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Abstract · 

In this study, an automatic i~dex generation method is proposed for the 

Chinese Medici~al Material Research Center in the Chinese University of Hong 

Kong. In this :center, there is a free text-based database containing more than 

10,000 documents about the Chinese Medicine. These documents are not yet 

-
indexed. The aim of this research is to develop the automatic indexing 

procedures to solve the problem of indexing documents in this center. 

In this study, a statistical automatic indexing method is developed. The 

main reason of adopting the statistical approach is to by-pass the problems 

involved in the handling linguistic features of natural language. In this 

statistical approach, word oc~rrence frequencies and statis.ti~~ correlations 

-between indexes and words will be 'used to determine the index assignment for 

documents. 

Many new ideas have been inspired in the study. First, there is a new 

method introduced to , solve the ,problem of distinguishing correct index-word 

associations from incorrect ones. F or words that are truly related to a certain 

index, these words are with lower cha.TI:ce to ,change their ranks which are 

determi~ed by comparing the statistical correlations of words that are 
, . 

associated with the index. (Larger value of statistical correlation means higher 

rank.) -When the number of indexed documents used to calculate these index-
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word associations is increasing, there will be 'changes of word ranks. These are 

caused by the changes of statistical correlations which are approaching to the 

correct values when more and more documents are used to calculate these 

associations. ~ But r"ank changes of correct words are relatively small compared 

with those of inc?rrect ones s~nce increasing documents only establishes correct 

statistical correlations. This feature can be used to determine which index-word 

associations are correct. This method' is better than the traditional method 

using only the statistical correlations between indexes and words (a large 

correlation value means correctness of an association). Because the statistical 

correlation may not always reflect the correctness of an association due to 

statistical errors and various relations between words and' indexes. Second, the 

concept of word diversity is introduced in this paper. When categories of words 

found in a document are restricted and similar, the word diversity is low. 

Conver"sely, various and different word categories lead to high word diversity. 

-The word diversity is an important factor affecting the performance of 

automatic indexing although it is seldom mentioned in the past researches. 

When the word diversities of documents are low, the performance of automatic 

indexing can be improved. Third, in this study, it is found thatin a non-indexed 

document, the proportion of words proposing an certain index is correlated with 

the correctness of the index. A method using this feature is introduced to 

predict the correctness of ,proposed indexes automatically. Finally, the use of 

semantic representation for natural language terms has been attempted 'in this 
, , . 

, study and it is found thatit can solve the problems in managing a large amount 

ofnann:al 'language terms and representing, synonyms and hierarchial-telated 

I ' '\ 
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terms in the statistical approach of automatic indexing although this method is 

seldom used in the past researches for the statistical approach. 

Simulations using imaginary ,data and case studies using real data have 

been performed to de'monstrate that the procedures proposed in this paper c~ 

work practically to assist in automatic indexing of free-text documents. 
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Chapter one: I ntrod uction 

Ch~pter one 

Introduction 

In the Chinese Medicinal Material Research Center (CMMRC) in the 

Chinese University of Hong Kong, there is a free text-based database containing 

. more than 10,000 medic,~ documents written in English text [2]. These 

documents are not yet indexed . and searching information in this database is 

completely dependent on free text matching of query terms with text stored in 

the database. This searching method is so difficult that the searcher may need 

to attempt each possible clue word string to retrieve the information he wants. 

The problem of this kind of searching is that there is no standard entry 

points to get access · to the info~ation stored in the database. One obvious 

solution to this problem is to classify documents in the database according to 

their subject contents. In other words, these documents should · be indexed. 

Index terms will be assigned to each dQcument to describe and summarize the 

document content. After the documents are · indexed, the searching can be 

performed efficiently byu'sing these index terms as query descriptions. 

1 
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Chapter one: Introduction 

Now, the problems are (1) how a set of index terms for medical 

documents can be developed and (2) how these documents can be indexed by 

these index terms. ' 

In the 'National Library of Medicine (NLM) , a set of well-developed 

index terms for western medicine has been being used and modified for more . 
-
than 100 years [9,10]. They are Medical Subject Headings (MeSH) which are 

used in the western countries as standard index terms for medical science. In 

fact, in the CMMRC database, the documents are talking about Chinese 

medicine treated by the western medical approach. Therefore, it is feasible that 

the MeSH index terms can be adopted in the CMMRC database. 

But the second problem is how such a large amount of documents stored 

in the CMMRC database can be indexedo Typically, indexing is a task 

performed by a human' indexer with certain knowledge and experience on the 

field where he works. It seems ' that human indexing may not be a practical 

solution to the problem of indexing these documents in this center. Automatic 

indexing is a feasible c,hoice. Itmeans the indexing task is assisted by the use 

of computer. The aim of this research is to develop an automatic indexing 

method to suit the circumstance of this center. 

Automatic .indexing for information 'expressed in the ' form of natural 
, 

languag~ is not a , simple task~ 'In ~he past, researchers attempte'd to tackle this 

2 



Chapter one: Introduction 

problem with different approaches. But there is still a room .for improvement. 

An automatic indexing method based on statistical approach is developed ' in 

this research. Some new techniques have been attempted in the automatic 

indexing. Th~se 'techniques include determining the correct associations 

between indexes and words, using semantic representation in the statistical 

approach and predicting the correctness of proposed indexes. The concept of 

word diversity will be introduced in this pap~r. This is a factor that is able to 

affect the indexing performance but is seldom noticed in the past researches. 

They will be described explicitly in . this paper. Below are some brief 

descriptions of other chapters of this paper. 

In the chapter two, the background knowledge about indexing will be 

covered. Two typical automatic indexing approaches using linguistic knowledge 

of natural language will be mentioned. Examples will be described in order to 

illustrate the concepts and ~ec~niques used in these approaches clearly. 

Comments on approaches using linguistic knowledge will be discussed. 

In the chapter three, results of past researches on statistical approach of -

automatic indexing will be covered. The rationale of automatic indexing ' 

studied in this research will be described. The procedures of the automatic 

indexing and the solutions to the problems encountered in these procedures will 

be mentioned exPlicitly. Factors affecting the performance- of automatic 

indexing-will be studied. 

3 



Chapter one: Introduction 

. In the chapter four, the results of simulations using imaginary data will 

be described. 'The aim of these simulations is to verify the automatic indexing 

method proposed in this paper. Factors affecting the performance will be 

considered in th~se simulatio~. 

In the chapter five, real documents selected from the Chinese Medicinal 
. 
Material Research Centre will be used to perform the procedures of automatic 

indexing. The aim is to illustrate the feasibility of using automatic indexing in 

the real world. Results and factors affecting the automatic indexing 

performance, will be described. : 

·In the chapter six, the findings and study results of this research will be 

concluded. 

4· 
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Chapter two: Background knowledge and linguistic approaches of automatic indexing 

Chapter two 

Background knowledge and linguistic approaches 

of automatic indexing, 

2.1 Definition of index and indexing 

Indexes are a grouP0,of terms used to represent some special features of 

documents such as author and subject -content. In other words, indexes are 

used to indicate the document content. Indexing is a process to assign suitable 

indexes for a document in order to describe the information carried by it. 

The relation between indexing and searching is very close. The maiD. 

aim of using indexes to describe a document is for searching. If the index 
. ! 

assignment is not proper that indexes cannot reflect the document content and 

cannot be used for searching, indexes will become worthless. In other words, 

if in the searching process, there is no index to represent the document content, 
, , 

one needs to go through each document by examining its content. 

Cleveland [3] listed different types' of indexes. They are author indexes, 

subject -indexes, classified indexes, coordinate indexes, permuted title indexes, 

faceted indexes, chain, indexes, string indexes and citation indexes. Subject 



Chapter two: Background knowledge and linguistic approaches of automatic indexing 

index which reflects the subject content of the documents is one involved in this 

study and many past researches. 

Rowley [17] divided indexing into controlled indexing and natural­

language indexing based on the degree of control for using index terms. In the 

controlled indexing, only a set of predefined indexes can be used.while in the 

natural-language indexing, any term of natural language can be used freely. 

Indexing is a process requiring experience and knowledge. Cleveland [3] 

said that good indexing was . not a causal clerical job, but the result of · a 

professional activity carried out by people with proper training and experience. 

There are procedures and techniques, worked out over the years, that can be 

learned and followed. 

· 6 
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Chapter two: Background knowledge and linguistic approaches of automatic indexing 

2.2 Indexing methods and proble!lls 

Do the various methods used by librarians, documentalists and 

information scie?-tists to ·organize knowledge and information keep pace with 

the growth of 'knowledge and our changing constructs of it? Vickery [21] 

arranged the various methods of classification and indexing in an order of 

increasing degree of control. The list of these methods is shown below 

(arranged by increasing degree of control). 

1. Words chosen from title or text, with common words ~mitted. 

2. Words chosen from text, with omission of common words and 

consideration of variants. 

3. Words chosen from text, with omission of common words, consideration 

of variants, and generic relationships. 

4. Words chosen from · text, with consideration of syntactical relationships 

between indexing terms. 

5. Any of the preceding methods, with addition of terms not used in text. 

6. Assignment of index entries from a fixed authority list or classification 

schemes. 

7. Assignment of index entries from a~thority lists or classification schemes 

. representative of several viewpoints and aspects of subject. 
. . 

7 



Chapter two: Background knowledge and linguistic approaches of automatic indexing 

Similarly, Steinacker [19] classified indexing problem into several levels. 

He considered that the intellectual task of indexing has three problem levels as 

follows. 

1. Selecting significant words or terms (phrases) from the text which are 

equivalent to thesaurus descriptors (consecutive or sequential indexing). 

2. Referring very specific terms in order to reduce the variety of terms 

(hierarchic or generic indexing). 

3. Choosing descriptors which neither occur in the text nor are indicated 

by more specific terms, but which are only implied (symbolic indexing). 

2.3 Automatic indexing and human indexing 

Referring to above problems,. human indexing solves the problems of 

indexing on these three levels simultaneously without always clearly 

distinguishing between them. However, the difficulties encountered under 

operational aspects are (1) the natural inconsistency of human work which leads ' 

. to some arbitrariness in assigning descriptors to documents and (2) the high 

. cost and long time required, and the difficulty in finding qualified staff, for this 

kind of routine work. 

Automatic indexing is defined to be a process in which indexes will be 

assigned,to 'documents automatically With the aid of computers. The reas'on for 

8 



Chapter two: Background knowledge and linguistic approaches of automatic indexing 

using computers is that documents_ can be processed with higher speed, higher 

consistency and lower cost. The automatic indexing can settle down problems 

of index assignment inconsistency, high cost and long time for human indexing. 

However, the m~in problem to be solved in automatic indexing lies in creating 

algorithms capable of identifying those-elements of the text that can regarded 

as representatives of its contents. In most cases, indexing is a relatively easy 

-
decision for a human expert to make. The question being raised is whether a 

computer can be programmed to determine the subject content of a document 

and indexes which should be assigned to this document. 

9 



Chapter two: Background knowledge and linguistic approaches of automatic indexing 

_ 2.4 Different approaches of automatic indexing 

There. are three different approaches used in the automatic indexing of 

natural 'language. They are semantic, syntactic and statistical approaches. In 

fact, the first two approaches are ones related to linguistic knowledge of natural 

language. In this chapter, these two approaches will be introduced briefly while 

the statistical one will be mentioned in the next chapter. 

Following are some typical examples USIng semantic and syntactic 

approaches. For semantic approaches, Vleduts-Stokolov [22,23] developed a 

formalized language which was used to match with natural language in the text 

of a document while Humphrey and Miller [7] used the frame-based knowledge 

representation language to assist in indexing process. Maeda [12] and Trubkin 

[20] used a dictionary containing some lexical knowledge and concepts to 

support the indexing process. ·Their common principle is that the text of· a 

document will be interpreted in order to extract the semantic meanings carried 

by the linguistic entities such as words, phrases and sentences. Then, after 

analysis of these semantic meanings, the indexes reflecting these meanings will 

be assigned. 

On the other hand, for syntactic approaches; Dillon and Gray [4] 

developed syntactical rules which were used to analyze the syntactical structure 

of the d~cument text to extract suitable terms. as indexes. J anas [8] used the 

j . '\ 
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Chapter two: Background knowledge and linguistic approaches of automatic indexing 

knowledge of linguistic regularities to recognize important phrases from the text 

while Sager [18] proposed a sublanguage grammer to extract information 

contained in the text for indexing. Their main principle is to locate content-

bearing items (especially nouns and verbs) in sentences and then they will be 

used as indexes or as "clues for choosing suitable indexes. 

In order to illustrate the procedures and concepts used in these two 
o 

approaches, a typical example for each approach will be explained concisely in 

the following paragraphs. 

2.5 Example of semantic approach 

ill this example, the approach used by Vleduts-Stokolov [22,23] will be 

illustrated. Vleduts-Stokolov described a natural language processing system 

designed as an automatic aid to subject indexing in BIOSIS. The procedur~ 

that the system should model is a deep indexing with a controlled vocabulary 

of biological concepts -- Concepts Headings (CHs). On the average, ten CHs 

are assigned to each article by EIOSIS indexers. 

The automatic procedure consists of two stages: · (1) translation of 

natural-language biological titles into title-semantic re"presentations which are 

in the ' constructed formalized language of Concept "Primitives, and (2) 

trarislati,on" of the latter repies~ntations into the language of eRs . . 

. 11 . 



Chapter two: Background knowledge and linguistic approaches of automatic indexing 

The first stage is perform~~ by matching the titles against the system's 

Semantic Vocabulary (SV). The SV currently contains approximately 15,000 

biological natural language terms and their translations in the language of 

Concept Primiti~es. Following are examples of simple SV structure. 

natural language term: Fatty Tissue 
Concept Primitives: BONES, JOINTS & ADIPOSE TISSUE; LIPIDS 

natural language term: Chicken(s) 
Concept Primitives: A VES; PRODUCTION ANIMALS; POULTRY; 

TERRESTRIAL; DOMESTIC; LABORATORY 

The ·second stage of the automatic procedure is performed by matching 

the title representations against the CH definitions, formulated as Boolean 

search strategies in the language of Concept Primitives. Following is an 

example of a CH definition. 

CH: Blood Cell Studies 
Definition: (CYTOLOGY) and (not THYMUS) 

12 



Chapter two: . Background knowledge and linguistic approaches of automatic indexing 

This semantic ,approach can be su1.11inarized in the table 1. 

Table 1 Summary of semantic approach of automatic indexing used by Vleduts- -. 
Stokolov [21,22]. . 

Natural language 
Biological document (with title) 

Natural language 
Biological title 

I (3) .. 

(2) 

T , (4) T T 

(1) 

Semantic representation of ----~Set of Biological 
the title in the Concept .Headings 
formalized intermediary 
language of concept primitives 

The arrow (1) corresponds to the real life 
. indexing procedure. The arrow (2) corresponds to the 
virtual procedure, which is part of the procedure (1) 

- modeled in the automatic procedure. The arrows ( 3) 
and (4) represent the two stages of automatic 
procedure. 

13 



Chapter two: Background knowledge and linguistic approaches of automatic indexing 

2.6 Example of syntactic approach 

In this example, the approach used by Dillon and Gray [4] will be 

illustrated. Their approach is based on the idea that content bearing words o~ 

phrases belong to certain syntactic categories or combinations of categories. 

After assigning the words in the text to categori~s, it selects concepts based on 

predefined patterns of categories. It then reduces variations of these concepts 

to an authoritative form for grouping. In practice, indexing consists of two 

major operations. The ' first is concept s~lection and the second is concept 

groupIng. 

The concept selection consists of three steps. The first step is assignment 

of words to syntactic categories. An exception dictionary of words and a suffix 
--

dictionary of word endings are used to assign mnemonic tags representing 

syn~actic categories to every word, number, and punctuation character found in 

text. Since individual words within the English language may belong to more 

than one category, more than one tag may be assigned. Any word not tagged -

by the dictionaries is assigned a default tag of adjective-noun-verb. Following 

are some examples of tags. 

Syntactic category 
adverb or preposition 
general noun ' 
adjective 
~odal . auxiliary 

. (. 

Examples 
by, around 
analysis 
administrative 
can, may 

14· 



Chapter two: Background knowledge and linguistic approaches of automatic indexing 

The second step is disambiguation of multiply tagged words. Choosing 

between multiple syntactic categories (disambiguation) is accomplished by 

examining the tags of words before and after the ambiguous (multitagged) 

word. For example, the word "automated" may be either a past tense verb or 
- ' 

past participle.,: In the phrase "by automated methods", one rule for 

disambiguation recognizes that a past tense verb cannot follow "by", a word 

·which functions either as a preposition or adverb, and the past tense tag is 

removed. 

The third step is to select concepts. The text" represented by tags, is 

matched against a dictionary of acceptable concept forms. In the case of ''by 

automated methods", the form identifies "automated methods" as a concept 

based on the tags "past participle" followed by "plural noun". 

The second operation is concept grouping which is made up of two steps. 

The first step is formation of ' canonical forms. Each concept is first 

standardized by purging it of unwanted words, either general nOUllS, or words 

such as "by", "in", "of" "for" or "to". For example, "of' is purged from the phrase' 
, , 

"review of books". Words for purging are identified by membership in syntactic 

categories. The remaining words of a concept (in stem form) are then sorted. 

The intent is to merge concepts that differ in 'minor ways to the same 

( canonical) form. 

15" 



Chapter two: Background knowledge and linguistic approaches of automatic indexing 

The second step is to group concepts. Quasisynonymous groups of 

concepts are formed by treating as equivalent all canonical forms that overlap 

in at least one stem. 

, After all these processes, content bearing words are selected and 

grouped -according to their meanings. These words can be used as indexes or 

as clues for selecting indexes. 

16 



, Chapter two: Background knowledge and linguistic approaches of automatic indexing 

The methods used in this syntactic approach will be illustrated with an 

example in the table 2. 

Table 2 An example illustrating the syntactic approach of automatic indexing 
used by Dillon and Gray [4] . 

A: CONCEPT SELECTION 

A sample of text: I would like all information on library catalogs produced 
by automated methods ... 

Tagging and disambiguation (steps 1-2) 
. Text 
I 
would 
like 
all 
information . 
on 
library 
catalogs 
produced 
by 
automated 

-methods 

Tag 
PPS 
MD··:· 
VB-SC-JJ 

_PQL-QL 
GN 
APP 
NN 
NNS-VBZ 
VBD-VBN 
AP 
VBD~VBN 

NNS 

Dictionary 
Exception 
Exception 
Exception 
Exception 
Exception 
Exception 
Exception 
Suffix 
Suffix 
Exception 
Suffix 
Exception 

Concept -selection (step 3) 
Concept -
library catalogs 
automated methods 

B: -CONCEPT GROUPING 

Form 
NNNNS-VBZ 
VBN NNS 

Disambiguated 

VB 

VBN 

Results of stemming" internal 'sorting of stems within the concepts and 
grouping multiword forms with single word groups. 

Concept 
library catalogs 

automated methods 

Canonical Form 
catalog librar . 

autom method 

17 
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Chapter two: Background knowledge and linguistic approaches of automatic indexing 

2.7 Comments on semantic and syntactic approaches 

Both the semantic and- syntactic approaches imitate human using 

linguisticknowle.dge tounderst9.nd the me3.ning of linguistic entities. Human 

also depends o'n·- this knowledge to understand the document content. 

The main drawback of these approaches is that this knowledge used by 

the computers must be predefined first. One rieeds to define and store 

linguistic information about the natural language terms. In the semantic 

approach, semantic representations of each term have to been defined while in 

the syntactic approach, the syntactic roles possibly played by each term should 

be specified. _ Of course, to predefine such linguistic knowledge requITes 

expertise -and rather long time. 

On the- other hand, the success of -these approaches relies on the, 

correctness and completeness of the knowledge incorporated in the system. For 

instant, Vleduts-Stokolov has defined semantic tepresentations for many natural 

language terms. If there is a, new term not yet defined by semantic ­

representations, this new term cannot be utilized in automatic indexing. 

18 
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Chapter three 

Rationale and methodology of automatic index generation 

3.1 Problems caused by natural language 

As mentioned in the previous chapter, the aim of automatic indexing is 

to determine indexes which are suitable to describe the content of a certain 

document with the aid of computers. In other words, the automatic indexing 

involves in the mechanical process of deciding what a certain document is 

talking about. 

However, it is not easy to have a computer program which is able to ' 

. understand the natural language as well as human does. As mentioned earlier, . 

the . most difficult problem in the automatic indexing is to, deal with the 

linguistic features of natural language. It is because the computer program is 

not only required to identify the linguistic entities such as words, phrases and 

sentences, but is also r~quired to interpret the meanings carried by these 

linguistic entities. The problem is complicated by the fact that there is no 

definite rule governing how these . linguistic entities are combined to bear 

numerous . types of meanings. Human can understand the meaning of the 

natural language, and then index the documents. Nevertheless, human also 

19 . 
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Chapter three: Rationale and methodology of automatic index generation 

depends on the -experience and the knowledge of the natural language to grasp 

the meaning of natural language. 

Therefor~, as mentioned in the previous chapter, both the semantic and 

syntactic characteristics of the natural ,language have been utilized by many 

researchers in order to tackle this problem. In their methods, they developed 

knowledge components containing linguistic knowledge. The computer will 

make use of this predefined knowledge to interpre(the meaning of the natural 

language and understand what the document is about, and finally suggest some 

indexes to it. But the success of their approaches is relied on the completeness 

and the correctness of the predefined knowledge incorporated in the automatic 

indexing procedures. Moreover, the development of such a knowledge 

component is rather time-coJ;lSuming. 

3.2 Usage of word frequencies 

Is there any automatic indexing method which can by-pass the linguistic 

difficulties of understanding the seplantic and syntactic structures which convey ' 

the meaning of the document? In 1949, a book "Human Behaviour and the 

Principle of Least Effort" .was published by George Zipf [24]. The main aim 

of his book was to support his thought of the principle of least effort. 
, , 

According to his p$ciple, ~if there are many ways to achieve a goal, people will 

, take the way requirmg the least effort. ' He believed that this principle governed 
: , . - . 
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, manyaspects of our activities including the use of language. In his book, he 

mentioned a behavioral factor related to word occurrence frequencies in 

English language texts. Zipf believed that after a length of time, people would 

be accustomed ~o the use of tg.e least number of words-to express the most 

meanings. His ,. belief seems not so strange that everyday we tend to use 

comparatively few words out of the dictionary to express our thoughts and do 

the conversions. 

Zipf calculated the occurrence frequencies of words in many texts. He 

finally made a conclusion that if words in a document are ranked according to 

their occurrence frequencies (the most high-frequency word has rank one, the 

second most _ high-frequency word has rank two and so on), the following 

relation is found. 

