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Abstract 

There are three main problems in computer architecture that can degrade the system 

proformance. They are 

1. Ambiguous aliasing problem which causes extra LOAD and STORE operations. 

2. Too many primitive instructions. “ 

3. High cache miss ratio. 

These three problems can lead to poor system performance. In order to improve the sys-

tem performance, the above three problems must be solved. The approach of eliminating 

the ambiguous aliasing is to use hardware support to keep coherence of the ambiguous 

aliased variables. The approach to the second problem is to change the operation of ex-

plicit instructions into implicit operations. And the approach to the third problem is to 

enable data prefetching. In this thesis, the attempt to improve the performance of the 

system by proposing six new memory structures based on these three approaches. 

The name of these new memory structures is called EReg which stands for Extended 

Register. The first structure is called Basic Model which provides coherence support 

for all the registers such that the ambiguous aliasing problem is eliminated. The second 

structure is called ADM model which extends the Basic model by enabling implicit storing 

to further reduce the number of store operations. 

The third structure is called ADS model which extends the Basic model by incorpo-

rating data prefetching. Prefetching can reduce the penalty of long memory access time 

by increasing the cache hit ratio. An effective hardware-based prefetching strategy is 

employed to prefetch the data in constant stride access patterns. The fourth structure is 

called ADSM model which extends the ADS model by supporting implicit storing such 

that the number of store operations can be further reduced. 

The fifth structure is called lADSM model which extends ADSM model by enabling 

implicit loading such that a lot of array access LOAD operations can be greatly reduced. 
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From the simulation on the kernels of NASA7 and livermore loops, the reduction can be 

up to 83%. 

Finally, the last structure is called lADSMC&IDLC model which extends the lADSM 

model by enabling implicit looping such that all the loop controlling instructions (e.g. 

branch instruction) can be reduced. Some of these reduced instructions are not required 

due to the characteristics of the new memory structure while some of them are changed 

into implicit instructions. If the last structure is employed, nearly 90% issued instructions 

are reduced. 

Above all, the primary aims of the six models is to improve the system performance 

by . 

1. reducing the number of primitive instructions; 

2. eliminating the ambiguous aliasing problem; and 
I 

3. reducing the cache miss ratio. 

ii 



Acknowledgement 

I would like to express my hearty appreciation to my supervisor, Dr. Chi Chi-Hung. 

I am really indebted to him for his inspiration, patience, encouragement and guidance 

bestowed to me throughout the project. I cannot thank anyone else more than Dr. Chi 

Chi-Hung. 

I would like to thank Dr. Moon Yiu-Sang and Dr. Young Ho-fai, Gilbert for their 

helpful comments and constructive criticism in my study. Of my colleagues, Ho Chi Sum 
I 

and Keith Mak was most helpful in giving suggestions to my project. Moreover, I would 

like to thank Kwan Chi-Wai, Kan Chi-Kwun, Yu Chung-Fai, Lei Chong-Meng, Cheung 

Hon-Kai and Lau Sau-ming in providing a wonderful environment for my study. Lastly, 

but certainly not the least, I wish to extend my gratitude to my parents for their spiritual 

support in the study. 

iii 



Contents 

Abstract i 

Acknowledgement iii 

1 Introduction 1 

1.1 Cache 1 

1.1.1 Introduction . . . 1 

1.1.2 Data Prefetching 2 

1.2 Register 2 

1.3 Problems and Challenges 3 

1.3.1 Overhead of registers 3 

1.3.2 EReg 5 

1.4 Organization of the Thesis 6 

2 Previous Studies 8 

2.1 Introduction 8 

2.2 Data aliasing 9 

2.3 Data prefetching ‘ 12 

2.3.1 Introduction 12 

2.3.2 Hardware Prefetching 12 

2.3.3 Prefetching with Software Support 13 

2.3.4 Reducing Cache Pollution . . . : 14 

iv 



3 BASIC and ADM Models 15 

3.1 Introduction of Basic Model 15 

3.2 Architectural and Operational Detail of Basic Model 18 

3.3 Discussion 19 

3.3.1 Implicit Storing 19 

3.3.2 Associative Logic 22 

3.4 Example for Basic Model 22 

3.5 Simulation Results 23 

3.6 Temporary Storage Problem in Basic Model 29 

3.6.1 Introduction 29 

3.6.2 Discussion on the Solutions 31 

3.7 Introduction of ADM Model 35 

3.8 Architectural and Operational Detail of ADM Model 37 

3.9 Discussion 39 

3.9.1 File Partition 39 

3.9.2 STORE Instruction 39 

3.10 Example for ADM Model 40 

3.11 Simulation Results 40 

3.12 Temporary storage Problem of ADM Model 46 

3.12.1 Introduction 46 

3.12.2 Discussion on the Solutions 46 

4 ADS Model and ADSM Model 49 

4.1 Introduction of ADS Model 49 

4.2 Architectural and Operational Detail of ADS Model . . 50 

4.3 Discussion 52 

4.3.1 Prefetching Priority 52 

4.3.2 Data Prefetching 53 

4.3.3 EReg File Splitting ’ . . . . . 53 

V 



4.3.4 Compiling Procedure 53 

4.4 Example for ADS Model 54 

4.5 Simulation Results 55 

4.6 Discussion on the Architectural and Operational Variations for ADS Model 62 

4.6.1 Temporary storage Problem 62 

4.6.2 Operational variation for Data Prefetching 63 

4.7 Introduction of ADSM Model 64 

4.8 Architectural and Operational Detail of ADSM Model 65 

4.9 Discussion 67 

4.10 Example for ADSM Model 67 

4.11 Simulation Results 68 

4.12 Discussion on the Architectural and Operational Variations for ADSM Model 71 

4.12.1 Temporary storage Problem 71 

4.12.2 Operational variation for Data Prefetching 73 

5 lADSM Model and lADSMC&IDLC Model .75 

5.1 Introduction of lADSM Model 75 

5.2 Architectural and Operational Detail of lADSM Model 76 

5.3 Discussion 79 

5.3.1 Implicit Loading 79 

5.3.2 Compiling Procedure 81 

5.4 Example for lADSM Model 81 

5.5 Simulation Results 84 

5.6 Temporary Storage Problem of lADSM Model 87 

5.7 Introduction of lADSMC&IDLC Model ： 88 

5.8 Architectural and Operational Detail of lADSMC k IDLC Model 89 

5.9 Discussion 90 

5.9.1 Additional Operations 90 

5.9.2 Compiling Procedure 93 

vi 



5.10 Example for lADSMC&IDLC Model 93 

5.11 Simulation Results 94 

5.12 Temporary Storage Problem of lADSMC&IDLC Model 96 

6 Compiler and Memory System Support for EReg 99 

6.1 Impact on Compiler 99 

6.1.1 Register Usage : 99 

6.1.2 Effect of Unrolling 100 

6.1.3 Code Scheduling Algorithm 101 

6.2 Impact on Memory System 102 

6.2.1 Memory Bottleneck 102 

6.2.2 Size of EReg Files 103 

7 Conclusions 104 
I 

7.1 Summary 104 

7.2 Future Research 105 

Bibliography 107 

A Source code of the Kernels 111 

B Program Analysis 126 

B.l Program analysed by Basic Model 126 

B.2 Program analysed by ADM Model 133 

B.3 Program analysed by ADS Model 140 

B.4 Program analysed by ADSM Model 148 

B.5 Program analysed by lADSM Model 156 

B.6 Program analysed by lADSMC&IDLC Model 163 

C Cache Simulation on Prefetching of ADS model 174 

vii 



List of Tables 

3.1 Results obtained from the Basic Model 25 

3.2 Results obtained from the ADM Model 43 

4.1 Simulation Result for ADS Model 56 

4.2 Simulation Result for ADSM Model 72 

5.1 Results for I ADSM Model 85 

5.2 Results for lADSMC&IDLC Model 95 

C.l Cache Miss at Cache Size = 8KB, Block Size = 16B, 2-Way Associative . . 175 

C.2 Cache Miss at Cache Size = 8KB, Block Size = 16B, 4-Way Associative . . 176 

C.3 Cache Miss at Cache Size = 8KB, Block Size = 32B, 4-Way Associative . . 177 

C.4 Cache Miss at Cache Size = 16KB, Block Size = 32B, 4-Way Associative . 178 

C.5 Cache Miss at Cache Size = 32KB, Block Size = 32B, 4-Way Associative . 179 

C.6 Cache Miss at Cache Size = 32KB, Block Size = 32B, 8-Way Associative . 180 

viii 



List of Figures 

1.1 Overhead of using traditional registers 4 

3.1 Ambiguously aliasing problem 17 

3.2 Memory structure of Basic Model 18 

3.3 Example : Hydro Fragment 23 

3.4 Example : Modification of Hydro Fragment by Basic Model 24 

3.5 Main Source Program Statements From Kernel 14 - CFFT2D2.F From 

NASA 7 Kernels 25 

3.6 Main Source Program Statements From Kernel 2 - ICCG exerpt From 

Livermore Loop Benchmark Kernels 26 

3.7 Main Source Program Statements From Kernel 6 - GENERAL LINEAR 

From Livermore Loop Benchmark Kernels 27 

3.8 Main Source Program Statements From Kernel 4 - BANDED LINEAR 

EQUATIONS From Livermore Loop Benchmark Kernels 27 

3.9 Main Source Program Statements From Kernel 7 - EQUATION OF STATE 

FRAGMENT From Livermore Loop Benchmark Kernels 28 

3.10 Main Source Statements of Kernel 8 : ADI INTEGRATION From Liver-

more Loop Benchmark Kernels 28 

3.11 Main Source Statements of Kernel 15 : CHOLSKY.F From NASA? Bench-

mark Kernels 29 

3.12 Second basic variated structure 33 
* ». 

3.13 Memory structure of ADM model 37 

ix 



3.14 Example ： Tri-Diagonal Elimination, Below Diagonal from Livermore Kernels 41 

3.15 Example : Modification of Tri-Diagonal Elimination, Below Diagonal from 

Livermore Kernels by ADM model 42 

3.16 Case a in reducing STORE instruction 44 

3.17 Case b in reducing STORE instruction 45 

3.18 Result of reducing STORE instructions in case a 45 

3.19 Result of reducing STORE instructions in case b 45 

3.20 ADM second variant 47 

4.1 NASA MXM.f Kernel — Matrix Multiplication Problem 50 

4.2 Memory structure of ADS model 50 

4.3 ADS Construction 54 

4.4 Example : Modification of Hydro Fragment by ADS Model 55 

4.5 Comparison on the number of instructions between the kernels 57 

4.6 Miss Ratio comparison between the no prefetch and EReg's prefetch algo-

rithms at the configuration : Cache Size = 8KB, Block Size = 16B, 4-Way 

Associative 58 

4.7 Miss Ratio comparison between the no prefetch and EReg's prefetch algo-

rithms at the configuration : Cache Size = 8KB, Block Size = 32B, 4-Way 

Associative 59 

4.8 Miss Ratio comparison between the no prefetch and EReg's prefetch algo-

rithm at the configuration : Cache Size = 8KB, Block Size = 16B, 2-Way 

Associative 60 

4.9 Miss Ratio comparison between the no prefetch and EReg's prefetch algo-

rithms at the configuration : Cache Size = 16KB, Block Size = 32B, 4-Way 

Associative 61 

4.10 Miss Ratio comparison between the no prefetch and EReg's prefetch algo-

rithms at the configuration : Cache Size = 32KB, Block Size = 32B, 4-Way 

Associative 61 

V 



4.11 Miss Ratio comparison between the no prefetch and EReg's prefetch algo-

rithms at the configuration : Cache Size = 32KB, Block Size = 32B, 8-Way 

Associative 62 

4.12 ADS second variated structure 63 

4.13 Memory structure of ADSM Model 65 

4.14 ADSM Construction 68 

4.15 Example : Tri-Diagonal Elimination, Below Diagonal 69 

4.16 Example : Modification of Tri-Diagonal Elimination, Below Diagonal from 

Livermore Kernels by ADSM model 70 

4.17 ADSM second variant 73 

5.1 Original Program listing 75 

5.2 Program listing after using EReg in lADSM model 76 

5.3 lADSM structure . . . . 76 

5.4 lADSM Construction 80 

5.5 Example : Hydro Fragment 82 

5.6 Example : Modification of Hydro Fragment from Livermore Kernels by 

lADSM model 83 

5.7 lADSM second variated structure 88 

5.8 lADSMC&IDLC model A structure 89 

5.9 lADSMC&IDLC model B structure 89 

.5.10 lADSMC Construction 91 

5.11 IDLC Construction 92 

5.12 Example : Modification of Hydro Fragment by lADSMC&IDLC Model . . 94 

5.13 Main statements in Kernel Three : INNER PRODUCT From Livermore 

Loop 96 

5.14 lADSMC&IDLC second variated structure 98 

6.1 %13 and %15 represent different index values . . 99 

6.2 Problem of using DATA EReg to store temporary value 100 

xi 



6.3 Main "C" Statements in Kernel 11 - First Sum From Livermore Loop 

Benchmark Kernels 101 

6.4 Modification of part two in Kernel 11 by lADSMC&IDLC model 101 

6.5 Example used for different code scheduling 102 

A.l Kernel One : HYDRO FRAGMENT from Livermore Loop I l l 

A.2 Kernel Two : ICCG EXCERPT from Livermore Loop ： 112 

A.3 Kernel Three : INNER PRODUCT from Livermore Loop 113 

A.4 Kernel Four : BANDED LINEAR EQUATIONS from Livermore Loop . . 114 

A.5 Kernel Five : TRI-DIAGONAL ELIMINATION, BELOW DIAGONAL 

from Livermore Loop 115 

A.6 Kernel Six : GENERAL LINEAR from Livermore Loop 116 

A.7 Kernel Seven : EQUATION OF STATE FRAGMENT from Livermore 

Loop 117 

A.8 Kernel EIGHT : ADI INTEGRATION from Livermore Loop 118 

A.9 Kernel Nine : INTEGRATE PREDICTORS from Livermore Loop . . . . 119 

A.IO Kernel Ten : DIFFERENCE PREDICTORS from Livermore Loop . . . . 120 

A.ll Kernel Eleven : FIRST SUM from Livermore Loop 121 

A. 12 Kernel Twelve : FIRST DIFFERENCE from Livermore Loop 122 

A.13 Kernel Thirteen : MXM.F from NASA7 Benchmark 123 

A. 14 Kernel Fourteen : CFFT2D2.F from NASA7 Benchmark 124 

A.15 Kernel Fifteen : CHOLSKY.F from NASA7 Benchmark 125 

xii 



Chapter 1 

Introduction 

In RISC architecture, all data operands used for program isxecution must be stored in 

registers. A typical instruction mix shows that 22% of instructions executed are LOAD 

instructions and 5% are STORE instructions. In order to reduce the memory access delay, 

cache is often used. Typically, a cache hit may just take 1 clock cycle, while a cache miss 

takes 8 - 32 clock cycles[HP90]. •‘ 

There are three problems inherent in the current RISC architecture. Firstly, storing 

data in register suffers from data aliasing problem which will be discussed later. Secondly, 

too many primitives instructions are executed. Thirdly, high cache miss ratio increases the 

overall memory access time. These three problems can cause performance degradation. 

In this thesis, some effective short-term memory structures are proposed to solve these 

problems. The name of these new memory structures is called EReg which stands for the 

Extended Register. In order to explain how and why these ERegs can improve the perfor-

mance, it is necessary to have an overview on the current short-term memory structures 

(i.e. register and cache) and discuss why they cannot solve the aforesaid problems. 

1.1 Cache 

1.1.1 Introduction 

A cache is a small, fast memory located close to the CPU. It is used to hold the most 

recently used instructions or data. The cache data is accessed by using memory address. 

1 



一 Chapter 1 Introduction 2 

If the data item accessed by the CPU cannot be found in the cache, a cache miss occurs 

and the data will be retrieved from the main memory and put into the cache. Since data 

in the cache can be accessed in much shorter time than that in the main memory, the 

total memory delay during execution can be greatly reduced if a significant fraction of 

the references can be found in the cache. 

Cache misses can be categorized into three types : compulsory, conflict and capacity. 

Compulsory miss is due to the first time access of the data object. Conflict miss occurs 

when the referenced data is replaced by another data object within the same set. Capacity 

miss is caused by the small cache size which is not large enough to hold the working set 

of the program[Hil87]. In multiprocessors environment, a data is non-cacheable if it can 

be read by more than one processor and its value may be changed by some processors, 

1.1.2 Data Prefetching 
t 

Data prefetching can load a data item into the cache before it is actually referenced by 

the processor and hence, it can reduce compulsory misses. However, such techniques not 

only require the cache to hold the current working set, but also the future working set. It 

may cause cache pollution and may increase conflict and capacity misses especially when 

the data is prefetched too early. However, if the data is prefetched too late, the time 

for loading the data item into the cache may not be able to overlap with the program 

execution. Usually, the prefetching operations do not block the processor and the demand 

LOAD operations have a higher priority over prefetching operations. 

1.2 Register 

Another important short-term memory structure is register. The loading and storing 

of registers are done explicitly by the LOAD and STORE instructions. In general, the 

number of registers is much less than that of cache memory cells. Each register can be 

directly accessed using a short register name. Since its address space is also separated 

from the main memory and the number of register is small, hence the register names 
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are typically shorter than memory addresses. Therefore, data-fetch and instruction-fetch 

bandwidth can be decreased. Furthermore, since access to registers does not interfere 

with the reference to memory, the usable bandwidth of memory can be increased. 

Apart from the above discussion, there are three other reasons why register usually 

gives a better performance than the cache memory. Firstly, the access time of a register 

is faster than that of a cache entry. Secondly, access time of register is more predictable 

than that of the memory system including cache and main memory. Thus, better compiler 

optimization can be performed. Thirdly, if the program is carefully optimized, doubling 

the size of register file often perform better than doubling the size of cache. However, if 

the program is poorly optimized, doubling the size of the cache may in turn give a better 

performance gain than doubling the size of the register file[Sit79.. 

1.3 Problems and Challenges 

1.3.1 Overhead of registers 

Basically, there are two sources of serious overhead associated with register data. Firstly, 

it is often necessary to save the current machine state when there is a subroutine call or 

switching task. This means that explicitly saving and restoring all the programmer-visible 

registers are needed. When the size of the register file is getting larger, subroutine calls 

will become slower. Secondly, data aliasing will also cause register data to be stored and 

reloaded frequently. To explain this problem, let us consider the example in Figure 1.1. 

The value of b[i] is loaded into register in both lines L2 and L6. The reason of loading b[i. 

in line L6 is that if a[i] is aliased to b[i], the value of b[i] might be changed by the update 

of a[i] after the line L4. The compiler cannot determine if the two names a[i] and b[i] are 

aliased with each other. When such case happens, STORE and LOAD operations will be 

required. One of the main features of the ERegs is to eliminate these two problems while 

maintaining the benefit of registers. The next subsection 1.3.2 will discuss how to reduce 
» • 

the instructions of L9, LIO and Ll l by using the new proposed memory models - ERegs. 
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Program segment in "C" language : 

CI: For (i=0;i<n;i+=8) { 

C2: a[i]=b[i]+c[i] 

C3: d[i]=b[i]+a[i] 

} 

Pseudo assembly version : ,, 

LI: load c[i] 

L2: load b[i] 

L3: compute b[i]+c[i] 

L4: store a[i] 

L5: load a[i] 

L6: load b[i] 

LI: compute b[i]+a[i] 

L8: store d[i] 

L9: add i’8 

LIO: compare i,n 

Lll: goto LI if i < n 

Figure 1.1: Overhead of using traditional registers 

、 •. 
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1.3.2 EReg 

In this thesis, discussion will be made on how ERegs are designed and used to enhance 

the system performance. A total of six new memory models called ERegs are proposed. 

The areas that ERegs try to optimize include : 

1. Implicit Storing -

2. Data Prefetching 

3. Implicit Loading 

4. Implicit Looping 

Implicit Storing is emphasized on reducing the number of STORE instructions. The 

reduction is mainly done by converting explicit STORE operations into implicit STORE 

operations. Sometimes, the explicit STORE operations can be simply eliminated. 90% 

of the STORE instructions in the Livermore Loop Benchmark kernels can be reduced. In 

Figure 1.1, the STORE instructions of L4 and L8 can be eliminated by changing them 

into implicit STORE operations. 

Data prefetching has been discussed and studied by a lot of researchers. Previous 

researchers proposed some prefetching designs which can achieve a high cache hit ratio. 

However, such designs are usually too costly to implement. In our EReg design, a very 

accurate data prefetching can be achieved, yet the additional hardware involved is very 

simple. In Figure 1.1, the traditional method of ONE BLOCK LOOK AHEAD cannot 

reduce any cache miss. The reason is that the next data is 64 bytes away from the current 

data ( assume each data is 8 bytes long ). However, if EReg is used, the data of a[i], b[i 

and c[i] in the next iteration can be prefetched easily with the help of the compiler and 

very high performance can be obtained. 

Implicit Loading is emphasized on reducing the number of LOAD instructions by 

changing the explicit LOAD operations into implicit LOAD operations. This area is 

seldom studied by previous researchers. From the simulation results, up to 90% of the 
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LOAD instructions in the Livermore Loop Benchmark kernels are reduced. In Figure 1.1, 

the instructions of LI, L2, L5 and L6 can be eliminated. 

Implicit looping is to eliminate the instructions which control the operation of looping. 

Generally, there are three well-defined steps in the loop control: 

• Increment of the index value 

• Comparison bewteen the index value and the looping limit 

• Conditional branch instruction 

These three well-defined steps are definitely non-negligible overhead to the system perfor-

mance. This area is also seldom studied by previous researchers. However, we will show 

that ERegs can reduce the type of loop controlling instructions in the last chapter. In the 

example of Figure 1.1, the instructions of L9, LIO and Lll can be eliminated. 
I 

1.4 Organization of the Thesis 

In the thesis, we will go through our six new models. We will first focus on the archi-

tectural design, operational details of each model. And then an example will be used 

for demostration of the idea. Next, the simulation result of the kernels from the NASA? 

Fortran Language Program Benchmark and Livermore Loop C Language Program Bench-

mark are presented and discussed. Finally, some architectural and operational variations 

for each model are discussed. 

In Chapter 2, some previous studies on ambiguous data aliasing and data prefetching 

will be presented. In Chapter 3, two models, called the Basic and ADM models, will be 

presented. They mainly concentrate on solving the ambiguous data aliasing problem and 

implementing the feature of implicit storing. In general, they can replace the traditional 

registers effectively. In Chapter 4, two enhanced models, called the ADS and ADSM, will 

be presented. They are not only designed to replace the traditional registers, but also 

incorporated with data prefetching. In Chapter 5, the models will be further enhanced to 
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include the feature of implicit loading and implicit looping. The models are called lADSM 

and lADSMC&IDLC. In Chapter 6, we will give a general discussion on the problems of 

implementing the models of ERegs. It includes the impact of the ERegs on the memory 

system and on the compiler optimization techniques. And finally, in Chapter 7，some 

conclusions will be made on the effectiveness of ERegs and future research direction on 

ERegs will be suggested. _ 

尊. 



Chapter 2 

Previous Studies 

2.1 Introduction 

When there are more than one name to reference a program object, data aliasing problem 

may occur[ASU86]. Suppose there are two variable names a and (3. In the compile-time 

analysis, if a compiler can prove that a and j3 cannot be aliases for the same memory 

location, then a and (3 will be assigned to different register. Instead, if the compiler can 

prove that a and (3 are always be aliases for the same memory location, then a and are 

assigned to share a single register. However, if the compiler cannot determine whether a 

and /3 refer to the same memory location, we say that a and /3 are ambiguously aliased 

to each other. 

This chapter gives a survey on the relevant previous work. Basically, there are two 

concerned areas. One is the ambiguous aliasing data and the second one is the data 

prefetching. Up to the present moment, there are seldom previous research study on the 

areas of implicit loading and implicit loop control. Now, let's look at the ambiguous data 

aliasing problem first. -

A simple approach to solve this ambiguous aliasing problem is to assign these variables 

to different registers. However, when one of them is changed, its register value must be 

stored back to the memory. Moreover, further accesses to the register copy of other 

variables in the same aliased set will cause them to be loaded again into the register 

before they are accessed. 

8 
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For example, 

1. readln(i,j); 

2. a[i] = a[j]+c; 

3. d=a[j]+c; 

The variables a[i] and a[j] would refer to the same memory location when the input 

values of i and j are the same. Then, after the result of the line 2 is stored into a[i), the 

register copy of a[i] has to be stored back to the main memory. Furthermore, the data a[j 

in line 3 has to be loaded again into the register before it can be used in the calculation. 

Such aliasing problem can occur in many other scenarios. 

I 

2.2 Data aliasing 

There are two basic approaches to handle the data aliasing problem. One is to use software 

methods[CK89], [LH88] and [MyeSl] to disambiguate the aliasing problem such that a 

better code optimization can be obtained. Nicolau[Nic89] described a technique in which 

dependent STORE j LOAD pairs can be reordered by inserting explicit address comparison 

and conditional branch instructions. Any incorrect execution due to wrong reordering can 

also be rescued by inserting some extra instructions. However, this approach might cause 

the overhead of a longer runtime. Another approach is to use extra hardware to maintain 

the consistency among the register copies of the aliased members. Since our models belong 

to the hardware approach, previous hardware methods will be described in more details. 

The simplest method is to eliminate the register storage. However, this method has a 

serious drawback that it cannot obtain the benefits of using registers. Another approach 

is to use hardware support to maintain the consistence of accessing same program object 

via different variable names. The designs include tagged-register mechanism, indirection-

resolution and register preload. 
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Sites [Sit79] generalized the structures of register and cache. He proposed an idea 

called "Renaming". A RENAME operator was defined such that RENAME X, Y would 

mean that the short name X will be used to access the long name Y until another RE-

NAME operation involving X is encountered. This RENAME operation is very similar 

to the LOAD operation of a register, but it differs from LOAD operation in the way that 

no data movement is implied. Since one of the assumptions of the method is that the 

implementation must ensure that references using the short name X and the long name 

Y both access the same actual data, ambiguous aliasing problem will not occur. 

Dietz and Chi [HC88] proposed a structure called CRegs. Basically, CRegs is a tagged 

register and is a superset of register and cache. Each CReg has an address field and a data 

field. When a CReg is updated, an fully associative search is made to determine if there are 

any CRegs which have the same address value as the one being updated. Any CRegs found 

by this association are aliases for the CReg being directly named, and the CReg hardware 

simply performs an associative update to these entries. Furthermore, the capacity of 

update associativity can be reduced by partitioning the CRegs into sets such that the 

compiler can put those ambiguously aliased and simultaneously live references into the 

same set. An implementation study of CRegs based on the MIPS-X RISC Processor was 

taken by Steve Nowakowski and Mattew T.O'Keefe[NT92 . 

Heggy and SofFa [BM90] proposed a mechanism called variable forwarding. Each data 

only has a single copy stored in the register file, called the leader which satisfies all 

the memory and register accesses to the data. Hence, there is no need to maintain the 

consistency between memory and register copies, or among register copies. However, the 

large overhead in setting the aliasing reference group and accessing method through the 

leader may offset the performance gain. -

Chiueh in [Chi91] proposed an approach called indirection resolution which aims at 

solving the ambiguous data aliasing implicitly. The novelty of this mechanism is the 

integrated operation of the on-chip memory hierarchy. The on-chip storage includes an 

on-chip data cache and a register file. All ambiguously aliased acfcesses including both 

the register and memory references are served by the data cache. Each cache word can be 
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accessed using memory address or cache address ( i.e line number/word-in-line number ). 

Since the cache supports two addressing modes, it is called dual-addressed cache. 

Another important idea in this approach is the register indirection. During the register 

allocation, ambiguously aliased data will be assigned to distinct registers. However, these 

objects are never physically brought into the registers, Instead, the cache addresses of the 

ambiguously aliased data are stored into the registers. Hence, a register access is turned 

into a cache access using the corresponding cache address. As a result, ambiguously 

aliased objects can be accessed either through a memory address or through an indirect 

register specifier. Although there could be more than one register that holds the same 

cache address, only one physical copy of each ambiguously aliased object will be found in 

the register/cache-memory hierarchy. So there is no inconsistency problem. 

William [WYMC93], described a method called preload register update which supports 

the compiler to move a memory load above a memory STORE when their dependence 
I 

state is not certain. When a LOAD is moved above a STORE and their dependence 

relation is uncertain, the LOAD is called a preload. There is a coherence mechanism 

to update the preload destination register if the preload address is just the same as the 

STORE address. For each register, an address register is associated with it. If we have 

n general purpose registers, n address registers are added. The purpose of these address 

registers is to store the addresses of preloads. When a STORE instruction is executed, 

the STORE address is compared against all preload addresses in the address registers. 

When there is a match, the stored value is forwarded to the corresponding data register 

for updating. Since there are multiple address registers, a fully associative comparison 

between the STORE address and the preload addresses is made in order to shorten the 

search time. To stop the coherence update of a particular preload register, a commit 

instruction is introduced. It is usually inserted at the original position of the LOAD 

instruction. When the commit instruction is executed or the register is redefined by a 

normal instruction, the coherence update of the specified preload register is stopped. 

However, the algorithm has a major limitation. Only the LOAD instruction can be 

scheduled above ambiguous STORES. Other instructions, such as ADD^MOVE,which 
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depends on the result of the LOAD instruction cannot be moved above the STORES. In 

order to increase the parallelism, William based on the above idea proposed the Memory 

Conflict Buffer (MCB). A memory LOAD and its dependent instructions can be moved 

above any number of memory STORES regardless of the dependence relation between 

the LOADS and the STORES by using the MCB. MCB supports the code reodering by 

detecting the situation in which the ambiguous reference pair accesses the same location 

and subsequently invoke a correction code sequence supplied by th compiler to restore 

the correctness of the program execution. 

2.3 Data prefetching 

2.3.1 Introduction 

Due to the diverse speed gap betv»een the processor and the memory, data prefetching 

can be an effective method to increase the cache hit ratio and to reduce the penalty of 

data access. However, since prefetched data may flush out the current working set of data 

in the cache, cache prefetching can cause cache pollution and can result in performance 

degradation. Sometimes, prefetched data may even flush out each other before they are 

referenced. The prefetching approaches may be based on hardware only or with software 

support. Data prefetching with software support has an advantage over pure hardware 

methods that the compiler can make an intelligent prediction on future program flow. 

However, their main problem is the overheads on extra instruction execution[MLG92 . 

2.3.2 Hardware Prefetching 

The simplest Hardware Prefetching method is the ONE BLOCK LOOK AHEAD which 

prefetches the cache line address i+1 when the cache line address i is referenced [Smi82], 

Prz90]. In general, hardware-based approaches are simple and do not have extra runtime 

overhead. However, they only perform will in sequential access of data and fail in all the 

other accesses. 
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As classified by [Che93] and [BC91], there are four types of access patterns - scalar, 

zero stride, constant stride and irregular. Most hardware-based approaches perform well 

in the case of constant stride access pattern. 

In Chen's thesis [Che93], he proposed the Reference Prediction Table(PRT) which is 

used to keep track of previous reference addresses and their associated strides for LOAD 

and STORE instructions. The table contains four fields. The first field is a tag. cor-

responding to the instruction address of the LOAD/STORE. The second field contains 

last (operand) reference data address for the same instruction. The third field is a stride 

value which is obtained from the difference between the current data access address and 

previous data access address for the same instruction. The fourth field is a two-bit state 

which indicates the past history of prefetching. If the stride value is not changed in 3 

iterations, it is regarded as stable and then prefetching data in the next iteration will be 

performed. The performance of this design can be further improved by adding a Look-
I 

ahead Program Counter. However, it is difficult to justify the benefit of this design since it 

involves too much hardware overhead for supporting prefetching. Other similar schemes 

are proposed in [Skl92] and [FPJ92 . 

2.3.3 Prefetching with Software Support 

By analyzing the program statically, the compiler is able to insert data prefetching in-

structions into the program so that the data is in the cache before they are referenced 

;CKP91], [MG91] and [CMCmH91]. 

