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ABSTRACT 

Transform coding of image has been used extensively in recent years for data 

compression. In this thesis, some techniques and parameters will be considered and 

discussed. With the introduction of an international standard, the JPEG scheme, we will 

study its coding methods and use some techniques to improve the coding performance. 

The heart of a transform coding system is the transform used. The Discrete Cosine 

Transform (DCT) is usually employed because of its near optimum performance. On the 

other hand, dyadic symmetry has been used successfully in generating new transforms with 

simpler implementation and close performance to DCT and the technique has been used to 

generate the Dyadic Matrices [CHAM90], In this thesis, it will be proved that the maximum 

size of Dyadic Matrices is 8 only. The relationship between destroying dyadic symmetry 

and application of Dyadic Matrices in generating orthogonal transforms will be given. 

In a conventional transform coding system, DC and AC coefficients are quantized and 

bits are allocated and sent to receiver. The bits needed in coding the DC coefficients can 

be saved by DC restoration scheme and allocated to AC coefficients for more precise coding. 

This method will be extended that not only the DC coefficients, but also some low sequency 

coefficients will be truncated according to the activity of image blocks. At the receiver, 

these truncated low sequency coefficients are estimated to reconstruct the image. Simulation 

results will be given to compare the performance with the Chen & Smith (C&S) [CHENs77] 

scheme. 

» 

Block size is another parameter that affects the performance of a transform coding 

system. Variable block size techniques have been used for enhancing coding performance 

[VAISEg87] [CHEN89]. In this thesis, an Edge Discriminator is proposed which is used 
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to determine the block size. Simulation using real images has shown that a variable block 

size coding system using the proposed discriminator has better performance over that of 

[CHEN89]. 

A JPEG scheme [JPEG90] is recently proposed for still image compression. It utilizes 

the techniques of transform coding and DPCM coding. As the JPEG scheme will become 

an international standard, further improvement should be based on it for compatibility. In 

this thesis, the basic JPEG scheme is described and two techniques are used to enhance its 

performance. One is by the use of a Minimum Edge Difference (MED) predictor and the 

other is by the use of variable block size technique. Simulation results have, shown that 

both techniques can improve the performance of the basic JPEG scheme. 
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NOTATIONS 

DCT Discrete cosine transform 

KLT Karhunen-Loeve transform 

MSE Mean square error 

BRE Basis restriction error 

MRB Maximum reducible bit 

TE Transform efficiency 

F Field 

S Dyadic symmetry 

bpp Bit per pixel 

N Dimension of a matrix or a vector 

p Adjacent element correlation coefficient 

02 Variance 

* 'Logical and， 

© ，Exclusive or，(i.e. binary two addition) 

[T] A matrix or a transform T 

T(i) i01 Basis vector of [T] 

t(N,i,}) (ij)111 element of a order-N [TJ (N is included only when needed) 

[ ] l Transpose 

[CJ Covariance matrix of X 

E[.] Expected value of the variable in [ ] 

x Vector in spatial domain 

[Hs(AO] Sequency-ordered Walsh transform matrix 

[H^N)] Natural-ordered Walsh transfor matrix 
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i A vector in field F representing i 

(i,m) m^1 bit in i 

U(i) Dyadic shift for basis vector in a matrix 

U(i) A vector in field F representing U(i) 

U(i，m) bit in U(i) 
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1. INTRODUCTION 

1.1 Introduction 

Over the past two decades, with the continuing development of the modern communication 

and computer technologies, the demand for storage and transmission of image data is greatly 

increasing. Yet, images represent a large amount of information. For example, a monochrome 

image of 512 x 512 pels and resolution of 8 bits/pel requires 2 Megabits for representation. 

This requirement increases threefold for a colour image. Due to the limitations of the memory 

for storage and the channel capacity for transmission, compression of image data is necessary. 

Different data compression methods have been proposed to compress the image data to 

as low a bit rate as possible, while the image fidelity should be kept reasonably good 

[NETRA180] [JAIN81] [JAIN89]. Predictive coding and transform coding are two commonly 

used methods. In predictive coding, the redundancy of image data in spatial domain is exploited 

and removed. It has the advantage of simple implementation, but the compression ability is 

not very high. Transform coding is a method that transform a block of image data into a 

transform domain, trying to reduce the correlation between the image data. The compression 

ability of transform coding is 

vciy high but its computational rcQuircmcnt is relatively larger. 

With the advances in hardware technologies, this computational burden is greatly relieved and 

the compression ability becomes the more important concern. Therefore, many image coding 

standards and proposals [JPEG90] [ELSEV90] [JURGE91] adopt transform coding. In this 

thesis, we will present our investigation results on three aspects of a transform coding system, 

which are transformation, bit allocation and block size. 

With maturity and vast amount of research work devoted to image coding techniques, a 

committee under the International Telegraph and Telephone Consultative Committee (CCITT) 

and International Standards Organization (ISO) called Joint Photographic Expert Group (JPEG), 

page 4-12 



is drafting a still image coding scheme. This scheme, which is basically a transform coding 

system, is intended to be used as an international standard. We expect that this standard will 

play a dominant role in image coding system. For example, there is already a processor in the 

industry that employs the JPEG scheme [CUBE90]. To maintain easy upgradability and 

compatibility, further enhancement should therefore be made on the basis of the JPEG scheme. 

In this thesis, we will study and propose two techniques to enhance the performance of the 

basic JPEG scheme. One is by the use of a more efficient predictor for DC coefficient and 

the other is by variable block size technique. 

1.2 A Basic Transform Coding System 

Transmitter 
r « 一 一 一 — 一 一 一 — — J 

I N P U T D C T Q U A N T I Z E R E N C O D E R - J ~ , 

I i f l s g s ^ - g s ^ — ； . — ！ 

/•NZ 
C H A N N E L 

Receiver ^ 
一“一 — ‘ ― — — —J 

RECONSTRUCTED I " ^ 
丨 rrmge j INVERSE ！ 

D C T DEQUANTIZER DECODER - j ~ 

* t-— -, J 

Fig. 1.1 Block diagram of a transform coding system 

Fig. 1.1 shows the functional block diagram of a basic transform coding system. At the 

transmitter, an input image is first divided into square blocks of size NxN. Each block will 

go through an orthogonal transform. The transform coefficients are then quantized and the 
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quantized coefficients are encoded. At the receiver, the received data are similarly decoded 

and dequantized to obtain the transform coefficients. Finally, an inverse transform is applied 

to reconstruct the image in spatial domain. 

In the basic transform coding system, there are three basic parameters which can affect • 

the coding performance : 

a. Choice of Transform 

A transform is said to be optimum if it has the highest energy packing ability. It has 

been shown that the Karhunen Loeve Transform (KLT) can achieve this target. However, as 

the basis vectors of KLT are the eigenvectors of the covariance matrix of an image, the KLT 

is signal dependent. For different images, computation is needed to find the corresponding 

KLT in order to achieve the theoretically optimum performance. Moreover, there is no fast 

computational algorithm for computing the transform coefficients. Hence the KLT is seldom 

used. Instead, the Discrete Cosine Transform (DGT) is usually employed because of its near 

optimum performance and existence of fast computational algorithm. 

Although DCT is so far reported to be the best suboptimum transform, many researchers 

are continuing to find if there are still better transforms. For example, GHAM has proposed a 

High Correlation Transform (HCT), Low Correlation Transform (LCT) [CHAMc86] and 

families of Integer Cosine Transform (ICT) [CHAM89] [GHAMc91], by using a concept of 

Dyadic Symmetry. The technique has been used to generate a family of Dyadic Matrix 

[CHAM90]. In this thesis, we will study the formation of these Dyadic Matrices and prove 

that the maximum size of Dyadic Matrix is 8. Relationship between destroying dyadic symmetry 

and Dyadic Matrix and application of using Dyadic Matrices in generating orthogonal matrices 

will be given. The details will be described in chapter 2. 

page 4-12 



b. Quantization 

DC coefficients and AC coefficients have different characteristics and so are usually 

treated differently. It has been found that most two-dimensional transformations produce 

Laplacian distributed AC transform coefficients [REINIg83]. Hence, Max's quantizer [MAX60] • 
with probability distribution of coefficients assumed to be Laplacian can be used to quantize 

the transform coefficients. By making use of these quantizers, the reconstructed image should 

have minimum distortion in terms of Mean Square Error (MSE). Moreover, a further 

improvement of picture quality is possible by taking into account of human visual sensitivity. 

As human visual system responses differently for error in different coefficients, the characteristic 

of quantizer should therefore be designed accordingly. This approach has been adopted by 

[NGANls89] [JPEG90]. 

DG coefficients have no specific distribution and contain information about the brightness. 

It is usually quantized uniformly with a fixed number of bits (e.g. 8 bits), independent of its 

variance. This fixed bit allocation for DC coefficients can consume a large percentage of bits 

available, particularly at low bit rate. However, CHAM has proposed that the DC coefficients 

could be truncated [CHAMc84]. By this way, no bit is needed for sending the DC coefficients 

and more bits can be allocated to AC coefficients for more precise coding. At receiver, the 

DC coefficients can be estimated by using three DC coefficient estimation schemes. In this 

thesis, this method will be further studied to reduce bit rate. In a proposed Low Sequency 

Coefficient Truncation scheme, not only the DC coefficients, but also some low sequency 

coefficients are truncated. 

c. Block Size t 

In a conventional transform coding system, the block size N used to partition an image 

is fixed. The commonly used block sizes are 8x8 or 16x16. However, this approach has not 
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taken the advantage of larger bit rate reduction using larger N for areas with little changes, and 

better visual quality using smaller N for areas with high activities. In this thesis, we will present 

our results using the variable block size technique for performance improvement. An Edge 

Discriminator will be proposed to determine the block size. 
• 

1.3 Thesis Organization 

For the rest of the thesis, chapter 2 will first study the formation of orthogonal Dyadic 

Matrices and the maximum size of Dyadic Matrix will be proved. The relationship between 

destroying dyadic symmetry and Dyadic matrix as well as application of Dyadic Matrices in 

generating orthogonal transform are also discussed. In chapter 3, the method of Low Sequency 

Coefficient Truncation (LSCT) is presented. The first LSCT scheme is based on the C&S 

scheme [CHENs77] and some low sequency coefficients are truncated and estimated according 

to the class of blocks concerned. Then a second LSCT scheme is proposed, trying to eliminate 
* 

the defect of LSCT 1. Simulation results are given and conclusions are drawn. In chapter 4’ 

the Variable Block Size (VBS) technique is studied and by using an Edge Discriminator, an 

enhanced version of VBS system with respect to a Chen's system is proposed. Simulation will 

be given to compare their performance. 

In chapter 5，the basic JPEG scheme will be described. Two techniques will be used, 

hoping to enhance the performance of basic JPEG scheme. Firstly, a more efficient Minimum 

Edge Difference (MED) predictor will be used for encoding DC coefficients. The other is by 

the use of variable block size technique. Simulation result will also be given to show how to 

obtain improved performance. This thesis concludes with chapter 6, which collates the 

discoveries and research work performed during the research programme, and makes suggestions 

on potential areas for further research. 
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2. DYADIC MATRICES AND THEIR APPLICATIONS 

2.1 Introduction 

In a transform coding system, an orthogonal transform is required for transforming 
• -ip" 

images from spatial domain to transform domain. The transform should compact energy 

of an image to as few low sequency transform coefficients as possible to improve the Mean 

Square Error performance of the coding system. Furthermore, the transform should also 

possess fast computational algorithm and simple hardware structure for easy implementation. 

The optimum transform that has the highest energy compaction ability is the KLT. However, 

it is rarely used in practice because it does not possess fast computational algorithm and is 

signal dependent Thus, other suboptimum transforms, such as Fourier Transform 

[ANDREp68], Walsh Transform (WT) [PRATTk69], the DGT [AHMEDtr74], KLT 

[AHMEDr75], High Correlation Transform (HCT), Low Correlation Transform (LCT) 

[CHAMc86] and Integer Cosine Transform (ICT) [GHAMc89], were proposed to achieve 

one or all of the targets. Among these suboptimum transforms, the DCT is found to have 

the best performance and possess fast computational algorithm. However, it requires real 

arithmetic and so its implementation is complex. 

On the other hand, the WT has only ,1, and ,-1，as its elements requiring only addition 

and subtraction operations and so can be easily implemented. However, its energy 

compaction ability does not perform well enough in comparison to the DCT. To compromise 

between computational complexity and transform performance, new transforms were 

proposed. For example, HCT and LCT which were derived using the concept of Dyadic 

Symmetry [CHAMc86] have improved transform performance and virtually the same 

computational requirement as the WT. A series of new transforms, called Integer Cosine 
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Transform (ICT), has also recently been generated [CHAM89] [CHAMc91] by using dyadic 

symmetry, which possesses about the same performance as the DCT but involves integer 

arithmetic only. 

In the development of HCT and LCT using Dyadic Symmetry, the structure of WT 

kernel was modified to approximate the DCT for image coding. This technique for 

generating HCT and LCT has be^n used to generate a family of orthogonal matrices, called 

Dyadic Matrix, from WT [CHAM90]. The kernel components of these Dyadic Matrices 

can have arbitrary values and hence they may found applications in different areas. In this 

chapter, we are going to prove that the maximum size of Dyadic Matrix is 8. The application 

of Dyadic Matrices in generating new transform for image coding is also demonstrated and 

components of the transform for optimum performance are found. 

In section 2.2.1，the basic definitions of dyadic shift, dyadic symmetry and Dyadic 

Matrix will be given. By examinating in detail how the Dyadic Matrix is generated, we 

prove in section 2.2.2 that the maximum size of Dyadic Matrix is 8. In section 2.3.1, the 

performance criteria used for transform performance evaluation will be defined. In section 

2.3.2 - 2.3.3, two transform structures will be proposed using the Dyadic Matrix and the 

components for optimum transform performance are found. Comparison is made by using 

the performance criteria defined. Finally, conclusion will be drawn in section 2.4. 

2.2 Theory of Dyadic Matrix 

Consider a 4x4 matrix [A]: 

[ A ] = 
^2 _a3 -a0 ai 
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[A] is a Dyadic Matrix. It can be observed that [A] is always orthogonal whatever values 

ao, al9 a2 and a3 assume. The 1st, 2nd and 3rd basis vectors of matrix [A] are obtained by 

applying 3"1, 2nd and 1st dyadic shift to the 0th basis vector respectively. The resulting matrix 

is orthogonal and possesses the same sign distribution of WT. It has been found that there 

are two Dyadic Matrices for order-4 and eight Dyadic Matrices for order-8. These Dyadic 

Matrices have the property that each basis vector can be obtained by a Dyadic Shift operation 

of other basis vector and magnitude of the N components in the transform kernel can be 

set arbitrary. Thus, the choice of a Dyadic Matrix and kernel components can be set 

according to different applications, not only limited to that of substituting DCT in transform 

coding. In section 2.2.2, we shall prove that the maximum size of Dyadic Matrix is only 

8. In order to have a complete understanding of the Dyadic Matrices, the Dyadic Shift, 

Dyadic Symmetry and Dyadic Matrix will be first defined as follow : 

2.2.1 Basic Definition [CHAMc86] 

Definition 2.1 : 

A vector of 2m elements where m is an positive integer, is said to 

have a S^ dyadic symmetry (DS) if and only if 

a,- = c - ^ s (2.1) 

where (i) © is 'exclusive or’, (ii) j is an integer in the range [0,2m-l] and S is an integer 

in the range [l,2m-l], and (iii) c = 1 when the symmetry is even and c s= -1 when the 

symmetry is odd. 

Definition 2.2 : 

Vectors [a^ai^.^a^ j] and [bo’�” .” ! )^ ] ] are said to have the common DS S if 
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aj = c.aj®s (2.2a) 

bj = d-b j e s (2.2b) 

where c and d can be 1 or -1. 

The two vectors are said to have same DS if c and d are equal, otherwise they are said to 

have opposite DS. It has been shown that two vectors having opposite DS are orthogonal 

to each other. 

Let F be a binary field, which has ,0，and '1' as its elements, and ’logical and’ {*} 

and ’exclusive or，{0} as its operations. For a vector with 2m elements over a number 

field, there can be 2m-l DSs. These DSs can be represented as vectors in F. Unless specified 

otherwise, vectors in the field F are column vectors. For example, a 7th DS in a order-8 

vector can be represented as [1 1 1 ] � 

Definition 2.3 : 
—# — • — » 

The r DSs S” S2, .‘，，Sr are said to be dependent if there exist r elements kl9 k2,...， 

kp not all zero, such that 

kj %©k2-S20 • ‘̂  ek,• Sr = 0 (2.3) 

Otherwise, the r dyadic symmetries are said to be independent. 

