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ABSTRACT 

Various methods are discussed for the generation of directional data on 

the circle" .sphere and higher dimensional sphere. The distribution for 

directional data may be Uniform or non-uniform. Along wi th the existing 

methods, efforts have been made to develop some competitive or more 

effective methods. Theoretical and empirical comparisons of the efficiencies 

of various generating methods are conducted. Advantages and disadvantages of 

these methods are then discussed. An envelope which is proved to 'be more 

efficient and compact than other competing envelopes is proposed for the 

Dimroth-Watson distribution on the sphere and its usefulness ·.in the 

generation of variates from other distributions like Bingham and 

Bingham-Mardia distributions are also explored. 

Keywords: Directional data, n-dimensional spherical distributions, 

'envelope-rejection method, sampling efficiency, inversion method, 

composition method, marginal generat~on time. 
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CHAPTER ONE 

INTROPUCTION 

§1.1 Directional Data and Computer Simulation 
,'- · t,. 

Directional data arise in many areas of observation and scientific 

experimentation. Examples -include the homing preference of migrating birds, 

the ~optical orientation of ants, arrival directions of showers of cosmic 

rays and palaeomagnetic directions in rocks. Moreover, observations that are 

by no means having orientations in nature can sometimes be ,usefully 

expressed in the form of directions and analyzed as directional data. For 

example in ' social science, it has been the practice to analyze da ta on 
..:::. ~ 

occupational judgements by individuals as unit vectors. Extensive examples 

can be found in Batschelet (1981) and Fisher et al (1987). 

In principle, directions in the n-dimensional space can be represented 

by the vector T X = (X, ... , X ) , where 
1 , n 

and AT stands for the 
1=1 

transpose of matrix/vector A. The set of all possible X defines an 

n-dimensional unit hypersphere (n-sphere). A point X on the n-sphere can be 

uniquely represented by n - 1 angles S, S, ... , S and the following 
1 2 n-1 

polar transformation: 

X = sinS sinS ..... sinS sinS sinS 
1 1 2 n-3 n-2 n-1 

X = sinS sinS ..... sinS sinS cosS 
2 1 2 n-3 n-2 n-1 

X = sinS sinS ..... sinS cosS 
3 1 2 n-3 n-2 

x = sinS 'sinS cosS 
n-2 1 2 3 

X = sinS cosS 
n-1 1 2 

X = cosS 
n 1 ' 

1 



where e e [O,n], j = 1,2, ... , n-2; e e [O,2rc). 
J . n-l 

The probability density functions (p.d.f.s) or densities of directional 

data.models have their entire support on the surface of the n-sphere. Much 

work has been done in the estimation and hypothesis testing of parameters in 

n-dimensional spherical distributions; see e.g. Watson and Williams (1956), 

Mardia (1972, 1975) and Watson (1983). Investigation of power of certain 

statistics, robustness and distributional properties is often analytically 

impossible and simulation therefore becomes an important al terna ti ve when 

computer algori thms are available for generating random directions from 

these distributions. Some obvious applications of computer simulafion are 

briefly mentioned here: to examine the performance of new statistical 

procedures; to access . the small-sample properties of procedures based on 

asymptotic results; and to investigate the properties of standard procedures 

when the underlying assumptions are violated. These applications are as 

.relevant to directional statistics as to other areas of the subject. 

§1.2 Computer Simulation Techniques 

Computer simulation techniques useful for generating directional data 

are no different from the techniques for generating random variates from 

univariate distributions. The following techniques are oftenly employed in 

this paper. We briefly discuss them here. 

(1) Inversion method 

Denote the uniform distribution on an interval (a, b) by UCa, b). The 

inversion method is stated simply as: 

1. Generate U - U(O,l). 

2. Set X = inf{ x : F(x) ~ U }. 

The resulting variate X from step . 2 .has distribution function Cd.f.) F. In 
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our applications, F is strictly increasing, so the inverse function F-
1 

is 

well-defined and step 2 becomes X = F-1(U). This method is very efficient 

as long as F-1 is easily computable. 

(2) Envelope-rejection method 

Let f (x) be the p. d. f. of a random variable which is to be sampled. 

Represent f(x) as 

f(x) = Cg(x)~(x), C 2: 1, 

where g(x) is also a p. d. f. and 0 < ~(x) ~ 1. The envelope-rejection 

method can be summarized as follows: 

1. Generate V - V(O,l) and Y - g(y) independently. 

2. If U > ~(Y), then go to step 1; otherwise accept X = Y. 

...-"':-' , . 
- . 

The accepted variate X in step 2 has p. d. f. f (x). We call Cg(x) the 

envelope for f(x). The sampling efficiency which is in fact the probability 

that a Y in step 1 can be accepted in step 2 is defined as 

Pr(U ~ ~(Y)) = 1/C. 

, There are three prerequisites for the method to be useful. They are: Ca) it 

is easy to generate Y from g, (b) the sampling efficiency is not close to 

zero, and (c) it is easy to compute ~(x). The importance of (c) can be 

lessened if a good "squeezing function" (function that is close to and less 

than ~) is available. 

The same idea is applicable to the multivariate case. 

(3) Composition method 

In certain cases the p.d.f. of interest can be expressed as a 

probability mixture of other p.d.f.s. Let f(x) be the p.d.f. of interest. 

Suppose 

3 



00 

f (X) = L p f (x), 
J = 1 J J 

00 

where {f } are p.d.f.s and {p} are non-negative constants with I p = 1. 
J J J=1 J 

The first stage of the composition method consists of generating a discrete 

random variable Y with Pr(Y=j) = p .. Suppose Y take the particular value J. 
J .' 

Then the second stage consists of generating X from f
J

. The variate X so 

generated has p.d.f. f(x). 

§1.3 Implementation and Preliminaries 

In later chapters we will discuss various generating methods for random 

vectors from distributions on the n-sphere. Unless the generating methods 

are very .. simple and straightforward (e. g. by inversion method), we access 

the performance of each method by considering either its sampling efficiency 

(if envelope-rejection method is used) or its mean requirement of random 
I 

numbers used to generate one random vector, or both. The demand for random 

numbers is an important measure as their generation is usually more 

time-consumirig than the usual ari thmetic operations such as addi tions and 

multiplications. 

In addition to the theoretical considerations, empirical comparisons 

are necessary. One such comparison is to consider the marginal generation 

time which is the average CPU time to generate one random vector. The 

marginal generation time should not include any computer processing time for 

the set-up calculations for constants required before the first vector can 

be generated as these constants are unaltered once they are computed. In 

some applications, these constants need to be re-set (re-calculated) and the 

mean generation time for each vector is therefore longer. Throughout this 

paper, we will mainly consider marginal generation time unless otherwise 

4 



stated. 

All algorithms are programmed as Fortran subroutines and ~xecuted on 

the IBM4381 computer of the Chinese University of Hong Kong for comparisons. 

Random numbers are obtained by RN UN (subroutine) or RNUNF (function) from 

the IMSL St.at/Library (1987). Both are based on a generator of the 

mult1plicative congruential type. RNUN is used in chapter two only and the 

function version. RNUNF is used throughout the remaining chapters. The 

Fortran codings of selected algorithms are listed in Appendix 1. 

5 



CHAPTER Two 

GENERATING RANDOM POINTS ON THE N-SPHERE 

§2.1 Methods 
:' .. ..... 

Random points on the n-sphere means points which are independently and 

unifor~ly distributed on , 'the n-sphere. They correspond to equally likely 

directions. 

The g~neration of random points on the n-sphere is important in the 

simulation of n-dimensional spherical processes on computer (details will be 

given in Chapter 5). Applications of spherical processes have been 

considered by Muller (1956) and Motoo (1959). Stephens (1964), Watson and 

William~ ' (1956) considered the statistical problems associated with random 

points on 3-sphere. 

The methods for l generating random points on the n-sphere may depend on 

the dimension n. Clearly with n = 2, the random point, X = (cosS, sinS) 

, where El is uniform ' on (O,21l). For n = 3, X = (sinScos~, sinSsin~, cosS) 

where 4> is uniform on (O,21l) and cosEl is uniform on (-1, 1), with 

sinS = (1 - cos2S) 1/2 can be used. In principle, this polar method can be 

extended to higher dimensional cases but it has not been used because far 

more efficient methods are available. 

One approach to generate random points on the n-sphere is to use 

envelope-rejection method. The idea is to simulate a point uniformly 

distributed in the n-dimensional hypercube' {(X, ... X ): -1~ X ~1 for all i} 
1 n i . 

and accept the direction of (X , ... , X ) 
1 n 

if (X , ... , X ) 
1 n 

falls inside the 

n-sphere. The main drawback of this method is that it becomes extremely 

inefficient when n is large. Therefore we shift our focus to some direct 

methods. 

6 



Muller (1959) suggested the use of standard normal variates normalized 

by the root sum of squares as the Cartesian coordinates of a random point on 

the unit hypersphere. Suppose z , ... ,Z are independent standard normal 
1 n 

variates, the vector determined by 

i = 1,2, ... , n (2.1) 

will be distributed uniformly on t~e n-sphere. The advantages of (2.1) are 

its 'simplicity, applicability virtually to all dimensions, and the 

availability of efficient normal generator. 

One efficient normal generator is by Box and Muller (1958): given two 

independent U , U - U(O,l), a pair of independent standard normal variates 
1 2 

can be obtained via 

{

X = (-2lnU ) 1/2cos2n:U 
1 1 2 

X = (-2lnU ) 1/2sin2n:U 
2 1 , 2 

and -21nU is distributed as X2
. Based on (2.1) and Box~Muller's method for 

1 2 

' normal random variables, Sibuya (1962) took a step further by considering 

the generation of an ordered sample of variates from U(O, 1) Tather than 

directly generating the standard normal variates. Suppose n = 2m. Let U 
(1) 

be the ith smallest uniform random ~umber in a sample of size m - 1. Thus 

o == U ~ U ~ .... ~ U ~ U == 1. 
(0) (1) (m-l) (m) 

Set 

y = U - U 
1 (1) (1-1)' 

i=1,2, ... , m 

and let R, ... , R be another stream of '- U (0,1) variates. The vector 
. 1 m 

x = (X , ... ,X ) with 
12m -

= ,;-y cos2n:R , 
1 1 

i = 1, 2, ... , m 
(2.2) 

= ,;-y sin2n:R , 
1 1 

i = 1, 2, ... , m 
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,- has uniform distribution on the n-sphere. 

It is noted that the joint distribution of m - 1 ordered U(O,l) is 

equivalent to that of the m sub-intervals by random parti tioning the uni t 

interval, i. e. the joint p. d. f. of U , ... , U is equivalent to the 
(1) (m-l) 

J·oint p.d.f . . of Y , ... , Y . Since 
. -.. 1 m-l 

m m 

T /( LT), ..... ) T /( LT) 
1 1 , m i 

1=1 1=1 

are -random partitions of a unit interval, where T 's 
1 

(2.3) 

2 
are independent X and 

2 

that(v-r- cos2nR , v-r- sin2nR) are 
1 i i i 

independent standard normal 

variates, (2.2) is actually standard normal variates normalized by ' root sum 

of squares, a variation of Muller's method. 

When n = 2m+1, we take the first 2m+1 components X , ... ,X '. from a 
1 2m+-:l: 

random point (X , ... ,X ) generated by the preceding procedure and then 
1 2m+2 

normalize. In another method for odd dimensions, Sibuya (1962) transformed a 

* * random point (X, ... X ) on the 2m-sphere into a point (X, ... X ) on the 
1 2m 1 2m+l 

(2m+1)-sphere with 

• X = 
1 

SX , i = 1, 2, ... , 2m 
1 

• X = 2m+l 
±(1_S2 )1/2,-

where 52 is a Beta(m,1/2) random variate and ±'s are independent random 

signs. 

The speed of Sibuya's method depends on how fast the sequence of 

ordered uniforms is produced. One way to enhance the speed is to use an 

efficient sorting algori thm to sort an existing sequence of uniforms into 

order. Another way to obtain an ordered sequence of uniforms is to make use 

of (2~ 3). It is known as the exponential-spacings method. Gerontidis and 

Smith (1982) compared other methods also. 

From a different viewpoint, Tashiro (1976) used a more direct method to 
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- generate random points on the n-sphere. Like Sibuya's method, his algorithm 

also depends on whether n is even or odd. When n is even, it is the same as 

Sibuya's method but with the ordered uniforms generated by sequential 

method. Tashiro made the analysis simpler, even in odd dimensions. 

Let y -~ _ ... ,y be the Cartesian coordinates of a random point in the 
1 n 

n-sphere. We shall denote by X's 
1 

and R's 
1 

independent 

random numbers. Tashiro's algorithm is as follows: 

When -n = 2m: 

1. Set y= 1, Y = o. Define recursively 
m 0 

y = Y X1/ 1 

1 1+1 1 ' 
i = 1, 2, ... , m-l 

2. Evaluate 

Y2i-1 
= vy-y cos21IR , 

1 1-1 . 1 
i = 1, 2, ... , m 

Y21 = vy-y sin21IR 
1 1-1 1 ' 

i = 1, 2, ... , m 

When n = 2m+l : 

1. Set Z = 1. Define recursively 
m+1 

Z = 2 
X2/(21-1) 

1 1+1 1 ' 
i = 1, 2, ... , m 

2. Evaluate 

Y1 
= ±VZ 

1 
, 

Y21 
= V z Z cos21IR , 

1+1 1 1 
i = 1,2, ... , m 

Y21 + 1 
= vZ 2 sin21IR , 

1+1 1 1 
i = 1, 2, ... , m 

where ±'s are random signs. 

uniform 

(2.4) 

(2.5) 

Apart from the general methods which are applicable to all dimensions, 

some tailor-made algorithms have been designed for the 3-dimensional case. 

For example, Cook (1957) devised a method based on elegant theory and 

,avoided the use of square root. However his method is too slow to be useful. 

Making use of the following two facts: 
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(1) If (Z Z Z) is uniform on the 3-sphere, each Z is uniform on (-1,1) . 
l' 2' 3 1 

and given Z the pair (Z , Z) is uniformly distributed on the circle wi th 
312 

radius (1 - Z2)1/2; 
3 

(2) If (V ,V) is a random point inside the unit circle, then S = V
2 

+ V
2 

1 2 1 2 

is distributed as U(O,l) and is independent of 

Marsaglia (1972) proposed .a faster method. His algorithm is 

1. Generate U, U · independent U(O ~ l). 
1 2 

2. If S = U2 
+ U2 > 1, go to step 1; otherwise form 

1 2 

(2U 1 1-S , 2U 1 l-S , 1-2S) 
1 2 

(2.6) 

as a random point on the 3-dimensional sphere. 

- . 

Marsaglia (1972) also suggested a similar method for the 4-dimensional 

case. If U , U are independent U(-l,l) such that S = U
2 

+ U
2 < 1 and U , 

1 2 1 1 2 3 
) 

U are independent U(-l,l) such that S = U2 
+ U

2 < 1 then the point 
4 2 3 4 ' 

(U , U , U 1(1-S )/S , U 1(1-5 )/5 ) 
123 124 1 2 

(2.7) 

is uniform on the 4-sphere. 

§2.2 Comparison of Methods 

In previous section, we have discussed various methods in simulating 

random points on the surface of an n-dimensional unit sphere._ Now we compare 

the performance of these methods. To be specific, the following algorithms 

are compared (Refer to Appendix 1 for the Fortran codings of each 

algori thm): 

1. Algorithm RPNl - Muller's (1959) method on the n-sphere (see (2.1)). 

A normal generator RNNOF from the IMSL library is used for the 

10 



generation of variates from the standard normal distribution N (0,1). The 

routine, based on Kinderman and Ramage (1916), has been tested to be very 

efficient among other commonly used generators. 

2. Algorithm RPN2 - Sibuya's (1962) method on the n-sphere. 

Random' -numbers are generated first and then sorted in ascending order 

by an IMSL routine called SVRGN. This sorting routine uses a combination of 

quicksort and shellsort described by Singleton (1969) and is proved to be 

very-efficient. 

For odd dimensions, say 2m+l, the algori thm extracts the first 2m+l 
, , 

components of (X , ... ,X ) and then normalize by their root ' sum of 
1 2m+2 

squares. (The other method for odd dimensions suggested by Sibuya is not 

recommended because ~he generation of the square root of the Beta(m, 1/2) 

variates requires rejection method whose rejection rate is qui te high in 

high dimensions (see Sibuya (1962)), and hence is not efficient.) 

3. Algorithm RPN3 - A modification of Sibuya's method. 

It is basically the same as RPN2 except that ordered uniforms are 

generated by exponential-spacings method. 

4. Algorithm RPN4 -Tashiro's (1916) method on the n-sphere (see (2.4) and 

(2.5)). ' 

s. Algorithm RP3 - Marsaglia's (1972) method on the 3-sphere (see (2.6)). 

6. Algorithm RP4 - Marsaglia's (1972) method on the 4-sphere (see (2.7)). 

To compare the performance we mean to compare the marginal generation 

time to generate one random point on the n-sphere. The marginal generation 

time for each algorithm is obtained by simulating a sample of 1000 random 

points. A number of dimensions have been selected for comparison. The result 

is listed in table 2.1. 

11 



." 
Table 2.1 Marginal generation time (ms) for a random point 
on the n-sphere. 

n 

Algorithm 3 4 8 10 21 100 

RPNl .23 .27 .55 .70 1.41 6.73 

RPN2 .25 .24 .45 .48 1.04 4.31 
;"- .. ... 

RPN3 .22 .21 .40 .49 1.09 4.63 

RPN4 .17 .20 .42 .52 1.09 5.19 

RP3 .07 

RP4 .10 

Of the four RPN's algorithms, which are applicable to ne~rly all 

dimensions (n ~ 3), there is none which are uniformly faster than the 

others. In higher dim~nsions (n ~ 10), RPN2 seems to be the best. The result 

may well illustrate that a very efficient sorting algorithm such as the one 

RPN2 used will enhance the speed greatly. It has been tried that if a less 
) 

efficient sorting algorithm such as shellsort or heapsort (see for example, 

Press et al (1986)) is used, RPN2 is approximately 20% slower when n is 100. 

But the reduction in speed becomes negligible when n becomes smaller, say 

less than 21. 

To the other end where the dimensions is small (n < 8), all the RPN's 

algorithms are very similar in speed. When the dimension is 3 or 4, however, 

the two algorithms RP3 and RP4 for n equals 3 and 4 respectively, 'win the 

race. Both are at least twice as fast as their all-round counterparts. 

Apart from speed, portabili ty is also important in determining the 

usefulness of an algorithm. Since arl ,_ six algorithms can be easily 

transferred from one machine to another wi th a minimal amount of change, 

they are all portable. 

Perhaps only in some rare ocassions where speed is of considerable 

importance such as when we need ·to generate a large sample in very high 

12 



dimensions, Sibuya's method in the light of a very efficient sorting routine 

would be the choice. If such sorting routine is unavailable, then the 

modified Sibuya's method using exponential-spacings method to generate 

ordered U(O, 1) is reasonably fast enough to meet the need. In general, 

Muller's simple (it consists of only a few lines of instruction codes) but 

efficient (depends on the normal generator used) method is good enough for 

most applications. 

13 



CHAPTER THREE 

GENERATING V ARIA TES FROM NON-UNIFORM 

DISTRIBUTIONS ON THE CIRCLE 

" .. f~ 

§3.1 Introduction 

In this and the coming chapters, we will consider the generation of 

variatesfrom probability distributions other than uniform distribution on 

the n-sphere. This chapter will be devoted to the case n is two: simulating 

variates from circular distributions. 

Most of the basic distributions on the circle have been derived either 

from the transformation of univariate random variables (e.g. the wrapped 

distributions) or as circular analogies of important univariate 

characterizations. (e.g. the von Mises distribution). Mardia (1972) gives 

detailed account of the properties of some of these important circular 

distributions. 

