A COMPREHENSIVE
CHINESE THESAURUS SYSTEM

By

CHEN HoNG Y1

A THESIS
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE
THE CHINESE UNIVERSITY OF HoNG HONG

JUNE 1995

Abstract

This thesis discusses the design of a thesaurus building and maintaining system.
This system is referred to as TheSys, which stands for Thesaurus System. The

design objectives of the system are:

1. To help users build and maintain the thesaurus according to their own

requirements.

2. To make the system used in any specialty field rather than targeting for a

particular specialty field.

This goal is achieved by two features of the system. The first is the modular
design for the system architecture. The second is, for the thesauri built from
the system, the powerful ability to capture various semantic relationships.

The architecture of the system is designed in a modular way. In the most
inner level is a thesaurus. On its surface, there are a set of application program
interfaces (API) through which other customized application systems (CAS)
can access the thesaurus. The API and internal thesaurus are composed of
an Application Package which the CAS can employ as a building block. This
application package can be portable to any specialty field so that it makes the
system can be applied comprehensively. To facilitate the use of the system,
we build a Chinese user interface (UI) on the basis of API (In this sense, the
UI can be regarded as a CAS too.). Such an interface supports the building

work for Chinese thesaurus more easily. But it doesn’t mean the system can not

11

serve for other language thesaurus construction at all. Actually, other language
application, such as a Japanese application system, can employ the application
package for helping to build its own language thesaurus.

In TheSys, we propose a thesaurus model which provide sufficient structures
to represent different semantic relationships among concepts and terms. The
policy is to allow -users to specify arbitrary binary relationships they want the
thesaurus to capture.

As the knowledge information captured in a thesaurus can be very large, we
build the semantic relationships only among a set of representatives of concepts,
which is referred to as semantemes. Since thesaurus provide a mapping from a
semanteme to a group of synonyms, which are referred to as entry terms, the re-
Jationships among entry terms can be deduced from the relationships among cor-
responding semantemes. Also, the structures representing relationships among
semantemes are referred to as the thesaurus frame, which uses weighted relation-
ship links to represent the semantic relationships. This approach can effectively
reduce the size of the thesaurus yet the intelligence of the thesaurus is not com-
promised.

Currently, we have used this tools to built up a Chinese thesaurus containing
10,000 entry terms among which synonymous, quasi-synonymous, antonym and
part-of/composed-of relationships are embedded. The experiment illustrates

that this tool is helpful for construction of a thesaurus.

111

Acknowledgement

I would like to express my deepest gratitude to my research advisor, Dr. Chin
Lu. Her constant encouragement and advices contributed a great deal in this
research work.

I would also like to thank Mr. Kin—Hong- Lee and Dr. Chi-Hung Chi for
marking my thesis. Mr. Lee also gave much constructive idea in this research.
Special thanks are presented to the external examiner, Professor Sun Yu Fang

of Chinese Academic Institute.

I am also thankful to Mr. Chi-Wai Chan. He help me use the Motif platform
to build up the system.

Finany, [am also grateful to all the friends I met in the Department of
Computer Science, The Chinese University of Hong Kong. Their encouragement,

companions and help made my life in CUHK delightful.

v

Contents

Abstract ; 11
Acknowledgement v
List of Tables viii
List of Figures ix
1 Introduction 1
2 Background Information And Thesis Scope 6
2.1 Basic Concepts and Terminologies 6
2.1.1 Semantic Classification Of A Word 6

2.1.2 Relationship Link And Relationship Type 7

2.1.3 Semantic Closeness, Link Weight And Semantic Distance 8

2.1.4 Thesaurus Model And Semantic Net 9

2.1.5 Thesaurus Building And Maintaining Tool 9

2.2 Chinese Information Processing 9
2.2.1 The Segmentation of Chinese Words 10

2.2.2 The Ambiguity of Chinese Words 10

2.2.3 Multiple Chinese Character Code Set Standards 11

2.9, Relsted WOl « w v v v v s xdimomsls o momimmo v oopike 3 § 8 11
Dedt Thesis SeoPe . o b oo s o vimwe oo wiw a8 6 S EH T 5 803w o 13

3 System Design Principles

3.1
3.2
3.3

3.4

3.5
3.6

Application Context Of TheSys« o« oo oo
Overall System Architecture

Entry-Term Construct And Thesaurus Frame
3.3.1 Words, Entry Terms And Entry Term Construct
3.3.2 Semanteme, Relationship And Thesaurus Frame
3.3.3 Dealing With Term Ambiguity. oo oo
Weighting Scheme

..........................

3.4.1 Assumption

.........................

3.4.2 Quantify The Relevancy Between Two Directly Linked
Concepts

...........................

3.4.3 Quantify The Relevancy Between Two Indirectly Linked
Concepts

...........................

Term Ranking

............................

Thesaurus Module and Maintenance Module

...........

36.1 The Procedure Of Building A Thesaurus

3.6.2 Thesaurus Nomination

...................

3.6.3 Semantic Classification Tree Construction

3.6.4 Relation Type Definition

..................

3.6.5 Entry Term Construct Construction

3.6.6 Thesaurus Frame Construction

..............

3.6.7 Thesaurus Query

......................

4 System Implementation

4.1

4.2
4.3

Data Structure

...........................

4.1.1 Entry Term Construct

...................

4.1.2 Thesaurus Frame

API

......................
.................................

User Interface

.............................

Vi

4.3.1 Widget And Its Callback

4.3.2 Bilingual User Interface

..................

..................

4.3.3 Chinese Character Input Method

A System Installation
A.1 Files In TheSys

A.2 Employ TheSys As Application Package

A.3 Set Up TheSys With Ul

A.4 Verify The Word Using External Dictionary

B API Descripfion
B.1 thesys.h File
B.2 API Reference

C User Interface Reference

Conclusion And Future Work

Vil

...........................

..................

...........

.............................

............................

108

List of Tables

viil

List

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
-3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4

Al

C.1
C.2

of Figures

Relationships Among Thesaurus, API, Uiand CAS « s ¢ oo v 3
Relationship Between User Application & TheSys 16
System Architectureo 16
System Architecture Design Philosophy oo 18
Semantic Relationships Among The Terms 19
Synonyms Linking Scheme Comparison« oo v - 20
Relationship Link Building Scheme Comparison 21
Entry Term Construct Structureo oo oo 23
Logical Display Of Thesaurus Frame 24
Relation Type Definition File And Relationship Link File « 27
A General Semantic Classification For Chinese Words o
Semantic Distance Calculationo oo e 36
Internal Word Code Data Structureo oo . 46
Entry Term Table SEIUCEUTE . « v v v v v e e e e e e e e e e s 47
Synonym & Semanteme Table Structure 48
Relationship Link File oo oo v 50
The Organization Of Files In TheSys 66
Maintenance User Interface Top Window 108
Create A New Thesaurus v v o v v v v v 0 o o v v v o o oo 110

1X

C.3 Open An Existing Thesaurus n o 111
C.4 Close A Thesaurus

......................... 112
C.5 Insert An Entry Term - Window 1 113
C.6 Insert An Entry Term - Window 2 114
C.7 Delete An Entry Termo ... 116
C.8 Browse The Entry Term o v oo oo oo oot 117
C.9 Insert A Word Class ¢ v v v v v v v v o oo oo e e 119
C.10 Delete A Word Class v v v v v v v v v v v v oo e e e 120
C.11 Browse A Word Class v mmme e e 8 i ow 12
C.12 Browse Semanteme 122
C.13 Define A Relation Type« o v v v v v v v i v v v v v 123
C.14 Add A New Relationship Link 125
C.15 Delete A Relationship Link v o v v v v oo oo 127
C.16 Application User Interface Top Window 128
C.17 Retrieve A Related Word oo v v v i oo 129

Chapter 1

Introduction

A thesaurus, by definition in the Ozford Dictionary Of Current English([1], is
a dictionary of words and phrases grouped together according to similarities
in their meanings. Users can make use of a thesaurus to check out which
word/phrase is conceptually similar to which word/phrase or whether there ex-
ists synonymous relationship between one word/phrase and another word /phrase.
In other word, a thesaurus captures and reveals the knowledge information of
semantic relationships, in terms of synonymous relationships, among tens an
thousands of different words/phrases.

Thesauri books (dictionaries) sold in the bookstores usually include syn-
onyms, quasi-synonyms and antonyms only. In modern time, a thesaurus can
be computerized as an electronic thesaurus [2], which is possible to capture other
relationships that may reveal more semantic relations among terms, such as hi-
erarchical relationships. (thereafter, the term "thesaurus” in this thesis means
electronic thesaurus unless stated otherwise). A thesaurus may be applied di-
rectly as well as employed by other information processing systems for helping
exploit knowledge on semantic relationships [3]. For example, it could be used
independently for preliminary studies on the structure of different subject do-
mains. It could be used in a word (text) processor for helping authors to enrich
their vocabulary. Also, it is usually embedded in a document analysis system

or a text retrieval system, to help with indexing documents and searching for

Chapter 1 Introduction

Q)

documents more intelligently [4] [5] [6] [7] [8]-

The construction of thesaurus is a very kind of intensive work [2]. However,
in this field, there lacks of a helpful thesaurus building and maintaining tool for
users to construct their own thesaurus. The construction works on the majority
of existing thesauri, which are for western languages, such as English and French,
are dependent on the development of the application systems which they support

[5] [6] [7]. This made the thesauri so ad hoc. due to the following reasons,

1. Although these thesauri can capture particular types of semantic relation-
ships well, they are in short of providing the flexibility to extend relation

types according to users’ requirements.

9. Since these thesauri are built inside the application systems, they haven’t
public interfaces for external access, making them difficult to be ported to

other application environments.

Thus, not many users can rely on this way to get a suitable thesaurus at their
requests. Moreover, most of the thesaurus end users, which can best understand
their own needs, hope that they can build and maintain the thesaurus in a
straight forward way without involvement into its internal structures. That
is they expect a thesaurus is built from a tool and they can use this tool to
' maintain the thesaurus in return. In addition, they even want to use this tool to
construct their own thesaurus and combine it with the tool as a building block
portable to other application sys-tems. This situation motivates our project on
developing of such a tool.

In this thesis, we present a thesaurus system, referred to as TheSys 1 which
is a tool for users to build and maintain thesauri according to their own require-
ments. Our goal is to design a comprehensive thesaurus building tool which

can be used in any specialty field rather than targeting for a particular specialty

pronounce ['isis]

Chapter 1 Introduction 3

field. It is achieved by two features of the systérn. One is the high usability of the

system. The other is the capability of capturing various semantic relationships

for the thesauri built from the system.

We know that a thesaurus could be used independently as well as employed

by other application systems very often. Thus, the architecture of the system is

designed in a kind of three-level way.

Figure 1.1: Relationships Among Thesaurus, API, Ui and CAS

The most inner level is a thesaurus. The middle level is a set of application
program interfaces (API) through which other customized application systems
(CAS) can access the thesaurus. The API and internal thesaurus are composed
of an application package which the CAS can employ as a building block. This
way, the internal structures of the thesaurus are hidden and the thesaurus is
portable. The most outer level is a friendly window-based user interface (UTI)
which is built on the basis of API. It is for the system being used independently.
As CAS, the UI can not directly access the thesaurus data model but through
the API. (In this sense, the UI can be regarded as a CAS too.) Such a scheme
makes the inner thesaurus independent from the UI which is often customized
to local environment, such as language environment. Therefore, the thesaurus
which is built through the Ul in one environment could be ported to a new

environment other than the former one. The relationships among the Thesaurus,

Chapter 1 Introduction 4

API, UL and CAS is illustrate in Figure 1.1. In this figure, the grey part is the
application package.

Since the building of a thesaurus is always rooted in particular language en-
vironment, the language factor make effect on the design of the system. For
example, some special features of the U, such as Chinese input method for
Chinese environment, need to be customized to meet with different language
environments. However, the comprehensive application of the system in dif-
ferent environments, including language environment, is still our goal. At this
point, the architecture of the system supports this goal again. In TheSys, the
application pdckage is designed in a language independent way, and the Ul is
responsible to dealing with different language environments. Through the CAS,
of which the UI is one kind, users can employ the system for various language
thesaurus building work. Thus, the system still can be regarded as a compre-
hensive system. In our design, we develop a Chinese UI for the TheSys. This
s because Chinese is one of the most popular languages in the world, a Chinese
thesaurus building tool is needed broadly. As a product, TheSys is classified
as Chinese application system due to that its Chinese user interface facilitates
the Chinese thesaurus building work. But it doesn’t mean that it can just used
for Chinese at all. Actually, other language application, such as a Japanese ap-
plication system, can employ the application package for helping build its own
language thesaurus.

The effectiveness of a thesaurus depends on its ability to capture various
type of semantic relationships. Thus, any thesaurus built from TheSys must
provide sufficient structures to represent different type of semantic relationships
among concepts and terms. In fact, each of them not only provides predefined
relation types of synonyms, quasi-synonyms, antonyms, and broader/narrower
terms, but also lets thesaurus builders specify other application specific relation

types, such as "related-to” relationships.

Chapter 1 Introduction 5

As the number of synonyms for a given term can be very large, it is inefficient
to build relationship links with all the terms in the thesaurus. Instead, we call
all synonyms of a concept as entry terms and choose one among the synonyms
as the semanteme and build relationship links among only the semantemes. The
structures representing relationships among semantemes are referred to as the
thesaurus frame, which uses weighted relationship links to represent the semantic
relationships. This approach can effectively reduce the size of the thesaurus yet
the intelligence of the thesaurus is not compromised.

Every entry term in a thesaurus has a unique meaning, otherwise ambigu-
ous words exist. In TheSys, we use a semantic classification tree to eliminate
ambiguities in case a term may carry multiple meanings. The semantic clas-
sification tree is strictly a hierarchical tree with each node representing one
semantic classification. It could be defined by users in line with their own appli-
cation environments provided that when an ambiguous term is classified under
a particular semantic classification, its meaning become unique.

The rest of this paper is organized as follows, Chapter 2 discuss the back-
ground information and thesis scope. Chapter 3 presents the overall system
design principles. The system architecture and thesaurus data model will be
addressed. Chapter 4 describes some implementation details. It includes the
data structures of the thesaurus and functional modules of the system. Chapter

5 is the conclusion and future works. In the end, three appendixes will give out

a user manual of this system.

Chapter 2

Background Information And Thesis
Scope

As we want to develop a thesaurus building tool, we must first understand
the structures of a thesaurus. In practice, there are various thesaurus struc-
tures proposed. By analyzing these structures’ characteristics, we can conceive
our scheme. However, before that, we must have some consolidate background
knowledge in this field, such as the basic concepts and terminologies. Also, since
this tool could be applied in Chinese processing environments, we also need to
know some related knowledge about the processing of Chinese information. On

this background, we can clarify our research scope and go ahead to the system

design.

2.1 Basic Concepts and Terminologies

The field on thesaurus construction has its own concepts and terminologies. It

includes the word/term, the concepts, the semantic classification of word, the

relationships, and the semantic closeness.

2.1.1 Semantic Classification Of A Word

In thesaurus building, Word and Concept are a pair of closely related termi-

nologies. Every word can be linked to a particular concept according to its

6

Chapter 2 Background Information And Thests Scope

|

semantical meaning. A concept is usually represented by one of the words being
linked. Words being linked to the same concept are called Synonyms. For exam-
ple, in Chinese legal field, three words &0, A#Rand BFER have the same meaning
"lawyer”, they are synonyms and could be linked to a concept =il. However,
due to the ambiguity of the words, i.e. one word may take with different mean-
ing in different context, there is no one-to-one relationship between words and
concepts. Referred to the above example, £fZ has the meaning of "lawyer” in
legal field, but it has another meaning of "adviser” in military affairs. At this
point, we can observe that a word can be classified semantically for reducing its
ambigﬁity in some degree [23]. This classification scheme relys on the specific
attributes of the words which are referred to as Semantic Classifications of the
words. The attributes can be grammatical classifications of the words, such
as noun, verb and adjective etc, or the subject classifications of the words in

particular applications, such as the subject catalogs in library.

2.1.2 Relationship Link And Relationship Type

A thesaurus is used to reveal three types of conceptual /semantic relationships:

1. relationships among concepts;

2. relationships among words;

3. relationships between concepts and words which indicate the mapping from

words to concepts or vice versa.

All these are binary relationships and each of them belongs to a specific
Relationship Type, such as synonymous, quasi-synonymous, broader/narrower,
or other related-to relationship types. Every relationship type has a unique name
and some attributes describing the relationship types, such as the Traversal

Direction. For example, quasi-synonymous relationship 1s symmetrical while

Chapter 2 Background Information And Thesis Scope 8

broader relationship is asymmetrical. Logically, when one relationship embedded
on two objects(words or concepts), we say there Is a Relationship Link being
connected between the objects which are called nodes. It is obvious that different
relationship types have different relationship link types.

It is also noted that, except synonymous relationships which are strictly
referred to words, other relationships built on the words could also be reflected
by the same types of relationships built on the corresponding concepts into which
the words are mapped. For example, in Chinese, Rk, H%and ®& correspond
concept R4 (happy); E& , X and {8 correspond concept &R (sad). The

"antonym” relationship between % and B could also be deduced from the
”antonym” relationship between concept % and %%, The inverse deduction
also stands.

However, not every existing thesaurus includes the relationships correspond-
ing all three conditions mentioned above. Actually, most of them only capture

the relationships corresponding the second condition [4] (3] [9].

2.1.3 Semantic Closeness, Link Weight And Semantic Distance

Semantic Closeness indicates the closeness degree between two words/concepts
in terms of semantic meaning. For example, TR has quasi-synonymous re-
lationships with B#83 (optimistic) and BE&AZ (joyful). It is readily observed
that the former relationship is semantically closer than the latter one accord-
ing to the evaluation of the emotional feeling degree. In thesaurus, semantic
closeness is represented in two forms. One is Link Weight which is set on the
relationship link. Another is Semantic Distance which indicates the closeness
between two words/concepts connected by a minimum path, which is referred
to as search_path. This path is composed of a set of relationship links. The rela-
tionships link can belong to one relation type only or different relation types. For

example, the search_path about quasi-synonymous relationship just includes the

Chapter 2 Background Information And Thesis Scope 9

quasi-synonymous links. The search_path about broader and quasi-synonymous
relationship will be a minimum path among all the possible paths including
broader and quasi-synonymous links. Strictly speaking, link weight is also a
kind of semantic distance whose path is just one link.

The evaluation or assignment of semantic closeness is a very kind of subjec-

tive thing, especially for the link weight. So, only a few thesaurus allows the

relationships to be weighted [4].

