
Visual Interaction Techniques for
Courseware Production and Presentation

J

by
I ?

Lam Shing Yung, Anton

Supervised by
Dr. C. S. Chang

Department of Computer Science
The Chinese University of Hong Kong

May, 1991

A Thesis submitted in partial fulfillment of the requirements
for the Degree of Master of Philosophy in

the Chinese University of Hong Kong

325460

61A

m l^ii / ̂ i! 7 CD //

Acknowledgements

I would like to thank Dr. C. S. Chang, my supervisor, for his support and

ideas. Moreover, I am honoured to dedicate this thesis to my parents, to whom I am

deeply indebted for their encouragement.

Abstract

This thesis describes the project of design and implementation of a

Courseware Production and Presentation System, and the research and situations

that led to its development. The system is implemented on OS/2 Presentation

Manager, which is a graphical, windowed environment.

The presentation materials are viewed as objects of different classes.

Novice users of the system can use predefined objects and operations that act on

those objects to prepare ordinary presentations. Experienced users, which found

the objects and operations provided inadequate, can define objects and operations

themselves.

An Active-Object-Set Model is introduced in order to simplify the relations

between objects and operations. Based on this model, interaction techniques are

devised so that users can define new object classes, which are based on primitive

objects, and new operations, which are based on primitive operations, through

direct manipulations, menu selections, dialogue box interactions, etc.

The system demonstrates that it is possible to define the run-time

behaviour of visual objects without any textual programming. The process involves

interactions that are familiar to a user of window-based applications.

The possibility to extend the model to other application areas is also

discussed. Two of the areas are Visual-Object Oriented Systems and User

Interface Management Systems.

Table of Contents

I. Introduction 1
1.1. Motivations for Presentation System 2
1.2. Shortcomings of Traditional Method 2
1.3. Computerized Courseware Production and Presentation System 5
1.4. Hardware Advances 7
1.5. Windowed, Graphical Applications 9
1.6. Interaction Techniques
1.7. Research Objectives 12

II. Existing Products and Related Research 13
2.1. Existing Products 13

2.1.1. PRESENT Slide Presentation System 14
2.1.2. Harvard Graphics 15
2.1.3. HyperCard
2.1.4. Macromind Director 16
2.1.5. Authorware Professional
2.1.6. PageMaker, Ventura and MacDraw 19
2.1.7. Summary 20

2.2. Related Research 20
2.2.1. Authoring Systems 20
2.2.2. User Interface Management System (UIMS) 23

2.2.3. Visual Programming 24

III. User's Model 27
3.1. A Simple User's Model 27

3.1.1.0bject-0riented Presentation Material 27
3 丄2.Frame，Based Presentation 29
3.1.3.Presentation Styles 29

3.2. Novice Users vs Experienced Users 30

rV. Design of the Courseware Production
and Presentation System 对

4.1. Overview
4.2. Object Oriented Design 31

4.3. Object Oriented Graphics 31
4.3.1. Modification of Object 32
4.3.2. Clipboard 34
4.3.3. Stacking of Objects
4.3.4. Group Together and Break Apart 36
4.3.5. Hierarchy of Grouping 38
4.3.6. Storage Requirements 39

4.4. Operations 刀

4.4.1. Manipulative Operations 39
4.4.2. Frame Control Operations 39
4.4.3. Timer Operation 40

4.5. Active-Object-Set Model 40
4.5.1. Importance of Objects 41
4.5.2. Active Object 42
4.5.3. Active Set 43
4.5.4. The Timer Event 43

4.6. Properties of Visual Objects 45
4.6.1.Physical Attributes 45
4.6.1. Event-Handling Operations 45
4.6.2. Private Status 46

4.7. Object Class 47
4.8. User-Defined Object Classes 47
4.9. User-Defined Operations 47

V. Interaction Techniques for Defining
New Object Classes and Operations 49

5.1. Interaction Techniques 49
. J.Q

5.2. Object Creation
5.3. Operations

5.3.1. Direct Manipulation 51
5.3.2. Menu Selection 51
5.3.3. Parameter Selection 51

5.4. New Object Class Definition
5.4.1. Definition through Drawing 53
5.4.2. Creating New Object Instances

of the New Object Classes 54

5.5. New Operations Definition 55
5.5.1. Specification of Parameter Type 55
5.5.2. Selection and Sequencing of Primitive Operations ……57
5.5.3. Using the New Operations 60

5.6. Binding of Operations to an Object 61
5.7. Default Operations for User-Defined Classes 63

VI. Implementation Issues 64
6.1. Operating Environment 64

6.1.1. The User Interface 64
6.1.2. The Operating System 66
6.1.3. The Hardware Requirement 66
6.1.4. The Final Choice 67

6.2. Representation of Objects 68
6.2.1. Basic Objects 68
6.2.2. Group and User-Defined Objects 69
6.2.3. Set of Active Objects 70

6.3. Object-Oriented Graphics Management Subsystem 71
6.4. Multiple Editing Window 73
6.5. Clipboard 73
6.6. Graphical Menu 73
6.7. Font Management 74
6.8. Mapping of the Active-Object-Set Model

to the Implementation 75
6.9. Representation of Operations 76

VII. Future Work and Conclusions 79
7.1. limitations 79

7.1.1. Direct Manipulations 79
7.1.2. Multiple Presentation Windows 79
7.1.3. Editing of User-Defined Operations 80

7.2. Future Work 80
7.2.1. Maintaining Relationship Through

Constraint Satisfaction 80
7.2.2. Functions for System Status/Values Query 82

7.2.3. Private Status Flag, Pre-Conditions and
Conditional Execution 82

7.2.4. Object Oriented Programming 85
7.3. Other Related Application Areas 86

7.3.1. Visual-Object Oriented Systems 86
7.3.2. User Interface Management Systems 89

7.4. Conclusions 89

91
References

Chapter 1
Introduction

The most fundamental objective of this research is to develop a

Courseware Production and Presentation System. In order to satisfy requirements

such as user-friendliness and extensibility, the software is implemented on a

windowing system supporting popular interaction techniques. Due to the

complexity of the windowing environment, an Active-Set-Model is proposed as a

guideline to help the design and implementation of windowing applications in

which visual objects manipulation is the primary function.

The Active-Set-Model simplifies the interactions between different visual

objects. The physical and mn-time properties of an object is packed into one single

unit. Not only programmer benefits from this model, by applying appropriate

visual interaction techniques, users can define and override object properties, thus

extending the functionality.

The model is currently applied to the Courseware Production and

Presentation System, but it can be extended to other visual-object oriented

applications. One important example is the User Interface Management System

(UIMS), which is gaining much attention recently. Moreover, the use of visual

expressions to define the mn-time behavior of objects is one important category of

visual programming [36], although the current techniques can only be applied to

very high level and general manipulative actions.

1

1.1. Motivations for Presentation System

Presentation is the most common and effective way to deliver information

and ideas to the audience in a formalized and organized manner. The quality of

the presentation depends on how the materials are prepared and organized, and

how these materials are presented. These directly affect the perception of the

audience.

A high quality presentation, which carefully makes use of text, diagrams,

pictures and other media, usually needs a longer period to prepare. For small scale

presentations, or frequent presentations with minor changes, it is not worth paying

so much time and effort to create or modify the presentation. In fact, many

authors sacrifice quality for time saving. For examples, the authors use

handwritten text and hand-drawn diagrams in single medium to avoid formatting

and printing, and to avoid integrating pictures, photographs and sound.

As computers are being more popular, together with the widely used word-

processors, people realize that computers can be used to produce and maintain

presentation materials rather easily and quickly. Moreover, with the evolution of

What-You-See-Is-What-You-Get (WYSIWYG) packages, the display on a monitor

can be used for the presentation directly, by projecting the materials on to a large

screen, thus, the need for softwares to support presentations becomes imminent.

1.2. Shortcomings of Traditional Method

Slides and transparencies are usually used in presentations even up to now

when computers are widely used. This kind of traditional method is static, and

usually black and white, though it was once the most effective way, when

2

compared with the even older method of using blackboards. When more dynamic

presentations are needed, the only way was to produce a movie or video, which is

non-interactive and very expensive.

The traditional method of presentations suffered from the following major

disadvantages:

1. The production process.

To produce slides or transparencies (except hand-written ones), the

materials are to be prepared on separate sheets first. Then they are to

be photoed (for slides) or photocopied (for transparencies), and

processed before they can be actually used. The time taken is usually

long and the materials cannot be easily modified.

2. Reuse of materials.

It is difficult to extract and reuse part of the existing materials which

exist on slides or transparencies. The only way to reuse them is to make

another copy and integrate them with new materials through cut and

paste.

3. Integration of different media.

Materials of different media are usually produced with different

methods: word-processor for textual materials, drawing program for

diagrams, scanning program for bitmaps and pictures. The integration

of text and diagrams onto a single sheet is usually done by cut and paste.

The layout of materials cannot be modified easily. It is especially

3

• ' \

inconvenient for textual materials for which reformatting to fill different

paragraph widths is desirable.

4. Use of color.

It is not difficult though expensive to prepare color slides, provided that

the original materials are in color. The processing of color

transparencies is even more expensive, which is not affordable for

schools and universities.

5. Quality.

Slide is the best medium for photos and color pictures because of its

high resolution. But the final output quality is usually determined by the

photographer's skill. Photos and pictures are needed to be photocopied

first before they can be put on to transparencies. The quality is usually

not so good.

6. Dynamic presentation style.

Presentation using slides and transparencies are performed in strict

sequence, with little flexibility.

7. Cost.

The cost of producing slides and transparencies mainly depends on the

number of slides or transparencies to be processed. Except for color

transparencies, the cost is rather low.

. ^ 4 “

1.3. Computerized Courseware Production and Presentation System

Although the main functions involved in the courseware production process

(i.e. material gathering, organizing and layout) require human intelligence

(because only the author knows what he/she wants to present and how to present),

the computer should take, a vital part in all the three sub-tasks. Electronic libraries

or Hypertext databases [21] would provide very fast routes to search, view and

extract raw materials. Word-processors with outline editing facility, or hypertext

authoring systems could certainly help in organizing the materials into different

sections or chapters. Graphics editors are useful in the layout process. The

production facility provided by our system serve as an example editor for the

layout process.

Most of the presentation media have strong hardware requirements, either

in the production phase or the presentation phase; and some are laborious. With

the decrease in price of computer hardware and increase in popularity of the

usage, the computer should provide an integrated solution to the production and

presentation process.

Using computer as the presentation tool, one can enjoy the following

benefits:

1. Creation of Material

The creation of textual and graphical materials has been widely used in

word-processing, drawing and desktop publishing programs.

5

2. Integration of Text and Graphics

Existing diagrams, pictures, photographs, and text can be integrated into

the same presentation rather easily, in a WYSIWYG manner.

3. Multimedia

Video and digitized audio can be integrated into the presentation also.

4. Color

If a color monitor is available, colorful presentation is possible with

software support.

5. Animation (Dynamic Presentation)

This feature can never be found in static presentation media like slides.

To make smooth animation, a fast CPU is desired.

6. Easy Maintenance

Existing material can be reused and modification is easy, without the

time-consuming cut-and-paste process.

7. Low Cost

The fixed cost depends on the computer hardware cost, which is

decreasing continuously, and the presentation software cost. Moreover,

a computer is multi-purpose. The operating cost involves the labour and

hardware maintenance cost. It is extremely cheap when compared to

the production cost of slides and transparencies.

6

8. Special Transition Effect

The special transition effects which are common only in movies, such as

fade in/out, can be done on a computer display while it is not possible

in traditional presentation.

9. Interactivity

The author can interact with the system during a presentation:

interactive feedback (e.g. highlight a selected block when mouse is

clicked over it) and alternative routes that depend on run-time status

(e.g. click on different buttons to go to different locations in the

courseware).

1.4. Hardware Advances

At the very beginning, a presentation system simply resembles a slide

projector. The hardware requirement is little, only a display unit supporting raster

graphics display is needed. As more sophisticated systems emerged, more

advanced hardware are needed.

Generally, the following hardware are required for a sophisticated

presentation system:

1. A large hard disk with short access time for the storage of multimedia

information such as bitmaps and digitized sound data. An estimate of

twenty megabytes are needed to store sixty-four full-screen 8-bit colored

bitmaps.

7

2. A fast computer, capable of running a sophisticated windowing system

in graphics mode, for the smooth interaction with the end-user.

Generally, a 386-based IBM personal computer or its compatibles, or a

Macintosh SE are capable of doing so.

3. A high-resolution color monitor for the display of pictures, the scanned

images, and even video. A 8-bit per pixel, 70 pixels per inch color

monitor is acceptable.

4. A scanner for the digitization of printed images.

5. A digital camerai for the digitization of three dimensional objects such

as, landscapes and human beings.

