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Abstract 

It is well-known that the use of the Viterbi algorithm to implement a sequence 

estimator is an optimal way to remove the effect of intersymbol interference for 

di~ital transrcission systems. However, such an implementation usually results 

in a very complicated receiver. In this thesis, we transform the problem of 

maximum likelihood sequence estimation into the problem of finding the closest 

lattice point. Some related lattice algorithms such as the basis reduction algo

rithms -and the enumeratioIi. algorithms are analyzed and SOIne improved versions 

are suggested. Then efficient algorithms finding the nearest lattice point are de-

rived. Based on these lattice algorithms, simple but effective sequence estimators 

are proposed for the P AM systems and their complexities are analyzed. TJ nder 

some mild assumptions, our algorithms have both polynomial space and time 

complexities, and are therefore much superior to the conventional Viterbi detec~ 

tors. Simulation results on three different channels show that the performance 

of the new sequence estimators depend on the distance spectrum of the channeL 

But, general speaking, the performance approaches optimal as the. size of the 

signal set and the signal-to-noise ratio increase . . Finally, the extensions to other 
l 

lattice-type modulation schemes and the impacts of the lattice viewpoint on the 

design of bandlimited transmission systems are discussed. 
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Chapter 1 

Introduction 

For high-rate digital transmission systems, a major difficulty with signalling 

is the increased amount of intersymbol interference (ISI). Performance of the 

symbol-by-symbol detector (SSD) becomes unsatisfactory since this form of in

terfere~ce cannot be tackled by simply raising the signal power. Early approach 

uses : equalization technique. However, the linear equalizer cannot handle chan

nels with spectral nulls. Decision feedback equalizer (DFE) is effective for the 

removal of ISI, but it is highly susceptible to the effect of error propagation and 

its error-rate performance is difficult to analyze [2]. 

In 1972, Forney[27] introduced the whitened matched filter so that an im-

. portant class of channels can be described by a linear discrete-time model with 

additive white GaussiCl:ll noise (AWGN). In the same paper, he proposed toim

plement a maximum likelihood sequence estimator (MLSE)- using the Viterbi 

algorithm (VA). Such estimator has been shown to be optimal in the sense of 

minimizing the probability of sequence error and is much superior to .the con

ventional SSD.As an e~ample, for partial-response systems, the symbol error 
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Chapter 1 Introduction 

rate of the MLSE can outperform that of the SSD by as much as 3dB [27]. Nev-

ertheless, the complexity of VA is prohibitively large for many typical channels 

since it performs lmv operations to detect a sequence of I symbols with m pos-

sible transmit levels and v interfering components. A considerable amount of 

research has been undertaken to investigate suboptimal Viterbi-like estimators. 

The complexity of VA and its related suboptimal estimators will be discussed 

later. 

Over the past two decades, almost all schemes proposed for sequence esti-

mators were variants of the VA. Very few fundamentally new ideas had arisen. 

It should be emphasized that the VA is just one possible way to implement the 

optimal sequence estimator. Other alternatives should deserve more attentions. 

Recently, Barbosa [1] viewed the channel as a linear map from the input 

space to the observation space, and the MLSE as a macro operation. This 

enables a unified approach to the performance analysis of various suboptimal 

receivers. He also derived a Viterbi-like algorithm using the mapping concept. 

Unfortunately, tke proposed algorithm is not simplier than the original VA. This 

result led him to the following conclusion [1]: 

"The new approach not only gives insight into the macro operations 

involved but also shows that information preserving transformations 

do not simplify the complexity of the MLSE algorithm." 

However, we can derive better MLSE algorithms by improved utilization of the 

information inherent in the source symbol sequences. This is made possible by 

the following observation. 

2 
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Chapter 1 Introduction 

Obse rva t ion 1.1 For an important class of modulation schemes, all the possi-

ble source symbol sequences form a finite integer lattice. 

Since a lattice after a linear transformation is still a lattice, the transmitted 

symbol sequences must be points in a finite lattice. The received sequence is 

the observation of the transmitted sequence in the presence of noise. Hence the 

problem of estimating the transmitted sequence with maximum likelihood corre-

sponds to the problem of finding the lattice point closest to a given query point. 

Based on this lattice viewpoint, the MLSE problem can be transformed into the 

closest lattice point problem. Making use of the regular structure of a lattice, 

we propose very efficient MLSE algorithms whose complexities are essentially 

independent of the number of transmit levels m. Obviously, these algorithms 

significantly simplify the implementation of an optimal receiver, especially for 

multi-level modulation schemes, as compared with the other algorithms known 

so far [27], [61], [1]. Nonetheless, the performance of our algorithms does de-

pend on m. As an interesting result, unlike the VA whose complexity increases 

rapidly with m, the new algorithms favor m to be as large as possible. 

The organization of this thesis is as follows. Chapter 1 states the channel 

model and its related assumptions, and some issues about the complexity mea-

sures. We then introduce the MLSE, and the VA associated with its complexity 

and performance analysis. A survey on the suboptimal Viterbi-like algorithms 

and a discussion on the trends of digital transmission follow. Chapter 2 ex-

plains a modified version of the VA, called the truncated VA, which enables the 

storage requirement of a sequence estimator to be independent of the length, 

of the sequence. The performance of such estimator depends on the choice of 

the truncation depth and we give some suggestions on the choice so as to get 

3 
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Chapter 1 Introduction 

optimal performance. The truncation approach of implementing a Viterbi de-

tector is generalized to the concept of decomposition of a sequence estimator. 

After tha t , the MLSE problem is formulated as a closest lattice point problem, 

and a closely related problem, called tlie closest vector problem (CVP), is ex-

plained. Chapter 3 focuses on the CVP and some related lattice algorithms. 

First, an introduction to the lattice and some related facts is given. Second, a 

very important basis reduction algorithm, called the LLL-reduction algorihtm, 

is examined in details. A basis reduction algorithm converts a given represen-

tation of a lattice into another representation such that some nice properties 

of the lattice can be exploited easily. Our improved version of LLL-reduction 

algorithm is then presented. Third, enumeration algorithms, which enumerate 

lattice points inside certain regions, are explained together with their complexity 

analyses. Various enumeration algorithms are classified according to the shapes 

of the regions to be enumerated. A unified treatment of these enumeration al-

gorithms is developed based on the concept of isometric mapping. Besides, an 

enumeration algorithm, for the shortest lattice vector or the closest lattice vector, 

with improved complexity is derived. Forth, a straightforward CVP algorithm 

is obtained by combining the basis reduction algorithm and the enumeration 

algorithm. Such reduce-and-enumerate approach to the CVP is well-known and 

its worst-case complexity is discussed. Finally, we introduce the concept of 

norm approximation and propose a CVP algorithm with, improved average-case 

complexity. Chapter 4 illustrate the new MLSE algorithms, which are derived 

easily as special cases of the CVP algorithms. A simplified MLSE algorithm is 

derived for the channels connected with the simple cubic lattice. The bound-

ary effect, which is due to the finiteness of a lattice associated with the given 

4 
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Chapter 1 Introduction 

modulation schemes, is reduced by a heuristic method. The simulation results 

for some selected channels are presented and explained. After that, extensions 

of the proposed MLSE algorithms to other lattice-type modulation schemes are 

discussed. We also suggest some potential applications of the algorithms and 

some possible future work related to the lattice interpretation. 

1.1 Channel Model and Other Basic Assump-

tions 

The lattice interpretation of MLSE holds for any modulation schemes with 

lattice-type signal constellation. These include very popular modulation schemes 

like Pulse Amplitude Modulation (PAM), Quadrature Amplitude Modulation 

(QAM). For the ease of illustration, from here on, we simply consider the un-

coded multi-level PAM transmission systems as shown in figure 1.1. 

In the data transmission system, the transmitting filter fT(t) converts source 

symbol sequence x into electrical signals suitable for transmission. The channel, 

described by f c ( f ) , is merely the medium used to transmit the signal from the 

transmitting point to the receiving point. The noise source n(t) is additive white 

Gaussian. The receiving filter fR(t) is used to suppress the noise outside the 

channel bandwidth. The structure that a whitened matched filter fw(i) followed 

by a symbol-rate sampler [27] enables us to focus on the received symbol sequence 

Zj which provides sufficient statistics for the received signals. 

The transmitting filter, the channel, the receiving filter, the whitened matched 

filter and the symbol-rate sampler can be modeled as a single discrete-time fil-

ter as illustrated in figure 1.2. In the figure, the channel impulse response h is 

5 
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NolMSoure* 
n(t) 

Sourc* , I 
± Data 
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x 令 Filter ^ CD > Filter ^ Matched Fltor Samptor 

V) ， V) fwW 

Figure 1.1: The data transmission system. 

w 

x h y - a ) —Z 

Figure 1.2: The discrete-time channel model. 

defined by 

k = [fT{t) * fc{t) * fnit) * fw{t)]i^iT 

and the whitened noise sequence w is defined by 

Wi = [ n � * / r � * fw{t)]t=iT, 

where T is the symbol interval and * denotes the convolution operator. We 

remark that although the discrete-time channel model is derived from a baseband 

transmission system, it is easy to show that, in case of a passband transmission 

system, the same channel model is still valid. The only difference is that h 

becomes complex in the latter case. 

From now on, we concentrate on the discrete-time channel model in figure 1.2, 

which satisfies the following assumptions. 

A s s u m p t i o n 1.1 The channel h is linear. 

A s s u m p t i o n 1.2 The noise sequence w is additive white Gaussian with mean 

0 and variance a2. 

6 
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Chapter 1 Introduction 

A s s u m p t i o n 1.3 Each source symbol Xi must take on one of the m integer 

values 0,1, • • • , m — 1 independently with equal probability. 

Now we define some important symbols which will be used throughout this 

thesis. In the following definitions, each symbol represents a sequence of some 

fixed length, though the same symbol may refer to a corresponding vector in 

later chapters. Note that some symbols have been defined previously but they 

are redefined below in a consistent manner with a specified leng七li. 

Def in i t ion 1.1 Let h be the channel impulse response of length v + 1, where 

v is called the channel memory length or equivalenily the number of interfering 

symbols. Let x be the source symbol sequence of length I. Denote z and w 

as the received symbol sequence and noise sequence respectively, each of length 

/ + v — 1. Also, define y as the transmitted symbol sequence. Besides, define x 

as the detected symbol sequence and y as the corresponding transmitted symbol 

sequence. 

By definition, we have z — y w. Due to assumption 1.1, y 二 1m, Thus 

the channel can be viewed as a convolutional encoder over the real number field. 

Since the channel is not ideal, each transmitted symbol 
V 

Vi = h0Xi + (^2 hjXi-j), 
i=i 

where the second term represents the distortion due to 七he ISI. 

The above equation also leads to a finite-state machine description of our 

channel as shown in figure 1.3. Regarding the contents of all storage elements as 

the state of the machine, each transmitted symbol can be treated as the output 

due to a specific state transition. 

: . 7 
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X r _ 1 X _ , x , _ , X 
I - ^ r ^ 1-1 一 D 1 - 2 歐 . . . . D i-v 

h
� " 4 ^^ + 

Figure 1.3: Finite-state machine model. 

Def in i t ion 1.2 Define the state sequence s 二 where Si 二 (而一】,xx_2, • • 

Xi_v) is the state at time i. Then the transmitted symbol yi = y�s“ si+1) is solely 

determined by the state transition (5», 5t+i). 

Note that Si depends on the previous state 5»_i and the current source symbol 

Xi. Hence the channel can be described as a Markov process. 

For all sequences except h, s'{ refers to the element of the sequence s' at time 

i. The elements of a sequence is ordered such that the current symbols appear 

first, i.e. s' 二 (s'it 4一 1，4一2，…). 

1.2 Complexity Measure 

Complexity of algorithm is usually described by their asymptotic growth rate 

or the order of functions. Common measures of order are 0 ( / ) , functions that 

grow no faster than / , and 0 ( / ) , functions that grow at least as fast as / . As 

an example, consider the procedure of sequentially searching an unordered list 

having n elements for a match of the given item. If the item does not match 

any element in the list, at least n comparisons must be done in order to get the 

conclusion and hence the worst-case complexity is Q(n). On the other hand, 
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the procedure can take at most n comparisons since all elements in the list have 

been examined. Therefore, the worst-case complexity is also 0{n). The precise 

definitions of these measures can easily be found in literatures on complexity 

analysis. ‘ 

In our interested cases, these complexity measures are not accurate because 

the parameters governing the complexity are quite small. This is not surprising 

as the complexity of conventional MLSE algorithms increase exponentially with 

the channel memory length. In practice, few channels with length greater than 

10 can be handled. Nevertheless, for the ease of comparison, we need to consider 

the asymptotic behaviors of different algorithms whenever the exact complexity 

description is too tedious. 

Implementation of algorithms consumes both memory space and computa-

tional time. The space complexity of an algorithm is the number of storage 

elements that must be reserved for its use, while the time complexity counts the 

number of arithmetic operations that must be executed by a sequential machine. 

Here, an arithmetic operation may be an addition, a multiplication, a rounding 

operation or similar. Nowadays parallel processing is quite common. In such 

situation, it is possible to trade off space for time or vice versa. Thus a rea-

sonable measure is the space-time complexity, which is the product of memory 

space and computational time assuming parallel computation. 

1.3 Maximum Likelihood Sequence Estimator 

In the receiver, only the received sequence z can be observed. Decision on 

which one of many permissible source sequences being transmitted is based on 

9 
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probabilistic argument. Denote X as the set of all possible source sequences. 

We want to maximize the a posteriori probability P{x\z) for all x in X. This 

maximum a posteriori (MAP) rule minimizes the error probability in detecting 

the whole sequence, and is thus optimum in this sense. A receiver detecting 

signals using the MAP rule is referred to as a MAP receiver. 

Under the condition that all source sequences are equiprobable (i.e. the 

a priori probability P{x) is the same for all x in X), maximizing P{x\z) is 

equivalent to maximizing P{z\x). This is termed the maximum likelihood (ML) 

rule. A receiver detecting signals using the ML rule is referred to as a ML 

receiver or a MLSE. Note that the MLSE can be treated as a special case of the 

MAP receiver. Since the source sequence and the state sequence are one-to-one 

correspondent and the noise terms Wi are independent (by assumption 1.2), the 

log likelihood function 

lnP(z\x) = InP(z\s) = E1"(•，夠+i) = 一 2/(�’�+i)), 
• • 

T T 

where y(s“ is the transmitted symbol corresponding to the state transition 

(si,5t-+i). As the noise components are independent and Gaussian (by assump-

tion 1.2)，the joint probability density of the noise sequence w is 

PH = Y[p{wi) = 访）= 
i i V2TVCT2 

where I< is a constant. Obviously, we need only to minimize YA WI = Hi{Z I~yi) 2 

instead. Thus the MLSE problem can be stated as follows: 

P r o b l e m 1.1 ( T h e M L S E P r o b l e m ) Given a received sequence z, determine 

the detected sequence x, corresponding to a unique suspected transmitted sequence 

yf among all permissible source sequences such that y is closest to z in Euclidean 

distance. 

10 
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s = 1 o 0 ^ o s + i = 1 

(a) (b) 

Figure 1.4: (a) State diagram of the channel A = (1，0.5) for b i n a r y transmission, 
(b) One stage of the corresponding two-state trellis. The weight associated with 
each transition (5,-, ^+1) is y(si, 

1.4 The Viterbi Algorithm — An Implemen-

tation of MLSE 

Obviously, a brute force approach to the problem of MLSE is to enumerate all 

permissible source sequences. This requires ml calculations, each, takes I squaring 

operations and 2 / ^ 1 additions (refer to section 1.1 for symbol definitions). This 

trivial method takes 0{lml) time and 0( / ) space. The method is unacceptable 

as the computational time increases exponentially with the sequence length. 

To derive a more efficient algorithm, we note that the channel is connected 

with a state diagram as it can be described by a finite-state machine (see fig-

ure 1.3). For example, a binary PAM system with channel impulse response 

h = (1,0.5) has the state diagram as shown in figure 1.4(a). Alternatively, it 

can be represented by a two-state trellis diagram which shows all possible tran-

sitions of states over time. The trellis diagram of our example is pictured in 

figure 1.4(b). Note that state 5» is defined as (x»_i) and each transition («s»•，Si+0 

is associated with a weight y(si,3i+i) = h0Xi + h\Xi-\. 

