
'i i I .i» < 
I 

ANALYSIS AND DESIGN OF MULTI-ARM 
ROBOTIC SYSTEMS MANIPULATING 

LARGE OBJECTS 

1 
t 

BY 

HO SIU YAN 

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY 

DIVISION OF SYSTEMS ENGINEERING AND ENGINEERING 
MANAGEMENT THE CHINESE UNIVERSITY OF HONG KONG 

JUNE 1995 



\
�

�
^

 
^ 

X 

‘ ft, _ 
丨

，
；

4 

\ I 
I ~ 

-
W

均
 

/ 
. 

I.��
；
-:-.〜

:一
.-.、

：
 
..-



ACKNOWLEDGEMENTS 

First and foremost, I would like to thank my supervisor, Dr X. Shi, for his 
encouragement and guidance throughout this work. Without his support, this work 
would not be carried out smoothly as it has been. I would also like to express my 
gratefulness to all my friends, especially those who have studied with me in CUHK, 
for their support and camaraderie. Finally, I would like to thank everyone who help 
me in completing this work. 

i 



ABSTRACT 

This work is concerned with the manipulation of large objects with multi-arm robotic 
systems. Large object is defined here as objects which cannot be grasped with 
ordinary size grippers. The manipulation of such objects, in general, requires the use 
of multi-arm systems. In this study, the possibility of using multi-arm systems to 
manipulate large objects without the effect of friction is explored. Approaches for 
designing and analyzing grasps with frictionless contacts for polyhedral objects are 
proposed. Using the approaches, grasps provided by small grippers can be designed 
for large polyhedra. Moreover, an advantage of grasps with frictionless contacts is 
also demonstrated. An algorithm is derived for a certain type of object to determine 
position and orientation of the object from the contact locations of the grasp. 

In order to analyze the multi-arm systems, a dynamic model is derived. The 
model utilizes a general joint model to describe the connection between the end 
effectors and the manipulated object. The general joint model proposed in this study 
does not just make the modelling of complicated joints possible but it also provides 
general approaches for the analysis of all types of joints. 

To analyze the multi-arm system, computer simulation is helpful. An efficient 
algorithm is therefore proposed to solve the forward dynamics of the multi-arm 
system. This algorithm is an improvement over an existing one in that it is in a more 
general form and can be applied to a larger class of problems. It also avoids 
complicated computations in certain cases. 
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NOMENCLATURE 

e contact normal, which is a 3x1 unit vector giving the direction pointing 
towards the corresponding surface and means the fixed vector passing through 
the contact point. 

/ wrench, which is expressed as follows: 
r 

/ = { m 

where f is the force component 
m is the moment component 

h torque or wrench due to the gravitational, Coriolis and centrifugal terms 
I inertia 
/„ the nxn identity matrix 
M inertia matrix 
m mass 
p contact location 
q general coordinates 
r position and orientation 
V velocity 
X position vector 
0 a set of Euler angles 
Oî j a ixj matrix with all elements equal to zero 

J 
The symbol 知af is used to represent a vector contains variables describing the 

properties of a frame relative to the frame and expressed in the frame For 
example, ^v/ is used to represent the velocity of the frame Z�relative to the frame 
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Zb and expressed in the frame 
r • 

0 _“3 “2 
If a is a 3x1 vector a^ , ax is a skew symmetry 3x3 matrix “3 0 -a^ . 

“2 以 1 0 

- � L 
When this matrix is post-multiplied to another 3x1 vector b, the result is equal to the 
cross product axb. 

Symbols with bar, tilde or hat are used to denote modified variables or to 
distinguish variables with similar meanings. 

For a vector a and a matrix A, d and A are the time derivatives of a and A 
respectively, d is the second time derivative of a, 
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CHAPTER ONE 
INTRODUCTION 

There are lots of reasons for the use of several robot arms to manipulate an object 
instead of only one. It gives a better result in some cases while it is essential in 
others. When manipulating a very heavy workpiece, using more than one arm may 
result in a more stiff system. As a result, the accuracy may be increased. A multi-
arm system may also be used to manipulate an object exceeding the limit on the 
loading of each single arm. If the manipulated object is non-rigid, the use of a multi-
arm system is a must. The non-rigid object may be a tool or two parts being 
assembled. Both of this two cases are usual in industrial application. Another 
process which requires the use of a multi-arm system is the manipulation of large 
objects. Large objects may be defined in two ways. First, it may be defined as an 
object which is much larger in size than the manipulators used. When only one arm 
is used to handle such an object, a large moment may act on the arm even when the 
mass of the object is not very large. Small disturbance acted on the object may cause 
a large disturbance moment to act on the arm. The use of more than one arm may 
remove these problems. Another definition for large objects is an object which 
cannot be grasped with ordinary size grippers. Although some special grippers or 
large grippers may be used to handle such objects. There are many advantages in 
using a multi-arm system to manipulate such objects and this is the subject of this 
study. 

An object with a very large size may not be considered as a large object when 
the second definition of large object is applied. One example for this is a large 
object with a small handle. Conversely, under this definition, an object with just the 
size comparable to the size of the manipulators used can be classified as a large 
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object. For example, a cube, whose sides have a length similar to those of the 
stretched arms, is considered as a large object. In order to grasp such a large object, 
more than one gripper must be used unless it can be handled with certain special 
grippers, e.g. a large gripper or a magnetic device if the object is made of ferrous 
materials. Therefore, if special end effectors are not used, this task must be carried 
out with multi-arm systems. When more robot arms are used, it is not just possible 
to handle a large object using ordinary grippers but the object may also be 
manipulated without the effect of friction. This is because more contacts may be 
provided at different locations using just simple grippers. The objective of this study 
is, thus, aimed at the study on the design and analysis of multi-arm robotic systems 
which can manipulate such type of large objects without friction. 

To design such a multi-arm system, grasping theory should first be studied. 
Manipulation of object using several arms without grasping it rigidly resembles fine 
manipulation using a robot hand [1]. The main difference is that there may be more 
than one contacts for a multi-arm system between each of the manipulators and the 
object. Moreover, if large objects are manipulated, there will be more constraints on 
the contact locations. The contacts should be distributed such that the contacts can 
be provided by small grippers located at separate areas of the large object. 

The study of grasping with frictionless contacts had been started more than 
a century ago as reported in [2]. The term form-closure was also introduced at that 
time to describe a set of contacts in a grasp which can constrain any motion of the 
grasped object, irrespective of the magnitude of the contact forces. Grasps using 
frictionless contacts have several important advantages over ones with friction. First, 
it dose not depend on friction which can be affected by many different factors 
including the materials of the contact surfaces, surface finish, cleanness of the contact 
surfaces, etc. It is difficult to determine the exact effect of all these factors but it 
may affect the frictional force significantly. Second, it is much easier to reduce 
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friction than increase friction between two bodies. To reduce friction, bearings may 
be applied but it is impossible to increase the friction for some objects, e.g. a surface 
coated with grease or oil. Third, a grasp designed for frictionless contacts can also 
be achieved by contacts with friction. It was shown by Markenscoff et al. [2] that 
the presence of friction would only result in a better grasp. Moreover, the position 
and the orientation of the grasped object may be determined from the contacts in such 
grasps. The main drawback of frictionless contact grasp is that not all objects can 
be grasped with frictionless contacts. Objects with rotational symmetry cannot be 
grasped with frictionless contacts only [2]. In fact, most recent studies on grasping 
are concentrated on grasps using frictional contacts. This is because when friction 
is present, less contacts are required for the grasp. As a result, the construction and 
analysis of grasps using frictional contacts are simpler. Nguyen [3] presented 
approaches for constructing grasps using different types of contacts and concluded 
that the construction of grasps using frictionless contact is more expensive and 
harder. Moreover, as more contacts are required, the gripper required to provide the 
grasp would be more complicated. However, as pointed out above, the situation 
would be different when a multi-arm system is used. In such case, it is possible to 
grasp objects with frictionless contacts using ordinary grippers or robot hands. 

In [3], Nguyen proposed an approach for constructing grasp for polygons with 
frictionless point contacts. Four independent region of contact can be obtained using 
this approach. Grasp with form-closure can be obtained by placing one frictionless 
contact inside each of the four regions. Approach generalized for polyhedra is 
outlined but no exact procedure or example is given in the paper. The procedure 
would be very complex and time consuming. Markenscoff et al. [2] demonstrated 
how a grasp with frictionless point contacts may be designed for objects without 
rotational symmetry. The resulted grasp is just one of the possible options and there 
is no significant reason for selecting that particular grasp in application. The main 
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objective of the study is to demonstrate that seven frictionless point contacts were 
enough to grasp a 3D object. In a later study [4] by two of the authors of [3], an 
approach was presented for constructing a grasp with frictionless contacts to balance 
forces acted through the centre of mass of a polygon. The problem was simplified 
significantly by considering only a planar system. A more recent paper by Xiong et 
al. [5] gives methods to analyze grasps with frictionless contacts based on geometric 
approaches. Discussion on grasp construction is also provided but only brief outlines 
are presented. Trinkle et al. [6] also studied on the grasping of polygons with 
frictionless contacts. Enveloping grasping was studied so that in addition to point 
contacts, edge contacts were involved. In Enveloping grasping, the ability of the 
gripper to grasp the object depends on the relative size of the object and the gripper, 
and it is simple to grasp any object with appropriate size. It is possible to provide 
the same type of grasp for 3D object. The main problems of such kind of grasp is 
that the object and the gripper should have comparable size and the object is totally 
enclosed by the gripper. Therefore, Enveloping grasping is not suitable for grasping 
of large objects. 

Nevertheless, among the approaches for constructing grasps for 3D objects 
with frictionless contacts, none of them can be applied to design grasps for 
manipulating large objects with several manipulators. In order to design such a 
grasp, the distances between the contacts must be taken into consideration. Thus, 
such an approach is presented for polyhedra in Chapter 2. Using the proposed 
approach, grasps, which can be implemented using two grippers with relative small 
size as compared with the grasped object, are constructed for several types of 
polyhedra. The grasps obtained may be applied to grasp objects with different sizes 
but certain common geometric properties. Approaches are also suggested to test if 
the grasp can be maintained after small displacements of the contacts. Moreover, a 
method is proposed to determine the position and orientation of polyhedra with three 
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pairs of parallel surfaces from the contact location when the polyhedra are grasped 
with form-closure using only the three pairs of parallel surfaces. 

An appropriate dynamic model must be available before any analysis can be 
carried out for the system. The study of multi-arm system has drawn many attentions 
of many researchers. Many dynamic models are proposed in different studies on 
multi-arm systems. Among these models, most assumed that each end effector grasps 
the object rigidly. With this assumption, the relative positions and orientations 
between the end effectors are constant. The relative velocities and accelerations as 
well as the internal forces and moments acted on the object are also easier to be 
determined. The problem may be simplified while most characteristics of the closed-
chain systems is retained. This explains why most early studies and studies on 
control of multi-arm systems [7-14] apply this assumption. References [15] and [16] 
do not made this assumption exactly. In these two papers, each arm does not grasp 
the object rigidly but the arms together grasp the object rigidly such that the arms 
cannot move relative to each other. 

In some other discussions, the arms hold the object rigidly but there are 
relative motion among the arms. In these cases, the objects under consideration are 
not rigid objects. Zheng [17] studied the assemble operation using two manipulators. 
In the study, the dynamic models for system with two robot arms assembling two 
parts were presented for different stages of the operation. Dellinger and Anderson 
[18] proposed a modelling method of dual-arm systems grasping a non-rigid object 
which contained a single joint with one or more degrees of freedom. The method is 
based on variational approach. 

There are also some studies which consider certain connection between the 
arms and the object with certain degree(s) of freedom. Tarn et al. [19] and Yun and 
Kumar [20] assumed that the object can move relative to the grippers as if the object 
was connected to the arms with revolute joints. [19] is one of the early attempts in 
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the study of two cooperating robot arms. With such a model for the connections, the 
system was regarded as a single-loop closed chain in the analysis. [20] is a modified 
version of [19] with some simulation results. Internal forces was also considered in 
this study. The situation where only one contact is made by each arm on the 
workpiece has drawn attentions from many researchers. Several studies on multiple 
arm systems with rolling contacts were carried out by the same group of researches 
[21-23]. These studies also aimed at the manipulation of large objects but in their 
system, there was only one rolling point contact between each arm and the object. 
Another study [24] by the same group included sliding contact in addition to rolling 
contact. Other studies [1，25-28], which consider different types of single point 
contact between the manipulated object and the manipulators, are available. Among 
these, [1] and [28] are studies on robot hands which are similar to the case that a 
multi-arm system manipulates objects with only one point contact between each arm 
and the workpiece. 

Finally, there are studies [29-31] trying to model the joints between the object 
and the arms in a more general way. However, they only discussed the most 
commonly used joints. No general method was proposed to determine the matrices 
required in the modelling of joints. These matrices include the matrices describing 
the contact forces, the matrices describing the relative motions, and also the time 
derivatives of these matrices. All these quantities are necessary in the modelling of 
the multi-arm system. In order to handle the more complicated joints between the 
arms and object, a method to model all types of joints and the general approaches to 
compute the required matrices are proposed. A general method is also proposed to 
compute the value of the corresponding constraint function for the coordinates of the 
connected bodies and their time derivatives. 

To analyze the multi-arm system, computer simulation of the system may be 
helpful. In fact, real-time simulation may also be applied in some advanced control 
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methods [32]. For this purpose, the solution of the forward dynamic problem must 
be obtained first. Thus, the forward dynamic problem is also studied. There are lots 
of references on simulation of multi-body systems [32-34]. Many different 
approaches were summarized in [32]. Rodriguez et al. proposed a spatial operator 
algebra [35] such that recursive algorithm can be directly obtained from the model 
derived; and discussed its application in simulation of multi-arm systems handling 
one single object [31]. Featherstone [36] formulated the forward dynamic problem 
of robot arm forming kinematic loops using a spatial notation. With the notation, he 
developed efficient algorithms to compute the terms in the dynamic model of the 
system. The forward dynamic model was obtained by combining the dynamic 
equations for each arm and the kinematic constraint equations due to the connections 
between the arms and the object. The resulted system of equations is in the same 
form as those considered in the literatures of simulation of multi-body systems [32-
34]. Oh and Orin [37] also extended simulation method for single arm system in the 
same direction for multi-arm system. Lilly and Orin [30,38] proposed a solution for 
the simulation of multi-arm systems which have an object connected to several 
kinematic chains in parallel. This approach is easy to be understood and 
implemented using parallel processors. (A thorough discussion on simulation 
approaches for multi-arm system and comparisons with this approach can be found 
in these references.) Based on the same technique, McMillan et al. [39] considered 
the simulation when the system lose some degrees of freedom because of singularity 
of the arms. 

Modifying the approaches proposed by Lilly and Orin [38] and McMillan et 
al. [39], a more suitable algorithm is derived for the system considered in this study. 
With the modifications, the efficiency of the approaches are retained while several 
advantages are introduced. The modified approach is also more general and can be 
used for a larger class of systems. 
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To summarize, there are three main results in this study. First, the grasping 
of polyhedra using frictionless point contacts are studied. Approaches are derived for 
designing and analyzing grasps for multi-arm systems. Secondly, a dynamic model 
is developed for multi-arm systems handling one single object based on a general 
joint model. General approaches for computing the corresponding matrices required 
in the dynamic model and constraint functions can be obtained using this model. 
Finally, an efficient algorithm is proposed for solving the forward dynamic problem 
of the multi-arm system. 

The arrangement of this thesis is also divided into three parts according to the 
three main topics. In the next chapter, the grasping of polyhedra using frictionless 
point contacts is discussed. The dynamic model of multi-arm systems handling one 
single object and the general joint model are presented in Chapter 3. Chapter 4 
presents the approaches for solving the forward dynamic problem. Finally, some 
possible future works and the conclusion of this study are presented in the last 
chapter. 
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CHAPTER TWO 
FORM-CLOSURE GRASPING 

A grasp is called form-closure grasp [3,5] if it can constrain the object, or provide 
reaction forces and moments in all directions to the object, irrespective of the 
magnitudes of the contact forces. To obtain form-closure grasp, all contacts must be 
considered as frictionless because frictional forces and moments depend on the 
magnitudes of the corresponding normal forces. Thus, form-closure grasp has the 
property that it just depends on the geometry of the object but not on the friction 
between the gripper and the object. The presence of friction would only result in a 
better grasp of the object [2]. 

This chapter discusses the design and analysis of form-closure grasp. In the 
first section, algebraic argument for the minimum number of point contacts required 
for form-closure is given. Approaches for constructing a form-closure grasp are 
presented in the second section. The concept of configuration stability of a grasp is 
introduced in the third section in which methods for testing the property for form-
closure grasps are also suggested. In the last section, an approach is proposed to 
determine the object frame from the contact points of a form-closure grasp. This 
approach is suitable for the case where the contact points are on three pairs of 
parallel surfaces only. 

2.1 Condition for Form-closure Grasp 
It is well-known that for an n-dimensional vector space, at least n+1 uni-sense vectors 
are required to span the whole vector space with non-negative coefficients [3,5]. A 
set of N n-dimensional vectors which spans the whole n-dimensional vector space 
with non-negative coefficients must satisfy the following condition 
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… = PiI„+i + P2 义n+2+“. + P " - A (2.1) 

where a； > 0 
3i > 0 and not all equal to zero 
jCj, X2, x^ are n independent vectors 

Proof 2.1 
Let A be a set of n-dimension vectors, which can span the whole n-dimensional 
vector space with non-negative coefficients. It is obvious that A should also be able 
to span the whole vector space with real coefficients so it must contain at least one 
basis of the vector space. In other words, it should be able to select n independent 
vectors from A. Considering that any strictly negative combination of x】，…， 

is a component of the vector space, it can be concluded that Equation 2.1 is a 
necessary condition for A. • 

Equation 2.1 is also a sufficient condition. A set of N n-dimensional vectors 
can span the n-dimensional vector space with non-negative coefficients if they satisfy 
Equation 2.1. 
Proof 2.2 
Consider the following non-negative combination of the N vectors: 

义1 + + …+ Yn̂ n + + + …+ PjV-A) 
where ŷ  > 0 
Using Equation 2.1, it can be expressed as: 

(Yl - + (Y2 - 丫”+1«2)义2 + …十(Yn - Yn+X 
As - Yn+ja,- (for i. = 1，…，n) can be any real number and x!，jc]，... jc„ are linearly 
independent, non-negative combination of the N vectors satisfying Equation 2.1 can 
be any vector of the n-dimensional vector space. • 

In order to grasp an object, it should be possible to apply reaction forces and 
moments in all directions. In other words, the reaction wrenches applied on the 
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object must be able to span the six-dimensional wrench space. As each frictionless 
point contact can only apply a uni-directional wrench on the object being grasped, 
at least seven point contacts are required in a form-closure grasp. 

