
A Computer Graphics Aided Lecture Presentation System:
Exploring Animated Algorithms with Direct Manipulation

i n
Lam, Ho C h e o n g 才木tg昌

— 9 1 1 7 6 0 7 0

I

• ‘ -'V

A thesis submitted to , \
the Department of Computer Science, \ �

The Chinese University of Hong Kong ^ :: ‘ |
in partial fulfillment of the requirements for � ” ， •..'：
the degree of Master of Philosophy /
July 1993 /

/
/
V

大
書
a
 品
V
 I

r__丨

J

 .

A Computer Graphics Aided Lecture Presentation System:
Exploring Animated Algorithms with Direct Manipulation

Lam, Ho Cheong
Department of Computer Science

The Chinese University of Hong Kong, Shatin, Hong Kong
E-mail: hclam@se.cuhk.hk

Thesis advisors: Dr. C.S Chang, Dr. K.S. Leung and Prof. T.C. Chen

Abstract

Visual aids are more than just flip-cards, transparencies or
slides. Actually, computer graphics can be a competent means to
enhance the appeal of a presentation. The current research is to design
and develop a Computer Graphics Aided Lecture Presentation System
to produce courseware for classrooms. We put the emphasis on
developing a system according to the requirements of classroom
presenters on different occasions, especially during actual presentation.
Features including history, story board, highlight and zooming are
proposed. Using the system, we also experiment with a model which
integrates both interactive graphics and procedural programming for
animating a presentation. For example, we have animated a sorting
program by linking the attributes of several rectangles with some
variables defined in the program. We have made known three main
characteristics of the model Firstly, users can explore "what-if
properties of algorithms with direct manipulation. For example, how

- the expected number of swaps varies with the way of arranging the
items to be sorted is easily identified by the users. Secondly, the
independence of algorithms upon graphical displays helps to produce
multiple animation for an algorithm. For example, instead of rectangles,
animators can denote the items as numbers with no difficulty. Lastly,
algorithms are defined in the object oriented C++ language so that
programmers can take advantages of its reusability. This thesis presents
various novel features of the prototyped presentation system. Examples
are then given to illustrate their usage.

Keywords: Presentation Software, Computer Aided Instruction, Algorithm
Animation, Program Visualization and PC Applications

ii

mailto:hclam@se.cuhk.hk

Acknowledgments
Many thanks to my thesis advisors. Initiating the project of "Computer Aided

Presentation System", Dr. C.S. Chang has given me invaluable information on his
findings from previous work. Prof. T.C. Chen often portrayed the global picture for us
and taught me to think in the abstract. Setting high standards for his students, Dr. K.S.
Leung has shown me the way to carry out research independently and aggressively.
This thesis would not have come to fruition without their opinions and support.

Special thanks to the Department of Systems Engineering. Much of the work
reported here was performed while I was using their computing facilities and office.
More importantly, I will cherish the friendship for all the people, too numerous to
mention here, in the department.

Surely, assistance from other staff in the Department of Computer Science is
greatly appreciated. Judging from his experience in Computer Graphics, Dr. S C. Hsu
has given me insightful suggestions on the Animation Production Model.

I
I am also very thankful to my old folks in the University of Hong Kong. Mr.

K.M. Chan often patiently listened to me and had discussions with me about my
research.

In addition, I am so grateful to have made friends over the world through the
Usenet. Doing research in the same area Algorithm Animation, they have sent me their
recent publications and told me the latest news in the field.

A special thanks to all my family and friends, who have been there
unconditionally for me forever. With all of my heart, I can never thank you enough.

iii

Contents
Abstract ii
Acknowledgments iH
Contents iv

Chapter 1 Introduction 1
1.1 Prologue 2
1.2 Thesis Contributions 3
1.3 Thesis Outline 4

Chapter 2 Lecture Presentation System 5
2.1 Introduction 6
2.2 System Overview 8
2.3 Materials Organization 9
2.4 Slide Preparation 12
2.5 Animation Production 14
2.6 Actual Presentation 18

I
2.7 Conclusion 22

Chapter 3 Algorithm Animation Subsystem 23
3.1 Introduction 24
3.2 Related Work 25
3.3 Algorithm 28
3.4 Display 32
3.5 Link 39
3.6 Options 44
3.7 Examples 47
3.8 Conclusion 55

Chapter 4 Conclusion 56
4.1 Future Directions 57
4.2 Summary 59
4.3 Epilogue 60

iv

Appendix A PostScript Optimization 61
Appendix B Thesis Publications 69

References 70

I

V

I
Introduction

1.1 Prologue
1.2 Thesis Contributions
1.3 Thesis Outline

I

1.1 Prologue

Seeing is believing
proverb

What we ourselves see is the most understandable evidence. Algorithmicians
can imagine an algorithm in their mind's eyes; just by reading a Pascal version of the
algorithm. Unlike them, novices hardly ever can. To teach novices algorithms,
enunciating the algorithms with a series of snapshots showing the operation of the
algorithms is desirable. Traditionally, instructors inevitably imitated the working of
algorithms using blackboard and chalk or transparencies in the theater. Unfortunately,

— 广 - t h e errant outcomes often made them puzzled after several steps of computation. With
the advance of Computer Graphics, computer is actually competent in presenting
algorithms in action. This will be the main theme of this thesis.

Our work is an outgrowth of the project of "A Computer Graphics Aided
Lecture Presentation System”，which is to investigate how computer can complement
instructors in class to provide an innovative and informative medium of
communication. Evolved from the presentation system，a model of animation
production has been conceived and refined. The model is found to be particularly
useful for animating algorithms. In addition, the model has been realized in the Pearl
system (exploring animated algorithms with direct manipulation); being implemented in
the Microsoft Windows 3.1 [1] using the Turbo C++ for Windows [2] on a PC [3][4；.

2

1.2 Thesis Contributions

The primary contributions of this thesis are its two models: the Lecture
Presentation and the Animation Production Models. Being a secondary contribution,
the Pearl system has been designed and implemented based upon the models. In
addition, numerous animations on data structures and algorithms have been made
using the system^ The following describes the primary contributions.

