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Abstract 

Owing to the demand for the cellular radio services, people are looking for dif-

ferent ways to increase the capacity of a cellular radio system. Spread spectrum 

technique is proposed for the next generation system as a standard multiple 

access scheme. Theoretically, spread spectrum Code Division Multiple Access 

(CDMA) systems can provide much higher capacity than that of Time Divi-

sion Multiple Access (TDMA) or Frequency Division Multiple Access (FDMA) 

systems. 

In CDMA cellular radio systems, all users transmit on the same frequency 

spectrum. The signal received at the base station is distinguished by using 

one's dedicated code. By the orthogonality property of the codes, one's signal 

can be retrieved from a mixture of signal, which comprises signals from all the 

users. Consequently, the channel can be accessed simultaneously by a number of 

users. In reality, codes cannot be completely orthogonal to each other cyclically. 

Practical systems use Pseudo Random Bit Sequences (PRBS), which is near 

orthogonal but not completely orthogonal. Signals from different users would 

interfer each other according to the degree of correlation of the codes. This kind 

of interference is described as Multiple Access Interference (MAI) and would 

bound the capacity of a system. Furthermore, if users transmit at the same 



power level no matter where they are, signals from users close to the base station 

will overwhelm the signals of users away from the base station. This is called 

the near-far effect. For combating the near-far effect, users have to control their 

transmission power such that their signals arrive at the base station with the 

same power level. Nevertheless, the power of any users or base stations will be 

"leaked" to the other cells and causes the adjacent cell interference (ACI), which 

is unavoidable. Under different propagation characteristics, the adjacent cell 

interference would be different. In this thesis, the adjacent cell interference under 

different propagation characteristics would be analyzed. The objective of this 

thesis is to obtain some useful formula for the design of a CDMA cellular radio 

system. The cases in ideal circumstance, in the presence of long-term fading 

and short-term fading are studied. In addition, ACI in microcellular systems 

is also analyzed. A closed-form solution of the ACI is obtained. Further, since 

the capacity of a CDMA system would greatly depend on the accurate control 

of the transmission power of each user, the effect of the imperfection of power 

control on the system capacity is also investigated. A relationship between the 

standard deviation of the signal power and the system capacity is obtained. The 

result obtained in this thesis can be used for the system planning of a CDMA 

cellular radio system in different environment. 

Code Division Multiple Access (CDMA), Cellular Radio, Adjacent 

Cell Interference, Propagation, Imperfect Power Control and MicrocelL 
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Chapter 

Introduction 

Cellular Radio Communications is one of the fastest developing technology in 

the telecommunication industry. Since the launch of the first cellular radio sys-

tem in the mid '70, the development of cellular systems has already reached 

the third generation. It is just about twenty years for the first cellular radio 

system evolved into the most advanced cellular systems nowadays. Part of the 

challenging in planning future wireless systems is to determine the services that 

they will be required to support. People are now looking for an ubiquitous com-

munications at any time in any form, which is called Personal Communications 

Services (PCS). This has been the major thrust of TG8/1 of the ITU-R (the In-

ternational Telecommunication Union - Radio-communication sector, formerly 

CCIR), which is defining Future Public Land Mobile Telecommunication Sys-

tems (FPLMTS). Spectrum was allocated on an international basis to FPLMTS 

at the 1992 World Administrative Radio Conference (WARC '92) [1，2]. 

Recently, wireless communication is mainly for providing telephone services. 

According to multiple access scheme, there are two kinds of cellular radio systems 
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operating in Hong Kong. They are the Frequency Division Multiple Access 

(FDMA) systems, e.g. AMPS and TAGS, and the Time Division Multiple Access 

(TDMA) systems, e.g. GSM. Owing to the high demand for the cellular radio 

services, people are looking for a more sophisticated system to provide a much 

higher capacity. People propose to deploy the technology of Code Division 

Multiple Access (CDMA) in cellular radio systems [3]. In theory, CDMA has a 

number of merits over FDMA and TDMA systems [4, 5, 6]. The advantages of 

CDMA are 

1. High capacity 

2. Reliable handofF algorithm (Soft handofF - Make before break) 

3. Utilization of voice activity to reduce interference 

4. Capacity increase by sectorization 

5. Universal frequency reuse 

6. Graceful degradation of system performance 

7. Utilization of multipath signal is possible by RAKE receiver 

Nevertheless, owing to the deployment of PRBS instead of completely or-

thogonal access codes of different users, multiple access interferece arises and 

bounds the system capacity. CDMA has the disadvantage that accurate power 

control is needed. Otherwise, the system will be broken down due to the near-far 

effect. That is signals from the users close to the base station will overwhelm the 

which are far away. When power control is deployed in CDMA 
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systems, signals from mobile users have to be controlled such that all of the re-

ceived signals at the base station will have the same power. On the other hand, 

even the power control is perfect, the power from any user will "leak" to the 

adjacent cells and affect the quality of the channels at the adjacent cells. The 

corresponding adjacent cell interference will bound the capacity of the system. 

In this thesis, the effect of adjacent cell interference on the system capacity under 

different circumstances are going to be studied. The cases in ideal circumstance, 

in the presence of log-normal fading and microcellular propagation environment 

will be analyzed. Lastly, the effect of imperfect power control on the system 

capacity will be analyzed. 

The thesis will be organized as follows: the theory of cellular concept and 

spread spectrum CDMA will be presented in the subsections 1.1 and 1.2 of 

this chapter. The propagation characteristics of different environment will be 

presented in the subsection 1.3. The contributions of this thesis is presented 

in chapter 2. Based on the model presented, the adjacent cell interference will 

be analyzed in chapter 3, 4 and 5 for the environments of idea circumstance, 

in the presence of log-normal fading and of microcellular systems, respectively. 

The effect of imperfect power control on the system capacity will be discussed 

in chapter 6. Conclusions will be drawn in chapter 7. In the last chapter, two 

proposed cellular radio systems using CDMA are discussed. 

1.1 Cellular Radio Systems 

In 1958, AT & T Bell Laboratory proposed the Advanced Mobile Phone System 

(AMPS), which utilized the cellular concept. Before that, people did not have 
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concept and channels iipposed ,time i 

The idea of cellular radio is to reuse the frequency channels by dividing the 

service area into small cells. All the channels of the system will be allocated to 

the cells repeatedly by following a certain manner. Channels will be allocated 

to more than one cell. Users can use any of the nominal channels in a particular 

cell. By the careful control of the transmission power, a channel can be used 

simultaneously at different cells without causing too much interference to the 

other users using the same channel. This is the cellular concept. An example 

is used to illustrate the idea. A service area is supposed to be divided into a 

number of cells^ Channels are supposed to be allocated to a cluster of 7 cells. 

The system is said to have a frequency reuse pattern of 7. Assuming there are 

totally 70 channels for the system, each cell will be allocated 10 channels. Each 

group of channels is represented as Gi, where i = 1，2，• ••，了. The channels in 

each group may be 

Gi 

G2 

Gs 

G, 

Gs 

Ge 
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where Ci is the channels z = 1,2, • • •, 70. 

In figure 1.1, hexagonal cells are grouped into 7-cell clusters. Each cell of 

each cluster is allocated a group of channels, which are repeatedly allocated to 

different cells in different clusters. As a result, assuming there are totally n cells 

in the system, the number of usable channels is lOn. As n increases, the number 

of usable channels increases. Further, as long as n > 7, the utilization of the 

channels will be higher than that in traditional mobile communication systems. 

Those cells assigned the same set of channels are called cochannel cells. In 

ideal circumstance, the distance between any cochannel cells is fixed. Referring 

to figure 1.1, starting from any cell in any direction, moving towards two cells, 

turning right by 60�and moving one cell further, one will reach the cell, which 

has the same assigned channels of the starting cell. 

The frequency reuse pattern K is defined as 

二 u2 + m; + ”2 (1.1) 

where are the coordinates of the closest cochannel cell relative to the 

reference cell in the coordinate system as shown in figure 1.2. 

The frequency reuse distance D, which is the distance between two cochannel 

cells, is given hjD = where R is called cell radius and is the distance 

from the cell center to any vertex. Reference [4] has a more detail description 

of cellular radio concept. 

Owing to the demand for high capacity services, systems are designed to 

accommodate as many users as possible. One of the possible ways to increase 

capacity is to reduce cell size. For different size of cell, the system has different 

characteristics and advantages. Some of the cell classifications is listed in the 
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following: 

1. Macro cell 

Macrocell is used to describe cells used in traditional cellular systems, e.g., 

AMPS, TAGS and GSM. The size of a cell is usually large, ranged from 1 

to 20 km. The transmission power is about 1 to 10 W. The propagation 

delay of the signal is much higher when compared with the other smaller 

cell systems. Base station antenna is installed at the top of skyscraper. 

2. Microcell 

Microcell is proposed to be deployed in the third generation cellular sys-

tems. In such systems, the size of each cell is much smaller, ranged from 

100 m to 1 km. The transmission power is about 0.1 to 1 W. Since the 

cell size is small, for a given area, the number of cells would be large. As 

a result, the total capacity of the system would be much higher than that 

of macrocellular systems. 

3. Picocell 

Picocell is proposed to be deployed in the indoor cellular radio systems. 

It is supposed to provide the services of wireless local loop or PABX in 

a building. Picocell are proposed to have base stations installed in each 

of the story of a building. The size of each cell may even smaller, ranged 

from 1 to 100 m. 
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1.2 Code Division Multiple Access (CDMA) 

Multiple access scheme in a cellular radio system is the way of accessing a base 

station by a number of users simultaneously. Since the resources, frequency 

spectrum and time, are limited for radio communications, the way of sharing 

the resources is crucial to the efficiency and capacity of the system. In cel-

lular radio systems, popular schemes are Frequency Division Multiple Access 

(FDMA), Time Division Multiple Access (TDMA) and Code Division Multiple 

Access (CDMA). 

• Frequency Division Multiple Access 

In FDMA, a given spectrum is divided into frequency bands. Each channel 

corresponds to a pair of bands for transmission and receiving. When a user 

wants to make a call, it requests for a channel first. If there is available 

channel, it is assigned a channel for communications. When it finishes a 

call, it releases the channel. 

• Time Division Multiple Access 

In TDMA, a given spectrum is divided into frequency carriers, usually, 

which are frequency bands much wider than that of FDMA. For each 

carrier, time is divided into frames, which correspond to a certain amount 

of time for transmission. Each frame is divided into a number of time 

slots. A channel corresponds to a time slot in each frame. When a user 

wants to make a call, it requests for a time slot. If there is available, it is 

It can transmit its data at that particular time slot 

• frame. When it finishes a call, it releases the time slot. 
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For CDMA, neither the frequency spectrum is divided nor is the time di-

vided. A channel corresponds to a code. When a user wants to make a call, 

it requests for an identification code. When the system performance is better 

than the predefined quality of service, the user will be assigned a code. It can 

communicate by using the code to process its data. The frequency time graph 

of different multiple access schemes is shown in figure 1.3. There are variants of 

CDMA. Some typical variants are listed in the followings [7]: 

1.2.1 Direct Sequence CDMA (DS-CDMA) 

Data from any user will be spread by using a code sequence. Simply, a PRBS 

with much higher bit rate to multiply with the data is used. Afterwards, the 

spread data will be modulated for transmission. At the receiver, data from 

different users are mixed. The dedicated code for a particular user is used to 

retrieve its signal. Figure 1.4 shows an example to illustrate the principle of 

CDMA. In the figure, the sets of data from different users are multiplied by 

different codes. When the bit sequence is transmitted through the channel, the 

signals are mixed. But, if the receiver signal is further multiplied by any code, 

the corresponding data can be retrieved even in the presence of other users 

signals. 

