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ABSTRACT 

Adaptive digital filtering using least mean square (LMS) algorithm has found 
applications in a wide variety of areas such as beamforming, channel equalization, 
noise cancellation and many others because of its capability in tracking nonstationary 
signals and changing environments. Despite its simplicity in hardware 
implementation, transversal LMS adaptive filter has an inherent deficiency that its 
convergence rate might be very poor if the eigenvalue spread of the autocorrelation 
matrix of the input sequence is large. Different forms of realization in filter structure 
can, however, result in different eigenvalue spreads and hence achieving better 
convergence characteristics. In this thesis, techniques of improving adaptation rate 
by splitting a transversal adaptive filter into both parallel and serial form will be 
examined. The filter structure together with the corresponding adaptation rules are 
formulated and the dynamic convergence behavior is being analysed vigorously. 
Theoretical derivations are supported by extensive simulations. 

We shall demonstrate that the configuration of an adaptive filter can be 
implemented in either a parallel or a serial form so that substantial improvement in 
system performance can be obtained for many different applications. When an 
adaptive filter is constructed as a parallel connection of two transversal linear phase 
filters in which one is symmetric and the other antisymmetric, the eigenvalues of 
the input process are separated into two sets, one for each linear phase filter. This 
will eventually lead to smaller eigenvalue spreads and therefore an overall faster 
convergence speed. In the context of linear prediction, backward prediction can be 
embedded easily in the adaptation process to reduce gradient noise so that the rate 
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of convergence can be further enhanced. 

If an adaptive linear predictor is represented as a serial connection of two 
adaptive subunits in transversal form, the eigenvalue spreads governing their 
convergence properties will be smaller than that of a single ladder structure and will 
decrease as adaptation proceeds. Consequently, the dynamic convergence behavior 
can be significantly improved. The serial split idea is explored further to develop 
a new configuration for adaptive time delay estimation. Theoretical analysis shows 
that a two-fold convergence speed-up can be achieved when compared with the 
traditional model. 

In regard to computational complexity of the split LMS adaptive algorithms, 
roughly (M+l)/2 extra additions and subtractions are needed in the parallel split 
structure while fM-l)/2 extra multiplications and additions are required in the serial 
split configuration. This overhead is only a moderate increase in computations when 
compared with 2(M+l) multiplications and additions that are generally needed in 
the traditional LMS algorithm, where M is the filter order. 

In addition, we shall describe how a new type of predictor can be realized by 
combining the parallel split and serial split predictor. This structure is used for 
speech analysis as a typical illustration. Experimental results show that its 
convergence characteristics are comparable to those of the gradient lattice filter but 
it requires much less computation. 
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1 INTRODUCTION 

Adaptive signal processing has its roots in adaptive control and in the 
mathematics of iterative processes, where first attempts were made to design systems 
that adapt to their environments. It has undergone a remarkable increase of interest 
and attention in recent years. This growth has been promoted by developments in 
microelectronics and VLSI circuit design that increase tremendously the amount of 
computing capability in processing of digital signals. In this chapter, a brief 
introduction to adaptive filter and adaptive system will be provided. In addition, 
some applications will be described to illustrate their practical uses. 

1.1 ADAPTIVE FILTER AND ADAPTIVE SYSTEM 
Many problems encountered in signal processing and communications nowadays 

involve removing noise and distortion due to physical processes that may be time 
varying or possibly unknown. These types of processes represent most of the 
problems in transmitting, receiving and extracting information from an underlying 
data sequence. 

It is well known that the Wiener filter [1] can be used to extract useful 
information from noisy data by minimizing the mean-square value of an error formed 
by the difference between some desired response and the actual filter output. 
However, the design of such filter requires a priori information about the statistical 
characteristics of the data to be processed. The filter can achieve optimal 
performance only when the statistical characteristics of the input data match the a 
priori knowledge on which the design of the filter is based. When this knowledge 
is not known completely or the statistics of the data is time varying, it may not be 
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possible to design the Wiener filter or the design may no longer be optimum. In 
such circumstances, what we need is a device that can learn the input statistics from 
time to time and perform optimal filtering. Adaptive filter is a device that can 
accomplish these purposes. 

An adaptive filter is basically a self designing filter in which it relies its 
operation characteristics on an adaptation rule, allowing the filter to perform 
satisfactorily in an environment where complete knowledge of the relevant signal 
statistics is not available. It starts from some predetermined set of initial conditions, 
representing complete ignorance about the circumstance. In a stationary environment, 
that is the statistics of the input data is not changed, it will converge to a Wiener 
filter in the mean-square sense. Under a nonstationary environment, however, the 
algorithm offers a tracking capability to keep up with time variations in the statistics 
of the input data to provide optimum performance of the filter, provided that the 
variations are slow enough to be followed. 

An adaptive filter has essentially two distinct features. First, it has a finite 
number of internal adjustable parameters which can be used to control its functions 
over a useful range. Different parameter sets correspond to different filter structures 
or realizations which can affect the adaptation performance. Second, it has an 
updating algorithm enabling the filter transfer function to be changed in a useful 
manner in accordance with its external environment. As a result, the updating 
algorithm changes its characteristics by varying its internal parameters for a particular 
realization to achieve optimum accomplishment. 

Broadly speaking, an adaptive system can be defined as a system which is 
provided with a means of continuously monitoring its own performance in relation 
to a given figure of merit or optimal condition and a means of modifying its own 
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system parameters so as to approach this optimum [2]. In the context of signal 
processing, incorporating adaptive filters into a system forms an adaptive system. 
An adaptive system may be very complex in actual case. Figure 1.1 shows a simple 
adaptive system for illustration purpose. Referring to the diagram, W(z) is a linear -
adaptive filter whose input is x(k). The sequence yik) is the desired response 
representing the desired output of the adaptive filter. At each time instant k, the 
current value of the filter coefficients are used to achieve the filtering operation. 
The computed output error e{k), formed by the difference between the desired 
response y{k) and the filter output z{k), is then utilized by the adaptive filter to 
change its internal parameters in the direction of their optimum values. As processing 
of x{k) and y{k) proceeds, the filter gradually leams the statistics of these signals 
and converges to its desired value and thus providing an optimal signal processing 
system. 

1.2 APPLICATIONS OF ADAPTIVE FILTER 
Adaptive filtering has been extensively used in many fields of applications, 

including geophysical signal processing, control, telecommunications, biomedical 
signal processing, the elimination of radar clutter, and sonar processing [3]-[5]. In 
the following sub-sections, some typical applications' of adaptive filter will be 
described to demonstrate its practical usefulness. 

1.2.1 SYSTEM IDENTIFICATION 
Adaptive system identification has found a wide range of applications in digital 

filter design [6], adaptive control systems [7] and coherence estimation [8]. Suppose 
we have an unknown linear system called plant, with a set of discrete-time noisy 
observations in response to a known stationary excitation as the system input. The 
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configuration for identifying the unknown plant is depicted in Figure 1.2. The 
adaptive filter W{z) represents the transfer function of the plant model. The input 
x{k) is fed into both the unknown plant and the plant model. The difference of 
the plant output corrupted by noise, y(k), and the plant model output, z{k), forms 
the error e{k). At the beginning the output error is nonzero, implying that the plant 
model deviates from the unknown system. Because of the self tuning capability of 
the adaptive filter, W{z) will adjust itself to minimize a certain criterion of the 
output error to produce a response that is as close as possible to the plant output. 
If the excitation x{k) is robust in frequency content, then W{z) will adapt to become 
a good representative of the unknown system. 

When the unknown system is time varying, the output of the plant becomes 
nonstationary. In this case, W(z) will allow itself to alter its parameters to track 
continuously the statistical variations of the plant, 

1.2.2 NOISE CANCELLATION 

Another popular application of adaptive filtering is to extract a signal which 
is corrupted by an interference or uncorrelated noise. This is achieved by an adaptive 
noise canceller as shown in Fig. 1.3. It has two inputs, one is called primary input 
containing signal s(k) plus additive noise while the other is called reference 
input (��cons i s t i ng a noise alone, where n么k) is correlated to the primary input 
noise but uncorrelated with the primary input signal. The adaptive noise canceller 
tries to make use of the reference input to eliminate the noise in the primary input 

I 

by utilizing an adaptive filter W(z) to exploit the unknown correlation between n从) 

and � ) . 
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The reference input first passes through the adaptive filter W(z) to form the 
output ' ( � � . T h e difference of the primary input and the filter output gives an 
error which is used to adjust W(z). As only the noise components in the two 
channels are correlated, W(z) will adapt in such a way to generate an output which 
is as close a replica as possible to the primary input noise. As a result, in equilibrium 
state the output error will be an estimate of the primary input signal 

Applications of adaptive noise cancelling [9]-[10] include the cancellation of 
various forms of periodic interference in electrocardiographs, the cancelling of 
periodic interference in speech signals, the cancelling of broadband interference in 
the sidelobes of an antenna array, and the elimination of tape hum or turntable 
rumble during the playback of recorded broadband signals. 

1.2.3 ECHO CANCELLATION 
An extensive application of adaptive filtering is also found in 

telecommunications [11]-[15]. In telephone connections that involve the use of both 
four-wire and two-wire transmissions, an echo is generated at the hybrid that connects 
a four-wire to a two-wire transmission. When the telephone call is made over a 
long distance, for example via satellite, an echo represents an impairment that can 
be as annoying subjectively as the more obvious impairments of low volume and 
noise. Figure 1.4 shows a satellite circuit model with no echo protection. The 
hybrids at both ends of the circuit convert the two-wire transmissions used on 
customer loops and metallic trunks to the four-wire transmission needed for carrier 
circuits. Ideally, when person A on the left speaks, his speech should follow the 
upper transmission path to the hybrid on the right and from there be directed to 
the two-wire circuit. In practice, however, not all the speech energy is directed to 
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this two-wire circuit. Because of hybrid leakage, some of the energy is returned 
along the lower four-wire path which will be heard by the person on the left as an 
echo. 

To overcome this problem, echo cancellers are installed in the network in pairs, 
one in each end. The operation of an adaptive echo canceller is illustrated in Figure 
1.5. At a given end of the long-distance line, the incoming signal is fed into both 
the hybrid and the adaptive filter. The difference between the adaptive filter output 
and the hybrid output gives the output error, which is used to adjust the filter 
parameters. Because of hybrid leakage, the outgoing component of the hybrid is 
correlated with the incoming signal. The adaptive filter will model the transfer 
function of the leakage path of the hybrid as adaptation proceeds. In equilibrium, 
the adaptive filter will remove the leakage component as much as possible and 
leaving a clear (free of leakage) signal containing only the speech energy from the 
near end speaker as the output error. 

1.2.4 SPEECH PROCESSING 
A major application of adaptive filtering is in the digital encoding of speech 

[16]. One approach to speech encoding is the analysis-synthesis method with a 
system block diagram shown in Figure 1.6. In this method, the speech production 
process is assumed to be governed by a simple model. The available speech signal 
silc) is used to derive the model parameters which are then quantized for transmission. 
To recover the speech signal in the receiving end, the speech is synthesized by 
emulating the speech production model from the received parameters. 

One distinctive nature of speech signal is that it can be modeled by an 
auto-regressive (AR) process. That means, a current speech sample can be generated 
by a linear combination of the previous speech samples plus an innovation term. 
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The innovation can either be a periodic impulse for voiced sound or a random noise 
for unvoiced sound. What speech analysis does is to determine the linear 
combination coefficients or the AR parameters and the innovation. Notice that linear 
combination of past samples can be represented by a filtering operation, the 
parameters of the model can be identified by minimizing an error function with 
output error given by s(k) and the output of the filter W(z). Afterwards, the AR 
parameters can be extracted from W(z) and the innovation is just the output error. 
As speech signal is only quasi-stationary, that is it can only be considered as 
stationary within a short period of time, it is impossible to use a fixed filter in the 
model. Hence it is beneficial and indeed necessary to make W(z) adaptive such 
that it can continuously monitor the input signal to determine the model parameters 
accurately. The adaptive filter W(z) is usually referred to as an adaptive predictor 
because it predicts in an adaptive manner the present input by past input values. 

Although we have only considered four applications of adaptive filtering, it is 
by no mean exhaustive, in fact, many other applications can be found in the literature 
[3]-[5]. 

The performance of an adaptive filter relies mainly on its adaptation rule to 
identify the optimum filter parameters. There are two well known optimization 
procedures for adaptive filtering. They are the least-mean-square (LMS) algorithm 
and the recursive least-square (RLS) algorithm. The details of the two algorithms 
will be described in the next chapter. It is understood that the RLS algorithm has 
a faster convergence speed than the LMS algorithm, however, the computation 
involved is much greater. More precisely, the LMS algorithm requires order M+1 
operations while the RLS algorithm demands order (M + lf operations, where M is 
the adaptive filter order. In most applications of adaptive filtering such as noise 
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cancellation and echo cancellation, the filter order M could be very large which 
makes real time implementation of the RLS algorithm very difficult if not impossible. 
Therefore, the LMS algorithm is usually preferred for most practical uses. 

Although the implementation of an LMS adaptive filter is simple, the algorithm 
itself has an inherent deficiency that the adaptation speed or the learning rate depends 
very much on the eigenvalue spread (the ratio of the largest to the smallest 
eigenvalue) of the correlation matrix of the input signal. If the eigenvalue spread 
is large, the system will take a fairly long time to reach its optimal behavior. An 
open question for the LMS adaptive system is how the learning rate can be enhanced 
effectively without a considerable increase in system complexity. 

It is widely accepted that a digital filter can be realized in different forms 
resulting in different system complexity and suffering from a various degree of finite 
wordlength effects. Whilst for adaptive filtering, it is also possible to configure an 
adaptive filter in many different structures. Each individual realization format will 
have its own distinct set of eigenvalues and hence the convergence behavior for the 
LMS adaptation process might be different. It seems that some simple filter 
structures can be devised so that the eigenvalue spread associated with the parameter 
adaptation can be greatly reduced while still demanding not a large increase in 
computations. In this thesis, the possible enhancement of convergence speed by 
representing an adaptive filter in two simple but novel structures, namely the parallel 
and the serial form, will be investigated. 

It will be demonstrated in detail in the following chapters that by splitting an 
adaptive filter in parallel form or serial form，it will give promising result in 
improving the convergence performance because the eigenvalue spread for the 
adaptation process can be decreased substantially while the overhead in computation 
is only very modest. 
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1.3 CHAPTER SUMMARY 
A brief introduction of adaptive filter and adaptive system has been given. 

Conceptually, an adaptive filter is simply an ordinary filter but with varying filtering 
characteiisiics to keep up with some unknown or changing environments. With the 
advent of VLSI technology, the use of adaptive filter has increased tremendously 
in the last few years, and this trend is expected to continue in the years ahead. 
Some of its potential applications in control, signal extraction, telecommunication 
and speech processing have been discussed. In the next chapter, we shall look into 
further details of an adaptive filter by investigating some of its widely used structures 
and the accompanying adaptation algorithms. 

14 
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2 ADAPTIVE FILTER STRUCTURES AND 
ALGORITHMS 

The performance of an adaptive filter is governed by its structure and adaptation 
algorithm. The structure of a filter is defined by a set of parameters that characterize 
the filter. Different realizations of an adaptive filter corresponds to adjusting different 
parameter sets. On the other hand, adaptation algorithm is a training rule used to 
alter the parameters of an underlying filter so as to achieve certain optimum filtering 
task. With a particular type of algorithm, modifying different parameter sets will 
affect the convergence speed for their respective realizations and hence some 
structures may be more attractive than the others. Of course, given a specific filter 
structure, utilizing different types of algorithms will also affect its adaptation 
capability. Generally speaking, a rapid convergence algorithm requires a large 
amount of computations. The many possible combinations of filter structures and 
adaptation rules lead to a bewildering variety of adaptive filters with different 
performance and complexity. In this chapter, some of the commonly used adaptive 
filter structures and adaptation algorithms will be reviewed. 

2.1 FILTER STRUCTURES FOR ADAPTIVE FILTERING 
There are two basic types of adaptive filters as in non-adaptive filters, namely, 

adaptive finite impulse response (FIR) filter and adaptive infinite impulse response 
(nR) filter. Non-adaptive IIR filter is widely used in digital signal processing 
because it has computational improvement over the FIR filter and its stability is 
always guaranteed when properly designed. However, adaptive IIR filter is of limited 
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applications in present moment. This is due to first of all, stability for adaptive 
IIR filter may not be guaranteed explicitly as a part of the adaptation algorithm's 
design. That means, instability of the filter because of poles straying outside the 
stable region may occur during adaptation. Second, adaptation of an IIR filter is 
a highly nonlinear process and convergence to local minimum is highly possible. 
Therefore, global convergence for optimal performance is not assured. Third, the 
theory of adaptive IIR filters is incomplete because the analysis involves highly 
nonlinear systems. Adaptive IIR filter is currently a popular research topic in 
adaptive signal processing [l]-[6]. On the contrary, adaptive FIR filter does not 
have the stability problem because it is unconditionally stable when certain conditions 
about its adaptation algorithm are fulfilled. In addition, it is relatively simple to 
design and construct, and there exist well understood algorithms whose performance 
are well documented [7]-[9]. Thus, much of the reported literature on adaptive 
filters has been based on FIR filter approach. In this thesis, we shall limit our 
scope to adaptive FIR filter only. 

There are many filter structures which can be equivalently implemented an FIR 
filter. Specifically, two particular filter structures are almost universally employed. 
They are transversal and lattice structures. 

Figure 2.1 shows the structure for transversal FIR filter which is a direct 
realization of its transfer function. The filter output z{k) is formed by a linear 
combination of the current and the past M input samples, where M is the filter 
order. The filter coefficients w�，， . .�，w财 are the parameters defining a transversal 
form FIR filter. This structure is perhaps the simplest implementation of an FIR 
filter. 
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The lattice realization of an FIR filter is illustrated in Figure 2,2 [10]-[11]. 
This structure transforms the input signal into forward and backward residual 
samples, with delays added into the backward channel. These signals are multiplied 
by the partial correlation (PARCOR) coefficients, k^, to form the filtering output. 
The parameters of a lattice filter are the PARCOR coefficients. Although lattice 
filter seems to be more complicated than transversal filter, it is found to be 
particularly useful in linear predictive coders for speech processing [12] because of 
some intriguing properties of the PARCOR coefficients. 

There are many other structures that could potentially represent an FIR filter. 
For example, one can factorize the transfer function of an FIR filter and then 
implement it in cascade of second order sections [13]. Figure 2.3 shows such 
realization. As there are many realizations, there exists problems of what criterion 
should be used in choosing a structure for adaptive filtering. In the non-adaptive 
filter case, the primary criterion for selecting a filter structure for a digital 
implementation is finite word-length effects, such as the effect of round-off errors 
internal to the filter. This is also an important consideration for an adaptive filter, 
but we are more concerned with the following two factors. First, trade-off between 
adaptation speed and computations for an adaptive filter implementation. It has 
been demonstrated [14] that the convergence rate of a lattice filter is faster than 
that of a transversal filter, nevertheless more computations is involved. Second, 
there should be a simple and analytically tractable relationship between the transfer 
function of the filter and its parameters. In the case of a transversal filter, this 
relationship is simple because it is linear. Whereas for most other structures such 
as the cascade the relationship is nonlinear. The lattice structure also has a nonlinear 
relationship, but fortunately the relationship can be recursively represented. The 
complicated nonlinear relation between parameter and transfer function for most 
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other structures makes their corresponding adaptation algorithms difficult analyze 
and assess their performance. In the adaptation algorithm provided in the following 
section, we shall consider the transversal structure only. 

2.2 ADAPTATION ALGORITHMS 

Consider a simple filtering problem as shown in Figure 2.4. W(z) is an adaptive 
FIR filter whose input is x(k). The difference between the desired response y(k) 
and the filter output forms the output error e(k), 

M e(k) = y(k)-I w.x(k-i) = y{k)-w'x(k) (2.1) i = 0 

where 

w = . . . w ^ y (2.2) 

is the M+1 filter parameter vector and 

x(k) = [x(k) x{k-l) � . . x(k-M)y (2.3) 

is the M+1 input vector with the superscript t denoting transpose operation. The 
task is to find iteratively a set of filter parameters such that the filter output is as 
close to the desired response y{k) as possible. 

In evaluating the performance of an adaptation algorithm, three factors should 
be considered, namely, (a) convergence speed, (b) stability and numerical accuracy 
and (c) computational complexity. Convergence speed of an adaptation algorithm 
is an important factor because it determines the maximum rate of change of the 
input nonstationarities that can be successfully tracked by an adaptive filter. Stability 
refers to the possibility of reaching the desired solution and numerical accuracy 
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relates to how closely the algorithm can track the optimal Wiener solution. Finally, 
computational complexity concerns with the number of operations required to update 
filter parameters from one time instant to the next. 

There are two well known adaptation algorithms for adaptive FIR filter. They 
are the recursive least-square (RLS) algorithm and the Widrow-Hoff 
least-mean-square (LMS) algorithm. The RLS algorithm has been used extensively 
for system identification in control engineering and time-series analysis. In spite of 
its potentially superior performance, its use in signal processing applications has 
been relatively limited, due to its high computational requirements. However, in 
recent years there has been renewed interest in RLS algorithm, especially in its 
computationally efficient versions [15]-[18] due to its fast convergence. On the 
other hand, the LMS algorithm is computationally simple and easy to implement. 
Therefore, it has gained considerable popularity for many years. 

2.2.1 THE LMS ADAPTATION ALGORITHM 
The LMS algorithm was originally developed by Widrow and Hoff in 1960 

[19]-[20]. Since then, it has been widely studied and found numerous applications 
in many areas [21]-[27]. In the LMS adaptation algorithm, the objective function 
� t o be minimized is the mean-square error (MSE). From (2.1)，it is given by 

= � [ / ( � ] - 2 g ' w + Rw (2.4) 

where R = E[x(k) xXk)] is the input autocorrelation matrix and g = � [ ; y ( / � ) is 

the cross-correlation vector between the input vector x{k) and the desired response 
y(k). Note that ^ is a quadratic function with respect to the elements of the vector 
w, and hence there will be a single unique minimum. As a simple case for M = 1， 
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the plot of the mean-square error versus filter weights is depicted in Figure 2.5. It 
can be observed that the error criterion, or performance surface, is a paraboloid. 
The minimum point of the surface is the least possible MSE, g � � a n d the 
corresponding weights are the optimal solution. The optimal weight vector w* can 
be obtained by setting the derivative of ^ shown in (2.4) with respect to w to zero, 
which gives 

w*=R- 'g (2.5) 

At this optimal point, the minimum MSE is equal to 

(2.6) 

Using (2,5) and (2.6)，^ can be expressed as 

��� + ( > v - 0 - > / ) (2.7) 

The form (2.7) of the MSE is compact and has an intuitive interpretation. At any 
instance during adaptation, ( H ^ - y / ) is different from zero a n d � w i l l be greater 
t h a n � o . After convergence, becomes zero and the steady state MSE will 
b e � � � E q u a t i o n (2,7) is found especially useful in the analysis of the LMS algorithm. 

In searching iteratively the minimum point of the performance surface, the filter 
weights are modified from one time instant to the next according to 

w(k-\-l) = w(k) + Aw(k) (2.8) 

where Aw(k) is a correction term that must be chosen properly in order to ensure 

the weight vector w(k) will eventually converge to the optimal value w* as more 
and more data become available. That is, 

w{k) = w* ， as A ->oo (2.9) 
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A simple way to reach the minimum is to make use of the quadratic nature 
of the performance surface by the method of steepest descent. According to this 
optimization technique, the correction term Aw{k) is proportional to the negative of 
the gradient at w(k), 

Aw(k) = -[i (2.10) 

where |i is a small positive constant called step size. With sufficiently small ls.w{k) 

shown in (2.10), Taylor's series expansion of the error criterion in the (�+l) th 
iteration yields 

以 众+ 1)) 二以 TV�）+ AH<幻 

= < W{k)) (2.11) 

Thus steepest-descent method ensures the change in filter parameters moves the error 
function closer to its minimum than before. At the minimum point the gradient is 
zero which implies (2.9). 