Rank of word x occurrence frequency = constant 

The above equation is the Zipfs first law. However, this law is only held 

when the word rank is high (ie. the occurrence frequency is large). _ Zipf also 

pr~posed another equation for words with low occurrence frequencies. This ' 

equation is as follows. 

where 11 is the _ total number of words occurring one · time and In is the total 

number of.words occurring n times. 
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The Zipfs ' research on predictable 'behaviour of word frequencies ' 

initiated studies of statistical aspects of the natural language. Booth [1] 

proposed a different law for low-frequency words found in a document. This 

law is as follows. 

where 11 is the total number of words occurri~g one time and In is the total 

number of words occurring n times. 

Booth believed his law was more suitable to describe the characteristics 

of low-frequency words. Goffman [5] suggested that there, should be a 

transitional region where the characteristics of high-frequency words following 

Zipfs first law will transform to those of low-frequency words following Booth's 

law. Goffman thought that the high-frequency words found in a document were 

functional words such as articles and prepositions which bear insignificant 

me~gs while low-frequency words are ones reflecting the style and· 

vocabulary diversity of the writeL Therefore, the medium-frequency words are 

ones carrying significant meanings and they can represent the main ideas of the 

document. 

Pao [15] implemented Goff1:-nan's idea. According to Booth's law, to 

arrive at the transition point, words of low frequency Will begin to take on the 

characteristics of words of high frequency. The number of words having . n 

22 
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frequency begins to approach unity __ (ie. In -+ 1). Substituting one for In in the 

Booth's law, it becomes 

Solving this equ4tion, 

11/1 ~ n(n+ 1)/2 

n= -1+yl+8I1 

2 

Therefore with the calculated value of n, one can easily identify the words 

around the transitional region. With this method Pao performed an experiment 

to locate the transitional region in some, documents and he got a satisfactory 

result. 

Luhn [11] thought that the-frequency approach was sound. He believed " 

when a writer wrote a document, he would select a comparatively small set . of 

words used repeatedly to represent the major concepts of the document. 

Therefore, the words with certain high degree of occurrence frequencies can 

represent the main concepts. For example, in a document about the education, 

the occurrence frequ~ncies of , words such as "teacher", "school" and 

"examination" will be higher than those of words unrelated to this topic. 

The common conclusion of these past researches is that there is a 

relation between occurrence frequencies of words and the document content. 

23 . 
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Therefore, this feature can be used as a hint to suggest indexes for documents 

in the automatic indexing. 

3.3 Brief descrip~ion of ' rationa~e 

The approach 'introduced in this paper is one which uses word 

frequencies rather than linguistic knowledge. The rationale and concepts used 

in this approach will be described first. Then, the ' details of procedures used 

in this method will be mentioned. 

Indexes assigned to a certain document are used to reflect the concepts 

found in this document. But the occurrence frequencies of words (otherthan 

stopwords such as "and", "the") are also related to the document content. 

Therefore, there are relations between indexes and occurrence frequencies 9f 

words found in the document. If one can identify these relations between , 

indexes and words, one can make · use of these relations to index a document 

~ according to the word frequencies found in this document. Now, the.problems 

ar~ how these inde)(-word relations can be identified and obtained, and how ' 

these relations can be used in the automatic indexing procedures. 

The first problem is how the relations between words and indexes can 

be acquired. Obviously, these relations can be extracted from the documents 

that have. ,been indexed already . . The rationale. of acquiring thes'e index-word 
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relations is illustrated in the following example. -Assume there are 100 indexed 

documents each of which contains a word X. Among these 100 documents" 

there are 50 documents and 25 documents indexed by an index A and an index 

B respectively. A-ccording to th~ statistics of these indexed-documents, one can 

say that the word X has the chance of 50% to be with the index A, and only 

25% with the index B; In other words, if there is a non-indexed document 

containing only a word X, the chances that it will be indexed by an index A and 

an index B will be 50% and 25% respectively. 

In fact" in the above simplified example, one deals with a conditional 

probability that a document is indexed by ' a certain index, provided that a 

certain word is present in the document. If this probability is higher, the 

relation between the index and the word will be closer. Therefore, ' these 

relations are expressed in terms of statistical correlations between indexes and 

words found in the indexed documents. B~ed on this rationale, one can 

calculate the statistical correlation between each word and each index found in 

the indexed documents. 

After the associations between indexes and words are acquired . and 

expressed in the form of conditional proba~ility, it will become ready to solve 

the second problem that how these index~word relations are used to index 

documents., ' After . the relations between indexes and 'words have been 

developed~ words found in a no~-indexed d0Cll:ment can be used to propose 
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indexes. Since each index may be related to two or more words, and likewise, 

each word may be related to two or more indexes, a list of candidate inqexes 

with their c~ITesponding probabilities is built. The probabilities of associations 

between indexes and words caI;l be treated as proposing weights of indexes. 

, The indexing 'process is achieved by adding each index's proposing weights 

suggested by all words found in the document, and 'then selecting some indexes 

With largest propos~ng weights. 

The rationale of this approach based on word frequencies and index­

word relations has been briefly described. The detail aspects of this automatic , 

indexing method and solutions to the technical problems encountered in these 

procedures will 'be described in the following paragraphs explicitly. 

/ " 'I ' 
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3.4 Automatic index generation 

Automatic indexing method proposed in this paper are mainly made up 

of two phases. J:bey are ' trainip.g phase arid indexing phase. In the training 

phase, a number of indexed documents (training documents) are analyzed. 

Based on these training documents, associations (ie. statistical correlations) 

-
between indexes and words of documents are searched and extracted out. In 

the indexing phase, words of a document (not yet indexed) will be analyzed and 

th'en indexes will be assigned to it in accordance with the words found in this 

document and index-word associations calculated in the training phase. The ' 

following paragraphs ' will describe procedures used in these two phases. 

3.4.1 Training phase 

The training phase are mainly divided into four processes. The first 

process is to select a number of indexed documents to form . the training 

document set which will be used to calculate the associations between words 

and indexes. . The s~cond process is to control and standardize the variants of . 

words found in the training document set. The third process, the main step in 

the training phase, is the calculation of associations between words and indexes. 

The final process is to discard some false associations between inappropriate 

indexes and words'. _ 
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3.4.1.1 Selection of training documents 

In the training phase, 'a number of indexed documents (training 

documents) will ~e selected for calculating index-word associations. There are 

some criteria used to select training documents. First, the contents of training 

documents should be related to those of documents that may be indexed in the 

future. Second, on the average, the occurrence frequencies of words and 

indexes found in all training documents should not be too low to cause 

statistical errors. These two: requirements may be fulfilled simultaneously by 

selecting a large number of training documents. It is because when more 

training documents are used, more topics will be covered and the occurrence 

frequencies of words and indexes will also "be higher. 

3.4.1.2 Control and standardization of variants of words 

For every training document, stopwords will be first eliminated because 

" they bear insignificant meanings in the texts. Words such as "the", "of' and 

"w~en" are memb~rs of the stopword list. The complete stopword list is shown 

in Appendix A. In fact, for each knowledge domain, there should be an 

additional stopword list which is domain specific. For example, if the training 

documents are about medical science, words such as "drug" and "disease" will 

be very common in these " documents. They have little importance to reflect the " 

document. contentS and should"be included in th~ domain"specific stopwordlist. 
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After e]jmination of stopworcls, the standardization of remaining words 

is usually followed. . The aim of this step is to control and · standardize the . 

variants of words. There can be several levels of standardization. The first 

level is word stemming . .. Words of common origin will be treated as one word. 

For example, words "calculated", "calcu1ating~', and "calculation" can be counted 

as one word "calculate"~ In the second level of ,standardization, synonyms will 

be controlled. For example, the words "rifles", "pistols" and "shotguns" have the 

similar meaning of 'gun'. Different word forms of synonyms will be ·counted as 

occurrence of one standard form. The third level of standardization will be 

more complicated that some syntactic rules will be involved. In this level, the 

meanings of linguistic entities will be interpr~ted in order to control meanings 

conveyed by clifferentcombinations of linguistic entities. For example, both 

the word phrases "tree of apple" and "apple tree" contain the same meaning. 

These two phrases should be treated as identical phrase. 

However, the second and third levels of standardization involve intensely 

in semantic and syntactic interpretation of natural language. They are often 

ignored in the automati~ indexing--based on word frequencies. For example, 

Hamill and Zamora [6] only used the first level of standardization while Maron 

[13] did not use the word -standardization a.t all. 
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3.4.1.3 Calculation of associations between words and indexes 

The main 'process in the training phase is the calculation of associations 

between words and , indexes. Assume there are 'n different indexes {il' i2, i3, ... 

in} and m different words '{Wl' w2; w3, ••• w~} found in all training documents 
, . , 

after the stopwoJ:"d elimination and word standardization. The co-occurrence 

frequency of a word wi and an index ij, fij, is defined to be the frequency of a 

word wi occurred in training documents indexed by an index ij. The total 

occurrence frequency of a word wi in all traini:ng documents is the sum of ~l' 

Thus, the occurrence frequency of a word Wi' Fi, is as follows. 

n 

Fi=L f ij (1) 
j=l 

The conditional probability, P(ij/wi), that a document contains a word 

wi and an index ij, providing that the word wi is present in the document" is 

given by 

'" 

, . 

( . / ) f ij P ~. w· =--
J ~ F. 

~ 

= 

30 

n 
~f .. L..J ~] 
j=l 

(2) 
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The value of P(ij/wi) for a word wi and an index ij represents the 

strength of association between them. If the P(ij/wi) value is larger, the word 

wi will be more related with the, index ij. The conditional probability P(~/Wi) 

between each word and each index found .in ~ training documents will be 

calculated to form a matrix that holds relations between indexes and words. 

Using conditional probability is common in the statistical approach. 

Hamill and Zamora [6] had used the same conditional probability to express 

the statistical correlations between words and document categories in their 

automatic classification method .w4ile Maroil [13] had used another conditional 

probability P(ij/wa, wb, wc, ... wn) to represent the statistical correlations 

between a certain class of document and a group of words simultaneously 

occurring jn a certain documentw 

Although both the probabilities P(Wi/~) and P(~/Wi) can be derive 4 from 

each' other through Bayes' rule; the use of P(ij/wi) is suitable to the 

circumstance that during the indexing phase words in a document are analyzed 

to propose suitable indexes. Also, Hamill and Zamora [6] suggested the use of 

P( ij/wj ) because it is easY 'to alter the size of the dictionary that contains words 

allowed to be used to calculate index-word associations. 

It is -empha~ized that after the stopword elimination, . there is no further , 

selection of words which are ' allowed· to be used to calculate the associations 
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with indexes. This approach is different from that used by Maron [13]. He 

rejected the words whose occurrence frequencies in training documents are , 

either very high~ or very low. He claimed that the high-frequency words were 

too "common" to be clues for th~ specification of subject content while the low­

frequency words are inefficient to be clues due to their rarities. For example, 

he said that high-frequency words such as "computer", "system" and "data" are 

ioo ' common in the general field of computers while all those words that 

appeared fewer than three times in the training doCuments will not be used to 

calculate the associations with indexes. Nevertheless, there is a drawback in his 

approach. It is difficult to determine which word frequency is "very high", 

"high", "low" and "very low". Maron also did not have any explicit and objective 

criteria to determine. 

Mer the calculatio.n-of index-word associations, Maron [13] deleted 

some associations. If a certain word does not have a peak value in association 

with any index, all associations of this words will be deleted. Similarly, Hamill 

and Zamora [6] only retained associations with P(ij/wi} values greater than or 

eq~al to 0.75. 1!iey used ~he P(ij/~i) values to determine the importance (or 

correctness) of associations but there are some drawbacks. High P(ij/wi) may 

be due to statistical fault caused by low occurrence frequencies of words in all 

training documents. Conversely, low P(ij/wi) may not be necessary to mean 

false association ' si~ce some words are actually related to many , different 

concepts 'Yith equal importance. _ Values ofP(ij/wi) are divided and shared by 
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many indexes. For example, the word ''base'' may be related to the indexes 

about baseball, mathematics, military and chemistry. 

But in fact, there are some unexpected associations calculated and 

included in the training phase. These unexpected (or false) associations should 

be discarded in order to ' increase the efficiency of the' training phase~ The 

technique used to determine false associations will be discussed in the following 

paragraph. 

3.4.1.4 Discarding. false · associations 

Mter P(ij/wi) is calculated for every combination of word wr and index 

ij, each index ij will be: associated. with In candidate-words (ie.wi, W~. W3, . ••• w~ 

by··m different P(~/Wi) values. respectively. However, for each index, only some 

words: (ie;.. subset of {w1",- w2, · w3, •••. wm}) are, truly associated with it~ Other 

associations are ' false. 

Followingis an example to ~~lustrate the reason why there will be some 

false associations included in the training phase. Assume there is a document 

The correct associations should be i1-W1, i2-w2 and i3-w3 •. However, according 

to the procedures in the training phase, in this. document each of three words ' 

will be ~ed with each of three indexes to form' nine different associations. 
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As mentioned . earlier, using the , value of P(ij/wi) to distinguish , correct 

associations from incorrect ones has some drawbacks. After Hamill and 

. ~amora [6] had used this parameter to determine correctness of associations, 

they found that .there was a problem. They discovered that some words with 

large P(ij/wi) were not useful for indexing process while some discarded words 

with small P(ij/wi) were valuable to be retained. 

In fact, a method independent of the value of P(ij/wi) is required to 

distinguish correct associations from incorrect ones. There is a technique 

introduced to solve the problem mentioned above. This technique utilizes a , 

characteristic that when the training document number is becoming larger, 

accurate associations between a certain index and corresponding words are 

being established more solidly_ This means that at first (ie. few training 

documents) the associations are not yet accurately established. But these 

associations will be converged to proper structures when more and more 

training documents are being ·used. In the table 3, there is an example to 

illustrate'the convergence of associations between an index and words when the 

number of tra~ng docu~ents is iJ?creasing. 

In the table 3, words in the associ~tions ,are sorted by P(ij/wi) with 

descending order. From this example, it is found that as the number of training 

document is increasing, the ·associations between the index i~ and words w1, w2, ' 

W3 and w4.are becoming. stable and accurate. Ranks (ie. order 'ofwords sorted 
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Table 3 An example illustrating the convergence of correct associations between 
an index and words. 

Correct associations for a certain index it are assumed to be as 
follows. 

index associated words 
11 W1' W2' )\'3' w4 

Convergence of associations to proper structures 

associations between il and words 
Training doc. no. = 100: it < - w1' w3, ws, w2, w6, w4 

by P(ij/wi) value) of words truly associated with the _index will also become 

stable. As illustrated in this example, rank of W2 is not changed when the 
-

training document number is 500 or more. In other words, as the training 

dOCU1p.ent number is increasing, change of word rank will become smaller and, 

smaller if this word is truly associated with a certain index. It is because the 

increase in the training document number will only cause the proper structure 

of an association to be more accurately established. If a word is not truly 

associated with a certain index, the change of word rank will be comparatively 

large when the training document number is increasing. . 

According to this rationale, one can calculate and record a: rank change, 

c)Rij, of a ·word wi in a.n association with an index ij each time when trainlng 
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documents are increased. The su~ of rank change, ~ClRij' is defined to be 

summation of an ClRij values which are recorded each time when training , 

, 'documents are increased. - Thus~ , the smaller the ~~Rij value, the higher the 

probability that ~ord wi is truly associated With an index ij • 

Since words have different occurrence frequencies, the ~ClRij value of 

each word should be normalized by its occurrence frequency in all training 
". 

documents. If Fi is the occurrence frequ~ncy of a word Wi in all training 

documents, the value of (~ClRij) will be , normalized to (LClRij) /Fi. This 

normalization process is necessaiy because the higher the occurrence frequency, ' 

the higher the chance that the rank will be easily altered. 

This new technique is an improved method to judge the correctness of 

the index-word associations. The advantage ,of using the rank change to 

determine the correctness of an index-word association is that this parameter 0 

will not be , affected by the value · of P(ij/wi). The change of rank (determined 

by the comparison between words' P(ij/wi) values) of a wrong word will be 

large, no matt~r what the P(ij/wi) value will be. This method 'can avoid 

SUbjective determination of which range of P(ij/wi) values reflecting correct 

associations. 

·The way of using rank change to discard false associations ' is rather 

straight fo.rward. FiTst, . one can divide the training documents 'into' several 
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portions. Then, one needs to perform the training phase each time after one 

portion is appended. The values of ORij are calculated along with each training 

phase calculatioI?-. Finally, after all training documents are used, the values of 

(I:ORjj)/Fi can be obtained and one can sort the candidate words by P(ij/wj) 

values (calCulate4 in the last training phase) with descending order for each 

index. The obvious change of (I:ORij)/Fi value between two successive sorted 

words is a marker for detecting the boundary that separates correct associated 

words and incorrect ones. One can cut off those words which are listed after 

this boundary. The remaining words will be considered to have true 

associations with the index. 
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3.4.2 Indexing phase 

The second phase in the automatic index generation is the indexing 

phase in which a numper of indexes will be assigned to a non-indexed 

document based ~n (1) the word frequencies found in this document and (2) 

associations between words and indexes, established in the training phase. 

For each non-indexed document, stopwotds will be first eliminated and 

the standardization of remained words will be performed. These steps are 

same as those ~n the training. phase. 

Assume after the stopword elimination and the word standardization, 

there are certain words in a non-indexed document. These words will be used 

. to propose corresponding indexes. For example, after the training phase, there 

are associations of two indexes i1 and i2 as follows. 

index associated words 
11 w1, w2, W3 

12 W2' W3' w4 

If there is a non-indexed document with words W2 and W4 only, indexes 

i2 will be proposed by words w2 and w4 simultaneously and the proposing weight 

of this ind.ex will be the sum of P(i2/W2) and P(i2/w4). The index i1 will also be 
, . 

proposed. But only w2 proposes this index whose proposing weight will be the 

value of P(i1/W2). 
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The calculation of proposing_ frequency, _ PFj , of a certain index ij in a 

non-indexed document will be defined as follows. 

m . 
PF.=" f. :x P(i./w.) (3) 

J .LJ.l J - .l 
. i=l 

where m is the number of different words occurred in the training phase and 

fi is the frequency o_f a word wi in a certain non-indexed document. 

According to the above equation, the proposing frequency of an index 

ij for a non-indexed document will :be dependent on (1) statistical correlations . 

between words and the index ij and (2) frequencies of words found in this 

document. The rationale for this equation is that if a certain index is frequently 

proposed by words of a non-indexed document, this index will has a significant 

probability to be a suitable index for this document. This probability is 

reflected by the PFj value of the index. Thus, for each non-indexed document, 

after calculating PFj values of all indexes, indexes with comparatively high PFj 

values will be selected and assigned to the document. 

For documents to be indexed in the indexing phase, the PFj value of a 

certain index ij will be different from one d?cume~t to another. It is because 

words (and their frequencies) that appear in each document are different from 

each other. Thus, the feature of a document can affect the selection of indexes 
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assigned to it. This is important in the automatic indexing in which the 

document content can be analyzed to determine appropriate indexes. 

J . '\ 
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3.4.3 Example of automatic indexing 

In the fo1.lowi~g paragraphs, an example will be used to illustrate the 

procedures used in the ~raining and indexing phases. Assume there are four 

documents each ()f which has only one sentence. Those words underlined are 

significant words used to calculate index-word associations. The indexes are 

written in capital letters. These documents are listed below. 

Doe 1 
Index: VITAMIN, CARBOHYDRATE 
Text: vitamin Band starch are rich in rice. 

Doe 2 
Index: CARBOHYDRATE, FAT 
Text: Starch and fat are rich in peanut. 

Doe 3 
Index: FAT, PROTEIN 
Text: Fat and protein are rich in meat. 

Doe 4 
Index: VITAMIN~ PROTEIN -
Text:- vitamin Band protein are rich in fish. 

The statistical correlation between an index VITAMIN and a word 

"starch", P(VITAMIN/"st~rch"), is as follows. 

P(VIT AMIN /"starch") 
= co-occurrence frequency of VITAMIN and "starch" 

occurrence frequency of "starch" in all training documents 
= 1/2 
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Similarly, other ·index-word associations are calculated. They are shown on the 

table below. In 'this example, no discarding of false association is performed. , 

I I "starch" "protein" "fat" "vitamin Bit 
; 

1-

CARBOHYDRATE 2/2 0/2 1/2 1/2 
. 

PROTEIN 0/2 2/2 1/2 1/2 

FAT 1/2 1/2 2/2 0/2 

VITAMIN ~/2 1/2 0/2 2/2 

Now, assume there is a non-indexed document, Doc X, as follows. Those words 

underlined are significant words used to propose indexes. 

Doe X 
Text: Protein, fat and 'vitamin B are rich in eggs. 

According to the procedures of indexing phase, the proposing frequency of an 

index VITAMIN for Doc X will be as follows. 

Proposing frequency of an index VITAMIN 
= P(VITAMIN/"protein") + P(VITAMIN/"fat") + P(VITAMIN/"vitamin B") 
= 1/2 + 0/2 + 2/2 
= 1.5 
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Similarly the proposing frequencies of other indexes are calculated. The 

proposing frequencies of all indexes for DocX are shown as below. 

INDEX 
CARBOHYDRATE 
PROTEIN 
FAT 
VITAMIN 

Proposing frequency 
1.0 . 
2.0 
1.5 
1.5 

. -

From the result, it is shown that the indexes PROTEIN, FAT, VITAMIN 

have higher probabilities to be assigned to the Doc X since they have higher 

proposing frequencies than the index CARBOHYDRATE. 
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3.5' Related researches . 

In the following paragraphs, the approaches used by Maron [13] and 

Hamill and Zamora [6] -will be described since 'their approaches have some 

relationship with the problem encountered in this study. 

Hamill and Zamora have developed an automatic classification system 

for chemical documents. In their case, the documents are required to be 

classified into one of eighty sections. The major techniques used in their study 

are like those used I in the method described in this paper. Their approach 

involves in the calculation of the correlations between words of titles and 

:1 

. classification sections found in some classified documents. These correlations 

will be used to suggest sections for non-classified documents. But in their study, 

there is a technique worth being mentioned. They have developed a heuristic 

routine that looks for chemical nomenclature roots. Chemical nomenclature is 

constructed from relatively few · word roots that occur in many different 

combinations. Since many millions of substance names can be created in this 

way, it is not possible to achieve adequate dictionary matching for chemical 

nomenclature except for common substances. This word-root analysis allows 

assignment of words containing the specific che~cal roots· to appropriate 

sections. For example, the word root "PYRAZ" implies a ring system with two 
. . 

nitrogen atoms. Such. substances are often found in one section which 'contains 

-
heterocycli~ compounds with more than one hetero atom. Their method for 
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handling these chemical names can be applied in many disciplines which 

involves in the management of these · chemical names. 

