
ALTERNATELY-TWISTED CUBE 
AS 

AN INTERCONNECTION NETWORK 

by 
WONG Yiu Chung 

A thesis submitted to the 
Department of Computer Science 

The Chinese University of Hong Kong 
in part ial fulf i l lment of the requirements 

for the degree of 
Master of Philosophy 

May 1991 



-• - 
.V 

,之
，

V' 
\ 

- 
r 

々
、

( 



Table of Contents 

Acknowledgement 
Abstract 

1. Introduct ion 1-1 

2. Alternately-Twisted Cube: 2-1 
Def in i t ion & Graph-Theoretic Properties 
2.1. Construction 2-1 
2.2. Topological Properties 2-12 

2.2.1. Node Degree, L ink Count & Diameter 2-12 
2.2.2. Node Symmetry 2-13 
2.2.3. Subcube Partit ioning 2-18 
2.2.4. Distinct Paths 2-23 
2.2.5. Embedding other networks 2-24 

2.2.5.1. Rings 2-25 
2.2.5.2. Grids 2-29 
2.2.5.3. Binary Trees 2-35 
2.2.5.4. Hypercubes 2-42 

2.2.6. Summary of Comparison wi th the Hypercube 2-44 

3. Network Properties 3-1 

3.1. Routing Algori thms 3-1 
3.2. Message Transmission: Static Analysis 3-5 
3.3. Message Transmission: Dynamic Analysis 3-13 
3.4. Broadcasting 3-17 

4. Parallel Processing on the Alternately-Twisted Cube 4-1 

4.1. Ascend/Descend class algorithms 4-1 

4.2. Combining class algorithms 4-7 
4.3. Numerical algorithms 4-8 

5. Summary, Comparison & Conclusion 5-1 
5.1. Summary 5-1 



5.2. Comparison with other hypercube-like networks 5-2 

5.3. Conclusion 5-7 
5.4. Possible future research 5-7 

Bibl iography 

\ 



Acknowledgement 

I am greatly indebted to Prof T.C. Chen, my supervisor, for his patient and 

enlightening guidance throughout the course of my graduate study. 



Alternately-Twisted Cube as an Interconnection Network 

Abstract 

A new network topology called the alternately-twisted cube is proposed. I t is 
based on a modif icat ion to the topology of the binary n-cube, or hypercube, by 
"twisting" its edges along the odd-numbered dimensions. 

A n alternately-twisted n-cube, denoted as A Q has a diameter of only • + 1， 

which is nearly half of that of the binary n-cube. A t the same time, i t preserves many 

salient features of the binary n-cube. I t is shown that an A Q ^ is node-symmetric, 

possesses n distinct paths between any 2 nodes, and is able to be par t i t ioned into 

smaller, disjoint alternately-twisted subcubes. Furthermore, we have specified 

schemes to embed the fol lowing structures into an AQ^： any H x W grids of size 

^ 2 " (wi th di lat ion 1 i f H and W are powers of 2，and di lat ion 2 otherwise), a complete 

binary tree of size 2 " - 1 (with di lat ion 2} and any r ing of size k, for K 2 " and k # 3 

(w i th d i la t ion 

I n addit ion, the alternately-twisted cube appears to be more attractive than 

the binary n-cube as a general purpose interconnection network. We have devised 

a distributed，shortest-path routing algori thm for the network. Analyt ic results show 

that i n general i t can route messages faster than the hypercube: about 22% smaller 

i n the mean internode distance, nearly 50% smaller in the diameter measure, and 

nearly 30% shorter in the average message delay under heavy load, when the 

network size is large. The improvement is better when the dimension of the A Q ^ 

is an odd number than when it is even. Broadcasting on the A Q „ , under the 

multiple-message accepting mode, takes only • J + 1 routing cycles, again about 

50% of that on the binary n-cube. 

The abil i ty of the A Q ^ for supporting paral lel processing is demonstrated by 

mapping the paral lel versions of the fol lowing algorithms onto i t : the 
Ascend/Descend class of algorithms, the combining class of algorithms, and the 



algorithms for solving Poisson-type partial differential equations, matrix mult ipl i -
cation, and Gaussian elimination. A l l but the last two of them can be run on the 
A Q „ as efficiently as on the hypercube, and for the last two algorithms, the former 
behaves even better. 
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Chapter 1 

Introduction 

The success of Seitz's experimental work in bui lding the Cosmic Cube 

；Seitz85], showing that current technology is ready for bui lding general purpose 

multiprocessor systems, has stimulated the construction of a number of commercial 

paral le l machines i n the second half of the last decade. The sizes of these machines 

range f r om below a hundred to tens of thousands, and is projected to reach a mi l l i on 

and beyond wi th in this decade. Therefore the performance of the interconnection 

network is significant to the efficiency of the paral lel machine. I t is control led by 

two factors: the network topology and the communication method employed. I n 

this thesis we shall concentrate on the first issue only. Interested readers are referred 

to the l i terature for the second (e.g. the description given i n [Kung89]). 

Many of the paral lel machines are based on the hypercube network for 

interconnecting their processing elements. Examples include Ncube's hypercube 

machines, Intel's iPSCs，the Connection Machine, as well as Seitz's Cosmic Cube. 

The hypercube, also known as the binary n-cube, draws its popular i ty f rom many 

of its salient features: node- and edge-symmetry, small diameter(see below), 

existence of simple and distributed routing algorithm, low node degree, eff icient 

s imulat ion of other networks, and fault tolerance capability, to name a few. 

Formally, a binary n-cube is defined as follows, using graph notat ion: 

( i ) a binary 1-cube is a complete graph of two nodes, named as 0 and 1; 
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( i i ) a binary n-cube, for n > 1，is a graph consisting of 2 binary (n-l)-cubes, the 

names of whose nodes are prefixed by 0 and 1 respectively, and they are jo ined 

in the way beiow: 

node Ou ( in one of the binary (n-l)-cube) is connected to node l u ( in the other 

binary (n-l)-cube) by an edge, where u is any binary string of length (n-1). 

The binary 3-cube, for example, is shown in Figure 1(a). I t can be easily shown that 

there are 2。nodes in a binary n-cube, but the worst-case distance among al l the 

node pairs, or the diameter in graph-theoretic terms, is only n. Also, the average 

internode distance is about \ [SaSc88:. 

I n spite of the already excellent properties of the hypercube, i t seems that i t 

is always possible to improve on some of them by modifying the topology, incurring 

l i t t le or no extra cost to the corresponding network. For example, Tzeng [Tzen90' 

proposed the Variant Hypercube as a hypercube wi th additional links connecting 

pairs of nodes which are farthest away f rom each other in the original hypercube. 

By this way he succeeded in reducing the diameter of the resultant network by 

nearly 50% of that of the original hypercube. As an example, Figure 1(b) depicts 

the variant hypercube of dimension 3. 

Esfahanian et al [Esfa88] [Esfa91] proposed another way of modifying the 

binary n-cube: by "twisting" exactly one pair of edges in the cube. The graph so 

obtained is called the twisted n-cube. As an example, the twisted 3-cube is shown 

in Figure 1(c). The effect of the twist helps to shorten the distance between some 

pairs of nodes in the graph. As a result, the diameter is brought down to n-1, i f n is 

the dimension of the cube, which is one fewer than that of the corresponding 

hypercube. 
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100 mr^ 川 1 0 0 
1 10 

000 010 000 010 

( • ) a b inary 3 - c u b e (b ) a va r ian t h y p e r c u b e 

of d imens ion 3 

^ r ^ l 111 
100 y ^ u o 

x f ( c ) a t w i s t e d 3 —cube 

000 010 

(d ) a m u l t i p l y - t w i s t e d 4—cube 

Figure 1: Examples of hypercube & hypercube-like networks 
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Efe [Efe89] further extended the idea of edge-twisting in the binary n-cube, 

and arrived at the multiply-twisted n-cube topology. His idea was to apply the 

twisting operation to edges along all dimensions of the hypercube. A formal defi-

n i t ion is given below [Efe89]: 

(MQn is the shorthand notation for multiply-twisted n-cube) 

( i ) M Q i is the complete graph of the set of 2 nodes {0，1}; 

( i i ) (let M Q ° . i and M Q i be 2 graphs of wi th the names of al l their 

nodes prefixed by 0 and 1 respectively) 

For n > l , M Q , is the graph containing M Q ̂  i a n d M Q i _ i jo ined as follows: 

nodesOa„_2U^_3.. .ao and 1 〜 _ 3 』 o are adjacent i f f 

1) = 〜 - 2 i f n is even, and, 

2) 

( 〜 t + i 〜 f , 〜 “ i 〜 J e { ( 〇 〇 ’ 0 〇），（1 0，1 0 ) , ( 1 1 , 0 1 ) , ( 0 1 , 1 1 ) } 

f o r a l l 0 < i < ^ ^ 
L 2 _ 

I t is easy to verify that MQ3 is the same graph as the twisted 3-cube. I n Figure 

1(d) we show the graph of M Q 4 as an example. Again the mult iply-twisted n-cube 

possesses a shorter diameter than the binary n-cube ( j + 1，to be exact )，and a 

shorter average internode distance as well. 

I n this thesis, we propose and investigate yet another edge-twisting modif i -

cation to the hypercube topology. We call i t the alternately-twisted n-cube, as the 

twisting operation is applied to edges along alternate dimensions only. (We came 
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across Efe's paper [Efe89] after having started the work reported i n this thesis, and 

have already formalized the topology of the alternately-twisted n-cube. Our twisted 

cube happens to be quite close, but not isomorphic, to his.) Some of the str iking 

features of the alternately-twisted n-cube network include: 

1) a diameter of ⑴ + 1，which is nearly half of that of the binary n-cube, (obtained 

w i th the same hardware cost as the binary n-cube network, assuming each l ink 

has the same cost); 

2) an average internode distance about 22% less than that of the binary n-cube, 

when n is large; 

3) an average message delay about 30% less than that of the binary n-cube, under 

heavy load, when n is large; 

4) the abil i ty to simulate efficiently other common network structures including 

the ring, the grid, the complete binary tree，and the hypercube; 

5) nearly 50% reduction in the amount of t ime needed to broadcast a message 

to al l the nodes of the network, as compared to that of the binary n-cube; 

6) for executing paral lel algorithms, t ime complexity to w i th in a factor of 2 as 

that for running the algorithms on the binary n-cube. 

The present thesis is structured as follows. Chapter 2 gives a fo rmal def in i t ion 

of the alternately-twisted n-cube, and an analysis of its graph-theoretic properties. 

Chapter 3 examines the network performance of the topology. I n Chapter 4, we 

shall show that various classes of parallel algorithms can be eff iciently supported 
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by the alternately-twisted n-cube. Finally, the alternately-twisted n-cube is com-

pared wi th the variant hypercube, the twisted n-cube, and the mult iply-twisted 

n-cube i n Chapter 5，where a conclusion is also given. 
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Chapter 2 

Alternately-Twisted Cube: 

Definition and Graph-Theoretic Properties 

2.1. Construction 

A binary hypercube of dimension n can be regarded as constructed by con-

necting pairs of corresponding nodes in two identical binary hypercubes of 

dimension (n-1). Figure 2.1 shows such a construction of a 4-cube f r om two 3-cubes. 

Such pair ing operations account for the symmetry property of the hypercube net-

work and the routing simplicity of the network. One may modi fy this connection 

pattern, however, by twisting the pairings so as to result in a new network of relatively 

better performance. A n example is given in Figure 2.2, which shows a 3-cube w i th 

one pair of its edges twisted: edges (000, 010) and (100，110) are replaced by the 

edges (000，110) and (100，010) respectively. I t can be seen that the diameter of 

this cube is reduced f rom 3 to 2, obtained wi th no addit ional requirement to the 

node degree nor the total number of edges of the underlying graph. This is an 

instance of the alternately-twisted cube network being examined here. 

I n this chapter we shall specify a scheme to twist the edges of the hypercube 

systematically. Note, however, that there are at least 2 other networks in the l i t -

erature resulting f rom twisting the hypercube edges, in ways dif ferent f rom ours. 

They are the Twisted Cube proposed by Esfahanian, et al [Esfa88] and the 

Mul t ip ly-Twisted Cube proposed by Efe [Efe89]. A comparison of our network w i th 

these，together wi th another hypercube variant, w i l l be deferred to Chapter 5. I n 

中 文 大 舉 阅 1 你 藏 肃 ! 
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〇 1 0 0 ⑴ 々 ! 1 1 i c 

# < ^ 1 1 ^ m ^ 

Figure 2.1: Pairing two binary 3-cubes to form a binary 4-cuhe 

誦 . 〈 1 ” 

〇〇〇 0 1 0 

Figure 2.2: A 3-cnbe being "twisted" 



Chapter 2 Alternately-twisted cube 2-3 

the present chapter we shall concentrate on the topological properties of the 

alternately-twisted cube, along wi th a comparison to the hypercube only. The 

general construction of our network is defined f rom the graph-theoretic point of 

view. Before going into a formal definit ion of the twisted cube, however, we need 

some notations. 

We define a T-code sequence (T for Twisted) which w i l l be useful i n defining 

the linkages of an alternately-twisted cube. Let a.S refer to the sequence obtained 

by pref ixing al l the elements of the sequence S wi th the string a, and S1,S2 be the 

sequence obtained by appending sequence S2 to sequence SI. The sequence of the 

T-code for 2 elements is denoted by T 丄，and is defined below 

T1 - < 0, 1 > 

and the (sequence) reverse of 丁 i is 

T 卜 < 1，0〉 

Based on these the sequence of a T-code for N = 2 e l e m e n t s is defined as 

and that for N = 2 2 …e lemen ts as 

For example, 丁2 is the sequence <00，01，11，10〉and T3 denotes the sequence 

<000，001, 011，010, 100，101,111，110〉. 
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We can see that the T-code is quite similar to the reflected Gray code. I n fact 

the latter can be defined as follows: 

f o r 1 

That is, the reflected Gray code of size 2 爪 is formed by concatenating the sequence 

of a Gray code of size wi th its reverse, wi th appropriate prefixing to the two 

respective Gray codes. T-code is a permutation of the reflected Gray code sequence, 

in the sense that T ^ is constructed f rom two T^ .^ ' s with "reversing" only i f m is 

even. As an example, Figure 2.3 lists the T-code and the reflected Gray code 

sequences of size 32. 

Note that each element in a T-code sequence is a binary string. Denote the 

( j + l ) t h element of the sequence T . b y T , (j), where l< i and 0< j<2 ' - 1 • Then the 

conversion between T ^ (j) and the binary representation of j can be effected by the 

fol lowing formulae, assuming that the binary forms o f T , (j) and j are represented 

b y t i - i “ _ 2 . . t i t o and ji-di-2 … J d o respectively, where the t ，̂s and J k，s are bits: 

denotes the binary exclusive-or below) 

( i ) Ordinal number to T-code address transformation 

where 
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/ o r O i k S — : 

L 2 

t 2k = J 2k+\ ® J 2k 
\ 二 j 2k+\ ® j 2k-I 

{assuming y\. = 0 i n b o t h c a s e s ) 

if i is even, then “-i =人] 

( i i ) T-code address to ordinal number transformation 

-1 

T i (^i-1 2 • • ^ 1 ^0) ^ 71-1 yi-2 • • y 17 0 

where 
爪 — 1 u 1 if i - 1 is odd 

f o r 0<k< w h e r e m = { 

2 i-2 if i - I is even 

j 2k+\ ^ i m® ̂  m-2® 

j-Zk = tm-2 ® …® t2k.3 ®�A:+1 ® t 2k 
a n d 人 _ i = “ _ i i f i - 1 i s e v e n 

Figure 2.3 shows the conversion for the 丁 s code sequence. Imagine that for a 

T-code sequence, we mark every other element wi th an，*，，starting wi th the first 

one. Then it can be seen that a binary string t 丄 2.. “ t o is marked in the T „ 

sequence i f and only i f ((爪 ® t 爪_2 ④...® f 3 ® “）® (0 =〇，where m = n - l i f n i s even, 

and m=n -2 otherwise (i.e. m is the largest odd number less than or equal to n-1). 