Mathematically, for user 1, its data sequence xi{t) is generated 

mitter at the rate of R bps. 

z i W = E � r e c t ( ^ ^ ) (1.2) 
i=o \ 1 / 

where bi,i G {1, —1}，T = ^ and rect(-) is the rectangular function 



Introduction 

t 1 i f O < 力 < T �� 
rect(；^) 二 - . （1.3) 

y 0 otherwise. 

The data sequence will be encoded by a PRBS Ci{t) with chip rate Rs, where 

» R 

Ci{t) = £ C i j r e c t -jTc� 

, � Tc ) 
where T � = 是 . 

The correlation of the PRBS would be close to orthogonal, 

(1.4) 

i n = j 

ifz 台 . 

where p ^ ^ is defined as the processing gain of the system. 

After modulation, the signal for transmission is then given by 

(1.5) 

Si{t) = Xi(t)ci(t) COS LOct (1.6) 

When this signal is transmitted through the channel, signals from different 

users will be mixed up and at the receiver, the received signal is 

r � = f ^ s办 、 二 f ^ x i { t - n)ci{t - n) - n) + n(t) (1.7) 
i=l i=l 

where m is the number of users in the cell, Ti is the delay of the transmission of 

signal i and n{t) is the additive white gaussian noise term. The received signal 

will be passed to the correlation receiver matched to Si{t). The output will be 

Zi,j=广 r{t)ci{t) cos u M t ( 1 . 8 ) 

9 
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where Zi,j is the decision threshold 

1 or 0. If it is larger than 0, it 

as a 0. By the quasi-orthogonal property of the 

other users would be close to zero. As a result, 

be retrieved by using its own code in the 

block diagram for a typical transmitter and 

deciding the received 产 bit of 

Otherwise, it 

RBS, the signal strength of 

le signal from any users can 

of other users' signals. The 

of a CDMA system is shown 

of the orthogonality of the in figure 1.5. Pursley [8，9] have studie 

code on the signal-to-interference ratio and obtained the equation relating the 

signal-to-interference ratio, the processing gain and the number of users per cell 

37V 

cell. 

I \l K-1 

the processing gain of the system and K is the number of i 

BPSK, the probability of error will be given by 

(1.9) 

where 

Holtzman [10] 

ability of error du< 

Q 
37V 

K 

部du 

(1.10) 

(1.11) 

.simple but accurate method to calculate the prob-

I the capturing effect, i.e., the orthogonality of 

Pe K 
TV 

{{K 一 1)AV3 + VSay-

N 
{{K — l)N/3 - • ) � 

(1.12) 
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with 

{ K - l ) 
K -2 K-2 (1.13) 

Similar results on different circumstances are obtained in other papers [11, 

12, 13, 14, 15]. 

Why is CDMA called as spread spectrum? The reason is simple. When 

the signals in different stages are analyzed from the frequency perspective. The 

spectrum of the original signal will be spread when it is multiplied by a chip 

which has a much higher rate. The spectra of the original data, the 

dgnal and the despread signal and interference are shown in figure 1.6. 

That is the reason why it is called spread spectrum. When the signal is despread 

by the code at the receiver, since the correlation between the codes are very 

small, only the signal encoded by the dedicated code will be retrieved out from 

the mixed signals. The other will be received as some background noise. As a 

result, their effect on the signal strength will be small. 

For the rest of the thesis, the interference analysis will be based on DS-CDMA 

1.2.2 Frequency Hopping CDMA (FH-CDMA) 

The frequency spectrum is divided into a number of narrower frequency bands. 

Users transmit signal by choosing different frequency band at different instant. 

For instance, if there are totally 100 frequency bands, a user may transmit data 

at the 48th band for the first second, at the 72nd band for the next second, 

etc. The other users would follow another pattern to transmit its data. If the 

of transmission do not collide, the data can reach the destination 

11 
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without contaminated by other users' signals. The receiver can get the data by 

following the pattern to retrieve the data at the dedicated frequency bands. 

1.2.3 Time Hopping CDMA (TH-CDMA) 

At the transmitter, data generated at the rate R is transmitted at a much faster 

rate R ” where Rs » K The duration of the transmitted bit will be much 

shorter. The duration of one data bit ^ is divided into 智 time slots. The 

slot for the bit to be transmitted is not fixed. Rather, it is controlled by a 

code sequence. For instance, if ^ = 100, i.e., the duration is only hundredth 

of the original data, the duration of one original data is divided into 100 time 

slots. It may be transmitted at the 15th time slot for the first bit, 67th for the 

second, 2nd for the third, etc. The other users will follow another sequence for 

transmitting the data bit. As long as the codes of different users are different, 

they will not transmit the bit at the same time slot. If the receiver knows the 

code, it can then receive the data by retrieving the data bits at the dedicated 

instant. 

1.3 Propagation Characteristics 

For mobile radio systems, propagation characteristics of signals affect the quality 

as well as the capacity of a system. If the characteristics can be well predicted, 

the planning of the system will be much easier. In this section, some propagation 

channel models will be discussed. 

A mobile radio signal r(t) can be characterized by 

12 
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r{t) = m � r � � （1.14) 

where m{t) is called local mean and its variation is due to the terrain contour 

between the base station and the mobile unit. The factor ro is called multipath 

fading and its variation is due to the waves reflected from the surrounding build-

L be obtained by taking the local mean of the 

.als can be divided into two parts [16, 17, 18]: 

ngs and other structures. m(t) 

signal. The characterization of s 

• Signal Strength Prediction 

• Signal Variability 

Signal strength prediction is concerned with the mean value of the signal 

power strength in any small area. The main parameter of concern is the path 

loss L, which is defined as the diminution of received power with distance. Signal 

variability is concerned with the variations of the signal from the mean value. 

It is usually described by a probability distribution function. These variation 

would have detrimental effects on the systems. In the latter part of the thesis, 

the effect of Rayleigh fading on the system capacity will be studied. 

1.3.1 Signal Strength Prediction - Path Loss 

The path loss prediction of radio signal would be crucial to the planning of a 

radio system. The smaller the signal loss, the higher interference to the cochan-

nel cells will be. If the path loss can be accurately predicted, the amount of 

interference leaked to the cochannel cell can be determined. Signal strength 

prediction can be categorized into narrowband and wideband channel charac-

Narrowband channel characterization is for the transmission systems 

13 
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with signal in the frequency band varies in the same way. Wideband channel 

characterization is for transmission systems with signals which are much wider. 

That is if the bandwidth is wider than the coherence bandwidth, which will be 

defined in subsection 1.3.4, it will be described as wideband system. Otherwise, 

it will be described as narrowband system. Signal amplitudes in the frequency 

band will not has the same variations. 

For CDMA systems, suppose that a transmitted power Pt is used to send a 

dgnal with a bandwidth B along a mobile radio path r. The power 

)ver the bandwidth B is St{f), then the Pt can be expressed as 

/•/o + f 

Jfo- 4 

The received power 

(1.15) 

Pr 'C{rJ)-Mf) (1.16) 
the effective where (7(r, / ) = ^ is the median characteristic and Ae{f) = 

aperture of the receiving antenna. A; is a constant factor, c is the speed of light, 

Gt and Gr are the gains of the transmitting and receiving antennas, respectively. 

Substituting the values of C(r，/)，A^if) and (1.15) into (1.16), 

Pr 
k c ^ G r G t " � + f 刚 

/o - f 
df (1.17) 

( 4 7 r r � Jf,. 

The value of Sr{f) is assumed to be constant for /o - < / < /o + B/2, 

for simplicity and without losing much generality. Then (1.17) becomes 

Pr 
kc^GtGr 

( 4 7 r r � / O 3 \2/o/ 
(1.18) 

14 
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From (1.18), the B / f o 

between narrowband 

denominator of (1.18) as follows: 

10 log 

r the 

may 1 

of 1-dB difference in path loss 

’rnid. That means by solving the 

(1.19) 

B 二 0.66/o is obtained. In most wideband applications, B will not be wider 

than fo/2. Therefore, the narrowband propagation path loss should be applied 

to the wideband propagation path loss. In the following, the path loss models 

are obtained by the narrowband signal analysis and measurement. 

Friis equation for ；Transmission [19] 

口 偏 猫 （ 1 . 2 0 ) 

where Pr is the received power, Pt is the transmitted power, A is the 

wavelength, d is the distance between the transmitter and receiver, Gt and 

Gr are the antenna gain at the transmitter and at the receiver, respectively. 

From the equation, the path loss 丄二脊 is proportional to the square of the 

distance between the transmitter and receiver in free-space transmission. 

2. Two-path model for propagation over a plane earth [20, 21, 4, 17] 

The complex analytical results for propagation over a plane earth is sim-

plified by Bullington [22] by considering the direct, reflected, and surface 

waves. Referring to figure 1.7, the power received at the receiver is 

Pr .Airdi GtGr 1 + Re'"" + (1 — (1.21) 

15 
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；the ground reflection coefficient 

sQ - a\lt — 
R. 

sO^-aVe- sin^ 0 

where a = 1/e for vertical polarization and a = 1 for horizontal po-

larization, 0 is the angle of incidence. For typical ground parameters 

e 二 15 - j 90 /F , where F is the frequency in megahertz. The quantity 

A is the phase difference between the reflected and the directed paths be-

tween transmitting and receiving antennas. Let ht and K be the heights 

of the transmitter and receiver antennas, then A 

A 如 
A = — 

1/2 
27： d 

1/2 

for d greater than 5ht 

(1.22) 

(1.23) 

Since the earth is not a perfect conductor, some energy is transmitted into 

the ground, setting up ground currents that distort the field distribution 

relative to what it would have been over a perfectly reflecting surface. The 

surface wave attenuation factor A depends on frequency, polarization and 

the ground constants. An approximate expression for A 

A： 
l+i(27rc^/A)(sin<9 + a v ^ 

distances, 6> 90。，E — 1 and A 

'19)2 
(1-24) 

be neglected. Equa-

tion (1.21) 

Pr = Pt iwd) GtGri 
(Airhthr 
K Xd 

PtGtGr d? 
(1.25) 
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This is the two-path model equation. From the equation, the path loss is 

proportional to the fourth power of the distance d. The measurements at 

different cities [23] confirm that the path loss is approximately four. 

There are other models for characterizing the propagation of radio signal in 

different terrains. References [23, 16, 17] have more models for signal strength 

predictions. 

1.3.2 Signal Variability 

Radio propagation environment is time-variant and depends on the surround-

ings, e.g., vehicles, people, buildings and landscape. Since there are too much 

factors needed to be considered, probability function is used to model the charac-

teristics of the signal variations. The variation of signal strength can be classified 

into two parts: long-term and short-term. The long-term fading is the variation 

of the local mean of the signal strength. The long-term fading statistics can be 

obtained by taking the local mean of the received signal, i.e., taking the average 

of the received signal power for a period of 20 to 40 wavelengths. The short-term 

fading is the fast fluctuation of the signal strength. The statistics of short-term 

fading can be obtained by simply subtracting the received signal by the local 

Long-term fading 

In radio propagation environment, there is usually no LOS path between the 

transmitter and receiver. The received signal is then the result of multiple re-

:diffractions. By considering the receiver signal arrived to the receiver 

17 
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by a multiple of reflections, the path loss can be expressed as the product of sev-

eral reflection attenuations and free-space losses. [24] 

Let Y be the random variable representing the path loss. According to our 

model of multiple reflections, F is a product of N independent, positive random 

variables, X“ i = 1,2,…，见 

Y = X1X2 ... Xn 

A new random variable Z is defined as 

Z 二 10 logio Y 二 10(logio + logio 义2 + …+ logio Xn) 

By the central limit theorem, the distribution of Z approaches the Gaussian 

distribution as TV ^ 00. If Z is Gaussian, then the distribution of Y is log-

normally distributed. 