Definition 2.4 : 

Let A be a vector with 2m elements ^ and has dyadic symmetry S. If the vector is 

replaced by another vector A ' with same sign distribution but lacking the S4 dyadic 

symmetry, then the S01 dyadic symmetry in the vector A is said to be destroyed. 
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From [CHAMc86], every basis vector of the WT contains all dyadic symmetries. For 

example, if A is the 1st basis vector of sequency-ordered order-8 WT and is replaced by 

vector A ’，in which the 7th dyadic symmetry destroyed, then : 

A = [1 1 1 1 - 1 - 1 - 1 -1] 

A , = [b b b b -c -c -c -c] 

where b and c are not equal. 

It should be noted that there are more than one way in which the DS of a vector may 

be destroyed. In the above example, A ’ can also be [b b c c -b -b -c -c] or [b c b c -b -c 

-b -c]. To maintain orthogonality of the transform matrix, a pairs of WT basis vectors 

having common DS should be replaced each time a dyadic symmetry is destroyed. The 

components of new vectors can be set arbitrary but the orthogonality of the matrix is still 

maintained. Therefore, destroying dyadic symmetry allows new transforms with arbitrary 

components to be generated. By using this technique, two transforms, called HCT and LCT, 

have been generated [CHAMc86]. 

Definition 2.5 : 

Let A be a vector of [如’ a l9...，a^J. A vector A ' is said to be obtained by a Dyadic 

Shift U from A if the elements of A ' are : 

a ’j = ^©u (2.5) 

where j e [0,N-1], U e [0，N-1]. 

Let [H^AO] be an order-N natural-ordered Walsh Matrix with elements h(ij), where 

N = 2m, m is an positive integer and i j are row and column indices of [H^AO] respectively. 

For simplicity, the order of a matrix or vector which is denoted as N will be omitted usually. 
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When there is a need in specifying the order, it will be indicated by number or notation in 

italics. An order-N natural-ordered Dyadic Matrix is defined from [H^AO] [CHAM90]. The 

definition of Dyadic Matrix is given below : 

Definition 2.6 : 

For an order-N matrix [T(A0], where N = 2m and m is a non-zero positive integer, let —• 
t(ij) and T(i) represent its ( i j , element and 产 basis vector respectively. [T(A0] is said to 

be a Dyadic Matrix if 

t(ii) = I t ( 0 j ' ) ， i = 0 

^ l h(i j ) . t (0 , jeu( i ) ) , if iG [1,N-1] 

where j € [0,N-1], U � is the dyadic shift for basis vector and in the range [1’N-1], and 

® is the 'exclusive-or' operator. 

By the definition of Dyadic Matrix, it can be seen that given the N elements t(0j) of 

the 0th basis vector, T(i) can be obtained by a dyadic shift U(i) applied to T(0) and then 

weighted by the 产 basis vector U^(Nfi) of natural-ordered Walsh matrix. Indeed, the 

weighting of 亍⑴ by B^(Nfi) determines the sign of t(i，j) only. Therefore,宁⑴ is said to 

be obtained by sign weighted dyadic shift U(i). 

By applying different sets of U(i), many Dyadic Matrices can be obtained. Among 

these matrices, only those matrices which are orthogonal are of our interest. Let i be a 

vector over F representing i and U(i) be a vector over F representing dyadic shift U � for 

产 basis vector. It has been shown that [CHAM90] if T � and T(k) are obtained from T(0) 

by sign weighted dyadic shift U(i) and U(k) respectively, where i ^ k , then T(i) and T(k) 

are orthogonal if the following condition is satisfied : 

X f & k e i ^ i ^ - U l (2.6) 
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— • — • 

Moreover, U(i) and U(k) should not be equal and satisfy the condition : 

l? ( i ) - i=l (2.7a) 

l? (k) -k=l (2.7b) 

For a Dyadic Matrix to be orthogonal, eq.(2.6) & (2.7) have to be satisfied for every —• —• 
pairs of basis vector T � and T(k). Computer program has been used to search for dyadic 

shift U � for each basis vector such that the resulting Dyadic Matrix is orthogonal. For N 

=2 , 4, 8, the results are summarized as follow : 

For N = 2 : 

i 

0 1 

Dyadic shift U � 0 1 — DMo(2) 

For N = 4 : 

i 

0 1 2 3 

Dyadic shift U � 0 1 3 2 - - - DMj^) 
0 3 2 1 DM2(4) 
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For N = 8 ： 

i 

0 1 2 3 4 5 6 7 

| 0 1 3 6 7 4 5 2丨—DM3(5) 
0 1 7 2 5 6 3 4 — DM4(5) 
0 3 2 5 7 6 4 1 - - DMS(5) 
0 3 6 1 5 4 2 7 — D M ^ ) 

Dyadic shift U(i) I 0 5 3 2 6 1 4 7 — DM7(5) 
I 0 5 7 6 4 3 2 1 — DM8(5) 

0 7 2 1 6 3 5 4 — DMp(5) 
I 0 7 6 5 4 1 3 2| — DM10(5) 

where, for later reference, DMj are names given to those matrices obtained by applying the 
set of dyadic shift to corresponding basis vectors. 

The results of Dyadic Matrix mentioned above have been reported in [CHAM90]. To 

find higher order Dyadic Matrix (N > 16), similar procedure can be used. However, we 

shall prove that there is no combination of dyadic shift which can be applied for generating 

orthogonal Dyadic Matrix with order greater than 8. 

2.2.2 Maximum Size of Dyadic Matrix 

To find an order-N orthogonal Dyadic Matrix, we have to find dyadic shift U(i) for 

the Ith basis vector, i = 1,2”.”N-1, satisfying eq.(2.6) & eq.(2.7). The conditions of 

orthogonality in eq.(2.6) & eq.(2.7) can be expanded into eq.(2.8a) and eq(2.8b). 

page 2-8 



1?(1)-1 1 | T 
1?(2)2 . 

. = . (2.8a) 
參 • 

. I?(N).NJ LL 

l?(l)-2 © ^(2)-1 1 � r 

1^(1)-3 e if(3).T 
• • • 

• • • 

1?(1).N e ffcN).!=. 
1?(2)-3 � ！7(3).2 • 

1?(2)-4 © if(4). 2 

- l?(N-2) .(N-l)� ^ (N- l ) . ^^ ] Ll. 

(2.8b) 

Let U(i) and i be 

U(i) = [U(i,l) U(i,2) . . • U(i,m)]1 

i = [i(l) i(2) • • . i(m)]1 

where m = log2N, U(i’l) and i(l) are the most significant bit of U � and i respectively. 

Hence, 

lf(i).k©l?(k).i = 

{U(i’l)• k(l) 0U(i，2) • k(2)©…® U(i，m) • k(m)} 0 (U(k,l). i(l)®U(k,2)• i(2)©... e U(k^n). i(m)} 

(2.9) 

Eq.(2.8a) and (2.8b) can be combined and expressed as : 
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[ ( • ) … { l j n ) i r _ i r n 
(2.1)…(2^n) U(1(2) 

( 2 . 1 ) … （ 》 ( 1 . 1 ) … ( l t m ) . 
(3.1)…(3^n) U(l,m) 

(3 ,1)…（3卯） (1,1) ... (1̂ 11) U(21) 
(3,1)…(3^n) (2,1) ... (2,111) •• 

； … U(2^n)= 

• • • • ！ 
• J 

(N-1,1) ... (N-l̂ n) ： 
(N-1,1)…(N-l̂ ii) (1,1) ... (î n) U(N-1,1) • 

° • • 
• • • L (N-1,1)…(N-l^i) (N-2,1) ... (N-2,m)J Lu(N-l̂ n)J Ll. 

(2.10) 

For example, when N = 4, eq.(2.10) becomes : 

0 1 0 0 0 0 ] � U ( l , l ) " | � I -

0 0 1 0 0 0 U(l’2) 1 
1 0 0 1 0 0 U(2’l) _ 1 
0 0 0 0 1 1 ' U(2’2) = 1 (2 .11) 
1 1 0 0 0 1 U(3,l) 1 

•0 0 1 1 1 oj LU(3,2]J LL 

Solving eq.(2.11), we obtain dyadic shift U � for each basis vector. There are two solutions 

for N = 4 as follow : 

[U(l，l) U(l,2) U(2,l) U(2^) U(3,l) U(3»2)] = { g \ \ I ^ y 

which corresponding to 

i 

1 2 3 

1 3 2 

U(i) 3 2 1 
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In other words, there are two combinations of dyadic shift which can be applied to 

generate order-4 orthogonal dyadic matrices. The corresponding orthogonal Dyadic Matrices 

are 

• - p _ 
ao ^！ a2 a3 ao a! a2 a3 
ai -¾ a3 -¾ , 如 - ¾ at -¾ 

and 
a3 2̂ -¾ -ao â  a3 -¾ -¾ 

-¾ -a3 -¾ a ! � |_ai -¾ -¾ 

where a^ a2 and a3 can assume any value. 

These two Dyadic Matrices are the same as those obtained in [CHAM90] but derived 

using a different approach. 

Furthermore, the dyadic shift U(2A ,̂i) for order-2N dyadic matrix can be obtained 

from dyadic shift U(iV,i) for order-N dyadic matrix. As, 

U(2"’i，l) = 0 for i = 1’2”"’N-1 

Therefore, from eq.(2.10), U(2N,i,l) for i e [1,N-1] and 1 e [2,m+l] have to satisfy the 

same condition as U(iV,i,l) for i e [1’N-1] and 1 e [l,m]. Thus, given U(iV,i), we can solve 

for U(2Mi). 

For example, one of the two dyadic shift combinations for N = 4 is given by 

卿’1) U(4y2) U(4,3)] = [3 2 1] 

page 4-12 



From them, we obtain U(5) as follow : 

[3 2 5 7 6 4 1] 
[U(5’l) U(5,2) U(5,3) U(5,4) U(5’5) U(5,6) U(5,7)] = {[I ^ 1 6 3 5 41 

[3 6 1 5 4 2 71 
[7 6 5 4 1 3 23 

Another dyadic shift combination for N = 4 is given by : 

U 關 U(4t3)] = [1 3 2] 

The U(8) obtained is : 

[1 3 6 7 4 5 3 
[U(5，l) U(5’2) U(5’3) U(8A) U(S,5) U(5，6) U(5,7)] = { ^ 3 2 6 1 4 71 

[1 7 2 5 6 3 41 
[5 7 6 4 3 2 1] 

Thus we can obtain all U(8) combinations from \J{4) combinations simply by computer 

search. 

The next procedure is to find the solution U(7(5,i) for order-16 orthogonal Dyadic 

Matrix. However, it is found by applying the truth table technique to eq.(2.10) that in order 

to maintain orthogonality in order-16 Dyadic Matrix, U(5»2), U(5,4), U(5,6) have to satisfy 

conditions given in the following table : 
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U(8,2) U(5,4) U(5,6) 

E.V. E.V. E.V. 

E.V. O.V. O.V. 

O.V. E.V. I O.V. 

O.V. O.V. 1 E.V. 
Table 2.1 Condition of U(8) for U(76) to be exist, where 

E.V.: even in value, i.e. the least significant bit of U(5,i) is 0 

O.V.: odd in value, i.e. the least significant bit of U(5,i) is 1 

In other words, if both U(8,2) and U(5,4) are E.V., then U(8’6) has to be E.V. 

Examining the dyadic shift combination for N = 8, we find that there is no combination 

ofU(8) which can satisfy condition listed in Table 2.1. Thus no solution ofU(764) satisfying 

can be found and hence there is no orthogonal Dyadic Matrix for N = 16. 

Moreover, as U(2N’i) must at least satisfy the same conditions as U(N,i), U(2N’i) has 

no solution for N > 8 and no dyadic matrix can be found. 

2-3 Application of Dyadic Matrix in Generating Orthogonal Transform 

In this section, we will present examples on using the Dyadic Matrix to generate new 

orthogonal transforms for image coding. The optimum components of Dyadic Matrix will 

be searched. To compare the performance of the transform obtained, criteria used in 

evaluating the performance of a transform matrix are first defined. 
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23.1 Transform Performanpe r H ^ r j a 

Assume that a N-dimensional vector x is a sample from an one-dimensional, 

zero-mean, unit-variance, first-order Markov process with adjacent element correlation p, 

and covariance matrix [CJ, where 

' 1 P P2 • • … P N ' 2 pN f 

— P 1 P . • … P N 2 

[CJ =E[x-x5 = (2.12) 
• • • • • p 

Lp • • • p 1 . 

where E[.] denotes the expected value. In other words, the (ij)"1 element of [CJ is 

Cx(ij) = pIHI (2.13) 

The covariance matrix [Cy] of vector y, where y = [T|x is the transformed vector of 

x by transform [T], is given by 

[C^Efy.y 1 ! 

= r a [ c y . r a l 

_ s(0,0) • • • s(0,N-l)-

= : ::: •• (2.14) 

_s (N- l ’0 )… s (N- l ,N - lX 

The variance of the 产 transform coefficient is E[y2(i)]：一⑴：压汰仏 
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Three performance criteria, namely, transform efficiency (TE) [CLARK85], maximum 

reducible bit (MRB) [WANGh84] and basis restriction mean square error (BRMSE) 

[JAIN79], all defined on the [CJ, will be used in comparing performance of different 

transforms. Their definitions are given as follow : 

Definition 2.7 : 

Transform efficiency (TE) is defined as, 

N-l 
2|s(i,i)| 

TE = ̂  xl00% (2.15) 
S S| s(p’q)| 
p=0q=0 

TE indicates the ability of [T] to transform x into a vector of y of uncorrclated elements. 

The greater is the TE, the greater is the decorrelation ability of the transform matrix 

[CLARK85]. TE of the optimum KLT is 100%. 

Definition 2.8 : 

The maximum reducible bit (MRB) is given as, 

1 N-l 
2Ni=o 
1 N-l 

=-—Ilog 2 s( i , i ) (2.16) 
ZJN 1=0 

[WANGh84] has shown that MRB is related to the rate distortion function. It measures 

the maximum bit reducible from each transform coefficient. The greater is the MRB, the 

more bits are reducible and the better is the transform. 
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Definition 2.9 : 

The basis restriction mean square error (BRE(v)) is defined as follow : 

… N-L , 
S o 2 � 

B R E ( v ) = ^ ( 2 . 1 7 ) 
l o 2 ® 

where v is the number of elements in the transformed vector that can have nonzero value 

and v E [0,N-1]. The BRE(v), for any v, will hence vary with the transform used. The 

smaller is the BRE(v), the better is the transform matrix. 

In [CHAM86] new orthogonal matrices can be generated from WT by destroying 

dyadic symmetry. Such method is, however, very different from conventional approach and 

so is difficult to comprehend. We now establish a relationship between destroying dyadic 

symmetry and Dyadic Matrix, which is then used to generate new transform using 

conventional matrix equation. A sequency-ondered Walsh matrix [H^AO] can be represented 

as : 

m ^ ) ] = [P(A0] • [D(A0] • [Q(A0] (2.18) 

where [P(A0] : a permutation matrix reordering the rows of a matrix. 

