
DYNAMIC CONSTRUCTION OF BACK-PROPAGATION

ARTIFICIAL NEURAL NETWORKS

A Thesis

Submitted to

The Department of Electronic Engineering

of - m t

The Chinese University of Hong Kong

In

Partial Fulfilment of the Requirements

for the Degree of

Master of Philosophy

By Konis Fu-lai Chung

June, 1991

i

1

V
I
 6
0

 o
O

s

•

牛

5
 I
每
-

 i
s

Dynamic Construction of BP Networks

ABSTRACT

In recent years there has been considerable interest in artificial neural network (ANN)
research, and it has exploded with impressive successes across a wide variety of applications.
Among various ANN models, the Back-propagation (BP) network may well be recognized as
the most widely-used one. However, BP network is far from perfect or even perfectly under-
stood. One difficulty in adopting this model is the need to pre-determine a suitable network
size, particularly, the number of hidden nodes. If it was under-estimated, the problem would
not be solved. On the other hand, oversized network also suffers from inefficient hardware
realization and degraded generalization performance, i.e., the ability to produce correct
response when presented with unseen patterns. In this thesis, we address this issue by pro-
posing a hybrid network construction algorithm which will self-determine an appropriate size
for BP networks.

The proposed algorithm composes of two parts; they are network growth and network
pruning. For the first part, a progressive training is used to construct a reasonably large net-
work by adding hidden nodes one by one to an initially small network as the available train-
ing data become more and more complex. The constructed network then undergoes a node
pruning process, the second part of the proposed algorithm. Four categories of excessive
nodes identified from a study on the characteristics of hidden nodes in oversized networks are
detected and pruned from the network. After pruning, the network is retrained to obtain the
finalized network which is expected to be an optimal or nearly optimal one. With respect to
previous works, the proposed algorithm has advocated a dynamic way to construct the
required network and successfully taken use of the advantages from network growth and net-
work pruning, which are two common approaches to obtain a suitable network size, to
achieve fully automatic design of BP networks. The effectiveness of the proposed algorithm
has been demonstrated through various experiments.

4
. I

Dynamic Construction of BP Networks、

ACKNOWLEDGEMENTS

It is a pleasure to express my sincere thanks to my supervisor, Dr. T. Lee, who spent so
much effort to shape me in various aspects throughout the course of this research. I am
deeply indebted to him for his constant guidance, valuable advice and patient reading of this
thesis as well as other manuscripts.

I am grateful to my lovely brothers and sisters in Christ who support me in their prayers
consistently, namely, Amos Chan, Tommy Chau, Winky Lai, Po Li, Anthony Ng, Cara Chan
and Daisy Ngai. I also thank Jones Chui and Andrew Leung with whom I have had many
enlightening discussions.

Finally, I would like to express my deepest gratitude to my family for their understand-
ing and support throughout the past two years.

• . ”

Dynamic Construction of BP Networks

TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF TABLES viii

1 INTRODUCTION

1.1 Recent Resurgence of Artificial Neural Networks 1-1

1.2 A Design Problem in Applying Back-Propagation Networks 1-4

1.3 Related Works 1-6

1.4 Objective of the Research 1-8

1.5 Thesis Organization 1-9

2 MULTILAYER FEEDFORWARD NETWORKS (MFNs) AND BACK-PRO-
PAGATION (BP) LEARNING ALGORITHM

2.1 Introduction 2-1

2.2 From Perceptions to MFNs 2-2

2.3 From Delta Rule to BP Algorithm 2-6

2.4 A Variant of BP Algorithm 2-12

3 INTERPRETATIONS AND PROPERTIES OF BP NETWORKS

3.1 Introduction 3-1

3.2 A Pattern Classification View on BP Networks 3-2

3.2.1 Pattern Space Interpretation of BP Networks 3-2

3.2.2 Weight Space Interpretation of BP Networks 3-3

• iii

Dynamic Construction of BP Networks

3.3 Local Minimum 3-5

3.4 Generalization 3-6

4 GROWTH OF BP NETWORKS

4.1 Introduction 4-1

4.2 Problem Formulation 4-1

4.3 Learning an Additional Pattern 4-2

4.4 A Progressive Training Algorithm 4-4

4.5 Experimental Results and Performance Analysis 4-7

4.6 Concluding Remarks 4-16

5 PRUNING OF BP NETWORKS

5.1 Introduction 5-1

5.2 Characteristics of Hidden Nodes in Oversized Networks 5-2

5.2.1 Observations from an Empirical Study 5-2

5.2.2 Four Categories of Excessive Nodes 5-3

5.2.3 Why are they excessive ？ 5-6

5.3 Pruning of Excessive Nodes 5-9

5.4 Experimental Results and Performance Analysis 5-13

5.5 Concluding Remarks 5-19

6 DYNAMIC CONSTRUCTION OF BP NETWORKS

6.1 A Hybrid Approach 6-1

6.2 Experimental Results and Performance Analysis 6-2
. iv

Dynamic Construction of BP Networks

6.3 Concluding Remarks 6-7

7 CONCLUSIONS 7-1

7.1 Contributions 7-1

7.2 Limitations and Suggestions for Further Research 7-2

REFERENCES R-1

APPENDIX

A.l A Handwriting Numeral Recognition Experiment: Feature Extraction A-1
Technique and Sampling Process

A.2 Determining the distance d = 5̂ /2r in Lemma 1 A-2

、
V

Dynamic Construction of BP Networks

LIST OF FIGURES

Figure 1.1 Nonlinear activation functions employed by ANN models 1-2
Figure 1.2 A three-layer feedforward network 1-4
Figure 2.1 The perceptron model 2-3
Figure 2.2 The perceptron in 2-D Euclidean space E^ 2-4

Figure 2.3 Linear partitions of four points in 2-D Euclidean space 2-4

Figure 2.4 Sigmoid function f(x) with different smoothness factors : dotted line for 2-6
r=0.25, solid line for and dashed line for t=4

Figure 2.5 Flowchart of the BP algorithm 2-11
Figure 3.1 (a) The Exclusive-OR problem separated by two solution nodes HI & 3-3

H2. (b) Hidden patterns formed by the two solutions are linearly separ-
ated by an output node LI.

Figure 3.2 A two-dimensional sample weight space with solution region Rg 3-5

Figure 3.3 Error surface in the weight space 3-6
Figure 4.1 Flowchart of the progressive training algorithm 4-7
Figure 4.2 Number of hidden nodes generated by the progressive training : iV-bit 4-9

parity problems
Figure 4.3 Generalization performance comparison of standard BP and progressive 4-10

training: the IRIS data training sets
Figure 4.4 Number of hidden nodes generated by the progressive training : the IRIS 4-11

data training sets
Figure 4.5 Learning speed comparison of standard BP and progressive training : 4-11

the IRIS data training sets
Figure 4.6 Generalization performance comparison of standard BP and progressive 4-13

training : the handwriting numeral training sets
Figure 4.7 Number of hidden nodes generated by the progressive training : the 4-13

handwriting numeral training sets
• vi

Dynamic Construction of BP Networks

Figure 4.8 Learning speed comparison of standard BP and progressive training : 4-14
the handwriting numeral training sets

Figure 5.1 An 1-D classification example where patterns Xi’X2&Xs belong to class A 5-3

and patterns x^Soĉ belong to class B
Figure 5.2 (a) The weight space representation of the 1-D example consisting of ten 5-4

regions (R1 to R5, Rl，to R5'). (b) Decision hyperplanes in the input
pattern space corresponding to each of the ten weight region with H3 &
H5* denoting a set of solution nodes.

Figure 5.3 Hidden patterns formed by a solution node 5-7
Figure 5.4 Hidden patterns formed by two solution nodes that can be separated by 5-7

an output node LI
Figure 5.5 Linearly non-separable hidden patterns formed by a solution and (a) a 5-8

non-contributing node, (b) a duplicated node, (c) an inversely-duplicated
node, and (d) an inadequate node

Figure 5.6 Linearly separable hidden patterns formed by two solution nodes and 5-9
one inadequate node

Figure 6.1 Flowchart of the hybrid algorithm 6-2
Figure 6.2 Number of hidden nodes generated by the hybrid algorithm : iV-bit par- 6-3

ity problems
Figure 6.3 Number of hidden nodes generated by the hybrid algorithm : the IRIS 6-4

data set
Figure 6.4 Number of hidden nodes generated by the hybrid algorithm : the hand- 6-5

writing numeral data set
Figure 6.5 Generalization performance of the hybrid algorithm : the IRIS data set 6-5
Figure 6.6 Generalization Performance of the hybrid algorithm : the handwriting 6-6

numeral data set
Figure A.2.1 Schematic illustration of Lemma 1 ’ s proof A-3

vii

Dynamic Construction of BP Networks

LIST OF TABLES

Table 4.1 Sensitivity of scale-up factor C (STEADYE=50) 4-15

Table 4.2 Sensitivity of STEAD YE (�=10) 4-16

Table 5.1 Sensitivity of threshold parameters to pruning 5-13
Table 5.2 Node pruning simulation results of IRIS data set 5-15
Table 5.3 Node pruning simulation results of handwriting numeral data set 5-16
Table 5.4 Generalization performance before and after pruning 5-18
Table 5.5 Generalization performance before and after pruning (50-hidden-node 5-18

networks)

Table 6.1 Network construction process using different sets of parameter values 6-7

. viii

,Dynamic Construction of BP Networks

1 INTRODUCTION

1.1 Recent Resurgence of Artificial Neural Networks

Today we can build digital computers that perform a variety of well-defined tasks with
celerity and reliability unmatched by humans. No human can accomplish mathematical oper-
ations such as matrix inversions and solving systems of differential equations at speeds com-
petitive with modem workstations. Nonetheless, many problems remain to be solved to our
satisfaction by any man-made machine, but easily disentangled by the perceptual or cognitive
powers of humans, or even fish and insects. No computer vision system, even a highly soph-
isticated one, can rival the human ability to analyse scenes characterized by objects of all
shapes, orientations, and perspectives under a wide range of conditions. Humans effortlessly
recognize objects in diverse environments and lighting conditions, even when obscured by
dirt, or occluded by other objects. Our brains accomplish this by utilizing massive parallel-
ism, with millions and even billions of neurons in parts of the brain working together to per-
form complicated tasks.

Thus, it is reasonable to consider solving certain problems by designing naturally
parallel computers, which process information and leam by principles borrowed from the
nervous systems of biological creatures. The point of convergence between biological nerv-
ous systems and artificial neural networks (ANNs) is that each typically consists of a large
number of simple elements that leam and are able to collectively solve complicated and
ambiguous problems. In fact, ANNs have been studied for many years in the hope of achiev-
ing human-like performance. It is until 1980s, with the success of new network models and
learning algorithms [1-5], the field exploded. Experts from diverse disciplines such as
physics, psychology, mathematics, engineering and computer science have been attracted to
join the emerging field of ANNs. Therefore, rigourous and fascinating research works that
lead to important discoveries and in-depth understanding of ANNs can be expected in the
near future.

Artificial neural networks go by many names such as connectionist systems, neural
. Page 5-1

,Dynamic Construction of BP Networks

computers and parallel distributed processing systems. Whatever the name, all ANN models
compose of simple neuron-like computational elements called nodes connected by links with
variable weights. Each node has a "state" or "activation value" that is determined by the
input received from nodes, including itself, in the network. One common, simplifying
assumption is that the combined effects to a node j, which is called the "net input" of J, is
usually taken to be a linear function of the states of the nodes that provide input to it，that is,

netj = S WjiXi + Qj (1.1)

where Xi is the state of node i’ Wji is the weights connected from node i to node j and Qj，

which can be considered as another weight from a node with fixed state at 1, is the threshold
of node The state of node j is typically defined to be a nonlinear function of its net input
netj. Figure 1.1 illustrates three common types of nonlineaiities employed by ANN models;
hard limiters, threshold logic, and sigmoid function. Knowledge of ANNs is built up by
where the connections are and by their weights, so learning takes place by modifying the
weight values and/or changing their interconnections.

fh(x) ft(x) fs(x)
+1 +1 —— + 1 —

0 X 0 X 0 X
1

Hard Limiter Threshold Logic Sigmoid

Figure 1.1 Nonlinear activation functions employed by ANN models

Neural network models are usually specified by their topologies and learning rules.
Roughly speaking, they can be divided into three categories with each based on different
philosophy. In feedback networks [1,6], the input pattern defines the initial state of the feed-
back system, and after state transitions the asymptotic final state is identified as the network's
output. Among this category of network models, Hopfield's associative memory model [1]

. Page 5-2

,Dynamic Construction of BP Networks

should be the most well-known one. The second category is characterized by its self-organiz-
ing nature. Neighbouring nodes in the network compete in their activation values by means
of mutual lateral interactions, and develop adaptively into specific detectors of different
patterns. Important theories on this category were pioneered by Kohonen with his work on
Self-Organizing Feature Map (SOFM) [3] and Grossberg with his development on Adaptive
Resonance Theory (ART) [7-9], The last category is the feedforward networks [4,10,11]
which map sets of input patterns into sets of output patterns. The desired input-output mapp-
ing is usually determined by external, supervised adjustment of the network's weights. With-
out any doubt, the Back-Propagation (BP) networks, as formulated by Rumelhart et al. [4],
may well be recognized as the most widely-used feedforward type model. In this thesis, we
will concentrate on this type of ANNs.

The BP network is a hierarchical design consisting of fully interconnected layers of
nodes. A three-layer network is shown in Figure 1.2. The layer receiving training patterns is
called input layer while the one generating outputs for the network is called output layer. All
layers in between are the hidden layers. The operation that BP networks are intended to carry
out is approximating a bounded function f:S cIV" from a compact subset S of w-di-
mensional Euclidean space to a bounded subset f(S) of m-dimensional Euclidean space, by
means of training on examples (x!，ŷX fe,^2),…，fe,yk),... of the mapping, where ŷ
As pointed out by Robert Hecht-Nielsen [30], the BP network is one of the most important

historical developments in ANNs. Today, it is a mainstay of the field.

�

. Page 5-3

,Dynamic Construction of BP Networks

N e t w o r k ' s O u t p u t s

k • • • • Q J) O u t p u t L a y e r

Interconnecting
Weights W(kj)

j C) C j • • • • H i d d e n L a y e r

Interconnecting
X Weights W(ji)

i ^ ^ • • • I n p u t L a y e r
本 本 本 ^̂ \

I npu t P a t t e r n X p

Figure 1.2 A three-layer feedforward network

1.2 A Design Problem in Applying Back-Propagation Networks

Since the promulgation of BP networks by Rumelhart et al. [5] in 1986, successful
applications of the model to diverse areas such as phoneme recognition [12], machine vision
[13], channel equalization [14] and system identifications [15] have been frequently reported.
In the context of pattern classification for example, the performance of BP networks was
found superior to that of the traditional statistical classifiers like Bayes, nearest-neighbor, and
minimum-mean-distance [16,17,18]. The model not only offers better classifications on ordi-
nary training data, but also works well with noisy data and in cases that only limited amount
of training samples is available [17]. Despite of its success in various applications, the model
itself is not free from problems. Three issues always bring researchers into discussions and
they are (i) the learning speed, (ii) the problem of local minimum and, (iii) the structural
requirement for a particular task.

. Page 5-4

Dynamic Construction of BP Networks

Back-propagation learning was found too slow in some applications [19]. Furthermore,
it scales poorly as the tasks grow larger and more complex [22]. Bundles of modified or new
algorithms have been proposed to tackle this problem (see, for example, [19-22]), however,
world-wide agreed optimal algorithm has not yet come. Another difficulty inherent in the BP
learning is that it sometimes falls into a local minimum of the objective error function. How-
ever the problem is frequently ignored [29,53] and only a few investigations [28,43,53] have
been appeared so far. Since the problem of local minimum is not the focus of this section, it
will be recalled later on in Section 3.4.

