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Abstract 

The recently proposed Real Intelligent Mapping (RIM) [1] argues that trans-

formation of the real input data to the fuzzy domain and then back to the 

real domain again in the fuzzy inference approach is essentially unnecessary 

in many applications. Instead, the fuzzy inference procedure is replaced by a 

mapping operating directly on real data. In the thesis, we introduce the use 

of Dirichlet Tessellation (DT) for the implementation of RIM systems, which is 

general enough to attack approximation problems regardless of data distribu-

tion. Roughly speaking, the method partitions the state-space data points into 

simplexes to form the input-output relation and then represents each simplex by 

a linear equation. The piecewise-linear property of the DT-based RIM systems 

makes qualitative analysis possible. As an important example, we analyze the 

stability property of DT-based RIM control systems by using Liapunov's direct 

and indirect methods. The proposed method for designing RIM systems can 

handle different types of expert knowledge and it has been used successfully 

to solve serveral well-known problems such as balancing an inverted pendulum, 

inverted pendulum with cart, truck backing-up, and chaotic time series predic-

tion. Also, an interactive CAD platform has been developed to enhance the 

RIM systems design based on the DT method. 
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Chapter 1 

Introduction 

1.1 Fuzzy Inference and Real Intelligent Map-

ping 

In ordinary non-fuzzy approximation problems, the choice of using which par-

ticular approximation method is'usually problem dependent. In other words, a 

method that works well for one problem may not be so efficient for another prob-

lem. To choose a suitable method to solve a particular approximation problem, 

one first need to get some knowledge of the geometric distribution, the quantity 

and the dimension of the data to be approximated. To achieve this, some statis-

tical methods may be used. However, this is not always possible especially when 

there are numerous data points to be approximated or when the dimension of 

the problem is high. 

Fuzzy inference (FI) can be considered as one of the many existing function 

approximation methods and it has been proved to be an universal approximator 

20][21]. The power of FI is based on the fact that it is a general method of 
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Chapter 1 Introduction 

solving approximation problem, in the sense that there is no need to consider 

the characteristics of the geometric distribution of the data (in terms of linguistic 

fuzzy if-then rules) in the space during the approximation process. The reason is 

that FI is a piecewise approximation technique when viewed in the real domain. 

Provided that the data is distributed in a regular manner (i.e. the regular 

distribution of the fuzzy if-then rules in the fuzzy space), the overall system 

can be piecewisely divided into simple subsystems regardless of the dimension 

and complexity of the system. Thus, the quality of fuzzy approximation is to 

some extend assured by choosing reasonable membership functions and a good 

inference mechanism. 

It is generally claimed that fuzzy inference is best applied to complex system 

design in which no mathematical model exists but experienced human operators 

are available for providing expert knowledge in terms of linguistic fuzzy if-then 

rules. While this approach has emerged as an alternative solution to several 

system design problems, we pose the following fundamental question: Is the use 

of linguistic fuzzy if-then rules a good way of representing the human expert 

knowledge? Our study shows that the answer is essentially negative. Firstly, 

the design of fuzzy inference systems is usually performed in an ad hoc man-

ner; it is hard to justify the effect of system parameters' change on the final 

input-output relation because of the very nonlinear fuzzy inference mechanism 

acting as a barrier between the input and output variables. Secondly, fuzzy 

systems require considerable computation time when they are used for real time 

inference since every input has to pass through the following three stages to 

obtain the desired output: (1) Fuzzify the real input data via their respective 

membership functions; (2) Perform inference in the fuzzy domain following a 
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Chapter 10 Introduction 

set of if-then rules; (3) Return a real inference result by defuzzifying the fuzzy 

consequent. Furthermore, fuzzy inference is based on linguistic fuzzy if-then 

rules distributed in a regular manner. Its ability to approximate data which is 

not regularly distributed (e.g. sampled input-output data points from successful 

control) is limited. Last but not least, due to the very nonlinear fuzzy inference 

mechanisms, qualitative analysis of fuzzy inference systems is very difficult if not 

impossible. This hinders the further development of fuzzy inference to handle 

more sophisticated problems. 

In fact, stability analysis of fuzzy system has been studied for a period of 

time. Braae and Rutherford [27] [28] proposed a linguistic phase plane trajectory 

to analyze and improve the stability of fuzzy systems by exchanging the control 

rules. Kickert and Mamdani [26] use the describing function method to evaluate 

the stability of fuzzy control systems. B. Kiszka [29] introduced the energetistic 

stability of fuzzy dynamic systems and developed an entropy for fuzzy system. 

Besides, De Glas [24] and A. Kania [23] use the concept of a stability for ana-

lyzing fuzzy systems, in which the distinction between stability and instability 

is removed and a real value between 0 and 1 is used to describe the “degree of 

stability" of a fuzzy system. However, all the above stated methods are in fact 

quite restrictive and have only limited applicability. 

On the other hand, the recently proposed Real Intelligent Mapping (RIM) 

1] argues that transformation of the real input data to the fuzzy domain and 

then back to the real domain again in the fuzzy inference approach is essentially 

unnecessary in many applications. Instead, the fuzzy inference procedure is 

replaced by a mapping operating directly on real data. 

2 



Chapter 11 Introduction 

RIM has already been used to solve the well-known truck backing-up prob-

lem by using linear regression [1]. However, linear regression is only one of the 

many approximation methods that can be used to design a RIM system. To 

make the RIM systems design more problem independent, we introduce the use 

of Dirichlet Tessellation for the implementation of RIM systems, which is gen-

eral enough to attack approximation problems regardless of data distribution. 

Roughly speaking, the method partitions the state-space data points into sim-

plexes to form the input-output relation and then represents each simplex by a 

linear equation. Thus, the resulting approximation is piecewise-linear. Real time 

computation time is saved when compared to the conventional fuzzy inference 

since the input has to pass through only one stage to get the desired output, 

namely, substitute the input value to the appropriate rea/function. Furthermore, 

the piecewise-linear property of the DT-based RIM systems makes qualitative 

analysis possible. As an important example, we analyze the stability property of 

DT-based RIM control systems by using Liapunov's direct and indirect methods. 

We first analyze the local stability property of them by Liapunov's linearization 

method. We then analyze the globally stability property of them by a method 

based on Liapunov's direct method and show that their design can be based on 

linear control theory. 

The proposed method for designing RIM systems can handle different types 

of expert knowledge and it has been used successfully to solve several well-

known problems such as balancing an inverted pendulum, inverted pendulum 

with cart, truck backing-up, and chaotic time series prediction. Also, an inter-

active CAD platform has been developed to enhance the RIM design based on 

the DT method. 
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Chapter 12 Introduction 

1.2 Organization of the thesis 

In Chapter 2, we first introduce the basic idea of fuzzy inference. Fuzzy set 

theory is reviewed and the fuzzy inference mechanism is introduced with an 

example. 

In Chapter 3, we try to state out the weaknesses of fuzzy inference which 

initiate our study of the newly proposed Real Intelligent Mapping (RIM) ap-

proach. 

In Chapter 4, we introduce the general idea of Real Intelligent Mapping. 

In Chapter 5, we introduce the method of using Dirichlet Tessellation (DT) in 

the design of Real Intelligent Mapping systems. We first introduce our proposed 

method of function approximation using Dirichlet Tessellation. Afterward, we 

introduce a means to limit the number of generated functions when the number 

of input data points is large. This method ensures that the resulting approxima-

tion is optimal in the sense of Least-Squares. Finally, we apply DT based RIM to 

solve some well known problems, including (1) Balancing an inverted pendulum; 

(2) Inverted pendulum with cart; (3) Truck backing up; and (4) Chaotic time 

series prediction. We also introduce the interactive CAD platform that has been 
developed to enhance the RIM design. 

In Chapter 6, we try to analyze the stability property of RIM systems by 

Liapunov's direct and indirect method. We first analyze the local stability prop-

erty of a DT based RIM system by Liapunov's linearization method with the 

inverted pendulum problem and the truck ba.cking-up problem used as exam-

ples. Then we analyze the globally stability property of DT based RIM systems 

by a method based on Liapunov's direct method and show that their design 
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Chapter 13 Introduction 

can be based on linear system theory. Finally, we elaborate the stability anal-

ysis method to piecewise-nonlinear systems and show that the method can be 

applied to a class of conventional fuzzy system by establishing an equivalent 

piecewise-polynomial representation of it in real domain. 

In Chapter 7, we conclude the thesis by giving a brief summary on what have 

been done and their significance. 

2 



Chapter 2 

Fuzzy Logic inference 

In this chapter, we introduce the basic idea of conventional fuzzy inference (CFI). 

Fuzzy set theory is reviewed and the fuzzy inference meclianism is introduced 

with an example. Some of the materials in this section are obtained from [45 . 

2.1 Fuzzy logic 

2.1.1 Fuzzy sets 

The concept of fuzzy set was originally introduced by L. A. Zadeh [6] as a 

generalization of the idea of an ordinary or crisp set. A fuzzy set can be seen as 

a predicate whose truth values are drawn from the unit interval, I 二 [0,1], rather 

than the set {0 ,1} as in the case of an ordinary set. Thus the fuzzy set has as 

its underlying logic a multivalued logic. The fuzzy set allows for the description 

of concepts in which the boundary between having a property and not having 

a property is not sharp. A binary valued characteristic function (membership 

function) //^(u) can be used to represent whether the object u {u e U where U 
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Chapter 2 Fuzzy Logic inference 

N M 

_ 
(a) (h) 

Figure 2.1: Fuzzy Sets: (a) Triangular (b) Trapezoidal 

is the universe of discourse) belongs to the set A or not. 

AU — 0 , 1 (2.1) 

[ 1 if ue A = < 
0 otherwise 

\ 

Definition 2.1 Fuzzy set 

A fuzzy set in a universe of discourse U is characterized by the membership 

function (Ia, which takes values in the interval [0, 1] namely [Ia .. U — [0 ,1. 

A fuzzy set A in U may be represented as a set of ordered pairs of a generic 

element u and its grade of membership ^a as: 

A 二 (2.2) 

i.e. the fuzzy variables u take on fuzzy values f i A � . 
• 

When the membership space contains only two points 0 and 1, A is a non-

fuzzy (crisp) set, and /2a(u) is identical to the characteristic function of a non-

fuzzy set. Elements with zero degree of membership are not usually listed. When 

16 



Chapter 2 Fuzzy Logic inference 

A is a discrete, finite, fuzzy set it may be expressed as 

A 二 + …. + /iA(Wn)/Wn (2.3) 
n 

= X l / M � M (2.4) 
i=i 

where “ + ” denotes the set theory union operator rather than arithmetic sum. 

The oblique line “/，，does not denote division, instead it denotes a particular 

membership function to a value on the universe of discourse. If u is continuous 

then the fuzzy set may be written as 

A= [ fiA{u)/u (2.5) 
J U 

Thus the grade of membership, iia{U) can be characterized by either a set of 

discrete values or a function. In the following, we will introduce some definitions 

used for describing the characteristics of a fuzzy set. 

Definition 2.2 Normal and subnormal fuzzy set 

A fuzzy subset A ofU is called normal if there exists at least one element uGU 

such that fiA{u) = 1. A fuzzy set that is not normal is called subnormal. 
• 

Definition 2.3 Height of fuzzy set The height of a fuzzy set A is the 

largest membership grade of any element in A. It is denoted Height{A). Hence 

Height{A) 二 ^ normal fuzzy set can thus he defined as one with 

height equal to one. 
• 

Definition 2.4 Fuzzy support Assume A is a fuzzy subset ofU; the support 

of A, denoted Supp{A), is the crisp subset ofU whose elements all have nonzero 

17 



• Chapter 2 Fuzzy Logic inference 

membership grades in A. 

Supp{A) = {u\fXA{u) > 0 and u e U} (2.6) 

• 

Definition 2.5 Fuzzy core Assume A is a fuzzy subset of U; the core of 

A, denoted Core{A), is the crisp subset of U consisting of all elements with 

membership grade one. 

Core{A) 二 { 如 ⑷ 二 1 and u �� (2.7) 

• 

2.1.2 Operations on fuzzy sets 

The following are the definitions of the most widely accepted operations on fuzzy 

sets. 