This is a well-known result. Markenscoff et al. [2] even proved that all three-
dimensional objects without rotational symmetry can be grasped with seven point 
contact with form-closure. Although this result is not new and the proof is similar 
to some previous work [3,5], they are not exactly the same. First, the condition given 
by Equation 2.1 is a better condition than that given by Nguyen [3] or Xiong et al. 
[5]. The conditions used in these previous studies only consider n+1 vectors each 
time so some marginal cases are neglected. Consider a planar form-closure grasp of 
a rectangle using five or six point contacts as shown in Figure 2.1. In these cases, 
the rectangle is form-closure grasped but the wrenches provided by the contacts do 
not satisfy the conditions given by the previous studies. However, these two cases 
are included when the condition given by Equation 2.1 is used. Thus, Equation 2.1 
is a more complete condition for form-closure. Secondly, this condition can be 
applied easily to design form-closure grasp for polyhedral objects even when more 
than seven point contacts are used. This is because this condition takes all contacts 
into consideration. 

^ i 

^ ^ P -
II ^ ‘ '丨 

Figure 2.1 Critical cases of planar form-closure grasp 
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2.2 Construction of Form-closure Grasp 
The construction of form-closure grasp can be broken down into two steps according 
to the condition for form-closure grasp. The condition requires that there should be 

� six contacts providing six independent wrenches and all the wrenches provided by the 
contact must satisfy Equation 2.1. Thus, the procedures for constructing form-closure 
grasps can be taken as 
1. Select six contacts^ which can provide six linearly independent wrenches; 
2. Select the remaining contact(s) such that the corresponding wrench(es) satisfy 

Equation 2.1 together with those corresponding to the six contacts selected 
before. 

The construction of form-closure grasp based on these two steps is discussed for 
polyhedral objects only. For polyhedra, the contact normal depends on the surface 
normals. Therefore, the construction is simplified as compared with objects having 
curved surfaces. 
2.2.1 Selection of the six independent contacts 
The inverse of the matrix whose columns correspond to six zero-pitch wrenches 
provided by six frictionless point contacts can be expressed as: 

(2.2) 
. J 

1 厂 -
^A 忍1 它2 where = PiX^i 
_ J L J 

； ‘ 

H 
. J L -

1 These contacts are called independent contacts for convenience in the 
discussions that follow. 
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Ĵi，P2，…，Pe are the position vectors of the six independent contacts 
衫1，衫2，…，忍6 are the contact normals^ of the corresponding contact points 
衫1，€2, are linearly independent 

= 力 、 

a = ttjJ^i+ag 
T2 = 

/ j is the 3x3 identity matrix 
(The proof for this is given in Appendix A.) Therefore, the basic requirement for the 
six contacts to be independent is: 
1. e^ exists; 
2. a, or a^Tj + a^, is nonsingular 
Using these rules, the contact surfaces and the contact locations can be considered 
separately in selecting the six independent contacts. The first condition requires that 
three of the contact normals must be linearly independent. For the contact locations, 
it does not just require three of the six to be linearly independent. The 
must also satisfy the second condition given above. Some necessary conditions for 
the contact locations can be listed as below: 
1. No more than 3 contact normals intersect at one point; 
2. No more than 3 contacts normals are parallel; 
3. No more than 3 contact normals lie on the same plane; 
4. If 3 contact normals intersect at one point, 

(i) the remaining contact normals must not be all parallel; 
(ii) the rest contact normals must not intersect at one point; or 
(iii) the intersection must not lie on the planes formed by the remaining contact 

1 Contact normal is represented by a 3x1 unit vector giving the direction 
pointing towards the corresponding surface and means the fixed vector 
passing through the contact point. 
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normals; 
5. If 3 contact normals are parallel, the other 3 contact normals must not intersect 

at one point; 
6. If 3 contact normals lie on the same plane, intersection(s) of the remaining 

contact normals must not lie on the same plane. 
The proofs of these conditions can be found in Appendix A. These give some 
general rules for selecting the independent contact but are not sufficient conditions. 
They just narrowed the selection. It is very difficult to specify all the rules for 
selecting independent contacts in terms of the geometry of the contacts because it 
depends on many variables. Nevertheless, for some special selections, the problem 
can be simplified. In the following, three such special cases are discussed. 
Case I Symmetric contact points 
For objects with three pairs of parallel plane surfaces, we may select one contact on 
each of the six surfaces. In this case, Tj is equal to I3 and, therefore, a becomes 
aA+ag. As the value of PiXê  do not depend on the values of /;, along the direction 
of ê ，it is possible to select the contact locations such that a^ is equal to a^. The 
problem is then reduced to obtaining three linearly independent p^xe, from three 
contacts. 

The sufficient conditions for three contacts on plane surfaces with linearly 
independent p̂ xê  can be listed as follows: 
1. The contacts are not coincide with the orthogonal projection^ of the origin on the 

corresponding surfaces; 
2. For any two contacts on two non-parallel surfaces, the two lines joining the 

contact points and the projection of the origins on the corresponding surfaces 
must not both perpendicular to the intersecting line of the surfaces. 

1 This point is called projected origin for simplicity in the later discussions. 
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3. If two contacts lie on the same plane, the projected origin must not lie on the line 
joining the contact points. 

4. The contact normals are not intersect at one point. 
5. The contacts are not all lie on parallel surfaces. 
6. For each contact, the line joining the contact and the projected origin must not 

perpendicular to the intersecting line of the plane on which the contact lies and 
the surface which parallel to both of the other two 

We can select the three independent contacts in three steps. The first contact can be 
selected according to Rule (1). The second contact is then selected according to 
Rules (1) to (3). Finally, the last contact is selected so that it satisfies all the six 
rules. 
Case II Three contact normals intersect at one point 
If we select three contacts whose contact normals are linearly independent and 
intersect at one point, all elements of a^ become zero when the intersection is taken 
as the origin. The remaining contacts can then be selected with more freedom such 
that it only requires the three corresponding to be linearly independent. The 
contacts may then be selected according to the rules given above. In fact, the three 
intersecting normals can lie on curved surfaces. 
Case III Two contact normals intersect and three contact normals are parallel 
We may select two contacts whose contact normals, Cj and 它 之 ， 肌 linearly 
independent and intersect with each other. This makes two columns of a^ become 
zero if the intersection is chosen as the origin. Furthermore, if another three contacts 
have parallel contact normals but non-parallel and non-zero the last contact can 
be selected according to the surface normals only. First, the plane of the last contact 
must have a normal which is not parallel to the three parallel contact normals. In 
addition, either the normal of the plane or the three parallel contact normals must be 
linearly independent with Cj and e!. The last contact may then be any point on the 
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plane except points on a line passing through the projected origin. This line is 
perpendicular to the intersecting line of the plane of the contact and a plane with a 
normal parallel to the three parallel contact normals. 
2.2.2 Determination of the region for the seventh contact 
In this section, form-closure grasp using seven point contacts is discussed. In 
particular, approaches for the selection of the seventh contact on a flat surface for a 
form-closure grasp are described. 
2.2.2.1 General Approach 
Consider the case when six independent point contacts are already chosen and it is 
decided to grasp the object with one more contact on a flat surface. The inward 
normal of this flat surface must satisfy Equation 2.1 with the other six contact 
normals. The seventh contact must be selected such that the seven wrenches which 
can be applied through the contacts satisfy Equation 2.1. 
Take p � ’ ...，Pe as the position vectors of the six independent contacts 

忍1，衫2，…，衫6 as the contact normals of the corresponding contact points 
ê  as the inward normal of the flat surface for the seventh contact 
Pj as the position vector of the seventh contact 

Using Equation 2.1, we have 

w � 1 
轻1 … 轻6 忍7 = a2/Pi 

[«6/Pi. 

where a, > 0 
> 0 as iV is equal to 7 in this case 

Moreover, if e ,̂ e� ’ ê  are selected such that they are linearly independent, the L.H.S. 
can be expressed as 
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« 1 「 • 

f/3 0 I M ih^T.TXA T.a 'Ke.xf or „ 
m J I-

n r “ Â 经 1 where = [PiX^i Pl^^l PsXCs 

^B 芒4 右5 右6 

Ps^^s 
7 \ = V 衫忍 

a — a^T^ + ttg 
T2 = -a^a^ 

Using the fact that a/P^ are greater than zero, we can obtain the condition for the 
seventh contact location so that the grasp is form-closure: 

[(/3+7；7>力〜+ [7>-i(e7X)�P7 < O3X1 ^2.3) 

where Ô xi is a 3x1 vector with all elements equal to zero 
One more constraint is that the contact should lie on the selected surface. 

Without loss of generality, we may select a reference frame which has its z-axis 
parallel to -e? With this reference frame, the region for the seventh contact may be 
obtained by substituting zero for the z-component of in Equation 2.3. The resulted 
boundary are expressed in the frame with its origin equal to the intersection of the 
z-axis and the selected surface. The following example demonstrates the use of 
Equation 2.3. 
Example 2.1 
Consider a rectangular block and take the reference frame as a frame with the centre 
of the block as origin and the axes are parallel to the normals of three adjacent 
surfaces. Three contacts are selected as shown in Figure 2.2. The other three 
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contacts are selected such that they are at the corresponding positions at the opposite 
comer, i.e. 

P4 = 一Pi Ps = -Pi Pe = -P3 
This selection follows case I in Section 2.2.1. If the last contact is to be placed on 
the top surface, the inequalities given in Equation 2.3 can be reduced to 

1 [ / -^IW ^ [ o ' 
det(a^) [ad -bc\[y\ L-l. 

where x and y are the x- and y- coordinates of the contact 
det(fl^) is the determinant of a^ and equals to (ade - bcf) 

Z 

(ix.lb) ( c 々 >； ^ 

Figure 2.2 Contact point locations in Example 2.1 

The region of the possible location of the seventh contact is, therefore, bounded by 
the following two lines on the surface: 

fx-ey =0 
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{ad)x - (bc)y = -det(a^) • 

This approach provides a convenient and manageable method to invert the 6x6 
matrix formed by the six independent wrenches. It is, however, difficult to apply this 
approach to determine the region for the last contact when more than seven contacts 
are used. All sets of six independent contacts must be considered separately. 
However, this approach can easily be adapted for use in cases where the seventh 
contact lies on a curved surfaced In such cases, the constant value of e^ is replaced 
with a function of the contact point p? 
2.2.2.2 Approach for Polyhedral objects 
This approach is based on the fact that the normal forces and the moments about the 
origin provided by the contacts must satisfy Equation 2.1 with the same coefficients 
(i.e. oCf and P,). Take 

6 

^ = E hPkXCk k=i 
6 

= E ^jkPk '̂̂ k k=\ 
6 

where X) îk^k = _ 经7 k=i 
6 

E 亡ik^k = Osxi k=\ 

S汰 and Cjj, are positive scalars which are not all equal to zero for any i and 
j respectively 

1 In [3]，Nguyen pointed out that the region for a contact in a form-closure 
grasp must have the following properties: 
(1) be either flat or spherical; and 
(2) have a convex boundary 
However, he used a condition which is not always true in his proof. Actually, 
it is possible to have contact regions without the above properties. See 
Appendix A for more details. 
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PjX€y must be a strictly negative combination of PiXê  (for i = 1，2,…，6)，such that 
6 

i = l 
where D, are strictly negative scalars 
The coefficients D̂  must also be used to combine ê  to form 衫7，i.e. 

6 
召 7 = TAci i = l 

Therefore, pyXe^ is in the following form: 

i=l j=l 
where and n^ are number of b̂  and c, respectively 

% 
Bi are negative scalars such that ^ B. = -1 i=l 
Cj are negative scalars 

As pjxej is perpendicular to 忍7，the coefficients B̂  and C, must satisfy the following 
condition: 

= 0 (2.4) 
i=l /=1 

From Equation 2.4，all possible values of pyXê  can be determined. Using the 
relationship between and Pi on a plane, the possible values of p j can then be 
obtained. The relationship is described in Appendix A. Figure 2.3 shows this 
relationship. 

20 



> V CONTACT ^ ^ 
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X PROJECTED ^ ^ 尸 y 

o m G I N 

Figure 2.3 Relationship between contact point on a flat 
surface and the corresponding moment about the origin 

The following example shows how the condition given by Equation 2.4 can be used 
to determine the region for the seventh contact. 
Example 2.2 
Consider the situation in Example 2.1 again. In this case, there is only one linearly 
independent h(. 

b^ = e 
[o. 

and there are three linearly independent c{. 

"01 [… 丨-/ 
C j = -b y C2 = 0 , C 3 = e a -c 0 

• J L J L« J 

Applying Equation 2.4，we have 
-C^a + C^c = 0 

C2 = ？ 

P j X Cj is in the following form: 
'-f\ \ad' 

D. e +£>2 -be 
0 0 • J L J 
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where Dj < -1 
D2<0 

Therefore the seventh contact p j is given as 
'e] \-bc' 

D^ f +£>2 -ad 
[OJ [ 0 . 

This is equivalent to the result obtained in Example 2.1. • 
It is obvious that Equation 2.4 does not always give some valid condition for 

the B^s and C/s. An invalid condition implies that no contact on the selected surface 
can provide a form-closure grasp with the six independent contacts. 

This is a more direct approach. The relation of the contact location of the 
seventh contact and the a / s in Equation 2.1 is clear. It is more appropriate for 
designing grasps although it is only eligible for objects with plane surfaces. 
Moreover, this approach is much easier to be modified for cases where more than 
seven contacts are used. Unlike the previous one, there is no limit on the number of 
contacts in the condition applied, i.e. Equation 2.4. To be used in such cases, we just 
need to determine the extra b̂  and c,. 
2.2.3 Design of form-closure grasps for large objects 
2.2.3.1 Rectangular blocks 
It is possible to design two fixed grippers to provide form-closure grasps for 
rectangular blocks with variable sizes. Consider the rectangular block in Example 
2.1 again. If contact is on the line j = /，minimum distance (DJ between the contact 
on the top surface and the seventh contact is: 

-dei(a.)+fbc 2det(a^) e ad ad 
Taking a = ly-Ab = l^-A 
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c = l^-Ad = l^-A 
e = I厂 Ef= I厂 A 

we have D太=12 (i4 -五） 

Figure 2.4 shows the region for the last contact and the corresponding lines 
when A > E. As A and E are distances from the edges, two sets of point contacts, 
each with fixed configuration relative to a corner, can grasp a rectangular block with 
form-closure. There is no limit on the size of the block, except that the size of the 
block cannot be smaller than a certain limit such that a, b, c, d，e and f are all 
positive. Z 

(»d)x - (bc)y = -det� 
y = ly - A \ / 

fx - ey = 0 

Figure 2.4 The possible region for the seventh contact location 

2.2.3.2 Object with three pairs of parallel planes only 
Similar to rectangular blocks, two fixed grippers can be designed to provide form-
closure grasps for this type of object having a size within a certain range. 
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Figure 2.5 Three non-parallel surfaces and the reference frame considered 

Consider a reference frame Eq. Figure 2.5 shows this reference frame and 
three surfaces at a corner. The z-axis of Eq is perpendicular to and pointing outwards 
from the top surface. The y-axis is parallel to the intersecting line of the top surface 
and the front surface. The origin is at the centre of the object. This is a general 
approach to defined a reference frame relative to three non-parallel planes. Contact 
normals corresponding to three contacts on the surfaces at a corner can be expressed 
with reference to S � a s 

--1] [-cos6l r 0 1 [-sinPcosy] 0 
e^ = R^ 0 = 0 ，它2 =民一1 = -cosP cosy , = 0 

0 -sin0 0 -siny -1 
J L J L J L L J 

COS0 0 -sin6 
where R^ = 0 1 0 rotates the normal of the front surface parallel to the 

sin6 0 COS0 
• • 

x-axis of Eq 
cosP sinp cosy -sinP siny 

R̂  = -sinp cosp COSY -cosp siny rotates the normal of the side surface 
0 siny cosy 
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parallel to the y-axis of Zq 
The values of p̂ xê  can then be expressed as 

"01 r-asin6 
p^xe^ - R^ -h = -b ， 

[a J [acos6 
'd^ dcosp +csinPsiny 

P2xe2 =1^0 = -dsinP+ccosPsinY， 
[-CJ [ -ccosy 

- f 
PgXgg = e [0. 

Z工 c e 
where a，〜，and / are locations of the contact on the front surface, the side b d h . J L J L J 

surface and the top surface respectively 
Ir ly, and I: are perpendicular distances from the origin to the corresponding 
surfaces 

If the other three contacts are at the corresponding positions of the opposite corner 
such that 

P4 = -Pi P5 = -Pi Pe = -Ps 
The approach for polyhedral objects can be applied to obtain the region for the 
seventh contact. In this case, we have one linearly independent bf. 

