
Approximate Content Match of

Multimedia Data with

Natural Language Queries

Kit-pui Wong

A Thesis Submitted to

The Graduate School of

The Chinese University of Hong Kong

in Part ia l Fulfi l lment of the Requirements

for the Degree of

Master of Philosophy in

Systems Engineering and Engineering Management

V ••

J u n e 1995

：•

/

 .
二

象

r

 臺
羣
.
J

 ..t

 E

f
t
r
 i

 s
 a

 H

 i
.
-
l
i
r
i
a
i
r
i
T
W
I
t
•
醫
霊
I
g
M
i
m
i

M
l

M
i
i
i
i

M
i

M
l
l
i
l
l

{

:
.

 /4
.

 /

 j
 尹
身

,

 .F
f

 /
V

f
 /

.

 、

 1

 .

 f

-

D

^
^
f
i
e
h
^
^
c
,
.
.
.
.
.

CONTENTS

ACKNOWLEDGMENT 4

ABSTRACT 6

KEYWORDS 7

Chapter 1 INTRODUCTION 9

Chapter 2 APPROACH 14

2.1 Challenges 15

2.2 Knowledge Representation 16

2.3 Proposed Information Model 17

2.4 Restricted Language Set 20

Chapter 3 THEORY 26

3.1 Features 26

3.1.1 Superficial Details 30

3.1.2 Hidden Details 31

3.2 Matching Process 36

3.2.1 Inexact Match 37

3.2.2 An Illustration 38

3.2.2.1 Stage 1 - Query Parsing 39

3.2.2.2 Stage 2 - Gross Filtering 41

3.2.2.3 Stage 3 - Fine Scoring 42

3.3 Extending Knowledge 46

3.3.1 Attributes with Intermediate Closeness 47

3.3.2 Comparing Different Entities 48

3.4 Putting Concepts to Work 50

Chapter 4 IMPLEMENTATION 52

4.1 Overall Structure 53

• CONTENTS • 2"

4.2 Choosing NL Parser 55

4.3 Ambiguity 56

4.4 Storing Knowledge 59

4.4.1 Type Hierarchy 60

4.4.1.1 Node Name 61

4.4.1.2 Node Identity 61

4.4.1.3 Operations 68

4.4.1.3.1 Direct Edit 68

4.4.1.3.2 Interactive Edit 68

4.4.2 Implicit Features 71

4.4.3 Database of Captions 72

4.4.4 Explicit Features 73

4.4.5 Transformation Map 74

Chapter 5 ILLUSTRATION 78

5.1 Gloss Tags 78

5.2 Parsing 81

5.2.1 Resolving Nouns and Verbs 81

5.2.2 Resolving Adjectives and Adverbs 84

5.2.3 Normalizing Features 89

5.2.4 Resolving Prepositions 90

5.3 Matching 93

5.3.1 Gross Filtering 94

5.3.2 Fine Scoring 96

Chapter 6 DISCUSSION 101

6.1 Performance Measures 101

6.1.1 General Parameters 101

6.1.2 Experiments 103

6.1.2.1 Inexact Matching Behaviour 103

6.1.2.2 Exact Matching Behaviour 106

6.2 Difficulties 108

6.3 Possible Improvement 110

6.4 Conclusion 112

• CONTENTS • 2"

REFERENCES HZ

APPENDICES 121

Appendix A Notation 121

Appendix B Glossary 123

Appendix C Proposed Feature Slots and Value 126

Appendix D Sample Captions and Queries 128

Appendix E Manual Pages 130

Appendix F Directory Structure 136

Appendix G Imported Toolboxes 137

Appendix H Program Listing 140

• CONTENTS • 2"

ACKNOWLEDGMENT

I owe my immeasurable gratitude to my thesis supervisor. Prof. Vincent Lum.

He has been paying his great patience to guide me all the way from the very

beginning of the project. He gives me numerous hints in solving theoretical and

technical problems. Besides, his vision and experience sharpen my view in the

attitude and techniques of doing research. However, for all deficiencies that

remained, it is myself who should solely be responsible.

In the project, I made contacts with many leading researchers in the field round

the world, including Prof. H. Thompson, Dr. M.L. Mauldin, Dr. K. Dahlgren

and Dr. M.T. Tengku. They provided me various degree of advice, and gave me

some papers, theses and software tools.

My sincere gratitude goes to Prof. N.C. Rowe and Dr. E J . Guglielmo of the

Navel Postgraduate School, Monterey. They shared with me their experience in

doing research in intelligent information retrieval. Their MARIE project was a

good reference for me. Prof. Rowe even sent me one of his papers many months

before it was published.

A special thanks should be conveyed to Mr. E.L. Antworth of the Summer

Institute of Linguistics, Dallas. He gave me a lot of advice and suggestions on

morphological parsing from his expertise in computational linguistics. The most

important help I received was a copy of his parser PC-KIMMO, which made this

project successful.

Many participants at the InfoScience'93 Conference in Korea had given me

stimulating comments on the project. Those precious ideas were absorbed in the

later refinement of the project. Further, I greatly appreciated the constructive

comments from the anonymous referees of our paper [Lum93] as they gave

useful ideas for improvements.

I would like to thank Dr. K. F. Wong. In the final stage of my thesis, he gave me

many alternative views which I had overlooked.

• ACKNOWLEDGMENT • T

In the Department of Systems Engineering and Engineering Management at the

Chinese University of Hong Kong, the administrative and technical staff gave

me various assistance over the years. They helped me very much, directly or

indirectly, in the progress of the project.

Some friends of mine outside this field had offered their helpful hands. Candy

Leung prepared the excellent hand-drawing of the "media data" examples in

Figures 2.3, 3.7, and 3.8. These artworks are good examples and need much

artistic talent for their creation. Joanna Cheng frequently raised her amazing

ideas how a humanized, natural and friendly user interface and dialogues

should appear. I am deeply grateful for their contributions.

Further, I am thankful to all the persons who have helped me in the course of

the project, including those whose names I forget to put here.

Last but not least, my greatest debt is to my mother who has been providing me

infinite love and care for all the years since my arrival to the world. In finishing

the final stage of this thesis, I do not have much time to be with her, even on

Mother's Day. Herewith I present my regret and the warmest thankfulness to

her.

Kit-pui Wong

June 1995

• ACKNOWLEDGMENT • 5

ABSTRACT

Automatic machine analysis of the contents of multimedia data is not yet

realistic. The retrieval of multimedia objects is therefore difficult. In this thesis,

we suggest that data contents in a multi-media database system are best

described by natural language captions. The captions are restricted to sentences

of simple structure containing three semantic groups, namely the agent group,

the action group and the patient group. Lower level details in ordinary natural

language are less significant and they will be ignored in our assumptions. The

restriction rules are discussed in the thesis and we shall show that such a

restricted natural language is sufficient for retrieval purpose. The project is

given the name ARMON, a partial acronym taken from ''Approximate Retrieval

of Multimedia Objects by Natural Language Captions".

The heads in the semantic groups play the major role in figuring out the

meaning of the whole sentence. Each of the heads can be characterized by a

large set of intrinsic properties, named as the implicit features of the group.

Entities in the universe of discourse conceptually establish hierarchies with

respect to their implicit features and are also depicted by a set called explicit

features which are addressed in the context of the captions. Queries, issued by

users and parsed into semantic groups in the same way, will be matched against

the stored captions. During the matching process, attempts to match with the

nearby nodes in the hierarchy are performed when exact match fails.

An algorithm will calculate the matching scores between corresponding groups

in caption candidates and the query. An integrated score of matching between a

query and a particular caption candidate is determined according to the

weighted score of each group. A list of captions will be eventually returned

according to a user-given threshold.

The conceptual model has been implemented into a prototype, on which some

experiments have been done. The behaviours and results of the working model

will be discussed in the final chapter.

ABSTRACT • 6

Keywords

Computational Linguistics, Information Retrieval, Multimedia, Natural

Language Processing

I

命 ABSTRACT • 7

C 圓 F T E K 1

i m o E c T M

Chapter 1 INTRODUCTION

Where is the life we have lost in living ？
Where is the wisdom we have lost in knowledge ？

Where is the knowledge we have lost in information ？

Thomas Stearns Eliot (1888-1965)
TheRockildM) Ft. 1

Due to the advance in hardware technology, storage and retrieval of multimedia

(or simply media) data become available at diminishing cost. Multimedia objects

may be stored in various devices, especially those optical media such as CD-

ROMs, which are supplied inexpensively at high capacity. The media objects

may be digitized and saved in computer storage. A photographic image can be

scanned into a standard or proprietary image format and stored as a binary

fragment of a master database, in some well-accepted formats like GIF, JPEG,

PhotoCD and TIFF \ An instance of application is the storage of records

including digitized photographs of staff in the personnel record of an

organization. A movie segment can be stored in a widely accepted format, such

as MPEG 2.

Alternatively, it is possible to store an object with an appropriate analog device,

which is under the direct or indirect control of the Multimedia Database System

(MDBMS). For instance, movies can also be stored in an ordinary video cassette

which are played back with VCRs controlled by the MDBMS.

For simplicity but without losing generality, digitized images will serve as

examples of "imaginary" media objects in this research. In computerized media

data, each object consists of at least, stated or not, two catagories of data

elements, namely the registration data and the raw data.

The registration data contains details needed for the right interpretation of what

the raw data is, e.g. encoding method, whether it is a digitized audio sound

1 Several names among the most common bitmap formats across various platforms
2 A well-accepted digital movie format which contributes to the Video-CD standard

• [NTRODVCTION • “ T

track, image bitmap, or something else. The raw data is the binary bit stream

representing the media object itself. Data of this kind is normally compressed or

encoded in some way for storage space saving.

Up to the present moment, the software for manipulating multimedia database

has not yet kept pace with the hardware technology. For instance, a digitized

image can be simply stored in inexpensive mass storage but the retrieval is not

yet efficient. An ideal way to retrieve media objects is for the system to

automatically analyze the media data themselves against the queries for close

match. However, there is not yet a successful image analyzer that can achieve

this. We shall discuss further about this in the next chapter.

Another practical solution is the reference to the paths/files which store the

media data. In commonly used file systems such as those in MS-DOS or Unix,

we can retrieve media data according to their paths, date of creation and even

file size. However, this way is usually not satisfactory. In a multimedia database

system, users are frequently interested to retrieve a media object not only by the

details like the date of creation, the place of origin, and the format of the bitmap

that may be given along with the multimedia data, but also by the content of the

data itself.

Consider, for example, that a professor in zoology is preparing a seminar in

which he is going to illustrate the habitat of whales. He attempts to find some

pictures of interests to his audience, and he probably does not care when the

pictures are created and how large their file size are. An ordinary multimedia

retrieval system is not powerful enough to satisfy the content retrieval of this

professor in zoology. Not likely does he remember exactly which files in the

system contain these pictures. It is not likely that the professor wants to

remember the filespec and path of the media data. Instead, he probably strongly

prefers to state the description in a natural language as he does with people.

Our goal is to develop a technique for media data retrieval in a multimedia

database system which interacts with its user in a more friendly interface. For

instance, we want to let that zoology professor obtain the material by requesting

through the interface what he actually wants, as natural as "a huge whale in an

命 INTRODUCTION • lO"

ocean". If there is no such an exact match. The proposed system should

recognize something else which is close enough to the request.

We suggest that media data are to be enhanced with natural language

descriptions in caption form to depict the content of the data. We then match the

media data contents against the user's request, also in natural language form. In

this manner the problem of media data content search is transformed into a

natural language processing problem and we can apply research done in natural

language for our solution.

In addition to two catagories of mandatory data elements described above, i.e.

the registration and raw data, the third data element is proposed to be attached

to each media object. It is the content descriptor for the media object. The

formulation and retrieval of such a kind of content description are the goal of

our project. The rationale is going to be discussed in the next chapter. The

project is named ARMON to reflect its objective, "Approximate Retrieval of

Multimedia Objects by Natural Language Captions".

In the rest of the thesis, we shall start off with a discussion of some background

work related to our research. We shall then present our model and approach of

breaking up a content description into small groups and derive the essentials of

each group for the system's use. Through examples we shall describe how the

derivation is achieved. We shall discuss our proposal for matching media data

contents against the user query in a way similar to a person attempting to search

the contents. Following that we shall present our approach to refine the process

with the use of a knowledge base defined by users of the system.

Our work will be presented in the following chapters named Approach, Theory,

Implementation, Illustration, and Discussion. The chapters Approach and

Theory are hardware and software independent. In these chapters, neither

particular software nor hardware will be discussed. Reader need not have

knowledge about any specific operating system or specific programming

language. For those who are only interested in the rationales and design

concepts of ARMON, the chapters Implementation and Illustrations can be

skipped.

INTRODUCTION ^ I T

For those who are interested to know more about the implementation details

such as the data structure of the caption database, the parsing mechanism and

how they are related to a real life system, the chapters Implementation and

Illustration are useful. These are also references provided for those who want to

perform further development based on ARMON.

Following those is the last chapter. Discussion, in which some of our findings,

difficulties and potential improvements are presented. Finally, there are the

Appendices, in which supplementary information such as the directory

structure, manual pages for users, glossary, some details of imported modules,

and some examples of captions and queries will be given.

命 INTRODIICTION 命 12"

C I M F T E 膝 2
一 S M o Z n

Chapter 2 APPROACH

Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt
(The limits of my language mean the limits of my world)

Ludwig Wittgenstein (1889-1951)
TractatusLogico-Philosophicus {I'dll) p. 148

In a multimedia database management system, the data probably comes in

various forms like static graphical image, audio signal and video signal. In

addition to the ordinary alphanumeric data, one may expect that the users of

such a system will sometimes request the search of the media data by their

contents. As automatic search of contents in media data like image is beyond the

capability in today's computer systems, we must find alternative ways to

accomplish this task. In some previous works [Holt90, Lum90], a proposal of

attaching natural language descriptions to the media data was suggested. When

a user query, also given in natural language form, to retrieve the media data by

contents is received, the system will match it against all the content descriptions

in the database. The search process has thus been transformed into a natural

language processing (NLP) domain in which research work has been conducted

for a number of years.

Registration Data

Description

Raw Data (or their pointers)

Figure 2.1 A Logical Block of Media Object

Figure 2.1 shows a simple logical block of media object. "Logical" here means

that the data elements are logically inter-related but not necessarily located

physically together. Description is the element which will be the focus of our

NL-based retrieval of media object. Although a lot of NLP integration on

• APPROAGB 命 r r

information retrieval has been attempted, today most (if not all) practically used

systems are still keyword-based [Smea90, Maul89]. That is, the matching of a

piece of text is totally based on the lexical matching of selected keywords within

that document, in contrast to the collective semantic meaning in a natural

language retrieval system. This approach is oversimplified and is rarely found

fully satisfactory.

2.1 一
While it is appealing to apply natural language processing techniques for media

data content retrieval, one will quickly discover that there are numerous

unsolved problems in natural language processing. For example, while

researchers have been able to construct parsers for sentences, understanding

their meanings and semantics is still very much in an early stage of its

development. Researchers encounter difficulties in finding methods for a

computer system in recognizing the different styles of describing the same thing

in natural language.

In the past two decades, much research effort had been devoted to natural

language information retrieval but result is still far from maturity. Many

researchers became disappointed. Smeaton had put his comments as follows

[Smea90]:

In the 1960s , automatic natural language processing (NLP)
techniques were seen as quite a desirable computing technique to
include into overall information retrieval, but the successful
integration of automatic language into information retrieval did not
prove to be as easy as was initially hoped，and the idea of integration
was soon dropped. This happened because the complexity of natural
language texts in general, were grossly underestimated.

Fortunately, unlike the practice in natural language understanding or normal

database applications like a bank's account management, a user who requests a

retrieval by content in the media data does not really need exact matches, but

something that is close to his interests, as depicted by a query. We shall assume

that this is the case. Our approach is to define a way that approximates how a

person may do in similar circumstances.

• APPROACB • “ 17"

Further, the retrieval of captions for multimedia data is somewhat different from

the retrieval of information from full texts. The latter usually contains a great

variation of syntax and semantics. For example, metaphors like "Time flies like

an arrow" and "I saw a man on the hill with a telescope" [Seo89], are typical

ambiguous sentences in free text. In restricted structures and domains, similar

phrases will be avoided. For the purpose of retrieving multimedia data in our

situation, the natural language expressions should be more consistent. We

propose to describe the contents with captions in stylized, restricted form of

natural language. Although captions frequently occur as phrase, we assume

them to be complete sentences, with Subject, Verb and Object (SVO). This

structure is the general grammatical structure we allow for captions. Without

loss of generality, for illustration process, we shall assume each caption to be a

single sentence.

2.2 Knowledge Representation

We aim to build a model that allows us to represent information at different

levels of constructs like the explanation of molecules being composed of atoms

which are, in turn, composed of electrons, protons and neutrons. Such an

approach in knowledge representation is sometimes called the structural

primitives approach [DreySl], and is used in other streams of science for

explaining complicated and complex phenomena with simpler concepts.

In the world of cognition, one can recognize a complex object without knowing

much inside details, or recognize the components without knowing the complex

object. In either case, it is essential to find some ways to represent knowledge

that allow us to process information in a top down or bottom up manner. At this

time, there is neither universal set of primitives nor levels of concepts having

been defined for constructing knowledge applicable all over the world. It is

more practical to build primitives for a definite domain. We are going to

propose one way that is similar to the way people think and that we believe is

broad enough to represent complicated concepts in a selected domain of

application. In the coming demonstrations in ARMON, the habitat of animals

will be used as the domain of application.

• APPROACB • “ 17"

Representing knowledge in a logical form is an essential ingredient in the

retrieval of information. Semantic nets, frames, and first order predicates are the

most common methods. While these methods can be used to represent

knowledge, they are at a lower level of representation for our purpose. We want

to Start at a higher level concept without much concern on the low level details

at this time. We use the term "low lever here to point out the involvement of

much inside details, and use the term "high lever for the involvement of less in-

depth details. The convention is similar to the way used to distinguish low level

programming from high level programming.

With examples in our domain, "the horse is eating grass" requires high level

representation only. "The large horse is eating green grass" requires a bit lower

level details. "The big, brown horse by the tree beside the river is hungrily

eat ing the green long g r a s s " r e q u i r e s much l o w e r leve l d e t a i l s for

representation.

2-3 Proposed Information Model

We attempt to extract fundamental knowledge from higher level concepts. As

stated before, expressions in natural language are frequently highly complex. A

lot of researches have been conducted in an attempt to decompose complex

natural language statements into simpler components. Fillmore [Fill68]

generalized the components of NL expressions as thematic roles. Some typical

instances of thematic roles are Agent, Object, Beneficiary, Location, Time,

Instrument, Manner, etc. [Wend91]. All sorts of complicated NL statements are

decomposed into primitives which are subsequently filled in these thematic

roles. The size of the set of valid thematic roles is highly dependent on the

domain to which they apply. We shall simplify these approaches for the

construction of our captions. We borrow similar concepts for our model;

thematic roles are restricted to agent, action and patient. They are also

collectively known as semantic groups in our model.

As mentioned above, for the purpose of media data description, the captions can

be restricted with grammatical constraints without substantial loss of generality.

Rules are established to transform each NL caption into three semantic groups,

• APPROACB • “ 17"

namely the agent group, the action group and the patient group. Such a

‘ sequence is referred to as the AAP in the following context. In ordinary cases,

the agent group corresponds to the subject part of the sentence and its

associated phrases and descriptions, the action group corresponds to the verb

part likewise, and the patient group corresponds to the object part as well.

Semantic group information on the captions, along with their roles in the

sentence (namely which semantic group) will be stored in the database for

searching. For our purpose, discourse relations which are analyzed in a lot of

Natural Language Understanding (NLU) systems and Natural Language

Generation (NLG) systems, (e.g. [Dali91] and [Mann89]) will not be focused

here.
i

With a set of BNF-like notations, the logical structures representing queries and

captions in our approach are simplified as Figure 2.2.

caption ::= capid • sentence

query ::= sentence

sentence ::= { agent [expfeaj , action [expfea^J,

patient [expfea^J)

expfea^ ::= attr^,, atti;�，……，attrx̂
attfy ：：= sloty: valy

capid ::= <numeric_string>

agent ::.= � s t r i n g �

action ::== <string>

patient ::= <string>

slot ::= <string>

val ::= <string>

Figure 2.2 The Semantic Structure of Captions and Queries

Here is a simple example, "a large cow is eating green grass". The logical

primitives of the sentence are stated as follows.

SENTENCE = {cow[size:large], eat[], grass [colour: green]}

命 AFPROACB • 18"

As mentioned before, it is more realistic to confine the application within a

definite domain. In our project ARMON, the domain of knowledge is set to the

world of living organisms. For illustration, imagine now that there is a media

datum with a corresponding caption as shown in Figure 2.3.

• 一 -- 二 •二CzlH^
. - — 一 — —

The big, brown horse standing by the tree beside the river is
hungrily eating the green grass that has grown tall from the

abundant rain in the past months.

Figure 2.3 An Example of Media Data

It is notable that the caption can be described with much more details which are

not observable from the media data directly. For instance, nobody can tell from

the picture that there have been abundant rain in the past months. Another

advantage of this caption description approach is obvious, the attached caption

is able to describe "invisible" information for a particular media object. Of

course, the description author is encouraged to write only essential information

in the captions. Low level details should be avoided.

Such a complex sentence in our example is partitioned into three semantic

groups:

i) Agent the big, brown horse standing by the tree beside the

river

ii) Action is hungrily eating

iii) Patient the green grass that has grown tall from the

命 APPROACH • 19"

abundant rain in the past months

Each group contains a main item, known as head of the group. This is the most

essential part the group. In the above example, horse, eat and grass are the heads

I of the agent group, action group and the patient group respectively. In the rest

of the thesis, we sometimes use, in short, the terms "semantic head" or

"semantic group" to stand for "head of semantic group".

With this simple picture, we can illustrate the difficulties of image analysis

briefed in the previous chapter. Nobody would likely disagree that the visible

information of this picture is simple enough for human being to understand,

even for a kid just learning to speak.

On the other hand, it is difficult for any existing computer image analysis

algorithm to deduce a simple message like "the cow beside the tree is eating

grass". There are horse, grass and tree in the picture. Even if an intelligent image

analyzer can recognize these components, it has difficulty to associate these

things correctly. As in the 2-dimensional picture, a machine analyzer may find a

horse which is located on the right side of tree. It cannot say whether the horse

is close to the tree in the situation that objects in 3-dimensional space is

displayed on a 2-dimensional material. Even if two entities are touching each

other on a 2-dimensional display, it is not necessary that these two objects are

close in the original 3-dimensional space.

This above arguments serve to re-emphasize that a caption is useful (if not

necessary) for the purpose of retrieving multimedia objects.

2.4 Restricted Language Set

As mentioned somewhere before, the "free style" natural language is not

encouraged for caption description in ARMON. We would apply some

restrictions on the language set for building up the sentences in captions and

queries. We borrow a classical example to show the necessity of restrictions for

minimizing ambiguity [Hist87].

命 AFPROAGB • ^

Nadia saw the man in the park with the telescope.

There are apparently several possible explanations to this short sentence.

� Nadia used the telescope to see the man who located in the park.

(ii) Nadia saw a man holding a telescope. The man was in the park.

(iii) Nadia stayed in the park and saw the man through the telescope.

(iv) Nadia saw the man m a park. The park had a telescope installed.

It is quite "natural" for somebody to associate one of the above sentences in

daily used English. Hirst argued that some additional rules should be imposed

to reduce the unnecessary ambiguity [Hist87]. A prepositional phrase should be

attached (placed closely) to the item being described. According to this rule, the

sample sentence "Nadia saw the man in the park with the telescope" probably

refers to explanation (iv) above. By alternating the position of the questionable

prepositional phrases, the sentences get the explanations from (i) to (iii)

probably look like:

� Nadia saw, with the telescope, the man in the park.

(ii) Nadia saw the man with a telescope in the park.

(iii) Nadia in the park saw with the telescope the man.

Although it is possible that these sentences can still have some other meanings,

the ambiguity has been greatly reduced. We agree, for ARMON at least, that the

same restrictions should be applied to the grammar used in sentences for

describing captions and queries although ambiguities do not always exist.

Ambiguity occurs in the above example because the action "see" does not

impose and spatial restriction on agent and patient. Other actions may be

different from "see"; some of them may impose restriction on the relationship

between agent and patient. The action "eat" is an example that have spatial

restriction on agent and patient. We have, again, the following example.

A large horse is eating the grass in the farm.

• APPROACB 命

With common sense, the horse which is eating grass in the farm must also be

located in the farm since grass is found in the farm. i.e. a cow cannot eat grass

remotely. This meaning is implied by the action eat. If we consider again the

action "see", ambiguity is observed.

A large horse sees the grass in the farm.

In this sentence, a horse in somewhere else can see the grass in the farm because

the action "see" can be a remote action. The horse may or may not locate in the

farm when it sees the grass. The example shows that ambiguity does not always

occur in one pattern. However, the restriction of keeping attributes close to the

host entity should be applied to minimize any potential ambiguity.

In current implementation, the grammar of our restrict language set is

represented with Context-Free phrase structure rules ̂ shown in Figure 2.4.

S NP. {PPP} . {VP . {NP . {PPP}}}

NP = DET . AJP • N I AJP . N I N

AJP = AJ . AJP I AJ

VP = AVP • V I V

AVP : AV. AVP I AV

PPP = PP • N . PPP I PP . NP

Figure 2.4 Restricted Grammar Defined for Sentences in ARMON

With these restrictions, we may imagine some good and bad examples

immediately.

Proper sentences

i. A horse is eating long grass

ii. A horse is eating long grass in the farm

iii. A large horse is quickly eating long green grass in the farm

‘The abbreviations used to present the grammar are found in Appendix A

命 APPROAGB • ”

iv. A horse in the farm is quickly eating grass

Improper sentences

V. A horse is eating long grass quickly

vi. A large horse is eating grass which is long

vii. A horse which is large is eating long grass

The examples in sentences (i) to (iv) are proper since they all follow the

restricted grammar. Sentences (iv) to (vi) are improper since they disobey the

grammar. In (iv) the adverb "quickly" should be placed immediately in front of

the verb "eating". In our grammar, relative pronouns should be avoided but

sentence (v) and (vi) disobey this rule. It is observed that improper sentences

can usually be replaced by alternatives which fit our restricted grammar.

With a grammar defined like this, the caption of the media data shown in Figure

2.3 is better re-written as in Figure 2.5. The phrase "that has grown tall from the

abundant rain in the past months" has been omitted since it is regarded as

subsidiary information.

The big, brown horse by the tree beside the river is

hungrily eating the green long grass.

Figure 2.5 Caption Rewritten to Fulfill our Grammar

We agree that the current grammar (Figure 2.4) is a bit restrictive. In the future,

it is possible to expand the grammar according to the requirements of other

domains. For instance, to allow descriptive text like (present) participle, we may

add a rule like:

S = NP . {FTP} • {PPP} . {VP . {NP . {PTP} . {PPP}}}

PTP = VP. NP

where PTP stands for Participle Phrase

• APPROACB • 2 3 "

With this enhancement, a sentence like "a horse having short legs is eating

grass" becomes acceptable. To make this relaxation possible, more intelligent

transformation from the lexical form into logical representation is required.

Extension like this would be a good issue for future research.

In this chapter, we have already conducted the design basis of ARMON. In the

next chapter, we shall have further details in formulating the knowledge model.

• APPROACB • “ 17"

霸 置 K 3

f n r o i f

Chapter 3 THEORY

‘What is the use of a book，，thought Alice,
‘without pictures or conversations ？，

Lewis Carroll (1832-98)
Alice's Adventures in Wonderland (1865) Ch. 1

In this chapter, we shall go through more design aspects of ARMON. Firstly,

there will be a bit of general background about Knowledge Representation and

Natural Language. Secondly, the concepts how to represent and store the

captions will be discussed. Then the algorithm of matching between captions

and queries will be explained. The matching score which indicates the closeness

of matching will also be illustrated.

3.1 Features

To write a caption, the caption author usually states a collection of properties

associated with each semantic group, such as brown, fmngriCy, grun, etc. This

collection of properties is called the set of explicit features of the group. These

properties are similar but not identical to the implicit features which will be

discussed later in this thesis. The notation of set theory will be widely used here

to represent the set of features.

We are going to face the problems of constructing a collection of features, and

their permissible values. These two problems are the major difficulties in the

model of this kind. Papers on NLP by some researchers (notably Dahlgren

[Dahl89] and Gallant [Gall91]) conveyed such an idea, and tried to work out a

solution but had not yet come up with a comprehensive and complete proposal

that could be broadly used, except in a narrow domain of interests.

Dahlgren [Dahl89] figured out a set of 55 features which was claimed to be

sufficient for nouns in general use. Similarly, a set of 10 features was created for

verbs. However, details of the rationale to reach those sets of feature slots and

• TBEORY • 32

the application of these features had not been mentioned in the reference.

Gallant [Gall91] conveyed the idea of context vector which is in fact a matrix of

features filled with numerical values instead of narrative values. He indicated

more than 85 features as a 5 by 17 matrix for the entity astronomer but he only

gave the rationale and usage for a few of these features.

In addition, there were other researchers who wanted to construct finite set of

characteristics for conceptual substances defined in a specific and narrow

domain. As these did not fit well into our goal, we would not go into them here.

In applying the feature concept of representation, we noted the difficulties risen

from the works of others. We feel that the chance of success will be much higher

in our task because nearly all works from those like Dahlgren and Gallant were

intended for natural language understanding which requires precise semantics

as well as complex structures in natural language construction. In our case, we

attempt to define a method which approximates roughly the process how

people match information beyond keyword matching, not about precise and

general natural language understanding system.

We studied the set of features from Dahlgren [Dahl89] and Gallant [Gall91] and

eliminated some features that are too vague and unclear to be of use. Many

features slots given in their articles were not exemplified with feature value. For

some of these features, we could not imagine what type of values would be

appropriate, e.g. "in cKtension o f , "Ugdrcquiremmf, and "pfiyswto^y . Features which

were either mystery to us or irrelevant to our application domain had not been

employed in the current model. Some poorly defined features were re-defined

by us, such as state and status. No explanation of similarities or differences

between these 2 particular features was given in the original article. We redefine

these two features and write them with the following representation.

state: soM I dquicC I 丑as I pCasma

status: e?ccite(C I Happy I sad I tired

The above representations are not covered here but will be explained later in this

section. We define state being the physical form of a physical objects while status

• TBEORT 命 ^

tells the mental state of an living organism. Features of some real world entities

are given in the following examples.

(air) = {..…，stau ：万as,…“}

—(sun) 二 {...../ state tpCasma,..…}

{ea (water) = {..…，state: Ciquid,..…}

^ (horse) = {, status: e^cdud,"…}

^ (cow) = {..…，status: tired,"…}

Having eliminated or redefined some useless or unclear features, we put

additional features in our domain. Two examples are arbitrarily pointed out

here:

Cife: none I cmBryo I Civing I cUad

occurrence: natural I artifkiaC

For example, we clearly have:

^ (horse) = {•.…,Cifc： living, .•…}

(ea (horse) = {“ifi: d̂ eud：,..…}

^ (egg) = {..…，咏：e-mSryo,..…}

^ (stone) = { "..., Cife: mm, •.…)

It is not reasonable to list all eliminated, redefined and added features with full

examples here. To a considerable extent, the definition of features are somewhat

subjective and domain sensitive. A final set of the features used in ARMON at

current stage is given in Appendix B.

Unquestionably, when a larger domain of application or a larger number of

application domains are studied, we believe that these sets have to be increased.

As our task for the time being is to come up with a model that can be generally

applied, we think that it is not a great benefit now to come up with a complete

set of features.

• TBEORY • 32

With this background on the feature set model, let us now turn back to discuss

our feature definition and their assignment of values. Each feature is made up of

a slot and a value. The slot describes the identity of the feature and the value

tells the property of an instance. For example, a characteristic or property of any

object is the colour of the object; thus one feature slot is 厂•and it can have

permissible values of coCmrkss, red, grun, SCtw and vioCu, etc., represented as follows

coCowr: none I red I £reen I SCtie I ydCoiv . •.

Assume for a particular physical substance that its colmr is gum. Assume further

that £reen is found as a value in the permissible set, the slot coCour is instantiated

with the value grem.

coCmr:万 rem

Like the definition of feature slots, the definition of feature values is somewhat

subjective and cannot be comprehensive. To enhance the ability to recognize

more feature values, we build into the system an additional mechanism.

Suppose that there is a horse of mud-coCour. This colour is not a permissible value

in the set of colours and hence no exact colour is now available. With the use of

the knowledge base as transformation rules stored in ARMON, which will be

discussed later, the system will recognize a tmcC-coCour horse being closely

equivalent to a Brown horse.

odour: Brown

The deduction of a meaning like this is generally known as normalization

[Lewi89], or feature transformation in our thesis. As it is not possible for

anybody to ensure that there is always an exact meaning in the value set for the

statement, the closest possible value will be attempted as an approximation.

This is called the feature level approximation in ARMON. There are other levels

of approximation in ARMON.

• TBEORY • 32

Consider another example and assume now that there is a phrase, goCden sun. In

the set of permissible colours, we do not have "goCcCen ". There should be some

sorts of knowledge able to determine a value which is close enough to the

original. In this example, a ^dioiv sun may be rated as a close approximate as gold

is somewhat yciCowm colour. The feature coUnir:ye[Co'UJ be the close enough for

sun in the context.

3.1.1 Superficial Details

In the rewritten caption, "the big, brown horse by the tree beside the river is

hungrily eating the green long grass", in Figure 2.5, horse is the head of the agent

group. size, Brown in coUnir ̂ ind nc7(t to tree are the secondary properties of

horse. These are called the superficial details which are explicitly stated in the

sentence. They will be converted into explicit features in a later stage. Together

with the restricted grammar, we are also told that the tree is growing by the

river from the clause "beside the river". It is directly related to tree but indirectly

to horse and is regarded as the tertiary description for horse which will generally

be ignored during the process of approximate transformation. A challenging

task is the determination of the importance of the information stated in the

sentences : essential, secondary, or supplementary. As their names implied,

essential information which is core of the a sentence provides a bird-eye view of

this sentence. In another extreme, supplementary information which appears as

a decoration will be generally ignored. The secondary information helps the

mid-level view of a sentence. Essential information is usually delivered by the

semantic heads of a sentence. Secondary information is carried by their implicit

and explicit features . Decorat ive phrases provide the supplementary

information.

In the above example, secondary descriptions of the agent horse are shown as

follows:

size : Big

coCmr : Broion

nearSy : tree

命 THEORY • S T

All those features are explicitly stated in the caption. Besides this set of explicit

features, there are other implicit features which are well-known but not stated in

the sentence. Some examples are briefly stated below.

Cifc: Civing

Birtfi: 6aSy

tegs: 4

This kind of features is hidden or implicit and will be discussed later in this

chapter.

For another semantic group, the action group, eat is head of the group. In

common sense and in definition contained in the knowledge base, the adverb

fmngnCy ior eat is interpreted as "eating at a high speed". It is then represented in

the form of feature slot-value pair as sigttd-Mgk. This is another example of

normalization.

The patient group contains grass as the head, and coCmr.grem, fki0fit:ta[[as the

explicit features. It is noted that the tertiary description for grass, "from the

abundant rain in the past months", originally shown in Figure 2.3, has been

omitted in the logical t ransformation since it is regarded only as the

supplementary description. The parsed sentence in logical form now looks like:

{horse [coCour:Brown, sizcdarg^, eat[5peei;%/l], fieigftufiigfi] }

It should be emphasized again that the ARMON project is neither focusing on

machine translation nor creating a precise natural language understanding

system. Hence an ultra-fine level of transformation for natural language

captions into corresponding logical representations is not necessary. We are

concerned only with the most important knowledge of each group. Other

subsidiary information are treated with reduced priorities or completely

命 THEORY • ^

ignored. For instance, the tenses of verbs and the determiners, "a" , "the"' etc.

are not considered important and could be ignored for the purpose of retrieval.

3.1.2 Hidden Details

In addition to the explicit features already mentioned above, there is another

I kind of characteristics equally or even more fundamental to the construction of

i knowledge in the world. As many researchers do, we believe that world

I
I knowledge is built up from entities which conceptually form a-kind-of
j

I hierarchies. These hierarchies are useful for the determination of the degree of

approximation. Figures 3.1 and 3.2 are examples of f ragments of these

hierarchies. Some researchers prefer to use alternative names for hierarchies like
i taxonomy [Pape86] and ontology [Dahl88]. Strictly speaking, there are slight
1
1 differences between these terms, but we shall not go into depth as this is beyond
；J

丨』 the scope of this thesis.