Since the trellis can be regarded as a graph, from now on, a state is called a 

11 
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Chapter 1 Introduction 

node, a transition is called a branch and a state sequence is called a path. The 

weight associated with a branch is termed branch, metric and the accumulated 

weight associated with a path is termed path metric. 

Define the branch metric as \z{ 一 y(si, 3 i + i) |2 for each branch (^,3,+1) of 

the trellis. We can find tlie shortest path (the one with smallest path metric) 

by computing the branch metrics stage by stage. Note that each node has 

m incoming branches except a few stages in the beginning and in the end. 

Each incoming branch is due to the advent of a new source symbol. Of the 

m incoming branches, only the one connected with the minimum partial path 

metric is retained. That retained partial path is referred to as survivor path. 

Partial path, associated with the other m 一 1 incoming branches are discarded 

since the shortest path must contain the survivor path if it goes through this 

particular node. Otherwise, a shorter path can be found by replacing the partial 

path up to this node by the survivor path. Therefore the number of survivor 

paths is exactly the same as the number of nodes in a stage. After all stages of tlie 

trellis have been gone through, the shortest path is the remaining survivor path 

which has the smallest path metric. Obviously, this shortest path corresponds 

to the ML sequence. The algorithm just described to find the shortest path in 

a trellis is 七he Viterbi algorithm (VA). 

The details of how the VA calculates the shortest path is illustrated in fig-

ure 1.5. Again the example in figure 1.4 is considered. The received sequence z 

is ( 0.2, 0.8’ 0.7, 0.1) and the detected sequence x found is (0，0，1, 0). Notice 

that knowledge of the initial state is assumed, i.e. «s0 二 0 or x_i = 0. In general, 

the number of nodes in each stage is mv and there are totally I stages. Therefore 

the algorithm requires mv storage elements, each must be capable of storing a 

12 
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i=0 i=1 i=3 i=4 

S = 0 ’ 丄 4 1 … 、 ^ 

‘' V y \ 0.81 � ^ / N0.04 \0.64 � > 

\ \ X \ 
s = 1 �� ^ ( o ^ o j �� 

Received Seq 0.10 0.70 0.80 0.20 

Detected Seq 0 1 0 0 

Figure 1.5: An example illustrates the use of the Viterbi algorithm to find the 
shortest path for the channel impulse response h = (1,0.5) and m = 2 with the 
received sequence z = (0.2,0.8,0.7,0.1). The initial state s0 is assumed to be 
0, The weight of each branch is the branch metric and the partial path metric 
is shown inside the node. The survivor paths at each stage are shown. The 
detected sequence is determined by the final survivor path which is represented 
as a chain of soild arrows. 

metric (p bits) and survivor path (/log(m) bits). The space complexity of VA 

is (Zlog(m) p)mv bits. Assuming all mv branch metrics being precomputed 

(this requires an extra storage of pmv bits), 1 multiplication, 1 addition and 

m — 1 binary comparisons are needed for each node. Thus the time complexity 

of VA is 0(mv+1) operations per detected symbol. The virtue of the VA is that 

the number of operations necessary for MLSE grows linearly with I rather than 

exponentially. Its main disadvantage is the huge storage necessary to store all 

survivor paths. 

While VA was originally proposed for decoding convolutional codes, in its 

most general form, VA is the solution to the problem of MAP estimation of 

the state sequence of a finite-state discrete-time Markov process observed in 

memoryless noise [28]. It thus finds applications in many different areas like 

sequence estimation, digital magnetic recording and some pattern recognition 

13 
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problems in addition to decoding convolutional codes. An excellent introduction 

to VA can be found in references [28]，[33]. 

1.5 Error Performance of the Viterbi Algo-

rithm 

Forney [27] presented upper and lower bounds on the symbol error probabil-

ity when the MLSE is implemented using VA. The upper bound is tight for 

moderate-to-large signal-to-noise ratio (SNR). In order to understand the opti-

mal performance of the VA and the important concept of error event, we repeat 

Forney's performance analysis on the VA below (see also [61]). 

Recall that x represents the source sequence and 仝 represents the detected 

sequence. 

Def in i t ion 1.3 Define the error sequence as e = x — x such that et- must take 

on one of the (2m — 1) integer values from —(m — 1) to m — 1. 

As consecutive symbol errors are not independent of each other, the concept 

of sequence error events is introduced to simplify error analysis. The beginning 

of an error events e is arbitrarily assigned with time 0: 

£ = ( … ， 0 , 0 , e0’ e � … ， e k , 0 ,0 , - - •) 

In most situations (i.e. when the SNR is moderate and no catastrophic behavior 

is present)，error events are short compared with the interval between them. 

The error events are effectively independent of each other. 

For an error event e to happen, a sufficient condition is the simultaneous 

occurrence of the following two subevents: 

14 
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Chapter 1 Introduction 

£l： x must be an allowable source sequence. 

£ 2 : the noise sequence ^ must be such that x has g r e a t e r likeHhood than x. 

Then we have 
P{e) < P{eue2) = P(ei)P^2\ei)-

The subevent is independent of £ 2 , and depends only on the message 

ensemble. When M 二 j, only m — j values of 叫 axe permissible, so that 

彻 ) = n 卞 t=0 

Note we have used assumption 1.3 that source symbols are independent and 

equiprobable. In words, the subevent e2 requires suspected transmitted sequence 

y to be closer to the received sequence z than the true transmitted sequence y. 

Since the noise sequencers AWGN with equal variance a 2 in all dimensions, it is 

spherically symmetric. Considering tke two-dimensional subspace containing y, 

乡 and A it is easy to see that the probability of e2 is simply the probability that 

a single Gaussian variable of variance a 2 exceeds half the Euclidean distance 

between y and y. Define d{e) as the Euclidean distance of the sequence y-yoi 

丨 H I . Then \ 2 d { £ ) 

where Q(.) is the Gaussian distribution function. 
Let S be the set of all possible error events and V be the set of all possible 

d{£). For each d let Sdbe the set oi s e S such that d{e) 二 d. Then 

dev e££d »=0 

15 
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Chapter 1 Introduction 

Due to the exponential decrease of the Gaussian distribution function, this ex-

pression will be dominated at large enough SNR by the term involving the 

minimum value dmin of d(e). Thus 

(1.1) 

where the constant 

K 二 i: ( n ^ ) -
- 0 m 

This bound, derived as an approximation to upper bound, is actually an upper 

bound as shown by Hughes [35]. 

Note that the bound is valid under the condition that there are not too many 

minimum distance error events. For many channels, there are only a pair of such 

error events 一 the error event and its negated one. Nonetheless, some channels 

do have a lot of minimum distance error events. 

Def in i t ion 1.4 A catastrophic channel is one which have an infinite number of 

minimum distance error events. 

In the extreme case, for catastrophic channels, K in equation 1.1 may not 

be bounded. For example, the catastrophic channel h 二（1’ 一 1) with (Pmin = 2 

has minimum distance error events in the forms of ( - - - , 0 ,1 , - - - , 1 ,0 , - - • ) and 

(• ••，()，一 1’...，一1，0，• • •)• This will cause an infinite number of detection errors. 

In practice, a precoding method is used to correct this problem [27]. 

The VA is optimal in the sense of minimizing the probability of sequence 

error. Namely all erroneous sequences with the same weight are equally bad. 

General speaking, optimum bit-by-bit detection and optimum sequence detec-

tion are not equivalent. However, for high SNR, erroneous detected sequences 
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may not be too far from the true sequences and minimization on both criteria 

should give nearly the same performance. 

1.6 Suboptimal Viterbi-like Algorithms 

In spite of its optimal performance, the MLSE using VA is impractical due to 

two limitations. 

L imi t a t i on 1.1 The space complexity of the estimator, which grows exponen-

tially with the channel memory length v, becomes prohibitively large for most 

practical channels. If parallel computation is not allowed, the time complexity is 

also an important constraint. 

Limi t a t i on 1.2 For bandlimited channels, a practical way to increase the trans-

mission.rate is to use a large signal set. However, both space and time complexi-

ties of the estimator are very sensitive to the size of the signal set m in addition 

to v. 

A considerable amount of reseaxch has been undertaken to suggest effective 

suboptimum detectors which achieve good error performance but with manage-

able complexity. 

Early work is mainly concerned with reducing the channel length by prepro-

cessing techniques. Falconer and Magee [23] proposed a linear prefilter to force 

the channel memory to a desired length. Lee and Hill [48] suggested the use 

of DFE to shorten, the channel length so as to reduce the noise enhancement 

in the linear equalizer. These schemes sacrificed a lot in performance because 
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Chapter 1 Introduction 

the noise after prefiltering is enhanced and is no more AWGN. This violates the 

basic assumption of VA that the noise is memoryless. 

Later research concentrated on new definitions of states and branch metrics 

while leaving the framework of VA intact. The basic idea to reduce receiver 

complexity by neglecting paths unlikely to have the smallest path metric. 

Clark and Clay den [9] proposed the pseudobinary VA which allows only two 

states in every stage of the trellis to survive. This always results in a two-state 

trellis. Penalty in performance is heavy since the optimal path will be discarded 

if in any time there are two paxtial paths which have path metrics smaller than 

that of the optimal path. 

Duel-Hallen and Heegrad [17] developed the method of the delayed decision-

feedback sequence estimation (DDFSE) . Their main ideas are to define the 

states of trellis by considering the first few terms of ISI, and to include an 

estimate of the tail of ISI in the definition of branch metrics. This reduces the 

effect of error propagation. The algorithm can handle channel response of very 

great length or even infinite length, and allow the designer to tradeoff receiver 

complexity for performance by choosing the number of ISI terms involved in the 

definition of states. 

More recent approach also considers the effect of large signal set. Wesolowski 

[63] considered the case of two-dimensional signal constellations and limited the 

survivor states to those associated with, the signal points adjacent to the observed 

point. This reduces complexity due to modulation formats with large signal set. 

Another more sophisticated algorithm is the reduced-state sequence estima-

tion. (RSSE), suggested by Eyuboglu and Qureshi [21]. Trellis states as defined 

in VA are merged using Ungerboeck-like set partitioning principles resulting in 
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a simpler trellis. In this way, the minimum intraset distance is maximized such 

that in most cases only one signal point, called the representative point, in each 

set is close to the observed point. By defining the trellis state in terms of this 

set instead of signal points, a reduced-state trellis is obtained. The branch met-

ric is calculated as distance between the observed point and the representative 

point. Besides, decision-feedback can be incorporated into the algorithm in a 

way similar to that of DDFSE to reduce complexity due to large number of ISI 

terms. 

The problem of Wesolowski's algorithm and RSSE is in the definition of 

distance or closeness. Using Barbosa's terminology [1], the above algorithms 

approximate the metric of observation space by that of the input space. However, 

the metric of input space is not necessarily Euclidean even though that defined 

in observation space is so. As a result, two vectors close to each other in input 

space may lead to great separation of their corresponding vectors in observation 

space. The algorithms designed under this inaccurate metric approximation, of 

course, do not have good error performance. 

1.7 Trends of Digital Transmission and MLSE 

Nyquist showed in 1928 that the maximum signalling rate achievable for a chan-

nel with the bandwidth B0 Hz, for no ISI, is 2B0 bauds, and is known as the 

Nyquist rate [55]. In 1963, Lender [49] showed that this theoretical minimum 

bandwidth can be achieved without infinitely sharp filters. The technique em-

ployed is called duobinary signalling (or partial response signalling or correlative 

coding). The idea is to introduce some controlled amount of ISI into the data 
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Chapter 1 Introduction 

stream rather than trying to eliminate it completely. At the receiver, special 

procedure is used to reduce error rate due to severe ISI introduced. Hence, with 

MLSE, bandwidth, compaction can be attained in this way. Other advantages of 

partial response signalling include higher data rates with fewer levels and error-

detecting capabilities without introducing redundancy. Reference [57] gives a 

good tutorial on this subject. 

In 1982, Ungerboeck [62] observed that for error-free transmission, in theory, 

a QAM system with, m symbols allows at a SNR which is 5 dB above the Shannon 

limit for any modulation scheme; while doubling the channel symbols allows at 

a SNR which is only 1.2 dB above the Shannon limit. This observation not 

only interested a lot of information theoretists, but also influenced the trend 

of practical data transmission systems towards multilevel modulation systems. 

Recently, channel coding with an expanded signal set has been applied to 9600 

bps, full duplex modems operating over the switched telephone network [7]. 

The complexity of VA increases rapidly with m and v, but hitherto most 

literatures focused on the effect of v. It seems that only a few researchers 

noticed that the complexity can be large for large m, even when v is very small 

[21]. In fact, the effect of m should deserve a lot of attention, as the effect of 

ISI in multilevel system is more noticeable [60]. 
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Chapter 2 

N e w Formulation of MLSE 

A main disadvantage of VA is the huge memory needed to store all the paths. In 

practice, the length of input sequence I can be very large or effectively infinite� 

Besides, in real systems, the detection delay of the whole sequence may be 

operationally undesirable. Therefore, some modifications must be done in order 

to make the VA pragmatic. 

2.1 The Truncated Viterbi Algorithm 

To reduce the complexity of the VA, the trellis is truncated to a manageable 

depth 5, called the truncation depth, and decision on input symbol x ^ s is made 

at time i. After the decision, path�history at or before time i - v axe discarded. 

Then the path metrics of the nodes at time i + 1 and the associated survivor paths 

are computed. In this way, only 8mv bits are needed to store the path History. 

SucH modified algorithm is called the truncated Viterbi algorithm (TVA). The 

space complexity of the TVA becomes (<Hog(m)+p)mv bits (refer to section 1.4). 
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s=i © s,=i © 
Received Seq 0.10 OJO Received Seq o.?o o.so 
Detected Seq o 1 Detected Seq 1 0 

(a) Decision onxQisO (b) Decfelon on ^ b 1 
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Received Seq o.so 020 Received Seq 020 0.00 
Detected Seq 0 0 Detected Seq 0 0 

(c) Decision o n x ^ O ( d ) D e c i s i o n 0 0 x
3

 0 

Figure 2.1: The truncated Viterbi Algorithm with a truncation depth of 2 is 
applied to the example in figure 1.5. 

Here a p-bit path metric is assumed. Figure 2.1 shows the details of the TVA 

with 8 二 2. For the ease of comparison, the example in figure 1.5 is considered. 

Notice that the node associated with the shortest survivor is released and all 

path history at or before time i is retained without re-calculation. In this way, 

only the path information involving the last stage need to be computed. The 

time complexity is 0 ( m v + 1 ) operations per detected symbol (same as the non-

truncated case). 
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Chapter 2 New Formulation of MLSE 

2.2 Choice of Truncation Depth 

. F o r n e y gave tke following comments for the effect of truncation on. error perfor-

mance 

"In general, if the truncation depth ^ is chosen large enough, there is 

a high probability that all time-fc survivors will go tbrough the same 

nodes up to time k-6, so that the initial segment of the maximum-

likelihood path is known up to time k - 6 and can be put out as 

the algorithm's firm decision; in this case truncation costs nothing. 

In rare cases when survivors disagree, any reasonable strategy for 

determining the algorithm's time-(A;-6") decision will work: choose an 

arbitrary time-(k-6) node, or the node associated with the shortest 

survivor, or a node chosen by majority vote, etc. If 8 is large enough, 

the effect on performance is negligible." 

As the space complexity of the TVA depends on S, we want to know what 

value of 8 is "large enough" so that no remarkable change on performance is 

resulted. The exact performance degradation due to truncation is analytically 

intractable, and is normally found through experimentation and/or simulation 

W. 

Under the context of decoding convolutional codes, results of extensive sim-

ulation showed that the truncation depth, of 4 to 5 times the constraint length 

(corresponding to channel memory length in our context) is large enough [34]. 

Recently, Leonard and Rodger [53] proved that a non-catastrophic convolu-

tional code can be treated as a fc-error-correcting code by using the TVA with 
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6 > sep(2fc + 1), where sep(fc) is one plus the length of the longest error se-

quence in the received word with a weight smaller than or equal to k. (The term 

"catastrophic" defined for the convolutional code is similar in meaning to that 

appeared in definition 1.4.) 