The iterative procedure described above requires a priori knowledge of the 
correlations R and g which are not known in practice. The LMS algorithm is an 
approximation of the steepest descent method by replacing the unknown gradient 
with the instantaneous gradient by ignoring the expectation operation, that is 

mk) = -\i ^ ^ = -2\ie{k)x{k) (2.12) 

so that the weight adaptation equation becomes 

w{k + 1) = w{k) + 2\x,e{k) x{k) (2.13) 
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The iterative equation described by (2.13) is called the LMS adaptation algorithm. 
It is also named the stochastic gradient algorithm because of using approximate 
gradient instead of the true gradient. The LMS algorithm has several attractive 
features : it is simple and easy to implement, it does not requires any a priori 
information and it allows itself to real-time processing. With the step size [i chosen 
to be power of two, it can be observed from (2.1) and (2.13) that the algorithm 
requires a total of 2(M+1) multiplications and additions for each iteration to calculate 
e(k) and update parameters. 

2.2.1.1 CONVERGENCE ANALYSIS 
Although the LMS algorithm has been extensively studied [7]-[9], [28]-[29], 

the iterative scheme does not permit itself to analysis for all class of data and almost 
all results to date have been developed on the assumption that the input vectors are 
statistically independent. Nevertheless, it has been shown experimentally [30] that 
for a sufficiently small step size \i, the results based on the independence assumption 
is closely agreed with the experimental results. In the analysis provided, it is also 
assumed that the independence assumption holds. 

An important consideration of an iterative scheme is the speed with which the 
algorithm converges to the optimum solution. Taking statistical expectations of 
(2.13), we have 

E[ w(k + 1)] =E[ w(k)] +2[ig-2[iE[xik)x\k) w{k)] (2.14) 

Assuming x{k) and w{k) to be independent, then (2.14) can be simplified to 

E[ w{k + 1)] =E[ w(k)]-2iiR{ w{k) 一 w'} (2.15) 

Introducing the parameter error vector 
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w{k) = w{k)-w* ， （2.16) 

we have 
+ (2.17) 

where / is an identity matrix of size M+1. To see more precisely the adaptation 
behavior of the weight error vector w(k), equation (2.17) can be decoupled into M+1 
independent equations. Being a real and symmetric matrix, the input correlation 
matrix R can be factorized into the form 

R = UAU' (2.18) 

where J/ is an orthonormal matrix whose columns are the eigenvectors of R and A 
is a diagonal matrix with diagonal elements equal to the eigenvalues of R. Notice 
that an autocorrelation matrix is always positive semidefinite [7], the eigenvalues of 
R are all real and non-negative. Define the transformed weight misalignment vector 
as 

w\k) = u ' m ) (2.19) 

Premultiplying both sides of (2.17) by If yields 

+ 二（/-2kA)£[命'(/:)]:=(J-2!a八）“1 命'(0) (2.20) 

where w'(0) is the transformed initial weight error vector. As k increases, the 
expected weight vector wik) will reach the optimal solution, provided that the right 
side converges to zero. That means, convergence is guaranteed if 

(2.21) 

八max 

and �max is the largest eigenvalue of R. Since � ^ x is usually unknown in advance, 

ji can be chosen to satisfy the more restrictive bound 
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(2.22) 

in which tr is the trace operation. As long as (2.21) is satisfied, E[ w{k)] will 
converge exponentially to w* according to M+l natural modes with the time constant -fc.' 
of the zth natural mode given by 

， / = 1 , 2 , . . . , M + 1 (2.23) 

The smaller the time constant, the faster will be the adaptation speed. 
Corresponding to the adjustment in filter weights, the mean-square error will 

be decreased in each iteration. From (2.7) and (2.18), the error function in the ^th 
iteration can be expressed as 

+ ) (2.24) 

Ignoring the weight vector fluctuation during adaptation, E[w(k) w'\k)] can be 

approximated by E[w{k)] E[w\k)], When (2.20) is substituted into (2.24), we 
obtain 

M + l 
m = � + 2 � , � 1 - 2 � vv/(0) (2.25) i = 1 

and the entity vv/(0) designates the ith element of the vector The plot of 

^{k) versus the number of iteration k is called a learning curve. 

When the input signal x{k) is a random sequence of power a^, will be a^ 

and (2.25) becomes 

狄)=《。+ (1 - 2 C j f) Z vv/(0) (2.26) i = 1 
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indicating that ^(k) converges exponentially to its optimal value. Figure 2.6 shows 
a typical learning curve of identifying an unknown system given by 

= 0.5 + z—i + L5 z-2 + 2 z-3 + 2.5 z"" (2.27) 
fc.. 

in this respect. The input was Gaussian distributed with unity power and a Gaussian 
distributed random noise of power 0.001 was added to the unknown system output. 
The step size was set to 0.0008. It can be seen that the MSE converges exponentially 
to its minimum value as predicted by (2.26). When the input is correlated, it can 
be observed from (2.25) that the curve consists of a sum of exponentials and each 
of which corresponds to a natural mode of the algorithm. The exponential decay 
for the zth natural mode has a time constant given by 

， / = 1，2，…，M + l (2.28) 

The slowest converging mode of ^(k) corresponds to the largest value of i 1 - 2 ji X,,-1. 
Accordingly, the longest time constant involved in (2.25) is equal to 

(2.29) 

where is the smallest eigenvalue of R. Using the bound on |J, shown in (2.21), 

it can be deduced that 

1�max … 
〉2 厂 (2.30) 

� � M I N 

This leads to the insight that the adaptation speed of the LMS algorithm is determined 
by the eigenvalue spread, %(R )� o f the input correlation matrix R，where 

X ( R ) = ^ (2.31) 
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The greater the spread, the longer the algorithm will take to converge to the optimum 
solution. That means the adaptation rate of an adaptive system will be slowed down 
with a correlated input signal Alternatively, a white input signal can produce a 
faster adaptation speed. 

Figure 2.7 illustrates the effect of eigenvalue spread on the convergence 
properties of the LMS algorithm. The unknown system given in (2.27) was to be 
identified with two distinct inputs, one is Gaussian distributed random signal while 
the other is a correlated signal generated from 

x{k) = QmUxik — 1) 一 0 . 0 9 6 8 8 - 2 ) + 0 . 4 3 4 5众 - 3 ) 

-0 .5184x( /^-4) + p(^) (232) 

where p(众）is a Gaussian distributed zero mean random sequence. The eigenvalue 
spread of the random input is unity and that of the correlated input was found to 
be 33,1. The input signal power was fixed to unity and was selected to be 
0.001. The step size was chosen to be 0,0008. An inspection of the plot reveals 
that the performance of an LMS adaptive system deteriorates when the input is not 
random. It has been confirmed by extensive simulation results that the larger the 
eigenvalue spread, the slower the adaptation speed. 

2.2.1.2 STEADY STATE PERFORMANCE 
Since approximate gradients are used in the LMS algorithm, the weight vector 

w{k) never really reaches the theoretical limiting value w*. Instead, it stabilizes and 
continuously fluctuates about this value at steady state. To give a quantitative 
measure of the fluctuation, we start by rewriting the LMS algorithm as 

wik +1) =w(k)-\xE[-2e{k)x{k)] +|iri(/:) 
= w{k)-2[iRw{k)-h^y\(k) (2.33) 
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where ri(/:) is the zero mean gradient noise vector having a steady state covariance 
matrix given by 

cov{T[(k)} =4E[e\k)x{k)xik)] 
- ^4E[e\k)] E[xik)x\k)] R (2.34) 

Subtracting both sides of (2.33) by w" and premultiplying both sides by we 

have 

wXk + l) = ( / - 2 | a A ) w{k) + rj � (2.35) 

If we assume x(k) is uncorrelated over time, r[(k) will be uncorrelated with w(k) 
and hence U^ r\(k) and w(k) are uncorrelated. Postmultiplying both sides of (2.35) 
by their transposes and taking expectation gives 

cov{wik + l)} =(I-2[iA)cov{w(k))} ( / - 2 i i A ) 
+ cov{^(k)} U (2.36) 

In equilibrium, cov{wXk + l)} is identical to cov{ w{k)}. Using (2.34)，(2.36) 
becomes 

{I-\iK)cov{ w\k)}=!!�/ (2.37) 

When is small, we have 

cov{w{k)] 二 ( 2 , 3 8 ) 

The covariance of the weight vector w{k) can now be expressed as 

c^v {w{k)}=Ucov{ w{k)} t/' = � ( 2 . 3 9 ) 
The entity misadjustment, which is defined as the ratio of the excess MSE to 

the minimum MSE, is a measure of how closely the adaptive process tracks the 
true Wiener solution. From (2.24) and (2.38), the excess MSE is given by 
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excess MSE = tr{KE[w\k) w\k)] (2.40) 

and the misadjustment M is equal to 

M=\itr{R) (2.41) 

Obviously, a small ]i can give small weight vector fluctuation and hence little 
misadjustment but the convergence speed will be slowed down as indicated in (2.28). 
This is a basic trade-off of the LMS algorithm between accuracy and convergence 
speed. 

2.2.2 THE RLS ADAPTATION ALGORITHM 
Referring to the simple adaptive filtering problem shown in Figure 2.4, the 

output error of estimating y(i) from x(i) with the filter coefficients equal to w{k) 
is given by 

e,{i) = y{i)-x{i)w{k) (2.42) 

The RLS algorithm finds the filter coefficients at iteration k such that the cumulative 
squared error measure 

_ : = i / - � 2 ( , ) (2.43) 
i=0 

is minimized, where x{k) is assumed to be zero when k <0. The parameter y with 
0<Y< 1 is a data-weighing factor used to emphasize recent data more heavily in 
the least-square computation. It is usually set to unity in stationary environment 
while a smaller value is usually employed under nonstationary environment. Let 
the vectors 

eik) = [ ̂ ,(0) ^ , ( 1 )… e , ( k ) V ， （2.44) 
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yilc) = [yiO) y(l) . . . y(k)V (2,45) 

and the matrix 

= x { l ) . . . x { k ) ] ， (2.46) 

then the error vector e{k) can be written as 

eik)=y{k)-X\k)w{k) (2.47) 

and the error criterion shown in (2.43) becomes 

以 二 (2.48) 

where the matrix is given by 

T{k) = diag{-{' … 1 } (2.49) 

Denote 

R{k)=X{k)nk)X\k)= i (2.50) 1=0 
and k .； 

g ⑷二 X � r � X 众 )二 2： f - ' y i O x d ) ， (2.5i) 
i = 0 

equation (2.48) can be expressed as 

m = y \ k ) r⑷）⑷ - 2 wXk) g ( k ) + w \ k ) R ( k ) w{k) (2.52) 

The optimum parameter vector that minimizes ^{k) is then given by 
w{k)=R-\k)g{k) (2.53) 

This least-square solution is computationally intensive, as matrix inversion is involved 
for each adaptation. The RLS algorithm avoids this inversion by allowing the 
coefficient vector to be updated from its previous value when a new data point is 
usable. 

Suppose that 
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w(k 一 1) = R - \ k - 1) g(k 一 1) (2.54) 

is available and a new data point y{k) and x { k � i s entered into the system. We 
want to determine w(幻 from 一 1). The autocorrelation matrix R{k) and the 
correlation vector g{k) can be expressed as 

R{k) =yR{k 一 l) + x{k) x\k) (2.55) 

and g(ik)=ygik 一 1) + y(k) x(k) (2.56) 

Using the matrix inversion lemma [31], we have 

i r i � - 1 ) 郝 、 — 1 ) 1 (2.57) y I Y+cx � J 
with the scalar a � equal to 

a ⑷ 二 : ⑷ 一 l);c(/0 (2.58) 

Denote P{k)=R~\k) and 

,7�P{k-l)x(k) 
’ （2.59) 

equation (2.57) can be rewritten as 

P(k) =y-'{P(k-l)- K{k) x\k) P{k - 1)} (2.60) 

When we substitute (2.56) and (2.60) into (2.53), the weight vector that minimize 
^{k) is equal to 

w{k) =P{k)g{k) 
=P(k-l)g(ik-l)-K{k) (k) P(k-1) g(k - 1) 

+ y-'y(k){P(k-l)x{k)一K{k) a(k)} 
=w{k 一 1) + K{k) { }； {k)-x{k) w(k - 1)} (2.61) 
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Initialization ： 

w(0) = 0，'^x(-l) = 0 

Operation : 
For k=l to final do 

(1) Acquire y(k), x{k) 
(2) Compute error : 

e,{k) = y{k)-x\k)w{k-\) 

(3) Calculate the gain vector K ( / : ) : 

a{}c)=x\k)P{k-l)x{k) 

难)- Y + o c � 

(4) Update weight vector : 
H；�=H；(众一 1) + K(幻 

(5) Update matrix for next iteration : 

P{k) = {P{k-l)- K{k) x{k) P(k - 1)} 

Table 2.1 The RLS adaptation algorithm 
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Equation (2.61) is the desired result for the update recursion of the parameter vector 
w{k). The complete set of equations necessary for the RLS algorithm are listed in 
Table 2.1 [32]. The essence of the RLS algorithm is to compute the gain vector 
K(̂ ) used in updating w(k 一 1) to w{k) in a least-square fashion. 

When comparing the RLS and the LMS algorithm, it is found that both methods 
incorporate the latest scalar error for adjustment but the vector portion of their 
correction terms is different. The LMS algorithm simply uses the input vector 
whereas the RLS method utilizes the gain vector k{Jc) for adaptation. 

It is noted that the RLS algorithm has a faster convergence speed than the 
LMS algorithm as it computes the optimal vector for each iteration. However, the 
RLS algorithm requires 0{{M + i f ) operations per iteration. Although lately, 
computationally efficient versions of the RLS algorithm [15]-[18] are derived by 
exploiting the shifting property of the sample autocorrelation matrix, which can 
reduce the complexity to 7(M+1) to 11(M+1) operations. Nevertheless, they are 
still greater than that of the LMS algorithm at least by a factor of 3.5. 

2.3 CHAPTER SUMMARY 
An adaptive filter is composed of two basic elements, filter structure and 

adaptation algorithm. Filter structure of an adaptive filter refers to different 
realizations leading to adjustment of distinct parameter sets. Some adaptive filter 
structures are more promising than others by having faster adaptation rate but an 
increase in system complexity is necessary. 

Associated with each filter structure, there is an adaptation algorithm which is 
used to alter the filter parameters in acquiring certain filtering goals. There are two 
well known adaptation algorithms in the context of adaptive signal processing. They 
are the RLS and the LMS adaptation algorithm. The RLS algorithm has limited 
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utilization due to its high computational complexity. On the other hand the LMS 
algorithm, which is a variant of the method of steepest descent, is relatively simple 
and easy to implement. Therefore it is widely used in diverse fields of applications 
nowadays. In the LMS algorithm, fast convergence rate will lead to a large steady 
state parameter fluctuation and a compromise between adaptation speed and steady 
state performance is essential. A deficiency of the LMS algorithm is that its 
adaptation speed is dependent on the signal statistics. When the autocorrelation 
matrix of an input signal has a large eigenvalue spread, an exceedingly long time 
is required for the system to converge. In subsequent chapters, new structures for 
adaptive filters will be developed so as to remove this drawback for parameters 
adaptation using LMS algorithm. 
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3 PARALLEL SPLIT ADAPTIVE SYSTEM 

In chapter 2，we find that the performance of an LMS adaptive filter may be 
affected by its implementation structure as well as the associated adaptation 
algorithm. Although the transversal ladder form is the simplest realization scheme, 
it suffers from having a fairly slow convergence rate. The lattice filter, on the other 
hand, has a much faster rate of adaptation but at the expense of a higher 
computational load [1]. For most practical applications, we need to design an 
adaptive filter that can adapt much faster than a transversal filter in order to cope 
with the nonstationary signals and environments. In addition, we also wish to keep 
the computational complexity as low as possible so as to make hardware 
implementation feasible. In this chapter, we propose a novel adaptive structure by 
splitting an adaptive transversal filter into two subunits connected in parallel. Each 
subunit comprises an adaptive filter of its own and has either a symmetric or an 
antisymmetric property. The performance of this new adaptive system is analyzed 
both theoretically and by computation simulations. It can be shown that the proposed 
adaptive filter can perform significantly better than a simple transversal filter and 
there is only a modest increase in computations. 

3.1 PARALLEL FORM ADAPTIVE FILTER 

Let the transfer function of a simple transversal adaptive filter W(z) be 

M W(z)= x w, z"' (3.1) 
1 = 0 
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where M is the filter order and •，0<i <M, denotes the filter coefficients. W{z) 

can be decomposed into the sum of two filters P(z) and Q{z). Express explicitly, 
we have 

_ = (3.2) 

where P(z) and Q{z) are of the form 

P ( Z ) : = 2 A Z 一' (3.3a) 
i = 0 

and Mq {33b) i = 0 

respectively. Here, M^ and M^ represent the order and p^ and 仏.are the coefficients 

of the transfer function P{z) and Q(z). To ensure validity of (3.2), the filter orders 
Mp and M^ must be chosen to satisfy the following condition, 

L = m a x ( M ^ , M J > M (3.4) 

Padding zeros into or Q{z), they can be rewritten as 

尸 ( z ) = i p. z" 0 , 5 a ) i=0 

and ^ . (3.53) 
1 = 0 

where p,- = 0 for z + 1 , . . . ,L when Mp <L\ or q^ = 0 for / 二M̂  + 1，...，乙 when 

M q < L � C o m p a r i n g the coefficients of z"' on both sides of (3.2)，the original filter 
parameters, w“ can be related to pi and q̂  by 

•二 + , i = 0 , 1 , . . . , M ^ I 2…仏 (3.6) 

�P/二一仏• ， + 1，M + 2，...，乙 

46 



desired 

/ response ] 
I I 

input I / v+ I + ’ ’ 
x(k) o K - / 

I / ^ ^ ^ I output 丫 

i i 
I 〇(Z) I e(k) 
I J W ( z ) I 醒 

Fig. 3.1 Parallel split adaptive filter 
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Figure 3.1 depicts the schematic block diagram of an adaptive system with the 
filter W{z) being split into two paths that are connected in parallel. The input signal 
xik) is passed through the two adaptive subunits to generate outputs Zp{k) and z^(^), 
where 

M 
on a) 

P i = 0 

and M 
z,{k)=Y.q,x{k-i) (3.1b) 

The output error can be obtained by 

= (3.8) 

and the adaptive filter parameters and q̂  can be computed iteratively by minimizing 

the output mean-square error (MSE). 

There are many ways of decomposing a filter into a sum of two units. In the 
context of adaptive signal processing, the major consideration in splitting W{z) is 
based on the following two issues: 

1. to keep the complexity due to decomposition to minimum 
2. to maintain the same number of adapting parameters 

One separation method that can fulfil the above requirement is to choose 尸（z) and 

Q(z) as transversal linear phase filters of order M. In this case, we set 

Pi =-PM-i (3.9^) 

and qi = qM-i (3.9b) 
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so that P{z) becomes an antisymmetric linear phase filter and Q{z) a symmetric 
linear phase filter. With the linear phase property of P{z) and 2(z) , equation (3.6) 
can now be expressed as 

‘ Pi + Qi w-= 2 M i ， / � 0 ， 1 ” " ， • (3.10) - A + ^ i L 2 � WxA •= 
I � - ‘ 2 

Alternatively, subtracting and adding w,. and >%_‘• in turn will give 

V： = w； -Wm ； M 
" I ‘ M-i , /二0，1”..，^ (3.11) 

where the symbol [_•�represents the integral part of •. Notice that when M is even, 
we have = 0 as shown in (3.9(3). T 

In the following sections, we shall apply the above split-path adaptive filter 
model with the two subunits constrained to linear phase filters to the problem of 
joint process estimation and linear prediction. In either cases, it will be proved 
analytically that the split-path adaptive model can achieve a considerable 
improvement in convergence rate whilst the increase in computation is only very 
little. 

3.2 JOINT PROCESS ESTIMATION WITH A SPLIT-PATH 
ADAPTIVE FILTER [2] 
Adaptive LMS filter has been successfully applied in diverse fields of 

applications including plant modeling, noise cancelling and channel equilization 
[3]-[5]. In these applications of joint process estimation, the underlying signal 
processing problems can be formulated as the identification of an unknown system 
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which can be represented by a polynomial transfer function given by 

M • 
H ( z ) = I h. z" (3.12) 

1=0 

where hi are the system weights to be determined and M is the order. The unknown 

system is usually referred to as the plant and a typical configuration to perform 

system identification is shown in Figure 3.2. The input signal x { k ) is fed into the 

plant and its output is corrupted by an independent zero-mean random noise n ( k ) 

of power Cn to form the measurement output y(k). Our aim is to determine the 

unknown plant in an adaptive manner such that the expected output MSE E[e^{k)] 
is minimized, and e ( k ) is the difference between y ( k ) and the output of the plant 

model W ( z ) , 

Let the plant model be given by (3,1)，where w,- denotes the weights of the 

plant model. The plant model shares the same input with the unknown plant to 

form the output z ( k ) . Define 

>v = [Wo Wi . . . w ^ y (3.13) 

be the weight vector of W ( z ) , 

h = [h, h,…h^y (3.14) 

be the parameter vector of the unknown plant H { z ) and 

x(k) = [x{k) x{k-l) ... x{k-M)Y (3.15) 

be the vector of the current and previous M input samples. The output error e { k ) 

can now be expressed as 

e{k)^y{k)-x\k) w = n{k)-{w-hy x{k) (3,16) 

with the superscript t representing the transpose operation. Squaring (3.16) and 

taking statistical expectation, the error criterion to be minimized is given by 
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51 



《01')二£[>2(/:)] --(5l + { w - h ) ' R { w - h ) (3.17) 

where 二£[:*:(/:)太'(众）]is the autocorrelation matrix of the input vector x { k ) . To 

determine the optimal parameter vector w* that minimizes《，we equate the derivative 

of ^ with respect to w to zero, which yields 

^ = 2 R ( w ' ' - h ) = 0 (3.18) aw 

As long as i? is a positive definite matrix of ful l rank, the inverse of R exists. The 

solution to (3,18) is 

= (3.19) 

showing the plant model wi l l exactly identify the unknown plant as equilibrium is 

reached. 

According to Widrow's LMS algorithm, the weight updating equations for w 

is given by 

w(k^l) = wik) - = w{k) + xik) (3.20) 

where is the step size that determines the algorithm rate of convergence and 

stability. From the analytical results of the LMS adaptation algorithm illustrated in 

chapter 2, the stability range for j i^ is 

(3.21) 

八max 

where 人max is the maximum eigenvalue of the input correlation matrix R . Let the 

eigenvalues of R be then the relaxation time constants of the MSE are 

尸 i ， / = 1,...，M + 1 (3.22) 
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When steady state is reached, the variation of the weight vector w{k) due to gradient 

noise is given by 

cov{w{k)} =E[{w{k)-w*] (3.23) 

and the final MSE is equal to 

尸 〜 “ 、 " 幻 （3,24) 

where《。二 CJ: is the minimum possible MSE, I^+ i is an identity matrix of size M+1 

and tr{R) denotes the trace of the matrix R . 

In most practical applications, the input x ( k ) is not random. That means the 

eigenvalues of R are different. The convergence speed of w{k) is then dependent 

on the eigenvalue spread (the ratio of the maximum to minimum eigenvalue) of the 

correlation matrix R . The larger the spread, the longer the algorithm wi l l take to 

reach equilibrium. An intuitive way to improve adaptation speed is to reduce the 

eigenvalue spread of R . As wi l l be shown later, when the plant model is split into 

two linear phase filters connected in parallel, it can come up with two eigenvalue 

spreads, one for each linear phase filter. They are unequal and both of them are 

usually smaller than the eigenvalue spread of R . Thus with appropriate step sizes 

for the two linear phase filters, the performance of the underlying adaptive system 

can be improved. 