丨 I — — ^ ^ ^ ^ I
J H ^ ^ ^ Z T Z " … … - T

h ~ h
ingest I ptrans I

r ~ ; 7 ~ h :
solid liquid gas
intake intake intake

j eat I swallow I drink I suck I smoke I breath I

1
； Figure 3.1 A Fragment of the Verb-type Hierarchy
.1

•s

In the model of ARMON, a hierarchy can be either noun-type or verb-type. It

consists of entities, which are also called nodes, connected by links. It starts off

from a root, and in it the descendants of a node are sub-categories of the node

and inherit the properties of their ancestors, unless overruled by explicit

specification with the same feature slots coupled with different values. This idea

is familiar in object-oriented concepts and is broadly used elsewhere [Woel87,

Holt90, Tsud91]. Miller put all his world knowledge including tangible and

• TBEORY • 32

intangible entities, including "objetcs", "actions" and "events" into a single

hierarchy [Mil86]. Our model of hierarchy is similar to his but not exactly equal.

phy_object I

. i •
= I I •

living—organism I

I I
animal [piant |

_ _ I _ _ , i , I _ =……••…1……-=

bird I fish I mammal I

non̂ lyin̂ ^^yin^J ĥeAivoroû Tamivorô J T îvorou^

domestic I wildlife I

^^co^J ^hee^Jj ^lore^J ^iraffj l̂epha^ ^itelopj
Figure 3.2 A Fragment of a the Noun-type Hierarchy

Each node in the hierarchy is associated with a set of primitive characteristics,

i.e. the set of the implicit features of that entity. These features characterize the

properties of each node. Nodes in different hierarchies of noun-type and verb-

I type will have different set of features. For example, some features for the noun

hierarchy can be Cife, momn£_speed, size, coCmr, Cocation, a n d age. Implic i t features of a

node, like explicit ones, can only take on values from a set of permissible values.

For example, the characteristics of node horse in the hierarchy intrinsically have

values of [iving, kigk a n d targt for the fea ture (slot) lift, speed and size respect ively .

These characteristics and values are generally well known but must be defined

by the domain expert.

In our particular example, the hierarchy starts off from the root phy_object.

Living—organism appears at certain level in the hierarchy. Animal is a chi ld of

living_organism. By d e f a u l t , animal carries all the intrinsic characterist ics of

living—organism, such as Cifediving. At the next lower level, mammal is defined as a

I child of animal which is the parent of mammal. Herbivorous, carnivorous and omnivorous

are the children of mammal. Herbivorous has sub-classes domestic and wildlife. In

principle, the properties associated with domestic and wildlife are inherited from all

the characteristics of animal.

• THEORY 命 “

C = "The big, brown horse by the tree b e s i d e the r iver
bank is hungrily eat ing the green long grass .“

fea (horse)

/ / " l i f e ： living � \ \
/ / mobility : self—moving �� \

/ fea (eat) � � � s i z e : large J \
z 一 � \ \ c o l o u r : brown fea (grass) 1

/ ' a c t on : f o o d � � � � � 一 - - 一 一 , ����

/ s t a t e ： solid �� , l i f e : living ��

\ ； tool : m o u t h ,丨 / mobility : none

\ \、印eed: h i g h ^ z , \ colour ： green /
\ 义 … ） ^ ^ e i g h t : high y

Figure 3.3 Feature Set of a Sample Caption

Exception is a provision through which the implicit features of an ancestor by its

children can be overridden. Exceptions frequently occur at nodes of a-kind-of

hierarchies like this. For instance, bird is a kind of animal which has the intrinsic

property of moSilitififtying. Chicken does not virtually have this capability although

it is a kind of bird. This general implicit feature for bird can be negated for the

node chicken.

In this instance, bird has sub-classes flying and non-flying. For example. Chicken and

duck are non-flying (birds). Nightingale and pigeon are flying (birds). D i v i d i n g bird into

flying and non-flying unlikely follows the best sense of classification for biologists,

but it sounds good for general purposes. We do not need a biological or any

other strict definitions to classify bird； For most people, the capability of flying is

the most notable characteristic of bird, it is obviously sensible to classify bird like

this. Feature moBiCity:flying is defined as a general characteristic of flying (bird).

For another animal, mammal, the flying capability is a property of only a few

species, bat, for example. It is unwise to classify mammal into flying and non-flying

j because the sub-class non-flying (mammal) will be very small. On the other hand,

mammal are highly characterized by another property, the feeding habit, which is

broadly classified into herbivorous, carnivorous and omnivorous. Using this property,

• THEORY 命 “

mammals are clearly categorized. The limbs, teeth/digesting systems, etc., are

significantly different among these sub-classes of mammal.

As mentioned before, the gross classification of entities is established on the type

hierarchy. An immediate question is the technique of classification of entities.

1 There is not necessary a single rule to classify the entities into the hierarchy. In

this connection, the hierarchy should be constructed according to the need of the

J application domain, by a so-called domain expert. In the development of this
j project, we do not have a domain expert to construct the required domain
>1

: knowledge. We, ourselves, pretended to be the domain expert although we are

not. However, in real-world applications, domain experts should be separated

from the system developers. This will produce less biased domain knowledge,

we believe.

Instead of the top level classification starting from living_organism into sub-classes

plant a n d animal. There may be another alternative classification by another

domain expert. He/she may prefer to classify animal into aquatic and terrestrial, or

into vertebrate and invertebrate, etc.
•j
�i • •
...1 I

1

I ： ：
h

‘ animal I animal

Figure 3.4 Two Alternative Classifications of Animal

The way of classification is unlikely a matter of right or wrong. It is just a matter

of appropriateness in a particular domain. It is believed that the domain experts

have the expertise to make a sound judgement. The above illustrations show

some concepts behind the classification of entities into hierarchy. Other entities

i are classified on similar foundation.

• TBEORY • 32

3.2 Matching Process

A query is given just like a caption and will be partitioned into three semantic

j groups. The feature values of each group will be derived just like before,

j Matching is started in a pre-defined algorithm which will be discussed later.

j Rowe [Rowe94] suggested six categories of results when a query is attempted to

I match against a set of natural language captions. Five of them are listed here,
i

I added with the (range of) scores. The sixth, "insufficient information given by
-

j the user", is treated as an intermediate but not a final result and will not be put

here.

Relation between caption & query Expected match score

Both are exactly identical 1

！ Entire query matches part of a caption 1

i Part of query matches an entire caption (0 to 1)
j

I Part of query matches part of a caption (0 to 1)

None of captions matches the query 0

Figure 3.5 Possible Results of Query Search

I It is our goal to determine the match score in cases like the third and the fourth,
•f

i for which approximate matching would demonstrate its role.

Conceptually, in searching for matches between a query and the stored captions

in the database, we try to find matches with the main items first before looking

at the subsidiary items.

Assuming now that there is already a query parsed into three semantic groups.

The system starts the matching process by the sequence already determined

I with the pre-defined rules. Semantic groups in the query will match against the
‘ .

j corresponding group of the captions, i.e. the agent of query is matched against

the agents of the captions, and so forth. It locates the node on the hierarchy

corresponding to the head of the semantic group of the query which will be

matched first, and then attempts to match the feature values of the group

• mow • 56"

against the different sets of feature values representing the captions in the

database with this same head. All the stored captions of the descendants of this

node will be treated as if they belong to this node, with their heads replaced by

this node. Thus, if there is a caption given exactly as the query, we get a perfect

match. Even a caption is not lexically identical, we may still get prefect matching

if the main semantic heads and features are equal.

I 3.2.1 Inexact Match

I In case of exact match, the matching score is obviously 1 but it is unlikely that

we always have perfect match. We need to define an algorithm to calculate the

degree of closeness in those cases. This is done by calculating the matches

between the feature values of the query's semantic groups and the values of

j corresponding groups in the stored captions. The score is then normalized by
I
I dividing the individual value matches by the total number of features,

. producing a value between the boundaries 0 and 1 with 1 being a perfect match.

If further search is required, we move up the hierarchy to the parent node and

perform searches on that node and its descendants using similar technique.

； Searching around the type hierarchy can be viewed as a gross matching while

5 the calculation of match score can be view as a fine matching. In ARMON, the

former stage is also called gross filtering and the latter stage is put as fine

scoring. Figure 3.6 simplifies these stages of matching captions against queries.

Caption
� Database

n T y p e H i e r a r c h y agent, • , ,
action, V

i patient iz5 r H r ^

r • 是
pqv , &

i : ^ ^ ^ o
_ _ _ _ F e a t u r e s

I n v e n t o r y

Figure 3.6 Matching of Queries

命 THEORY • ^

At the beginning of matching, features of each of the three semantic groups

should be extracted. The degree of match between a caption and a query is

determined by the relative overlapping between the caption and the query. One

simple but reasonable way to quantify the degree of match with respect to the

head of one semantic group is to count the number of feature values that are

same in both the query and the caption. In this strategy, the features for each

I group are counted as matched or not, and given a binary 1 or 0 respectively. An

integrated score for all three semantic groups will be subsequently calculated to

see if the whole caption matches the query well, and will be used to rank the

media data. This is done by calculating the integrated values of the three

groups, again normalized to lie between 0 and 1. However the system provides

a mechanism to state the relative importance of three groups which will be used

to weight the groups' importance in the computation of the integrated score. In

I addition, the user can specify the threshold of match so that only those matches

exceeding the threshold will be returned.
3.2.2 An Illustration

；；• i
. i

i ‘

I The following illustrates an example which demonstrates how to determine the

matching score between a query and a candidate caption.

Assume a query Q issued by a user for retrieval of the content:

I

Q : A large cow is eating grass in a farm

� A A ^ ^ ^ l) ^ �

Figure 3.7 An Imaginary Query

命 miw • ^

The calculation of the matching score will be illustrated with the following

stages.

3.2.2,1 Stage 1 - Query Parsing

The three semantic groups are extracted from the sentence.

Agent a large cow

Action is eating

Patient grass in a farm

From the hierarchy in Figure 3.2, cow is a domestic, herbivorous mammal which is

animal, animal is a living—organism and so on. Therefore, cow inherits the implicit

features (impfea) from all its ancestors, i.e. domestic, herbivorous, mammal, animal,

and living—organism. For simplicity of illustrations, we assume that only several

features have been defined for each node on the hierarchy. The members of

implicit feature set given to each node are defined by domain experts who

！ should know well the properties of every entity in that domain. The process of

feature definition and the match algorithm are much similar whether each node

contains tens or hundreds of features instead of several in this illustration.

In the implementation, implicit feature slots and values of a particular entity are

filled in the logical IMPFEA database. In this example, assume now that we find

the following local implicit features for the semantic heads cow, eat and grass in

the IMPFEA database.

(cow) = { pCace_at:farm, fimction:stivc_mm, s-pecdiCoiu, manmr:taim,

fiaBitat:domestic, [egs:4, poiuer:stron£}

(eat) = { cict_on:food, staUisoM, tooLmmtfi}

^^/^^^^^ocai (grass) = { moBiCitymonc, coCmngrcm}

In addition to a set of local implicit features associated with each semantic

group, there are also implicit features inherited from the ancestors on the

hierarchy. Taking the entity cow as an example, it inherits all the local implicit

features of living—organism, animal, mammal and herbivorous. By moving down the

• THEORY 命 “

hierarchy starting at living—organism, all the local implicit feature slot/value pairs

of the ancestors of cow are gathered sequentially. The overall implicit feature set

of cow will be obtained as a union of local features of itself and all its ancestors :

(living_organisnn) = { Cifcdiving, occurrenu:naturaC, staUisoM]

(animal) = { mo6iCity:sdf_moviiis}

(mammal) = {BinfiiBaSy}

(herbivorous) = {dkupCant}

cm^^ea^ i (C O W) 二 {pCacc_at:farm, fiinction:scrvc_inan, specd:CouJ,

mannentamc, habitat:domestic, te^s:4, po'UJenstrong

)

In addition to implicit features, the parser also extracts explicit features for each

semantic group. The explicit feature slot/value couples are kept logically in the

EXPFEA database with pointers to the corresponding captions. In this example

query, only one explicit feature is given with cow.

cK^ (coWq) = {sizeiCar^c]

Combining all implicit and explicit features, an integrated feature set for cow is

obtained :

—(coWq) = IMPFEA u EXPFEA

= <^^。cai (living—organism) u (animal) u

(mammal) u î n̂ ê̂ î — (herbivorous) u

(cow) U exp^ (C O W q)

= { Cifediving, occurrmceinatural, stauisoCid,

moSiCity:sdf_inoving, birtkboBy, dkupCant, p(xicc_at:farm,

fiinction:serve_man, spee-diCoiu, manmritatm,

fiaSitat:domestic, [egs:4, pozi>er:stron£, sizedarge}

1

1
The cardinal number (no of elements) of the above feature set is 14. Action eat is

treated in the same manner, but the details will be omitted here.

• TBBORT • ^

I
itttfif^ (eat) = { act_on:foo(C, staUisoM, tooCimmifi } M Q -

In the query, there is no explicit feature written for eat, i.e. e t ^ (eat) = {). Hence

the overall feature set is just the implicit feature set.
^ (eat) = { act_on:food, statc:soCi(C, tooCimmtfi }

^ Similarly, we process the patient group and get the following result:
. . 1

‘ I

~ (grass^) =
I .
I = { [ife:[Mii£, occurrmceinaturaC, stauisoM,
I

moBiCitymonc, cotourigreen, sftapcinarroiUj

丨 p[acc_at:farm}

3.2.2.2 Stage 2 - Gross Filtering

Each semantic group of the query, after being decomposed into semantic groups

with features, is searched against the corresponding node in the hierarchy. Of

] course, it is desirable if one or more stored captions in the same node is matched

j with the query. All the implicit features for that node will be identical except for

the explicit feature values. If sufficient result is obtained, searching for this

i semantic group will not go across to other nodes on the hierarchy, unless

commanded by the user otherwise.

In case that no exact match or insufficient matches are produced from the

captions for a particular semantic group, search will then begin from the parent

and the sibling nodes and their descendants in the hierarchy. The system will

search for approximate matches from the stored captions in these nodes. The

process to calculate match scores will be shown shortly. If still insufficient result

is produced, the system will move up the hierarchy one node further and search

for matches in it and its descendants. The process will be repeated until

sufficient result is obtained.

Let us consider the agent group, cow, first. Assume now that no exact match of

cow can be found in any one of the captions. However, two sibling nodes, horse

• TBEORY • 32

and sheep are found in two candidate captions (Figure 3.8). Let them be

arbitrarily labeled Ĉ and C?.

Ci: A white horse by the tree is drinking clean water

C2: A young sheep is eating short, brown grass in the forest

Implementation level details are skipped here and will be re-visited in the next

chapter. This stage, as it is named, works like a filter to collect captions which

are significantly close to the query and pass it to the next stage.

I X i 多 -
I Ci: A white horse by the tree is c^ : A young sheep is eating short, brown

I l inking dirty water grass in the forest
1

丨 • •
•i

1

j Figure 3.8 Two Pieces of Media Data Approximately Retrieved
I
I

3.2.2.3 Stage 3 - Fine Scoring
‘

First, we have to decompose Ĉ and C: into semantic groups with feature sets, in

the same way done for the query, Q. The matching score will be determined

according to the agreement between their corresponding feature sets.

C , A white horse by the tree is drinking clean water

^ (horseci) = { CifciCiving, occurrmccmaturaC, stateisoM,
\ •

I mo6iCity:sdf_ino'mig, BirtfiiBaSy, dkupCant,
I

i junction:se.rvc_man, speed:Higfi, mmneritame,
I

fuiBitat:domestic,[明s:4, poiveristrong, size-irmdium,

cx)Cmr:'wftiU, ncarByitru}

命 THBORT • ^

I — (drinka) = { act_on:food, state^iCiquid, tooCimoutfi}

I ^ (water^^) = { [Mn对:nom occurrmccmaturd, state:[iquU,

I moBiCityigraviiy, coCounnom, sfiapeinom, tasUinom,

I appcaranccxUan}

•2

‘ Cj： A young sheep is eating short, brown grass in the forest

‘ ^ (sheePc2) = { Cifcdivi-n^, occurrmctinaturaC, statc.soM,

T ttwSiCity:sdf_moving, Birtfi:6aBy, dktiptant,

i junction:scrve,_manj spudiCoiv, manntntatm,

I fioBitat:domestic, Ugs:4, power:如cal^ sizc:smaCC,
•j

'I agc:youn£}

] ^ (eatc2) 二 { aci_on:foo(l, statcisoM, tooC:moutfi]
• I

J — (grasSc2) = { Cifcdiving, occurrmuimtwd, statcisoM,

moSilitymonc, cotour:6ronm, sfuipcithin； pCau_at:fid(C,

•j fizigfitiCoiv}

Now we determine the degree of similarity, between the agent groups, i.e.

cow, horse and sheep

(coWq, horse ,̂) = cand ((ea (coWq) n (horse^,))

cancC (^ (C O W q))

丨 = 1 1 / 1 4

= 0 . 7 9

i ^ (coWq, she印c2) 二 ^ ((c o w ^) n ^ (she印�2))

丨 c a n d ((C O W q))

j = 1 0 / 1 4

1 = 0 . 7 1

1
,1 •

We see that the similarity value between cow in the query and horse in C^ is

higher than the value between cow and sheep in C .̂ Based on this result, it can be

said that cow in the query is closer to horse in C^ than sheep in C^. But this

information is insufficient to indicate the overall degree of match between Q and

命 THEORY • ^

C ,̂ as well as Q and C^. Other corresponding semantic groups between the

query and a caption must be evaluated in the same way and the integrated

scores will be computed.

For the action group,

^ (e a t ^ , drinkci) = (e a y n ^ (d r i n k ^ ,))

cmd ((e a y)

= 2 / 3

= 0 . 6 7

Intuitively, “ (eat�, eat。）= 1

I Similarly, for the patient group,

^ (grassQ, water̂)̂ = caU^I^ (grass) n ^ (water))

ostnd ((g r a s s g))

, = 1 / 7

二 0.14

-

^ (grassg, grass^̂) 二 5 /7
二 0.71

The overall matching scores, or the overall similarity value between Q and C),

W Q , Cj), is computed as the weighted sum of scores of individual semantic

groups. The relative importance of each semantic group is represented by a

weight, w., as follows :

^ (Q, C) = <«^(coWq, horseci) x w^̂ + ^^Ceat^, drinks) x w^̂

+ 4^(grassQ, water^)̂ x Wp̂

^ (Q, C) = she印C2) x Wag + eat(:2) x w^̂

+ <«^(grassQ, grass^^) 乂 〜

命 TBBORT • ^

Wag, Wac and Wp̂ are the relative weights of the roles agent, action and patient

respectively. For the simplicity of comparison in different retrievals, w/s are

normalized. The necessary conditions are :

w. > 0, and

E w. = 1

Obviously, the value of function <iimO must then lie between 0 and 1 and the

I degree of similarity can be easily observed. We believe that nobody other than
I • ,
I the query issuer knows well the relative importance of the three semantic

groups in his/her own query. The weights are preferably given by him/her.

\ However, if no weight is given, they are equally weighted by default.

I For illustration purpose, all weights w ,̂ are also assumed equal,

4

i.e. = 1 / 3

- 0 . 3 3
= \ . \
i
1 then,
•i

j — (Q, C) 二 0.79x0.33 + 0.67x0.33 + 0.14x0.33

1 - 0.53
• ^ (Q, c) = 0.71x0.33 + 1x0.33 + 0.71x0.33
i
I - 0.81
j

Thus in this example, the second caption C^ is found to be a closer match with

i the query, Q.

！ An user-given threshold reflects the requirement of strictness of the retrieval

(see Figure 3.9). It lies between 0.0 and 1.0. If the user gives a low threshold

i value, the retrieval will be loose, i.e. less close captions can be returned. In
9

1 contrast, when a higher threshold value is given, e.g. 0.95, only the closest

i captions will be returned. In one extreme, the threshold value of 1.0 returns only

those captions which exactly match the query.

• TBBORT 命 ^

retrieval threshold

0.0 < > 1.0

loose strict

more captions less captions

I returned returned

.1
I Figure 3.9 Effect of Retrieval Threshold on Returned Captions
j

In current example, either both, one or none of the captions will be returned,

according to the user-given threshold, such as 0.5, 0.7 or 0.9.

Although the current stage of ARMON handles only the captions but not the

； media data themselves, it is imagined that two bitmap data associated with the

j corresponding captions are returned. It is hoped that these pictures may, to

certain extent, beautify the boring text in this thesis.

1 . • i

j To summarize this model, retrieval mainly goes through 2 stages, i.e. gross

filtering and fine scoring. The former makes use of the knowledge embedded in

� the type hierarchies to sieve away the "irrelevant" captions. In other words, it

collects only those captions that match closely the query. It then passes the

I "filtrate" to the next stage. The next step calculates the matching with accounts
I

to the complete feature sets in captions and queries. This is one characteristic of

ARMON. In contrast, other models using multiple stages retrieval employ

different approaches. For instance, MARIE [Guli92] used the keywords

approach for the front stage and hierarchy search for the back stage. In another

project ADRENAL [Lewi89], the keyword sub-system was designed as the front

end and other NL processor was used in the back end.

3.3 Extending Knowledge

In the calculations of matching scores between queries and captions addressed

in previous section, the matching of individual features are binary, i.e. either 1

or 0. We now probe more deeply into two particular situations during the

命 TBBORT 命 ^

matching phases and discuss some suggestions to extend the resolutions of the

knowledge.

3.3.1 Attributes with Intermediate Closeness

In the first situation, when we search for query and caption matches in the same

node or its descendants, the comparison of matching will be focused on the

matching of explicit features corresponding to them since all the implicit

features match except for the explicit feature values.

At this feature level approximation, sometimes the binary comparison values, 1

or 0, are too rough. For example, colour is a frequently used explicit feature for

many entities. Assume now that different colours exist for one entity, say flowers.

CoCmrMm and cotouripurpU will be considered as either matched or not, and there is

nothing in-between. But coCouripurpU is closer to coCounSCtu than coCouriwfi.itc for most

people. To improve the degree of match for different features, we introduce

some intermediate levels between the two extremes.

With another illustration, although rei'colour is somewhat different from pinfu

there are certain similarities between the two colours. Subjectively speaking, the

feelings for most people are similar. Scientifically speaking, the prime colours

components ^ are also significantly close. It is "unfair" to say that coCmirtpinkj^rvd

cotounwftiu have the same degree of closeness (both 0) with respect to co[our:re(L

To solve this problem, we may assign a feature match score of 0.5 to the features

coCourredand coCourtpinl^ for example. In contrast, the features coCour^reen and

co[our:redwould be given a match value of 0, as before. For most people, a pinii

apple is undoubtedly closer to a red apple than a ^reen one. For illustration, some

typical colour pairs are suggested as follows.

Colour Pair Feature Match Score

I yellow - golden 1

brown - mud-coloured 1

red - orange 0.5

1 Red, green and blue, or RGB in short

命 TBEORT • ^

red - pink 0.5

pink - violet 0.5

blue - purple 0.5

white - grey 0.5

white - black 0

red - blue 0

red - green 0

• . . . • • • '

Figure 3.10 Examples of Attribute Matches with Intermediate Value

This kind of information can be stored in a mini-knowledge base, and we can

assign a value of matching for individual features somewhere between 0 and 1.

We can add any number of "steps" between 0 and 1, from very fine to very

rough. For illustration purpose, it is unnecessary to give too fine grading levels.

A step of 0.5 is believed to bring significant improvement over the "0 and 1"

scoring. A domain expert is free to assign a very fine value if he has sufficient

confidence to distinguish such a small difference, for example, something

between 0.42 and 0.43. Actually, it is usually not necessary or useful to have

such super-fine resolution for a single feature in the approximation at this stage.

3-3,2 Comparing Different Entities

In the second situation, if the head of a particular semantic group cannot be

exactly matched (or insufficient matches) from any of the captions, nearby nodes

on the same hierarchy have to be searched. When some of the nodes are found,

the degree of matching will be determined with the steps mentioned in the

previous section. But more information must be known before a fair judgement

of matching can be determined. We find that the same feature slot and value

pair can have different meaning for different entities. The difference is related to

some intrinsic properties which have been ignored.

For instance, the feature size:Si^ has been considered fully matched (match value

of 1) for a % cat and a Bi^ horse. A Bi^ cat probably weighs about 50 kg while a

horse probably weighs over 500 kg. The absolute meaning is different for the two

separate nodes on the animal hierarchy. Also, a fast jet plane may fly at a speed

• THEORY 命 “

above 2000 kmh'' but a fast train probably runs no more than 200 kmh'\ Therefore

the common feature spcMigk has different absolute meanings for different nodes

on the vehicle hierarchy, such as aeroplane a n d train in this example. These

inherited facts illustrate that a particular feature does not necessarily convey the

same meaning for different entities, i.e. different nodes on a type hierarchy. It

seems that more information is needed if we aim for a higher resolution in

feature comparison. This is the purpose for extending the knowledge beyond

1 ordinary cases,
.i

• I
•1

•i

i Consider again the example of % c a t and Big horse. When we compare the feature

j sizc:Bi£ of cat and horse, we do not assign the match score of 1 for that feature, we

i only assign a value of 0.5 for that common feature which are "partially"

i matched. Similarly, we assign a value of 0.5 to the feature speeMigH for a fast

I aeroplane and a /o^ttrain. It can be easily determined if the knowledge for aeroplane
i
j and fast train contains the information of typical speeds of both aeroplane and

,j train,
j

This extra mini-knowledge base also keeps various knowledge for specific

instances. For example, the feature speed:fiisft for action eat in the phrase "eat

fiungrity' is also derived from the extended knowledge. It can be observed that

i the extended knowledge stored in the mini-knowledge base is helpful for

determining a score some way between 0 and 1, and distinguishing finer details

which are subject-sensitive.

]

j We have already illustrated that the system can now use implicit, explicit and
•j

I this recently derived information to assign the feature values, and use them for

i approximately finding matches between the query specification and the stored

j captions. The usage of the mini-knowledge base is dependent on how far we

j want to distinguish the details of individual knowledge. Of course, it improves
I

j the final scoring to certain extent. But in ordinary cases, it can be ignored in

i scoring as a first approximation. A balance between simplicity and accuracy of

scoring should be considered. If the user finds that the matches from the system

are not satisfactory, then h e / s h e can instruct the system to use a better

refinement from the mini-knowledge base.

命 mow • ^
；

3-4 Putting Concepts to Work

To implement our model, two modes of operation have been considered, the

unattended mode and the interactive mode. The former will be designed to

involve as few user interactions as possible. In case of any ambiguity, the system

will try to determine on its own knowledge.

In contrast, the interactive mode assumes that the user is sitting in front of the
i

inquiring terminal. He/she is ready to give response on the terminal on which
j

ambiguities are displayed. Papegaaij in [Pape86] called operations like this

I Disambiguation Dialogue. In his book, a dialogue between computer and user

was illustrated to disambiguate a phrase "capital development". The interactive

mode of ARMON is similar to the dialogue like that.
•j

Each mode has its own advantages . The interact ive mode produces an

anticipatory higher precision since it tries to resolve any uncertainty by "human

intelligence" in case that "artificial intelligence" is not able to solve. However,

this causes an inconvenience to the user since the user must be occupied for

interactive response. It may take several minutes if the retrieval takes such a

time duration.
i
f

J

i The unattended mode saves user's time from sitting in front of terminal, waiting

and standing by to answer questions from the computer. After the user has

issued a query on the inquiry terminal, he/she may walk away to perform other

j tasks and return some time later to receive the results.
•i
J

I

In this and the last chapter, we have already exhibited the concepts behind

ARMON. All of the functionality of the model has been implemented except the

extended mini-knowledge base discussed in Section 3.3. We are going to present

more implementation details in the coming chapters.

•1 ‘ •
1；

1

I
1

• THEORY 命 “

g

:l -

I

j i n r L c n c M T i o r i
1
I

I •

i
.]

I

•i

•j -

•；i

••I

i
.1

5

•j

)

：

：

Chapter 4 IMPLEMENTATION

We must use words as they are used or stand aside from life.

Dame Ivy Compton-Burnett (1884-1969)
Mother and Son (1955) Ch. 9

In this chapter , we shall discuss the overal l s tructure of A R M O N , the

implementation of the NL recognition sub-system and the knowledge model

which we have already proposed.

I Unix is a widely accepted operating system on various hardware. It has been

selected as our major development platform. Several Unix variants are available

to us, namely the HPUX on the HP 9000 workstation, Solaris on the Sun

SparcStation and Linux on an ordinary Intel x86-based PC. We intend to

implement a portable system usable in these various Unix variations.

1 The C Language has been selected as the major programming language and the

GNU C Compiler as the language tool in the project ARMON. This compiler has

the advantages of portability, economy, adequate documentation and is

operational on various Unix platforms. The software itself, as well as its

documentation, is freely available on most public FTP servers on the Internet.

Moreover, much help is available on the Usenet News on the Internet. The other

two supporting toolboxes, the PC-KIMMO [Antw90, Antw92] and Metalbase

[Jern92], have been chosen as the natural language parser and the database

function library respectively. They are also functional and operational on the

available Unix platforms.

• IMPLEMENTATION • 58

4.1 Overall Structure

The overall NL retrieval system is constructed from several modules, known as

the User Interface, the Parser/Matcher Shell, Database Handler, and associated

supporting modules, described as follows :

_ — r 1
l U J S J ^ " iP User Interface

M i r L J
A

^ f ^ < (Parser / Matcher � < ~ > (Parser)
(S c o r e r 1 _ ^ Shell � V J

A ^

Lexicon

J I ^ f Databases Handler \ < 1

小

I >1̂ >1̂ y

广 s , 广 i ‘ ^ > ^ ^

^ ^ ^ ^ 一 ^ ^
HIER F E A R U L E C A P T E X P F E A I M P F E A

'i k. ^ ^ ^ ^ ^ �
\

Figure 4.1 Building Blocks of ARMON

User Interface Routines to handle the commands and data

given by the users , format the results and

d i s p l a y to the u s e r s . In this p r o j e c t , we

developed only an ASCII interface, GUI is not

our aim.

Parser/Matcher Routines to understand the user commands.

Shell coordinate the opera t ions of the parsers ,

database handler and scorer

Parser Routines to transform the natural language

sentences into their logical representations. PC-

KIMMO is used in ARMON.

命 IMFLEMBNTATION 命 “

Scorer Routines with algorithms to determine the

matching score of a particular stored caption

and the sentence in query

Database Handler Programs to maintain the lower level data base

manipulations. It includes several different

modules for several sub-databases.

\ HIER Storage of the type hierarchy in logical form

CAPT S torage of the most recent records of the

captions. Metalbase is used in ARMON.

‘ EXPFEA Storage of the explicit features for each semantic

group of captions in CAPT.

I FEARULE Table to keep the map for transforming adverbs

i and adjectives into explicit features, with the
1

1 knowledge for normalization
i I

•i •j

j
] IMPFEA Storage for keeping the implici t detai ls of
•(

{ entities on the type hierarchy
i I
:i
^

I
Lexicon Dictionary used to determine the meaning of

each word. ENGLEX is used in ARMON

In the above diagram, every block is a logical module. In this sense, one logical

block may be composed from several separate physical fragments in the system.

For instance, IMPFEA is composed from a number of data files instead of a

single one. Another example is EXPFEA which represents scattered data files

around the captions holding them, not a single data structure. All these

j individual data structures will be addressed later in this chapter,
j

• IMPLEMENTATION • 58

Now let us probe a bit deeper into the implementation details. Since we shall not

develop the whole system from scratch, we first try to look for a natural

language parser with adequate capabilities and documentation for our purpose.

4.2 Choosing NL Parser

Instead of developing a NL parser from scratch, we intended to take advantage

of an existing NL parser for our implementation. There were several NL parser

I prototypes published in various papers, such as TRUMP [Jaco92], DBG

[Mont89], MCHART [Thom83], FRUMP [DeJo79] and its derivative, McFRUMP

[Maul89]. Initially, it appeared to us that there should not be great difficulty to

get an adequate NL parser.

At the beginning, we tried to find a full semantic parser. A lot of attempts had

been tried and none was successful for some reasons. The selection of a parser

was restricted by the various factors which essentially gave us few choices. We

tried to look into a parser DBG [Mont89], originally written in Prolog. To fit well
i

I with the parser , we had actual ly considered using Prolog as the main

development tool. DBG and Prolog were eventually excluded because a lot of

unexpected problems were encountered. The difficulties in choosing a parser

would be further discussed in Chapter 6.
]

I Finally we chose a morphological parser PC-Kimmo [Antw90]. Compared to a

full semantic parser, a morphological parser does not have the capability of

semantic parsing on NL sentences. This kind of parser has a number of

shortcomings compared to an ideal semantic parser. For instance, no semantic

tree is generated by the parser. Under this limitation, the morphological parser

does not distinguish "saw" being "a cutting tool" or "the past tense of a kind of

perception with eyes�.

i Fortunately, different from machine translation systems, we did not need to get

j an accurate translation of each token in a sentence. In designing this system, we

had considered how to make the translation as accurate as necessary for the

retrieval purpose. To overcome part of the limitation of this parser, ARMON

was designed to provide to the users two modes of operations, the interactive

• IMPLEMENTATION • 58

and the unattended modes. These options will be il lustrated below with

examples.

4.3 Ambiguity

； Assume now that the user issues a simple query, "The cat saw a mouse". The

parser processes all tokens in the sentence successfully except the word saw. In

j the interactive mode, the system is designed to ask the user for ambiguity like

！ the following example.

i ^ ‘ i
I computer : is ''saw" a noun ？

i user : n
1 computer : is "saw" is a verb ？

I user : y
j computer : Is "saw" the past tense of "see" ？
！

1

user : y user ： n
computer : done computer : no solution

Figure 4.2 User Involvement in Interactive Mode

If the alternative mode, i.e. the unattended mode, has been chosen, the parser

will try to make her own decision without bothering the user who issues the

query. In this example, the parser will resolve the ambiguity by a simple rule of

elimination. With our assumptions, each sentence contains the semantic group

I in the sequence agent, action and patient, i.e. with the lexical Noun-Verb-Noun,

or N - V - N , structure. It can be sorted out without ambiguity that cat and mouse

j are nouns. The parser can hence predict by elimination that saw is a verb. Saw

I will be interpreted with the meaning "the past tense of a kind of perception
j

using eyes" instead of "a kind of cutting tools".

Recalling that ARMON is developed from two sub-systems, the front-end

parsing system and the back-end database system. The front end accepts a

natural language description while the back-end stores the description in its

• IMPLEMENTATION • 58

corresponding logical form. There are some matching and scoring mechanism in

between.

i

PC-KIMMO is the core of our parser. The following is the original untouched

output of a NL string "a cow is eating grass" using this parser.

I
a

a DT

cow
I
I �cow N
I

is

be AUX.3SG

j eating
I

j �eat+ing V+PRG
"a

grass

�grass . N

Figure 4.3 Results of Parsing with PC-KIMMO
\

I The output of the original parser is encoded with a set of notation which is

i defined as "gloss tag" in ENGLEX. The set is listed below but full output syntax
I j will not be discussed here. ENGLEX is an English lexicon designed to work with
：(

j PC-KIMMO. It contains approximately 11000 nouns, 4000 verbs and 3400

！ adjectives, and a total of 20000 lexical entities [Antw92b]. A brief description of

ENGLEX will be provided in Appendix G; more details can be referred to

ENGLEX User's Guide [Antw92b]. The gloss tags defined by ENGLEX are given

as follows:

Gloss Tag Meaning

j N noun

,] PN proper noun

V verb

AUX auxiliary

AJ adjective

命 IMPLEMENTATION 命 ^

I AV adverb

PP preposition
I
j DT determiner

CJ conjunction

QN quantifier

DEM demonstrative

PR pronoun

j IJ interjection

丨 FN foreign

1 CD cardinal

OD ordinal

1 first person

2 second person

3 third person

I SG singular
I
j PL plural

.{ GEN genitive
i

j CMP comparative

1 SPR superlative

PST past

i PTC participle

j PRG progressive
: i

NR nominalizer

VR yerbalizer

AJR adjectivizer

AVR adverbizer

NEG negative

PEJ pejorative

j DEG degree

j ORI orientation

LOC location

NUM number

• IMPLEMENTATION • 58

REV reversive

ORD time and order

NEO neo-classical

Figure 4.4 List of All Gloss Tags Defined in ENGLEX

The raw output of PC-KIMMO is not directly useful for us. This immediate

j output passes through a simple transformation before they are used in

� subsequent processes. Part of the parser has been re-written to give a formatted

result for other components of ARMON. The algorithm will be discussed later in

\ this chapter.
1

I

j Cow, eat a n d grass in the sample are reso lved as n o u n , verb and noun

respectively.
i
J
I
1
1

N : cow

V : eat

N : grass

Algorithms will transform the part of speech information here into the semantic

i heads, namely agent, action and patient,
i

4.4 Storing Knowledge
•1

\ For the parser to do its job, a knowledge model has to be formulated to store the
•j

real-world knowledge as well as the parser output. Two "AI programming

languages", namely Prolog and Lisp, have been used in the implementations of

many IR models, such as FERRET [Maul89] and MARIE [Guli92]. Due to several

limitations, some of which have been mentioned in previous section (4.2), we

gave up the use of Lisp and Prolog as the implementation tool.