In our context, argument similar to Leonard's is valid. Recall that Edmtn 

is the set of error events with minimum Euclidean weight dmin. Denote 7 as 

one plus the length, of the longest transmitted error sequence with minimum 

Euclidean weight dmin. For non-catastrophic channels, the truncation depth 6 

should be chosen as 7. This ensures that transmitted error sequences due to 

error events e G Edmin will be trapped entirely in the path memory of the TVA. 

As a result, the truncation will not cause extra detection errors when the weight 

of the noise components is smaller than ^f3^. As error events in Edmin occur most 

frequently and determine the error performance of the VA (refer to section 1.5), 

such choice of the truncation depth should cause little degradation in the error 

performance of the estimator. 

However, in a truncated trellis, it is possible for some truncated transmitted 

error sequences, consisting of the first 8 elements, to have a weight even smaller 

than dmin. These truncated sequences may degrade the error performance of 

a TVA. For example, consider the PAM system with h = (1 , -1 .5 ,0 .8 ) and 

m = 4. The minimum distance error event (1,2,2,1) causes a transmitted error 

sequence (1,0.5, - 0 . 2 , -0 .4 ,0 .1 ,0 .8) with, a weight 1.4491. Another error event 

(1,1，1,1,1,1) causes a transmitted error sequence (1, —0.5, 0.3，0.3, 0.3, 0.3, 

0.3, - 0 . 7 , 一 0 . 8 ) with a weight 1.6823. But, for a truncation depth of 7, the 

truncated transmitted error sequence (1，一0.5，0.3,0.3,0.3,0.3,0.3) has a weight 

1.3038, which is even smaller than the minimum weight 1.4491. 
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P r o p o s i t i o n 2.1 For non-catastrophic channels and fixed m, if the truncation 

depth 5 is chosen such that 

1. S is greater than one plus the length of the longest transmitted error se-

quence with minimum Euclidean weight dm‘n, 

2. there does not exist a truncated transmitted error sequence of length 8 with 

weight smaller than dminf 

then as SNR -> oo (or for large enough SNR), the probability of error event 

as in the non-truncated case, where the constant 

e ( n ^ ) . 
竓 U = O 7 7 1 

Proof : Using the same argument in obtaining equation 1.1, for large enough 

SNR, the error performance of the algorithm is dominated by the minimum 

distance error events. Now conditions 1 and 2 in the above proposition imply 

that no error event having a weight smaller than dmin exists. Therefore, the 

performance is the same as that of the non-truncated case. 
Q.E.D. 

For catastrophic channels, truncation depth of 4 to 5 times the channel mem-

ory length, should be chosen. 

Finally, we stress that the choice of the truncation depth is important since 

both the space and time complexity of the algorithms to be proposed are quite 

sensitive to it. 
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2.3 Decomposi t ion of MLSE 

We have described how the VA can be truncated such that the memory re-

quirement is significantly reduced with little loss in performance. Define a k-

dimensional MLSE as one with truncation depth k. Then a TVA with trunca-

tion depth 8 can be viewed as a way to implement a ^-dimensional MLSE, in 

which the path metrics are initialized according to the calculation of the previ-

ous MLSE (refer to figure 2.1). In general, if the performance is dominated by 

the minimum distance error events，the effect of truncation should be negligible 

independent of the way to implement the ^-dimensional MLSE. Based on this 

argument, we introduce a “natural” way to decompose a /-dimensional MLSE 

into l 各-dimensional MLSE's. 

Let us consider a /-dimensional MLSE which finds the detected sequence 

x 二（¾’ h …，沄l) from the received sequence z = (zi+v,么/+”-i, •..,么i). If 

the truncation depth 6 is chosen such, that it satisfies proposition 2.1, most sur-

vivor paths with small path metric at stage 6 will merge together at the first 

stage and all symbols associated with the merged path can be decided. Thus 

assuming that all survivor paths originated from a single known node associ-

ated with the previous decisions should cause little loss in performance. Let 

the feedback sequence (xi-UXi-2,-" ^i-v) be the v detected symbols before 

X{. To estimate x^ we only need a J-dimensional MLSE to find a detected se-

quence (而+5一i, X{+s-2,…，免i) from the received sequence [zi^s-u 而+5-2,…，而) 

with decision feedback from (先_1，知一2，• •.，知一Then the symbol X{ esti-

mated is released as the detected symbol X{. To estimate the next symbol 

the estimator then find the detected sequence ( & + � X i + s - i , • • • ’ 沄i+i) from 
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(c) Decision on x is 0 (d) Decision on xg is 0 

Figure 2.2: Decompostion of a 4-dimensional MLSE into 4 two-dimensional 
MLSE's is applied to the example in figure 1.5, where each two-dimensional 
MLSE is implemented using the VA. 

. t h e received sequence (^+5,:^+5-1,. . . ,^+1) with the new feedback sequence 

The symbol xi+1 estimated is released as the detected 

symbol x ^ i . In this way, the detected symbol sequence is found symbol by 

symbol. We say that the estimator is operating in an incremental mode. As 

a result, we can apply a single ^-dimensional MLSE to detect a sequence of I 

symbols in I passes. 

As an example, the decompostion of a 4-dimensional MLSE into 4 two-

dimensional MLSE's is shown in figure 2.2, where each two-dimensional MLSE 
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is implemented using the VA. Again the example in figure 1.5 is considered. A 

comparsion of figure 2.2 and figure 2.1 clarifies the difference between the way 

to decompose a MLSE introduced in this section and the TVA as described in 

section 2.1. For the latter, history of all survivor paths are feedbacked while a 

single detected path is feedbacked in the former case. The decomposition of a 

MLSE should cause little performance degradation since the error performance 

is still dominated by the minimum distance error events, provided that the 

truncation depth is chosen according to proposition 2.1. 

P r o p o s i t i o n 2.2 If the time and space complexities of a I-dimensional MLSE 

are fi(l)/l operations per symbol and f2(l) storage elements respectively, the de-

composition approach reduces the time complexity to fi(S) operations per symbol, 

and the space complexity to storage elements. 

The VA is well-known for enabling the complexity of MLSE to grow linearly 

with, the sequence length instead of exponentially. But we arrive at the following 

surprising result. 

Obse rva t ion 2.1 Even without the introduction of the VA, the decomposition 

approach enables the complexity of a MLSE to grow linearly with the sequence 

length. 

Finally, we emphasize that our way to decompose a MLSE into lower dimen-

sional MLSE's is quite general and does not depend on how the decomposed 

MLSE's are implemented. 

• 2 8 

• * 

• ..... ..:. - ... " *' •
 :• ." ',. , .., i . •‘ ..., • , 1 



Chapter 2 New Formulation of MLSE 

2.4 Lattice Interpretation of MLSE 

Let us consider a ^-dimensional MLSE and its matrix formulation. Recall that 

h is the channel impulse response, z the received sequence, x the source symbol 

sequence, x the suspected source symbol sequence. Let &一 1,沄i-2, •. *，知-v b e 

the detected values of source symbols 叫 一 i , . . •,叫一v respectively. Define 

the -y-dimensional column vector 

( . \ 

x = 
A 

•̂ t—v+l 

乂 沄 t - v y 

and the two dimensional column vectors 

( 一 \ 

X = 

V ) 

and 

z = . 
^+1 

\ / 
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Note that the symbols x, 5 and 2 represent both sequences and the corresponding 

vectors. Also, define the ^ x 8 upper-triangular Toeplitz matrix 
/ \ 

ho hi . hv 0 . . 0 

0 ho • ho-i hv . * 0 

. . . • . • 書 .• > 

. • 0 h0 ht .. hv 0 
H 二 

• . » 0 h0 . hv_i hv 

. • , . 0 • • K—i 

. * • * 

^ 0 0 . , . . 0 ho J 

and the 6 xv lower-triangular Toeplitz matrix 

[ 。 • • • 。 ） 

• • • 

0 , , . . 
hv 0 . . •• 

G= . 
hv 0 . • 

• . . • • 
. . • • 0 

�hi h>2 • hv ^ 
The function of a MLSE is to find x such that the Euclidean distance 

2 

=, \\Hx ^ (z + Gx)\\2 (2.1) 

A ® / 
is minimized, subject to the constraint that each element of x must be an integer 

in the range from 0 to m—1. The term A* (5 x) is in fact the suspected transmit-

ted sequence, obtained by the convolution of the channel impulse response h and 
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the suspected source sequence (x x). Hence the weight measures the negative 

log likelihood, or the distance between the received sequence 么 and the suspected 

transmitted sequence corresponding to x and the feedback sequence x. 

It is observed that the set of all possible x comprises a finite integral lattice 

{0,1, • , m -1}^. . (Intuitively, a lattice can be thought as the set of cross-points 

in a grid. Refer to section 3.1 for the formal definition of a lattice.) Since the 

linear transform of a finite lattice is again a finite latt ice,丑5 must be a point 

in a finite lattice. Define q = 2 + Gx. Then the sequence estimation problem 

can be interpreted as the following nearest (finite) lattice point problem. 

P r o b l e m 2.1 Given a S-vector q, find a 5-vector x in the lattice 丑{0，1，•..，rn— 

such that the vector x is closest to the vector q in Euclidean distance. 

As an example, consider the two-dimensional MLSE in figure 2.2(a), where 

v = 1, m 二 2, 8 = 2, h = (1, 0.5), x = (0) and z = (0.7,0.1). Then, according 

to equation 2.1，the distance to be minimized is 

( 1 0.5 0 \ [ ^ 1 ] J 0.7 \ = / 1 0.5 ) ( ‘ ) _ ( 0.7 ) 2 . 

\ Q 1 0.5 J * \ 0.1 J \ 0 1 ) \ xi J \ 0.1 ) 
\ 0 / 

The suspected source sequence x must be one of the four ordered pairs (0,0), 

(0,1), (1,0) and (1,1). TKese four points comprise a two-dimensional finite lattice 

as shown in figure 2.3. Tke nearest lattice point of the query point (0.7,0.1) 

corresponds to x = (1,0). Hence the decision on X{ is 0. Notice that the 

estimation process just described is exactly what the two-dimensional MLSE in 

figure 2.2(a) has done. 
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x . 

A 具.………众(
1
，

1
) • • 

• • -；• ： • • 
• • • 

0.5 - / / 
• • • • • • • • 

•• a •• /(0,0) /(1,0). <j>v ' v I ' 1 i»xM 0 0.5 1 

Figure 2.3: The lattice interpretation of the two-dimensional MLSE in figure 
2.2(a), where o: lattice points corresponding to the permissible source sequences 
labelled by the ordered pairs , x: the query point q‘ The nearest lattice point 
corresponds to x = (1,0). 

Def in i t ion 2.1 The Voronoi region of a lattice point b is the region in which 

all points has b as their nearest lattice point. 

If We know the Voronoi region of a lattice point, the nearest lattice point 

problem is equivalent to detecting which Voronoi region the given point belong 

to. Due to the regular structure of a lattice, most of the nearest neighbor 

regions have the same shape. Therefore it is unnecessary to search exhaustively 

all lattice points for the nearest one. This is the key to our efficient algorithms 

for the MLSE. 

Nevertheless, near the boundary of a finite lattice, the regularity breaks 

down. In other words, the Voronoi regions of lattice points near the boundary 

have irregular shapes. Even the accurate descriptions of such, regions are very 

complicated. Figure 2.4 illustrates the Voronoi regions of a two-dimensional 

finite lattice. 

To avoid such complication arising from the finite lattice, we simply assume 

the lattice is infinite and the Voronoi regions of all lattice points have the same 

shape. The error caused by the finiteness of lattice is referred to as the boundary 
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Figure 2.4: The Voronoi regions of a two-dimensional finite lattice. 

error. As the deviation of vector q from a lattice point is caused by AWGN, with 

large enough SNR and m, the probability that the nearest lattice point of q is 

a point outside tke finite lattice is small. Therefore, in many important cases, 

the assumption is reasonable and tke boundary error is negligible. 

With, this assumption, all points in the lattice HZ6 is permissible, where Z 

is the set of integers. From now on, we consider the following nearest lattice 

point problem (also called the closest vector problem) instead. 

P r o b l e m 2.2 (The Closest Vec tor P r o b l e m ) Given a 6-vector q, find a 5� 

vector x in the lattice HZ6 such that the vector x is closest to the vector q in 

Euclidean distance. 
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The Closest Vector Problem 

The closest vector problem (CVP) (also called the nearest lattice point problem) 

is a special case of an important algorithmic problem studied in computational 

geometry — the post-office problem (POP) (also known as the nearest neighbor 

search or the closest-point queries). 

Computational geometry is, in its broadest sense, the study of geometrical 

problems from a computational point of view. It finds a large number of appli-

cations areas such as pattern recognition, computer graphics, image processing, 

operations research, statistics，computer-aided design, robotics, etc. For a ex-

cellent survey on this subject, refer to reference [47] (see also [56]). 

The POP is a fundamental problem of computational geometry, having 

many applications in statistics, operations research, interactive graphics, pat-

tern recognition, coding theory and other areas. 

P r o b l e m 3 .1 ( T h e P o s t Office P r o b l e m ) Given a set of k points, called 

sites, in Euclidean n-dimensional space, build a data structure so that for any 

arbitrary query point q, a closest point in the given set to q can be found quickly. 
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Chapter 3 The Closest Vector Problem 

The problem arose originally ill two and three dimensional Euclidean spaces, 

in which real physical objects are arranged. Several asymptotically fast algo-

rithms are known for this problem in the planar (n = 2) case. They involve the 

constniction of tlie Voronoi diagram (a diagram consisting of the Voronoi regions 

of all k points), and the use of fast methods for searching planar subdivisions 

resulting from that diagram [26], [59], [40], [18]. A different approach is to solve 

the problem by finding extreme points in three dimensions [19]. By these meth-

ods, a data structure requiring 0(h) space can be constructed in O(k\og(k)) 

time, so that a query can be answered in 0(log(A;)) time. Chazelle [8] has given 

an algorithm for the case n - 3 that requires 0(k2) preprocessing for O(log2(fe)) 

query time. 

The high-dimensional cases are much less examined and understood. Dobkin 

and Lipton [16] have described a data structure requiring time and 

space to construct, giving a query time of 0(log(A;)). Assuming a certain prob-

ability distribution of the sites, several randomized algorithms were proposed 

to improve the average complexity. If the sites is uniformly distributed in a 

hypercube [3], or spatially Poisson-distributed [31], their Voronoi diagram has 

linear average complexity. Recently, Clarkson [11] gave an algorithm which re-

quires 0(A^n /2 l (1+c )) preprocessing on the average, space in the 

worst case and O(log(ib)) query time, for any fixed e > 0. This is close to the 

optimal performance since in the worst case the Voronoi diagram may require 

storage [41]. 

The CVP is a POP with the sites forming a lattice. The complexities of 

the above algorithms are measured in terms of A:, the number of given points. 

These algorithms do not exploit the regular structure of a lattice, and must be 
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Chapter 3 The Closest Vector Problem 

inefficient. Therefore, a totally different approach, must be used although some 

of the techniques mentioned may be useful. 

The Voronoi regions of all lattice points are of the same shape. However, 

even storing a single Voronoi region is inefficient, as the storage required to 

store such region already increases exponentially with the dimension. It is thus 

desirable to find a solution without involving the Voronoi region. 

Very efficient CVP algorithms [14, chap. 20], [12], [13] have been derived 

for a special class of lattices — the root lattices, which are generated by the 

root system of certain Lie algebras. These algorithms are important for lattice 

quantizer and source coding for Gaussian channels. Nonetheless, they cannot 

be generalized to solve the problem for arbitrary lattices. 

A general solution for the CVP was proposed by Kannan [37], [38]. It is re-

lated to other lattice algorithms and was originally developed for solving integer 

programming problems. Kannan was mainly interested in the theoretical bound 

on the worst-case complexity. Hence his CVP algorithm is very complicated and 

is not a practical solution to our problem. However the underlying idea is simple 

and is consisted of two steps: 

S t e p 1: For the given lattice, find a "short" and quite "orthogonal" basis called 

the reduced basis. 