The above configuration was rare in early microcomputer systems, even at

the minicomputer platform, eight mega-bytes of main memory seemed to be

adequate at that time. Today, plugging four mega-bytes into a microcomputer

seems to be usual. Some have sixteen, in fact. Together with a huge computing

power microprocessor and a high-resolution graphics display, the powerful

graphics capabilities required by a presentation system is available. One can

realize that most of the hardware listed above are very suitable for the creation,

manipulation and storing of multimedia information which involves text, pictures,

photographs and digitized audio signal.

Currently, a high-speed laptop/notebook computer with large secondary

storage (e.g. 80Mb, 100Mb) together with a color LCD display panel (up to 640 x

1 One example is the Canon RC-250 Still Video Camera.

8

480 pixels) make the presentation system portable. And high-end RGB projectors

are suitable for setting up permanent presentation sites. Moreover, removable

hard disks can let different users share the same hardware while they can take

away their data in a single pack.

Laptop or notebook computers that are faster, smaller and lighter than

personal computers are going to the market everyday. Obviously, the hardware

advances make ideal presentation systems possible, especially those running on a

windowing system, which supports various interaction techniques.

1.5. Windowed, Graphical Applications

One major requirement of the Courseware Production and Presentation

System is to provide a user-friendly environment for the user. As the Graphical

User Interface (GUI) is gaining much more recognitions for its consistent and

easy-to-use interface, the OS/2 Presentation Manager GUI is selected as the

development platform.

User interfaces are switching from the single command line environment

towards a windowed, graphical environment. This trend can be realized on the

Workstations platform, such as DECWindow, SPARCs OpenWindow and

NeXT，s NextStep, and on the micro-computer platform, such as OS/2

Presentation Manager, Microsoft Windows and Macintosh.

Although there are many Graphical User Interfaces, they are all evolved

from the prototypes developed at the Xerox Palo Alto Research Centre in the 70s.

They all share similar interaction objects such as scroll bars, menu bars, buttons,

etc. Most interactions with the application/system are done through direct

9

manipulations, which resemble the real-world situations closely. Users are able to

pick up the control in a relatively short period, and the users，need to memorize

the commands is greatly reduced. The consistent user interface among different

applications, and even among different systems greatly shorten the time needed to

learn a new application. Users are able to transfer their knowledge and skills from

one application/system to another without much external help.

In the GUI environment, the learning curve for a novice user to accustom

to the system is flattened. But it is not the case for the programmers who develop

the applications for such an environment.

Event-driven programming is commonly used in a windowing environment.

Program developers no longer have active control over the flow of the

applications, rather, they need to tackle different relevant events happening to the

application by providing call-back procedures. The user-friendly interface transfers

the burden of controlling the machine smoothly to program developers. User

Interface Management Systems are being developed to help the creation and

management of all aspects of user interfaces. But other than the general user

interface, issues such as providing dynamic feedback are still hard to program. The

same problem are faced in the development of the Courseware Production and

Presentation System. The development of the Active-Set-Model is an attempt to

provide a simpler programming model for windowed, graphical applications.

1.6. Interaction Techniques

An interaction technique is to input commands, values, names, etc. by using

certain type of input device, such as mouse, keyboard, tablet, etc. In a windowing

10

system, the various physical input devices are usually abstracted to locator devices,

keyboard devices, valuator devices, etc. These logical devices are realized in the

user interfaces by menus, buttons, list boxes, scrollbars, virtual keyboards, etc.

The commonly used user interface objects have the following features:

1. Resemblance of real world objects.

Radio button is an excellent example of user interface objects that

resembles closely to the real world equivalent. When a user depresses

one button, the others reset. With the help of two and a half dimension

graphics, user can，really，see the state changes of the buttons, thus

made the concept easily be accepted (refer to figure 15).

Some interaction objects do not really have their real-world equivalent,

but users can easily get the concept from the name of the interaction

object and a few trials. One example is the pull-down menu, which from

its name, users can easily guess that one item from a list of choices can

be selected.

2. Provision of dynamic feedback

Dynamic feedback is a technique to show the progress or state of a

certain interaction. For example, the scroll box inside a scroll bar shows

the relative position of the viewport within the whole document, and it

will change dynamically during user manipulation. Other examples are:

highlight bar during menu selection, change of button shapes when

depressed, change of pointer shape during mouse movement, etc.

11

Generally, an interaction technique refers to a single interaction with an

user interface object. In our research, however, interaction techniques refer to the

boardest definition, that is, through the use of physical devices, a certain type of

value or command is input, though the interaction involved may not be limited to

one single step, but may consist of a series of traditional interaction techniques.

1.7. Research Objectives

The two objectives for this project are:

1. To develop a user friendly courseware production environment.

The environment for production of courseware will allow users to

integrate different media in a convenient and consistent way. The

integrated materials can be further edited. The system will act as a

prototype demonstrating the capabilities of such an environment. Text,

basic geometric lines and shapes, and bitmaps are supported, but not

sound and video for the time being.

2. To devise interaction techniques for the easy specifications of new

manipulative operations.

In the presentation part of the system, the user will be allowed to define

new manipulative operations on the materials, thus to extend the

functions of the system. The definition process should be as simple as

possible. The techniques involved should be those used in manipulating

the text or graphics objects in the production part, that is, those the

users are already familiar with. Direct manipulation techniques will be

used whenever appropriate.

12

Chapter 2
Existing Products and Related Research

Using computer to produce presentation materials is not a new idea. Word-

processors combined with laser printers with various high-resolution typefaces and

sizes are used to typeset textual materials. Presentation graphics softwares help to

visualize information through charts. Diagrams and illustrations can be produced

with different available software. But using computers directly as the presentation

medium is rare. Lack of software support is the main obstacle.

In this chapter, several available softwares with presentation capabilities

will be discussed. We will focus on the integration of materials, types of media

supported, presentation styles supported and the interaction techniques involved.

Apart from the applications on the market, we will discuss the academic

researches that are related to the issues or problems faced in our project. These

researches are Authoring Systems, Visual Programming and User Interface

Management Systems.

2.1. Existing Products

Six existing products that have the features of a Courseware Production and

Presentation System are evaluated in this section. All these presentation packages

are run on personal computers. Nowadays, laptops or notebook personal

computers are becoming ever increasingly popular.

13

2.LL PRESENT Slide Presentation System

The PRESENT system is an example of early primitive presentation

system. It closely resembles the work of a slide projector. First, the author should

prepare all the images (prepare slides). Then, the images are arranged in the

desired order (put slides on a tray). Finally, they are presented one by one

(projected to screen). Simple screen transition effects are supported (e.g. fade-in,

fade-out).

This system does not support any integration of materials. It only captures

the screen image，which is generated by other software, and save it as a bitmap. So

bitmap is the only media it supports, although there may be text and diagrams

within, it all depends on the software that produced the image. Maintaining the

presentation, that is, to modify the material, is quite troublesome because several

different softwares are involved.

The software is highly device dependent because it will access the display

hardware directly to get the screen image. And it may be incompatible with the

software that generates the desired image. Because it is compatible with the

Enhanced Graphics Adapter (EGA) standard, color，slides，can be produced.

Because of the simplicity of the software, the users can interact with it very

easily. All functions are chosen from various menus. The number of special keys to

be remembered are little, but mouse interaction is not supported.

14

2.J.2. Harvard Graphics

This software is used for the creation of business presentation graphics.

Different charts (line graph, bar chart, pie chart, etc) can be created, and simple

text screen can be edited. The presentation part is just one of the various functions

available. Like the PRESENT system, a slide show can be created showing charts

and text screens one by one. Color slides are supported.

The system does not support the integration of arbitrary text and graphics.

The type of materials the system can produce are charts and text screens only.

Still, it can satisfy the basic presentation needs in a business environment. The

interaction techniques involved are simple menu choices.

2.1.3. HyperCard

HyperCard is actually a mini-hypertext system rather than a presentation

system. Cards are organized into stacks and linkages can be established between

cards on the same or different stacks. HyperCard implements many of the

hypertext concepts such as linking one card to another, providing buttons for

invoking different actions, etc. by showing cards on a stack continuously, a slide

show is resembled.

Acting as a presentation system, it is more powerful than the last two

softwares that it has a WYSIWYG editing environment for the creation and

integration of graphics and text. Materials prepared by other applications can be

obtained via the cut-and-paste operation. Moreover, it can integrate sound and

video.

15

The presentation produced can be highly interactive. If buttons, which link

to other cards, are used appropriately, the users not only can control the timing,

but also manipulate the presentation sequence as they wish. They can go back and

forth, or jump to another related cards by clicking on pre-defined buttons or

selecting from menus.

The most significant shortcoming of using HyperCard is that it supports

only black and white materials, thus cannot utilize the high-resolution color

display to achieve a more impressive presentation. Moreover, the size of each card

is fixed to fit in a small screen used by the smaller Macintosh model. To specify

the linkages between various cards is quite difficult, even from a programmer's

point of view. One can easily get loss when jumping from cards to cards. The

problem of disorientation may be solved by a web-like overview.

2,1.4. Macromind Director

Macromind Director which runs on Macintosh computers is a sophisticated

software for producing presentations. It treats every piece of presentation material

as an object, and each object, in turn, is a cast member. The author can put

different cast members on to the stage and specify where each cast member should

go at different times. Each time-frame within a presentation is to be specified.

Text, graphics, sound and video are all supported. Like HyperCard, a highly

interactive, direct manipulation interface is provided for the creation and editing

of text and geometric graphics objects. And materials from other applications can

be imported. In the latest version, three dimensional objects can also be

integrated. The system also takes full advantages of the color display.

16

The application treats each piece of material as a cast member which

performs some actions during its existence on the stage, so users can specify the

movement of a cast member, that is, the application supports simple animations.

The animation of a cast member can be specified by one of the two methods: real-

time recording and space-to-time specification. Real-time recording traces the

movement of objects manipulated by the author. Space-to-time method allows the

author to specify the position of an object at each time-frame. A score window

records all the cast members' actions at any time. The job of the author is similar

to the job of a film director.

One shortcoming of Macromind Director is that it can only produce

sequential and non-interactive presentations. The author can preset wait points in

the presentation but cannot pause and resume the presentation at arbitrary points.

It is still very suitable for well planned and self-running presentations, which need

no human intervention. Another shortcoming is the complexity of the system,

making novice users unwilling to learn the features.

2J.5. Authorware Professional

Authorware Professional is an authoring tool for users to design and create

interactive courseware through the use of a set of user-friendly tools. It allows

users to integrate text, graphics, animations and even video. Like other Macintosh

software, users can enter text, draw lines and rectangles, change their attributes in

a WYSIWYG manner. Graphics files can be imported to the application as

another object.

17

The presentation of the materials are specified by a flow-line of icons. Each

type of icons represents a predefined action. One or more objects are associated

with an icon. For example, the display icon shows the associated objects on the

screen; the animation icon moves the associated objects along a certain path; and

the erase icon clear the associated objects using a predefined style (e.g. fade-out,

zoom to line).

The fundamental usage of the system is to produce courseware, which is

highly interactive. A user can have full control over the timing of the presentation,

and enable branching through the，interaction icon，. When the presentation comes

to a point where an interaction icon is inserted, the system will wait for the user's

selection, based on the selection, the system will continue the presentation at

different branches.

Users of Authorware Professional need to place the presentation sequence

in a higher priority than the presentation materials, i.e. users must specify the

presentation sequence before they fill in the contents. It is hard to modify the

presentation sequence (especially breaking one frame into smaller sequence) after

it has been defined. This approach is not natural because it reverses the

importance of the actual content and the presentation styles used.

Other than courseware production and presentation, the system supports a

variety of drills and interactive exercises. But this is out of the scope of this project.

18

2.1.6. PageMaker，Ventura andMacDraw

Although PageMaker Ventura and MacDraw are not dynamic presentation

softwares, but they have features of the production part of the project, so some

discussions will be made.

PageMaker and Ventura are popular page layout programs, which facilitate

the integration of text, graphics, diagrams, etc. on printed pages. They are, on one

hand, word-processors, which users can create paragraphs of text, change their

typefaces, sizes and styles, align them to margins, etc.; on the other hand, the

programs provide much more powerful functions for the arrangement of different

objects on pages, such as putting a scanned photograph on arbitrary position

within a page, then allow text to flow around the photograph in a certain manner.

MacDraw is an application for the production of general technical drawing.

It allows the creation of various geometric lines and shapes, optionally filled with

patterns.

All these applications operate in a WYSIWYG manner, the typefaces, sizes

and styles of the text, the geometric shapes, the pictures, the photographs, etc. can

be viewed on the screen, and can be manipulated directly using the mouse.

The final products of these applications are hardcopies of the material, so

the main concern of the applications are the static attributes of the materials, i.e.

the appearance. Moreover, since color printers are not so popular, these programs

generally do not support color. What we concern most about these kind of

programs are the interaction techniques employed in the integration of different

kind of materials. In fact, the interaction techniques used in the production part of

19

香 港 中 文 大 學 囡 當 馆 藏 當

our system are very similar to those used in these programs. One can view it as a

simplified version which targets for the screen, not for pieces of paper.