\ - f \ b^ = e [0. 
and three linearly independent c,: 

-asin0l [ JcosP+csinPsiny [-/" 
q = -b , C2 = -JsinP+ccosPsiny , c^ = e 

acos6 -ccosy [ 0 
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Take ê  equal to ê  and apply Equation 2.3，we have 
-Cjacos0 +C2CCOSY = 0 

广 acosG广 ccosy 
Therefore, p^xcj is in the form: 

'-/| [-ac cos Ysin0 +aJcos0cosP +ac cosdsin^smy 
Di e +£>2 -bccosO -aJcos0sinP +accos6cosPsinY 

[oj 0 

where Dj < -1 
D2 < 0 

Then the required contact on the top surface must be in the form 

'e\ -be cos6 - ad cos6 sinP +ac cos6 cos P sin y 1 [el Px 
D. f ac COSY sinG - ad cosd cos P - ac cos0 sin Psiny = D^ / +£>2 Py 

0 0 J [oJ 0 
^ ^ L J 

The following example shows how this result can be applied to design grasp for this 
class of object. 
Example 2.3 
Consider the case when the object has a corner such that -90°< 0 < 0。，-90�< p < 0°, 
-90�< Y < 0°. Take the coordinates of the corner as (L ,̂, Ly, L^), which are all 
positive, and 

a = Ly-F e = L厂 E 
b = -(L^-E) sine +(L - G )̂ cos0 f = 
c = (L厂 E)cosP-(L厂 P)sinp 容 1 = 
d = - (Ẑ x - £:)sinpsin 丫-(L 厂 / O c o s p s i i r y g ^ = L 厂 G: 

where E, F, Gj and G2 are constants specifying the contact locations from the corner 
The values of E, F, Gj and G^ must be selected such that the corresponding contact 
locations are lie on the surfaces of the object. With such relations, Py becomes: 

e/sin6cospcosy + 户(cos6sin丫 - s i n 0 s i n P c o s Y )-取cos0cosPcosy 
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If the values of e,f, gj and g � a r e positive, the value of Py is negative. This implies 
that the seventh contact can be selected such that the y-coordinate is/ . In this case, 
the distance (DJ between the seventh contact and the contact on the top surface must 
be greater than 

e(g�-容2) cos6 cosP COSY -flSi -g2)cos6 sinP cosy 
6sin6cosPcosY +/(cos6sinY -sinesinpcosy) -^2^080 cosp cosy 

The absolute value of D^ decreases as g! (or L )̂ increases and can be scaled by (gj-
g^). Thus, this object can be grasp with form-closure using two groups of contacts 
with fixed configuration with respect to two opposite corners. The contacts may be 
provided using two fixed grippers. The object is specified by values of 0, P, y, L^ 
and Ly. The value of L̂  is required to be greater than a certain limit. • 
2.2.3.3 A class of polyhedron 
Consider polyhedral objects which has two or more surfaces whose normals are 
negative combinations of the normals of three other surfaces. This class of 
polyhedral object includes all polyhedra with more than four surfaces/ For such 
kind of object, the following contact normals can be obtained: 

ei,衫2，and ê  are linearly independent 
€4,衫5，ê  and ê  are negative combinations of ê ,杉2, and ê  
By is equal to ê  

As €4 and ê  may be the same, only two different contact normals are required to be 
negative combinations of ê ,衫2，and e .̂ If the contact normals e” €2, and ê  intersect 
at one point and the intersection is taken as the origin, there is only one linearly 
independent h{. 

K = O3XI 
and three linearly independent c{. 

1 See Appendix A for a discussion on this class of polyhedra. 
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Cj = Ajxq , C2 = ^5X65, C3 = PgX^g 
Thus, results similar to those of the last section may be obtained. In this case, if the 
origin is the intersection of e ,̂ and e ,̂ and the axes of Sq is selected according to 
£4, es, and e^ instead of ej, €2, and ê  respectively, the expression for Cj, C2 and c^ is 
the same as before. As a result, a grasp may be designed as demonstrated in 
Example 2.3 if the angles between the surfaces corresponding to 衫…ê, and ê  satisfy 
the specified condition. 

2.3 Configuration Stability of Form-closure Grasps 
According to Montana [40], the stability of a grasp can be classified into two types, 
namely, spatial grasp stability and contact grasp stability. In this section, one more 
type of grasp stability is introduced and discussed. This type of stability is termed 
as configuration stability because it depends on the configuration of the contacts. 
The configuration stability is defined as the ability of a grasp to be maintained under 
disturbances on the contact point locations. This is an important quality measure of 
the grasp though it is neglected by most studies on optimal grasp. 

The independent regions of contact^ defined by Nguyen [3] can be used to 
measure the configuration stability. A grasp would have a better configuration 
stability if the distances of the contacts from the boundaries of the independent 
regions of contact is longer. For both polyhedral objects and polygons, it is not 
difficult to determine the independent regions of contact when frictional contacts are 
used in the grasp [3]. However, the problem is much more complicated when form-
closure of 3D objects are considered as it involves at least 14 independent variables. 

1 In [3], independent regions of contact is defined as the regions within which 
the contacts can be located independently to provide force-closure grasp for 
the object. And this is completely different from those obtained in the 
previous section. 

28 



In this section, issues on how to test the configuration stability of form-closure grasps 
for polyhedral objects and to increase stability are discussed. Once again, the 
discussion is focused on grasps with seven point contacts. 

As in the construction of a form-closure grasp, the analysis of configuration 
stability of such grasps can be divided into two parts. In the first part, the six 
independent contacts are considered. It is possible to determine a limit on the 
displacements of the contacts such that the contacts can be maintained as independent 
contacts. In the second part, by considering the region of the last contact, the grasp 
can be tested if it can be maintained after small displacements of the contacts. 
Although these approaches cannot be used to determine the exact displacements 
allowable for the contacts, they are useful in the analysis of the grasp and help to 
design better grasps. 
2.3.1 Limit on the displacements of independent contacts 
Consider six independent contacts. After a displacement of a contact, the 
corresponding value of becomes 

p^xe. + p^xe. 
where p. is the displacement 

When all of the contacts displaced, the value of a becomes 

where = [pjX^j /̂3父它3 

This shows that after the displacement, a 3x1 vector is added to each column of a. 
The magnitude of these vectors depend on the amount of the displacements of the 
contacts. In terms of three dimensional geometry, the columns of the original a can 
be represented by three non-parallel vectors pointing from the origin because they are 
linearly independent. This is shown in Figure 2.6. If the vectors become linearly 
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Figure 2.6 Three linearly independent 3D vectors 

dependent, all of them must lie on the same plane or some of them become zero. 
Therefore, the minimum magnitudes of vectors required to be added to the vectors 
the columns of a depends on the angles between them and their magnitudes. The 
minimum magnitude required can be determined from the known values of the three 
non-parallel vectors. Thus, a maximum limit on the displacements of the contacts 
can be set. When the contacts move within this limit, a can be maintained 
nonsingular. Because polyhedral objects are considered, e^ will not change for any 
displacements of the contacts on the corresponding surfaces and nonsingularity of a 
implies the six contacts can provide six linearly independent contacts. Thus, the limit 
indicates the configuration stability. If the limit is small, the grasp must not have a 
good stability. 

In order to increase the limit on allowable displacement, either the magnitudes 
of the vectors or the minimum angle between one of the three vectors and the plane 
formed by the other two may be increased. These properties depend on all six 
contact locations as well as the contact normals so it is difficult to give a general 
guideline to increase the values. However, for some special cases, as those discussed 
in Section 2.2.1, the rules are much simpler. If a is just depended on three contacts, 
the rules may be given as: 
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1. The contacts are far from the projected origin; 
2. If two contacts lie on the same plane, the angle between the lines joining the 

contacts to the projected origin should be as close to 90° as possible; 
3. For each contact, the angle between the line joining the contact and the 

corresponding projected origin, and the intersecting line of the plane on which 
the contact lies and the surface which parallel to both of the other two 
should be as close to zero as possible. 

The first rule ensures that the vectors are large in magnitude; and the second and 
third ensure that the angle between the vectors are as close to 90° as possible. 
2.3.2 Change of the region for the last contact 
The configuration stability can be reflected by the region for a contact obtained when 
all other contacts are fixed. This region can be determined for each contact using the 
approaches described in Section 2.2.2. However, this just considered the case when 
one contact is allowed to move at a time. The regions may change while other 
contacts move. Thus, an approach is proposed to test the change under small 
displacements of other contacts. The displacements may be considered as small if 
it is small as compared with the distances between the contacts and the boundaries 
of the corresponding region. 

Applying the approaches described in Section 2.2.2.1, inequalities specifying 
the region for the last contact can be obtained. If one side of every inequality is 
made zero, the other sides of the inequalities can be used as measures to test if the 
last contact is inside the region. For each measure, we may then estimate the 
maximum change due to certain small finite displacements. This can be carried out 
using the partial differentiations of the measures and assuming the measures are 
linearized for small changes in the contact locations. If the estimated changes are all 
much smaller than the values of the corresponding measures computed from the 
contact locations of the grasp, we may conclude that the grasp can be maintained 
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under the small displacements of the contacts. If the result is negative, it can be sure 
that the stability of the grasp is poor. In order to illustrate the procedure, an example 
is given below. 
Example 2.4 
From Example 2.1，two measure can be defined as 

f叉-巧 

(ad)x — (bc)y + det.(ade — bcf) 
where a, b, c, d, e and / are different from the coordinates of the contacts in 

Example 2.1 and are the sums of the corresponding coordinates of the 
contacts on parallel surfaces 

As a demonstration, only the first one is considered. This one depends only on the 
coordinates of the two contacts on the top and bottom surfaces. The estimated 
maximum change of this measure is then obtained by carrying out partial 
differentiation: 

where 5 � a n d 5/̂  are changes of the coordinates of the contact on the top surface 
&办 and bfb are changes of the coordinates of the contact on the bottom 
surface • 
In fact, all the conditions for the contacts required for form-closure are strict 

conditions. Any form-closure grasp can be maintained after any infinitesimal 
displacements of the contacts. This test assures that the contacts can displace with 
a finite amount. From the above discussions, it is clear that placing the last contact 
away from the boundaries of the region can increase the magnitude of the allowable 
displacements. 

32 



2.4 Determination of Object Frame from a Form-closure Grasp 
One of the advantage of form-closure grasp is that the object frame can be 
determined from the end points of the grippers. This is because in form-closure 
grasp the object cannot move when the grippers are fixed. What is required, in 
addition to the contact points, is the information of the surfaces on which each 
contact lies. 

For objects with three pairs of parallel surfaces, the determination may be 
quite simple and efficient. If only the three pairs parallel surfaces are used in the 
grasp, there must be at least one contact on each surface for a form-closure grasp. 
Let Uj, n2 and n^ be the normals, pointing out of the surfaces, of three adjacent 

surfaces such that there are two contacts on the surface specified by iij 
Pi，P2, and P3 be the position vectors of the any contact points on the surfaces 
with normals ftj, Uj and n^ respectively 
p於 Ps and P6 be the position vectors on the surfaces parallel to those for P2, 
and P3 respectively 
p^ be the position vector of another contact lie on the same surface as p j 
Ij, I2 and I3 be the distances between pairs of parallel surfaces with normals 
equal to n；, and n^ respectively 

Without loss of generality, take tij as the x-axis of the object frame, the y-axis as 
及2权2 and the z-axis as R^n ,̂ where R2 and R^ are constant orthogonal rotation 
matrices. Using the fact that the distance between p j and p* along rij is Ij, we have 

(Pi = I, (2.5) 
Similarly, we have 

(P7 - P 4 ) \ = h (2.6) 
^Pi'Psf^i = h (2.7) 
(P3 = h (2.8) 
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As fij is a unit vector 
2 2 2 . (2.9) 

where w办 and are the components of rij 
From Equation 2.5 and Equation 2.6， 

^ly�z ] [H f/J w = 
. � X n-

where d̂ y = p^ -p^ and d^y 二 p^ -p^ 
du 
L J — 

Solving for /1化，we have 

n j 一 1 卜 

. � j 1(為厂〜乂 1+(為 為 ( 2 . 1 0 ) 

-1卜+〜_ 
E C+Dn^ 

Substitute Equation 2.10 into Equation 2.9， 

From this quadratic equation, we can obtain two solutions for rij^. Using Equation 
2.10，two solution for rij are obtained. 
As 及2权2 is orthogonal to rij, 

"J 及2 "2=0 (2.11) 
where is the ith solution of itj 
From Equation 2.7, 

� J 及及= h (2.12) 
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< 
where d勿= p ^ - p， 

In addition, R^n^ is orthogonal to both rij and J?�灯2 so we may rewrite Equation 2.8 
as 

广及3r(�x 及 2"2) = h 

or 广及3�("1‘><)/̂ 2"2 = h (2.13) 
Using Equations 2.11，2.12 & 2 . 1 3， c a n be determined uniquely for each 
solution of nj. Then we can check which solution is correct using the following 
relation: 

nlx'-^y^^lz = 1 (2.14) 
where 权办 and «2z 虹e the components of w� 
Finally, R^n^ can be obtained as rij x 灯 

Without loss of generality, we may take the origin p � s u c h that its distances 
from any two parallel surfaces are equal. Considering pj, we have 

-Po) = \ 

or n^Po = n ^ P i ' \ (2.15) 
Similarly, we can have 

nlPo - 1 (2.16) 

rhTpo = (2-17) 
Using Equations 2.15, 2.16 & 2.17, the origin 凡 can be solved. Matlab M-files 
implements this algorithm are listed in Appendix B. 

This approach is quite simple but its application is restricted to objects with 
three pairs of parallel plane surfaces. For other objects, much more complicated 
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CHAPTER THREE 
DYNAMIC MODEL OF MULTI-ARM SYSTEMS HANDLING 
ONE OBJECT 

This chapter describes a dynamic model of multi-arm systems manipulating one 
single object. The dynamic model assumes that all the arms are not at singular 
position. In this model, the arms do not necessarily grasp the object rigidly. The 
connections between the arms and the object are described by a general model. The 
matrices required in the description of the connection between the object and the 
arms are discussed in separate sections. In the last section, the general model 
together with general approaches for using the model are described in detail. 

3.1 System Description 

mmm, ) 
/ \ / 

^ \ / 

Figure 3.1 Coordinate frames of the multi-arm system 

Consider a system with n robot arms. Let be a fixed base coordinate frame. All 
variables are referred to and expressed in this frame if not otherwise specified. Also 
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let S � b e the frame attached to the object with origin at the centre of mass; and Z^j 
be a frame attached to the gripper of the ith robot. Figure 3.1 shows the coordinate 
frames. It is assumed that each arms has six degrees of freedom with six joints and 
are not at singular positions. 

3.2 Manipulator Dynamics 
The dynamic equation of the ith manipulator can be written as 

似如、机々） = L 广 f c i 七 f e i (3-1) 

where M,- is the operational space inertia matrix of the iih arm 
V抓.is the velocity of the gripper frame 
hi(qi, q) is the gravitational, Coriolis and centrifugal terms 

is the joint position vector 
//m_，/d and/^,- are the wrenches acted on the arm about S^j and expressed in 
Eb due to reaction between object and arm, control torques and external forces 
respectively 

A wrench due to friction may be included in if the gripper does not move relative 
to the object in the corresponding direction, otherwise, it must be considered in/权•• 

3.3 Object Dynamics 
Denote the position and orientation of Z � b y 

, 一 〜 

。一 k 
where x�is the position vector 

9 � i s the orientation represented using a set of Euler angles 
The velocity of the object can then be expressed as 
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i 1 [̂3 [iJ V = = = E f 
o 卜�J [03 4| W o o 

where co�is the angular velocity 
transforms the time derivatives of the Euler angles to angular velocities 

The equation of motion of the object is 
^oh O3 

O3 R̂ KRy + lco�x[ie/yC)�jj ” � � � 
_ J 

1(^0 + - fo eo 

I � E / � + z A / � + h � = f � + f e � (3.2) 
where m�is the object mass 

J3 is a 3x3 identity matrix 
I is the inertia tensor of the object about the axes of X。，which is constant 
R^ rotates vectors expressed in 5L�to those expressed in 
g is the acceleration due to gravity 
fo and feo is the wrench about S � a n d expressed in acted on object due to 
reactions between object and arms and other external forces respectively 

3.4 Contact Forces 
3.4.1 Contact forces and moments applied to the manipulators 
If the gripper of the iih arm can move relative to the object with (6-Ay degree(s) of 
freedom, the force acted on the ith arm by the object can be written as: 
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fmi = ^mil ^mi2 …州mi(M)] f 
m J 

f二 = Ki^i 

fmi : (3.3) 
where f = is/抓.expressed in E^j 

are linearly independent wrenches about and expressed in 
^.j are the magnitudes of the corresponding wrenches 
双丄 transforms screws expressed in Z^j to those expressed in I^, and is equal 
to 

及二 0 

0 rL • • 
3.4.2 Contact forces and moments acted on object 
The wrenches acted on the object about by the arms are given as 

f : = [ � K 2 …阶h 
J • 

H t f o = K J ^ 

where f : is expressed in 
W î are linearly independent wrenches about S � a n d expressed in S。， 

corresponding to W抓，s 

H : transforms screws expressed in to those expressed in I：。 

Using generalized inverse, the vector |li can be expressed as 

Ji = KH:fo + 从 
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where W~ is a generalized inverse of 
A^ is formed by a basis of the null space of W^ 

|LI, can then be expressed as 

/-I /-I 
where and A�,, are the (1 +^N.)th to {N.+^N.)th rows of and A^ 7=1 J=1 respectively 

3.5 Kinematic Relations 
The velocity of X^j relative to Z�expressed in can be written as 

oKni = Ho'Tfli 
where T\ is a 6x(6-AQ matrix with columns equal to the allowable twists of E^j 

relative to and expressed in 
a, is a vector containing the corresponding magnitudes of the twists 

The velocity v̂ ,- can then be expressed as 
L .XX 3 mi o 

v., = 凡 
[Os ,3 . 