Porterfield[Por89] studied the prefetching of array references in the innermost loops 

of a program. He found that the performance of prefetches one iteration ahead is better 

than the simple hardware prefetching, e.g. One Block Lookahead. 

Gornish et.al.[GGV90] further proposed an algorithm for prefetching an entire block 

instead of a single cache line. He also attempted to determine the earliest point at which 

a datum can be fetched in multiprocessor environment. However, dependence constraints 
», 

limit the ability to pull out a particular reference from a limited number of loops. 
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2.3.4 Reducing Cache Pollution 

Data Prefetching may increase cache pollution which in turn creates additional bus traffic. 

Previous researchers [KL91], [LYL87], [CBM+92] proposed an architectural support, called 

the prefetch/fetch buffer, to solve the cache pollution problem and to tolerate long memory 

access latencies. The prefetch/fetch buffer holds the possible future working set. The 

processor therefore operates on two separate caches. When the data in the prefetch/fetch 

buffer is referenced, its associated cache line is transferred from the buffer into the data 

cache. However, this method has two problems : 

• Associativity of the prefetch/fetch buffer 

• Coherence between the data cache and prefetch/fetch buffer 

A similar architecture called the preload buffer was also proposed in [CBM+92]. All 

preload data were stored in the preload buffer. The data in the preload buffer would not 

be transferred to the cache when they were used. 

Three small fully-associative caches called miss cache, victim cache and steam buffer 

were proposed by Jouppi[Jou90]. In the case of using miss cache, all the missed cache 

line will be forwarded to both the data cache and miss cache such that when the line 

is replaced from the data cache, the miss cache may still contain this line. In the case 

of using victim cache or steam buffer, any replaced lines from the data cache will be 

forwarded to victim cache or steam buffer. 

V 



Chapter 3 

BASIC and ADM Models 

3.1 Introduction of Basic Model 

Traditional registers face the problem of ambiguous data aliasing. The problem is investi-

gated in the following paragraphs. Supposing that there are two names a and (3. If they 

are always aliased to each other, the compiler can simply assign a single register for them. 

On the other hand, if they are proved impossible to be aliased with each other, a and (3 

will be assigned to different registers. 

However, if the compiler cannot make sure whether they are aliased to each other, 

it will cause a serious problem that extra STORE and LOAD operations are required. 

In this case, the name a and jS are said to be ambiguously aliased with each other. To 

explain this, let us go into the following example. There are two names a and (3 which 

are ambiguously aliased with each other. The compiler assigns different registers to hold 

their values. If the value of the register copy of one of them, say a, is changed, the value 

of the register copy of another variable (i.e ) may have been outdated because a and jS 

may refer to the same location. In order to obtain the correct program execution result, 

the value of the register copy of (3 must be updated before any reference access to the 

register copy of /?. Usually, a pair of STORE/LOAD operations is employed to update 

the value of /3 if necessary. 

1. STORE the value of a into memory. 

15 
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2. LOAD the value of /3 from memory 

Hence, the ambiguous aliasing problem decreases the benefit of using registers. 

Aliases can occur in a lot of ways. The followings are some of the scenarios in which 

ambiguous data aliasing occurs. 

• There are more than one name to access a single variable in pointer operation； 

• The global variable is passed into a procedure by name. 

• The same variable is passed in several positions of the argument list during call-by-

reference procedure call. 

• The index value of array elements are determined at run time such that a[i] may be 

aliased to a[j]. 

I 

Cache does not have ambiguous data aliasing problem. The above variables a and 

j3 can be placed safely inside cache. The reason is explained as follows. Since memory 

address is used to address the data in cache, if two objects in cache are aliased with each 

other, their memory address will be the same. Therefore, only one copy of the value will 

exist and there is no ambiguous data aliasing problem. 

We propose our basic model of EReg in order to achieve the same benefit as traditional 

register and solve the problem of ambiguous data aliasing just like cache. The memory 

structure of the Basic model is shown in Figure 3.2. Its structure is the superset of register 

and cache. It has two fields - address field and data field. The address field holds the 

address of the data stored in data field. The main idea of the Basic model is to make 

the data content of the ERegs , which have same address value, coherent. To understand 

this, let us consider the function in FigureS.l: 

If the function in Figure 3.1 is called by SUM(X,X,Z), *A and *B will refer to same 

object. If it is called by SUM(X,Y,Z) where X is different from Y, *A and *B will refer 

to different objects. Therefore, the way to call this function decide whether the names 

of *A,*B are aliased with each other. Since the compiler does not know whether they 
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LI： SUM(INT *A，INT 吼INT C) 

L2:{ 

L3: ^A =本 B+C 

L4： *B =本 B+C 

L5:} 

Figure 3.1: Ambiguously aliasing problem -

are aliased with each other, it will be harmful to place them into traditional registers 

as discussed previously. However, if EReg is used, *A and *B can be safely placed into 

two ERegs, ERl and ER2, because the aliasing problem is solved by the EReg hardware. 

When the value of ERl is changed in L4, the address field of ERl will compare with the 

address field of all other ERegs in a fully associative way. If *A and *B are really aliased 

with each other, they will have the same address value. The matching is successful between 

ERl and ER2 so that the ERegs wilt update the value of ER2 accordingly. In other words, 

the values of *A and *B are always kept in coherence with each other and without any 

access to the main memory. Both the number of STORE and LOAD operations can be 

reduced in data aliasing problem. 

Similarly, if the EReg ERl is loaded with a new data using a LOAD instruction, a fully 

associative search is also made between the address of the new data and the address fields 

of the EReg file and to see if there are any ERegs which have the same address values. If 

the matching is successful, the data value of those matched ERegs will be forward to ERl 

such that the loading operation from the main memory is eliminated. Thus, in general, 

the average time of LOAD operation is shorter after using ERegs. The next section 3.2 

will describe the architectural and operational details of Basic model. 

* • . 
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3.2 Architectural and Operational Detail of Basic 

Model 

The instructions to change the data content of EReg can be classified into three types of 

operations. They are LOAD operation, STORE operation, arithmetic and logical opera-

tions. The operational details are discussed on these three types of operations. ~ 

Name Address Datum 

Figure 3.2: Memory structure of Basic Model 

Operational Details 

Case 1 : LOAD Instruction : 

When a LOAD instriiction for loading the content of the memory address 

ADDRESS-A into an EReg,e.g ERi, is executed: 

e.g. LOAD ADDRESS-A, ERi 

• The content of the address field of ERi is set to the address value ADDRESS-A. 

• The address value ADDRESS-A is checked against the content of the address field 

of all ERegs in the EReg file simultaneously. 

- I f a match is found between the address value ADDRESS.A and the content of 

the address field of some ERegs, the content of the datum field of these ERegs are 

copied into the datum field of ERi. — 

- I f no match is found in the EReg file, the memory content with the address 

ADDRESS-A is loaded from memory into the datum field of ERi. 

Case 2 : STORE Instruction : 

When a STORE instruction storing data of an EReg, e.g. ERi, to the 



,£hapter 3 BASIC and ADM Models 19 

memory address New一address is executed : 

e.g STORE ERi, New_address 

• The address New—address is checked against the content of address field of all ERegs 

in the EReg file, _ 

—I f a match is found between the address New .address and the content of address 

field of some ERegs, both the memory content with address New.address and the 

content in the datum field of these ERegs are updated by the content of the datum 

field of ERi. ， 

——If no match is found in the EReg file, only the memory content with address 

New一address is updated. 

Case 3 : Arithmetic and Logical Operation : 

When an arithmetic or logical operation with destination EReg,e.g ERi, 

is executed : 

• The content of the datum field of the ERi is updated as usual. 

• The content of the address field of the ERi is read and compared associatively with 

the content of the address field of all other ERegs. If they match, the content of the 

' datum field of these ERegs are updated by that of ERi 

3.3 Discussion 

3.3.1 Implicit Storing 

Implicit Storing means that STORE operation which are performed implicitly and use 

address content of the EReg as storing address. It can be used to eliminate the issue time 

of STORE instructions and number of STORE operations. If implicit storing is supported 
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by Basic model, the operation of implicit storing can be implemented as follows. Whenever 

there is an EReg to be replaced {i.e during Loading operation), an associative match is 

made between the address content of this EReg and that of all ERegs. If the matching is 

successful, the content of this EReg can be simply discarded and then this EReg is used 

to hold the new data immediately. If the matching is unsuccessful, the content of this 

EReg must be implicitly stored by using the content in its address field as the storing 

address. 

However, many data are usually not modified before they are replaced. If implicit 

storing is really supported by Basic model, all the data must be stored implicitly when 

they are replaced and they do not have any aliased ERegs. A lot of unnecessary STORE 

operations are performed and thus implementing implicit storing in Basic model may 

not be beneficial. Hence, implicit storing is not supported by Basic model. That's also 

the reason to extend the Basic model to ADM model by including one more bit called 
» 

modified bit which will indicate if the replaced ERegs have been modified or not. 

Traditionally, there are two parameters for STORE instruction. One is to specify the 

source EReg. Another is the destination memory address. For example, 

ST ERi, DST.ADDRESS 

In Basic model, although the implicit storing is not supported, we may still obtain part 

of the benefits offered in implicit storing by including a new explicit STORE instruction 

which can provide part of the benefits offered by implicit storing. 

STi ERi 

This new STORE instruction, STi, uses the content of the address field of ERi as 

the destination address implicitly. Before we go to discuss why this new instruction can 

provide part of benefits offered by implicit storing, it is first necessary to discuss the 

benefits of implicit storing in detail. The benefits of implicit storing are : 
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1. eliminating the issue time of STORE operations; 

2. eliminating some STORE operations; 

3. reducing the demand of the number of ERegs; and 

4. reducing the instructions to find the storing address of the STORE instruction. 

Firstly, since implicit storing provides STORE operation implicitly, it does not involve 

the overhead of issuing the STORE instructions. Secondly, supposing that there are 3 

STORE instructions storing the content of the variables A, B and C. If A, B and C are 

aliased to each other, these 3 explicit STORE operations can be reduced to only one 

implicit storing operation in case of the implicit storing being supported. Hence, the im-

plicit storing can eliminate some STORE operations. Thirdly, only LOAD instruction can 

change the content of the address field of EReg. Therefore, an explicit 5TO/?operation 

can be changed to an implicit STORE operation only if the value of the destination ad-

dress of this explicit operation has been loaded and stayed in EReg file currently. Hence, 

the destination address should have been available in the address field of an EReg, say 

ERi, before the issue of the explicit STORE operation on ERi. Since we do not provide 

means to access the address field of EReg, this require an extra EReg to hold this desti-

nation address. If implicit storing is supported, this extra EReg is not required and hence 

the demand of the number of ERegs can be reduced. Fourthly, if the number of ERegs 

is not sufficient to hold the value of the above destination address, some instructions are 

required to find out the value of this destination address before the issue of the corre-

sponding STORE instructions. Again, if implicit storing is supported, these instructions 

can be eliminated. -

The new instruct ion ,can provide the above third and fourth benefits. Since the 

destination address has been stored in the address field of the EReg, say ERi, it is not 

necessary to use an extra EReg to hold the destination address or some instructions to 

find out the value of this destination address again. 、 ’ 
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3.3.2 Associative Logic 

It may be very expensive to implement a fully associative Basic EReg file, the EReg file 

can be divided into sets, e.g, four ERegs each set. All the ambiguous aliasing objects will 

be placed into same set. Only those within the same set are maintained to be coherent. 

The simple way to divide the EReg file into sets can be handled by the method that all 

ERegs belong to the same set if all the bits of their ERegs' name are the same, except the 

last two bits. If the number of the ambiguous objects is more than the number of entries 

of the set, we can handle the problem by the following mechanism : 

1. We can assign EReg to each ambiguous object freely before all the ERegs within 

the set are filled up. 

2. Once all the ERegs within the set are filled up, further EReg request from same 

aliasing set will be honored by replacing one of the ERegs within the set. 

As the basic feature of EReg, any loading will trigger an comparison between the 

LOAD address and the content of the address fields in other ERegs within the set. Any 

match will cause the data from the matched ERegs forward to the loading EReg rather 

than loading from memory. Thus, during the step two of the above mechanism, the 

replacement may not imply a LOAD operation. The reason is that if there are any 

aliased ERegs, the loading operation is changed to data movement operation between 

EReg and EReg. 

3.4 Example for Basic Model 

The kernel of hydro fragment from the Livermore Loop is extracted out as an example in 

Figure 3.3. In the example, if traditional register is used, the array elements z[k+10] h 

z[k+ll] will be loaded in each iteration since there may be an aliasing problem between 

x[k] and z[k+ll] or x[k] and z[k+12]. However, if BASIC model of EReg is used, we 

can schedule the coding as shown in Figure 3.4. Then, the total number of 4 loading 
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instructions for the array elements of z[k+ll], z[k+10], z[k+12] and z[k+ll] in each 

iteration can be decreased to only 2 loading instructions z[k+ll] and z[k+12] with one 

more LOAD instruction outside the loop of "for ( k=0;k<n;k++)”. 

Hydro fragment : 

for ( k=0;k<n;k++) ~ 

x[k]=q+y[k]本(V* z[k+10]+t 本 z[k+l 1 ]); 

Pseudo assembly version : 

0. STEPl 

1. LOAD z[k+ll] 

2. Compute t*z[k+ll] 

3. LOAD z[k+10] 

4. Compute r*z[k+10] 

5. …" ..…’: 
6. Compute q + y[k]^(r*z[k+10]+t^z[+ll] ) and STORE into x[k]. 

7. LOAD z[k+12] 
8. Compute t^z[k+12] 

9. LOAD z[k+ll] 

10. Compute r^z[k+ll] 

11 

12. Compute q + y[k+l]^(r^z[k+ll]+t^z[+12] ) and STORE into x[k+l]. 

13. Increment the value of k by 2. 

14. goto STEPl 

Figure 3.3: Example : Hydro Fragment 

3.5 Simulation Results ‘ 

There are totally 15 kernels used in the simulating the effect of the Basic model of EReg. 

The source code of these 15 kernels are placed in Appendix A. The first 12 are Livermore 

Loop "C" language kernels. All kernels will be compiled by cc compiler into assembly 

programs in SPARC machine environment with the command “ cc -04 -S filename，,. 
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3. LOAD z[k+10] 

0. STEPl 

4. Compute r^z[k+10] 

1. LOAD z[k+ll] 

2. Compute t^z[k+ll] 

5. ..." 

6. Compute q + y[k]^ (r^z[k+10]+t*z[+ll] ) and STORE into x[k]. 

9. ( remove ) 

10. Compute r*z[k+ll] 

7. LOAD z[k+12] ( use same EReg as z[k+10]) 

8. Compute t^z[k+12] 

11 

12. Compute q + y[k+l]^(r^z[k+ll]+t^z[+12] ) and STORE into x[k+l]. 

13. Increment the value of k by 2. 

14. goto STEPl 

Figure 3.4: Example : Modification of Hydro Fragment by Basic Model 

I' 

The last three kernels are the NASA 7 "FORTRAN" language Kernels. The command 

to generate their assembly codes is “ f77 -04 -S filename “. All the traditional registers 

in assembly programs are replaced by the Basic model of EReg to see if there are any 

improvement. The result contains three data : 

1. Total number of instructions issued 

2. Number of LOAD instructions issued 

3. Number of STORE instructions issued. 

The result is presented in table 3.1. Since the Basic model of the EReg aims at solving 

ambiguously aliasing problem, an improved result for EReg can be"obtained when there 

are any aliasing problems in the tested kernels. We found that the kernels 1, 2, 6, 7, 8, 

12, 14 and 15 have ambiguously aliasing problems. The kernel 14 exhibits the greatest 

performance improvement. The fortran source of kernel 14 is shown in Figure3.5 
, »• 

Since the testing program in NASA 7 Benchmark passed the parameters IS 二 -1, M = 

128, Ml = 128 and N = 256 into the kernel 14, we found that there are two loops, which 
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Percentage of Percentage of Percentage of 

LOAD STORE 

instr remained instr remained instr remained 

XHydro fragment 87.6% 66.8% 100% 

X l C C G excerpt “ 77.8% 一 80.3% 100% 

X T n n e r product 100% “ 100% 一 100% 

"ITBanded linear equations 100.4% 100% 100% 

5. Tri-diagonal elimination 100% 100% 100% ~ 

,below diagonal 

6. General linear 75.9% 66.7% 

recurrence equations 

7. Equation of state a) 100% a) 100% a) 100% 

fragment b) 85.7% b) 66.8% b) 100% 

~8~ADI integration 80% — 63.7% 100% 

T Integrate predictors _ 100% 100% 100% 

"T07 Difference predictors 100% — 100% 100% 

~TFFirst Sum — 100% 一 100% — 100% 

12. First Difference 一75.9% “ 50.05% 100% 

i M x m . f ~~‘ 100% 100% — 100% 

"l4rCff2tdLf 51.4% “ 25% 66.7% 

15. Cholesky Decomposition 96.66% 93.42% 83.58% 

/ Substitution 

Table 3.1: Results obtained from the Basic Model 

F40 DO 130 K = 1, M 

F41 CT = X(K,I I ) - X(K, IM) 

F42 X(K,I I ) = X(K,I I ) + X(K, IM) 

F43 X(K, IM) = CT * CX 

F44 130CONTINUE 

F52 DO 140 K=1，M 

F53 CT=X(K, I ) 

F54 X(K’ I )=X(K’ I I ) " 

F55 X(K, I I )=CT 

F56 I4OCONTINUE 

Figure 3.5: Main Source Program Statements From Kernel 14 - CFFT2D2.F From 

NASA 7 Kernels 
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contain the instructions from F41 to F43 and from F53 to F55 in Figure3.5, accounting 

for 99.3% in the total number of instructions. As the compiler cannot make sure if CT 

is aliased with X(K,IM) or X(K,II), after the value of CT is changed in F41, the value of 

CT is stored into memory and the data of X(K,II) and X(K,IM) are loaded again before 

they are used as operands in F42. Since the Basic model of EReg can solve the ambiguous 

data aliasing problem implicitly, the value of CT and the values of X(K,IM) and X(K,IM) 

do not be required to be stored and loaded again respectively if the Basic model of EReg 

is used to replace the traditional registers. The locations for the data CT and CX are 

invariant in the loop of F41-F43. If they are aliased with X(K,IM) and X(K,II), the 

values of CT and CX will be changed. Hence, the data of CT and CX are loaded before 

they are used as operands in F43. After the Basic model of EReg is used to eliminate 

all the operations due to aliasing problem in the loop of F41-F43, the total number of 

instructions is decreased to 52.9% only. After considering the loop of F53-F55, the LOAD 
I' 

operation on the data CT can also be eliminated by solving the aliasing problem between 

it and X(K,II). The total number of instructions of the kernel finally remained is only 

51.4%. 

In kernels 1,2, and 12, the Basic model of EReg cannot reduce the instructions by 

consider only one iteration only, but it reduces them after considering the previous or 

the next iterations. For example, in kernel 2 of Figure 3.6, x[k+l] refer to the same data 

as that referred by x[k-l] in next iteration. Hence, after solving the aliasing problem by 

EReg, the data of x[k-l] in next iteration does not has to be loaded so that the number 

of LOAD instructions can be reduced. 

for (k=ipnt+l;k<ipntp;k=k+2) { 

i++; ‘ 

x[i]=x[k]- v[k/* x[k-1 ]- v[k+l]^x[k+l ]; 

} 

Figure 3.6: Main Source Program Statements From Kernel 2 •— ICCG exerpt From 

Livermore Loop Benchmark Kernels 
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It seems surprised that nearly all the write instructions are eliminated in kernel 6 of 

Figure 3.7. The reason is that if w[i] is aliased with b[k][i], error may result if the value of 

w[i] is not stored immediately after each w[i]+=b[k][i]*w[(i-k)-l] performed. However, it 

will be possible to move the STORE instruction of w[i] outside loop2 if the EReg is used. 

for (i=l;i<n;i++) 

for (k=0;k<i;k++) ~ 

w[i]+=b[k][i]^ w[(i-k)-l ]; 

Figure 3.7: Main Source Program Statements From Kernel 6 — GENERAL LINEAR 

From Livermore Loop Benchmark Kernels 

temp = x[k-l]; 

for (j=4;j<n;j=j+5) { 

temp -=、[lw]^y[j]; 

lw++; 

} 
x[k- l]=y[47* temp; 

Figure 3.8: Main Source Program Statements From Kernel 4 — BANDED LINEAR 

EQUATIONS From Livermore Loop Benchmark Kernels 

The kernel 4 of Figure 3.8 is a very good example to illustrate the fact that the 

operation of Basic model of EReg sometime may increase the number of instructions on 

the contrary. There is a variable TEMP can be directly loaded from x[k-l]. If the EReg 

is used, the EReg representing TEMP will have same address value as that of the EReg 

representing x[k-l]. When the value of TEMP is changed later, the change of the value 

of the EReg representing x[k-l] will cause an wrong result. One instruction is added to 

remedy this situation by loading the value of x[k-l] into another EReg, say ERI, and 

then, the content of ERI is moved into the variable TEMP. 

From the table 3.1, there are two results in kernel 7 of Figure 3.9. The reason is 

that there are two code scheduling algorithms in this kernel. The first algorithm (ie.Ta.) 
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for (k=0;k<n;k++) { 

x[k]= u [k](z[k]+作 y [k]) + 

t* (u[k+3]+i、(u[k+2]+r^u[k+l]) + 

力 * (u[k+6]+r^ (u[k+5]+r¥u[k+4]))); 

} 

Figure 3.9: Main Source Program Statements From Kernel 7 — EQUATION OF STATE 

FRAGMENT From Livermore Loop Benchmark Kernels 

rearrange the execution order of LOAD instructions such that the operations of 12 LOAD 

instructions in the innermost loop are changed from memofy-EReg to EReg-EReg due to 

the data coherence mechanism of EReg. These instructions are the loading instructions 

for the array elements of u[k], u[k+l], u[k+2], u[k+3], u[k+4] and u[k+5]. If the second 

algorithm ( i.e. 7b ) is employed, 6 LOAD instructions can be eliminated. 2 LOAD 

operations will change from memory-EReg to EReg-EReg due to data coherence property 

of Basic model. Since it is difficult to justify which algorithm is better, both the result 

are shown in the table 3.1. 

for ( kx=l ; kx<3 ； kx++ ){ 

for ( ky=l ； ky<n ； ky++ ) { 

dul[ky] = ul[nll][ky+l][kx] - ul[nll][ky-l][kx]; 

du2[ky] = u2[nll][ky+l][kx] - u2[nll][ky-l][kx]; 

du3[ky] = u3[nll][ky+l][kx] - u3[nll][ky-l][kx]; 

ul[nl2][ky][kx]= 

u 1 [nl 1] [ky] [kx]+al 1 *du 1 [ky]+al 2*du2[ky]+al3*du3[ky] + sig* 

(ul[nll][ky][kx+l]-2.0^ul[nll][ky][kx]+ul[nll][ky][kx-l]); 

u2[nl2][ky][kx]= 

u2[nll][ky][kx]+a21»dul[ky]+a22>Kdu2[ky]+a23*du3[ky] + sig* 

(u2[nll][ky][kx+l]-2.0*u2[nll][ky][kx]+u2[nll][ky][kx-l]); 

u3[nl2][ky][kx]= 

u3[nl 1] [ky] [kx]+a31 *du 1 [ky]+a32*du2[ky]+a33*du3[ky] + sig* 

(u3[nll][ky][kx+l]-2.0*u3[nll][ky][kx]+u3[nll][ky][kx-l]); 

} 
} . 

Figure 3.10: Main Source Statements of Kernel 8 : ADI INTEGRATION From Liver-

more Loop Benchmark Kernels 

« f 

The reduction of the instruction in the kernel 8 of Figure 3.10 can be achieved by 

the standard procedure of the basic model of EReg. The standard procedure of the basic 
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DO 6 I = 0, NRHS 
DO 7 K = 0’ N 
DO 8 L = 0’ NMAT 

8 B(I’L’K) = B(I,L,K) • A(L,0,K) 
DO 7 J J = 1’ MIN (M, N-K) 

DO 7 L = 0, NMAT 
7 B(I,L,K + JJ ) = B(I,L,K + JJ ) - A(L,-J J,K +J J) •B(I ,L,K) 
C 

DO 6 K = N, 0’ -1 
DO 9 L = 0, NMAT 

9 B(I,L,K) = B(I,L’K) . A(L,0,K) 
DO 6 J J = 1, MIN (M, K) 

DO 6 L = 0, NMAT 
6 B(I’L,K-JJ) = B(I,L,K-JJ) - A(L,-JJ,K) • B(I’L’K) 
C 

RETURN ~ 
END 

Figure 3.11: Main Source Statements of Kernel 15 : CHOLSKY.F From NASA? Bench-

mark Kernels 

model of EReg sometimes may yield different number of instructions with traditional 

registers for the same operation. For example, memory is frequently used as an extension 

of EReg file in using traditional registers. If the value of index register for loop controling 

is used and its value is changed • during the looping, it must be stored and loaded in 

performing the operation of loop controling. If EReg is used, such STORE and LOAD 

operations are eliminated. Hence, although the kernel 15 of Figure 3.11 does not have 

data aliasing problem, the number of instructions decreases after applying the standard 

procedure of changing the traditional register by the Basic model of EReg. 

3.6 Temporary Storage Problem in Basic Model 

3.6.1 Introduction 

The main purpose of the structure is tried to eliminate the ambiguous aliasing problem. 

It has an address field which can be used to identify if two names are aliased with each 

other or not. However, there are some difficulties encountered. The reason is that at the 

present moment, memory spaces are frequently used as an extension of the register file 

such as the case in the MXM program from NAS Kernel Benchmark which is compiled 

by the command “ f77 -04 -S -Sun4 filename ” . From the assembly code, we found that 

Id [%fp-132], %13 ... Line 63 
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and Id [%fp-132], %15 ... Line 91 

where 13 represents the index J+1 while 15 represent K in the program. If the tradi-

tional registers are changed by ERegs, the value of 13 and 15 will be bound to be the same 

due to the coherence property of ERegs. Since every EReg has an address field which 

contains the memory address of the entity represented by this EReg, if an EReg is used as 

a storage similar to the temporary register. Then, the compiler is required to find some 

special reserved memory addresses for this EReg to use. 

Basically, there are two approaches in the variations of BASIC model to handle the 

temporary storage problem. The first approach is to allow traditional registers coexisting 

with ERegs so that the traditional registers can be used to act as temporary storage. 

The second approach is to adapt some compiling techniques to overcome the temporary 

storage problem. Several solutions are listed out as follows. 

If the first approach is used, tliere are two solutions : 

1. One more bit called Temporary bit ( or T-bit ) is added such that when this bit is 

set, all the special property including coherence property are void. From the view 

point of hardware support, it is simply to disconnect those ERegs, whose T-bit is on, 

from the circuit of coherence electrically. Whenever a temporary storage is required, 

one of the ERegs is selected and its t-bit is set to ON. 

2. The register file contains two kinds of registers — traditional registers and ERegs. 

For example, R1 - R16 are traditional registers while R17 - R32 are ERegs. The 

feature of ERegs will be able to handle the problem of aliasing. On the other hand, 

the traditional registers can handle the above temporary storage problem. 

If the second approach is used, the technique to handle the problem of 

Id [%fp-lS2], %13 ... Line 63 

and Id [%fp-lS2], %15 、 ... Line 91 

is to use one EReg more. Then, the instructions will change to 
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Id [%fp-132], %ll 

(setting temporary ) %13 

(setting temporary ) %15 

mov %11,%13 

mov %11’％15 

There are three solutions in this approach to set the temporary addresses to the ERegs 

%13 and %15. 

1. One is to use LOAD instructions to perform LOAD operation on these ERegs from 

some pre-defined temporary memory address so as to load the temporary addresses 

into the address field of these ERegs . 

2. Another is to use a new instruction, say UPDATE, which can set the content in the 

address field so that the compiler assign a temporary address to these ERegs. 

3. The last one is that there is a instruction TEMP which is specially created to assign 

a temporary memory address to these ERegs automatically. 

3.6.2 Discussion on the Solutions 

1. T-bit 

By adding a T-bit to each EReg in Basic model, we can solve the Temporary EReg 

problem easily. The mechanism of this new structure can be described as follows. 

The function of T-bit is to indicate whether the EReg is used to act as a Temporary 

EReg or Data EReg. However, the T-bit must be set before the EReg is used. 

For example, T-bit = 0 represents EReg being used as a temporary EReg while 

T-bit = 1 represents EReg being used as a normal EReg. When T-bit of an EReg 

is set to 0, the coherence ability of the EReg will be eliminated such that the EReg 

act like a traditional register. Hence, the Temporary "storage can be handled easily. 
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The advantage of this method is that it provide a simple means to handle the 

problem of temporary storage, but it has an overhead of increasing the size of each 

EReg by 1 bit. Since the t-bit of each EReg are preset such that temporary register 

with t-bit = 1 hold temporary values only and datan EReg with t-bit = 0 used to 

hold data operand only. Normally, the process to set this t-bit occur infrequently. 

If the address field of the EReg cannot be accessed and operated by arithmetic and 

logic instructions. The address fields will be wasted if t-bit indicate the EReg to be 

temporary. 

However, if the address field of the EReg can be accessed and operated by arithmetic 

and logical instructions, then, each EReg may be organized as a set of two traditional 

registers with a T-bit in which one is used as the address field and the other is used 

as the data field. The simple way to group the traditional registers into sets is by 

the use of the register names. If the name for the two registers are the same except 

the last bit, they belong to the same set. The one with last bit equal to 1 is used to 

store the data while the other with last bit equal to 0 is used to store the address. 

The T-bits of the ERegs are group together to form an special register called TR. 

The value of this special register can be modified just as an ordinary register. The 

structure can be organized as shown in Figure 3.12. 

When the LOAD operation is performed, the data will be loaded into the specific 

register which would be represented as the data field and if the t-bit of this set 

is OFF, the address of the data is loaded into the other register within the set 

which represents the address field. If the t-bit of this set is ON, each EReg will be 

discomposed into two traditional registers. 

The process to access a register is as follows. When a program access the register 

with register name Ri, the machine will check the i/2th bit of TR. If the bit is OFF, 

then the registers R̂  and Ri+i act as an EReg. That's means the last bit of EReg 

name is zero and so only even EReg names are valid. If the bit is ON, then the 

value of register Rj is accessed. 
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Register file 

RO R1 

R2 R3 

R4 R5 

R6 R7 

RIO Rii “ 

R12 R13 

R14 R15 

R16 R17 

T R - ^ T T T T T T T T 

Figure 3.12: Second basic variated structure 

If t-bit is OFF, the double word LOAD operation can be operated as follows. Sup-

posing that the destination is ER!.. Then, the data of the lower order word would be 

loaded into the data register Rj.+i while the address of the lower order word would 

be loaded into the address register Ri. In the meantime, the data of the higher 

order word and the address of the higher order word would be loaded into the data 

register Ri+3 and the address register Ri+2 respectively. The operation of quadword 

LOAD operation is similar. 

If t-bit is ON, the single word LOAD operation just operated on the specific register 

only. But if the LOAD operation is a double word LOAD operation , the lower-

order word is loaded into the specific register and the higher order word is loaded 

into the register which is just follow the specific register. It is the responsibility 

of programmer or compiler to ensure that they have selected the right registers to 

store their data. It is error to store data acrossing both Temporary and Data EReg. 

2. Traditional registers coexists with ERegs. 

The method of register allocation will be same as the traditional method except 

the case that if some variables are ambiguously aliased with each other, they will 
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be assigned to ERegs. The arrangement of traditional register and ERegs can be 

described as follows. R1 - R16 are traditional registers while R17 - R32 are ERegs. 

When the load operation occur on, the data will be loaded into the specific register 

or the data field of ERegs. If the destination is EReg, the address of the data will 

also be loaded into the address field of ERegs. This design may be effective since 

the associativity mechanism of ERegs may be expensive to be implemented.. Less 

EReg to be implemented means less money to be used. 