Then we say that the parity of the string in the T „ sequence is 0 i f i t is so marked, 
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j binary TsCy) GsCy) j binary T^Cy) G^Cy) 

fo rm of j form of j 

0 00000 00000 00000 16 10000 10000 11000 

1 00001 00001 00001 17 10001 10001 11001 
2 00010 00011 00011 18 10010 10011 11011 
3 00011 00010 00010 19 10011 10010 11010 
4 00100 00100 00110 20 10100 10100 11110 
5 00101 00101 00111 21 10101 10101 11111 
6 00110 00111 00101 22 10110 10111 11101 

7 00111 00110 00100 23 10111 10110 11100 
8 01000 01110 01100 24 11000 11110 10100 
9 01001 01111 01101 25 11001 11111 10101 

10 01010 01101 01111 26 11010 11101 10111 

11 01011 01100 OHIO 27 11011 11100 10110 
12 01100 01010 01010 28 11100 11010 10010 

13 01101 01011 01011 29 11101 11011 10011 
14 01110 01001 01001 30 11110 11001 10001 
15 01111 01000 01000 31 11111 11000 10000 

Figure 2.3: The sequences o f T c , & G . f for the T . elements, each underl ined oTie 

has a parity of 0. otherwise it has a parity of 1) 

otherwise its parity is 1. For example, in Figure 2.3, the even elements (i.e. those 

w i th parity 0) of the 丁 5 sequence are underlined. Therefore, we define a parity 

funct ion i t for the posit ion of t in the 丁 n. sequence as 
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l^o) ^ P ® 

w h e r e P = ^zk - i ® h k - 3 ® .. ® ® ^ i 

a n d k = - -
2 

For example, t<00101) = 1，jt(01101) = 0，and t<101101) = 1，and note that 

T i ^ O O l O l ) = ( 0 0 1 0 1 ) 2 = ( 5 ) 1 0，T i ^ ( O l l O l ) = ( 0 1 0 1 0 ) 2 = ( l〇） io，and 

T; i (101101) = ( 1 1 0 1 0 1 ) 2 = ( 5 3 ) 1 0 . 

Now we can come to the construction of the alternately-twisted n-cube f rom 

the graph-theoretic view. Throughout this thesis, we take the convention that nodes 

are denoted by small letters, and that for any node u, the binary address is denoted 

by the string u ^ . i u ^ . z " - ^ 1^0 where n is the length of the binary node address. For 

a node set V whose elements are binary strings, we use the notat ion V"" to refer to 

the set {wx | x is i n V } (note: juxtaposit ion of two strings means concatenation), 

where w i s a binary string, i.e. each element of V is prefixed by the string w. This 

notat ion is extended to an edge set E for the meaning of E"； 

A n alternately-twisted 1-cube, denoted as A Q i , is the graph (V 1 ’ E w i t h 

node set V 1= {0,1} and edge set E1 = { (0,1) }• That is，it is a graph consisting of just 

two nodes jo ined by an edge, and is isomorphic to the binary 1-cube. Actual ly A Q 2 

is also isomorphic to the binary 2-cube. But the coincidence ends here. The topo-

logies of the A Q „ and the binary n-cube w i l l be different for n greater than 2. 

Basically the node addresses of an alternately-twisted n-cube are the same as that 

of a binary n-cube. Only the connection pattern is different. The idea of its structure 

follows: 
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A n A Q 2 + 1 is constructed f rom 4 AQ2^i，s . Suppose for each such AQg^ - i , 

the nodes are visited according to the positions of their binary addresses in the 

丁 1 -code sequence, whi le at the same t ime we mark every other node w i th an * 

along the traversal, starting w i th the first node (i.e. node 00...0 i n each AQs^z-i). 

Then corresponding marked nodes in these 4 AQsn- i ' s are jo ined together i n a 

"twisted-edge" fashion (say, OOu - > 10u-> 01u -> l l u - > OOu, where u is the address 

o f a marked node), and those not marked are respectively jo ined exactly as i n the 

norma l hypercube (i.e. OOu - > Olu - 〉 l l u - > lOu - > OOu). By cutt ing an AQsn+i 

in to 2 equal halves along the plane orthogonal to the next-to-highest dimension 

(i.e. dimension 2n- l ) , we get 2 AQsn's. As a result, only edges along the 

odd-numbered dimensions may be twisted (we take the convention that the 

dimension numbers are counted f rom 0)，and for the other dimensions the hyper-

cube linkages are preserved. (Refer to the def in i t ion below and the examples in 

Figure 2.4) 

For example, 4 AQ3S are jo ined to fo rm an A Q 5 as follows. O n traversing 

each A Q 3 according to the T3 sequence order, nodes 000，011，100’ and 111 are 

marked. I n order to identi fy each A Q 3 , their node addresses are respectively 

pref ixed w i th the strings 00,01，11，and 10. Therefore, the 4 nodes of the f o r m xyOOO 

are jo ined together i n the "twisted edges" manner, the 4 nodes of the f o r m xyOOl 

are jo ined together i n the "hypercube edges" manner, those of the f o r m x y O l l are 

jo ined together i n the "twisted edges" manner, those of the fo rm xyOlO are jo ined 

together i n the "hypercube edges" manner, and so on. By splitt ing the resultant A Q 5 

along the plane orthogonal to the 3rd dimension (i.e. by removing the edges along 
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the 3rd dimension), we get 2 AQ4S. 

Formal ly, the structure of the alternately-twisted cube is defined recursively 

as f o l l ows : 

( i ) A n alternately-twisted (2n)-cube, for n>0 , denoted as AQs^, is the graph 

(V 2 n，E 2 n) where the node set is given by (the + operator between 2 sets means 

union) 

and the edge set is given by 

(Note: The edges i n the set {(〇 u，1 u ) | u e 2n-1 }are the normal hypercube 

edges as needed in the pair ing of two binary (2n-l)-cubes to f o rm a binary 

(2n)-cube.) 

( i i ) A n alternately-twisted (2n+ l)-cube, for n>0, denoted as A Q 2n年 i, is the graph 

(V 2n+1 ’ E 2n+1) whc ie the node set is given by 

and the edge set is given by 

r _ 77OO r-Ol , r- 10 r- 11 丄 
A 2 n + l - f 2 n - l + f + f 2/z- l + 五 2 n - l + 

{ ( O O u , 1 0 a ) , ( 1 0 a , 1 1 u ) ，（ 1 1 u ’ 0 1 u ) ，（ 〇 1 u，〇 0 u ) | 

a £ V 2 n - i a n d n ( a ) = 1 } + 

{ ( O O u , 1 0 u )’（1 0 u，〇 l u )，（0 1 u， l l u )，（ l l u，〇 O u ) I 

l i ^ V z n - i a n d Jt ⑷ = 0 } 
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(Note: This is again very similar to the def ini t ion of a binary (2n+ l)-cube, 

except that edges of the forms (10u,01u) or (llu，00u) are used, instead of the 

normal hypercube edges of the forms (10u , l l u ) or (Olu, OOu), in the last 

component subset o f ^ s n . i given above. I t is these "twisted edges" that account 

for the differences between the alternately-twisted cube and the hypercube.) 

As an example, Figure 2.4 illustrates the graphs of AQ^ fo r i = l , 2, 3，and 4. 

I t can be seen that the alternately-twisted n-cube has a growth rate of 2, i.e. 

to expand f rom an A Q „ to an A Q „ +1，one has to double the number of nodes. This 

is exactly the same growth rate as that of a binary n-cube. I n fact the alternately-

twisted cube is derived f rom the hypercube wi th roughly a quarter of its pairs of 

edges being "twisted": the edges along alternate dimensions (the odd-numbered 

ones, w i th the convention that the dimension numbers are counted f r om 0 to n-1) 

are twisted, and the twisting operation is applied to half of the edges along each 

such dimension. 

The connectivity rule for the alternately-twisted n-cube can be specified as 

fol lows: suppose u and v are two nodes in A Q „，they are adjacent i f and only if, for 

almost a l l 0 < i < n-1, u , = , wi th the lone exception being index k>0 such that 

either 

( i ) k is even and only Uk # v̂； 

or ( i i ) k is odd and k二n - 1 and u ^ ^ v^, 

or ( i i i ) k is odd and 0<k<n-l and 
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參 
0 

(AQi) 

01^ 

00^ W 10 

(AQ2) 

1。。-<^^^ 111 

000 010 

(AQ3) 

(AQ4) 

Fi叫 re 2.4: Examples of alternately-twisted cubes 
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o n l y uk 关 Vk i f jx ( a ^ - i (1左_2 • i &〇 ) = 1 

uk 关 Vk a n d [i^t+i 关 i f i t ^ . . u ^ U q ) = 〇 

We call the linkage arising f rom one of these conditions the edge along the 

k- th dimension, wi th the value of k defined in the condition. Besides, the concept 

of dimensions of the alternately-twisted cube is borrowed exactly f rom that of the 

corresponding hypercube. Therefore, only in the ( 2 i + l ) - t h dimensional plane may 

we f ind "twisted" edges. For example, the 5 edges incident f rom the node 00011 in 

a A Q s a r e respectively (the differing bits are underlined) 

along the 0th dimension: 00011 - > 00010 

along the 1st dimension: 00011 -〉00001 

along the 2nd dimension: 00011 - > 00111 

along the 3rd dimension: 00011 - > n O l l (a twisted edge) 

and along the 4th dimension: 00011 - > 10011. 

2.2. Topological Properties 

2.2.1. Node Degree, L ink Count, and Diameter 

F rom the defini t ion of the alternately-twisted cube, it is easy to see that each 

node of an A Q : h a s direct connections to n distinct nodes, hence the degree of 

each node is n, or the A Q „ is an n-regular graph. The total number of nodes in an 

A Q ^ i s 2"-, so the total count of the edges in the graph is Aga in these two 

measures are exactly the same as those of a binary hypercube of the same size. 

However, the alternately-twisted cube is superior to the hypercube in the worst-case 

distance measure, or the diameter of the graph: i t is found to be about 50% of that 

of the corresponding hypercube. 
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Theorem 2.1: The diameter of an alternately-twisted n-cube, A Q „， i s equal to 

2 + 1 
_ 2 」 丄 ’ 

(Partial) Proof: The binary address 〜 〜 _ 2 . . u “ i o of a node u in A Q „ is 

part i t ioned into groups of 1 or 2 bits as follows: 

( ^ n - l ^ n - z ) ' O n - 3 “ n - 4 ) ， . . . ， O 2 … ） ’ (U q ) i f 11 iS Odd 

or O n - 1 ) ， O n - 2 〜 - 3 ) ， 〜 - 5 ) ， … ’ （>2…），(uq) i f 11 is cveii. 

The number of groups in each case is \ + 1. 

F r o m the connectivity rule of the alternately-twisted cube, i t is easy to see that a 

transit ion along any edge adjacent to u w i l l affect the address bits i n at most one 

group of such part i t ion. Hence the lower bound of the diameter w i l l be ^ + 1，the 

number of groups in the partit ion. We defer the rest of the proof to Section 3.1, 

where a routing algori thm for the alternately-twisted cube network is proposed, 

and the worst-case number of routing cycles of the algori thm is shown to meet this 

lower bound. 

For example, one of the most distant pair of nodes in an A Q s is 00000 and 

11111，and a shortest path between them is: 00000 _> 11000 - > 11110-〉11111， 

the length of which being 3. 

2.2.2. Node Symmetry 

The condit ional "twisting" of the pairs of edges (as specified by the tx function) 

makes the alternately-twisted cube unlikely to be edge-symmetric (at least, i t can 

be proved by enumeration that the alternately-twisted 3-cube is edge-asymmetric). 

However, i t sti l l possesses the node-symmetric property, that is, each node in the 
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alternately-twisted cube has the same view of the whole topology. There is no 

d i f ferent iat ion among the nodes, and there exists an address t ransformat ion that 

enables any node u to be mapped to another node v whi le the topology of the 

alternately-twisted cube is preserved after the transformation (i.e. the transform-

at ion is an automorphism). Formally, we have the fol lowing theorem: 

Theorem 2.2: Let a and b be respectively any two nodes in an alternately-twisted 

(2n+ l ) -cube. There exists an automorphism a^.,；, i n which node a is mapped to 

node b and, as a result, node x is mapped to node y, i.e. according to 

the fo l lowing rules: 

( 0 yo = ^o®(cto®^o) 

(ii) for 1 <A:<r , 

where 大=x .̂e^x ,̂., a (Tt(a ？卜之《2大-3... a i a。）® n(b 2,-2 & 2/̂ -3 … b o))) 

and d2, = a2 ,®(a2 , - i a ( i t (a2卜 2 a 1 a。）6 11(62卜 2 〜 卜 3…b ! b。））） 

( A 15 the binary AND operation) 

The same applies to the automorphism for an alternately-twisted (2n)-cube, except 

that the above transformation for bi t 2n is ignored. 

Proof: First we show that the mapping is one-to-one, i.e. let and 

' = a a b(q)，then p ' = g ' i f f p = q . Consider 3 cases for the posi t ion o f the r ightmost 

d i f fer ing b i t between p and q: 

(1) at b i t 0，i.e. Po ^ <7o, then by rule ( i ) q' q 

(2) at b i t 2k-1，for some l<k<n, then by rule ( i i ) p ' 2J t - i ^ zk-i since P 2 a： -1 关 g 2 a： -1 
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(3) at b i t 2k, for some l<k<n, since Pzk- i 二 q2k- i and P2k 寺 q2k then by rule ( i i ) 

p\k q�k 

Hence the mapping is indeed a permutat ion of the whole node set of the graph. 

Next we turn to show that the mapping preserves the connectivity of the 

alternately-twisted cube, i.e. nodes x and y are adjacent in the alternately-twisted 

cube i f f nodes = and y ' = are adjacent. Aga in we consider 3 

cases: 

Case 1： X and y are jo ined by an edge along the Oth-dimension, ie. x^ ^ y , for i = 0 

only. By rule ( i) of the mapping, x'。关 y ' o and = y\foT l<i<2n. Therefore x ‘ 

and y ‘ are sti l l adjacent via an edge along the Oth-dimension. 

Case 2: x and y are jo ined by an edge along the (2k)th-dimension, ie .x^ = y^ except 

for i = 2 k . Then for al l i in the ranges 0<i<2k-l and 2k + l<i<2n, = By rule 

( i i ) , X depends onxsyt , sox'sa： ^ Y'2A： • Thus x ‘and y ‘ are adjacent via an edge 

along the (2k)th-dimension. 

