLOC80, CN2, and Quadisc for the
problem. Interestingly, LOGENPRO is better than C4.5 and CN2, two systems that
have been reported in the literature (Quinlan 1992, Clark and Niblett 1989) about their
outstanding performances in inducing decision trees or rules.

In the second application, we have employed LOGENPRO to combine
evolutionary search methods and a variation of FOIL, BEAM-FOIL, in learning logic
programs. Since noise handling mechanisms are very important research topics in
knowledge discovery in databases, we have evaluated the performance of LOGENPRO
in inducing knowledge from noisy datasets using the chess endgame problem. Detailed
comparisons between LOGENPRO and other ILP systems have been conducted. It has
been found that LOGENPRO outperforms these ILP systems significantly at most noise
levels. These results are surprising because the LOGENPRO uses the same noise-
handling mechanism of FOIL by initializing the population with programs created by
BEAM-FOIL. One possible explanation of the better performance of LOGENPRO is
that the Darwinian principle of survival and reproduction of the fittest is a good noise

Page 214

handling method. It avoids overfitting noisy examples, but at the same time, it can find
interesting and useful patterns from these noisy examples.

Imprecise and uncertain examples are frequent in real world environment,
because many everyday examples are denoted in linguistic terms which are essentially
imprecise and uncertain. However, there are very few studies on the issue of inducing
knowledge from imprecise and uncertain datasets. In the third application, we have
successfully used LOGENPRO to acquire knowledge from imprecise and uncertain
training examples stored in a fuzzy relational database. The induced knowledge is
represented as a program in Fuzzy Prolog (Li and Liu 1990). To the knowledge of the
authors, LOGENPRO is currently the only system that can learn programs in Fuzzy
Prolog.

Existing ILP systems cannot improve themselves automatically. In chapter 8，

we have proposed an adaptive ILP system that can improve itself during the learning
process. The adaptive ILP system is composed of an external interface, a biases base, a
knowledge base of background knowledge, an example database, an empirical ILP
learner, a meta-level learner, and a learning controller. An implementation of the
adaptive ILP system has been completed. In this implementation, the empirical ILP
learner performs top-down search in the hypothesis space defined by the concept
description language, the language bias, and the background knowledge. The search is
directed by search biases which can be induced and refined by LOGENPRO.

It has been demonstrated that the adaptive ILP system performs better than
FOIL in inducing logic programs from perfect or noisy training examples. The
experimentation has illustrated the benefit of an adaptive ILP system over existing ILP
systems because the former can improve itself automatically. The result implies that the
search bias induced by LOGENPRO is better than that of FOIL, which is designed by a
top researcher in the field. Consequently, LOGENPRO is a promising technique for

Page 215
:r •

implementing a meta-level learning system. The result is very encouraging as it
suggests that the process of natural selection and evolution can successfully evolve a
high performance ILP system. This adaptive learning approach, though computationally
intensive, is rather exciting, as it opens up many opportunities for creating or improving
learning algorithms.

The field of program induction investigates the problem of inducing computer
programs in different programming languages from specifications. Different ways have
been proposed to present specifications. They are natural language, special-purpose
languages, very high-level languages, formal specification languages, and examples.
They have their own pros and cons, and it is beneficial to combine their advantages
while preventing their disadvantages.

Our LOGENPRO can be viewed as a system that accepts specifications in
different ways: A logic grammar is a partial specification in a formal specification
language that describes which programs are valid; A fitness function represents another
partial specification using examples (i.e. fitness cases) and/or very high-level
languages, and it evaluates different programs allowed by the logic grammar.
Moreover, LOGENPRO employs deduction to generate the initial population of
program from the logic grammar given and uses induction to produce offspring from
parental programs. The inductive methods have been implemented in the form of
genetic operators such as crossover and mutation. Thus, LOGENPRO employs both
deduction and induction to find appropriate programs from the extremely large search
space. The effectiveness and efficiency of LOGENPRO can be attributed to this
insightful combination of various ways of specifications and different inference
mechanisms.

Page 216

9.2. Future work

The future work can be classified into four categories: applying LOGENPRO to
discover knowledge from databases; learning recursive programs; applying
LOGENPRO in engineering design; and exploiting parallelism of evolutionary
algorithms. These categories are detailed in the following sub-sections.

9.2.1. Applying LOGENPRO to discover knowledge from
databases

In section 7.2, we have shown that LOGENPRO can successfully induce knowledge
represented as logic programs from noisy datasets. We have also found that the noise
handling ability of LOGENPRO is better than many existing ILP systems. Since
training examples stored in everyday databases are usually imperfect, a very important
research area in knowledge discovery in databases investigates how to improve the
noise handling mechanisms of learning algorithms.

One can use LOGENPRO on extracting knowledge from other datasets of the
field. One can also combine LOGENPRO with other learning systems such as GOLEM
(Muggletion and Feng 1990)，LINUS (Lavrac and Dzeroski 1994)，and mFOIL (Lavrac
and Dzeroski 1994) to explore the possibility of further improvement on its learning
ability.

We have demonstrated in section 7.3 that LOGENPRO can acquire imprecise
and uncertain knowledge represented as programs in Fuzzy Prolog from fuzzy
relational databases. Although the result is very promising, it seems that the example
shown in that section is rather simple. It is believed that LOGENPRO can be applied to
acquire knowledge represented in Fuzzy Prolog from real-world databases. We have

Page 217

applied the Automatic Knowledge Acquisition and Refinement System (AKARS) to
induce a complicated real-life knowledge base incorporated with fuzzy concepts from
medical training examples (Leung and Wong 1991a; 1991b). The induced knowledge is
used in a medical expert system which deals with the problem of rupture of membranes.
The limitation of AKARS is that only prepositional production rules extended with
fuzzy concepts can be acquired. Thus, one could try to apply LOGENPRO to learn
knowledge represented in a more expressive language (i.e. Fuzzy Prolog) using the
medical training examples.

9.2.2. Learning recursive programs

One of the most important and challenging areas of research in evolutionary algorithms
is to investigate ways to successfully apply evolutionary algorithms to larger and more
complicated problems. As discussed in sub-section 6.1.2，one approach to make a
given problem more tractable is to discover problem representations automatically.
Koza (1994) uses the even-n-parity problem to demonstrate extensively that his
approach of Automatic Function Definition (ADF) can facilitate the solution of the
problem.