3.2.1 THE NEW ADAPTIVE SYSTEM IDENTIFICATION 

CONFIGURATION 

The new filter structure for system identification using a split-path plant model 

is depicted in Figure 3.3. The plant model is now represented by two linear phase 

filters connected in parallel as shown in (3.2), in which P ( z ) is an antisymmetric 
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Fig. 3.3 The new split-path adaptive filter for system modeling 
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linear phase filter and Q(z) is a symmetric linear phase filter. They are being 

updated simultaneously to optimize the system performance by minimizing the output 

MSE. For the sake of simplicity, we shall first consider the case for M being an 

odd number. Let M =1N - I , P { z ) and Q(z) can be expressed as 

P(z)= (3.25a) 
1 = 0 

onH N-1 Q(Z)= I 仏(z-' + z-肌 1+') {325b) 
i=0 

Denote the respective parameter vectors of P ( z ) and Q { z ) by 

P = [Po Pi . . . PN-IV (326a) 

and q = q^ … ( 3 2 6 b ) 

In matrix notation, it can be derived from (3.11) that the filter coefficients of W { z ) , 

P { z ) and Q ( z ) are related by 

' p ] = e w = \ — / " I w (3.27) 
Lg」 [ A j n 」 

where Jn is an off diagonal matrix of size N given by 

' 0 0 … 0 r 

J n = 0 0 … 1 0 二 厂 ( 3 . 2 8 ) • * • » 

_1 0 . . . 0 0_ 

It is easy to verify that 0 is an orthogonal matrix, in particular, 

0-1=每 0' (3.29) 

Therefore, we can obtain w from p and q by 
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二 e 中 ] \ ' ' I M (3.30) 

which is equivalent to (3.10). Let Vp{k) and Vqik) be two Nx l column vectors and 

define v{k) as •‘ 

y(k) = [vl{k) v l (k)y = ex (k ) (3.31) 

Using (3.29)，(3.30) and (3.31)，the output error shown in (3.16) can be expressed 

in terms of p and q by 

e(k) = y{k)-^v\k) P 二}K众)��{v;(幻;7 + ⑷ g } (3.32) 
2 L … 2 厂 ^ 

As seen from (3.32), the MSE performance surface is quadratic with respect to the 

elements of p and q. There exists a single global minimum point [p* q*y which 

relates to w* by (3.27). 

Pre-multiplying both sides of (3.20) by © and substituting (3.27) and (3.31)， 

we have 

When different step sizes for p { k ) and q{k) are employed, their update equations 

become 

P(k + l ) = p ( k ) + ( k ) v^ik) (3.34a) 

and + q{k) + { k ) (3.34Z?) 
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3.2.2 ANALYSIS OF THE SPLIT-PATH SYSTEM MODELING 

STRUCTURE 

Let r{t) = E[x{k)x{k-t)'\ be the correlation function of x{k). The input 

correlation matrix R can be partitioned into the form 

„ 「及 11 ^ 1 2 

R = j^t o (3.35) 

where 

- r ( 0 ) r ( l ) . . . r ( A ^ - l ) " 
O 一 厂⑴ KO) ... r{N-2) 
^11- (3.36) 

• • • 

_ r ( / V - l ) r(N-2) . . . r(0) 一 

and 

- r ( N ) r(" + l) ... r(2N-l)~ 
.(A^-1) r(N) ... ri2N-2) 

^12- (3.37) 
• 鲁 ,« • • 

- 厂 ⑴ r(2) . . . r(N) _ 

Using the Hermitian Toeplitz property of R , it can be verified that 

(3.38) 

— RuJN^JNRU (3.39) 

Hence from (3,31)， 

厂「，。、VMl 「 五 [ V 幻 々 幻 ] 扔 〜 ⑷ ⑷ ] -E v{k) V (a:)] = ^ 
— —̂  厂 — 

IN -JN RU—RuJN ^U^^IIJN 
-In JN」|_及12一及11«/^/ KI'^^UJN. 

= R p On 1 

L … 及 J L On i ^n+^ i z / i vJ 
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where R p - E [ Vp{k) Rq =E[ and On denotes a zero matrix of size 

/V‘ Therefore, v^(^) and v^{k) are iincorrelated. Let the respective parameter error 

vectors be 

p{k)=p{k)-p (3.41^2) 

肌 d m = OAlb) 

Then the output error e ( k ) can be expressed as 

难）二"(幻-臺“⑷：)= n i k ) - ^ { v l ( k ) p ( k ) ^ v l ( k ) q { k ) } (3.42) 

I f lip and ji^ are chosen sufficiently small, v(^) wi l l be independent of p ( k ) and 

q{k). Now, by putting (3.42) into (334a) and taking expectation, we obtain 

ElPik + 1)] = E [ p { k ) ] v ^ i k ) v'^m E[p{k)] 

+ E [ v ^ { k ) v \ { k ) ] E [ m ] ] (3.43) 

Since Vp{k) and y^{k) are orthogonal to each other, (3.43) becomes 

+ 1)] = — Rp )E[p(k)] (3.44… 

Similarly, it can be derived that 

£ [ + 1)] 二（/w — )E[m] (3A4b) 

It is easy to verify from (3.44) that the stability range of ii^ and ji^ are, respectively, 

given by 

(3.45 … 
〜p，max 

and 2 
(3.45/0 

N q ,max 
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where and are the maximum eigenvalues of Rp and R^. As indicated 

in (3.29) and (3.40), we have 

-Rp , 
‘ “ 二 2 0-1 (3.46) 

l^N 〜_ 
Notice that the autocorrelation matrix R can be decomposed into 

R = k U (3.47) 

where U is an orthonormal matrix containing the eigenvectors of R as its columns 

and A is a diagonal matrix with its diagonal elements equal to the eigenvalues of 

R . Subsequently, equation (3.46) can be rewritten as 

r q 

‘ / =2(^/©-1)-1八（^/0-1) (3.48) 

It is possible to partition the diagonal matrix 八 into 
, " A , oA 
A = (3,49) 

L ̂ N 八2_ 

SO that A i and A〗 are matrices of the same size N . Denoting - and 

z. 二1，2,...，A^ be the respective eigenvalues of Rp and Rq, the characteristic 

expression of the matrix shown in (3.48) is 

^ / " - 八 1 On 
= 2 { U Q - ' f 1 ( U Q - ' ) (3.50) 

On 

Thus, the eigenvalues of Rp and R^ are obtained by solving 
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, j r fv On 1 「 / 《 ， O j l ^ 

‘ M L On 尺 J 卜。 （3.5" 

with the symbol det{'} denoting the determinant of the matrix •. However, 

< — - 、 

J 「 人 O n ] 「 / ^ p O J l 。“ On 

H k V 」 仏 j 卜 : o n 2 
、L Z 」一 

N f l � N f ] � 
二 2 n n (3.52) 

* = 1 y z y J = 1 z J 

Hence the eigenvalues of Rp and those of R^ form a partition of the eigenvalues 

of R with a scaling factor of 2. That is, 

\、 i = n 、 ， / = (3.53a) 

and ， /二 1，2，...，A^ + 1-7V (3.53Z?) 

Without loss of generality, let us assume that the largest eigenvalue of R is 

= IS thcii greater than ？ip’max. According to (3,45), the stability range 

for is equal to that of in the conventional system but 尸，now, can enjoy a 

larger stability range. Using (3.44) and (3.53), it can be derived that the relaxation 

time constant for the parameter vectors p and q are respectively given by 

， /二 1,2，...，A^ (3 Ma) 

and 1 
^ ， / = + (3.54Z?) 

From (3.42) and using the uncorrelated property of Vp(k) and the output MSE 

at iteration k can be expressed as 
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m = ^ ' + \ E l p \ k ) R ^ p i k y ] + ^ E [ c r i k ) R J j { k ) ] (3.55) 

I f we ignore weight vector fluctuation during the learning period, (3.55) can be 

approximated by 

m (3.56) 

When (3.44) and (3.54) are taken into consideration, the time constant for the /th 

mode of the MSE is found to be 

T 。 二 点 ， / 二1’…，" 

- 1 (3.57) 

To complete the analysis, we now evaluate the steady state performance of the 

split-path adaptive model. The parameter update equation (3.34) can be expressed 

as [3] 

Vih + 1) = P � k ) \ p { k ) ] + ^^Tl/^) 
= p(k) + ^^ (3.58 … 

and 沉众 + 1) = m-[i,E[2e(k) 丨《0 )̂] + ^^ 

+ (3.58Z?) 

where r\p{k) and are the zero mean gradient noise vectors associated with the 

adjustment of p ( k ) and q { k ) . The steady state correlation matrices of the two gradient 

noise vectors are given by 

c o v { y ] ^ ( k ) } = 4 E [ e \ k ) v ^ { k ) v l { k ) ] = 4 ^ ' R ^ (3.59a) 

and cov{y]^{k)} 二4.£[一⑷ V?⑷ V : ⑷ ] R ^ (3.5%) 
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Post-multiplying both sides of (3.58a) by their transpose and assuming v^{k) is 

uncorrelated over time, we have 

cov{p{k-^\)} ={I,-\i^R^)cov{p{k)} ( I f 认) 

+ ^ lcov{V[^{k) } (3.60) 

On account to the fact that cov{p{k + 1)} =cov{p{k)} when equilibrium is attained, 

(3.60) can be simplified to 

Rp cov{p{k)}+cov{p(k)} 二4 îp《。Rp (3.61) 

Hence 

cov{p{k)} i n (3.62a) 

Similarly, the weight vector variation of q ( k ) is found to be 

cov{q(k)} 二 2|ig《。/" (3.62Z?) 

Post-multiplying p(k +1) by the transpose of q(k + l ) and then taking expectation, 

we obtain 

+ 1) q(k + 1)] E[p(k) q\k)] 
+ (3.63) 

Remember that Vp{k) and are orthogonal, we have 

机”,� ”；⑷]= 4 E [ e \ k ) ] E[v^{k)v'^(k)] =0 (3.64) 

Therefore (3.63) becomes 

^ p R , E [ p { k ) q \ k ) ] + [ i ^ E [ p { k ) q \ k ) ] R ^ = 0 (3.65) 

Notice that the step sizes [i^ and [i^ are both greater than zero and the matrices R^ 

and Rq are positive definite, (3.65) holds if and only i f 
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E[p{k)q\k)] 二 0 ( 3 . 6 6 ) 

which means that the steady state parameter error vectors p { k ) and q{k) are 

independent to each other. 

Finally，from (3.55), the steady state MSE in the split-path adaptive system 

can be computed easily and is given by 

狄)= cov{p(k)} ) + cov{q(k)}) 
一 、 

=《。 { l +学 令 (3.67) 

3.2.3 COMPARISON WITH THE NON-SPLIT CONFIGURATION 

From the above discussion, it is noted that splitting W { z ) into two linear phase 

filters connected in parallel has the effect of partitioning the eigenvalues of the input 

correlation matrix R into two groups and there are two eigenvalue spreads instead 

of one. Denote the eigenvalue spread of R , R^ and R^ be %{Rp )’ yX^p ) and y ^ K ) 

respectively. Again, let \ 職 ： X 沙 such that 人,,max〉入;max. In accordance with 

(3.45)，the step size is set to jj,^ and is chosen to be greater than |i州. 

Depending on which groups the minimum eigenvalue wi l l fall into, there are 

two possible cases : 

(1) 2 is an eigenvalue of Rp. Then x i ^ p ) and x i ^ g ) are both less than 

X i R ) ' The vector q ( k ) wi l l converge faster than w ( k ) in the conventional 

tapped delay line plant model because the largest time constant of q ( k ) is 

smaller than that of w ( k ) . In addition, the vector p ( k ) also has a faster 

adaptation speed because it has a smaller time constant with larger than 

l^v. 
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(2) is an eigenvalue of R^. Then is equal to %(/?) but ) is 

smaller. The convergence rate of q ( k ) and w ( k ) is expected to be identical. 

On the other hand, p ( k ) is capable of achieving a rapid convergence because 

the largest time constant of p ( k ) is smaller than that of w{k) even with 

In this case the dynamic convergence speed is improved, before the smallest 

eigenvalue of R^ dominates the convergence rate. 

Consequently, we can conclude that the split-path plant model has a superior 

performance because of its smaller eigenvalue spreads [2]. 

In certain applications, the steady state performance of an adaptive system 

should be well under control. For instance, the variance of the plant model 

parameters has to be kept below some specified values. This implies that the step 

sizes [ip and cannot be chosen freely based upon (3.45) because a larger wi l l 

give rise to a greater variation in p { k ) . In this situation, we make use of the 

mean-square estimation error or mean-square difference (MSD) of the plant model 

parameters which is defined as 

MSD(w⑷）=E[w\k )w(k ) ] =E Z (w.{k)-w;f (3.68) 
-1=0 � 

to be a performance index to contrast the convergence behavior of two different 

systems. The MSD has identical time constant with the MSE. Using (3.29) and 

(3.30)，the MSD of the plant model parameters w in the split-path system can be 

related to the MSD of the parameter vectors p and q by 

� p. _ 

MSD(iv(^)) =E[w\k)nk)]=E [p\k)歹乂幻]©一'0-i _ 
L 幻」」 

= l{E[p(k)pik)]+E[q\lc)m]} 

{ MSD{p(k)) + MSD( g(k))} (3.69) 
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When equilibrium is attained, on using (3.62)，the steady state MSD of the plant 

model parameters in the split-path system is equal to 

M S D力K / 0 ) =^^{tr{cov{p{k)p\k)} ) + tr{cov{q{k)q\k)} )} 

二 特 p + M 《 ’ (3.70) 

Whereas the steady state MSE for the traditional transversal configuration can be 

evaluated from (3.23) and is given by 

M S D J > v « ) = 2 " ^ i “ 。 (3.71) 

I f the same final MSD is maintained for the two structures, we have 

〜 + (3.72) 

When } ! =〜二g … i t can be seen from (3.22) and (3.57) that the adaptation speed 

of the two systems is essentially identical. However, with the constraint (3.72) on 

the step sizes, one can choose a larger step size for P { z ) while decrease the step 

size for g (z ) to obtain a faster adaptation in case (1) as described above. Notice 

that must not be lessened to such an extent that the largest time constant of 

g (z ) is greater than that of P(z). In case (2), can be chosen to be larger than 

M-p for a better performance as long as (3.45Z?) is fulfilled. In both cases, the 

split-path model can achieve a better performance. In all the simulation experiments 

we have performed, we found that 入max and ？ a l w a y s belong to different groups. 

This reveals that it is highly unlikely that both and come from the same 

correlation matrix. Thus a larger step size can be selected for the linear phase filter 

with a smaller set of eigenvalues to acquire a better performance. Now, the question 

remained is how to select and such that the best performance can be assured. 
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For a matrix K , t r { K ) is equal to the sum of eigenvalues of K. If K is an 

autocorrelation matrix, then it is positive semidefinite and its eigenvalues would be 

all non-negative. It is, therefore, reasonable to assume that a small value of t r { K ) 

itself would indicate that K has small eigenvalues. Hence, an intuitive way of 

choosing the step size ]i for an adaptive process with autocorrelation matrix K is 

to equate it to C ltr[K\ where C is a constant less than or equal to unity. The 

convergence of the adaptive process is still guaranteed because Cltr{K)< HX^^^, 
where 入max is the largest eigenvalue of K, is again satisfied. In this way, a larger 

M- is essentially used i f the autocorrelation matrix has small eigenvalues and thereby 

increasing the convergence speed. The selection scheme for the step sizes for the 

split-path model can be summarized as follow, 

Kp � ‘ （3.73… 

and c 
〜二硕 （3圳 

As condition (3.72) must be satisfied in order to maintain an identical steady state 

performance of the two systems, solving (3.72) and (3.73) yields 

(3.74) 

Hence 

tr(R,) ^ 

肌 d _ tr(Rp) ^ 
+ ( 通 ） 
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Equation (3.75) provides a simple way of selecting the step sizes in the new adaptive 

configuration to achieve a better performance. But the calculation of tr{R^) and 

f � ) requires a lot of computations since evaluation of the autocorrelation function 

of the input sequence is required. To obtain a compromise between adaptation 

performance and computational load, we shall determine whether t r {Rp ) or t r {R^ ) 

is greater than the other. A larger step size can be assigned to that particular filter 

whose corresponding autocorrelation matrix has a smaller trace. In most applications, 

deciding which one of t r {R^ ) or t r {R^ ) is larger can be made with a little a priori 

knowledge about the input signal statistics. For instance, i f the input signal x { k ) 

is relatively rich in low frequency content like speech signal, it can be verified that 

t r {Rp ) is always less than tr{R^) and a larger ^^ can always be selected to obtain 

a faster adaptation. 

Figure 3.4 shows a practical implementation of the split-path system modeling 

configuration. It is observed that no extra hardware is actually required. In regard 

to computational complexity, as indicated in (3.31) and (3.34), only N extra addition 

and subtraction operations are needed to calculate the tap input vectors Vp{k) and 

3.2.4 SOME NOTES ON EVEN FILTER ORDER CASE 

When M is even, the transfer function of P ( z ) and Q { z ) is chosen to be 

P ⑴ ‘ - 严 ） （3.76… i =0 

and A^-i 
2 ⑴二 Z 仏.（z-' + z-肌'）+ V I《 "z - " (3J6b) i = 0 

The vectors q { k ) and now has iV+1 components. The matrix © for conversion 

of filter parameters is 
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M=〇dd 

f ~ ^ _ 

© ' ' (E) ？ 

x(k) o M z-1 • • — z-1 I l — ^ ” + " + 

H T ^ • • - [ r ^ " " “ T + 
f • • f 

^ — — — — ^ 

Fig. 3.4 Hardware implementation of a split-path adaptive model for system 

modeling 
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(v o/v - j n 

© = ,/v % Jn (3.77) 
<2 0 � J 

with 0,v representing a N x l column vector of zero elements. It can be verify that 

the orthogonal property (3,29) can be satisfied for 0 given by (3.77). Partition the 

autocorrelation matrix into the form 

一及 11 ^ 1 3 ^ 1 2 _ 

K 厂 ( 0 ) R'uJN ( 3 . 7 8 ) 

-^12 j n ^ u 尺 u _ 

where 

“KO) r(l) ... r(N-l)~ 
p ^(1) r(0) ... r(N-2) 
及 1 1 = . . . ( 3 . 7 9 ) 

r{N-\) r{N-2) . . . r(0) _ 
+ r{N+ 2) ... r{2N)“ 

D r{N) r{N + l) ... r{2N-\) 
^ 1 2 = . 乂 （ 3 . 8 0 ) 

- r ( 2 ) r � . . . r ( " + l ) _ 

皿 d R,, = [rm r{N-l) . . . K D ] ' (3.81) 

It is easy to show that the expressions (3.38) and (3.39) are still valid. The 

autocorrelation matrix of v ( k ) is found to be 

/rr VM1 「五⑷ V ;⑷ ] E [ v ^ ( k ) v l ( k ) ] ] ^ 〜 
E[v(k)v(k)] = ‘ ‘ ’ =QR& 

lE[v^{k)vlik)] E[v^(k)v'^(k)]� 
- R 0 (y 1 On % 

= n : = 2 On RU+RuJN ^ R n (3.82) 
+ "" J L 0 ; ^ R l , riO)_ 
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showing that v^ik) and are uncorrelated to each other. It can be proved that 

the eigenvalues of R^ and R^ again form a partition of the eigenvalues of R with 

a multiplication factor of 2. Consequently, the results derived in previous section 

for the case when M is odd can still be applied when M is even. When the steady 

state MSD of the plant model parameters of the split and non-split system is fixed, 

yip and can be chosen according to 

N M ( A ^ + l ) ^ i , ( 2 y V + l ) “ w (3.83) 

Figure 3.5 shows the implementation of the split-path adaptive system for even 

M. In can be observed that one additional multiplication in this case is necessary. 

3.2.5 SIMULATION RESULTS 

Extensive simulations have been taken to study the behavior of the new adaptive 

system. The signal x { k ) was generated by an AR(4) process given by 

x{k) =0 .8915x ( / ^ - l ) -0 .09684 x{k-2) + 0.4345 xik-?>) 
-0.5184x0^ - 4 ) + p ⑷ (3.84) 

where ^(k) was a Gaussian distributed random signal of unity variance. The pole 

locations of the signal x ( k ) are 0.9Z土20。and 0.8Z±120。. Numerical evaluations 

of the AR process reveals that the eigenvalues of are { 18.23， 

6.46，0.81，0.77，0.70，0.22} and that of R^ and R^ are { 12.92，1.54，0.44} and 

{ 36.5，1.62，1.4}. The eigenvalue spreads of R, R^ and R^ are 81.7，29.3 and 

23.75 respectively. The system to be identified was 

/ / (z ) 二 0.1 + 0.2Z-1 + 0.62Z-2 - 0.22Z-3 + + 0.4z"' (3.85) 
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M=even 

© ' ' (k ？ 

x(k) o M z-1 • • z-1 I z - 1 I ~ ” + ，〖+ 

^ e(k) 
—I Z'l 一 • • — Z'l ——Z-i ~ + 

Y • • + 梦 • 

A ^ 
r ^ — ^ J 

+ 

Fig. 3.5 Hardware implementation of a split-path plant model for system 

identification 
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The corrupting noise nik) was also Gaussian distributed but with a variance of 0.1. 

The control parameter was set to 0.002 and the results obtained were the average 

of 100 independent runs. 

Figure 3.6 shows the MSD for the two split filters P ( z ) and Q { z ) when their 

step sizes are both set to It is seen that the MSD for Q(z) converges much 

faster. This is validated by (3.54) since Q { z ) has a larger set of eigenvalues 

compared to P ( z ) . The resulting MSD for the plant model parameters which is 

obtained from (3.69) is depicted in Figure 3.7. The one for the non-split plant 

model is also provided for comparison. It is recognized that the trajectories of the 

MSD for both systems are essentially identical as expected because the two structures 

essentially have the same time constant when = 

We now investigate the effect on convergence speed by selecting different [i^ 

and Figure 3.8 demonstrates the adaptation behavior of P{z) and g(z) when 

and are selected according to (3.75). It can be observed that the two curves 

have similar slope during adaptation, which implies that their adaptation speed are 

roughly identical. Because of the decrease of and increase of the steady 

state MSD for q{k) is less than that for p { k ) . The corresponding MSD for the plant 

model parameters in the split-path structure and the non-split model are compared 

in Figure 3.9. Although the steady state MSD for p { k ) and q{k) are different, the 

MSD for the plant model parameters in the split model is approximately the same 

as that in the non-split system, which thus verifies (3.72). Due to the synchronization 

of convergence between the parameters p { k ) and q { k ) , it is clear that the split 

configuration outperforms the non-split model. In fact, the new system achieved a 

mean-square parameter error of -28dB at about 1900 iterations whereas in the old 

system, 3800 iterations were required instead. 
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Fig. 3.7 Comparison of MSD for the plant model parameters with 

73 



0-T 

- j \ MSD(p) ’ M P = 0 . 0 0 3 

\ MSD(q) , pq=0.001 

DQ 一 \ \ 

\ 

Q - \ \ 
cn \ \ 
^ - \ \ 

- 2 0 - \ \ \ 、,、、、 

- \ 、-、、、、、 

- \ … 、 、 . 

一 \、 . :、、、,W、’、--、,〜"、'--、、‘一、-?v、-、/、、-'、〜,----、、./、、、"•〜'-、"、、. 

-30 - \ 、 ^ 

0 2000 4000 6000 

iterations 

Fig. 3.8 Comparison of MSD for the two split filters with 

0-1 

- Y split-path model 
“ \ Pp=0.003，)Jq=0.001 

\ non-split model 
m - \ Mw=0.002 
X) \ 
Q - \ 
乏 - \ 

- 2 0 -

\、、、 
- \ 、 \ . 

- \ 、 〜 、 

- V \ 一 、 

-30-1 1 . , , 
0 2000 4000 6000 

iterations 

Fig. 3.9 Comparison of MSD for plant model parameters with j i ^ ^ l i ^ 

74 



The panilld split model applied to joint process estimation which is formulated 

as system modeling with non-white input is investigated. It is found that the effect 

of the split operation is to partition the eigenvalues of the input correlation matrix 

into two sets, which in turn gives rise to a reduction in eigenvalue spread. When 

suitable step sizes are chosen for the two split-paths, a faster adaptation speed can 

be attained. 