= ( 3 . 5 ) 

where 抓 . x � i s the displacement of the origin of S�relative to Smi 
Differentiate the above equation with respect to time, the acceleration of 2：爪1，̂mh can 
be obtained as 
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h ； [ O 3 M m i ^ o A ^ d f2(0,X O3 1 ^ 

[03 /3 J [O3 O3 [ O3 ^.Xj 

= . ( G : % . Gr%) r, H^ r^d, - (H,' t , . G f / / , ' T,) a, (3.6) 

3.6 Overall System 
Substitute Equation 3.2 into Equation 3.4，we have 

= « W o 吻。十 Qo-feo> + 人iî / (3.7) 

Substitute Equation 3.3 and Equation 3.6 into Equation 3.1，we have 

+ + 饥 伪 oc ‘ ] + A ‘ = 丨 • • 丨 � / " ( 3 . 8 ) 

Finally, put Equation 3.7 into Equation 3.8， 

fa = (MiG:%-HLwjV�flp�E�)f�+ M # k d � H L w j j i i 

+ [M肝；̂式 + G / X ) - 冗 ~ + Af伸。、+ 

=(M, - H i W ^ , « / A ) - ^i^o Tfi, - H i - h, (3.9) 
where is the terms due to the gravitational, Coriolis and centrifugal effects 

fei is the terms due to external forces and/or moments 
Augmenting the matrix equations for i = 1, 2, w, a set of equations describing the 
whole system can be obtained as follows: 

fc = (MGA - w'^ ^ M T^d - 似 ( 3 . 1 0 ) 
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[ / J [似 1 0 I 丨 G , 

where = ： , M = ••• ，G�= ： ， 

W 1 � m J k i 
^m/^m i 0 丑:『1 0 

W^ = .： ， = ..• ， 

0 hLW蘭 0 h X 
L J L 

[«l] ~ K — fel 
a = ： ， 五 = ; ， 又 = ： 

W K fen 
L J U J 

This is a system of nonlinear differential equations with 6n independent variables, r。， 

and jij. 

3.7 Constraint Space Matrices 
3.7.1 Determination of Ŵ -̂ and Ŵ i 
The matrices W î and W j introduced in Section 3.4, together with represent the 
reaction wrenches between two connected bodies. They are equivalent to the 
constraint space of the general joint model summarized by Lilly [30]. The main 
difference is that W^̂  and Ŵ^ are not normalized. There is no need to normalize 
them for use in the dynamic model. 

Each column of these two matrices is a wrench which can be applied to the 
bodies being connected. Actually, these two matrices describe the same set of 

1 The subscripts mi a n d � a r e used to denote the ith manipulator and the object 
respectively in the previous sections. Though these notations are used here, 
the discussions that follow can be applied to any two objects being connected. 
These notations will also be used throughout the rest of this chapter to 
represent two connected bodies in general. 
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wrenches. The wrenches are just expressed in different frames and about different 
origins. The two matrices are related as follows: 

Rfni 0, 
� = - � o o Ku _ 

(o^mi^)^mi ^mi 
L J 

where 义 is the displacement of the origin of E^j relative to and expressed in Z � 
The columns of these matrices form a basis of the subspace spanned by all the 
possible reaction wrenches between the connected bodies. Therefore, to determine 
the matrices, a set of N̂  linearly independent reaction wrenches should be determined 
first, where N̂  is the number of degrees of freedom constrained by the joint. 

For a joint formed by frictionless independent point contacts only, the 
determination is simple. In this case, W^̂  is given by 

r -

Cmil … 咨 mi("� 
Pmil^^mil Pmi2^^mi2 ... 

where p饥“，p饥口，…，p喊n ) are the contact locations relative to and expressed in 
e饥口，…， w h i c h can be expressed in terms of the contact locations, 

are the corresponding unit contact normals pointing towards the surfaces 
The corresponding W饥.is 

Coil ^oi2 … e�職 
Poil�Poil^^oil …Po_产om) • 

where p^.^, p^.^,…，p卿、are the contact locations relative to and expressed in S � 

Coij is equal to - K i e _ 
rotates vectors expressed in E^j to those expressed in 5：。 

When not all contacts are independent, each column of W ,̂- and Ŵ ,- would be a 
combination of zero-pitch wrenches instead of simply a zero-pitch wrench. In both 
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cases, W î and Ŵ^ can be expressed in terms of the contact locations only. In fact, 
it can be shown that any connection between two objects can be modelled as a joint 
with frictionless point contacts only. In Section 3.9，there will be further discussion 
on the general form of joint model. 

Moreover, if only the relative position and orientation of the connected bodies 
j are known, W抓.and Ŵ^ can still be determined for these joints. The contact 

locations can be determined from the geometry of the corresponding contact surfaces, 
i The surface normal or the corresponding contact normal can be expressed in terms 

of the contact locations, i.e. 
^mij = ^oij = ^oij^oij) 

From the relationship between the contact normals expressed in different reference 
frames, we have 

eo,(Po^ = - O 在 P (3.12) 
Also, from the relationship between p饥场 and p^y, we have 

Poij�〈广KtP-i (3.13) 
Because 冗. a n d R : are known, there are six equations with six unknowns which 
can be solved to obtain the contact locations, p^^j and Poy. There should be a unique 
solution. Otherwise, a point contact does not exist between the contact surfaces. The 
complexity of the solution depends on the shapes of the contacting surfaces, i.e. 
^mij(Pmij) and e�i/p�ij). A special case is that one of the contact surface is a sharp 
point. While the contact surface attached to Zmi is a sharp point, e^^ is no longer a 
function of p_ and p_ is constant. Therefore, can be directly obtained from 
Equation 3.13. 
3.7.2 Determination of W ,̂ and W ĵ 
Although these two matrices are not in the dynamic model described in previous 
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sections, they are necessary for describing a joint. For some common joints like 
revolute joints, prismatic joints, universal joints, etc, the values of W抓.and W饥.seem 

to be constant but this is not always true. For all joints, the value of R : and/or Xni 
change while the connected bodies move relative to one another. Therefore, W^̂  and 
W î cannot be both constant. In case that one of them is constant, the computation 
of W î and Ŵ^ is simple. If W î is constant, W^̂  has all its elements equal to zero 
and the value of W î can be obtained as 

(o^liX)Ki O3 
— ^mi 

[(�Oo+(oi:iX)�<,)]及二 (o^ltiX)Ki 
where�CO二 is the angular velocity of E^j relative to and expressed in 

J t : is the linear velocity of Î mi relative to and expressed in 
If Woi is constant, the result is similar. 

For a joint which is formed by only frictionless independent point contacts, 
is 

r • 

^mil m̂i2 … 衫 mi(M) 
Pmil^^mil Pmi2^^mi2 …Pmim严肌聊• 

By differentiating the variables in W ,̂-, W î can be obtained as • • • 
^mil … ^mim 

PmUX�U +Pmi产mU PmiZ^'^ma "'Pm^'^^ma P m _ X � _饥 _ 

where ê ^ is the time derivative of e饥‘ expressed in Eĵ j 
p^i is the time derivative of p^^ expressed in Zmi 

Similarly, can be obtained as 
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^oil ^oi2 … 么o_ 
Poi2X^oi2 ••. +於雜严0_ • 

where ê i is the time derivative of ê ^ expressed in Z � 
is the time derivative of Poi and expressed in Z � 

As pointed out in the last sub-section, columns of W卵.and Ŵ^ are combinations of 
zero-pitch wrenches if the contacts are not independent. Therefore, similar 
expressions for W î and W î can be obtained in this case. As a result, for joints with 
only frictionless point contacts, W î and W î can be expressed in terms of contact 
locations and their time derivatives. 

To determine the velocities of the contact points, Equation 3.12 and Equation 
3.13 can be differentiated with respect to time to obtain: 

= 一 （3.14) 

PoiJ = KiPmij\<iXKiPmij\C (3.15) 
Therefore, the relative velocity between the bodies are also required in the 
determination of the contact point velocities. The time derivatives of ê ^ and ê ,̂ can 
be obtained as: 

会 mij = f 芸) Pmy =(它p)mijPmiJ (3.16) 

‘ = f S ] ^o,=(认"A, (3.17) 

where and (� )�"• are the partial differentiations of the contact normal, and 
e îj, with respect to the contact point, p^^ and 。炉 respectively 

Substitute Equation 3.16 and Equation 3.17 into Equation 3.14， 

-K\e,\ijPoij = ( 认 〜 (3-18) 
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Substitute Equation 3.15 into Equation 3.18 and rearrange, we have 

‘ 沖 邮 = x K i P n u 广 X i � - o < ! i 〜(3.19) 

The coefficient matrix of p饥劫 in Equation 3.19 is nonsingular unless the contact 
surfaces of the objects do not have point contact at this location. This is because if 
the coefficient matrix is singular, the two surfaces must have the same gradient in a 
certain direction and a contact point is thus impossible. Therefore, p饥对 can be 
obtained from Equation 3.19 as long as there is a point contact. When one of the i 

I contact surface is a sharp point, the computation is again different and simpler. 
Assume the sharp point is attached to X î. In this case, are undefined, but/?^,-
is constant and p饥支 is zero. Therefore, p^i can be computed directly using Equation 
3.15. doij and can then be obtained from Equation 3.17 and Equation 3.14 
respectively. 
3.7.3 Selection of A^ 
The columns of matrix A^ in Equation 3.4 is a basis of the null space of matrix W� 
which is composed by W ,̂-. Each column of A^ represents a combination of the 
magnitudes of the wrenches that produce no effect on the motion of the object. 
Therefore, if the object is form-closure grasped, all elements of A^ can be non-
negative. When A„ is chosen such that all its elements are non-negative, the internal 
force and moment acting on the object increase with the increase of the value of |lIj. 

n 
Furthermore, it is possible to choose an A� such that each of the rows 

i=l 

contains one element equal to one at different columns and all other elements equal 
to zero, i.e. in a row echelon form. With such an A ,̂ each element of is related 
to one of the contact force magnitude only, i.e. 

where Hy is the jth element of ^̂  
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[ij is the jth element of |LI 
wg is the jth row W； 

The [ij corresponds to this selection is the difference between the actual contact force 
magnitude and the minimum norm solution. This selection allows the value of |lIj to 

I be determined more efficiently as only contact force(s) are required to be 
卜1 ^ 

I determined. 
I 

3.8 Motion Space Matrices 
3.8.1 Determination of 
The columns of T] specifies a motion space of the general joint model [30]. Its 
columns form a basis of the sub-space spanned by all the twists that can be moved 
by one of the connected body relative to another. For some common joints such as 
revolute joint and prismatic joint, constant J, may be obtained and the determination 
is simple. When T̂  is not constant, one of the method to obtain I] is to determine 
it from W î or W。,，which may be obtained more easily. According to the definition 
of Ti given in Section 3.5，1] is given as 

= (3.20) 

where�v二 is the velocity of E^j relative to and expressed in 
As any reaction wrenches acting on and any velocity of relative to S � m u s t 
be reciprocal, the following constraint for the relative ve loc i ty�v: can be obtained: 

( � W � v : � (3.21) 

where N̂  is the number of degrees of freedom constrained by the joint 
Thus, we have 

(wj'nrT, = 0乂 
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In other words, I] is a matrix whose columns form a basis of the null space of the 
matrix fV二 = H^iW^.. This shows how can be obtained using the constraint 
space matrices. Using the relation between and W î, i.e. Equation 3.11，we may 

( 

conclude that is constant either when both W饥.and ̂ ^ x � a r e constant or when both 
W î and R二 are constant. 

According to Equation 3.20’ for a certain�C-，the value of a,- and the value 
of Ti depends on each other, a^ can have a more significant physical meaning by 
choosing a suitable To show this, first denote the position and orientation of E^i 
relative to X � a s 

o ‘ 
o = 入' 

。〜纟=A. 
where 儿 is the orientation represented using a set of Euler angles 
As the number of degree of freedom is (6-N),�rj can be written as 

o “ T 
o^mi = fiAo^pmi) fiS^o^pmd fi4^o^pmd fiS^o^pmd 

where a vector contains (6-AQ elements o f � r j 
fij are functions of 

Thus, the time derivative of is 

fii 
fi2 

.0 = d .O o^mi ~ ~ r o^pmi a � 
fi5 
fi6 L -J 

- 1 7 —o^pmi 
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where F) is a 6x(6-M) matrix containing the partial derivatives offy with respect to 
o^pmi 

The velocity of the E^j relative to Z � c a n then be written as 

[J3 0 • 

where 丸,(凡i) transforms the time derivatives of the Euler angles to the 
relative angular velocity ^ cô -

Therefore, a,, is equal to &二[ when T\ is in the following form: 

,3 0 I 
0 a / � 

Conversely, based on Equation 3.22，T\ may be obtained directly from 
when oCf is equal t o二 . In this case, the first three rows of is equal to the first 
three rows of JF] and the other three rows depends on the fourth to the sixth rows of 
Ff only. Based on these two observations, a, can be selected for joints with different 
degree(s) of freedom so that (6-AQ rows of T] are known. The corresponding 7] can 
then be determined from W:.. 

Because the elements of a,- are independent, F, has a property that there are 
(6-Ni) rows which has one element equal to one and all others equal to zero. For 
example, if the joint has two degree of freedom and the first two elements of / ^ i s 
selected as the corresponding F, is 
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a (力1 3(力2 

• • 
• • 

a ( 力 1 d(oCi)^ 

• J 

where )j is the jth element of 
The values of the elements are unknown except the first two rows, they are given as 

1 0 
0 1 

as (j-^)! and ( � r � 2 are independent variables. Thus, we have the following guidelines 
in selecting a,: 
1. If the 7th (j = 1，2 or 3) element of j二, belongs to a,-，the jth row of T\ is 

simply a row with all elements equal to zero except the jth one. 
2. If all the components of are either an element of a,- or constant, the fourth 

to the sixth rows of I] can be computed using 九•. 
The following example demonstrates how these guidelines can be applied. 
Example 3.1 
Consider a joint formed by a corner of a rectangular block and a gripper with four 
frictionless point contacts as shown in Figure 3.2. This joint has two degrees of 
freedom. If the gripper frame is selected as shown in Figure 3.2，the first two 
components of 力 are independent variables and can be selected as a,. With this 
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OBJECT FRAME ^ 

GRIPPER FRAME 

# 

y人〉 

Z 
Figure 3.2 The configuration of the contacts and coordinate frames in Example 3.1 

a" Ti is in the following form: 
1 0 
0 1 
0 0 

(3.23) 

X X 

X X 
X X • • 

where x denotes unknown expression 
To obtain 7], may be first determined: 

0 0 0 - 1 
0 - 1 0 0 
- 1 0 - 1 0 
0 0 

0 0 x^-x^ Z1-Z4 

0 x̂ -x̂  0 ŷ -ŷ  
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The required T] can be obtained as 

1 0 
0 1 
0 0 

-bd df 
adf+bce adf+bce 

be -cf 
adf+bce adf+bce 

ad ce 
adf+bce adf+bce 

by transforming any basis of the null space of to the form given in Equation 
3.23. It should be noted that no partial differentiation or relation between the 
components of�”二 are required in the determination. If only the value of I] is 
required, it can be computed numerically without obtaining the analytical form. 

As the gripper frame can only rotate relative to the block about two axes, the 
orientation components can also be selected as a,-. If z-x-y or z-x-z Euler angle set� 
is used in the representation of orientation, the first two components of are 
independent and can be used as a,-. The corresponding T\ has the following form: 

X X 

X X 

0 0 

(人 i)l (。五w‘)2. 

where (又》is the jth column of 九•，which is a function of 九• 

Using this result, the corresponding J, can also be determined from W二 • 
3.8.2 Determination of j] 
Unless Ti is constant, T\ must first be expressed in terms of certain variables before 
r . can be determined. The selection of these variables are critical in the 

1 This refers to the angle set conventions given in [41]. 
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determination of as the complexity depends on the variables used. 
Consider joints with frictionless point contacts only. Expression for 7] may 

also be obtained according to Equation 3.22. A s / � m a y be highly nonlinear, it is 
very difficult to determine t^ from this expression of T̂ . Even the expression for F) 
can hardly be obtained in some situation. A comparably simple expression may be 
obtained for based on the use of contact locations. If the contacts are independent, 
W : can then be obtained as 

^ Rmi 0 Cfnil m̂i2 … m̂i(M) H^iW^i = 
[ 0 [Pmil̂ ^mil Pmil^^mil …PmKNi产m_. 

As discussed in the last section, T̂  can be obtained directly from W二 for certain a,. 
Therefore, T\ can be expressed in terms of the relative position of the connected 
bodies and contact locations. As a result, can be expressed in terms of relative 
position,力 ,and velocity, J:二，between the connected bodies, the contact locations, 
Poy, and velocities of contact points, /)�"•. This result is also true for all joints formed 
by frictionless point contacts. 

3.9 General Joint Model 
As pointed out in Section 3.7.1 that any joint between two rigid bodies can be 
modelled by frictionless point contacts. Any wrenches can be expressed as a zero-
pitch wrench or a difference between two zero-pitch wrenches^ Every zero-pitch 
wrench, in turn, can be considered as the wrench applied through a frictionless point 
contact. Thus, joints with frictionless point contacts only may be regarded as a 

1 See Appendix C for a proof of this. 
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general joint that can be used to model any type of joints. In addition, two contacts 
are sufficient to model one constraint. 

In previous sections, it is shown that several matrices are required to describe 
a joint in a dynamic model. These include the constraint space matrices, i.e. •， 

W î, W^i, W î, and and the motion space matrices, i.e. T\ and 1]. The 
determination of these matrices for joints formed by frictionless point contacts are all 
discussed in Section 3.7 and Section 3.8. Thus, if a joint is modelled with 
frictionless point contacts, the methods discussed before can be applied. 

The contacts used to model a joint should satisfy a basic requirement. The 
contacts must be able to provide the same set of wrenches applied through the joint. 
In order to model a joint properly, this basic requirement must also be satisfied while 
the connected bodies move relatively to each other. In other words, the geometry of 
the contacting surfaces used in the model should match with the real situation. 
Otherwise, the time derivatives of the constraint space matrices and the motion space 
matrices cannot be computed using the general approaches. 