S t e p 2: Enumerate aH lattice points falling inside a sphere, which is centered 

at the query point, for the nearest lattice point‘ 

The procedure transforming a basis into a reduced one is known as the ba-

sis reduction algorithm, while the one achieving the second step is called the 

enumeration algorithm. 
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Chapter 3 The Closest Vector Problem 

The idea of our CVP algorithms are similar. After a brief introduction to 

the lattice, we will discuss the basis reduction algorithm and the enumeration 

algorithm. Tlien a CVP algorithm is developed based on the straightforward 

reduce-and-enumerate approach. Along with the discussions, we suggest im-

provements for almost all algorithms encoimtered. Finally, very efficient GVP 

algoritlim is derived using the technique of norm approximation. 

3.1 Basic Definitions and Facts About Lat» 

tices 

Let n be a positive integer. A subset L of Rn is called a lattice if there exist 

linearly independent n-vectors h,-- ,bn G R n such that 

L =丄(丑)={771¾ + . • • + Vnbn ： Vi € Z}, 

where B = [bu “ .，bn] is a n x n matrix. We say that b1}-',bn is a basis 

of L. The same lattice L may have many bases but they have the same de» 

terminant (up to sign). So we define the determinant of a lattice L(B) as 

det(L) 二 |如七(5)|. Geometrically, the determinant of a lattice is the common 

content of those parallelepipeds whose vertices are lattice points and which con-

tain no other lattice point; equivalently, of those parallelepipeds spanned by 

bases. Hence the following inequality, called Hadamard's inequality, is natural 

from a geometric point of view: 

: | |6i | |--- | |MI > det(L). (3.1) 

We recall the Gram-Schmidt orthogonalization process. The n-dimensional 

orthogonalization vectors b{} • • •, b*n and the real numbers /i^, for 1 <j<i<n1 
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are defined recursively by 

( 3 . 2 ) 
• 1 

= (3.3) 

The orthogonal vectors - , 6* obtained in this way depend on the order 

of blt …,bn. Also, for all 1 < i < n, 6J, • . . , ¾ and blt • •, , 6,- span the same 

subspace. For all 1 < i < n, by defining JJLU = 1, we have 

(3.4) 
i=i 

or, in matrix form, 

[ U n ] = K ， . " H 

Note that [fiij] is an lower triangular matrix with each diagonal element equal 

to one. It is obvious that 

d e t ( ^ ) ) = n i | 6 ; | | . (3.5) 
i=i 

By letting u{ = and bi(j) = / ^ iPJ I I , f o r l < i < ^ < n ’ we also have 

1 

i=i 

Note that 6̂ (¾) 二 for all i. Besides, foi 1 < j < i < n, define b(ij) as 

the projection of bi on the orthogonal complement of the subspace spanned by 

• • •, Uj-i , or mathematically, 

i 
b(ij) = 

k二 j 

Conceptually, it is useful to think of 6i, • • •, 6n as being represented in a coordi-

nate system with unit vectors ui, " • ,u n . In this coordinate system, the n x n 
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Chapter 3 The Closest Vector Problem 

matrix with tlie basis vectors as its rows is lower triangular and has b‘(j) as its 

( i , j )- t l i entry. 

/ A � 
Jx(l) 0 0 • . . 0 

6 2(1) 62(2) 0 . • . • 0 

眷 • • • 春 • • 

• . • • bi(i) 0 . . 

. • * • 1̂+1(¾+ 1) • . 
參 . . . . • • 争 

• . . 0 
� 6 „ ( 1 ) 6n(2) . . . • • � ( n ) j 

This is the lower triangular representation of the basis matrix introduced by 

Kannan [38]. 

Finally, we describe two important operations on vectors — projecting and 

lifting. Projecting a vector b onto the hyperplane through the origin with, normal 

vector a yields b — pp-a, which can also be interpreted as the projection of b 

perpendicular to a. Suppose a is a non-zero vector in L and La is tHe projection 
A 一 

of L perpendicular to a. If ba is a vector in Lay there is a unique vector b in L 

such that b projects into ba and 一 甲 < < The process is called lifting 

ba to b. In fact, b 二 ba — rja, where 77 is the integer nearest to 綠.Figure 3.1 

illustrates an two-dimensional example of projecting b perpendicular to a to get 

ba and then lifting ba to b. Note that transforming a vector by projecting and 

then lifting guarantees that the resultant vector cannot be too long. 
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0 X 0 o 0 

° 1 1 • Y 

o o o — 

Figure 3.1: An twodimensional example of projecting b perpendicular to a to 
get ba and then lifting ba to b, where o: lattice points in L�x: lattice points in 
La. 

3.2 Lattice Basis Reduct ion 

The concept of basis reduction has been proposed more than a century ago. The 

early work on the topic is formulated in terms of quadratic forms instead of lat-

tices. Reduced bases have some nice properties, which usually means that they 

consist of "short" and fairly "orthogonal" vectors. The definition of reducedness 

is not unique. One of the most important definitions was given by Minkowski in 

1890s. A basis is Minkowski-reduced if, for i = 1,-- - ,n , bi is a shortest lattice 

element that can be extended to a basis with (b1} • •. ,6t_i). In simple words, 

Minkowski-reduced bases require that each basis vector is as short as possible. 

The definition of Minkowski-reduced bases is of fundamental importance in the 

geometry of numbers [6]. 

Basis reduction is naturally associated with the problem of finding the short-

est lattice vector — the shortest vector problem (SVP). The SVP in the case of 

Loo-norm is known to be NP-hard [20]. But it is not clear whether the SVP in 

the case of Euclidean norm is NP-hard or not. 
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Chapter 3 The Closest Vector Problem 

In 1982, Lenstra, Lenstra and Lovasz [51] achieved a breakthrough by con-

structing LLL-reduced bases and a polynomial reduction algorithm, and thereby 

approximating the shortest non-zero lattice vector up to a factor of 

Based on their algorithm, more efficient algorithms for the SVP and the CVP� 

improved Hermite-reduction and Minkowski-reduction algorithms are developed. 

In fact, their algorithm has found applications in very wide areas, including inte-

ger programming [52], [38], finding irreducible factors of polynomials [50], min-

imal polynomials of algebraic numbers [39], simultaneous diophantine approxi-

mation [51], ellipsoid method in linear programming [32], attacks on knapsack-

based crypto-systems [46], [58], disproof of Mertens' century-old conjecture in 

number theory. All these applications were made possible by the LLL-reduction 

algorithm. 

References [51], [54] have described the LLL-reduction algorithm and proved 

its correctedness and polynomial complexity. In the following, we will derive 

the reduction algoritlim based on our understanding and interpretations. Unlike 

most literatures on algorithms, we try to explain how the algorithm is discovered 

instead of simply listing the algorithm and giving relevant proofs. We believe 

that this approach will illuminate the spirit of the algorithm. After that we 

suggest improved versions of the algoritlim based on new observations. 

3.2.1 Weakly Reduced Bases 

As transforming vectors by projecting and then lifting results in reasonably short 

vectors, such operations may be used to convert a basis into a short one. 

Think of the lower triangular representation of a given basis . . . , bn. If, for 

j < i, the j-th. coordinate of 6» is greater in magnitude than half of the length of 
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Chapter 3 The Closest Vector Problem 

b) (i.e. \bi{j)\ > or equivaleiitly, pa < we can always reduce the length 

of bi by projecting it onto the subspace spanned by 6J,…，巧 and then lifting it. 

Tlie resultant vector 5t- = bi — rbj, for some integer ry, must satisfy the condition 

that li(j) < Notice that the new b a s i s . . . , 知 + i , . . • , � s p a n s 

. t h e same lattice as the original basis bu •. •, bn. The process can be repeated 
( n - i K n - 2 ) t i m e s £or ^ 1 < j < i < n. The resultant basis having shorter basis 

2 .. . . — . ， 

vectors is called weakly reduced. 

In summary, a basis bu. • • ,bn is weakly reduced if < \ for 1 <j <i< n. 

Remember that / ^ = 1 and 阳 二 0 for j > i. Any basis can be converted into 

a weakly reduced basis by the procedure Weakly Jleduce. 

P r o c e d u r e WeaklyJReduce( , . • •，bn) 

1. For i = 1 to n do 

2. For j = i — 1 downto 1 do 

3. If do 

4. 7j round(/XiJ-); 6» ••= hi — rjbj. 

5. For A; = 1 to j — 1 do /xt*fc := fiik 一 Wik. 

6. fiij := ~ rj-

7. Endif. 

8. Endfor. 

9. Endfor. 
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Chapter 3 The Closest Vector Problem 

Note that making l/iijJ < | will change tHe values of/ii i , - - Therefore 

the elements of matrix [/xy] must be processed from right to left. Finally, we 

remark that 6J, • “ , obtained from the orthogonalization process of the new 

basis is the same as before. This is obvious if the procedure is interpreted as 

projecting and lifting operations of the basis vectors* 

3.2.2 Derivation of the LLL-reduction Algorithm 

Given a basis and a specific orthogonalizatioii 6 J , w e can always apply 

procedure WeaklyJEleduce to transform it into a nice basis. One may then 

naturally ask how to find a nice orthogonalization of a given, basis. 

By equation 3.5, the length of b^s are constrainted. Intuitively, we want the 

length of b*'s to be distributed as even as possible so that the basis appears to 

be more "short". Lovasz [5斜 observed that typically the short vectors among 

b^ - - -, 6* are at the end of the sequence. So it is desirable to make the orthog-

onalization sequence 6i(l), * — , bn{n) lexicograpliically as small as possible. 

For some i < n, consider the length of the projections of k and b{+1 on 

m,-", uni i.e. b(i, i) and b(i+l,i). If b(i, i) is longer than b(i-\-l,i), we can always 

swap bi and b‘+1 to get a lexicographically smaller orthogonalization sequence 

6 ^ 1 ) , . . , 一 1)，\\b(i + l , i ) | | , •. •，bn(n). Hence a better orthogonalization is 

resulted. 

After the swapping of basis vectors, the basis may not be weakly reduced any 

more. We can then apply procedure WeaklyJReduce again. It is now clear that 

the two processes, i.e. finding a better basis for a given orthogonalizatioii and 

finding a better orthogonalization for a given basis, can be applied alternatively 

until we can do nothing better. This is the spirit of the LLL-reduction algorithm. 
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In this way, the following reduction algorithm can be derived easily. 

Algorithm LLL-ReduceO(b1,··· , bn ) 

Step 1 Make the given basis weakly reduced. 

Step 2 Check if there exists any i such that Hb(i,i)1I2 > ~lIb(i + 1,i)1I2. If 

found, swap bi and bi+l, update the orthogonalization, and go to step 1. 

Otherwise, stop. 

Note that a weaker test IIb(i, i)1I2 > ~lIb(i + 1, i)1I2 is used in step 2 instead 

of 11 b( i, i) 11 > 11 b( i + 1, i) 11 to ensure faster convergence. (The convergence of the 

algorithm will be proved later). The coefficient ~ is chosen arbitrarily and may 

be replaced by any number slightly greater than 1. This suggests the following 

definition of reduced basis. 

Definition 3.1 A basis b1 , ... , bn of a lattice is LLL-reduced if it is weakly re

duced and for 1 < i < n, 

(3.6) 

Like any iterative algorithm, we need to guarantee its termination. Let 

bi, ... , bi+l be the orthogonalization vectors after swapping. Note that all or

thogonalization vectors except the i-th and (i + 1)-th ones are unchanged since 

they lie in the orthogona~ complement of the subspace spanned by b( i, i) and 

b( i + 1, i). If we do swapping in step 2, there is a positive number a < If 
such that IIb(i + 1,i)1I = allb(i,i)lI. Thus we have bi = b(i + 1,i), or Ilbill 

allb(i,i)1I = allbill. Also, by equation 3.5, IIbillllbi+lll = IIbillllbi+lll. Then 

i i 

IT Ilb~11 = a IT IIb~lI, 
k=l k=l 

44 



Chapter 3 The Closest Vector Problem 

and for all 1 < j < n and j + i � 

Jk=l *： 二 1 

This suggests the definition of the following function 

D{h,…a) 二 n n _
2

= n _
2(n

_
fc)

. (3.7) 
j=i jk=i fc=i 

The function can be interpreted as a negative measure of achievable reducedness 

of the given basis because 

l o g p C � … A ) ) 二 f > ( n - W l � g ( _ | ) , 
k=l 

which is a weighted sum of tke log length of the orthogonalization vectors. (Note 

that a basis with a nice orthogonalization sequence need not be a short basis, but 

we can always get a nice basis by making it weakly reduced.) In consistent with 

our previous discussion, tlie smaller tke function D is, the (lexicographically) 

smaller the orthogonalization sequence is. The value of is decreased after 

each swapping in step 2 due to the multiplication of a . So the algorithm must 

terminate, otherwise D will tend to zero which is impossible. In fact, we can 

establish the upper and lower bounds for the value of D. 

L e m m a 3.1 
([51]) Let b u b e a basis of an integer lattice L, then 

Proof : Let p 二 max‘ 丨|6‘丨丨2，and let gj = H U i 丨丨坨丨丨2. 9j the squared de-

terminant of the j-dimensional lattice spanned by • • *，bj. By Hadamaxd's 

inequality 3.1, 

jb=i 
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Hence, the upper bound of D follows from its definition. It can be seen that 

g j = d e t ( [ 6 x , 6 j ] T [ 6 I , M ) -

This is an integer greater than zero since all b^s are integer vectors. Thus the 

lower bound follows easily. Q.E.D. 

Though this lemma only applies to integer lattice, in practice, its result 

may be extended to real numbers in fix-point representation by proper scaling. 

Without loss of generality, from now on, integer lattice is assumed. We will 

prove a useful lemma, and tiien discuss the nice properties of a LLL-reduced 

basis. 

L e m m a 3.2 ([54]) Let b1} • • • tbn be a basis of a lattice L and let …尤 

its Gram-Schmidt orthogonalization. Denote X(L) as the length of the shortest 

vector in L, Then 

Proof : Let b be the shortest non-zero vector in L. Then we can write b 二 

E?=i fliK where 1 < k < n, all 7?i，s ,are integers and rjk — 0. Substituting from 

equation 3.4，we have b = As pkk = 1，ak = 恥 is a non-zero integer. 

Thus 

丨丨6丨丨
2
二^：4|阗丨丨

2
2 4丨闯1|

2
2丨阅丨丨2

. 
»=i 

Q.E.D. 

T h e o r e m 3.1 ([54]) Let 61，.. •，bn be a LLL-reduced basis of a lattice L. De-

note A(L) as the length of the shortest vector in L. Then 

IIHI < 2
(n
-
1)/2

A(I); 
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么 | |�|| S 2(
n
-
1
)/

4
 clet(i)

1
/
n
; 

5• | |M 卜 ’ I 1 M � 2 咖-DMdet(丄). 

Proo f : Assuming our usual notation, 

_
2
 = I|6MII

2
 < fll^+ 1̂ )11

2
 . 

二 臺 丨 閱 + 1 + 螂 + 1 , 丨 |
2 

、人 / = lll^air + ^ l l ^ l l
2 

< . M
2

+ | _
2 ， 

and hence 

2116-̂ 11
2
 > ll̂ il

2
- (3.8) 

By induction, 

2̂11̂112 >Ĥ ||2 -||6iir, (3.9) 
and by lemma 3.2， 

I|6i||
2
 < 1̂ 11(2̂ 11̂ 11

2
) 

< 2̂ 11111111̂ 11
2 

t 

This proves part 1.Again by equation 3.9, 

. M 2 d < n ^ i i ^ i i 2 

= 2 n ^ - i ) / 2 n ii^II2 

»=i 

=2n(n - ""det � 2. 
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Hence part 2 follows. Using the property of weakly reducedness, 

ll̂ ll2 = E 411̂ 112 < ll̂ l!2 + + • * • + ll̂ ll2)-
J = I 

By equation 3.8, 

W 2 幺 ( 1 + 去 ( 2 + " . + 2‘-1 如^^^ 

and hence 

f [ ||6{||2 < 2 n ^ / 2 n Wi\\2 = 2 n ( n" 1 ) / 2 det(L)2 . 

This proves part 3. Q.E.D. 

Parts 1 and 2 of this theorem guarantee that the LLL-reduced basis includes 

a reasonably short vector while part 3 ensures a quite "orthogonal" basis, In 

addition to the nice properties of the reduced basis, it is the efficiency which 

enables its reduction algorithm to have important applications in various areas. 