3.3 AUTOREGRESSIVE MODELING WITH A SPLIT-PATH 

ADAPTIVE FILTER [6] 

The autoregressive (AR) model has been extensively studied in a variety of 

fields such as statistics, econometrics, geophysics, and engineering. Recently, it has 

received much interest in the areas of spectral estimation [7 ] - [ l l ] and speech 

processing [12]-[14]. A typical Mth order AR process can be expressed as 

m 

Z -g,xik-i)-hf>(k) (3.86) 
i = 1 

where |3(/:) is a zero mean random process of variance Gp, x ( k ) is the generated 

signal driven by P(^) and g- are the system variables usually referred as the AR 

parameters. The problem is to determine the model parameters from the output 

sequence x ( k ) . 

Many efficient methods have been developed for estimating the AR parameters. 

Most of them are based on a whitening filter approach with a conventional system 

configuration as shown in Figure 3.10. The sequence x ( k ) passes through an all-zero 

filter，W(z) , which has the effect of flattening the spectrum of the output signal. 

The filter coefficient Wq is fixed to unity while the other coefficients, w-, i = 

are obtained by solving the following highly structured Yule-Walker equation [12], 

which are identical to the AR parameters, 
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、 M 
x(k) o • W ( z ) = 1 + E WjZ"' ^ 〇 e(k) 

i=1 

Fig. 3.10 A whitening filter model 
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M * 

s vv ;V( / - / ) 二一厂 ( / ) ’ (3.87) 

where 厂（/_/)=五！：^^乂/: 一 — y . ) ] is the autocorrelation function of the sequence 

义(/:). It is convenient to express (3.87) into matrix form. Let 

Ĥ  二 . . . w似]' (3.88) 

be the parameter vector of W ( z ) , 

x^^{k-l) = [x(k-l) x{k-l) ... x{k-M)y (3.89) 

be a vector of M pass input samples and 

= (3.90) 

be the autocorrelation matrix of size M. Equation (3.87) can now be expressed as 

灭 =-容 （3.91) 

where w* is the optimal weight vector and 

g = E[x(k)x^{k-l)]=[r(l) r(2) . . . r(M)V (3.92) 

is the correlation vector between x^k) and the vector Xj^ik - 1). The optimal solution 

of the weight vector w* can be evaluated from 

二一及容 （3.93) 

Solving (3.93) directly involves massive computations as matrix inversion is required. 

However, since R^ is a Toeplitz matrix, there are many efficient algorithms available 

that can solve (3,91) recursively without matrix manipulation such as Levinson's 

algorithm [15] and Durbin's algorithm [16；. 

Adaptive filtering is another technique which is widely used nowaday to extract 

AR coefficients. In this approach, the whitening filter W ( z ) is made adaptive by 
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sequentially adjusting its weights to minimize a predefined cost function. Because 

the coefficients are determined iteratively based on the input and output signal of 

the system, one major advantage of this method is that any nonstationary 

characteristics of the input signal can be easily coped with. 

Widrow's LMS algorithm is, again, commonly used to minimize the 

mean-square value of the filter output so as to flatten its frequency spectrum by 

means of a "noisy steepest descent" procedure. In this case, the weight vector w{k) 

of the adaptive filter is determined, on a sample by sample basis, according to 

eik) =x(k) + w\k — 1) 一 1) (3.94a) 

H</:) = w(ik-l)-2\i^e (k) 一 1) (3.94Z?) 

where [i^ is a predefined step size that controls the rate of convergence and stability 

of the adaptive process. It has been shown that when ji^ is chosen properly, the 

adaptive process wi l l converge to the Wiener solution given by (3.93). The 

convergence behavior of this adaptive system can be characterized by the time 

constant of ^ = which is given by 

& ， / = 1，...，M (3.95) 

where X̂  are the eigenvalues of 似 . I n steady state, the variation of the weight 

vector and the final MSE, are respectively given by 

c^v{ w{k) w \ k ) } 二 £[ { wik) - >/ } { w{k) - > / } ' ] 二 X̂w《o /‘w (3.96) 

and (3.97) 

where = Gp is the minimum possible MSE. 
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In this section, application of the split-path adaptive technique in AR modeling 

wi l l be investigated. It is found that when W ( z ) is being represented by the split-path 

model，the output of the two linear phase filters are independent to each other. By 

adapting the two subunits separately using their respective outputs as error functions, 

the convergence behavior can be significantly improved at least by a factor of two. 

This is not only due to the decrease in eigenvalue spread of the input correlation 

matrix as in the case for system identification, but also due to the incorporation of 

backward prediction in the adaptation algorithm that help to reduce the gradient 

noise. 

3.3.1 THE SPLIT-PATH ADAPTIVE FILTER FOR AR 

MODELING 

The schematic block diagram of a split-path adaptive filter for AR modeling 

is shown in Figure 3.11. The original whitening filter W { z ) is now divided into 

two filters P(z) and Q ( z ) , and they are related by (3.2). The input signal x ( k ) is 

being fed to both filters and the whitening output e ( k ) is given by 

“幻二 2 (3.98) 

where e / k ) and are the outputs of F ( z ) and Q ( z ) respectively. The two filters 

are both of FIR type of order (M + l ) and have linear phase characteristics. As 

before，we put P ( z ) to have antisymmetric property whilst Q ( z ) have symmetric 

property. Let us first consider the case M 二 I N for ease of exposition. The transfer 

function of the two subunits are of the usual form 

/^(z) 二 ip,•(广厂狄—1+‘） (3.99a) 
i = 0 
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z 

Fig. 3.11 A split-path adaptive whitening filter model 
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iUld N 
GOO 二 5：仏.（广+ (3.9%) 

i = 0 

III our study, both p^ and q^ are set to unity without loss of generality. The 

realization form of the split-path structure is shown in Figure 3.12. Define the 

vectors 

P = [Pi . . . PnV (3.100a) 

仙 d q = [q, ... Qn�' OAOOb) 

as the parameter vectors for P { z ) and 2(z) respectively. Putting (3.99) into (3.2), 

we f ind that the filter coefficients between the new and old configuration are related 

by 

「11 1 ] [ 1 11 1 p q 
^ = 2 - J V ^ J a (3-101) 

Q 丄 J N p J N q 
IL - 1 」 [ _ 1」， 

or 「/O 「7" 
= ©>v � (3.102) 

L … LY/V Jn J 

In matrix notation, e^ik) and can be expressed as 

ep(k) = [ l + i - + ⑷ （3.103a) 

皿d e^{k) = [ l + i + 〜+2⑷ （3.103ZO 

The filter parameters p and q are obtained by minimizing the total MSE, Ele^Qc)] 

as usual. However, e p { k ) and e^{k) are totally uncorrelated, since 
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； K g i - eq(k) 

Fig. 3.12 Hardware implementation of the split-path whitening filter for even M 
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机伸“(')：! 二[1 - 似 + 2 丨 ; " + 1 ] [ 1 

—「1 '"i「r T 1 ON + 1 JN + I — L i J + i -Jn + I\ j ^ 

On + 1 Jn + i IN + \ 1 
Km+2 T n 厂 " 

- ^ N + i 口…1」L Jâ  + 1」L(7」 

—r 1 M r T i p /̂v + i 1 
一 L 丄 P J + l + 1 J ̂ M + 2 J 

= -E[e^{k)e^{k)] = 0 (3.104) 

Hence, from (3.98), the error criterion becomes 

m - E [ e \ k ) ] = - ^ E [ e l { k ) ] + - ^ E [ e l { k ) ] (3.105) 

In other words, minimizing the expectation of is just the same as minimizing 

the expectation of el ik) and el{k) separately. As a result, the original adaptive 

system can be decomposed into two decoupled subsystems. As E[e l {k ) ] is a 

quadratic function with respect to p,- while E [e l {k ) ] is also a quadratic function 

with respect to q ’̂ there exists a unique global minimum which in turn wi l l provide 

the optimum weight vectors p* and q \ From (3.102)，we also have 

p In ~Jn * 
. = r J (3.106) _ q 」 J N _ 

Using the LMS adaptive algorithm, the parameter updating equations for the 

split-path system can be formulated as follow, 

e,{k) =x(k)-x(k-M - 1) -¥p\k — 1) Vpijc — 1) (3.107^2) 

Pik) = p i k e ^ ( k ) VpOc 一 1) (3.107Z?) 
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e^{k)=x{k)+x{k-M 一 \ ) + q \ k - 1) — 1) (3.1076-) 

柳 二 摊 e ^ { k ) - 1) (3.107J) 

where = -J^] x^{k-\) (3.108⑴ 

and 、 ( / 二 [ jr" J,]x^{k-\) (3.1086) 

3.3.2 ANALYSIS OF THE SPLIT-PATH AR MODELING 

STRUCTURE 

When the signal x { k ) is generated by an AR process of order M as in (3.86) 

with the AR parameters equal to w \ we obtain 

_ = P(众）一 H^” - 1) (3.109^2) 

Along with this forward model, we can equivalently consider a backward model, 

x(k-M-l) = - M - 1) 一 Jm 一 1) (3.10%) 

where ^'{k-M - 1) is another zero-mean white noise sequence of variance a^. Note 

that and - \ ) are iincorrelated. By subtracting and adding (3.109a) 

and (3.109办）and then using (3.106) and (3.108), we have 

= m - m - M - \ ) - w ' ^ — - 1 ) 

- ~ J n IN」 

二 PÔ ) - m 一M - 1) 一)V” L〜vp(k 一 1) 
- 一 A 」 

二 P ⑷ - P > \ k v p ( J c — 1) (3.110a) 
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Mid x(k)^x(k-M-\) + (众 

= ， Jn - 1) 

二 — 1) (3,1 lOb) 

Substituting (3.110a) into (3.107a) and (2.110/?) into (3.107c)，e^(k) and e^{k) can 

be expressed as 

e,{k) =p'{k - 1) Vpik — 1) + m - m-M-1) (3.11 Id 

and = q\k - 1) - 1) + p(^) + f>Xk - M - 1 ) (3.111Z?) 

where 

p(Jc — l)=p(Jc — l) — p‘ (3.112^) 

and 耿k — l ) = q(k - 一q’ (3.112/?) 

are the weight vector errors. When (3.111) is put into (3.107/?) and (3.107(i), we 

obtain 

P(k) 一 1) v'pik 一 1)} Pik 一 1) 
Vp〔k - 1) { p(/:) - m - M - 1 ) } (3.113 … 

and _ 

p � + -M-1)} (3.113Z?) 

Making use of the independence assumption that p(k -1) and Vp{k - 1 ) are 

independent on one hand and q(k -1) and - 1 ) on the other hand, and noting 

that (众—1)，p(/:) and ^'(k - M - 1 ) are also independent to each other, taking 

statistical average of (3.113) yields 
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El-Pi^)] E[p(k — 1)] (3.114a) 

and Eimi E[q(k -1)] (3.114/^ 

where 二.£[ v/七一 1) v;(々 一 1)] (3.115^) 

犯 Id R,=E[v^(k-l)yl(k-l)] (3.115/0 

Equations (3.1143) and (3.114Z?) give the adaptation trajectories for the parameter 

error vectors which also govern the convergence characteristics of the filter 

coefficients. It can be seen from (3.114) that the stability ranges for [i^ and 

are given by 

(3.116a) 
^ p ,max 

and 1 
(3.116Z?) 

八<7 ,max 

where Tip’舰 and are, respectively, the maximum eigenvalues of R^ and R^. 

Recognize that the symmetric Toeplitz matrix R” is identical to the matrix R in the 

previous case for system identification, it can be obtained from (3.46) that 

~Jn _ IN IN R� O^ 
J J Rm - T T = o R 二2€)及M©" (3.117) 

JiV」 L J " J id J^N ^ q . 

Hence the eigenvalues of R^ and that of R^ wil l form a partition of the set of 

eigenvalues of R^ with a scaling factor of 2. Consequently, i f 入？’臓 is greater than 

入/>’ma” then >c?’max wi l l bc equal to 2 times the maximum eigenvalue of Rj^. In this 

case, the stability range for is half of that of jj,^ in the conventional system 

while the stability range for wi l l be larger than that of According to (3.114)， 

the time constant for the ith mode of the parameter vectors p(Jc) and q ( k ) are of 

the form 

86 



1 
V 丨 二 ， /二 l ”. .， / v (3.118a) 

and 1 
� Z T T " ^；， / = l， . . .，M-iV (3.118Z?) 

From (3.111), the mean-square output of P { z ) and Q { z ) are given by 

^ p ( k ) ^ E [ e l { k ) ] = l i : + E [ p \ k - \ ) R ^ p { k - l ) ] (3.119a) 

and 专 “ 幻 二 幻 ] 二 2 《 o + £ [ y ( 々 — ( 众 一 1)] (3.119办） 

When the gradient noise in the parameter vectors during transient state is ignored, 

we obtain 

+ R^E[p{k-\)] (3.120。） 

肌d = R^E[q{k-l)] (3.120Z?) 

Taking (3.114) and (3.118) into consideration, the time constant for the hh mode 

of and《q are 

1 

T 仏尸 ， / = 1，…，" (3.121a) 

and 1 
， i = …，M-N (3.121Z?) 

respectively. It is intriguing to see that partitioning of eigenvalues wil l generally 

make the eigenvalue spreads of the two split filters not the same and both spreads 

are usually smaller than that of W { z ) . I f jj.̂  and ji^ are assigned to the same value, 

the filter with a larger set of eigenvalues wil l converge faster because of having 

smaller time constants. In order to average out the convergence speed of the two 

split-paths to obtain a better performance, a larger step size can be assigned to the 

filter with a smaller set of eigenvalues as in the case for joint process estimation. 
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Next，we shall study the steady state behavior of the new adaptive system for 

AR modeling. From (3.119)，the steady state MSE of the two filter outputs,《广 

and《p , are given by 

‘ 二 2《。+ fK及p COV{ ；7(七 一 1)} ) (3.122^) 

幻Id 《？ 二 2 《。 + 广厂（ J 卯 { " (々 一 1)} ) (3A22b) 

With the independence assumption and sufficiently small step sizes, it can be derived 

from (3.113) that 

cov{p{k)}=cov{p{k-l)}-2[i^R^cov{p{k-l)}-2\i^cov{p{k-l)} R^ 

（3.123 ⑴ 

and ĉ v̂ { ) } = cov {《(众-1)} - 2 c 卯 { q { k - I ) } c o v {q{k-l)} R^ 

(3.123/7) 

In steady state, (3.123) gives 

cov{p(k-l)} 二2《。！ip/" (3.124^2) 

and cov{q{k-l)}=2^^ (3.124Z?) 

Therefore 

+ (3.125 ⑴ 

肌 d g w = 2 《 。 { l + h r r ( 7 ? J } (3.125Z7) 

Notice t h a t a n d 《 ^ 灯 are, in general, different. Putting (3.125) into (3.105), 

the total output final MSE is given by 

= (3.126) 
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Finally，multiplying (3.113a) with the transpose of (3.113/?) and noting that 

and - 1) are orthogonal, we have 

E[p(k) q\k)] =E[p(k - 1) c ] \ k E [ p { k — 1) q\k — 1)] 

-2\i^E{p{k-\)q\k-\)]R^ (3.127) 

when the step sizes are keeping small. Thus 

E[p(k)q\k)]=0 (3.128) 

that is the steady state variation of the parameters p { k ) and q { k ) are orthogonal to 

each other. 

3.3.3 COMPARISON WITH TRADITIONAL AR MODELING 

SYSTEM 

In this section, the excess MSE is used as a performance index to contrast the 

adaptation characteristics of the split-path and non-split AR modeling configuration. 

From (3.40), we have 

(3,129) 

Taking the trace on both sides of (3.129) gives 

HRp +R,) 二 4 " r(0) = 2tr(R^ ) (3.130) 

We observe from (3.95)，（3.97), (3.121) and (3.126) that for = the 

convergence time constants of the split-path system are reduced by a factor of 2, 

while the excess MSE for both systems remains identical. In fact, one can 

additionally vary ii^ and separately to further improve the adaptation speed by 

keeping the MSE unchanged. By equating (3.97) and (3.126) to maintain the same 

excess MSE for both systems, and can be chosen to satisfy the following 
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constraint 

+ = 2 K tr(RJ ( 3 , 1 3 1 ) 

The details on how to select the step sizes to achieve yet a better performance wil l 

be described in subsection 3.3.4. 

As far as computational complexity is concerned, the conventional adaptive 

system requires 2M multiplications and 2M additions whilst the split-path system 

requires N + Y extra additions and subtractions as indicated in (3.107) and (3.108). 

The extra computation involved is not significant and in any case wi l l not exceed 

25% when M is large. In regard of component requirement for hardware 

implementation, only an inexpensive shift register is needed. 

3.3.4 SELECTION OF STEP SIZES 

In this section, the selection of step sizes for the split-path filters P { z ) and 

2 (z ) in the application of AR modeling wil l be considered. By properly choosing 

the control parameters, and the overall adaptation speed of the system can 

be further improved. Two methods are hereby suggested. The first method assigns 

different step sizes for the two filter paths while the other uses unequal step sizes 

for each of the filter tap weights. 

A. Method 1 

It has been noted that the convergence rate might be increased by giving a 

larger step size to an adaptive filter with a smaller set of eigenvalues. In addition, 

equation (3.125) shows that a more evenly distributed excess MSE of the two split 

paths can be obtained when and are chosen properly according to the 
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aiitocon-elation of the input signal x ⑷ . T h e next task is to devise a mechanism 

to choose and jj,^ such that the best possible adaptation performance can be 

achieved. 

From equation (3.73), we observe that the adaptation speed of the two split-path 

filters can be somewhat synchronized if and jd^ are set accordingly. Furthermore, 

substituting (3.73) into (3.125), we found that the excess MSE for the two split-paths 

are identical. Therefore，(3.73) can also be used in selecting step sizes for the 

adaptive filters in the AR modeling system. Solving (3,73) and (3.131) yields 

tr(RM) 
b � 7 ^ ^ 、 a i 3 2 a ) 

仙 d tr(R^) 
h � T T ^ A w (3.132Z0 

Notice that (3,132) is different from (3.75) because different performance measure 

is used, but in either cases a larger step size can always be assigned i f the 

corresponding filter path has a smaller trace. 

B. Method 2 

Unlike the tapped delay line whitening filter, the tap inputs of the split-path 

structure have different signal powers. In fact, from (3.36)，(3.37) and (3.40)，Rp 

and Rq are given by 

~r(0)-r(2N-l) r(l)-r(2N-2) . . . r ( i V - 1 ) - r ( / V ) “ 

厂( l)-r(2iV — 2) r(0)-r(2N-3) ... r ( N - 2 ) - r ( N - l ) … ） � 
p.133(3) 

• • ..參 • 

_ r ( A ^ - l ) - r ( i V ) r{N-2)-r(N-l) . . . r ( 0 ) - r ( l ) _ 

and 
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"r(0) + r(2N- l) r(l) + r(2/V-2) ... + 一 

r( l) + r(2"-2) r(0) + - 3 ) … r ( N - 2 ) ^ r ( N - \ ) 
^ q - - (3.133/?) ‘ • ^ • 

_ r(N-l) + r(N) r(N-2) +r(N -1) ... r(0) + r(l) _ 

Hence the power of the iih tap of P(z) is 

= 2{>(0)-r(2" + l-2/)} , i 二 …,N (3.134a) 

and that of 2(z) is 

= 2{r(0) + r(2N + l-2/)} , /二 1，2，...，" (3.134Z?) 

where v̂  and v̂  ,(/:) are the iih element of the vectors v^ik) and 

respectively. It is likely that convergence behavior of the adaptive system could 

be improved by utilizing different step sizes, which are normalized to the filter taps' 
input power [17], for each filter weight. Thus, the weight updating equations 

(3.107Z?) and {3A01d) could now be modified to 

P(k) = p { k e ^ i k ) A"； V 入k 一 1) (3.135a) 

肌 d q(k) = q { k - l ) - 2 e^ik) A " / v^{k-l) (3.135/?) 

where Al=diag{ a；,,，a；,,，…，} (3.136⑴ 

and Al=diag{心，<2，...，} (3,136/?) 

The power estimates CĴ,. and cj|’‘. are found by taking an exponentially weighted 

average of the past samples, 

=a 一 1) + (1 - a) { V；,, (k-l)} ， 0 < a < 1 (3.137̂ ) 

and 二 a - 1) + (1 — oc) { v;"(众-1)} ， 0 < a < 1 (3.137^7) 
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Initial power estimates G^’,‘(0) and 0‘̂(；0) are usually set to smaller values so as to 

speed up the rate of convergence right at the beginning. The modified algorithm 

shown in (3.135) should have the update mechanism disabled for the filter tap i f 

its power estimate falls below an acceptable level. 

Assume a is large such that and can be considered to be fixed after 

the initial transient, it can be proved easily that the steady state weight vector 

variation for P(z) and Q { z ) are given by 

cov{p{k-l)}=2\i^ I： (3.138 ⑴ 

肌 d cov{ 《。A"； (3.138/7) 

The output MSE of the modified algorithm then becomes 

I 二《小+ 字 令 " } (3.139) 

I f the excess MSE in the split-path and in the non-split system are kept at the same 

value, the step sizes in the split-path structure should be chosen according to 

！̂厂 + ！^广“^柳似） (3.140) 

Although computational burden is increased in this method, a faster convergence 

rate is expected since more information about the signal statistics is exploited in the 

adaptation. Notice that method 2 is not suitable for performance enhancement when 

MSD is used as the performance index because the filter tap that has a smaller 

power w i l l produce a very large parameter variation as indicated by (3.138). 
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3.3.5 SOME NOTES ON ODD FILTER ORDER CASE 

When the filter order is odd, say M + 1, similar results can also be derived 

although the notations might be a little bit more complicated. The transfer function 

of P(z) and Q ( z ) are now given by 

狄 - 2 + ' ) (3.141 以） 
i = 0 

and N 
2 ⑴ A . ( 广 - z 善 2 + ” + 彻 i 广 （3. 

i = 0 

and the realization scheme is shown in Figure 3.13. The vector q now has 

elements and p and q are related to w by 

— 一 

厂 I v ^N ~JN 
P =Qw= % Jn w (3.142) 

q k V2 o ; _ 

The adaptation algorithm is the same as before with V p ( k - l ) and - 1) become 

众-1) = % -Jn] (3A43a) 

肌 d 「 / " 0" J ; 
二 k ^ ( 讓 ） 

respectively. The selection criterion for the step sizes in the split-path system 

described previously can still be applied in this case. 

3.3.6 SIMULATION RESULTS 

Extensive computer simulations have been carried out in order to evaluate the 

convergence behavior and to assess the overall adaptive performance of the split-path 

system. In these experiments, the AR process being used is given by (3,84). Because 
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Fig. 3.13 Hardware implementation of the split-path whitening filter for odd M 
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of the incorporation of the backward prediction knowledge to the adaptive algorithm, 

the split-path system is able to reduce the time constant for convergence by a factor 

of 2 when = In addition, due to the decrease in eigenvalue spreads, 

further improvement can be achieved by choosing different suitable values for the 

step sizes. The simulation results obtained were the average of 1000 independent 

runs to eliminate temporal fluctuation. 

Figure 3.14 compares the learning curves in which the MSE was plotted against 

the number of iterations for the split-path and the conventional system. The total 

MSE in the split-path case was obtained from (3.105). The step sizes for the two 

methods were assigned the same values such that both systems would have identical 

excess MSE. As shown in the diagram, the split-path model indeed converged at 

a faster rate as predicted and the MSE dropped to a value of 0.125 at about 700 

iterations. Whereas for the conventional system, 1400 iterations were required. 

The convergence characteristic of the split-path structure was also investigated 

when using different values for and The learning curve is depicted in Figure 

3.15 in which the two step sizes were chosen in accordance with (3.132) to achieve 

the best performance. A similar curve for the case with \ip = is also given for 

ease of comparison. It is seen that using different step sizes can improve the 

dynamic convergence behavior significantly. In fact, the MSE has dropped to 0.125 

at about 300 iterations which is roughly half of the time as required in the former 

test. 

