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Abstract

The recently proposed Real Intelligent Mapping (RIM) [1] argues that trans-
formation of the real input data to the fuzzy domain and then back to the
real domain again in the fuzzy inference approach is essentially unnecessary
in many applications. Instead, the fuzzy inference procedure is replaced by a
mapping operating directly on real data. In the thesis, we introduce the use
of Dirichlet Tessellation (DT) for the implementation of RIM systems, which is
general enough to attack approximation problems regardless of data distribu-
tion. Roughly speaking, the method partitions the state-space data points into
simplexes to form the input-output relation and then represents each simplex by
a linear equation. The piecewise-linear property of the DT-based RIM systems
makes qualitative analysis possible. As an important example, we analyze the
stability property of DT-based RIM control systems by using Liapunov’s direct
and indirect methods. The proposed method for designing RIM systems can
handle different types of expert knowledge and it has been used successfully
to solve serveral well-known problems such as balancing an inverted pendulum,
inverted pendulum with cart, truck backing-up, and chaotic time series predic-
tion. Also, an interactive CAD platform has been developed to enhance the

RIM systems design based on the DT method.

i



Contents

Introduction
1.1 Fuzzy Inference and Real Intelligent Mapping . . . . .. .. ..

1.2 Organization of thethesis . ... .................

Fuzzy Logic inference

2.1 Fuzzylogic . .. . . oo v v i it e s
21.1 PFuzzysets . . . .« o v v vt v v i vttt
2.1.2 Operations on fuzzy sets . . . .. . ... ... .. ....

2.2 FuzzylInference . .. .. ... ... ... ...

Weaknesses of fuzzy inference

3.1 Is the use of linguistic fuzzy if-then rules and membership func-
tions a good means of representing human expert knowledge?

3.2 Role of conventional fuzzy inference doubtful if the expert knowl-
edge is in the form of safnpled input-output data . ... .. ..

3.3 Computational requirements . . . . . .. .. ... ..o

3.4 Tow tranispatency s s s sw@s e W s s s @Ws § v ws ¢ &%

3.5 Adalytical difficulties o« s s s ws cuws s suws s cwwe v

v

10
11

17

Ly



4 Real Intelligent Mapping 27

5 Design of Real Intelligent Mapping Systems Using Dirichlet

Tessellation 33
5.1 Dirichlet tessellation for function approximation . . . .. .. .. 34
5.2 Identification of a DT based RIM system by least-squares . . . . 42
53 EXAMples : s swws v smmn swmu 5 m wiwon smmon o oomb 48

5.3.1 Defining the problem . . . . . .. .. ... ... .... 48
5.3.2 Balancing an inverted pendulum. . . . . ... ... ... 49
5.3.3 Balancing an inverted pendulum with cart . . . . . ... 53
534 Truckbacking-up .. ... ... 56
5.3.5 Chaotic time series prediction . . . . .. ... ... ... 60
5.4 Interactive CAD platform for RIM systems design . . . . . . .. 63

6 Analysis of Dirichlet tessellation based Real Intelligent Mapping

Systems 67
6.1 Local Stability Analysis of DT Based RIM Systems . . . . . .. 69
6.1.1 Balancing an inverted pendulum. . . . . ... ... ... 71

6.1.2 Truck backing-up . . . ...« vt vttt 73

6.2 Global stability analysis of DT based RIM systems . . ... .. 74
6.3 Design of a stable DT bgsed RIMsystem . . . . ... ...... 79

6.4 A method for analyzing Second order DT based RIM systems . 82
6.5 Piecewise-polynomial real domain representation of a class of fuzzy

controller and its stability . ... ... . ... ... 85

7 Conclusion 90



Bibliography

vi

92



Chapter 1

Introduction

1.1 Fuzzy Inference and Real Intelligent Map-
ping

In ordinary non-fuzzy approximation problems, the choice of using which par-
ticular approximation method is usually problem dependent. In other words, a
method that works well for one problem may not be so efﬁciént for another prob-
lem. To choose a suitable method to solve a particular approximation problem,
one first need to get some knowledge of the geometric distribution, the quantity
and the dimension of the data to be approximated. To achieve this, some statis-
tical methods may be used. However, this is not always possible especially when
there are numerous data points to be approximated or when the dimension of
the problem is high.

Fuzzy inference (FI) can be considered as one of the many existing function
approximation methods and it has been proved to be an universal approzimator

[20][21). The power of FI is based on the fact that it is a general method of

1



Chapter 1 Introduction

solving approximation problem, in the sense that there is no need to consider
the characteristics of the geometric distribution of the data (in terms of linguistic
fuzzy if-then rules) in the space during the approximation process. The reason is
that FI is a piecewise approximation technique when viewed in the real domain.
Provided that the data is distributed in a regular manner (i.e. the regular
distribution of the fuzzy if-then rules in the fuzzy space), the overall system
can be piecewisely divided into simple subsystems regardless of the dimension
and complexity of the system. Thus, the quality of fuzzy approximation is to
some extend assured by choosing reasonable membership functions and a good
inference mechanism.

It is generally claimed that fuzzy inference is best applied to complex system
design in which no mathematical model exists but experienced human operators
are available for providing expert knowledge in terms of linguistic fuzzy if-then
rules. While this approach has emerged as an alternative solution to several
system design problems, we pose the following fundamental question: Is the use
of linguistic fuzzy if-then rules a good way of representing the human expert
knowledge? Our study shows that the answer is essentially negative. Firstly,
the design of fuzzy inference systems is usually performed in an ad hoc man-
ner; it is hard to justify the efféct of system parameters’ change on the final
input-output relation because of the very nonlinear fuzzy inference mechanism
acting as a barrier between the input and output variables. Secondly, fuzzy
systems require considerable computation time when they are used for real time
inference since every input has to pass through the following three stages to
obtain the desired output: (1) Fuzzify the real input data via their respective

membership functions; (2) Perform inference in the fuzzy domain following a



Chapter 1 Introduction

set of if-then rules; (3) Return a real inference result by defuzzifying the fuzzy
consequent. Furthermore, fuzzy inference is based on linguistic fuzzy if-then
rules distributed in a regular manner. Its ability to approximate data which is
not regularly distributed (e.g. sampled input-output data points from successful
control) is limited. Last but not least, due to the very nonlinear fuzzy inference
mechanisms, qualitative analysis of fuzzy inference systems is very difficult if not
impossible. This hinders the further development of fuzzy inference to handle
more sophisticated problems.

In fact, stability analysis of fuzzy system has been studied for a period of
time. Braae and Rutherford [27][28] proposed a linguistic phase plane trajectory
to #nalyze and improve the stability of fuzzy systems by exchanging the control
rules. Kickert and Mamdani [26] use the describing function method to evaluate
the stability of fuzzy control systems. B. Kiszka [29] introduced the energetistic
stability of fuzzy dynamic systems and developed an entropy for fuzzy system.
Besides, De Glas [24] and A. Kania [23] use the concept of a stability for ana-
lyzing fuzzy systems, in which the distinction between stability and instability
is removed and a real value between 0 and 1 is used to describe the “degree of
stability” of a fuzzy system. However, all the above stated methods are in fact
quite restrictive and have only limited applicability.

On the other hand, the recently proposed Real Intelligent Mapping (RIM)
[1] argues that transformation of the real input data to the fuzzy domain and
then back to the real domain again in the fuzzy inference approach is essentially
unnecessary in many applications. Instead, the fuzzy inference procedure is

replaced by a mapping operating directly on real data.



Chapter 1 Introduction

RIM has already been used to solve the well-known truck backing-up prob-
lem by using linear regression [1]. However, linear regression is only one of the
many approximation methods that can be used to design a RIM system. To
make the RIM systems design more problem independent, we introduce the use
of Dirichlet Tessellation for the implementation of RIM systems, which is gen-
eral enough to attack approximation problems regardless of data distribution.
Roughly speaking, the method partitions the state-space data points into sim-
plexes to form the input-output relation and then represents each simplex by a
linear equation. Thus, the resulting approximation is piecewise-linear. Real time
computation time is saved when compared to the conventional fuzzy inference
since the input has to pass through only one stage to get the desired output,
namely, substitute the input value to the appropriate real function. Furthermore,
the piecewise-linear property of the DT-based RIM systems makes qualitative
analysis possible. As an important example, we analyze the stability property of
DT-based RIM control systems by using Liapunov’s direct and indirect methods.
We first analyze the local stability property of them by Liapunov’s linearization
method. We then analyze the globally stability property of them by a method
based on Liapunov’s direct method and show that their design can be based on
linear control theory.

The proposed method for designing RIM systems can handle different types
of expert knowledge and it has been used successfully to solve several well-
known problems such as balancing an inverted pendulum, inverted pendulum
with cart, truck backing-up, and chaotic time series prediction. Also, an inter-
active CAD platform has been developed to enhance the RIM design based on
the DT method.
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1.2 Organization of the thesis

In Chapter 2, we first introduce the basic idea of fuzzy inference. Fuzzy set
theory is reviewed and the fuzzy inference mechanism is introduced with an
example. | |

In Chapter 3, we try to state out the weaknesses of fuzzy inference which
initiate our study of the newly proposed Real Intelligent Mapping (RIM) ap-
proach.

In Chapter 4, we introduce the general idea of Real Intelligent Mapping.

In Chapter 5, we introduce the method of using Dirichlet Tessellation (DT) in
the design of Real Intelligent Mapping systems. We first introduce our proposed
method of function approximation using Dirichlet Tessellation. Afterward, we
introduce a means to limit the number of generated functions when the number
of input data points is large. This method ensures that the resulting approxima-
tion is optimal in the sense of Least-Squares. Finally, we apply DT based RIM to
solve some well known problems, including (1) Balancing an inverted pendulum;
(2) Inverted pendulum with cart; (3) Truck backing up; and (4) Chaotic time
series prediction. We also introduce the interactive CAD platform that has been
developed to enhance the RIM design.

In Chapter 6, we try to analyze the stability property of RIM systems by
Liapunov’s direct and indirect method. We first analyze the local stability prop-
erty of a DT based RIM system by Liapunov’s linearization method with the
inverted pendulum problem and the truck backing-up problem used as exam-
ples. Then we analyze the globally stability property of DT based RIM systems

by a method based on Liapunov’s direct method and show that their design



Chapter 1 Introduction

can be based on linear system theory. Finally, we elaborate the stability anal-
ysis method to piecewise-nonlinear systems and show that the method can be
applied to a class of conventional fuzzy system by establishing an equivalent
piecewise-polynomial representation of it in real domain.

In Chapter 7, we conclude the thesis by giving a brief summary on what have

been done and their significance.



Chapter 2

Fuzzy Logic inference

In this chapter, we introduce the basic idea of conventional fuzzy inference (CFI).
Fuzzy set theory is reviewed and the fuzzy inference mechanism is introduced

with an example. Some of the materials in this section are obtained from [45].