We now focus on the detailed procedure to achieve a LLL-reduced basis. 

After swapping bk and In step 2，exactly two of the orthogonalization vec-

tors b% and b*^ are changed. Therefore, only the m^s associated with bk, h-i，K 

and b*^ need to be updated. For the ease of understanding, we enclose in boxes 

these elements of the matrix 
/ \ 

0 0 . . • • 0 

fi21 /^22 0 . * • . 0 

. '. . . . ''• * • 

I 外一 1,11 • • El lMfe-i.fc-1 I 0 . . 

|外,11 • • • 1 I ^k I • •. 

• . • • • • • • 

• . • • E3 0 

� M d l • • Mn,Jb-l - ^ d d j 
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Denote 5i, 5* and fkj as the updated values of i i , b* and ^ respectively. Then 

the following update formulas can be derived in a straightforward manner [51]. 

5jfe-i = h 

h = 

T>1 = — P^，k-iH 一 1 

- ll^-ill2 

hk-1 二 fKk - iflk，k-i - ^ j i f ^ p - ioik<i <n 

Jkk = 一 ioik<i<n 

pk-i，j 二 阳 for 1 < i < A; - 1 

H i = for 1 < j < A; - 1 

Remember that fin = 1 for all i, so the diagonal elements need not be updated. 

Also, we simply need to swap 户切 and fik+ij for 1 < j < k 一 1, since 

are unchanged. This also implies that only、，. ••，�need to be considered to 

achieve weakly reduced basis in step 1. Besides, in step 2, we have to find' an 

i such that ||6(i,i)||2 > | | |6(i + l , i ) | | 2 . One straightforward way to implement 

this is to use a counter k with initial value 2. The counter keeps track of the 

dimension of sublattice whicH is LLL-reduced represented by the present basis 

vectors. If the test is failed (i.e. 6i, • • •, bk-i must be a LLL-reduced basis of 

the sublattice they span), the counter is incremented. Otherwise, we swap h一i 

and and decrement the counter. In this way, the counter will count up and 

down during a run. However, the counter will reach n + 1 sooner or later as the 

algorithm must terminate. The process can be thought as extending the dimen-

sion of the sublattice which is LLL-reduced by the current basis representation. 

Clearly, during the pass when tlie counter value is k, we only need the first k 
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basis vectors bly — • ,6¾ to be weakly reduced instead of all basis vectors. Com-

bining with the discussion in previous paragraph, only 6jb need to be considered 

in step 1, With a closer look, further simplification for step 1 is possible. The 

test in step 2 requests the value of fi^k-i only. Thus we can make \fik,k^i\ < \ 

first, and process fik’k一2，• • • , 弘 o n l y when the counter is incremented. With, 

this observations, tke LLL-reduction algorithm [51] can be constructed readily. 

P r o c e d u r e LLL_Reduce(6i, • • •, bn) 

I . Do Gram-Schmidt orthpgonalization process to get f i ^ s and 炔,s. 

2« k • —~• 2* 

3. Make, if necessary, |外，*：一i| < \ and update bk and �i，…，fJ>ktk-i-

4. If do 

！ Swap bk-i and bk, swap /ifc—1,1, • • •，p>k îtk-2 and /ifc.i, • • •，fJ>k,k-2, 

and update /¾一 1 and /¾ , f i k + i ^ i , ' . • ， a n d fik+i,k, ' • •， 

6. If ib > 2 do A; := k 一 1. 

7. Else 

For j 二 k 一 2 downto 1 do make, if necessary, \fMkj\ < \ 
8. < 

k and update bk and /xjfei,.. •，fJLkj-

9. 1£ k ^ n do k := k 1 ; else terminate. 

10. Endif. 

I I . Go to line 3. 
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Note tha t j3i stores the value of ||6*||2 for I <i< n. 

We now compute the time complexity of procedure LLL_ReduGe. The Gram-

Schmidt orthogonalization process (see equations 3.2 and 3,3) in line 1 needs 

0 ( n 3 ) operations. Each execution of line 5 decreases the value of function D 

(defined in equation 3.7) by multiplying a factor of f . Let D0 be the initial value 

of D. By lemma 3.1, after j passes, 

where (3 is the maximum squared length of the given basis vectors. Hence, we 

have j < -n{n — l)log(/5) and the number of times we pass through lines 5 

and 6 is 0 ( n 2 ) . As the test In line 4 cannot be succeeded n times more than it 

is failed (otherwise h — n and the procedure terminates), the number of times 

passing through lines 8 and 9 is also 0 ( n 2 ) , Thus each of the lines from 3 to 11 

is executed 0 ( n 2 ) times. Each execution of line 3，line 5 and line 8 take 0 ( n ) , 

0 ( n ) and 0 ( n 2 ) operations respectively. Therefore, the overall t ime complexity 

of 七lie algorithm is 0 (n 4 ) . 

As the procedure handles integers, rational arithmetic operations are as-

sumed. It can be proved that all numbers that appear in the course of the 

algorithm have binary length 0(nlog(/3)) [51]. Thus the algorithm is really poly-

nomial. Finally, we remark that only ||W||，s and ^ - ' s need to be stored. It 

is not necessary to store 衫，s，as the orthogonalization process in line 1 can be 

done by the following procedure [36]: 

P r o c e d u r e 0rthogonalize(6i,…，bn) 

1. For i = 1 to n do 

2. For j = 1 to i — 1 do 
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3. p a ：= ( 6 ¾ - E ^ m P i k P M -

4. Endfor. 

5. /¾ := INI 2 一 /4 /¾. 

6. Endfor. 

3.2.3 Improved Algorithm for LLL-reduced Bases 

We observed that only the condition j ^ - i ) < | is important to enable further 

improvement of the orthogonalization, and other ，s are solely used for up-

dating purposes. In fact，the nice property of a LLL-reduced basis summarized 

in lemma 3.1 also requires the condition < \ o n l y. This observation 

suggests that line 8 of procedure LLLJleduce is totally unnecessary. Accord-

ing to the previous complexity analysis, this line is the bottleneck, which exe-

cutes 0(7¾2) operations. Removing it will decrease the computational complex-

ity by an order of magnitude. Now the modified algorithm has time complexity 

0(n 3 ) . However, the resultant basis may not be weakly reduced and procedure 

Weakly Jleduce may be employed once to achieve this. 

We notice that Lovasz [54] also has this observation but he insists the full 

strength of weak reduction so as to get the polynomial space complexity. Facing 

the same situation, we do not want to store the big numbers that may occur in 

the course of the modified algorithm. 

It should be emphasized that we are interested in a practical algorithm, 

instead of its asymptotic behavior. The most important variables that require 

exact arithmetics is bi,s. Without loss of generality, integer lattice is assumed 

(i.e. all are integer vectors). Kaltofen [36] suggests the use of modulo-M 
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Chapter 3 The Closest Vector Problem 

arithmetics for V s so as to slightly improve the space complexity and the binary 

steps required. Let J3 be the maximum squared length of the given basis. With 

| 陶 | < \ for 1 < j < i < n, tken for all z's, 

ll^il2 = ll^ll2 + ^ ^ < 
i=i 

Hence, the updated entries of 6» will be absolutely bounded by 

and M can be chosen as any value greater than ^/(n + 3)^. While Kaltofen 

considers this in a subroutine, we use the modulo-M arithmetics throughout the 

whole procedure and reconstruct the true values of b‘，s just before termination. 

This will not cause any error as the operations on 6‘，s are solely for updating 

purpose, and the true values of b?s are not used elsewhere. Besides, right before 

termination, the condition of weak reducedness guarantees that the values of 

b^s are exact. We remark that the reconstruction operations can be omitted if 

two's complement representation of integer is used. 

Though it can be shown that the binary length of ĵ ，s (storing the values 

of ||6J||2,s) still grows polynomially, that of /xtJ-'s is not the case. However, the 

result of a reduction algorithm is the values of 〜，s (the reduced basis), and we 

do not need the exact values of ，s for most practical purposes. As suggested 

by Odlyzko, the entries of jLLij's and ^ ' s could be made floating point numbers 

with extended precision. Whenever the loss of significant digits during roundoff 

becomes too great to decide ft < (f — M ^ - i ^ t - i , or to calculate the integer 

nearest to /x^, one can recompute this values from bi's. We propose the following 

procedure for this r ecomput at ion task. 

P r o c e d u r e Recompute(6i, • • •, 6n) 

1. For i = 1 to 7i do 
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2. For j = i — 1 to 1 do 

3. fiij := ( ^ ¾ - E t X ^ j k m P k ) / ^ 

4. If § do 

5. rj := round(/iij). 

6. b{ (bi — rjbj) mod M. 

7. ^ij ：= Mtj 一 

8. Endif. 

9. Endfor. 

10. /¾ :=丨Nl2 - S t i / 4 级 . 

11. Endfor. � 

This procedure efficiently combines the orthogonalization process and weak 

reduction process. The latter process is important since all fi^'s recomputed is 

bounded by | and thus their accuracy can be greatly increased. With procedure 

Recompute, we give the following modified LLL-reduction algorithm. 

P r o c e d u r e MLLL-Reduce(6i, • * •, 6n) 

1. Do Gram-Schmidt orthogonalization process to get 弘 ‘ / s and /¾，s. 

2« k • — 2« 

3. Make, if necessary, |/xfcjjfe_x | <\ and update 6¾ rising modulo-M arithmetics 

and update fiki ’ • •.，外，fc-i • 
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Chapter 3 The Closest Vector Problem 

4. U p k < \ p k ^ do 

( Swap bk-1 and bk, and swap fik-ith • • •，pk-i’k一2 and 7 ,̂1，. • ‘ rPk,k-2i 

and update /¾一i and /¾ ,, f i M ^ - i r ’ •，弘n,Jb-1 and Pk+i.k, . . . , fJ>ntk-

6. If k > 2 do k k 一 1. 

7. Else ‘ 

8. K fc ^ n d o 

9 • A/ i —' k 1 • 

10. Else 

11. Make hu … ， b n weakly reduced using modulo-M arithmetics. 

12. Terminate. 

13. Endif. 

14. Endif. 

15. Go to line 3. 

For the ease of computation, in line 4, the slightly stronger test /¾ < \Pk- i is 

used to substitute the original test /¾ < (f— /4,fc-i )/^-1- T h e two，s complement 

representation of b^s is assumed here. 

According to our interpretation of the LLL-reduction algorithm，it is an two-

step iteration: one step improves the basis for fixed orthogonalization, and the 

other improves the orthogonalization for fixed basis. But these two steps are 

quite independent. In particular, we do not need the weak reducedness of the ba-

sis, or even the condition \fJ>k,k-i\ < \ in order to improve the orthogonalization. 

. ) . : , . . 5 5 
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Gleaxly, it seems that procedure LLL-Reduce makes \fiij\ < | too frequently. We 

can improve the orthogonalization in a single step without making any | � | < \ 

until all the bk
ys satisfy inequality 3.6. Though this approach reduces the num-

ber of times we need to make [fjLkj\ < f f o r i = 1 - 1 ， … , 1 (as in line 8)，it seems 

to increase the number of swapping and thus the updating of ^ s (as in line 5). 

Therefore the overall improvement is small. Nevertheless, this approach enables 

larger amount of parallelism and is more suitable for multiprocessing environ-

ment. Combining with the features of procedure MLLLJleduce, we propose the 

following algorithm. 

P r o c e d u r e PMLLLJEledoice(6i,, ” , bn) 

1. Do Gram-Schmidt orthogonalization process to get ，s and A'>s-

2. k :== 2; swap_flag:=0. 

3. While k<n do 

4. If pk < \ p k - i do 

I Swap bk-i and h , swap • . . , ^ - 1 ^ - 2 and /ifc’i，• • •，fJ>ktk-2y 

and update /¾一 1，/3jfe, /ifc+i.fc-i, * “ , Mn,k-i and fik+^k, • • •， 

6. swap-flag:=1« 

7. If fc > 2 do k : = k 一 1.、 

8. Else 

9. ib := + 1. 

10. Endif. 

56 

) ( 4 : 、：、•
 1

 ’ • 、. . ： ； f n ' i 



Chapter 3 The Closest Vector Problem 

11. Endwhile. 

12. If swapjflag = 1 do 

( F o r j = 2 to n do make, if necessary, •-1| < | and update bj 
, … . ‘ -

using modulo-M arithmetics and update fiju" . ， / ¾ 一 i . 

14. Else 

15. Make the basis bu • •• ,bn weakly reduced using modulo-M arithmetics. 

’ 16. Terminate. 

17. Endif. 

18. Go to line 2. 

Finally, we remark that procedure MLLLJReduce is equivalent to procedure 

LLLJleduce, in the sense that they always return the same reduced basis for 

the same input basis, while procedure PMLLLJEleduce may find a reduced basis 

different from that found by procedure LLL_Reduce even for the same input. 

3.3 Enumeration Algorithm 

As mentioned in tke beginning of this chapter, it is necessary to enumerate all 

vectors of a lattice falling inside a certain region in order to find the vectors of 

small length. Consequently, enumeration algorithm become an essential compo-

nent of the SVP and CVP algorithms. To avoid enumerating unnecessarily large 

number of points for the shortest vector(s), the following two steps are usually 

done. 1 
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S t e p 1: Determine a reasonably small region (or the radius of a sphere in case 

of Euclidean distance) which must contain the shortest vector(s). 

S t e p 2: Enumerate all vectors in that region and pick the shortest one(s). 

We first discuss kow to achieve step 2, assuming the radius of the sphere 七o 

be enumerated is given. There are three different ways to do enumeration. Each 

method has a different computational complexity and ease of implementation. 

Their computational complexities can be compared by the number of points to be 

enumerated. We will survey these enumeration algorithms and at tke same time 

introduce a unified treatment of them. Each of them corresponds to enumerating 

points in a region of a specific shape. After that, we will describe how to 

achieve step 1 and suggest some improved algorithms based on our geometric 

interpretation. 

3.3.1 Lattice and Isometric Mapping 

A n-dimensional lattice L =' L(B) in a n-dimensional Euclidean space ML = 

(L,d) is the set of all integer linear combinations of the column vectors of the 

basis matrix B = [bu - •, bn]. Any vector a in L has a length of (a r a) 1 / 2 , 

where (.，•) stands for the scalar product operator. As L == is the linear 

transform of Z n and B is invertible, B is an isometric mapping which maps Z n 

into L and B"1 is the inverse mapping. Hence each point in L(B) has a one-to-

one correspondence in Zn . The latter lattice is associated with a metric space 

Mz = (Zn , dz\ where dz(a, a) = {Ba, Ba)1^2. For example, a vector aeL with 

length (a, a ) " 2 corresponds to a vector az = B-1 a with, length {Bazt Baz)- Note 

that a and a^ must have the same length since they are corresponding points 
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in two isometric spaces. Besides, we only consider the case that the distance of 

two vectors in a metric space is defined as the length of their difference. 

A region in space ML corresponds to a region of different shape in space M z 

and vise versa. But, as long as the length of a vector is considered, enumerating 

points in the former region and points in the latter region are equivalent. We 

will look at the operations of an enumeration algorithm in both metric spaces. 

This usually gives a dear picture of the underlying operations and make the 

algoritlims more understandable. 

3.3.2 Enumerating Points in a Parallelepiped 

Dieter [15] and Knuth [42] derived algebraically an enumeration algorithm. 

While Knuth considered the case of Euclidean norm, Dieter considered a more 

general definition of norm. We present Dieter's derivation for its generality, 

though we are most interested in the special case of Euclidean norm. 

Consider the lattice L 二 L(B) - + •.. + Tjnbn : rji € Z} with norm 

||a|| = min{a G R : a e a ^ } , where $ is a convex, compact set which, has 

positive measure and is symmetric about the origin. Denote by B - T . 

The dual lattice of L is V 二 丄(丑力）={mK + “ • + ： Vi ^ Z}. The 

polar of $ is 二 G R n : | a r a ' | < 1，Va G The norm induced by is 

丨丨丨 '=min{a'e R : a ' € � 

Now, we have the following inequality [15]: 

| a V | < | H | | | a T . 