Figure 3.16 compares the performance of the two step size selection methods 

as suggested in subsection 3.3.4. The step sizes for the two split-path systems were 

chosen such that identical steady state excess MSE were obtained. In method 1， 

\ip and were selected according to (3.132). Whilst, in method 2，they were 

adjusted to follow equation (3.140) to produce the best possible performance. The 
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Fig. 3,16 Comparison of learning curves with step sizes being selected 

according to method 1 and 2 for the split-path AR modeling system 
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variable a was set to 0.99 and the initial power estimates were assigned to 0.02. 

It can be observed from Figure 3.16 that method 2 wil l achieve a better dynamic 

convergence behavior. Indeed, in this case only 90 iterations were required to have 

the MSE reduced to a value of 0.125 whereas for method 1, almost 300 iterations 

were needed. However, computations that were involved in method 2 was much 

higher. 

3.3.7 APPLICATION TO NOISE CANCELLATION [18]-[19] 

In this subsection, the application of the proposed filter structure to a typical 

problem of noise cancellation is examined. Simulation results are provided to 

demonstrate the superiority of the split-path structure over the traditional 

configuration. 

Noise cancelling is a kind of optimal filtering that has found applications in 

many areas [3], [4]，[20]-[26]. Assume that we have a noisy measurements x { k ) 

which is given by 

x{k)-^s{k) + n,{k) (3.144) 

where s { k ) is the signal and n^{k) is the corrupting noise. The purpose is to extract 

the signal s { k ) from the noisy observations x { k ) . 

Figure 3.17 illustrates the concept of noise cancellation. It makes use of an 

auxiliary input riiQc) derived from one or more sensors located at points in the noise 

field where the signal is weak or undetectable. The input is then passed through 

an optimal filter to get as close a replica as possible of the noise in the primary 

input x { k ) . The filter output is then subtracted from the primary signal and, as a 

result, the additive noise is attenuated or eliminated and the desired signal wi l l be 

the output of the process. 
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Fig. 3.17 An adaptive noise canceller 
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Optimal design of such a filter must be based on the knowledge of the signal 

statistics. However, in practical situation, the operating environment is always 

changing and this infonnation is usually unavailable. One possible way to alleviate 

this difficulty is to make the canceller adaptive. The filter W ( z ) of the canceller 

is now replaced by an adaptive filter with its coefficients adjusted iteratively 

according to the LMS adaptation algorithm to minimize the squared output error. 

Because of the simplicity and ease of implementation, the LMS adaptive noise 

canceller has been widely used in echo cancellation [20]-[21] and speech 

enhancement [23]-[24]. 

The operation principle of the adaptive noise canceller can be explained as 

follows. Let the filter output of W ( z ) be 幻.A s s u m i n g the signal s { k ) , the 

noise and 众)are statistically stationary and have zero means. Moreover, it 

is assumed that s ( k ) is uncorrelated with n从)and n:机 and that n^ik) is correlated 

with The output of the canceller is given by 

eik) = s(k) + n,(k) -n^{k) (3.145) 

Squaring both sides of (3.145) and taking expectation yields 

E[e\m =E[s\k)]+E[{n,{k)-n^{k)f]+2E[s{k){n,{k)-n^{k))] 
= E[s\k)] +E[{ n,{k) - ⑷ ) 2 ] (3.146) 

Notice that the signal power E[s'^{k)] is unaffected when the filter is operated to 

minimize the output MSE E[e'^{k)], Accordingly, the minimum output MSE is 

given by 

min { E[ e\k)] } =E[s\k)] + min { £：[ (n , { k ) — n^{k) f ] } (3,147) 

Thus the MSE wi l l attain its minimum value when E [ { n i ( k ) - n 2 ( k ) ) ] = 0 which 

implies at steady state, 
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n,{k) = ru\k) (3.148) 

Substituting (3.148) into (3.145), the steady state output error is equal to 

e ( k ) = s ( k ) (3.149) 

which shows that the adaptive canceller can perfectly retrieve the signal s ( k ) . 

When the signal to be enhanced is a sum of sinusoids while the corrupting 

noise is completely random, the auxiliary input can be replaced by a unit delayed 

version of the primary input, that is,〜(众）二；一 1). This situation is of particular 

interest to many applications and the resulting canceller is usually referred as an 

adaptive line enhancer (ALE) [25]-[26]. The performance characteristics of a typical 

ALE can be found in [25]. In this case, the signal component in both channels 

are correlated as opposed to the random noise. When the output squared error is 

being minimized, the correlated component between the two input would be cancelled 

and the filter output then becomes the enhanced signal. 

Assuming that the signal s{k) is of the form 

s ( k ) = i A,sin(co, ^ + (t),) (3.150) 

where L is the number of sinusoids present whose amplitudes, frequencies and phases 

are respectively given by A-, CO.- and (j),-. The signal s { k ) can roughly be expressed 

as a linear combination of its previous samples [25], 

in 
s{k)= I h-sik-j) (3.151) 

if J 7 = 1 

where hj is known as the matched filter response which is the sum of sampled 

sinusoids with frequencies at co:-. Notice that i f n^ik) is a broad band random noise, 

(3.151) can be expressed as 
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2n 2n 

s(k) = K I h. { s(k - i) + n人k 一 / ) } 二 S -g^xik 一 i) (3.152) 
J. = 1 i' = i 

where A： is a positive constant less than unity being dependent on the signal to 

noise power. Now, (3.144) can be rewritten to 

2N 
x{k)= I -g.x(k-i) + n,{k) (3.153) i = 1 

(3.153) shows that the noisy observations x { k ) can be modelled by an AR(2A0 

process. When x { k ) is passed through an optimal whitening filter whose impulse 

responses are g“ the filter output n2\k) wi l l be n丄k). Our signal estimate, s(k), 

can then be retrieved by subtracting the filter output from the noisy input, that is, 

s\k)=x(k)-n^\k) (3.154) 

A drawback for this particular application is its slow convergence. Since x { k ) 

can be considered as an AR process, Ching and Ho [18] have shown that the 

split-path adaptive filter for AR modeling can be applied to improve the adaptation 

speed. The schematic block diagram of a split-path adaptive line enhancer is depicted 

in Figure 3.18. The transfer function of the two split-path filters P ( z ) and Q { z ) 

are again given by (3.99). The filter weights are adjusted iteratively in accordance 

with the adaptation rule governed, by (3.107). The total output error is obtained by 

(3.98) and finally, the signal estimate is determined from (3.154). 

The split-path noise canceller was simulated on a micro-computer. Figure 3.19 

shows the output of the new and the old system when the input signal x { k ) was a 

composite of three sinusoids and an uncorrelated Gaussian random noise, that is 

x ( k ) =0.8 cos(0.0 15TC)^)+1.0 COS(0.0124 n k) 

+ 1 . 2 c o s ( 0 . 0 0 4 8 7 i / : ) + n , { k ) ( 3 . 1 5 5 ) 
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The noise power was set to unity and the order of the split and that of the non-split 

canceller were both chosen to be /V : 16. The step sizes for the two systems were 

ail fixed to 0.000025. The desired output was also provided for ease of comparison. 

It is clear from Figure 3.19 that the new canceller can reach the desired output with 

a shorter transition than its counterpart. 

To compare the convergence characteristics in more detail, a signal which is 

given by 

x { k ) = 2 cos( 0.125 71/:) + n , { k ) (3.156) 

was used as the input and the learning characteristics for the two systems are plotted 

in Figure 3.20. The noise power, the value N and the step sizes were all assigned 

to the same values as before. Let the adaptation time be the number of iterations 

required for the output MSE to fall between 90% and 10% levels drawn between 

the input power level and the asymptotic equilibrium level. It can be easily seen 

that the adaptation time for the new canceller is about half of that obtained by the 

conventional structure and the improvement in convergence speed is almost doubled, 

which agreed with our theoretical developments. 

At high SNR, one can yet enhance the adaptation rate by choosing different 

step sizes for the two filter paths or each of the filter taps. However, when the 

SNR is low, the autocorrelation matrix of the input sequence tends to a diagonal 

matrix. In such circumstances, choosing different step sizes cannot achieve further 

improvement. 

106 



3.4 CHAPTER SUMMARY 

A new adaptive model formed by splitting an adaptive filter to two linear phase 

filters，one antisymmetric and the other symmetric, connected in parallel is 

investigated. This model was applied to system identification and AR modeling. 

In the system identification case, the two linear phase filters are adapted by 

Widi-ow's LMS algorithm to minimize the total output MSE. It is found that the 

essence of splitting is to partition the eigenvalues of the input correlation matrix 

into two sets, giving rise to two eigenvalue spreads that are usually smaller as 

compared with the non-split model. When appropriate step sizes for the two filters 

are chosen in accordance with their eigenvalue spreads, the system performance in 

terms of convergence speed can be enhanced. 

When the split-path model is used for AR modeling, unlike system 

identification, there are two distinct features in this application. First, the backward 

prediction knowledge can be incorporated naturally into the two linear phase filters 

so that the gradient noise associated with the adaptation process can be halved. 

Second, the output errors of the two linear phase filters are orthogonal to each other 

and independent adaptation for the two filters is feasible. As a result, when the 

two linear phase filters are adapted separately with each other using the LMS 

algorithm to minimize their respective outputs, a two-fold increase in adaptation 

speed can be achieved and, also, a parallel processing architecture for ease of 

hardware realization is possible. Due to the decrease in eigenvalue spreads, extra 

gain in convergence speed can be obtained i f unequal step sizes are selected for 

the two split-path filters. In addition, experimental results have confirmed that 

choosing different step sizes for individual filter taps wi l l further enhance the 

adaptation performance of the split-path system. 
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The split-path adaptive system for AR modeling can also be applied to tackle 

the typical noise cancellation problem in extracting sinusoidal signals corrupted by 

random noise. Simulation results verify the superiority of the split-path structure 

over the conventional structure by having a significant improvement in adaptation 

speed. 

An important point needed to emphasise on the split-path system is its 

simplicity. In contrast to the transversal model, additional hardware required is 

roughly M addition operations which only accounts for a modest increase in 

computational burden. In linear prediction case, only one more shift register is 

needed. 
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4 SERIAL SPLIT ADAPTIVE SYSTEM 

It has been shown in chapter 3 that an adaptive filter W { z ) in transversal form 

can be represented by two linear phase filters connected in parallel. Besides parallel 

split, W { z ) can also be implemented by connecting two adaptive subunits in series. 

In this chapter, we shall study the effect incurred on adaptation characteristics and 

behavior by serial splitting W { z ) , particularly in the application of adaptive time 

delay estimation. 

4.1 SERIAL FORM ADAPTIVE FILTER 

Let us denote the filter order of W{z) by M=2N, where N is assumed to be 

an even number. Here, we only consider splitting a transversal form adaptive filter 

into two components, A(z) and C(z), of the same order connected in cascade. 

When N is odd, W ( z ) is decomposed in a way that A(z) is of order N+1 and C(z) 

is of order N-l to avoid the possibility of having complex filter coefficients due to 

complex zero pairs. W { z ) can now be expressed as 

M f N 、 （ N \ I w,.z_‘=A(z)C(z)= z a J 一I S CjZ-J (4.1) 
''=0 y 

where w.-,化 and Cj are the filter coefficients of W { z ) , A { z ) and C(z) respectively. 

The coefficient c。is fixed to unity in order to maintain the same number of adapting 

parameters in these two models. By comparing the coefficients of on both sides 

of (4.1)，the filter weights between the split and non-split structure are related by 
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\ 

S a- c. . ， 0 < / < N 
_J y=o � 

N (4.2) 
S a^c.. ， N + l<i<2N 

^ j = i-N 

The schematic block diagram of an adaptive system corresponds to serial 

splitting of an adaptive filter is shown in Figure 4.1. The input signal x { k ) passes 

through the two filters A(z) and C(z) to form the output z(^). The error signal 

obtained by subtracting z { k ) from the desired response y ( k ) is used to adjust the 

two filters A(z) and C(z). Let 

“二 [ … 口 2 . . . 以 " r (4.3) 

r I 

c = C2 . . . c^ J (4.4) 

x(k-l) = [x(k-l) x{k-2) ... x{k-N)y (4.5) 

如 d 众一 1) 二 [ x (七 -2 ) x{k - 3) . . . x{k-N-l)y=X\k-l) (4.6) 

Then the output error can be expressed as 

e{k)=y{k)-[l c ^ r _ 太U — 1 ) " ]卜-

lx(k-l) Z(众一 l )」Lf l_ 
= y(^)-x{k) a^ - x\k -\)a-c x{k-\)a^-c'X{k-\)a (4.7) 

where the superscript t denotes the transpose operation. Notice that the mean-square 

error (MSE), '^ = E[e\k)], to be minimized is a quadratic function with respect to 

the parameters a^, a and c, and hence a unique global minimum exists for Gq^I, 

The optimum solution a: and c: are related to the desired weights w- of W ( z ) by 

(4.2). After taking partial derivatives of e { k ) with respect to a^, a and c, the LMS 

adaptation formulas for the parameters are 

c(k + l) = cik) + 2\Jie{k)[x{k-l) X{k-\)] (4.8) 
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/ / 

x(k) o — A ( z ) C(z) ^ ^ 

/ / t 
Z / — e(k) 

+ 
iL 

y(k)〇 ^ 

Fig. 4.1 A serial split adaptive filter 
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and [ W ' + l ) ] : 卜 叫 + [ 1 1 

Comparing (4.8) and (4.9) with the updating equations for transversal adaptive filter, 

an additional N multiplications and N additions is required to calculate the gradient 

to adjust Ci(^). This is because the gradient of is equal to that of c,{k -1) 

and the same is true for the gradient of ai_^{k) and - 1), when the step size [ i 

is small. Moreover, the gradient to adjust ao(k) is readily available by storing 

intermediate values during the calculation of the error e { k ) . When (4.7) is put into 

(4.8), we have 

c(k + l) = (I-2]i{a,(k)x(k 一 l)+X(k 一 l)a(k)} {a,(k)x\k — l)+a'{k)X(k 一 1)} )c(k) 

+ 2[i{a,(k)x(k - 1)+X(k - l)a(k)} {y{k)-a,{k)x{k)-a\k)x{k - 1)} (4.10) 

where I is an identity matrix of size N . Taking expectation and following the 

analysis of the LMS adaptation algorithm, the relaxation time constant for E[c{k)] 
is given by 

1 
T。•二 入 ， i 二 ….,N (4.11) 

where are the eigenvalues of the N xN matrix which is of the form 

- 「 1 「 1 1 
Rc=E lx(k-l) X(k-l)] H [ 口 ⑷ ] ( 4 . 1 2 ) 

From (4,4)-(4.6), we observe that the ith element of the vector aox(k 一 l) + X{k -\)a 

is given by a^xik-i)-¥x\k-i — I) a, which is the output of A(z) with input x(k-i). 
Therefore a^ xik - I ) + Xik - I ) a is a vector of N output samples of A(z). That 

means, R^ is the autocorrelation matrix of the input sequence filtered by A(z). 
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It can also be derived in a similar manner that the relaxation time constant 

for a^^k) and ^̂(/：)] are 

T …二 ， /二 l，2，...，iV + l (4.13) 

where X^ ^ are the eigenvalues of the (N -h I ) x (N + I ) matrix R^. It can be verified 

that R。is the autocorrelation matrix of the input sequence filtered by C(z) and can 

be expressed as 

凡 二 五 「 [ 对 幻 1 ) 1 「 1 1 [ 1 ⑷ ] I " 雄 ） " 乂 々 - 1 ) 1 1 (4 14) 

To 
investigate how A ( z ) and C(z) affect the eigenvalue spread of the input 

sequence and hence the adaptation speed of the two subunits, we first derive the 

relationship between the eigenvalue spread and the power spectral density of an 

input process x ( k ) . Let be the eigenvector associated with the eigenvalue of 

the autocorrelation matrix R generated from x { k ) and the size of R be M+1, Then 

by definition of eigenvalue, it is given by 
m m 

^ !r,(m—l�Ui’^Uij 
凡 m = 0 / = 0 . 

= M ， z = + l (4.15) 
y u^ 
^ 以丨,m m = 0 

where r•加-1�二E�x{}c-m)x{k-l)] is the autocorrelation function of x{k) and 

denotes the (m+l)th element of the vector M,. Making use of the fact that the 

autocorrelation function r人m - I ) and the power spectral density of x ( k ) forms 

a Fourier Transform pair, we have 

(4.16) 
jL TC J-^ 

Therefore, the entity u\ R u, can be expressed as 
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1 r^ M M 
R ^.(w) S Ui …广 Z Ui 1 e—J�‘ dco 

- 兀 J-n; m = 0 ‘ / = 0 ’ 

1 C ̂  
二 ^ , ( 0 3 ) 1̂ .̂(0)) I'do^ (4.17) 

Z 兀 J-71 

where m . 
广①' （4.18) 

/ = 0 ’ 

is the Fourier Transform of the sequence u,"’ / = 0 , 1 , . . . , M . Using the inverse 

Fourier Transform of it can be shown that 

1 r ̂  
I、(⑴)丨2"0} (7.19) 

Z TT J—k 

As a result, we can define the eigenvalue 入 i n terms of the power spectral density 

S-(oa)，that is 

\ (co) |、 . (a ) ) |2 — 
\ 二 (4.20) 

J-K 

Let ^^ niin and be the minimum and maximum values of then 

、min f V j c o ) | V o 3 < 、 ( ⑴ ( 4 . 2 1 a ) 
TC J —K 

and 厂 K 。 f ^ 
^.(co)l^^(co) 从’丽 丨。(⑴)丨— (4.21Z?) 

71 

From which it can be deduced that \、is limited by 

I rn in < X/ S ̂ x.max， / 二 1 , 2，…，A^ + 1 (4.22) 

Consequently, the eigenvalue spread of the input autocorrelation matrix R is 

bounded by 
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\ c 
,rts. 八tnax 一 ,max 

X ⑷ 二 厂 s ^ ； ( 4 . 2 3 ) 
八 min Ox,n�in 

where ？ a n d are the maximum and minimum eigenvalue of R. Equation 

(4.23) shows that the flatter the power spectrum of the input process, the smaller 

w i l l be the eigenvalue spread. 

Let the discrete Fourier transform of the impulse responses of A(z) and C(z) 

be A(a)) and C(oo) respectively. Recognize that the power spectral density of an 

output sequence obtained from passing x i k ) through C(z) is given by 丨〔(03)|2&(03)， 

the eigenvalue spread of R。, %(幻，is bounded by 

义 、 」 、 - { 剛 丨 2 綱 } _ 剛 

Similarly, the eigenvalue spread of R。%(/?J，is bounded by 

, … 、 ’ max { 丨 _ 丨 2 綱 } 舰 
讽 跳 n (4.25) 

Suppose that the input signal x { k ) is white of power a^. Its power spectrum 

6"“GO) is equal to a constant a^, which indicates from (4.23) that the eigenvalue 

spread of the input autocorrelation matrix for the transversal filter model is unity. 

On the other hand when W ( z ) is split into two subunits, it can be observed from 

(4.24) and (4.25) that %(/?。）and x(R,) are always greater than unity for non-zero 

cii and c,•，i = , 2 , … ’ N , Since a large eigenvalue spread would lead to a slow 

adaptation, the convergence speed of the serial split system would therefore be 

degraded. 
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In joint process estimation with correlated input x(k), it is difficult to see 

whether or x( ^ c ) is less than %(/?). This is because impulse responses of 

the adaptive subunits A(z) and C ( z ) depend not only on the input x { k ) but also on 

the desired response y ( k ) . For the same input, different desired signal wi l l give 

rise to unequal frequency response of the two subunits and different adaptation 

behavior w i l l be observed. It is expected that unless the spectrum | C *(co) 

and IA'(03) are both flatter than S；^⑴)，splitting W { z ) into two components 

wi l l also slow down the adaptation speed of the system. Here, A*(co) and C*(a3) 

denote the discrete Fourier transform of the optimal parameter vectors a and c\ 

However, i f the serial split adaptive system as shown in Figure 4.1 is applied 

to perform linear prediction, a better performance can be obtained. In this case, 

the value of y{k) is set to zero and the coefficient a�is fixed to unity. The 

adaptation algorithm is the same as in the case for joint process estimation except 

that (3o is not adjusted and the matrix that determines the convergence speed of a(j^) 

becomes an N x N matrix given by 

The function of A ( z ) and C(z) are then to successively whiten the correlated input 

sequence x ( / c ) and therefore at steady state, the output of the prediction error filter 

A ( z ) C ( z ) should have a uniform spectrum. This indicates that the sequence obtained 

by filtering x ( k ) through either A ( z ) or C(z) wi l l have a flatter spectrum than the 

input sequence x ( k ) . Hence x ( K ) and x ( K ) are both smaller than %(/?), which in 

turn gives rise to a faster adaptation speed. Furthermore, i f A ( z ) and C(z) are set 

properly at the beginning such that they are close to their optimal solutions, additional 

enhancement in adaptation rate is anticipated. 
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Experiments were performed to study the convergence characteristics of the 

proposed serial split model and to verify the analysis as described above. In the 

first experiment, both the split and the non-split adaptive model were used to identify 

a system with transfer function 

H{z) = ( l + 2 z - i + 3z—2)(0.4-0.5z - i + 0.6z-2) 

=0.4 + 0.3 z -1 + 0.8 z -2 - 0.3 z -3 + 1.8 z (4.27) 

The input signal was white and had a power of 10 units. The desired response 

was contaminated by a random noise with unity power. Both the input x { k ) 

and the random noise were Gaussian distributed. The step size was chosen to 

maintain the same misadjustment for the two configurations. Figure 4.2 compares 

the learning characteristics of the two adaptive systems which was obtained by 500 

ensemble runs. It can be observed that the non-split model performs better than 

the split model. This confirms our finding because the eigenvalue spreads for R^ 

and R , in the split model are larger than that of R in the non-split model. 

For linear prediction, two tests with different inputs were performed and the 

results were the average of 500 independent trials. In the first case, the input signal 

was generated recursively by the formula 

x(k) 二 2 . 3 5 8 8 - 1) -2.6970 x ( k - 2 ) - h l.6456 x ( k - 3 ) 

- 0 .5184x ( / : - 4 ) + p(ye) (4.28) 

where p(/:) is a zero mean random sequence of unity power with Gaussian 

distribution. The pole pairs of x ( k ) are 0.92130。and 0.8Z±60o. From (4.28)， 

the optimal whitening filter is given by 

W i z ) =1-2 .3588 z-1 + 2.6970 z" ' -1.6456 +0.5184 z"^ 

二（ 1 - 1,5588 z + 0.81 厂2) (1 - 0.8 z + 0.64 z ) (4.29) 
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The eigenvalue spread of the input sequence was found to be 6432. On the other 

hand’ the eigenvalue spread of R^ and R, at steady state was found to be 13.5 and 

2.91 respectively. This shows that the split system can gradually decrease the 

eigenvalue spreads of the inputs of the two filters A ( z ) and C(z). A substantial 

enhancement in adaptation speed is thus anticipated. 

The learning curves for the two adaptive models are depicted in Figure 4.3. 

The step sizes were chosen appropriately to keep identical mis adjustment in both 

systems. It is important to note that A(z) and C(z) should start with different initial 

values to avoid the problem of lock-up during adaptation. In our tests, the transfer 

function of A(z) and C(z) were initially set to 

‘ A ( z ) = l - z - i + z-2 

1 C ⑴ = 1 + 〜 （4.30) 

respectively, which corresponds to zeros at 1Z±60° and 1 Z ± 120°. Whilst for 

transversal model, all the coefficients were set to zero at the beginning of adaptation. 

From Figure 4.3, it can be seen that the split adaptive system converges much faster 

than its non-split counterpart. The new system takes about 700 iterations to reach 

a MSE of value IdB but the conventional model needs an exceedingly long time 

to converge. This verifies our theoretical arguments. 