Computer generation of variates from circular distributions is 

essentially the same as that from univariate distributions. Basic variates 

generation techniques such as the envelope-rejection method is very useful 

in the circular case as well as in the univariate case. Others include the 

transformation of univariate random variables generated by some standard 

methods. 

Let f (a) , a e e = (-n, n] be the p.d.f. of a circular distribution 

where a is the angle subtended at the orig~n of the unit circle. Our aim is 

to devise procedures to generate realizations of e from f. 

One important family of circular distributions is the symmetric 

unimodal distribution. It serves as a basic probability model for circular 

data which exhibits preference in certain direction in the plane. An 

14 



\' important member from this family is the von Mises distribution. A 

distribution is symmetric unimodal wi th mode ate = e if and only if 
o 

(i) f(a ) > fee) for e * a and (ii) f(e-e ) = f(e -e) with the convention 
o 000 

that f(9 ) = fee) if e - e (mod 2n). For each e define e' e (-n,n] such 
1 1 

that a' == , .(a-e) (mod 2n). Wi th the help of such transformation, we can 
. 0 

shift the modal direction to zero. Therefore, without loss of generality, we 

shall assume that for any' symmetric unimodal distribution, e = o. 
o 

§3.2 Methods for Circular Distributions 

·In this section, we will discuss procedures for the generation of 

variates from some basic circular distributions like the lattice 

distributions, the .. wrapped normal distribution, the wrappesJ~_ Cauchy 

distribution, the wrapped Poisson distributions, the triangular 

distribution, the cardioid distribution, the angular Gaussian distribution 

and the von Mises distribution. Of all these distributions, only the wrapped 

Poisson and the lattice distributions are discrete, others are continuous. 

And all but the ' wrapped Poisson, the angular Gaussian and the lattice 

distributions are symmetric unimodal. 

Wi th the exception of the von Mises distribution, the generation of 

varr~tes from all these practically encountered distributions is very 

straightforward and their algorithms which we are going to discuss are also 

efficient enough. On the other hand, generation from _ the von Mises 

distribution is not that straightforward. Many attempts have been tried to 
, -

seek an ·efficient algori thm. Some have been proposed and proved to work 

well. We will -discuss these methods later and suggest another algorithm 

which is also simple to use and fast enough. 

15 



3.2.1 Lattice Distributions 

Mardia (1972) defined the lattice distribution as a discrete 

distribution with 

Pr(a = -n + 2nr/m) = p , 
r 

r = 1, 2, ... , m 

where 

Pr ~ 0 for all rand 
m 

L p = 1. 
r 

r=l 

Note that the mass points -n + 2nr/m are located at equal distance on the 

unit- circle. 

Since there are finite number (m) of mass points, an efficient 

procedure known as the alias rejection method devised by Walker (1977) and 

modified by Kronmal and Peterson (1979) can be used. The method is useful 

for ge~eral distributions Pr. In particular, if Pr = l/m, the algorithm is 

simply 

e = -n + 2n([mU] + l)/m, 

where U -U(O,l) and [x] denotes the integral part of x. 

3.2.2 Triangular Distributions 

It isa symmetric unimodal distribution having p.d.f. 

2 f(a) = (4 + n p - 2nplal)/Sn, a e (-n, n] , 
2 

P e [0, 4/n ], 

with modal direction at a = o. Note that f can be written as the following 

mixture 

where 

f(a) = (1 - pn
2
/4) (1/2n) + (pn

2
/4) ((n - lal )/n2

) 

= p f (a) + (1-p) f (a) 
1 2 

f (a) = 1/2n, 
1 

f (a) = (n - I a I ) /n2 
, 

. - 2 
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with f (e) the p.d.f. of U(0,2n) and f {e) the p.d.f. of the difference of 
. 1 2 

two independent U(O,n). Thus, the generating algorithm is based on 

composition method and it may be stated as follows: 

With probability p, generate U - U(O,l) 
1 

and set e = n(2U -1). 
1 

Similarly, ~with probability 1-p, generate U , U independent U(O,l) and set 
· 12 

e = n(U -U ). 
1 2 

A yet faster algorithm which uses · two uniform random numbers is suggested 

here. 

Algorithm TG 

1. Generate U , U independent U(O,l). 
1 2 

2 

2. If U
2
. < O.S + n

4
P .(0.S-U

1
)' . then accept e = 

otherwise accept e = Tl (U -1). 
1 

TlU ~ 
1 ' 

The method used here is in part . an envelope-rejection procedure, wi th 

first-stage sampling from a uniform distribution defined on [O,Tl]. However, 

if the acceptance test is not passed, the ' rejected' variate undergoes a 

transformation, the transformed variate being accepted. The above algorithm 

is explained as follow~: a point (X,Y) = (TlU, U In), where U and U are 
1 2 1 2 

independent from U (0, 1 ); is generated uniformly in the square {( x, Y): x E 

[O,X], y e [O,l/n]}. The ordinate X is accepted as e if Y < f(X), otherwise 

e = X - n is accepted. 

3.2.3 The Cardioid Distribution 

Cardioid distribution has p.d.f. 

f (e) = (1 + 2pcos9) I 2n,. 9 e (-n , n] , Ipl < 1/2. 

An obvious way to generate variates from f is to use envelope-rejection 
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method with (1 + 2Ipl)/2n , as envelope. 

Algorithm CD 

1. Generate U , U independent U(O,l). 
1 2 

2. e = n(2U - 1). 
1 -

, .... ... ,,, 

3. If U ~ (1 + 2pcosS)/C1 + 2Ipl), ,then accept S; 
2 

otherwise, go to step 1., 

This method has unity sampling efficiency when p is zero and it decreases to 

the minimum 0.5 when p is 0.5. In general, the efficiency' is (1 + 21 pi) -1 . 

When p e (0,1/2), the linear envelope which uses the inequality 
I 

cose < a - be for a = 1.28, b = 0.73, e e [O,n], improves the sampling 

efficiency. However, computer simulation shows that this need not do faster 

(indeed,- ' for p = 0.3, it is approximately 20% slower on IBM4381) _ ~'than the 

uniform envelope. The reason is due to more arithmetic operations involved 

in generating variate from the linear envelope. 

3.2.4 The Angular Gaussian Distribution 

The distribution is also known as the offset normal distribution and 

its p.d.f. can be found in Mardia (1972, p.52) . 

./ Even though its p. d. f. is complicated, generating variates from this 

distribution is a simple matter. Suppose X - NCIl ,0'2) and X - N(1l ,'(j2) and 
1 1 1 2 2 , 2 

the correlation between the two random variables is p. If (R,S) is the polar 

coordinate of (X,X), then S is an angular Gaussian variable with 
1 2 

2 2 
parameters Ill' 11

2
, 0'1' 0'2 and p. Thus the- problem becomes the generation of 

variates from bivariate normal distribution. 

Algorithm AG 

1. Generate 2 , 2 independent NCO,l). 
1 2 
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2. X 1 = III +CiZ, X 2 = 112 
+ Ci [pZ + (1- 2)1/2Z ] 

1 1 2 1 P 2 ' 

T = X / (X2 + X2) 1/2. 
1 1 2 

-1 -1 
3. When X ~ 0, accept e = cos T; utherwise accept e = -cos T. 

,"' '' ''' 

3.2.5 Wrapped Distributions 

Suppose X is a random variable defined on the real line with 

d.f. F(x). For each X, define e E (-n,n] such that 

e == X (mod 2n). (3.1) 

The transformati"on (3.1) defines a wrapped random variable e having d.f. 

00 

F (a) = L [F(a+2nk) - F(2nk)], 
w 

a E (-n, n] . 
k=-oo 

Therefoi~, generation of variates from wrapped distributions can be~a direct 

application of (3.1). Let us consider some important wrapped distributions. 

) 

(w1) The Wrapped Poisson Distribution 

Define the domain of e be [0,2rr). Like the lattice distributions, the 

wrapped Poisson distribution is also discrete with probability mass function 

(p.m.f. ) 
00 

Pr(a = 2nr/m) = L p(r+km; A), r = 0, 1, 2,~ .. , m-1 
k=O 

i\>o, x = 0, 1,2, .... 

Therefore if X is a Poisson random variable with parameter A, then e = 

2nXlm (mod 2n) is distributed as wrapped Poisson distribution with parameter 

i\. An efficient (univariate) Poisson generator may be based on 

alias rejection method. Atkinson (1979a,b) compared other Poiss6n generators 

as well. 
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(w2) The Wrapped Normal Distribution 

The wrapped normal distribution is obtained by wrapping the univariate 

2 normal distribution of zero mean. Let X - N(O,~ ). By (3.1), the p.d.f. of 8 

is 
00 

2 -- 1 
f(a.; ~ ) = --

2 2 L exp{-(a+2kn) /2~ }, 9 e (-n,rr] 
~ k=-oo 

The generation procedure fo~ e is: 

Algoz:-ithm 'W 

1. Generate 2 - N(O,l). 

2. Find e e (-n,n] that satisfies 8 - (~2) (mod 2n). 

(w3) The Wrapped Cauchy Distribution 

. , 

The p.d.f. of Cauchy distribution on the real line is 

2 2 c(x; a) = a/[rr(a + x)], x e (-00 , (0) , a > O. 

Under the transformation (3.1), the d.f. of e is 

2 ' 
F(e; p) = (2n)-lcos-l[(1+p ~cose - 2p l. 

l+p - 2pcos9 
' 9 e (-rr, rr] (3.2) 

-a where 0 ~ p = e < 1 (see Mardia (1972), p.56). Since X = a tan[n(U - 1/2)], 

where U U(O,l), is distributed as c(x; a), (3.1) gives the desired 

variate. 

Another approach is based on the inversion of (3.2). Best and Fisher 

(1979) used this approach to simulate the wrapped Cauchy distribution for 

the generation of variates from the von Mises distribution. 

Algorithm \lC 

S. Set r = (1+p2)/2p 

1. Generate U , U independent U(O,l). 
1 2 

2 . z = co s (nU ), 
1 

-1 3. </> , = cos f. 

f = (l+rz)/(r+z). 
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4. If U < 0.5, accept e = ~; 
2 

otherwise accept 8 = -~. 

Step S is a set-up step for evaluating some constants that are una I tered 

throughout the generation process. Instead of using (3.2) exactly, the above 

algori thIn computes the inverse of the d. f. of the folded wrapped Cauchy 
" .. " 

distribution defined on [O,n], 

.' F (a; p) 
. 2 

-1 '-1[(1+p )cosa - 2p = n cos ] , 
2 1+p ,- 2pcosa 

a E [O,n] (3.3) 

-1 Obviously, cos f in step 3 has d. f. (3.3). Step 4 is to re-define e on 

(-n,n] by utilizing the fact that (3.2) is symmetric about zero. 

3.2.6 The von Mises Distribution 

The distribution was introduced by von Mises as early as 1918 ~to study 

the deviations of measured atomic weights from integral values. It is 

perhaps the most important of all circular distributions. It possesses some 

of the desirable properties of the univariate normal distribution (see 

Mardia (1972)). 

The p.d.f. of the standardized (after shifting the modal direction to 

zero) distribution of e is 

v(a; k) = [2nI (k)]-lexp(kcose), a E (-n, n] , k > 0, (3.4) 
o 

where I (k) is the modified Bessel function of the first kind of order zero. 
o 

The parameter k is known as the concentration parameter. When k is large, 

most of the density will concentrate towards the direction e = o. 

Inversion method is unsuitable here because the inverse of the d.f. of 

e is not easily computable. Various attempts have been made by using 

envelope-rejection method. Seigerstetter (1974) used a uniform envelope. 

However, his envelope is too crude to be effective when k is large. Some 
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better envelopes like wrapped normal, Cardioid, polynomial or piecewise 

linear envelope have been tried, but none is effective enough. In view of 

these, Best and Fisher (1979) proposed another envelope which is 

proportional to the wrapped Cauchy distribution and they had shown that this 

envelope works very well for all feasible values of k. Ulrich (1984) 

suggested a similar envelope which is a special case of a more general class 

of envelopes for distributIons on the n-sphere (n ~ 2). We shall discuss his 

work~ater in chapter five. Here let us consider Best and Fisher's work. 

Instead of dealing with (3.4) directly, Best and Fisher generate the 

von Mises variates from its folded distribution, 

-1 f(a; k) = [7[1 (k)] exp(kcosa), a E [O,7[]. (3.5) 
o 

Inversion ' method, as described earlier (see algori thm WC), is .)lsed to 

generate from the folded wrapped Cauchydistribution whose p.d.f. is 

2 
1 - , P 

g(a; p) = ---------2~--------' 
7[(1 + P - 2pcosa) 

a E [O,7[]. 

' Note that the d.f. is identical to (3.3). In order to maximize the sampling 

* efficiency, the optimal value p is determined by 

with the 

and 

min 
pe[O,l) 

( max 
ae [0, 7[] 

* * pair (a ,p ) given 

* *2 cosa = (1 + P -

* [T - 12T] p = I 

f(a; k) .) = 
g(a; p) 

by 

* * 2p Ik) I 2p 

2k, 

* f(a ; k) 

* * g(a ; p ) 

where T = 1 + (1+4k2
)1/2. The envelope is thus found to be 
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The complete algorithm is as follows: 
.; .. .. , 
l ~ l ' 

Algorithm VMBF 

S. Set 't' = 1+(1+4k2)1/2, *2 * 
r = (1 +p ) I 2p . 

1. GenerateU , U independent U(O,l). 
1 2 

2. Z = cos (llU' ") , 
1 

. f = (l+rz)/(r+z), 

3. If U < c(2-c), then go to step 5. 
2 

c = k(r-f). 

4. If In(c!U ) + 1 - c < 0, then go to step 1. 
2 

- - -1 
5. 8 = cos f. 

6. Generate U - U(O,l). 
3 

7. If U < 0.5, then accept 8 = -8. 
3 

Step 3 is a pre-test (known as the 'squeeze' test) of step 4. It uses the 

fact that" ~x ?; l+x to avoid, at least some of the time, the use of logarithm 

in step 4. ,The sampling efficiency is 

*2 ' * *2 * (l-p )1 (k) / {(2p Ik) exp[k(l + p )/2p - l]}, 
o . 

which tends to unity as k ~ 0, and tends to the minimum (2nle)-1/2= 0.658 as 

k ~ 00. Therefore, VMBF is efficient for all values of k. 

Dagpunar (1983, 1990) proposed another algorithm for the von Mises 

distribution using Forsythe's (1972) rejection method. In his experiment, 

the proposed algorithm is uniformly faster than Best and Fisher's method for 

all k > 0 when k is fixed between calls. When k is re-set between calls, 

Dagpunar's method is fastest when k ~ 0.5. When k > 0.5, numerical 

integrations are necessary, making the algorithm more difficult to implement 

and thus less compact than Best and Fisher's '-method. Dagpunar's method is as 

follows: 

'The p.d.f. of the von Misesdistribution f(9; k) can be represented by 

the probability mixture 
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where 

n 
k 

f(a; k) = [Pj"'j(a), 

j=l 

2k, when 2k is integer 

[2k+1] , otherwise 
, ~ . . -,. 

= ~ exp(kcos9+j~k-l) / f
9

9j exp(kcos9+j-k-l)d9, 

l j-l 
0, 

a = cos-1 (1 - (j/k)), 
j 

a = 1l, 
n 

k 

j=O,l, ... , 

Pj = J 9jexp(kcoS9)d9 / J n exp(kcos9)d9, 
a 0 

j-1 

n -1 
k 

and [x] denotes the integer part of x. 

a e [a ,9] 
j-l j 

elsewhere 

j = 1, 2, ... , n 
k 

Wi th probabili ty p, algori thm VMD selects an interval (a ,9) and 
) j j-1 j 

generate a von Mises variate within this interval using Forsythe's method. 

Algorithm VMD (let {U }be a sequence of independent U(O,l) random numbers) 
1 

S. Compute n , {a }, {p }. 
k j J 

1. Generate U ,., U(O,l). 

j 

2. U =( LP - U ) / P . 
1=1 1 j 

3. e = a + U (a -a ) . 
j -1 J j-l 

4. A = k - j + 1 - kcos8. 

Find smallest j such that 

5. Set N = 1 if A < U, otherwise 
1 

N = n if A ~ U ~ U ... ~ U < U . 
1 2 n-l n 

j 

"P > U. L 1 
1=1 

6. If' N is even, generate U ,., U(O,l) and then go to step 3. 

24 



{ 
sign( (U i\)/(1 i\) - 0.5) e, N = 1 

7. e N = 
sign( CU - U ) / (l-U ) - 0.5) e N > 1 

N N-l N-l 
, 

where sign(x) is the sign of x. 

Step 2 and step 7 re-use random numbers by the conditional uniformity of U 
.... ~ .~ 

(step 2) and U (step 7). 
N 

Apart from VMBF and VMD~ we hereby suggest a method which is also based 

on env~lope-rejection technique and is shown to be efficient for all values 

of k. 

A new method 

2 2 It is simple to show that cosx ~ 1 - x /2v, x e (-n,n], where v = n /4. 

Using this . inequality arid (3.4), the p.d.f. of the von Mises distribution is 
... :"':- ..... 

v(a; k) ~ [2nI (k)]-lexp [k(l - a2/2v)], a e (-n, n] . (3.6) 
o 

Inequality (3.6) sugg1ests to ,use an envelope which is proportional to a 

truncated normal density defined on (-n,n) of mean zero and variance v / k 

= re2
/ 4k, denoted - by N (O,~;' -re, re). 

t k 
A way to generate variate from 

N
t 
(O,~; -re, re) is by accepting the prospective variate obtained from the 

corresponding normal variate defined on the whole real line if it falls in 

(-re,re). ,It is simple but is ineffective when k is small, say < 0.5. An 

alternative way follows the idea of Box-Muller (1958) for standard normal 

variate. Algorithm TNORM below is the modified Box-Muller method for 

N (O,!; -re,re). It is effective even when k approaches zero. 
t k 

Algorithm TNORM v To generate X , X independent N (0, -; -rr,rr). 
1 2 t k 

S. Set 2 
(j = v/k, a = 4k, b = 1-exp ( -a) . 

1. Generate U , U independent U(O,l). 
1· 2 

2. R = -2In(1-U b) 
. 1 ' 

a = 2rrU , . 2 c = cosa. 
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S 2 

{ = Rc . 
3. 

1 

S = R - S 
2 1 

4. If S > a or S > a, then go to step 1. 
1 2 

{ 
X = (T~) 1/2 c. 

5. 1 

X = (O'~) 1/2 sina. 
2 

Step 2 generates R, a truncated X2 on (0,2a) by inversion method. Note that 
2 . 