= 0 < , < o o (1.26) 
v27ro-y 

Besides, Chrysanthou and Bertoni [25] investigated the source of the vari-

ability of signal mean from the diffraction point of view. They studied the two 

features which might cause the long-term fluctuation of the signal. One feature 

they considered was random variations in building height. The second included 

variations in building design, construction materials, and the presence of trees. 

By simulations, they obtained satisfactory results in predicting the log-term vari-

ations of the signal mean with log-normal distribution. As a result, the signal 

mean fluctuation is probably due to the two features they considered. 

Extensive empirical data indicates that the distribution of the mean path 

loss is well approximated by log-normal distributions. The 

[to be in the range of 4 dB to 12 dB. 
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Short-term Fading 

In the followings, some typical channel models for short-term fading are dis-

cussed. 

1. Gaussian Channel 

When signal variation is due to the additive white gaussian noise (AWGN) 

generated in the receiver, the channel is modeled as Gaussian channel. 

The received signal amplitude Rr is simply given by the constant signal 

amplitude R plus a noise term N, i.e., Rr 二 R + N. The probability 

density function of the noise term N is simply given by 

Mn) 二 for - o o < n < oo (1.27) 
y/27ra 

The Gaussian channel is usually for microcellular radio systems with line-

of-sight (LOS) communications and no multipath. 

2. Rayleigh Fading Channel 

In a Rayleigh fading channel, the received signal is the resultant of N plane 

waves. The received electric field can be expressed as 

E{t) = I{t) cosUct - Q{t) sinuct (1.28) 

where I{t) and Q{t) are the in-phase and quadrature components that 

would be detected by a suitable receiver, i.e., 

N 
/ � = { o o J - h O n ) (1.29) 



N 
Q{t) - ^CnsinKt + ^n) 

Chapter 1 Introduction 

(1.30) 

and 

2'KV 
5 (7 — COS /3N 

+ 小n 

(1.31) 

(1.32) 

where Cn, K , and jSn are the amplitude, phase difference and spatial 

,respectively, of the n̂ ^ incoming wave with respect to an arbitrary 

Please refer to figure 1.8 for the definition of the spatial angles, 

a^ and The receiving point is assumed to move with a velocity v 

in the X - ^ plane in a direction making an angle 7 to the a:-axis. In 

these equations,⑴几 represents the Doppler shift experienced by the n彷 

component wave. If N is sufficiently large, the in-phase and quadrature 

components can be modeled as two gaussian random variables with zero 

mean and variance cr̂  二 For those practical radio receivers which 

do not normally have the ability to detect the components I{t) and Q{t), 

they respond to the envelope and phase of the complex signal E{t). The 

envelope R{t) of the complex signal E{t) 

m = � + Q2 � (1.33) 

The probability density function of R can be shown to be Rayleigh, i.e., 

涉 > x p ( — ‘ ） （1.34) 

where g) is the mean power and is the short-term signal power. 
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The Rayleigh fading channel is usually for modeling the short-term signal 

variation in most of circumstances of non-LOS communications. 

Rician Fading Channel 

In Rician fading channel, the received signal consists of a dominant path 

with many scattered paths. Referring to figure 1.9, the scattered paths 

are modeled as a two-dimensional Gaussian random variable. In addition 

to the dominant component, the received signal envelope 

a Rician probability density function 

丨+厂2 
(1.35) 

where r is the amplitude of the dominant component and a is the stan-

dard deviation of the scattered components. Rician distribution is often 

described in terms of a parameter K defined as 

K = 10 log •dB (1.36) 

It is interesting to know that as K 0, the PDF tends to be a Rayleigh 

distribution while as K oo, the PDF tends to be a Gaussian distribution 

with mean value f . As a result, Rayleigh channel and Gaussian Channel 

may be treated as the special cases of Rician channel. 

The Rician fading channel is used to model the signal variations in LOS 

radio communications and micro cellular mobile radio systems. 

Others 
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The received signal is well-described by Rayleigh statistics over a relatively 

small distance, with local mean over a somewhat larger area being log-

normally distributed. When the area of interest is between these two 

areas, it will be expected to be described by distribution which is a mixture 

of Rayleigh and log-normal. The following distributions, which are such 

mixtures, are of our interest. 

• Nakagami-m distribution 

r(r M rr > 

where m and 0 are parameters (0 being the 

r ( . ) is the Gamma function. 

Weibull distribution 

md m > -

(1.37) 

：value) and 

Pw{x)= 

where w > 0 and a > 

Suzuki distribution 

> 
< (1.38) 

f � X 
•Jo 

M logO/ao) 

where g is the mode of the Rayleigh distribution, o 

parameter of the lognormal distribution and M = log • 

da (1.39) 

5 the shape 

:0.434. 

22 



Chapter 1 Introduction 

•3.3 Delay Spread 

. a narrow pulse transmitted through 

nger be a pulse with negligible width 

spread width of the received signal by 

d as the delay spread. The higher the 

，which will result to 

Owing to the multipath phenomenon, 

the channel, the received signal will n( 

but with a finite spread width. The me 

transmitting a very narrow pulse is del 

delay spread, the longer the duration of . 

the intersymbol interference (ISI). One way of combating ISI is by equalization. 

Chuang and more recent simulation studies [26, 27] have confirmed that a good 

rule-of-thumb for determining the need of equalization for a digital radio system 

is as follows: if a digital signal has a symbol duration which is more than ten 

times the root-mean-square (rms) delay spread ov, then an equalization is not 

required for bit error rates better than 10一3. 

Furthermore, delay spread is also related to the path loss. Feuerstein et al 

[28] has proposed the overbound model. An overbound on the path loss can be 

obtained by using a simple exponential model of the form cr̂  = where 

CFd is the rms delay spread in nanoseconds and Ld is the path loss in decibels, 

when the transmitter and receiver separation is d. 

1.3.4 Coherence Bandwidth 

The coherence bandwidth is defined as the bandwidth in which either the am-

plitudes or the phase of two received signals have a high degree of similarity. 

The delay spread is a natural phenomenon, and the coherence bandwidth is a 

defined creation related to the delay spread. Coherence bandwidth Wc can be 

approximated by the reciprocal of the delay spread ad 
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Wc^ — 
o-d 

If the bandwidth of the transmitted signal is sufficiently narrow, then all 

the transmitted frequency components will receive about the same amount of 

attenuation, and the signal will be passed undistorted. The channel is called 

frequency non-selective fading channel. Otherwise, the transmitted spectrum 

will start to be attenuated by different amounts. For the rest of the thesis, the 

propagation channel is assumed to be frequency non-selective. 

1.4 Power Control in Cellular Radio Systems 

Power control is an important issue in the design of cellular radio systems, 

especially for CDMA systems. Some of the result obtained in this issue will be 

1.4.1 Centralized Power Control 

Centralized power control means the cellular system would have a centralized 

controller to control the transmission power of different units in the system. 

• Aein [29] proposed the idea of Power Balancing in frequency 

He considered that for a radio receiver in the system, the 

P^ from a mobile i would be interfered by other users and g 

p^ = GuP. + E VzG[l,Ar] 
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where Gij is the link gain from mobile j to base i and Pi is the power 

transmitted at the transmitter of mobile i. By these N equations, a matrix 

equation can be obtained. By finding the eigenvalues and eigenvectors of 

the link gain matrix Z 二 陶，which is defined by 

參 

the optimum transmitting power of different mobiles can be obtained such 

that the Cjl of them are maximized. 

Zander [30] based on the idea of Aein and proposed a centralized power 

control scheme called the Stepwise Removal Algorithm (SRA) to control 

the power transmitted by each mobile in the system. 

Grandhi et al [31] modified the algorithm of Zander [30] such that the Cjl 

of each mobiles are equal after power adjustment. 

Chuah et al [32] simulated different channel assignment schemes based on 

different criteria of power balancing. 

1.4.2 Distributed Power Control 

When each mobile unit or base station adjusts its power according to its in-

formation obtained, it is called distributed power control. Distributed power 

control schemes would be more practical for cellular radio systems. 

• Zander [33] proposed a distributed algorithm 一 Distributed Balancing Al-

gorithm, which adjusts the power transmitted by different mobiles such 

that the carrier-to-interference ratios of each mobiles converge. 
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The Distributed Balancing Algorithm (DB Algorithm) 

= Po, Po > 0 

i f + i ) = " / f ) ( i + & ) ’ " � 0 . 
V l i 乂 

where P/") is the power transmitted by mobile i at the v iteration, (3 is 

some positive constant and is the carrier-to-interference ratio of mobile 

i at the base station at the v iteration. 

Zander has also proposed an algorithm of how each mobiles adjust its 

power based on its own information from its base. He called it as Limited 

Information SRA-Algorithm (LI-SRA). On the other hand, he has stated 

that there is a practical problem that the transmitter power in the DB 

algorithm are all increasing, unless the parameter (3 is chosen in a proper 

way. Ideally, selecting 

卢 看 ) 二 

would ensure a "constant" average power level. However, calculating this 

quantity may not be possible in a completely distributed system since it 

would require knowledge about the power levels in all links. This would 

be a topic for further research. 

» Grandhi et al [34] modified the DB algorithm of Zander [33]. The power 

adjustment made by the 产 mobile at the time instant is given by 

li ) 

where � is the power transmitted by the mobile at the n认 iteration, 

7严 is its resulting CIR, and c is some positive constant. They have shown 

that the new algorithm converges faster than Zander's algorithm. 
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Mitra [35] investigated an asynchronous cellular radio system. He gave an 

asynchronous adaptive algorithm for power control in cellular radio sys-

tems, which relaxes the demands of coordination and synchrony between 

various mobiles and base stations. 

Foschini and Miljanic [36] investigated a simple distributed autonomous 

power control algorithm and its convergence. First, if the i仇 user evolves 

his signal-to-interference ratio, pi{t), to drive it towards the desired amount 

p by an amount proportional to the offset from p. Expressing this dynamic 

using to denote the (necessarily positive) proportionality constant, they 

have 

补 ) = - 辦 

They have found the condition of convergence. 

Proposition: If there is a power vector p*, for which the desired pi values are 

attained, then no matter what the initial p,(0)，each of the pi{t) evolving 

according to 

H(t) 二 H{t) — W f t , (z 二 1,2，...，J). 

will converge to p*. In which, v is the power of the additive receiver noise 

at the user sites. 

Furthermore, in more precise difference equation form of algorithm, the 

power vector P{k) of the mobiles is adjusted iteratively with 

p ( k + l ) = RoP(k) + 7/ 
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where Rq has pGijjGu in each nondiagonal (‘，j产 position and zero along 

the diagonal, while the generic component of v is pv jGu and 

rJ = p[{u/G^^),{1^/022)."-.i^/Gjj)]' 

Wong and Lam [37] proposed a new distributed power control scheme 

for cellular radio systems — The Cooperative Algorithm, which bases on 

limited information links between cochannel cells and adjusts the power 

transmitted by the mobiles in the systems such that maximizes the carrier 

to interference ratio in the system. The new algorithm is defined by the 

following set of equations: 

The Cooperative Algorithm 

i f ) = PM (1.40) 

i f + i ) = a 对 、 (1.41) 

min(r广),max(minjgjv-巧…,70)) 

where Ni is the set of indices of base stations that send control data in-

formation to base station i according to the control data flow structure, 

70 is minimum Cjl ratio for transmission with acceptable quality, Pm is 

the maximum transmission power level of the mobile unit, and m > 1 is a 

parameter of the algorithm that control the rate of convergence. 

They have shown that the rate of convergence is much faster than the 

algorithm proposed by Zander in [33]. 
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• Yates and Huang [38] related the problem of power control with base sta-

tion assignment. They proposed a distributed algorithm for a mobile to 

adjust its power according to the carrier-to-interference ratios of different 

base stations. In case the Cjl of one base is larger than the host base, 

the mobile will be switched to that base station (i.e., Handoff). They have 

proved that their algorithm converges no matter what circumstance is. 

