
A Fuzzy Database Query System with
a Built-in Knowledge Base

直
B Y

C H A N G Y U

AUGUST 1995

SUPERVISED B Y

D R . K . S . L E U N G & D R . M . H . W O N G

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS ‘

FOR THE DEGREE OF MASTER OF PHILOSOPHY

DIVISION OF COMPUTER SCIENCE

THE CHINESE UNIVERSITY OF HONG HONG

K

/f 乂

於 ， 睡 顏 . 碌

2 8 劑 I W 、 一
’•• \ — - _.-.• //
。-巧八 哪 VERSiTY /..,.‘/

〈> !̂SRARY SYSra /x /

Acknowledgement
I would like to express my deepest gratitude and appreciation to my supervisors Dr. K.S.

Leung and Dr. M .H . Wong, who have given me invaluable guidance, advice and help

during my study and research.

I also wish to thank my examiners, Dr. Ada W . C . Fu and Dr. Chin Lu, whose

constructive comments have greatly help me in carrying out this project.

Finally, I am also grateful to all the friends I met in the Department of Computer

Science, C U H K . Special thanks Ms. Wong Wai-ting, Mr .Chan Chi-lok, Mr.Lau Sau-ming

and Mr. Mak Kei-fu. Their encouragement, companions and help made my life in C U H K

delightful.

i

Abstract
This thesis is concerned with techniques for database queries involving fuzzy conditions

and concepts. A fuzzy query system is developed, which possesses the following ma in

capabilities:

1. It has a built-in Knowledge Base, which is designed to deal with queries involving

highly-aggregated, imprecisely and vaguely-defined concepts that cannot be directly

processed without being further decomposed into more specific conditions. In the

knowledge base, each concept is represented by a hierarchical concept tree. Each

node of a tree may be a sub-concept, an operator, or a fuzzy or crispy condition.

The use of concept trees to form a knowledge base to handle general concepts is one

of the main contributions of this thesis.

2. It has a Fuzzy Processor, which is designed to handle the fuzzy conditions contained

in a user's query and the output of the knowledge base. The fuzzy processor supports

six operators, which are shown to be equivalent to some decision making rules in

the theory of decision-making under uncertainties. In addition to providing the

standard functions such as A N D , O R , etc., the operators are particularly useful

when a user desires to search for good solutions from the database in a situation

where there are a number of future events which occur with uncertainty.

3. The system supports the use of external functions, by applying the technique of

dynamic library. This provides a flexible and powerful tool for the appropriate

definition of membership functions from the application level. A data manager is

built in the system to evaluate the external functions, which together with the Fuzzy

ii

i

Processor offers an effective way to handle the fuzzy conditions and evaluate their

relevant degrees of membership. The capability of the system to accept external

functions is particularly useful when multidimensional membership functions have

to be defined, which overcomes a difficulty in some previous approaches.

In addition, other modules such as a Parser, an Interfaces, etc., are also developed.

The design and the implementat ion of the overall system consisting of these modules are

described in details in this thesis. The system is tested and evaluated on an experimental

database, which suggest that the system has the expected functions, which can accept not

only well-defined fuzzy conditions as well as ordinary crispy conditions, but also highly-

aggregated, vaguely-defined concepts.

iii

i

Contents

Acknowledgement i

Abstract ii

List of Tables vii

List of Figures viii

1 I N T R O D U C T I O N 1

1.1 Motivation and Objectives 1

1.2 Outline of the Work of This Thesis 4

1.3 Organization of the Thesis 5

2 R E V I E W OF R E L A T E D W O R K S 6

2.1 Deduce2 6

2.2 ARES 8

2.3 VAGUE 10

2.4 Fuzzy Sets-Based Approaches 12

2.5 Some General Remarks 14

3 A F U Z Z Y DATABASE Q U E R Y L A N G U A G E 18

3.1 Basic Concepts of Fuzzy Sets 18

3.2 The Syntax of the Fuzzy Query Language 21

3.3 Fuzzy Operators 25

3.3.1 AND 27

3.3.2 OR 27

3.3.3 COMB 28

3.3.4 POLL 28

3.3.5 HURWICZ 30

iv

3.3.6 REGRET 31

4 SYSTEM D E S I G N 35

4.1 General Requirements and Definitions 35

4.1.1 Requirements of the system 36

4.1.2 Representation of membership functions 38

4.2 Overall Architecture 41

4.3 Interface 44

4.4 Knowledge Base 46

4.5 Parser 51

4.6 ORACLE 52

4.7 Data Manager 53

4.8 Fuzzy Processor 57

5 I M P L E M E N T I O N 59

5.1 Some General Considerations 59

5.2 Knowledge Base 60

5.2.1 Converting a concept into conditions 60

5.2.2 Concept trees 62

5.3 Data Manager 64

5.3.1 Some issues on the implementation 64

5.3.2 Dynamic library 67

5.3.3 Precompiling process . 68

5.3.4 Calling standard 71

6 CASE STUDIES 76

6.1 A Database for Job Application/Recruitment 77

6.2 Introduction to the Knowledge Base 79

6.3 Cases 79

6.3.1 Crispy queries 79

6.3.2 Fuzzy queries 82

6.3.3 Concept queries 85

6.3.4 Fuzzy Match 87

6.3.5 Fuzzy operator 88

7 C O N C L U S I O N 93

V

Appendix A Sample Data in DATABASE 96

Bibliography 111

vi

i

List of Tables

2.1 Distance 10

3.1 Student Grades 26

3.2 Membership Degrees of Good Students 27

3.3 Regret Degree 32

3.4 Maximum Regret 32

3.5 Six Operators 33

3.6 Comparison the six operators 34

6.1 Crispy Query Result 1 80

6.2 Crispy Query Result 2 81

6.3 Fuzzy Query Result 1 83

6.4 Fuzzy Query Result 2 84

6.5 Fuzzy Query Result 3 86

6.6 Concept Query Result 87

6.7 Fuzzy Match Result 89

6.8 Result when FUZZY—OPERATOR is "REGRET" 91

vii

List of Figures

4.1 The membership function for the concept "old" 39

4.2 Increasing membership function 40

4.3 decreasing membership function 41

4.4 Convex fuzzy set 42

4.5 Nonconvex fuzzy set 43

4.6 Architecture of Overall Design 44

4.7 Structure of Dtree 47

4.8 structure of Token 48

4.9 transformation 49

4.10 Hashing index 49

4.11 The diagram of calling external function 54

4.12 Intersection and union of A and B 56

5.1 The temp tree 61

5.2 The，，tall，，tree 61

5.3 The whole condition tree 62

5.4 Complete trees 63

5.5 Partial trees 64

5.6 The precompiling process 69

5.7 The calling process 72

5.8 The structure of external function invocation 73

5.9 The structure of extfuncQ 74

5.10 The structure of function A 75

6.1 The E-R diagram for pos i t ion 77

6.2 The E-R diagram for appl icant 78

6.3 The knowledge Base in case study 92

viii

Chapter 1

INTRODUCTION

1.1 Motivation and Objectives

I n tradit ional database management systems, queries for retrieving data are usually

defined by using crispy conditions. For example, in the Structured Query Language (SQL) ,

data retrieval operations are defined in the following form:

Select attribute-list from relation where predicate,

where attribute-list specifies attr ibute values to be returned to the user, relation identifies

tables in the relational database, and predicate specifies the conditions of the query con-

sisting of Boolean expressions. The requirement that conditions be defined by Boolean

expressions implies that for every candidate stored in the database, a binary decision

should be made by the querying system regarding whether the candidate is exactly an an-

swer to the user or not. Clearly, Boolean query logic may represent only crispy conditions,

like age < 30, s a l a r y > HK$40，000, etc.

In many practical situations, however, database queries unavoidably involve imprecise,

fuzzy conditions or concepts. Some typical examples are shown below:

1. In business decision making, it is often desirable to search for some good solutions

under certain fuzzy, imprecise criteria. For instance, a query to a database in

stock market may be submit ted with the following criteria: find those stocks in

1

ji

Chapter 1 INTRODUCTION ^

the electronic industry that performed excellently in the past year. In this case,

the query involves crispy conditions y e a r = 1994 and i n d u s t r y = e l e c t r o n i c s

as well as a very general, vague concept of e x c e l l e n t p e r f o r m a n c e .

2. In engineering design problem, it is often desirable to start the design of a new part

with a similar part that has already been developed, instead of developing the new

part from scratch. In such a case, it will be necessary to search for those similar

parts that are stored in an engineering database. The retrieval of candidate parts

from the database will be subject to a fuzzy concept that they are s i m i l a r to the

new part under development.

3. To recruit employees to fill in certain positions, a query to retrieve candidates

from a database maintained by a job center may include criteria like: female,

young, with an advanced degree in computer science or a related discipline, ex-

perienced, can speak Japanese, etc. In this case, it is clear that the conditions

fema le , and can speak J a p a n e s e are crispy, whereas young, a computer-re l a ted

degree, and exper ienced are fuzzy conditions. On the other hand, someone look-

ing for a job may submit a query with the following conditions: a job as a system

analyst, high pay, good benefits, working place near his home, etc. In this case, the

crispy condition is system a n a l y s t , whereas the fuzzy conditions are h i g h pay,
I

good benefits, and near home. 丨

It is easy to find that various practical problems exist in engineering, business, academy,

government, etc, which are of the same nature as above. To respond to the requirements

of data retrievals in such situations, it is clear that more sophisticated querying systems

with the capability of processing imprecise, fuzzy queries are needed. This constitutes the

main motivation of our research in this thesis.

In recent years, lots of efforts have been made, a iming to propose some effective ap-

proaches and systems to tackle the fuzzy database query problem. We will review, in the

next Chapter, some of the works which are relevant to our research. In general, as fuzzy

I

Chapter 1 INTRODUCTION ^

database query is still a new area of research which has not become mature yet, many

technical problems still remain to be resolved, and each approach or system proposed so

far still has its l imitations and disadvantages although at the same t ime they have offered

certain promises to solve some aspects of the problems. The main objectives of our re-

search are to tackle some of these important problems. Technically, our ma in objectives

are as follows:

1. A ma in problem found to exist in almost all systems that have been developed

for handling fuzziness in database queries is that they require users to completely

specify the explicit definitions of fuzzy conditions and their membership functions.

Nevertheless, in many cases a query submitted by a user may involve certain highly-

aggregated, imprecisely and vaguely-defined concepts, as we have discussed above.

These concepts cannot be directly processed without being further decomposed into

more specific and well-defined conditions. A query system usually does not possess

such a capability even if it can handle fuzzy conditions, since the further decompo-

sition and definition of general concepts often require some high-level knowledge on

the concepts from experts. An integrated system that has the capability of mapping

general concepts into well-defined fuzzy/crispy conditions by using expert knowledge

is mostly desirable. To develop such a system will be one of our main objectives.

2. Another ma in objective of our work is to design and develop a query system which

can be added on to an existing database management system like O R A C L E , with

m i n imum disturbance to the existing data management environments. In other

words, we assume that the database and its management are conventional (i.e.

nonfuzzy) and our querying system is used to make the data retrievals be able to

accommodate fuzzy concepts/conditions without any further change and modifica-

tion on the existing environments. Note that such an 'add-ons' feature is important

in making a query system more acceptable and applicable, which is one of the basic

lines of research in fuzzy database query, see Kacprzyk, Zadrozny, and Ziolkowski

2 0 ： .

I

Chapter 1 INTRODUCTION ^

3. To apply fuzzy set theory and decision making theory to process more effectively

fuzzy conditions is the third objective of this research. The fuzzy conditions will be

expressed in terms of membership functions. To provide more flexibility to express

the membership functions, our system will be designed to have the capability of

using external functions for the representation of membership functions. This will

also give the users more flexibility to perform other desirable operations.

1.2 Outline of the Work of This Thesis

The ma in work of this thesis is to develop a database query system to process database

queries involving fuzzy/imprecise conditions and/or concepts. Specifically, our ma in work

consists of the following:

1. We propose to use a knowledge base to handle general fuzzy concepts. The knowl-

edge base is a collection of concept trees. Each concept tree represents a concept,

in which the most general concept is placed at the highest level node (the root)

of the tree, whereas specific (crispy or fuzzy) conditions and subconcepts (each of

which may also be defined by another concept tree) are located at the lower level

nodes. This provides an effective approach to decompose a general concept into
I
I

more specific conditions in accordance with the knowledge on the concept. |

2. We develop a fuzzy query language to process fuzzy conditions, by applying the

fuzzy sets theory and the decision-making theory. Six operators are used, which play

different roles according to the need of the users. Al though some operators were

presented and used in previous literature, we derive the operators from a different

perspective, i.e. decision-making under uncertainties, which will better represent

the user's need in data retrievals under similar nature of criteria. A Parser and a

Fuzzy Processor are incorporated in the query system, which first transform fuzzy

conditions into some new crispy conditions, and then use the fuzzy operators to

r

Chapter 1 INTRODUCTION ^

process the candidates retrieved from the database under all the crispy conditions.

In this process, the standard SQL language is used and all the operations of the

database management system (O R A C L E) remain unchanged.

3. We propose to use external functions to represent membership functions and to

perform other desirable operations. For this purpose, a Da ta Manager is bui lt up

in the query system to provide this capability. The provision of the use of external

functions allows the system to be able to perform various tasks easily and effectively.

In particular, it provides a very flexible way to represent the membership functions

of fuzzy conditions as compared to previous systems.

The query system with the above capabilities has been designed, developed, and tested

on some sample databases. The overall architecture and design of the system as well as

the development and implementat ion of its various modules will be described in details

in this thesis. Meanwhile, our approaches to solve various problems in developing such a

system will be presented.

1.3 Organization of the Thesis

The organization of the thesis is as follows: Chapter 2 below will be a review of the
1

previous relevant work. In Chapter 3, we will first introduce some necessary concepts on

the fuzzy set theory, and then develop our fuzzy database query language, including its

syntax and its fuzzy operators to process fuzzy conditions. In Chapter 4，the design and

the functions of the system and its modules will be described in details. Chapter 5 will

discuss some key issues in the implementat ion of the system, in particular the modules of

the Knowledge Base and the Da ta Manager. To evaluate the performance of the system,

in Chapter 6, we will consider some problems in job appl icat ion/recruitment. Several

cases will be used to show the capabilities of the system. Chapter 7 is conclusion, in

which we will summerize our work and provide some comments on future research.

I

Chapter 2

REVIEW OF RELATED WORKS

This Chapter reviews some representative early works in the field of imprecise/fuzzy

database query, from which we see the various difficulties existing in the imprecise/fuzzy

database query problem, and the efforts that researchers in this field have expended aiming ；

to overcome the difficulties. Our work in this thesis is in fact a continuation of some of

these efforts and a further development of some of the approaches proposed.

2.1 Deduce2

Chang [12] developed a system, called Deduce2, which aims at an extension of Deduce,

a deductive system which provides users with a predicate calculus language. Deduce2

accepts a query involving two parts connected by an AND : a Boolean condition C I and ！

an optional imprecise condition C2. The imprecise condition C2 may refer to terms like

old, young, good, etc., which are combined using the two usual operators: A N D and O R .

The semantics of a query in the system may be stated as "rank according to C2 the tuples

which satisfy C I ” .

The core of Deduce2 is its ranking mechanism. It assumes that any imprecise term

involved is a monotonic function of one attribute, which may be a base attribute (present

in a relation), or a derived attribute (computed from attributes of relations). Thus, a term

‘old, can be represented as an increasing function of the base attribute age, and a term

6

Chapter 2 REVIEW OF RELATED WORKS 7一

‘GPA around 3.0, can be represented by a decreasing function of the derived attribute

GPA — 3.01. The adequacy under an imprecise term is then measured by the rank

obtained by sorting the tuples (having been retrieved by using C I) , which is performed

increasingly or decreasingly depending on whether the imprecise term is a decreasing or

increasing function of the attribute, with the convention that the smaller the rank, the

better the satisfaction of the imprecise term. If C2 consists of two terms T1 and T2

(assume that they are monotonic functions of attributes A1 and A2 respectively), then,

for a conjunction T1 A N D T2, a tuple will be first assigned with a rank R1 under T1 and

a rank R2 under T2, and then the final rank is max (R l , R2) . Converserly, for a disjunction

T1 O R T2, the final rank will be m i n (R l , R2) .

For example, consider a query "select the names of those Ph .D students in computer

science department who are old and whose GPA is around 3.0". The imprecise part of the j
i

query is: T1 = old (increasing function of age) A N D T2 = GPA around 3.0 (decreasing

function of \GPA 一 3.0|). Suppose the following three candidates are retrieved from the

database under the precise condition T h . D students in computer science': (Lee, 32, 2.8),

(Ng, 38, 3.6), (Wong, 35, 2.2). Clearly the rank under T1 is: Ng, Wong, Lee, whereas the

rank under T2 is: Lee, Ng, Wong, which gives Lee(3,l), Ng(l ,2) , and Wong(2,3). Thus,

the final rank is that Ng is the best, Lee and Wong are the second. If the operator A N D is

changed to O R , then the final rank is that Lee and Ng are the best, Wong is the second.

R e m a r k . This system represents an early work aiming to handle imprecise queries. It is

basically founded on the usual Boolean query logic and its objective is clearly to extend

an existing database management system so that it can have the capability to process

imprecise queries. Nevertheless, the queries allowed by the system are not general since

1. the introduction of the imprecise part only aims at the rank of the tuples retrieved

under the crispy conditions;

2. any imprecise term must be supported by a monotonic function.

Besides, it should be noted that the expression of imprecision does not take enough

Chapter 2 REVIEW OF RELATED WORKS ^

semantic aspects into account. In the example above, when the ages of the candidates

Lee, Ng, and Wong were 2, 8, and 5, respectively, the final result of rank would have

remained the same. This is a surprising result as the age condition is not satisfied by any

of the three candidates at all.

2.2 A R E S

A R E S is a system developed by Ichikawa and Hirakawa [17], which uses a similarity

operator denoted as ^ to represent an imprecise predicate 'more or less equal to，. To

measure the satisfaction of an imprecise condition A a, a distance c ? (外， i s defined

and the value of d{A, a) is evaluated. Then, A will be regarded as being very similar to a
I'

if the value of the distance is close to zero. Given an acceptance threshold t, the system |

will retrieve those tuples from the database whose values of distance are less than t.

If a query consists of Boolean and imprecise predicates connected by the operator

AND , the system adopts the following process to handle the query:

1. The user is asked to supply a threshold ti for each imprecise predicate Ci.

2. Based on the definition of distance, the system converts each imprecise condition Ci

into some Boolean conditions, under the convention that any tuple retrieved from

the database will have a distance less than the threshold ti.

3. A new query consisting of all the old and new Boolean conditions will be used to

select acceptable tuples for which each elementary distance is less than “ and the

global distance is less than an acceptable value, where the global distance is defined

as the sum of the elementary distances of the imprecise predicates Ci for all i.

4. The system sorts the tuples in descending order of the global similarity, and then

returns them to the user, with their corresponding global distance as the indicator

of overall satisfaction.

Chapter 2 REVIEW OF RELATED WORKS 9

Consider an example, where the query is to select those students whose ages are around

20 and whose CPAs are about 3.0. Assume that the distance of age from an expected

value a is defined as:

‘0 , if \age — a| = 0,

d(^age, a) = < 1, if 0 < | a 沢 — g 3, (2.1)

、3, otherwise.