We then look for alternative implementation tools for knowledge storage. We

•j have to design another way to keep the real world knowledge as a particular

information model. After a number of iterations of drafts and refinements, we

decide to store all the knowledge as tables for the ease of integration of several

• IMPLEMENTATION • 58

modules. Tree-like structures are transformed into relational-like databases. In

later sec t ions we shal l explain how this is a c c o m p l i s h e d . It is f inal ly

demonstrated to be a good model for our implementation of this knowledge

model. Further, a database tool kit, Metalbase [Jern92], was found on FTP

servers in the Internet. As it was also written in C-language, it was straight

\ forward to interface this "database engine" with the selected NL parser, PC-

j KIMMO, the details of which will be discussed in the next section.

I Models of data structures have to be designed to store the captions themselves

i and other associate "knowledge" output from parsing. Several of the major
i

I knowledge components are given as follows :

1. Hierarchies of real world entities, including noun-type and verb-type

2. Implicit features of the above entities

3. Captions

j 4. Explicit features of semantic groups in captions

！ 5. Transformation maps which relate attributes in lexical form with

logical explicit features

\ Generally speaking, the first two are static knowledge while the last three are
•j

I dynamic knowledge by nature. In the implementation, captions are stored in a

i simple relational(-like) database called Metalbase which will be discussed later.

Other knowledge are kept as plain text files in the Unix file system.
1
I

Metalbase [Jern92] is a toolbox suitable for development here. It is a freeware

found in the Internet, is written in C language, and is compatible with the

various C compilers running in the Unix systems, such as Linux, Solaris and

HPUX, after little revision.

4,4.1 Type Hierarchy

The type hierarchies , as described in previous chapter , are working as

conceptual representations of real world entities, both noun-type and verb-type.

For illustrations here, examples are mainly taken from noun-type entities.

Recalling that there are conceptual links between entities in the hierarchies, links

which establish the intra-hierarchy "spatial" relation of individual nodes are

• IMPLEMENTATION • 58

usually implemented as pointers. In current table-like implementat ion of the

type hierarchy, an alternative method is adopted. The actual l inks do not exist.

Instead, another mechanism is built to identify the relative location of individual

j entities in the hierarchy. Actually it proves working wel l in our implementation

j of this model.

Each entity is represented as a record in the type hierarchy database, HIER. For

j each ent i ty or node on the type hierarchy, there are two f ields wh i ch are
f

meaningful to the users, the node name (nodename) and node identity (nodid).
；)

； A m o n g these two i tems, the nod id has higher signif icance. This i d is not

I randomly assigned; i t is computed according to its relative "position" i n the

I 一

4.4.1.1 Node Name
The node name is the first f ield of each node. It is simply an ASCII string which

tells users which entity it is. There are two restrictions in creating this field. Each

node name should be in a single string and l imited wi th in a particular length. If

•I the ful l name is too long, acronym or abbreviations are preferred.
.i

j

j 4A1.2 Node Identity
I
.1

Each node is identified by an identity, called nodid, which is a string of numeric

characters. The topmost entity is the root of a hierarchy. Each nodid embeds

essential information about the node itself - the relative location of the node in

the hierarchy. The length of the nodid tells the vertical level of the node. For

instance, a nodid of "11131" (quotes excluded) represents the information that

the node is located on the f i f th level counted down f rom the root, its ancestors

are "1113", "111", "11" and "1" , and its s ibl ings are "111；32", "11133" and

"11134", etc. Figure 4.5 shows the entit ies and their ident i t ies on the type

hierarchy. It is now observed that i t is easy to determine the relation between

two particular nodes. The algorithm of computation wi l l be illustrated soon.

'3

命 IMPLEMENTATION • ^

phy_object

I ^ ^ : i
living_oigaiiism "ll

animal plant micre—
111 112 organism

113

r— , ' I , — I , 1 , 1
mammal fish bird fiuit seed tree

1111 1112 1113 1121 1122 1123

n z ^ i i
herbivorous carnivorous omnivorous flying non-flying

‘ 11111 11112 11113 11131 11132

^ • I •
• i P - ,

•I domestic wildlife
, 111111 111112

j ^-L-, Z L .-ZL-. p Z
1 cow sheep horse gtraffe elephant antelope

1111111 1111112 1111113 1111121 1111122 1111123

Figure 4.5 Entit ies w i th nodid on the Type Hierarchy

As mentioned before, each nodid is made up of a string of numeric characters. It

means a string of arbitrary length containing the characters , "2", "9".

There is a total of 9 possibilities for each characters. "0" is reserved and not used

here. Remember that a particular node differs f rom its immediate sibling (if any)

\ by the last character. There are at most 8 siblings for a particular node. In an
i ‘
i alternative v iew, there should not be more than 9 immediate chi ldren for a

j single parent. It is one assumption of this model. This restriction, however, can

be easily relaxed by al lowing the nodid to take the alphanumeric values f rom
•j •j "a" to "z". This extension allows a maximum of 34 siblings and 35 children for a
；1

particular node.

As a further relaxation, each level of the nodids can be represented by 2 numeric

digi ts. In this case, the node plant w i t h n o d i d 112 w i l l be represented by a

notation like (01，01，02). This extension allows a maximum of 99 siblings at each

level However, it is obvious that each nodid w i l l not be as "brief" as the current

representation. These extensions have not yet been implemented since the

current model fulfil ls well our current knowledge domain.

I

A function is now defined to describe the relative distance between two nodes in

讓 the hierarchy. It is called c U ^ . f) here, where x and y are two arbitrary nodes on

the type hierarchy. Before we define the function we f irst ly define a

meta-operator ^ which is used to define the function c U ^ . In the fol lowing, (p is

命 IMPLEMENTATION 命 7 令

a special symbolic constant called "mask" which w i l l be explained soon, char^

and char^ are two variables of the numeric character type.

fO char, ^ (p ~ 1 V char^G {1,2,3"..8,9}

i.e. U 9 = 2 ^ 9

=

= 1

ii) (p ̂ char, 二 0 V charge {1,2,3,...8,9}

i.e. (p ^ l =

=

= 0

ii i) char^ ^ char^ 二 0 V chaiv char: where char尸char^

i.e. = 2 ^ 2
二

= 9 ^ 9

= 0

iv) char^ ^ char^ = 1 V char^, char^ where char】* char^

i.e. U 2 = 2 ^ 1

= U 3

= U 4

命 IMPLEMENTATION 命 7 令

= 1

Figure 4.6 Defini t ion of the Meta-operator ^

Part (i i i) and (iv) of the operator ^ is somewhat simi lar to the we l l - known

operator exclusive-or,㊉，on binary digits. The physical meaning and the usage

of the defined operator ^ w i l l be described immediately.

The function c U ^ . i) is loosely defined as the distance of y f rom x. Assume now

that X and y are the nodids of two dist inct nodes on the type hierarchy. The

steps of evaluating is stated below.

i) get the nodids of x and y ,

ii) f i l l the shorter nodid wi th the mask, (p, on the right to make them the

same length,

iii) operate the corresponding digits of two nodids digi t by dig i t f rom

left to right.

e.g. 1

<^1111，1111111) = <t^1111(p(p(p, 1111111)

= l l l l (p (p (p

饼 1 1 1 1 1 1

0000000
二 0

e.g. 2

树 111111，1111) = rt^1111111,1111(p(p(p)

= 1111111
^) l l l l (p (p(p

0 0 0 0 1 1 1

= 1 1 1

V) the relative distance is obtained as the resultant string being viewed

as a binary number, i.e. 0 or 111 in above examples.

命 IMPLBMENTATION • ^

A short form of the ^ operation has been exhibited in the above il lustration. To

explain in more details, the operation is expanded as follows.

l l l l (p (p (p
饼 1 1 1 1 1 1

0000000
= (1^1), (1^1), (1^1), (1^1), (9^1), (cp^l), (cp⑶,(9^1)

= 0 ,0 ,0 ,0 ,0 ,0 ,0

When the individual digits are concatenated together, we get 0000000, or simply

0 after the leading zeros are trimmed. The operation of ^ in the second example

is similar and w i l l not be expanded again.

We now see several examples showing how the meta-operator ^ and the

function a：^) work. Wi th the definit ion of ^ and cUM in terms of the relative

distance between two nodes on the hierarchy is demonstrated. In the example,

1111 is the nod id of mammal and 1111111 is the nod id of cow. It is shown that

^ti^mammal, cow) or 1111111) has a va lue of 0; cU4tkzm, mammal) or

ctutiy 111111, 1111) hasa value of 111. As expected, dut^ is not communicative. It

is true that a query wh ich asks for a node on mammal w i l l equally satisfy the

captions about any sub-class of mammal, including cow. The opposite is not true.

A query asking for cow w i l l not necessarily satisfy on captions about its super-

classes. This general property in IR is the origination of the formulat ion of the

function cCutQ. More examples of the function c U ^ follows.

i) cU^ (cow, sheep) = ^(1111111,1111112)

= 1

i i) (cow, elephant) = (1 1 1 1 1 1 1 ， 1 1 1 1 1 2 2)

= 11

i i i) cU4t (cow, domestic) 二 (1111111，111111(p)

= 1

iv) cLut (cow, wildlife) = 在(1111111，111112(p)

命 IMPLEMENTATION 命 7 令

= 11

V) cU^t (cow, mammal) 二 (1111111，1111術）

= 1

v i) cU4t (cow, fish) = rtW (1111111,1112(p(p(p)

= 1111

v i i) ^ (cow, plant) 二 ^ ^ (1111111,112(p(p(p(p)

二 11111

v i i i) (cow, herbivorous) = (1111111,11111(p(p)

i 11

i i x) fl^ (herbivorous, cow) 二 _ (11111(p(p，1111111)

二 0

Figure 4.7 Examples of some inter-entity distances

If each result of the function dMx.y) is viewed as a binary number, it is observed

f rom these examples, wi thout rigorous proof, that the funct ion is

I coherently decreasing with the closeness between its arguments, x and y. It is a
1 .

simple check of the closeness of two arguments. Observing from (iii) and (iv),

one may conclude that cow is closer to domestic than to wildlife. This is clearly true

; in the real world under common sense.

It should be emphasized that the function cU îix^y) is not communicative, i.e.,

(Uith^rj)类 in general. The practical examples are (viii) and (ix). Case (ix)

happens when a caption wi th cow is tried to be matched from query containing

herbivorous. In contrast, case (viii) happens when a caption containing herbivorous

is attempted to be matched with a query containing cow. In reality, when a query

asks for an entity whose position is high in the hierarchy, e.g. herbivorous, i t is

equally acceptable if some captions contain more specific entity, e.g. cow is

found. Hence, the function dM) should also reflect this similarity. However, the

reverse is not true. i.e. when a query asks for a specific entity, e.g. cow, i t is

usually unsatisfactory to get a more general entity, e.g. herbivorous, f rom the

caption. The result obtained f rom this a lgor i thm, cU^zm, herbivorous) >

^ti^herbivorous, cow), reflects this assumption. The behaviour of cU^ looks closer

to a vector function than a scalar function.

命 IMPLBMBNTATION 命 ^

I
I

herbivorous
11111

- / / ^ l I
/ / domestic

</isf(cow,herbivorous)/ / 111111
=11 / / /f/:.vffherhitorous.cow)
- ^ _ _

cow sheep horse

1111111 1111112 1111113

• •

I
Figure 4.8 Vector Properties of the c U ^ Function

Another point is that all inter-sibling distances ‘ are assumed to be the same, i.e.

the values of cUM 111000,1111001), 111000,1111002), ^1111000,1111004), etc.

are a l l equal. To determine the closeness among these entit ies, features of

； indiv idual entities wou ld solely be taken into account. That is the computation

in the f ine scorer. In this design, the way how the type hierarchy is d rawn

imposes no direct interference on the magnitude of the matching score. This is

， actually one of our intentions.

In implementation, the type hierarchy is also formatted as a text file under the

j Un ix f i le system. It is cur rent ly located i n the path $PRJH〇ME / d a t a /

1 hier.tab. Nodes are put i n the f i le l ine by l ine, each of wh ich contains the

nodename and the nodid, as the figure shown below,

living—organism 11

animal 111

fish 1112

cow 1111111

sheep 1111112

elephant 1111122

wildl i fe 111112

Figure 4.9 Fragment of a Type Hierarchy

The rows need not be sorted; they are inserted in arbitrary order. In the above

fragment, the entity living—organism has a nodid of 11, the entity animal has a nodid

of 111, etc.

1 Distances between two entities under the same parent

命 IMPLEMENTATION 命 7 令

4A1.3 Operations

The type hierarchy is not viewed as a frozen structure. Entries may be added or

deleted occasionally although not frequently. The possibility of alternations to

the type hierarchy should be considered. In the case of insertion, a nodid has to

be assigned to the new node since a nodid is reflecting the relative position of

the node in the hierarchy. In designing the whole system, basic manipulations of

the type hierarchy, such as insertion and modification, are allowed.

The type hierarchy should allow at least several basic operations, including

insertion, deletion and printing (listing). Other modifications can be treated as a

combination of these basic operations. Since the type hierarchy is formatted in a

i text file, the hierarchy file can be edited directly wi th an editor, such as v i , for

operations like insertion, deletion or substitution. Another way w i l l make use of

a small uti l ity named hi erop which is included as a part of the entire ARMON

I system. This ut i l i ty was written to operate the type hierarchy in a more user-

j friendly interactive manner.
I

i

I 4.4.1.3.1 Direct Edit

This method is straight forward. The file holding the type hierarchy is recalled

I and edited by any common editor such as vi or pico on Unix. W i t h this

I method, the hierarchy can be modif ied instantaneously. This advantage is

notable when there are a lot of modifications on one hierarchy. A l l modifications

I can be completed in a single edit. On the other hand, the shortcomings are also

j obvious. The user has to manually check the syntax and the consistence of the

j table. For example, it is the responsibility of the user to make sure that there is
'1 、
I no duplicate nodid on one type hierarchy.

i . •
I 4.4.1.3.2 丨nteractive Edit
I
j With this method, the hierarchy is modified by a small self-developed software

j utility. This uti l i ty accepts operations and operands from the users, and asks the

user for any unknown detail. It eventually locates a "hole" for the new entity. In

•j this system, the interactive editing features were writ ten as a ut i l i ty named

hierop which is located in $PRJHOME/bin.

命 i m p l b m b n t a h o n 命 “

Let's consider that an entity reptile is going to be inserted interactively by an user.

This w i l l be accomplished by the command h i erop i rep tile.

The ut i l i ty hi erop communicates w i th the user in a typical dialogue as shown

below in Figure 4.10.

computer : is reptile a member of living_organism ？

5 user : y

computer : is reptile a member of animal ？

user ： y

computer : is reptile a member of mammal ？

user : n

computer : is reptile a member of fish ？

user : n

computer : is reptile a member of b i rd ？

user : n

I computer : immedia te parent of "reptile" i s "animal", id:111

I Entity animal has 3 immediate child(ren):

1111 mammal

1112 fish

1113 bird

new entity repti le should have a new id of the fo rm

" 1 1 1 “

please enter the last digit of the new id

user : 2

computer : invalid, please enter another d ig i t :

user : 4
computer : the id of reptile is 1114

Figure 4.10 Adding an Ent i ty under Interactive Mode

This is a simple d ia logue between the computer and the user d u r i n g the

insertion of a new node. Having gotten the new node information, the system

w i l l show the occupied nodids to the user. The user should enter a nodid which

is not yet occupied and the system rejects any v io la t ing nodid. The nod id

命 IMPLEMENTATION 命 7 令

assignment is not yet ful ly automatic because of the possible existence of "holes"

and our intention of keeping the algorithm of hi erop simple.

In this data model, adding a node on the type hierarchy is just a simple insertion

of a record on the database. A new nodid is assigned to the new record. In this

example, reptile is a member of living_organism but none of others, therefore the

node reptile must be an immedia te ch i ld of living_organism. Its nod id must be

j "111?".

living—organism 11

animal 111

j fish 1112

丨 reptile 1114

Figure 4.11 Hierarchy Table Inserted w i th Node Reptile

The nodids operations are communicated to the users through a human-friendly

j interface. In this operation, hi erop helps user search for a "hole" to place the

i new entity and tells the user that 1111, 1112 and 1113 have been occupied. Wi th

： common sense, the user may choose any unoccupied nodid, 1114, 1115..…，etc.,
I

and, say in this case, selects 1114 for the new entity reptile. The new fragment in

the hierarchy is then adjusted as follows. I j

i
i 1
^ I
I ̂ phy_object
I 1

- • … … … … ：

living_organism
11
I - '

I •
animal

111

I I 丨 I I new entry
mammal fish bird reptile I

1111 1112 1113 1114 I
！ ~ ~ ！ ~ ！““ •
I I >

寒 _ I • _ _
g I I • I I

Figure 4.12 Hierarchy Fragment after Ent i ty Inserted

命 IMPLEMENTATION • ^

Two more operations, deletion and pr in t (display), can be done simi lar ly by

hi erop. The fol lowing shows the examples of their usage.

hierop d reptile

hierop p mammal
i

The first operation attempts to remove the node reptile and its entire sub-tree. The

3 second operation w i l l pr int the sub-tree under the node mammal. More details of

the usage of the command hierop w i l l be described in the manual pages of

Appendix E.

4.4.2 Implicit Features

As mentioned in the previous chapter, each entity has a set of default intrinsic

features. This is the secondary level knowledge in addition to the primary level

knowledge (type hierarchy). The intrinsic features are being stored in the text

I files under the hierarchical Unix file system. Each entry is stored as a file w i th a

name equal to the entity itself. Each entity fi le contains at least two fields: the
I .

I impl ic i t feature slot and the impl ic i t feature value. Two examples are shown

below.
j
！

living_organism

：' life l iv ing

j occurrence natural

state solid

cow

at_place farm

function serve—man

speed low

manner tame

i habitat domestic

legs 4

power strong

命 IMPLEMENTATION 命 7 令

The above tables show the implicit features of the entities of living—organism and

cow, respectively. They are found in the paths $PRJH〇ME / da ta / impfea /

living—organism and $PRJHOME / da ta / impfea / living一organism / cow,

respectively.

4.4.3 Database of Captions
\
\ There is another important data structure which stores the parsed captions in

logical form. A fragment of the caption database is shown in the form cf a table.

As explained before, AGENT-ACTION-PATIENT gives rise to the pr imary

semantic structure of an ordinary sentence. Each caption is stored as a basic unit

of aggregation in this manner.

As this data structure can be large in size compared to other data structure

already mentioned, i t is not stored as plain text file. Instead it is stored in a

simple relational-like database toolkit. We actually tried to look into several

possible solutions and finally found MetalBase [Jern92] in the Internet. It was

available as freeware together with source codes and documentation. It was thus

acquired for integration into our application at the source code level.

It is anticipated that a relational database exhibits higher efficiency than a plain

ASCII f i le in retr ieval when the size of data is growing large. The CAPT

database is prepared for any potential growth of the caption population in the

system. MetalBase includes a proper indexing mechanism [Jern92] to provide

better performance when CAPT grows large. However, the advantage of this

structure has not been practically shown in this prototype because CAPT is not

yet significantly large in our experiments.

A simple sample of CAPT database is shown here for i l lustration and w i l l be

used later in this chapter. Firstly i t is displayed as an usual table-like form

directly related to the relational-like database. The database file itself is stored as

$PRJH〇ME / data / capt / capt.rel in the hierarchy of the Unix file system.

• IMPIXMBNTATION • ^

capid agent action patient

1232 cow eat grass

2678 horse drink water

4511 sheep eat grass

7622 monkey walk

Figure 4.13 Fragment of the Caption Database

As mentioned in the previous chapter, a short form is used to represent the

sentences in captions and queries in a more convenient manner. In this form,

sentences in Figure 4.13 are written as 1232 {cowQ, eatQ, grassQ), 2678 {horseQ, drink[],

waterQ}, 4511 {sheepD, eat[], grassQ} and 7622 {monkeyQ, walkQ, -) , respectively. The

explicit features are then simply f i l led in the square brackets when they are

extracted from the original NL sentence. These handling of explicit and implicit

features wi l l be discussed in the coming sections.

4.4.4 Explicit Features

The set of explicit features is another important data structure. As mentioned in

the previous chapter, the explicit features are usual ly collected f rom the

descriptive text in the sentences. They are usually adjectives or adverbs which

are collectively called the attributes of the semantic groups agent, action or

patient. The attributes w i l l undergo a transformation to give the corresponding

explicit features. The rules of transformation w i l l be discussed in the next

section.

Consider again the example "the large cow is quickly eating the green grass".

The attributes are Car职 for cow, quicl^fy for eat and ^reen for grass. We label these

attributes attmg, attrac and attrpa respectively. Apply ing the transformation

map discussed later in next section, the explicit features for the entities are

； obtained:

』 AJ:large -> sizeiCargc

AV:quickly — speed: Hi^fi

AJ: green —> cotmr.grun

命 I M P I M N T A T W N 命 ^

In this implementation, we take advantage of hierarchical Unix file system to

store the explicit features of each caption, as shown in Figure 4.14.

$PRJHOME

！ I
• ‘

data

I 1 J . … • ! � 1

hier.tab impfea capt • • � � � fea.rul
I 、、、

/ I r I I 、\
/ 1011 1232 2323 capt.rel \
f %

* I

1 r - 1 ；

\ a t t rag�• attrac ‘ attrpa 、， /
• t ' t *

1 • � � • ^ Z 、 、 \ ^ •
： \

善 •

^

1 sizerlarge TTTT speed :hign

$PRJHOME/data/capt/l 232/attrag
$PRraOME/data/capt/l 232/attrac

Figure 4.14 Explicit Features Stored in a Unix File System

In this sense, the explici t features of the agent group wou ld be stored in

$PRJHOME / data / expfea / 1232/ attrag. The explicit features of the action

group would be stored in $PRJH〇ME / data / expfea / 1232 / attrac and the

explicit features of the patient group would be stored in $PRJH〇ME / da ta /

expfea / 1232 / attrpa. Figure 4.14 just shows the several items directly related

to the feature set. Other major components constructed in the file system can be

found in Appendix F.

4.4.5 Transformation Map

Transformation map is another ASCII file which holds the mapping needed for

transforming attributes into explicit features. It is named as fea.rul and kept in

命 IMPLEMENTATION 命 7 令

i the path $PRJHOME / d a t a / fea.ruL A n example of its fi le contents is shown

as fol lows:

sizeilarge great,large,big,huge,giant phy 一 object

size:small small,little,tmy phy_object

speed:high qiiick,fast activity

！ appearanceiclean clean phy—object

I colourigreen green,greemsh phy—object

i colour:red red,reddish phy—object

colouriblue blue phy—object

colouribrown brown,reddish-brown phy_object

； Figure 4.15 A Sample Transformation Map
1
I

！ Each row or record contains three fields separated by TABs (ASCII 09). The first
j

f ie ld is the explicit feature, the second f ie ld is the l ist of equivalent wr i t ten

at t r ibutes and the t h i r d f i e l d is the h igher-most ent i ty , under w h i c h the

， t r ans fo rm is va l i d . The f i r s t r o w is taken as an example to exp la in the

J interpretat ion of this table. If an entity is a sub-class of phy—object and i t was

j depicted as great, iargt, big, % e or giant. It is equivalent to hav ing an expl ic i t

1 feature of sizcdarge,

I In symbolic terms, the relationship is represented as follows :

‘ (X, ATTR) — (X, sizedargi)

\ V A T T R E {great, iargi, big, fmge, giant} n ^ (X, phy_object)
I '

I

: Following this rule, we may map the token 'Yar^ in "Car对e cow" into the explicit

,1 feature ''size:[arge' because :

i

: COW is a phy_object

] A N D
I

] Car^e e {great, targi, big, kugt, giant}

In this sense,

命 IMPLEMENTATION 命 7 令

(cow, iarg^ - > (COW, size:[ar£e)

With the same mapping rule, other expfeas of "a large cow is quickly eating

green grass" are obtained. The results are then kept in the data structure

mentioned in the last section.

In this chapter we have presented the details on how the main data structures

are implemented. In the next chapter, we shall discuss the parsing and matching

mechanisms based on these data structures.

命 IMPLEMENTATION 命 7 令

•i

C M F T E K 5
I L W J T M T l O n

Chapters ILLUSTRATION

That is the best part of beauty, which a picture cannot express.

Francis Bacon (1561-1626)
Essays (1625) Of Beauty

I n A R M O N , pars ing is the process w h i c h t rans forms na tu ra l language

descr ip t i ve text in to log ica l representat ion stored i n the back-end data

structures. For information retrieval purpose, some grammatical details can be

and w i l l be ignored wi thout significant loss of meanings of the whole sentence.

It is a basic assumption of our model and has been explained in Chapter 2. For

instance, determiner "a", auxiliary "to be" and the progressive tag, PRG, w i l l all

be ignored in this stage. Some extra information, e.g. tense, etc., are dropped in

this stage. "Eating" in the example in Figure 2.5 is given in a continuos tense.

During parsing, it passes through the decomposition into gloss tags V and PRG.

eating — eat + ing —> V + PRG

The parsing result tells that "eating" is a verb (V) in progressive state (PRG). V is

a major i n f o rma t i on for the token "eating" and PRG is just a subs id ia ry

in fo rmat ion of the token "eating". W i t h ARMON's assumption of ignor ing

subsidiary information, only the key information of a token is kept, i.e. only the

tag V is meaningfu l here. Ignor ing supplementary details as shown in this

example is sometimes called text skimming [Lewi89].

5-1 Tagged Items

In the simplest examples, there are verbs and nouns in a sentence. In most cases,

there are often adjectives and adverbs. The adjectives and adverbs are always

attributes of noun-type and verb-type entities, respectively. The PC-KIMMO

命 ILLUSTRATION 命 ®®

parses any sentence word by word into a list of gloss tag\ The possible syntactic

classes of each token w i l l be given as the parsing result.

The sample sentence "the large cow is quickly eating the green grass" is parsed

by the PC-KIMMO as follows:

the

the DT

large

large AJ

cow

"cow N

is

be AUX.3SG

quickly

、quick+ly AJ /AV+AVRl

eating

、eat+ing V+PRG

the

the DT

I green

^ green AJ.NRO

、green AJ

grass

"grass N

Figure 5.1 The Raw Output of the PC-KIMMO Recognizer

The above f igure shows a table of raw output of the PC-KIMMO. The raw

output does not prov ide any direct in format ion of semantic groups that is

required in our model. Some processing w i l l soon be addressed to cover the

necessary transformation of semantic details as needed.

1 Please refer to Figure 4.4 for a complete list of gloss tags and their symbols

• ILLUSTRATION • ^

The symbols which are shown in the above presentation have been widely

presented in previous section without much explanation. Perhaps it is a suitable

place to give some details here. These tags were def ined by the lexicon,

ENGLEX, [Antw92b] and re-tabulated in Figure 4.4 in the previous chapter. The

raw output of PC-KIMMO is simple. It is a list of records, each of which contains

the token itself, the decomposed morphemes and the related gloss tags. Gloss

tags are abbreviations for the morpheme components in tokens. The concepts

are fundamental to understand further details of the model, we shall explain the

I meaning of this tag here.

The implications of DT of "the", AJ of "large" and N of "coW, are straight-

forward because there is only one grammatical interpretation for each token.

They represent Determiner, Adjective and Noun respectively. On the other

hand, there may be tokens which have multiple tags. For example, "quick" is

tagged wi th "AJ /AV" because "quick" can be either an adjective or an adverb

as defined in ENGLEX.

AVR stands for adverbizer which converts a word into a noun. "Quickly “ here

is recognized as "'quick+ly". It is tagged with the notation "AJ /AV + AVRl" . It

means that the root "quick" can be either an adjective or adverb. However, the

suffix tag AVR means that the suffix " ly " converts the POS of "quick" into

adverb. We now call "quick" adverb-equivalent. The purpose is to distinguish

j the recognized part-of-speech from the written form of the token. The " V in

AVRl is simply an index of "AVR" for distinguishing one adverbizer from other

adverbizers, w i t h labels l ike AVR2, AVR3, etc. Those commonly used

adverbizers have been completely defined in ENGLEX [Antw92b].

AJ-NRO for "green" here means that the root of "green" is green itself and it can

be nominal ized into noun wi thout any suff ix (or regarded as nu l l suff ix).

V+PRG for "eating" have similar meaning. The " ing" suffix to "ea f gives the

root "eat" an additional progressive (PRG) meaning in addition to the default

properties of "eat".

Adverbizer (AVR) and nominalizer (NR) have been explained so far. There are

two more important gloss tags defined by ENGLEX, namely the verbalizer (VR)

命 ILLUSTRATION 命 ®®

and adjectivizer (AJR). We collectively call them POS converters. VR and AJR

have similar meaning as AVR and NR, they make words verb-equivalent and

adjective-equivalent, respectively. We do not repeat the explanation here.

In addition to these gloss tags, there are totally 40 gloss tags defined, as shown

in Figure 4.4. There are too many gloss tags to be ful ly explained here; we have

omitted much more useful details. The on-line manual of ENGLEX [Antw92b]

provides excellent explanations and illustrations of many single and combined

j gloss tags. Interested readers may obtain more background information from

this manual.

5.2 Parsing

In ARMON, parsing has the meaning of the transformation of lexical forms ‘

into logical representation I A l l the ambiguity w i l l be solved in this stage. In this

1 section, the parsing mechanism w i l l be illustrated through examples.

5.2.1 Resolving Nouns and Verbs

In this section, examples are used to illustrate how to resolve the noun-type and

verb-type tokens into the corresponding semantic groups. Since PC-KIMMO is

not a semantic parser, it does not automatically distinguish individual semantic

heads, namely agent, action and patient which are needed in the retr ieval

system. Some rules have to be formulated to distinguish these semantic groups.

In this section and the next few sections, tables are used to illustrate the stages in

resolving N L sentences into corresponding logical forms and are structurally

written as arrays and linked lists in our program.

Consider again the sample sentence, "the large cow is quickly eating the green

J grass", the nouns and verbs are extracted as follows :

、 .. . _
1 As summarized in Figure 2,4
2 As summarized in Figure 2.2

命 ILLMmON • ^

Token Gloss Tag Meaning

cow N Noun

eat V Verb

grass N Noun

Figure 5.2 Output of Nouns and Verbs from Parsing

As mentioned in previous chapter, the natural language used to wr i te caption

sentences is based on a restricted subset of common natural language. These

properties of such a subset of natural language help a lot in resolving semantic

ambigui ty . In our grammar, passive voice is avoided and hence, the agent

always precedes the patient in a sentence according to the agent-action-patient

j sequence.

The grammar of ARMON defines that nouns and verbs occur in the sequence N -

V-N in a sentence. If there is absolute certainty on one (or two) entity (entities) in

the sentence, i.e.

N - ? - N

N - V - ?

？ - V - N

？ - V - ?

N - ?

？ - V

etc.,

the possibi l i ty of ambiguous forms w i l l be greatly reduced or even tota l ly

eliminated. Lower level details, such as the second verb and the th i rd noun w i l l

be treated wi th lower significance. They can be transformed into explicit features

or simply ignored without critical effects.

1
The simplest case is that only one (or two) noun(s) occurs (occur) in a sentence.

The f irst noun is assumed to be the agent and the latter the patient. A more

compl icated s i tuat ion happens when there are more than two nouns i n a

sentence. The parser w i l l assume that the f irst noun to be the agent and the

命 ILLUSTRATION 命 ®®

second one the patient. For nouns beyond the second one, A R M O N w i l l simply

ignore them or treat them as subsidiary information.

Similarly, i f there is only one verb in the sentence, it is simply that the verb is the

action of the sentence and thus f i l ls in the corresponding semantic group.

S im i l a r l y , any "extra" verb w i l l be i g n o r e d or processed as subs id ia ry

information of the sentence. The verb eat in the above example is determined as

the action of the sentence. Consider again the sample sentence "the large cow is

j quickly eating the green grass", the analysis is briefly stated as follows :

：
- The first noun is cow, which is identified as the agent.

- The second noun is grass, which is determined to be the patient.

- The first and only verb is eat, which is determined to be the action in

the sentence.

The effective mapping between tokens in sentence and the semantic groups

therefore looks like Figure 5.3.

the large cow is quickly eating the green grass

/ / \
noun verb noun

V

agent action patient

Figure 5.3 Mapping Nouns and Verbs

W i t h the above simple a lgor i thm, the lexical tokens, cow, eat a n d grass are

designated to the semantic groups agent, action and patient respectively.

Recalling that there is a database CAPT which is implemented w i th Metalbase.

The resolved agent, action and patient are now entered in the corresponding

fields in the caption database CAPT.
_ • 1� ‘ -

命 ILLUSTRATION 命 ®®

CAPT

capid agent action patient

？ cow eat grass

Figure 5.4 Agent, Action and Patient are Fi l led as a Record i n CAPT

： Dur ing parsing, each caption is assigned an unique identif ier, capid, wh ich is

also a useful reference to this caption anywhere in the system. It is emphasized

again that capid and nod id are dist inct items, and their roles should not be

I confused.

In ARMON, a capid can be specified by the user for a particular N L caption. In

this case, the system w i l l add the N L caption as a new one i f the capid is not

existing. If the given capid is existing, the new caption w i l l replace the existing

one w i t h the same capid. Please refer to the relevant Manua l Pages in the

Appendix E for further details.

When there is no preferred capid given by the operator, A R M O N w i l l generate

an unique and unoccupied capid for the new capt ion to be inserted. In the

current implementation, the valid range of capid is 10-19999. Capid 1 is used for

identifying current query, numbers 2 to 9 are reserved for future expansion.

Assume now that a caption contains more than two nouns as in "the large cow

is quickly eating the green grass i n a farm". As i n our grammar, other nouns

beyond the second one w i l l be assumed as supplementary descriptions which

are less important m the whole sentence. In this example, the th i rd noun is farm,

wh ich is then transformed into an explicit feature pCace一at:fmtu This k i n d of

transformation w i l l be discussed in the next section. At the current stage, other

non-essential tokens, e.g. DET, AUX…..,etc., w i l l be ignored.

5.2.2 Resolving Adjectives and Adverbs

In this section, adjectives and adverbs are analyzed to f i nd out that wh ich

semantic groups they belong to. In the previous section, it has been explained

命 ILLUSTRATION 命 ®®

how the parser processes the simplest sentence into two nouns, cow and grass,

and one verb, eat. Other classes of tokens, adjectives and adverbs, are going to

be illustrated now. Firstly, the parse results of the tokens /a^e, quicl^y and ^reen

are summarized in Figure 5.5.

Token Tag Meaning

large AJ Adjective

quickly AJ/AV+AVRl Adverb-equivalent

green AJ • NRO Noun-equivalent

AJ Adjective

Figure 5.5 Output of Adjectives and Adverbs from Parsing

It is observed that each of the tokens large and quickly is given one meaning

only. They are the attributes of agent and action, named attrag and attrac,

respectively. There is no ambiguity to distinguish the POS of these two tokens.

They are adjective and adverb-equivalent, respectively. In contrast, the token

green is given two possible POS, noun and adjective. Some heuristics w i l l soon

be given to resolve ambiguities like this.

the large cow is quickly eating green grass

z / ^ ^
adjective adverb noun adjective

I 丨 丨 \ /
attrag attrac ？

Figure 5.6 Ambiguity during Mapping Adjectives and Adverbs
In the fol lowing paragraphs, part of the resolving mechanism w i l l be shown

wi th the above example. As previously mentioned, tables w i l l be used for a

clearer explanation. At first, a label is created for each lexical token used for

lexical reference. Arbitrarily, the labels are taken as the sequence of occurrence

of the token in the sentence. They are tabulated as shown below.