2.1 Fuzzy logic

2.1.1 Fuzzy sets

The concept of fuzzy set was originally introduced by L. A. Zadeh [6] as a
generalization of the idea of an ordinary or crisp set. A fuzzy set can be seen as
a predicate whose truth values are drawn from the unit interval, I = [0, 1], rather
than the set {0,1} as in the case of an ordinary set. Thus the fuzzy set has as
its underlying logic a multivalued logic. The fuzzy set allows for the description
of concepts in which the boundary between having a property and not having
a property is not sharp. A binary valued characteristic function (membership

function) p4(u) can be used to represent whether the object u (u € U where U



Chapter 2 Fuzzy Logic inference

(@) ®)

Figure 2.1: Fuzzy Sets: (a) Triangular (b) Trapezoidal

is the universe of discourse) belongs to the set A or not.

pa U —0,1 (2.1)

1 i fuecA
pa(u) =
0 otherwise

Definition 2.1 Fuzzy set

A fuzzy set in a universe of discourse U is characterized by the membership
function pa, which takes values in the interval [0, 1] namely pa : U — [0,1].
A fuzzy set A in U may be represented as a set of ordered pairs of a generic

element u and its grade of membership p4 as:

A= {(u, pa(u))lu € U} (2.2)
i.e. the fuzzy variables u take on fuzzy values pa(u).
G
When the membership space contains only two points 0 and 1, A is a non-

fuzzy (crisp) set, and p4(u) is identical to the characteristic function of a non-

fuzzy set. Elements with zero degree of membership are not usually listed. When
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Chapter 2 Fuzzy Logic inference

A is a discrete, finite, fuzzy set it may be expressed as

A = pa(w)/ur+-+ pa(ua)/ua (2.3)
Z_:/J.A u;)/ui (2.4)

where “+” denotes the set theory union operator rather than arithmetic sum.
The oblique line “/” does not denote division, instead it denotes a particular
membership function to a value on the universe of discourse. If u is continuous

then the fuzzy set may be written as

A= [ pau)u (2.5)

Thus the grade of membership, p4(U) can be characterized by either a set of
discrete values or a function. In the following, we will introduce some definitions
used for describing the characteristics of a fuzzy set.
Definition 2.2 Normal and subnormal fuzzy set
A fuzzy subset A of U is called normal if there exists at least one element u € U
such that pa(u) = 1. A fuzzy set that is not normal is called subnormal.
0O
Definition 2.3 Height of fuzzy set The height of a fuzzy set A is the
largest membership grade of any element in A. It is denoted Height(A). Hence
Height(A) = Maz,pa(u). A normal fuzzy set can thus be defined as one with
height equal to one.
O
Definition 2.4 Fuzzy support Assume A is a fuzzy subset of U; the support

of A, denoted Supp(A), is the crisp subset of U whose elements all have nonzero

9



Chapter 2 Fuzzy Logic inference

membership grades in A.

Supp(A) = {u|pa(u) >0 and u € U} (2.6)

O
Definition 2.5 Fuzzy core Assume A is a fuzzy subset of U; the core of
A, denoted Core(A), is the crisp subset of U consisting of all elements with

membership grade one.

Core(A) = {ulpa(v) =1 and u € U} (2.7)

2.1.2 Operations on fuzzy sets

The following are the definitions of the most widely accepted operations on fuzzy

sets.
Definition 2.6 Union Assume A and B are two fuzzy subsets of U. Their
union is a fuzzy subset C of U, denoted C = AU B, such that for each u € U

po(u) = Mazlpa(u), ua(w)] = pa(w) V pa(u) (2.8)

O

It is common practice in the fuzzy set literature to use V as the Max operator.
Definition 2.7 Intersection Assume A and B are two subsets of U. Their
intersection is a fuzzy subset D of U, denoted D = AN B, such that for each

ue U

10



Chapter 2 Fuzzy Logic inference

up(u) = Min[pa(u), up(w)] = pa(u) A ps(u) (2.9)
O

Definition 2.8 Relative complement Assume A and B are two fuzzy subsets
of U. The relative complement of B with respect to A, denoted E = A — B,
is defined as the fuzzy subset E of U where for eachu € U

pe(v) = Maz(0, pa(u) — uB(w)] (2.10)
O
Definition 2.9 Complement or negation Assume A is a fuzzy subset of U.

The complement or negative of A, denoted A, is defined as the fuzzy subset
A=1U— A; hence for eachu € A

pa(w) =1-pa(y) (2.11)
O

Thus the negation is the complement of A with respect to the whole space U.

2.2 Fuzzy Inference

The fuzzy inference process can be viewed as a complex functional relationship
between relevant variables. In addition, the form used to represent this rela-
tionship involves the use of if-then fuzzy rules involving vague predicates. The
collection of these rules is called the knowledge base. We shall use the term rea-
soning or inference to indicate the process in which we are given the values

of the inputs, the antecedent variables, and use these in conjunction with our

11



Chapter 2 Fuzzy Logic inference

knowledge base to obtain the value of the consequent. Formally, we represent

the rule-base in the following format:

IF U, is By AND U, is By THEN V is D,
ALSO

ALSO
IF Uy is Bpni AND U, is By THEN V is Dy,

Ui, Us, and V are fuzzy variables, Us and U, are the input variables, and V' is
the output variable. Bji, Bis, and D; are linguistic values (labels) represented
as fuzzy subsets of the respective universes of discourse X1, X, and Y. The
membership functions of these linguistic values are denoted Bji(z1), Biz(z2),
and D;(y). If the inputs to the system are the values U, = z7 and U; = 73,
then we are faced with the problem of determining the appropriate value of the
output variable V. This is the problem we called fuzzy reasoning or inference

which consists of the following steps:
1. Find the firing level of each of the rules.
2. Find the output of each of the rules.
3. Aggregate the individual rule outputs to obtain the overall system output.

Let us consider these steps in turn. We first consider the determination of
the firing level of the individual rules. The firing level of a rule is determined
by the satisfaction of each of the antecedent components. The level of matching
between the linguistic label Bj; and the input value zj is determined as the

membership grade of zj in the fuzzy set representing Bi1, hence we get Bi(23)

12
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Chapter 2 Fuzzy Logic inference

as the level of matching for the first antecedent. Similarly the level of matching
of the second antecedent is Bja(z}). We must now combine these two values to
obtain the firing level of the rule.

Noting the conjunctive connecting AND between the inputs U; and U in

the antecedent part of each individual rule
IF U, is By AND U, is B;; THEN V is D;

we combine these two levels of matching using an AND aggregation. In

particular, our initial choice is to use the Min (A)

7; = Ba(z]) A Bia(23) (2.12)

where 7; is called the degree of firing (DOF) of the ith rule with respect to the
input values U; = z7 and U; = 2.

The DOF 7; takes values from the unit interval; it characterizes the truth-
fulness (relevance) of the antecedent part of the it* rule, different values of 7;
that are related to different levels of relevance between the measured value 23
and z3, and the conditions a,ssociated with the linguistic labels B;; and Bi,.

If the input variables take fuzzy values, that is, Uy = A; and Uz = Ay,
where A; and A, are fuzzy subsets of the universes X; and X, then the level of
matching between input fuzzy value A; and the linguistic label Bj; is obtained
from the conditional possibility Poss(Bi1|4:1) = Mazi [Bia(z2) A Az(z2)]

The DOF of the ¢** rule in this case is:

7; = Poss(Bi | A1) A Poss(Biz|As) (2.13)
The process is illustrated in Fig. 2.2.

13
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By Biy(x)

il Bi
(3) T

0 /
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Figure 2.2: Calculation of DOF 7; of the it* rule: (a) The input variables of the
FLC take crisp values U; = z} and Uz = z3; (b) The input variables of the FLC
take fuzzy values U; = A; and Uz = As.

The next step in the process is the determination of the individual rule
output, which we shall denote as F;. The degree of firing 7; of a rule interacts
with its consequent D; to provide the output of the rule, F;, a fuzzy subset over
the output universe Y. The formulation used to determine how the 7; and fuzzy
set D; interact to form the rule output is called a fuzzy implication. The most
commonly used method for inferring the rule output is the so-called Mamdani
method. In the Mamdani method, the output fuzzy set F; is obtained by an
AND of the DOF 7; and the consequent fuzzy set D;:

Fi(y) = i A Di(y) (2.14)

The third step in the process is the aggregation of the individual rule outputs
to obtain the overall system output, F, also a fuzzy subset over Y. The indi-
vidual rule outputs are aggregated using a disjunctive connective ALSO. Thus

the fuzzy output F inferred by the rule-base is

14



Chapter 2 Fuzzy Logic inference

F(y) = ViFi(y) = Vi(ri A Di(y)) (2.15)

For use in the fuzzy control environment a fourth step must be added. We
need a crisp single value to be the input to the controlled system. The output
fuzzy set F inferred by the rule-base cannot be used directly as input to the
controlled deterministic system. In order to obtain a crisp value from the output
of the Fuzzy logic controller (FLC) we are faced with the problem of selecting
one element y* from the universe Y to represent the value to implement. This
process of selecting one representative crisp element based upon the knowledge
that the fuzzy value of the output variable, V' is F, is called defuzzification.

Two often-used methods of defuzzification are the Center of Area (COA)
method and the Mean of Maxima (MOM) method. The COA method defines

the defuzzified value of a fuzzy set F as its fuzzy centroid:

e Jy yF(y)dy
Jy F(y)dy

The calculation of the COA defuzzified value is simplified if we consider finite

(2.16)

universe of discourse Y and thus a discrete membership function F(y):

The MOM method determines the defuzzified value, as a mean of all values

(2.17)

of the universe of discourse, having maximal membership grades:

y o 1
y'==> ¥ (2.18)
9 jeJe

15



Chapter 2 Fuzzy Logic inference

where J* is the set of elements of the universe Y which attain the maximum

value of F(y) and ¢ is the cardinality of J*.
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Chapter 3

Weaknesses of fuzzy inference

In this chapter, we try to state out the weaknesses of fuzzy inference which
initiates our study of the newly proposed Real Intelligent Mapping approach.
The main drawbacks and doubtnesses of using fuzzy inference are discussed in

the following subsections.

3.1 Is the use of linguistic fuzzy if-then rules
and membership functions a good means
of representing human expert knowledge?

The original method of constructing fuzzy models is based upon what we shall
call the direct approach. In this direct approach the system is first described
linguistically using terms from natural language and then translated into the
formal structure of a fuzzy model with the aid of the representational power of

the theory of approximate reasoning. The linguistic description is constructed

17



Chapter 3 Weaknesses of fuzzy inference

subjectively on the basis of the a priori knowledge about the system. Thus the
source for deriving the linguistic rules is the expert’s direct knowledge of the
system. It is this knowledge that is expressed in the form of logical rules. This
method can be seen as a qualitative version of the traditional model building
used in system science [35]. This direct approach to fuzzy modeling, based solely
upon the use of experts’ description of the functioning of the system, has some
inherent limitations. |

Human controller is a very complicated learning machine. The knowledge
of human controller is stored in.huge amount of interconnected neurons. The
data storage area (brain) is connected to sensor organs (sensors) and muscles
(actuators) to form a complete feedback controller. When the human is viewed
as an controller, we can imagine that in fact numerous input-output relations
(control surfaces) are stored in it and each of them is responsible for a particular
control task. For instance, when an human being is learning how to back-up a
truck. At the first stage he is not yet an expert in performing that particular
task. The data (or the control surface) in this brain at this instance is inadequate
for him to back-up the truck well. During the learning process, he percept real
input data (e.g. speed, position and direction of the truck) and use the pre-
mature data stored in his brain to give an output (i.e. steering angle). From the
error (difference between the ideal state and the actual state of the truck), the
human controller adaptively update the control surface in his brain by changing
the weights stored in the neurons. After a number of trial-and-errors, the control
surface is well established and the human becomes an expert in backing-up a
truck. Put in other words, from the experience and using intuition, people build

mental models in their minds. If a human is an expert in a particular task,

18



Chapter 3 Weaknesses of fuzzy inference

—————— Fuzzy modeling process

------- »  RIM modeling process

----------- »  Conventional modeling process

Figure 3.1: 3 different means of system modeling

the mental model formed in his brain for that task can be regarded as expert
knowledge. That particular model or input-output relation is the primitive
“optimal” function we are trying to recover in the expert knowlivledge extraction
process. The process of fuzzy system modeling from human expert knowledge

can be stated as follows:

1. provide a structure of the model. This process includes determining the
number of input and output variables and partitioning the input output

variables into fuzzy sets.