VRc and VRsina in step 5 are independent N (0,1; -va,va). ' In practice, TNORM 
, t 

will return one variate each time the algorithm is called and store up the 

other for the next call. The complete algorithm for von Mises using (3.6) is 

therefore: 

AlgorithmVMTN 

S. Set v = 1[2/4. 

1. Generate U - U(O,l). 

2. Generate X - Nt(O,i; -n,n) by TNORM. 

3. T = 1 + k(cosX - 1 +X2/2v). 

4. If U ~ T, then go to step 6. 

5. If U > exp(T-l), then go to step 1. 

6. Accept e = X. 

x Step 4 is the pre-test of step 5 using e ~ l+x. Table 3.1 gives the mean 

requirements of random numbers per generated von Misesvariate in VMBF and 

VMTN and table 3.2 shows the timings for simulating a sample of size 10000 

for selected values of k (fixed and re-set -between calls). 
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Table 3.1 The mean requirement of random numbers to generate 
one von Mises variate 

k 

0 0.1 0.5 1 2 5 10 50 

VMBF 3 3.01 3.11 3.30 3.61 3.88 3.96 4.03 

VMTN 2.57 2.56 2.57 2.67 2.87 3.05 3.10 3.13 

Table 3.2 The mean time (Ils) to generate a von Mises variate 
when k is fixed / re-set (bracketed numbers) between calls 

k 

0 0.1 '0.5 1 2 5 10 50 

VMBF 134 135 141 152 170 187 189 192 

(172) (170) (176) (189) (207) (222) (226) (228) 

VMTN 141 143 149 158 172 185 192 190 

(160) (161) (170) (186) (202) (216) (219) (203) 
... -,,":-,'" 

The , timings demonstrate that VMTN and VMBF are -very similar in speed 

when either k is fixed or re-set between calls. VMBF is slightly faster when 

k is fixed whereas the reverse is true when k is re-set between calls. The 

change can be explained by the longer set-up time for the evaluation of two 

square roots in VMBF, compare to one exponentiation in VMTN. Note also from 

table 3. 1 that VMTN requires fewer random numbers than VMBF. Therefore 

slower~ random number generator will increase the speed of VMTN relative to 

VMBF. 
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CHAPTER FOUR 

GENERATING V ARIA TES FROM NON-UNIFORM 

DISTRIBUTIONS ON THE SPHERE 

§4.1 Introduction 

Let X = (X, X , X ) T, for which X2 + X2 + X2 = 1 
1 2 3 1 2 3 

be the Cartesian 

coordinates of an observation on the surface of a 3-sphere (or simply 

sphere). The direction of X can be specified by the polar coordinates (e,~) 

with the following relations 

X = sinecos~, 
1 

x = sinesin~, 
2 , 

X = cose, 
3 

where e E (0, x), ~ E (0,2x). Let the joint p.d.f. of (e,~) be f(O,</». 

Computer simulation of spherical data aims at producing realizatl';;ns of 

(e,~) from f. In practice, there are four main types of spherical 

distributions, namely, ' the uni~orm distribution, the unimodal distributions, 

the bimodal distributions and the girdle distributions. For a thorough 

discussions of some of these distributions, one is recommended to refer to 

Mardia's (1972) and Watson's (1983) texts. Both give detailed mathematical 

treatments on the various distributions on the sphere. Fisher et al (1987) 

also offered an overview and statistical methods to most popular spherical 
' --..., 

distributions. 

Owing to an extra dimension, variates generation in the spherical case 

is usually not as easy as in the circular case. For some distributions like 

the Fisher distribution and the Dimroth-Watson distribution where the random 

vector (e,~) ate independent, each component can be generated separately. 

However, for distributions like Bingham distribution where dependence exists 

between e and ~,. the generation procedure !Oay be more complicated. 

In addition, the complexity of a distribution can make variate 
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generation from that distribution difficult to achieve. Therefore a 

distribution involving many parameters is always very difficult to simulate. 

Even if a procedure exists for that distribution, it may work well only for 

some limited parameter values. Sometimes only when the parameter values are 

restricted or ___ when there are constraints on the parameters will allow an 

algorithm to be useful. 

§4.2 -Methods for Spherical Distributions 

In this section, we will devise algori thms for the generation of 

commonly encountered spherical distributions like the Fisher distribution, 

Arnold distribution, Selby distribution, Dimroth-Watson distribution, 

Bingham distribution and Bingham-Mardia distribution. With the exception of 
,..: ",:- , "-

Fisher distribution, new algorithms are developed and will be compared with 

existing algorithms, if any, to demonstrate the a~vantages of the new 

methods. 

4.2.1 Fisher Distribution 

It was for the investigation of certain statistical properties of 

palaeomagnetism that Fisher distribution was studied by Fisher (1953). This 

important distribution isunimodal with rotational symmetry and serves ,as an 

3 all-purpose probability model for directions in R, much as the von Mises 

distribution in R2 and the normal distribution in R. In the standardized 

form in which the modal direction is at (0,0), the p.d.f. of (e,~) is 

where 

f(a,~; k) = C exp(kcosa)sina, 
F 

C = 
F 

k 

4nsinh k 
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is the normalizing constant. The modal direction is at 9 = O. The 

distribution has one parameter k > 0 which is known as the concentration 

parameter because the larger the value of k, the higher the probability 

density around the direction 9 = O. 

-
Since th~t density does not involve ~, ~ has a uniform distribution on 

[0,21£) . For large k, Mardia (1972) has shown that kS
2 

is approximate ly 

2 distributed as ~. An approximate method , for generating e which simply 
2 

involve,s the generation of a ~2 rand~m variable is thus obtained when k is 

large. However as approximate method is usually not desirable, a demand for 

exact method is expected. An exact method can be obtained by inversion 

method. 

Note that the margipal density of S is 

k exp(kcos9)sin9, 9 e (O,n) 
2sinh k 

Let X = cosS. Then the 1p.d.f. of X is 

k 
fx(x; k) = --- expC.kx), 

2sinh k 
X E (~1,1) 

and the corresponding d.f. is 

Upon the ,- inversion, X = F-
1

(U) where U ..., U(O,l), we obtain the following 
x 

procedure for generating (S,~): 

Algorithm FSH 

2k S. Se t A = e -1. 

1. Generate U , U independent U(O,l). 
1 2 

2. X = -1 + k-1ln(AU +1). 
1 
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2ltU . 
2 

Fisher et al (1981 ) , on the other hand, considered the transf orma t ion 

Y = exp[-2ksin2 CS/2)]. Thus, the density of Y is 

-2k i.e. Y is distributed uniformly on (e ,1). 

Algorithm FSHR 

S. Se t i\. = e -2k . 

1. Generate U , U independent U(O,l). 
. 1 2 

2. Y = i\. + (1-i\.)U . 
1 

(I ~~ 3. S 2sin -1 
lnY ) . = 

4. ~ = 2ltU 
2 

-2k ye (e ,1) 

The algorithm is 

Algorithm FSHR is a more accurate algorithm than FSH as the latter induces 

appreciable rounding error when k is large. 

4.2.2 Arnold Distribution 

Arnold distribution is a rotational symmetric distribution which was 

introduced by Arnold (1941) and discussed by Selby (1964). It is a girdle 

distribution which has its density concentrated around the great circle (or 

the equator), a = It/2. Its standardized p.d.f. is 

where 

f(a,~; k) = C exp(-klcosal)sina, 
A 

k 
C = ---­

A -k 4n (1-e ) 

k > 0, e e [O,n], if> e [ 0 , 2n) , 

is the normalizing constant. The parameter k is the concentration parameter. 
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When k is large, the distribution becomes more concentrated around the 

equator. 

Since ~ is independent of 8·, it can be generated as 2nU, where 

U - U(O,l). Inversion method can be applied for 8. As the marginal d.f. of 

e is 

its inverse can be readily obtained. 

Algorithm ARND 

S. Se t B = 1 - e -k • 

1. Generate U , U independent U(O,l). 
1 2 

. -1 -1 
2. If U 1 > O. 5, then accept 8 = cos {k In [1 + (1-2U 1 ) B] }; 

otherwise accept 8 

3. ~ = 21lU •. 
2 

= cos-1
{ -k-1 ln[1-(1-2U )B] }. 

1 

4.2.3 Selby Distribution 

6 E [O,n/Z] 

6 E (n/Z,n] 

Like the Arnold distribution, it is a girdle distribution with 

rotational symmetry. The distribution was introduced by Selby (1964) to 

model axial data. Its standardized p.d.f. is 

f(a,~; k) ~ exp(ksin6)sin6, 

where k > 0, a e [O,n], ~ e [O,Zn). The marginal density of 8 is 

fe(a; k) ~ exp(ksin6)sin9. 

Since the inverse of the d.f. of 8 is not easily computable, we resort to 

envelope-rejection method to generate 8. Two envelopes are proposed here, 

each based on a simple inequality: 
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(S1) Use of the inequality: cosS + sinS ~ V2, S e [ 0 , 1[/2] . 

Since e is symmetric about 1[/2, we restrict S to [0,1[/2]. We have 

exp(ksinS)sinS ~ exp(k(V2-cosS»sinS, S e [ 0 , 1[/2] . 

Therefore the envelope for fS is proportional to exp(-kcosS)sinS which is 

essentially the folded Fisher's density and hence variate from this envelope 

can be simulated easily. Unfortunately, the envelope based on the inequality 

(S1) is not good enough as its sampling efficiency 

tends to zero as k approaches 00. 

(S2) Use of the inequality: x e [-1,1] 

Consider the transformation X = cosS. The density of X is proportional to 

2 1/2 exp (k (l-x) ) , 

By inequality (S2), we have 

x e [-1,1]. (4.1) 

x e [-1,1]. 

Since k > 0, the envelope for X having densi ty (4.1) is proportional to 

1 N (0,-; -1,1), the truncated normal distribution defined on (-1,1) of mean 
t k \ 

zero and variance l/k. Generating variates from N (O,~; -1,1) is simple. 
t k 

Recall in chapter three that an efficient algorithm TNORM is proposed for 

2 
7£ N (0,-; 7r,7£) for simulating von Mises variates. A slight modification of 

t 4k 

1 TNORM will make it suitable for N (0,-; -1,1). 
t k 

Algori thm TNRML . 
-2 To generate X , X independent N (0, a ; -1,1). 

1 2 t 

2 S. Set -a = k, 2 b = 1 - exp(-a.). 
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1. GenerateU , 'U independentU(O,l). 
1 2 

2. R = -2ln(1-U b) 
1 ' 

a = 2nU , 
2 

c = cosa. 

2 
S = Rc . 

3. { S 
1 

= R-S . 
2 1 

4. If S > a 2 

1 
or S > a2 go to step 1. 

2 

2 1/2 . 
(R/a) Slna. 

* Therefore, if X 
1 7 

is distributed as N (0,-; -1,1), the conditional p.~.f. of 
t k 

* X given 

U :s 
exp (k (1-X·2 ) 1/2) 

. 1 *2 
exp(k(l - 2X )) . 

• where U - U(O,l) is independent of X, is proportional to (4.1). An 

algorithm suggested for (e,~) is 

Algorithm SLBY 

i. Generate U - U(O,l). 
1 

1 . 
2. Generate X - Nt(O'k; -1,1) by TNRML. 

3. T = 1 + k [ ( 1-X2) 1/2 - (1 - ! X2 ) ] . 
2 

4. If U :S T, then go to step 6. 

5. If U > exp(T-l); then go to step 1. 

6. e = cos-1X. 

7. Generate U - U(D,l) and form ~ - 2nU . 
2 2 

The mean requirement of random numbers used to generate one vector (e,~) by 

SLBY is obtained by the formula 
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N = 1 + (1 + .!.) r-1 

e p' 

where 

p = Pr(S < k and S < k in step 4 of TNRML) 
1 2 

2 ( r'k r exp(- 1 2 = 2'z )dz 
~k 

, .1:r (l-e ) 0 

and 

r = Pr(X is accepted in algorithm SLBY) 

Table 4.1 lists N for some values of k. 
e 

Table 4.1 The mean requirement of random numbers to 
generate one vector from Selby distribution using SLBY 

N 
e 

o 

3.57 

O.s 1 

3.5 3.44 

k 

2 5 10 co 

3.34 3.17 3.08 3 

Table 4.1 shows that N is quite stable to the value of k. An average of 
e 

" slightly more than three random numbers used to generate (e,~) make SLBY an 

efficient algorithm for Selby distribution. 

4.2.4 Dimroth-Watson Distribution 

The distribution is sometimes called the Scheidegger-Watson 

distribution or simply Watson distribution. We follow Mardia's usage in his 

influential book (1972) and call it Dimroth-Watson distribution. 

This distribution is used as an important model for axial data 

distributed with rotational symmetry in either bipolar or girdle form. Its 

standardized p.d.f. is 

9 e [O,n:], </> e [O,2n:) (4.2) 
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where k is the scale parameter which may either be positive or negative; 

when k > 0, the distribution is bipolar such that the distribution has 

highest density at its two poles e = 0 and e = n, and when k < 0, it is 

girdle with density concentrated around the equator e = n12. 

Since the d. f. of Dimroth-Watson distribution does not have a closed ..... .. .... 

form and there are no convenient transformations of other distributions, 

Best and Fisher (1986) devised algorithms based on envelope-rejection method 

to overqome these difficulties. Their algorithm considers two cases: (i) the 

bipolar case, k > 0 and (ii) the girdle case, k < O. Their methods are 

discussed here. 

(i) Bipolar case, k > 0 

. , 
As e is symmetric about n12, consider e e [0, n12] and put X = cose,~ The 

envelope used is proportional to the densi ty ee
kX

, x E [0,1] where e = 

k(ek
-l)-l, which is easi,ly generated by inversion method. 

Algorithm DYBF (k > 0) 

5., Set e '= 11 (ek-l) . 

1. Generate U , U independent U(O, 1). 
1 2 

2. X = k-1 ln(1 + U le). 
1 

3. If U s 1 + k(X
2
-X), then go to step 5. 

2 

4. If U > exp(k(X
2
-X)), then go to step 1. 

2 

6. Generate U - U(O,l). 
3 

7. If U < 0.5, then e = n - e and ~ = 4nU . 
3 3' 

otherwise t = 2n(2U -1). 
3 
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(ii) Girdle case, k < 0 

Again put X = cose for e e [0,nI2] and take the envelope proportional to the 

2 2 1 -1 -1 density C(l+~ x )- , x e [0,1] where ~ = y'-k and C = E;(tan E;) , which can 

be generated conveniently by inversion method. 

: .. a ... 

Algorithm DYBF (k < 0) 

S. Set ~ = V-k, -1 
B = tan ~. 

1. Generate U , U independent U(O,l). 
1 2 

2. X = tan (BU ). 
1 

3. If U ~ 1 - X~ then go to step 5. 
2 

4. If U > (1+X2 )exp(-X2
), then go to step 1. 

2 

5. e = cos -1X . . 

6. GenerateU - U(O,l). 
3 

7. If U < 0.5. then e = n - e and ~ = 4nU . 
3 ' 3' 

otherwise ~ = 2n(2U ,-1). 
3 

x In both cases, ' squeeze' method, depends on the bound e ~ l+x, have been 

used in step 3 to avoid, at least some of the time, the use of the 

exponential functions at step 4. Step 7 aims to re-define 8 on [a,n] and 

re-uses U to generate ~ by the conditional uniformity of U . 
3 3 

The sampling efficiencies for the two cases are 

k > a 
and 

- _'- -1_r1:' -.1 ~ _~ 1 R (k) = vn(tan v-k) . ['t'(v-2k) - 2]' k < a 

respectively, where ~(x) is the d.f. of the standard normal distribution. 

Both R+(k) and R-(k) are decreasing functions in k with R+(a) = R-(a) = 1, 

+ -R (00) = 0.5 and R (-00) = 0.56. The mean requirements for random numbers in 

each case are 1 +2/R+ (k > 0) and 1 + 2/R- (k < 0) respectively. 
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A new algorithm 

Here we propose an envelope which can handle both the bipolar case and 

the girdle case. It is very easy to generate variates from this envelope and 

the new algorithm based on this envelope is proved to be more efficient than 

Best and Fisher~s and it is also more compact. The envelope we use -can also 

be applied to other distributions which have similar forms as the 

Dimroth-Watson distribution. The results are encouraging and we will 

investigate the applicability of the envelope to those distributions later. 

re Put X = cose and consider e e [0'2]. By (4.2), the p.d.f. of X is 

f(x; k) 2 
= C exp(kx ), r 

x e [0,1], k e (-00,00) 

where C= [ S1 2 -1 Define exp(ku )d~ ] . r 0 
.: ",::- ,,-

o(x) = C
r
,s(l-Px2 )-3/2, x e [0,1] 

where 

(3 
3/2 exp(- 3 1 

= Q', -(1 - -)) 
2 a' 

Q', = 3p/2k, 

p = [A - (A 2 -16k) 1/2] /4, A = 2k+3. 

In Appendix 2 it is shown that o(x) is an envelope for f(x; k) and that the 

choice of p maximizes the sampling efficiency. Note that o(x) is 

proportional to the p.d.f. 

g(x; p) x e [0,1] 

where C = v.l-p. Sample from g(x; p) is obtainable by inversion method. If 
9 

a random variable Y is defined by 

u Y = ---------------
[1 - p ( 1-U2 ) ] 1/2 ' 

where U - U(O,l), 

• then Y is distributed as g(x; p). Suppose X - g(x; p). Then if 
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• • U ~ f(X; k) / o(X ) 

• • where U - U(O,l) independent of X, the conditional p.d.f. of X given that 

(4.3) holds is f(x; k). Below is the algorithm for Dimroth-Watson 

distribution using envelope o(x). 

Algorithm DllAG 

S. Set A- = 2k+3, 

« = 3p/2k, 

p = [A - (A 2-16k ) 1/2] /4, 

q = «3exp (-3 + 3/«). 

1. Generate U , U independent U(O,l). 
1 2 

3. W = 1 + kS. 

4. If W > 0 and U2 ~ (1-pS)3W2/q , then go to step 6. 
2 

2 3 ' 
5. If U > (l-pS) exp(2(W-l))/q, then go to step 1. 

2 

6. e = cos -lVS. 

7. Generate U - U(O,l). 
3 

8. If U < 0.5, then e = rr - e and ~ = 4nU . 
3 · 3' 

otherwise ~ = 2n(2U -1). 
3 . 

Instead of performing the acceptance test directly as in (4.3), we square 

both sides of (4.3), as shown in step 5, so as to avoid performing 

fractional exponentiations. Step 8 re-defines e on [O,n] and re-uses U to 
3 

generate ~ by the conditional uniformity of U. The sampling efficiency 
3 

is 
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R = I J* y(x)dx ]_1 

= (~)3/2 Vi-p exp(- - -) J"1 exp(ku2)du 
3p 2 p 0 

and, on the average, DWAG requires 1 + 2/R random numbers to generate a 

vector (9,$) frc>m Dimroth-Watson distribution. Table 4.2a and 4.2b show the 

sampling efficiencies and mean requirements of random numbers for Best and 

Fisher's algorithms DWBF and DWAG. Before looking at the tables and 

considering the empirical comparisons between these algorithms, let us 

investigate another algorithm for the girdle Dimroth-Watson distribution. 

Table 4.2a The mean requirement of random numbers to 
generate one vector from Dimroth-Watson distribution for the 
bipolar case using DWBF and DWAG (Sampling efficiencies in 
parentheses) 

_k 

0 0.5 2 5 10 50 

DWBF 3 3.17 3.70 4.43 4.77 4.96 
(1) (0.92) (0.74) (0.58) (0.53) (0.51) 

DWAG 3 3.02 3.28 3.98 4.42 4.75 
(1) (0.99) (0.88) (0.67) (0.58) (0.53) 

Table 4.2b The mean requirement of random numbers to 
generate one vector from Dimroth-Watson distribution for the 
girdle case using DWBF, DWAG and DWTN (Sampling efficiencies 
in parentheses). 

k 

0 -0.5 -2 -5 -10 -50 
DWBF 3 3.04 3.26 3.60 3.85 4.23 

|1| (0.98) (0.89) (0.77) (0.70) (0.62) 
DWAG. 3 3.01 3.12 3.29 3.40 3.49 

(1) (0.99) (0.94) (0.87) (0.84) (0.80) 
DWTN 2.57 2.36 2.08 2 2 2 
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When k < 0, the p. d. f. of X = cos8 for 8 e [0,1l'] is in fact the 

truncated normal distribution defined on [-1,1], of mean zero and variance 

-1/2k, that is, X - N (0 -1. -1 1). We have discussed the generation of 
t ' 2k' . ' 

N (0 !. -1,1) before (see Selby distribution). Thus, using this result, the 
t ' k' 

; .... : ' .. 
2 algori thm TNRML can be used wi th only the change a = -2k in the set-up 

step. An algorithm for the girdle case is 

Algorithm DYTN 

1. Generate U - U(O,l) 

2. Generate X - Nt(O,;~; -1,1) by TNRML. 

-1 
3. 8= cos X, . 4> = 21l'U. 

