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The two components of the proposed design tool will be introduced below. An outline of the whole thesis 
will then be given. 

1 . 1 . S P E C I F I C A T I O N E N V I R O N M E N T 
The proposed specification environment is to provide the ANN developers with an interface so that the 
ANN systems to be developed can be easily specified. The main advantage of the specification 
environment is that the concurrence of ANNs is introduced automatically. 

The interface consists of forms fw different major components of an ANN. Users are requested to 
describe the attributes of these major components by filling in the entries of these forms. 

Every neuron is assumed to be operating independently of other neurons by the NNPS, except when two os 
more neurons are specified by the user to be connected and are hence dependent on each other. The 
NNPS will introduce as much as concurrence without violating the dependencies. Under the proposed 
specification environment, which adopts the dataflow specification methodology and requires no control 
information from the users, the users do not have to care about "dynamic" property of concuirence. They 
just have to specify the "static" connection among the neurons. 

Uniform notations in specification are also important. A set of specification rules and notations are 
provided for users. The behaviour of the 3 major components of an ANN, namely, the processing units 
(the formal neurons), the connection among the formal neurons (the configuration) and the system-wide 
coordination among the formal neurons (the control neuron), are declared uniformly. 

1 . 2 . S P E C I F I C A T I O N A N A L Y S I S 
A specification analyzer performs specification analysis to locate errors and pass the information for 
future use by the NNPS. The two most important analysis methods are data dependency analysis and 
attribute analysis. 

Data dq)endency analysis is performed by the construction of data dependency graphs on the basis of the 
specification. Cyclic dependency analysis is then performed to test for any cyclic dependency among the 
elements in the graphs. 

Cyclic dependency among neurons is a forever-waiting situation and is also known as deadlock [3, 19]. 
When each of the neurons in a group has to wait for signals from other neurons before it can evaluate its 
internal parameters, it is possible the neurons may involve in a circular waiting state. The result is that 
within the cycle, every neuron is waiting for other member(s) to give signal(s) in order to generate 
signal(s) needed by other members to proceed. This is similar to the case of message deadlock in a 



message passing parallel system. Every neuron can be compared to a process in the parallel system, and 
the signals are similar to messages. Hence authors in [3, 19] use the term "deadlock" to address this 
problem. However, to emphasize the dependency property, and to avoid the general term "deadlock", the 
term "cyclic dependency" is employed in this text. A more elaborated discussion of the relation between 
message deadlock and cyclic dependency is given in Appendix III. 

Attribute analysis makes use of syntactic and semantic checkings, simple matching and simple 
computations to automatically identify errors among entries of the specification forms. Two categories of 
analysis，namely, parameter analysis and constraint checking，are performed. Parameter analysis focuses 
on input, output and usefulness (involved in generating output) of parameters. Constraint checking 
enforces consistency, such as number of connections defined in different attributes, among the ANN 
attributes. 

1 . 3 . O U T L I N E 
The thesis begins with a literature survey in Chapter 2. The overview of the design tool is discussed in 
Chapter 3. An application of the specification environment on Back-Propagation Netwoik (BP-Net) is 
described in details in Chapter 4 to explain the features of the specification environment 

For the sake of simplicity, specification analysis is discussed in 2 separate chapters. Chapter 5 explains 
the data dependency analysis and chapter 6 addresses the attribute analysis. A brief conclusion is then 
given m Chapter 7 

This design tool has been experimented with some typical network cases. The BP-Net is used as the chief 
example throughout chapters 4 to 6. Other networics such as Boltzmann machine, Percq)tron and 
fragmented examples are introduced wherever appropriate. 



2 . S U R V E Y 

This survey focuses on the two main issues mentioned in the previous chapter: 1) expressing the 
concurrent nature of an ANN system through specification environment; 2) verifying the specification 
through specification analyzer. Existing systems are investigated to see how they address these two 
issues’ and the proposed new approach is drawn into comparison whenever appropriate. 

A number of researchers realized the difficulty in developing ANN systems [3，5’ 6’ 8’ 10’ 15’ 17’ 18’ 19’ 
24’ 29, 30, 34]. They have proposed a number of different design tools or simulation systems for 
developing ANNs. The objective of developing these systems varies from getting some hand-on 
experience [17] to mapping ANNs onto some existing architecture [3，5, 8’ 15, 19]. For simplicity, these 
design tools or simulation systems will be called Neural Networic Programming Systems (NNPSs) as 
suggested in [2]. 

With no exception, the first problem the developers of these NNPS have to solve is "how to specify the 
concurrent nature of an ANN system". After studying their designs, one can conclude that these systems 
all offer some kind of solution to this problem. 

The second issue has diawn much less attention from the researchers. Not a studied reference has 
mentioned anything about verifying the correctness of a specification. This may be based on the 
assumption that ANNs are fault-tolerant system, hence small errors on them can be neglected. This 
remark is valid in an ANN system, but it is not sqpplicable to the specification of such a system. A single 
error at the specification level will be propagated to a number of processing units. 

On the other hand, authors in [3] and [19] have addressed the deadlock (i.e., cyclic waiting in this text) 
problem. Barbosa in [3] proposed a mechanism for implementing deadlock-free Hopfield network but this 
mechanism is transparent to user, and is therefore not related to specification verification. Kraft in [19] 
just mentioned the deadlock problem without an in-depth discussion. 

2 . 1 . C O N C U R R E N C E S P E C I F I C A T I O N 
The difficulty in developing concurrent systems is well recognized. The number of processing units, 
neurons, in an ANN can be thousands in number. This is much bigger than the number of processes in 
other concurrent system, and hence adds difficulty in specifying the concurrence. It is impractical to 
specify the concurrent execution of the neurons' one by one. 

There are three common approaches adopted by NNPSs for expressing the massive parallelism of ANNs. 
The first one is to consider the neurons as elements of an array, and sequentially update the neurons. The 



second one is to map the ANNs onto some existing concurrent architecture. The third one introduces ihc 
concurrence by the NNPS instead of by the users. The last approach is adopted by the proposed design 
tool due to the greatest flexibility and simplicity. 

2 . 1 . 1 . SEQUENTIAL APPROACH 
This approach is adopted by many NNPSs running on single processor machines [6, 17’ 18, 29’ 41] and 
many small testing programs written in conventional programming languages. An ANN system is always 
being emphasized as a massively parallel network, but the same remark may not be true wilh their 
simulation programs. A sequential updating of the neurons can be viewed as a synchronous network wilh 
deterministic updating order. If the system can support random order of evaluation, it can be used for 
asynchronous and non-deterministic updating [41]. 

« 
Although this approach does not match the parallel computation characteristic of ANNs, it is widely 
adopted as a quick solution in many cases, as it avoids the difficulties in developing concurrcnt programs. 
In addition, in single-processor machines, this approach is more efficient than concurrcnt programs as 
there is no communication and context switching overheads. 
S P E C I F Y I N G C Q N C D R R E N C F . 

The specification for ANNs concerns very little or even none about the concurrence among the neurons. 
Users are just required to specify 1) the operations of the individual neuron types with any suitable 
language, 2) the neurons as an array of elements, and 3) the connections among neurons explicitly or by 
incorporating into the updating rules. The updating order of the neurons is determined by a loop-like 
construct within which neurons are processed one by one. 

A simple example can be found in [6], in which the user specifies the attributes of the neurons and the 
configuration through library functions MakeUnit() and MakeLink(). MakeUnit() requests the neuron 
type and the internal functions and MakeLink() takes in type and pattern of connection. A fixed number 
of neurons can be created by the corresponding number of calls to the library function MakeUnit(). The 
overall control is specitied in C language. The updating order is determined by the value of the loop 
control variable within for loops. 

After taking all the information from these library functions, the NNPSs compile the specification into 
executable programs to be run on UNIX. Users have no controls over the concurrent aspect of the 
neurons, except that they can choose between synchronous or asynchronous updating. 



L IM ITAT IONS OF THE S E O D F . N T I A L A P P R O A C H 

This approach has the obvious limitation in simulating the concurrent properties of ANNs. The 
sequential approach is very efficient in many single-processor machines, but it cannot help to reveal the 
concurrent features. Researchers may insist that the concurrent property is essential for ANNs. 

In addition, in a SUN3/260 machine, a network of 2000 units each with 100 links took 83 seconds to 
perform 100 simulation steps [6]. This speed is impractical for any system emulating the functioning of 
living creatures. The second approach aims at solving this problem. 

2 . 1 . 2 . MAPPING ONTO CONCURRENT ARCHITECTURE 
A natural consequence of the limitation in the sequential machines' approach is the idea of using actual 
parallel machines as the underlying simulation environment. Examples of these systems are found 4n [3, 
5’ 8, 15, 19, 34]. These machines typically have more than one processor though with a less degree of 
parallelism than the ANNs. For example, the underlying system given in [34] is four Transputers 
processors, while the number of neurons in a network can be thousands or even millions. 
S P E C I F Y I N G C O N C U R R F ^ J C E 

The specification should now include 1) the mapping between neurons and the basic processing elements 
of the NNPS, and 2) the mapping between the processing elements and the physical processors. In Trans-
puter, for example, the processing elements are processes’ and a simple mapping is to represent every 
neuron with a process. These processes can further be mapped onto different physical processors. 

The first mapping bridges between an ANN system and the simulation system, and the second mapping 
concerns the execution efficiency and limitations. It seems that only the first mapping is relevant to our 
discussion but, in practice, the second mapping also affects the resultant specification. For example, in 
[19]i an Actor is selected to represent a layer of neurons but not an individual one because of the 
efficiency consideration. 

At the neuron operation level, the specification is very similar to the sequential approach case. Users can 
represent a single, a layer of, or even a network of neuron(s) with the basic processing elements of the 
NNPS. This decision will influence the efficiency and even feasibility of the resultant simulations in case 
system constraints should be observed. 

The communication, and hence the connection, among the neurons is usually specified with the built-in 
constructs for communication of the underlying architecture, such as the OCCAM communication calls in 
[34]. As a result，users should take care of the concurrence of an ANN system at the specification level 
when they directly control the communication and synchronization. 



L I M I T A T I O N OF THE MAPPTNC； APPROACH 

While this approach has the advantage of allowing users to have direct control over the concurrence of the 
ANNS, it also requires users to know more about parallel processing, especially the philosophy behind the 
parallel processing of the underlying machine. In other words, when the system leaves too much control 
to the users, they may face the old problem again, i.e., the difficulty in developing parallel systems. They 
have to take care of the communications, synchronization and cooperation among neurons. This 
approach, therefore, is not so satisfactory as one of the objective of these systems is to free the users ftom 
concerning these operation details. 

2 . 1 . 3 . AUTOMATIC CONCURRENCE INTRODUCTION 
A third approach for specifying the concurrence of ANNs is to introduce concurrence not by the users but 

a 

by the NNPSs [10, 24, 30]. Users only focus on the behavior of individual neurons, the connections and 
the overall control among them. The NNPSs will make use of their knowledge about ANN systems and 
the underlying simulation machine to generate the resultant system. 
S P E C I F Y I N G C O N C O R R E N C E 

It is not necessary for users to concern the concurrence, because it is introduced by the NNPSs. The 
NNPSs usually assumes that the neurons are candidates for parallel processing. Every neuron can execute 
independent of others, except communication among neurons are required. The communications are 
derived from the connections. When a neuron should communicate with others to get signals, it may wait 
until the signal is available, synchronization is thus required. Users hence have control over the 
concurrence by declaring the connections, and hence communications. 

The specification process is very similar to that of the sequential approaches. USCTS just specify the 
operation of the neuron types, declare the neurons belonging to each type, and the connections among the 
neurons, with similar notations as the sequential approach. The major difference is that users do not 
specify the order of updating the neurons. This is detOTiined by the NNPS automatically from the 
specification. 

The underlying processing performed by the NNPSs is different from that of sequential approaches. The 
system will take the information from the specification, together with information from the underlying 
simulation machine, to generate the corresponding simulation. This suggests that it is possible to separate 
the characteristic of the underlying simulation machine from that of the specification environment. In 
other words, the NNPSs can generate concurrent simulations for multi-processor simulation machine, and 
sequential simulations for single-processor machine, although the specification environment always 
assumes concurrent execution among the neurons. 



This specification approach has the advantage of being simple but still allowing users to control the 
concurrence. It does not require users to specify all concurrence as in the concuirent architecture case, 
and it can retain the concurrence that is not supported by the sequential approach. In addition, letting the 
NNPS to determine the concurrence facilitates the same network to be tested on different underlying 
architecture by compiling the same specification to different execution programs to be run on the 
underlying machine. 

2 . 2 . S P E C I F I C A T I O N A N A L Y S I S 
None of the materials studied have discussed how they vrnfy the information supplied by the users. Most 
probably, they support the standard compiler checking such as syntactic and semantic verifications. These 
checkings are far from enough. The distinct computation model deserves not only a unique specification 
environment but also a special verification mechanism. Cyclic dependency, for example, cannot be 
detected by these standard compiler checkings. 

Checking for the correctness of ANNs can be quite complicated and tedious. The specification of massive 
number of elements often introduces problems in analysis. In addition, the high degree of parallel 
operation and communications makes it very difficult to trace the simulations. In case errors occur, the 
debugging process is again complicated by the presence of massive parallel computation and 
communications. 

2 . 2 . 1 . MOTIVATION 
The fault-tolerant property of ANNs is often used to question the need for extensive specification 
vCTification. The operation mechanism of ANNs guarantees that whenever a few neurons in an ANN 
break down, the network will still function with graceful degrade. When the faults are considered at the 
specification level, however, the situation is different 

For example, whenever the specification for a neuron type is incorrect, the error will propagate to a large 
number of neurons. As mentioned in the previous section, it is quite difficult for users to separately 
declare the operation of every individual neuron. It is natural for one to define a relatively small number 
of neuron types, and use these types repeatedly for comparatively much larger number of neurons. Error 
in a single neuron type will thus be inherited by many neurons. As a result, specification verification is 
required. 
2 . 2 . 2 . CYCLIC D E P E N D E N C Y 
Among the reviewed materials, [3] and [19] have mentioned two systems in which a particular problem, 
the deadlock (i.e., cyclic dependency) problem, has been addressed. 



B A R B O S A ‘ S A T T E M P T ON D K A D L O C K P R E V E N T T O N 

Barbosa in [3] addresses the deadlock problem explicitly. The objective of Barbosa was to develop an 
OCCAM implementation for a Hopfield Neural Network. The model will not be discussed in detail but， 

basically, every neuron will wait for a signal from all its neighbors and a central control before it can 
proceed. 

According to Barbosa, one problem of particular importance is the potential occurrence of communication 
deadlocks as a result of the un-buffered communication among OCCAM j^ocesses representing Hopfield 
neurons. It was proved that, under the particular communication scheme suggested in [3], a buffer of size 
> 2 will guarantee deadlock free communication among the neurons. 

The scheme proposed, however’ is specific to Barbosa's implementation of Hopfield Network with 
OCCAM. Special communication scheme and special architecture have been assumed. Although it is a 
very efficient and useful scheme for implementing Hopfield Network, it is not suitable for others. The 
paper supports, however，the observation for the need of deadlock prevention. It also supports the 
observation that there are synchronized communication and overall network control in ANNs, although 
these are widely ignored. These observations will be discussed in depth in later chapters. 
K R A F T ‘ S MOPEL 

Ton 广 
< X I n p t r t ^ F / Source ^ ^ 

1 > 1 Output 

1st 2nd 
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> Correction -> Forward 
Signal Signal 

Hgure 1. Configuration of a Simple BP-Net 

Kraft in [19] has introduced a mechanism to 
increase the degree of parallelism in a BP-Net 
running on an Actor model. An interesting 
result is that the system can prevent cyclic 
dependency resulting from signal transmission 
among neurons. A simplified BP-Net is shown 
in Figure 1. In the network, while neuron 1 
sends signal to neuron A, it should also wait for 
message returned from neuron A for error 
correction. In this case, neurons 1 and A cannot 
execute simultaneously. Moreover, it may be 
possible in some instance that both neurons 1 and 

A are waiting for each other's signal. This is a cyclic dependency case. 

In the mechanism developed by Kraft, neurons are declared as actors. When neuron 1 has received its 
inputs, it will create a duplicated actor la (Figure 2) which will contain the status of neuron 1 of that in-
stance. The new actor, neuron la, can then wait independently for any feedback signal propagated from 



neuron A. In the meantime, neuron 1 can continue to receive further input signals. In this circumstance, 
both neurons 1 and A can execute in parallel. 
An interesting consequence arising from this 
mechanism is that cyclic dependency is removed 
from the system as the signal transmission loops 
no longer exist (Figure 2). Intuitively, none of 
neurons 7, la and A will wait infinitely as long 
as there are input from the source. This 
problem, however, is not the main concern of 
Kraft as he did not address the issue in details. 

Output 

Besides these two particular systems, other 
specification environments in the literature do 
not discuss the cyclic dependency. This will be 
shown, in later chapters, to be dangerous as the 

Source 1st 
Layer 

> Correction 
Signal 

2nd Layer 
Output 

Forward 
Signal 

Figure 2. Configuration of BP-Net Under Kraft's Scheme 

possibility of getting this problem is high and the problem is difficult to locate. 

10 



3 . THE D E S I G N T O O L 

The proposed design tool is the front 
end of an NNPS. The NNPS 
environment, in addition to the design 
tool, includes backend compilers to 
generate software simulations and/or 
hardware implementation codes. Other 
constituents, such as libraries for 
neurons, networks, graphical display 
and the same may be included [2] . A 
complete integrated system can thereby 
be developed for the whole development 
process. The overall development 
environment is shown in Figure 3. 

Forms are used as the interface between 
the design tool and users. An ANN 
！ 

Specification input through the forms ly 
user is analyzed by a specification 
analyzer. The analyzed results and, if 
any, errors can be feed-backed to the 
designer through the computer. The 
designer can thus modify the design 
using the information obtained. 

Design Tool 
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1 r ^ 
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jcet io 门 
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(Analyzer ^ 

ANN 
Expert 

八 

\f 八 \f 
Analysis 
.Result 
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Machine-
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mation 
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Simulation 
Results 

\f 
Implementation 

G e n e r a t o r > <r 

V 

Libraries 
(Neurons, 
Networks, 
Graphics) 

Hardware 
Implementations 

Simulation 
Programs 

Figure 3. Overall NNPS Environment 

The analyzed result from the design tool can be passed to an implementation generator that will generate 
the corresponding software simulation or hardware implementation based on the hardware information of 
the underlying machine. The libraries contain system-defined neuron types, network configurations and 
graphics to show the networks in an intuitive manner. 

3 . 1 . S P E C I F I C A T I O N E N V I R O N M E N T 
3 . 1 . 1 , FRAMEWORK 
The framework of an ANN specification has 3 major components. The 3 major components are 1) a set of 
formal neurons (FN), 2) the configuration (C) of the network, and 3) the central control of the network. 

11 



The central control is regarded as a high-level neuron and is named control neuron (CN) of the system. 
Each component has a number of attributes and every attribute has its characteristics. 
3.1.1.1. Formal Neurons 

A formal neuron is a mathematical abstraction of the characteristics of a natural neuron in the brain. 
Formal neurons are the basic processing elements in an ANN system. A formal neuron can be 
charactCTized by the attributes given in Table 1. 
A t t r i b u t e s D e s c r i p t i o n 
Neuron Type Name (Nm) Unique label for different types of neurons. 
Input (IN) Unique labels and the characteristics (range of possible values, discrete or continuous 

type of values, step size) of the input lines. 

Output (Out) Unique label and characteristic of the output line, similar to IN. 
Internal Parameter (IP) Unique labels for internal parameters and diaracteristic, similar to IN. 
Initial Values (InV) Initial value for the parameters. 
Internal Functions (IF). State transition oAhe neurons depending on the input values and the previous 

neuron state. 

Evoy possible combination of the values of the parameters (input, output and internal) is called a state of 
the neuron. The combined states of all the neurons in the network form the resultant state of the network. 
The internal functions (IF) are responsible for updating the output and internal parameter values, hence 
responsible for state transitions. 

The initial values of the parameters may influence the subsequent behavior of the neurons and should be 
carefully controlled. IN parameters cannot be initialized, as it comes from other neurons or the en-
vironment OUT and IP parameters can be initialized to any compatible values. 

There should be at least one internal function fos: every OUT and IP parameters, otherwise the 
paiamet^s will be kept constant. As there is at least one output from every neuron, there should be at 
least one internal function defined for every neuron. 

In common ANNs, the formal neurons will function differently under different operation phases. The 
most common phases are learning and recalling phases. In the learning phase, neurons will leam the 
input patterns and update its parameters. In the recalling phase, neurons will just generate o啤ut from 
the input and the internal parameters but will not update these internal parameters. The prq)erty of i 
different internal functions under different phases should be included in the specification. 
3.1.1.2. Configuration 

The configuration of an ANN system refers to the connection pattern, hence the communication, of the 
neurons. A configuration can be specified by the attributes shown in Table 2. 
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A t t r i b u t e s D e s c r i p t i o n 
Unique labels for the neurons. 

Neuron character (NO Associates the NLs with Nms. & declare the 1/0 degree. 
Connection Pattern (BP) Connections amonf； the neuroi 

— 
a parameters • 

3.1.1.3. Control Neuron 

The literature reviewed, except [3], has seldom mentioned the central control of an ANN system but it is 
always essential. For example, in different operation phases, the functioning of the neurons is different 
and the central control is responsible for the phase transition and notifies the neurons of these transitions. 

A central control is also required for interfacing the network with the environment. It should direct the 
input patterns from the environment (e.g., files, camera, scanner) to the first layer and the output from the 
network to the environment (e.g., files, other networks, other systems). This environment should not be 
handled by the network itself that is supposed to be independent of the outer environment 

Book-keeping tasks should also be paformed by the central control. Usually in the training phase, the 
input patterns are fed into the input layer and the neurons leam this pattern for a number of iterations. 
The central control must record the number of iterations for each pattern. 

This central control of an ANN is named the control neuron of the network. The control neuron is 
considered as a neuron that is connected to evwy neuron in the network and sends control information to 
them. This will simplify the specification as the same set of notation used in specifying formal neurons 
can be used MOICOVCT, considering the central control as a neuron will also simplify the analysis. The 
attributes of a control neuron are listed in Table 3. 

The input and output files are responsible for the interface between the system and the environment. The 
incoming and outgoing messages from the outside world are addressed as files’ which are not necessarily 
conventional files in computer storage devices but can be any stream of data. Moreover, these files may be 
different at different operation phases. There are records within the files that represent different patterns 
being input to and output from the network. 

The roles of the global functions are versatile. In addition to state transition of the control neuron， 
which is similar to that of internal function of formal neuron, they should also determine the operation 
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phase tiansition. Moreover, it should map the input file onto the input of the first layer, and output from 
the last layer to output file. 
3 . 1 . 2 . DATAFLOW SPECIFICATION 
Dataflow specification 卿roach is adopted because it is more natural in specifying the behavior of the 
neurons [35]. In addition, this specification approach will facilitate the specification analysis. 
3.1.2.1. Absence of Control Information 

The first characteristic of dataflow specification approach is lack of control information. In conventional 
programming languages, control is effected by a mixture of implicit and explicit structures. The explicit 
control structures are the programming constructs such as loops and conditional branching. Implicit 
control means that the textual order of the statements will determine the execution order of the instruc-

e tions. 

In dataflow specification, on the other hand, no control flow information is defined for the execution of a 
system. All specifications are data-oriented, i.e., they just determine how values arc assigned to a data im-
der different conditions. Such definitions are called equations. Every equation is responsible for 
specifying the behavior of a datum. At the specification level, the sequence of evaluating the data is of no 
concern to user. The dependency relations among the data determine the resultant execution sequence 
automatically. Independent data can be evaluated in parallel. 

3.1.2.2. Single-Valued Variables & Explicit Time Indices 

The second featuie about dataflow specification is the use of single-valued variables. In conventional 
programming languages, variables can assume different values at diffeient times. In dataflow 
specification approach, variables can only take one value forever and hence known as single-valued 
variables. As a result, there is at least and at most one assignment statement for every variable in a 
specification. 

A direct consequence of using single-valued variables is the introduction of explicit time indices in the 
variables. Two variables are considered to be identical if their names and indices (if any) are identical. 
Hence different elements of the same array are considered to be different In this way, a variable K can be 
subscript with explicit time indices so that it resembles an array in conventional programming language. 
Every elemm of this "array" records value of variable V in different instances, i.e” V[l] records values of 
V at first instance, V[2] second instance and V[k] the k-th instance. Rq)eated use of the element in this 
array avoids the need for introducing new variable each time. In chapter 6 one can see how this explicit 
time index can simplify the specification analysis. 
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3.1.2,3. Explicit Notations 

The introduction of explicit time indices as a consequence of using single-valued variables is just one 
example of explicit notations. Explicit connection pattern, explicit input and ou中ut properties of 
parameters, and explicit type and range of values for parameters are also included. 

Explicit connection pattern requires users to explicitly state the connections among the parameters of the 
neurons. The explicit connection pattern requires users to state the connection explicitly, and hence draw 
the user's attention. In addition, once the connection is defined, no modifications on other parts of the 
specification will introduce additional errors on the connection part. 

Explicit type and range of values for parameters are useful in checking. Connected parameters are 
compatible only if they have the same type (discrete, continuous) and same rangfe (bounded, unbounded, 
binary). In conventional programming languages, the type compatibility is not required for the range as 
the range of values represented by a particular type of data is fixed. 

In addition to explicit declaration on types and ranges, input and output properties of parameters are also 
stated explicitly. This is solely for sake of checking. "Input parameters should not be updated" is just an 
example of the many checkings performed. This is diffCTent from conventional programming languages, 
in which the input and output properties of the parameters are determined by the operation on it, not by 
the explicit declaration of the parameters. 
3 . 1 . 3 U S E R INTERFACE 
The interface between the user and the design tool are specification forms. Each component of the ANN 
system is specified with one form. Within each form, th«ie are entries corresponding to attributes of the 
components, and the filled values are the characteristics of the attributes. 

Form 1 shows the layout of the specification forms corresponding to the components. It is not suiprising 
that they resemble Tables 1 to 3, which show the attributes of the components. Each entry in the forms 
corresponds to exactly one attribute of the component 

FORMAL NEURON »»* CONFIGURATION »»» »»* CONTROL NEURON *»• 
NEURON TYPE: NEURON LABEL: GLOBAL INPUT: INPUT: NEURON CHARACTER: GLOBAL OUTPUT: OUTPUT: CONNECTION PATTERN: GLOBAL PARAMETER: INTERNAL PARAMETER: INPUT FILE: INITIAL VALUES: OUTPUT FILE: INTERNAL FUNCTION: GLOBAL FUNCTION: 
Forni 1. Basic Entries Headings of the Design Forms 
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The specification form interface has advantages over other 叩proaches. It will remind users about the 
essential attributes of a network, thus reducing the possibility of missing information. With a suitable 
editing environment, the system can restrict the inputs of the users. The forms also group relevant 
information together to facilitate the modification process. Furthermore, developed foims serve as a 
prototype to be referenced by other users. 

3 . 2 . S P E C I F I C A T I O N A N A L Y S I S 
The specification analysis is based on data dependency analysis methodology. Data dependency analysis 
is used for locating cyclic dependency and for parameter analysis. Attribute analysis employs syntactic 
and semantic checking, simple matching, and simple computations to locate errors. 
3 . 2 . 1 . DATA DEPENDENCY ANALYSIS « 
Data dependency analysis focuses on the dependency among data to determine the functioning of an ANN 
system. "Data" in an ANN system are the internal parameters of the formal neurons and global 
parameters of the control neuron. The analysis can determine such as order of evaluation for the 
paramet汉s in the neurons，the completed updating of all parameters except input parameters, and the 
usefulness of parameters. 

Data dependency graphs are the core constructs for data dependency analysis. A data dependency graph 
is a directed graph. Nodes in the gr叩h are used to represent data，while a directed edge from node x to 
node y means that datum y dqpends on datum x, or x determines y. Datum y depends on x means that the 
value of y is determined by some evaluation involving x (denoted as ;c -> ;y, or equivalently, y <- x). 