9. extract expert knowledge by means of linguistic fuzzy if-then rules and

membership functions.

3. integrate the extracted knowledge and the model structure to form the

final input-output relation.

19



Chapter 3 Weaknesses of fuzzy inference

We now pose a fundamental question: Is the use of linguistic fuzzy if-then
rules and membership functions a good means of extracting the primitive human
expert knowledge (mental models stored in his brain)? The answer to this
question is negative. When the expert is asked to express his knowledge in
terms of linguistic fuzzy if-then rules, he try to formulate a verbal model from the
mental model. See Fig. 3.1. This process is very subjective as different experts
(assume that they have the same mental model) will give out different sets of
fuzzy if-then rules and membership functions. Besides, an expert in controlling
a plant may not be an expert in translating his implicitly stored knowledge
to linguistic if-then descriptions. As a result, the linguistic fuzzy if-then rules
and membership functions given out are only very coarse approximation of the
primitive knowledge. Furthermore, the ability of the human expert to give out
precise linguistic if-then descriptions declines as the number of set levels and the
number of variables increase. It may be quite easy for an expert to give out a
linguistic if-then rule such as “If A is LARGE then B is ...”. The expert may
also give out the rule “If A is QUITE LARGE and B is QUITE SMALL
then C is ...” without much difficulty. However, it may not be so easy for the

expert to decide the consequent of the following rule:

“If A is A LITTLE BIT MORE THAN QUITE LARGE and B is
QUITE SMALL and C is A LITTLE BIT LESS THAN SMALL then
Dis...7

The situation becomes even worser when the number of set levels and antecedent
variables increases. Because of this, the accuracy of fuzzy modeling may not im-
prove with increasing number of linguistic fuzzy if-then rules given. To conclude,

the use of linguistic fuzzy if-then rules and membership functions is not a good

20



Chapter 3 Weaknesses of fuzzy inference

means of extracting the primitive human expert knowledge. Then, does there
exist a better method? The answer is positive. We argue that it is better to
obtain sampled input-output real data during real time control by the expert.
The reason is that the real data points we obtained is actually located on the
“optimal” mental model (ignore the noise in the sampling process). This expert
knowledge extraction method can be regarded as a process of “sampling”, not a
process of “approximation” as in conventional fuzzy case where human experts
give out coarse linguistic fuzzy if-then descriptions. Unlike the fuzzy case, the
accuracy of modeling in this case can certainly be improved by taking more sam-
ples and the modeling problem reduces to an ordinary non-fuzzy approximation

inference. It can be based on the well developed approximation theory.

3.9 Role of conventional fuzzy inference doubt-
ful if the expert knowledge is in the form
of sampled input-output data

The second direction in the dev'eloprnent of fuzzy models, inspired by classic
systems theory and recent developments in neural networks, is based on the use
of input-output data. In the language of systems theory, this approach can be
regarded as process of a system identification.

The identification of a fuzzy system consists of two major phases. The first
phase is the identification of the structure of the fuzzy model (structure identi-

fication) and the second is the estimation of the parameter values of the fuzzy
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model (parameter identification). Broadly speaking, structure identification in-
cludes the determination of the input and output variables, the relationships
between the variables (the structure of the rules), the number of rules in the
rule base, and the partitioning of the input and output variables into fuzzy sets.
In general, structure identification is a difficult and extremely ill-defined process,
more an art than a science, and not readily amenable to automated techniques.

Wang and Mendel [9][36] propose a method to generate fuzzy if-then rule
from numerical real data. Their method first divide the input and output spaces
into fuzzy regions. This involves the design of membership functions for each
fuzzy variable. Then the consequent of each fuzzy rule is determined by least-
squares from the data points. We observe that in their method, the membership
functions are defined by the system designer, not by the expert who gives out
primitive information. In this case, the membership functions can at the most
be considered as a means to provide an extra degree of freedom to adjust the
system, not as a piece of raw information. Also, when dealing with this type
of information by fuzzy approximation, as the structure of the resulting fuzzy
model is limited by the limited alternatives of membership function shapes and
inference mechanisms, the resulting system is definitely nonlinear and hard to
be analyzed by conventional methods. As a result, it is crystal clear that in this
situation, it is more direct to do .the approximation in the real domain, instead

of assigning membership functions in an ad hoc manner.
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Chapter 3 Weaknesses of fuzzy inference

3.3 Computational requirements

We have to distinguish between two types of computation time when addressing
this issue: (1) The computation time required when the system model is devel-
oped; (2) The computation time required when the controller is actually used
‘0 real time. It is clear that the first type of computation time is actually of
little importance in developing a system since all the time is used in the system
design stage. It will not affect the actual system performance. On the other
hand, the computation time when the system is actually used in real time is
very important in accessing system performance. In fuzzy inference systems de-
sign, the computation time used in the system modeling stage is negligible since
the system model is composed of (1) expert fuzzy if-then rules; (2) membership
functions; (3) an inference mechanism. They can be considered as separate in-
formation and essentially zero computation time is required to derive them since
they are given by human experts. However, there is considerable time required
when the system model is actually used in real time inference. Every input has
to pass through the following three stages: (1) Fuzzify the real input data via
their respective pre-determined membership functions; (2) Perform inference in
the fuzzy domain following a set of if-then rules; (3) Return a real inference re-
sult by defuzzifying the fuzzy consequent. On the contrary, if the system model
is developed from real data in real domain, the situation is completely different.
First, there may be considerable time required in developing the system model
and representing it by function(s) especially when the system dimension is high.
However, this time is used in thé system modeling process and is not related to

the actual system performance. When the system is used in real time, the input
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has to pass through only one stage: Substitute the input to the appropriate
real function(s) and get the respective output. It is crystal clear that this type
of inference processes use less time than the fuzzy one which consists of three
stages (Actually, we have compared our RIM method with the fuzzy method

and proved our assertions).

3.4 Low transparency

In fuzzy inference, because of the fact that the expert knowledge extraction pro-
cess by means of linguistic descriptions is imprecise and the fact that design of
fuzzy controllers is usually performed in an ad hoc manner, the preliminary con-
troller constructed usually requires fine adjustment. This process involves the
tuning of rule consequences or the membership functions. However, it is hard
to justify the effect of parameters’ change on the final control surface because of
the very nonlinear fuzzy inference mechanism. As a result, the tuning process
is a very random and trial-and-error process. The large degree of tuning free-
dom provided by fuzzy inference (e.g. different width and shape of membership
functions, number of set levels, consequences of rules) makes this process very
difficult if the dimension of the problem is high. Besides, the fuzzy controller
constructed for the nominal plant may later perform inadequately if significant
and unpreductable plant parameter variation occur. One may argue that we
can apply adaptive fuzzy inference to solve the problem. However, as mentioned
before, because of the very nonlinear fuzzy inference mechanism acting as a bar-
rier between the system parameters and the final control surface, it is hard to

define an optimal adaptive law.
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3.5 Analytical difficulties

Given a control system, the first and foremost question about its various prop-
erties is whether it is stable, because an unstable control system is typically
useless and potentially dangerous. Stability analysis of fuzzy system has been
studied for a period of time. Braae and Rutherford [27][28] proposed a linguistic
phase plane trajectory to analyze and improve the stability of fuzzy systems by
exchanging the control rules. Kickert and Mamdani [26] use the describing func-
tion method to evaluate the stability of fuzzy control systems. B. Kiszka [29]
introduced the energetistic stability of fuzzy dynamic systems and developed an
entropy for fuzzy system. Besides, De Glas [24] and A. Kania [23]. use the con-
cept of a stability for analyzing fuzzy systems, in which the distinction between
stability and instability is removed and a real value between 0 and 1 is used
to describe the “degree of stability” of a fuzzy system. However, all the above
stated methods are in fact quite restrictive and have only limited applicability.
The principal reason is that the design of fuzzy controllers has relied on ad hoc
techniques. That is, the controllers were not synthesized using an underlying
theory but were arrived at by trial and error. Also, by allowing the state of
the system to be described by a fuzzy set, notions of unboundedness become
ambiguous. The other reason is that fuzzy system is itself definitely nonlinear.
The limited variety of membership functions and inference mechanisms imposes
structural restrictions on the final rhodel. We actually show that the most lin-
ear type of fuzzy controller (i.e. using triangular memberships functions and
algebraic product as the logical AND operation) has an equivalent piecewise-

polynomial representation in real domain. This limit the applicability of linear
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system theory to their analysis and design. All the above hinder the use of

conventional control analysis techniques (e.g. Liapunov’s method) for designing

and analyzing fuzzy systems.
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Chapter 4

Real Intelligent Mapping

Due to the reasons stated in the previous chapter, we argue that it is better to
obtain sampled input-output reél data points during real time control by the
human expert instead of asking the expert to give out linguistic fuzzy if-then
rules and membership functions. The inference mechanism is now represented
by one or more functions directly relates the real input and output; the usual
fuzzification and defuzzification steps are eliminated. The new formulation 1s
named Real Intelligent Mapping (RIM)[1] as it retains the spirit of translating
the human expert knowledge into computer algorithms. Obviously, the problem
is now an ordinary non-fuzzy approximation inference and it can be based on
the well developed approximation theory. Compared with the fuzzy inference
the new system is more transparent and is more easy to implement. We now
states the idea of Real Intelligent Mapping precisely, we write:

X = [XiXz - Xm)' (4.1)
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Chapter 4 Real Intelligent Mapping

a real vector of R™ x R™ to represent the set of m sampled input, with each

input data point in n-dimensional:

X; = [.’It,‘lx,'g Sl :l),'n]. (42)

and

y = [yy2- yml’ (4.3)

a real vector of R™ to represent the set of m sampled output, with each output
corresponds to one of the m input.

Formulated in this way, the set of m input-output sampled data points for
system modeling can be represent by the vector [x y].

From the sampled input-output data points, we are going to identify one or
more functions fi, f2,- - -, f; that “best” represents the mapping between x and
y, where each f is a mapping from R" to R. Afterward, when we are given a
input x' = [z}z}- - - z}), the output y’ can be inferred as:

!

y'=g(x) (4.4)
where ¢ is a mapping from R/ to R and it takes the role of “combining” the
output of the j functions fi, f2,- -, f;- When j = 1, we have g = f and the
system is represented by one real equation. When j > 1, we have jointed system.
We see that a RIM system is completely characterized by the functions f; and g,
and the task of design is to determine these two functions by whatever means.

We now restate our problem: Given m sampled input-output data points, the

task is to identify one or more functions fi, fa,-++, f; that “best” represents the

28



Chapter 4 Real Intelligent Mapping

mapping between the input and output together with ¢ to combine the output
of fs giving the final output. There exists many alternatives to this problem.
The following are two examples: (1) As we mentioned before, the mathematical
representation of the “optimal” function representing the expert knowledge is
very complicated and is “unknown” to us. So we try to take sampled data
points and from the characteristics that the unknown “optimal” function should
possess, find a “simpler” function that is “close” in some sense to it; or (2) We
find a function which interpolate all the sampled data points. There exist many
methods from approximation and interpolation theory to solve the problem. For
the first example, regression is a well-known technique. For the second example,
the data points can be interpolated by polynomials or spine functions. Whereas
the choice is purely the designer’s favor, a common question is how we can
quantify the goodness of the inference provided by the designed function.
Many applications require “on-line” identification instead of “off-line.” An
identification method is said to be of the “off-line” type when one collects a
large amount of input and output data for the system which may be stored in a
computer or recorded in some manner. These date are then processed in a batch
to estimate the parameters of the model and obtain the best fit according to a
prescribed cost function. In off-line identification, there is a greater flexibility
in selecting computational methods without any restriction on computing time.
As a result, the accuracy of the estimates can be made fairly high. However, we
can also model the system as long as the sampled data points are available. An

identification is said to be “on-line” type if it satisfies the following conditions:

1. all the data need not be stored
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9. a recursive algorithm is used for adjusting the estimates of the parameter

after each sampling instant

3. the amount of computation required for “model adjustment” is a fraction

of the sampling period.