And the distance of GPA from an expected point b is defined as:

' 0 , if\GPA-b\ < 0 . 1 ,

d{GPA, b) = l l , if 0.1 < \GPA -b\< 0.2, (2.2)

、2, otherwise.

Suppose that the following data are stored in the database: 丨

(Chan, 21, 3.0),

(Li, 17, 2.7)，

(Siaw, 24, 2.9),

(Tang, 20, 2.7),

(Wong, 23, 3.1)，

(Yiu , 20, 2.9).

. I

Note that a = 20 and b 二 3.0 in this example. Thus, using the two forumula (2.1) and :
1
I

(2.2) above, we can compute the distances of these candidates under the two conditions

regarding age and GPA , which are shown in the Table 2.1 :

Assume that the threshold on age supplied by the user is 2, the threshold on GPA is

1, and the global threshold is 1. Then, it is cleat that Chan, Li, Tang, Wong, and Y iu

satisfy the condition on age, while Chan, Siaw, Wong, and Y i u satisfy the condition on

GPA. But overall, only Chan, Wong and Y i u satisfy the restriction on the global distance.

Applying ARES , the following results will be obtained:

Chan[l], Wong[l], and Ym[0],

where the number inside the bracket indicates the global distance. Therefore, Y iu will be

I

Chapter 2 REVIEW OF RELATED WORKS 10

Table 2.1: Distance
Name (i (GTA,3.0)

1 — 0

~ L i ~ 1 — 2 一

Siaw 3 0

Tang 0 2

-Wong 1 0

~ Y i u I 0 I 0

ranked as the best, and Chan and Wong the second.

R e m a r k . This system also aims to handle the problem of imprecise query. However, the

semantics of a query is not straightforward in this system. In fact, the results generated

by the system strongly depend on the threshold values, and a pair of candidates will be “
f

regarded as the same if they are all within the threshold values. For example, Chan and *
I

Wong are of the same rank even though it is obvious that Chan satisfies the conditions

better than Wong does. In addition, Tang is not selected even if he is very close to the

best candidate Y in .

Another problem with A R E S is that the meaning of the global similarity is not very

obvious. Besides, it is sensible only when all the predicates are connected by ANDs.
i
1
i

2.3 VAGUE

V A G U E is a system developed by Motro [31], which can be regarded as an improve-

ment of ARES . In dealing with a similarity condition A a, a distance is also defined.

Specifically, a distance between Vi and V2 for each predicate Ci is defined subject to the

following constraints:

I

Chapter 2 REVIEW OF RELATED WORKS ^

‘d i{v i ,v2) > 0,

di{vi,V2) = 0, if 1；! = V2,
<

di{vi,v2) = di(V2,”i), Vvi,v2y and

, d i (v i , v 2) < di(vi,v3) + di(v3,v2), VVI,V2,V3-

Then, a radius 7\ is supplied by the user to each similarity condit ion A ^ ai^ which is

considered being satisfied if ai) < ri.

However, unl ike A R E S , V A G U E adjusts the raw distance under each predicate Ci

when considering the combinat ion of the predicates. Specifically, it introduces an adjusted

distance as follows:

di{A) = Wi ’

ri 丨

where Wi is the weight associated wi th the predicate Ci. (Note that the adjusted distance
A

applies to a Boolean condit ion Ci by default. In this case, di[A) = 0 if A satisfies the

A

condit ion and di{A) 二 oo otherwise.)

In addi t ion, V A G U E allows A N D as well as O R . For a condit ion OR(Ci,Cj), the

adjusted distance for a tuple is the smallest of the adjusted distances related to Ci and

Cj. Finally, the global distance of the combinat ion of conjunctions AND{Ci,Cm) is

obtained as the root of the sum of the squares of the adjusted distances corresponding

to each Ck, k = 1,2, . . . ,m . The global distances for all the tuples satisfying the Boolean

conditions will be evaluated and those tuples whose global distances are less than an

overall threshold value will be regarded as qualified answers to the user's query, and are

returned to the user wi th a rank made in accordance wi th their global distances.

R e m a r k . V A G U E is an improvement of A R E S as it performs a normal izat ion on the dis-

tances by introducing the adjusted distances. This makes the final results not so sensitive

to the theroshold values as compared to A R E S . Besides, it allows the use of the opera-

tor O R . Nevertheless, like A R E S , V A G U E regards all candidates as the same when they

Chapter 2 REVIEW OF RELATED WORKS 7一

all fall in the l imits governed by the threshold values (the radii). Moreover, the system

only supports imprecise query involving the concept of similarity. It does not have the

capability to deal with other imprecise conditions like young, much more than, excellent,

etc.

2.4 Fuzzy Sets-Based Approaches

It can be seen that the systems as reviewed above do not take enough semantic aspects

into account, which care only about certain extreme points in a query. This often gives

some surprising results like two very different candidates are regarded as the same, or a

candidate is rejected even if it is very close to the best qualified candidate. To resolve
！

these problems, since the late 1970s, a new direction of research has been created based on ：
)

the theory of fuzzy sets (Zadeh[43]). Tahani [37] is among the first people who advocate

the use of fuzzy sets theory for imprecise database query. Tahani suggests the extension of

the relational query language SEQUEL to support fuzzy queries. In his original proposal,

a fuzzy relation is defined by associating a degree of membership fx with each tuple, to

represent its satisfaction to the fuzzy predicates that are allowed to be expressed in a query

as linguistic variables such as old, high, small, etc. These predicates can be connected

by operators A N D and O R working as M I N and M A X . The final results returned to a

user will be those tuples with a non-null degree of membership in terms of satisfying

the combination of all the predicates. Tahani's approach can be regarded as one of the

significant attempts in the early t ime to apply fuzzy sets to attack the imprecise query

problem.

In order to extend the imprecise query capability of a relational D B M S , Kacprzyk and

Ziolkowski [21] and Kacprzyk, Zadrozny and Ziolkowski [20] at tempt to define the meaning

of a set of queries involving the so-called quantified queries. An example is the query 'find

the names of those students such that almost all the conditions {young, high GPA, live

near the campus, ...} are satisfied'. In general, they aim to attack the problem of imprecise

Chapter 2 REVIEW OF RELATED WORKS 7一

query in the form 'find those tuples such that P among the conditions {(7i, (^ 2 , C n }

are as desired', where a condition Ci may be a precise one or an imprecise one, and P is

either an absolute quantifier, such as a dozen, nearly 100, etc., or a relative quantifier,

such as almost all, a few, most, etc., which are represented by using fuzzy sets.

Wong and Leung[42] propose a fuzzy query language, which is designed to retrieve

data from a D B M S - V A X R d b / V M S . A fuzzy information retrirval module is developed,

which functions as an interface between users and the database system so as to support

the fuzzy query language for users to retrieval data under both Boolean conditions and

fuzzy predicates. The system works as follows:

1. Initially, a user's query is translated into the query language of the R d b / V M S

database system.

- 1
i

2. The Callable R D O facility of the R d b / V M S is invoked to retrieve the required data

from the database.

3. The data retrieved are evaluated against each fuzzy condition to obtain the degrees |

of membership in terms of satisfying the corresponding fuzzy condition.

4. Four operators, namely, A N D , O R , C O M B , P O L L (see next Chapter for the details

of these operators), are applied to derive the overall degree of membership of each

record in terms of satisfying the combination of the fuzzy conditions in the user's

query.

5. The records with non-null overall degree of membership will be ranked and returned

to the user.

This system relates the fuzzy database query to a multi-criteria decision-making prob-

lem. Thus, it not only serves as an effective language for fuzzy database query, but also

provides a powerful tool to assist decision-makers to find those opt imal (or good) solutions

from the database.

Chapter 2 REVIEW OF RELATED WORKS ^

Datacycle is a database processing system that uses filtering technology to perform

an efficient, exhausive search of an entire database. Recently, Mansfield and Fleischman

29] have described an approach which allows Datacycle to include fuzzy predicates in

its query processing. They are main ly concerned with the problem of how to ensure

the transaction processing efficiency in a high-volume query processing environment. For

this purpose, they propose several techniques aiming to reduce the t ime requirement in

evaluating the membership functions. One of them is to create a library of commonly

used membership functions parameterized by the trapezoid breakpoints (the technique of

using trapezoid points as a representation of membership functions is also investigated

in Kacprzyk, Zadrozny and Ziolkowski [20]). Then during query parsing, breakpoints are

substituted for the linguistic membership functions contained in the query. Besides, to

support the use of ad hoc definition of membership functions from the application level, |

they allow the breakpoints to be specified within the grammer of their extended SQL. |
i

Nevertheless, their system limits the membership functions to piecewise linear functions |
1

only. 1
I

In addition to the works reviewed above, numerous approaches, mostly on the theo-

retical aspects of fuzzy query and its related issues, have been proposed in the literature.

These include Umano [41], Zemankova and Kandel (1985), Prade and Tesemale (1987),

Buckles and Perty [11], Bosc, Galibourg and Hamon [4], Kamel and Hadfield [22], Taka-

hashi [38], Bosc and Pivert [7], etc.

2,5 Some General Remarks

1. In general, as we mentioned in Chapter 1, fuzzy/imprecise database query is still

a new and active area of research, and many related issues still remain unresolved.

Those traditional approaches like Deduce2, ARES , and V A G U E attempt to extend

the capabilities of existing DBMSs so as to handle queries involving certain imprecise

Chapter 2 REVIEW OF RELATED WORKS 15

predicates. However, each of them is more or less subject to some kinds of technical

restrictions, as we have discussed above. In particular, none of these approaches

takes enough semantic information into account, and the results generated by them

are therefore highly sensitive to certain threshold points subjectively provided by

the users. In some cases, a slight change of some threshold points may greatly

change the final results.

2. The theory of fuzzy sets offers an ideal approach to overcome the difficulties encoun-

tered by the tradit ional approaches, as the use of fuzzy sets provides a systematical

and accurate way to express imprecision and vagueness. Besides, many standard

results that have already been derived within the general framework of fuzzy sets

theory provides many useful tools for the development of query systems based on the

• . I
concept of fuzzy sets. Al l these serve as the ma in reason why the notion of applying ！

the fuzzy sets theory to the field of fuzzy/imprecise database query has become an ；
1

exciting and active line of research in recent years. Nevertheless, although many i

interesting results have been obtained, numerous problems still exist. |

3. A problem which exists in almost all previous approaches is that they presume that

any fuzzy predicate presented in a user's query has been described at such a specific

level that it can be directly represented by a certain fuzzy set, and the membership

function of the fuzzy set can be directly supplied by the user or can be directly j
(

found in the system. This is actually not the case in many practical situations.

As we have seen from the examples discussed in Chapter 1, in many situations the

queries of users often contain some highly-aggregated, imprecise and vaguely-defined

concepts, which cannot be processed without being further decomposed into more

specific conditions. How to process these kinds of queries is a challenging problem.

Considering that the decomposition of a highly-aggregated general concept usually

requires the knowledge of relevant experts, we believe that the use of knowledge

base could be a promising approach to tackle the problem. In this thesis, we will

report our results in building up such a system with this idea.

i

Chapter 2 REVIEW OF RELATED WORKS ^

4. Some proposed approaches a im to enhance some existing query languages like SQL

to support directly imprecise queries (see, for example, Bosc, Galibourg and Hamon

•4], and Bosc and Pivert [7]), but mechanisms to process imprecise predicates are

absent in current relational databases and are still the subject of current database

research, as pointed out by Mansfield and Fleischman [29]. There are two basic lines

of research, according to Kacprzyk, Zadrozny and Ziolkowski [20], in the use of fuzzy

sets in database query. One approach is to bui ld databases and their management

systems so that they can involve imprecision represented by fuzzy sets. In such a

system, querying, updat ing, etc., can be carried out based directly on fuzzy sets. The

other approach is to assume that the databases and their management systems are

conventional, and aim to bui ld some fuzzy processing systems on top of the existing

systems to make them capable of processing imprecise queries. Considering the i：

i|

technical feasibility and applicability in the real-world environments, we think both ；::

of the approaches are equally important , although perhaps the second approach is of

more immediate importance, whereas the first one is of more long-term significance. f

In this thesis, we will concentrate on the second approach, with an objective to j

develop a fuzzy processing system which can be added to an existing database

management system (O R A C L E) to make its processing of imprecise queries become :

immediately possible. |

f

5. How to express and evaluate efficiently the membeship functions is another problem J

with database query using fuzzy sets. Theoretically, all records in a database satisfy

any of fuzzy conditions, albeit at different degree of satisfaction (some may have a

zero-degree). Thus, if a fuzzy query is not properly parsed, it is possible that a

great number of records may be regarded as possibly qualified solutions and need

to be retireved from the database, which will incur a heavy burden to the computer

system. Mansfield and Fleischman [29] have described some approaches aiming to

solve this problem, like building a library to store the commonly used membership

functions, using trapezoid points to describe the support of a fuzzy set, restricting

Chapter 2 REVIEW OF RELATED WORKS 27

the membership functions to piecewise linear functions, etc. Undoubtedly, a proper

expression of a membership function is important , since it not only affects greatly

the transaction processing efficiency, but also represents the meaning of the fuzzy

term from the viewpoint of the user concerned. Considering these requirements, in

this thesis we will explore the technique of using external functions as a means of

expressing membership functions. This will provides the needed flexibilty for the

users. A user whose ma in concern is the accuracy of the meaning of his fuzzy terms

may choose to use some more appropriate functions as the membership functions,

whereas a user whose ma in concern is the transaction t ime may choose to use some

simple functions like piecewise linear functions to express his membership functions.

Besides, in our system, a Parser and a Data Manager will be designed aiming to

parse and process the membership functions efficiently.

1 .丨I
r

6. Usually, a query may contain numerous fuzzy conditions. However, a user rarely

regards all of his conditions to have equal importance. Therefore, operators applied .[
j

to do the combination of the conditions become very important . Hopefully, these j.

operators should reflect the viewpoint of the user on the combination of his condi-
r

tions. For this purpose, a simple and common approach suggested is to associate

different conditions with different weights. Wong and Leung [42] have attempted to ：

build up an equivalence relationship between the problem of fuzzy query and the :
•J

problem of multicriteria decision making. This is naturally an approach which may ^

accommodate the viewpoints of the users who want to search for candidates from

databases under mult ip le criteria. In this thesis, we will tackle the combination

problem of fuzzy conditions from a different perspective. We will model the prob-

lem by the theory of decision making under uncertainties (mult iple futures). This

results in an approach which not only gives Wong and Leung's operators some new

explanation, but also provides a model to better reflect the viewpoints of users who

want to search for the best candidates under some uncertain environments.

i

Chapter 3

A FUZZY DATABASE QUERY

LANGUAGE

In this Chapter we describe our query language to process fuzzy conditions contained in !

database queries, which is mainly based on the theory of fuzzy sets. As a preliminary, the ,：

following basic concepts are briefly introduced and reviewed first.

j!

3.1 Basic Concepts of Fuzzy Sets

A set in mathematics has crisp boundaries, which is used to formally represent a precise

concept. For example, the "integer numbers that are greater than 1 and less than 10” i：

丨I

may be represented by the set A 二 {2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } or by its characteristic function ！;

. i i

(j)A ： X {0,1}, where X is the set of all integer numbers, = 0 means x ^ A while J:

= 1 means x ^ A.

In contrast to this classical set concept, a fuzzy set is a class of objects in which there

are no sharp boundaries between those objects that belong to this class and those that

do not. More precisely, we have

Definition 1 Let X = {x} be a collection of objects. A fuzzy set A C X is di set of pairs

A = {x,ija{x)),x e X (3.1)

18

ji

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 19

where / ^ x ⑷ is termed the degree of membership of x, and ^ ^ : X M = [0,1] is a

membership (characteristic) function from X to the interval M.

liiA{x) is a function indicat ing the degree of membership of x in the set A. Roughly,

Ij,a{x) = 0 means that x does not belong to A , ^ ^ (x) = 1 means that x belongs to A ,

while 0 < lJiA{x) < 1 means that x partially belongs to A. (Exactly every x belongs to

A , if G X , with varying degree of belongingness as given by the membership function

jjA{x)). A n ordinary set in the classical mathemat ica l sense is a special case of a fuzzy

set whose membership function can take only two values 0 and 1. Sometimes the pair

{x , i j ,a{x)) is also denoted by f iA {x) / x .

A fuzzy set can be used to represent a fuzzy concept. A n example is as follows.

E x a m p l e Let X be the set of integers. The statement "several objects" may be repre- ：

sented by the following fuzzy set:

A = { (3 , 0 . 4) , (4 , 0 . 6) , (5 , 1 . 0) , (6 , 1 . 0) , (7 , 0 . 8) , (8 , 0 . 6) } U

{(x ,0 .0) : X <3,x > S,x e X}

Some basic definitions are given below:

！i

Emptiness A fuzzy set A is empty iff fiA{x)三 0. :
i

Normality A fuzzy set A is normal iff supa:fiA{x) 二 1. A fuzzy set is subnormal if it is

not normal.

A non-empty subnormal fuzzy set can be normalized by dividing each "A(工）by a

factor supa^fiAix).

Support The support of a fuzzy set A is a set S'(A) such that //^(x) > 0 x G S{A).

I f ijLa{x) 二 constant, Vx G S{A), then A is said to be nonfuzzy.

Equality Two fuzzy sets A and B are equal, written dis A = B, iff 二 Vx G

X.

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 20

Containment A fuzzy set A is contained in or is a subset of a fuzzy set B, written as

A c B , iff ijla{x) < /Us⑷ .

C o m p l e m e n t a t i o n A' is the complement of A iff = 1 —

Example . The fuzzy sets A = {large numbers} and A' 二 {not large number} are

complements of one another.

Intersection The intersection of two fuzzy sets A and B is defined as the largest fuzzy

set contained in both A and B and is denoted by AnB. The membership funct ion of

An B IS given by fiAnsix) 二 min(fiA(x),jjB(^x)),:c G X, writ ten as fiAnB = I^aN 阳.

Remarks. Intersection bears a close relation to the connective ”and，，. For example,

if A 二 {tal l men } and B = {fat men} , then A fl B = {tal l and fat men} . The

，i丨

concept of intersection will be used in the operator A N D in the Fuzzy Processor to i:|
11

be described below. |

1

U n i o n The union of two fuzzy sets A and B is defined as the smallest fuzzy set containing j'

both A and B and is denoted hy AUB. The membership funct ion of A U 5 is given

by f iAusix) 二 maa;(/^4(a:)’/is(:c)),:c G X , writ ten as / jaub = Ma V fis-

Remarks. Un ion bears a close relation to the connective "or" . For example, if A
]

二 {tal l men} and B 二 {fat men} , then AU B = {tal l or fat men} . The concept r,

of un ion will be used in the operator O R in the Fuzzy Processor to be described ：

below.

Algebraic s u m The algebraic sum of two fuzzy sets A and B is denoted by A ® 5 and

is defined by iia®b{x) 二 fMix) + i ^ s ⑷ — x G X.

Remarks. The concept of algebraic sum will be used in the operator C O M B in the

Fuzzy Processor to be described below.

Algebraic product The algebraic product of two fuzzy sets A and B is denoted by AB

and is defined by fMB⑷ 二 x G X .

J

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 21

C o n v e x combination The convex combination of the fuzzy sets A, B, and Z is denoted

by (A, B; Z) and is defined by (A，B; Z) = ZA+ Z'B, where Z' is the complement

of Z , which is characterized by = + [1 _ x e X.

Remarks. The concept of convex combinat ion will be used in the operator HUR-

W I C Z in the Fuzzy Processor to be developed below.