3. Use LOAD instruction to assign a temporary address to ERegs 

Some space in cache/memory system are reserved for temporary register. Whenever 

an EReg is required to store temporary data, its address field must be loaded by 

a pre-defined temporary address using a load instruction. Since temporary data 

does not require any STORE operations, the value of these temporary addresses 

can be invalid. The advantalge of using this method is that it is simplest method 

to implement. At the present moment, when the number of traditional registers 

is not enough, memory is often used as an extension of the register file. However, 

this method cannot handle this issue well because it requires one more EReg to act 

as the immediate storage so that the content of address field of the EReg used for 

temporary storage does not changed. Since every LOAD instruction would require 

a LOAD operation plus an associative update among the EReg file, this method is 

not efficient. 

4. Use a new instruction, say UPDATE, to assign a temporary address to ERegs 

Whenever an EReg is required to store temporary data, a pre-defined temporary 

address is loaded into its address field by using an UPDATE instruction, "UPDATE 

ERi DST_ADDRESS". If this UPDATE instruction is reserved for assigning tem-

porary address, then no associative compare and update is required to keep data 

coherence in EReg file because the temporary address for each EReg used to hold 
» 

temporary data is unique. As previous method, the temporary data does not re-

quire any STORE operations such that the value of these temporary addresses can 
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be invalid. The assignment of the temporary address in this method being handled 

by the compiler. The operation of this method is faster the operation of LOAD 

instruction, but it introduced one more instruction into instruction set. 

5. Use a instruction ” TEMP ERn “ assign a temporary memory address to the register 

implicitly. 

Whenever an EReg is required to store temporary data, its address field must be 

loaded by a pre-defined temporary address using this TEMP instruction. As previ-

ous method, the temporary data does not require any STORE operations such that 

the value of these temporary addresses can be invalid； 

The advantage of this method is that it reduce the trouble for the user in setting 

the value of temporary address. In fact, the EReg name can be used as part of 

temporary address value of that EReg by using the EReg name to add with a 
I' 

certain memory address base, and then this address can be used as the address 

value of this EReg. It is a simple method to create an unique memory address for 

each EReg and implement this TEMP instruction. This method over the method 

4 is that it does not require the compiler or assembly programmer to assign and to 

maintain the bookkeeping of temporary address so that the chance to produce error 

is reduced. 

3.7 Introduction of ADM Model 

Each EReg can be used to hold temporary value or data value. The data value referred to 

the data loaded from the memory for execution while temporary value refer to the value 

of indexing or intermediate result of the arithmetic and logical operation. If an EReg hold 

data value, and this data value is changed, such changed value are bound to be stored 

back to main memory later by using STORE instructions explicitly. Then, if there exists 

another bit called M-bit to indicate if each EReg has been modified or not, we can adapt 

a implicit storing method. The basic idea of implicit storing method is that if the M-bit 

* 
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of ERegs are ON ( i.e. one ), the datum value of these ERegs will be stored automatically 

once it is replaced by another datum ( just like the operation of write back policy ). 

The ADM model is the basic model with a M-bit. It aims at reducing both the number 

of STORE instructions and operations. Normally, no STORE instruction is required, all 

the data references will first be forwarded to EReg file to see if the data exist in it. If there 

are several aliased ERegs to be replaced, in fact, only the value of one of them storing 

back to the memory has been sufficient since they have the same address and data values. 

Hence, only one of the M-bit of these aliased ERegs (i.e. they have same address value ) 

is required to maintain the state of "ON". 

When an EReg is replaced and its M-bit is OFF, there are two implications. Firstly, 

the value of the EReg hasn't been modified. Secondly, although the value of the EReg 

may has been modified, there are other aliased ERegs. In both these cases, no implicit 

storing operation is required when replacing this EReg. However, if its M-bit is ON, it 

means that the current data of the EReg has been modified such that the corresponding 

memory element should be updated before the new data is forwarded to the EReg if it 

doesn't have other aliased ERegs. If it has other aliased ERegs in the EReg file, we can 

delay the implicit storing operation by changing the M-bit of one of those ERegs to ON 

instead of updating the memory content before the new data is forward to the EReg. 

In conclusion, all STORE instructions can be eliminated and implicit storing operation 

is only required to perform when the M-bit of the EReg is ON and it doesn't have any 

aliased ERegs. 

However, even if the implicit storing is supported, the explicit STORE instruction and 

operation may still be required. This can be explained in the following way. Supposing 

that there is a variable and the EReg copy of this variable has been modified. When 

some other devices (e.g. other processors) access the memory location of this variable, an 

explicit STORE operation must be performed such that an updated data content can be 

provided to these devices. This is the reason that we must support the STORE instruction 

in our ADM model. . •• 

The ADM model is a superset of Basic model such that ADM model can reduce the 
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LOAD/STORE instructions and operations in the case of data aliasing. The next section 

is concerned about the architectural and operational details of ADM model. 

3.8 Architectural and Operational Detail of ADM 

Model 

The memory structure of the ADM model is shown in Figure 3.13. It has two fields/bit 

-address field, data field and M-bit. The instructions to change the data content of 

EReg can be classified into three types of operations. They are LOAD operation, STORE 

operation^ arithmetic and logical operations. The operational details are discussed on 

these three types of operations. 

Name : Address Datum M 
1 

Figure 3.13: Memory structure of ADM model 

Operational Details 

Case 1 : LOAD Instruction : 

When a LOAD instruction for loading the content of the memory address 

ADDRESS一A into an EReg, e.g. ERi, is executed: 

e.g. LOAD ADDRESS-A, ERi 

Preprocessing 

Before loading, if the M-bit of ERi is ON, an comparison in a fully associative way is 

made to see if there is any matches between the address value of ERi and the content of 

the address field of all ERegs in the EReg file. 

1. If any matches are found, the M-bit of one of these matched ERegs is set to ON. 

2. If no match is found, the datum value of the ERi is stored back to the memory by 

using the address value of ERi as the memory address. 
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Loading 

• M-bit of ERi is set to OFF 

• The content of the address field of ERi is set to the address value ADDRESS-A. 

• The address value ADDRESS-A is checked against the content of the address field 

of all ERegs in the EReg file simultaneously. 

- I f a match is found between the address value ADDRESS-A and the content of 

the address field of some ERegs, the content of the datum field of these ERegs are 

copied into the datum field of ERi. ‘ 

- I f no match is found in the EReg file, the memory content with the address 

ADDRESS-A is copied from memory into the datum field of ERi. 

Case 2 : STORE Instruction : • 

When a STORE instruction storing data of an EReg, e.g. ERi, to the 

memory address "New_address" is executed : 

STORE ERi, "New.address" 

• The address "New_Address" is checked against the content of address field of all 

ERegs in the EReg file, 

-If a match is found between the address ” New—Address” and the content of address 

field of some ERegs, both the memory content with address "New.Address" and the 

content in the datum field of these ERegs are updated by the content of the address 

field of ERi. The M bit of these ERegs are set to OFF. 

- I f no match is found in the EReg file, only the content with memory address 

"New_Address" is updated. 

• the M-bit of ERi is set to OFF. 
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Case 3 : Arithmetic and Logical Operation : 

When an arithmetic or logical operation with destination EReg’e.g ERi, 

is executed : 

• The content of the datum field of the ERi is updated as usual. 

• The M-bit of the EReg will be set to ON ‘ 

• The content of the address field of the ERi is read and compared associatively with 

the content of the address field of all other ERegs. If they match, the content of the 

datum field of these ERegs are updated by that of ERi and their M-bit are set to 

OFF. 

3.9 Discussion . 

3.9.1 File Partition 

As previous model, if the fully associative logic is too expensive, the EReg file can be 

divided into sets,e.g. four ERegs per set. All the ambiguous aliased objects must be 

assigned to same set. If all the ERegs have been filled up, when there is a LOAD operation, 

an EReg is chosen to be replaced in order to accommodate the new data. The operation 

is just as same as the normal LOAD operation discussed previously. The first step is to 

check if the M bit of this EReg is ON or OFF. If new data has aliased variables in ERegs 

within the set, LOAD operations are not required; while If the replaced EReg has aliased 

ERegs within the set, th implicit STORE operation is not required. 

3.9.2 STORE Instruction 

The reason of including STORE instruction in ADM model is that when there are some 

devices to read the memory content, an explicit ^TO/^E operation must exist to deal with 

this situation. However, there is another approach that the EReg file can be included in 
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the memory hierarchy such that other devices can get the correct value from the EReg 

file when they read the memory hierarchy. 

If any memory accesses will first search the EReg file to see whether the required 

data has been inside the EReg file, all STORE instructions can be completely reduced. 

This can be explained as follows. If the value of the destination address of the STORE 

instruction has been loaded into EReg file, the STORE instruction can be eliminated. 

3.10 Example for ADM Model 

From the simulation result of basic model, the fifth kernel - Tri-diagonal elimination, 

below diagonal does not obtain any improvement from the operation of basic model. 

However, if the ADM model is used, the implicit storing feature can improve the perfor-

mance by reducing the total number of instructions 34.3%. The main "C" statements 
• ‘ . . . 

and its corresponding pseudo assembly code of the fifth kernel is shown in Figure 3.14. 

Since every result x[i] must be stored explicitly and each x[i-l] is loaded only once, there 

is no improvement after using basic model. However, if the implicit storing is supported, 

all the STORE instructions can be reduced as shown in Figure 3.15. After rearrange the 

coding, the line 6, line 12 and line 18 is removed while the line 3 is moved out of the loop 

and line 24 is changed from STORE to LOAD instructions. One tricky technique in the 

program segment of Figure 3.15 is that the EReg used to store the value of x[i+3] in line 

24 is the same as that used in line 3. Hence, the content in ERI can further be used in 

line 5 during the next iteration. 

3.11 Simulation Results -

As previous model, there are totally 15 kernels used in the simulating the effect of the 

ADM model of EReg. The source code of these 15 kernels are placed in Appendix A. 

The first 12 are Livermore Loop "C" language kernels. All kernels, will be compiled by 

cc compiler into assembly programs in SPARC machine environment with the command 
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Main “C” statements : 

for (i=l;i<n;i++) 

x[i]=z[i]^( y[i]-x[i-l]) 

Pseudo Assembly Version : 

0. STEPl 

1. LOAD y[i] 

2. LOAD z[i] . 

3. LOAD x[i-l] 

Compute (y[i] - x[i-l]) 

5. Compute z[i]*(y[i]-x[i-1 ]) 

6 STORE x[i] 

7. LOAD x[i] 

8. LOAD ,,y[i+l] 

9. Compute (y[i+l] - x[i]) 

10. LOAD z[i+l] 

11. Compute z[i+l]*(y[i+l]-x[i]) 

12 STORE x[i+l] 

13. LOAD x[i+l] 

14. LOAD y[i+2] 

15. Compute (y[i+2] - x[i+l]) 

16. LOAD z[i+2] 

17. Compute z[i+2]*(y[i+2]-x[i+l]) 

18. STORE x[i+2] 

19. LOAD X [i+2] 

20. LOAD y [i+3] 

21. Compute (y[i+3] - x[i+2]) 

22. LOAD z[i+3] 

23. Compute z[i+3]^(y[i+3]-x[i+2]) 

24. STORE x[i+3] — 

25. Increment the value of i by 4-

26. goto STEPl 

Figure 3.14: Example : Tri-Diagonal Elimination, Below Diagonal from Livermore Ker-
nels . 
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3. LOAD x[i-l], ERI 

0. STEPl 

1. LOAD y[i] 

2. LOAD z[i] -

7. LOAD x[i] 

4. Compute ( y[i] - x[i-l]) 

5. Compute z[i]^(y[i]-x[i-l]) 

and use ERI to be destination of the computation. 

6. .... (remove) • 

8. LOAD y[i+l] 

13 LOAD x[i+l], ER2 

9. Compute ( y[i+l] - x[i]) 

10. LOAD z[i+l] 

11. Compute z[i+l]^(y[i+l]-x[i]) 

and use ER2 to be destination of the computation. 

12. .... (remove ) 

14. LOAD y[i+2] 

19. LOAD x[i+2],ER3 

15. Compute (y[i+2] - x[i+l]) 

16. LOAD z[i+2] 

17. Compute z[i+2]*(y[i+2]-x[i+l]) 

and use ER2 to be destination of the computation. 

18. .... (remove ) 

20. LOAD y[i+3] 

24. LOAD x[i+3], ERI 

21. Compute (y[i+3] - x[i+2]) 

22. LOAD z[i+3] 

23. Compute z[i+3]* (y[i+3]-x[i+2]) 

and use ERI to be destination of the computation 

25. Increment the value of i by 4. 

26. goto STEPl ' 

Figure 3.15: Example : Modification of Tri-Diagonal Elimination, Below Diagonal from 

Livermore Kernels by ADM model 

» 
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Percentage of Percentage of Percentage of 

LOAD STORE 

instr. remained instr remained instr remained 

TH^dro fragment 一 87.6% 66.8% — 100% 

XTCCG excerpt 一 77.8% 80.3% 100% 

"Xli^ner product 100% 100% 100% 

X^anded linear equations — 99.4% 100% “ 0 — 

~5. Tri-diagonal elimination 6^7% 100.07% 0 

,below diagonal 

"6. General linear T K ^ 66.7% ^ 

recurrence equations 

~7. Equation of state 85.7% 66.8% lM% 

fragment 

TTADI integration 76% 63.7% _ 50.2% 

XT^tegrate predictors 100% 100% 100% 

ToTPifFerence predictors 100% 100% 100% 

jr~First Sum 77.9% 100.2% 0.1% 

l O i r s t Difference — 75.9% 50.05% — 100% 

TTMxm.f .93.5% 100% — 0.02% 

J4rCff2tdl.f ‘ 38.5% 25% “ 0 ~ 

—15. Cholesky Decomposition 88.16% 93.42% 0.07% 

J substitution 

Table 3.2: Results obtained from the ADM Model 

“cc -04 -S filename ”. The last three kernels are the NASA 7 "FORTRAN" language 

Kernels. The command to generate their assembly codes is “ f77 -04 -S filename ". All 

the traditional registers in assembly programs are replaced by the ADM model of EReg 

to see if there are any improvement. The result contains three data : 

1. Total number of instructions issued 

2. Number of LOAD instructions issued 

3. Number of STORE instructions issued. 

The result is presented in table 3.2. The extra feature in ADM model aims at reducing 

the number of STORE instructions by introducing implicit storing. There are some 

situations that the implicit storing cannot or should not replace the explicit STORE 

instructions. For example, 



,£hapter 3 BASIC and ADM Models 44 

“St %f30,[%o2]" 

if there are some devices waiting to access the memory content of the address [%o2], this 

explicit STORE instruction cannot be changed to implicit storing. Or if the memory 

content with address [%o2] hasn't been loaded into ERege file before, the only way is 

to load the data of [%o2] first, say “ Id [%o2],%f20 ”，and then change the instruction 

of “St %f30,[%o2l to “ mov %f30,%f20 ”. Since the value of %f20 is modified by the 

mov instruction, the value of %f20 will be written back to memory later. However, it 

may involve too much overhead so that it may not be beneficial to change the explicit 

STORE instruction to implicit storing. If there is an instruction to change the value in 

the address field of EReg, we may use it to change the content of address field of %f30 

instead of executing an explicit STORE instruction "st %f30,[%o2]”. 

In fact, even if the content of destination address has been loaded, it may still not 

beneficial to change the explicit STORE instruction to implicit storing. Let's consider 

the following two cases shown in figures 3.16 and 3.17 

Id [%i5], %f6 

Id [%i5+2], %f7 

fmuld %f6, %f8, %flO 

St %flO, [%i5] 

St %flO, [%i5+2] 
Figure 3.16: Case a in reducing STORE instruction 

For the case (a), it may be beneficial to change the explicit STORE instruction to 

implicit storing instruction as shown in figure 3.18. 

For the case (b), we found that a mov instruction with an implicit STORE is needed 

to replace an explicit STORE instruction. Thus, it may be still not beneficial to change 

the explicit STORE operation to implicit STORE operation as shown in figure 3.19. 
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1 

fmuld %f6, %f8，%flO 

Id [%i5], %f6 

Id [%i5+2], %f7 

St %flO, [%i5] 

St %flO, [%i5+2] 

Figure 3.17: Case b in reducing STORE instruction 

Id [%i5], %f6 

Id [%l5*r2], %f7 

fmuld %f6, %f8, %6 

Figure 3.18: Result of reducing STORE instructions in case a 

fmuld %f6, %f8, %flO 

Id [%i5], %f6 

Id [%i5+2], %f7 

,• • — 

mov %flO, %f6 

mov %flO, %f7 

Figure 3.19: Result of reducing STORE instructions in case b 
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The result of ADM model in Figure 3.2 is discussed as follows. In kernels 1,2,7,9 

and 12, the destinations of the STORE instructions haven't been loaded into the EReg 

file before the execution of STORE instructions. Hence, it isn't beneficial to implement 

implicit storing such that no improvement is obtained. In kernel 3, no STORE instruction 

cause no improvement. In kernel 10, since it may not beneficial to change the STORE 

instructions by mov instructions followed by implicit storings ( case b ) and hence no 

improvement in reducing the number of STORE instructions. In kernels 4,13,14 and 15, 

since the destinations have been loaded before, STORE instruction can be reduced ( case 

a ). In kernels 5 and 11, the destinations can be loaded before the STORE instructions 

by using the technique of unrolling. The STORE instructions then can be reduced ( case 

a ). In kernel 6, the destination is invariant of the loop if the EReg is used. Thus, the 

STORE instructions have been reduced by the coherence property of EReg. In kernel 

8, some destinations can be loaded before the STORE instructions,(dul[ky],du2[ky] and 

du3[ky]). As before, the STORE instructions for dul[ky],du2[ky] and du3[ky] then can 

be reduced ( case a ). 

3.12 Temporary storage Problem of ADM Model 

3.12.1 Introduction 

As described in previous model, it is very important for the idea of TEMPORARY EReg 

which is used to store the data that any temporary EReg should not be used to store 

data operand, since once the value of this temporary EReg is changed, it means that the 

memory content represented by this temporary EReg is changed. In order to cope with 

this problem of temporary EReg, the solutions discussed in the section 3.6 of page 29 can 

be used in ADM model. However, some modifications should be made. 

3.12.2 Discussion on the Solutions 
• •. 

1. T-bit 
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Implicit Storing is disabled when the T-bit is ON. As similar to the organization in 

Basic model, if the each EReg may be organized as a set of two traditional registers 

with two bits - T-bit and M-bit. One traditional register is used as the address field 

and another traditional register is used as the data field. The simple way to group 

the traditional registers into set is by using the register names. If the name for the 

two registers are the same except the last bit, they belong to the same set. The one 

with last bit equal to 1 is used to store the data while the other with last bit equal 

to 0 is used to store the address. All the T-bits and M-bits are grouped together 

to form two special registers TR and MR respectively, the structure is shown in 

Figure 3.20. • 

Register file 

RO R1 

‘ R2 R3 

R4 R5 

R6 R7 

R8 R9 

RIO R l l 

R12 R13 

R14 R15 

T R - ^ T T T T T T T T 

MR ) M M M M M M M M 

Figure 3.20: ADM second variant 

2. Traditional registers coexists with ERegs : 

The operational details of this solution is the same as that in Basic model. The 

only difference is that the EReg here is ADM model while the EReg there is Basic 

model. 

». 

3. Use LOAD instruction to assign temporary addresses to ERegs 
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When the content of the EReg is changed, the M-bit of the EReg become ON. 

Then, the data value of the EReg will be stored back to the memory implicitly if 

the temporary variable represented by the EReg is replaced by another temporary 

variable. Hence, the temporary address assigned by LOAD instruction must be 

valid. Some spaces in cache/memory system are reserved for temporary storage. 

However, other aspects concerning this solution are just the same as that in Basic 

model. 

4. Use a new instruction, say UPDATE, to assign temporary addresses to ERegs. 

This new UPDATE instruction is reserved for assigning temporary address. The 

temporary address is unique for each EReg. Moreover, the temporary addresses 

need not be valid. Then, no associative comparison and update is required. Hence, 

this solution is much better than the previous method 4 in ADM model. This 

solution does not cause implioit STORE operation. In other words, the M-bit of the 

EReg has no effect in this solution. This solution here is the same as that in Basic 

model. 

5. Use a instruction，，TEMP ERn ,，to assign a temporary memory address to the 

register implicitly. 

This solution is the same as that in Basic model. Whenever an EReg is required 

to store temporary data, its address field must be loaded by a pre-defined and 

__ unique temporary address using this TEMP instruction. As previous method, the 

temporary data does not cause any ^TOi^E" operations such that the value of these 

temporary addresses can be invalid. In other words, the solution here is also the 

same as that in Basic model. " 

The advantage of this method is that it can reduce the trouble of the user to set 

the value of temporary address. This method over the method 5 is that it does 

not require the compiler or the assembly programmer to assign and to maintain the 
• » 

bookkeeping of temporary address so that the chance to produce error is reduced. 



Chapter 4 

ADS Model and ADSM Model 

4.1 Introduction of ADS Model 

A cache memory is a well known mechanism used to reduce the average memory access 

latency. The main objective of data prefetching is to decrease the cache miss ratio so as to 

improve the overall performance. Usually, prefetch instruction is employed in conventional 

methods to identify the piece of data which may be used in the near future. According to 

this identification, the data is prefetched in advance before it is used. Hence, the cache 

is expected to hold not only the current working set, but also the future working set 

simultaneously. 

In this chapter, we introduce a new hardware-based with software support prefetching 

method incorporated into the EReg. It requires a new instruction to indicate how and 

where to prefetch the data, but not those prefetched instructions in traditional methods. 

This new instruction is called SET_S which is used to set the value of the stride field 

of EReg. Chen[Che93] classified the data access patterns into four types - scalar, zero 

stride, constant stride and irregular. Since the coherence property of EReg eliminate the 

ambiguous data aliasing problem, the number of LOAD operations of scalar stride can 

be reduced. Our prefetching scheme is designed to generate an effective implicit data 

prefetching operation on the constant stride data access patterns. 

The ADS model is an extended version of Basic model. The .ADS model require 

one more field to store the stride value of the constant stride data access pattern. To 

49 
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illustrate the concept, we consider the following MXM - matrix multiplication in NASA 

7 Benchmark Kernels in figure 4.1. 

DO 110 J=1，M，4 

DO 110 K=1’N 

DO 110 1=1,L 

C(I,K)=C(I,K)+A(I,J)*B(J,K) 

+A (I, J+ 1)*B(J+1,K) +A (I, J+2)* (J+2, K) ' 

+A(I,J+3)^B(J+3,K) 

110 CONTINUE 

Figure 4.1: NASA MXM.f Kernel — Matrix Multiplication Problem 

During the innermost loop, both the stride values of C(I’K) and A(I,J) are 4. If the 

block size is less than 4 bytes, reference to C(I,K) or A(I，J) causes data prefetching at 

every iteration ( assume byte addrê ssable machine is used ). Since there are no reference 

access to B(J,K), no prefetching on this data is required. 

4.2 Architectural and Operational Detail of ADS 

Model 

The memory structure of the ADS model is shown in Figure 4.2. Its structure is an 

extended version of Basic model. It has three fields - address field, data field and stride 

field. The instructions to change the data content of EReg can be classified into three 

types of operations. They are LOAD operation, STORE operation, arithmetic and logical 

operations. The operational details are discussed on these three types of operations. 

Name ： Address Datum Stride 

Figure 4.2: Memory structure of ADS model 

Operational Details 
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Case 1 : LOAD Instruction : 

When a LOAD instruction for loading the content of the memory address 

ADDRESS-A into an EReg, e.g. ERi, is executed: 

e.g. LOAD ADDRESS-A, ERi 

• The content of the address field of ERi is set to the address value ADDRESS-A. 

• The address value ADDRESS-A is checked against the content of the address field of 

all ERegs in the EReg file simultaneously. - If a match is found between the address 

value ADDRESS-A and the content of the address field of some ERegs, the content 

of the datum field of these ERegs are copied into the datum field of ERi. — If no 

match is found in the EReg file, the memory content with the address ADDRESS-A 

is copied from memory into t^e datum field of ERi. 

• If the content in STRIDE field is not zero, next data will be prefetched from main 

memory to cache using the prefetching address ( STRIDE value + current address 

ADDRESS-A ). The new created instruction : 

SET_S ERi,#no 

can set the stride value of ERi to #no. However, data prefetching is only executed if 

the intended data to be prefetched does not exist in the EReg file and Data Cache. 

Case 2 : STORE Instruction : . 

When a STORE instruction storing data of an EReg, e.g. ERi, to the 

memory address " New_address" is executed : 

STORE ERi, New_address 
« •. 
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• The address "New.Address" is checked against the content of address field of all 

ERegs in the EReg file, - If a match is found between the address "New.Address" 

and the content of address field of some ERegs, both the content with memory ad-

dress "New-Address" and the content in the datum field of these ERegs are updated 

by the content of the datum field of ERi. - If no match is found in the EReg file, 

only the memory content with address "New_Address" is updated. 

Case 3 : Arithmetic and Logical Operation : 

When an arithmetic or logical operation with destination EReg, e.g ERi, 

is executed : 

• The content of the datum field of the ERi is updated as usual. 

• The content of the address field of the ERi is read and compared associatively with 
I' 

the content of the address field of all other ERegs. If they match, the content of the 

datum field of these ERegs are updated by that of ERi 

4.3 Discussion 

4.3.1 Prefetching Priority 

Every ERegs have a STRIDE field which store the offset between the prefetching address 

and current address. After each LOAD operation, the loading address will be added with 

the stride value of the EReg to produce an prefetching address which is used as a hint 

to load the data from the lower hierarchy's memory to cache memory so as to reduce 

cache miss ratio. Since data of the prefetched address is not in the current working set, 

the demand loading is more critical than the prefetching operation and hence the priority 

of prefetching operation is lower than that of demand LOAD operation. Moreover, the 

prefetching is only performed when the prefetched data does not exist in the cache. 



•^^Sl^ter 4 ADS Model and ADSM Model 53 

4.3.2 Data Prefetching 

Basically, the data prefetching mechanism is effective only if the prefetching data are 

the array elements with constant stride. However, if there exist a method treating the 

content of the address field to be zero such that the prefetching address is equal to the 

value in the STRIDE value, many dynamic data can be prefetched. The method is that 

the compiler check the data dependency firstly and then try to identify the next access 

address before the current LOAD instruction. If it is possible, the STRIDE value can be 

set by this next access address such that the prefetching operation can be performed after 

the current LOAD instruction. However, such dynamic data prefetching is usually poor 

as it cost one prefetch instruction for each prefetching process. The performance of the 

current method is better in reducing the cache miss ratio since it will only introduce one 

more SET_S instruction until the current stride value is changed. The figure 4.3 illustrates 

the additional operation of ADS model compared with Basic Model. 

4.3.3 EReg File Splitting 

As the previous models, when it is too expensive to build an fully associative EReg file, it 

is possible to split it into a number of sets. Only those within the same set are maintained 

coherent. Each set may contain four ERegs. All the ambiguous aliasing objects will be 

placed into same set. The replacement strategy and implicit storing issues can be just 

the same as that in the Basic model. 

4»3.4 Compiling Procedure 

There are some steps for the compiler to follow in order to make^full use of the Data 

prefetching in ADS model : 

1. Study the stride value of each LOAD operation in the kernels. 

2. Mark stride value of all constant stride LOAD operation accesses, e.g array element 

access. 
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Data—A Data Stride 

• Adder 

Prefetch 

Figure 4.3: ADS Construction 

3. Assign an EReg to each marked Data operand. ” 

4. Use SET instructions to set the content of the stride field of these ERegs. 

5. Insert these SET instructions into the program code before those marked LOAD 

instructions. . 

The next section will give an example on how to perform data prefetching by making 

use of the above compiling steps. 

4.4 Example for ADS Model 

The kernel of hydro fragment from the the Benchmark of Livermore Loop in Figure 3.3 

of 23 is used to demonstrate the performance of ADS model. In the kernel of hydro 

fragment, z[k+10] k z[k+ll] will be loaded for each k since there may be an aliasing 

problem between x[k] and z[k+ll] or x[k] and z[k+12]. However, if ADS model of EReg 

is used, we can reschedule the coding as shown in Figure 4.4 -

Then, the total number of 4 loading instructions z[k+ll], z[k+10], z[k+12] and z[k+U 

m one looping will be decreased to only 2 loading instructions z[k+ll] and z[k+12] with 

ONE instruction outside the looping "for ( k=0;k<n;k++)，，. After the stride value is 

set in ERl, the prefetching operation is performed after each loading operation. Nearly 

all the data value can be prefetched before the operation of LOAD instruction. When 
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SETS ERI,8 ； This value 8 represent the stride value of the array 

SETS ER2,8 

3, LOAD z[k+10] 

0. STEPl 

4- Compute r¥z[k+10] 

1. LOAD z[k+ll] 

2. Compute t^z[k+ll] 

5. ..... -

6. Compute q + y[k]^(i^z[k+10]+t^z[+ll] ) and STORE into x[k]. 

9. ( remove ) 
10. Compute r^z[k+ll] 

7. LOAD z[k+12] ( use same EReg as z[k+10]) 
8. Compute t^z[k+12] -
11 

12. Compute q + y[k+l]+z[k+ll]+t*z[+12] ) and STORE into x[k+l]. 

13. Increment the value of k by 2. 

14. goto STEPl 

Figure 4.4: Example : Mo'dification of Hydro Fragment by ADS Model 

the data cache size is 8KByte, the block size is 16Byte and the data cache is a 2-way 

associative, the miss ratio after using this prefetching scheme is 0.95% while the miss 

ratio of no prefetching is 25.5%. 

4.5 Simulation Results 

There are totally 15 kernels used in the simulating the effect of the ADS model of EReg. 

The source code of these 15 kernels are placed in Appendix A. The first 12 are Livermore 

Loop "C" language kernels. All kernels will be compiled by cc compiler into assembly 

programs in SPARC machine environment with the command ” cc -04 -S filename，，. 

The last three kernels are the NASA 7 "FORTRAN" language Kernels. The command 

to generate their assembly codes is “ f77 -04 -S filename ". All the traditional registers 

in assembly programs are replaced by the ADS model of EReg to see if there are any 
• 

improvement. The result contains : ‘ ‘ 
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Percentage of Percentage of Percentage of 

LOAD STORE 

instr remained instr remained instr remained 

TlTydro fragment — 87.6% ~ 66.8% 100% 

ICCG excerpt (a) 78.8% (a) 80.3% (a) 100% 

(b) 77.9% (b) 80.3% (b) 100% 
J . Inner product 100.2% 100% 

].Banded linear equations 104.3% 100% 100% 

Tri-diagonal elimination 100.2% 100% f o ^ “ 

below diagonal 

~6. General linear 75.9% 66.7% 

^recurrence equations 

T Equation of state a) 100.04% a) 100% a) 100% 

Jragment b) 85.8% b) 66.8% b) 100% 

API integration 80% 一 63.7% 100% 

Xlntegrate predictors 100.048% 100% 100% 一 

Difference predictors 100.038% 100% 100% 

jTF i r s t Sum ~~100.18% “ 100% 100% 

J2 . First Difference — , 76% ~ 50.05% 100% 

[grMxm.f '100% 100% 100% 

l4rCfFt2dl.f 51.4% 25% 66.7% 

~15. Cholesky Decomposition 96.66% 93.42% 83.58% 

Substitution 

Table 4.1: Simulation Result for ADS Model 

1. Total number of instructions issued 

2. Number of LOAD instructions issued 

3. Number of STORE instructions issued 

4. Miss ratio with no prefetching 

5. Miss ratio with prefetching provided in this model 一 

The new SET instruction in ADS model is added outside the innermost loop of each 

kernels in the simulation. The effect of SET instruction on the number of instruction is 

Very little. Hence, the number of instructions using ADS model is similar to that using 

Basic model as shown in the Table 4.1 and the Table 3.1 in'Page 25: The reason for the 

reduction of instructions is the same for both the ADS model and Basic model. 
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The ADS model of EReg can prefetch data after the data is actually accessed. The 

method can be described as follows. All the kernels are compiled into assembly code. 