The boolean even-n-parity function of n boolean arguments return T (True) if an
even number of its arguments are T，otherwise it returns NIL (False). Since there are n
boolean arguments Di, D2，...，Dn involved in the problem, they form the terminal set.
The function set {AND, OR, NAND，NOR} contains four two-argument primitive
boolean functions.

Koza shows that an even-7-parity problem can be solved using ADF. He finds
that about 1440000 individuals, I(M, i, z), should be evaluated to obtain at least one
solution with 99% probability (see sub-section 6.1.1 to find out how to obtain this
number). Unfortunately, the solutions found by ADF can only solved the even-n-parity

Page 218

for a particular value of n. If a different value of n is used, ADF must be used again to
find other programs that can solve the new even-n-parity problem.

Clearly, the solution found is not general enough to solve all even-n-parity
problem for n greater than or equal to zero. A better solution should be recursive such
as the following one:

(defun parity (L)
(if (null L)

T
(NAND

(OR (first L)
(NAND (parity (rest L)) T))

(NAND (first L)
(NAND

(AND T
(parity (rest L)))

T)))))
In this recursive program, the argument L is a list of boolean values. Any number of
boolean values can exist in the list L. In fact, this program can solve all even-n-parity
problem for n greater than or equal to zero. To evolve this function, the terminal set
must contain the argument L, the truth value T and the truth value NIL. The function set
Fis :

F = {if, null, first, rest, parity' AND, OR,

NAND, NOR}.

Moreover, the above program can be simplified to:
(defun parity (L)

(if (null L)
T

(xor (first L) (parity (rest L)))))
(defun xor (a b)

(AND (OR a b) (NAND a b)))
Since the simplified program invokes a sub-function x o r which is not available in the
function set, it must be learned simultaneously with the main program. It seems that this
problem can be solved because we have already shown in sub-section 6.1.2 that
LOGENPRO can emulate ADF. Thus, one should investigate how to apply

Page 219

LOGENPRO to learn recursive programs with different difficulties and properties.
There are many inductive learning systems such as THESYS (Summers 1977) and
ADATE (Olsson 1995) that can induce recursive functional programs efficiently.
Therefore, one could try to implement these techniques on LOGENPRO.

9.2.3. Applying LOGENPRO in engineering design

The field of engineering design methodologies is one of the most active fields of
research in mechanical engineering (Roston 1994). Engineering design is the systemic,
intelligent generation and evaluation of specifications for artifacts whose form and
function achieve stated objectives and satisfy specified constraints (Dym 1992). It is
observed that this definition fits well with that of automatic programming.

Pahl and Beitz (1984) introduced a systematic approach to engineering design.
This approach decomposes the design process into four phases: clarification of the task,
conceptual design, embodiment design, and detailed design. It is believed that
LOGENPRO can be applied in the last three phases to assist the designer. One of the
fundamental problems is how to represent different designs generated in various
phases. It is important that these representations can be translated into other
representations, including a final physical instantiation of the artifact being designed.

There are numerous representation methodologies. The function logic method of
value analysis is one of the most general representation methods (Sturges et al. 1992).
In this method, objects and classes of objects are represented by a hierarchy of noun-
verb pairs. The disadvantages of this method are that it lacks some of the formality of
other methods and it is difficult to be implemented in a computer. Cagan and Agogino
(1987) proposed to represent the concept of designing from the basic and underlying
principles. However, it is difficult to generalize this method for more complicated
designs.

Page 220

Another means of representation is formal grammars. Stiny (1980) develops the
concept of shape grammars which are used to describe planar shapes. It has been
shown that graph grammars are equivalent to other types of formal grammars (Gips and
Stiny 1980). Mullins and Rinderle (1991) presented the reasons for employing formal
grammars for engineering design.

Tanaka presented a method to understand the functions of electronic circuits
(1993). A circuit is viewed as a sentence and its elements as words. Circuit structures
are defined by rules written in a logic grammar called Definite Clause Set Grammar
(DCSG). The advantage of this approach is that circuit designs can be analyzed
automatically.

Reddy and Cogan (1994) used shape grammars and simulated annealing to
solve a variety of design program. They showed that a grammatical representation of an
artifact and a means of intelligent search can be used to generate optimal designs.
Roston (1994) extended their work using an evolutionary algorithm. Strongly Typed
Genetic Programming (Montana 1993)，to search for optimal designs represented in a
context-free grammar.

We believe that LOGENPRO is a better approach for engineering design
because context-sensitive information and domain-specific knowledge can be
represented to accelerate the intelligent search process. This property has been
established in section 6.1. Moreover, LOGENPRO is a flexible enough to induce
programs in various special-purpose languages that represent the designs of artifacts.

Page 221

9.2.4. Exploiting parallelism of evolutionary algorithms

For almost all practical applications of LOGENPRO, most computation time is
consumed in evaluating the fitness of each program in the population since the genetic
operators of LOGENPRO can be performed efficiently. The fitness evaluation process
is time-consuming for the following reasons:

• It is required to interpret or compile each program in the population.
• It is necessary to compute fitness over several different fitness cases in

order to obtain an accurate estimate of the fitness of a program. For
example, consider the problem of learning search biases for an adaptive
ILP system. Many different problems of learning logic programs should
be used to estimate the fitness of a search bias. In other words, these
problems of learning logic programs, such as the member problem and
the uncle problem, are the fitness cases for the problem of learning
search bias.

• It is required to perform complicate and time-consuming computation to
get a fitness value for a single fitness case. Consider the above example
again, the search bias to be evaluated and a set of training examples are
provided first. Then, LOGENPRO invokes a top-down or bottom-up
algorithm to solve the problem of inducing a logic program from the set
of training examples. Usually, several minutes are required to find a
satisfactory logic program. After a logic program is induced, the logic
program must be evaluated using another set of testing examples. In
normal situation, this process takes about a few minutes because the
testing set usually contains hundreds or even thousands of examples.
The accuracy of the learned logic program on the testing set forms the
fitness value of the search bias for a single fitness case. Thus, it is clear
that several minutes or even hours are needed to find the fitness value.

Page 222

Memory availability is another important problem of LOGENPRO because the
population usually has a large number of programs. Moreover, since programs are
represented as derivation trees of varying sizes, shapes and structures. This
representation method requires more memory to store programs than that used in GP.