Definition 2.6 Union Assume A and B are two fuzzy subsets of U. Their 

union is a fuzzy subset C of U, denoted C = AUB, such that for each u eU 

fic{u) = Max[fiA{u),fJiB{u)] 二 f^A{u) V fiB{u) (2.8) 

• 

It is common practice in the fuzzy set literature to use V as the Max operator. 

Definition 2.7 Intersection Assume A and B are two subsets of U. Their 

intersection is a fuzzy subset D ofU, denoted i：) 二 A fl 5，such that for each 

ueu 

10 
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• Chapter 2 Fuzzy Logic inference 

fiD{u) = Min[iiA{u), fiB{u)] 二 八 i M u ) (2.9) 

• 
Definition 2.8 Relative complement Assume A and B are two fuzzy subsets 

ofU. The relative complement of B with respect to A, denoted E == A - B， 

is defined as the fuzzy subset E of U where for each ueU 

IIE{U) = Max[0,fiA{u) - {J^B{U)] (2.10) 

• 

Definition 2.9 Complement or negation Assume A is a fuzzy subset ofU. 

The complement or negative of A, denoted A, is defined as the fuzzy subset 

A = U — A; hence for each u e A 

〜 ⑷ 二 (2.11) 

• 
Thus the negation is the complement of A with respect to the whole space U. 

2.2 Fuzzy Inference 

The fuzzy inference process can be viewed as a complex functional relationship 

between relevant variables. In addition, the form used to represent this rela-

tionship involves the use of if-then fuzzy rules involving vague predicates. The 

collection of these rules is called the knowledge base. We shall use the term rea-

soning or inference to indicate the process in which we are given the values 

of the inputs, the antecedent variables, and use these in conjunction with our 

11 



• Chapter 2 Fuzzy Logic inference 

knowledge base to obtain the value of the consequent. Formally, we represent 

the rule-base in the following format: 

IF Ui is B n AND U2 is B ^ THEN V is Di 

ALSO 

ALSO 

IF Ui is Bmi AND U2 is Bm2 THEN F is Dm 

Ui, U2, and V are fuzzy variables, Ui and U2 are the input variables, and V is 

the output variable. B n ,氏2 , and Di are linguistic values (labels) represented 

as fuzzy subsets of the respective universes of discourse Xi, X2, and Y. The 

membership functions of these linguistic values are denoted Bii{xi),双2(2^2), 

and Di{y). If the inputs to the system are the values Ui 二 a：；̂ and U2 = 

then we are faced with the problem of determining the appropriate value of the 

output variable V. This is the problem we called fuzzy reasoning or inference 

which consists of the following steps: 

1. Find the firing level of each of the rules. 

2. Find the output of each of the rules. 

3. Aggregate the individual rule outputs to obtain the overall system output. 

Let us consider these steps in turn. We first consider the determination of 

the firing level of the individual rules. The firing level of a rule is determined 

by the satisfaction of each of the antecedent components. The level of matching 

between the linguistic label Bn and the input value x^ is determined as the 

membership grade of x^ in the fiizzy set representing Bn, hence we get Bii {xl ) 

12 



Chapter 2 Fuzzy Logic inference 

as the level of matching for the first antecedent. Similarly the level of matching 

of the second antecedent is Bi^ixl). We must now combine these two values to 

obtain the firing level of the rule. 

Noting the conjunctive connecting AND between the inputs Ui and Ih in 

the antecedent part of each individual rule 

IF Ui is Bii AND Ih is 双2 THEN V is A 

we combine these two levels of matching using an AND aggregation. In 

particular, our initial choice is to use the Min (A) 

Ti = Bi^{xl) A Bi2{xl) (2.12) 

where r,- is called the degree of firing (DOF) of the i认 rule with respect to the 

input values Ui = xl and U2 = 

The DOF n takes values from the unit interval; it characterizes the truth-

fulness (relevance) of the antecedent part of the rule, different values of n 

that are related to different levels of relevance between the measured value x\ 

and and the conditions associated with the linguistic labels Bn and 双-2. 
It， 

If the input variables take fuzzy values, that is, Ih 二 Ai and Ih 二 A?, 

where Ai and A2 are fuzzy subsets of the universes and X2, then the level of 

matching between input fuzzy value and the linguistic label Bn is obtained 

from the conditional possibility Poss{Bii\Ai) = Marcii[氏2(幻）八 乂2(工2). 

The DOF of the i认 rule in this case is: 

Ti = Poss{Bii\Ai) A Poss{Bi2\A2) (2.13) 

The process is illustrated in Fig. 2.2. 

16 



Chapter 2 Fuzzy Logic inference 

Bii(Xi) B 丨 2(x’） 

Figure 2.2: Calculation of DOF n of the rule: (a) The input variables of the 
FLC take crisp values Ui = rrj： and U2 二 ：^。(b) The input variables of the FLC 
take fuzzy values Ui = Ai and U2 二 M . 

The next step in the process is the determination oif the individual rule 

output, which we shall denote as Fi. The degree of firing n of a rule interacts 

with its consequent A. to provide the output of the rule, Fi, a fuzzy subset over 

the output universe Y. The formulation used to determine how the r,- and fuzzy 

set Di interact to form the rule output is called a fuzzy implication. The most 

commonly used method for inferring the rule output is the so-called Mamdani 

method. In the Mamdani method, the output fuzzy set Fi is obtained by an 

AND of the DOF r, and the consequent fuzzy set A： 

F人y) 二 Ti 糊 (2.14) 

The third step in the process is the aggregation of the individual rule outputs 

to obtain the overall system output, F , also a fuzzy subset over F . The indi-

vidual rule outputs are aggregated using a disjunctive connective ALSO. Thus 

the fuzzy output F inferred by the rule-ba^e is 

16 



Chapter 2 Fuzzy Logic inference 

F{y) = \/iFi{y) = V,(ri A Di{y)) (2.15) 

For use in the fuzzy control environment a fourth step must be added. We 

need a crisp single value to be the input to the controlled system. The output 

fuzzy set F inferred by the rule-base cannot be used directly as input to the 

controlled deterministic system. In order to obtain a crisp value from the output 

of the Fuzzy logic controller (FLC) we are faced with the problem of selecting 

one element y* from the universe Y to represent the value to implement. This 

process of selecting one representative crisp element based upon the knowledge 

that the fuzzy value of the output variable, V is F, is called defuzzification. 

Two often-used methods of defuzzification are the Center of Area (COA) 

method and the Mean of Maxima (MOM) method. The COA method defines 

the defuzzified value of a fuzzy set F as its fuzzy centroid: 

* _ lYyF{y)dy (2.16) 
“一 fy F(y)dy 

The calculation of the COA defuzzified value is simplified if we consider finite 

universe of discourse Y and thus a discrete membership function F{y): 

The MOM method determines the defuzzified value, as a mean of all values 

of the universe of discourse, having maximal membership grades: 

y* 二 i E yj (2.18) 
q jeJ* 

16 



Chapter 2 Fuzzy Logic inference 

where J* is the set of elements of the universe Y which attain the maximum 

value of F{y) and q is the cardinality of J*. 

( 

16 



Chapter 3 

Weaknesses of fuzzy inference 

In this chapter, we try to state out the weaknesses of fuzzy inference which 

initiates our study of the newly proposed Real Intelligent Mapping approach. 

The main drawbacks and doubtnesses of using fuzzy inference are discussed in 

the following subsections. 

3.1 Is the use of linguistic fuzzy if-then rules 

and membership functions a good means 

of representing human expert knowledge? 

The original method of constructing fuzzy models is based upon what we shall 

call the direct approach. In this direct approach the system is first described 

linguistically using terms from natural language and then translated into the 

formal structure of a fuzzy model with the aid of the representational power of 

the theory of approximate reasoning. The linguistic description is constructed 

17 



Ch apter 3 Weaknesses of fuzzy inference 

subjectively on the basis of the a priori knowledge about the system. Thus the 

source for deriving the linguistic rules is the expert's direct knowledge of the 

system. It is this knowledge that is expressed in the form of logical rules. This 

method can be seen as a qualitative version of the traditional model building 

used in system science [35]. This direct approa.cli to fuzzy modeling, based solely 

upon the use of experts' description of the functioning of the system, has some 

inherent limitations. 

Human controller is a very complicated learning machine. The knowledge 

of human controller is stored in huge amount of interconnected neurons. The 

data storage area (brain) is connected to sensor organs (sensors) and muscles 

(actuators) to form a complete feedback controller. When the human is viewed 

as an controller, we can imagine that in fact 皿merous input-output relations 

(control surfaces) are stored in it and each of them is responsible for a particular 

control task. For instance, when an human being is learning how to back-up a 

truck. At the first stage lie is not yet an expert in performing that particular 

task. The data (or the control surface) in this brain at this instance is inadequate 

for him to back-up the truck well. During the learning process, he percept real 

input data (e.g. speed, position and direction of the truck) and use the pre-

mature data stored in his brain to give an output (i.e. steering angle). From the 

error (difference between the ideal state and the actual state of the truck), the 

human controller adaptiveiy update the control surface in his brain by changing 

the weights stored in the neurons. After a number of trial-and-errors, the control 

surface is well established and the human becomes an expert in backing-up a 

truck. Put in other words, from the experience and using intuition, people build 

mental models in their minds. If a human is an expert in a particular task, 

18 



Ch apter 3 Weaknesses of fuzzy inference 

广 � i h 。 巧 位 I 
(m^m^rj)：.---……aV/sVSTE^Sl ： 

、 

����� i \ ： 
^^^^ t � � � T — 

fe >rtaJ modclV ^ .^Malhcmaiical mĉ e! J 

^ ^ 

Fuzzy modeling process 
RIM modeling process 

^ Conventional modeling process 

Figure 3.1: 3 different means of system modeling 

the mental model formed in his brain for that task can be regarded as expert 

knowledge. That particular model or input-output relation is the primitive 

“optimal” function we are trying to recover in the expert knowledge extraction 

process. The process of fuzzy system modeling from human expert knowledge 

can be stated as follows: 

1. provide a structure of the model. This process includes determining the 

number of input and output variables and partitioning the input output 

variables into fuzzy sets. 

2. extract expert knowledge by means of linguistic fuzzy if-then rules and 

membership functions. 

3. integrate the extracted knowledge and the model structure to form the 

final input-output relation. 

18 



Ch apter 3 Weaknesses of fuzzy inference 

We now pose a fundamental question: Is the use of linguistic fuzzy if-then -

rules and membership functions a good means of extracting the primitive human 

expert knowledge (mental models stored in his brain)? The answer to this 

question is negative. When the expert is asked to express his knowledge in 

terms of linguistic fuzzy if-then rules, he try to formulate a verbal model from the 

mental model See Fig. 3.1. This process is very subjective as different experts 

(assume that they have the same mental model) will give out different sets of 

fuzzy if-then rules and membership functions. Besides, an expert in controlling 

a plant may not be an expert in translating his implicitly stored knowledge 

to linguistic if-then descriptions. As a result, the linguistic fuzzy if-then rules 

and membership functions given out are only very coarse approximation of the 

primitive knowledge. Furthermore, the ability of the human expert to give out 

precise linguistic if-then descriptions declines as the number of set levels and the 

number of variables increase. It may be quite easy for an expert to give out a 

linguistic if-then rule such as “If A is L A R G E then B is …”.The expert may 

also give out the rule "If A is QUITE L A R G E and B is QUITE S M A L L 

then C is ...” without much difficulty. However, it may not be so easy for the 

expert to decide the consequent of the following rule: 

"If A is A LITTLE BIT M O R E T H A N QUITE L A R G E and B is 

QUITE SMALL and C is A LITTLE BIT LESS T H A N SMALL then 

D is ..." 

The situation becomes even worser when the number of set levels and antecedent 

variables increases. Because of this, the accuracy of fuzzy modeling may not im-

prove with increasing number of linguistic fuzzy if-then rules given. To conclude, 

the use of linguistic fuzzy if-then rules and membership functions is not a good 

18 



Ch apter 3 Weaknesses of fuzzy inference 

means of extracting the primitive human expert knowledge. Then, does there 

exist a better method? The answer is positive. We argue that it is better to 

obtain sampled input-output real data during real time control by the expert. 