Case 3: x and y are connected through an edge along the (2k-1)th-dimension. Then 

x ' i = y ' j f o r a l i i i n the ranges 0<i<2k-2 and 2k + l<i<2n. Let 

Then for the bi t pairs at positions 2k and 2k-1，we have 
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入"2A:-i (Since •̂？̂：-1 O2A：-1) 

y\k = y2k®iy2k-i g 

I n other words, 

i f x ^ k ^ y z k t h e n 

i f X2A： ^ y t h e n 

{6 = 〇 — 关 y'2大 

6二 1 4 x'2k = y�k 

I t remains to show that x ‘ and y ‘ are adjacent along the (2k - l ) th dimension. F rom 

rule ( i i ) of the mapping, we get 

2k-2^ 2k-3' ‘ 1 ^ 0) ^ l - ^o )® 

2k-2y 2k-3'"y 1 y 0)=几(y2A：—2y2A；—3• •-y 1 y0)® 6 

and by the connectivity rule of the alternately-twisted cube, 

^ 2k-2^ 2k-3' 0) ^iy 2k-2y 2k-3" - y 0) ^ 1 

a n d，（X 2 f c ” 2 A : ) A (乂2卜1 ” 2 A : - 1 ) 

Hence the values of n ( y ' 2 l 2 y ' 2 fc - 3 •. y'。）and of y ' 2 a： y ' 2 a： -1 are given by the 
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table below 

7 
= y2k 5 Jt(y'2it-2y'2fc-3..y'o) y\ky\k-\ 

Y 0 1 X" 2k- 1 

Y 1 0 X 2k ^ 2k- 1 

N O 0 义 2,-1 

N i l X 2k- 1 
Thus nodes x ‘ and y ‘ are adjacent through an edge along the (2k-l) th-dimension. 

(Q.E.D.) 

For example, the mapping a ooooo-̂ i m i applied to the nodes 00000 and 01010 

and to their respective direct neighbours in an A Q 5 is il lustrated below, where the 

bracketed number fol lowing the neighbour's address refers to the corresponding 

edge which is responsible for the adjacency: 

original address mapped to 

00000 11111 

neighbours: neighbours: 

00001 (0) 11110(0) 

00110(1) 11101(1) 

00100 (2) 11011 (2) 

11000(3) 00111 (3) 

10000(4) 01111 (4) 
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01010 10001 

neighbours: neighbours: 

01011 (0) 10000 (0) 

01100(1) 10011 (1) 

01110 (2) 10101 (2) 

00010(3) 11001 (3) 

11010(4) 00001 (4) 

2.2.3. Subcube Part i t ioning 

Since the alternately-twisted cube is defined recursively, i t is natural to ask 

how many distinct smaller alternately-twisted cubes can be embedded i n an 

alternately-twisted n-cube. 

Le t iPo be a ternary string of length n whose alphabet is {0, 1， 

X } . W e say that a binary string x conforms to p if, for 0<i<n-l, either 

( i ) p i = 0 and x ^ = 0, or 

( i i ) Pj = 1 and x i = 1，or 

( i i i ) Pi = X and x (is either 0 or 1. 

Le t S be a set of ternary strings, and a ( A Q „ , S ) denote the subgraph of an 

A Q „ induced by the nodes whose binary addresses conform to p ， p eS. For 

example, the graph a ( A Q s , {yY;^00yY}) is shown i n Figure 2.5. I t can be seen that 

this is also a graph of A Q 3，with each node of the fo rm 11211 iUq being mapped to 

the node Usa iOOuo of {XXOOyX}), I n a similar way, the graph 

a ( A Q 5 , { X X 7 7yY}) is also an A Q 3 (Figure 2.6), but the mapping of nodes has to 
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1 0 1 〇 〇 〇 〇 " " " ^ 1 i 〇 〇 i 1 1 0 0 0 

^ P ^ P 

01000 

F i ^ r e 2.5: The induced graph a〔 A Cu , <XX〇〇Xy) 

1 0 1 1 1 1 1 1 1 1 1 1 1〇 

001 1 1 001 1 10 

Figure 2.6: The induced graph o( A O ^ A X X l ] X>) 
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be modif ied because the，11，bits in the string X X I I X affects the parity calculation, 

and hence the connectivity, during the restoration of the A Q 3 graph. I n particular 

a node v of AQ3shou ld be mapped to node ^ '2^1 11 ”q of aCAQs , { X X 7 I X } ) 

where v\ = V2® v 

I n general, the subgraph a( A Q , , S ) of A Q J s an alternately-twisted k-cube, 

l<k<n, i f 

(a) there exists a strictly increasing integer function f such that 

( 0 /(〇)=厂 for some integer r ’ 

either r = 0 or ( r is odd and r S n — 1 ) 

( i i ) V I <i< ^ ^ , 
L 2 」 

/ ( 2 z - 2 ) < / ( 2 i - l ) = 2s - 1 <f(2i) = 2s<n- 1 , for some integer s 

( " 0 i f k is even, then 

= <n-l i f n is odd 
2t <n - 2 or n - 1 i f n is even 

for some integer t’ and /(A: - 2) < / ( fc - 1) 

and, 

( b ) i f / ( 0 ) = 0 then 

S = { p „ - i P „ _ 2 . . . P i P o } Where 

WO<j<n-I, 

p i f j = f ( i ) f o r some i n t e g e r i, 0 < i </c - 1 
7 0 or 1 o t h e r w i s e 

i f / ( 〇 ） = 厂 then 
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WO<j<n-l,j^{r+l,r} 

X i f j = f ( J ) f o r some i n t e g e r i, I <i<k - I 
p . = { 

‘ 0 or 1 o t h e r w i s e 

i n a d d i t i o n , Pr+iPr is e i t h e r 00 or 10 a n d 
- - PrMPr 【7 “ (Pr-l..P。）=〇 Pr.lPr = { - 、 1 Pr+lPr i/ n (Pr-l..Po) = 1 

To see that the subgraph is a legitimate alternately-twisted cube, we just need 

to specify the mapping of the nodes in AQ^t to the nodes i n a ( A Q „ , S ) . Before 

doing i t , we have to define a parity funct ion for a ternary string, based on the ordinary 

pari ty funct ion for a binary string: 

where p , = O i f p , = X o r 0, otherwise p 产 1. That is, the "don't care bits" i n p ! … p 〇 

wi l l not affect the pari ty of the string. 

N o w we can define the required mapping between nodes i n A Q ^ and 

a ( A Q „ , S ) as follows: 

For any node u i n A Q ^ , the corresponding node in a ( A Q „，S ) is node v where 

( i ) i f f (0) = 0，then v^ = u^ else 

_ /(0)+i P /(O) 【 / t̂ o = 0 
= - .r 一 1 

M/(0)+i P /(o) 《 / lLq — 丄 

( i i ) for l < 2 i < k - l , i f f (2i) = j then 
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“ i f JX'(p;-2Py-3-"Po)==0 

( i i i ) (卜 1) = Uk-i i f k is even 

(iv) V j = p J for the remaining v j，s 

The exclusive-or operator in rule (i i) is used to cancel the effect caused by the p /s 

in calculating the parity function of the node addresses of the A Q ^ . 

As a result, an A Q „ can be divided into 2几]disjoint A Q ^ subgraphs. Con-

sidering the restriction of the positions of placing the X，s in the string 

P " - i P n - 2 …PiPo，we have : 

Theorem 23 For any A Q „ , the number of ways of partit ioning it into 2 "_ 允 distinct 

sub-AQfc is given by the following table: 

n-1 is even n-1 is odd 

2 2 丄 

k-1 IS even , , 
V—^ V V—" V 

广工 1 、 广 + A 
k-1 is odd ‘ 2 

^ ^ 1 k 飞 

V W U + i乂 

f a \ 
where ^ denotes the binomial coefficient. J 
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Proof. Actual ly this is the number of ways to assign the k X，s to the appropriate 

positions i n the string P ；̂一 i P …P i P o. According to the def in i t ion of funct ion f, 

the X，s are divided into 1 groups ( ^ of which consist of 2 X，s，and the 

remaining 」+ 1 _ [ 丁 J group(s) consist of 1 X only), and the assignment of 

positions is done i n terms of these groups. (Note that the rightmost group always 

consists of a single X only). A n d the p /s are also divided into groups of two or one, 

i n the same way as we did in the proof of Theorem 2.1. Thus there are ⑷ + 1 groups 

of p - s , among which there is the group consisting of p。only. The results fo l low 

immediately f rom the combinatorics of matching the groups o f X ' s into such groups 

o fp / s . (Q.E.D.) 

I t should be noted that the number specified in the theorem is generally smaller 

than the corresponding one in the binary hypercube case, which can be shown to 
f n � 

be 1. The reason is that in the latter, we do not have to group the X，s i n pairs 
\ ^ / 

dur ing the matching, and there is no restriction on assigning a single X to a p ̂  , 

result ing i n more f reedom of choice. 

2.2.4. Dist inct Paths 

Two paths between two nodes u and v of a graph are said to be node-disjoint 

i f they do not share any intermediate node (ie. no node is common in both paths 

except the end-points). Likewise, they are edge-disjoint i f no common edge exists 

i n both paths. By distinct paths we mean that they are both node-disjoint and 

edge-disjoint. I n the context of an interconnection network, the amounts of distinct 

paths between any two nodes in the underlying graph is important in two issues: 

under the realistic threat of hardware failure (be i t due to the physical l inks or to 

L 香 港 中 文 大 學 阅 • 馆 藏 當 
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the computation/communication elements at the nodes) the quantity of distinct 

paths directly affects the robustness and the fault tolerance of the network; even 

assuming no failure at the edges and the nodes, the availability of distinct paths 

provides alternative paths for message routing so as to avoid congestion points. 

This helps to balance the traffic flow under heavy load. 

Since the alternately-twisted n-cube is a n-regular graph (each node has uni-

form degree of n), by Menger's theorem [Hara71, ch.5] there should be n distinct 

paths between any two nodes. This is the same for the hypercube case. The two 

networks weigh equally well in this aspect. For example, the 5 distinct paths between 

nodes 00000 and 11110 in the A Q s are: 

00000-> 10000-> 10110-〉11110 

00000-> 11000-〉11110 

00000-> 00100-> 11100-〉11010-〉11110 
00000-> 00110-〉01110-〉11110 

00000-> 00001 -> 00101 -> 00111 -> 11111 -> 11110 

2.2.5. Embedding other networks 

Parallel algorithms for different problems usually require different com-

munication patterns among the computational elements. Common regular patterns 

include the rings, linear arrays, grids, binary trees, and hypercubes. The ability of 

an interconnection network to support these communication patterns is crucial to 

its suitability for a general purpose parallel processing environment. I n this section 

we wi l l show that the alternately-twisted cube can efficiently simulate al l the above 

mentioned networks. The idea is to specify an one-to-one mapping (an embedding) 
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of the nodes and edges in these networks to those in the alternately-twisted cube. 

I f this can be done, we say that i t is an embedding of di lat ion 1. I f not, we try to 

simulate each edge in the graph to be embedded by using as small as possible a 

number of edges in the alternately-twisted cube. The di lat ion of the embedding w i l l 

be the length of the longest of such simulated edges. We w i l l see that the 

alternately-twisted cube is able to simulate the previously mentioned networks wi th 

a di lat ion of at most 2. 

2.2.5.1. Embedding a ring into the alternately-twisted cube 

I t is easy to verify that each A Q „ contains a Hami l tonian cycle (ie. a closed 

path visiting every node of the graph exactly once) as its subgraph. A Hami l ton ian 

cycle is exactly given by the T-code sequence, T , , defined in Section 2.1. Recall 

that the elements of a sequence is denoted by Clearly 丁 丄 specifies a 

Hami l ton ian cycle of A Q i • (To simplify the discussion, we consider a path jo in ing 

two nodes as a Hami l ton ian cycle of size 2.) Now suppose i t is true that each T\ 

traces out a Hami l ton ian cycle of AQ。 fo r i = l,2,..,2k-l for some k. I n other words, 

nodes of address T a n d T , ( j + l mod 2^) respectively are adjacent i n A Q , . 

By definit ion, 丁之,=(〇，丁2卜1) ’（ 1 ). Obviously in AQ2, , node 

0.丁2 , -1 (2 " -1 - i ) i s adjacent to node l . T f , - i ( 0 ) . (N.B. T芸卜 1 (〇）refers to the 

1st element of the sequence T f ^ - i ) . Also there is an edge between node O.T 2卜 i(0) 

and node L T ! , ] ( 2 " ] - 1 ) Thus by induct ionT2,a lso specifies a Hami l ton ian 

cycle in AQ2yt. 
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Similarly, 丁 2左+1 is defined as 

丁2“1 = (0.丁2 肌 丁 20 

=(00.T2.-l)，(01.T2 -̂I)，(10.T2,-I)，（11. 丁 大-I) 

T h u s i n a n AQsa：.!, n o d e 丁 2 “ 1 ( 0 ) ( = 00.丁2卜1(0)) is ad jacen t t o n o d e 

丁 …-1)( 二 11.TLi(22 卜 i-l))，andnodeT2,+ i(22M)( = 01.T2〜-1(22 卜 1-1)) 

is adjacent to node ( = 10.T2^-i(0)), because 

^ T 2 , . i (0)) =jr(T = Hence A Q 1 has a Hami l ton ian cycle whose 

nodes are specified by the sequence of Tsjt+i. 

Note that i t is impossible to embed a r ing of 3 nodes in an A Q ^ w i t h di lat ion 

1，since i f nodes u and v are adjacent, then the binary patterns of u and v w i l l dif fer 

i n either a single b i t or in 2 consecutive bits at positions 2i and 2 i - l , but i n neither 

case can we f ind a th i rd node that is adjacent to both nodes u and v. 

For other rings of smaller sizes than 2 \ however, there does exist at least one 

embedding for each of them in an A Q ^ . Here is the constructive proof. We w i l l 

denote a r ing of size i by Ri. First note that we can embed 

及 2，尺 4，尺 5，尺 6，及 7，and respectively in an A Q 3, as shown in Figure 2.7. Note 

that we take R 2 as consisting of a single path between 2 nodes. Since an A Q 1 is 

normal ly a subgraph of A Q “ we only need to consider the embedding of rings R 

for <i<2\in a n A Q ^ , provided that we already know how to embed rings of 

smaller sizes in an A Q 卜！ . 

Assume i t is true that R,, for i=2 or can be embedded in A Q 允 w i th 

dilation one, for k = 2, 3，4，..，2n-l. 
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TCT̂ ^ fcT f̂̂  
r ing of 2 nodes r ing of 4 nodes 

r ing of 5 nodes r ing of 6 nodes 

r ing of 7 nodes r ing of 8 nodes 

Figure 2.7: Embeddings of rings into an A Q ^ 

(i) To embed a ring < i < in an AQ2；,, we choose two integers 

and such that i = x + y . Let A,丨 denote the string which is X repeated i times. 

Then by the assumption we can always find 2 rings R，and R " where R，is the 

Rx embedded in a ( A Q s ^ , { 0 } ) and R " is the Ry embedded in 

AQ2n，{ 1 })，such that there exists 2 nodes u and v，and the edges 
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(Ou,Ov) eR，and ( l u , l v ) g R " . Then the required R^ can be obtained by the 

operat ion 

Ri = R ' + R " - { (Ou,Ov), ( l u , l v ) } + { (Ou,lu), (lv,Ov) } 

( i i ) Similarly, to embed a r ing R^ ， in an A Q s ^ . i, we f ind two 

integers x and y such that i = x + y and and We can always choose 2 

rings R， and R，， such that R， is the R ^ embedded in 

c^(AQ2n+i ’ {〇C^Y2"- i， i〇；^2n- i }肌3 R，， is the Ry embedded in 

c > ( A Q 2 n + i ， { 〇 l A , 2 " - i ， a n d there exists a node u such that the 

edges (00u，10u) e R ， a n d (01u，llu) g R，，. (Note that graphs 

c^(AQ2n+i，{〇〇A^"-i，10 产 - i } a n d a ( A Q 2 …， { 〇 1 X 2 " - 1 ， l i x " - i } a r e 

respectively the alternately-twisted 2n-cube formed f rom 2 AQg^- i ' s ) Then 

the required R ( can be obtained by 

Ri = R' + R " - { (00u，10u)，(01u,llu) } + E 

where E = { (00u , l lu ) , (Olu, lOu) } i f i t ( u ) = 0, 

or { (00u,01u), ( l l u , lOu) } i f i < u ) = l 

Clearly, the above embedding is of di lat ion 1. I n other words, we have 

Theorem 2A I t is always possible to f ind a di lat ion-1 embedding of a r ing of i nodes, 

i?i，i=2 or 空〜into an alternately-twisted n-cube A Q ^ . 