There is a relation between the difficulty of the problem to be solved and the size
of the population. In order to solve substantial and real-world problems, a population
size of thousands and a longer evolution process are usually required. A larger
population and a longer evolution process imply a more number of fitness evaluation
must be conducted and more memory are required. In other words, a lot of
computational resources are required to solve substantial and practical problems.
Usually, this requirement cannot be fulfilled by normal workstations.

Fortunately, these time-consuming fitness evaluations can be performed
independently for each program in the population and programs in the population can be
distributed among multiple computers. Thus, we plan to develop a parallel version of
LOGENPRO.

Evolutionary algorithms have a high degree of inherent parallelism which is one
of the motivation of studies in this field. In natural populations, thousands or even
millions of individuals exist in parallel and these individuals operates independently
with a little cooperation and/or competition among them. This suggests a degree of
parallelism that is directly proportional to the population size used in evolutionary
algorithms. There are different ways of exploiting parallelisms in evolutionary
algorithms. We plan to study the possibility of parallelizing LOGENPRO using four
different approaches. They are master-slave models, improved-slave models, massively
parallel evolutionary algorithms, and island models.

Page 223

The most direct way to implement a parallel evolutionary algorithm is to
implement a global population in the master processor. The master sends each
individual to a slave processor and let the slave to find the fitness value of the
individual. After the fitness values of all individuals are obtained, the master processor
selects some individuals from the population using some selection method, performs
some genetic operations, and then creates a new population of offspring. The master
sends each individual in the new population to a slave again and the above process is
iterated until the termination criterion is satisfied.

Master-slave models can be improved easily using the tournament selection.
Another direct way to implement a parallel evolutionary algorithm is to implement a
global population and use the tournament selection. As described in sub-section
2.2.1.1，the tournament selection approximates the behavior of ranking. Assume that
the population size N is even and there are more than N/2 processors. N/2 slave
processors are selected and are numbered from 1 to N/2. A processor selected from the
remaining processors maintains the global population and implements an algorithm that
controls the overall evolution process and the other N/2 slave processors. Each slave
processor performs two independent m-ary tournaments. In each tournament, m
individuals are sampled randomly form the global population. These m individuals are
evaluated in the slave processor and the winner is kept. Since there are two
tournaments, the two winners produced can be crossed in the slave processor to
generate two offspring. The slave processor may perform further modifications to the
offspring. The offspring are then sent back to the global population and the master
processor proceeds to the next generation if all offspring are received from the N/2
slave processors.

Massively parallel evolutionary algorithms explore the computing power of
massively parallel computers such as the Maspar. To explore the power of this kind of
computers, one can assign one individual to each processor, and allow each individual

Page 224

to seek a mate close to it. A global random mating scheme is inappropriate because of
the limitation of the communication abilities of these computers. Each processor can
select probabilistically an individual in its neighborhood to mate with. The selection is
based on the fitness proportionate selection, the ranking, the tournament selection, or
other selection methods proposed in the literature. Only one offspring is produced and
becomes the new resident at that processor. The common property of different
massively parallel evolutionary algorithms is that selections and mating are typically
restricted to a local neighborhood.

Island models can fully explore the computing power of course grain parallel
computers such as the Sparc 2000 and distributed workstations. Assume that we have
20 high performance processors, such as the ultrasparc processors, and have a
population of 4000 individuals. We can divide the total population down into 20
subpopulations (islands or demes) of 200 individuals each. Each processor can then
execute a normal evolutionary algorithm such as LOGENPRO on one of these
subpopulations. Occasionally, the subpopulations would swap a few individuals. The
migration allows subpopulations to share genetic material (Whitley and Starkweather
1990，Gorges-Schlenter 1991，Tanese 1989，Starkweather et al. 1991).

Since there are 20 independent evolutionary searches occur concurrently, these
searches will be different to a certain extent because the initial subpopulations will
impose a certain sampling bias. Moreover, genetic drift will tend to drive these
subpopulations in different directions. By employing migration, island models are able
to exploit differences in the various subpopulations. These differences maintain genetic
diversity of the whole population and thus can prevent the problem of premature
convergence. We plan to exploit a number of variations of island models. These
variations investigate the effects of subpopulations with different sizes or even dynamic
sizes, asynchronous migration, dynamic number of migrating individuals,

Page 225

subpopulations with different fitness functions, adaptive migration methods, and
cooperative/competitive co-evolution.

Page 226

Reference
Abramson, H. and Dahl, V. (1989). Logic Grammars. Berlin: Springer-Verlag.
Aho, A. V. and Ullman, J. D. (1977). Principles of Compiler Design. Reading MA:
Addison-Wesley.
Angeline, P. (1993). Evolutionary Algorithms and Emergent Intelligence. Ph.D.
Dissertation. The Ohio State University.
Angeline, P. (1994). Genetic Programming and Emergent Intelligent. In K. E.
Kinnear, Jr. (ed.X Advances in Genetic Programming, pp. 75-97. Cambridge MA:
MIT Press.
Angeline, P. and Pollack, J. (1992). The evolutionary induction of subroutines. In
Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society,
pp. 236-241. Hillsdale NJ: Lawrence Erlbaum.
Angeline, P. and Pollack, J. (1993). Competitive Environments evolve better Solutions
for Complex Tasks. In S. Forrest (eds.), Proceeding of the Fifth International
Conference on Genetic Algorithms, pp. 264-270. San Mateo CA: Morgan Kaufmann.
Back, T.，Hoffmeister, F.，and Schwefel, H. P. (1991). A Survey of Evolution
Strategies. In Proceedings of the Fourth International Conference on Genetic
Algorithms, pp. 2-9. San Mateo CA: Morgan Kaufmann.
Baker, J. (1985). Adaptive Selection Methods for Genetic Algorithms. In J.
Grefenstette (ed.)，Proceedings of an International Conference on Genetic Algorithms
and Their Applications, pp. 101-111. Hillsdale NJ: Lawrence Erlbaum.
Baker, J. (1987). Reducing Bias and Inefficiency in the Selection Algorithm. In
Proceedings of the Second International Conference on Genetic Algorithms and their
Applications. Hillsdale NJ: Lawrence Erlbaum.
Bergadano, F.，Giordana, A., and Saitta, L. (1991). Machine Learning: An Integrated
Framework and its Applications. London: Ellis Horwood.
Biermann, A. W. (1972). On the Inference of Turing Machines from Sample
Computations. Artificial Intelligence, 3，pp. 181-198.
Biermann, A. W. and Smith, D. R. (1979). A Production Rule Mechanism for
Generating LISP Code. IEEE Trans, on Systems, Man, and Cybernetics, 9，pp. 260-
276.
Bratko, 1. and King, R. (1994). Applications of Inductive Logic Programming.
SIGART Bulletin, 5 (1)，pp. 43-49.
Bridges, C. and Goldberg, D. (1987). An Analysis of Reproduction and Crossover in
a Binary-coded Genetic Algorithm. In J. J. Grefenstette (ed.). Proceedings of the
Second International Conference on Genetic Algorithms and Their Applications.
Hillsdale NJ: Lawrence Erlbaum.
Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification
and Regression Jr^^^. Belmont: Wadsworth.