Maron has also developed a system for classification of scientific papers. 
• r 

His approach also used statistical correlations between words and classes of 

documents. But in his approach, he has emphasized the use of key words which 

·bear significant meanings related to the knowledge domain of classification. He 

first selected some key words from the text of the typical documents. Only 

these key words will be used· to calculate the associations between words and 

classes of docllIDents. His method is able to shorten the time requiring to 

perform calculation of class-word associations and assign a class for a 

document. It is because in these processes, fewer trivial words will be involved 

in the calculation process. 

, . , 
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3.6 Word diversity and its effeCt on automatic indexing 

In the following paragraphs, the concept of word diversity will be 

illustrated .with ~ome examples. . The word diversity is an important factor 

affecting the whole performance of automatic indexing. 

First, assume there are three sentences (Si, S2 and S3) made up of some 

imaginary words (a, b, c and d) as follows. 

81: a a a a 
8-2: a a b b 
83: a b c d-

Each of these three sentences consists of four words. In Si, the number 

, of different words found is one. For S2 and S3, there are 'two and four 

different words respectively. Thus, words of S3 have the highest degree of 

variance while those of Si have the highest degree of similarity. One can say 

that Si has low word diversity and S3 has high word diversity. Now .consider 

the followin.g two sentences (Ni anp N2) of natural language. 

N1: An apple pie is made from apples collected 
from apple trees. · 

N2: A machine is made up of parts brought 
from the factory. 
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If one only selects and considers no:uns of these two sentences, NI 

contains "apple pie", "apples" and "apple trees" while N2 contains "machine", 

"parts" and "factory"~ Nouns of NI are about apple or apple-related. But 

nouns of N2 haye no apparent ~elation with each other and they are more 

distinct. Thus, Nl_has lower word diversity while N2 has higher word diversity. 

Following are two sentences (N3 and N4) of natural language. 

N3: He likes apples and oranges. 

N4: He likes apples and computers. 

N3 can be modified to "He likes some fruits" since apples and oranges 

belong to the group of fruits. For N4, it is difficult to find a group of 

classification for apples and computers simultaneously. Thus, relation between 

apples and oranges is closer than that between apples and computers so that 

N3 has lower word diversity than N4. But if one compares NI and N3, NI has 

lower-word diversity since relations. between "apple pie", "apples" and "apple 

trees" are more closer. 

Now, it is clear that the word diversity of a sentence involves in the 

measurement of the similarity of words. If the categories of words are 

restricted and similar, the sentence has lower word diversity. On the other 

hand, the word diversity will be higher if categories of words are various and 

different. 

, " 
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Sometimes, the determination of word diversity of a sentence or 

similarity between two words is rather subjective. Perhaps, one may feel that 

some sentences are not possible to . be compared. For example, compare N2 

and N4. It is difficult to' tell which one has higher word diversity. If o?e says 

apples can' be eaten while computers, machine, parts and factory cannot be 

eaten, N4 will has higher word diversity. But if one says factory is a place 

where things are made while machine, parts, apples and computers are things 

used by human, N2 will has higher word diversity. The problem is that there 

are often more than one criteria for comparison. It is emphasized that the 

criteria used to compare two words can affect the determination of similarity 

of them. For example, salary, income and wage may be the synonyms in the 

general cases but they have different and distinct meanings in the system for 

taxation. Some words have ,many different meanings that are related to ' 

different knowledge domains. For example, the word "base" is related to 

baseball, military, chemistry and mathematics. If a sentence contains two words 

"base" and "sport", the word diversity of this sentence is dependent on which 

concept of "base" is used to compared. If use the concept about baseball for 

the "base", the word dive~sity will -be lower. But if use the concept about 

mathematics for the "base", the word diversity will be higher. One more 

example, the words "apple" and "computer", can , ~ave high similarity if one 

considers the word "apple" is a brand name of a computer manufacturer, "Apple 
, -

Computer". ' In this case, the "apple" becomes computer-related . . 
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Up to now, the word diversity is only concerned at the sentence level. -

In fact, the concept of word diversity can be described at higher levels such as 

paragraph, chapter, document, and so on. But when the level concerned is 

getting higher, the word diversity will be generally increased. For example, Pi 

is a paragraph of four sentences as follows. 

PI: He has poor health and often gets influenza. 
His doctor advises him to eat more fruits. 
Fruits contain vitamin c against influenza. 
Now he often eats apples 'and oranges. 

If one considers the noun.s (those words underlined) found in Pi, the 

word diversity of Pi is higher than that of each individual sentence of PI. For 

example, the last sentence of Pi only deals with two fruit names (apples and 

oranges). But the complete paragraph of Pi contains fruit name, disease-name 

(influenza), biochemical name -(vitamin C) and career name (doctor). Thus, 

this sentence has lower word diversity than that of Pi. 

Assume PI is followed by another paragraph P2 as follows. The 

paragraphs of PI and P2 are supposed to form a s,mall document. 

P2: After eating apples and oranges for a long time, 
he decides to grow fruit trees in his garden. 
But he does not know how to start his plan. 
He goes t Oo library to look for information. 
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The word diversity of the whole document (made up of PI and P2) will 

be higher than that of each paragraph in this document. If one considers only 

, the nouns found ~ PI, it is relatively obvious to sugge.st linkage between nouns 

found in PI. For example,"doctor'" is a person who can <:\lre "influenza". But 

when the whole document (PI and P2) is considered, the linkage for nouns 

found in the whole docl1;ment will become relatively difficult to be discovered. 

-For example, "doctor" is not working in the "gar'den't or "library". Thus, words , 

"doctor", "garden" and "library" cause the word diversity of the document to be 

higher. 

From the above examples, it is found that the word diversity at 

document level is higher than paragraph level, which in turn, is higher than 

sentence level. It is .because when the level increases from the sentence level 

to gocument level, the categories of words will become more and more various 

and distinct. Thus, the word diversity is increased. 

But in the automatic indexing system, one often concerns at the 

document level. Often, 'the index terms are assigned for a complete document 

but not for a paragraph or a sentence. Thus, in this study, the word diversity 

is concerned at the document level. In other words, word diversities of 

documents will be compared and studIed. For example, if in a document, there 

are many ',occurrences of words such as "school", "teacher", "student" and 

"examination", the ·worddiversity will be low since these words are relateq to 
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a topic of education. For another example, if in a document, there are many 

occurrences of words such as "computer", "chicken", "school" and "mountain", the 

word diversity will be higher than that of a previous example. At least, it is 

difficult to find a topic that is related to these words simultaneously. 

As mentioned before, the determination of word diversity is rather 

. subjective. Even if the words are known to belong to a certain knowledge 

domain, it is still difficult to compare the word dive"rsities of two sentences. For 

example, in a document about computer science, there are two sentences. First 

sentence contains "computer", "software", and "data" while second sentence 

contains "processing unit", "programmer' and "database". It is hard to tell which 

sentence has lower word diversity. On the other hand, up to now, for two 

documents: to be compared, we only consider that one document has higher ' 

word diversity than another one. But the degree of difference is not 

determined. The first step to solve the problem in calculating the word 

diversity and comparing the word diversities of documents objectively is to 

quantify the expression of the word diversity of a document. For example, the 

word diversity of the document X i~ 0.5 while that of the document Y is 0.8 so 

that the document Y has higher word diversity. There are two approaches to 

solve the problem in determining the similarity of two words and then the word 

diversity of a document. " 
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The first approach uses the feature that if two words are identical, these 

two words should be associated with common indexes after the training phase 

in which associations between indexes and words are calculated. If two words 

wa and Wb are as~ociatedwith a set of common indexes, these two words can be 

treated as synonyms. For example, in the indexing system of food science, after 

the training phase, the words "rice", "wheat" and "grape" are determined to be 

-associated with some indexes as follows. 

Words 
rice 
wheat 
grape 

Indexes 
STARCH, CEREAL, MAKING-WINE 
STARCH, CEREAL, MAKING-BREAD 
FRUCTOSE, FRUIT, MAKING-WINE 

There two indexes commonly associated by "rice" and ''wheat''. But one 

index is commonly associated by "rice" and "grape" and no index is commonly 

associated by "wheat" and "grape". Thus, the order of similarity is as follows: 

rice-wheat> rice-grape > wheat-grape. However, each index-word association 

has a certain correlation value which should be considered in the calculation 

of similarity of two words.' ,Assume there are n indexes covered in the training 

phase. After the training phase, the number of indexes associated with each 

word is n. (If there is no correlation between an index and a word, this can be 

represented ·by P(ij/wi) ~qual to zero.) Each word with n P(ij/wi) values can be 

treated as a vector in n-spaces. The similarity of two words can ~e represented 
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by the cosine correlation of these' two vectors. Assume two vectors in t-spaces 

are X = (Xl' X2, ... ~) and Y = (Yl' Y2' ... Yt). The cosine correlation is 

r = 
. x·y 

= cos e Ixll yl 

r = 
t t 

L (Xi) 2 • L' (Yi) 2 
i=l i=l 

where 9 is the angle between vectors X and Y. 

Thus, the similarity, Sab' of tw'o words Wa and Wb is defined as follows. 

Sab = 

n 

L P(ij/wa ) • P(ij/Wb) 
j=l 

n n 

L P(ij/wa ) 2. L P(ij/Wb) 2 
j=l j=l 

(4) 

-The word diversity of a document can be defined in terms of the word 

similarity. Assume in a document, there are N words. For a word (say word 

X), it has (N-I) word similarity values with other (N-I) words. The average of 

these (N-I) word similarity ,v~lues can represent the overall similarity between 

the word X and all other words of the document. For each word, this overall 

similarity is different. The average of these N overall similarities can be used 

to represent the word diversity of a document. According to this rationale, the 

'. average word similarity (A WS) is defined to reflect the word . diversity of a 
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document. The A WS is defined as follows. The higher the A WS, the lower the 

word diversity of a document will be. 

N 

N L Sij 
~ j=l,i~j 

L.J N-l AWS=_i_=l ________ __ 

N 
, (5) 

But this approach relies on the calculation result in the training phase, 

which in tUffi,depends on the :training documents selected and used in the this 

phase. 

In the second approach of calculating similarity of two words and word 

diversity of-a document, the significant meanings of words are predefined in 

advance in order to clarify the 'differences between the words deliberately. In 

this approach, each word of natural language is defined in terms of concept 

headings which are used to state the 'word's semantic meanings significant in a 

certain indexing system. '. For example, in an indexing system of animals, some 

words are predefined as follows. 

Words 
cattle 
cow 
hen 
duck 

concept headings 
DOMESTIC, TERRESTRIAL, MILK PRODUCTION 
DOMESTIC, TERRESTRIAL, MILK PRODUCTION 
DOMESTIC, TERRESTRIAL, ' EGG PRODUCTION 
DOMESTIC, AQUATIC, EGG PRODUCTION 
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First, the concept headings of cattle and those of cow are exactly the 

same. Thus, these two words are treated as synonyms in this system. There are 

two concept headings commonly shared by cow and hen but only one is 

commonly shared by cow. and duck~' Therefore, the order of similarities of 

these word pairs is as follows: cow-cattle > cow-hen > cow-duck. 

The mathematical way to represent the siIDilarity, SCab' of two words wa 

and wb, in terms of concept headings, is defined as follows. 

where Cab is number of concept headings commonly shared by wa and Wb while 

ca and Cb are number of concept headings shared by wa and Wb respectively. 

In fact, the above equation is a simplified version of the cosine 

correlation. It is assumed that there is no weight assigned to concept headings. 

One only considers whether a certain word is described by a certain . concept 

heading. In other words, weight of a certain word-concept-heading association 

is one or zero. Thus, one ollly needs to count how many concept headings are 

used to describe a word an~ how many concept headings are commonly shared 

by two words. Similarly, the A WS can be used to ,represent the word diversity 

of a document in this approach but Sab is replaced by SCab in the equation 5. 
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These two approaches of calculating word diversity have some common 

and. different features. For common feature, both methods compare the 

characteristics of words. The. first approach compares the degree of 

commonness of indexes associated by words while the second' approach 

compares the degree of commonness of concept headings shared by words. For 

different features, in the first approach, word . diversity depends on the 

. calculation result of the training phase while in the second approach, word 

diversity depends on the expertise used to define' concept headings for each 

word. The reliability of the>' first approach is related to the performance of 

training phase that can be implemented readily and inexpensively while that of . 

the second approach is related to the expertise which requires long time and 

high cost to define the words in terms of concept headings. 

Now, the effect of word diversity of the documents in the training phase 

and indexing phase will be mentioned. Generally speaking, the lower the word 

diversity, the higher the performances of these phases will be. 

In the training phase, if the word diversities of the training documents 

are higher, there will be ,higher chance for false associations to occur. For 

example, assume there is a document mentioning something about mosquitos 

and this document is indexed by indexes MOSQUITOS and INSE.CT. If in this . 
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document, there is a sentence "The mosquitos attacked with the ferocity of a 

tiger'\ some index-word associations made by this sentence are as follows. 

Index-word associations 
MOSQUITOS -"mosquitos 11 -

INSECT-"mosqui tos" " 
MOSQUITOS-"tiger" 
I ,NSECT-"tiger" 

Obviously, the last two associations are fa1sely formed by this sentence. 

The word "tiger" in a document talking about mosquitos has increased the word 

diversity of this document. The metaphorical feature of natural language is a 

typical feature causing the high word diversity which leads to false associations. 

Sometimes the false associations caused by high word diversity of a document 

is inevitable. For example, ~ssume there is an article talking about the 

Japanese food and this article is indexed by indexes JAPANESE CULTURE 

and JAPANESE FOOD. In this article, there is a sentence "Although some 

parts of culture of Japan originated in ancient China, SuShi is a typical kind of 

foods with Japanese style entirely". Assume country names are significant in 

the indexing system. According to this sentence, some index-word associations 

are formed as follows. 

Index-word associations 
JAPANESE CULTURE-"Japan" 
JAPANESE FOOD-IIJapan" 
JAPANESE CULTURE-nAncient China" 
JAPANESE FOOD-"Ancient China" 
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Obviously, among these index-word associations, the last index-word 

assoc~ation is falsely formed. The term "ancient China" occurring in an article 

talking about Japanese food has caused the word dive!sity to be increased. 

From the above examples, it is found that the word diversity of each 

training document is an important factor to determine the number of false 

associations. If the word diversities of trainirig documents are lower, the 

performance of this phase can get better. 

Now the effect of word diversity on the indexing phase performance will 

be considered. Generally speaking, if the word diversity of a non-indexed 

document is lower, the indexes proposed for it will be more accurate~ 

__ For example, in a non-indexed document talking about vitamins, there 

is a sentence "Sunlight can stimulate the production of vitamin E but ultraviolet 

wave in the sunlight can cause harmful effect to human". The word "ultraviolet 

wave". is often found in the subject about physics but is relatively rare in the 

subject about life science. Therefore, the occurrence of this term can propose 

some indexes related to physics rather than life science. Thus, the physics­

oriented term in a document about life science can increase the word diversity 

of the document and, thus, increases the chance to propose false indexes. 

58 

, 



Chapter three: Rationale and methodology of automatic index generation 

Sometimes the ambiguity feature of the natural language can increase 

the word diversity of a document inevitably~ For example, in a chemical 

document talking. about reaction between acid and base, there is a sentence 
, -

"Acid can neutralize base~'. The word "base" can, in fact, propose some indexes 

- . related to other knowledge domains such as baseball, military and mathematics. 

In this example, these false indexes are proposed together with the expected 

indexes about chemistry. The multi-discipline-oriented terms can often increase 

the word diversity of a document. 

From the above examples; it is found that when the word diversity is 

higher, there will be many words of different categories. They can propose 

different indexes related to their own categories separately. Thus, the chance 

of getting false indexes will be-~ncreased. 

In conclusion, the word -diversity of documents (training documents or 

non-indexed documents) is a critical factor affecting the performance of 

automatic indexing. The low word diversity can enhance the performances of 

both the training phase and indexing, phase. 
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3.7 Factors affecting performance of automatic indexing 

There . are two· factors which can affect the performance of the training 

phase. First is the size of the training document set and how many topics are 

covered by these training documents. If the number of training documents is 

large and more topics are mentioned in these documents, the associations 

between words and indexes will be more accurate. Because larger number of 

training documents can reduce the statistical errors' caused by low occurrence 

frequencies of words and index"es. The second factor is the degree of diversity 

of words found in a document. '. When the categories of words found in a 

document are restricted and similar, the word diversity of the document is low. 

If the categories are various and different, the word diversity is high. Generally 

speaking, when the word diversities of training documents are low, the 

performance of the training phase is better. 

There are-two factors affecting the performance of the indexing phase. 

Of course, the first major factor is the accuracy of the associations between 

words and indexes, which are calcul"~ted in the training phase. The second 

factor is the word diversity of a non-indexed document. . Lower word diversity 

of a non-indexed document can reduce the chance of proposing false 

associations. . 

/- 'I 
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3.8 Application of semantic representation 

3.8.1 _Problem of natural language 

As mentioned earlier, one of the factors affecting the performance of the 

training phase is the size of the training document set. One of the aims of 

using a large training document set is to cover enough words and indexes to 

develop the correct associations between them. The number of indexes allowed 

to be used can be controlled willingly. In the NEM, the number of MeSH 

index terms used to index docUments is around 16,000 [9,10]. One can easily 

check whether a certain index -is already covered in the training phase. 

However, it is comparatively difficult to cover all nature language terms. If a 

non-indexed document contains some words not yet covered in the training 

phase, these words are unable to suggest indexes since they have no association 

with. any index. 

Even if one can cover all natural language terms, it will become difficult 

to manage such a large amount of terms. For example, one needs to use a 

large database to hold these natural language terms and their associations with 

indexes. Also, in the indexIng phase, the time required to search such a large · 

database will be rather long~ 

Another problem of the natural language is that some words have same 

'or similar meanings but they are counted as different words. ' For example, 
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'rifles', 'pistols' and 'shotguns' have the similar meaning of 'gun'. Moreover, 

some words have shown hierarchial structures. , For instance, 'taxi', 'train', 'bus' 

may be hierarchically under the concept 'transport vehicle'. If the synonyms 

and hierarchial structures of words can be represented and utilized in the 

automatic indexing .procedures, the indexing performance can be increased in 

a certain extent. 

3.8.2 Use of concept headings 

In order to improve this"'circumstance, a method is introduced to attempt 

to solve the problems caused by the use of natural language. The natural 

language terms will be represented by a set of concept headings. The concept 

headings represent complex subjects and the meanings of the majority of them 

are combinations of several more "elementary" meanings. Following are some, 

simple examples of concept headings suggested by Vleduts-Stokolov [22,23]. 

Natural language terms Semantic representations in concept 
headings 

apple( s), apple tree( s) 1. DI~OTYLEDONS; 
2. TEMPERATE ZONE FRUIT 
3. TERRESTRIAL 

apple juice 1. FOOD PRODUCT; 
2. FOOD PROCESSING; 
3. TEMPERATE ZONE FRUIT 

apple moths 1. LEPIDOPTERA -
2. PEST 

. , 3. TERRESTRIAL 
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With this approach a predefined set of concepts headings ·will be 

developed. Each important word of natural language will be represented by 

several concept headings simultaneously. In fact, using concept headings is a 

way to state clearly a term's semantic meanings which are essential to be 

identified in' a certain indexing system. This means that concept headings of a 

certain word in two different indexing systems may not be identical. For 

- example, in the system of food science, the concept headings assigned to the 

word "apple" may be significant different from those assigned to the word 

"orange" in order to clarify differences between them. But in the system of 

general science, the concept headings assigned to the word "apple" and "orange" 

may be same because treating them as identical thing "fruit" is already suitable 

for the indexing propose in this system. 

Originally, the use of concept headings (or semantic representation) is 

very common in the automatic indexing with semantic approaches such as one 

used in Vleduts-Stokolov [22,23] but is seldom in statistical approach. In this 

paper, the concept headings will be attempted in 'order to investigate the 

feasibility of using them to suit the .,automatic indexing procedures mentioned 

in this paper. 

The use of concept headings in the statistical approach is only with little 

change in the procedures. ' In the training phase, the words found in each ' 

training document will be converted into corresponding concept headings. 
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Then, the statistical correlations between indexe~ and concept headings will be 

calculated as those between indexes and words. In the indexing phase, the 

words found in each non-indexed document will be converted into · 

corresponding concept headings first.' Then, based on the presences and 

frequencies of these ~oncept headings, the indexes will be proposed as those 

proposed by using words. On the whole, the main difference is that the 

aut~matic indexing procedures use concept headings instead of words to 

perform both the training phase and indexing phase. The procedures used for 

words also work for concept headings. 

Assume in a document X, there is a sentence "The apple is used to make 

apple juice". The words underlined in this sentence will be converted into 

following concept headings (according to Vleduts-Stokolov's definition): 

DICOTYLEDONS, TEMPERATE ZONE FRUIT, TERRESTRIAL, FOOD 

PRODUCT, FOOD PROCESSING, TEMPERATE ZONE FRUIT. If the 

document X is a training document, these concept headings will be used to 

calculate the statistical correlations with the indexes assigned to the document 

X. If the document X is a non-index~d document,' the frequencies of these 

concept headings will be used to propose indexes. 
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3.8.3 Example of using, concept headings in automatic indexing 

In this example, the use of concept headings .in automatic indexing will 

be illustrated. Assume there are four training documents each of which has 
- , 

only one sentence., Those words underlined are significant words used in the 

training phase. The indexes are written in capital letters. These documents are 

listed below ~ 

Doc 1 
Index: 'VITAMIN, CARBOHYDRATE_ 
Text: vitamin B, and starch are rich in rice. 

Doc 2 
Index: CARBOHYDRATE, FAT 
Text: ' starch and linoleic acid are rich in peanut. 

Doc 3 
Index: FAT, PROTEIN 
Text: stearic acid and myosin are rich in meat. 

Doc 4 
Index: VITAMIN,PROTEIN 
Text: vitamin B2 and collagen are rich in fish. 

In this example, the words will be converted into corresponding concept 

headings. Then, these con,cept headings are used to calculate associations with 

indexes. The concept headings for significant words (those underlined in the 

text) are listed below. 
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Words 
IIvitamin 81

11 

"vitamin 82
11 

IIstarchll 

lllinoletic acidll 

"stearic . acidll 

"myosinll 
"elastin" 

Concept headings 
vitamin~8, anti-paralysis-chemical 
vitamin-B, respiration-chemical 
P9lysaccharide, plant-energy-store 
fat, plant-fatty-acid 
fat, adipose-tissue-constituent 
protein, contraction-chemical 
protein, structural-chemical 

The statistical correlation between a concept heading plant-energy-store and an 

index FAT will be calculated as follows. 