2.1.7. Summary

In summary, there are well developed interaction techniques for the

creation, integration and manipulation (e.g. resize, edit, change color) of materials

of different media (excluding sound and video, which are still hard to be

manipulated by using a mouse). But these techniques are related only to the static

part of the objects. The interaction techniques used in specifying the attributes of

the dynamic part of an object are still very limited.

2.2. Related Research

The design of our system is influenced by researches in the following areas:

Authoring Systems, User Interface Management System and Visual Programming.

2,2.1. Authoring Systems

Authoring systems aim at providing a set of easy-to-use tools for designing

and creating interactive software applications. They gain particular interest in the

field of Computer Aided Instruction (CAI). Authoring systems of this kind allow

users to create courseware, control the presentation sequence, accept students，

response, analyze students' performance and manage student records. A common

objective found in these systems is to free authors from the burden of

programming.

20

Kearsley [22] characterized an authoring system with the following four

levels:

1. Content Creation

This innermost level refers to the input, arrangement and modification

of different media used in the courseware. In advanced systems,

WYSIWYG editors, which supports graphics editing, are used.

2. Lesson Definition

This level concerns with the specification of the structure of the lessons,

which involves the presentation sequence and the styles used, and how

students would interact with the system.

3. Course Management
In this level, users can select a particular instructional strategy, specify

the response data to be collected, document the courseware, etc.

4. Authoring Environment

This level defines the nature of the interactions between the authoring

system program and the author. The environment should be different for

users of different skill level, or different instructional purposes.

The first characteristic is obviously what we are concerned most, while the

others will not be investigated.

Although interactive graphics are effective in creating the courseware

content, the techniques involved are usually borrowed from the research results of

computer graphics. What we are interested, therefore, in the field of authoring

21

systems is the presentation model, that is, how coursewares are presented and how

the users interact with them.

Frame-based approach is commonly used [1] [14]. The materials are

organized and presented within a frame, the size of which is limited by the screen

size. As windowing environment becomes popular, the use of overlapping

windows, which can be viewed as other frames, facilitates the presentation in the

way that one can view more information at the same time, with little confusion.

Interactivity is another important issue in courseware design [26] [3].

Authoring systems always try to provide a better interface between students and

the system. A lot of interaction paradigms are provided, such as, response options

like text, numeric and touch/click actions, feedback and branching. Students will

not just sit and look, they will participate and even alter the instruction sequence

by providing different answers to questions, or by choosing different routes

predefined by the author. Another field of research that interactivity plays a vital

part is the area of Hypertext.

Interactivity is an important theme in our research. The interactions

between authors (teachers) and the system is emphasized, that is, we aimed at

providing a highly interactive and intuitive environment for the teachers to create

and present the courseware. There will be no facility provided for getting the

students' responses.

Most authoring systems require the use of authoring languages, which are

textual. Users need to learn some concepts of programming before they can use

22

the languages. The language approach is certainly not applicable to a system which

expected to be widely used by non-computer professionals.

2.2.2. User Interface Management System (UIMS)

User Interface Management System becomes a hot topic as the windowed,

graphical user interface is gaining more acceptance, while more and more

windowing applications developers find difficulties in creating, maintaining and

manipulating the user interface. A comprehensive UIMS is a tool that helps an

application developer create and manage all aspects of user interfaces [32].

A comprehensive UIMS consists of three major components:

1. Interaction Technique Library

This kind of library is generally provided by the windowing system.

Examples are the Software Development Kit of Microsoft Windows,

OS/2 Toolkit, XToolkit of X Windows and DecWindow User Interface

Language. The libraries are a collection of interaction tools such as

menu，check box, scroll bars, etc. These libraries are provided to ease

the programming burden and at the same time enhancing consistency

among applications.

2. Dialogue Control Component

This component handles the sequencing of events and interaction

techniques. Current research has shown that it is possible to define the

component using two dimensional, non-textual techniques, like what we

do in using a window-based applications [29].

23

3. Analysis Component

This component is used to study and evaluate the user interface after it

has been created.

Not all three components are of specific interest to us. Because we are

trying to let users of the system to define manipulative operations easily, the

second component, Dialogue Control Component, would provide certain hints.

Most UIMS use a textual specification to define the Dialogue Control

Component. Like the problem faced in authoring systems, users (in this case, the

UI designers) are reluctant to learn a language with rigid syntax [30]. Garnet [29]

is the first UIMS that allows users to create highly interactive interface using

direct manipulation techniques. One goal of Garnet is to create user interface

using techniques that is as easy as using the interface themselves.

In our project, similar techniques are used to define not only the user

interface, but also visual objects. The properties of visual objects, which include

static attributes (e.g. color, position) and dynamic attributes (e.g. reactions to

events during mn-time) would be defined interactively, without the use of a

programming language.

2.2.3. Visual Programming

Visual programming refers to the use of meaningful graphic

representations in the process of programming [36]. The graphical interface

employed by most windowing system can be viewed as a kind of visual

programming.

24

The human mind acquires visual information at a significantly higher rate

than text. We can quickly extract features from a picture, which we can access in a

two-dimensional fashion, while it needs longer to extract the central idea from

text, which is limited to sequential access [33； •

Current research in visual programming may be categorized into the

followings [36] [11]：

1. Visualization of Data, Program or Software Design

Programming in these areas makes use of traditional one-dimensional

textual programming languages. Those are the end users who can benefit

from the graphical representation of the data. Examples are INCENSE

[27], Program Visualization [7] and GUIDE [24].

2. Visual Languages for Handling Visual Information

In this category, languages are designed for the processing of visual

information, such as pictures and images. The languages themselves are

textual and usually used in the area of pictorial databases [10].

3. Visual Languages for Supporting Visual Interaction

Examples in this category include HI-VISUAL [19] which supports user

interactions via icons and Squeak [9] which supports user interactions via

a sequence of user actions with multiple input devices. The languages

themselves are textual.

4. Visual Languages for Actually Programming with Visual Expressions

The languages in this category are two-dimensional, using symbols, such

as diagrams, flowcharts and icons, to specify the procedures involved in a

25

program. PICT [17] uses conventional flowcharts to represent the

program, programmers interact with the symbols within the flowcharts to

create their programs. Rehearsal World [16] provides a stage metaphor

to the teachers so that they can specify a program through the

manipulation of different performers, in a non-textual way. The most

interesting research is Peridot [28] which let UIMS designers to specify

the static and dynamic behaviour of user interface objects in a totally

two-dimensional, non-textual way. This concept is furthered extended in

Garnet [29] where textual specification is completely abandoned.

In our system, visual programming techniques are not definitely required.

But one can realize that in order to make the system more flexible, users must be

able to extend the features, especially the presentation styles. Extending the

system features using textual means (i.e. programming commands) is not feasible

for novice users. Tools must be provided so that users can specify new

presentation styles and new class of objects through visual interactions with

familiar interaction objects (e.g. menu, dialogue box). This kind of visual

programming should be categorized into the last one mentioned above.

In the current system, we are only concerned with techniques that are

useful to our application area, but the model provided can be further extended to

other visual object manipulation applications.

26

Chapter 3
User's Model

3.1. A Simple User's Model

Future users of the present system might be novice to computers from

various fields. To make the system popular, the efforts needed to learn the

provided functions must be minimized. It would be most welcomed by the users if

they can use the present system to express their ideas. In order to achieve the user-

friendliness goal, we must provide a model that appears simple to the users and

will hide all the complex and tedious operations from them.

3,1,1,Object-Oriented ^Presentation Material

From the users，point of view, a presentation involves a collection of

materials, including text, pictures, diagrams, etc., and a collection of presentation

operations, for examples, animation, enlarge/shrink, fade-in/out, and the

changing of attributes.

In the real world, users get the materials ready on different pieces of paper,

and arrange them on a master sheet. Different pieces of sheets can be stacked with

those on the top obscuring the bottoms. Moreover, the stacking order can be

rearranged at users' will. In our system, the concept of a collection of materials is

1 In this thesis, the term Object Oriented refers to object oriented graphics
generally, which is concerned with the representations of the graphics primitives.
Unless specified, this term does not refer to object oriented programming.

27

realized using object-oriented graphics. Each piece of material is represented by

an object. Users integrate the objects by placing them at suitable locations.

Objects can be stacked in any order. The user will find that the operation of the

system closely resembles the real life. This is not feasible using pixel-based

graphics because the information of objects, such as the stacking order, positions

of objects, etc. are lost once they have been inputted. The systems of this kind only

retain the color information of individual pixels.

Other than resembling the real world, the object-oriented representation

makes modifications very easy. What the system stored for different objects

(except bitmap) are their geometric attributes, but not their bitmap equivalent.

For example, a Bezier curve is stored as four reference points, together with

attributes like the line style, color, thickness, etc. When a user wants to modify an

object, he/she modifies the attributes directly, not the bitmap displayed on the

screen. So users are able to resize, move, and change the attributes of objects

easily, while the system can display the results accurately.

Object-oriented representation of materials also allows users to duplicate

objects easily. Moreover, the storage used by the materials are much less as

compared to the pixel-based equivalent. The technical issues are discussed in

section 4.3 in this thesis.

Object-oriented drawing packages are widely available nowadays.

Examples are MacDraw and Micrografx Designer. Users who have experience in

packages of these kinds should find no problem in preparing courseware in ours.

28

5.1. ZFrame-Based Presentation

Materials (objects) are organized and presented in a frame-by-frame basis.

The size of a frame is equivalent to the size of the screen minus the area occupied

by the title bar and the menu bar. Each frame resembles a slide used in a

traditional presentation. Within a frame, objects are presented in sequence

according to the presentation operations applied on them.

Some presentation package, like Authorware Professional, do not employ

the frame concept, objects can step through the presentation from beginning to the

end. This contradicts to the traditional approach, in which materials are brought to

and removed from the presentation area slide by slide. It requires, moreover, the

users to explicitly specify which objects are to be removed and when they are to be

removed. In a well organized presentation, frames will help users to group their

materials.

3.L3,Presentation Styles

One major advantage of computer presentation over traditional one is the

availability of different presentation styles. Earlier packages like Slide

Presentation provides simple frame transition styles, such as fade-in/fade-out.

Later ones allow users prepare more dynamic presentations by specifying the

object movements.

In our system, the presentation styles are determined by the operations

acting on the objects. The presentation operations apply on objects either

sequentially or randomly. The moving of multiple titles in an arranged sequence

from the edge of the screen to the centre is considered as sequential. The time

29

when the blocks of objects are moved are well defined. Sequential operations are

carried out in a specified sequence despite of the user's interactions.

Random operations are carried out only in response to the user's

interactions. For example, the ReverseColor operation is applied to the object only

when the user clicks the relevant item.

3.2. Novice Users vs Experienced Users

Our system will provide many basic objects such as text, geometric shapes,

diagrams and will accept bitmaps from other applications; and will provide a

number of basic manipulative operations for the objects. Novice users can use

these system defined objects and operations to create an ordinary presentation.

For experienced users, the objects and operations provided may be

inadequate. They are expected to define new object types and operations by

themselves. For examples, a user who imports bitmap frequently would like to

decorate each of the bitmaps with a rectangular frame, then a new object type (e.g.

FramedBitmap) can be defined based on the old ones. New bitmaps with frames

will then be created with lesser effort.

Similarly, new operations can be defined based on old ones. Users can

combine the move and reverse color operations to produce a MoveAndFlash

operation. More details will be given in section 5.5.

30

Chapter 4
Design of the Courseware Production and
Presentation System

4.1. Overview

In the last chapter, a very general user's model is given. The overall design

of our system, the available graphics primitives (or object classes), the available

operations, and the concept of user-defined object classes and operations will be

discussed in details in this chapter.

4.2. Object Oriented Design

Our system treats every visual object (e.g. line, text, picture) as a separate

entity. Each of them has its own properties, including physical attributes and

dynamic operations. Each type of objects has its own set of drawing commands.

Firstly, the purpose of using object oriented design is to match with the

object oriented presentation material perceived by the users; secondly, new

graphics primitives, or new types of objects created by the user can be integrated

into the system because the design hide the low level display command of new

objects from the high level control code.

4.3. Object Oriented Graphics

In our system, the following graphics primitives are supported currently:

text, straight line, rectangle, circle, Bezier curve, arc and fillet curve; and bitmap in

the form of a TIFF (Tagged Information File Format) file can be imported.

31

These graphics primitives and bitmaps are considered as object classes. A

user can select the desired class from the menu and draw on the screen, that is, an

instance is created. The instance object can be further modified. Figure 1 shows an

example of creating and modifying a rectangle.

4.3.1. Modification of Object

Representing each graphics primitive by storing its physical attributes, such

as position, size and color, makes it possible to modify and duplicate the object.