Page 227

Buchanan, B. G. and Shortliffe, E. H. Editors. (1984). Rule-based Expert Systems
The MYCIN Experiments of the Stanford Heuristic Programming Project Reading.
MA: Addison-Wesley.
Cagan, J. and Agogino, A. M. (1987). Innovative Design of Mechanical Structures
from First Principles. AI EDAM，1，pp. 169-189.
Cameron-Jones, R. and Quinlan, J. (1993). Avoiding Pitfalls when Learning
Recursive Theories. In Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence. San Mateo, CA: Morgan Kaufmann.
Cameron-Jones, R. and Quinlan, J. (1994). Efficient Top-down Induction of Logic
Programs. SIGART Bulletin, 5 (1)，pp. 33-42.
Carbonell, J. G.，editor (1990). Machine Learning: Paradigms for Machine Learning.
Cambridge MA: MIT Press.
Cestnik, B. (1990). Estimating Probabilities: A Crucial Task in Machine Learning. In
Proceedings of the Ninth European Conference on Artificial Intelligence, pp. 147-149.
London: Pitman.
Cestnik, B. and Bratko, 1. (1991). On Estimating Probabilities in Tree Pruning. In Y.
Kodratoff (ed.)，Proceedings of the Fifth European Working Session on Learning, pp.
151-163. Berlin: Springer Verlag.
Cestnik, B.，Kononenko, J. and Bratko, L (1987). ASSISTANT 86: A knowledge
elicitation tool for sophisticated users. In I. Bratko and N. Lavrac (Ed.), Progress in
Machine Learning, pp. 31-45. Wilmslow: Sigma Press.
Clark, K. (1978). Negation as Failure. In H. Gallaire and J. Minker (eds.)，Logic and
Databases, pp. 293-322. NY: Plenum Press.
Clark, P. and Boswell, R. (1991). Rule Induction with CN2: Some Recent
Improvements. In Y. Kodratoff (ed.)，Proceedings of the Fifth European Working
Session on Learning, pp. 151-163. Berlin: Springer-Verlag.
Clark, P. and Niblett，T. (1989). The CN2 induction algorithm. Machine Learning, 3,
pp. 261-283.
Cohen, W. W. (1993). Pac-learning a Restricted Class of Recursive Logic Programs.
In Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 86-92.
Cambridge, MA: MIT Press.
Colmerauer, A. (1978). Metamorphosis Grammars. In L. Bole (Ed.), Natural
Language Communication with Computers. Berlin: Springer-Verlag.
Gormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to
Algorithms. Cambridge, MA: MIT Press.
Davidor, Y. (1991). A generic Algorithm Applied to Robot Trajectory Generation. In
L. Davis (ed.), Handbook of Genetic Algorithms, pp. 144-165. Van Nostrand
Reinhold.
Davis, L. D. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold.
DeJong, G. F” editor (1993). Investigating Explanation-Based Learning. Boston:
Kluwer Academic Publishers.

Page 228

DeJong, G. F. and Mooney, R. (1986). Explanation-Based Learning: An Alternative
View. Machine Learning, 1，pp. 145-176.
DeJong, K. A. and Spears, W. M. (1990). An Analysis of the Interacting Roles of
Population Size and Crossover in Genetic Algorithms. In Proceedings of the First
Workshop on Parallel Problem Solving from Nature, pp. 38-47. Berlin: Springer-
Verlag.
De Jong, K. A., Spears, W. M. and Gordon, D. F. (1993). Using Genetic Algorithms
for Concept Learning. Machine Learning, 13，pp. 161-188.
De Raedt, L. (1992). Interactive Theory Revision: An Inductive Logic Programming
Approach. London: Academic Press.
De Raedt, L. and Bruynooghe, M. (1989). Towards friendly Concept-learners. In
Proceeding of the Eleventh International Joint Conference on Artificial Intelligence, pp.
849-854. San Mateo, CA: Morgan Kaufmann.
De Raedt, L. and Bruynooghe, M. (1992). Interactive Concept Learning and
Constructive Induction by Analogy. Machine Learning, 8，pp. 251-269.
Dietterich, T. G. (1986). Learning at the Knowledge Level. Machine Learning，1，pp.
287-316.
Dym, C. L. (1992). Representation and Problem-Solving: the Foundations of
Engineering Design. Environment and Planning B, 19, pp. 97-105.
Dzeroski, S. and Lavrac, N. (1993). Inductive Learning in Deductive Databases. IEEE
Transactions on Knowledge and Data Engineering，5, pp. 939-949.
Ellman，T. (1989). Explanation-Based Learning: A Survey of Programs and
Perspectives. ACM Computing Surveys, 21, 163-222.
Eshelman, L. J.，Caruna, R., and Schaffer, J. D. (1989). Biases in the Crossover
Landscape. In J. D. Schaffer (ed.)，Proceedings of the Third International Conference on Genetic Algorithms, pp. 10-19. San Mateo CA: Morgan Kaufmann.
Fogel, D. B. (1992). A Brief History of Simulated Evolution. In Proceedings of the
First Annual Conference on Evolutionary Programming. La Jolla CA.
Fogel，D. B. (1994). An Introduction to Simulated Evolutionary Optimization. IEEE
Trans, on Neural Network., 5, pp. 3-14
Fogel, L.，Owens, A.，and Walsh, M. (1966). Artificial Intelligence through Simulated
Evolution. New York: John Wiley and Sons.
Forrest, S. (1990). A Study of Parallelism in the Classifier System and its Application
to Classification in KL-ONE Semantic Networks. London: Pitmann.
Frawley, W.，Piatetsky-Shapiro, G.，and Matheus, C. (1991). Knowledge Discovery
in Databases: an Overview. In G. Piatetsky-Shapiro and W. Frawley (eds.),
Knowledge Discovery in Databases, pp. 1-27. Menlo Park, CA: AAAI Press.
Furnkranz, J. (1994). FOSSIL: A Robust Relational Learner. In F. Bergadano and L.
De Raedt (Eds.)’ Proceedings of the European Conference on Machine Learning 1994,
pp. 122-137. Berlin: Springer-Verlag.