P(F AT /plant-energy-store ) 
= co-occurrence frequency of FAT and plant-energy-store 

occurrence frequency of plant-energy-store in all training documents 
= 1/2 

Similarly, the statistical correlations between other indexes and concept 

headings are . calculated. All these statistical correlations are shown on the 

following table. 

polysac- plant- fat plant- adipose- protein contraction structural- vitamin- antl- respiration-
charide energy- fatty- tissue- ~hemical chemical B paralysis- chemical 

store acid constituent chemicaJ 

2/2 2/2 1/2 1/1 0/1 0/2 0/1 , 0/1 1/2 1/1 0/1 

0/2 0/2 1/2 0/1 1/1 2/2 1/1 1/1 1/2 0/1 1/1 

1/2 1/2 2/2 1/1 1/1 1/2 1/1 0/1 0/2 0/1 0/1 

1/2 1/2 0/2 0/1 0/1 1/2 0/1 1/1 2/2 1/1 1/1 
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Now, assume there is a non-indexed document, Doc X, as follows. 

Doe X 
Text: Globulin, cholesterol and vitamin Bs are rich 
in eggs. 

The words underlined are significant words used to propose indexes. These 

words will be converted into corresponding concept headings first. Then, based 

on these concept headings, indexes will be proposed according to the calculated 

index-concept-heading associations. The concept headings for words found in 

the Doc X are as follows. 

Words 
"vitamin Bs" 
"cholesterol" 
"globulin" 

concept headings 
vitamin-B, anti-gut-disorder-ehemieal 
fat, steroid-hormone-source 
protein, antibody 

The proposing, frequency of an index PROTEIN for Doc X is as follows. 

Proposing frequency of an . index PROTEIN 
= P(PROTEIN/vitamin-B) + P(PROTEIN/anti-gut-disorder-chemical) + 
P(PROTEIN/fat) + P(PROTEIN/steroid-hormone-source) + 
P(PROTEIN /protein) + p(PROTEIN / antibody) 
= 1/2 + 0 + 1/2 + 0 + 2/2 + 0 
= 2.0 

Similarly, other indexes' proposing frequencies are calculated. All indexes' 

proposing frequencies for poc X are shown as below. 

INDEX 
CARBOHYDRATE 
PROTEIN 
FAT 
'VITAMIN 

Proposing frequency 
1.0 
2.0 
1.5 
1.5 
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~.8.4 Advantages of concept headings 

1,be use of concept headings are with some advantages. First, the 

number of concepts headings allowed to use can 'be controlled readily and this 

number will be smaller than that of natural language terms. This can solve the 

problem of managing a large number of natural language terms. 

Second, the synonyms of words and hierarchial relationships between 

words can be represented by the concept headings. If two words are synonyms 

of each other, their concept heading representations will be ide~tical. If two 

words are hierarchically related with each other, concept headings representing 

the general word will also be used to represent the specific word. 

Third, if a word in a non-indexed document is not yet covered in the 

training phase, ·this word can still be used to suggest indexes .~ synonyms or 

hierarchial-related words of this word have been covered already in the training 

phase. 
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,3.8.5 Disadvantages of concept headings 

There are some drawbacks of using concept" headings. First, each 

important term ?f natural ' lan~age should be ' defined in terms' of concept 

headings in advance. This step is very time consuming. Also, the problems 

encountered in the process of defining these natural language terms will be 

similar to those encountered in the automatic indexing methods based on the 
~ 

sematic approach. This means that expertise and rong development time are 

required. 

Second, if one adopts concept headings in automatic indexing 

procedures, he will take a risk that the performance of the indexing phase may 

be deteriorated but not improved. The factor controls whether the performance 

is actually worsen is, again, the word diversity of ' a non-indexed document. 

Generally speaking, when the word diversity is low, the performance decline' 

will not be apparent and will not affect the selection of correct indexes at all. 

" .', Conversely, if the word 'diversity is high, the effect of performance decline will 

be significant. The reason "of performance decline 'when the concept headings 

are used will be explained with some examples in following paragraphs. 

Assume there are three imaginary documents. Each has three indexes 

and ,three words. E3:ch word is represented by three concept headings. They 

are sh6wnjn the table 4. 
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Based on these three do cume?ts , association strengths (ie. P(ij/wi) ) 

between indexes and words, and those between indexes and concept headings 

are cal~ated respectively. They are shown in the table 5. 

Now, the documents listed in the table 4,will be treated as non-indexed 

documents, the words and concept headings are used to propose indexes based 

on the associations listed in the table 5. Two different sets of index proposing 

frequencies are given by using words and using concept headings respectively. 

The results are shown in the fable 6. 

Table· 4 Imaginary documents each of which has three indexes and three words 
which are represe.nted by three concept headings .~ 

Doc. 0 

io i1 i2 <-~ indexes 
Wo ( Co 'c 1 c 2 ) <-- word and concept headings 
w1 ( c 1 c 2 c3 ) 
w2 ( c2 c3 c4 ) 

Doc. 1 
i1 i2 i3 
w1 '( c 1 c 2 c3 ) 
w2 ( c 2 c3 c4 ) 
w3 ( c3 c4 Cs ) 

Doc. 2 
i2 i3 i4 
w2 ( c 2 c3 c4 ) 
w3 ( c3 c4 Cs ) 
w4 ( c4 Cs c6 ) 
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Table 5 Association strength tables calculated from documents listed in the , 
table 4 

Index~Word Association strength Table 

~o 
Wo W, w2 w3 w4 

1.00 0.50 0.33 0.00 0.00 

71 1.00 1.'00 0.67 0.50 0.00 

72 1.00 1.00 1.00 1.00 1.00 

73 0.00 0.50 0.67 1.00 1.00 
1.4 0.00 0.00 0.33 0.50 1.00 . 

Index-ConceQt Headings Association strength Table 
Co c, c2 c3 c 4 Cs c 6 

~o 1.00 0.67 0.50 0.29 0.17 0.00 0.00 

71 1.00 1 '.00 0.83 0.71 0.50 0.33 0.00 

72 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

73 0.00 0.33 0.50 0.71 0.'83 1.00 1.00 
1.4 0.00 0.00 0.17 0.29 0.50 0.67 1.00 
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Table,6 Index proposing frequencies suggested by using words and uSIng 
. concept headings found in documents listed in the table 4 

Doc. 0 
indexes: . -

i1 i2 i3 i4 ' 10 
PFw: 0.20 0.30 0.33 0.13 0.04 
PFc: 0.17 0.28 0.33 0.16 0.06 
Correct indexes (PFw-PFclZPFw 

~o 0.150 

71 0.067. 
12 0.000 

Doc. 1 
indexes: io i, i2 i3 . i4 
PFw: 0.09 0.24 0.33 0.24 0.09 
PFc: 0.11 0.23 0.33 0.23 0.11 
Correct indexes (PFw-PFclLPFw 

~, 0.042 

72 0.000 
13 0.042 

Doc. 2 
indexes': io i, i2 . i3 i4 
PFw: 0.04 0.13 0.33 0.30 0.20 
PFc: 0.06 0.16 0.33 0.28 0.17 
Correct indexes (PFw-PFclLPFw 

~2 0.000 

73 0~067 

14 0.150 

PFw - Normalized proposing frequency of an index 
proposed by words 

PFc - Normalized proposing , frequency of an index 
proposed by concept headings 

From this example, it is found that when concept headings are used to 

propose inqexes, on the, average the proposing frequencies of correct indexes 

. will be reduced while ' those of incorrect indexes will be increased. -The value 

of (PFw~ PFc ) /PFw can be used to measure the change · of propo~ing frequencies 
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of correct indexes. If this value is large, the extent of the performance decline 

. will .. be large. 

When concept headings are· used to associate with indexes, one "index 
. . 

to word" association will become several "index to concept heading" 

associations. After this transformation, it is not possible to identify which "index 

to word" associations contribute to a certain · "index to concept heading" 

association. It is because one concept heading may' be shared by two words or 

more . 

. Assume there is a non-indexed document, document D. The document 

D has some words which will be converted into some concept headings 

including a concept heading C. Also, assume the document D should not be 

inqexed by an index X. . However, in the training phase, some training 

documents (other than document D) indexed by the index X contain some 
. 

words which will be converted into concept heading C. Therefore, an 

association between the concept heading C and the index X is constructed in 

the training phase. Nevertheless, in the indexing phase, the words (after 

converting into concept headings) of the document D will unintentionally 

propose the index X, a wrong index to this document. 

For instance, in the Doc. 2 in the table 4, only word w2 will suggest the · 

wrong- index. io . if associations between words and indexes are used. 
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Nevertheless, if associations between concept headings and indexes are used, 

in the Doc. 2, word w3 will be converted into' concept heading c3, c4 and cs, and , 

word W4 will be converted into concept beading c4, Cs and c6• But both ~ and 

c4 have associations with the inpex io. Therefore, in Doc~ 2, all words have 

suggested this wrong index io. But, in fact, the associations between ~, c4 and 

io are constructed by other training documents containing the index io and words 

which share the concept headings c3 and c4• For example, the Doc. 0 contains 

index io and word W2 which shares c3 and c4• Since the proposing frequencies 

of incorrect indexes are increased, the normalized proposing frequencies of 

correct indexes will be relatively reduced. 

Following is another example showing the decline of the indexing phase 

performance. But in this examp~e, the word diversity of the documents will be 

even higher. (The similarity of two words can be measured by the equation 6 

andthe word diversity ofa document can be measured by the equation 5.) The 

documents are listed in the table 7.-

i , 
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Table 7 Imaginary documents with higher word diversity compared with 
documents listed in the table 4 

Doc. 0 

io i2 i4 
Wo ( Co c 1 C2 ) 
W2 ( C2 C3 C4 ) 
W4 ( C4 Cs C6 ) 

Doc. 1 . 
i1 i3 is 
w1 ( c 1 c 2 c3 ) 
w3 ( c3 c4 Cs ) 
Ws ( Cs c 6 c 7 ) 

' . 

Doc. 2 
i2 i4 i6 
w2 ( c 2 c3 c4 ) 
w4 ( c4 Cs c6 ) 
w6 ( c6 c7 Cs ) 

The association strengths calculated from these documents in the table 

7 are listed in the table 8. The index proposing frequencies are listed in the 

table 9. 
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Tab_e 8 Association strength tables calculated from documents listed in the 
table 7 

Index-Word Association Strength Table' 
Wo W1 W2 W3 ' ,W4 Ws Ws 

io 1.0'0' 0'.0'0 0'.50 0'.0'0' 0'.50' 0.0'0' 0.0'0' 
i1 0.0'0 1.0'0' 0'.0'0' 1.0'0 0'.0'0 1.0'0 0'.0'0 
i2 1.0'0 0.00 1.0'0 0'.0'0 1.0'00'.0'0 1.0'0 
i3 0'.00 1.00 0'.00 1.0'0 0'.0'0 1.0'0' 0'.0'0' 
i4 1.0'0' 0'.0'0 1.00 0'.0'0 1.0'0 0'.0'0 1.0'0' 
is 0'.00 1.0'0' 0'.0'0 1.0'0' 0'.0'0' 1.0'0' 0'.0'0' . 
is 0.0'0 0'.0'0' 0'.50 0'.0'0 0'.50' 0'.0'0 1.0'0 

, Index-Concegt Headings Association Strength Table " 
Co c1 c2 c3 c4 Cs Cs C, Cs 

io 1.0'0 0.50' , 0'.50' 0.25 0'.40' 0.25 0'.25 0'.0'0 0.00' 
i1 0'.00' 0'.50' 0'.25 0.50' 0.20 0.50 0.25 0'.50 0'.0'0' 
i2 1.0'0 0'.50 0'.75 0.50 0'.80' 0'.50 0.75 0'.50' -1.0'0 
i3 0'.0'0 0.50' 0.25 0'.50 0.20 0.50' - 0'.25 0.50 0.00 
i4 1.0'0 0'.50' 0'.75 0'.50' 0'.80 0'.50' 0.75 0'.50' 1.00 
is 0'.0'0' 0'.50' 0'.25 0'.50' 0'.20' 0'.50' 0'.25 0'.50' 0'.0'0' 
is 0'.0'0' 0'.0'0' 0'.25 0.25 0'.40 0'.25 0'.50' 0.50 1.0'0 

From this example, it is found that when the word diversity is higher, the 

extent of decline of the indexing phase performance will be larger. It is 
. 

because when the words are ITIore distinct from each other, the concept 

headings converted from these words will also be more diverse. The chance 

will-be higher to propose incorrect ,indexes unintentionally. 

From this example ~nd the previous example, it is found . that although 

the relative proposing frequencies of correct ind~xes are reduced but in most 

cases, they , are still , higher than those of incorrect indexes.' T1,1erefore, the 

" correct jndexes can be selected o,ut. ' But when the word diversity of documents 

; , 
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is getting larger and larger, the decline of indexing phase performance will 

, become more serious that correct indexes cannot be selected. 

Table 9 Index pr<?posing , frequencies suggested by using words and USIng 
concept headings- found in the docUments listed in the table 7 

Doc. 0 
indexes: io i, i2 i3 i 4, is i6 
·PFw: 0.22 0.00 0.33 0.00 0.33 0.00 0.11 
PFc: 0.15 0.10 0.24 0.10 0.24 0.10 0.09 
Correct indexes (PFw-PFclLPFw 

~o 0.318 

~2 0.273 
14 0.273 

Doc. 1 
indexes: io i, i2 i3 i4 is i6 
PFw: 0.00 0.33 0.00 0.33 0.00 0.33 0.00 
PFc: 0.10 0.14 0.20 0.14 0.20 0.14 0.10 
Correct indexes (PFw-PFclLPFw 

~, 0.576 
]. - 0.576 .3 

0.576 15 

Doc. 2 
indexes: io i, i2 i3 i4 is i6 
PFw: 0.11 0.00 0.33 0.00 0.33 0.00 0.22 
PFc: O- ~ 09 0'.10 0.24 0.10 0.24 0.10 0.15 
Correct indexes (PFw-PFclLPFw 

~2 0.273 

~4 0.273 
16 0.318 

On the whole, the word diversity of docume-nts is a critical factor to 

determine whether it is worth using concept headings in the automatic indexing. 

,~en the word diversity ,is low, one can consider to use them. 
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3.9 Correctness prediction for proposed indexes 

According to 'routine procedures of automatic indexing, there will be a 

certain number of indexes proposed for a non-indexed document, no matter the 

indexes are correct or not. For example, if many words of a non-indexed 

document are not yet covered in the training phase, the proposed indexes for 

ihis document will be inappropriate since these words do not have any 

association with indexes. Under such a situatIon, the user of this automatic 

indexing method should be informed that the index assignment of this document 

may not be correct. ,For an ideal automatic indexing method, the method itself 

should be able to estimate the degree of correctness of proposed indexes.. In 

other words, the correctness prediction should be done automatically. 

In the past researches, the method of predicting the correctness of 

proposed indexes is seldom mentioned or ignored. In this study, a simple 

method is introduced in order to predict the correctness of proposed indexes. 

If an index is suitable for a document, the proportion of words proposing this 

correct index should be ICl!ge. C~nversely, if an index is not suitable, the ' 

proportion of words proposing this incorrect index should be small. An in~ex 

proposing rate (PRj ) of an index ij in a document is defined to represent the 

proportion of words proposing an index. 

= 

I,'" • 

, no. of words proposing an index ij 
total no. of words in a document 
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If the PRj is large, there w~ll be higher chance that the index ij is a 

correct one. Sometimes the proposing frequency of a false index may be very , 

high. This index may be proposed by only few words -which have large P(ij/wi) 

values with this index. The advantage of using the index proposing rate is that 

this parameter value is independent of the P(ij/wi) which may be incorrect due 

to statistical errors induced in the training phase ( ego low occurrence 

frequencies of words). The index proposing rate is only related to a non-index 

document's features such as presence of words and their frequencies in the 

document. 

If the proposed indexes are with a high precision (ie. more indexes are 

correct), the average index proposing rate of these proposed indexes will 

become large. Conversely, if the proposed indexes are with a low precision (ie. 

few-indexes are correct), the average index proposing rate of these proposed 

indexes will become small. It is because larger index proposing rates of correct 

indexes can lead to a larger average index proposing rate. Therefore, there will 

be a correlation between the average index proposing rate of proposed indexes 

and the precision of them. ,In other, words, using the average index proposing 

rate of proposed indexes can predict the precision . of them. ' 
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3.9.1 Example of using -index propOSing, rate 

The material used in the ·example for de'monstrating the processes of 

training phase and the indexing phase will be-used here to illustrate the use of 

index proposing rate. 

The four documents are ,listed below. 

Doe 1 
Index: VITAMIN, CARBOHYDRATE 
Text: vitamin Band starch are, rich in rice. 

Doe 2 
Index: CARBOHYDRATE, FAT 
Text: Starch and fat are rich in peanut. 

Doe 3 
Index: FAT, PROTEIN 
Text: Fat and protein are rich in meat. 

Doe 4 
Index: VITAMIN, PROTEIN 
Text: vitamin Band protein are rich in fish. 

The, statistical correlations between indexes and words found in these 

, documents are shown on the table below. 

I I "starch" "protein" "fat" "vitamin B" 
..... 

CARBOHYDRATE 2/2 0/2 1/2 1/2 

PROTEIN 0/2 ' 2/2 1/2 1/2 

FAT 1/2 1/2 2/2 0/2 

VITAMIN 1/~ 1/2 0/2 ' 2/2 
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Now, the Doe 1 will be treated as if it is a non~indexed document. The words 

(underlined) of this document will be used to propose indexes. The proposing , 

frequency of each index will be -calculated as before. Moreover, the index 

proposing rate of each index will be calculated. ' 

Index proposing rate of PROTEIN for Doe 1 
= no. of words proposing PROTEIN in Doe 1 

total words of Doc 1 
== no. of words (in Doe 1) having non-zero correlation with PROTEIN 

total words of Doc 1 
= 1/2 

Similarly, other index proposing·.rates of indexes for Doe 1 are calculated and 

shown as below. 

Doc 1 

Indexes 
CARBOHYDRATE 
PROTEIN 
FAT 
VITAMIN 

Proposing 
frequencies 

1.5 
0.5 
0.5 
1.5 
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First, it is found that the proposing frequencies of correct indexes (ie. 

CARBOHYDRATE and VITAMIN) are higher than incorrect ones. Second, 

the index proposing rates of indexes are higher if the indexes are correct. Now, 

some different combination of proposed indexes will be attempted in order to 

observe the change of average index proposing rate. Following are these 

combinations and average index proposing rates of them. 

Index combination Averaqe index orooosina rate 

CARBOHYDRATE + VITAMIN 1.000 
(2 correct) 

CARBOHYDRATE + VITAMIN + FAT 0.833 
(2 correct + 1 incorrect) 

CARBOHYDRATE + PROTEIN 0.750 
(1 correct + 1 incorrect) 

i ',~ 

CARBOHYDRATE + PROTEIN + FAT 0.667 
(1 .correct + 2 incorrect) 

PROTEIN + FAT 0.500 
(2 incorrect) 

From this example, it is · found that when a larger proportion of proposed 

indexes is correct (ie. precision of them is higher), the average index proposing 

rate will be larger. The average index proposing rate of a group of proposed 

indexes can be used to predict the correctness of this group of indexes. 
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3.10 Effect of subject matter on automatic indexing 

In the following paragraphs, the effect of subject matter on the statistical 

approach of automatic indexing will be discussed. Because it is reasonably to 

believe that the conditions for a practical automatic indexing method are not 

identical for ail disciplines. Different disciplines can have different effects on 

the performance of automatic indexing. 

Rowbottom and Willett [16] used the approach same as that used by Pao 

[15] to perform automatic indexing. They attempted different disciplines: 

natural science, medicine, mathematics, social science, political science, 

humanities, and technology and engineering. Rowbottom and Willett have 

shown that the subject matter strongly affects indexing performance since 

scientific and technological extracts are generally assigned many more index 

terms than extracts from the social sciences and humanities. It is because there 

is smaller proportion of w~rds occurring only once in the science papers when 

compared with other disciplines. There will hence be a greater number of 

terms above and below the transitioD: point which will be selected using the Pao 

algorithm. 

From their study result, it is found that in scientific and technological 

extracts, words · will occur more frequently to reflect the main concepts of the 

documents. . Therefore, scientific and . technolog~cal documents are relatively 
'. ' . 
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easy to be indexed correctly. Hami~ and. Zamora [6] developed an automatic 

document classification system for documents about chemistry while Maron [13] . 

performed his experiment using docum~nts about computer science. They had 

obtained satisfactory results to .demonstrate the feasibility of applying the 

,automatic indexing for scientific papers. ' 
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3.11 Comparison with other indexing methods 

In these paragraphs, some features of the automatic indexing method 

described in this study will be compared with those of other indexing systems. 

First, differences among different statistical approaches of automatic indexing 

will be discussed. Then; differences between automatic indexing and manual 

indexing will be covered. 

Among different statistical approaches of automatic indexing, the major 

difference is the control of indexing language. The indexing languages can be 

divided into two types based on the degree of control of indexing languages 

allowed to be used. These two types are controlled-language indexing and 

natural-language indexing. For controlled-language indexing, a list of index 

terms allowed to be used will be determined in advance. The indexers can only 

use the index terms found in this list. The index terms are usually arranged in 

a hierarchial order in the list. The Medical Subject Heading (MeSH) is a 

typical example of this kind' of indexing language. For natural-language 

indexing, the terms (words or phrases) found in a document (ie. title, abstract 

or full ' text) will be selected and used as index terms for the document. 

Both the controlled-language indexing and natural-language ·' indexing 

have been attempted in automatic indexing by researchers. Hamill and Zamora . 

[6] have de~eloped an automatic classification systems for a certain type ' of 
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~ontrolled-Ianguage indexing. For natural-language indexing, Goffman [5] and 

Pao·[15] have developed a method to select some terms from a document text . 

as indexes for the document. The indexing method proposed in this study is for 

controlled-language indexing. 

For using natural-language in automatic indexing, the major technique 

used is to select some content-bearing words based on frequencies of words 
~, 

found in' a document. As mentioned earlier, Goffman used the Zipfs law and 

the Booth's law to identify words that have medium occurrence frequencies. 

In his approach, assigning indexes to each document is performed regardless of 

other documents. The features (ie. frequencies of words) of a document 

completely determine the indexes assigned to the document. Thus, in this 

approach, the relations between words are emphasized. For example, co- ~ 

occurrence of two words will be used asa hint to determine the relations 

between them. 