1.2.1 Lecture Presentation Model

The Lecture Presentation Model is fined-tuned for classroom
presentation. The procedures to give a lecture are subsumed under four
categories: Materials Organization, Slide Preparation, Animation Production
and Actual Presentation. For each category in turn, various novel features are
proposed; including history, story board, highlight and zooming. The model is
also remarkable for its improvement in actual presentations, which has seldom
been notified in other work.

1.2.2 Animation Production Model

In the Animation Production Model, three steps are taken to produce
an animation. A program representing a certain algorithm is firstly implemented
for the motion control in the animation. The graphical objects cast in the
animation are then made by direct manipulation. The last step is to link the
variables declared in the program with the attributes of the graphical objects.
For example, we have animated the Bubble sort by binding the attribute x of
several rectangles with the variables indicating the item positions in the
program.

The model has three special qualities. Firstly, while interacting with the
animation, users can acquaint themselves with certain subtle properties of the
underlying algorithm. For example, sorting different instances, users can relate
the expected number of swaps to the arrangement of the items. Secondly,
algorithm specifications are independent of their graphical representations. For
instance, the items to be sorted can be easily portrayed either as numbers or as
rectangles with the heights denoting the values. Lastly, the program is
developed using the object oriented C++, which is conducive to reusability.

lA diskette containing the executable programs with sample source codes is available upon request.

3

1.3 Thesis Outline

This thesis is essentially made up of two main chapters: chapters two and three.
Chapter two documents our work on the lecture presentation system. The beginning of
the chapter describes the motivations leading to the current research. After giving an
overview of the entire system, the chapter reports the various features of each
component in turn. In addition, chapter two as well as chapter three are both self-
contained.

In chapter three, we go into details of Algorithm Animation. Before entering
the chapter, readers presumably have gone through the section "Animation
Production" in the previous chapter, which briefly describes how someone goes about
animating algorithms with the Pearl system. After reviewing previous work on
Algorithm Animation, the chapter elaborates each procedure to produce an animation
in depth; including, how to specify algorithms, how to represent displays, how to
establish links between them and lastly how to definitely state various options. Readers
can also find examples of animation created by the Pearl system in the chapter. This
thesis is concluded in the last chapter with a discussion on the areas for future research
and a description of general problems.

I

4

2
Lecture Presentation

System

2.1 Introduction
2.2 System Overview
2.3 Materials Organization
2.4 Slide Preparation
2.5 Animation Production
2.6 Actual Presentation
2.7 Conclusion

I

2.1 Introduction

We are still using the lecturing technology of a quarter centuries ago.
Transparencies and slides are still widely used in classroom presentations. However,
these traditional visual aids are all static，usually only black and white and non-
reusable. When an animated presentation is needed, the traditional way is to produce a
video, which in general is too expensive for the teaching institutes to afford.

Currently, high-speed light-weight laptop / notebook computers together with
a color LCD display panel, which can be projected onto a large screen，make computer
presentations possible in classrooms. The display can achieve up to 640 x 480 pixels,
185,000 true colors and 50 ms response time, which enables high-quality multi-media
images with realism and full motion in animation. In addition, some models of the LCD
panels can even allow pen-input [5], which means that a presenter can write on a
tablet, and in turn directly onto the screen. In spite of the hardware advances，available
software is inadequate to meet the requirements of a lecture presentation.

Authoring systems [6] are developed to let students do interactive exercises
7]. Undoubtedly, an interactive exercise can involve student participation. However,

each exercise will require a great effort of the instructors to prepare so as to handle
various student responses.

I

Commercial presentation software [8][9] is often tailored to business people.
For example, they often provide users with a huge library of ready-made clip art and
templates. This certainly makes a deep impression on the public audiences but they are
not suitable for academic lectures.

Animation software [10] is usually compelled to be easy to use. An example is
the motion control, which is often pre-defined by the software manufacturers instead
of being programmable. However, demonstrations of phenomena in classes frequently
demand high flexibility and accuracy. The software is thus insufficient.

This chapter presents our study on how computer can facilitate classroom
presentation. In particular, a user-friendly Computer Graphics Aided Lecture
Presentation System has been designed and developed to help instructors prepare,
arrange and present courseware. In the future, instructors can bring along with them
only the disks containing the courseware to the lecture theater.

6

The early prototype developed at the Chinese University of Hong Kong in
1991 [11][12] has demonstrated to us the feasibility of such a presentation system. The
prototype runs on the OS/2 environment using the Presentation Manager interface.
The presentation materials are treated as objects of different classes. Novice users can
use pre-defined objects and operations that act on those objects to prepare a dynamic
presentation. Experienced users can further define their own objects and operations.

The current system has two main characteristics. Firstly, the system is
particularly adapted to the needs of classroom presenters [13]. Pin-pointing each of the
procedures to deliver a lecture, we have examined novel applications of computer;
including history, story board, highlight and zooming. Especially, the system assists
instructors in the actual presentation, which is generally overlooked by other software.
Secondly, we have introduced an animation production model, which integrates both
interactive graphics and procedural programming. In short, attributes of graphical
objects can be driven by the variables declared in a general program and vice versa.
Hence, the tasks of modeling graphical objects and motion control can be clearly
separated and in turn simplified.

Next section gives an overview of the entire presentation system. Each of the
succeeding sections then fully describes respectively one of the four components:
Materials Organization, Slide Preparation, Animation Production and Actual

, Presentation�A summary of this chapter is made in the last section.

7

2.2 System Overview

Slide
Preparation

Materials 一 Actual
Organization Presentation

X Animation � x
Production

A J

Computer Aided PreBmiiatmn

Figure 1 System Overview

The procedures to give a lecture are depicted in figure 1. Gathering materials
from books and journals, instructors can first arrange the acquired knowledge into a
well-organized lecture. They can then prepare the slidesi，which contain their ideas
added with appropriate supporting illustrations. To make the lecture more interesting
and simulating, the instructors can 'also produce an animation, revealing their ideas
dynamically. Finally, using appropriate visual aids, the instructors can put their ideas
across to the students in the theater.