The modelling joints with frictionless point contacts simplifies the analysis but 
does not mean that all types of joints can be designed with frictionless point contacts. 
Though it may be possible, the main objective is to model the joint at a certain 
configuration so that general approaches for kinematic analysis can be applied. The 
model may not be physically realizable. As an example, consider modelling a point 
contact with friction on a curved surface. Three frictionless coincident point contacts 
lying on three perpendicular surfaces may be used as a model of this joint. It is 
obvious that this model cannot be obtained in real life. 

Moreover, in the model, it may require that contact forces can be applied in 
both directions of the contact normals. An example is a frictionless non-triangular 
surface contact. In this case, any three usual frictionless point contacts are not 
equivalent to the surface contact even when the force distribution is ignored. The 
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contact forces may be required to apply in both directions of each contact normal. 
3.9.1 Models for common joints 
This section demonstrates how some common joints can be modelled using 
frictionless point contacts. In the models described here, one body (Body 1) has flat, 
cylindrical or/and spherical surfaces at the contact locations and the other (Body 2) 
has sharp points. 
Revolute joint 
Figure 3.3 shows a revolute joint and Figure 3.4 shows how five frictionless point 
contacts on a cylinder can be used to model the revolute joint. The model consists 
of four contacts on the curved surface of the cylinder and one at the end. 

Figure 3.3 A revolute joint Figure 3.4 The model for revolute joint 

Prismatic joint 
Two flat surfaces are used to model this type of joint An example of a prismatic 
joint and the corresponding model are shown in Figure 3.5 and Figure 3.6 
respectively. A requirement for this model is that the three contacts on the same 
surface must be non-collinear. 
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- 2 B Q c f f f � 

Figure 3.5 A prismatic joint 

i � 
丨 z i z 丨 I I �卜丄 I i 丨 I I J 
L 、 I 、 〜 、 丨 z 

Figure 3.6 The model for prismatic joint 

Cylindrical joint 
This is a joint with two degrees of freedom so that four independent contacts are 
required in the model. The connected objects may rotate as well as move along the 
rotation axis relatively. Therefore, a model based on frictionless point contact may 
be obtained by removing the contact at the end from the model for the revolute joint. 
The structure and a model of the joint is shown in Figure 3.7 and Figure 3.8 
respectively. 

Figure 3.7 A cylindrical joint Figure 3.8 The model for cylindrical joint 
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Universal joint 
This joint allows the connected bodies to rotate about two perpendicular axis. Shown 
in Figure 3.9 is a possible structure of such joints. To model such a joint, a spherical 
surface and a flat surface may be used. Three contacts, whose contact normals are 
perpendicular to each other, are located on the spherical surface and another one is 
located on the flat surface. The model is shown in Figure 3.10. 

Figure 3.9 A universal joint Figure 3.10 The model for universal joint 

Spherical joint 
This joint allows three-dimensional relative rotation. A possible structure is a socket 
joint as shown in Figure 3.11. A model similar to that for universal joint can be 
applied. In this case, only three contacts on the spherical surface are required. The 
resulted model is shown in Figure 3.12. 

,/ \ � � I X (I I �.-.�. 1 \ > 
、 、 丄 i i i ���::::<�. \ i jk/ 

Figure 3.11 A spherical joint Figure 3.12 The model for spherical joint 
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3.9.2 Constraints provided by a joint 
The matrices 冊.and give the constraints of the relative velocity of the 
connected bodies. This is discussed in Section 3.8.1. Alternatively, the constraints 
can be expressed in terms of velocities of the bodies instead of relative velocity. 
From Equation 3.21 

( 〜 冗 = 产 1 (3.24) 

where N̂  is number of degrees of freedom constrained by the joint 
Using Equation 3.5, Equation 3.24 becomes 

T mif mi^o^] ^ ( ^ j ' H r V讲「0 / 〜 二 \ L 3 3 J / 

Rr 收 b o 
[O3 K J 

. . . C L ^ . x ) = � x， x ) K ' and / C � , x，x ) = � , x : x ) / C 

-(〜广 n Drni = O3 R� 
/ r ] \ 7 

及二 O3 
( 〜 ) 〜 : - ( 。 、 及 。 只 。 〜 = 。 ¥ (3.2》 

Substitute Equation 3.11 into Equation 3.25, we have 

(Wj'vZ + ( ^ ^ J V = 0編 （3.26) 

Using this relation, the constraints on the time derivatives of the coordinates of 5：。 

and E^i can be. obtained. For example, consider the joint between the gripper of a 
robot and an object. If the joint variables is used as the coordinates of 5：爪1 and the 
coordinates of the object is taken as r„，the constraints on the time derivatives of the 
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coordinates can be obtained as 

+ (WJH^E/^ = 0舰 

where is the Jacobian giving the velocity expressed in E^j 
Although the constraints on the time derivatives of the coordinates can be obtained 
easily from W î and the corresponding constraints on the coordinates are also 
required in the analysis of the system. One of the application which requires the 
corresponding constraints on coordinates and their time derivatives is the constraint 
violation stabilization in numerical integration [33]. The corresponding coordinates 
constraints vary with the selection of W î and and therefore there is no general 
method to determine the constraints. Nevertheless, if W î and Ŵ ^ are selected such 
that each column is in the form: 

r 1 r n r _ 

or [PiXei\ [Pjxej 

where ê  and Cj are contact normals 
p. and Pj are contact locations 

the corresponding constraints on the coordinates can be determined. 
Consider an object with a fixed point at p expressed in a frame Z�attached 

to the object. If the point is moved along a direction given by a unit vector e, the 
resulted velocity v̂  of the frame expressed in is in the form 

e a Lpxe. 
where a is a scalar specifying the magnitude of the motion 
Therefore, the value 

"jr e 
V (pxe). 

is the magnitude of the linear velocity of the point p along the direction given by e 
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when the frame moves with a velocity v. As a result, if there is a constraint 
ir e V = 0 

(pxe)J o 

the point p cannot move along the direction of e. Similarly, if there is a constraint 
/ r 1 � 1 \ r 

卜 n - v̂  = 0 
\ i P i X ^ i ) \ [ (PyX^P J 

the linear velocities of the two points p^ and pj along ê  and ej respectively must have 
the same magnitude. Thus, under this constraint, any displacement of Pi along 忍,• 
must equal to that of pj along e�.Using these two results, corresponding constraints 
on the coordinates and their time derivatives can be obtained from the structure of 

To sum up, for a constraint on the time derivatives of the coordinates of two 
connected bodies derived from 

(炉jr�v: = 0舰 (3.27) 
the corresponding constraint on the coordinates can be obtained as: 
1. For a column of W^̂  in the form 

^mij 

the corresponding coordinate constraint is that the displacement of the point 
or contact p ^ along e饥y is zero. 

2. For a column of W ,̂- in the form 
r n r • 

^mij _ ^mik 
Pmi产my [Pmik^^mik • 

the corresponding coordinate constraint is that the difference between the 
displacement of p饥兔』along and that of p^ik along ê ^̂  must be zero. � 
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In order to obtain the equation for these constraints, the function (])_• should first be 
defined: 

^mij = ^mijCmî miJ ~ mî oij ) 
where ^̂  d^ f is the position vector, expressed in and relative to Smi, of the 

intersection of the contact normal and the contact surface of the object 
attached to E^j 

d^f is the position vector, expressed in and relative to 2mi，of the 
intersection of the contact normal and the contact surface of the object 
attached to 

Therefore, for the first case above, the constraint equation can be given as 
6 .. = 0 ^mij 

And in the other case, the constraint equation is 

^mij-^mik = 0 
If the contact locations are computed using the method described in Section 3.7.1, it 
may not required to compute the values of ^̂  d^ f and 饥i d^f directly. If the 
computed intersections of the contact normal and the contact surfaces are not the 
same point, the contact normal computed from the contact point obtained from this 
method is not a unit vector. This is because the equations used to solve the contact 
point only specify that the contact point lie on a line normal to both the contact 
surfaces but there is no constraint on the magnitude of the resulted contact normal. 
In other words, the computed contact point may not lie on the contact surfaces. 

Let the computed contact point relative to E^j and E ĵ be p^y and p^ ĵ and the 
corresponding contact normals be and Using the functions giving the 
normalized contact normals e _ and 忍饥)•，we have 

本 — 一 = • (3.28) 
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e ip = ^ (3.29) 
oij yolj 认oij ~ ~ I ^Oij ； ^Oij 

where e饥i/p饥ij) and are functions of contact points with values equal to e_ 
and e îj respectively 

and are distances, along and ê y respectively, measured from the 
computed contact points to the intersections of the surfaces with the contact 
normals 

From these two equations, the values of J抓）and can be determined. The values 
obtained must be checked such that {p^y+d^ye^^ and (应讲产冲）are points on 
the surfaces. These two values can also be given as 

^mij 二 ^mij (mi^mij "Pmij^ 

Thus, the value of the corresponding constraint function is equal to: 

Kij = ^mij^^oij 
If one of the contact surface is a sharp point, the computation is different. As 
discussed in Section 3.7.1，the determination of the contact point is also different in 
this situation. If the sharp point is attached to S^i, p^y is constant and p^ ĵ is 
computed directly using Equation 3.13. Therefore, is not given by Equation 3.28 
but equals to zero. The constraint function is simply: 

Kij = ^oij 
However, it should be noted that the computation is simpler when one of the contact 
surfaces is a sharp point. This is also true in determining the contact locations and 
the velocities of the contacts as discussed in Section 3.7. As a result, it is 
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advantageous to design grippers with spherical fingers. This is because the centre of 
the contact surface has a constant distance from the other contact surface and the 
contact may be modelled as a sharp point. This design would not scratch and 
damage the other contact surface like a real sharp point does. 

Lastly, if some of the constraints are nonholonomic, the nonholonomic 
constraints should be modelled by separate contacts. This allows the constraints on 
the coordinates to be computed using the general approach. 
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CHAPTER FOUR 
FORWARD DYNAMICS OF MULTI-ARM SYSTEMS 

I 

HANDLING ONE OBJECT 
•j I 
-J ] 

j This chapters presents an efficient algorithm to solve the forward dynamics of a j 1 ； 

I multi-arm system handling one single object. This algorithm is a modification of two 
‘ 

existing ones [38，39]. The modified approach is more general and it can be applied 
\ to a larger class of problems. There are also several advantages of this algorithm 
\ 

； over the previous ones. An algorithm used with this modified approach to solve the 
) { 

drift in numerical integration is also discussed at the end of this chapter. 

4.1 Previous Works 
4.1.1 Lilly and Orin's approach 
Lilly and Orin [38] suggested a method to solve the forward dynamic problem of a 
multi-arm system connected in parallel to an object. The main idea of the approach 
is to solve for the acceleration of the object before computing the accelerations of the 
arms. 

Consider the multi-arm system described in Section 3.1. The acceleration of 
can be expressed in terms of the object acceleration: 

V = G'^'v + V . 
(4.1) 

= G : \ H f , a , ^ W . a：) 

where and Wi are matrices describing the motion space and the constraint space 
of the joint between the object and the iih arm which have the following 
properties: 
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A y A 

炉i Ti = 0iv.x(6-Â ) 
^ T* A 

= � 

The contact force then may be solved in terms of the object acceleration: 
From Equation 3.1， 

where M;i is the inverse of the operational space inertia matrix and exists even when 
the arm is at singular position 

As the value of â  depends on the value of v̂ ,̂ a, must be eliminated. Pre-multiply 
the above equation with 命,’ we have 

= (4.2) 
a[，if not zero, can be computed from the velocities. 
Express /抓-as 

fmi = 仏 化 (4.3) 

and substitute the result into Equation 4.2’ we have 

= (4.4) 
c riT- T 广 mi . Go v^ 

where M：̂  = W^M^^W. 

Thus, f^i can be expressed in terms of the object acceleration if M：̂  is nonsingular 
and \ is known. 

= ( 4 . 5 ) 
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M：̂  may be nonsingular even when the arm is in a singular position and/or has fewer 
than six degrees of freedom. This is different from the discussion by Lilly and Orin 
[38]. M'î  will become singular only when the arm cannot move in the direction 
specified by Ŵ .. This fact allows the method to be used for cases where some of the 
arms have less than six degrees of freedom. 

The next step is to eliminate the contact forces from the object dynamic 
equation: 

lo^o-Qo 二 几, i=l 

i=l 

/�+E = - t (<fPrQo (4.6) 
i=l J i=l 

The acceleration of the object v̂  can then be obtained by solving the above equation. 
Using the values of 1>丄,.and 卵.can be computed using Equation 4.5 and Equation 
3.1. 

A 

For some cases, including manipulation with multiple point contacts, and 
f . are not constant. In such cases, a- must not be zero and the determination of a[ 
may be quite difficult. Furthermore, \ and X- may not possess significant physical 
meaning and the values of \ may also be quite difficult to be computed. However, 
such problems do not present if and f , are constant. 
4.1.2 McMillan, Sadayappan and Orin's approach 
In order to consider of the problem of singularity, i.e. when some M；̂  are singular, 
McMillan, et al. [39] suggested a possibly less efficient^ algorithm. The main idea 
is to solve for the wrenches acted about the end points of the manipulators with 
insufficient degrees of freedom. To do so, v̂  is first expressed in terms of the V of 

1 As discussed in [39], under certain conditions, this algorithm is more efficient 
when applied for a dual-arm system. 
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the arms with singular M：̂  Using Equation 4.5 and Equation 4.6, the dynamic 
equation of the object can be written as 

/ � + 1 1 = - t 
i=s+l J i=s+l »=1 

Substitute Equation 4.3 into the above equation and simplify, we have 

i=l 

V. = (4.7) 
. 1 = 1 

where i � = [ / , E ( G ^ f W ^ ^ W ^ G f 
i=s+l 

s is the number of singular M；^ and the corresponding arms are assigned with 
numbers from 1 to s 
4 and are the modified values of 1 � a n d 仏 respectively including the 
effect of the {s+l)th to nth arms 

s 

Substitute Equation 4.7 into Equation 4.4，Ĵ TV,. equations relating V can be 
i=l 

obtained: 

(4.8) 7=1 J 
where i = 1, 2, ...，s 

These equations describe the force and moment balance of the whole system. 
Every set of V satisfying these equations may lead to the same motion of the 
corresponding arms. Therefore, the motion of the system may be solved even when 
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these equations have infinite number of solutions. After are computed, and v̂ ^ 
can be obtained using Equation 4.7，Equation 4.5 and Equation 3.1. 

The above description generalizes the approach proposed by McMillan et al. 
[39]. They just discussed the case where all 命丨.are equal to identity matrices. The 
approach described above show that solving \ instead of/^,- reduces the order of the 

yv 

system of equations. Nevertheless, the problem due to non-constant and T\ cannot 
be solved using this approach. 

4.2 Modified Approach 
The approaches described above can be modified for use in a more general class of 
problems. In general, solving the forward dynamics of a multi-body system requires 
to solve a system of equations in the following form [32,33]： 

M W]\q\ 
_ I = c (4.9) 
W^ 0 � � • J 

where M is the composite inertia matrix 
W is the composite constraint space matrix which describes the kinematic 
constraints 
W, which may not equal to W \ specifies the reactions acted among the 

bodies 
q may be the velocities or accelerations of certain set of coordinates of the 
system 
^ is a set of Lagrangian multipliers 

1 This is different from descriptions in certain textbooks [32, 33]. An example 
is a multi-arm robotic system manipulating an object using grippers with 
frictional contacts. The frictional forces may give no kinematic constraint and 
its magnitude depend on the corresponding normal reactions. Thus, the 
frictional components may be combined with the components due to the 
corresponding normal reactions to form a W different from W. 
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c is a vector function involved in the constraint of the velocities or 
accelerations 

The approach described by Lilly and Orin [38] considers systems described with a 
model in the following form: 

I叫叫…koni p n r x " 

mm 

、 ： 5 
V • « • 

氣 K 免取 k 
mtm- t f t mm | | f k 

* * » • • A ： * 

司 0 

where the un-shaded areas contain elements equal to zero 
This is a system having n separate bodies connected to a single body which is not 
necessary a rigid body. 
Example 4.1 
For a multi-arm system as presented in the last chapter, the corresponding matrices 
may be obtained as: 
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M � = 1� M, = M, 

Ki = Ki = H^Ki 两 = 伊 「 < 〜 

h = K = -Qo 
n IT' _ O3 

m J 

1T 
- 炉 : 二 0 : • 3 mi 

For this class of systems, an algorithm with the same efficiency as Lilly and Orin's 
approach [38] can be obtained by solving q�first. Using the kinematic constraints, 
we may obtain 

= + 示:q� (4.10) 
where i = 1, 2, n 
When W.̂ M.'̂ W. is nonsingular, jW, can be obtained as 

jx, = (W；'^：'}^^' (4.11) 

By eliminating 凡，q�can then be obtained: 

q�= k + E伊。,(示,歧-1伊示J1 1[厂。-E伊。示,戏妒示,城-1厂r。） 
[ i=l [ «=1 

(4.12) 
q � c a n be computed using Equation 4.12 as all terms in the R.H.S. are known. Using 
the value q � , a n d 仏 can then be calculated from Equation 4.11 and the dynamic 
equations respectively. 

There are just some minor differences between this approach and the approach 
by Lilly and Orin [38]. In the former, the kinematic constraint is used instead of the 
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relative values between q̂ . This arrangement avoid the determination of a [ are 
dependent on t \ which is much more difficult to determine than W^i or W î for a 
general joint as shown in the last chapter. However, when T\ is constant, a- is zero 
and there is no difference in using these two approaches. The modified approach 
also shows that Ŵ  do not have to possess the orthonormal property. It can be 
chosen such that 只纟，or X-, have more significant physical meanings and the 
corresponding constraint space matrices can be determined with less difficulty. In 
addition, dynamic models based on variables other than accelerations [42] can also 
be solved using this approach. To sum up, this approach provides a more systematic 
and general way to solve the problem while retaining the efficiency. It also avoids 
complicated computation when the joints involved are not simple ones. 