1.4.3 CDMA Power Control 

In CDMA systems, the power control issue would be much more crucial to 

system performance. If the control is not done well, the system capacity would 

be significantly reduced. The power control schemes for the reverse- and forward-

link would be quite different. 

Reverse-link Power Control 

The power control for the reverse-link of CDMA cellular radio systems would 

be simply adjusting the transmission power of each mobile units such that the 

received power at its home base station is constant at any time. It is concerned 

with the estimation of the link gain between a mobile unit and its base station. 

The practical implementation of the estimation of link gain in the presence of 

fading will be discussed in chapter 8. 

Moreover, Nettleton and Alavi [39] introduced the concept of power balanc-

ing to the power control of CDMA systems. They formulated the power control 

problem into an eigenvalue problem. The optimum transmission power vector 

for all the mobile units can be obtained by solving the eigenvector of the matrix 

Their method can be applied to control the power transmission of the 
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and forward-link. 

Forward-link Power Control 

For the forward-link, by the power balancing, the optimum transmission power of 

each base station can be obtained. Further, Gejji [40] proposed a novel forward-

link power control scheme. He was concerned with the users on the two extreme 

positions. He formulated the power control problem into a maximin problem. 

The optimum transmitting power at different locations can be obtained. 

Mathematically, the power control function f{x) controls the amount of 

power transmitted according to the position of the user {x 二 r丨R, r 二 dis-

tance of the user from the cell center and R is the cell radius). It should be 

found by maximizing 

八工 ^ ( 1 . 4 2 ) 

^ h{x)!lyf{y)dy 
subject to f{x) > 0, and / ( I ) = 1. In (1.42), h{x) is the variation 

total power relative to home cell power and depends on the position of the user. 

Moreover, Zorzi [41] has proposed a simplified forward-link power control law 

(PCL) in cellular CDMA. He proposed the floor power control law 

A/(r) = [A/(l) — A / ( 0 ) K + A/(0) (1.43) 

where A ( r ) = 靜 ^ is the the distance between the mobile unit and the base 

station and n is the parameter for optimizing the system utilization. In which, 

L, M and ip{r) are the processing gain, the number of admitted users per cell 

and the power control law of the system when the user is at a distance r from 

the base station, respectively. A/(0) and A / ( l ) are some special values which 
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are obtained in [41]. Zorzi has shown that the optimum value of •� 

and 6 in the paper. 
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Figure 1.1: Channel Assignment of a cellular radio system 
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Figure 1.2: The {u,v) coordinates system 

Figure 1.3: The corresponding 
TDMA and CDMA. 

of the time and frequency of FDMA, 
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Figure 1.4: Figure to illustrate the principle of CDMA 
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Figure 1.5: Transmitter and -CDMA system 
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Original Signal Spectrum 

A 

Despread Signal 

• Dedicated Signal 

‘Interference Signal 

Figure 1.6: Spread Spectrum of Signals in CDMA systems 
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Figure 1.7: Two Ray model for propagation over a plane earth 

Incoming Wave 

1
 

Figure 1.8: The definition of the spatial angles used for the 八 incoming 
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Quadrature 

Scattered Paths 

Dominant Path 

Figure 1.9: Phaser representation of the in-phase and quadrature components 
of Rician fading signal. 
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Chapter 2 

Contributions 

In this thesis, the adjacent cell interference analysis is performed. By using 

some mathematical models, closed-form solutions are obtained. In designing a 

CDMA cellular radio system, estimation of system capacity is a crucial issue 

to the successful implementation of the system. Based on the result obtained 

in this thesis, a general picture of what the system capacity would be can be 

obtained immediately. As a result, the overall number of base stations needed 

and thus the distance between neighbour base stations can be obtained just by 

substituting some parameters into the formulas derived in this thesis. 

As radio propagation would depend greatly on the environment, different 

propagation environment would have different effect on the radio signal. In this 

thesis, the effects of adjacent cell interference on different propagation environ-

ments have been studied. The corresponding closed-form formulas are obtained 

accordingly. No similar result on microcell CDMA cellular radio system has been 

obtained before. As the demand of high capacity is getting higher and higher, 

the implementation of microcell would be getting more common. As a result, 
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,concern to building 

the system capacity 

the estimation of microcellular radio system capacity is 

new high capacity CDMA microcellular radio system. 

In this thesis, the effect of imperfect power control 

has been studied. From the analysis, this effect would 

degradation on the system. When considering this 

the system should be considered. This can be done by just plugging the 

parameters into the formula obtained in this thesis. The corresponding number 

of capacity decrease can be obtained immediately. 

The contribution of this thesis is to provide some tools for system design en-

gineer in designing a CDMA cellular radio system. By using the tools supported 

in this thesis, the system capacity can be obtained immediately. The formulas in 

this thesis are derived based on some assumptions, which are general and being 

used by system design engineer. The approach is novel for the derivation of the 

formulas in this thesis. 
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ACI Analysis of the 

Reverse-Link 

In this chapter, the performance of the reverse-link in CDMA cellular radio 

systems will be analyzed. The effect of adjacent cell interference on the system 

capacity of a CDMA cellular radio system will be investigated. Hexagonal and 

circular cell structures are used for the investigation of the effect of adjacent cell 

interference on the system capacity. The amount of interference from the six 

adjacent cells of the first tier is obtained by numerical method in the hexagonal 

cell approach. Afterwards, a circle is used to approximate the hexagonal cell and 

a closed-form solution is obtained. Results show that the discrepancy between 

the two approaches is negligible. By the circular cell approach, the adjacent cell 

interference function is derived. The total adjacent cell interference is found by 

the adjacent cell interference function obtained. Generalization of the analysis 

to the irregular cell structure is also presented in this chapter. 
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3.1 Adjacent Cell Interference 

In Code Division Multiple Access (CDMA) cellular radio systems, power control 

is a vital issue to the system capacity. Since different users occupy the same 

frequency band at the same time, signal of a user may be overwhelmed by strong 

signals from other users. As the frequency reuse pattern of CDMA system is 

proposed to be 1, i.e., universal frequency reuse, the same frequency band will 

be used at all cells. The signals are distinguished by the signature codes. As 

a result, signals leaked from a cell would interfere the cells around. For the 

forward-link of such system, Gejji [40] modeled the power control problem as 

a maximin problem. Based on the adjacent cell and co-cell interference, an 

optimum power control function is found by maximizing the objective function. 

The carrier-to-interference ratio will then be maximized and approximately equal 

at different places from the base. 

For the reverse-link, in order to make all users obtain a stable carrier-to-

interference ratio Cjl, at the base station, a constant level of received power 

from different users has to be maintained. Lee [4] has investigated the effect of co-

cell interference on the system capacity. Neglecting the interfering signals from 

adjacent cells, the Cjl received from a mobile unit at the cell site is (M — 

where M is the total number of users that can be accommodated in a cell. 

In [42, 43], Cooper and Nettleton, and Gilhousen et al found the amount of 

interference caused by the adjacent cells numerically. 

Mean value analysis approach will be deployed in this thesis. In the analysis, 

the mean system capacity will be obtained by using the carrier-to-mean inter-

The system with regular hexagonal cell structure will be studied 
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first. Then, circular cells are used to approximate the hexagonal cells. The 

corresponding interference is obtained. In addition, a closed-form analytical so-

lution for the problem is derived. By this solution, the amount of interference 

from adjacent cells can be obtained directly. System planner can approximate 

the amount of interference from the surrounding cells in an analytical way. Re-

source can be saved significantly in designing CDMA cellular radio systems. 

The rest of the chapter will be organized as follows. In section 3.2, the 

numerical analysis of the hexagonal cell structure and functional analysis of the 

circular cell structure will be presented. The results obtained are compared and 

discussed. The interference function is derived in section 3.3. Generalization of 

the result to irregular cell structure will be presented in section 3.4. Conclusions 

are drawn in the last section. 

3.2 Adjacent Cell Interference Analysis 

3.2.1 Interference Analysis of Hexagonal Cells 

In this section, the interference caused by the adjacent hexagonal cells will be 

considered. Referring to figure 3.1, for a user i in the hexagon ABCDEF, which 

is located at point N with coordinates (x”yi), where the origin is at the center 

of its home cell, its distance from the center of the adjacent cell will then be 

given by 

d(cc” yi) 二 - + yf (3.1) 

where 凡 is the cell radius, and —凡 + 瑰 S 仏.S 丑c _ 棵 . 
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Figt The interference caused by a mobile in region ABCDEF 

If a power control scheme of ensuring equal received power at the base station 

is deployed, ^ received power at the base station is given by PR and power 

transmitted at {xi, y,) is i ^ V V + Vi'V• The interference caused by the mobile 

to the adjacent cell will be given by 

the constant : 

gation exponent. 

The mobiles 

iThe control of signal power i 
base station is constant. 

M 

PR 
丨 + 仏 卞 2 

[{V^Rc - x.y + 2 A . � / 2 

)wer at the base station and 

(3.2) 

(3.3) 

evenly distributed over the hexagonal cell, 

d to be done perfectly, i.e., the signal received at the 
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The probability distribution function of a user in the hexagon ABCDEF will be 

given by 

fxxi^^y) 

The average interference from 

< a: < 
9 一 一 

and 

(3.4) 

otherwise 

I mobile to the adjacent cell will be given by 

he： E[I{X,Y)] 

J j I{x,y)f{x,y)dydx 

-畏 PR(工2 + 作 / 2 

PR 

广 广 

L 

-j—年 1 

I J:J： 

u 

！ + 州 2 

争fRc-念{x^^y^r'^dydx 
[{V^Rc - xy + 

队+含{x' + y'R^'dydx ‘ 

dy dx 

2 ] 7 / 2 

2 ) 7 / 2 

The last equality is g: 

normalization of the integral. 

With 7 equals to 4, equation (3.9) 

： ^ [(1 - Uf + 

by the substitution u and 

(3.5) 

(3.6) 

(3.7) 

VsRc 

(3.8) 

(3.9) 

the 

f — ^ 
Jo H 

r / 喫 

[(1 - U)2 . 
-dv du 

1(1" 
平‘ (3.10) 
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The integral in equation (3.10) cannot be solved analytically. By numerical 

he . = 0.06358Ph (3.11) 

For a mobile in a cell communicating with the base station, it will exhibit 

interference to the other mobiles in the same cell. Assuming all M users are 

transmitting, for a particular user located at r,- from the base, its signal will be 

interfered by the other M - 1 users. At the base station, the interference caused 

by the others to this user is 
M 

E PR = {M-1)PR 
=1，ĵ i 

The total interference, from 

zeived at the base station will 1 

cell and the first tier of adjacent cells, 

The丨 

(M - 1)PR + 

丨-interference ratio of this user is 

(3.12) 

C PR 

With 7 equals 

I — [M — 1)PR + MIHE 

equation (3.13) becomes 

(3.13) 

C PR 

(1.3815M — 1)PR 

— 1 . 3 8 1 5 M — 1 

In cellular radio systems, the bit error rate should be less than 

provide an acceptable quality of service. With an effic: 
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(3.15) 

3 in order 

modem and a 
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F 

Figure 3.2: The interference caused by a mobile in a circular cell to its adjacent 

powerful convolutional code (constraint length 9, rate 1/3) and two-antenna 

diversity, it corresponds to have Eb/Io = 7 dB, where E^ is the energy per bit 

and lo is the interference power per hertz [43]. In CDMA, Cjl received at RF 

is closely related to the Eb/h at the baseband. 

CII 二 (3.16) 

the bit per second and Be is the radio channel bandwidth in hertz. 