Page 229

Gips, J. and Stiny, G. (1980). Production Systems and Grammars. Environment and
Planning B, 7, pp. 399-408.
Goldberg, A. T. (1986). Knowledge-based Programming: A Survey of Program
Design and Construction Techniques. IEEE Trans, on Software Engineering, 12，pp.
752-768.
Goldberg, D. (1987). Simple Genetic Algorithms and the Minimal, Deceptive Problem.
In L. Davis (ed.), Genetic Algorithms and Simulated Annealing. London: Pitman.
Goldberg, D. (1989). Genetic Algorithms in Search，Optimization, and Machine
Learning. Reading MA: Addison-Wesley.
Goldberg, D. and Bridges, C. L. (1990). An Analysis of a Reordering Operator on a
GA-hard Problem. Biological Cybernetics, 62，pp. 397-405.
Goldberg, D. and Deb, K. (1991). A Comparative Analysis of Selective Schemes Used
in Genetic Algorithms. In G. Rawlins (ed.), Foundations of Genetic Algorithms，pp.
69-93. San Mateo CA: Morgan Kaufmann.
Gorges-Schleuter, M. (1991). Explicit Parallelism of Genetic Algorithms through
Population Structures. Parallel Problem Solving from Nature, pp. 150-159. Berlin:
Springer-Verlag.
Greene, D. P. and Smith, S. F. (1993). Competition-Based Induction of Decision
Models from Examples. Machine Learning, 13，pp. 229-257.
Grefenstette, J. J. (1986). Optimization of Control Parameters for Genetic Algorithms.
IEEE Trans. Systems, Man, and Cybernetics, 16，pp. 122-128.

Holland, J. (1987). Genetic Algorithms and Classifier systems: Foundations and
Future Directions. In J. J. Grefenstette (ed.), Proceedings of the Second International
Conference on Genetic Algorithms and Their Applications, pp. 82-89. Hillsdale NJ:
Lawrence Erlbaum.
Holland, J. (1992). Adaptation in Natural and Artificial Systems. Cambridge MA: MIT
Press.
Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to automata theory, languages,
and computation. MA: Addison-Wesley.
Janikow, C. Z. (1993). A Knowledge-Intensive Genetic Algorithm for Supervised
Learning. Machine Learning, 13，pp. 189-228.
Kaelbling，L. P. (1993). Learning in embedded systems. Cambridge, MA: MIT Press.
Kalbfleish, J. (1979). Probability and Statistical Inference，volume 11. NY: Springer-
Verlag.
Kijsirikul, B.，Numao, M.，and Shimura, M. (1992a). Efficient Learning of Logic
Programs with Non-Determinate, Non-Discriminating Literals. In S. Muggleton (ed.)，
Inductive Logic Pwgmmming’ pp. 361-372. London: Academic Press.
Kijsirikul, B.，Numao, M., and Shimura, M. (1992b). Discrimination-Based
Constructive Induction of Logic Programs. In Proceedings of the Tenth National
Conference on Artificial Intelligence, pp. 44-49. San Jose, CA.

Page 230

Kinnear, K. E. Jr. (1994a). Alternatives in Automatic Function Definition: A
Comparison of Performance. In K. E. Kinnear, Jr. (ed.), Advances in Genetic
Programming, pp. 119- 141. Cambridge MA: MIT Press.
Kinnear, K. E. Jr., editor (1994b). Advances in Genetic Programming. Cambridge
MA: MIT Press.
Kodratoff, Y. and Michalski, R., editors (1990). Machine Learning: An Artificial
Intelligence Approach, Volume III. San Mateo CA: Morgan Kaufmann.
Kowalski, R. A. (1979). Logic For Problem Solving. Amsterdam: North-Holland.
Koza, J. R. (1992). Genetic Programming: on the Programming of Computers by
Means of Natural Selection. Cambridge MA: MU Press.
Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge MA: MIT Press.
Lavrac, N. and Dzeroski, S. (1994). Inductive Logic Programming: Techniques and
Applications. London: Ellis Horword.
Leung, K. S. and Wong, M. H. (1990). An Expert-system Shell using Structured
Knowledge. IEEE Computer, 23 (3)，pp. 38-47.
Leung, K. S. and Wong, M. L. (1991a). Inducing and refining rule-based knowledge
from inexact examples. Knowledge Acquisition’ 3，pp. 291-315.
Leung, K. S. and Wong, M. L. (1991b). Automatic refinement of Knowledge Bases
with Fuzzy Rules. Knowledge-Based Systems, 4，pp. 231-246.
Leung, K. S. and Wong, M. L. (1991c). AKARS-1: an Automatic Knowledge
Acquisition and Refinement System. In H. Motada, R. Mizoguchi, J. Boose and B.
Gaines (Eds.), Knowledge Acquisition for Knowledge-Based Systems. Amsterdam:
lOS Press.
Levenick, J. (1991). Inserting Introns Improves Genetic Algorithm Success Rate:
Taking a Cue from Biology. In R. K. Belew and L. B. Booker (eds.)，Proceeding of
the Fourth International Conference on Genetic Algorithms, pp. 123-127. San Mateo
CA: Morgan Kaufmann.
Lewis, H. R. and Rapadimitrion, C. H. (1981). Elements of the theory of
computation. NJ: Prentice Hall.
Li, D. and Liu, D (1990). A Fuzzy Prolog Database system. Great Britain: Research
Studies Press Ltd.
Lin, L. J. (1992). Self-Improving Reactive Agents Based on Reinforcement Learning,
Planning and Teaching. Machine Learning, 8, pp. 293-321.
Lloyd, J. (1987). Foundation of Logic Programming. 2nd edition. Berlin: Springer
Verlag.
Louis, S. J. and Rawlins, G. J. E. (1991). Designer Genetic Algorithms: Genetic
Algorithms in Structure Design. In R. K. Belew and L. B. Booker (eds.), Proceeding
of the Fourth International Conference on Genetic Algorithms, pp. 53-60. San Mateo
CA: Morgan Kaufmann.