Moving an object is as easy as dragging it using the mouse pointer. Users can

directly point to the handle of an object and drag it to the desired location, thus

changing the size or shape of the object. Handles are visual representations of the

control points of objects. Figure 2 shows some graphics primitives and their

corresponding handles.

32

File Edit lObiectI Color 1. Select Rectangle from Menu
Text “
Line
Rectangle k I
Circle ^
Three Point Arc
Spline
Fillet

[js^ 2. Press mouse button at the
^ starting location, then drag mouse.

Dynamic feedback is given.

3. Release mouse button at the
- . other comer of the rectangle. The

desired rectangle is drawn. The
rectangle becomes active. Four

]i k handles are drawn. The size can be
^ modified by press and drag on the

handles.

» a 4. Line width can be changed by
selection from Width menu.

n5. Line pattern can be changed by
selection from Pattern menu.

Figure 1. Drawing and Modifying a Rectangle.

33

• “
J e x t O b j e c ^

i “
Rectangle

八 • ^ r r；； • straight Line

Three Point Arc Circle 过

；

• • t Z •
Bezier Fillet

Figure 2. Handles of different objects.

Bitmaps (imported from TIFF files) cannot be further edited, but they can

be resized and moved. Four handles at the four corner of the bitmap are provided

for modifications.

4.3,2, Clipboard

Objects can be transferred from one editing window to another through the

clipboard. The clipboard is a temporary area, which is invisible to the users, that

can hold any object, one at a time. Users can select Cut and Paste from the menu

to use this feature.

34

43.3. Stacking of Objects

An object can be placed over and obscure all or part of another one. The

attributes of the underlying object is preserved because what we stored is the

values like the geometric position. So if the overlapping object is moved away

later, the underlying one can be redrawn without any difficulty.

The stacking order refers to the order in which the objects are to be

displayed. The one displayed first might be obscured by those displayed later, if

their positions coincide. Generally, those objects created later will be displayed

later, on top of the others. It is nonsense to force the users to create the objects

according to the stacking order. For this reason, two operations are provided to

alter the stacking order. One is used to bring an object to the top while the other

sends it to the bottom. No operation is provided to insert an object into a specific

level, or between two specific objects, because the above two operations are

enough to arrange the objects into any stacking order. Adding extra operations will

complicate the system and this should be avoided.

Figure 3 shows a scenario that a bitmap and a text object are arranged in

two different stacking orders.

Te.t 0 參 Te.t。參
Bitmap s tacked over text Text s tacked over bi tmap

Figure 3. Stacking orders.

35

4,3.4. Group Together and Break Apart

Several basic objects can be combined into a Group object, which is then

manipulated like one single object. This is very useful if a user has edited several

related objects and want to treat them as a single one afterwards. A Group object

can be moved and its attributes can be changed. In the current system, a Group

object cannot be resized for the sake of simple implementation. This can be

achieved by first storing the position of each object relative to a corner of the

Group object, after the Group object is resized, all the components will be resized

proportionally.

To group several inter-related objects together, one must first select all of

them. Figure 4 shows an example of grouping a heading and two rectangles which

form a shadowed backplane together.

A Group object can be broken apart into its original components later by

the Break operation in the Edit menu.

36

m m i m i l U l l ^ 1 Draw the shadow

— .
H e a d i n g k I 3. Type the heading text.

I ^ ‘

T l e a d i n q " I 4. Cllck on the text object to
• ^ • I select it.

•‘ “ ^ 5. Click on the back plane while
" V l e a d i n g ^ I pressing the Shift key to do
“ multiple selection.

% “ % 6. Similar to last step, select the
T i e a d i n g I shadow also.

J
• • 7. Select Group from the Edit

W a H i n n | menu, the three objects will be
M e a a i n g • grouped together. Only the

K handles of the Group object will
• be shown. The three objects can

be moved and modified as one
single object then.

Figure 4. Multiple selection for grouping objects.

37

4.3.5. Hierarchy of Grouping

A Group object can consist of basic objects or Group objects. Further

grouping of basic objects and Group objects will form a hierarchy like the one

shown in figure 5.

By looking at the hierarchy, one can easily realize that breaking a Group

object will only affect the highest level in the hierarchy, those at the lower level

will remain intact. This is logical because it is the user's will to organize the objects

in that way.

The group-and-break mechanism will be used again when a user want to

create a new object class. This will be discussed in section 5.4.
——

Title 1 〗

Title 2 j

Title 1 飞 ^ ^ ^

I 而 I \\\
m i i B

Figure 5. Grouping hierarchy.

38

43,6. Storage Requirements

Less memory space is required by object-oriented representation as

compared with bitmap representation. This is also true when the objects are saved

on to the disk. About sixty bytes are required to hold the information of a straight

line such as the coordinates of the starting and ending points, line thickness,

pattern, color, etc. The straight line can then be drawn at any size and slope. This

is impossible if bitmap representation is saved.

4.4. Operations

In our design, there are three types of operations that could act on the

objects: manipulative operations, frame control operations and timer operations.

4.4.1. Manipulative Operations

Examples of manipulative operations include move, show, hide, change

color, change thickness, rotate, etc. These manipulative operations could be

initiated through direct manipulations, or simple selections from menu bar.

4.4.2. Frame Control Operations

These operations are used to select the frame to be displayed, which

include next frame, previous frame, go to frame N, first frame and last frame.

Recall that the presentation is frame-based, and the size of a frame is limited by

the size of a screen. The frame control operations will allow the user to switch

quickly from one frame to another. They are also very useful when bound to

objects like buttons. In this case, a user can specify which frame is to be jumped to

^ — —

when a button is being clicked. The binding of operations to objects will be

discussed later in chapter 5.

4.4.3, Timer Operation

As the operations described above are all immediate actions, a timer

operation is sometimes needed to achieve dynamic actions such as flashing.

The timer operation provided is to set an alarm at which an action will be

activated. This is similar to the delayQ system call in UNIX [2] in the sense that

the object associated with this operation goes to sleep (i.e. idle) for a period

before another operation is performed.

The flashing example can be defined as follow, where the color of an object

will be reversed Freq times in a second:

Hash(Freq, Object) := Timer(1/Freq, Reverse&SetNextTime (Freq, Object))
Reverse&SetNextTime(Freq，Object) : = ReverseColor(Object)，Flash(Freq, Object)

The timer operation cannot be activated through direct manipulation. This

is logical because all operations performed through direct manipulations are

immediate. The timer operation will be used only in defining user-defined

operations. The definition of new operations will be discussed in chapter 5.

4.5. Active-Object-Set Model

In the last two sections, a general concept of objects and operations are

provided. Here, in this section, the underlying relationship between objects and

operations are discussed. An Active-Object-Set Model is proposed to provide a

simple view on this relationship.

40

4.5, L Importance of Objects

In the theatre metaphor proposed in the Programming by Rehearsal system

[16]，every visible object in a program is described as a performer, each performer

affects one another by sending cues. By using such a metaphor, the unfamiliar

concept of programming can be conveyed to non-programmers rather easily. This

metaphor is, in fact, the object-oriented approach to manipulate visual objects.

The performers (i.e. the objects) affect others (i.e. activate operations that act on

other objects) when certain events occur, or at certain pre-set time. Linton,

Vlissides and Calder [8] suggested that the code for user interface should be

object-oriented for easier development and maintenance, and MacApp [34], which

is a generic Macintosh application, is also object-oriented. Objects are natural for

representing the elements of a user interface. This is the users' viewpoint on the

application, and it should be the same for programmers' viewpoint.

The proposed Active-Object-Set Model simplifies the relations between

objects. And it enables the binding of events and call-back operations to objects.

41

4

4S2, Active Object

An active object is the object currently under selection and has the input

focusi. Our system can be viewed as a collection of various visible objects, with

one of them being the active object. The system will transit from one state to

another when the state of individual object changes. The state of an object may be

changed by either external events (e.g. mouse click, timer) or internal events

(invoked by other objects). Figure 6 shows a generalized example of the state

transition of an active object. It should be noted that not only the active object

itself is modified, but the related objects will also be modified.

A © I A © ^ A •
Active ob jec t • • • ^ ^ Active ob jec t (Q)

modi f i ca t ion r \

1: T rans fe r of act ive () ： •
ident i ty ^ ^ 阳 s i v e

2: Modification mod i f i ca t ion
message

Figure 6. State transition of an object.

1. In OS/2 Presentation Manager, the window that is expecting input from a mouse or a keyboard
is said to have the 'Input Focus' [31]. Events generated from the two input devices are sent to the
window with the input focus. In this report, however, an object with the input focus means that
all the input from the user are directed to that object.

42

Any object can become active by i) an external event (e.g. mouse click); ii)

identity transfer from previously active object. This concept is further extended to

include a set of active objects and to allow non-active objects to respond to the

event generated by the system clock.

4,5.3. Active Set

On many occasions, users may want to perform an operation on a group of

objects simultaneously (e.g. move/delete a group of objects). An active set, rather

than one active object, should be used to describe these situations. In another

model [15], the active object is referred to as the currently selected object (CSO),

similarly, this concept can be extended to a currently selected set of objects. Only

those events that are common to all members in the active set could be processed,

not otherwise. For example, mouse movement with button pressed is a common

event for a group of objects, which may be of different types. Some menu items,

such as the selection of typeface, size, styles, etc. will not function (except for the

case that all members in the active set are textual objects) because such a selection

is meaningful only to textual object. The active set is realized by allowing a user to

perform multiple selections, and perform operations on the selected set

afterwards.

4.5.4. The Timer Event

As [15] suggested, typical types of events that can be placed in the event

queue can be classified into 1) events generated by interaction devices (e.g.

keyboard, mouse and lightpen); 2) events generated by the window manager

because of changes in output window status (e.g. window exposed or resized) and

3) event generated by the system timer. The second type of events are handled by

43

a default action, which involves the repainting of the output window, and will not

be sent to the active object. All other events are directed to the active object. Non-

active objects would be modified only if they are commanded by the active object.

This is acceptable to the events originated from interaction devices because the

active object is assumed to have the input focus. The timer event, however, may

not be received by the active object. It can be any object that asked the timer to

send an event at a specific time. It may not be the active set who is interested in

the event. So system timer event should be allowed to be processed directly by the

target object, not the active set.

The revised event-handling diagram is shown in figure 7.

< f > 〇 I | o 〇 N I l # 〇
y } • ^

V 1 “ 1 — 測 一 f n

A i v g n z n v . ： ： ： ： ! A
V J I I I — ^

Active Set y © • • — — • • Active Set Q

J Change of At t r ibutes ^ ^

In te rac t ion Event A ^ t r a n s f e r of Active O p ^ ^ ^ •
^ ^ Identity Modification

2: Modification
Message 八 — — • A

Timer Event M Response to
Timer Event

Figure 7. Event-handling of objects.

44

Back to the flashing operation example, after an object initiates the Flash

operation, the system will send the timer event to the object after a certain time.

That object may not be active at the time it receives the timer event. This enables

an object flashing while other objects are active. If the timer event is, like other

events from keyboard and mouse, sent to the active set, the above example is not

possible.

4.6. Properties of Visual Objects

4�d LPhysical Attributes

Every visual object has its associated set of physical attributes. General

attributes are color, size, position, etc. Attributes specific to a certain class of

objects are font and style for textual objects, line width and line style for geometric

lines, pattern for geometric areas, etc.

4.6.2. Event-Handling Operations

The properties of visual objects refer to more than just the set of physical

attributes. They include the operations associated with the events which will be

directed to the visual objects. For example, in an event-driven environment, an

operation will be launched when an event occurs, while the event will be directed

to the active set. So it is sensible to bind operations to events. Moreover, each

class of objects processes the events in a different maimer, it turns out to bind

different event-handling operations to each class of objects. X Windows System

has a similar approach by associating callback functions to the classes of widgets

[37].

45

4.6.3. Private Status

In an event-driven environment, a complete command may involve several

events, which are in sequential order. For example, the command to move an icon

from one location to another involves the following sequence of events:

1. Mouse button pressed with pointer located at the icon;

2. Mouse movement with button pressed; and

3. Mouse button released.

The icon, driven by events, transits from one state to another. Some private

status flag are needed to maintain such information. This issue will be further

discussed in section 7.1.6.

The properties of a visual object is visualized in figure 8.

Physical Attributes ^ / /
“ (Patten^ X

(Co l^" (wiTth) 广 ^ j f -

^ n f ^ ^ ^ C V ^ ^ / Z Private

^ V i s u a l)

(R e l e a s e d I v ^ p e r a U o j ^ ^ ^ ^ ^ " ^ ^ ^ ^ ^ ^ ^ !： ^ ^

Event-Handl ing Operations

Figure 8. Properties of visual objects.