The dependency grq)h can be used for determining the order of evaluation for the data. If ;y depends on x 
(y <- jc), the evaluation of x should precede the evaluation of y. A cyclic dq)endeiicy is a problem in 
which some data are depending on each other. In this case, the data involved do not have a proper order 
of evaluation (e.g., x<-y<- x). 

The dependency graph can also be used for other checkings. For example, a datum with no incoming 
edges must be an input datum, otherwise some data are not updated. A datum determining no other data 
in the graph should be an output datum, otherwise the datum is useless. 
3 . 2 . 2 , ATTRIBUTE A N A L Y S I S 
Syntactic checking is used for enforcing the correctness of the form entry syntax. Semantic checking is 
used for enforcing unique, well-defined labels for names，and compatibility among the parameters in both 
type and range of values. 
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Tailor-made simple matching is applied on checking the correct matching among the characteristic of the 
attributes. For example, the number of neurons defined in the neuron label entry should match with that 
defined in connection pattern, and the number of input and output parameters defined in the formal 
neuron form should agree with that defined in the neuron character entry. These checkings are straight 
forward but useful. 
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4 . B P - N E T S P E C I F I C A T I O N 

In this chapter, an example specification on a Back-Propagation Netwoik (BP-Net) [33] is given to 
illustrate the features of the specification interface. It will explain the use of specification forms, form 
entries, the use of notations and the characteristics of dataflow specifications. A formal syntax definition 
can be found in Appendix I. Additional specifications of other example types of networks can be found in 
Appendix IV. 

The basic paradigm of a BP-Net is introduced first. After that, the specifications on the formal neuron， 
configuration and control neuron will be discussed separately. 

4 . 1 . B P - N E T P A R A D I G M 
BP-Nets are characterized by their error correction signals propagated back from output layers to input 
layers. Input layer is the layer (group) of neurons connected to the input source, and output layer is 
connected to the output target. Layers between these two layers are called hidden layers. The signals 
propagated from the input to the output layers are called the forward signal. The output from the output 
layer is compared with the teaching signals. The difference is used to compute the error correction 
signals that are then propagated back from output layer to input layer. 

In [33] the characteristic of a BP-Net is described at two levels. The first one is the individual neuron 
level. The behavior of individual neuron is described with the aid of equations such as how to produce 
outputs and how to update internal parameters with respect to the input values. The equations 4.1 to 4.6 
shown below are included for completeness but their exact meanings are unimportant for the discussion of 
the specification. 

The second level of description is the overall topology of the whole network. The main concerns are how 
to connect the neurons together, how the signals are propagated from the input source to the output, and 
how the neurons should update with respect to others. The paradigm of the sample BP-Net is illustrated 
below. 
4 . 1 . 1 . N E U R O N S OF A B P - N E T 
Every neuron in the training phase (or learning phase in some literature) involves in two types of signal 
processing. In the forward propagation direction, one neuron, say, the y-th one, is responsible for 
computing the activation (Ay) and output {Opp values that are given by 
A/=5>y7 0p/+Gy (4.1) 

i 
〜二 T ^ (4.2) 
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where wy,- is the weight of the connection from i-th neuron to the y-th one, Opi is the output from i-th 
neuron and 9; is the threshold of the 7-th neuron for being activated. 

In the backward direction from outputs to inputs，the main responsibility of the neuron is to generate the 
error correction signal (6^/) and the change of weights (Awy/). The error correction is declared as 
^pj = (tpj~Opp Opj (1 - Opj) (4.3) neuron in output layer 
各pj = Opy (1 - Opj) Yfipk w ŷ (4.4) neuron in hidden layers, 

k 
where t^/ is the teaching signal and hpĵ  is the correction signal from the k-tti neuron in the subsequent 
layer. 

Moreover, to increase the leamingj"ate without leading to oscillation, a momentum term is included in the 
generalized delta rule to give 
Awy/ (T+1) = T\(bpj Opi) + a Aw力.(T) (4.5) 
wy/ (T+1) = w力(T) + Aw力.(T) (4.6) 
where Awy/ is the change of wyj, the subscript T indexes the presentation number’ r\ is the learning rate 
and a is the momentum. 

On the other hand，the functioning of the neurons in the recalling phase is simple. The main function of 
the neurons is just the computing of the activation (Ay) and output {Opp with the same equations defined 
as before in equations (4.1) and (4.2). 

香 港 中 文 人 子 “ 
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4 . 1 . 2 CONFIGURATION OF B P - N E T 
The configuration of a the BP-Net is shown in 
Figure 4. This is a simplified view of a 
network, in which only the forward 
connections, but not the feedback ones, arc 
shown. The network contains 5 layers of 
neurons. There are 256 neurons at the first 
layer, and this is also the size of the input 
pattern. The number of neurons decreases 
half in every subsequent layer. Every neuron is 
connected to ali the neurons of the preceding 
and succeeding layers, except the first (i.e., in-
put) and last (i.e., output) layers. The neurons 
in the first layer are fully connected to the 
signal source, while the neurons in the last 
layer send output to the environment. This is 
just a sample configuration for demonstrating 
the capability of the specification so the 
implication of such a configuration will not be 
discussed. 

Figure 4. Configunition ofHxamplo BP-Nci 

4 . 2 . C O N S T A N T D E C L A R A T I O N S 
Before specifying the major components, it is convenient for one to dcclarc some meaningful alias names 
for constant values. This is common in many pFogramming languages and is also supported by the design 
tool in question. To provide for this, a Constant Declaration form will allow users to dcclarc constani 
values by names. In the sample BP-Net, the constants for ihe network configuration inciudc the number 
of layers (NumOJLayer) which is 5 and size of the input pattern (PatSize) which is 256. Furthermore, the 
number of maximum iterations {Maxlter) for a pattern is defined as WOO, threshold (Theia) is 0.1, 
momentum (Alpha) is 0.9 and the learning rate (Neta) is 0.5. These arc shown in Form 2. These values 
of the constants are of no concern for the discussion. 
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*** C O N S T A N T D E C L A R A T I O N 
#DECLARE ( NumOfLayer, 5 ); 
#DECLARE ( PatSize, 256 ); 
•DECLARE ( Maxlter. 1000 ); 
#DECLARE(Theta,0.1); 
#DECLARE ( Alpha, 0.9 ); 
#DECLARE(Neta.0.5); 
Foim 2. Constant Declaration Fom for BP-Net 

4 . 3 . F O R M A L N E U R O N S P E C I F I C A T I O N 
A specification form for the hidden unit of the BP-Net is shown in Form 3. In a BP-Net, there are three 
groups of neurons, namely the hidden, input and output units. These three types of neurons are specified 
separately. They are named as BPInput, BPOut and BPHidden respectively. Only the specification for 
BPHidden is shown and discussed in details here. The others can be found in Appendix IV. 

*** F O R M A L N E U R O N 
N E U R O N T Y P E : 

BPHidden(M. N. Id); 
严 M - number of neuron in previous layer, equals to number of input 

N — number of neuron in next layer, equals to number of output 
Id - position of current neuron in the layer. */ 

I N P U T : 
I [ 1..M �RANGE (0,1) INCLUSIVE CONTINUOUS; 
(WI [1..N], Deltal [1..N]) CONTINUOUS; 

O U T P U T : 
Out RANGE (0，1) INCLUSIVE CONTINUOUS; 
(W [1..M], Delta) CONTINUOUS; 

I N T E R N A L P A R A M E T E R : 
(A, DeltaW[L.M]) CONTINUOUS; 

I N I T I A L A E 
W[*][0] = 0; Delta[0] = 0; DeltaW[*][0] = 0; 

/* input from previous layer */ 
/* correction signals from following layer */ 

/* output to following layer •/ 
/* correction signals to previous layer •/ 

/* activity and computed correction value •/ 

/* all initial values are 0 ‘ 
N T E R N N O N 

严 Internal function common to all {biases *l A m = i m * TRANSPOSEC W[T]) + Theta; 
Out[n = l/(l+EXP(-A[T]))； 

Internal functions for Training phase 
Traini 

DeltaIT] = Out[Tl*(l-Oui 
DeltaW[*][T] = Neta 
W[T+11 = W m + DeltaWm； } 

ut[T])» (Delta 
lta[T] * Out[T] 

i m • TRANSPOSEC Wim)) ; 
Alpha • DeltaW[*][T-l]; 

biteiml functions for Recalling j ^ s e 
Recalling { 

DeltaW[T] = 0; 
Delta[T] = 0; 
w [ T + i ] = w m ; 

Foim 3. A Form for Formal Neurons of a BP-Network 
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4 . 3 . 1 . MAPPING t h e PARADIGM 
The first concern for the specification is how it can capture the properties of a BP-Net formal neuron to 
ensure that its functioning can be accurately simulated. The functioning of the formal neurons is 
expressed in terms of symbols and equations, but these equations, in their original mathematical forms, 
are not suitable for specification purpose as it is quite difficult to type in these equations. Proper ways of 
mapping these equations into expressions that can be taken by the computer have thus to be devised. 
4.3.1.1. Mapping Symbols onto Parameter Names 

Limited by the standard alphabets available in the standard keyboard, convenient parameter names with 
standard alphabets are used to represent the Greek symbols in equations (4.1) to (4.6). These names are 
shown in Table 4. 

II Symbol Name 
r = ^ = 

Use of Parameters 
On/ 
各nk 

I 
Deltal 

Ou^ts from preceding neurons 
Correction sig^s from following neurons 

wjh- WI Weights of connection to following neurons 

tm-
o • 

Teach 
Out 

Teaching signal from the environment • •itmit* Af fliic nmifv\n 
5 . Delta 

U1 ulla uccmjii 
Collection signal of this neuron 

W；/ W Weights of connection into this neuron 

A," A Activation value 

如ii 
o 

DeltaW 
Theta 

Weight changes of this neurons 
‘1 l/fltllA w 

n 
a 

丄 llWIXk 

Neta 

Alpha 

1111 Cduuiu Value 
Learning rate 

Momentum 

Table 4. Symbols and Thdr Names 

The output from other neurons Opf is m叩ped onto the local input I of the neuron under investigation. 
This will clarify the role of the parameter. The teaching signal ipj from the environment, which is 
mapped to the parameter Teach’ is not included in the specification for BPHidden. This is because the 
hidden units do not receive teaching signals from the environment. This parameter will therefore appear 
only in the specification form for output units (i.e., BPHidden). 
4.3.1.2. Mapping Neuron Equations onto Internal Functions 

The mapping between the mathematical neuron equations and the internal function in the formal 
neuron form is shown in Table 5. 

There is no need to use summation symbol in the internal functions because matrix operations are 
employed. For example, the expression 

工〒pi 
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is replaced by the product of two matrices / and W. The function Transpose is used to transpose the IxN 
matrix W so that the product is a scalar value. The other notations are straight forward, except the 
explicit time index 7, which will be discussed in the next section. 

^Ne i Behavior Equations Internal Functions 
A m = i m * Transpose( W m )+Thcta 

o u t m = i / ( i + E x p ( - A m ) ) 
DeltaITl=Outm • ( 1-Ouim ) • (DeltaI[T] • Transpose( WI[T])) 

…(1 -o„：) Delta[T]=(Teach{T] - QutPl) * OutlT]*( 1 - Out[T]) 
DeltaW[*]m=Neta • Delta[T| * Out[T] + Alpha • DeltaW[*][T-l] 

y;,<t+l)=w,v(t)+Aw,-,<t) W[T+l]=Wm + DeltaWm 
Table 5. Correspondence Between Neuron Behavior Equations and Internal Functions 

3 . 2 F O R M E N T R I E S 
The notations of the specification will be explained in more details, and the possible variations on the 
options will also be mentioned. This will give an ovCTview on how to use the formal neuron form to 
capture the characteristic of different types of neurons. 
4.3.2.1. Neuron Type Entry 
N E U R O N T Y P E : 

BPffiddea(M,N.Id); 
严 M - number of neuron in previous layer, 

N — number of namm in next layer. 
Id — position of cnnent neuron in the layer. •/ 

Example Neuron Type Entiy 

The neuron type entry for the hidden unit is reproduced in Form 4. The neuron type is augmented with 
neuron definition parameters (NDPs). These input values are used in specifying configuration attributes 
such as the number of input and output signals, number of connection weights and the like. In this form, 
M is the numbCT of neurons in the previous layer, and hence the number of input signals and weights. N 
is the number of neurons in the next layer. Id is the position of this neuron in its own layer. These 
neuron definition parameters should be compilation constants, i.e., they can be evaluated at compile time. 
4.3.2.2. Input, Output and Internal Parameter Entries 
I N ^ P U T ： 

®I [ 1“M ] ®RANGE (0,1) INCLUSIVE COMTNUOUS; 
(WI [1..N], Deltal [1..N]) CONTINUOUS;® 

O U T P U T : 
Out RANGE (0.1) INCLUSIVE CONTINUOUS; 
(W [1..M�, Delta) CONTINUOUS; 

I N T E R N A L P A R A M E T E R : 
(A, DeltaW[l..M]) CONTINUOUS; 

!* iiqMit from previous layer •/ 
/* correction signals from following layer •/ 

t* output to following layer •/ 
!* correction signals to previous layer •/ 

I* activity and computed correction value V 
Foim 5. Example iiput. Output and Internal Parameter Entries 
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The parameters have been grouped as input, output and internal ones. The first three (/’ WI and Deltal) 
arc input, the next three (Out, W and Delta) are output, and the last two (A and DeltaW) arc internal 
parameters. The specifications for the entries are extracted in Form 5. 

OParameter Declaration. The parameters are specified with their name’ optional array size dedu-
ctions, and their properties. The array declaration is Pascal-like. A square bracket immediately after u 
parameter name indicates that the parameter is an array. The values inside arc the index boundaries. 
Hence there are M inputs having the same name I but with differcnt subscripts. 

Some parameters are defined as arrays while some are not. It depends on whether or nol the parameter is 
used for storing a number of different values at the same time. For example, although their values arc 
sent to more than one receiver, the output parameters Out and Delta are defined with no subscripts, as ihc 
same value is broadcast to all neurons. On the other hand, the input parameter I is dcclarcd as an array 
because it should receive different values from different sources at the same time. 

OParameter Properties. The first property associated with the parameters is an optional range boundary 
for the values that a parameter can assume, either inclusively or exclusively. The sccond attribute is the 
type of the parameter, which may be continuous, binary, integral or discrete with any step size. In ease of 
discrete values, the third attribute, the step size, should also be given. 

In the given forms, for example, the value 
parameter I can assume any values between 
0 and 1 inclusively, while the value of 
Deltal is unbounded and continuous. These 
properties are not given in the equations 4.1 
to 4.6 but they arc required for analysis 
purpose. A summary of the properties of 
the parameters is given in Table 6. 

i Name Characteristics 
I Continuous, bounded by (0,1) 
Deltal Continuous, unbounded 
WI Continuous, unbountiod 
Teach Continuous, bounded by (0,1) 
Out Continuous, bounded by (0,1) 
Delta Continuous, unbounded 
W Continuous, unbounded 
A 
DcltaW 

Continuous, unbounded 
Continuous, unbounded 

Tabic 6. The Properties of the Paramcten 

for Multiple Input/Output Parameters. One may wonder why there is more than one 
parameter in both the input and output entries. Most of the standard text on ANNs would classify the 
output from preceding layers I as input to the neuron, but disregard the other two correction signals from 
succeeding layers as inputs. They assume that the neurons have ways to obtain the values of the 
correction signals Deltal from the succeeding layers and connection weights W! among the neurons. 

The proposed design tool, on the other hand, does not allow accessing information of other neurons cxccpl 
through signal passing. There is no global information acccssibic by neuron cxccpl system constants. 



Hence the correction signals Delta! and the connection weights WI must be imported. As a result, there 
are three input parameters. 

The same argument applies for the parameter declaration in the output entry. As the neurons should 
export the correction signals, connection weights and their standard output, there are three output 
parameters from the hidden units. 

4.3.2.3. Initial Value Entry 

This is the entry for initializing parameters. The expressions in this entry are used to assign constant 
values into some particular instances or elements of the parameters. The initial value entry is reproduced 
in Form 6. 
I N I T I A L V A L U E : ^ 

W[*][01 = 0; Delta[0] = O, DeltaW[*][0] = 0; /» all initial values are 0 •/ 
Fonn 6. Example Initial Value Entiy 

OTemporal Dimension & Instances of Parameters. The use of explicit time indices in chapter 3 
defines an instance of parameter 尸 as an element of the array of parameter in the temporal dimension. 
This dimension is always the last dimension of a parameter. Hence a constant value it in the last 
dimension of a parameter F (i.e., P[k], if P is scalar) indicates the k-th instance of P. The system is 
assumed to start from instance 1 so a zero or negative value (e.g., Delta[0] in the form), addresses values 
of Delta before the system starts. Furthermore, a is a wildcard indicating evoy instance if used in the 
last dimension. This is not found in the given form. 

OEIements of Non-temporal Dimensions. It is also possible to initialize the elements of the array in the 
non-temporal dimensions. This is similar to normal array addressing, in which the index value used must 
be within the array range. A is also used as the wildcard to indicate every element in that dimension. 
In the given example, W[*J[0] = 0 says that every element in the first dimension of M îs initialized to 0. 
4.3.2.4. Internal Function Entry 

Internal functions are the denotations of equations 4.1 to 4.6 (except equation 4.3 that is for ou屯ut neuron 
only) in a form understandable to the design tool. The specification for internal function entry is 
extracted in Form 7. 
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I N T E R N A L F U N C T I O N : 
严 
* Internal funcu<m common to all i ^ e s */ o e 

A m = i m * TRANSPOSE( W[T]) + Theta; 
Outin = 1 / ( 1 + EXP( - A m )); 

产 
* Intemal functions for Training i ^ s e 
•/ O 

Training { Deltam = Outm • (1 - OuiIT)) • (DeltaI[Tl * TRANSPOSE( WI[T1 ))； 
€ 

DeltaW[»]m = Neta * Delta[Tl * Out[TI + Alpha » DeltaW[»][T-l]; 
W[T+1] = W m + DeliaWm； }； 

产 
* Intemal functions for Recalling 
*/ 

Recalling { 
DeluW[T]=0; ® 
Delta[T] = 0; 
W[T+1]=W[T1; }； 

Foim7. Example Intemal Function Entiy 

®The Temporal Index. Temporal index, denoted as Tin the equations, is a pre-defined parameter. It is 
always use in the last dimension, the temporal dimension. It is used to denote the "current" instance of a 
parameter. The exact value of T is hence dq)endmg on the number of iterations the system has had. 

This temporal index T is not used to refer parameters among different equations but just to express 
temporal relation within the same equation. Consider the equation 

W[T+1] = w m + DeltaWm. 
The equation indicates that the value of W is dependent on the values of itself and another parameter, 
DeltaW, which are both one instance earlier. The exact value of Tat any time is immaterial, but just the 
relative relation is essential. Hence one can rewrite the equation in an equivalent form 

W[T] = W[T-1] + DeltaW[T-l]. 

OMatrix Operations. The notation for matrix multiplication is exactly as those for scalar ones，except 
that the orientation of the matrices may be adjusted. No special notation is required. The function 
Transpose serves this purpose. All one-dimensional arrays are viewed as IxN matrices. The system 
makes use of the characteristic of the parameters to determine the nature (i.e., scalar or matrices) of the 
operators automatically. The dimensions of the equations will be checked to enforce proper operations. 

OWildcard Assignment. The use of star (*) in a dimension has the same effect as that in Initial Value 
entry. Every element in that dimension is assigned the value resulted from the expression. 

OOperation Phases. Two operation phases. Training and Recalling，are defined in the example. 
Equations restricted under the scope of any phase are used only when the system is in that phase, and 
equations that are not bounded by the scope of any phase can be applied at all times. 
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OParameters Kept Constant. There are parameters that arc changing in one phase (Training) but are 
kept constant in the other {Recalling), such as W, Delta and DeltaW in the example. W is referenced in 
the Recalling phase so its value of the previous instance is propagated to the new instance through direct 
assignments (WfT+lJ = W[T]). On the other hand. Delta and DeltaW are arbitrarily set to 0. These 
equations seem to be unnecessary but the system requires the user to explicitly state the computation for 
all parameters of every instance. This ensures that every instance of the parameters can be evaluated. 
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4 . 4 . C O N F I G U R A T I O N S P E C I F I C A T I O N 

*** C O N F I G U R A T I O N *料 
N E U R O N L A B E L : 

{{ Neu [X】ly]; /* Number of neurons = 256,128,64,32.16 in layers 1 to 5 */ 
X: l..NumOfPat; j 

N E U R O N C H A R A C T E R : 

*/ 

Hidden neurons. Input and output degree are depending on the layer it is in (Le. y). x is the position of the neuron in the layer 

*/ 

严 * 

*l 

{{{ Neu [y][x] TYPE BPffidden(z*2, z/2. x ) 
INPUT-DEGREE (z»3) OUTPUT-DEGREE (9*2/2); 
X ： 1..Z； 1 

z = PatSize/(2A(y-l)); ) 
y : 2..NumOfLayer-l; } 

Input neuron. I i ^ t degree PatSize 恤item size) • 2, ouQxit PatSize / 2 
{ Neu [l][x] TYPE BPInput( PatSize, PatSize/2 ’ x ) 

INPUT-DEGREE (PatSize»2) OUTPUT-DEGREE (PatSize/2); 
X: 1 ..PatSize; } 

Output neuron. Input degree is num of out from prcv. layer, output i s 5 * z (num of neu in last layer) 

*/ 

{{ Neu [NumOfUyerlW TYPE BPOut( 2*z, x) 
INPUT-DEGREE (2*z+l) OUTPUT-DEGREE (5*z); 
X ： 1..Z； J 

z = PatSize/(2^ (NumOfLayer- 1) ); } 

O N N E C T I O N P A T T E R N : 
Forward propagation^ connect I for every neu in the layer from eveiy Out of eveiy neu in the prcv layer 
{{ Neu[x+l](w].I[y] = Neu[x]Iy].out; 

y:l .J>atSize/(2A(x-l)); w : LPatSize / (2^x) } 
X: l..NumQflLayer-l ) 

Backward propagation, ooimect WI & Deltal for eveiy neu in the layer from eveiy Delta (error 
correctioQ signals geoerated every neanm) in the next layer 
{{ Neu[x][w].WI(y] = Neu[x+l][y],W[w]; 

Neu[x][w].DeltaItyl = Neu[x+l]Iy].Delta; 
w : 1 .PatSize / ( 2 A (x-1) ); y : l..PalSize / ( 2 八 x)) ) 

X : 1..NumOfLayer-1 } 

Connect iiq)ut / of 1st layer to input source {fnput-Pattern) defined in Control Neuron (QV) 
{ Neu[l][x].I = CN.Input-Patteni[x]; 

X: l..PatSize } 
Connect input Teach of last layer to iiqput source (7eacK) defined in Qxitrol Neuron (C7V) 
{ Neu[NumC)£Laycr](x].Teach = CN.Teach[x]; 

X: l.PatSize / ( 2 八（NumOfLayer-1)) } 
Connect output Out of last layer to output target {Output-Pattern) defined in Control Neuron (C/V) 
{ CN.C)utput-Pattem[x] = Neu[NumOfLayer][x].Out; 

X: L-PatSize / ( 2 a (NumOfLayer - 1) ) } Form 8. Example Form for Configuration of BP-Net 
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4 . 4 . 1 . FORM ENTRIES 
A number of subscripts are used in specifying the configuration, hence may give an impression of being 
complicated. This is because the network contains different number of neurons in different layers. After 
the following explanation, one should find the subscripts easy to understand. In addition, in Appendix III， 

one can find other simple configurations with corresponding very simple specifications. 

4.4.1.1. Neuron Label Entry 

The neuron label entry defines the names of the neurons to be used subsequently in other entries. In the 
example, the neurons are named as elements in a two dimensional array called Neu. The first dimension 
is the layer number and the second is the number of neurons in that layer. This uniform name for all 
neurons is useful for subsequent configuration specification but it is not a necessity. In Appendix IV, an 
example specification form on Boltzmann machine shows how different names are used for different 
groups of neurons. The corresponding specification for the neuron label entry of the example BP-Net is 
extracted in Form 9. 

N E U R O N L A B E L : 
{{ Neu [x] [y]; ® /» Number of neurons = 256,128,64,32,16 in layere 1 to 5 »/ 

y:l.J>atSize/(2气x-1)); ® } 
X: l..NumQfPat; \ 

Form 9. Example Neuron Label Bitty 

ODifference ynth Conventional 2-D Arrays. One may found the specification and the conventional 
array declaration vCTy similar. This is true except one important diffiaeoce. The given network is not a 
complete matrix of neurons, as the number of neurons in every layer is diffa-ent This implies that a 
declaration of the form 

Neu [1..M] 
where M and N are constants is not possible. The value of N should vary according to different values 
assumed in the preceding index. 

As a result, some additional notations are required to indicate the layer number (or current value in the 
first index). This introduces the use of the index variable x that iterates from the lower bound i to the up-
per bound NwnOJLayer. This value is used in the following dimension, the number of neurons in that 
layer, to compute the corresponding boundary for y. Now y varies from 1 to 256 when x equals to 1,128 
when X equals to 2 and so on. 

OFormat of Index Variables. The index variables x and y are declared with a postfix format, i.e.，the 
boundary of the variable is declared after its reference. The syntax of an index variable V is expressed as 

{�Effective Scope�V: <Lower Bound> .. cUpper Bound> }. 
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The scope of the variable is within t h e � E f f e c t i v e Scope�. Its <Lower Bound�and <Upper Bound� 
values may be expressions depending on any other index variable whose scope V is in. Thus the pair of 
braces is very important in identifying the scope of the variable. 
4.4.1.2. Neuron Character Entry 

The neuron character entry describes how the neuron labels defined are associated with the types of the 
neurons {BPHidden, BPInput and BPOut) and the input and output degrees. The Input/Output degrees 
are the number of physical connections with other neurons for each neuron, and should match with those 
resulting from the specification on the connection pattern entry. Every specification statement starts 
with a neuron label already defined in the neuron label entry. The specification for the BP-Net is shown 
in Form 10. 

N E U R O N C H A R A C T E R : 
严 
* Hidden neurons. Input and output degree are depending on the layer it is in (i.e. y). x is the position 
* of the neuron in the layer 
*/ e 

{{{ Neu[y][x] TYPEBPHidden(z»2.z/2.x) 
®INPUT-DEGREE (z*3) OUTPUT-DEGREE (9»z/2); X : l„z; J 

Oz=PatSize/(2A(y-l)); ) 
y : 2..NvimOfLayer-l; ) 

• */ Input neuron. Iiqxit degree PatSize (pattern size) * 2, output PatSize / 2 
{ geu Il][x] TYPE BPInput( PatSize. PatSize/2. x ) 

•INPUT-DEGREE (PatSizB»2) OUTPUT-DEGREE (PatSize/Z); 
X: l.J»atSize; ) 

Output nouon. Input degree is num of out from prcv. layer, output i s5* z (num ofneu in last layer) 
{{ Neu [NumOfUyer][x] TYPE BPOut( 2*z. x) 

®INPUT-DEGREE (2*z+l) OUTPUT-DEGREE (5»z); 
X : L.Z； } 

z = PatSize / ( 2 八(NumOfLayer - 1) ); } 
Fom 10. Example Entry for Neuron Character 

OShoit-hand Variables. There is a variable z defined in the third line in addition to the two variables x 
and y required. This variable is not an index, as it is defined to be equal to an expression PatSize!(2^y-l)) 
(the number of neurons in this layer), not a range of values. This variable is just a short hand 
representation for the expression. In other words, the first statement can be expressed without using the 
variable z at all. Every occurrence of z in the statement can be substituted with the expression, except that 
the statement will be more complicated and more difficult to be modified. 

©Type Declarations. The type declaration identifies the neuron type to be used for a particular neuron. 
The first statement declares that the type to be used is the BPHidden type, as it is dealing with hidden 
units. Three parameters are passed into the BPHidden units. These are the actual values of the neuron 
definition parameters (NDPs) defined in the formal neuron forms. 2*z is the number of neurons in the 
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previous layer, z/2 is the number of neurons in the next layer and ；c, which is defined as ranging from 1 to 
z’ is the position of the neuron under consideration. 