2.1.4 Thesaurus Model And Semantic Net

In thesaurus, various relationships among concepts/words are constructed as
a network of associations. This network is called Thesaurus Model. Another
knowledge model is very similar to this one and referred frequently in thesaurus
design [5] [7]. This is Semantic Net which is usually a more fine-grained rep-
resentation of knowledge than one finds in a thesaurus. It is mainly used in

Natural Language Processing and Machine Translation.

2.1.5 Thesaurus Building And Maintaining Tool

We have explained that our research motivation is due to lack of a thesaurus
building and maintaining tool. In our mind, such a tool should allow user easily
construct their own thesaurus without knowing the its internal structure. In
addition, this tool should also provide with the flexibility to allow users define

arbitrary relation types at their requests.

2.2 Chinese Information Processing

Chinese language has its own characteristics and, therefore, we should under-
stand them before we can find a good solution for processing Chinese infor-

mation. In this section, we would like to introduce some common knowledge

Chapter 2 Background Information And Thesis Scope 10

about the processing of Chinese information which will affect the philosophy of

designing a Chinese thesauri by using TheSys system.

2.2.1 The Segmentation of Chinese Words

It is commonly accepted that the basic syntactic and semantic unit of Chinese
language are words # but not characters F[15]. While extracting the words from
English or other alphabetical language documents faces little problem, it is far
more difficult in Chinese because Chinese sentence are composed with strings of
characters without natural delimiters to mark words. Although some successful
tools and systems have been built to deal with Chinese word segmentation [9]
[10] [16] [L7], there are debates but not common agreements on this issue. The
most controversy one is what is and what is not a word. For example, somebody
thinks EFLEF] (selfish) is a word, but others think it is not a word but a phrase
composed of two words BF(selfish) and B7l(self-interested). Needless to say,

this creates considerable problems in the construction of Chinese thesaurus.

2.2.2 The Ambiguity of Chinese Words

As the same as other human language, Chinese words may carry different mean-
ings in different context. Such phenomenon gets thesaurus construction in trou-
ble because it is nonsense to define the relationship between two words when
not knowing their exact meanings. For example, & has two meanings "yel-
low” and ”pornographic”. When building a relationship "kind-of” between EE&
and #EE (light colour), we have implied that this word is carrying the former
meaning — "yellow”. However, the thesaurus builder should let both the users

and system know this. So, it is one of our tasks to solve this problem in this

research.

Chapter 2 Background Information And Thesis Scope 11

2.2.3 Multiple Chinese Character Code Set Standards

It is well known that there exist several popular Chinese character code sets,
such as GB and Bigs. The machine code of a Chinese word may be explained
as different information in different code set. For example, code 0xB5FC in B3
represents #(word), in GB it represents 3% (repetition). So, if a thesaurus built

in one code set environment is used in another environment, €rrors maybe occur

unless there exists a code converter.

2.3 Related Work

There are three common types of system models and approaches in thesaurus
design , i.e. the hierarchical model, the graphic model, and the knowledge based
approach [2] [4] (5] [6] [7]. Hierarchical model is designed mainly to capture
broader/narrower relationships among terms. Graphic based model was intro-
duced to capture the more complicated "related to” relationships among different
terms. The knowledge based approach combines semantic net with thesaurus to
assist in information processing while the semantic net provides the knowledge
in specific field.

One of the earliest and the most comprehensive study in indexing languages
and thesauri was done by Soergel in the 70’s. [2] Soergel pointed out that a
thesaurus should provide conceptual structure as well as terminological control.
He also pointed out the need for different thesaurus in different subject fields
as the same term can have different meanings in different subject fields. He
proposed a poly-hierarchical model which combines the hierarchical model used
‘0 classification with cross-reference links to terms that do not fit the exclusive
hierarchical structure. The poly-hierarchical modelis designed mainly to capture
the nature of terms that inherently have more than one broader terms. However,

it lacks the ability to find relationships between related terms. Systems using

Chapter 2 Background Information And Thesis Scope 12

the hierarchical model based on classification have been developed. The Medical
Subject Headings of the National Library of Medicine [13] and the Computing
Reviews Classification structure (CRCS) of the ACM [14] are examples of such.

Graphic based models are later introduced to capture the more complicated
»related to” relation among different terms. McMath, et al. [5] proposed a
cognitive graphical model in which the closeness of relationships is measured by
the minimum number of links between two terms. In this model, different types
of relationships, such as broader terms or narrower terms, are not distinguished.
In other words, all edges are treated the same. McMath argued that the short-
est path between any two terms is a measure of how closely related they are
semantically.

The knowledge based approach combines semantic net with thesaurus to
assist in information retrieval. The semantic net provides the knowledge in
a specific field. The knowledge based approach used by Rada et al. in (7]
combines a dyspnea knowledge base with a hierarchical thesaurus to obtain
distance between any two terms. The dyspnea knowledge base is a network in
which terms are represented by nodes and different types of relationships such
as "is-a” or "generalization” are represented by different types of edges. As
pointed out by Morris, et al. 6], the drawback of semantic net is the words
or ideas are represented by ”physical closeness”. Kim et al. [4] proposed an
improvement method based on (7). This method combines a knowledge base
with a hierarchical thesaurus except that the edges in the thesaurus is weighted
so that links in the thesaurus hierarchy can identify closeness quantitatively.
However, the quantified weights can represent the closeness of generalization
relationship only.

Chinese is one of the most commonly used languages in the world. High

quality Chinese information processing (CIP) systems are extensively desired.

Yet, Chinese electronic thesaurus research has only started last 10 years. Just

Chapter 2 Background Information And Thests Scope 13

a few CIP systems including a thesaurus have been developed so far. The
most notable two are CIRPON developed by Beijing Document Service [8] and
the BitiFTRS [9] developed by Beijing Information Technology Institute. Both
systems support natural language full text retrieval and both use thesauri in
post—control for retrieval. However, the thesaurus frame is mostly limited to
synonym éohstructs only. An alternate expert system approach is used in the
development of ExpCIR, an intelligent Chinese IRS [10], but the rules used in
such systems are so ad hoc. and very difficult to maintain.

Qenerally speaking, most current thesauri are so ad hoc. because they are
designed for particular systems or fields. One side, they are dependent on the
system which they support, making them difficult to be ported into other ap-
plication systems. On the other side, although the application environments
may change and the users’ need may change, few systems support users tun-

ing the thesauri to adapt to their local environments. Therefore, the extensive

application of such thesauri has been limited.

2.4 Thesis Scope

The implementation of TheSys is done by using C programming language. Its
API is conforming POSIX 1.1 so that other customized application systems
can readily employ it. It also provides a graphical user interface based on the
OSF/Motif 1.1. In our design, this user interface will not directly access the
thesaurus but through the API. So, it can be also regarded as an application
system which is independent to the internal thesaurus. However, We will not
envisage other window-based system which can build a graphic interface in this
approach.

As described in section 3.1, words in Chinese documents have to be seg-
mented first. However, TheSys only accepts segmented words as input. Thus,

any Chinese systems including TheSys must have its own word segmentation

Chapter 2 Background Information And Thesis Scope 14

module. We employ a strategy by leaving the judgment authority of the legality
of a Chinese word to thé thesaurus builder or systems employing it. Therefore,
a employer should initially provides a word dictionary and a word existence
checking routine, such as int LookUp Word(char *word), to check the existence
of the word. In this way, TheSys can guarantee the validity of all the input
words/terms in order to work consistently with the local environment. If such
a word dictionary not exist, any input word is legal.

Since different Chinese system may use different Chinese Code Set standard,
and we didn’t have a code converter by hand. We have to limit a thesaurus
built in one code set environment to be used or extended in other code set
environment. For example, we can not add a GB Chinese word into a thesaurus
built with B5 code set.

The requirements for revealing the semantic relationship among words/concepts
vary from one system to another. In this thesis, we just discuss the binary re-
lationships between words/concepts. In addition, when evaluate the semantic
distance between two words/concepts’, TheSys just consider the relationships in
on relation type. That means the semantic distance caculation for cross-relation-

type relationships, such as quasi-synonymous plus broader, is not implemented

yet.

Chapter 3

System Design Principles

The objective of TheSys is to build a tool for users to construct and maintain
thesauri according to their own requirements. It provides a set of interface func-
tions through which the customized application systems can access the internal
thesauri. Also, on the basis of API, a Chinese user interface is built for fa-
cilitating the thesaurus construction. Most importantly, it provides sufficient
structures and schemes for the thesauri to capture various relationships among
words and concepts so that the system can be comprehensively applied in dif-
ferent specialty fields. Since a thesaurus can store a large volume of knowledge
information, we have carefully designed its internal frame so that its size can be

effectively reduce yet its intelligence is not compromised.

3.1 Application Context Of TheSys

We realize that a thesaurus could be used independently as well as included
by other application systems very often. Even though such a thesaurus is an
integral part of the application system it supports, if it is included, it should
maintain certain degree of independence. That is, it should be a modular part
of the application system. In other words, the application system should not
have direct access to the thesaurus. In our design, TheSys provides a set of
interface functions, which are Application Program Interface (API), for external

access. Further, the API along with the thesaurus constitute an application

15

Chapter 8 System Design Principles 16

package, which can be used by other application systems that need the same
thesaurus. This way, the internal structure of the thesaurus can be independent
of the application system and the thesaurus is portable.

Figure 3.1. shows such a relationship between User Applications and TheSys.

User Thesaurus

API Frame
Application p&———> TheSys !

(Application

independent)

Figure 3.1: Relationship Between User Application & TheSys

3.2 Overall System Architecture

The overall architecture of TheSys is shown in Figure 3.2.

TheSys System
' Maintenance | ' Thesaurus |
\ Module : ! Module v
o : ' Entry Term | E Customized
Dictionary : API :. Construct '. API : Appication
E : E System
E i | Thesaurus : ;
System ; User ! ' User ! Application
Users E Interface '; ': Interface :r Users

Figure 3.2: System Architecture

Chapter 8 System Design Principles 17

From Figure 3.2, we can see that the system is composed of two data compo-
nents, entry-term construct and thesaurus frame which make up of a thesaurus.
A thesaurus is supposed to reveal various semantic relationships among words
and concepts. The key design strategy for our system is that we build the
relationships on the basis of concepts. In our system, except synonymous rela-
tionships, all other relationships among coﬁcepts are represented by a graphic
structure, referred to as the thesaurus frame where concepts are denoted by
nodes and relationships are denoted by links. Each node in the thesaurus frame
s referred to as semanteme, which is an arbitrarily chosen word among the syn-
onyms of the same concept. On the other side, the synonymous relationships
among words is modeled in the entry-term construct. The entry-term construct
is a separate linear structure which contains all the synonyms we would like to
index on, referred to as the entry terms. All the synonyms are stored in the entry
term construct and linked together by pointers. In addition, the mapping from
entry terms to semantemes is provided in the entry term construct. The system
also has two main functional modules for building and querying the thesaurus:
the thesaurus module and the maintenance module. The thesaurus module has
an API which provides routines for all query related functions. It is the core
component that uses the thesaurus frame and the entry-term construct to carry
out requests from application systems. The maintenance module also has an
API which is used to construct and maintain all the internal data structures
of the thesaurus. The two APIs are intended for people to use them in their
own application systems. Combined with the internal thesaurus, a API effec-
tively become an application package which the application system can employ
as a building block. In this regard, a thesaurus builder can link his customized
application system (CAS) with the maintenance module alone to create a new
thesaurus or to update an existing one. On the other hand, the thesaurus mod-

ule can be linked to another CAS, such as a document analysis system, along

Chapter 3 System Design Principles 18

with the well-constructed thesaurus to acquire information for document analy-
sis. The modular design makes it possible to link either one module or both with
their application systems. To facilitate interactive access/update to a thesaurus,
TheSys provides two interactive user interfaces in Chinese processing environ-
ment, one for application users (thesaurus query users) and one for system users
(thesaurus builders/authors). The two interactive interfaces correspond to the
thesaurus module and the maintenance module, respectively. As the CAS, they
are also built on the basis of APL. This scheme is also for making the thesaurus
independent to the application environment into which user interface is rooted.
Therefore, no matter in which way a thesaurus is built, either through a CAS or
user interface, it can be easily ported to other application environments. Such

a philosophy for the system architecture design is illustrated in Figure 3.3.

pmmmmmmmmmm—mmmmmm———=——==
Customized ," TheSys System \\\ Customized
Appication - L - e Appication
’ - -~ ~
System ‘ - i 23 ~ o System
Y . . Application Package ™

o TN
-
’ ~

N

d
,/ Thesaurus '\
\

Entry Term \
Construct)

API
Thesaurus

1
1

1 '

1 '

7 7/ !

’ : :

1

£ User '

Frame !
1

1

|

|

Interface ~ v ; & Interface

1

i

) \ }
! \

E User ks

'

1

1

1

Figure 3.3: System Architecture Design Philosophy

It is noted that, as described in our above thesis scope, the system can be
linked to an external dictionary for term verification if needed when building a

new thesaurus. Without this dictionary, any new term entered into the entry-

term construct is considered correct.

Chapter 8 System Design Principles _ 19

3.3 Entry-Térm Construct And Thesaurus Frame

In a thesaurus, relationships are representéd by binary links. When connecting
terms through links, the thesaurus effectively becomes a graph. Figure 3.4 shows
such a graph. In this example, we have four terms in Chinese. Among these, the
term "#4" (happy) and the term "t (pleased) has a synonymous relafionship.
They both have a quasi-synonymous relationship with the term ”#&&" (exciting)

and an antonym relationship with the term "#=" (sad).

L s e)
Quasi-synonymous

Figure 3.4: Semantic Relationships Among The Terms

For efficient management of this graph, we want to maintain minimal number
of links, yet the information represented by the graphic should not be reduced.
We know that one term can have several synonyms which represent the same
concept. Building relationship links on the basis of terms may create many
redundant links if not designed carefuﬂy.

First, consider how to link among synonyms. If a term has n number of
synonyms (including itself), the synonym links can be built in two ways: (1)
to build a ring of synonyms which requires exactly n links, and (2) to build
a link for every pair of terms which requires C? number of links. Obviously
the synonym ring yields minimal number of links. As an example, consider the

term 1% (happy) with synonyms fit%, EiE, 851t and &2 . The ring connection

Chapter 3 System Design Principles 20

requires only 5 links, whereas the full connection needs 10 links. The following

figure illustrates such a comparison.

L
ON

Full Connection | Ring Connection

Figure 3.5: Synonyms Linking Scheme Comparison

Secondly, consider how to link terms that have relationships other than syn-
onyms . Suppose the term sad #E3 is the antonym term for tR%Rand all its
synonyms. We can have the antonym link for £ and every synonym of HRE&.
This would require n links. To reduce the number of links, however, we can link
with 2 only and use the synonym ring to obtain all the antonyms of Z&X and
vice versa. In this case, % acts as the representatives for all its synonyms when

relating to other terms in the thesaurus. Figure 3.6 illustrates such condition

intuitively.

In the study of word semantics, Huang (18], He [19] and Mei [22] have found
that the large volume of terms can be represented by a relatively small set of
semantemes, which can be regarded as controlled terms or representative words.
Based on this result, we build the relationship links (except for synonymous
relationships which are represented by the ring structure) with semantemes only.
This approach can effectively reduce the size of thesaurus yet the intelligence of

the thesaurus is not compromised. In the following subsections, we will describe

the details of such a scheme.

Chapter 3 System Design Principles 21

Link Each Word Link Representative Word

Figure 3.6: Relationship Link Building Scheme Comparison

3.3.1 Words, Entry Terms And Entry Term Construct

As described above, one of keys to our design of TheSys is that we build the
relationship links (except for synonymous relationship links) on the basis of
semantemes rather than terms/words. The semanteme will represent a group
of synonymous terms/words and denoted by an arbitrarily selected term/word
from the synonyms.

However, there is still one problem ahead. We have mentioned that some
words may have multiple meanings. In this case, it is hard to classify an am-
biguous term into any group of synonyms if we don’t indicate what meaning it is
carrying. In TheSys, we use a semantic classification tree to eliminate the term
ambiguities. The main idea of this.approach is that when an ambiguous term
is classified under a particular semantic classification which indicates the gram-
matical and/or semantical attributes of the word, its meaning becomes unique
[23] [22]. For example, in Chinese, a term #H is an ambiguous word. When
t is classified under the semantic classification of A (human being), it means a
person of quality. Whereas, if it is classified under the semantic classification of

(matter), it means material. A set of semantic classifications can be organized

Chapter 8 System Design Principles 22

as a semantic classification tree which is strictly a hierarchical tree with each
node representing one semantic classification. The construction and use of this
tree is one of the important topics in our research, so we will defer to discuss it
in a whole section which address the issue of dealing with term ambiguity.

Now, from the data structure point of view, the constitution of an entry
term is more clear. That is, an entry term is a synonym of a concept which is
composed of a word and a semantic classification (or the semantic classification
notation) . We can see that word is just a general concept. It is only a string of
characters. Entry term is the concept in TheSys. It is a string of word characters
along with a notation indicating its semantic classification. The most significant
distinction between word and entry term is that word may be ambiguous in
terms of meaning, but entry term must be unique in terms of meaning.

Based on this structure, a Entry Term Construct is built. A Entry Term
Construct is a separate liner structure which coﬁtains all the entry terms that
an application may want to search for along with the synonym links. All the
synonyms are stored in the entry term construct and linked together. In each
group of synonyms, one synonym (entry term) will be chosen as semanteme to
represent all its synonyms. In addition, it is noted that entry term construct
actually provides the synonymous relationship model.

Figure 3.7 displays the logical architecture of the entry term construct. The
example is for several Chinese terms frequently used in computer science. They
are the term ”"computer” §t##% and its synonym R, the term ”database” %%
and its synonym ki, the term "operating system” #RfFR& and its synonym
tese7%, the term “hard disk” #2 and its synonym &, the term ”software” ##
with its synonym % , and the term "hardware” ®# and its synonym . All
these terms are classified under a semantic classification of ”computer science”.
Basically, in each group, the former terms are frequently used in Mainland China,

the latter ones are used in Taiwan. We use a capital abbreviation CS to stand

Chapter 8 System Design Principl.es

for the semantic classification.

Entry Terms | Semantemes
o l
EEEEREE SRR REEE AR
HEH | CS > BEE | CS [l HER | Cs
‘i’ |
7 8 sl x i o n B
S | Cs wrm [oS [qq 1 py| BEE |CS
T D E s s e e _ |
A Twes JEITELLIEIT]
BER% | CS {E5£%%t | CS | 2ER%L | CS
""""""" \, I
ST A _} |
= |cs B | CS (g |, &8 |cs
‘i‘ |
.| =% |cs e | cs (g ! g | cs
............ r |
FCTETE Pt s] '
I
=4 | CS > s | CS ' =4 | CS

Figure 3.7: Entry Term Construct Structure

3.3.9 Semanteme, Relationship And Thesaurus Frame

In TheSys, semantemes and the relationships linking them are represented by

a graphic structure, referred to as the thesaurus frame where semantemes are

denoted by nodes and relationships denoted by links.