The presentation system is correspondingly made up of four components;
namely, Materials Organization, Slide Preparation, Animation Production and Actual
Presentation, which are described in detail one by one in the following sections.

^Materials are organized and presented in a slide-by-slide basis in the system. Each slide is framed in
a window on the projected computer screen.

8

2.3 Materials Organization

The Materials Organization subsystem of the presentation system helps users to
organize pieces of information into a structured presentation. Moreover, the related
information can be accessed in a convenient manner. Reminder Note, Idea Outliner,
Hypertext, Index, History and Hand-out are features essential to good materials
organization.

2.3.1 Reminder Note

For each presentation, remarks such as course title, lecturer details and
reference materials can be made in the Reminder Note. The remarks are going
to assist other persons in re-using the presentation in the future.

2.3.2 Idea Outliner

In the Idea Outliner, the whole organization of the presentation can be
reviewed as a hierarchy tree with the current slide highlighted. Users are able
to create and re-arrange this contents tree by adding and deleting nodes in
order to structure the presentation. Afterwards, they can go into details by
linking each node with a slide.

2=3.3 Hypertext

The hypertext concept [14][15] is adopted in the system, which means
that users can associate a keyword, which is called a button, with a particular
slide. During actual presentation, when the mouse cursor moves over the
button, the button becomes heightened. When clicked, the button leads the
users to the associated slide.

Having traversed several slides, the users may lose the place of the slide
which they are currently presenting. To avoid this, they can put a bookmark on
the slide which they wish to refer to later. Subsequently, upon invoking a
particular function, the system will retrieve the most recent slide with the
bookmark. Hence, the users can always keep track of their presenting order.

9

2.3.4 Index

Like indices of a book, Index helps users locate certain information
embodied in a large number of slides. An index link can be attached between a
topic and several slides. Through the links, the users can access all the related
materials under a specific topic.

Furthermore, Index can also be used to search for words on certain
slides without the knowledge of their locations. To look for a word, all the
slides are automatically gone through. Words with similar spelling will be
reported as well. But surely this kind of searching is less efficient than that with
a link. Figure 2 shows the relationship of the Idea Outliner, Hypertext and
Index�

Idea outliner Hypertext

^ z \
I~ I I~ I I ~ i Z 一 \ _ .

—T— ~r— > Topic
_ /Topic

Hypertext j

~ H y p e r t e x t \ /

\ I
Current

Slide

Hypertext

Slides

Figure 2 Idea Outliner, Hypertext and Index

2.3.5 History

A drawback of using blackboard is that contents on the blackboard will
be erased shortly after mentioned. Instead, the system stores the sequence of
the covered slides as a history during the lecture. History assists users in
referring to a slide shown before. The users can play back the sequence
hereinafter. History is especially useful when a student raises a question and
wants to refer to a previous slide for discussion.

10

2.3.6 Hand-out

Hand-outs of each lecture are necessary for students to study after the
lecture. A copy of the slides, which are probably annotated with additional
descriptions, can be easily produced through a printer. i

I

iWe have also experimented with a heuristic to improve the printing of PostScript programs. The
results are included in appendix A "PostScript Optimization".

11

2,4 Slide Preparation

To simplify the process of preparing slides, the Slide Preparation of the
presentation system provides tools for handling some frequently used graphical
objects. Hence, the time for preparing these graphical objects can be greatly reduced.

2.4.1 Text

As text is extensively used in lectures, the ability to handle text is
important for the system. Users are able to edit text directly on the screen as if
they were using a word processor (See figure 3). Changing fonts, point sizes
and typefaces are possible, and so are phrase search and paragraph alignment.
Furthermore, hypertext buttons, which are also text, can be defined.

2.4.2 Shape

Drawing tools for various geometric shapes such as rectangle, ellipse,
line and bezier curve are provided by the system (See figure 3). Certain
attributes are associated with them; namely, line width, brush pattern and color.
Bitmap is another way to represent shapes. Digitized images like those
produced by scanners are usually stored as bitmaps.

_ • 細 • 纖 I 細 • 删 赚 i — ^
File Edit Object Arrange Character Paragraph Pen Brush Colour Menu

… “ » f
：The Chinese University j rn^^im \ \
\ of Hong Kong 观 j
i incorporated in 1963. TTie ： ^ m M

University is mteinatJonsJ in i Bitmap RoundetJ
？ out look very Relive in promoting ？ 酸 • Rectangle
i resemJ} and has close ：
;a s soc ia t ion with many univeis i t igs ,丨
：foundations and organizations ： ._.._ Rectangle
；abroad. ^ ^

… … u X .
Bezier \ Ellipse \、.

Curve \ v

Figure 3 Text and Shape

12

2.4.3 Graphical Object Library

Simple graphical objects can be grouped into a complicated graphical
object. They can be further stored in a graphical object library. For example,
certain button shapes are frequently used; like Go, Quit and others. A copy of
them can then be kept as a Button library so that later they are ready for use in
instances as shown in figure 4.

Button
Exit H

— _ •

Main 丨漏 ^ -v
p i — Quit
IRpQpt 耀

Nmnnmrnnnm̂
Figure 4 Graphical Object Library

；

13

2.5 Animation Production

Using Pearl, an algorithm is animated in three steps. Firstly, a program
representing the algorithm is implemented in C++. Secondly, the animator then models
the graphical display intended for the animation. Finally, the program and the display
are linked together, thus, producing the animation. Usersi can interact with the
algorithm through direct manipulating the graphical objects in the display (See figure

5)。

Users

Display
个 个 个 +

Program

Figure 5 Pearl

A simple example is to animate sorting algorithms. In the Sorting animation,
several rectangles, which represent a list of items, are to be arranged into order
according to their heights. In addition, the number of swap required by each algorithm
is to be shown. The process to develop the animation using Pearl will be covered in
this section.