Page 231

Matthews, B. W. (1975). Comparison of the Predicted and Observed Secondary
Structure of T4 Phase Lysozyme. Biochemica et Biophysical Acta, 405，pp. 442-451.
Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolutionary
Programs. 2nd Edition. New York: Springer-Verlag.
Michalski, R. J. (1983). A Theory and Methodology of Inductive Learning. In R.
Michalski, J. G. Carbonell and T. M. Mitchell (eds.)，Machine Learning: An Artificial
Intelligence Approach, Volume I, pp. 83-134. San Mateo CA: Morgan Kaufmann.
Michalski, R. J., Carbonell, J. G.，and Mitchell, T. M., editors (1983). Machine
Learning: An Artificial Intelligence Approach, Volume L San Mateo CA: Morgan
Kaufmann.
Michalski, R. S.，Mozetic, 1” Hong, J. and Lavrac, N. (1986a). The multi-purpose
incremental learning system AQ15 and its testing application on tree medical domains.
In Proceedings of the National Conference on Artificial Intelligence, pp. 1041-1045.
San Mateo, MA: Morgan Kaufmann.
Michalski, R. J., Carbonell, J. G” and Mitchell, T. M.，editors (1986b). Machine
Learning: An Artificial Intelligence Approach, Volume II. San Mateo CA: Morgan
Kaufmann.
Michalski, R. and Tecuci, G.，editors (1994). Machine Learning: A Multistrategy
Approach, Volume IV. San Francisco CA: Morgan Kaufmann.
Michie, D. Spiegelhalter, D. J., and Taylor, C. C. editors (1994). Machine Learning,
Neural and Statistical Classification. London: Ellis Horwood.
Minton, S (1989). Learning Search Control Knowledge: An Explanation-Based
Approach. Boston: Kluwer Academic.
Minsky, M. (1963). Steps towards Artificial Intelligence. In E. Feigenbaum and I.
Feldman (eds.), Computer and Thought. Reading MA: Addison Wesley.
Mitchell, T. M. (1982). Generalization as Search. Artificial Intelligence, 18, pp. 203-
226.

Mitchell, T. M.，Keller, R. M. and Kedar-Cabelli, S. T. (1986). Explanation-Based
Generalization: A Unifying View. Machine Learning, 1, pp. 47-80.
Montana, D. J. (1993). Strongly Typed Genetic Programming. Technical report 7866,
Bolt, Beranek, and Newman •
Mooney, R. J. (1989). A General Explanation-Based Learning Mechanism and its
Application to Narrative Understanding. London: Pitman.
Morik, K. Wrobel, S. Kietz, J., and Emde, W. (1993). Knowledge Acquisition and Machine Learning: Theory, Methods, and Applications. London: Academic Press.
Muggletion, S. (1992). Inductive Logic Programming. In S. Muggletion (ed.)，
Inductive Logic Programming, pp. 3-27. London: Academic Press.
Muggletion, S. (1994). Inductive Logic Programming. SIGART Bulletin, 5 (1)，pp. 5-
11.

Page 232

Muggleton, S. and Buntine, W. (1988). Machine Invention of First-order Predicates by
Inverting Resolution. In Proceedings of the Fifth International Conference on Machine
Learning, pp. 339-352. San Mateo, CA: Morgan Kaufmann.
Muggletion, S.，Bain, M” Hayes-Michie, J., and Michie, D. (1989). An Experimental
Comparison of Human and Machine Learning Formalisms. In Proceedings of the Sixth
International Workshop on Machine Learning, pp. 113-118. San Mateo, CA: Morgan
Kaufmann.
Muggletion, S. and Feng, C. (1990). Efficient Induction of Logic Programs. In
Proceedings of the First Conference on Algorithmic Learning Theory, pp. 368-381.
Tokyo: Ohmsha.
Muggleton, S. and De Raedt, L. (1994). Inductive Logic Programming: Theory and
Methods. J. Logic Programming, 19-20, pp. 629-679.
Muhlenbein, H. (1991). Evolution in Time and Space - The Parallel Genetic Algorithm.
In G. Rawlins (ed.)，Foundations of Genetic Algorithms, pp. 316-337. San Mateo CA:
Morgan Kaufmann.
Muhlenbein, H. (1992). How genetic Algorithms Really Work: I. Mutation and
Hillclimbing. In R. Manner and B. Manderick (eds.)，Parallel Solving from Nature 2.
North Holland.
Mullins, S. and Rinderle, J. R. (1991). Grammatical Approaches to Engineering
Design, Part 1: An Introduction and Commentary. Research in Engineering Design, 2,
pp. 121-135.
Newell, A. and Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs NJ:
Prentice Hall.
Nilson, N. J. (1980). Principles of Artificial Intelligence. Palo Alto CA: Tioga.
Nix, A. and Vose, M. (1992). Modeling Genetic Algorithms with Markov Chains.
Annals of Mathematics and Artificial Intelligence, 5, pp. 79-88.
Olsson, R. (1995). Inductive Functional Programming using Incremental Program
Transformation. Artificial Intelligence, 74, pp. 55-81.
Pahl, G. and Beitz, W. (1984). Engineering Design. Berlin: Springer-Verlag.
Paterson, M. S. and Wegman, M. N. (1978). Linear Unification. Journal of Computer
and System Sciences, 16，pp. 158-167.
Pazzani, M.，Brunk, C. A. and Silverstein, G. (1991). A Knowledge-Intensive
Approach to Learning Relational Concepts. In Proceedings of the Eighth International
Workshop on Machine Learning, pp. 432-436, CA: Morgan Kaufmann.
Pazzani, M. and Kibler, D. (1992). The utility of knowledge in Inductive learning.
Machine Learning, 9，pp. 57-94.
Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Reading MA: Addison Wesley.
Pereira, F. C. N. and Warren, D. H. D. (1980). Definite Clause Grammars for
Language Analysis - A Survey of the Formalism and a Comparison with Augmented
Transition Networks. Artificial Intelligence’ 13，pp. 231-278.