Chapter & System Design Princz’pkes 24

‘ ‘he cho ce of a semanteme among a set of synonyms is arbitrary since they
are -onsiderad equivalent semantically. For example, in the synonym group of
g and %3, pecole in main land China may prefer to use the former one
as --manteme, while people in Taiwan may prefer to use the latter one. N¢
ma- =r which one is chosen, it will not affect the function of semanteme. If one
con 2+ pt has only one synonym, then the semanteme is represented by this one
wit=sut question. The mapping from entry terms to semantemems is provided
by = itry tezm construct, nor in thesaurus frame. This can be seen from figure
3.5. Thus, with the thesaurus frame, we can avoid building the relatively large
syz: .ymous relaticnship links in the thesaurus and also eliminate links that do

nc: -ovide =dditional information. Consequently, the search speed are improved

anc managemert is easier. A logical display of the thesaurus frame is shown in

Fi- -2 3.8. { Ncte, every rectangle in the diagram represents a semanteme. The

Crh: :se words within the rectangle are the chosen terms which are defined by
the “hesaurus builders or by system default to indicate corresponding

se: ateme:.)

F————————=—— ==
L Quasi-synonym _\]/
Asz . ?L'a' W
Compeszd-of Pt Copmposed-of o
Has-instance
e | 8RR
is-a

Ficure 3.8: Logical Display Of Thesaurus Frame

ach type of relationship in TheSys is identified by its link type. Each

Chapter 3 System Design Principles

Do
(@1}

link type has an unique name. Traversal through this type of links can ei-
ther be symmetric or asymmetric. For instance, synonymous and antonym
relationships are symmetric relationship, while narrower-terms is asymmetric
relationship. In some applications where quantitative measurement of seman-
tic/conceptual closeness between terms are needed, the weight values on links
are needed. Therefore, each link type must also specify its Weight Type, either
standard or weighted. On the links with weight type as standard, the weight val-
ues are constants for all links of the same type, e.g. constant integer 1 in most of
the existing thesaurus. Whereas, on the links with weight type as weighted, dif-

ferent links of the same type may have different values in the range of 0 to 1. For
example, the weight type of ” quasi-synonym” is weighted whereas " antonym”
is standard.

In TheSys, in order to describe the conceptual closeness between two words,
we introduce a weighting scheme, feferred to as Comparison-based scheme. In
our scheme, the smaller the weight value is, the more closely they are related to
each other. Consequently, the weighted value between two synonymous words
is 0. As to the weighted linked, TheSys requires users classify the weight value
range symbolically. For example, users could classify the weight value from 0 to
0.3 as closer, from 0.3 to 0.6 as normal, and from 0.6 to 1 as looser. This 1s
because the application user will hardly understand the meaning of a number
value but a symbolic value. So, they just need to assign the symbolic value as
they insert the relationship links. TheSys need the above information to switch
the symbolic value into numeric value. This mapping is defined in a separate
structure pointed by a address pointer in relation type definition record. If the
weight type of the relation type is standard, this field is a nil value because the
weight value of this type is constant and users needn’t assign the weight. Since

the weighting scheme is one of the important topic in this paper, we will discuss

its detail in later section.

Chapter 3 System Design Principles 26

We intend to build a comprehensive thesaurus system which is able to make
the thesaurus capturing various relationships effectively. The synonymous rela-
tionships has been naturally caught due to the entry term construct. The other
types of relationships can also be captured easily. The procedure is to define the
relation type first, then lay down each relationship link of this type. After eval-
uating various thesaurus model, including both Chinese and Western systems,
we find that there are six relationship types that are used most frequently in
various application environments. They are "is-a”, " has-instance”, " part-of 7,
” composed-of ", 7 quasi-synonym”, and ” antonym”. Their properties are shown

in the following table,

Name Traversal Direction Weight Type Weight Range Pointer
is-a asymmetrical Weighted (address)
has-instance asymmetrical Weighted (address)
part-of asymmetrical Weighted (address)
composed-of asymmetrical Weighted (address)
quasi-synonym symmetrical Weighted (address)

antonym

symmetrical

standard

nil

These six relationships are referred to as built-in relationships in our system.
It means that TheSys has prescribed such pre-defined relation type and allow
thesaurus builder to directly capture such types of relationships among seman-
temes. However, a specific thesaurus that does not need the pre-defined types
can simply keep these definitions intact without creating any link of that type.
In addition, the system is‘designed in a way that users can define additional
relationship types, such as "related-to” relation, if application environment so
requires. Actually, in our design, the definition of every relation type will be
stored in a relation type definition file . Each record of this file contains the
attributes of a relation type, such as the name (identity), the traversal direction
etc. Therefore, users can use the routine provided in API or Ul to add their
own definition record into this file for extending relation types.

When a particular relation type is defined, the relationship links of this type
can be added in. In TheSys, different type of relationship links are stored in

Chapter 8 System Design Principles

is-a Relationship Link File

Relationship Link Record

Relationship Link Record

part-of ~ Relationship Link File

Relationship Link Record.

Relationship Link Record

Relation Type Definition File composed-of ~ Relationship Link File

Relationship Link Record
is-a Relation Type Definition Record elauonship L1

Relationship Link Record

part-of Relation Type Definition Record

has-instance Relationship Link File

composed-of ~ Relation Type Definition Record

Relationship Link Record

has-instance Relation Type Definition Record

Relationship Link Record

quasi-synonym Relation Type Definition Record

quasi-synonym Relationship Link File

antonym Relation Type Definition Record Relationship Link Record
user-defined Relation Type Definition Record ——‘ Relationship Link Record

p Bt % s W Relation Type Definition Record antonym Relationship Link File
Relationship Link Record

Relationship Link Record

user-defined Relationship Link File

Relationship Link Record

Relationship Link Record

Figure 3.9: Relation Type Definition File And Relationship Link File

Chapter 3 System Design Principles 28

different relationship link file This way, by including different relationship link
files, a well-constructed thesaurus can be ported to other applications in a flexible
way. For example, a desk-top word editor may just need to include the quasi-
synonym and antonym relationship link files, and a information retrieval system
may include all the predefined-type relationship link files. The following figure

illustrates the logical plan of the relationship type definition file and relationship
link files.

3.3.3 Dealing With Term Ambiguity

Terms in real life can carry multiple meanings which are not directly related.
For instance, the term “race” means ”origin” , ”compete”, or ”competition”.
When specifying a relationship between two terms, the relationship must be
associated with a specific meaning. It does not make sense to link two terms
before knowing the exact semantic meaning for an ambiguous term.

In TheSys, we eliminate the term ambiguities by using a semantic classifi-
cation tree, which is a strictly hierarchical tree with each node representing one
semantic classification. The main idea of this approach is that when an am-
biguous term is classified under a particular semantic classification, its meaning
becomes unique.

A semantic classification of a term is the grammatical or semantical at-
tributes of a term [23] [22]. For example, "noun”, "verb”, ” adjective” and "ad-
verb” are semantic classifications which present the grammatical functions of
terms. On the other hand, "entertainment”, "sports”, and ”computer science”
are also semantic classifications which present the usage scale of terms. For
instance, the term ”program” under the "entertainment” classification means

»performance”, whereas under the "computer science” classification means "a

series of codes”. A classification can be divided into sub-classification further.

Chapter 3 System Design Principles 29

For example, the classification of ”computer science” can be divided into " Ar-
tificial Intelligence”, ”Software Engineering”, ” Algorithm” etc. According to
the study of Meiet al[22], the association among semantic classifications can be
organized as a hierarchical tree.

Each term with its particular meaning(s) can classified under particular se-
mantic classification. In other word, if a term is classified under a particular
semantic classification, its meaning will be limited into the scale of this seman-
tic classification. Refer to the "race” term, if it is classified under the semantic
classification of "verb” , its meaning is the same as ” compete”. On the other
hand, if it is classified under the classification of "noun”, its meaning is either
”origin” or ”competition”. So, we can see that when a semantic classification is
attached to an ambiguous term, the ambiguity of the term will be reduced in
some degree. If we classified the ambiguous term in sub-classification further,
its meaning becomes unique finally. For example, if we attach the classification
» noun-anthropology” to the term "race”, then its meaning will be clarified as
"origin”.

The semantic classification tree is strictly a hierarchical tree with each node
representing one semantic classification. The classification represented by chil-
dren nodes are sub-classifications of the classification represented by farther
node. The semantic classifications stood by the leaf nodes are called terminal
semantic classification, other semantic classifications are called intermediate se-
mantic classification. As one word has a entry into this tree, i.e. a node, its
meaning is consequently classified under the semantic classification which the
node represented. It is obvious that if one word carries two meanings, there
would be two entries in the tree with different semantic classifications associ-
ated with them. The most important point is when one word being attached
to the terminal semantic classification, it will not ambiguous in the sense of

meaning. This is what the incense of the construction of entry terms which is

Chapter 3 System Design Principles 30

composed of a term with a terminal semantic classification.

The construction of semantic classification tree is subject-oriented, which
is up to the the users according to the application specialty field where the
application is required. So, different thesaurus may have different semantic
classification tree. As a comprehensive thesaurus system, TheSys- provides a
well—constructed semantic classification tree which is base on the work of a

~ Chinese thesaurus dictionary (23] . This dictionary contains 70,000 Chinese
L words classified under 12 major, 94 medium and 1428 minor classification. Its
classification relies both on the semantical and grammatical attributes of a word.
The following figure shows the major and medium classification of this semantic
clasification tree.

In TheSys, thesaurus builders can use a set of mini-tools to build the tree
provided that any term classified under the terminal classification becomes dis-
ambiguous. Such tools includes insertion of a node, deletion of a node, update
of a node and browse of the tree. However, if there won’t be any ambiguous
word in a special application field, such a tree need not to be created.

When a semantic classification is built up, it is possible that the ambiguity
of a new ambiguous word could not be eliminated even it is classified under any
of the semantic classification. Thus, a so call Split method is used in this case.

Such an approach is shown as follows step by step,

1. When a term entered into the thesaurus, attach a particular meaning to it.
If it is found that the term is currently carrying more than one meaning,
just let the term with one of its meaning go into next step, and leave it

with other meanings stand here for next round consideration.

9 Check if this term can be classified under a particular semantic classifica-
tion as deeply as possible. This classification, which is referred to as sc,

s rather than the root classification that is a dummy classification under

Chapter 3 System Design Principles

-

| €6 Z3[E weeerenemeneeeT | He fFEEEwoene U
A A PO

Hi @S- 18
Hg #HIEFweveeeeeer 15
Hh &ES)e-ee 10
Hi 32 ceerereenecn 16
Hj S eeensererreroneen1B
Hk #Bigs-- oo 17
Hl K{EEZe e 1T
Hm 2% &g---17
Hn X7~ 13

I BRERE

Ab 93:«:%&

Ac S
Ad SER ceeeereeereres
Al BEY ceerererenneein

Ag KRR -

Db B O

DC AhRE wererecererenenens
Dt Bl

Df R e ceesserernnses
.‘Pi crurvevee
Al IR ceremeeeees
Al %F -
A B s
T - F— CR—
Am {Efp - DL FRag wooevermeoreee® | T2 AT oeree 18
KB DG sosesoniaisins Dim HE e | [b ZERTER e e 18
Do 3B HfI e 9| To w18
B 3 Id rkwc,------------ls
E % &

‘ Ie g;ﬂ" weeeea 19
Ea RiGeeeseeveemeerenennll If B8 RS |
Eb gam Iz ;Ezm
Ec mE Bl eeeeee 10§ 10 gq_lg
Ed i’iff&m -
Ee {8 e nesmmonenee 11 J X B

Ef S 12 | Ja R e seenee s 20

Jb ;',=,]20
F z & Je B snsiis s
Ta _tﬁi,_;bﬁg]g Jd ExE wesees 20
Fb TH@‘H‘?""""""W Je i&qﬁZU
Fo SLkEREhLE-eemeeee13
Fd 28E5fE 13 K B &
_ Ka ﬁ}ﬁ............-.....zo
G L®EE

. Kb ;pﬁ.?,l
Bp B e Ga LB ----13 | Ke BEAE e vee senvenene w21

Bq R% ceswesvan E9s bevie Gb ,Dgiﬁﬁ-..-..:-....l:} Kd fﬁyj"-"-"--"‘""-ZL
Br ﬁ& ‘g}é:‘l: % Ge @.E""" PR { Ke BETZ e seereccecens PIR

= XN SR Y T |
g H &
C ®iEs5Zd Ha BB E e oo 14 L & &
Ca Ei{d] weemsioneonansl | Hb EBEZGerrveerme 14

Dh B3 cvensesenens
Di 2b8 BiE e
Dj 3T e

Dk ¢

At

>..

i3

B
SER AR IER BN BN ¢
r'et.\:r.ol.vNC\JNv—»-Mw--r-»—

@)

n

=

v

g
wwwmcponcaonmcooo—a—a

Ba £3K -
Bb&“@

Be %{.,_ajﬂgﬁ-
Bd Tof ceeseereseenes
Bf SR ceeveeveereersenes
Bh g% eeeeeeeees
Bi T4 e
Bj g_z:.h.g;n
Bk 4% - s
Bl ﬁhﬁﬁ; /\u :J
Bm & -

Bno)g}f._@'g

: 5 I] 83
ao-.;x.n.p—su.hwwwuwwww

)
[=2 I 1]

Figure 3.10: A General Semantic Classification For Chinese Words

Chapter 3 System Design Principles 32

-~

oo

which any word can be classified. The checking result will be one of the
following conditions,
3.1 It can be only classified under the root classification.

3.2 It can be classified under sc and there is no a same term classified

under sc.

3.3 It can be classified under sc and there is a same term classified under

SC.

_If condition 3.1 met, goto step 4. If condition 3.2 met, goto step 5. If

condition 3.3 met, goto step 6.

Insert a semantic classification node down to the root node. goto step 7.

. goto to step 7.

. Substitute the sc with a new node new-sc and attach the whole sub-tree

leading by sc to new-sc. Then, down to the new-sc, insert a new node

other-than-sc under into which the new entered term will be classified.

goto step 7.

(o2 =)

. If the input term has no other meaning, goto step 8, else let it carry another

specific meaning, and go back step 3.

Continue to consider other terms.

In this procedure, the newly inserted semantic classification must be a ter-

minal classification.

3.4 Weighting Scheme

We build various conceptual relationships on the basis of concepts to simulate the

real world. However, the concepts are discrete, but the world is a continuum. A

Chapter 3 System Design Principles ' 33

network of concepts can never be a perfect model of the real world. Therefore,
we introduce a weighting scheme to smooth the transition from one concept
to another concept. Since the thesaurus frame is an association network, two
relevant concepts can either be directly connected by one relationship link, or
indirectly connected by more than one link which is a search path. We refer
to these two concepts in former condition as directly linked concepts, whereas
in the latter condition as indirectly linked concepts. The proposed weighting
scheme can capture two kinds of conceptual closeness corresponding above two

conditions. We will describe how such a so called comparison-based weighting

scheme works as follows.

3.4.1 Assumption

Before discussing such a weighting scheme, we have two assumptions.

1. When a new relationship link is built, such a link connects an owner seman-
teme and a member semanteme. The owner semanteme may be currently
connected to other member semantemes by same type of semantic relation-
s‘hip links. Each of these links may represent different semantic closeness.
The thesaurus builder should be able to tell such difference. That is the
builder can tell which pair of owner-member semanteme is closer or looser

in terms of semantic closeness.

Do

Based on the study of McMath, et al. [5] who proposed a cognitive graph-
ical model in which the closeness of relationships is measured by the mini-

mum number of links between two terms, we have an assumption as below,

e There are three semantemes, S, E; and E,.

e S and E, is connected by a search path which has minimun number

of links, n.

Chapter 8 System Design Principles 34

e S and E; is also connected by a search path which has minimun

number of links, m.

e Nn > Im.

= The semantic closeness between S and E; is looser than that

between S and Es.

Such an assumption means that starting from a semanteme, the semantic
relevancy to the lower level semantic must be looser. As for the comparison
of same level semantemes, the calculation will be discussed later. If the
thesaurus builder thinks that, compared with a higher level semanteme, a
lower level semanteme has closer relationships to the starting semanteme,
he should re-organize the thesaurus frame. That is to upgrade the level of

such semanteme so that the new organization can reflect its status.

3.4.2 Quantify The Relevancy Between Two Directly Linked Con-
cepts

In our research, every relationship link is a directed binary link which connects a
owner and a member. As for assigning the weight value on each relationship link,
the basic idea is that we believe a weight value can make sense only in the context
of owner-members. Concretely speaking, for assigning a weight vé,lue to a new
added-in link, we just need to know the relative closeness of this link compare to
all other links that connect the owner and owner’s other members. The smaller
the weight value is, the semantically closer the member is to his owner. We
have confined all weight values in the range of 0 to 1. In reality, the weight
values may change as a result of relative closeness change due to the addition of
new links. The necessity for supporting change of relation weight values is due
‘to the fact that semantic closeness is in itself a fuzzy concept which is usually

captured more precisely in the presence of a set of words. However, such change

Chapter 3 System Design Principles 35

is harmful to the calculation on the relevancy between two indirectl.y linked
concepts whose linking search path goes through this owner-member context.
The reason is that the calculation of relevancy of two indirectly linked concepts
is related to the weight values on all the links along the path. In light of this,
we decide to generally classify the semantic closeness degree into 5 classes, 1.e.
very strong, strong, medium, lbose, very loose. Every class is assigned to a
constant weight value, e.g. very strong is assigned to 0.2. Linguists or other
experts only need to indicate the closeness degree for a new added-in link, and
the value is automatically attached. In this way, the phenomenon of frequent
shaking of weight values can be avoided. On the other hand, the basic principle
described above is still held. Of course, adjustment is needed when we find that

the relative semantic closenesses of some categories of old links are outdated.

3.4.3 Quantify The Relevancy Between Two Indirectly Linked Con-
cepts

As for quantifying the closeness degree between two indirectly linked concepts,
we need to first introduce a new concept, semantic distance. A semantic distance
between two concepts reflects the semantic closeness or relevancy between two
concepts. The semantic distance of two directly linked concepts is the weight
value on this link. The computation of semantic distance of two indirectly linked
concepts depends on a shortest path linking these two concepts.

Before presenting this algorithm, we would like to demonstrate a computa-
tion of semantic distance defined in Kim’s system[4]. After indicating potential
semantic inadequate hidden in their scheme, we will then show an effective and
efficient algorithm which can overcome such a semantic shortcoming. Firstly,

consider the following example shown in figure,

This diagram shows the quasi-synonym relationships among several concepts.