2.5.1 Algorithm

An algorithm is specified as a number of object-oriented C++ classes.
The classes are templates for the objects in the program. Each class includes
both data structure definitions Data and the processing code for instances of
those data structures Methods.

Two classes, Item and SortQueiie, are used to define the sorting
algorithms. The class SortQueue is the main class, which includes ten objects of
the class Item and a variable count as its data. It also contains several methods
including the BubbleQ for the Bubble sort. On the other hand, the class Item
comprises two variables Pos and Vcd, which represent the position and value
respectively, and various operations of them. (See figure 6)

1 User refers to the person watching the animation.

14

The methods are annotated with additional markers such as the
" W r i t e c o u n t ； “ in figure 7 to indicate changes of values in the program.

2.5.2 Display

Each of the above classes is represented by a number of graphical
objects. The animator draws a rectangle for the class Item as well as the text
"Number of Swaps and "0" for the class SortQueue. A rectangle is
associated with the attributes x and Length, which are the horizontal distance
to origin and the height respectively. In addition, a text possesses an attribute
Content, which represents the content of the text. (See figure 6)

n—® 9
I I n

丄 ： 丄 Number of Swaps ： 0

c l a s s I t e m { class S o r t Q u e u e {

i n t P o s , V a l ; class Item item[10]；

D o m a i n Pos(0..9),Val(0.，100); int count,i;

p u b l i c : p u b l i c :

v o i d S e t P o s (i n t)； SortQueue(void)；

i n t G e t P o s (v o i d)； v o i d S w a p (i n t , i n t) ;

v o i d SetVal(int)； void S w a p (v o i d) ;

i n t G e t V a l (v o i d)； int C o m p a r e (i n t , i n t) ;

} ； i void A r r a n g e (v o i d) ;

v o i d BubbleUp(void)；

v o i d R a n d o m i z e (v o i d) ;

v o i d Bubble(void)；

— -- void Insertion(void)；

void S e l e c t i o n (v o i d) ;

}；•

Figure 6 the classes Item and SortQueue

v o i d S o r t Q u e u e : : B u b b l e (v o i d)
{

c o u n t = 0;

W r i t e c o u n t ;

for (i = n - 1 ; i > 0; — i)

for (j = 0; j < i； j++)

if (compare(j , j+1)) {

swap{j,j+1)；

c o u n t + + ;

W r i t e count;

}
a • •

}
Figure 7 the method Bubble

15

2.5.3 Link

The attributes of the graphical objects are then linked with some
variables pertaining to the class. For example, a link is built between the
attributes x and Length of the rectangle and the variables Pos and Val of the
class Item respectively (See figure 8). Moreover, the attribute Content of the
text is bound� to the variable count of the class SortQueue.

図 C.G. Notation
Attributes Variables
iBrush.Coior _ iPos
Brush.Style 1 Val
Pen-Color
Pen-Point _
Pen.Stylc
S e i z e d I Expression

1 = • II I l i i l i
Linked Pairs |:i:發毅明

應 fliMfmnii^ j ™ !
x<->p�s l i i i

纖 i:

Figure 8 Link

2.5.4 In Action
/

When the animation is put in action，a user can interactively modify the
lengths of the rectangle, which will also automatically change the values of the
objects in program. Then, the process to sort the rectangles is shown in
sequence as in figure 9，with the longest (shortest) rectangle going to the
leftmost (rightmost) side. Meanwhile, the number at the bottom indicates the
number of swaps used by the algorithm at that moment.

2xhe terms link and bind are used interchangeably.

16

ili
PH

H
H

H
H

SI
H

H
B

H
H

H
H

H
^

PH
H

H
H

H
H

H
H

H
H

H
H

H
H

H
K

^
pH

H
H

H
l^

H
H

ra
M

^H
H

H
B

K
^

M
H

H
H

H
H

H
B

H
H

B
H

H
H

H
I^

•̂'p-

.fTT
.r̂

 P—

Me
ttiod

*
E«

ftel

M
eft

•“
e»

ncl

Me
ftô

i
Ê

nel

VftM
lft

I
IBu

bbleU
p”

I

I
I

I
I

I
I

I
2R

>nd
orn

Uc

|
|

' '
|

|
|

|
H1

M
S2

9H
I

1
I

I
I

j
i ln

«e
rti«

fi
I

I
{

1
j

1
j

j
SS

cltc
tlQ

ft
I

I
1

j
1

j
1

j
j

~
I

—

I
~

~
~I

I~
II

~I
II

I~
II

~I
I~

II
~I

I~
II

~~

I—
I ~

~I
II

I~
~i

l_
liI

I_
II

_I
I_

II
_

_I
I_

II
_I

I_
II

_I
I_

_I
I_

II
__

II
_I

I_

_I
I_

II_
II_

_I
I_

II_
II_

_I
I_

II_
_I

I_
_

Nim
ker

 •(
 Sw

ap
t: •

Niim

bM
 •(

 S»
>r>

 ；
 1

N«

n>k
»

tl S
w,

,t ：
 t

Ni

m
l̂ ti

 Sw
ap.