OInput/Output Degrees. The corresponding input and output degrees of the neurons in the different 
layers are summarized in Table 7, where z is the number of neurons in that layer. In the :y-th layer, the 
value of z is PatSize / which is the number of neurons in that layer. The difference in input and 
output properties of the neuron types further supports the need for distinct neuron types in the network. 
Layer 
First 

Neuron Type 
BPInput 

Input 
I 
WI 
Deltal 
Total 

Degree 
PatSize 
PatSize/2 
PatSize/2 

2 

Output 
Out 

Total 

Degree 
PatSize/2 

PatSize/2 Hidden 
Layers I 

WI 
DeltaW 

z*2 
z/2 
z/2 

Out z / 2 
z*2 
z*2 Total 3 Total 9 / 2 Last BPOut 2 

Teadi W z * 2 
z*2 Total 2+1 

Table 7. I/O Degree of the Neurons in the Exaiiq>le BP-Net 

The inputs of the hidden neurons are the corresponding outputs from the previous and next layers. So the 
J-th hidden unit should have three groups of outputs. Out, Delta and W. The input and output degrees for 
the first layer are, anyway, different from those hidden layers. This layer is directly connected to the input 
source and the number of input signals I is equal to the number of neurons PatSize in that layer. There is 
also no correction signal output from this layer. 
4.4.1.3. Connection Pattern Entry 

mum] 

W[1]..W[M] 

/ 
WI[1]..WI[N1 

Deltal[ll.. 
\DeltaI[N] 

a) A Single Hidden Unit 

WI[l] 

HI].. 
I[255] 

_ m] wiu]__ mi] wi[_i]_ yfii] wi[_i】— mi] 
I[l] ^ ^ ^ ^ u t I[l] ^ ^ ^ ^ " u t I[l] ^ ^ ^ ^ u t III] ^ ^ ^ O u t > 

taHl] taHl] tal ⑴ 

b) Connections with Error Signals 

Delta 

Teach[l] 

Figure 5. Connections Among the Neurons in BP-Net 
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The connection pattern for the sample BP-Net is different from the connection illustrated in Figure 4. 
Figure 4 adopts the conventional means of illustrating the network configuration. The actual connections 
are more complicated as there are also error correction signals propagated from the forward layers to the 
backward ones. Figure 5a illustrates the input and output parameters of a hidden unit. The resultant 
connection of the first neurons in the five layers is shown in Figure 5b. One can 叩predate the com-
plexity of the connections, and hence the full connection of the network will not be shown. 

The communication links should indicate the content of the messages (i.e., the parameters) intended to be 
received and sent by the neurons. There may be more than one type of input and/or output from a single 
neuron. This is shown in the connection pattern entry, in which the connections among the neurons are 
augmented with the names of the parameters. The sample connection pattern entry is shown in Form 11. 
C O N N E C T I O N P A T T E R N : 
严 

Forward i»iopagation, connect / for eveiy neu in the layer from every Out of every neu in the prev layer 
*/ 

严 * 

* */ 

{{ ®Neu[x+l][w].I[y] = Neu[x][y],out; 
y:l.J>atSize/(2A(x-l)); w : l..PatSize/(2^x) } 

X: l..NumO£Layer-l } 
Badcward propagation, connect WI & Deltal for eveiy neu in the layer jfrwn eveiy Delta (error 
conection signals generated by eveiy neurwi) in the next layer 
{{ ®Neu[x][w].WI[y] = Neu[x+l][y].W[w]; 

®Neu[x][w].DeltaI(y] = Neu[x+l]Iy].Delta; 
w : l.J>atSize/(2 A(x-1));y: lJPatSize/(2Ax)) } 

X: l.J^umOflLayer-l } 
Connect input/ of 1st Xayet to iiqMit source (fnpui-Pattem) defined in Control Neuion (C/V) 

e 
{ Neu[l][x].I = CN.Input-Pattem[x]; 

X: LJPatSize } 
Connect iiqxit Teach of last layer to i i ^ source (Teach) deHned in Control Neuron (C/V) 
{ Neu[NumC)£Layer][x].Teach = CN.Teadi[x]; 

X: l..PatSi2e / ( 2 ̂  ( NumQfLayer-1) ) } 

{ CN.Output-Pattem[x] = Neu[NumO£Layer][x].Out; 
L.PatSize / ( 2 八(NumQfLayer - 1 ) ) 

Foim 11. Example Connection Pattern Entry 

OExplanation of the First 3 Equations. The first equation states that the output Out from every neuron 
in layers except the last one should be sent to the input I of the neurons in the succeeding layers. The x is 
the layer of the neuron for receiving the output, w is the position of the input neuron and ；y is the position 
of the output neuron in the layer. 

The next two equations are about the communication for the error correction signal Deltal and the 
weights WI of the neurons. The first of them states that the internal weight W of neurons in succeeding 
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layer is the signal source of WI of the preceding layer. The second equation declares that the error 
correction signal Delta of the succeeding layer neurons is the signal source of Deltal of the preceding 
layer neurons. The 2 equations are declared together because the index variables used are the same. 

©Use of Special Name : CN. The last three equations for connection have a special name CN that is not 
defined elsewhere. This is the initials of the name control neuron. The first equation among them refers 
to the input pattern to the first layer, which is known as Input-Pattern in the control neuron. The second 
one state that the teaching input for the oulput layer is equal to the value of the variable known as Teach 
in CN. And the last equation declares that the output from the last layer is accepted by CN as Output-
Pattern. 

4 . 4 . 2 . CHARACTERISTICS OF THE SYNTAX 
P O S T F I X I N D E X F O P M A T 

The postfix format used in index variable declarations allows a user to focus on the important 
specification before considering the indices. For example, in connection pattern entry, the connection 
among the parameters of the neurons is ^)ecified first before the indices are considered. This clear 
arrangement helps the designers in locating the connection information, instead of index computations. 
C O M P I L A T I O N C O N S T A N T S 

Index variables are determined at compilation time, not in execution time. This is because all the 
information supplied by the user should be tested before execution. The configuration therefore cannot 
depend on some values that can be detOTiined only in execution period. 
D A T A F L O W S P E C I F I C A T I O N A P P R O A C H 

The connection pattern is also defined with dataflow specification methodolo^. This can support a 
uniform and simple notation for all levels of description, which will reduce the chance of making errors OT 
getting troubles. Moreover, data dependencies analysis in specification analysis can easily incorporate the 
information from the configuration. 

33 



4 . 5 . C O N T R O L N E U R O N S P E C I F I C A T I O N 

G L O B A L I N P U T : 
Output-Pattern [ l..PatSi2e/(2'̂ (NumO£Layer-1))】 

RANGE (0,1) INCLUSIVE CONTINUOUS 

*** C O N T R O L N E U R O N *** 
I* Input toCN = output from network •/ 

O B A L O U T P U T : 
-Pattern [ l..PatSize J BINARY; t* Output from CN = input to network •/ 

I* Teaching signal to last layer •/ 
G L O B A L P A R A M E T E R : 

(Iteration, Cuir-Pattem) INTEGRAL; 

G L O B A L I N I T I A L V A L U E : 
lteration[0] = 1; Curr-Pattem[0] = 1； 

e 

I N P U T F I L E : 
(Training, Recalling ) { /» Hies arc applicable to both phases •/ 

FILE 'INPAT.DAT, RECORD Inpat�1..5 �BINARY, /»input pattern */ 
Teach [ 1..0utSize ] RANGE (0,1) INCLUSIVE CONTINUOUS, 严 teaching signal •/ 
Inpat-Control INTEGRAL; ); j* control signal */ 

O U T P U T F I L E : 
(Training, Recalling ) { /* Hies are applicable to both phases »/ 

FILE 'OUTPAT.DAT, RECORD Outpat [ 1..5 ] BINARY; }; output pattern */ 
G L O B A L F U N C T I O N : 
产 

Number of iteration for cunent pattern, from 1 to Max&er in Training j ^ s e , always 1 in Recalling jiiase 
Iteiation[T+l]= 

IF Phasem = Recalling THEN 1 
ELSE IF Iterationm = Maxlter THEN 1 
ELSE Iterationm + 1; 

*/ 

*/ 

*/ 

Ciirr-Pattem[T+l] = /•the current pattern number •/ 
IF Iteration[T+l] = 1 THEN Curr-Pattem[T] + 1 
ELSE Curr-Pattem[T|; 

M ^ iiqxit pattern from flle (Inpat) to input pattern of the networic Qnput-Pattern) 
Iiqjut-PattemIT] = Inpat[ CURR-PATrERN[T]]; 

Oulpat[ Curr-Pattemm � = 
IF Iteration(T] = 1 THEN Output-Pattem[Tl; 

Phase transition control, depending on the control signal from file {Inpat-Control) 
Phasem = 

IF Inpat-ContioU Curr-Pattem[Tl ] = 2 THEN Terminate 
ELSE IF Inpat-Control[ Curr-PattemlTl � = 1 THEN Recalling 
ELSE Training; Forni 12. Example Foim for Control Neuron of the BP-Net 



Although the BP-Net paradigm mentions nothing about the environment, it is reasonable to regard it 
being in a specific environment. The control neuron form is used to specify the environment and 
operation controls for the network. The sample control neuron form of the example BP-Net is given in 
Form 12. 

4 . 5 . 1 . FORM ENTRIES 
This form is very similar to that of formal neuron. This is not surprising as the control neuron is 
considered as a specific neuron (or a group of neurons) responsible for controlling the global functioning 
of the netwoik under consideration. The main difference is the presence of environmental (input and 
output file entries) declarations and the absence of operation phases in the global function entry. 
4.5.1.1. Global Input, Output, Parameter & Initial Value Entries 

These four entries use identical notations as their counterparts in formal neuron forms. The example 
entries are shown in Form 13. 
G L O B A L I N P U T : /»Input to CN = output from netwoik »/ 

"Output-Pattern [ l.J>alSize/(2'^(NumOfUyer-l))] � 
RANGE (0,1) INCLUSIVE CONTINUOUS; 

G L O B A L O U T P U T : /» Output from CN = input to netwoik »/ 
® Input-Pattern [ l.PatSize] BINARY; 
®Teach; /» Teaching signal to last layer •/ 

G L O B A L P A R A M E T E R : 
® (Iteration, Cuir-Pattem) INTEGRAL; 

G L O B A L I N I T I A L V A L U E : 
lteration[0] = 1; Cuir-Pattein[0] = 1; 

Fonn 13. Exanq>le Entiy for Global Input, Output, Parameto- & Initial Value 

OInput/Output Parameters. From the specification, there is one input parameter known as Output-
Pattern. The name of the parameter may be confusing as this parameter is the input to the control neuron 
but the output from the network. The control neuron receives the output patterns from the last layer and 
transforms them into the streams of data to the environment. It should therefore matches with the 
property of the parameter Out from the output layer. 

There are two output signals from the control neuron. The first one is Input-Pattern, which is the input 
pattern feeding into the input layer. It shares the same property as the / of the input layer. 

OParameter without Properties. Another output parameter is Teach. Teach is a parameter without 
associated properties. This is because its property is defined in the input file entry. Teach is just a 
dummy name indicating the part of the record that is responsible for carrying the teaching input. It is nec-
essary to include it in the output list to explicitly state which part of the file record is used as output 
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directly. The use of dummy names to represent the input or output records is the only allowable case of 
names without properties in parameter declaration entries. 

eClobal Counters. There are two global parameters, Iteration and Curr-Pattern. Both of them serve as 
counters. Curr-Pattern indicates the current pattern from among the input records, and Iteration indicates 
how many times this pattern has been fed into the system. They are both initialized to 1 before the system 
starts. Their operations will be explained in the section on Global Function entries. 

4.5.1.2, Input & Output File Entries 

The input and output file entries are responsible for interfacing the network with the environment. 
DiffCTent files may be used for different operation phases, so the files used should be under the scope of 
the corresponding operation phases. The sample input file and output file entries are shown in Form 14. 

N P U T F I L E : -
( T i a i ^ g , Recalling ) { /* Files arc applicable to both phases •/ 

"FILE •INPAT.DAT, RECORD Inpat [ 1..5 �BINARY, 产 inputpattem »/ 
Teach [ L.OutSize �RANGE (0.1) INCLUSIVE CONTINUOUS. 产 teaching signal */ 
Inpat-Control INTEGRAL; ); control signal •/ 

U T P U T F I L E : 
(Training. Recalling ) { /* Hies arc applicable to both phases •/ FILE •OUTPAT.DAT , RECORD Outpat [ 1..S ] BINARY; ); /* output pattern*/ 

Foim 14. Example Lipiit and Output Kle &itries 

OFile & Record Structures. Every declaration in the input and output file 邸tdes is separated into two 
parts. The first part starts with the key word FILE and declares the name (tf the file to be used. The 
second part starts with the key word RECORD and specifies the compon^ts of every record. Every 
component is addressed by a name and a property description with the same notations as those of other 
parameter declarations. 

In the example, the input file entry declares the same file to be used throughout the two phases. The 
name of the file is INPATJDAT and the records contain three parts, one is the input pattern Inpat, the 
other is the teacher's input Teach’ and the final one is Inpat-Control for controlling the operation phase of 
the system. The ou中ut file name is OUTPATDAT and the records Outpat. Outpat has the same format 
as Output-Pattern. 

4.5.1.3, Global Function Entry 

The global function entry is the main control of the behavior of the control neuron and hence the whole 
system. It is declared in a similar notation as the internal function entry in the formal neuron form, 
except in dealing with file records. The example global function entry for the sample BP-Net is extracted 
and shown in Form 15. 
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V 

L O B A L F U N C T I O N : 
Number of iteration for current pattern, from 1 to Maxlter in Training phase, always 1 in Recalling phase 

®ItcratiOT(T+ll = 
I F � P h a s e m = Recalling THEN 1 
e l s e if Iterauon[T] = Maxlter THEN 1 
ELSE Iterationm + 1； 

*/ 

*/ 

Current pattern to use, depending on whether the Maxlter iterations has passed or not 
�Curr-Pat tem�T+l�= /*the current pattern number »/ 

IF Iteration[T+l] = 1 THEN CuTr-Paltem[T] + 1 
ELSE Cuir-PattemlTl; 

M ^ input pattern from file (Inpat) to input pattern of the networic {Input-Pattern) 
Input-Pattem[T] = ®Inpat[ CURR-PATTERNm � ; ® 
M ^ pattern from output of network {Output-Pattern) to output file pattern {Output), kept only last. 
for the same input pattern (i.e. with the Iteration number of times) o 
Outpat®[ Curr-Pattemm J = 

IF Iterationrr] = 1 THEN C)uiput-Pattem[T]；® 

Phase transition control, depending on the control signal from file (Jfipat-Control) 
Phasem® = 

IF Inpat-ControU Curr-Pattemm � = 2 Tl 
ELSE IF Inpat-Control[ Curr-Pattemm � 

ELSE Training; 
2THENTeiimnate 

1 THEN Recalling 
Fbnn 15. Example Global Function Entry for the BP-Net 

OThe Pre-Deflned Parameter : Phase. The first equation specifies 
the bdiavior of a parameter Phase that is not defined by the users. 
This is a system-defined parameter les^nsible for indicating the 
current operation phase. Assigning different values into Phase will 
change the operation phases. 

There are three possible operation phase values in the example. The 
first one is Terminate that is the special phase value signalling the 
system to stop operations. The other two phase values are Training 
and Recalling. 

^Characteristic of File Records. The phase transition depends on 
Inpat-Control which is part of the input record. Note that Inpat-
Control is declared as a single integral variable but it is used as an 
array in the equation. This is because all files are assumed to contain a 
number of records, so every component of the record part is an array of 6. Behavior of Global Counters 
that name. 
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In addition, the index for the array is not the temporal index T but another parameter Curr^Pattern. This 
means that Inpat-Control is not a time dimension array and it can be addressed by any other integral 
parameters，not just the temporal index T. The parameter Cwr^Pattern indicates the current pattern 
under consideration. The behavior of Curr-Pattern makes it possible for the same record to be referenced 
for more than one time throughout the processes. Hence it is not necessary for users to prepare one record 
for every iteration. 

OPhase Transition. The meaning of the equation for Phase is now clarified. It depends on the value of 
Inpat-Control and Curr-Pattern, As Curr-Pattern changes, it is possible to address any specific record 
inside the file. The Inpat-Control component of the record under consideration determines the operation 
phase the system is in. This demonstrates how users can control the operation phase through values in 
input file. In the Boltzmann example in Appendix IV’ the transition is ^lely determined by the global 
counters. 

OBehavior of the System Counters. The equations for the other two parameters {Curr-Pattern, 
Iteration) are straight forward. They are used as global counters, and their behavior can be summarized 
by Figure 6. In imperative language, the Curr-Pattern will be a counter of an outer loop, and Iteration 
will be that of an inner loop. The inner loop counter determines its own updating speed and periodically 
reset itself to some initial value. The outer counter depends on the behavior of the inner counter within its 
scope to detCTmine the updating. The behavior of the counters in Training phase, when expressed in C, 
will be like: 

for (CuiT_Pattem=l; ； CuiT_Pattem++) 
for (Iteration: 1; Iteration <= Maxlter; Iteration++) ‘ { 

/* updating and assignments of the paramet^s •/ 
} 

The expression for Iteration says that in the Training phase. Iteration will start from 1 until the constant 
value Maxlter and then value 1 in the recalling phase. This controls that every training pattern will be 
fed into the network for Maxlter times before switching to the next pattern. On the other hand. Iteration 
will be kept 1 forever in the Recalling phase. 

Curr-Pattern depends on Iteration. Every time when Iteration is reset to the value of Curr-Pattern is 
incremented by 1. In both phases. Iteration is reset to 1 when the required number of iterations has 
passed, and a new pattern should be used for training or recalling. Hence the value of Curr-Pattem will 
be increased by 1 to address the next record. 
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OCommunication with the Environment. The equation on Input-Pattern says that the input to the first 
layer of the network is the Inpat part of the current record. The same input to the first layer is maintained 
for Maxlter iterations in training phase, and 1 iteration in the recalling phase, as Curr-Pattern changes 
only when the required number of iterations has passed. 

The Outpat field of the current record is equal to the Output-Pattern from the last layer for many 
iterations. This violates the single-valued variable constraint as the value of Output-Pattern changes in 
every iteration but its value is passed to the Outpat field of the SAME record for a number of iterations. 

Outpat is not restricted to be single-valued because it is not reasonable for the output file to keep all the 
intermediate outputs from the network. Only the result for the final iteration may be of interest to us. It is 
therefore better to "overwrite" the old values of Outpat by the new and subsequently the final value. 

In addition, the records of the output files are sinks in communication (i.e., no other parameter references 
them). They will not involve in cyclic dependency. It is therefore possible to relax the single-valued 
variable constraint for the output file records. 

As a result, the only cases allowed for using parameters as indices to arrays are in the file records. But the 
values of these indices are determined at execution time and very difficult to be analyzed in a static 
manner. The designers are hence responsible for making sure that the correct number of records* are 
generated 
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5 . D A T A D E P E N D E N C Y A N A L Y S I S 

Specification analysis involves a) data dependency analysis for locating cyclic dependency and b) 
attribute analysis for locating specification errors other than the cyclic dependency problem. Parameters 
are described to be in cyclic dependency if they depend on one another in a circular manner and therefore 
cannot be properly evaluated. This section is to discuss the mechanism for locating this problem. Figure 
7 illustrates an overview of the data dependency analysis. It consists of three steps: (i) dependency graph 
construction^ (ii) dependency 
cycle detection and (iii) 
dependency cycle analysis. 

Three kinds of data dependency 
graphs can be constructed from 
a given specification. Internal 
dependency graphs (IDGs) of 
neuron types show the de-
pendency among the parameters 
within one neuron type. 
Internal dependency graph of 
the control neuron (CnlDG) is 
similar to the IDGs of the 
formal neurons as a control 
neuron is merely a special 
neuron. Global dependency 
graphs (GDGs) indicate the 
overall dq)endency relationship 
among the input/output parameters of different neurons in the network. 

Figure 7. Overview of Data Dependency Analysis 

An exhaustive graph traverse through the global dependency graphs will be performed to extract all 
cycles in the graphs. A cycle in a dependency graph implies that the evaluation of parameters is 
dependent on each other, which is a necessary condition for cyclic dependency. Whether or not there is a 
cyclic dependency depends on the relative instance of the parameter being involved, and this is checked by 
the cycle analysis. 

The presence of a massive number of cycles requires automatic dependency analysis. Dependency cycle 
analysis determines whether there is a proper order to evaluate the parameters by considering the 
temporal relationship among the parameters in the cycles. The temporal relationship can be obtained by 
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considering specific instances of the parameters. If these parameters are referenced at the same instance, 
they are mutually dependent on one another and cannot be properly evaluated. Otherwise, the equations 
associated with the evaluations of the parameters can be scheduled properly for execution. 

The above three steps will be discussed in details in the coming sections. The BP-Net is used as the 
primary example for illustration. A summary of the results for the Boltzmann machine and Perceptron is 
also given where appropriate. 

5 . 1 , G R A P H C O N S T R U C T I O N 
5 . 1 . 1 . SIMPLIFICATION AND NORMALIZATION 
Before constructing the dependency graphs, the equations in the internal and global function entries are 
simplified to high light the dependency relationship: The temporal indices are also normalized to 
standardize the temporal offsets. 

5.1.1.1. Removing Non-Essential Information 

For each equation in the ^)escification forms’ the operators, functions and constants are deleted, as they do 
not affect the dependency relations. The equal sign "=" is replaced with an arrow "<-". to highlight the 
dependency among the parameters. For example, the internal function 

A m = I[T] * TRANSPOSE( W[T] ) + Theta 

is replaced by 

A m <- i m，w m . 

In case of conditional dependency checkings such as 

Curr-Pattem|T+l] = IF Phase[T]=Recalling THEN CuiT-Pattem[T]+l, 

the resultant expression will include not just Curr-Pattern[T] at the right hand side but also Phase[T] as 
the evaluation of Curr-Pattern[T+l] depends on it. The resultant expression is therefore 

Curr-Pattem[T+l] <- Phase[T], Ciirr-Pattem[T]. 

The parameter on the left hand side of the arrow is called the depending parameter and the parameters on 
the right hand side are called the determining parameters. 
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5.1.1.2. Removing File Record Parameters 

FUe record parameters will not be involved in dependency cycles and can therefore be ignored in the 
dependency graphs. File record parameters are those parameters used to address the record fields in input 
and output files. The input file record parameters cannot be updated and the output one cannot be 
referenced. Thus intuitively, they will not be involved in a cycle waiting state and removed from the 
expression to further simplify the expressions. 

When a file record parameter is a depending parameter (i.e. an output file), the whole expression can be 
ignored because no dependency edge (see section 5.1.2.) can be constructed when the depending 
parameter is removed. 

When a file record parameter is a determining parameter (i.e. an input file), the file record parameters 
may be ignored but the record reference parameters cannot. A record reference parameter is the 
parameter used to select a record within the file. Consider the example 

Input-Pattem[T] = Inpat[ Curr-Pattem[T]]， 

which is an equation in the control neuron of the BP-Net. Input-Pattern is an internal parameter, Inpat is 
a file record parameter and Curr-Pattern is the corresponding record reference parameter, which is also 
an internal parameter. The evaluation of Input-Pattern is depending on the evaluation of Curr-Pattern, so 
the dependency expression should be 

Input-PattCTiiIT] <- Curr-Pattem|T] 

by removing the file record parameter. 
5.1.1.3. Rearranging Temporal offset 

The objective of normalization is to remove the temporal offset of the depending parameters. The 
simplified expression for any equation is 

YU+Offset] <- X1[T1], X2[T2], X3[T3],…’ Xn[Tn]. 

To normalize the expression means that the analyzer will subtract Offset of the depending parameters 
from all Ti's, the temporal indices of the determining parameters. 

Form 16 shows the simplified and normalized expression of the internal function entry for our example 
BPHidden neuron. 
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A[T]<--I[T],WM; 
Out[T] < - A[T]； 
Training { 

Delta[T] < - Out[T], DeltaI[T], W[T]； 
DeltaW[T] < - Delta[T], Out[T], DeltaW[T-l]; 
W[T] < - W[T-1], DeltaW[T-l]; }; 

Recalling { 
Delta[T] < - 0; 
DeltaW[T] < - 0; 
W[T] <--W[T-13; }； 

Form 16. Normalized Expression for Hidden Unit of a BP-Net 
5.1.1.4. Conservation of Temporal Relationship 

The normalization process will not change the meaning of the dependency equations as the temporal 
indices of the determining and depending parameters are just relative references. For example, the index 
T+1 in equation 6 of the original form for BPHidden means that the depending parameter W is evaluated 
1 time interval after the evaluation of the determining parameters. Hence equation 6 of Form 16 gives the 
same temporal relationsh^ as before. 

5.1. L5. Zero/Negative Offset for Determining Parameters 

It is obvious that the resultant temporal offsets for the determining parametCTs should be zero or negative 
in value, otherwise the depending parameters are referring to a future instance of the determining 
parameter, which is impossible. Any violation of this restriction can be detected easily during the 
normalization process. 

5 . 1 . 2 . I N T E R N A L D E P E N D E N C Y G R A P H S ( I D G S ) 
The construction of internal dependency graphs (IDGs) is based on the information from formal neuron 
specification forms. The IDGs of the neurons are different for every neuron type and operation phase. The 
number of IDGs is equal to the number of neuron types times the number of operation phases. 

Figures 8 (a) to (e) show the IDGs of the sample BP-NeL The parameters are represented by nodes, and 
the dependency relations by edges. The construction process is to insert an edge pointing from every 
determining parameter in every equation to each corresponding dependent parameter. 

All the edges are labelled with the temporal offset of the determining parameter. The temporal offset of 
the depending parameter need not be recorded as it is always 0. 

If the parameter has indices other than the temporal one, these indices are also attached as labels. The 
complete algorithm for the construction of the IDGs can be found in Appendix II. 
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Figure 8. IDGs for the Example BP-Net 
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Only those parameters being referenced by one or more equations are included. In Figure 8 (d) and (e), 
for example, the input parameters Deltal and WI are not shown as they arc not referenced in the recalling 
phase. 

In addition, parameters that depend on constant values only are not included as they will not involve in 
cycles. For example. Delta and DeltaW are not shown in Figure 8 (d) and (e). 
5 . 1 . 3 . I D G OF C O N T R O L N E U R O N ( C N I D G ) 
The internal dependency graph of control neuron (CnlDG) is constructed 
from the information in control neuron specification form. The control 
neuron does not have operation phases and hence it is not necessary to 
use different graphs for different phases. The number of CnlDG is 
always 1 for every network. 

The same mechanism for building an internal dependency graph (IDG) of 
formal neuron is applied here. The resultant CnlDG for the sample BP-
Net is shown in Figure 9. Figure 9. CnlDG of BP-NeL 

The dependency graph in Figure 9 is pretty simple as a number of paramet^s are removed. First of all, 
the file record parameters Inpat, Inpat-Control, Teach and Outpat are deleted. The input parameter 
Output-Pattern that determines Outpat only is also ignored, as it is now related to none of the parameters. 
Hence just four parameters are left. 

5 . 1 . G L O B A L D E P E N D E N C Y G R A P H S ( G D G S ) 
The dq)^dency among neurons is extracted from the configuration specification form, together with the 
nXjs and CnlDG. As different IDGs are used for different phases，the number of GDGs for a network is 
equal to the number of operation phases. 

The global dependency graphs for the BP-Net are given in Figures 10 and 11. The GDGs are complicated 
as they involve a large number of neurons and many parameters. The solid rectangles are the neuron 
boundaries ~ the gr^hs within them are the IDGs of the specific neurons. The broken arrows are the 
dependency relations among the parameters of different neurons. 