We study the stride value of each LOAD operation in the kernels. And then we insert 

the SET instruction to enable the function of implicit data prefetching. Normally, the 

assembly program codes are also required to be rewrited due to the different properties 

between ADS model and traditional register. ‘ 

The simulation results is carried out on SPARC machine. The Shade Analyzers which 

from Sun Microsystems,Inc is used to simulate a cache. Since data prefetching only give 

an improvement in reducing data miss, the instruction cache were not considered in out 

simulation. Some policies on the simulated data cache are shown as follows: 

• Least Recently Used adopt in Replacement Policy 

• Write Back and Write Allocate adopt in Write Policy 

• No Sub-block 

• Only one level cache 

Comparison of the number of Instructions between the kernels 

100000000 ^ 

10000000 

1000000 . . . 

100000 

I 
葛 10000 

IMllIll」 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Kerne ls 

Figure 4.5: Comparison on the number of instructions between the kernels 



.^h^ter 4 ADS Model and ADSM Model 72 

The Figure 4.5 shows the comparison of the number of instructions between the kernels. 

By varying the parameters of cache size, block size and way associative, we obtain the miss 

ratios of no prefetching under different conditions for each kernel. Then, we modified the 

Shade Analyzers such that it can perform data prefetching. When the modified Shade 

Analyzers encountered each LOAD operations, the loading address are added with its 

corresponding stride value to produce the prefetched address. The prefetched data are 

moved into the data cache immediately. The data prefetching made by ADS modeLcan 

be called ERegs ‘ prefetching. For ERegs' prefetching, no memory delay is assumed such 

that all prefetching data are able to be prefetched into cache. In general, larger cache 

often give a better result (i.e lower miss ratio) for same amount of data. 

The best performance of ERegs' prefetching is on the Kernel 8 with the cache configu-

ration of cache size=8KB, block size=16KB and 4-way associative as shown in Figure 4.6. 

The miss ratio with no prefetch is 17.2% while that with ERegs' prefetching is 0.084%. 

Cache Size = Block Size = 16B, 4-Way Associative 

30 • … ： 

” I � S I 

I I I 
c _ _ ? � n ONo Prefetch 
I _ _ • ^ •ERega- Prefetch 

i : : L 丨 丨 ； H 丨 ： 

：一 i L L i 丄」i 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

K*rn«ts 

Figure 4.6 :Miss Ratio comparison between the no prefetch and EReg's prefetch algo-

rithms at the configuration : Cache Size = 8KB, Block Size = 16B, 4-Way Associative 

The greatest miss ratio occur in the kernel 13 which is an matrix multiplication pro-

gram from NASA7 Benchmark. At the configuration of cache size = 8KB, block size = 

32B and 4-way associative as shown in Figure 4.7, the miss ratio of tliis kernel is 29.69% 
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1 with no prefetch and 27.48% with ERegs' prefetch. The reason for such high miss ratio 

can be explained as follows. There are three 2-dimensional arrays in kernel 13. They are 

A(256,128), B(128,64) and C(256,64). At the configuration of cache size = 8KB, block 

size 二 32B and 4-way associative, the number of cache lines is 256 and the number of 

set is 64. At the innermost loop, there are five loadings on the array elements of A(I,J), 

A(I,J+1), A(I,J+2), A(I’J+3) and C(I,K). Since the size of each element is 8 byte, the el-

ements of A(I,J), A(I,J+1), A(I,J+2), A(I,J+3) will always be mapped into the same set, 

causing a big cache pollution problem. The prefetched data of an element may flush out 

that of another element. And its referenced data loading from demand prefetch also may 

flush out that of another element. Generally, such pollution will happen at the following 

situation : 

• There are several loading data in a loop. 

• The difference between their loading addresses or prefetched addresses are multiple 

of number of cache lines, but the size of each set (i.e way associative) is smaller than 

the number of loading data. 

C a c h e Size = 8 K B , Block = 32B, 4 - W a y Assoc ia t ive 

30 

2S H I 

20 國 n 

書 圓 姜 I BNoPr，l»tch 

I 麗 r s •ER»g»' Pr«t»leh | 

miUiJ 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Kem*U 

Figure 4.7: Miss Ratio comparison between the no prefetch and EReg's prefetch algo-

rithms at the configuration : Cache Size 二 8KB, Block Size = 32B, 4-Way Associative 
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^ The reasons are described as follows. Not only all the data from demand fetch will be 

mapped to same set, but all of prefetched data will also be mapped into same set. If the 

size of each set (i.e way associative) is smaller than the number of loading data. Their 

data will flush out with each other. In fact, even if the size of the set is equal to the 

number of loading data, the similar cache pollution still occur seriously. The loading and 

prefetching of C(I,K) in kernel 13 make the cache pollution worse. The similar pollution 

problem occur at the following configuration. 

1. Cache size = 8KB, Block size = 16B, 2-way associative as shown in Figure 4.8. 

2. Cache size = 8KB, Block size 二 16B, 4-way associative as shown in Figure 4.6. 

Cache Size = 8KB, Block Size = 16B, 2-Way Associative 

35 ; 

30 m 

i： I, I. 1 L ^ 
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Figure 4.8: Miss Ratio comparison between the no prefetch and EReg's prefetch algo-

rithm at the configuration : Cache Size = 8KB, Block Size = 16B, 2-Way Associative 

Once the size of cache is changed from 8KB to 16KB, the above situation is changed. 

A much better performance is obtained at the configuration below : -

1. Cache size = 16KB, Block size = 32B, 4-way associative as shown in Figure 4.9. 

2. Cache size = 32KB, Block size = 32B, 4-way associative as shown in Figure 4.10. 

3. Cache size = 32KB, Block size = 32B, 8-way associative as shown in Figure 4.11. 
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Cache Size = 16KB, Block Size = 32B, 4-Way Associative 
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Figure 4.9: Miss Ratio comparison between the no prefetch and EReg's prefetch algo-

rithms at the configuration : Cache Size = 16KB, Block Size = 32B, 4-Way Associative 
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Cache Size = 32KB.日lock Size » 32B. 4-Way Associative 
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Figure 4.10: Miss Ratio comparison between the no prefetch and EReg's prefetch algo-

Ĵ ithms at the configuration : Cache Size = 32KB, Block Size = 32B, 4-Way Associative 
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Cache Size = 32KB, Block Size = 32B, 8-Way Associative 
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Figure 4.11: Miss Ratio comparison between the no prefetch and EReg's prefetch algo-

rithms at the configuration : Cache Size = 32KB, Block Size = 32B, 8-Way Associative 

All the miss ratio of EReg's prefetch at these configurations are below 0.08% while 

that of no prefetch at these configurations are below 2.6%. 

4.6 Discussion on the Architectural and Operational 

Variations for ADS Model 
4.6.1 Temporary storage Problem 

As previous models, it is very important for the idea of TEMPORARY EReg which is 

used to store the data that any temporary EReg should not be used to store data operand, 

since once the value of this temporary EReg is changed, it means that the memory content 

represented by this temporary EReg is changed. In order to cope with the problem of 

temporary storage, the solutions discussed in the section 3.6 of page 29 can be used in 

ADS model. There are totally five solutions. However, the first solution of using T-bit 

requires some modification. 

In the the solution of using T-bit to solve temporary storage problem, the modification 
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, are presented as follows. If the stride field and address field of the EReg can be accessed 

and operated by arithmetic instructions, each EReg can be organized as a set of three 

traditional registers with a t-bit which can be used to overcome the temporary storage 

problem as described in previous models. These three traditional registers are used to 

represents address field, data field and stride field. The simple way to group the traditional 

registers into set is by using the register names. Since each EReg contains three traditional 

registers. The number of register in register file should be multiple of three. If T-bit is 

OFF, 3 traditional registers are combined to be preform as an EReg in ADS model. All 

the T-bits of ERegs are grouped together to form an special register called TR. The 

structure is shown in figure 4.12. 

Register file 

RO R1 R2 

R3 R4 R5 

' ' R 6 R7 Rg 

R9 RIO R l l 

R12 R13 R14 . . 

R15 R16 R17 

RI8 R19 R20 

R21 R22 R23 

TR ^ T T T T T T T T 

Figure 4.12: ADS second variated structure 

4.6.2 Operational variation for Data Prefetching 

The idea of the variation is to change the stride value dynamically instead of setting the 

stride value statically by using the new instruction - SET. Data is prefetched only when 

the stride value is stable. Hence, although the method to set the stride value is changed, 

the target of the data prefetching still aim at constant stride data access patterns. The 
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.mechanism is as follows. When a LOAD instruction is executed, difference between the 

loading address of data and the current data address is compared with the stride value 

stored in stride field. If they are equal, the prefetching operation is performed using the 

sum of the stride value and the loading address as the prefetched address for next data. 

If they are not equal, the stride value is updated by the difference between the loading 

address of data and the current data address. 

This variation handle the data prefetching implicitly. Although it reduces the overhead 

of setting the stride value, it introduces a larger overhead in making decision on whether 

prefetching should be performed. Therefore, the method is not used. 

4.7 Introduction of ADSM Model 

Since each EReg has the address of the datum that it contains, if the value of the datum is 

changed, it is bound to be stored later by using a STORE instruction explicitly. Moreover, 

the same data may be stored many* times during the looping. For example, there are 

six aliased ERegs from ERI to ER6. If their values are modified, they will be stored 

explicitly before they are replaced by objects. Then, there may exist six explicit STORE 

operations. If the function of implicit Storing in ADSM model is used, the number of 

STORE operations will be reduced to one only. 

From this point, the feature of implicit storing not only can change the explicit STORE 

to implicit STORE, but also the actual number of store operation can be reduced. Ba-

sically, the ADSM model is an extended version of ADS model. The implicit storing 

operation of ADSM model is similar to ADM model. The STORE instruction can be 

eliminated if the EReg file can be served as a part of memory hierarchy such that other 

memory references can first access the EReg file. In the following sections, a more detail 

description on the architectural and operational issues will be accounted. 

» » 



.^h^ter 4 ADS Model and ADSM Model 79 

4.8 Architectural and Operational Detail of ADSM 

Model 

The memory structure of the ADSM model is shown in Figure 4.13. Its structure is the 

superset of ADS model and ADM model. It has four fields/bit — address field, data field, 

stride field and modified bit. The instructions to change the data content of EReg can be 

classified into three types of operations. They are LOAD operation, STORE operation, 

arithmetic and logical operations. The operational details are discussed on these three 

types of operations. 

Name: Address Datum Stride M 

Figure 4.13: Memory structure of ADSM Model 

Operational Model 

Case 1 : LOAD Instruction : 

When a LOAD instruction for loading the content of the memory address 

ADDRESS-A into an EReg, e.g. ERi, is executed: 

e.g. LOAD ADDRESS-A, ERi 

Preprocessing 

Before loading, if the M-bit of ERi is ON, an comparison in a fully associative way is 

made to see if there is any matches between the address value of ERi and the content of 

the address field of all ERegs in the EReg file. 

1. If any matches are found, the M-bit of one of these matched ERegs is set to ON. 

2. If no match is found, the datum value of the ERi is stored back to the memory by 

using address value of ERi as the memory address. 

Loading ‘ 
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• The M-bit of ERi is set to OFF. 

• The content of the address field of ERi is set to the address value ADDRESS.A. 

• The address value ADDRESS.A is checked against the content of the address field 

of all ERegs in the EReg file simultaneously. 

- I f a match is found between the address value ADDRESS.A and the content of 

the address field of some ERegs, the content of the datum field of these ERegs-are 

copied into the datum field of ERi. 

- I f no match is found in the EReg file, the memory content with the address 

ADDRESS-A is copied from memory into the datum field of ERi. 

• If the content in STRIDE field is not zero, next data will be prefetched from main 

memory to cache using the prefetching address ( STRIDE value + current address 

ADDRESS-A ). The new created instruction 

I 

SET_SERi, #no 

can set the stride value of ERi to #no. However, data prefetching is only executed if 

the intended data to be prefetched does not exist in the EReg file and Data Cache. 

Case 2 : STORE Instruction : 

When a STORE instruction storing data of an EReg, e.g. ERi, to the 

memory address "New_address" is executed : 

STORE ERi, "New.address" 

• The address "New_Address" is checked against the content of address field of all 

ERegs in the EReg file, 

-If a match is found between the address "New.Address" and the content of address 

field of some ERegs, both the content with memory address "New_Address" and the 
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content in the datum field of these ERegs are updated by the content of the datum 

field of ERi. The M bit of these ERegs are set to OFF. 

—If no match is found in the EReg file, only the content with memory address 

"New_Address" is updated. 

Case 3 : Arithmetic and Logical Operation : 

When an arithmetic or logical operation with destination EReg,e.g ERi, 

is executed : 

• The content of the datum field of the ERi is updated as usual. 

• The M-bit is set to ON 

• The content of the address field of the ERi is read and compared associatively with 

the content of the address field of all other ERegs. If any matches occur, the content 

of the datum field of these ERegs are also updated by that of ERi and their M bits 

are set to OFF. 

4.9 Discussion 

In this model, the EReg will be equipped with one more bit. This bit will enable implicit 

storing such that the data in the EReg will be written back to the memory automatically. 

Moreover, if the EReg mechanism keep in contact with the data bus, the request of data 

can be forwarded from the EReg file rather than memory. Then, store instruction is not 

required. The figure 4.14 illustrate the additional operations compared with Basic Model. 

4.10 Example for ADSM Model 

From the result of basic model in section 3.4, the fifth kernel - original elimination below 

diagonal does not obtain any improvement from the operation of basic model. However, 

if the ADSM model is used, the implicit storing feature can improve the performance 
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Data—A Data Stride M 

I 广、 • Adder 

I i 1 Prefetch 

A n d * 

~~r-^ 
Wri te buffer • .. 

Figure 4.14: ADSM Construction 

by reducing the total number of instructions 34.3% as shown in the Figure 4.15. If the 

feature of implicit storing (i.e ADSM) is supported, all the STORE instructions can be 

reduced as shown in the Figure 4.16. 

Upon rearranging the coding, the.line 6, line 12 and line 18 is removed while the line 3 

is moved out of the loop and line 24 is changed from STORE to LOAD instructions. One 

tricky technique in above program segment is that the EReg used to store the value of 

x[i+3] in line 24 is the same as that used in line 3. Hence, the content in ERI can further 

be used in line 5 during the next looping. Nearly all the data value can be preloaded 

before the operation of LOAD instruction. 

4.11 Simulation Results 

There are totally 15 kernels used in the simulating the effect of the ADSM model of EReg. 

The source code of these 15 kernels are placed in Appendix A. The first 12 are Livermore 

Loop "C" language kernels. All kernels will be compiled by cc compiler into assembly 

programs in SPARC machine environment with the command ,，cc -04 -S filename ”• 

The last three kernels are the NASA 7 "FORTRAN" language Kernels. The command 

to generate their assembly codes is “ f77 -04 -S filename ”. All the traditional registers 

in assembly programs are replaced by the ADSM model of EReg to see if there are any 
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Main "C" statements : 

for (i=l;i<n;i++) 

x[i]=z[i]*( y[i]-x[i-l]) 

Pseudo Assembly Version : 

0. STEPl 

1. LOAD y[i 

2. LOAD z[i 

3. LOAD x[i-l 

4. Compute ( y[i] - x[i-l]) 

5. Compute z[i]*(y[i]-x[i-l]) 

6 STORE x[i] 

7. LOAD 

8. LOAD y[i+l； 

9. Compute ( y[i+l] - x[i]) 

10. LOAD z[i+l] 

11. Compute z[i+l]*(y[i+l]-x[i]) 

12 STORE x[i+l] 

13. LOAD x[i+l: 

14. LOAD y[i+2； 

15. Compute ( y[i+2] - x[i+l]) 

16. LOAD z[i+2] 

17. Compute z[i+2]*(y[i+2]-x[i+l]) 

18. STORE x[i+2] 

19. LOAD X [i+2 

20. LOAD y “ 3 : 

21. Compute ( y[i+3] - x[i+2]) 

22. LOAD z[i+3] 

23. Compute z[i+3]*(y[i+3l-x[i+2]) 

24. STORE x[i+3] 

25. Increment the value of i by 4. 

26. goto STEPl ' 

Figure 4.15: Example : Tri-Diagonal Elimination, Below Diagonal 
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SET_S ERl, 16 ； This value 16 represent the stride value of the array 

SET一S ER2, 8 

SET_S ER3, 8 
SET_S ER4, 16 

3. LOAD x[i-l], ERl 

0. STEPl 

1. LOAD y[i] 

2. LOAD z[i ~ 

7. LOAD x[i] 

4. Compute ( y[i] - x[i-l]) 
5. Compute z[i]*(y[i]-x[i-l]) 

and use ERl to be destination of the computation. 

6. .... ( remove) 

8. LOAD y[i+r 
13 LOAD x[i+l], ER2 

9. Compute ( y[i+l] - x[i]) 

10. LOAD z[i+l] 
11. Compute z[i+l]*(y[i+l]-x[i]) 

and use ER2 to be destination of the computation. 

12. .... ( remove) 

14. LOAD y[i+2 

19. LOAD x[i+2],ER3 ‘ 

15. Compute ( y[i+2] - x[i+l]) 

16. LOAD z[i+2l 

17. Compute z[i+2]*(y[i+2]-x[i+l]) 

and use ER2 to be destination of the computation. 

18. .... ( remove) 

20. LOAD y[i+3 
24. LOAD x[i+3], ERl 

21. Compute ( y[i+3] - x[i+2]) 

22. LOAD z[i+3] 

23. Compute z[i+3]*(y[i+3l-x[i+2]) 
and use ERl to be destination of the computation 

25. Increment the value of i by 4. ^ 

26. goto STEPl ' 

Figure 4.16: Example : Modification of Tri-Diagonal Elimination, Below Diagonal from 
Livermore Kernels by ADSM model 



. ^ h ^ t e r 4 ADS Model and ADSM Model 71 

improvement. The result contains three data : 

1. Total number of instructions issued 

2. Number of LOAD instructions issued 

3. Number of STORE instructions issued. 

The result is shown in the table 4.2. ADSM model is the superset of ADS model-and 

ADM model. The new instructions - SET used in data prefetching are placed outside 

the innermost loop while the feature of implicit storing usually can eliminate the store 

instructions in the innermost loop. Then, the number of instructions of ADSM model ( 

shown in Table 4.2) in general is the same as that of ADM model ( shown in Table 3.2 

of Page 43. Although the feature of implicit storing can reduce the number of STORE 

instruction, it often only change the explicit STORE into implicit STORE. Hence, the 

result of data prefetching is similar to that of ADS model. 

4.12 Discussion on the Architectural and Opera-

tional Variations for ADSM Model 

4.12.1 Temporary storage Problem 

As described in previous models - Basic model, ADM model and ADS model, it is very 

important for the idea of TEMPORARY EReg which is used to store the data that 

any temporary EReg should not be used to store data operand, since once the value of 

this temporary EReg is changed, it means that the memory content represented by this 

temporary EReg is changed. In order to cope with the problem of temporary storage, the 

solutions discussed in the section 3.12 of page 46 can be used in ADSM model. There are 

totally six solutions. However, the first solution of using T-bit requires some modification. 

In the solution of using T-bit to solve temporary storage problem, the modification 

are presented as follows. If the stride field and address field of the ERieg can be accessed 
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Percentage of Percentage of Percentage of ~ 

LOAD STORE 

instr. remained instr remained instr remained 
Hydro fragment 一 87.6% _ 66.8% 100% 

一2. ICCG excerpt (a) 78.8% 80.3% 100% 

(b) 77.9% 

~3. Inner product 100.2% 100% IM% 

4. Banded linear equations 103.4% 100% 0 

—5. Tri-diagonal elimination 65.9% 100.07% 0 

」below diagonal 

General linear 75.9% 66.7% 

recurrence equations • 

Equation of state (a) 100.04% (a) 100% (a) 100% 

-fragment (b) 85.8% (b) 66.8% (b) 100% 

j . API integration 76% _ 63.7% 50.2% 

j . Integrate predictors 100.048% 100% 100% 

J0> Difference predictors — 100.038% 100% 100% 

:11. First Sum — 78.1% — 100.2% 0.1% 

First Difference 76% “ 50.05% 1 0 0 % ^ ^ 

J3 . Mxm.f — 93.5% 100% 

U. Cff2tdl.f 38.5% 25% Q 

15. Cholesky Decomposition 88.16% 93.42% 007% 
/ substitution 

Table 4.2: Simulation Result for ADSM Model 
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and operated during arithmetic operations, each EReg may be organized as a set of three 

traditional registers with a T-bit and a M-bit. T-bit is used to overcome the temporary 

storage problem as described in ADM model while M-bit is used to perform implicit 

storing operation. These three traditional registers are used to represent address field, 

data field and stride field. The simple way to group the traditional registers into set is 

by using the register names. Since each EReg contains three traditional registers. The 

number of ERegs in EReg file should be a multiple of three. If T-bit is OFF, 3 traditional 

registers are combined to act as an EReg in ADSM model. All the T-bits and M-bits are 

grouped together to form two extra special registers. One is TR while the other is MR. 

The structure is shown in Figure 4.17. 

Register file 

� 

RO R1 R2 

R3 R4 R5 

R6 R7 R8 
1 

R9 R I O RLL 

R12 R13 R14 

R15 R16 R17 

R18 R19 R20 

R21 R22 R23 

T R - ) T T T T T T T T 

M R " ) M M M M M M M M 

Figure 4.17: ADSM second variant 

4»12»2 Operational variation for Data Prefetching 

The same operational variation as ADS model can be used in this ADSM model for data 

prefetching. The basic idea is to change the stride value dynamically instead of setting the 

stride value statically by using the new instruction — SET. Data is prefetched only when 

the stride value is stable. Hence, although the method to set the stride value is changed, 
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the target of the data prefetching still aim at constant stride data access patterns. The 

mechanism is as follows. When a LOAD instruction is executed, difference between the 

loading address of data and the current data address is compared with the stride value 

stored in stride field. If they are equal, the prefetching operation is performed using the 

sum of the stride value and the loading address as the prefetched address for next data. 

If they are not equal, the stride value is updated by the difference between the loading 

address of data and the current data address. _ 

This variation handles the data prefetching implicitly. It reduces the overhead of 

setting the stride value, but it introduces an overhead in making decision on whether 

prefetching should be performed. As previous method, this method is not used. 

I 



Chapter 5 

lADSM Model and 

lADSMC&IDLC Model 

5.1 Introduction of lADSM Model 

lADSM model aims at reducing the number of instruction to be issued. It is a hardware 

based method in which the explicit LOAD instruction can be changed to implicit LOAD 

instruction. From the discussions in previous models, it is obvious that the compiler 

can make 100% accurate prefetching address for constant stride array reference. lADSM 

model takes advantage of this feature and extends the ADSM model by allowing an 

implicit loading operation. To illustrate the concept, let us consider the the figures 5.1 

and 5.2 

200 L7700 : ... 

201 ... 
‘ 202 load ERi 

203 add ERi,ERj 
204 ... 

205 bne L7700 ' 

Figure 5.1: Original Program listing 

參 

75 
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202 load ERi 

200 L7700 : ... 

201 ... 

203 add ERi,ERj 

204 ... 

205 bne L7700 

Figure 5.2: Program listing after using EReg in lADSM model ~ 

If lADSM model is used, the LOAD instruction can be moved out one more loop such 

that nearly all the number of explicit LOAD operations are changed to implicit LOAD 

operations for the looping. The design of ADSM model aims at improving the whole 

performance not by reducing the number of LOAD operations, but by reducing the time 

to issue such LOAD operations. 

5.2 Architectural and Operational Detail of lADSM 

Model 

The memory structure of the lADSM model is shown in Figure 5.3. Its structure is 

an extended version of ADSM model. It has four fields/bit - Instruction address field, 

data address field, data field, stride field and M-bit. The instructions to change the 

data content of EReg can be classified into three types of operations. They are LOAD 

operation, STORE operation, arithmetic and logical operations. The operational details 

are discussed on these three types of operations. 

Name: Instr_A Address Datum Stride. M 

Figure 5.3: lADSM structure 

Operational Details 

The content of the program counter will always compare with the content of the 
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INST_A field of all ERegs in a fully associative way. If there is any match within ERegs, 

the content of the datum field of these ERegs are first stored using the address value 

of their address fields if their M-bits are ON. And the stride values of these ERegs are 

added up with their corresponding ADDRESS values and two times of ADDRESS values 

to produce the implicit loading addresses and prefetching addresses respectively. The 

INST_A field of an EReg, e.g. ERi, can be set by the instruction. However, if the value 

in INST_A field is zero, the operation of Implicit Loading is void. -

SETJNST ERi,#address 

Case 1 : LOAD Instruction : 

When a LOAD instruction for loading the content of the memory address 

itADDRESS_A into an EReg, e.g. ERi, is executed as follows: 

LOAD ADDRESS.A, ERi 

Preprocessing 

Prior to loading, if the M-bit of ERi is ON, an comparison in a fully associative way 

is made to see if there is any matches between the address value of ERi and the content 

of the address field of all ERegs in the EReg file. 

1. If any matches are found, the M-bit of one of these matched ERegs is set to ON. 

2. If no match is found, the datum value of the ERi is stored back to the memory by 

using address value of ERi as the memory address. 

Loading 

• The M-bit of ERi is set to OFF. 

• The content of the address field of ERi is set to the address value ADDRESS—A. 
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• The address value ADDRESS.A is checked against the content of the ADDRESS 

field of all ERegs in the EReg file simultaneously. 

- I f a match is found between the address value ADDRESS.A and the content of 

the address field of some ERegs, the content of the datum field of these ERegs are 

copied into the datum field of ERi. 

一 If no match is found in the EReg file, the memory content with the address 

ADDRESS-A is copied from memory into the datum field of ERi. 

• If the content in STRIDE field is not zero, next data will be prefetched from main 

memory to cache using the prefetching address ( STRIDE value + current address 

ADDRESS—A ). The new created instruction 

SET_S ERi, #no 

can set the stride value of ERi. to #no. 

Case 2 : STORE Instruction : 

When a STORE instruction storing data of an EReg, e.g. ERi, 

to the memory address "New_address" is executed : 

STORE ERi,"New_address" 

• The address "New_Address" is checked against the content of address field of all 

ERegs in the EReg file, 

-If a match is found between the address "New—Address” and the content of address 

field of some ERegs, both the content with memory address "New_Address" and the 

content in the datum field of these ERegs are updated by the content of the datum 

field of ERi. The M bit of these ERegs are set to OFF. 

—If no match is found in the EReg file, only the content with memory address 
, » 

"New_Address" is updated. 
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Case 3 : Arithmetic and Logical Operation : 

When an arithmetic or logical operation with destination EReg, e.g. ERi, 

is executed : 

• The content of the datum field of the ERi is updated as usual. 

• M bit is ON. 

• The content of the address field of the ERi is read and compared associatively with 

the content of the address field of all other ERegs. If they match, the M bit of these 

ERegs are set to OFF and the content of the datum field of these ERegs are also 

updated by the datum value of ERi. 

5.3 Discussion 
t 

5.3.1 Implicit Loading 

The implicit loading provided by lADSM model should be used carefully. When the 

implicit loading is not required, the INST_A field must be set to zero. The behaviour of 

implicit LOAD operation is just the same as that of a normal LOAD operation. That 

IS, the implicit loading address is checked against address fields inside the EReg file such 

that if there is a successful matching, the target data is loaded from the matched EReg 

instead of the target memory location. 

The limitation of this implicit loading feature is that it can support constant stride 

array access only. Before entering the loop, the stride fields of the ERegs, which are used 

to store data and perform implicit loading operation, must be set. This should be done 

easily by the compiler. Figure 5.4 illustrates the additional operation apart from that in 

basic Model. 
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InsLA Data. A Data Stride M 
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- Figure 5.4: lADSM Construction 
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5.3.2 Compiling Procedure 

In order to utilize the implicit loading feature of lADSM model, there are some steps for 

the compiler to follow : 

1. Identify the constant stride LOAD instructions inside the loop and their correspond-

ing stride values. 

2. Move these LOAD instructions out of the loop. 

3. For each EReg, set its stride field to the stride value of the corresponding constant 

stride LOAD instruction. 

4. For each EReg, mark its earliest point where the next data can be loaded into it. 

5. For each EReg, set the instruction address of its earliest point into its instruction 

field. 

I 

The earliest point for an EReg is the point following instruction where this EReg is 

lastly referenced during the loop. 

5.4 Example for lADSM Model 

The first kernel - Hydro Fragment from the liver more loop benchmark is used as an 

example as shown in Figure 5.5. The array elements of z[k+10] k z[k+ll] are loaded 

for each k since there may be an aliasing problem between x[k] and z[k+ll] or x[k] and 

z[k+12]. However, if lADSM model of EReg is used, we can reschedule the coding as 

shown in Figure 5.6. From the simulation result, only 56.6% of the instructions are 

remained. " 、 

» * 
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Hydro fragment : 

for ( k=0;k<n;k++) 

x[k]=q+y[k]^(r^z[k+10]+t^z[k+ll]); 

Pseudo assembly version : 

0. STEPl . 

1. LOAD z[k+ll] 

2. Compute t^z[k+ll] 

3. LOAD z[k+10] 

4' Compute r¥z[k+10] 
5. .…. 

6. Compute q + y[k]^ fr*z[k+10]+t^z[+ll] ) and STORE into x[k]. 
7. LOAD z[k+12] 
8. Compute t^z[k+12] 

9. LOAD z[k+ll] 

10. Compute r^z[k+ll] 
11 .…•. 

12. Compute q + y[k+l]^ (r^zfk+ll]+t^z[+12] ) and STORE into x[k+l]. 
13. Increment the value of k by 2. 

14. goto STEPl 

Figure 5.5: Example : Hydro Fragment 

» 
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3. LOAD z[k+10], R1 

1. LOAD z[k+ll], R2 
SET_S Rl, 8; This value 8 represent the stride value of the array 

SET_S R2, 8 

SETJNST Rl,2; This value 2 represent the instruction address of the 

following program segment 

SETJNST R2,谷This value 8 represent the instruction address of the 

following program segment 

0. STEPl -

4. Compute r*z[k+10] ( use EReg Rl ) 

2. Compute t*z[k+ll] ( use EReg R2 ) 
5 

6. Compute q + y[k]*(r*z[k+10]+t*z[+ll] ) and STORE into x[k . 

9. ( remove ) 

10. Compute r*z[k+ll] ( use EReg R2 ) 

8. Compute t*z[k+12] ( use EReg Rl ) 

12. Compute q + y[k+l]*(r*z[k+ll]+t*z[+12] ) and STORE into x[k+l . 

13. Increment the value of k by 2. 

14. goto STEPl 

Figure 5.6: Example : Modification of Hydro Fragment from Livermore Kernels by 
IADSM model 
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5.5 Simulation Results 

There are totally 15 kernels used in the simulating the effect of the I ADSM model of EReg. 

The source code of these 15 kernels are placed in Appendix A. The first 12 are Livermore 

Loop "C" language kernels. All kernels will be compiled by cc compiler into assembly 

programs in SPARC machine environment with the command “ cc -04 -S filename ”. 

The last three kernels are the NASA 7 "FORTRAN" language Kernels. The command 

to generate their assembly codes is ” f77 -04 -S filename ,，. All the traditional registers 

in assembly programs are replaced by the lADSM model of EReg to see if there are any 

improvement. The result contains three data : 

1. Total number of instructions issued 

2. Number of LOAD instructions issued 

3. Number of STORE instructions issued. 

The number of instructions reduced by lADSM model are shown in Figure 5.1. Since 

IADSM model extends the ADSM model by changing the explicit loading operations into 

implicit loading operations, the following will discuss how the performance improvement 

can be achieved in changing from the ADSM model to IADSM model. By comparing the 

performance difference between IADSM model in Figure 5.1 and ADSM model in Fig-

ure 4.2, we found that the greatest performance improvement is achieved by kernel 15. The 

percentage of the instructions is reduced from 88.16% in ADSM model to 16.6%.IADSM 

model. From the report [Cha95], after the number of instruction of kernel 4 reduced by 

ADSM model are : 

1. Total number of instructions issued : 8130288 ‘ 

2. Number of LOAD instructions issued : 2185320 

3. Number of STORE instructions issued : 616 

‘1 ». 