[Q(A0] : an order-N matrix which combines lower order submatrix in [D(A0] 

into order-N matrix by using some dyadic symmetries. 

a block diagonal matrix composed of submatrices [A(r/)] of order rh 

where = 2k, k is an integer and 1 is an index. 

i.e. 
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[D(AO] = Diag([A(o)],[A(r2)],...,[A�]) 

i r i = =N 

For example, if the rows in [1^(5)] are permuted that the even number basis vectors 

are put into upper half and odd number basis vectors are put into lower half and the 7th 

dyadic symmetry is used in [Q(5)], eq.(2.18) becomes : 

i o o o o o o o " ] � 1 1 l l o o o o " | r i o o o o o o 1 “ 
0 0 1 0 0 0 0 0 1 1 -1 -1 0 o o o o i o o o o i o 
0 0 0 0 1 0 0 0 1 -1 -1 1 0 0 0 0 0 0 1 0 0 1 o 0 

rji (5)1 = 0 0 0 0 0 0 1 0 1 - 1 1 - 1 0 0 0 0 0 0 0 1 1 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 O i l 1 1 1 0 0 0 0 0 0 -1 
0 0 0 1 0 0 0 0 0 0 0 O i l -1 -1 0 1 0 0 0 0 -1 0 
0 0 0 0 0 1 0 0 0 0 0 0 1 -1 -1 1 0 0 1 0 0 -1 0 0 

. O O O O O O O I J L O 0 0 0 1 - 1 1 - 1 J L 0 0 0 1 - 1 0 0 0 . 
= [P(«)]-[D(5)].[Q(«)] (2.19) 

Where [D(5)] = Diag([A(4)],[A(^)]) and 

• 

1 1 1 1 
R A � � I 1 1

 一 1 一 1 
[A(4)J = 

1 - 1 - 1 1 
_1 一 1 1 一 L 

If we replace the [ A ( � ] in eq.(2.19) by order-4 dyadic matrix \DM(4)] such that 

[D'W] = Diag([DM(^)],[DM(4)]) (2.20) 

then a new orthogonal matrix [T(5)] can be obtained : 

[T(5)] = [P(5)] [D’� ] [Q(8) ] (2.21) 

We can see that the matrix obtained by replacing [A(r；)] in eq.(2.18) by [DM(巧)]is 

the same as the matrix obtained by destroying dyadic symmetry. As there may have different 
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Dyadic Matrices for each order, therefore, with same dyadic symmetries destroyed, different 

orthogonal matrices can be constructed by using different orthogonal Dyadic Matrices. As 

a result, Dyadic Matrices, beside themselves being orthogonal matrices, can be used to 

generate new orthogonal matrices of higher order. 

Consider y, the transformed signal vector, which is obtained by transforming a signal 

vector x by transform [T], The transform coefficients yt are the inner product of basis —‘ —« 

vectors T � in [T] and x. Assume that the T(i) are arranged in ascending sequency order 

of i. Then a good transformation is said to be done if most of the signal energy is confined 

in as small low sequency transform coefficients as possible. A large magnitude of y{ will 
— • I 

be obtained if the basis vector T(i) resemble the signal vector X. Since in natural, image 

signal vector vary slowly, the basis vector of a good transform should then have similar 

feature. For example, low sequency basis vectors of the DCT change smoothly while those 

of the WT have sudden changes between positive and negative kernel components. The 

DCT thus packs more energy into low sequency transform coefficients than the WT does. 

Consider an order-8 WT as shown in Table 2.2. If some dyadic symmetries are 

destroyed, by using some Dyadic Matrices, from some basis vectors H(i), then the basis 

vectors will have components which can be varied to construct required structure in basis 

vectors. If the components are set in such a way that the replaced vectors have more smooth 

change between components, a better transform matrix, in terms of its energy compaction 

ability, can be generated. As more energy should be compact to lower sequency transform 

coefficients, higher priority should be given to a basis vector of lower sequency in modifying 

a transform structure for smooth change. 
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1 Dyadic Symmetry Walsh basis vectors H(i) 
0 0 1 0 1 1 1 1 1 

1 0 0 1 1 1 1 1 - 1 - 1 - 1 - 1 
2 0 1 O l l - l - l - l - l l 1 
3 0 1 1 1 1 - 1 - 1 1 1 - 1 - 1 
4 1 0 0 1 - 1 - 1 1 1 - 1 - 1 1 
5 1 0 1 1 - 1 - 1 1 - 1 1 1 - 1 

I t 丨 H l - I I ： ： . ： - ： - J 
Table 2.2: Sequency-ordered Walsh transform, where under the column of Dyadic 

Symmetry, 

,0’ : even dyadic symmetry 
’ 1，: odd dyadic symmetry 

Two combinations, namely [Tl] and [T2], are examined and expected having better 

performance. They can be explained as follow : 

23.2 rTll = rPl D i a _ M 摘 J A 纏 fQl 

Consider H(l), 

3(1) : [ 1 1 1 1 -1 -1 -1 -1 ] 

There is a sudden change between the 3rd and 4th components. If the 1st and 3rd dyadic 

symmetries in H(l) are destroyed, we have a new basis vector : 

Tl(l) : [ ao a! aa a3 -a3 -¾ ] 

which can have more smooth change if ao > aj ^ a2 ^ a3. To maintain orthogonality, H(3), 

H(5) and H(7) also have to be replaced. These four vectors can be self-orthogonal by using 

Dyadic Matrix, and orthogonal to other four basis vectors (i.e. H(0), H(2), 5(4), 5(6)) by 
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their 7th opposite DS. By examining the structure of H(3), it can be expected that replacing 

[A(4)] by [DM2(4)], defined in section 2.2.1, can generate a better transform matrix. The 

resulting transform matrix has basis vectors shown in Table 2.3. 

i Dyadic Symmetry Modified basis vectors Tl(i) 
001 Oil 111 

0 0 0 0 l l l l l l l i 
1 x x 1 知 ai a2 a3 -¾ -¾ 
2 0 1 0 1 1 - 1 - 1 - 1 - 1 1 1 
3 x x 1 a3 a2 -aj ^ -¾ -a3 

4 1 0 0 1 - 1 - 1 1 1 - 1 - 1 1 
5 x x 1 a2 -a3 a! 知 a3 -¾ 
6 1 1 0 1 - 1 1 - 1 - 1 1 - 1 1 
7 x x 1 a! a3 -¾ a2 -a3 知 - a j 

Table 2.3 : Modified Transform Matrix [Tl], where under the column of Dyadic Symmetry, 
’0，: even dyadic symmetry 
,1’ : odd dyadic symmetry 
，x，: absence of the dyadic symmetry 

Exhaustive search has been used to determine the optimum transform components by 

varying % a” ^ and a3 in such a way that a^ a” ^ and a3 are all integer, 16 > ao > ^ > 

a2 > a3 > 0. Under different values of adjacent element correlation p, the values of 知’ a1? 

2̂ and a3 that provide the best performance have been found. The results and the 

corresponding transform performance are shown in Table 2.4. 
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I P I ap at aa a3 TE MRB 

0.1 7 7 7 5 91.36% 0.00490 
0.2 14 14 14 9 84.47% 0.02012 
0.3 11 11 10 6 79.58% 0.04720 
0.4 13 13 11 6 76.36% 0.08908 
0.5 5 5 4 2 74.66% 0.15065 
0.6 14 14 11 5 74.32% 0.24022 
0.7 10 10 7 3 75.55% 0.37330 
0.8 15 15 10 4 78.07% 0.58410 

I 0.9 j 13 12 8 3 84.94% 0.98196 

Table 2.4 : Optimum components and performance of [Tl] 

23.3�T21 =丨PI PiagfrDMJ^lJDMJ^^ rOl 

In KLT, which is the optimum transform, the 0th basis vector has its magnitude 

maximum at the centre and decrease in both side to minimum at end components. However, 

the components of the 0th basis vector in WT, or in the [Tl] obtained in last section, have 

constant value. The vector is commonly referred to as the DC basis vector. For the 

transform matrix [Tl] shown in Table 2.3, there are still four basis vectors remain unchanged 

and can be modified to resemble that of KLT. If the lf t and 3"* dyadic symmetries in 0th 

basis vector of [Tl] are destroyed, then a new basis vector 17(0) is obtained : 

t5(0) : [b0 bx b2 b3 b3 b2 b, b0 ] 

When b0 < bj < b2 < b3, T2(0) will resemble the 0th basis vector of KLT. The 

zeroth-basis-vector-modified transform is expected to have better transform. 

To maintain orthogonality, 5(2), 3(4) and 3(6) also have to be replaced. These four 

basis vectors can be set self-orthogonal by using Dyadic Matrix, and orthogonal to the 1st, 
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3树,5th and 7th basis vector by 7th opposite DS. By examining the structure of g(2), it can 

be expected that the use of DM2(4) can result in a matrix with better transform performance. 

Table 2.5 shows the resulting matrix obtained in this way : 

i Dyadic Symmetry Modified basis vectors T7(i) 

001 Oil 111 

0 x x 0 b0 bj b2 b3 b3 b2 bj b0 

1 x x 1 知 ai a2 a3 -¾ -¾ -ax 

2 x x 0 b3 b2 -b! -b0 -b0 b2 b3 

3 x x 1 a3 a2 知 at -¾ -a3 

4 x x 0 b2 -b3 -b0 bj bx -b0 -b3 b2 

5 x x 1 a2 -a3 -¾ a! -a! ao a3 -¾ . 
6 x x 0 b2 -b0 b3 -b2 -b2 b3 -b� bj 
7 x x 1 � -如 a3 -¾ a2 -a3 ^ -a! 

Table 2.5 : Modified Transform Matrix [T2], where under the column of Dyadic Symmetry, 
,0，: even dyadic symmetry 
’ 1, : odd dyadic symmetry 
'x' : absence of the dyadic symmetry 
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By exhaustive search, the optimum sets of (彻而而而）and (bcb^b^) are found and 

the performance of the corresponding [T2] are shown in Table 2.6. 

P ao ^ a2 a3 b0 b2 b3 TE MRB 

0 - 1 7 7 7 5 2 5 6 6 93.35% 0.00547 
0.2 14 14 14 9 4 9 11 11 87.98% 0.02228 
0-3 11 11 10 6 5 11 13 13 83.96% 0.05178 
0.4 13 13 11 6 5 10 12 12 81.96% 0.09657 
0.5 5 5 4 2 7 12 14 14 81.44% 0.16109 
0.6 14 14 11 5 7 11 13 13 81.88% 0.25311 
0.7 10 10 7 3 5 7 8 8 84.09% 0.38745 
0.8 15 15 10 4 9 11 12 12 88.06% 0.59755 
0.9 13 12 8 3 12 13 14 14 92.18% 0.99113 

Table 2.6 : Optimum components and performance of [T2] 

l t i s interesting to see that if the values of (^l93i2l2L39b0,bl9b2yb3) for different p are 

substituted by the corresponding components in 0th and 1st sequency-oniered basis vectors 

of KLT, the resulting transform matrix, denoted as MKLT, can also have good performance. 

The performance of MKLT, KLT and DCT are shown in Table 2.7 below. 
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MKLT KLT DCT 

p TE MRB TE MRB TE MRB 

0.1 94.70% 0.00531 100% 0.00634 94.54 0.00583~ 
0-2 90.78% 0.02177 100% 0.02577 90.34 0.02397 
0.3 88.14% 0.05085 100% 0.05953 87.12 0.05601 
0.4 86.69% 0.09518 100% 0.11005 84.73 0.10464 
0.5 86.36% 0.15926 100% 0.18158 83.14 0.17439 
0.6 87.11% 0.25095 100% 0.28169 82.44 0.27312 
0.7 88.91% 0.38528 100% 0.42500 82.87 0.41584 
0.8 91.71% 0.59603 100% 0.64484 84.97 0.63638 
0.9 95.45% 0.99070 100% 1.04822 89.83 1.04244 

Table 2.7 : Performance of MKLT, KLT and DCT 

The basis restriction mean square error for p = 0.9 have also been computed for [Tl], 

[T2], MKLT, KLT and DCT. They are listed in Table 2.8 for comparison. 

v [Tl] [T2] MKLT KLT KLT 

0 1.000 1.000 1.000 1.000 1.000 
1 0.227 0.225 0.225 0.225 0.227 
2 0.101 0.099 0.099 0.099 0.101 
3 0.063 0.062 0.062 0.058 0.058 
4 0.047 0.047 0.047 0.037 0.037 
5 0.034 0.034 0.034 0.024 0.024 
6 0.024 0.023 0.023 0.015 0.015 
7 0.011 0.011 0.011 0.007 0.007 

Table 2.8 : Basis restriction mean square error for p = 0.9. 
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The TE, MRB are shown in Fig.2.1 - Fig.2.2 for comparison. 

100? s B B B B B B m KLT 

DCT I "一/Sf" 

75 I 1 1 1 � < p — • � I I I 
0.1 02. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Adjacent element correlation coefficient 

Fig.2.1 Transform efficiency vs adjacent element correlation coefficient 

L/\± 
dj — 

1 I I I 
0.1 02. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Adjacent element correlation coefficient 

Fig.2.2 Maximum reducible bit vs adjacent element correlation coefficient 
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2.4 Discussions and Cnnrlnsini]^ 

In this chapter, the formation of Dyadic Matrices is studied. There are different 

combinations of dyadic shift which can be used for forming orthogonal Dyadic Matrices 
•��-

[CHAM90], By examining the conditions of orthogonality of Dyadic Matrix, the sets of 

dyadic shift obtained in [CHAM90] for forming Dyadic Matrices have been found by a 

different approach. Moreover, we have proved that the maximum size of Dyadic Matrices 

is 8. 

By using Dyadic Matrix, arbitrary orthogonal matrix can be generated for different 

application. For example, the use of Dyadic Matrix in destroying dyadic symmetry has 

been discussed. Two transforms structure, [Tl] and [T2] have been proposed by destroying 

dyadic symmetry and use of Dyadic Matrix. The optimum components of the transform 

matrices are found by exhaustive search and the transform performance are compared using 

three performance criteria. In summary, the performance of [T2] is better than [Tl]. For 

adjacent element correlation p > 0.7’ Transform Efficiency shows that [T2] may perform 

better than DCT and hence can be used as a substitute for DCT. 

It is also found that a MKLT can be obtained by using parameters of KLT and the 

transform structure of [T2]. The performance of MKLT is better than DCT in terms of TE, 

with only eight variable kernel components. Thus, we can use MKLT in a adaptive transform 

coding system such that at transmitter, by sending the components of MKLT as overhead, 

the transform can be adapted to local statistics of an image. At the receiver, the received 

overhead is used to construct the transform, which then inverse transform the received data 

to reconstruct the image. 
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3. LOW SEQUENCY COEFFICIENT TRUNCATION (LSCT) CODING 

SCHEME 

3.1 Introduction 

In a traditional transform coding system, monochrome image can be represented by as 

low as 0.5 bit per pixel (bpp) with reasonable reconstructed image quality [CHENs77]. Usually, 

DC and AC coefficients are quantized separately. Different schemes have been proposed for 

quantizing and encoding the AC coefficients [NGAN82] [CLARK85]. However, not much 

research effort has been put on the encoding of DC coefficients. In most transform coding 

systems, DC coefficients are encoded by 8 bits. These bits allocated for DC coefficients thus 

represent a large percentage of bits available for coding, particularly at low bit rate. If these 

DC coefficients are truncated at the transmitter, those bits originally assigned for DC coefficients 

can now be allocated to other AC coefficients. Thus, the AC coefficients can be coded more 

accurately and hence the fine detail of the image could be better maintained. At the receiver, 

the DC coefficients can be estimated to reconstruct the image. This DC coefficient truncation 

and restoration scheme has been reported in [CHAMc84] and it was used together with the 

C&S system [CHENs77] but only marginal improvement in performance was achieved [YIP88]. 

A DC coefficient restoration scheme can be viewed as a low sequency coefficient 

restoration scheme [CHAMc84]. The low sequency Walsh transform coefficients for a block 

of data, after a transformation, correspond to DC coefficients of low order subblock in the data 

set. For example, consider a set of data with 16 elements [ ^ ！ , . . . ^ ] . Divide the set of data 

into four subblocks, [xo,...,x3], [^,...,x7], [x8,..Mxu] and [x12”..而5]，and let the DC coefficients 

of these four subblock be d o , a n d d3 respectively. Then it has been found that the first 

four low sequency Walsh coefficients [c0tclfc2fc3] of [〜而,“.而5] correspond to [d^diAA]. If 

[CoyCl9c2tc3] of the Walsh transform coefficients are truncated, the effect is simply like truncating 
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the DC coefficients [do,di,d2,d3]. Thus, truncating low sequency coefficients is equivalent to 

truncating the DC coefficients, or resetting the mean, of each subblock to zero. The original 

data set [〜而”.”乂15] can be restored by estimating the DC coefficients of each subblock. 

Hence, we can extend the DC coefficients truncation and restoration scheme to a Low 

Sequency Coefficient Truncation (LSCT) scheme. In our LSCT scheme, not only the DC 

coefficients, but also some low sequency coefficients are truncated. As a result, the bits 

originally assigned for those transform coefficients truncated can now be used to encode other 

AC coefficients more accurately and we expect that the visual quality of the image should be 

better as AC information is more accurately encoded. At the receiver, we can obtain the 

reconstructed image by estimating the DC coefficients of each subblock, using the methods in 

[CHAMc84]. 

In the following sections, three DC coefficient estimation techniques [CHAMc84] will be 

described. All three techniques have been used in the LSCT schemes. In section 3.3, Low 

Sequency Coefficient Truncation (LSCT) scheme 1 will be described and simulation results are 

given. By looking at the defect of LSCT scheme 1, another LSCT scheme 2 will be described 

in section 3.4 for better performance. Simulation results are also given for comparison. 