Relation A fuzzy relation in a product space X = x X2 x • • • x is a fuzzy

set in X characterized by an n-variate membership function • •冗n)，Xi ^

， Z — 1，2，• • •, Th •

Example. Let X = K = where R^ is the real line (-00 , +00). Then x > y is a

fuzzy relation in which may have ij,r{x, y) = 0 foi x < y and fiR^x, y) = ^ S
(工

for X > y . -

The above are some very basic concepts involving fuzzy sets which are related to our

work in the sequel.

3.2 The Syntax of the Fuzzy Query Language

The syntax of our fuzzy query language is defined in extended B N F grammar , which is)

summarized as follows: 丨

if
>

‘

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 22

C O N C E P T - D E F 〈concept〉= C O N D I T I O N ；

Q U E R Y select ITEM-LIST

from RELATION-LIST

where C O N D I T I O N ；

ITEM-LIST ::= I T E M ITEM-LIST-1*

ITEM-LIST-1 : := , I T E M

I T E M ::= E X P R E S S I O N | U S E R F U N C T I O N

C O L U M N :: 二 <relation-name>.<column>

〈column〉

E X P R E S S I O N 〈value〉| C O L U M N

(E X P R E S S I O N) I

E X P R E S S I O N M A T H E - O P E R A T O R E X P R E S S I O N

M A T H E - O P E R A T O R ::= +| — | * 1/

U S E R F U N C T I O N ::= < / 而 c " o n 〉 F U N C T I O N P A R

F U N C T I O N P A R ::二 ()| (P A R A M E T E R S)

P A R A M E T E R S ::= I T E M PARA-1*

PARA-1 ::= , I T E M

RELATION-LIST ::= R E L A T I O N RELATION-LIST-1*

RELATION-LIST-1 ::= , R E L A T I O N

R E L A T I O N <relation-name> |〈relation-name〉〈alias-name〉

C O N D I T I O N ::= C O N D I T I O N - E X P R E S S I O N |

C O N D I T I O N - O P E R A T O R

(C O N D I T I O N C0NDIT I0N-1+)

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 23

CONDITION-1 :：= , C O N D I T I O N

C O N D I T I O N - E X P R E S S I O N FUZ-EXPRESS ION |

NON-FUZ-EXPRESS ION

〈concept〉

C O N D I T I O N - O P E R A T O R ::= and | or | comb j poll | regret

hurwicz

FUZ-EXPRESS ION I T E M is ((VALUE-LIST) (D E G R E E - L I S T))

U S E R F U N C T I O N

VALUE-LIST ::= <value> <value〉+

DEGREE-LIST 〈degree〉<degree>+

NON-FUZ-EXPRESS ION ::= I T E M R E L A T I O N A L - O P E R A T O R I T E M

R E L A T I O N A L - O P E R A T O R ::= < | > | 二 | < = | > = | < 〉 ；

I

where

〈column〉is the name of a field in the database.

〈relation-name〉is the name of relation in the database.

<value> is the value of the type corresponding to a field.

〈degree〉is the value of the corresponding degree of membership.

〈concept〉is the words of users want to query.

〈function〉is the name of user function.
i

〈number〉is the real number. •

The following are some examples:

1. If a user wants to retrieve the id and names of those companies whose business are

marketing, his query should be stated as follows:

select co_id,co_najiie

from company

where business = 'Marketing'

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 24

where c o m p a n y is a relation table name, c o _ i d， c o _ n a m e， b u s i n e s s are the column

name of the table company, and business = ,Marketing, is a crispy condition.

2. If a user wants to retrieve the names and ages of those applicants who are male and

whose height is taller than 178, the query should be as follows:

select applicjname，aLge

from applicant

where AND (sex = ， height > 178)

where a p p l i c a n t is a relation table name, a p p l i c j i ame , age , s e x , h e i gh t are

the column names of the table applicant, and sex=,M, and height>178 are crispy

conditions linked by the operator AND . ,

；

3. If a user wants to retrieve data on the student names, ages, average ages and average

heights under the conditions that they are healthy and have good grade. The query

can be stated as follows:

select name, age, avg(height)， avg(age)

from student

where AND (healthy, GPA is ((1 2 3 4)(0.2 0.4 0.7 1 . 0)))

where student is a relation table name, healthy is a fuzzy concept, GPA i s ((1 2

3 4) (0 .2 0.4 0.7 1 .0)) is a fuzzy condition, and avg (age)，avg (height) are

external functions. Note that the fuzzy condition is good GPA, which is expressed in

the query by two lists of data. The first list (1 2 3 4) contains the domain values

of GPA, whereas the second list (0.2 0.4 0.7 1.0) gives the corresponding degrees

of membership in terms of satisfying the fuzzy condition.

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 25

3.3 Fuzzy Operators

In general, a user's query may contain a number of conditions, expressed in the following

form:

Q U E R Y ::= select ITEM-LIST

from RELATION-LIST

where C O N D I T I O N .

where

C O N D I T I O N ：：= C O N D I T I O N - E X P R E S S I O N |

C O N D I T I O N - O P E R A T O R

(C O N D I T I O N C0NDIT I0N-1+)

which is a combination of all crispy and fuzzy conditions of the user. The problem now

is how to obtain the required data to satisfy these conditions. ’
)

It is clear that , under each fuzzy condition, there could be a set of candidates in the ,

database, which all satisfy the condition in various degrees. An example is as follows, in

which a user wants to find the names of those students in the Journalism Department

who have good G P A and good sports—grade:

SELECT name

FROM student

WHERE AND (dept =)Journalism,，

GPA is ((0.0 0.4 0.8 1.2 1.6 2.4 2.8 3.2 3.6 4.0) ‘

(0 . 0 0.0 0.0 0.0 0.0 0.0 0.2 0.6 0.9 1.0))，

sports名rade is ((0.0 0.4 0.8 1.2 1.6 2.4 2.8 3.2 3.6 4.0)

(0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.6 0.9 1.0)))

Assume that the names, CPAs and sports—grades of those students who satisfy the

crispy condition (dept = , J o u r n a l i s m ') have been retrieved from the database, which

are given in the Table 3.1.

Accordingly, the degrees that the GPA and the Sports-Grade of each candidate are

good can be computed by mapping, respectively, his/her GPA and the Sports-Grade to the

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 26

Table 3.1: Student Grades
Name GPA Sports-grade

Paul 3.80 2.60

J immy 2.60 3.60

Aaron 2.80 2.80

Boris 3.15 2.90

— G i l l ~ J W 2.60 一

Felix 2.50 3.47

Galen “ 3.80 2.70

Lorna 3.40 3.33

Lyle ~2.95 3.05

Nathan 3.20 2.60

Olive 3.47 2.80

Cora 3.33 3.33

membership distributions as given in the query. Let us illustrate the mapping mechanism

by considering an example, the GPA of Paul , which equals 3.8. From the membership

distribution in the query 'GPA is ((0.0 0.4 0.8 1.2 1.6 2.4 2.8 3.2 3.6 4.0) (0.0 0.0 0.0 0.0

0.0 0.0 0.2 0.6 0.9 1.0))，，we see that GPA=3 .8 lies in between 3.6 and 4.0. Using a linear

interpolation with the two known points (3.6, 0.9) and (4.0, 1.0), we can get the degree

of membership for G P A : 3 . 8 , which is 0.95. Using this method, we obtain Table 3.2.

In this example the problem is to rank the candidates according to their degrees of

satisfying the two fuzzy conditions.

In general, when there are more than one fuzzy conditions contained in a query, we

will face the problem of performing fuzzy set operations so as to determine the degrees

of satisfying all the fuzzy conditions by the candidates. To do this, in our system six

kinds of fuzzy operators are incorporated, which will be applied according to the need of

users. These operators are now described below. Note that the first four operators were

proposed by Wong and Leung in [42], whereas the last two are developed in the present

project as their complement.

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 37

T a b l e 3.2: Membership Degrees of Good Students

Name Degree of Good G P A Degree of Good Sports-grade

Pau l 0.95 一 Q.IQ

J i m m y 0.10 一 0.90

Aaron 0.20 0.20

Boris 0.55 0.30

Gi l l 0.65 0.10

Felix 0.05 一 0.80

Galen 0.95 0.15

Lorna 0.75 0.70

Lyle 0.35 0.45

Na than 0.60 0.10

Olive 0.80 0.20

Cora 0.70 0.70

3.3.1 A N D

This operator is to perform an intersection operation over the two fuzzy sets A and B

corresponding to two fuzzy conditions,where / j a d b = I^a N 帅'According to Section 2.1,

this is equivalent to finding the m i n imum degree of membership , namely:

IMnB =

This rule can be extended to the general case where there are n fuzzy conditions

(Let Jf denote the degree of membership of candidate i in the intersection set, and

^ • • J = 1,. • . , n be the degree of membership of candidate i under fuzzy condition j):

J f = m i n (仏 . i , / ! 山 … ， i = l , 2 , . . . , m .

where m is total number of candidates.

3.3.2 O R

This operator is to perform a union operation over the two fuzzy sets A and B (corre-

sponding to two fuzzy conditions) where: / jauB = /̂ A V /^S • According to the definition

of union, this is equivalent to finding the m a x i m u m degree of membership, namely:

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 28

fMuB = max(/iA,/ is)

The extension of this rule to the general case with n fuzzy conditions (Let jf denote

the degree of membership of candidate i in the union set, and fiij, j = 1, . . .，n be the

degree of membership of candidate i under fuzzy condition j) is as follows:

Jf = max(仏 1, A2，• • . , IMn)，< = 1,2, . . . ,m.

3.3.3 C O M B

This operator is actually to perform an algebraic sum operation over the two fuzzy sets

A and B to get:

i W 細⑷ = f J ' A { x) + / i s⑷- f J 'A{x) f J ^B{x)

In general, if there are n fuzzy conditions, the membership function of the fuzzy set

after the algebraic sum operation is as follows (i — 1 , 2 ， m) :

= ^ i u if n = 1;

. . ., IMn) = IMi + - fMilM2, if n = 2;

jTijMi,fM2, • . . = J ?Ur i (fM i , fM2 , . • otheiwise.

3.3.4 P O L L

This operator is simply to take the average degree of membership of the fuzzy conditions,

namely, //(仏i，/^i2) 二 + I^b) for the example above. In the general case:

•Discussions: The four operators described above were developed by Wong and Leung

42] based on the multicriteria decision-making theory. In general, suppose that there

are n fuzzy conditions and m possibly qualified candidates retrieved from the database.

See the table shown as follow. Let iMj be the degree that a candidate CA i satisfies fuzzy

condition FCj.

/

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 39

FCi FC2 FCn

CAi fill 1^12 Mln

CA2 /i21 1̂ 22 M2n

• •
• •
• •

• •
• •

• •

CAm l^ml l^mn

In this matrix FCj can be regarded as the j t h criterion of the decision maker. CA,- is

his zth possible choice and jMj is the payoff under criterion FCj by choosing CAi. Then,

according to the objective of the problem (like maximizing all the n criteria or maximizing

one of the criteria), the decision maker will apply an appropriate operator (like A N D or

O R) . This corresponds to our data retrieval problem in the following sense: if the user

wants to find candidates with max imum degree of membership to satisfy all the fuzzy

conditions, then A N D should be applied, otherwise if he wants to find candidates with

max imum degree of membership to satisfy one of the fuzzy conditions, then O R should

be used. Similarly, the operator P O L L should be used when each fuzzy condition is

associated with an equal weight and the problem is to maximize their sum. The operator

C O M B should be used if the situation where the effect of applying all the attributes

is less than the sum of the effect of each attribute used separately. For more detailed

explanation on these operators, see [42 .

The following two operators will be presented from a different perspective. Clearly

there are situations where a user wants to determine some opt imal options against certain

unknown futures. For example, one may wish to determine what kinds of shares he should

buy in a changing stock market. He knows that n possible futures, FCj, j —

may occur, and he wants to retrieve from a database those candidates that may maximize

the expected payoff under the the uncertain futures. This problem can be formulated by

the matrix above, where the column fMj represent the performance of different shares C A ,

in a market condition FCj. In such a situation, the retrieval problem becomes a problem

of decision making under mult iple futures.

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 40

It is easy to show that the operators A N D , O R and P O L L are equivalent to the

decision-making rules M A X I M I N , M A X I M A X , and L A P L A C E in decision making

under multiple futures (cf. [33]). The next two operators H U R W I C Z and R E G R E T

are generalized from the decision making theory under mult iple futures based on the

observation discussed above.

3 .3 .5 H U R W I C Z

This is a rule which performs a compromise between the rule M A X I M A X with ex-

treme optimistic att i tude and the rule M A X I M I N with extreme pessimistic attitude.

It introduces an index of pessimism 0 < a < 1 to combine the rules M A X I M A X and

M A X M I N (namely, A N D and O R) . Specifically, for our purpose, let us introduce the

following fuzzy sets:

X = F C i n FC2 n . . . , o F C n

y = FCi U FCs U . . . , UFCn

and a fuzzy set Z characterized by fiz{x) = a for all :r G S(Z). Then, the H U R W I C Z

operator is the convex combination of the fuzzy sets X , V, and Z , namely:

(X,Y,Z) = ZX-i- Z'Y

which implies that

r 二 二 邵X + (1 -

The selection of the index a depends upon the att itude of the user towards the evidence

given by the best degree of membership and the worst degree of membership for an

alternative. In fact, the final solution obtained by H U R W I C Z operator is a function of

a , which can be plotted as a graph, enabling one to see a clearer picture on the change

of the decision when the att itude of the user changes.

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 41

3.3 .6 R E G R E T

This operator suggests that what we might really worry about is how bad we might feel

afterwards when we see what we might have selected if we had known enough to do the

right thing. Under such an attitude, a "regret" matrix has to be computed from the

original payoff matrix by examining each column in turn.

Generally, suppose that there are n fuzzy conditions and m possibly qualified candi-

dates retrieved from the database. Let us introduce the fuzzy set FCj in which the degree

of membership of the zth member is defined as 知：supi{ /A_ j} - fiij, for j = 1 , 2 , . . . , n .

(Note that FCj becomes FC'j if FCj is normal, namely, 二 1). A regret matrix

is one with fiij as its elements, where z = 1,2, . . . ,m and j 二 1，2,…，n.

The operator R E G R E T is actually to perform an O R operation over FCjJ 二

1 , 2 , . . . , n , to obtain

X : FCx U FC2 U . . . U FCn

the degree of membership of its i th member is given by:

fi — ..., fiin)

fl^ is the regret of candidate z, i = 1 , 2 , . . . ,n . If the candidates are to be ranked

in terms of their suitability to satisfy the query conditions, they should be ranked in an

increasing order of J f , under the operator R E G R E T .

The application of the operator R E G R E T to the example presented in the beginning

of the Section is given below. First the Regret matrix as shown in Table 3.3 is obtained.

Then, applying the operator we get the result as in the Table 3.4:

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 42

Table 3.3: Regret Degree

Name Regret(Grade) Regret (Sports-grade)

Paul 0.00 0.80 —

J i m m y 0.85 — 0.00

Aaron 0.75 0.70 —

Boris 0.40 0.60 —

Gil l 0.30 0.80

Felix _ 0.90 0.10 —

Galen 0.00 0.75

Lorna — 0.20 0.20

Lyle _ 0.60 0.45

Nathan 0.35 0.80 —

Olive 0.15 0.70 —

Cora 0.25 0.20

Table 3.4: Maximum Regret

Name Max imum Regret

Paul 0.80

J immy 0.85

Aaron 0.75

Boris 0.60

Gil l 0.80 —

Felix 0.90

Galen 0.75

Lorna 0.20

Lyle 0.60 —

Nathan 0.80

Olive 0.70

Cora 0.25

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 33

Table 3.5: Six Operators

A N D O R C O M B P O L L H U R W I C Z R E G I ^ E ^ ^

Paul 0.100 0.950 0.955 0.525 “ 0.695 “ 0.800

J i m m y 0.100 0.900 0.910 0.500 _ 0.660 “ 0.850

Aaron 0.200" 0.200 0.360 0.200 “ 0.200 0.750 一

Boris 0.300" 0.550 0.685 0.425 “ 0.475 0.600 —

~~Gill 0.100— 0.650 ~Q7685 0.375 0.485 — 0.800 —

" F e l i x 0.050" 0.800 0.810 0.425 0.575 — 0.900

~ G d e n 0.150 "5.950 0.958 “ 0.550 一0.710 一“0.750

" T ^ r n a 0.700 “ 0.750 0.925 0.725 _ 0.735 — 0.200

" T ^ l e 0.350 "0.450 0.643 0.395 一0.420 —

l ^ t h a n 0.100 - 0.600 Q.64F~ 0.350 “ 0.450 “ 0-800

Olive 0.200 0.800 0.840 0.500 0.620 0.700

Cora 0.700 0.700 0.910 0.700 0.700 0.250

In summary, the applications of the six operators described above to the example yield

the results as given in Table 3.5.

Table 3.6 gives the rank of each candidate under each of the six operators:

Chapter 3 A FUZZY DATABASE QUERY LANGUAGE 34

Table 3.6: Comparison the six operators

A N D O R C O M B P O L L H U R W I C Z REGRET—

~ T a u l 8 " " T ~ 2 “ 4 一 4 8

8 " 3 4 5 5 11

5 " I T " 12 12 12 6

4 " 10 8 7 9 3

Gi l l 8 8 8 10 — 8 8

12 ~ T ~ 7 7 7 12

Galen ~~7~~ 1 1 3 2 6

Lorna 1 ~ ~ 6 3 1 1 1
~ " “ 1 0 9 11 3

Nathan 8 9 H ~ ~ 11 10 8

Olive ~~5~~ 4 6 5 — 6 5

I 1 I 7 I 4 I 2 I 3 2

Chapter 4

SYSTEM DESIGN

In this Chapter, we shall describe in details the design of our system. Our ma in con-

siderations, ideas, and approaches in designing the system so as to achieve its expected

capabilities will be introduced. To do this, the organization of this Chapter is as follows:

In the following Section we shall first discuss some main issues related to the general

requirements of the system, such as the requirements on dealing with fuzzy conditions,

highly aggregated concepts, and external functions; Our approaches of how to represent

membership functions to define fuzzy conditions will also be introduced. Then, we shall

introduce the overall architecture of the system, to show the various modules and the

inter-relationships between these modules. The details of the various modules, including

their expected functions, and our ideas and approaches to achieve these functions, will

then be elaborated in the subsequent Sections respectively. These include the descriptions

of the modules: Interface, Knowledge Base, Parser, O R A C L E , Data Manager, and Fuzzy

Processor.

4.1 General Requirements and Definitions

35

Chapter 4 SYSTEM DESIGN 11.

4.1.1 Requirements of the system

The main requeirements of the system are that it be able to handle various situations

where user queries may contain highly aggregated concepts, fuzzy conditions, and external

functions. Specifically, we expect that our system can deal with queries that involve:

Fuzzy conditions In traditional database management systems, queries are intended to

retrieve data to satisfy only crispy conditions. In many cases, this lack of flexibility

leads to empty answers. That is one of the reasons why we want to investigate

the extension of such systems so that they are able to support imprecise/fuzzy

querying capabilities. To be distinguished from those highly aggregated concepts

we shall discuss below, a fuzzy condition is defined by our system as one: (i) that

can be represented by a membership function; and (ii) that involves only attributes

whose values can be found in the database directly. An example is the condition

high GPA, which can be expressed directly by "GPA is ((1 2 3 4) (0.2 0.4 0.7

1 . 0)) " (see Section 3.2), and the values of the attribute GPA can be found in the

database. Thus, when the GPA value of a candidate is obtained, the degree that this

candidate satisfies the fuzzy condition can be evaluated by using the membership

function. In our system, a Fuzzy processor will be designed and developed to

handle the fuzzy conditions to entertain imprecise/fuzzy queries. The six fuzzy

operators as described in Chapter 3 will be used in the Fuzzy Processor, to deal

with the cases where numerous conditions are to be combined together.