If the IADSM model is used, the number of instructions are : 
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Percentage of Percentage of Percentage of “ 

LOAD STORE 

• instr remained instr remained instr remained 

THydro fragment 56.6% 0.35% 100% 

飞'ICCG excerpt (a) 42.1% (a) 1.9% (a) 100% 

(b) 40.5% (b) 1.9% (b) 100% 

Inner product 42.3% — 0.4% 100% 

i Banded linear equations 50.4% 1.2% 0 

5. Tri-diagonal elimination 21.3% 0.5% 0 

丄 below diagonal 

General linear 24.8% 0.0001% 

_^ecurrence equations • 

Equation of state a) 50.2% a) 0.15% a) 100% 

•^agment b) 50.1% b) 0.117% b) 100% 

API integration 38.2% 一 2.06% 5 0 ^ . 

^ Integrate predictors 52.6% “ 0.23% 100% 

JO. Difference predictors 60.5% “ 0.145% f00% 

工1. First Sum 18.8% 100% 

First Difference 48.9% 0.2% 100% 

Mxm.f — 23.9% 0 . 2 9 % ^ 

j j . Cfft2dl.f 16.2% — 0 — 0 
15. Cholesky Decomposition 16.6% 0.4% 0.066% 

丄 Substitution 

Table 5.1: Results for I ADSM Model 

» • 
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1. Total number of instructions issued : 1526200 

2. Number of LOAD instructions issued : 9320 

3. Number of STORE instructions issued : 616 

Comparing with ADSM model, lADSM model can further reduce the number of LOAD 

instructions by changing the operation of them into implicit operations. It may be sur-

prised that the number of instructions reduced are much more than the total number 

of LOAD instructions. In fact, the reason is very simple. Each LOAD instruction usu-

ally require several instructions to compute the loading address and to make an EReg 

available to store the new data. When lADSM model change explicit LOAD instructions 

mto implicit LOylD operations, not only the LOAD instructions are eliminated, but their 

relevant instructions are also eliminated. 

The Main Fortran Statements of kernel 15 is shown in Figure 3.11 of page 3.11. The 

above statements account for over 9'(% of the total number of instructions of the kernel 15 

一 Cholsky.f from NASA Benchmark. All the data B(I,L,K), B(I,L，K+JJ) and B(I,L,K-JJ) 

have been loaded before they are stored into memory. Therefore, if the implicit storing 

IS applied, nearly all the STORE instructions are reduced. Therefore, ADSM can reduce 

the total number of instructions to 88.16%. From the report [Cha95], every computation 

instruction requires association with several instructions. These instructions include 

1. compute the address of operands 

2. load the operands. 

In the kernel 15, these instructions is about 10 times for one computation. If lADSM 

model is applied, all the LOAD and their relevant instructions in the above statements 

are eliminated such that only those computation instructions remained in the program. 

Hence, the total number of instructions can be decreased to 16.6%. 

Although all the LOAD instructions and their relevant instructions in all kernels are 

eliminated very effectively by the the lADSM model, the performance of the kernels are 

not the same. It is because the performance result usually depend on those innermost 
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loops of the kernels. When there are some instructions which cannot be eliminated by 

lADSM model, a diversify result is obtained. For example, the STORE instructions in 

kernel 10 should not be changed into implicit storing as discussed in ADM model Then, 

the number of instructions remained in lADSM model not only include the computation 

instructions, but also the STORE instructions. This is also the reason of why the smallest 

performance improvement is achieved in the kernel 10. 

5.6 Temporary Storage Problem of lADSM Model 

As described in previous models - Basic model, ADM model, ADS model and ADSM 

model, it is very important for the idea of TEMPORARY EReg which is used to store the 

data that any temporary EReg should not be used to store data operand, since once the 

value of this temporary EReg is changed, it means that the memory content represented 

by this temporary EReg is changed. In order to cope with the problem of temporary 
I 

storage, the solutions discussed in the section 3.12 of page 46 can be used in this lADSM 

model. There are totally six solutions. However, the first solution of using T-bit requires 

some modification. If the Instruction field, stride field and address field of the EReg can 

be access and operated by arithmetic instructions, each EReg may be organized as a set 

of four traditional registers plus a T-bit and a M-bit. The T-bit is used to overcome 

the temporary storage problem as described in previous model while the M-bit which is 

used to enable implicit storing. These four traditional registers are used to represents 

instruction field, address field, data field and stride field. The simple way to group the 

traditional registers into set is by using the register names. For example, 8 bits is used 

to address registers. The first six bits are used to select the set ( i.e. EReg ) while the 

last two bits are used to define the fields within the EReg. Since-each EReg contains 

four traditional registers, the number of registers in register file should be a multiple of 

four plus two. If T-bit is OFF, four traditional registers are combined to be preform as 

an EReg in lADSM model. All the T-bits and M-bits are grouped together to form two 

special registers called TR and MR respectively. The structure is shown in figure 5.7. 
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. Register fi le 

� 

R1 R2 R l R4 

R5 R6 R l R8 

R9 R IO R l l R I 2 

R13 R I 4 R15 R I 6 

RI7 R18 R19 R20 

R21 R 2 � R23 R24 

1(25 R26 R27 R28 ~ 

R29 R30 R31 R32 

TR •) T T T T T T T T T 

M R ) M M M M M M M M M 

Figure 5.7: lADSM second variated structure 

5.7 Introduction of lADSMC&IDLC Model 

From the observation of the first twelve kernels from livermore loop kernels, we realized 

that nearly one fourth of instructions is used to control the looping. Generally, it includes 

the following operations : 

1. increment the index value. 

2. compare the index value with the limit 

3. conditional branch depending on the result of the comparison. 

In this model, we try to incorporate the above operations into implicit operations in our 

EReg design. lADSMC&IDLC model is an extension of lADSM model. By reorganizing 

the interpretation, lADSMC&IDLC model can reduce such operations by a lot. When 

the number of instructions within the loop is small, the impact of reducing such kind of 

instructions can be quite impressive. 

* *. 
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5.8 Architectural and Operational Detail of lADSMC 

& IDLC Model 

The model described in the section contains two models. The value of the C-bit determine 

which model the interpretation of the instruction should base on. The architectural and 

operational detail of model (A) is just the same as that of lADSM Model. The detail 

architectural and operational model of model ( B ) described in next section. It has~four 

fields. The first field contains the instruction address where the branch should be taken. 

The second field contains the destination address of the branching while the third field 

contains the number of branching. 

Name; lnstr_A Address Datum Stride M C 

Figure 5.8: lADSMC&IDLC model A structure 

I 

Name: lnsiT_A Dest_A LOOP C 

Figure 5.9: lADSMC&IDLC model B structure 

Operational Details 

If the conversion bit C is ZERO, the operations will base on the model ( A ); Otherwise, 

the operations will base on the model ( B ). The operational details and behaviors of model 

( A ) is just the same as that of lADSM model. These two models can be set by the 

instructions SET_A and SET_B. SET_A can set C bit to ZERO while SET_B will set C 

bit to ONE. 

In both models, a fully associative match is always taken between the program counter 

and INST_A field. If any match occurs and C bit is ONE and the value in LOOP field is 

non-zero, the value in Dest_A field will be moved into program counter and the number 

#no in Loop field will be decreased by 1. The content of the fields in sub-model ( B ) can 

be set bv a 
new instruction. 
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SET_L Rn, #addr_l, #addr_2, # no 

where #addr_l is stored into Inst_A field. 

#addr_2 is stored into Dest_A field. 

#no is stored into Loop field. 

All other instructions including LOAD and STORE are not allowed to be operated 

on the model B. Otherwise, error will be result. There is a new instruction "div" to 

be introduced. The function of this instruction is to divide the first parameter by the 

second parameter and then return the quotient and the remainder to the third and fourth 

parameter respectively. 

For example : “ div 14,4,%19,%110 ” 

This instruction will cause the EReg %19 containing the value of 3 and the EReg %110 

containing the value of 2. This instruction is very important in doing loop unrolling. After 

we have placed the number of looping into the first parameter and the size of unrolling 

into the second parameter, the third parameter will represent the number of looping for 

the part with unrolling and the fourth parameter will represent the number of looping for 

the remaining part without unrolling. 

5.9 Discussion 

5.9.1 Additional Operations 

The model is mainly to reduce the number of instructions which is used to control the 

looping operations by implicit control. The figures 5.10 and 5.11 illustrate the additional 

operation compared with basic Model, 

and 



^ S l t ^ e r 5 I ADSM Model and lADSMC&IDLC Model 105 

* 

Insi.A Data_A Data Stride M C 

I ' — — I T V 
I 1——I I Adder 卜 ^ 

Load Operation * 
“ Adder 

p ^ ^̂ ^ ~ And - — — h ^ ^ ― 

Comparator � 

T I e ^ • And r 、 _ 

~ “ I ^ 1 Prefetch 

Program Counter I 

(PC) 

And — 

And • 

I r 
Write buffer •— 

Figure 5.10: lADSMC Construction 

» », 
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Inst.A D e s t i LOOP C 

Deacmot 

byl 

C o m p a r a t o r 」 扁 

~ ~ 

Program Counter , 
And “ 

(PC) 

. Figure 5.11: IDLC Construction 
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5.9.2 Compiling Procedure 

The followings are some steps for compilers to make use of the feature of implicit looping 

1. Identify all the index values which are used to control the looping. 

2. Calculate the number of times of looping from those index values. 

3. Select and set an EReg to format B,i.e IDLC format.. 

4. Set the loop field of this EReg to the number of times of looping. 

5. Set the Instruction field of this EReg to the instruction address which just follow 

the last instruction in the looping to be executed. 

6. Set the Destination field of this EReg to the instruction address which is just above 

the first instruction in the looping to be executed. 

Basically, the implicit looping aim at the loopings which have well defined loop limits. 

But if there is a case that the loop limit is defined at run time, it is still possible to handle 

it by setting the value of loop field to a very large number and then fix it later when the 

ultimate loop limit is available. 

5.10 Example for lADSMC&IDLC Model 

The kernel of hydro fragment from the the Benchmark of Livermore Loop in Figure 3.3 

of 23 is used to demonstrate the performance of lADSMC&IDLC model. In the kernel of 

hydro fragment, z[k+10] k z[k+ll] will be loaded for each k since there may be an aliasing 

problem between x[k] and z[k+ll] or x[k] and z[k+12]. However, if lADSMC&IDLC model 

of EReg is used, we 
can reschedule the coding as shown in Figure 5.12. 
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3. LOAD z[k+10], ERI 

1. LOAD z[k+ll], ER2 

SETS ERI, 8 ； This value 8 represent the stride value of the array 

SETS ER2, 8 

SETJNST ERI,2 ； This value 2 represent the instruction address of 

the following program segment 

SETJNST ER2, 8 ； This value 8 represent the instruction address of 

the following program segment ~ 

SETJB ER3 

SET-L ER3，14，4，n 

4- Compute r*z[k+10] (use EReg ERI ) 

2. Compute Uz[k+ll] f use EReg ER2) 
5. 

6. Compute q + y[k]^(r^z[k+10]+t^z[+l 1] ) and STORE into x[k]. 

9. ( remove ) 
10. Compute r^z[k+ll] ( use EReg ER2 ) 
8. Compute t^z[k+12] (use EReg ERI ) 
1 1 • » » • » « 

i忍. Compute q + y[k^l]^(r^z[k-hll]+Uz[+12] ) and STORE into x[k+l]. 

13. Increment the value of k by 2. 

14. (others) 

Figure 5.12: Example : Modification of Hydro Fragment by lADSMC&IDLC Model 

5.11 Simulation Results 

There are totally 15 kernels used in the simulating the effect of the lADSMC&IDLC 

model of EReg. The source code of these 15 kernels are placed in Appendix A. The first 

12 are Livermore Loop "C" language kernels. All kernels will be compiled by cc compiler 

mto assembly programs in SPARC machine environment with the command ” cc -04 -S 

filename ”. The last three kernels are the NASA 7 "FORTRAN" language Kernels. The 

command to generate their assembly codes is ,’ f77 -04 -S filename ’，. All the traditional 

registers in assembly programs are replaced by the lADSMC&IDLC model of EReg to 

see if there are any improvement. The result contains three data : 

i 1. Total number of instructions issued 、 ‘ 

i 
i 
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Percentage of Percentage of Percentage of 

LOAD STORE 

instr remained instr remained instr remained 

J- Hydro fragment 47.2% 0.349% 

J- ICCG excerpt 一 31.6% 1.93% 

j- Inner product 28.5% 0.4% 100% 

-4. Banded linear equations 41.6% 1.22% Q 

5. Tri-diagonal elimination 14.4% 0.5% 0 

,below diagonal 

—6. General linear 12.6% 0.4% 0 ~ 

recurrence equations 

Equation of state 45.4% 0.117% 100% 

fragment 

j - API integration 一 35% 0.242% “ 50.2% 

^Ontegrate predictors “ 47.8% 0.23% • 100% 

JO. Difference predictors — 56.7% — 0.145% 100% 

了 1. First Sum 一 9.9% 0.6% 0.1% 一 

二 12. First Difference 一 39.9% “ 0.4% 100% 

l 3 . Mxm.f 14.3% 0.29% 2.17% 

〕4. Cff2tdl.f - 13.7% 0 0 

�15. Cholesky Decomposition '9.87% 04% 0.066% 

/ Substitution 

Table 5.2: Results for lADSMC&IDLC Model 

2. Number of LOAD instructions issued 

3. Number of STORE instructions issued. 

The lADSMC&IDLC model provide another interpretation of the EReg. lADSMC&IDLC 

model improve the lADSM model by reducing the loop controling instructions. The result 

IS illustrated in the Table 5.2. By using the compiler procedure described in subsection 

5.9.2，the looping control instructions can be easily reduced. A new created instruction -

� can make the computation of the value of loop field easier. -

In the result of the kernels, the kernel 3 - Inner Product from Livermore Loop 

Benchmark obtain the greatest performance improvement in changing from lADSM to 

lADSMC&IDLC. Its main source statements in “C” program is shown in Figure 5.13 
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for ( k=0;k<n;k++) 

q+=z[k]*x[k]; 

Figure 5.13: Main statements in Kernel Three : INNER PRODUCT from Livermore 

Loop 

All the LOAD and relevant instructions of z[k] and x[k] are reduced by the lADSM 

model. If the lADSMC&IDLC model is applied, the looping control instructions are also 

eliminated. These looping control instructions include : 

1. Increment of the value k 

2. Compare the value of k with n 

3. Branch back to the beginning of the loop if the value of k is smaller than n 

In the experiment carried out in the report [Cha95], only two kinds of computation in-

structions exits in the looping. One is the multiplication instruction of z[k] and x[k . 

Another is the addition instruction of q and ( z[k]*x[k]). The performance improvement 

is from 42.3% to 28.5%. The best performance is achieved in the kernel 15. Only 9.87% of 

the number of instructions are remained. Since every kernel requires the loop controling 

instructions to control the looping, all the kernels can obtain benefit from this model. 

5.12 Temporary Storage Problem of lADSMC&IDLC 

Model 

As described in previous five models - Basic model, ADM model,- ADS model, ADSM 

model and lADSM model, it is very important for the idea of TEMPORARY EReg which 

is used to store the data that any temporary EReg should not be used to store data 

Operand, since once the value of this temporary EReg is changed, it means that the 

memory content represented by this temporary EReg is changed. In order to cope with 
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the problem of temporary storage, the solutions discussed in the section 3.12 of page 46 

can be used in this lADSMC&IDLC model. There are totally six solutions. However, 

the first solution of using T-bit requires some modification. If the Instruction field, stride 

field and address field of the EReg can be access and operated by arithmetic instructions, 

each EReg may be organized as a set of four traditional registers with T-bit and M-bit. 

ihe T-bit IS used to overcome the temporary storage problem as described in previous 

models while the M-bit is used to enable implicit storing. There is a simple way to group 

the traditional registers into set is by using the register names. For example, 8 bits is 

used to address EReg. The first six bits are used to select the set ( i.e. EReg ) while 

the last two bits are used to define the fields within the EReg. When the C-bit is zero, 

these four traditional registers represent instruction field, data address field, data field and 

stride field. When the C-bit is one, these four traditional registers represent instruction 

field, destination field, and loop field only. The loop field may be represented by two 

registers or one register with one register left to be useless. Since each EReg contains 
I 

four traditional registers, the number of registers in register file should be a multiple of 

four plus two. If T-bit is OFF, four traditional registers are combined to be preform as 

an EReg in lADSMC&IDLC model. All the T-bits and M-bits can be grouped together 

to form two special registers called TR and MR respectively. The structure is shown in 

Figure 5.14. 
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Register file 

RO Rl R2 R3 

R4 R5 R6 R7 

R8 R9 RIO Rll 

R �2 m "14 RI5 

RI6 R17 RIS RI9 

R20 R21 R22 R23 

R24 R25 R26 R27 

R29 R30 R31 , 

t r - ) t t t t t t t t 

M R M M M M M M M M 

CR "^� c c c c c c c 

Figure 5.14: lADSMC&IDLC second variated structure 



Chapter 6 

Compiler and Memory System 

Support for EReg 

6.1 Impact on Compiler 

6.1.1 Register Usage . 

EReg will change some compiling styles of the present compiler. For example, some 

memory spaces are used as an extension of the register file. If there are two or more 

temporary registers loading value from same memory location, they are considered to 

be aliased with each other. Their value will be bound to be the same by the coherence 

property of EReg and hence, error will result. 

Id [%fp-132],%l3 in Line 63 

and Id [%fv-132],%l5 in Line 91 

Figure 6.1: %13 and %15 represent different index values 

The assembly instrucions in Figure 6.1 are obtained from NASA? MXM program 

which is compiled by the command "f77 -04 -S -Sun4 filename" in spare machine. The 

traditional registers %13 and %15 represent different index values. If the traditional reg-

isters are changed by ERegs, the EReg values of %13 and %15 will be bound to be the 

same. 

99 
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143. Id [%o4+4],%f25 

144- Id [%o4],%f24 

167. Id [%o2+4],%f5 

168. Id [%o2]’％f4 

169. fmuld %f4,%m,%f4 

Figure 6.2: Problem of using DATA EReg to store temporary value 

Another programming style which is dangerous for using ERegs is shown in Figure 6.2. 

Since once the value of an EReg is changed, it means that the memory content represented 

by this EReg is changed. If traditional registers are replaced by ERegs, data loaded from 

the memory locations [%o4+4] and [%o4] may be incorrect before the EReg %f4 is replaced 

by a new variable. 

Thus, there are two logical types in using ERegs. One is DATA EReg and the other 

is TEMPORARY EReg. Data EReg is used to store data in LOAD instruction while the 

TEMPORARY EReg is used to stcire the result of other instructions ( e.g. ADD, SLL, 

INC etc )• Although both of them may be physically the same, they must be pre-assigned 

logically before use. That is, once ERl is use'd as DATA EReg, ERl should not be used 

as TEMPORARY EReg to store the result except the case that the destination address 

is the memory address represented by ERl. In general, the assembly program generated 

from the present C compiler must be rewritten if EReg is used. 

6.1.2 Effect of Unrolling 

The unrolling technique is more important for the program of using EReg than for that 

of using traditional registers. This technique can enhance the performance of Implicit 

Loading and DATA Prefetching especially in the case of using lADSMC&IDLC model. 

The unrolling effect of kernel 11 - First Sum from livermore benchmark is considered. 

There are two parts in this kernel as shown in Figure 6.3. The first part is with unrolling 

size of 4 while the second part is without unrolling. In lASDMC&IDLC model, it is easy 

for registers to be Implicit Loading in part (a) even after reducing the index and branch 



,^apter 6 Compiler and Memory System Support for EReg � 

instructions and if part (b) is further reduced to as shown in Figure 6.4. It will be difficult 

to load the next data into %f24,%f25 and %f26,%f27 before the next instruction S97 is 

executed. 

for (k=l;kin;k++) 

x[k]=x[k-l]+y[k]; 

After the program is assembled, 

Part ( a ) 

SETJB %lll ； set the instruction for implicit loading and 

SET-L %lll, S87,S48,%19 ； implicit branch 

S48 faddd %fO, %!2, %f6 ； x[k] = x[k-l] + y[k] 

S65 faddd %f6, %flO, %fl2 ； x[k+l] 二 :c[(k+l)-l] + y[(k+l)] 

S12 faddd %fl2,%fl6, %fl8 ； x[k+2] = x[(k+2)-l] + y[(k+2)] 

S79 faddd %fl8，%f22, %fO ； x[k+3] 二 x[(k+3)-l] + y[(k+3)] 

Part (h ) • 

mS90 rnlimS: 

S91 faddd %f24, %f26’ %f4 ； x[k] = x[k-l] + y[k] 

S99 cmp %i5，％i2 

SI 03 bcs mL77013 

S98 inc 8’％i5 

Figure 6.3: Main "C" Statements in Kernel 11 — First Sum From Livermore Loop 

Benchmark Kernels 

SET.B %lll ； set the instruction for implicit loading and 

SET-L %lll, S100,S97,%110 ； implicit branch 

S97 faddd %f24, %!26, %f4 ； x[k] 二 x[k-l] + y[k] 

Si 04 ； Other unrelated instructions 

Figure 6.4: Modification of part two in Kernel 11 by lADSMC&IDLC model 

6.1.3 Code Scheduling Algorithm 
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for (k=0;kin;k++) { ‘ 
x[k] = u[k]+r*(z[k]+r*y[k]) + 

t*( u[k+3] + r*( u[k+2] + r*u[k+l] ) + 

t*( u[k+6] + r*( u[k+5] + r*u[k+4]))); 

} 

Figure 6.5: Example used for different code scheduling 

Sometimes, there are two or more code scheduling. In the example of Figure. 6.5, 

one schedule is just to rearrange the LOAD instructions such that although there are 

no improvement in the number of instructions issued, 12 LOAD operations within the 

looping have changed from memory-EReg to EReg-EReg due to the coherence property 

of EReg. These instructions are the loading instructions for the array elements of u[k], 

u[k+l], u[k+2], u[k+3]’ u[k+4] and u[k+5]. While the other code scheduling algorithm is 

to group the array elements u[k] & u[k+l] , u[k+2]& u[k+3], u[k+4]&u[k+5] in pairs, and 

then if the techniques illustrated in 3.2 are used, 6 LOAD instructions can be reduced. 
I 

Since the content of array element u[k+5] is the same as that of previous array element 

u[k+6], 2 LOAD operations can be changed from memory-EReg to EReg-EReg due to 

the coherence property of EReg. However, it is still difficult to ascertain that which code 

scheduling algorithm must be better because the actual performance also depend on other 

hardware supports. 

6.2 Impact on Memory System 

6.2.1 Memory Bottleneck 

Since the ERegs reduce a great number of instructions to be issued especially in lADSM 

model and lADSMC&IDLC model, the memory bandwidth become the bottleneck. The 

method of solving this problem is to increase the On-Chip memory bandwidth. As quite 

a many of LOAD instructions operate on sequential data, it will be very beneficial to be 

able to load quadword, octaword data into a set of sequential ERegs.. 
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6.2.2 Size of EReg Files 

Since the Implicit Loading k Data Prefetching will restrict one EReg to one LOAD in-

struction only within the looping, the SET.S and SETJNST instructions can be moved 

just outside of the innermost looping such that the number of ERegs can still be main-

tained at a reasonable size. Usually, the number of ERegs is similar to that of traditional 

registers. About 32 ERegs will be sufficient in each model. 

I 



Chapter 7 

Conclusions 

7.1 Summary 

This thesis introduces six new memory structures. The name of these structures is called 

EReg which stands for "Extended Register". They improve the system performance 

by 3 approaches. The first approach is to eliminate the ambiguous data aliasing. The 

second approach is to reduce the number of primitive instrucions by implementing implicit 

storing, implicit loading and implicit looping. The final approach is to implement data 

prefetching mechanism so as to reduce the cache miss ratio. These strutures are Basic 

model, ADM model, ADS model, ADSM model, lADSM model and lADSMC&IDLC 

model. 

ERegs can be managed as efficient as traditional registers. Since a small number 

of ERegs are sufficient, the cost of building an EReg file should not be very expensive. 

The operations for the features of data prefetching, implicit loading, implicit storing 

and implicit looping should be able to be carried out in parallel with other instructions 

provided that the bandwidth is large and the access time of the memory is fast. This 

is especially important for the lADSMC&IDLC model which is the superset of all other 

models. The memory structures shown in Figures 5.10 and 5.11 show all the relationships 

between the fields of the ERegs completely. Since the features supported by each EReg 

can be performed independently, each EReg can be built by several separated components. 

In hardware implementation, these components can be located in different locations or 
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areas within the processor chip. If the bandwidth and the speed of memory are improved 

in the future, the performance of ERegs can be enhanced significantly. 

7.2 Future Research 

If a conventional register is replaced by one of the ERegs, a new horizon will be unveiled 

in the field of compiler optimization technology. For future work, we would like to further 

pursue the following issues : 

• Coherence between the multiprocessors 

The coherence can be maintained in a more easy and effective way because once the 

value of shared data is changed in one processor, a signal can be generated to update 

the ERegs with same address in the other processor which cannot be achieved in 

using the traditional registers. Thus, a detail study on the application of ERegs in 

multiprocessors may be carried out in the future. 

• Incorporation of the factor of virtual memory into ERegs 

ERegs can be investigated in the environment of using virtual memory. Actually, 

some ideas of ERegs can also be applied on the design of virtual cache. Taking 

an example, there are two tags - virtual address tag and physical address tag in 

each cache line. An associative comparison can be carried out to make all aliased 

virtual address coherent by bounding them to be the same if they have same physical 

address value. Supposing that the way to select the set number is the same for both 

virtual address and physical address, an associative match can be made just within 

the same set when the value of any cache line is changed and hence the complexity 

of associativity can be greatly reduced. 

• Building a compiler and a EReg machine simulator 

Due to the time contraint, the assembly process of using ERegs is done manually 

at the present moment. If a compiler can be built to support the automatic code 

i 
i 
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generation in the future, a more detail study and evaluation of ERegs can be carried 

out. 
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Appendix A 

Source code of the Kernels 

#include <stdio.h> 

#include <stdlib.h> 

main () 
{ 

int n; 

double q,r,t; • 

double x[1500],y[1500l,z[1500]; 

void looplQ; 

q=0;n=1000;r=l;t=l; 

loopl(n，q,r,t’x’y,z); 

} 

void loopl(n,q,r,t,x,y,z) 

int n; 

double q,r,t; 

double x[],y[],z[]; 

{ 
long k; 

for ( k=0;k<n;k++) 

x[k]=q+y[k]*(r*z[k+10]+t*z[k+ll]); -

} 

Figure A . l : Kernel One : HYDRO FRAGMENT from Livermore Loop 
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#include <stdio.li〉 

#include <stdlib.li〉 

main () 
{ 

double x[1500],v[1500]; 

long n; 

void loop2(); 

n=1000; 

loop2(n,x,v); 

} 

void loop2(n,x,v) 

long n; 

double x[],v[]; 

{ … ‘ . 
long i,ii,ipntp’ipnt’k; 

ii = n; 

ipntp = 0; 

do { 

ipnt=ipntp; 

ipntp+=ii; 

n/=2； 

i=ipntp - 1; 

for (k=ipnt+l;k<ipntp;k=k+2) { 

i++; 
x[i]=x[k]-v[k]*x[k-l]-v[k+l]*x[k+l]; 

} 
} while(ii^O); 

} . 

Figure A.2: Kernel Two : ICCG EXCERPT from Livermore Loop 

» *. 
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#include <stdio.h> 

#include <stdlib.h> 

main () 
{ 

long n; 

double x[1500],z[1500]; 

double q; 

double loop3(); 

n=1000; 

q=loop3(n,x,z); 

} 
I 

double loop3(n,x,z) 

long n; 

double x[],z[]; 

{ 

double q; 

long k; 

for ( k=0;k<n;k++) { 

q+=z[k]氺 x[k]; 

} 
return(q); 

} 

Figure A.3: Kernel Three : INNER PRODUCT from Livermore Loop 

113 



#include<stdio.h〉 

#include<stdlib.h> 

main () 

{ -
long n; 

double x[1500],y[1500]; 

void loop4(); 

n = 1000; 

loop4(n,x,y); 

} 

void loop4(n,x,y) 

long n; 

double x[],y[]; • 

{ 
long m,k,lw,j; 

double temp; 

m=(1001-7)/2; 

for ( k二6;k<1001;k=k+m) { 

Iw = k-6; 

temp = x[k-l]; 

for (j=4;j<n;j=j+5) { 

temp x[lw]*y|j); 

lw++; 

} 
x[k-l]=y[4]*temp; 

} 
} 

Figure A.4: Kernel Four : BANDED LINEAR EQUATIONS from Livermore Loop 
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#include <stdio.h> 

#include <stdlib.h> -

main () 
{ 

long n; 

double x[1500],y[1500],z[1500]; 

void loop5(); 

I I n=1000; 
loop5(n,x,y,z);. 