 : J

ili
ilh

iii
lii

iil
lil

lil
U

lil

I
i

l
•

_
_

•
•

_
—

^
p

H
H

B
B

H
B

H
H

S
^

H
B

B
H

H
B

H
H

^
p

H
B

H
S

I
H

B
^

S
H

M
H

H
H

K
^

_
_

I I
~

...
I

"
"

"
~I

I~

I—1

->

•

n
p-

|
->

n

r-1

ri
门

U
U

U
U

U
nU

nU
U

U

U
U

U
U

nU
U

nU

U
U

U
U

U
nU

U
U

n
UU

UU
UD

UU
Un

4

H«
mfc

efW
Sw

.M：
 5

Hv

mk
t*

SW
.M
 ：

 (

Mu
«ib«

 S
w”
 ：

 7

liiii
iiiii

iiiii
ini

iiiii
iiM

ii 1
,1.1,1

 lyiM
iiM

um
wii

iM
iyiw

itjj
i i

i_i
iii_

 m
 i

n i
 _

_
ii

_
T

T
i

m
a^

m
m

m
m

tm
m

m
M

m
m

am
m

m

n
n

'
^

H
r

i
H

r
n

1~
1门

UU
UU

UU
DU

Un

U
uU

U
U

U
uD

U
n

UU
UU

UU
UD

Dn

U
U

uL
IU

U
U

D
nn

fi
n

n
门

U

n
门

->

ririr

—
1

UU
UU

UU
DD

DD
 U

UU
Uu

UD
Dn

n
UU

UU
UU

nDD
n

Uu
uU

UJ
DD

nn

Sw
ap.
 ：

 1
3

H
um

ht
f

of
 Sw

p«
 ：

 1
4

Nu
mb

er
•(

Sw
.m
 ：

 tS

Nw
nfce

f
Sw

" ：
 1

6

Fi
gu

re
 9

 i
n

ac
tio

n

17

2.6 Actual Presentation

A system, which can only handle graphical objects, is merely a graphics system.
A presentation system should not only facilitate preparing the slides but also help the
actual presentation. Six features for the actual presentation module are proposed:
Stoiy Board, Multi-Windows, Highlight, Zooming, Scribbling Pad and Speaker
Reference Notes. They assist presenters in conveying their meaning to the listeners
through the screen.

2.6.1 Story Board

’ Story Board is very useful in presenting. Using it, an idea can be clearly
shown in a step by step manner. It works like sequentially stacking several
transparencies together. Features on a slide are displayed according to a
particular time order. Each time presenters press the mouse button, more (less)
information will appear on the screen; just like having flipped one more
transparency onto the current transparency. On the contrary, a double click
causes the system to go back to the previous instance.

The following are two examples using the technique. The first reveals a
list of characteristics of an algorithm. The list is displayed one point after
another (See figure 10(a)). The second illustrates how a scan-line algorithm
works. In each step, one more dot is drawn (See figure 10(b)).

… -——- Furthermore, the system allows another flipping mode, which is to

show two consecutive instances concurrently. In other words, the first instance
is displayed accompanied with the second instance; and then, the second
accompanies the third and so on so forth. This mode is used for comparing the
changes between two instances. An example is to show the steps to optimize a
query tree. Each time, the trees before and after a certain change are displayed
side by side (See figure 10(c)).

18

I
Aw

an
 書

 e
Ch

«f»
cte

f
E»

feg
rip

h
Pe

fi
Co

Um
c

Mc
nw

B

-
I [

Ht

£<
'1

Q>
|cc

t
Arr

an
ge

 C
h«

r»d
ef

Ea
ra

ffip
h

Pe
n

flw
h

Co
l em

 M
com

EH

e

Ob
}ec

(
An

an
je

£h
»r

 ici
er

gM

ag
fph

Pe

a
Me

tx
gH

e

flb
}tc

1
Ch

»f<
1e

f
E>

fef
i»p

h
Pe

j
fjm

k
M

ux

A
l

g
o

r
i

t
h

m
s

A
l

g
o

r
i

t
h

m
s

:
A

l
g

o
r

i
t

h
m

s
A

l
g

o
r

i
t

h
m

s

1
Fi

ni
te

1

Fi
ni

te

1
Fi

ni
te

2

D
ir

ec
t

2
D

ir
ec

t
3

D
et

er
m

in
is

tic

Fi
gu

re
 1

0(
a)

 S
to

ry
 B

oa
rd

I
t州

"W
gq

Arr

an
fC

 C
hw

de
T

E*
fey

>p
h

Pe
a

Bw
h

i
E
"e

QM

ecl
 A

oa
ftfg

 C
hif

tct
ei

 g
»r

ay
tph

Pe

n
B"

i«l>

C»
l>m

 M
«ih

«
| g

He
 E

<U
 fl

b)
ec

t y
ia

nf
c

Ch
fc

te
r

gw
ag

rip
h

^
flf

^t
h

c*l
»m

 fc
^c

rw
 g

fp

i®

Ob
jec

t
£h

*ra
cle

r
etf

ay
rap

h
Pe

n
Qr

vs
lt

C*
U«

(
||r

ii«

I

B
r

e
s

e
n

h
a

m
's

B

r
e

s
e

n
h

a
m

's

B
r

e
s

e
n

h
a

m
'

s
B

r
e

s
e

n
h

a
m

'
s

u
i七

n
il

u
n

.M
 u

^
n

Fi

gu
re

 1
0(

b)
 S

to
ry

 B
oa

rd

卜
__
__
__
_1,
111

11
1II

 || I
 i.i.

_,ii
!iiU

!j 山

•
舰

•
！

I
_

_
_

_
_

_
_
 I

II

丨丨
丨丨

E

eH
B

B
m

H
ff

lM
B

B
S

B
B

S
m

B
H

ei
a

L^
^

"
''

Cl»
»f»

c<
et

P
en

Me

nu

p
it

flb

)<
rt

Air
ao

ge
 C

h»
f>c

<e
r

E»
ra9

f>p
h

Pt
j

B'U
*h

Co

lom
 t̂

ew
u

| p
ic

Ed
"

Qb
{gd

 A
fran

ge
 f

ih
af

ct
er

 E
tra

yp
h

Pt
jj

Bn
j»h

 f
lo

w
j

êfw
i

}
fp

ie

QM
ee

i
Aff

an̂
c
二

IT

kjT
 Ji二二

•

树
 M

cfiw
 I

7C

TU

TT

TT

TT

TT

TT

I
I

i
I

I
I

I
(7

�
a

7

cr

TT
I

7C
1

/
I

-
>

I

I
-

>

I
/

\

V
A

A

71

2
71

3
八

八

人

人

/
\

F
 \

G
ra

d
Le

ct

G
ra

d
Le

ct

G
ra

d
Le

ct

G
ra

d
L

e
d

G

ra
d

L
e

d

G
ra

d
L

e
d

G

ra
d

L
e

d

Fi
gu

re
 1

0(
c)

 S
to

ry
 B

oa
rd

1
9

2.6.2 Multi-Windows

Sometimes, presenters need to display more than one slide at the same
time. This can be easily achieved because each window can represent the
contents of a different slide. An example to show the results of a computation
in form of a graph on one slide while the mathematics on another as in figure
11.