These two graphs just take one neuron from each layer, and other neurons are not required. This is 
achieved by the approach discussed in section 5.4, which makes use of the symmetric property of the 
network to include just representative neurons in the graph. Without this approach, the graph constructed 
will be extremely complicated and cannot be analyzed. 
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Figure 10. Global Dependency Graph for BP-Net in Recalling 

The global parameter Phase is heavily connected to other parameters. In the specification forms, the 
internal parameters of the formal neurons are not dependent on Phase of the control neuron. In the 
graphs, however, they are. This dependency is introduced by the system automatically for all parameters 
which function differently in various phases. 

46 



1st Layer Neuron Control Neuron 
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Figure 12. Cycles in Global Dependency Graphs for Training Phase 

Each cycle is illustrated in parameter names with numbers, and some arrows with or without labels. The 
number associated with the parameter indicates the layer the number is in. For example, a,l at the 
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. 2 . C Y C L E D E T E C T I O N 

Once the global dependency graphs (GDGs) are constructed, cycle detection may be pCTformed. In 
addition to the resultant cycles of the sample BP-Net, the cycles of two other networks, a Boltzmann 
machine and a Perceptron, are shown for comparison. The number and length of cycles for the BP-Net 
under different conditions will also be discussed. 

5 . 2 . 1 B P - N E T 
There are 101 cycles for Training phase, and 8 cycles for Recalling phase in the BP-Net example. The 
difference in numbo* of cycles for the different phases can be predicted by the complexity of the two global 
dependency graphs in the previous section. Part of the result is shown in Figure 12，in which all 
parameter names are shown in lower cases. * 

cycles for Back Propagation Netwoik in file bp.dat 
—-For Operation Hiase 1 

2. 

cuiT-patteni«0 
cuiT-patteni,0 
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iteration/) 
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beginning of cycle 4 indicates that it is parameter A (i.e., activity) in the neuron of the first layer (the cases 
are immaterial). A value 0 associated with the parameter indicates that the parameter is in the control 
neuron. 

When the arrows are not labeled, there is no temporal offset on the determining side. If the arrows are 
labeled, like that between deltaw and w of cycle 4, a temporal offset -1 is in the dependency relation. 

Hence expression 4 in the figure shows that internal parameter a is determining ou中ut parameter out of 
the same instance, which in turn determines internal parameter delta of the same instance, and then 
^fe/tow also of the same instance. Deltaw determines the value of w that is one instance after, and which 
will determine parameter a of the same instance. These parameters are all of the neuron in the first layer. 

Some o乡the cycles are very short, i.e. involving very few or just one parameter(s), like the second and the 
last cycles. On the other hand, some as if the 40-th cycle is long. The longest one involves 33 parameters 
of neurons in different layers. 

5 . 2 . 2 . OTHER EXAMPLES 
The dependency cycles detected from the specifications of the Perceptron and Boltzmann machines are 
discussed in this section. They are given here to illustrate the great variations in number and length of 
cycles obtained firom different networks. Moreover, these examples can be used to show that the massive 
number of cycles is not a particular feature of BP-Net but rather a general phenomenon found in different 
networks. 

The full cycle list for Perceptron is shown as the list is short. On the other hand, only part of the cycle list 
for the Boltzmann machine is shown. The complete specification forms for these two networks can be 
found in Appendix IV. 
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5.2.2.1. The Perceptron 

Cydei for Perceptron in file peicep.dat »»»•»•»» 
For Operadm Phase 1 

oiir-pattem^O -(-!)-> phase,� -(婚> cuir-pattem,0 
cuiT-pattem,0 -(-!)-> cuiT-pattem,0 
iteration,0 -(-!)-> iteration,� 

—> out.1 —> e.l -(-!)-> w,l —> a j 
w,l -(-!)-> w,l 

For Operation Phase 2 
coir-pattenM) -(-!)-> phase,0 -(-l,0)-> curr-pattem,0 
cair-pattan,0 -(-!)-> cuir-pattem^O 
iteration/) -(-!)-> iteration,� 
w,l -(-!)-> w,l 

Hieie are totally 9 cycles 
******> Hie maximum length of the <ycle is 4 
Figure 13. Cycle List for the Example Perceptron 

The example network is a single layer perception. The input pattern is 1024 Bi-state values known as 
predicates, and there are also 1024 neurons for learning these values. Evay neuron is connected to 1/4 of 
the inputs, with every neuron accepting input from a continuous pattern one position IOWCT than the 
previous one in a round-ribbon manner. 
C Y C L E S O B T A I N E D 

The cycle list f<x the Perceptron is shown in Figure 13. The number of cycles in this perception is 
significantly less than that of BP-Net. There are only 9 cycles, and all of them are intemal ones. 

The small number of cycles can be predicted from the GDG (in Appendix IV) in which there are only 
arrows pointing from the control neuron but not vice versa. Hence there will not be any cycles involving 
the control neuron. As there are only two types of neurons, control neuron and perceptron neurons, 
thore will not be any global cycles. With the same reason, the number of paramet^s involving in the 
cycles is also very small. 
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5.2.2.2. The Boltzmann Machine 

******** Cycles for Bohzmann Machine in file bohz.dat 
—-For Operation Phase 1 

5 

1. annealing,� 
2. annealing,� 

—> i4iase,0 -(-!)-> 
—> phase.O -(-!)-> 

iteration’� 
probe,0 

-(-i’o)-> —> aimealing.O 
iteratkm,0 --(婚> annealing,� 

——For Operation Phase 2 
24. annealing’� —> phase.O -(-!)-> iteration,� ~(-1.0)-> aimealing.O 

38. deltae,! -(-!)-> 
i.l —> out,l —> i’3 

deltae,! ——> ( deltae,3 -(-l)-> out,3 —> 

85. w,3 -(-!)-> 
e 

W.3 

——For Operation Hiase 6 

There are totally 172 cycles 
The maximum length of the cycle is 6 

Figure 14. Cycles List for the Example Boltzmann Machine 

This machine is the shifts example on p.299 of Parallel Distributed Processing, vol.1 [33]. It follows the 
example given in the text, in which the neurons are randomly probed for updating. This is a safe 
approach fOT ensuring that evoy neuron can see the most recent states of all the other units. The 
parallelism is, howeva:, sacrificed. If the system can tolerate time delays, it is just necessary to remove 
the control signals from the control neuron that is responsible for updating. 

The cycles obtained are shown in Figure 14. The number of cycles for Boltzmann is even larger than that 
of the BP-Net but the length of the cycles for the former is much shorter. 

The larger number of cycles in Boltzmann machine, despite the fact that is has only 3 layers, can be 
accounted by the reason that there are more cycles among the parameters inside the neurons than in the 
BP-Net (Appendix IV). Hence the vast number of cycles for Boltzmann is due to the number of internal 
cycles, while that for BP-Net is due to the larger number of layers that significantly increases the number 
of global cycles. 

On the other hand’ the cycles in Boltzmann machine are significantly shorter because the number of 
layers for the Boltzmann machine is smaller. In addition, the layers for Visible and Shifts neurons (see 
Appendix HI) are not connected together. Hence the longest cycle can extend only across two layers, 
excluding the control neuron，either from Visible to Hidden or from Shifts to Hidden and is therefore 
limited in length. 
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5 . 2 . 3 . N U M B E R OF C Y C L E S 
5.2.3.1. Different Number of Layers 

The number of neurons in a netwoilc does not affect the 
number of dependency cycles. The Perceptron network 
has the largest number of neurons but gets the smallest 
number of dependency cycles. This is because the 
networks have no connections within the layers. Thus 
the length of the cycles will not extend inside the layer, 
and therefore the number of neurons in the same layer 
will have no effect on this length. 

The number of layers is, howevCT, significant in 
determining the number of dependency cycles. Among 
the three examples given, only the BP-Net can be freely 
configured to include more layers. The chart in Figure Fig 15. Num of Cycles Vs. Layers (BP-Net) 
15 shows the number of cycles for the BP-Net with different number of layers. The first layer is formed by 
the BPInput neuron type and the last layCT is formed by the BPOut type. The other layers are all of 
BPHidden type. 

It can be observed that the number of cycles fo the BP-Net roughly doubles for each additional layer� 
When the difference between succeeding number of cycles for different number of layCTS is compared, the 
relation is concluded as 

N k = N k . i * 2 - ( 2 k - l ) 

where ^ is the number of l a y ^ , and Nj^ is the number of cycles in a netwoik with k layers. 
5.23.2. Different Network Types 

When BP-Net is leduced to 3 layers, the number of cycles 
between BP-Net and Boltzmaim machine can be compared. 
Table 8 compares the number of cycles for Boltzmann and 
BP-Net The comparison clearly shows that Boltzmann 
machine has significantly more cycles than BP-NeL 

No. of cycles || 
BP-Net 33 
Boltzmann 172 
Table 8. Comparing Boltzmann and BP-

Net 
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The difference is due to the vast number of internal cycles found in the formal and control neurons of 
Boltzmann machine. The greater number of parameters in Boltzmann machines also accounts for the 
greater number of cycles. 

5 . 2 . 4 . C Y C L E LENGTH 
The length of a cycle is again not affected by the number of neu-
rons. The Perceptron has the shortest cycle length among the 
networks yet it has the largest number of neurons. 
5.2.4.1. Different Number of Layers 

Figure 16 shows the length of the cycles against the number of 
layers in the BP-Net This result is a straight line because of the 
symmetric properties of the network. For every additional layer, 
the number of parameters is increased by a value that is the 
equal to maximum number of parameters of the neuron type 
possibly to be included in a cycle. 

5.2.4.2. Comparison Among Different Networks 

When comparing the BP-Net with Boltzmann machine 
(both in 3-layers configuration), the BP-Net is found to 
have longer cycle lengths (see Table 9). This is because (rf 
shorter path from the input to the output parameters in the 
Boltzmann machine. The shorter path results in smaller 
number of parameters being involved in the cycles. 
5 . 2 . 5 . D I F F I C U L T I E S IN A N A L Y S I S 
The massive number and great length of the dependency cycles found in the sample networks strongly 
support the need for an automatic mechanism for locating these cycles. This is particularly important for 
networks with a large number of layers. Taking the BP-Net as an example, the number of cycles increases 
exponentially with the number of layers, and the length of the cycles increases by a constant factor. This 
results in an exponential increment in the effort for locating all dq)endency cycles. Locating the cycles 
manually is impractical, if not impossible. 

Even with an automatic tool and a limited number of layers, the task is still time consuming. The 
algorithm, discussed in next section, for exploring all dependency cycles is an NP-completed one. This， 

Fig 16. Length of Cycles Vs. Number 
of Layers (BP-Net) 

Cycle Length 
1 BP-Net 19 
1 Boltzmann 6 

Table 9. Comparing Boltzmann and BP-
Net 
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together with the exponential increment in number of cycles and the linear increment in length, will 
consume a lot of computation resources. 

Nevertheless, the resource required in locating these dependency cycles is still less than that needed for 
the trial runs of the ANN under investigation. A practical approach in developing an ANN system is that 
the designer should prepare a network with the minimum number of layers, such as one for each neuron 
type，at first This network can be used for testing the correctness of the specification. After all checkings 
are performed, the designer can expand to the actual number of lay啦 required. This greatly reduces the 
time for data dependency analysis. 

At the end of next section, a more efficient algorithm fOT exploring the dependency cycles will be 
presented. That algorithm will combine the cycle detection and initial condition analysis to be described 
in the next section. 

5 . 3 . D E P E N D E N C Y C Y C L E A N A L Y S I S 
A cycle in a dependency graph indicates the parameters are dependent on each other. This may give the 
problem of cyclic dependency. If this problem does not occur, the specification analyzer can determine a 
proper order of evaluation for the parameters. A more elaborated discussion of the relationship between 
message deadlock and cyclic dependency is shown in Appendix HI. 

5 . 3 . 1 . T E M P O R A L I N D E X A N A L Y S I S 
In the discussion of normalization of temporal indices, it was shown that all temporal offsets on the 
depending paiametCTS are changed to zero, and the temporal offsets of the determining parameters should 
be zero or negative. The initial conditions in evaluating paiamet^s concern whether it is possible to 
evaluate the first instance of these parameters. If the first instance of all parameters can be evaluated, the 
subsequent evalualions are possible as the second instance of the parameters can make use of the result for 
first instance and so on. 

The first instance of a parameter can be evaluated provided that all the referenced instances of the 
determining paramet^s are already evaluated or given as initial values. In case of a dependency cycle, it 
is impossible to evaluate the first instance of any parameter in the cycle unless 1) there is at least one 
negative temporal offset of magnitude k>Q，so that at least one of the parameter instance being 
refoenced may be found in the given initial values; and 2) there are k initial values from instance -1 to -k 
for the corresponding parameter whose previous instance(s) are being referenced. 
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The design tool can walk through the d ^ d e n c y cycles and check if it can find any negative offset. If 
one is found, the evaluation may start from the depending parameter associated with the negative offset 
An example can be found in the fourth cycle in Figure 12，which is 

a，l ---> ouU —> delta,! —> deltaw,! —(l)--> w,l - -> a,l. 

Parameter W is depending on the previous instance of parameter DeltaW. Evaluating the first instance of 
w requires that deltaw should have one initial value, deltaw[0]. It is therefore necessary to check that all 
determining parameters P with negative offeets of magnitude k has the corresponding k initial values. In 
the example given above, DeltaW is assigned an initial value 0 for instance 0 in the Initial Values entry 
of the Formal Neuron form. 

5 . 3 . 2 . N O N - T E M P O R A L INDEX ANALYSIS "" 
When negative temporal offsets are not found, the parameters inside the cycle can still be properly 
evaluated if their indices are present and their ranges are consistent with each other. This will be 
illustrated by another simple example (as this case does not occur in the BP-Net example), and the 
analysis mechanism will be discussed for single and multiple parameter cases. 

5.3.2.1. A Single Example 

F O R M A L N E U R O N 
N E U R O N 

Neu; 
I N P U T : 
O U T P U T : 

Out INTEGRAL; 
I N T E R N A L P A R A M E T E R : 

(W[1..5], A[1..5], B[1..5], C[1..5]) INTEGRAL; 
I N I T I A L V A L U E : 

W[1 們=1; A[1 們=1; 
I N T E R N A L F U N C T I O N : 

W[x:2..5][T] = W[x-1][T]+1； 
Out[T] = W m • Transpose( W[T]); 
B[T\=A{T]+h 
A [ x : 2.5][T1 = B[y : L.4][T]； 

Form 17. Formal Neuron of a Imagined Network 

As none of the common examples given in Appendix HI requires the use of non-temporal indices in 
addressing individual elements of the parameters, an imagined formal neuron form shown in Form 17 is 
used for discussion. 
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This neuron is a very simple one. It has no input, one ou中ut Out and three internal parameters W, A and 
B. It always generates the same set of output, namely, the multiplication product of the matrix parameter 
W^ l , 2, 3,4，5) with its own transpose, giving an output of value 55 repeatedly. The other two internal 
parameters A and B do not involve in generating ou中ut. 

Consider the equation for parameter W in Form 17. The simplified expression is 

W[x:2..5][T]<-W[x-l][T] (5.1). 

It is obvious that after the cycle analysis, the parameter Ĥ  will be involved in at least one cycle of the form 

w，l —> w，l. 
o 

This cycle does not have negative temporal offset associated and is therefore rejected by the temporal 
index analysis discussed in previous section. 

W, however, can be evaluated properly. When the non-temporal index x iterates from 2 to 5, every T-th 
instance of the x-th element will depend on the already computed T-th instance of the (x-l)-th element. 
As the first element for evoy instance of Wis defined in the initial value entry, it is possible to evaluate 
W[2][T] as it dq)ends on W[1][T]. After that, W[3][T] can be evaluated as W[2][T] is computed. This 
process can be repeated until W[5][T] is computed. 
5.3.2.2. Single Parameter 
Two INDEXES 

Expression 5.1 is just a special case of the expression 

P[x: U..V] <- P[y: W.J5] (5.2), 

where P is any paiamet^, x and y are index variables, and “，v, w and z are integer constants. 

Checking the index boundaries can identify the errors in the specification. A summary of the errors is 
shown in Table 10. This table is constructed under the assumption that the number of values from M to v 
is already verified to be the same as that from wtoz. 

The first class of errors is multiple assignment. This indicates that some particular element will be 
assigned a value twice, or an element will be referenced before being assigned a value. Consider the 
following problematic case that is an example of the first row in Table 10， 
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Value of X 
Increase 

Value of y Multiple Assignment 
Increase u ^ w A N D V ：̂  w 

Decrease Decrease u ：̂  w A N D v ^ w 
Increase 

Decrease 

Decrease (1) u z A N D v ^ 
(2) u ：̂  w A N D v ^ w 

Increase (1) u ^ z A N D v：^ ̂  
(2) u ^ w A N D V ^ w 

Mutual Dependency 
SB^SS^BAR^SBBSBB^AS^SAABBA^B^B 

u = w 
u = w 
Multiple Assignment A N D 
(w-u) is even 
Multiple Assignment A N D 
(u-w) is even 

Table 10. Checkings For Expressions Involving Single Parameters Only 

W [ x : 2. .5] m < - W [ y : 3..6] [ T ] (5.3). 

W⑵ is assigned by WfSJ, and is WfSJ assigned by W[4] and so on. Either one of two problems may 

occur. The first one is that W[3J is not evaluated when it is being referenced by W[2]. The second 

problem is that if W[3] has been computed, possibly through some other expressions, it will be assigned 

another value from W[4] soon. This violates the requirement of single-valued variables in our 

specification approach. 

The second class of errors is mutual dependency. The first two conditions for mutual dependency arc 
straight forward. A parameter element cannot assign value to itself. The last two conditions deserve 
further discussion. Take the last row as an example. The value u-w is even means that there is an odd 
number of elements between u and w. In every iteration, the assignment will "consume" two elements, 
one from the head and one from the tail. At last, the middle element between u and w will assign to itself, 
and this is not allowed. 

MULTIPLE INDEXES 

Consider the expression of the form 

P[si ： I1..U1] <- P[S2 ： 12..U2], P[S3 :13..U3],…P[Sn : V.Un] (5.4) 
where P is the name of the parameter, j /s are index variables, l(S are the lower bounds, M/S are the upper 
bounds. The test of boundaries for Ij.mj with every pair k = 2, 3，…can be applied. I f all the 
tests give valid results, the expression is valid and else otherwise. 

5.3.2.3. Multiple Parameters 

Two PARAMETERS 

The next case is one in which there are two parameters in a cycle. The example specification in Form 17 

gives the following two expressions 
BIT] <- A m (5.5) 

A[x : 2..5][T] <- B[y : 1..4][T] (5.6) 

and A [ l ] is defined for every instance as 1. 
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One may suggest evaluating the parameters by the order AfJJ, B[l], A/2入 B[2],…Af5J, B[5]. which is 

proper and well-defined. This involves, however, the alternative evaluation of the expressions and 

5.6. As every equation is considered as a single unit to be evaluated, this is not allowed in the system. In 

other words, the depending parameter of an equation should be evaluated once for all by applying the 

equation. Hence expression 5.6 will be rejected. 

MULTIPLE PARAMKTF.RS 

The two parameter case given above can be generalized to multiple parameter cases. For a cycle 

involving more than one parameter, the index range of the incoming edges of every parameter should not 

overlap with the index range of the outgoing edges. Otherwise, there will be a mutual dependency 

relationship for the overlapped elements of the parameter. 

To get around the problem just mentioned, it is possible for the users to rearrange the equations or break 
down the equations for ev^y individual element. For the given equations for parameters A and B, here is 
a better substitute :-

B[T] = A[T]+1 (5.7) 
A[x : 2..5]m = A[y : 1..4][T] + 1 (5.8). 

5 . 3 . 3 . COMBINED METHOD 
The dependency cycle detection and cycle analysis can be combined to reduce the time required for 

computation. During the normalization process, all the offsets associated with the determining pa-

rameters are already checked to be negative. In addition, the corresponding number of initial values are 

also guaranteed. Under these assumptions, the only problematic case is that there is no offset at all 

thioughout the whole cycle. The cycle is problem free whenever an offset is found. 

Graphs are therefore traversed as long as no offset is found. Whenever an offeet is found, the search will 

stop. This combination ctf cycle sum test with cycle detection reduces the number of different paths to be 

explored for every parameter and hence significantly reduces the computation. In the BP-Net example, 

the computation time is reduced by about 90%. 

5 . 3 . 4 . SCHEDULING 
When all cycles are accepted by the cycle analysis, the equations defining the parameters can be scheduled 

for a proper order of evaluation. The scheduling is automatically performed by the analysis tool and free 

users from concerning this task. The analysis is based on the intemal dependency graphs of the neuron 

types (IDGs) and the control neuron (CnlDG). It seems unnecessary for one to care about this problem, as 
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the equations are very simple and small in number. This is not always true, as one may refer to the ex-
ample on control neuron of the Boltzmann machine given in Appendix IV. 

5.3.4.1. Algorithm 

With respect to every IDG, the system simulates the execution of the first iteration. It initializes the 

parameter instances defined in the specification. After that, the system tries to evaluate the instances of 

the parameters for the first time interval. It selects parameters randomly from the graph, locate its 

predecessors, and check whether they are available or not. If all the predecessors are available, the 

parameter can be evaluated and the corresponding expression can be inserted. If not, the system will try 

to evaluate the predecessors, which will involve evaluating the determining parameters of the 

predecessors. The input parameters are always assume to be available for all instances. As the cyclic 

dependencies have already been eliminated, the evaluatiqji attempt will ultimately find a parameter with 

all-available predecessors. 

5.3.4.2. Schedule for the BP-Net 

w m <-A m <-I[T].W[T] 
o u t m <- Am； 
Deltarn <- Outm, 
DdtaWm <- DeltaW[T-l]. 

W[T-l].DeltaW[T-l]; 
i m . w i 

i t a i m , w i m ; 
l tam,( ,Out[T]； 

w m 
A m OutTT] 

<-W[T-l]; 
< - i m , w m ; 
< - A m ; 

w m <-W[T-l�,DeltaW[T-l】； 
A m < - i m . w m ; 
O u t m <- Am； 
Delta[T] <- Oat[TI, DeltaI[T], Wim： 
DeltaWm <- DeltaW[T-l]. DeltaU], Outm； 

w r n 
A m 
OutTT] 

<-wrr.i]； 
< - i m , w m ; 
<-Am； 

w m <-W[T-lLDeltaW[T-l]; 
A m < - i m , w m ; 
Out[T] <- A[T1; 
DeltaHl <- Teachm, Out[T]; 
DeltaWrn <- DeltaW[T-l]. Delta[T]. Out[T]； 

w m 
A m Outm 
Iteration[T] 
Curr-Pattemm 
Phasem 
Input-Pattem[T] 
Outpat[T� 

<-W[T-ll; 
< - i m , w m ; 
< - A m ; 

/* Scheduling of BPHidden, Training Phase •/ 

I* Scheduling of BPHidden, Recalling Phase • / 

I* Scheduling of BPInput, Training Phase */ 

/» Scheduling of BPIiiput, Recalling Phase »/ 

/» Scheduling of BPOut, Training Phase */ 

<-Phase[T-l]. Iteration[T-l]; 
<-Iteration[Tl, Curr-Pattem[T-ll; 
<-Cuir-Patlem[T] 
<-CuiT-Patteni[T], Inpat; 
<-CuiT-Pattem[T], Iteration[T], Output-PattemPl; 

/• Scheduling of BPOut, Recalling Phase 

Scheduling for Control Neuron •/ 

Figure 17. Expression Evaluation Schedule for the Sample BP-Net 
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The scheduling of the evaluation of the parameters for different neuron types of different phases for the 

sample BP-Net is given in Figure 17. The construction of this evaluation sequence is an additional 
support for the correctness of the analysis. 

5 . 4 . S Y M M E T R Y IN G R A P H C O N S T R U C T I O N 

The number of processing units in a neural network can be very large. The limitation in memory and 

computation time makes it impossible to generate a complete graph to represent the ANN system under 

consideration. A complete graph will require that all the neurons and the connections among them are 

represented by nodes and edges respectively. But such a graph for representing a network with, say, ten-

thousand nodes and a million connections is impossible to be constructed, stored and analyzed. Even if 

such a graph can be constructed, the computation time required to analyze such a graph is not acceptable. 

It is therefore necessary to simplify the graphs or extract the most representative information from the 
graphs. A mechanism taking advantage of the symmetric properties of a configuration is employed, and 
simpler graphs can be generated. 

5 . 4 . 1 . B A S I C APPROACH 
The basic 冲proach is to include as/cw neurons in the GDG as possible. The algorithm for building GDG 

is to start with a minimal set of neurons with incomplete connections, and then try to connect all 

parameters not yet connected. In the process of making these connections, additional neurons may be 

included into the selected group, and hence there will be new demand for connections. The algorithm 

will stop when all parameters of all neurons in the selected group are connected to parameters of other 

neurons in the group. The neurons are the selected group are those used in building the GDG. 

To minimize the number of neurons to be included in the selected group, when the system wants to 

connect, say a parameter P of neuron A to parameter Q of another group of neurons i = l..k’ it will 

first check i f any Bj，j in i..^, can be found in the already selected group of neurons. If such a Bj is found, 

the system will use B j instead of introducing new neurons to the group. Only if such a B j cannot be found 

will a new B^ be included in the group. 

Moreover, whenever an array of elements is required for connection, just one (this is arbitrarily set to the 

one with the smallest index) is selected for connection. Others are ignored. Similarly, when a parameter, 

like Out in the sample BP-Net, is connected to a number of neurons, only one (also with the smallest 

index) is selected. For example, to make the connection for Out in neuron 1, layer 1 {Neu[l][l]), only 

neuron 1 of layer 2 (Neu[2][l]) is selected. Other neurons Neu[2][x], x <> 1, are ignored. 
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The algorithm can be viewed as a demand-driven algorithm. Every neuron has a need for connections. In 

making these connections, the system will only introduce a new neuron when there is a need. This 

introduction of new neurons will in turn introduce other connection needs that should be satisfied. The 

algorithm will be repeated until all the connection needs are satisfied. 

The algorithm functions properly with symmetric intra-layer connection network, i.e. whenever a 

parameter P of neuron Aj is connected to parameter Q neuron Aj within the same layer, parameter P of 

neuron A j should also be connected to parameter Q neuron A/. The case without intra-layer connection is 

also a special case of symmetric intra-layer connection. 

In addition, every parameter is used for one purpose only, i.e., every element of the parameter is connected 

to the same parameter «f other neurons. If a parameter P is connected to a parameter Q, P should not be 

connected to any other parameter R where R <> Q. This is called homogeneous connection. 

Taking advantage of the symmetric intra-layer and homogeneous connection properties, the GDGs can be 
constructed with just one or two neurons from each layer. 

5 . 4 . 2 . CONSTRUCTION OF THE B P - N E T G D G 
The algorithm can be demonstrated with the BP-Net example for the training phase. For the sake of 

clarity, the global dependency graph in Figure 11 is simplified to that in Figure 18，in which the internal 

dq)endency graphs and the dependency on Phase ate omitted. 

The example BP-Net has symmetric connection in that 1) there is no intra-layer connection among the 

neurons, and 2) the parameters of every neuron type is used fOT one purpose only. The use of single-

purpose paramet^s implies that it is possible to investigate the network without considering all 

connections of all elements of a single parameter. Instead of considering the whole array of parameters 

like I’ just a representative, say, I [ l ] is extracted and connected. The absence of intra-layer connection 

implies that only one neuron from every layer will be introduced, as the connections required for any 

neuron will not demand the introduction of a neuron in the same layer. 

Initially, there are only the control neuron CN in UList (the Un-connected List), the list of neurons with 

incomplete connections, and in G, the list of identified neurons. The CnlDG indicates that it has two 

output parameters, Input-Pattern and the phase parameter. Phase. Assume that the system tries first to 

connect Phase to other neurons. It will discover that it cannot find an explicit connection for it. This is 

because Phase is implicitly connected to all the neurons with parameters functioning differently in various 

phases. This special parameter will be put aside and handled later. 
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2nd Layer 

( W I ( I . 