Sentence Table

Label Lexical Token

T " — the

命 ILLUSTRATION 命 ®®

2 large

3 cow

4 is

5 quickly

6 eating

7 the

8 green

5 9 grass

I A POS table is used as work ing storage for the possible POS of relevant tokens.

I The POS table consists of 4 columns, namely noun, verb, adjective and adverb,

j In each column, token labels are f i l led as to indicate possible POS of the tokens

belonging to. In this table, each lexical token can be f i l led as more than one

instance. In theory, each token can have one and only one POS. The incorrect

POS of each token (if any) w i l l be eliminated by an algor i thm to be described

I soon.
1
•i
I •
j

j POS Table
j

J Noun Verb Adj Adv

3 (cow) 6 (eat) 2 (large) 5 (quickly)

I 9 (grass) "8 (green)；

I C s ^ ^ P � … X ；

Recall that the relevant product ion rules f rom our grammar of the restricted

language set in Figure 2.4.

NP 二 DET . AJP . N I AJP . N I N

AJP AJ • AJP I AJ
1

• .

』 As an example，noun phrase (NP) can be expanded as the fol lowing pattern :

NP {DET}. A J r AJ2.….AJk. N

命 ILLUSTRATION 命 ®®

In this sense, adjectives always precede nouns in a particular phrase. In this

particular example, if "green" is assumed a POS of adjective, "green grass" wi th

the sequence AJ-N which obeys the ARMON grammar. But it is not true if

"green" assumes another POS, noun, because N - N violates our grammar. As a

result, the second possibility should be eliminated and only the first remains.

The POS table looks like the follows after the token "green" after noun has been

eliminated.

I — I

Noun Verb Adj Adv

3 (cow) 6 (eat) 2 (large) 5 (quickly)

9 (grass) 8 (green)

The resolved meanings are then written into the sentence table.

Label Lexical Token POS

1 the -

2 large AJ

3 cow N

4 is -

5 quickly AV

6 eating V

7 the

8 green AJ

9 grass N

I Now there are two nouns and one verb as a result of resolving the ambiguity.

According to the rules of resolving nouns and verbs addressed in previous

section, it is easy to place each noun and verb in the positions of agent, action

and patient.

命 ILLUSTRATION 命 ®®

A g e n t A c t i o n Patient attrag attrac attrpa

3 (cow) 6 (e a t) 9 (grass) ？ ？ ？

Adjectives and adverbs have been extracted by the parser. If there are only one

noun and one verb in a caption, the adjectives and the adverbs must "belong" to

the noun and the verb, respectively. If there are more than one noun and one
•

verb, predefined rules w i l l be referred. In ARMON, the patterns AJ-N and AV-V

are va l id in its grammar. Some other patterns, say AJ-V and A V - N , etc., are

inva l id . Complete lexical grammar can be referred to Figure 2.4 as in the

previous chapter.

W i th the collected information, we can now deduce that "green" is l i ke ly an

attribute of the patient, attrpa. It is written as the fol lowing table in short,

i A g e n t A c t i o n Patient a t t r a g ~ attrac attrpa

3 (cow) 6 (eat) ~~9 (g r a s s) 2 (large) 5 (quickly) 8 (green)

According to the informat ion obtained so far, the inter-relationship between

individual lexical tokens becomes clear now.

Token Semantic R o l e I m p l i e d Relation

the -

large attrag 、、

cow ag

is -

quickly attrac —、’、

eating ac 々•• '

the -

1 green attrpa 、、

grass pa < - - ' '

Figure 5.7 The Relations among Lexical Tokens

命 ILLUSTRATION • ^

However, the attributes obtained here do not yet reach the requirements of our

knowledge model. As the logical model of sentences shows, we have to map al l

attributes, including attrag, attrac or attrpa, into feature slot and value pairs. The

transformation w i l l be addressed in the next section but the result is shown here

first.

attragilarge — sizeilarge

attraciquickly speedrhigh

attrpa-.green — coloungreen

Figure 5.8 Transformation of Attr ibutes into Feature Slots and Values

5.2.3 Normalizing Features

At this stage, attr ibutes are mapped into pairs of feature slot and value. In

‘ addition, different attributes of similar meaning are "normalized" into a single

expfea in the data structure. For example, consider the attributes quickCy, fast for

the action eat. The root forms of these attributes are firstly obtained, i.e. quict^rvd

fast, respectively.

Recalling the fi le fea.ruI in Figure 4.15, the l ine about fast is marked

wi th ① as follows. (Figure 5.9)

① size:large great,large,big,huge,giantphy—object ^̂ ^̂ — -— —. •
心：二柳纽 一 … 鹏 眺 绝 - P . l }y -^b] .ec t〉

speedihigh qmck,fast activity

speedihigh hungrily eat

'.'：：rappearScexTean clean p'hy_o]^ectZ r r：--

^ •

② colour:green green,greemsh phy_object

colourired red,reddish phy_object

colourrblue blue phy—object

colounbrown brown,reddish-brown phy—object

colour:yellow yellow,golden phy—object
Figure 5.9 The Transformation Map for Normalization

命 ILLUSTRATION 命 ®®

The enclosed line ① implies mapping both "quick" and "fast" into one expfea

spudtkigfi for all sub-actions under activity, such as run.

A V i q u i c k l y — spucCifiigfi-

AV:fast — spezd:fvig(t

On the other hand, the mapping of hungrily is only valid for the entity eat.

I i.e. AV: hungri ly — spudifiigk V action g eat

In other words, the meaning of "hungr i ly" in "the tiger is running hungr i ly" is

unknown to the system. For instance, i t may be runn ing very fast to catch a

rabbit as dinner, or i t may be mov ing s lowly because i t has no energy at all.

； There may be other possible inferences, as well . It is not known because the

inference has not been def ined in the knowledge of A R M O N . It is therefore

important to define scope of validity of mapping rules for attributes.

Similarly, the adjectives for cow, AJigreat, AJilarge, AJ:big, AJihuge and AJ:giant

are also transformed into siztdargt. (... cow G phy_pbject)

j
！ AJigreat — sizeiCargc
ii

AJilarge — size:[ar^e

AJ:big — sizciCar̂ c

AJihuge -> dze:[ar丑e

AJ: giant — size:Car£e

With this mapping, attributes (adjectives and adverbs) are mapped to features

for particular scope of entities.

5.2.4 Resolving Prepositions

Prepos i t ions p lay a d i s t i nc t ro le i n n a t u r a l language sentences. Some

prepositions in a sentence are essential to the idea of the whole sentence. In

contrast, some prepositions are merely metaphors which carry little significance

in the sentence. Perhaps proposit ion gets the highest variety of patterns and

命 ILLUSTRATION 命 ®®

I meanings. For example, "by" i n the phrase "standing by the tree" has a

i meaning of position "beside". "By" in the phrase "touch by hand" means the

use of an instrument (of hand). "By next week" has an impl icat ion of t ime

sequence. The parser PC-KIMMO is able to distinguish the grammatical part-of-

speech of "by" but semantic resolution of "by" is beyond its capability.

Considering the phrase, "standing by the tree", the raw output of the PC-
I

KIMMO gives "by〃 in the above phrase possible two possible POSs, preposition

(PP) or adverb (AV).

standing

； 、standing VCstand)+NR24

j standing

、stand+ing V+PRG

I by
by PP/AV

, the

‘ the DT

； tree

I 、tree N

I

； Referring to the ARMON's grammar in Figure 2.4, there is no rule for AV-NP

： but the ru le mak ing up PP-NP exists. I t can be deduced that "by" is a

preposit ion (PP). The story has not yet ended. Its semantic meaning is st i l l

‘ u n k n o w n to us. Fur ther heur is t ic has to be f o u n d to solve "by" more
I

, thoroughly.

Remember that the primary information in a natural sentence is the focus of

？ processing. As an assumption of ARMON, low level details bear less degree of
•J

importance than primary details. Preposition is such a low level detail, loss of

which does not destroy the essence of the whole sentence.

命 nJOTmON • ^

For tuna te ly , p repos i t ions are common ly b o u n d e d w i t h i n a f i n i te set of

meanings. This assumption reduces the probabil i ty of error occurrence dur ing

resolving prepositions. In the interactive mode of operation, the system can take

the advan tage of c o n s u l t i n g the on - l i ne user i n case of non -so l vab le

prepositional phrase.

General purpose positions can be broadly grouped into l imited finite classes. In

this example, "by the tree" is a preposit ion phrase, PPP. The set of common

meanings of "by" can be found in an common d ic t ionary. In the CD-ROM

version of the Random House Unabridged Dictionary, 2nd Edit ion [Rand93], a

total of 24 meanings for the preposition "by" is defined. Some close meanings

are grouped and they are finally reduced into 10 groups.

Assume now that the system is operated in the interactive mode. The user w i l l

be asked what the actual meaning of "by" is. A sample dialogue is shown as

follows.

computer : is "by" a preposition ？

user : y

computer : select the closest meaning of the preposition
I
j "by".

1. location

2. time

3. tool

4. rule

5. reason/consequence

6. medium

X. irrelevant
user : 1

computer : select the closest meaning of the preposition

1. above

2. below

3. inside

命 ILLUSTRATION 命 ®®

4. outside

5. near to

6. far away

7. central

8. surround

9. approaching

10. separating

user : 5

j computer : done

Figure 5.10 Resolving Preposition

Figure 5.10 illustrates how the preposition "by" is being solved. The query user

is firstly asked to give a rough meaning. After "position" has been selected by

the user, the position-related sub-meanings are listed for the user to narrow

down. The user chooses "near to" f rom the list. A R M O N eventually infers a

feature of nearbyitue. for the preposition "by".

Preposition is one of the most challenging items for natural language parsers.

Like many parsers which do not give adequate resolution for prepositions, the

unattended mode of ARMON system does not provide a good result in this

matter either. To certain extent, the interactive mode of this system is a way to

overcome this difficulty. A better automatic parsing mechanism for preposition

is needed in future enhancement.

5.3 Matching

The matching process involves gross f i l ter ing which searches the semantic

groups roles in the query f rom the caption database. Fine scores are then

calculated from the explicit and implicit features in the query and the captions

obtained in the gross matching. For simplicity but without loss of generality, it is

assumed here that the sample caption database shown in Figure 4.13 is used

here for illustration of matching. It is repeated here in the short form.

1232 {cowQ, eat[], grassQ}

• lummofi • ~ ~ ^

2678 {horseQ, drinkfl, waterQ}

: 4511 {sheepD, eatfl, grassQ}

7622 {monkeyQ, walk[],-}

5.3.1 Gross Filtering

As its name implies, gross filtering extracts the roughly matched captions from

i the caption database. It passes the "filtrate" to the next stage for fine scoring. For

better understanding and comprehension, the steps of gross f i l te r ing are

illustrated wi th several examples instead of straight narration.

Case 1 -

1
Consider now the query, "a horse drinks water".

； i) The query is first parsed into the semantic heads, namely agent,

action and patient which are horse, drink, and water respectively.

The query is now represented in its short form :

{horse[], drink[], water[]}

Since there is no explicit feature being stated in the query, the

positions for the explicit features, i.e. the space wi th in the square

brackets, are left blank.

ii) Each role is then searched in the caption database. In more details,

agent horse in query is searched from the agent fields in the caption

database. Action eat in the query is searched from the action fields

I in caption database. Patient grass in the query is searched against
I
j the patient fields in the caption database.

I .

Obviously, al l the three roles can be matched in the caption

database at the caption w i th capid 2678. The matching score is
j

computed as in the previously defined formula in Chapter 2.

命 ILLUmm • 9 令

The matching score is simply 1. This is an example of exact match. The next

example w i l l show how an inexact match is processed. The gross filter has to

take more effort to get it done.

Case 2 -

Consider another query, "a horse is eating grass".

J
j i) As before, the query is firstly parsed into the agent, action and

patient roles which are horse, eat, and grass respectively, i.e. {horse[],

eat[], grass []}.

ii) For the role action, exact matching is found in captions 1232 { cow[],

i M] , grass[] } and 4511 { sheep[]. M l , grass[] }. For the role agent,
；i

exact matching is found in caption 2678 { hor^[], drink[], water[]}. For

the role patient, exact matching is found, again, in caption 1232 {

horse[], eat[] , grass[1 }. It is observed that there is no complete

matching for the whole query, i.e. no caption in the CAPT database

has al l three thematic roles matching the query. Up to now, the

closest caption is 1232 { cow[]. M l , grassfl} in which two semantic

heads eat and grass match the query.

iii) Since the agent in the query cannot be exactly found in CAPT, the

next step is to search for an agent which happens to be the closest

to the agent in query { horsen, eat[], grass[]}. The knowledge stored

in the type hierarchy is now recalled. Firstly, we check to see

whether there is any node horse in the HIER database. There is one

? whose nodid is 1111113.
i

I By masking the rightmost character, the nodid of its immediate

I ancestor is obtained, i.e. 111111 in this case. Note that it is not

j necessary to know the node name of that ancestor.

The resultant string (i.e. the nodid of its ancestor, 111111) wi l l then

I be matched against the left portion of nodid in the HIER database.

Several nodes are matched on this level of approximation, i.e. cow

命 I L W M M • 95

； (1111111), sheep (1111112) and horse itself (1111113). The entities

cow, sheep and horse are all in a sibling relationship. The searching

of siblings on the same level as horse is hence illustrated. These

steps are wr i t ten in the program called the sibl ing searching

routine.

j Next the process tries to f ind these nodes in the existing CAPT

1 database. Now horse, sheep and cow are matched in the captions

2678{horse[], dr ink[] , water[]}, 1 2 3 2 { c o w [] , ea t [] , grass[]} a n d

4511{sheepn, eat [] , grass[]} respectively. W i th this method, the

searching of the nodes in a tree is transformed into the searching of

the entries in the database. Combining with the result obtained in

the previous step, a gross result is obtained. Caption 2678 seems to

be the closest caption in this example.
j
\

1
4

In the examples above, the process of gross filtering has been shown. One gives

an exact match and the other gave an inexact match. A l l the results obtained

here w i l l be fed to the next step. Since the gross filter does not account for the

attributes associated with the semantic heads, even an exact match in the above

！ example w i l l be passed to the fine scorer in next step to have more precise

matching.

5.3.2 Fine Scoring

I The next step fo l lowing the gross f i l ter ing process is to determine the fine

matching scores in the set of captions extracted so far. The implicit features of
j each entity are searched from IMPFEA and the explicit features are extracted
f

f r om the EXPFEA in the path $PRJHOME / d a t a / c a p t / < c a p i d > /

<sem 一 group>.

•] -

Taking cow as an example, a l l its local imp l i c i t features are collected in

i SPRJHOME / data / capt / impfea / cow.

命 ILLUSTRATION 命 ®®

I place—at farm

I function serve—man

i speed low

1 manner tame

I habitat domestic

I legs 4

3 power strong

Figure 5.11 Local Implicit Features of Cow

In short, the set of local implicit features of cow is:

(cow) = { p[ace_at:farm, junction:serve_man, s^ezdiloiv,

\ manncritamc, fiaSitat:domestic, Cegs:4, powenstron^}

I

Remember that cow also inherits impfeas from all its ancestors in addit ion to

these implicit features defined at the node itself. As mentioned in the previous

section, there is a simple way to f ind the ancestors of a particular node in this

implementation. Recall that the nodid of cow is "1111111" and its immediate

ancestor is domestic, "111111". From its data file $PRJHOME / da ta / cap t /

impfea / domestic, the set of its local implicit features is found.

im^t^od (domestic) 二 { bdmgioikmm}

1

j Other ancestors up the hierarchy are 11111, 1111, 111, 11 and 1. They stand for
I herbivorous, mammal, animal, living_organism and phy_object respectively but it is not]
j necessary to know their node names if only their implici t features are to be

I found. Wi th similar operations, the impfeas of these entities are simply

i retrieved. In summary, we have:
I I
i

i^ftp^ cai (cow) = {p(xice_at:farm, junciion:servc_man, spudiCow,

i mannentarm, fuiBimdoimstic, Cegs:4, poweristrong
•j

}

(domestic) = I SeCon^to:Human]

命 lUiUSTRATION 命 ”

s imfî ea^od (herbivorous) = {dkupCmt}

5 (mammal) = {6infi :6aBy)

I (animal) = { mo6iCity:sdf_momng }

im^tf^^^ (living_ organism) = { Cifcdiving, occumnumaturd, stau:soM }

Here the implicit features are retrieved from cow to 丨iving—organism to demonstrate

j the sequence of our operations.

The explicit features are extracted in a simpler way. For each semantic group, its

set of explicit features is extracted form $PRJHOME / data / cap ! / <capid> /

<sem_group> which has been stored in logical form. For example, the explicit

: feature set of cow in caption 1232 is kept in $PRJHOME / da ta / cap t / 1232/

cow. In this case, cow has only one explicit feature pair.
！

； 碰） ={sizedar^e]

The algorithm for the remaining scoring procedures has been clearly illustrated.

No further breakdown wi l l be repeated here.

This is how the query in Chapter 3, "A large cow is eating grass in a farm", is

i processed. In that Chapter, most of the gross and fine matching procedures have

been demonstrated on high level view. With the supplement of low level details

just delivered, the whole picture how ARMON matches NL queries wi th NL

captions should become clear. As a result of the query, two close captions C^

j and C^ are returned,
j
1
I 1

j ^ =
\

I = … … … … …

I = 0.53

^ (Q, C)̂ =

二 0.81

— 一 ^

命 •

In this example, the corresponding degrees of similarity are returned together

w i th the captions. The calculation which has been shown in previous chapter

w i l l not be repeated here. As mentioned before, the user may vary the tightness

of retr ieval by adjusting the retr ieval threshold. If the user f inal ly rejects the

results obtained so far, ARMON can be instructed to search for more captions.

J In this chapter, some examples have been employed to illustrate the algorithm

about how the gross and fine matching algorithms work. Although this model is

s t i l l far f r o m an ideal retr ieval system, i t is a good i l lus t ra t ion of app ly ing

linguistic information in information retrieval. In the next chapter, we are going
I

to discuss some experiments w i th our prototype. Some diff iculties w i l l also be

j addressed there, along wi th some ways for enhancement.
'J

.1

]

I

:j -

I •

命 ILLUSTRATION 命 ®®

N

S

5

y
-c

0

S

K

c

^

f

c

m
^
t
s
s
s
m
M
w
u
i
^
i
霍

？

j

f

 r
?
r
r

 -.』；T-1r¥;「t

 —J
雪

 3
i
,

 J
i
s
^

 -
m
T
f
r
r
-
"
^
二
’
一
 究
s
i

赛

i

 I

 ,
-
.
-
-
-
」
，
-
.

 1
1
.

 r
^
'

 .:
f
f

 ,
一

 L

 :
r
r

 ..:.,„

 _

 a
s
.
i
=
H
i

 E一
r

 j
 一』」-.-

 i

 ..
-
^
J
f
 l
i
i
l

广
 ̂

i Chapter 6 DISCUSSION

^ As long as
truly intelligent and multi-purpose machines are beyond our reach,

: research and development has to concentrate on smaller tasks
that do seem to be feasible.

B.C. Papegaaij [FapeSG] p. 53

We shall now give some results and general discussions of the whole project.

: We shall f i rst ly present some general measurements of ordinary Information

； Retrieval (IR) systems, and then walk through the procedures and results of

some of our experiments w i t h the A R M O N prototype. Next the difficulties

j encountered in the project w i l l be addressed. Certain soundness and weakness

i of ARMON w i l l be brought out, and improvements of the model w i l l be raised.
I

Finally a brief conclusion of the whole project w i l l be given.

6.1 Performance Measures

In order to evaluate our prototype , we have to in t roduce some means for

measur ing the performance of general IR models . However , the general

measurements do not suff ic ient ly represent we l l our model. Thus we shall

discuss the behaviour of the prototype in terms of other factors, using the results

！ of some experiments as illustrations.
I J I
.1

6.1.1 General Parameters

j Recall and precision are two major numeric dimensions for measuring the

performance of a general IR system wh ich basically focuses on matching

retrieval results w i th a given query. These retrievals are widely used as a scale

j of performance measurement [Tesk82, Jaco92, etc.].

j
M

I

Recall measures the coverage of a retrieval. We abbreviate it as RECL in the rest

of this thesis. I t is g iven as the ratio of relevant captions which have been

retrieved and the total number of "really" relevant captions stored in the caption

• DISCUSSION 命 l � l

database. For an ideal IR system, i t equals to one. i.e. all relevant captions have

been retrieved wi thout being overlooked. In reality, i t is usually less than one

since some relevant captions have been missed, i.e. not retrieved.

Precision measures the accuracy of a retrieval, which is hereafter symbolized as

PREC. It is calculated as the ratio of relevant captions retr ieved to the total

number of retr ieved documents. For an ideal IR system, the precision also

equals one, i.e. all retrieved captions are relevant wi thout exception. For real-

I wor ld systems, the precision is less than one since some retrieved documents
1 -
•J

are not relevant.

The meanings of these two parameters are best described in Figure 6.1.

1
I
j Relevant Irrelevant
i

Retrieved w y

Not Retrieved x z

I

Figure 6.1 Several Parameters for Measuring Performance

We have, N == w + x + y + z (population of candidate captions)

PREC = w / (w+y)

RECL 二 w / (w+x)

For ideal systems, PREC 二 1 and RECL = 1
J
•j ‘

i In add i t i on to the above de f in i t i on of RECL and PREC, there is a special

！ condition which has not been considered in most articles, the condition of zero
j •

！ d i v i ded by zero. These cases occur when w+y=0 a n d / o r w+x=0. In these

circumstances, we simply label them as undefined.

i The parameters PREC and RECL were main ly , at their best, formulated for

measuring "traditional" IR systems which v i r tual ly focus on exact matching.

These systems make only "all-or-none" decisions. That is, they only grade

• DISCSSSION 寺 咖

candidates being only relevant (1) or irrelevant (0). They do not differentiate

how great they are relevant or irrelevant.

•； Distinguished from those systems, A R M O N was designed for approximate or

inexact matching as well. In principle, A R M O N is able to rank every candidate

^ caption and gives i t a value of numerical score of relevance between 0 and 1.

However, in practice, only sufficiently close captions which have been extracted

from gross filtering w i l l be ranked.

1

For inexact retr ieval, some less relevant items are intent ional ly returned by

lowering the threshold. The parameters "relevant" and "irrelevant" referred in

F igu re 6.1 are less m e a n i n g f u l and hence PREC a n d RECL are less

j representative for measuring the performance of such a system. We shall show
I

other measures for systems like this. On the other hand, A R M O N can function

like an "exact" IR system when the threshold is set to a value close to 1, say 0.9.

In this case, RECL and PREC are more meaningful because the retrieval are now

aimed to be exact. This w i l l be addressed soon in our experiments.

6.1.2 Experiments

To examine the behaviour of retrieval w i th ARMON, some experiments were

done in matching a set of captions against several queries. In the experiments, a

collection of 50 captions were buil t . Those captions were wri t ten according to

our grammar defined in Figure 2.4. The sample queries were also created wi th

these rules. It was believed that 50 captions w o u l d be suff icient to illustrate

some major behavior of approximate retrieval wi th the prototype.
1 “
j

Q1 : a large sheep is eating the long grass

Q2 : a horse is drinking water

Q3 ： a white horse is eating grass in a large farm
i
j •

6.1.2.1 Inexact Match Behaviour

i We firstly examine this inexact retrieval behaviour of ARMON. The queries Q l ,

Q2 and Q3 are fed one by one to retrieve the set of our captions. By varying the

• DISCUSSION 命 l�l

threshold and recording the number of captions being retrieved, we study the

behaviour on the plotted graph. Figure 6.2.

Retrieved Captions Pattern on 3 Queries

. r20

I r 1 Q No of Captions
I I 1 1 I Retrieved

Threshold Given ^

1 V " - " ^ Query

I Figure 6.2 Retrieved Captions w i th Varying Threshold
i
•i .

In the experiment, several properties of the graph are noticed. We shall get into

them point by point. For traditional IR system, each candidate caption is either

retr ieved or not. In ARMON, captions are not only retrieved but also ranked

wi th match score.

In the i l lustration, we observe that the retrieval patterns of Q l , Q2 and Q3 are

} different. For Q l , the number of retrieved captions are gradually dropping when

： threshold is changing from 0.4 to 1.0.

Retrieved Captions against Q1
-]

I 1 2 丁

"S

I

i ” \
” \

I t 4 \
I o 2 - \
I i ^ ^ •
I 0 -I 1 1 1 1 1 1
] 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold Given
Figure 6.3 Retrieved Captions against Q l

This is the most typ ica l behavior in our experiments, most of wh ich is not

presented in this article. On the other hand, the behaviour for Q3 is considerably

命 DISCUSSION •

different. No caption is retrieved when the threshold is set at 1.0, 0.9, 0.8 and 0.7

but there is a dramatically jump when the threshold is set to 0.6. Q3 produces a

rate of change significantly steeper than what Q1 does. For Q2, the pattern is

ly ing between Q1 and Q3; more captions are retrieved when the threshold is

adjusted f rom 1.0 to 0.4 but the change is more rapid than Q1 and less rapid

: than Q3.

Retrieved Caplions^^ 02 Retrieved CapfonsagainstQS i .1
i

i 16- \ l i t : �

“ \ I : : \
I \ t : \

] Z oJ 1 1 1 1 1 N Z Q̂ 1 1—— • • •
0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0 7 0.8 0.9 1

•mreshoHGK/en ThieshoHGiven
] j

j Figure 6.4 Retrieved Captions against Q2 and Q3

I It is noticed that the retrieval behaviour may vary greatly. The advantage of

approximate retrieval is clearly shown. For most existing traditional keyword-

based retrieval systems, such as the one currently used in the libraries in our

•j university, the retrieved items are not ranked. They do not tell users the degree

: of relevance of the retr ieved (or non-retrieved) items. Many close items w i l l

probably be overlooked and, hence important or useful information may be lost,

j For Q3, there is no exact so lut ion (score二 1.0) for this query. In this case,

！ ARMON user w i l l have to loosen the tightness by lowering the threshold to 0.8,

j say. Even that there is no match. The user w i l l have to fur ther lower the

threshold to 0.6 before some captions matching the user's query are found.

Thirteen captions are returned as the result. If thirteen captions are too many for

I the user, he/she may fractionally increase the retrieval threshold or manually
I
j select among this set of thirteen captions.
I

Comparatively, w i th the tradit ional IR systems which do not support ranked

output, if the user wants to get some close items, he/she probably has to search

around all candidate captions, a total of 50 in our case but much more in real-

wor ld applications. A commonly experienced example is the searching of books

• DISCUSSION 命 l�l

in a l ibrary. Most, if not all, of the on-line catalogue systems used in libraries

provide only keyword-based exact matching which returns only and al l exact

matches of keywords even though the retrieved documents are semantically

incorrect.

Imagine that a user wants to search for titles wi th content of the keyword "gun"

but none is found. He may have to f i nd something else by al ternat ing the

keywords l ike "pistol" or "r i f le" to check whether the caption set contains these
1

•i entities.
1 -

In contrast, w i t h the concept used in ARMON, a hierarchy and some feature

tables concerning the above items can be created and approximate searching

•j can be achieved based on this in format ion base. Systems designed w i t h our
1
j concept reduce m u c h h u m a n concern. Th is shows another benef i t of
'1

I approximate retrieval concept employed in ARMON.
1

6.1.2.2 Exact Matching Behaviour

I Referr ing to the principles discussed in the previous section, A R M O N is a

superset of the tradit ional exact matching systems. It can work as an exact IR

system as we l l by setting the retrieval threshold equal to 1. In the rest of this

section, we switch to examine the exact matching properties of ARMON. Firstly

i we choose a retrieval threshold at 0.9 which is believed to indicate a caption

j being close enough to the query.

I . • �
j According to the principle addressed in the previous section, especially the table

j indicated in Figure 6.1, we have to justify whether each retrieved caption being

relevant to the query or not. The values of w and y are obtained accordingly.

Then we have to look into each candidate caption to check how many captions

are actual ly relevant. Another parameter, x, standing for number of non-

retrieved relevant captions, is obtained. Since the involved captions are not large

in number, we can list all the involved captions here. The retrieved captions are

listed in Figure 6.5.

• DISCUSSION 命 l�l

Query Caption retrieved wi th threshold = 0.9 Relevance

！ 1 a large sheep is eating the long grass Yes

2 a cow is drinking water Yes

a cow drinks water Yes

’ 3 (none) -

Figure 6.5 Retrieved Captions w i th Threshold set to 0.9

A second problem is how we determine whether a caption is relevant or not.

There is no f ixed rule to determine how two N L sentences are relevant to each

； other. It depends on the requirement of the user and application. We have to

i manually justify the relevance of the retrieved and non-retrieved captions. We

I define a rule saying that the caption is relevant to the query if al l three semantic

j heads in the caption are equal to the corresponding semantic heads in the query,

j Reading from the examination result in Figure 6.5, al l the retrieved captions are

1 relevant to the captions. Wi th the extended defini t ion in the previous section,

the precision of retrievals concerning Q1 and Q2 are simply 1 and the precision

of retrieval wi th Q3 is undefined.

PRECq, = 1 / 1 = 1 ,and

PRECq2 = 2 / 2 = 1

We then scan the set of al l candidate captions and manual ly examine which

captions are actually relevant to the queries. For Q l , two more non-retrieved

captions have semantic heads equal to those in the query. These captions are
•1
\
\

a sheep is eating grass

j a sheep eats grass

We regard these captions "relevant" according to our previous assumptions

i Now, w = 1 and x = 2

j then R E C L q 】 = 1 / (1+2)

=0.33

For Q2, there is no observable non-retrieved caption which matches the query.

DISCUSSION ^

Now, w = 2 and x = 0

then R E C L q 2 = 2 / (2+0)

二 1 . 0

For Q3, there is no caption that matches the query and hence both recall and

j precision are undefined as previously addressed.

i.e. P R E C q 3 = undefined

RECL。， = undefined
1 • j
j Precision and Recall when Threshold set to 0.9

I m t i L ^
Q1 Q 2 Q 3

I Query

Figure 6.6 Precision and Recall Results
•1

•i
；!

j Figure 6.6 is a graphical representation of the results of PREC and RECL for the

j sample captions against the queries Q l , Q2 and Q3, w i th the retrieval threshold

j set at 0.9. Wi th this example, it is seen that the precision is pretty good but the

recall is a bit fluctuating. It is expected that the precision wi l l drop and the recall

w i l l rise i f the t ightness of ret r ieval is reduced by l ower ing the re t r ieva l

threshold, say.

6.2 Difficulties

We had encountered a lot of diff iculties in the course of project development.

The first dif f iculty, as addressed previously, lay on the seeking for an adequate
,1 .

j N L parser. In i t i a l l y we t r ied to f i nd a syntactic or semantic parser but i t

eventual ly happened to be unsuccessful. The morpho log ica l parser, PC-

KIMMO, which we eventually found, had not been known to be used in any IR

applications elsewhere. The problems in making use of a parser l ike this soon

• D I 卿 麵 • l � 8

became evident. There are many other d i f f icul t challenges in this project. We

i shall immediately look into a few of the highest concern to us.
；»

Having read a number of articles, e.g. [Lewi89], [Guli92] and [Haln90], done by

researchers involved in the area, we tr ied to gather more practical details by

getting in touch w i th the authors. Some of the authors could not be reached by

postage or emai l , e.g. Mon tgomery [Mont89] . Some of them had already

I discontinued from their work, e.g. Frump [DeJo79], in this field. Some wanted to

keep exclusive use of their parsers, e.g. TRUMP [Crof90, Jaco92, Lewi89], and

； Naive Semantics [Dahl89]. Some authors were eager to share their parsers, e.g.

McFmmp [Maul89] and MCHART [Thom83] but further development based on

j those experimental parsers were di f f icul t because ⑴ no sufficient developer's

documentation was available, and/or (ii) their development platforms were not
I

available to us.
..5 j
1 At the first stage of designing ARMON, there was a plan of using Prolog as the

major p r o g r a m m i n g tool . Knowledge of the real w o r l d mode l w o u l d be

1 represented as Prolog predicates. However, this proposal encountered a lot of

i di f f icul t ies. A t the very beginning, a parser DBG wr i t ten in Quintus Prolog

[Mont89] was selected as the parser for ARMON. DBG is a large software

consisting tens of thousand lines of source code. The documentation available to

us, however, is only a journal article of several pages . We were unsuccessful to

contact the authors [Mont89] regarding for further documentation. Guglielmo

i [Guli92] had developed a prototype of retrieval system, MARIE, based on the

1 DBG parsers. We tr ied to ask h i m for more documentat ion about the DBG

i parser but were told that no more written documentation was available from the

j original authors. Consequently we gave up using DBG as the NL parser in the

j project and Prolog was dropped as well.
I j
j Even when we were wi l l ing to pay for a commercial N L parsing toolbox, there

j was no appropriate product available together w i th source codes. Fortunately a
i

morpho log ica l parser, PC-K IMMO, was eventual ly f ound usable in our

i research. The associated lexicon, ENGLEX, was a rather complete English
I

lexicon. There were excellent documentation and illustrations w i th this parser.

Further, the software and hardware platforms are common and available to us.

• DISCUSSION 命 l�l

The inter-relation among PC-KIMMO, ENGLEX and ARMON w i l l be covered in

Appendix G. Although they are not a pair of ideal parser and lexicon, they have

given good performance after incorporation of our own context analysing rules

j as mentioned previously.

6.3 Possible Improvement

I Many IR projects done by researchers wor ldwide, e.g. ADRENAL [Lewi89],
•i

j MARIE [Guli92], had already accumulated many years of experience. Here in

； our university, we just started our investigation without any previous history in

\ this area of study. We had neither a mature N L parser and lexicon, ncr related

j knowledge base. We d id not even have any existing captions and queries for

I testing. A l l these had to be done by ourselves. It was really a great challenge for

us. Significant experience has been already accumulated to get to the current

I stage of the ARMON project. It is a great advantage to continue research in this

area in the future.

i .

There is no doubt that the current A R M O N model is not yet a perfect system.

There are many enhancements w h i c h shou ld be done to increase the

performance and usabil i ty. For instance, appropriate modern programming

techniques should raise the modular i ty , expandabil i ty and reusabil ity of the

final product. Prolog had been tried as a major development tool but was finally

given up because of many reasons already mentioned. Some object oriented

tools such as C++ had also been attempted but i t also fai led because of the

problems in integrating external toolboxes which were coded wi th incompatible

programming techniques. To achieve these enhancements, much effort had to be

I spent to re-stmcture the imported components. This plan was eventually given
I up because of the high uncertainty.
I ‘
•J

I

； Finally the C Language was selected w i th reasons also mentioned before. To
I overcome some problems known to exist wi th the use of this language, we tried
)

our best effort to structure our programs to keep ARMON's maintainability and

reusability. For example, all coding was intentionally writ ten to conform to the

ANSI-C standard. Most operating parameters were dynamically configurable

instead of "hard-coded" in the sources. W i th these provisions, the code was

• DISCUSSION 命 l�l

！.
believed to be more portable across platforms. This was f inal ly proved as the

I

I code happened to be portable across several different Unix platforms available

^ to us. Some discussions had been addressed in the previous chapters.
；I
I

...‘1

In the development of ARMON, version 1 of PC-KIMMO, which was then the
i

latest vers ion avai lab le, is emp loyed as the core parser. As p rev ious ly

mentioned, i t is just a morphological parser. This parser was chosen simply

because we d id not have any better alternative. As a morphological parser, its

major p i t fa l l is the lack of capability of analyzing context information. To cope

w i t h this l im i ta t ion, we developed certain amount of necessary addi t ional

rout ines to analyse the context in format ion. Together w i t h the restr icted

grammar, it improved the resolution power of the parser to a great extent.

We s t i l l bel ieve that a syntactic or semantic parser is much superior to a

morphological parser. Recently, a beta release of PC-KIMMO Version 2 was

•i announced. As in Version 1, i t is freely distributed on the Internet. It is a good

news for us a l though i t is a b i t late. This version is now equipped w i t h a

unif ication-base word grammar [Antw95a]. W i th this component, syntactic

analysis can be done w i th much less di f f icul ty. Together w i th PC-KIMMO 2,

Version 2 of ENGLEX [Antw95b] is also in its beta release. Although these two

products are not yet mature, they are believed to be a good couple of linguistic

tools for the further development of ARMON.