The values on the links are weight values. Now, the system is required to reveal

Chapter 8 System Design Principles 36

Figure 3.11: Semantic Distance Calculation

the semantic information about a word ## (touch). This word is referred to as
starting concept in terms of the revealing course. Initially, the semantic distances
between the starting concept and all its neighbor concepts are calculated. The
satisfactory concepts, i.e. whose semantic distance are within the specified search
range, are called activated concepts and collected. Afterwards, the neighbor
concepts of the activated concepts are activated in turn. In Kim’s scheme, the
semantic distance between concept % and concept #&& (run into) is calculated
by simply accumulating the weight value of ## — 5 (knock) and the weight
values of % —> #8& The accumulated value is 0.24+0.2= 0.4. However, the
diagram shows that the semantic relevancy between concept %) and ## (affect)
is looser than that between the above two concepts because the weight value of
8 — 28 which is 0.8, is greater than 0.4. Such a calculation works out an
obvious counter-semantic result. Semantically, the relevancy of one node with
his child must be closer than that of this node with his grandchildren, or else the
grandchild should be upgraded to be his child. Due to this reason, we modify
the semantic distance calculation so that if the search for relevant concepts
spreads out one level, i.e. the search depth or path length is increased by 1,
a constant will be added to the semantic distance. In our case, this constant
is 1, the upper bound of weight value scale. Such a modification guarantees
that conceptual closeness of an activated concept with longer search path to the

starting concept must be semantically looser.

Chapter 3 System Design Principles 37

Up till now, the comparison of semantic distances of different concept levels
from a certain starting concept has been solved satisfactorily. The general idea
is that the deeper the search path is, the semantically looser is the activated
concept to the starting concept. But, we have not explained how to compare
the relevancy of concepts on the same level. As to the above example; how do we
compare the relevancy of % — 8% and ## — #%(change)? In this research,
we introduce a relative weight value to reflect such relevancy. This relative
weight value is subject to the location of starting concept and the search path.
Every node in the search path has a relative weight value. Initially, the relative
weight value of starting concept is 1. The relative weight value of one concept
in the search path is calculated by multiplying its owner’s relative weight value
by the weight value on the link connecting its owner to itself. In the above case,
the relative weight value of #% is 1%0.2%0.2 = 0.04, while the relative weight
value of #& is 170.8%0.7 = 70.56. According to this result, we conclude that the
relevancy of ## — #8& is semantically closer.

Ceneralizing the above study, we now describe the overall formulation for
calculating the semantic distance as follows, (note, N;, X1, X2, ..,Xn, Nj is a

search path starting from concept NN; and ending at concept N; , Weight (Xi,

Xi41) is the weight value on link X; — Xis1)
Semantic distance formulation:
1. Relative_Weight_Value(N;) = 1.
9. Relative_Weight_Value(X;) = Weight(N;,X1)
3. Relative_Weight_Value(X;) = Weight(X;_1, X;) * Relative_Weight_Value(X;_1)

4. Distance(N;,N;) = (search_path length -1)*1 +
Weight(Xn, N;)*Relative_ Weight_Value(X7)

From this formulation, we can find that the semantic distance is mainly

Chapter 3 System Design Principles 38

determined by the former part ((search_path length-1)*1), because the latter
part is always less than 1. In this formulation, the search_path length is n+1.
If a comparison of semantic distance between two concepts required, the latter

part can only make sense when the former part is the same as each other.

3.5 Term Ranking

Term ranking is a procedure to find out all the relevant words according to
search type specification, such as search relation type, which can be default or
specified by the user. Such a procedure is dependent- on the well built thesaurus.

Once the system accepts a query including a word and the service type indi-
cating the retrieval relation type and search depth, the process of term ranking
is initiated. This algorithm can be called spreading activation which is similar to
the spreading activation introduced in Rada’s system [7], but behaves little dif-
ferent in the starting condition and ending condition. Our spreading activation
routine starts from one concept to which the segmented word is mapped, and
activates all the semantemes connecting to it in the lines of the query specifica-
tion. That means only those semantemes, which link to the starting semanteme
with the indicated relationship types, and with the semantic distances smaller
than required, can be activated. These activated semantemes will be recorded
into a set. Then, constrained by the specification, other semantemes connected
to the recorded semantemes are activ_ated in turn. When no more semanteme
can be found, the routine stops. Finally, system collects all the words which
correspond to the recorded concepts, and sorts out a list of words according to
the priority specified by the query. The list of words can be returned to other
CAS for proceeding process. As an example, we suppose the system is required
to search the quasi-synonyms of word 3 in the semantic closeness range of 1.05.
At the beginning, system works out that the Distance (358 — &) is 0.2, Distance

(8 —2#h) is 0.4, and Distance (s3—#28) is 0.8. So, all these three concepts

Chapter 3 System Design Principles 39

are activated and recorded. Following, the neighbor concepts of these activated
concepts are considered. Distance (8 — #8i#)is ((2-1) + (0.2%0.2)) = 1.04,
and Distance (##— &) is ((2-1) + (0.2%0.8)) = 1.16. Therefore, concept #&
is discarded. By now, no more semanteme can be activated. Consequently, all

the synonyms of concepts &, %), % and 8 will be returned as results.

3.6 Thesaurus Module and Maintenance Module

The thesaurus module provides basic access routines for all search and retrieval
related functions. It is the core component that uses the thesaurus frame and
entry-term construct to carry out actions requested by other applications. It
takes a word plus service types, such as retrieval of synonym terms, ”is-a” terms,
etc. as its input and returns the relevant words as its output. These returned
words reflect particular semantic information about the inputed word in line
with the retrieval specification.

The maintenance module builds, updates and maintains all the internal data
structure of the system. Entry term construct, thesaurus frame and semantic
classification trees are built through this module. Also, as it is inevitable that
query the thesaurus in the process of building and maintaining a thesaurus,
maintenance module will include all the routines provided in thesaurus module.
Such arrange is due to that most frequently, some system just need to employ
a thesaurus with its querying functions, so separate of a thesaurus module and
maintenance module is more efficient for this purpose. In our design, TheSys
system can maintain several thesauri inside at the same time. So, whenever a
user want to access a thesaurus, he must tell the system which thesaurus is to be
operated. The method is giving each thesaurus a unique name and designating
this name before any operation on the corresponding thesaurus. It is noted
that once a thesaurus is nominated, the subsequent processes are on the this

thesaurus unless user nominating another thesaurus.

Chapter 3 System Design Principles 40

3.6.1 The Procedure Of Building A Thesaurus

To build a thesaurus, users must use the maintenance module. The procedure

mainly include five steps:

1. Name the thesaurus;

9. Build the semantic classification tree;

3. Define the relation type;

4. Insert entry terms and map them to the semantemes;

5. Set the relationship links among created semantemes.

As described above, every thesaurus must have a unique name as identity.
This name is assigned in the first step of building a thesaurus. In a new the-
saurus, the issue of whether a semantic classification is needed depends on the
application environment. If all the terms that thesaurus may index on are not
ambiguous, the semantic classification tree is not needed, else, users must build
it up before insert the entry terms. We have described that each relationship
link has a relation type. TheSys has provided several frequently used relation
type definition. However, if users want capture other relation types, such as "as-
sociate” relationships, they must define the relation types in step 3. Actually,
we can regard step 2 and step 3 as local convention description which provides
a flexibility to meet different appli-cafions. After the local convention defined,
users can begin to insert entry terms , map entry to semanteme and capture
relationships among the semantemes. The most important point for these inser-

tion steps is that users must select the semantemes first, and then they can lay

down the relationships among them.

Chapter 3 System Design Principles 41

3.6.2 Thesaurus Nomination

TheSys allows more than one thesaurus existing in the system. However, in
any time, only one thesaurus can be selected for processing. Thus, a thesaurus
nomination step is needed. Actually, it is simply to pass a thesaurus name, which
is a string, to the system. Both thesaurus module and maintenaﬁce module
provides thesaurus nomination scheme. The initial status of the system is no

nomination of any thesaurus. Users can nominate a thesaurus through four

ways,
1. Name a thesaurus when start to build a new thesaurus;
2. Use the functions provided by the system to open a thesaurus;

Whenever the users nominate a thesaurus, the one nominated before will be
closed automatically. Also, the system provides a close function for close the
current used thesaurus and not open a new one. In addition, users can also use

a function to check which thesaurus is currently being processed. That which

thesaurus is active.

3.6.3 Semantic Classification Tree Construction

The semantic classification tree construction is done through maintenance mod-
ule. The provided functions includes insertion of the tree nodes, deletion of the
tree nodes, update the tree nodes and browse the whole tree. In most conditions,
users had better make this word done before going into procedure of insertion
of the entry terms. Because the change of the structure of the tree will affect
the entry terms’ value. For example, if the name of a semantic classification is
modified from a to b, then all the entry terms which are classified under a have
to be updated to classified under c. However, the system still provides such
tools for meeting users’ need in case the knowledge information does change.

The insertion of a node is very simple that user just need to indicate the new

Chapter 3 System Design Principles 42

added node along with its farther node. Deletion of a node leads all its children
node to become its farther node’s children. The deletion of a terminal semantic
classification is restricted unless all the entry terms attached to this classifica-

tion deleted. Update of a node just do a name change work. Browse of a tree

provide user online information of the tree.

3.6.4 Relation Type Definition

TheSys has six pre-defined relation type definition. User can browse their for-
mation through a relation type browse function. In case users want to capture
their own relation type, they need to make the definition first. This work is also

done through the maintenance module. Basically, system needs user provide the

following information,

e relation type name

e relation traversal direction type, either symmetrical or asymmetrical
e weight type, either standard or weighted

e weight rang description

This information is contained in a record structure which user need to fill it

up one by one.

3.6.5 Entry Term Construct Construction

The entry term construct construction include the insertion and deletion of entry
terms and update of semanteme.

The insertion of a entry term requires three arguments, a word, the semantic
classification of this word, and the mapped semanteme. The former two data
constitute an entry term. It is noted that system only accepts terminal semantic

classification because a word classified under a terminal semantic classification

Chapter 8 System Design Principles 43

will be definitely unique in meaning. Since the mapped semanteme is also an
entry term, at first sight, it should be also composed of a word and semantic
classification. However, due to that the semanteme is the synonym of the in-
serted entry term, its semantic classification must be as the same as inserted
one’s. So, system just require the word of this semanteme enough. In addition,
through this way, system can guarantee the entry term inserted is the synonym
of the semanteme. In case a new concept collected by the thesaurus, that is no
semanteme of this concept exists, the entry term will be automatically selected
as the semanteme. In this case, the semantem word is itself.

The deletion of an entry term requires two arguments, a word and the se-
mantic classification. System will delete all the word(s) under this semantic
classification. Other than insertion of an entry term, the semantic classification
need not to be a terminal classification. It even can be a nil value. For example, if
users want to delete an entry term by indicating the word "race” and the seman-
tic classification nil, then all the entry terms race(compete), race(competition)
and race(origin) will be deleted. Whereas, if the semantic classification is noun,
then only the race(competition) and race(origin) are deleted. There is a very im-
portant restriction on this operation, that is that if a semanteme is just mapped
by one entry term, the deletion of this entry term is forbidden.

The update of a semanteme means select its another synonym as semanteme. .
It requires the old word, a new word, and their semantic classification. System
will search out the semanteme and check whether the new entry term is mapped

to the semanteme.

3.6.6 Thesaurus Frame Construction

Thesaurus frame construction includes insertion and deletion of the relationship

link.

The insertion of a relationship link requires four arguments, relation type,

{Chapter 3 System Design Principles 44

owner semanteme, member semanteme and the weight value. In case the defini-
tion of this link type indicates its weight type standard, the weight value need
not to be filled. Actually, system will check the the link type definition to decide
if skip this argument.

The deletion of a relationship link just requires three arguments, relation

type, owner semanteme and member semanteme. These three arguments are

enough to indicate a relationship link.

3.6.7 Thesaurus Query

All the thesaurus query related functions are provided in thesaurus module.
They mainly divided into two groups, One is for browsing the system informa-
tion, such as the existing thesauri, the semantemes, the semantic classification
tree, and relation type definition. Another is for revealing the semantic relation-
ships among words, such as getting synonyms and related words.

The browsing of system information help users know various definitions im-
mediately. They just need to nominate the thesaurus and call the corresponding
routines. The search for the synonyms of a word require two arguments, the word
and its semantic classification. System will search out all the synonyms of the
entry terms which are made up of by the word and the sub classifications under
the given classification. Since synonyms search is frequently used, we separate
this function from the search of related word. The search related word is more
complicated. Users need to provide three arguments, the word, the relation type
and the semantic distance scale. This search will be done on the assigned rela-
tion type, and within the search scale. It use the term rank technique discussed

above. Now, we can not allow cross-relation search.

Chapter 4

System Implementation

The implementation of TheSys is done using C programming language. Its API
is conforming with the POSIX 1.1 [25], thus it can be comprehensively ported

to other platforms. Also, an interactively window-based user interface is built

on the basis of API and OSF/Motifl.1.

4.1 Data Structure

In this section, we presents the internal data structure of the thesaurus. This
structure is more efficient for Chinese data. However, it will not affect its ability
to process other language data, such as English data. Basically, the system treat
all the input data as byte strings. As the minimum processing unit of Chinese
data, i.e. Character, is double byte length, all the record fields which store the

data are even byte length. At this point, we can see that the English data can
also it into this structure thoroughly.

4.1.1 Entry Term Construct

Entry Term Construct basically includes three types of tables and corresponding
‘ndex tables. They are Entry Term Table,Entry Term Index Table, Synonym

Table, Semanteme Table and Semanteme Index Table.

Chapter 4 System Implementation 46

Entry Term Table And Entry Term Index Table

Entry Term Table is used to record all the entry terms and assign an unique word
code for every term. This word code is the internal identity of the corresponding

entry term and will be cited in other data structures. Its structure is displayed

as follows.

Sequential Code Semantic Class Code Mark

Figure 4.1: Internal Word Code Data Structure

From this logical display, we can see that internal word code is composed of
three fields. The first one is Sequential Code which occupy 20 bits. It is the
record number of the entry term. In entry term table, the number of record is
maintained in the table header. Once a new entry term is inserted, system will
‘ncrease the total record number by 1 and assign the new number into this field.
The second field of word code is Semantic Class Code. It is used to represent
the semantic classification of the entry term. As discussed in last chapter, users
need to specify the terminal semantic classification of a new entry term. This
classification is represented by a symbol. When system accepts this symbol
representation, it will switch the string characters into a numerical value and
assign the result to this field. This numerical value is the internal code of the
semantic classification. The last field is a Mark bit which indicate the validity
of the entry term. It is observed that the deletion of an entry term is seldom
executed. Therefore, in our design, if an entry term is deleted, system just
switch the value of this bit from 1 to 0 instead of replace the whole record with
other entry term. This way, there is no need for packing the file so that the

management is more simple and efficient even some memory is wasted. Further,

Chapter 4 System Implementation 47

if such a entry term is inserted again, system can find out this record and directly

switch the mark bit to 1 to enable the entry term validate.

The logical structure of Entry Term Table is shown in the following figure.

Entry_Term_Tab File Entry_Term_Tab Index

0 character character Internal Code character 0
1 character character Internal Code <) character 1
2 character character Intemal Code)‘\ H character 7
v
3 character character Internal Code I “'
4 character character Internal Code ¢
5 | character character Intenal Code X
.
6 character character Internal Code
7 character character Internal Code

Figure 4.2: Entry Term Table Structure

In the entry term table, each column is one record which has four fields :
the first two for storing the characters of the word; the third for internal word
code, and the last is a pointer that points to next word which is with the same
leading character. Based on the study result in [24], most of the Chinese words
are one-character or two-character words. Among this, one-character words
account for 12.1kinds of words can fit into this structure. For the words that
consist of over two characters, system need two or more records to contain them.
To recognize a word, system will check whether the internal word code of next
record is the same or not. If yes, it means that the word continues on the next
record, otherwise, the word is retrieved.

The entry term index table is more simple. Each record of this table contains
two fields. One is an indexing character. The other is an address pointer pointing

to a record in entry term table. This record stores the first entry term whose

term is led by the indexing character.

Chapter 4 System Implementation 48

Synonym Table and Semanteme Table

Synonym table is used to group the synonyms together. Semanteme Table is
used to register the semantemes. There is a pointer in each semanteme record

for pointing to a group synonyms in synonym table. Their structures are shown

in the following figure.

Synonym Table Semanteme Table Semanteme Index
Internal Address of Internal Internal
Code . Synonym Code Code
Internal 5 Address of Internal : Internal
Code so% Synonym Code - Code
- Internal Address of Internal ! "
Code Synonym Code ' i
' 1
Internal Address of Internal : '
Code Synonym Code : g
Internal Address of Internal i ‘
Code Synonym l Code Internal
Internal Code
Code Internal
Code

Figure 4.3: Synonym & Semanteme Table Structure

In this figure, we can see that each semanteme record contains three fields.
The first is an internal word code which is the representation of the semanteme.
The second is an address pointer pointing to a record in synonym table. And
the last one is a pointer to next semanteme which belongs to the same semantic
classification. This table is indexed by the semanteme index whose each record
contains two fields. One is a class code, another is a address pointer to seman-
teme table. The pointed record is the first semantefne belonging to this semantic
classification. The synonymous relationship among entry terms is represented
in synonym table. Each record of this table has two fields. One is an word
internal code representing an entry term. Another is a pointer pointing to its
synonym record. In such a way, we can search from a semanteme to retrieve
all the synonyms under this semanteme. Also, the mapping from semanteme to

entry term is provided.

Chapter 4 System Implementation 49

4.1.2 Thesaurus Frame

The thesaurus frame maintains one relation type definition file for the defini-
tion of link types and a set of relationship link files for recording each type of
relationship links respectively.

Four fields are used to define each link type. The first field defines the name
of the link type. The second field indicates link traversal direction. The third one
indicate the weight type. When a thesaurus builder wants to define a relation
type, quasi-synonyms for instance, he may want to assign different values for
different quasi-synonyms of a given term. In case the weight type is specified as |
a range, the fourth field specifies the pointer to the entries in the range table
where the range(s) are specified. Entries inside the relationship link definition
table should not be deleted freely unless all the links of that type is deleted.

Besides synonyms, TheSys has defined several well known link types such
as antonyms, is-a/ has-instant, part-of/composed-of. A thesaurus that does not
need the pre-defined types can simply keep these definitions intact without cre-
ating any link of that type. That is, initially, each relationship link file is empty
until any such type of relationship link is inserted. We want to emphasize that
our system provides methods to create different types of links because TheSys is
a building tool. A specific thesaurus, however, does not need to use all of them
at all.