A design problem that is often confronted in the application of BP networks is "how
large is the network required to perform a particular task ？Consequently, one may think of
the following questions :
• How many layers should be used ？

• How to set the number of input and output nodes ？

• How many hidden nodes are needed ？

Recently, Homik et al. [26] and Funahashi [27] have showed that BP networks with as
few as one hidden layer which have sigmoid output functions can approximate virtually any
function of interest, provided sufficiently many hidden nodes are available. This also
implies that failures in applications can be attributed to inadequate training or insufficient
number of hidden nodes rather than the capability of the network itself. In fact, many of the
successful applications employed networks with one hidden layer only [16,17,25]. There-
fore, three-layer networks with one for each of input, hidden and output nodes are good
enough generally. Setting the number of input nodes however is quite a passive task because
it depends on the feature representation of the problem, and hence the number of input nodes
is usually set equal to the number of features. In some applications, determining the number
of output nodes is trivial, for example, one output node is employed by time-series prediction
[23], and for image compression, the number of output nodes must be equal to the number of
input nodes [24]. The cases in pattern classification are somewhat different and two strat-
egies are commonly adopted. One is that it is set equal to the number of pattern classes with
each pattern class represented by one output node. Another strategy takes use of the binary

. Page 1 -5

,Dynamic Construction of BP Networks

representation of pattern classes and only requires logjW output nodes for m pattern classes.
As pointed out by Rajavelu et al. [25], the former strategy has an advantage of improved con-
vergence but costs more network resources. Determining the appropriate number of hidden
nodes perhaps is the major difficulty in applying BP networks. Practically speaking, one
would rather overestimate than underestimate that number as an undersized network may
never solve the problem (for example, the Exclusive-OR problem cannot be solved by a
single node network). However, oversized networks have two major drawbacks : (i) it is
well-known that, for a fixed amount of training data, networks with too many free parameters
do not lead to good generalization, i.e., the ability to recognize patterns which have never
been presented to the network before [31-33], (ii) the hardware realization is inefficient since
more connections are required for larger networks. Therefore, attaining a BP network that is
optimized with both the network size and performance is indeed essential to the applications
of BP networks and is the central theme of this thesis.

1.3 Related Works

Recently, the network design problem stated in last section has received considerable
attentions. One common approach to tackle the problem is to start with an oversized network
and unnecessary nodes and links in the converged network are then removed afterwards. The
difficulty of this network pruning approach is to identify those nodes and links to be removed
while the network performance would not be significantly impaired due to the removals.
Various methods have been proposed to accomplish this reduction, for example, several
researchers [34,35] suggest to add an extra error term such as a function of the squared out-
puts of the hidden nodes [34] to the usual error function in order to cause non-essential links
and nodes to decade away during the optimization process. The problem with this method, as
pointed out and supported by the experiments in [35], is that more local minima would be
introduced since two error landscapes are being added together and the solutions obtained
may partially satisfy each of the error terms. On the other hand, Mozer and Smolensky [36]
have introduced the idea of estimating the sensitivity of the error function to the elimination

. Page 5-6

,Dynamic Construction of BP Networks

of each node. Le Cun et al. [38] have independently developed a similar technique which
operates on individual links instead and judiciously applies the second-derivative information
of the objective error function to compute the sensitivity number for each link. The nodes or
links with small sensitivity number, i.e. those contributing least to minimize the error func-
tion, are then pruned from the trained network iteratively until the pruning process would
increase the error significantly. Unfortunately, precisely when to stop pruning is unclear and
hence the performance of pruned network could be severely degraded without appropriate
stopping criteria.

Another approach to handle the network design problem is by network growth
[39,41,42]. In contrast to network pruning, this approach starts with a small network and
allows it to grow by adding new nodes one by one in order to follow the peculiarities of train-
ing data. A major difficulty of this approach is how to add nodes effectively in such a
manner that it can be guaranteed to converge. Interesting enough, many of the existing
algorithms came from the works of theoretical physicists [39,41]. In [39], Mezard and Nadal
propose a Tiling algorithm that adds nodes layer by layer onto the network's outputs. The
most recently built layer gives a strictly better approximation of the desired outputs than the
previous one, so eventually it gives the exact mapping. Nodes in the network are character-
ized by the hard-limiter non-linearity and each new node is generated through the Pocket
algorithm, a variant of Perception algorithm [45]. The Upstart algorithm proposed by Frean
[41] adopted a different way to construct the network. New nodes are interpolated between
the input and output layer and each node takes on the unipolar hard-limiter activation func-
tion, producing either 0 or +1 output. The key idea of this algorithm is that a node can build
other nodes to correct its mistakes. For example, if a node is "wrongly ON" (actual output is
1, but desired output is 0) for some patterns, it could be corrected by a large negative weight
from a new node, which is ON only for those patterns. Likewise "wrongly OFF" (actual out-
put is 0，but desired output is 1) mistakes could be corrected by using positive weight. Hence
if the output nodes make errors, new hidden nodes are generated successively until the
desired mapping is achieved. Again, a Perceptron-type algorithm was used to learn the inter-
connecting weights. Although these two algorithms are guaranteed to converge, they have

. Page 5-7

r

,Dynamic Construction of BP Networks

been restricted to consider generating networks to perform Boolean input-output mappings
only and generalization to continuous mapping seems to be non-trivial. Fahlman and Lebierc
[42], from the computer scientist point of view, have also developed a Cascade-Correlation
learning algorithm which is quite similar to the Upstart algorithm except it works on net-
works composed of sigmoid nodes. Satisfactory performances are reported but no conver-
gence proof is provided.

Recently, Hirose et al. [42] attacked the problem by changing the network size
dynamically. The proposed algorithm simply adds nodes as the error no longer decreases.
Once the network converges, a hidden node is removed, and the network is trained again. If
the network converges again, another hidden node is removed. The procedure is repeated
until the network no longer converges. Although this is quite a brute force technique, mini-
mal networks are expected to construct without any guessing on the initial network size, even
an oversized one. However, a big missing of this algorithm is that the growth process lacks
of a convergence proof.

1.4 Objective of the Research

The objective of this work is to address the network design problem by devising an
automatic network construction algorithm to attain an optimal network that is minimal in size
and has good performance on both training and testing (unseen) data. Based on the argu-
ments stated in Section 1.2, we had confined our study to networks with one hidden layer
only and focused on determining the number of hidden nodes required to perform a particular
task. Two different approaches were chosen to pursue in this research. By network growth,
there is no need to guess the structure in advance and the required network is formed by a
node adding process. If nodes are added without appropriate guideline, infinitely large net-
works could be resulted. Therefore, we aimed at deriving a guaranteed convergence algo-
rithm that allows the network to grow from a small one and self-determine a reasonable
structure for the available training data. However with network growth, the number of
hidden nodes can only increase. In some cases, the number of hidden nodes might become

. Page 5-8

,Dynamic Construction of BP Networks

ridiculously large, so we had also opted for the network pruning approach and worked toward
to derive an effective pruning algorithm that would eliminate unnecessary nodes and links
while preserving the network performance such that an optimal or nearly optimal network
could be obtained. By network pruning alone, a prior knowledge of the task such as its com-
plexity is still required to predetermine a reasonably oversized network. Therefore, we
sought the possibility to combine these two approaches in order to complement the individual
weaknesses.

1.5 Thesis Organization

The thesis is made up of seven chapters. In this introductory chapter, a network design
problem in applying BP networks has been posed, and the objective of the research has been
stated. In the following chapter, the historical development of the architecture and learning
algorithm of BP networks is reviewed. Chapter 3 introduces two interpretations of BP net-
works which will serve as a conceptual tool to derive a network pruning algorithm in Chapter
5. In addition, the local minimum problem and generalization property of BP networks are .
discussed. Chapter 4 is devoted to describe our network growth approach. Based on the
characteristics of human learning and an observation of BP training, a progressive training
algorithm to construct a reasonably large network is proposed. The performance of the pro-
posed algorithm is reported and evaluated through various experiments. In Chapter 5，a
study on the characteristics of hidden nodes in oversized networks, which leads to a new
node pruning algorithm, is presented. Four categories of excessive nodes are identified from
the results and an insight to why they are suitable candidates for pruning is also provided.
The experimental results and performance analysis of the proposed node pruning algorithm
are described at the end of the chapter. Chapter 6 advocates the idea to combine the proposed
network growth and network pruning algorithms in order to dynamically construct the BP
networks. The effectiveness of the proposed hybrid algorithm is demonstrated through van-

. Page 5-9

Dynamic Construction of BP Networks

ous experiments. The last chapter concludes the thesis by summarizing the contributions and
limitations of the present work, and finally suggestion on potential areas for further research
is given.

• . Page 1-10

Dynamic Construction of BP Networks

2 MULTILAYER FEEDFORWARD NETWORKS (MFNs) AND
BACK-PROPAGATION (BP) LEARNING ALGORITHM

2.1 Introduction

Back-Propagation (BP) network is named after its learning rule — BP algorithm [4].
In fact, BP has a strong historical background. Apparently, it was first developed by Paul
Werbos [46] in 1974, as part of his Ph.D. thesis "Beyond regression : New tools for predic-
tion and analysis in behavior sciences"; and independently rediscovered by David Parker [47]
in 1985 and by David Rumelhart, Geoffrey Hinton and Ronald Williams [4] in 1986. A
mathematically similar recursive control algorithm was presented by Arthur Bryson and Yu-
Chi Ho [48] in 1969. Notwithstanding its checked history, there is no question that credit for
developing BP into a usable technique, as well as broadcasting the algorithm to diverse
audience, rests entirely with Rumelhart and his "PDP group" members [5]. Before their
work, BP was unappreciated and obscure. On the topological side, BP network employs a
multilayer feedforward structure which can be traced back to Nilsson's description of the
layered machine [44] in 1965. Unfortunately, no practicable learning algorithm was avail-
able for such machines at that time. In this chapter, we will go through the historical devel-
opment of such a fascinating artificial neural network (ANN) model in order to complete the
presentation of the thesis. Those who are acquainted with the BP network may skip this
chapter without any difficulty to understand the materials presented in the following chapters.
Section 2.2 is devoted to describe the transcendency of the classical Perceptron model [45] to
the more complex multilayer feedforward network (MFN). The delta rule for Perceptron
learning and its extension to yield the BP algorithm are described in Section 2.3. The

‘ momentum strategy [4] which is a wide-spread variant of the BP algorithm to improve the
learning speed is described in Section 2.4.

Page 2-1

• . •

,Dynamic Construction of BP Networks

2.2 From Perceptrons to Multilayer Feedforward Networks

One of the most exciting developments during the early days of pattern recognition was
the Perceptron [45], the idea that networks with layer(s) of Perceptron-like elements might be
able to leam how to recognize and classify patterns in an autonomous manner. Correspon-
dingly, one of the severe setbacks of early pattern recognition was the realization that simple
single layer networks were inadequate for that purpose, and that multilayer ones lacked
effective learning algorithms. Nevertheless, the Perceptron and the layered machine
described by Nilsson [44] provided a solid conceptual base for further work in ANNs.

A Perceptron can be represented schematically in the form of an array of multipliers
and summing junctions cascaded with a hard-limiter, as shown in Figure 2.1. In that illustra-
tion, the components of the input pattern X^ = [x冲;Cp- • ^x^J are multiplied by a set of
coefficients, the weight vector W = [w!，vvj,. • . ， w j and a unit input is multiplied by the bias
weight 0. The sum of these weighted inputs is fed to the hard-limiter producing a binary 土 1

output. Mathematically, the Perception's output due to input pattern X^ is defined as
f n \

yp = sgn Zx^fWi + e (2.1)
� � = i 乂

where sgnOc) is the signum function. The components of Xp may be either continuous analog
values or binary values. The weights are essentially continuously variable, and can take on
negative as well as positive values.

. Page 5-2

• 丨

Dynamic Construction of BP Networks

Fixed Input 1
Input Xpi
Pattern wr""̂̂"""""̂-̂̂ ^̂：：：：：：：：：̂^̂ ~ _

Xp — i j r

Xpn

Figure 2.1 The perceptron model

A conventional technique for analyzing the behavior of Perceptrons is to plot the deci-
sion regions created in the multidimensional space spanned by the input patterns. These deci-
sion regions specify which input patterns result in a class A and which result in a NOT class
A response. Due to its linear nature, the Perceptron forms two decision regions separated by
a hyperplane. Figure 2.2 exemplifies how a Perceptron separates the 2-D input pattern space.
The separating hyperplane (line) is defined by

+义1 冰1 + Wo = 0 (2.2)

with the three weights w。，Wi, and determining the slope, intercepts, and which side of the
separating line corresponds to a +1 or -1 output. In this example, the Perceptron classifies
pattern as one class with -1 output and patterns 叉2，叉3，and X4 as the other class having +1
response. There are 2*= 16 different ways to categorize the four patterns in the 2-D space.
However, only 14 of which can be implemented by the Perceptron, as shown in Figure 2.3
with each of the seven hyperplanes representing two opposite ways to classify the input pat-

Page 5-3

,Dynamic Construction of BP Networks

tems. The other two cases are the well-known Exclusive-OR problems which have been used
extensively (see, for example, [49,50]) to illustrate the inability of the Perception to solve
nonlinear problems.

丨 / Xi / X2

7 .

/ X3 X4

T ^ � ‘

Figure 2.2 The perceptron in 2-D Euclidean space E:

r v - 一

藝
Figure 2.3 Linear partitions of four points in 2-D Euclidean space E^

. Page 5-4

,Dynamic Construction of BP Networks

Owing to its severe limitations, the Perceptron was generalized to form the multilayer
feedforward network which consists of sets of Perceptron-like elements called nodes
arranged in layers. An example of this structure has already been shown in Figure 1.2. The
network would have an input layer, an output layer, and any number of hidden layers in
between. Let Opj denote the output states of each node j due to pattern p. Then the output of
node j is determined from output states of nodes i in the previous layer via the connecting
weights Wji, i.e”

where
n忍尸 I w � • � + e) (2.4)

V-T^ (2.5)

Like Perceptron, the bias term is usually treated as a normal weight component by assum-
ing that it is a connection to an augmented node with output fixed at 1. The smoothness fac-
tor t determines how smooth the sigmoid function f(x) is, and is usually set to one [4]. As t
tends to zero, the sigmoid resembles the hard limiter, whereas a high value of t results in a
more gently varying function. These are illustrated in Figure 2.4. The outputs of each layer
are then fed to the input of higher layer and so on till the outputs are obtained. As a result,
the functional form created by the MFN is a hierarchical sigmoided linear combinations of
sigmoids which has been shown in [26,27] capable to approximate virtually any function of
interest even the network under considerations consists of one hidden layer only. Although
Nilsson [44] envisaged the capability of MFNs in solving hard problems more than twenty
years ago, it is until the recent introduction of BP learning algorithm that such a powerful net-
work can be trained effectively.

. Page 5-5

,Dynamic Construction of BP Networks

^ . / . 广 Z 一 1
0.9- \ /
0.8 _ \ / -
0.7- I / •
0.6- |/ .

S 0-5- 1 ‘
0.4 - / \ •

/\ .
0.2 • / / /

。.l- ..•乂J、 •
^ ... , 1
？15 -10 -5 0 5 10 15

X

Figure 2.4 Sigmoid function f(x) with different smoothness factors : dotted
line for /=0.25, solid line for t=l, and dashed line for t=4

2.3 From Delta Rule to Back-Propagation Algorithm

One of the predominant features of ANNs is "learning by examples". During the learn-
ing process of Perceptron, input patterns X^ and corresponding desired responses t̂ are pres-
ented to the Perceptron. An adaptation algorithm automatically adjusts the weights so that
the output responses y, to the input patterns will be as close as possible to their respective
desired responses. Such a Perceptron learning algorithm was first developed by Rosenblatt
[45]. The connection weights are designed to adapt only when an error occurs. Specifically,
the rule for changing weights following the presentation of input pattern X^ is given by

(2.6)

where T] is a positive gain fraction less than one. Since tp and y^ take on the value of [+1，-1]’
weights are unchanged if correct decision is made by the Perceptron. One problem with this
learning rule is that the separating hyperplane may oscillate continuously when input patterns
are not linear separable. The Widrow-Hoff delta rule or IMS algorithm [51], which is well-
known to the signal processing community, modifies the Perceptron learning rule to a
steepest descent type algorithm to find a least mean square (LMS) solution for the model.