In the Summer Institute of Linguistics, Dallas, PC-KIMMO is being used as a

major component in the development of another NLP tool, PC-PATR, which is a

syntactic parser based on the PATR-II formalism [Shie84]. The alpha release of

PC-PATR is now avai lable [McCo95]. This is a good i l l us t ra t i on for the

application of the new release of PC-KIMMO and ENGLEX.

Because this new version was available only in March this year (1995), we had

not had the time to rewrite most of ARMON wi th this version of PC-KIMMO.

Many modules would have to be rewritten to certain extent in order to integrate

the syntactic components of the parser. However, it can be done without great

j d i f f icu l ty . The new versions of PC-KIMMO and ENGLEX can provide much

j improvement to our model. The most appreciated enhancement, as mentioned
o f

• DISCSSSION • �

I before, is that less effort is required for context analysis. When this pair of NL

I tools grows mature, it is reasonable to integrate this couple of improved parser
m

！ and lexicon later in the development of ARMON.
d
I

Execution speed is an issue which we have not addressed. Although there is not
I

1 yet any formal measurement, it is observed that the current implementation of

丨 A R M O N executes at a moderate speed. Some further work can be done to

】 improve the execution speed. In current implementat ion, there is no we l l

designed cache or buffer to keep the most recently retrieved knowledge. In some

cases, the speed is unnecessarily retarded because the same piece of information,

such as a particular implicit feature, is retrieved again and again form the raw

data files. Wi thou t great alternation to the a lgor i thm of current model, an

appropriate caching mechanism could improve the execution speed.

Another potential improvement should be done on the restrictive grammar. As

mentioned in Chapter 2, the grammar can be relaxed by adding several rules to

make decorative participle phrase become acceptable. With the enhanced parser,

PC-KIMMO 2, such an extension w i l l involve little effort. Further relaxation can

be done depending on requirements of application domains.

6.4 Conclusion

Information retrieval of natural language text is obvious and natural to human

beings but hard for machines to emulate. The main diff iculties happen in the

area of computer iz ing natura l language unders tanding and processing.

Researches in this area attempt to integrate artificial mtelligence, computational

l inguistic and database management techniques. Up to the present moment,

none of the known works has empowered the language processing capability

remotely comparable to the human brain. There is no commercially available

multimedia system which takes ful l advantage of the linguistic approach. Most

of the practical systems are stil l existing as "directories and files" system. Lack

of user-oriented retrieval method is a major p i t fa l l of those systems. A l l the

linguistic-aided IR systems are stil l experimental in research institutes. Much

advance and much work have to be done before those research items can be put

: to real-world systems.

一 • uT
命 D I 卿 麵 命

At the very beginn ing of this thesis, we have proposed the appl icat ion of

l inguist ic tools in fetching desired media objects f rom a large populat ion of
i

media data. A R M O N is based on this concept and has been designed as such a

model for "Approximate Retrieval of Mult imedia Objects by Natural Language

“ Captions".

Several ideas have been put forth to reduce the complexity of natural language

processing for the purpose of this kind. We have argued that accurate logical

representation of captions and queries are not necessary. Certain degree of

approximation is reasonable because an all-purpose N L understanding system

is not the goal of this project. According to the nature of the media objects,

several ways to approach approximation have been suggested.

A R M O N starts matching by recognizing only the root form of words, fol lowed

by going into low level details, then by normalizing the features, and searching

entities on the type hierarchies, and f inal ly by ranking the grossly selected

captions. These are briefly the main steps of such a multi- level approximation

with ARMON.

The resultant prototype of A R M O N has shown, to certain degree, that this

concept is a good approach that improves the traditional keyword retrieval. This

is actual ly what we have expected before start ing the project. Below is a

summary to state what and how ARMON achieves functions which have been

planned.

i. Each token in a sentence w i l l be mapped into its root f o rm before

further processing. Some minor information, such as tense or plurality,

etc. w i l l be ignored at this level. This simple operation minimizes any

w o r d undetected due to the var iety of its lexical form. This w i l l ,

i hopefully, increase the recall of the system.

If the sentence is a new caption, the decomposed sentence w i l l be placed

I in various segments over the A R M O N databases. Otherwise, i f the

sentence is a query, retrieval w i l l get into the next step.
‘

i us"
] 命 DISCUSSION •

ii. The collection of candidate captions w i l l pass through a gross f i l tering

； process, in which only roughly matched captions w i l l be extracted. This

'I screening process considers only the semantic heads and makes use of

knowledge of classification wi th a type hierarchy. This level of matching

i compares only the gross closeness between a query and the candidate

1 captions.

iii. Each roughly matched caption is individually scored against the query.

A numer ica l match ing score between 0 and 1 is calculated by an

algorithm which considers the implicit and explicit properties (features)

of the semantic entities in the captions and the query. This finer level

matching ranks the candidate captions according to their numeric

scores.

iv. The tightness of the retrieval is adjustable by a user-given threshold.

The user can optimize the Recall and Precision according to preferences

case by case. The sufficiently close captions are ranked and presented to

the user.

A t the current stage of the project, we had created the necessary knowledge

bases for searching. For example, we created a hierarchy for noun-type entities,

another hierarchy for verb-type entities, a table holding feature slots and values,

and a table for transforming and normalizing attributes f rom lexical form into

features. The imported parser and lexicon, PC-KIMMO and ENGLEX have been

rewritten and integrated. Code has been written to integrate all these knowledge

bases and modules into an operational system.
i

There is no doubt that all these knowledge and programs in ARMON are still at

a prototype stage. ARMON is, however, working quite satisfactorily according

to various measurements. It can be expanded to adopt to a realistic application

on many domains of the real wor ld w i th some further work. The expansion

should not take a lot of effort. For instances, i f A R M O N is switched to the

domain of sports, a hierarchy of sports events or equipment, etc should be built.

- [i \

命 DISCUSSION 命

Impl ic i t features of ind iv idual entities should also be defined. These tasks are

better done by experts in sports.
i

Different f rom other IR systems, here we make use of two separate knowledge

1 bases for the gross and fine levels of matching. ARMON calculates the matching

scores us ing the features of semantic groups after f i l t e r i ng by the type

hierarchy. Working w i th two independent knowledge bases at different level is

anticipated to reduce any one-sided bias that may exist. In other words, the fine

level scoring determines the matching score of a candidate caption independent

of the geometry of the type hierarchy once it has been grossly filtered.

The benefits and difficulties of linguistic approach in mult imedia data retrieval

have been discussed. We should realize that there are so many barriers and

immatur i ty in the use of natural language processing techniques to depict and

retrieve mul t imedia data. A l though great effort is st i l l required to refine the

performance of the A R M O N model, i t is yet far more realistic than the content

analysis of the media data themselves in their or ig inal forms. We strongly

believe that our proposed approach is the most practical to develop content

retrieval means for multimedia data.

.5 •i

\
X
\

\

•j

}

I .

\

— “ uiT
命 DISCUSSION •

3

c

c

N

E

R

c

r

c

i
f
 i
i
i
i
-
i
i
l
l
i
l
i
 i
l
:

 i

 f
l
-
i

 :

 i…
J

 I..

 -

REFERENCES

I [Antw90] Antworth, E.L.
I PC-KIMMO: A Two-level Processor For Morphological Analysis. Occasional
I Publications in Academic Computing No. 16., Summer Institute of
j Linguistics, Dallas, 1990.
I [Antw91] Antworth, E l .

Introduction to two-level phonology. Notes on Linguistics, 53:4-18, Summer
� Institute of Linguistics, Dallas, 1991.

[Antw92a] Antworth, E l .
PC-KIMMO 1.0.8 Users Guide, On-line documentation, package available
on FTP: / / f tp.si l .org/software/unix/pckiml08.tar.Z

, [Antw92b] Antworth, E l .
ENGLEX 1.0 Users Guide, On-line documentation, package available on

‘ FTP: I I f tp.si l .org/data/unix/englexl0.tar.Z
^ [Antw92c] Antworth, E.L. and McConnel, S.R.
: KTEXT 1.0.3 User's Guide, On-line documentation, package available on

FTP: / / f tp.s i l .org/software/unix/ktext l03. tar .Z
[Antw92d] Antworth, E.L.

KGEN 0.3 User's Guide, On-line documentation, package available on
F T P : / / ftp.sil .org/software/unix/kgen03.tar.Z

i [Antw95a] Antworth, E丄.
PC-KIMMO 2.0^27 User's Guide, On-line documentation, package

“ available on FTP: / / f tp.si l .org/software/unix/pckimmo020b27.tar .Z
[Antw95b] Antworth, E l .

ENGLEX 20p3 Users Guide, On-line documentation, package available on
FTP: / / f tp.s i l .org/data/unix/englex20b3.tar .Z

[Crof90] Croft, W.B.
Towards Intelligent Information Retrieval: An Overview of IR Research
at U. Mass. Data Engineering, IEEE, Vol. 13 (1990), No 1,17-24.

[Dahl88] Dahlgren, K. ^ ^ .
Naive Semantics for Natural Language Understanding, Kluwer Academic
Publishers, 1988.

[Dahl89] Dahlgren, K., McDowell, J. and Stabler, E.P.
Knowledge Representation for Common sense Reasoning with Text,
Computational Linguistics, Vol. 15 (1989), No 3,149-170.

[DeJo79] Dejong, G.
Prediction and Substantiation: A New Approach to Natural Language

I Processing, Cognitive Science, Vol. 3 (1979), 251-273.
[Deli911 Dalianis, H.

i A Method for Validating a Conceptual Model by Natural Language Discourse
Generation, SYSLAB Working Paper No 190, Department of Computer and
Systems Sciences, Stockholm University, Sweden, 1991.

i [DreySl] Dreyfus,H.L. , , .
i From Micro-Worlds to Knowledge Representation, in J. Haugeland (ed.),
1 Mind Design: Philosophy, Psychology, Artificial Intelligence, MIT Press, 1981.

fFill68] Fillmore, C.
The Case for Case, Universal in Linguistic Theory, Holt, Holden-Day, New
York, 1964.

[Gall91] Gallant, S.L
Context Vector Representation for Document Retrieval, AAAI-91 Natural
Language Text Retrieval Workshop, Anaheim, CA. July 15,1991 •

[Gibr82] Gibran, K. and Sayings, S. t ^ k … 、
The Next Generation of Text Processing Systems, in Teskey, F.N. (ed),

“ U 7 "
• BBFBRENCBS •

ftp://ftp.sil.org/software/unix/pckiml08.tar.Z
ftp://ftp.sil.org/data/unix/englexl0.tar.Z
ftp://ftp.sil.org/software/unix/ktextl03.tar.Z
ftp://ftp.sil.org/software/unix/kgen03.tar.Z
ftp://ftp.sil.org/software/unix/pckimmo020b27.tar.Z
ftp://ftp.sil.org/data/unix/englex20b3.tar.Z

j Principles of Text Processing, Ellis Horwood Publisher, 1982.
j [Guli92] Guglielmo. E.J.
1 Intelligent Information Retrieval for a Multimedia Database Using captions,
j Ph.D. Thesis, Department of Computer Science, Naval Postgraduate
i School, 1992.
I [Hahn90] Hahn, U.

Topic Parsing : Accounting for Text Macro Structure in Full-Text
！ Analysis, Information Processing & Management, Vol. 26 (1990), No 1' 135-
1 170.
； [Hirs87] Hirst, G.

Semantic Interpretation and the Resolution of Ambiguity, Cambridge
University Press, 1987.

[Holt90] Holtkamp, B., Lum, V.Y. and Rowe, N.C
DEMON - A Description Based Media Object Model, Proceedings of
International Computer Software and Applications Conference (COMPSAC),
Chicago, Oct 31 - Nov 2,1990.

[Jaco92] Jacobs, P.S.
TRUMPT: A Transportable Language Understanding Program,
Intermtioml Journal of Intelligent Systems, Vol 7 (1992), 245-276.

[Jem92] Jemigan, Richid
MetalBase User's Guide, On-line documentation, package available on
FTP://sunsite.ust.hk/pub/Linux/apps/database/mbase.tar

[Kart83] Karttunen, L.
KIMMO: a General Morphological Processor. Texas Linguistic Forum, 22:

！ 163-186,1983.

！ [Kosk83] Koskenrdemi, Kimmo
Two-level Morphology: A General Computational Model for Word-form
Recognition and Production. Publication No. 11, Department of General
Linguistics, University of Helsinki, 1983.

[Lewi89] Lewis D.D., Croft, W.B. and Bhandaru, N.
Language-Oriented Information Retrieval, International Journal of Intelligent
Systems, Vol 4 (1989), 285-318.

[Lum90] Lum, V.Y. and Meyer-Wegener, K.A.
An Architecture for a Multimedia Database Management System
Supporting Contents Search, Advances in Computing and Information,
Proceedings of the International Conference on Computing and Information,
Niagara Falls, Canada, May 23-26,1990.

[Lum93] Lum, V.Y. and Wong, K.P.
A Model and Technique for Approximate Match of Natural Language
Queries. Proceedings ofInfoScimce'93, the International Conference in
Commemoration of 20th KISS Anniversary, Seoul, Korea, 1993,525-534.

[Mann89] Mann, W.C, Matthiessen, CM.I.M. and Thompson, S.A.
1 Rhetorical Structure Theory and Text Analysis, Research Report ISI/RR-89-

242, Information Science Institute, University of South California., 1989.
[Maul89] Mauldin,M 丄.

Information Retrieval by Text Skimming, Ph.D. Thesis, Carnegie Mellon
University, 1989.

[McCo95] McConnel, S.
PC-PATR 0.96al3 Use/s Guide, On-line documentation, package available
on FTP: / / ftp.sil.org/software/unix/pcpatr096al3.tar.Z

[Mill86] Miller, J.R. , a r ,
A Knowledge-Based Model of Prose Comprehension: Applications to
Expository Texts, in Britton, B.K. (ed). Understanding Expository Text,
Lawerence Erlbvaum Associates, New Jersey, 1986.

lMont89] Montgomery, CA. et. al.
The DBG Message Understanding System, Proceedings of the Annual AI
Systems in Government Conference, Washington, D.C, March 27-31,1989.

�Nils80] Nilsson,N 丄.

7 m
命 REFBRBNCES 命

ftp://ftp.sil.org/software/unix/pcpatr096al3.tar.Z

Principles of Artificial Intelligence, Morgan Kaufmann Publishers, Inc., Los
Altos, 1980.

[Nire87] Nirenburg, S. and Raskin, V.
The Sub world Concept Lexicon and the Lexicon Management,

： Computational Linguistics, Vol 13 (1987), No 3-4,276-289.
[Pape86] Papegaaij, B.C., Sadler, V. and Witkam, A.P.M.

Word Expert Semantics - an Interlingual Knowledge-Based Approach, Foris
I Publications, Dordrecht, Holland, 1986.
\ [Quir72] Quirk, R., Greenbaum, S., Leech, G. and Svartvik, J.
1 k Grammar of Contemporary English, Longman, 1972.

[Rand93] Random House Inc., Word Perfect Corp.
(Random House Unabridged Electronic Dictionary, Utah,1993

[Rowe94] Rowe, N.C.
Inferring Depiction in Natural Language Captions for Efficient Access to
Picture Data, Information Processing & Management, Vol 30 (1994), No 3,
379-388.

I [Seo89] Seo, J. and Simmons R.F.
Syntactic Graphs : A Representation for the Union of All Ambiguous
Parse Trees, Computational Linguistics, Vol. 15 (1989), No 1,19-32.

[Sgal86] Sgall, P., Hajicova, E. and Panevova, J.
The Meaning of the Sentence in its Semantic and Pragmatic Aspects, D. Reidel
Publishing Company, Czechoslovakia, 1986.

[Shie84] Shieber, S. M.
•j The Design of a Computer Language for Linguistic Information,
i Proceedings of Coling84,10th International Conference on Computational
* Linguistics, Stanford University, California, July 2-7,1984,362-366.

[Simo91] Simons, G.F. . .
A Two-level Process for Morphological Analysis. Notes on Linguistics,
53:19-27, Summer Institute of Linguistics, Dallas, 1991.

[Smea90] Smeaton, A.F. •
Natural Language Processing and Information Retrieval, Information
Processing & Management, Vol. 26 (1990), No 1,111-134.

[Teng90] Tengku, M.T. and van Rijsbergen, CJ.
SILOL : A Simple Logical-Linguistic Document Retrieval System,
Information Processing & Management, Vol. 26 (1990), No 1,111-134.

[Thom83] Thompson, H.
MCHART: A Flexible, Modular Chart Parsing System, AAAI-83, 1983,
408-410.

[Tsud91] Tsuda, K., Yamamoto, K., Hirakawa, M., Tanaka, M. and Ichikawa, T.
m o r e ： An Object-Oriented Data Model with a Facility for Changing
Object Structures, IEEE Transactions on Knowledge and Data Engineering,

I Vol. 3 (1991), No. 4,444-460.
！ [Vann90] Vanni, M. ^ , . .
； Abstract of "PC-KIMMO: a two-level processor for morphological
； analysis.". Journal of Languages & Linguistics 4:498-500, Georgetown,!990.
i [Webe88l Weber, D. J., Black, H.A. and McConnel, S.R.
I AMPLE: A Tool for Exploring Morphology, Occasional Publications m
j Academic Computing No. 12, Summer Institute of Linguistics, Dallas,
1 1988.

f [Wend91] Wendlandt, E.B. and Driscoll, J.R.
Semantic Extensions to Text Retrieval, 6th Symposium on Methodologies for
Intelligent Systems - ISMIS'91, Charlotte, Carolina, October 16-19,1991.

[Woel87] Woelk, D. and Kim, W.
Multimedia Information Management in an Object-Oriented Database
System, Proceedings of the 13th International Conference on VLDB, Brighton,
England, Sept., 1987.

.1 -i

I
I 命 RBPBRENCBS 命

5

E

K

s

c

F

F

淘

•

I

—

醫

灣
 4

零 d
J
H

 I
 二
-
i
i
T
?

 -
1
1
1
.

]_

 飞
.
j
 ？
,
二

 1
,
,

「
i
:
玉
三
f
 i
.
i
l
1
l
„
i

「
3
1
l
i
l
l
i
l
5
.
t
.
5
^

！

•i

Appendix A Notation
i

A_1 Abbreviations

SPRJHOME Home directory of the ARMON source tree

AJ Adjective

AJP Adjective Phrase

attrac Set of attributes on Action

attrag Set of attributes on Agent

attrpa Set of attributes on Patient

AV Adverb

A VP Adverb Phrase

capid Caption Identity

CAPT Logical captions database

DET Determiner

expfea Explicit Feature(s)

EXPFEA Logical Database of expfea

GUI Graphical User Interface

HIER Logical Database of Type Hierarchy

impfea Implicit Feature(s)

IMPFEA Logical Database of impfea

MDB Multimedia Database

MDBMS Multimedia Database System(s)

N Noun

NL Natural Language

NLG Natural Language Generation

NLP Natural Language Processing

N L U Natural Language Understanding

nodid Node Identity

nodename Node Name

NP Noun Phrase

PP Preposition
ppp Preposition Phrase

—

• APFENDICBS 命

1 ‘！

PREC Precision

RECL Recall

S Sentence

V Verb

VP Verb Phrase

A.2 Fonts with Special Meanings

Meaning Examples

attribute or feature size: Car^e

direct quote a piece of quoted text

entity animal

function im^ca^ ()

path or filename $PRJHOME/data/capt/ impfea/aninnal

shell command hierop p animal

Title of book or journal Information Processing & Management

“ 1̂ 22
命 APFENDICBS 命

1 .
i
ft
^

三 Appendix B Glossary
^mi

一 action In a logical representation of NL sentence, action is

‘ the main process being exhibited. It is commonly a

mental or physical process and is usual ly the verb

part of sentence. I t is also called act iv i ty i n some

articles.

agent In a logical representation of NL sentence, agent is the

entity which starts to carry out an action. It is usually

the subject part in the sentence and is also called actor

in some writing.

application domain A finite real-life application area to which the media

data belong.

A R M O N The name of our project, a par t ia l acronym taken

f rom "Approximate Retrieval of Mult imedia Objects

by Natural Language''.

attributes The lexical descriptive text for semantic groups. It w i l l

be transformed into features in ARMON.

capid Caption identity, a numeric string to uniquely labeled

a caption in the database CAPT.

caption A desc r ip t i on of media data w r i t t e n i n na tu ra l

language. See also natural language,

domain expert A person who is familiar wi th the application domain

and responsible for creating hierarchies and features

in ARMON model.

ENGLEX An English lexicon used as a part of ARMON.

entity A n ob jec t on the t y p e h i e r a r c h y , used here

exchangeably wi th node,

explicit features The p roper t ies of a en t i t y w r i t t e n i n a na tu ra l

language sentence.

feature An attribute that depicts a property of the semantics

of a natural language sentence. Each feature is paired

u p f r o m a s lo t and a va lue . I n A R M O N , i t is
symbolized as sCouvalm.

— “

命 AFPENDICCS •

I
fine scoring A final stage of caption matching which takes account

of individual feature sets of semantic groups,

gross fi ltering A n early stage of caption matching which takes into

account of knowledge kept on the type hierarchy,

implicit features The hidden properties of an entity unwr i t ten in the

natura l language sentence. See also features and

explicit features.

lexical form The wr i t ten fo rm of a token (word) appeared i n a

sentence.

media data Used exchangeably wi th multimedia data,

morphemes A set of minimal ly meaningful units that compose a

word. See also morphology,

morphology The study of word structure.

multimedia data Data i tems w h i c h conta in non- tex tua l contents,

usually relating to audio or visual information,

natural language A l a n g u a g e u s e d i n c o m m u n i c a t i o n s i n the

communities of human being. In this article, it means

the English language under a restricted grammar,

node A n ob jec t on the t y p e h i e r a r c h y , u s e d here

exchangeably wi th entity,

nodid Node ident i ty, a numeric str ing to uniquely label a

node on the type hierarchy,

nodename Node name, a human readable name of a node on the

hierarchy, can be written in abbreviated forms,

patient In a logical representation of N L sentence, patient is

the entity which is undergone an action or its result.

It is usually the object part in the sentence.

PC-KIMMO A morphological parser used as a part of ARMON.

precision A performance measurement of general IR systems.

See Chapter 6 for details,

query A sentence wh ich is wr i t t en in restr icted natura l

language issued by user to match close captions used

in MDBMS.
recall A performance measurement of general IR systems.

See Chapter 6 for details.

— m

命 APPENDICES •

！
1 、

semantic groups In ARMON, any sentence is assumed to be composed

of three semantic groups, namely agent group, action

i group and patient group, any one but not all of which

may be null. Each group contains a head and a set of
]

features. For simpl ic i ty, the term "semantic group"

1 used i n this art ic le can stand for the head of the
j

associated semantic group. It is used exchangeably

：! wi th thematic roles. See also agent, action, patient and

features.

semantic head Shor t f o r m of "head of semantic g r o u p " , used

exchangeably wi th thematic role,

sentence Sentence used in A R M O N is a statement wr i t ten in

English wi th restrictions,

syntactic class Part-of-speech.

thematic roles Heads of semantic groups. See also semantic groups.

； type hierarchy The tree-l ike representat ion of the sub-class and

super-class relationship among world entities.

’ /

“

• APPENDICES 命

1
Appendix C Proposed Features

• I I I •!! I I " ‘ “ “

Feature Examples of Value

act_on food i animal 1 plant I environment I people

age <numeral> + <unit> I old I young I infant I adult

appearance dirty I bright I dark I clear

bir th egg I baby

colour none I whi te 1 yel low I orange I b rown I red I

blue I green 丨 purple

content <phyobj>

diet p lan t I an ima l I m ic roorgan ism I inorganic I

mixed

duration 〈numeral〉+ <unit> I short I med I long

frequency none I low I med I high

function serve—man I computation I transport I none

gender masculine I feminine I neuter

goal live I transport I leisure

habitat land I forest I desert I water I river I ocean I lake

I home

haspart <phyobj>

height high I med I low

life none I embryo I l iving I dead

manner fierce I tamed I polite

material <phyobj>

mobility none I self—moving I fuel—driven I gravity—driven

I f lying I aquatic

name <string>

nearby <phyobj>

occurrence natural I artificial I past I future

odour none I fragrant I sour I stinking I choking
operation 〈action〉

opponent gravity 1 obstacle I human

orientation horizontal I vertical I declined

partof <phyobj>

place_at <place>

place 一 from <place>

1 ‘ 126"
命 AFFBNDICES 命

place—thru <place>

place_to <place>
‘•1

power weak I med I strong

processing dried I cooked I preserved I fermented

relat ivejoc near I far I above I below

shape needle 1 round I rectangular I irregular I narrow

size <numeral> + <unit> I atomic 1 fine I small I med

I large

speed 〈numeral〉+ <unit> I 0 I low I med I high I SOS

I SOL (SOS = Speed of Sound, SOL = Speed of

L ight)

state solid I l iquid I gas 1 plasma

status angry I happy I sad I tired

strength hard I soft I brittle I tough

structure simple I complicated I assembled

j taste tasteless I salty I sweet I bitter I sour

temperature <numeral> + <unit> I frozen I room—temp I hot I

boiling I red_hot

texture rough I smooth

tiine_at <numeral> + <umt> I past I now I future

time—from 〈numeral〉+〈unit〉I past I now ！ future

time—to <numeral> + <unit> I past I now I future

tool none 1 mou th ! l imbs I nose I ear I opt ica l I

electrical 丨 mechanical

weight 〈numeral〉+ unit I low I med I height

； ‘

— “ i 2 r
• APPENDICES 命

i

P a

:

: Appendix D Sample Captions and Queries

Captions in Experiments

a cat saw a mouse

a cow drinks water

a cow eat corn

a cow is drinking water

a cow is eating bearing

a cow is eating com

a giraffe is walking in the forest

a horse drinks cola

a horse eats grass

a horse eats long grass

a horse is drinking cola

a horse is eat grass

a horse is eating grass

a large cow is quickly eating green grass

a large lion is chasing a small dog

a large tiger is eating a big deer

a large tiger is hungrily eating a small deer

a large tiger is quickly eating a small deer

a l ion is eating meat

a l ion is running

a lizard is lying on the rock under sunshine

a rhinoceros is wondering on the grassland

a saw breaks

a sheep eats grass

a sheep eats vegetable

a sheep is eating grass

a sleeping lion

a small cow is eating brown grass

a small goat is eating brown grass
m

• APPENDICES 命

I
S| ,

5 a turtle is laying eggs
m

i many fishes are swimming in the river
1
I some large lions are chasing a small dog

some small wolves are drinking dirty water

丨 the bear catches a fish from the river
}

the cow is eating corn

the dog is barking

the dog jumps into the water

the giant whale is closing its big mouth

the large sheep is eating the long grass

the lazy lion is waiting for its food

the long grass is green

the monkey is asking for food

the monkey is breaking the coconut on the tree

the monkey is eating coconut

the monkey jumps between the trees

the shark opens its month

the storm kil led many animals in one day

the swallow is building a net

the young birds are learning to f ly

Queries in Experiments

a large sheep is eating the long grass

a horse is drinking water

a white horse is eating grass in a large farm

一 [2 9
命 APPENDICES •

1

Appendix E Manual Pages

In this appendix, the usage of several major user commands in using ARMON

is l is ted as manual pages. These commands include cap op, tier op and

purgeCAPT. As usual in Unix convention, all commands are case sensitive, i.e.

mis-typing purgeCAPT as purgecap t w i l l not be recognized by the shell. This

example imposes an advantage to minimize the chance of CAPT being purged

carelessly. The format of these manual pages should be familiar to those Unix

users. These operation guides have been entered as the common Unix manual

page format. It can be simply re-formatted into ordinary manual pages to be

kept in the Unix file system and be read with the man command.

X

NAME

cap op - caption operations in the ARMON system

SYNOPSIS

capop a [text file] [ilu]

capop d [text file] .

capop s [text file] [ilu] [threshold]

DESCRIPTION

Command capop enables the user of ARMON to delete, add or search for

caption(s) described in a text file.

The first argument is either a, dor s which stands for add, delete or search

respectively. The second argument gives a filename which contains the

material to be processed.

~ 130"
命 APPENDICES 命

]
When the first argument is a, cap op w i l l look into the file specified in the

second argument. The file should contain the to-be-added captions on a

line.
j

I f a l ine starts w i t h the fo rm of “ nnnn > “ where nnnn is an integer, i t

implies that the user prefers to add the fo l lowing caption w i th a capid

nnnn. If nnnn does not exist in the caption database, this NL caption w i l l be

inserted as a new caption. If nnnn is currently existing, the N L caption w i l l

overwrite the existing one w i th the same capid. If the th i rd argument is i ,

i t w i l l run in the interactive mode. Otherwise, if it is u or left blank, it w i l l

run in unattended mode by default.

When the first argument is d, capop w i l l look into the file specified in the

second argument. This file should contain the caption identifier(s), capid.

； If there are mul t ip le captions to be deleted. The f i le should contain the

caption identi f iers l ine by l ine, one on each line. I f there is no caption

match ing the wanted capids, an error message w i l l be repor ted on

standard output.

When the first argument is s, capop w i l l look into the file specified in the

second argument. The f i le should contain l ines of natura l language

sentences. These are the sentences to be searched according to our retrieval

algorithm. If the th i rd argument is i , it w i l l run in the interactive mode.

Otherwise, if it is u or left blank, it will run in the unattended mode by

default. The four th argument, threshold, is meaningful in this case. It

should be given in a decimal value between 0.0 and 1.0, both inclusive. It

indicates how "close" the captions is to be matched w i t h the query in

言 o rder to be re t r ieved . I f th is a rgument is m iss ing , A R M O N w i l l

，K automatically assume a default value of 0.75.
I

. 1

I EXAMPLES

n % capop a capfile

1 ‘ isT

J： 命 AFFBNDICGS 命

1
‘ 、

Assume that the file capf i le now looks like the following :

a sheep is drinking water in the farm

13231 > a horse is eating grass

The f i rst capt ion is going to be inserted into the CAPT database. A unique

random number w i l l be generated to be subsequently used as the capid for that

caption. The second caption is going to be inserted w i th a capid 13231. If this

capid does not exist, i t w i l l be inserted as a new one. Otherwise, i f the same

capid is already existing, it w i l l replace the old one in the caption database.

% capop d capfile

Assume that the file capf i le looks like the following :

1232

23421

This command attempts to delete captions numbered 1232 and

23421. It reports any error to the user.

% capop s capfile i 0. 6

Assume that the file capf i le now looks like the following :

a sheep is drinking water in the farm

a horse

The first and the second captions w i l l be matched against the existing

caption database. The value 0.6 is the threshold value; captions exceeding this

1 "“ m

命A P P G N D� C B S命

I
I -

threshold wi l l be retrieved. The forth argument, i, suggests that ARMON runs

in the interactive mode, and the user wi l l be consulted in case of any ambiguity.
• I

� X

NAME

hi erop - hierarchy operations in the ARMON system

SYNOPSIS

hierop a [entity]

hierop d [entity] [ilu]

hierop p [entity]

DESCRIPTION

Command hi erop enables the user of ARMON to delete and add entities

or print (list) the main hierarchy.
j

The first argument can be either a, d or p, which stands for an operation of

add, delete or print, respectively. The second argument is an entity name.

The th i rd argument is optionally i or u which stands for interactive or

unattended mode, respectively, for the operation.

When the first argument is given as a, hi erop takes the second argument

as the new entity to be added to the type hierarchy. The user wi l l be asked

a sequence of questions and the location of the new entity w i l l be finally

determined. The user w i l l be given a hint on what the nodid can be and

the user should then accordingly enter an unique nodid for the entity to be

added.

When the first argument is d, hi erop will examine the second argument

ent i ty as the top-most node of the sub-tree to be removed. If the third

argument is u, the whole sub-tree headed by the node entity w i l l be

removed silently. This option should be used with great care because the

operation is irreversible. Otherwise, if the third argument is given as i or

not given at all, the interactive mode wi l l be used as default. User wi l l be

— “ m "
命 APPENDICES 命

！ *
4 �
二 prompted for confirmation from the standard input. If the specified entity

J is not found on the hierarchy, an error message wi l l be reported.

When the first argument is p, hierop w i l l print in the output a fragment

] of type hierarchy starting wi th the second argument, entity. If entity

] is not given, the whole type hierarchy w i l l be printed. If entity is not

found, an error message wi l l be reported.

EXAMPLES

% hierop a reptile

The operation tries to insert an entity named rep tile into the type

hierarchy. The user is ready to specify the entity interactively.

； % hierop d bird i

The operation attempts to delete the sub-tree starting wi th bird. If

the classes f l y ing and non- f ly ing are the chi ldren of bird, for

example, the whole sub-tree w i l l be deleted after get t ing the

confirmation from the user.

% hierop p animal

This operation wi l l print the sub-tree starting at the entity animal.

— X

NAME

purgeCAPT- purge the whole CAPT

SYNOPSIS

] purgeCAPT [ilu]

i
•I ,

DESCRIPTION

1 一 isr
命 APPENDICES 命

！

I Command purgeCAPT enables the user of ARMON to remove all caption

： records in the CAPT database and leaves CAPT blank. The command

^ takes an argument of either i or u. If u is entered as the argument, the
！ •

• hierarchy w i l l be immediate ly removed. Otherwise, the user w i l l be

； prompted for confirmation before the commitment of deletion.

EXAMPLE

% purgeCAPT u

This command w i l l attempt to clear the caption database after getting the

confirmation interactively from the user.

1

i

i

- T “ 135"
命 APPCNDICES •

I

3 �
i

t

5 Appendix F Directory Structure

I SPRJHOME/

I ~ T I T I I I
bin/ , data/ \ src/ wrk/ pckim/ mb/

、 /

、 ,

H H “ � ^ ^ 1 r ^ I
capop hierop \ englex/ kirn/ bin/ include/ lib/ src/

、
%

%
%

%

、
、
、
、

i: data/

I I ‘
hier.tab i m p f e a / capt/ fea.ral

1 1 1 1 1 I r h I
a n i m a l c o w domest ic drink eat 1 0 1 1 / 1 2 3 2 / 2 3 2 3 / c a p t r e l

I I I
attrag attrac attrpa

Figure F . l ARMON Components under the Unix File System

1 ‘
•i

.t

I

1 ‘ 136"
命 flPPBNWCB 命

Appendix G Imported Toolkits

In developing this project, two external software toolkits had been integrated,

namely the PC-KIMMO and MetalBase. Some discussions on these modules

have been presented. In this appendix , we p rov ide more detai ls on these

modules.

G.1 The PC-KIMMO

P C - K I M M O is a successor of an older sof tware K I M M O , named after its

or ig inator , K immo Koskenniemi who is a Finnish computa t iona l l ingu is t

[Antw90] . I t made use of the 2-level morpho logy model. The P C - K I M M O

project is currently led by E.L. An twor th in Summer Institute of Linguistics,

Dallas. PC-K IMMO was in i t i a l l y w r i t t en for PC w i t h In te l x86 processors

running MS-DOS. Later revisions were extended to become portable to run in

other operating systems, including the popular names like Macintosh System 7

and Unix. Version 1 and mirror revisions of PC-KIMMO were released between

1990 and 1992. Version 1.0.8 was finally a stable version of PC-KIMMO Version

1 which was chosen as the parser in our project ARMON. Useful informat ion

cou ld be f o u n d in the on- l ine text i nc l uded in the P C - K I M M O package

[Antw92a]. Background details of the 2-level morphology concept were fu l ly

discussed m Koskenniemi and Antworth's books [Kosk83, Antw90].

This parser w i l l parse each lexical token (word) as an independent item. It does

not associate the i n te r -wo rd re la t ionsh ip , i.e. the context of the o r ig ina l

statement is always ignored. This is the major pi t fal l of this "parser^ Version 2

of PC-KIMMO [Antw95a] was aimed to correct this deficiency. One main task in

ARMON was to bui ld certain context analysing rules fed from the parser's raw

output.

PC-KIMMO contains two major functional modules, namely the generator and

the recognizer. The generator composes a word token f rom its components

which are sometimes the morphemes [Antw90] of the token. According to the

theory of morphology, each word is generally composed of three components,
•~— — — “

命 APPCNDICBS 命

..1

namely the p re f i x , root and suf f ix . Each component gives a par t icu lar

contribution to the meaning of the word. Obviously the prefix and/or suffix can

be null. The function of the generator looks like the following :

PREFIX + ROOT + SUFFIX > RESULTANT—WORD

e.g. un + happy + ly > unhappily

Figure G. 1 The Function of Generator

The recognizer just does the opposite; it basically decomposes each word into

root, prefix and suffix.

ANY-TOKEN > PREFIX + ROOT + SUFFIX

e.g. unhappily > un + happy + ly

Figure G.2 The Function of Recognizer

The recognizer module was directly integrated in our system but the generator

was not.