Figure 18. Simplified Global Dq)endency Graph for BP-Net, Training Phase 

The system will then connect Input-Pattern to other neurons. Through the information in the connection 

pattern entry, the system discovers that Input-Pattern should be connected to parameter I oiNeu[l][x]. 
As there is no neuron in the first layer in G, the system wil l try to introduce the smallest one among the 

possibilities, which is Neu[l][l]. CN is now fully connected and removed from UList. Neu[l][l] in 

UList wil l trigger another cycle. The IDG identified is of BPInput type and has three input parameters I’ 
WI and Deltal, and one output parameter Out. The system tries connecting these parameters. 

Parameter I is already connected. Now parameter WI[y] is tried. It is connected to W[w] of Neu[2][y]. 
Not any neuron with index 2 in the first dimension is found in G so a new one is generated. As the 

system has choices, it wil l connect WI[1J to W[l] ofNeu[2][l]. Neu[2][l] is then added to G and UList. 

Parameter Out is now being tried to connect to I[l] of Neu[2][w]. When the system search for G，it finds 

thatNeu[2J[lJ can satisfy the index value for Neu[2][w] by instantiating w to be 1. It will then connect 

Out to this neuron. Hence the system is stopped from using a new neuron by looking at the available one 
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first. The same will occur to parameter Delta, All the parameters of Neu[l][l] are connected and 
removed from UList. 

Neu[2][l] will be left in UList and trigger another cycle. The whole process is now repeated. 

Afterwards, another set of neurons will be left and so on. According to the connection pattern and 

internal dependency graphs, Neu[2][l] will introduce Neu[3J[l] into UList. Neu[3][l] will in turn 

introduce Neu[4][l] and Neu[4][lJ will introduce Neu[5J[lJ. The connections between these two 

neurons will make all parameters marked as connected and no other neurons are left in UList. The global 

connections are now the same as those shown in Figure 18. 

After that, the dependency on Phase will be handled again. From the specification on the formal neuron 
form, the parameters W, Delta and DeltaW of all neuron types function differently in various phases. So 
they all depend on the global phase parameter. Phase. Finally the dependency graph in Figure 11 can be 
obtained. 

5 . 4 . 3 . LIMITATION 
It is quite obvious that the algorithm cannot handle asymmetric connections within the layers. For 

example, if every neuron is connected to the neuron just below it and not vice versa, the demand for 

connecting, say, the first neuron in a layer will introduce the second neuron in the same layer. This 

second neuron will in turn introduce the third, which introduces the fourth and so on. All the neurons in 

the same layer will thus be gentoted. It seems that there is no good solution for handling this problem 

but, luckily, this configuration is rare in practical systems. 

Connecting just one element of an input/output parameter array can also be dangerous if homogeneous 
connection is not followed. For example, if the elements of DeltaW are used for different purposes and 

different connections, only one of them will be selected. The subsequent analysis depending on the graphs 

constructed will thus ignore the possible errors occurring in other connection cases. Homogeneous 

connection can be enforced by allowing only one connection expression for each input/output parameter. 
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6 . ATTRIBUTE ANALYS IS 

Attribute analysis is used to locate specification errors other than the cyclic dependency problem. The 

first group of tests，known as parameter analysis in this context, is still based on data dependency 

analysis. The second group of tests, known as constraint checking, is based on some other simple 
checkings including syntactic and semantic checkings, and simple matching among information from 

different entries. In this chapter, supplementary simple examples other than the BP-Net are used to 

illustrate the basic idea. The complete algorithms are shown in Appendix II. 

6 . 1 . P A R A M E T E R A N A L Y S I S 

Parameter analysis is to ensure that the parameters of itio formal neurons and control neuron are well-

defined. Well-defined means that the associations among the attributes of the parameters are consistent 

For example, an internal function for an input parameter is meaningless and should be removed. These 

types of checkings are straight forward but useful. 

F O R M A L N E U R O N * * * 
N E U R O N 

Redundant; 
I N P U T : 

A BINARY; 
O U T P U T ： 

(B,C,D) BINARY; 
I N T E R N A L P A R A M E T E R 

(E,F,G) BINARY; 
I N I T I A L V A L U E : 
I N T E R N A L F U N C T I O N : 

c m = A m ; 
B m = D m ; 
A[T] = B[T]; 
Phasel { 

F[T] = c m XOR D[T]； 
E[T]=F[T ] ; } 

Phase2 { 
F[T] = E[T-1]; 
E[T] = 0; } 

Form 18. A Form for Formal Neuron with Redundant Parameters 

As there is no attribute problem in the sample BP-Net, a supplementary example specification in Form 18 

is used to discuss the checking mechanism. It is not easy to determine whether there is any error 

associated with this form at this moment, but it will be shown later that some parameters can be removed. 
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Phase 1 Phase2 

6 . 1 . 1 . INTERNAL D E P E N D E N C Y GRAPHS ( I D G S ) 
The internal dependency graphs for formal neurons (IDGs) and the control neuron (CnlDG) mentioned 

before should be used for checking the properties of the parameters. These tests should be performed as 

soon as the IDGs are generated because any subsequent analysis assumes the correctness of the 
dependency graphs. 

6.1.1.1. Correct Properties of Parameters in IDGs 

Rule 1. All parameters in the graphs should be defined parameters. An error will be reported if violated. 

Users are requested to check the names used in the equations and parameter definitions. 

Rule 2. All input parameters in the graphs should not have incoming edges in the graphs, which is 

obvious as input parameters cannot be updated. An error wil l be reported if violated. Users are requested 

to modify the input property or change the associated equation. 

Rule 3. All parameters in the graphs, except the input ones, should have at least one incoming edge, as 

every parameter should be updated continuously. An error is reported if violated. Users are requested to 

change this parameter into a constant, add an equation for updating this parameter or delete this 

parameter. 

Rule 4. I f a parameter has more than one incoming edge, the indices of them should not be overlapped. 
Possessing more than one incoming edge for the paramet^s does not contradict with the single-valued 

variable requirement, as different equations may be used for updating different parts of the same anay. 

This wil l introduce more than one incoming edge to the same parameter but in such cases, the indices of 

the same parameter should be tested to guarantee that they are all different to avoid multiple assignments 

to the same element of an array. An error is reported is violated. Users are requested to check the indices 

of the parameters in the equations. 

6.1.1.2. Example 

The above possible errors can be demonstrated with Form 18. 

The intemal dependence graphs for both phasel and phase! of 

Form 18 are shown in Figure 19. The parameters are marked 

according to the convention in Figure 8. The following errors 

are identified in the graphs. 

There are no violations of rules 1 and 4, but 1) Input parameter 

A has incoming edge in the graph (rule 2); 2) Intemal Fig. 19. IDGs for different phases of 
Form 18 
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The tests on CIDG are also applicable to internal dependency graph of a 

control neuron (CnlDG). This is because there is no di f f^^ce between the 

internal dependency graphs and combined internal dependency graph for a 
control neuron, and they are both equal to CnlDG. Checkings unique to 

CnlDG are that the parameter Phase[T] should be defined in the equations 
and a pre-defined value Terminate should be assigned to Phase[T] under 
some conditions. 

6.1.2.1. Tests on Parameters of CIDG 
Fig. 21. CIDG of Form 18 

Rule 5. All parameters should appear in the CIDG. An error is reported if 

violated. Users are requested to replace the parameter with a constant (if the parameter is a constant in all 

phases and hence not appearing in all IDGs), to remove the parameter (if the parameter really does not 

specify in all phases), or to modify the equations. 

Rule 6. All parameters, except output ones, must have at least one outgoing edges in CIDG. The values 

of the internal parameters should be used by other parameters within the same neuron, otherwise the 
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parameter D has no incoming edge in both phases (rule 3); 3) internal parameter E has no incoming edge 
in Phase2 (rule 3). 

After receiving error messages from the system, the 

user determines that 1) it is that B is dependent on A 

but not vice versa; 2) D is dependent on B in both 

phases; 3) E is also dependent on F in Phase2. The 

resultant IDGs after these modifications are shown in 

Figure 20 and they can pass the tests. 

The tests on the internal dependency graph of the 

control neuron are the same as those on other internal 

dependency graphs, except that it is not necessary to 

have different phases in the former case. 

J^ig. 20. IDGs After Parameter Analysis on IDG 

6 . 1 . 2 C O M B I N E D I N T E R N A L D E P E N D E N C Y GRAPHS ( C I D G ) 
A type of graph not mentioned before is the combined internal dependency graphs (CIDGs), which are 

constructed by merging the IDGs of different phases together. This type of graph is for parameter analysis 

only, and the analysis is applied immediately after the IDGs are constructed. Every neuron type will have 

its corresponding CIDG. The CIDG for Form 18 is shown in Figure 21. 
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parameters are useless. The output parameters send values to other neurons so their values may not be 

used internally and hence no outgoing edges in CIDG. An error is reported if violated. Users are 

requested to delete the parameter or to modify the equations. This rule cannot be checked using 

individual IDGs, as parameters not being referenced in one phase may be storing some value to be used in 

other phases. 

Rule 7. The number of output parameters in the CIDG should be counted to ensure that there should be 
af least one output parameter for every neuron. A neuron without input parameter is acceptable because 

it may be a neuron acting as a source for generating input for subsequent layers. On the other hand, a 

neuron without output is not acceptable as the neuron will be useless in the network. An error is reported 

if violated. Users are requested to assign output properties to some parameters and modify the equations. 

Rule 8. Any parameters, except output parameters,^should be directly or indirectly updating some output 
parameters^ i.e. all parameters should involve in updating functions that will eventually modify the output 

from the neuron. As the main purpose of the neuron is to generate ou中ut values, parameters that do not 

affect the output are useless. To locate these parameters, the system starts from the output parameters and 

traverses back through the edges of the CIDG, marking all nodes being visited. Those parameter nodes 

that are not maiked will be reported as an error. Users are requested to remove the parameters with their 

associated updating equations，modify the equations or change some internal parameters to ou中ut ones. 

6.1.2.2. Exanq)le 

There is no violation of rules 6 and 7 in this example. Parameter G, however, is not found in the CIDG 

shown in Figure 21(nile 5) so the system will request the user to check its usefulness. In addition， 

parameters E and F ace not involved in updating the ou^ut parameta-s (rule 8). Hence although they are 

updating and being updated by each other, they are useless in the processing unit. Assuming that all these 

paramet^ are decided to be removed, the checked and modified neuron is that in next section. 

6 . 1 . 3 . F I N A L I Z E D N E U R O N O B T A I N E D 
The resultant gr叩h after the user has responded to all the warnings and 

removed the problematic parameters is shown in Figure 22. Al l the redundant 

and useless parameters are identified and removed by the user. The resultant 

graph is much simplified and in this case all the internal parameters have been 

removed. The resultant form for the revised neuron type is shown in Form 19. 

One can appreciate the significant differences between this form and the “ g 肌 22 Revised CIDC 

original one, and the difficulties in identifying these removals. 
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FORMAL NEURON 
N E U R O N T Y P E : 

Redundant; 
I N P U T ： 

A BINARY; 
O U T P U T : 

(B,C,D) BINARY; 
I N T E R N A L P A R A M E T E R 
I N I T I A L V A L U E : 
I N T E R N A L F U N C T I O N : 

C[T] = A[T]; 
D[T] = B[T] 
B[T] = A[T] 

Form 19. Resultant Specification For Formal Neuron After Removing Redundant and Useless Parameters 

6 . 1 . 4 . C I D G OF THE B P - N ET 

The CIDGs for the example BP-Net are shown in Figure 23. The CIDGs are actually the same as IDGs of 

the training phases as the IDGs for the recalling phases are just subgraphs of them. The CIDGs have 

passed all the tests mentioned in this section. 

6 . 2 . C O N S T R A I N T C H E C K I N G 

Besides the data dependency analysis mentioned in the previous section, there are also some other simple 

tests that can be used to check the correctness of a network system. They should be applied before the use 

of data dependency analysis to locate any obvious mistakes. 

6 . 2 . 1 . SYNTACTIC, SEMANTIC AND SIMPLE CHECKINGS 
6.2.1.1. The Syntactic & Semantic Techniques 

The syntactic and semantic checkings are well-developed techniques in conventional programming lan-

guage compiles. The syntactic checking is used in enforcing the correctness of the form entry syntax. It 

can be used for checking that all the essential attributes of the entries are present and the optional at-

tributes, i f any, are correct. 

The semantic checking is mainly used for checking unique labels, well-defined labels, and matching 

among connected parameters. The matching among paramet^s involves compatible range of values, 

matched type (continuous, binary, integral, or discrete), and, if any, matched step size. This is an 

extension of the common type checking in conventional programming language. 
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In addition to checking among the properties of the parameters, all built-in functions and operators, if 

possible，should be attributed with similar properties. For example, the range of values returned by the 

function e* with respect to different values of ;c can be defined as a particular type. After that, the com-

puter can locate equations that cannot produce the full range of values for the parameter, or that the 

ranges of values do not match. Consider an equation of the form OUT[T] = EXP( A[T]) where 

A m ) is the exponent of a parameter A[TJ. If OUT[T] is defined with range (-1,0), the assignment 

cannot be valid as no exponent of e is negative. 

6.2.1.2. Simple Matching 

Another technique is simple matching based on the knowledge about ANN systems. One can observe 

from the forms that much information is repeatedly stated in more than one entry. This dummy 

information is used for verification by matching the values of the entries. For example, there are two' 

sources for the output degree of the neurons, one in the neuron character entry and the other in 

connection pattern. These two values should match with each other. These checkings are tailor-made 

and are very useful in locating errors.. 

To demonstrate how this matching work, a simple case can be considered. A partial specification on a 

network system is shown in Form 20 and 21. There are two design errors in the specification: 1) the 10-th 

neuron of second layer has missed its character definition; 2) the 10-th neuron in every layer has missed 

an input connection. 

*** FORMAL NEURON *** 

N E U R O N T Y P E : 
Demo; 

I N P U T S : 
I [ 1..M ] RANGE (0,1) INCLUSIVE CONTINUOUS; 

Form 20. Example Form on Formal Neuron For Demonstrating Matching 

*** CONFIGURATION *** 

N E U R O N L A B E L : 
Neu [l.«2] [1..10]; 

N E U R O N C H A R A C T E R : 
Neu [2][1..9] TYPE Demo INPUT-DEGREE 10 OUTPUT-DEGREE 9; 

C O N N E C T I O N P A T T E R N : 
{ Neu[x][y].In[z][T+l] = Neu[x+l].Out[y][T]； x:1..2; y:1..10; z:l“9 

Form 21. Example Form on Configuration For Demonstrating Matching 
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Table 11 shows part of the attributes generated for neuron Neu[2][10]. The first error, the 10-th neuron 

not being defined in neuron character, is found when Neuronjype is undefined. This indicates that the 

system cannot determine the neuron type. The system also cannot determine the input and output degrees 

of this neuron from the definition in neuron character. 

The second error is detected as the In�abel一nim does not match with Connected—in. This is because the 

value of Connected—in, as determined by the connection pattern, is only 9，while the number of input la-

bels, In jabel num, inherited from the neuron type is 10. Hence the second error is detected. 

Record 
Neuron一type 7 ! * type of neuron */ 
In—label一num 10 !* inherited from type */ 
Input一 num 9 

e / * from neuron character*/ 
Output一num 7 /* from neuron character */ 
layer一pos 10 /* position in layer */ 
Out j is t coutput connection list> 
ConnectedJn 9 / * connected input labels */ 

6 . 2 , 2 C O N S T R A I N T S 
Different constraints have to be applied on different specification forms and tests mentioned in previous 

sections can be employed to enforce these restrictions. The aim is to ensure that the attributes defined in 

different entries do not contradict with each other. 

The discussion wil l focus on the p l i ca t i on of the mechanism just mentioned. It will identify the 

constraints associated with the entries in every component separately. 

6.2.2.1. Constraints on Formal Neuron 

1 Entries Requirement Checkings || 
Neuron Type every type name should be unique Matching 
Parameter 
Declaration 

initialization value is wi thin boundary Matching 

Functions type and range compatible 
identical phases for all neuron types 

Semantic 
Matching | 

Table 12. Constraints and Checkings on Formal Neuron Attributes 

The constraints on the attributes of the formal neuron are shown in Table 12. The first requirement is 

similar to the case for unique identifier name in conventional programming languages. In fact, all la-

bels/names in the system must be unique. Parameters with the same name but within different neurons 
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are considered as different labels. To enforce this uniqueness, it is just necessaiy to compare all the labels 
throughout the three forms. 

When an internal parameter is declared with boundary and initialization values, the initial value must be 
within the boundary. This can be enforced by comparing the initialization value with the upper and lower 
bounds. 

BvQTy function and operators in the system, whenever possible, is associated with types and range of 

values it will return. This helps to verify that the functions being applied are compatible with the at-

tributes of the parameters. In addition, the phase labels used under the internal function entries of 

different neuron types should be identical. A simple comparison among them will be sufficient for 

checking this. 

6.2.2.2. Constraints on Configuration 

The constraint on neuron label entry is the same as that for any labels. In neuron character entry, labels 

used should already be defined. This can be checked by simply comparing the labels with the defined one. 

The number of neuron definition parameters (NDPs) should match with that in formal neuron 

declarations. Moreover, these parametCTS should be able to be evaluated at compile time. In other words, 

the parameters should be constants or iterating variables of definite loops. 

1 Entries Requirement | Checkings 丨 

1 Neuron Label unique labels | Matching | 
Neuron 
Character 

neuron type used is defined 1 
correct number o f NDPs 
parameters are compilation constants 

1 Matching | 
Matching 
Semantic 

Connection 
Pattern 

1 

correct I /O degree 
match in range, type and step size 

1 matching I /O parameters 

Matching 
Semantic 
Matching | 

Table 13. Constraints and Checkings on Configuration Attributes 

There are three constraints for the connectkm pattern entry. Firstly the input and output degrees should 

match with those defined in other sources. Apart from the connection degree, the connected input and 

ou屯ut should match in their characteristics. These characteristics are those defined by the input 

declaration of the neuron type. This is to guarantee that the signals transmitted can be understood by the 

receiver. Obviously, the equations should define transmitting signals from an output parameter to an 

input one. 
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6.2.2.3. Constraints on Control Neuron 

1 Entries 1 Requirement Checkings 1 
Global Parameter initialization value is within boundarv 1 

Matching 
Input & 0 u _ Fi le compatible w i th I /O layers 

— — £ 2 

Semantic 
Global 

II Funct ion 
type and range compatible 
well-defined phase transitions 

Semantic 
Matching 

The constraints on global parameter entry are the same as those of internal parameter. For the input 

and output file entries，the input pattern generated should be compatible with the neuron characteristic of 

the input layer, i.e., range boundary, type and step size of the neuron inputs which can be verified by 

semantic checkings. These checkings are also applicable to the output case. 
O 

The global function entry has requirements and checking mechanism similar to those enforcing the type, 

range and step size compatibility of the internal functions. It is also responsible for determining phase 

transitions. Al l and only those phase variables declared inside the neurons should be included in phase 

transitions. Moreover, there should be condition(s) for the system to end properly by assigning the pre-

defined value Terminate to Phase. 

6 . 3 . C O M P L E T E C H E C K I N G P R O C E D U R E 

AftCT all the analyses for the specifications are explained, the complete procedure for the design analysis 

process can be illustrated. The specification forms are first passed through the simple test that identifies 

any trivial problems. Afterwards, the formal neuron and control neuron forms are passed to construct 

the internal dependency graphs，and combined internal dependency graphs. These graphs are tested by 

the parameter analysis procedure. 

After that, the internal dependency graphs of control neuron and ordinary neurons will combine with the 

information from the specification on configuration form to produce the global dependency graphs. 
AftCT that, the deadlock analysis can be applied. If the analysis result is positive, the schedule analysis 
can be applied to the internal dependency graphs of formal neuron and control neuron after parameter 

analysis. 

73 



Formal Neuron 
Specification Control Neuron 

Spedficadon Configuration 
Spedficalion 

Simple Checking 

Verified Formal 
Neuron 

Specification 
VCTified Control 

Neuron 
Spedfication 

Veified 
ion 

ication 
Configuiatic 
Spedficatio 

elntranal G r ^ h Construction 

Internal dDq)aidency 
G r ^ h s Intemal 

Dependency 
internal Dq)enden^ 

Graph of Control 
Neuron 

Parameter Analysis 

Verified Ihtanal 
Dependency Gn5)hs 

Verified I h t o n a l � 
DepaidencyGnq>h 

^ f Control Noiroi^ 

Sdieduling Subscr^Anatysis 

Global G r ^ h 
Construction 

dDep^doicy 
Gr^hs 

Hme Analysis Hme Analysis Cycle Detection 

Figure 24. Overall Strategy For Design Analysis 

74 



7 . C O N C L U S I O N S 

There are two important issues in developing Artificial Neural Networic (ANN) systems, namely 1) to 

express the concurrent nature of an ANN system in a specification environment; 2) to verify the 

specification by a specification analyzer automatically. 

The first issue is addressed by using dataflow specification methodology. This specification approach 

allows user to specify the static connection property instead of the dynamic concurrence property of the 

network to control the parallelism. All other parallelism is introduced by the design tool automatically. 

Designers of ANNs are thus freed from handling the detailed communication and timing problems 

associated with parallel programming. 

The dataflow specification methodology also provides a uniform framework to descftbe various aspects of 

an ANN system. All levels of activities, including simple neuron internal functions, configurations 

among the neurons and system-wide controls, can be specified by the dataflow equations. Both the 

dynamic functioning of the neurons and the static configuration are captured by the equations of the speci-

fications. This uniform framework lays the foundation for both a user-friendly environment and a 

uniform analysis mechanism. 

The second issue is addressed by building extensive analysis mechanisms into the design tool. Every 

attribute of the components in the ANN system is given some characteristics and associated constraints. 

Errors can then be detected automatically by the system and much manual labor can be saved. Among the 

specification errors, one of the most difficult one to be located is cyclic dependency among the parameters. 

The cyclic dq)endency is closely related to message deadlock among the neurons. This problem is 

automatically located by the data dq)endency analysis. 

Attribute analysis is used to filter other common mistakes. Parameter analysis relies on the dependency 

graphs to remove useless parameters, enforce input/output properties of parameters and the same. 

Constraint checking routines make use of the knowledge of each neuron type to enforce consistency 

among the attributes of the components. 

In brief, the design tool helps a user to analyze an artificial neural network under development. The 

specification approach will make the dynamic behavior of the target system to be stated more explicitly, so 

that static analysis (i.e. at compilation time) can be performed. This saves a lot of computation resource 

in testing. In addition, with a suitable implementation generator, the design tool may also help the 

development of both hardware implementations and software simulations for the ANN system under 

consideration. 
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7 . 1 . L I M I T A T I O N S 

The current design tool is not perfect. As the design tool is based on dataflow specification approach, in 

which the dependency relation among parameters and neurons should be weU-defined, it is impossible at 

this moment for the design tool to handle models with dynamic configurations and dependency relations. 

Some other limitations will be investigated in more details. 

1 E X C L U S I V E C O N D I T I O N A L D E P E N D E N C Y CYCLES 

dependent on another The exclusive conditional dependency cycles are formed by equations that 

under different conditions. Consider the equations 

A[T] = IF c m > 0 THEN 1 ELSE B[T]*5 and 

B[T] = IF C[ f ] < 0 THEN -1 ELSE A\T]*2. 
The two variables A and B are dependent on each other of the same instance. It is therefore not possible 

to determine which parameter is depending on the other in all cases. In normal conditions, this will 

imply a cyclic dependency. The given two equations, however, are in mutually exclusive conditions that 

will guarantee that the two parameters will not be dependent on the other at the same time. If C[T] > 0, 

AfTJ can be evaluated first but i f C[T] < 0，B[T] can be evaluated first. In both cases, the value of the 

other parameter can then be evaluated and hence the computation can proceed. This is an example case 

in which the dependency among the parameters is dynamic. 

In the dq)endency g r ^ h shown in Figure 25, nevertheless, the system will find 

that there is a cycle for parameters A and B and a problem is reported although 

there is actually no problem. To avoid rejecting this valid case wrongly means 

that the system should be able to recognize the meanings of the conditions. This 

is not easy as the con(lition(s) can be very complicated and the number of 

conditions can be very large. Incorporating this capability into the design tool is 

very costly and, more importantly, not worthwhile. The expression can in fact be 

transformed into 

A[T] = I F C m > 0 T H E N l B L S E - 5 and 

B[T] = IFC[T]<0THEN-1ELSE2. 
In other words, one can investigate the expression for, say, A and check when should B be executed before 

it. In that case, B should be dq)endent on some other parameters or constants. This parameter or 

constant can be put directly into the expression for A and hence the dependency on B is removed. The 

same investigation is also 即plied to B and the cyclic dependency can be removed. 

Fig. 25. Exclusive 
Cycles 
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7 . 1 . 2 . M A X I M U M PARALLELISM 

The specification given by the users may not be optimal in the degree of parallel execution. An algorithm, 

given in Appendix IV, has been developed to extend the degree of parallelism of some simple cases. 

Three dependency subgraphs 1,2 and 3 are shown in Figure 26 as examples. Subgraphs 7 is the case in 

which the descendants of a parameter form independent branches. In subgraph 2, the descendent 

branches after some levels has common depending parameters. These two kinds of subgraphs can be 

analyzed by the system to increase parallelism. The broken lines in the figure are the grouping of the 

parameters that will be evaluated in the same processing sub-neuron. 

The case for subgraph 3 is more complicated. 

The degree of parallelism can also be 

increased by the indicated allocation, as V and 

X can be computed in parallel, although they 

may be of different instances. The system 

will not suggest this parallel execution asXis 

also a dependent of V. A dependent is 

supposed not to execute in parallel with its 

predecessors, as usually this will not improve Figure 26. Candidate Graphs for Increasing Parallelisms 

the performance. The resultant execution is 

that the four paiamet^s are evaluated in a single processing unit that can compute them in sequence. 

Some more sophisticated algorithms may help but it is beyond the scope of the specification analyzer. 

A more sophisticated analysis should also consider the time difference between the evaluation of different 

equations. For example, the equations involving matrix computations will not take the same computation 

time as those involving single variable manipulations. In addition, the communication cost between 

parallel neurons should be included. An algorithm taking into consideration these factors will give a 

more efficient system. 
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A P P E N D I X 

I - F O R M S Y N T A X 
A . S Y N T A X C O N V E N T I O N S 
7 Items enclosed in angle brackets should be substituted with the further specific value 
LJ * Items enclosed m square brackets are optional. • 
[]+ Items enclosed in square brackets with a star can be repeated from zero to infinite times. 
1 e;̂ closed m square brackets with a cross can be repeated from one to infinite times 

Vertical Items in braces are exclusive, only one of them can be used BOLD Items in capital bold are keywords. 

B . F O R M D E F I N I T I O N 
The form definition start with the definition for <form>. 