Each relationship link of a particular link type is defined by three fields: the
two semantemes and the weight value of the relationship link. Since the order
of the two semantemes is important especially for a uni-directional link, each
semanteme in a link is identified either as an owner or as a member with the
direction pointing from the owner to the member. In case the weight is not a
constant for this link type, the weight value needs to be assigned. The following

figure shows the logical format of a relationship link file. Each column is one

record.

Chapter 4 System Implementation 50

Link Weight Value Owner Semanteme Member Semanteme
Link Weight Value Owner Semanteme Member Semanteme
Link Weight Value Owner Semanteme Member Semanteme
Link Weight Value Owner Semanteme Member Semanteme
Link Weight Value Owner Semanteme Member Semanteme

Figure 4.4: Relationship Link File

4.2 API

The API (Application Program Interface) of TheSys is conforming with the
POSIX 1.1 which is an operation system interface and application environment
standards. In this thesis, we won’t discuss this standard because it is beyond
our research scope.

As mentioned in the system design principles discussion, an application sys-
tem can employ the whole APT for building and querying the thesauri. However,
they can also just include the query related functions for thesauri accessing. In
our design, we construct the system in two functional module, one is Mainte-
nance Module which contains all the functions, another is Thesaurus Module
which only contains the query related functions.

API for thesaurus module has the following routines:

o int ListSemanticClass (SemClassTable *table);

This routine returns the classification tree. The root pointer is

stored in table.

o RelationType Table *ListRelationType ();

Chapter 4 System Implementation 51

This routine returns the relationship link definition table.

o SemantemeGroup *SearchSemanteme (char *word, char *class);

This routine returns the semantemes for the word under classi-
fcation class. If class is not specified, all the semantemes that
the word is associated with under all classes are returned.

o WordGroup *SearchEntryTerm (char *word, char *class);

This routine checks if the term specified by word is defined in
the thesaurus. The semantic classification class is an optional
parameter to indicate if the caller needs to find out whether the
term exists in that particular class. If it unspecified, all the

semantic classes that it belongs to are returned.

e WordGroup *RetrieveRelated Word (char *word, SearchScale searchscale);

This is a generalized routine to retrieve related terms of word
. The precise specification of "related” is given in searchscale.
searchscale contains the relationship types and with an option
of a specified semantic distance. When a distance is given, Re-
trieveRelated Word retrieve all the terms that falls within the

specified distance.

o WordGroup *SearchSynonyms (char *word, char *class);

For a given term word of the semantic class wordclass, this rou-
tine returns all the synonyms. If wordclass is not specified, syn-
onym of all classes will be returned. This routine is actually

a special case of the function RetrieveRelated Word(). But it

searches through the entry term construct only.
Since maintenance work may include all the related routines related to query.

Chapter 4 System Implementation 52

So, in maintenance module, besides the above routines, the following functions

are also available :

e int InsertSemanticClass (char *parent, ClassNode *node);

This is the routine to build up the semantic classification tree.
A new node contains its name is passed in by the variable node.
Its parent node is indicated by the variable parent. The tree
must be built from the root in a top down fashion by calling

InsClass() repeatedly. The order for the sibling nodes is not

importance.

eint InsertEntryTerm (char *added, char *mapped, char *class);

This routine inserts a new entry term into the entry term con-
struct. added contains the new term, class indicate the semantic
classification of the new term and mapped provides the synonym
that the new term wants to be associated with. Even though
added can be associated with more than one synonym, only one
needs to be given because of the ring structure explained In
chapter 3. The newly added word will have the same seman-
teme as that of the mapped word. If this term does not have

any synonyms, added itself would serve as the semanteme.

o WordGroup *DeleteEntryTerm (char *word, char *class);

This routine deletes the entry term(s) specified by word and
class. In case a term is also a semanteme and there are other

synonyms pointing to it, the deletion is aborted.

e int ReLinkEntryTerm (char *src, char “srcclass, char *0b7,

char *objclass);
This routine can be considered as a combination of /nsEntry-

Term() and DelEntryTerm()

|Chapter 4 System Implementation 53

o int Changeldentifier (char *src, char *obj, char *class);

This routine changes the current semanteme src and replaces it
with obj. Note that a term can be chosen as a semanteme only if
it exists in the entry term construct. In case that an entry term
needs to be deleted which happened to be a semanteme, another
semanteme must be nominated. In any case, this routine is not

used often because deletion in the thesaurus is rare.

o int BuildRelationFrame (RelationTypeRecord record);

This routine defines a new relationship link type. The three

fields for the given type is specified in record.
o int AddRelationLink (char *type, LinkRecord linkrec);

This routine adds a new link of a specified type. The two seman-

teme and the possible weight value(s) are specified in linkrec.
e int DeleteRelationLink (char *type, Semanteme S_sem, Semanteme E_sem);

This routine deletes the link of type which connects the two

semantemes, S_sem and E_sem.

As discussed in the thesis scope, a scheme to check the validity of a word may
be needed in some application environment. The detail of this scheme can be

found in appendixl. The main idea is that user must provide an application

interface as follows,
e int LookUpWord (char *word)

This routine checks if the word included in a local dictionary.

Chapter 4 System Implementation 54

4.3 TUser Interface

Window-based user interfaces have become a common feature of most computer

systems [25]. The user interface (UI) of TheSys is such an interface which is
developed on the OSF/Motif 1.1 platform.

4.3.1 Widget And Its Callback

Widget is a concept in Motif. It is a complex data structure that combines a X
window with a set of procedures that perform actions on that window. There are
two keys associated with each each Widget, resources and callbacks. Resource
s a set of variables to control the appearance and behavior of the widget. For
example, a widow that display a label has resources that determine the value of
the label, the font used to display the Jabel, and the margins around the label.
Another key to widget is callback. A callback is a procedure that is called by a
widget whenever certain events occur for the widget. The idea behind callback is
that you create a procedure, and tell the widget to call that procedure whenever
an event triggers the callback. An event might be, for example, the user push
a button in a widget. The callback mechanism is the base for our Ul accessing
the thesaurus through APL

In our design, UI provides various windows, which are managed by different
widgets, for users to read and write data. These data are store in the resource
variables of corresponding widgets. When users want to execute some functions,
system get the arguments values from the resources and pass these data to
callback. Inside callback, a calling to one or more API routines are included.
Callback will be responsible to direct the argument data to the routine(s) and
activate it/them to access the thesaurus. For example, a user may want to delete
an entry term. He put the word and semantic classification into the window and
click a Entry Term Delete button. The Ul application then activate the

entry-term-delete callback to read the word and semantic classification. Within

Chapter 4 System Implementation 55

the callback, a truly deletion interface function, that is fhe DelEntryTerm, will
be called to do this work.

4.3.2 Bilingual User Interface

This UT allows users to interact with the system in Chinese GuoBiao, Chinese
Big-5 and English language. Actually, the Ul program is written in a way that
make no assumptions about the language. Such an idea is supported by using
the message catalogs mechanism.

The main concept in the message catalog mechan-ism 1s £he message text in
program. The message text is the data specific to any particular language, such
as the window title and label content in user interface program. For example,
in this UI, the heading of the top window for English processing environment
is " TheSys - Thesaurus System”, while it should be "HBE BRZEEFHRRM. If
such message text is hardcoded in program, the program can only serve for par-
ticular language. So, it is proposed to make these message text held in a message
catalog separate from the main body of the program. And the message catalog
can be translated into several languages to meet the language requirements of
each user. This is the behind idea of message catalog mechanism.

Actually, the message catalogs are simple databases that stores the message
texts. Each message catalog serve for particular language. Normally, it is a
directory which includes two files, .msf file and .cat file. The .msf file is a

text file that stores message text in particular languages. These message file is

organized as follows,

$ /*
$ * X/OPEN message catalogue
$ */

$ In xmain.c

Chapter 4 System Implementation 56

$set 1

1 0K
2 Cancel
3 Help

$set 2
1 Word
2 Semanteme

3 Relationship

In this file, the line led by a dollar sign and a space is a comment line, such as
the first to fifth line. The lines not led by a dollar sign are the message texts.
Each message text is led by a number which will be referenced by other routines.
However, these message texts are divided into several sets by the $set line. The
number that follows the $set is the set number which will also be referenced
by other routines. Actually, the set number, the message text number and
the message catalog identity, normally the message catalog directory path, can
identify unique one message text. The .cat file is a binary file generated from
_msf file. Such two file must work with a catgets library routines. This routine
s embedded in the program. Each position that the message text should occur
will be placed such a routine. In run time of program, this routine will go to
particular message catalog to take out the message text to replace its position.
So that, in each run time, the real message text is displayed. There are four
arguments in this routine. The first is a message path which point to a message
catalog. The second is a number indicating the set number and the third is a
number indicating the message text number. The last is a pointer to a string
which is a default string for the message text. If the routine can’t retrieve the

message text from the message catalog, such default string will be a substitute.

Chapter 4 System Implementation 57

The following is a segment of a program that shows how the message catalog

mechanism work.

#include <nl_types.h>

nl_catd _m_catd;

_m_catd = catopen(mesgpath, 0);

printf(catgets(_m_catd, 1, 1, "OK"));
printf(catgets(_m_catd, 1, 2, HGancel™))

printf(catgets(_m_catd, 1, 3, "Help"));

In TheSys, the UI control its language specific data and functions by setting
the message path. Different message path direct the program retrieve different
data. Currently, there are three message catalogs created, GB, B5 and ENG.
These three catalogs server for GuoBiao, Big and English respectively. Before
running the Ul program, users must assign an environment variable LANG
whose value can only be GB, B3, or ENG. According to this value, the program

can make a decision to go to one of above catalogs to retrieve message text data.

4.3.3 Chinese Character Input Method

As Motif system is originally developed in English language processing environ-

ment. Most of its tools is convenient for English but Chinese. When building a

Chapter 4 System Implementation 58

Chinese Motif application, we need to write our own tools and windows specially
for Chinese processing. The most difficult one is the Chinese character input.
As the common key board is designed for English input, it is needed to use
a software method to deal with the Chinese character input problem. The idea
behind this method includes two step. First, we need a kind of standard that
matchs a string of English character to a list of Chinese characters, such as
Canglie standard, WuBi standard etc. According to this standard, if one user
want to display a Chinese character on the screen, he can enter the English
string which will be mapped to this Chinese character. Following, a set of
software tools embedded in an application program will translate the English

string to corresponding Chinese character. In motif application, the creation

and functions of such software tools are as follows,

1. Write a routine, which is referred to as Chineselnput, to initialize a

window area, which is referred to as Chinese Input Area, for displaying

the Chinese Characters.

9. Chineselnput accepts a string of English character entered from keyboard.

3. Such character strings will be passed to another routine, which is referred

to as CheckTable.

4. According to this string, CheckTable routine go to retrieve Chinese charac-
ters in a Chinese character mapping table. This table match the English
string to Chinese characters. For example, the string of "zhong” corre-
sponds a Chinese Character »th” Since a string may corresponds more

than one Chinese characters, the routine could retrieve more than one

corresponding Chinese characters.

5 A list of matched Chinese characters is returned by CheckTable, and
passed back to Chineselnput.

Chapter 4 System Implementation . 59

6. Chineselnput displays the list of Chinese characters in the Chinese input

area for selection. User can select the Character he want.

In Motif, there is no such such Chinese character mapping tables. So, we use
some tools and source files in the CxTerm system to help to write the Chinese
character input software. |

In TheSys, the Chinese mapping tables are gotten from CxTerm. They
are CangJie.cit, PY.cit and Simple.cit which serve for Canglie, PinYin and
Simple CangJie input method respectively. The retrieval routine, which is named
cit2tit.c is also from CxTerm. It has two header file, HZinput.h and cit2tit. h.
At last, the Chineselnput routine is named Input_Callback in a source file

input.c. Such a routine is activated in the programs of the UL The method is,
e Initialize a frame box for loading Chinese character.

e Add an event handler input_callback to this frame box.

Consequently, the Chinese input area will be displayed in the bottom of the
window. And the selected Chinese character from input area can be displayed

the frame box.

Chapter 5

Conclusion And Future Work

Thesaurus can be used for intelligent processing of information in comprehensive
area. The TheSys system presented in this thesis help users build the thesauri
according to their own requirements. The main feature of TheSys is that it
allows users define arbitrary relationships among terms in a way useful to the
application environments. Its API design mechanism make the system as a
comprehensively applicable package which can be ported to different applications
easily. Currently, we have use this tools built up a Chinese thesaurus thesaurus
containing 10,000 entry terms among which synonymous, quasi-synonymous,
antonym and part-of/ composed-of relationships are embedded.

However, this system still has some aspects needed to be improved. They
are the search of related word in cross-relation context, the weighting scheme
model and the automatic recognition of relationship.

The current version of TheSys just support searching related words in par-
ticular relation type. However, users may need to do this search in the multiple
relation type context. For example, a user may want to search the related words
of "race” in the scale of quasi-synonymous and broader/narrow relationships.
His expectation may be to first search out all the quasi-synonyms of the "race”,
and then search out all the broader/narrower terms of the quasi-synonyms.

We proposed a weighting scheme in this thesis. However, we need more

experiment to evaluate its performance, especially for the link weight assignment.

60

Chapter 5 Conclusion And Future Work _ 61

The link weight assignment directly affect the semantic distance between two
semantemes. As a relation type need variable link weight, we have two methods
to assign the value. Onme is classified the range into several scale and let users
indicate which scale the value should go down. This method is employed by
TheSys. Its advantage is to keep the thesaurus frame relatively 'stable and
simplified the management. The second method is dynamically assign the weight
in a way that users indicate the relatively closeness among the owner-members
context. This method model the reality more closely but make the semantic
‘distance calculation complicated. Therefore, we are trying combine these two
methods’ advantages to develop more efficient and effective approach. Further,
we plan to separate the weighting scheme from the system so that the users
can develop their own weighting scheme. At this point, each type of weighting
scheme method is referred to as one weighting scheme model. The idea behind
the weighting scheme model is the system provide an interface to the weighting
scheme model. User can follow the system’s guideline to design his model. Also,
system itself will include several pre-defined weighting scheme models. User can
link his weighting scheme model to the system as well as seléct one of the pre-
defined weighting scheme models. This way, the system can be more flexible
and powerful.

Now, users define the relationships among terms by the experience. In this
way, they may unconsciously capture erroneous information which degrade the
function of the thesaurus. Therefore, we want to make the thesaurus building
system more intelligent. That is it has the function for automatic recognition of
relationship among terms which is a much more challenging topic [2]. The basic
:dea behind it is that if two words are found frequently occurring side by side,
it is possible they have some particular association. Through the analysis and

statistic on large volume of document, system can give users hints about these

information.

References

[1] "Advanced Learner’s Dictionary of Current English”, Ozford University
Press, 1934 '

[2] Dagobert Soergel, Indezing Languages and Thesauri: Construction and
Maintenance, John Wiley & Sons, Los Angeles, California, 1974

[3] Igor A. Bolshkov, ” Thesaurus In Word Processors: What Should It Be?”,

Internal Forum Information and Document, vol. 16, No. 2, April 1991

[4] Young Whan Kim and Jin H. Kim, ” A Model of Knowledge Based Informa-
tion Retrieval with the Hierarchical Concept Graph”, Journal of Documen-

tation, Vol. 46, No. 2, June, 1990, ppl13-136

[5] Charles F. McMath, Robert S. Tamaru, and Roy Rada, "A Graphical
Thesaurus-based Information Retrieval System”, International Journal on

Man-Machine Studies, Vol. 31, 1939, ppl21-147

[6] Jane Morris and Graeme Hirst, ” Lexical Cohesion Computed by Thesaurus
Relations As Indicator Of The Structure of Text”, Computational Linguis-
tics, Vol. 17, No. 1, March 1991

(7] Roy Rada and J udith Barlow, "Document Ranking Using an Enriched The-

saurus”, Journal of Documentation, Vol. 47, No 3, September 1991, pp 240-
253

Chapter 5§ Conclusion And Future Work 63

[8] Zeng Minzu, Chen Yu, "Towards A Chinese Information Retrieval And Pro-
cessing System Based on Natural Language Processing”, Proceedings of the

1992 International Conference on Chinese Information Processing, Vol. 1,

Oct. 26-28, Beijing, China, pp108-116

[9] Beijing Information Technology Institute, »The News Information Processing

System for People’s Daily”, Technical Report, Beijing Information Technol-
ogy Institute, August, 1992

[10] Shi Shuicai and Su Dongzhuang, "ExpCIR - An Expert System For Chinese
Full Text Retrieval”, Proceedings of the 1992 International Conference on

Chinese Information Processing, Vol. 2, Oct. 26-28, Beijing, China, ppl63-
170

[11] Kam-Fai Wong and Vincent Lum, "The Chinese Information Retrieval
Project Work Plan”, Doc No. CHIRP.DD.SE.001, Department of System
Engineering, The Chinese University of Hong Kong, June 1, 1993

[12] Zhung Mubin and Su Dongzhuang, "Design and Analysis of Chinese The-

saurus and Retrieval Computer System”, Computer Journal, Vol. 1, Jan,

1990. Beijing, China.

[13] National Library of Medicine, Medical Subject Heading Section, Medical
Subject Headings, Tree Structures, National Technical Information Service,

Springfield, Virginia, 1986

[14] J. Sammet, and A. Ralston, "The New Computing Reviews Classification

System-Final Version”, Communications of the ACM, Vol. 25, 1982, pp13-25

[15] Keh-Jiann Chen, "Design Concepts for Chinese Parsers”, Proceedings 1992

International Conference on Chinese Information Processing (1), Vol. 1, Oct.

26-28, 1992 Beijing

IChapter 5 Conclusion And Future Work 64

[16] Changning Huang, ”A conversation on Large Scale Running Text Process-
ing”, Proceedings 1992 International Conference on Chinese Information

Processing (1), Vol. 1, Oct. 26-28, Beijing, China, pp36-41

[17] Lin-Shan Lee, Lee-Feng Chien, Long-Ji Lin, James Huang, and K.J. Chen,
» An Efficient Natural Language Processing System Specially Designed for

the Chinese Language”, Computational Linguistics, Vol. 17, No. 4, Dec. 1991,
pp348-374

(18] Changning Huang and Zuyao Chen, "The First Steps Towards a Semantic
Dictionary”, Journal of Chinese Information Processing, Vol. 2, No. 3, 1988

[19] He Kekang, "Building Machine Dictionary and Semanteme Analysis”, Pro-

ceedings of the 1992 International Conference on Chinese Information Pro-

cessing, Vol. 1, Oct. 26-28, Beijing, China

[20] Roy Rada, Hafedh Mili, Gary Letourneau, and Douglas Johnston, ”Creat-

ing and Evaluating Entry Terms, Journal of Documentation, Vol. 44, No. 1,

1988

[21] Betty Eddison and David Batty, "Database Design”, Database, December
1988.