In ARMON, ENGLEX was chosen to work w i th PC-KIMMO. ENGLEX is an

English lexicon specially designed for PC-KIMMO. It contains approximately

20000 lexical entities [Antw92b] consisting 11000 nouns, 4000 verbs and 3400

adjectives. According to the author, ENGLEX was tested wi th several running

text. These included Lewis Carroll's "Alice、Adventures in Wonderland", and

Herman Melvi l le 's "Moby Dick" . The author c la imed that a l l thei r tests

produced good results [Antw92b]. A l l these claims buil t up our confidence to

take PC-K IMMO as the parser and ENGLEX as the lexicon for bu i l d i ng

ARMON.

We took PC-K IMMO version 1.0.8 and ENGLEX version 1.0 to develop

ARMON. In March 1995, a beta release of version 2 of both PC-KIMMO

[Antw95a] and ENGLEX [Antw95b] became available from E.L. Antworth, the

original author. However, there was not sufficient time to include these recent

— — “ isT
命 imncBS •

releases in ARMON. The improvements in these new releases had been briefly

discussed in Chapter 6. In spite of many shortcomings already discussed, we

feel that the current version, ENGLEX 1.0, is a good lexicon for ARMON. It

covers almost al l the words appearing in our sentences used for captions and

queries.

G.2 Metalbase

Metalbase [Jern92] was another sof tware l i b ra ry o r i g ina l l y w r i t t e n in C

Language. Because this module is far less essential than PC-KIMMO, much

fewer words had been and w o u l d be spent to discuss i t . This too lk i t was

prepared to run on several platforms. In the beginning of the project, i t could

not be smoothly compiled w i t h the G N U C Compiler on our machines. After

some revisions, i t was then successfully compiled and i t ran on several Unix

platforms available to us.

Similarly, the whole archive was available simply through anonymous FTP on

common FTP sites, such as Sunsite and its mirrors [Jern92]. The documentation

of this package was also kept on-line w i th the source codes as an archive. The

avai lable documenta t ion p rov i ded usefu l and adequate i n fo rma t i on for

application development like this.

The toolbox is a function library for simple relational-like database operations. It

is useful for software developers who want to store and retr ieve data at a

manner similar to relat ional database. MetalBase defines its own syntax for

wr i t ing schema for its database structure. It looks like a k ind of DDL in RDBMS

although it is still far from completeness.

Several small sample programs inc luded in the package demonstrate what

MetalBase can do. The author said that the samples were not much more than

toys but they d id achieve their purpose - to demonstrate that MetalBase is

really working well on mid-sized databases. No further particulars of MetalBase

wi l l be discussed. Readers can f ind much more interesting and useful material in

the on-line documentation of the package.
!-}

I

I

I • APPENDICES 命 � “

与

Appendix H Program Listing

created by : KPWONG
Path : $ PRJHOME/wrk/Make file
Last Updated : 12 April 1995
Function : Top-level Makefile for ARMON on Linux, Solaris 2.3
and HP/UX 9.05
PRJHOME=/users/kpwong/prj/ PRJDATA= $(PRJHOME)/data/ PRJBIN=$(PRJHOME)/bin/ PRJSRC=$(PRJHOME)/src/
PRJVfRK=$ (PRJHOME) /wrk/ #
KIMHOME=$ (PRJHOME) /pckim KIMSRC=$(KIMHOME)/kimmo/ LEXDIR=$(KIMHOME)/englex/ #
MBHOME=$(PRJHOME)/mb MBSRC= $(MBHOME)/src MBBIN= $(MBHOME)/bin MB工NC= $(MBHOME)/include
MBLIB= $(MBHOME)/lib #
#OS = HPUX, SOLARIS or LINUX
OSTYPE=SOLARIS
OSTYPE=HE>UX OSTYPE=LINUX #

MAKCMD=:make PRJHOME=$ (PRJHOME) OSTYPE二$ (OSTYPE)

alls
make mb make kim make prj

clean: (cd $(MBSRC)； $(MAKCMD) clean) (cd $(KIMSRC)； $(MAKCMD) clean) (cd $(PRJSRC)； $(MAKCMD) clean) prj: make _par make _rcapt make —build
mb;

(cd $(MBSRC)7 $(MAKCMD))
kim:

(cd $(KIMSRC) ； $ (MAKCMD))
_par ：

(cd $(PRJSRC)； $(MAKCMD) par)
_rcapt:

(cd $(PRJSRC)； $(MAKCMD) rcapt)
newcapt:

(cd $(PRJSRC)； $(MAKCMD) newcapt)
_build:

(cd $(MBSRC)； $(MAKCMD) build)

TGZPILE = xtr_wrk.tgz CUR=-wrk/ tared = $(CUR)*-S $(CUR)nl* $(CUR)q* tgzs (cd ../; \
cp -p $(TGZPILE) (TGZFILE); \

, gtar zcvf $(TGZPILE) $(TARED)； \
)

rm _$(TGZFILE)

Created by : KPWONG
Path : $PRJHOME/src/Makefile
Last Updated : 12 April 1995
Function : Source Makefile for ARMON on Linux, Solaris 2.3
and HP/UX 9.05
5##

— — “ “ n r
命 APPENDICES 命

P R J H O M E = / u s e r s / k p w o n g / p r j /
PRJDATA= $ (P R J H O M E) / d a t a /
P R J B I N = $ (P R J H O M E) / b i n /
PRJSRC= $ { P R J H O M E) / s r c /
PRJWRK=$(PRJHOME)/wrk/

MBHOME=$(PRJHOME)/mb
KIMHOME=$(PRJHOME)/pckim

K T X L I B = $ (K I M H O M E) / k t e x t / s r e / o p a c l i b /
KIMLIB=$(KIMHOME)/kimmo/
KIMOBJDIR=$(KIMHOME)/kimmo/
KIMINCDIR=$(KIMHOME)/kimmo/
L E X D I R = $ (K I M H O M E) / e n g l e x /

MBSRC= $ { M B H O M E) / s r c /
MBBIN= $ (M B H O M E) / b i n /
MBINC= $ (M B H O M E) / i n c l u d e /
MBLIB= $ (M B H O M E) / l i b /

CC=gcc - g
HPUX
I N S T C M D = i n s t a l l

I N S T C M D = ： i n s t a l l - o k p w o n g - g s t f

f o r S o l a r i s , HPUX
I N S T C M D = / e t c / i n s t a l l

C F I j A G S = - I / u s r / l o c a l / i n c l u d e
CFLAGS= - 1 $ (MBINC) - L $ (MBLIB) - L $ (KTXLIB)

CAPTOATA="$(MBHOME)/data"
CFLAGS: -DCAPTDATA= “ / u s e r s / k p w o n g / i n b _ s o 1 / m b / d a t a “ \
- I $ (M B I N C) - I $ (K I M I N C D I R) -L$(MBLIB) (KTXLIB)

CFLAGS= -1$(MBINC) - 1 $ (K I M I N C D I R) -L$(MBLIB) -D$(OSTYPE) \
-DPRJHOME=\"$(PRJHOME)

a l l : r c a p t c a p o p h i e r o p

c l e a n ;
rm - f * . o t e s t s e n t r c a p t w c a p t c a p o p
(c d $(MBSRC)； make c l e a n b u i l d)

n e w c a p t :
(c d $ (P R J W R K) ; \

$ (M B B I N) / b u i l d c a p t ; \
$(INSTCMD) -m 644 c a p t . r e 1 $ (P R J D A T A) / c a p t / ； \

)
b e c a r e f u l …

rm - r / u s e r s / k p w o n g / p r j / d a t a / c a p t / [0 1 2 3 4 5 6 7 8 9] *

c a p o p : c a p o p . o h i e r f u n c . o c a p f u n c . o
$ (CC) $ (Ci^LAGS) - f - o c a p o p c a p o p . o h i e r f u n c . o c a p f u n c . o $ (R_OBJS) - I m b

c p - p c a p o p s e a r c h
$(INSTCMD) -m 7 5 5 c a p o p $ (P R J B I N)
(c d $ (P R J B I N)； rm - f s e a r c h ; I n - s f c a p o p s e a r c h)

c a p f u n c . o : c a p f u n c . c c a p f u n c . h h i e r f u n c . h
$(CC) $(CFLAGS) - c c a p f u n c . c

c a p o p - o : c a p o p . G c a p t . h c a p f u n c . h r e l d e f . h M a k e f i l e
$(CC) - c $(CFLAGS) c a p o p . c

r h i e r : r h i e r - o h i e r f u n c . o
$(CC) $(CFLAGS) - o r h i e r r h i e r . o h i e r f u n c . o

h i e r o p : h i e r o p . o h i e r f u n c . o
$(CC) $(CFLAGS) - o h i e r o p h i e r o p . o h i e r f u n c . o
$(INSTCMD) -m 7 5 5 h i e r o p $ (P R J B I N)
(c d $(PRJWRK)； rm - f h i e r o p ; I n - s f $ (P R J B I N) / h i e r o p •)

h i e r o p . o : h i e r o p . c h i e r f u n c . c h i e r f u n c . h M a k e f i l e �

$(CC) $(CFLAGS) - c h i e r o p . c

h i e r f u n c . o : h i e r f u n c . h h i e r f u n c - c c a p f u n c . h M a k e f i l e
$(CC) - c $(CFLAGS) h i e r f u n c . c

r c a p t : r c a p t . o
$(CC) $(CFLAGS) - o r c a p t r c a p t . o - I m b ### - I m b - l o p a c
$(INSTCMD) -m 7 5 5 r c a p t $ (P R J B I N)
(c d $(PRJWRK)； rm - f r c a p t ； I n - s f $ (P R J B I N) / r c a p t •)

r c a p t . o : r c a p t . c c a p t . h h i e r f u n c . h h i e r f u n c . c r e l d e f . h
$(CC) - c $(CFLAGS) r c a p t . c

b u i l d :
(c d $(MBSRC)； make c l e a n b u i l d ; m a k e)
$(INSTCMD) -m 7 5 5 $ (M B S R C) / b u i l d $ (P R J B I N)

r i f e a : r i f e a - o
$(CC) - f - o r i f e a r i f e a . o

r i f e a . o : r i f e a . c
$(CC) - c r i f e a . c

w c a p t s w c a p t . o
$(CC) $(CFLAGS) - f - o w c a p t w c a p t . o $ (R_OBJS) ### - I m b - l o p a c

w c a p t - o I w c a p t . c c a p t . h
CC -c $ (C F L A G S) wcapt.c

“ [aT

命 APPENDICES 命 �

TGZPILE = xtr_src.tgz
CtTR=src/
TARED = $(CUR)？akefil* $(CUR)*.h ${CUR)*.c
tgz:

(cd •_/; \
cp -p $(TGZFILE) „$(TGZPILE)； \
gtar zcvf $(TGZPILE) $(TARED)； \

)

R一OBJS = $(KIMOBJDIR)/rules.o $(KIMOBJDIR)/lexicon.o \
$(KIMOBJDIR)/recogniz.o $(KIMOBJDIR)/pckfuncs.o

R一OBJS = $(KIMOBJDIR)/rules.o $(KIMOBJDIR)/lexicon*o \
- $(KIMOBJDIR)/recogniz.o $(KIMOBJDIR)/pckfuncs.o

##«###############
METALBASE 5.0

tt Released October 1st, 1992 by Huan-Ti [richid@owlnet.rice.edu]
[t-richj@microsoft•com]

Generic Makefile for 5,0 Library and Utilities

Modified by : KPWONG
Path : $PRJHOME/mb/s rc/Makefile
Last Updated : 12 April 1995
Purpose •• To be used with ARMON on Linux, Solaris 2.3
and HP/XJX 9.05

! [###"#

CFLAC3S= -DSTRUCT—3
-DSTRUCT—l -- Read lower for an explanation of these, and how to
-DSTRUCT_2 -- determine which is appropriate for your system.
-DSTRUCT—3
- DSTRtrCT—4
-- for Solarix, HPUX and Linux, STRUCT_1 and
and STRUCT-3 are defined in stdinc.h
wlcp 12.2.95
-DLONGARGS -- To produce ansi-style prototypes ("void fn(int)“)
-DNOSYNC -- Removes calls to sync() and fsync(), and in-line —asm
-DNOVOIDPTR -- To use char* instead of void* (automatic for COHERENT)
-DNOENCRYPT To remove encryption crap from library and utilities
_DNEED_USHORT -- If your compiler doesn't have ushort yet (COH again)
tt -DNEED—ULONG -- If your compiler doesn't have ulong yet (most don't)
-DUNIX—LOCKS -- To enable Unix-style locking
_DSIGjiYPE=voi<a -- void or int; needed only if you define UNIX_LOCKS
-DVI—EMCr -- To add vi emulation to input,c
- D Ms Gos -- MS-DOS users should define this if their CC doesn't.
-DHPUX
-DLINUX -- Indicate OS favours
-DSOLARIS

MBBIN= -- Directory where executables should go
MBINC= -- Directory where include files should go
include/*-h In -s from src/*.h wkp 24.2.95
MBLIB= -- Directory where 1ibmb.a / mbase.lib should go

LDOPTS=-f -- To include floating point stuff for printf()

I #

All users: Update the flags just below here FIRST (don't worry about
setting -DSTRUCT一？）； then just type "make". It will compile and
run struct/struct,exe, which will tell you how to determine how
-DSTRUCT—? should be set for your system. Update this in the
Makefile and type "make install". You may delete struct/
struct.exe after you've used it.

DOS users: Try adding -DMSDOS to CFLAQS=; if you get a compiler error,
take it back out. The code expects MSDOS to be defined for all
DOS compilers--most already set it, but some may not,

Unix users: set -DUNIX—LOCKS to use flock() for file locking; otherwise,
MetalBase's inherent system will be used (which MAY cause
problems with code which does not exit properly, but which is
operationally identical).

defaults for Linux
MBBIN=/usr/local/bin
MBINC-Zusr/local/incJlude
MBLIB=/u3r/local/lib

wkp
K I M H O M E = / h o i n e / k i i n m o / k i m m o

M B H O M E : = / h o m e / m b

How to pass from env variables $MB„HOME ？

i>RjHOME=/users/kpwong/prj
PRJBIN=$(PRJHOME)/bin
KIMHOME=$(PRJHOME)/kiirnno/kimmo
MBHOME= $(PRJHOME)/mb

MBBXN=$(MBHOME)/bin

命 APPENDICES • “ 一 ̂

mailto:richid@owlnet.rice.edu

I
i �

MBINC=$ (MBHOME) / include
MBLXB=$ (MBHOME) /lib

^ ### KIMMB:mC=$ (KIMHOME)
KIMMBIjIB=$ (KIMHOME)

� O B J = . o
’ LIB=libmb.a

CURSES= -Incurses ^ NCURSES= -DNCURSES -I/usr/local/include
„ COPY=cp
, CC=gcc

HPtrx, Solaris
INSTCMD=/etc/install

^ ## HPUX
INSTCMD=install
Solaris /usr/ucb/install, Linux

� ### lNSTCMD=install -o kpwong -g stf
LDOPTS= -s

-DSTRUCT—3 for Linux
T ## -DSTRUCT_1 for Solarix and HPUX

OSTYPE passed from Makefile
f OSFLAGr： -D$ (OSTYPE)

-备 CFLAGS= -Wall -O $(OSFLAG) -DSIG_TYPE=Void -DNOENCRYPT \
-DVI—EMU -DUNIX—LOCKS -I.

售- ## HPUX needs "-DNEED_ULONG"

— ## -DVI一EMU -DUNIX—LOCKS -DNEED_ULONG -I.

， ## for with NCURSES
: ## CFIAGS: -Wall -O $(NCURSES) -DSTRUCT_3 -DSIG_TYPE=void -DUSE—CURKEY -DNOENCRYPT -DVI—EMU -DLONGARGS -
: DUNIX一LOCKS -I.
•I BLAST = blast

BUILD = build
FORM = form
MBCONV = mbconv
REPORT = report

- VR = vr
f LIBRARY = libmb.a

嗜 HEADERS=stdinc.h robase,h
1 TARGETS=$(BLAST) $(BUILD) $(FORM) $(MBCONV) $(REPORT) $(SAMPLE) $(VR)

ARCHIVE = ar rv $(LIBRARY)
， R A N L I B = ranlib $(LIBRARY)

M Rules created for ARMON wkp, 2-JAN-95

EXE=
5 mbforprj: struct$(EXE) $(HEADERS)
； make $(BUILD) make $(LIBRARY)

make instforprj

instforprj:
$(INSTCMD) -m 0755 $(BUILD) $(MBBIN)
$(INSTCMD) -m 0755 $(BUILD) $(PRJBIN)

飞 ## $(INSTCMD) -m 0644 mbase.h stdinc.h $(MBINC)
$ (INSTCMD) -ID 0644 $ (LIBRARY) $(MBLIB)

i cleanbuild:
rm -f $ (BUILD) -o $ (BUILD) $ (EXE)

i
！ all: struct$(EXE) $(HEADERS) $(TARGETS)

i install : all
i $(INSTCMD) -la 0755 $ (TARGETS) $ (MBBIN)
‘ ## $(:m;S*rCMD) -m 0644 mbase. h stdinc.h $ (MB INC)

$(INSTCMD) -m 0644 $(LIBRARY) $(MBLIB) �

: struct$(EXE) s struct̂ (OBJ)
• $(CC) -o struct$(OBJ)

/struct

遽 ©echo Now update the Makefile and make install

clean:

； rm -f *.o $(TARGETS) $(LIBRARY)

i :
， $(BLAST) : blast$(OBJ)

： $(CC) -o blast$(OBJ)
'* $(BUILD) : build$(OBJ) $(LIBRARY)
丫丨. $ (CC) $ (LDOPTS) -o build${OBa) $ (LIBRARY)

$(INSTCMD) -m 0755 $(BUILD) $(PRaBIN)
$(PORM) : fonn$(OBJ) forin_wr$(OBJ) $ (LIBRARY)

$ (CC) $ (LDOPTS) -o $& form$ (OBJ) forin_wr$ (OBJ) $ (LIBRARY)
• $(MBCONV) : mbconv?(OBJ) $(LIBRARY)

$(CC) $(LDOPTS) -o $0 mbconv$(OBJ) $(LIBRARY)
M

^ $(REPORT) : report$(OBJ) $(LIBRARY)
“ $(CC) $(LDOPTS) -o report$(OBJ) $(LIBRARY)

$(VR) J vr$(OBJ) $(LIBRARY)
® $(CC) $(LDOPTS) -O vr$(OBJ) $(LIBRARY) $(CURSES)
•m

- r ^
s • APPENDICES 命

塵
da

_ ## $(LIBRARY—0) ： entry$(OBJ) lock$(OBJ) input$(OBJ) mbase$(OBJ)\
1 # # p a r s e $ (O B J) t i m e d a t e ? (O B J) u t i l l $ (O B J) \

u t i l 2 $ (0 B J) c a c h e $ (O B J) c r e a t e $ (O B J)
$(ARCHIVE) entry$(OBJ) lock$(OBJ) input$(OBJ) inbase$(OBJ)\
parse$(OBJ) timedate$ (OBJ) \

W ## utill$(OBJ) util2$(OBJ) cache$(OBJ) create$(OBJ)
5 ## $ (RANLIB)
坑 ##
I $ (LIBRARY) : l o c k $ (O B J) i n b a s e $ (OBJ) \
！ parse$(OBJ) timedate$(OBJ) utlll$(OBJ)\
f utll2$(0BJ) cache$(OBJ) created(OBJ)
M $(ARCHIVE) lock$(OBJ) mbase$(OBJ)\

parse$(OBJ) tlinedate$ (OBJ) utill$(OBJ) \
util2$(OBJ) cache$ (OBJ) create$(OBJ)

${RANLIB)

••'wsi

i二

T # UNIX makefile for PC-KIMMO
Steve McConnel, 14-Jul-90

1 ## # Modified by : KPWONG
Path : $PRJHOME/pckiin/kiinir»o/Makefile

T # Last Updated ‘ : 12 April 1995
邏 # purpose ： To be used with ARMON on Linux, Solaris 2.3
- # and HP/UX 9.05 ^ #

, ft
choose your system by the CFLAGS definition

I # ^ # System V:
#CFLAGS=-0 -DUNIX -DUSG

•s #
I # BSD or SunOS:

m # # CFIiAGiS=-0 -DUNIX -DBSD
— # TJLTRIX:
CFIJA(3S=： — O -DUKIX -DBSD -DULTRIX 二 #

^ # # # # # # # # # # # # # # # # #
choose your compiler by the CC definition (CC=cc is standard)

: ## c c=cc
J ##0K for Solaris and Linux： CC=gcG -g -Wall -DUSG -O
, ## -DHPUX

OSTYPE passed from Makefile
OSFLAG=-D$(OSTYPE)

CC=gcc -g -Wall -DUSG -DUNIX $(OSFLAG) -O
##CC=gco -g -Wall -DUNIX -DUSG -DHPUX -0

OBJS-pckimmo.o usercmd.o userfunc.o\
lexicon.o rules.o generate.o recogniz.o pckfuncs.o

s
SOURCES=pckiinino.c usercmd.c userfunc -c\
lexicon-c rules.c generate.c recogniz.c pckfuncs.c

s pckimmo; $(OBJS)
» $(CC) $(CFLAGS) -o pckimmo $(OBJS)

_ pckimmo.lint: $(SOURCES)
lint $ (LINTFLAGS) $ (SOURCES) >pck:linino. lint

.� pckimmo.calls: $ (SOURCES)
“ calls $(CALLPLAGS) $(SOURCES) >pckiimo.calls

凝 pckiTtuno.o: pckinoDo.h version.h
usercmd.o: pckimmo,h
userfunc.o: pckimmo.h

— lexicon.o: pckimmo.h
二 rules.o: pckimmo.h
一 recogniz.o: pckiinino.h

generate.o： pckimmo.h
7 pckfuncs,o: pckimino.h

？ ###
” # simple test programs to check out modularity

S # G一OBJS = g.o rules.o generate.o pckfuncs.o

5 g： $(G—OBJS)

Z $ (c c) $(CFLAGS) 一 o g e n e r $ (G _ O B J S)

學 g.ot g.c pckimmo.h

* RO_OBJS = rO,o rules.o lexicon.o recogniz.o pckfuncs.o

三 rOJ $ (RO_OBJS)
— $(CC) $(CFLAQS) -o rO $(RO_OBJS)

二 “ [44
， • APPENDICES 命 L M

I
m
m

rO,o: rO.c pckiiwno.h

^ R__OBJS = r.o rules.o lexicon.© recogniz.o pckfuncs.o

r: $(R_OBJS)

${CC) $(GFLAGS) -o recog $(R_OBJS)

r.o: r.c pckimmo.h

all: pckimmo g r

clean:
rm -f pckimmo g r *.o pckimmo.lint pckimmo.calls

TGZFILE = kiin_kp-tgz
tgz : *.c *,h

tar zcvf $(TGZFILE) ？akefile* *-h *.c
mcopy $(TGZFILE) c:
mcopy $(TGZFILE) d:

Created by : KPWONG
Path : $PRJHOME/wrk/capt•s
Last Updated : 8 March 1995
Function : Definition of caption database, written
in Metalbase Schema, manupulated with
MetalBase tollbox

relation capt

field capid type string length 12; # caption ID
field agent type string length 18; # the agent of action
field action type string length 18; # the main action of the sentence
field patient type string length 18; # the patient of action

index ix—capid on capid with duplicates;
index ix_agent on agent with duplicates;
index ix—action on action with duplicates;
index ix_patient on patient with duplicates;
index lx_patient on patient with duplicates;

end

* reldef.h - Header file for defining
* paths and fields of CAPT on
* Metalbase

*

* Written ： Kit-pui Wong
*

* Last Updated : 21 March 1995
*

#define CAPT—REL—FILE "capt.rel" �

#define CAPT_HPILE "capt.h"
#<aefine CAPT_FLD_LENS capt—str—len
#define CAPT_STR_DEF capt—str

#include CAPT_HFILE /* Created during build capt.s" */

/ … … … … … * … … … … … … … … … … … * * … … … …
* capt.h - CaptIon operations header file

*

* Written ： Kit-pui Wong
*

* Last Updated : 23 May 1995

i "

i
i Mfndef CAPT_H

I #define CAPT_H

— ‘

• APPENDICES •

丨* This file was created by MetalBase version 5.0 to reflect the structure
* of the relation "capt".

* MetalBase 5.0 released October 1st, 1992 by virtual 1rIchidSowlnet.rice.edu

*/

typedef struct , , ^ ̂ .,
(char capid[12]; /* field capid type string length 12 /

char agent[18]; /* field agent type string length 18 */
char action[18]; /* field action type string length 18 */
char patient[18]; /* field patient type string length 18 */
} capt_str;

/*====== Added by KP Wong (in build.c), 25Aug94 ======*/
/*== unsigned xx_str_len[] = {ArySize, lenO, lenl) ==*/
#ifdef NOW_DEF_LEN

unsigned capt—str—len[] = {4, 12, 18, 18, 18);
#else

extern unsigned capt_str_len[]；

#endif
#ifndef MODULE

capt—str capt_reG；

#else
extern capt_str capt_rec;

ttendif

#endif

^* capfunc.h - Header files for caption operations

*

* Written by ： Kit-pui Wong
*

* Last updated : 21 March 1995

* /

#include <stdio,h>
#include <ctype.h>
#include <string.h>
#include <pckiinmo • h>

/**** remember to define char 一buf—[127] ****/
/* wherei is rules file and and lexicon file (ENGLEX) */
#define RUL—FILE ((char *) strcat(strcpy(_buf_, PRJHOME), "/pckim/englex/english.rul"))
#define L E x I p i L E ((char *) strcat(strcpy(_buf_, PRJHOME), “/pckira/englex/english.lex"))

#include <time.h>
#include <stdio.h>

#ifndef CAPTPATH
< i e f i n e CAPTPATH “ / u s e r s / k p w o n g / p r j / d a t a / c a p t / "
e n d i f

#define IPEA_PATH “/users/kpwong/prj/data/impfea/"
#define FEA_RUL “/users/kpwong/prj/data/fea.rul“

#define ATTR_AG "attrag"
#define ATTR_AC "attrac" �

#define ATTR_PA "attrpa"

#ifndef ATTRNAME
.define ATTRNAME 1
char attrnaine[4] [10] = {"•_, ATTR_AG, ATTR_AC, ATTR_PA}；

#en<iif

#define QID 1

#define BSIZE 200

/*==== Parts of Speech from KIMMO =======*/
#<aefine VERB 1
#define NOUN 2
#define ADJ 3
#define ADV 4
#define PP 5 #<aefine DET 6
#define UNKNOWN -1

/ * = = = ： = = = = = Semantic role ========*/
#define AGENT 1
#define ACTION 2
#define PATIENT 3
#define EFEA一AGENT 4
#defiiie EFEA一ACTION 5
#definei EPEA_PATIENT 6
#de£lne UNKNOWN -1
#define EOL -1

‘
• APPENDICES 命

#define YES 1
#<iefine NO 0

#include <mbase.h>
#inclu<ie "reldef.h" /* Created during build *.s" */

/*== defined in PC-KIMMO ==*/

LANGUAGE Lang;
long elaparr[79];
extern char *skipwhite()；

extern RESULT *recognizer()；

Z* hierfunc.h - Header file for hierarchy operations

It

* Written : Kit-pui Wong
*

* Last Updated : 21 March 19 95
*

*
* /

/** where is table of type hierarchy **/
#define HFILE ((char *) strcat (strcpy (_buf._, PRJHOME) , /data/hier, tab"))

#define FAILED 0
#define SUCCESS 1
#defiiie INEXIST 0
#define EXIST 1
#define MAXSIBLS 50
#define MAXCHILDN 50

/* The seq of field in hier table */
#define FIELD—NODEID 1
#define FIELD—NODENAME 2

typedef struct
{ char node[30];

char *next;
} StringListStr;

/ *

* hierop.c - HIER operations in ARMON ***
«

* Written : Kit-pui Wong
*

* Last Updated : 21 March 19 95
*

#include <stdio-h> �

#include <stdlib.h>
#include <inath.h>
#include "hierfunc.h"
#include "capfunc.h"

extern long FindNodeld(), FindAnces(), dist();
extern char *FindNodeNaine ();
extern int GetAllChildn();
extern int Get ImChildn ()
extern int GetAllSibls();

void mainC)；

long Get工mAnces()7
int CheckExist();
int CheckArg();
int insHler{);
int AskMember();

char _buf_[2003;
char hfile[200];
char AssumedRoot[]="phy_obj“；

#define INSCODE

#define FAILED 0
#defiiie SUCCESS 1
#define INEXIST 0
#define EXIST 1
#define MAXSIBLS 50

“
• APPENDICCS •

#define MAXCHILDN 50 … /

/ *
* main starts
*/

void main (argc, argv)
int argc；

char **argv; {
int res;
char opcode；
char operand[30];
strcpy(hfile, HPILE)；

if ((res = CheckArg(argc, argv, fiopcode, operand)) ！= SUCCESS)(
exit(0);

printf ("opcode=%c operand=%s\n", opcode, operand)；

switch (opcode) {
case INSCODE : insHier(hfile, operand);

break;
default : fprintf (stderr, "Invalid Opcode: opcode);

}；
exit(0);

}；
/*
* checkArg() - Check Arguments
*/

int CheckArg(argc, argv, opcode, operand)
int argc； char **argv; char *opcode; char *operand; {

char tempOpcode[30];
if (argc == 3) {

strcpy (tempOpcode, argv[1]);
strcpy (operand, argv[2])；

} else {
fprintf (stderr, "Syntax: %s [ill] <newentity>\n", argv[0]);
return FAILED;

> 7

if (strlen(tempOpcode) 1= 1) {
fprintf (stderr, "Invalid Opcode: tempOpcode);
return FAILED;

} else {
*opcode = tempOpcode[0];

}；
return SUCCESS;

}；
/*

* insHier() - Insert to HIER
* /

int insHier(hfile, operand)
char *hfile, *operand; {

int i;
long newid;
char tempstr[2 0];
int n, lastdigit;
char aChar='?';
char InvalidSet[20]="
char ChildnBuff[MAXCHILDN][20];
char ParentName[30];
long ImmedParent, idtemp;
int IsExist;
IsExist = CheckExist(hfile, FIELD_NODENAME, operand);
/** printf ("IsExist=%u\n", IsExist)； */
if (IsExist == EXIST) {

printf ("Error: candidate \"%s\" exists\n", operand);
return FAILED;

>；
ImmedParent = GetlmAnces (hf ile, AssuinedRoot, operand);
FindNodeName (ParentName, hf ile, ImmedParent)；

printf ("Immediate parent of \"%&\" is id\%ld\n",
operand, ParentName, ImmedParent);

memset(ChildnBuff, 0, sizeof(ChildnBuff))；

n = GetImChiIdn(hfile, MAXCHILDN, ChildnBuff,
sizeof(ChildnBuff[0]),
ParentName)；

； printf (">> Entity %3 has %n immediate child(ren) ParentName, n);
for(i=0; (i<MAXCHILDN) && (ChildnBuff[i] [0])； i + +) (

idtemp = PindNodeld(hfile, ChildnBuff[i]);
printf ("%ld idtemp, ChildnBuff[i]);
lastdigit = idtemp - (idtemp / 10) * 10;
sprintf(InvalidSet, "%3%d", InvalidSet, lastdigit);

/* careful: recursive */
} ；

printf("New entity %b should have a new id of the form \"^ld_\"\n",
operand, ImmedParent);

printf("Please enter the last digit of the new id\n");
while ((aChar < '0') II (aChar > '9')

I I s t r c h r (工 n v a l i d S e t , a C h a r)) {
aChar = AskDigit("Please enter a digit :");

>；
newid = (10 * ImmedParent) + (aChar - '0');
printf ("The id of %9 is %ld\n", operand, newid);

}；
/*
* GetlmAnces() - Get Immediate Ancestor of a node
*/

long GetlmAnces(hfile, localroot, target)

— ‘ T jF
命 APPENDICES • “ 一 ̂

char *hfile; char *localroot, *target; {
char ChildnBuff[MAXCHILDN][20];
long Itemp;
int i, nChildn;
meinset(ChildnBuff, 0, sizeof (ChildnBuf f));
nChildn =

GetImChildn{hfile, MAXCHILDN, ChildnBuff,
sizeof(ChildnBuff[0]), localroot);

if (nChildn==0) {
Itemp = F indNodeId(hf ile, localroot);
return Itemp;

>；
/*** printf("nchildn=%u\n", n)； ***/
for(i=0; i<nChildn; i++) {

if (AskMember (target, ChildnBuff[i]) == Y E S) (
Itemp = GetImAnces(hfile, ChildnBuff[i], target);
return Itemp;

)；
}
Itemp = PindNodeld(hflie, localroot)；

return Itemp;
/* *res = (restemp > *res) ？ restemp s *res; */

>；
/*
* AskMember() - Whether two nodes in membership relation
*/

int AskMember (lownode, upnode)
char *lownode, *upnode；
{

char qn[200];
int ans=0;
sprintf (qn, "Is %3 a member of %s ？ ••, lownode, upnode);
ans = AskYesNo (qn);
return ans;

}；

* hierfunc.o - Functions library for type hierarchy

*

* Written : Kit-pui Wong
*

* Last Updated : 21 March 19 95
*

#include <stdio.h>
#include <stdlib.h>
#include <inath-h>
#include "hierfunc.h"
.define ATTRNAME
#include "capfunc.h"

extern int AskMember();

char *PindNodeName();
long FindNodeId()
long PindAnces()；

void PindAllAncesO ;
void AlllfeaO ;
long dist{)；

void XtractlfeaO ;
float SimlPeaO ； �

float SimAllFeaO ;
void StripNLO ;
int isBelongTo();
int CountLines();
int CountIntersect();
int AskYesNo();
void ReadAllFeaO ;
void ReadEfeaO ;

char _buf—[100]?

/*
* FindNodeName() - Find the nodoname from a nodid
*/

char *PindNodeNaine (exit, hf ile, node) char *ent； char *hfile; long node；
{
#define BSIZE 90

char sh[80];
char bufCBSIZE], buf1[BSIZE];
long Id = 0;
FILE *fp;
ent[0]='\0';
sprintf (sh, "grep ^Id ^s", node, hfile)

/* printf ("9h=569\n", sh) ； */
if ((fp = poperiCsh, "r")) 1= NULL) {

while (fgets (buf, BSIZE, fp) 1= N U L L) (
sscan£(buf, &id, bufl)；

— “ u g "

• APPENDICES •

if (id == node) {
strcpy (ent, buf1)；

break;
}；

}；
>;
pclose(fp);
return ent；

>

* PindNodeldO - Find the node id from a node name “
long PindNodeId(hf ile, node)
char *hfile; char *node; {
#define BSIZE 90

char sh[80];
char buf[BSIZE], ent[BSIZE];
long id =0；

long idWork=0；

FILE *fp;
sprint f (sh, "grep node, hf lie);

/** printf ("sh=%s\n", sh)； **/
if ((fp = popen(sh,"r")) 1= NULL) {

while, (fgets (buf, BSIZE, fp) 1= NULL) {
sscanf(buf, fiidWork, ent)?
if (istrcmp(ent, node)) {

id = idWork;
break;

}；
>；

}；
pclose(fp);
return id;

}
/ *

* FindAncesO - Find the ancesotr of a node by node id
*/

long PindAnces(hfile, nodeid)
char *hfile; long nodeid; {

char buf[15];
. if (nodeid <= 9) {

return 0;
>；
sprintf(buf,"免Id", nodeid);
meiDset (strchr (buf, 0) -1, 0, 1);
return atol(buf);

}；
/*
* isBelongToO - Whether the lower node is a sub-class
* of the other
*/

int isBelongTo(hfile, lower, upper)
char hfile[], lower[], upper[]; {

char lowid[20], upid[2 0];
int yesno;
sprintf(lowid, , PindNodeId(hfile, lower));
sprintf(upid,"戈Id", FindNodeld(hfile, upper))?
yesno = I strncinpdowid, up id, strlen(upid));
return yesno;

}
/ *

* FindAllAncesO - Find all ancestor of a node
*/

void PindAllAnces (hfile, nodeid)
char *hfile； long nod©id; {

while (nodeid > 9) { �

nodeid=PindAnces(hfile,nodeid);
printf ("nodeid=%ld\n", nodeid);

}；
}?