46

4.7. Object Class

Each graphics primitive provided by the system is a basic object class. Each

object class has a set of attributes defining the objects belong to that class (i.e. the

instances). For example, the Rectangle class consists of attributes like coordinates

of the upper-left and lower-right corner; thickness, width, color and pattern. An

instance of the Rectangle class has its own values quantifying the attributes, i.e.

different object instances can have different attribute values. One rectangle can be

red while the other is blue. When defining a new object instance, all the attributes

of that instance will be filled with default values. (An exception is that the position

and size of geometric objects are specified through direct manipulations, which

conform to the specifications used in popular drawing programs. Similarly, the

characters inside a Text object is filled in at the time the user types them, no

default value is given.)

4.8. User-Defined Object Classes

The basic objects provided by the system may not be enough for the users.

Experienced users might want to create some customized shapes and reuse them

frequently. One example is to decorate the border of another object. By defining

the border as a new object class, one can create instances of it conveniently, and

the appearance of the border can be maintained easily.

4.9. User-Defined Operations

The system will provide a basic set of primitive operations. The user, if

required, can use them to create some desired operations. The concept of

combining primitive operations into a complex one is similar to that of combining

47

primitive objects into a complex one. The former addresses to the dynamic portion

of the system while the latter addresses to the static part. In the present system,

the operations provided are manipulative actions, such as to change the color of

an object, to move or rotate an object along a certain path.

More details of defining new object classes and operations will be given in

the next chapter.

48

Chapter 5
Interaction Techniques for Defining New Object
Classes and Operations

5.1. Interaction Techniques

In this thesis, the term Interaction Techniques is used to refer to the use of

physical interaction devices, such as mouse and keyboard, to perform actions that

are then translated to different commands or values. In a graphical, windowed

environment, the physical devices are abstracted using interaction objects like

menu, scroll bar, button, etc.

This chapter will concentrate on the discussion of how users can interact

with the system to define new object classes and operations.

5.2. Object Creation

To create a new object, that is, to make a new instance of a new object

class, the user should choose the appropriate item from the Object menu. For the

Text object class, the user can then click on the desired starting location and begin

to type in the text. For other objects, rubber banding [15] is used to define the

appearance of the object. Users familiar with MacDraw like applications will find

no difficulties in using them.

Ideally，there should be a graphical toolbox for the editing window, listing

all the available object classes. Users can then select the appropriate tools more

conveniently in the sense that little mouse movement is needed. And because the

49

toolbox will be always visible, one can quickly locate which object class is needed

and move to it quickly.

An object can be further modified by first selecting it, making it the active

object. It can be done by simply click on it. The activated object will have handles

surrounding it. If several objects are stacked together, clicking on them may select

only the bottom one. The others can be done by double-click on them, then the

objects on top will be selected successfully.

Each object has a bounding rectangle, the object is selected when the user

clicks inside the object's bounding rectangle. Sometimes this brings confusion.

Figure 9 shows an object that is，occupying，the whole area, making selections

difficult. The user needs to double-click all the time to select the desired one.

Title 1 ||

I n ^ 1
I
1 Title 3 k
1 . \ r - ^

™e 4 I i Bounding Rectangle
丨 I of the straight line
i - -

Figure 9. Object with large bounding rectangle.

I

»

50

‘ ,

5.3. Operations

The operations that act on objects can be activated either by direct

manipulations or menu selections.

53,1. Direct Manipulation

The most simple example of direct manipulation is the Move operation. To

move an object, the user first selects it by clicking, then the object can be moved

by dragging. (Dragging means to move the mouse pointer while the mouse button

is being pressed.) Other operations like resize and reshape can also be done

through direct manipulations. This gives the user a feeling of moving or reshaping

the object directly with his/her own hands.

5.5.2 Menu Selection

Other operations are not so easy to be manipulated directly. They are

generally activated by selecting a command from the menu. For example, to

change the color of an object is done by selecting that object first, then the desired

color is chosen from the menu.

In fact, some commands that are activated by menu selections can be

replaced by direct manipulations. This, however, might not be as convenient as

menu selections. In section 7.1, we will further discuss the issue.

5.3.3, Parameter Selection

Operations need operands to act on. They are functions or procedures from

the view point of programming languages; and the operands are parameters

passed to the operations.

51

Postfix notation is used in specifying parameters, that is, the operands

needed are specified first before the operation is selected. An object to be

modified is selected first before any operation is performed. Some operations

might accept many parameters; examples are move, cut, copy, and change color.

Multiple parameters can be specified by multiple selections. The techniques of

multiple selection are described in section 4.3.4.

If no object is selected, direct manipulation cannot be performed.

Operations like move and reshape will be restricted from the user's access

automatically. Other operations that are activated through menu selections will

still be available to users. In our system, these operations will affect the default

values of the objects. For example, if no object is selected, the selection of Red

from the Color menu will affect the default color, all objects created later will be

red in color.

If some operations that are activated through menu selection need at least

one parameter, then that menu item can be deactivated (or greyed) when there is

no active object, so that the user is barred from making the invalid selection.

5.4. New Object Class Definition

In our design, a new object class is created from aggregating the basic

classes. This is similar to the RECORD in PASCAL and STRUCT in C which

allow programmers to define abstract data types based on predefined data types.

The user can make instances of the new class as he/she does for the basic object

classes.

52

SAL Definition through Drawing

To define a new object class, a prototype will be drawn. The prototype

drawn will consist of several basic or user-defined objects. They will be grouped

together and declared as a new object class. A new object class name will also be

input for identification.

For example, a user can create a new object class called ShadowedButton.

A prototype of the class is shown in figure 10. It consists of two rectangles and a

text object. The string 'Button' is just a sample text. They are then grouped and

declared as ShadowedButton. Similarly, in figure 11，a prototype for the class

FramedBitmap is drawn. The system will save the sizes, positions, line styles,

thickness, color, pattern, etc. for the created object.

Button
/

Figure 10. The ShadowedButton object class.

國 I [‘：
、 , ‘ ‘、 、

Figure 11. The FramedBitmap object class.

For the ShadowedButton object class, the font and size, and the style of the

sample text will also be saved, but the string，Button，will not because it is not as

meaningful as the other attributes. The user would properly override this value in

53

• t

future use. For the FramedBitmap object class, only the relative position would be

saved. This is similar to the text object of the ShadowedButton class that the

content should be filled in by the user when a new object instance is created.

5.4.2. Creating New Object Instances of the New Object Classes

Using the new object class will be as simple as the basic ones. The user will

first select the right tool from the menu. The new object classes could not be

selected from the menu directly because they are not supposed to be put on the

me皿 at first. They will be chosen indirectly through a dialogue box, as shown in

figure 12. When a new object class is selected, the user will then specify the

coordinates of the bounding rectangle of the new object through direct

manipulation, just like drawing a rectangle. The stored prototype of the new object

class will be scaled to fit in that rectangle and displayed.

Object Class Name: || 狀

Object Classes: Cancel
FramedBitmap
ShadowedButton

Figure 12. Dialogue box for choosing user-defined class.

Back to the example of ShadowedButton and FramedBitmap, two

ingredients are to be input at creation time, that is, the text and the bitmap. The

text object can be input as usual. A dialogue box will be poped up for the selection

of bitmap files from the disk. This would be the same dialogue box that will

54

appear when the user choose 'Load TIFF …，from File menu. The bitmap loaded

will be displayed within the frame of the FramedBitmap object then.

Up to now, the user-defined object classes can be viewed as library objects

because only the physical attributes of the objects are saved. When the user wants

to make a new instance of a class, the stored object will be scaled and displayed.

The attributes like line style, width, color and font will be the same as those

stored, but not depend on the current default values. Later in this chapter, the

reader will find that more than just the prototype will be saved for a user-defined

object class. Operations will be associated with object classes also.

5.5. New Operations Definition

The concept of combining primitive operations into a user-defined

operation is similar to that of combining primitive objects into an integrated one.

The former addresses to the dynamic portion of the system while the latter

addresses to the static part.

There are well-developed interaction techniques for the physical attributes

for the user-created objects, but not so for the user-defined operations. The

following issues must be considered in order to make the definition of user-

defined operations via visual interactions possible:

5.5.1. Specification of Parameter Type

Operations accept parameters which are objects that the operations will act

on. The user is required to specify the types of these parameters. Visual

interactions can be used in the specification process. For example, if a new

55

operation is to accept a text object as the parameter, the user can specify it by

selecting a sample text object with the mouse. This selection shows the system just

the type of the formal parameter of the new operation, not the actual one,

otherwise, the text object will become a constant in the operation.

Specifying the type of the parameter is very important. An operation will

function properly only when the right type of object is chosen. This is not obvious

if the parameter is a basic object, such as Line, Rectangle, or Text. For these basic

objects, if the operation is not applicable to them, some checking routines can be

built-in to prevent any mn-time error. The simplest way is to ignore the operation.

One example is applying the Change Font operation on a Line object. It is difficult,

however, for the system to handle the error for a user-defined operation acting on

a user-defined object. A user-defined operation may consist of a sub-operation^

that act on a sub-object^ of the user-defined object. If an object of invalid class is

selected as the parameter, the system will not be able to find the sub-object.

Sometimes an operation can act on several classes of objects. The user

should have the opportunity to give this information explicitly. For example, if a

user wants to define an operation that act on rectangular shape object, that is,

Rectangle，Bitmap and Text, then he/she can:

1. Select a sample object first, the sample object can be any one of the

desired object classes;

1 One can see that a user-defined operation is actually a sequence of other
predefined operations (i.e. sub-operations).

2 Recall that a user-defined object class is an aggregation of primitive objects, a
sub-object is one of those primitive objects.

56

2. Select Define Operation from the menu, a dialogue box similar to the

one shown in figure 13 will appear. The Parameter Type box lists all the

available object classes, with the one the sample object belongs to

highlighted;

3. Highlight also the other classes in the list box that can be the

parameter.

By doing simple selections, the system will then know clearly what kind of

parameters will be passed to the operation.

Parameter Type: New QperaUon Name:
I Straight L i n e S II I \ 训 ）

Bezier 圍 Available Qpefations f Cance l J
Three Point Arc I Flash [S
R e c t a n g l ^ ^ ^ ^ Pop Up

Release Pop Up |
Framed Bitmap
Heading ” 管

Figure 13. Dialogue box for defining new operations.

5,5.2. Selection and Sequencing of Primitive Operations

The new operation is composed of a sequence of primitive actions. Similar

to keystroke macros, the sequence of the primitive operations would be

demonstrated one by one by the user, and will be automatically recorded by the

system. The demonstration will involve only normal interactions, which the user is

already familiar with, that used to manipulate the objects.

If the parameter is a user-defined object, then the new operation can

contain sub-operations that act on sub-objects of the user-defined object. To

57

1 •

distinguish the currently selected sub-object from the user-defined object (i.e. the

parameter), different types of handles will be displayed. Figure 14 shows a

ShadowedButton with its sub-object, the shadow, selected. The user can select

different sub-objects within the user-defined object, and then perform operations

on them.

Handles for the selected button

m 1 j j Handles for the selected shadow
I B u t t o n within the button

— — —

Figure 14. Selection of sub-components.

For example, if the user wants to define a PressButton operation, which acts

on a ShadowedButton, that moves the text plane to the position of the shadow, as

shown in figure 15, he/she can:

1. Select the button object first;

2. Select Define Operation from menu;

3. Select the upper Rectangle sub-object;

4. Move it to overlap the shadow;

5. Select the Text sub-object;

6. Move it back to the center of the upper rectangle;

7. End the definition process.

The process is shown in figure 16.

58

, •

Button Button
1 j

Before button pressed After button pressed

Figure 15. Button before and after pressed

• — H E

Button 1. Select the text plane within the button.

% f
Button 2. Move it to overlap with the shadow.

^ U t t O r T i 3 Then select the button text. • •
[— — ‘ ‘ (I

T b u t t O l T 4. And move it to the center again.
• • i

Figure 16. Sequence of ButtonPress definition.

A ReleaseButton operation can be defined similarly by moving the two

objects back to their original positions. A user-defined operation can consist of

other user-defined operations. The Timer operation can be integrated into the

sequence also. Because the Timer operation will activate another operation at a

59

later time, it should be the last operation in the sequence, otherwise confusion

may occurs^.

5.5.5. Using the New Operations

The newly defined operations cannot be activated from top level menu

selection because they are not supposed to be in the menu at first. Through some

indirection, however, they can be accessed by selecting PerformOperation from the

menu. A dialogue box will appear to let the user to select the desired operation

(figure 17).

Operation Name: [OK

Available Operations: Cancel
F l a s h " ‘ [t
ButtonPress
ButtonRelease
PopUp

~ I
w

Figure 17. Dialog box for selecting user-defined operations.

Activating the user-defined operations through the above dialogue box is of

little use. These operations are supposed to be activated through direct

manipulations. Before they can be performed through direct manipulations, they

3 If another operation A is placed after the Timer operation, which sets
operation B to be activated after some time, the user might expect that A
would be carried out after B. In fact, A would be activated immediately after
the Timer is set, and B would be activated at the preset time, which is later than
A,

60

must be bound with events that will happens on objects. Next section will be

dedicated to the discussion of this issue.