The efficiency of this algorithm is affected by the computations of M., h., 
W., W. and c” In general, M. and h. can be determined easily for serial 
mechanisms using recursive algorithms [30,36,43]. Therefore, it is desirable to divide 
the multi-body system into serial multi-body sub-systems to solve the forward 
dynamic problem. To obtain W., W. and efficiently, we may make use of the 
general joint model described in the last chapter. In addition, constraint violation 
stabilization method [32，33] for stabilize numerical integrations can be adopted when 
the general joint model is used. This is discussed in the next section. 

Moreover, McMillan, Sadayappan and Orin's approach [39] can also be easily 
modified in the same direction to obtain an algorithm for situations when there are 
singular iv/^M'^W.. First, solve in terms of 凡•， 

= (4.11) (=1 
where 凡 = M � + 亡 

i = \+s 
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K = K-i：伊。i(示,錢-1 巧(矛,减 
i=s+l 

s is the number of the singular W^M'^W^ and the corresponding bodies are 
assigned with numbers from 1 to s 

Substituting Equation 4.11 into Equation 4.8, 

示,城-1 伊 此 = ( 4 . 1 2 ) 

i = l 
where i = 1 , 2， s 
Combining the equations, we have 

尸 叫 H rjl 
^21 ^22 …F2S = 

* • 

•秦 • • 

where F.. = wl^M^'w^. for i^j 

Fa =示XX"示,成—1伊i 

Similar to the original algorithm, any solution of results in the same motion. 
Using the dynamic equations and/or Equation 4.11，the values of q � a n d 仏 can be 
obtained. 

4.3 Constraint Violation Stabilization Method 
If the constraints of the accelerations are used to solve for the variables used in the 
simulation of a kinematically constrained system, the resulted coordinates of the 
system obtained from numerical integration would not satisfy the constraints on the 
coordinates and the error would increase with time as well as the numerical error 
[32]. To deal with this drift due to numerical integration, several methods are 
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available in the literature [32]. The constraint violation stabilization method or 
Baumgarte Stabilization is an efficient approach [32] though it may have problem 
when the system is close to a singular point [34]. 

The constraint violation stabilization method is actually an extension of 
feedback control theory [33]. To apply this method, the constraint on the 
accelerations 

添=0 

is modified as 
^+2a<i) + p > = 0 

where (|)(分）is the corresponding constraint function for the coordinates {q) of the 
system, i.e.中=0 is the constraint equation. 
^ is the corresponding constraint function for the time derivatives of the 
coordinates 
a and p are positive constants 

According to Nikravesh [33], a range of values between 1 and 10 for a and |3 is 
adequate for most practical problems. For nonholonomic constraints, the value of (3 
may be simply taken as zero. 

To apply this method,中 and are required, which, unfortunately, are not easy 
to obtain for certain cases. Garcia de Jalon and Bayo [32] discussed that the 
complexity of ^ and (j) depends on the coordinates used to describe the configuration 
of the system. They also suggested to use the natural coordinates, which has a linear 
Jacobian for (b; but using these coordinates may introduce more constraints to 

dq 
the system thus increase the complexity of the problem. To solve this problem, it is 
suggested here that the approaches described in Section 3.9.2 be used to compute (j) 
and ^ numerically. Following is an example showing the application of the general 
model developed in the last chapter. 
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Example 4.2 
Consider the system in Example 4.1 again. In order to apply the constraint violation 
stabilization method, only c,. is required to be modified as: 

where 中龙 is the constraints function for the coordinates of Î mi which may be 
computed using the approach described in Section 3.9.2 • 
Lilly and Orin [38] also suggested a method to tackle the problem. The 

method is based on the same concept of the constraint violation stabilization and is 
suitable for use with the approach they developed earlier for solving the forward 
dynamics. The main problem of this method is that it requires the constrained 
relative positions, orientations and velocities. Unless the manipulators grasp the 
object rigidly, these variables may not be known or difficult to be determined using 
the parameters obtained from numerical integration which contain errors. Thus, the 
modified approach described in this chapter would be preferable when used with 
constraint violation stabilization. 

4.4 Computational Requirement of the Algorithm 
The algorithm proposed in this chapter has the same computational complexity as that 
proposed by Lilly and Orin [38]. Consider a multi-arm system with n arms as those 
discussed in the last chapter. If the arms have the same number of single degree-of-
freedom joint and all arms are connected to the object with joint having the same 
degree(s) of freedom, the computational complexity depends only the number of arm 
n. To solve for q^. Equation 4.12 is used. The computational complexity of the 
coefficient matrices is 0{n) and the number of operation required in solving the linear 
system of equation is fixed if the degree of freedom of the object is fixed. In solving 
for 仏，Equation 4.11 and the dynamic equations are used. This also requires a 
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computational complexity of 0{n). If q�and 奶 are solved directly from Equation 4.9， 

the computational complexity will be OQ^). However, the actual efficiency of the 
algorithm also depends on many other factors, e.g. the programming language and 
the programming method. In order to test the efficiency of the proposed algorithm, 
tests are performed for systems in which each arm having 6 single degree-of-freedom 
joint and connected to the object with a joint with single degree of freedom. 

In the test, the time required to compute the accelerations q � a n d q̂  are 
compared. The computations are performed using the Matlab M-files listed in 
Appendix D. To compute the accelerations, two steps are required. In the first step, 
the coefficient matrices in Equation 4.9 are computed. As serial robots are 
considered, the composite body method [30,43]，which is the most efficient method 
for computing the joint space inertia matrix and the Jacobian together, is used. In the 
second step, the accelerations are solved from the equations. Two different functions, 
msolve.m which applies the proposed approach and msolveOS.m which solve the 
equations directly, are used for comparison. The following table shows the result of 
the tests. 

number speed-up 
total time saved 

of in soMiig the 
speed'iip (腿） 

arms accelerations 

2 0.98 0.71 -6.5 

3 0.99 0.77 -7.2 

4 0.99 0.88 -4.9 

5 1.00 1.03 1.3 

6 1.01 1.22 12.3 
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乂ictttijfer •• speed-up ,。，, 
total time saved of in solving the speed 仰 （腿) arms accelerations 

7 1.02 1.41 27.1 

8 1.03 1.64 47.7 

9 1.05 1.88 73.7 

10 1.06 2.13 104.6 

In the above table, the results are average values and are defined as follows: 

total speed-up = “1+0 
• t^ speed-up in solving the accelerations = — h 

time saved = & - G 
where t is average time to compute the coefficient matrices 

tj is average time used by msolve.m 
t2 is average time used by msolveOS.m 

There is a significant speed-up when the number of arms is large. Therefore, it is 
advantageous to applied the proposed approach when the number of arms in the 
system is large. 

1 
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CHAPTER FIVE 
CONCLUSION 

Grasping of large object using frictionless point contacts is studied in this thesis. 
Approaches that help select the required contact locations in a form-closure grasp are 
proposed. The selection process is divided into two steps. First, six contacts, which 
can provide six independent wrenches, are selected. Several special selections are 
suggested to simplify the problem. In the second step, one or more contacts are 
selected to satisfy the form-closure condition. To do so, methods are introduced to 
determine the possible region for the last contact. Methods are also suggested to test 
the quality of the designed grasp. The main objective of these tests is to ensure that 
the form-closure property can be maintained for small displacements of the contacts. 
Furthermore, an algorithm is proposed to determine the object frame from the contact 
points of a form-closure grasp. This algorithm, however, only works for cases where 
the contact points are on three pairs of parallel surfaces. 

A dynamic model for multi-arm systems handling one single object is derived. 
This model utilizes a general joint model to describe the different joining condition 
between the end effectors and the object. The model is based on frictionless point 
contacts. With this model, any type of joints may be modelled and the analysis can 
be generalized. All the parameters, including the constraint functions, matrices 
describing the relative motion and the constraint forces as well as the time derivative 
of these matrices, can be determined with general approaches. 

Simulation of multi-arm system handling one single object is also studied in 
this thesis. An efficient approach is proposed to solve the forward dynamics of these 
multi-arm systems. This approach, modified from an existing one, is a more general 
and can be applied to a larger class of systems. Using the approach, computation can 
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be simplified when complicated joints are involved. Furthermore, the application of 
the general model with this approach to stabilize error in numerical integration is also 
discussed. 

With these approaches, multi-arm systems for manipulation of large objects 
can be designed and analyzed. However, in order to build a working system, more 
work has to be done in the future, which includes force distribution, grasp planning, 
control, etc. Some of these topics are summarized in the next section. 

5.1 Future Researches 
In this study, approaches are only proposed to design form-closure grasps but there 
is no discussion on how to select an appropriate grasp. The optimization of the grasp 
should be further studied. As in most studies in grasp optimization, the contact force 
is the first factor to be considered. For form-closure grasp provided by multi-arm 
system, the configuration stability as well as the distances between the contacts 
should also be considered. 

The force distribution among the contacts is also a very important issue in the 
study of manipulation of large objects. In addition to the determination of quality 
measure for contact forces, an appropriate force distribution algorithm is essential in 
the control of the system. This is because the magnitudes of contact forces must be 
maintained to be greater than zero. 

In the design of grasps, it is assumed that contacts may be made at all 
surfaces of the object. In real life, some of the surfaces must be in contact with 
supporting surfaces and the grippers may not approach the object in certain directions 
before the object is picked up. Special fixtures may be applied to allow contacts to 
be made at the required locations but this restricts the use of the system. To made 
the system fully automatic, certain grasp planning algorithm must be derived to pick 
up the object. For polyhedral objects, it may be possible to pick up the object by 
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first tilting it. 
Only contact locations are considered in the design of grasps. The real 

designs are not considered. Point contacts, line contacts or surface contacts may be 
used in the design of the gripper. Even when the type of contact is decided, the 
geometry of the contact surfaces may affect the kinematic properties. The kinematic 
properties, the pressure distribution and the complexity of the structure must be 
considered in the design of grippers. 

Besides grasping, the control of the system is also crucial in developing the 
multi-arm system. Two important points should be noted in the control of such 
multi-arm systems. As pointed out above, an appropriate force distribution algorithm 
must be used with the control algorithm. The relative motion between the arms and 
the object must be restricted such that the grasp is maintained. However, if possible 
the relative motion may also be applied to increase the working envelope of the 
system. Thus, the study of grasping and control must be considered together in 
designing multi-arm system for manipulating large objects. 
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APPENDIX A 
PROOFS AND DISCUSSIONS RELATED TO CHAPTER 2 

A.l Expression of the Inverse of a Six by Six Matrix 
Any nonsingular 6x6 matrix can be expressed as 

Â 它 1 
where = 

^ A 以1 “ 2 以 3 

• J L J 

^B 它 5 

它1，忍2，• •，它6 are 3x1 vectors 
衫1，衫2，are linearly independent 

flj, «2，••，议6 are 3x1 vectors 

Take = 
J L J L J 

then = -e/^Cg 
a 二 flf + ttg 

卜A k 0 Take = a^ a T2 /g [0 a • J L J 
then T2 = -fl.Vi 
Using the above result, we may write 

�A 寺 0] _ k � -
“ j J l 。 I K , J [0 a 
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Therefore, we have 

eA … _ \ h t M 0 和 1 0 
^A ^B 0 h h 0 fl-i 

L J L J L L -J 

A.2 Necessary Conditions for Six Frictionless Contacts Providing 
Linearly Independent Wrenches 

In Section 2.2.1, necessary conditions for obtaining six linearly independent wrenches 
from six frictionless point contacts are listed without proof. In order to prove these 
conditions, it should first point out that though the values of the wrenches change as 
the origin changes, the property of being linearly independent is independent of the 
origin selected. In addition, three of the moments provided by the contacts must be 
linearly independent if the wrenches are linearly independent. Thus, in order to prove 
a necessary condition, it is sufficient to show that three linearly independent moments 
cannot be provided about a certain origin when the condition is not satisfied. 
A.2.1 NO more than 3 contact normals intersect at one point 
If four of the contact normals intersect at one point arid this point is selected as the 
origin, four of the moments provided by the contacts is zero. There are only two 
non-zero moments about this point under this situation. Therefore, there cannot be 
four or more contacts intersect at one point. 
A.2.2 No more than 3 contacts normals are parallel 
Consider vectors with the following form: 

+c ” (A.1) a 
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where c is a constant vector with dimension greater than or equal to one 
J is a vector belong to a subspace spanned by k linearly independent vectors 

let ⑷，这2，…， k̂) be a basis of the subspace 
take dk+i as 

k 

t=i 
k 

where ŷ  are constant scalars and ^ Yi 尹 1 
i=l 

then, we have 
f -1 [ � f H _卜 

h 丫‘•式 0 

i=l 

Therefore, the k+1 vectors 
r ~ i r n r 1 r • c c c J c 
式 ， d 厂 , d 产 

• J L J L J L 

forms a basis for the subspace containing all the vectors in the form specified by 
Equation A.l. In other words, the subspace spanned by the vectors in this form has 
a dimension k+1. 

All the wrenches provided by contacts with parallel contact normals have the 
form given by Equation A.l. In this case, c equal to the common contact normals. 
This wrenches have the following form: 

士它 

• J 

where e is the common contact normal 
Pi is the contact location 
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As PiXe are perpendicular to e, they belong to a subspace spanned by two linearly 
independent vectors. Therefore, the wrenches provided by contacts with parallel 
contact normals belong to a subspace spanned by three wrenches. Thus, there cannot 
be four linearly independent wrenches provided by contacts lie on parallel surfaces. 
A.2.3 No more than 3 contact normals lie on the same plane 
Consider the case when the origin also lies on the same plane. The four moments 
about the origin provided by the four contacts must be parallel as they are all 
perpendicular to this plane. Because three of the contact normals must be 
independent contacts, there is at least one of the six contact normals which is not 
parallel to the plane. There must be an intersection made by this contact normal on 
the plane. If this intersection is taken as the origin, the moment applied through this 
contact is zero. There can only be two linearly independent moments applied about 
this origin. As a result, no more than three contact normals can lie on the same 
plane. 
A.2.4 Conditions when there are 3 contact normals intersect at one point 
If three contact normals intersect at one point and this intersection is taken as the 
origin, the moments provided by these three contacts are all zero. Therefore, the 
moments provided by the other three contacts about this point must be linearly 
independent. Three conditions are listed in Section 2.2.1 under this situation: 
(i) the remaining contact normals must not be all parallel; 
(ii) the rest contact normals must not intersect at one point; 
(iii) the intersection must not lie on the planes formed by the remaining contact 

normals; 
As pointed out in Section A.2.2, moments provided by contacts with parallel 

contact normals belong to a subspace spanned by two linearly independent vectors 
perpendicular to the normal of the surfaces. This proves (i). 

Moments provided by contacts with contact normals intersecting at one point 
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can be expressed as 
P^e. 

where ê  is the contact normal 
p is the position of the intersection 

This shows that these moments should perpendicular to the vector pointing from the 
origin to the intersection. Therefore, no more than two of such moments can be 
linearly independent. This proves (ii). 

When the origin lies on the plane formed by two contact normals, the 
moments about the origin provided by the two contacts are parallel as they must be 
perpendicular to this plane and cannot be linearly independent. This proves (iii). 
A.2.5 If 3 contact normals are parallel, the other 3 contact normals must not 

intersect at one point 
The proof is the same as case (i) in Section A.2.4. 
A.2.6 If 3 contact normals lie on the same plane, intersection(s) of the 

remaining contact normals must not lie on that plane. 
This is similar to case (iii) in Section A.2.3. As before, if the origin lie on the plane 
formed by the three normals, the three corresponding moments are parallel. 
Therefore, if there is an intersection of the remaining contact normal lie on this plane, 
there can be at most two linearly independent moments when the intersection is taken 
as the origin. 

A.3 Relationship between Contact Location on a Plane Surface 
and the Moment that can be Applied through the Contact 

With this relationship, contacts can be selected to obtain the required moment. This 
is crucial in designing form-closure grasps for polyhedral objects. Figure A.l shows 
a contact normal ê  and the corresponding position vector p̂  of the contact. This 
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6 / S i f CONTACT ^ ^ / c POINT / 
PROJECTED X 

^ ^ ORIGIN 7 

ORIGIN 

Figure A .l Relationship between contact point on a flat surface 
and the corresponding moment about the origin 

figure is general in the sense that no matter which point is taken as the origin, it is 
possible to obtain a view like this by looking from either side of the plane formed 
by the contact normal and the position vector. The moment that can be applied 
through this contact point about the origin is given by 产〜PtXCi is a free vector 
whose magnitude is given as: 

p. sinO 
where 6 is the angle between the contact normal and the position vector as shown 

in Figure A.l 
It can be noted that: 

sine = sin(180° -6) = sin<t) 
In fact, p. shut) is the length of the projection of on the plane or the 

distance between the projected origin and the contact point. Therefore, the vector c, 
stretching from the projected origin to the contact point has the same magnitude as 
that ofPi^e^. AsPiXe^ is perpendicular to the plane formed by ê  and/;,, while c,. lies 
on this plan& pixei can be obtained from c,- by rotating it through -90° about ê  as 
shown in Figure A.l. 
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A.4 Sufficient Conditions for Three Frictionless Point Contacts on 
Flat Surfaces which can provide Three Linearly Independent 
Moments 

In terms of 3D geometry, three 3-dimensional vectors are linearly independent if and 
only if: 
(i) none of the vectors has all of the elements equal to zero 
(ii) none of the vectors are parallel 
(iii) not all of the vectors are parallel to the same plane 
In order to obtain the sufficient conditions for three frictionless contacts on flat 
surfaces which provide three linearly independent moments, these conditions together 
with the relationship discussed in the last section can be applied. The sufficient 
conditions are listed in Section 2.2.1 as: 
1. The contacts are not coincide with the orthogonal projection of the origin on 

the corresponding surfaces; 
2. For any two contacts on two non-parallel surfaces, the two lines joining the 

contact points and the projected origins on the corresponding surfaces must 
not both perpendicular to the intersecting line of the surfaces. 