/*

* AlllfeaO - Find all impfea of a node “
void Alllfea(hfile, nodeid, outfile)
char *hfile; long nodeid; char *outflie; {

char name[200];
char sh[4 0];
sprintf(sh, "rm %s", outfile)；

system(sh);
printf ("in Alllfea\n");
printf("** n o d e i d = [k i d] n o d e i d) ;
for (； nodeId > 9； nodeid=FindAnGes(hfile,nodeid))(

PindNodeName(name, hfile, nodeid);
printf ("naine= l%3] \n", name)；

XtractIfea(name, outfile);
}；

； printf ("exit Alllfea\n");

4 ‘
/*

J * dist() - the dist function of two nodes

I
命 APPENDICES • “ 一 ^

*/
long dist(ldl, ld2)
long Idl, id2; {

char nodel[20], node2[20], res[20];
Int i=0;
memset(nodel, 0, sizeof nodel);
roeroset(node2, 0, sizeof node2)；
sprintf(nodel, idl);
sprintf(node2, ld2);
printf (” % s \ n " , nodel, node2);
for (1=0; nodel[1]； i++) {

res[i] = '0' + ((nodel[i]-'0') 1二 (node2[i]-'0'))；

>；
for (? node2[i]; i++) {

res[i]='0';
>；
res[i]='\0';

/* printf (" r e s = % s r e s)； */
return atol(res);

>；
/*

* xtractlfeaO - Extract the Impfea of an entity
*/

void Xtractifea(entity, outfile)
char *entity; char »outfile; {
#de!fine BSIZE 90

char sh[80];
char buf[BSIZE], slot[30], val[30];
FILE *pfp, *fp；

/* char path[]="./impfea/"; */
char path[]=IPEA_PATH;

/ *

sprintf (sh, "cat %s%s » %s", path, entity, outfile);
system (sh)；

* /

/* printf ("«* in Xtractlfea\n"); */
if (!(fp = fopen(outfile, "a"))) {

printf("File open error: %s\n", outfile);
exit(O);

}；
i sprintf (sh, "cat % s % s " , path, entity);

printf ("sh=%s\n", sh)；

if ((pfp = popen(sh,"r")) 1= NULL) {
/* printf ("An") ； */

while (fgets (buf, BSIZE, pfp) 1= NULL) {
/* printf (" #\n__); */
sscanf(buf, "%s%s", slot, val);

/* printf ("slot: [%s]\tval=[%s]\n__, slot, val) ； */
fprintf(fp, "%s\t%s\n", slot, val);

} ;
}；
pclose(pfp);
fclose(fp);

}；
/*

* ReadAllPeaO - Read all features in a caption
*/

void ReadAllFea(tempfn, hfile, capid, entity, attrtype)
char *teinpfn; char *hfile; int capid; char *entity; char "attrtype; {

printf ("in ReadAllFea\n")；

if (entity[0]) {
/* NodeId = PindNodeId(hfile, entity)； */

Alllfea (hfile, PindNodeld(hfile, entity), tempfn);
)；
ReadEfea (tempfn, capid, attrtype);

)；

/*
* ReadEPea() - Read expfea in a caption

void ReadEfea(tempfn, captid, attrtype)
char *teinpfn; int captid; char *attrtype; {

char sh[120];
/* append file */

printf ("in ReadEfea\n");
sprintf(sh, "cat %3/%d/%3 » %s",

CAPTPATH, captid, attrtype, tempfn);
printf ("=====>sh=%s\n", sh);
system (sh)；

}；

/ *
« simAllFeaO - Calc the similarity between the query
* and a caption
*/

float SimAllPea(capidQ, capldC, entq, entc, attrtype)
int capidQ; int capldC; char «entq; char «entc; char *attrtYpe; {

char tmpqtSO], tmpc[80];
char _buf_[127];
Int nMatched = 0, nQ = 0;
Bprintf (tmpq, "/tinp/%d%s . fea" , capldQ, entq);
sprintf (tmpc, "/tinp/%d%s. fea" , oapidc, entc);
printf ("tinpq->%s tinpa->%a\n", tmpq, tmpc);

— ‘ i s T
* APPCNDICES •

j
••i

ReadAllFeaCtmpq, HFILE, capidQ, entq, attrtype);
ReadAllFea(tinpc, HFILE, capidC, entc, attrtype);
nMatched = CountIntersect(tmpq, tmpc);
nQ = CountLines (tmpq)；

printf ("nMatohed=Sfei nQ=%i div=^f\n% nMatched, nQ,
(float) nMatched/ (float) nQ);

return ((float) nMatched / (float) nQ);
>；
/*

* SimlFeaO - Similarity evaluation from impfea
*/

float SimIFea{entq, entc, capno)
char *entq; char *entc； char *capno; {

char tmpq [40], tinpc2[40]7
char —buf—[127];
int nMatched = 0, nQ = 0;
sprintf (tmpg, "/tmp/^&s-ife% entq);
sprintf (tmpC, __/tmp/戈s • ife", entc);
printf { " - - > % 3 \ n " , tmpc);
AllIfea(HPILE, FindNodeld(HFILE, entq), tmpq);
Alllfea(HFILE, FindNodeld(HFILE, entc), tmpc);
nMatched = CountIntersect(tmpq, tmpc);
nQ = CountLines (tmpq);
printf ("nMatched=%i nQ=%i div=%f\n"' nMatched, nQ,

(float) nMatched/ (float) nQ);
return ((float) nMatched / (float) nQ);

/ *
* Countlntersect() - Count the elements of intersection
* of the feature set in query and
* caption
“

int Countlntersect(fnQ, fnC)
char *fnQ, *fnC? {

int nl = 0；

FILE *pfp;
char sh[150];
printf ("in countlntersect, nl=[%d]\n% nl);
sprintf (sh, "tacep -f %b %& I wc 一 1 " , fnQ, fnC);
printf (__sh= i%&] \n__, sh);
if {(pfp = popen(sh,"r")) 1= NULL) {

fscanf (pfp, &nl);
}；
pclose(pfp);
printf ("in countlntersect, nl=[%d]\n", nl);
return nl;

>

/ *

* StripNLO - Strip the trailing "\n"
*/

void StripNL(s)
char *s;
(

memset(strchr(s, '\n'), 0, 1);
>；
/*
* CountLines() - How many lines in file
*/

int CountLines(fn)
char *fn; {

FILE *fp；

int i;
char *p; �

char buff[BSIZE+10];
if ((fp = fopen(fn,"r")) == NULL) {

return 0；

}；
p = fgets(buff, BSIZE, fp);
for (1=0; p 1= NULL; i++) {

p = fgets(buff, BSIZE, fp);
} ；

return i;
}；
/*
* GetAllChildrenO - Get all childern of a node, put
* result into a list
*/

int GetAllChildn(hflie, max, outlist, cellsize, mother)
char *hfile; int max; char *outlist; int cellsize; char *inother; {

char sh[200]/ cmotherid[201, buf[BSIZE], namebuf[BSIZE];
PILE *pfp;
long motherid, idwork;
int buffidx = 0, lenmotherid;
char *ptr;
motherid=PindN�deId(hfile, mother)；

sprintf (cmotherid, motherid);
leninotherid=strlen(cmotherld)；

sprintf(sh, "cut -fl %a \ cut -fl -d \“ \" 1 grep % l d % hfile, motherid);
if ((pfp = popen(9h,"r")) 1= NULL) {

• "“ 152
* APPENDICES 命

while (fgets (buf, BSIZE, pfp) i= NULL) {
ineinset(strchr(buf, '\n'), 0, 1); /* delete the trailing "\n,, */
/* printf {“%a =7= %s len=^ld ans: buf,cmotherid, lenmotherid)； */
if ((i strncmpCbuf, cmotherid, lenmotherid)) &&

(strlen(buf)I=lenmotherid))(
/* printf ("Yes\n"); */
ptr = outllst + (cellsize*buffidx)?
strcpy (ptr, PindNodeName(namebuf, hfile, atol(buf)));
/* printf ("^u %-p % 3 \ n ' \ cellsize, ptr, ptr) ； */
buffidx++;

>；
}；

return buffidx;
} ;

/ *

* GetlmChildnO - Get immediate children of a node
*/

int GetImChildnChfile, max, outlist, cellsize, mother) char *hfile; int max; char *outlist; int cellsize; char ^mother;
{ char sh[200], cmotherid[20], buf[BSIZE], namebuf[BSIZE];
FILE *pfp?
1ong motherid, idwork;
int buffidx = 0, lenmotherid; char *ptr;
motherid=FindNodeId(hfile, mother);
sprintf (cmotherid, "%u“， motherid);
leninotherld=strlen(cmotherid);
sprintf(sh, "cut -fl %s I cut -fl -d \" \" I grep • 劣Id", hfile, motherid);
if ((pfp = popen(sh,"r")) ！= NULL) {
while (fgets (buf, BSIZE, pfp) 1= NULL) {

inemset(strchr(buf, 0, 1) ; /* delete the trailing "\n" */
/* printf {"%3 =?= %3 len=%u ans: ••, buf, cmotherid, lenmotherid) ； */
if ((i strncmp(buf, cmotherid, lenmotherid)) &&

(strlen(buf) ==leninotherid+l)) {
/* printf ("YesXn"); */
ptr = outlist + (cellsi2e*buffidx);
strcpy (ptr, PindNodeName(namebuf, hfile, atol(buf)));
/* printf %s\n", cellsize, ptr, ptr)； */
buffidx++;

}；

}；
return buffidx;

>；
/*
* GetAllSiblsO - Get all siblings, put result into a list

int GetAllSibls(hfile, max, outlist, cellsize, curmode)
char *hfile; int max; char *outlist; int cellsize; char *currnode; {

char sh[200], cmotherid[20], ccurrid[20],
buf[BSIZE], namebuf[BSIZE]；

PILE *pfp;
long currid, motherid, idwork;
int buffidx = 0, lenmotherid, lencurrid;
char *ptr;
currid=PindNodeId(hfile, currnode);
inotherid=PindAiices (hfile, currid);
sprintf (cmotherid, motherid);
sprintf (ccurrid, "%u", currid);
leninotherid=strlen(cmotherid);
lencurrid=strlen(ccurrid);
sprintf(sh, "cut -fl 免s I cut -fl -d \" \" I grep f̂eld", hfile, motherid);
printf("sh=%s\n", sh);
if ((pfp = popen(sh,»r")) 1= NULL) {
while (fgets (buf, BSIZE, pfp) 1= NULL) {

memset (strchr(buf, '\n'), 0, 1) ； /* delete the trailing __ \n__ */
/* printf ("%3 =?= %3 len=%u ans: buf,cmotherid, lenmotherid)； */
if ((1 strncmp(buf, cmotherid, lenmotherid)) &&

(strcmp (buf, ccurrid)) &&
(strlen(buf)==lencurrid)) { �

/* printf ("Yes\n")； */
ptr = outlist + (cellsize*buffidx);
strcpy (ptr, PindNodeName(namebuf, hfile, atol(buf)))；
/* printf ("^u cellsize, ptr, ptr)； */
buffidx++;

}；
>；

}；
return buffidx;

)；

/*
* AskYesNo () - Ask user yes or no to a question
*/

int extern AskYesNo(qn)
char *qn;
(
char ansbuff[100]="X";
char choice='X';
while (I ((oholce == 1 I (choice == 'N'))) i printf qn)； printf ("\n");

/* gets (ansbuff)； */
scan£ ("^s", ansbuff);
choice = toupper(ansbuff[0]);

}；
printf ("Your choice is [戈c]\n", choice);
return (ahoice=='Y' ？ YES : NO);

>；
—— — “ isT

命 APPENDICES • “ 一 ̂

/ *
* CheckExist 0 - Check something in the HIER file

int CheckExist(hflie, fieldno, candidate)
char *hfile; int fieldno; char *candidate; (

char sh[200], buf[BSIZE];
PILE *pfp;

#ifdef HPUX
sprintf (sh, "cut -f%d %s I grep _x -i %s",
fieldno, hflie, candidate)；

#else
sprintf (sh, "cut -f%d %s I grep -w -i %s",
fieldno, hfile, candidate)；

#endif
/** printf("sh >%s\n", sh)； */ if ((pfp = popen(sh, __r__)) 1= NULL) {

if (fgets (buf, BSIZE, pfp) 1= NULL) {
printf("existXn")；

pclose(pfp)；
return EXIST;

>；
}；
pclose(pfp)；
return INEXIST;

) ?
/ *

* AskDigit0 - Ask for a digit from user
*/

int AskDigit(qn)
char *qn; {

char ansbuff[100]="X";
char choice='X'；

while ((choice < ' 0 � I I (choice > ' 9 ')) i
printf ("%3", qn)； printf ("\n");

/* gets (ansbuff)； */
scanf ansbuff);
choice = ansbuff[0];

>；
printf ("Your choice is I>c]\n"' choice)；

return (choice)；

}；

/ *

* capfunc.c - Function Library for
* caption operations in ARMON

*

* Written : Kit-pui Wong
*

* Last Updated : 23 May 19 95
*

*

#define NOW_DEP_LEN 1
#incjlude "capfunc.h"
#include "hierfunc.h"

#define MAX—GROSS 50
#define MAX—SIM—ARY 150
char RootTab[8][10][20];
char ResTab[8] [10] [20]； �

char OrigTab[8][10][20];
int RoleList[20];
int TagTab[8][10];
char* attrib[4] [10]; /* attrib table */
int Matched[4][MAX—GROSS];
float SimCap [MAX_.SIM_ARY];
int SimCapid[MAX—S工_JVRY];
int SimCapPtr = 0;

extern void StripNLO ;
extern char *hflie;
char 一buf—[127]

int GenRnd();
char *inystrtok{) , *GetOnePld () , *PutOnePld () , *GetRoot ();
void extrCapsO/ bubble (), swap int ();
void ReadAllPeaO ;
void EachAttribO ;
void WriteEfeaO ；
float SimAllRoles();

！ extern float SimAllPeaO ；

i ”
* ProcSent() - Process a sentence J “

J ProaSent(pRec, RecLens, InSent, cpid)
� capt_str *pRec； unsigned RecLens[]； char *inSent; int *cpid;

I [FT
i 命 APPENDICES •

{
char buf[5] [30];
char *p, *pl;
char cpidc[20];
char fldl[40], fld2[40], fld3[40];
Int 1=0;
int PldNo=-l;
char RecBuff [400], WordBuff[30];
Int curr[] = {0,0,0,0,0,0,0,0};
int hist[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

memset(pReo, 0, sizeof(*pRec))；

for (i=0; i<=7; i++) curr[1] = 0;
InitTab();
strcpy(RecBuff, inSent);
sscanf(InSent, "%s %s %s", fldl, fld2, fld3)7
«cpid = 0;
if (fld2[0] == '>') {

*cpid = atol(fldl);
s t r c p y (R e c B u f f , s k i p w h i t e (s t r r c h r (i n S e n t , ' > ') + 1)) ;

}；
i f (* G p l d = = 0) {

(int) (*cpid = GenRnd());
)；
sprintf (cpidc, "%d", *cpid);
PutOnePld(pRec, RecLens, 0, cpidc);
p = skipwhite (strtok (RecBuff,“,")),.
if (*p == ';') return; /* it's a comment line */
while (p && *(P)) {

strcpy (WordBuff, p)；

PldNo++;
/» ParseWord(WordBuff)； */
ProcOneWord(pRec, RecLens, PldNo, WordBuff, hist, curr)7
p = skipwhite(strtok ('\0',“,"));

}；
p r i n t f (S N G C R) ;

}；
/*

* ProcOneWord() - Process a particular word
*/

ProcOneWord (CaptTpl, RecLens, seg, w, hist, curr)
char *CaptTpl; unsigned RecLens[]； int seg; char *w;
i n t h i s t [] ； i n t * c u r r ;
{

int RoleType, FldNo, nMeanings;
int count[] = {0,0,0,0,0,0,0,0};
nMeanlngs = ParseWord(w, seq, count, curr);
RoleType = GuessRole (w, seq, nMeanlngs, count, hist, curr)
switch (RoleType) {

case AGENT:
FldNo = 1;
PutOnePld(CaptTpl, RecLens, PldNo, w);
break;

case ACTION:
PldNo = 2;
PutOnePld(CaptTpl, RecLens, PldNo, w);
break;

case PATIENT:
PldNo = 3;
PutOnePId(CaptTp1, RecLens, FldNo, w);
break;

}；
}；
/*
* GuessRole() - Guess the role for a word
*/

int GuessRole(p, seq, nMeanlngs, count, hist, curr)
char *p; int seg; int nMeanlngs; int count[]； int hist[]; int ourr[]; {

int POS;
int nRoles;
nRoles = (count[0]>0) + (count[1]>0) + (count[2]>0) + (Gount[3]>0)

+ (count[4]>0) + (count[5]>0) + (count[6]>0) + (count[7]>0);
if ((nMeanlngs == 1) I I (nRoles == 1)) {
/* POS = WhatPOS(p->feat) */

if (count[VERB]) {
If (TagTab[VERB][curr[VERB]-1] == seq) {
RoleList[seq]=ACTION;
strcpy(p. RootTab[VERB][curr[VERB]-1]) ； /***/
hist[ACTION]++;
return ACTION;

)
)
if (count[NOUN]) {

if (TagTab[NOUN][curr[NOUN]-1] == seq) {
if (hist[AGENT]) {

RoleList[seq]=PATIENT;
strcpy(p. RootTab[NOUN][curr[NOUN]-1]) ； /***/
hist[PATIENT]++;
return PATIENT;

}；
if (1 hist[ACTION]) {

RoleList[seq]=AGENT;
strcpy(p. RootTab[NOUN][curr[NOUN]-1]) ； /***/
hist[AGENT]++;
return AGENT;

>；

}； /*==== end of nMeanlngs = 1, etc ====*/

— [U
命 APPENDICES •

J
'A

if (count[NOUN]) {
if ((1 hist[AGENT]) && (I hist[ACTION])) {

RoleList[seq]=AGENT;
strcpy(p, RootTab[NOUN][curr[NOUN]-13) ； / … /

hist[AGENT]++;
return AGENT;

}
/* (hist[AGENT] */
if (hist[ACTION]) {

RoleList [seq] =:PATIENT;
strcpy(p, RootTab[NOUN][curr[NOUN]-1]) 7 / … /
hist[PATIENT]++；

return PATIENT;
}；

>；
if (count[VERB]) {

if (hist[AGENT]) {
RoleList[seq]=ACTION;
strcpy(p, RootTab[NOUN][curr[NOUN]-1]) ； / … /

hist[ACTION]++;
return ACTION;

>
} ;
return UNKNOWN;

>；
/*

* ParseWord() - Try to parse one word
*/

int ParseWord(word, seq, count, curr)
char *word; int seq; int count[]； int curr[]; {

int POS;
RESULT *resp, *rp;
int dummyint=0；

int nMeanings=:0 ;
if (1isatty C fileno(stdin))) {

puts(word)；

}；
resp = recognizer(word, &Lang, 0, 0, (FILE *)NULL);
for (rp = resp ； rp ; rp = rp->link) {

nMeanings++;
if ((POS = WhatPOS(rp->feat)) == UNKNOWN){

break;
>；
count[POS]++;
FillResTab(seq, word, rp, POS, curr);

}
if (resp 1= (RESULT *)NULL)

free—result(resp);
else

printf(“ form not recognized\n");
printf("after if.,else\n");
return nMeanings； /* POS: dummy, no info now */

} ;

/ *

* PutOneFldO - Write one field into the CAPT database
*/

char *PutOnePld (aRec, str_len, fIdno, content)
char *aRec; unsigned *str_len; int fldno; char * G o n t e n t ;
{

int 1, offset=:0;
char *p;
int FldLen;
if (fldno < 0) {

printf ("Invalid Field no: %i\n", fldno);
}；
for (i=0; i<fldno; i++) { /* not "from 0 to i_l" */

offset = offset + *(str—len +i +1)；

/*equiv. to offset = offset + str_len[i+l]； */
>

ttifdef DEBUG
printf (••offset=%i\n", offset)； �

e n d i f

/* failed p = aRec + ((char *) offset) */ ;
p = (char *) aRec + offset ；

#ifdef DEBUG
printf ("p=%p %n str_len=%i\n", p,p,p, str一len + fldno)；

#endif

PldLen = *(str一len + fldno + 1)；

inemcpy (p, content, FldLen)；

return p；

>；
/*
* GetOneFldO - Read on field from the CAPT database */

char *GetOneFld (fid, aRec, str一len, fldno)
char *fId; char *aRec; unsigned *str_len; int fldno; {

int i, offset=0;
char *p;
int FldLen;
char buff[200];
If (fldno < 0) {

printf ("Invalid Field no： %i\n", fldno);
}；
for (i=0; l<fldno; i++) (/* not "from 0 to i-1" */

offset = offset + *(str一len +i +1)；

命 APPENDICES •

"equiv. to offset = offset + str_len[i + l] ； */
}

p = (char *) aRec + offset ；

#ifdef DEBUG
printf ("p=%p ifeu capt_str_len=%i\n% P/P/P. capt_str_len[fIdno]);
printf ("p=%p o雀u capt_str_len=%i\n", capt_str_len[fIdno])；

#ezi<nf
FldLen = * (str_len + fldno + 1);
memcpy (fid, p, PldLen);
return fId;

>；

* captSearch() - Try to search for captions */
CaptSearch(rel, pRecQ)
relation *rel; capt_str *pRecQ;
(

int i;
int arysize;
int CapsSorted[4][25];
if (I (pRecQ->agent[0]) &&

i (pRecQ->action[0]) &&
i (pRecQ->patient[0])) {

return;
>；
memset(CapsSorted, 0, sizeof(CapsSorted));
memset(Matched, 0, sizeof(Matched));
SearchForRole(Matched[AGENT], rel, 1, *pRecQ);
SearchForRole(Matched[ACTION], rel, 2, *pRecQ)；

SearchForRole(Matched[PATIENT], rel, 3, *pRecQ);
SortCaps(CapsSorted[1], CapsSorted[2]• CapsSorted[3],

\ Matched[AGENT], Matched[ACTION], Matched[PATIENT])；

ScoreAliMatched(re1, *pRecQ, CapsSorted[1],
CapsSorted[2], CapsSorted[3]);

showsimCap();
}；
/*
* SimAllRolesO 一 Calc the similarity of all roles
*/

float SimAllRoles(rel, RecQ, capidC)
. relation *rel; capt_str RecQ; int capidC;

{
int weight [4];
float Sim[4]；

float sum = 0;
int capidQ, att;
float ResSim;
char buff[200];
capt_str aim; capt—str RecC;
char roleQ[30], roleC[30 3;
if (capidC == 0) {

return(-1.0);
}?
weight[AGENT] =1；

weight[ACTION] =1;
weight[PATIENT]=1;
memset (&aim, 0, sizeof(aim));
memset (&RecC, 0, sizeof(RecC));
for (att=l; att<=3; att++) {

sprintf (aim.capid, capidC);
if ((mb一sel (rel, 0, buff, EQUAL, &aim)) == MB—bKAY) {

/* a a which index: 0,1,2 */
/* size(buff) must be >>> rec len */
/* mb—sel (rel, 0, RecC, NEXT, &aim)； */

GetOnePld (roleQ, &RecQ, capt一str_len, att);
GetOneFld (roleC, buff, capt—str—len, att);
/* strcpy (roleC, RecC.agent); */
capidQ = atoi(RecQ.capid)；

if (roleQEO] && roleC[0])(
Sim[att] = SimAllPea(capidQ, capidC, roleQ, roleC, attrname[att]);

> else { �

simEatt] = 0 ;

}；
sum = sum + sim[att]；

}；
}；
printf ("sum = %f\n", sum);

， return (sum/(weight[1]+weight[2]+weight[3]));
} ；

/ *

* ScoreAllMatched() - Fine score of all matched captions
*/

ScoreAllMatched(rel, RecQ, CapAryl, CapAry2, CapAry3) relation *rel; capt_str RecQ; int CapArylU, CapAry2[], CapAry3[]; {
int i;
float SimVal;

memset(SimCap, 0, sizeof(SimCap));
memset(SimCapid, 0, sizeof(SimCapid));
CalcAlleaps (rel, &RecQ, CapAryS)；

CalcAllCaps (rel, &RecQ, CapAry2);
CalcAllCaps (rel, &RecQ, CapAryl);

-)；
/*
* CalcAllCaps() - Pine Scoring of the selected captions
*/

—— — — 157"
• APPGNDICGS •

I
m 、

« CalcAlleaps(rel, pRec, CapsAry)
jt relation «rel; capt_str *pRec； int CapsAry [];

{
- int 1;
5 float SimVal;
狐 for (i=0; CapsAry[i]； i++) {
- SimVal = SlmAllRoles(rel, *pRec, CapsAry[i]);

1 s imCap[S imCapPt r] = SimVal;
评 SimCapId [SiinCapPtr] = CapsAry [i];

SiinCapPtr+ + ;
} ;

* sortcaps() - Sort the candidate captions by their ids

Sortcaps (SI, S2, S3, LI, L2, L3)
int 會SI, *S2, *S3, *L1, *L2, *L3; '‘. {

Int R[100];
int nR=0, nl=0, n2=0, n3=0;

i for (nl=0; LI[nl]； nl++) {
R[nR++]=Ll[nl];

)；
, for (n2=0; L2[n2]； n2++) {

R[nR,+ +]=L2 [n2];
}；
for (n3=0; L3[n3]; n3++) {

R[nR++]=L3[n3];
- }；
« bubble(R, nR)；

extrCaps(Sl, S2, S3, R, nR)；

I ^
M-

/*

* SearchForRoleO - Try to match a role in query
*/

SearchForRole(outlist, rel, roleSeq, rec)
int *outlist; relation *rel; int roleSeq; Gapt_str rec; {
#define SUFFICIENT 1

int fIdno；

int Lstldx 二 0;

char TargetRole[20];
I int nMatchedExact = 0;

int nMatchedlmChildn = 0;
int nMatchedSibls = 0;
int nSibls = 0;
int rxTotalMatched = 0;
char GhildnBuff[MAXCHILDN][20];
char SiblsBuff[KAXSIBLS][20];
int i;
fIdno = roleSeq;
GetOnePld (TargetRole, &rec, capt_str_len, fIdno);
nMatchedExact = SearchExactRole(outlist, rel,

roleSeq, &LstIdx, TargetRole, &rec);
if (nMatchedExact >= SUFFICIENT) {

return nMatchedExact;
}；
nTotalMatched = nMatchedExact；

memset(SiblsBuff, 0, sizeof(SiblsBuff));
nSibIs = GetAllSibls(HPILE, MAXSIBLS, SiblsBuff,

sizeof(SiblsBuff[0]), TargetRole)；.

for(i = 0; (i<MAXSIBLS) && (SiblsBuff[i] [0]) ; i + +) {
nMatchedSibls += SearchExactRole(outlist, rel,

roleSeq, &LstIdx, SiblsBuff[i], &rec)；

)' /**** AAA check 11 FAILED in find "sibls of T a r g … “ * * /
nTotalMatched += nMatchedSibls;
return nTotaiMat c hed；

} ；

/ * ,
* SearchExactRole() - Process to exact matching a role
* in query

SearchExactRole(outlist, rel, roleSeq, pidx, aimRole, pRec)
Int *outlist; relation *rel; int roleSeq; int *pldx;
char *aiinRole; capt_str *pRec; {

char buff—rec[200]; /* more than sufficient */
. char fid [20];

char ccpidE2 0];
capt_str KeyRec；

if (1 aimRole[0]) {
return (0);

}
PutOnePld(&KeyRec, capt_str_len, roleSeq, aimRole);

A A A A A A * * * * * * * * j

/* Be Care: roleSeq not necessary = idx */
/** if ((mb一sel {rel, roleSeq, buff一rec, EQUAL, pRec)) == MB一OKAY) { **/
if ((mb-sel一(rel, roleSeq, buff—rec, EQUAL, fiKeyRec)) == MB—OKAY) {

/* AA which index: 0,1,2 */
- StoCapid(outlist, pidx, buff一rec, capt_str_len);

} else (

，- while ((inb_sel (rel, roleSeq, buff—rec, NEXT, pRec)) == MB—OKAY) {
1 PrintRec(pRec);

GetOnePld(fId, buff一rec, capt一str一len, roleSeq);
：" /* printf {'•*******fld= [%3] aimRole= [%sl \n", fid, aimRole);

PrintRec(pRec)；

i ”

“ isF
. • APPENDICES 命

•
•j

‘ if (strcmpCfld, almRole) 1= 0) {
break;

}；
printf (" ### found ## _,);

StoCapid(outllst, pidx, buff_rec, capt_str_len)？

return *pldx;
)；
/*
* stoCapldO - Store a capid in result list
*/

StoCapiddist, idx, recp, str_len)
int *list; int *idx; capt—str *recp; unsigned *str_len; {

char ccpid[2 0];
GetOneFld(ccpld, recp, str_len, 0);

/* atoi(ccpid)； */
list[(*idx)++] = atoi{ccpid);

/* printf(" *(outlist[LstIdx]) =%d\n",
*(outlist[*idx]));
PrintRec(buff_rec);

}；
/*
* PrintRec() - Print a CAPT record (for debugging)
*/

PrintRec(pRec)
capt_str *pRec;
{ printf ("CapId=[%s] Agent[%s] Action[%s] Patient[%s]\n",

pRec->capid, pRec->agent,
pRec->action, pRec->patlent)；

}；
/«
* AddOrUpdate() - Check whether updating an old record
* or adding a new record to the CAPT database
* /

AddOrUpdate(rel, rec—tp)
relation *rel; char *rec—tp; {

char buff_rec[20 0]; /* more than sufficient */
char sh[100], oldcid[20];

/* #ifdef DEBUG
printf ("capt-rec->capid=[%s]\n", ((capt_str *)rec_tp)->capid)；

#endif */
if (1(((capt_str *) rec_tp)->agent[0]) &&

I(((capt_str *) rec_tp)->actlon[0]) &&
！(((capt_str *) rec_tp)->patlent[0])) {

return;
}；
if ((((capt—str *)rec_tp)->capid 1= 0) &&

((mb_sel (rel, 0, buff—rec, EQUAL, rec_tp)) == MB_OKAY)) {
/« AA which index！ 0,1,2 */
sprintf (oldcid, “%s__, ((capt_str*) &buff_rec) ->capld);
sprintf (sh, "rm -r CAPTPATH, oldcid);
system(sh)；

f*************** don't use rm -r ***********/
printf ("Update now\n");
if ((mb_upd (rel, rec—tp)) 1= MB_OKAY) {

printf ("UPD FAILED: % 3 % 3 > < , mb一error, SNGCR);
mb_exit(3);

)；
return;

}；
if ((mb—add (rel, rec—tp)) 1= MB—OKAY) {

printf ("ADD FAILED: %s%s\n", mb_error, SNGCR);
mb_exlt(3);
printf ("Rec added.\n");

}；
}；
/*
* DispRelLen() - Display the record length of
* a caption record
*/

DispRelLenO {
int 1=0, curr=0;
int NoFlds;
NoPlds = (sizeof (capt_str_len)) / sizeof (capt_str_len[0]);
printf ("No of fields = %l\n", NoFlds)；

for (i=0; i<NoPlds; i + +) (
printf Gapt_str_len[i]);

}
}
/ *

* initTab() - Initialize the global tables
*/

Int InltTab()
(
Hiemset (ResTab, 0, sizeof (ResTab));
iDeinset(OrigTab, 0, sizeof (OrlgTab));
memsetCRootTab, 0, sizeof(RootTab));

> ；
/*

* pillResTabO - Fill the result of parsed word
* into the result table

— 159"
4 - APPENDICES 4 -

Int PillResTab(tag, orlg, rpl, POS, curr)
Int tag;
char *orig;
RESULT *rpl;
int POS;
int curr []; {

char buff [4 0];
if (POS 1= UNKNOWN) {

strcpy (OrigTab[POS][curr[POS]], orig);
strcpy (ResTabLPOS][curr[POS]], rpl->str);
s t r c p y (R o o t T a b [P O S] [c u r r [P O S]] , G e t R o o t (r p l - > s t r)) ;

TagTab[POS][curr[POS]] = tag;
curr[POS]++;

>?

/* ,
* WhatPOS() - Check the Part-of-speech of a word
*/

int WhatPOS (feat)
char *feat; {

char buff[40];
strcpy (buff, feat);

/***«* The sequence is critical ***/
if (strstr (buff,"AV") 1= NULL) { /* found AV */

return ADV;

if (strstr (buff,"AJ") 1= NULL) { /* found AJ */
return ADJ;

}
if (strstr (buff,"NR") 1= NULL) { /* found NR */

return NODN;
}
if (strstr (buff,"VR") 1= NULL) { /* found VR */

return VERB;
if (/N' == buff[0]) { /* N at the beginning */

return NOUN;

if (/y == buff[0]) { /* V at the beginning */
return VERB；

}；
return UNKNOWN;

>；
/*

* AskPorRole () - Check the role of a word
*/

int AskForRole (word, hist, listPOS)
char *word; int hist[]; int llstPOS[]; {

char desc [8] [20], ansbuff[20];
int choice =-1;
int i = 0 ;
strcpy (desc[ACTION], "action");
strcpy (desc[AGENT], "agent");
strcpy (desc[PATIENT], "patient");
printf ("Possible parts of speech %s\n"' word);
for (i=0; (listPOS[1] != EOL)； i++) {

printf (" %s\n", 1, desc[i]);
>；
while ((choice<0) 11 (c]iol_ce>=i)) {

printf ("Please choose the closest one => __);
gets (ansbuff)；
choice = atoi(ansbuff)； /* problem: return 0 when unsolved " * /

>；
printf ("Your choice is (%i) %s\n", choice, desc[choice]);
return choice；

} ;

/ *

* ProcAttrlbO - Process all attributes �

*/
ProcAttrib(captid) int captid; {

int 1;
expfea_str EfTpl;
char sh[100];
char *p;
int curr[]={0,0,0,0};
memset (&EfTpl, 0, sizeof(EfTpl));
roemset (attrib, 0, sizeof(attrib));
for (i=0; (i<=7) && OrigTab[ADJ][i][0]; i++) {

EachAttrib(ADJ, i, attrib, curr);
}；
for (i=0; (i<=7) && OrigTab[ADV][i][0]; i++) {

EachAttrlb(ADV, i, attrib, curr);
>；
if (captid == QID) {

sprlntf (sh, "rro -r CAPTPATH, QID);
system(sh)；

>；
memset(curr, 0, sizeof (curr));
p = attrib[AGENT][curr[AGENT]];
if (P) <

WrlteEfea(oaptld, p, ATTR_AQ);
>；
p = attrib[ACTION][curr[ACTION]];
if (P) (

“ l e F
命 APPENDICES •

1 •j

WriteEfea(captid, p, ATTR_AC);
}；
p = attrlb[PATIENT][curr[PATIENT]];
if (P) i

WriteEfea(captid, p, ATTR_PA)！

>；
/* action, pat */

}?