. Page 5-6

,Dynamic Construction of BP Networks

The solution minimizes the half mean squared error between the desired response and the
actual output, Le”

E 如 - y ， (2.7)

The derived weight adjustment rule is identical to equation (2.6) except the hard-limiter of
the model is by-passed. Weights are thus corrected on every pattern presentation by an
amount that depends on the difference between the desired response and the actual output

Similar in spirit to the delta rule, the BP algorithm was designed to find a LMS solution
for the MFN. Therefore, it is also termed as the generalized delta rule. Following the func-
tional form of MFNs, the weight adjustment rules could be derived as follows and such a
derivation is just a recapitulation of that in [4]. Let

(2.8)

and
(2.9)

p

be the total half squared error between the desired response tp̂ and the actual output Opt of all
the k output nodes due to the p-th pattern and due to all input patterns respectively. Applying
the steepest descent process to minimize Ep, we have the interconnection weights being
changed proportional to the derivative of the error measure with respect to each weight, Le.,

A , � - (2 . 1 0)

where T] determines the proportionality and is usually called the gain factor. Rewrite equa-
tions (2.3) & (2.4) for output node as

(2.11)
and

号〜Opj (2.12)

. Page 5-7

,Dynamic Construction of BP Networks

respectively. Note that the bias term 0) in expression (2.4) has been included as a normal
weight in expression (2.12). The partial derivative dE^/dw ĵ can be evaluated using the chain
rule

站p __ 站p a n � (213)
dwkj 一 dnetpk ^^kj

Using expression (2.12), we obtain
� = A w 八 二 〜 (2.14) dWkj Mj J � P J

Now, let

= - 為 （2.15)

be a delta term of node k and expression (2.10) becomes
A , … S 力 y (2.16)

which is similar in form to the delta rule of expression (2.6).
To compute = -dEp/dnetp^, we use the chain rule again, that is,

= (2.17) P dnetpk dopkdnetpk

Using the expressions (2.8) & (2.11)，we have

g = 、 、 ） （2.18)

and

念 參 。 ） （2.19)

Hence,

各pk = (hk-Op�nnetpk� (2.20)

for all output node k and hence

他广〜)/>〜>" (2.21)

. Page 5-8

Dynamic Construction of BP Networks

The situations in the hidden layers are somewhat different. Rewrite expressions (2.3) & (2.4)
again for hidden node j as

Opj-finet^j) (2.22)
and

netpj = S ŷ jiOpi (2.23)

respectively. We have

A 啤

_ dEp dnet.j
dnetpj dwji
dEp

一 f _ 略 � \

昏 y—))〜 （2.24)

Since the outputs of hidden node J can contribute errors at all output nodes, the quantity
dEp 一 z dEp dnetp,
dopj k dnetpk dopj

J 1 a ^

= (2.25)

Hence, the delta term of hidden node j becomes
(2.26)

and the input-to-hidden interconnection weights are adjusted by the rule

= t{,(朋。Pp 八]。… (2.27)

Page 4-9

,Dynamic Construction of BP Networks

Since the delta terms at each output node k can be evaluated using expression (2.20), we can
then back-propagate these "errors" to the hidden layers and compute the expression (2.26) in
a straight-forward manner.
Furthermore, if the sigmoid function of expression (2.5) takes place, then

, (〜 = 衾 “ 〜 ） （2.28)

and the delta terms for the output and hidden nodes are computed as

Sp … - 。 爲 - V) (瑪

= （2.30)

respectively. Expressions (2.21) & (2.27) form the core part of the BP algorithm for training
MFNs. The network is trained initially selecting small random weights and then presenting
all training data repeatly. Weights are adjusted after every trail until the convergence criteria
is met. The flowchart for the BP algorithm is shown in Figure 2.5.

. Page 5-10

I 去 彼 中 S t 大 學 阁 耆 你 &

Dynamic Construction of BP Networks

Q START }

Set all weights to small
random values

Sequentially present pairs of
input pattern and desired
response to the network

Calculate the network's
outputs due to the current
input pattern using
equations (2.3) - (2.5)

Compute the discrepancies
between network's outputs
and desired responses, then
back-propagate these
"errors" to calculate ihe
delta terms at each layer

Update weights using
equations (2.21) & (2.27)

No
^ Converge �

I Yes
(E N D)

Figure 2.5 Flowchart of the BP algorithm

Page 2-11

,Dynamic Construction of BP Networks

2.4 A Variant of BP Algorithm

A variation which is frequently used to increase the learning speed is to modify the
weight adjustment rules to include a momentum term [4], i.e.,

= + oA^w.j (2.31)

where A^w ĵ is the change made to the weight w ĵ following the presentation of previous
input training pattern X^, a is the momentum factor that determines the relative contribution
of the past weight change to the current weight change. This strategy has been used through-
out the simulations of the research. The basic rationales behind the momentum strategy are
that when the weight derivative possesses the same sign consecutively, the learning rate for
that weight should be increased. When the sign of the derivative behaves in this manner, it is
frequently the case that the error surface at the current point in weight space along that weight
dimension possesses a small curvature, and therefore, continues to slope in the same direction
for some significant distance. By increasing the learning rate for that weight, the time
required for the value of this weight to traverse this distance can be reduced. On the other
hand，when the sign of the derivative alternates for several consecutive time steps, the learn-
ing rate should be decreased. This phenomenon is frequently the case that the current error
surface portion possesses a high curvature, and therefore, the slope of this area may quickly
change sign. In order to prevent from oscillating, the weight should be adjusted by a smaller
amount. As stated in [22], a speedup of a factor 2 to 3 might be expected by using the
momentum strategy.

. Page 5-12

Dynamic Construction of BP Networks

3 INTERPRETATIONS AND PROPERTIES OF BP NETWORKS

3.1 Introduction

One thing that ANNs have in common with human brains is that the internal organiz-
ation is obscured by the immense number of nodes (neurons) and links (synapses). They
work together in such a way that some desired global behavior is produced. However, one
would like to have a better understanding of the role that individual nodes (and their corre-
sponding links) play. Based on the classical pattern classification theory. Section 3.2 intro-
duces two interpretations of BP network which will be used to derive a node pruning
algorithm in Chapter 5.

Since BP is a gradient descent technique, the learning algorithm can get stuck in nearby
local minimum. It has been observed that networks with hidden layers can have local
minima in the error function when nonlinear functional nodes are used, causing the BP algo-
rithm to fail [4], however this situation has been largely downplayed and ignored [29,53]. In
Section 3.3, we discuss on this problem of BP networks and highlight existing approaches to
solve the problem. Although most of the research works in BP networks have concentrated
on improving the learning speed, an equally important feature of ANN is its generalization
performance. It is usually accepted that good generalization performance on real-world prob-
lems cannot be achieved unless some a prior knowledge about the task is built into the sys-
tem [31]. However, BP networks achieve this simply by learning from examples. In Section
3.4, we make a note on this property of BP networks and state a common belief that
minimizing the number of nodes and links in the network enhances generalization. The local
minimum problem and generalization property of BP networks will be referred from time to
time in the remaining chapters of the thesis.

Page 4-1

,Dynamic Construction of BP Networks

3.2 A Pattern Classification View on Back-Propagation Networks

In order to simplify the presentation of this section, a pattern classification problem
with /i-dimensional inputs and c classifications was assumed to be handled by a network hav-
ing n input nodes and c output nodes; each corresponds to one classification. Each output
node was considered as performing two-class classification by separating it from other
classes and the target values of class k input patterns were assumed to be greater than 0.5 for
output node k and less than 0.5 for other nodes.

3.2.1 Pattern Space Interpretation of BP networks

According to equation (2.4)，netpj is a linear discriminant function of pattern Opi and it

divides the pattern space of Opi into two regions by a hyperplane defined as

• � + e) = 0 (3.1)
i

It will be referred as a decision hyperplane. Consider a set of input patterns represented by
w-dimensionalEuclidean vectors in/?". A node in the hidden layer can then be considered as
a («-l)-dimensional decision hyperplane that divides the input pattern space into two regions
with one corresponding to output states >0.5 and the other <0.5. Also, the output state of
each node in the hidden layer can be regarded as the components of a vector. If there are h
hidden nodes, the hidden layer non-linearly transforms each Az-dimensional input pattern
vector into a /z-dimensional vector with component values between 0 & 1. For convenience
of distinction, those /i-dimensional vectors will be referred as hidden patterns. Similarly, the
output node divides the hidden pattern space into two regions by a (/z-l)-dimensional decision
hyperplane. In order to produce the desired output responses for each input patterns, class k
hidden patterns should be linearly separated from other classes by output node k for all L
Therefore, training of a BP network can be viewed as a problem of adjusting the decision
hyperplanes of hidden nodes such that the transformation implemented by the hidden layer
results in linearly separable hidden patterns at the output layer. Such an interpretation of BP
network can be exemplified by the Exclusive-OR problem as follows. Suppose a BP network

. Page 5-2

,Dynamic Construction of BP Networks

is trained to have hidden nodes' decision hyperplanes like those (HI & H2) in Figure 3.1(a).
The arrow of each hyperplane is pointing toward the region with output states >0.5 while the
other side corresponds to <0.5. If the smoothness factor, t is sufficiently small, the distribu-
tion of hidden patterns will be similar to those depicted in Figure 3.1(b). Thus, they can be
linearly separated by an output node LI which gives desired output states for all the four
patterns. A similar interpretation of BP networks can also be found in [50]. Brady et al. [29]
has also adopted this interpretation to study the local minimum property of BP networks.

1 HI

1 E3 Z X 1 "

y , \
0 ^ X � � • opi

\ Ll
(a) (b)

Figure 3.1 (a) The Exclusive-OR problem separated by two solution nodes HI & H2.
(b) Hidden patterns formed by the two solution nodes are linearly separ-
ated by an output node Ll.

3.2.2 Weight Space Interpretation of BP networks

The dynamics of BP networks may also be studied within the domain of weight space
[52,54] which is spanned by the weight components of each node in the network. Suppose
now that there is a set of patterns {3ci,3c2,...,3ĉ J in /T from class A & B and a single node is
used to classify them. A pattern x^ is classified correctly if o^j > 0.5 (i.e. netpj > 0) when x^

. Page 5-3

,Dynamic Construction of BP Networks

belongs to class A, and Opj < 0.5 (i.e. netpj < 0) when Xp is class B pattern. From equation
(2.4)

netpj^Wj'Op (3.2)

where Wj = [wji … 9 ^] & 7，= [；ĉi …Xp路 1]. Therefore each pattern Op defines a hyper-
plane in the (/2+l)-dimensional weight space on which

w J = 0 (3.3)

This hyperplane will be referred as a pattern hyperplane to distinguish from the decision
hyperplanes defined earlier. The pattern hyperplane would pass through the origin and
divides the weight space into two half-spaces. The half-space having weight vectors cor-
rectly classify Xp is called the proper region. For example, if Xp is from class A, the proper
region of its pattern hyperplane would consist of all weight vectors satisfying the condition
Wj-'Op > 0. The set of Po input patterns thus imposes Po constraints on the possible location
of a solution weight vector. The solution vector, if exists, must satisfy all the constraints is
therefore located in the intersection of proper regions of all hyperplanes. The intersection
region thus defines the solution region. If such a region exists, the patterns are said to be lin-
early separable and only require a single node to classify them. A two-dimensional example
in weight space representation is depicted in Figure 3.2. The proper region of each pattern
hyperplane is defined by the arrow on the hyperplane, thus the shaded region Rs is the sol-
ution region. Other regions correspond to different dichotomies of the patterns. Therefore,
such a weight space representation can be used to describe the characteristics of a node in
classifying input patterns. Note that the same representation can also be used to explore the
relationship between the output node and hidden patterns. However, it is convenient to study
the relationship between the hidden layer and the input layer through weight space represen-
tation while the relationship between the output layer and the hidden layer is explored in the
pattern space domain. This is the strategy adopted in Chapter 5 to study the characteristics of
hidden nodes in oversized networks.

. Page 5-4

Dynamic Construction of BP Networks

Wi

拳
Figure 3.2 A two-dimensional sample weight space with sol-

ution region R龙

3.3 Local Minimum

The problem of local minimum is one of the three critical issues of BP networks men-
tioned in the introductory chapter. It concerns with the question of whether the network may
get trapped in some local minimum or even at some stationary point, or perhaps oscillate
between such points. Under such circumstances, the network's total error E remains large
regardless of how many training iterations are carried out. This situation is depicted sche-
matically in Figure 3.3. In that figure, the total error E is plotted against a weight component
w. The objective of BP training is to find the weight but the steepest descent process
might get stuck at point or even at point w 咖 A common approach to deal with the
problem is to add noise to the optimization process which provides a means of escaping a
local minimum when encountered [2]. This approach requires a long convergence time, since
many of the parameter (weight) adjustments do not decrease but rather increase the error in
order to jump out of the potential local minimum regions. Baba [28] adopted this approach

Page 3-5

,Dynamic Construction of BP Networks

by suggesting to use the random optimization method to train the network and successful
results were reported. Another approach is to detect the occurrence of local minimum cases,
and to escape by adding more nodes to the network so as to enlarge the dimensionality of the
parameter (weight) space and hence provide more paths for the optimization process to con-
verge to the global minimum [43,53]. In fact, the network growth algorithm proposed in the
following chapter took use of the node adding mechanism on one hand to create the required
network structure and on the other hand to get rid of the local minimum problem.

Total
Error E

\r\J
\ I I I I I I
i 1 1 • w

^stationary ^local ^global

Figure 3.3 Error surface in the weight space

3.4 Generalization

Generalization is one of the capabilities expected for ANNs. It concerns with the abil-
ity to produce correct response when presented with patterns outside the training set Theor-
etical study has shown that the likelihood of correct generalization depends on the size of the
hypothesis space (total number of networks being considered), the size of the solution space
(set of networks that give good generalization), and the number of training examples [33]. If

. Page 5-6

,Dynamic Construction of BP Networks

the hypothesis space is too large and/or the number of training examples is too small, then
there will be a vast number of networks which are consistent with the training data, only a
small proportion of which will lie in the true solution space, so poor generalization is to be
expected. Conversely, if good generalization is required, when the dimensionality of the
hypothesis space is increased, the number of training data must also be increased

An illuminating analogy can be drawn between BP learning and curve fitting. When
using a curve model (say a polynomial) with lots of parameters compared to the number of
points, the fitted curve will closely model the training data but will not be likely to accurately
represent new data. On the other hand, if the number of parameters in the model is small, the
model will not necessarily represent the training data but will be more likely to capture the
regularity of the data and extrapolate (or interpolate) correctly. When the data is not too
noisy, the optimal choice is the minimum size model that represents the data.

From this analogy one may expect that minimizing the number of free parameters in the
network increases the likelihood of correct generalization. But this must be done without
reducing the size of the network to the point where it can no longer represent the desired
function.

. Page 5-7

Dynamic Construction of BP Networks

4 GROWTH OF BP NETWORKS

4.1 Introduction

In this chapter, the network growth approach to determine the number of hidden nodes
required to perform a particular task is pursued. In our network growth strategy, hidden
nodes are added one by one whenever they are needed during a well-ordered training process.
The proposed algorithm called progressive training starts training with a one-hidden-node
network and an initial training subset consisting of two input patterns only. The training
subset is then expanded by including one more pattern and the previously trained network is
trained again to cater for the new pattern. Such a process continues by progressively adding
more and more patterns to the training subset until all the available training patterns have
been taken into accounts. At each training stage, convergence is guaranteed and at most one
hidden node would be added to the previously trained network. Thus the proposed algorithm
can always find a solution network with finite number of hidden nodes for that particular
task.