5.6. Binding of Operations to an Object

The last step of defining visual object properties is to bind the operations to

the objects. These operations, according to the event-handling diagram (figure 7)，

may modify the object itself or other objects, that is, any object can be the

parameter of the operation, not only the active object. The binding step must be

able to indicate what argument will be passed to the event-handling operation

once an event occurs. (The parameters specified during the operation definition

phase described in section 5.5 just show the type of the argument that would be

passed, the actual argument that would be passed in response to an event is

specified here, in the binding phase.)

Operations will be activated when some events happen on an object. For

example, the user might want an object to be highlighted when being clicked, the

MouseReleased event should then be bound with the ReverseColor operation for

that object, li 2i MousePressed event is expected to cause sl ButtonPressed operation

acts on a Button object, the MousePressed event should be bound with the

ButtonPress operation for that Button object. A sequence of operations can be

bound to an event.

In our design, the user will first activate the desired object, then select the

desired event, and finally bind it with some operations. For example, we should

select the Button object first, then activate the Event-Operation Binding dialogue

box, as shown in figure 18. The desired event, the MousePressed event, will then be

61

1 •

chosen. Next, the operation to be associated, i.e. the ButtonPress operation, to this

event will be activated normally. The sequence of actions will be ended by clicking

the End button in the dialogue box. The whole process will be the same as what

should be done in specifying user-defined operations.

Oblect Class: BUTTON | Begin Demo |

Events:
Mouse Pressed S P E n d Demo
Mouse Released
Key Pressed
Key Released
Mouse Mowed —

I Cancel

Figure 18. Dialog box for selecting the event and begin demonstration.

Assume the object under binding is A, The sequence of operations may

involve the modification of other objects. The user can specify this by selecting and

modifying other objects as usual. The system will treat the object ^ as the active

object all the time, and the identity of the objects affected will be saved. When the

sequence of operations are activated during run-time, the same (group of) objects

are affected the same way as they did, while object^ will remain the active object.

The sequence of actions may involve the transfer of activeness, that is,

other objects can be activated by the current object. The transfer of activeness

must be arranged at the end of the whole sequence of operations, or otherwise,

the operations following will act on the newly activated object, which is not

correct.

62

1 •

5.7. Default Operations for User-Defined Classes

In the last section, operations are bound to events that will occur to an

object instance, that is, only the selected Button will carry out the ButtonPress

operation in response to the MousePressed event. This is useful when we want to

define specific actions for a specific object. But for the last example, we would

rather have all objects of the Button class to carry out the ButtonPress operation in

response to the MousePressed event. This should be the default action for the

Button class.

To save a set oi Event-Operation binding information as default values for a

class will be very easy under current design. The user can select the prototype that,

apart from having the desired physical attributes for the class, contains the desired

Event-Operation binding information and save it as a class definition.. When a

prototype is saved, not only the physical attributes will be saved, but also the

dynamic attributes will be also.

63

I 香 港 中 文 大 學 圓 畲 馆 藏 當

Chapter 6
Implementation Issues

This chapter is devoted to the discussion of the implementation details of

the Courseware Production and Presentation System.

6,1. Operating Environment

When we choose the operating environment for the system, the following

points were considered:

d i . i . The User Interface

The most important consideration of the system concerns user friendliness.

The graphical user interface employed by most windowing systems is obviously the

preferred choice for the following reasons:

1. Consistent User Interface

Users will interact with the windowing environment through selections

from pull-down menus, dialogue boxes and manipulations of icons,

scroll bars, buttons, etc. Once user learned how to interact with a

control, say, a button, he/she will know what can be done on this kind

of controls later, no matter he/she is using the same application,

different applications among the same system, or even different

applications on different systems. The consistency is even more

apparent among different applications within the same computer

system. In the Macintosh environment, for example, there is always a

64

FILE menu for each application, allowing users to do file operations

such as load and save. User interface consistency greatly shortens the

time taken for users to adapt to a new application, and support transfer

of users' learning [4]. As the present system will use interaction objects

such as menus and buttons, so one of the windowing environments is

chosen, rather than writing our own.

2. Enhance Human-Computer Interaction

Animated, dynamic feedbacks are commonly used in graphical

environments to enhance the bidirectional interaction between users

and the system. Feedback is continuously displayed before a complete

command is issued, while it is impossible in a single command line

based system.

Another important feature in graphical environment is the use of icons

to abstract concepts, operations and objects. Well-designed icons can be

recognized and remembered more easily than textual description and

may take less screen space [20:.

3. Enhance Concurrency and Data Transfer

One important feature pocessed by workstations of the latest generation

is the multitasking capability. In a windowed, graphical environment,

different programs run in separate, and probably overlapping windows

on the same screen. Users can view those separate windows as separate

terminals. Programs can use several windows to facilitate the display of

different categories of data, and users can integrate the results from

65

different windows. Multiple windows visualize the hardware

concurrency while enabling human concurrency.

Following are some available graphical windowed environments: Microsoft

Windows, OS/2 Presentation Manager, Macintosh Finder, X Windows, SunView,

DecWindows, etc.

6.1.2. The Operating System

The ideal operating system for our system should support huge memory

allocation with flat addressingi. Our system will support the presentation of

pictures, which are bitmaps, and many other objects. There is a need for huge

memory space. Moreover, for easy manipulation of bitmap, flat addressing is

desired.

Popularity of the operating system is also very important. Potential users

are not willing to switch to a new operating system where most of their daily

applications cannot be executed. They will consider our system as another daily

application, which should be running on the same operating system so that

switching between applications will not bring any trouble.

6.1.3. The Hardware Requirement

If our system is to be popular, it must be executable on a popular and

relatively cheap machine. The support for different peripherals should be plenty

1 Flat addressing means that a huge memory block has continuous locations
from begin to end, despite of any segment limitations. The segment
problem occurs in 80x86 based machines. Programmers need to tackle the
segment limit problem by themselves.

66

because we require different devices like scanner, mouse, high resolution color

display, removable hard disk, LCD projection panel, and even powerful RGB

projector. IBM Personal Computer or its compatible is the obvious choice.

6,1A The Final Choice

If our system is to be executable on IBM personal computers or

compatibles, only three windowing systems were needed to be considered: 1)

Microsoft Windows, running on DOS; 2) OS/2 Presentation Manager, running on

OS/2; and 3) X Windows, running on Unix. From the users viewpoint, applications

running under these environments share the same look and feel. But obviously,

DOS is the most popular operating system among the others in the personal

computer world.

There are two operating systems that satisfy the huge memory requirement

of the system: OS/2 and Unix. Virtual memory management is employed by both

systems [2] [12] [25]. The size of a bitmap is limited only by the size of available

memory (include virtual memory) in Unix. And OS/2 is expected to have the flat

addressing feature in version 2.0 [12]. Both operating systems are not popular, but

OS/2 has a novel feature of executing DOS programs in a compatibility box [23]，

making it a potential popular operating system. On the hardware requirement,

Unix needs one hundred megabytes of hard disk space to hold both the base

operating system and the X Windows environment, while OS/2 needs only ten

megabytes. So OS/2 was chosen.

When comparing Microsoft Windows with OS/2 Presentation Manager, the

difference is little, but significant. They share similar Application Programming

67

I •

Interface (API). Programs for the two environments are very similar. The

significant differences are that 1) OS/2 version 2.0 will support flat addressing;

and 2) OS/2 is a preemptive multitasking environment while Microsoft Windows

is not. For the first point, a discussion in section 6.1.2 is made. For the second

point, programs for Microsoft Windows are required to be cooperative. When a

program is executing an event handling routine, it takes over the CPU control.

Other tasks will not be able to run before that task returns the control to

Windows. If the event handling routine has a lot to do, it is the programmer's

responsibility to break it down into smaller modules and coordinate the execution,

which is tedious [18]. On the OS/2 side, true preemptive multitasking is employed.

There is no need for the programmers to device methods to handle large jobs.

From the developer's point of view, OS/2 Presentation Manager is a suitable

platform for our system.

6.2. Representation of Objects

6.2.L Basic Objects

Basic objects are represented by a STRUCT in C. As shown below:

struct GenericObj
{

RECTL Boundary;
COLOR Color;
LONG MixMode;
LONG LineWidth;
LONG Pattern;
BOOL Displayed;
SHORT Layer;
SHORT ObjectType;
VOID *ObjDetail;
SHORT ActiveSlot;
struct GenericObj *Next;
struct GenericObj *NextActive;

68

struct GenericObj *Group;
struct OperationList *Op;

}；

Each basic object is represented by a fixed part and a variable part. The

fixed part consists of information such as color, width, pattern, display flag, and the

bounding rectangle. The variable part contains information that is specific to

different object classes, and is referenced by a pointer. For example, the variable

part of the class Text contains the followings:

struct TextObj
{

CHAR *Buf;
SHORT Typefaceld;
SHORT FontSizeld;
USHORT Style;
USHORT Height;
USHORT Width;

Objects are linked together into a list. The list may contains grouped

objects or objects of user-defined classes. They will be discussed in the next

section.

6.2.2, Group and User-Defined Objects

When several objects are grouped together, they will be treated as one

single object by the user. They will be moved and have color changed as a group.

But the system will perform these operations on the objects one by one. So these

objects are actually stored in the same format as before, except that they are

grouped into a sub-list. A new object, of the type Group, which is used internally by

the system, is inserted/An example of a Group object with three components is

shown in figure 19.

- ••'

69 .

Similar arrangement is made for user-defined objects, except that the node

inserted into the list is given the user-defined class name rather than the Group

type.

6.25. Set of Active Objects

The set of active objects are referenced by an array of pointers. The active

objects themselves remain in the main object list so that little special treatment is

needed to display them. After each refresh, the handles of the active objects are

drawn，one by one. The use of array to reference the active object set will limit the

total number of objects that can be active at a time. The current limitation is two

hundred. Although seldom will the user selects more than this number, the active

object set should be represented by a link list of pointers.

…——> Line > Group > Circle > Text > …

V

Line

Rect。

y

Rect.

Figure 19. Internal representation of a Group object.

70

6.3. Object-Oriented Graphics Management Subsystem

Object-oriented graphics are employed in our system. Objects can be

overlapped, resized and moved. When an object is moved or resized, some objects

that are originally obscured will become visible, and some others that are

originally visible may be obscured. An object-oriented graphics management

subsystem is developed to handle the display and refresh of objects.

When an object is created, deleted, moved, resized, brought to front, or

sent to back, the areas affected include the part which the object originally

occupied and the part which the object currently occupying. The subsystem find

out the union of these areas and inform the windowing system through a

WinlnvalidateRect API call. The windowing system will then call back the

appropriate procedure, which is also a part of the graphics management

subsystem, at the time when it is possible for refreshing.

At the time of refresh, the subsystem, which have access to all the physical

attributes of all objects, will find out all the objects that have their bounding

rectangles intersecting with the invalidated areas. And then these objects will be

redrawn according to the stacking order. Those at the bottom will be drawn first.

The subsystem is powerful in managing and displaying the objects correctly.

But sometimes extra redraw is performed. The subsystem compares the bounding

rectangle of an object with the invalidated areas to check any intersections. Figure

20 shows several examples of，false，intersections. This inefficiency might be solved

by comparing not the bounding rectangles, but the drawing primitives with the

invalidated areas.

71

The subsystem is relatively slow when used in animation, in which objects

will be moved rapidly. A lot of invalidation, intersection checking and redrawing

are needed. So another alternative should be used when animation is required at

mn-time. The object to be moved should be moved by，BitBlt，2 operation and

mixed with the destination with XOR mode. Although the object being moved

must be rectangular in shape, it will greatly improve the animation effect.

The two invalidated areas that are to be redrawn
after the circle is moved from right to left.

7 — — ；

, ！ ^^ ,1 1| • • - — ^^^^

n t > - - - - 1
_ ：…一 Ki 11 11 \

\ All objects are to be
^ redrawn although

only the circle is needed
to be redrawn.

Figure 20. Talse，intersections that lead to unnecessary redraw.

2 BitBlt refers to bit block movement. A bitmap is copied from a source area
to a destination area [15].

； - 5 “

6.4. Multiple Editing Window

In the current implementation, the user can open several overlapping

editing windows simultaneously. This is achieved by maintaining a separate object

list for each editing window.

6.5. Clipboard

Clipboard is a temporary area for the storage of objects that are to be

transferred to and from other parts of the same application or even across

applications. The clipboard is able to hold one object at a time. The object can be

basic, grouped or user-defined objects. In the current implementation, only

internal transfer of objects is possible through the clipboard. Nevertheless, it is

very useful in transferring objects from one editing window to another.

6.6. Graphical Menu

Items in menu bars are usually textual. This is alright for operations such as

loading or saving files. But for the selection of color, font, line width, pattern, etc.,

which can (and should) be visualized, graphical menus should be used. Our system

uses actual colors, line width and pattern in the menus. Users are not required to

translate the textual descriptions into their two dimensional equivalent. The

selection of font and its size can also be implemented similarly. Figure 21 shows

the line and pattern menu used in the system.