H i g h l y a g g r e g a t e d c o n c e p t s A query may contain highly-aggregated concepts. In

contrast to fuzzy conditions, such an aggregated concept is defined in our system

as one that cannot be processed directly without being further decomposed into

more specific crispy and/or fuzzy conditions. For example, consider the query “find

a s u i t a b l e c a n d i d a t e to fill the position of Computer Officer”. In this query,

suitable candidate is an aggregated concept, which is equivalent to the combi-

nation of a number of (crispy and/or fuzzy) conditions, such as: the candidate has

Chapter 4 SYSTEM DESIGN 11.

an advanced degree in computer science or a related area, high GPA , at least two

years of supervisory experience, young, and so on. Clearly, a query involving aggre-

gated concepts often occurs when a user is able to submit a general, vaguely-defined

request only. Such a concept must be further decomposed into more specific crispy

conditions, fuzzy conditions and subconcepts, before any candidate in the database

can be evaluated as to whether he satisfies the requirement. The decomposition,

however, usually needs the knowledge of experts on the concept, and an ordinary

user may not have the knowledge necessary to decompose his concept into these

specific conditions. A typical query of this nature is, for example, “find those shares

which have low r i s k to loose in the coming year", a query usually asked by ordi-

nary people when considering buying certain shares. Clearly, to answer this query,

the knowledge of stock-market specialists must be applied to further identify the

necessary conditions to define the concept low r i s k .

Our system will possess the capacity to handle queries involving aggregated

concepts (for convenience, the term aggrega ted concept will be, from now on,

abbreviated to concept) . This is to be performed by a built-in knowledge base in

the system. In the Knowledge Base, each concept will be represented by a concept

tree, which describes the composition of the concept. Each concept tree will have a

hierarchical structure, which gives different level of definitions on the concept. The

most general concept is located at the highest level node whereas specific (crispy or

fuzzy) conditions and subconcepts (each of which may also be defined by another

concept tree) are located at the lower level nodes. Many concept trees are stored in

the knowledge base, which are constructed based on the knowledge of experts on the

concepts that may appear in queries related to the database under consideration.

These concept trees can be inserted, modified and deleted at any time. A detailed

description of our knowledge base will be given in Section 4.4 below.

External functions Because of the l imitat ion of internal functions, it is desirable that

functions can be defined by a user in accordance with his requirement. Our system

Chapter 4 SYSTEM DESIGN 11.

will be able to handle the case where a query contains external functions defined

by a user in a file. Those functions can be modified and inserted if needed. They

are compiled by a compiler in the system before they are called. We will use the

technique of dynamic library to link the external functions. The use of external

functions provides much more capabilities to the system. For example, we can use

an external function to represent a membership function of a fuzzy condition. This

leads to more flexible and accurate representation of membership functions. This

will be elaborated below.

4.1.2 Representation of m e m b e r s h i p functions

Our system will apply the theory of fuzzy sets to handle fuzzy conditions involved in

user queries, which will therefore need to define a fuzzy condition by using a membership

function. Consequently, it is important to design some appropriate methods to represent

membership functions in the system. In [42], a membership function is expressed by two

lists. The first one contains domain values for a field in ascending or descending order.

The second list gives the corresponding degrees of membership. For example, the fuzzy

condition "old "(shown in Fig 4.1) is expressed as:

age is ((15 20 25 30 40 50 60 70)(0.2 0.3 0.4 0.5 0.7 0.8 0.9 1.0)).

We call this method of using two lists to represent a membership function the p r i m i t i v e

r e p r e s e n t a t i v e method. The method has the advantage that it is easy to understand

and implement. However, it becomes very cumbersome in some complicated situations,

particularly when the membership function depends upon more than one variable. Con-

sider a problem where a person wants to find a job near his home. He may thus present

a fuzzy condition that the distance of the job location from the origin (representing his

home) is short Clearly, the degree of membership of a point in this fuzzy set is a function

of two variables x and y in the plane. In such a case, it will be very difficult to enumer-

ate all the possible combinations of x and y so as to give the two lists in the primitive

Chapter 4 SYSTEM DESIGN 11.

u (x) A o l d

1 ^

I I I I >
0 15 30 45 60 75 90

AGE[years]

Figure 4.1: The membership function for the concept "old"

representative method. Besides, even in a case where there is only a single variable x,

the primit ive method is convenient only when the membership function is monotonously

increasing or decreasing, see Fig 4.2 and Fig 4.3. In other cases, say, the membership

function is convex or non-convex (see Fig 4.4 and Fig 4.5), the primitive representative

method is inconvenient, which may need a great deal of points to completely represent

the whole curve.

Our system will have the capability to provide two kinds of methods to represent

membership functions, which are described below respectively:

Primitive Representation The system does not exclude the primitive representative

method. In other words, a user can state, if he likes, a membership function by two

lists as required by the primitive representative method. In such a case, our system

will treat the membership function as a piece-wise linear function, which will use a

straight line to connect every pair of adjacent points, called corner points, as given

by the two lists. Then, when the degree of membership for a point in between a pair

of corner points is needed to be evaluated, the linear function will be applied. This

method is easy to realize, although it may introduce some error when the original

function is a non-linear function and not sufficiently many points are provided by

Chapter 4 SYSTEM DESIGN 11.

u(x) A

0 X

Figure 4.2: Increasing membership function

the user.

External Function A user can define a membership by using an external function. This

is the most general way to do the representation, as the user can choose the most

appropriate function to represent the membership. For example, consider a fuzzy

condition that the working experience of a candidate should be about e i g h t years.

Suppose that, according to the opinion of the user, the membership function on this

fuzzy condition should be a normal function, defined under the conditions that: (i)

when the number of years of working experience of a candidate is exactly eight,

then the degree that this candidate meets the condition is exactly 1; and (ii) when

the number of years of working experience is greater than twelve or less than four,

then the degree becomes zero. Our system uses an external function normdist

(minimum-va lue , maximum_value, v a l ue) to represent this membership function,

where the parameters ininiinmn_valiie and maximum_value give the range of the

distribution (equal to four and twelve respectively in the present example), and the

function value is set to be one at the middle of the range. Therefore, whenever

a value (the number of years) is given for the parameter va lue , the normdist()

Chapter 4 SYSTEM DESIGN 11.

u(x) A

0 ^
X

F igure 4.3: decreasing membership function

function returns the membership degree as required.

An external function in the system can be a function of more than one

variable. This overcomes the difficulty of the primitive representative method. The

use of external functions provides a general and accurate approach to the represen-

tation of membership functions. The implementation of this approach is feasible, as

long as the system can accept and handle external functions. Our system has this

expected capacity, as we have discussed above.

4.2 Overall Architecture

The overall architecture of the system is depicted in Fig 4.6.

The system consists of the following modules: Interface, K n o w l e d g e Base, Parser,

O R A C L E , D a t a M a n a g e r , and Fuzzy Processor. It supports a user query in the

fuzzy query language (FQL) as described in Chapter 3. The FQL virtually comes from

a hybrid of the fuzzy set theory and the decision-making theory, as we can see from

Chapter 3. The query system is designed to retrieve data via a database management

system - O R A C L E running on SUN Sparc workstations. It issues queries written in SQL,

Chapter 4 SYSTEM DESIGN 1 1 .

U(x) t

liL^
0 X

Figure 4.4: Convex fuzzy set
a set of commands that all programs must use to get access to data from the Database
managed by O R A C L E .

A user query may include fuzzy and crispy conditions, aggregated concepts, and ex-

ternal functions. The ITEM丄 IST(see Section 3.2) of a query may be column names of

tables and/or external functions. The mechanism of the system is that the fuzzy query

will be translated to a SQL query first, which contains the crispy conditions appearing in

the user query as well as some new crispy conditions extracted from the fuzzy conditions

and concepts. Then, the data that satisfy all these crispy conditions are retrieved from

the database via O R A C L E using the SQL query. The system then processes those data

to determine the degrees that they satisfy the fuzzy conditions. Specifically, the system

works as follows (cf. Fig 4.6):

1. A user submits a query to retrieve data in accordance with his requirements to the

Interface module. The Interface module passes the query to the Parser, and waits
for the result.

Chapter 4 SYSTEM DESIGN 11.

U (x) I �

Lz^
0

X
Figure 4.5: Nonconvex fuzzy set

2. If the query contains a general concept, parser will pass the concept to the Knowl-

e d g e B a s e . The Knowledge Base will translate the concept into certain specific

conditions in accordance with the knowledge on the concept in the Knowledge Base.

3. The P a r s e r will pass all conditions, including those presented in the query and

those generated by the Knowledge Base, to the Fuzzy Processor. On the other

hand, the Parser will generate a number of crispy conditions corresponding to each

fuzzy condition. These new crispy conditions will be combined with the original

crispy conditions to generate a condition without fuzzy criteria. The Parser then

eliminates the external functions in the query to generate a SQL query. Section 4.5

gives a detail description of the Parser.

4. The SQL query will be submitted to O R A C L E to retrieve data from the database.

Those data (candidates) satisfy all the crispy conditions (including those new cripsy

conditions generated from the fuzzy conditions by the Parser) in the SQL query,

and are potential candidates to the user.

5. For each potential candidates, the D a t a M a n a g e r evaluates its user functions, and

Chapter 4 SYSTEM DESIGN 11.

SQL for

creating the temporary Retrivel & Update

table which satisfy the of temporary table's

crispy condition / columns

- … - 「 丨 (r ^ - - - / ^ - ：
Add concepts | \ i / ,

(j g ^ ^ T ^ K = d g e ^ Oracle H p Database ：
Enquery . •—— j | —— () j

！ • 1 I • ： ； f T _ _ I
Query > ； i / User \ ,

二 Interface _ P a r s e r ； | Manner |

Results J ‘ 1] I J I

User Membership

Condition ^ Degree

^ Fuzzy

Alternatives which ^^^ P r o c e s s o r
satisfy crispy conditions

Alternatives & Membership Degree

Figure 4.6: Architecture of Overall Design

then sends the candidate to the Fuzzy processor.

6. The Fuzzy Processor determines the degrees of membership that the candidates

satisfy the user condition. The membership degree is returned to the Data Manager.

7. The Data Manager ranks the candidates with non-zero degrees of membership under

the fuzzy conditions. It sends them to the Interface together with the values of

the external functions.

8. The Interface module provides these final results to the user.

The above is an outline about how the system works. The functions of the modules

as discussed above will be now described in details in the following Sections.

4.3 Interface

Chapter 4 SYSTEM DESIGN 11.

This module is designed to directly interact with users. If a user wants to retrieve

data from the database, he will submit a query in accordance with his requirements to

this module. The concepts and the conditions in his query will then be passed to the

Knowledge Base and the Parser respectively.

Specifically, this module will firstly ask the user to provide the following information:

1 . 1 - Input the query

2. 2 - Manipulate concept(s)

3. 3 - Initialize the knowledge base

4. 0 - Exit

Note that a user can only choice 1 to input his query. After he chooses 1, the system

will ask for the following information:

1. Enter the select i tem names.

2. Enter the relation table names.

3. Enter the conditions.

An example is as follows, in which a user wants to retrieve the name, age, gpa,

avgc(gpa, student) of students who are academically excellent and whose gpa is greater

than the average gpa:

Enter the item-name you are interested :

name,age，gpa,avgc(gpa，student)

Enter the relation table name :

student

Enter the conditions :

Chapter 4 SYSTEM DESIGN 11.

AND(academically excellent, gpa>avgc(gpa,student))

I n the query, academically excellent is a concept, and a v g c (gpa, student) is an

external funct ion. The general concept has to be further decomposed into more detailed

conditions recognized by O R A C L E . The function a v g c (gpa, student), like other external

functions, is created in C language in the user library. The system will call the user library

and pass the parameter to obtain the corresponding funct ion value.

The query input ted by the user will be now passed to the Parser. Besides, if it

contains general concepts, these concepts will be passed to the Knowledge Base for further

processing.

Another funct ion of the Interface modu le is to receive the final result from the Fuzzy

Processor (cf. F ig 4.6) and then send it to the user.

4>4 Knowledge Base

: The Knowledge Base modu le will be activated when a general concept is contained

in the query. The Knowledge Base modu le generates detailed, recognized conditions to

: define the general concept.

— W h a t is the knowledge base ？ How is it represented ？ In our knowledge base, a concept
！L

【 is represented by a condit ion tree. In a tree, a node may be a concept, an operator or

a condition. Each node may have children and sibling. The data structure is shown in

i Fig 4.7, Fig 4.8 and Fig 4.9.

I Note that in Fig 4.9, the tree on the left-hand-side is the representation of a concept,

I whereas the tree on the right-hand-side is its corresponding data structure. In this data

I structure, all the nodes at a same level are brothers, and the nodes at a lower level are

i the children of the node at the higher level.

I
P:

m.
w-

i:

r

Chapter 4 SYSTEM DESIGN 11.

X ^ D a t a X

I child sibling/ typedef struct datatree {

\ J ~ Token data;

struct datatree 氺child, * sibling;

} Dtree;

o
Figure 4.7: Structure of Dtree

This is a hierarchical structure. The highest level node is a concept to be represented.

The low level nodes are subconcepts or conditions. Each subconcept has its own concept

tree which describes this subconcept. Thus, in the Knowledge Base, there are many small

concept trees rather than just a single one. Concept trees with this kind of data stmture

are easy to be modified and can avoid redundance.

An example is as follows:

Suppose one wants to find the names of good sports students. Clearly good is a

concept. The following is a concept tree in the knowledge base to define this concept:

good sports-student

and

term_gpa〉= 3.0

young

t a l l

The above concept tree can also be contained in another concept, such as e x c e l l e n t

sports students. The condition tree to define this concept is below:

excellent sports-student

and

r
Chapter 4 SYSTEM DESIGN 11.

typedef enum{
LEFrPAR,RIGHTPAR,AND,OR,

COMB,POLL,REGRET,HUWICZ,
FUZCOND,CONCEPT,NFUZCOND

} Tokentype ；
val cond conc ；

I T » cnspy

typedef struct {

Tokentype type;

Ji_ Fcond *val;
fcond I I concept] char *conc;

char *cond;

} Token;

F igu re 4.8: structure of Token

g p a 〉 二 3 . 5

good sports-student

1

I which will need the “good sports-student" tree as a subtree.

The fuzzy conditions “young” and "tal l" can also be treated as concepts and defined

in the knowledge base directly by the following conditions:

young

age is ((40 35 30 25 20 15) (0.0 0.3 0.5 0.7 0.9 1 . 0))

tall

height is ((150 160 170 180) (0.0 0.3 0.6 0.8 1 . 0))

To locate a concept tree, we choose to use hashing index with the concept name as

the key. Assume that we decide to have n buckets and define a hash function that maps

the concept. Each bucket points to a chain which has data structure as follows:

typedef struct chain {

I
Chapter 4 SYSTEM DESIGN 11.

^ ^ ©

@ © © GiH^Q^C^ ® ^ ® �

@ @@ @ @
F i gu re 4.9: transformation

Dtree *concept；

struct chain *next；

} Chain;

The hash table is shown in Fig 4.10. Ou r approach works in the following way:

Concept Next

〇〇

J tn L ？ ？
n LIJ O ^ ^

trees
Hash table

F igu re 4 .10: Hashing index

1. Firstly, if there is a concept in the query, we search this concept in the hash table,

Chapter 4 SYSTEM DESIGN 11.

and obtain the tree about this concept.

2. If there is a sub-concept in this tree, we will search the sub-concept in the hash

table again, and then link the sub-concept tree to the concept tree. The process is

repeated unti l there is no more concept but only well-defined conditions in the tree.

3. The condition in a query can be treated as a temporary concept. We build the

condition tree for the query by the same mechanism. The whole condition tree

generated is passed to the Parser module for further processing.

A concept tree can be inputted directly or can be read from a file that has already been

saved. Specifically, the knowledge tree can be obtained by the following two methods:

1. Experts' knowledge on a concept can be collected and inputted by editing the rele-

vant data file.

2. A user submitt ing a query involving a concept may be asked to interpret his under-

standing of the concept. He will be asked to define the conditions of the concept

using the CONCEPT-DEF statement in the Interface module. The statement will

be translated to a file of the standard format.

The Knowledge Base can be modified in any t ime by using expert knowledge. The

interface of inputt ing concepts is shown by the following menu:

Please choose:

1)Add a concept

2)Load Knowledge Base

When we want to add a concept, we can choose 1, and then input concept name and

conditions. The syntax is same as CONCEPT-DEF statement. When we want to add a

file in the Knowledge Base, we should choose 2. The system will ask for the file name and

then add the new file to Knowledge Base.

Chapter 4 SYSTEM DESIGN 11.

4.5 Parser

A Parser is designed in the system to process the crispy and fuzzy conditions that

are expressed in the original query and those that are transferred from the Knowledge

Base after interpreting the general concepts contained in the query. The Parser module

will generate a SQL query to retrieve data from the database via ORACLE. Note that

the system will not provide alternatives with a zero degree of membership for any fuzzy

condition, the Parser will first find out the threshold point where the degree of membership

of a fuzzy condition becomes zero beyond this point. The threshold point is used to

construct a new crispy condition to limit the range of retrieval from the database. These

new crispy conditions together with the original crispy conditions will generate a set of

non-fuzzy conditions. If those non-fuzzy conditions contain external functions, they will

be converted to conditions with no external functions. The non-fuzzy and non-functional

conditions will be used in the intermediate SQL query. In summary, the Parser performs

the following:

1. Examine the threshold points of the degrees of membership (where the degree of

membership becomes zero) for each fuzzy condition. For each fuzzy condition,

generate some new crispy conditions which prevent the system from unnecessarily

retrieving alternatives with a zero degree of membership under this fuzzy condi-

tion. For example, from the fuzzy condition young: age is ((45 40 35 30 25

20 15) (0.0 0.0 0.3 0.5 0.7 0.9 1.0)) , a crispy condition age < 40 will be

generated.

2. A query which contains two fuzzy conditions will have to specify how the combi-

nation of these conditions should be satisfied. This is to perform a set operation

among the two sets of candidates retrieved under the two conditions, such as an

“AND，，or an “OR，，operation. As we know, AND will consider the minimum de-

gree of membership, whereas OR will consider the maximum degree of membership.

r
I

Chapter 4 SYSTEM DESIGN 11.

In a case where a user would prefer something in between these two extreme points,

other operators will be used. In Chapter 3, we have described six operators, A N D ,

O R , C O M B , P O L L , H U R W I C Z , and R E G R E T . In our system, a user may choose

one of these operators to l ink each pair of fuzzy conditions according to his require-

ments. Note that a SQL command can only have A N D and O R , the Parser will

first convert the six fuzzy operators to one of A N D and O R . Clearly, if the fuzzy

operator is A N D or O R , the corresponding operator in the SQL query will be the

same. For the other four fuzzy operators, the Parser will perform the following: (1)

pass them to the Fuzzy Processor module; and (2) use an O R operator to replace

them when constructing the SQL query. The rational behind the second step is that

all alternatives which satisfy any one of the pair of the fuzzy conditions should be

first retrieved out from the database, which will then be sent to the Fuzzy Processor

so that the Fuzzy Processor can use the original fuzzy operators to process them.