As an example, an embedding of ie 13 into A Q 4 is shown in Figure 2.8. Similar 

results hold for mapping a linear array of size i， l< i<2\ into an A Q „，since i t is just 

a r ing w i th one of its edges removed. 
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Figure 2.8: R 】， e m b e d d e d in an A O . 

I t is known that a binary n-cube can only embed rings of even length i, 2沒空、 

；SaSc88] i f we insist on dilation-1 embedding. Therefore the alternately-twisted 

cube provides more flexibility in this aspect. 

2.2.5.2. Gr id Embeddings on the Alternately-Twisted Cube 

I t is possible for an alternately-twisted n-cube to embed, wi th di lat ion 1，a 

2 P X 2 g grid where P = [l\ and g = =[論].The idea is to part i t ion a node 

address in A Q ^ i n t o two parts, in the form of: 

{•^Ymy/n 久广 m - i y m - l . . . X i y lYo i f ^ iS Odd 
i f ^ IS BVen 
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where 爪=宇 and the x /s and y ；s are bits. Since the x /s are at even-numbered 

posit ions (except x—) they (including x …,however) can be complemented 

independently through traversal over the edge along the corresponding dimension 

of the Hence when al l the y / s are fixed, the resulting 2爪 or 2 爪 ( d e -

pending on the value of n) nodes fo rm a hypercube in its own. Clearly there is a 

Hami l ton ian path in this hypercube traced out by the reflected Gray code. O n the 

other hand, when al l the x / s are fixed, the resulting 2爪+1 nodes f o r m a subgraph 

i n which is embedded a l inear array of size 2 爪 + ^nodes. To see this, let us start w i th 

al l y /s being set to zeroes, i.e. w i th the node (N.B. 

we bracket + 丄 i n the string to remind that its presence depends on the value of 

n). Clearly i t is adjacent to node (•x 1) x 爪 〇 i 〇 . . . 2 〇x"!〇 1，no matter what 

the x / s are. Aga in this node has direct l inkage to node 

( ;cm+i )xm〇x爪_ i〇…X2〇Xi 11， which is in turn neighbour of node 

Ox 11〇 .And, the succeeding nodes along the desired 

l inear array, or chain, are 

( X / n + l ) X m 〇 X 爪 _ 1 〇 . . ， X 2 I X i 1 0， t h e n 

1 11，then 

(乂 /n + 1 ) m 〇 乂/n - 1 〇...乂 2 

1 X 1 01, and then 

I x i O O , and then 

1X2 IXiOO, 
. . . , and f inal ly reaches 
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I t is now clear that the y /s of nodes along this chain actually fo rm the elements of 

the reflected Gray code sequence of size Thus formally we have: 

Lemma 2.5 For any fixed set of x /s, 0<i<m (or m+1，depending on n as discussed 

above), the induced subgraph of A Q ^ , whose nodes have addresses of the f o rm 

( X • 肌 爪 y 爪 入 、 y l y 。 ， c o n t a i n s a Hami l ton ian path which 

starts at node O 爪)x•爪••x•爪]〇...•XsÔx!〇〇 and ends at node 

( ^ m ^ i ) ^ m l - ^ m - i 0 . . . x 2 0 x i 0 0 . Thc i - th node along the path, 0 < i < 一 1，is 

the node 2 7 2 ^ 1 7 1 7 0 where i . . y i Y o corre-

sponds to the i - th element of the reflected Gray code of size 2 ” +1， 

Now let us come back to the question of embedding the 2 ^ x 2 gr id i n an 

A Q „ , where p = a n d q = • This can be done by forming the columns w i th 

the Hami l ton ian paths contained in the hypercubes induced f rom the A Q ^ b y f ixing 

the y /s i n the node address ( x ^ ^ i . . .XgYsX 1 y 1 Yq. Each f ixed 

set of y iS w i l l give a hypercube whose Hami l ton ian path corresponds to an indi-

v idual column. Likewise, each row of the grid is formed by the Hami l ton ian path 

as specified in Lemma 2.5, where each fixed set of x-s corresponds to the posi t ion 

of the row. Clearly this is a di lat ion-1 embedding. 

I f p and q are not the specific pair • a n d •，we can st i l l embed w i th 

d i la t ion 1 the rectangular 2 厂 x 2 口 grid in an A Q „ , provided that n = p + q. Wi thout 

loss of generality, we assume p < q. The method is similar to the previous one, except 

that some of the rightmost x / s w i l l be used in defining the column address rather 

than the row address of the grid. Specifically, the address of the A Q „w i l l be regarded 
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as having the form 

^ my i f ^ IS 0 Cl Cl 

or my i f ^ IS 6 Ven 

where m = [ ^ J a n d k二m-p +1. Again, fixing the y /s and z/s wi l l induce a binary 

p-cube whose Hamil tonian path is used to form a column of the grid. Now suppose 

all X Is are fixed. For the subgraph of A Q „ induced by these fixed x /s, there is stil l 

a linear array, or chain, visiting every node of it. Its construction is given in the 

following. Since the idea is the same for n is even or odd, except that the subscripts 

of z differ, the succeeding discussion assumes that n is odd. First observe that for 

every combination of ymYm- i --yA：，the rightmost 2k-1 bits 之2卜2之2卜1 …之。 

specifies an alternately-twisted (2k-l)-cube, within which there is a Hami l ton ian 

path traced out by the Tsa：-! sequence, starting wi th Z2A:-2^2fc-i • •-^o = and 

terminating with z 2 a： - 2 ̂： 2 a： -1 …之 o 二 11 〇 2 允""3，by the result of Section 2.2.5.1. There 

wi l l be totally 2 爪1 such chains (for each fixed set of x,，s)，each of size 2 2 卜 1 and 

corresponding to a distinct set of y /s. They are then linked together to fo rm the 

desired chain of size 2 The chain is given by the sequence 

;“Y;n〇"^m-l〇...X”* + 2〇XA:+lO-YA:】.丁^-1 ； 

Xm〇X,m-l〇...XA: + 2〇X’A:+l .丁2 卜 1 ； X 饥〇 X 爪 _ i 〇.• . X + 2 〇入广 A: + 1 ； 

乂-m〇Xrn-l〇...乂广无+ 2 1 人,fc+l l^^fcO.Tg,-! ； 乂 爪〇 X•；„ - i 〇...X , + 2 丄 义 广 ！ I x , 1 ； 

⑴ + 2 LXVlO入、-1 . 丁 2A:-1 ；入产 m〇X爪-lO…〜+2 1 人“卜 lO入产 ； 

* • • • 

l'Ym-l〇，..X,A: + 2〇-\,t+lOXfc 1 ； ^ ^ m - 1 〇..丄,A: + 2 〇 X ( + 1 〇 X * 0 . T •七 _ 1 
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That is, the chain is a sequence of subchains, starting w i th the subchain 

•XT 爪0 X 0 ... X k + 2^ ^ k+ 1 0 X 1^0 . T 2 fc - 1J such that the (2i)-th and ( 2 i + l ) - s t sub-

chains are given by ^ mY m^ m- iY m - i " - ^ kV k 2k-i and 

Xmym"̂ 、产m-1 y 1...XA：y A：.TfA：-1 rcspcctively where y爪ym-1 . . y “ i ya： is the i - th 

element of a reflected Gray code of size m-k +1. The linkages between the respective 

subchains are val id edges in the AQ^because the parities of the last elements of 

丁2卜1 and of are, respectively, 11(丁2卜i - 1 ) ) = 1 and 

… ( 广 i - l ) ) = 〇. 

Therefore we can embed any 2 厂 x 2Qgrid into the A Q ^ b y mapping the rows 

and columns to the corresponding chains, the format ion of which is just discussed. 

(That is, individual column is formed by f ixing the y /s and z Is, and indiv idual row 

is formed by fixing the x / s ) . Thus we arrive at the general result: 

Theorem 2.6 For any integers p and q, the 2 ^ x 2 grid can be embedded into the 

alternately-twisted (p + q)-cube wi th di lat ion one. 

For example, the embeddings of the 4x8 and 4x16 grids into the A Q 5 and A Q ^ 

respectively are i l lustrated in Figure 2.9. Only relevant edges are shown in the figure. 

Chan [Chan88] has proven that any H x W grids can be embedded into a binary 

n-cube, where H x W < 2"，with di lat ion 2. The major basis of her proof is that the 

gr id is first embedded into a x grid wi th di lat ion 2，p + q = n，which is then 

embedded wi th di lat ion 1 into a hypercube of size 2 ^ Since the alternately-twisted 

cube can also do the latter step, her mapping algori thm can be appl ied here as wel l : 

Theorem 2.7 A n alternately-twisted n-cube is able to embed any H x W grids, where 

H x W < 2 "，with di lat ion of at most 2. 
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(a) Embedding of 4x8 grid into an A Q s 

000000 000011 000100 000111 
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looDoo 100(311 100100 loom \ \ \ 
• # • ^ i » # 4 \ \ 

100001 100010 100101 1001m \ 

101001 101010 101101 1 0 1 1 l y 

f » f • f f • r / / 
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鲁 鲁 眷 參 春 鲁 書 鲁 z 
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(b) Embedding of 4x16 grid into an A Q ^ 

Figure 2.9: Two grid embeddings in alternately-twisted cube 

(only relevant edges of the cubes are shown) 
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We refer the interested reader to the paper by Chan [Chan88] for a detailed 

account of the mapping. 

2.2.5.3. Simulat ion of binary trees 

Let B T „ denote the complete binary tree of size I t is possible to specify 

a di lat ion-1 embedding of B T „ into the graph of A Q ” for n = 1，2，3，and 4. The 

embeddings of BT ! a n d BT 2 are trivial, and those for BT3 a n d BT4 are 

given i n Figure 2.10. However, for larger binary trees, we are only able to embed 

a B T „ . iw i th di lat ion one into an A Q „，ie. into an alternately-twisted cube of double 

size of the tree. 

Theorem M For any node u i n A Q ^ , n>l , there is an embedded BT „_ 丄 rooted at 

u . 

Proof: Since A Q ^ is node symmetric, we only need to show that there is an 

embedding of a B T V 1 into an A Q …The desired binary tree rooted at any specific 

node u can then be obtained by an appropriate automorphism. I t is obvious that 

the theorem is true for n<4, because a 丄 is a subtree of BT Now suppose i t 

is true for al l n<2k, and we are going to show that i t must then be true for n = 2 k + 1 

and n = 2 k + 2 . Observe that since the BT 2 it — 1 occupies only about half the nodes of 

AQsit，the root of the tree, say r =厂2A:- i ’.厂。，must be adjacent to a node s = 

s 2fc -1 . . s 0 which is not included in the tree. For an A Q 2大+1，there is 2 distinct AQs^t, 

which are, using the notat ion in Section 2.2.3, c j ( A Q s a ： ^ » lOyY^^"^ } ) 

and a ( AQ2A:+卜{〇1 卜1，11 } ) respectively. By assumption, there is an 

embedding of B T r o o t e d at node 厂，=厂2a:- i〇厂厂2左_3 . . ,厂 1 厂0 i n the sub-
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root 

10 \ / 

I r ^ ^ 1 
〇〇0〜\ 010 

unused 门ode 

(a) embedding of B T 3 into an A Q 3 

root 

0001 ^ ^ 1 0 0 1 0 ^ 1 0 1 1 

\ 
unused node 

(b) embedding of BT 4 into an A Q 4 

Figure 2.10: Di lat ion-1 embedding ofBT-^and B T . 

into A 0 ^ and A 0 ^ respectively 
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graph( j ( AQ2允+1，{〇0y\,2(-i，1〇入,2&-1}), and there is another embedding of the 

BT 2九--1 rooted at node 

5 = {_ 
^ ^ 2k-2^ 2k-3" \ ^ 0 if 冗(2 A: - 2 , . . 0 ) 二 〇 

i n the subgraph a ( A Q s ^ . i . { 0 1 11 } ) . The desired embedding of the 

binary tree B T s a： into the is obtained by combining these two (sub)trees 

through the new root at node f = s 2 大 _ i 〇 s 2 a： - 2 s 21 - 3.. s o respectively via the edges 

( r ' ’ t ) and (s 〜t). Similarly, for a binary tree BTsa： embedded w i th in the AQgjt+i， 

rooted at node t, there must be a node v adjacent to t and not being a node of the 

tree. Then for an A Q + 2，the desired new tree BT 2̂：+1 can be formed by including 

the tree BTs^ wi th in the (alternately-twisted) subcube cJ(AQ2A:+2，{0yY"+i})， 

rooted at node Ot， and the tree B T s a： embedded i n the subcube 

G(AQ2fc + 2，{ l X "+ i})， r oo ted at node Iv，and combining them through the new 

root at node Ov using the edges (Ot, Ov) and ( Iv , Ov) respectively. (Figure 2.11 

illustrates the idea for the case o f n = 2k+2. ) Hence by induction the theorem holds 

for al l n. (Q.E.D.) 

The embedding of BT^—i into an A Q ^ i s quite "inefficient", since about 50% 

of the nodes of A Q „ do not take part in the embedding. I t is therefore natural to 

search for the feasibility of embedding the binary tree B T „ into an A Q „wi th di lat ion 

one. We know of no such solution, however, and w i l l leave it as an open question. 

Instead, we w i l l describe a dilation-2 embedding. To this end we define the over-

loading factor of an edge e in a graph H for the embedding of a graph G into H as 

the number of edges of G which are mapped to the paths/edges ( in H ) that include 
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急 
Figure 2.11: Illustrating the (recursive) embedding of a BT^.^ i in an 

e. The largest overloading factor among al l the edges of H i s the overloading factor 

of the embedding. I t is used to measure the edge congestion in the graph H for the 

embedding. Clearly the smaller such a number, the better the quali ty of the 

embedding because large overloading factor tends to cause more unbalanced traf f ic 

over the edges. We have the fol lowing result for the A Q „ ： 

Theorem 2 3 For any A Q „，there exists an embedding of BT „，with d i la t ion of at 

most 2 and overloading factor of at most 2. 
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Proof: Again, the theorem holds for n = 1,2,3 and 4 trivially. Suppose that i t is also 

true for n<2k, and for each such n, i f n is even and >4, the embedding is such that 

the root of B T " is at node 厂二厂 „ -!厂 „ _ 2...厂 o, the unused node (ie. the node of A Q „ 

that is not mapped to any node of theBT^) is node 二 Fn-1 厂几-2 厂 3 厂 n- 4 厂 5 . . . 厂 0, 

that 3X(r„_2厂n-3...厂0) = 0，and that the two edges r - > t and r - 〉 s, where 

t = 「 = 厂 厂 ; 厂 n - 3 厂 . . 厂 0 ， a r e used in the embedding 

of the tree and each has an overloading factor of at most 1. 