[22] Mei Jiaju, Gao Yunqi, "A Study of the Formalization of Semantics”, Com-
munications of COLIPS, Vol 2, Neo 1, 1992, pp. 40-47

(23] K.T.Lua, "A Study of Chinese Word Semantics”, Computer Processing of
Chinese & Oriental Languages, Vol. 7, No.1,

[24] Wang Young Cheng, ”Chinese Information Processing Technology and Its

Base”, The Press of Shanghai Communication University, Jan, 1992. June

1993, pp 37-60

Appendiz Conclusion And Future Work 65

[25] John S. Quarterman, Susanne Wilhelm, ”Unix, POSIX, And Open Sys-
tems”, Addison-Wesley Publishing Company, 1993

[26] Douglas, A. Young., "The X Window System Programming and Appli-
caitions with Xt Osf/Motif Edition”, Prentice Hall, Inc, 1990

Appendix A

System Installation

As a product, TheSys is provided as a package of files. Basically, these files
are divided into three categories. The first category is a set of management
‘nformation files which help the system maintain the internal thesauri. The
second is a set of data files which store the thesaurus data. The last is a set
of C source code files. All these files should be placed under a directory which
is referred to as TheSys Working Directory. Since the system can parallelly
build and maintain more than one thesaurus, each thesaurus has its own set of
data files which are put in different directories under the working directory. The

following figure shows the organization of the files in TheSys system.

‘ TheSys Working Directory \

Management ‘
.c file Information ‘Thesaurus 1 ' ‘Thesaurus 2 ‘Thesaurus n

File
.c file '*—
Management
< file J Informaion Data Files Data Files Data Files
| File

Figure A.1: The Organization Of Files In TheSys

Gerenally speaking, the installation of the system include two steps. The

66

Appendiz A System Installation 67

first is to create the working directory and load the files of TheSys into the
directory. The second is to compile the source code files in local environments.
In this appendix, we would explain each of the files in TheSys first. And then
we show how to use TheSys as a building block in programming and how to set
up the TheSys system with user interface. Also, as mentioned in the system
design principle, the system allow user verify the validity of the recorded word

by using an external dictionary. Such an issue will be discussed in the end of

this appendix.

A.1 Files In TheSys

As described above, the first group files in TheSys is a set of management

information files. They are,

e ThesauriList.sys
This is a file that records all the thesauri maintained in the system. It

is directly under the working directory and will be automatically created

when the first thesaurus is created in the system.

e GB B5 ENG
These are three message directories for user interface. They respectively
serve for GuoBiao, Big5, and English user interface. They are part of

the system package so that user must copy them into their own working

directory. Inside each of the directories, there are following files,

— Canglie.cit PY.cit simple.cit
These three files are cit tables for Chinese Input method. They cor-
respohds to CanJie, Pingying and Simple CangJie respectively.

— Main_menu

This is a resource file for Motif window manager to set up environment

Appendiz A System Installation 68

for the user interface. It is very simple so that we include it here, user

can modify it according to his local environment and requirements:
Main_menuxfontList:-*-courier—*-r-*--14-*=english,\
-hku-fixed-medium-r-normal--16-160-72-72-c-160-big5 .hku-O=chinese

Main_menu*traversalOn:TRUE

Main_menuxhighlightColor:Yellow

Main_menuxhighlightThickness:1

j Main_menu*keyboardFocusPolicy:pointer

q Main_menu*highlightOnEnter:TRUE

Main_menu*foreground:Black

Main_menux*background:White

Main_menu*heading*foreground:Yellow

Main_menuxheading*background:Blue

Main_menu*button*foreground:Black

Main_menu*button*background:LightGray

Main_menu*input_ks*foreground:White

Main_menu*input_ks*background:Blue

— message.cat message.msf
This is the message file and message catalog file for the message title

in user interface.

The second group of files is the data files. They are,

Appendiz A System Installation 69

e The*

These are a series of directories, such as Thel, The2, ... Each of such
directory stores all the data files of a thesaurus. This directory and inside

data files will be automatically created when users create a new thesaurus.

They are,

1. ENTRY_TBL SEMANTEME_TBL CLASS_TBL SYNONYM_TBL

2. ENTRY_IDX SEMANTEME_IDX CLASS IDX SYNONYM.IDX

3. RelationType.sys

4. Relation*.rel

The first set of files are used to record the entry terms, semantemes, se-
mantic classifications of words and synonyms. The second set of files are
the index files corresponding the above files respectively. The third set

of file is the relation type definition file. The last set of files are a set of
relaitonship link files.

The third group files are the C source codes and make files. Users must

compile them in their own system environment. These files are,
e TheSys.h

e library.c input.c cit2tit.c app.c relation_cb.c word_cb.c semclass_cb.c
semanteme_cb.c xmaintenance.c xapplication.c fileman.c naming.c sem-

class.c con.c rc.c tr.c

e Makefile APP MakefileUI

Appendiz A System Installation 70

The above third set of files are make files. They respectively serve for appli-
cation package usage and independent system with user interface. When users

want to use the the system as one of the above two ways, they must rename the

make files into makefile

A.2 Employ TheSys As Application Package

When other systems want to employ the TheSys as a building block, it must

follow the procedure below:

1. Make a directory as TheSys Working Directory.
9. Copy all the *.c files and *.h header files into this directory

3. Copy the MakefileAPP file into this directory and change its name to

" makefile”.

4. If ThesauriList.sys exists, copy it into the directory.

5. Make the makefile

6. If a C program, say externapp.c, want to call the routines in TheSys, it

just need to include the thesys.h header file.

7. When compiling the externapp.c, user need to add below line into its make

file,
cc -o externapp externapp.c -IThesys

That is to link a local library named libTheSys.
The content of the MakefileAPP is as follows,

XLIB = -1i -g
CFLAGS = -c -o -Wf,-XNh2000 -Olimit 2000 -DSTRINGS_ALIGNED
-D_NO_PROTO -DNO_REGEX

Appendiz A System Installation

SRC = fileman.c naming.c semclass.c con.c rc.c tr.c

OBJS = fileman.o naming.o semclass.o con.o rc.o tr.o

HDRS = thesys.h

CC = cc

all: $(0BJS)

ar rv 1ibTheSys.a $(0BJS)

#$(0BJS) : $(SRC) $(HDRS)

cc $(CFLAGS) $(0BJS) $(SRC)

fileman.o: fileman.c thesys.h
$(cC) $(CFLAGS) fileman.c

naming.o: naming.c thesys.h
$(CC) $(CFLAGS) naming.c

semclass.o: semclass.c thesys.h

$(CcC) $(CFLAGS) semclass.c

con.o: con.c thesys.h

$(cC) $(CFLAGS) con.c

rc.o: rc.c thesys.h

$(cc) $(CFLAGS) rc.c

tr.o: tr.c thesys.h

$(cCc) $(CFLAGS) tr.c

A.3 Set Up TheSys With Ul

The setting of the system with user interface include the following steps.
1. Make a directory as TheSys Working Directory.
9. Copy all the *.c files and *.h header files into this directory

3. Copy the message catalog directories B5, GB, and Eng into this direc-
tory.

Appendiz A System Installation

4. If ThesauriList.sys exists, copy it into the directory.

5. Copy the MakefileUI file into this directory and change its name to

"makefile”.

6. make the makefile. If a user just want to use the application module, he

need to do the make work as follows,

make application

or, if he want to use the maintenance module, he need to do make work

as follows,

make maintenance

The content of the MakefileUI is as follows,

XLIB = -1Xm -1Xt -1X11 -1i -1TheSys -g
XLIBPATHS= -L/usr/X11R5/1ib -L/usr/motifl.l/lib
CFLAGS = -I/usr/X11R5/include -I/usr/motifl.1/include

-c -Wf,-XNh2000 -0limit 2000 -DSTRINGS_ALIGNED
-D_NO_PROTO -DNO_REGEX

SRCO = xmaintenance.c

SRC1 = xapplication.c

SRC3 = library.c input.c cit2tit.c app.c relation_cb.c
word_cb.c semclass_cb.c semanteme_cb.c

SRC4 = fileman.c naming.c semclass.c con.c rc.c B L

OBJSO = xmaintenance.o

0BJS1 = xapplication.o application.o

0BJS3 = library.o input.o cit2tit.o app.o relation_cb.o
word_cb.o semclass_cb.o semanteme_cb.o
0BJS4 = fileman.o naming.o semclass.o comn.o rc.o tr.o

HDRS = thesys.h

CE = cc

Appendiz A System Installation 7

all: maintenance application

maintenance: $(SRCO) $(0BJSO) $(0BJS3) $(0BJIS4)
$(CC) -o maintenance $(0BJS0) $(0BJS3) $(0BJIS4)
${XLIBPATHS} ${XLIB}
application: $(SRC1) $(0BJS1) $(0BJS3) $(0BJIS4)
$(CC) -o application $(0BJS1) $(0BJS3) $(0BJS4)
${XLIBPATHS} ${XLIB}
program dependencies
xmaintenance.é: xmaintenance.c thésys.h
$(cC) -c $(CFLAGS) xméintenance.c
xapplication.o: xapplication.c thesys.h
$(CC) -c $(CFLAGS) xapplication.c
library.o: library.c thesys.h
$(CC) -c $(CFLAGS) library.c
input.o: input.c thesys.h
$(CC) -c $(CFLAGS) input.c
cit2tit.o: cit2tit.c thesys.h
$(CC) -c $(CFLAGS) cit2tit.c
fileman.o: fileman.c thesys.h
$(cC) -c $(CFLAGS) fileman.c
naming.o: naming.c thesys.h
$(cC) -c $(CFLAGS) naming.c
semclass.o: semclass.c thesys.h
$(CC) -c $(CFLAGS) semclass.c
semclass.o: semclass.c thesys.h
$(cC) -c $(CFLAGS) semclass.c
con.o: con.c thesys.h

$(cC) -c $(CFLAGS) con.c

ppendiz A System Installation 74

rc.o: rc.c thesys.h
$(CC) =c $(CFLAGS) rc.c
tr.6% tr.c thesys.h
$(cC) -c $(CFLAGS) tr.c
relation_cb.o: relation_cb.c thesys.h
$(CC) -c $(CFLAGS) relation_cb.c
semclass_cb.o: semclass_cb.c thesys.h
$(CC) -c $(CFLAGS) semclass_cb.c
semanteme_cb.o: semanteme_cb.c thesys.h
$(CC) -c $(CFLAGS) semanteme_cb.c
word_cb.o: word_cb.c thesys.h

$(CC) -c $(CFLAGS) word_cb.c

If a user interface is used, users need to assign two environment variable.
The first is APPLRESDIR. which give out the directory path of the working
directory installing the system. The second is LANG which must be one of the
following values, B5, GB, and ENG. It is obvious that this variable corresponds
to Big5, GuoBiao, and English processing environment. The above two values

direct the system to retrieve resources and message data for setting up different

interactive environment.

A.4 Verify The Word Using External Dictionary

As described in the system design principle, the system allow users verify the
validity of the recoded word by using an external dictionary. The implementa-
tion of such a scheme depends on which way the system is used, either as an
application building block or as an independent system with user interface.
When the system is employed as an building block, the verification of the

recorded work is done inside the application program which includes the TheSys.

Appendiz A System Installation

That is users themselves provide a verification routine to check the validity of the
word. Only successful checking, he can call the TheSys InsEniryTerm routine
to insert the word as entry term. The usage of this routine is up to users. Also,

its syntax is defined by the users. The below example shows a guideline of this

scheme, (the bolded routine is user defined routine)

if lookaword (fp, word);

InsEntryTerm(word, mappedword, wordclass);

else

printf(”Such A Word %s Is Invalidate!”, word);

If the system is used through the user interface. The requirement for this

verification is strict. Users must do three things,

1. Users need to write a C function to include their own verification routine.

This function must obey the syntax as follows,
int LookUpWord(char *word);

And the concrete implementation of this function could as follows,

int LookUpWord (char *word)

{
FILE *fp;

fp = fopen("/usr/local/thesysprj/dictiona.ry", i adf

/* open the external dictionary to read */

/* call the local verification routine */

if lookaword(fp, word)

/* if the word exists*/

Appendiz A System Installation 76

return (1);
else

/* if the word does not exists*/

return (0);

9. Compile the function and use the ar command archive this function into

local library libTheSys.

3. Assign an environment variable EXTERNDICT as the value of ON.

This way, the user interface program know to call thé LookUpWord func-

tion.

Following the above guideline, users can make the system to check the validity

of a recorded word.

Appendix B

API Description

Typographic Conventions

This volume uses the following typographic conventions:

e Boldfaced strings represents literals; type them exactly as they appear.

e [talicized strings represent function arguments.

B.1 thesys.h File

When other application systems want to employ the TheSys API in their pro-
grams, the thesys.h file must be included. This file defines all the data struc-

tures application programmer need to know. Below is its content,

#ifndef _TheSys_H

#define _TheSys_H

/* data structurex/

/* naming.c */

typedef struct TN

{ char *thesaurusname;
struct TN *next;

} ThesaurusList;

Appendiz B API Description

/* This linked list structure stores the existing thesauri

names */
/* semclass.c */
typedef struct
{ char *symbol;
} SemanticClassNode;
/* This structure stores the semantic classification node */
typedef struct SCT
{ char *symbol;
struct SCT *child_table;
struct SCT *nextsibling;
} SemanticClassTable;
/* This structure is the semantic classification tree */
/* rc.c, relation link processing related */
typedef struct SD
{float bottomvalue;
float uppervalue;
char *symbolname;
struct SD *next;
} SymbolDescription;
/* This structure describes the weight range */
typedef struct
{ char *name;
int direction;
int weightscheme;
float bottomlinkweight;
float upperlinkweight;

SymbolDescription *xlinkweight; /* weight range */

Appendiz B API Description

SymbolDescription *semdistance; /* semantic distance
range */
} RelationTypeRecord;
/* This is one relation type record */
typedef struct RTTable
{ char *relationname;
char =*direction;
char *weightscheme;
float bottomlinkweight;
float upperlinkweight;
SymbolDescription *1linkweight;
SymbolDescription *semdistance;
struct RTTable *nextrelation;
} RelationTypeTable;
/* This linked list structure stores
a set of relation type recordx/
typedef struct
{char *preferredterm;
char *wordclass;
} SemantemeNode;
/* This is a semanteme node used in next semantic
relationship Link record */
typedef struct
{ char *SE_weight;
SemantemeNode start_Semanteme;
SemantemeNode end_Semanteme;
char *ES_weight;

} LinkRecord;

Appendizc B API Description

80

/* This is a semantic relationship link
record */

typedef struct

{ char *wordclass;
char *relationname;
char =*distance;

} SearchScale;

/* This structure describes the search scale
which will be used in related word search*/
/* WordGroup structure, used by many prototype‘*/
typedef struct WG
{char *word;
char *wordclass;
struct WG *next;
} WordGroup;
/* This structure stores a set of entry terms*/
typedef struct SG
{char *preferredterm;
char *wordclass;
struct SG *next;
} SemantemeGroup;
/* This structure stores a set of semantemes*/
/* function prototype */
/* naming.c */
extern int UpenThesaurus(char *name) ;
extern void CloseThesaurus();
extern ThesaurusList *ListThesaurus (-)is

/* con.c */

Appendiz B API Description

81

WordGroup *SearchEntryTerm(char *word, char *xwordclass) ;
int InsertEntryTerm(char *addedword, char *mappedword,
char *wordclass);
SemantemeGroup *SearchSemantemes(char *word, char *wordclass);
WordGroup *SearchSynonyms(char *word, char *wordclass) ;
int Changldentifier(char *srcword, char *objword,
char *wordclass);
WordGroup *DeleteEntryTerm(char *word, char xwordclass) ;
int ReLinkEntryTerm(char *srcword, char *srcwordclass,

char *objword, char *objwordclass) ;

/* semclass.c */
extern int InsertSemanticClass (char *parent,
SemanticClassNode *node);
extern SemanticClassTable +ListSemanticClass ();
extern int DeleteSemClass(char xclass) ;
/* rc.c relation link related */
extern int BuildRelationFrame (RelationTypeRecord record) ;
extern RelationTypeTable sListRelationType ();
extern int AddRelationLink(char *relationname,
LinkRecord linkrecord);
extern int DeleteRelationLink(char *relationname, SemantemeNode
start_semanteme, SemantemeNode end_semanteme) ;
extern WordGroup +RetrieveRelatedWord(char *word,
SearchScale searchscale);

#endif

Appendiz B API Description 82

B.2 API Reference

Manual Page Format

The manual pages in this volume use the following format:

NAME
This gives out the name of the interface function described following.
SYNOPSIS
This section describes the appropriate syntax for using the interface.
DESCRIPTION
This section describes the behavior of the interface.
PARAMETER
This section describes function arguments.
RETURN
This lists the values returned by function interfaces.
SEE ALSO

This lists the related function interfaces.

Appendiz B API Description 83

Reference Pages

NAME
OpenThesaurus

SYNOPSIS
#include <thesys.h>

int OpenThesaurus (name)

char *name;

DESCRIPTION

OpenThesaurus () is afforded for user to name a new thesaurus to be built or
indicate system operate on an existing thesaurus. According to this information
to create a new directory or go into a specific directory which store corresponding
data files, such as Semantic Classification Tree file, Relationship Register file,

entry term file and relationship file etc. On success, an integer will be returned,

else 0 will be returned.

% PARAMETER

name It is a string variable. It indicates the name for thesaurus

to be built or operated.

RETURN

On success, 1 will be returned, else 0 will be returned.

SEE ALSO

ListThesaurus CloseThesaurus

_ Appendiz B_API Description 84

NAME
CloseThesaurus

SYNOPSIS
#include <thesys.h>

int CloseThesaurus ()
char *name;
DESCRIPTION

CloseThesaurus is used to close the current thesaurus. It is commonly called

when users want to exit the whole operation on TheSys system.

PARAMETER
RETURN

On success, 1 will be returned, else 0 will be returned.

SEE ALSO

List Thesaurus OpenThesaurus

~ Appendiz B API Description

NAME
List Thesaurus

SYNOPSIS
#include <thesys.h>

ThesaurusList *ListThesaurus ()

DESCRIPTION

ListThesaurus () will help users get to know what thesauri had been built in
the current TheSys system. It will return a pointer to a table which stores the
thesauri list. On fail, NULL value will be returned.