3. If two contacts lie on the same plane, the projected origin must not lie on the 
line joining the contact points. 

4. The contact normals are not intersect at one point. 
5. The contacts are not all lie on parallel surfaces. 
6. For each contact, the line joining the contact and the projected origin must not 

perpendicular to the intersecting line (CD) of the plane on which the contact 
lies and a surface (PLANE A) parallel to both of the other two p^xe,. (The 
planes and the lines are shown in Figure A.2.) 
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� PROJECTED V n v 、._ \ •mGiN / \ 1/ \ 

Figure A.2 Lines and planes described in Rule (6) 

Rule (1) is required to satisfy Condition (i) above, Rules (2) and (3) are required to 
satisfy Condition (ii) and Rules (4) to (6) are required to satisfy Condition (iii). The 
following sub-sections show that why the conditions are satisfied when the rules are 
obeyed. 
A.4.1 Condition (i) 
It is simple that if all contacts are not coincide with the corresponding projected 
origins, none of the moments will be zero vector. Therefore, Condition (1) must be 
satisfied by the moments if the contacts are selected according to Rule (1). 
A.4.2 Condition (ii) 
The moments provided by two contacts lie on two non-parallel flat surfaces can only 
be parallel to the each other if they both parallel to the intersecting line of the 
surfaces. This is because they should be parallel to the surface on which the 
corresponding contacts lie. Thus, according to the relationship discussed in last 
section, any two moments provided by two contacts on two non-parallel flat surfaces 
cannot be parallel if they satisfy Rule (2). 

Consider again the relationship between a contact point and the corresponding 
p.x^.. It is obvious that two moments provided by two contacts on the same plane 
are parallel if the origin lie on the line joining the two contacts. Therefore, for two 
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contacts on the same plane, if they satisfy Rule (3), the two corresponding PiXê  
cannot be parallel. 

As a result any three contacts will not provide parallel moments if they satisfy 
Rule (2) and (3). In other words, Condition (ii) must be satisfied by the moments if 
the three contacts are selected according to Rule (2) and (3). 
A.4.3 Condition (iii) 
If a contact is not on the line CD described in Rule (6)，the corresponding p^xê  must 
not parallel to the plane formed by the other two p^xe .̂ Thus, if the contacts are 
selected according to Rule (6), Condition (iii) must be satisfied by the three moments. 
Rules (4) and (5) corresponds to (ii) and (i) in Section A.2.4 respectively. Actually, 
they are special case of Rule (6) but these rules give more obvious physical 
interpretation. 

As a conclusion, the moments provided by three contacts selected according 
Rules (1) - (6) are linearly independent because they must satisfy the sufficient 
conditions for three 3-dimensional vectors to be linearly independent, i.e. Conditions 
(i)，(ii) and (iii). 

A.5 Six Contacts Selected According to Case III in Section 2.2.1 
are Independent Contacts 

Take ej and 衫2 as the contact normals which are intersecting with each other 
它3，€4 and €3 are contact normals of contacts lying on the same plane 
ê  is the contact normal of the last contact 

There are three linearly independent contact normals. Therefore, the six contacts are 
independent ones if a is nonsingular. There two different cases to be considered. 
First, if e” e! and e^ are linearly independent and e^ is selected as [e^ e � a is 
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given as 

where t is the third element of e^'^e^ 
Because Ps^e^, p-xe^ and P5X衫5 lie on the same plane, this matrix can be reduced to 
the following form using elementary column operations: 

Because of the condition in the selection of the last contact, is not parallel to 
the plane parallel to p^xe^, p^x^^ and Ps^e^. Its elements are also not all equal to 
zero. Thus, a is nonsingular and the six corresponding wrenches are linearly 
independent. 

If Bj, 62 and ê  are not linearly independent, e^ may be selected as [Cj e! e^]. 
In this case, a can be obtained as 

P^^e^-iPsXe^) 
where t j is the third element of e '̂̂ e^ 
Again, this matrix can be reduce using elementary column operations as follows: 

With the same argument as above, a in this case is also nonsingular and the six 
corresponding wrenches are linearly independent. Thus, contacts selected according 
to Case III in Section 2.2.1 are independent contacts. 

A.6 Region for a Contact on a Curved Surface in a Form-closure 
Grasp 

Nguyen [3] pointed out that the region for a contact in a form-closure grasp must: 
1. be either flat or spherical, and 
2. have a convex boundary. 

90 



These restricted that the regions must on a flat or spherical surface. However, this 
is not true and regions of contact in a form-closure grasp may be on a curved surface. 

To prove the above conditions, two conditions for the wrenches applied 
through frictionless contacts are used in [3]. First, the affine combination of two 
wrenches applied through two contacts inside the same region is also a wrench that 
can be applied through a point inside the same region, i.e. 

1 e Y +(1-Y) = (A.3) 
J L 

where p, Pj and P2 are contacts in the same contact region 
e, ej and 62 are contact normals 
0 < Y< 1 

Secondly, the force component and the moment component of each of these zero-
pitch wrenches are perpendicular, therefore 

( P i x e / e i = 0，（P2X衫2广它2 = 0， ( P ^ e f e = 0 (A.4) 
Using these two conditions, the following was obtained: 

+ = 0 (A.5) 

Bj and 62 must intersect or be parallel in order to satisfy Equation A.5. By 
extrapolate this condition to other points in the region, the conditions for the region 
of contact were concluded. The main problem of this proof is that Equation A.3 is 
not always true. Though any affine combination of two wrenches applied through 
contacts in the same contact region is a wrench which satisfy the form-closure 
condition with the other wrenches in the grasp, its pitch may not be zero. Therefore, 
there is no requirement on the contact region that it must be either flat or spherical. 
It may lie on certain curved surfaces which is not spherical. As contacts on a flat or 
spherical surface satisfy Equation A.3, it may just be concluded that contact regions 
on flat and spherical surfaces have convex boundaries. 
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A.7 The Class of Polyhedral Object Discussed in Section 2.2.3.3 
This section discuss the class of polyhedron which has the property that there are two 
or more surfaces whose normals are negative combinations of the normals of three 
other surfaces. 

For any object, there should be four to six surfaces whose contact normals are 
sufficient to satisfy Equation 2.1, i.e. 

E = O3XI (A.2) 

where ê  are contact normals 
a, > 0 
w = 4, 5，or 6 

Therefore, for polyhedral objects, there should be four to six surfaces whose normals 
satisfy Equation A.2, If there is no parallel surfaces, four normals must be enough 
to satisfy Equation A.2. Otherwise, one or three pairs of parallel normals may be 
involved. 

Consider polyhedral objects with more than four surfaces. When four normals 
are sufficient to satisfy Equation A.2, it is obvious that any three of these four are 
linearly independent. Therefore, any normal e may be written in the form: 

3 4 

t=l i=l 
where ê,衫2，右3，and 64 are four contact normals satisfies Equation A.2 

y. are real numbers and is given as 

Vi" 
Y2 = 忍2 e 
Y3 

• J 

P is a positive real number 
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If P equals the largest yM•，at least one of the coefficients of ê  is zero and the other 
three are negative. This demonstrates that e can be equal to negative combination 
of three of the four vectors satisfy Equation A.2. The contact normal 
corresponding to the largest y/a^. can also be expressed as a negative combination of 
the same three contact normals. It is because any one of the four normals satisfying 
Equation A.2 can be expressed as strictly negative combination of the other three. 
Thus, for this kind of polyhedron there must be at least two surfaces whose normals 
are negative combinations of normals of another three surfaces. 

When at least five normals are required to satisfy Equation A.2, two of these 
normals must be parallel and opposite. The other three must be perpendicular to 
these two and can be added to zero with positive coefficients. Therefore, 

它1 = 一它2 

5 

Y^y-i = 03,1 
i=3 

where ê  and e! are the two parallel and opposite normals 
e ,̂ 64 and ê  are the rest normals 

Any normal can be divided into two parts such that one is parallel to the two parallel 
ones and the other is perpendicular to them. The first part can then be expressed as 
a negative multiple of either one of the two parallel normals. Using similar argument 
as in the last case, it can be concluded that the other part can be expressed as 
negative combination of two of the other three normals. As a result, any normal e 
can be expressed as negative combination of three ê  including one of the two parallel 
ones. Moreover, the two remaining e! can both be expressed as negative 
combinations of other three. Thus, there must be at least two surfaces whose normals 
are negative combinations of normals of three other surfaces; and there must be at 
least three if the object have more than five surfaces. 

In the case where at least six normals are required to satisfy Equation A.2, 
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there must be only three pairs of surfaces with parallel and opposite normals. 
Assume ê  is parallel to e�,e^ is parallel to e ,̂ and e^ is parallel to e .̂ Then ej, ê  and 
64 must be linearly independent. As 衫2 = -e” 64 = -e^ and e^ =-忍5，it is obvious that 
any normal can be expressed as negative combination of three of the five normals. 
Therefore, there are three surfaces whose normals can be expressed as negative 
combination of normals of three other surfaces. 

In conclusion, any polyhedral object with more than four surfaces have the 
property that it has at least two surfaces whose normals are negative combinations 
of the normals of three other surfaces. 
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APPENDIX B 
IMPLEMENTATION OF THE ALGORITHM FOR 
DETERMINING THE OBJECT FRAME FROM A FORM-
CLOSURE GRASP 

The following are Matlab M-files implement the algorithm described in Section 2.4: 
% function [n,po] = objfrm(p,R2,R3,11,12,13) % 
% This function computes the object frame of an object with three 
% parallel planes from the contact points of a form-closure grasp % 
% p a vector containing all the contact points 
% R2, R3 rotation matrices which rotate the surface normals to 
% align with the axes of the reference frame 
% 11,12,13 distances between parallel planes 

% The variables are described with more details in Section 2.4 
% of the thesis. 

function [n,po] = obj frm(p,R2,R3,11,12,13) 

% start computation 
dl = p(:,l)-p(:,4); d2 = p(：,7)-p(: , 4); 
d3 = p(:,2)-p{:,5) ; d4 = p( : ,3)-p(:,6); 
A = (d2(3)-dl(3))*ll; B = d2(l)*dl(3) - dl(l)*d2(3); 
C = (dl(2)-d2(2))*11; D = dl(l)*d2(2) - d2(l)*dl(2); 
E = dl(2)*d2(3) - dl(3)*d2(2); 

[nlxl nlx2] = quadrat(B-2+D-2+E-2, 2*{A*B+C*D),A-2+C-2-E-2); 
nl=[nlxl nlx2; (nlxl*B+A)/E (nlx2*B+A)/E; (nlxl*D+C)/E {nlx2*D+C)/E]; 

R2n21 =[d3'*R2';nl(:,1)'；d4'*R3'*cross(nl(: ' 1)')]\[12 ; 0 ; 13 ]; 
R2n22 =[d3'*R2' ;nl( :.,2) ' ;d4 ' *R3 ' *cross (nl ( : , 2 ) ') ] \ [ 12 ; 0 ; 13 ]; 

if abs{R2n21'*R2n21-l)<le-10 
n = [nl(:,1) R2n21 cross(nl(:,1),R2n21)]; 

elseif abs(R2n22‘*R2n22-l)<le-10 
n = [nl(:,2) R2n22 cross(nl(:,2),R2n22)]; 

elseif abs(R2n21'*R2n21-l) < abs(R2n22'*R2n22_l) 
n = [nl(：,1) R2n21 cross(nl{:,1),R2n21)]; 

else 
n = [nl(:,2) R2n22 cross(nl(:,2),R2n22)]; 

end 
po = [n(:,l)';n(:,2)'*R2;n(:,3)'*R3]\[n(:,l)'*p(:,l)-ll/2; n ( : , 2 ) ' *R2 *p ( : , 2)-12/2 ;.. . n(:,3) '*R3*p(:,3)-13/2]; 

% function [xl, x2]^quadratic (a, b, c) % . . 
% This function solves quadratic equations % 

function [xl, x2]=quadratic (a, b, c) 
d 二sqrt ( b'^2-4*a*c); 
xl 二 （-b+d)/2/a; 
x2 二 （-b-d)/2/a; 
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APPENDIX C 
EXPRESSING WRENCHES WITH ZERO-PITCH WRENCHES 

In Section 3.9，it is pointed out that any wrench can be expressed as a zero-pitch 
I wrenches or the difference of two zero-pitch wrenches. Consider the force 
•i ~ j component of a wrench. It is obvious that any non-zero force component / of a 

wrench can be expressed as the difference of two unit vectors as follows: 
/ = 丫 ( 忍 1 - 忍 2 ) 

where ê  and 62 are two different unit vectors 
i Y is a real number 
I Zero-pitch wrenches with as force components are in the following form: 
i 

I 它i 
[PiX^i 

where Pi is a point on the line of action of the force 
i = 1 or 2 

The difference of these two zero-pitch wrenches is equal to 
• • 

PiX忍 1 -PiX^i 

As p{xei is a vector perpendicular to ê  and the two ê  are non-parallel, PiXe^ and 
lie on two non-parallel planes and their difference can be equal to any 3x1 

vector. Therefore, 
'r 1 r i l 

卜 1 I _ / Y - -Pi^^il m 
- L -‘ L * L 

where m is any moment about the origin 
W h e n / i s equal to Oĵ i, Cj and e! must be the same. In this case, it is still 
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possible to express the wrench as the difference of two zero-pitch wrenches but Ci 
and 62 must be selected such that they are perpendicular to m. This completes the 
proof for the fact that any wrenches can be expressed as a difference of two zero-
pitch wrenches. 
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APPENDIX D 
IMPLEMENTATION OF THE PROPOSED SIMULATION 
ALGORITHM 

This appendix presents an implementation of the simulation algorithm proposed in 
Chapter 4 using Matlab M-files. The functions are tested using Matlab version 4.2a 
run on SUN workstation. 

D.l massmat.m 
% function [M,J,sd,h,GTOm] = massmat (dyn, I, q, qd' g) % 
% This function compute the inertia matrix (M), the Jacobian with respect to 
% end effector frame (J), product of derivative of Jacobian and joint velocity (sd), 
% the sum of coriolis terms and gravitational terms (h), and the transformation 
% matrix which transform wrenches about end effector frame to base frame (GTOm). 
% Composite body method is used in computing the inertia matrix. % 
% dyn arm description matrix 
% 工 inertias of the links with respect to the corresponding frames 
% q joint variables 
% qd joint velocities 
% g unit vector expressed in frame 0 pointing vertically upward 
% (gravity is taken as 9.81 m^2/s) 

function [M, J, sd, h, GTOm] = massmat (dyn, 1' q, qd, g) 

n=size(dyn,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% update the current pose of the system % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=l:n 

if dyn(i,5)==0 % revolute joint 
dyn(i,3) = q(i); 

else 
dyn(i,4) = q(i); 

end 
end 
%%%%%%%%%%%%%%%%%%%%% 
% forward recursion % %%%%%%%%%%%%%%%%%%%%% 

% initialize variables 
G = zeros(6*n,6); 
w = zeros(3,n); 
z = [0 0 1]'; 
hj = zeros(6,n); 

G(1:6,:) = dhstran(dyn(l,l),dyn(l,2),dyn(l,3),dyn(l,4)); 
if dyn(l,5)==0 % revolute joint 

w( : ,1) = G(4:6,4:6)*z*qd{l); 

else % prismatic joint 
w( : ,1) = zeros(3,1); 

sStemp = G(l:6,:)*[9.81*g;zeros(3,l)]; % acceleration corresponding to gravity 
sd = sdtemp; 
hj (T,l) '=^[I(l,l)*cross(wo,cross(wo,dYn(l,7:9)))；cross(wo,I(4:6,4:6)*wo)]; 
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for i = 2:n 
G{6*(i-l)+l:6*i, ：) = dhstran(dyn(i,l),dYn(i,2),dyn(i,3),dyn(i,4)); 
if dyn(l,5)==0 % revolute joint 

% compute accelerations 
w(:,i) = G(6*(i-l)+4:6*i,4:6)*(wo+z*qd(i)); 
sd = G(6*{i-l)+l:6*i,:)*(sd+[zeros(3,1)；cross(wo, z*qd(i))])+... 

[cross(w(:,i),G(6*(i-l)+l:6*(i-l)+3,4:6)*(wo+z*qd(i)));... 
zeros(3,1)]； 

sdtemp = G(6*(i-l)+l:6*i,:)*sdtemp; 
wo = w(:,i)； 

else % prismatic joint 
%compute accelerations 
w(: , i) = G(6*(i-l)+4:6*i,4:6)*wo; 
sd = G(6*(i-l)+l:6*i,:)*(sd + [2*cross(wo,z*qd(i));zeros(3,1)])+... 

[cross(w(:,i),G(6*(i-l)+1:6*(i-1)+3,4:6)*wo)；zeros(3,1)]; 
sdtemp = G(6*(i-l)+l:6*i,:)*sdtemp; 
wo = w(:,i); 

end 
hj ( : , i) = [I (6* (i-l) +1,1) *cross (wo, cross (wo, dyn {i, 7 : 9) ) ) ； cross (wo,... 