The reason is that the real data points we obtained is actually located on the 

"optimal" mental model (ignore the noise in the sampling process). This expert 

knowledge extraction method can be regarded as a process of “sampling,，, not a 

process of "approximation" as in conventional fuzzy case where human experts 

give out coarse linguistic fuzzy if-then descriptions. Unlike the fuzzy case, the 

accuracy of modeling in this case can certainly be improved by taking more sam-

ples and the modeling problem reduces to an ordinary non-fuzzy approximation 

inference. It can be based on the well developed approximation theory. 

3.2 Role of conventional fuzzy inference doubt-

ful if the expert knowledge is in the form 

of sampled input-output data 

The second direction in the development of fuzzy models, inspired by classic 

systems theory and recent developments in neural networks, is based on the use 

of input-output data. In the language of systems theory, this approach can be 

regarded as process of a s3^stem identification. 

The identification of a fuzzy system consists of two major phases. The first 

phase is the identification of the structure of the fuzzy model (structure identi-

fication) and the second is the estimation of the parameter values of the fuzzy 
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model (parameter identification). Broadly speaking, structure identification in-

cludes the determination of the input and output variables, the relationships 

between the variables (the structure of the rules), the number of rules in the 

rule base, and the partitioning of the input and output variables into fuzzy sets. 

In general, structure identification is a difficult and extremely ill-defined process, 

more an art than a science, and not readily amenable to automated techniques. 

Wang and Mendel [9] [36] propose a method to generate fuzzy if-then rule 

from numerical real data. Their method first divide the input and output spaces 

into fuzzy regions. This involves the design of membership functions for each 

fuzzy variable. Then the consequent of each fuzzy rule is determined by least-

squares from the data points. We observe that in their method, the membership 

functions are defined by the system designer, not by the expert who gives out 

primitive information. In this case, the membership functions can at the most 

be considered as a means to provide an extra degree of freedom to adjust the 

system, not as a piece of raw information. Also, when dealing with this type 

of information by fuzzy approximation, as the structure of the resulting fuzzy 

model is limited by the limited alternatives of membership function shapes and 

inference mechanisms, the resulting system is definitely nonlinear and hard to 

be analyzed by conventional methods. As a result, it is crystal clear that in this 

situation, it is more direct to do .the approximation in the real domain, instead 

of assigning membership functions in an ad hoc manner. 
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3.3 Computational requirements 

We have to distinguish between two types of computation time when addressing 

this issue: (1) The computation time required when the system model is devel-

oped; (2) The computation time required when the controller is actually used 

in real time. It is clear that the first type of computation time is actually of 

little importance in developing a system since all the time is used in the system 

design stage. It will not affect the actual system performance. On the other 

hand, the computation time when the system is actually used in real time is 

very important in accessing system performance. In fuzzy inference systems de-

sign, the computation time used in the system modeling stage is negligible since 

the system model is composed of (1) expert fuzzy if-then rules; (2) membership 

functions; (3) an inference mechanism. They can be considered as separate in-

formation and essentially zero computation time is required to derive them since 

they are given by human experts. However, there is considerable time required 

when the system model is actually used in real time inference. Every input has 

to pass through the following three stages: (1) Fuzzify the real input data via 

their respective pre-determined membership functions; (2) Perform inference in 

the fuzzy domain following a set of if-then rules; (3) Return a real inference re-

sult by defuzzifying the fuzzy consequent. On the contrary, if the system model 

is developed from real data in real domain, the situation is completely different. 

First, there may be considerable time required in developing the system model 

and representing it by function(s) especially when the system dimension is high. 

However, this time is used in the system modeling process and is not related to 

the actual system performance. When the system is used in real time, the input 
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has to pass through only one stage: Substitute the input to the appropriate 

real fuiiction(s) and get the respective output. It is crystal clear that this type 

of inference processes use less time than the fuzzy one which consists of three 

stages (Actually, we have compared our RIM method with the fuzzy method 

and proved our assertions). 

3.4 Low transparency 

In fuzzy inference, because of the fact that the expert knowledge extraction pro-

cess by means of linguistic descriptions is imprecise and the fact that design of 

fuzzy controllers is usually performed in an ad hoc manner, the preliminary con-

troller constructed usually requires fine adjustment. This process involves the 

tuning of rule consequences or the membership functions. However, it is hard 

to justify the effect of parameters' change on the final control surface because of 

the very nonlinear fuzzy inference mechanism. As a result, the tuning process 

is a very random and trial-and-error process. The large degree of tuning free-

dom provided by fuzzy inference (e.g. different width and shape of membership 

functions, number of set levels, consequences of rules) makes this process very 

difficult if the dimension of the problem is high. Besides, the fuzzy controller 

constructed for the nominal plant may later perform inadequately if significant 

and unpreductable plant parameter variation occur. One may argue that we 

can apply adaptive fuzzy inference to solve the problem. However, as mentioned 

before, because of the very nonlinear fuzzy inference mechanism acting as a bar-

rier between the system parameters and the final control surface, it is hard to 

define an optimal adaptive law. 

18 



Ch apter 3 Weaknesses of fuzzy inference 

3• 5 Analytical difficulties 

Given a control system, the first and foremost question about its various prop-

erties is whether it is stable, because an unstable control system is typically 

useless and potentially dangerous. Stability analysis of fuzzy system has been 

studied for a period of time. Braae and Rutherford [27] [28] proposed a linguistic 

phase plane trajectory to analyze and improve the stability of fuzzy systems by 

exchanging the control rules. Kickert and Mamdani [26] use the describing func-

tion method to evaluate the stability of fuzzy control systems. B. Kiszka [29 

introduced the energetistic stability of fuzzy dynamic systems and developed an 

entropy for fuzzy system. Besides, De Glas [24] and A. Kania [23]. use the con-

cept of a stability for analyzing fuzzy systems, in which the distinction between 

stability and instability is removed and a real value between 0 and 1 is used 

to describe the “degree of stability,，of a fuzzy system. However, all the above 

stated methods are in fact quite restrictive and have only limited applicability. 

The principal reason is that the design of fuzzy controllers has relied on ad hoc 

techniques. That is, the controllers were not synthesized using an underlying 

theory but were arrived at by trial and error. Also, by allowing the state of 

the system to be described by a fuzzy set, notions of unboundedness become 

ambiguous. The other reason is that fuzzy system is itself definitely nonlinear. 

The limited variety of membership functions and inference mechanisms imposes 

structural restrictions on the final model. We actually show that the most lin-

ear type of fuzzy controller (i.e. using triangular memberships functions and 

algebraic product as the logical AND operation) has an equivalent piecewise-

polynomial representation in real domain. This limit the applicability of linear 
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system theory to their analysis and design. All the above hinder the use of 

conventional control analysis techniques (e.g. Liapunov's method) for designing 

and analyzing fuzzy systems. 
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Chapter 4 

Real Intelligent Mapping 

Due to the reasons stated in the previous chapter, we argue that it is better to 

obtain sampled input-output real data points during real time control by the 

human expert instead of asking the expert to give out linguistic fuzzy if-then 

rules and membership functions. The inference mechanism is now represented 

by one or more functions directly relates the real input and output; the usual 

fuzzification and defuzzification steps are eliminated. The new formulation is 

named Real Intelligent Mapping (RIM)[1] as it retains the spirit of translating 

the human expert knowledge into computer algorithms. Obviously, the problem 

is now an ordinary non-fuzzy approximation inference and it can be based on 

the well developed approximation theory. Compared with the fuzzy inference 

the new system is more transparent and is more easy to implement. We now 

states the idea of Real Intelligent Mapping precisely, we write: 

X 二 [XlX2…X„^]T, (4.1) 
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a real vector of R饥 x Rf" to represent the set of m sampled input, with each 

input data point in n-dimensional: 

Xi == [:rii:r，.2 . . . Xin]. (4.2) 

and 

y = … ( 4 . 3 ) 

a real vector of R饥 to represent the set of m sampled output, with each output 

corresponds to one of the m input. 

Formulated in this way, the set of m input-output sampled data points for 

system modeling can be represent by the vector [x y . 

From the sampled input-output data points, we are going to identify one or 

more functions / i , / 2 , . . . ’ 力 that "best" represents the mapping between x and 

y , where each / is a mapping from to R. Afterward, when we are given a 

input X' 二 . •. < ] , the output y' can be inferred as: 

y' 二 P(x') (4.4) 

where ^ is a mapping from W to R and it takes the role of "combining" the 

output of the j functions /i， /2 ’ . . .， / i . When j = 1, we have g = f — the 

system is represented by one real equation. When j > 1, we have jointed system. 

We see that a RIM system is completely characterized by the functions fi and g, 

and the task of design is to determine these two functions by whatever means. 

We now restate our problem: Given m sampled input-output data points, the 

task is to identify one or more functions / i , / 2 , … , f j that “best” represents the 
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mapping between the input and output together with g to combine the output 

of fs giving the final output. There exists many alternatives to this problem. 

The following are two examples: (1) As we mentioned before, the mathematical 

representation of the "optimal" function representing the expert knowledge is 

very complicated and is “unknown” to us. So we try to take sampled data 

points and from the characteristics that the unknown "optimal" function should 

possess, find a "simpler" function that is "close" in some sense to it; or (2) We 

find a function which interpolate all the sampled data points. There exist many 

methods from approximation and interpolation theory to solve the problem. For 

the first example, regression is a well-known technique. For the second example, 

the data points can be interpolated by polynomials or spine functions. Whereas 
I 

the choice is purely the designer's favor, a common question is how we can 

quantify the goodness of the inference provided by the designed function. 

Many applications require "on-line" identification instead of "off-line.，，An 

identification method is said to be of the “off-line” type when one collects a 

large amount of input and output data for the system which may be stored in a 

computer or recorded in some manner. These date are then processed in a batch 

to estimate the parameters of the model and obtain the best fit according to a 

prescribed cost function. In off-line identification, there is a greater flexibility 

in selecting computational methods without any restriction on computing time. 

As a result, the accuracy of the estimates can be made fairly high. However, we 

can also model the system as long as the sampled data points are available. An 

identification is said to be “on-line” type if it satisfies the following conditions: 

1. all the data need not be stored 
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2. a recursive algorithm is used for adjusting the estimates of the parameter 

after each sampling instant 

3. the amount of computation required for “model adjustment" is a fraction 

of the sampling period. 

A large variety of methods have been applied to system modeling, both on-

line and off-line. The methods can be classified in many ways; one scheme for 

classification is given below. 

1. Classical Methods: (mostly off-line) 

(a) Frequency Response Identification 

(b) Impulse response identification by deconvolution 

(c) Step response identification 

(d) Identification from correlation functions 

2. Equation-error Approach: (batch-processing) 

(a) Least-squares 

(b) Generalized Least-squares 

(c) Maximum likelihood 

(d) Minimum variance 

(e) Gradient Methods 

3. Model Adjustment Techniques: 

(a) Recursive Least-squares 
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« 

(b) Recursive generalized least-squares 

(c) Instrumental variables 

(d) Bootstrap 

(e) Recursive maximum likelihood 

(f ) Recursive correlation 

(g) Stochastic approximation 

Now we ask a question: What characteristics should a "good" approximation 

possess? The following are two common requirements: 

1. The data points should be approximated in a way that the approximation 

between the data points should not be too oscillatory. There is a common 

problem when we try to interpolate a large number of data points by 

a polynomial function. In that case the high order requirement of the 

polynomial will makes the approximation between the data points very 

oscillatory. 

2. The structure of the resulting system should not be too complicated or 

nonlinear which may hinder further analysis of the system. In other words, 

we try to find a simple method to approximate them. 

From the above, we see that the choice of using which particular approxi-

mation method is usually problem dependent. In other words, a method that 

works well for one problem may not be so efficient for another problem. To 

choose a suitable method to solve a particular approximation problem, one first 

need to get some knowledge of the quantity, the dimension, and the geometric 
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distribution of the data to be approximated. This may be done by some statis-

tical methods. However, this is not always possible especially when there are 

numerous data points to be approximated or when the dimension of the problem 

is high. 