For using controlled-language in automatic indexing, there are some 

differences. The major te~hnique .Jlsed is to calculate statistical ' correlations 

between indexes and words found in sonle indexed.documents. Then, based on 

these index-word associati9ns and the frequencies of words of a non-indexed 

document, the indexes are assigned~ Thus, the index assignment of a document 

is 'partially depende~t on the features of the non~indexed document and 

partially d~pendent on the features of "indexed documents that have been used 
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to calculate index-word, associations. In this case, the co-occurrences between 

ind~xes and words are emphasized. The statistical correlations between words 

and indexes are mainly used to determine the indexes. 

The advantage of using controlled-language indexing is that the index 

terms assigned to documents can be kept in a higher degree of consistency. 

Also, using hierarchial relations between index terms can assist in the searching 

process. But using controlled-language requires the list of allowable index 

terms to be defined in advance. ' This step needs expertise. Moreover, the 

indexers require more effort to do the indexing. Also, the searchers need to 

consult this index list before constructing the query for searching information. 

For example, if one wants to search something about "gossypol acetate", he 

should use the MeSH term "Gossypol--Analogs and Derivatives" after he has 

referenced the list of allowable index terms. The advantages of using natural­

language indexing are as follows. Less effort is required in the indexing stage. 

Sometimes, natural-language may reflect more closely the terms used by the 

searchers. For example, searching for documents about Chalets and this is not 

an index in the list of ' allowable index terms. But using natural-language has 

some drawbacks. First, the ,synonyms and variant words of natural language can 

lead to lower consistency of assigning indexes. Also, the hierarchial relationship 

and cross reference ~etween indexes cannot be expected. Using broader or 
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,~:, . narrower concepts relies heavily upon the knowledge and experience of the 

, searchers. 

Now, the differences between automatic indexing and manual indexing 

are discussed. The major difference . between them is the coordination of 

-
indexes. There are two types of coordinations: precoordination and . 

postcoordination. Index coordination is an indexing scheme that combines 

single index terms to create composite subject concepts (eg. the index terms 

EYE and SURGERY are combined to create concept eye surgery). The system 

allows the coordination of classes either before or during searching. In 

. precoordination, . the combination are made· at the indexing stage by the 

indexers' while· in the · postcoordinatiou, the combinations are made at the 

searching. stage by the searchers. For example, the index terms assigned to a 

document with the title. "using mountain camping equipment in the environment 

with desert climate" are MOUNTAIN, CAMPING EQUIPMENT, DESERT 

. and CLIMATE. In the precoordination, indexers will arrange and link these 

four indexes as MOUNTAIN-CAMPING EQUIPMENT and DESERT-

CLIMATE while in the postcoordination, this arrangement is not managed by 

the indexers and the relations between these four indexes are not indicated in 

the indexing stage. The precoordination is better than the postcoordination 

because predefined c09rdination between indexes can reduce the chance of 

ambiguitY ca~sed by unclear relations ~etween indexes. ' For example, if there 
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is another document with the title , "using desert camping equipment in the 

environment with mountain climate", the indexes terms assigned with be same , 

as those for the preVious example (ie. "using mountain camping equipment in 

the environment. with desert cl;mate"). Without the precoordination for 

indexes, these indexes cannot be used to separate these two documents. In the 

search stage, the searcher may use AND operators to link these four indexes 

and these two documents will be retrieved altogether. 

Since the precoordination requires the analysis of the relations between 

assigned indexes, it can be perforined in the manual indexing but it is relatively 

difficult to be implemented by the automatic indexing of statistical approach. 

Typically, the automatic indexing can only propose some indexes but cannot 

construct the coordinations between them. Thus, the automatic indexing 

belongs to the scheme of postcoordination. 

I , , 
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3.12 Proposal for applying Chinese medical knowledge 

The contents of collected articles. in the CMMRC database are about the 

research of the Chinese .herbs. In these doCuments, herb names are already 

written in both sci~ntific name and Chinese name simultaneously. For example, 

the herb name Dang Gui in the text is described by a corresponding scientific 

name (Latin name) Angelica sinensis. Now in the current database system of 

C'MMRC, it is already possible to use a scientific name of a herb to retrieve all 

documents mentioning this herb. For example, if one uses Angelica sinensis as 

a search term, all documents that have mentioned Dang Gui will be retrieved. 

Because each scientific name is unique for a certain herb. In the future, when 

indexes are added for each document, the scientific name and Chinese name 

of a herb can be treated as index terms. 

However, although the data in the database are about the Chinese herbs, 

inmost of these articles, herbs are described .to be studied by modem scientific 

methods. There is little stored information about traditional Chinese ,medical 

knowledge applied on these herbs . . ,It will be more effective if one can apply 

some traditional Chinese medical knowledge in the index assignment and the 

information retrieval in t~e CMMRC database. In fact, the application of 

Chinese medical knowledge is being accentuated in the research of Chinese 

herb in recent years~ At least, this is the case in the CMMRC. 
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According to theory of ' traditional Chinese pharmacology [14], each 

Chinese herb has fixe'd combination of properties and flavours. Various 

properties and flavours of herbal medicines exert different effects. There are 

four properties of herbal, medicines, ie: cold, heat, warm and cool. In general, 

the herbal medic~es with warm and heat properties are prescribed for cold­

syndrome (eg. aversion to cold, cold limbs, pale tongue, slow pulse, etc) and 

those with cool and cold properties for heat-syndrome (eg. fever, thirst, deep­

colored urine, red tongue, rapid pulse, etc). The herbal medicines are grouped 

under five flavours, ie. acridne'ss, sweetness, sourness, bitterness, and saltiness, 

which exert different effects. Generally spe~g, acridness serves to expel and 

to activate; sweetness, to invigorate, to regulate and to moderate; sourness, to 

astringe and to preserve; bitterness, to lower, to release and to dry; saltiness, 

to soften and to purge. 

Every herbal ,medicine possesses a specific property and flavour of 

varying degree. It is combination of both that constitutes the overall action of 

individual medicine. On the other hand, herbal medicines may has various 

pharmacological actions. For example, Ginseng has tonic action while Ma 

Huang can induce sweating to expel the exogenous evils from the body surface. 

The pharmacological actio~s of a herbal medicine is always not one but many. 

For example, Niu Huang is not only a phlegm-eliminating· agent but also a heat­

clearing one . . The herbal medicines which have common pharmacological 

actions, somehow, can be used for treating same syndrome. For instance, Tu Fu 

" , 
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Ling and Jin Yin Hua have heat and toxin clearing action. They are prescribed 

for heat-syndrome such as fever, thirs4 deep-colored urine, red tongue, rapid 

pulse, etc. 

Since herbs~ properties and flavours are essential features which are not 

yet covered in the current database system, the property-flavour combination 

of each . herb can be added and used as an index term for the herb in the 

CMMRC database. Now, the property-flavourcomoinations of many herbs are 

well-documented in many Chinese medical articles. The attachment of this kind 

of information in the database is just a clerical work requiring a little expertise. 
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Chapter four 

Simulations of aut,omatic index generation 

In order to verify the procedures usedin the automatic index generation 

and to study the factors that will affect the pe~ormance of these procedures, 

a . series of simulations of these procedures have been performed. In these 
. , 

simulations, imaginary data will be used since the factors affecting the 

performance can be readily controlled. There are several simulations 

performed to test: (1) training phase performance, (2) indexing phase 

performance, (3) performance of using concept headings, and (4) performance 

of using index proposing rate to predict the correctness of proposed indexes. 

4.1 Training, phase simulations 

In order to verify the essential procedures of the training phase, 

, simulations are performed to test the last two processes of training phase (ie. 

the process of calculating. associations between indexes and words, and the 

process of discarding false associations). As mentioned before, the performance 

~f the training phase is dependent on the size of training document set and the 

word diversity of each <;locument These two factors will be taken into the 

consideration in the simulations. 
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Two types of simulations will be performed. First type is designed to 

test whether correct associations<between indexes and words can be constructed 

by the procedures of the training phase. ·This type of simulation will be 

performed with two different controls of word diversity respectively. One 

simulation will be performed when the word diversity is not controlled (ie. in 

random manner) while another will be performed when the word diversity is 

controlled. Another type of simulation is to test whether the use of (LC)Rij) jFi 

can successfully assist in discarding false associations. 

4.1.1 Simulation of association calculation (word diversity uncontrolled) 

Following are some assumptions of this simulation whose objective is to 

test whether the correct associations between indexes and words. can be 

searched and extracted out from · training · documents when words can be 

randomly grouped in each training document (ie. word diversity is not 

controlled) . 

Assumption 

(1 ) It is assumed th<:tt there is a small database system of documents of 

. free text. . The number of predefined indexes ~llowed . · to be used in this 

simulation is 50. These indexes are represented by symbolic code it, i2, i3, ••• iso• 
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In addition, the number of predefined words allowed to be used is 50. These 

words are represented by w1, w2, w3, ••• wso. 

(2) It is predefined, that for each index; three words are truly associated , 

with it. The association strengths of these words are assumed to be identical. 

These predefined associations are randomly generated in advance. Because of 

this random manner, each word can be associated with one or more indexes. 

(3) A number of traIning documents are generated for use in the training 

phase. For each document, it is predefined to be made up of three words and 

indexed by three indexes. Words for each document are randomly assigned. 

Each word will be indexed by an index respectively based on predefined 

associations, made in (2) above. If a word is predefined to be associated with 

two -or more indexes, one of these indexes will be randomly selected to be 

assigned. Also, it is assumed that words in documents are already processed by 

the stopword elimination and the word standardization. 

The aim of this design is to, distribute these predefined associations 

between indexes and words into training documents randomly. Then, one can 

check whether these prede~ined associations can be rebuilt. The performance 

. can be measured by comparing rebuilt associations ~th predefined ones. Since 

in each training document, the combination of words is randomly determined, 

'thediversio/ of words found in these documents is high. 
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Performance measurement 

The training phase performance can be practically measured by 

precisions of re.built association,s ' and rec3lls 'of predefined associations . 

. Precision and recall of associations between an index and words are defined as 

follows. 

Precision = number of correct words proposed (8) 
total number of words proposed for 
rebuilt associations of an index 

Recall = number of correct-words proposed (9) 
total number of words in 
predefined associations of an index 

Both the precision and recall are parameters, conventionally used to 

represent the performance of information retrieval ' system in many past 

researches. 

After the training phase, each index will be associated with candidate 

words by different P(ij/wi) values. Candidate words, with highest P(ij/wi) values 

will be selected for the index. Theoretically, if more words are selected, the 

precision will be reduced while the recall will be increased . . It is because when 

more words are selected to increase the recall, there will be more incorrect 

words selected simultaneously to reduce the precision. 

; , 
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For example, assume predefined associations between an index il and 

words are as follows. 

index -associated words 

After the training phase, the rebuilt associations are as follows. 

. If first three words are chosen to calculate~ both the precision and recall 

will be 2/3. But if first six words are chosen, pr~cision will be reduced to 3/6 

and recall is increased to 3/3 .. 

Theoretically, the higher the precision and recall values, the better the 

training phase performance will be. In order to evaluate the overall 

performance of the training phase, the average precision is used and defined to 

be an average of all (ie. 50) rebuilt associations' precisions. Similarly, the 

average recall is used and defined to be an average of all predefiiled 

associations' recalls. 

Procedures 

Training documents in this simulation will be processed by the procedure 

of calculating associations between indexes and words. This means that 

associations between each index and corresponding words will be constructed . 

. . Then, the average precision and the average recall of these rebuilt associations 

will be calculated. A set of simulations have been performed to calculate the 
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average precision and the average recall under different training document 

number and different number of words (with highest P(ij/wi) values) selected 

for each rebuilt association. 

Result and analysis 

Results are presented in the graph 1 and 2 on next two pages. First, it 

is discovered that the average precision and the average recall are increasing , 

with training document number. Whenthe training document number is 1,000 

and only three .words are selected for each index, 98% of predefined 

associations can be rebuilt successfully. Thus, this result shows that provided 

that there are sufficient training documents, correct associations between 

indexes and -words can be successfully constructed. 

In these simulations, when the training document number is larger, there 

will be higher chance for predefined associations to · be rebuilt correctly. As 

mentioned earlier, the number of training documents used in the training phase 

should be large enough to cover sllfficient topics of contents and reduce 

statistical errors caused by low occurrence frequencies of words in order to 

achieve a reliable training Tesult. Thus, this result agrees with the predicted 

effect of training document number on the performance of the training phase. 

If it is possible, one Sh9uld use more training documents in the training phase. 
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Second, it is found that values .of precision and recall are level off at the 

same time in the graphs. It is because when the recall is 100%, all predefined 

(correct) words associated with each index have been successfully proposed. 

Therefore,any increase in the training document number cannot further · 

. . increase the recall value. On the other hand, when recall is 100%, the number 

of correct words proposed for each association has reached-its maximum limit, 

the precision value is, therefore, level off at a certain value~ 

Third, it is found that before values of precision and recall are level off, 

for a particular number of training documents, an increase in numl:>er of words 

selected for rebuilt associations can cause the precision to be reduced and the 

recall to be increased. This result agrees with theoretical relationship between 

the · precision' and the recall. 

I , 
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4.1.2 Simulation of association ' calculation (word diversity controlled) 

In the previous simulation, in each training document, each word is 

indexed by one ~dex. Because o~ the random grouping combination of words 

in a document, each index ~ay be only related to one word and unrelated to 

others. Therefore, the random manner of word assignments which, in turn, 

reads to random combination of indexes can cause many false associations 

between words and indexes. It is because the word diversity is high in these 

documents. Also, in this circUmstance, many training documents are required 

in order to develop correct associations between words and indexes. In the 

previous simulation, one needs about 1,000 documents to attain a satisfactory 

performance. 

- In order to verify the effect of the, word diversity, another simulation is 

performed to, test the-performance of training phase when the word diversity 

of each document is controlled and kept in a relatively low level. 

Assumption 

The 'assumptions and procedures of this simulation is similar to those of 

, the previous one. But the differences in this simulation are that only 50 

training documents will be ' used and ' each word is predefined ' to be associated 

'with exactly ~hree indexes. Word diyersity of each, document will be controlled. 
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Different performances due to different word diversities will be compared . . 

Following is the mathematical definition of word diversity used in this 

simulation. 

It is assumed that if two words are identical, these two words will be 

associated with common indexes. Thus, one can use this feature to measure the 

siinilarity of two words and represent the word diversity of a document. The 

similarity of words Wa and wb, Siab, will be defined as"' follows. 

where nab is number of indexes ' commonly associated by Wa and Wb while na and 

nb are number of indexes associated by Wa and Wb respectively. 

The-above equation is a simplified version of the cosine correlation. In 

this simulation, each predefined index-word association is assumed to have 

equal importance. One only considers whether a certain word is associated with 

a certain index . . In other words, weig?t of a certain index-word association is 

one or zero. Thus, one only needs to count how many indexes are associated 

with a word and how many .indexes are commonly associated with two words. 
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Assume in a document, there are N words .. The average word similarity, 

A WS, which reflects the word diversity of a document has been defined (in the 

chapter three) to be as follows. -

N 

N . L Sij L j=l,i-j 

AWS= _i_=l __ N_-_l __ 
N 

(5) 

According to the above definition, the word diversity of a documentwi1l 

be increased with the decrease of A WS. In this simulation, the Sij in the 

equation 5 is replaced by S\. 

Result and analysis 

- The result of this simulation is shown on graph 3 on next page~ In this 

simulation, the number of words selected for each index is three (ie. original 

number of words in each predefined association with an index). Thus, the 

values of precision and recall will be identical and represented by one line in 

the graph. 

It is found that when the word diversity is decreasing (ie. AWS is 

increasing), the performance (in terms of precision and recall) of the training 

phase is being improved. This result is consistent with the predicted effect of 

word . divers~ty . of tr~ning documents. Thus, when the · related ·words are 
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grouped together to be indexed by a set of related indexes, the performance of 

the training phase can get better. 
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4.1.3 Simulation of discarding false associations 

The last process in the training phase is to discard false associations. A 

simulation has b.een performed to test whether the value of (LClRij)/Fi can 

effectively assist in determining which words are truly associated with an index. 

Assumption 

Assumptions of this simulation are as follows. 

(1) The number of predefiried indexes allowed to be used is 50 and the 

number of predefined words allowed to be used is also 50. 

(2) In- this simulation, it is predefined that for each index, five 'words are 

truly -associated with it. The association strengths of these words are assumed 

to be identical. These predefined associations between indexes and words are 

randomly generated iri advance. Because of this random manner, each word 

can be associated with one or more indexes. 

(3) A number of training documents are generated for use in the training 

phase. For each document, it is predefined to be made up of five words and 

indexed by .. five indexes. Words for each document are randomly assigned. 

One index is . assigne~ to ' 'index each of these words based on -predefined 

associations plade in (2) above. If a word is predefined to be associated with 
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two or more indexes, one of these indexes will be randomly selected to be 

assigned. Also, it is assumed that words in documents are already processed by 

the stopword elimination and the word standardization. Note that in this 

simulation, the word diversity of each training document is not controlled. 

Procedures 

In this simulation, there will be several training phases. In the initial 

training phase, 500 training documents will be used. Fifty training documents 

will be increased for each successive training phase. In the final training phase, 

there will be 1,500 training documents. For each training phase, the ClRij will 

be calculated and recorded for each word in an association with each index. 

After all training phases have been proceeded, value of (LClRij)/Fi will be 

calculated for each word in an association with each index. 

Performance measurement 

Since the value of (LClRij) /~i is used to distinguish truly associated words 

from trivial words. The performance of this method can be measured by 

comparison of (LClRij) /Fi v~lues of candidate words associated with each index. 

As mentioned before, in this simulation, five words are predefined to be 

associated with each index. If this method is successful, there should be an 

obvious c~ange in the (LClRij)/Fi value between word of 5th rank and word of 
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6th rank proposed by the final training phase. Thus, the overall performance 

can be observed by comparing the average (I: ClRij)/Fi value of all words of 

same rank for the first few rariks. For clearly demonstrating the change in 

(I:ClRij)/Fi value,_ the average (I:ClRij)/Fi value of first eight ranks are checked. 

Result and analysis 

Average (~ClRij) /Fi values and average (Pij/wi) values of first eight ranks 

in all associations proposed by the final training phase are shown on the graph 

4 on next page. 

From the result, it is found that there is, indeed, an obvious change in 

average (I:ClRij)/Fi value between word of 5th rank and word of 6th rank. Also, 

it is discovered that average (~ClRij)/Fi values of first five ranks (words truly 

associated with indexes) are' relatively small. Thus, the result agrees with the 

prediction that when the training document number is increased, rank changes 

of words truly associated with an index will be comparatively small. Therefore, 

the result shows that the (~ClRij)/Fi value can be used to determine which 

words truly associated with an index. On the other hand, the values of (Pij/wi) 

only decrease gradually without obvious change to distinguish correct associated 

words from incorrect ones. 
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Furthermore, it is found that when the rank is higher (ie. P(ij/wi) value 

is larger), the (~c)Rij)/Fi value will be smaller. This relationship between 

P(ij/wi) and (~c)Rij)/Fi can reflect the fact that words with higher probability 

(ie. higher P(ij/wi» to · be associated with -an . index are ones which are 

comparatively stable in their ranks. 

Intermediate results when document number is increasing 

In the previous simulation, one only considers the situation in which 

there are enough training documents used to perform sufficient training phases. 

Now, the situation in which there are fewer training documents will be 

considered. When the number of training documents is not enough, words will 

have fewer -occurrence frequencies leading to lower chance of changing word 

ranks according to P( ij/wi) values calculated after each training phase. Thus, 

rank changes of correct words and those of incorrect words will not be 

obviously different from each other. 

Now, there is another simula~ion. In this simulation, the initial training 

phase will have 50 training documents. For each successive training phase, 50 

documents will be appended. ;For each index, the (~LlRij) /Fi values of first ten 

word ranks will be calculated after three particular training phases with three 

different document number: 300, 600 and 1,500 documents. It is expected that 

when ther~ are more training documents, it is easier to detect the correct index-
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word associations according to the (~ClRij) /Fi values. Like the previous 

si~ulation, each index is predefined to be associated with five words. Thus, if 

the performance is satisfactory, the change of (~ClRij)/Fi value will be obvious 

between word of 5~h rank· and that of 6th rank. Other assumptions used in this 

simulation are same as -those used in the previous one. 

In the graph 5 on the next page, there are three different graphs 

illustrating the (~ClRij) /Fi values calculated under three different situations. 

When there are only 300 training documents, the curve has a zigzag shape. It 

is difficult to use these values to distinguish the correct associations from the 

incorrect ones since there is no obvious change of (~ClRij)/Fi value between two 

successive ranks. But when there are 600 training documents, the first several 

ranks have {~ClRij) /Fi values gradually increasing.. Then, the curve is, more or . 

less; level off. At least, this pattern of the curve is clear that the first few ranks 

with increasing (~ClRij)/Fi values are different from those with high and similar 

values. Finally, when there are 1,500 training documents, the first five ranks' 

(~LlRij)/Fi values have been decreased to a level obviously lower than other 

ranks' values. The words of first few. ranks with low (L:ClRi) /Fi values can easily 

be identified to be correct words that should be associated with the indexes. 

When the training documel).ts are increasing from 600 to 1,500, the correct 

associations between indexes and words have been being developed and, thus, 

the correct words will have lower chances to change their ' ranks. In other 

words, their ranks are become stable when documents are increased. 
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From these three graphs, it is found that if a word is correctly associated 

with an index, there will have lower chance for this word to change its rank 

when the training documents are increasing. Conversely, if a word is not truly 

associated with an index, the rank change Will be relatively serious when the 

training documents are increased. 
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4.2 Indexing phase simulation 

The aim of this simulation is to test whether the indexing phase 

procedures can work properly to assign suitable indexes to a document. In this 

simulation, the training phase will be performed, in advance, to establish correct 

associations between words and indexes. Then, the training documents will be 

treated as if they are non-indexed documents.' The words found in the 

documents will be used to propose the indexes based on the index-word 

associations calculated in the 'training phase. The performance of the indexing 

phase can be evaluated by comparing the proposed indexes with the original 

ones. The word diversity of the documents will be taken into consideration in 

the simulation since it is an important factor affecting the.performance of this 

phase. 

Assumption 

In this simulation, the training phase will be accomplished in advance. 

The assumptions used in the trainiI1:g phase will be similar to those used in the 

training phase simulations mentioned earlier. These assumptions are as follows. 

(1) The number of predefined indexes allowed to be used in this 

simulation is 50. In addition, the number of predefined words allowed to be 

used is 50. 
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(2) It is predefined that for each index, five words are truly associated 

with it. The association strengths of these words are assumed to be identical. 