Now for the graph A Q 2 a； +1，there is a dilation-2 embedding of B T 2 a： into each 

of the 2 (alternately-twisted) subcubes a (AQz^+ i， {〇〇X" - i， l〇yY" " - i } ) and 

1 1 . Y ' ' - ' } ) , wi th the nodes r, s，t，and u described in the 

above assumption mapped to 

r，二厂 1 〇厂 2k-2. •.厂 0， 

s ，二厂 2A:- 1 〇厂 2A: — 2 ,..厂 0 , 

t ' = 厂 2A: - i O厂 2卜 2 . . .厂 0，and 

U , =厂 2k_i0 厂 2k-2 …r 0 

respectively in the first subcube, and to 

r " = 厂 1 厂 2 k - 2 … r 0 , 

s" 二 厂 1 1 厂 2k-2',.厂 0 , 

t" =「2A:-il 厂2ic-2…厂0，and 

u " = 厂 2A:-1 1 厂 2k-2' •.厂 0 

respectively i n the second subcube. The desired embedding of BT2A:+i into the 

AQ2A:+ 1 is formed by jo in ing the two (sub)trees BTsArVia the new root u", which is 

connected to the two (old) roots of the BT2A： through the paths r，-〉t" - > u" and 
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r " - > t " -> u" respectively. Note that the edges t" -〉u" and r，-> t" are newly added 

edges, so their overloading factors are respectively 2 and 1. Also the edge r" -〉 t " 

w i l l have an overloading factor of at most 2. Besides, the two paths between the 

new root u" and the unused node u' are respectively 

u" - > s，-> 11，and u" - > s" ->u ' , 

and the overloading factors of these edges are 0，because they are not used in the 

embedding. Also note that the new root u" has the form 厂2ic-i 2/C-2…厂o and 

H(U") = 1. Hence we prove the theorem for n = 2 k + 1 . 

For the graph of AQsat-z? there wi l l be two BT 2a： +1 embedded, one i n each of 

t h e s i i b c i i b e s a ( A Q 2 ) t + 2， {0 A ' 2 h i } ) a n d a ( A Q 2 h 2， { l x 2 h i } ) A c c o r d i n g t o t h e 

mapping method for n=2k+1， the root of the embedded tree in the first subcube 

w i l l be Ou", the unused node w i l l be Ou', and the paths 

Ou" -〉Os，-〉Ou，and Ou丨丨-〉Os"-> Ou， 

contain edges of overloading factor of zero in the embedding. For the second 

subcube, since i t is node-symmetric, we can specify the embedded B T 2 “ 1 as rooted 

at node Is", the unused node being Is，and for the 4 edges of the two paths 

I s " - > l u ' - > Is，and I s " - > In" -〉 I s ' , 

each has an overloading factor of 0 only. Then the desired embedding of 3 丁 2左 + 2 

into the AQ2A:+2 is obtained by taking the 2 embedded BTs^^i 's as two subtrees 

which are jo ined to the new root at node Ou' via the respective two paths: 

Ou"-> Os"-〉Ou' and Is"-〉Os"->Ou，. 

These edges are newly added, so the overloading factors are 1 for the edges Ou"- > 

Os" and Is" -〉Os", and 2 for the edge Os" - > Ou，. The unused node is Is', to which 
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there exist two paths f rom the new root Ou，，namely, Ou，-> Os，-〉Is，and Ou ' -> 

l u ' - > Is，. Each of these 4 edges has an overloading factor of zero in the embedding, 

because they are not used at all. Note that the involved 4 nodes have the address 

forms that satisfy those specified in the induction assumption stated i n the beginning: 

O Z I = 〇 厂 2 A : - 1 〇 厂 2 A : - 2 厂 2 A ; - 3 厂 2 A : - 4 . . . 厂 0 

O s = 0 厂 2 A : _ 1 0 厂 2 A : - 2 厂 2 A ; - 3 厂 2 A : _ 4 . . . 厂 0 

l U = 1 厂 2 A ： - 1 〇 厂 2 A : - 2 厂 2 A : - 3 厂 2 A ; - 4 . . . 厂 0 

I s = 1 厂 2 A ; - 1 〇 厂 2 A : - 2 厂 2 A : - 3 厂 2 A ; - 4 , . . 厂 0 

a n d 11(厂2)^_10厂2卜2厂2卜3厂2卜4.,.厂。)=〇 

for n = 2 k + 2 . Therefore by induction the theorem holds for al l n. (Q.E.D.) 

As an example, we show in Figure 2.12 the dilation-2, overloading-factor-2 

embedding of BT 5 into an A Q 5 , The bold solid lines represent the embedded tree 

edges that are di lated by 1, and the bold dotted lines represent those edges being 

di lated by a factor of 2. 

I t is known that for a binary n-cube, n〉2，there is no di lat ion-1 embedding of 

a into it, and the largest complete binary tree i t can embed w i th such goal is 

the B T „ _ i [LaDh90, p.82-87]. Hence in terms of di lation-1 embedding of binary 

trees, the alternately-twisted cube is slightly better than the hypercube, as 

BT3 a n d BT4 can be embedded into AQ3 a n d AQ4 respectively wi th 

d i lat ion one. However, i f the requirement is relieved to dilation-2 embedding, the 

binary n-cube is better. I t can house a BT^ wi th only one of the tree edges being 

actually "dilated", namely, the edge connecting the root and one of its subtrees, and 
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10101 11101 11111 

( t ) 10110 ( t 11110 p ‘ 丄 / f K i 
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o o i o o \ J ^ 0 0 1 1 0 0 1 1 0 0 \ J ^ 0 1 1 1 0 
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Figure 2.12: Di lat ion-2 embedding of BTc, into A O ^ 

(N.B.: irrelevant edges along the 3rd- and 4th-dimensions are omitted for clarity) 

the embedding has an overloading factor of only 1 [LaDh90, p.91]. Thus i t is more 

suitable, in general, to simulate a BT „ on the binary n-cube than on the 

alternately-twisted n-cube. 

2.2.5.4. Simulating the hypercube 
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Since binary 1- and 2-cubes are the same graphs as A Q i a n d AQ2 

respectively, we wi l l assume in this subsection that the hypercube being discussed 

has at least 3 dimensions. F rom the discussion in Section 2.2.5.2, i t can be seen that 

an alternately-twisted n-cube contains 2 binary k-cubes as its subgraphs, where 

k = ( n + 1 ) / 2 i f n is odd, and k = (n /2 ) + l i f n is even. For larger-sized hypercubes, 

however, the alternately-twisted n-cube can only simulate it. I n general we have 

the fo l lowing result 

Theorem 2.10 A n A Q „ , n > 2 , can embed a binary n-cube wi th di lat ion 2, overloading 

factor of 2, 

Proof: The nodes of the binary n-cube is mapped in an 1- to - l fashion to the 

corresponding nodes wi th the same addresses in the A Q „ . Since the edges along 

the even-numbered dimensions are not twisted at all, they are mapped directly w i th 

the corresponding hypercube edges. For each hypercube edge of the f o r m 

^ n- 1 X n-2 . ' X 2i-l ^ 2i-2 . , 乂 0__�^ n - I n-2 ' ' ^ 2i- I ^ 2i-2 • • 0 

i t is mapped to the same edge in AQ。 i f jx(x"2i-2...乂o) = 1，and to the paths 

X n-Y X n-2 , , X 2i+ 1 ^ 2i- 1 X 2i-2 • • ^̂  o —〉 

n- 1 ^ n-2 " X 2i+ 1 ^ 2i- 1 义.2i-2 "X q—> 

v* V* V* 、广 V, A 〜 广 

n- 1 入 rt-2 ••入 2i+ 1 入 2i 入 2i- 1 入 2i-2 ••入 0 
i f T i (x2 i -2 . - ^o )=〇 • I n this way each edge of the fo rm 

X n_ I X n_2 • , X 2i+ 1 ^ 2i-l "X q — > i X • • X 2i+ \ ^ 2i- \ • • 0 

wi l l be used twice i n the embedding, while all other edges are used once. (Q.E.D.) 
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I t should be noted that the theorem can also be stated in the reverse direction, 

1.e. a binary n-cube is able to embed an AQ。with dilation 2, overloading factor of 

2. 

2.2.6. Summary of Comparison with the hypercube 

The foregoing discussion of the topological properties of the alternately-

twisted cube is summarized below, along wi th the corresponding properties of the 

binary n-cube. In general the former preserves much of the salient features of the 

hypercube, while at the same time it is superior to the hypercube in the measure 

of worst-case distance among the nodes of the whole graph. This w i l l be further 

investigated in the next chapter, when the alternately-twisted cube is analysed in 

the context of a message-passing multiprocessor network. 

alternately-twisted cube hypercube 

size 

node degree n n 

l ink count 

diameter \ + 1 n 

symmetry node-symmetric both edge- and 

node-symmetric 
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alternately-twisted cube hypercube 

subcube into A Q , ： into k-cubes: 

(n\ 
part i t ioning n is odd and k is odd: ways 

J 

k h ways 

n is odd and k is even: 

f l l l \ 
二 ways 

n is even and k is odd: 

f 1 \ 
二 ways 

n is even and k is even: 

二 ways 

WJ 
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alternately-twisted cube hypercube 

# of distinct paths n n 
between 2 nodes 

embedding of rings, di lat ion 1 for all [ < 2 " di lat ion 1 for al l even i < 

R i and 2" 

embedding of di lat ion 1 i f H and W are di lat ion 1 i f H and W are 

H x W grids powers of 2, di lat ion 2 powers of 2，dilation 2 

(HxW< 2") otherwise otherwise 

embedding of di lat ion 1 for k < n, di lat ion 1 for k < n, 

complete binary di lat ion 2 wi th overload- di lat ion 2 w i th overload-

trees, B T 大 ing factor of 2 for k = n ing factor of 1 for k = n 

(s imulat ion of di lat ion 2 wi th overload- di lat ion 2 w i th overload-
each other) ing factor 2 ing factor 2 
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Chapter 3 

Network Properties 

I n this chapter the properties of the alternately-twisted cube as an intercon-

nect ion network is analysed. We assume that i t is used in a mult iprocessor envi-

ronment, so that each node corresponds to a processing element as we l l as a 

communieat ion element, and each edge is a bi-direct ional channel connecting 2 

nodes. Basically the (alternately-twisted) cube w i l l be used as a message-passing 

network. 

3.1. Rout ing Algor i thms 

We w i l l present an algor i thm to f ind the shortest path between any two nodes 

i n an alternately-twisted n-cube. The idea is to ut i l ize the 'twisted edges' as much 

as possible so as to shorten the path length, that is, the number of hop counts a 

message has to make on travell ing along the path. 

For any node u, define Yi(u) as follows: 

,11。， i = 0 

, 、 ) I ^ 
L 2 

, i f i = ^ a n d n is e v e n 

For example, i f n=5，then 

Y o O ) = Lto，Yl ⑷ 二 乙(2 … ， Y 2 ⑷ = 乙 i3 

and i f n = 6，we have 
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Y o ⑷ = … ， ⑷ = 乙 Y 2 ⑷ = ¥ 3 ， Y 3 ⑷ 二 〜 

I n this way a binary address is divided into substrings of either 2 bits or 1 b i t long. 

To simpl i fy the notation, the concatenation of Y,(U) and y j(u) w i l l be wr i t ten as 

Y iY /u ) . L e t m = [ | j , t h e n u = v^nYm-i . . .Y i Y o ( “ ) . 

The rout ing algor i thm for determining the path f rom node s to node t i n an 

A Q ^ w o r k s as follows. I t repeatedly finds the next node to go, starting at node s, by 

determining the leftmost di f fer ing y j, between the current node address and t, such 

that YjtCcurrent node) can be changed to YA:(t) via only one rout ing step, effected 

by travel l ing along the edge connecting the current node to the node 

Y/nYm-i • • Y ; t . i ( c u r r e n t n o d e ) y a： ( O y ^ - i Y a : - 2 • - Y o ( c u r r e n t n o d e ) . I f no 

such k exists, then the path w i l l be chosen in such a way as to change the r ightmost 

Y i of the current node which is dif ferent f rom the corresponding y ^ of t. I n this case 

there is no direct connection in the network to effect the change. Rather, we have 

to go through 2 nodes, instead of 1, to achieve this. The steps are then repeated 

un t i l node t is reached. Formal ly the algori thm is specified below: 

A l g o r i t h m 3.1 Finding a path f rom node s to node t i n AQ^： 

(0) “ n 

(1) c — s (c holds the current node address) 
(2) D o whi le c # t 

(2.1) let k be the largest integer, 0<k<m, such that 

Y A : ( C ) 〜 ⑴ a n d 
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e i t h e r ⑴ Y ) t ( c ) ® Y a : ( 0 = 0 1 a n d 

or { i t ) 1 1 a n d 

or {Hi) Y ^ ( c ) e 10 or 1 { i f k = 0) 

(we use © here to denote pairwise exclusive-or) 
(2.2) i f such k exists then 

(2.2.1) include the edge ( c - > next) in the path 

c — next 
else 

(222) let k be the smallest intger, 0 < k < m , such that 

let (3 = C2fcC2A： — 1 
(2.2.3) include the following subpath to the path being buil t : 

c - 〉 Y m Y m - i . . Y ^ . i ( c ) p Y , - i . . Y o ( c ) 
-〉Y,nYm-i .-YoCc) 

endif 
enddo 

EndAlgor i thm 
As an example, the path between nodes 00000 and 01111 in an AQ5，found 

by the algorithm, wi l l be . 

00000-> 00110-> 01110-〉01111 

I t is easy to see that the edge added to the partial path by statement (2.2.1) 

corresponds to a valid edge in A Q „ • I t remains to show that the 2 edges specified 
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i n statement (2.2.3) is also valid. First observe that the string Y A : ( C ) chosen in 

statement (2.2.2) must consist of 2 bits, and i t must be that either 

Y ; t ( c ) ® Y A : ( 0 = 0 1 a n d J t ( Y , _ I . . Y O ( c ) ) = 0 

or Ya:(c)® Y ^ ( 0 = 11 and J I ( y , _ i .. Y o ( c ) ) = 1 

I n both cases we see that the part ial path bui l t by statement (2.2.3) employs 2 val id 

edges i n the graph of 

Furthermore, i f there are more than one string Y i ( c ) that di f fer f r o m the 

corresponding Y 〖（0 but do not satisfy the condit ion i n statement (2.1)，then after 

the smallest-subscripted one of them is changed to the desired Y i ( 0 as effected by 

the establishment of the path in statement (2.2.3), al l the remaining of these strings 

must satisfy the condit ion in statement (2.1). 

Denote the number of differing y i()，s between two node addresses u and v by 

专 O，u). Then we have: 

Theorem 3JL A lgor i thm 3.1 specifies a routing algori thm for f inding a shortest-path 

f r om node s to node t i n A Q „ . Specifically, i f the rightmost di f fer ing bi t between 

the two node addresses appear in bit 2k or in bit 2k-1，k〉0，and 

e i t h e r 0 y , ( 0 = 0 1 a n d i i (Y i t - i •• YoC^)) = 0 

or 11 a n d : I X ( Y A : - I " Y o ⑴ ） = 1 

then the path length is 专（u，"）+1，otherwise i t 

Proof: F r o m the connectivity rule of the alternately-twisted cube, i t is easy to see 

that a transit ion along any edge adjacent to a node u wi l l affect exactly one of the 

Yi(u)'s i n the binary address. Thus ？ ( s , 0 is the lower bound of rout ing steps 
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required for message transmission between nodes s and t. But i f the rightmost 

dif fer ing bits between s and t satisfy the condition stated in the theorem, then it 

must take 2 routing steps to effect the corresponding change in the node address. 