This inequality implies that for any vector a = 77161 H + VnK 6 Ly 

\Vi\ = IMi + = |aT6：! < ||a||||^|r. 
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If we want to enumerate all vectors in L with length smaller than or equal to r , 

then rjit for all i, is bounded by 

(3.10) 

Using the fact that 7̂  must be an integer, we get 

M < i m n 

where |_aj indicates tke greatest integer smaller than a . Employing a direct 

search through all combinations of rji's and picking those vectors with, lengths 

smaller than r will not miss any desired vectors. In this way, the number of 

points need to be considered is 

乃《 = & ( 例 _ ' 」 + 1 ) . 
i=i 

We will look at the lattice in space Mz* A vector 771¾ + • . ‘ + rjnbn in 

Ml corresponds to a point with, integer coordinates (771,- - - yrjn) in Mz- Thus 

the region obtained by bounding the ranges of 77‘，s is a rectangular box in n-

dimensional space. The bounding box found by inequality 3.10 is the smallest 

one containing the set of points needed to be enumerated. This is because the 

equality sign can be achieved by putting 77‘ = and rjj = 0 for all j + i. 

For ease of illustration, consider the case of Euclidean norm. Our problem is 

to enumerate points in L inside a spHere {a G R n : aTa < r2}. This is equivalent 

to enumerating points in Z n inside the ellipsoid {a G R n : (丑一1a) r (丑“a) < r2}. 

Figure 3.2 illustrates a two-dimensional example. 

Finally, a rectangular box in Mz corresponds to a parallelepiped in Ml. 

Therefore, Dieter's method is to enumerate points in a parallelepiped in the - ' . ‘ �• 

space associated with the given lattice. 
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M l Space MZ Space 
O o O 0 0 0 

O 今 0 ‘ 
O O^w^^o丄 o 0 ^-0- 0 

Figure 3.2: An two-dimensional example showing the correspondence between 

� elements in M l space and those in Mz space. 

It is well-known that the application of a unimodular transform U (an integer 

matrix with determinant 1 or -1) always leaves a lattice unchanged. That is 

L(B) 二 BZn =�BUyin = L�BU), 

So we can consider any ellipsoid {a £ R n :((丑一1 a)r((丑刃一1 a) < r2} instead 

of the ellipsoid {a e R n : {B-xa)T{B^a) < r2}. Though all ellipsoids have tlie 

same content, their corresponding bounding boxes can be quite different in size. 

Hence it is desirable to apply unimodular transform to shape tlie ellipsoid such. 

that the size of its bounding box is small enough or cannot be further reduced. 

To shrink the bounding box, we "shear" the ellipsoid in a direction parallel 

to one face of the box (see figure 3.3). Such operation change all faces of the 

box except the pair of faces parallel to the shearing force. The operation is in 

fact achieved by the unimodular transform U(i): 
f 

_ bj + Efc^i Vkh for j 二 i, 
bj = < 

h for all j 7̂  i, 
\
 J 
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0 o o 0 0 o 

. I. ^ 

: o ^ ^ ^ o / o Af te r b e i n g s h e a r e d o ： / o ] o 

；广 •{ I 
\ f ： by un丨modular t r a n s f o r m I J : 

o S ^ - ^ q T . . . . . . . . . . . q . ' • * o o 

Figure 3.3: The effect of shearing an ellipsoid produced by a unimodular trans-

form. 

or equivalently, 

( b'j for j = i, 

~ 二彳 

[b ' j - r j jb ' i for all j +%� 

where a represents the updated content of a. By inequality 3.10, the distance 

between the j- th pair of parallel faces of the box is 2||巧||'. To make all pairs of 

parallel faces (except tlie j - tk pair) as close as possible, we choose 

j n m m 

,
 = roundUWFJ 

such that 

11¾ 一 (仏•一 m r > 11¾ 一 vM < 11¾ 一 (vj+i)�ir. 

The transform U(i) can be done repeatedly for all i until all T/j'S found are zeroes 

for every i. 

The method just described is in fact derived by Dieter (and Knuth inde-

pendently) in an attempt to minimize | | � | | ' . He also suggested that when the 

transform U" to the lattice J?) is struck, we can try similar transform U' to its 

dual lattice L{B'T) and then apply U again, until both transforms are struck. 
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We note that the application of U' is to relax tke situation from.the local mini-

mum. 

Dieter observed that his algorithm worked quite well in spite of occasional in-

creases in the estimated number of points needed to be enumerated. We explain 

this fact by the following observation: though the content of the bounding box 

must decrease after each transformation, the estimate may increase slightly in 

some occasions since it counts the ntimber of lattice points inside the bounding 

box instead of its content. We also remarked that Dieter's shrinking procedure 

using unimodular transforms is in fact a basis reduction algorithm. 

3.3.3 Enumerating Points in a Cube 

Kannan [38] derived an enumeration algorithm for the Euclidean norm based on 

the concept of projection“ If a vector a = rj^Jh + •. • + r]nbn G L{B) is shorter 

than r , then so is its projection on 6* for any i. Consider the case i = n, the 

projection of a on 6* is rjnb^. Thus 

| 7 7 n l - M 
Now, consider the cases i < ti and assume that 77,+1, are fixed integers. 

Then the projection of a on 6J is 77‘对 + (Efc=i+i T l m s w e have 

Remember that the second term on the left hand side is just a constant. In this 

way, the number of points needed to be enumerated is 

w 4 ( 1 M J + 1 ) -
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Kannan^ method is to enumerate all vectors whose projections on • •.，b: are 

all shorter than r . This is in fact enumerating points inside a n-dimensional 

cube with edges parallel to 6J, —， 

3.3.4 Enumerating Points in a Sphere 

We observed that the length of vector a can be calculated exactly from its 

projections on 的’…，6*. Therefore, 

This suggests a recursive enumeration procedure according to the following re-

lationship: 

r» = r I 
> for i — n, 

W < j 
and, 

/‘ 二 一 IE?+ 1 取 糾 m I 2 I 吲 I 2 ) " 2 } f o r “ n � 

h + ^ 11¾• J 

The procedure, in fact, recursively divides a z-dimensional enumeration problem 

with radius into ([p^jJ + 1) (t - l)-dimensional similar problems with radii 

r ^ i s . Thus the actual enumeration process occurs in many one-dimensional 

lattices (in n-dimensional space). 

The number of points to be enumerated is exactly those vectors shorter than 

r . Thus this method enumerates no undesired vectors and is optimal in this 

sense. Fincke and Pohst [25] derived an equivalent algorithm using Cholesky's 

Decomposition and the technique of quadratic completion. The equivalence 
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between their algorithm and ours can be make obvious with the following rela-

tionship: 
[^== KIP 
‘ qa 二 阳 

where qi/s are defined by the equation 

n n" 

||a||
2 =物山 + . . . + Vnbnf = !>“(”‘ + E 侧 i ) 2 . 

t=l j=*+l 

We believed that our algorithm is superior to theirs as it clearly reveals the 

meaning of the variables being dealt with. • Fincke et. al. had also analyzed the 

complexity and were surprised by their result [25]: 

"But what happens, if we keep G [= r2] fixed and just increase m 

[二 nj? Then the enumeration method is still exponential whereas — 

somewhat surprisingly — (2.12) is polynomial time, if we addition-

ally require that the lengths of the rows of R"1 for the matrix R of 

the Cholesky decomposition A = RTR [= BTB] stay bounded." 

According to our interpretation, this implies that the complexity increases poly-

nomially with, n, the number of dimension, provided the lengths of all edges of 

the bounding box associated with the ellipsoid to be enumerated are bounded. 

This is impossible since it is well-known that the number of lattice points inside 

a sphere is proportional to the volume of that sphere and thus increases with rn. 

Note that the constraint on the bounding box is not significant since the radius 

r is fixed. This erroneous result may be due to a mistake in the derivation of 

equation (3.9) in reference [25]. 

However, the estimated number of points to be enumerated 户3(�)must be 

upper bounded by P2(r) because Kannan's method considered a cube containing 

the given sphere. 
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Though the number of points to be enumerated is the smallest possible, 

learning from Dieter and Knuth, Fincke et. al. suggested two preprocessing 

steps to improve the algorithm. 

S t e p 1: Use some reduction algorithm to get a quite orthogonal basis for the 

dual lattice. 

S t e p 2: Reorder the indices of the basis bl7.«., such that ||6i|| > • • > 

Since the algorithm recursively updates the values of rji
1s1 from i 二 n down to 1 

(just like traversing a n-level multi-branch tree), steps 1 and 2 reduce the range 

of values of tj^s and hence the number of times of updating operations. 

Note that the reduction algorithm employed in step 1 has not been specified. 

From the simulation result [25], it seems that the LLL-reduction algorithm is 

more efficient th.au that of Dieter's. 

3.3.5 Comparisons of Three Enumeration Algorithms 

For larger, Pi (r) « 2n n?=i ^ll^ll； while for smallr , P1(r) w 3n 112=1 1̂1̂ 11- So, in 

general, P1{r) « ( a i r ) n n?=11|6-||, for 2 < ^ < 3. Similaxly, P2(r) « 把 £ | | 二 

(a2r)n det(L(j5~T)), for 2 < a 2 < 3. By Hadamard's inequality, P i ( r ) > P2(r)J 

for a i = «2. 

Therefore, it seems that Kannan's method is superior to Dieter's. In other 

words, enumerating lattice points in a cube is better than those in a paxal-

lelepiped. On the other hand, enumerating points in a sphere is obviously the 

best choice. However, it should be emphasized that Dieter's algorithm is appli-

cable for very general definition of norms and can take full advantages of parallel 
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computational power. The other two metliods are more wsequentialw in nature 

and developed for Euclidean norm only. 

3.3.6 Improved Enumeration Algorithm for the C V P 

and the SVP 

We observed that the last enumeration algorithm proceeds in a way similar to 

Kannan's method rather than Dieter's. Clearly, the range oi rji to be considered 

is inversely proportional to ||6J||. Thus a good orthogonalization of the lattice 

basis (instead of the dual lattice), for which the sequence |丨的|丨，•..，丨1¾丨丨 is lex-

icographically small, is desired. In other words, the basis of the given lattice 

(instead of its dual) should be reduced. The preprocessing steps as suggested 

by Fincke et. al. should be replaced by: 

S t e p 1，： Use LLL reduction algorithm to get a good orthogonalization for the 

given lattice. 

Unlike the original preprocessing steps which require to do matrix inversion, 

basis reduction, sorting and permutation, the above step does not need extra 

computation since basis reduction must be done so as to get a good value of r 

(as discussed later). 

Another improvement may be obtained by updating the values of n , • • • , r n 

by substituting r by r' whenever a vector of length r ' smaller than r is encoun-

tered. However, to avoid unnecessarily large amount of updating operations, we 

can enumerate the value of rji from its mid-value to its upper bound and then 

from its mid-value to its lower bound, instead of from the lower bound to the 

upper bound. In this way, the short vectors are likely to be encountered first. 
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By proposition 4.2 in reference [38], there must exist a lattice point b close 

to the query point q such that \\b — < | ( E L i 11蛇1|2)1/2. B y putting r = 

1(E2=1 ||6fc]|2)1/2 after the lattice basis is reduced, we guarantee to find the 

shortest vector without enumerating an unnecessarily large number of points. 

(In practice, for SVP, a smaller value of r may usually be obtained from the 

length of the shortest basis vectors if the basis is properly reduced.) Similar 

argument suggests that during the breakdown of an i-dimensional problem into 

some (i - l)-dimensional problems as in the last enumeration algorithm, it is 

sufficient to consider a sphere of radius | ( E l = i 丨丨坨1丨2)1/2. I n particular, it is 

required to enumerate at most two points in a one-dimensional enumeration 

problem. As a result, the number of points to be enumerated by tHe improved 

algorithm is bounded by 

So far, the enumeration algorithm discussed is for the SVP. That is, we as-

sumed the query point to be the origin and find a non-zero lattice point closest 

to it. However, it is easy to see that the suggested improvements apply equally 

well to enumeration algorithm for the CVP. For the CVP, we consider the in-

homogeneous case that the query point can be any point in R n and there is no 

restriction on the closest lattice points. To adapt the algorithms to this case, 

we use the technique of change of variables and replace rji by fji — rji + ^t, for all 

i，where 1^¾ H is the query point. After the closest lattice vector is 

found, we get back the integer vector by 77,- = rji 一 for all i, and the closest 

vector is 丑 [ ” i " . ” n ] r . It is easy to see that the complexity analysis for the 

homogeneous case still valids in this case. 
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The following enumeration procedure for the CVP is derived based on the 

above suggested improvements: 

P r o c e d u r e CVP(t?i, -. • b1}. • •, bn) 

1. Find, unimodular matrix T such that BT is LLL-reduced, and get ，s 

and � s , . 

2. RMAXi := for i = 1 to n do RMAX{:==丑MAJ^—n + \Pi. 

3. For i = 1 to n do INCRi := 1. 

4. RMIN := oo; i ：二 n; Ri := RMAXi； U{ :== Z := ( f ) 1 / 2 ; UB{ 口 

LZ - Ui\ ； UBi :=「一Z — Ui~\ ； -= — 1. 

5. While i <n do 

6. rji := 7/i + INCRi, 

7. lirji < LBi do 

8. + 

9. Elseif rji > UBi do 

10. rji := \-Ui]] INCRi — -1. 

11. Elseif i ^ 1 do 
f 

Ri := Ri+1 一 Pi+iiVi+i + 仏+i)
2
; 

i 2 ^ Ui ：二 -込 + SL‘+1(w - AW; ^ ：= n 叫 

• ) UBi := [Z -Ui\] LBi := r-^1-1； 

INCRi :=1. 
. 

69 

I 
‘ ；• ；.:.. " , - .. • ？ 



Chapter 3 The Closest Vector Problem 

13. Else 

14. RX := Rn - Ri + Ui)2. 

15. J£RX < RMIN do 

16. r j ^ l m r - ' ^ R M I N - R X . 

17. If RMIN < 0.9Rn do 

18. For k = 1 to n do Rk :=̂= R k ~ + 

19. Endif. 

20- Endif. 

21. Endif. 

22. Endwhile. 

23. 77 ••二 TTJ; return TJ. 

In the above procedure, /¾ stores | |^ | |2
3 and Ri stores r\. RMIN and RX 

hold the lengths of the currently shortest vector and the currently encountered 

vectors respectively. INCRi controls whether to increment or decrement 77» in 

the next pass. The input query point is 缺 + . • while the output closest 

lattice point is Brj. Note that the factor 0.9 in line 16 is arbitrary, which ensures 

the Ri s is not updated too frequently. 

Finally, we point out that an efficient enumeration algorithm for Euclidean 

norm can also lead to efficient enumeration algorithm for other norms. Since a 

compact, convex set $ has positive measure, it is contained in a sphere We 

can find the vector a with smallest Euclidean length, and then enumerate points 

•>" . . : . . : . 、 . . . 70 . ... • 
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Chapter 3 The Closest Vector Problem 

in a sphere ao5 which just contains ao$, where oo = min{a € R ： a G In 

this way, if the content of a 0 # is not much larger than that of a 0 $ , a reasonably 

large number of lattice points is needed to be considered in the second invocation 

of the enumeration algorithm. In fact, this method uses the Euclidean norm to 

approximate another norm so that it can find a very short vector, and then 

enumerates a small number of points to solve the original problem. 

3.4 C V P Algorithm Using the Reduce-and_ 

Enumerate Approach 

As mentioned in the beginning of this chapter, the CVP can be solved using a 

reduce-and-enumerate approach. With the LLL-reduction algorithms and enu-

meration algorithms discussed previously, tlie following GVP algorithm can be 

obtained. 

A l g o r i t h m C V P l ( g , B) 

S t e p 1: Make the basis LLL-reduced. 

S t ep 2: Enumerate lattice points in a proper sphere centered q for the closest 

lattice point； 

Here, q is the query point and B is the basis matrix. The sphere to be 

enumerated must have a radius such that it contains at least one lattice point. 

A possible choice of the radius is r = |(El=i | |拉1|2)1 / 2 ( s e e section 3.3.6). In fact, 

procedure Enum-CVP discussed in the context of the enumeration algoritkm is 

already an implementation of algorithm CVP1. 
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Chapter 3 The Closest Vector Problem 

The time complexity of the LLL reduction algorithm is only polynomial. 

Thus the overall time complexity of algorithm CVP 1 is dominated by the enu-

meration algorithm. 