Likewise, each word is predefined to be associated with five indexes. 

(3) A number of training documents will be used in th.e training phase. 

For each document, it is predefined to be made up of five words and indexed 

by five indexes. It is assumed that words in docUments are already processed 

by the stopword elimination and the word standardization. The grouping 

combination of words in these documents will be controlled in order to alter 

the word diversity intensionally. 

Procedures 

In this simulation, what are mainly investigated are the performance of 

the indexing phase and the factors affecting it. Therefore, before the indexing 

phase, the training phase will be deliberately controlled to make it rebuild the 

original predefined associations (ie. training phase precision and recall = 100% 

when first five words with largest as,sociation strengths are selected to calculate 

the precision and recall). Then, words of these documents will be used to 

propose indexes which wi~l be compared with the original ones in order to 

calculate the performance. 
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In this . simulation, the word diversity of each document will be controlled 

and. different word diversity will be attempted in order to test its effect on the 

indexing phase performance. 

Performance measurement 

The performance measurement is accomplished by comparIng the 

proposed indexes with original predefined ones. Precision and recall can be 

used to measure the performance of the indexing phase. In the indexing phase 

simulation, they are defined as follows. 

Precision = number of correct indexes proposed 
total number of indexes proposed 
for a document 

Recall = number of correct indexes proposed 
total number of original indexes 
in a document 

Result and analysis 

(11) 

(12) 

The result of thiss.imulation is shown on the graph 6 on next page. In 

this simulation, the number of words selected for each index is five (ie. original 

number of words predefined to be associated with an index). Thus, the values 

of precision and recall will be identical and represented by one line in the 

graph. 
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It is found that the performance of the indexing phase is related to the 

word diversity. The performance is becoming better when the A WS value is 

increasing (ie. the word diversity is decreasing). This result is consistent with 

the predicted effect of word diversity that when the words in a document are 

closely related to each other, the chance to get correct indexes will be higher. 

Because these words will concentrate on proposing some common indexes. 
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4.3 Simulation of using concept headings 

The main aim of this simulation is to verify (1) the usefulness of concept 

headings and (2) ~he effect of word diversity on the indexing phase performance 

after concept headings are adopted. 

As mentioned earlier, when the word diversity is higher than a certain 

level, the index phase performance will be affected significantly. A simulation 

is performed to test how the indexing phase performance will be affected if the 

concept headings are used. In this simulation, the indexing phase performance 

obtained by using concept headings will be compared with that obtained by 

using words. 

ASsumption 

The assumptions used in this simulation will be identical to those used 

in the indexing phase simulation. But in this simulation, each word will be 

predefined to be represe~ted by five concept headings. Each concept heading 

is predefined to be shared by five words. The number of concept headings 

allowed to be used in this simulation is 50. 
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Procedures 

In this simulation, the same procedures will be performed for two 

different conditi_ons. 'One is , for using concept headings to calculate 

index-concept-heading associations and to propose indexes while another is for 

using words to calculate index-word associations and to propose indexes. Then, 

-
the differences between these two performances can be compared. 

The concept headings found in each document will be utilized to 

perform the training phase to develop associations between indexes and concept 

headings. Then, these documents will be treated as non-indexed ones. The 

concept headings found in the training documents will be used to propose 

indexes which will be compared with the original ones. The definitions of 

precision and recall used in the indexing phase simulation will be used again in 

this simulation to measure the performance of the indexing phase. 

Since the word diversity will affect the performance, this factor will be 

taken into consideration in the simulation. In order to evaluate this effect, 

different indexing phase performances due to different word diversities are 

compared. 

In this simulation, the similarity of two words will be defined in terms 

of concept ·~eadings. If two words ~re exactly the same, they will share identical 
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concept headings. This feature can be used to measure the similarity of two 

words. The similarity of two words wa and Wb, SCab' has been defined (in the 

chapter three) to be as follows. -

(6 ) 

. 
where cab is number of concept headings commonly shared by Wa and Wb while 

ca and Cb are number of concept headings shared by wa and Wb respectively. 

In order to be consistent with the earlier definition of similarity Siab . 

(which is defined in terms of indexes rather than concept headings) in an 

equation 10, the combination of words and indexes in each document will be 

adjusted ID order to make both similarity functions SCab and Siab return a , 

common value for a document. The average word similarity, A WS, reflecting 

a word diversity of a document will be used as before (see equation 5). 

Result and analysis 

The result of this simulation is shown on the graph 7 on next page. In 

this simulation, the number of words selected for each index is five (ie. the 

original number of words predefined for each index). There are two lines on 

the graph: one for performance obtained by using words while another for 

perforinan~e obtained by using concept heading. It is found that. when the word 
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diversity is increasing, the performance obtained by using words and that 

obtained by using concept headings are becoming poor. When the A WS is 

relatively high (> 0.3), the performance obtained -by using words and that 

obtained by using concept headings are satrie. But when the A WS is relatively 

. low, the difference between two performances is apparent that the performance 

obtained by using concept headings is much poorer. Thus, this result is 

consistent with the predicted effect of using concept headings in the automatic 

indexing. 

The result shows that ortly when the word diversity is rather high, the . 

performance of indexing phase will be affected significantly. Otherwise, using 

concept headings will give same or similar performance compared with . using 

words. Therefore, the advantages of using concept headings can compensate 

for the disadvantage of indexing phase performance decline which only occurs 

in documents with very high word diversity. 
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4.4 Simulation for testing perfor~ance of predicting index correctness 

As mentioned before,the index proposing rate can predict the 

correctness of the proposed indexes. The aim of this simulation is to . test 

whether there i~ a correlation between the index proposing rate and the 

correctness of proposed indexes and whether this feature can be used to predict 

correctness of proposed indexes. 

The procedures of this simulation will be similar to those of the indexing 

phase simulation. In this simulation, each index is predefined to be associated . 

with four words. Each document contains four words and is indexed by four 

indexes. In this simulation, different precision of proposed indexes will be 

attempted in order to examine whether the average index proposing rate of 

these proposed indexes will be changed by different precision values. The 

objective is to test if there is any correlation between average index proposing 0 

rate of proposed indexes and precision of them. 

Result and analysis 

The result is shown.on the graph 8 on next page. In the simulation, for 

each document, four indexes with the highest proposing frequencies will be 

selected to calculate the precision using the equation 11. It is found that when 

the precis~on of proposed indexes gets higher, t~e average index p~oposing rate 
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of these indexes also becomes high~r. The result shows that there is correlation 

between the indexing phase performance and the average index proposing rate. , 

When more proposed indexes are correct, the average index proposing rates of 

these proposed indexes ,will get F higher since correct indexes will have higher 

index proposing rates. , From this result, it is shown that the index proposing 

rate can be used to predict the correctness of proposed indexes. When the 

average index proposing rate of certain proposed indexes is higher, the 

precision of them will be larger. 
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4.5 Summary 

In a series of simulations; . a number of important aspects of automatic 

indexing are studied. ·The results of these simulations · are summarized as 

follows. 

First, it is found that the size of training document set is an important 

factor affecting the performance of training phase. The training phase 

performance can get improved if more training documents are used to calculate 

the index-word associations. It is because more training documents means more . 

topics covered and fewer statistical errors caused by low occurrence frequencies 

of words and indexes found in them. 

Second, the rank change of a word (according to P(ij/wi) calculated each 

time when more training documents are used) in an association with an index ,. 

can be used to distinguish the correct index-word associations · from incorrect 

ones. It is found that a correct word will have· relatively low chance to change 

its rank in the association with an in~ex when training documents are increased. 

Third, the performances of training and indexing phases are related to 

the word diversities of documents. . When the word -diversity is low, the 

performances of these two phases can get improved. For the training phase, 

low word diversity can reduce the number of false associations. For ·the 

128 
' ...... -



Chapter four: Simulations of . automatic index generation 

indexing phase, low word diversity can increase the proposing frequencies of 

correct indexes which can, then, be identified easily. 

Fourth, it is found that the use of concept headings (ie. semantic 

representation of natural language terms) is.feasible in the statistical approach 

of automatic indexing providing that the word diversities of documents are not 

rather high. 

Finally, the index proposing rate (which reflects the proportion of words 

proposing a certain index) can be used to assist in prediction of correctness of .. 

proposed indexes. It is found that when average index proposing rate of 

proposed indexes is larger, the precision of these indexes will be increased. The 

average index proposing rate can reflect the correctness of indexes. 
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Chapter five 

Real case study in database 

. of Chinese 'Medicinal Material Research Center 

i , 

In the preVIous chapter, the performance of automatic indexing 

procedures have been demonstrated by simulations using imaginary data. Now, . 

a number" of real documents selected from the database of the Chinese 

Medicinal Material Research Center (CMMRC) will be used to perform some 

procedures of automatic indexing. The aim is to study the result of these 

procedures applied to the real documents and to look for the reasons for the 

problems encountered and the solutions to them. 

5.1 Selection of real documents 

A total of 103 documents have been selected from the CMMRC 

database. The criteria to choose them is that they are already indexed by the 

NLM. The documents i~dexed by 'the NLM are appropriate to be used as the 

training documents to suit the circumstance of the CMMRC. In fact, these 103 

documents are those which are publ,ished by the CMMRC in 1989 (CMMRC 

published about 1,200 documents that year) and indexed by the NLM from 

January, 1989 to June,. 1990. This selection criteria can prove that there is, 

indeed, a certain amount of Chinese medical documents indexed by the NLM 
. , 
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SO that they can be practically used in the implementation of automatic indexing . 

. in the CMMRC. 

In these real case studies, words extracted from the titles and the 

abstracts of the ~ocuments will be used in the automatic indexing procedures 

as those used in the simulations. Since these documents are translated from 

Chinese, the English version translated by CMMRC may not be identical with 

that translated by the NLM. In these case stUdies, version translated by the 

CMMRC will be used. 

In these case studies, this set of documents will be used to perform 

automatic indexing under some different .conditions and assumptions. The 

results of these studies will be presented in the following paragraphs. 
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5.2 Case study one: Overall performance using real data 

In this case study, each single word wiU 'be treated as an independent 

item. For example, a term "red blood cell" will be spitted into three items "red", 

''blood'' and "cell". They are managed as if they are not related to each other. 

In this case study, associations between indexes and words (found in the 

titles and abstracts) will be calculated and then the· documents will be treated 

asnon~indexed documents. The words found in each document will be used to 

propose indexes. These procedures are as those used in the simulations. The 

performance of the automatic indexing can be measured by comparing the 

original indexes with . the proposed indexes. The processes of automatic 

indexing in this case study will be mentioned as follows. 

Stopword elimination 

After selection of these documents, words found in the stopword list 

(shown in the Appendix A) will be eliminated first. After stopword elimination, 

there is no further process controlling the occurrences and forms of words. No 

word standardization has ~een implemented in this case study. 
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Calculation of associations 

The associations between indexes and words found in these 103 

documents are then calculated. In these documents, there are 384 different 
- , 

indexes and 2,252 different words used to calculate these associations. The 

procedure of discarding false associations has not been done in this case study 

because there are only about 100 training documents. The process of 

discarding false associations can only be implemented if there are enough 

documents to perform several training phases. Thus, all associations are 

retained as if they are correct. . 

Proposing indexes 

After the calculation of associationS, indexes will be proposed for each 

document based on the frequencies of words found in it and the calculated, 0 

'associations between words and indexes. 

Since the number of traini~g documents is relatively small compared 

with large number of words and 'indexes found in them, the statistical errors 

caused by low occurrence frequencies of words and indexes will be significant. 

As mentioned before, there are 2,252 different words found in these 103 

documents. However, among these words, only 1,314 words appearing two 

times ·'or ,more in all documents. If a word . appears only one time in all 
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documents, its P(ij/wi) value will be one (ie. the highest value). But this high 

value may be just due to the statistical fault caused by the low occurrence of the 

word. For this reason, the index proposing ' method in this case study is 

modified as follows. As.sume there are n documents in a document set {d1, d2, 

d3, ••• dn-1, dn}. For a certain document di to be indexed, only other n-1 

documents to establish associations between words and indexes. The indexes 

proposed for the document di will be based oil. these calculated associations. 

Therefore, the index-word associations used by each document to propose 

indexes will not be identical. 

Performance measurement 

Basically, precision of proposed indexes and recall of original indexes 

will be used to calculate the performance. The precision (PiN) and recall (RiN) 

for each document will be defined 'as follows. 

no. of correct indexes found in first ixN proposed 
PiN = indexes with highest proposing frequencies' (13) 

i x N ' 

no. of correct indexes found in first ixN proposed 
RiN = indexes wi th highes~ proposing frequencies (14 ) 

N 

where N = . no. of original indexes assigned to a certain document. 
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The values of PIN' P I.5N' P 2N' RIN, RI.5N and R2N will be calculated for 

each document. The average values of all 103 documents will be used to reflect , 

the overall performance. 

Before the. presentation of the result, the estimated performance will be 

calculated in order to make a comparison between estimated performance and 

actual one. 

As mentioned before, there are 384 different indexes and 2,252 different 

words found in these 103 documents. All these 384 index terms used in the 

case studies are shown in the Appendix B. Occurrence frequencies of these 

words and indexes are different. Some ' statistical data about occurrence 

frequencies of the,se words and indexes are listed below. 

No. of different words = 2,252 

Sum of occurrence frequencies of all words = 5,484 

No. of words occurring more than one time = 938 

Sum of occurrence frequencies of tl:Iese 938 words ' = 4,170 

Proportion of words possible to propose indexes 

= 4,170/5,484 = 76.04% 
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No. of different indexes = 384 

Sum of occurrence frequencies of all indexes = 675 

No. of indexes o~curring more ~han one time = 91 

Sum of occurrence frequencies of these 91 indexes = 382 

Proportion of indexes possible ·to be proposed bywords 

.= 382/675 = 56.59% 

On the average, the estimated PlN and RlN values will be about 43.03% 

(ie. 76.04% x 56.59%). According to this estimation, in this case study, the . 

automatic indexing method can propose 43.03% of correct indexes for each 

document averagely. The . actual result will be normalized . according to this 

estimated -result. 
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Result and analysis 

The average values of PIN' P I.5N' P 2N' R1N, RI.5N and R2N of all 103 

documents are presented as follows. 

Average precision (after normalization) 

Average PIN Average P I.5N Average P2N 
I 

32.68%/43.03% = 75.95%,. 24.84%/43.03% =57.73% 20.53%/43.03% = 47.71 % 

Average recall (after normalization) 

Average RIN Average RI.5N Average R2N 

32.68%/43.03% = 75.95% 37.37%/43.03% = 86.85% 41.08%/43.03% = 95.47% 

From the above result, it is . found that although there is rather small 

number of training documents used in this case study, the automatic indexing 

procedure can attain a certain level of performance. On the average, about 

76% of indexes possible t9 be proposed can be found out. 

As mentioned before, the estimated performance is about 43%. Of 

course, this poor performance is mainly caused by the insufficient number of 

documents which carinot provide enough information to establish the accurate 
. , 

associations between words and indexes. Refer back to the result in the 
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training phase simulation when tbe word diversity is uncontrolled, there are 

only 50 words and 50 indexes allowed to occur in the documents but 1,000 

docum~nts are required to attain a very high performance. In this case, · there 

are only 103 documents but many words and-indexes found in them. Therefore, 

the obvious method to improve the performance is to increase the size of 

training document set. 

5.2.1 Sample results of automatic indexing for real documents 

Three sample documents' selected from 103 real documents of CMMRC 

and their indexing results by automatic indexing are illustrated. The proposed 

indexes are determined by the procedures used in case study one. This means 

that the indexes are proposed by single words which are treated as independent 

items. The indexing results of these three documents vary from high 

performance to low performance. The reasons for difference· in the indexing , 

performance among these three documents will be explained. 

These three sample docum~nts are found in the "Abstract of Chinese 

Medicines, Vo1.3 No.2 1989" published by the CMMRC. Their document 

numbers in this abstract are listed as below. 

Sample A: 890341 
Sample B: 890402 
Sample C: · 890414 
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As mentioned before, the words used to perform automatic indexing are 

from the titles and abstracts while the index terms are those assigned by the 

National Library of Medicine (NLM). 

The original index terms, title, abstract and automatic indexing result (ie. 

proposed indexes and indexing performance) of each sample document are 

illustrated on next few pages. Then, the explanation for difference in 

performances among these three documents will be covered. 
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~ndexing perform3.l)ceof sample A 

Index terms assigned by NLM 
Alkaloids--Isolation and Purification--IP; 
Drugs, Chinese Herbal--Analysis-~AN; 
G lucosides-~Isolation and Purification--IP; 
Glycosides--Isolation and Purification--IP; 
Chenlistry 

Title 
STRUCTURES OF 2 NEW ALKALOIDAL GLUCOSIDES OF 
NAUCLEA OFFICINALIS. 

Abstract 
Two new alkaloidal glucosides were isolated and identified from the stem 
of Nauclea officinalis <Danmu > (Rubiaceae). They were structurally 
determined by chemical and spectral meth'ods and 'named as nauclecoside 
and nauclecosidine. The known alkaloidvincoside lactam was also isolated. 

First 6 proposed index terms 
1) Drugs, Chinese Herbal--Analysis--AN J 
2) Chemistry J 
3) Mice . 
4) AlkalOids--Isolation and Purification--IP J 
5) Glucosides--Isolationand Purification--IP J ' 
6) Glycosides--Isolation and Purification--IP J 

Performance = 80% 

Note: 

1) Proposed index terms marked with J are correct ones 

2) P.F. = proposing frequencies ofan index term 

P.F. T.N. 
12.40 40 
10.72 26 
03.35 22 
03.32 04 
02.70 02 
02.70 02 

3) T.N. = number of training documents indexed by a certain index term = 
number of documents (found in total 103 documents) indexed by this index 

, term - 1 ' 

4) Performance is measured by 

" no. of correct indexes found in first Nproposed indexes 
N 

where N = 'number of : original ,indexes assigned by NLM . 
• . ' • J \ \ • 
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Indexing performance of sample B 

Index terms assigned by NLM 
Anti-Inflammatory Agents, Non-Steroidal; 
Drugs, Chinese Herbal--Pharmacology--PD; 
Alcohol, Ethyl; 
Mice· , . 

Prostaglandins E--Metabolism--ME; 
Rats 

Title 
STUDIES ON THE ANALGESIC AND' ANTI-INFLAMMATORY 
ACTIONS OF AL1HAEA ROSEA. 

Abstract 
The 60%-ethanol extract of the corolla of Althaea rosea < Shukuihua > 
(Malvaceae) was prepared as ·an aqueous suspension. At 10 gjkg PO in 
mice, the suspension increased the thresholds of pain caused by acetic acid 
and radiation heat. The same treatment also decreased acetic acid-induced 
increase in capillary permeability and in rats dextran-induced paw edema 
and carrageenin-induced increase in PGE content in paw exudate. A dose 
of 80 gjkg PO in mice fasted for 12 h reduced their spontaIieous activity . 
but did not cause any death in 72 h. Its LD50 was 2.76±0.08 gjkg IV in . 
nnce. 

First 6 proposed index terms 
1) MiceJ . 
2) Rats J 
3) Drugs, Chinese Herbal--Therapeutic Use--TU 
4) Drugs, Chinese Herbal--Pharmacology--PD J 
5) Inflammation--Drug Therapy--DT 
6) Anti-Inflammatory Agents, Non-Steroidal J 

Missed correct index terms 
Alcohol, Ethyl , ' 
Prostaglandins E--Metabolism--ME 

Performance = 67% 
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'Indexing performance of sample C 

Index terms assigned by NLM , 
Alkaloids--Therapeutic Use--TU; 
Anti-Inflammatory Agents, Non-Steroidal; 
Arthus Phenomenon--Drug Therapy--DT; 
Inflammation--Drug Therapy-~DT; 
Arthritis, Adjuvant--Drug Therapy--DT; 
Cell Migratiofl: Inhibition; 
Hypersensitivity, Delayed--Drug. Therapy--DT; 
Mice· . , 
Rats 

Title 
ANTI-INFLAMMATORY AND ANTI-ALLERGIC ACfIONS OF 
ALOPERINE. 

Abstract 
Aloperine, an alkaloid of Sophora alopecuroides < Kudouzi >, markedly 
suppressed rat paw swelling induced by· carrageenin, mycostatin, PGE2, 
histamine, S-HT and scald. It inhibited leukotaxis and the increase in 
capillary permeability caused · by histamine. Its inhibitory- effect on 
carrageenin-induced rat paw swelling was not abolished by adrenalectomy. 
It reduced the content of PGE and histamine in the exudate formed after 
injecting carrageenin and dextran in rats, stabilized erythrocyte, membranes, 
and in mouse intoxicated by ethanol increased the activity of catalase but 
reduced-· the content of m~londialdehyde in hepatic tissue. It had no 
apparent effect on the serum activity of superoxide dismutase and 
phagocytosis of the monocyte-macrophage system in mice, Forssman 
cutaneous vasculitis and the content of immune complex in serum of rats 
with'Arthus reaction. However, it inhibited PCA reaction, Arthus reaction, . 
reversible ' passive Arthus react,ion, delayed hypersensitivity reaction 
(induced by tuberculin in rats), and adjuvant arthritis. 

First 6 proposed index terms 
1) Mice J 
2) Rats J _ 
3) Drugs, Chinese Herbal--Pharmacology--PD 
4) Anti-Inflammatory Agents, Non-Steroidal J . 
S) Rats, Inbred Strains 
6) Alkaloids--Pharmacology--PD 

Missed correct index terms 
Alkaloids--Therapeutic U se--TU 
Arthus Phenomenon--Drug Therapy--DT 
Inflammation--Drug Therapy--DT 
Arthritis, Adjuvallt--Drug Therapy--DT 
Cell Migration Inhibition 
Hyp'ersensitivity" Delayed-:;'Dru~ Therapy--DT ' 

. Performance =~ ·33% . 
'I . • 
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Explanation of the indexing result-of sample documents 

For each of these three- sample documents, the first few proposed 

indexes with the. highest propos~ng frequencies have been. shown. No matter 

these proposed indexes are correct or not, it is found'that on the average, they 

are relatively common in many training documents (ie. T.N. higher). Generally 

speaking, when the proposing frequency of a proposed index is higher, the 

number of training documents indexed by this index will also be larger. This 

reflects the feature that when an index is common in the training documents, 

it can be easily proposed. This index can be associated with more different 

words found in different documents so that it has higher chance to be proposed. 

Conversely, the missed correct indexes are often those uncommon in the 

training documents (T.N. lower). Their rarities cause them to have lower 

chances to be associated with more different words to establish proper 

correlations with words. Thus,- they are relatively difficult to be proposed 

correctly. But in these three sample documents, there are some exceptions 

which will be explained la~er. 