RETURN

It will return a pointer to ThesaurusTable. The data

struct of ThesaurusTable is in thesys.h file.
SEE ALSO

OpenThesaurus CloseThesaurus

Appendix B API Description 86

NAME

InsertSemanticClass

SYNOPSIS
#include <thesys.h>
int InsertSemanticClass (parent, node)
char *parent;

SemanticClassNode *node;

DESCRIPTION

InsertSemanticClass () is afforded to specify the semantic classification tree.
Users use this routine to insert one node of this tree each time. The argument
node defines a semantic classifications node. Its parent is indicated by argument

parent. On success, integer 1 will be returned, else will be returned.

PARAMETER
parent It is a string variable. It indicate which semantic classification

is the parent of the inserted node. If the inserted node is the

first level semantic classification, it must be assigned as (char)
0;
node It is a variable of structure SemanticClassNode. The data struc-
ture of SemanticClassNode is in thesys.h

It is noted that duplicate naming of symbol is prohibited.
RETURN

On success, integer 1 will be returned, else 0 will be returned.

SEE ALSO

ListSemanticClass DeleteSemClass

Appendix B API Description 87

NAME

DeleteSemClass
SYNOPSIS
#include <thesys.h>

int DeleteSemClass (class)

char *class;

DESCRIPTION

DeleteSemClass () is afforded to delete a semantic classification node from the
semantic classification tree. The argument class defines a semantic classifica-
tions node. Since the duplicate semantic class name is prohibited, such a name is

the identity of the semantic classification On success, integer 1 will be returned,

else will be returned.

PARAMETER

class It is a string variable. It indicate which semantic classification
is deleted. It is noted that a terminal semantic classification can

not be deleted unless all the entry associated with it is deleted.
RETURN

On success, integer 1 will be returned, else 0 will be returned.

SEE ALSO

ListSemanticClass InsertSemanticClass

Appendizx B API Description 83

NAME
ListSemanticClass

SYNOPSIS
#include <thesys.h>

SemanticClassTable *ListSemanticClass ()
DESCRIPTION

ListSemanticClass () is used to help users get to know all the semantic classifi-
cation defined in the current thesaurus. It will return a pointer to a table which
stores the description of all the semantic classification types. If fail, NULL value

will be returned.

RETURN

It will return a pointer to structure SemanticClassTable. The

data struct of SemanticClassTable is in thesys.h.
SEE ALSO

InsertSemanticClass

=

!

,' Appendiz B API Description

89

NAME
SearchEntryTerm
SYNOPSIS
#include <thesys.h>
WordGroup *SearchEntryTerm (word, wordclass)
char *word;
char *wordclass;
DESCRIPTION

SearchEntryTerm () searches for entry terms Which have the same character

codes with the word and under the semantic classification wordclass. On suc-

cess, a pointer to a group of words which also denotes their respective semitic

classifications will be returned. If no such entry term exists, a NULL value

pointer will be returned.

PARAMETER

word It 1s

Bigb

wordclass

a string variable. It stores the characters codes, such as

or GB code, of a Chinese word.

It is a string variable. It indicates what class of the semantic
classification the returned entry terms should be under. Its value
must be identical to one of the semantic classification symbol
specified in the semantic classification tables, or a NULL value.
If NULL is assigned, it means the semantic classification of the
returned Chinese word could be any type of classification spec-
ified. If this _wordclass hasn't children class, which means it is
a terminal classification, the returned entry term have exactly
the same word classification as wordclass. Else, the returned
entry terms have the terminal classifications which are under the

classification of wordclass.

{ Jppendim B API Description 90

RETURN

WordGroup The return of this routine is a pointer to a group of

Chinese words along with their semantic classifications

respectively. The data structure of WordGroup is in

thesys.h.

If search fails, then a NULL value will be returned.
SEE ALSO

SearchSemanteme, SearchSynonyms

Appendiz B API Description 91

NAME
SearchSemanteme
SYNOPSIS
#include <thesys.h>
SemantemeGroup *SearchSemanteme (word, wordclass)
char *word;
char *wordclass;
DESCRIPTION

SearchSemanteme () firstly searches for a group of entry terms which are de-
termined by the word and wordclass. Then it will find out all the semantemes
representing the entry terms just retrieved. On success, a pointer to a group
of identifier words which also denotes their respective semitic classifications will

be returned. If no such semanteme exists, a NULL value pointer will be returned.

PARAMETER

word It is a string variable. It stores the characters codes, such as
Big5 or GB code, of a Chinese word.

wordclass It is a string variable. It indicates what class of the semantic
classification the returned entry terms should be under. Its value
must be identical to one of the semantic classification symbol
specified in the semantic classification tables, or a NULL value.
If NULL is assigned, it means the semantic classification of the
returned Chinese word could be any type of classification spec-
ified. If this wordclass hasn’t children class, which means it is
» terminal classification, the returned entry term have exactly
the same word classification as wordclass. Else, the returned
entry terms have the terminal classifications which are under the

classification of wordclass.

;:liAppendia: B API Description 92

RETURN
SemantemeGroup The return of this routine is a pointer to a group of
Chinese words along with their semantic classifications
respectively. All these Chinese words are the identifier

words of the wanted semantemes. The data structure of

SemantemeGroup is in thesys.h.

If search fails, then a NULL value will be returned.
SEE ALSO

SearchEntryTerm, SearchSynonyms

ppendiz B API Description

NAME
InsertEntryTerm
SYNOPSIS
#include <thesys.h>
int InsertEntryTerm (addedword,mappedword,wordcla_ss)
char %5 ddedword, mappedword;
char *wordclass;
DESCRIPTION

an entry term —mappedword and wordclass.

the mappedword.

InsertEntryTerm () adds a new entry term which is specified by addedword and

wordclass into EntryTerm database, and links it to a semanteme which contains
It is noted that the semantic classification of addedword must be identical to

Another notable point 1s that, if addedword 1s the same as mappedword, it will

m make a creation of new semanteme which will be denoted by the new entry term
|

% itself.

i Since insertin

wordclass here must be terminal semantic classification.

PARAMETER

word It is a string variable. It stores the characters codes, such
as Bigd or GB code, of a Chinese word.

wordclass It is a string variable. It indicates what class of the se-
mantic classification the returned entry terms should be.
In this case, it must be a terminal classification. NULL

value or intermediate classification symbol are illegal.

RETURN

On success, it will returns integer 1, else return 0.

SEE ALSO
Changeldentifier, RelinkEntryTerm

g an entry term requires the mapped semanteme being unique, the

Ezfippendia: B API Description 94

NAME
SearchSynonyms

SYNOPSIS
#include <thesys.h>

WordGroup *SearchSynonyms (word, wordclass)

char *word;
char *wordclass;
DESCRIPTION

SearchSynonyms () firstly searchs out a group of entry terms which are deter-
mined by the word and wordclass. And then it will find out all the synonyms
of the retrieved entry terms. On success, a pointer to a group of words which
also denotes their respective semitic classifications will be returned. If no such

synonyms exists, a NULL value pointer will be returned.

PARAMETER

word It is a string variable. It stores the characters codes, such as
Big5 or GB code, of a Chinese word.

wordclass It is a string variable. It indicates what class of the seman-
tic classification the retrieved entry terms should be under. Its
value must be identical to one of the semantic classification sym-
bol specified in the semantic classification tables, or a NULL
value. If NULL is assigned, it means the semantic classification
of the retrieved Chinese word could be any type of classification
specified. If this wordciass hasn’t children class, which means it
is a terminal classification, the retrieved entry term have exactly
the same word classification as _wordclass. Else, the retrieved

entry terms have the terminal classifications which are under the

classification of wordclass.

§ Appendiz B API Description : 95

RETURN

WordGroup The return of this routine is a pointer to a group of
Chinese words along with their semantic classifications
respectively. The data structure of WordGroup is in

thesys.h.

If search fails, then a NULL value will be returned.
SEE ALSO

SearchSemanteme, SearchEntryTerm

_.Léppendiz B API Description 96
NAME
Changeldentifier
SYNOPSIS
#include <thesys.h>
int Changeldentifier (sccword, ob jword, wordclass)
char *srcword, objword,;
char *wordclass;
DESCRIPTION

~ Changeldentifier () substitutes the identifier word srcword of semanteme (sreword,
wordclass) by using objword. The srcword and objword must be synonyms. If
succeed, an integer 1 will be returned, else 0 is to be returned.

It is note that, as the same reason as in InsertEntryTerm (), the wordclass must

be a terminal classification.

PARAMETER

srcword, objword It is a string variable. It stores the characters
codes, such as Big) or GB code, of a Chinese word.
wordclass It is a string variable. It indicates what class of the
semantic classification the entry terms should be.
In this case, it must be a terminal classification.

NULL value or intermediate classification symbol

-

are illegal.
RETURN

On success, an integer 1 will be returned. Else, an integer 0 will be returned.
SEE ALSO

InsertEntryTerm, ReLinkEntryTerm

- Appendiz B API Description 97

| —

NAME
ReLinkEntryTerm
SYNOPSIS
#include <thesys.h>
int ReLinkEntryTerm (srcword, srcwordclass, objword, objwordclass)
char *srcword, *objword;
char *srewordclass, *objwordclass;
DESCRIPTION

ReLinkEntryTerm () re-maps one entry term to another semanteme. Argu-

ment sreword and srcwordclass specifies the source entry term. objword and

objwordclass indicate corresponding semanteme. On the operation completion,

the semantic classification of the entry term will be changed to objwordclass.

It is noted that, as the same reason in InsertEntryTerm (), the srcwordclass

and objwordclass have to be the terminal semantic classification.

PARAMETER

srcword, objword It is a string variable. It stores the characters codes, such
as Bigd or GB code, of a Chinese word.

srcwordclass, objwordclass It is a string variable. It indicates what class of the se-
mantic classification the entry terms should be. In this
case, they must be terminal classifications. NULL value

or intermediate classification symbol are illegal.
RETURN

On success, an integer 1 will be returned, else 0 will be returned.

SEE ALSO
InsertEntryTerm, Changeldentifier

} iAppendz'a: B API Description 98

NAME
DeleteEntryTerm

SYNOPSIS
#include <thesys.h>

WordGroup =~ * DeleteEntryTerm (word, wordclass)

char *word;
char *wordclass;
DESCRIPTION

DeleteEntryTerm () firstly searchs out a group of entry terms which are spec-
ified by word and wordclass. Then it will delete these entry term(s) from the
entry term database.
This operation may direct a complicated situation. That is deletion make a se-
manteme empty, it means no entry term mapped to it. If it occurs, the deletion
E will be prohibited. In another word, semanteme deletion is prohibited.

On return, a ponter to a group of entry term which have been deleted will be

returned. If no entry term being deleted, a NULL pointer will be returned.

i Appendiz B API Description

3

PARAMETER

word It is a string variable. It stores the characters codes, such
as Bigb or GB code, of a Chinese word.
| wordelass It is a string variable. It indicates what class of the se-
| mantic classification the deleted entry terms should be
under. Its value must be identical to one of the seman-
tic classification symbol specified in the semantic classi-
fication tables, or a NULL value. If NULL is assigned,
't means the semantic classification of the deleted Chi-
nese word could be any type of classification specified.
ﬁ’ If this wordclass hasn’t children class, which means it

is a terminal classification, the deleted entry term have

exactly the same word classification as wordclass. Else,
the deleted entry terms have the terminal classifications

which are under the classification of wordclass.
RETURN

WordGroup The return of this routine is a pointer to a group of
Chinese words along with their semantic classifications

respectively. The data structure of WordGroup is in
‘thesys.h.

.

If no entry term deleted, then a NULL value will be

returned.
SEE ALSO

SearchEntryTerm

§Appendz.z B API Description 100

uavJ

L

NAME
BuildRelationFrame
SYNOPSIS
#include <thesys.h>
int BuildRelationFrame (record)

RelationTypeRecord record;
DESCRIPTION

BuildRelationFrame () lets users define their local convention of the relation

i type. They must fills in the parameter record record which contains all the information
thesys system need to know about a new type of relation. The definition of the
new type of relation will be keep in a relation register file. On success, an integer

1 will be returned. Else, an integer 0 will be returned.

PARAMETER
record It is a variable of structure RelationTypeRecord. The

data structure of RelationTypeRecord is as follows,

typedef struct
{
char *name;
int direction;
int weightscheme;
h float bottomweight;
| float upperweight;

SymbolDescription *linkwéight;
SymbolDescription *semdistance;

} RelationTypeRecord;

~ Appendiz B API Description

¢

101

The explanation of each element is as follows;

name It is a string which is the name of the relationship. In case
the registered relationship 1s bi-directional relationship,
such as is-a/has-instance, a symbol / need to be placed
for separating two subname. On acceptance of this name,
routine will create a new relationship file in this name for
storing relationship link records.

direction Its legal value is integer -1, 0, and 1. -1 means the re-
lationship is non-directional relationship. 0 means the
relationship is uni-directional relationship; 1 means the

relationship is bi-directional relationship.

——— -

weightscheme - Its legal value Is integer 0 or 1. 0 means there is the

relationship link without weight assignment. 1 means
that this type of relationship link has to be quantified.

bottomweight It only makes sense in the case that weightscheme is

upperwetght assigned integer 1. It indicates the bottom and upper
bound of the weight value on the relationship links.
linkweight It is a pointer to a structure of SymbolDescription. It
. semdistance describes a friendly way in which users use some symbols
to assign link weight or semantic distance value, rather

than use concrete float value. The data structure of Sym-

bolDescription is in thesys.h.
RETURN

On success, an integer 1 will be returned, else 0 will be
SEE ALSO

returned.
ListRelationType

Appendiz B API Description

NAME
ListRelationType

SYNOPSIS
#include <thesys.h>

RelationTypeTable *istRelationType ()
DESCRIPTION

ListRelationType () is used to help users get to know all the relation types
defined in the current thesaurus frame. It will return a pointer to a table which

stores all the information about the relation types. If fail, NULL value will be

returned.

RETURN
It will return a pointer to RelationTypeTable. The data

struct of RelationTypeTable is in thesys.h.
SEE ALSO

BuildRelationFrame

- Appendiz B API Description 103

1~
1 —

Ry

NAME

AddRelationLink

SYNOPSIS
#include <thesys.h>
int AddRelationLink (relationname, linkrecord)
char *relationname;

H LinkRecord linkrecord;
DESCRIPTION

AddRelationLink () adds one relationship link into the relationship file which is

determined by the relationname. The information about this relationship link is

stored in the parameter linkrecord. This record indicates two semanteme nodes

connected by the link, and the weight on the link if there is such requirement.

On success, integer 1 will be returned, else 0 will be returned.

PARAMETER

| relationname It is a string variable. It indicates which relationship file
the linkrecord will be stored.

linkrecord It is variable of structure LinkRecord. The data structure
of LinkRecord is in thesys.h.

| According to the corresponding record in relation regis-

ter file, routine can determine what information in this

record should be extracted and how it can be interpret.

For example, if this is a kind of uni-directional relation-

——— e =
b P L

ship with weight, then the content of ES_weight won’t
be extracted. And if this type of relationship without
weight, then the SE_weight and ES_weight is functionless.

i RETURN

On success, integer 1 will be returned, else 0 will be returned.
SEE ALSO
BuildRelationFrame

- Appendiz B API Description 104

NAME
DeleteRelationLink
SYNOPSIS
#include <thesys.h>
int DeleteRelationLink (relationname, start_semanteme,
end_semanteme)
char *relationname;

SemantemeNode start_semanteme, end_semanteme;

! ‘DESCRIPTION

DeleteRelationLink () deletes one relationship link which connects start_semanteme

and end_semanteme from relationname relationship file. On success, integer 1

will be returned, else 0 will be returned.

PARAMETER

relationname It is a string variable. It indicates which type deleted

relationship link belongs to.
start.semanteme It is a variable of structure SemantemeNode. The data

i end_semanteme structure of SemantemeNode is in thesys.h.
B RETURN

On success, integer 1 will be returned, else 0 will be returned.

; SEE ALSO

BuildRelationFrame

TEEEL 3 B

Appendiz B API Description 105

NAME
RetrieveRelated Word
SYNOPSIS
#include <thesys.h>
WordGroup *RetrieveRelatedWord (word, searchscale)
char *word;
SearchScale *searchscale;
DESCRIPTION

RetrieveRelatedWord () searchs out the related words of word in compliance
with the parameter searchscale. The searchscale will indicates the relationship
types search is to go into and the scope of semantic distance. If related words

are found, a pointer to a group of words will be returned, else a NULL value

will be returned.

PARAMETER

word It is a string variable. It stores the characters codes, such as

! Big5 or GB code, of a Chinese word.

searchscale It is a pointer to structure SearchScale. The data structure of

SearchScale is as follows:

typedef struct .99

{

char *relationname;
char *distance;
struct SS . *next;

} SearchScale;

The definition of the distance can be found in the BuildRela-
tionFrame () routine. Users just need to use a symbol instead

of concrete figure to represent the semantic distance scale.

RETURN

 Appendiz B API Description 106

WordGroup The return of this routine is a pointer to a group of
Chinese words along with their semantic classifications

respectively. The data structure of WordGroup is in

thesys.h.
f no related word is found, a NULL value will be

returned.

SEE ALSO
BuildRelationFrame

Appendix C

User Interface Reference

In this volumn, we go through each of the windows of the window-based user
‘nterface. We assume that users are familiar with the concepts and architecture
of TheSys. Further, users must at least know one of the three Chinese character
input methods, i.e. Canglie, PinYin, and Simple Canglie.

The top window of maintenance user interface is shown as follows,

I 2 T TheSys < Managemsnt AT MaP It ARG oo o e b B
¥ e oy — :
T T T [= L oesressssmasensosenacenis nsonsesens i
5 ERIEFEEBES
il memam @ B8© EBRe) BRe) FERSo) M@ |
E
|
ooy e T P P T B P T

Figure C.1: Maintenance User Interface Top Window

We can see that there are seven menu items in the menu bar. They are EE:#
(Thesaurus), & (Word), #5 (VVord Class), ®% (Semanteme), B3% (Relation),

zgot (Quit) and ¥ (Help). Click the Thesaurus menu, we get three options,

107

Appendiz C User Interface Reference 108

they are &2 (Create), 5% (open) and B (close). Create option offers a window

for users build a new thesaurus. The popped up window is as follows,

{= “W!Mﬁ%‘f%%ﬁ heSys“}*@tNﬂ Malntenance R arrR e AT e # |0
: SR — R oaRadrs
ERIEAEERS

|| smEmsy BEe) B sxis) BERE AORifio) FEERSAMm

I di kU

FEGEEESE

Figure C.2: Create A New Thesaurus

In this window, there is a frame bar under the prompt "’ (Input
Thesaurus Name). Also, there is a Chinese character input prompt area on the
bottom of the window. The system provide three Chinese input methods, 1.e.
Canglie, PinYin and Simple Canglie. The default input method is Canglie.
User can shift the input method circularly by pressing the shift and ~ keys to-

gether. For creating a new thesaurus, users need to move the mouse cursor to

the frame, and enter the thesaurus name from the kevboard. When completing,
click the 52& (OK) button. If the thesaurus creation succeed, this window dis-
appear and the thesaurus name is written on the top of menu bar. If fail, the
button will sound. The problem is that the entered thesaurus name is the same

as the existing one. Users need to enter another name for the new thesaurus.