This will guarantee that no qualified alternative is missed out from the retrieval.

3. Convert a query with external functions into one with no external functions. The

technical details for the conversion will be described in Chapter 4.

4. Generate an intermediate SQL query using the original crispy conditions as well as

the new crispy conditions, which will be issued to O R A C L E to retrieve records from

the database.

5 Pass all fuzzy conditions to the Fuzzy Processor and pass all external functions to

the Data Manager. These two modules will further process those records retrieved

from the database.

4.6 ORACLE

After the FQL (fuzzy query language) query submitted by the user is transformed

to an intermediate SQL query with only crispy conditions and non-functional conditions,

！

Chapter 4 SYSTEM DESIGN 11.

they will be sent to the ORACLE . The alternatives which satisfies all the crispy conditions

will be retrieved from the database through O R A C L E and passed to the Data Manager.

: The Data Manager will evaluate, if necessary, the external functions and further pass the

alternatives to the Fuzzy Processor to see to what degree an alternative will satisfy the

fuzzy conditions.

4.7 Data Manager

This module is designed to handle user external functions given in a user query. When

data are retrieved from the Database using the intermediate SQL query, they are not

returned to the user directly. Instead, they will be put on a temporary table Temp, which

will then be processed, by the Data Manager and the Fuzzy Processor, with consideration

of the external functions as well as the fuzzy conditions before they become the final

results to be sent to the user. The procedure is illustrated in Fig 4.11, which is described

丨 below:

1. In general, a user query contains three parts 一 item list, relation table and condi-

tions, where the conditions may consist of fuzzy conditions and non-fuzzy conditions,

which may contain external functions. The Parser will pre-process the query to gen-

erate an intermediate SQL query. Meanwhile, the conditions with external functions

will be passed to the Data Manager and the fuzzy conditions will be passed to the

Fuzzy Processor. Specifically, the operations involved on the I t e m l is t , Tab le , and

C o n d i t i o n s are as follows:

I t e m l ist Firstly, the Parser of the system will process item list. If an item list of

the user query involves external functions, the Parser will generate a new item

list for the intermediate SQL query. The new item list contains all columns

and all parameters of the functions of the item list. For example, if the item

list is

� ,J

Chapter 4 SYSTEM DESIGN 11.

INPUT OUTPUT

USER QUERY Final S Q L Q U E R Y

； select Cl’C2”“Ci’Fl J^2，...Fj select Cl，C2，...Ci’Fl’F2’...Fj

from relation table from temp

where and(Cdl,Cd2,...Cdm,FCdlJCd2,...FCdj) where Degree > 0
Order by Degree

、、
、

N

i 、、、么 ^

I n t e r m e d i a t e S Q L Q U E R Y TEMP TABLE

I C1’C2’…Ci P1,P2,...P1 Fl,F2,...Fk Degree
selectC:i，C:2”..Ci，Pl，P2”..Pi

from relation table

where Cdl and Cd2... 八 A

and Cdm

\f / *

" T l Insert the Data ^ Evaluate Degree

ORACLE 叫 into temp table H from condition tree

�f

Updata the function

value into temp table

、
V

/^Dynami^

F i gu r e 4.11: The diagram of calling external function

name, age , h e i g h t , s u b s t r (n a m e , 1 , 3) , u s r f u n c 4 (g p a) ,

then the Parser will generate the i tem list of the intermediate SQL query as

name, age , h e i g h t , 1，3， g p a .

T a b l e The relation table name will be unchanged in the intermediate SQL query.

C o n d i t i o n s The Parser of the system uses the user conditions to generate new

conditions for the intermediate SQL query. The new conditions should be non-

fuzzy and contain no functions. We have il lustrated, in the Section 一 Parser

above, the method of how to generate new crispy conditions based on the fuzzy

Chapter 4 SYSTEM DESIGN 11.

conditions. After doing that, the system adopts the following approach to deal

with external functions: (1) if a condition A containing an external function

is linked by the operator A N D with another condition B’ then this condition

A will be removed from the intermediate SQL query; (2) if a condition A

containing an external function is linked by the operator O R with another

condition B, then both A and B will be removed from the intermediate SQL

query; and (3) after those records are retrieved by the intermediate SQL query,

the external functions will be evaluated and the records will then be processed

by applying the original conditions with the external functions. The reason

to apply steps (1) and (2) above is to guarantee that no potentially qualified

candidate is missed out from the retrieval by the intermediate SQL, before the

external functions can be evaluated and thus the condition A can be checked.

This can be justified by the following simple argument:

(1) Let the records contained in the Database satisfying the condition M and

B,, be R l . A SQL query with only condition B will get those records that

contain R l , since the intersection of A and B belongs to any one of A and B.

(2) Similarly, let the records contained in the Database satisfying the condi-

tion “A or B" be R2. A SQL query without conditions A and B will get those

records that contain R2. This can be seen from Fig 4.12.

An example is shown below:

"and(gpa i s ((1 . 0 1 .5 1 .8 2 .0 3 .0 4 . 0) (0 . 0 0 .0 0 .2 0 .6 0 .8 1.0))，

age>20 , u s r f u nc2 (he i gh t) >155 , or (us r func3 (age) > i i s r func4(gpa*10) ,

age > 25))，，.

The Parser will pass the conditions with external functions and the fuzzy con-

dition to the Data Manager and the Fuzzy Processor, and generate an inter-

mediate SQL query with the following conditions:

“and (gpa > 1 .5，age > 20)，，.

— ' ™ ™ ™ “

Chapter 4 SYSTEM DESIGN 11.

all records condition B

condition

A and B A or B

Figure 4.12: Intersection and union of A and B

T e m p t a b l e The Data Manager creates a new Temp table based on the user query.

The columns of Temp will consist of all columns, parameters and external func-

tions which appear in the user query.

For example, if the user query's item list is :

name, age , h e i g h t , substr (name，1，3)，usrfunc4(gpa) .

and the conditions are:

"andCgpa i s ((1 . 0 1 . 5 1 . 8 2 .0 3 .0 4 . 0) (0 . 0 0 .0 0 . 2 0 . 6 0 . 8 1.0))，

age>20 , u s r f u n c 2 (h e i g h t) > 1 5 5 , o r (u s r f u nc3 (age) > u s r f u n c4 (g p a *10) ,

age > 25))，’.

then the Temp table columns are

name, age , h e i g h t , gpa , 1， 3 , u s r f u n c 2 (h e i g h t) , u s r f u n c 3 (a g e) ,

u s r f u n c 4 (g p a * 1 0) , gpa*10 , s u b s t r (n ame , 1 , 3) .

2. When the required data are retrieved from the Database by the intermediate SQL

query, the Data Manager will insert these data into the Temp table. Then, it will

evaluate the function values using these data by executing the external functions in

Chapter 4 SYSTEM DESIGN 11.

a user dynamic library. After that , the external function values will be updated in

the Temp table.

3. Knowing the values of the external functions, the Data Manager will apply those

conditions (with external functions) passed from the Parser to further update the

records in the Temp table. Those records that do not satisfy the crispy conditions

(if any) will be eliminated. After that , the Fuzzy Processor will be activated to

determine the degrees of membership of the records in the Temp table under the

fuzzy conditions. These degrees will be inserted in the Temp table.

4. The Da ta Manager will create a final SQL query. The i tem list of the final SQL query

is same as the i tem list of the original user query. The relation table is Temp table.

Since it is a requirement that the degree of membership of any record to satisfy

the fuzzy conditions should be greater than zero, the final SQL query will carry

a condition that only those candidates that have a non-zero degree of membership

should be retrieved. The alternatives obtained by the final SQL query will be sorted

and ranked according to their degrees of satisfying the fuzzy conditions, and then

passed to the Interface module for transmission to the user.

A technique of dynamic library, after being enhanced to suit our need, is used to

handle external functions. This will be described in details in Chapter 5.

4.8 Fuzzy Processor

The Fuzzy Processor receives information from two modules: one is Parser, which

passes on the fuzzy conditions, and the other is the Data Manager, which passes on the

records which have been processed with condition of the external functions. The Fuzzy

Processor will apply the various operators available, such as A N D , O R , C O M B , PULL ,

H U R W I C Z , and R E G R E T , to calculate the degree of each record in terms of satisfying

all the fuzzy conditions.

Chapter 4 SYSTEM DESIGN 11.

The functions of the fuzzy operators used in our system have been described in details

in Chpater 2.

For example, we have a user query as follows :

SELECT name, age, h e i g h t , us r fu i i c3 (gpa) , subs t r (name , 1 ,3)

FROM s tuden t

WHERE and (he igh t>160 , usr fu i i c3 (age) >24,

or (h e i gh t i s ((150 160 170 180) (0 . 6 0 . 7 0 . 8 1.0))，

gpa > 3 . 5))

The system will generate the intermediate SQL query as:

SELECT name, age, h e i g h t , gpa , 1， 3 , gpa氺 10

FROM s tuden t

WHERE (he ight>160)

The columns of temp table are :

name, age , h e i g h t , 1， 3， gpa , u s r f u n cS (gpa) , s u b s t r (n ame , 1 , 3) , us r func3 (age)

After the data of temp table are inserted and updated, the result will be obtained by

the final SQL query as follows:

SELECT name, age, h e i g h t , u s r f u n c3 (g p a) , subs t r (name ,1 ,3)

FROM temp

WHERE degree > 0

ORDER BY degree

The name, age height,usrfunc3(gpa), substr(name,l,3) will be substituted by CO, C I ,

C2, F l and F2 which are columns name in the Temp table.

Chapter 5

IMPLEMENTION

In Chapter 4, we have described the architecture and the ma in requirement and definition

of our overall system. We have also presented in details the ma in functions of each module

within the system so that the overall system can achieve its expected capacities. In this

Chapter, we will describe some main considerations on the implementat ion of the system

and its modules. We will highlight in the following Sections certain key issues in developing

the Knowledge Base and the Data Manager, the two modules which require substantial

programming effort.

5.1 Some General Considerations

1. At the begining, we considered choosing a language to program the system. The

general requirement of this language is its capability to retrieve data from Database.

We chose the C language, considering that it can embed SQL and that it is more

portable. The C language can be supported by a wide variety of computers. It is less

restrictive and more general than other languages, which makes it more convenient

and effective for many complicated tasks.

2. We chose to use O R A C L E , considering that it is a standard Relational Database

Interface. O R A C L E precompilers can support embeded SQL and dynamic SQL,

59

Chapter 5 IMPLEMENTION 70

and can interpret embedded SQL statements and translate them into statements

that can be understood by procedural language compilers. O R A C L E tools support

all features of ORACLE ,s SQL language.

3. We chose to use the Structured Query Language (SQL), as it provides a much

needed common avenue of discourse between the end-user and programmer. It can

be embedded by the programmer in procedural language such as C language. The

SQL is more standard than the O R A C L E CALL INTERFACE .

5-2 Knowledge Base

5.2.1 Conver t ing a concept into condit ions

As we have shown in Chapter 4, the main function of the Knowledge Base module is to

process concepts contained in user queries. A concept will be transformed and represented

by a hierarchical concept tree, and then converted by specific fuzzy conditions and crispy

conditions in this module. This is carried out by the following procedure:

1. If the conditions in a user query contain a concept, the conditions will be transformed

into a temp tree. In the program, the temp tree is represented by a file having a

standard format. For example, suppose a sport institute is recruiting some students,

under the conditions "tall" and “young”. The "tall" is a concept. The “young” is

represented by a fuzzy condition “ age is ((60 50 40 30 20)(0 0.2 0.3 0.5 1.0))，，. The

query will be:

SELECT name

FROM s tudent

WHERE AND(t a l l , a ge i s ((60 50 40 30 20) (0 0 .2 0 .3 0 . 5 1)))

The conditions will be changed to a temp tree. See Fig 5.1

Chapter 5 IMPLEMENTION 61

(a n ^

^

d i e ^ C 60 50 40 30 20) (0 0.2 0.3 O^ J ^O) ^ ^ ^ ^

Figure 5.1: The temp tree

2. After the conditions are changed to a file, the system will search the concepts in the

hash table.

The “tail，，is a concept. The system will search "tall" in the hash table of the

Knowledge Base. The concept tree for "tall" shown in Fig 5.2.

Figure 5.2: The "tall" tree

3 The system will link the concept tree and the temp tree. If the concept still contains

subconcepts, the subconcepts will be transformed into more specific subconcepts or

conditions. The procedure continues until no concepts are contained in the whole

condition tree. In the above example the condition tree is shown in Fig 5.3.

Chapter 5 IMPLEMENTION 72

(lem^

(AND)

50 40 30 20) ^ ^
(0 0.2 0.3 0.5 1 m ^ ^

(AND) (ANDJ

Figure 5.3: The whole condition tree

4. After the whole condition tree has been obtained, the system will convert the whole

condition tree into a string of conditions, which are recognized by O R A C L E . For

the example above, the string of conditions converted from the whole condition is

as follows:

"((sex二，m, and height > 175) or (sex=，f' and height > 170)) and

(age is ((60 50 40 30 20)(0 0.2 0.3 0.5 1 .0))) ”

5.2.2 Concept trees

A concept tree can be inputed into the Knowledge Base in two ways, namely (1) by

loading a concept file; or (2) by interactive input, as mentioned in section 4.4.

We considered two kinds of structure for concept trees when building up our Knowl-

edge Base. One is a complete tree, and the other is a partial tree. A complete tree

is one with all its leaves being fuzzy conditions and/or crispy conditions, whereas

a partial tree is one whose leaves can be fuzzy conditions, crispy conditions and/or

sub concepts.

Chapter 5 IMPLEMENTION 73

For example, the term "professional teacher" involves a concept "professional". The

concept can be represented by "AND(experienced, qualified)", where "experienced"

and "qualified" are subconcepts of “professional，，. These three concepts can be

represented respectively by three complete trees in the knowledge Base, as shown

in Fig 5.4.

(Years of experience > 3 ^ ^

(Degree=M.phil) (Degree=Phd)

Figure 5.4: Complete trees

It is easy to obtain the concept tree for a concept if in the Knowledge Base each con-

cept is represented by a complete tree. However, this method has the disadvantage

that modification of concept trees is very difficult. To maintain the consistency, all

the related trees have to be modified at the same t ime whenever a concept tree is

changed. For example, when we modify the concept "experienced", we must modify

the concept “professional” at the same time.

The Knowledge Base can be built up with some concepts being represented by

partial trees. In this case, the representation of the three concepts in the example

above becomes those in Fig 5.5.

Linking partial trees takes a bit longer t ime than manipulating complete trees.

Chapter 5 IMPLEMENTION 64

Figure 5.5: Partial trees

However, the modification of partial trees is very easy. If we wanT to modify the

concept "experienced", we need to modify the concept "experienced" only.

We chose partial trees to be the structure of concept trees in our Knowledge Base.

This data structure is much more convenient to modify, and can avoid data redun-

dance.

5.3 Data Manager

5.3.1 Some issues on the imp lementa t i on

In our system, there are two types of columns or items, one involving the database fields

only and the other involving external functions. The function of the Data Manager is to

evaluate the values of external functions. To evaluate an external function, the values of

its parameters will be retrieved from the Database first and then put in the Temp table.

The function value will be computed after knowing the values of the parameters, through

Chapter 5 IMPLEMENTION 75

the dynamic library. (The dynamic library will be described in the sequel).

H o w t o d e t e r m i n e t h e i t e m s t o b e r e t r i eved ？ In a user query, the i tem list and

conditions may contain some external functions. The parameters of an external

function may be items in some relation tables or some other external functions which

have items (or external functions) as their parameters. To evaluate the values of

external functions, we must get the values for those items. Thus, a problem the

system has to deal with is to determine which items are to be retrieved in order to

evaluate all the external functions.

We apply some specially designed data structures to generate the items required.

I t emtok and Itemname are two of them, which are given as examples:

The I t emtok structure is defined as follows, which is to convert the user's i tem list

expressed in the s t r i n g type to the following type:

t ypede f enum i te in type{

ITEM—COLNAME，ITEMJFUNC

} I temType;

t ypede f s t r u c t i t em tok{

ItemType i t t y p e ;

char 氺colname;

UserFunc 氺 i t f u n c ;

s t r u c t i t em tok *next；

} l temTok;

Note that the names of the items in the temp table can be different from the names of

the itmes in a user query. Thus, in order to maintain their one-to-one correspondence

relationship, we design a data structure Itemname as follows:

Chapter 5 IMPLEMENTION 76

t y pede f s t r u c t itemname {

char name[NAMELEN]；

char itemClTEMLEN]；

UserFunc * f u n c p t r ;

}ltemName ；

The steps of determining the required items are below:

1. The Da ta Manager generates the item list in the I t emtok structure. This i tem

list consists of all items and all non-functional parameters of the user's query.

This i tem list will be used in the intermediate SQL (see section 4.7).

2. Meanwhile, the system will generate another i tem list for the temp table. This

i tem list, in the I t em tok structure, consists of all items, all parameters and

all external functions of the user's query. Those i tem names, parameters and

functions will be automatically re-named, for convenience, by the system with

the Itemname structure.

H o w t o de f ine t h e t y p e s o f t h e i t e m s i n t h e t e m p t a b l e ？ The temp table contains

items, external functions, and degrees of membership, as we have discussed before.

The type of the items retrieved from the Database by the intermediate SQL query

is defined as s t r i n g . The type of an external function is the same as that of the

function value returned from the user dynamic library. The type of a membership

degree is f l o a t .

H o w t o p u t t h e records i n t o t e m p t a b l e ？ In the temp table, records retrieved by

the intermediate SQL query, select^qLquery, are inserted into the temp table by

the SQL statement

" INSERT I N T O temp (column names) select^qLquery".

Chapter 5 IMPLEMENTION 77

This forms an intermediate table which has not obtained the values of external

functions yet.

The Data Manager will fetch records in the intermediate table to evaluate the ex-

ternal functions, which will then update the function values in the corresponding

columns, using the SQL statement

"UPDATE temp SET func_col_Qame 二 fmic_resiilt W H E R E R O W I D =

fetc}i_recordj:ow」d”.

The membership degree under the fuzzy conditions in the user query will be com-

puted by the Fuzzy processor after the values of the external functions have been

obtained. The membership degree is then stored into the degree column of the temp

table by using the UPDATE statement.

5.3.2 D y n a m i c l ibrary

When the user external functions appear in the user query, our system will use dynamic

library to link the external functions. Wha t is Dynamic library?

Function libraries can be divided into two classes, static and dynamic libraries. The

static library contains the function codes which are included into the main program file

at compile-time. The dynamic library contains functions which are linked to the main

program at run-time. It is opposite to the static library which uses static linking mecha-

nism. Static linking binds function name to function address at compile-time. Dynamic

linking performs the binding at run-time.

Dynamic linking allows the change of the dynamic library without re-compiling the

main program. W i t h dynamic linking, a compiled program can execute with different

libraries with a predefined interface. Users can supply their own libraries for a complied

program to use.

The set of functions and their prototype should be well defined between the compiled

program and the dynamic library. The function prototype includes the function name,

Chapter 5 IMPLEMENTION 78

the number of parameters, parameter types, result types, etc.

Our system needs to manipulate external functions whose prototypes are not defined

before compilation. This requires features more dynamic. Thus, we have to enhance the

dynamic library, which is described in the subsequent sections.