1(6*(i-l)+4:6*i,4:6)*wo)]+I(6*(i-l)+l:6*i,：)*sd; 
end 
%%%%%%%%%%%%%%%%%%%%%% 
% backward recursion % %%%%%%%%%%%%%%%%%%%%%% 

% initialize variables 
J = zeros(6,n); 
Kphi = zeros(6,n); 
h : zeros(6,1); 

% compute h and K for the nth link 
K = I(6*(n-l)+l:6*n,:); 
htemp = hj(:,n); 
G1 = G(6*(n-l)+l:6*n,:); 
GTOm = G1'; 
if dyn(i,5)==0 % revolute joint 

J(:,n) = G1(:,6); 
else % prismatic joint 

J(:,n) = Gl(:,3); 
end 
Kphi(:,n) = K*J(:,n); 
h(n) = J(:,n)'*htemp; 
% compute h and K for the rest links 
for i=n-l:-l:l 

K = G1,*K*G1 + 工 （ 6 * ( i - l ) + l : 6 * i , : ) ; 
htemp = G1‘*htemp + hj(:,i); 
G1 = G(6*(i-l)+l:6*i,:); 
GTOm = G1'*GTOm; . 
% compute the allowed twist corresponding to the ith link with respect 
% to the ith frame 
if dyn(i,5)==0 % revolute joint 

phi = Gl(:,6); . . . 
else % prismatic joint 

phi = G1(:,3); 
end 
Kphi(：,i) = K*phi; 
h(i) = phi'*htemp; 
for j .- i:n-l 

M (i,j) = phi‘*Kphi(:, j ); 
M(j,i) = M(i,j); 
phi 二 G(6*;i+l:6*(;i + l) , :)*phi; 

end •� 
M(i,n) = phi'*Kphi(:,n); 
M(n,i) = M(i,n); 
J ( : ,i) = phi; 

% remove the acceleration corresponding to gravity introduced for simpler 
% computation 
sd : sd - sdtemp； 

D.2 msysOli.m 
% function [t, r, q, rd, qd] = MSys01I(m, n' N' SYSTEM, ARM, I, JOINT, OBJECT, xO,... 
% pO, qO, vO, qdO, Control, Alpha, Beta, tspan) 
^ 
% This function Integrate the forward dynamic equations of a Multi-body SYStern 
% with one single node. This function is designed to be used with functions 
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% MModelOl & MSysOl. % 
% m number of arms 
% n number of joint of the each arm 
% N number of constraints between the arm and the object 
% SYSTEM system description matrix 
% ARM arm configuration description matrix 
% I arm inertia properties matrix 
% JOINT description matrix of the joints at which the arms connected 
% to the object 
% OBJECT object description matrix (equal to object inertia matrix 
% about object frame) 
% X object position with respect to system base frame _ 
% p Euler parameters describing orientation of object frame with 
% respect to 
% system base frame 
% q joint variables of the arms 
% V twist of the object frame relative to and expressed in system 
% base frame 
% qd joint velocities of the arms 
% Control a string contains the function computes the control torque 
% Alpha gain of feedback of constraints of coordinates 
% Beta gain of feedback of velocity constraint 
% tspan time span of the integration ([tO Tfinal]) 
% 
function [t, r, q, rd, qd] = MSysOlI(m, n, N, SYSTEM, ARM, I, JOINT, OBJECT, xO' 

pO, qO, vO, qdO, Control, Alpha, Beta, tspan) 

totaln = sum(n)； 
totalN = suin(N); 

global SYSTEM ARM I JOINT OBJECT m n N totaln totalN Alpha Beta Control 
%%%%%%%%%%%%%%%%%%%%%%% 
% perform integration % %%%%%%%%%%%%%%%%%%%%%%% 

% In this step, other integration function may/should be used. It depends 
% the problem to be solved. 

[t y] = ode45 ('msysOl', tspan, [xO; pO; qO; vO; qdO]); 
r = Y ( ： , 1 ： 6); 
q = y(：,7:6+totaln); 
V = y(：,7+totaln：12+totaln); 
qd = y(:,13+totaln:12+2*totaln); 

D.3 msysOl.m 
% function yd = MSysOl(t,y) ^ 
% This function returns the derivatives of the coordinates and velocities (yd) of 
% a Multi-body SYStern with one single node. This function is designed to be used 
% with functions MModelOl & MSysOlI. % 

function yd 二 insys01(t,y) 

global SYSTEM ARM 工 JOINT OBJECT m n N�totaln totalN Control 
p = y (4 : 6); 
p = [sqrt(l-p'*p)；p]； 
V = y(7+totaln:12+totaln); 
qd = y(13+totaln:12+2*totaln); 
[Mo, Mi, ho, hi, Woibar, Wmibar, ci, G] = itimodelOl (y(l:3), p' y(7:6+totaln) ,v, qd); 

[vd, qdd] = msolvedn, n, N, Mo, Mi, -ho, feval (Control, t,y)-hi, Woibar, Wmibar,... 
‘ Woibar, Wmibar, ci); 

p d = 0 . 5 * G ' * y ( 1 0 + t o t a l n : 1 2 + t o t a l n ) ; 

yd = [v(l:3)；pd(2:4)；qd;vd;qdd]; 
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D.4 mmodelOl.m 
% function [Mo, Mi, ho, hi, Woibar, Wmibar, ci, G] = MModelOl (x, p, q, v, qd) % 
% This function compute the matrices in the dynamic MODEL of a Multi-arm system 
% manipulating a single object. In this model, the joints between the object 
% and the arms have constant normals relative to either the object or the arms. % 
% 
% note: gravity is taken as 9.81 m/s'^2 % 

% This function assume either emij or eoij is constant. If emij is constant, the 
% corresponding eoij is selected so that it is constant at every time step. This 
% is only suitable for a model which has one circular surface, e.g. the'model for 
% revolute joint or spherical joint. 

function [Mo, Mi, ho, hi, Woibar, Wmibar, ci, G] = MModelOl (x, p, q, v, qd) 

global SYSTEM ARM I JOINT OBJECT m n N totaln totalN Alpha Beta 

% initialize the variables 
Mi = zeros(totaln, max{n))； % inertia matrices of arms 
hi = zeros(totaln,1); % Coriolus and gravitational terms of arms 
GTOm = zeros(6*m,6)； % transformation matrices 
Wmibar = zeros(max(n), totalN)； % constraint spaces 
Woibar = zeros(6, totalN)； 

ci = zeros(totalN,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Compute object inertia matrix (Mo) and Coriolus and gravitational terms (ho) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% compute object position and orientation 
[Rob, G, Gob] = eulerpar(x,p); 

Hob = [Rob zeros(3); zeros(3) Rob]; 
Mo = Hob * OBJECT * Hob‘; ho = [-OBJECT(l,l)*(cross(v(4:6),v{l:3)) + 9.81*Rob(1,:) ' ) ; 

cross(v(4:6),Mo(4:6,4:6)*v(4:6) ) ] ; % g taken as 9.81 

% By-products: GOmi, J and Jdqd) 

nisum = 0; 
Nisum = 0; 

for i 二 l:m 
ni = n(i); 
Ni = N(i); ， … . f . cemi = JOINT(i,8); % number of constant contact normals relative to gripper 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%_%•嚇％糧祖糧嫩宅糧宅宅糧宅微宅宅’抛 

% coiriDute arm inertia matrices (Mi) and coriolus and gravitational terms (hi) % 
%%%%%《％%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%找％ 躲絲找料料躲料絲躲宅宅 

[Mi(nisum+l:nisum+ni,l:ni), J , Jdqd, hi(nisum+1:nisuin+ni) , . . . 
GT0m(6*(i-l)+l:6*i,:)] = . . . ^ . … • •� � massmat (ARM(nisuin+l:nisum+ni,:), I(6*nisum+l:6*(nisum+ni),:),... 

q(nisum+1 :nisuin+ni) , qd(nisuin+l:nisum+ni) , SYSTEM(6* (i-1)+1,1:3)‘); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%•、灘概糧•嚇抛• 

% Compute the constraint space of the joints (Wmi & W � j 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%嫩嫩 嚇嫩嫩概宅 

% compute transformation matrices … * 广 � 

Gom = GT0m(6*(i-l)+l:6*i,：)'*inv(SYSTEM(6*(l-l)+l：6*l,l：6))*Gob; 
Rom =Gom(1:3,1:3); mxomcross = Goni(l: 3 , 4 : 6) *Roin'; 
mxom = rnxomcross{[6 7 2])'; 
% compute contact position and contact normal 
pmlj = JOINT (Nisum+1 -.Nisum+Ni, 1 ： 3 )'; 
rjoil = Rom' * {pinij-inxom( : , ones (Ni, 1) ) ) ； • . ^ . „•><,、,， 
emij = [joiN«i>�i^um+l:Nisum+cemi,4:6) '-Roin*JOINT(Nisum+cemi+l:Nisum+Ni,4:6)']; 
eoij 二 -Rom'*emij ; 
Wmi = [emi; cross(pmi,emi)]; 
Woi = [eoi; cross(poi,eoi)]； . 

Wmibar(1:ni,Nisum+1:Nisum+Ni) = J' * Wmi; Woibar(:,Nisum+l:Nisum+Ni) = Hob * Woi; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute the terms in the acceleration constraints (ci) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% compute the relative velocities 
ovmimi = J*qd(nisuin+1:nisum+ni) - Gom*inv(Gob)*v; 

% compute derivative of contact points and contact normals 
% constant contact point of grippers and constant contact normals of 
% object are assumed 
poijdot = Rom'*(cross(ovmimi(4：6,ones(Ni,1)),poij) + ovmimi(1:3,ones(Ni,1))); 
pmi jdot = zeros (3 ,Ni.); 
if cemi == Ni 

emijdot = zeros(3,cemi)； 
else 

emijdot = [zeros(3,cemi),... 
-cross(ovmimi(4:6,ones(Ni-cemi,1)),emij(:,cemi+l:Ni))]; 

end 

if cemi == 0 
eoijdot = zeros(3,Ni)； 

else • 
eoijdot = [Rom'*cross(ovmimi(4:6,ones(cemi,1)),emij(:,1:cemi)),... 

zeros(3,Ni-cemi)]; 
end 

% compute derivative of Wmi and Woi •, 
Wmidot = [emijdot; cross(pmijdot, emij) + cross(pmij, emijdot)]; 
Woidot = [eoijdot; cross(poijdot, eoij) + cross(poij, eoijdot)]; 

% compute ci 
doo = [diag(eoi;j ( : , 1 :ceini) ' *JOINT(Nisum+l :Nisuin+ceini, 9 :11)');... 

JOINT (Nisxim+cemi+l :Nisuin+Ni ,9)1; 
ci (Nisum+1 :Nisum+Ni) 二 - Wmidot' *J*qd(nisuin+l :nisuin+ni) - Wmi' *Jdqd - . . . 

Woidot' *Hob' *v - Woibar ( : ,Nisiain+l :Nisiun+Ni) ' * ... 
[cross(v(4:6),v(1:3)); cross(v(4:6),v(4:6))]-... 
2*Alpha* (Woibar (: ,NisiJin+l :Nis\iin+Ni) ‘ *v+Wmibar (1: ni,... 

Nisum+l :Nisuin+Ni) ‘ *qd(nisuin+l :nisuin+ni))-..-
Beta'^2* (diag (eoij ‘ *poij ) -doo); 

nisum = nisum + ni; 
Nisum = Nisum + Ni; 

end 

D.5 msolve.m 
% function [qo,q] 二 MSolve(in, n, N, Mo, Mi, hobar, hibar,... . 
% Woibar, Wibar, Woitilde, Witilde, ci) ^ 
% This function SOLVE the variables (velocities or accelerations) for simulation of 
% a Multi-body system with one single node using the proposed approach. % 
% m number of arms 
% n number of joint of the each arm 
% N number of constraints between the arm and the object % 

function [qo,q] = MSolve(m, n, N, Mo, Mi, hobar h i b a r , . 
Woibar, Wibar, Woitilde, Witilde, ci) 

totaln = suin(n); 
totalN = siiin(N); 

% initialize the variables 
Minv 二 zeros (totaln, max(n))； .， … I U T . A i T T ^ . I A J A 

WMW = zeros(totalN, max(N)); % (Wibar^T Mi^：! Witilde) _-1 
WMhc = zeros (max (N), m) ； % Wibar^T M x - 1 hxbar - ci 
a = zeros(6,1); 
b = zeros(6); 
nisum = 0; 
Nisum 二 0; 

for i = 1:m 
ni = n(i); 
Ni = N(i); 
Minv(nisum+l:nisum+ni,1:ni) = inv(Mi(nisum+lmisum+ni,1:ni)); 
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WM = Wibar (1 :ni, Nisum+l :Nis\iin+Ni) ' *Minv(nisuin+l :nisum+ni, 1 :ni); 
WMW (Nisum+1 :Nis\im+Ni, l:Ni) = inv (WM*Witilde (1: ni, Nisum+1 :Nisuin+Ni)); 
WoWMW = Woitilde ( : ,Nisuin+l :Nisuin+Ni) *WMW(Nisuin+l :Nisuin+Ni, 1:Ni); 
WMhc (1 :Ni, i) = WM * hibar (nisum+1 misum+ni) - ci (Nisiim+l :Nisuin+Ni); 
a = a + WoWMW * WMhc(1:Ni,i)； 
b = b + WoWMW * Woibar (: ,Nisum+l:Nisuin+Ni)'; 

nisum = nisum+ni； 
Nisum = Nisum+Ni; 

end 

qo = (Mo + b)\(hobar - a); 

q = zeros(totaln,1)； 

nisum = 0; 
Nisum = 0; 

for i — 1:m 
ni = n(i)； 
Ni = N(i); 

mu = WMW(Nisuin+l :Nisum+Ni, 1 :Ni) * … 
(WMhc (1 :Ni, i) +Woibar ( : ,Nisiim+l :Nisum+Ni) ‘ *qo)； . , 

q(nisum+1:nisum+ni) = Minv(nisum+1:nisum+ni,1:ni)*(hibar(nisum+l:nisum+ni)_..• 
Witilde(l:ni,Nisuin+l:Nisum+Ni) *mu); 

nisum = nisum + ni; 
Nisum = Nisum + Ni; 

end 

D.6 msolveOS.m 
% function [qo,q] = MSolve03(Mo, Mi, hobar, hibar,... 
% Woibar, Wibar, Woitilde, Witilde, ci) 
% . 
% This function SOLVE the variables (velocities or accelerations) for siimil予tion of 
% a Multi-body system with one single node using standard elimination technique. % 

function [qo,q] = MSolve03(Mo, Mi, hobar, hibar,... 
Woibar, Wibar, Woitilde, Witilde, ci) 

global m n N totaln totalN 

M = zeros{6+totaln+totalN)； . 
M(1: 6,1: 6) 二 Mo;M(6+totaln+:i: 6+totaln+totalN, 1: 6) = Woibar'; 
M{1:6,6+totaln+l:6+totaln+totalN) = Woitilde; 
nisum = 0; 
Nisum = 0; 
for i = 1 :in 

ni = n(i); 
Ni = N(i); 
M(6+nis\ain+l ： 6+nisum+ni, 6+nisuin+l: 6+nisiim+ni) = Mi (nisum+1:nisum+ni, 1 :ni); 
M ( 6 + t o t a l n + N i s u m + l : 6 + t o t a l n + N i s u m + N i , 6 + n i s u m + l : 6 + n i s u m + n i ) = 

Wibar(l:ni,Nisum+l:Nisum+Ni)'; . , ^ ^ ^ , … 
M(6+nisuin+l:6 + nisum + ni, 6 + totaln + Nisum+l:6 + totaln + Nisum + Ni) = 

Witilde(1:ni,Nisum+1:Nisum+Ni); 
nisum = nisum+ni; 
Nisum = Nisum+Ni; 
end 
q = M\[hobar；hibar；ci]; 
qo=q(l:6); 
q=q(7:6+totaln)； 

D.7 Others 
% CROSS compute the vector cross product 
% 
% c = cross (a, b) or 
% A = cross (a) % 
% a,b vectors or 3xn matrices • ^ ,, 
% c cross product(s) of a and b or corresponding columns of a and b 
% A a skew symmetric matrix which give the cross product of 
% a and other vector such that Ab = a x b 
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function c = cross (a, b) 

if nargin == 1 % just one input 
c = zeros(3)； c(l,2) = -a{3); 
c(2,l) = a(3); 
c(l,3) = a(2)； 
c(3,1) = -a(2); 
c(2,3) = -a(l)； 
c(3,2) = a(1); 

else % two input 
if sum(size (a) ) = = 4 % a is a vector 

c = [ a(2)*b(3) - a(3)*b(2)； 
a(3)*b(l) - a(l)*b(3); 
a(l)*b(2) - a(2)*b(l)]; 

else % a is a set of vectors 
c = [ a(2,：).*b(3,:)-a(3,:).*b(2,：) 

a(3, ：) •*b(l,:)-a(l,：).*b(3,：) 
a(l,:).*b(2,:)-a(2,：).*b(l,:)]; 

end 
end 

% function ts = DHsTran(alpha, a, theta, d) % 
% This function compute the transformation matrix (G) for a twist between two 
% links specified by Standard D-H convention % 
% theta, alpha, d, a parameters of the link % 

function G = DHsTran(alpha, a, theta, d) 

ct=cos(theta)； st=sin(theta); 
ca=cos(alpha)； sa=sin(alpha); 

Rl=[1 0 0；0 ca sa； 0 -sa ca]; 
R2=[ct St 0; -St ct 0; 0 0 1]; 
G=[R1 cross([-a 0 0])*R1;zeros(3) Rl]*[R2 cross{[0 0 -d])*R2； zeros(3) R2]; 

% function [Rob, G, Gob] = EulerPar(r, [eO, el, e2' e3]) % 
% This function calculate the rotation matrix from object frame to base frame (Rob); 
% the matrix for transforming derivative of the Euler parameters (p) to and from the 
% angular velocity (G)； and the transformation matrix (Gob) transforms twists of 
% object frame to those of system base frame % 
% r position vector of object frame with respect to base frame 
% p Euler parameters describing orientation of object frame 

% where p—dot 二 1/2 * G' * w 
% w = 2 * G * p—dot 

function [Rob, G, Gob] = EulerPar(x, p) 

e 二 p (2 : 4); 
eO=p(l); 
G = [-e cross(e)+eO*eye(3)]; 
Rob = (2*e0^2-l)*eye(3)+2*(e'*e-e0*cross{e)); 
Gob = [Rob cross(x)*Rob;zeros(3) Rob]; 
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