Let P be the worst-case time complexity of algorithm CVP1. In the enu-

meration algorithm, it takes at least kn operations p^r each encountered point, 

where ib is a constant. Assuming the adverse case that all fiij's equal to 了，by 

theorem 3.1 (2), 

So P = iCn(n2), for some constant K. The algorithm is obviously impractical 

for large n. 

A better but more complicated CVP algorithm was developed by Kannan 

[38] which is n0(n) 二 岌^⑷叩⑷),for some constant K. The complexity is still 

very large. This is due the intrinsic property of the problem since the CVP is 

in fact NP-haxd [20]. 

3.5 C V P Algorithm with Improved Average-

Case Complexity 

The bottleneck of algorithm CVP 1 is the enumeration algorithm. The parameter 

determining the computational requirement in each invocation of the algorithm 

is r , the radius of sphere to be enumerated. Therefore,七lie average-case complex-

ity can be improved by finding a value of r < |(El=i | |驳1|2)1 / 2 before invoking 

the enumeration algorithm. This may be done by finding a close lattice point 

using some very efficient algorithms. We will show that very efficient CVP algo-

rithm for norms other than Euclidean does exist, and it can serve our purpose. 
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Chapter 3 The Closest Vector Problem 

This approach has in fact used the concept of norm approximation mentioned 

at the end of section 3.3.6. 

3.5.1 C V P Algorithm for Norms Induced by Orthogo-

nalization 

For any point OQ € R n , define 

1 1 
r ( a � ) 二 {a G R n : a � 一 a 二 c^K + • • • + a j ) ^ Oi G ( - - , - )}• 

In words, r is a box centered at a0 spanned by the orthogonalization vectors 

- • •, Then the norm induced by T is 

| | a � 二 sup{a G R： a € aT}. 

For any point a�of the lattice L, define 

T ( a o ) = {d e R n : | K _ a � < | | 6 — a『，v&ei}. 

In other words, T(a 0 ) is the Voronoi region of the lattice point a0 with respect 

to the norm ||.||*. 

L e m m a 3.3 Va = 0^6^+:. •, + a j r n € R H 实 

Proof : From definition, 

Q 

a e cT钤丨,…，丨 

分 niax{|at|} < - . t z 

Hence, ||a||* = sup{c G R ： a G cT} = 2max‘{|a4}. 

Q. E. D. 
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Chapter 3 The Closest Vector Problem 

P r o p o s i t i o n 3 .1 Va € L, T(a) - F(a) . 

P roo f : Without loss of generality, assume a is 0, the origin. For any non-zero 

vector 6 e L, we can write 6 = rjxh + . . . + ^ ¾ such that 1 < k < n, all rj‘，s axe 

integers and rfk 0. Thus 

k k i k k 

b = V^i 二 E) Vi E 二 Z) 職礼 
»=1 i=l j'=l J=1 i=i 

Let a j = Y L i W i . Then b = E-=i 喊 . W e have afc = 關 k, which is a 

non-zero integer as (ikk = 1 . , 

For any vector a' == 0 ¾ ^ ^(0), 

max{|0 |} < r < ICfc ~ < max{|Cfc — 
i 2 * 

By lemma 3 . 3 ， | K � < ||a' - Therefore, r (0) C T(0). 

However, the fact that content of r ( 0 ) = det(L) = content of T(0)，implies 

T(o) = r(o). 
Q. E. D. 

Taking into account those points on the boundary of T(a0) and the unique-

ness of the closest lattice point, we redefine the Voronoi region of a lattice point 

ao as 

* r 1 1 ” 
T(a0) 二 {a G R n ： a0 一 a -axb\ + …+ On、，a» G -)/-

Let q = (ib* be the query point; and let a be the closest lattice point of 

q. Then we can write 
n n 

a = 5̂ 7̂ ¾ == X)0^?, 

i=i »=1 

‘• ； ..... 
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Chapter 3 The Closest Vector Problem 

where aj = HjH恥i. Since g must be inside the Voronoi region of a (i.e. 

q e T(a)), we have, for 1 < j < n, 

1 n I 
< OLj - Cj 二 Yh W‘i - 0 < 2. 

Therefore, 

_ J round̂ ) for：/== n, (3叫 

\ round(Cj 一 E?= J + i Vif^ij)
 f o r

 3 < n-

From this equation, the following 0(n2)-t ime GVP algorithm for norm ||.||牟 is 

easily deduced. 

P r o c e d u r e CVP_Ortho(Ci, • Cn, [fJ'ij]) 

1. rjn := round(Cn). 

2. For j = n — 1 downto 1 do 

3. rjj ：二 round(G - E?=j+i Vi^ij)' 

4. Endfor. 

5. Return rj. 

Note that the procedure works whether | � | < | or not. Here, it is assumed 

that /z^-'s are given. If they axe not available, calculating them from the given 

bcLsis by procedure Orthogonalize takes 0(n ). 

Note that we have find a polynomial algorithm to solve the CVP with, respect 

to the maximum norm if an cubic orthogonalization cell of the given lattice exists 

and can be found in polynomial time, although the problem for arbitrary lattice 

is NP-hard [20]. 

75 

, x .. . • ' , . . ‘ . r . ？ • . , 、 ' • . • . . . . , . . . . . . . , . . . . • , . . . ‘.. 

, • . • . — . J 
: - , . - . / . : 、 . • . ） . , : ' : ' / ' :�: ' . . . / ' . . . ) . . , . : . - : : . . 〜 ’ . . . ’ . . . , ‘ ‘ • . .. • 



Chapter 3 The Closest Vector Problem 

3.5.2 Improved CVP Algorithm using Norm Approxi-

mation 

In addition to reducing the enumeration time by using procedure CVP-Ortho 

to find a close lattice point, the enumeration process may usually be eliminated 

by introducing a simple test. 

P r o p o s i t i o n 3.2 Let § i (a ) be a convexf compact set which has positive measure 

and is symmetric about point a; and let its induced norm ||a||i = min{a G R ： 

a e 戒 1 : / / a o € L} b e C T(a0)f for some constant then ao is the 

closest lattice point ofb with respect to norm ||.||i. 

Proof : For all a' ^ a0 in L, 

C ^ i M C f ( a o ) and C^i(a') C T ( a O and T(aO H T(a0) = 0 

Hence, 

beC^ao) =^, 

^ | | 6 - a ' | | 1 > <>11611!. 

Q. E. D. 

Let Cm 二 sup{( G R C T(a0). By proposition 3.2, if b passes the 

test 

||a0 - % < Cn, (3.12) 

then o0 must be the closest lattice point of b. Thus, only when the above 

test is failed, the enumeration process is done with r = ||a0 - b\\i. (Note that 
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be T ( a 0 ) 玲 J K 一 6||! < |(El=i 11¾)]2)172). ^ this way, the expected time of 

finding the closest lattice point for any given point b is 

丁二巩！�一矧！丈^^巧+尸^购一化》“}：^ (3.13) 

where Tt is the expected time to find a short vector a0 and do the test 3.12, and 

Te is the expected time to do the enumeration. If the probability distribution 

of the query point b is such that the first term in equation 3.13 dominate, then 

T w T t . Consequently, if the the average-time behavior is a main concern, a 

very efficient CVP algoritlim.for norm ||.||i can be obtained. 

Denote Ti(a 0) as the Voronoi region of the lattice point a0 with, respect to 

the norm ||.||i. The actual performance of this method depends on how “close” 

to Ti(a 0 ) the orthogonalization cell r ( a 0 ) is. The definition of closeness in turn 

depends on the probability distribution of the query points. Intuitively, we want 

^ ( a o ) and T(a0) to intersect as mucli as possible. Return to our interested case 

that the norm ||.||i is the Euclidean norm ||.||, the desired orthogonalization 

cell should be close to a cube. In other words, we want the lengths of the 

orthogonalization vectors show small variations. Such orthogonalization can be 

obtained by the LLL reduction algorithm. 

With the query point ^ = the improved CVP algorithm for Eu-

clidean norm is as follows: 
P r o c e d u r e CVPJEuclid(i?i, • • • • • •, 6n) 

1. Make …，bn LLL-reduced and get /z"’s and /3i S. 

2. “ :=糾珥蘭/
2
. 

3. Find ^ = [^1, •''V^n] such that q = 

. 7 7 .. ‘ 
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Chapter 3 The Closest Vector Problem 

4. Call procedure CVP-Ortho to get 77, where Brj is a lattice point. 

5. If 11^(^-7/)11 > do call an enumeration procedure similar to Enum_CVP 

to update 77 with, r 二 沒一巧)r||. 

6. Return 77. 

As sliown in line 2, 二 mini{PJ| |} for Euclidean norm. In line 3, 0 can 

be found by the formula Oj = J ^ j ^ i j i ^01 1 <3 < n. We remark that, in 

procedure CVPJEuclid, Tt is 0 (n 3 ) dominated by the LLL reduction algorithm 

in line 1 and the test in line 5. 

In some situations, we are given a fixed lattice and want to solve the CVP 

for a large number of query points. Then basis reduction of the lattice needs to 

be done once (as in line 1), and so is the calculation of (as in line 2). In case, 

the number of query points is really enormous, it is worthwhile to find a better 

value of with more computational effort. If line 2 is replaced by 

1 
Cm 二 -缴丨丨4， 

the above algorithm is still correct since spheres with the same radius ( m centered 

at different lattice points are all disjoint (refer to the proof of proposition 3.2). To 

calculate min^L ||a||, a SVP algorithm similar to Enum_CVP can be employed. 
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Chapter 4 

MLSE Algorithm 

According to our lattice interpretation of the MLSE problem for the PAM sys-

tem (see section 1.1), the problem can be formulated as a CVP with, respect 

to Euclidean norm* Thus the CVP algorithms discussed previously are appli-

cable for this problem. In the following discussion, we adopt the notations in 

section 2.4 and 3.1. 

Then the correspondence becomes: 

n = 5 

B = H 

q — z + Gx. 

4.1 MLSE Algorithm for P A M Systems 

Without loss of generality, assume the first term of the channel impulse response 

ho = 1. (If not, we can always normalize 厶 in this way in 0(v) operations.) Since 

the basis matrix B, associated with the channel impulse response h, and the 
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Chapter 4 MLSE Algorithm 

query point q�associated with the received sequence JZ and the detected sequence 

5, have certain nice properties, many simplifications of the CVP algoritlim can 

be made. The following modifications refer to lines of procedure CVPJEuclid. 

Since the basis matrix B is upper-triangular Toeplitz with all diagonal ele-

ments equal to one, the orthogonalization matrix [b*] = J, the identity matrix. 

Consequently, \\b{\\ = •. • == = 1 and the LLL-reduction algorithm invoked 

in line 1 simply weakly reduce .the basis. In this case, it is easy to see that proce-

dure Weakly_Reduce always returns an upper-triangular Toeplitz matrix [}iij]T 

such that UB = where U is an upper-triangular Toeplitz, unimodular 

matrix. For any upper-triangular Toeplitz matrix, it suffices to know its first 

row vector. Let B, U, p, be the first row vectors of matrices B, U and [^ij]T 

respectively. (Note that Ut 二 二 1.) Then line 1 can be replaced by the 

following procedure: 

P r o c e d u r e ToeplitzJleduce(7i, B) 

1. For i = 2 to n do 

2. Z := ^ + E j i UjBi+i-jl Ui ：= - round(Z) ; := + Ui. r 

3. Endfor. 
\J 

4. Return p., U. 

Also, line 2 should be substituted by Cn :=全 as |时|| 二 |叱 |1 = 

1. In the calculation of g = 2 + Gxy the query point is already expressed as 

q 二 . Thus the computation of 沒i," .，0n in line 3 is unnecessary. In 

addition, procedure CVP-Ortho called in line 4 should be replaced by: 

P r o c e d u r e Toeplitz一Ortho(n, q, p.) 
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Chapter 4 MLSE Algorithm 

1. rjn := round(gn); d := (gn — ”n)2. 

2. For j = n — 1 downto 1 do 

3. k := qd - ELi+l Vif^i-j-^l Vd round(fc); d := d + (h 一 

4. Endfor. 

5. Return rjt d. 

Remark that procedure Toeplitz_Ortho corresponds to a kind of deconvo-

lution operations and it works whether < | or not. The second variable 

d returned is the distance between the query point and the returned lattice 

point, i.e. d = ~ H'tj\\. Summarizing these modifications and adapting the 

conventions of section 2.4, we have the procedure below: 

P r o c e d u r e MLSEJPAM(v, 5, h, x, z) 

1. (Calculate g 二 2 + Gx)k := 5 - v] For i = 1 to k do qi := Zi\ for i = 1 to 

v do qk+i ：= zk+i + Ej*=o 
., . . . ( . 

2. (Find a close vector) Call procedure Toeplitz_Ortho(^, q, h') to get 77, d. 

3. (If not closest, enumerate) If d > | do 

4. Call procedure Toeplitz_Reduce(^ h') to get U, p. s,t. H'U 二 [〜产. 

5. Enumerate lattice [fiij]T with r 二 d to get 77; rj : = Urj. 

6. Endif. 

7. Return 77. 
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Chapter 4 MLSE Algorithm 

Here, H' is an upper-triangular Toeplitz matrix with the first row h'. in 

line 1 refers to the i-th element of vector x and has nothing to do with the time 

order (in contrast to the usage in section 2.4), Note that vector h is not simply 

the first row of matrix H since its first element is h0 instead of h^ as defined in 

section 2.4. The reduction process in line 4 needs to be done only once for a 

given channel. 

According to the discussion in section 2.2, 6 is of the same order as v. If enu-

meration is not done, the complexity is dominated by lines 1 and 2，all require 

0(6
2
) time. Note that lines 1 and 5 involves multiplication of a Toeplitz matrix 

and a column vector which is 0(^ 2 ) using direct method. If fast convolution 

algorithm is used, the operation can be done in 0(各 log(办)）time [43], Following 

the analysis in section 3.5.2，for sufficiently large SNR, the expected-time com-

plexity of procedure MLSEJPAM is 0(^ 2) . Because all matrices encountered in 

the procedure are Toeplitz, the space complexity is 0(6). 

Note that procedure MLSE-PAM is suboptimal because of the boundary 

effect. Namely a detected sequence may not be a permissible sequence. But for 

sufficiently large number of transmit levels, its performance tends to be optimal. 

4.2 MLSE Algorithm for Unimodular Chan-

nel 

Defin i t ion 4 .1 We define a unimodular channel as one whose associated H， 

which is an upper-triangular and Toeplitz matrix with the channel impulse re-

sponse h as its first row, is unimodular. 
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Assuming hx = 1, this is equivalent to saying that all h^s are integers. An 

important example is the partial-response system whose h = (1，0，《 •., 0，—1). 

Since H is unimodular, so is isT"1. The lattice basis H can be reduced to I by 

unimodular transform H~x. So the MLSE problem becomes a CVP for lattice 

Z5, this can easily be solved by the rounding operations. Our MLSE algorithm 

is simplified to: 

P r o c e d u r e MLSE_UNI(v, S, h, x, z) 

1. (Calculate q^ z + Gx)k := 8 一 v\ For i—l to k do qi := A; for i == 1 to 

v do qk+i ••= Zk+i + E}=0 K^i+jXk+j. 

2. (Find closest vector) For ‘ 二 1 to 厶 do rji ：二 round(公)；tj := H" 1 ^ . 

3. Return 7?. 

The space complexity of this procedure is 0(^). Using fast convolution algo-

rithm for lines 1 and 2 ( i f " 1 can be found by deconvolution), the time complex-

ity of this procedure is exactly 0{Slog(8)). It is easy to see that its space-time 

complexity is also . 

4.3 Reducing the Boundary Effect for P A M 

Systems 

The key to our efficient MLSE aJgorithms is the use of regular structure of a 

lattice. However, as mentioned in section 2.4, near the boundary of the finite 

lattice, this regularity breaks down. In a query, the CVP algorithm may return 

a point outside the given finite lattice as the nearest lattice point. In general, 

the boundary effect due to the finiteness of lattice is difficult to deal with. 
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Chapter 4 MLSE Algorithm 

Observa t ion 4.1 For a PAM system, the boundary of the associated lattice 

always forms U parallelepiped. There is a high probability for a query point 

outside tfie given finite lattice to have its, nearest lattice point on the lattice 

boundary. 