Page 233

Pereira, F. C. N. and Shieber, S. M. (1987). Prolog and Natural-Language Analysis.
CA: CSLL
Piatetsky-Shapiro, G. and Frawley, W. J. (1991). Knowledge Discovery in Databases.
Menlo Park, CA: AAAI Press.
Plotkin G. D. (1970). A Note on Inductive Generalization. In B. Meltzer and D.
Michie，(eds.)，Machine Intelligence: Volume 5, pp. 153-163. New York: Elsevier
North-Holland.
Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning’ 1，pp. 81-106.
Quinlan, J. R. (1987). Simplifying Decision Trees. Int. J. Man-Machine Studies, 27，
pp. 221-234.
Quinlan, J. R. (1990). Learning Logical Definitions from Relations. Machine Learning,
5，pp. 239-266.
Quinlan, J. R. (1991). Knowledge Acquisition from Structured Data - using
Determinate Literals to Assist Search. IEEE Expert, 6，pp. 32-37.
Quinlan, J. R. (1992). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann.
Rechenberg, I. (1973). Evolutionsstrategie: Optimienrung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Stuttgart: Frommann-Holzboog Verlag.
Reddy, G. and Cagan, J. (1994). An Improved Grape Annealing Method for Truss
Topology Generation. Accepted in ASME Journal of Mechanical Design.
Rich, C. and Waters, R. C. (1988). Automatic Programming: Myths and Prospects.
IEEE Computer, 21(8)，pp. 40-51.
Rich, C. and Waters, R. C. (1990). The Programmer's Apprentice. New York:
Addison-Wesley..
Roston, G. D. (1994). A Genetic Methodology for Configuration Design. Ph.D.
Dissertation, Department of Mechanical Engineering, Carnegie Mellon University.
Rouveirol, C. (1991). Completeness for Inductive Procedures. In A. B. Lawrence and G. C. Collins (eds.), Proceedings of the Eight International Workshop on Machine
Learning, pp. 452-456. San Mateo, CA: Morgan Kaufmann.
Rouveirol, C. (1992). Extensions of Inversion of Resolution Applied to Theory
Completion. In S. Muggletion (ed.)，Inductive Logic Programming, pp. 63-92.
London: Academic Press.
Sammut, C. and Baneji, R. (1986). Learning Concepts by Asking Questions. In R.
Michalski, J. G. Carbonell and T. M. Mitchell (eds.), Machine Learning: An Artificial
Intelligence Approach, Volume II, pp. 167-191. San Mateo CA: Morgan Kaufmann.

Schaffer, J. D. (1987). Some Effects of Selection Procedures on Hyperplane Sampling
by Genetic Algorithms. In L. Davis (ed.), Genetic Algorithms and Simulated
Annealing. London: Pitman.

Page 234

Schaffer, J. D. and Morishma, A. (1987). An Adaptive Crossover Distribution
Mechanism for Genetic Algorithms. In Proceedings of the Third International
Conference on Genetic Algorithms, pp. 36-40. San Mateo CA: Morgan Kaufmann.
Schewefel, H. P. (1981). Numerical Optimization of Computer Models. John Wiley
and sons.
Shapiro, E. (1983). Algorithmic Program Debugging. Cambridge, MA: MIT Press.
Shavlik, J. W. and Dietterich, T. G.，editors (1990). Readings in Machine Learning.
San Mateo CA: Morgan Kaufmann.
Starkweather, T” McDaniel, S.，Mathias, K” Whitley, D.，and Whitley, C. (1991). A
Comparison of Genetic Sequencing Operators. In Proceedings of the Fourth
International Conference on Genetic Algorithms, pp. 69-76. San Mateo CA: Morgan
Kaufmann.
Sterling, L. and Shapiro, E. (1986). The Art of Prolog. MA: MIT Press.
Stiny, G. (1980). Introduction to Shape and Shape Grammars. Environment and
Planning B, 7, pp. 343-351.
Sturges, R. H. O'Shaughnessy, K. and Reed, R. G. (1992). A Systematic Approach
to Conceptual Design Based on Function Logic. International Journal of Concurrent
Engineering, 1, pp. 93-106.
Summers, P. D. (1977). A Methodology for LISP Program Construction from
Examples. JACM, 24, pp. 161-175.
Sutton, R. S. (1988). Learning to predict by the method of temporal differences.
Machine Learning, 3，pp. 9-44.
Sutton, R. S. (1992). Introduction: The Challenge of Reinforcement Learning.
Machine Learning, 8，pp. 225-227.
Syswerda, G. (1989). Uniform Crossover in Genetic Algorithms. In Proceedings of
the Third International Conference on Genetic Algorithms, pp. 2-9. San Mateo CA:
Morgan Kaufmann.
Syswerda, G. (1991a). A Study of Reproduction in Generational and Steady-State
Genetic Algorithms. In G. Rawlins (ed.), Foundations of Genetic Algorithms, pp. 94-
101. San Mateo CA: Morgan Kaufmann.
Syswerda, G. (1991b). Schedule Optimization Using Genetic Algorithms. In L. Davis
(ed.). Handbook of Genetic Algorithms, pp. 332-349. Van Nostrand Reinhold.
Tanaka, T. (1993). Parsing Electronic Circuits in a Logic Grammar. IEEE Trans, on
Knowledge and Data Engineering, 5, pp. 225-239.
Tanese, R. (1989). Distributed Genetic Algorithms. In J. D. Schaffer (ed.),
Proceedings of the Third International Conference on Genetic Algorithms, pp. 434-
439. San Mateo CA: Morgan Kaufmann.
Tangkitvanich, S. and Shimura, M. (1992). Refining a Relational Theory with Multiple
Faults in the Concept and Subconcepts. In Proceedings of the Ninth International
Conference on Machine Learning, pp. 436-444. San Mateo, CA: Morgan Kaufmann.