Assuming the vocoder rate Rb is 8 kbps and the total wide-band channel band-

width Bt = 1.25 MHz, if E^jh = 7 dB, then (C7//),eg = 0.032. From equa-

tion (3.15), the maximum number of users that can be accommodated in a cell 

is Mmax 二 23 

3.2.2 Interference Analysis of Circular Cell Structure 
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In this section, a circular region to approximate the hexagonal cell in the system 

will be used. The circle will have the same area as the hexagonal cell. Referring 

to figure 3.2, Rc and Rs are the cell radii of the circle circumscribing the hexagon 

and the circle that has the same area as the hexagon, respectively. The radius 

of the circle Rs will have the following relation with Rc 

成 2 = 斜 2 ( 3 . 1 7 ) 

� Rs 二 OM^Rc 

For a mobile locating at a point N with polar coordinates (n, Oi)飞 from its 

home base, its distance from the adjacent cell will be given by 

d(r”ei) = y / s R c ' ^ r f C O S 0, (3.18) 

where 0 < r, < Rs and 0 < < 2兀. 

If a power control scheme of ensuring equal received power at the base station 

is deployed, the interference caused by the mobile to the adjacent cell would be 

given by 

I M ) = Pnijy 

PRTI 

(3.19) 

(3.20) 

where PR is the constant received power at the base station and 7 is the propa-

gation exponent. 

will be 
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Same as the previous section, the mobiles are assumed to be evenly dis-

tributed over the circle. The probability distribution function of a user in the 

circle will be given by 

for 0 < r < Rs and 0 < 61 < 27r 

otherwise 
f R A r , e ) = \ 咖 (3.21) 

I 0 
The average interference for a mobile caused to the adjacent cell will be gi 

by 

Ur = E[I{R,(d)\ 

= J I I{r,0)f{r,0)rd0 dr 

nh Pur 併 

+ r2 - 2V3Rcr cos Op/^ 
P R f 礼， r州 dO dr 

r r 
Jo Jo 

Equation (3.25) is similar to the total interference equat 

272]. Here, only the adjacen 

equation (3.25) is 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

[42, 

cells are considered. The generalized form of 

Itotal : 
PR 

W ： 

R-Y+L ‘ 

where N is the total number of cells in the service area 

between the interfering cell i and the interfered cell. D 

the following expression 

(3.26) 
rcos 6']V2 

ea and Di is the distance 

-elated to Rn with 
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where Ki = + UiVi + ？;,and {ui.Vi) is the displacement in the u and 

directions from the interfered cell to the interfering cell ( w,-, Vi > 0, + Vi > 

)[23]. 

Back to equation (3.25), with 7 equals to 4, and using JQ"" 

(̂ 2-62̂ )3/2，the equation becomes 

(a+6cosa;)2 

Lr 
PR f队 27rr'{3Rc^+ r J 

Jo {3R.' — r^f ^ 
2PR [RS -dr 

Substituting 

一 Rs^ Jo (3凡2 一—)3 

:r/y/3Rc for normalizing the integral, 

(3.27) 

(3.28) 

I � Rs' Jo (3足2 — —)3 

6 R c ^ P R /0.5250 + 

dr 

..-J: 
-dx 

(3.29) 

(3.30) 
Rs' Jo (1 — 

In general, for an interfering cell i away from the interfered cell by A , the 

srage interference will be given by 

IPR 5 ( 1 

The integral in equation (3.30) < 

Le corresponding result is 

(1 
-dx (3.31) 

L be solved to obtain a closed-form solution. 

4 v = 0.06326PH (3.32) 

Assuming that there are M users transmitting in the cell, the total interfer-

ce from this interfering cell is given by 
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!CIR = 0 . 0 6 3 2 6 M P H ( 3 . 3 3 ) 

Considering the six adjacent cells around, the total adjacent cell interference 

Itotai 二 0 . 3 7 9 5 5 M P I ? 

The corresponding (7 / / is 

C PR 

( 3 . 3 4 ) 

( M — 1)PR + 0 . 3 7 9 5 5 M P K 
(3.35) 

(3.36) 
—(1 .37955M — 1) 

Comparing the result in equation (3.15) with equation (3.36), using a circle 

to approximate the adjacent cell interference in a hexagonal cell is acceptable. 

3.3 Closed-form of Adjacent Cell Interference 

Back to the general form of equation (3.31), using the substitution u = \/l —工、 

the interference from cell % to the interfered cell which is away from cell % by Di 

— 財 M P n f 灣 4 1 + 巧 办 (3.37) 
U t — 凡 2 I (1 — 一 )3 ^ ) 

2MPR _ 
0 . 9 0 9 4 2 

7.5A； 
0 . 4 1 3 5 0 4 + 6 K , _ 

1风3 6/仙 

( 0 . 2 7 5 6 7 - K i ) 
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MPR 
Ki 

^Ki-0.27667 J 

i {Ki - Q.36Q878)(i^.- - 0.052649) 
{Ki 0.27567)2 

The Adjacent cell interference function of Ki is defined 

(3.39) 

MO 14.51016J^an 

Then, 

- 0.27567. 
i {Ki — 0.36Q878)(ii^.- - 0.052649) 

{Ki - 0.27567)2 

,11 C / / ratio is given by 

(3.40) 

C PR 
-uv + ^;2)6MPr 

(3.41) 

(3-42) 
‘ oo oo 

_ u=:l v=0 

Figure 3.3 shows the graph of total interference from the surrounding cells 

against the number of tier of cells included. From the figure, the interference 

from the adjacent cells is mainly contributed from the first few tiers of cells. The 

interference from cells away from the tenth tier becomes insignificant and can 

be neglected. The total interference from all the adjacent cells is about 0.4321. 

Consequently, the number of tier of cells needed to be considered is ten. 

Taking the total interference to be 0.4321 and {C/I)req = 0 . 0 3 2 � E “ I o = 7 

dB), the number of users that can be accommodated in a cell is 

M = {{C/I);,\ + 1)/(1 + 0.4321) 二（31.25 + 1)/(1.4321) ̂  22 

Adding voice activity cycle and sectorization, a nine fold of 

(3.43) 

The nine would be an optimistic value. 



••37o 2 4 6 8 10 12 14 16 18 2C 
Number of tier 

Figure 3.3: Total adjacent cell interference per user versus the number of tier of 
cells included 

It is based on the assumptions that sectorization would reduce the amount of 

interference to one third of the original value in average and thus increase the 

capacity by three times. In addition, a person would use only 40 

M = 22 X 3 X 2.5 = 165 channels/cell 

When the adjacent cell interference is considered, the capacity of CDMA cel-

lular radio system still has higher capacity than other kind of systems, provided 

that the power control is done perfectly. 
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Chapter 3 ACI Analysis of the Reverse-Link 

Furthermore, referring to equation (3.25), with 7 equals to 2, the adjacent 

cell interference for path loss of 2 can be obtained. For a cell which is away from 

the interfered cell by A , the average interference from this cell will be 

PR 

L Jo [Df + � 3列 
PR fRs 2灯3 

irRi Jo 
•dr 

> ( 1 - 坊 ) 

(3.44) 

(3.45) 

(3.46) 
TRI JO D } 

二 PR -

where h = the reciprocal of the cochannel interference reduction factor 

[23]. 

The adjacent cell interference function for path loss equals to 2 is 

2 � 
(3.47) 

The curve of the value of adjacent cell interference versus the number of tier 

of cell is shown in figure 3.4. A much higher interference from the adjacent cells 

is observed and as a result, the higher the propagation path loss, the better the 

performance of CDMA cellular radio systems. 

3.4 Generalization to Irregular Cell Structure 

So far in the analysis, regular hexagonal and circular cell structure were used. 

Indeed, the analytical result can be generalized and applied to irregular cell 

shape, which is more realistic structure. 

In a real cellular radio system, the cell layout may look as the one in figure 3.5. 

For a particular cell i away from an interfered cell by Di, which is shown in 



100 150 200 250 300 
Number of Tier 
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Figure 3.4: Total adjacent cell interference per user v< 
cells included, with propagation path loss equal to 2 
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figure 3.6, the interference from this cell can be approximated by using a circle 

with equal area and radius Ri to approximate this cell. Applying equation (3.31) 

to this cell with a minor change, the equation becomes 

— 2 M D } P n . (奇？ ( l + x2) (3.48) 
丄們— R,' Jo (1 - ^ ) 

紀 + 坊 .. , (3.49) 
(1 —左?)2 A;? 、 " J ^ 

= M P R 鼻 (3.50) 

where h 二昏 is the reciprocal of the cochannel interference reduction factor, 

which is given by the frequency reuse distance divided by the coverage radius 

[23, page 50], and d\ki) is the modified adjacent cell interference function which 

is defined by 

6雜？ 丨 
(1 - kfy 紀 

The corresponding Cjl equation 

C 

(3.51) 

(3.52) ( M - + 綱 
L t 

By using equation (3.52), system planners just need to use the information of 

the distance between two base stations and the approximated area of each cell. 

The adjacent cell interference of a particular cell can be obtained immediately. 

As a result, the capacity for the reverse link of that cell can be estimated. 
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3.5 Conclusions 

The adjacent cell interference function of CDMA cellular radio systems has 

been derived in this chapter. With this function, the interference from adjacent 

cells can be determined. Further, this adjacent cell interference function can be 

used for system planning. It provides a fast and simple way of estimating the 

interference from adjacent cells, and saves a lot of resources in designing CDMA 

cellular radio systems. 
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Figure 3.5: A real cell layout in a cellular radio system 

Interfered Cell �� 

Figu 
cell 

Estimation of the adjacent cell interference caused to a particular 
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Chapter 4 

ACI Analysis of Reverse-Link 

with Log-normal Shadowing 

4.1 Interference with Shadowing 

In this chapter, the effect of shadowing and adjacent cell interference on the 

reverse-link capacity of a CDMA cellular radio system will be considered. Re-

ferring to [44], a widely accepted model for the signal transmission environment 

encountered in mobile communications systems indicates that the received signal 

power Pr averaged over fast fading should be expressed as, 

P广 Pt.di (4.1) 

where Pt is the transmitted signal power, d is the distance between the transmit-

ter and receiver, 7 is the propagation constant, and is a normally distributed 

random variable with zero mean and standard deviation cr in dB. Thus, the 

probability distribution of 77 is given by 
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fniv) (4.2) 

By using the derivation in chapter 3, the amount of adjacent cell interference 

at the base station in the presence of shadowing can be obtained. As in chapter 3, 

the distribution of users in a cell is assumed to be uniform. The hexagonal cell 

will be approximated by a circular cell with equal area. The probability that a 

mobile is at the polar coordinates (r, 0) from 

fnAr.O) 
for 0 < r < and 0 < < 27r 

otherwise 
(4.3) 

where R^ is the radius of the circular cell. 

The signal from the base station to the mobiles is assumed to be transmitted 

at a predetermined constant power PB,. Referring to figure 4.1, for a user situated 

at the polar coordinates (nA), the received signal power P ^ at the mobile is 

i V 二 i V r r . l O ” " ° 

At the mobile, it can calculate the 

to path loss and shadowing, i.e.，the factor i 

its signal to the home base at the power P肌 

attenuation 

signal attenuation due 

71077/10. Then, it will transmit 

；hat can compensate the signal 

i / i o (4.4) Pmt =PR-rl 

where PR is the constant received power at the base station. 