Conclusion will then be drawn in section 3.5. 

3.2 DC Coefficient Estimation Schemes 

3«2.1 Element Estimation 

In this method, a DC coefficient of (kj)111 block is estimated from its vertical and horizontal 

adjacent blocks, as shown in Fig 3.1. 
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Fig.3.1 The two edge difference vectors considered in element estimation 

Let au represent the DC coefficient of (k,!)^ block and uu(p，q) represent the (p.q)01 zero 

DC pixel element of the ( k j , block. The vertical edge difference vector, Dj and horizontal 

edge difference vector, D2 are defined as : 

“ u ^ - i ^ N - l ) - UkJ(0,0)-
u ^ a N - i ) - UkJ(i,o) 
U k ^ N - l ) - UkJ(2,0) 

D iw = akj-ix V + . (3.1a) 

. u ^ (N-l,N-l) - UkJ(N-l,0)_ 

_ uk.ltl(N-l,0) - UkJ(0,0) _ 
uk.u(N-l’l) - UkJ(0,l) 
uk-u(N-l,2) - UkJ(0,2) 

D2W
 = ak-ijx V + . (3.1b) 

_uk.ltl(N-l’N-l) - UkJ(0,N-l). 

page 3-3 



where k,l e [1,M-1], M is the number of blocks in a row and V is a vector at the edge 

of the NxN DC basis picture, i.e. 

v = 「 丄 I i ] 1 

L N N • • • N � � 3 . 2 ) 

If a DC coefficient, a^, is added to the (Klf1 block, then the two edge difference vectors 

are changed to a new vertical edge difference vector Wlk4 and a new horizontal edge difference 

vector W ^ : 

W ^ ^ D ^ - a ^ x V (3.3a) 

W2k.i = D2k.i-akJxy (3.3b) 

The estimated DC coefficient of the current ( k j f block is the one which minimizes the mean 

square edge difference, e, between the current block and adjacent blocks, i.e. 

e = |W l k J 2 +|W 2 k J 2 (3.4) 

It can be shown that the estimated DC coefficient is : 

1 2 N-l 

= 2 (3.5) 
L p=l m=0 

where dCp,!!!)^ is the m4 element of the vector DpkJ. 

3.2.2 Row Estimation 

The second method of DC coefficient estimation is by determining the set of DC 

coefficients of a row simultaneously, as shown in Fig.3.2. 
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Fig.3.2 The edge difference vectors considered in row estimation 

Let vk-u(P>q) be the pel in (卜1,1广 block, in which the DC level has been adjusted 

according to the previously estimated DC coefficients. 

A N-dimensional DC coefficient vector A is defined whose components are the DC 

coefficients of the current row : 

A = a ” … ， a N . J (3.6) 

As shown in Fig.3.2, the vertical edge vector, Dl „ between the 1th block and (l+l)fc block 

in k4 row is defined as : 

“ u ^ ^ N - l ) - UkJ+1(0,0) _ 
uw(l,N-l) - UkJ+1(l,0) 
Ulu(2，N-l) - UkJ+1(2,0) 

D n = • l e [0,N-2] (3.7a) 

_uw(N-l,N-l) - Uk4+1(N-1,0). 
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The horizontal edge vector, D2I, between the (k-Ulf block and (k,!)^ block is defined as 

_ uw(N-l,0) _ vk.u(0,0) _ 
u ^ N - U ) 一 vk.u(0,l) 
^(N-1,2) - vk.u(0^) 

D2i= • l € [0,N-1] (3.7b) 

_UkJ(N-l,N-l) 一 vk.u(0’N-l)_ 

If the estimated DC coefficients are added to corresponding blocks in k^ row, the edge 

difference vectors Dl, and D21 are changed to Wx, and W2, respectively : 

Wn = D11-Ka1--alfl)xV (3.8a) 

W z ^ ^ i + ^ x V (3.8b) 

By minimizing the sum of the square of the magnitudes of these edge difference vectors 

N-2 N-l 
e = I | W n | 2 + S | W 2 1 | 2 (3.9) 

1=0 1=0 

It has been shown that the estimated DC coefficients, or A, is given by : 

A = - 网 " ^ x C (3.10) 

where 
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" 2 - 1 0 1 
- 1 3 - 1 0 
0 - 1 3 - 1 0 . . . 

2 . 0 - 1 3 - 1 0 . . . 
. 网 = N X (3.11) 

• 參 • • • • 參 參 • | 

• • . • 0 - 1 3 - 1 0 
• • • • • 0 - 1 3 - 1 

- • 鲁 • 争 參 會 0 1 2 . 

2 N-1 
C = I I [ R ] j ^ x D j f k (3.12) 

0 , i f l = M-l 

— , if l ^ M - l , q = l 
[R]u(P’q)= { x (3,13a) 

, i f U M - l , q = l+l 
N 

0 , i f l 关 M-l,q 妗 l,q 关 1+1 

[R]2»(P，q)= { N ' tfq=:1 (3,13b) 
0 , i f q ^ l 

3丄3 Plane Estimation 

In this method, the DC coefficients of four adjacent blocks, as shown in Fig.3.3, are 

estimated using the four edge difference vectors D1X>2X>3X>a-
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Fig.3.3 The edge difference vectors considered in plane estimation 

The four edge difference vectors are defined as : 

“Uo, o (N-l ,0)-u l i 0 (0 ,0)“ 
Uo>0(N-l,l)-u1>0(0,l) 

D i = : (3.14a) 

_UOt0(N-l,N-l)-Ul>0(0,N-l). 

“U1 > 0(0,N-1)- .Um(0,0)‘ 
u l t 0( l ,N-l)-uM( l ,0) 

D 2= ‘ (3.14b) 

.U1|0(N-1,N-1)-Um(N-1,0). 
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“ u 0 i l ( N - l , 0 ) ~ u u ( 0 , 0 ) “ 
u0 | 1(N-l,l)-u l t l(0,l) 

D 3= • (3.14c) 

• ‘ � • 

-1^(^1^1)-1^(0,^1). 

“^0(0,1^1)-1^(0,0)“ 
Uo,0(l，N-l)-Ul.�(0,l) 

D 4= : (3.14d) 

After adjusting the pels in (1,0)^, (1,1产 and (0,l)th blocks in acconiance with the estimated 

aio，au and 知” we have the following new edge difference vectors : 

W ^ D ^ V . a ^ (3.15a) 

W2 = D2+V.(a10-an) (3.15b) 

W3 = D3+V.(a01-au) (3.15c) 

W4 = D 4 - V a 0 1 (3.15d) 

Let 

A = [a10, a n , aoJ1. 

[Ri] = [-v,0,0] 
[RJ = [V,-V,0] 

[R3] = [0,-v,v] 

[RJ = [0,0,-V] 
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The sum of the squares of the four new edge difference vector magnitudes can be expressed 

as : 

e=S|D p +[R p lxA| 2 (3.16) 

By minimizing eq.(3.16) with respect to 〜。為山如’ we can obtain the estimated DC coefficients. 

Let d(i)p be the 产 element of vector Dp and s(p) be the average of elements in vector Dp, i.e. 

“d(0 ) p “ 

d(l)p 

D
P = • (3.17) 

i N1 

s(p) = ̂ x l d ( i ) p (3.18) 
The estimated DC coefficients are given by 

a10 = [s(4) + s(3) - s(2) + 3s(l)] / 4 (3.19a) 

an = [s(4) + s(3) + s(2) + s(l)] / 2 (3.19b) 

% = [ 3 s � - s ( 3 ) + s � + s(l)] / 4 (3.19c) 

In next section, these three schemes will be used in estimating the DC coefficients. 
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I 3 3 L S C T Coding SpHptiip 1 and R e s u l t 

In this scheme, the coding system is basically the same as the C&S system [CHENs77]. 

However, according to the class of each block, some low sequency coefficients of that block 

will be truncated. The details of which are described as follow : 

In the transmitter, an image is divided into 8x8 blocks and transformed. The AC energy 

of each block is calculated. According to AC energy calculated, each block is classified into 

one of the four classes in the same way as the C&S system. The classification of blocks is 

such that the number of blocks in each class is the same. A class map is then generated as an 

overhead, indicating the class of each block. In our LSCT scheme 1, low sequency coefficients 

in each class are truncated as follow : 

class 0 : DC coefficient is truncated. 

class 1 : DC coefficient is truncated. 

class 2 : 2x2 lowest sequency coefficients are truncated. 

class 3 : 4x4 lowest sequency coefficients are truncated. 

Afterwards, the bit allocation, quantization and coefficient encoding are similar to those 

of C&S 

system. As the information of the number of low sequency coefficient truncated is 

included in the class map, no additional overhead is required with respect to the C&S system. 

In the receiver, the transform coefficients are inverse transformed to spatial domain. As 

mentioned, truncating low sequency coefficients is equivalent to truncating DC coefficients of 

lower order subblocks. Thus we now have to estimate the DC coefficients of subblocks for 

class 2 and class 3. For class 3, 4x4 low sequency coefficients have been truncated. Thus, 

the following procedures are used to reconstruct the image block : 

page 4-12 



1. The 8x8 blocks in spatial domain are divided into sixteen 2x2 blocks. Every four adjacent 

blocks have their DC coefficients estimated using Plane Estimation. Then each 2x2 block is 

adjusted by its corresponding DC coefficient. 

2. The 8x8 blocks are now divided into four 4x4 blocks. The DC coefficients of these 4x4 

blocks are again estimated using Plane Estimation and added to corresponding blocks. 

For class 2, as 2x2 transform coefficients are truncated, only the procedure 2 described 

above is needed. 

Now all blocks should have their DC coefficients of each subblock estimated. The final 

step is to estimate the DC coefficients for each block in a row. The method used is the Row 

Estimation because it gives the best performance as reported in [CHAMc84]. 

Now we compare the performance of LSCT scheme 1 with that of C&S. Before that, 

performance criterion has to be defined first. In the simulation described throughout the thesis, 

the Mean Square Error (MSE) will be used as the criterion for coding systems performance 

evaluation. The MSE is defined as : 

1 255 
=
 忍 • - 如 ) ]

2
 (

3
.

2 0
) 

where f(ij) : ( i ^ pixel of original image 
八• • tU 
f(i j) : (ij) pixel of reconstructed image 

Table 3.4 and 3.5 shows the MSE performance for the C&S scheme and LSCT scheme 

1 respectively. To assess the visual quality of reconstructed images, images LENNA and 

BABOON will be used throughout the thesis for comparison. Their original images are shown 

in Fig.3.4. The reconstructed images, LENNA and BABOON, after being processed by C&S 

system and LSCT scheme 1 are also shown in Fig.3.5 and Fig.3.6 respectively. As expected, 
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the MSE performance of LSCT scheme 1 is poor when compared with the C&S scheme. We 

expect that the LSCT scheme would produce images with better visual quality than the C&S 

scheme because the AC coefficients of the LSCT scheme are coded more accurately. However, 

the visual quality of the reconstructed images is also not acceptable. The poor performance of 

LSCT scheme 1 may be due to the following reasons : 

1. There is a large estimation error between the original and estimated DC coefficients. 

2. For class 2 and class 3, not only the DC coefficients but also more low sequency coefficients 

are truncated. As the estimation of DC coefficients depends on information provided by high 

sequency coefficients, more coefficient truncation means less high sequency coefficients or 

information can be used for estimation. Thus, the estimated DC coefficients have large error. 

3. We expect that the high sequency coefficients, when transformed back to spatial domain, 

can be used for low sequency coefficient estimation. This is true when there is no quantization. 

But in practical system, the high sequency coefficients are quantized. Because of the 

quantization error, the estimation of DC coefficients based on these quantized coefficients is 

erroneous. 

4. The estimation of DC coefficients by Row Estimation uses information from previous row. 

However, there is already large estimation error in the previous row and the error in previous 

row will hence propagate to the current row. As a result, the estimation error is again enlarged 

In summary, due to the reasons given above, the LSCT scheme 1 cannot give satisfactory 

performance as expected. 
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LENNA PEPPERS SAILBOAT BABOON 

Bit rate 1.00 0.75 0.50 1.00 0.75 0.50 LOO 0.75 0.50 1.00 0.75 0.50 

MSE 49.4, 72.9 106.0 52.3 75.1 114.2 118.6 168.4 241.5 284.7 375.0 488.3 

Table 3.1 Simulation result for C&S scheme. 

LENNA PEPPERS SAILBOAT BABOON 

Bit rate 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 

MSE 231.4 292.2 461.7 441.7 635.6 675.5 904.0 1040.0 1263.7 1211.9 1212.6 1538.5 

Table 3.2 Simulation result for LSCT scheme 1. 

(a) LENNA (b) BABOON 

Fig.3.4 Original images 
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jl^Cj l^m 
(a) LENNA, 0.5 bpp (d) BABOON, 0.5 bpp 

(b) LENNA, 0.75 bpp (e) BABOON, 0.75 bpp 

隱圓 
(c) LENNA, 1.0 bpp (f) BABOON, 1.0 bpp 

Fig.3.5 Images after processed by C&S scheme 
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3.4 L S C T Codiny Schema 2 and Resiilfs 

In LSCT scheme 2, we try to improve the coding method of LSCT scheme 1 such that 

better performance in both MSE and visual quality can be obtained. As discussed in LSCT 

scheme 1, the large number of coefficients truncated causes unsatisfactory result. So we try to 

limit the maximum number of coefficients to be truncated to only 2x2, even for class 2 and 

class 3. Thus, there will not have too much coefficient truncation and hence the estimation of 

DC coefficients will be more accurate. 

Moreover, the propagation of estimation error should be avoided such that the previous 

estimation error would not result in current estimation a larger error. In LSCT scheme 2, the 

Plane Estimation used in LSCT scheme 1 is still employed to estimate DC coefficient of each 

subblock. Then the Element Estimation is used to estimate the DC coefficients block by block. 

The resulting errors between original and estimated DC coefficients of each subblock are 

quantized, using a quantizer developed in [BRAINpPO].1 The quantized errors are then sent to 

receiver for reconstruction. Thus, the DC coefficients are estimated block by block and the 

errors are immediately adjusted instead of propagating over the entire image. 

Two variations of scheme 2, S2.1 and S2.2, were simulated. In scheme S2.1, the blocks 

of class 2 and class 3 will have their 2x2 low sequency coefficients truncated Class 0 and 

class 1 will have their DC coefficients truncated only. Different number of bits Be are used to 

send the error between original and estimated DC coefficients and the simulation results are 

1 In [BRAINp90], predictors are designed for several test picture and quantizers are 
designed, using the MSE criterion, for quantizing the error between original and predicted 
luminance signal. The parameters of the quantizers have been designed based on statistics 
from several test pictures, with an assumption that the error is Laplacian distributed. 
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shown in Table 3.3. In scheme S2.2, the blocks of class 2 will have their 2x2 low sequency 

coefficients truncated. Class 0’ class 1 and also class 3 will have DC coefficients truncated 

only. Different number of bits are also used and the simulation results are shown in Table 3.4. 

LENNA PEPPERS SAILBOAT BABOON 

Bit rate 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 LOO 0.75 0.50 

Be = 3 59.8 82.8 114.8 66.2 88.1 124.0 140.8 192.7 264.0 311.7 389.8 509.6 

Be = 4 57.0 81.4 117.8 63.1 84.9 128.5 140.8 185.0 273.1 316.3 402.6 510.0 

Table 3.3 Simulation result for LSCT scheme S2.1. 

LENNA PEPPERS SAILBOAT BABOON 

Bit rate LOO 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 

Be = 3 54.9 79.3 107.0 62.7 80.8 118.5 137.3 177.6 243.5 301.9 380.7 488.4 

Be = 4 53.3 77.3 106.8 59.6 80.6 117.5 131.9 179.8 248.2 301.2 381.2 495.5 

Table 3.4 Simulation result for LSCT scheme S2.2. 

It can be seen that both the scheme S2.1 and S2.2 of LSCT scheme 2 give a much lower 

MSE over that of LSCT scheme 1 and is comparable to C&S system. Images LENNA and 

PEPPERS have lower MSE when 4-bit quantizer is used. However, images SAILBOAT and 

BABOON have lower MSE when 3-bit quantizer is used. This is due to the fact that SAILBOAT 

and BABOON have larger activity and more energy is distributed over the high sequency 

coefficients. When 4-bit quantizer is used, less bits can be allocated to the high sequency 

coefficients, which are thus coded less accurately. Thus, the resulting MSE is larger. 
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Comparing the two schemes, S2.1 and S2.2, with different number of low sequency 

coefficients truncated for each class, it can be seen that the second one gives a better result. 