The average number of random numbers used to generate a vector (8,4» is 

given by l+l/p (see table 4.2b for some selected values 'of k) where 

PrCS < 2 
P = k and S < k in step 4 of TNRML I a = -2k) 

1 2 

2 ( r'-2k 1 2 r = exp(- -z )dz 
2k 2 

1[ C 1-e ) 0 

Now it is time to compare the performances of the various algorithms 

that we have already discussed for the generation of variates from the 

Dimroth-Watson distribution. It is seen from table 4.2a and b that the 

proposed algori thm DWTN uses the fewest random numbers on the average to 

simulate a realization from the girdle Dimroth-Watson distribution while the 

proposed algorithm DWAG, in both the bipolar ,and girdle situations, uses 

fewer random numbers uniformly than DWBF for all values of k. Since the 

complexi ty of all algori thms are very similar, it is expected that the 

execution speed of DWAG will be faster than DWBF while DWTN is the fastest 
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for k < O. As the magnitude of k increases, the demand for random numbers 

increases gradually for DWBF and DWAG but not for DWTN which shows a gentle 

decrease instead. This is explained by the fact that the sampling 

efficiencies of DWBF and DWAG are decreasing functions in Ikl and that for 

-1 
large Ikl, DWTN becomes more efficient as generation from N

t
(0'2k; -1,1) by 

TNRML is most effective when Ikl is large. When k > 0, both the efficiencies 

of DWBF and DWAG converge to ' 0.5 (empirically for DWAG) as k ~ 00. When k < 

0, the -efficiency for DWBF converges to 0.56 and that for DWAG approximately 

to 0.78 as k ~ -00. Note that the discrepancy between the two efficiencies 

is negligible when Ikl is small (say < 2). Table 4.3a & b below ~ho~ the 

marginal generation time for the three algorithms by simulating-a sample of 

size 10000. 

Table 4.3a Marginal generation time (~s) for the bipolar Dimroth-
Watson distributiop 

k 

0.1 0.5 1 2 5 10 50 

DWBF 144 149 162 181 224 242 256 

DWAG 147 146 155 167 210 237 250 

Table4.3b Marginal generation time (~s) for the girdle Dimroth-
Watson distribution 

k 

-0.1 -0.5 -1 -2 -5 -10 -SO 

DWBF 137 138 140 148 162 174 193 

DWAG 143 143 146 150 159 162 164 

DWTN 145 136 131 122 115 114 114 

As expected, DWTN is the fastest in the girdle case and its execution time 

decreases as Ikl increases owing to the fewer random numbers used on the 
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average when Ikl is large. It is also observed that when Ikl > 2, DWAG is 

uniformly faster than DWTN. In fact the speed between DWBF and DWAG do not 

differ very much for all values of k. In conclusion, DWAG is a more 

versatile and efficient (slightly) algorithm than DWBF. In the girdle case, 

even more efficient algorithm DWTN is available. 

4.2.5 Bingham Distribution 

"-
This is an antipodally symmetric distribution introduced by Bingham 

(1964, 1974). It serves as a multipurpose model for axial data. Its 

sta~dardized p.d.f. is 

f(a,~; k ,k ) = C(k ,k ) exp[(k cos2~+k sin2~)sin2a]sina 
' 12 12 1 2 

== C(k ,k ') e(a,~) 
1 2 

where 9 e [O,n:], ~ e [0,2n) arid C(k ,k ) is the normalizing constant. The 
) 1 2 

standardized distribution has two parameters k and k . - When k = k, the 
1 2 1 2 

p.d.f. (4.4) reduces to the Dimroth-Watson distribution. Other values of k 
1 

and k may give uniform distribution (k = k = 0), symmetric and asymmetric 
2 " 1 2 

girdle distributions and bimodal distributions. In general, the random 

angles e and ~ are dependent. This makes sampling from the distribution more 

difficult. 

Wood (1987) considered the simulation of a special case (k = -k ) of 
1 2 

Bingham distribution. Here, we make use of his idea to consider the general 

case. 

In Cartesian coordinates, the Bingham p.d ~ f. can be written as 

2 2 f(x; k ,k ) = C(k ,k ) exp(k x + k x ) 12 12 11 22 

where X = (X X X) T X2 + X2 + X2 = 1. Let T = X and put X = 
l' 2' 3' 1 2 3 3 1 

(1-T2)1/2cos~, X = (1-T2)1/2sin~. rhe marginal p.d.f. of T is 
2 
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It' 
get; k ,k ) = J C(k,k) exp[k f1-t2)cos2~ + k (1-t2)sin2~] d~ 

1 2 1 2 1 2 o 

1 12 ' 
= 2lt'1 [-2(k -k )(1-t2)] C(k ,k )exp[-2(k +k )(l-t )], 0121212 

where t e [-1,1] and -r (x) is the modified Bessel function of the first kind 
o 

of order zero. We call T the mixture variable and get; k ,k) the mixture 
1 2 

density. It follows that the donditional density of 21 given T = t is 

-. ( . 1 2 ) - 1 ' 1 2 . 
- 2lt'1 [-2 (k -k )(l-t )] exp[-2(k -k )(l-t )cos2~] ' , 

o . 1 2 1 2 

i.e, 2~IT = t has a von Mises distribution with concentration para~eter 

1 2 2(k1-k
2

) (l-t ). Thus an algorithm for generating variates from (4.4) is 

developed: 

Algorithm BH 

1. Generate T from the mixture density get; k ,k ). 
1 2 

2. e = cos -1T . 

3. Generate 0 - Bernoulli(0.5). 

4. ' Generate ~ e (-It',lt') from the von Mises distribution with 

1 2 concentration parameter Z(k
1
-k2) (l-T ). 

S.lf ~ < 0, then accept ~= (l+o)lt' + ~/2; otherwise accept ~ = Olt' + W/2. 

Efficient methods have been discussed for the von Mises distribution in 

chapter three. The problem remains the generation of the mixture variable T. 

By the fact that 1 (x) ~ cosh x for all x, we obtain 

get; k ,k ) 
1 2 

o 

-1 a [p g (t; k ,k ) + c( l-p) g (t; k , k )] 
1 1 ,- 2 2 

where p = C(k ,k )/[C(k ,k ) + C(k ,k)] and a = 2pC(k ,k ) IC(k ,k ). 
22 11 22 111 12 

Note that: . 

(4.5) 

(1) get; It, It) is the marginal Dimroth-Watson p.d.f. with concentration 
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parameter -Ic. · 

[ 4re D(V-le)/V-1e ]-1, 

(ii) C(Ic,Ic) = { [ 2re3 / 2e k erf (Yk)IYk ] -1 , 

le < a 

le > a 

where D(x) = exp(-x2)~ exp(u2)du is the Dawson's integral and erf(x) = 
' -._ 0 

(2Im) ~ exp(u2)du is the error function. Routines for calculating D(x) and o 

erf(x) are available in the .IMSL Sfun/Library (1987). Then an algorithm to 

genera~e T from the mixture density based on (4.5) is: 

1. Generate U ,., U(O,l). 

2. With prob~bility p (or (1-p», generate T from get; k ,k ) (or 
1 1 

g(t;k ,k » and accept the prospective variate if U ~ I (v)/cosh v, 220 

where v =!(k -k )(1-T?). 
- - 2 1 2 .:.-~ ,-

Efficient algorithms like ~ DWAG discussed earlier can be employed to generate 

variate from get; le, le) ~ The modified Bessel function can be evaluated by 

routine in the IMSL Sfun/Library. 

Johnson (1987) described another method for Bingham distribution which 

is based on Atkinson's (1982) bipartite rejection scheme. We briefly 

describe Johnson's method here. 

In his method, by restricting 8 initially to [a,re/2], two envelopes are 

used for (4.4) depending on the value of 8: 

e(8,~) ~ exp(k sin28)sin28 = d (8,~) for 8 e [a,re/3] 
m 1 

~ exp(k )sin8 = d (8,~) for e e (reI3,re/2] 
m 2 

where k = max(k ,k ). Variates from both envelopes d1(8,~) and d2(e,~) can 
m 1 2 

be easily generated since ~ ,., U(a,2re) is independent of 8 which can be 
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generated readily by inversion method. Let 

and 

~ = f2R f n/3 d (a,~) dad~ = 2n[exp(3k 14)-1]/k , 
1 0 0 1 m m 

~ = f2RfR/2 d (a ~) dad~ = exp(k )n, 
2 · 0 n/3 2 ' 'I' 'I' m 

5 
1 

· 5 
2 

p 

.~ .... ,~ 

= sup [e(a,~)/d (a,~)] 
fJ,~ 

1 
= 1, 

= sup [e(a,~)/d (a,~)] 
e,~ 

2 
= 1, . 

= ~ 5 /(~ 5 +~ 5 ) 
1 1 1 1 2 2 

= fl /(fl +fl ). 
112 

• • Then, wi th probabili ty p, (8 ,<1» is sampled from d (e,</» and is accepted 
1 

•• •• with probability e(8,<1> .lId (8 ,<1». Similarly, with probability 1- p, 
1 

• • (8 ,<1> J is sampled from d (a, 4» 
2 

and is accepted wi th probabi 1 i ty 

•• •• • • e(8 ,<1> )/d (8 ,<1». The ) accepted (8 ,<1» will have Bingham distribution · 
2 

having p.d.f. (4.4). Denote this algorithm as BHM. The sampling efficiency 

of BHM is 

2R n/2 

R = J J exp[ (k cos
2

</>+k sin
2
</»sin

2
a]sine ded~ / (fl +fl ). 

BHH . 1 2 1 2 
o 0 

We have shown in the discussion of Dimroth-Watson distribution that an 

envelope proportional to (1_px
2

)-3/2 is very efficient for the marginal 

distribution. By noting the similarity between Dimroth-Watson distribution 

and Bingham distribution, in fact the former is a special case of the 

latter, we may apply a similar envelope to aid sampling from the Bingham 

distribution. We discuss the new method here. 

Let k(~) 

Then 

re k = max(k ,k ) and consider e E [0'-2]. 
m 1 2 
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= exp[k(~)] exp[-k(~)cos2S] sinS. 

With a change of variable X = cose, (4.6) becomes 

2 
exp[k(~)]exp[-k(~)x ] 

,' ... ... 
~ exp(k )exp(-k x2), 

m m 

(4.6) 

x e [0,1]. (4.7) 

Note that exp(-k x2) is proportional to the marginal Dimroth-Watson p.d.f. 
m 

2 -3/2 This suggests C(l-px) as an env~lope for X = cose where C is some 

constant. By using the result in Appendix 2, we have 

where {3 
3/2 3 1 = (X exp (- - (1 - -)) 

2 (X' 
(X = -3p/2k , 

m 
p = [A - (A2 + 16k )1/2]/4 and 

m 

A = -2k + 3. Hence, by (4.7) and (4.8), we have 

(4.9) 

Since it has been shown that the enve lope determined by (4. 8) is a good 

envelope for the marginal Dimroth-Watson p.d.f (the sampling efficiency in 

the worst case is 0.5 when k ~ 00), the success of our method depends almost 

solely on 'the inequality (4.7). Thus, when k and k are close in values, 
1 2 

our envelope due to (4.9) will be good. Otherwise, when the two parameters 

differ much apart, the sampling efficiency 

21[ 1[/2 ' 

R = (1_p)1/2 J J exp[(k cos2~+k sin2~)sin29]sin9 d9d~ / 2n(3exp(k ) 
BGM 1 2 m o 0 

will be too small. Denoted by BGM, our algorithm based on (4.9r is 

Algorithm BGK 

S. Set k = max(k ,k ), 
m 1 2 

A = -2k +3, 
m 

(X = -3p/2k , 
m 
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1. Generate U
1

, U
2

" U
3 

independent U(O, 1). 

2. ~ = 21[U • 
1 

3. k = k cos2~ + k sin2~, 
p 1 2 

4. 5 

5. W = 1 + k (1-5) - k 

6. If W > 0 

p m 

232 and U S (l-pS) W /q, 
3 

tben go to step 8. 

7. If U2 > (1-pS)3exp (2(W-l))/q, then go to step 1. 
3 

8. 8 = cos -lVS. 

9. Generate U - U(O,l). 
4 

10. If U < 0.5, then 8 = 1[-8. 
4 

To compare our algorithm BGM with Johnson's BHM. Let's look at the' ratio of 

their sampling efficiencies, R /R first: 
BHW' BGK 

k -80 -10 -2 -0.5 o 0.5 2 - 10 100 
m 

Ratio 0.95 0.91 0.8 0:79 0.8 0.82 0.86 0.66 0.22 

The ratio is smaller than one for all k, implying that BGM may be more 

efficient than BHM. Furthermore, the mean requirement of random numbers for 

BGM is 1+ 3jR which is always smaller than that, 1+ 4jR , for BHM. This 
~K . ~K 

gives more evidence that the proposed algorithm is better than Johnson's 

algorithm. 

An empirical comparison i"s conducted to ~- compare the marginal generation 

time for BH, BHM and BGM by generating a sample of size 10000 using the 

three algori thms respectively. For algori thm BH, the mixture variable is 

generated by usIng the same envelope as the one we use in DWAG for 

Dimroth-Watson distribution and variates from the von Mises distribution are 
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generated by algorithm VMBF. By experience, it is advisable to approximate 

the von Mises distribution by the uniform distribution when the 

concentration parameter is too small, say < 0.001, to avoid tremendous 

rounding error in VMBF. The result is shown in table 4.4. 

:-. ~ ' .. 

Table 4.4 Marginal generation time (~s) for Bingham distribution 

(k , k ) 
1 2 

(.5,.1) (2, .1) (6,5) (20,~) (-.1,-.5) 

BH 649 708 670 1948 633 

BRM · 293 429 411 2709 299 

BGM 205 316 288 1146 203 

Table -4.4 (cont'd) ,£-=--- , -

(k , k ) 
1 2 

(-.1,-2) (-5,-6) (-5,-20) (1,-1) (10,-10) 

BH 684 703 873 695 2113 

BRM 414 406 734 427 2196 

BGM 273 294 492 300 1267 

For all the selected values of (k ,k), BGM is uniformly fastest and this 
1 2 

well conforms to our expectation. BH is inferior to the · other algori thms 

with the exceptional case that it is faster than BHM when Ik -k I is large. 
1 2 

It is shown that the marginal generation time for all algorithms are 

sensi ti ve to the absolute difference between k and k. The larger the 
1 2 

Ik1-k21, the longer the generation time. In fact, the generation time tends 

to infinity when Ik -k I 
1 2 

-+ 00. This follows because all the sampling 

efficiencies tend to zero in this case. 
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4.2.6 Bingham-Mardia Distribution 

This distribution, i.ntroduced by Bingham and Mardia (1978), is usually 

used as a model for data concentrated towards a small circle on the sphere. 

So it belongs to a family known as the small-circle distributions. The 

standardized p~' d. f. is 

fee,</>; k,t) ex exp[k(.cose-t)2]sine, (4.10) 

where e e [O,x], </> e [0,2x) and te [0,1), with rotational symmetry about 

the direction e = o. The small-circle girdle form corresponds to k < ° with 

maximum concentration around the small circle specified by 9 = cos-~t. , When 

k > 0, we have a ' squeezed bel t' distribution wi th minimum concentra tion 

around the circle e = cos-It. 

The form of (4.10) is very similar to the Dimroth-Watson distribtltion. 

In fact, it reduces to the Dimroth-Watson density when t = o. A generation 

procedure similar to DWAG is thus suggested for (4.10) here. 

With a change of variable Y = coss - t, the p.d.f. of Y is 

. 2 
fey) = Crexp(ky ), y e [-l-l,l-l]. 

Split the interval y e [-l-t,l-t] into the two intervals [-l~l,O) and 

[O,l-t] and use envelopes proportional to the following p. d. f. s 

correspondingly: 

where 

= [1-PI(1+t)2]1/2/(1+l). 

= [1-P
2

(1-l)2]1/2/C1 -l ). 

so 

y e [-l-l,O), 

y e [0, l-l] , 



Define 

= [A - (A2-16k(1+t)2)1/2]/4(1+t)2 
11' 

= [A' - (A2-16k(1-l)2)1/2]/4(1-l)2 
2 2 ' ' 

and 

3/2 3 1 f3 (p ) .". = a exp (- - (1 - a )), 
i 1 2 1 . 

, 2 
A = 3 + 2k (1 +t) , 

1 

2 
i\ = 3 + 2k (i-t) , 

2 

a = 3p 12k, 
1 1 

where i = 1, 2. Following the spirit of the proof in Appendix 2, it can be 

shown that 

Y E [-l-t,a). 

y E [a, 1-t]. ; 

and that the choice of p, P is optimal so as to maximize the sampling 
1 2 

efficiency over each interval of y, that is, for i = 1 and 2, 

Let 

max 
p 

and U, U, U be independent U(a,l). Then, the steps in generating (8,~) 
123 

from Bingham-Mardia distribution are: 

Procedure BM 

accept X = Y 

accept X = Y 

51 

generate Y from g (y) and 
1 

Similarly, 

generate Y from g Cy) and 
2 . 



It is simple to generate variate from gl Cy ), i = 1, 2: 

(1) To generate Y from g (y), y e [-l-t,O): 
1 

Set Y = -C1+l)U / [1-P1 C1+l)2C1-U2)]1/2, U ,., U(O, 1). 

-
(ii) To gener,~e Y from g Cy), y e [O,l-l]: 

2 

/ 
2 2 1/2 ) Set Y =, (l-l)U [1-P

2
C1-l) .(l-U )], U ,., UCO, 1 . 

Special ' case: When t = 0, p equals . p and we choose to generate variate 
1 2 

from g Cy), y e [-1,0) or g Cy), y e [0,1] with equal probability. This is 
1 2 

exactly the same as the case for Dimroth-Watson distribution using DWAG. 

Note that the mean requirement of random, numbers to generate one vector 

(8,t) using BM is N = 1+ ,3/R where 
e 

is the sampling efficiency. It is because, on the average, l/R random 

numbers is used to select which envelope to generate, l/Rto generate from 

the chosen envelope, l/R to check the acceptance of Y while the remaining 

one is to generate t. Table 4.5 below lists 

values of k and t. 

Nand R for some chosen 
e 

Table 4.5 The mean requirement of random numbers to generate 
one vector from Bingham-Mardia distribution using BH (Sampling 
efficlencies in parentheses). 

k 

t -20 -5 -1 -0.1 0.5 1 5 20 

0.2 4.7 4.4 4.1 4 4 4.2 5.9 6.5 
(.82) C. 88) (.98 ) (1 ) (.99 ) (.95) (.62) (.54) 

0.5 4.6 4.4 4.1 4 4.1 4.5 6.2 6.6 
(.84) (.89 ) (.96 ) (1 ) (.96 ) (.87) C.58) C.54) 

0.8 4.4 4.5 4.3 4 4.3 4.9 6.4 6.7 
(. S7) (.87) (.92) (1) (.92) ( . 77) (.56) (.53) 
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The mean requirement of random numbers N ranges from the minimum 4 when 
e 

k = 0, to below 7. The effect of l is only slight on the value of N . 
e 

Therefore, BM is considered an efficient procedure for Bingham-Mardia 

distribution. Note also that the sampling efficiency appears to converge to 

0.5 when k ~ ~ _ regardless of the value of i. 