} 

void loop5(n,x,y,z) 

long n; 

double x[],y[],z[]; 

{ 
long i; 

for (i=l;i<n;i++) 

x[i]=z[i]*(y[i]-x[i-l]); 

} 

Figure A.5: Kernel Five : TRI-DIAGONAL ELIMINATION, BELOW DIAGONAL 

from Livermore Loop 

» » 

115 



#include <stdio.h> -

#include <stdlib.h> 

main () 
{ 

long n; 

double w[1500],b[1500][1500]; 

void loop6(); 

n=1000; 

loop6(n,w,b); 
} . 

void loop6(n,w,b) 

long n; 

double w[],b[][1500]; 
{ 

long i,k; 

for (i=l;i<n;i++) 

for (k=0;k<i;k++) 

w[i]+=b[k][i]*w[(i-k)-l]; 

} 

Figure A.6: Kernel Six : GENERAL LINEAR from Livermore Loop 
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#include <stdio.h> 

#include <stdlib.h> 

main () -

{ 
long n; 

double r,t; 

double x[1500],u[1500l,z[1500],y[1500]; 

void loop7(); 

n 二 1000;r=l;t=l; 

loop7(n,r,t,x,u,z,y); 

} 
I 

void loop7(n,r,t,x,u,z,y) 

long n; 

double r,t; 

double x[],u[],z[] ,y[]; 

{ 
long k; 

for (k=0;k<n;k++) { 

x[k]= u[k]+r*(z[k]+r*y[k])+ 

t*(u[k+3]+r*(u[k+2]+r*u[k+l])+ 

t*(u[k+6]+r*(u[k+5]+r*u[k+4]))); 

} 
} 

Figure A.7: Kernel Seven : EQUATION OF STATE FRAGMENT from Livermore 

Loop 
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#include <stdio.h> 

#include <stdlib.h> 

main () 

{ ~ 
long n; 

double u 1 [2] [1500] [5],u2[2] [1500] [5] ’ u3[2] [1500] [5]； 

double all,al2，al3’a21’a22’a23’a31’a32，a33’sig; 

double dul[1500]’du2[1500]’du3[1500]; 

void loop8(); 

n = 1000;all = l ’a l2=l ’a l3=l ’a21 = l’a22=l，a23=l’a31=l’a32=l’a33=l’sig=l; 

loop8{n,ul,u2,u3,all,al2,al3,a21,a22,a23,a31,a32,a33,sig,dul,du2,du3); 

} 

void loop8(n’ul’u2，u3’all’al2，al3’a21，a22，a;23,a31’a32’a33’sig’dul’du2，du3) 

long n; 

double u 1 • [1500] [5]，u2 • [1500] [5] ’ u3[] [1500] [5]； 

double all’al2’al3’a21’a22’a23’a31’a32’a33’sig; 

double dul•，du2[]’du30; 
{ • 

long nll,nl2,kx,ky; 

nil = 0; 

nl2 = 1; 

for ( kx= l ； kx<3 ； kx++ ){ 

for ( ky= l ； ky<n ； ky++ ) { 

dul[ky] = ul[nll][ky+l][kx] - ul[nll][ky-l][kx]; 

du2[ky] = u2[nll][ky+l][kx] - u2[nll][ky-l][kx]; 

du3[ky] = u3[nll][ky+l][kx] - u3[nll][ky-l][kx]; 

ul[nl2][ky][kx] = 

ul[nll][ky][kx]+all*dul[ky]+al2*du2[ky]+al3*du3[ky] + sig* 

(ul[nll][ky][kx+l]-2.0*ul[nll][ky][kx]+ul[nll][ky][kx-l]); 

u2[nl2][ky][kx]=： 

u2[nllj[ky][kx]+a21*dul[ky]+a22*du2[ky]+a23*du3[ky] + sig* 

(u2[nll][ky][kx+l]-2.0*u2[nll][ky][kx]+u2[nll][ky][kx-l]); 

u3[nl2][ky][kx]= 

u3[nl 1] [ky] [kx]+a31 *du 1 [ky]+a32*du2[ky]+a33*du3[ky] + sig* 

(u3[nll][ky][kx+l]-2.0*u3[nll][ky][kx]+u3[nll][ky][kx-l]); 

} 
} 

} 

Figure A.8: Kernel EIGHT : ADI INTEGRATION from Livermore Loop 

I 
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T înclude <stdio.h> 
#include <stdlib.h> 

mainQ 
{ 

long n; 

double dm22,dm23,dm24,dm25,dm26,dm27,dm28,c0; 

double px[1500][25]; 

void loop9(); 

n=1000;dm22=l;dm23=l;dm24=l;dm25=l;dm26=l;dm27 二 I;dm28=l;c0=l; 

Ioop9(n,dm22,dm23,dm24,dm25,dm26,dm27,dm28,c0,px); 

} 
I 

void Ioop9(n,dm22,dm23,dm24,dm25,dm26,dm27,dm28,c0,px) 

long n; 

double dm22,dm23,dm24,dm25,dm26,dm27,dm28,c0; 

double px[|[25]; 
{ 

long i; 

for ( i=0 ； i<n ； i++ ) { 

px[i][Oj = dm28*px[i][12] + dm27*px[i][ll] + dm26*px[i][10] + 

dm25*px[i][ 9] + dm24*px[i][ 8] + dm23*px[i][ 7] + 

dm22*px[i][ 6] + cO*( px[i][ 4] + px[i][ 5]) + px[i][ 2]; 

} 
} 

Figure A.9: Kernel Nine : INTEGRATE PREDICTORS from Livermore Loop 
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#include <stdio.h> 

#include <stdl ib.h> 

main() 
{ 

long i，n; 

double ar,br,cr,cx[1500] [25]，px[1500] [25]； 

void looplO(); 

n=1000; a r= l ;b r= l ; c r= l ; 

looplO(n’ar’br，cr，cx’px); 

} 

void looplO(n,ar,br,cr,cx,px) 

long n; 

double ar,br,cr,cx[] [25] ,px[][25]； 
{ 

long i; 

for ( i=0 ； i<n ； i++ ) { 

ar cx[i][ 4]; 

br = ar - px[i][ 4]; 
px[i][4] = ar; 

cr = br - px[i][ 5]; 

px[i][ 5] =br; 
ar = cr - px[i][ 6]; 

px[i][6] = cr; 

br = ar - px[i][ 7]; 

px[i][7] = ar; 
cr = br - px[i][ 8]; 

px[i][ 8] =br; 
ar = cr - px[i][ 9]; 

px[i][9] =cr; 
br = ar - px[i][10]; 
Px[i][10] = ar; 

cr =br-px[i][ll]; 
px[i][ll] = br; 
px[i][13] = cr - px[i][12]; 
px[i][12] = cr; 

} ‘ 

} 

Figure A.IO: Kernel Ten : DIFFERENCE PREDICTORS from Livermore Loop 

» ‘ 、 
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#include <stdio.h> 

#include <stdlib.h> 

mainQ 
{ 

long k,n; 

double x[1500],y[1500]; 

void loopll(); 

n=1000; 

loopll(n,x,y); 
} • 

void loopll(n,x,y) 

long n; 

double x[],y[]; 

{ 

long k; 

x[0]=y[0]; 

for (k=l;k<n;k++) 

x[k]=x[k-l]+y[k]; 

} 

Figure A . l l : Kernel Eleven : FIRST SUM from Livermore Loop 

» »• 
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#include <stdio.h> -

#include <stdlib.h> 

main() 
{ 

long n; 

double x[1500l,y[1500]; 

void loopl2(); 

n=1000; 

loopl2(n,x,y); • 

} 

void ioopl2(n,x,y) 

long n; 

double x[],y[]; 

{ 
long k; 

for (k=0;k<n;k++) 

x[k]=y[k+l]-y[k]; 

} 

Figure A.12: Kernel Twelve : FIRST DIFFERENCE from Livermore Loop 
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c 
SUBROUTINE MXM (A, B’ C, L, M, N) 
IMPLICIT REAL*8 (A-H，0-Z) 
DIMENSION A(L,M), B(M,N), C(L,N) 

C 

C 4-WAY UNROLLED MATRIX MULTIPLY ROUTINE FOR VECTOR COMPUTERS. 
C M MUST BE A MULTIPLE OF 4. CONTIGUOUS DATA ASSUMED. 
C D H BAILEY 11/15/84 
C 

DO 100 K = 1, N 

DO 100 I = 1, L 
C(I’K) = O.DO • 

100 CONTINUE 

DO 110 J = 1, M, 4 

DO 110 K = 1，N 

DO 110 I = 1, L 
C(I’K) = C(I,K) + A(I’J) * B(J,K) 

+ A(I,J+1) * B(J+1,K) + A(I，J+2) * B(J+2’K) 
+ A(I,J+3) * B(J+3,K) 

110 CONTINUE 
C 

RETURN 
END 

Figure A.13: Kernel Thirteen : MXM.F from NASA7 Benchmark 
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c 
SUBROUTINE CFFT2D2 (IS, M, M l , N, X, W, IP) 
IMPLICIT REAL.8(A-H,0-Z) 

C 
C PERFORMS COMPLEX RADIX 2 FFTS ON THE SECOND DIMENSION OF THE 2-D ARRAY X 
C D H BAILEY 11/15/84 
C 

COMPLEX»16 X(M1,N), W(N), CT, CX ~ 
INTEGER IP(2’N) 
DATA PI/3.141592653589793D0/ 

C 
C IF IS = 0 THEN INITIALIZE ONLY 
C 

N2 = N / 2 
IF (IS .EQ. 0) THEN 
DO 100 I = 1, N2 

T = 2.DO * PI » (I-l) / N 
W(I) = DCMPLX (COS (T), SIN (T)) 

100 CONTINUE 
RETURN 
BNDIF 

C 
C REFORM FORWARD OR BACKWARD FFTS ACCORDING TO IS = 1 OR -1 
C 

DO 110 I = 1, N 
IP(1’I) = I 

110 CONTINUE 
L = 1 
I I = 1 

c • 
120 12 = 3 - II 

DO 130 J = L, N2, L 
CX = W(J-L+1) 

IF (IS .LT;.X))= CONJG (CX) 
DO 130 I = J-L+1, J 

II = IP(I1’I) 
IP(I2,I+J-L) = II 
IM = IP(I1’I+N2) 
IP(I2,I+J) = IM 
DO 130 K = 1, M 

CT = X(K,I I ) - X(K, IM) 
X(K, I I ) = X(K, I I ) + X(K, IM) 
X(K, IM) = CT * CX 

130 CONTINUE 
L = 2 » L 
I I = 12 
IF (L .LEGffirrp 120 

C 
DO 150 I = 1’ N 

II = IP(I1’I) 
IF (II .GT. I) THEN 

DO 140 K = 1, M 
CT = X(K’I) 
X(K,I) = X(K, I I ) 
X(K,I I ) = CT 

140 CONTINUE 
ENDIF 

150 CONTINUE 
C 

RETURN 
END 

Figure A.14: Kernel Fourteen : CFFT2D2.F from NASA7 Benchmark 
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c 
SUBROUTINE CHOLSKY (IDA, NMAT, M, N, A, NRHS, IDB, B) 
IMPLICIT REAL*8(A-H,0-Z) 

C _ 
C CHOLESKY DECOMPOSITION/SUBSTITUTION SUBROUTINE. ~ 
C 

C 11/28/84 D H BAILEY MODIF IED FOR NAS KERNEL TEST 
C 

RBALH.8 A(0:IDA, -M:0, 0:N), B(0:NRHS, 0:IDB, 0;N), 
• EPSS(0;256) 
DATA EPS/lD-13/ 

C 
C CHOLESKY DECOMPOSIT ION 
C 

DO 1 J = 0, N 
10 = MAX ( -M, -J ) 

C 
C OFF DIAGONAL ELEMENTS 
C 

DO 2 I = 10, -1 
DO 3 J J = 10 - I, -1 

DO 3 L = 0’ NMAT 
3 A(L,I ,J) = A(L,I ,J) - A(L,JJ , I + J) * A(L,I + JJ , J ) 

DO 2 L = 0, NMAT 

2 A(L,I ,J) = A(L,I ,J) » A(L,0,I + J) 
C 
C STORE INVERSE OF DIAGONAL ELEMENTS 
C 

DO 4 L = 0, NMAT 
4 BPSS(L) = EPS • A(L’0’J) 

DO 5 J J = 10’ -1 
DO 5 L = 0, NMAT 

5 A(L,0,J) = A(L’0,J) - A(L,JJ , J ) • • 2 
DO 1 L = 0, NMAT 

1 A(L,0,J) = 1. / SQRT ( ABS (EPSS(L) + A(L ,0 , J ) ) ) 
c 
C SOLUTION 
C 

DO 6 I = 0, NRHS 
DO 7 K = 0, N 
DO 8 L = 0, NMAT 

8 B(I’L’K) = B(I’L,K) » A(L’0’K) 
DO 7 J J = 1’ MIN (M, N-K) 

DO 7 L = 0, NMAT 

7 B(I ,L ,K+JJ) = B(I ,L,K+JJ) - A(L,-JJ,K + JJ ) . B(I’L’K) 

DO 6 K = N, 0, -1 
DO 9 L = 0, NMAT 

9 B(I’L,K) = B(I,L’K) » A(L’0,K) 
DO 6 J J = 1’ MIN (M, K) 

DO 6 L = 0, NMAT 
6 B(I,L,K-JJ) = B(I,L,K-JJ) - A(L, . J J ,K) . B(I,L,K) 
C 

RETURN 
END 

Figure A.15: Kernel Fifteen : CHOLSKY.F from NASA? Benchmark 
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Appendix B 

Program Analysis 

B.l Program analysed by Basic Model 

1. Kernel One - Hydro fragment 

The main C statements are 

I 

for ( k=0;k<n;k++) 

x[k]=q+y[k]*(r*z[k+10]+t*z[k+ll]); 

This kernel is used as an example in Basic Model. Since the variable of z[k+ir 

is equal to the element z[k+10] in next iteration, only the element of z[k+ll] is 

required to be loaded in each iteration after ERegs replaced the traditional registers 

and solved aliasing problem. 

2. Kernel Two - ICCG excerpt ( Incomplete Cholesky Conjugate Gradient ) 

The main C statements are 

i = ipntp - 1 

for ( k=ipnt+l;k<ipntp;k=k+2) { -

i + +； 

x[i]=x[k]-v[k]*x[k-l]-v[k+l]*x[k+l] 

} 

The above program segment are translated into two assembly program code seg-

ments. One is with an unrolling size 2 while another is without unrolling. By using 
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EReg, the aliasing problem is solved. Only one of the the element of x[k-l] or x[k-f 1 

is required to be loaded such that the number of load instructions can be reduced 

from 20 to 16. 

3. Kernel Three - Inner product 

The main "C" statements are 

for ( k=0;k<n;k++) _ 

q+=z[k]+x[k]; 

Since there are no aliasing problem, Basic model cannot improve the performance. 

4. Kernel Four - Banded linear equations 

The main "C" statements are 

temp=x[k-l]; 

for (j:=4;j<n;j=j+5) { 
I 

temp-=x[lw]*y[j]; 

lw++; 

} 

x[k-l]=y[4]*temp; 

There are no aliasing problem. No benefit can be achieved in Basic model. Moreover, 

since the variable TEMP is directly loaded from the element x[k-l], the value element 

x[k-l] will change with the variable TEMP and hence error will occur. In order to 

cope with this problem, EReg cannot directly replace the traditional register. An 

extra EReg is used to hold the value from x[k-l] first and then copied its value to the 

EReg copy of TEMP. Therefore, the total number of instructions in basic model is 

increased slightly compared with the original number of using traditional registers. 

5. Kernel Five - Tri-diagonal Elimination, Below Diagonal 

The main "C" statements are : 

for (i=l;i<n;i++) 、 , • 

x[i]=z[iH y[i]-x[i-l]) 
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Since every element of x[i] is stored and loaded explicitly once only, there is no 

improvement after using basic model. 

6. Kernel Six - General Linear recurrence equations 

The main "C" statements are : 

for (i=l;i<n;i++) ... loopl 

for (k=0;k<i;k++) ... loop2 -

w[i]+=b[k][i]*w[(i-k)-l]; 

The value of w[i] is continued to be updated and stored within loop2 if traditional 

registers are used. The reason is that if the value of w[i] is not stored immediately 

after each “ w[i]+=b[k][i]*w[(i-k)-l] “ performed, error may result if other processes 

or instructions read data from the memory location of w[i] at that time. However, it 

will be possible to move the store instruction of w[i] outside loop2 if EReg is used. It 

is because every loading opefations can check if the data have been already existed 

in EReg file. If yes, the data will be read from the EReg file directly; Otherwise, 

the date will be read from the specified memory location. 

7. Kernel Seven - Equation of state fragment 

The main "C" statements are : 

for (k=0;k<n;k++) { 

x[k] = u[k]+r*(z[k]+r*y[k]) + 

u[k+3] + r*( u[k+2] + r>Ku[k+l] ) + 

t*( u[k+6] + r*( u[k+5] + r*u[k+4]))); 

} 

There are two code scheduling algorithms. One is just to rearrange the load instruc-

tions such that although there are no improvement in the number of instructions 

issued, 12 load operations within the looping have changed from memory-EReg to 

EReg-EReg due to the basic property of EReg. These instructions are the load-

ing instructions for the elements u[k], ii[k+l], u[k+2], u[k+3]', u[k+4] and u[k+5:. 
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While another code scheduling algorithm is to reduce 6 load instructions, but only 2 

load operations will change from memory-EReg to EReg-EReg due to the coherence 

property of EReg. Thus, it is very difficult to say which code scheduling algorithm 

must be better. 

8. Kernel Eight - ADi integration 

The main ” C” statements are _ 

C27 for ( kx=l ； kx<3 ； kx++ ){ 

C28 for ( ky=l ； ky<n ； ky++ ) { 

C29 dul[ky] = ul[nll][ky+l][kx] - ul[nll][ky-l][kx]; 

C30 du2[ky] = u2[nll][ky+l][kx] - u2[nll][ky-l][kx]; 

C31 du3[ky] = u3[nll][ky+l][kx] - u3[nll][ky-l][kx]; 

C32 ul[nl2][ky][kx]= 

C33 ul[nll][ky][kx]+all*dul[ky]+al2*du2[ky]+al3*du3[ky] + sig* 

C34 (ul[nll][ky][kx+l]-2.0*ul[nll][ky][kx]+ul[nll][ky][kx-l]); 

. C 3 5 u2[nl2][ky][kx]= 

C36 u2[nll][ky][kx]+a21*dul[ky]+a22*du2[ky]+a23*du3[ky] + sig* 

C37 (u2[nll][ky][kx+l]-2.0^u2[nll][ky][kx]+u2[nll][ky][kx-l]); 

C38 u3[nl2][ky][kx]= 

C39 u3[nll][ky][kx]+a31*dul[ky]+a32*du2[ky]+a33*du3[ky] + sig* 

C40 (u3[nll][ky][kx+l]-2.0*u3[nll][ky][kx]+u3[nll][ky][kx-l]); 

C41 } 

C42 } 

The load instructions for dul[ky], du2[ky] and du3[ky] can be reduced from 3 ( i.e 

C33,C36,C39 ) to 1 ( i.e C33 only ) if EReg is used. The aliasing problem can be 

reduced. Then, there are three pairs : 

• ul[nll][ky-l][kx] k u[nll][ky][kx+1]； 

• u2[nll][ky-l][kx] k u2[nll][ky][kx+l]; and 

• u3[nll][ky-l][kx] k u3[nll][ky][kx+l；. 

Only one elment for each pair is required to be loaded. 

9. Kernel Nine — Integrate predictors 

The main "C" statements are 
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C23 for ( i=0 ； i<n ； i++ ) { 

C24 px[i][0] = dm28*px[i][12] + dm27*px[i][ll] + dm26>^px[i][l0] + 

C25 dm25*px[i][ 9] + dm24*px[i][ 8] + dm23»px[i][ 7] + 

C26 dm22*px[i][ 6] + cO^( px[i][ 4] + px[i][ 5]) + px[i][ 2]; 

C27 } 

Since there are no aliasing problems within the whole program segment, No im-

provement can be obtained aftering using ERegs. 

10. Kernel Ten — Difference predictors 

The main "C" statements are 

C22 for ( i=0 ； i<n ； i++ ) { 

C23 ar = cx[i][4]; 

C24 br 二 ar-px[i][ 4]; 

C25 px[i][ 4] = ar; 

C26 cr = br - px[i][ 5]; 

C27 px[i][ 5] = br; 

C28 ar = cr - px[i][f]; 

C29 px[i][ 6] = cr; 

C30 br = ar - px[i][ 7]; 

C31 px[i][ 7] = ar; 

C32 cr = br-px[i][8]; 

C33 px[i][ 8] = br; 

C34 ar = cr - px[i][9]; 

C35 px[i][ 9] = cr; 

C36 br = ar - px[i][lO]; 

C37 px[i][10] = ar; 

C38 cr = br - px[i][ll]; 

C39 px[i][ll] = br; 

C40 px[i][l3] = cr - px[i][l2]; 

C41 px[i][l2] = cr; 

C42} 

There are no aliasing problem within the aboved program segment. 

11. Kernel Eleven - First sum 

The main "C" statements are 

C24 for (k=l;k<n;k++) ‘ . 

C25 x[k]=x[k-l]+y[k]; 
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There are no aliasing problem within the above program segment. 

12. Kernel Twelve - First difference 

The main "C" statements are 

C21 for (k二0;k<n;k++) 

C22 x[k]=y[k+l]-y[k]; 

Since the value of y[k+l] is equal to the value of y[k] in next looping, the number 

of load operations is reduced from two to one for each k after using EReg. The 

percentage of load instructions is nearly reduced by half. 

13. Kernel Thirteen - Mxm.f 

The main "Fortran" statements are 

DO 110 J = 1’M，4 

Do 110 K=1,N 

Do 110 1=1,L 

C(I，K) = C( I，K) + A(I’J) + B(J,K) 

+ A(I,J+1)*B(J+1,K)+A(I,J+2)^B(J+2,K) 

+ A(I,J+3)*B(J+3,K) 

If the A,B and C are completely different ( i.e No overlapping ), no aliasing problem 

occurs and hence no benefit can be obtained from using ERegs. 

14. Kernel Fourteen — CfF2ttdl.f 

The main "Fortran" statements are 

F31 12012 - 3 - 1 1 

F32 DO 130 J = L, N2, L -

F33 CX = W(J-L+1) 

F34 IF (IS .LT. 0) CX = CONJG (CX) 

F35 DO 130 I = J-L+1, J 

F36 II = IP(I1,I) 

F37 IP(I2,I+J-L) = I I 

F38 IM = IP(I1,I+N2) , . 

F39 IP(I2,I+J) = IM 
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F40 DO 130 K = 1, M 

F41 CT = X(K’II) - X(K,IM) 

F42 X(K’II) = X(K,II) + X(K,IM) 

F43 X(K,IM) = CT * CX 

F44 130CONTINUE 

F45 L = 2 * L 

F46 11 = 12 

F47 IF (L .LE. N2) GOTO 120 

Since the compiler cannot determine if there are some aliasing problem among the 

variables, if EReg is used, the coding can be rescheduled such that the loading of 

X(K,II) and X(K,IM) in the F42 can be eliminated. Moreover, the explicit store of 

CT in F41, the loading of CT and CX in F43 can be eliminated. 

15. Kernel fifteen 一 Cholesky.f 

The main "Fortran" statements are 

F39 DO 6 I = 0, NRHS 

F40 DO 7 K = 0，N 

F41 DO 8 L = 0, NMAT 

F428 B(I,L,K) = B(I,L,K) * A(L’0’K) 

F43 DO 7 JJ = 1, MIN (M, N-K) 

F44 DO 7 L = 0, NMAT 

F457 B(I’L’K+JJ) = B(I,L,K+JJ) - A(L,-JJ,K+JJ) * B(I’L’K) 

F4ec 

F47 DO 6 K = N, 0，-1 

F48 DO 9 L = 0，NMAT 

F499 B(I，L’K) = B(I,L,K) * A(L,0,K) 

F50 DO 6 JJ = 1，MIN (M, K) 

F51 DO 6 L = 0, NMAT 

F526 B(I，L’K-JJ) = B(I，L’K-JJ) - A(L’-JJ，K) * B(I’L’K) 

There are four parts. " 

(a) F41 - F42 with 740952 

(b) F44 - F45 with 4020016 

(c) F48 - F49 with 740952 ’ ‘‘ 

132 



’ (d) F51 - F52 with 3710784 

There are no aliasing problem in these four parts, but when the techniques used to 

reschedule the coding in part two, some dummy instructions disappear. For detail, 

please refer to the report [Cha95 . 

B.2 Program analysed by ADM Model -

1. Kernel One — Hydro fragment 

The main C statements are 

for ( k=0;k<n;k++) 

x[k]=q+y[k]*(r»z[k+10]+t*z[k+ll]); 

The elements z[k+10] k z[k+ll] will be loaded for each k since there may be an 
I 

aliasing problem between x[k] and z[k+ll] or x[k] and z[k+12]. However, if EReg 

is used, we can reschedule the coding such that the total number of 4 loading 

instructions z[k+ll], z[k+10], z[k+12] and z[k+ll] in one looping will be decreased 

to only 2 loading instructions z[k+ll] and z[k+12] with ONE instruction outside 

the looping "for ( k=0;k<n;k++)”. The STORE instructions can not be reduced. 

Therefore, the performance of ADM model will be same as Basic model. 

2. Kernel Two - ICCG excerpt ( Incomplete Cholesky Conjugate Gradient ) 

The main C statements are 

i = ipntp - 1 

for ( k=ipnt+l;k<ipntp;k=k+2) { ^ 

i + +； 

x[i]=x[k]-v[k]*x[k-l]-v[k+l]*x[k+l] 

} 

The above program segment are translated into an assembly program code segment 

with an unrolling size 2 followed by another assembly program code segment without 
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unrolling. By using EReg, the aliasing problem between x[k-l] and x[k+l] can 

be solved so that the number of load instructions can be reduced from 20 load 

instructions to 16 instructions. x[i] will not be aliased to x[k-l], x[k] and x[k+l . 

Therefore, no benefit can be obtained in performing implicit store. 

3. Kernel Three - Inner product 

The main "C" statements are _ 

for ( k=0;k<n;k++) 

q+=z[k]+x[k]; 

Since there are no aliasing problem, the features in the ADM model cannot improve 

the performance 

4. Kernel Four - Banded linear equations 

The main "C" statements an3 

temp=x[k-l]; 

for (j=4;j<n;j=j+5) { 

temp-=x[lw]*y[j]; 

lw++; 

} 
x[k-l]=y[4]*temp; 

There are no aliasing problem. No benefit can be achieved in Basic model. Moreover, 

there is an overhead that the variable TEMP can be directly loaded from x[k-

1]. Therefore, the total number of instructions in basic model is increased slightly 

compared with original one using traditional registers. However, since the data of 

x[k-l] has been loaded, the explicit store ”x[k-l]=:y[4]*temp，，can be changed to 

implicit store and hence the total number of instructions and total number of store 

instructions are reduced in using ADM model. 

5. Kernel Five - Tri-diagonal Elimination, Below Diagonal 

The main "C" statements are : 
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for (i=l;i<n;i++) 

x[i]=:z[i]*(y[i]-x[i-l]) 

Since every result x[i] must be stored explicitly and each x[i-l] is loaded only once, 

there is no improvement after using basic model. However, all the store instructions 

can be reduced if the implicit store is supported, i.e ADM model. 

6. Kernel Six - General Linear recurrence equations ~ 

The main "C" statements are : 

for (i=l;i<n;i++) ... loopl 

for (k=0;k<i;k++) ... loop2 ” 

w[i]+=b[k][i]*w[(i-k)-l]; 

The value of w[i] is continued to be updated and stored within loop2 if traditional 

registers are used. The reason is that if the value of w[i] is not stored immediately 

after each " w[i]+=b[k][i]*w[(i-k)-l] “ performed, error may result if other processes 

or instructions read data from the memory location of w[i] at that time. However, it 

will be possible to move the store instruction of w[i] outside loop2 if EReg is used. It 

is because every loading operations will check if the data have been already existed 

in EReg file. If yes, the data will be read from the EReg file directly; Otherwise, the 

date will be read from the specified memory location. If implicit store is supported 

(i .e ADM model ), nearly all explicit stores ( storing the value of w[i] ) can be 

changed to implicit stores. 

7. Kernel Seven - Equation of state fragment 

The main "C" statements are : 一 

for (k=0;k<n;k++) { 

x[k] = u[k]+r*(z[k]+r*y[k]) + 

t*( u[k+3] + r*( u[k+2] + r*u[k+l] ) + 

t*( u[k+6] + r*( u[k+5] + r*u[k+4]))); 
} 、 
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There are two code scheduling algorithms. One is just to rearrange the load instruc-

tions such that although there are no improvement in the number of instructions 

issued, 12 load operations within the looping have changed from memory-register 

to register-register due to the basic property of EReg. These instructions are the 

loading instructions for u[k], u[k+l], u[k+2], u[k+3], u[k+4] and u[k+5]. While the 

other code scheduling algorithm is to reduce 6 load instructions, but only 2 load 

operations will change from memory-register to register-register due to the basic 

property of EReg. Thus, it is very difficult to say which code scheduling algorithm 

must be better. Since the value of x[k] is not loaded, the explicit store of x[k] cannot 

be changed to implicit store. Thus, the extra feature of ADM model is useless in 

this program. 

8. Kernel Eight - ADi integration 

The main "C" statements are 

C27 for ( kx=l ； kx<3 ； kx++ ){ 

C28 for ( ky=l ； ky<n ； ky++ ) { 

C29 dul[ky] = ul[nll][ky+l][kx] - ul[nll][ky-l][kx]; 

C30 du2[ky] = u2[nll][ky+l][kx] - u2[nll][ky-l][kx]; 

C31 du3[ky] = u3[nll][ky+l][kx] - u3[nll][ky-l][kx]; 

C32 ul[nl2][ky][kx]= 

C33 ul[nll][ky][kx]+all*dul[ky]+al2*du2[ky]+al3*du3[ky] + sig* 

C34 (ul[nll][ky][kx+l]-2.0*ul[nll][ky][kx]+ul[nll][ky][kx-l]); 

C35 u2[nl2][ky][kx]= 

C36 u2[nll][ky][kx]+a21*dul[ky]+a22*du2[ky]+a23*du3[ky] + sig* 

C37 (u2[nll][ky][kx+l]-2.0*u2[nll][ky][kx]+u2[nll][ky][kx-l]); 

C38 u3[nl2][ky][kx]= 

C39 u3[nll][ky][kx]+a31*dul[ky]+a32*du2[ky]+a33*du3[ky] + sig* 

C40 (u3[nll][ky][kx+l]-2.0*u3[nll][ky][kx]+u3[nll][ky][kx-l]); 

C41 } 

C42 } ' 

The load instructions for dul[ky], du2[ky] and du3[ky] can be reduced from 3 ( 

i.e C33,C36,C39 ) to 1 ( i.e C33 only ) 

if EReg is used. Moreover, the aliasing 

problem can be reduced between ul[nll][ky-l][kx] k u[nll][ky][kx+l], u2[nll][ky-

l][kx] k u2[nll][ky][kx+l] and u3[nU][ky-l][kx] k u3[nll][ky][kx+l]. If implicit Store 
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is supported by the EReg (i.e ADM model ), the store instructions for dulfky]( 

C29 ), du2[ky] (C30) and du3[ky] ( C31 ) can be removed by first loading dul[ky], 

du2[ky] and du3[ky]. 

9. Kernel Nine - Integrate predictors 

The main "C" statements are 

C23 for ( i=0 ； i<n ； i++ ) { “ 

C24 px[i][0] = dm28*px[i][l2] + dm27*px[i][ll] + dm26*px[i][l0] + 

C25 dm25*px[i][ 9] + dm24*px[i][ 8] + dm23*px[i][ 7] + 

C26 dm22*px[i][ 6] + cO*( px[i][ 4] + px[i][ 5]) + px[i][ 2]; 

C27 } 

Since there are no aliasing problems within the whole program segment, No im-

provement can be obtained after using ADM model. 

10. Kernel Ten - Difference predictors 
I 

The main "C" statements are 

C22 for ( i=0 ； i<n ； i++ ) { 

C23 ar = cx[i][4]; 

C24 br = ar- px[i][ 4]; 

C25 px[i][ 4] = ar; 

C26 cr = br - px[i][5]; 

C27 px[i][ 5] = br; 

C28 ar = cr - px[i][6]; 

C29 px[i][ 6] = cr; 

C30 br = ar - px[i][ 7]; 

C31 px[i][ 7] = ar; 

C32 cr = br - px[i][8]; 

C33 px[i][ 8] = br; 

C34 ar = cr- px[i][9]; 

C35 px[i][ 9] = cr; -

C36 br = ar - px[i][lO]; 

C37 px[i][lO] = ar; 

C38 cr = br - px[i][ll]; 

C39 px[i][ll] = br; 

C40 px[i][l3] = cr - px[i][l2]; 

C41 px[i][l2] = cr; . ‘ ‘ 

042} 
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‘ Since there are no aliasing problem within the above program segment. No improve-

ment can be obtained after using ADM model. 

11. Kernel Eleven - First sum 

The main "C" statements are 

C24 for (k=l;k<n;k++) 

C25 x[k]=x[k-l]+y[k]; -

Since the value of x[k] has been loaded before, all explicit stores of x[k] can be 

changed to implicit stores if ADM model is adopt. 

12. Kernel Twelve - First difference 

The main "C" statements are 

C21 for (k=0;k<n;k++) 

C22 x[k]=y[k+l]-y[k]; 

Since the value of y[k+l] is equal to the value of y[k] in next looping, the number 

of load operations is reduced from two to one for each k after using EReg. The 

percentage of load instructions is nearly reduced by half. Since the value of x[k 

hasn't been loaded before, all explicit stores of x[k] cannot be changed to implicit 

stores even if ADM model is adopt. 

13. Kernel Thirteen - Mxm.f 

The main “ Fortran" statements are 

DO 110 J=1,M,4 _ 

Do 110 K=1,N 

Do 110 1=1,L 

C(I’K) = C( I’K) + A(I，J) + B(J’K) 

+ A(I’J+1)*B(J+1，K)+A(I’J+2)*B(J+2’K) 

+ A(I,J+3)*B(J+3，K) 

138 



If the A,B and C are completely different ( i.e No overlapping ), no aliasing problem 

occur and hence no benefit obtained from using ERegs. However, if ADM model is 

used, the total of 1618247 store instructions will be reduced to the number of 35111 

instructions only. This is due to the implicit store can be performed on the store of 

C(I,K) because C(I,K) has been read before the store operation. 