The reason is that for class 3, the activity is too low and most information is contained in low 

sequency coefficients. Truncating 2x2 coefficients for class 3 is still too much for the estimation 

to be accurate, which thus results in a larger MSE. Thus scheme S2.2 is better than scheme 

S2.1. In Fig.3.7, images of LENNA and BABOON after being processed by subscheme S2.2 

are shown. It can be seen that the visual quality of images with S2.2 is much better than LSCT 

scheme 1 and is comparable to C&S system. 

In summary, LSCT scheme 2 can give improvement and correct the defect in LSCT 

scheme 1. However, as bits are required to code the error, less bit can be used to code the 

high sequency coefficients and hence LSCT scheme 2 still cannot perform better than the C&S 

system. We expect that if the error can be sent more effectively, then the performance of such 

LSCT scheme can be better. 
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議國 
(a) LENNA, 0.5 bpp (d) BABOON, 0.5 bpp 

國 . 
(b) LENNA, 0.75 bpp (e) BABOON, 0.75 bpp 

(c) LENNA, 1.0 bpp (f) BABOON, 1.0 bpp 

Fig.3.7 Images after processed by LSCT scheme S2.2 
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3»5 Discussions and Conclusions 

DC coefficients truncation and restoration have been studied and reported in [CHAMc84] 

and [YBP88]. Their results have shown that by truncating the DC coefficients, more bits can 

be allocated for AC coefficients. Performance improvement has been obtained in [YIP88] as 

the AC coefficients are coded more accurately. In this chapter, the investigation of truncating 

not only DC coefficients but also low sequency coefficients has been presented. By truncating 

low sequency coefficients, more bits can be assigned for AC coefficients and hence better 

performance was expected. The C&S scheme is used as a basis for comparison, in which we 

truncate more low sequency coefficients as the activity of the block decreases. In LSCT scheme 

1, the number of coefficients truncated is determined by the class map in C&S scheme and so 

no additional overhead is required. However, due to the truncation error, quantization error 

and error propagation, the estimation of low sequency coefficients is not accurate enough and 

the results are not satisfactory. 

A second scheme, LSCT scheme 2, is then proposed in which the error of estimation is 

sent to receiver such that the DC coefficients can be adjusted immediately for each block. 

Moreover, the number of coefficients to be truncated is lower, even for blocks with lower 

activity. The results, although show much improvement over those of LSCT 1, still cannot 

perform better than the C&S scheme. The major reason is that larger number of bits is required 

to send the error. It can be expected that by using more effective quantizer and encoder for 

the error, better results can be obtained. 

In conclusion, low sequency coefficient truncation and estimation can conceptually be 

used to save more bits and code AC coefficients more accurately. However, quantization and 

truncation of coefficients in practical transform coding system degrades the accuracy of the DC 

coefficient estimation. So the reconstructed images do not have much improved quality. 
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4. VARIABLE BLOCK SIZE (VBS) CODING SCHEME 

4.1 Introduction 

As real images often have inhomogeneous statistics over different areas, adaptivity has 

to be incorporated into a transform coding system according to the local activity for the 

greatest benefit. Usually, there are several parameters in a transform coding system which 

can be made adaptive to an image. For example, quantizer step size [JAIN81] [NGAN82], 

bit allocation [CHENs77], transform kernel [TASTOw71] [CHAMac84], and block size used 

to partition an image [VAISEg87] [CHEN89] can be adaptive. In this chapter, the technique 

of variable block size (VBS) will be studied for improving the performance of a transform 

coding system. 

In most existing transform coding systems, the block size used to divide an input 

image is fixed. The commonly used block sizes are 8x8 or 16x16. This approach, however, 

has not taken into consideration that image statistics may be inhomogeneous and vary from 

area to area in an image. Some areas of an image may have only smooth changes and 

contain no high contrast edge. In these areas, higher compression can be obtained by using 

a larger block size. For those areas containing high activities and contrast edges, a transform 

of a smaller block size should be used to obtain better local adaptivity and visual quality. 

Therefore, to truly adapt to the local statistics of an image in different areas, a transform 

coding system should vary the block size to yield a better trade off between the bit rate and 

the quality of decoded images. 

In [VAISEg87], the variable block size technique has been used to encode images. 

His system first divides an image into blocks. The local mean of each block is calculated 

and if it is larger than a threshold, it is subtracted from the block. Then each block will 

be partitioned into smaller subblocks and undergoes the same mean-removal and 
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block-partitioning processes until the smallest block size is reached. After the mean-removal 

process is completed, the variances of the residual, or mean-removed, image blocks are 

calculated. A hybrid transform coding and vector quantization scheme is then applied to 

each block, with suitable block size indicated by the variance. Although it was said that 

satisfactory results can be obtained, the system employs several procedures and coding 

methods, which complicates its implementation. 

Another VBS coding system is proposed in [CHEN89]. His VBS system uses 

transform coding techniques and has shown performance improvement over fixed block size 

transform coding system. This VBS transform coding system is much simpler than that in 

[VAISEg87] and uses a mean-difference based criterion to determine whether a block 

contains high contrast edges or not. If a block contains high contrast edges, the block is 

divided into four smaller blocks and the process repeats with the divided blocks until the 

four blocks contain no further high contrast edges or the smallest block size is reached. 

After determining the block size for different areas in an image, DCT is applied and the 

transform coefficients are quantized and encoded similarly as [CHENp84]. 

Comparing the system in [VAISEg87] and [CHEN89], we can see that Chen's system 

has a simpler configuration and uses the transform coding technique. So in this chapter, 

Chen's system will be used as a basis for study. Moreover, we propose a new criterion 

function, namely Edge Discriminator (ED), to determine whether a block should be divided 

into smaller ones. By using the ED criterion, the performance of Chen's VBS coding system 

can be improved. 

In the following section, the details of Chen's coding scheme will be briefly described. 

The proposed Edge Discriminator (ED) will be defined in section 4.3. Simulation results 

given in section 4.4 show that the proposed criterion function gives better performance 

improvement over that of Chen's system. Finally, conclusion will be drawn in section 4.5. 
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4*2 Chen^s VBS coding scheme and its limitation 

In Chen's variable block size coding system [CHEN89], an image is first divided into 

16x16 blocks. In each of these blocks, it is further divided into four 8x8 quadrants. 

A decision criterion is then applied to see if each quadrant should be encoded as four 

independent 4x4 subblocks or as a one 8x8 block. If all of these four quadrants can be 

encoded as 8x8 blocks, the criterion is again applied to see if the four 8x8 blocks can be 

further merged and encoded as one 16x16 block. Thus, blocks with high local activities 

will be encoded as 4x4 blocks and those with low local activities will be encoded as 16x16 

blocks. Blocks with size 8x8 are used for those areas with medium activity. The maximum 

and minimum sizes of encoded blocks are 16x16 and 4x4 respectively. Ideally, if the 

decision criterion can make appropriate decision at boundaries where there are changes in 

the image statistics, the divided blocks should have only low activity or uniform change 

within them. After determining the block size, each block is transformed by DCT of 

corresponding size. Quantization and coefficient coding are then applied to obtain the 

encoded data. 

To reconstruct the original image, the decoding algorithm has to know the block sizes 

used in different parts of an image. In [CHEN89], a hierarchical data structure, quadtree, 

is used. An example of a K-level quadtree structure is shown in Fig.4.1. A quadtree is 

said to be a K-level quadtree if the lowest level allowed is K-l. When using a K-level 

quadtree to represent the variable block size scheme, the 1th level nodes represent the blocks 

with size NxN, where N = N ^ 1 ^ ' ^ 1 1 , N— is the minimum block size and 1 e [0，K-1]. 

The quadtree can be represented by assigning 0 to non-leaf nodes and 1 to leaf nodes. Each 

node in a quadtree represents a block. If a block can be split into four quadrants, then the 

corresponding node will generate four children nodes. Otherwise the node becomes a leaf. 
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In the variable block size transform coding system described, there are three levels in the 

quadtree. The highest level or the root, represents the 16x16 block and the leaves at lowest 

level represent 4x4 blocks. 

• • 1̂12 

\ i 
Ef^^^^&^Q 一 k.， 

Fig.4.1 An example of K-level quadtree. 

In the VBS coding system, a full K-level quadtree is initialized before the process of 

determining block size starts. All leaves are assigned 1 and the remaining nodes are assigned 

0. For every four leaves belonging to the same parent, the decision criterion is applied to 

see if the blocks represented by them can be merged. If ’yes’，these four leaves will be 

removed and their parent becomes a leaf and is represented by 1. Otherwise, the four leaves 

remain unchanged. The test-and-merge process repeats with other groups of leaves until 

the root is reached. After the final quadtree is obtained, the DCT is applied to blocks 

corresponding to each leaves. The size is determined by the level in which the leaf lies. 

Transform coefficients can be quantized and coded by using a standard coding scheme 

[CHENp84]. The quadtree structure is sent as an overhead to the receiver for image 

reconstruction. 
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One of the factors that contributes to a successful variable block size coding scheme 

is the decision criterion. A good decision criterion should be able to determine whether 

four adjacent NxN blocks should be merged and encoded as a 2Nx2N block. Ideally, if 

2Nx2N blocks contain only smooth changes and no high contrast edge, the blocks should 

be merged and encoded as a 2Nx2N block. Otherwise, the blocks should be divided into 

four NxN blocks, each of which should have lower activity and hence can be encoded better. 

In Chen's system [CHEN89], the decision is based on a Mean Difference Discriminator 

(MDD) of four adjacent blocks. Four NxN blocks are to be tested if they can be merged 

into one 2Nx2N block. Let bu be the mean of (k9lf block, ij,k,l € [0,1], as shown in 

Fig.4.2. The Chen's MDD criterion can be stated as : 

If I B G - b J < t for all (ij) ^ (k,l), then merge 

else do not merge. 

where t is a decision threshold which can be set empirically. 

N N 

Fig.4.2 The four NxN blocks under consideration 
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This criterion is simple. However, it is not a good criterion as the mean difference 

does not necessarily indicate whether the block contains high contrast edges. Hence we 

propose a new decision criterion, namely the Edge Discriminator (ED), as described in the 

following section. 

4 3 VBS coding scheme with block size determined using Edge Discriminator fFFh 

The plane estimator for estimating DC coefficients in [CHAMc84] is used as the Edge 

Discriminator (ED). Consider four adjacent blocks as shown in Fig.4.3. 

N N 

I ^ f I 
N (0,0)th (0,1 )th ！ 

I block block 

i r . D 3 _ 

N (1,0)th (1,1 )th 
| block block 

Fig.4.3 The four blocks and edge difference vectors considered in Edge Discriminator. 

The DC coefficient which represents the mean of a block is first calculated and 

subtracted from the pixels within the block. As described in chapter 3, the four edge 

difference vectors D” D2, D3 and D4 can be found and minimized by condition of minimum 

edge difference. With a^, the mean of (0,0)th block,, set equals to ma, it has been shown 

[CHAMc84] that the estimated means are given by : 

page 4-12 



aio = [s(4) + s(3) - s(2) + 3s(l)] / 4 + m. (4.1a) 

an = [s(4) + s(3) + s(2) + s(l)] / 2 + m. (4.1b) 

AOI = [3S(4) - s(3) + s(2) + s(l)] / 4 + M. (4.1c) 

where 

m« = [(boo+b01+b10+b„) - (ad+a^+an)] / 4 

s(p) is the average of elements in Dp, pe [1,4]. 

The value of m, is chosen such that the average value of the 2Nx2N blocks remains 

unchanged. From the derivation of estimated means, a^, it can be seen the edge differences, 

after a d d i n g � t o corresponding blocks, will be minimum. When the original block has 

only uniform change, the original edge differences should be small and hence the estimation 

means are close to original. If the original block has large activity or high contrast edge, 

the original edge difference should be large and the estimation by minimizing edge difference 

would give large error. Hence, the accuracy of estimation depends on whether the four 

adjacent blocks contain high activities or not. This phenomenon can be used to discriminate 

whether a block contain high contrast edge or not. Therefore, an Edge Discriminator (ED) 

criterion is formed as follow : 

If 1¾ 一 b j < t for all (kj), then merge 

else do not merge. 

It can be seen that the ED criterion takes the same form as Chen's MDD criterion 

and requires only addition/subtraction and arithmetic shift to complete the estimation. 
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4.4 Simulation Results 

Computer simulation is carried out to compare the two variable block size coding 

systems. The test images have resolution of 8 bits per pixel and size 256x256. The 

parameters are chosen to be the same as that in [CHEN89]. The largest and smallest block 

sizes allowed are 16x16 and 4x4 respectively. The decision threshold t is 10 and the 

quantization values are 1,3 and 6 for block sizes of 16x16, 8x8, 4x4 respectively. The 

quantized coefficients are then Huffman coded in a similar way as in [CHENp84]. 

Comparison is made with Chen's system by using MSE, eq.(3.20), as criterion. 

Fig.4.4 shows the simulation results using four test images : LENNA, PEPPERS, 

SAILBOAT and BABOON. It can be seen that VBS DCT transform coding system using 

the ED criterion produces lesser MSE with average bit rates tested in the range of 1.0 bpp 

to 1.5 bpp. 

25 

�� ED:Edge Discriminator 
or _ � � � � 
CO ^^ ��� MD:Mean Difference Discriminator 
2 2 0 、、 一•A— 
r ���� 

2 - 义、、 

iii ����� 

身• 、、、、、、、、、〜 
§ 10 ^ ^ ^ ^ � � � & 

5 
1 1.1 1.2 1.3 1.4 1.5 

Average Bit Rate 
Fig.4.4a. The MSEs due to the use of the ED and MD 

in a Variable Block Size DCT Transform System 
for image LENNA 
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��� ED:Edge Discriminator 
LU 2 5 ����� ~ 0 ~ 
CO ^ ��� MD:Mean Difference Discriminator 
2 ��� A 
r _ � & � � � � 
？ 20 � � � \ � 
£ • � � � \ 
CO ���� 
2 . 15 义 、 

f - \ 

I 1 0 ^ ^ ^ _ _ ； ; 

5 1 1 I I 
1
 1.1 1.2 1.3 1.4 1.5 

Average Bit Rate 
Fig.4.4b. The MSEs due to the use of the ED and MD 

in a Variable Block Size DCT Transform System 
for image PEPPERS 

90 
L^ * 

on � � ‘ ED:Edge Discriminator 
GT . ���� 
CO �� MD:Mean Difference Discriminator 
2 70 ��� A 
一 • 、、 

S 60 A � � � � � 

u ������ 

i 5 0 . \ � � � 
O" 40 ��� 

5 20 

10 ‘ 1 1 I 
1
 1.1 1.2 ； 1.3 1.4 1.5 

Average Bit Rate 
Fig.4.4c. The MSEs due to the use of the ED and MD 

in a Variable Block Size DCT Transform System 
for image SAILBOAT 
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2 100 ^ ^ Q 
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1
 1-1 1.2 1.3 1.4 1.5 

Average Bit Rate 
Fig.4.4d. The MSEs due to the use of the ED and MD 

in a Variable Block Size DCT Transform System 
for image BABOON 

Fig.4.5 illustrates the resulting images of LENNA and BABOON after being processed 

by a variable block size coding scheme using the two decision criteria for bit rate 1.0 bpp 

and 1.5 bpp. It can also be seen that variable block size technique using the ED criterion 

produces better visual quality than that using the MDD criterion. 