/* ,

* WriteEfea() - confirm the expfea in a caption
*/

void WriteEfea(captid, attr, attrtype)
int captid; char *attr; char *attrtype; {

char EfSlot[30], EfVal[3 0];
char expfea[80];
char outfile [80], sh[120];
Attr2Efea("*", attr, EfSlot, EfVal);
sprintf(sh, "mkdir % s % d " , CAPTPATH, captid);
system (sh);
sprintf(expfea, "%s\t%s", EfSlot, EfVal);
sprintf(outfile,"%s%d/%s", CAPTPATH, captid, attrtype);
sprintf (sh, "echo \ " % s \ " > % s " , expfea, outfile);
system (sh)；

}；

/*
* GetRoot() - Extract the root of a word from
* the parsed result string
*/

char *GetRoot(ResStr)
char *ResStr; {

char *p;
if (p=:strchr (ResStr, ' +')) {

memset(p, '\0',1);
}；
if (p=strchr(ResStr,"'))(

return p+1;
}；
return ResStr;

} ;

/ *

* EachAttribO - Process each attribute
*/

void EachAttrlb(POS, i, attrib, curr) int POS; int i; char *attrib[4] [10]; int curr[]; {
char temp?
Int seq;
/* if (ResTab[ADJ][i]) { */
if (POS==ADJ) {

seq = TagTab[ADJ][i];
switch (RoleList[seq+1]) {

case agent : attrib[AGENT][curr[AGENT]++] = RootTab[ADJ][i];
RoleList[seq]=EFEA_AGENT;
return;

case PATIENT: attrib[PATIENT][curr[PATIENT]++] = RootTab[ADJ][i];
RoleList[seq]=EPEA_PATIENT;
return;

}；
}；
if (POS==ADV) {

seq = TagTabLADV][i];
switch (RoleList[seq-1]) {

case ACTION: attrib[ACTION][curr[ACTION]++] = (RootTab[ADV][i]);
RoleList[seq]=EFEA—ACTION;
return;

} ;
}；

}； -
/*

* GenRnd() - Generate an integer
*/

CJenRnd () {
int i, r;
PILE *fp;

！ char fn[60];
srand(tiine(NtrLIi));
r = OneRndInt();

： sprintf (fn, ”%d__, r);
/« test of existence) */

f for (；PileExist(CAPTPATH, fn)；) {
^ /*== fn existing ==*/
I r = ((unsigned) (rand()/lOO000)) + 100;
i sprintf (fn, "%d<>, r);
[>；
I /* fclose(fp);
I unlink(fn)； */
\ return r；

}； ,

/*

* PileExist() - Check the existence of a file
*/

FileExlst(dname, fname)
char *dnanie, * fname ; {

命 APPENDICES • “ 一 ^

•1

char sh[200], buf[BSIZE];
PILE *pfp;
sprintf (sh,

•“ (cd %s; Is) I grep %s I cut -fl -d / I fgrep -x %3",
dname, fname, fname)；

if ((pfp = popen(sh,"r")) i= NULL) {
if (fgets (buf, BSIZE, pfp) 1= NULL) {

p r i n t f ;
pclose(pfp)；

return 1；

}；
>；
pclose(pfp)；

return 0;
>；
/*

* Attr2Efea() - Convert attributes into expfeas “
Attr2Efea(host, attr, efSlot；. efVal)
/* Attr2Efea(attr, efSlot, efVal) */
char *attr, *efSlot, *efVal; {

char sh[BSIZE], buf[BSIZE];
char *p;
PILE *fp;

/ *
efSlot [0] = '\0';
efVal[0] =

* /
strcpy(efSlot, "attr");
strcpy(efVal, attr)；

sprintf(sh, "grep %3 %s I cut -fl", attr, FEA_RUL);
system(sh)；

if ((fp = popen(sh,"r")) 1= NULL) {
while (fgets (buf, BSIZE, fp) NULL) {

StripNIi(buf);
p = (char *) strchr(buf, (int)
strcpy (efVal, p+1)；
*p = (char) NULL;
strcpy (efSlot, buf”

>； pclose(fp)；
}

>
/ *

* extrCaps() 一 Extract captions from candidates
* /

void extrCaps(outaryl, outary2, outary3, intary, size)
int *outaryl, *outary2, *outary3 7 int *intary; int size；-
{

int i,j;
int q[] = (0 , 0 , 0 , 0)7 /* useful 1..3 "
int count=l;
int last = -1;
int curr;
for (i=0; i<size; i++) {

curr = intary[i];
if (curr=:=last) {

count++;
}；
if ((curr != last) 1 I (i = = size-l)) {

if (last>0) {
switch (count)(

case (1) : outaryl[q[count]] = last;
break;

case (2) : outary2[q[count]] = last;
break;

case (3) ； outary3[q[count]] = last;
break;

>；
/* outary[count][q[count]3 = intary[i]； */

(q[count])++; �

count=l;
： >；
t if ((i == size-1) && (lastl=curr)) { /* flush the last one */
I outaryl[q[count]] = curr;

last 二 curr;

i >；
)；
printf("Matched 1 roles -> ");
for (j = 0; (j<size) && outaryl [j] ; j+ +) printf (" [%d] __, outaryl [j]);
printf("\n");
printf ("Matched 2 roles-> __);
for (j = 0; (j<size) && outary 2 [j] ; j+ +) printf (" [%d] __, outary2 [j]);
printf("\n");
printf("Matched 3 roles-> ");
for (j=0; (j<size) && outary3[j]; j++) printf ("[%d] outary3[j]);
printf("\n");

}；
/*

* bubble 0 - sort the integer array with bubble sort
*/

void bubble(intary, size)
Int *intary; int olze; {

int 1, j;
for (i=size-l; 1>=1; i —) {

for (j=l; j<=i; j++) {
if (Intarytj] < lntary[j-l]) {

• APPENDICES 命 “ ^

swapint(&(intary[j3), &(intary[j-1]))；

)；
>；

>；
/*
* swapint() - Swap two integers
*/

void swapint (highint, lowint)
int *highint, *lowint; {

int i;
i = *lowint;
*lowint = *highint;
*highint = i;

} ?

/ *

* OneRndInt() - Get a randomized random integer
*/

int OneRndInt() {
long kl, k2, m;
char buff[20];
kj. = rand () ?
k2 = rand();
sprintf (buff, "^feld^ld", kl, k2);
znemset (buf f+ 6, 0, 1)；

meiQset (buff, T , 1);
m = (int) (atoi(buff)/4) + 100;
/* printf (” [^d %s %d'\ ••, kl, buff, m) ； */
return m;

}；
/*
* skipwhiteO - skip the leading space in a string
*/

char *skipwhite(cp)
char *cp; {

register char *p;

if ((cp 二二 (char *)NULL) I I (*cp == NUL)) {
return(cp);

>；
for (p = cp ; isspace(*p) ； ++p) ;
return(p)；

}

/ *

* capop.c - Caption operations in ARMON
^ ‘ *
I

*

\ * Written by : kpwong
r . *

* Last Updated : 23 May 1995
*

*

#define ATTRNAME
i #include "capfunc.h"

#include "hierfunc.h"
I

LANGUAGE Lang;
long elaparr[7 9];
char hfile[200];
char 一buf—[127];

extern char *skipwhite();
extern RESULT *recognizer();

void main ();

/ *

* external modules found in *.c
* /

extern int GenRnd();
extern char *inystrtok() , *GetOneFld (), *PutOnePld() , *GetRoot ();
extern int DispRelLenO ；

extern int ProcSent();
extern int ProcAttribO ;
extern int ShowOrigTab();
extern int ShowResTab();
extern int ShowTagTab{);
extern int ShowRoleList()；
extern void ShowAttribO ;
extern int ShowMatchedCaps();

/ *

-I

命 APPENDICES • “ 一 ̂

* global tables defined in *.h
*/

extern char RootTab[]；

extern char ResTab[];
extern char OrigTab[];
extern int RoleList[];
extern int TagTab[];
extern char* attrib[];

/*
* main program starts
*/

void main (argc, argv)
int argc;
char **argv; {
#define DO—ENTER 0
#define DO—SEARCH 1
#define SEARCH_BINNAME "search"

int cpid;
int curr_op=0;
char buff [400];

char inCapt[20];
char CaptRelRawPnC] = "capt.rel";
char CaptRelPn[12 0];
PILE * inCaptFp;
relation *CaptRel;
capt_str capRec;
/* First, parse the command line, and set {num} */
strcpy(hfile, HPILE)； /*** init ***/
if (argc == 2) {

strcpy(inCapt, argv[1]);
printf ("inCapt=%s\n", inCapt);

} else {
fprintf (stderr, "Syntax： %s textfile\n__, argv[0]);
mb—exit (1);

}；
printf ("cmd=%s\n__, argv [0]);
sprintf (CaptRelFn, ,,%s/%s", CAPTPATH, CaptRelRawPn);
/*
* It's a searh operation
*/
if (strstr(argv[0], SEARCH_BINNAME) 1= NULL) {

curr_op = DO-SEARCH;
}；
printf ("&\n");
I f ((i n C a p t P p = f o p e n (i n C a p t , " r ")) == NULL) {

fprintf (stderr, "Pile %s open error, please check!\n", inCapt);
mb—exit (1)7

}
printf ("&& CaptRelFn=%s\n", CaptRelFn);
if ((CaptRel = mb一inc (CaptRelFn, 0)) == RNCTLIi) {

fprintf (stderr, "%s.%s", mb_error, SNGCR);
mb—exit (2);

}

printf ("&&&\n");

/*

* load the rules file
*/

if (load_rules(RUL_PILE, SLang, ';') < 0)
e x i t (l) ;

/ *

* load the lexicon file
*/

i f (l o a d - l e x i c o n s (IiEX—FILE, &Lang , ' ; ') < 0)
e x i t (l) ;

‘ DispRelLen();
while (1feof(inCaptPp)){

i f (l f g e t s (b u f f , 1 9 9 , i n C a p t F p)) {
break; .

}；
StrlpNL(buff);

/* ProcSent(&pRec, capt_str_len, buff, &cpid)； */
ProcSent(ficapRec, capt_str_len, buff, ftcpid);
if (curr—op ！= DO—SEARCH.)]

1 “
* Add new caption
* /

AddOrUpdate(CaptRe1, ficapRec);
ProcAttrib(cpid);
/* These functions are useful for debugging
ShowOrigTab();
ShowResTab()；

ShowTagTab()；

ShowRoleList();
ShowAttribO ;
* /

} else {
/*

* Search for existing captions
*/

printf ("will preform searching \n")；

E>rocAttirib(QID);
sprintf (capRec.capid, QID);
CaptSearch(CaptRel, fccapRec);
/* These functions are useful for debugging
ShowMatchedCapsi ()；

ShowOrigTab()；

ShowResTab()；

命 APPENDICES • “ 一 ̂

••1
：！

ShowTagTab()；

ShowRoleList()；

ShowAttrib()；

*/

}；

mb_exit (1)；

/ *

* METALBASE 5.0
it
* Released October 1st, 1992 by Huan-Tl [richid0owlnet.rice.edu 3
* [t-richj@inicrosoft.com]
*
* special thanks go to Mike Cuddy (mcuddy@fensende.rational.com) for his
* suggestions and code.
*
*

* Modified by : KPWONG
* purpose : To be used with ARMON
* Path : $PRJHOME/src/build.c
* Last Updated s 9 Jan 1995
禽

* /

#define BLAST_C /* I know, I know... */
i n c l u < i e " m b a s e . h "
#include "internal.h"
#define cr(x) ((x) == 0) ？ DUBCR : SNGCR
JdffiL''SsCLINE __/*\r\n * This file was created by MetalBase version 5.0 to reflect the structure\r\n * of
！ S relation *\r\n * MetalBase 5.0 released O c ^ t o b e r 1st, 1992 by richld®owlnet.rice.edu\r\n n r \ n
*/\r\n\r\ntypedef struct\r\n { “
Idifine DESCLINE __/*\n * This file was created by MetalBase version 5.0 to reflect the structure\n * of the
relation V••棚\".\n *\n * MetalBase 5.0 released October 1st, 1992 by virtual 1richid@owlnet.rice.edu\n n n
*/\n\ntypedef struct\n { “
#endif
ftdefine lineP "Pields_ „

ttdefine line I "\nlndices_

#define RBC

i f < i e f LONGARGS
void strlwrcpy (char *, char *);
void struprcpy (char *, char *)；

void strmax (char int);
char *repeat (char, int);
void main (int, char **);
void endoffile (int, int);
int get一names (int, char **)；

void write—it (int, int);
int contains—serial (char *)；

#else
void strlwrcpy ();
void struprcpy();
void strmax 0；

char *repeat()；

void m a i n O ；

void endoffileC);
int get—names();
void write—it();
int contains—serial()；

#endif
#<aefine Printf if (iquiet) printf
#define fPrintf if (I quiet) fprintf

1 #define qt (x) (quiet ？ " : x)
I.
I # d e f i n e u s a g e () \
I fprintf (stderr, "build: format: build [-q] [-h] schema.s%s", SNGCR);

] #defiiie fatal () { \
I f f l u s h (s t d o u t) ； \
I fprintf(stderr,"Cannot build relation--%s.",mb_error,SNGCR)； \

break; \ >

fine comment() skip(fh,“；“)； while (skip (fh, "#")) goeol(fh,NULL)/

/ * … … … … … … … … … … … … … … *

食

“

Static char *types[]=

命 APPENDICES • “ 一 ^

mailto:t-richj@inicrosoft.com
mailto:mcuddy@fensende.rational.com

i
.1

{ " c h a r * " , " s h o r t " , " u s h o r t " , " l o n g " , " u l o n g " , " f l o a t " ,
" d o u b l e " , " m o n e y " , " t i m e " , " d a t e " , " s e r i a l " , " p h o n e " } ;

/*

*

* /

r e l a t i o n * d a t a；

char strnaine[40] = ""； /* Structure name (set by "typedef") */
c h a r r e l [1 2 8] , h d r [1 2 8]； / * F i l e n a m e s f o r r e l a t i o n a n d h e a d e r * /
c h a r n a m e s [2 0] , n a m e b [4 0] ; / * Name, a n d u p p e r - c a s e name * /
int column=l; /* Column we're displaying data in */
int header=0, quiet=0; /* Set by -q and -h on command-line */
i n t n u m _ f = 0 , n u m _ i = 0 ; / * S t a r t w i t h 0 f i e l d s a n d 0 i n d i c e s * /
int hasser=0; /* 1 if we encounter a serial field */

”…………************ …**************** ……*****************************
*

* /

void
m a i n .. (a r g c , a r g v)
i n t a r g c；
char **argv;
< int stage; /* Processing stage; l==fields, 2==indices, 3==done V

int fh; /* Pile handle for schema ”
c h a r n a m e [2 0] ; / * F i e l d / I n d e x name ”
ftype typ; /* Field type (or, for indices, O==nodups, l==dups) /
int siz; /* Field size (for character arrays only) */
int isExt; /* TRUE if it's an external type, FALSE if not */
char desc [128]; /* Character array of field numbers, for indices */

long nexts = OL;
char temp[128]?
char t2 [128];
int i ；

fh = get-names (argc, argv)； /* fh = file handle of relation */

if ((data = inb_new ()) == RNULL)

fprintf (stderr, "Cannot build relation--兔s•劣s", mb—error, SNGCR);
exit(l); >

for (stage = 1; stage 丨 =) {
strlwrcpy (temp, getword (fh)); /* temp 二 keyword */

if (1 strcmp (temp, "field")) {
if (stage == 2) /* Done with fields? */ {

fflush (stdout);
fprintf (stderr, "%s^sPield 戈s declared after indices.^s

qt(SNGCR), qt(cr(column)), getword(fh), SNGCR);
break; }

strlwrcpy (temp, getword (fh)” /* New field? Obtain, in l o w e r , “
s t r m a x (t e m p , 2 0) ; / * i t s n a m e . P u t i t i n ' t e m p ' f i r s t * /
strcpy (name, temp)； /* in case it's really long* */

if (inb_getname (data, name, 0) 1= -1) {
fflush (stdout);
fprintf (stderr,"戈sField %s declared t w i c e . q t (c r (c o l u m n)) ,

name, SNGCR)；
: break;

}

[(void)skip (fh, "type")； /* Got its name, and it's new. So */
I , strlwrcpy (temp, getword (fh))； /* get its field t y p e … */

i i s E x t = 0 ;
1 if (i strcmp (temp, "extern") 1 I I strcmp (temp, "external"))

i s E x t = 1 ;
strlwrcpy (temp, getword (fh)); /* External? Get the next word. */ }

typ = (ftype)-1;
if (I strcmp (temp, "char") 11 ！ strcmp (temp, "character") 11

I strcmp (temp, "string"))
{
typ = T_CHAR; >

if (1 strcmp (temp, "short")) typ = T_SHORT;
if (1 strcmp (temp, "ushort")) typ = T_USHORT;
If (1 strcmp (temp, "long")) typ = T_LONQ;
if (1 strcmp (temp, "ulong")) typ = T—ULONG;
if (I strcmp (temp, "float")) typ = T—FLOAT;
if (1 strcmp (temp, "double")) typ = T_DOUBLE?
if (i strcmp (temp, "money")) typ = T—MONEY;
if (I strcmp (temp^ "time")) typ = T_TIME;
if (1 strcmp (teiKp, "date")) typ = T_DATE?
if {I strcmp (temp, "serial")) typ = T一SERIAL?

• APFENDICBS • 一 ^

-j a
I

if (I strcmp (temp, "phone")) typ = T一PHONE;

if (typ == (ftype)-l) {
fflush (stdout)；

fprintf (stderr, "？fesType %s (field %&) undefined.%s",
qt(cr(column)), temp, name, SNGCR)；

break; }

if (isExt) {
sprintf (temp, name) 7
sprintf (desc, num—i);

if (mb_addindex (data, temp, 1, desc) 1= MB_OKAY)
fatal();

if (typ == T_SERIAL)
typ = T_LONG;

>

if (typ == T„SERIAL) {
if (hasser) <

fflush (stdout);
fprintf (stderr,"劣sMore than one serial field s p e c i f l e d . ,

qt(cr (column)), SNGCR);
break; }

hasser = 1;

if (skip (fh, "start"))
nexts = atol (getword (fh))；

}

switch (typ) {
case T—CHAR:

(void)skip (fh, "length");
(void)skip (fh, "*")；

siz = atol (getword(fh));
sprintf (temp, name, types[(int)typ], siz)7
mb_addfield (data, name^ T_CHAR, siz)？

break;

case T—SERIAL:
sprintf (temp, i%3 name, types[(int)typ], nexts);
iQb_addfield (data, name, T_SERIAL, nexts);
break;

default:
sprintf (temp, [% s] n a m e , types [(int)typ])7
iab_addfield (data, name, typ, 0);
break;

}

if (mb—errno)
fatal();

if ((column = l-column) == 0)
{ Printf 0 SUBD^ temp, NORM) ； }

else

{ Printf {*'%3%3%3%3" f SUBD, temp, NORM, SNGCR) ； }

num_f ++;

comment()；
continue; }

if (strcmp (temp, "index") == 0)
{ 、

if (stage == 1) {
if (column = = 0)

Printf (SNGCR);

if (mim—f == 0) {
> fflush (stdout);

fprintf (stderr, "^sNo fields declared before indices.^s",
qt(SNGCR), SNGCR);

break; >

Printf (linel, SNGCR);

stage = 2；

column = 1;
i }
i

strlwrcpy (temp, getword (fh)); /* New index? Get the name (in */
strmax (temp, 20); /* temp first in case it's long) and */
strcpy (name, temp)； /* make sure it"s unique. */

if (mb—getname (data, name, 1) 1= -1) {
fflush (stdout);
fprintf (stderr, "^sField % b declared twice.^tes", qt(cr(column)),

name, SNGCR)；

命 APPENDICES • “ 一 ^

1

、
break;

：)
I (void)skip (fh, "on");

for (temp[0] = desc[0] = 0; ！)
{

J strlwrcpy (t2, getword (fh));

1 if ((i = mb_getname (data, t2, 0)) == -1)
{
fflush (stdout);
fprintf (stderr, Index placed on undeclared field % s . % 3 " ,

qt(cr(column)), t2, SNGCR);
i exit (1);
！ }

strcat (temp, t2);
sprintf (t2, ,_%d__, i);
strcat (desc, t2);

if (！ skip (fh, __,"))
break;

strcat (temp,",");
strcat (desc, ",")} }

Printf ("%s%s", name, repeat (,.,, 15-strlen (name)));
Printf { " % s % 3 " , temp, repeat ('.', 22-strlen (temp)));

typ = (ftype)0;

if (skip (fh, "without")) {
if (skip (fh, "duplicates") II skip (fh, "dups"))

typ = (ftype)0;
else

typ = (ftype)2;
}

else if (skip (fh, "with")) {
if (skip (fh, "duplicates") II skip (fh, "dups"))

typ = (ftype)1;
else

typ = (ftype)2;
}

if (typ == (ftype)2) {
fflush (stdout);
fprintf (stderr, "?%sIncorrect syntaxes", gt (.DUBCR) , SNGCR);
exit (1)? }

if ((int)typ) { Printf ("Duplicates allowed%s", SNGCR)； }
else { Printf ("Duplicates not allowed%sSNGCR)； }

if (contains—serial (desc))
typ = (ftype)1;

if (mb—addindex (data, name, (int)typ, desc) 1= MB—OKAY) {
fatal(); }

num—i ++;

comment()；

continue; }

if (strcmp (temp, "end") = = 0 1 1 temp[0] == 0) { ,
Printf ("%s", cr (column));
endofflie (num_f, num—i);
stage = 3 ;

continue; }

if (I strcmp (temp, "typedef"))
f {

strlwrcpy (strname, getword (fh));
continue；

： >
r

fflush (stdout);
fprintf (stderr, "%sIdentifier %s%s%s not recognized.%s",

qt(cr(column)), BOLD, temp, NORM, SNGCR);
：丨 exit (1);
：,； >
i if (stage 1= 3) {

exit (1);
} ‘

wrlte_it (num_1, num—f);

Printf ("Relation created -- zero entries.%s", SNGCR);

exit (0);

• APPENDICES • “ ^

I
J

>
void
write—it (num—i, num_f)
int nuin_l, nrnn—f;
{

char temp [512], teinp2[200], bufl[64], buf2[64], buf3 [64];
char teinpkp[32] ； /*wkp*/
int R, H;
int 1, j；
int k; /* wkp 25Aug94 */

if ((R = openx (rel, OPENMODE)) 1= -1) {
if (read (R, temp, 1) 1= -1)

if (tempLO] ！= 50 && teinp[0] != 42) /* Check for 4.1a or 5.0 sig */

Lrintf (stderr, "%s%s%s%32.3 2 s%-2 8.2 8s%3%s“, SNGCR, SUED, INVR,
"*** ERR", "OR ***", NORM, SNGCR);

fprintf (stderr, ,,
"%s This relation is not in MetalBase 5.0 f o r m a t . ,
qt(SNGCR), DUBCR);

close (R);
exit (1); }

>

Printf ("%s%s%32.32s%-28.28s%s%s", SUED, INVR, "** WARN", "ING **", NORM,
SNGCR);

Printf ("%s The file about to be created already exists under the%s",
SNGCR, SNGCR);

Printf (•• target directory I This data will be lostl%s", DUBCR);

close (R); >

/ *
* That was ugly. Now make sure they wanna continue first...
*

if (1 quiet)

Printf ("Continue with the creation of the relation [Y/n] ？")；

gets(temp)； i = (int)temp[0];
if (i == 'n' I I i == 'N' 1 1 i == ' q ' I I i == 'Q') （0”
)

if (header I I quiet) {
i = (header ？ 'y' ： 'n'); }

else

Printf ("Create header file for this relation [y/N] ？ __);
fflush(stdin)； gets(temp)； i = (int)temp[0]; }

Printf (SNGCR);

/ *
* That was uglier. At any rate, we now have permission to create the thing:
*

if (inb_create (data, rel, 0) ！= MB 一 OKAY) {
fflush(stdout)7
fprintf (stderr, "Cannot build relation--%s%s. ", inb_error, SNGCR);
return; }

/ * , •
* Now if they want the header created, we've gotta do all kindsa special shit:
*

* /

if (i 1= 'y' && i i= {
return; >

if ((H = openx (hdr, 0_RDWR)) i= -1) 1 (
^ close (H)；

I unlink (hdr);
\、 >

if ((H = creatx (hdr)) == -1)
i {
j fprintf (stderr, "%sSorry--cannot create header filers", qt(DUBCR),
I SNGCR)；

return; }
inodex (hdr, 0 6 6 6); /* Make the file -rw-rw-rw- */

� sprintf (temp, "#ifndef 劣s_H%s", nameb, SNGCR);
writx (H, temp, strlen(teiap));
sprintf (temp, "#define 戈 n a m e b , DUBCR);
writx (H, temp, strlen(teinp));
sprintf (temp, DESCLINE, names)；

writx (H, temp, strl©n(teinp))；

命 APPENDICES • “ 一 ^

for (j = 0; j < data->nuitt__f; j+ +)
(
switch (data->type[j])

case T_CHAR: sprintf (temp, "char
data->name[j], data->siz[j]); break?

case T_SHORTs sprintf (temp, "short 免s;", data->naine [j]);
— data->siz[j3 = sizeof (short); /*WKP */

break?
case T_USHORf: sprintf (temp, "ushort ^s;", data->name[j]);

data->siz[j3 = sizeof (ushort)； /* WKP */
break;

case T一LONG: sprintf (temp, "long data->naine [j]);
data->siz[j] = sizeof (long); /* WKP */
break;

c a s e T_ULONG: s p r i n t f { t e m p , " u l o n g ^ s ; " , d a t a - > n a m e [j]) ;
_ data->siz[j] = sizeof (ulong)； /* WKP */

break;
case T—FLOAT: sprintf (temp, "float ^^s；"/ data->naine [j]);

— d a t a - > s i z [j] = s i z e o f (f l o a t) ; / * WKP * /
b r e a k ;

case T_D0UBLE5 sprintf (temp, "double 免s;", data->naine [j]);
— data->siz[j] = sizeof (double); /* WKP */

break;
case T—MONEY: sprintf (temp, "double 免s;", data->name[j]);

data->siz [j] = sizeof (double);
break;

case T—TIME: sprintf (temp, "mb—time 免s;", data->naine [j]);
— data->siz[j] = sizeof (mb—time);

break; •
case T—DATE: sprintf (temp, "mb—date 兔s;", data->naine [j]);

— data->siz [j] = sizeof (mb—date”
break;

c a s e T—PHONE: s p r i n t f (t e m p , " i n b _ p h o n e d a t a - > n a i n e [j]) ;
d a t a - > s i z [j] = s i z e o f (m b „ p h o n e)
b r e a k ?

defaults sprintf (temp, "long data->naine [j]) ; break;
d a t a - > s i z [j] = s i z e o f (l o n g)； / * WKP “

}

i = 24;
i f (d a t a - > t Y p e C j] = = T—CHAR)

i _= 3 + (d a t a - > s i z [j] > 1 0) + (d a t a - > s i z [j] > 1 0 0) + (d a t a - > s i z [j] > 1 0 0 0) ;

strcat (temp, repeat (' � i-strlen(data->name[j])));

strcat (temp, _•/••);
strcat (temp, ••* field ")；

strcat (temp, data->naine [j 3);
strcat (temp, type ")；

i f (d a t a - > t y p e [j] 1= T_CHAR)
{

strcat (temp, types[(int)data->type[j]]); }
e l s e

{

sprintf (nameb, "string length 戈d", data->siz [j]);
strcat (temp, nameb)；
}

i f (d a t a - > t y p e [j] == T_SER工AL && d a t a - > s e r i a l i= OL)
{

sprintf (nameb, ” start data->serial);
strcat (temp, nameb); }

s t r c a t (t e m p , r e p e a t (' 7 3 - s t r l e n (t e m p))) ;
strcat (temp, “ *__);
strcat (temp, __/"),•
strcat (temp, SNGCR);
s t r c a t (t e m p , “ ")；
w r i t x (H, t e m p , s t r l e n (t e m p)) ;
}

i f (s t r n a m e [0])
{

strcpy (teinp2, strname); }
e l s e

{

strcpy (strname, names)；

, strcat (strname, "_str");
strcpy (teinp2, names); ^ }

strcat (teinp2, "_rec");

sprintf (temp, ？ R B C , strname, DUBCR);
” w r i t x (H, t e m p , s t r l e n (t e m p))；

j / * = = = = = = = = = = = ： = = = = = = = = = WKP ===================*/

I； sprintf (temp, "̂ ŝ fes",
I «'/*====== Added by KP Wong (in build.c), 25Aug94 === = = = * 八 '

I • • /*== u n s i g n e d x x一 s t r一 l e n [] = (A r y S i z e , l e n O , l e n l > = = * 八 n ") ;
writx (H, temp, strlen (temp));

sprintf (temp, “ unsigned %s_str_len[] = i%n, __, ‘
names, data->nuin_f)；

for (k = 0； k < data->num_f； k++) {
if (k>0) strcat (t e m p , ") ;
fprintf (stderr, "data->siz[%u]=[%u]\n", k, data->siz[k]);
sprintf (tempkp, , data->siz[k])；

strcat (temp, tempkp)；

命 APPENDICES • “ 一 ^

j

>;
strcat (temp, ••};")?
strcat (temp, SNGCR)；

sprintf(bufl, "%3%3", "ttifdef NOW_DEP_LEN", SNGCR);
sprintf(buf2, "^fes^s", “#else", SNGCR);
sprintf(buf3,"兔s兔s", "ttendif", DUBCR);
writx (H, bufl, strlen (bufl));
writx (H, temp, strlen (temp)”
writx (H, buf2, strlen (buf2));
sprintf(temp, " extern unsigned %s_str_len[] T^s", names, SNGCR);
writx (H, temp, strlen (temp));
writx (H, buf3, strlen (buf3))；

,、:=::::=:::::=—:::=:::::—:=:::一一：”

sprintf (temp, "ftifndef MODULE^s 免s

SNGCR, strname, temp2, SNGCR)；

writx {H, temp, strlen (temp))7

sprintf (temp, "ttelse^s extern %3 %s7%s#endif^s#eti<iif%s",
SNGCR, strname, teinp2, SNGCR, DUBCR, DUBCR);

writx (H, temp, strlen (temp));

Printf ("Header file c r e a t e d . W , SNGCR);
close (H)；

}

void
endoffile (num—f, num_i)
int num—f, nuin_i ;
{

if (num_f == 0)

fprintf (stderr, "No fields declared before end reached%s__, SNGCR);
exit (1)；
>

if (num—i = = 0)

Sprintf (stderr, "No indices declared before end reached^fes", SNGCR);
exit (1)7 }

}

void
strlwrcpy (new, old)
char *new,*old;
{

register char *a,*b;
if (Inew II lold) return;
for (a=new,b=old； *b; a++,b++)

*a = tolower (*b)；

*a=0;
>

void
struprcpy (new, old)
char *new, *ol.d;
{

register char *a,*b;
if (Inew II lold) return;
for (a=new,b=old; *b; a++,b++)

*a = toupper (*b)；

*a=0;
}

void
strmax (str, siz)
char *str;
int siz;
{

register int i;
register char *a;

for (i=0, a=str; *a; i++, a++)
if (i == siz) {

*a = 0;
break; >

}

int
get一names (age, agv)
int age;
char **agv;
{

char temp[128];
int i, fh;

while (age > 1 && agv[l][0]=='-') {
switch (agv[l][1]) {

I case : quiet = 1; break;
case 'h': header = 1; break;
default: fprintf (stderr, "unrecognized option '%3'%3", agv [1], SNGCR)；

, usage ();
exit (1);

break;
}

switch (agv[13 C2])
(
case : quiet = 1; break;

• AFPENDICGS 命 口 1

case : header = 1; break; >

age--； agv++; }

if (age != 2) {
usage ()；
exit (1); }

strcpy (temp, agv[l]);
if (strcmp (&temp[strlen(teinp) -2], " .s"))

strcat (temp, ".s");

strcpy (relj, temp)；

for (i = strlen(teinp)-l; i > -1 && teinp[i] 1= && tempLi] i= DIRSEP7 i —)
；

if (i < 0) i = 0;

rel [i] = 0;

if ((fh = openx (temp, 0—RDONLY)) == -1)

fprintf (stderr, "cannot open temp, SNGCR);
exit (1)7 }

comment()；

(void)skip (fh, "relation")；

strcpy (temp, getword (fh));

if (tempm == 0)

fprintf (stderr, "file holds no schema definition.,SNGCR);
exit (1)7 }

Printf CliS);
Printf ("Building relation under 丨、temp);

strlwrcpy (names, temp)；
struprcpy (nameb, temp);

if (rel[0] 1= 0) {
Printf ("directory rel, DUBCR);
sprintf (hdr, rel, DIRSEP, temp);
sprintf (rel, "5tes%c%s.rel", rel, DIRSEP' temp); }

else {
Printf ("current directory's", DUBCR);
sprintf (hdr,"戈s.h", temp);
sprintf (rel, temp);
}

Printf (lineP, SNGCR);

comment()；

return fh;
>

char *
repeat (ch, run)
char ch;
int run;
{

static char buf[80];

buf [(nm : (nm < 0) ？ 0 : run)] = 0;

f o r (n m - - ; nm >= 0 ； run--) bu f [nm] = c h ;

return buf;
}
int
contains—serial (desc)
char *desc;
{

char *line, *pch;

for (line = desc; (pch = strchr (line, ',')) 1= NULL; line = pch+1) {
*pch = 0;
if (data->type[atoi(line)] == T—SERIAL)

return 1;
}

i: if (data->type[atoi(line)] == T_SERIAL)
return 1；

return 0;
>

I • APPGNDICBS • ^

」-「..〔

.

 ..

•

、

。

；

f

 /

.
；
.
.
.
：
.
.
.
i
.
 .

 I

 ..
.
「
•
+
.
.
:
-

.

 •
•

•

•

-

 ,」：v〕>

 .,_.a.:〒"-s:

.
 、_

.
、

 、
入

 >
〜
％

:

.

、

\

\

-
u
.

、：.
 ,

..

 V

.
 -

J
-

:

.

.

/
 ,

 :
 -

 ̂

 I

r
.
.
.
外
-
.
/
.
.
 +

’
：
-
:
:
.
 :...-.’

.

.

.

’

-

.

-

.

•

.

.

.

.

.

.

.

.

:

.

.

.

.
 •

 •

 a

 V
T
n

 .

r

 .;

 -

 r

 •

 •

 :

-
 ..

“

4

1

.-4.......

 ,,

 •

 .

 .

 -
I

 -
.
,

 “

「
 、
.
\

 .

 .
.
.

 :

 ̂

 \

 V
、
」

:
.
.
.

•
.

•
•
•
•
•

 ̂

 •

 •

 .

 .

 *

 ̂

 ̂

 A
-
;

:
 ,.

-

,

-

 .
；

^

^
 ̂

•

」

•

.

.

,

.

.

.

,

.

.

-

 •一

.

一

-

.

.

1

/

(

.

.

-

•

 ,

 •

 •

 #

.

,

-

.
,

 •
.

,

〜：.：-..-:...,£.’..•.‘

•

 .•

.广...n-
 V

 J
 •.:

 •:

 •

 ••

 •
 “

 •

 r

 •.....,.,「.、.：x->4-

-
^
p
:
，

、...：..t.,..-,
 J
 、/.-:.•}

•
.
•
•
•

•

•

-

•

 .
.
.
.

…
 .
.
.
：
-
.
.

t
 >

 .

.
/
u
 ..

 -
f
.

y
.
^
.
.
,
.
.
.
 .",,.

 :
•
二
.

,

 .-.,、..：...

 •

 •

 •

 .•

 .

 "-
.
I

 .

 ‘

......

 r..-
 ,

 ’r.-

 -..-.

 ,

 •

 <

 \

 s

.

.

c

,

 .

 -

 .

-

-

•

-

.

-

:

 — -..Y、.

...

 A.'.

 -

...

 ,

 V

 ‘

 .

 .

 •

 •
 -
.
s
/
^

>
 .
\

.

.

.

.

\

 .
广

 w

:
1
 -

t

.
 J

二
 .

 \
 •

 -

.

.

.

.

.

 -

 ̂

 .

 /
V
J

^

 ’

 -
.
f
.

 •

 •

 •

 f

 *

 r

 ,

 -J
.

 “

/

*

\

 ：
广
.
.
V

 •

 ...

 .

 -

f

’
 f
f

 ®

-
二

-

.

-

.

“

”

*

.
•
:
r
 r

 •

 —
—
•

 .

 -
、

 、,

.

•

 '

 •

 ̂

 •

 •

,
 〈〜
-
w
^

l
-

 /

 .一

.

.

.

 .

 \

 .

 -

 -
 «

 <

 .V

….-

.

.

.

 -

 •

 /

 ,

 _

 •

 .

 r.

 、w

.

,

、

.

-

-

.

’

.

.

“

；

 -

 =:.:.:..

 ..r

 ,v
‘

 >
 i
r
r
-
脅
消
，

、

"

•

.

.

,

.

.

;

,

 .

 :

 -

 f

 〜
，
l
l
^
r
 Y

吏

.

)

 .

 .
 .

 .

 ••

 .-
/

•
•

 J.
A
r
^
.
'

 I

......

 :_

 .
.
.

-

•

>

 ；(

.

.

.

.

.

.

.

.

-

 .

 ../..

 ̂

 .

 .

 ̂

 ̂

 ̂

 ̂
^

 J
-
f

 1
)
 ̂o
r

 /
 /
 .

.

y

.

〜

.

.

.

,

.

丨

.

,

.

T

.
 .

 •

 -

 r

>

、

丨
：

•

-

“

,

 ,

 ,

,

.

.

.
 、

 ,

 」

 -

j
 i

 -

 ,

 -

 —

 v-̂
、：

：
 .……

.

 .
：

,

「

.

 ：树〈，：：：；.、；̂

i
 ̂

 .V

 :

 ̂

)

 w
-

 ̂

 H

 ̂

 l
l
T
t
f

：
,
"
C
A

:
:

 ：、

 .".

 ：：：

 ：.？，；

 --

f

CUHK L i b r a M e s H k

MMMMM I