This chapter is organized into six sections. The problem is firstly formulated in the
next section. Section 4.3 describes the basic rationale of the proposed algorithm and fol-
lowed by introducing the concept of learning an additional pattern by a previously trained
network. It proves that there exists an expanded-by-one solution network for both the
additional pattern and the original patterns. The concept is generalized in Section 4.4 and
from which the progressive training algorithm and its convergence proof are derived. Section
4.5 reports on the experimental results and the performance of the proposed algorithm is
evaluated. Concluding remarks are made in the final section.

4.2 Problem Formulation

We now formulate the problem more precisely. Suppose we are given a training data
set S = {3?1,3?2, •. -yXp) in E" and we want to find a A-hidden-node BP network producing the
set of desired outputs 5' = {?i，?2，. • .，?/J for each of the training patterns in S. The network

Page 4-1

,Dynamic Construction of BP Networks

under considerations here only has one hidden layer. Each node is characterized by the inter-
connecting weights and threshold leading to it. Let hidden nodes j(=i”..Jt) and output nodes
A:(=l”“�/n) have weight vectors Wj = {0；, W j i , • • Wĵ) and wj, = • •,w^J
respectively. For each of the input training patterns their outputs are obtained by the rules

/ n \
� = / S ¥ P ‘ H (4.1)

V = 1)
and

t ? � / f l w > " + e:] (4.2)

with the activation function/defined earlier in expression (2.5) as

/ w = - (4 . 3)
八,1+exp(-jc")

Recall that function/will take on the characteristics of a hard limiter if t tends to zero. The
task is accomplished by determining a proper value of h and the corresponding weight
vectors Wj and wj, such that complies with the desired output vector for all p.

Before proceeding to the following sections，let us formally define the term solution
network which has already been used previously and will be employed frequently later on.

Definition 1 : Let S = {3?i,3?2，. • be a /vpattem training data set in 丑”.A solution net-

work of S is defined as the trained network whose output vectors are conformed with the

desired output vectors for each of the training patterns Xp in

4.3 Learning an Additional Pattern

A common characteristic of human learning is that it is easier to leam with smaller set
of examples first and based upon which knowledge is accumulated gradually. Hence it is
also reasonable to train the ANNs firstly with a small portion of the available training data
and then progressively leam more and more using the previously trained networks. This
strategy not only eases of learning but also provides a mechanism for the network to grow as
the complexity of the training patterns increases. In this section, we concentrate on how a

. Page 5-2

,Dynamic Construction of BP Networks

trained network is modified in order to leam an additional pattern. In fact, the BP algorithm
has been observed to converge quickly when it is applied to update a network to account for
an additional training pattern [4]. Two outcomes of the updating exercise are possible. The
BP algorithm converges successfully in which case the updating exercise is accomplished.
Conversely, we can add a sub-network to handle the added pattern while keeping the original
network to handle the old data. The simplest sub-network would be a single node in the
hidden layer and we will show that it is capable to compensate for the introduced error if the
added pattern is chosen in a special way.

Let us now give the proof. Without loss of generalization, the lemma and theorem
given in this chapter assume that the activation function of each node is characterized by the
hard limiter for presentation simplicity.

Lemma 1 : Given a new p a t t e r n a n d a /z-hidden-node solution network of a /-pattern

training subset Si, there exists a (/i+l)-hidden-node solution network for the (/+l)-pattem
training subset = +1} if 11+il I � 1 1 I g Furthermore, one can construct
explicitly one such network by simply assigning deterministic values to the connection
weights and thresholds.

Proof : Let = r and m i n - I =5. Construct a closed hypersphere

C(o,r) in E" with radius r and center at the origin o. Since ||7/+ill >11 ,̂11 g 5/, 5/ is
contained by C(p,r) andjC/+i lies on the surface of C(o,r). Construct another closed hyper-
sphere C(X/+i,5) in E" with radius 5 and center at and let I in E" be the set of elements
that characterizes the surface intersection of C{o,r) and C(7/+i,5). Consider now a tangent
hyperplane H = {x: ： ? / + 1 = 0} in E" to C(o,r) at The distance between H
and any element in I will be d (see Appendix A.2 for mathematical derivation). If H is
translated onto the origin with distance less than d to //’ = { 义 ： 一 巧 一 " 7 j = 0
where 0 < a < 1} which partitions E" into two open halfspaces, i.e., //+={jc:
3?/+1.3?-??+1�1_字)>0} and = 3?/+i -？?+i�l-7) <0} where 0<a<l, all patterns
of Si will be in Hi while the new pattern 3c/+i will be in H;. Therefore, a new hidden node.

. Page 5-3

,Dynamic Construction of BP Networks

with weight vector and threshold e ^ i = -J?+i�l 一 w h e r e 0<a<l, can be added
to the original /i-hidden-node network such that it will not respond, i.e. producing zero out-
put, to those patterns in except the new pattern Xi+i. As a result, this (/i+l)-hidden-node
network maintains the desired outputs for the original training subset 5； no matter what
values the connection weights between the new node and output layer w^̂ +̂d are. Further-
more, desired outputs for the new pattern Xi+i can be obtained from this enlarged network by
setting

一 • 全 1 v v > _ + e，* (4.4)
y = 1

for all it=l’"”m where 广 represents the inverse of/.
Q.E.D.

Note that this proof holds true for any desired one-to-one or many-to-one continuous
mapping Xp where € a n d ? ^ e/？‘".

4.4 A Progressive Training Algorithm

Lemma 1 has provided a solid conceptual basis for the development of a new network
growth algorithm — progressive training. By generalizing Lemma 1, a one-hidden-node net-
work is initially used to leam a (/=2)-pattern training subset. Upon convergence, the solution
network is used to leam one more pattern and the updating strategy described earlier is
applied. According to Lemma 1, at most one hidden node would be added to the original net-
work if the magnitude of the added pattern is larger than that of previously learned ones. By
conforming with the magnitude requirement, the updating exercise can be repeatly performed
so as to leam all the available training patterns. In other words, the progressive training algo-
rithm takes on a fixed training sequence in which patterns are ordered in ascending magni-
tude and the first two patterns are chosen as the initial training subset. A convergence proof
of the proposed algorithm is given below.

. Page 5-4

,Dynamic Construction of BP Networks

Theorem 1: Let 5 = {3?i，3?2，. • • ’ � be a /vpattem training data set in E \ A (po-l)-hidden-

node network is capable to produce the desired outputs for each of the training patterns Xj, in
S.

Proof : Consider that the elements of S are sorted in ascending magnitude order, i.e”
ll?ill Îl3c2ll <---<||3cJ|. Let52 = {3ci,3c2}• A one-hidden-node solution network of 52
can be constructed as follows : Let h denote the single hidden node. Set ̂ and such that
h produces a zero output for Xi and a unit output for ‘ Obviously, any w^ and 9；, imple-
menting a separating hyperplane H = {x: W;,-3c + 9a = 0} of x^ and X2 such that X2 is con-
tained in //+ = { 义 ： a n d JCj is contained in IL = {x: can
achieve this objective. Now, for each of Xi and X2, the corresponding output at each output
node k would be

心=/(e，j (4.5)
and

心=/(w’a + eY) (4.6)
In order to produce the desired outputs for x^ and 3?2，the values of connection weights
and thresholds are selected as

e，广广(fj (4-7)
and

(4.8)
Hence, a one-hidden-node solution network has been built for the two-pattern training data
set S2. By Lemma 1, an expanded-by-one solution network can always be found for each
new pattern chosen in order from {x^yx^," -.Xp) which is a 07o-2)-pattem data set. As a
result, a (po- l)-hidden-node solution network of S will be obtained.

Q.E.D.

. Page 5-5

,Dynamic Construction of BP Networks

Theorem 1 provides the theoretical upper bound on the number of hidden nodes con-
structed by the proposed algorithm. Clearly one would like to generate a network with mini-
mal architecture. Having this in mind, we must consider when a new hidden node should be
added. A reasonable approach to achieve this is to monitor the total error E as defined in
expression (2.9). If it does not decrease by a reasonable amount after a prescribed number of
training cycles, a new node is added. This strategy was adopted by the progressive training
algorithm. In addition, we have to consider how a new hidden node is added. In fact,
Lemma 1 has offered a skeleton to do so and the major concern here is to replace the hard
limiter assumed in Lemma 1 by the usual sigmoid function taken by BP networks. Following
the idea of the proof, if the total error E no longer decreases, the previously trained network is
restored to handle the old data and a new hidden node h+\ is added and initialized to mar-
ginally separate the added pattern from the old patterns, that is

(4.9)

e“i=-J?+i， （4.10)

and the weights connecting the new hidden node to the output layer are simply initialized by
equation (4.4). Thus hidden node /z+1 will produce a 0.5 output for pattern ？/+i and some
small positive values (<0.5) for the other patterns. This requires the BP algorithm to further
adjust the network's weight so as to find a solution network. However, BP is a steepest
descent type algorithm, it does not guarantee to find a global minimum solution. Therefore, a
further step is designed to ensure convergence. It scales up the magnitudes of ŵ +̂i and
if the previous weight initialization does not lead to find a solution network, i.e.,

and

e“ i=-C 礼 （4.12)

whe re� specifies the scale-up factor and r is the frequency of scale-up request. Thus the sig-
moid function of hidden node h+\ may eventually act like a hard limiter which in turn will
produce negligible outputs for the trained patterns and hence convergence is guaranteed. The

. Page 5-6

,Dynamic Construction of BP Networks

flowchart of the progressive training is shown in Figure 4.1.

Q START)

Compute the training
sequence and choose the firsi
two patterns as the initial
training subset
Generate a one-hidden-node
network

" ~ ~ l l Apply BP training

t N o
CT squared e r r o t ^

^ ^ A d d ^ v ^ No
we^nis f V < n ^ e p r e v . o u ^

C end)
T , t Yes t

Include the next pattern to Restore trained network's Restore trained network's
the training subset weights and scale up new weights and add a new

node's weights using node with weight initialized
eqs. (4.11), (4.12) & (4.4> by eqs. (4.9), (4.10) & (4.4)

] I

Figure 4.1 Flowchart of the progressive training algorithm

4.5 Experimental Results and Performance Analysis

Three experiments were carried out to study the performance of the progressive training
algorithm. The one-hidden-layer networks were employed in all simulations and the numbers
of input and output nodes were set equal to the numbers of features and pattern classes
respectively. The magnitudes of training patterns were normalized to the range [-1,+1] and
the initial one-hidden-node network's weights were randomly set between -0.5 & +0.5. At
each training stage, the current training subset was considered learned when all the network's
outputs were conformed with the target values > 0.5& < 0.5 instead of the usual values 0.9 &
0.1 in order to minimize the training time. A new hidden node is added or its weights are

. Page 5-7

,Dynamic Construction of BP Networks

scaled up if the total error E does not decrease by more than one percent after a fixed number
of epoches (an epoch being one traversal of the training set). The sensitivity of this para-
meter, named as STEAD YE, and the scale-up factor ^ to the performance of progressive
training will also be analysed in this section. For comparison purposes, standard BP trainings
with fixed topologies were performed with all the interconnecting weights initialized between
-0.5 & +0.5. Trainings were terminated when a solution was found or the maximum number
of epoches was reached. All the other conditions are the same as that of progressive training.
Unless otherwise stated, the gain and momentum factors were set to 0.5 and 0.7 respectively
in all simulations.

m N-bit Parity

The parity problems have been popular benchmarks in the neural network community.
It is often cited as a difficult problem for neural networks to leam because by changing one
bit of information the output would be totally different. It is also of interest because one
hidden layer networks with N hidden nodes is enough for the iV-bit parity case theoretically
[41]. In this experiment, N-bit parity problems with N varying from 2 to 7 were used to test
the effectiveness of the proposed algorithm. Figure 4.2 shows the number of hidden nodes
generated by the progressive training for each of the parity problems. Each reading is an
average of eight simulation attempts using different values of STEADYE(=30,50,150) and
(̂=2.5,10,100). It can be seen that the proposed algorithm has found the optimal number of

hidden nodes, i.e. two, for the 2-bit parity (Exclusive-OR) problem. For the other cases,
reasonably large networks though not optimal were obtained. All simulation trials were
accomplished within 250 epoches except the 7-bit parity which took about 800 epoches. The
standard BP trainings with fixed topologies were also performed but the results were so bad
that a systematic comparison of the two algorithms was unnecessary. For example, BP spent
more than 2000 epoches for a 12-hidden-node network to solve the 5-bit parity problem using

. Page 5-8

,Dynamic Construction of BP Networks

fine-tuned gain=0.05 and momentum=0.1. Larger gain or momentum would lead to local
minimum cases, i.e., non-convergence. For 6-bit and 7-bit parity problems, none of the simu-
lation trails converged.

18 —

E •
r - /
</) 12 / « - /
售1。 /

S - ^
B 6 ^ ^ ^ ^
»- 4
1
z o t . . . •

2 3 4 5 6 7
Parity-N

Figure 4.2 Number of hidden nodes generated by the progressive training : iV-bit par-
ity problems

Ym TRTS Data Set

The IRIS data set of Fisher [56] has long been used to study the performance of various
pattern classification algorithms. It has three pattern classes, two of which are overlapping.
For each class, there are 50 samples and the dimension of which is four. A testing set was
formed by randomly picking 30% of samples from each pattern class among the complete
data set, the remaining 70% were used as testing data. Three training sets were made by ran-
domly choosing 10, 40, and 70 out of the 70% training samples respectively. Thus they con-
tained 15，60, and 105 samples respectively, and the testing set consisted of 45 samples. All
data points shown here were recorded as an average of eight readings obtained by using
different values of STEADYE(=30,50,150) and (̂=2.5,10,100) for progressive training and
by using different number of hidden node (5,10,50) and initial weights for BP. Figure 4.3

. Page 5-9

,Dynamic Construction of BP Networks

shows the generalization performances of progressive training and standard BP with regard to
the three training sets. As expected, training with more patterns generally classifies better on
the testing data set. Both algorithms generalized well but the progressive training slightly
outperformed BP in this case. In Figure 4.4, the number of hidden nodes generated for each
training set (including the one with 100% of samples) by the progressive training is plotted.
The trajectory shows that the network size increases as the training data set gets large and this
illustrates the effectiveness of the proposed network growth algorithm in constructing net-
works that adapt to the complexity of the training data. The learning speeds of progressive
training and BP are compared in Figure 4.5. To our surprise, progressive training is much
faster than BP in this experiment. This is not the case in the handwriting numeral recognition
experiment which will be reported later on. As mentioned previously, the IRIS data set is
characterized by overlapping data which is quite usual in real world problems, and BP is
believed to be very sensitive to this situation. In fact, BP training could not reach a solution
for the last two training sets after 3000 epoches, probably getting stuck in local minima.

100 r —

B
OS 99 Q
O)

98 0)
t z Z

i 97 z Z "
cc Z c z Z --

I �f̂^̂^̂^ --
虽95 丄
o

94 I —I 1 1 1 1
0 10 20 30 40 50 60 70

Training Percentage
Back-Propagation Progressive Training -—Q E3-—

Figure 4.3 Generalization performance comparison of standard BP and progressive
training : the IRIS data training sets

. Page 5-10

Dynamic Construction of BP Networks

14
•D Q . .-2 12) > g ^ ^ ^ ^
CD 0 10 ^ ^
U)
1 s ^ ^ ^ ^ ^ ^ ^ ^

0
E 2
z

0 1 ' > ‘
0 20 40 60 80 100

Training Percentage

Figure 4.4 Number of hidden nodes generated by the progressive training : the IRIS
data training sets

3,500

3,000 ^〉

f 2.500

1 • /
B 2.000 /
i / --
忽 1,500 / r .