Hence the algorithm is actually a shortest path routing algorithm. (Q.E.D.) 

Since the algorithm does not use any global, dynamic informat ion about the 

network, i t is immediately a distributed routing algorithm i f the destination node 

address is tagged to the message being sent, and each node on receiving a message 

w i l l per form statements (2.1) and (2.2) of the algorithm and pass the message to 

the next node along the partial path specified in statement (2.2.1) or i n statement 

(2.2.3). 

Before closing this section, we would like to add that i t is more complicated 

i n the alternately-twisted cube than in the hypercube for finding the opt imal set of 

distinct paths between any 2 nodes. (By optimal set we mean that, over al l the sets 

of distinct paths between the two nodes, the length of the longest path i n the set 

w i l l be minimum.) The reason is that by changing an Yi in the address node, the 

parity of the address may be altered as well. Since this parity affects directly the 

choice of the shortest path, the order of changing the y /s are important. Thus it 

makes the guarantee of distinction among the chosen paths to be dif f icult . We wi l l 

leave i t as another open problem to be solved. 

3.2. Message Transmission: Static Analysis 

Let h(n,d) denote the number of nodes whose shortest distance f rom a node 

u in an A Q n is d. Clearly this number is the same for any node u because A Q „ is 
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node-symmetric. The mean internode distance of A Q ^ , i.e. the average hop counts 

requi red for a message transmission, is then given by 

U去1 

—J d= 1 
= 

- 1 

(assume that a node w i l l never send a message to itself) 

By looking into the working principle of the shortest path rout ing algori thm, 

we can see that the funct ion h(n,d) satisfies the recurrence re lat ion 

h(2k,d) = h(2k- l ,d) + h(2k- l , d-1) 

for n = 2 k . The reason is that for any 2 nodes u and v in A Q 2大 to be apart by a 

distance of d, either y k W = y k ( ^ ) o r 、 k W ” k O ^ ) (note that and 

Y a : 0 ) each consists of 1 b i t only), which gives rise to the first and second terms of 

the equat ion respectively. 

I f n 二 2k +1，k〉0, h(2k + l，d) is calculated as follows. For any 2 nodes u and v 

to be separated by d hops, we have the fol lowing 4 cases: (note that and 

Y A： O ) each must consist of 2 bits) 

( i ) 

The contr ibut ion of this case to the value o f h ( 2 k + l，d) w i l l be h (2k - l , d), since 

u and V are actually wi th in the same ^ { y k i ^ ) 

(alternately-twisted) subcube; 
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( i i ) Y a ： ⑷ " i t ⑷ = 1 0 

The change of y a；⑷ to Y “ "）in the node address can be effected by just one 

transit ion along the 2k-th dimension. The number of nodes v, given any u, 

fal l ing into this case is h(2k- l , d-1); 

( i i i ) 01 a n d Y.-2 •• Y o ( ^ ) ) = 1 
Yit(乙 0 ® Yfc ⑷ 二 . 1 , 

I n either subcases, the change f rom Yfc(u) to Y j t O ) in the node address is 

achieved by 1 transit ion only, along the (2k- l ) - th dimension. Therefore the 

number of nodes v, given any u, satisfying this case is h(2k- l , d-1); 

(iv) 01 a n d J t (Y . - i Y.-2 •• = 0 
© y u ( v ) = { 

‘ ‘ 11 a n d 

I n this case, the change f rom Y “ &) to Y a： O ) in the node address may take 1 

or 2 steps. I f i t takes 2 steps, it must be that throughout the course of changing 

Y A : - I t o Y F C - I Y A : - 2 - - Y O ( ^ ) the parities of the involved node 

addresses are not altered at all. This happens only when the y-s di f fer ing 

between Yi t - iYi t -2--YoC^) and Y ^ - i - - Y o C ^ ) are of the f o rm 

Y i ( ^ ) ® 10, and there must be d-2 such y ^pairs. The total number of 

f k - l \ 
nodes satisfying this subcase, for fixed u, is thus , � . 

v " - 2y 

I f the change f rom Y ^ ( a ) t o the node address takes 1 step only, there 

must exist at least one parity change in the node address on travsering along 



Chapter 3 Network Properties 3-8 

广 /c - 1 、 
the path f rom u to v. There wi l l be h (2k - l , d - l ) - 飞 ^ nodes satisfying this 

VcZ _ 丄乂 

subcase. 

I n total, the number of nodes falling into case iv, for any fixed u, is 

〔 二 ) + 料 降 ( 二 ) . 

Summing the number of nodes in each of these 4 cases, we get 

h ( 2 k + l , d) = h(2k- l , d) + 3 h(2k-l , d-1) + 二 、 
V " - 2 y \ a - \ ) 

Starting with the basis h(l，0) = h ( l , l ) = l，the value of h(n,d) and hence the 

value of dn for any n > l can be calculated. Figure 3.1 shows the plot of , for 

l<n<21. The mean internode distance of the binary n-cube, which can be shown to 

« { n\ 
么 d . ⑵ 

be 二 〃 ， i s also plotted in the same figure. In general the mean internode 

distance of the alternately-twisted n-cube is smaller than that of the n-cube. Figure 

3.2 shows the comparison in terms of the percentage saved i n the of 

alternately-twisted cube over the hypercube. I t is noted that the asymptotic 

improvement is at about 22% and the improvement is more striking for odd values 

of n (which is the same for the improvement in the diameter measure). I t is because 
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twisted edges of AQ^are found in alternate dimensions, so AQ^of odd dimension 

has relatively larger proport ion of twisted edges which are accountable for the 

shortening of the paths. 

The shorter length of an average path in the alternately-twisted cube w i l l result 

i n smaller traffic f low over the edges as compared with that on the hypercube, 

because on average fewer number of edges wi l l be used for transmitt ing a message 

i n the former. Quantitatively this is reflected in the traffic density measure. The 

average traffic density over an edge along the k-th dimension in an A Q denoted 

as T(n,k), is defined to be the ratio of the average number of messages crossing the 

set of edges along the k-th dimension, to the total number of edges i n this set, 

assuming each node wi l l contribute to the message poppulat ion by sending a 

message to a random destination. 

For each source node u in A Q ^ , let the number of possible destination nodes, 

such that each corresponding shortest path requires a traversal over an edge along 

the k- th dimension, be denoted by £(n,k). There are altogether 2 " source nodes, 

each of which wi l l behave (statistically) identically. For each source there are 

potent ial destination nodes (because no node wi l l send a message back to itself). 

And, there are edges along each dimension. Therefore, 
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1). 

Clearly, 5(n,0) 二 so T(n,0) = 27(2 '^- ! ) . 

Also, 5(n, 2k - l ) = because for any (source, destination) pair (u,v), i f 

U2k-i 丰。2卜1’ the path between them must use exactly once an edge along the 

(2k - l ) - th dimension. Therefore 

V 0 < / c < ^ ， T : ( R ， 2 / C - 1 ) 二 “ “ 
—2」 1 

For a path between node u and v to take an edge along the (2k)-th dimension, 

i t must be that either ( i) Y A： ( U) ® Y A： (。) = 10, or ( i i ) during the course for converting 

the node address, the path has to take on two edges, one along 

the (2k)-th dimension and one along the (2k- l ) - th dimension. The condit ion for 

case ( i i ) is that 

( a ) 二 〇1 a n d ^ , . . Y q = 0 

or and • • •YoCu)) = 1 

and 

( 5 ) V 0<i< k-1 Y i ( i i ) ® 1 0 } 

Therefore, for 1 <k< 宇 ， 

6(R，2/C ) 二 + 小 2 、 

—2 2 + k 
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The first term of the right hand side is due to those satisfying case ( i) and the second 

te rm is attr ibuted by those satisfying case (ii). Hence, 

, … 2 " . (2 " -2 + 2 " - 2 - ” 1 
T(/7,2/C)= 

1 
2 1 + 一卜九 

1 

The plot of the values of T(n,i) against n is shown in Figure 3.3 I t can been 

seen that the average traffic densities over the edges along the 0-th and the 

odd-numbered dimensions are the highest. Each of these edges w i l l serve for about 

one message of the previously mentioned message population. Note that this value 

is the same as the average traffic density of a binary n-cube, in which the traff ic 

density is the same over all edges because of the edge-symmetric property. Hence 

the smaller average internode distance of an A Q ^ does not cause higher traff ic 

congestion in any localized points in the AQ^when compared to the binary n-cube. 

Rather i t results in reduced message flow over the edges along the even-numbered 

dimension. The higher dimension such edges belong to, relatively the less frequent 

they are used. I t is noted that edges along the 10-th or larger, even-numbered 

dimensions have about only 50% uti l ization of those along the 0-th or odd-numbered 

dimensions. The implication is that rather by distributing the communication 

resources (e.g. channel bandwidth, buffers, amount of time shared, etc) evenly over 

al l the edges of an alternately-twisted n-cube network, it may be more efficient by 

biasing their allocation according to the relative traffic f low over them as suggested 

by Figure 3.3. 
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in t h e a l t e r n a t e l y - t w i s t e d n — c u b e 

3.3. Message Transmission : Dynamic Analysis 
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I n this section the performance of the alternately-twisted cube as a messa-

ge-passing network w i l l be investigated under the dynamic environment, i.e. 

blocking of messages due to resource contention is taken into consideration. We 

w i l l adopt the analytical technique proposed in [AbPa89]. The model assumes that 

each node of the A Q ̂ is composed of a switch and a processing element respectively 

for communication and computation purposes. The switch has (n+1 ) output queues, 

n of which is assoicated wi th the n output ports of the node, and the remaining one 

is used for sending/receiving messages between the processing element and the 

switch. Messages contending for the same output port wi l l be buffered i n these 

queues. The model also assumes infinte queue length, so that no message w i l l be 

lost and retransmission is not required. Further, the node is working in the mult i-

ple-accepting mode, in which up to n messages can be accepted by the processing 

element in one cycle, and at the same time the switch can simultaneously send out 

at most n messages. The performance of the network is measured i n terms of the 

average message delay under the simultaneous, mult iple message transmissions 

environment, where the non-adaptive shortest path routing algori thm proposed in 

Section 3.1 is used. 

A t steady state, at any node u the probability of an entering message (that is, 

not gererated by the processing element of that node) that has i more hops(or edges) 

to go is given by 

d 

Y. h(in’j) 
：…二 w h e r e cl = - + 1 
d d o I 

k-l j=k 
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The numerator is the count of nodes that is more than i hops f rom u, and the 

denominator is the sum of all these counts for l<i<d, d being the diameter of the 

A Q n . When i = 0, it is the probabil ity for an incoming message reaching its desti-

nation, i.e. the probabil i ty of termination, and is given by 

d 

_ 1 fl^ 
P t ( r i ) 二 广 ^ whe re d = - +1 

^ ^ ^ ad 2 
l l f ^ ( r i j ) 
k'l } = k 

Now denote the message generation rate at each processing element by g. 

Clearly i t is also the load of the whole network. Then the arrival rate of messages 

f rom a particular input port of a node is given by m, where 

n. Pt(n) 

(Because there is no message loss, the bir th rate of a message at a node, g, should 

be equal to the death rate, n • m - F^(n).) From the result of the last section, we 

can infer that the rate of message arrival/departure at different ports of a node is 

not the same i f al l the ports are identical. However, we can make al l the rates equal 

by allocating resources to the ports in a non-even distribution as discussed at the 

end of the last section. Here we assume that this is the case. Then by the result of 

AbPa89, section IVB] , the average number of mesages existing in an output queue 

of a node in the steady state is given by 

尸 ?（几）） - 2 . ( l - 尸 ⑴ ）） 
0 = m + 

2 . ( n - 1 ) . ( 1 - m ) 
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and the average t ime a message has to wait at an intermediate node is therefore 

b / m . Since an average message has to go through d ^ nodes, the delay for the rout ing 

is thus d^ ‘ Note that there is an additional cycle needed for a message generated 

by a processing element to be transferred to the switch in the same node. Hence 

the average message delay in an A Q “ s given by 

d •色 + 1 
“ m 

The values of this funct ion is plotted in Figure 3.4 against the dimensions of 
» 

the alternately-twisted cubes. In the figure, the load is actually the g i n the analysis. 

I n the same figure are also shown the corresponding values of the hypercubes, using 

the same analysis. I t can be seen that the performance of the A Q „ is much better 

than the binary n-cube: the average delay in A Q ^ w i t h a load of 1.0 is just slightly 

greater than that in the hypercube wi th a load of 0.1，and is smaller than those in 

the hypercube wi th a load of 0.5, 0.75, and 1.0 respectively. Figure 3.5 is another 

view of the same result, showing the percentage improvement. I t is not surprised 

to note that the improvement is more striking when the dimension of the A Q ^ i s 

an odd number, as is in the case of the mean internode distance measure. Also, 

more relative saving of transmission time is achieved at higher load. And, when n 

exceeds 6，the savings is already more then 10%, even at a load of 0.1, and the 

asymptotic value of the percentage improvement is about 30% when the load is 

equal to 1. Figure 3.6 shows the variation of the average delay when the load is 

varied. I t is evident that the gap between the curves for the A Q ^ a n d for the n-cube 
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of corresponding size is wider when the load approaches 1.0. Thus the superiority 

of the alternately-twisted cube over the hypercube as an interconnection network 

is more significant when i t is heavily loaded. 

3.4. Broadcasting 

We w i l l consider the case for message broadcasting f rom a part icular node to 

al l the nodes, i.e. one-to-all broadcasting, in the alternately-twisted n-cube. Based 

on the shortest-path routing algorithm, here is the distributed a lgor i thm for the 

broadcasting: 

A lgo r i t hm 3.2 One- to-Al l Broadcasting algorithm executed at each node of an A Q „ 

，assuming the origin of the message is at node s 

( let the address of the node be u) 

i f 11 = s then 

(1) for 0<i<n-l, 

send the message over the edge along the i - th dimension 

else 

(2) wait for a message f rom one of its neighbours 

(3) suppose it comes f rom the edge along the k- th dimension 

(4) CASE of k - -
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( i ) k = 0: 

S = { 2 i - 1 I 1 <i< j , a n d y^C^O ® YtC^) = 0 0 } 

where j is the smallest integer > 0 such that 

® Y ; ( s ) = 01 or 11, ( i f no such j exists, then ^ + 1) 

( i i ) k is even and not equal to 0: 

{ i \ 0 < i < k - l } u | 2 i - 1 I a n d ⑷ ® = 1〇 ! 

where j is the smallest integer > k / 2 such that 

Y y ( ; i ) © Y y ( s ) = 01 or 11, ( i f no such j exists, then j = ^ + 1 ) 

( i i i ) k is odd and not equal to n-1: 

set j to be the smallest integer > ( k + 1 ) / 2 such that 

Y y ( ^ ) ® = 01 or 11, ( i f no such j exists, then let j = ^ + 1 

) 
set m to be the largest integer < (k-1) /2 such that Y m ( ^ ) ® Y m ( ^ ) = 

01 or 11, or 1，（if m 二 0，if no such m exists, then m = - 1 ) 

i f m = -1 then 

f k + 1 1 
S = l 2 i - 1 I ~^<t< j a n d y^C^) ® Y i ( s ) = 0 0 | u S ' 

else 

S = (^2i- 1 I 

where 
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i f = and 

= 01 a n d J t O ; t - i . . . “ o ) = 1) or 

1 zijt ® Sjt令 1 Sfc = 11 and J t (a ; t _ ” "Uo) = 0 ) ) t h e n 

= {i\ 0<i<k-l} 

o t h e r w i s e 5 ’ = 0 

and 

i f U2m-2--Uo = S2m-2--So a n d 

= a n d 1 ) OF 

11 a n d = t h e n 

o t h e r w i s e S " = 0 

(iv) k i s o ( i d a i K i k = n - l : 

S 二 川 0 < i < R - 1} 

endcase 

(5) for a l l i e s , 

send a replication of the received message over the edge along the i - th 

dimension 

EndAlgor i thm 

The spanning tree (i.e. the tree-structured subgraph consisting of al l the nodes 

of the network) arising f rom this broadcasting algorithm wi l l be one such that the 

path f rom the root to any tree node is a shortest path. Figure 3.7 shows an example 

for the spanning of the one-to-all broadcasting in an A Q s , the message being 

originated f rom node 00000. I t is compared to the corresponding spanning tree in 
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a binary 5-cube, shown in Figure 3.8. In general it can be seen that the broadcsting 

in an A Q n takes \ + 1 cycles, assuming a node can handle mult iple messages per 

cycle. This is about 50% of that of the hypercube. 