Assuming that the fading and path loss of the reverse-link and forward-link 

signals are the same at the home cell, its home base receives the signal at the 
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Figu The interference caused by a mobile in a circular cell to its adjacent 

PR.r] . 1 0 i " o • 

PR 

lOVio 

(4.5) 

(4.6) 

(4.7) 

The power control is assumed to be done perfectly at one's home cell, i.e., 

the received signal power at one's home base station will be constant no matter 

where the mobile is. On the other hand, the signal from this mobile interferes 

the adjacent cell. Referring to figure 4.1, the interference from the mobile to its 

adjacent cell is given by 

/(r 
r , ” l ( W i o 

lOV/io 
7lO”/io 

+ r? — 2V3Rcri cos 
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(4.8) 

(4.15) 



) i V 州 10”/10 ]_ 
�[3凡2 + H - 2V3Rcr cos 即/21(K/10 成 

V^^cr 
PR 

y/^o 
drj'drjdOdr 

r7+ilO(”i')/io rRs r2TT roo roo r 丁 丄IT , ' " 
Jo Jo J-J-oo[3Rc^ + r2 — 2V3Rc 沖/2 

(4.11) 

(4.12) 

(4.13) 

Since 

E 10”/io 

dr/ dr] dO dr 

1(^/10 exp 

and the two fading random variables ar 

E[10”/iop. As a result, equation (4.14) 

d r r 

(4.14) 

2(lnlO)2-

,五[io(”i')/io] 

！adj 
PR 

广 f 
Jo Jo 

R7+L 

[3凡2 • 足r cos 6']V2 丨 

(4.15) 
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and rf are two independent and identically distributed (i. i. d.) random 

They are normally distributed with zero mean and standard deviation 

Assuming the distribution of fading and the distribution of the user location 

3 independent, the average interference from a mobile to the adjacent cell can 

L 逝 ( 4 . 1 0 ) 

M
^
n
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With 7 equals to 

hdj 
rlnlO PR r r 

Jo Jo [3 凡 2 + — — 2V3E, 

Comparing equation (4.16) with the result obtained in 

normal signal fading is considered in the analysis, the interference 

by a factor which is called the fading gain in the system 

Gf 
rlnlO (417) 

When the fading , 

the following equation 

considered in the closed-form solution of chapter 

C PR 

(M — 二 l E二 o G /列 t 
(4.18) 

’ + V^)6MPR 

(4.19) 

where M is the number of users that can be accommodated in a cell and is 

the adjacent cell interference function derived in the previous chapter. 

^{K,) = 14.51016i^an 
K, 

(4.20) 

Ki-0.27567 J 
i {Ki - 0 . 3 6 0 8 7 8 ) - 0.052649) 

{Ki - 0.27567)2 

where Ki 二 Ui^ + UiVi + Vi] and {ui.Vi) is the displacement in the 

directions from the interfered cell to the interfering cell ( u � V i > 0, Ui + 

Some typical values of G/ to the corresponding values of a are shown 

table 4.1. In the same table, the corresponding number of users M that c; 

：> 
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(J (dB) M 
0 1 22 
2 1.2362 21 
4 2.3357 16 
6 6.7442 8 
8 29.7615 2 

Table 4.1: Typical values of Gf 
be accommodated in a cell 

spending number of users that 丨 

be accommodated in a cell, when shadowing is considered, is also shown. The 

dramatic effect with cr can be explained by the exponential variations of signal 

power by the log-normal fading. Increase of the standard deviation would induce 

to an exponential increase in the mean signal power. As a result, in the average, 

the amount of interference from the other users would be increased significantly. 

What we have obtained above is the adjacent interference analysis with the 

consideration of log-normal shadowing. Gilhousen et al [43] considered similar 

circumstance but imposed a constraint that the signal a mobile within its cell is 

the strongest among all the signals from the other base stations. They modeled 

the received signal at the base station as a gaussian random variable. The 

constraint confined the received signal at home cell must be the strongest among 

the signals from the other cells. 

Since 
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the expectation of 10(”-”')/io, (i.e., the fading gain) will be given by 

Gf E [io(”-”')/io. 

1 . 广 1 � ( 玲 V A O ( 
.J-oo 

rlnlO� 

rlnlO� 

dx 
]nlO 

2 ？ i�gi�(C) 
In 10 

(4.24) 

(425) 

(4.26) 

(4.27) 

The adjacent cell interference cannot be solved analytically when the max-

imum nominal power constraint is considered. Including equation 4.27 into 

equation 4.14, 

！adj 
rlnlO� PR 

广 f 
Jo Jo 

[mc" ^ r^ - 2V3Rcr COS 6>p 

加 ？ + r2 - 2V3Rc 

In general, if an interfering cell 

interference from this cell will be 

(4.28) 

from the interfered cell by A , the 

hdj 
PR 

—logi 

广 f 
Jo Jo 

i^jW-

W -

(4.15) 
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The numerical result of equation 4.29 for a equals to 0 and 8 are obtained 

and shown in figure 4.2. The reason why the curves cross is that when only one 

tier of cell is considered, the effect of log-normal fading tends to diminish the 

interference power. It is due to the strongest nominal power constraint imposed 

on the signal power. As the separation between the interfering and interfered 

cells increases, i.e. the number of tier of cells increases, the constraint tends 

to be loosen. The corresponding interference power then increases significantly. 

The ACI in the presence of log-normal fading would be much higher than that 

without fading. Consequently, the capacity of the system in the presence of 

log-normal shadowing will be much lower than that in an ideal circumstance. 

4.2 Conclusions 

In this chapter, the adjacent cell interference in the presence of long-term shad-

owing have been derived. By the results obtained, the system capacity decreases 

exponentially as the standard deviation of the interfering signal increases. When 

maximum nominal power constraint is considered, the expression for the ACI is 

too complicated to be solved analytically. Instead, the ACI is obtained by using 

numerical method. In typical propagation environment, where o" ；̂  8，the slow 

fading of adjacent cell interfering signal causes further significant reduction in 

system capacity. 
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Chapter 5 

ACI Analysis of Microcell 

Microcell concept is a way of increasing the capacity of traditional cellular radio 

systems. As the cell size decreases, the number of users accommodated per 

unit area increases at a rate inversely proportional to the square of the cell 

radius, provided that the number of users per cell is fixed. CDMA system is 

also a way of increasing the capacity of cellular radio systems. Theoretically, 

CDMA systems increase the capacity of a cell by three to ten times of the 

capacity of traditional systems. Nevertheless, the propagation characteristics in 

a microcell would affect the performance of CDMA micro cellular radio systems. 

In this chapter, the line-of-sight (LOS) micro cellular propagation model is used 

to analyze the adjacent cell interference (ACI) of a CDMA microcellular radio 

system. By using the model, the variation of interference versus the cell size is 
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5.1 Propagation Characteristics of Microcel-

lular Radio Systems 

In traditional macro cellular radio systems, a propagation path loss of 4 is found 

to be applicable to most of the area [23]. This value can be derived analytically 

by using the simple two path model [20, 21,4,17]. A number of literatures has in-

vestigated the signal variation by using the two path model. On the other hand, 

when microcellular radio system is considered, the propagation characteristics 

would be different from the prediction by the macro cellular model. The macro-

cellular model assumes that the distance between the transmitter and receiver is 

long and the base station antenna height is high. Then the corresponding radio 

signal would attenuate proportional to d � I n contrast, for microcellular radio 

systems, the distance between transmitter and receiver is short and the base 

station antenna is not placed at a very high position. A lot of researches has 

been done on investigating the propagation characteristics of microcellular radio 

systems. In the literatures [45, 28, 20, 46, 47, 48，49], theory and measurements 

show that the signal propagation in microcell follows the two slope attenuation 

model with the break point at the first Fresnel zone clearance df 

1 (E2 — A � — 2 ( E 2 + A 2 ) � + � （5.1) 

where J： 二 ht + f h a n d 二 fh —K, h is the height of the transmitting antenna, 

ĥ  is the height of the receiving antenna, and A is the wavelength of the signal. 

For the distance between the transmitting and receiving antennas d < df, 

the antenna pattern, variation of reflection coefficient with angle, and two ray 

interference conspire to give a regression slope of about 2, while interference 
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between the two rays for d> dj leads to a regression slope near 4. 

Referring to the chapter 3, the adjacent cell interference when the propa-

gation loss equals to 2 is much higher than that when the propagation loss is 

4 in a CDMA system. The adjacent cell interference of CDMA cellular radio 

systems limits the number of users that can be accommodated in a cell. As a 

consequence, in CDMA systems, the higher the propagation path loss, the larger 

the number of users that can be accommodated in a cell. 

5.2 CDMA Microcellular Radio Systems 

In order to be able to accommodate larger number of users, the microcellular 

concept is proposed [50] to increase the number of subscribers in a given area. 

On the other hand, the reduction of cell size will increase the probability that 

the distance between a subscriber and a base station is less than df (i.e., the 

propagation path loss approaches 2). Thus, this would increase the amount of 

interference to the adjacent cell. Therefore, the effect of cell size on the ACI in 

a CDMA system will be investigated. 

The following assumptions have been made in the analysis. 

• The propagation path loss for a mobile station away from the base station 

by ĉ  is 2 when d < dj and 4 when d > df. The path loss of a distance d be-

tween transmitter and receiver can be expressed by the following equation 

[28] 

2 0 1 o g i � � + p ’ f o r c ^ S d j 
PL � = 

I 40 ) + 20 + P, for d > df 
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where p = PL{do) is the path loss in decibels at the reference distance 

do = 1. 

Thus, the power received P^ at the base station for a mobile which is away 

from it by d is 

Pr 
A-Pt'd-\ for d<df 

A'Pt'd-^' d), for d>df 

where A is a constant and Pt is the transmitted power. 

(5.3) 

the Power control is done perfectly, i.e., the signal of every users arrive 

base station with equal power PR. 

Mobility is not considered. Once a mobile is connected to the base station, 

it will keep its position and transmit at its dedicated signal level. 

Mobiles are evenly distributed over the whole cell. Each cell is divided 

into two regions, i.e., the inner region with path loss equal to 2 and the 

outer region with path loss equal to 4. The probability that a mobile is 

located at (r, is given by 

/H，eM) 
< r < and 0 < ^ < 27r (巧 

) otherwise 

• The circular cell with the same area is used to approximate the hexagonal 

cell in the analysis. 

In the analysis, the adjacent cell interference of the reverse link is considered 

.link is generally accepted to be the limiting link of a CDMA cellular 
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Inter 备 rin 
cell 乂 , 

- . . : � � � Interfered 
丨丨"•••.�•���� Cell 

Figure 5.1: Interference from a mobile to the adjacent microcell 

radio system [51]. For simplicity, shadowing is not considered in this analysis. 

Nevertheless, shadowing effect can be included in the analysis by using numerical 

method, while the closed-form expression derived in chapter 3 will be used. 

Referring to figure 5.1, for a mobile at the coordinates (r, 6>), it transmits 

signal to its home base station at the power Pmt which is given by 

where PR is the constant 

The interference caus 

interfering cell will be 

/ M ) : 

Pr . — for r < df 
� P r . r � f o r r > df 

eived power level at the base station, 

to the adjacent cell which is A av 

(5.5) 

from 

Pmt 
# • d-广—[A- + —— 

！ interference for a mobile caused 

sOY 
(5.6) 

丨 the adjacent cell will be 
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( 5 . 7 ) 

( 5 . 8 ) 

3<9]2 TTRI 
Pnd) . 广 广 

十九 Jo + —2A.rcos6>]2 TTRI 

[ 广 广 ！：！ de 
TTRI [Jdf Jo [A- + — — 2 A r cos 6>P 

广 广 dy 
十 Jo Jo + —2A.rcos 即 

PR 

PA 

•严 27rr5(i)?+r2) 广/ lirdy 识 

U {Dj-r'f Jo {D^-v 
冗5(1 + 巧 卢冗3(1 +。 

¥ -dr 

J% a 
^ - + 4 

{i-k^y 
- ^kj + ki 

‘ ( 1 一的)2 

In (1 - k\ 

-41n ( H � M 
k? (1 - klY 

+ ln (1 

( 5 . 9 ) 

( 5 . 1 0 ) 

( 5 . 1 1 ) 

( 5 . 1 2 ) 

where kd 二鼓 and K 二 贵. 