4.2.7 Other distributions 

Wood (1987) develops envelope-rejection procedures for generating a 

sub-family of the general Fisher-Bingham distributions. This sub-family 

contains 6 parCl;meters and is called FB distribution. Wi th an appropriate 
6 

choice of coordinate axes, the FB density can be written as 
6 

-f (x; k , (3 , '1 ) 

where k ~ 0, (3 ~ 0 and '1 e (-00, (0), x = (x ,x ,x ) T, for x2 
+ x2 

+ x2 = 1. 
1 2 3 1 2 3 

Some special cases included are: 

(1) uniform' (k=(3='1=O); (2) Fisher «(3='1=0); (3) Dimroth-Watson (k=(3=O); 

(4) Bingham, a special case (k=O) ( 4 ) FB ( (3=0) ; 
4 

(5) Kent distribution, 

( 0 r FB ) ( '1=0) . 
5 

By letting 

x = 2 
3 ' 

. 2 1/2 
X = (1-2) cos~ 

1 
and (4.11) 

Wood shows that 2~ I 2=z has von Mises distribution wi th mode 0 and 

2 concentration parameter /3(l-z ) and the marginal p.d.f. of 2 is 

. -1 2 ' 2 2 
g(z; k,/3,'1) = C(k,(3,'1) I [(3(l-z )] exp(kz +'1z ), 

o 
ze [-l,ll. 

Since · efficient generators for von Mises distribution already exist, the 

problem is to generate variate from g(z; k,(3,'1). Wood proposed four 

envelopes for g according to the values of k, f3 and '1 (In each cases, the 
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sampling efficiency is denoted by a.): 

(i) (3 = 0, ({ :s a -1 g(z; k,a,({) ~ a. (k,({) g(z; k,a,a) 

where a.(k,({) = C(k,a,({) / C(k,a,a). 

(ii) (3 = 0, ({ :s a -1 g(z; k,a,({) ~ a. (k,({) g(z; k+2({,a,a) 
" :-- ,~ 

(iii) (3 = a, ({ ~ 0 

g(z; k,a,({) ~ a:1 (k,({) [pg(z; k+({,a,O)+(l-p)g(z; k-({,a,a)] 

where p = C(k+'1,O,O) / [C(k+'1,O,O) + e(k-'1,O,O)] and 

a.(k,'1) = p(1+e-2'1 )C(k,a,'1) / C(k+'1,O,O). 

(iv) For all possible k, (3 and '1 

.g (z; k, (3, (1) :s a:1 (k, (3, (1) [pg (z; k, a, '1-(3) + ( 1-p) g (z; k-'1 , 0 , '1-~).] 

where p = e(k,O,'1-(3) / [C(k,O,'1-(3) + e-2(3C(k,O''1+(3)] and 
_ -(3 . . 

a.(k,(3,'1) - 2pe C(k,{3,'1) / C(k,O,'1-(3). 
I 

The envelope for the marginal FB density with negative quadra~ic term 
4 

by (i) and (ii), which are based on the inequalities '1Z2 ~ 0 and oz2 ~ 

({(2z-1) respectively and valid for ({ ~ a, are proportional to marginal 

Fisher densities. 

In (iii), the marginal FB density with positive quadratic term is 
4 

surrounded by an envelope proportional to a mixture of two marginal Fisher 
2 

densities based on the inequality e'1z+e-'1z ~ e'1z (1+e-2'1 ), Z e [-1,1], '1 ~ O. 

The general envelope by (i v) is proportional to a mixture of two 

marginal FB4 densities based on the inequali~y Io(x) ~ cosh x. 

The generation procedure for FB is thus 
6 

Procedure FB6 

1. Generate Z from g(z; k,{3,(1) using one of the four envelopes suggested. 

2. Generate 0 - Bernoulli(O.5). 
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3. Generate ~ e (-n,n) from von .Mises distribution with 

concentration parameter ~(1_Z2). 

4. If ~ < 0, then accept ~ = (l+o)n + ~/2; otherwise accept ~ = on + ~/2. 

. T 
5. Obtain X = (X ,X ,X) from Z and ~ via (4.11). 

. 1 2 3 

.,' .- .. :" 

In step 1-, how to decide which envelopes to use depends on the values 

of k, f3 and '1. For FB distributions (~ = 0), Wood discusses situations in 
4 

which a particular envelope is best for g(z; k,O,'1). All candidate envelopes 

are proportional to marginal Fisher densities. 

For the FB distributions ('1 = 0), the envelope chosen is proppr~ional 
5 

to the marginal Fisher density with parameter k. The procedure is adequate 

when k ~ ' 2~ where FB is unimodal. The performance is less satisfactory for 
5 

bimodal FB_ . when k < 2~. 
5 

In the general case, the FB, enve lope by ( i v) is used. The samp ling 
6 

efficiency depends on ~he (lower) bound I (~)/cosh ~ which, 
o 

as shown by 

Wood, is a decreasing function of (3~ Thus, the procedure FB6 will be 

inefficient for large f3. 

Wood's procedure is also suitable for the Dimroth-Watson distribution 

(k = f3 = 0). The envelopes he uses are ei ther uniform (see (i) ) or 

proportional to the marginal Fisher densities (see (ii) and (iii)). In terms 

of sampling efficiency, however, these envelopes are inferior to those 

envelopes we discussed earlier. 
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CHAPTER FIVE 

GENERATING V ARIA TES FROM NON-UNIFORM 

DISTRIBUTIONS' ON THE N-SPHERE 

§5.1 Introduction 
s~ 

In this chapter we will discuss simulation of variates from 

distributions on the higher dimension~l (> 3) sphere. Though applications of 

directional data models have been much concentrated to the two and three 

dimensions, one 'important application of higher dimensional distributi,ons is 

given by Stephens (1982) in the analysis of continuous proportions. 

Important distributions on the n-sphere include the von Mises-Fisher 

distribution and the Bingham distribution (throughout this chapter, w~ will 

unambiguously use the name Bingham distribution to stand for the general 

n-dimensional Bingham distribution) which frequently appear in literature. 

Ulrich (1984) developed a procedure for constructing algorithms to generate 

variates from the Saw distribution. The method is applied to the von 

Mises-Fisher distribution, a special case of the Saw distribution, and is 

found to be very efficient. In the next section we will see how Ulrich's 

method work and investigate the effectiveness of his new method in a small 

simulation study. In addition, a procedure for the Bingham distribution is 

proposed. 

§5.2Methods for Higher Dimensional Spherical Distributions 

Before discussing Ulrich's work, let us consider the n-dimensional Saw 

distribution first. 
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Let X be an n x 1 random vector with unit length (that is XTX = 1). Saw 

(1978) defined a p.d.f. of X as 
}- '" 

T g(kx ~) 
aC 

n k 

g(ur '~ 0, g' (u) > 0, g(u) is ' the kernel function; 

k ~ 0 is the concentration para!'leter; 

~ is an n x 1 vector called the modal vector with ~T~ 

a = 2rc
n

/
2
/ r (n/2) ; 

n 

1 

(5.1) 

= 1 ; 

(1_t 2 )(n-3)/2 
c J g(kt) dt, is the normalizing constan.t and = 

k 
B(1/2, (n-l )/2) -1 

B(a,{3) is the beta function. 

The densi~y defined by' (5.1) is known as the Saw distribution. The 

following theorem is the key to the problem of generating random vector X 

from (5. 1) . 

Theorem Let W be a random variable with p.d.f. 

g (kw) (1 -w 2 l ( n - 3 ) /2 

B ( 1/2, (n -1 ) 12 ) 
W E [-1,1], n ~ 2, (5.2) 

and let V ,., U 
n-1 

-the uniform distribution on the (n-i)-sphere, be 

independent of W. Then the vector X, where 

T has p.d.f. f(x; k,~) as (5.1) with modal vector ~ = (0,0, ... ,0,1). 

The 'theorem characterizes a property of the Saw distribution that it 

has constant densi ty on all (n-l )-dimensional subspheres. Since there are 

many efficient methods to generate V from U (see chapter 2), the problem 
n-1 

remains generating the mixture variable W from (5.2). 
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5.2.1 The von Mises-Fisher Distribution 

When the kernel function g(u) = exp(u), the p. d. f. defined by (5.1) 

becomes the von Mises-Fisher distribution, denoted as F . 
n 

which further reduces to U when k = o. 
n 

The p.d.f is 

(5.3) 

Some particular cases ot F include: (i) the von Mises distribution 
n 

(n = 2 t and (ii) the Fisher distribution (n = 3), which have been discussed 

in chapt~r three and chapter four respectively. 

Instead of using Cartesian coordinates X, it is sometimes convenient to 

consider the distribution F in terms of spherical polar coordinates 
n 

e = (8 , ... ,8 )T. Without loss of generality, let the modal vector E be 
1 n-l 

- T - ,<-,.,-

(0, ... ,1). The p.d.f. of 8 is 

-f(8; k) = C (k) -exp(kcosS) sinn
-

2S ..... sinS . , 
n 1 1 n~2 

(5.4) 

where C (k) is the normalizing c'onstantand e E [0, n-] , j = 1, 2, ... , n-2; 
n J 

a E [ 0 , 2n:) , k > o. 
n-l 

To generate the mixture variable from (5.2) when the kernel function is 

the exponential function,- Ulrich suggested to use envelope-rejecti'on method 

with an envelope proportional to the p.d.f. 

e(x; b) = 
2b(n-l)/2 _ (1_x2 )(n-3)/2 

n-l' B ( (n -1 ) 12, (n -1 ) 12 ) [( 1 + b ) - ( 1 -b) x ] 
X E [-1,1], (5.5) 

where 

It is easy to generate variate from'e(x; b) since X - e(x; b) if 

X = [1 - (1+b)Z] 1 [1 - (l-b)Z], 

where Z - Beta((n-1)/2, (n-1)/2). 
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In order to generate X - F , we have the following algorithm: 
1 

n 

Algorithm VMFU 

S. Set b = {~2k + [(n-1)2+ 4k2]1/2} / (n-1), 

n-1 
d = (n-l) [1 - In(2)]. 

1. Generate U ·~" U(O,l) and Z - Beta«n-l)/2,(n-l)/2). 

2. T = (n-l)(l+b) 12[1-(1-b)Z]. 

3. If (n-l)lnT - T + d < lnU, then go to step 1. 

4. Generate V - U n-l 

5. W = [1 - (1+b)Z] / [1 - (l-b)Z]. 

Ulrich used a preliminary step 

(2') If n + In(~(n-l)a) + d - (n-l)~/T - T ~ au, then go to step 4. 

before step 3 to increase execution speed. He suggested to use 8 = 1.25 and 

; = n-1. An algorithm based on envelope-rejection technique is suggested to 

generate Z from the symmetric beta distribution in step 1 when n ~ 3: 

Algorithm SBETA To generate Z - Beta(a,a). 

1. Generate U , U independent U(O,l). 
1 2 

3. If S > 1, then go to step 1. 

When n = 2 . (that is, the von Mises distribution), the symmetric beta 

distribution can be generated efficiently (the sampling efficiency is n/4) 

lSome corrections and simplification have been made to Ulrich's (1984) 

original algorithm due to some mistakes found in his paper. 
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by Johnk's (1964) envelope-rejection method: 

Algorithm SHBETA To generate Z - Beta(1/2,1/2). 

1. Generate U , U independent U(O,l). 
1 2 

2. S = U
2 + U

2
• 

1 2 

3. If S > 1, then go to step 1. 

4. Z = U
1

2
/S. 

To access the performance of algorithm VMFU (with pre-test 2' and step 

4 by Muller's (1959) method), we compare the timings for generating 10000 

samples by VMFU wi th that of another . algor i thm known as VMFPS. A normal 

generator RNNOF from IMSL is employed to generate standard normal variates 

for Muller's method. Results are listed in table 5.1. Now let us see what 

- VMFPS is and how it works. 

VMFPS initially generates a random vector 8 from (5.4) and then obtains 

X by polar transformation. By (5.4), it is obvious that 8 , ... ,8 are all 
1 n-l 

independent with 8 - U(0,2n) and 8 , .. j = 2, 3, ... , n-2 having power sine 
n-l j 

densities (since the _marginal p.d.f. of 8 j is proportional to sinn- J-
1e

J 
for 

n-2 
J = 2 3, ... , n-2) and f(a) oc exp(kcos9 )sin 9. Generation from the . , 1 1 1 

power sine densi ties can be achieved, for example by envelope-rejection 

method suggested by Johnson (1987) (except for 9 which can be generated 
n-2 

directly by inversion method). His method can be summarized as follows 

(J .= 2, 3, ... , n-3): 

Algorithm PYS 

1. Generate U , U independent U(0,1). 
1 2 

-2. Se t 8 = nU . 
J 1 

3. If sinn
- J-19 < U < 1 - I cosn- j-19 I, then go to step 1. 

j 2 j 

n-J-l 4. If U ~ sin 9, then accept 9 . 
2 J j 

5. Otherwise, U ~ 1 - Icosn-j-19 I. If 8 ~ n/2, accept 8 = 8 +n/2. 
2 j ' j j j 

60 



If e > n/2, accept 8 = 8 - n/2. 
j j j 

The generation of 8 can be achieved by noting that 
1 

n-2 exp(kcos9 ) sin 9 ~ exp(kcosS) sinS, 
1 1 1 1 

S e [O,n]. 
1 

(5.6) 

That is, the marginal p.d.f. of 8 is surrounded by an envelope which is 
1 ..... ," ,~ 

proportional to the marginal Fisher density. Algorithm FSH or FSHR discussed 

in chapter four can be used, 'for the marginal Fisher distribution. Here, we 

use FS~. The complete algorithm ofVMFPS is stated as follows: 

Algorithm VMFPS 

S. Se t B = e 2k - 1. ' 

1. Generate U , U independent U(0,1). 
1 2 

2. Set 8 = cos-1 [-1 + k-~ln(BU + 1)]. 
1 - 1 

. n-3 
~ SIn 8· 

l' 
otherwise go to step 1. 

3. Generate e, 8 , ... , 18 using PWS. 
2 3 n-3 , 

4. Generate U , U independent U(0,1). 
3 4 

5. Set e = cos -1 (1-2U ). 
n-2 3 

6. Set 8 = 2nU . 
n-1 . 4 

7. Obtain X = (X , ... ,X) by 8 = (8 , ... ,8 ) through polar transformation. 
1 n 1 n-1 

Table 5.1 Timings (s) for generating a sample of size 10000 
from von Mises-Fisher distribution using VMFU (timings for 
VMFPS are in blankets). 

n 

k 4 5 7 10 

0.5 5.72(3.25) 6.67(4.75) 8.72(8.18) 11.7(14.2) 

1 5.72(3.28) 6.71(4.85) 8.76(8.29) 11.7(14.5) 

3 5.75(3.61) 6.67(5.55) 8.73(9.90) 11.7(17.3) 

20 5.95(5.85) 6.80(14.9) 8.76(72.2) 11.7 (477) 
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As pointed out by Ulrich that the execution times of the algorithm VMFU will 

not depend appreciably upon the value of k. From table 5.1 we see that the 

execution times of VMFU are almost the same for all selected values of k at 

each chosen dimension n. It is observed that the execution time increases 
~ 

linearly with".the increase in the dimension n. In fact, based on the above 

data, the following relation can be formulated (assume k has no effect on 

execution time and treat the execution times at each dimension as repeated 

observa:tions): 

T = 1.78 + 0.99 n, with R2 ~ 0.999, (5.7) 

where T is the estimated execution time. Thus, empirically, VMFU is an D(n) 

routine. The linear relation (5.7) demonstrates that the envelope which is 

proportional to the transformed symmetric beta densi ty (5.5) is "a- very 

efficient envelope for the mixture density defined by (5.2) when the kernel 

function is the ~xpone~tial function. 

In comparison with VMFU, algorithm VMFPS is only faster when nand k 

are small (e.g. k ~ 3 when n = 5). Its execution time depends heavily on the 

parameter k: if k increases, then the execution time increases dramatically. 

From the empirical observations on table 5.1, it can be shown that VMFPS is 

of order n2 when k is small (k ~ 3). The situation gets much worse when k is 

large. The problem is mainly due to the poor envelope used in generating 8 . 
1 

If we examine step 4 of VMFPS, we can find that when k is large, there is 

only a small probability that 8 
1 

be accepted. 

Sometimes we are more interested in the generation of the polar angles 

e than the Cartesian coordinates X. One advantage of VMFPS is that it can 

generate e directly. Since VMFU in its creation is designed for generating X 

directly, inverse polar transformation is necessary to obtain 8. In such 

. case, it ' would be time-consuming to evaluate the numerous arc-sine and 

\ 

'" 
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arc-cosine functions. Thus only in the situation when both nand k are small 

and polar angles are much desirable is VMFPS a preferable choice. In 

general, VMFU is the fastest algorithm for von Mises-Fisher distribution at 

all situations. 

5.2.2 Bingham Distribution 

This is a generalization of the 3-dimensional Bingham distribution for 

axial directional data in the n-dimensional space. A random vector X = 
n 

(X ; •.. ,X ), wi th L X2 = 1 J is said to have Bingham distribution if its 
1 n 1 

1=1 

p.d.f. 

T where etr(") = exp(tr(.)), 11 = (11 , ••• ,11) is an orthogonal matrix and K = 
1 n 

diag(k , ... ,k) is a diagonal matrix of parameters. Without loss of 
1 n 

generality, we assume 11 = I, the identity matrix. The p.d.f. becomes 

f(x; I,K) 
n 

ex exp ( L k x 2 ) • 
1 1 

1=1 

Since the parameters k are unique up to an additive constant, we may assume 
1 

k = 0 for uniqueness. In terms of polar coordinates 8 = (8, ... ,8 )T, the 
n 1 n-1 

p.d.f. of 8 is proportional to 

where 

n-l 

bee; K) = exp(k (e)) n sin1
-

1e 
o n-1 

k (e) 
o 

1=2 

n-l n-1 

= - 2 k (cose n 
1 n-1+1 

j=O 
1=1 

sine )2 
j 

j = 1,2, ... , n-2 e e [D, 2n) . 
n-l 

arid sine = coss = 1, 
o n 

(5.8) 

S e [D,n], 
J 

An envelope-rejection procedure is proposed to generate 8 from (5.8) 
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here. To start, we seek an envelope such that all c~mponents of 8 are 

independent. This has the advantage that the proposed envelope will be 

easily generated. An envelope is derived below: 

where 

Le t k = max (k ,..., k ). Then 
m 1 n-l 

n-l 

b(a; K) (k . 2 ) n . i-la 
~ exp S1n a S1n 

m 1 n-i 
1=2 

(k . 2a ) . n-2a = exp m S 1n 1 S 1n , 1 
• n-3a S1n 

2 

- e (a ; k ) e (a ) .... e (a ) 
1 1 m 2 2 n-2 n-2 

- e(a; k ). 
m 

sina 
n-2 

(5.9) 

e (a ) == sinn
- j-la , 

j j j 
for j = 2, 3,.00, n-2. 

The inequality (5.9) defines an envelope e(a; k) for bee; K) and it is 
m 

C?bvious that this epvelope has independent components and hence each of 

these components' can be generated separately. 

Based on the envelope e(e; k) we can derive an envelope-rejection 
m 

• procedure for the Bingham distribution. Suppose 8 • • T • = (8,000,8 ) 1S a 
1 n-l 

random vector of polar coordinates distributed as e(a; k). Then under the 

condition that 

• 
u ~ b(8 ; k) 

• e(8 ; k ) 
m 

where U UeO,l) • is independent of 8, 

distribution as bea; K). 
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• the vector 8 will have a 



Our problem is how to generate variates from e(S; k ). 
m 

Note that the marginal distributions of e, j = 2, 3, ... , n-2 are power 
j 

sine distributions and these variates can thus be generated by the same 

methods we have discussed in the generation of the von Mises-Fisher 

distribution ,,(.algorithm VMFPS). Namely, e (9 ) is generated by inversion 
n-2 n-2 

method and e (9 ), j = 2, 3, ... , n-3 by Johnson's envelope-rejection method 
j j 

(algori thm PWS). 