Appendiz C User Interface Reference 109

The B2 option offers the users a window to select a existing thesaurus in the

| TheSys.

)/

\ﬂ

ql

F’ e "-xl::%"é# heSys — Managemen "X}é "bbn*;m—w e e B
|

TAIEREEGE
FE(S) RIF (R) TiTRM (@) EABIEREA(H)

¥

EEE (W) i938(C)

(-?!f—'l’!)\ @Ja + .Q o
: 2.’?1324%65’365708r9ﬂ0 £ |

T E——
1
-
4

Figure C.2: Open An Existing Thesaurus

In this window, there is a scroll list which may include a list of existing

thesaurus names. For opening a thesaurus to operate, users need to double click

t the thesaurus name is shown off on the frame bar which

=% button. The

one of them so tha

is under the prompt "#AGEH#E". Subsequently, users press the

u bar. If there is no thesaurus

thesaurus name will be displayed on the top of men

maintained in the system. The scroll list is empty.

Appendiz C User Interface Reference 110

The B option inquiry if you want to close the current thesaurus being pro-

cessing. It is just a Yes/No dialog.

j
e e e e ey
r o | e e SR e TheSys “~ Management ‘And Maintenance R e e I [8]

3—

SEFCEEZ

b 4 o
Lt 1 5 iy) ERe) BRe FEEEH©) iﬁm’iﬂﬂm)]

1

‘!‘ =
s A e P T e A T - —r
!

' : S| et Close sThesaurus #$iifid]s
!

[

EEREEEAIERIEERRY

e e = v

|~

|
.' Figure C.4: Close A Thesaurus

F
- Appendiz C User Interface Referénce 111

When you click %% menu, you can get three options. Those are A (Insert),

g (Delete) and ¥ (Browse). Insert option pops up the following window,

R ST L) AT N KR e Gl ST T N

———— —— =
= Fape e N O NP MR g T Sy e - . P PR o i AT L R Tl 1T werr Vg .
ST G L S N T TheSys = Management’And Maintenanca P g et | §10

TP T Y e A T S ke KRS

BEEHELS
4 T B
; | EEBAr) BEEG Sy EEs) BRe FREldo) EHENEREA (1)
F: T L e DO Ry AL i DT A TS R :
i Saa—aEEas

Y 180
=
[=R/ & KM » 1
|/ AR =R/ R R |

EZWABE:: A
5 1. A 2.18 3.% 4.8l 5.

Vi

%
[- e T e % oS el et b b N ol oin e
. T s > .

6.2 7.1 8. 9.5 0.2 §

e s ¢ 2+ S XV B oK Wl b n W

|

Figure C.5: Insert An Entry Term — Window 1

In this window, there are a frame bar under the prompt 7#AE (Input
Word) and a scroll list. The scroll list inclﬁde a set of word semantic classifi-
cations. The toppest one is the parent classification of all other classifications.
If the parent classification is a back slash sign, it means all other classifications
‘0 the list are the first level classifications. By clicking the parent classification,
users make the scroll list display the siblings of the parent classification. By
clicking other classification, users make the scroll list display its children clas-
sifications. If the classification is a terminal classification, the clicking make no
children classification displayed but pop the classification up to the frame bar

under %% (Word Semantic Classification). That is the way user select a terminal

Appendiz C User Interface Reference 112

semantic classification. For inserting an entry term, users need to enter the word

on the frame bar under ”"Input Word” prompt and select the terminal semantic

! classification. After filling these two data, press the %% (confirm) button. If fail,

{ the button will sound. The reason may due to such word is invalid. User need

i to check if such word is included in a local word dictionary. If succeed, a window

" as below is popped up,

™ = VRE ;‘éféi‘;}?ﬁ?’ap&#fﬁ#ﬁ\ﬁ?ﬂw&ms” -~ Mamagement “And Maintenance . %2 R I e B 1)
Ir e — PR Laneadit :
! o

| =

EF=ZIFIIM
on o

RAF (R) FREBRE(Q)

PAENEREA (H)

| smsmse ey BWEE0n BRRC) E®(s)

| sreimas:
fl mEEe: 7P
H| A<
| =I5t
| =38

HP

H| == 1]
E‘M

Figure C.6: Insert An Entry Term - Window 2

al This window will ask user which the semanteme into which the newly inserted

] entry term should be mapped. Also, it shows the existing synonyms of particular

| semanteme. In the upper scroll list, a set of semantemes which are under the

word classification defined by last window are shown. User selects one of them

by double clicking the semanteme. When the semanteme is selected, it will

be displayed on the top of the upper scroll list and all its synonyms will be
can select

displayed on the lower scroll list at the same time. At this point, user

arbitrary synonym as a new representative of the semanteme by double clicking

the synonym. When all these data settle down, press the confirm button to

Appendiz C User Interface Reference 113

complete the entry term insertion work.

Delete Entry Term window is similar to the Insert Entry Term window.

eded. However, the semantic classification needn’t

The same information is ne

. be a terminal classification. So, the scroll list allow user select a non-terminal
‘; . - o = -

1 classification by double clicking any of the classification. When filling in the two
H

I frame bar, press the BBk button.

T i A AT BRI 55 —
t7And Mamtenancs F&w e et Ik 1] §

T e s e T hesys = Managemen
Pat= YRR R

EIF-EEEELS :
T e

Ee

M . &

E3%A(C)

iEHEsRE -
| i

d 2=
SR
B

A AR A
| = 5 :
| . AR
| memA 2 A
A 2.18 3.% 4.%

Figure C.T: Delete An Entry Term

el i [

-

Appendiz C User Interface Reference 114

VAT

If users want to browse the entry terms, select the ¥ option to pop up the
Entry Term browse window. Different from the above two windows, this window

has an extra area to display the browse result.

foktn it TheBys «— Manag it And Manteoance smurstivdecs wietdsttis iy asir e |2
; B CaemEGEs— IWTERERIE s % ¥
S
FIRISIFHE
-

|l aamass (T YRAW) - KSERCC) E3(s) BT (R) FETB () $ASIERSA (m) |

H [A za. =
H| mESR =T
| ==+

Al 22 2==F

| ~ AzA f=8s 2230

=
-l

1
1]
il
3

1.3 2,488 3.0F 4.98 5.2 6.08 7.12 8.1 9.2 0.4% > a

i ey = - - Ty e A Lo e e

Figure C.8: Browse The Entry Term

User enter the word and word classification information as above described.
It is noted that the word classification needn’t be terminal classification too. So,
user can select the classification by double clicking it. After do that, user press
the ¥ button to ask the system to search out all the entry terms matching with
the word and word classification. If there are such entry terms, the semantemes
into which the entry term mapped will be displayed on the right scroll list of the
result area. By double clicking one of them, the synonyms of the corresponding
semanteme will be display on the left scroll list. At the same time, the seman-
tame will be displayed on the top of right scroll list and the word classification

of such semanteme will be display on the top of the left scroll list. If search fails,

Appendiz C User Interface Reference 114

If users want to browse the entry terms, select the ¥ option to pop up the

Entry Term browse window. Different from the above two windows, this window

y as an extra area to display the browse result.

g R s et Bl [

e | G o S NN A AT 31

wtkﬂmm

T — G HE X as =agdt X st
_}-—

EIFRATISHK
—
¥SER(C) ER(S) REFA (R) mEmiRr Q) eMENEREA (H)

| ammams o IO

H e [~ Azasmns

A 2" > R e et S e
. s S s U
-, L

m '
L
[A sans /32T |
3 X
1 T —-
ey
1 4 1K :
i 3 g
‘ 2 HE
| 2 g A
5 EEWA:: X !
1.% 2.%8 3.08 4.%8 5.2 smv 12 5.4 9. 2 0.3% > : }.

Figure C.8: Browse The Entry Term

User enter the word and word classification information as above described.
It is noted that the word classification needn’t be terminal classification too. So,
.cer can select the classification by double clicking it. After do that, user press
:he % button to ask the system to search out all the entry terms matching with
the word and word classification. If there are such entry terms, the semantemes
‘nto which the entry term mapped will be displayed on the right scroll list of the
result area. By double clicking one of them, the synonyms of the corresponding
semanteme will be display on the left scroll list. At the same time, the seman- |

+ame will be displayed on the top of right scroll list and the word classification

of such semanteme will be display on the top of the left scroll list. If search fails,

Appendiz C User Interface Reference 115

both the scroll list are empty.

Appendiz C User Interface Reference 116

(

In the #@menu, there are three options #A(Insert), gfx(Delete), and ¥

B
5
{
]
i
u

5 (Browse).
; The Insert option pops up the Word Classification Insertion window as
!
i follows,
._.'[m:ur‘w’-za-‘?.:..w \,:;"-f:—;ﬁTeSys :'é-"wianagement *And Nhlnbenance ‘.E%I»’."W,ei'.-.s:te:":-;?,_*—i'ﬁ e Lc
oL
J——
EIZ LTI
—
FHENEREA (1) ||,

; ?Téiﬁﬁ-('r) B#(s) RAZE (R)

IO CEIb RO O s s

] =
EES

§ 2
[8 =R
B \za/ =R
il A AR BA
= =m

| = fr
{1 i

a2 A
d 1. A2.83.% a8 s.E6R

PO RS NLEY A s A 0 LM AN Y BN MO ed B

Figure C.9: Insert A Word Class

This window requires user enter two data. One is a name for the newly in-
serted classification, another is its parent classification. The classification name
should be entered into the frame bar from the key board and the parent classifi-
cation should be selected from the scroll list by double clicking the classification.
After filling in these two data, user need to press the % button. If succeed, the
window disappear, else the button will sound as a bell. The problem is the

-nserted class name is duplicate to the existing one. In such case, user need to

use other names and redo the insertion.

Appendiz C User Interface Reference 117

The word classification deletion window is as follows,

'}‘) AT Tl T LT e s T T e s X —= o
e e T heSys = Management And Maintenancs e st 2 10]
! i £ |
h : FTRESERH :
A }-'
| BEEESA(T) Exs) BFRE®
[~ Axa =R
|/ As8/ 2R
| Hl A AR TA
W il =&m
td 2| = R
I f| 12 1
!" , FEEWALBE:: A .
| | |, A .23 FaflsE627.Ms. M9 B 0.12 3
bl ¢ oyt , v yemt v © 7V ont 3 1 4re s siais £ it o B A oy etk S B o ['
|
[Figure C.10: Delete A Word Class

This window is similar to the above one. But the operation is different. User
needn’t input the classification name. He just need to select the classification
from the scroll list. Such classification will be display on the frame bar. It 1s
noted that the terminal classification can not be selected unless all the entry
terms associated to it are deleted. After selecting the classification, press the

i button. The newly adjusted classification list will be displayed in the scroll

list.

Append'i:c C User Interface Reference 118

The word classification browse window is as follows,

]

os TheSys-.= Managemen nt -And:Mextenance-:
\‘\~‘-u;m_*‘é‘mm§ﬁ:‘m. T dasdetamanse s e w SV

" mme

Ll

P Lt 0 on]

=L

D aEEsAm REn B ERG) RI%F(r) AEURHE(Q) MIERTA®) |

T Sermanbc-Class. - nsert

=2

e T T

: | 2R

: N e /SR

£ {ZTT Y TV

: sk e R O=m

§ | mERAL R ;

£ 8 a

£ e — = :
iy == s = e

Figure C.11: Browse A Word Class

User enters a semantic classification name into the frame bar and press the
s button. If such a classification exists, its parent and sibling classification will

be displayed in the scroll list.

Appendiz C User Interface Reference 119

In the % menu, there is only one option #(Browse).

The semanteme browse window is as follows,

-TheSys 7= Management And Maintenance B R TR A e I []
aEEr o — SRS aa ol it
EIS2IFIFAE

B (R)

o I B e A o ais Sk et

1l s

J=

X337 (W) ¥FEA(C)

BE®R(s)

v amea:
(== b 1
A : [~ e i §

~ AR =R

=EE =T T,
Ui BT BT [smas | §
L e e AR 2

b=x-

N Y abe SRR P AL AL LRSI

Figure C.12: Browse Semanteme

Actually this window is the same as the entry term browse window. Users
needn’t know what the representation of a semanteme is, they just need to
know the synonyms of such semanteme. The word and word classification which

indicates one synonym should be filled in the two frame bars.

Appendiz C User Interface Reference 120

The last functional menu is related to the relations which has three options
the ZErz#(Relation Type Definition) option, gszstEA(Relationship Link Inser-
tion) option and ggme#R(Relationship Link Deletion) option.

The relation type definition window is as follows,

=

e
oz |

Tk

o ammaEA T
B —

A N R et

1IR3 1338(C) A (R) AR o)
e % T S TR T L s Taa e

b
J % AR AT E i

rwmaes s | mEmos M|
1
e i
: p PR (X | mmEx t
E: i
t
: PR AT R AR LRSS AN SRR TR A5
§
wmm | ezt :
{ 5 S S sE0X T 1)
2 P s
‘. =X i F3s 4 (' p——— i ¥
\ ¥

Fem F=A] e]

e e e e e

Figure C.13: Define A Relation Type

This window is divided into left and right parts. The left part is a group of
action buttons. The right part is used for storing the relation type information.
In the right part, the toppest frame bar is used for entering the relation type
name. Below the name frame bar are two selection boxes. User can click these
boxes to select the relation weight type and traversal direction. Below these two
boxes are two frame bar for users entering the top and bottom values of the link
weight. Of course, if the weight type is defined as standard, user needn’t filling
in these frame bars. Below these two frame bar are two group of input areas for

defining the weight range and distance range. Users enter a pair of bottom and

Appendiz C User Interface Reference 121

top values and the symbol representation of such range on the frame bars. By
pressing the continue button, user can enter the next range definition. When
completed, users click the 5% button. After filling all the left part, user can click
the 5% button on the right part of the window. If the defirition succeed, this
window will disappear, else the button will sound. The problem is mostly likely
due to the duplicate relation type name. Another problem may be the weight

range or distance range are wrongly defined. In both case, user need to redo the

defintion work.

Appendiz C User Interface Reference

122

The relationship link insertion window is as follows,

TV
i

[=Teyeee

- IARISH(T)

1]/

v e A,

At T T T

g I T N T

Hi / A/ S/ 2T asnT ;S

I5H(C) =®(n) X (R) FOuR=(Q)

| arssam: [Zrsa e ax =%F WIVSE

I/Asl/a:!h//\ |

asm=m: [T AT

SASAS IR A AN

i = Ay A
imm J T
i ==

imF A =7
| =

R

R 1 e | e 1) R | | IR

Figure C.14: Add A New Relationship Link

First, users need to enter the relation type name of this relationship link into

the toppest frame bar. Second, the owner semanteme and member semanteme

of this link need to be selected. For selecting a semanteme, first select the

word classification by double clicking the semantic classification. When the

classification displayed on the classification frame bar, user can double click the

classification so that a list of semanteme will displayed on the semanteme scroll

list. Finally, double click the semanteme to make it displayed on the semanteme

frame bar. This way, a semanteme is selected. If the weight on relationship link

is needed, user can move the mouse cursor to the bottom frame bar which allow

user enter the weight value. After filling in these information, user can press the

s=% button. If insertion succeed, this window disappear, else the button sound.

The error may be wrong relation type name or wrong assignment of weight value.

Users need to redo the insertion work.

R ———s

Appendiz C_User Interface Reference ‘ 123

The relationship link deletion window is as follows,

h e — deE LA

mmin

B et b A

{ SIESANE: | Tk, By /=N Y WIS W: ‘ oM /SRR =T]

;l Ak, Ry /TR AR ‘/mu/m!l/:.—:w :
! 1 !
i . i v
i i '
2] svEn: |] q
e ism i
[l i Lol i
o PR Lazum i
[jARESR jrznm H
¥ i i T 2
i r! i £
: |
}
‘~ ,—_—_7;:7-_———’: — e e — — . e —— . !
i e] £ A] L e] (s | -;
T; i EEWA:: TR .
L ;
4 3

................

Figure C.15: Delete A Relationship Link

This window 1s very similar with the relationship link insertion. The only
exception 1s no weight value frame bar. User can follow the above description
to enter the relation type name and select the semantemes. It is noted that
user must enter the relation type. However, there is no need to select both the
owner semanteme and member semanteme. When only one of the semanteme is

selected, all the links associated with the semanteme and the relation type will

be deleted.

Appendiz C User Interface Reference 124

The top window of application user interface is shown as follows.

| msmam mEm e Exe) BRE RERR@ #ERTFm

1
s
¢
:
1
<
:

oy
A CAUTN 3 ke paed 16 9001 10 wadt S IR RSN (e AT

P e T T T

Figure C.16: Application User Interface Top Window

There are seven menus in this window. Under the :&#:3#(Thesaurus) menu,
there are two options, B¥#(Open) and EEi(Close). Under the 2 (Word), 35
(Word Class) and ®% (Semanteme) menus, it is samely just one option, ¥
(browse), exists. All the popped up window correspond the above option are
the same as those in maintenance module. Under 83% (Relation), there is also
just one option, #E8%d(Related Word). The remain two menus are 7ocBd (Quit)

and #snses (Help).

- = e —

Appendiz C User Interface Reference

(W1}

To select the related word option, we get a window below,

[CE-3ErE2 s

-
Thms(T) 1RBN) 1BHe) EBmEs) DR®) AR wmmon |
| T i ey At et e b ertrirws Roiated Word S T e T e R e) “‘r‘-"""""‘x?] i
RRARZINEE [a@ ;
RFTE= :
SEITEIE x ;
SRR A o ; ;
x = = ; :
=s : P
bid :
*] '
1% :
;
mAEA8 CEIE) mn .
WE CEIFE) ?
‘ o T] me £ . 7 VLIRS 5 |
AEEIRA: : T
1
L = —

Figure C.17: Retrieve A Related Word

This window is for retrieve the related words of a #3/d(index word). This
index word is defined by the word in the word frame bar and the word classi-
fication in the classification frame bar. User need to enter a word on the word
frame bar and select the classification of from the scroll list. User can also define
the search scale by entering the relation type and distance range. It is noted
that the search scale is optional. After filling these information, press the &=

button. The search result will be displayed on the left area of this window. If

search fail, the area keep empty and the button sound.

iy

00073405y