A large variety of methods have been applied to system modeling, both on-

line and off-line. The methods can be classified in many ways; one scheme for

classification is given below.

1. Classical Methods: (mostly. off-line)

(a) Frequency Response Identification
(b) Impulse response identification by deconvolution
(c) Step response identification

(d) Identification from correlation functions
2. Equation-error Approach: (batch-processing)

(a) Least-squares

(b) Generalized Least-squares
(c) Maximum likelihood

(d) Minimum variance

(e) Gradient Methods
3. Model Adjustment Techniques:

(a) Recursive Least-squares
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Chapter / Real Intelligent Mapping

(b) Recursive generalized least-squares
(c) Instrumental variables

(d) Bootstrap

(e) Recursive maximum likelihood

(f) Recursive correlation

(g) Stochastic approximation

Now we ask a question: What characteristics should a “cood” approximation

possess? The following are two common requirements:

1. The data points should be approximated in a way that the approximation
between the data points should not be too oscillatory. There is a common
problem when we try to interpolate a large number of data points by
a polynomial function. In that case the high order requirement of the
polynomial will makes the approximation between the data points very

oscillatory.

9. The structure of the resulting system should not be too complicated or
nonlinear which may hinder further analysis of the system. In other words,

we try to find a simple method to approximate them.

From the above, we see that the choice of using which particular approxi-
mation method is usually problem dependent. In other words, a method that
works well for one problem may not be so efficient for another problem. To
choose a suitable method to solv;e a particular approximation problem, one first

need to get some knowledge of the quantity, the dimension, and the geometric
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distribution of the data to be approximated. This may be done by some statis-
tical methods. However, this is not always possible especially when there are
numerous data points to be approximated or when the dimensio.n of the problem
is high.

In the next chapter, we introduce the use of Dirichlet tessellation for the
implementation of RIM systems, which is general enough to attack approxima-
tion problems regardless of data distribution. Roughly speaking, the method
partitions the state-space data points into simplexes to form the input-output
relation and then represents each simplex by a linear equation. The resulting
approximation is piecewise-linear and it is in fact a kind of linear spine interpo-

lation approximation inference.
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Chapter 5

Design of Real Intelligent
Mapping Systems Using

Dirichlet Tessellation

RIM has already been used to solve the well-known truck backing-up problem
by using linear regression [1]. However, linear regression is only one of the
many approximation methods that can be used to design a RIM system. To
make the RIM systems design more problem independent, we introduce the
use of Dirichlet tessellation for the implementation of RIM systems, which is
general enough to attack approximation problems regardless of data distribution
(Section 5.1). Roughly speaking, the method partitions the state-space data
points into simplexes to form the input-output relations and then represents each
simplex by a linear equation. The resultant approximation is piecewise-linear
which makes qualitative analysis of the RIM system possible. Also, real time

computation time is saved when compared to the conventional fuzzy inference
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since the input has to pass through only one stage to get the desired output,
namely, substitute the input value to the appropriate real function. We propose
a method for their identification which is optimal in the sense of Least-Squares
(Section 5.2). The method can handle different types of expert knowledge and it
has been used successfully to solve some well-known problems such as balancing
an inverted pendulum, inverted pendulum with cart, truck backing-up, and
chaotic time series prediction (Section 5.3). Also, an interactive CAD platform
has been developed to enhance the RIM design based on our proposed method

(Section 5.4).

5.1 Dirichlet tessellation for function approx-
imation

Dirichlet tessellation [4][5] was proposed by Rogers in 1964 and has been used
extensively in finite element analysis. Before showing how it is used for func-
tion approximation, we first define a function approximation problem as fol-
lows. Given: a set of data points represented by an ordered set of vectors in
k-dimensional space. The task is to identify one or more functions that best
approximate all the data points in a suitable sense.

The idea of using Dirichlet tessellation for function approximation is as fol-
lows. Suppose n data points in a k-dimensional space are to be approximated.
We first project the n data points onto the input space to give n (k — 1)-
dimensional data points. Then we try to triangulate the n projected data points
to form packed simplexes without any overlapping where each simplex is made

up of k data points (See Fig. 5.1 for k=3 and n = 20 where the simplexes in
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Figure 5.1: Triangulation of 20 random data points in the 2-D input space

this case are triangles and the points are generated at random).
For the case k = 3, the 3 data points in the 2-dimensional input space
constituting each triangle in fact produce a plane in the original 3-D space

before projection. We then represent each such plane by a linear function
Yy = o121 + @2T2 T 03 (5.1)

where y is the output, z’s are the inputs and a’s are the parameters of the
function which can be easily determined from the three true data points making

up the function. Generally, for the k-dimensional case, the equation becomes:
y=a1 + a4+ - + Q. (52)

As a result, the set of data points is approximated by a set of linear functions
and the resulting system is piecewise-linear and continuous at the boundaries.

Fig. 5.2 shows the resulting system for the k = 3 and n = 20 case. When the
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0 o

Figure 5.2: Control surface representing input-output relation for the 20 random
data points
approximation method stated above is used for control system modeling, the
finalized input-output relations will be made up of linear functions. The infer-
ence process becomes a simple substitution of input values into the appropriate
function to obtain the desired response.

The rest of this section summarize the properties and the algorithm of tes-
sellation

First, let us consider the 2-D case, the higher-dimensional case will be dis-
cussed later. Suppose the positions of n distinct points in the plane are given
as data. We put into correspondence to each data point = a territory, i.e., the
part of the plane, in which the points are closer to z than to any other data
point. The resultant territories form a pattern of packed convex polygons and
is called Dirichlet tessellation of the data points. Fig. 5.3 shows the Dirichlet

tessellation in bold lines. Each segment of the territory boundaries is in fact the
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Figure 5.3: The Dirichlet tessellation (dotted lines) and Delaunay triangulation
(solid lines) for a small-scale configuration

perpendicular bisector of the line joining two data points. If all pairs of data
points sharing the same territory boundary segmenf are joined by straight lines,
a pattern of packed triangles will be formed. The process is called Delaunay
triangulation. Fig. 5.3 shows the Delaunay triangles in faint lines.

In two dimensions three territorial boundaries meet at a vertex. Each vertex
is located at the circumcenter of a Delaunay triangle formed by three data points.
As a result, a vertex must be equidistant from all three of its forming points.
In the tessellated pattern, each Delaunay triangle will have associated with it a
unique vertex and vice versa. The vertexes are useful in constructing the data
structure for storing the tessellated pattern.

In a k-dimensional Euclidean space the Delaunay triangles become simplexes
and each simplex is made up with k + 1 data points. Each vertex in the tessel-

lation is where the k + 1 territories meet and is the center of the hypersphere
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Figure 5.4: 3-dimensional Delaunay tetrahedron and its associated vertex

passing through all the data points constituting the associated simplex. Each
contiguous pair of points is joined by a line that is an edge of some Delaunay
simplexes. The territorial boundary shared by the contiguous point pair is a
convex polygon lying in the (k — 1)-dimensional hyperplane that bisects that
edge. In three dimensions the territory of each data point is a convex polyhe-
dron. Fig. 5.4 shows a three-dimensional vertex and its associated Delaunay
tetrahedron.

It is important to store the vertex structure of the tessellation in the form
of a computer data structure before Dirichlet tessellation can be used to solve
problems. Green and Sibson 5] store the Delaunay triangulation in the form of
lists of contiguous points for each vertex. The following explains how they store
the Delaunay triangulation in the two-dimensional case. The k-dimensional case
is in fact a simple generalization of the two-dimensional case with extended lists.

Suppose it were desired to store the vertex structure of the tessellation in Fig.
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5.5. The eight data points in the plane give rise to seven vertices, V4,..., V7.
The territorial boundaries that extend to infinity can be considered as terminat-
ing in a vertex labeled ¢. Each vertex is the circumcenter of three data points
and a list of those points could be recorded for each vertex. In addition each
vertex points to three other vertices, each one opposite one of the vertex’s form-
ing points. It is thus possible to record the structure by constructing two lists,
each of length three. For each vertex in the structure, one list holds the forming
points of the vertex (Delaunay triangles) and the coordinates of the points in
the space are stored, the other holds the opposite neighboring vertices (Table
5.1) and they are stored as in terms of vertex numbers (their exact physical
locations in the space need not be stored). In k dimensions each vertex will
have k + 1 forming points and k+ 1 associated neighboring vertices. With this

data structure, we get all information concerning the tessellated pattern.

Vertezx forming points neighboring vertices

1 2 3 1 2 3
1% Ps Py P Vi ¢ Ve
Va P, Py Ps Va ¢ V7

Va3 P, P P Vo Vi Vs
\A P, Ps Ps i V3 ¢
Vs P, P3 P Va & ¢
Vs Ps Py Py Vo Vi ¢
v\ P PP Ve Vi &

Table 5.1
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Figure 5.5: The algorithn for finding the territory of point Q

If it is possible to record the structure in the manner outlined above, then
any number of points can be tessellated and triangulated by starting with a
simple structure and building upon 1it. The starting pattern is the Delaunay
simplex formed by the first k + 1 points. This will give a tessellation containing
one real vertex all of whose neighboring vertices will be ¢.

Suppose we wish to insert a new point (Q in Fig. 5.5) within the current
convex hull of the data points. The territory we wish to find is indicated by
the dotted lines. The following algorithm is obtained from A. Bowyer [4] which

shows clearly the tessellation procedure:

1. Identify a vertex currently in the structure that will be deleted by the new
point (say Vi). Such a vertex is any that is nearer to the new point than

to its forming points. There will always be at least one such vertex, as
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the vertex corresponding to the Delaunay simplex in which the new point
lies will always be deleted and the Delaunay simplexes completely fill the

convex hull of the currently included points.

9. Perform a tree search through the vertex structure starting at the deleted
vertex looking for others that will be deleted. This is an easy matter if the
data are stored as indicated in Table 5.1. The result will be a list of all
the vertices deleted by the new point Q. In this case the list will be: Vi,
Vs, Vs.

3. The points contiguous to @ are all the points forming the deleted vertices:

P, Ps, Py, P3, Pr.

4. An old contiguity between a pair of those points will be removed (P, — Py

say) if all its vertices Vi, V3 are in the list of deleted vertices.

5. In this case the new point has five new vertices associated with it: Wy, W,
Wa, Wy, Ws. Compute their forming points and neighboring vertices. The
forming points for each will be the point @ and k of the points contiguous to
Q. Each line in the tessellation has k points around it (the line V3 — V3, for
example, is formed by Ps and Py). The forming points of the new vertices
and their neighboring vertices may be found by considering vertices pointed
to by members of the deleted vertex list that are not themselves deleted,

and finding the rings of points around them. Thus W5 points outwards to

V, from Q and is formed by Ps, P4, Q.

6. The final step is to copy some of the new vertices, overwriting the entries

of those deleted to save space.
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5.2 Identification of a DT based RIM system
by least-squares

When the information obtained for the design of a DT based RIM system consists
of sampled input output (state-control) pairs which are recorded from successful
control of the system, the quantity of sampled data points may be very large.
Direct tessellation of the data points will result in numerous resulting linear
functions. The following introduce a means to limit the number of generated
functions. The method ensures that the resulting approximation is optimal in
the sense of Least-Squares and the approach can be regarded as process of system
identification. The identification of a DT based RIM systems model consists of
two major phases. The first phase is the identification of the structure of the DT
based RIM model (structure identification) and the second is the estimation of
the parameter values of the model (parameter identification). Broadly speaking,
structure identification includes determination of the input and output variables,
the relationships between the variables , the number of linear functions, and the
partitioning of the input and output variables into regions. Afterward, the
parameters of the linear functions building up the system are found by least-
squares.