To generate e from e (9 ; k), the result in Appendix 2 is helpful to 
, , 1 1 1 m 

show that 

(9 k) (k · 29 ) . n-29 ell; m == exp m SIn 1 sIn 1 

~ exp(k sin2e )sin9 
m 1 1 

' . 2 -3/2. 
~ exp(k ) ~(1 - peos 9) sInS, 

m 1 1 

where 

Q = a 3/2 exp (- ~ (1 - ~)) 
p 2 a' a = -3p/2k , 

m 

A = -2k + 3. 
m 

Let X = cosS. By (5.11)', we obtain 
1 

or 

.:" -~ (5. 11 ) 

G t . . t f f3 ( 1 X2 ) -3/2 . . 1 h· d b th th f enera Ing varla e rom - p IS easl y ae leve y e me od 0 

inversion. • 2 -3/2 Therefore, if X , generated from f3(1 - px) , satisfies the 

condition 

(5.12) 

• where U - U(a,l) is independent of X , it will be distributed as e
1

(9
1

; km). 

Algorithm NBG below shows clearly the steps in generating Bingham 
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variates using envelope e(9; k ). 
j, ' , " m 
,:1 .~' .~ . 

~lgorithm NBG 
~\ ... .. ) .,~.~ . .' ~ ' " 

~. .' Se t km = max (k 1 ' • . . ,k n-1 ) , 
. ".' , . ; ~ .... . 

i\. = -2k +3, __ = [i\. - (i\. 2 + 16k ) 1/2] /4, 
m Pm ' 

ex = -3p/2k , 
m 

3 . 
q = ex exp (-3 + 3/ ex) , 

1. Generate U , U independent U(O,l). 
1 2 

2. S = U2 
/ [1-p(1-U2

)]. 
- 1 1 

3.W = 1 - k S. 
m 

4. If W > 0 and U2 ~ (1_pS)3(1_S)n-3 W2/q, then go to step 6. 
2 

5. If U2 > (1-pS)3(1-S)n-3exp [2(W-l)]/q, then go to step 1. 
2 . 

6. Set e = ±cos-1VS, 
1 

where ± is a random sign. 

7. Generate e, e , ... , e using algorithm PWS. 
2 3 1 n-3 

8. Generate U , U , U independent U(O,l). 
, 3 4 S 

9. Set e = cos -1 (1 ~2U ). 
n-2 3 

10. Set e = 21lU . 
n-1 4 

n-1 n-l 

11. Compute k = 2 k (cose n sine )2. 
o 1 n-l+1 j 

j=O 
1=1 . 

12. T = 1 + k - k sin
2
e . 

o m 1 

13. If U ~ T, then go to step 15. 
S 

14. If U > exp(T-l), then go to step 1. 
S 

15. Accept e T = (e , ... ,e ). 
1 n-1 

(sine = COSe = 1) 
o n 

The algorithm is · self-explainable. Step 2 generates the envelope for 

e (9 ; k ). Step 5 is based on tbe acceptance test (5.12) while step 14 
1 1 m 
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perform the test (5.10). 

To access the performance of the proposed algorithm NBG, we programmed 

the algori thm in Fortran and ran it on an IBM4381 computer. Based on a 

selection of the dimensionality n and the parameters k , ... , k , a sample 
1 n-i 

of size 1000 w~s generated and the time requirements (in seconds) are listed 

as follows: 

Table -.~. 2 Timings (s) for generating a sample of size 
Bingham distribution using NBG 

10000 from the 
, . 

4 

(-10,-9,-6) 
1.16 

(1,2,5) 
1.91 - . 

(1,2,8) 
4.17 

(11,12,15) 
2.09 

n 

6 

(-10,-9,-9,-8,-6) 
4.88 

( 1", 1 , 2 , 3 , 5 ) 
5.27 

(1,1,2,3,8) 
21.2 

(11,12,13,15) 
5.68 

10 

(-10,-9,-9,-8.5,-8,-8,-7,-7,-6) 
23.9 

(1,1,1.5,2,2,2.5,3,3,5) 
14.2 

(1,1,1.5,2,2,2.5,3,3, .8) 
133 

(11,11,11.5,12,12,12.5,13,13,15) 
14.8 

Note: (1) Timings are highlighted; 
(2) Blanketed values represent parameters k , k , ... and so on. 

1 2 

To summarize, the efficiency of the procedure NBG depends on these factors: 

(1) Dimensionality n: The larger the value n, the lower the efficiency. 

It is because most of the components of the envelope determined by 
~ 

e(S; k ) are generated by various envelope-rejection methods whose sampling 
m 

efficiencies decline as n increases. 

(2) Relative differences between the k's: The larger the differences, the 

lower the efficiency. 

As the values of the parameters differ much apart, the envelope 

e(S; k ) will not tightly cover the target function b(9; K). Therefore the 
m 
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probabi 1 i ty of accept ing the vector e generated from e (9; k) by . (5. 10) 
m 

decreases. 

The above two factors are deterministic to the efficiency of NBG. 

The effect of other factors such as the magnitude of k's, on the other hand, 

seems to be less dramatic. 
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CHAPTER SIX 

SUMMARY AND DISCUSSION 

The generation_of random points on the n-sphere has been discussed by 
,' .. - .... 

many people and some efficient generators have been developed-: Of all the 

efficient generators we have discussed in chapter two, Muller's (1959) 

method is perhaps the most importan~. Theoretically, his method is simple 

and elegant. As an O(n) routine, its applicability covers almost all 

dimensions and simulation result (see table 2.1) ensures that the marginal 

generation time increases only linearly with the dimensionality. On the 

other hand, . the other procedures developed by Sibuya (1962)· and Tashiro 

(1976) are essentially based on the theory of Muller and hence they aJ~"~e also 

O(n) routines and significant improvement in speed should not be expected. 

Methods proposed for the generation of distributions on the circle are 
I 

basically very efficient and all enjoys simple algorithms. For the lattice 

distributions and wrapped Poisson distribution which are both discrete, 

variate generation are nothing new compares to the univariate cases. Other 

distributions like the wrapped normal, wrapped Cauchy and angular Gaussian 

distributions can be obtained readily by transforming the appropriate 

univariate/bivariate random variables. Simple algorithms based on 

, envelope-rejection technique are proved to be useful for the Cardioid, 

triangular 'as well as the von Mises distributions. For the von Mises 

distribution, it is worthwhile to mention that the envelope used by Best and 

Fisher (1979) which is based on the wrapped Cauchy distribution is 

essentially the same as that used by Ulrich (1984) which is proportional to 

the transformed symmetric beta distribution (5.5) in the sense that one 

envelope can be converted to the other through a transformation of its 
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parameter. Another envelope which uses the simple inequali ty cosx !: 1 -

2 _'= 
X /yre, x e (-re, re] is also proved to be as efficient as that by ·Best and 

Fisher (1979) (or Ulrich (1984)). Dagpunar (1983, 1990) introduced a still 

faster method when k is fixed between calls, however, price .has to be paid. 

The cost for .~phancement in speed is higher program complexi ty _~~_, numerical 

integration becomes necessary in calculating some constants in the set-up 

step. 
, . 

Va,riates generation in the 3-dimensional case is usually a tougher job 

than in the two dimensions. With the exception of the Fisher and Arnold 

distributions which can be generated simply by inversion method; most 

spherical distributions cannot be generated this way because they do not 

have closed forms and ~here are also no simple transformations of other 

univariate distributions which are easily generated as in the circular case. 

Envelope-rejection methods seems to work well in this si tuation. In this 

h d \ f I I h- h - f f CC1-px2
)-3/2, paper we ave propose a very use u enve ope w lC IS 0 orm 

where x e [-1,1] and C is some constant. According to its form, the envelope 

1s expected to work for spherical distributions which are axial in nature. 

In fact, it. is applied to spherical distributions like the Dimroth-Watson, 

Bingham (also in higher dimensions) and ' Bingham-Mardia distributions (for 

this small-circle distribution, slightly modified envelopes are used) and 

the results are quite satisfactory. For the Dimroth-Watson and 

Bingham-Mardia distributions, the envelopes work very well for all 

parameters of interest. While for the Bingham distribution, the envelope is 

efficient when the two parameters are rather close in values_ 

On the higher dimensional sphere (n > 3), variates generation is even 

more difficult. The polar method suggested for the Bingham distribution is 

only effective when the values of k , ... , k are all close to one another 
1 n-l 
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while the other polar method for the von Mises-Fisher distribution is useful 

only when k is small. Ulrich's (1984) algorithm has been shown to be very 

efficient for the latter case. It is empirically an D(n) routine and thus 

should be applicable virtually to all dimensions. 

It is quite common that the usual variate generation technique employed 
. , .... .... :~' 

when the dimension is greater than two is the envelope-rejection method. One 

obvious drawback of envelope-rejection method is that an envelope which is 

itself- ~asily generated is usually too 'coarse' to cover the target p.d.f. 

tightly especially when the p.d.f. contains many parameters and the 

dimension is high. Thus efficient envelopes may only be found sui tab,le for 

certain parameters values and in low dimensions. This greatly limits the 

strength of the generators developed by this method. Unfortunately, there 

seems to be no better way out. 

It can be shown that the envelope C(1_px2
)-3/2 is proportional to a 

particular member of the 3-dimensional angular Gaussian distributions. Since 

the family of n-dimensional angular Gaussians can be easily generated (by 

normalizing a multivariate normal vector by its root sum of squares) and 

wi th sui table choice of parameters it covers many n-dimensional spherical 

distributions such as the unimodal distributions, symmetric girdle and 

bipolar distributions, there is a conjecture that this family of 

distributions may be useful to construct envelopes for spherical 

distributions of interest on the n-sphere. Such extension requires some 

work. 

In this paper, variates generating algor~thms of quite a lot of useful 

n-dimensional spherical distributions (n ~ 2) have been discussed. However, 

there are still some other distributions missed. Computer simulation of 

random variates from such distributions are yet under exploration. 
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ApPENDIX 1 

SELECTED FORTRAN SUBROUTINES 

Al.l TNRML(AS,X), truncated normal 
, ..... ........ 

SUBROUTINE TNRML(AS,X) 
c 
C SUBROUTINE GENERATES A TRUNCATED NORMAL VARIATE X 
C DEFINED ON (-1,1) OF MEAN ZERO AND VARIANCE 1/AS. 
C 

2 

DATA PI2/6.2831853071 
DATA IN, INITIO, 01 
IF (INIT.EQ.O) THEN 

B = 1.0 - EXP(-AS) 
INIT = 1 

ENDIF · 
IF (IN.EQ.1) THEN 

X = Q*SIN(ETA) 
IN = ° 
RETURN 

ENDIF 
RS = -2*ALOG(1 - RNUNF()*B) 
ETA = PI2*RNUNF() 
C = COS (ETA) 
ZlS = RS*C*C 
Z2S = RS - ZlS 
IF (ZlS.GT.AS .OR. Z2S.GT.AS) GOTO 2 
Q = SQRT(RS/AS) 
X = Q*C 
IN = 1 
RETURN 
END 

Al.2 RPN1(N,X), random point 

SUBROUTINE RPN1(N,X) 
C 
C SUBROUTINE GENERATES A RANDOM POINT ON THE N-SPHERE, 
e USING MULLER'S (1959) METHOD. 
e OUTPUT: X(l), X(2), ... , X(N) 
e ARE THE CARTESIAN COORDINATES OF THE RANDOM POINT. 
C 
eRNNOF IS A STANDARD NORMAL GENERATOR (FUNCTION) FROM IMSL. 
e 

REAL X(N) 
S = 0.0 
DO 20 J = t, N 

X (J) = RNNOF ( ) 
" S = S + X(J)*X(J) 
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20 CONTINUE 
SRI = 1.0/SQRT(S) 
DO 30 J = 1,N 

30 X(J) = X(J)*SRI 
RETURN 
END 

Al.3 RPN2(N, ,~J, random point 

SUBROUTINE RPN2(N,X) 
C 
C SUBROUTINE GENERATES A RANDOM POINT ON THE N-SPHERE, 
C USING SIBUYA'S (1962) METHOD. 
C OUTPUT: X(l), X(2), ... , X(N) 
C . ARE THE CARTESIAN COORDINATES OF THE RANDOM POINT. 
C 
C SVRGN IS A SQRTING SUBROUTINE FROM IMSL. 
C 

PARAMETER (LM = 500) 
REAL X(N),U(LM) 
DATA PI2/6.2831853071 
IF (N. LT. 2 . OR. N .. GE. 2*LM) THEN 

WRITE(6,100) 2*LM-1 <-'7.,-

100 FORMAT(' DIMENSIONS SMALLER THAN 2 OR GREATER THAN' ,IS) 
STOP 

ENDIF 
L = N/2 
HN = .5*FLOAT(N) 
IF (L&NE.HN) L = L + 1 
LL = L "- 1 
U(L) = 1.0 
IF (N.GT.2) THEN 
, CALL RNUN(LL,U) 

CALL SVRGN(LL,U,U) 
ENDIF 
DO 30 I = 1,L 

IF (I.EQ.1) THEN 
DIFFR = SQRT(U(l)) 

ELSE 
DIFFR = SQRT(U(I)-U(I-1)) 

ENDIF 
CALL RNUN(l,R) 
ETA = PI2*R 
X(2*I-1) = DIFFR*COS(ETA) 
IF (I.EQ.L . AND. L.NE.HN) THEN 

XN = DIFFR*SIN(ETA) 
ELSE 

X(2*I) = DIFFR*SIN(ETA) 
ENDIF 

30 CONTINUE 
IF (L.NE.HN) THEN 

SRI = 1.0/SQRT(1.0 - XN*XN) 
DO 40 I = 1,N 

40 XCI) = X(I)*SRI 
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ENDIF 
RETURN 
END 

A1.4 RPN3(N,X), random point 

SUBROUTINE RPN3(N,X) 
C 
C SUBROUTINE G~NERATES A RANDOM POINT ON THE N-SPHERE, 
C USING A MODIFIED SIBUYA'S (1962) METHOD. 
C OUTPUT: X ( 1 ), X (2) , . . ., ·X (N ) 
C ARE THE CARTESIAN COORDINATES OF THE RANDOM POINT. 
C 
C ORDERED UNIFORMS ON (0,1) ARE GENERATED BY 
C EXPONENTIAL-SPACINGS METHOD. 
C 

PARAMETER (LM = 500) 
REAL X(N), U(LM) 
DATA PI2/6.2831853071 
IF (N.LT.2 .OR. N.GE.2*LM) THEN 

WRITE(6,100) 2*LM-1 
100 FORMAT(' DIMENSION SMALLER THAN 2 OR GREATER THAN' ,IS) 

STOP ", .. 
ENDIF 
L = N/2 
HN = 0.5*FLOAT(N) 
IF (L.NE.HN) L 9 L+1 
CALL RNUN(L,U) 
S = 0.0 
DO 20 I = 1,L 

U(I) = -ALOG(U(I)) 
S = S + U(I) 

20 CONTINUE 
DO 25 I = 1,L 

25 U(I) = U(I)/S 
DO 30 I = 1,L 

DIFFR = SQRT(U(I)) 
CALL RNUN(l,R) 
ETA = PI2*R 
X(2*I-1) = DIFFR*COS(ETA) 
IF (I.EQ.L.AND.L.NE.HN) THEN 

XN = DIFFR*SIN(ETA) 
ELSE 

X(2*I) = DIFFR*SIN(ETA) 
ENDIF 

30 CONTINUE 
IF (L.NE.HN) THEN 

SRI = 1.0/SQRT(1.0 - XN*XN) 
DO 40 I = 1,N 

40 XCI) = X(I)*SRI 
ENDIF 
RETURN 
END 
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Al.S RPN4(N,X), random point 

SUBROUTINE RPN4(N,X) 
C 
C SUBROUTINE GENERATES A RANDOM POINT ON THE N-SPHERE, 
C USING TASHIRO'S (1976) METHOD. 
C OUTPUT: X(l), X_(2), ... , X(N) 
C ARE THE J;ARTESIAN COORDINATES OF THE RANDOM POINT. 
C 

PARAMETER (LM = 500) 
REAL X(N),U(LM) 
DATA PI2/6.28318S307/ ' 
IF (N.LT.2.0R.N.GE.2*LM) THEN 

WRITE(6,100) 2*LM-1 
100 FORMAT(' DIMENSION SMALLER THAN 2 OR GREATER THAN' ,IS) 

STOP 
ENDIF 
L = N/2 
RN = O.S*FLOAT(N) 
IF (L.EQ.HN) THEN 

LL = L - 1 
U(L) = 1.0 " 
IF, (N. GT. 2) THEN _,'7.-

CALL RNUN(LL,U) 
DO 20 I = LL,l,-l 

20 U(I) = U(I+1)*U(I)**(1.0/FLOAT(I)) 
ENDIF 

DO 30 I = 1,L 
IF (I.EQ.1) THEN 

DIFFR = SQRT(U(l)) 
ELSE 

DIFFR = SQRT(U(I) - U(I-1)) 
ENDIF 
CALL RNUN(l,R) 
ETA = PI2*R 
X(2*I-1) = DIFFR*COS(ETA) 
X(2*I) = DIFFR*SIN(ETA) 

30 CONTINUE 
ELSE 

U(L+1) = 1.0 
CALL RNUN(L,U) 
DO 70 I =L,l,-l 

70 U(I) = U(I+1)*U(I)**(2.0/FLOAT(2*I - 1)) 
CALL RNUN(l,R) 
X(l) = SQRT(U(l)) 
IF (R.LT.O.S) X(l) = -X(l) . 
DO 'SO 1= 1,L 

DIFFR = SQRT(U(I+1) - U(I)) 
CALL RNUN(l,R) 
ETA = PI2*R 
X(2*I) = DIFFR*COS(ETA) 
X(2*I+1) = DIFFR*SIN(ETA) 

. 80 CONTINUE 
ENDIF 
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RETURN 
END 

Al.6 RP3(X), random point 

SU~ROUTINE RP3(X) 
C 
C SUBROUTINE" .-~ENERATES A RANDOM POINT ON THE 3-SPHERE, 
C USING MASAGLIA'S (1972) METHOD. 
C OUTPUT: X(l), X(2), X(3) 
C ARE THE CARTESIAN COORDINATES OF THE RANDOM POINT. 
C 

1 
REAL X(3) 
'CALL RNUN(2,X) 
X(l) = 2.0*X(1) - 1.0 
X(2) = 2.0*X(2) - 1.0 
S = X(l)*X(l) + X(2)*X(2) 
IF (S.GT.l.0) GOTO 1 
SS = 2.0*SQRT(1.0 - S) 
X(l) = X(l)*SS 
X(2) = X(2)*SS 
X(3) = 1.0 - 2.0*$ 
RETURN 
END 

Al.7 RP4(X), random point ' 

SUBROUTINE RP4(X) 
C 
C SUBROUTINE GENERATES A RANDOM POINT ON THE 4-SPHERE, 
C USING MASAGLIA'S (1972) METHOD. 
C OUTPUT: X ( 1 ), X (2), X ( 3); X ( 4) . 
C ARE THE CARTESIAN COORDINATES OF THE RANDOM POINT. 
C 

REAL X(4), U(2) 
1 CALL RNUN(2,U) 

X(l) = 2.0*U(1) - 1.0 
X(2) = 2.0*U(2) - 1.0 
Sl = X(l)*X(l) + X(2)*X(2) 
IF (Sl.GT.1.0) GOTO 1 

2 CALL RNUN(2,U) 
X(3) = 2.0*U(1) - 1.0 
X(4) . ~ 2.0*U(2) - 1.0 
S2 = X(3)*X(3) + X(4)*X(4) 
IF (S2.GT.1.0) GOro 2 
SS = SQRT((1.0 - Sl)/S2) 
X(3) = X(3)*SS 
X(4) = X(4)*SS 
RETURN 
END 
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Al.S VHBF(M,K,THETA), von Mises 

SUBROUTINE VMBF(M,K,THETA) 
e 
e SUBROUTINE GENERATES M RANDOM POINTS (THETA) FROM THE VON MISES 
C DISTRIBUTION ON THE CIRCLE WITH DENSITY PROPORTIONAL TO 
C EXP(K*COS(THETA)), WHERE THETA IN [O,PI], 
C USING BEST AND __ FISHER'S (1979) METHOD. 
C 
e 
C 

, .... ..... ..... 