• s / I 一- -一一一一

異 1,000 / 孔 一 一 个 ”

s o 。 广 Z

ol - S — _ I 1 1 1
0 20 40 60 80 100

Training Percentage
Back-Propagation Progressive Training

0 E 3 - — —

Figure 4.5 Learning speed comparison of standard BP and progressive training : the
IRIS data training sets

., Page 4-11

Dynamic Construction of BP Networks

(lii) Handwriting Numeral Recognition

The proposed algorithm was further evaluated with its application to a handwriting
numeral recognition experiment. The feature extraction technique and sampling process of
this experiment are depicted in Appendix A. The data set is composed of 30 samples for
each of the ten numerals, each of which is represented by eight features. Thus there are 300
samples of ten pattern classes. Simulations performed here are the same as that of the IRIS
data set and the results are recorded in Figures 4.6-4.8 respectively. Again, high generaliz-
ation performances of the two algorithms are observed in Figure 4.6, however, this time pro-
gressive training is slightly inferior to BP. Unlike the IRIS data set, the node creation
trajectory in Figure 4.7 is quite flat since inspection shows that the distribution of the ten
clusters of numeral patterns are quite discrete, and therefore, the complexities of the four
training sets are similar to each other and hence the numbers of hidden nodes generated by
progressive training are close. Figure 4.8 shows that the learning speed of progressive train-
ing is slower than that of BP. In fact, the algorithm is slow because every time a new pattern
is added to the current training subset, trainings have to go through all the previously learned
patterns but only some of which require weight updating and hence many training epoches
are wasted. Suggestions to remedy this drawback will be given in the concluding chapter.

Page 4-12

,Dynamic Construction of BP Networks

r ^ ^ z
者 • Z
cc (广 z
C 94 /

•g 丁 z , s • z
s [广
(0 QO CO
。 - 丄

90 I I ‘ 1 1 1 1
0 10 20 30 40 50 60 70

Training Percentage
Back-Propagation Progressive Training O Q—

Figure 4.6 Generalization performance comparison of standard BP and progressive
training : the handwriting numeral training sets

14 —
•o Q -T
2 12

岂 • [J T 仏 � � � � --
CD ����
o 10 t 广 丄 、-E]

s - 丄 丄 __
E 8
2：
c
名6 •g if
名4 E 2 =3 z 0 1 1 1 «

0 20 40 60 80 100
Training Percentage

Figure 4.7 Number of hidden nodes generated by the progressive training : the hand-
writing numeral training sets

. Page 5-13

,Dynamic Construction of BP Networks

1,000 —

• ‘ -

I 咖 . t \ ,一年

I eoo � � 、 、 十 Z ' Z •
i
尝 4 0 0 o

200 ©
“ ^

0< ‘ -J ‘ ^
0 20 40 60 80 100

Training Percentage
Back-Propagation Progressive Training O B—

Figure 4.8 Learning speed comparison of standard BP and progressive training : the
handwriting numeral training sets

(iv�Sensitivity Analysis of Parameters

The sensitivities of parameters scale-up f a c t o r� when STEAD YE fixed at 50，and
STEAD YE when� fixed at 10 to the performance of progressive training in the 40% training
set are depicted in Table 4.1 & 4.2 respectively. The data recorded are the average of eight
simulation trails using different gain and momentum values. As expected, the scale-up factor
has direct impact on the generalization performance of the algorithm. As C increases, the sig-
moid function of the new hidden node tends to behave like a hard limiter which produces two
output values only and hence its flexibility would be constrained. If unseen patterns are
presented to the trained network, binary hidden (or internal) representation of those patterns
will be resulted and this degrades the generalization ability of the network. Intuitively, if C
gets large, the number of hidden nodes generated will increase and faster learning speed will
result. It is because larger (values would cause the learning process to be more determin-
istic, in other words, the required network is formed by simply assigning values to new

. Page 5-14

,Dynamic Construction of BP Networks

nodes' weights and the number of hidden nodes generated tends to the theoretical upper
bound stated in Theorem 1. In practice, the situation is slightly different. Table 4.1 shows
that in the handwriting numeral recognition experiment, the learning speed with ^ = 100 is
the slowest. This is because more nodes were generated also and this in turn required more
epoches to decide whether a new node should be added.

As stated before, the parameter STEAD YE is used to specify when a new node should
be added and when the new node's weights should be scaled up. Therefore, if it is set to a
small value, more nodes will be generated and the learning time will be shorter. This is sup-
ported by the experimental results as recorded in Table 4.2. It also shows that using larger
STEAD YE seems to have better generalization. In our experience, STEADYE=50 &�=10
should be an appropriate set of values to compromise all these factors.

Table 4.1 Sensitivity of scale-up factor C (STEADYE=50)

Scale-up Classification Number of Learning Speed
Factor ^ Rate (Testing Nodes Gener- (epoches)

Data Set) ated
A. IRIS Data Set

I s 97.1% ^ ^
10 97.1% 6.7 567
100 96.3% 6.7 408

B. Handwriting Numeral Recognition
15 97.0% n ^
10 96.7% 10.7 544
100 94.4% 13.3 808

. Page 5-15

,Dynamic Construction of BP Networks

Table 4.2 Sensitivity of STEAD YE (C=10)

STEAD YE Classification Number of Learning Speed
(epoches) Rate (Testing Nodes Gener- (epoches)

Data Set) ated
A. IRIS Data Set

3 0 一 97.1% 7 i i i
50 97.1% 6.7 567
150 97.1% 4.7 866

B. Handwriting Numeral Recognition
30 ^ 133 ^
50 96.7 10.7 544
150 ^ ^ 833

4.6 Concluding Remarks

We have presented a new network growth algorithm called progressive training for
constructing a BP network automatically for any given set of non-conflicting training data,
i.e., no identical patterns belong to different categories. With respect to previous network
growth algorithms, such as the tiling algorithm [39] and upstart algorithm [41], the proposed
algorithm advocates a completely new way of addressing the problem and convergence is
guaranteed for any desired continuous input-output mapping which is beyond the scopes of
previous works. The algorithm is easy to implement (see Figure 4.1) and the reported experi-
mental results have demonstrated its effectiveness in finding a reasonably large network
though not optimal for different tasks. Moreover, the generalization performance of the
constructed networks was comparable to that of the fixed networks trained by standard BP.
With progressive training, consideration regarding how to initialize the weights is no longer
required. As confirmed by the experimental results, progressive training do not have local
minimum problems. In the worst case, it will find a network with the number of hidden
nodes equal to the theoretical upper bound (see Theorem 1). In fact, the algorithm steers

. Page 5-16

,Dynamic Construction of BP Networks

away from local minimum regions by its node adding process which will provide more feas-
ible descending paths for the training process. However, a major drawback of the proposed
algorithm is that the learning speed is slow in general and this remains to be improved.

. Page 5-17

Dynamic Construction of BP Networks

5 PRUNING OF BP NETWORKS

5.1 Introduction

In this chapter, we switch our attentions to network pruning. Unlike network growth,
network pruning attains an appropriate network by starting with an oversized network such
that the probability for the BP to converge to a solution is higher. Unnecessary nodes and
links in the converged oversized network are then removed afterwards. As mentioned in the
introductory chapter, the difficulty of this approach is to identify the unnecessary nodes and
links to be removed while the network performance would not be significantly impaired due
to the removals. In contrast to previous works, the pruning algorithm proposed here removes
nodes according to their "excessiveness" rather than their error contribution. This property is
essential in determining whether a node can be removed with preserved network performance
and hence the proposed algorithm is useful in obtaining a network that is optimized with both
the network size and performance.

In this chapter, we report a study on the characteristics of hidden nodes in oversized
network from the viewpoint of pattern classification theory and based on those findings, four
categories of excessive nodes are identified as suitable candidates for pruning. An algorithm
is subsequently proposed for attaining an appropriate size for a BP network by pruning
excessive nodes. The pattern space and weight space interpretations of BP networks
described in Chapter 3 will be used interchangeably in this work. In the next section we start
by describing the characteristics of hidden nodes in oversized networks observed from an
empirical study. Four categories of excessive nodes are then identified from the results and
an insight to why they would be suitable candidates for pruning is also provided. The fourth
section describes the proposed node pruning algorithm and the experimental results are
reported in the following section. The chapter ends by a section devoted to concluding
remarks.

.. Page 5-1

,Dynamic Construction of BP Networks

5.2 Characteristics of Hidden Nodes in Oversized Networks

5.2.1 Observations from an Empirical Study

The characteristics of hidden nodes in oversized networks were investigated through
an empirical study. Different oversized networks were used to solve various problems such
as Exclusive-OR, 3-bit parity, and 2-D model data sets. Observations have been made from
this study and they are summarized in the following.

(i) Under various simulations, there exists a set or sets of hidden nodes that are always
included by the oversized networks. For example. Figure 3.1(a) showed one set of
such nodes found for the Exclusive-OR problem.

(ii) Hidden nodes other than those mentioned in (i) are found to be arbitrary located in the
input pattern space.

(iii) Further investigations on these two kinds of hidden nodes were carried out by pruning
either kind of nodes from the trained networks and then further training was allowed.
It was observed that pruning of the latter one could always be retrained to restore the
original performance. However, pruning of the former one usually takes a long
retraining time and sometimes could not be retrained to restore the original perform-
ance.

From the observations, we postulate that the hidden nodes would converge to one of the two
kinds after training; they are solution nodes and excessive nodes. Solution nodes are those
defined in (i) above and they cannot be removed from the network without significantly
impairing its performance. Excessive nodes are those defined in (ii) above and they are the
suitable candidates for pruning. These observations are consistent with the pattern space
interpretation of BP networks described in Chapter 3. Since solution nodes will generate lin-
early separable hidden patterns, addition of an excessive node will just enlarge the dimension
of the hidden patterns which will remain linearly separable. Hence the excessive nodes can
be located everywhere in the input pattern space without affecting the linearly separability
criterion. Thus if the excessive nodes can be identified, node pruning could be accomplished

. Page 5-2

,Dynamic Construction of BP Networks

in a straight forward manner. Before proceeding to derive the detection rules for excessive
nodes, the characteristics of different excessive nodes will first be discussed because as a
result different schemes were used to detect different kinds of excessive nodes.

5.2.2 Four Categories of Excessive Nodes

By using the weight space representation introduced in Chapter 3, four categories of
excessive nodes have been identified. In order to better illustrate the identification process,
an 1-D example is brought into discussions. In the 1-D example, there were five patterns

in the input pattern space with co-ordinates : -1, -0.5, 0, 0.5 and 1.0 as shown
in Figure 5.1. Patterns Xi,X2&Xs belonging to class A would have target value >0.5, while
class B patterns x̂ yX^ had target value <0.5. The weight space representation of this example
was depicted in Figure 5.2(a). It could be observed that no single weight vector will correctly
classify all patterns, therefore, they were linearly non-separable. The weight space was
divided into ten regions, Rl to R5 and Rl，to R5' where Ri & Ri，were opposite to each
other. A sample decision hyperplane from each region (e.g. Hi from Ri and Hi, from Ri')
was depicted in Figure 5.2(b) to show the dichotomy of each decision hyperplane. Two
samples were extracted from both Rl & Rl，because the Wj -axis itself partitions the weight
space into two regions of different characteristics.

X2 “ “ ^ ^ X

-1.0 -0.5 0.0 0.5 1.0

Figure 5.1 An 1-D classification example where patterns
Xi,X28oc5 belong to class A and patterns I3&J4 belong
to class B

. Page 5-3

,Dynamic Construction of BP Networks

w,
i i

(a)

X̂l —X3 X̂ f ^ • X
-1.0 -0.5 0.0 0.5 1.0

H1 H r H2 H2' H3. H4 H4' H5 HV H1 —

H3 H5,

(b)

Figure 5.2 (a) The weight space representation of the 1-D
example consisting of ten regions (R1 to R5, Rl，to
R5，).（b) Decision hyperplanes in the input pattern
space corresponding to each of the ten weight region
with H3 & H5，denoting a set of solution nodes

. Page 5-4

,Dynamic Construction of BP Networks

Empirical results showed that one set of solution nodes was located in the weight
regions R3 & R5’. Hence, these two hidden nodes have generated linearly separable hidden
patterns. As concluded from the previous section, excessive nodes can have weight vectors
converged to any of the ten regions. However, weight vectors in different regions would
have different properties and which would be explored in the following with the 1-D example
illustrated in Figure 5.2. Notwithstanding the dimensionality of example used, the definitions
and observations made for each category of excessive nodes are general.

1. Non-Contributing Node : If an excessive node has weight vector converged to one of the
weight regions such as R1 or Rl’ in Figure 5.2(a), it is said to be non-contributing since it
does not contribute in discrimination of the input patterns. The non-contributing node
would give similar output response to all input patterns. For example, all the input pat-
terns lie on one side of the decision hyperplanes of region HI & HI，as illustrated in Fig-
ure 5.2(b).

2. Duplicated Node : If an excessive node has weight vector converged to the same weight
region corresponding to one of the solution nodes (i.e., R3 or R5，in this case), it is said to
be duplicated because it functions in a similar manner as one of the solution nodes.

3. Inversely-duplicated Node : If an excessive node has weight vector converged to the
weight region which is opposite to that of a solution node (i.e., R3’ or R5 in this case), it
is said to be inversely-duplicated because it separates the input pattern space in the same
manner as the solution node except that the responses are inverted.

4. Inadequate Node : If an excessive node has weight vector converged to either one of the
weight regions R2, R2’，R4 and R4，，it is said to be inadequate because it functions par-
tially as one of the solution nodes. For example, if one of the hidden node has decision
hyperplane H5' to discriminate pattern Xs from other patterns, the second solution node
should have decision hyperplane such as H3 to discriminate X1S0C2 from 义3&X4. However,
an inadequate node would have decision hyperplane such as H4 to discriminate X4 from
jCi，jC2&?3. Therefore, H4 with H5’ alone will not be adequate to completely separate the
input patterns.

. Page 5-5

,Dynamic Construction of BP Networks

5.2.3 Why are they excessive ？

Based on the weight space representation, four categories of excessive nodes in the
oversized networks have been identified. While the excessive nodes have been shown to
yield trivial decision hyperplanes in the pattern space, their values of existence or rather, lack
of value of existence, should be considered in the hidden pattern space domain because the
hidden nodes are meant to produce linearly separable hidden patterns. In the following, we
will investigate the effect of adding an excessive node on the distribution of hidden patterns.
Again the 1-D example will be used for illustration. Figure 5.3 shows the 1-D hidden pattern
space formed by the decision hyperplane H3 (a solution node). Obviously, they are not lin-
early separable and hence cannot be correctly classified by the output layer. If another
hidden node is added and has decision hyperplane H5' which corresponds to another solution
node, the 2-D hidden patterns will now be linearly separated by an output node Ll as shown
in Figure 5.4. However, if the second node happens to be one of the excessive node, the
hidden patterns will remain linearly non-separable. As for non-contributing nodes, the output
states of this category of excessive nodes are either >0.5 or <0.5 for all the input patterns, and
with the outputs close enough in magnitude, identical for instance, the 2-D hidden patterns
would be formed by just augmenting the 1-D hidden patterns with a fixed component. A
sample case for a non-contributing node located at HI, is shown in Figure 5.5(a). Obviously,
the hidden patterns are not linearly separable. Since the duplicated nodes would have similar
responses as those of the solution nodes for all patterns, two nodes would have very high
correlation. As shown in Figure 5.5(b), the original 1-D hidden patterns would virtually be
rotated by 45° in result and hencb the 2-D hidden patterns are still linearly non-separable. If
the second node is an inversely-duplicated node, then the two hidden nodes would have very
high negative correlation. Thus, the 1-D hidden patterns would be mapped onto the dotted
line shown in Figure 5.5(c) and the resultant 2-D hidden patterns are still linearly non-separ-
able. It can be seen from Figure 5.3 that hyperplane H3 has divided the input patterns into
two groups with one corresponds to x ^ ^ i and the other corresponds to ;C3,义4&X5. Therefore,

. Page 5-6

,Dynamic Construction of BP Networks

the second hyperplane H5, should further separate the latter group such that the hidden pat-
terns are linearly separable. Although the inadequate node follows this direction, it fails to
completely separate pattern ；C5 from patterns 3c3&3c4. A sample case for an inadequate node
separating only Jg from x^&xs is shown in Figure 5.5(d). The hidden patterns again are not
linearly separable. However, if the hidden patterns are already linearly separable, addition of
an inadequate node will not affect the distribution. Consider the same example with two sol-
ution nodes which has distribution of 2-D hidden patterns as depicted in Figure 5.4. The
same inadequate node would further separate x^ from X4 this time, the new distribution is
depicted in Figure 5.6. Obviously, the hidden patterns are still linearly separable. Note that
the inadequate node only separates hidden patterns of the same output class.