E»e tJM tW'g Cli«i»aef Pea B"*'' C»l»u【 ^ I c t̂ H Ch»»aef Pej Bn»sh C»l,u【 }

一〉 Max xo = XI + X2

^ \ 叫明 subject to 2xi + X2 <= 4

X I + 2X2 <=6

(1,0) I X̂ l /I

Figure 11 M u I tl-Windows

However，too many windows opened will mess up the screen. There
are functions to arrange the windows, like the cascade and tile supported by
the Windows system. In addition, the total number of windows for slides is
limited.

2.6.3 Highlight
/

It is sometimes necessary to highlight certain area of a slide. It is just
… like many presenters cover part of the transparency with a paper. The system

…一--. - � - a c h i e v e s this by maintaining an area of interest bright, while the region outside
the area will be grayed, thus leaving only the most important feature to be seen.
For example，the current point can be given prominence (See figure 12).

_ Parser ,

Figure 12 Highlight

20

2.6.4 Zooming

Zooming is especially useful when presenters have to discuss a very
large diagram in the class. Each slide can be zoomed in (out) to cause the
objects to appear nearer (further). Presenters can also open two windows for
the same slide. One shows the complete picture and the other reveals the
region zoomed in. Displaying each small portion of a large data flow diagram
in detail is an example (See figure 13).

, — Ae»,t iw G""， \de ta i l

Figure 13 Zooming

Moreover, supposing that the text on the slide is found being too small
when projected on the screen, zooming can sometimes alleviate the problem.
The presenters can then take a close-up, which will show the subject on a
larger scale.

2.6.5 Scribbling Pad

Scribbling Pad is an area, where presenters can draft their rough works.
— - - The presenters are able to draw or erase any figures using the tools provided

for preparing slides. The scribbling pad window can also duplicate the features
on the current slide so that the presenters can update these features in the
scribbling pad without interfering the original slide. It works like people write
on a blank transparency placed on the current transparency.

2.6.6 Speaker Reference Notes

Presenters often use clue cards to jot down annotations for reference.
The system also allows the use of Speaker Reference Notes. The Notes appear
as a small button on the slide. When it is pressed during presenting, a small text
box will pop up revealing the remarks. Once the button is released, the box
vanishes at once.

21

2.7 Conclusion

A Computer Graphics Aided Lecture Presentation System has been designed
and prototyped. Above all, the system is tailor-made for classroom presentation. From
preparing a lecture to actual presentation, various features of the system are
mentioned. Besides, a novel animation production model has been put forward and
implemented for evaluation. To animate a presentation, users model graphical objects
using interactive graphics and control the motions of the objects with procedural
programming. The details of the animation subsystem will be given in the following
chapter.

!

22

3
Algorithm Animation

Subsystem

3.1 Introduction
3.2 Related Work
3.3 Algorithm
3 A Display
3.5 Link
3.6 Options
3.7 Examples
3.8 Conclusion

3.1 Introduction

Program Visualization is the use of graphics to illustrate some aspects of the
program or its run-time execution [16]. Program Visualization systems are then
classified according to whether they illustrate the code, data or algorithm of the
program, and whether they are dynamic or static. The form of Program Visualization
showing the operation of an algorithm in action is called Algorithm Animation.

Picturing abstractly how algorithms operate, Algorithm Animation makes the
algorithms more understandable. Especially, Algorithm Animation is worthy of helping
students gain insight into the intricacies of the algorithms.

Being presented in this chapter, the most important work of this thesis is to
develop a model which facilitates the production of animation; particularly for
animating the working of algorithms. To justify the conceptual model, an interactive
algorithm animation system Pearl is designed and implemented. In addition, numerous
well-known algorithms are animated; serving as examples of using the system.

The Pearl system can be characterized by three special qualities. Firstly, the
system let users interact with algorithms so that they can explore the properties of the
algorithms. Interactive animation is distinguishable from other algorithm animation, in
which users tend to participate passively. Secondly, applying the Direct Link Library
technique separates the algorithms from their graphical displays. Hence, changing an
algorithm will be unnecessary even though more than one representations of the
algorithm are built. Lastly, the use of self-contained C++ class makes commonly-used
data classes reusable. Animating different algorithms on the data classes can then be
reused by instantiation.

I
I

Next section gives an review on related work. Succeeding sections describe the 丨

four components: Algorithm, Display, Link and Options respectively. Section 3.7
describes the examples of animated algorithm. This chapter is briefly summarized in
the last section.

24

3.2 Related Work

Previous work on Algorithm Animation has a direct influence upon the present
research. To use animation to illustrate algorithms, a number of films were produced at
the end o f 70s. With the advance of Computer Graphics, researchers have built several
innovative systems [17-41]; namely, BALSA, Animus, Stills and Movie, ALADDIN,
TANGO and Pavane. Having been formally evaluated, some of the systems have
tentatively realized the great potential of Algorithm Animation. Their features are
summerized in the following sub-sections.

3.2.1 BALSA, BALSA II and Zeus

BALSA [17-21] from the Brown University is one of the best known
algorithm animation systems. It has been extensively used for teaching in
laboratory. The platform for BALSA is an Apollo personal workstation;
whereas an updated version, BALSA II, runs on Macintosh. Using BALSA,
the algorithm designer first identifies the interesting events in an algorithm,
which should lead to changes in the image being displayed. The animator then
implements the graphical views, which maintain the image and change it in
response to the interesting events. Input generators are implemented to provide
data for the algorithm to manipulate. Finally, sequence of commands to present
the algorithm in action are stated as scripts. In addition, the latest system, Zeus
—22][23], focuses on the use of color and sound to convey how an algorithm
operates.