As mentioned before, a Dirichlet tessellation based RIM controller is made
up of piecewise-linear equations without any overlappings. Each of the linear

equation can be represented as:

y= a1 + T2+ + (5.3)
where k determines the dimension of the input vector. To illustrate the idea of
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using least-squares a,pproximatioh on DT based RIM controller, we first assume
that k = 2. The resulting system is made up of piecewisely connectly straight

lines and each of them can be represented by a linear equation:

y=ar+b (5.4)

Assume that n data points are given as input, direct tessellation of the data
points will result in a system consisting of n — 1 linear equations. This is not
very practical when n is large. Our task is first to partition the input space into
m regions (structure identification) and then to approximate the n data points
by another m + 1 data points locating at the region boundaries by tessellating
the m + 1 data points. In other words, The location of the m + 1 data points
in the input domain should be given beforehand. Afterward, the task will be to
find the output values of the m+1 data points such that the resulting tessellated
system is globally optimal in the sense of least squares. The overall process is
illustrated by the following example:

Example 5.1 Assume that n data points are given and we choose m = 2. The
resulting system will be composed of 2 interconnecting linear equations (see Fig.
5.6):

i =az+b (5.5)

and

Jp=cr+d (5.6)

The task is to find the parameters a, b, ¢ and d such that the resulting
systems is optimal in least-squares sense. Assume that the co-ordinates of the

m +1 = 3 data points are (z1,¥1), (22,92) and (zs, y3). The two resulting linear
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(x50 ¥, )
y=ux+b y=ex+d

(x, ¥,)
171
(x3'y3)

— X

Figure 5.6: Two linear equations interconnected to form the system optimal in
least-squares

equations can be written as:

n Y2— %

—y; = x— Dl
Y1~ 1,‘2'—1131(1: z1) (5.7)
and

Jo — Y2 = Ll (z — z2) (5.8)
T3 — T2
rearranging, we have
” T — T r— 2
= (1= 5.9
i = ( $2—$1)y1 =5 —x1y2 (5.9)
: T—2 T—2z
g2 =(1- 2 Yz + 2 ys (5.10)
T3 — T2 T3 — T2

For identifying the ys in globally least-squares sense, we have to combine the

two subsystems into one equation.

]
A =T r—x yl
yl - 1 - 22— T2—T 0
~ - 0 1 _ Z=x> T—T> y2
y2 I3—T2 T3—T2

| Y3 ]
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z=a x+h y+¢

('2"'2'21)
(x ¥y zl)

z=0 ) x+h_ y+¢

2 2

(5. Yy 13)
("4"4' z‘)
y

Figure 5.7: Two linear equations interconnected to form the system optimal in
least-squares

In this representation, we can identify ys by least-squares. For the truck back-
ing up example given later, the input is of order two and the final input-output
relations is composed of piecewisely jointed linear equations. The following
shows the least-square identification of the vertex values.

Assume that there is two piecewisely jointed triangles in the 3-D space as
in Fig. 5.7. The task is to identify the vertex values z1, 22, 23 and z4 from
the sampled input-output data points such that the overall system is “globally”
optimal in the sense of least-squares.

From the figure. We have for subcontroller 1:
21 = ayz 1+ b1y 4+ 1 (511)

and for subcontroller 2:

3, =az + by + 2 (5.12)
Since the two equations should interpolate their vertex points, we have
7z =aa1z1 + hys + a (5.13)
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Z9 = a1Z2 + biy2 + &1 (5.14)
23 = a123 + biys + (5.15)
2o = ATq + boys + 2 (5.16)
23 = G223 + boysz + C2 (5.17)
z4 = QT4 + boys + C2 (5.18)

substitute (5.16) into (5.15) and (5.17) into (5.15) we have

(22— z1) = a1(z2 — 1) + ba(y2 — Y1) (5.19)
(25 — z1) = az(xs — 1) + ba(ys — 1) (5.20)
and
R J, 8

gy e (22— z1) — ba(y2 Y1) (5.21)

To — 7
b= =)~ a1(zs = @) (5.22)

Ys —

climinate b; from (5.23) and a; from (5.24), we obtain

(23 — z1)(z2 — @y) —{#2 — z1)(z3 — z1)
b= 5.23
P (22 — 1) (ys — y1) — (32 — y1)(zs — 1) (5:23)
(22— 21)(ys — 31) — (2 — 91) (2 — 21)
a; = 5.24
1= (e m o) (va = 9) — (v — 1) (@a — ) B2)
from (5.13), we have
C1 = 21— 171 — blyl (525)
if we rewrite (5.13) and (5.14) in the form
Hh=ozn+hzat+mnzs (5.26)
2y = a2 + Paza + V224 (5.27)
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we have
= e Sl T hoe2k)
R e PR e )
e O
(5.31)
similarly for subcontroller 2, we have
e s o L
R e i ooy 53)
A e T 534
(5.35)

combine the two functions into one such that we can perform global identification

of the parameters by least-squares

L

Z . a; fr 1m0 22
Z9 0 a2 P2 7 23

| %4

For a system which is composed of more than two subsystems, linear pro-
gramming is used to eliminates the redundant equations. For instance, in the
design of the truck backing-up systems described later, a computer algorithm
is developed to identify the input-output relation optimal in the sense of least-

squares.
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5.3 Examples

5.3.1 Defining the problem

Suppose the task is to design a complex control system which is so complicated
that no mathematical model exists for it, or, that the mathematical model 1s
strongly non-linear or complicated which makes its identification very difficult
if not impossible. Usually, two types of information can be obtained in con-
ventional fuzzy controller design problem: (1) the experience of human experts
in controlling the system; and, (2) sampled input-output (state-control) pairs
which are recorded from successful control of the system by human experts. The
experience of human experts is usually expressed in terms of linguistic fuzzy if-
then rules which state in what situation which action should be taken. The
sampled input-output pairs are numerical data which give specific output values
corresponding to each input situation.

Dirichlet tessellation can be used to design systems given either one kind of
the aboved stated information. As we mentioned before, the use of linguistic
if-then fuzzy rules is not a good means of extracting expert knowledge. However,
we would like to show that Dirichlet tessellation can be used to solve the problem
even if linguistic if-then rules are given. In that case, each linguistic rule is
considered as a real data point in the space. In this section, four well known
design problems are given as examples. The “Balancing an inverted pendulum”
and “Inverted pendulum with cart” problems are solved by using information
obtained form expert knowledge in the form of linguistic if-then rules while the

“Truck backing-up” problem and the “Chaotic time series prediction” problem
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Figure 5.8: An inverted pendulum

are solved by using information obtained from sampled input-output (state-

control) pairs.

5.3.2 Balancing an inverted pendulum

Balancing an inverted pendulum is a well-known control problem. The dynamics

or the state-space model of an inyerted pendulum can be stated as:
0(k +1) = 0(k) + At - w(k), (5.36)

wik+1) = w(k) + %f(WL sin(0(k)) + T(k)), (5.37)

where 0 specifies the angle between the pendulum and the normal, w is the
angular velocity of the pendulum, At is the time step, J, W, L are the inertia,
the weight ,and the length of the pendulum respectively. T'(k) is the controller

output torque.
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We assume that only the experience of human in terms of linguistic fuzzy if-
then rules is given for the system design. We use 5 set levels NB-“Negative Big”,
NS-“Negative Small”, ZR-“ZeRo”, PS-“Positive Small”, PB-“Positive Big” for
constructing the rules. Since there are two input variables to the system, the
number of resulting if-then rules is 25 and we observe that this amount of rules
allows the controller to balance the pendulum satisfactorily. The following is

one of the fuzzy rules obtained from human experience:
if 0 is PB and w is PS then T is NB.

In conventional fuzzy inference,-ﬁ, w and T in the above-stated rule are con-
sidered as linguistic fuzzy variables. And the linguistic descriptions “Positive
Big”, “Positive Small” and “Negative Big” used in the rule are in fact fuzzy
sets. However, in RIM systems design, for each fuzzy variable, choose a value
for which the membership function attains its maximum. So, the example rule

stated above can be interpreted in RIM systems design as:
if 0" is 90 and w' is 10 then T is -200

where §', w’ and T" are real variables with real constants 90, 10 and -200 assigned
to them respectively. It can be easily realized that by this interpretation, each
if-then rule in fact represents one real data point in the three-dimensional space.
Assume that the co-ordinates of the three-dimensional space is given by (z,y, 2)-
The example rule is in fact the ﬁoint (90,10,-200) in the 3-D space. As a result
of this, the rule base is composed of 25 real data points in the three-dimensional
space. Our task is to approximate all the data points by one or more equations.
The input or state part of the 25 data points in fact form a grid in a two-

dimensional plane. Solving the problem by Dirichlet tessellation consists of the
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Figure 5.9: Control surface representing input output relations

following two steps; Step I triangulate the data points by Dirichlet tessellation to
form packed triangles (or simplexes in case of higher dimensional input vector)
without overlapping. Step 2 represents each triangle (or simplex) by a linear

equation.

y = kyzy + kota + ...+ k%o + knga (5.38)

where n is the dimension of the input vector. In this problem, n = 2 since there

are two input variables 8 and w. So equation (5) becomes:

The parameters of each equation can be found as follows: Let (61, w1, T1), (02,
wy, Ty) and (03, wa, Ts) be the co-ordinates of the three data points forming the

triangle. k be the vector (k1 k2 k] which represents a vector of parameters to
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be found. T=[T; T; T3] which represents the output vector. X be the matrix

1

- 01 w1 1
92 (635 1
l— 93 w3 1 |
Then,
T = kx’ (5.40)
and,
Tx = kx'x (5.41)
Tx[xTx]? = kx"x[x"x]™ (5.42)
k = Tx[xTx]™ (5.43)

As a result of this, a piecewise-linear control surface is constructed which is
made up of 32 linear equations (see Fig. 5.9). When an input is given to the
system, the inference process is in fact a simple substitution of the input data

to the appropriate linear equation to get the real output.
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5.3.3 Balancing an inverted pendulum with cart

Figure 5.10: An inverted pendulum with cart

In the previous section, we demonstrated the use of Dirichlet Tessellation to
balance an inverted pendulum which is fixed on a bearing. A torque is applied
to it according to two input parameters, namely, angle with norrlnal 6 and angular
velocity w. Now, we try to balance an inverted pendulum which is fixed on a
cart where the cart is free to move horizontally. There are two goals for the
problem: (1) to balance the pendulum in vertical position; and (2) at the same
time keep the cart in position z = 0. This problem is more complicated then the

previous one as it involves three input parameters instead of two. The dynamics

or the state-space model of an inverted pendulum can be stated as:

=w, (5.44)

u= g, (5.45)
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;u;mﬁs_lﬂﬁ)
M4+m
% A m cos? 6