I x g " " ^ ^ • O p i
0 1

Figure 5.3 Hidden patterns formed by a solution node

Op2

1
X5

\
X4X3 \ X2X1 I

• 0 p 1 0 1
L1

Figure 5.4 Hidden patterns formed by two solution
nodes that can be separated by an output
node LI

. Page 5-7

,Dynamic Construction of BP Networks

Op2 Op2 ,
i \ n

1 1 xi mm X9 X5X4X3

•

• X3
X5X4

^ Opi L J • Opi
0 1 0 I

(a) (b)

Op2 Op2

J k “

1 \ 1
\

\

、、、
\

、
\

、、、
N

\ X3 X2X1
V - Op, 0p1

0 1 、 0 1

(c) (d)

Figure 5.5 Linearly non-separable hidden patterns formed by a solution and (a) a
non-contributing node，(b) a duplicated node, (c) an inversely-duplicated
node, and (d) an inadequate node

. Page 5-8
• •

,Dynamic Construction of BP Networks

Op2

n X4 1 0 ^ o

O p 3

Figure 5.6 Linearly separable hidden patterns formed by two
solution nodes and one inadequate node

5.3 Pruning of Excessive Nodes

In previous section, four categories of excessive nodes were identified and defined.
Following their definitions, the detection rules for each category of excessive nodes were
derived and based upon which an excessive node pruning algorithm was proposed.

� Detection Rule for Excessive Non-Contriburing Nodes

Since a non-contributing node would have a decision hyperplane that places all input
patterns to one side in the pattern space, this condition is first detected, viz.

Non-contributing = (c?力 > 0.5 Vp) OR (d?力 < 0.5 Vp)

. Page 5-9

,Dynamic Construction of BP Networks

This condition alone, however is not sufficient for detecting excessive non-contributing
nodes because we have showed, in last section that a non-contributing node is excessive and
would not help to generate linearly separable hidden patterns when its outputs are close in
magnitude for all input patterns. Thus, the following rule was proposed to detect an excess-
ive non-contributing node.

Excessive一Non-contributing = Non-contributing AND [CLOSENESS ippj) < e j

where the CLOSENESS function returns a value in the range 0 - 0.5 and measures the close-
ness of Op/s magnitudes. If a small threshold is specified in the detection rule, only those
non-contributing nodes adding almost fixed value component to the hidden patterns are
detected. If large threshold, such as 0.5, is specified instead, then just non-contributing nodes
will be detected. Therefore, if the above rule is used to identify potential nodes for pruning,
adopting small threshold will identify less nodes to be pruned and will tend to preserve the
performance of the original network after pruning. If a large threshold is adopted instead, the
converse is true. Therefore, the threshold determines, to a certain extent, the level of trade-
off between network size and network performance.

Hî Detection Rule for Excessive Duplicated Nodes

Since a duplicated node duplicates at least one other node, if two nodes are found to
discriminate the input patterns in a similar manner, one of them will be duplicated. Thus

Duplicated = (o^^ 一 0.5) (o^j 一 0.5) >0 Vp

One of the duplicated node will be excessive if the outputs of the duplicated nodes com-
pletely duplicated each other, i.e. o^j = Opi Vp. Thus the excessive duplicated nodes would
be detected by

Excessive一duplicated = Duplicated AND Opj) < 82 Vp]

‘ ； . ,

. Page 5-10

,Dynamic Construction of BP Networks

where the DIFF function returns a value in the range 0 - 0.5 that measures the difference
between the outputs of the duplicated nodes. Obviously the threshold £2 determines the toler-
ance in the definition of excessive duplicated nodes. Adopting small threshold in the detec-
tion rule will identify those closely correlated nodes while larger threshold will relax the
definition and includes more nodes to be identified. Therefore, when this rule is used for
pruning, the threshold again will determine the level of trade-off between network size and
network performance.

(iii) Detection Rule for Excessive Tnverselv-Diiplicated Nodes

Since an inversely duplicated node is just an inverse of a duplicated node, the detection
rule will be identical to that of duplicated nodes, after inverting one of the nodes, viz.

Inversely一Duplicated = - 0.5) (̂？力-0.5) < 0 Vp

and

Excessive一Inversely-Duplicated = Inversely-Duplicated AND
[DIFF(INV(�)，�)<63 Vp]

where INV(;c) = 1 ~jc. The threshold £3 has similar properties as ê for detecting excessive

duplicated nodes and again, determines the tolerance in the definition of excessive inver-
sely-duplicated nodes and also the level of trade-off between network size and network per-
formance.

fiv�Detection Rule for Excessive Inadequate Nodes

Since the excessive inadequate nodes have been observed to made same class separ-
ation in the hidden pattern space, its detection rule was derived based on this observation.
The 1-D example in Figure 5.2(b) will be used for illustration again. Removing one of the
solution nodes, H3 for example, class A pattern X2 and class B pattern I3 will be merged to
have similar hidden pattern representation. Practically X2 has been merged with X3 to form a

. Page 5-11

,Dynamic Construction of BP Networks

mix-class cluster in the hidden pattern space due to the removal of node H3. Alternatively,
removing the inadequate node H4 will cause the merging of ；&w h i c h are both class B
patterns. Thus removal of excessive inadequate node should cause merging of some hidden
patterns without forming mix-class clusters in the hidden pattern space. Two functions,
SAME—MERGE and MIX_MERGE were then explored to detect excessive inadequate
nodes. The SAME一MERGE function checked if removal of a hidden node will cause the
merging of some hidden patterns while the MIX一MERGE function checks if mix-class
cluster would exist Thus

Excessive一Inadequate-Node�=(NOT MIX一MERGE(j)) AND SAME一MERGE®

where function MIX_MERGE was implemented as

Function MIX_MERGE(j)

IF (P1&P2 are of different classes) AND (o^̂ - 0.5) (<?〜.一 0.5) < 0 THEN

MIX_MERGE(j) = [(^?�0 .5)((9�-a5)>0 AND DIFF(d?巧“〜•)<ej V/

and function SAME_MERGE was of the form

Function SAME_MERGE(j)

IF are of the same classes) AND (c?�.-0.5) (c?�一 0.5) < 0 THEN

SAME一MERGE(j) = [{o^^, 一 0.5) {o^^, 一 0.5) > 0 AND DIFF(�：‘，ô J) < e j Vi ^ j

Again, a DIFF function was used to measure how close the clusters would be after merging.
Therefore the parameters £4&85 determined the level of trade-off between network sizes and
performance due to pruning of excessive inadequate nodes. With large £4 and small £5, the
detection rule will be more stringent and favours in maintaining the performance.

. Page 5-12

,Dynamic Construction of BP Networks

(V、A Node Pruning Algorithm
A node pruning was then derived based upon the detection rules for different categories

of excessive nodes. First they were detected from a network and pruned. After pruning, the
network has to be retrained to obtain the proper weights for the output layer.

Five thresholds £1,82, £3, £4, &85 have been introduced in the detection rules and the
effects of these thresholds on the detection rules have been briefly discussed. In summary,
these thresholds determined the level of trade off between network performance and network
size when the detection rules were used for node pruning. The sensitivity of the thresholds to
these two performance criteria have been summarized in Table 5.1. The thresholds should be
chosen between tabulated limits to suit individual applications.

Table 5.1 Sensitivity of threshold parameters to pruning

Threshold Sensitivity
£1 82 £3 £4 £5 Pruning Mechanism Performance of pruned

network
0.0 0.0 0.0 0.5 0.0 soft (prune fewer nodes) not affected
0.5 0.5 0.5 0.0 0.5 hard (prune more nodes) may be affected slightly

5.4 Experimental Results and Performance Analysis

In this section, the effectiveness of the proposed node pruning algorithm is demon-
strated through the experiments in learning the IRIS data set and the handwriting numeral
database. All simulations employed networks with one hidden layer. Trainings of the
networks were performed using the standard BP and the implementation details are the same
as that described in Chapter 4 for BP training.

. Page 5-13

Dynamic Construction of BP Networks

m TRTS Data Set

Again, the IRIS data set was used to evaluate the proposed node pruning algorithm.
Simulations were conducted using oversized networks of different sizes and the results were
summarized in Table 5.2 with each reading recorded as the average of five simulation trails
using different sets of random initial weights. For each initial network size, five sets of
threshold parameters were chosen to simulate and arranged from hard to soft pruning in
Table 5.2. The results were consistent with the parameter sensitivity analysis in Table 5.1
since with relatively hard pruning thresholds, say £1.3 = 0.5，£4 = 0.1, and £5 = 0.5，the prun-
ing algorithm would try to optimize the network size as much as possible. It can be observed
that by using the first three sets of thresholds, networks of different initial size were finally
pruned to the nearly optimal network, i.e., around four hidden nodes. On the other hand, with
relatively soft thresholds such as £1.3 = 0.1，£4 = 0.5, and £5 = 0.1，the algorithm pruned fewer
nodes in result. This contrast was magnified when the initial number of hidden node was rid-
iculously large, i.e. 50. Another observation is that if the initial network size is not an over-
sized one，i.e. three hidden nodes, application of the proposed algorithm would not be
harmful and this should be an essential property in network pruning. To our surprise, in all
cases the network maintained or even improved the performance of the original oversized
network after pruning. This was not the case in the handwriting numeral experiment.

Page 5-14

,Dynamic Construction of BP Networks

Table 5.2 Node pruning simulation results of IRIS data set

Parameters Number of hidden Classification Rate
node (%)

ei - £3 84 £5 Before After Before After
Pruning Pruning Pruning Pruning

^ 0.5 3 3 98.7 98.7
5 4 99.0 99.3
10 5 98.7 99.3
50 5 98.7 98.7

0.5 0.5 3 3 98.7 98.7
5 4 99.0 99.3
10 5 98.7 99.3
50 5 98.7 98.7

0.5 0.1 3 3 98.7 98.7
5 4 99.0 99.3
10 5 98.7 99.3
50 6 98.7 98.7

0.3 0.5 0.1 3 3 98.7 98.7
5 4 99.0 99.3
10 7 98.7 99.3
50 7 98.7 98.7

0.1 0.5 0.1 3 3 98.7 98.7
5 4 99.0 99.3
10 7 98.7 99.3
50 14 98.7 98.7

(ii�Handwriting Numeral Recognition

The proposed node pruning algorithm was further tested on the handwriting numeral
database described in Chapter 4. The simulation results were recorded in Table 5.3. Each
reading is the averaged value of five simulation trails using different sets of initial weights.
Again, more nodes would be pruned by using relatively hard thresholds and fewer nodes
would be pruned by using relatively soft thresholds. Unlike the first experiment, the classifi-
cation performance using the set of relatively hard thresholds {£1-3 = 0.5, e4 = 0.1, and
£5 = 0.5} was slightly inferior to that of the original oversized network when the initial

. Page 5-15

,Dynamic Construction of BP Networks

network consisted of ten hidden nodes. However, using the other sets of thresholds main-
tained the original high classification rate in the expense of pruning fewer nodes. Trade-off
between pruned network's performance and the number of hidden nodes being pruned was
illustrated in this experiment.

Table 5.3 Node pruning simulation results of handwriting numeral data set

Parameters Number of hidden Classification Rate
node (%)

£1-63 84 85 Before After Before After
Pruning Pruning Pruning Pruning

0.5 0.1 0.5 3 3 100 100
5 3 100 100
10 4 100 95
50 12 100 100

0.5 0.5 3 3 100 100
5 5 100 100
10 8 100 100
50 17 100 100

0.5 0.1 3 3 100 100
5 5 100 100
10 8 100 100
50 19 100 100

0.3 0.5 0.1 3 3 100 100
5 5 100 100
10 8 100 100
50 20 100 100

0.1 0.5 0.1 3 3 100 100
5 5 100 100
10 8 100 100
50 29 100 100

(iii) Generalization Performance

To investigate the generalization performances of pruned networks, the three training
sets (consisting of 10%, 40%, and 70% of the available training samples) and the testing set
(having the other 30% of samples), described in Chapter 4，for the IRIS data set and the hand-
writing numeral database were employed in this simulation. Table 5.4 shows the generaliz-
ation performances of the network before and after pruning for each of the six training sets.

. Page 5-16

Dynamic Construction of BP Networks

Each reading in the column "Before Pruning" is an average of eight simulation attempts using
different initial oversized networks (with 3,5,10 & 50 hidden nodes) and different sets of
initial weights. For the column "After Pruning", each reading took on the average of twenty-
four values since three representative sets of thresholds were used to prune each of the eight
trained networks. The three sets of thresholds included {ei_3 = 0.5, 84 = 0.5, £5 = 0.5},
{£1.3 = 0.3, 84 = 0.5, £5 = 0.5}, and {81.3 = 0.1, £4 = 0.5, 85 = 0.5}. In addition to the aver-
aged values, the quantities of the standard derivation are recorded inside the brackets. From
these results, it can be seen that the generalization performance before pruning is competitive
with that after pruning. Since initial networks with 3,5,10 & 50 hidden nodes were all taken
into accounts in Table 5.4 and this may smooth out the performance discrepancy between the
oversized networks and pruned networks, Table 5.5 reports also on the results obtained by
the 50-hidden-node oversized networks only but it does not make too much difference. In
fact, after careful inspections, it can be observed that the generalization performance after
pruning has been slightly improved for the IRIS data set. No such observation can be
obtained from the handwriting numeral data set. As mentioned in Section 4.5 that the IRIS
data set is characterized by overlapping data while the distribution of the ten clusters of
numeral data is quite discrete, it is reasonable to have improved generalization performances
from pruned networks for the IRIS data set but not for the handwriting numeral data set since
classifying overlapping data would have a better reflection how good the regularity of train-
ing data was captured by the network.

Page 4-17

Dynamic Construction of BP Networks

Table 5.4
Generalization performance before and

after Pruning

Classification on Testing Set
Training Before After

Percentage Pruning Pruning
A. IRIS Data Set

m 95.6% (1.3%)95.7% (0.2%)
40% 95.6% (0.0%) 95.6% (0.0%)
70% 95.9% (0.7%) 96.2% (1.0%)

B. Handwriting Numeral Recognition
m “ 9 5 . 0 % (2.2%)95.0% (2.2%)
40% 98.2% (0.9%) 97.8% (1.1%)
70% 100.0% (0.0%) 100.0% (0.0%)

Table 5.5
Generalization performance before and
after pruning (50-hidden-node networks)

Classification on Testing Set
Training Before After

Percentage Pruning Pruning
A. IRIS Data Set

95.6% (0.0%)~96.0% (0.4%)
40% 95.6% (0.0%) 95.6% (0.0%)
70% 96.7% (1.1%) 96.7% (1.1%)

B. Handwriting Numeral Recognition
m o 94.4% (0.0%) 94.6% (0.2%)
40% 98.9% (0.0%) 97.7% (1.1%)
70% 100.0% (0.0%) 100.0% (0.0%)

. 1

Page 5-18

Dynamic Construction of BP Networks

5.5 Concluding Remarks

Through a study on the characteristics of hidden nodes in pattern space and weight
space representation, an insight to the properties of excessive hidden nodes were obtained
and formally defined. Since the excessive nodes have been shown to have little contributions
in producing the network performance, it is theoretically justified to propose a node pruning
algorithm to remove the excessive hidden nodes from an oversized network while preserving
the network performance such that the pruned network is more efficient to implement. The
reported experimental results demonstrated the effectiveness of the proposed node pruning
algorithm in reducing a network size without significantly impairing its original classification
accuracy.