14. Kernel Fourteen 一 Cff2ttdl.f 

The main "Fortran" statements are 

F31 12012 = 3-11 

F32 DO 130 J = L, N2, L 

F33 CX = W(J-L+1) 

F34 IF (IS .LT. 0) CX = CONJG (CX) 

F35 DO 130 I = J-L+1, J 

F36 II = IP(I1’I) 

F37 IP(I2，I+J-L) = II 

F38 IM = IP(I1，I+N2) 

F39 IP(I2,I+J) = IM 
I-

F40 DO 130 K = 1, M 

F41 CT = X(K,II) - X(K,IM) 

F42 X(K’II) = X(K,II) + X(K,IM) 

F43 X(K’IM) = CT * CX 

F44 130CONTINUE 

F45 L = 2 * L 

F46 II = 12 

F47 IF (L .LE. N2) GOTO 120 

Since the compiler may be worry that there are some aliasing problem among the 

variables, if EReg is used, the coding can be rescheduled such that the loading of 

X(K,II) and X(K,IM) in the F42 can be eliminated. Moreover, the explicit store of 

CT in F41 and the loading of CT and CX in F43 can be eliminated. If implicit store 

is supported ( i.e using ADM model ), all the remaining explicit store in F42-F43 

can be changed to implicit store. 

15. Kernel fifteen - Cholesky.f 

The main "Fortran" statements are , .. • 
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‘ F39 DO 6 I = 0’ NRHS 

F40 DO 7 K = 0, N 

F41 DO 8 L = 0’ NMAT 

F428 B(I’L’K) = B(I’L’K) * A(L’0’K) 

F43 DO 7 JJ = 1, MIN (M, N-K) 

F44 DO 7 L = 0, NMAT 

F457 B(I ,L,K+JJ) = B(I’L，K+JJ) - A(L,-JJ’K+JJ) * B(I，L’K) 

F4eC 

F47 DO 6 K = N, 0, -1 

F48 DO 9 L = 0, NMAT ~ 

F4g9 B(I’L,K) = B(I，L，K) * A(L,0,K) 

F50 DO 6 JJ = 1，MIN (M, K) 

F51 DO 6 L = 0’ NMAT 

F526 B(I’L，K-JJ) = B(I’L’K-JJ) - A(L’-JJ’K) * B(I，L’K) 

There are four parts. 

(a) F41 - F42 with 740952 

(b) F44 - F45 with 4020016 

(c) F48 - F49 with 740952 

(d) F51 - F52 with 3710784 

There are no aliasing problem in these four parts, but when the techniques used to 

reschedule the coding in part two, some dummy instructions disappear. Moreover, 

if ADM model is used, all the remaining explicit store in these four parts can be 

changed to implicit store since the destinations of these store have been loaded 

before. 

B.3 Program analysed by ADS Model 

1. Kernel One - Hydro fragment 

The main C statements are 

for ( k=0;k<n;k++) ‘ • . 

x[k]=q+y[kHr*z[k+10]+t*z[k+l]); 
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‘ All the data can be prefetched before the operation of load instruction except the 

first few elements which is used to set the base address. 

2. Kernel Two - ICCG excerpt ( Incomplete Cholesky Conjugate Gradient ) 

The main C statements are 

i = ipntp- 1 

for ( k=ipnt+l;k<ipntp;k=k+2) { ~ 

i + +； 

x[i]=x[k]-v[k]*x[k-l]-v[k+l]*x[k+l] 

} 

The above program segment are translated into an assembly program code segment 

with an unrolling size 2 followed by another assembly program code segment without 

unrolling. By using EReg, the aliasing problem between x[k-l] and x[k+l] can 

be solved so that the number of load instructions can be reduced from 20 load 
I 

instructions to 16 instructions. Moreover, all the data can be prefetched before the 

operation of load instruction except the first few elements which is used to set the 

base address. 

3. Kernel Three - Inner product 

The main "C" statements are 

for ( k=0;k<n;k++) 

q+=z[k]+x[k]; 

Since there are no aliasing problem, the coherence features cannot improve the per-

formance, but all the data can be prefetched before the operation of load instruction 

except the first few elements which is used to set the base address 

4. Kernel Four — Banded linear equations 

The main "C" statements are 

temp=x[k-l]; 

for ( j=4;j<n;j=j+5) { 
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temp-=x[lw]*y[j]; 

lw++; 

} 
x[k-l]=y[4]*temp; 

There are no aliasing problem. Moreover, there is an overhead that the variable 

TEMP can be directly loaded from x[k-l]. Therefore, the total number of instruc-

tions in ADS model is increased slightly compared with original one using traditional 

registers. However, all the data can be prefetched before the operation of load in-

struction except the first few elements which is used to set the base address. 

5. Kernel Five — Tri-diagonal Elimination, Below Diagonal 

The main "C" statements are : 

for (i=l;i<n;i++) 

x[i]—i]*( y[i]-x[i-l]) 

6. Kernel Six - General Linear recurrence equations 

The main "C" statements are : .. 

for (i=l;i<n;i++) ... loopl 

for (k=0;k<i;k++) ... loop2 

w[i]+=b[k][i]*w[(i-k)-l]; 

The value of w[i] is continued to be updated and stored within loop2 if traditional 

registers are used. The reason is that if the value of w[i] is not stored immediately 

after each，，w[i]+=b[k][i]*w[(i-k)-l]，，performed, error may result if other processes 

or instructions read data from the memory location of w[ij at that time. However, it 

will be possible to move the store instruction of w[i] outside loop2 if EReg is used. It 

is because every loading operations will check if the data have been already existed 

in EReg file. If yes, the data will be read from the EReg file directly; Otherwise, the 

date will be read from the specified memory location. Moreover, all the data can 

be prefetched before the operation of load instruction except the first few elements 

which is used to set the base address. 
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“ 7. Kernel Seven - Equation of state fragment 

The main "C" statements are : 

for (k=0;k<n;k++) { 

x[k] = u[k]+r*(z[k]+r*y[k]) + 

t*( u[k+3] + r*( u[k+2] + r*u[k+l] ) + 

t*( u[k+6] + r*( u[k+5] + r*u[k+4]))); 

} 

There are two code scheduling algorithms. One is just to rearrange the load instruc-

tions such that although there are no improvement in the number of instructions 

issued, 12 load operations within the looping have changed from memory-register 

to register-register due to the basic property of EReg. These instructions are the 

loading instructions for u[k], u[k+l], u[k+2], u[k+3], u[k+4] and u[k+5]. While the 

other code scheduling algorithm is to reduce 6 load instructions, but only 2 load 

operations will change from .memory-register to register-register due to the basic 

property of EReg. Thus, it is very difficult to say which code scheduling algorithm 

must be better. Moreover, all the data can be prefetched before the operation of 

load instruction except the first few elements which is used to set the base address. 

8. Kernel Eight - ADi integration 

The main "C" statements are 

C27 for ( kx= l ； kx<3 ； kx++ ){ 

C28 for ( k y= l ； ky<n ； ky++ ) { 

C29 dul[ky] = ul[nll][ky+l][kx] - ul[nll][ky-l][kx]; 

C30 du2[ky] = u2[nll][ky+l][kx] - u2[nll][ky-l][kx]; 

C31 du3[ky] = u3[nll][ky+l][kx] - u3[nll][ky-l][kx]; 

C32 ul[nl2][ky][kx]= — 

C33 ul[nll][ky][kx]+all*dul[ky]+al2*du2[ky]+al3*du3[ky] + sig 本 

C34 (ul[nll][ky][kx+l]-2.0*ul[nll][ky][kx]+ul[nll][ky][kx-l]); 

C35 u2[nl2][ky][kx]= 

C36 U2[nll][ky][kx]+a21*dul[ky]+a22*du2[kyl+a23*du3[ky] + sig* 

C37 (u2[nll][ky][kx+l]-2.0*u2[nll][ky][kx]+u2[nll][ky][kx-l]); 

C38 u3[nl2][ky][kx]= . • 

C39 u3[nll][ky][kx]+a31*dul[ky]+a32*du2[ky]+a33»du3[ky] + sig丰 
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‘ C40 (u3[nll][ky][kx+l]-2.0^u3[nll][ky][kx]+u3[nll][ky][kx-l]); 

C41 } 

C42 } 

The load instructions for dul[ky], du2[ky] and du3[ky] can be reduced from 3 ( 

i.e C33,C36,C39 ) to 1 ( i.e C33 only ) if EReg is used. Moreover, the aliasing 

problem can be reduced between ul[nll][ky-l][kx] k u[nll][ky][kx+1], u2[nll][ky-

l][kx] k u2[nll][ky][kx+ll and u3[nll][ky-l][kx] k u3[nll][ky][kx+l]. Moreover, all 

the data can be prefetched before the operation of load instruction except the first 

few elements which is used to set the base address. 

9. Kernel Nine - Integrate predictors 

The main "C" statements are 

C23 for ( i=0 ； i<n ； i++ ) { 

C24 px[i][0] = dm28*px[i][l2] + dm27*px[i][ll] + dm26*px[i][l0] + 

C25 dm25*px[i][ 9] + dm24*px[i][ 8] + dm23*px[i][ 7] + 

C26 dm22^px[i][ 6] + cO*( px[i][ 4] + px[i][ 5]) + px[i][ 2]; 

C27 } 

Although there are no aliasing problems within the whole program segment, all the 

data can be prefetched before the operation of load instruction except the first few 

elements which is used to set the base address. 

10. Kernel Ten - Difference predictors 

The main "C" statements are 

C22 for ( i=0 ； i<n ； i++ ) { 

C23 ar = cx[i][4]; — 

C24 br = ar - px[i][ 4]; 

C25 px[i][ 4] = ar; 

C26 cr = br - px[i][ 5]; 

C27 px[i][ 5] = br; 

C28 ar = cr-px[i][6]; 

C29 px[i][ 6] = cr; . .. • 

C30 br = ar - px[i][ 7]; 
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、 C31 px[i][ 7] = ar; 

C32 cr = br - px[i][8]; 

C33 px[i][ 8] = br; 

C34 ar = cr - px[i][9]; 

C35 px[i][ 9] = cr; 

C36 br = ar - px[i][lO]; 

C37 px[i][lO] = ar; 

C38 cr = br - px[i][ll]; 

C39 px[i][ll] = br; 

C40 px[i][13] = cr - px[i][l2]; -

C41 px[i][l2] = cr; 

C42} 

There are no aliasing problem within the aboved program segment. Moreover, all 

the data can be prefetched before the operation of load instruction except the first 

few elements which is used to set the base address. 

11. Kernel Eleven - First sum 

The main "C" statements arfe 

C24 for (k=l;k<n;k++) 

C25 x[k]=x[k-l]+y[k]; 

There are no aliasing problem within the aboved program segment. Moreover, all 

the data can be prefetched before the operation of load instruction except the first 

few elements which is used to set the base address. 

12. Kernel Twelve — First difference 

The main "C" statements are 

C21 for (k=0;k<n;k++) 

C22 x[k]=y[k+l]-y[k]; 

Since the value of y[k+l] is equal to the value of y[k] in next looping, the number 

of load operations is reduced from two to one for each k after using EReg. The 

percentage of load instructions is nearly reduced by half. Moreover, all the data can 

be prefetched before the operation of load instruction except the first few elements 

which is used to set the base address. 
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‘ 13. Kernel Thirteen - Mxm.f 

The main "Fortran" statements are 

DO 110 J二 1，M’4 

Do 110 K二 1’N 

Do 110 1=1,L 

C(I,K) = C( I，K) + A(I,J) + B(J,K) 

+ A(I，J+1)*B(J+1’K)+A(I’J+2)*B(J+2，K) 

+ A(I’J+3)*B(J+3’K) -

If the A,B and C are completely different ( i.e No overlapping ), no aliasing problem 

occur and hence no benefit obtained from using ERegs. Moreover, all the data can 

be prefetched before the operation of load instruction except the first few elements 

which is used to set the base address. 

14. Kernel Fourteen - Cff2ttdl.f 

The main “ Fortran" statements are 

F31 12012 = 3-11 

F32 DO 130 J = L, N2, L 

F33 CX = W(J-L+1) 

F34 IF (IS .LT. 0) CX = CONJG (CX) 

F35 DO 130 I = J-L+1, J 

F36 I I = IP(I1,I) 

F37 IP(I2,I+J-L) = II 

F38 IM = IP(I1,I+N2) 

F39 IP(I2,I+J) = IM 

F40 DO 130 K = 1, M 

F41 CT = X(K,I I ) - X(K, IM) 

F42 X(K,I I ) = X(K，II) + X(K，IM) 

F43 X(K，IM) = CT * CX 

F44 130CONTINUE 

F45 L = 2 * L 

F46 I I = 12 

F47 IF (L .LE. N2) GOTO 120 

Since the compiler may be worry that there are some aliasing problem among the 
* 

variables, if EReg is used, the coding can be rescheduled such that the loading of 
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‘ X(K,II) and X(K,IM) in the F42 can be eliminated. Moreover, the explicit store of 

CT in F41, the loading of CT and CX in F43 can be eliminated and some of the 

data can be prefetched before the operation of load instruction. 

15. Kernel fifteen - Cholesky.f 

The main “ Fortran" statements are 

F39 DO 6 I = 0, NRHS “ 

F40 DO 7 K = 0’ N 

F41 DO 8 L = 0’ NMAT 

F428 B(I,L,K) = B(I，L’K) * A(L’0’K) 

F43 DO 7 JJ = 1, MIN (M, N-K) 

F44 DO 7 L = 0, NMAT 

F457 B(I ,L,K+JJ) = B(I ’L’K+JJ) - A(L，-JJ’K+JJ) * B(I’L，K) 

F4eC 

F47 DO 6 K = N, 0, -1 

F48 DO 9 L = 0, NMAT 

F499 B(I’L’K) = B(I’L’K) * A(L’0,K) 

F50 DO 6 JJ = 1, MIN (M, R) 

F51 DO 6 L = 0, NMAT 

F526 B(I’L’K-JJ) = B(I,L,K-JJ) - A(L’-JJ’K) * B(I,L,K) 

There are four parts. 

(a) F41 - F42 with 740952 

(b) F44 - F45 with 4020016 

(c) F48 - F49 with 740952 

(d) F51 - F52 with 3710784 

There are no aliasing problem in these four parts, but when the techniques used to 

schedule the coding in part two, some dummy instructions disappear. Most of the 

data can be prefetched before the operation of load instruction. 

» * 
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B.4 Program analysed by ADSM Model 

1. Kernel One - Hydro fragment 

The main C statements are 

for ( k=0;k<n;k++) 

x[k]=:q+y[k]>.(r*z[k+10]+t*z[k+ll]); 

z[k+10] & z[k+ll] will be loaded for each k since there may be an aliasing problem 

between x[k] and z[k+ll] or x[k] and z[k+12]. However, if EReg is used, we can 

schedule the coding such that the total number of 4 loading instructions z[k+ll], 

z[k+10], z[k+12] and z[k+ll] in one looping will be decreased to only 2 loading 

instructions z[k+ll] and z[k+12] with ONE instruction outside the looping "for 

(k=0;k<n;k++)”. Most of the data can be prefetched before the operation of 

load instruction except the first few elements which is used to set the base address. 
I 

However, the STORE instructions can not be reduced. Therefore, the performance 

of ADSM model will be same as ADS model. 

2. Kernel Two - ICCG excerpt ( Incomplete Cholesky Conjugate Gradient ) 

The main C statements are 

i = ipntp - 1 

for ( k=ipnt+l;k<ipntp;k=k+2) { 

i + + ； 

x[i]=x[k]-v[k]*x[k-l]-v[k+l]*x[k+l] 

} 

The above program segment are translated into an assembly program code seg-

ment with an unrolling size 2 followed by another assembly program code segment 

without unrolling. By using EReg, the aliasing problem between x[k-l] and x[k+l 

can be solved so that the number of load instructions can be reduced from 20 load 

instructions to 16 instructions. x[i] will not be aliased to x[k-l], x[k] and x[k+l . 

Therefore, no benefit can be obtained in performing implicit store, but all the data 
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‘ can be prefetched before the operation of load instruction except the first few ele-

ments which is used to set the base address 

3. Kernel Three - Inner product 

The main "C" statements are 

for ( k=0;k<n;k++) 

q+=z[k]+x[k]; 

Since there are no aliasing problem, the basic features in the ADSM model cannot 

improve the performance, but all the data can be prefetched before the operation of 

load instruction except the first few elements which is. used to set the base address 

4. Kernel Four - Banded linear equations 

The main "C" statements are 

temp=x[k-l]; • 

for (j=4;j<n;j=j+5) { 

temp-=x[lw]>Ky[j]; 

lw++; 

} 
x[k-l]=y[4]*temp; 

There are no aliasing problem. Moreover, there is an overhead that the variable 

TEMP can be directly loaded from x[k-l]. Therefore, the total number of instruc-

tions in ADS model is increased slightly compared with original one using tradi-

tional registers. However, since the data of x[k-l] has been loaded, the explicit store 

"x[k-l]=y[4]*temp" can be changed to implicit store and hence the total number 

of instructions and total number of store instructions are reduced in using ADSM 

model. Nearly all the data can be prefetched before the operation of load instruction 

except the first few elements which is used to set the base address 

5. Kernel Five - Tri-diagonal Elimination, Below Diagonal 

The main "C" statements are : 
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‘ for (i=l;i<n;i++) 

x[i]=z[i]*( y[i]-x[i-l]) 

All the store instructions can be reduced if the implicit store is supported, i.e ADM 

model and nearly all the data can be prefetched before the operation of load in-

struction except the first few elements which is used to set the base address 

6. Kernel Six - General Linear recurrence equations 

The main "C" statements are : 

for (i=l;i<n;i++) ... loopl 

for (k=0;k<i;k++) ... loop2 

w[i]+=b[k][i]^w[(i-k)-l]; 

The value of w[i] is continued to be updated and stored within loop2 if traditional 

registers are used. The reason is that if the value of w[i] is not stored immediately 

after each “ w[i]+=b[k][i]*w[(i-k)-l] “ performed, error may result if other processes 

or instructions read data from the memory location of w[i] at that time. However, it 

will be possible to move the store instruction of w[i] outside loop2 if EReg is used. It 

is because every loading operations will check if the data have been already existed 

in EReg file. If yes, the data will be read from the EReg file directly; Otherwise, the 

date will be read from the specified memory location. If implicit store is supported 

(i .e ADM model ), nearly all explicit stores ( storing the value of w[i] ) can be 

changed to implicit stores. Moreover, all the data can be prefetched before the 

operation of load instruction except the first few elements which is used to set the 

base address 

7. Kernel Seven - Equation of state fragment 

The main "C" statements are : 

for (k=0;k<n;k++) { 

x[k] = u[k]+r*(z[k]+r*y[k]) + 

t*( u[k+3] + r*( u[k+2] + r*u[k+l] ) + 

t*( u[k+6] + r*( u[k+5] + r*u[k+4]))); 、 

} 
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‘ There are two code scheduling algorithms. One is just to rearrange the load instruc-

tions such that although there are no improvement in the number of instructions 

issued, 12 load operations within the looping have changed from memory-register 

to register-register due to the basic property of EReg. These instructions are the 

loading instructions for u[k], u[k+l], u[k+2], u[k+3], u[k+4] and u[k+5]. While the 

other code scheduling algorithm is to reduce 6 load instructions, but only 2 load 

operations will change from memory-register to register-register due to the~basic 

property of EReg. Thus, it is very difficult to say which code scheduling algorithm 

must be better. Since the value of x[k] is not loaded, the explicit store of x[k] cannot 

be changed to implicit store. Thus, the extra feature of ADSM model is useless in 

this program. The data prefetching feature enable the data to be prefetched before 

the operation of load instruction except the first few elements which is used to set 

the base address. 

8. Kernel Eight - ADi integratibn 

The main "C" statements are 

C27 for ( kx=l ； kx<3 ； kx++ ){ 

C28 for ( ky= l ； ky<n ； ky++ ) { 

C29 dul[ky] = ul[nll][ky+l][kx] - ul[nll][ky-l][kx]; 

C30 du2[ky] = u2[nll][ky+l][kx] - u2[nll][ky-l][kx]; 

C31 clu3[ky] = u3[nll][ky+l][kx] - u3[nll][ky-l][kx]; 

C32 ul[nl2][ky][kx]= 

C33 u 1 [nl 1] [ky] [kx]+al 1 *du 1 [ky]+al 2*du2[ky]+al 3*du3[ky] + sig* 

C34 (ul[nll][ky][kx+l]-2.0*ul[nll][ky][kx]+ul[nll][ky][kx-l]); 

C35 u2[nl2][ky][kx]= 

C36 u2[nll][ky][kx]+a21*dul[ky]+a22»du2[ky]+a23*du3[ky] + sig* 

C37 (u2[nll][ky][kx+l]-2.0*u2[nll][ky][kx]+u2[nll][ky][kx-l]); 

C38 u3[nl2][ky][kx]= 

C39 u3[nll][ky][kx]+a31*dul[ky]+a32*du2[ky]+a33*du3[ky]斗 sig* 

C40 (u3[nll][ky][kx+l]-2.0*u3[nll][ky][kx]+u3[nll][ky][kx-l]); 

C41 } 

C42 } 

The load instructions for dul[ky], du2[ky] and du3[ky] can be reduced from 3 ( 
» 

i.e C33,C36,C39 ) to 1 ( i.e C33 only ) if EReg is used. Moreover, the aliasing 
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、 problem can be reduced between ul[nll][ky-l][kx] & u[nll][ky][kx+l], u2[nll][ky-

l][kx] & u2[nll][ky][kx+l] and u3[nll][ky-l][kx] k u3[nll][ky][kx+l]. If implicit Store 

is supported by the EReg (i.e ADM model ), the store instructions for dul[ky]( 

C29 ), du2[ky] (C30) and du3[ky] ( C31 ) can be removed by first loading diil[ky], 

du2[ky] and du3[ky]. Moreover, the data prefetching feature enable the data to 

be prefetched before the operation of load instruction except the first few elements 

which is used to set the base address -

9. Kernel Nine - Integrate predictors 

The main "C" statements are 

C23 for ( i=0 ； i<n ; i++ ) { 

C24 px[i][0] = dm28*px[i][l2] + dm27*px[i][ll] + dm26*px[i][l0] + 

C25 dm25*px[i][ 9] + dm24*px[i][ 8] + dm23*px[i][ 7] + 

C26 dm22*px[i][ 6] + cO*( px[i][ 4] + px[i][ 5]) + px[i][ 2]; 

C27 } 

I 

There are no aliasing problems, but the data prefetching feature enable the data to 

be prefetched before the operation of load instruction except the first few elements 

which is used to set the base address 

10. Kernel Ten — Difference predictors 

The main "C" statements are 

C22 for ( i=0 ； i<n ； i++ ) { 

C23 ar = cx[i][4]; 

C24 br = ar - px[i][ 4]; 

C25 px[i][ 4] = ar; 

C26 cr = br - px[i][ 5]; 

C27 px[i][ 5] = br; ' 

C28 ar = cr - px[i][6]; 

C29 px[i][ 6] = cr; 

C30 br = ar - px[i][7]; 

C31 px[i][ 7] = ar; 

C32 cr = br - px[i][ 8]; . 

C33 px[i][ 8] = br; ’ 
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‘ C34 ar = cr - px[i][ 9]; 

C35 px[i][ 9] = cr; 

C36 br = ar - px[i][lO]; 

C37 px[i][10] = ar; 

C38 cr = br- px[i][ll]; 

C39 px[i][ll] = br; 

C40 px[i][l3] = cr - px[i][l2]; 

C41 px[i][l2] = cr; 

C42} 

There are no aliasing problem within the above program segment, but the data 

prefetching feature enable the data to be prefetched before the operation of load 

instruction except the first few elements which is used to set the base address 

11. Kernel Eleven - First sum 

The main "C" statements are 

C24 for (k=l;k<n;k++) 

C25 x[k]=x[k-l]+y[k];‘ 

Not only the data prefetching feature enable the data to be prefetched before the 

operation of load instruction, but all explicit stores of x[k] can be changed to implicit 

stores if the value of x[k] has been loaded before and the ADSM model is adopt. 

12. Kernel Twelve - First difference 

The main "C" statements are 

C21 for (k=0;k<n;k++) 

C22 x[k]=y[k+l]-y[k]; 

Since the value of y[k+l] is equal to the value of y[k] in next looping, the number of 

load operations is reduced from two to one for each k after using EReg. The percent-

age of load instructions is nearly reduced by half. Moreover, the data prefetching 

feature enable the data to be prefetched before the operation of load instruction. 

Since the value of x[k] hasn't been loaded before, all explicit stores of x[k] cannot 
« * 

be changed to implicit stores even if ADSM model is adopt. 
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‘ 13. Kernel Thirteen — Mxm.f 

The main “ Fortran" statements are 

DO 110 J=1,M,4 

Do 110 K=1’N 

Do 110 1=1,L 

C(I’K) = C( I’K) + A(I’J) + B(J,K) 

+ A(I，J+1)*B(J+1’K)+A(I’J+2)*B(J+2，K) 

+ A(I，J+3)>KB(J+3’K) -

If the A,B and C are completely different ( i.e No overlapping ), no aliasing problem 

occur and hence no benefit obtained from using ERegs. However, if ADM model 

is used, the total of 1618247 store instructions will be reduced to the number of 

35111 instructions only. This is due to the implicit store can be performed on the 

store of C(I,K) because C(I,K) has been read before the store operation, the data 

prefetching feature enable the data to be prefetched before the operation of load 

instruction except the first few elements which is used to set the base address, 

14. Kernel Fourteen - Cff2ttdl.f 

The main "Fortran" statements are 

F31 12012 = 3-11 

F32 DO 130 J = L, N2, L 

F33 CX = W(J-L+1) 

F34 IF (IS .LT. 0) CX = CONJG (CX) 

F35 DO 130 I = J-L+1, J 

F36 II = IP(I1,I) 

F37 IP(I2，I+J-L) = I I 

F38 IM = IP(I1,I+N2) 

F39 IP(I2，I+J) = IM 

F40 DO 130 K = 1, M ^ 

F41 CT = X(K’II) - X(K’IM) 

F42 X(K’II) = X(K，II) + X(K’ IM) 

F43 X(K, IM) = CT * CX 

F44 130CONTINUE 

F45 L = 2 * L 

F46 I I = 12 • 

F47 IF (L I E . N2) GOTO 120 
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‘ Since the compiler may be worry that there are some aliasing problem among the 

variables, if EReg is used, the coding can be rescheduled such that the loading of 

X(K,II) and X(K,IM) in the F42 can be eliminated. The data prefetching feature 

enable the data to be prefetched before the operation of load instruction except the 

first few elements which is used to set the base address. Moreover, the explicit store 

of CT in F41 and the loading of CT and CX in F43 can be eliminated. If implicit 

store is supported ( i.e using ADSM model ), all the remaining explicit store in 

F42-F43 can be changed to implicit store. 

15. Kernel fifteen — Cholesky.f 

The main “ Fortran" statements are 

F39 DO 6 I = 0’ NRHS 

F40 DO 7 K = 0’ N 

F41 DO 8 L = 0, NMAT 

F428 B(I，L’K) = B(I’L’K) * A(L’0’K) 

F43 DO 7 JJ = 1, MIN (M, N-K) 

F44 DO 7 L = 0, NMAT 

F457 B(I,L,K+JJ) = B(I，L’K+JJ) - A(L’-JJ’K+JJ) * B(I’L’K) 

F4eC 

F47 DO 6 K = N, 0’ -1 

F48 DO 9 L = 0, NMAT 

F499 B(I,L,K) = B(I,L’K) * A(L’0’K) 

F50 DO 6 JJ = 1, MIN (M, K) 

F51 DO 6 L = 0, NMAT 

F526 B(I,L,K-JJ) = B(I,L,K-JJ) - A(L’-JJ,K) * B(I’L，K) 

There are four parts. 

(a) F41 - F42 with 740952 

(b) F44 - F45 with 4020016 

(c) F48 - F49 with 740952 

(d) F51 - F52 with 3710784 
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There are no aliasing problem in these four parts, but when the techniques used 

to reschedule the coding in part two, some dummy instructions disappear. The 

data prefetching feature enable the data to be prefetched before the operation of 

load instruction except the first few elements which is used to set the base address. 

Moreover, if ADSM model is used, all the remaining explicit store in these four 

parts can be changed to implicit store since the destinations of these store have 

been loaded before. ~ 

B.5 Program analysed by lADSM Model 

1. Kernel One — Hydro fragment 

The main C statements are 

for ( k=0;kin;k++) 

x[k]=q+y[k]*(r*z[k+10]+t*z[k+l]); 

I' 

The assembly version of this program contain two parts. The first part is unrolled by 

2. The second part doesn't has any unrolling. Before entering the loop, the stride 

values of the ERegs ,which is used to store data and perform implicitly loading 

operation, are set by the compiler. Moreover, the data y[0],y[l], z[10] and z[H 

must be explicitly loaded in the first part must be explicity loaded to initialize the 

starting address of the data such that the remaining data in both first and second 

parts can be prefetched. By setting the instruction location to the Inst_A fields of 

these ERegs, the implicitly loading will be performed when the content of program 

counter match with this instruction location. 

2. Kernel Two - ICCG excerpt ( Incomplete Cholesky Conjugate Gradient ) 

The main C statements are 

i = ipntp - 1 

for ( k=ipnt+l;kiipntp;k=k+2) { 

i + +； 

x[i]=x[k]-v[k]*x[k-l]-v[k+l]*x[k+l] . .. • 

} 
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‘ The above program segment are translated into an assembly program code segment 

with an unrolling size of 2 followed by another assembly program code segment 

without unrolling. By using EReg, the aliasing problem between x[k-l] and x[k+l 

can be solved so that the number of load instructions can be reduced from 20 

load instructions to 16 instructions. Moreover, all the data can be prefetched and 

implicitly loaded except the first few elements which is used to set the base address. 

These elements include x[ipnt+l],x[ipnt]，v[ipnt+l] and v[ipnt+2 . -

3. Kernel Three - Inner product 

The main "C" statements are 

for ( k=0;kin;k++) 

q+=z[k]+x[k]; 

Since there are no aliasing problem, the coherence features cannot improve the 

performance, but all the data can be prefetched and implicitly loaded except z[0 

and x[0] which is used to set the base address. 

4. Kernel Four - Banded linear equations • 

The main "C" statements are 

temp=x[k-l]; 

for (j=4;jin;j=j+5) { 

temp-=x[lw]*y[j]; 

lw++; 

— } 
x[k-l]=y[4]nemp; 

There are no aliasing problem. Moreover, there is an overhead that the variable 

TEMP can be directly loaded from x[k-l]. Therefore, the total number of instruc-

tions in ADS model is increased slightly compared with original one using traditional 

registers. However, all the data in the innermost loop can be prefetched and implic-

itlly loaded except x[k-6] and y[4] which are used to set the base address. 
« • 
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、 5. Kernel Five - Tri-diagonal Elimination, Below Diagonal 

The main "C" statements are : 

for (i=l;iin;i++) 

x[i]=z[i]*( y[i]-x[i-l]) 

Since every result x[i] must be stored explicitly and each x[i-l] is loaded only once, 

there is no aliasing problem to be reduced. However, all the data can be prefetched 

and implicitlly loaded except the first few elements which is used to set the base 

address. 

6. Kernel Six — General Linear recurrence equations 

The main "C" statements are : 

for (i=l;iin;i++) ... loopl 

for (k=0;kii;k++) • ... loop2 

w[i]+=b[k][i]*w[(i-k)-l]; 

The value of w[i] is continued to be updated and stored within loop2 if traditional 

registers are used. The reason is that if the value of w[i] is not stored immediately 

after each “ w[i]+=b[k][i]*w[(i-k)-l] ” performed, error may result if other processes 

or instructions read data from the memory location of w[i] at that time. However, it 

will be possible to move the store instruction of w[i] outside loop2 if EReg is used. It 

is because every loading operations will check if the data have been already existed 

in EReg file. If yes, the data will be read from the EReg file directly; Otherwise, the 

date will be read from the specified memory location. Moreover, all the data can 

be prefetched before the operation of load instruction except the first few elements 

which is used to set the base address. 