W i l l i s 
(a) LENNA, ED, 1.0 bpp (b) LENNA, MDD, 1.0 bpp 

Fig.4.5 Images after processed by the VBS scheme, using ED and MDD as criteria. 
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^mmM 
(c) LENNA, ED, 1.5 bpp (d) LENNA, MDD, 1.5 bpp 

(e) BABOON, ED, 1.0 bpp —— (f) BABOON, MDD, 1.0 bpp 

(g) BABOON, ED, 1.5 bpp (h) BABOON, MDD, 1.5 bpp 

Fig.4.5 Images after processed by the VBS scheme, using ED and MDD as criteria. 
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4 J Discussion and Conclusion 

The limitation of conventional fixed block size transform coding system has been 

discussed. Variable block size transform coding technique has been proven [CHEN89] to 

be capable of enhancing performance of a fixed block size transform coding system. In a 

VBS coding system, a criterion has to be used for determining the block size. Ideally, the 

criterion should be able to discriminate those blocks with uniform changes from those blocks 

with high activities. If the decision criterion can predict precisely whether the blocks contain 

high activities, the performance of coding system can be greatly improved. In [CHEN89], 

a variable block size transform coding system using mean difference discriminator as a 

decision criterion has been proposed. This criterion, however, cannot precisely estimate 

whether a block contain high contrast edge or not. Hence we propose a new decision 

criterion, the Edge Discriminator (ED) criterion, which involves estimation of means of local 

subblocks and maintains the same form of criterion as Mean Difference Discriminator 

(MDD) criterion. By eq.(3.17) - (3.19), it can be seen that the ED criterion requires only 

addition/subtraction and arithmetic shift and 8N+5 extra addition/subtractions are needed for 

block size N. Simulation results have been obtained for images with average bit rate ranging 

from 1.0 bpp to 1.5 bpp. For all these bit rates tested, the results show that an adaptive 

variable block size coding scheme employing the Edge Discriminator have better 

performance, both in MSE and visual quality. 

Thus it can be concluded that the decision criterion in determining the block size is 

vital to the success of a VBS coding system. From simulation results given, we can say 

that the ED criterion is an more effective criterion than MDD criterion in determining the 

block size and hence is a better decision criterion for a VBS coding system. 

Part of the results in this chapter have been published in [SEEc91]. 
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5. ENHANCEMENT OF JPEG INTERNATIONAL STANDARD 

5.1 Introduction 

Recently, the Joint Photographic Experts Group (JPEG), which is a sub-working group 

of both the CCITT and ISO, is drafting an international standard for compression of still 

images [JPEG90]. The JPEG scheme is basically a transform coding system which divides 

an input image into 8x8 blocks. At the encoder, each input block of data first undergoes 

a 2-D Discrete Cosine Transform (DCT) and the transform coefficients are uniformly 

quantized. The quantized AC coefficients are coded using run-length and Huffman coding. 

The DC coefficients are coded using DPCM with the prediction error coded using Huffinan 

coding. 

As the JPEG scheme will become an international standard for still image coding, 

further enhancement of coding performance should be based on the JPEG scheme. In this 

chapter, we will study the basic JPEG scheme, which will be described in section 5.2. By 

using some of the techniques in previous chapters, we try to enhance the performance of 

the basic JPEG scheme. The following objectives are to be achieved in enhancing the JPEG 

scheme. 

1. The enhanced JPEG scheme should have better performance under the criteria of 

both less MSE and better visual quality. 

2. The enhanced JPEG scheme should be very similar to the basic JPEG scheme such 

that it can be easily incorporated as enhanced feature in existing product. 

3. The basic JPEG scheme uses a rather simple algorithm that it can be easily 

implemented in hardware. The enhanced JPEG scheme should retain the simplicity of the 

basic JPEG scheme. In particular, memory is the other concern and the enhanced JPEG 

scheme should remain a one-pass process. In other words, there is no need for extra memory 

to store the images for a second pass in processing the images before they can be sent. 

4. An image coded using the enhanced JPEG scheme is the same as the basic JPEG 

scheme but requires less bits for representation. 
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Two aspects in the basic JPEG scheme will be modified for performance enhancement. 

Firstly, the encoding of DC coefficients in basic JPEG scheme is examined and it is found 

that by employing the Element Estimation described in chapter 3, the performance of the 

coding scheme can be enhanced. Secondly, we have seen in chapter 4 that the VBS 

technique can be used to enhance the performance of a coding system. This VBS technique 

will again be used in enhancing the basic JPEG scheme. 

In the basic JPEG scheme, the technique of DPCM is used to encode the DC 

coefficients of each block. The predictor used is a previous element predictor. The 

advantage of this predictor is that its operation is simple and only one addition/subtraction 

is required However, it does not fully exploit the redundancy between DC coefficients of 

adjacent blocks. Hence we will propose a Minimum Edge Difference (MED) predictor to 

enhance the encoding performance. 

In the JPEG scheme, the block size used to partition an image is fixed. By taking 

into account that images have different statistics over different areas, the VBS technique 

should be used for adapting the block size according to local activities. The VBS technique 

using Edge Discriminator as described in chapter 4 will be employed to enhance the 

performance of the basic JPEG scheme. Several schemes will be examined to see the effect 

of applying VBS technique to the basic JPEG scheme. Finally, a scheme with promising 

improvement will then be combined with the use of MED predictor for further enhancement 

In the following section, the basic JPEG scheme will be briefly described. The use 

of a more efficient predictor for the DC coefficients will be described in section 5.3 and 

the use of the variable block size technique will be described in section 5.4. Finally, 

conclusion will be drawn in section 5.5. 

5.2 The basic .TPEG international standard 

The JPEG international standard is a proposed scheme for achieving image 

compression and decompression. The proposed JPEG standard offers a continuous range of 

compression to reduce the transmission and storage requirements of large images. The broad 
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scope and the variety of targets to be achieved result in a three-part JPEG algorithm 

definition : the basic system, the extended system, and the special function for lossless 

encoding. The basic system is mandatory, while the extended system adds features such 

as sophisticated coding, lossless transmission, and progressive transmission. Here we will 

only concern with the basic system of JPEG scheme, which utilizes the techniques of 

transform coding and DPCM coding. 

The JPEG scheme is intended to be used for monochrome or colour images. For 

colour image, each colour (R’G,B) can be handled as separate components. However, better 

compression result can be achieved if the colour components are independent, such as YUV, 

where most of the information is concentrated in the luminance component (Y) and less in 

the chrominance components (U,V). Therefore, for a colour image, the input R,G,B 

components are first converted into Y,U,V components by using a linear transformation as 

follow [CUBE90]: 

" Y ! � 0 . 2 9 9 0.587 0.114 1 � R _ 

U = -0.169 -0.3316 0.5 • G (5.1) 
. V J L 0 . 5 0 . 4 1 8 6 - 0 . 0 8 1 3 � L B . 

Another advantage of using YUV colour space is that chrominance components (U 

and V) need not be specified as frequently as the luminance component (Y). In the JPEG 

scheme, the spatial resolution of the U and V components is reduced by discarding every 

other U and V elements. As a result, a further data reduction of 3 to 2 is obtained by 

transforming RGB into YUV. 

After colour space conversion, each component can then be independently processed 

by the JPEG system. A block diagram of the basic JPEG system is shown in Fig.5.1. 
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Fig.5.1 A Block Diagram of the Basic JPEG System 

Both encoder and decoder in JPEG system consist of three parts which are the DCT, 

quantization and Huffman coding. They are briefly described as follow : 

5.2.1. Level Shift and Discrete Cosine Transform 

At the encoder, each component of an input image is first divided into non-overlapping 

8x8 blocks. Before being processed by the forward DCT, all the input pixels are level 

shifted by subtracting 2th1, where p is the precision of image pixel and usually equals to 8. 

Then each block undergoes a 2-D DCT, converting pixel elements into transform coefficients 

as follow : 

Y ( U ’ V ) 如 K ( V ) i (5.2) 
4 i=oj=o 16 16 

where ij’u，v e [0,7] 

x(i j ) = (i j ) 4 element in a 8x8 image block 

Y(u,v) = (UyV)̂  element in a 8x8 DCT coefficient matrix 
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K(u)JV^ f o r u = 0 

I 1 for u^O 

At the decoder, the dequantized coefficients will go through the inverse DCT as in 

eq.(5.3) 

x ( U ) 4 Z I K(u)K(v) (5.3) 
4 u=ov=o 16 16 

Finally, 128 are added to the pixels to obtain the reconstructed image. 

52.2. Uniform Quantization 

At the encoder, each DCT coefficient, Y(u，v), is uniformly quantized with a 

quantization value, Q(u,v), as shown in Fig.5.2. y 
' 1 1 I 1 •F̂ I.V) 

-30 -10 -O 0 20 30 

Fig 5.2 Uniform Quantization of Transform Coefficients. 

In mathematical form, 

广 / � Y(u,v) 
C ( u ' v ) = L q ( ^ ) J (5.4) 

where C(u,v) = quantized DCT coefficients 

Q(u,v) = quantization value for (u.v)01 coefficient 

LJ is the rounding operator 
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At the decoder, dequantization1 is similarly carried out to obtain the dequantized 

transform coefficients : 

Y’(u’v) = C(u,v) x Q(u,v) (5.5) 

where Y,(u,v) is the dequantized DCT coefficient. 

The quantization of each 64 coefficients are separately specified by a quantization 

matrix of 64 independent values and can be varied according to the statistics of image being 

quantized and the sensitivity of human eye for different coefficients. Two default 

quantization matrices, one for the luminance component and the other for the chrominance 

components, are specified and given in eq.(5.6). 

Qi = quantization matrix for luminance component 

"16 11 10 16 24 40 51 6l" 
12 12 14 19 26 58 60 55 
14 13 16 24 40 57 69 56 

= 1 4 17 22 29 51 87 80 62 
• 18 22 37 56 68 109 103 77 ( 5 . 6 a ) 

24 35 55 64 81 104 113 92 
49 64 78 87 103 121 120 101 

_72 92 95 98 112 100 103 99. 

Q2 - quantization matrix for chrominance component 

"17 18 24 47 66 99 99 99 
18 21 26 66 99 99 99 99 
24 26 56 99 99 99 99 99 

= 4 7 66 99 99 99 99 99 99 
一 99 99 99 99 99 99 99 99 (5 .6b) 

99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 

.99 99 99 99 99 99 99 99. 

1 The term dequantization is used in the JPEG proposal. 
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The (u.v)111 element in Qx and (¾ is thus the quantization value for (u,v)dl luminance 

and chrominance transform coefficients respectively. 

S2.3. Coefficient Coding 

At the encoder, after coefficient quantization, the 2-D array of quantized AC 

coefficients is first rearranged into a 1-D array, using a zigzag scan ordering, as shown in 

Fig.5.3. 

• 
Fig.5.3 Zigzag scan path 

Each nonzero quantized AC coefficient in the vector of zigzag ordered coefficients is 

then encoded in combination with the length, or so-called run-length, of preceding zero 

valued AC coefficients. The composite value of run-length and amplitude of the quantized 

AC coefficient are then Huffman coded. For the DC coefficients, a 1-D 'previous element 

predictor' is used in which the predicted value of the DC coefficient of current block is 

simply the DC coefficient of previous block. 

C C ^ D C ^ (5.7) 

The difference d^ between predicted DC coefficient and quantized DC coefficient is 

then Huffman coded using a default Hufftnan table in [JPEG90]. 
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S3 Efficient DC Coefficients KnmHing 

In the basic JPEG system, the predictor used is a simple 'previous element predictor, 

which uses the DC coefficient of previous block as the predicted DC coefficient of the 

current block. This simple DPCM predictor is very effective for prediction of adjacent pixel 

element as the adjacent element correlation coefficient between pixel elements is close to 

unity. However, the correlation coefficient of DC coefficients between adjacent blocks is 

not as high as that between spatial pixel elements, so the simple DPCM predictor is not 

very effective in predicting the DC coefficients. In this section, a Minimum Edge Difference 

(MED) predictor is proposed for more efficient encoding of the DC coefficients. It requires 

only low extra computation and can be easily incorporated into the basic JPEG scheme. 

The prediction is done by minimizing the edge difference between the current block and 

the adjacent blocks, as shown in Fig.5.4. By the use of the MED predictor, we can obtain 

images with same quality as the basic JPEG scheme but requiring less bit for representation. 

Some other common predictors are also compared with the MED predictor. From the 

simulation result, it can be shown that the MED predictor requires minimum number of bits 

for representing the difference between predicted and original DC coefficients and hence it 

is the most effective predictor among those tested. The details are described as follow. 

53.1 The Minimum Edge Difference (MED) Predictor 

The Minimum Edge Difference predictor is basically the same as the element estimator 

in Cham's DC coefficient restoration scheme [CHAMc84] and has been described in chapter 

3. 

In the MED predictor, the vertical and horizontal edge difference vectors, as shown 

in Fig.5.4, are used. 
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… " 1 Block I 

I T t " 
Fig.5.4 The 

two edge difference vectors considercd in the MED predictor 

The edge difference vectors indicate the change between pixels along the edge of 

adjacent blocks. Since the correlation between adjacent pixels is usually large, the DC 

coefficients can be predicted by minimizing these edge difference vectors between the current 

and adjacent blocks. Hence, as described in chapter 3, the predicted value of the DC 

coefficient is : 

a 1 2 N-l 

= (5.8) 

where dCp^)^ is the m^ element of the vector Dp 

The DC difference signal is then Huffman coded in the same way as the basic JPEG 

scheme, where 

dk^DC^-tfCu (5.9) 

53.2 Simulation Results 

To demonstrate the bit rate reduction of the modified JPEG scheme using the MED 

predictor, computer simulations have been carried out to evaluate the performance of the 
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predictor on several colour images which are of size 256x256 pixels and 8-bits resolution 

for each of the red (R), green (G) and blue (B) components. In the evaluation of the system 

performance, the MSE defined in eq.(3.20) is used. 

Table 5.1 and 5.2 show the simulation results for colour images by using the original 

JPEG’s predictor and the MED predictor. 

Picture LENNA PEPPERS SAILBOAT BABOON 

Bit Rate 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 

MSE 80.7 101.8 147.1 132.9 165.0 238.3 259.6 310.1 425.2 520.4 5904 704.1 

Table 5.1 Simulation Results for basic JPEG Scheme 

Picture LENNA PEPPERS SAILBOAT BABOON 

Bit Rate 0.949 0.711 0.473 0.951 0.712 0.474 0.972 0.728 0.486 0.974 0.732 0.487 

MSE 80.7 101.8 147.1 132.9 165.0 238.3 259.6 310.1 425.2 520.4 590.1 704.1 

Table 5.2 Simulation Results for JPEG Scheme with MED Predictor 

For the basic JPEG system, the images tested are coded at 0.5, 0.75 and LOO bpp. 

By using the MED predictor, the same coded images of LENNA and PEPPERS can be 

represented using only about 0.47, 0.71 and 0.95 bpp respectively. That is equivalent to 

about 5% bit rate reduction over the basic JPEG scheme. For the image SAILBOAT and 

BABOON, the same coded images can be represented using about 0.487, 0.73 and 0.97 

bpp, equivalent to about 3% bit rate reduction over the basic JPEG scheme. Thus, by 

incorporating a MED predictor into the basic JPEG scheme, we can obtain 3% to 5% bit 

rate reduction without affecting the image quality and extra computation required is small. 
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For subjective quality comparison, the original colour images of LENNA and 

BABOON are shown in Fig.5.5 and the images LENNA and BABOON after being processed 

by the basic JPEG scheme, are shown in Fig.5.6. The images obtained by using the MED 

predictor have the same quality as those by using the basic JPEG scheme. 

MM 
(a) LENNA (b) BABOON 

Fig.5.5 Original images 
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(a) LENNA, 0.5 bpp (d) BABOON, 0.5 bpp 

瞻/IBM 
HSSL^H 

(b) LENNA, 0.75 bpp (e) BABOON, 0.75 bpp 

(c) LENNA, 1.0 bpp (f) BABOON，1.0 bpp 

Fig.5.6 Images after processed by the basic JPEG scheme 
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53.3 Pixel Domain Predictors 

To further demonstrate the suitability and effectiveness of the proposed MED predictor 

for encoding the DC coefficients, we compare it with several predictors designed based on 

the criterion of minimizing the mean square prediction error [BRAINp90]. To predict the 

DC coefficient X of a current block, we can use the DC coefficient of previous blocks, as 

shown in Fig 5.7. The predicted DC coefficient X is 

X = a -A+b-B+c-C+dD (5.10) 

where A,B,CJ) are DC coefficients of previous blocks and a,b,c,d are the 

corresponding prediction coefficients. 

In [BRAINp90], tests have been carried out to find the optimum prediction coefficients 

a,b,c,d. Several predictors have been obtained by making use some of the DC coefficients 

A,B,CJ), based on the criterion of minimizing the mean square prediction error. These 

predictors are characterized by their prediction coefficients and are listed in Table 5.3. To 

compare the effectiveness of these predictors and the MED predictor, DC coefficients of 

test images are predicted using all these predictors and the differences are Huffinan coded 

using the default table given in the basic JPEG scheme. Predictor P0 is the simple previous 

element horizontal predictor used in the basic JPEG scheme. The quantized AC coefficients 

are coded with the same number of bits and the number of bits required to code the quantized 

DC coefficients for different predictors are shown in Table 5.4. 