A pre-requisite of the proposed algorithm is, however, the existence of an initial BP
network that already has reasonable performance. The initial network may have obviously
excessive number of hidden nodes and may be trained by standard BP algorithm or its modi-
fied version [19-22]. If a training algorithm generates a solution for a given problem with
optimal number, or close to that, of hidden nodes, application of the proposed algorithm
would not be beneficial but not harmful, an essential property of network pruning algorithms.
Otherwise the proposed algorithm can be implemented as a post-process to obtain a network
that is optimized with respect with both the network size and classification performance.
Although five parameters have been introduced in the proposed pruning algorithm, the
experimental results showed that the thresholds would only fine-tune the trade-off between
network size and accuracy while all parameter settings gave satisfactory results on node prun-
ing.

Page 5-19 一

Dynamic Construction of BP Networks

6 DYNAMIC CONSTRUCTION OF BP NETWORKS

6.1 A Hybrid Approach

We have addressed the network design problem from two different approaches, i.e.,
network growth and network pruning, and presented a progressive training algorithm and a
node pruning algorithm respectively. The progressive training starts from scratch to con-
struct a reasonably large network gradually for the available training data set. Hence intelli-
gent guess on the network size is not necessary. However, the constructed network might not
be an optimal one and some sorts of non-essential nodes and links might involve. As
mentioned at the very beginning of the thesis, such kind of networks suffers from degraded
generalization performances and inefficient hardware realizations. The node pruning on the
other hand assumes the existence of an initial oversized network that is well-trained and
unnecessary nodes and links are then removed to attain a network with optimized size and
performance. In other words, one has to predetermine an initial oversized network structure,
and this creates a need for the reliance of the network designers on a prior knowledge about
the task such as its complexity. Thus, it is reasonable to consider a hybrid approach which
takes advantages of individual approaches. In fact, the two proposed algorithms are ready to
combine. By simply cascading the node pruning process to the progressive training, a new
algorithm is formed. Figure 6.1 shows the flowchart of this hybrid algorithm. It can be seen
that the first part of the algorithm is the same as the progressive training as depicted in Figure
4.1, through which hidden nodes are added one by one to an initial one-hidden-node network
in order to adapt to the complexity of the available training patterns. The constructed net-
work would be an appropriate oversized network to apply the second part of the algorithm,
i.e” node pruning. The four categories of excessive nodes are detected and then pruned from
the network. After pruning, the network is retrained to obtain an optimal network that is
minimal in size and is expected to have good performance on both the training and unseen
data.

Page 6-1

,Dynamic Construction of BP Networks

(S T A R T)

• iT
Compute the training
sequence and choose the firs
two patterns as the initial
training subset
Generate a one-hidden-node
network

r I ||
Apply BP training

f N o
squared e r r o r ^

w Yes

I 二 t f " Y e s
i 丫 J

Include the next pattern to Apply the detection rules of Restore trained network's Restore trained network's
the training subset the fourcatagories of weights and scale up new weights and add a new

excessive nodes to the node's weights using node with weight initialized
constructed network eqs. (4.11), (4.12) & (4.4) by eqs. (4.9). (4.10) & (4.4)

1

•
Remove the detected nodes
and all links connected to
and from them

1
Retrain the pruned network
by the BP algorithm until
converge

' I
END)

Figure 6.1 Flowchart of the hybrid algorithm

6.2 Experimental Results and Performance Analysis

Since the proposed hybrid algorithm extends the progressive training by incorporating
the node pruning algorithm as a post-process to obtain a more constrained network, the
experimental results reported in this section are simply a continuation of those presented in
Chapter 4. In other words, the implementation detail regarding the first part of the hybrid

. Page 5-2

,Dynamic Construction of BP Networks

algorithm is the same as that described before. For the node pruning part, the three represen-
tative sets of thresholds, i.e., {£i_3 = 0.5, 64 = 0.5, £5 = 0.5}, {£1-3 = 0.3, £4 = 0.5’ 85 = 0.5},
{ei_3 = 0.1, £4 = 0.5, £5 = 0.5} were employed throughout this simulation and only the

averaged values would be recorded in the following figures.

m N-bit Parity
The performance of the hybrid algorithm, comparing with those of the standard BP and

progressive training, is shown in Figure 6.2. It can be observed that for N<7 the progressive
training has already found the nearly optimal networks, and in these cases significant benefits
could not be obtained by the hybrid algorithm. However in case N=7, the size of the network
has been cut down by a quarter of magnitude.

18 —
• o ①

CD - / §14 / 0 - /
% 12 / Z

i i。： / /

1 z - ,
0 1 ' ‘ - ‘

2 3 4 5 6 7
Parity-N

Progressive Training (P.T.) P.T. + Node Pruning
• its

Figure 6.2 Number of hidden nodes generated by the hybrid algorithm : iV-bit parity
problems

. Page 5-3

,Dynamic Construction of BP Networks

fin TRTS Data Set and Handwriting Numeral Recognition

In the experiments with the IRIS data set and the handwriting numeral database, the
effectiveness of the hybrid approach is fully demonstrated. Figures 6.3 & 6.4 depict the size
of the finalized networks found by the hybrid algorithm. Again the original network size has
been reduced by approximately 30% in average. Besides, the generalization performances of
the finalized networks were compared with those of the fixed topologies trained by standard
BP and the networks constructed by progressive training. The results were recorded in Fig-
ures 6.5 & 6.6 for the IRIS data set and handwriting numeral database respectively. It can be
observed that the performances of the finalized networks are slightly inferior to those of the
other two but the difference is negligible.

14
• o

2 12 ^ ^ ^

0 10 ^ ^

名 6 一 一 一 - - - 一

1 ^ ^ 召 一 一

0 4 Z 一 Z 一一一&一’

1 - b z Z E 2
13

Z
0 1 1 L. 1
0 20 40 60 80 100

Training Percentage
Progressive Training (PT.) P.T. + Node Pruning — e ~ - Q

Figure 6.3 Number of hidden nodes generated by the hybrid algorithm : the IRIS
data set

. Page 5-4

Dynamic Construction of BP Networks

14 —
T3 o
运1 2

0 10 ^ “ ^ “ " ^ �
s - ^
E 8 ® 石 … z e-
1 6 •D
i f
B 4
u .

o
E 2
z

qI 1 ‘ ‘ »
0 20 40 60 80 100

Training Percentage
Progressive gaining (P.T.) P.T. + N 智 Pruning

Figure 6.4 Number of hidden nodes generated by the hybrid algorithm : the hand-
writing numeral data set

100 —

^ 99
Q O)
2
匕 - zZ -E3
i " . z : : : - z . “

'55
S 95
O

94 1 1 1 1 ' ‘
0 10 20 30 40 50 60 70

Training Percentage
Back-Propagation Progressive Training (P.T.) P.T. + Node Pruning

Figure 6.5 Generalization performance of the hybrid algorithm : the IRIS data aet

Page 6-5

,Dynamic Construction of BP Networks

L a - ^-：：^
I

I . Z z '
C 94
OJ .
1 92 S ' " iS o

90 I 1 1 ' 1 ‘ ‘
0 10 20 30 40 50 60 70

Training Percentage
Back-Propagation Progressive Training (P.T.) PT. + Node Pruning ^̂ — — — — • -

Figure 6.6 Generalization performance of the hybrid algorithm : the handwriting
numeral data set

fiii) A Note on Specifying Parameter Values for the Hybrid Algorithm

In this subsection, we make a note on how the parameter values of progressive training
and node pruning in the hybrid algorithm are chosen. Table 6.1 depicts a sample network
construction process using different sets of parameter values for the 40% training sets of IRIS
data set and handwriting numeral data set. By using a small value for STEADYE(=30), more
nodes were generated by the progressive training part, and the pruned network sizes corre-
sponding the three sets of threshold parameters for relatively soft, medium, and hard pruning
are quite different. On the other hand, by using a large value for STEADYE(=150), networks
with fewer nodes were obtained and the influence of the threshold parameter setting is rela-
tively lower. Therefore, if one would like to have fast training by using small STEAD YE
value (see the parameter sensitivity analysis of progressive training in Section 4.5), hard
pruning is suggested to obtain a smaller network. However, in case STEAD YE is large, any
degree of pruning would not make too much difference.

. Page 5-6

,Dynamic Construction of BP Networks

Table 6.1 Network construction process using different sets of parameter
values

After progressive training and then after node pruning
STEAD YE C Number of £1-63 £4 £5 Number of

hidden nodes hidden nodes
generated

A. IRIS Data Set
30 1 o ~ 0 5 0 5 0 5 4

0.3 0.5 0.5 5
0.1 0.5 0.5 7

150 10 5 0.5 0.5 0.5 3
0.3 0.5 0.5 4
0.1 0.5 0.5 4

B. Handwriting Numeral Data Set
30 10 12 0 5 " " “ ^ “ 0 5 7

0.3 0.5 0.5 9
0.1 0.5 0.5 10

150 10 5 0.5 0.5 0.5 5
0.3 0.5 0.5 5
0.1 0.5 0.5 5

6.3 Concluding Remarks

A hybrid approach to automatic design of BP networks has been proposed. By combin-
ing the progressive training algorithm proposed for network growth and the node pruning
algorithm proposed for network pruning, an effective hybrid network construction algorithm
has been formed to fully self-determine the required network size. We have taken use of the
guaranteed convergence property of progressive training to construct a solution network with
finite number of hidden nodes first, and the four categories of excessive nodes involved are
then removed afterwards according to the user's pruning specification. Satisfactory results
were obtained. In fact, the growth and pruning processes in the present approach are exclus-
ive with each other, and hence they could be replaced by the other more effective algorithms,
if any.

. Page 5-7

Dynamic Construction of BP Networks

7 CONCLUSIONS

To conclude, we summarize the contributions of the present work, note a few limita-
tions, and suggest potential areas of further work.

7.1 Contributions

We have solved the network design problem of BP artificial neural networks by devis-
ing an automatic network construction algorithm composed of a network growth algorithm
called progressive training and a network pruning algorithm called node pruning. The main
contributions of this work are as follows :

(î A Reliable Wav to Network Growth

The work of progressive training conducted is the first approach to constructing BP net-
works by training with an expanding data set, which enables the network to grow gradually
and reliably as the complexity of the current training data increases. The algorithm has been
guaranteed to converge for any desired continuous one-to-one or many-to-one input-output
mapping which is not achievable by existing network growth algorithms. Thus, it could be
applied to any function approximation task, say image compression and time-series predic-
tion. In addition to its faithfulness in constructing finite networks, progressive training is free
from local minimum problems, an extraordinary property that is still missing from other
ANN learning paradigms. In the worst case, the algorithm will find a network with the
number of hidden nodes equal to the theoretical upper bound (see Theorem 1).

(ii) A Metric of "excessiveness" for Network Pruning

In previous network pruning methodologies, unnecessary nodes are removed from the
network according to some sorts of system error measurements. It is unlikely that the inter-
nal roleplay of these nodes is transparent through such kind of metrics and hence we do not
know whether a node could be pruned with preserved performance. The concept of
"excessiveness" advocated here has been tried to close this gap and oversized networks could

Page 7-1

,Dynamic Construction of BP Networks

be pruned with an explicit guideline. Thus, the pruned network is expected to be optimized
with both the size and performance. Besides, this work has provided an analysis of the char-
acteristics of hidden nodes in BP networks which helps to understand more on this class of
ANNS.

riii^ A Hybrid Approach

By network growth, design effort on the network size is not required since it simply
starts with a small network, but there still exists unnecessary nodes and links in the con-
structed network. By network pruning, an optimal or nearly optimal network would be
obtained in the expense of predetermining the initial network size which requires a prior
knowledge about the task such as its complexity. Taking the advantages of both approaches,
a hybrid approach which employs the proposed network growth algorithm to construct a
reasonably oversized network for the proposed node pruning algorithm to attain an appropri-
ate network has been presented. This opens a gate to automatic design of ANNs.

7.2 Limitations and Suggestions for Further Research

(i�Progressive Training

It has been observed that much of the progressive training's learning time has been
wasted by training previously learned patterns, and therefore it is slow. For this, improve-
ments could be obtained if we train more for the new pattern and. relatively train less for the
old data and this has left for further research. Besides, the speed can also be improved by
using any of the fast versions of BP algorithm (see, for example, [19-22]). Another fruitful
area of further work is to cater for incremental learning, in which new information is added to
the already-constructed network. Since new training patterns may not satisfy the largest
magnitude requirement of progressive training (see Lemma 1 and Theorem 1), each of which
may require more than one hidden node to handle. Preliminary conception is that at most two
hidden nodes are needed for each new available training pattern since two parallel hyper-
planes can be used to cluster it if the two hyperplanes are designed not to include any other

. Page 5-2

,Dynamic Construction of BP Networks

trained patterns also. We have analysed the sensitivity of a parameter of progressive training
called STEAD YE which specifies when a new node should be added. If this parameter is set
too large, there is a waste of training time. If it is set too small, the non-convergence decision
will sometimes be wrongly taken, and the size of the network may grow unnecessarily. A
better theoretical understanding of the convergence criterion of the BP algorithm would be
very helpful in order to optimally control this parameter.

(\\) Node Pruning

The node pruning algorithm was developed from a pattern classification point of view
with its applications also restricted to the pattern classification tasks because the concept of
category had been employed by the algorithm to detect excessive nodes. Hence, generaliz-
ation of the algorithm to be applicable to the other tasks will be the focus of further work.
Artificial neural network is also characterized by its high degree of fault-tolerance. Is it
really tolerable if the damaged nodes happen to be the solution nodes rather than the excess-
ive nodes ？ That will be a very interesting area for further research.

(iii�Multi-hidden-layer Networks

Although Homik et al. [26] and Funahashi [27] have proved the tremendous ability of
one-hidden-layer networks, it has been suggested that networks with more layers, and fewer
nodes in each layer, may generalize better than "shallow" networks with many nodes in each
layer [40]. However, networks with many layers are far harder to train than networks having
one hidden layer only. Therefore, extension of this work to multi-hidden-layer networks is
suggested for further research with emphasis on improving the generalization performance
and reducing the training time.

. Page 5-3

Dynamic Construction of BP Networks

REFERENCES

[1] JJ. Hopfield, "Neural Networks and Physical Systems with Emergent Collective
Computational Abilities," Proc. Natl. Acad. ScL USA, vol.79, pp.2554-2558, April
1982.

[2] D.H. Ackley, G.E. Hinton, and TJ. Sejnowski, "A Learning Algorithm for Boltzmann
Machines," Cognitive Science，vol.9，pp.147-169,1985.

[3] T. Kohonen, Self-Organization and Associative Memory. New York:Springer-Verlag,
2nd ed，1988.

[4] D.E. Rumelhart, G.E. Hinton, and RJ. Williams, "Learning Internal Representations
by Error Propagation," in Parallel Distributed Processing, VoU and II.，D.E. Rumel-
hart and J.L. McClelland, eds., Cambridge, MA:MIT Press, 1986.

[5] D.E. Rumelhart and J.L. McClelland, eds. Parallel Distributed Processing, VoU and
II. Cambridge, MArMIT Press, 1986，

[6] B. Kosko, "Bidirectional Associative Memories," IEEE Trans. System, Man & Cyber,,
voL18, no.l, pp.49-60,1988.

[7] G.A. Carpenter and S. Grossberg, "A Massively Parallel Architecture for a Self-Orga-
nizing Neural Pattern Recognition Machine," Computer Vision, Graphics, and Image
Processing，vol.37, pp.54-115,1983.

[8] G.A. Carpenter and S. Grossberg, "ART 2 : Self-Organization of Stable Category Rec-
ognition Codes for Analog Output Patterns," Applied Optics, vol.26, pp.4919-4930,
Dec 1987.

[9] G.A. Carpenter and S. Grossberg, "ART 3 Hierarchical Search : Chemical Trans-
mitters in Self-Organizing Pattern Recognition Architectures," in Proc. Int. Joint
Conf. on Neural Networks，vol.2, pp.30-33, Wash., DC, Jan. 1990.

[10] O.K. Ersoy and D. Hong, "Parallel, Self-Organizing, Hierarchical Neural Networks,"
IEEE Trans. Neural Networks, vol.1, no.2, pp. 167-178, June 1990.