PARAMETER: K > 0 

REAL K,THETA(M) 
DATA PI/3.141592654/ 
IF (K.LE.O.O) THEN 

- _ WR I TE ( 6, 100) 
100 FORMA T (' PARAMETER K I S NOT GREATER THAN ZERO' ) 

C 

2 

10 

STOP 
ENDIF 
TAU = 1.0 + SQRT(1.0 + 4.0*K*K) 
RHO = (TAU - SQRT(2.0*TAU))*0.S/K 
R = O.S/RHO + O.S*RHO 

DO 10 I = 1,M ,_ 
Z-=COS(PI*RNUNF()) 
F = (1-.0 + R*Z)/(R + Z) -
C = K*(R - F) 
T1 = C*(2.0 - C) 
U = RNUNF() 
IF (U.GE.T1) THEN 

T2 = ALOG(C/U) + 1.0 - C 
IF (T2.LT.0.0) GOTO 2 

ENDIF 
THETA(I) = ACOS(F) 
IF (RNUNF().LT.0.5) THETA(I) = -THETA(I) 

CONTINUE 
RETURN 
END 

Al.9 VMTN(M,K,THETA), von Mises 

SUBROUTINE VMTN(M,K,THETA) 
C 
e SUBROUTINE GENERATES M RANDOM POINTS (THETA) FROM THE VON MISES 
C DISTRIBUTION ON THE CIRCLE WITH DENSITY PROPORTIONAL TO 
e EXP(K*COS(THETA)), WHERE THETA IN [O,PI], 
e USING AN ENVELOPE-REJECTION METHOD. 
e 
C PARAMETER: K > 0 
C 

REAL K,THETA(M) 
DATA V/2.4674011/ 

C V = PI*PI/4 
IF (K.LE.O.O) THEN 
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WRITE(6,100) 
100 FORMAT (' PARAMETER K IS NOT GREATER THAN ZERO' ) 

STOP, 
ENDIF 
DO 10 I = I,M 

1 CALL TNORM(K,V,THETA(I)) 
T = 1.0 + K*CCOSCTHETA(I)) + O.S*THETA(I)*THETA(I)/V - 1.0) 
U = RNUNF() 
IF (U. GT. T) ~THEN 

T = ,' ·EXP C T - 1. 0 ) 
IF (U.GT.T) GOTO 1 

ENDIF 
10 CONTINUE 

C 

RETURN 
END 

SUBROUTINE TNORM(K,V,X) 

C SUBROUTINE GENERATES A TRUNCATED NORMAL VARIATE X 
C DEFINED ON (-PI,PI) WITH MEAN ZERO AND VARIANCEV/K. 
C 

REAL K 
DATA PI2/6.28318S3071 
DATA IN, INIT/O,OI . 
IF (INIT.EQ.O) THEN 

SIGMAS = V/K 
AS = 4.0*K 
B = 1.0 - EXP(-AS) 
INIT=l 

ENDIF 
IF (IN.EQ.l) THEN 

X = W*SIN(ETA) 
IN = 0 
RETURN 

ENDIF 
2 RS = ~2.0*ALOG(1.0 - RNUNF()*B) 

ETA = PI2*RNUNF() 
C = COS (ETA) 
ZlS = RS*C*C 
Z2S = RS - ZlS 
IF (ZlS.GT.AS.OR.Z2S.GT.AS) GO TO 2 
W = SQRT(RS*SIGMAS) 
X = W*C 
IN = 1 
RETURN 
END 

AI.IO · FSHR(M,K,THETA,PHI), Fisher 

SUBROUTINE FSHR(M,K,THETA,PHI) 
C 

; , 

C SUBROUTINE GENERATES M RANDOM VECTORS (THETA, PHI) FROM THE FISHER 
C DISTRIBUTION ON THE SPHERE WITH DENSITY PROPORTIONAL TO 
C EXP(K*COS(THETA))*SINCTHETA), 
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C WHERE THETA IN [O,PI] AND PHI IN [O,PI2=2*PI), 
C USING FISHER ET AL'S (1981) METHOD. 
C 
C PARAMETER: K > 0 
C 

REAL K,THETA(M),PHI(M) 
DATA PI2/6.283185307/ 
IF (K.LE.O.O) THEN 

WRITE(6,100) 
100 FORMAT ( , PARAMETER K IS NOT GREATER THAN ZERO' ) 

STOP 
ENDIF 
B = EXP(-2.0*K) 

DO 10 I = 1,M 
- Y = B + (1. O-B) *RNUNF ( ) 

THETA(I) = 2.0*ASIN( SQRT(-0.5*ALOG(Y)/K) ) 
PHI (I) = PI2*RNUNF() 

10 CONTINUE 
RETURN 
END 

A1.11 ARND(M,K, TIlETA, PHI), Arnold ' 

SUBROUTINE ARND(M,K,THETA,PHI) 
C 
C SUBROUTINE GENERATE? M RANDOM VECrORS (THETA, PHI) FROM THE ARNOLD 
C DISTRIBUTION ON THE SPHERE WITH DENSITY PROPORTIONAL TO 
C EXP(-K*ABS(COS(THETA)))*SIN(THETA), 
C WHERE THETA IN [O,PI] AND PHI IN [0,PI2=2*PI), 
C USING AN INVERSION METHOD. 
C 
C PARAMETER: K > 0 
C 

REAL K,THETA(M),PHI(M) 
DATA PI2/6.283185307/ 
IF (K.LE.O.O) THEN 

WRITE(6,100) 
100 FORMAT(' PARAMETER K IS NOT GREATER THAN ZERO' ) 

STOP 

C 

ENDIF 
B = 1.0 - EXP(-K) 

DO 10 I = 1,M 
U = RNUNF() 
IF (U.GT.0.5) THEN 

THETA(I) = ACOS( ALOG(1.0 + (1.0-2.0*U)*B)/K ) 
ELSE 

THETA(I) = ACOS(-ALOG(1.0 - (1.0-2.0*U)*B)/K ) 
ENDIF 
PHI (I) = PI2*RNUNF() 

10 CONTINUE 
RETURN 
END 
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A1.12 SLBY(M,K,THETA,PHI), Selby 

SUBROUTINE SLBY(M,K,THETA,PHI) 
C 
C SUBROUTINE ~ENERATES M RANDOM VECTORS (THETA, PHI) FROM THE SELBY 
C DISTRIBUTION ON THE SPHERE WITH DENSITY PROPORTIONAL TO 
C EXP(K*SIN(THETA))*SIN(THETA), 
C WHERE THETA IN [O,PI] AND PHI IN [0,PI2=2*PI), 
C USING AN ENVELOPE-REJECTION METHOD. 
C 
C PARAMETER: K > 0 
C 

-~EAL K,THETA(M),PHI(M) 
DATA PI2/6.2831853011 
IF (K.LE.O.O) THEN 

WRITE(6,100) 
100 FORMAT(' PARAMETER K IS NOT GREATER THAN ZERO' ) 

STOP 

C 

1 

10 

ENDIF 

DO 10 I = 1,M 
CALL TNRML(K,X) -
T = 1.0 + K*(SQRT(1.0-X*X) + 0.5*X*X -1.0) 
V = RNUNF() 
IF (V.GT.T) THEN -

T = EXP(T - ~.O) 
IF (V.GT.T) GOTO 1 

ENDIF 
THETA(I) = ACOS(X) 
PHI (I) = PI2*RNUNF() 

CONTINUE 
RETURN 
END 

A1.13 DVBF(M,K,THETA,PHI), Dimroth-Vatson 

SUBROUTINE DWBF(M,K,THETA,PHI) 
C 
C SUBROUTINE GENERATES M RANDOM VECTORS (THETA, PHI) FROM THE DIMROTH-
C WATSON DISTRIBUTION ON THE SPHERE WITH DENSITY PROPORTIONAL TO 
C EXP(K*COS(THETA)**2)*SIN(THETA), -
C WHERE THETA IN [O,PI] AND PHI IN [0,PI2=2*PI), 
C USING BEST AND FISHER'S (1986) METHOD. ~ 

C 
C PARAMETER: K ANY REAL NUMBER EXCEPT ZERO 
C 

REAL K,THETA(M),PHI(M) 
DATA PI,PI2,PI4/3.141592654,6.283185301,12.566310611 

C PI4 =4*PI 
IF (K.EQ.O.O) THEN 
_ WRITE(6, 100) 
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100 FORMAT (' PARAMETER K IS ZERO' ) 
STOP 

c 
ENDIF 

IF (K.GT.O.O) THEN 
C = 1.0/(EXP(K) - 1.0) 
DO 10 I = 1,M 

1 X = ALOG(RNUNF()/C + 1.0)/K 
T = 1.0 + K*X*(X - 1.0) 
U =--RNUNF() 
IF (U.GT.T) THEN 

T = EXP(T - 1.0) 
IF (U.GT.T) GOTO 1 

ENDIF 
THETA(I) = ACOS(Y) 
V = RNUNF() 
IF (V.LT.O.S) THEN 

-THETA(I) = PI - THETA(I) 
PHI (I) = PI4*V 

ELSE 
PHI (I) = PI4*V -PI2 

ENDIF 
10 CONTINUE 

ELSE 
Z= SQRT(-K) 
B = ATAN(Z) 
DO 20 I = 1,M 

2 X = TAN(B*RNUNF()) 
W = X*X 
T = 1.0 - W*W 
U = RNUNF() 
IF (U.GT.T) THEN 

T = (1.0 + W) * EXP(-W) 
IF (U.GT.T) GOTO 2 

ENDIF 
THETA(I) = ACOS(X/Z) 
V = RNUNF() . 
IF (V.LT.O.S) THEN 

THETA(I) = PI - THETA(I) 
PHI (I) = PI4*V 

ELSE 
PHI (I) = PI4*V - PI2 

ENDIF 
20 CONTINUE 

ENDIF 
RETURN 
END 

Al.14 DllAG(M,K,TIIETA,PHI), Dimroth-Yatson 

-SUBROUTINE DWAG(M,K,THETA,PHI) 
C 
C SUBROUTINE GENERATES M RANDOM VECTORS (THETA, PHI) FROM THE DIMROTH-
C WATSON DISTRIBUTION ON THE SPHERE WITH DENSITY PROPORTIONAL TO 
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c 
c 
c 
c 

EXP(K*COS(THETA)**2)*SIN(THETA), . 
WHERE THETA IN [O,PI] AND PHI IN [0,PI2=2*PI), 
USING AN ENVELOPE-REJECTION METHOD. 

C PARAMETER: K ANY REAL NUMBER EXC~PT ZERO 
C 

REAL K,THETA(M),PHI(M) 
DATA PI,PI2,PI4/3.141592654,6.283185307,12.566370610/ 

C PI4 = 4*PI 
IF (K.EQ.O.O) THEN 

WRITE(6,100) 
100 FORMAT(' PARAMETER K IS ZERO' ) 

C 

1 

10 

STOP 
ENDIF 
H = 2.0*K + 3.0 
P = (H - SQRT(H*H - 16.0*K))*.2S 
G = 1.5*P/K 
Q = EXP(-3.0 + 3.0/G)*G*G*G 

DO 10 I = 1,M 
Ul = RNUNF() 
U2 = RNUNF() 
U1S= Ul*Ul 
U2S = U2*U2 
S '= U1S/(1.0 - P*(1.0 - U1S)) 
W = 1.0 + K*S 
V = 1.0 - P*S 
R = V*V*V/Q 
T = W*W*R 
IF (W.LT.O.O .OR. U2S.GT.T) THEN 

T = EXP(2.0*K*S)*R 
IF (U2S.GT.T) GOTO 1 

ENDIF 
THETA(I) = ACOS(SQRT(S)) 
V = RNUNF() 
IF (V.LE.O.S) THEN 

THETA(I) = PI - THETA(I) 
PHI (I) = PI4*V 

ELSE 
PHI (I) = PI4*V - PI2 

ENDIF 
CONTINUE 
RETURN 
END 

A1.1S DWTN(M,K,THETA,PHI), Dimroth-Watson C 

SUBROUTINE DWTN(M,K,THETA,PHI) 
C 
C SUBROUTINE GENERATES M RANDOM VECTORS (THETA, PHI) FROM THE DIMROTH­
C WATSON DISTRIBUTION ON THE SPHERE WITH DENSITY PROPORTIONAL TO 
C EXP(K*COS(THETA)**2)*SIN(THETA), 
C WHERE THETA IN [O,PI] AND PHI IN [0,PI2=2*PI), 
C USING TRUNCATED NORMAL DISTRIBUTION. 
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C 
C PARAMETER: K < 0 
C 

REAL K,THETA(M),PHI(M) 
DATA PI2/6.2831853071 
IF (K.GE.O.O) THEN 

WRITE(6,100) 
1 00 FORMAT ( , PARAMETER K I S NOT SMALLER THAN ZERO' ) 

STOP 

C 

ENDIF ,' "-' 

DO 10 I = 1,M 
CALL TNRML(-2.0*K,X) 
THETA(I) = ACOS(X) 
PHI (I) = PI2*RNUNF() 

10 "CONTINUE 
RETURN 
END 

A,l.16 BH(M,Kl,K2, THETA,PHI), Bingham (3-dim) 

SUBROUTINE BH(M,K1,K2,THETA,PHI) 
C 
C SUBROUTINE GENERATES M RANDOM VECTORS (THETA, PHI) FROM THE BINGHAM 
C DISTRIBUTION ON THE SPHERE WITH DENSITY PROPORTIONAL TO 
C EXP({K1*COS{THETA)**2 + K2*SIN(THETA)**2)*SIN(THETA)**2)*SIN(THETA), 
C WHERE THETA IN [O,PI] AND PHI IN [0,PI2=2*PI), 
C USING A METHOD DERIVED FROM WOOD (1987). 
C 
C 
C 
'C 
C 
C 

PARAMETER: K1 AND K2 ARE ANY REAL NUMBERS EXCEPT ZEROES 

DAWS AND ERF ARE IMSL SUBOUTINES FOR EVALUATING THE DAWSON'S INTEGRAL 
AND THE ERROR FUNCTION RESPECTIVELY. 

REAL K1,K2,KA,K1A,K2A,THETA(M),PHI(M) 
DATA PI/3.1415926541 
DATA V/1.1283791671 

C V = 2/SQRT(PI) 
IF (K1.EQ.0.0 .OR. K2.EQ.0.0) THEN 

WRITE(6,100) 
100 FORMAT(' PARAMETERS Kl OR K2 OR BOTH IS ZERO' ) 

STOP 
ENDIF 
KIA = SQRT(ABS(K1)) 
K2A =SQRT(ABS(K2)) 
KA = KIA1K2A 
IF (Kl.LT.O.D . AND. K2.LT.D.D) THEN 

Dl = DAWS(KIA) 
D2 = DAWS(K2A) 
P = D1/(Dl + KA*D2) 

ELSEIF (Kl.GT.O.D . AND. K2.Gr.0.0) THEN 
El = ERF(KIA) 
E2= ERF(K2A) 
P = El/(El + EXP(K2 - K1)*KA*E2) 
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1 

10 

C 

ELSEIF (Kl.GT.O.O .AND. K2.LT.Q.O) THEN 
El = ERF(KIA) 
D2 = DAWS(K2A) 
P = El/(El + V*EXP(-Kl)*KA*D2) 

ELSE 
Dl = DAWS(K1A) 

. E2 = ERF(K2A) 
P = Dl/(D1 + EXP(K2)*KA*E2/V) 

ENDIF 
DO 10 1-- = 1, M 

IF (RNUNF().LT.P) THEN 
CALL DW(-K1,TS) 

ELSE 
CALL DW(-K2,TS) 

ENDIF 
R = O.S*(Kl - K2)*(1.0 - TS) 
T = BSIO(R)/COSH(R) 
IF (RNUNF().GT.T) GOTO 1 
THETA(I) = ACOS(SQRT(TS)) 
IF (RNUNF().LT.O.S) THETA(I) = PI - THETA(I) 
CALL VMBF(l,R,PSI) 
PHI (I) = O.S*PSI 
IF (PSI.LT.O.O) PHI (I) = PHI (I) + PI 
IF (RNUNF(). LT .. ·O. S) PHI (I) = PHI (I) +. PI 

CONTINUE 
RETURN 
END 

SUBROUTINE DW(K,TS) 

C SUBROUTINE DW GENERATES THE MIXTURE VARIABLE T (IN FACT, TS = T**2 IS 
C GENERATED) USING AN ENVELOPE PROPORTIONAL TO (1 - P*X**Z)**(-3/Z). 
C 

REAL K 
DATA PI/3.141S926S4/ 
H = 2.0*K + 3.0 
P = (H - SQRT(H*H - 16.0*K))*.ZS 
G = 1.S*PIK 
Q = EXP(-3.0 + 3.0/G)*G*G*G 

2 U1 = RNUNF() 
U2 = RNUNF() . 
U1S = U1*U1 
U2S = U2*U2 
TS = UIS/(1.0 - P*(1.0 - U1S)) 
W = 1.0 + K*TS 
V = 1.0 - P*TS 
R = V*V*V / Q 
T = W*W*R 
IF (W.LT.O.O .OR. U2S.GT.T) THEN 

T = EXP(2.0*K*TS)*R 
IF (U2S.GT.T) GOTO 2 

ENDIF 
RETURN 
END 
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A1.17 BHM(M,K1,K2,THETA,PHI), Bingham (3-dim) . . 

SUBROUTINE BHM(M,Kl,K2,THETA,PHI) 
C 
C SUBROUTINE GENERATES M RANDOM VECTORS (THETA, PHI) FROM THE BINGHAM 
C DISTRIBUTION ON THE SPHERE WITH DENSITY PROPORTIONAL TO 
C EXP«Kl*COS(THETA)**2 + K2*SIN(THETA)**2)*SIN(THETA)**2)*SIN(THETA), 
C WHERE THETA IN [O,PI] AND PHI IN [0,PI2=2*PI), 
C USING JOHNSON'S (1987) METHOD. 
C 
C PARAMETER: Kl AND K2 AR~ ANY REAL NUMBERS WITH THE LARGEST NOT 
C EQUAL TO ZERO. 
C 

, REAL K, Kl, K2, KA, THETA (M) , PHI (M') 
bATA PI,PI2/3.141S926S4,6.28318S3071 
K = AMAXl (K 1 , K2 ) 
IF (K.EQ.O.O) THEN 

WRITE(6,100) 
100 FORMAT(' THE LARGEST OF Kl AND K2 IS ZERO' ) 

C 

STOP 
ENDIF 
DK = Kl - K2 
D =EXP(. 7S*K) - '1.0 
DELTA =-PI2*DIK 
P = DELTA/(DELTA + PI*EXP(K)) 

DO 10 I = 1,M 
1 PHI (I) = PI2*RNUNF() 

CP = COS(PHI(I)) 
KA=DK*CP*CP + K2 
IF (RNUNF().LT.P) THEN 

STS = ALOG(1.0 + RNUNF()*D)IK 
CT = SQRT(1.0 - STS) 
W = 1.0 + (KA - K)*STS 
U = RNUNF() 
IF (U.GT.W*O.S/CT) THEN 

T = EXP(W - 1.0)·0.S/CT" 
IF (U.GT.T) GOTO 1 

ENDIF 
THETA(I) = ACOS(CT) 

ELSE 
U = RNUNF() 
STS = 1.0 - 0.2S*U*U 
W = 1.0 + KA*STS - K 
U = RNUNF() 
IF (U.GT.W) THEN 

T = EXP(W - 1.0) 
IF (U.GT.T) GOTO 1 

ENDIF. 
THETA(I) = ASIN(SQRT(STS)) 

ENDIF 
IF (RNUNF().LT.O.S) THETA(I) = PI - THETA(I) 

10 CONTINUE 
RETURN 
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END 

Ai.iS BGMCM,Ki,K2,THETA,PHI), Bingham (3-dim) 

SUBROUTINE BGM(M,Kl,K2,THETA,PHI) 
e 
e SUBROUTINE GENERATES M RANDOM VECTORS (THETA, PHI) FROM THE BINGHAM 
e DISTRIBUTION ON THE SPHERE WITH DENSITY PROPORTIONAL TO 
e EXP«Kt*tOS(THETA)**2 + K2*SIN(THETA)**2)*SIN(THETA)**2)*SIN(THETA), 
e WHERE THETA 'IN [0, PI] AND PHI IN [0, PI2=2*PI) , 
e USING AN ENVELOPE-REJECTION METHOD. 
e 
e 
C 
e 

PARAMETER: K1 AND K2 ARE ANY REAL NUMBERS WITH THE LARGEST NOT 
EQUAL TO ZERO. 