In the next chapter, we introduce the use of Dirichlet tessellation for the 

implementation of RIM systems, which is general enough to attack approxima-

tion problems regardless of data distribution. Roughly speaking, the method 

partitions the state-space data points into simplexes to form the input-output 

relation and then represents each simplex by a linear equation. The resulting 

approximation is piecewise-linear and it is in fact a kind of linear spine interpo-

lation approximation inference. 
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Chapter 5 

Design of Real Intelligent 

Mapping Systems Using 

Dirichlet Tessellation 

RIM has already been used to solve the well-known truck backing-up problem 

by using linear regression [1]. However, linear regression is only one of the 

many approximation methods that can be used to design a RIM system. To 

make the RIM systems design toore problem independent, we introduce the 

use of Dirichlet tessellation for the implementation of RIM systems, which is 

general enough to attack approximation problems regardless of data distribution 

(Section 5.1). Roughly speaking, the method partitions the state-space data 

points into simplexes to form the input-output relations and then represents each 

simplex by a linear equation. The resultant approximation is piecewise-linear 

which makes qualitative analysis of the RIM system possible. Also, real time 

computation time is saved when compared to the conventional fuzzy inference 
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since the input has to pass through only one stage to get the desired output, 

namely, substitute the input value to the appropriate real function. We propose 

a method for their identification which is optimal in the sense of Least-Squares 

(Section 5.2). The method can handle different types of expert knowledge and it 

has been used successfully to solve some well-known problems such as balancing 

a,n inverted pendulum, inverted pendulum with cart, truck backing-up, and 

chaotic time series prediction (Section 5.3). Also, an interactive CAD platform 

has been developed to enhance the RIM design based on our proposed method 

(Section 5.4). 

5.1 Dirichlet tessellation for function approx-

imation 

Dirichlet tessellation [4] [5] was proposed by Rogers in 1964 and has been used 

extensively in finite element analysis. Before showing how it is used for func-

tion approximation, we first define a function approximation problem as fol-

lows. Given: a set of data points represented by an ordered set of vectors in 

A:-dimensional space. The task is to identify one or more functions that best 

approximate all the data points in a suitable sense. 

The idea of using Dirichlet tessellation for function approximation is as fol-

lows. Suppose n data points in a dimensional space are to be approximated. 

We first project the n data points onto the input space to give n {k - 1)-

dimensional data points. Then we try to triangulate the n projected data points 

to form packed simplexes without any overlapping where each simplex is made 

up of k data points (See Fig. 5.1 for /c 二 3 and n == 20 where the simplexes in 
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Chapter 5 Design of Real Intelligent Mapping Systems Using Diriclilet Tessellation 

i i 1 1 1 — ^ I ‘ ‘ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 5.1: Triangulation of 20 random data points in the 2-D input space 

this case are triangles and the points are generated at random). 

For the case ib 二 3, the 3 data points in the 2-dimensional input space 

constituting each triangle in fact produce a plane in the original 3-D space 

before projection. We then represent each such plane by a linear function 

y = aiXi + a2X2 + <^3 
(5.1) 

where y is the output, are the inputs and a's are the parameters of the 

function which can be easily determined from the three true data points making 

up the function. Generally, for the /c-dimensional case, the equation becomes: 

y = aiXi + 0:2^2 + ... + o^k-
(5.2) 

As a result, the set of data points is approximated by a set of linear functions 

and the resulting system is piecewise-linear and continuous at the boundaries. 

Fig. 5.2 shows the resulting system for the A： 二 3 and n 二 20 case. When the 
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0.2、 

0 0 

Figure 5.2: Control surface representing input-output relation for the 20 random 
data points 

approximation method stated a,bove is used for control s3,stem modeling, the 

finalized input-output relations will be made up of linear functions. The infer-

ence process becomes a simple substitution of input values into the appropriate 

function to obtain the desired response. 

The rest of this section summarize the properties and the algorithm of tes-

sellation 

First, let us consider the 2-D case, the higher-dimensional case will be dis-

cussed later. Suppose the positions of n distinct points in the plane are given 

as data. We put into correspondence to each data point .T a territory, i.e., the 

part of the plane, in which the points are closer to x than to any other data 

point. The resultant territories form a pattern of packed convex polygons and 

is called Dirichlet tessellation of the data points. Fig. 5.3 shows the Dirichlet 

tessellation in bold lines. Each segment of the territory boundaries is in fact the 
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勢-
Figure 5.3: The Dirichlet tessellation (dcAted lines) and Delaunay triangulation 
(solid lines) for a small-scale configuration 

perpendicular bisector of the line joining two data points. If all pairs of data 

points sharing the same territory boundary segment are joined by straight lines, 

a pattern of packed triangles will be formed. The process is called Delaunay 

triangulation. Fig. 5.3 shows the Delaunay triangles in faint lines. 

In two dimensions three territorial boundaries meet at a vertex. Each vertex 

is located at the circumcenter of a Delaunay triangle formed by three data points. 

As a result, a vertex must be equidistant from all three of its forming points. 

In the tessellated pattern, each Delaunay triangle will have associated with it a 

unique vertex and vice versa. The vertexes are useful in constructing the data 

structure for storing the tessellated pattern. 

In a /c-dimensional Euclidean space the Delaunay triangles become simplexes 

and each simplex is made up with k + 1 data points. Each vertex in the tessel-

lation is where the A: + 1 territories meet and is the center of the hypersphere 
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Figure 5.4: 3-dimensional Delaunay tetrahedron and its associated vertex 

passing through all the data points constituting the associated simplex. Each 

contiguous pair of points is joined by a line that is an edge of some Delaunay 

simplexes. The territorial boundary shared by the contiguous point pair is a 

convex polygon lying in the {k — l)-dimensional hyperplane that bisects that 

edge. In three dimensions the territory of each data point is a convex polyhe-

dron. Fig. 5.4 shows a three-dimensional vertex and its associated Delaunay 

tetrahedron. 

It is important to store the vertex structure of the tessellation in the form 

of a computer data structure before Diriclilet tessellation can be used to solve 

problems. Green and Sibson [5] store the Delaunay triangulation in the form of 

lists of contiguous points for each vertex. The following explains how they store 

the Delaunay triangulation in the two-dimensional case. The /c-dimensional case 

is in fact a simple generalization of the two-dimensional case with extended lists. 

Suppose it were desired to store the vertex structure of the tessellation in Fig. 

38 



Chapter 5 Design of Real Intelligent Mapping Systems Using Diriclilet Tessellation 

5.5. The eight data points in the plane give rise to seven vertices, Vi, •. . , V7. 

The territorial boundaries that extend to infinity can be considered as terminat-

ing in a vertex labeled Each vertex is the circumcenter of three data points 

and a list of those points could be recorded for each vertex. In addition each 

vertex points to three other vertices, each one opposite one of the vertex's form-

ing points. It is thus possible to record the structure by constructing two lists, 

each of length three. For each vertex in the structure, one list holds the forming 

points of the vertex (Delaunay triangles) and the coordinates of the points in 

the space are stored, the other holds the opposite neighboring vertices (Table 

5 . 1 ) and they are stored as in terms of vertex numbers (their exact physical 

locations in the space need not be stored). In k dimensions each vertex will 

have k + 1 forming points and k-\- 1 associated neighboring vertices. With this 

data structure, we get all information concerning the tessellated pattern. 

Vertex forming points neighboring vertices 

1 2 3 1 2 3 

Vi Pe Pa Ps <t> Ve 

V2 Pi Pa P3 Vs 6 Vj 

Vs P2 Ps Pa V2 V4 Vs 

V4 P2 P5 Pa Vi V3 小 

Vs Pi P3 P2 Vz <l> 4> 

Ve Pe Ps Pa V, Vi <!> 

Vj Pi Ps Pa Ve 小 

Table 5.1 
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Figure 5.5: The algorithnj for finding the territory of point Q 

If it is possible to record the structure in the manner outlined above, then 

any number of points can be tessellated and triangulated by starting with a 

simple structure and building upon it. The starting pattern is the Delaunay 

simplex formed by the first k - ^ l points. This will give a tessellation containing 

one real vertex all of whose neighboring vertices will be (j). 

Suppose we wish to insert a new point (Q in Fig. 5.5) within the current 

convex hull of the data points. The territory we wish to find is indicated by 

the dotted lines. The following algorithm is obtained from A. Bowyer [4] which 

shows clearly the tessellation procedure: 

1. Identify a vertex currently in the structure that will be deleted by the new 

point (say V4). Such a vertex is any that is nearer to the new point than 

to its forming points. There will always be at least one such vertex, as 
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the vertex corresponding to the Delaunay simplex in which the new point 

lies will always be deleted and the Delaunay simplexes completely fill the 

convex hull of the currently included points. 

2. Perform a tree search through the vertex structure starting at the deleted 

vertex looking for others that will be deleted. This is an easy matter if the 

data are stored as indicated in Table 5.1. The result will be a list of all 

the vertices deleted by the new point Q. In this case the list will be: V4, 

V3, Vs. 

3. The points contiguous to Q are all the points forming the deleted vertices: 

4. An old contiguity between a pair of those points will be removed (P2 — Pa 

say) if all its vertices V3 are in the list of deleted vertices. 

5. In this case the new point has five new vertices associated with it: Wi, W2， 

IV3, W 4 ， C o m p u t e their forming points and neighboring vertices. The 

forming points for each will be the point Q and k of the points contiguous to 

Q. Each line in the tessellation has k points around it (the line V3-V2, for 

example, is formed by P3 and P4). The forming points of the new vertices 

and their neighboring vertices may be found by considering vertices pointed 

to by members of the deleted vertex list that are not themselves deleted, 

and finding the rings of points around them. Thus M̂ s points outwards to 

V2 from Q and is formed by P3, Pa, Q-

6. The final step is to copy some of the new vertices, overwriting the entries 

of those deleted to save space. 
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5.2 Identification of a D T based R I M system 

by least-squares 

When the information obtained for the design of a DT based RIM system consists 

of sampled input output (state-control) pairs which are recorded from successful 

control of the system, the quantity of sampled data points may be very large. 

Direct tessellation of the data points will result in numerous resulting linear 

functions. The following introduce a means to limit the number of generated 

functions. The method ensures that the resulting approximation is optimal in 

the sense of Least-Squares and the approach can be regarded as process of system 

identification. The identification of a DT based RIM systems model consists of 

two major phases. The first phase is the identification of the structure of the DT 

based RIM model (structure identification) and the second is the estimation of 

the parameter values of the model (parameter identification). Broadly speaking, 

structure identification includes determination of the input and output variables, 

the relationships between the variables , the 皿mber of linear functions, and the 

partitioning of the input and output variables into regions. Afterward, the 

parameters of the linear functions building up the system are found by least-

squares. 

As mentioned before, a Dirichlet tessellation based RIM controller is made 

up of piecewise-linear equations'without any overlappings. Each of the linear 

equation can be represented as: 

y 二 ai:ri + a'2X2 H h Q^fc (5.3) 

where k determines the dimension of the input vector. To illustrate the idea of 
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using least-squares approximation on DT based RIM controller, we first assume 

that k 二 2. The resulting system is made up of piecewisely connectly straight 

lines and each of them can be represented by a linear equation: 

y = ax + b (5 .4 ) 

Assume that n data points are given as input, direct tessellation of the data 

points will result in a system consisting of n - 1 linear equations. This is not 

very practical when n is large. Our task is first to partition the input space into 

m regions (structure identification) and then to approximate the n data points 

by another m + 1 data points locating at the region boundaries by tessellating 

the m + 1 data points. In other words, The location of the m + 1 data points 

in the input domain should be given beforehand. Afterward, the task will be to 

find the output values of the m + 1 data points such that the resulting tessellated 

system is globally optimal in the sense of least squares. The overall process is 

illustrated by the following example: 

Example 5.1 Assume that n data points are given and we choose in 二 2. The 

resulting system will be composed of 2 interconnecting linear equations (see Fig . 