3.2.2 Animus and Gestural system

Animus [24][25] has been built upon the ThingLab, which is a
constraint-oriented simulation system based on Smalltalk. Temporal
constraints are declared by the users; specifying that certain events in the
underlying program should trigger the occurrence of some complex sequence
of graphical responses. The dynamics of users' gestures are captured as the
desired graphical responses [26]. In addition, relative timing of the gestures is
controlled by a music-like score editor.

25

3.2.3 Stills and Movie

Stills and Movie [27] is a simple algorithm animation system. A C
program is first augmented with several p r i n t f statements to generate a
script file describing the results of the execution of the program. The script file
is then processed by the program Stills to produce static pictures, which can be
included in trofF documents. Furthermore, the same script file can be
dynamically displayed by the program Movie. Using the script file, the
animation can be proceeded forward or backward at different speed.

3.2.4 ALADDIN

ALADDIN [28] allows a graphical specification of the animation. The
specification is composed of three steps. A graphical type is first interactively
defined using a catalog of graphical objects. A graphical variable belonging to
a certain graphical type is then declared for each occurrence of the graphical
objects. Finally, an animation statement changes the appearance of the
graphical object with the execution of the program. The three components can
be compared with the type definition, variable declaration and statement in
conventional programming.

3.2.5 TANGO and DANCE

TANGO [29] [30] [31] has introduced a path-transition paradigm for
� Algorithm Animation. Using the paradigm，users describe an animation in a

program through manipulating four abstract data types; namely，the graphical
images on the screen, the locations that images and other objects occupy, the
transitions that the images make, and the paths that modify the images'
transitions. The program representing the animation can also be generated by
DANCE [32], which is a direct manipulation style graphical editor for
designers to sketch out animation scenarios.

26

3.2.6 Pavane

Pavane [3 3] [34] treats visualization as a mapping from the state of a
program to the graphical representations. In this way, five levels of abstraction
as applied to Algorithm Animation have been identified. Firstly, direct
representations map some aspect of a program directly to a picture. Secondly,
structural representations encapsulate certain extraneous data so as to simplify
the view of the program. Thirdly, synthesized representations derive
information that is not explicitly present in the program. Fourthy, analytical
representations attempt to capture more abstract properties of the structure or
behavior of the program. Lastly, explanatory representations enhance the
viewer's understanding through the provision of visual hints.

3.2.7 Other Systems

Apart from the above systems, some systems have traded the flexibility
in producing animation for their particular purposes. Keeping the source code
of the animated program unmodified [35][36][37], several systems are
developed to assist in program debugging and tuning. In addition, certain
systems usually referred as Parallel Algorithm Animation systems [38][39] seek
to depict the communication among processors for analysis of performance.
Other related work can be found in [40] [4 T.

Early algorithm animation systems are programming-intensive for use. To
specify the display, the animators have to make low-level calls to the graphics
primitives. Not only rapid prototyping is not allowed but also learning to operate the
systems takes much more time.

Employing interactive graphics techniques, newer or latest versions of the
systems begin to emphasize the ease of use in the specification of the display. There
are systems using direct manipulation for animators to build the desired animations by
demonstration. However, we are unaware of any other work, which allows user
actions such as click and drag to influence the underlying computation of the
algorithms. This has motivated the development of the Pearl system.

27

3.3 Algorithm

As mentioned in section 2.5, an algorithm is specified as various C++ classes.
Each class is composed of data and methods. The methods are designated with
additional markers to signal changes of values in the program. The methodology
described in this chapter can easily be adapted to any high level language used for
specifying the algorithms to be animated.

3.3.1 Markers

It was intended to keep the animated version of the program as intact
as possible. However, our experience is that eliminating fundamental
operations such as read and write will, on the contrary, degrade the readability
of the program. Eventually, four kinds of markers are chosen -- Domain, Read,
PreWrite and Write as follows:

3.3.1.1 Domain

The use of Domain (See Figure 14) is to define the range of a
variable, which will be required to establish a link. The animator can
either specify the extremes of the range or explicitly state each values in
the range; namely, "Domain Pos (0 . .9) and "Domain
Pr ime (2, 3, 5, 7) ;" respectively.

广 s. r '"

- ：__�_• — n u m b e r] 门门
-^DomainW variable number 卡 n

L，广 number -V
‘ I -J

广 "N

，^
f “

4
3

V J

Figure 14 Domain

28

3.3.1.2 Read, PreWrite and Write

Read, PreWrite and Write markers (See Figure 15) are self-
explanatory. A Read in a program feeds in the values of some variables
from the attributes of the bound graphical objects. On the contrary, a
Write sends out the values of the variables to the attributes of the
graphical objects, thus, causing an update on the display.

r{ Read In
V y
f ^ ； 门

--• PreWrite -1，variable ；
^ ^ LLJ
r ： ^ 门

H Write H ^ _
^ ^ l l J^

Figure 15 Read, PreWrite and Write

A PreWrite also gives out values of the variables. Contrary to a
Write, a PreWrite only dispatches values to a buffer before modifying
the display. Ultimately, the values, which may result from several
PreWrite's, will be simultaneously delivered to the display when a Write
is performed.

/

An animator can make use of the PreWrite and Write to arrange
the relative timing of different motions. An example is the swapping of
two rectangles in the animation Sorting. For the case of using Writers,
the two rectangles will move one by one. However, when PreWrite's
are used, the rectangles will be in motion concurrently. (See figure 16)

<4.…..
lls^ ——

Using PreWrite Using Write

Figure 16 relative timing of motions

29

3.3.2 Dynamic Linked Library

The program is to be pre-processed, which converts the markers into
actual C++ codes. The codes are then compiled by an external compiler into a
Dynamic Link Library DLL, which will be eventually loaded by the system
during run time. (See figure 17)

/ ^

Pearl
V__ J

� o a d
process compile

sort.pc • sort.cpp • sort.dll

Figure 17 producing a DLL

3.3.3 Animation Independence of Algorithm

The algorithm specified in Pearl is animation independent, which means
I

that the program is not specific to a particular display. Modifying the graphical
objects, as well as the links, will not even require re-compiling the source
program.