1. Form Structure 
<form> :== 

〈Constant Declaration〉〈Formal Neuron〉 

<Configuration>〈Control Neuron〉 

2. Constant Declaration 
〈Constant Declaration〉:== 

[#DECLARE (〈constant name〉，〈constant expression> ); J * 

3. Formal Neuron Declaration 
<Formal Neuron〉:== 

[〈Neuron Type〉<Input> <Output> 
〈Internal Parameterxinitial Valuexinternal Function〉]+ 

〈Neuron Type〉:== 

NEURON TYPE: < N e _ Type Name〉 

[〈Neuron Definition Parameter LisO ]； 

<Input> :== 
INPUT: [<Input Label>[<Range>]<Type>;]+ 

<Output> :== 
OUTPUT: [<Oulput Label>[<Range>]<Type>;]+ 

〈Internal Parameter> :== 
INTERNAL PARAMETER : [ <IP Label>[Range>]<Type>;]* 

〈Initial Value〉:== 

INITIAL VALUE : [ t :o<i5>ifSrd:J [<TIME>] 二� C o n s t a n t e x p r e s s i o n � ; ] * 
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〈Internal Function〉:== 

INTERNAL FUNCTION :[ { < O : 二 } [<Time>] =〈expression〉;]* 

[〈Phase label〉{ [ { < 。 ： 二 } _ e > ] =〈expression〉;]*}]* 

4. Configuration Declaration 
〈Configuration〉:== 

〈Neuron Label>〈Neuron CharacterxConnection Pattern〉 

〈Neuron Label> :== 
NEURON LABEL ： 
[〈Indexed Neuron Label〉]+ 

〈Neuron Character> ：= 
NEURON CHARACTER ： 
[〈Indexed Neuron Character> ] + 

〈Connection Pattem> :== 
CONNECTION PATTERN: 
[〈Indexed Connection Pattern〉]+ 

5. Control Neuron 

〈Control〉:==〈Global InputxGlobal OutputxGlobal Parameter> 
〈Global Initial Valuexinput FilexOufput FilexGlobal Function〉 

<Global Input> :== 
GLOBAL INPUT : [<GInput Label>[<Range>]<Type>;]*[<ORecord label> ；]* 

<Global Output> :== 
GLOBAL OUTPUT : [<GOutput Label>[<Range>]<Type>;]* 

[<IRecord label> ；]* 

<Global Parametei> :== 
GLOBAL PARAMETER : [<GIPLabel>[<Range>]<Type>；]* 

<Global Initial Value〉:== 

GLOBAL INITIAL VALUE: 
r J <GIPlabel> 1 ^ ^ _ 

l<GOutput label〉J t<Time>] =〈Constant expression〉;]* 

〈Input File〉:== 

INPUT FILE : [〈Phase label〉{ FILE <File name〉，RECORD <IRecord label〉[<Range>] 
<Type> [, <IRecord label〉[cRango] <Type>]* ；]+ 

〈Output File > :== 
OUTPUT FILE : [〈Phase label〉{ FILE〈File name〉， 
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RECORD <ORecord label〉[<Range>] <Type> 
[，cORecord label〉[<Range>] <Type>]* ； ] + 

〈Global Function〉：== 

GLOBAL FUNCTION FI Label〉1 
•I l<GOutputLabel>J 

[<Time>] =〈expression〉； ] * PHASE[T] =〈Transition Condition〉； 

6. Supplementary Definition 

〈ORecord label〉：== 

f <name> 

.(<nanie> [, <name>]* )J 

<name> :== 

<id> [〈Index Definition〉[，〈Index Definition〉]* ] 

<Range:：̂  :== 

RANGE (〈Constant Expression>,〈Constant Expression〉) ECLUSFSE} 
<Type> :== 

INTEGRAL 
BINARY 

CONTINUOUS 
DISCRETE STEPSKE〈Constant expression> 

VALUE (〈Constant Expression>[,〈Constant Expression〉].)-

〈Expression〉：== 

卜 Conditional expression>l 
I〈Simple expression〉J 

〈Condition Expression〉：== 

IF〈Condition〉THEN <Expressioii> [ ELSE〈Expression〉] 

〈Simple Expression〉:== 

(〈Simple Expression〉[<operator><Simple Expression〉]*) 
<Constant expression〉 

<name> 

〈Indexed Neuron Label> :== 
J {〈Indexed Neuron Label〉[〈Index Definition〉；]+ }} 
I <Simple Neuron Label> J 

<Index Definition〉:== 

I <Index> : <lower bound >..<upper bound> 1 
I <Index> =〈Constant Expression〉 j 
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〈Simple Neuron Label> :== 
〈Neuron Label〉[〈Range Declaration〉[，〈Range Declaration〉]* 

〈Range Declaration〉：== 

〈lower bound〉..〈upper bound> 
〈Constant Expression〉 

<Index> 

〈Indexed Neuron Character> :== 

{<Simple Neuron Charactei> 
{〈Indexed Neuron Character [〈Index Definition〉； ] + 

<Simple Neuron Character〉：== 

[ 〈 S i m p l e Neuron Label〉TYPE〈Neuron Type Name〉 

INPUT-DEGREE〈Constant expression〉 

OUTPUT-DEGREE〈Constant expression〉 f 

〈Indexed Connection Pattern〉:== 

{〈Indexed Connection Pattern〉[〈Index Definition> ；]+ ] 
〈Simple Connection Pattern> 

〈Simple Connection Pattern〉：== 
<S imple Neuron Label>.<Input Label〉= 

〈Simple Neuron Label>.<Output Label> 

<Index> 1 
〈Constant Expression> :== 

{ } [ <opera to i> <Con7mnt> I 
I I . A L G O R I T H M S 
These are the algorithms for the dataflow analysis. Some in-line comments, as well as brief description of 
every procedure, are also given. The algorithms are shown in some pseudo code which is Pascal-like. 
(* This is the main procedure for dataflow analysis. It will call upon a number of other procedures for 

performing the functions. It will accept the three different forms and process them in the order: 
formal neurons, control neuron and then configuration. For the first two forms, it will perform 
checkings on their internal data dependency. If no errors are found, the obtained graphs will be used 
with the information from the configuration form to obtain the global dependency graphs. Three 
main objects NeuList, Cf and CN are the list for neurons, configuration and control neuron. They 
contain all the relevant information about these objects, including the different graphs. *) 

Procedure DataflowAnalysis( FnForm, CfForm, CnForm : Form ); 
Begin 
Nonnalize( FnForm ); (* normalize time indices *) 
Normalize) CfForm ); 
Normalize( CnForm ); 
NeuList := ConstructDG( FnForm ); (* add IDGs and CIDG *) 
OK := false; 
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For every Neu in NeuList 
If OK then 

If CIDGAnalysis( Neu ) <> T then OK := false; 
If OK then 

IF IDGAnalysis( Neu) <> T then OK := false; 
If OK then 

For every Neu in NeuList do 
CList := CycleDetection( NeuJDGList); 
If CycleAnalysis( CList) <> T then OK := false; 
I f OK then 

TNeu := NParallelAnalysis( Neu ); 
NSchedule( TNeu ); 

I f OK then 
CN := ConstructCNG( CnForm ); 
CnAnalysis( CN); 
CList := CycleDetection( CN.IDG ); 
OK := CycleAnalysis( CList); 
If OK then 

TCn := CnParallelAnalysis( CN ); 
CnSchedule( TCn ); 

I f OK then 
GDGList := ConstructGDG( CfForm, NeuList, CN); 
For every graph GDG in GDGList do 

CList := CycleDetection( GDG ); 
OK := CycleAnalysis( CList); 

End: 

(*preliminary analysis, CIDG*) 

(^preliminary analysis, IDG *) 

(* cycle list of IDG *) 
(* pass the cycle tests *) 

(*increase parallelism*) 
(* schedule the equations *) 

(* add IDG to CN *) 
(* preliminary analysis *) 

(* global dependency graph *) 

(* cycle list of GDG*) 

(* Normalize the time subscripts of the equations. It can be applied at all three kinds of forms. *) 
Procedure Normalize( F : Form); 

Begin 
For every equation (Eq) in F 

Let L & Ri’s be the depending and determining parameters of Eq; 
Let T+C be the time index of the innermost expression; 
For all Ri in Eq 

Let S be the time index of the innermost expression; 
Replace S with S-C; 

End; 

(* This procedure will construct one dependency graph. It accepts a list of equations and use them to 
construct the corresponding dependency graph. It uses two sub-procedures, one for the determining 
parameters (ConstnictFromEdge) and one for the depending parameter (ConstructToEdge). Both a 
recursive procedures so that sub-linear time indices can also be handled. We should note that for 
parameters depending on constants only, no dependency edge is inserted. This is to simplify the 
following analysis and facilitate the scheduling process. Moreover, the procedure will also label the 
equations such that when scheduling, it is possible to distinguish all equations. Note that the 
common equations for different phases will be duplicated and marked with different labels. *) 

Function OneGraph( EqList: EquationList): Graph; 

Procedure ConstnictFromEdge( PE: ParameterExpression; Eq: Equation, G : Graph); 
Begin 
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End; 

Let P be the outmost parameter name of PE; 
Construct one edge (E) pointing from P to Eq; 
If P has sub-linear time index then 

Set time index value of E to infinity 
Else 

Let T+C be the time index of Pin Eq; 
Set C to be the time index value of E; 

associate E with other subscript boundaries of Pin Eq; 
If E not in G then Append EtoG; 
For every sub-linear expression (S) within P 

ConstructEdge( S , Eq,G); 

(* determining parameters *) 

(* for records only *) 

(* time index value *) 

(* other subscripts *) 

(* explore inner parameters *) 

Procedure ConstructToEdge( LE: ParameterExpression; Eq : Equation, G : Graph). 
Begin ’ 

Let L be the outmost parameter of LE; 
Construct one edge (E) pointing from Eq to L; 
I f L has sub-linear time index then 

Set time index value of E to infinity 
Associate E with other subscript boundaries of L in Eq; 
If E not in G then Append E to G; 
For every sub-linear expression (S) within LE 

ConstructToEdge( S, Eq, G ); 
End; 

(* depending parameters *) 

(* for records only *) 

(* other subscripts *) 

(* explore inner parameters *) 

Begin 
G := nil; 
For every equation (Eq) in EqList 

Give a unique label to Eq; 
I f right hand side is not all constants then 

For every parameter expression (PE) at right hand side of Eq 
ConstructFromEdge( PE, Eq, G); 

Let LE be the left-hand-side parameter expression of Eq; 
ConstructToEdge( LE’ Eq, G ); 

Retum( G ); 

(* for scheduling *) 

(* This function is used for constructing the dependency graphs (IDGs, CIDG) of the neurons. It will 
prepare an object Neu for every neuron type, keep the associated information such as the list of 
parameters, the list of equations which are common and unique to all phases, and the list of phases 
It will also keep the IDG list and CIDG. It will call OneGraph to construct individual graphs*) 

Function ConstructDG( F: Form): NeuTypeList; 
Begin 

NList := nil; 
For every neuron type (NType) (* for every neurons types *) 

Append NType to NList; 
Add all parameters of NType in F to NTypePList; 
Add all common equations in F to NType.CommonEqList; 
Add all phases in F to NType.PhaseList; 
For every phase (Ph) in NType.PhaseList 

NType.PhaseEqList := NType.CommonEqlist; 
For every equation (Eq) of phase Ph of NType in F 

(* parameter list *) 
(* common equation list *) 
(* phases list *) 
(* construct IDGs *) 
(* copy common equations. 
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Append Eq to NType.PhaseEqList; 
Append OneGraph( NType.PhaseEqList) to NType.IDGLisf 

^ 二 t (* construct CIDG*) 

Add OneGraph( EqList) to NType.CIDG; 
Return( NList); 

End; 

Z A smaU^un^^n to backtrack the dependent graphs. Called by CIDGAnalysis and CnAnalysis *) 
Procedure BackTrack( P ： Parameter; G : Graph ); 
Begin 

markP; 
For every predecessor (D) of P do BackTrack(D, G); 

End; 

( T h i s function use the CIDG to enforce some properties of the parameters, such as the number of input 
and output parameters, parameters should be used in generating outputs and the same It uses a 
simple recursive procedure, BackTrack, which backtracks from the output parameters to mark all 
other ones which determine them. This is to eliminate useless parameters. Note that the deadlock 
analysis is not performed in this function. *) 

Function CIDGAnalysis( Neu : NeuType ) ： Boolean; 
Begin 

OK true; (* set to false by 
ShowError *) 】 

I f number of input parameter < 1 then 
ShowError( "No input into this neuron"); 

I f number of output parameter < 1 then 
ShowEiTor( "No output from this neuron"); 

For every parameter (P) in G.Type.PList 
If P not found in Neu.CIDG then 

ShowError( "Parameter P is not used in the equations"); 
If P has no out edge in Neu.CIDG & not an output parameter then 

ShowWaming( "Value of parameter P is not used by others"); 
Mark the edges pointing at P; 

I f there are unmarked edges then 
For every parameter (P) at the head of the edges in Neu.CIDG 

ShowError( "Undefined parameter P"); 
Un-mark all parameters 
For every output parameter P do 

BackTrack( P, Neu.CIDG ); (* are the parameters useful ？*) 
For every unmarked parameter U do 

ShowEiTor( "Parameter P is useless for generating signals"); 
Retum(OK); 

End; 

(* This function is similar to CIDGAnalysis, except that the target is the IDGs. *) 
Function IDGAnalysis( Neu : NeuType): Boolean; 
Begin 

OK := true; (* set to false by 
ShowError *) 
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For every Graph G in Neu.IDGList do “ —— 
For every parameter P in G do 

If P has incoming edge & P is an input parameter then 
ShowEiTor( "Input parameter P cannot be updated"); 

I f P does not have in edge & P is not an i叩ut parameter then 
ShowError( "Parameter P is not updated"); 

If P has more than one incoming edge then 
If P is not subscripted then 

ShowError( "Multiple assignment into P") 
Else if subscript boundaries overlaps then 

ShowError( "Part of P has multiple assignment") 
Else i f subscript boundaries and initialization values do not cover all elements of P then 

ShowError( "Some of the elements of P are not defined" V 
Retum( OK) ; 乂， 

End; 

C This function is used for locating cycles in the graphs. It uses depth first search technique A recur-
procedure known as CheckCycle is called upon. It uses exhaustive search to detect the cycles 

The parameters are given an arbitrary order. The system tries to construct paths as long as possible 
In these paths, every parameter in the path should be later in order than its predecessor in the graph 
When It IS not possible to extend the path further, the system tests whether that a cycle is found 
connecting the first and last parameters. This process is repeated for every parameter in order 
Hence after all the parameters are processed, all the cycles are found. *) 

Procedure CheckGlobalCycle( GList: GraphList); 

Procedure CheckCycle( PList: ParameterList, P ); 
Begin 

Append P to PList; 
for every parameter Q with wdCT >= P do 

i f there is a edge from PtoQ then 
CheckCycle( PList, Q) ; 

i f P is connected to first element in PList then 
show cycle in PList; 

Remove P from PList; 
End; 

(•update PList*) 

(* recursive call *) 
(* a cycle is found *) 

Begin 
PList := nil; 
assign arbitrary numbers for parameters in the global dependency graph; 
for every phase do 

for every parameter P in GList do 
PList := nil; 
CheckCycle( PList, P); 

End; 

(* parameters in the path *) 

(* A small procedure to determine the depth of the parameters from input ones. Called by NParallel-
Analysis and CnParallelAnalysis. *) 

Procedure Depth( P : parameter; d : integer; G : Graph); 
Begin 

If P is not marked as traversed then (* prevent cycles *) 
if P has depth < d then Label P with d; (* greater depth *) 

Appendix - 8 



Mark P as traversed; 
For every depending parameter (Q) of P in G do 

Depth( Q, d+l ,G); (* depth first search *) 

Un-mark P; 
End; 

H P 二 u r e IS used for analyzing cycles. It can determine whether or not the cycles are involving 
；“d⑶出ocks and multiple assignments. It first perform the cycle sum test which aims at analyzing 
t^e time subscripts. When the test reports problem, it will further investigate the subscripts to Le 
there are really problems. *) ^ 

Function CycleAnalysis( CList: CycleList) ： Boolean; 
Begin ’ 

OK (* set to false by show 
error *) 乂 
For every cycle (C) in CList 

For every parameter (P) in C (* future reference *) 
IF time index from P > 0 

ShowEiTor( "Future dependency for P"); 
S := sum of time indices of C; (* cycle sum test *) 
IfS<Othen (* normal case*) 

For every parameter (P) in C 
Let -D be the time index from P; (* check initialization *) 
If number of initialization values for P < D then 

ShowError( "Not enough initialization values for P")； 

Else I f S = 0 (* mutual dependency ？ *) 
If there is no subscript then (* no subscript, sure in deadlock * 

ShowEiTor( "Deadlock for cycle C") 
Else For every subscript dimension (S) of P do 

If there is only 1 parameter in C then 
If subscripts both increase or decrease and overlap incorrectly then 

ShowError( "Future reference in C") 
Else one subscript increases and one subscript decreases and overlap then 

ShowError( "Multiple assignment into some elements") 
Else if subscript overlap in both edges of any parameter 

ShowError( "Deadlock in cycle C")； 
Retum( OK ); 

End; 

(* This procedure will determine how group the neurons and split the graphs. It is called by NParallel 
Analysis and CnParallelAnalysis. *) 

Procedure Split( G : Graph; GrList: GroupList; GList: GraphList); 
Begin 

For very parameter Q in G with depth = 1 do 
Prepare a new group Gr and a new graph GNew, add Gr to GrList, GNew to GList; 
For every determining parameter R do (* they are input parameters *) 

Duplicate R, add R to Gr, edge R->Q to GNew; 
Duplicate the connection for R from other neurons; 

For d := 1 to maximum depth value do 
For every parameter S in G with depth value = d 

(* refer to information in CP *) 

Let Gr be the group S in and GNew be the corresponding graph; 
(* parallel candidates *) 
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If S is determining only 1 another parameter T 
with depth = d+1 then 
If T is depending on S only 

add T to Gr and edge S->T to GNew (* in the same gro叩 *) 
xilSC 

If T is not allocated to any group then (* separate a new gro叩 *) 
Prepare new group Grl and new graph GNewl for T; 
Add Grl to GrList, GNew to GList; ， 

Add edge S->T between Gr and the group T belongs to; 
Else ’ 

For every depending parameter T of S, with T o S do (* different groups *) 
I f T is not allocated to any group then 

Prepare new group and new graph for T; 
Add group to GrList, graph to GList; 

Add S->T as edge between Gr and the group T belongs to; 

( T h i s function analyze the CIDG of a neuron type and suggest allocations of parameter evaluation 
which can increase the degree of parallelism. The allocation is based on a depth from the i叩ut 
parameters. Parameter with the same depth can be evaluated in parallel. The depth is computed by 
calling the procedure Depth. The resultant allocations are kept in GrList. It then return the modified 
neuron type for scheduling. *) 

Function NParallelAnalysis( Neu : NeuType ) : NeuType; 
Begin 

N := Neu; 
For every input parameter P of N do Depth( P, 0，N.CIDG); (* depth from input parameters *) 
Set GrList and GList to Nil; (* every group is a sub-neuron *) 
Split( N.CIDG, GrList, GList); 
Break every element of N.IDGList according to the grouping in GrList; (* update IDGs *) 
Retum(N); 

End; 

(* This procedure accepts an equation and try to evaluate it. If any determining parameter is not yet 
available, it wil l try to evaluate that parameter first by calling itself recursively. Any equation whose 
parameter is all available is inserted into the schedule. It will be called by NSchedule and 
CnSchedule. AvailList is a list maintaining the already available parameters. *) 

Procedure EvaluateEquation( Eq : Equation; G : Graph; T : Time; 
AvaliList: ParameterList; Sch : Schedule); 

Begin 
Mark Eq with T; 
Let D be the depending parameter of Eq; 
For all P predecessor P of Eq in G do (* can they be evaluated ？*) 

S := T + weight of edge from P to Eq; (* the corresponding instance *) 
I f not P[S] in AvailList then (* not available, try to evaluate *) 

i f name of P = name of D then (* self-referenced arrays *) 
Let LbP, UbP, LbD, UbD be lower & upper bounds of P and D; 
I f both increasing subscripts then 

For every equation Eql determining any element in D[LbP..LbD-l] 
& not initialized do (* the part to be evaluated first *) 
EvaluateEquation( Eql, T，AvailList, Sch ) 

Else if both decreasing subscripts then 
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For every equation Eql which determines any element 
L" ^tUbR.LbD-1] & not initialized do (* the part to be evaluated first *) 
EvaluateEquation( Eql, T, AvailList, Sch ) 

Else 
For every equation Eql which determines any element 

L" PfLbP“UbP] & not initialized do (* the part to be evaluated first *). 
EvaIuateEquation( Eql, T, AvailList, Sch ) 

Else 
Let EqP be the equation for evaluating P in G; 
EvaluateEquation( EqP, G, T, AvailList, Sch); 

Add D[T] into AvailList; 
Write the equation associated with Eq into Sch-

End; ， 

， s Procedur，is responsible for scheduling the evaluation of the parameters. The scheduling is 
？，Idea that a parameter can be evaluated only if its determining parameters are available 

A IS AvailList records the parameters available so far. The initially available parameters are those 
initialized ones This procedure will call another procedure known as EvaluateEquation which 
accepts an equation and tries to evaluate it *) ^ 

Procedure NSchedule( Neu: NeuType ); 
Begin 

For every graph G in NeuJDGList do 
Add initialized instances of parameters and input ones to AvailList; 
Repeat until all equations in corresponding phase ， 

of Neu.PhaseEqList are marked 
Select one unmarked equation with the following criterion, 

(i) If an equation depends only on input parameters, select it 
(ii) Ifaneqn depends partly on input parameters, select it 
(iii) any one equation 
Name this equation as Eq; 

EvaluateEqiiation( Eq, G, T, AvailList, Sch ); 
End; 

(* This IS the algorithm for constructing the internal dependency graph of control neuron. As this neuron 
does not have operation phases, there is only one IDG for it. *) 

Function ConstructCNG( F : Form) ： CNType; 
Begin 

new( CN ); (* new object *) 
Add all global parameters into CN.PList; 

(* new object *) 

Add all global functions into CN.EqList; 
CN.IDG := OneGraph( CN.EqList); 
Retum( CN); 

End; 

(* Function for analyzing the parameter properties of the control neuron. As it has only one IDG, the 
test is in fact a combination of IDGAnalysis and CIDGAnalysis. *) 

Function CnAnalysis( CN : CnType ) : Boolean; 
Begin 

OK := true; (* set to false by ShowEiror *) 
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If number of input parameter < 1 then 
ShowWaming( "No input into control neuron"); 

If number of output parameter < 1 then 
ShowWaming( "No output from control neuron"); 

Add Phase as output parameter; 
For every parameter (P) in CN.PList 

If P not found in CN.IDG then 
ShowError( "Parameter P is not used in the equations"); 

If P have no out edge in CN.IDG & not an output parameter then 
ShowWamingC "Value of parameter P is not used by others"); 

If P is an output record parameter and P has outgoing edge then 
ShowError( "File record parameter P cannot be referenced"); 

If P has incoming edge & P is an input parameter then 
ShowError( "Input parameter P cannot be updated"); 

If P have no incoming edge & P is not an input parameter then 
ShowError( "Parameter P is not updated"); 

If P has more than one incoming edge then 
If P is not subscripted then 

ShowError( "Multiple assignment into P") 
Else if subscript boundaries overlaps then 

ShowError( "Part of P has multiple assignment") 
Else if union of subscript boundaries and initialization values 

do not cover all elements of P then 
ShowErrorC "Some of the elements of Pare not defined"); 

Mark the edges pointing at P; 
If none of the value of Phase is "terminate" then 

ShowEiTor( "No terminating condition"); 
I f there are unmarked edges then 

For every parameter (P) at the head of the edges in CN.IDG 
ShowEiTor( "Undefined parameter P")； 

un-mark all parameters; 
For every output parameter P do 

BackTrack(P, CN.IDG); 
For every unmarked parameter U do 

ShowEiTor( "Parameter P is useless in control neuron"); 
Retum( OK ); 

End; 

(* This function analyze the IDG of the control neuron tc )increase parallelism. It is similar to the func-
tion NParallelAnalysis. *) 

)increase parallelism. It is similar to the func-

Function CnParallelAnalysis( InCN : CnType): CnType; 
Begin 

CN := InCN; 
For every input parameter P of CN do 

Depth(P, 0, CN.IDG); (* depth from input parameters *) 
Set GrList and GList to Nil; (* every member is a sub-neuron *) 
Split( CN.IDG, GrList, GList); 
Retum( CN ); 

End; 
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一 the evaluation ofl；^^^^；；；；^^；^^^^^^^ 

Procedure CnSchedule( CN : CnType); 
Begin ’ 

A . — — 一 

Repeat until all equations in CN.EqList are marked 
Select one unmarked equation with the following criterion, 

(I) If an equation depends only on i叩ut parameters, select it 
(II) If an equation depends partly on input parameters, select it 
(iii) any one equation 
Name this equation as Eq; 

EvaluateEquation( Eq, CN.IDG, T, AvailList, Sch,); 
End; 】 

neuron 

Function for constnicting the global dependency graph GDG of the whole network through informa-
tion in the connection pattern entry. It has two important assumptions. 1) To eliminate the number 
of neurons to be generated, the connection patterns should be symmetric. In case an equation is 
^t imng a number of neurons, it always take the one with the smallest value in any free index 
dijnensioHr Moreover, if the parameters are repeating for a number of times, only the first one is 
selected. For networks which has not dependency within layers or which the dependency within layer 
IS symmetry, this procedure will generate just the number of layers, of neurons 
2) To correctly detect deadlocks, distinct parameters should be used for distinct purpose As the 
algorithm only select one element from among an array, it will overlook some types of connections if 
other elements are connected for a different purpose. *) 

Function ConstructGDG( CfForm : Form; NL : NeuList; CN: CNType): GraphLisf 
Begin ， 

G := Nil; 
Let N be the first in LHS of first connection pattern equation; 
Add N to AvailNeu and IncompleteG; (* available neurons and neurons not fully connected *) 
Mark every I/O parameter of N as not connected; 
Repeat until IncompleteG is empty 

Select any M from IncompleteG; 
For every not connected I/O parameter P of M do (* connect every I/O parameter *) 

Locate the connection pattern equation CP which 
defines/reference P of M; 

Fix the subscripts of CP with that of P and M; 
If there is a K in AvailNeu satisfying requirement of CP then 

Fix the subscripts 
Else 

Use the smallest neuron that satisfies the requirement of CP; 
Add K to NeuG; 
Add K to IncompleteG; (* wait for connection *) 

Let Q be the I/O parameter of K in CP; 
If P is an input parameter then add edge K.Q -> M.P to G 
Else add edge M.P -> K.Q to G; 
Add corresponding time and other subscripts; 
mark M.P and K.Q connected; 
If all I/O parameter of K is connected then 

remove K from IncompleteG; 
Remove K from IncompleteG; 

Let N be any neuron type in AvailList; 
Let PhL be N.PhaseList; 
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(*addIDGs*) 
For every Ph in PhL do 

TempG := G; 
For every N in NL do 

Let IDG be the element of N.IDGList of phase Ph; 
Add IDG to TempG to connect the parameters within the neurons; 
Add CN.IDG to TempG to connect the parameters within CN; 
Add TempG to GList; ‘ 

Return( GList); 
End; 
I I I . D E A D L O C K & D E P E N D E N C Y C Y C L E S 
Deadlock is a problem resulted from concurrent allocation and request of resources. ANNs are usually 
implemented as message passing system [1, 3, 7, 11’ 15, 20, 21]. In this way, the resources are the 
•sages (or communication signals) among the neurons and the buffers for accommodating the 
messages. A request for messages occurs when a neuron tries to get some input values from other 
neurons, and an allocation occurs when a buffer is used to store an incoming message. 

Deadlocks in any system can be analyzed by a Resource Allocation Graph. In an ANN systems, however, 
the resource allocation graphs can be simplified into Data Dependency Graphs. The deadlocked cycles in 
a resource allocation graph are captured by mutual dependency cycles in the data dependency cycles. 

A . DEADLOCK PREVENTION 
Three Approaches for Handling deadlock 

The first one is deadlock detection and recovery. No action is taken to keep deadlock from occurring. 
Rather，system events may trigger the execution of a detection algorithm. When the group of deadlocked 
processes is identified, some of them must be terminated (or rolled back to an earlier state if checkpoint 
information is available) in order to break the deadlock. 

The second approach is deadlock avoidance. This relies on some knowledge of future process behavior to 
constraint the pattern of resource allocation. 

The last approach, which is also employed by the system, is deadlock prevention. The system design 
prevents entry into a state from which future deadlock is inevitable. To accomplish this, one should deny 
at least one of the necessary conditions for deadlocks. 

1. Necessary Conditions for Deadlock 
To prevent the occurrence of deadlocks, it is required to consider the necessary conditions for deadlocks. 
The four most generally identified necessary conditions are listed below [28]. 

Mutual Exclusion : Processes hold resources exclusively, making them unavailable to other processes. 

Nonpreemption : Resources are not taken away from a process holding them; only processes can re-
lease resources they hold. 

Resource Waiting : Processes that request unavailable units of resources block until they become 
available. 