M+m

_ gsinf + cos(
W=

, (5.46)

where 0 specifies the angle between the pendulum and the normal, w is the
angular velocity of the pendulum, z is the horizontal position of the cart, At is
the time step, g is the gravitational acceleration, M is the mass of the cart, m,
| are the mass and the length of the pendulum respectively. u is the velocity
of the cart to be controlled. We assume that only the experience of human in
terms of linguistic if-then rules are given. Because of the fact that there are
three input variables in this problem, in order to prevent the explosion in the
number of generated rules, we ;)nly use 3 set levels NB-“negative Big”, ZR-
«7eRo” and PB-“Positive Big” for constructing the rule base and observe that
they are enough for performing the task satisfactorily. The number of resulting
if-then rule is 3 x 3 x 3 = 27. The following is one of the rules obtained from

human experience.
if 2 is ZR and w is PB and 6 is PB then u is PB

Similar to the previous example, the above stated rule represents a data
point (0, 50, 90, 10) in four-dimensional space. As a result of this, the rule base
is composed of 27 real data points in the 4-D space. We try to partition the data
points by Dirichlet tessellation to form packed tetrahedron (instead of triangles
in 3-D case) without overlapping. Then, we represent each tetrahedron by a
linear equation.

u = k10 + kzw + k3$ -+ k4 (547)

The parameters ks in the equation can be found by matrix inversion method

stated before. When an input is given to the system, the inference process is
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a simple substitution of the input data to the appropriate linear equation to

get the real output. Fig. 5.11 shows the tessellation of the input space into

tetrahedrons.
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Figure 5.11: Tessellation of the input space of the inverted pendulum with cart
problem

5.3.4 Truck backing-up

Backing a truck to a loading dock is a severely non-linear control problem for
which no traditional control system design method exist. The dynamics of the

truck is governed by the following set of equations:
z(t + 1) = z(t) + cos[a(t) + 6(t)] + sin[0(t)] sin[¢(2)], (5.48)

y(t+1) = y(t) + sin[¢(¢) + 0(1)] — sin[0(¢)] sin[6(2)]; (5.49)

B(t+1) = ¢(t) - san-l[s’i—nﬁg—(t—)l],

(5.50)
where z and y specify the position coordinates, # is the angle of the truck
with the horizontal, and 0 is the steering angle of control. In this example,
we assume that the expert knowledge is given by sampled input-output (state-

control) pairs which are recorded from successful control by the human controller
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and see how RIM deals with this kind of expert knowledge. We use the same
set of data used by Wang and Mendel [9]. Their paper has already introduced
a means of generating fuzzy rules from numerical data for a fuzzy inference
system. Now, we do the similar for the RIM system in real domain by using
recursive least-squares identification method [13]. This method assures that the
resulting approximated control surface is optimal in the sense of least-squares.

The recursive identification algorithms are estimators of the type:

A

0 = ék_1+Pk¢k€k, (5.51)

Ek = Yk — ¢zék-17 (552)
B Py—10x¢} Pr
1+ ¢f P16’

Pk - Pk—l (553)

with the parameter estimate 0, the regressor ¢y, the prediction error &k, and
the matrix Py, which are all evaluated at time k= 1,2,3;: o

As the first step, we have to determine the structure of the resulting con-
troller. This involves the partition of the input variables into regions. We have
tried different partitions of input space and finally observe that the approxima-
tion is very satisfactory if we use 5 levels for the input variable z and 8 levels for
the input variable ¢, so the numBer of if-then rules is 40, the task is to determine
the real output or consequent for each rule. This method of rule (RIM type)

generation consists of the following steps:

1. Set all consequents of the rules to zero. As a result, the 40 rules are

represented as real data points (z,9,0).

9. Triangulate the rule points by Dirichlet tessellation to form triangles with-

out overlapping.
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3. Represents each triangle by a linear equation:

The resulting control surface representing input-output relations after ini-

tializing all rules to zero is shown in Fig. 5.12.

4. Recursively update the equations by recursive least-squares identification
method as each real input-output sample data point is given to the system.
Fig. 5.13 shows the input-output control surface after recursive least-

squares identification.

Some example truck trajectories generated from the above-designed RIM
controller are shown in Fig. 5.14. Another important property of using recur-
sive least-squares identification is that it is very easy to modify the rule base as

new data become available; i.e., to make the system adaptive.

58



Chapter 5 Design of Real Intelligent Mapping Systems Using Dirichlet Tessellation

Figure 5.12: Control surface representing input output relations before recursive

identification

Figure 5.13: Control surface representing input output relations after recursive

identification
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Figure 5.14: Example truck trajectories generated by RIM

5.3.5 Chaotic time series prediction

The problem of time-series prediction can be stated as: let z(k)(k = 1,2,3...)
be a time series, given z(k —m +1),z(k—m + 2),...,2(k), determine z(k +1),
where m and [ are fixed positive integers; i.e., determine a mapping from z(k —
m+1),z(k—m+2),...,2(k) € R™ to z(k+1) € R. Some past samples of z(k)

are usually available which are used to determine the mapping.
Our approach to this problem is to use parametric models to represent the
time z(k). For example, the following autoregressive (AR) model may be used:
z(k+1)= ia;z(k—i-{- 1) + v(k) (5.55)

i=1

where v(k) is a white noise sequence. m is the dimension of the input vector,
which equals the dimension of tessellation in our case. We assume that m =2 1is

used in the example. The parameters a; are estimated using the known values of
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z(k). The model fits well in to the RIM system we propose where each function

is represented as

z(k+1) = kyz(k) + kaz(k — 1) + ks. (5.56)
Chaotic time series is used as the source signal and the series can be produced
by the following equation:

0.2z(i — )
+ 2193 — )

(i) =z(t1—1)+ 6[1 —0.1z(: — 1)] (5.57)

where § is the time step. When 7 > 17 equation (5.66) shows chaotic behavior.
Higher values of 7 give higher degree chaos. In this example, we choose 7 = 40.

In this example, we tried using the direct tessellation of the sampled input-
output pairs to form the control surface without any rule generation process.
However, this method may not be appropriate if the number of given data points
for constructing the mapping is large because it may cause an explosion in
the number of functions. Here we merely want to show the flexibility of using
Dirichlet tessellation to solve a problem.

Specifically, assume that z(1), 2(2),...,z(M) are given; then we form M —m
desired input-output pairs which are used to construct the control surface. Fig.
5.15 shows the control surface formed for m = 2 and M —m = 50 by direct
tessellation of data points. Fig. 5.16 shows the prediction result generated by
RIM.
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Figure 5.15: Input-output control surface by direct tessellations of data points

020 50 100 150 200 250 300 350 400 450

Figure 5.16: Prediction result by RIM, where solid line representing the series
to be predicted and dotted line representing the predicted results
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5.4 Interactive CAD platform for RIM sys-
tems design

In the design process of a fuzzy inference system, three types of information
should be provided: (1) a set of fuzzy if-then rules; (2) membership functions for
the fuzzy variables; (3) a fuzzy inference mechanism. Usually, the designer has
to fine tune the system by means of changing either the fuzzy if-then rules or the
membership functions, or both. However, the effect of changing these two types
of information on the final input-output relation is usually not clearly understood
by the designer because of the very nonlinear fuzzy inference mechanism acting
as a barrier between them. This makes the fine tuning of the system a nearly
trial and error process. On the other hand, in a RIM based system, as the input-
output relation is consisting of real functions relating the input with the output,
the effect of changing or adjusting each data points on the final input-output
relation can be readily visualized. Also, as the input-output relations is made
up of piecewise-linear functions, it is possible to carry out conventional control
analysis such as stability analysis.

The high transparency of a RIM system makes it possible for us to place the
system on a CAD control system design platform to carry out real time inter-
active design and analysis. We have designed one which allows the designer to
interactively adjust the system parameters. The input-output relation together
with the state trajectories are shown to allow the designer to adjust the system
in real time.

As we mentioned before, two kinds of information are available: (1) the

experience of the human controller; and, (2) sampled input-output data points
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from successful control. In a design problem, each of the two kinds of information
alone is usually incomplete. Although the system is successfully controlled by
a human controller, some information will be lost when the human controller
expresses his experience in terms of linguistic fuzzy if-then rules. Consequently,
linguistic rules alone are usually not enough for designing a successful control
system. On the other hand, the information from sampled input-output data
pairs is usually not enough for a successful design, because the past operations
usually cannot cover all the situations the control system will face. Through the
use of the CAD platform, we can develop a general approach which combines
both kinds of information into a common framework. Fig. 5.17-5.18 show
the CAD platforms for the design of truck backing-up and inverted pendulum

examples respectively.
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Figure 5.17: CAD platform for the development of Truck backing up RIM system
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Figure 5.18: CAD platform for the development of Inverted pendulum RIM
system

In this chapter, we proposed a new means of RIM system design which bases

on partitioning the data points to form a set of real functions which approximate
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the overall system. This method has been used successfully to solve several well-
known problems given different types of expert knowledge. It shows that RIM
has a merit of high transparency as the overall design and inference process is
done in the real domain. This property encourages the further development of
RIM to tackle more complicated problems that require the support of qualitative

analysis which is difficult to be carried out for fuzzy inference systems.

66



Chapter 6

Analysis of Dirichlet tessellation
based Real Intelligent Mapping

Systems

Given a control system, the first and foremost question about its various prop-
erties is whether it is stable, because an unstable control system is typically
useless and potentially dangerous. Stability analysis of fuzzy system has been
studied for a period of time. Braae and Rutherford [27])[28] proposed a linguistic
phase plane trajectory to analyze and improve the stability of fuzzy systems by
exchanging the control rules. Kickert and Mamdani [26] use the describing func-
tion method to evaluate the stability of fuzzy control systems. B. Kiszka [29]
introduced the energetistic stability of fuzzy dynamic systems and developed an
entropy for fuzzy system. Besides, De Glas [24] and A. Kania [23]. use the con-
cept of a stability for analyzing fuzzy systems, in which the distinction between

stability and instability is removed and a real value between 0 and 1 is used
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to describe the “degree of stability” of a fuzzy system. However, all the above
stated methods are in fact quite restrictive and have only limited applicability.
The principal reason is that the design of fuzzy controllers has relied on ad hoc
techniques. That is, the controllers were not synthesized using an underlying
theory but were arrived at by trial and error. Also, by allowing the state of
the system to be described by a fuzzy set, notions of unboundedness become
ambiguous. The other reason is that fuzzy system is itself definitely nonlinear.
All the above hinder the use of conventional control analysis techniques (e.g.
Liapunov’s method) for designing and analyzing fuzzy systems.

On the other hand, in the recently proposed Real Intelligent Mapping [1], it is
argued that transformation of the real input data to the fuzzy domain and then
back to the real domain again in the conventional fuzzy inference approach is
essentially unnecessary in many applications. We introduced the use of Dirichlet
tessellation (DT) for the implementation of RIM systems. In this chapter, a
method for the stability analysis and design of the above stated systems is
proposed. The analysis is based on the well-known Liapunov’s direct and indirect
method which is difficult to be applied to conventional fuzzy systems because
of the reasons mentioned before. We first study the local stability property of
a DT based RIM system by Liapunov’s Linearization method with the inverted
pendulum problem and the truck backing-up problem used as examples (Section
6.1.1 and 6.1.2). Then we analyze the globally stability property of DT based
RIM system by a method based on Liapunov’s direct method (Section 6.2). Also,
a method for the design of DT based RIM systems is introduced which is based
on conventional linear system theory (Section 6.3). In Section 6.4, a method

specialized for analyzing Second order DT based RIM systems is introduced.

68



Chapter 6 Analysis of Dirichlet tessellation based Real Intelligent Mapping Systems

We then elaborate the stability analysis method to piecewise-nonlinear systems
and show that the method can be applied to a class of conventional fuzzy system
by establishing an equivalent piecewise-polynomial representation of it in real

domain (Section 6.5).