5.6): 

yi == acc + b (5 .5) 

and 

= cx -h d (5 .6) 

The task is to find the parameters a, b, c and d such that the resulting 

systems is optimal in least-squares sense. Assume that the co-ordinates of the 

m + 1 二 3 data points are (0^2,2/2) and {xs.ys). The two resulting linear 
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y 

“ 

( X 2 ’ y 2 ) 
y=ax+b 

X 

Figure 5.6: Two linear equations interconnected to form the system optimal in 
least-squares 

equations can be written as: 

“ 1 二 … 1 ) (明 
X2 工1 

and 

X3 — X2 

rearranging, we have 

, X — Xi . , X — Xi /c Q\ 
众1 二 1 —)yi + " 2 

^ X2-X1 X2-X1 
, X - X2 . , X - X2 /c 

m = (1 )y2 + 2/3 (5.1U) 
y 乂 X3-X2 X3-X2 

For identifying the ys in globally least-squares sense, we have to combine the 

two subsystems into one equation. 

1 yi 

‘ 1 r 1 _ 工 0 

yi 上 0：2 一工 1 X2-XI 
= y2 

^ A 1 _ X-XO X-X7 
2/2 U 丄一XZ-X2 XZ-X2 J 

L � L y3 -
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z 
z=a jX+h j> +c 1 

/ ^ ^ o^JV? 

Z (�’v、） 

y 

Figure 5.7: Two linear equations interconnected to form the system optimal in 
least-squares 

In this representation, we can identify ys by least-squares. For the truck back-

ing up example given later, the input is of order two and the final input-output 

relations is composed of piecewisely jointed linear equations. The following 

shows the least-square identification of the vertex values. 

Assume that there is two piecewisely jointed triangles in the 3-D space as 

in Fig. 5.7. The task is to identify the vertex values ^i, :2’ 幻 and Z4 from 

the sampled input-output data points such that the overall system is “globally，, 

optimal in the sense of least-squares. 

From the figure. We have for sub controller 1: 

zi 二 + + ci (5.11) 

and for sub controller 2: 

h 二 工 + hy + C2 

(5.12) 

Since the two equations should interpolate their vertex points, we have 

zi = aiXi 

+ biyi + ci (5.13) 
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Z2 = aiX2 + biy2 + ci (5.14) 

= aiX3 + Ihys + ci (5.15) 

= a2X2 + hy2 + C2 (5.16) 

Z3 二 asCCs + + C2 (5.17) 

Z4 二 a2X4 + 622/4 + C2 (5-18) 

substitute (5.16) into (5.15) and (5.17) into (5.15) we have 

{z2 — zi) = aiOrs 一 工 1) + bi(y2 - yi) (5.19) 

(Z3 一 zi) 二 ai(rc3 - xi) + hiys - yi) (5.20) 

and 

—iz2 — zi) - h�y2 - yi) (5.21) 
辽1 一 X2 - Xi 

b 二 ( 幻 一 仅 ( 5 . 2 2 ) 

1 — ys-yi 

eliminate 61 from (5.23) and ai from (5.24), we obtain 

— i z 3 一 Zi){x2 一 Xi) — {Z2 - Zi){xs 一 Xi) (5.23) 

1 二 - xi){y3 - yi) - ("2 - — tTi) 
— {Z2 — Zi){y2> - yi) — {yi _ 一 ^i) (5.24) 
二 0 2 一 $1)0/3 一 yi) — 0/2 _ 一 ̂ l ) 

from (5.13), we have 

ci = 2：! - aixi 一 biyi (5.25) 

if we rewrite (5.13) and (5.14) in the form 

； + (5.26) 

(5.27) 
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we have 

八y2 - ys) + _ 工2) (5.28) 
街 一 {X2 一 Xi){y3 - yi) 一 (y2 一 — 

=x{y3 - yi) + y{xi - >̂ 3) — + (5.29) 
灼 — { X 2 一 Xi){y2 一 yi) 一 0/2 一 yi){^3 一 ^i) 

_ x{yi - y2) + y{x2 - X^) + xm 一 yiX2 ( 5 . 3 0 ) 

— (x2 一 一 yi) 一 (y2 - 一 ^i) 
(5.31) 

similarly for subcontroller 2, we have 

x{y3 - ^4) + — ̂ 3) (5.32) 
幻 - [ x z — X2){y4 — 2/2) 一 {ys - y2)(工4 — ^2) 

—工(y4 - y2) + y{x2 - ^4) _ 工 + y2X4 ( 5 . 3 3 ) 
夠 — { X 3 - X2){y3 一 仍 ） 一 (ys — "2)(工4 一 工2) 

_ x{y2 _ ys) + — ^2) + ^2y3 - y2X3 ( 5 . 3 4 ) 

, — { X 3 - X2){y3 一 y2) — (ys _ "2)(工4 一 幻） 

(5.35) 

combine the two functions into one such that we can perform global identification 

of the parameters by least-squares 

• r _ 

£1 a'l 7i 0 

Z2 0 a.2 Ih 12 之 3 

• J L 

For a system which is composed of more than two subsystems, linear pro-

gramming is used to eliminates the redundant equations. For instance, in the 

design of the truck backing-up systems described later, a computer algorithm 

is developed to identify the input-output relation optimal in the sense of least-

squares. 
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5.3 Examples 

5.3.1 Defining the problem 

Suppose the task is to design a complex control system which is so complicated 

that no mathematical model exists for it, or, that the mathematical model is 

strongly non-linear or complicated which makes its identification very difficult 

if not impossible. Usually, two types of information can be obtained in con-

ventional fuzzy controller design problem: (1) the experience of human experts 

in controlling the system; and, (2) sampled input-output (state-control) pairs 

which are recorded from successful control of the system by Imman experts. The 

experience of human experts is usually expressed in terms of linguistic fuzzy if-

then rules which state in what situation which action should be taken. The 

sampled input-output pairs are numerical data which give specific output values 

corresponding to each input situation. 

Dirichlet tessellation can be used to design systems given either one kind of 

the aboved stated information. As we mentioned before, the use of linguistic 

if-then fuzzy rules is not a good means of extracting expert knowledge. However, 

we would like to show that Dirichlet tessellation can be used to solve the problem 

even if linguistic if-then rules are given. In that case, each linguistic rule is 

considered as a real data point in the space. In this section, four well known 

design problems are given as examples. The "Balancing an inverted pendulum" 

and “Inverted pendulum with cart” problems are solved by using information 

obtained form expert knowledge in the form of linguistic if-then rules while the 

"Truck backing-up" problem and the "Chaotic time series prediction" problem 
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Figure 5.8: An inverted pendulum 

are solved by using information obtained from sampled input-output (state-

control) pairs. 
] 

5.3.2 Balancing an inverted pendulum 

Balancing an inverted pendulum is a well-known control problem. The dynamics 

or the state-space model of an inverted pendulum can be stated as: 

�A： + 1) 二 "(A：) + A 力 ， ( 5 . 3 6 ) 

� ( k + 1) = u{k) + ^{WLsm{e{k)) + T{k)), (5.37) 

where 0 specifies the angle between the pendulum and the normal, cj is the 

angular velocity of the pendulum, At is the time step, J, M,，L are the inertia, 

the weight ,and the length of the pendulum respectively. T{h) is the controller 

output torque. 
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We assume that only the experience of human in terms of linguistic fuzzy if-

then rules is given for the system design. We use 5 set levels NB-"Negative Big", 

NS-“Negative Small”，ZR-“ZeRo”，PS-“Positive Small", PB-"Positive Big，，for 

constructing the rules. Since there are two input variables to the system, the 

number of resulting if-then rules is 25 and we observe that this amount of rules 

allows the controller to balance the pendulum satisfactorily. The following is 

one of the fuzzy rules obtained from human experience: 

if e is PB and LJ is PS then T is NB. 

In conventional fuzzy inference, 6, u and T in the above-stated rule are con-

sidered as linguistic fuzzy variables. And the linguistic descriptions “Positive 

Big”, "Positive Small” and “Negative Big" used in the rule are in fact fuzzy 

sets. However, in RIM systems design, for each fuzzy variable, choose a value 

for which the membership function attains its maximum. So, the example rule 

stated above can be interpreted in RIM s3，stems design as: 

if 6' is 90 and to' is 10 then V is -200 

where uj' and T , are real variables with real constants 90, 10 and -200 assigned 

to them respectively. It can be easily realized that by this interpretation, each 

if-then rule in fact represents one real data point in the three-dimensional space. 

Assume that the co-ordinates of the three-dimensional space is given by {x,y,z). 

The example rule is in fact the point (90,10,-200) in the 3-D space. As a result 

of this, the rule base is composed of 25 real data points in the three-dimensional 

space. Our task is to approximate all the data points by one or more equations. 

The input or state part of the 25 data points in fact form a grid in a two-

dimensional plane. Solving the problem by Dirichlet tessellation consists of the 
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-400>L 

-20 -100 

Figure 5.9: Control surface representing input output relations 

following two steps; Step 1 triangulate the data points by Dirichlet tessellation to 

form packed triangles (or simplexes in case of higher dimensional input vector) 

without overlapping. Step 2 represents each triangle (or simplex) by a linear 

equation. 

y 二 kiXi + k2X2 + . . • + KXn + kn+l (5.38) 

where n is the dimension of the input vector. In this problem, n = 2 since there 

are two input variables 0 and CJ. SO equation (5) becomes: 

T 二 + k2u： + h. (5.39) 

The parameters of each equation can be found as follows: Let (6>i, c^i, Ti), (6>2, 

购 , � 2 ) and (6>3, cja, Ts) be the co-ordinates of the three data points forming the 

triangle, k be the vector [ h k � h ] which represents a vector of parameters to 
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be found. T= [T i T2 Ts] which represents the output vector, x be the matrix 

$1 CJi 1 

O3 �3 1 

Then, 

T 二 kx了 (5.40) 

and, 

T x = kx^x (5.41) 

T x [ x � ] _ i 二 kx了x[x了x]-i (5.42) 

k 二 Tx[xTx] -I (5.43) 

As a result of this, a piecewise-linear control surface is constructed which is 

made up of 32 linear equations (see Fig. 5.9). When an input is given to the 

system, the inference process is in fact a simple substitution of the input data 

to the appropriate linear equation to get the real output. 
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5.3.3 Balancing an inverted pendulum with cart 

； • X 

Figure 5.10: An inverted pendulum with cart 

In the previous section, we demonstrated the use of Dirichlet Tessellation to 

balance an inverted pendulum which is fixed on a bearing. A torque is applied 

to it according to two input parameters, namely, angle with normal 0 and angular 

velocity uj. Now, we try to balance an inverted pendulum which is fixed on a 

cart where the cart is free to move horizontally. There are two goals for the 

problem: (1) to balance the pendulum in vertical position; and (2) at the same 

time keep the cart in position 二 0. This problem is more complicated then the 

previous one as it involves three input parameters instead of two. The dynamics 

or the state-space model of an inverted pendulum can be stated as: 

“ u ; , (5.44) 

u 二 i , (5.45) 
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. /I , f —u—ml 'O^ sin 9 \ 
= ^ s i n ^ + cos( M+m - ) (5.46) 

4 1 m cos2 6 ‘ 
3 十 M+m 

where 0 specifies the angle between the pendulum and the normal，CJ is the 

angular velocity of the pendulum, a; is the horizontal position of the cart, At is 

the time step, g is the gravitational acceleration, M is the mass of the cart, m, 

I are the mass and the length of the pendulum respectively, u is the velocity 

of the cart to be controlled. We assume tha,t only the experience of human in 

terms of linguistic if-then rules are given. Because of the fact that there are 

three input variables in this problem, in order to prevent the explosion in the 

number of generated rules, we only use 3 set levels NB-"negative Big”, ZR-

"ZeRo" and PB-"Positive Big" for constructing the rule base and observe that 

they are enough for performing the task satisfactorily. The number of resulting 

if-then rule is 3 x 3 x 3 = 27. The following is one of the rules obtained from 

human experience. 

if 0； is ZR and to is PB and Q is PB then u is PB 

Similar to the previous example, the above stated rule represents a data 

point (0, 50, 90, 10) in four-dimensional space. As a result of this, the rule base 

is composed of 27 real data points in the 4-D space. We try to partition the data 

points by Dirichlet tessellation to form packed tetrahedron (instead of triangles 

in 3-D case) without overlapping. Then, we represent each tetrahedron by a 

linear equation. 

u 二 + k2⑴ + hx + h (5.47) 

The parameters ks in the equation can be found by matrix inversion method 

stated before. When an input is given to the system, the inference process is 
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a simple substitution of the input data to the appropriate linear equation to 

get the real output. Fig. 5.11 shows the tessellation of the input space into 

tetrahedrons. 
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靠 
angular velocity angle with normal 

Figure 5.11: Tessellation of the input space of the inverted pendulum with cart 
problem 

5.3.4 Truck backing-up 

Backing a truck to a loading dock is a severely non-linear control problem for 

wliich no traditional control system design method exist. The dynamics of the 

truck is governed by the following set of equations: 

x{t + 1) 二 :r:(t) + cos[^(t) + 0{t)] + sin[没�]sin[(/)(t)], (5.48) 

y{t + 1) 二 2 / � + + 沒⑴]一 s i n [ 沒 � ] ( 5 . 4 9 ) 

州+ 1) 二 柳 - ( 5 . 5 0 ) 

where x and y specify the position coordinates, • is the angle of the truck 

with the horizontal, and 6 is the steering angle of control. In this example, 

we assume that the expert knowledge is given by sampled input-output (state-

control) pairs which are recorded from successful control by the human controller 
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and see how RIM deals with this kind of expert knowledge. We use the same 

set of data used by Wang and Mendel [9]. Their paper has already introduced 

a means of generating fuzzy rules from numerical data for a fuzzy inference 

system. Now, we do the similar for the RIM system in real domain by using 

recursive least-squares identification method [13]. This method assures that the 

resulting approximated control surface is optimal in the sense of least-squares. 