Partial Allocation : Processes may hold some resources when they request additional units of the 
same or other resources. 
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Unfortunately, these conditions are natural consequence of the policy for resource allocations In n t h . r 
words, most practical system cannot deny the occurrence of these condit ionr other 

On the other hand, when one apply some specific tools in deadlock analysis, such as resource allocation 

S 二 — — t 画 for the dicnocks. U . 
2. Resource Allocation Graphs 

useful model for deadlock analysis introduced in [28] is resource allocation graphs. There are two 
of resources with very different properties. Reusable resources are usually f L d in total i n v e l ^ 

created nor destroyed. Units are requested and acquired by processes fro7a 
『 1 of available units and, after use, are returned to the pool for use by other processes. Examples of 
reusable resources are processors, I/O channels, memories, devices, busses and files. 

On the other hand, consumable resources are not fixed in total number. Units may be created (produced 
or released) or acquired (consumed) by processes. An unblocked producer of the resource may release any 
n ^ b e r of units. These units then become immediately available to consumers of the resource In 
I STb^ l i f ^ fqu肪d unit ceases to exist. Examples are interrupts and signals, messages and infomiation 

3. Cycles and Blocked Requests 

Two additional necessary conditions, cycles and blocked requests, for deadlock can be deduced using the 
resource allocation graphs. 

Cycles 

The presence of a cycle in a resource allocation graph as the necessary condition for deadlock is proved in 
[28]. Intuitively, the absence of a cycle implies the existence of a linear ordering of process nodes 
following arcs from processes to resources to processes. The last process may thus proceed and then 
release the resources it allocated. This will in turn unblock the other process(Es). Hence at least one 
cycle should be formed in the allocation graphs for a deadlock to occur. 
Blocked Requests 

Blocked requests means that 
i f there is a deadlock D occurring in a cycle C, every processes Pj involved 
must be blocked by requests to the resources inside C. 

The blocking is straight forward as if at least one process is not blocked by the request, it will proceed and 
the cycle is therefore not involving in a deadlock (though it may involve in another one later). 

切 addition, if a process Pj in C is not blocked by any request to resources inside C, C is not a cycle. This 
is proved by observing that in a cycle, every node should have both incoming and outgoing edges. For 
process nodes, the outgoing edges are request edges. When there is no request edges from Pj to any 
resource in C, Pj has no outgoing edges and hence C is not a cycle. 

Note that the case that the processes may also be blocked by other resources outside C is not excluded, but 
they should be blocked by some requests inside it. 

The Implication 

The two deduced necessary conditions suggest an approach for deadlock prevention. 
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I f for every resource allocation cycles, at any times, at least one of the re-
quest can always be granted, there wi l l not be deadlocks. 

The prevention mechanism focuses only on cycles because they are necessary for deadlocks. For processes 
not involving in any cycles, they are always in a safe state. On the other hand, all the cycles will not be 
involved in deadlocks, as the blocked request condition cannot be satisfied. Hence every process in th6 
cycles will also not be deadlocked. Thus the system will always be in a safe state. 
The Potential Cycles 

cydes are not necessarily resource allocation cycles at some time but they are candidates for 
being cycles. Potential cycles are used instead of the actual allocation cycles because cycles in resource 
allocation graphs are formed according to the dynamic system state and not suitable for static analysis. In 
the next section, the nature of these potential cycles in an ANN system are investigated. 

B . D E A D L O C K IN A N N S Y S T E M S 
To analyze the deadlocks in an ANN system, it is necessary to identify the "processes" and "shared 
resources" in an ANN system. The processes in the resource allocation graphs resemble the basic pro-
cessing unit of an ANN system, the neurons. 

L Shared resources 
Two types of "shared" resources in an ANN system can be identified, the messages and the buffers. The 
term share does not implies that the resources can be used by more than one neurons but that more than 
one neurons are related to the resource. The other resources, such as processor and memory, are local to 
the neurons and hence will not be involved in deadlocks. 

The messages are consumable resources. These messages are the communication signals among the 
neurons which carry the values of the input and ou中ut parameters. Whenever a neuron evaluates its 
output parameters, a set of messages are generated. It is thus the producer of the messages. Whenever a 
neuron references its input parameters, a set of messages are consumed. 

2. Presence of the Necessary Conditions for Deadlocks 
Mutual exclusion, no preemption and partial allocation are natural in ANNs. Mutual exclusion occurs as 
both the buffers and messages cannot be used by more than one neurons at the same time. No other 
neuron can preempt the resource from the holding neuron (no preemption). A neuron may request 
additional buffers for processing (partial allocation) even after it has allocated some. 

The need for synchronization in ANNs introduces the resource waiting requirement The synchronization 
requirement is seldom addressed by classical texts but they are essential for proper operations of the 
network systems. To get the most updated information, the neurons should wait for messages from other 
neurons if they are not available. 

Cycles are common in an ANN system. The presence of feedback message loops (e.g. in BP-Net) and 
central control (in nearly every type of network) give arise communication cycles. These communication 
cycles are called potential cycles as they are candidates in which resource allocation cycles will occur. 
Synchronization communication with message cycles raise the problem of blocked requests. 
3. Operation Constraint for Communication 
Two constraints on the communication among the neurons are imposed to prevent deadlocks. They are 1) 
in every logical iteration, every neuron produces one set of output messages, and consumes one set of 
input messages; and 2) at least one empty buffer exists between every connected neuron pair. 

Appendix - 16 



Role of the Constraints 

Intuitively, the first constraint prevents using up the buffers among connected neuron pairs. An initial 
buffer of size one is enough. The second constraint, on the other hand, guarantees that at least one 
message can be generated initially. Without the initial empty buffer, every neuron may be blocked by an 
iniual request to write. 】 

Justification of the Consfraint^ 

The two constraints seem to be restrictive but they are natural. The first constraint guarantees that the 
neurons wil l make use of the most updated information from other neurons for generating their own 
output，and they will always give most updated information to others. The second constraint is straight 
forward. 

Introducing These Constraints 

These two constraints are beyond the control of the users at the specification level They are automatically 
introduced by the implementation generator. It is therefore possible to guarantee the existence of these 
two constraints. 

4. Checkings Required 
Under the two given constraint mentioned, the only deadlocked case is that all neurons in a cycle request 
messages from each other before any one will produce a message. This is obvious as if there is no 
outstanding messages initially, all the neurons will be blocked. 

It is therefore just necessary to check that within these cycles, at least one of the neurons can accomplish 
its task to generate messages used by others. For any neuron to be initially unblocked, it should depend on 
initial messages. The problem is then reduced to guarantee that sufficient number of initial messages are 
available for the required neurons. 

C . D A T A DEPENDENCY GRAPHS 
The resource allocation graphs are constructed during execution. They are dynamic in nature and 
changes with respect to the system state. A static analysis, anyway, is preferred to a dynamic one as it will 
save more resources. 

In addition, it is inconvenient for us to use a resource allocation graph in testing whether or not a neuron 
in a cycle will depend on initial values. This is because the resource allocation graph focuses on the 
neuron level but the dependency relationship are at the parameter level. 

The resultant proposal is to simplify the resource allocation graphs into data dependency graphs. Data 
dependency graph is a frozen, worst case representation of a resource allocation graph. The basic 
argument is that the message and buffer resources can be eliminated from the resource allocation graphs. 
The neurons are then "expanded" to explore the behaviour at the parameter level. Afterwards, the 
requesting edge are "frozen" in a reverse directions. 

1. Simplifying Resource Allocation Graphs 
After the previous discussion, the buffer resources will not 
involve in deadlocks under the given constraint on the relative 
number of messages generated and consumed. As the buffers 
will not be involved in deadlocks, the resource allocation 
graphs can be simplified by eliminating the buffer resources 
from the graphs. Fig 1. Simplified Allocation Graph 
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r^ow there are only one type of resource, the messages, in the resource allocation graph. This suggests 
that the message resources among the neurons can also be omitted, as they are understood They can be 
replaced by a simple arrow pointing from the receiving side to the sending side as no other neurons may 
request the resources. Figure 1 shows a pair of neurons without the resources. 

2. Expanding into Parameter Level 
The graphs in Figure 1 is not suitable for determining whether or not the neurons will send before they 
reads. This is because the functioning of the neurons are determined at the parameter level. Every neuron 
has a number of input, output and internal parameters. A send operation is equivalent to generating the 
value for an output parameter, and a receive operation a reference to an input one. It is hence the be-
haviour of the parameters which determines whether there are deadlocks. 

Consequently, it is necessary for us to "expand" the neurons and include the request among all the 
parameters. The communication among the input/output parameters should be constructed. These pa-
rameters, however，will request values from other parameters within or outside the neurons. This can be 
viewed as a form of "local" request. A neuron can only generate before consume messages if its output 
parameter, say P, is ready. On the other hand, this output parameter P is ready only when all parameters 
P is depending on is ready to "send" their value to P. Hence the request among all the parameters should 
be included to gain a complete resource allocation graph. 

Figure 2 shows an instance of cyclic request among the neuron 
parameters for two sample neurons. The Pj's and Qj's are the 
parameters of two different neurons and they form a request 
cycle. If this cycle is blocked, the parameters, and hence these 
two neurons, are deadlocked. The behaviour of these 
parameters determines the result. 

3. Freezing the Request Edges 
The resource allocation graphs are dynamic in nature and not 
suitable for static analysis. It is necessary to introduce a static 
representation for the resource allocation graph and yet 
retaining the essential property. 

Figure 2. Detailed Dependency Graph 

Deadlocks occurs when there is a blocked cyclic request for messages. At the parameter level, blocked by 
cyclic request for messages is equivalent to blocked by cyclic request for values of parameters. So the 
requesting edges among the neurons is replaced by those among the parameters. 

The requesting edges among parameters may appear and disappear occasionally, so cycles may not always 
form. To convert the dynamic resource allocation graph into a static one, one can consider the worst case 
in which the edges always exists. This "freezes" the dynamic edges into a static one and they can be 
construct before execution. Thus a static graph is obtained. If for this worst case graphs, no cyclic request 
will be totally blocked, at least one of the requesting edges in the resource allocation graph will disappear. 
This proves the absence of deadlock. Figure 2 is an example of this type of graph. 

4. Reversing the Edge Directions 
This worst case graph is nearly identical to data dependency graphs, except that the edges are in reverse 
directions. An edge pointing from P to Q in the worst case graph implies that P requests values from Q, 
while an edge from Q to P implies that Q determines the value of P. They are equivalent in meaning 
when P is assumed to "always" request values from Q (i.e. frozen in the worst case). As the direction of 
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• not change the result of the previous proof, if they are kept consistently reversed, data 
dependency graphs instead can be dealt with. ’ 

5. Mutual Dependency Cycles 
The deadocked cycles in a resource allocation graph are mapped into cycles in the data dependency 
graphs. Not every cycle in data dependency graph is deadlocked. The cycles are deadlocked provided that 
r P祉^meters are mutually depending on each other. In this way, it is not possible to evaluate them and 
hence they are deadlocked. 

^ n tjie other hand, if there is always a proper order of evaluation for the parameters, the cycles will be 
deadlocked free. This is possible only i f at least one of the parameters is depending on some initial values 
In this way, that particular parameter can be evaluated first In the resource allocation view this is 
equivalent to guarantee that at least one of the producer can generate the initial message by refe'iring to 
some outstanding messages. 

It can be safely conclude now that for every cycles in a data dependency graph of a ANN, if at least one of 
the parameter can be evaluated before referring to other parameters, there will not be deadlock for this 
system. 

I V . C A S E S T U D I E S 
We are now going to illustrate the application of the whole analysis process with the example networks. 
The fill! results are given for every analysis procedure if they are not given before. The first one is the BP-
Net, with most result given in the main content. Two other examples are Perceptrons and Boltzmann 
machine. 

A . B P - N E T 
This is a sample specification on back-propagation network. The network contains 5 layers, with 256 bit 
input pattern size. Moreover，the number of neurons in the first layer is equal to input pattern size, with 
the number decrease by one half in every succeeding layer. 

1. Specification Forms 
There are totally 4 forms, one for constant declarations, one for formal neuron, one configuration and 
one control neuron. Among the forms for formal neuron, only those for BPInput and BPOut are shown, 
which represent the input and output neuron types respectively. 

a) Constant Declaration 
Discussed before and is not shown here. 

b) Formal Neuron 

* * * F O R M A L N E U R O N * * * 
N E U R O N T Y P E : 

BPI叩ut( M, N, Id); 
/* M ~ number of neuron in previous layer, 

N ~ number of neuron in next layer. 
Id - position of current neuron in the layer. */ 

I N P U T : 
I [ 1..M] BINARY; 
( W I [ 1..N ]’ Deltal [ 1..N]) CONTINUOUS; 
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O U T P U T ： 
Out RANGE (0，1) INCLUSIVE CONTINUOUS. 

I N T E R N A L P A R A M E T E R ： ’ 
(A, W[1..M]) CONTINUOUS; 
(DeltaW[l..M], Delta) CONTINUOUS; 

I N I T I A L V A L U E ： 

A[0] = RANDOM; W[*][0] = RANDOM; DelatW[*][0] = 0. 
I N T E R N A L F U N C T I O N ： ’ 

A[T] = I[T] * TRANSPOSE( W[T]) + Theta; 
Out[T] = 1 / ( 1 + EXP( - A [T ] ) ) ; 
Training { 

Delta[T] = Out[T] * (1 - Out[T]) * (DeltaI[T] * TRANSPOSE( WI[T])); 
DeltaW[*][T] = Neta * Delta[T] * Out[T] + Alpha * DeltaW[*][T-l]. 
W[T+1] = W[T] + DeltaWm； ’ }； 

Recalling { , 
DeltaW[T] = 0; 
Delta[T] = 0; 
W[T+1] 二 W[T]; 

N E U R O N T Y P E : 
BPOut( M, Id ); 

/ * M ~ number of neuron in previous layer, 
Id - position of current neuron in the layer. */ 

I N P U T : 
( I [ 1..M ]，Teach ) RANGE (0’ 1) INCLUSIVE CONTINUOUS; 

O U T P U T : 
Out RANGE (0,1) INCLUSIVE CONTINUOUS; 
(W [ 1..M ], Delta) CONTINUOUS; 

I N T E R N A L P A R A M E T E R : 
(A, DeltaW[l..M]) CONTINUOUS; 

I N I T I A L V A L U E : 
W[*][0] = RANDOM; DeltaW[*][T] = 0; 

I N T E R N A L F U N C T I O N : 
A[T] = I[T] * TRANSPOSE( W[T]) + Theta; 
Out[T] = 1 / ( 1 + EXP( - A [T ] ) ) ; 
Training { 

Delta[T] = (Teach[T] - Out[T]) * Out[T] * (1 - Out[T]); 
DeltaW[T] = Neta * Delta[T] * Out[T] + Alpha * DeltaW[T-l]: 
W[T+1] = W m + DeltaW[T]; 

Recalling { 
DeltaWm = 0; 
Delta[T] = 0; 
w [T+ i ] = w m ; 

The specification of BPInput is very similar to that of BPHidden. The Internal Function part is in fact 
identical, i.e. they are functioning in the same way. They are different only in the different way of 
classifying the parameters W and Delta. In BPHidden’ they are classified as ou中ut parameters but not in 
BPInput. 
On the other hand, the output and internal parameters of BPOut is identical to that of BPHidden. They 
have, however, different input parameters and functions. BPOut uses a teaching input teach from the en-
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vironment to determines its error correction signal Delta while BPHidden computes this value by 
corrections signals Deltal from the following layers. 

c) Configuration 
Discussed before and is not shown here. 

d) Control Neuron 
Discussed before and is not shown here. 

2. Results After Simple Checkings 
No special error is reported from simple checkings. 

3. Internal Dependency Graphs Construction 
Discussed before and is not shown here. 

a) Internal Dependency Graphs 
Discussed before and is not shown here. 

b) Control Neuron Internal Dependency Graph 
Discussed before and is not shown here. 

c) Combined Internal Dependency Graph 
Discussed before and is not shown here. 

4. Results From Parameter Analysis 
Nothing special reported from parameter analysis. 

5. Global Dependency Graphs Construction 
Discussed before and is not shown here. 

6. Cycles Detection 
Discussed before and is not shown here. 

7. Time Subscript Analysis 
All cycles can pass the time subscript analysis. In practice, the time subscript analysis is applied 
simultaneously with the cycle detection process. Cycles with negative time offsets are not explored at all. 
This will reduce the time and memory requirement of the system. For our example, the list of cycles will 
not be generated at all and the system will only report that nothing goes wrong. 

8. Subscript Analysis 
No need to perform the subscript analysis as all the parameters can pass the time subscript analysis. 

9. Scheduling 
Discussed before and is not shown here. 
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B . P E R C E P T R O N 
Jh二s p a simple single layer perceptron. The i叩ut pattern is 1024 Bi-state values known as predicates 
an^there are also 1024 neurons for learning these values. Every neuron is connected to 1/4 A : 二, 
r ^ l d C r t T ^ r ^ I L r e P U n g 丨叩ut from a continuous pattern one position lower than the previous one in a 

1. Specification Forms 
The four forms for the perceptron are quite simple. This is mainly because there is only one type of 
neuron defined, the Perceptron. ^^ 
a) Constant Declaration 

* * * C O N S T A N T D E C L A R A T I O N * * * 
#DECLARE (NumOfNeu, 1024); 
#DECLARE (InSize, NumOfNeu / 4); 
#DECLARE (Maxlter, 1000); 
#DECLARE( Neta, 0.1); 

There are only four constants defined for the perceptron specification. Their meanings are defined in the 
following table. 

NumOfNeu Number of neuron in the layer 
InSize Input size for every neuron 
Maxlter Maximum number of iteration for each pattern 
Neta Learning rate Cq)，a system constant 

Formal Neuron 

* * * F O R M A L N E U R O N * * * 
N E U R O N T Y P E : 

Perceptron; 
I N P U T : 

I [l.JnSize] VALUE (-1,1); 
O U T P U T ： 

Out VALUE (-1，1); 
I N T E R N A L P A R A M E T E R : 

(W[l..InSize], A，E) RANGE (-1，1) INCLUSIVE CONTINUOUS; 
I N I T I A L V A L U E : 

W[*][0] = RANDOM; E[*][0] = RANDOM; 
I N T E R N A L F U N C T I O N : 

A[T] = I[T] * TRANSPOSE( W[T]); 
Out[T] = IF A[T] > 0 THEN 1 ELSE-1; 
E[T] = I [ l ] [T]-OUT[T]; 
Training { W[T] = W[T-1] + Neta * E[T-1] * I[T-1]; }; 
Recalling { W[T+1] = W[T]; }; 

The input and output parameters are defined as accepting values -1 and 1 only. This is a Bi-state value 
known as predicate. This definition is accomplished by using the VALUE clause. 
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Jhe supervised leaning is accomplished by the equation for the error value, EIT]. The value of E m is 
depending oa the difference between the first input value and the output value. By the s p ^ f ^ L „ the 
二 r r 二 ? C f f 咖 mPut into the i-th neuron is the value of the input pattern at the i T 二 = Vhi 

r " “ for every neuron is the value of the input at the corresponding position 0 ^ 1 ^ 0 0 ^ 0 0 
v，e is also the expected output of that neuron. Hence the value of I m is 0 > 叩 _ = 

c) Configuration 

講 C O N F I G U R A T I O N * * * 
N E U R O N L A B E L ： 

N[l..NumOfNeu]; 
N E U R O N C H A R A C T E R ： 

N [L.NumOfNeu] TYPE Perceptron 
INPUT-DEGREE InSize OUTPUT-DEGREE 1-

C O N N E C T I O N P A T T E R N ： ， 

{ N[y].I[x] = CN.Input-Pattem[( (y+x-2) mod NumOfNeu) + 1]; 
X : 1..InSize; y : l..NumOfNeu; } ， 

{ CN.Output-Pattem[x] = N[x].Out; 
X : 1..NumOfNeu; ] 

The configuration is again very simple. The only tricky part is on feeding the i叩ut Input-Pattern ftx)m 
control neuron to the neurons. The specification defines that position 
((y + x - 2 ) mod NumOfNeu ) + 1 
of the input pattern is feed into the x-th input of y-th neuron. This specifies a continuous range of input 
for every neuron. If the neuron is in the i-th position within the layer, the input for the neuron will start at 
the i-th position, stretching for InSize positions. This serves as an example for specifying partial 
connection. 

The expression will always return the value of y when 义 is equal tol ,as>'< NumOJNeu. The result is that 
the first input to every neuron is exactly the input at the same position of that neuron. 

d) Control Neuron 

* * * C O N T R O L N E U R O N * * * 
G L O B A L I N P U T : 

Output-Pattem[l..NumOfNeu] CONTINUOUS; 
G L O B A L O U T P U T : 

Input-Pattem[ 1 ..NumOfNeu] CONTINUOUS; 
G L O B A L P A R A M E T E R : 

(Iteration, Curr-Pattem) INTEGRAL; 
G L O B A L I N I T I A L V A L U E : 

Iteration[0] = 1; Curr-Pattem[0] = 1; Phase[0] = Training; 
I N P U T F I L E : 

(Training, Recalling) { 
FILE 'INPAT.DAT', RECORD I叩at [1..5] VALUE (-1, 1) ; }； 

O U T P U T F I L E : 
(Training, Recalling) { 

FILE 'OUTPAT.DAT’，RECORD Outpat [1..5] VALUE (-1，1); }; 
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G L O B A L F U N C T I O N 
Iteration[T+l] 二 /* iteration counter*/ 

IF Iteration[T] 二 Maxlter THEN 1 ELSE Iteration[T] + 1; 
CuiT-Pattem[T+l] 二 /* current pattern number * / ， 

IF Phase[T+l] = Training THEN 
IF Iteration[T] 二 Maxlter THEN Curr-Pattern[T] + 1 
ELSE Curr-Pattem[T]; ‘ 

旺SE /* Recalling */ 
IF Phase[T] 二 Training THEN 1 
ELSE Curr-Pattern[T] + 1 

Input-Pattem[T] = Inpat[ CuiT-Pattem[T]]; 
Outpat[ Curr-Pattem[T] ] = Output-Pattern[T]; 
Phase[T] = /* phase transition */ 

IF EOF( ’OUTPAT.DAT ) THEN 
IF Phase[T-1] = Training && Iteration[T-l] = Maxlter 

THEN Recalling 
e l s e I F Phase[T-l] = Recalling THEN Terminate 

ELSEPhase[T-l]; 

There are two files for input from and output to the environment respectively. Both of the files use the Bi-
state predicate values -1 and 1. The input file is used for both training and recalling phases. 

The counter Iteration is to count the number of iterations for the learning of the patterns. In this 
specification, a pattern will be learned for Maxlter number of iterations. After that, the next pattern will 
be presented to the perceptron. The value of Maxlter is not referenced in the recalling phase. 

The transition among patterns is controlled by Curr-Pattern. In the training phase, the value of Curr-
Pattern is depending on the number of iterations the pattern has been presented, i.e. Iteration. Every time 
when Iteration has achieved its maximal, the value of Curr-Pattern is increased by one. In recalling，the 
value of Curr-Pattern is first reset to 1 and the same file is used for recalling values. Curr-Pattern then 
increases in every iteration as it is only necessary to present once for every pattern in recalling. 

Hence the perceptron will be given the records of the input file in sequence for twice, once for training 
and once for recalling. The same is, however, also true for the output file. This may sound confusing as 
it is not possible to write two sets of value into the same record. This in fact means that the output file 
will contain the second set of value, i.e., the result obtained from recalling phase only. The first set of 
value will be generated first but subsequently be overwritten. This is reasonable as we are only interested 
in the final results. 

The phase transition variable Phase determines its transition by referring to the input file. If all the 
records in the input file are read, there are two possible actions. The first case is that the system is in the 
training phase, in which the value of Phase should change to recalling when the maximum number of 
iterations has passed. The second case is that the system is already in the recalling phase, in which case 
the system should terminate. In all other cases, the value of Phase should not be changed. 

2. Results After Simple Checkings 
No special result is reported from simple checkings. 

3. Internal Dependency Graphs Construction 
The internal dependency graphs returned by the graph construction process is simpler than that of the BP-
Net case. These graphs involves less number of parameters, simpler dependency relations and less 
number of types of neurons. 
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a) In ternal Dependency Graphs 
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There are only two internal dependency graphs (IDGs) associated with perceptron, one for training and 
the other for recalling. The IDG for recalling is in fact a sub-graph of that for training. 
b) Cont ro l Neuron Internal Dependency Graph 

The internal dependency graph for control neuron is roughly the 
same as that of the BP-Net. It is because they are using the 
similar parameters, but their functioning are different. One can 
observe that there may be more than one dependency relation 
between parameters, such as that between Phase and Curr-
Pattern. The parameter Curr-Pattern is depending on the same 
and the previous instance of Phase. This is quite common in our 
specification but the number of connections among the 
parameters is thus unlimited. This may significantly slow down 
the efficiency of the cycle detection algorithm. 

Curr-
Pattern 

X Input-
^ Pattern c) Combined Internal Dependency Graph 

This graph is the same as the IDG on the training phase. This is because the IDG on recalling phase is a 
sub-graph of IDG on training. As a result, the combined graph is not different as that of the training 
phase. 

4. Results From Parameter Analysis 
No special results 
useful. 

reported from parameter analysis. They are all well-defined, well-matching and 
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5. Global Dependency Graph Construction 

(a) Training 
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The global dependency graph for the specified perceptron illustrates that it is necessary to combined one 
IDG with the CnlDG to get the resultant graph. A single IDG is sufficient because there is just one layer 
in the network. The solid arrows are internal dependencies while the broken arrows are global ones. 
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6. Cycles Detection 
Discussed before and is not shown here. 

7. Time Subscript Analysis 
All the cycles pass the time subscript analysis. 

8. Subscript Analysis 
The subscript analysis is not applied. 

9. Scheduling 
(* Scheduling of Perceptron, Training phase *) 
W[T] <- W[T-1],I[T-1]，E[T-1]; 
A[T] <- W[T],I[TJ; 
Out[T] <- A[T]; 
E[T] <- Out[T], I[T]; 

(* Scheduling of Perceptron, Recalling phase *) 
W[T] <- W[T-1]; 
A[T] <- Wm，I[T]; 
Out[T] <- A[T]; 
E[T] <- Out[T], I[T]； 

(* Scheduling of Control Neuron *) 
Iteration[T] <- Iteration[T-1]; 
Phase[T] <- Iteration[T-l], Phase[T-l]; 
Curr-Pattem[T] <- CuiT-Pattem[T-l], Iteration[T-l], Phase[T-l], Phase[T]; 
Input-Pattem[T] <- Curr-Pattern[T]; 

C . BOLTZMANN MACHINE 

This is the shifter example on p.299 of Parallel Distributed Processing, vol. 1 [34]. It follows the 
example given in the text, in which the neurons are randomly probed for updating. This is a safe ap-
proach for ensuring that every neuron gets to see the most recent states of all the other units. The 
parallelism is however, sacrificed. I f the system can tolerate time delays, it is just necessary to remove the 
control signals from the control neuron which is responsible for updating. 

1. Specification Forms 
This specification is the most complicated one we given. This is due to the complicated control performed 
by the system over the neurons, and the comparatively vast number of book-keeping functions. 

The input to the network is through clamped vectors but not through inputs into the neurons. When the 
neurons are clamped, their output are fixed while other neurons are free to change. Clamped with 
different vectors means training the neurons to learn different patterns. 

There are totally six different operation phases for the neurons. In the simulated annealing process 
introduced by the text, the visible layers of the network is first clamped and the hidden neurons are then 
allowed to generate the output, one at a time, with a random function depending on a decreasing 
parameter called temperature. This phase is known as phase+ {Phase-plus in our specification). After 
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，at, every neuron is allowed to run for 10 iterations during which time the frequency with which each 
of connected umts wei^ both on was measured. This phase is called AfteJlus b y o u r s S a S ^ 

This process is repeated for 20 times with different clamped vectors and the co-occurrence s S s w ^ 

averaged over all 20 runs to yield an estimate known as p j (which is called p-plus) in our specification. 

Aft厂 that, ^ e system enters phase' (Phase-minus in our specification), in which the visible neurons are 
no jogger clamped and all neurons are free to generate their outputs based on the same random function 

d^reasmg temperature. After that, the neurons will record their own output with 10 free iterations 
This phase is called After-minus in our specification. This process is again repeated for 20 runs with 
different clamped vectors and the statistics were recorded in p^. {p-minus in our specification). 