73

Line I | Pattern —
I I V ”： , 1

• M H m H

Figure 21. Graphical menu used in the system.

6.7. Font Management

In OS/2 Presentation Manager, fonts displayed on the screen are

installable, that is, new fonts with different styles and supplied by various

companies can be added at any time. Vector fonts are scalable. So virtually fonts

of any sizes can be displayed. Ideally, our system should scan all the available fonts

at run-time and let the user to use them all. Actual experiences found that the

loading of a font and retrieving of the size information take a very long time.

Scaling of font is also time-consuming, and the resulting visual effect is not good.

Because of the above reasons, we use only five fonts which are shipped with OS/2:

System Proportional, Helvetica, Times Roman，Courier and System Monospaced.

And only limited sizes are allowed, while most of them are bit-by-bit mapping

from memory to the screen, making no scaling required. The size of the available

fonts are also saved to files. Each time when our system is started, the font

information is read from the data files into the memory. This greatly enhances the

execution speed. Lots of API function calls, which are the main reasons of slow

execution, are avoided.

74

6.8. Mapping of the Active-Object-Set Model to the Implementation

The introduction of the Active-Object-Set Model not only helps non-

programmers to have the idea of event processing, but also helps programmers to

develop window-based event-driven programs.

The global views of the users and the programmers are basically the same.

Both of them see a pool of objects, in which some of them are active. Operations

are available to act on the objects and the identity of activeness can be transferred.

The most important differences are that the operations available to the users and

programmers are different, and different languages are used for the specification

of these operations.

Operations available to the users are high-level ones, such as move, resize

and change color. Other than these operations, the programmers face some low-

level ones, such as draw the primitives, manipulate the object lists and active

objects array, show and hide the mouse pointer, etc.

The implementation details of each type of basic objects are hidden from

one another. They have standard interfaces to communicate with the graphics

subsystem and input devices like the mouse and the keyboard. Adding a new

object type is relatively easy. Only the drawing method and the event-handling

routines are needed to be rewritten. The underlying framework has already taken

control over the event redirection, message passing, notification of refresh, etc.

Adding a new basic object is conceptually as easy as defining a new class from the

user's point of view.

75

Adding a new operation is rather easy. No class specific object detail is

needed if the operation is written for all kind of objects because the structure of

the objects' common part is well defined. Common operations like move, reverse

color, etc. can be written for existing classes and for those that might be added in

the future.

The second major difference is the language of specifications. Users of the

system specify objects and operations visually, while programmers specify them

textually. The specifications from the user are interpreted each time, while the

code written by the programmers are compiled. The job programmers do is

tedious. In fact, if low-level operations can be available from the visual interface,

what the programmers want to write might be specified visually, just like what the

users do.

6.9. Representation of Operations

Basic operations are hard coded into the system. User-defined operations

will be stored in memory and saved into data files when exit. When a new

operation is defined, it will be represented by a list of sub-operations, as shown in

figure 22. The type of objects that can be the parameter of the new operation will

be stored in another list. Recall that the valid parameter types are selected in the

dialogue box in figure 13. Assume the object that the new operation will act on is

A. Accompanied with each sub-operation will be the object which the sub-

operation will act on. This object can be the object 力 itself, or any sub-component

ofA HA is a user-defined object.

76

'ButtonPress' J ' S q u a r e 'Shadowed _ _ J 'Circlular l _ J j
— / Button' Button' Button’
Param. Type X —

Op. List \ ’Move, 1 'Move'
^ Sub- _ _ J |

Component Component
No. 1 No. 2

Figure 22. Representation of a user-defined operation.

Object List

Class Name

Attributes:
e.g. color,

position,
line width, ^ ‘. • . .

Operation List
6iC.

Event jEventl
Handling Event 2 • ! Default
丁 able Event 3 ̂

Next Object ^ser Defined
Operations

L > •! 0 p 1 I • Op2 — • Op3

^ ——•...

Figure 23. Operations that bound to an object.

77

When the operations are bound to the objects, each object in the object list

will have pointers referencing the operations they should carry out when certain

events occur. This is shown in figure 23.

The user may not bind any operation to an event happening on an object. If

so, a default operation will be carried out when the event occurs. Default

operations are associated with the classes, not an instance of a class. For each class

of objects, and for each type of events that can happen on that class, there will be a

default operation. Figure 24 shows the default operation table for different classes

of objects.

Default
Operations

Event 1

Class 1 Event 2 - ~ ~ • Op 1 Op2 - > Op 3

Event 3

Class 2 “

Figure 24. Default operations table.

78

Chapter 7
Future Work and Conclusions

This chapter will discuss the limitations of the current design, how the

system can be improved, and the areas that our design can be extended to. And

then a conclusion of the project will be given.

7.1. Limitations

7,LL Direct Manipulations

Our system employs direct manipulations in most situations. From creation

and modification of objects to definition of new operations. But certainly there are

still situations that the interactions can be changed into direct manipulations. For

example, the cut-and-paste operation using the clipboard can be done more

naturally by allowing the user to drag object from and to the clipboard. The

clipboard can be visualized as a window. Dragging objects from current editing

window means cutting objects to the clipboard. Dragging objects from clipboard

means pasting objects from it. Another example is the Clear operation which

delete objects from the current editing window. A more natural approach,

employed by the Macintosh interface, is to provide a Trash icon which allows users

to dump useless objects into it.

7.L2. Multiple Presentation Windows

The current system provides multiple editing windows to let the user

transfer material from one document to the others. But during the presentation,

only one presentation window is provided. Multiple and properly overlapping

79

presentation windows are desired so that more information can be conveyed at the

same time, and important materials can be retained in one window while other

materials can be continued in another window.

The number of presentation windows provided should not be limited,

although seldom will a presentation need more than a dozen. The number of

presentation windows needed depends mainly on the nature of the presentation,

and is usually limited by the size of the screen.

7.13, Editing of User-Defined Operations

In the current design, the user demonstrates the new operation while the

system records the sequence. The user has no means to get a list of operations

recorded, nor can he/she further edit the sequence of operations. The only way to

modify a user-defined operation is to re-record them.

If the user-defined operation is very complex, or is recorded by another

user, then it may be impossible to re-demonstrate the sequence. The system

should provide a tool for the visualization of operation sequences. This tool can be

used to monitor the execution of a user-defined operation also. The function of

this tool will be similar to a debugger which is used in traditional programming.

7.2. Future Work

7.2丄 Maintaining Relationship Through Constraint Satisfaction

A constraint specifies a relation that must be satisfied at all times between

two objects. In a graphical application, an object not only can affect/be affected by

the others, its behaviour may be restricted by the others. The relationships to be

80

maintained include object layout, dynamic feedback, etc., which involve the static

and dynamic attributes of the objects. For example, a user-defined object class,

Button, may involve two components, the button text and the box containing the

text object. It is desired that the text box should always be larger than the text

object for a fixed offset, and the text object should be always located at the center

of the box. This is an example of constraints that concerns with the static attributes

of objects. Another example concerning the dynamic attribute of objects is the

definition of the ReverseColor operation. This operation can be defined as putting

a black rectangle on top of the object to be reversed, with XOR mode. The

constraint involved is that the black rectangle put on top must be as large as the

object to be reversed.

Users should be able to specify the constraints visually. Again, all we

concern about are visible objects which have position, dimensions, etc. as

attributes. Normally, these attributes are quantities that are measurable (e.g.

height and width), or enumerable (e.g. color), enabling the constraints to be

represented by mathematical equations [5]. Current drawing programs allow users

to specify the alignment constraints, such as, centering of a group of objects along

a certain place marker; restricting a line to be horizontal, vertical or inclined at an

angle of 45 degrees. These constraint information is not saved. They are only used

during the construction of objects. Moreover, many other useful constraints such

as parallel lines, equal length, same color, object containment, etc. have no well

developed visual interaction techniques to specify.

Another issue is to satisfy the constraints at mn-time. An incremental

constraint-solving algorithm would be required to identify which constraints must

81

be reevaluated and limit its solutions to meet with these constraints [29]. When a

certain event that modifies the active object occurs, the active object will first find

out the desired new value for each attribute, then a verification process done by

related objects will be invoked. If the verification failed, that is, a constraint is

violated, a suggestion from the verification routine should be submitted.

7.22. Functions for System Status/Values Query

A group of functions should be provided to help the user to refer to objects

such as the active set, the next selected object!，the clipboard object, the mouse

pointer location, etc. Similarly, functions like those returning the attributes of the

active set are necessary, so that an operation can depend on the attributes of other

objects.

7.2.5. Private Status Flag，Pre-Conditions and Conditional Execution

A complete interaction sequence may involve more than one event, in a

predefined order. Because the binding of operations and events does not involve

the ordering information, some status flags must be set to remember the state of

the interaction sequence.

In our design, an event sent to an object would invoke a sequence of

operations. This would limit the event handling capabilities of an object. The

following example cannot be done using the current design: Suppose we want to

create an icon that, on the first click, it will activate a pop-up box containing some

1. The next selected object is defined to be the object currently pointed to by
the cursor. This object may not necessarily be a member of the active set.

82

information. On the second click, it will dismiss the pop-up box. If another click is

generated again, the sequence repeats. This kind of interactions cannot be done by

our design because the mouse click event is allowed to be bound to the same

sequence of operations only. What the user can do in the current design is to

activate the pop-up box when the icon is being pressed, and dismissed the pop-up

when the mouse button is released. The pop-up activation and dismissal are

associated with two events, MousePress and MouseRelease，respectively.

The use of private status flag can solve this problem. A flag can be created

for remembering the status of the pop-up box, whether it is currently visible or not.

And different operations can be carried out depending on the value of the status.

Private status flags are useful in controlling the interaction sequence also.

Many interaction paradigms consist of several interaction events, which must be

occurred in sequence. One example is the dragging of an object. This interaction

consists of the following sequence of events: MousePress, MouseMove and

MouseRelease, Although MousePress must be occurred sooner th3,n MouseRelease,

and no explicit checking is needed, MouseMove must be guaranteed to be occurred

after the MousePress and before the MouseRelease. The introduction of private

status flag should be able to solve this problem.

It is possible to restrict the operation, in response to the occurrence of an

event, to be carried out only if certain pre-conditions are satisfied. Pre-conditions

are used to ensure the correct interaction sequence. Moreover, it can enable the

conditional execution of different actions. Event may be associated with not only a

single operation, but with several pre-conditions/operations pairs. When an event

83

occurs, each pair of preconditions/operations are checked, the associated

operation of the first pre-condition satisfied would be carried out.

Figure 25 shows the relations between objects, events and operations.

Figure 26 gives a sample sequence of the activation of an operation.

Events <

sen t to
y

U s e r - C r e a t e d User-Def ined
Objects Operations

. , , J 4 Pre—Conditions
c ^ s i s t s ^ _ _ _ based
of d e t e r m - on ^y

，r ined by ^

Pr imit ive Primitive
Objects Operations

a f fec ted by

Figure 25. Relations between object, event and operations.

84

^ t i v e S ^ (Vlouse P r e s s e d)

Active Set & E v e ^ ^ t ^ ^ Z
Determined

the Operat ion

Event-Handl ing
for

Mouse Pressed

P re -Cond i t ion 1 Pre-Condi t ion 2 P re -Cond i t i on 3

Satisf ied &
/ Not Satisf ied < Not Satisfied Carry Out
, Operat ion

1 i i —
Sequence of Sequence of Sequence of

Primit ive Primitive Pr imit ive
Operat ions O p e r a t i o n s ^ Operat ions

— ^ ？

User-Def ined Operations ..
Binded to the Mouse Pressed Event

Figure 26. Execution sequence for an event.

7.2.4. Object Oriented Programming

Although the current design is based on graphics objects, the

implementation itself does not employ any object oriented programming

techniques. No class inheritance is concerned. Future enhancement of the system

should be migrated to an object oriented language such as C+ + and Smalltalk.

85

7.3. Other Related Application Areas

73.1. Visual-Object Oriented Systems

The Active-Object-Set Model and the interaction techniques introduced in

this thesis are not only applicable to the area of courseware production and

presentation, but also to other Visual-Object Oriented Systems.

Visual-Object Oriented Systems refer to those systems that the main

purposes are to create, display, modify and manipulate visible objects. Visible

objects refer to anything displayable on the screen, including text, geometric line

and curve, pattern, bitmap, diagram, and even free-hand drawing. Examples of

Visual-Object Oriented Systems are word-processor, drawing program, CAD

program, and User Interface Management System, which will be elaborated in the

next section.