For the sample A, all correct indexes can be found in first six proposed 

indexes. Although the 4th to 6th proposed indexes are relatively uncommon in 

the training docum:e~ts, they can still be proposed correctly." The main reason 

is that there is one training document whose indexes and content are very close 
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to those of the sample A. This training document (say sample AA) is listed as 

follows. The training document of sample AA is found in the "Abstract of , 

Chinese Medicines, Vo1.3 No.3 1989" and its document number is 890695. 

Sample AA similar to sample A 

Index terms assigned by NLM 
. Alkaloids--Isolation and Purification--IP; 

Drugs, Chinese Herbal--Analysis--AN; 
Glucosides--Isolation and Purification--IP; 
Glycosides--Isolation and Purification--IP; 
Chemistry · 

Title 
STRUCfURE OF PINGBEIDINOSIDE FROM THE STEM AND LEAF 
OF FRITILLARIA USSURIENSIS. 

Abstract 
A new steroidal alkaloidal glucoside named pingbeidinoside was isolated 
from th~ stem and leafof Fritillaria ussuriensis < Pingbeimu > (Liliaceae). 
It was elucidated by chemical and spectroscopic methods as 
38, 16a,20-trihydroxy-Cl5-22,26-
epiminocholestane-25-0-B-D~g1ucoside. 

First, it is found that the indexes of the samples A and AA are exactly 

the same. Also, there ,are some important words such as "alkaloidal", 

"glucoside", and "isolated" commonly found in these two abstracts. The high 

. similarity between a training document and 'a non-indexed document can lead 

to a high indexing perform~ce. Because when two documents' contents, are 

close to each other, their indexes will also be similar. 
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For the sample B, althoug4 there are ' two indexes which are incorrect 

among the first six proposed indexes, the meanings of these two incorrect , 

indexes are, in fact, very close to those of four correct indexes found in first six 

proposed indexes. The -incorrect index "Drugs, i Chinese Herbal--Therapeutic 
. .' 

Use--TU" is close,to correct index "Drugs, Chinese Herbal--Pharmacology--PD". 

The incorrect index "Inflammation--Drug Therapy--DT' and correct index "Anti-

Inflammatory Agents, Non-Steroidal" deal with something about the concept of 

"inflammation". The reason for two missed correct indexes, as mentioned 

before, is their rarities causmg them with lower chance to be proposed. The 

reason for proposing the last two (ie. 5th and 6th) proposed indexes despite 

their low T.N. values is that the P(ij/wi) values between indexes about 

"inflammation" and words about "inflammation" are rather high. This is because 

the occurrences of indexes about "inflammation" and those words about 

"inflammations" are consistent in these 103 documents. On the next page, there 

are titles of documents indexed by the indexes about "inflammation". The 

consistency between proper indexes and words can establish correct correlations 

between them regardless of the occurrence frequencies of them. 

145 



Chapter five: Real case study in database of Chinese Medicinal Material Research Center 

Following. 'are titles of documents (found in 103 CMMRC documents) 
indexed by Anti-Inflammatory Agents, Non-Steroidal 

1) STUDIES ON THE ANALGESIC AND ANTI-INFLAMMATORY 
ACfIONS OF ALTHAEA ROSEA. 

2) ANTI-INFLAMMATORY AND ANTI-ALLERGIC ACfIONS OF 
ALOPERINE. 

3) EFFECTS OF TETRANDRINE ON VASCULAR PERMEABILITY 
. AND NEUTROPHIL. FUNCTION IN ACUTE INFLAMMATION. 

4) PHARMACOLOGICAL STUDIES ON ClJRCULIGO ORCHIOIDES. 

5) ANTI-INFLAMMATORY AND IMMUNOSTIMULATORY 
ACfIONS OF S-4001. 

Following are titles of documents (found in 103 CMMRC documents) 
indexed by Inflammation~-Drug Therapy--DT 

1) ANTI-INFLAMMATORY AND ANTI-AIJ,ERGIC ACfIONS OF 
ALOPERINE. 

2) EFFECTS OF TETRANDRINE ONV ASCULAR PERMEABILITY 
AND NEUTROPHIL FUNCfION IN ACUTE INFLAMMATION. 

3) EXPERIMENTAL STUDIES ,ON YIGUAN DECOCfION. 

The explanation fo~the indeXing performance of the sample C is similar 

to that of the sample B. Among the first six proposed indexes, the incorrect 

_ indexes have close relationships with correct ones . . For example, the incorrect 

index "Rats, Inbt:ed Strains" is close to two correct indexes "Rats" and "Mice". 

The incorrect indeX' "Alkaloids--Pharmacology--PD" and the correct index 

"Alkaloids~-Therapeutic Use--TU" mention something about alkaloids. The 

" 146 



Chapter five: Real case study in database of Chinese Medicinal Material Research Center 

reason for the sample C having Il!any missed correct indexes is that all these 

missed indexes are very uncommon in the training documents. In fact, half the 

missed indexes caimot be found in the training documents and, thus, cannot be 

proposed eventually. 

Before the-end of the discussion about the indexing performance of real 

documents, the effect of occurrence frequencies of words found in the 

documents will be mentioned. Like indexes, if a certain word is not common 

in the training documents, this word will affect the indexing performance. For 

example, in the sample C, the multi-word, term "Arthus reaction" found in the 

last few lines of the abstract is obviously related to the index "Arthus 

Phenomenon--Drug Therapy--DT'. But this term is only found in this 

document.- In other words, for this document, no training document contains 

this important item that can have significant correlation with the index. Thus, 

the rarity of a word can lead to the word having lower chance to be associated 

with proper indexes. 

As mentioned before, the major reason of the low indexing performance, 

which has been illustrated in these few sample documents, is that the number 

of the training-documents i~ not enough to cover sufficient words and indexes. 

Therefore, correct correlations -between indexes and words cannot be 

established. The obvious solution to this problem is to increase t,he size of the 

training d<?cument set. 
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S.3Case study two: Using multi-word terms 

In this case study, a meaningful multi-word term will be treated as a 

complete item. For example, "red blood cell" will be managed as one "word" 

in the automatic. indexing. The aim of this case study is to examine the 

performance difference , caused by different definitions of words. In the case 

study one, a single word will be treated as an independent item. The results of 

these two case studies can be compared in oider ··to observe if there is any 

important difference' in the performance. The procedures used in this case 

study are identical with those used in the case study one. 

Before the presentation of the result, the estimated performance will be 

calculated -in advance. When multi-word terms are used as "words", there are 

1,570 different words found in all documents. Some statistical data about 

occurrence' frequencies of these words are listed below. 

Sum of occurrence frequencies of ·all words = 2,671 

No. of words occurring more than one time = 481 

Sum of occurrence frequencies of these 481 words = 1,582 

Proportion of words possible to propose indexes 

= 1,582 / 2,671 = 59.23% 
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If one uses the same rationcMe (used in the case study one) to estimate 

the ·average PlN and R1N, they will be about 33.52% (ie. 59.23% x 56.59%). 
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Result and analysis 

The average values of P1N, R1N of all 103 documents calculated in this 

case study will be: compared with those calculated in the case study one in order 

to examine if the/:re is any difference in the performance caused by different 

definition of a word. 

Average precision (after normalization) 

1 11 

Average P1N 

1 

case study one: using single word 32.68%/43.03% = 75.95% 

case study-two: using multi-word term 32.17%/33.52% = 95.97% 

Average recall (after normalization) 

1 11 

Average R1N 

1 

case study one: using single word 32.68%/43.03% = 75.95% 

case study two: using multi-word term 32.17%/33.52% = 95.97% 

It is found that the 'performance of using IIl:ulti-word terms is obviously 

better than that of usin.gsingle words. The reason is that when one uses multi­

word terms, the word diversity of a document will be lower. As mentioned 

before, if-.the word diversities of documents ' are low, the performance of 
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automatic indexing will be improved. For example, in a certain document, after 

a multi-word term, say "action potential", is spitted into two single words 

"action" and "potential", the word diversity of this document will be increased. 
, , 

The meanings c~rried by 'these, two single 'words will be distinct. Also, the 

indexes associated with these two single words will be very different since these 

two words are common components of many multi-word terms. 

/ 

Nevertheless, the use of multi-word terms has its drawback that the 

proportion of words possible to propose indexes is reduced from 76.04% (in 

case study one) to 59.23% (in -case study two). The reason is that on the _ 

average, the occurrence frequency of a multi-word term will be smaller than 

that of a single word in the same set of documents. 

_ In this case study, it is found that the use of multi-word terms in the 

automatic indexing has two opposite effects on the performance. It can lower , 

the word diversities of documents. But it also reduces the proportion of words 

that can be used to propose indexes. But if the training document number is 

larger, the drawback of us~ng mult~-word terms wiil be reduced~ It is because 

when the document number increases, the chance for a certain multi-word term 

to occur more frequently will become higher. Then, the proportion of multi-

word terms able to propose index will also become higher. 
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5.4 Case study three: Using concept headings 

In the c~e study one, there are 2,252 words used. In this case study, a 

smaller set of concept h~adings will be attempted. The aim of this case study 

is to verify the usa,ge of concept headings in real documents. Concept headings 

will be used to represent each word found in these documents and will be used 

to perform the automatic indexing. 

Determination of concept headings 

Before using concept headings to perform any process, each word should 

be determined to be represented by which concept headings. In this case study, 

the criteria to assign concept headings to words is that if an index, say index X, 

has occurred in several documents, words of these documents will share a 

certain concept heading that denotes connection with an indexX. Therefore, 

if a word is very common in many documents indexed by different indexes, this 

word will be represented by numerous concept headings. . The purpose of this 

criteria is to confirm that all or some of concept headings representing each 

word will be shared by other words in different documents. (Assume there is 

no document whose indexe~ are entirely unique for it.) In this case study, the 

number of concept headings used is fewer than 400. 
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The procedures used in thi~ case study are similar to those in the case 

study one. But in this case study, words will be converted into corresponding 

. concept headings to perform the training and indexing phases. In the training 

phase, the associations ,between indexes and concept headings (rather than 

words) will be·caJculated. In the indexing phase, the indexes will be proposed 

based on the concept headings converted from words found in the documents. 

In this case study, only words found in tIie titles will be used to perform 

automatic indexing. The automatic indexing will be performed by using words 

and using concept headings respectively. The difference in the performance can · 

be compared. 
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Result and analysis 

documents are presented as follows. The results are not normalized. 

Average precision 

Average Average Average 
~ 

PIN P I .5N P 2N · 

Words 27.43% 19.96% 16.69% 

. Concept headings 32.98% 25.05% 20.75% 

Average recall 

Average Average Average 

RIN R L5N R2N 

Words 27.43% 29.97% 33.43% 

Concept headings 32.98% 37.66% 41.56% 

The result shows that there is a little improvement in the performance 

after the concept headings are used. Thus, from this result, it is found that a 
- . 

smaller number ,of concept headings can replace a relatively large number of 
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words in the automatic indexing. The use of concept headings can solve the 

pro1Jlem of managing a large number of natural language terms that appear in 

the documents. ,' Also, according to this resu1t~ it is found that the concept 

headings can be adapt~d in the statistical -approach of automatic indexing 

although they are, seldom attempted in the past researches. 
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5.5 Case study four: Prediction of proposed index correctness 

From the results of case study one, it is found that on the average, only 

about 43.03% of original indexes can be proposed due to insufficient training 

documents. No Illatter the proposed indexes are correct or not, the automatic 

indexing procedures will routinely propose some indexes to each non-indexed 

document. The index proposing rate of an index is able to predict the 

correctness of the index. As illustrated in the result of the simulation, there is 

a correlation between the average index proposing rate of proposed indexes and 

the precision of them. The aim of this case study is examine whetherthe index 

proposing rate can work practically to predict the correctness of proposed 

indexes in real documents. 

The procedures used in the case study one will be repeated but this time 

the index proposing rate will be calculated for each index proposed for every 

document. 

Result and analysis 

The result of this case study is shown on the graph 9 on next page. In 

this graph, the average index proposing rates of proposed indexes in different 

ranges of precision · are compared. (The precision used in this case study is PIN . 

. and is - no~ yet normalized.) It ,is found that when the precision of proposed 
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indexes get higher, the average i~dex proposing rates of them also become 

larger. From this result, it is found that the index proposing rate can be used, 

as a hint to reflect the correctness of proposed' indexes in real documents. 
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5.6 Case study five: Use of (:EClRy) jFi to determine false association 

As menti,oned before, the.process of discarding false associations has not 

been performed in the case study 'of real documents of CMMRC. The main 

reason for not performing this process is that the number of training documents 

used is rather small compared with aJarge quantity of words and indexes found 

in these documents. Many words and indexes occur only one time in these 

documents so that there is no enough chance for these words to change their 

ranks according to the change of the P(ij/wi) values which are calculated each 

time when training documents are increased. Without the chance to change the 

word ranks, it is impossible ' to use the feature of rank change to determine 

whether a certain word is truly associated with a certain index. 

However, in these documents, some words and indexes having high 

occurrence frequencies can be used to illustrate that the changes of word ranks 

can be used to determine whether' a word is truly associated with an index. 

Following are some examples. 

Among the 103 training documents, the MeSH term RATS has been 

used to index 25 docume~ts. In other words, about 1/4 of total training 

documents have been indexed by RATS. The high occurrence frequency of this 

index may imply that the words that ought .to be associated with this index 

. " should have enough chance to ,change their ranks. Therefore', this index ,has 
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been attempted to illustrate the method of discarding false associations (or 

det~rmining correct associations). 

Procedures 

All training documents have been divided into ten portions. Each of first 

nine portions has ten training documents. The ' last portion has 13 training 

documents. (The total number of documents "found in these ten portions is 

103.) There will be ten succe'ssive training phases. In each training phase, one 

portion of training documents will be appended. This means ten documents are 

used in first training phase, twenty documents in second training phase, and so 

on. The rank changes ' of words that are associated with the index RATS and 

' the values _ of (L~Rij)/Fi of words are calculated as mentioned in the chapter 

three. 

Result and analysis 

After ten training phases, the (L(JRi)/Fi of words are calculated. The 

first two words with the smallest (L(JRij)/Fi are "rat" and "rats". This result is 

very satisfactory when compared with the result of the traditional method using 

P(ij/wi) to determine the correctness of index-word associations. In the last 

training phase (ie. all words are used), there are 491 words associated with the 

index RATS with P(ij/w), value equal to one (the highest statistical correlation 
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value). Almost all of these 491 words are falsely associated with the index. 

This large quantity of-words having such a high statistical correlation is due to 

the rarity of th~m. -If a word occurs only one time _in all training documents, 

the statistical correlations between this word and the indexes associated with 

it is one. However, such a, large statistical correlation value is caused by 

statistical errors due to low occurrence frequencies of words. Therefore, from 

this example, it is found that the use of (LClRij) /Fj is better than the use of 

P(ij/wj). 

Other example 

,Similarly, another index ARRHYTHMIA--DRUG THERAPY--DT has 

been used to evaluate the performance of discarding false associations. This 

index has been used to index four different training documents respectively. 

After the last training phase, there are 65 words associated with this index with 

P(ij/wj ) value equal to one. 'However, most of these 65 words are false due to 

low occurrence frequencies 6f words. But first two words with the smallest 

(LClRjj)/Fj value are "sophora~ne" and "anti-arrhythmia". -The word 

"sophoramine" is a name 'of a biochemical used to cure the disease arrhythmia 

mentioned in some training documents. Also, this example shows that using 

rank changes of words can assist in the determination of correct associations 

between indexes and words .providing that the words and indexes have, at least, 

medium occurrence frequencies in the training documents. 
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5.7 Case study six: Effect of word diversity 

As mentioned before, the word diversity of a document can affect the 

performance of automatic indexing. The results 'of simulationsusing imaginary 

data have illustr~ted the effect of word diversity on the automatic indexing 

performance. Now, in the following paragraphs, the effect of word diversity on 

teal documents will be discussed. 

In the simulations, the similarity of two words can be controlled and 

defined deliberately according to the degree of commonness of their predefined . 

indexes or concept headings. The higher the degree of commonness, the higher 

the word similarity will be. But in the real documents, the occurrences of words 

found in a document and their associated indexes cannot be controlled. One 

method used to calculate the word similarity of two words and word diversity 

of a document is to use the values of P(~/Wi) calculated after the training 

phase. As mentioned earlier, each word associated with n different indexes will 

be treated as a vector in n-spaces. The cosine correlation between two vectors 

can be used to reflect the similarity of two words. 'The word similarity of two 

words Wa and Wb has been defined (in the chapter three) to be as follows. 

Sab = 

n 

E P(ij/wa ) • P(ij/Wb) 
j=1 

n n 

E P(ij/wa) 2. E P(ij/Wb) 2 

j=~ j=l 
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The average word similarity reflec!ing the word diversity of a document has 
. . . 

been defined (in the chapter three) as follows. 

N 

N . E Sij E j-l,i-j 

AWS- _i __ l __ N_-_l __ 
N 

(5) 

where N is the number of words found in a document. 

Result and analysis 

The word diversity of training documents used in the case study one have 

been calculated according to the training phase result. (In this case study, each 

single word is treated as independent item.) The average word similarity 

(AWS) of -these 103 documents is. 0.1331. The relation between the word 

diversity and the indexing phase performance of the case study one has been 

shown on the graph 10 on the next page. In this graph, the documents are 

divided into several groups accordirig to their calculated A WS. The average 

indexing performance of each group is calculated (the performance is in terms 

From this result, it i~ found that the performance of indexing phase is 

related to the word diversity of documents. The performance is getting better 

when the word diversities 'ofdocuments are lower (ie. A WS higher). Thus, this 

result is consistent with the predicted effect of word diversity and the result of 
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simulation using imaginary data. When words found in a document are similar 

to each other, they can concentrate -on proposing some common indexes to 

- increase the performance of indexing phase. 
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5.8 Summary 

In these, case studies, despite using relatively small amount of documents, 

many aspects of auto~atic indexing for - real documents in the CMMRC 
. . 

database have ~een surveyed. First, it is confirmed that there are a certain" 

number of Chinese medical documents indexed by the NLM. They can be 

adopted as training documents for the implementation of automatic indexing 

in the CMMRC. 

Second, although In . these case studies, the processes of word 

standardization and discarding of false associations have not been performed, 

the automatic indexing method can suggest a certain quantity of correct 

indexes that are possible to be proposed under the constraints of these case 

studies (because some words and indexes occur only one time in all documents). 

Third, the-use of concept headings is proved to be practical to substitute 

the words appearing in real documents in the statistical approach of the 

automatic indexing. 

Fourth, it is found t~at the use of average index proposing rate can assist 

in the prediction of the precision of proposed ind,exes. This prediction is 

important especially when the training document set is small and has not yet 

covered enough topics, ' like the situation in these case studies. 
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Fifth, the use of (~ClRij)/Fi has been verified by some examples. 

Provided that the frequencies of words and indexes are not too low, the correct 

index-word associations can beide~tified by the (~ClRij)/Fi values. 

Finally, the word diversities of documents are found to be related to the 

indexing performance. It is found that the lower word diversity can enhance the 

performance of suggesting indexes. 
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Conclusion 

Chapter six: Conclusion 

In recent years, researchers studying the automatic indexing mainly 

concentrate on the semantic and syntactic appr~aches but there are rather few 

researches on the statistical approach. In this paper, the advantages and 

significance of the statistical approach are reiterated. Compared with the 

semantic and syntactic approaches, the statistical approach has by-passed the 

most difficult problem of creating an indexing algorithm which not only 

identifies the linguistic entities of natural language, but also understands the 

meanings conveyed by different combinations of these linguistic entities. Inthe 

semantic and syntactic approaches, this intelligent operation is performed by 

imitating the reasoning process of human being. Typically, the semantic and 

syntactic rules of natural language will be incorporated in the system to assis~ 

in understanding the meanings of natural language. However, incorporating 

and using these complicated rules in the automatic indexing is not a simple 

task. It needs expertise ~hich, i~ turn, means that long development time and 

high cost are necessary. In the statistical approach, little expertise is required 

to develop the knowledge component in the system. The knowledge component 

in the form of statistical correlations between indexes and words can be 

developed automatically by routine procedures quickly and inexpensively. 
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Conventionally, in the statistical approach, one difficult problem is to 

determine which clue words are used" to calculate the associations with indexes, 

and then which calculated associations should be di~carded. In the past, there 

was no objective way to make this decision;. Researchers often used the value 
. . 

of statistical correlation between a word and an index to determine whether a 

certain associations should be deleted. (Large correlation value often means 

an index-word association is correct.) In fact, using this method has a drawback 

that the statistical correlation cannot always be a good clue to distinguish 

correct associations from incorrect ones due to (1) statistical errors caused by 

low occurrence frequencies of words and indexes, and (2) diverse meanings of 

words which can link with many different indexes. In this paper, there is a new 

determination technique using the characteristics that correct words for an 

index will have lower chance to alter their ranks (determined by comparing the 

statistical correlation of words that are associated with the index) when the 

statistical correlations are changed by increasing training documents. This 

feature can be used to assist in distinguishing correct index-word associations 

from incorrect ones. The advantage of this method is that it is not completely 

dependent on the values of statistical correlation' which may be · erroneous. 

Simulation results and case study results have shown that this method can assist 

in determining the boundary between correct associations and incorrect ones 

clearly. 
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Semantic representation of natural language is commonly used in the 

se.mantic approaches. In this research, the use of semantic representation in the 

statistical app~oach has been .. attempted although it is seldom used in this 

approach. An advantage of using semantic representation is that a large 

number of natural language terms can be replaced by a relatively small number 

of terms of semantic representation. Therefore, this can solve the problem of 

managing a large number of natural language terms. Moreover, the use of 

semantic representation can settle the problem of representing synonyms and 

hierarchial-related words in the automatic indexing. Typically, these two 

problems are often the critical deficiencies of the statistical approach. In this 

study, the results of simulations and case studies have shown that it is feasible 

to use semantic representation in the . statistical approach to solve these 

problems. 

According to procedures of the automatic indexing, there is always a 

certain number of indexes proposed to a non-indexed document routinely, no 

matter the proposed indexes are correct or not. In this paper, a simple method 

used to predict the precision of p~oposed indexes has been suggested. In a non­

indexed document, the proportion of words proposing a correct index should be 

larger than that proposing ~n incorrect one. An index proposing rate is defined 

to be the proportion of words proposing a certain index. If the index proposing 

rate of an index is higher, this index will have higher chance to be a correct 

one.-. The advantage of. this method is that it mainly uses the features of ~ non-
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indexed document to guess the precision of proposed indexes and this method 

is _comparatively independent of the calculation result of the training phase. 