REAL K,K1 ,K2,KO,KA,THETACM), PHI (M) 
DATA PI,PI2/3.141592654,6.283185307/ 
K = AMAX1(K1,K2) 
IF (K.EQ.O.O) THEN 

WRITE(6,100) 
100 FORMAT(' THE LARGEST OF Kl AND K2 IS ZERO' ) 

C 

STOP 
ENOIF 
DK = Kl ·. - K2 , 
H = -2.0*K + 3.0 
P = (H - SQRT(H*H + '16.0*K))*.25 
G = -1.5*P/K 
Q = EXP(-3.0 + 3.0/G)*G*G*G 

DO 10 I = I,M 
1 PHI (I) = PI2*RNUNF() 

CP = eOS(PHl(I)) 
KA = DK*CP*CP + K2 
U1 = RNUNF() 
U2 = RNUNF() 
U1S = U1*U1 
U2S = U2*U2 
S = U1S/(1.0 - P*(1.0-U1S)) 
W = 1.0 + KA*(1.0 - S) - K 
V = 1.0 - P*S 
R = V*V*V/Q 
T = W*W*R 
IF (W.LT.O.O .OR. U2S.GT.T) THEN 

T = EXP(2.0*W - 2.0)*R 
IF (U2S.GT.T) GOTO 1 

ENDIF ' 
THETA(I) = ACOS(SQRT(S)) 
IF (RNUNF().LT.0.5) THETA(I) = PI - THETA(I) 

10 CONTINUE 
RETURN 
ENO 
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A1.19 BM(M,K,L,THETA,PHI), Bingham-Mardia 

SUBROUTINE BM(M,K,L,THETA,PHI) 
C 
C SUBROUTINE GENERATES M RANDOM VECTORS (THETA, PHI) FROM THE BINGHAM-
C MARDIA DISTRIBUTION ON THE SPHERE WITH DENSITY PROPORTIONAL TO 
C EXP(K*(COS(THETA) - L)**2)*SIN(THETA), 
C WHERE THETA IN [O,P!.] AND PHI IN [0,PI2=2*PI), 
C USING AN ENVELOPE-REJECTION METHOD . .... .. ..... 

C 
C PARAMETER: K IS ANY REAL NUMBER EXCEPT ZERO; 
C L IS ANY RE~ NUMBER IN [0,1] 
C 

100 

6 

C 

REAL K,L,THETA(M),PHI(M) , 
- .REAL LS(2),H(2),P(2),G(2),Q(2),D(2) 

DATA PI2/6.28318S3071 
IF (K.EQ.O.O .OR. L.LT.O.O .OR. L.GT.l.0) THEN 

WRITE(6,100) 
FORMAT(' PARAMETER K IS ZERO OR L IS OUT OF THE RANGE [0,1]')-
STOP 

ENDIF 
LS(l) = (1.0 + L)*(1.0 + L) 
LS(2) = (1.0 - L)*(1.0 - L) 
N ~2 
IF (L.EQ.l.0) N = 1 
DO 6 J = 1,N 

H{J) = 3.0 + 2.0*K*LS(J) 
P(J) = (H{J) - SQRT(H(J)*H(J) - 16.0*K*LS(J)})*0.2S/LS(J) 
G(J) = 1.S*P(J)/K 
Q(J) = EXP(-3.0 + 3.0IG(J»*G(J)*G(J)*G(J) 
D{J) = SQRT(LS(J)/(1.0 - P(J)*LS(J») 

CONTINUE 
IF (N.EQ.l) THEN 

SPRl = 1.0 
ELSE 

SPRl = D(l)*SQRT(Q(l»/(D(l)*SQRT(Q(l» + D(2)*SQRT(Q(2») 
ENDIF 

DO 10 I = 1,M 
1 IF (RNUNF{).LE.SPR1) THEN 

J = 1 
ELSE 

J = 2 
ENDIF 
Ul = RNUNF() 
U2 ~ RNUNF() 
U1S = Ul*Ul 
U2S = U2*U2 
YS = LS(J)*U1S/(1.0 - P(J)*LS(J)*(1.0 - U1S» 
W = 1.0 + K*YS 
Y = 1.0 - P(J)*YS 
R = Y*Y*V/Q(J) 
T = W*W*R 
IF (W.LT.O.O .OR. U2S.GT.T) THEN 

T = EXP(2.0*W - 2.0)*R 
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IF (U2S.GT.T) GOTO 1 
ENDIF 
IF (J.EQ.1) THEN 

x = -SQRT(YS) 
ELSE 

X = SQRT(YS) 
ENDIF 
THETA(I) = ,ACOS(X + L) 
PHI (I) = P12*RNUNF() 

10 CONTINUE 
RETURN 
END 

A1.20 VMFPS(N,K,X), von Mises-Fisher 

SUBROUTINE VMFPS(N,K,X) 
C 
C SUBROUTINE GENERATES A RANDOM POINT FROM THE VON MISES-FISHER 
C DISTRIBUTION ON THE N-SPHERE USING POWER METHOD. 
C OUTPUT: X(l), X(2), ... , X(N) 
C ARE THE CARTESIAN COORDINATES OF THE RANDOM POINT. 
C 
C PARAMETER: K > 0 
C DIMENSION:- N > 2 
C 

REAL K, X(N) , THETA ( 100) , S (100) 
DATA PI2/6.2831853071 
IF (K.LE.O.O .OR. N.LT.3) THEN 

WRITE(6,100) 
100 FORMAT(' PARAMETER K IS NOT GREATER THAN ZERO OR DIMENSION IS', 

& ' SMALLER ,THAN 3' ) 
STOP 

ENDIF 
NN = N - 3 

1 Y = -1.0 + ALOG((EXP(2.0*K) - 1.0)*RNUNF() + 1.0)/K 
T = SQRT(1.0 - Y*Y)**NN 
IF (RNUNF().GT.T) GOTO 1 
THETA(l) = ACOS(Y) 
DO 20 J = 2,NN 

20 CALL PWS(J,THETA(NN-J+2» 

C 

IF (N.GT.3) THETA(N-2) = ACOS(1.0 - 2.0*RNUNF(» 
THETA(N-1) = PI2*RNUNF() 

C TRANSFORM THETA TO X THROUGH POLAR TRANSFORMATION 
C 

S(l) = SIN(THETA(l» 
DO 30 I = 2,N-i 

-S(I) = S(I-1)*SIN(THETA(I» 
X(N~I+1) = S(I-1)*COS(THETA(I» 

30 CONTINUE : 
X(i) = S(N-1) 
X(N) = COS(THETA(l» 
RETURN 

-END 
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SUBROUTINE PWS(J,X) 
C 
C SUBROUTINE GENERATES A VARIATE X FROM THE POWER SINE 
C DISTRIBUTION WITH DENSITY PROPORTIONAL TO 
C SIN(X)**J, WHERE J > 1 AND 0 < X < PI, 
C USING JOHNSON'S (1987) METHOD .. 
C 

DATA PI,PIHl3.141592654,1.570796327/ 
C PIH = PI/2 
2 X = PI*RNUNF() 

BL = SIN(X)**J 
BU = 1.0 - ABS(COS(X))**J 
V = RNUNF() 
IF (V.GT.BL . AND. V.LT.BU) GOTO 2 

- - IF (V.LE.BL) THEN 
RETURN 

ELSE 
IF (X.LE.PIH) THEN 

X = X + PIH 
ELSE 

X = X - PIH 
ENDIF 

ENDIF 
RETURN 
END 

Al.21 VMFU(N,K,X), von Mises~Fisher 

SUBROUTINE VMFU(N,K,X) 
C 

' C SUBROUTINE GENERATES A RANDOM POINT FROM THE VON MISES-FISHER 
C DISTRIBUTION ON THE N-SPHERE USING ULRICH'S (1984) METHOD. 
C OUTPUT: X(l), X(2), ... , X(N) 
C ARE THE CARTESIAN COORDINATES OF THE RANDOM POINT. 
C 
C PARAMETER: K > 0 
C DIMENSION: N > 2 
C 

REAL K,N1,X(N) 
DATA E/0.223143551/ 

C E = LN(1.25) 
IF CK.LE.O.O .OR. N.LT.3) THEN 

WRITE(6,100) 
100 FORMAT(' PARAMETER K IS NOT GREATER THAN ZERO OR DIMENSION IS', 

& ' SMALLER THAN 3' ) 
STOP 

ENDIF 
N1 = FLOAT(N-1) 
B = (-2.*K + SQRT(4.*K*K + .N1*N1))/N1 
D = N1*(1.0 - ALOG(O.5*N1)) 

1 CALL SBETA(0.5*N1,Z) 
U = RNUNF() 

· T = 0.5*N1*(1.0 + B) / (1.0 . - (1.0 - B)*Z) 
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Q = N + E + Nl*ALOG(Nl) + D - Nl*Nl/T - T - 1.25*U 
IF (Q.LT.O.O) THEN 

Q = Nl*ALOG(T) - T + D - ALOG(U) 
IF (Q.LT.O.O) GO TO 1 

ENDIF ' 
NN = N - 1 
CALL RPN1(NN,X) 
X(N) = (1.0 - (1.0 + B)*Z) I (1.0 - (1.0 - B)*Z) 
DO 20 J = 1,NN 
X(J) =.- ·X(J)*SQRT(l. 0 - X(N)*X(N» 

20 CONTINUE 

C 

RETURN 
END 

SUBROUTINE SBETA(A,Z) 

C SUBROUTINE GENERATES A SYMMETRIC BETA VARIATE Z WITH PARAMETER A 
C 

2 
REAL A,Z 
U = 2.0*RNUNF() - 1.0 
V = RNUNF() 
R = U*U + V*V 
IF (R~ · GT.l.0) GOTO 2 
Z = 0.5 + U*V*SQRT(1.0 - R**(1.0/(A - 0.5»)/R 
RETURN 
END 

A1.22 NBG(N,K,X), Bihgham (n~dim) 

SUBROUTINE NBG(N,K,THETA) 
C 
,C SUBROUTINE GENERATES A RANDOM POINT FROM THE BINGHAM DISTRIBUTION 
C ON THE N-SPHERE USING POWER METHOD. 
C OUTPUT: THETA(l), THETA(2J, ... , THETA(N-l) 
C ARE THE POLAR COORDINATES OF THE RANDOM POINT. 
C 
C PARAMETER: K(l), K(2), ... , K(N-l) WITH THE LARGEST NOT EQUAL TO ZERO 
C DIMENSION: N > 2 
C 
C REMARK: S(I) = SIN(THETA(I», C(I) = COS(THETA(I» 
C 

PARAMETER (NMAX = 99) 
REAL KO,KM,K(N-l),THETA(N-l),S(NMAX),C(NMAX) 
DATA PI,PI2/3.141592654,6.2831853071 
IF (N.LT.3 .OR. N.GT.NMAX+l) THEN 

WRITE(6,100) NMAX+l 
100 FORMAT(' DIMENSION SMALLER THAN 3 OR GREATER THAN' ,14) 

STOP 
ENDIF 

C 
C FIND KM = MAX( K(1), K(2), ... , K(N-l) ) 
C 

KM = K(l) 
-DO 10 I = 2,N-l 
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10 IF (KM.LT.K{I» KM = K(I) 
IF (KM.EQ.O.O) THEN 

WRITE(6,105) 
105 FORMAT{' THE LARGEST OF K(l), ... , K(N-l) IS ZERO') 

STOP 
ENDIF 

C 
C GENERATE THETA(l) WHOSE DENSITY IS PROPORTIONAL TO 
C EXP(KM*Y**2) * Y**(N-2), 
C WHERE Y = S(l) IS ALSO CALCULATED. 
C 

1 

C 

H = -2.0*KM + 3.0 
P = (H - SQRT(H*H + 16.0*KM»*0.25 
G = -1.5*PIKM 
Q = EXP(-3.0 + 3.0/G)*G*G*G 

-Ul = RNUNF() 
U2 = RNUNF() 
UIS = Ul*Ul 
U2S = U2*U2 
XS = U1S/(1.0 - P*(l.O - UlS» 
W = 1.0 - KM*XS 
V = 1.0 - P*XS 
R = V*V*V*(l.O - XS)**(N - 3)/Q 
T = W*W*R 
IF- (W.LT.O.O .OR. U2S.GT .. T) THEN 

T = EXP(2.0*W - 2.0)*R 
IF (U2S.GT.T) GOTO 1 

ENDIF 
THETA(l) = ACOS(SQRT(XS» 
IF (RNUNF().LT.0.5) THETA(l) =. PI - THETA(l) 
S(l) = SIN(THETA(l» 

,C GENERATE THETA(2), ... , THETA (N-2) FROM THE POWER SINE 
C DISTRIBUTIONS AND THETA(N-l) FROM U(0,PI2=2*PI). 
C C(2), .. ,C(N-1) AND S(2), .. ,S(N-1) ARE ALSO CALCULATED. 
C 

DO 20 J = 2,N-3 
CALL PWSA(J,THETA(N-J-1),C(N-J-1),S(N-J-1» 

20 CONTINUE 

C 

IF (N.GT.3) THEN 
C(N-2) = 1.0 - 2~0*RNUNF() 
THETA (N-2) = ACOS(C(N-2» 
S(N-2) = SIN(THETA(N-2» 

ENDIF 
THETA(N-l) = PI2*RNUNF() 
C(N-1) = COS{THETA(N-1» 
S(N-1) = SIN(THETA(N-1» 

C CALCULATE THE SUM (OVER 1=1,2, ... , N-1) OF 
C K(I) * (C(N~I+1)*S(1)*S(2)* ... *S(N-I»**2 
C WHERE C(N) = 1. 
C 

KO = O . . 
DO 50 I = 1,N-1 

. PROD = 1.0 
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60 

50 
C 
C 
C 

C 

DO 60 J = 1,N-I 
PROD = PROD*S(J) 
CONTINUE 
IF (I.GT.1) PROD = PROD*C(N-I+l) 
PROD = K(I)*PROD*PROD 
KO = KO + PROD 
CONTINUE 

ACCEPTANCE-TEST 
:~ .. ,~ 

v = RNUNF() 
T = 1.0 + KO - KM*S(l)*S(l) 
IF (V.GT.T) THEN 

T = EXP(T - 1.0) 
IF (V.GT.T) GOTO 1 

. -. - ENDIF 
RETURN 
END 

SUBROUTINE PWSA(J,X,C,S) 

C IT IS IDENTICAL TO SUBROUTINE PWS (SEE Al.20) EXCEPT THAT 
C S = SIN(X) AND C = COS (X) ARE RETURNED AS WELL. 
C 

C 
2 

DATA PI, PIH/3. 141592654,.1.570796327/ 
PIH = PI/2 

X = PI*RNUNF() 
S = SIN(X) 
C = COS (X) 
BL = S**J 
BU = 1.0 - ABS(C)**J 
V = RNUNF() 
IF (V.GT.BL . AND. V.LT.BU) GOTO 2 
IF (V.LE.BL) THEN 

RETURN 
ELSE 

IF (X.LE.PIH) THEN 
X = X + PIH 
TEMP = C 
C = -S 
S = TEMP 

ELSE 
X = X - PIH 
TEMP = C 
C = S 
S = -TEMP 

ENDIF­
ENDIF 
RETURN 
END 
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ApPENDIX 2 

Theorem The best upper envelope for the p.d.f. 

2 f (x; k) -= C exp (kx ), 
f' 

x e [0,1], 

· th 1 . . t t Cf' -- ( SOl exp (ku2 
) du ) -1 . W1 norma 1z1ng cons an , 

to the p.d.f. 

( ) C (1_pX2)-3/2. g x; P = , 
q 

where C = Vl - p, is 
q 

x e [0,1], 

k e (-00 , (0) , 

which is proportional 

p < 1, 

x e [0,1], 

with 

A = 2k+3; 

' 3/2 3 1 
(3 = a exp (- - (1 - -)) 

2 a' 
'a = 3p/2k, 

and that ,the choice of p (= p.) maximizes the sampling efficiency. 

Proof: Let 

cp(x; k,p) fex; k) = -:.-~~ 
g(x; p) 

2 2 3/2 / = Cf' exp(kx ) (1 - px ) vl - p, p < 1. 

The sampling efficiency of generating a random variable X having p.d.f. 

f(x; k) using an envelope proportional to g(x; p) is 

R(k,p) = ( max cp(x; k,p) )-1. (A2.1) 
xE[O,l] 

The first step is to find x. e [0,1] that maximizes cp(x; k,p). Now 

~x lncp(x; k,p) = 2kx - 3px/(1-px2
) 

and 

98 



The first derivative is zero when x = 0 or x = v-3/2k + lip. In order that 

x - v-3/2k + lip be in [0,1], we require 
0 

{ 2k/(3+2k) ~ p ~ 2k/3, Ikl < 3/2; 

. P ~ 2k/3, k ~ -3/2; (A2.2) 

' -2k/(3+2k) ~ p < 1 , k ?:: 3/2. 

Furthermore, by examining .the second derivative, it is noted that 

q> (x ; k, p) , when (A2.2) holds; 
0 

max q>(x; k,p) = { qJ(1; k,p) , when p < 2kl (3+2k) ; k > -3/2; 
xE[O,1] 

q>(0; k, p), when p > 2k/3, k < 312. 

So to maximize the sampling efficiency (A2.1), it is required to determine 

the value of p such that max q>(x; k,p) is minimized. 
xE[O,1] 

Let p = 2k/(3+2k) 
1 

and p = 2k/3. 
2 

It is obvious tha tq> ( 1; k, p) > q> ( 1; k, P 1 ) when p < p 1 ' 

k > -3/2 and q>(0; k,p) > q>(0; k,p) when p > p ,k < 3/2. As both Pl and 
2 2 

P2 satisfy (A2.2), there exists somep satisfying (A2.2) such that 

when k > -3/2 

and 

q>(x; k,p) ~ q>(0; k,p ), 
o . 2 

when k < 3/2. 

Therefore, it needs only to find p that satisfies (A2.2) and that minimizes 

q>(x ; k,p) 
o 

3 = er exp(- 2 + k ) ( 3p ) 3/2 / V 1 _ p. 
P 2k 

Taking logarithm on both sides of (A2.3), we obtain 

In q>(x ; k,p) = const. 
o 

- L Cp) , 

and so 

k 3 3p p) + + -lnC-) 
p 2 2k 

L' (p) = [-2k + (2k+3)p - 2p2] / [2(1 _ p)p2] 

which is equal to zero when 
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A = 2k+3. 

shown that only p satisfies (A2.2) and that L"(p ) > o. Therefore, the 
b b 

optimal p that maximizes the sampling efficiency is Pb and the envelope so 

obtained is" 

= • 
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