In the conventional non-split adaptive linear prediction system, it is understood 

that the convergence characteristics wi l l only depend on the eigenvalues of the input 

correlation matrix. However, in the split model, the convergence properties wi l l 

also be affected by the choice of initial values for the filter parameters. This 

phenomenon is illustrated in Figure 4.4 which shows two learning curves for the 

split adaptive system with different initial conditions. The curve with slower 

convergence speed has the same initial setting given by (4.30) while the other is 

obtained by first assigning A ( z ) and C(z) as follow, 
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, A ( z ) 二 1 —1.131Z 一 1 + 0.64Z—2 

1 C(z) 二 1 - 0 z - i + 0.64z-2 ， （《3” 

with the corresponding zeros at 0.8 Z 土 45。and 0.8Z±90。，which are much closer 

to the actual pole locations of x { k ) . It is intriguing to note that i f a priori knowledge 

of the optimal solution is available, proper initialization of the split filter can further 

speed up the adaptation rate. Therefore, serial split predictor is especially useful 

for tracking nonstationary signals because in such cases the optimal solution usually 

deviates very little from the current filter parameter values. 

In the second experiment, the input was chosen to be 

x{k) -0.8914x(/ : - 1) -0.09688x { k - 2 ) + 0.4345x { k - 3 ) 

一 a5184;c( / : -4) + p(/:) (4.32) 

which had pole locations at 0 .9Z±20° and 0.8Z±120°. The corresponding optimal 

predictor is of the form 

W\z) ={l-0.8914 z—i + 0.09688 z ' ' - 0.4345 z—' + 0.5184 ) 

- ( 1 - 1 . 6 9 1 4 z - i + 0.81 z-2) ( 1 + 0.8 z"' + 0.64z" ' ) (4.33) 

The eigenvalue spread of R was equal to 33.1 and that of R^ and R , in steady state 

were 29.5 and 2.88 respectively. Because of the small difference in eigenvalue 

spreads for the two models, the split configuration can only provide marginal 

improvement. The learning curves for the two configurations were shown in Figure 

4.5. The step sizes were again chosen to maintain identical excess MSE in both 

systems and A(z) and C(z) were initially set to the condition as shown in (4.30). 

It is clear from Figure 4.5 that the split model still has a better performance although 

the improvement is not very remarkable. 
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In conclusion, serial splitting of an adaptive transversal FIR filter is, in general, 

not appropriate for improving adaptation speed for joint process estimation. 

However, for linear prediction, the split adaptive filter model can provide a significant 

increase in adaptation speed when the input signal is highly correlated which usually 

has a larger eigenvalue spread. Typical applications of this approach including 

speech analysis and time delay estimation which wi l l be discussed later. 

4.2 TIME DELAY ESTIMATION WITH A SERIAL SPLIT 
ADAPTIVE FILTER 

In this section, we shall explore the possibility of applying the split idea to 

adaptive time delay estimation (TDE). The objective is to design a new filter 

structure for the time shifter in TDE that is capable of providing convergence 

speed-up. In the new model, the time shift filter is also represented by two adaptive 

subunits. However, unlike the serial split configuration, the two adaptive filters are 

separately implemented, one in the upper channel while the other in the lower 

channel. They are adapted by minimizing the output MSE to achieve the purpose 

of optimization. When certain restrictions is imposed between the two subunits, it 

is found that a two fold increase in adaptation speed can be achieved. We shall 

first give a brief review on adaptive TDE. The new model is then introduced and 

a detailed analysis and comparison of the system performance wi l l be followed. 

4.2.1 ADAPTIVE TDE 
I t is often necessary to determine the time delay D, which is not necessarily 

an integer, from two sequences 

x { k ) = s { k ) + n , { k ) (4.34a) 
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and y(k) = s{k-D) + n 刺 (4.34/^) 

where the signal s(k), whose delayed version is s{k-D), and n从)and n从、are 

random processes uncorrelated with each other. The most common application of 

time delay estimation is in passive sonar [ l ] - [2 ] for bearing estimation. As depicted 

in Figure 4.6’ s { k ) is the signal radiating from a source. This signal is received at 

one sensor whose output is x(k). Another sensor at a distance I apart receives 

sih-D), giving an output y{k). The additive noises are n从)and n2[k) and they 

are assumed to have the same power. Knowing the distance between sensors and 

D, it is then possible to find the bearing of the source with respect to the sensors. 

From trigonometry, the angle 0 can be computed from 

e = cos 丁 (4.35) 
V I y 

where C is the known signal propagation speed. When three or more sensors are 

present, the relative differences between the arrival times (time delays) of s { k ) at 

those sensors wi l l give rise to three bearing lines, whose interception determines the 

source position [2]. Other application examples of time delay estimation are in 

speed measurement [3] and geophysics [4:. 

A basic approach to determine D from the two sensor measurements is to 

cross-correlate x { k ) and y ( k ) and the time lag at which the cross-correlation function 

peaks w i l l be an delay estimate [5]-[7]. In the passive sonar case, however, the 

source is generally moving so that the time delay parameter is also time-varying 

and adaptive techniques are needed for its estimation [ 8 ] - [ l l ] . 

Assuming unity sampling interval for simplicity but without loss of generality. 

Moreover, let ！F{*} and { * } be，respectively, the Fourier transform and its 

inverse of { • } . Then 
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、乂 ^ ^ x(k) 

Fig. 4.6 Bearing estimation from time delay measurements 
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(4.36) 

Using the convolution theorem, we have 

s i k , 二厂 • ① ” * 冲 ） （4.37) 

where the symbol * denotes the convolution operation. In the processing of discrete 

time signals, all signals are first low-pass filtered before sampling. Hence 

厂 、 一 f V 一 ？ ⑴ 。 ⑴ 二 加 c ( 众 一 D ) (4.38) 
L 71人冗 

where sinc{^) is an even function defined as 

. , 、 s i n (兀•） 

脈(•) 二 (4.39) 

From (4.37) and (4.38)，we obtain 
o o s(k Z sinc(i-D)sik-i) (4.40) i - —oo 

Equation (4.40) shows that by passing s { k ) through an infinite order filter whose 

coefficients have values sincij —D), the output wi l l be s(k-D). In practice, the 

summation range is limited to some reasonable number so that an approximation of 

(4.40) is 

p p s{k-D)^ Z h.s(k-i)= S sinc(i-D)s{k-i) (4.41) 

The approximation error can be calculated for a given filter order and D [10]. In 

the following, it is assumed that the value ？ relative to D is chosen to be large 

enough such that the error due to truncation of filter order can be ignored. The 

delay estimation problem is now transformed to a parameter estimation problem of 
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the filter coefficients. Once the filter coefficients h, are determined, an estimate of 

delay can be obtained by identifying the location at which the maximum value of 

the function f { t ) interpolated from filter coefficients occurs, where [8] 
p 

/(O 二. h^ sine{t-i) (4.42) 

For time-varying D, adaptive algorithms are incorporated to adjust the filter 

parameters. In particular, when the LMS adaptation algorithm is used, this parametric 

adaptive time delay estimation method is termed as LMSTDE [8]-[9]，[12]. 

Figure 4.7 shows the LMSTDE system. The two channel inputs are sensor 

measurements x { k ) and y ( k ) . W ( z ) is an adaptive filter whose task is to insert an 

appropriate time shift to x ( k ) . Let the filter parameter vector and the input vector 

be 

= 尸 + i ... w。 Wj ... WpV (4.43) 

肌 d 对/：) 二 x(k+P-l) ... x{k) ... x(k-P)y , (4.44) 

Then the output error, e ( k ) , can be expressed as 

e(k) = y(k)-w' x(k) (4 .45) 

where (2P+1) is the length of the filter. The filter weights are adjusted by minimizing 

the MSE, E[e\k)], according to Widrow's LMS algorithm as follow, 

w(k-hl) = wik) + 2\x^e{k) x(k) (4.46) 

where is the step size for adjusting w{k). Since £：[ +1 ) ] at 

equilibrium, the steady state solution w* can be obtained from (4.46) by solving 

E[e(k)x(k)] =0. Substituting (4.45), we find 

(4.47) 
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p . 
X(k) o W ( z ) 二 EWjZ-丨 

i=-P 
V 

+ 

y(k)〇 

Fig. 4.7 The LMSTDE model 
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where 二 £"[ is the autocorrelation matrix of the input vector and 

g = E[y(k)x(k)] is the cross-correlation vector between the input vector x{k) and 

the desired response y ( k ) . Here, we only consider the situation where the signal 

to noise ratios in the two sensor measurements are high enough such that x ( k ) and 

y { k ) are roughly equal to s ( k ) and s(k 一D). Notice that s { k ) and n人k) are random 

processes and mutually uncorrelated, R is equal to 

R = = + 《 I (4,48) 

where 1 denotes an identity matrix of size (2P+1), g】represents the power of x ( k ) 

and a； and are, respectively, the signal and noise power. Using (4.40), the 

cross-correlation vector g is given by 

g = G^[sinc{-N-D ) sinci-N -^1-D) ... sinc{N ~D ) ] ' (4.49) 

Hence, the optimal weight vector w* is equal to 

w ——-)[sinc(-N —D) sinc{-N + l-D )…sinc(N-D )]' 
^s+On 

^[sinc(-N-D ) sinc{-N-hl-D ) ... sinc{N-D ) ] ' (4.50) 

Using the results obtained from the LMS adaptation algorithm described in 

chapter 2, it can be derived from (4.46) that the time constant x^ of E[ w(k)] is 

equal to 

1 1 1 
r ， 0<l^>v<— (4.51) 

2 p., a； o^ 

and the misadjustment M兴 in the traditional LMSTDE system is given by 

M w = p “ r ( / O 二 (2 P + 1) ( + ) (4.52) 
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Since delay estimate, Z3, is extracted from the filter weights by interpolation, the 
learning properties of D{k) will be characterized by the time constant as specified 
in (4.51), 

The LMSTDE method is a simple but effective means for the implementation 

of the Roth processor [2]. It has the potential advantages that a priori knowledge 

about the signal statistics is not required and it is capable of tracking time-varying 

delay efficiently. 

4.2.2 SPLIT FILTER APPROACH TO ADAPTIVE TDE 
Equation (4.36) can be rewritten as 

ns(k-D)}=ns(k)} e - 沖 〜 山 ' (4.53) 

where (i is an arbitrary value. From (4.53) and using the convolution theorem, we 

can deduce that 

尸 p s{k-D)^ Z S sine {i-D+ d) sine {j - d) s{k-i - j) (4.54) i=-p j=—p 

Thus, s(k-D) can be generated by passing s{k) through two FIR filters whose 

coefficients are, respectively, sinc{i -D -\-d) and sinc(j -d). Compared with (4.41)， 

the single filter to provide time shift is now split into two filters connected in series. 

The adaptive TDE model derived from (4.54) has the same configuration shown in 

Figure 4.1，in which there are two filters, A { z ) and C(z), instead of a single filter 

W { z ) in the upper channel. They are made adaptive to minimize the MSE with 

the output error given by 

e{k) = y{k)- i i a.c^s{k-i-j) (4.55) 

Upon reaching steady state, it is expected that the optimal solution wi l l be 
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a- = sine(/ -D + d) 
* . , … 、 (4.56) 

Interpolation procedure is used to determine the time shift inserted by A ( z ) and 

C(z). An estimate of delay wi l l be the total time shifts provided by them. 

As noted earlier when the input process is random, splitting W ( z ) into two 

filters connected in cascade wil l result in degradation in performance, which is 

undesirable. Now suppose we multiply both sides of (4.53) by —①、we have 

= (4.57) 

Again, using convolution theorem and truncating filter order yields 
p p 

.Z sinc{i+d)s{k-D-i)= I sinc(i-D +d)s(k-i) (4.58) 
i =-P i = -P 

which implies that the filter C(z) in Figure 4.1 can be placed in the lower channel 

with 1/C(z) performing an insertion of d advance to the desired response y ( k ) . Let 

l/C(z) = B(z), the TDE model corresponds to (4.58) is illustrated in Figure 4.8. 

The error signal now becomes 

p p e(k)= Z b^y{k-i)- Z a.x{k-i) (4.59) 
i=-p i=-p 

where b, are the coefficients of B ( z ) . When the output MSE is minimized, the 

filter weights are expected to converge to 

a* = sine(/ -D +d) 
. , 、 " 、 (4.60) � b - =sinc{i +d) 

Unlike the previous case, an estimate of delay is the difference of the time shifts 

provided by A(z) and B { z ) . It is obvious to see from (4.59) that the output error 

is linear with respect to â  and Hence, global convergence is guaranteed. 
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p . 

x ( k ) o • A ( z ) = S a j Z - 丨 ^ 
i — P 

^ I 

� — — 

p . 〗〖 

y ( k ) o B ( z ) = E b j Z - i 

i 二-P 

\ 

Fig. 4.8 A modified LMSTDE model 

134 



There are two drawbacks in the model depicted in Figure 4.8. First of all, 

we need to adapt two filters instead of one, which implies almost a double in 

computational load. Second, when two filters are used to represent the single time 

shift filter W ( z ) , the degree of freedom will be increased which provides many 

possible optimal solutions. This in fact can be observed from (4.60) by noting that 

^ is a quantity that can vary. To resolve these problems, we impose the following 

simple restriction to the filter weights, 

， i = - P ”..，P (4.61) 

Now，as the weights of B ( z ) can be easily mapped from that of A(z)，adaptation 

of one filter, say, A(z) is sufficient. In addition, equation (4.61) implies that b* = 

On using (4.60), we can immediately derive that the optimal solution which are 

given by 

[ - f 
. . f . D) 

1 =sinc I (4.62) 
V 丄） 

b- =sinc I + — 
L V ^ J 

It can be seen from (4,62) that A ( z ) and B { z ) provide essentially the same amount 

of time shift, but one is a time delay in the upper channel while the other is a time 

advance in the lower channel when equilibrium is reached. 

The TDE model depicted in Figure 4.8 together with the restriction specified 

in (4.61) constitutes the basic structure for the proposed new TDE model. The 

advantages of this novel configuration for TDE include fast adaptation speed with 

ease of hardware implementation. 
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4.2.3 ANALYSIS OF THE NEW TDE SYSTEM 
Preliminary study of the proposed system can be found in [13]-[14J. Here, 

we provide a more detail treatment in the analysis of the new adaptive TDE structure. 

Referring to Figure 4.8，the output of the upper channel can be expressed as 
p p 

Z2(/0 二 S aiX{Jc-i�= 5： a-{s{k-i) + n,{k-i)} (4.63) 
I = - P i = - P 

Imposing the condition (4.61) on 5(z), the output of the lower channel is given by 

p p 
^i(^) = Z a_-y(k-i)= S a-yik-hi) 

i =-P i= -P 

P 
二 2 a.{s{k-D +i)-\-n^{k + i ) } (4.64) 

i =-P 

Hence the output error e{k) is equal to 

e{k) =z,(k)-z,(k) 
p 

= I a,{s{k-D +i)-s{k-i)-\- + i) - - i ) } (4.65) 
i =-P 

Define the following vectors as 

a = [a_p . . . a。a^ . . . dp]' (4.66) 

SD�k�二[s{]c-D - P) s{k-D-P + l ) . . . 
s{k-D)…s{k-D+P)y (4.67) 

众）二 s { k + P - \ ) … s { k ) … 一 P ) ] : (4.68) 

n,{k) = [n,{k+P) n,{k+P-l)…n,{k) ... n,{k-P)Y (4.69) 

幻二 [〜(众一户）n^{k-P + l) ... n^ik)…n^{k+P)y (4.70) 

y{k)=^SD{k) + n^{k) (4.71) 
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.v(/:) = + (4.72) 

we then have 

e\k) =a' {y{k)-x{k)} {y{k)-x{k)y a (4.73) 

When the input signal-to-noise ratio (SNR) is high, e \ k ) can be approximated by 

e\k) = a {s^{k)-s{k)] {s^{k)-s{k)y a (4.74) 

Suppose s i t ) is a stationary bandlimited white noise process [15] of power o",， 

then using (4.40) we obtain 

oo 
= z sinc{i-d)E[s{k)s{k-i)] 

i = —oo 

= ajsinc(d) = r^(d) (4.75) 

Now, 

尉 S o ⑷ s ； ^ ⑷ ] ⑷ A 幻 ] 

- r / 0 ) 0 . . . 0 ‘ 
0 r,(0) . . . 0 ] 

二 (4.76) 

_ 0 0 . . . r / 0 ) . 

and 

五 b z ) ⑷ ⑷ ] ⑷ 以 ; t ) ] 

- r / D + 2 P ) r / D + 2 P - l ) . . . r / D ) ‘ 

r / D + 2 P - 2 ) . . . r / D - 1 ) 
= ‘ (4.77) 

• * • • • • 

_ r / D ) r / D - 1 ) . . . r / D - 2 F ) _ 

Hence, the expectation of (4.74) can be expressed as 
《 二 五 幻 ] 二 一 i ^ D ) 以 （4.78) 
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4.2.3.1 LEAST-MEAN-SQUARE SOLUTION 
Following [16] and differentiating (4.78) with respect to a, we found that the 

optimal weight vector a must satisfy 

(R-R^)a=0 (4.79) 

It is obvious that a =0 can satisfy (4.79) but it is not a desirable solution. On 

the other hand, non-trivial or non-unique solutions exist i f { R - R ^ ) is singular. 

Therefore, it is necessary to show that ( R - R o ) has at least one eigenvalue equal 

to zero and that 

� • f D D) f D] f D ^T a包：smc —~；：^一P . . . sine -— sine -— + P (4.80) 
2 L V ^ y V ^J 1 2 ” 

wi l l satisfy (4.79). The filter parameter set a^ in this case provides a time shift 
T 

of D 12 in the upper channel and wil l form the desired vector in this particular 

application as illustrated in (4.62). Now, equation (4.79) can be rewritten as 

R^ a=Ra=c';a (4.81) 

which indicates that a is an eigenvector of Rp corresponding to an eigenvalue of 

of. To prove that a包 in (4.80) is a possible solution of (4.81)，let us consider the 

reconstruction of s { t ) from its samples s { k ) according to 

OO OO 

s(t)= I. sii)sinc(t-i)= I, s{~i) sine(t + i) (4.82) 
i = —«> i = —OO 

Auto-correlating s { t ) with its time shifted version 

OO 

sit-y+j)= S s(-l)sinc(t-y+j + l) (4.83) 
I =—OO 

yields, 
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Els{t-y-^j)s{t)] 二 j ) 
o o 

2 = c j � S sinc{t-y+j + 1) sine(t + i) (4.84) i = -oo 

Let r = 一昏 and 警，then 

- f D \ f D \ S smc{D - j - i ) sine ——+ / =sinc - — ( 4 , 8 5 ) 
V ^ J V 2 j 

It is now seen that for 7•二-P，-P + 1，…，户，and with the summation of i limited 

from - P to P, (4.85) is equivalent to (4.81), hence the proof. The error introduced 

by the finite summation terms decreases with increasing P. 

In a similar manner, it can be shown that R。has an eigenvalue of 一 Let 

t = a n d D e f i n e 

� \ _ s i n c � t P � . . . sinc{-i) ... (4.86) 

and 4 - y - P ) . . . sinc{-D + 7 ) . . . 

sinc{-D (4.87) 

Then, from (4.84) and for j = - P ,... with i limited from - P to 尸，it follows 

that 

Ĵ D (4.88… 

and R^ (4.88^) 

Hence 

及 丫 ) 二 丫 - f l h ) (4.89) 

and this indicates that a ^ - a ^ - y is an eigenvector of Rp with eigenvalue equals 
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It is also noted that the vector a^ is not the only solution for (4.81). The 

addition of (4.88J) and (4.88/?) gives 

及D (以丫 + -Y ) 二 ( fly + fl^Y ) (4.90) 

which immediately confirms that + is also a solution of (4.81). With 

t = -D 
+ Y' equation (4.84) is valid for finite i i f y is small and it is required to 

determine the range of y such that (4.88) is satisfied. Numerical calculations show 

that for 
‘ - P + 2 + m r ( D ) < Y < P -1 .5 ， D > 0 

i (A o n 1 -P + l.5<y<P -2 + mtiD) ， D <0 ^ ^ 

the error for the largest element of a^ and 丫 is always less than 6%, where 

represents the integral part of •. The larger the y in comparison with P, the greater 

is the error and equation (4.88) wi l l then become invalid. 

When y is chosen properly, we can obtain the subset of orthogonal eigenvectors 

for eigenvalues a,̂  and of R^. When a包 is independent of + we have 

t p ( o ) = sine i -— sinc(y-i) 
2 i=-P V ^ J 

p f D^ + Z sine i -— sincip - y - i ) 
…P V 

( D ^ 
=2s ine y-— = 0 (4.92) 

V ^ J 

which implies 

D 
+ i ， (4.93) 
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where the value L is chosen to be L 二 I ) 一 2 _ D | + l ) / 2 ) such that (4.91) can 

be satisfied. In addition, when ŷ  and y: are chosen according to (4.93), the condition 

for any two vectors 以丫！十以丫i and a丫2+以d”2 to be independent is 

( + ) 二 • (4.94) 

which implies 

< y l ^ 7 2 
、 ( 4 . 9 5 ) 

From (4.93) and (4.95), we can conclude that the set of vectors 

‘ + = 0 , . . . , L > (4.96) 

wi l l form a subset of orthogonal eigenvectors of eigenvalue c^ of R^. Following 

the same argument, it can also be illustrated that 

, O y 一以 z ) _ Y ) l Y = y + /，/二 1 ， . . . ， 乙 t (4.97) 

is the subset of orthogonal eigenvectors of eigenvalue - g ^ of Thus, R^, has 

at least L + 1 eigenvalues of cr, and L eigenvalues of - cj，. 

It is well known that linear combination of the orthogonal eigenvectors 

corresponding to eigenvalue cj, is also an eigenvector of eigenvalue cr，. Therefore, 

the solution of equation (4.81)，in general form, can be expressed as 

^ f \ l / \ 
fl =00 “ I + z (4.98) 

V 2 y • ̂  J \ 2 2 乂 、 乂 

where a, are any arbitrary constants. When a； + + for 
V' 2 y 2 J 

/ = 0，…，乙 with 7 satisfying (4.91)，using (4.85) and ignoring the negligible 

truncation error, we have 
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^ ' . ( d ) l f ^ \ a = 迎C Y--- + / an + E sine 7- — + / c^ 
L \ ^ J I - ' i=-L y 2 ) 7+' 

= + (4.99) 

which thus verifies is a possible solution of (4.81). Figure 4.9 demonstrates 

a possible realization for this special case. Simulation study has found that 

convergence of the filter weights to a particular solution is dependent on the initial 

conditions but convergence to the desired solution (4.80) is always obtained i f 

D |<1. In addition, it wi l l be shown later that it is fairly easy to guarantee 

convergence to the optimal weight vector a^ by applying the sine function constraint 
2 

to the filters weights「171. 

4.2.3.2 ADAPTATION ALGORITHM AND PERFORMANCE 
EVALUATION 

A well known procedure in minimizing is to apply Widrow's LMS 

algorithm. Accordingly, from (3.73) the updating equation for the filter weight 

vector is 

" 1 � / , � de\k� 
一 )二卓 ) - h雨 

二 a{k)-2\x^e{k){y{k)-x{k)} ( 4 . 1 0 0 ) 

where represents the step size for adjusting a ( k ) in controlling the rate of 

convergence and stability of the adaptive process. For simplicity, it is assumed that 

SNR in the two input channels is high enough such that during the learning period, 

(3.73) can be approximated by (3.74). Let the weight vector error be 

a(k) = a(k)-a (4.101) 
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Fig. 4.9 A possible non-unique solution for the proposed TDE system 
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With the independence assumption that a { k ) is independent of y { k ) and x { k ) , using 

(4.74) and then taking expectation of (4.100) gives 

+ E[d{k)] (4.102) 

Since R。 is a real symmetric matrix, it can be decomposed into the form 

RD = UAJ, (4.103) 

where U = [ u i % • • • "2P + i ] is the orthonormal eigenvector matrix of Rq. Let G^X^, 

f + 2 ,...，2.P + 1，be the remaining nondetermined eigenvalues of Rd, then 

人D 二 也^容 j ；±iZl ; ;_ l l lZ l， i_ lJ^^，X2L+2，入 2L + 3，... + M ^04) 

I L L+1 J 

is a diagonal matrix that contains the eigenvalues of jR^. Using the orthogonal 

property of U and noting from (4.89) and (4.90) that and a^ + a^^^ are the 

respective eigenvectors of eigenvalues - a j and for the appropriate range of y, 

we have 

= 0 ， / e { y ' = 2 L + 2 ， . . . ， 2 P + l | X _ y ; « t l o r - l } (4.105^) 

and = 0 ， i e U 二 2 L + 2，...，2户 + 1 | 入 o r - 1 } (4.105^?) 