However, i f each node can only accept and send a single message per cycle, 

then the communication time for one-to-all broadcasting may be the same in both 

the alternately-twisted n-cube and the binary n-cube, assuming each intermediate 

node of the corresponding spanning trees wi l l send the message to the largest 

subtree first. I t is evident by comparing the two spanning trees in Figures 3.7 and 

3.8. Each requires 5 message cycles for accomplishing the broadcast. I n general, i t 

is known that one-to-all broadcasting in the binary n-cube takes n cycles wi th each 

node operating in the single-accepting mode [JoHo89]. And i t is conjectured that 

the alternately-twisted n-cube happens to take the same time. 

I n summary, we have 

Theorem 3.2 A lgor i thm 3,2 describes an one-to-all broadcasting in an AQ。，which 

takes 1 routing cycles assuming the nodes are operated in the 

multiple-message-accepting mode. 
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Figure 3.7: Spanning tree of A Q 5, rooted at node 00000 
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Figure 3.8: Spanning tree of a binary 5-cube, rooted at node 00000 
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Chapter 4 

Parallel Processing on the Alternately-Twisted Cube 

The f lexibi l i ty of the alternately-twisted cube for supporting paral le l pro-

cessing is demonstrated in this chapter. Three kinds of paral lel algorithms, namely, 

the Ascend/Descend class, the combining class, and the numerical algorithms are 

shown to be easily applied on the A Q ^structure. I n general, f r om the discussion in 

Section 2.2.5.4 the efficiency of executing these algorithms (as we l l as others) w i l l 

be about the same as, to w i th in an overhead of a factor of no more than 2，that of 

the hypercube. I n other words, we have 

Corol lary 4.1 Any prob lem solvable in a binary n-cube wi th t ime complexity 0 ( f ( n ) ) 

w i l l also be solvable in an A Q ^ w i t h the same t ime complexity. The factor of dif-

ference between the actual t ime required on the two structures w i l l fa l l w i th in the 

range (0.5, 2.0). 

Therefore we w i l l focus on the relative communicat ion t ime requi red to solve 

the problems on the alternately-twisted cube as compared to that on the hypercube. 

We refer an exchange cycle to be the t ime required for a message (the length of 

which is dependent on the problem) to be sent f r om a node to its direct neighbour 

along an edge in the graph. 

4.1. Ascend/Descend Class Algor i thms 

Suppose that there are init ial ly N = 2 " data, a ^ , a ! ，. . . .， r e s p e c t i v e l y 

stored at locations L(0) .. L ( N - l ) . The Ascend/Descend class of algorithms is 



Chapter 4 Parallel Processing 4-2 

defined in [PrVuSl ] to be those that iterate for an index i f rom 0 to n-1 (for Ascend 

class) or f rom n-1 down to 0 (for Descend class), and during each iteration, for each 

location L(x), its data is modif ied by a computation using data at L(x) and L(y), 

where the binary forms of x and y differs in only the i - th bit. Examples of this class 

include the N-point Fast Fourier Transform (FFT) and convolution algorithms. 

Obviously execution of algorithms in this class needs only 0 ( l og n) paral lel t ime in 

a binary n-cube. 

For instance, the Ascend class algorithms on the binary n-cube can be specified 

in the general fo rm below: 

(Assume each node u is already preloaded wi th its ini t ial data, a ^ and stores 

i t at local storage data(u) wi th in each node) 

For i = 0 to n-1 

do in parallel for each u : 0 < a < 2 " - 1 

l e t u ' ^ 

data(u) < - OP(i, u, data(u), data(i i ' )) 

enddo 

endfor 

where OP(i, u, data(u), data(a')) is the specific operation (depending on particular 

application) that performs computation on the two data at data(u) and data(a ' ) 

and may depend on the parameters i and u. The result is stored back in data(u). 

Clearly such operations on nodes u and u ‘ wi l l require a data exchange over the 

l ink along the i - th dimension between the two nodes. Therefore the communication 

t ime of the Ascend class algorithms on the hypercube is exactly n exchange cycles. 
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I t turns out that the Ascend class algorithms can also be run on the A Q ^ w i t h 

the same communication time. The idea is to change the location of carrying out 

the OP() computation and storage of its result during some iterations, in such a 

way as to cancel the effect of the "twisted" edges of the cube on the addressing so 

that appropriate data can stil l be aligned properly for data exchange in the next 

iteration. Beside, the data a ^ originally assigned to node u in the beginning of the 

hypercube has to be preloaded to another node v，where v is defined by the fol lowing 

permutation: 

」 … 、 i f H iS Odd 
V = ascend_permLUG(^u)三{ 

i f H iS GVen 

i.e. bi t pairs at positions (2k，2k-l) are reversed individually, for 1 < A: < ^ . The 

Ascend class algorithm for the A Q ^ i s given below: 

A lgor i thm 4.1 Ascend class algorithms on an A Q „ 

(Assume that each node u is preloaded with the ini t ial data a ^ and stores it at 

location data(u) wi th in the node, where u = ascend_permute(v).) 

Do in paral lel for each u : 0 < a < 2 " - 1 

V = inverse 一 ascend_permiite(u) 

/ * i t happens to be the same as ascend_permute(u) * / 

index(u) = v 

data(u) = OP(0, v, data(u), data(a ® 2 力） 

enddo 

For i = 1 to ^ 

do in parallel for each u : 0 < a < 2 " - 1 
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let u' be the neighbour of u along the (2i)-th dimension 

(ie. 

i f 11(^21-2 . - ^ o ) = 1 or ii2i-\ = 0 

data(u) = OP(2i- l , index(u), data(u), data(u')) 

else / * exchange OP() computation between nodes u and u，*/ 

data(u) = OP(2i- l , index(u'), data(u'), data(u)) 

index(u) = index(u') 

endif 

let u" be the neighbour of u along the (2 i - l ) - th dimension 

data(u) = OP(2i, index(u), data(u), data(u")) 

enddo 

endfor 

I f n-1 is odd 

let 11，be the neighbour of u along the (n- l ) - th dimension 

data(u) = OP(n- l , index(u), data(u), data(u')) 

endif 

EndAlgor i thm 

The variable index(u) in the algorithm is used to store the address of the node 

w such that node u of the alternately-twisted n-cube wi l l perform the computation 

as i f i t is node w of the binary n-cube running the corresponding algorithm. I n other 

words, algorithm 4.1 can be regarded as the (dynamic) emulation of a binary n-cube 

by an A Q „ for the execution of the Ascend class algorithms, in which node u o f A Q „ 

is emulating node index(u) of the n-cube at the corresponding instance in the course 
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of execution of the algorithm. For example, Figure 4.1 depicts the execution of the 

algori thm running on an AQ3 . The bracketed string associated wi th each node 

refers to the value of the variable index at that node after the iteration. The arrowed 

lines indicate the edges along which data exchange takes place in that iteration. 

Note that data(u) and index(u) are local storage of node u. Thus the OP() 

computations wi l l excite simultaneous data exchanges between adjacent nodes 

along the appropriate dimension. Therefore the algorithm runs in 0 ( n ) t ime and 

the total communication time occupies exactly n exchange cycles. 

The correctness of the algorithm is justif ied by the observation that after 

i terat ion i, 0 < i < [ ^ , node u of A Q ^ i s emulating node v of the n-cube where 
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i V i 二乙、-1 i f n i s e v e n 

/ n - 1 
V i<k< ， 

V 1 < A: < / , 

_ i f 啡 2 ; f c - 2 』 0 ) = l o r 卜 1 = 〇 

^ 2k- I ~ \ — 
i ^zk- i^^zk O t h e r w i s e 

Uo = Uo 

I t is also worthwhile to note that locations of the set of results of the algori thm 

w i l l be permuted f rom that of the algorithm for the hypercube. The mapping can 

be obtained f rom above by setting i = ^ . 

Since the Descend class is just a dual class of the Ascend class (the duality is 

established by applying a bit reversal permutation on the index of the data set a-s 

T r V u S l ] ) , the t ime complexity of running a Descend class algori thm on the AQ；, 

is also 0 ( n ) , and the communication time is exactly n exchange cycles. 

4.2. Combining Class Algorithms 

The feature of this class is that, given a set of N data, a /s for i = 0，1，2, ...，N-1, 

the algori thm computes the value of Qq ® a i ® .. <S) a^v-i where ® is an associative 

binary operator. Typical examples include the M A X , MIN，SUM and P R O D U C T 

operations over a set of data, which are usually employed in database application. 

Because of the associativity, algorithms within this class is highly parallelizable. I n 

particular, they can be run in 0 ( n ) time on an A Q „ ， i f the size of the data set is no 
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more than 2". The general algorithm is given below: 

A lgor i thm 4.2 Combining class algorithms on an A Q „ 

(Assume each node u is preloaded with a data i tem a “ stored locally at data(u) 

wi th in the node.) 

For i = n - l down to 0 

do in parallel for each u : 0 < a < 2 " - 1 

i f Li 产 0 

let u，be the neighbour of u along the i - th dimension 

data(u) = data(u) ® data(u') 

endif 

enddo 

endfor 

EndAlgor i thm 

The result w i l l be stored at node 0. A t i teration i there wi l l be data transmissions 

over the edges along the i - th dimension. Hence the communication t ime of the 

algori thm amounts to exactly n exchange cycles. Clearly the same algor i thm is also 

applicable on a binary n-cube, and there is no difference in the t ime complexity for 

both cubes. 

4.3. Numerical Algorithms 

Parallel algorithms for many numerical problems usually exhibit regular 

communication patterns between the locations where the data is stored and pro-
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cessed. I t is interesting to see that the alternately-twisted cube is able to support 

most of these patterns as efficiently as the hypercube. I n some cases, i t is even better 

than the latter. We substantiate this claim by giving 3 typical examples below. The 

multiple-message accepting node model is assumed. 

Mat r i x Mul t ip l ica t ion 

Suppose we want to mult ip ly two NxN matrices A and B, where N = 2 " . I t is 

to be carried out in an A Q 3。The algorithm is modi f ied f rom the one for a binary 

3n-cube, given in [Akl89, p. 183]. The nodes of the AQa^ are viewed as fo rming an 

N x N x N array structure. A node u is given a unique co-ordinate (i，j，k) where 

u = i x N x N + j x N + k , 0<i, j ,k<N-l. The processor in node u has 3 local storages a(u), 

b (u) and c(u), which are also denoted by a(i,j，k)，b(i,j，k) and c(i，j，k) respectively. 

In i t ia l ly the matr ix elements of A and B，A ^y and B ^y，are loaded into these storages 

i n such a way that a ( 0 , j， k )二 a n d b(0，j，k)=5y;t for 0< j，k <N-1. The a lgor i thm 

proceeds i n 3 stages: 

( i ) Dist r ibute the matr ix elements so that a(i，j，k) = A 八 and b(i,j，k) = B 汰,0<i,j,k<N-l 

( i i ) Compute c(i,j,k) = a(i,j,k) x b(i，j,k) simultaneously for al l 0<i, j ,k<N-l 

( i i i ) Combine the results as 

N - l 

c(〇，y，/c)= I c ( l j , k ) 
i = 0 

simultaneously for al l 0< j ,k <N-1 

Stage ( i) requires 3 steps. First, values in a(0,j，k) and b(0，j，k) are broadcast 

along the i-axis, so that as a result a(i,j，k)=A y* and b(i,j，k) = B ^Jor 0<i<N- l . Second, 
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values in a(i，j，i) are broadcast along the k-axis, 0<i<N-l, after which it should be 

that a(i,j,k) = A ji. Third, values in b(i,i,k) are broadcast along the j-axis, 0<i<N-l, 

so that b(i，j，k)=5ifc afterwards. We are interested in the communication time 

required for these broadcasts. Consider two cases for n: 

(1) n is odd: 

By the way of mapping the tuple (i，j，k) to a node address of A Q described 

before, for any fixed i = “ _ i . . . “ and j = j n - i . ' . j o , the subgraph 

AQsn， { “ -1 .“ .0人-1 , " 0义 " } ) is an A Q ^ . Hence broadcasting along the 

k-axis can be achieved in • + 1 exchange cycles. 

For any fixed i and k, however, the subgraph 

A Q 3 。 { “ - 1 .丄o } ) is generally not a perfect alternately-

twisted n-cube. But we can still break it into 4 AQ^_2 as follows: 

where 

i f Jt(/c„_i ../Co)=0 then 

y 2 y 1 = 1 1 , = l o 

else 

7 2 7 1 = 1 0 , = 11 

Then broadcasting along the j-axis is done by first sending simultaneously the 
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data to a corresponding node (depending on the origin of the broadcast) in 

each of these 4 subcubes, which takes at most 3 exchange cycles, and then each 

subcube performs individually the remained broadcasting, which takes 

¥ + 1 = • exchange cycles. Hence the total time for broadcasting along 

the j-axis is • + 3 exchange cycles. 

I n a similar way, i f we fix j and k， t hen the induced graph 

. . /Co})wi l l contain 4 subgraphs of A Q"一 2: 

a(AQ3。{A,n-3ooO^_i..y。/c„_i..A:。，X'-^ y ^y ,0 ,k 

where 

i f 冗（yn-1 二Othen 

7271 = H , y \ y \ = 10 

else 

7271 = 10, y \ y \ = 11 

The broadcast along the i-axis wi l l take place by first sending the data f rom 

the originating node to the corresponding nodes, in each of these 4 subcubes, 

which takes at most 2 exchange cycles, and then the remaining broadcasting 

w i l l proceed with in each subcube, requiring an additional 罕 + 1 = • 

exchange cycles. The total time for broadcasting along the i-axis is therefore 
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• + 2 exchange cycles. 

(2) n is even: 

The subgraph a ( A Q 3 , , . .y 'o-V"}) w i l l be spli t ted into 2 

(alternately-twisted) subcubes first: ( A Q 3 … { “ _ 1.. Z 0 A -1 . . 7' 0 〇义"_ 丄}) and 

( ^ ( A Q 3 n ， {“ - i . . i o A - ” " o i r - i } )， f o r f ixed i and j . The number of 

exchange cycles required for broadcasting along the k-axis is therefore 

2+閉+1 二 • + 

Similarly, w i th f ixed i and k, the subgraphcf( AQg^ , , . .Atq}) 

is divided into 8 (alternately-twisted) subcubes as: 

or 

for the 8 combinations of bits w and z, and 

i f Jt(A:„_i ..A:o)=0 then 

7271 = 11 , y ' 2 y ' 1 = 10 

else 

7 2 7 1 = 10, y ' 2 y 、 二 u 

Broadcasting along the j-axis therefore requires 4+ ^ + ] _ = • + 3 exchange 

cycles. 