B C D 

A X 

八 

X = aA + bB + cC + dD 

Fig.5.7 Tap Nomenclature for predicting sample block X (A,B,C and D are the DC 

coefficients of blocks and a’b,c and d are the corresponding prediction coefficients) 
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Predictor Coefficients 

Predictor a b e d 

PO 1 0 0 0 

PI 1/2 0 1/2 0 

P2 1 -1/2 1/2 0 

P3 3/4 -3/8 5/8 0 

P4 13/16 -5/16 1/2 0 

P5 7/8 -1/2 1/2 1/8 

P6 1/2 1/8 1/4 1/8 

P7 3/4 -1/4 3/8 1/8 

Table 5.3 Prediction coefficients of the eight predictors 

LENNA PEPPERS SAILBOAT BABOON 

Predictor MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE 

=80.7 =101.8 =147.1 =132.9 =165.0 =238.3 =259.6 =310.1 =425.2 =520.4 =590.1 =704.1 

P0 10868 9654 8224 10796 9557 8162 9223 8272 7202 8971 8228 7352 

PI 9159 8165 7135 9578 8550 7440 8403 7596 6750 7940 7431 6764 

P2 9228 8240 7201 9721 8686 7537 8406 7620 6788 8045 7493 6828 

P3 8886 7967 6935 9497 8457 7343 8329 7554 6739 7835 7232 6636 

P4 9335 8250 7239 9833 8790 7656 8778 7990 7148 8035 7495 6818 

P5 8945 7990 6995 9538 8516 7410 8419 7595 6779 7891 7301 6683 

P6 9413 8434 7258 9743 8666 7543 8495 7661 6760 8035 7519 6841 

P7 9108 8175 7106 9606 8274 7446 8413 7580 6768 7936 7382 6737 

MED 7515 7092 6480 7594 7089 6483 7392 6827 6308 7282 7015 6503 

Table 5.4 Number of bits required to code the DC coefficients 

for different predictors when the MSE is fixed 

The results show that for the same MSE, employing the MED predictor requires the 

minimum number of bits to represent all four images. 
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53.4 Discussion and Conclnsinn 

The basic JPEG scheme is basically a transform coding system that at the transmitter, 

an input image is transformed by the DCT and the transform coefficients are uniformly 

quantized. The AC coefficients are run-length and Huffman coded. The DC coefficients 

are encoded using a simple 'previous element predictor'. This predictor is not quite effective 

due to the not-high enough correlation between DC coefficients of adjacent blocks. 

Therefore, a Minimum Edge Difference Predictor is proposed to enhance the performance 

of the basic JPEG system. It has the advantages that the MED predictors requires only low 

additional computation requirement. 16 additions are required in predicting the DC 

coefficient of each block. Thereafter, the prediction error is Huffman coded using the same 

table given in [JPEG90]. Thus it can maintain the simplicity of the JPEG scheme and can 

be easily incorporated in existing products as enhanced feature. Moreover, the MED 

predictor only require information from previous blocks and can still be implemented in 

one-pass. Simulation results show that the coded images maintain the same quality as the 

basic JPEG scheme and there is about 3 to 5% bit rate reduction when using the MED 

predictor. By comparing to other predictors listed in Table 5.4，the superiority of MED 

predictor is also demonstrated. 

Part of the results in this section have been published in [SEElc91]. 

5.4 JPEG Scheme Using Variable Block Size Technique 

Variable block size technique has been used in chapter 4 to improve performance of 

a coding system over that of a fixed block size system. This technique will now again be 

used to enhance the performance of the basic JPEG system. Edge Discriminator described 

in chapter 4 will be used to determine suitable block size for different area of an image. 

Five schemes using the VBS technique have been examined and the results of their 

performance are obtained. They are described in following section. 
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5,4.1 Scheme 1 

In this scheme, the technique of variable block size is used instead of fixed block size 

in original JPEG scheme. The Edge Discriminator is used to determine whether a block 

should be encoded as a single 16x16 block, four 8x8 blocks, sixteen 4x4 blocks or other 

combination. After block size determination, the block will undergo the basic JPEG scheme 

similarly. The quantized DC and AC coefficients are then similarly Huffman coded using 

the same default table in [JPEG90]. 

In the basic JPEG scheme, only order-8 quantization matrices are given. To 

incorporate the VBS technique into the JPEG scheme, order-4 and order-16 quantization 

matrices have to be determined. Extensive search may be needed to find the optimum 

quantization matrices. However, it takes a long time for searching. So we try to obtain 

the order-4 and order-16 quantization matrices from the given order-8 quantization matrix. 

This can be done by finding the relationship between order-N and order-2N quantization 

matrices. As one of the factors in determining quantization values is the variance of the 

transform coefficients, we first investigate the relationship between variance of NxN and 

2Nx2N transform coefficients. 

In JPEG scheme, the forward DCT is defined as 

� 4 • K(p) (2q+l)p7C 
T("，P，q) = . ^ S 2 N (5.11A) 

� 4 • K(r) (2s+l)r7C 
T(2"，r’s) = • c o s ^ ^ - (5.11b) 

where T(N,p,q) is the element of NxN DCT transform matrix, p,q G [OJ^-1], 

r,s e [0,2N-1]. 

When r = 2p and p e [0’N-1], 

page 5-16 



T(2", 2p,s) = • cos 

—4.K(p) (2s+l)p7C = • cos 
2N 2N 

If s € [0,N-1], • 

T(2N,2p,s) = iT(iV,p,s) (5.12) 

If s e [N,2N-1], let s’ = 2N-S-1, 

戰 2 p , s ) = i ^ . c o s [ 2 ( 2 N - s 二 , 冗 

4.K(p) (2s’+l)pjc 
= ± ~ • COS — 

2N C0S 2N 

So, 

T(2",2p，s) = | T ( " , P , 2 N - S - 1 ) ( 5 . 1 3 ) 

T(2N,2p,s) = T(2iV,2p,2N-s-l) (5.14) 

When r = 2p+l, p e [0,N-1], and if s g [N,2N-1], let s, = 2N-S-1, 

—rrr~~- • cos [2(2N s_1)+¾ (2p+l)7t 
2N 4N 

2 (2s,+l)(2p+l)jc cos ———— 
N 4N � 

So, 

T(2N,2p+l,s) = -T(2N,2p+l,2N-s-l) (5.15) 
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Eq.(5.12) and (5.13) show the relationship between basis vectors of [T(A^] and even 

basis vectors of [T(2A0]. Eq.(5.14) and (5.15) show that the (2N-1)111 dyadic symmetry exists 

in the basis vectors. Assume that a 2Nx2N block with covariance matrix Cx is transformed 

by [T(2A0]. The variance of transform coefficient, where u,v e [0，2N-1], is : 

2N-1 
<(2^,u,v) = E I E S Cx(ij;p,q)T(2N fu,i)T(2N tvj)T(2N,u,p)T(2iV,v,q) (5.16) 

ij.p.q=o 

Let Cri,cd(ij;p,q) = Qa+aNj+bN;p+cN,q+dN), where (a,b’c’d) e [0,1] and (ij,p,q) e [0,N-1]. 

For simplicity, we drop the index ij,p,q in Q. If u = 2u', v = 2v’ and u，，v, e [0,N-1], by 

using eq.(5.12) and (5.13), eq.(5.16) becomes : 

2 1 N-1 

ZSSI{C0000T(N,u\i)T(N,v'j)T(N,u',p)T(iV,v',q) 
1 0 ij,ptq=0 

+ C0001T(iV,u',i)T(iV,v'j)T(7V,u,,p)T(iV,v',N-q-l) 

+ C0010T(N,u',i)T(iV,v,j)T(iV,u,,N-p-l)T(iV,v',q) 

+ Com TOV, u',i) T(N9 v’,N-j-l) TW, u’,p) v，，q) 

+ C1000TW，U，,N-i-l)TW,V’j)T(W,p)TW，V’,q) 

+ Coon u',i) T(", v'j) T(", u，’N-p-1) T(", v',N-q-1) 

+ C011QTW,u’，i)TW,V’,N-j-l)TW,u’,N-p-l)TW,V’,q) 

+ C1100T(N,u',N-i-l)T(iV,v,,N-j-l)T(iV,u',p)T(iV,v,,q) 

+ C1010T(N,u',N-i-l)T(iV,v,j)T(iV,u,,N-p.l)T(N,v,,q) 

+ C腿 T(Nf u,’N-i-l) T(", v'j) T(Nf u',p) T(Nf v，’N-q-1) 

+ C0101T(N,u',i)T(iV,v',N-j-l)T(iV,u',p)T(iV,v',N-q>l) 

+ C0111TW,u’，i)TW,V’,N-j-l)TW，ii’,N-p-l)TW,V’，N-q-l) 

+ Cin�TW，u’,N-i-l)TW,V’’N-j-l)T(iV,u’,N-p-l)IW，V’,q) 

+ CllnT(iV,u’,N-i-l)TW，V’,N-j-l)TW,u’,N-p-l)TW,V’，N-q-l)} 

(5.17) 
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Eq.(5.17) can be simplified using eq.(5.14) and (5.15). Consider the following four cases 

(1) If u = 2u’，u’ = 2u"; v = 2v，’ v’ = 2v"; u",v" e [0,N/2-1], 

o 1 N-i 
Cl(2N,4u '^v")-— ^ ^ ^ ^ { ( ！ ！ 麵 + 匸 麵 + 匸 隱 + 匸 嶋 + 匚 腦 + 仁 隱 + ^ ^ + ！ ！ ！ 贈 

A O ij,p,q=0 

+ ^1010 + Cioo i + 0 )101 + Q l 11 Q o i 1 Q 1 0 1 Q 1 1 0 + Q 1 1 1 ) 

1W，2u",i) T(Ny 2v",j) T(N, 2u”,p) T(N, 2v",q) 

(5.18a) 

(2) If u = 2u’’ u’ = 2u"; v = 2v', v, = 2v"+l; u",v" e [0,N/2-1], 

9 1 N-l 
�(2"’4U"’4v"+2) = - EISStCoooo-C^+C^o-Co^+Qooo-C^^ConoQ^ 

丄 O g,p,q=0 

+Qoio—Qooi+Q)101+C01 j ！ 一 C101 i+cn01—c1110+cni l} 

T(", 2u",i) T(", 2v"+1 j) T(", 2u"，p) T(N, 2v"+1 ,q) 

(5.18b) 

(3) If u = 2u% u' = 2u"+l; v = 2v’’ v’ = 2v"; u"’v" m [0,N/2-1], 

2 1 N-l 
�(2"，4U”+2，4v") = - SJ^SfCoooo+Co^-Co^+C^-Qooo-Coon-(^。-(：謂 

+ Qoio 一 Qooi+Qioi 一 Q)i 11 + C10i 1Qioi Quo Qui) 

TW, 2u"+1 ’ i) T(N9 2vM,j) IW, 2u"+1，p) T ( � , 2v",q) 

(5.18c) 
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(4) If u = 2u\ u’ = 2u"+l; v = 2v,, v, = 2v"+l; u"’v" e [0,N/2-1], 

0^(2^,4u"+2,4vu+2)=— ISSStCoooo-Cooo^C^o-Co^-Qooo+Coon+CoHo+Cnoo 
l O ij,p,q=0 

+ Qoio + ̂ -1001 + ̂ -0101 一 ̂ -0111 一 ̂ -1011 一 101 一 Ci 110 + 111} 

T("’2u"+l’i)T(/V，2v"+lj)T(",2u"+l’p)TW，2v"+l’q) 

(5.18d) 

Therefore, when u and v are even values, the variance o?(2N,u,v) can be related with 

respect to the NxN basis pictures of DCT. The corresponding basis pictures are listed in 

the following table : 

Variance Basis Picture 

�(2N，4u"’4v") �(“,2u"). T(N, 2v") 

�(2",4u",4v"+2) T(N92u") • 敢 2 V " + 1 ) 

dc(2N, 4u"+2,4v") T(Nf 2u"+l) • T(N, 2v") 

al(2N, 4uM+2,4vM+2) T(Nf 2u"+l) • T(Nt 2v"+l) 

Table 5.5 Variance c^(2N) and their corresponding basis pictures 

In summary, the variance of order-2N transform coefficients can be related to the basis 

pictures in order-N transform. We assume that the quantization values Q(2A ,̂u,v) for 

order-2N transform coefficients are related to the quantization values Q(N,u,v) for order-N 

transform coefficients in a similar manner. To obtain the quantization matrix for order-2N 

transform coefficients, for even value of u and v, we set the ratio of quantization value 

Q(2iV,2u,，2v’）and Q(",u,,v，）equals to the ratio of�(2",2u’,2v，）and For 

odd value of u or v, Q(2N,u,v) is linear interpolated between its adjacent quantization values. 
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Unfortunately, it is found that when all order-4 and order-16 quantization values are 

adjusted according to the ratio of variance, the simulation results are not satisfactory. 

Therefore, only some quantization values of low sequency coefficients are adjusted. After 

comparing the resulting coding performance of adjusting different number of quantization 

values, the following two quantization matrices for order-4 and order-16 are obtained which 

have on average the best performance : 

'17 10 24 51' 
14 16 40 69 

) = 18 37 68 103 ( 9 ) 

A9 78 103 120. 

"15 7 7 8 10 13 16 20 24 32 40 46 51 56 61 66" 
8 8 12 10 12 15 18 21 25 37 49 52 56 57 58 58 
7 12 8 11 14 17 19 23 26 42 58 59 60 58 55 53 
11 11 10 13 15 18 22 27 33 45 58 61 65 60 56 56 
14 14 13 15 16 20 24 32 40 49 57 63 69 63 56 50 
14 15 15 17 19 23 27 36 46 59 72 73 75 67 59 59 
14 16 17 20 22 26 29 40 51 69 87 84 80 71 62 53 
16 18 20 25 30 36 43 51 60 79 98 95 92 81 70 70 
18 20 22 30 37 47 56 62 68 89 109 106 103 90 77 64 
21 25 29 37 46 53 60 67 75 91 107 107 108 96 85 85 
24 30 35 45 55 60 64 73 81 93 104 109 113 103 92 82 
37 43 50 58 67 71 76 84 92 102 113 115 117 107 97 97 
49 57 64 71 78 83 87 95 103 112 121 121 120 111 101 92 
61 69 78 82 87 90 93 100 108 109 111 111 112 106 100 100 
72 82 92 94 95 97 98 105 112 106 100 102 103 101 99 97 
-84 82 106 94 104 97 104 105 117 106 90 102 95 101 98 98. 

(5.20) 

These two quantization matrices will be used in quantizing order-4 and order-16 

transform coefficients. To compare performance of the basic JPEG scheme and enhanced 

JPEG scheme using VBS technique, simulation is performed on monochrome images. The 

results are listed in Table 5.6 and Table 5.7. Fig.5.8 and Fig.5.9 show the images of LENNA 

and BABOON after being processed by the basic JPEG scheme and scheme 1 respectively. 
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By comparing Table 5.7 and Table 5.8, it can be seen that the application of VBS 

technique does not necessary produce MSE improvement. Also from Fig.5.8 and Fig.5.9, 

the blocking effects in scheme 1 coded images are more visible, particularly around those 

areas with uniform change. The reason is that these areas were coded using 16x16 block 

size but the order-16 quantization matrix is only derived using interpolation from the order-8 

quantization matrix. The derived quantization values have not taken into consideration of 

the human visual effect and the noise is more visible in areas with uniform changes than 

in areas with high activities. Thus scheme 1 cannot give significant improvement over the 

basic JPEG scheme. 

LENNA PEPPERS SAILBOAT BABOON 

Bit rate 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 

MSE 34.6 48.8 73.7 35.7 48.6 74.8 97.9 129.9 191.8 304.2 370.7 459.0 

Table 5.6 Simulation result for basic JPEG scheme. 

Picture LENNA PEPPERS SAILBOAT BABOON 

Bit Rate 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 LOO 0.75 0.50 

MSE 31.8 46.0 74.5 35.4 49.0 78.4 98.9 134.3 199.1 299.0 365.2 449.3 

Table 5.7 Simulation Results for Scheme 1 
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mm 
1 

(a) LENNA, 0.5 bpp (d) BABOON, 0.5 bpp 

[—a—— H^^^HI^H^H^Hiili^^HHHHil^HHfilHI 

(b) LENNA, 0.75 bpp (e) BABOON, 0.75 bpp mm |圆 
(c) LENNA, 1.0 bpp (f) BABOON, 1.0 bpp 

Fig.5.8 Images after processed by basic JPEG scheme 
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闘國 
(а) LENNA, 0.5 bpp (d) BABOON, 0.5 bpp 

mm 
— . . . ‘ ‘ “ ~ " " - ， 一 一 • — — 

(б) LENNA, 0.75 bpp (e) BABOON, 0.75 bpp 

(c) LENNA, 1.0 bpp (f) BABOON, 1.0 bpp 

Fig.5.9 Images after processed by scheme 1 
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5.4.2 Scheme 2 

In scheme 1’ by comparing Fig.5.8 and Fig.5.9, the problems seems mainly come from 

the blocks with size 16x16. So in scheme 2, we limit the block size to only 8x8 and 4x4. 