6.1 Local Stability Analysis of DT Based RIM
Systems

Local stability of a system concerns the behavior of the system near its equi-
librium point. Loosely speaking, a system is described as stable if starting
the system somewhere near its desired operating point implies that it will stay
around the point ever after. In this section, Lyaponov’s linearization method is
used to analyze the local stability property of a DT based RIM system. It is a
formalization of the intuition that a nonlinear system should behave similarly to
its linearized approximation for small range motions. After local linearization
of the system near the equilibrium point, linear control theory can be applied
for local stability analysis. We now give a formal definition of local stability.
Definition 6.1[10] The equilibrium state x =0 is said to be stable if, for any
R > 0, there exists 1 > 0, such that if |x(0)|| < r, then ||x(0)|| < R for all
t > 0. Otherwise, the equilibrium point is unstable.

O

A autonomous (time-invariant) non-linear system can be represented by its state
equation:

% = f(x) (6.1)
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assume that f(x) is continuously differentiable. Then the system dynamics can

be written as

= (0 e + o) (62)

where fi0.:(x) stands for higher-order terms in x. The above Taylor expansion
starts with the first-order term, due to the fact that f(0) = 0, since 0 is an

equilibrium point. Let’s use the constant matrix A to denote the Jacobian

matrix of £ with respect to x at x =0 (ann Xn matrix of elements gx-%)
of
A= (—)x= 2
(ax)x—o (6 3)
Then, the system
x = AX (6.4)

is called the linearization (or linear approximation) of the original nonlinear
system at the equilibrium point O.

The following theorem relates the stability of the linearized system (6.4) with
that of the original nonlinear system (6.1).

Theorem 6.1 (Lyapunov’s linearization method)[10]

e If the linearized system is'strictly stable (i.e, if all eigenvalues of A or
equivalently, all root of the characteristic equation |sI— A| = 0 are strictly
in the left-half complex plane), then the equilibrium point is asymptotically

stable (for the actual nonlinear system).

» If the linearized system is unstable (i.e, if at least one eigenvalue of A , or
equivalently, at least one root of the characteristic equation |sI — A| =0
is strictly in the right-half complex plane), then the equilibrium point is

unstable (for the nonlinear system).
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o If the linearized system is marginally stable (i.e, all eigenvalues of A, or
equivalently, all roots of |sI — A| = 0 are in the left-half complex plane,
but at least one of them is on the jw axis), then one cannot conclude
anything from the linear approximation (the equilibrium point may be

stable, asymptotically stable, or unstable for the nonlinear system).

Now, we apply this method to investigate the local stability property of the
proposed DT based RIM system. The inverted pendulum and truck backing up

problems are given as examples.

6.1.1 Balancing an inverted pendulum

The dynamics or the state-space model of an inverted pendulum can be stated

as:

0 =w, (6.5)
W= -‘lj(T/VL sinf + T). (6.6)

where 0 specifies the angle between the pendulum and the normal, w is the
angular velocity of the pendulum, J, W, L are the inertia, the weight ,and the
length of the pendulum respectively. T is the controller output torque.

As mentioned before, a DT based RIM controller is designed to balance
the inverted pendulum to its vertical position. The controller is made up of
piecewise-linear equations without any overlappings. Accordingly, only one
equation is responsible for a particular input domain. For the local stability

analysis of the system, we assume that it is possible for us to partition the input
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space in such a way that only one equation is responsible for the equilibrium
point. That is, we should partition the input space such that the equilibrium

point is not located on the regions’ boundaries. The equation can be represented
by:

T = k10 + kow + k. (6.7)

As we know that for inverted pendulum problem, there will be no output

torque applied when the system is at its equilibrium point (i.e. § =0, w = 0).

As a result, we have k3 = 0. The above equation becomes:
T = k10 + kow. (6.8)
Substitute (6.8) into (6.6), we have:
= %(WL sin @ + k10 + kaw) (6.9)

The linearized system matrix about the equilibrium point (i.e. § =0, w = 0) is

given by
3 24
A - 31:1 31‘2
8fr 98Iz
6.’171 31:2 X—O
where
-8—]—c1— = 10 (6.10)
81131
df
i L SR 1
A1, w (6.11)
df2 WL+ k
Tk o ol B |}
of, _ ks
92, T (6.13)

Finally, the linearized system can be represented as:

HEPNNIN
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As a result, we can investigate the local stability of the system from the locations
of the eigenvalues of the matrix A ,or equivalently, from the locations of the root

of the characteristic equation |sI — A| = 0.

6.1.2 Truck backing-up

The dynamics of the truck is governed by the following set of equations:

& = cos sin ¢, (6.14)
g = cos(¢ — ) — sin 6 cos ¢, (6.15)
¢=— sin“l[-sigg], (6.16)

where z and y specify the position coordinates, ¢ is the angle of the truck with
the normal, and @ is the steering angle of control.

Similar to the previous example, the controller equation responsible for the
equilibrium point is:

Substitute (6.17) into (6.14) and (6.16), we have:
¢ = cos(kyz + k20)sin ¢ (6.18)

and

sin(kyz + k2¢)]

¢ = —sin™[ 5

(6.19)

The linearized system matrix about the equilibrium point (i.e. §=0,w=0)Iis

afy 3h
A——— 3:!:1 31‘2
3 32

x=0

3.1:1 a:cg

given by
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where

ofr

9o 0 (6.20)
ofi

Ta, 1o} (6.21)
0fr =k

91, = 5 T (6.22)
Ofr ke

9z, 5 o) (6.23)

Finally, the linearized system can be represented as:

HENNIN

As a result, we can investigate the local stability of the system from the locations
of the eigenvalues of the matrix A or equivalently, from the locations of the root

of the characteristic equation |sI — A|=0.

6.2 Global stability analysis of DT based RIM
systems

K. Tanaka and M. Sugeno [22] proposed a method for the design and analysis of
their “Takagi and Sugeno’s fuzzy model” based fuzzy system. We observe that
DT based RIM systems is a special case of their model when the membership
functions are described by crisp set instead of fuzzy set. In this section, we apply
their method to the stability analysis of DT based RIM system. A sufficient
condition which guarantees the stability of piecewise jointed systems based on
the Lyapunov’s direct method is given. We first derive the method for piecewise-

linear systems and apply 1t in the design of a Dirichlet tessellation based RIM
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system. Then, we elaborate the method to piecewise-nonlinear system.

As mentioned in Section 5.2, a Dirichlet tessellation based RIM controller
is made up of piecewise-linear equations without any overlappings. In other
words, only one equation is responsible for a particular input domain and the
tessellated pattern covers the whole input space. As a result of this, let z(k) be
the state of the system at time k, every linear subsystems mentioned above can

be represented in the matrix form as A;x(k), where i distinguishs the individual

subsystems, x(k) € R*, A; € R* X R", x(k) = [z(k)z(k=1) -~ z(k—n+ )%,

and
& o wx g i |
1 0 -0 0
0 1 -0 0
A;=10 0 -0 0
0 0 0
LO O --- 1 0

The output of the RIM system is inferred as follows:

_ : (10 -0 0], :
Xl(k - 1) Al)((k)
01 ---00
Xz(k -+ 1) - ; D ; ; A2X(k‘)
gl 00 --- 10 sl
L LOO---01_L &y

The analysis of DT based RIM systems is based on the well-known Lya-

punov’s stability theorem stated as follows:
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Theorem 6.2 [30]. Consider a discrete system described by
(k+1) = F(x(k), (6.24)
where x(k) € R, f(x(k)) is an n X 1 function vector with the property that
f(0)=0 for all k. (6.25)
Suppose that there exists a scalar function V(x(k)) continuous in x(k) such that
1. V(0) =0,
2. V(x(k)) > 0 for x(k) # 0,
3. V(x(k)) approaches infinity as |x(%)|| = o0,
4. AV(x(k)) < 0 for x(k) # 0.

Then the equilibrium state x(k) = 0 for all k is asymptotically stable in the
large and V/(x(k)) is a Lyapunov function.

O
Theorem 6.3. The equilibrium of a DT based RIM system, (6.19), is globally
asymptotically stable if there exists a common positive definite matrix P for all

the subsystems such that
ATPA; —P <0 fori€1,2,...,L (6.26)

]

Proof. Consider the scalar function V(x(k)) such that
V(x(k)) = x" (k)Px(k), (6.27)

where P is a positive definite matrix. This function satisfies the following prop-
erties:
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1. V(0) =0,
2. V(x(k)) > 0 for x(k) # 0, |

3. V(x(k)) approaches infinity as ||x(k)|| — oo,

we have:

AV(x(k)) = V(x(k+1)) - V(x(k)) (6.28)

= xT(k+1)Px(k + 1) — x" (k)Px(k) (6.29)

= (_an wiAx (k)P znj wiAx(k) — xT(k)Px(k)  (6.30)

= xT(k){Zn: w; ATP Zn:w,-A,- — P}x(k) (6.31)

= XT(k){Xn: ’w,'ij?PAj o P}X(k) (632)

= xT(k){f;(w,-)?A?PA,- — P}x(k) (6.33)

) (6.34)

for DT based RIM system, since at one time only one function is fired. Let it

be function [/, we have:
AV (x(k)) = xT (k){A{ PA; — P}x(k) (6.35)
we obtain
AV(x(k)) < 0. (6.36)

By Theorem 6.2, V(x(k)) is a Lyapunov’s function and the RIM system is
globally asymptotically stable.
O

This theorem is reduced to the Lyapunov’s stability theorem for linear discrete

systems when n = 1.
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This theorem can be applied to the stability analysis of a nonlinear system
which is approximated by a piecewise linear function. Like the RIM systems by
Dirichlet Tessellation.

Next, a necessary condition for ensuring the existence of a common P is
given. |
Theorem 6.4 [22). Assume that A; is a stable and nonsingular matrix for
i =1,2,...,n. A;A; is a stable matrix for 4,7 = 1,2,...,n if there exists a

common positive definite matrix P such that
ATPA; - P <0. (6.37)

]

Proof. From (6.37), we obtain
P —(A;Y)PAT <0. (6.38)

since (A7) = (AT)"1. Therefore, P < (A7HTP(AT)™ for 2 = 1,2,...,m.
Since ATPA; — P < 0 from (6.37), the following inequality holds for 2,7 =
LI S

ATPA; < (ATH)TP(A]) (6.39)
From the inequality, we obtain A?A?PA;Aj — P < 0. Therefore, A;A; must
be a stable matrix for i,7 =1,2,...,n.
O
Theorem 6.4 shows that if one of the A;A ;s is not a stable matrix, then there
does not exist a common P. In order to check the stability of the system, we
must find a common positive definite P. It is difficult to find a common positive
definite matrix P as effectively as possible. So, the following simple procedure

is used. The procedure consists of two steps.
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1. We find a positive definite matrix P; such that
ATP;A; - P; <0. (6.40)

for i =1,2,...,n. It is possible to find a positive definite matrix P; if A;

is a stable matrix.
9. Next, if there exists P; in {P;|i =1,2,...,n} such that
ATP;A; - P; <0. (6.41)

for i = 1,2,...,n, then we select P; as a common P. If the second step

has not succeed, go back to the first step.

6.3 Design of a stable DT based RIM system

We have considered the conditions for the stability of a DT based RIM system
by using Lyapunov’s direct method in the previous section. In this section, we
propose a design method of a model based RIM controller. The controller can
be designed so as to guarantee the stability of the RIM system.

A DT based RIM system consisting n subsystems can be represented as:

; 10 00| 7
x1(k+1) -‘ Ax(k)
01 ---00
xa(k +1) || Ax(R)
0 0 - 1 0
| xa(k+1) | Aux(k)
" ! 0 0 - 0 1 -

By taking the Laplace’s transform, We can apply the well-known root locus

method to design the system by the following steps:
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1. Choose an appropriate proportional gain K for the controller such that all
the roots of the characteristic equations of the subsystems Ajs lie inside
the unit circle ||z|| = 1 in the z-plane. This ensures that all the subsystems

are stand alone stable systems.