The scheme for broadcasting along the i-axis is the same as that i n the case 

for n being odd, and takes 1+2 exchange cycles. 

To summarize, the total t ime for the broadcasts in stage ( i ) of the a lgor i thm 

takes 3 [ ^ J + 6 exchange cycles i f n is odd, and 3 Q + 7 exchange cycles i f n is even. 
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Stage ( i i ) of the algorithm is an independent computation wi th in each node, 

and requires no communication among the nodes. 

Stage ( i i i ) needs to do a combining operation (the SUM) over al l the elements 

wi th the same i-coordinates. The way of the combining is similar to that we do for 

broadcasting along the i-axis. This time, the combining takes place first in the 4 

(alternately-twisted) subcubes of the induced subgraph 

../Co}) simultaneously for each fixed j and k. The 

results are then combined and stored at the node (0,j,k). The total communication 

t ime for stage ( i i i ) is therefore (n-2) + 2 = n exchange cycles. 

As a result, we get 

Theorem 4 2 The mult ipl icat ion of two 2 " x 2 " matrices can be accomplished on 

an A Q 3a in 0 ( n ) time. I n particular, the total t ime spent on data communication 

is 

3 4- n + 6 exchange cycles i f n i s odd 

and is 字 + 7 exchange cycles i f n is even. 

I t should be noted that the same algorithm applied on a binary 3n-cube requires 

totally 4n exchange cycles for data communication. The alternately-twisted cube is 

therefore superior to the hypercube in solving this type of problem. 

Gaussian El iminat ion 
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The major component of the Gaussian E l iminat ion in solving a system of 

equat ion A y = b is the decomposit ion of the matr ix A into an upper and lower 

matr ix U and L respectively. We wi l l concentrate on how it is to be done on an 

alternately-twisted cube and the required communicat ion time. 

Suppose A is an N by N matrix, and N = 2 : Each element / I is in i t ia l ly stored 

at the local storage a(u) of node u i n an AQs^, where u = 卜 2几 + 人 for a l l 0< i, j < 

N - 1 and a(u) is also denoted as a(i’j). The L U decomposit ion is carr ied out in 

paral le l on the AQsn as follows: 

For k = Oto N - 1 

do in paral lel for i : k + l < i<N- l 

(1) a(i,k) = a(i，k) / a(k,k) 

do in paral lel for j : k + l< j<N- l 

⑶ a(i，j) = a(i，j) - a(k，j) * a(i,k) 

enddo 

enddo 

endfor 

The results, elements of L and of U，are stored in a(i，j) for al l i > j，and i n a(i，j) 

for al l i<j respectively. I n each i terat ion of the for- loop, elements of row k，a(k，j)， 

k^ j^N-1, are broadcast to the respective elements of each row below it. We call this 

the vert ical broadcast. Then statement (1) is executed at each row i > = k + l i n 
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paral le l and the result is broadcast to all the elements on the same row to the right 

of node (i，k). We call this the horizontal broadcast. Then statement (2) is executed 

at each relevant node simultaneously. 

By the way of mapping the coordinate (i，j) to the nodes in A Q s ^ , each node 

address is divided into 2 parts, as “ - 1 “ - 2 . . . 、八 - 1八 - 2 … 7 。 . By similar analysis 

as i n the case for matrix mult ipl ication, we get: 

i f n is odd, then each vertical broadcast requires ^ + 2 exchange cycles, and each 

hor izontal broadcast takes \ + 1 exchange cycles, and 

i f n is even, then the vertical broadcast and horizontal broadcast needs 2 + 罕 + 1 

= • + 2 and 2 + ^ + 1 = ^ + 2 exchange cycles respectively. 

Therefore the t ime complexity of the algori thm can be stated as follows: 

Theorem 4 3 The L U decomposition of a 2 " x 2 " matrix on a n A Q 2 几 can be done 

i n 0 ( n . 2 ) t ime and specifically, the total communication t ime occupies 

2 " . ( ¥ + \ + 3 ) exchange cycles i f n is odd 

and 2"" • ( R + 4 ) exchange cycles i f n is even. 

Note that the corresponding algori thm applied on a binary 2n-cube needs a 

total of 2 " • (2 /z ) exchange cycles for data communication. Hence once again the 

alternately-twisted cube surpasses it. 

Solving Part ial Di f ferent ia l Equations (PDEs) 
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A n important class of PDEs is Poisson's equation [AM89，p.212； 

dx dy^ 

where u(x,y) is the unknown functions and G the given function, both i n two 

independent variables. Values of u(x,y) are calculated by the difference equation 

where d is the interval between the nodal points corresponding to u(x,y) i n a 2 -D 

space. Suppose" the space is divided into ( n+1 ) by ( n+1 ) gr id points. Paral lel 

technique known as successive overrelaxation (SOR) [A]d89,p.212] is then used to 

approximate the value of u(x,y) at each of the ( n - 1 interior points. The method 

executes iterations during each of which the value of an inter ior nodal point is 

updated f rom those values at its north, east, south, and west neighbours in the space. 

Clearly this exhibits a grid-l ike communication pattern. A n d by the result i n Section 

2.2.5.2，we know that the alternately-twisted 2n-cube is able to support the SOR 

method over 2 " x 2 " nodal points in solving the Poisson's equation, such that each 

i terat ion of the method takes only one exchange cycle for data communication. I t 

is exactly the same time complexity for the method applied on the binary 2n-cube. 

The 2 cubes weigh equally in solving this type of problem. 

Certainly there are many more algorithms we have not touched. But the l i t t le 

investigation in this section already shows that the alternately-twisted cube is 
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f lexible enough to support efficiently the simplest and probably also the most 

common ones. A t least its performance is as good as (or even slightly better than) 

the hypercube. 
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Chapter 5 

Summary, Comparison & Conclusion 

5.1. Summary 

A new network topology called the alternately-twisted cube is proposed. I t is 

based on a modif icat ion to the topology of the binary n-cube, or hypercube, by 

"twisting" its edges along the odd-numbered dimensions. The twisting is selectively 

appl ied on pairs of edges along these dimensions, according to the T-code sequence 

we defined. 

A n alternately-twisted n-cube, denoted asAQ^, has the same number of nodes 

as that of the binary n-cube, i.e. 2。，as wel l as the same node degree and l ink count, 

which are respectively n and n . . However, because of the effect of the 

edge-twisting, an alternately-twisted n-cube has a diameter of only + 1, which 

is nearly half of that of the binary n-cube. 

Many salient features of the binary n-cube are preserved by the A Q ” These 

include the node-symmetry property, the existence of n distinct paths between any 

2 nodes, and the ability to embed any H x W grids (wi th di lat ion 1 i f H and W are 

powers of 2，and di lat ion 2 otherwise). 

A n A Q „ can be part i t ioned into smaller, disjoint alternately-twisted subcubes. 

The number of different ways to achieve this, however, is generally smaller than 

that i n the hypercube. The reason is that the former is not edge-symmetric, 

restricting the freedom of choice for the partit ioning. 



Chapter 5 Summary, Comparison & Conclusion 5-2 

Both the A Q n and the binary n-cube can embed a complete binary tree of 

size - 1 wi th di lat ion 2，while the overloading factor, or edge congestion, of the 

embedding is 1 in the latter and is 2 in the former. O n the other hand, i n A Q "，we 

can embed any r ing structure of size k, for k< 2 " a n d k 3, w i th d i la t ion 1，but a 

binary n-cube can do this for rings of even length only. 

The A Q n appears to be more attractive than the binary n-cube as a general 

purpose interconnection network. We have devised a distributed, shortest-path 

rout ing a lgor i thm for the A Q ^ network. Analyt ic results show that i n general i t can 

route messages faster than the hypercube: about 22% smaller i n the mean internode 

distance, nearly 50% smaller in the diameter measure, and nearly 30% shorter i n 

the average message delay under heavy load, when the network size is large. The 

improvement is better when the dimension of the A Q ^ is an odd number, than 

when i t is even. Broadcasting on the under the multiple-message accepting 

mode, takes only I + 1 routing cycles, again about 50% of that on the binary 

n-cube. 

The A Q „ is also able to support the fol lowing paral lel algorithms at least as 

eff iciently as the hypercube: the Ascend/Descend class of algorithms, the combining 

class of algorithms, and the algorithms for solving Poisson-type par t ia l d i f ferent ial 

equations, matr ix mult ipl icat ion, and Gaussian el imination. I n the last two algo-

rithms, since broadcasting is used extensively, the A Q ^ behaves even better than 

the hypercube, as i t takes less communication t ime for their executions. 

5.2. Comparison w i th other hypercube-like networks 
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Tzeng has proposed a Variant Hypercube topology [Tzen90] as an extension 

to the binary hypercube. The idea is to add extra edges in a binary n-cube, such that 

pair of nodes are connected if the most significant k bits in their addresses are equal, 

and the last (n-k) bits in one address are complements of those in the other, where 

k is a parameter of the network topology. Tzeng shows that, for the performance 

of the network to be optimal or near-optimal, k is chosen to be 0 i f n is even, and 

1 i f n is odd. Wi th this in mind, the diameter of the network is \ . Hence we see 

that the variant hypercube weighs nearly the same as the A Q „ in this measure (as 

wel l as the measure of the broadcasting time). The cost of the variant hypercube, 

however, is larger, because each node has (n+1) linkages instead of nas in the A Q „ . 

Moreover, the mean internode distance improvement in the variant hypercube of 

dimension n，over that in the binary n-cube, is found to be 17%, 17%, 14% and 

13% respectively for n = 5,10’ 15, and 20. The respective improvements of the A Q ^ 

over the hypercube in this measure are 12.5%, 15%, 20% and 19.5%. Hence, while 

the variant hypercube can route messages slightly faster than the A Q ^ for small 

network size, the latter behaves better in the case of large network size (say, for 

n>15). I f the cost of the extra links in the variant hypercube is taken into account, 

the breakeven point for the performance/cost ratio of the two networks w i l l be 

even smaller: the alternately-twisted cube surpasses the variant hypercube when 

the dimension of the cube, n, exceeds 10. 

A twisted n-cube network, denoted as T Q „ , has been investigated by Esfa-

hanian et al [Esfa88] [Esfa91]. I t is a modification to the binary n-cube, wi th exactly 

one pair of its edges twisted (say, the pair (OOu --> lOu，lOu - > l l u ) is replaced 
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by the pair (OOu --> l l u , lOu --> Olu)，where i i = o " - 2 ) . Therefore the node degree 

and l ink count in TQ^ is the same as that of the A Q ^ . However, the number of 

twisted edges in the A Q ^ is generally larger than that in the T Q … F o r instance, in 

an A Q s there are 8 pairs of twisted edges, while i n a T Q s there is only 1 pair. This 

makes i t more likely for the former to have shorter paths between most pairs of 

nodes than the corresponding paths in the latter. Also, the single twisted-edge pair 

can only reduce the diameter of the T Q „ by 1，to (n-1), for a reduction rat io of ^ 

relative to that of the hypercube. This is generally poorer than the 50% reduction 

achieved by the A Q ^ topology. Hence it is not l ikely that the network performance 

of the T Q ^ would be better than the A Q ^ . On the other hand, the T Q ^ has at 

least one advantage over the A Q ^ , i.e. it can embed a complete binary tree of - 1 

nodes wi th di lation 1 only, while we know of no way to embed the same tree wi th 

di lat ion 1 into the A Q ^ . 

Independent research by Efe [Efe89] has resulted in another way of twisting 

the binary n-cube. I t is known as the multiply-twisted n-cube, denoted as M Q ^， 

and is quite similar to the alternately-twisted n-cube. Its definit ion has already been 

described in Chapter 1. The M Q „ has the same node degree and l ink count as the 

A Q „ . The difference between them is that the definit ion of the M Q „ requires the 

edges along all dimensions of a binary n-cube to be twisted, while that of the A Q „ 

just twists the edges along odd-numbered dimensions. Because of this, the former 

is edge-symmetric but the latter is not. However, both can attain exactly the same 

amount of reduction in the diameter measure as compared to the binary n-cube, 

giving a diameter of • + 1 for both twisted cubes. 
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I n addit ion A Q ^ and M Q ^ have the same fault-tolerance capabil i ty because 

in each there are exactly n distinct paths between any pair of nodes. Subcube 

par t i t ion ing can be more flexible in the M Q ^ , however, because of its edge-sym-

metry. 

Figure 5.1 shows the results of the analysis of the mean internode distance of 

the A Q „ and M Q ^ . I t can be seen that they are actually quite close for the wide 

range of network sizes shown, with those in the M Q ̂  being slightly smaller than 

those in the A Q „ : no more than 4% for the difference (to be more specific, about 

1.5% when n is odd, and below 4% when n is even). However, broadcasting on both 

twisted cubes takes the same amount of t ime because their diameters are always 

equal. 

Efe did not include any graph-embedding analysis of the M Q „ i n his paper 

"Efe89], except that a Hami l ton ian cycle can always be found in a n M Q „ . Therefore 

no comparison can be made between the capability of the MQ^ and the A Q „ in 

this aspect. However, as noted in [Efe89]，the MQ^ can, i n general, execute any 

paral le l a lgor i thm wi th the same order of t ime complexity as that needed on a binary 

n-cube; this is exactly the same for the A Q „ , as we have shown i n Chapter 4. 

Therefore we can conclude that both the mult iply-twisted cube and the 

alternately-twisted cube are equally suited for supporting paral lel processing and 

are comparable to the hypercube. 

Moreover, at the t ime of this writ ing, analysis results on the network per-

formance of the mult iply-twisted n-cube is not available to the author. Therefore 

we cannot make a thorough comparison here. 
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Figure 5.1: Mean internode distance comparison -

A 0 „ v s M O „ 

O n the other hand, programming the A Q or mapping processes in a parallel 

application onto it, seems easier than programming the M Q „ , I t is because, in the 

A Q „ , adjacent nodes can have at most 2 (consecutive) differing bits in their 

addresses, while the connectivity rule of the MQ；, may allow as many as | differing 

bits i n the addresses of two neighbouring nodes. (For example, node 010101 is 

adjacent to node 111111 in a MQ6 .) In other words, we can easily identify an 

alternately-twisted subcube structure of an AQ；, by confining the change of address 

bits (arising f rom the adjacency within the subcube structure) to be wi th in certain 
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pairs of bits in the node address. This is certainly not the case for the M Q „ . Such 

localized change of bit patterns enable the programmer to more easily determine 

the adjacency, as well as the distance, between any 2 nodes in an A Q ^ . 

5.3. Conclusion 

We have demonstrated the significance of systematic edge-twisting in the 

hypercube network: the alternately-twisted cube is shown to be an attractive 

alternative topology to the hypercube for interconnecting multiprocessors or 

mult icomputers in a general purpose parallel processing environment. Moreover, 

since the A Q ^ a n d the M Q „ have very similar topologies, one can also consider the 

analysis results obtained here as supplementing Efe's work reported in [Efe89:. 

5.4. Possible future research 

A t last，we would l ike to pose the fol lowing problem as a possible future 

direct ion of the research: 

I t is known that the k-dimensional mesh is a generalization of the hypercube. 

Therefore i t is interesting to ask: Is there any way to generalize the idea of twisting 

a hypercube to obtain a twisted mesh structure? And, i f so, how does i t compare 

to the regular mesh structure? Positive solutions to these questions may be valuable 

because recent research shows that a low-dimensional mesh network can be more 

efficient than a high-dimensional hypercube [Dall87, section 5.3.1:. 
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