In other words, those with highest activity will be encoded as 4x4 blocks and those with 

medium or low activities will be encoded as 8x8 blocks. Other coding details are similar 

to those of scheme 1. Table 5.8 gives the MSE performance and Fig.5.10 shows the resulting 

images of LENNA and BABOON after being processed by scheme 2. The results shows 

that although there is some slightly improvement in reducing the blocking effect around 

those low activity blocks, the MSEs are even worse than that of scheme 1. 

Picture LENNA PEPPERS SAILBOAT BABOON 

Bit Rate 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 

MSE 32.5 47.8 80.1 34.2 48.2 83.2 96.6 133.5 208.6 304.2 371.5 468.7 

Table 5.8 Simulation Results for Scheme 2 
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國 
(a) LENNA, 0.5 bpp (d) BABOON, 0.5 bpp 

(b) LENNA, 0.75 bpp (e) BABOON，0.75 bpp 

mm 
(c) LENNA, 1.0 bpp (f) BABOON, 1.0 bpp 

Fig.5.10 Images after processed by scheme 2 
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5.4.3 Scheme 3 

The major problem in scheme 1 is that the quantization matrix for N = 16 is obtained 

from that for N= 8. The resulting images, though have smaller MSE, produces larger 

blocking effect at those blocks with uniform change. The blocking effect may be due to 

the nonoptimum quantization matrices. In this scheme, we try to weight those elements of 

quantization matrix to see if there is chance to reduce the blocking effect. Fig.5.11 illustrate 

the methods used in weighting the quantization matrix. 

Mrthod (a) M̂ hod (b) 
13 r2 

Hr 8 L 
r v i / 1 / \ • I z H i I 

Fig 5.11 Illustration for the weighting factor 

In method (a), the quantization values for higher sequency coefficients are weighted 

so that more bits are allocated to the high sequency coefficients of the 16x16 blocks. The 

quantization values, where u+v < 15，are unchanged. The highest sequency coefficient 

(u = v = 15) has its quantization value multiplied by r0. For (u,v) = (0,15) and (u,v)= 

(15，0), their quantization values are multiplied by As more bits are to be allocated to 

higher sequency coefficients, we should have r0 < 巧 < 1. For other (u^f1 quantization 

values，where u+v > 15, they are multiplied by a weighing factor r given by eq.(5.21): 

(u+v� L 
r = a ^ — J + b (5.21) 

where a = 2(r0 - rt), b = 2^ - r0. 
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In method (b), the quantization values for lower sequency coefficients are weighted 

so that more bits are allocated to the low sequency coefficients of the 16x16 blocks. The 

(u.v, quantization values, u+v > 7, are unchanged. The lowest sequency coefficient, (u,v) 

=(0,0), has its quantization value multiplied by r3. For (u,v) = (0,7) and (u,v) = (7,0), their 

quantization values are multiplied by r2. As more bits arc to be allocated to lower sequency 

coefficients, we should have r3 < r2 < 1. For other (u.yf1 quantization values, where u+v 

^ 7, they are multiplied by a weighing factor r given by eq.(5.22): 

r = C 1 T + d (5.22) \ J 

where c = 2(r2 - r3), d = r3. 

Several sets of parameters, V i , for subscheme S3.1-S3.2, and r2fr3 for subscheme 

S3.3-3.4 have been tested. The parameters are listed in Table 5.9 and the simulation results 

are given in Table 5.10. 

Sub-scheme r0 rx r2 r3 

53.1 0.7 0.9 - -

53.2 0.5 0.7 - -

53.3 - -. 0.8 0.6 

53.4 - - 0.9 0.6 

Table 5.9 Parameters for sub-scheme, 
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Picture LENNA PEPPERS SAILBOAT BABOON 

Bit Rate 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 1.00 0.75 0.50 

53.1 31.3 45.5 76.0 36.4 50.4 83.7 101.8 139.9 211.9 299.8 365.5 454.4 

53.2 31.4 45.5 76.0 36.4 50.4 83.7 101.8 139.9 211.9 305.2 365.7 454.6 

53.3 31.7 45.5 74.7 36.9 50.5 82.1 103.1 139.2 206.7 304.4 367.9 451.6 

53.4 31.6 45.5 74.9 36.8 50.6 82.3 102.8 139.6 207.6 303.2 367.3 452.3 

Table 5.10 Simulation Results for Scheme 3 

It can be seen from Table 5.10 that although some sub-schemes give lower MSE, the 

improvement is still very little. Method (a) or scheme S3.1 and S3.2 seems give lower 

MSE performance when coded at 1.00 bpp and method (b) or scheme S3.3 - S3.4 seems 

give better MSE performance when coded at 0.5 bpp. However, all improvement is basically 

insignificant. Moreover, some even have no improvement at all. So this simple weighting 

of quantization value is not sufficient for improving the coding performance. 

5.4.4 Scheme 4 

Scheme 2,3,4 have been applied to monochrome images. In this scheme, we attempt 

to apply the VBS technique to colour images. After having colour space conversion by 

eq.(5.1)，most information is concentrated in the Y component. To maintain the coding 

performance, the same coding method and block size of 8x8 in basic JPEG scheme is applied 

to the Y component. For the U,V components, they contain only auxiliary information and 

have more smooth changes. Larger distortion can be tolerated in coding U,V components 

without affecting the overall performance. Therefore, larger block size of 16x16 is used in 

coding the U,V components for larger bit rate reduction. In scheme 4, we set the block 

size for Y component equals to 8 and the block sizes for U，V components equal to 16. 
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To compare the performance of the scheme 4 with the basic JPEG scheme, simulation 

has been conducted and the results are shown in Table 5.11. The images of LENNA and 

BABOON, after being processed by scheme 4, are shown in Fig.5.12. By comparing Table 

5.1 and Table 5.11, it can be seen that scheme 4 gives much lower MSE performance than 

the basic JPEG scheme. Comparison between Fig.5.6 and Fig.5.12 also shows that the 
• 鰱 、 

visual quality of images after being processed by scheme 4 is better than those obtained by 

the basic JPEG scheme. 

Picture LENNA PEPPERS SAILBOAT BABOON 

Bit Rate 1.00 0.75 0.50 1.00 0.75 0.50 LOO 0.75 0.50 LOO 0.75 0.50 

MSE 77.6 95.0 126.8 127.9 154.0 206.0 251.3 296.1 379.1 507.1 572.0 660.2 

Table 5.11 Simulation Results for JPEG Scheme, with U8izc = Vsize = 16 
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iUK̂ fl̂ ^̂ B 
(a) LENNA, 0.5 bpp (d) BABOON, 0.5 bpp 

MM 
(b) LENNA, 0.75 bpp (e) BABOON, 0.75 bpp 

MM 
(c) LENNA, 1.0 bpp (f) BABOON, 1.0 bpp 

Fig.5.12 Images after processed by scheme 4 
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5.4.5 Scheme 5 

In scheme 4, the block size for luminance and chrominance components are 8x8 and 

16x16 respectively. Better performance has been obtained by using larger block size for 

chrominance components. However, the predictor used for DC coefficients is still the 

previous element predictor. In section 5.3, we have proposed and demonstrated a more 

efficient MED predictor, which can substitute the previous element predictor. It can be 

expected that by combining both advantages of MED predictors and scheme 4, better 

performance can be obtained 

So, in this scheme, we apply the more efficient MED predictor for DC coefficients to 

scheme 4, both in luminance and chrominance components. The same coded images can 

be obtained as in scheme 4 and the MSE performance is shown in Table 5.12. It can be 

seen that in addition to the MSE improvement in scheme 4, we obtain a further bit rate 

reduction for the same coded images. 

Picture LENNA PEPPERS SAILBOAT BABOON 

Bit Rate 0.971 0.727 0.483 0.976 0.731 0.487 0.985 0.738 0.493 0.993 0.744 0.495 

MSE 77.6 95.0 126.8 127.9 154.0 206.0 251.3 296.1 379.1 507.1 572.0 660.2 

Table 5.12 Simulation Results for JPEG Scheme, with U5izc = V8ize = 16, using MED 

predictor 

5.4.6 Discussions and Conclusions 

VBS technique and Edge Discriminator have been applied to the basic JPEG scheme. 

For monochrome images, the results of scheme 1, 2 and 3 show that there is no significant 

improvement in MSE performance and the blocking effect is more visible. The main reason 

may be due to the fact that order-4 and order-16 quantization matrices are derived from that 

oforder-8. As the statistics and human visual sensitivity to transform coefficients of different 

order is not the same, the derived quantization matrices is far away from optimum and hence 
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there is not much improvement in coding performance of JPEG scheme using VBS 

technique. To obtain the advantage of VBS technique, therefore, some extensive experiments 

may be required to obtain the 4x4 and 16x16 quantization matrices that take into account 

of human visual system. 

For colour images, we apply the VBS technique in a different manner. The block 

size for each Y’U,V are fixed, but are different between luminance (Y) and chrominance 

(U,V) components. As Y component contains the detail information about the images, the 

basic JPEG scheme with block size 8x8 is applied. Thus the advantage of the basic JPEG 

scheme is maintained in processing Y component. For U,V components, they contain less 

activities and so larger block sizes are more suitable. So the block size for U,V components 

can be set to 16x16 for larger bit rate reduction. The results show that with the same bit 

rate, the scheme with U,V components coded with block size 16x16 produce much smaller 

MSE performance. 

Finally, the MED predictor described in section 5.3 is used for a further bit rate 

reduction. The results show that scheme 5, in which the block size are 8x8 and 16x16 for 

luminance and chrominance respectively, and MED predictor is used, both smaller MSE 

and lower bit rate can be obtained. Hence scheme 5 offers the best performance. 

5«5 Conclusions 

In this chapter, the basic JPEG scheme is studied. Two techniques have been used 

to enhance the performance of the basic JPEG scheme. The first one is by use of the MED 

predictor. This predictor is obtained by minimizing the edge differences between adjacent 

blocks. Simulation results show that the proposed MED predictor results in more precise 

prediction of DC coefficients. Among the predictors compared, the MED predictor requires 

the minimum number of bits to represent the DC coefficients. Its computation requires only 

low additional computation requirement and can maintain the simplicity of the basic JPEG 
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scheme. Moreover, the MED predictor uses information from previous adjacent blocks and 

requires only one-pass to perform the coding operation. Thus it can be easily incorporated 

into the basic JPEG scheme as an enhanced feature. 

The other technique used is the VBS technique described in chapter 4. As images 

often have inhomogeneous activities over different areas, so the block size used to partition 

an image can be made adaptive. Monochrome and colour images have been tested using 

the VBS technique. For monochrome images, application of VBS technique cannot give 

improvement in both MSE and visual quality. The major reason is that the quantization 

matrix used for order-16 transform coefficients are derived from the quantization matrix for 

order-8 transform coefficients. No consideration has been given for the human visual 

sensitivities for different transform coefficients. Thus, the quantization matrices obtained 

are not optimum and the performance is not satisfactory. To obtain the benefit of VBS 

technique, therefore, extensive experiments taking into consideration of the human visual 

system, have to be conducted on finding the order-16 quantization matrices. 

For colour images, a significant improvement in MSE have been obtained by using 

different block sizes for luminance and chrominance components. The block sizes used are 

8x8 and 16x16 for luminance and chrominance components respectively. The visual quality 

of the coded images are better than those coded by the basic JPEG scheme. When combined 

with the MED predictor for encoding of the DC coefficients, a further bit rate reduction is 

obtained. This final scheme has the advantage that it maintains the simplicity of the JPEG 

scheme and remains a one-pass process. Both improvements in MSE and bit rate required 

are obtained. Therefore, this technique can be employed as an enhanced feature in the basic 

JPEG scheme. 
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6. CONCLUSIONS 

6.1 Summary of Research W 她 

Transform coding of images has been used extensively in image data compression. 

Among various transforms, the DCT is mostly used because of its near optimum performance 

and existence of fast computational algorithm. However, the transform kernel components 

of the DCT are real numbers, which result in complex transformation process in a practical 

system. Dyadic Symmetry, proposed by CHAM in [CHAMc84], has been used for finding 

new transforms with simpler implementation but having not much degradation of coding 

performance. The same technique has also been used in generating new orthogonal Dyadic 

Matrices. In this thesis, the formation of Dyadic Matrices was examined. From the condition 

of orthogonality about the Dyadic Matrices, it has been found that the maximum size of 

Dyadic Matrix is 8. The relationship between destroying dyadic symmetry and Dyadic 

Matrix was discussed. Two examples of using these Dyadic Matrices in generating 

orthogonal transform for image coding were also given. 

The DC coefficient truncation and restoration schemes for a transform coding system 

have been reported in [CHAMc84] [YIP88]. This method was further extended to low 

sequency coefficient truncation and restoration. By truncating more low sequency 

coefficients, it was expected that more bits will be allocated to high sequency coefficients 

for better visual quality of the coded images. Two schemes have been proposed but the 

results showed that the LSCT schemes cannot give improvement over the C&S scheme. 

To take care of the inhomogeneous statistics over different areas of an image, block 

size used in a transform coding system needs to adapt to the local activities of an image. 

In this thesis, we examine a variable block size coding system proposed in [CHEN89] and 
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an Edge Discriminator was proposed to determine the block size. Simulations have been 

performed and the results showed that the VBS coding system using ED can give much 

performance improvement over that proposed by Chen. 

After examining several techniques in transform coding, we studied the recently 

proposed JPEG scheme [JPEG90], which will become an international standard. In this 

thesis, we tried to enhance its performance using two techniques. Firstly, we used an more 

efficient MED predictor for DC coefficients. Simulation results showed that the MED 

predictor needs the minimum number of bits to represent the DC coefficients among all 

predictors tested. Secondly, the use of variable block size technique in the basic JPEG 

scheme was investigated. Five schemes using VBS technique were proposed and examined 

It was found that scheme 5, in which block sizes of 8x8 and 16x16 are used for luminance 

and chrominance components respectively, and MED predictors are employed, can give 

much performance improvement in both MSE and visual quality over that of the basic JPEG 

scheme. 

6.2 Contributions of Work 

The main contributions of this project are summarized in the following four points : 

1. The development of Dyadic Matrices was examined and it has been found that the 

maximum size of Dyadic Matrix is 8. The relationship between destroying dyadic symmetry 

as well as applying Dyadic Matrices to generate orthogonal transforms were also given. 

2. Two Low Sequency Coefficient Truncation schemes were proposed and the 

problems in LSCT schemes were identified. 

3. An Edge Discriminator was proposed to be used in a variable block size coding 

system. It can be used as a criterion in determining block size. 
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4, The basic JPEG scheme was examined. To enhance the performance, a MED 

predictor was proposed for encoding the DC coefficients. The variable block size technique 

using the Edge Discriminator have also been applied to the basic JPEG scheme to enhance 

its performance. By simulation, it was shown that a scheme 5, in which the MED predictor 

was employed and the block sizes for luminance and chrominance components were set 

differently, can enhance the performance of the basic JPEG scheme. 

6.2 Suggestions for Further Research 

In this project, there are still some areas in which further research can be performed 

for improvement. They are summarized as follow : 

1. The development of Dyadic Matrices and the matrix order limitation have been 

shown. Further effort can be put in finding order-8 Dyadic Matrices that can be used to 

replace DCT in a transform coding system. 

2. In LSCT scheme, it is found that the estimation error for low sequency coefficients 

should be sent to receiver. This can avoid error accumulation due to quantization and 

truncation of high sequency coefficients. However, the error transmission increases the bit 

rate. So effort can be put in finding more effective way in sending the error for bit rate 

reduction. 

3. In enhancing the performance of the basic JPEG scheme, applying the VBS 

technique to monochrome image is not satisfactory. One of the reason is the non-optimum 

quantization matrix for order-16 transform coefficients. Further research can be done to 

obtain the quantization matrix, subject to human visual sensitivity and objective criterion, 

for performance improvement. 
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