Based on this observation, a heuristic method is derived to reduce the bound-

ary effect. Assume the nearest lattice point falls on a face of the n-parallelepiped, 

which is itself a (n - l)-parallelepiped. Let q' be the vector obtained by pro-

jecting the query point q onto the hyperplane containing the face. Namely, 

q' 二 g-QTa^arWliere a is the unit normal vector of the hyperplane. Obviously, 

the nearest lattice point of g7 is exactly the same as that of ¢. If we replace the 

query point q by the CVP algorithm has a much smaller probability to return 

a point outside the finite lattice. 

However, we do not know whicli face of the parallelepiped (if it exists) con-

tains the nearest lattice point. The answer is simple. We can check for all n 

pairs of parallel faces and consider every hyperplane for which the query point g 

does not fall in between its corresponding pair of parallel faces. For every such 

hyperplane, a projected vector of q is found. Among these projected vectors, 

one which falls on the lattice boundary is picked to substitute the original query 

point. 

P r o c e d u r e Project(q,N,m) , 
•• . . . . • • • »

 i
 ： • . . . - . .. . . . . 

1.1:=丑-v 

2. For i = 1 to n do 

3. di .:= (ji j • • . 
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Chapter 4 MLSE Algorithm 

4. If \i\ > m=1 do Ui := 1； else a‘:二 0. 

5. Endfor. 

6. d :=q-^H{sigii{S)-]- i). 

7. r ：二 oo; q' = q. 

8. For i ：二 1 to n do 

9. K ^ = 1 do 

10. q ：= H-一 ((f N^Ni)] q ：= min(max(孓 0)，m — 1)； ^ := Hq. 

11. If r�丨丨p - g|| do 

12. 

13. Endif. 

14. E n d i f . . 

15. Endfor. 

16. Return q'. 

In the above procedure, vector d is a difference vector pointing from a point 

on lattice boundary to q such that q in line 10 is a projected vector on the 

i-th boundary face. Lines 11 to 13 pick the projected vector with minimum 

distortion as the new query point q'. The matrix iV has its i-th column vectors 

N{ as the unit normal vector to the i-th face of the parallelepiped. It can be seen 

that iVi is parallel to the z-th basis vector of the dual lattice. Consequently, JV 

can be obtained by normalizing each column of (J?"1)21 and it is only necessary 
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Chapter 4 MLSE Algorithm 

to allocate extra storage for the lengths of n dual basis vectors. Consequently 

the space complexity is 0(6). But the time complexity, dominated by line 10, 

is 0{P l � g ( � ) ) assuming the use of fast convolutional algorithm. Note that for 

large SNR, the expected-time complexity of the MLSE algoritlims discussed 

previously may be increased to 0(S2 log(^)) if procedure Project is invoked. 

4.4 Simulation Results and Performance In-

vestigation for Example Channels 

The error performance of the proposed MLSE algorithms is suboptimal mainly 

due to the boundary effect. However, as the SNR and the size of signal set m 

increase, the boundary effect diminislies and the error probability approaches 

optimal value. We investigate the performance degradation for various values 

of SNR and m by considering three examples. The symbol error probability for 

given SNR and m is obtained by simulation using a sequence of 100,000 symbols. 

Though the system designers may usually be interested in error performance for 

high. SNRs, limited by computational power, only the performance for low SNRs 

is simulated. Nonetheless, we remark that the purpose of the simulations is to 

verify our theory and hence the reader should have confidence in our predictions 

on the performance for high SNRs. 

C h a n n e l 1:厶=(1，0.5). For this ciiannel, there is a single error event (1,0，. . •） 

with《卅 二 1.25. The truncation depth 8 is 4. Figure 4.1 show the sim-

ulated performance of procedure MLSEJPAM for m == 2,4，8，16 respec-

tively. The performance is optimal even for very low SNRs and the binary 
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10^1 / , ‘ 卬 , 4 10-2 h ‘ , I j 

：編 
IQ-7 L I ： 1 1 J 10-81 ' -J ^ 

10 11 12 13 14 16 18 20 22 

SNRindB SNRindB 

£ 1 0 - 5 

22 24 26 28 28 30 32 1A 

SNRindB SNRindB 

Figure 4.1: Simulated performance for channel 1: = (1,0.5) and 6 = 4. (a) 
m = 2, (b) m = 4, (c) m = 8，(d) m 二 16; where o: MLSEJPAM，一： union 

bound. 
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io-i| / d lo-1! 1
 视 ' _ 

2
挂 N 

in-6L — - 3 10-̂  L— 1 1 J 
10 15 18 20 22 24 

SNRindB SNRindB 
10-2 p - _ — — _ _ _ _ 10-2 h (d) • 4 

; L _ _ j J , ,x 1 
25 30 32 34 36 38 

SNRindB SNRindB 
Figure 4.2: Simulated performance for channel 2: h = ( 1 , - 1 ) and 5 == 7. (a) 
m = 2，(b) m = 4, (c) rn = 8，(d) m = 16; where o: MLSE_UNI, *: MLSE.UNI 
with projection, —: union bound. 
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] 1 < J ； j 

10 15 18 20 22 24 

SNRindB SNRindB 

10-81— L. — j 1 10-8 L . _ _ J _ ： — ‘ ~ - — I 

26 28 30 32 32 34 36 38 

SNRindB SNRindB 

Figure 4.3: Simulated performance for channel 3: h 二 (1，-1.5,0.8). (a) m == 2， 

(b) m = 4, (c) m 二 8,义d) m = 16; where x: VA with 8 == 5，+: VA with S = 15, 

o: MLSEJPAM with projection and 6 = 5, *: MLSEJPAM with projection and 

6 = 10, ~ : : union bound. 
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case. 

C h a n n e l 2: h == (1, —1). This is a partial response channel which is well-known 

for its catastrophic behavior. The practical precoding technique is em-

ployed to prevent infinite error propagation (see [27]). The truncation 

depth is 7. As shown in figure 4.2, procedure MLSE-UNI gives a loss of 

IdB in SNR for m 二 4 and even larger loss for the binaxy case. However, 

for m = 8,16, it approaches quickly the optimal values at medium SNR. 

If procedure Project is employed, for low SNRs, tlie loss is about IdB in 

the binary case and only 0.5 dB in the case m = 4. It is expected that the 

degradation further diminislies as SNR increases. 

C h a n n e l 3: h 二 (1,1.5, -0 .8) . The channel is chosen such that there are many 

error events with small weights. According to proposition 2.1, the trunca-

tion depth 5 should be chosen as 15 for the binary case. Simulation results 

can be found in figure 4.3. For the binary case, the VA gives upto 1 dB 

loss in SNR for 厶 二 5; but becomes optimal for 5 = 16. This verifies our 

proposition on the choice of the truncation depth. Then the performance 

of procedure MLSE^AM with projected query points is considered. For 

all SNRs considered, m = 2,4,8,16 and 8 二 5,10，there is roughly 2 

dB loss in SNR. The result is unsatisfactory. To account for this, let us 

consider two cases: 

Case 1: When 8 is small, the error performance is dominated by many 

truncated error events instead of the error event with minimum weight. 

Case 2: When 各 is large, i.e. the dimension of the associated lattice is 

large, the boundary effect is more remarkable since it is much likely 

90 
.,v •‘ • ； .... . . . . ••'. . . • , • . . “ • ‘ - . , 

� . , f • .、： ,’.::. '. ；' . • - ..... * ‘ '• ；‘
!
 • . “‘ , ... f ‘ . , ’ .： ... •::..‘ ... ... 

...• . • • . ‘ . • * , . ： . •' 



Chapter 4 MLSE Algorithm 

for the CVP algorithm to return an unallowable point. 

It should be noticed that for m < 8 the smaller 6 is preferred due to 

boundary effect; but as m increases the larger 8 becomes more favorable. 

This is consistent with our prediction since the boundary effect is less 

remarkable as the size of the lattice increases for a fixed dimension. 

From the above simulatipns, it can be concluded that if the truncation depth 

as chosen according to proposition 2.1 is not large, the proposed MLSE algo-

rithms gives nearly optimal performance for the multilevel PAM systems. For 

the binary case, the algorithm with projected query points is also an efficient 

suboptimal algorithm with instrument able complexity. 

Although this new algorithm has attractive space and t ime complexities es-

pecially for software implementation, its main limitations are: 

L i m i t a t i o n 4 .1 It is unable to handle some channels which require large trun-

cation depth in order to have optimal performance. 

L i m i t a t i o n 4.2 For some applications，it is desirable to have really short de-

tection delay and it affords to implement the sequence estimator on hardware. 

Unlike the VA, the general MLSE procedure involving enumeration cannot be 

readily implemented on VLSI circuit and the detection delay is erratic. 

4.5 MLSE Algorithm for Other Latt ice-Type 

Modulation Systems 

So far, the discussion has been limited to the PAM system. It is easy to see 

that our lattice interpretation of the MLSE can be applied equally well to all 
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lattice-type modulation systems. Practically, many modulation, systems, like 

tlie QAM system, use both, in-phase and quadrature carriers. In such situations, 

tHe channel impulse response A. and the source sequence x are complex. Under 

assumptions 1.1 and 1.2, our formulation in section 2.4 is still valid but the as-

sociated lattice basis matrix i/“ and the query point ^ are both complex. Denote 

H = Hr+zHi; q = qR^-iqi] x = XR+ixjy where i denotes sjiA xr, G Z5. 

Then the MLSE estimates x so as to minimize the Euclidean weight 

“ m ( HR - H j ) ( xR \ ( qR ) 
� I I 丑 二 一 . 

\ Hi Hr J \ xi j \ qi ) 

Thus the MLSE problem corresponds to the CVP with a 2^-dimensional lattice. 

Note that the basis'matrix is block-Toeplitz instead of Toeplitz and the CVP 

algorithms cannot be simplified as in section 4.1. Using procedure CVP-Euclid 

as a MLSE algorithm, the space complexity is 0((^2) and, for sufficiently large 

SNR, the expected-time complexity is 0(^3) . 

In case of a QAM system, the boundary effect may be reduced by projection 

on the parallelepiped defined by the lattice boundary. A procedure similar to 

procedure Project can be derived in a straightforward way, but due to the lack 

of the Toeplitz structure, the space and time complexities are O(S^) and 0(S3) 

respectively. 

4.6 Some Potential Applications 

For most practical data transmission systems, the channel is time-variant which 

requires an adaptive receiver. Because the proposed detector does not involve 

very complicated preprocessing steps, it is easily made adaptive following the 
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Chapter 4 MLSE Algorithm 

conventional scbeme developed for the Viterbi detector [22]. The basic idea is 

to include a cHannel estimator which identifies the channel by adjusting the tags 

of a transversal filter using the steepest descent algorithm so that the mean-

squaxe error between the actual received sequence and the received sequence 

estimate is minimized. With adaptive power, a very efficient receiver, for low-

speed serial modem over telephone network [9] or HF radio link [10], can be 

built with inexpensive microprocessor and moderate storage. 

Another important application is for partial response systems, though, the 

new detector is sub optimal or m < 4, In addition to data transmission systems 

employing the signaling scheme for bandwidth compaction, digital magnetic 

recording systems are shown to be members of this class [44]. For the tape 

recorders, a channel rate as high as 120 Mbps is possible [64]. In this situation, 

procedure MLSE-UNI may be implemented directly on VLSI circuit since, unlike 

procedure MLSEJPAM, no enumeration process is involved. 

In addition, the new MLSE algorithm like the VA can be applied to predic-

tive waveform coders with delayed decision [45], under the mean squared error 

criterion and uniform quantizer. This multipath search coding scheme is proved 

to outperform the conventional single path coder in applications like speech 

coding [24]. In this case, our algorithm is optimal since the number of quanti-

zation levels is usually much greater than 4 and the boundary effect should be 

negligible. 
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Chapter 4 MLSE Algorithm 

4.7 Further Research Directions 

With the advent of our efficient MLSE algorithm, limitations 1.1 and 1.2 are 

much relaxed. Especially, in contrast to the VA, the new algorithms favor large 

number of transmit levels m. The feasibility of implementing practical multilevel 

systems with laxge m should be re-considered. 

The proposed algorithm is imperfect for certain channels as described in 

limitation 4.1. Thus it is desired to develop better methods to combat the 

boundary effect for various lattice-type modulation schemes such that the lattice 

algorithm can be applied to a more general class of channels. 

Another natural direction is to attack limitation 4.2. It is a common fact 

that algorithms unsuitable for VLSI implementation can find no place in real-

time applications. How to modify the algorithm in a way to map directly into 

hardware circuits should deserve further investigations. 

It should be emphasized that the importance of our lattice interpretation 

does not simply end witH ail efficient MLSE algorithm. Experience shows that 

new viewpoints can usually influence the existing scenery. Tiie lattice viewpoint 

sheds light on the macro operations of a bandlimited channel. As observed by 

Burr [5], codes designed for ideal channel may be totally inefficient for bandlim-

ited chcinnels. The new viewpoint will undoubtably give hints on the design of 

such channel coding schemes, � 

Besides, the proposed lattice algorithms can be used in a seemingly less 

related area. It is widely known that the design of multi-dimensional signal 

constellation and the lattice vector quantizer are similar problems. It seems 

that most efficient signal constellation schemes are of lattice-type [30] , [29]. For 
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Chapter 4 MLSE Algorithm 

both applications, efficient encoding and decoding algorithms are crucial factors 

detemining the applicability of these schemes. As a result, the choice of lattices 

is limited to those with known fast CVP algorithm [12]. Our CVP algorithms 

thus allow better choice of lattices and hence superior performance. 
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Chapter 5 

Conclusion 

We liave developed a new interpretation of the MLSE for the lattice-type mod-

ulation systems. In this formulation, the MLSE problem is identified as the 

nearest lattice point problem. On unconstraining the lattice and utilizing its 

regular structure, very efficient sequence estimation algorithms are derived from 

the CVP algorithms. Comparing with the conventional Viterbi detector for the 

PAM systems, the space complexity is reduced from 0(Smv log(m)) to 0(^) 

while, for sufficiently large SNR, the expected-time complexity is reduced from 

(9(mv+1) to 0(82 log(<^)) operations per symbol, where v is the channel memory 

length, m is the number of transmit levels and 8 is the truncation depth of the 

estimator. Remark that we have significantly simplified the sequence estimator. 

In particular, the dependence of the receiver complexity on m is removed. Con-

sidering the error performance, we favor m to be as large as possible. This is 

in consistence with the trend of multilevel transmission systems. Extension to 

other lattice-type modulation, schemes are straightforward. 
. , � .-. ‘ . ‘ . , 
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Chapter 5 Conclusion 

Unfortunately, the error performance is quite sensitive to the distance spec-

t rum of the given channel though it approaches optimal for sufficiently large 

SNR ajad number of transmit levels. Another drawback is that for general chan-

nels the algorithm does not map easily into hardware circuits. This constrains 

it from many real-time applications. 

Nonetheless, as demonstrated in our simulation results, the proposed al-

goirthm should find immediate applications in partial-response systems like some 

silent bandlimited channels and magnetic recording systems. 

In addition to a new MLSE algorithm, our lattice interpretation sheds ligHt 

on the macro operations of a bandlimited channeL So it gives hints on the an-

swers to many related problems such as channel coding and signal constellation. 

We have also contributed to the design of some lattice algorithms. First, 

the spirit of the famous LLL-reduction algorithm is illuminated. Some practi-

cal variations are suggested w t L i c h . reduce the complexity from 0 (n 4 ) to 0 (n 3 ) . 

As the LLL-reduction algorithm has been part of many important lattice algo-

rithms, our improved versions in fact provide improvements on various appli-

cations (refer to page 41), Second, a unified, treatment to various enumeration 

algorithms is introduced using the concept of isometric mapping. Based on this 

geometric interpretation, previously known enumeration algorithms can be de-

rived and classified in a natural way. Improved enumeration algorithms for the 

CVP and the SVP are then suggested. Finally, a polynomial CVP algorithm 

for the norm induced by any orthogonaJization is derived. Using the concept of 

norm approximation, efficient CVP algorithms for a general class of norms are 

proposed. Similar improvements can be obatined for the SVP algorithms in a 

straightforwaxd. manner. 
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