Page R-1

Dynamic Construction of BP Networks

[11] E. Yair and A. Gersho, "The Boltzmann Perceptron Network : A Soft Classifier," Neu-
ral Networks, vol.3，pp.203-221,1990.

[12] A. Waibel, T. Hanazawa, G.E. Hinton, K. Shikano, and K. Lang, "Phoneme
Recognition Using Time-delay Neural Network," IEEE Trans. Acoust” Speech, Signal
Proc” vol.37, no.3, pp.328-339, March 1989.

[13] D.G. EUiman and R.N. Banks, "Shift Invariant Neural Net for Machine Vision," lEE
Proceedings, Parti, voL137, no.3, pp. 183-187, June 1990.

[14] S. Chen, G.J. Gibson, C.F.N. Cowan, and P.M. Grant, "Adaptive Equalization of
Finite Non-Linear Channels Using Multilayer Perceptrons," Signal Processing, vol.20，

no.2, pp. 107-119,1990.
[15] K.S. Narendra and K. Parthasarathy, "Identification and Control of Dynamical Sys-

tems Using Neural Networks，" IEEE Trans. Neural Networks, vol.1, no.l, pp.4-27.
Mar. 1990.

[16] R.P. Gorman and T.J. Sejnowski, "Analysis of Hidden Units in a Layered Network
Trained to Classify Sonar Targets," Neural Networks, vol.1，pp.75-89, 1988.

[17] A. Khotanazad and J.H. Lu, "Classification of Invariant Image Representations Using
a Neural Network," IEEE Trans. Acoust., Speech, Signal Proc,, vol.38，no.6, pp.1028-
1038，June 1990.

[18] J.A. Benediktsson, P.H. Swain, and O.K. Ersoy, "Neural Network Approaches Versus
Statistical Methods in Classification of Multisource Remote Sensing Data," IEEE
Trans. Geoscience and Remote Sensing, vol.28, no.4, July 1990.

[19] R.A. Jacobs, "Increased Rates of Convergence Through Learning Rate Adaptation,"
Neural Networks，vol.1, pp.295-307,1988.

[20] L.W. Chan and F. Fallside, "An Adaptive Training Algorithm for Back-Propagation
Networks," Computer Speech and Language, vol.2, pp.205-218,1987.

[21] S. Becker and Y. Le Cun, "Improving the Convergence ofBack-Propagation Learning
with Second Order Methods," in Proc. of the 1988 Connectionist Models Summer
School, D. Touretzky, G. Hinton, and T. Sejnowski, eds., pp.29-37, San Mateo,
CA:Morgan Kauffman, 1989.

Page 4-2

Dynamic Construction of BP Networks

[22] T. ToUenaere, "SuperSAB : Fast Adaptive Back Propagation with Good Scaling Prop-
erties," Neural Networks, voL3, pp. 561-573,1990.

[23] A. Lapedes and R. Farber, "Nonlinear Signal Processing Using Neural Networks;
Prediction and System Modeling," TR LA-UR-87_2662,1987.

[24] G.W. Cottrell and P. Munro, "Principal Component Analysis of Images Via Back-Pro-
pagation", in Proc. of Visual Communications and Image Processing ,88, SPIE
VoLlOOl, pp.1070-1077,1988.

[25] A. Rajavelu, M.T. Musavi, and M.V. Shirvaikar, "A Neural Network Approach to
Character Recognition," Neural Networks, voL2, pp.387-393,1989.

[26] K. Homik, M. Stinchcombe, and H. White, "Multilayer Feedforward Networks are
Universal Approximators," Neural Networks’ vol.2, pp.359-366,1989.

[27] K. Funahashi, "On the Approximate Realization of Continuous Mappings by Neural
Networks," Neural Networks, vol.2, pp.183-192,1989.

[28] N. Baba, "A New Approach for Finding the Global Minimum of Error Function of
Neural Networks," Neural Networks, vol.2, pp.367-373,1989.

[29] M.L. Brady, R Raghavan, and J. Slawny, "Back-Propagation Fails to Separate Where
Perceptrons Succeed," IEEE Trans, on Circuits and Systems, vol.36，no.5. May 1989.

[30] R. Hecht-Nielsen, Neurocomputing. Addison-Wesley, 1990.
[31] Y. Le Cun, "Generalization and Network Design Strategies," in Connectionism in Per-

spective, R. Pfeiger, Z. Schreter, F. Fogelman and L. Steels, eds, Elsevier, Zurich,
Switzerland, 1989.

[32] E.B. Baum and D. Haussler, "What Size Net Gives Valid Generalization ？Neural
Computation, vol.l, no.l, pp.151-160,1989.

[33] J. Denker, D. Schwartz, B.Wittner, S.A. Solla, R. Howard, L. Jackel, and J. Hopfield,
"Large Automatic Learning, Rule Extraction and Generalization," Complex Systems,
no.l，pp.877-922,1987.

[34] Y. Chauvin, "A Back-Propagation Algorithm with Optimal Use of Hidden Units," in
Advances in Neural Information Processing Systems 1�D.S. Touretzky, ed., Morgan
Kauffman, pp.519-526,1989.

Page 4-3

Dynamic Construction of BP Networks

[35] SJ. Hanson and L.Y. Pratt, "Comparing Biases for Minimal Network Construction
with Back-Propagation," in Advances in Neural Information Processing Systems 1’
D.S. Touretzky, ed., Morgan Kauffman, pp.177-185,1989.

[36] M.C. Mozer and P. Smolensky, "Skeletonization : A Technique for Trimming the Fat
from a Network via Relevance Assessment," in Advances in Neural Information Pro-
cessing 1, D.S. Touretzky, Ed.，Morgan Kaufmann, pp.107-115,1989.

[37] K.G. Beauchamp, Walsh Functions and Their Applications. London:Academic Press,
pp.171-178,1975.

[38] Y. Le Cun, J.S. Denker, and S.A. Solla, "Optimal Brain Damage，" in Advances in
Neural Information Processing 2，D.S. Touretzky, Ed., Morgan Kaufmann, pp.598-
605,1990.

[39] M. Mezard and J.P. Nadal, "Learning in Feedforward Layered Networks : The Tiling
Algorithm," J, Physics A : Math. Gen., vol.22, pp.2191-2203,1989.

[40] D.E. Rumelhart, "Parallel Distributed Processing," Plenary Session, IEEE Int. Conf.
on Neural Networks, San Diego, CA, 1988.

[41] M. Frean, "The Upstart Algorithm : A Method for Constructing and Training Feedfor-
ward Neural Networks," Neural Computation, vol.2, pp. 198-209,1990.

[42] S.E. Fahlman and C. Lebiere, "The Cascade-Correlation Learning Architecture," in
Advances in Neural Information Processing 2, D.S. Touretzky, Ed., Morgan Kauf-
mann, pp.524-532,1990.

[43] Y. Hirose, K. Yamashita, and S. Hijiya, "Back-Propagation Algorithm Which Varies
the Number of Hidden Units," Neural Networks, vol.4, pp.61-66,1991.

[44] NJ. Nilsson, Learning Machine. New York:McGraw-Hill, 1965.
[45] F. Rosenblatt, Principles of Neurodynamics, Washington DCiSpartan Books, 1961.
[46] PJ. Werbos, "Beyond Regression : New Tools for Prediction and Analysis in the

Behavior Sciences," Doctoral Dissertation, Appl. Math., Harvard University, Nov.
1974.

[47] D.B. Parker, "Learning-logic," Technical Report TR-47, Center for Computational
Res. in Economics and Management Sci., MIT, April 1985.

Page 4-4

Dynamic Construction of BP Networks

[48] A.E. Bryson and Y.C. Ho, Applied Optimal Control [Revised Printing of the 1969
Edition]，New York:Hemisphere Publishing, 1975.

[49] M. Minsky and S. Papert, Perceptrons, Cambridge MA:MIT Press, 1969.
[50] Y.H. Pao, Adaptive Pattern Recognition and Neural Networks, MA:Addison-Wesley,

1989.
[51] B. Widrow and S.D. Steams, Adaptive Signal Processing, New Jersey:Prentice-Hall,

1985.
[52] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis. New YorkJohn

Wiley & Sons, 1973.
[53] T. Lee and F.L. Chung, "A BP-Watchdog Process for Training Multilayer Percep-

trons," in Proc. Int. Conf. on Automation, Robotics, and Computer Vision ,90,
Singapore, pp.260-264, Sept. 1990.

[54] J. Sklansky and G.N. Wassel, Pattern Classifiers and Trainable Machines. New
York:Springer-Verlag, 1981.

[55] R.A. Fisher, "The Use of Multiple Measurements in Taxonomic Problems," Ann.
Eugenics, vol.7，pp.179-188,1936.

Page 4-5

Dynamic Construction of BP Networks

APPENDIX

A.1 A Handwriting Numeral Recognition Experiment: Feature Extraction Technique
and Sampling Process

A handwriting numeral recognition experiment was conducted to evaluate the intro-
duced algorithms in this thesis. The problem however is in no way a real world application
but is sufficient to illustrate the effectiveness of the proposed algorithms. In this experiment,
raw data were taken from three writers. In order to facilitate size and position invariant rec-
ognition, each input numeral was fitted into a box whose size and position were calculated
from the maximum and minimum coordinates of the numeral. The raw data were then
feature extracted using Walsh functions, as described in [25]. In this technique the numeral
data are expanded in a set of orthogonal functions. The expansion coefficients form the fea-
tures of the numeral. Before meaningful features are extracted, the numeral image undergoes
a binarization stage based on a fixed threshold. The features extracted then depend on the
intensity distribution of the binarized image. The general equation is of the form

L{x)^Y.CMx) f o rO< ; c < l (AAA)

where L(x) is the intensity distribution function which is expanded in a series of n known ort-
hogonal functions f„(x). The set of coefficients obtained from the above expansion char-
acterizes the numeral data represented by the function L(x), In this experiment, two intensity
distribution functions L“;c) and Ly(x) for the horizontal and vertical directions of the image
were defined where x is the space variable in pixel length and was normalized to the interval
0<JC<1. By taking the Walsh transform of and the corresponding Walsh
coefficients Chi and Cy,,

1

fzj•執 {A,\2a)
0

1

Cw= U v W ^ W ^ (A.1.2 办）

0

Page A-1

Dynamic Construction of BP Networks

where ̂ (x) is the zth Walsh Function [37], were used as the numeral's features. Hence each
numeral resulted in a unique set of expansion coefficients, making it possible to categorize
the numerals based on these coefficients. This was due to the disparity in the shapes of dif-
ferent numerals, which result in varying intensity distributions. Four Walsh functions were
used for each distribution function and therefore the dimension of each numeral sample was
eight. A total of 300 samples which composed of 30 samples from each of the ten numerals
were collected for this experiment.

A.2 Determining the distance d = 5̂ /2r in Lemma 1

In this appendix we describe the derivation of the distance d = 5̂ /2r illustrated in

Lemma 1. Figure A.2.1 depicts the explanations in the proof of Lemma 1 with hyperspheres
C(jC/+i,5) and C(o,r) intersect at points ！批 of /. We want to find the distance d. By look-
ing at triangle with vertices o，/i & X/+i，

c o s 0 = ^ = l - - (A.2.1) r r
and

cos\|r = ~ (A.2,2)
o

Since 0 = 180°- 2\|/, equation (A.2.1) becomes

and hence

l+cos2\|; = 2cos^\|/ (A .2.4)

Substituting equation (A.2.2) into equation (A.2.4), we have

Page 4-2

Dynamic Construction of BP Networks

d差

(A .2.5)
2r

C(。，r)

V vzy
Figure A.2.1 Schematic illustration of Lemma I's proof

Page 4-3

.

 .

 *

 、

•.‘

 -——

 .

 ’

 ,

•

/

：

^

、
，
€
 工
i

 .、『

卞

•

.

-

.

.

 .
.
.

.

.

.

>

厂

.
v
i
.

•

 •

 ,

 -

 ,

 .

/

：

 .

 •
•

 .

 .

 :
r

.

 ,

 •

 ̂

 .

 .

 i
、

：

卞

.

(

•

 ..

.

1

 --

」

.

“

 ；
.
.
〜

•

 -

 “

 I

 -

：

 .

,:

-

 ：
.
k

-
•
 ..

 .

 ..

 ̂

.

 .

 ..

 ..

 -
-
l
.
^
-
H
,
.

.

 .

 .

 .

 .

 .

 .

 .

.

 .

 .
•

、

 r

 ,
.

-

 .

 .

 -

Z
 •

 •

 •

’

 -
：
；

 ,,

*

-

.

.

、

.

.

“

.

？

.

 -.

 .H,

 -

；

 •
.
.

...

’

-

 -
，

，

 --

..

 -

.

 .

 .

.

.
 -

 ,

.

 «

 .

 .

 .

 1

 、
+
,

 •
•
•
•
.
+
•
.

.
《

-

,

 .’

，

-

.

.

 V

 •

 .

、

.

 .

 .

 ,

 -

 i

 ,

-

‘

,

-

.

.

.

 .

 .

 .

 .
.

 -
.
.
.
.
.
.
.
.
•

 >.

A

 •

.

-

•

•

•

.

.

^

 •

 -

 ..

 ••

.

/

_

•

•

•

,

广

.

.

•

 .

 .

 ..
.
.
.

 ,>

 •

 •

 •

 •
.

•
 .

 .

 .

 .,

<

 •

 «

 ”

 V
-

：

.

•

.

 H

•
V

 .

.

.

.

:

•

.

、

 、
i

•

 I

 .
f

 ..

 •

 .

 .
.

 ,
.

 1

—
 •

...

 .

 '

 T

 •

 •

 .
•

 I

7

 -
 :
 -

 .

 .

 •

 •
 ,

 i

r

 .

 .

 .
;

 ,

-

J

.

.

.

.

.

.

.

”、：

.

.

.

•

,

.

-

厂

 .

 -

 •

 •

 •

 /
 •

 •

 •

 .
.
.
:
/
-
.
.

 V

 ̂

..

〈

「

 .
.
.

•

 ."，

 r

 .

 广
.
，

 vf
.

 .
-

 ?‘,」：、

^

.

.

.

-..

 .
f

 -

 ̂

 •

 -

 -

 -

\

 -
 ,

 .

i

.

.
 "

 >

 ,,

 :
 s

、
.

：

 .

 -
、
•

 :
:

 u
、

l
.
t
 .

 .,

.

-

.

 .
二

 ，
h

?

,

.

.

」

：

(

e
.
:
.

 .
.
.
:
.
:
.

 -

.

.

.

 ̂

 ̂

 .

•
•
.
:
、
：
•
:
.

.

.

.

 r

 .>。-、".

！

 •

 I
 v
r
r
f

,

'
.

.

r
.

.

-
 y

,

.

广

.
.

 %

 V

7

 «

 •

 -

 '
 ̂

 i

 ̂

-
J

 .

 ‘

 .

 .

 "

•
•
-
•
.
’
;
.
.
-
’
.
-
.
.
.
-
?
.

 1

 .

 K
.

:

.

•

 :
:

”

 >、,

 .••-

.

.

 ？
N

r

-

久

，

.

.

-

.

"

-

.

.

-

 ...-.—

 ..,

>

>

M

、

 ,

 y

 .

 .

 “

 >

t
-
j

'

r
*

r

.
 •

 •

 .

 A

 .

,

/

-
:
。
；
.
：

.

-

“

^

‘
^
 *

 ,

 .

 •

 ,

 .

 /

 '

 V

 ̂
 (
，
v
;
i
"
"

〒
 v
t
i

於
V
 .

 .
.

.

：

丄

i
 -

 “。.

.

.

：

：

.

：

.

，

•
 ”
I
t

、
i

M

办

“

」

，

-

.

.

.

.

 ..

霍
二

 .：.

：

 ，
"

.

：

"

•

.

 ：；

.

 :

 .
M
i
-
塵

. 1

CUHK L i b r a r i e s

0 0 0 3 2 5 5 5 = 1

I _