When M mobiles are transmitting to the base station, the total interference 

from this cell becomes 

MPR' 
—4-6、2 + ¥—丄 

(1 一 N 

4 的 - 6 的 + 的 U n ( 
‘(1 —阶 ( 

人2) 

M 
(1 一幼2 

+ ln (1 

MPRURS) 

( 5 . 1 3 ) 

( 5 . 1 4 ) 
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where 'di{Rs) is the adjacent cell interference function, which is defined by 

[ - Q K + kt 

(1 - k'rY —豆 
In I 

M 
k? 

- 6kj + 
(1 — klY 

“1-的） 

The Carrier-to-interference Ratio of the 

station is given by 

+ ln丨 

-41n 

-kj) (5.15) 

from a mobile at the 

C PR (5.16) 
了 — （ M - + 

The maximum number of mobiles that can be accommodated in a cell pro-

vided that all of them attain the required minimum Carrier-to-interference ratio 

{ C / I U is 

{C/I)； 

. + E, W ) 
s/cell (5.17) 

5.3 Results and Discussions 

Figure 5.2 shows the change of the adjacent cell interference versus the radius R^ 

with df = 100 and 10 tiers of cells are considered. In the figure, as the radius of 

the cell increases from df, the adjacent cell interference decreases exponentially 

until reaching the limiting value (i.e., lim凡一⑴ 1 + Ei扎(凡 ) ) ,which corresponds 

to the value of ACI with path loss equals to 4. This shows that as the cell size 

5 beyond df, the interference will significantly decrease. From the result, 
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100 120 140 160 220 

Figure 5.2: Total adjacent cell interference (ACI) pei 
Rs with df 二 100 and 10 tier of cells are considered. 

3 the cell radius 

when designing a CDMA system, the amount of adjacent cell interference from 

the adjacent cells can be determined when each cell size is fixed. For the case 

when all the cells are irregular and not with the same sizes, the value of ACI 

from any cell can still be estimated by knowing the values of A , Rs and d f . 
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5.4 Conclusions 

The amount of adjacent cell interference versus the cell radius is found. In this 

chapter, the ACI decreases as the cell radius increases beyond the first Fresnel 

zone clearance. That means the number of users per cell will increase as the cell 

radius 
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Chapter 6 

Outage Probability Analysis of 

Imperfect Power Control 

In DS-CDMA cellular radio systems, power control is crucial to the system 

capacity. The more accurate the power controlled, the larger the number of 

users that can be accommodated in the system [52, 53]. Perfect power control 

is usually assumed in the analysis of the capacity of CDMA systems [42, 43, 

4, 54, 39]. Nevertheless, in reality, power cannot be controlled such that the 

received power at the base station is constant for all the time. There must be 

some fluctuation of the value. The effect of log-normal shadowing on the system 

capacity has been investigated. Under real situation, the signal received at the 

base station is not only affected by the long-term fading but the short-term 

fading, which would impose another constraint on the system capacity. In this 

chapter, the effect of short-term signal fading and imperfect power control on 

the outage probability will be studied. The corresponding system capacity will 

be obtained. 
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6.1 Fast Fading of Signal 

In this section, the effect of the short-term fading on the system capacity, when 

power control is not fast enough to combat the short-term fading will be inves-

tigated. The short-term signal fading is assumed to has a Rayleigh distribution. 

The long-term fading will not be considered in this chapter. Assuming the power 

control for combating the effect of propagation path loss is done perfectly, the 

received signal at the base station will be kept constant when the short-term 

signal fading is not included. Nevertheless, when the short-term fading effect is 

considered, the received signal of a particular user at the base station is 

= 頌 (6.1) 

where ^ is a random variable with probability distribution function F少(力)工 

F 湖 = 1 - (6.2) 

On the other hand, the other users at the same cell would transmit signal 

to the base station. Since in CDMA system, users occupy the same channel. 

；there are m users in each cell and they are transmitting to the base 

L simultaneously, the cochannel interference to the user would be 

h^ = 蓉 i v 屯， （6.3) 

二 PU (6-4) 

iThe derivation is shown : 
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where X is a random variable with the chi-square probability distribution func-

tion 2 

As a result, the Carrier-to-Interference ratio at the base station of the user 

2 二 巡 二 T (6.6) 

where T is a random variable with distribution 

Fr{v) 二 Pr{T < = P r { ^ < v} = < Xv} (6.7) 

(6.8) 
(6.9) 

(6.10) 
(6.11) 

厂 Pr {^ < H X 二 工} 二 咖 2 
Jo 

r 「 M 稱 fx ⑷d:c 
Jo Jo 

J：饥-2e-工 J 

Fri^ 
_ {v + 1)^ 

：probability density function : 

When adjacent cell interference is included in the analysis 

adjacent interference function derived in chapter 3，the Cjl will become 

2The superscript of the distribution function denotes that corresponds 
L exponentially distributed random variables. 

(6.12) 

the 
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C PR^ (6.13) 
I — PRX + PR Et.礼•足'+ ^iXi 

where X and X\ has probability distribution function and f P { X ) 

respectively. 

The distribution of Cjl can be solved by first finding the distribution of / / C . 

I X^TaMI--——= : 二 二 

C 屯 

The distribution of the random variable E； is [55] 

(6.14) 

F d i ) 

Pr 

r - ; 

> 

-2) ! 
dx\ 

dx' 

1)! 

. 1 ) ! 

+
 V

 

n 
where n is the number of adjacent cells considered. 

As a result, the distribution of the Cjl is then given by 

(6.15) 

(6.16) 

(6.17) 

糊 = 1 - F s � n 1 产-1 f j { (1 + ^iV 

In order to provide a satisfactory communication, an ou 

s than 1% is required, i.e., Pr{C/J < 0.032} < 0.01. Therefore 

(6.18) 
probability of 
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n 
+ 1 产—1 Li (1 + 

irn 
- l o g 0.99 

� " ^ < i o g [ n r = � ( i + A”)]< 

(6.19) 

(6.20) 

(6.21) 

where i9o = 1. 

When power control is not fast enough to combat the effect of the short-term 

Rayleigh power fluctuation, interleaving and coding should be served to reduce 

the effect of power variations. Otherwise, its effect will break the system down. 

In addition, the closed-loop power control algorithm used in IS-95 is designed to 

combat the short-term fading. The corresponding controlled power received at 

the base station is shown in figure 6.1. The effect of the ripple of the controlled 

power on the system capacity will be discussed in the following section. 

6.2 Imperfect Power Control in CDMA 

In this section, the effect of imperfect power control on the system capacity will 

be studied. Although the transmitted power is adjusted for a user according to 

the environment, the power received at the base station will not be constant for 

all the time. There is some ripple of the received power, which will affect the 

signal of other users. The power control done by a particular user is assumed to 

be perfect [54] while the other users' signals received at the base station is given 

by p只 + A, where A is a gaussian random variable with zero mean and standard 

deviation equals to a. Thus, the probability density function /A(A) is 
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Received Power 

Received Power at the base station 

-

Desired Average Received Power 

Distance 
Figure 6.1: The signal received at the base station when open-loop and closed-
loop power control algorithms are deployed 
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/A(A) = " T ^ e " ^ - o o < A < (6.22) 

The Cjl is then given by 

C PR 

T.7=i\PR + A,) + EILi 扎 + A,) ^ 

(m — 1)PR + Ap-i) + mP^ELi 礼 + ELi 久A^^) 
PR 

1)PR + MPN EIU 久 + ELI 礼八̂ )̂ 

PR 

IPR E L � 扎 + 5 1 0 礼 Ay 

( 6 . 2 3 ) 

( 6 . 2 4 ) 

( 6 . 2 5 ) 

(6.26) 

( 6 . 2 7 ) 
一 /o + / 

where tS— represents the summation of ‘ 

Since the summation of gaussian random variables is still ； 

variable, / is a gaussian random variable with zero mean and standard deviation 

a/ which is given by 

random 

cri (6.28) 

One may observe that the interference power can be negative in our model. 

Nevertheless, the probability that the interference power is negative tends to 

zero. In appendix B, the mean-to-standard deviation of the interference power 

have been derived. The probability of negative interference power tends to zero 

for values interested. As a result, the negative interference power does not need 

to be considered. 
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In order to provide an outage probability less than 0.01, the corresponding 

number of users that can be accommodated in the system is 

Pr 
/o + / 

< 0.032 \ 二 P r { / > 31.25 — /•} < (6.29) 

P r { / > 3 1 . 2 5 - / o } = r 
J 31 

<31.25 —/•� 

CTI 

y/^cri 
-巧 dii 

dt 

>o 西 
^31.25 - l o � 

� d t 

cri 

> 0.99 

where ^{z) 二 f ! � ^ e - ^ d u . By looking up the table of $(.) , 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

31.25 

3 1 . 2 5 - / q 
(^i 

- m E U ^ i 

舍V ^ m E L �街 

31.25 

2.33 

2.33 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

By the adjacent cell interference function 

.4321 and ELo 辨=1-0242 can be obtained, 

chapter 3, Yll 

31.25 二 2.33(j\/l.0242m + 1.4321m (6.39) 
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where a = ；^ is the normalized standard deviation, i.e., the deviation relative 

to the simal power. Thus, 

爪 — ( 4 3 . 6 4 2 2 + 2 .7111(7^) - AVL5 .0746 (^2 + 4 8 5 ： ^ … ^ Q ) 

An equation of m in terms of b is obtained. Including the seven and a half 

times capacity increase given by voice activity and sectorization, figure 6.2 shows 

the change of m versus a. The capacity of the system decreases significantly 

with respect to a. As a result, a small deviation of the power from the dedicated 

value would severely reduce the capacity of the system. 

For the specification of Qualcomm CDMA cellular radio system (IS-95) 3，an 

IS-95 channel occupies the same bandwidth of about 41 channels of the AMPS 

system and 123 channels of IS-54 Digital AMPS system. In order for the CDMA 

system provides a higher capacity than the other systems, from figure 6.2, a 

should not be higher than 0.8. Otherwise, the capacity will be lower than that 

of the other systems. 

6.3 Conclusions 

In this chapter, the effect of short term fading on the system outage proba-

bility have been studied. In the presence of short-term fading, the Carrier-to-

interference ratio Cjl varies significantly. As a result, the outage probability is 

high. Power control should be done fast enough to combat the effect of it. In the 

latter part, the effect of imperfect power control on the system capacity is stud-

ied. With the assumption that the received power at the base station derivates 
3The specifications of Qualcomm C D M A system will be discussed in chapter 8 
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Normalized Standard Deviation (Sigma/P—R) 

Figure 6.2: The system capacity (number of users per cell) versus the normalized 
standard deviation of the received power a. 
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Chapter 6 Outage Prohahility Analysis of Imperfect Power Control 

from the nominal power with a gaussian distribution, the system capacity in 

number of users per cell can be expressed in terms of the standard deviation of 

the received power relative to the absolute received power b at the base station. 

The capacity decreases significantly as a increases. As a result, the deviation 

of received power from the nominal one should be kept within 0.8. Otherwise, 

the system capacity will no longer be higher than that of FDMA and TDMA 

systems. High capacity will no longer be the merit of CDMA. 

87 



Chapter 

Conclusions 

In this thesis, the effect of adjacent cell interference (ACI) on the capacity of a 

code division multiple access (CDMA) cellular radio system have been investi-

gated. For the case of ideal circumstance, the adjacent cell interference function 

is derived. Closed-form solutions for the propagation exponent equals to 2 and 

4 are obtained. The amount of ACI from different number of tier of cells are 

studied. From the equation, ten tiers of cells should be considered for the adja-

cent cell interference. The value of ACI is 0.4321M where M is the 皿mber of 

users in a cell. 