Hence, 

ay = 0 , {j•二 2L + 2，...，2/^ + l | 入 o r - 1 } (4.106) 

In addition, because a is a linear combination of eigenvectors corresponding to 

eigenvalue c^ of Rp, it can be deduced that 

u[a=0 ， i G { ; - 2 L + 2 , . . . , 2 P + 1 or - 1 } (4.107) 
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Noting that R 二 G � I , any orthononnal matrix is an eigenvector matrix of R. Thus, 

we have 

R - R j , = U A U ' (4.108) 

where 

A 

=ajdiag fc：-^'1 一入2ẑ +2，…，1 一入 + (4.109) 
I l L+1 J 

Define 

a \ k ) = I f d { k ) 二 [ d ' 从 ) ， . . . ， ( 4 . 1 1 0 ) 

be the transformed weight error vector. From (4.102), we have 

E[a\k^l)]=(I-4^^A)E[a\k)] (4.111a) 

or E[d\k)] =(I-4ii^AfE[a\0)] (4.111Z?) 

In studying the dynamic behavior of an adaptive time delay estimator, we always 

have 二 a卯’ where dO is the delay estimate at time reference 0 which is 

much less than 尸.From (4.106), (4.107) and (4.110)，the ith element of E [ a ( 0 ) ] 

is then equal to 

^[<3/(0)] = u- a^Q - u\ a 
=0 ， / e {y. 二 2L+2，...，2 户+ 1 I 入j 关 1 o r - 1 } (4.112) 

Now, it can be observed from (4.111/?) that only the transformed weight errors 

corresponding to eigenvalue 1(5、of A are adjusted during adaptation because those 

related to eigenvalue 0 of A are not changed and the initial transformed weight 

errors corresponding to other eigenvalues of 八 are all zero. Hence, the time constant 

for the transformed filter weights of A { z ) in the new system, T ,̂ is given by 
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' “ 二 ^ (4•⑴） 

Since the maximum eigenvalue of R - R o is 2aJ, the condition for convergence is 

0 < | ^“ <点 （4.114) 

We shall next investigate the steady state performance of the new system. Let the 

correlation matrices of and be R^^ and so that R^^^R^^^oIl Then, 

in steady state, with high SNR, we can rewrite (4.100) as 

贴 + 1) = h R巧 )a i k ) + h 11 ⑷ （4.115) 

where = 机 { X 幻 一 { j V ⑷ - 义 ⑷ } ' ] = 2 ( i ? - / ? 。 ） a n d T]⑷ is the 

zero mean gradient noise vector which has a steady state covariance matrix given 

by [16] 

E[T]{k)Vi(ky] =4E[e\k){y{k)-x{k)} {y(k)-x(k)y] 
二4 仏 （4.116) 

with《二 representing the minimum possible MSE of the new system. From (4.115), 

we can immediately obtain 

+ 作 冗 _)”'(")] (4.117) 

which gives (with small j l j 

cov {a{k)} (4.118) 
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where cov { ̂ (/：)} =E[d{k)d\k)] is the covariance of the weight vector. Due to 

gradient noise, the minimum possible MSE can never be achieved. Therefore, the 

excess MSE (EMSE), the difference between the MSE in steady state and the 

minimum possible MSE, is introduced which is given by 

EMSE = E[a\k) {y{k)-x{k)y {y{k)-x{k)} a{k)] 
-E[a' {y{k)-x{k)y {y{k)-x{k)] a] (4.119) 

Using the independence assumption and equations (4.76), (4.77) and (4.119), we 

have 

EMSE =tr{E[{y{k)- x{k)} a{k) d{k)' {y{k)- x{k)}'] } 

辄 ⑶ 2 尸+ l ) (G，+ 0 (4.120) 

f p 彳 

Note that 0 < rr{ } = sinc(D + 2 0 | < is being used in (4.120). With 

large P, the misadjustment of the new system, M“，can be approximated by 

EMSE , , 
= + ，） （4.121) 

4.2.4 COMPARISON WITH TRADITIONAL ADAPTIVE TDE 
METHOD 

When the performance of two adaptive systems is to be compared, the 

misadjustment, a measure of the adaptive process that tracks the Wiener solution in 

steady state, is usually fixed with the convergence speed being contrasted. From 

(4.52) and (4.121)，keeping the same misadjustment yields 
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1 
(4.122) 

That means the time constant of the proposed system wi l l be improved by a factor 

of 2 as indicated by (4.51) and (4.113), which in turn gives rise to a faster adaptation 

speed. 

4.2.5 SYSTEM IMPLEMENTATION 
The two filters in Figure 4.8 serve as a conceptual illustration of the new 

configuration. The actual implementation requires, however, only a single adaptive 

filter. Recall from (4.65) that the output error is given by 
p 

e(k)= l^a.{y(k + i)-x{k-i)} (4.123) 

which shows that e ( k ) can be obtained by the upper filter, i f the two inputs are 

appropriately mixed (shifted and added). To implement equation (4.123), Figure 

4.10(a) depicts the schematic block diagram while Figure 4.10(b) describes the details 

of the mixing and filtering. The time delay can again be retrieved from the 

coefficients â  and adaptation is needed for a single filter only. Comparing with 

the implementation of the conventional model as shown in Figure 4.11，the new 

system only requires I P + 1 extra adders and an additional P shift registers for 

hardware realization. 

4.2.6 SIMULATION RESULTS 
In this section, we shall describe the simulation tests that have been run to 

verify the theoretical development of the new TDE system. To check the validity 

that (4,80) satisfies (4.81)，the left hand side of (4.81) was computed for various 

values of D and P and compared against the right hand side. The results obtained 
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follow pretty closely with the theory and the accuracy actually increases as P is 
made larger. For example, at D =0.5 and 广二 5，i.e., a 10th order filter, the 

approximation error for (4.80) for the dominant element, i.e. the middle parameter 

of ao ’ is 2.9%. Whereas for P = 10，this error decreases to 1.5%. Similar results 2 
are obtained for other values of D. 

Different values of y were employed and the difference between the left and 

right hand side of (4.88) were then calculated in order to determine the range for 

T such that the equality holds with a small enough error. The error increases with 

increasing y. For P=5 and 10，the largest error for the most significant element of 

^ and with the value y satisfying (4.91) was found lo be less than 6%. 

Next, the eigenvalues of R。were computed at P = 5 and 10 for different values 

of D . Table 4.1 lists the eigenvalues and they confirm the previous assertion that 

there are at least L + 1 eigenvalues of c^ and L eigenvalues of - q]. 

Two experiments were conducted to compare the convergence speed of the 

new and the conventional configurations for TDE. The signal s { k ) and the noises 

ni ik) and riiijc) were Gaussian distributed and were generated from a random number 

generator. The signal power was fixed to unity and the SNR for the two input 

channels, c^/c^, were set to 2〇dB. The delayed signal, s{Jc-D\ was obtained by 

passing s { k ) through a 40th order FIR filter. The adaptive filter had 21 weights, 

i.e., P = 10. The LMS adaptation algorithm was used in both systems with the step 

sizes being chosen as = 0.0005 and = 0.001 according to (4.122). In order to 

ensure that both systems wi l l give approximately the same level of misadjustment, 

the actual values were calculated numerically and the results were found to be 

M^ = 0.0211 and M^ 二 0.0208. This shows that by satisfying the condition as stated 

151 



P D eigenvalues of R^ ( x o j ) 

5 0.2 Four I 's, Three - I 's , 0.9962，0.8817, -0.9997，-0.9704 

5 0.4 Four I 's, Three - I 's , 0.9889，0.5816，-0.9991，-0.9058 

10 0.2 Nine I 's, Eight - I ' s , 0.9927, 0.8725，-0.9991，-0.9589 

10 0.4 Nine I 's, Eight - I 's , 0.9783，0.5517, -0.9973, -0.8722 

10 1.4 Eight I 's, Seven - I 's , 0.9993, 0.9246，-0.9999’ -0.9919， 

-0.6060，-0.0008 

10 2.4 Eight I 's, Seven - I 's , 0.9961，0.6390，0.0024, 0.0000， 

-0.9998，-0.9485 

Table 4.1 Eigenvalues of the matrix Rj^ 
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in (4.122), we shall have roughly the same misadjustment for both systems. The 

delay estimate was obtained from interpolation of the filter coefficients and simulation 

results were derived from an average of 10 independent runs. 

Figure 4,12 compares the trajectories of the delay estimate in the new and 

conventional system with D equal to 0.3. The delay estimate was first set to null 

in both systems. It can be seen that the new system has a convergence speed that 

is approximately twice as fast. Indeed, it attained a delay estimate of value 0.28 

at 1000 iterations whereas 1700 iterations were required for the old configuration. 

To study the tracking ability of the new system, random step changes and 

sinusoidal changes in time delay were introduced to the signal s{k-D) and the 

corresponding delay trajectories are shown in Figure 4.13 and 4.14. The trajectory 

obtained from the old system were also included for ease of comparison. As shown 

in the diagrams, both systems were able to follow these changes, however, the new 

model can track time-varying delays more effectively and efficiently. When the 

SNR is decreased to 15dB, the performance was roughly the same. In cases where 

the corrupting noise power is high, the analysis and performance evaluation of the 

proposed TDE system is still under investigation. 

A very popular application of adaptive filters is in noise cancellation [16]. 

Referring to Figure 4.7, the lower channel, known as the primary input, contains 

the signal plus random noise s{k)-{-n^{k) whilst the upper channel contains the noise 

reference which is an advanced version of n人k\ +D) . The noise n^{k) is 

independent of the signal s { k ) and when the adaptive filter produces the proper 

delay to cancel out the noise component in the lower channel, e { k ) wi l l contain 

only s { k ) . The configuration shown in Figure 4.8 can perform a similar cancellation 
f 

operation although when steady state is reached, e{k)=s k-\-- in this situation. 
V 2 y 
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This is of no particular concern since noise cancellation is the main objective. In 

any case, the time shift in e { k ) can be removed by passing e { k ) through another 

FIR filter chosen to have a | delay. 

By going through a similar procedure, it can be analysed that at low SNR and 

Z) |<1，the adaptive process wi l l converge to the desired weight vector specified 

in (4.80) and hence the output error wi l l be given by e { k ) = s k + - . Here, the 
V 2 y 

time constant is also improved by a factor of 2，when the same misadjustment of 

the new and old systems are maintained. Figure 4.15 shows the noise cancellation 

result where s ( k ) is an A R M A process given by 

sik)=lA425s{k-l)-0.793 ls(k-2) + 0.5234 s{k-3)-03136 sik-4) 
+ p ⑷ - 0 . 2 0 8 4 + 0.36 - 2) (4.124) 

The random sequence was Gaussian distributed and independent of the random 

noise n^ik). The delay D was set to 0.4 and the SNR was fixed to -20dB. It can 

be seen from Figure 4.15 that the adaptation speed of the new configuration is again 

improved by approximately 2 times. 

4.2.7 CONSTRAINED ADAPTATION FOR THE NEW TDE 
SYSTEM [18] 

Recently, Ching and Chan [17] proposed that the filter weights in traditional 

LMSTDE system can be constrained to sine function samples such that computations 

for adaptation can be reduced and faster adaptation speed can be obtained. As the 

desired solution in the new TDE system is a sine function vector, it seems that the 

sine function constraint can also be applied to the new model to achieve yet a better 

performance. Incorporating this constraint in the new system has another advantage 
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of precluding convergence to other possible solutions. The purpose of this section 

is to evaluate experimentally the performance of the new system under the application 

of constraints. 

The essence of constrained TDE [17] is to force the adaptive filter W ( z ) as 

shown in Figure 4.7 to behave as a time shift device by restricting its coefficients 

to some sine function values. That means, the filter weights are given by 

w. = sinc(i-Q.) , i =-P ,... ,0 ,... ,P (4.125) 

where Q. is the time difference inserted. The error criterion can now be expressed 

as 

^ = E[(y(k)-x(k-Q)f] (4.126) 

When steady state is reached, ^ wi l l be minimum which implies that with high 

SNR, 

(4.127) 

where Q* denotes the optimal solution of Q： 

The actual delay D can be expressed as 

D =DJ + DF (4.128) 

where DJ is the rounded value of D so that \DF | <0.5. As DJ can simply be 

deduced from the tap position of the largest filter coefficient, only \D | <0.5 is 

needed to be considered for constrained adaptation. 

The adaptive scheme of constrained TDE is to adjust the filter coefficient with 

the largest magnitude, say, vv饥 and then utilize H ; as an index to obtain the other 

157 



coefficients from a pre-stored lookup table. The table is a two dimensional matrix 

of size Kx(2P+\) containing samples of the sine functions with delay ranging from 

0 to 0.5. More precisely, the elements of the table are 

hij = sinc(j-d) ， j=-P ”..，Q,".P (4.129) 

where 

二 一 1)， i=0,...,(K-l) (4.130) 

which gives a resolution of delay estimate equal to 1/ { 2 ( K - I ) } . The delay 

estimate is taken to be either, m -d^ or m+di, depending on the signs of the two 

adjacent elements of w…Thus , the interpolation step for obtaining the time delay 

is no longer needed. In fact, incorporating constraints has the merits of not only 

simplifying the adaptive process and reducing computational load, but also achieving 

a faster adaptation rate. 

We now consider the application of this specific constraint to the new model 

[18]. Suppose \D I <0.5. With the constraint, the filter weights are restricted to 

a. = sinc(i-Q,) , i=-jP,…，0,...,P (4.131) 

Consequently, from (4.123), the error criterion now becomes 

^ = E[{y(k + Q)-x{k-Q)}'] (4,132) 

In equilibrium, the optimal solution wil l be 

八* D 

^ (4.133) 

and thus delay estimate is taken to be 
(4.134) 
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It is important to note that a look-up table containing delay ranging from 0 to 

0.25 is sufficient for the new system since delay estimate is equal to twice the value 

obtained from the table. However, the table size in the new and the old system 

should be identical in order to maintain the same resolution for the delay estimate. 

The detail procedures of applying constraint to the new system is outlined as 

fol low: 

(a) Set all filter coefficients to zero at the beginning. 

(b) Adapt W ( z ) for a few iterations, say, 200，using the LMS algorithm described 

in (4.46). 

(c) Determine the maximum tap weight, w…of W { z ) . Pre-shift x ( k ) by m samples 

correspondingly. The initial delay inserted by A(z) in the configuration shown 

in Figure 4.8 is set to -0.125 i f and w饥+ i < 0 . Otherwise, the delay 

is set to 0.125. Assign filter weights, which are values of a sine function, to 

A { z ) according to the initial set delay with maximum at a^. The rounded value 

of D is now given by m . 

(d) Adaptation with constraint was applied to A(z). 

(e) The delay estimate at iteration k , D ( k ) , is computed from 

D{k) = m-\-2Q.ik) (4.135) 

Simulation experiments were performed to evaluate the performance of the new 

LMSTDE system with constraint adaptation and to compare its performance with 

the system proposed by Ching and Chan. The simulation environments were set to 

be the same as the cases without constraint. The look-up table for time difference 

and filter weights conversion had a size of 512x21. Note that the look-up table 

159 



for the new system only needs to contain delay ranging from 0 to 0.25，the resolution 

of fractional delay estimate is approximately 0.001. Same table size was used in 

the old model to maintain equal resolution of delay estimate. Simulation results 

were the average of 20 independent ensembles to reduce point-to-point fluctuation. 

Figure 4.16 compares the adaptive behavior of the basic and the new LMSTDE 

model in the absence of noise. The step sizes “ and were chosen to be 0,0005 

and 0.001 respectively and the actual delay was set to 0.9. Let the time at which 

the estimate enters and stays within ±1.0% of the actual delay be the capture time. 

As shown in Figure 4.16, the capture time for the new and old system are roughly 

1000 iterations and 1800 iterations, respectively. Thus the improvement of 

convergence speed in terms of capture time is about 800 iterations. 

A similar test has also been run to study the performance of the two models 

in the presence of white noise. Figure 4.17 shows a typical result in this regard. 

Gaussian distributed random noise at SNR of 30dB were added to both input channels 

while and were set to the same values as the case without noise. The actual 

delay D was assigned to 2.1. It is apparent from the graph that only marginal 

degradation in performance was recorded and, again, the new configuration 

outperforms the traditional system. For both new and old LMSTDE system, deviation 

of the delay estimate from the desired value would be occurred i f SNR was 

decreased. However, for a SNR as low as lOdB, both systems wi l l still converge 

though with a discrepancy of around 10%. 

Figure 4.18 depicts the trajectories of the two adaptive systems with 

nonstationary delays. In this example, the unknown time delay was given a series 

of step offsets and constrained adaptive algorithms were applied to estimate and 

track the dynamic changes of the time difference parameter. The SNR in the two 

input channels were both set to 30dB. It is seen that both systems responded to 
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the step changes and were able to give accurate delay estimates after the initial 

transients. And again, the new model can track the non-stationary delay more 

quickly and accurately. 

As the coefficients of A(z) are known to converge to samples of the sine 
function, constrained adaptation which restricts the filter weights to sine function 

samples can be used in the new adaptive system to exclude the other non-desired 

solutions (like Figure 4.9) to occur and, in addition, to achieve a further convergence 

speed up. This phenomenon has confirmed by simulation results. 

4.3 CHAPTER SUMMARY 
The effect on dynamic adaptation characteristics incurred by serial splitting an 

adaptive filter is studied. It has been proved that it is particularly useful in 

representing an adaptive filter by two subunits connected in cascade for linear 

prediction application. However, it is in general not appropriate for joint process 

estimation. 

The serial split idea is developed further to devise a new model for adaptive 

TDE. Conceptually, it contains an adaptive filter in both channels, with one filter 

inserting a time delay of \ in the upper channel while another providing a time 

advance of \ in the lower channel, where D is the actual delay between the two 

sensor measurements. They are adapted simultaneously to minimize the output MSE. 

A two-fold improvement in adaptation speed can be achieved compared with the 

conventional configuration. However, the actual hardware implementation of this 

new configuration only requires a single adaptive filter i f proper arrangement is 

made. Analysis and proof for convergence speed up are given. The theoretical 

development is verified through simulation examples which also contain an 
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application to noise cancellation. 

A deficiency of the new model is that the steady state solution is not unique. 

Nevertheless, it can be overcome by imposing sine function constraint to the filter 

weights. Constrained adaptation on the new TDE model together with its 

performance analysis is investigated. Experimental results demonstrates that the new 

configuration has a considerably better performance for adaptive delay estimation in 

terms of convergence speed. 
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5 EXTENSION OF THE SPLIT ADAPTIVE SYSTEMS 

We have already examined the properties and characteristics of an adaptive 

system which is constructed either by splitting an adaptive filter into two subunits 

in parallel or in series. Apparently, it may be possible to factorize an adaptive 

filter into more than two components. Such generalization of the two splitting 

methods wi l l be studied in this chapter. In addition, performance comparison 

between the parallel and serial split system wil l be considered. It is shown that 

both the parallel and serial split predictor are superior to the transversal form 

configuration. The possibility of merging the two predictors to achieve further 

improvement in performance wi l l also be investigated. Finally, the combined model 

wi l l be used for speech analysis to demonstrate its suitability for practical 

applications. 

5.1 THE GENERALIZED PARALLEL SPLIT SYSTEM 

In chapter 3, we have only examined separating an adaptive filter W { z ) into 

two linear phase filters connected in parallel. In general, it can be decomposed into 

L subunits 

i (5.1) 
1 = 1 

Notice that at least one of the subunits must have an order greater than or equal 

to that of W ( z ) so as to maintain order consistency. This adaptive system is depicted 

in Figure 5.1. A l l W ^ z ) have a common input x { k ) and their outputs are added to 
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form the total filter output z ( k ) . The error signal given by the difference between 

the desired response y ( k ) and the total filter output z ( k ) is employed to adjust each 

of the subunits. 

We now consider how to select the subunits W,(z). When L =2, they are 

chosen to be linear phase filters to generate orthogonal adaptation sequences for 

them. Different adaptation step sizes can then be used for the two subunits to 

improve convergence speed. This gives us an insight that for L greater than 2, the 

subunits should also be chosen so that their adaptation input sequences are 

also roughly orthogonal to each other. A simple method to achieve this requirement 

is to take W^{z) to be 

W^{z) = H,{z)G,{z) ， / = 1，2，...，L (5.2) 

where H-{z) are fixed filters to generate approximately orthogonal sequences whilst 

G,(z) are adaptive filters. In this way the regression vectors for G,(z) are the 

outputs of H^(z) which are about orthogonal to each other and different step sizes 

can then be utilized for each G,(z) to achieve a better convergence behavior. When 

L is equal to the filter length of W ( z ) , the generalized model becomes the transform 

domain adaptive filter [1]. The filters //,(z) is now used to produce the transform 

coefficients which are to be weighted by adaptive gains G,(z) to form the filter 

output. 

It is anticipated that the generalized model can achieve faster convergence than 

the split-path adaptive configuration described in chapter 3. It requires, however, 

more computations for generating the approximately orthogonal adaptation sequences. 

Another drawback of this model is that for linear prediction, the backward prediction 

knowledge cannot be incorporated easily in the adaptation process as in the split-path 

model to reduce gradient noise. 
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5.2 THE GENERALIZED SERIAL SPLIT SYSTEM 

It is trivial that the split filters A(z) and C(z) in the serial split adaptive system 

as shown in Figure 4.1 can further be decomposed into subsections, that means an 

adaptive filter W ( z ) can be configured as cascade of more than two subunits, 

W / ( z ) - n / / , ( z ) (5.3) 
i = i 

When the number of subsections becomes larger, greater computational burden is 

involved. In the linear prediction case, it is particularly useful to select H人z) to 

be second order sections, 

= ， (5.4) 

so that the zero locations of the inverse filter can be easily tracked and constraints 

about the locations of the zeros can also be incorporated in the estimation procedure. 

The generalized serial split predictor is depicted in Figure 5.2. The input signal 

x { k ) is fed into the first second order section and its output is applied to the second 

section and so on. The error e { k ) is taken as the output of the last section and 

each of the adaptive subunits //,(z) are adjusted to minimize the ultimate mean-square 

error. In accordance with the LMS adaptation algorithm [2], the updating equations 

for the filter parameters can be formulated as 

hi/Jc + 1) = h,.{k)-2\ie{k) g�恥， / 二 1，2 ； / = 1，2，...，乙(5.5) 

where gi^iik) is the partial derivative of e{k) with respect to hi iik). It can be 

shown [3]-[4] that the gradient gi^iik) can be obtained by passing the input sequence 

through all but the zth cascade filter section and delaying the output by I samples. 

Under the assumption that the step size is small such that the adjustment of the 
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parameters during each iteration is small, we have g^ = - 1). The details 

of the gradient calculation is illustrated in Figure 5.3. The transfer function to 

generate gradient components 义“⑷ can be expressed as 

G, (z) L 

- / 帅 ） 

T T H ， /二1，2; / = 1，2，...，L (5.6) 

where G； ,(z) and X { z ) designate the Z-transform of the gradient sequence 容/"(/:) 

and the input signal x ( k ) . Equation (5.6) provides a computationally efficient method 

for generating the gradient sequences from the residual sequence e ( k ) by passing it 

through an IIR filter which is the inverse of an appropriate second order section, 

as demonstrated in Figure 5.4. 