The recursive identification algorithms are estimators of the type: 

§k 二 k-i + Pkhsk, (5.51) 

二 妓4-1， 

P k - i M l P k - i (5.53) 

with the parameter estimate h , the regressor <h, the prediction error and 

the matrix Pk, which are all evaluated at time /c 二 1，2,3,... 

As the first step, we have to determine the structure of the resulting con-

troller. This involves the partition of the input variables into regions. We have 

tried different partitions of input space and finally observe that the approxima-

tion is very satisfactory if we use 5 levels for the input variable a; and 8 levels for 

the input variable <P, so the number of if-then rules is 40, the task is to determine 

the real output or consequent for each rule. This method of rule (RIM type) 

generation consists of the following steps: 

1. Set all consequents of the rules to zero. As a result, the 40 rules are 

represented as real data points 

2. Triangulate the rule points by Dirichlet tessellation to form triangles with-

out overlapping. 
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3. Represents each triangle by a linear equation: 

0 二 ibirr + k2(t) + k3. (5.54) 

The resulting control surface representing input-output relations after ini-

tializing all rules to zero is shown in Fig. 5.12. 

4. Recursively update the equations by recursive least-squares identification 

method as each real input-output sample data point is given to the system. 

Fig . 5.13 shows the input-output control surface after recursive least-

squares identification. 

Some example truck trajectories generated from the above-designed RIM 

controller are shown in Fig. 5.14. Another important property of using recur-

sive least-squares identification is that it is very easy to modify the rule base as 

new data become available; i.e., to make the system adaptive. 
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-2 0 

Figure 5.12: Control surface representing input output relations before recursive 
identification 

-2 0 

Figure 5.13: Control surface representing input output relations after recursive 
identification 
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Figure 5.14: Example truck trajectories generated by RIM 

5.3.5 Chaotic time series prediction 

The problem of time-series prediction can be stated as: let z{k){k 二 1,2,3...) 

be a time series, given z(k - m + 1), z(k 一 m + 2 ) , . . . , z(k), determine z(k + I), 

where m and I are fixed positive integers; i.e.，determine a mapping from z{k -

m + 1), — 771 + 2 ) , . . . , z{h) G R 饥 to z{k + l)eR. Some past samples of z{k) 

are usually available which are used to determine the mapping. 

Our approach to this problem is to use parametric models to represent the 

time z{k). For example, the following autoregressive (AR) model may be used: 
m 

z{k + 1) 二 £ aiz{k - z + 1) + v{k) (5.55) 
i 二 1 

where v{k) is a white noise sequence, m is the dimension of the input vector, 

which equals the dimension of tessellation in our case. We assume that m 二 2 is 

used in the example. The parameters a, are estimated using the known values of 
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The model fits well in to the RIM system we propose where each function 

is represented as 

z{k + 1) 二 hz(k) + hz{k 一 1) + h. (5.56) 

Chaotic time series is used as the source signal and the series can be produced 

by the following equation: 

,.� 1�丄.q 0 1 一 (5.57) 

where 6 is the time step. When 丁 > 17 equation (5.66) shows chaotic behavior. 

Higher values of 丁 give higher degree chaos. In this example, we choose r 二 低 

111 this example, we tried using the direct tessellation of the sampled input-

output pairs to form the control surface without any rule generation process. 

However, this method may not be appropriate if the number of given data points 

for constructing the mapping is large because it may cause an explosion in 

the number of functions. Here we merely want to show the flexibility of using 

Dirichlet tessellation to solve a problem. 

Specifically, assume that . (1) , . ( 2 ) , . . . , z{M) are given; then we form M-m 

desired input-output pairs which are used to construct the control surface. Fig. 

5.15 shows the control surface formed for m 二 2 and M - m 二 50 by direct 

tessellation of data points. Fig. 5.16 shows the prediction result generated by 

RIM. 
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L L 
0 

Figure 5.15: Input-output control surface by direct tessellations of data points 

1.4| r 1 — . ‘ ‘ ― ^ ‘ ‘ 

� j ^ \) y • 
0-4 to 100 200 ^ 300 ^ ^50 

Figure 5.16: Prediction result by RIM, where solid line representing the series 
to be predicted and dotted line representing the predicted results 
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5.4 Interactive C A D platform for R I M sys-

tems design 
In the design process of a fuzzy inference system, three types of information 

should be provided: (1) a set of fuzzy if-then rules; (2) membership functions for 

the fuzzy variables; (3) a fuzzy inference mechanism. Usually, the designer has 

to fine tune the system by means of changing either the fuzzy if-then rules or the 

membership functions, or both. However, the effect of changing these two types 

of information on the final input-output relation is usually not clearly understood 

by the designer because of the very nonlinear fuzzy inference mechanism acting 

as a barrier between them. This makes the fine tuning of the system a nearly 

trial and error process. On the other hand, in a RIM based system, as the input-

output relation is consisting of rea/functions relating the input with the output, 

the effect of changing or adjusting each data points on the final input-output 

relation can be readily visualized. Also, as the input-output relations is made 

up of piecewise-linear functions, it is possible to carry out conventional control 

analysis such as stability analysis. 

The high transparency of a RIM system makes it possible for us to place the 

system on a CAD control system design platform to carry out real time inter-

active design and analysis. We have designed one which allows the designer to 

interactively adjust the system parameters. The input-output relation together 

with the state trajectories are shown to allow the designer to adjust the system 

in real time. 

As we mentioned before, two kinds of information are available: (1) the 

experience of the human controller; and, (2) sampled input-output data points 
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from successful control. In a design problem, each of the two kinds of information 

alone is usually incomplete. Although the system is successfully controlled by 

a human controller, some information will be lost when the human controller 

expresses his experience in terms of linguistic fuzzy if-then rules. Consequently, 

linguistic rules alone are usually not enough for designing a successful control 

system. On the other hand, the information from sampled input-output data 

pairs is usually not enough for a successful design, because the past operations 

usually cannot cover all the situations the control system will face. Through the 

use of the CAD platform, we can develop a general approach which combines 

both kinds of information into a common framework. Fig. 5.17-5.18 show 

the CAD platforms for the design of truck backing-up and inverted pendulum 

examples respectively. 
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Figure 5.17: CAD platform for the development of Truck backing up RIM system 
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Figure 5.18: CAD platform for the development of Inverted pendulum RIM 
system 

In this chapter, we proposed a new means of RIM system design which bases 

on partitioning the data points to form a set of real functions which approximate 
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the overall system. This method has been used successfully to solve several well-

known problems given different types of expert knowledge. It shows that RIM 

has a merit of high transparency as the overall design and inference process is 

done in the real domain. This property encourages the further development of 

RIM to tackle more complicated problems that require the support of qualitative 

analysis which is difficult to be carried out for fuzzy inference systems. 
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Chapter 6 

Analysis of Dirichlet tessellation 

based Real Intelligent Mapping 

Systems 

Given a control system, the first and foremost question about its various prop-

erties is whether it is stable, because an unstable control system is typically 

useless and potentially dangerous. Stability analysis of fuzzy system has been 

studied for a period of time. Braae and Rutherford [27] [28] proposed a linguistic 

phase plane trajectory to analyze and improve the stability of fuzzy systems by 

exchanging the control rules. Kickert and Mamdani [26] use the describing func-

tion method to evaluate the stability of fuzzy control systems. B. Kiszka [29] 

introduced the energetistic stability of fuzzy dynamic systems and developed an 

entropy for fuzzy system. Besides, De Glas [24] and A. Kania [23]. use the con-

cept of a stability for analyzing fuzzy systems, in which the distinction between 

stability and instability is removed and a real value between 0 and 1 is used 
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to describe the “degree of stability” of a fuzzy system. However, all the above 

stated methods are in fact quite restrictive and have only limited applicability. 

The principal reason is that the design of fuzzy controllers has relied on ad hoc 

techniques. That is, the controllers were not synthesized using an underlying 

theory but were arrived at by trial and error. Also, by allowing the state of 

the system to be described by a fuzzy set, notions of unboundedness become 

ambiguous. The other reason is that fuzzy system is itself definitely nonlinear. 

All the above hinder the use of conventional control analysis techniques (e.g. 

Liapunov's method) for designing and analyzing fuzzy systems. 

On the other hand, in the recently proposed Real Intelligent Mapping [1], it is 

argued that transformation of the real input data to the fuzzy domain and then 

back to the real domain again in the conventional fuzzy inference approach is 

essentially unnecessary in many applications. We introduced the use of Dirichlet 

tessellation (DT) for the implementation of RIM systems. In this chapter, a 

method for the stability analysis and design of the above stated systems is 

proposed. The analysis is based on the well-known Liapunov's direct and indirect 

method which is difficult to be applied to conventional fuzzy systems because 

of the reasons mentioned before. We first study the local stability property of 

a DT based RIM system by Liapunov's Linearization method with the inverted 

penduhm problem and the truck backing-up problem used as examples (Section 

6.1.1 and 6.1.2). Then we analyze the globally stability property of DT based 

RIM system by a method based on Liapunov's direct method (Section 6.2). Also, 

a method for the design of DT based RIM systems is introduced which is based 

on conventional linear system theory (Section 6.3). In Section 6.4, a method 

specialized for analyzing Second order DT based RIM systems is introduced. 
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We then elaborate the stability analysis method to piecewise-nonlinear systems 

and show that the method can be applied to a class of conventional fuzzy system 

by establishing an equivalent piecewise-polynomial representation of it in real 

domain (Section 6.5). 

6.1 Local Stability Analysis of D T Based R I M 

Systems 
Local stability of a system concerns the behavior of the system near its equi-

librium point. Loosely speaking, a system is described as stable if starting 

the system somewhere near its desired operating point implies that it will stay 

around the point ever after. In this section, Lyaponov's linearization method is 

used to analyze the local stability property of a DT based RIM system. It is a 

formalization of the intuition that a nonlinear system should behave similarly to 

its linearized approximation for small range motions. After local linearization 

of the system near the equilibrium point, linear control theory can be applied 

for local stability analysis. We now give a formal definition of local stability. 

Definition 6.1[10] The equilibrium state x 二（Ws said to be stable if, for any 

there exists r > 0, such that if ||x(0)|| < r, then |lx(0)丨丨 < R for all 

t > 0. Otherwise, the equilibrium point is unstable. 
• 

A autonomous (time-invariant) non-linear system can be represented by its state 

equation: 

女二 f(x) (6.1) 
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assume that f ( x ) is continuously differentiable. Then the system dynamics can 

be written as 

X = ( | ^ ) x = o x + f..o.t(x) (6.2) 
ax 

where stands for higher-order terms in x. The above Taylor expansion 

starts with the first-order term, due to the fact that f(0) 二 0, since 0 is an 

equilibrium point. Let's use the constant matrix A to denote the Jacobian 

matrix of f with respect to x at x 二 0 (an n x n matrix of elements 

A = ( • “ （6.3) 

Then, the system 

x = A x (6.4) 

is called the linearization (or linear approximation) of the original nonlinear 

system at the equilibrium point 0. 
The following theorem relates the stability of the linearized system (6.4) with 

that of the original nonlinear system (6.1). 