Page 235

Tesauro, G. (1992). Practical Issues in Temporal Difference Learning. Machine
Learning, 8，pp. 251-211.
Vose M. (1993). Modeling Simple Genetic Algorithms. In D. Whitley (ed.),
Foundations of Genetic Algorithms 2, pp. 63-73. San Mateo CA: Morgan Kaufmann.
Vose, M. and Liepins, G. (1991). Punctuated Equilibria in Genetic Search. Complex
Systems’ 5，pp. 31-44.
Whitley, D. (1989). The GENITOR Algorithm and Selective Pressure. In Proceedings
of the Third International Conference on Genetic Algorithms, pp. 116-121. San Mateo
CA: Morgan Kaufmann.
Whitley, D. (1993). An Executable Model of a Simple Genetic Algorithm. In D.
Whitley (ed.). Foundations of Genetic Algorithms 2，pp. 45-62. San Mateo CA:
Morgan Kaufmann.
Whitley, D.，Das, R.，and Crabb, C. (1992). Tracking Primary Hyperplane
Competitors During Genetic Search. Annals of Mathematics and Artificial Intelligence,
6，pp. 367-388.
Whitley, D.，Starkweather, T. (1990). Genitor II: a Distributed Genetic Algorithm.
Journal of Experimental and Theoretical Artificial Intelligence, 2, pp. 189-214.
Winston, P. H. (1975). Learning structural descriptions from examples. In P. H.
Winston (ed.), The psychology of computer vision. New York: McGraw-Hill.
Wirth, R. (1989). Completing Logic Programs by Inverse Resolution. In Proceedings
of the Fourth European Working Session on Learning, pp. 239-250. London: Pitman.
Wong, M. L. and Leung, K. S. (1994a). Inductive Logic Programming Using Genetic
Algorithms. In J. W. Brahan and G. E. Lasker (Eds.), Advances in Artificial
Intelligence - Theory and Application II, 119-124.1.I.A.S., Ontario.
Wong, M. L. and Leung, K. S. (1994b). Learning First-order Relations from Noisy
Databases using Genetic Algorithms. In Proceedings of the Second Singapore
International Conference on Intelligent Systems, B159-164.
Wong, M. L. and Leung, K. S. (1995a). An adaptive Inductive Logic Programming
system using Genetic Programming. In Proceedings of the Fourth Annual Conference
on Evolutionary Programming. MA: MIT Press.
Wong, M. L. and Leung, K. S. (1995b). Genetic Logic Programming and
Applications. IEEE Expert.
Zelle, J. M.，Mooney, R. J. and Konvisser, J. B. (1994). Combining Top-down and
Bottom-up Techniques in Inductive Logic Programming. Technical Report, Department
of Computer Science, University of Texas.

Page 236

Appendix A Some procedural search biases induced by the Adaptive ILP system
1. Biases (with current - information and Info)
(% (+ (% nf+i CURRENT—工NFORMATION)

(-CURRENT-INFORMATION 1.9389733))
(* (- (+ ‘1 <+i) (* 仏了+1 -1.2297009)) n" 1))

Page 237
\

(INFO
(+
(PROTECTED-LOG
(+ CURRENT-INFORMATION

(INFO
((% (PROTECTED-LOG CURRENT—工NFORMATION)

(% CURRENT—工NFORMATION CURRENT—INFORMATION))
(- (+ CURRENT-INFORMATION CURRENT-INFORMATION)

(+ -2.415241 CURRENT-INFORMATION)))

"�+1)
(+

(+
(+

(INFO
(+
(PROTECTED-LOG
(+ CURRENT-INFORMATION

(+ (PROTECTED-LOG CURRENT-INFORMATION)
CURRENT-INFORMATION)))

(% "�+1 "�+1))
(+
(+ (PROTECTED-LOG n:�)

(INFO
(%

(INFO n ' l
(-(INFO CURRENT-INFORMATION -0.17352863)

CURRENT-INFORMATION))
2.477609)

3.603527))
(PROTECTED-LOG

(+ (+ (+ "�+1 - 1 . 8 0 4 0 3 2 7) (INFO n"^))
< +)))) o

(INFO (% - 3 . 5 1 1 9 4 2 . 4 7 7 6 0 9) 3 . 6 0 3 5 2 7))
凡「+1)) -

Page 238
r.

2. Biases (without current - information and Info)
(-
(PROTECTED-LOG
(+
(* (+ < (- (% 1) <+)) 3.1308892)
n；))

(% (* ̂ r.i
(PROTECTED-LOG

(* (+ (% "�+1 < +)
(+ (% "�+1 n；) n；))))

< 1 < +)))

Page 239

It-,

 :

 。：
？

_

 :
:
i
l

施

瑪
譯

 p

 -

 ：
二
.

 ：

 .
.

 ：

 >

 :

 ̂

尋
、

：

：

.

.

.

.

，

。

.

.

.

，

.

.

,
.
 >

 、
.

、
-
.
.

、

‘

 &

r
t

 /

 ,

 ；
-

 .
 、

〈
广

 二
5

V

.

.
 .
 。

 y

/

：

.

-

.

“

？
1

^

V
I
 i
^
H

 .

 .

 -

 ,

 式
.

M

f

 J
，

 /

 »

 •

 ,

 •
、
：
这

〜

 .

 .

p̂f、讀！..：.：：
 ：

，

 .

 :

 ,

 ..

 .

 :

-
 I

 i.:.......

 •.
、
-

•

 !•

 •

...

:

.

.

 ?•
、
.
"

’
"
"

，

‘
^
 '

-

'

 I

r
 ,

 ̂

 ,

 .
.

」

.
/
 .

 .

 .

 -

一

 ；...

f

.

.

.

.

.

.
 、.
.
.

，
.

，r
-
.
.
:
;

•
:
:
;
,

丨

 .

,

—
•

.T.;.,
 •
 r
i
,

 •
,
.
•
•
:
-
-
•
•

、
—
，
.

-
-

:

.

.
/
 ::—...-。.•.「：.

>

 „

 一

 .

 ,

 ̂

 .

I

 '

 •

 •

.

.

.

 .
-
-
.
,
:

、
.

•

 •

 .

.

.

.

 .

 .
.
.

.

 .

 .

 ,

-

•

 .
-

:
.

々

/

 、
：

.

.

.

.

.

.

 .

I
f
.

..--

•

•

•

•

-

•

•

-

 .

 •

t
^
z

.

.

.

 .

 •

I
J
:
:

..

 ":
<
,
f

 i

 ..

 ,

 ’.

•
 •

 n;

.

.

.

.

舉

-

/

—

—

—

.

.

，

.

，
 -
.

 •

....

..

...

 :
 y

r
r

...

,

 ...

 .

 .

 .

 -

 .

 •

.

.

.

.
 .

.

.

.

.

.

 ‘

 :

 -

-
-

.

y

•
.

.

.

OiSEhiOOD

saLJBjqLi >IHnD

I

.厂