The Active-Object-Set model can be applied to Visual-Object Oriented

Systems in general But the basic objects, basic operations and events concerned

differ from one system to another. For example, the object classes that a word-

processor is concerned may include Letter，Word，Paragraph and Document, while

each is a sub-class of the following one. Other object classes include Cursor，

MarginLine, Header， Footer， etc. The operations include Scroll，

ChangeLineSpacing, Justification，etc. Clearly, not all operations can be defined

visually in an easy way. And the basic operations provided may be at a lower level

than what are provided in the Courseware Production and Presentation System.

86

1 •

ft

One should not expect a complete visual-object oriented application to be

defined completely using visual interaction techniques^, but at least many visual

object manipulation routines, which are quite troublesome for the developers,

should be able to define without textual specification.

In the field of visual programming, a three-dimensional framework is

proposed to access visual programming languages in a qualitative way [35]. The

language level, the scope of applicaMity and the visual extent are used to measure

a visual programming system. For example, Xerox's Star system [13], the classical

iconic system, has a very high visual extent, but low in both language level and

scope of applicability (figure 27). Our system will have a similar profile for which

all the definitions of objects and operations can be performed visually, but the

scope of applicability is small. The language level supported is even lower because

we do not support explicitly any programming constructs.

2 The spell check utility found in most word-processor is difficult to define
visually, although this part of the application cannot be viewed as a visual-
object oriented component.

87

小Visual extent

/ s c o p e

Language level

Figure 27. The profile of Xerox Star.

If similar approach is used in the development of visual-object oriented

applications, a similar profile would be obtained. Certainly, a complete application

must be developed with a tool that is of high language level. Only some of the

aspects like visual interactions and visual objects manipulations can be

programmed by visual means. Other parts, such as file management and spell

check would properly be developed using traditional programming languages.

There must be ways to integrate the results of the two parts. A viable approach is

to generate source code files for those program components that are defined

visually.

A more mature application that current researches are trying to apply

visual interactions on it is the User Interface Management System, which is

discussed below.

88

7.5.2. User Interface Management Systems

User Interface Management System (UIMS) is, in fact, a kind of visual-

object oriented system. It manages both the static (appearance of menu, button,

dialogue box, etc) and dynamic (interaction sequence, dynamic feedback)

attributes and behaviours of the user interface. A current research [29] suggests

that the user interface component can be defined visually.

If our design can be applied to the area of UIMS, user interface designer,

which properly are non-programmers, can put all their effort in the design work.

Rapid prototyping can be achieved.

7.4. Conclusions

In this thesis, the design and implementation of the Courseware Production

and Presentation System are discussed. Several research areas are of interests,

namely, Authoring System, Visual Programming and User Interface Management

System.

The authoring system, together with a few commercially available

presentation softwares are useful in providing hints for what kind of presentation

features should be included in our system. The graphical interfaces commonly

used by these system prompt a clear environment for the final product to be

executed in. And OS/2, with the Presentation Manager graphical user interface, is

selected to be the environment after careful comparisons with other systems like

Microsoft Windows and X Window on Unix.

89

I •

The Peridot system [28] and the Programming by Rehearsal system [16] are

the main stimulations to the development of the Active-Object-Set model. Every

object in the system, which composes of graphics primitives, will response to

external events and carry out certain operations, acting on itself or on others. And

the static and dynamic attributes and behaviours can be defined through visual

interaction techniques. This can be viewed as a simple visual programming system,

which has limited scope, but a great visual extent.

The concept of defining object properties visually can be extended to other

visual-object oriented applications, including the field of User Interface

Management Systems.

The system implemented is only a coarse prototype of the final one. It just

demonstrates the possibility of the suggested approach. There is still a long way

from a complete, robust commercial product. And there would be more problems

encountered (e.g. the execution speed) as the project continues.

90

References

1. Apple Computer Inc. HyperCard User Guide,

2. Bach, M. l.The Design of UNIX Operating System.?renticQ Hall, New Jersey,
1986.

3. Balagopalan, Santosh and MacKnight, Carol B. Authoring Systems: Some
Instructional Implications. J. Educational Technology Systems. 17, 2，1988-89,
p123-134.

4. Berry, R. E. Common User Access - A Consistent and Usable Human-
Computer Interface for the SAA Environments. IBM Systems Journal 27，3，

1988，p281-300.

5. Borning, A. The Programming Languages Aspects of ThingLab, a Constraint-
Oriented Simulation Laboratory. ACM Transactions on Programming
Language and Systems. 3，4’ Oct. 1981, p353-387.

6. Brad, J. C. Object-Oriented Programming, An Evolutionary Approach. Addison-
Wesley, 1986.

7. Brown, G. P., Carling, R. T.，Herot, C. F.，Kramlich, D. A., and Souza, P.
Program Visualization: Graphical Support for Software Development. IEEE
Computer, Aug. 1985, p27-35.

8. Calder, P. R , Linton, M. A” and Vlissides, J. M. Composing User Interfaces
with Interviews. IEEE Computer. Feb. 1989，p8-22.

9. CardeUi, L.，and Pike, R. Squeak: A Language for Communicating with Mice.
Proceedings of ACM SIGGRAPH，85. Jul. 1985, pl99-204.

10. Chang, S. K , and Kunii, T. L. Pictorial Database Systems. IEEE Computer.
Nov. 1981, p 13-21.

11. Chang, S. K. Visual Language: A Tutorial and Survey. IEEE Software. Jan.
1987，p29-39.

91

12. Duncan R. OS/2 Version 2.0: Exploiting the 32-bit Architecture of 80386- and
80486-based Systems. Microsoft Systems Journal May 1990，pl-14.

13 Parrel, J., Klose, P., and Purvy, R. The Design of Star's Records Processing:
Data Processing for the Non-computer Professional. ACM Transactions on
Office Information Systems, Jan. 1983. p3-24.

14. Feiner, Steven. An Experimental System for Creating and Presenting
Interactive Graphical Documents. ACM Transactions on Graphics. 1，1，Jan.
1982, p59-77.

15. Feiner, S. K” Foley, J. D.，Hughes, J. R, and van Dam, A. Computer Graphics:
Principles and Practice (2nd ed.). Addison-Wesley, 1990.

16. Finzer, W. and Gould, L. Programming by Rehearsal. BYTE. Jun. 1984, pl87-
210.

17. Glinet, E. P., and Tanimoto S. L. Pict: An Interactive Graphical Programming
Environment. IEEE Computer. Nov. 1984, p7-25.

18. Hall, W. S. Adapting Extended Processes to the Cooperative Multitasking of
Microsoft Windows. Microsoft Systems Journal J an. 1991，p21-34.

19. Hirakawa, M., Monden, N., Yoshimoto, L, Tanaka, M., and Ichikawa, T. HI-
VISUAL: A Language Supporting Visual Interaction in Programming. Visual
Languages，ed. by S. K. Chang et. al. Plenum Press, 1986，p233-259.

20. Huang, K. T. Visual Interface Design Systems. Principles of Visual
Programming Systems. Prentice Hall. 1990.

21. Jonassen, David H. Hypertext/Hypermedia, Educational Technology
Publications, Inc., New Jersey, 1989.

22. Kearsley, Greg. Authoring Systems in Computer Based Education.
Communications of the ACM. Jul. 1982，p429-437.

23. Kogan, M. S.，and Rawson, F. L. The Design of Operating System/2. IBM
Systems Journal 27，2，1988，p90-104.

92

24. Kuo, I., and Wong, H. K. T. GUIDE: A Graphical User Interface for
Database Exploration. Proceedings of the Conference on Very Large Databases.
1982，p22-32.

25. Letwin, G. Inside OS/2Microsoft Press, Washington, 1988.

26. Meskil, Carla. Interactivity in CALL Courseware Design. CALICO Journal
Sep. 1987，p9-14.

27. Myers, B. A. INCENSE: A System for Displaying Data Structures. ACM
Computer Graphics. Jul. 83，pll5-125.

28. Myers, B. A” Creating User Interfaces by Demonstration, Technical Report
CSRI-196, University of Toronto, May 1987.

29. Myers, B. A., Giuse, D. A., Daimenberg, R. B.，Zanden B. V.，Kosbie D. S.，

Pervin, E., Mickish, A” and Marchal P. Garnet: Comprehensive Support for
Graphical, Highly Interactive User Interfaces. IEEE Computer. Nov. 1990.
p71-85.

30. Olsen, D. R. Larger Issues in User Interface Management. ACM Computer
Graphics. Apr. 1987，p134-137.

31. Petzold, C. Programming the OS/2 Presentation Manager. Microsoft Press,
Washington, 1989.

32. Pfaff, Gunther R., ed. User Interface Management Systems. Springer-Verlag,
1985.

33. Raeder, G. A. A Survey of Current Graphical Programming Techniques.
IEEE Computer, Aug. 1985，pll-25.

34. Schmucker, K. J. MACAPP: An Application Framework. BYTE, Aug. 1986，

p72-75.

35. Shu, Nan C. Visual Programming Languages, A Perspective and a
Dimensional Analysis. Visual Languages, ed. by S. K. Chang et. al. Plenum
Press, 1986，pll-34.

36. Shu, Nan C. Visual Programming, Van Nostrand Reinhold, New York, 1988.

93

1 •

37. Young, D. A. X Window Systems: Programming and Applications with Xt.
Prentice Hall, New Jersey, 1989.

94

*

「
：
：
：
.
。
：
.
：
V
 /

 、
-
.
^
i
f
l

:
“
v
 _

 :
v

飞
.
.
.
.
.
：
〈

覆
•
 」
.
.
.
.
：
V

 ：、

滅

警
f

：

 .

 .
V
.

 ,

 -

 •

 .

 v
、
l

靨

资

-
 r

：

變
文
；
‘
，

•

\

、

.

.

.

 .
、
.

.

4

？
l
f
^
 s
r

二

— ，
 .„

.

-

,

‘

眷

钱

、

,

.

•

.

\

「

•

：

 —

 ..

 (

t
 >

~

-

 一.

、

-

-

 ..

>

^

？
；
详
r
v

 .

 ..：..

』

，

、

(

.

.

：

.

 :
k

^

 ̂

^
^

^

^

,

-

：

-

^

a

 ‘
 ？
：
/

 -
2

 .
.
权
.
，
J

 .K
.
.
-

」
.
r
y

 .

 “

 -.

 .

 I,、-.

！

 -
 .

巧
”

.

:

:

、

•

.

 ...

「

.

.

,

R
f
 r“

：

：

 .
.
.
.
.

 .：

-

.

：

：

~

\

 ̂
^

--

«

：

 .

 -

 -

 •

 4

i
，

，

 .

 •

.

.

.

.

.

 ‘

 J

^
 ̂
？
?

.

；

 •

 r

 i

v
，
p
.
 ,

*

^

.

 .，..

v
v
f
e
.
^
 ,

 f
 .

 ；
i
.

如

i

.

.

-

-

-

.

,

.
 ,

 -

 •

*

"

’ 个

饭

.

.

 -
5

？
T
.

「
-
i
.
/
v
r
:
.
.
:
.

、
”
-
-

 '
I

...

0
.
 ̂

 ;
^

 •

 .

•

..

 •

 .

 .

 --

,-.、

7
4
,
.
赞
-
.
V
F
/
r
i
r
-
 ,

 I
 .

 .

 -

 ̂

 ,

 .
.
.
.

‘
.
-

F
f

 ̂

 .V

 -

 “

 .

 .

一

：

,
 •

 '

 -.

 r

m
^
/
f
f
l

.

:

.

^

’

，

,

—

一
 J

？
r
v

、
翠
"
.
•
々
？
.
7
7
,
.
*

、
：

.

.
-

•

,

-

 •
:
.
.
:
.
、
.
.

"
J

 严
,

•

.

‘

.

^

…

^

.

.

.

.

 ..

M
 ,‘

 -

 .

 :

 .

 .

 y

c
)

 -

..

 ..

」

.

.
!

 •

 •

 •

 •

•̂
、〜4

^

.

.

“

•

•

%

-

 、：.

.

 ：
v
:

U

S

—

，

.

:
.
"
•
.
.
,
-
.
-
、
=
.
.
-
•

-

、

，
h

^
r
}
 /

f

 :..’

 .
/

 :

 .

 .

•

•

.

r
 /
t
j
-

 i
t

 -

 .

 .

 .
.
.

/

？.-Jt-办、「彻’：̂
.
 I
二
r
於
.
c

〜

.

.

I

.

 .

 •

<

^
^

.
r

 .

 “

 ,

 •
.
.
.
.

A
 \

 .

 •

 •

 -

 -

 .,

 •
•

 .

 .

•

」

i

 0
 ：
、
 -

 i
 •

 /

 •

 『.
"

.

.

.

T
?
/
 、
：

 /

 •

 -
 -
，

 -

 .

 •

 .

 ̂

「

‘

 .

 、
•

 I

I
崎

 I
T
、
〜
，
J
 •

.

.

)

，

.

：

.

:

•

、

•

I

r
»
I
！
I: ̂
i.

^ . .
r

•ThSEEDDO

_111_圓
saLJejqi-n >|HnD

1

； ‘