7. Kernel Seven - Equation of state fragment 

The main "C" statements are : 
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‘ for (k=0;kin;k++) { 

x[k] : u[k]+r*(z[k]+r*y[k]) + 

t*( u[k+3] + r*( u[k+2] + r*u[k+l] ) + 

t*( u[k+6] + r*( u[k+5] + r*u[k+4]))); 

} 

There are two code scheduling algorithms. One is just to rearrange the load instruc-

tions such that although there are no improvement in the number of instructions 

issued, 12 load operations within the looping have changed from memory-register 

to register-register due to the basic property of EReg. These instructions are the 

loading instructions for u[k], u[k+l], u[k+2], u[k+3], u[k+4] and u[k+5]. While the 

other code scheduling algorithm is to reduce 6 load instructions, but only 2 load 

operations will change from memory-register to register-register due to the basic 

property of EReg. Thus, it is very difficult to say which code scheduling algorithm 

must be better. Moreover, all the data can be prefetched and implicitlly loaded 

except the first few elements'which is used to set the base address. 

8. Kernel Eight - ADi integration 

The main "C" statements are 

C27 for ( kx=l ； kxi3 ； kx++ ){ 

C28 for ( ky= l ； kyin ； ky++ ) { 

C29 dul[ky] = ul[nll][ky+l][kx] - ul[nll][ky-l][kx]; 

C30 du2[ky] = u2[nll][ky+l][kx] - u2[nll][ky-l][kx]; 

C31 du3[ky] = u3[nll][ky+l][kx] - u3[nll][ky-l][kx]; 

C32 ul[nl2][ky][kx]= 

C33 ul[nll][ky][kx]+all*dul[ky]+al2*du2[ky]+al3*du3[ky] + sig* 

C34 (ul[nll][ky][kx+l]-2.0*ul[nll][ky][kx]+ul[nll][ky][kx-l]); 

C35 u2[nl2][ky][kx]= 

C36 u2[nll][ky][kx]+a21^dul[ky]+a22*du2[ky]+a23*du3[ky] + sig* 

C37 (u2[nll][ky][kx+l]-2.0*u2[nll][ky][kx]+u2[nll][ky][kx-l]f; 

C38 u3[nl2][ky][kx]= 

C39 u3[nll][ky][kx]+a31*dul[ky]+a32*du2[ky]+a33*du3[ky] + sig* 

C40 (u3[nll][ky][kx+l]-2.0*u3[nll][ky][kx]+u3[nll][ky][kx-l]); 

C41 } 

C42 } . 
A r 
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、 The load instructions for dul[ky], du2[ky] and du3[ky] can be reduced from 3 ( 

i.e C33,C36,C39 ) to 1 ( i.e C33 only ) if EReg is used. Moreover, the aliasing 

problem can be reduced between ul[iill][ky-l][kx] & u[nll][ky][kx+1], u2[nll][ky-

l][kx] k u2[nll][ky][kx+l] and u3[nll][ky-l][kx] k u3[nll][ky][kx+l]. Moreover, all 

the data can be prefetched and implicitly loaded except the first few elements which 

is used to set the base address. 

9. Kernel Nine - Integrate predictors 

The main "C" statements are 

C23 for ( i=0 ； iin ； i++ ) { 

C24 px[i][0] = dm28*px[i][l2] + dm27*px[i][ll] + dm26*px[i][10] + 

C25 dm25*px[i][9] + dm24*px[i][ 8] + dm23*px[i][ 7] + 

C26 dm22*px[i][ 6] + cO*( px[i][ 4] + px[i][ 5]) + px[i][ 2]; 

C27 } 

I' 

Although there are no aliasing problems within the whole program segment, all the 

data can be prefetched and implicitly loaded except the first few elements which is 

used to set the base address. 

10. Kernel Ten - Difference predictors 

The main "C" statements are 

C22 for ( i=0 ； iin ； i++ ) { 

C23 ar = cx[i][ 4]; 

C24 br = ar - px[i][ 4]; 

C25 px[i][ 4] = ar; 

C26 cr = br - px[i][ 5]; 

C27 px[i][ 5] = br; 

C28 ar = cr - px[i][6]; — 

C29 px[i][ 6] = cr; 

C30 br = ar - px[i][ 7]; 

C31 px[i][ 7] = ar; 

C32 cr = br - px[i][ 8]; 

C33 px[i][ 8] = br; 

C34 ar = cr - px[i][9]; , • • 

C35 px[i][ 9] = cr; 
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C36 br = ar - px[i][lO]; 

C37 px[i][lO] = ar; 

C38 cr = br-px[i][ll]; 

C39 px[i][ll] = br; 

C40 px[i][l3] = cr - px[i][l2]; 

C41 px[i][l2] = cr; 

C42} 

There are no aliasing problem within the aboved program segment. Moreover, all 

the data can be prefetched and implicitly loaded except the first few elements which 

is used to set the base address. 

11. Kernel Eleven - First sum 

The main "C" statements are 

C24 for (k=l;kin;k++) 

C25 x[k]=x[k-l]+y[k]; 

There are no aliasing problem within the aboved program segment. Moreover, all 

the data can be prefetched and implicitly loaded except the first few elements which 

is used to set the base address. 

12. Kernel Twelve - First difference 

The main "C" statements are 

C21 for (k=0;kin;k++) 

C22 x[k]=y[k+l]-y[k]; 

Since the value of y[k+l] is equal to the value of y[k] in next looping, the number 

of load operations is reduced from two to one for each k after using EReg. The 

percentage of load instructions is nearly reduced by half. Moreover, all the data can 

be and implicitly loaded except the first few elements which is used to set the base 

address. 
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13. Kernel Thirteen - Mxm.f 

The main "Fortran" statements are 

DO 110 J=1,M,4 

Do n o K=1,N 

Do 110 1=1,L 

C(I，K) = C( I’K) + A(I’J) + B(J,K) 

+ A(I’J+1)*B(J+1’K)+A(I’J+2)*B(J+2’K) 

+ A(I’J+3)*B(J+3’K) -

If the A,B and C are completely different ( i.e No overlapping ), no aliasing problem 

occur and hence no benefit obtained from using ERegs. Moreover, all the data can 

be prefetched and implicitly loaded except the first few elements which is used to 

set the base address. 

14. Kernel Fourteen — Cff2ttdl.f 

The main “ Fortran" statements are 
I' 

F31 12012 = 3-11 

F32 DO 130 J = L, N2, L 

F33 CX = W(J-L+1) 

F34 IF (IS .LT. 0) CX = CONJG (CX) 

F35 DO 130 I = J-L+1, J 

F36 I I = IP(I1,I) 

F37 IP(I2,I+J-L) = I I 

F38 IM = IP(I1’I+N2) 

F39 IP(I2,I+J) = IM 

F40 DO 130 K = 1’ M 

F41 CT = X(K，II) - X(K’ IM) 

F42 X(K,I I ) = X(K’I I) + X(K’ IM) 

F43 X(K, IM) = CT * CX 

F44 130CONTINUE 

F45 L = 2 * L 

F46 I I = 12 ' 

F47 IF (L .LE. N2) GOTO 120 

Since the compiler may be worry that there are some aliasing problem among the 

variables, if EReg is used, the coding can be rescheduled such that the loading of 

X(K,II) and X(K,IM) in the F42 can be eliminated. Moreover, the explicit store of 
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‘ CT in F41, the loading of CT and CX in F43 can be eliminated and some of the 

data can be prefetched and implicitly loaded. 

15. Kernel fifteen - Cholesky.f 

The main “ Fortran" statements are 

F39 DO 6 I = 0, NRHS 

F40 DO 7 K = 0, N 

F41 DO 8 L = 0, NMAT ~ . 

F428 B(I’L’K) = B(I,L,K) * A(L’0,K) 

F43 DO 7 JJ = 1，MIN (M, N-K) 

F44 DO 7 L = 0, NMAT 

F457 B(I,L,K+JJ) = B(I,L,K+JJ) - A(L’-JJ’K+JJ) * B(I’L’K) 

F4eC 

F47 DO 6 K = N, 0，-1 

F48 DO 9 L = 0, NMAT 

F499 B(I，L’K) = B(I,L,K) * A(L’0’K) 

F50 DO 6 JJ = 1, MIN (M, K) 

F51 DO 6 L = 0’ NMAT 

F526 B(I,L,K-JJ) = B(I«L,K-JJ) - A(L’-JJ’K) * B(I’L，K) 

There are four parts. 

(a) F41 - F42 with 740952 

(b) F44 - F45 with 4020016 

(c) F48 - F49 with 740952 

(d) F51 - F52 with 3710784 

There are no aliasing problem in these four parts, but when the techniques used to 

reschedule the coding in part two, some dummy instructions disappear. Most of the 

data can be prefetched and implicitly loaded. 

B.6 Program analysed by lADSMC&IDLC Model 

Since the method of reduce the instructions for the looping by the model is very standard, 

No individual discussion as previous chapter will be carried out. , 
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1. Kernel One - Hydro fragment 

The main C statements are 

for ( k二0;kin;k++) 

x[k]=q+y[k]*(rMk+10]+t*z[k+l]); 

The assembly version of this program contain two parts. The first part is unrolled by 

2. The second part doesn't has any unrolling. Before entering the loop, the stride 

values of the ERegs ,which is used to store data and perform implicitly loading 

operation, are set by the compiler. Moreover, the data y[0],y[l], z[10] and z[U 

must be explicitly loaded in the first part must be explicity loaded to initialize 

the starting address of the data such that the remaining data in both first and 

second parts can be prefetched. By setting the instruction location to the Inst_A 

fields of these ERegs, the implicitly loading will be performed when the content of 

program counter match with this instruction location. Moreover, there are several 

instructions to be reduced: • 

(a) Instructions which initialize the index k. 

(b) The explicit branch instructions which occur when the value of k is smaller 

than the upper limit n. 

2. Kernel Two - ICCG excerpt ( Incomplete Cholesky Conjugate Gradient ) 

The main C statements are 

i = ipntp - 1 

for ( k=ipnt+l;kiipntp;k=k+2) { 

i++； 

x[i]=x[k]-v[k]*x[k-l]-v[k+l]*x[k+l] 

} 一 

The above program segment are translated into an assembly program code segment 

with an unrolling size of 2 followed by another assembly program code segment 

without unrolling. By using EReg, the aliasing problem between x[k-l] and x[k+l 

can be solved so that the number of load instructions can be reduced from 20 
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‘ load instructions to 16 instructions. Moreover, all the data can be prefetched and 

implicitly loaded except the first few elements which is used to set the base address. 

These elements include x[ipnt+l],x[ipnt],v[ipnt+l] and v[ipnt+2]. Moreover, there 

are several instructions to be reduced: 

(a) Instructions which initialize the index k. 

(b) The explicit branch instructions which occur when the value of k is smaller 

than the upper limit ipntp. 

3. Kernel Three - Inner product 

The main "C" statements are 

for ( l<=0;kin;k++) 

q+=z[k]+x[k]; 

Since there are no aliasing problem, the coherence features cannot improve the 

performance, but all the data can be prefetched and implicitly loaded except z[0] and 

x[0] which is used to set the base address. Moreover, there are several instructions 

to be reduced: 

(a) Instructions which initialize the index k. 

(b) The explicit branch instructions which occur when the value of k is smaller 

than the upper limit n. 

4. Kernel Four - Banded linear equations 

The main "C" statements are 

temp=x[k-l]; 

for (j=4;jin;j=j+5) { 

temp-=x[lw]*y[j]; 

lw++; 

} 
x[k-l]=y[4]*temp; 

» *. 
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There are no aliasing problem. Moreover, there is an overhead that the variable 

TEMP can be directly loaded from x[k-l]. Therefore, the total number of instruc-

tions in ADS model is increased slightly compared with original one using traditional 

registers. However, all the data in the innermost loop can be prefetched and implic-

itlly loaded except x[k-6] and y[4] which are used to set the base address. Moreover, 

there are several instructions to be reduced: 

(a) Instructions which initialize the index k. 

(b) The explicit branch instructions which occur when the value of k is smaller 

than the upper limit n 

5. Kernel Five - Tri-diagonal Elimination, Below Diagonal 

The main "C" statements are : 

for (i=l;iin;i++) 

x[i]=z[i]*(y[i]-x[i-l]) • 

Since every result x[i] must be stored explicitly and each x[i-l] is loaded only once, 

there is no aliasing problem to be reduced. However, all the data can be prefetched 

and implicitlly loaded except the first few elements which is used to set the base 

address. Moreover, there are several instructions to be reduced: 

(a) Instructions which initialize the index i. 

(b) The explicit branch instructions which occur when the value of i is smaller than 

the upper limit n 

6. Kernel Six - General Linear recurrence equations 

The main "C" statements are : 

for (i=l;iin;i++) ... loopl 

for (k=0;kii;k++) ... loop2 

w[i]+=b[k][i]*w[(i-k)-l]; 
% * • 
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The value of w[i] is continued to be updated and stored within loop2 if traditional 

registers are used. The reason is that if the value of w[i] is not stored immediately 

after each “ w[i]+=b[k][i]*w[(i-k)-l] “ performed, error may result if other processes 

or instructions read data from the memory location of w[i] at that time. However, it 

will be possible to move the store instruction of w[i] outside loop2 if EReg is used. It 

is because every loading operations will check if the data have been already existed 

in EReg file. If yes, the data will be read from the EReg file directly; Otherwise, the 

date will be read from the specified memory location. Moreover, all the data can 

be prefetched before the operation of load instruction except the first few elements 

which is used to set the base address. Moreover, there are several instructions to be 

reduced: 

(a) Instructions which initialize the index i. 

(b) The explicit branch instructions which occur when the value of i is smaller than 
I' 

the upper limit n 

7. Kernel Seven - Equation of state fragment 

The main "C" statements are : 

for (k=0;kin;k++) { 

x[k] = u[k]+r*(z[k]+r*y[k]) + 

t*( u[k+3] + r*( u[k+2] + r*u[k+l] ) + 

t*( u[k+6] + r*( u[k+5] + r*u[k+4]))); 

} 

There are two code scheduling algorithms. One is just to rearrange the load instruc-

tions such that although there are no improvement in the number of instructions 

issued, 12 load operations within the looping have changed from memory-register 

to register-register due to the basic property of EReg. These instructions are the 

loading instructions for u[k], u[k+l], u[k+2], u[k+3], u[k+4] and u[k+5]. While the 

other code scheduling algorithm is to reduce 6 load instructions, but only 2 load 
» 

operations will change from memory-register to register-register due to the basic 
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property of EReg. Thus, it is very difficult to say which code scheduling algorithm 

must be better. Moreover, all the data can be prefetched and implicitlly loaded 

except the first few elements which is used to set the base address. Moreover, there 

are several instructions to be reduced: 

(a) Instructions which initialize the index k. 

(b) The explicit branch instructions which occur when the value of k is smaller 

than the upper limit n 

8. Kernel Eight - ADi integration 

The main "C" statements are 

C27 for ( kx=l ； kx\3 ； kx++ ){ 

C28 for ( ky=l ； kyin ； ky++ ) { 

C29 dul[ky] = ul[nll][ky+l][kx] - ul[nll][ky-l][kx]; 

C30 du2[ky] = u2[nll][ky+l][kx] - u2[nll][ky-l][kx]; 

C31 du3[ky] = u3[nll][ky+l][kx] - u3[nll][ky-l][kx]; 

C32 ul[nl2][ky][kx]= 

C33 ul[nll][ky][kx]+all*dul[ky]+al2*du2[ky]+al3*du3[ky] + sig* 

C34 (ul[nll][ky][kx+l]-2.0*ul[nll][ky][kx]+ul[nll][ky][kx-l]); 

C35 u2[nl2][ky][kx] = 

C36 u2[nll][ky][kx]+a21*dul[ky]+a22*du2[ky]+a23*du3[ky] + sig" 

C37 (u2[nll][ky][kx+l]-2.0*u2[nll][ky][kx]+u2[nll][ky][kx-l]); 

C38 u3[nl2][ky][kx]= 

C39 u3[nll][ky][kx]+a31*dul[ky]+a32'^du2[ky]+a33*du3[ky] + sig* 

C40 (u3[nll][ky][kx+l]-2.0*u3[nll][ky][kx]+u3[nll][ky][kx-l]); 

C41 } 

C42 } 

The load instructions for dul[ky], du2[ky] and du3[ky] can be reduced from 3 ( i.e 

C33,C36,C39 ) to 1 ( i.e C33 only ) if EReg is used. Moreover, the aliasing problem 

can be reduced between ul[iill][ky-l][kx] k u[nll][ky][kx+l-j, u2[nll][ky-l][kx] k 

u2[nll][ky][kx+1] and u3[nll][ky-l][kx] & ii3[nll][ky][kx+l]. Moreover, all the data 

can be prefetched and implicitly loaded except the first few elements which is used 

to set the base address. Moreover, there are several instructions to be reduced: 

(a) Instructions which initialize the indices kx and ky. 
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(b) The explicit branch instructions which occur when the values of kx and ky are 

smaller than the upper limit of 3 and n respectively. 

9. Kernel Nine - Integrate predictors 

The main ” C" statements are 

C23 for ( i=0 ； iin ； i++ ) { 

C24 px[i][0] = dm28*px[i][l2] + dm27*px[i][l 1] + dm26*px[i][l0] + -

C25 dm25*px[i][ 9] + din24*px[i][ 8] + dm23*px[i][ 7] + 

C26 dm22*px[i][ 6] + cO*( px[i][ 4] + px[i][ 5]) + px[i][ 2]; 

C27 } 

Although there are no aliasing problems within the whole program segment, all the 

data can be prefetched and implicitly loaded except the first few elements which is 

used to set the base address. Moreover, there are several instructions to be reduced: 

(a) Instructions which initialize the index i. 

(b) The explicit branch instructions which occur when the value i is smaller than 

the upper limit n. 

10. Kernel Ten - Difference predictors 

The main "C" statements are 

C22 for ( i=0 ； iin ； i++ ) { 

C23 ar = cx[i][ 4]; 

C24 br = ar - px[i][ 4]; 

C25 px[i][ 4] = ar; 

C26 cr = br - px[i][ 5]; 

C27 px[i][ 5] = br; 

C28 ar = cr - px[i][ 6]; 

C29 px[i][ 6] = cr; ' 

C30 br = ar - px[i][ 7]; 

C31 px[i][ 7] = ar; 

C32 cr = br-px[i][8]; 

C33 px[i][ 8] = br; 

C34 ar = cr - px[i][9]; 

C35 px[i][ 9] = cr; ’ ‘ 
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C36 br = ar-px[i][10]; 

C37 px[i][lO] = ar; 

C38 cr = br - px[i][ll]; 

C39 px[i][ll] = br; 

C40 px[i][l3] = cr - px[i][l2]; 

C41 px[i][l2] = cr; 

C42} 

There are no aliasing problem within the aboved program segment. Moreover, all the 

data can be prefetched and implicitly loaded except the first few elements which is 

used to set the base address. Moreover, there are several instructions to be reduced: 

(a) Instructions which initialize the index i. 

(b) The explicit branch instructions which occur when the value i is smaller than 

the upper limit n. 

11. Kernel Eleven — First sum 

The main "C" statements are 

C24 for (k=l;kin;k++) 

C25 x[k]r=x[k-l]+y[k]; 

There are no aliasing problem within the aboved program segment. Moreover, all the 

data can be prefetched and implicitly loaded except the first few elements which is 

used to set the base address. Moreover, there are several instructions to be reduced: 

(a) Instructions which initialize the index k. 

(b) The explicit branch instructions which occur when the value k is smaller than 

the upper limit n. 

12. Kernel Twelve - First difference 

The main "C" statements are 

C21 for (k=0;kin;k++) , . 

C22 x[k]=y[k+l]-y[k]; 
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Since the value of y[k+l] is equal to the value of y[k] in next looping, the number 

of load operations is reduced from two to one for each k after using EReg. The 

percentage of load instructions is nearly reduced by half. Moreover, all the data can 

be and implicitly loaded except the first few elements which is used to set the base 

address. Moreover, there are several instructions to be reduced: 

(a) Instructions which initialize the index k. 

(b) The explicit branch instructions which occur when the value k is smaller than 

the upper limit n. 

13. Kernel Thirteen — Mxm.f 

The main “ Fortran" statements are 

DO 110 J=1，M，4 

Do 110 K=1’N 

Do 110 1=1,L • 

C(I,K) = C( I’K) + A(I，J) + B(J,K) 

+ A(I’J + l)*B(J+l’K)+A(I，J+2 广 B(J+2，K) 

+ A(I，J+3)*B(J+3，K) 

If the A,B and C are completely different ( i.e No overlapping ), no aliasing problem 

occur and hence no benefit obtained from using ERegs. Moreover, all the data can 

be prefetched and implicitly loaded except the first few elements which is used to 

set the base address. Moreover, there are several instructions to be reduced: 

(a) Instructions which initialize the index I,J and K. 

(b) The explicit branch instructions which occur when the values of I,J and K are 

smaller than the upper limit of L,M and N respectively.— 

14. Kernel Fourteen - Cff2ttcll.f 

The main “ Fortran" statements are 

F31 12012 = 3-11 

F32 d o 130 J =： L, N2, L “ ‘ 
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F33 CX = W(J-L+1) 

F34 IF (IS .LT. 0) CX = CONJG (CX) 

F35 DO 130 I = J-L+1, J 

F36 II = IP(I1，I) 

F37 IP(I2’I+J-L) = II 

F38 IM = IP(I1,I+N2) 

F39 IP(I2,I+J) = IM 

F40 DO 130 K = 1’ M 

F41 CT = X(K,II) - X(K,IM) 

F42 X(K,I I) = X(K,II) + X(K,IM) _ 

F43 X(K’IM) = CT * CX 

F44 130CONTINUE 

F45 L = 2 * L 

F46 I I = 12 

F47 IF (L .LE. N2) GOTO 120 

Since the compiler may be worry that there are some aliasing problem among the 

variables, if EReg is used, the coding can be rescheduled such that the loading of 

X(K,II) and X(K,IM) in the F42 can be eliminated. Moreover, the explicit store of 

CT in F41, the loading of CT and CX in F43 can be eliminated and some of the data 

can be prefetched and implicitly loaded. Moreover, there are several instructions to 

be reduced: 

(a) Instructions which initialize the index I,J and K. 

(b) The explicit branch instructions which occur when the values of I,J and K are 

smaller than the upper limit of J-L+1,N2 and M respectively. 

15. Kernel fifteen — Cholesky.f 

The main “ Fortran" statements are 

F39 DO 6 I = 0，NRHS — 

F40 DO 7 K = 0，N 

F41 DO 8 L = 0，NMAT 

F428 B(I’L’K) = B(I’L，K) * A(L，0’K) 

F43 DO 7 JJ = 1，MIN (M, N-K) 

F44 DO 7 L = 0, NMAT 

F457 B(I，L’K+JJ) = B(I ’L’K+JJ) - A(L,-JJ,K+JJ) * B(I,L,K) 

F4eC 
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F47 DO 6 K = N, 0, -1 

F48 DO 9 L = 0’ NMAT 

F499 B(I,L,K) = B(I’L’K) * A(L，0’K) 

F50 DO 6 JJ = 1’ MIN (M, K) 

F51 DO 6 L = 0’ NMAT 

F526 B(I,L,K-JJ) = B(I,L,K-JJ) - A(L,-JJ,K) * B(I’L’K) 

There are four parts. 

(a) F41 - F42 with 740952 

(b) F44 - F45 with 4020016 

(c) F48 - F49 with 740952 

(d) F51 - F52 with 3710784 

There are no aliasing problem in these four parts, but when the techniques used 

to reschedule the coding in part two, some dummy instructions disappear. Most 

of the data can be prefetched and implicitly loaded. Moreover, there are several 

instructions to be reduced: 

(a) Instructions which initialize the index I,J and K. 

(b) The explicit branch instructions which occur when the values of I,J and K are 

smaller than their corresponding upper limits in different parts respectively. 

» ‘ • 
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Appendix C 

Cache Simulation on Prefetching of 

ADS model 

t 

» * • 
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Kernel Total no of LOADs No Prefetch ERegs’ Prefetch 

1. Hydro fragment — 4075 25.49693252% 0.957055215% 

2. ICCG excerpt 8040 22.08955224% 0.534825871% “ 

3. Inner product “ 4060 "^51724138% 0.985221675% 

4. Banded linear equations 2472 "^76375405% 1.982200647^ 

5. Tri-diagonal elimination m l 17.1291708% 0.67723819% 

,below diagonal 

6. General linear 2000056 28.9855384% 8.543610779% 

recurrence equations 

7. Equation of state ^18069 8.517350158%0.215839283% 

fragment 

8. ADI integration “ 70063 17718738849% 0.085637212^ 

9. Integrate predictors “ 20086 l05078164% 0.209100866ir~ 

10. Difference predictors “ 20069 "^07623698% “ 0.209277991% 

11. First Sum — 4058 13.20847708% 0.936421883% “ 

12. First Difference 2062 "^04267701% 1.842870999^ 

13. Mxm.f — 5807711 14.24728262% 9.491691305% 一 

14. Cff2tdl.f 32761398 19^^192583% ~T520298371% 

15. Cholesky Decomposition 2868556 9.003101212%6.033976677% 

/ substitution 

Table C . l : Cache Miss at Cache Size = 8KB, Block Size = 16B, 2-Way Associative 

» • . 
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Kernel Total no of LOADs No Prefetch ERegs^ Prefetch 

1. Hydro fragment 4075 25.49693252% 0.957055215% 

2. ICCG excerpt 一 8040 22.08955224% 0.534825871% “ 

3. Inner product — 4060 25.51724138% 0.985221675% “ 

4. Banded linear equations “ 2472 21.72330097% “ 1.982200647% 

5. Tri-diagonal elimination ^ 17.1291708% 0.67723819% 

,below diagonal 

6. General linear 2000056 28.9855384% 9.423086154% 

recurrence equations 

7. Equation of state 18069 8.517350158%0.215839283% 

fragment 

8. ADI integration “ 70063 "T77l8596121% 0.084209925^ 

9. Integrate predictors “ 20086 "^05078164% 0.209100866^ 

10. Difference predictors “ 20069 "^07623698% 0.209277991"^ 

11. First Sum “ 4058 ~13.20847708^ 0.936421883% 

12. First Difference 一 2062 一 26.04267MW 1.842870999% 
13. Mxm.f . 5807711 "^99702929% “ 18.58856269% 

14. CfF2tdl.f 32761398 “ 19.1491523% 1.278889259^ 
15. Cholesky Decomposition 2868556 8.974794287%6.003403803% 

/ substitution 

Table C.2: Cache Miss at Cache Size = 8KB, Block Size = 16B, 4-Way Associative 

» ». 

176 



Kernel Total no of LOADs No Prefetch EHegs, Prefetch 

1. Hydro fragment “ 4075 1^88343558% 0.613496933"^ 

2. ICCG excerpt ~~ 8040 一 11.1318408% 0.323383085% 

3. Inner product 一 4060 12.95566502% 0.640394089% “ 

4. Banded linear equations — 2472 —18.56796117% 1.45631068% 

5. Tri-diagonal elimination 60M 8.704988437%0.445986125% 

,below diagonal 

6. General linear 2000056 28.3356566% 5.384949221% 

recurrence equations 

7. Equation of state ^18069 4.294648293%0.149427196% 
fragment 

8. API integration — 70063 10.75032471% 0.058518762% “ 

9. Integrate predictors “ 20086 ~T7.5445584% 0.134421985^ 

10. Difference predictors 20069 "20.05082465% 0.139518661% 

11. First Sum “ 4058 ^776737309% “ 0.616067028% 

12. First Difference 一 2062 一 13.33656644% 1.212415131% 

13. Mxm.f — 5807711 一 29.6958646^ 27.4754374% 

14. Cff2tdl.f 32761398 9.644310661% 0.721046764% 

15. Cholesky Decomposition 2868556 5.811530261%3.138164289% 
/ substitution 

Table C.3: Cache Miss at Cache Size = 8KB, Block Size = 32B, 4-Way Associative 

» ‘ 
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Kernel Total no of LOADs No Prefetch ERegs, Prefetch 

1. Hydro fragment “ 4075 "1^88343558% 0.613496933^ 

2. ICCG excerpt — 8040 9.614427861% 0.323383085% “ 

3. Inner product "“ 4060 12.90640394% 0.640394089% 

4. Banded linear equations “ 2472 1^21035599% 1.375404531^ 

5. Tri-diagonal elimination ^ 8.671952428%0.445986125% 

,below diagonal 

6. General linear 2000056 26.9678949% 3.690646662% 

recurrence equations 

7. Equation of state ；18069 4.300182633%0.149427196% 
fragment 

8. ADI integration 70063 10.74889742% 0.058518762% “ 

9. Integrate predictors “ 20086 15445584% 0.134421985% 

10. Difference predictors 一 20069 20.05082465% 0.139518661% 

11. First Sum 4058 6.752094628% 0.616067028% “ 

12. First Difference 2062 13.33656644% 1.212415131% ‘ 

13. Mxm.f 一 5807711 ~ ~ 2.579622161% 0.077035514% 

14. CfF2tdl.f 32761398 9.611500706% 0.683832235^ 

15. Cholesky Decomposition 2868556 3.830568411%2.340341273% 
/ substitution 

Table C.4: Cache Miss at Cache Size = 16KB, Block Size = 32B, 4-Way Associative 

» • 
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Kernel Total no of LOADs No Prefetch ERegs’ Prefetch 

1. Hydro fragment 4075 12.88343558% 0.613496933% “ 

2. ICCG excerpt 8040 "^14427861% “ 0.323383085% 

3. Inner product “ 4060 1^95566502% 0.640394089"^ 

4. Banded linear equations “ 2472 ~15.21035599% 1.375404531% 

5. Tri-diagonal elimination ^ 8.704988437%0.445986125% 

,below diagonal 

6. General linear 2000056 22.41762231%2.905768638% 

recurrence equations 

7. Equation of state 18069 4.294648293%0.149427196% 
fragment 

8. ADI integration — 70063 10.75032471% T058518762% 

9. Integrate predictors 20086 17.5445584% 0.134421985% 

10. Difference predictors 20069 "20.05082465% 0.139518661% 

11. First Sum — 4058 6.776737309% 0.616067028% 一 

12. First Difference — 2062 13.33656644% 1.212415131% “ 

13. Mxm.f 5807711 2.472454294% 0.076243463% “ 

14. Cff2tdl.f 32761398 9.599434676% 0.669892048% 一 

15. Cholesky Decomposition 2868556 3.227024329%~~~1.737006354% 
/ substitution 

Table C.5: Cache Miss at Cache Size = 32KB, Block Size = 32B, 4-Way Associative 

» ». 
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Kernel Total no of LOADs No Prefetch ERegs' Prefetch 

1. Hydro fragment 4075 1^88343558% 0.613496933^ 

2. ICCG excerpt 8040 9.614427861% 0.323383085^ 

3. Inner product 4060 12.90640394% "~07640394089% 

4. Banded linear equations “ 2472 —15.21035599^ 1.375404531% 

5. Tri-diagonal elimination m i 8.671952428%0.445986125% 

,below diagonal 

6. General linear 2000056 22.87700944%2.641576036% 

recurrence equations 

7. Equation of state 18069 4.300182633%0.143892855% 

fragment 

8. API integration 70063 10.74889742% 0.057091475% “ 

9. Integrate predictors “ 20086 "17.5445584% 0.139400578^ 

10. Difference predictors “ 20069 "^05082465% “ 0.139518661% 

11. First Sum “ 4058 "6752094628% 0.616067028^ 

12. First Difference “ 2062 1^33656644% 1.212415131^ 

13. Mxm.f 5807711 2.472454294% 0.076243463% “ 

14. CfF2tdl.f 32761398 9.584417002% 0.654828588% 

15. Cholesky Decomposition 2868556 3.009005228%1.518987254% 

/ substitution 

Table C.6: Cache Miss at Cache Size = 32KB, Block Size = 32B, 8-Way Associative 
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