Theorem 6.1 (Lyapunov's linearization method)[10 

• If the linearized system is strictly stable (i.e, if all eigenvalues of A ,or 

equivalently, all root of the characteristic equation A| 二 0 are strictly 

in the left-half complex plane), then the equilibrium point is asymptotically 

stable (for the actual nonlinear system). 

3 If the linearized system is unstable (i.e, if at least one eigenvalue of A , or 

equivalently, at least one root of the characteristic equation \sl 一 A| 二 0 

is strictly in the right-half complex plane), then the equilibrium point is 

unstable (for the nonlinear system). 
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• If the linearized system is marginally stable (i.e, all eigenvalues of A , or 

equivalently, all roots of - A 卜 0 are in the left-half complex plane, 

but at least one of them is on the jco axis), then one cannot conclude 

anything from the linear approximation (the equilibrium point may be 

stable, asymptotically stable, or unstable for the nonlinear system). 

• 

Now, we apply this method to investigate the local stability property of the 

proposed DT based RIM system. The inverted pendulum and truck backing up 

problems are given as examples. 

6.1.1 Balancing an inverted pendulum 
The dynamics or the state-space model of an inverted pendulum can be stated 

as: 
^ 二 。 ， (6.5) 

二 i (肌 s i n 6 i + r ) . (6.6) 
u 

where Q specifies the angle between the pendulum and the normal, c is the 

angular velocity of the pendulum, J, L are the inertia, the weight ,and the 

length of the pendulum respectively. T is the controller output torque. 

As mentioned before, a DT based RIM controller is designed to balance 

the inverted pendulum to its vertical position. The controller is made up of 

piecewise-linear equations without any overla.ppings. Accordingly, only one 

equation is responsible for a particular input domain. For the local stability 

analysis of the system, we assume that it is possible for us to partition the input 
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space in such a way that only one equation is responsible for the equilibrium 

point. That is, we should partition the input space such that the equilibrium 

point is not located on the regions' boundaries. The equation can be represented 

by: 

T 二 hd + k2u; + k3. (6.7) 

As we know that for inverted pendulum problem, there will be no output 

torque applied when the system is at its equilibrium point (i.e. 6•二 0’ u; 二 0). 

As a result, we have ks 二 0. The above equation becomes: 

T 二 + k2io. (6.8) 

Substitute (6.8) into (6.6)，we have: 

J 二 i ( 浙 s i n 0 + hO + k2uj) (6*9) 
J 

The linearized system matrix about the equilibrium point (i.e. 0 二 0, a; 二 0) is 

given by 
A — dxi dx2 

" d j 2 ^ 
-d x i dx2」 

where 

巫 二 0 (6.10) 
dxi 

些 … (6.11) 
dx2 
% = WL + h ^ (6.12) 
dxi — J 
^ = (6.13) 
dx2 J 

Finally, the linearized system can be represented as: 

‘6 1 [ 0 1 "I 卜 

� j - WL^ ^ J [ a; _ 
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As a result, we can investigate the local stability of the system from the locations 

of the eigenvalues of the matrix A ,or equivalently, from the locations of the root 

of the characteristic equation Isl - A| 二 0. 

6.1.2 Truck backing-up 

The dynamics of the truck is governed by the following set of equations: 

i = (6.14) 

y 二 cos(</) -0)- sin 0 cos (j), (6.15) 

4 二— s h - i l ^ l ， （6.16) 

where and y specify the position coordinates, is the angle of the truck with 

the normal, and 6 is the steering angle of control. 

Similar to the previous example, the controller equation responsible for the 

equilibrium point is: 

0 二 hx + k2<l>. (6.17) 

Substitute (6.17) into (6.14) and (6.16), we lia,ve: 

and 

Li 

The linearized system matrix about the equilibrium point (i.e.没二 0, a; 二 0) is 

given by 
r 姐 

A — 如1 如2 
— 处 組 
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where 

坠 二 0 (6.20) 
dxi 

处 二 ^ (6.21) 
dx2 

坠 二 - ^ x (6.22) 
dxi 2 

坠 二 小 (6.23) 
dx2 2 

Finally, the linearized system can be represented as: 
— r- —1 r r 

X O l a : 

As a result, we can investigate the local stability of the system from the locations 

of the eigenvalues of the matrix A ,or equivalently, from the locations of the root 

of the characteristic equation I^I - 二 CK 

6.2 Global stability analysis of D T based R I M 

systems 
K. Tanaka and M. Sugeno [22] proposed a method for the design and analysis of 

their "Takagi and Sugeno's fuzzy model,, based fuzzy system. We observe that 

DT based RIM systems is a special case of their model when the membership 

functions are described by crisp set instead of fuzzy set. In this section, we apply 

their method to the stability analysis of DT based RIM system. A sufficient 

condition which guarantees the stability of piecewise jointed systems based on 

the Lyapunov's direct method is given. We first derive the method for piecewise-

linear systems and apply it in the design of a Dirichlet tessellation based RIM 
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system. Then, we elaborate the method to piecewise-nonlinear system. 

As mentioned in Section 5.2, a Dirichlet tessellation based RIM controller 

is made up of piecewise-linear equations without any overlappings. In other 

words, only one equation is responsible for a particular input domain and the 

tessellated pattern covers the whole input space. As a result of this, let x{k) be 

the state of the system at time k, every linear subsystems mentioned above can 

be represented in the matrix form as where i distinguishs the individual 

subsystems, x � G A , G R^ x x{k) 二 [ o : � x{k - 1 ) … 卓 - n + 1)]了， 

and 

a{ a\ …<_i O'n 

1 0 ... 0 0 

0 1 … 0 0 
Ai 二 0 0 . . . 0 0 

. . • • • 

: : . . : • 

0 0 ... 0 0 

0 0 ... 1 0 

The output of the RIM system is inferred as follows: 

r -1 I" 1 0 … 0 0 1「 1 

卜 + 1) 0 1 … 0 0 A i x � 

X 2 ( “ l ) . . . . . A2X � 
• • 藥 • • 

• • 

. 0 0 ••• 1 0 
x “ “ l ) 卜 洲 j 

L 0 0 • • • u 丄 

The analysis of DT based RIM systems is based on the well-known Lya-

punov's stability theorem stated as follows: 
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Theorem 6.2 [30]. Consider a discrete system described by 

x(九1 + 1) 二 ( 6 . 2 4 ) 

where x(k) G R^, / ( x ( " ’ ) ) is an x 1 function vector with the property that 

/ (O) 二 0 for all k. (6.25) 

Suppose that there exists a scalar function V{x{k)) continuous in x{k) such that 

1. V (0 ) = 0, 

2. V{x{k)) > 0 for x(k) + 0, 

3. y (x ( / c ) ) approaches infinity as \\x{k)\\ 一 oo, 

4. Ay (x ( / c ) ) < 0 for x{k) + 0. 

Then the equilibrium state x � 二 0 for all k is asymptotically stable in the 

large and y(x( /c ) ) is a Lyapunov function. 
• 

T h e o r e m 6.3. The equilibrium of a DT based RIM system, (6.19), is globally 

asymptotically stable if there exists a common positive definite matrix P for all 

the subsystems such that 

A f P A i - P < 0 for i G 1 , 2 , . . . , (6.26) 

• 

P r o o f . Consider the scalar function V(x(/c)) such that 

y (x(ib)) 二 x T � P x ⑷ ， （6.27) 

where P i s a positive definite matrix. This function satisfies the following prop-

erties: 
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1. T/(0) 二 0, 

2. V{x{k)) > 0 for x(/c) + 0, 

3. V{x{k)) approaches infinity as \\x{k)\\ oo, 

we have: 

A V ( x ⑷）二 + 1)) - V{x{k)) (6.28) 

二 + l)Fx{k + 1) — (6.29) 

二（ f ： u ; 人 x � ) T p ^ W i A M k ) - x T � P x � （ 6 . 3 0 ) 
i=l i=l 

二 x r ^ { f > A � p i > A , — P } x W (6.叫 

二 X了⑷{ f ： w.WjAjFA, - F}x{k) (6.32) 

二 x T � { f > , 0 2 A � P A , — P } x � （6.33) 
i:=i � 

(6.34) 

for DT based RIM system, since at one time only one function is fired. Let it 

be function /, we have: 

A V ( x ⑷ ） 二 x T � { A f P A , - P } x � （6.35) 

we obtain 
AV{x{k)) < 0. (6.36) 

By Theorem 6.2, V{x{k)) is a Lyapunov's function and the RIM system is 

globally asymptotically stable. 
• 

This theorem is reduced to the Lyapunov's stability theorem for linear discrete 

systems when n 二 1. 
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This theorem can be applied to the stability analysis of a nonlinear system 

which is approximated by a piecewise linear function. Like the RIM systems by 

Dirichlet Tessellation. 

Next, a necessary condition for ensuring the existence of a common P is 

given. 

T h e o r e m 6.4 [22]. Assume that A,- is a stable and nonsingular matrix for 

i 二 l , 2 , . . . , n . A,-A," is a stable matrix for i, j 二 1 , 2 , . . . , n if there exists a 

common positive definite matrix P such that 

A f P A , - P < 0 . ( 6 . 3 7 ) 

• 

P r o o f . From (6.37), we obtain 

p — ( A 「 i 产 P A 「 i < 0 . ( 6 . 3 8 ) 

since ( A � i ) r 二（A f ) - i . Therefore, P < ( A f Y P i A f ) - ' for z 二 1 , 2 , . . . , n. 

Since A f P A i — P < 0 from (6.37), the following inequality holds for i j 二 

1 2 . . . n: 

, , , A f P A . < ( A 「 i f P ( A 『 ) - i . ( 6 . 3 9 ) 

From the inequality, we obtain AJaJPA.A, _ P < 0. Therefore, A , A , 匪 s t 

be a stable matrix f o r � j 二 1 , 2 , . . . 
• 

Theorem 6.4 shows that if one of the A , A / s is not a stable matrix, then there 

does not exist a common P. In order to check the stability of the system, we 

must find a common positive definite P. It is difficult to find a common positive 

definite matrix P as effectively as possible. So, the following simple procedure 

is used. The procedure consists of two steps. 
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1. We find a positive definite matrix P, such that 

A f P . A , - P , < 0 . ( _ ) 

for i 二 1 , 2 , . . . , n. It is possible to find a positive definite matrix Pi if A,-

is a stable matrix. 

2. Next, if there exists P , in {Pi|i 二 1 , 2 , . . . , n} such that 

- Pi < 0. (6.41) 

for i 二 1 , 2 , . . . ,n, then we select P, as a common P. If the second step 

has not succeed, go back to the first step. 

6.3 Design of a stable D T based R I M system 

We have considered the conditions for the stability of a DT based RIM system 

by using Lyapunov's direct method in the previous section. In this section, we 

propose a design method of a model based RIM controller. The controller can 

be designed so as to guarantee the stability of the RIM system. 

A DT based RIM system consisting n subsystems can be represented as: 

r -1 [ 1 0 … 0 0 " I � 1 
卜 … ) 0 1 . . . 0 0 A i x � 

M k + 1) … . . . A 2 X � • • • • • 
• • 
• • 

. 0 0 ••• 1 0 
x “ “ l ) “ n 1 夕 ( ) -

L 0 0 • • • u 丄 

By taking the Laplace's transform, We can apply the well-known root locus 

method to design the system by the following steps: 
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1. Choose an appropriate proportional gain K for the controller such that all 

the roots of the characteristic equations of the subsystems A.-s lie inside 

the unit circle ||zll = 1 in the z-plane. This ensures that all the subsystems 

are stand alone stable systems. 

2. Check the stability of the overall system by the procedure to find a common 

p discussed in the previous section. If the system is not stable, go back 

to step 1. 