When log-normal shadowing is considered, the ACI behaves differently from 

the ideal case. An equation for the ACI in terms of the variation of the signal in 

the presence of log-normal shadowing is obtained. The system capacity will be 

severely reduced. By considering the maximum nominal power constraint, i.e., 

the power received at the mobile from its home base is the strongest, an integral 

equation of the ACI is obtained. Unfortunately, the equation is too complicated 

to be solved. The amount of ACI for that is found by numerical intergration. 
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Chapter 7 Conclusions 

Results show that the ACI would behave much better than that without the 

constraint. In typical propagation environment, measurement shows that the 

standard deviation of the signal local mean in the presence of shadowing is 

about 8. For this value, the corresponding ACI with standard deviation equals 

to 8 would be much higher than that without fading, resulting to significant 

reduction of system capacity. 

In microcellular radio system, the propagation characteristics would be quite 

different from what in macrocellular systems. The line-of-sight (LOS) two-slope 

regression model is used for characterizing the signal propagation in microcel-

lular radio systems. With the model, a closed-form solution of ACI in terms of 

the radius of the cell is obtained. The formula can be used to determine the 

number of users that can be accommodated in a cell given that the size of each 

cell is fixed. As far as this thesis is concerned, no similar analytical result is 

obtained in other literature. By using the result in this part, the planning of a 

CDMA microcellular radio system would be much simplified. System capacity 

can be estimated by substituting the corresponding values into the closed form 

solution obtained. 

The effect of imperfect power control is also investigated. The signal variation 

is modeled as a gaussian random variable with zero mean and standard deviation 

a. An equation to describe the variation of BER with respect to the variance of 

the signal relative to the absolute signal power has been obtained. 

The result obtained in this thesis can be applied to cellular radio system 

planning. By the simple form of ACI, the capacity of a cell can be estimated 

easily. For deploying a new CDMA cellular radio system, the estimation of the 

amount of interference from the surrounding cells would be crucial to the normal 

89 



Chapter 1 Conclusions 

operation of a cell. When the interference from an adjacent cell is too high, the 

interference from that cell or the number of users that will be accommodated in 

the interfered cell should be reduced. 
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Chapter 8 

Examples of CDMA Cellular 

Radio Systems 

8.1 Qualcomm CDMA system 

Qualcomm Incorporated in the USA is developing a CDMA cellular radio sys-

tem. The specifications are as follows: 

1. It operates at the top of the advanced mobile phone system (AMPS) band. 

2. The bandwidth required for each forward- and reverse-link is 1.23 MHz, 

equivalent to 41 AMPS channels (41 x 30 kHz 二 1.23MHz). 

3. It operates in the 1.7 to 1.8 GHz band. 

4. Quadrature Phase Shift Keying (QPSK) is used for modulating signal. 

5. Universal frequency reuse and soft handofF are deployed. 
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The forward-link and reverse-link specifications are similar. In the following, 

the specifications of the forward-link are stated, followed by the specifications 

of the reverse-link. 

8AA Forward-link 

1. There is one pilot channel, one synchronization channel, and 62 other 

channels. All of the 62 channels can used for traffic, but up to 7 can be 

used for paging. 

2. All the channels are encoded with the 64 Walsh codes of length 64. The 

all-one code is for the pilot, the alternating polarity is used for the syn-

chronization channel, while the paging and traffic channels use the other 

62 codes. 

3. The synchronization channel data at 1200 bps is convolutionally encoded 

to 2400 bps, repeated to 4800 bps and interleaved over the period of the 

pilot PRES. 

4. The speech is encoded by Qualcomm Codebook Excited Linear Predictive 

(QCELP) speech coding [56] at the rates of 1.2, 2.4’ 4.8 or 9.6 kbps， 

depending on speaker activity. 

5. The frame duration is fixed at 20 ms, the number of bits per frame varies 

according to the traffic rate. 

6. Half rate convolutional encoding with a constraint length of 9 doubles the 

traffic rate to give rate from 2.4 to 19.2 k symbols/s. To ens 

always 19.2 k symbols/s, data repetition is appropriately used 
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speech rates. Interleaving is performed over 20 ms, and the higher the 

data repetition used, the lower is the transmission power of the symbols. 

7. A long code of — i ( = 4.4 x IO12) is generated containing the user's 

electronic serial number embedded in the mobile stations long code mask. 

8. The scrambled data is multiplexed with the power control information 

which essentially steals bits from the scrambled data. 

9. The 19.2 k symbols/s signal is spread to 1.2288 Mchip/s by the pilot 

quadrature PRBS signals. 

10. The pilot signal provides the mobile units with system information and 

instructions, in addition to acknowledgement messages following access 

requests made on the mobile units' access channels. 

11. The pilot signals from all the base stations use the same PRBS, but each 

BS is characterized by a unique time offset of its PRBS. These offsets are 

increments of 64 chips providing 511 unique offsets relative to the zero 

8.1.2 Reverse-link 

In general, the speech data of a mobile station is encoded and processed very 

similar to the forward-link data. The difference is stated as follows: 

1. Speech is convolutionally coded at a rate 1/3 code of constraint length 9� 

2. The Walsh coded signals at a mobile station are modulated by the long 

242 — 1 PRBS with a specific time offset that is unique to a particular 
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mobile station, enabling the base station to distinguish signals arriving 

from different mobile stations. 

3. The receiver at the base station has a tracking receiver and four receivers 

that each locks on to a significant path in the channel impulse response. 

The received signal is correlated with the 64 Walsh codes in each of the 

four receiver. The outputs of the four correlation receivers are combined 

and the correlator number having the maximum output selected to identify 

the recovered 6-bit symbol. 

For more detail description of the Qualcomm CDMA system, please refer to 

[18]. 
The ways of controlling the transmission power of the Qualcomm CDMA 

system in reverse- and forward-link are different [57]. 

8.1.3 Reverse-Link Open-Loop Power Control 

The open-loop power control in the reverse-link is mainly for combating the 

power fluctuation due to long-term fading or shadowing. Based on the strength 

of the pilot signal from the base station, each mobile units attempts to esti-

mate the path loss from cell-site to the mobile unit. The reverse link path loss 

estimated at the mobile is used by the mobile to adjust its own transmitter 

power. The stronger the received signal, the lower will be the mobile's trans-

mitter power. Reception of a strong signal from the cell-site or has an unusually 

good path to the cell-site from its mobile transmission. The 

of mobile transmit power must generally be limited to the 

closed-loop power control from the cell-site can reduce the power. 

94 



Chapter 8 Examples of CDMA Cellular Radio Systems 

8.1.4 Reverse-Link Closed-Loop Power Control 

The closed-loop power control in the reverse-link is mainly for combating the 

power fluctuation due to short-term fading. The path loss estimation used by 

open-loop power control cannot combat the effect of fast fading because the 

45 MHz frequency separation greatly exceeds the coherence bandwidth of the 

channel. This means that a mobile unit cannot measure the path loss of a 

received signal and assume that the exactly the same path loss is present on 

its transmitted signal, particularly when the mobile is stationary. The above 

measurement technique provides the correct transmit power on the average, 

but additional provisions must be made for the effects of independent Rayleigh 

fading. 

To account for the independence of the Rayleigh fading on the forward and 

the reverse link, each cell-site demodulator measures the received signal strength 

from each mobile. The measured signal strength is compared to the desired 

signal strength for that mobile and a power adjustment command is sent to 

the mobile in the outbound channel addressed to the mobile unit. This power 

adjustment command is combined with the mobiles' open loop estimate to obtain 

the final value of the mobile's transmit radiated power. 

The cell-site power adjustment command signals the mobile unit to increase 

or to decrease the mobile power by a predetermined amount, nominally about 

0.5-1 dB. The power adjustment command is transmitted at a relatively high 

rate，on the order of one command every millisecond, which is adequate to track 

fading processes for vehicle speeds up to 25-100 miles per hour for 850 MHz 

band mobile communications. 
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8.1.5 Forward-Link Power Control 

The primary reason for providing forward-link power control is to accommodate 

the fact that in certain locations, the link from cell-site to mobile may be un-

usually disadvantaged. Unless the power being transmitted to this mobile is 

increased, the quality may become unacceptable. To achieve these objectives, 

the design includes a signal-to-interference measurement capability within the 

mobile receiver. This measurement is performed by comparing the desired sig-

nal power to the total interference and noise power. If the measured ratio is 

less than a predetermined value the mobile transmits a request for additional 

power to the cell-site. If the ratio exceeds the predetermined value, the mobile 

transmits a request for a reduction in power. 

8.2 Interdigital Broadband CDMA System 

The Interdigital Broadband CDMA system is not as mature as the Qualcomm 

CDMA system. The transmission frequency is proposed to be 800 MHz or 

2 GHZ. The signal is spread from an information bandwidth of 32 kHz to 

the spread spectrum bandwidth of 48 MHz. It is proposed to overlay on the 

spectrum, where other radio services are progressing, i.e., it shares with the 

existing cellular or paging spectrum. Notch filters are deployed for reducing the 

interference to the narrowband signals. The system is still at the preliminary 

stage and further specifications are going to be released. 
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Appendix A 

Derivation of the PDF of the 

fast fading signal power 

F 捕 = P r { P = P r { y < = Pr{A < y ^ } (A.l ) 

r V ^ A / (A.2) 
2干 

i ) (A.3) 

The result shows that when the distribution of the received signal envelope is 

Rayleigh, the short term power fluctuation of it will be exponentially distributed. 

If 少 is normalized, i.e., the received power is assumed to be given by PR頌, 

then the pdf becomes 

iT̂ 屯(利二 l _ e x p ( —利 （A.4) 
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Appendix B 

Derivation of the 

Mean-to-standard deviation 

ratio 

Since the interference power should not be less than zero, in the range of values 

interested, the probability that I < 0 tends to zero. The mean and variance of 

the interference power are given by 

= = (B. l ) 

Var{Io + /) 二 E[{Io + /)2] — I'o = I'o + E[P] — J�2 = E[P] 

Therefore, the mean-to-standar 

i=o 
(B.2) 
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Appendix B Derivation of the Mean-to-standard 

I = ( B . 3 ) 
a — E L o 以？ 

For values of interested, m > 40, 0 < o" < 2, ELo 久 二 1-4321 and ELo 二 

1.0242, it turns out that the ratio is greater than 3, i.e., the probability that the 

interference power less than zero tends to zero. As a result, the probability that 

the interference power is less than zero does not need to be considered. 
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Appendix C 

Acronyms 

ACI Adjacent Cell Interference 

AMPS Advanced Mobile Phone System 

AWGN Additive White Gaussian Noise 

BER Bit Error Rate 

BPSK Binary Phase Shift Keying 

CCIR Comite Consultatif International de Radio 

(International Radio Consultative Committee) 

CIR Carrier-to-Interference Ratio 

CDMA Code Division Multiple Access 

DS Direct Sequence 

FDMA Frequency Division Multiple Access 

FH Frequency Hopping 

FPLMTS Future Public Land Mobile Telecommunication Systems 

GSM Global System for Mobile Communications 

i.i.d. Independent and Identically Distributed 
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Appendix C Acronyms 

ISI 

IS 

ITU-R 

LOS 

MAI 

PABX 

PCL 

PCS 

pdf 

QCELP 

QPSK 

SUA 

TAGS 

T D M A 

TH 

WARC 

Inter-Symbol Interference 

Interim Standard 

International Telecommunication Union - Radio-communication 

Line-of-Sight 

Multiple Access Interference 

Private Automatic Branch Exchange 

Power Control Law 

Personal Communication Services 

Probability Density Function 

Probability Distribution Function 

Pseudo Random Bit Sequence 

Qualcomm Codebook Excited Linear Predictive 

Quadrature Phase Shift Keying 

Stepwise Removal Algorithm 

Total Access Communications System 

Time Division Multiple Access 

Time Hopping 

World Administrative Radio Conference 
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