Comparing with the case of simply splitting a predictor W { z ) into only two 

subunits, the system with second order cascade sections can further improve the 

adaptation speed since the autocorrelation matrices that determine the convergence 

behavior of the cascade sections have smaller eigenvalue spreads. Nevertheless, an 

increase in system complexity in this case is inevitable. 

5.3 COMPARISON BETWEEN THE PARALLEL AND THE 
SERIAL SPLIT ADAPTIVE SYSTEM 
In both parallel and serial split model, speed-up in adaptation rate is achieved 

by reducing the eigenvalue spread of the input process. However, the mechanism 

for the two split methods to accomplish this objective is different. In the parallel 

split model, the eigenvalues of the input correlation matrix is partitioned into two 

sets, leading to a decrease in eigenvalue spread. Notice that the eigenvalue spreads 
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in this case are constant and wi l l not change as adaptation proceeds. On the other 

hand, the serial split model changes the eigenvalue spread for each adaptive 

component by filtering the input sequence through the other adaptive subunit. As 

the adaptive components of the serial split model are varying during adaptation, the 

eigenvalue spreads for the subunits are not fixed and modification of their values 

is continued until steady state is reached. 

In joint process estimation, the parallel split model is superior to the serial 

split configuration. The partition of eigenvalues in the parallel system allows 

selecting different step sizes for the two split-paths for a faster convergence. In 

the serial system, the filtering characteristics of the adaptive subunits depends on 

the desired response. The eigenvalue spread for the two subunits is therefore 

governed not only by the input sequence but also by the desired response. 

Consequently, there is no guarantee for reduction in eigenvalue spread and a better 

performance is not assured. 

In the linear prediction problem, both models are superior to their non-split 

counterparts. It is appealing that the parallel model can incorporate the backward 

prediction naturally to the adaptation rule to diminish gradient noise so that larger 

step sizes can be chosen for the two split filters to further increase the adaptation 

rate, apart from the enhancement due to reduction in eigenvalue spread. In the 

serial model because the role of the two subunits are to flattening the input spectrum, 

the eigenvalues for the two subunits wi l l continue to decrease until steady state is 

reached. Therefore a faster convergence speed is guaranteed. 

Simulations were conducted to compare the adaptation characteristics of the 

serial and the parallel split predictor. The AR process shown in (4.28) with an 

eigenvalue spread of 6432 and that in (4.32) having an eigenvalue spread of 33.1 

were to be whitened by these two models. In the parallel split predictor, the 
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adaptation step sizes for the two paths were chosen according to (3.132). While 

in the serial split predictor, the two subunits A ( z ) and C(z) had initial values set 

according to (4.30). The step sizes for both systems were chosen to maintain equal 

excess MSE. The corresponding learning characteristics were depicted in Figure 

5.5 and Figure 5.6 respectively. It can be observed that for the input process (4.28), 

the serial split system outperformed the parallel system and the MSE reached a 

value of 4dB at about 200 iterations, whilst the parallel split model required 1100 

iterations instead. However, when using the input process described by (4,32), the 

parallel split model was better. The MSE reduced to L5dB at about 50 iterations 

which is 70 iterations faster. Different initial conditions for the serial split predictor 

were tried but it was still found to be inferior to the parallel predictor. 

These observations can be explained as follows. When the input process has 

a large eigenvalue spread, partitioning the eigenvalues in general could not reduce 

the spread all that many. In this case, the serial model is better due to its ability 

to continuously decrease the eigenvalue spread. On the other hand, when the input 

process has a relatively small eigenvalue spread, the serial split model could not 

decrease the eigenvalue spread substantially. Whereas partitioning the correlation 

matrix in this case can effectively diminish the eigenvalue spread. This merit 

together with its capability of reducing gradient noise makes the parallel split 

predictor much superior. As a consequence, the serial predictor is appropriate for 

input statistics which has a large eigenvalue spread while the parallel predictor is 

preferred when the input process has a relatively small eigenvalue spread. 

Regarding system complexity, the parallel split system is desired because it 

requires extra additions only, which unlike the serial system where additional 

multiplications is required as well. 
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5.4 INTEGRATION OF THE TWO FORMS OF SPLIT 
PREDICTORS 
We have separately developed the parallel split and serial split adaptive systems. 

Both of them have proven to operate better than their respective non-split counterparts 

in the context of linear prediction. This motivates yet another novel idea on whether 

the two different types of split predictors can be merged together to form a new 

adaptive structure to possess all the advantages inherent to these two systems for 

providing further improvement in terms of adaptation speed as well as dynamic 

convergence characteristics. 

The simplest way to combine the two split methods is, first of all, parallel 

split an adaptive predictor W ( z ) with independent adaptation. This provides a 

two-fold increase in adaptation speed by reduction of gradient noise. Then, serial 

split can be applied to the two linear phase filters. An additional improvement in 

convergence time can be acquired because the eigenvalue spreads for the adaptive 

subunits resulted from the serial split are reduced as adaptation goes on. The block 

diagram of this newly constructed model is shown in Figure 5.7. Note that one 

can choose different step sizes for the two split-paths to achieve additional gain in 

convergence rate. 

Experiments were carried out to investigate • the dynamic convergence 

characteristics of this new model. The input sequence generated by (4.28) was to 

be identified separately by the new model shown in Figure 5.7, the serial split model 

in Figure 4.1 and the parallel split model in Figure 3.11. The adaptation step sizes 

for the new system and the serial model were set to 0.0008 and that for the parallel 

system were chosen to be 0.0002 in order to keep the same level of misadjustment 

in all three cases. The average square output error for the three models are depicted 

in Figure 5.8. It is observed that the combined structure had the best performance 
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and it obtained an average square error of 2dB at about 80 iterations, which is 200 

iterations less than the serial split system. Other simulation tests were also 

undertaken and they all verified the same result. 

Next, we have applied this integrated model to the application of speech 

analysis. Besides the improvement in adaptation rate, it wi l l also be demonstrated 

that when the adaptive subunits in Figure 5.7 are constructed as second order sections, 

the filter parameters are equivalent to the line spectral pair (LSP) coefficients, which 

are known to be especially appropriate for low bit rate speech coding, 

5.5 APPLICATION OF THE INTEGRATED SPLIT MODEL TO 
SPEECH ENCODING [5] 
Digital coding techniques have been widely used for low bit rate transmission 

of speech signals in the past decade. This is due not only to the rapid development 

of low-cost digital hardware but also to the invention of digital algorithms that 

accurately model the speech production mechanism. In particular, the introduction 

of linear prediction has opened up a new area of research in the analysis and 

synthesis of speech which has attracted numerous efforts from scientists and 

engineers. 

Digital speech production model always assumes that the speech signal s ( k ) is 

generated by an autoregressive (AR) function of order 2N which can be expressed 

as 

2N 
s(k) = -'Z w* s{k-i) + e{k) (5.7) 

1 = 1 

where e { k ) is referred to as the driving source that can often be approximated by 

either a periodic impulse train with period P for voiced sounds, or by a random 
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noise having a flat spectrum for unvoiced sounds. Figure 5.9 shows a schematic 

block diagram of a simple discrete analysis model in which the speech production 

mechanism is being modelled by an adaptive transversal filter. The system mainly 

concerns with finding iteratively a set of prediction coefficients, i.e. w* in (5.7), 

that wi l l best characterize the properties of the speech signal. There are many 

parameter sets that can equivalently represent the prediction coefficients. The choice 

of a particular set is usually based on the following criterion. First of all, a simple 

test on the parameters should be available to check whether the analysis filter has 

minimum phase or not such that stability of the respective synthesis filter can be 

guaranteed. Secondly, the parameter set should not be prone to quantization error 

to enable efficient transmission. 

It is commonly recognized that PARCOR coefficients of the lattice filter [6] 

wi l l generally satisfy the above requirements. Recently, it has been shown that [7]-[8] 

the line spectral pair (LSP) parameters are superior to the PARCOR coefficients 

with respect to their quantization and interpolation properties as a function of spectral 

distortion. Experimental results also indicate that high-quality synthesized speech 

can be obtained using the LSP parameters at relatively low transmission rates. 

However, conventional approach for calculating LSP parameters always involves 

computation of the prediction coefficients and then followed by a discrete cosine 

transform [9]. This complicated numerical procedure has made real-time 

implementation of the LSP analysis-synthesis speech codec very difficult, i f not 

impossible. It is thus necessary to devise a procedure that can obtain the LSP 

parameters efficiently. 

As speech production process can be modelled by an AR process, speech 

analysis can be accomplished by the split-path adaptive filter. When the split-path 

filter is configured as a cascade of second order sections, it wi l l be shown that the 
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filter parameters are essentially equivalent to the LSP parameters. When the filter 

parameters are modified on a sample by sample basis, the adaptation speed wil l be 

greatly improved compared to the transversal filter and the LSP parameters can be 

obtained fairly easily, thereby reducing the system complexity considerably. 

A speech analysis system using the split-path adaptive filter in cascade form 

is depicted in Figure 5.10. The analysis model is now separated into two filters, 

P(z) and connected in parallel. P { z ) has and-symmetric linear phase property 

whereas Q { z ) has symmetric linear phase property. The filter coefficients of P { z ) 

and 2 (z) are obtained iteratively by minimizing the expectation of their output 

mean-square errors E[el{k)^ and £ [々 / : ) ] independently. Recall from chapter 3 

that the transfer function of P(z) and Q(z) are given by 

i = i 

w d 2(Z) 二 1 + i 仏（Z- + Z-狄- i+') + z-狄-1 (5.8/0 
j = i 

Factorizing (5.8) yields 

尸(z) = ( l - z - i ) n + (5,9fl) i = \ 

and 、 N 2(z) = (l+z-i) n (1+4.Z-1 + Z-2) {5.9b) 

where c,- 二 -2cosC0i a n d 二 - 2 cos for / 二 1 ， 2 ， . . . ， I t is trivial that the roots 

土_/0)- 土_/0-

of P { z ) and Q { z ) can actually be obtained from e ‘ and e ‘ respectively. For 

simplicity but without loss of generality, assume that cOi < CO2〈…< co" and 

01 < 02 < . . . < Then it can be proved that they are alternate to each other on the 

unit circle [9]-[10]，that is, 
0 < 9i < cOi < 02 < . . . < 6；̂  < % < TT (5.10) 
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The parameters { 0 i , oo, , 82, CO?,,..., 6^/, cô  } are commonly referred to as the 

line spectral pair (LSP) parameters. Since these coefficients are closely related to 

the zeros of the prediction transfer function and hence to the formant structure of 

the speech signal, they can be used to characterize the analysis model. These 

coefficients have the advantage of easier to quantize because of their uniform 

sensitivity across the frequency spectrum. It has been shown that [10] as long as 

equation (5.10) is satisfied, stability of the synthesis filter can be assured. 

In the split-path analysis filter, the parameters c,- and d̂  are adapted sequentially 

using LMS [2] algorithm. To simplify the system complexity to make real time 

processing feasible, the parameters are restricted to take on some uniformly 

pre-quantized values. Using pre-quantized values, only the sign of the noisy gradient 

is necessary to determine the direction for adjusting the LSP coefficients in the 

adaptive process. To summarize, the parameter updating equations are given as 

follows, 

l^Ciik)} 

= Ci(k) - 叹 s g n { g^^^k)} ， / = 1，...，iV (5.11a) 

and {de^(k) 

where and 5分 are the fixed increment for the parameters, sgnix) is the signum 

operation given by 

‘ 1 ， ；c〉0 

叹 0 ， (5.12) 

. - 1 ， x < 0 
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and 发,.(/:) are, respectively, the first derivative of Cpik) and with respect 

to Ci and Referring to Figure 5.10 and using (5.9a), the Z-transform of 乙、(/:) 

is given by 

E^(z) = Siz)P{z) = S{z){l-z~') n ( l + c , z - i + z-2) (5.13) 
i = 1 

where E p ( z ) and S ( z ) are the Z-domain representation of ep{k) and s { k ) respectively. 

Let the Z-transform of gp^iik) be Taking the derivative of Ep(z) with respect 

to Ci gives 

y = 1 

= 明 \ 丄 丄 ( 5 . 1 4 ) 

1+CiZ ' + z 

It is noted from (5.14) that the gradient for the zth section can be derived simply 

by passing the unit sample delayed output to a recursive filter which is just the 

inverse of the zth cascade section. Thus, the gradients in time domain can be 

computed from 

gpAk) = ep(k-l�-Cigp,i(k-i)-gp/Jc-2)，i = l,…，N (5.15a) 

Similarly, can be obtained from 

= - - , / = ! , . . { 5 A 5 b ) 

At the beginning of adaptation, it should be rated that the values of c,- and d̂  must 

be initialized to different values. Otherwise, the update equation specified in (5,11) 

for each c,- and each wi l l be essentially identical and global convergence wi l l be 

impossible due to system lock-up. In the simulation results given below, c, and d,-

were all initialized to their mean values obtained from [10]. Since the IIR filter 
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shown in (5.14) have poles on the unit circle, the gradient generation process may 

become unstable. To alleviate this difficulty, a constant which is very close to but 

less than unity can be multiplied to the terms g p , { k - 2 ) a n d 《 ？ 2 ) in (5.15) 

to maintain stability. When adaptation proceeds, the following condition (similar to 

(5.10)) has to be incorporated in the adaptive algorithm to ensure the minimum-phase 

of the analysis filter, 

-2<d^<c^<d2<C2<. . . < d ^ < c ^ < 2 (5.16) 

Once the values of c,- and di are determined, the LSP coefficients can be 

obtained from an inverse cosine table, which is simply a table look-up operation 

and does not involve any extra computation. The intriguing properties of the LSP 

coefficients have made them one of the best feature parameter sets for digital speech 

transmission. Indeed, many efficient speech coding schemes have been designed to 

operate at low to medium data rates. For instance, Soong and Juang [10] has 

developed a differential quantization scheme for LSP parameters encoding while a 

study of quantizer design for these coefficients was reported in [11]. 

In order to evaluate the performance of the new predictor, a 10th order digital 

filter of three different forms namely the split-path cascade, the lattice and the 

transversal filter were used to adapt a "speech like" signal which was generated by 

exciting an 8th order all pole digital filter with spectrally flat Gaussian noise. The 

4 pole pairs were chosen to be 

0.95一_\ 0.9一0.85一780。，0.8一 120。 

In the split path cascade structure, and were both set to 0.01 whereas 

the normalized gradient lattice algorithm [12] was employed for lattice filter and 

the conventional Widrow's LMS algorithm was used for the transversal filter. The 

step sizes were being chosen to achieve their best performance. The learning curves 
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giving the convergence characteristics for these three different structures were shown 

in Figure 5.11. It can be seen from the simulation results that the split-path cascade 

method has a performance significantly better than the transversal form and offers 

an adaptation rate which is comparable or even superior to that of a lattice filter 

but requiring much less computations. Indeed, the split-path analysis filter requires 

only 4N multiplications per iteration but the lattice system needs 22N multiplications 

per iteration instead. Of course, for speech analysis, a faster convergence rate means 

that the adaptive method has a better tracking ability of the nonstationarity of the 

speech waveform. 

5.6 CHAPTER SUMMARY 

Generalization of the parallel and serial split adaptive systems is studied. The 

generalized models can achieve faster adaptation speed at the expense of a larger 

computational load. The performance of the parallel and serial split adaptive 

predictor is contrasted. The serial split predictor is preferred i f the input process 

has a large eigenvalue spread whilst the parallel split predictor is favoured when 

the eigenvalue spread of the input process is small. 

The dynamic convergence characteristics of a new adaptive structure formed 

by merging the parallel and serial predictor is investigated. It is found that the 

proposed new structure can achieve a much better performance. Its variant with 

the serial split subunits configured as cascade of second order sections was employed 

to extract the LSP coefficients of the speech signal. Experimental results demonstrate 

that its performance is comparable to the gradient lattice filter but the system 

complexity is greatly reduced. 
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6 CONCLUSIONS 

Adaptive filter has found applications in many areas such as plant modeling, 

channel equalization, noise cancellation etc. Its popularity is due to its "intelligent" 

nature of processing signals and the emergence of a family of powerful digital signal 

processors. There are two well known adaptive algorithms for FIR digital filters, 

namely the RLS and the LMS algorithm. The RLS algorithm has a property that 

the adaptation speed is independent of input signal statistics but it requires a large 

computational burden for its realization. Whilst the LMS algorithm, which is an 

approximation of the method of steepest descent, is relatively simple and easy to 

implement but it suffers from an inherent drawback that its adaptation characteristics 

is dependent on the input signals. When the autocorrelation matrix of the input 

process has a large eigenvalue spread, the convergence speed of the adaptation 

process wi l l be significantly degraded. It is therefore required to seek an alternative 

adaptive filter structure that can improve the convergence speed but without a 

considerable increase in system complexity. 

With the LMS algorithm, the performance of an adaptive filter is affected by 

its form of realization. It is understood that the lattice structure of an FIR filter 

can achieve a rapid convergence speed compared with the transversal ladder form 

because the input signal is successively orthogonalized in each stage of the lattice 

so that the correlation matrix of the effective sequence to adjust the filter parameters 

wi l l become diagonal. As a result, the eigenvalue spread for the adaptation process 

is greatly reduced and convergence rate is greatly enhanced. Nevertheless, the cost 

for the improvement is a substantial increase in computational complexity. It can 

be shown that there exist some filter structures that can effectively diminish the 
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eigenvalue spread for the adaptation process to achieve a faster convergence while 

still requiring less computations. In this thesis, the effect on adaptation performance 

incurred by two simple realization schemes of an adaptive filter, namely the parallel 

and serial representation, is investigated. 

When an adaptive filter is split into two linear phase filters that are connected 

in parallel, one antisymmetric while the other symmetric, the eigenvalues of the 

input signal are divided into two sets, each corresponds to an individual filter path. 

Due to the partition of eigenvalues, the eigenvalue spread of the two linear phase 

filters is decreased and thus improving the performance of the system. In the 

application of linear prediction, it is interesting to note that the backward prediction 

information can be incorporated naturally in the adaptation process by extending the 

filter length of the antisymmetric and symmetric linear phase filter by one unit with 

the extra coefficients fixed to -1 and 1 respectively. In this case, the gradient noise 

inherent in the LMS adaptation can be reduced. Consequently, in addition to the 

improvement due to a decrease in eigenvalue spread, convergence rate can further 

be doubled with a fixed tolerance level of excess MSE. The system complexity, 

however, is still comparable to the transversal model since only roughly M + l extra 

additions are necessary for each iteration, where M is the filter order. 

I f an adaptive filter is represented by a cascade of two subunits, it is found 

that there is no particular advantage for joint process estimation. On the contrary, 

improvement can always be acquired for linear prediction. This is because the 

effective input sequence for each subunit is the filtered output of the input signal 

through the other subunit which has an effect of flattening the input power spectral 

density, which in turn reduces the eigenvalue spread for its adaptation. Experimental 

results illustrate that serial split of an adaptive filter is very efficient for enhancing 

convergence rate especially when the eigenvalue spread of the input process is large. 
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In addition, by setting appropriate initial conditions for the two subunits can also 
accelerate the adaptation speed. The extra computation in the serial split adaptive 
system is approximately (M-l)/2 multiplications and additions. 

Serial split adaptive filter can also be used in the context of adaptive time 

delay estimation. In this application, one of the subunit in the serial split model 

can be placed in the desired input channel while the other in the remaining channel. 

The two adaptive subunits are now adjusted by minimizing the mean-square error 

with the error formed by the difference between their outputs. Theoretical studies 

of the new TDE model show that a two-fold improvement in adaptation speed can 

be obtained. The expense is only M addition operations. By imposing the condition 

that the filter parameters have the values of a sine function, this TDE system can 

further improve the convergence rate. Experimental results demonstrate the feasibility 

and superiority of the application of constraint in adaptive TDE. An additional 

feature with constrained adaptation is that the possibility of convergence to the 

non-desired solution in the new model is avoided. 

The parallel and the serial split adaptive filter can both be generalized to contain 

more than two subunits. In such cases, the generalized parallel split system becomes 

the transform domain adaptive system and the generalized serial split predictor turns 

out to be a linear predictor in second order cascade form. Comparison between the 

two splitting methods are given. The parallel split method is appropriate for joint 

process estimation as well as linear prediction. On the other hand, the serial split 

method is only applicable for linear prediction. The adaptation behavior of the 

parallel and serial split predictor are contrasted. When the input signal has a large 

eigenvalue spread, the serial predictor is desirable. I f the input process has a 

relatively small eigenvalue spread, the parallel predictor is preferred. 
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As the two types of split predictor models are both superior to the transversal 

predictor, the possibility of merging them to form a new adaptive structure is 

investigated. It is found that the combined model can take the benefits of each 

individual predictor and provide a much better performance. The newly configured 

predictor is utilized for speech encoding to demonstrate its usefulness in practical 

applications. Simulation results show that its performance is comparable to the 

gradient lattice filter, but requiring much less computational burden. 

The complexity of the split algorithms for joint process estimation and linear 

prediction are summarized in Table 6.1 and 6.2. The computational load for some 

other popular algorithms are also provided for comparison. Whether the increase 

in complexity of the split algorithms is significant or not depends on actual 

implementation. Nevertheless, in the worse case when the computational time for 

multiplication and addition operation are identical, the parallel and the serial split 

algorithm wi l l never increase 25% complexity of the LMS algorithm. In addition, 

the combined predictor requires only extra 50% computations and the new speech 

analysis system needs just 50% additional operations. Comparing with the gradient 

lattice and the fast least square algorithm, the split algorithms are much more simpler. 

The split algorithms are thus an efficient adaptation rule which can substantially 

improve the convergence speed and can maintain simplicity for implementation. 

As there are many other realizations of a FIR filter, their effects on adaptation 

performance need to be further studied. Some of them may be more promising 

than those examined in this thesis. Due to the advent of high speed digital signal 

processor, RLS adaptive algorithm might be preferred for applications where short 

filter length is required although it involves tremendous amount of computations. 
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relative 
+ * / complexity (*=+) 

LMS 2M+2 2M+2 0 1 

PS_LMS 3M+2.5 2M+2.5 0 1.25 

SS—LMS 2.5M+2.5 2.5M+2.5 0 1,25 

Gradient 
Lattice lOM+3 l l M + 3 2M+1 >5 

RLS O(M ' ) O ( M ' ) 〇(M2) 0 (M) 

FRLS 〜(7M - ~(7M - ~(3 - M) 〜(3.5 - 5.5) 
I I M ) I I M ) 

Table 6.1 Comparison of complexity in the application of joint process 

estimation 

relative 

+ * / complexity (*=+) 

LMS 2M+1 2M 0 1 

PS—LMS 3M+0.5 2M+0.5 0 1.25 

SS 一 LMS 2.5M+0.5 2.5M-0.5 0 1.25 

PS S 一 LMS 3.5M+1 2.5M 0 1.5 

PS S 一 LMS 

(2ndOC) 4M+3 3M 0 1.5 

Gradient 

Lattice 6M 6M M >3 

RLS 0(M2) 0(M2) O ( M ' ) 0 (M) 

FRLS 〜(5M - 8 M ) 〜 ( 5 M - 8 M ) 〜 ( 2 - M) 〜(2.5 - 4) 
Table 6.2 Comparison of complexity in the application of linear prediction 
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It is anticipated that different implementations wi l l also affect the system complexity 

of the RLS algorithm. It might be interesting to evaluate the effect of a RLS 

adaptive filter with various types of realization. 

Besides FIR filter, IIR can also be implemented in many different forms. 

Alternative realizations of direct form IIR filter has been recently examined by 

Nayeri and Jenkins [1]. They conclude that different filter structures lead to a 

change in the characteristics of the corresponding error surface, and hence to a 

change in the respective convergence rate and minimum mean-square error. 

Specifically, Shynk [2] factorizes an adaptive IIR filter into a sum of first order 

sections and investigates its performance in a system identification application. It 

is demonstrated that the parallel form IIR filter can provide robust convergence 

properties and robust stability monitoring with less complexity than that of the direct 

form. However, further research is necessary to fully explore the impact of different 

realization structures on an adaptive system. 
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