E x a m p l e 6.2 [22]. Let us consider the following two linear systems: 

Li： x{k + 1) 二 力 - O M l x { k _ 1) + 0 . 6 0 3 i / � 

L2： x(k + 1) 二 2 . 2 5 6 : r � 一 0.361x(fc 一 1) + hl20u{k) 

We try to stabilize the overall system using a linear controller with a proportional 

gain K. The controller can be described as: 

u ( k ) 二 K x ⑷ (6.42) 

The two systems becomes: 

x{k + 1) 二（2.178:r(/c) — 0.603/O 一 0.mx{k - 1) 

52： x{k + 1) 二 — 1 .120 /O 一 OMlx{k 一 1) 
Here we assume that reference input r{k) 二 0. Next, we utilize the root locus 

method to determine the parameter K. It is not always necessary to utilize the 

root locus method. For example, we may use the technique of a Bode diagram or 

pole assignment. From Fig. 6.1 and Fig. 6.2, it is well known that the stability 

boundary in the .-plane is the unit circle H 二 1. We can stabilize the linear 

subsystems of ft and & when we choose a gain K such that 0.980 <K< 6.25 

and 0.80 < K < 3.23, respectively. Therefore, in order to stabilize the overall 

system, we must choose a gain K such that 0.98 <K < 3.23. 
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Figure 6.1: Root locus for system 1 

Im 1 
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- 1 

Figure 6.2: Root locus for system 2 
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Lastly, we check the stability of the overall system using the procedure to 

find a common P for the subsystems. For the linear subsystems and S2, we 

have: 
_ 2.178 — 0.603/( -0 .588 

A i 二 

[ 1 0 
‘2 .256 — l . m K -0 .361 

A2 二 

_ 1 0 
Here, we choose K = 1.12 and choose P such that 

2.0 - 1 . 3 
P 二 

- 1 . 3 1.0 

Then the condition A f P A , - P < 0 is satisfied and the overall system is globally 

asymptotically stable. 

6,4 A method for analyzing Second order D T 

based R I M systems 
The above stated method for the analysis of global stability of DT based RIM 

systems has one drawback. Namely, it may be difficult to find the common 

positive definite matrix P. S. Kawamoto, K. Ta.da, A. Ishigame and T. Taniguchi 

[37] proposed a method of finding the common P graphically for the Tagaki and 

Sugeno's fuzzy model. Since the DT ba^ed RIM system is a special case of that 

model with crisp sets instead of fuzzy set. Accordingly, we can use their method 

for finding the common P. The following is an approach for finding the whole 

region in where a 2 x 2 real matrix P exists. It provides a guidance for finding 

the P i n a more systematic way. For details, please refer to [37]. 
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A DT based RIM system can be represented as: 

X(九1+1) 二 i > ‘ A x ⑷ ， （6.43) 
i=i 

where n is the number of linear subsystems that make up the overall system and 

1 if the function i is fired 
Wi = < 

0 if the function i is not fired 
\ 

We know that the equilibrium of the above system is asymptotically stable in the 

large if there exists a common positive definite matrix P for all the subsystems 

such that Ai is stable and nonsingular, and 

A f P A . - P < 0 (6.44) 

From the above equation, we have 

A f P A i - P 二 一 Q i < 0 (6.45) 

A^PA2 - P 二 - Q 2 < 0 _ 

: (6.47) 

A ^ P A ^ - P 二 一 Q m < 0 (6.48) 

where matrices Q i , Q 2 , . . . , Q饥 > 彻贴sume in this approach that the 

common positive definite matrix P is a 2 x 2 real one, that is, 

Pll Pl2 
P 二 

_ P21 P21 -

and rewrite it without a loss of generality, according to pu > 0’ as 

Pi 士 1 Pll _ P22 
P == 二 二 

[土 1 I一 
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Setting 
a I a2 

Ai 二 
a3 a4 

_ J 
and 

Qi 二 

qs "4 _ —' 

and substituting these forms into (6.47) yield 

q, 二 — 士 2aia3}, (6.49) 

仍 二 — + + (6.50) 

二 一{agpi + Ca! - 1)P2 土 (6•叫 

Since P > 0, we have 

> 0, (6询 

P1P2 > 1, (6.53) 

and the condition Qi > 0 gives qi > 0, by rewriting it, 

(以《一 l)pi + a知2 士 2 a i a 3 < 0 (6.54) 

Also, from 仍奶—€〉0, we get 

alpl + alpl - {{a,a, — a^asf - (a^ + + (6.55) 

士2a2(a4 — ai)pi 士 2a3 (ai — a4)p2 (
6
.

5 6
) 

+ {(aia4 — a^asY — 2(aia4 + «2以3) + 1} < 0 (6.57) 

Then, we can construct the P � - r e g i o n , which is the P-region for (6.47), and 

satisfies conditions (6.54)-(6.59) in the - in plane. Repeating for (6.48)-

(6.50), we have { P � , P � , . . • ’ P (—} and the P-region by P 二 P � 门 ？ ⑵ H 
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… n P W . Thus each point (pi,p2) included in the P-region has the common 

positive definite matrix P as 
� -

p 二 M 仍 土 1 2 

_ 士 1 _ 

In addition, it should be noticed that pu 二 0 corresponds to a trivial case. 

6.5 Piecewise-polynomial real domain repre-

sentation of a class of fuzzy controller and 

its stability 

Now we elaborate the method stated in Section 6.3 to study the stability of 

piecewise-nonlinear systems. Suppose there is a system formed by piecewise-

jointed nonlinear subsystems. Each non-linear subsystem can be considered 

as a stand-alone system. Since Liapunov's direct method is also applicable to 

non-linear systems, we can apply the method stated in the previous section to 

analyze this kind of systems. Suppose we can identify a common Liapunov's 

function y for all the nonlinear subsystems, then we can describe the overall 

nonlinear system as globally asymptotically stable. 
In this section, we are going to establish an equivalent piecewise-polynomial 

representation of a class of conventional fuzzy system in real domain. By doing 

this, we can apply the above stated stability analysis to this kind of fuzzy system. 

The class of fuzzy controllers use algebraic product as the logical AND opera-

tor and c o r r e l a t i o n - p r o d u c t inference method. Also, all the fuzzy variables have 

triangular membership functions. This kind of fuzzy controller is widely used for 
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/ ME / y t e 
/ / / Rcgicnl / Re£iim2 / 

^ / y ^ I i i ^ /Rules “ ^ u l e f i 

y / X X / 

Figure 6.3: Membership functions of the fuzzy system 

.control applications [31] because of its simplicity. It provides smooth response 

[32] and its architecture is supported by existing analog/digital fuzzy processors 

.33] [34]. To simplify the discussion, we start with a two-input variables fuzzy 

controller. We assume that ea.ch of the fuzzy input variable has three set values: 

(1) Small (SM) with 观 ( 0 ) 二 1 ; � Medium (ME) with /z则 (1) 二 1; and (3) 

Large (LG) with 二 1. The membership functions of the variables are 

shown in Fig. 6.3. 

There are altogether 3 x 3 = 9 rules for the controller. If the fuzzy controller 

is defined as before, we observe that only four of the nine rules are fired at one 

time depending on the input. The input space can in fact be divided into four 

separate regions as in Fig. 6.3. Every time the input fall into one specific 

region，only the four rules located at the corners of that region are fired. For 

instance, if an input is given which is within region 1. Then only rule 

number 1, 2, 4 and 5 are fired and the output can be inferred as: 

_ /iiri + //2厂2 + + f̂ srs (6.58) 
: - Pi + + "4 + 

86 



Chapter 6 Analysis of Dirichlet tessellation based Real Intelligent Mapping Systems 

where n , r � , r 4 and rs are the consequent values of rule 1, 2, 4 and 5 respectively 

and fis are their corresponding weights. If algebraic product is used as the logical 

AND operator and correlation-product inference method are used. It can be 

easily shown that: 

fH 二（1-工 ) ( l l ) ( 6 .剛 

二 x ( l - y ) ( _ 

fH 二 （ 1 - 工 （ 6 . 6 1 ) 

二 巧 （6.62) 

As a result, the output can be represented as: 

2 二 （1 一 工)(1 一 y)ri + x{l 一 y)r2 + (1 _ + xyrs (6.63) 

二 - r2 - r4 + rs)xy + (r? _ + (厂4 - r,)y + r � (6.64) 

which is a polynomial in x and y. Similar for region 2, we can show that: 

_ l^2r2 + + 阶 + (6.65) 

一 /i2 + + + 

and, 

时 二（2 — x ) ( l i ) (6.66) 

"3 二 Or - l ) ( l l ) ( 6 则 

fis 二 -工、y (6.68) 

二 卜 ％ (6.69) 

As a result, the output can be represented as: 

P ( 2 — - + 卜 1 ) ( 1 - Y ) R 3 + ( 2 - 咖 + ( 工 - 1 W 6 " 0 ) 

二 - r 3 - r 5 + re)xy + (ra — r^)^ + (ra — 2r2 + 2r5 一 re)?/ (6.71) 

, � (6.72) 
+ (2r2 - rs) V 
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which is also a polynomial in a: and y. We can do the similar for region 3 and 

region 4 to find their corresponding polynomial. As a result, the overall fuzzy 

controller can be represented by piecewise-jointed polynomials in real domain 

with each sub-controller represented as: 

z 二 ci;ry + C2X + csy + 04 (6.73) 

For n input system, each subcontroller can be represented by the following poly-

nomial: 

二 + + + (6.74) 

+ Cn+lXiX2 . . . + Cn+2 幻〜...3：” + . • . (6.75) 

we can apply the method stated in section 6.3 to analyze this kind of systems. 

Suppose we can identify a common Liap皿ov,s function V’ for all the nonlinear 

subsystems, then we can describe the overall nonlinear system as globally asymp-

totically stable. However, in the design and analysis of this kind of system, we 

cannot rely on linear system theory since the subsystems are not linear. 

In this chapter, a method for the stability analysis of Dirichlet tessellation 

based RIM systems is proposed. Also, a method for the design of DT based 

RIM systems is proposed which is based on conventional linear system theory 

We then apply the analysis method to piecewise-顔linear systems and show 

that the method can also be applied to a class of conventional fuzzy system 

by establishing an equivalent p iecewise -po lynomial representation of it in real 

domain. However, in the design and analysis of that kind of fuzzy system, we 

cannot rely on linear system theory since the subsystems are not linear. We 

conclude that our DT based RIM system design can be based on linear system 
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theory (instead of trial-and-error) which is difficult to be done in conventional 

fuzzy system design. 

89 



Chapter 7 

Conclusion 

In this thesis, we argue that transformation of the real input data to the fuzzy 

domain and then back to the real domain again in the fuzzy inference approach 

is essentially unnecessary in many applications. Instead, the fuzzy inference 

procedure is replaced by a mapping operating directly on real data. The new 

approach is named Real Intelligent Mapping (RIM). We proposed a new means 

of RIM system design which is based on partitioning the data points to form a set 

of real functions approximating the overall system. This method has been used 

successfully to solve several well-known problems given different types of expert 

knowledge. It shows that RIM has a merit of high transparency as the overall 

design and inference process is done in the real domain. A method for the sta-

bility analysis of Dirichlet tessellation based RIM systems is proposed. Besides, 

a method for the design of stable DT based RIM systems is introduced which 

is based on conventional linear system theory. This property encourages the 

further development of RIM to tackle more complicated problems that require 

the support of qualitative analysis which is difficult to be carried out for fuzzy 
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inference systems. We also apply the analysis method to piecewise-nonlinear 

systems and show that the method can also be applied to a class of conventional 

fuzzy system by establishing an equivalent p i e cewise -po lynomia l representation 

of it in real domain. However, in the design of that kind of fuzzy system, we 

cannot rely on linear system theory since the subsystems are not linear. 

We are not trying to ignore fuzzy inference as a way to solve a fuzzy expert 

knowledge oriented problem. However, the difficulty in analyzing a fuzzy infer-

ence based system hinders its further development to handle more sophisticated 

control problems. It is clear that the method we propose is not the only solution. 

We merely point out that even fuzzy inference with membership functions is one 

of the many methods for solving problems and different methods may have their 

own merits. 
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