These four phases resulting in a set of 40 annealings is collectively known as a sweep. After every sweep, 

Oie neurons can update their own weights by - p：̂) . In addition, every weight had its absolute 
二agnitude decreased by 0,0005 times its absolute magnitude. This weight decay prevented the weights 
from becoming too large and it also helped to resuscitate hidden units which had predominantly negative 
or predominantly positive weights. This phase is called update phase. The whole process is then repeated 
again for 9000 times. 

After that, the network will be in the recalling state. This is the state in which the system can be used for 
retrieving some information. The Visible units are clamped with input vectors and the Shifts units are 
used to indicate what type of shifts it is. Hence there are totally 6 states and the behaviour for different 
states are different. In addition, the transition among the states is rather complicated and it produces a 
rather clumsy specification on control neuron. 

a) Constant Declaration 

* * * C O N S T A N T D E C L A R A T I O N * * * 
#DECLARE ( PatSize, 8 ); 
#DECLARE( Shifts, 3) ; 
#DECLARE ( VNum, PatSize * 2); 
#DECXARE ( HNum, PatSize * Shifts ); 
#DECLARE( Theta, 0.1); 
#DECLARE ( Neta, 5 ); 
#DECLARE ( Dec, 0.9995 ); 
#DECLARE ( NumOfPat, 20 ); 
#DECLARE ( Statlter, 10 ); 
#DECLARE ( Anneal, 16); 
#DECLARE ( MaxSweep, 9000 ); 
#DECLARE ( Temperaturc[l..Anneal], [40,40’ 35，35’ 30’ 30，25,25, 20, 20,15,15，12，12, 10，10]); 

The meaning of the constants are given in the following table. 

PatSize Size of input pattern 
Shifts Ways of shifting the signals (right, left, no) 
VNum Number of visible neurons 
HNum Number of hidden neurons 
Theta Threshold value (0)，a system constant 
Neta Learning rate On)，a system constant 
Dec Weight decay for reducing weight magnitude 
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NumOfPat 
S ta t l te r~ 
Anneal 
Temperature 

Number of patterns presented 
Number of iterations for recording statistics 
Number of simulated annealing temperatures 
Temperature values for the output functions 

pne of the most special constant is the constant array Temperature. It is used to stored the temperatures^ 
^or simulated annealing. It is possible for us to use some control to generate the pattern-wise temperatures 
but It will further complicate the system. Using such a constant array will be the most convenient method. 
b) Formal Neuron 

* * * F O R M A L N E U R O N * * * 
N E U R O N T Y P E ： 

Visible; 
I N P U T : 

(I[l..HNum], Clamp, Update) BINARY; 
Temp INTEGRAL; 

O U T P U T ： 

Out BINARY; 
I N T E R N A L P A R A M E T E R ： 

(W[l..HNum], DeltaE) CONTINUOUS; 
(P-Plus[l..HNum], P-Minus[l..HNum]) INTEGRAL; 

I N I T I A L V A L U E : 
W[*][0] = RANDOM; DeltaE[0] = RANDOM; 0ut[0] = RANDOM; 

P-Plus[*][0] = 0; P-Minus[*][0] = 0; 
I N T E R N A L F U N C T I O N : 

(Phase-Plus, Recalling ) { 
DeltaEm = DeltaE[T-l]; / * clamped, no updating •/ 
W[T+1] = W[T]； 
Outm : Clamp[T]； 
P-Plus[*][T] = 0; 
P-Minus[*][T] = 0; }; 

Phase-Minus { 
DeltaE[T]= 

IF Updatem = 1 THEN I[T] * Transpose( W[T]) - Theta 
ELSE DeltaE[T-l]; 

Out[T]= 
IF Update[T] = 1 THEN 

IFRANDOM(0,1)<= 
1 / ( 1 + EXP( -DeltaE[T-l] /Temp[T-l] ) ) THEN 1 

ELSEO 
ELSEOut[T-l]; 

W[T+1] = W[T]; 
P-Plus[T]=P-Plus[T-l]; 
P-Minus[T] = P-Minus[T-l]; }; 

After-Plus { 
DeltaEm = 

IF Update[T] = 1 THEN I[T] * Transpose( W[T]) - Theta 
ELSEDeltaE[T-l]; 

Out[T]= 
IF Update[T] = 1 THEN 

IFRANDOM(0,1)<= 
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1 / ( 1 + EXP( - DeltaE[T-l] / Temp[T-l] ) ) THEN 1 
ELSEO . 

ELSEOut[T-l]; ‘ 
W[T+1] = W[T]; 
P-Plus[x: l..HNimi][T] 二 

IF Update[T] = 1 && Out[T] 二 1 && I[x][T] = 1 THEN 
P-Plus[T-l] + 1 

ELSEP-Plus[T-l]; 
P-Minus[T] = P-Minus[T-l];); 

After-Minus { 
DeltaE[T]= 

IF Updatem = 1 THEN I[T] * Transpose( W[T]) - Theta 
ELSE DeltaE[T-l]; 

Out[T]= 
IF Update[T] = 1 THEN 

IFRANDOM(0,1) <= 
1 / ( 1 + EXP( - DeltaE[T-l] / Temp[T-l] ) ) THEN 1 

ELSEO 
ELSEOut[T-l]; 

W[T+1]=W[T]; 
P-Minus[x: l..HNum][T]= 

IF Updatem = 1 && Out[T] = 1 && I[x] [T] = 1 THEN 
P-Minus[x][T-l]+l 

ELSEP-Minus[x][T-l]; 
P-Plus[T] = P-Plus[T-l]; }; 

Updating { 
Outm = Out[T-l]; 
W[T+1] = Dec * w m + Neta * (P-Plus[T] - P-Minus[T]) / NumOfPat; 
DeltaEU] = DeltaE[T-l]; 
P-Plus[T] =P-Plus[T-l]; 
P-Minus[Tl = P-Minus[T-l]; ); }; 

Shifting Indicators */ 
N E U R O N T Y P E : 

Shifts; 
I N P U T : 

a[l..HNiim], Clamp, Update) BINARY; 
Temp INTEGRAL; 

O U T P U T : 
Out BINARY; 

I N T E R N A L P A R A M E T E R : 
(W[l..HNum], DeltaE) CONTINUOUS; 
(P-Plus[l..HNum], P-Minus[l..HNum]) INTEGRAL; 

I N I T I A L V A L U E : 
W[*][0] = RANDOM; DeltaE[0] = RANDOM; 0ut[0] = RANDOM; 

P-Plus[*][0] = 0; P-Minus[*][0] = 0; 
I N T E R N A L F U N C T I O N : 

Phase-Plus { 
DeltaE[T] = DeltaE[T-l]; /* clamped, no updating */ 
W[T+1]=W[T]; 
Out[T] = Clamp[T]; 
P-Plus[*][T] = 0; 
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P-Minus[*] [T]=0;) ; “ 
(Phase-Minus, Recalling) { 

DeltaE[T]= 
IF Updatem = 1 THEN I[T] * Transpose( W[T] ) - Theta 
ELSE DeltaE[T-l]; 

Out[T]= 
IF Update[T] = 1 THEN 

IFRANDOM(0,1)<= 
1 / ( 1 + EXP( - DeltaE[T-l] / Temp[T-l])) THEN 1 

ELSEO 
ELSEOut[T-l]; 

W[T+1]=W[T]; 
P-Plus[T]=P-Plus[T-l]; 
P-Minus[T] = P-Minus[T-l]; }; 

After-Plus { 
DeltaE[T]= 

IF Updatem = 1 THEN I[T] * Transpose( W[T] ) - Theta 
ELSEDeltaE[T-l]; 

Out[T]= 
IF Update[T] = 1 THEN 

IFRANDOM(0,1) <= 
1 / ( 1 + EXP( - DeltaE[T-l] /Temp[T- l ] ) ) THEN 1 

ELSEO 
ELSEOut[T-l]; 

W[T+1]=W(T]； 

P-Plus[x: l..HNiim][T]= 
IF Updatem = 1 && Out[T] = 1 && I[x][T] = 1 THEN 

P-Plus[T-l] + 1 
ELSEP-Pliis[T-l]; 

P-Minus[T] = P-Minus[T-l];); 
After-Minus { 

DeltaE[T] = 
IF Updatem = 1 THEN I[T] * Transpose( W[T] ) - Theta 
ELSEDeltaE[T-l]; 

Out[T]= 
IF Updatem = 1 THEN 

IFRANDOM(0,1)<= 
1 / ( 1 + EXP( - DeltaE[T-l] /Temp[T-l] ) ) THEN 1 

ELSEO 
ELSEOut[T-l]; 

W [ T + 1 ] = W I T ]； 

P-Mmus[x: l..HNum][Tl = 
IF Updatem = 1 && Out[T] = 1 && I[x][T] = 1 THEN 

P-Minus[x][T-l] + 1 
ELSEP-Minus[x][T-l]; 

P-Plus[T] = P-Plus[T-l]; }; 
Updating { 

Out[T] = Out[T-l]; 
W[T+1] = Dec * W[T] + Neta * (P-Plus[T] - P-Minus[T]) / NumOfPat; 
DeltaE[T] = DeltaE[T-l]; 
P-Plusm = P-Plus[T-l]; 
P-Minus[T] = P-Minus[T-l]; }; }; 
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/* Hidden Units */ 
N E U R O N T Y P E : 

Hidden; 
I N P U T : 

(I[l..VNum], Update) BINARY; 
Temp INTEGRAL; 

O U T P U T : 
Out BINARY; 

I N T E R N A L P A R A M E T E R : 
(W[l..HNum], DeltaE) CONTINUOUS; 
(P-Plus[l..HNum], P-Miniis[l..HNum]) INTEGRAL; 

I N I T I A L V A L U E : 
W[*][0] 二 RANDOM; DeltaE[0] = RANDOM; 0ut[0] = RANDOM; 

P-Plus[*][0] = 0; P-Minus[*][0] = 0; 
I N T E R N A L F U N C T I O N : 

(Phase-Minus, Phase-Plus, Recalling) { 
DeltaE[T]= 

IF Update[T] = 1 THEN I[T] * Transpose( W[T] ) - Theta 
ELSEDeltaE[T-l]; 

Out[T]= 
IF UpdatefT] = 1 THEN 

IFRANDOM(0,1)<= 
1 / ( 1 + EXP( -DeltaE[T-l] /Temp[T-l] ) ) THEN 1 

ELSEO 
ELSEOut[T-l]; 

W [ T + l ] = W m ; 
P-Plus[T] = P-Plus[T-l]; 
P-Minus[T] = P-MinusfT-l]; }; 

After-Plus { 
DeltaE[T]= 

IF Updatem = 1 THEN I[T] * Transpose( W[T] ) - Theta 
ELSEDeltaE[T-l]; 

Out[T]= 
IF Updatem = 1 t h e n 

IFRANDOM(0,1)<= 
1 / ( 1 + EXP( - DeltaE[T-l] /Temp[T-l])) THEN 1 

ELSEO 
ELSEOut[T-l]; 

w[T+i]=wm; 
P-Plus[x: l..HNum][T] 二 

IF Updatem = 1 && Out[T] = 1 && I[x][T] = 1 THEN 
P-Plus[T-l] + 1 

ELSEP-Plus[T-l]; 
P-Minus[T] = P-Minus[T-l]; }; 

After-Minus { 
DeltaE[T]= 

IF Updatem = 1 THEN I[T] 
ELSEDeltaE[T-l]; 

Outm = 
IF Updatem = 1 t h e n 

IFRANDOM(0,1)<= 
1 / ( 1 + EXP( - DeltaE[T-l] /Teinp[T-l])) THEN 
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ELSEO 
ELSEOut[T-l]; 

W[T+1] = W[T]; 
P-Minus[x: l..HNum][T]= 

IF Update[T] = 1 & & Out[T]= 
P-Minus[x][T-l] + 1 

ELSEP-Minus[x][T-l]; 

& & I[x][T] = 1 THEN 

P-Plus[T] = P-Plus[T-l] ;) ; 
Updating { 

Out[T] = Out[T-l]; 
W[T+1] = Dec * W[T] + Neta 
DeltaE[T] = DeltaE[T-l]; 
P-Plus[T] =P-Plus[T-l]; 
P-Minus[T] = P-MinusfT-n：] 

(P-Plusm - P-Minus[T]) / NumOfPat; 

There are totally three types of neurons, the Visible type which is those neurons representing the i叩ut 
pattern and its shifted partners, the Hidden type which is those hidden neurons responsible for 
determining the shifts, and the Shi/i type which is responsible for indicating the shift. 

At first glance, it seems that these three types of neurons are quite different. The resultant specification, 
however, reveals that they arc quite similar. They differs from one another only in their number of input 
signals and the use of equations in different phases. The difference in input signals is obvious as they are 
connected to different groups. 

On the other hand, the use of different equations in different phases is more interesting. It seems that the 
equations for the neurons are quite different but there are in fact only 5 groups of equations. These 5 
groups can cater for the 6 phases of these 3 types of neurons. Hence the difference among the neurons are 
on the different grouping of equations and phases. 

There are quite a number of parameters for the neurons. These parameters and their uses are given in the 
following table. With these explanations, it is very easy to map the equations in the specification to the 
standard equations in the text. 

I 
Clamp 
Update 

Input Signals from other groups of neurons 
Signed for clamping output 
Signal for asynchronous updating 

Out Output Output to other groups of neurons 
W 
DeltaR 
P-Plus 
P-Minus 

Internal Weights of input 
Energy change, AR 
Recording the number of I's in After-Plus 
Recording the number of I's in After-Minus 

c) Configuration 

* * * C O N F I G U R A T I O N * * * 
N E U R O N L A B E L : 

V[l..VNum], H[l..HNum], S[l..Shifts]; 
N E U R O N C H A R A C T E R : 

V[l..VNum] TYPE Visible 
INPUT-DEGREE HNum+3 
OUTPUT-DEGREE HNum; 
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S[l..Shifts] TYPE Shift “ ‘ 
INPUT-DEGREE HNum+4 
OUTPUT-DEGREE HNum; 

H[l..HNum] TYPE Hidden 
INPUT-DEGREE VNum+3 
OUTPUT-DEGREE VNum; 

C O N N E C T I O N P A T T E R N ： 
{ H[x].I[y] = V[y].Out; /* input and outputs */ 

H[x].I[z] = S[z-VNum].Out; 
V[y]J[x] = H[x].Out; 
S[w].I[x] = H[x].Out; 
CN.Outpat[w] = S[w].Out; ^ 
H[x].Update = CN.Update[x]; /* update signi 
S[w].Update = CN.Update[HNum+w]; 
V[y].Update = CN.Update[HNum+Shifts+y]; 
H[x].Temp = CN.Temp; /* temperature */ 
V[y].Temp = CN.Temp; 
S[w].Temp = CN.Temp; 
V[y].Clamp = CN.CIamp[y]; /* clamped signal */ 
S[w].Clamp 二 CN.Clamp[VNum+w]; 
X ： l.-HNum; y : l..VNum; z : VNum+1..VNum+Shifts; w : l..Shifts } 

/* ou中ut to control neuron */ 

The configuration of the network is also rather complicated. This is owing to complexity in connection. 
We use different neuron labels for different type of neurons so all the three types of neurons should have 
their own connection declarations. This is different from the case of BP-Net, in which the same label is 
used for different types of neurons. The different labelling approach is adopted in this specification 
b^use it gives clearer connections among the different type of neurons. If the same label is used for 
different types of neurons, the connection may be ambiguous. Similar types of connections are grouped 
together in the specification. 

d) Control Neuron 

* * * C O N T R O L N E U R O N * * * 
G L O B A L I N P U T : 

Outpat[l..Shifts] BINARY; 
G L O B A L O U T P U T : 

Temp INTEGRAL; Clamp[l..VNum+Shifts] BINARY; 
(Update[l..VNum+HNum+Shifts]) BINARY; 

G L O B A L P A R A M E T E R ： 
(Iteration, Sweep, Probe, Annealing, Curr-Out, Curr-In) INTEGRAL; 

G L O B A L I N I T I A L V A L U E : 
lterauon[0] = 0; Sweep[0] = 0; Annealing[0] = 1; 
Curr-Out [0] = 0; Curr-In[0] = 0; Probe[0] 二 0; 
Phase[0] = Phase-Plus; 

I N P U T F I L E : 
FILE 'INPAT.DAT\ RECORD Inpat [1..19] RANGE BINARY; 

O U T P U T C O N T R O L : 
FILE ,OUTPAT.DAT.’ RECORD Opat [ FROM 0 FOR 3 ] RANGE BINARY; 

G L O B A L F U N C T I O N : 
Curr-Out[T]= 

IF Phase[T] = Recalling && Annealing[T-l] = NumOfPat * 2 THEN 
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Curr-Out[T-l]+l 
ELSECurr-Out[T-l]; 

Opat[ Curr-Out[T] ] = Outpat[T]; 
Curr-In[T]= 

IF Annealing[T] > 20 THEN 
Annealing[T] - 20 

ELES Annealing[T]; 
Clamp[T] = Inpat[ Curr-In[T]]; 
Temp[T]= 

IF Phase[T] = Phase-Plus II Phase[T] = Phase-Minus II 
Phase[T] = Recalling THEN Temperature[ Iteration[T]] 

ELSE Temperature[Anneal]; 
Update[T]= 

IF Phase[T] = Phase-Plus THEN RANDOM(l,HNum) 
ELSE IF Phasem = After-Plus THEN RANDOM(l, HNum) 
e l s e i f PhasefT] = Phase-Minus THEN 

RAND0M(1, HNum+VNum+Shifts) 
ELSE IF Phase[T] = After-Minus THEN 

RANDOM(l, VNum+HNum+Shifts) 
ELSE IF Phase[T] = Updating THEN 0 
ELSE IF Phasem = Recalling THEN RANDOM (1’ Shifts+HNum); 

ProbeU+l]= 
IF PhaseCT] = Phase-Plus && Probe[T] = HNum THEN 1 
ELSE IF Phase[T] = After-Plus && Probe[T] = HNum THEN 1 
ELSE IF PhasefT] = Phase-Minus && Probe[T]= 

HNum+VNum+Shifts THEN 1 
ELSE IF Phasem = After-Minus & & Probe[T]= 

HNum+VNum+Shifts THEN 1 
ELSE IF Phase[T] = Updating && Probe[T]= 

HNum+VNum+Shifts THEN 1 
ELSE IF Phase[T] = Recalling & & Probe[T] = HNum+Shifts THEN 1 
ELSEProbe|T] + l ; 

Iteration[T+l]= 
IF Probe[T+l] = 1 THEN 

IF Phase[T] = Phase-Plus && Iteration[T]=Anneal-1 THEN 1 
ELSE IF Phase[T]=After-Plus && Iteration[T]=StatIter-l THEN 1 
ELSE IF Phase[T]=Phase-Minus && Iteration[T]:Anneal-1 THEN 1 
ELSE IF Phase[T]=After-Minus && Iteration[T]=StatIter-l THEN 1 
ELSE IF Phase[T]=Updating THEN 0 
ELSE Iteration[T] + 1 

ELSEIterationU]; 
Annealing[T+l]= 

IF Iteration[T+l] = 1 && Iteration[T] <> 1 THEN 
IF Phase[T] = Phase-Plus 丨丨 Phase[T] = Phase-Minus 

THEN AnnealingfT] 
ELSE Annealingm + 1 

ELSE IF Iteration[T+l] = 0 && Iteration[T] o 0 THEN 1 
ELSE Annealing[T]; 

Sweep[T+l]= 
IF Annealing[T+l] = 1 && Annealing[T] o 1 THEN Sweep[T] + 1 
ELSE Sweep[T]; 

Phase[T]= 
IF Iteration[T] = 1 && Iteration[T-l] <> 1 THEN 

IF Phase[T-l] = Phase-Plus THEN After-Plus 
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ELSE IF Phase[T-l] = After-Plus THEN 
IF Annealing[T] = NumOfPat THEN Phase-Minus 
ELSE Phase-Plus 

e l s e I F Phase[T-l] = Phase-Minus THEN After-Minus 
e l s e i f Phase[T-l] = After-Minus THEN 

IF Annealing[T] = NumOfPat*2 THEN Updating 
ELSE Phase-Minus 

ELSE IF Phase[T-l] 二 Recalling && Sweep[T] = MaxSweep 
THEN Terminate 

ELSE Phase[T-l] 
ELSE IF Iteration[T] = 0 && Iteratioii[T-l] <> 0 THEN Recalling 
ELSEPhase[T-l]; 

The specification on the control neuron is very complex owing to the complicated control required for the 
opera t̂ion of the network. There are a lot of counters to be maintained, and the dependency among them 
introduces a lot of equations for updating these counters. In conventional imperative programming 
language, we can use loops to control the operation of the neurons but in this type of dataflow language 
we should explicitly identify the condition for the updating of the counters. This is not easy for this 
complicated example. 

There are a number of parametCTs used in the control neuron specification form. Their meanings are 
given in the following table. 

Probe Number of probing for neurons 
Iteration Counter for every phase 
Annealing Number of annealing sets 
Sweep Number of sweeps 
Temp System temperature 
Update Index of the neuron to be updated 
Curr-In Current input pattern 
Curr-Out Current output pattern 
Phase Phase transition variabie 

The first 4 parameters are counters for various purposes. The parameter Probe is used to record the 
number of probings for the neurons. In every probing, a neuron is selected randomly from those 
undamped ones. Let the number of undamped neurons be N. After N probings, which means that on 
average every neuron is updated once, the Iteration is increased by 1. The number of iterations for every 
phase is different. For Phase-Plus and Phase-Minus, the number of iterations is equal to the number 
different temperatures used for simulated annealing. For After-Plus and After-Minus, the number is equal 
to 10. Each combination of Phase-Plus and its corresponding After-Plus forms an Annealing. So the 
Phase-^ and Phase- together have 40 annealings. This is called a Sweep. There are totally 9000 sweeps. 

Temp is the parameter for indicating the temperature of the system at a particular moment. Update is a 
random parameter for determining which neuron is to be updated. Curr-in and Curr-Out are record 
addressing parameters. They are used to determine which input and output record are to be accessed. 
Phase is the phase transition parameter for determining the current phase of the system. 

2. Results After Simple Checkings 
No special result is reported from simple checkings. 
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3. Graphs Construction 
The graphs for our example Boltzmann is again the most complicated. It has the greatest number of 

，作dency graphs for neurons (IDGs) and control neuron (CnlDG), the most complicated 
combined internal dependency graph (CnlDG) and, surely, the greatest number of global dependency 
发rap/w (GDG). This means that manual analysis on the example specification will be extremely difficult ‘ 
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a) Internal Dependency Graph 

DeltaE 

Out 

(a) Visible. Phase-Plus & 
Recalling; 

Shift, Phase-Plus; 

p-plus 

(b) Visible, Phase-Minus; 
Shift, Phase-Minus & 
Recalling; 
Hidden, Phase-plus & 
Phase-Minus & Rec^nllinq 

minus 

p-plus 

(c) Visible, After-Plus; 
Shift, After-Plus; 
Hidden, After-Plus 

(d) Visible, After-Minus; 
Shift After-Minus; 
Hidden, After-Minus 

(e) Visible, Updating 
ShiftUpdating; 
Hidden, Updating 
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i ^ F 二 = = = « 二 二 ： 二 一 
b) Control Neuron Internal Dependency Graph \ 

-1 

Clamp 營 

Curr-
In 

teration 

This is the most complicated control neuron internal dependency graph (CnlDG) we have. There are 10 
parameters interacting with one another. This is due to the control scheme of the system, in which it-
eration counters for different cases has to be handled. One can refer to the previous discussion on the 
specification on control neuron for an explanation of the counters. 
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c) Combined Internal Dependency Graph 

The combined internal dependency graph (CnlDG) shows how the nine parameters are linked together 
when all phases are considered together. Although there is only one output parameter Out, all other pa-
rameters are directly or indirectly determining it. All parameters are determining other parameters and 
input parameters are not determined by others. 

4. Results From Parameter Analysis 
No special result is reported from parameter analysis. All parameters useful and well defined. 
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5, Global Dependency Graphs Construction 

Shifts 
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Shifts 
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j DeltaE ^ 

/ Out ^ ！3-1 \ 

p-minus 

Curr-
Out 

Control Neuron 
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There are six global dependency graphs for the Boltzmann machine, one for each phase. The graphs are 
shown in the order Phase-Plus, After-Plus, Phase-Minus, After-Minus, Updating and Recalling. We do 
not show the dependency of the parameters on the phase transition parameter Phase because every 
parameter is depending on Phase. Including the dependency edges in the graphs will make them too 
complicated to be read. The graph for phase Updating has no global dependency edges, as the updating 
will depend on local information only. This can also be observed from the cycles of this phase, in which 
they are all local cycles but not global ones. 

6. Cycle Detection 
Discussed before and is not shown here. 
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7. Time Subscript Analysis 
All the cycles can pass through the time subscript analysis. 

8. Subscript Analysis 
The subscript analysis is no need to be applied. 

9. Scheduling 
(* Schedule for phase-plus & recalling of Visible, " 

phase-plus of Shift *) 
DelraR[T] <- DelfaR[T-l]; 
W[T] <- W[T-1]; 
Out[T] <- Clamp[T]; 

(* Schedule for phase-minus of Visible, 
phase-minus & recalling of Shift, 

W[T] 
phase-plus, phase-minus, recalling of Hidden *) 

W[T] < - W [ T - 1 ] ; 
DelfaF,[T] < - U p d a t e m , IL'l'J, W[T], DeltaF,[T-l]; 
Out[T] <-Del taE[T- l ] , Out[T-l], Temp[T-l], Update[T]; 
P-plus[T] <-P-plus[T- l ] ; 
P-minus[T] <- P-minus[T-l]; 

(* Schedule for after-plus of Visible, 
after-plus of Shift, 
after-plus of Hidden*) 

W[T] < - W [ T - 1 ] ; • 
DeltaRU] < - U p d a t e m , i m , W[T], DeltaF,[T-l]; ‘ 
Ou tm <-Del taE[T- l ] , Out[T-l], Temp[T-l], Update[T]； 
P-plus[T] <-P-plus[T- l ] , Outm, i m , Updatem； 
P-minus[T] <- P-minus[T-l]; 

(* Schedule for after-minus of Visible, 
after-minus of Shift, 
after-minus of Hidden •) 

W(T] < - w r r - i ]； 
DeltaRU] < -Upda tem, I[T], W[T], DelraR[T-l]; 
Outm <-Del taE[T- l ] , Out[T-l], Temp[T-l], Update[T]； 
P-minus[T] <- P-minus[T-l], Out[T], I[T], Update[T]; 
P-plus[T] <-P-pIus[T-l ] ; 

(* Schedule for updating of Visible, 
updating of Shift, 
updating of Hidden *) 

Out[T] < -Ou t [T - l ] ; 
W[T] < - W [ T - 1 ] , P-plus[t-l], P-minus[T-l]; 
P-plus[T] <-P-plus[T- l ] ; 
P-minus[T] <- P-minus[T-l]; 
DeltaFU] < - D e滅 [ T - 1 ] ; 

(* Schedule for Control Neuron *) 
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Probe[T] 
Iteration [T] <-
Annealing [T] 
Sweep[T] 
Phase[T] 

CUIT-OUI[T] <-
Cun--In[TJ <-
Clamp[T] 
Temp[T] 
Update[T] 

<-Phase[T-l], Probe[T-l]; 
Probe[T], Phase[T-l]，Iteration[T-1]; 
<-Iteration[T], Iteration[T-l], Phase[T-l], Annealing[T-l]: 
<-Annealing[T], Annealing[T-l], Sweep[T-1]; 
<-Iteration[T], Iteration[T-l], Phase[T-l], Annealing[T], 

Sweep[T]; 
Phase[T], Annealing[T-l], CuiT-Out[T-l]; 
Annealing [T]; 
<-Curr- In[T] ; 
<-Phase[T], Iteration[T]; 
<-Phase[T]; 
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