The results of the simulation and case study have shown that when the precision 

of proposed indexes is getting higher, the ayerage index proposing rate of 

proposed indexes will be increased. Thus, the average index proposing rate call 

be used as a hint to p~edict the precision of proposed indexes. 
' . 

In this paper, the concept of word diversity has been introduced. If the 

categories of words found in a document are restricted and similar, the word 

diversity of this document is low. If the ' categories of words are · various and 

different, the word diversity is high. Although the word diversity is an 

important factor affecting the performance of the automatic indexing, it is 

seldom ~oticed in the past researches. In this study, the results of simulations 

and case study have shown that when the word diversities of documents are low, 

the overall performance of automatic indexing can get better. 

In this study, the generalized problem of automatic indexing in natural 

. language is investigated. The methods described in this paper can practically 

assist in the indexing task of the free text-based database. Although in this 

study, the knowledge do~ain used to test . the feasibility of applying the 

automatic indexing is medical science, this statistical approach, in fact, can be 

implemented In the- free text-based database system -of other domains. 
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However, the past researches show that scientific papers are more suitable to 

be indexed by the statistical approach. 
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AppendiX A: List of stopwords 

a for on very 
about _ former once via 
above formerly one was 
across from only we 
after further onto well 
aftezwaros had or were 
again has other what 
against have others whatever 
all he otherwise when 
almost hence our whence 
alone her ours whenever 
along here ourselves whenever 
already hereafter out where 
also hereby over whereafter 
although herein own whereas 
always hereupon per whereby 
among hers perhaps wherein 
amongst herself rather whereupon 
an him same whether 
and himself seem which 
another his seemed while 
any how seeming whither 
anyhow however seems who 
anyone several whoever 
anything ie she whole 
anywhere if should whom 
are in since whose 
around inc so why 
as indeed some will 
at into somehow with 
be is someone within 
become it something without 
becomes its sometime would 
becoming itself sometimes yet 
been last somewhere you 
before latter still your 
beforehand latterly such yours 
behind least than yourself 
being less that yourselves 
below ltd the 
beside many their 
besides may them 
between me themselves 
beyond meanwhile then 
both . might thence 
but more there 
by moreover thereafter 
can most thereby 
cannot mostly therefore 
co much therein 
could must thereupon 
down my these 
during myself they 
each namely, this 
eg neither those 
either never though 
else nevertheless through 
elsewhere next throughout 
enough no thus 

- etc nobody to 
even none together 
ever nor too 
every not toward 
everyone nothing towards 
everything now under 
everywhere nowhere until 
except of up 
few off upon 
first often us 
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Appendix B: Index terms used in case studies 

There are 384 different indexes (MeSH terms) found in 103 CMMRC 
documents used in the case studies. Following are these indexes and the 
number (figure in the parenthesis) of documents .indexed by them in these 103 
documents. 

. , 

(02) 6-Ketoprostaglandin F1 alpha--Metabolism--ME 
(01) A-23187--Pharmacology--PD 
(01) Abortifacient Agents, Non-Steroidal 
(01) Acetaminophen 
(01) Acetophenones--Isolation and Purification--IP 
(01) Acetylcarnitine--Isolation and Purification--IP 
(01) Aconite--Analogs and Derivatives--AA ' 
(01) Aconitine--Analogs and Derivatives--AA 
(01) Aconitine--Isolatioh and Purification--IP 
(04) Action Potentials--Drug Effects--DE 
(01) Adaptation, Physiological--Drug Effects--DE 
(01) Adenine-~Isolation and Purification--IP 
(01) Adenosine Cyclic Monophosphate--Metabolism--ME 
(01) Adenosine Triphosphate--Biosynthesis--BI 
(01) Adjuvants, Immunologic 
(01) Adult . . 
(03) Ag~d 
(01) Aged, 80 and over 
(01) Aging~-Drug Effects--DE 
(01) Alanine Aminotransferase--Analysis--AN 
(01) Alcohol, Ethyl 
(01) Aldehydes--Chemical Synthesis--CS 
(01) Aldose Reductase--Metabolism--ME 
(02) Alkaloids--Analysis--AN 
(05) Alkaloids--Isolation and Purification--IP 
(01) Alkaloids--Pharmacokinetics--PK 
(08) Alkaloids--Pharmacology--PD 
(04) Alkaloids--Therapeutic Use~-TU 
(01) Alloxan 
(01) Amides--Isolation and Purification--IP 
(01) Ammonium Chloride--Poisoning--PO 
(01) Amygdaloid Body--Physiopathology--PP 
(01) Analgesics--Isolationand Purification--IP 
(01) Anisoles--Isolation and Purification--IP 
(01) Anisoles--Ph~rmacology--PD 
(02) Anoxia--Drug Therapy--DT 
(01) Anthraquinones--Isolation and Purification--IP 
(03) Anti~Arrhythmi~ Agents ' 
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(05) Anti-Inflammatory Agents, Non-Steroidal 
(01) Antibiotics, Antineoplastic-":Chemical Synthesis--CS 
(01) Antibiotics, Antineoplastic--Therapeutic U se--TU 
(01) Antibody-Producing Cells--Drug Effects--DE 
(01) Anticoagulants--Analysis--AN 
(01) Anticonvulsants 
(01) Anticonvulsants--Pharmacology--PD 
(01) Anticonvulsants--Therapeutic Use--TU 
(01) Antimalarials . 
(01) Antimalari'als--Pharmacokinetics-.;. PK 
(01) Antimalarials--Pharmacology--PD 
(01) Antineoplastic Agents, Phytogenic 
(02) Antineoplastic Agents, Phytogenic--Analysis--AN 
(02) Antineoplastic Agents, Phytogenic--Isolation and Purification--IP 
(01) Antioxidants 
(01) Antiviral Agents 
(01) Aorta.;.-Cytology--CY :· 
(01) Aorta--Metabolism--ME , 
(03) Arachidonic Acids--Metabolism--ME 
(04) Arrhythmia--Drug Therapy--DT 
(01) Arrhythmia--Etiology--ET 
(01) Arsenic--Poisoning--PO 
(01) Arthritis, Adjuvant--Drug Therapy--DT 
(01) Arthus· Phenomenon--Drug Therapy--DT 
(01) Ascomycetes 
(01) Basidiomycetes 
(01) Benzaldehydes--Pharmacology--PD 
(01) Benzaldehydes--Therapeutic Use~-TU 
(01) Benzopyrans--Isolation and Purification--IP 
(01) Berberine--Analogs and Derivatives--AA 
(02) Berberine--Analysis--AN 
(01) Berberine--Therapeutic Use--TU 
(02) Berbines--Analysis--AN 
(01) Berbines--Therapeutic Use--TU 
(02) Bicyclo Compounds--Chemical Synthesis--CS ' 
(01) Blood Glucose--Metabolism-~ME 
(02) Blood Platelets--Metabolisrn--ME 
(02) Blood Pressure--Drug Effects--DE 
(01) Blood Viscosity--Drug Effects--DE 
(01) Bornanes--Administration and Dosage--AD . 
(01) Bornanes--Pharmacokinetics--PK 
(02) Bri<;lged CompolJnds--Chemical Synthesis-~CS 
(01) Bundle of His--Physiology~-PH 
(02) Calcium Oxalate--Analysis--AN 
(01) Calmodulin--Antagonists and Inhibitors--AI 
(02) Capillary :permeability--Drug Effects--DE' 
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(01) Capsules 
(02) Carbon Tetrachloride 
(0.1) Carbon Tetrachloride Poisoning--Drug Therapy--DT 
(01) Carbon Tetrachloride Poisoning--Prevention and Control--PC 
(01) Carcinoma 256, Walker--Drug Therapy--DT 
(01) Cardiovascular Agents 
(01) Cats 
(01) Cattle 
(01) Cell Coun~ 
(03) Cell Migration Inhibition 
(01) Cells, Cultured 
(01) Cevanes--Isolation and Purification--IP 
(01) Charcoal--Pharmacokinetics--PK 
(27) Chemistry 
(03) Chromatography, High Pressure Liquid 
(03) Chromatography, Thin Layer 
(01) Chromosome-Aberrations--Drug Effects--DE 
(01) Chronic Disease 
(01) Congo Red--Pharmacokinetics~-PK 
(01) Constipation--Drug Therapy--DT 
(01) Contraceptive Agents, Male--Chemical Synthesis--CS 
(03) Coumarins--Isolation and Purification--IP 
(02) Coumarins--Pharmacology--PD 
(02) Crystallography 
(01) Cyclohexanes--Isolation and Purification--IP 
(01) Cyclophosphamide--ToXicity--TO 
(01) Cytochrome P-450--Metabolism--ME 
(01) DNA, Neoplasm--Biosynthesis--BI 
(01) DNA, Neoplasm--Drug Effects--DE 
(02) Densitometry . 
(01) Deoxyadenosines--Isolation and Purification--IP 
(01) Depression, Chemical 
(01) Diabetes Mellitus, Experimental--Chemically Induced--CI 
(01) Diabetes Mellitus, Experimental--Drug Therapy--DT 
(01) Dimethylnitrosamine--Analpgs and Derivatives--AA 
(01) Diosgenin--Analysts--AN ' 
(01) Dioxoles--Isolation and Purification--IP 
(01) Disease Models, Animal 
(01) Diterpenes--Analysis-~ AN 
(04) Di terpenes--Isolation and Purification--IP 
(02) Dogs 
(04) Dose-Response Relationship, Drug 
(02) Drug .Combinations . 
(01) Drug Combirtations--Analysis--AN 
(02) Drug Contamination -
(01) Drug Synergism 
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(01) Drugs, Chinese Herbal 
(41) Drugs, Chinese Herbal--An3.Iysis--AN 
(12) Drugs, Chinese Herbal--Pbarmacology--PD 
(11) Drugs, Chinese Herbal--Therapeutic Use--TU 
(01) Electrocardiography 
(01) Endothelium, Vascu1ar--Metabolism--ME 
(01) Epilepsy--Drug Therapy--DT 
(01) Epilepsy--Prevention and Control--PC 
(01) Epinephripe--Pbarmacology--PD 
(01) Ergosterol--Isolation and Purification-~IP 
(01) Erythrocytes--Drug Effects--DE 
(01) Esophageal Neoplasms--Chemically Induce'd--CI 
(01) Esophageal Neoplasms--Prevention and Control--PC 
(01) Etoposide--Pharmacology--PD 
(01) Fatigue--Drug Therapy--DT 
(02) Fatty Acids" Unsatur(lted--Biosynthesis--BI 
(01) Fatty Acids, Unsaturated--Metabolism--ME 
(01) Fatty Alcohols--Isolation and Prirification--IP 
(01) Fertility--Drug Effects--DE 
(01) Fibrosis 
(01) . Flavones--Analysis--AN 
(06) Flavones--Isolation and Purification--IP 
(01) Flavones--Pharmacology--PD 
(01) Frangula--Analysis--AN 
(01) Free Radicals 
(01) Furaldehyde--Analogs and Derivatives--AA 
(01) Furaldehyde--Isolation and Purification--IP 
(01) Ginseng 
(03) Ginseng--Analysis~-AN 
(01) Glucans--Isolation and Purification--IP 
(01) Glucans--Pharmacology--PD < 
(03) Glucosides--Isolation and Pu,rification--IP 
(03) Glycosides--Isolation and Purification--IP 
(01) Glycyrrhiza 

. (02) Glycyrrhiza--Analysis--AN 
(01) Glycyrrhiza--Classi~ication--CL 
(02) Gossypol--Analogs and Derivatives--AA 
(01) Gossypol~-Chemical Synthesis--CS 
(01) Gossypol--Pharmacokinetics--PK 
(02) Gossypol--Pharmacology--PD " 
(01) Graffvs Host Reaction--Drug Effects--DE 
(05) Guinea Pigs 
(01) Heart Function Tests 
(01) Heart Rate--DrugEffects--DE 
(01) -Heart--Drug Effects-~DE 
(01) Heart--Physiology~-PH , 
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Appendix 8: Index terms used in case studies 

(01) Heat 
(01) Hemodynamics 
(01) Hemodynamics--Drug Effects--DE 
(01) Hemolysins--Biosynthesis--BI 
(01) Hemolysis-~Drug Effects-~DE 
(01) Hemorrhagic Fever Virus, Epidemic--Drug Effects--DE 
(01) Hepatitis, Toxic--Diug Therapy--DT ' 
(03) Hepatitis, Toxic--Etiology--ET 
(01) Hepatitis, ,Toxic--Pathology--PA 
(02) Hepatitis, Toxic--Prevention and " Control--PC 
(01) Hepatitis, Toxic--Therapy--TH 
(02) Hydroxyeicosatetraenoic Acids--Biosynthesis--BI 
(01) Hydroxyeicosatetraenoic Acids--Metabolism--ME 
(01) Hyperlipidemia--Blood--BL 
(01) Hyperlipidemia--Drug Therapy--DT 
(01) Hypersensitivity, Delayed 
(01) Hypersensitivity, Delayed--Drug Therapy--DT 
(01) Hypoglycemic Agents 
(01) Hypotension--Chemically' Induced--CI 
(01) Hypotension--Drug Therapy--DT 
(01) IgG--Biosynthesis--BI 
(01) IgM--Biosynthesis--BI 
(01) Indoles--Chemical Synthesis--CS 
(01) Indoles':'-Therapeutic Use--TU 
(03) Inflammation--Drug Tberapy--DT 
(01) Injections, Intraperitoneal 
(01) "Insomnia--Drug Therapy--DT 
(02) Isoflavones--Pharmacology--PD 
(02) Isoquinolines--Pharmacology--PD 
(01) Kindling (Neurology)--Drug Effects--DE 
(02) Lactones--Isolation and Purification--IP 
(01) Lactones--Pharmacology--PD 
(03) Legumes . 
(01) Legumes--Analysis--AN 
(01) Legumes--Ultrastructure--UL 
(01) Lens, Crystalline--ED.zymology-~EN 
(01) Lepidoptera 
(02) Lethal Dose 50 
(01) Leukemia, Experimental--Drug Therapy--DT 
(01) Leukemia, Experimental--Metabolism--ME . 
(01) Leukocytes--Drug Effects--DE 
(01) Leukotrienes B--Biosynthesis--BI 
(01) Leukotrienes B--M"etabolism--ME" 
(01) Leydig Cells--Drug Effects--DE 

" (01) 'Lig~iI1--Analysis--AN 
(01) Lignin--Isolation and Purification--IP 
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(03) Lipid Peroxidation--Drug Effects--DE 
(01) Liver Function Tests 
(Q1) Liver Regeneration--Drug Effects--DE 
(01) Liver--Cytology--CY 
(01) Liver--Pathology--PA 
(02) Macrophages--Drug Effects--D E 
(01) Macrophages--Metabolism-~ME 
(01) Malaria--Metabolism--ME 
(01) Malonates--Isolation and PUrification--IP 
(01) Malondialdehyde--Blood--BL 
(01) Malondialdehyde--Metabolism-~ME 
(02) Mass Fragmentography 
(01) Materia Medica 
(03) Medicine, Chinese Traditional 
(01) Membrane Potentials--Drug Effects--DE 
(01) Mesenteric Arteries--Drug Effects--DE 
(02) Metabolic Clearance Rate--Drug Effects--DE 
(01) Methods 
(23) Mice 
(01) Mice Mice, Inbred C57BL Necrosis 
(02) Mice, Inbred C57BL 
(01) Mice, Inbred ICR 
(01) Microcirculation--Drug Effects--D E 
(01) Microscopy, Electron, Scanning 
(01) Microsomes, Liver--Drug Effects--DE 
(03) Middle Age 
(01) Minerals--Toxicity--TO 
(02) Miotics--Chemical Synthesis--GS 
(01) Mitochondria, Heart--Drug Effects--DE 
(03) Molecular Conformation 
(01) Muscle Contraction--Drug Effects--DE 
(01) Muscle, Smooth--Drug Effects--DE 
(03) Myocardial· Contraction--Drug Effects--DE 
(01) Myocardial Infarction--Complications--CO 
(01) Myocardial Reperfusion Injury--Complications--CO 
(01) Myocardium --Cytology--CY ' 
(01) Neoplasm Proteins'--Biosynthesis--BI 
(01) Neoplasm Proteins--Drug Effects--DE 
(01) Neoplasm Transplant~tion 
(01) Neutrophils~-Drug Effects--:DE 
(01) Neutrophils--Metabolism--ME 
(01) Nuclear Magnetic Resonance--Methods--MT 
(04) Oils, Volatile--Analysis--AN 
(01) Oils, Volatile-~Therapeutic Use--TU 
(01) Oleic Acids 
(01) Pain--Ph)'siopathology--PP 
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(01) Papaverine--Pharmacology--PD 
(01) Papillary Muscles--Drug Effects~-DE , 
(01) Papillary Muscles--Physiology--PH 
(01). Parasympatbolytics--Chemical Synthesis--CS 
(01) Parasympathomimetics--GhemicaI Synthesis--CS 
(01) Peritoneal Cavity-~Cytology--CY 
(02) Phagocytosis--Drug Effects--DE 
(01) Pharmacognosy 
(01) Phenanthrenes--Analysis--AN 
(01) Phenanthrenes--Isolation and Purification--IP 
(01) Phenanthrolines--Analysis--AN 
(01) Phenols--Chemic'al Synthesis--CS 
f01) Phenytoin--Pharmacology--PD 
(01) Plant Extracts 
(01) Plants, Medicinal--Analysis--AN 
(02) Plants, Medicinal--Anatomy and Histology--AH 
(01) Plants, Medicinal--Growth and Development--GD 
(01) Plants, Medicinal--Ultrastructure--UL 
(01) Plants, Toxic--Analysis--AN 
(01) Plasmodium Berghei--Drug Effects--DE 
(01) Platelet Activating Factor ' 
(01) Platelet Activating Factor--Antagonists and Inhibitors--AI 
(02) Platelet Aggregation Inhibitors 
(01) Platelet Aggregation Inhibitors--Isolation and Purification--IP 
(03) Platelet Aggregation--Drug Effects--DE 
(01) Plethysmography, Impedance 
(01) Podophyllotoxin~-Analogs and Derivatives--AA 
(01) Podophyllotoxin--Pharmacology--PD 
(01) Polarography--Methods--MT 
(01) Pollen 
(01) Polycyclic Hydrocarbons--Pharmacology--PD 
(01) Polyporaceae 
(01) Polysaccharides--Isolation and Purification--IP 
(01) Polysaccharides-~Pharmacology--PD 
(01) Procainamide--Therapeutic Use--TU 
(02) Prostaglandins E--,Metabolism--ME 
(01) Prostaglandins--Metabolism--ME 
(01) Pulmonary Edema--Chemically Induced--CI 
(01) Pulmonary Edema--Drug Therapy~-DT ' 
(01) Pulmonary Heart Disease--Drug The!apy--pT 
(01) Purkinje Fibers--Physiology--PH 
(01) Pyrazines--Therapeutic Use--TU 
(01) Quercetin--Analbgs and Derivatives--AA 
(02) Quercetin--Isolation and Purification--IP 
(01) ~A, Neoplasm--Biosynthesis--BI 
(01) RNA, Neoplasm--brug Effects--DE Tumor Cells, Cultured 

", 
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(06) Rabbits 
(25) Rats 
(12) Rats, Inbred Strains 

Appendix B: Index terms used in case studies 

(01) Receptors, LH--Drug Effects--DE 
(01) Regression Analysis 
(01) Respiratory Distress Syndrome, Adult--Chenlically Induced--CI 
(01) Respiratory Distress Syndrome, Adult--Drug Therapy--DT 
(02) Review, T~torial 
(01) Rheology 
(01) Rutin--Isolation and Purification--IP 
(01) SRS-A--Metabolism--ME 
(01) Salicylic Acids--Administration and Dosage--AD 
(01) Salicylic Acids--Pharmacokinetics--PK ' 
(01) Sapogenins~-Analysis--AN 
, (01) Saponins--Analysis--AN 
(03) Saponins--Isolation and Purification--IP 
(01) Saponins--Pbarmacology--PD 
(01) Sarcoma 180--Drug Tberapy--DT 
(01) Seeds--Anatomy and Histology--AH 
(01) Seeds--Classification--CL , 
(01) Seeds--Ultrastructure--UL 
(01) Sensory Tbresbolds~-Drug Effects--DE 
(01) Sesquiterpenes--Analysis--AN 
(02) Sesquiterpenes--Isolation and Purification--IP 
(01) Sesquiterpenes--Pbarmacokinetics-~PK 
(01) Sesquiterpenes--Pharmacology--PD 
(02) Shikimic Acid--Isolation and Purification--IP 
(01) Shock, Septic--Complications--CO 
(01) Shock, Septic--Drug Therapy--DT 
(01) Silymarin--Pharmacology--PD 
(01) Sinoatrial Node--Cytology--CY 
(01) Sinoatrial Node--Drug Effects--DE 
(04) Sitosterols--Isolation and Purification--IP 
(01) Skin Absorption 
(03) Solanaceous Alkaloids--Pharmacology--PD 
(01) Solanaceous Alkaloids--Therapeutic Use--TU 
(01) Solubility , ' 
(02) Species Specificity 
(01) Spectrum Analysis, Mass 
(01) Spermatocidal Agents' 
(01) Spirostans-..;Analysis--AN 
(01) Sple~n--Immunology--IM 
(03) Stereoisomers 
(01) Stimulation, Chemical , 
(01) .Subceijular Fiactions--M,etabolism--ME 
(01) Succinate~~-Isolation and Purification--IP 
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(01) Sugar Alcohol Dehydrogenases--Metabolism--ME 
(01) Tachycardia, Supraventrictilar--DrugTherapy--DT 
(91) ,Tea 
(01) Terpenes--Analysis--AN 
(01) Testis--Metabolism--ME 
(01) Testosterone--Blood--BL 
(01) Thioacetamide , 
(01) Thromboxaile A2--Biosynthesis--BI 
(01) Thromboxane B2--Biosynthesis--BI 
(01) Thromboxane B2--Blood--BL 
(01) Thromboxane B2--Metabolism--ME 
(01) Thymoma--Immunology--IM 
(01) Thymus Neoplasms--Immunology--IM 
(01) Time Factors 
(02) Tissue Distribution 
(02) Trees 
(05) Triterpenes~-Isolation::- and Purification--IF ' 
(01) Tritium 
(03) Vasodilator Agents 
(01) Vasodilator Agents--Therapeutic Use--TU 
(02) Ventricular Fibrillation--Drug Therapy--DT 
(01 ) Ventricular Fibrillation--Etiology--ET 
(01) Ventricular Fibrillation--Prevention and Control--PC 
(01) Weather 
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