5.3.3 P recomp i l i ng process

External functions will be created to perform general purpose computing and database

access. The external function can be written in C programming language or embedded

SQL C language. We put the C function in i c file. For example, function r eve r se ()

returns a string in the reverse order of the parameters, and function s u b s t r O returns

a substring of the parameter. We put the embedded or dynamic SQL C function in

i p c file, e.g., function avgageO returns the age average. By dynamic SQL, function

avg(tab lename,co lname) returns the average of parameter colname in the tablename.

How are the external functions compiled and how can the system find the external

functions in the dynamic library? The steps are as follows:

1. External functions are written in a file (i p c or i c) .

2. A precompiler is constructed in order to generate an interface between the external

functions and the system.

3. This file (i p c or i c) will be precompiled by the precompiler which we have defined

already and this file will be changed to x file and an interface will be generated

which contains the external function's information.

4. When the system calls an external function from dynamic library, it will call this

interface in order to get the external function information. The interface has two

functions. They are u s r f u n c t y p e O and u s r f u n c O whose type is FuncResStruct.

The first one defines the function type, in which we use strcmp statement to match

the function name to return the function type. The second one is to malloc a

result pointer and pass the function name and parameters to the extfunc[]• In this

Chapter 5 IMPLEMENTION 79

function, we use string compare statement strcmp to match the function name so

as to generate the output.

5. The x file will be compiled by the C compiler. The x file will be changed to .o file.

6. The .o file will be linked to the C library or the O R A C L E library and then changed

to .so file.

7. The .so file will be connected to the dynamic library. Then, the system will know

how to execute the external function and pass the parameters to get the required

value.

The flow chart of the steps is shown in Fig 5.6.

User Source File User Source File
with embedded SQL .

.fpc .fc

Precompiler

C Source File with

Embedded SQL Source Precompiler

•PC

Oracle ^ ^
Precompiler ^ ^ ^

C Source File

C Compiler

Object File

Linker

Dynamic Library
.so

Figure 5.6: The precompiling process

For example, Suppose that an external function s u b s t r O is designed as follows:

char *substr(s,pos,len)

char *s ；

Chapter 5 IMPLEMENTION 80

i n t p o s , l e n ；

r
I

char * r e s u l t ；

r e s u l t = m a l l o c (l e n + l)；

s t rncpy(resu l t，s+pos， l en)；

r e s u l t [len] = ， \ 0) ；

r e t u r n r e s u l t ；

The external function s u b s t r O will be precompiled and an interface file will be gen-

erated as follows.

FuncResType u s r f unc t ype (f unname)

cha r funname [] ；

{

i f (！ s t rcmp (f unname," s u b s t r ") 11 ！ strcinp(f i ini iaine，"SUBSTR"))

r e t u r n FR_STRING ；

e l s e

r e t u r n FR.VOID ；

I

FuncResSt ruc t * u s r f u n c (e x t f u n c)

char *ex t f unc[]；

FuncResSt ruc t * r e s u l t ；

Chapter 5 IMPLEMENTION 81

r e s u l t = (F u n c R e s S t r u c t *) m a l l o c (s i z e o f (F u n c R e s S t r u c t)) ;

i f ((! s t r c m p (e x t f u n c [0] , " s u b s t r ") M ！ s t r c m p (e x t f i m c [0] ， " S U B S T R "))

&& e x t f u n c C l] ！= NULL && e x t f u n c [2] ！= NULL

&& e x t f u n c [3] ! = NULL && e x t f u n c [4] == NULL)

r
I

c h a r * p l ；

i n t p 2 ；

i n t p 3 ；

p i = e x t f u n c C l] ;

p 2 = a t o i (e x t f u n c [2]) ；

p 3 = a t o i (e x t f u n c [3]) ；

r e s u l t - > f r t y p e = FR_STRING ；

r e s u l t - > v a l u e = s u b s t r (p i , p 2 , p 3) ；

}
e l s e

{

r e s u l t - > f r t y p e = FR—VOID ；

}
r e t u r n r e s u l t ；

}

The precompiler above generates the output according to the calling standard which

is described in the following sub-section.

5.3 .4 C a l l i n g s t a n d a r d

How is the information on a function passed to our system ？ The main information on

a function includes function name, function type, number of parameters, parameters and

Chapter 5 IMPLEMENTION 72

each parameter type. As we described above, an interface between the system and external

functions is designed. Through the interface, the information of an external function can

be passed to the system and the system can invoke the external function.

The process of calling functions from the dynamic library is illustrated in Fig 5.7.

SYSTEM Dynamic Library

- xxx() user defined

{ functions
/ •

/
/ / :
I f
I ,

； ,' usrfunctypeQ
Result = usrfunc(extfunc[] 二_：•二.、、 丨：‘ {

� - � \ � I I

、、、、、、、、、;、i }
、、 ；、卜 usrfuncO

\ \ 1 {
UPDATE temp \ \ \
SETFcolumn = :result \ \ \ precompiler
WHERE ROWID = :current_rowid \ \ \ f e if (!strcmp(extfunc[0],"xxx)) generated

'丨 、、、、 （ … 、 interface
\ \ pi 二 atoT(extfunc[l]);

» 、 、 、 .
* 、 、 •

\ 、、、：、、、
、、 、-、t result->value = xxx(pl,...)； ‘ \ }

\ 、 • 、、 •

、、- return result ；

_}

Figure 5.7: The calling process

5.3.4.1 Funct ion Invocat ion

When we call external functions, the precompiler will pass the function name and pa-

rameters to variable ex t f unc [] automatically. The type of the variable ex t f u n cG is an

array of character pointers. Each of them will point to function name or parameters. The

structure of external function invocation is shown in Fig 5.8.

Let us consider an example of subs t r ("abcdef M ,3) . The name of function is

s i ibstr . The function type is character pointer. The first parameter is a string "abcdef " .

The second parameter is an integer "1" and the last parameter is an integer "3" . So the

Chapter 5 IMPLEMENTION 73

Extfunc[]

0 ^ function nsme

1 > parameter 1

2 > parameter 2

n parameter n >

n+1 NULL

Figure 5.8: The structure of external function invocation

structure of extfunc[] is shown in Fig 5.9.

How does the system get the function value after it passes the information of the func-

tion ？ Firstly, we compare the function name with ex t f unc [0] . If they match, we will pro-

cess the ex t f unc [n] (n>0) in order to let the function parameter and ex t func [n] (n>0)

have the same type. The type of ex t func [] is string. So when we pass the parameter

to the interface, we must convert string type to user defined parameter type. Usually we

convert the string type to integer type and float type using the library function a t o i ()

and a t o f () . The processing of function invocation is done by the precompiler, e.g. the

parameters of s u b s t r () are ex t func [1], ex t func [2] and ex t f unc [3]. The type of

ex t f unc • is character pointer. The type of function parameter "1" and "3" are inte-

ger. So we will change the character pointer to integer using C library function a t o i O .

Then we pass the value of e x t f u n c [n] (n>0) to the function parameter. The value of the

function is equal to s u b s t r (" abcde f " , 1 , 3) . The type of the function is string. All these

information will be returned to the system.

Chapter 5 IMPLEMENTION 74

Extfunc[:

0 J "substr"

1 — "abcdef"

2 > "1 ’ ’

3 > "3"

4 NULL

Figure 5.9: The structure of extfunc[

5.3.4 .2 F u n c t i o n R e s u l t

We define a data structure named FuncResStmct as follows, to represent the function

type and the result:

typede f s t r u c t f u n c r e s s t r u c t {

FuncResType f r t y p e ；

vo i d * va l ue ；

、-FuncResStruct ；

There are different function types, f r t y p e , which are defined as follows:

typedef enum f unc res type {

FR一VOID = 0，

FR_VARCHAR = 1,

FR_INT = 3 ,

Chapter 5 IMPLEMENTION 75

FR_FLOAT = 4，

FR_STRING = 5 ,

FRJIOWID = 11,

FR-DATE = 1 2，

FR_RAW = 23,

FR 一 C H A R = 96

} FuncResType ；

The codes above are the external datatype codes for O R A C L E dynamic SQL. This

allows the function result to be stored into the column of our temp table.

The field v a l u e points to the value whose type is represented on the field f r t y pe . So

the type of the value is dynamic. If the type of function A is INT and the value is 40, the

structure is depicted in the Fig 5.10.

frtype Int

J 4 0
value

Figure 5.10: The structure of function A

Chapter 6

CASE STUDIES

A job center performs as an agent for applicants as well as for employers. O n one hand,

they help applicants to find jobs they are looking for. On the other hand, they try to

allocate suitable candidates to vacancies to satisfy the requirements of employers. To

better perform these duties, they usually mainta in a database to keep data on applicants

and data on employers. These data usually are the information on applicants, such as their

personal details, qualifications, experience, skills, preferences, etc, and the information on

employers, such as their vacancies, job description, requirements, remunerations, etc.

W h e n an applicant is looking for a job, they may use the database to identify the possible

vacancies that best satisfy his preference • Similarly, An employer may use the database

to find those potential candidates who best meet the job requirements. In both cases,

the database queries may involve a number of fuzzy conditions and/or concepts, like a

good candidate preferably with a degree in computer related areas, a job which is not too

far away from my home, a job with which I may get the highest possible reward, etc. In

these situations, our fuzzy database query system would be a very good tool to solve the

problems. Applications of the query system to these situations would be good examples

to test the effectiveness of the system. For this purpose, we have developed a sample

database on human resource management. In the following we shall apply our system to

some cases to test the capabilities of the system.

76

Chapter 6 CASE STUDIES I L

6.1 A Database for Job A p p l i c a t i o n / R e c r u i t m e n t

An experimental database (see Appendix A) for job application/recruitment has been

developed, which contains eleven tables, which are c o m p a n y , pos i t i on , sa lary , re-

q u i r e d qua l i f i c a t i o n , r e qu i r ed l anguage , spec ia l i ty , a pp l i c a n t , a pp l i c an t qual-

i f i ca t ion , school , l a n guage , and j o b h i s to ry . The logical relationship between the

entities related to an open position is shown in the E-R diagram of the fig 6.1 and the log-

ical relationship between the entities related to an applicant is shown in the E-R diagram

of the fig 6.2. Each table is briefly introduced below:

company

recruit ^ ^

salary ~ — — position speciality

required required

language qualification

Figure 6.1: The E-R diagram for posi t ion

c o m p a n y = (company-id, company-name, business, city, state, contact-phone-number

)contains the companies which have vacancies,

pos i t i o n 二 (company-id, position-name, sex-of-candidate, age-limits) contains infor-

mation on the open positions,

sa lary 二 (company-id，position-name, years-of-experience, corresponding-salary) con-

tains information on the salary of the positions,

Chapter 6 CASE STUDIES I L

school ~ < o b t a i n e d ^ _ 二 icant
qualification

language applicant

f ‘

previous job

Figure 6.2: The E-R diagram for appl icant

spec i a l i t y 二 (company-id, position-name, major, minor) contains information on the

required speciality of the positions,

r e q u i r e d l a n g u a g e 二 (company-id, position-name, required-language) contains infor-

mation on the language required for the positions,

r e q u i r e d qua l i f i c a t i on = (company-id, position-name, certificate) contains informa-

tion on the qualification required for the positions,

app l i c a n t 二（ applicant-id, applicant-name, sex, age, address, city, state, height, weight,

marital-status) contains information on the applications,

app l i c a n t qua l i f i c a t i on = (applicant-id, certificate, school, study-subject, grade, graduatk

year) contains information on the qualification of the applicants,

l a n gu age 二 (applicant-id, languages) contains information on the language skills of the

applicants,

Chapter 6 CASE STUDIES IL

j o b h i s t o r y = (applicant-id, company-id, position-name, date, salary) contains infor-

mation on the employment history of the applicants,

schoo l = (school-code, school-name, city, state) contains information on the schools

where the applicants got their qualifications.

6.2 Introduction to the Knowledge Base

The Knowledge Base of the system has to contain some domain knowledge about the

concepts involved in problems of job application and recruitment. For the purpose of

testing, we have included some related concept trees in an experimental knowledge base

we have built in our system, which is shown in fig 6.3.

R e m a r k s u n i l o o k u p l (' c o L t o _ s u m ' ; r e f _ t a b l e ' , ' c o L t o _ l o o k u p ' , m a t c h _ v a l) is predefined in

our system. This function looks up the table reLtable for the records with the coLtoJookup

field being value of match_val. It returns the sum of the col_to_sum field from all satisfied

records.

6.3 Cases

In the following we will look at some illustrative examples to see how our system

works, and whether it can achieve its expected capabilities. We will test several cases

which involve respectively crispy queries, fuzzy queries, concept queries, fuzzy operators,

etc.

6.3.1 Crispy queries

A Solicitor & Co, Ltd. has some vacancies. This company wants to fill the positions by

some college graduates, under the conditions that they should be male, between 20 and

Chapter 6 CASE STUDIES IL

35, and majoring in law. The company may thus wish to find the names, certificates and

GPAs of the most suitable candidates under these conditions.

This query is a simple one, since it contains some crispy conditions only. According

to the syntax of our query language, the query is as follows:

SELECT a pp l i c j i ame , c e r t i f i c a t e , gpa

FROM a p p l i c a n t x , a p p _ q u a l i f i y

WHERE and (x . a p p l i c _ i d = y . app l i c— id , sex = ，

major = ' L aw ,，age〉二 20，age < = 35)

In our database, the a p p l i c a n t table contains the information on the applicants (e.g.

applicant name, sex, . . .), and the a p p _ q u a l i f i table contains the information on the

qualifications of applicants (e.g. the certificate, major, etc.). Thus, the two tables "appli-

cant" and "app-qualifi" should be joined to get the results required by the query. After

the query was submitted, our system returned the results from the database, as shown in

the table 6.1.

Table 6.1: Crispy Query Result 1

~APPLIC-NAME CERT IF ICATE GPA D E G R E E

Rick C a n o i l i ^ Bachelor 2.08 1.000~~

Rick Clairmont Bachelor 2.29 1.000

Daniel Emery 一 Bachelor 一 2.4 1.000

Norman Nash Bachelor 2.85 1.000

Leslie Andriola Bachelor “ 3.41 1.000

Bill Johnson , Bachelor 3.81 1.000

Bill Johnson Doctor 3.79 1.000

Rick Clairmont Master 2.88 1.000

Larry Dement Master 3.54 1.000

Bill Johnson Master 3.7 1.000

The D E G R E E in the Table above stands for the membership degree of an alternative

in terms of satisfying all the query conditions. In the present case, the degrees of all the

Chapter 6 CASE STUDIES IL

alternatives are 1.0 because the conditions are crispy and all the alternatives retrieved

from the database exactly satisfy these conditions.

We now consider the following example which involves the use of external functions.

Suppose that when Solicitor k Co, Ltd. considers the applicants, it imposes one more

condition, which requires that any applicant should have more than 8 years of working

experience. Besides, the company is interested to know the address of the applicants

as it wants to find those who live near to the company. In this example, we used two

external functions in the query. One is the c o n c a t O , which concatenates its string

parameters address and c i t y . The other is the s um l ookupK) function, which looks

up the applicant's job history and sums up the working years. The query required is as

follows:

SELECT app l i c j n ame , c e r t i f i c a t e , gpa , c o n c a t (a d d r e s s , c i t y)

FROM a p p l i c a n t x , a p p . q u a l i f i y

WHERE and (x . a p p l i c _ i d = y . a p p l i c _ i d , sex = ，

major = ,Law ,，age > = 20，age < = 35，

s u m l o o k u p K ' (end_da te-s t a r t _da t e) / 365 '，

, j o b h i s t o r y ,，， a p p l i c _ i d , , x . a p p l i c _ i d) > 8)

After this query was submitted, our system returned as in the table 6.2.

Table 6.2: Crispy Query Result 2

" ^ P L I C - N A M E CONCAT(ADDRESS，CITY) C E R T I F I C A T E GPA D E G 丽

Rick Clairmont MadisoT Drive ChocoruT" Bachelor 2.29 1.000

Norman Nash 87 West Rd . Meadows Bachelor 2.85 1.000

Rick C l a i r m o n t 9 2 MadisoT Drive Chocorua Master 2.88 1.000

L a r n ^ e m e n t 166 Wi l l iams Rd . E tna Master 3.54 1.000

From the above two examples we see that our system is able to handle crispy conditions

very easily. The last example shows that the system successfully used external functions

Chapter 6 CASE STUDIES IL

in a query. A n external function can appear either in the i tem list or in the condition list

of a query.

6.3.2 Fuzzy queries

In many cases, users want to query with imprecise conditions. Our system can handle not

only crispy conditions but also fuzzy conditions. In [42], the membership function for a

fuzzy condition is represented by two lists of data. In our system, the membership function

for a fuzzy condition can be represented either by two lists of data or by an external

function. This provides a very general and flexible way to do the representation, since a

user can choose any function he deems appropriate to express his membership function.

In the following we will show this capacity of the system by using some examples.

6.3.2.1 Fuzzy condit ions expressed by two lists of da ta

In this example, the fuzzy condition in a query is presented in the following format:

C O L U M N _ N A M E is ((VALUE丄 I ST) (DEGREE_L IST))

Suppose that a Newspaper Office is recruiting photographers under the conditions

that: ages are between 20 and 35 inclusively, tall, ma jor in Arts, can speak English.

The query is as follows:

SELECT a p p l i c j i a m e , age , h e i g h t

FROM a p p l i c a n t x , app_ language y , a p p _ q u a l i f i z

WHERE and (x . a p p l i c _ i d = y . a p p l i c _ i d , x . a p p l i c _ i d = z . a p p l i c _ i d ,

age > = 2 0， a g e〈二 3 5 ， f i e l d = ' A r t s ' , l a n j i ame = , E ng l i s h)，

h e i g h t i s ((155 160 165 170 175 180 185 190)

(0 . 0 0 . 0 0 . 1 0 . 3 0 . 5 0 . 8 0 . 9 1 . 0)))

In this query, the fuzzy condition t a l l is represented by two lists. The first list are

the heights values, while the second list are their corresponding degrees of membership

Chapter 6 CASE STUDIES

in the fuzzy set tall. We submitted this query to our system. The PARSER module then

processed it and generated a SQL query as follows:

SELECT a p p l i c j i a m e , age , h e i gh t

FROM a p p l i c a n t x , app-language y , app一quatlifi z

WHERE x . a p p l i c _ i d = y . a p p l i c _ i d and x . a p p l i c _ i d = z . a p p l i c _ i d

and a g e 〉 = 20 and age < = 3 5

and f i e l d = , A r t s , and l an j i ame = , E n g l i s h '

and h e i g h t > 160

After processing, the following alternatives together with their degrees of membership

to satisfy all the conditions were obtained as in the table 6.3

Table 6.3: Fuzzy Query Result 1

APPL IC-NAME A G E HE IGHT D E G R E E

Paul Belliveau 30一 185 0.900

Christine Ulrich 35 177 _ 0.620

Johanna Gaudet 20 171 0.340 “

6.3.2.2 Externa l funct ion in the two-list expression

In the following example, we will consider the case where an external function appears in

the fuzzy condition which is expressed by two lists of data. The format is:

U S E R F U N C T I O N is ((VALUE丄 IST) (DEGREE_LIST))

Suppose that, in addition to the criteria as given in section 6.3.2.1, the Newspaper

Office adds one more condition, namely, a qualified applicant should have about eight years

of working experience. The final results should include the columns in section 6.3.2.1 and

the years of working experience. The query is shown below, in which an external function

is used in the fuzzy condition about eight years of working experience.