9. Check the stability of the overall system by the procedure to find a common
P discussed in the previous section. If the system is not stable, go back

to step 1.

Example 6.2 [22]. Let us consider the following two linear systems:

Ly z(k+1) = 2.178z(k) — 0.361z(k — 1) + 0.603u(k)

Ly z(k+1) = 2.256z(k) — 0.361x(k — 1) + 1.120u(k)

We try to stabilize the overall system using a linear controller with a proportional

gain K. The controller can be described as:
u(k) = Kz(k) (6.42)

The two systems becomes:

Sy: z(k+1) = (2.178z(k) — 0.603K) — 0.361z(k — 1)

Sy: z(k+1) = (2.256z(k) — 1.120K) — 0.361z(k — 1)

Here we assume that reference input r(k) = 0. Next, we utilize the root locus
method to determine the parameter K. Tt is not always necessary to utilize the
root locus method. For example, we may use the technique of a Bode diagram or
pole assignment. From Fig. 6.1and Fig. 6.2,itis well known that the stability
boundary in the z-plane is the unit circle |z| = 1. We can stabilize the linear
subsystems of S; and S, when we choose a gain K such that 0.980 < K < 6.25
and 0.80 < K < 3.23, respectively. Therefore, in order to stabilize the overall

system, we must choose a gain K such that 0.98 < K < 3.23.
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e\
L

Figure 6.1: Root locus for system 1

K=3.23 / \ K=0.80
2 \ Re

Figure 6.2: Root locus for system 2
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Lastly, we check the stability of the overall system using the procedure to

find a common P for the subsystems. For the linear subsystems S; and Sy, we

have: o
9.178 — 0.603K —0.588 |
A1 =
| 1 0 )
[ 5956 — 1.120K —0.361 |
A2 -
1 0

Here, we choose K =1.12 and choose P such that

20 -13
P=
-13 1.0

Then the condition ATPA;—P < 0 is satisfied and the overall system is globally

asymptotically stable.

6.4 A method for analyzing Second order DT
based RIM systems

The above stated method for the analysis of global stability of DT based RIM
systems has one drawback. Namely, it may be difficult to find the common
positive definite matrix P. S. Kawamoto, K. Tada, A. Ishigame and T. Taniguchi
[37] proposed a method of finding the common P graphically for the Tagaki and
Sugeno’s fuzzy model. Since the DT based RIM system is a special case of that
miodel with crisp sets instead of fuzzy set. Accordingly, we can use their method
for finding the common P. The following is an approach for finding the whole
region in where a 2 x 2 real matrix P exists. It provides a guidance for finding

the P in a more systematic way. For details, please refer to [37].
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A DT based RIM system can be represented as:

x(b+1) =3 wiAn(k), (6.43)

i=1

where n is the number of linear subsystems that make up the overall system and

0 if the function ¢ is not fired

{ 1 if the function 7 is fired
w; = '

We know that the equilibrium of the above system is asymptotically stable in the
large if there exists a common positive definite matrix P for all the subsystems

such that A; is stable and nonsingular, and
ATPA;-P <0 (6.44)

From the above equation, we have

ATPA, -P = -Q: <0 (6.45)
ATPA,-P = —-Q2<0 (6.46)

(6.47)
ATPA,,—-P = —Qun <0 (6.48)

where matrices Q1,Q2,...,Qm > 0. We assume in this approach that the

common positive definite matrix P is a 2 x 2 real one, that is,

Pu Pr2
P=
P21 P21
and rewrite it without a loss of generality, according to p12 2 0, as

p p *l o, P11 5y = P22
- L s P2 =
|P12| |P12|
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Setting

i
a; a
A1={ 1 Q2

az a4

le{‘h Q2-‘
T

and substituting these forms into (6.47) yield

and

H = —{(a% - l)Pl + a2p; £ 2a1a3}, (6.49)
g2 = —{@mapr +azaspr = (a1a4 + azas — 1)}, (6.50)
gs = —{adp1 + (a —1)pz = 2a2a4}. (6.51)

Since P > 0, we have

P1P2 > 1) (653)
and the condition Q; > 0 gives ¢1 > 0, by rewriting it,
(a2 —1)p1 + aipy + 2a1a3 <0 (6.54)

Also, from ¢1¢3 — ¢5 > 0, we get

a2p? + ajp; — {(ara4 = azas)? — (a} + a3) +1}pip2 (6.55)
:*:2(12(04 = al)pl =+ 2&3(01 — a4)p2 (656)
+{(ara4 — a2a3)’ — 2(a1a4 + azaz) +1} <0 (6.57)

Then, we can construct the P()_region, which is the P-region for (6.47), and
satisfies conditions (6.54)-(6.59) in the p; — p2 plane. Repeating for (6.48)-
(6.50), we have {P(l),P(z),---,P(m)} and the P-region by P = PO NPAN
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...A P, Thus each point (p1,ps) included in the P-region has the common

positive definite matrix P as

pp xl
P = |p12l ,(p12 2 0)
+1 po

In addition, it should be noticed that pi2 = 0 corresponds to a trivial case.

6.5 Piecewise-polynomial real domain repre-
sentation of a class of fuzzy controller and

its stability

Now we elaborate the method stated in Section 6.3 to study the stability of
piecewise-nonlinear systems. Suppose there is a system formed by piecewise-
jointed nonlinear subsystems. Each non-linear subsystem can be considered
as a stand-alone system. Since Liapunov’s direct method is also applicable to
non-linear systems, we can apply the method stated in the previous section to
analyze this kind of systems. Suppose we can identify a common Liapunov’s
function V for all the nonlinear subsystems, then we can describe the overall
nonlinear system as globally asymptotically stable.

In this section, we are going to establish an equivalent piecewise-polynomial
representation of a class of conventional fuzzy system in real domain. By doing
this, we can apply the above stated stability analysis to this kind of fuzzy system.

The class of fuzzy controllers use algebraic product as the logical AND opera-
tor and correlation-product inference method. Also, all the fuzzy variables have

triangular membership functions. This kind of fuzzy controller is widely used for
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SM ME LG X
SM
ME Rulel Rule2 Rulc3
Regionl Region2
LG
Rulcd RuleS Rule6
Y
Region3 Regiond
Rule? Rulc8 Ruley

Figure 6.3: Membership functions of the fuzzy system

_control applications [31] because of its simplicity. It provides smooth response
[32] and its architecture is supported by existing analog/digital fuzzy processors
[33] [34]. To simplify the discussion, we start with a two-input variables fuzzy
controller. We assume that each of the fuzzy input variable has three set values:
(1) Small (SM) with usm(0) = 1; (2) Medium (ME) with ppe(l) = 1; and (3)
Large (LG) with pre(2) = 1. The membership functions of the variables are
shown in Fig. 6.3.

There are altogether 3 x 3 = 9 rules for the controller. If the fuzzy controller
is defined as before, we observe that only four of the nine rules are fired at one
time depending on the input. The input space can in fact be divided into four
separate regions as 1n Fig. 6.3. Every time the input fall into one specific
region, only the four rules located at the corners of that region are fired. For
instance, if an input (z,y) is given which is within region 1. Then only rule

number 1, 2, 4 and 5 are fired and the output can be inferred as:

2= pr1 + pare + paT4 + HsTs

6.58
pa + p2 + fa T Hs {5:58)
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where rq, 13, 74 and 75 are the consequent values of rule 1, 2, 4 and 5 respectively
and us are their corresponding weights. If algebraic product is used as the logical
AND operator and correlation-product inference method are used. It can be

easily shown that:

m o= (1-2)1-y) (6.59)
p2 = z(1-y) (6.60)
pa = (1—a)y (6.61)
ps = Ty (6.62)

As a result, the output can be represented as:
z = (1-z)1—-yrn+zl-y)r2+ (1 —z)yra + TYrs (6.63)
= (rp—r2—ra+rs)zy+ (ro —r1)z 4+ (ra — )y + 7 (6.64)

which is a polynomial in z and y. Similar for region 2, we can show that:

g s foT2 + H3rs + UsTs + HeT6 (6.65)
pa + p3 T+ Hs + He
and, |
= @-2)(1-y) (6.66)
b = (@-1)(1-9) (6.67)
us = (2-2) (6.68)
b = (@=1y (6.69)

As a result, the output can be represented as:
z = (2—-z)(1- y)rg + (2 —1)(1 - y)rs + (2 —z)yrs + (z — 1)yre(6.70)
= (rp—r3—7s+7e)TY T+ (r3 — r2)z + (13 — 2r2 + 215 — re)y  (6.71)
+ (2r; —r3) (6.72)
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which is also a polynomial in « and y. We can do the similar for region 3 and
region 4 to find their corresponding polynomial. As a result, the overall fuzzy
controller can be represented by piecewise-jointed polynomials in real domain

with each sub-controller represented as:
z=cxy + T + C3y + €4 (6.73)

For n input system, each subcontroller can be represented by the following poly-

nomial:

Tnp1 = C1T1T2: " Ty + C2T2T3 Tn + C3T1T3 7" Tn 4o e (6.74)

4 Cpe1Z1Z2¢ " Tn-1 + Cnp2TaTar Tt (6.75)

we can apply the method stated in section 6.3 to analyze this kind of systems.
Suppose we can identify a common Liapunov’s function V for all the nonlinear
subsystems, then we can describe the overall nonlinear system as globally asymp-
totically stable. However, in the design and analysis of this kind of system, we
cannot rely on linear system theory since the subsystems are not linear.

In this chapter, a method for the stability analysis of Dirichlet tessellation
based RIM systems is proposed. Also, a method for the design of DT based
RIM systems is proposed which is based on conventional linear system theory
We then apply the analysis method to piecewise-nonlinear systems and show
that the method can also be applied to a class of conventional fuézy system
by establishing an equivalent piecewise-polynomia.l representation of it In real
domain. However, in the design and analysis of that kind of fuzzy system, we
cannot rely on linear system theory since the subsystems are not linear. We

conclude that our DT based RIM system design can be based on linear system
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theory (instead of trial-and-error) which is difficult to be done in conventional

fuzzy system design.
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Conclusion

In this thesis, we argue that transformation of the real input data to the fuzzy
domain and then back to the real domain again in the fuzzy inference approach
is essentially unnecessary in many applications. Instead, the fuzzy inference
procedure is replaced by a mapping operating directly on real data. The new
approach is named Real Intelligent Mapping (RIM). We proposed a new means
of RIM system design which is based on partitioning the data points to form a set
of real functions approximating the overall system. This method has been used
successfully to solve several well-known problems given different types of expert
knowledge. It shows that RIM has a merit of high transparency as the overall
design and inference process is done in the real domain. A method for the sta-
bility analysis of Dirichlet tessellation based RIM systems is proposed. Besides,
a method for the design of stable DT based RIM systems is introduced which
is based on conventional linear system theory. This property encourages the
further development of RIM to {ackle more complicated problems that require

the support of qualitative analysis which is difficult to be carried out for fuzzy
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inference systems. We also apply the analysis method to piecewise-nonlinear
systems and show that the method can also be applied to a class of conventional
fuzzy system by establishing an equivalent piecewise-polynomial representation
of it in real domain. However, in the design of that kind of fuzzy system, we
cannot rely on linear system theory since the subsystems are not linear.

We are not trying to ignore fuzzy inference as a way to solve a fuzzy expert
knowledge oriented problem. However, the difficulty in analyzing a fuzzy infer-
ence based system hinders its further development to handle more sophisticated
control problems. It is clear that the method we propose is not the only solution.
We merely point out that even fuzzy inference with membership functions is one
of the many methods for solving problems and different methods may have their

own merits.
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