Chapter 6 CASE STUDIES

SELECT app l i c j n ame , age , h e i g h t ,

sumlookuplC ' (e n d j i a t e - s t a r t - d a t e) / 3 6 b ‘，

^ j o b h i s t o r y ‘ , , a p p l i c _ i d)， a p p l i c _ i d)

FROM a p p l i c a n t x , appJLanguage y , a p p _ q u a l i f i z

WHERE and (x . a p p l i c _ i d = y . a p p l i c _ i d , x . a p p l i c _ i d = z . a p p l i c _ i d，

age > = 20，age < = 3 5 ， f i e l d = ' A r t s ' , lan_name = , E n g l i s h , ,

h e i g h t i s ((155 160 165 170 175 180 185 190)

(0 . 0 0 . 0 0 . 1 0 . 3 0 . 5 0 . 8 0 . 9 1 . 0)) ,

s m n l o o k u p K , (e n d j d a t e - s t a r t j i a t e) / 3 6 5)，， j o b h i s t o r y , ,

, a p p l i c _ i d , ， a p p l i c _ i d) i s

((0 2 4 6 8 10 12 14 1 6) (0 . 1 0 . 2 0 . 45 0 . 85 1 0 . 85 0 . 45 0 . 2 0 . 1

In the query, the function suni lookupl() retrieves the years of working experience, and

the fuzzy set about eight years is represented by two lists of data. After submit t ing this

query, our system returned the following results, in which the alternatives are sorted by

descending order of the values in the column D E G R E E , which is the degree of membership

that an alternative satisfies all the conditions, in table 6.4.

Table 6 .4: Fuzzy Query Result 2

A P P L I C - N A M E A G E H E I G H T S U M L O O K U P l Q D E G R E E

185 —7.821918010711— 0.800

177 14.750684738159 • 0.162

Johanna Gaudet 20 171 0 0.100

6.3.2.3 Membe r sh i p expression by external funct ion

We now examine the problem of expressing degrees of membership directly by using an

external function. The format is:

U S E R F U N C T I O N

Chapter 6 CASE STUDIES

This external function will return a membership degree directly when its parameters

are given. We consider the example mentioned before. But this t ime the degrees of mem-

bership for the fuzzy condition about eight years is represented by an external function.

The query is rewritten as follows:

SELECT a p p l i c j i a m e , age , h e i g h t ,

s i im lookup l () (end_da te-s ta r t _da te) /365 ,，

' j o b h i s t o r y ' , ' a p p l i c _ i d ' , a p p l i c _ i d)

FROM a p p l i c a n t x , app . l anguage y , a p p . q u a l i f i z

WHERE and(x . a p p l i c _ i d = y . a p p l i c _ i d , x . a p p l i c _ i d = z . a p p l i c _ i d ,

age > = 20，age < = 35, f i e l d = ,Arts,， lanj iame = ,English,，

h e i g h t i s ((155 160 165 170 175 180 185 190)

(0 . 0 0 . 0 0 . 1 0 . 3 0 . 5 0 . 8 0 . 9 1 . 0)) ,

normdis tC 0 , 16, s u m l o o k u p l (' (e n d j d a t e - s t a r t _ d a t e) / 3 6 5 ' ,

) j o b h i s t o r y , ，， a p p l i c _ i d ,， a p p l i c _ i d)))

R e m a r k

normd i s t (mini inum_value, maximum_value, v a l u e) is predefined in our system,

which is a normal distribution. The parameters minimum_value and maximum_value are

the range of the distribution. The membership degrees for the points at and beyond the

end points of the range of the distribution are set to be 0. The degree at the mean of the

distribution is set to be 1. The normdist() function returns the membership degree at the

parameter va l ue .

The final results obtained by our system with the query are in table 6.5.

6.3.3 Concept queries

Suppose that the Computer Center of a H K University is recruiting a C O position. The

query is to find a suitable candidate as a Computer Officer, where suitable candidate is a

Chapter 6 CASE STUDIES IL

Table 6.5: Fuzzy Query Result 3

A P P L I C - N A M E A G E H E I G H T S U M L 0 0 K U P 1 () D E G R " 5 ^

Pau l Belliveau 30 “ 185 7 .82191801071~ 0.800 —

Christine Ulrich 35 177 14.750684738159 0.058

concept, which has been predefined in our knowledge base (see section 6.2). So the query

is generated as follows:

SELECT eLpplic_neLme， c e r t i f i c a t e , age

FROM a p p l i c a n t , a p p _ qu a l i f i

WHERE and (a p p l i c a n t . a p p l i c _ i d = a p p _ q u a l i f i . a p p l i c _ i d ,

ma j o r = ,Compu te r ,，su i t ab l e—cand ida te，

we submit ted the above query to our query system. The query was firstly processed

by the knowledge base, since it contained a concept. The knowledge base transformed the

concept into some crispy and fuzzy conditions, and then sent them to the Parser, where

they were combined with the original conditions to generate the following query:

SELECT a p p l i c j i a m e , c e r t i f i c a t e , age

FROM a p p l i c a n t , a p p . q u a l i f i

WHERE and(maj o r= ‘Compu te r ‘ ,

a p p l i c a n t . a p p l i c J .d = a p p _ q u a l i f i . a p p l i c _ i d ,

and (age i s ((45 40 35 30 25 20 15) (0 .0 0 .2 0 .5 0.8 1.0 0 .5 0.0))，

or (c e r t i f i c a t e = ' M a s t e r ' , c e r t i f i c a t e = ,Doctor))，

or (and (c e r t i f i c a t e = , M a s t e r ,， s u m l o o k u p l (. . .) > 7)，

and (c e r t i f i c a t e = , D o c t o r ,， s u m l o o k u p l (. . .) > 5))))

Based on the query above, the Parser further generated the following SQL query

containing crispy conditions only:

Chapter 6 CASE STUDIES IL

SELECT app l i c j i ame , c e r t i f i c a t e , age

FROM a p p l i c a n t , app_qua l i f i

WHERE maj or=‘Computer ‘ and

a p p l i c a n t . a pp l i c _ i d = app_qua l i f i . a p p l i c _ i d ,

and age > 15 and age < 45 and

(c e r t i f i c a t e = 'Mas te r ' or c e r t i f i c a t e = ' D o c t o r 0 and

(c e r t i f i c a t e = ,Master , or c e r t i f i c a t e = , D o c t o r ')

Those records which were retrieved from the Database under the above SQL query

were processed by the Fuzzy Processor. The Fuzzy Processor determined the degrees of

membership that the candidates satisfied the fuzzy conditions, and returned those with

non-zero degrees of membership to the user.

The query system was able to successfully handle the concept query, and finally re-

turned the records from the the Database, as in table 6.6.

Table 6.6: Concept Query Result

. A P P L I C - N A M E CERTIF ICATE A G E D E G R E E

Christine V i l l ^ Doctor 38 0.320 —

Christine Villari Master 38 0.320

Meg Dallas Master 40 0.200

6.3.4 Fuzzy Ma t ch

We now consider an example which involves a condition about to what degree a subject

matches with another subject. Suppose that a TV Broadcasting Company, with id 00138,

wants to find the qualified candidates for its available vacancies. For each vacancy there

is a requirement on the major of the candidate. However, an applicant with a major in

a related area is also considered acceptable. For example, for the vacancy E l e c t r o n i c s

Engineer, it is hoped that a candidate should preferably major in electronics engineer-

ing, but some one majoring in computer science may also be acceptable. The required

Chapter 6 CASE STUDIES IL

information is the name, certificate, gpa of each candidate together with the vacancy that

he is qualified for. The query in this case is as follows:

SELECT po_name, app l ic_name, c e r t i f i c a t e , gpa

FROM a p p l i c a n t x , a p p _ q u a l i f i y , s p e c i a l i t y z

WHERE and (z . c o _ i d = , 0 0138 ,，x . a pp l i c _ i d = y . a p p l i c J . d ，

d b l o o k u p 2 (^ f i e l d m a p ' , ' m a j o r l ^ , z . m a j o r , ' m a j o r , y . m a j o r))

The conditions “x.applic」d = y.applicJd" and “z.co」d 二 '00138' are crispy conditions.

The table "applicant' and "app_qualifi' are joined together. The condition "dblookup2()"

is a fuzzy condition. The dblookup2() will return membership degrees when the field

'ma jor l ' and 'major2' are matched with the values ma jo r l and values major2. It is an

external function predefined by the system.

The final result obtained by our query system is in the table 6.7.

R e m a r k

dblookup2('ref_table';coll ' ,vall, 'col2',val2) is predefined in our system. This function

looks up the table reLtable by the fields coll and col2. The fields coll and col2 are matched

with the values vai l and val2. The function returns the field of membership degree of

the matched record. The function acts as a membership degree function through table

lookup.

6.3.5 Fuzzy operator

We now consider a situation to demonstrate the application of our fuzzy operators. Sup-

pose that a company, Leung k Wong and Associates, Ltd., is looking for a person to

fill an important tenurable position. The company has a set of criteria, like the person

must hold a master degree, major in computer science or a related area, and have suitable

experience. As the person is most likely to be tenured after a short period of probation,

the company wishes to fill up the position carefully. It is normal that, at the stage of

Chapter 6 CASE STUDIES IL

Table 6.7: Fuzzy Match Result

PO-NAME A P P L I C _ N A M E CERTIF ICATE GPA D E G R E E

Electronics Engineer Norman Lasch Bachelor 3.07 1.000

News Editor Rick Foote — Bachelor 3.1 1.000

News Editor Kevin Manning Doctor 3.19 1.000

News Editor Kevin Manning Master 3.78 1.000

Electronics Engineer Kathleen R o b i n s o ^ Bachelor 3.01 1.000

News Editor Len Mercier Doctor 3.39 1.000

News Editor Len Mercier Bachelor 3.08 1-000

Electronics Engineer Karen Clarke Bachelor 2.2 1.000

News Editor Alvin Toliver Bachelor 2.48 1.000

News Editor Chris Danzig Bachelor 3.28 1.000

News Editor Janis Gehr Bachelor 3.04 0.700

News Editor Mary McElroy Bachelor 3.17 0.700

News Editor Mary M c E l r o y M a s t e r 3.61 0.700

Electronics Engineer" Meg Dallas Master 3.65 0.700

News Editor Susan Gray Bachelor 1.58 0.700

News Editor Susan Gray Master 3.41 0.700

Chapter 6 CASE STUDIES IL

recruitment, a candidate always tends to demonstrate his capabilities to meet all the con-

ditions perfectly. However, after he has secured the job, one may find that he in fact does

not match one or more of the required criteria. In that case, the decision maker would

feel a kind of regret (on hiring this person). The objective of the present company is to

minimize the degree of regret that may occur.

This is an example in which we should apply our operator R E G R E T . The query for

this example is as follows:

SELECT app l ic_name, age

FROM a p p l i c a n t , a p p _ q u a l i f i , s p e c i a l i t y

WHERE and(a p p l i c a n t . eLpplic_id = app_qua l i f i . a p p l i c _ i d ,

s p e c i a l i t y . c o _ i d = ,00138,， c e r t i f i c a t e = ,Master ,，

r e g r e t (db lookup2(^f ie ldmap '，， ina jor l , , s p e c i a l i t y .ma jor , 'maj or 2'，

app_qual i f i . maj or)，

no rmd i s t (0 , 20 , s um lookup l 9 , (endjdate—start—date)/365,，

, j obh i s to ry)，）app l i c _ i d , , a p p l i c a n t . a p p l i c _ i d))

The final results obtained by our system are as in table 6.8.

Chapter 6 CASE STUDIES IL

Table 6.8: Result when FUZZY—OPERATOR is “REGRET，,__

R E G R E T C O M P L E M E N T

APPL IC-NAME A G E D E G R E E R E G R E T D E G R E E

Louie Ames 一 36 — 0.011 0.989

Rick O ' S u l l i v a n 3 7 0.060 0.940

Rick Dietrich 32 “ 0.147 0.853

Mary Lou Jackson 30 0.338 0.662

Mary Lou Morrison 0.535 “

Susan Gray 0.501

Peter Lengyel 42 0.604 “ 0.396

Lisa Rodrigo 0.380

Kathleen Clinton 41 0.625 “ 0-375

George S i c i l i a n ^ 27 — 0.662 0.338

Mary Clarke 43 0.690 0.310

Marjorie Clinton 26 0.764

Jo Ann Lapointe 0.767 0.233

Dean Mellace 41 0.798 0.202

Alvin Dement 39 0.800 “

Louis R e y n o l d s " ~ 4 0 ~ ~ 0.800 0.200

Larry Nunez 34 0 . 8 0 0 0 . 2 0 0

Hope S t a d e c k e r 3 4 0.800~~ 0.200

Peter Blount — ^ 0.820 0.180

Roger Saninocencio 41 0.823 0.177

Janis Peters ^ 57889 0.111 _

Ann Boyd 0.934 0-066

Peter Flynn 0.935 0.065

Mary McElroy 23 0-936 0.064 “

1

Chapter 6 CASE STUDIES IL

(^suU^e candidate^ C ^ ^ v ^ e d degree^^^^

O y e r — d e g r e e C ^ t o r _ d e g r e ^ ^

(^^iiiJ^ (goodlgpa^

/ - ^ i ^ l T c C ^ S S 30 25 20) -r-TTT：^ ^ ^

: 入
(mdj (^cn

Figure 6.3: The knowledge Base in case study

Chapter 7

CONCLUSION

A fuzzy query system has been developed, which has been designed to possess the following

main capabilities:

• f

1. A Knowledge Base is built in the system, which can deal with queries involving

highly-aggregated, imprecisely and vaguely-defined concepts by further decomposing

them into more specific and well-defined conditions. In the knowledge base, each

concept is represented by a hierarchical concept tree. Each node of a tree may be

a sub-concept, an operator, or a fuzzy or crispy condition. In addition to providing

a natural structure to represent general concepts, other advantages of concept trees

include easy maintenance, easy modification, and avoidance of data redundancy.

The use of a knowledge base consisting of concepts trees to handle general concepts

is one of the main contributions of this thesis.

2. The system supports the use of external functions, which can be utilized to rep-

resent membership functions. As we reviewed before, how to effectively express

membership functions, particularly when more than one attribute are involved, is

one of the main issues in dealing with imprecise queries using the fuzzy sets theory.

The external functions supported by our system can be general functions of multiple

variables, which provides a very general approach to represent the multidimensional

membership functions, which seems to be more flexible and powerful as compared

to previous approaches.

93

Chapter 1 CONCLUSION

3. The system supports six basic fuzzy operators, on which we have provided a new

explanation from the perspective of decision making under uncertainties. In addition

to the usual functions of combining fuzzy conditions in the normal sense (such as

A N D , OR, etc.), our approach should be particularly useful when a user is facing

a situation where he wants to search for some opt imal solutions from the database

against some uncertain futures.

4. The system can be added directly on to an existing database management system to

make it capable of accepting and handling imprecise queries, without imposing any

more requirement to further change and modify the existing system. As we stated

earlier, this is one of our ma in objectives.

The fuzzy query system has been tested and evaluated on an experimental database.

Some cases have been tested, which suggests that the system possesses the expected

capabilities to accept and handle user queries involving highly-aggregated concepts, fuzzy

conditions as well as ordinary crispy conditions.

Some topics for future research are as follows:

1. An interesting future work is to bui ld up certain mechanism in the knowledge base so

that it can learn automatically. For example, in the present system, a different user

may provide a different definition about a fuzzy condition. This in fact contains

certain knowledge from the user about the fuzzy condition/concept. A gradual

accumulation of the knowledge from different users may help the knowledge base

modify the existing knowledge and add new knowledge.

2. It should be pointed out that the main concern of this thesis is to develop and

test our approaches to process fuzzy queries. We have made use of SQL. However,

we have used only part of the basic functions of SQL. A future work should be to

gradually introduce all functions of SQL into the system.

3. We have applied six operators in the Fuzzy Processors of the present system. There

are many other operators that have been proposed in the contexts of the fuzzy sets

||_圓__圓••_•••••_••_IIMIIIMHIIII

Chapter 1 CONCLUSION 95

theory and the optimal decision making theory. Undoubtedly, a future work of

interest is to gradually introduce these operators into the system to further enhance

its functions.

4. At present we assume that the database is a conventional one with no fuzziness.

An interesting work in the future would be exploring the possibility of applying the

fuzzy query system to a database which also contains fuzzy terms.

Appendix A

Sample Data in DATABASE

Sample data of the a p p l i c a n t table are

APPL- APPLIC.NAME S AGE ADDRESS

ICANT

ID

CITY ST HEIGHT WEIGHT BIRTHDAY S

00232 Mary McElroy F 23 108 Rocky Pond Rd.

Cambridge MA 176 121 14-JUL-72 N

00233 Susan Mathias F 38 24 Oxford St•

Milan MH 149 87 23-JUN-57 Y

00234 Kathleen Robinson F 30 160 Copps Hill Rd.

Keene NH 179 84 21-0CT-65 M :

00235 Kathleen Clinton F 41 52 Meeting House Rd.

Penacook NH 160 102 lO-OCT-54 Y

00236 Ruth Gramby F 40 146 Hasselbrook Rd.

Etna NH 156 140 21-FEB-55 N

00237 Frederick Burton M 31 167 Meeting House Rd.

Penacook NH 149 110 16-N0V-64 N

00200 A1 Ziemke M 30 121 Putnam Hill Rd.

Winnisquam NH 169 114 27-0CT-65 N

96

— • • - • • • • W l H • !

Appendix A Sample Data in DATABASE 107

00201 Marjorie Clinton F 26 111 Watersedge Dr.

Wonalancet MH 175 124 02-0CT-69 W

00202 Margaret Harrington F 21 183 Freedom St.

Fremont NH 188 135 05-JAN-74 Y

00203 Johanna Gaudet F 20 40 Mason Rd.

Fremont NH 171 158 29-DEC-74 M

00204 Charles Myotte M 20 78 Lantern Lane

Fremont NH 154 148 29-JUL-75 Y

00205 Wes Bartlett M 43 28 Page Hill Rd.

Meadows NH 160 110 16-APR-52 Y

00206 Marty Stornelli M 33 25 Searles Rd.

Jefferson NH 164 140 27-MAY-62 Y

00207 Joseph Babbin M 20 124 Woodfield St

Sanbornville CT 152 83 12-DEC-74 N

00208 Joe Sciacca M 42 200 Sullivan Terrace

Munsonville NH 158 144 15-FEB-53 M

00209 Roger Smith M 22 163 Lowell Rd.

Bristol NH 157 136 17-MAY-73 N

00210 Alan Dietrich M 31 128 Granite St.

Whitefield MH 170 97 03-JUN-64 Y

00211 Ernest Gutierrez M 44 165 Old New Boston Rd.

Farmington MA 183 163 06-JUL-51 N

00212 Roy Clarke M 25 187 Underbill St.

Sandown NH 169 134 06-MAY-70 N

00213 Len Mercier M 33 67 Oxford St.

Milan NH 174 106 12-FEB-62 Y

• • • • • •
• • • •

• « • • * *
• • • •

Appendix A Sample Data in DATABASE 98

Sample data of the a p p l i c a n t q u a l i f i c a t i o n table are :

APPL_ CERTIFI. SCH_ FIELD GPA CERT.YEAR

lANT GATE OOL

ID

00219 Bachelor PRDU Law 2.96 1979

00220 Bachelor MIT Business Admin 3.04 1992

00221 Doctor MIT Prod. Engrg. 3.9 1980

00221 Master AU Arts 2.96 1977

00221 Bachelor STAN Arts 2.92 1975

00222 Bachelor STAN Elect. Engrg. 3.07 1990

00223 Bachelor BATE Jouralism 3.1 1979

00224 Doctor DREW Jouralism 3.19 1989

00224 Master DREW Jouralism 3.78 1986

00224 Bachelor COLB Jouralism 3.88 1984

00225 Master HVDU Civil Engrg. 2.98 1988

00225 Bachelor CALT Civil Engrg. 3.54 1986

00226 Bachelor CALT Arts 2.53 1992

00227 Bachelor BOWD Translation 3.07 1990

00228 Doctor FLU Arts 3.36 1978

00228 Master FLU Arts 3.9 1975

00228 Bachelor STAN Arts 2.91 1973

00229 Master YALE Chemical Engrg. 3.84 1981

Appendix A Sample Data in DATABASE 99

00229 Bachelor COLB Mech. Engrg. 2.63 1979

00230 Master PRDU Translation 3.27 1993

00230 Bachelor FLU Translation 3.18 1991

00231 Master STAN Law 2.88 1986

00231 Bachelor BOWD Law 2.29 1984

00232 Master DREW Business Admin 3.61 1994

00232 Bachelor UME Business Admin 3.17 1992

00233 Doctor BATE Prod. Engrg. 2.81 1983

00233 Master FLU Prod. Engrg. 1980

00233 Bachelor YALE Prod. Engrg. 3.19 1978

00234 Bachelor STAN Elect. Engrg. 3.01 1985

00235 Doctor HVDU Civil Engrg. 3.19 1980

00235 Master DREW Civil Engrg. 2.77 1977

00235 Bachelor DREW Arts 2.6 1975

00213 Master UME Jouralism 1.69 1985
• • • • • • • • • • • • • •

• ••• •寺••

Sample data of the Company table are :

CO_ID CO.NAME

BUSINESS

CITY STATE COMT.TEL

00065 Philip Morris Asia Inc

Appendix A Sample Data in DATABASE 100

Marketing - Retail Goods

Keene NH 25208657

00066 Procter and Gamble Hong Kong Limited

Marketing - Retail Goods

Marlow NH 25576586

00067 Sharp-Roxy (HK) Ltd

Marketing - Retail Goods

Acworth NH 33353688

00068 Wing On Co Ltd

Marketing - Retail Goods

Boston MA 39907230

00069 Basf China Limited

Marketing - Capital Goods

Salisbury NH 38731500

00070 Electrolux (Far East) Ltd

Marketing - Capital Goods

Wolfeboro NH 35886325

00061 Inchcape Pacific Limited

Marketing - Retail Goods

Sandown NH 37592832

00052 Lombard General Insurance Limited

Insurance and Actuary

Keene NH 38184640

00053 National Mututal Insurance Company Ltd

Insurance and Actuary

Bennington MA 35337313

00054 New Zealand Insurance Company

Insurance and Actuary

Winnisquam NH 31734033

00055 Manulife Financial

Appendix A Sample Data in DATABASE 111

Insurance and Actuary

Jefferson NH 37812548

00056 Nippon Iirternational Underwriters Agency Ltd

Insurance and Actuary

Sanbornville CT 26330036

00057 The Prudential Assurnace Company

Insurance and Actuary

Munsonville NH 37809464

00058 Hitachi Asia (Hong Kong) Ltd

Marketing - Retail Goods

Farmington MA 35837651

00059 Hong Kong Seibu Enterprise Co Ltd

Marketing - Retail Goods

Marlow NH 20127784

00060 The Dairy Farm Company Limited

Marketing - Retail Goods

Wolfeboro NH 23336253

00051 Heath Hudig Langeveldt Ltd

Insurance and Actuary

Salisbury NH 32100701

Sample data of the Position table are :

CO_ID PO.NAME SE START.AGE

END.AGE

00132 Building Services Engineer U 22

23

00150 Building Services Engineer U 21

23

Appendix A Sample Data in DATABASE 112

00156 Building Services Engineer U 20

24

00168 Building Services Engineer U 20

23

00176 Building Services Engineer U 21

25

00177 Building Services Engineer U 21

24

00040 Certified Public Accountant U 28

33

00041 Certified Public Accountant U 29

33

00122 Certified Public Accountant U 30

33

00150 Certified Public Accountant U 29

33

00195 Certified Public Accountant U 30

32

00198 Certified Public Accountant U 29

33

00036 Chartered Engineer U 22

28

00038 Chartered Engineer U 23

26

00040 Chartered Engineer U 23

27

00071 Chartered Engineer U 23

Appendix A Sample Data in DATABASE 103

28

00118 Chartered Engineer U 23

27

00136 Chartered Engineer U 23

28

00176 Chartered Engineer U 23

27

00015 Chemical Engineer U 17

38

00194 Chemical Engineer U 17

37

Sample data of the Salary table are :

CO_ID PO.NAME YEARSOF.EXP SALARY

00181 Actuary ^ 24693

00181 Actuary 6 26721

00181 Actuary ^ 28830

00196 Actuary 2 21109

00196 Actuary 3 22551

A 24493
00196 Actuary 兮

00196 Actuary 5 26258

00003 Advertising Manager 5 22152

Appendix A Sample Data in DATABASE 114

00003 Advertising Manager 6 23615

00003 Advertising Manager 7 25600

00003 Advertising Manager 8 26866

00003 Advertising Manager 9 28144

00003 Advertising Manager 10 29436

00037 Advertising Manager 5 18616

00037 Advertising Manager 6 20401

00037 Advertising Manager 7 22257

00037 Advertising Manager 8 23722

00037 Advertising Manager 9 25216

00038 Advertising Manager ^ 22042

00038 Advertising Manager 6 23503

Sample data of the S c h o o l table are :

SCHO SCHOOL一MME CITY STATE

AU American University Washington DC

BATE Bates College Lewiston ME

BOWD Bowdoin College Brunswick ME

CALT Cal. Institute of Tech. Pasadena CA

COLB Colby College Waterville ME

Appendix A Sample Data in DATABASE 105

DREW Drew University Madison NJ

FLU University of Florida Gainesville FL

HVDU Harvard University Cambridge MA

MIT Mass. Institute of Tech. Cambridge MA

PRDU Purdue University West Lafayette IN

QUIN Quinnipiac College Hamden CT

STAN Stanford University Stanford CA

UME University of Maine Orono ME

USCA U. of Southern California Los Angeles CA

YALE Yale University New Haven CT

Sample data of the S p e c i a l i t y table are :

CO_ID PO.NAME FIELD

SUB.FIELD

00001 Actuary Business Admin

00007 Actuary Business Admin

00023 Actuary Business Admin

00031 Actuary Economics

00012 Accountant Accounting

00031 Actuary Business Admin

Appendix A Sample Data in DATABASE 116

00098 Actuary Economics

00098 Actuary Business Admin

00126 Actuary Economics

00131 Actuary Economics

00131 Actuary Business Admin

00152 Actuary Economics

00152 Actuary Business Admin

00171 Actuary Business Admin

00181 Actuary Business Admin

00136 Reporter Jouralism

00166 Reporter Joura l ism

00185 Reporter Jouralism

00011 Structural Engineer Civil Engrg.

00019 Structural Engineer Civil Engrg.

00024 Structural Engineer Civil Engrg.

00067 Structural Engineer Civil Engrg.

00073 Structural Engineer Civil Engrg.

00079 Structural Engineer Civil Engrg.

Appendix A Sample Data in DATABASE 117

Sample data of the required language table are :

CO_ID PO.NAME LAN一NAME

00194 Personnel Manager English

00194 Quality Control Engineer Japanese

00194 Quality Control Engineer Mandarin

00194 Quality Control Engineer Cantonese

00194 Quality Control Engineer English

00194 Structural Engineer Cantonese

00194 Structural Engineer English

00195 Quality Control Engineer French

00195 Quality Control Engineer Mandarin

00195 Quality Control Engineer Cantonese

00195 Quality Control Engineer English

00196 Accountant Cantonese

00196 Accountant English.

00196 Electrical Engineer Japanese

00196 Electrical Engineer Mandarin

00196 Electrical Engineer Cantonese

00196 Electrical Engineer English

00197 Advocate Cantonese

00197 Advocate English

00197 General Practice Surveyor Cantonese

00197 General Practice Surveyor English

00197 Land Researcher Cantonese

00197 Land Researcher English

00198 Actuary Japanese

00198 Actuary Cantonese

00198 Actuary English

00198 Adminstrative Officer Cantonese

00198 Adminstrative Officer English

00198 Advertising Manager Cantonese

00198 Architect Cantonese

00198 Architect English

00198 Management Consultant Mandarin

00198 Management Consultant Cantonese

Sample data of the language table are :

Appendix A Sample Data in DATABASE 118

APPLI LAN.NAME

00267 Cantonese

00267 English

00276 Cantonese

00276 English

00287 Cantonese

00287 English

00319 French

00319 Cantonese

00319 English

00345 Cantonese

00345 English

00354 Cantonese

00354 English

00358 Cantonese

00358 English

00359 Cantonese

00359 English

00369 Cantonese

00369 English

00374 French

00374 Mandarin

00374 Cantonese

00374 English

00405 Mandarin

00405 Cantonese

00405 English

00415 Cantonese

00415 English

00416 Cantonese

00416 English

00418 German

00418 Mandarin

00418 Cantonese

Sample data of the j o b h i s t o r y table are :

APPLI CO.ID P C L M M E START一DAT

Appendix A Sample Data in DATABASE 119

END-DATE START—SALARY END.SALARY

00245 00083 Media Producer 26-APR-90

03-APR-92 15738 21125

00245 00050 Insurance Claims Manager 26-JUL-92

14-JUL-95 18008 28358

00246 00029 Quality Control Engineer 04-MAY-88

24-JUL-93 12103 25616

00246 00037 Quantity Surveyor 04-JUL-93

02-JUL-95 15282 21759

00247 00173 Designer 04-AUG-80

08-JAN-84 5955 10720

00247 00159 Designer 04-FEB-84

23-0CT-86 10129 16373

00247 00020 Layour Artist 04-DEC-86

19-JUN-91 12615 23056

00247 00135 Art Director 04-JUL-91

25-JUL-95 17187 29727

00249 00119 Executive Officer 16-MAY-80

Ol-FEB-87 6844 14131

00267 00067 Adminstrative Officer 08-MAY-78

05-JUL-85 4900 13637

00267 00196 Accountant 08-AUG-85

13-AUG-88 9241 14530

00267 00120 Personnel Manager 08-SEP-88

22-JUL-95 11625 24507

00276 00108 Adminstrative Officer 06-MAY-88

27-JUM-94 13913 31962

Appendix A Sample Data in DATABASE 120

00276 00172 Reporter 06-AUG-94

06-JUL-95 24969 29086

00287 00172 Lawyer 14-JUL-84

02-MAR-91 8379 20272

Bibliography

•1] AWAD, E . M . , AND GOTTERER, M . H . Database Management Boyd k Fraser

Publ ish ing company, 1992.

"2] B E L L M A N , R . , AND Z A D E H , L . "Decision-making in a fyzzy environment" . Man-

agement Science 17 (1970), 8141-8164.

.3] BEZDEK, J . C . Pattern Recognition with Fuzzy Objective Function Algorithms.

P lenum Press, 1981.

4] Bosc, P . , G A L I B O U R G , M . , AND H A M O N , G . "Fuzzy Querying W i t h SQL: Ex-

tensions and Implementat ion Aspects”. Fuzzy Sets and Systems 28 (1988), 333-349.

.5] Bosc, P., A N D PIVERT, O. "Some Algorithms for Evaluating Fuzzy Relational

Queries". In Uncertainty in Knowledge Bases (1990), pp. 430-442.

61 Bosc, P . , AND PiVERT, O . "About Equivalences in SQLf , A Relational Language

Support ing Imprecise Querying" . In Fuzzy Engineering towars Human Friendly Sys-

tems IFES，91 (1991).

71 Bosc, P., A N D PiVERT,〇."SQLf: A Relational Database Language for Fuzzy

Querying" . IEEE Transactions on Fuzzy Systems 3, 1 (February 1995), 1-17.

81 Bosc, P., P iVERT, O., AND F a r q Y H A R , K . " Integrating Fuzzy Query into an

Existing Database Management System: An Example" . International Journal of

Intelligent Systems 9 (1994), 475-492.

Ill

9] BUCKLES, B . , AND F .PETRY . “A fuzzy model for relation database". Fuzzy sets

and systems 33 (1982), 213-226.

10] BUCKLES, B . , AND PETRY, F . "Fuzzy databases and their applications". I n Fuzzy

Information and Decision Processes, M . M . Gup t a and E. Sanches, Eds. North-

Hol land , Amsterdam, 1982.

11] BUCKLES, B . , AND PETRY, F . "Query language for fuzzy databases". In Manage-

ment Decision Support Systems Using Fuzzy Sets and Possibility Theory, J .Kacprzyk

and R . Yager, Eds. Verlag T U V Rein land, Ko ln , 1985.

12] CHANG, C . “Decision support in an imperfect world". Research Report of IBM San

Jose RJ3421 (1982).

.13] FODOR , J . , AND ROUBENS, M . Fuzzy Preference Modelling and Multicriteria De-

cision Support Kluwer Academic Publishers, 1994.

14] G . G R A H A M , L , AND JONES, P . L . Expert Systems-Knowledge, Uncertainty and

Decision. Ch apman and Hall , 1988.

15] GUPTA, M . M . , SARIDIS, G . N . , AND GAINES, B . R . Fuzzy Automata and Decision

Rroccsscs. North-Holland, Amsterdam, 1977.

16] GUPTA, M . M . ， A N D YAMAKAWA, T . Fuzzy Logic in Knowledge-Based Sys-

tems, Decision and Control North-holland, 1988.

171 ICHIKAWA, T . , AND HIRAKAWA, M . " A R E S : a relational database with the capa-

bil i ty of performing flexible interpretion of queries". IEEE Transaction on Software

Engineering 12 (1986), 624-634.

18] ISHIZUKA, M . , F u , K . S . ， A N D YAO , J . T . p . " SPER IL : An expert system for

damage assessment of existing structure". Proc. of the Sixth Internationnal Comfer-

ence on Pattern Recognition (1982).

112

19] KACPRZYK , J . , AND ORLOVSKI , S. A . Optimization Models Using Fuzzy Sets and

Possibility Theory. D .Re ide l Publ ishing Company,Dordrecht , 1987.

20] KACPRZYK , J.，ZADROZNY, S. , AND ZIOLKOWSKI, A . " F Q U E R Y I I I +： A h u m a n

consistent database querying system based on fuzzy logic wi th linguistic quantifiers".

Information systems I4 (1989), 443-453.

"21] KACPRZYK , J . , AND ZIOLKOWSKI , A . “Database queries whth fuzzy linguistic

quantifiers". IEEE Transactions on Systems, Man, and Cybernetics 16, 3 (1986).

22] KAMEL , M . , AND HADFIELD, B . "Fuzzy Query Processing Using Clustering Tech-

niques" . I n f o r m a t i o n Processing & Management 26, 2 (1990), 279-293.

23] KAUFMANN, A . , ZADEH, L . A . , AND SWANSON, D . L . Theory of Fuzzy Subsets.

Academic Press, New York, 1975.

24] LAI , Y . - J . ’ AND HWANG, C .-L . Fuzzy Mathematical Programming Methods and

Applications. Springer-Verlag, 1992.

.25] LA I , Y . - J . , AND HWANG, C .-L . Fuzzy Multiple Objective Decision Making Methods

and Applications. Springer-Verlag, 1994.

26] LEUNG, K . S . , AND LAM, W . "Fuzzy concepts in expert systems". IEEE Computer

21 (1988), 43-56.

271 LEUNG, K . S . ， W O N G , M . H . , AND LAM, W . "A Fuzzy expert database systems".

Data and Knowledge Engineering 4 (1989), 287-304.

.28] L l , D .， A N D L IU , D . A Fuzzy Prolog Database System. Research studies press l td. ,

1990.

29] MANSFIELD, W . H . , AND FLEISCHMAN, R . M . "A high-performance, ad hoc, fuzzy

query processing system”. Journal of Intelligent Information systems 2 (1993), 397-

419.

113

.30] MIYAOMOTO . "Fuzzy control and its applications". Systems and Control 25 (1986),

458-465.

31] M O T R O , A . " V A G U E : a user interface to relational database that permits vague

queries". ACM Transactions on Office Information Systems 6 (1988), 187-214.

[32] OGAWA, H . , FU , K . S . ， A N D YAO , J . T . P . "SPERIL- I I : A n expert system

for demage assessment of exidring structure". In Appoximate Reasoning in Expert

Systems, M . M . G u p t a , Ed . Elsevier North-Holland Science Publishers, 1985.

33] R ICHMOND, S. B . Operations Research for Management Decisions. The Rona ld

Press, 1968.

.34] SELIM, S. Z . , AND ISMAIL, M . A . "Soft clustering of mult id imensional data: a

semi-fuzzy approach". Pattern Recognition 17 (1984), 559-568.

35] SHORTLIFFE, E . H . "Computer-Based Medical Consultation: MYCIN”. American

Elsevier, New York, 1976.

36] SUGENO, M . “Industrial Applications of Fuzzy Control”. North-Holland, 1985.

.37] TAHANI , V . “A conceptual framework for fuzzy query processing - a step toward

intelligent database systems”. Information Processing and Management 13 (1977),

289-303.

381 TAKAHASHI, Y . "A Fuzzy Query Language for Relat ional Databases". IEEE Trans-

actions on Systems Man. and Cybernetics 21, 6 (Nov. 1991).

.39] TERANO, T . , A S M , K . , AND SUGENO, M . “Fuzzy Systems Theory and its Appli-

cations''. Academic Press, Boston, 1992.

40] UMANO, M . “ F R E E D O M - 0 : a fuzzy database system". In Fuzzy Information and

Decision Processes, M . M . Gup t a and E. Sanches, Eds. North-Holland, Amsterdam,

1982.

114

.41] UMANO, M . "Retrieval from fuzzy database by fuzzy relational algebra". In Pro-

ceedings of IFAC Symposium on Fuzzy Information, Knowledge Representation and

Decision Analysis (Marseille, France, 1983), pp. 1—6.

.42] W O N G , M . H . ， A N D LEUNG, K . S . "A fuzzy database-query language". Information

systems 15 (1990), 583-590.

.43] ZADEH, L . a . "Fuzzy sets". Information and Control 8 (1965), 338-353.

44] ZADEH, L . A . , AND KACPRZYK, J . Fuzzy Logic for the Management of Uncertainty.

John Wi ley k Sons, Inc., 1992.

45] ZEMANKOVA-LEECH, M . , AND KANDEL, A . “Fuzzy Relational Data Bases - A Key

to Expert Systems”. Verlag T U V Rein land, Koln , 1984.

.46] Z iMMERMANN, H . J . “Fuzzy Set Theory and Its Applications，，. Kluwer-Nijhoff,

1986.

.47] Z iMMERMANN, H . J . Fuzzy Set Theory and its Applications. Kluwer Academic

Publishers, 1991.

115

零

：
M

冒
：
1
,
.

：
 .
赢

1
,

‘

 ：
：

 .
“
扁

— CUHK Libraries

mimivmi
0007340>4fi