For example, in animation Sorting, the rectangle representing the class
Item is now replaced by a text. The attributes x and Content of the text are then
linked with the variables Pos and Val. Therefore, another representation with
the items expressed as numbers is produced as shown in figure 18.

^̂ HBBBWMinillMMBIIHWWM̂ BMmm WHHllfflWfTniHHB̂^̂^̂^̂^̂™"*—*****"".... ...，、.-.•.-.
Methods f a n e l

eo 90 50 20 60 100 10 70 40 30

Number of Swaps ： 0

Figure 18 Sorting with text

30

3.3.4 Reusability

Object-oriented C++ programming encourages reusability. We have
implemented several widely-used data classes; namely, Graph, Stack and
Queue, which are also graphically represented in Pearl. Other programmers can
later make use of these programs to produce animation at ease.

I

31

3.4 Display

Each class in the program is represented by various graphical objects. When an
instance of the class is created (destroyed), the construction (destruction) of the
graphical objects will take place on the display. The attributes of the graphical objects
in display are described below.

3.4.1 Attributes

Available graphical objects include text, rectangle, rounded rectangle,)
ellipse, bitmap, line and bezier curve as shown in figure 3. They possess certain
attributes, which are categorized as the Position, Appearance, State and
Content groups. Each group is summarized in the following sections.

3.4.1.1 Position

Availability of the position attributes for each graphical object is
tabulated in table 1. ‘

Graphical Objects
Rectangle
Rounded Rect Line

Attributes | Text Ellipse Bitmap Curve
X t | 卞 | 卞 | 卞-

1 L L t L
Width t t t L
Length t t t J L
Left V V i
Top ； V V V

Right T i i
Bottom V V V .
Head.x — V
Head.y — _ d _
Tail.x — i_

[j a i l . y II I I I �

A mark indicates those attributes possessed by the corresponding graphical objects.
卞 available for Center-of-Gravity notation only, V otherwise.

Table 1 Position

32

An animator can describe a position using the Center-of-Gravity
(CG) notation or not. Using the CG notation, the animator will specify
the bounding rectangle of a graphical object with four attributes x，y
(which are the coordinates of the center of gravity of the rectangle),
Width and Length. On the contrary，not using the notation, the
animator can state the attributes Left, Top, Right and Bottom of the
rectangle (See figure 19).

i Left •
f ； 4 M ^： ；

V i ‘ ？ — ^ — ? & Top 1 Rmhf i :
* ； 率 .：‘^ 1 ~

— — J . ^ 卜 个 ；

Bottom j I i
飯- ： f

w “她 i-
Using CG notation Using non-CG notation

Figure 19 CG notation

Both notations are necessary. For example, in figure 20, the
animator has created one more rectangle, inside which items are known
to be not yet sorted. The rectangle is defined in the class SortQueue.
The non-CG notation attribute Right of the rectangle is bound to a
variable, which will be decreased after each pass in the bubble sort
algorithm. On the other hand, as a comparison, the attribute x of CG
notation is instead used for the rectangles representing the class Item.

Methods Panel

Number of Swaps ： 10

•_ 丨 I---•-• •ess=ssa

Figure 20 indicating the unsorted rectangles

33

Besides this, choosing the item Record in the menu can reveal
the current position of a selected object as shown in figure 21. The
range in which the values of the position attributes sketch can further be
marked, which will be used later for linking.

丨 Tfl|| 丨圓 _|_|||“圓

Type ： Rectangle 図 C.G. Notation
X y Width Length

233 241 45 50

550 140 45 50
30 140 45 50

Secofd I a&dtt I

Figure 21 Record

To build a link, it is essential to state the range of an attribute
and the range of a variable so as to compensate for the difference
between them for precise mapping. For example, the attribute x
sketches from 30 to 550; while the variable Pos lays between 0 and 9
(See figure 22). Moreover, tweening will be carried out to smooth the

1

motion.

匪 圓 ! m r S S i
Attribute Values ： x

from I to 1550 |

V — 二 國

_ | o t a [9 I 藥 ： 蘇 _

El lween ing _ _

Figure 22 linking Position attribute

3.4.1.2 Appearance

Appearance attributes are summarized in table 2. In addition,
the linkings of some of them are displayed in figure 23. Animators can
update the values inside the boxes, which are equal to the values of the
linked variable in run-time, leading to the particular appearance of the
graphical objects. For example, linked as shown in figure 23(a)，the line
will be dotted if the variable i equals 2.

34

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ Graphical Objects
Rectangle
Rounded Rect Line

Attributes Text Ellipse Bitmap Curve
Head. Arrow a/
Tail. Arrow
Pen.Style 一 V “ ^
PenPoint Ĵ — —
Pen. Color 一 V~ 7"
Brush-Style V —
Brush.Color V

Table 2 Appearance

H t o M Attribute Values： PenPoint _ _ _
Attribute Values： Pen.SVl^ l ^ g j Variable Values • i p ^ M

None | q I Dot 丨2 | 1 |o 6 丨3

Solid 0 Dashdot 3 2 H 8 [4

Dash 1 Dashdotdol 4 4 2 10 5

Figure 23(a) Pen Style / Figure 23(b) Pen Point

i in iiTf̂ FTTTniiniSE

^̂ ^ BMBiWrii 1 ifl iTTu 邊:1 rr« fc i: 1 i n r̂ ixii mumj
ffl—GMiyTi'fiiiTini 丨 ， p i p i i

•••••••••••••••j Attribute Values： Brush.Color 滋 _ _

Attribute Values ： Brush.Stylc _ _ _ Variable Values ： i f ^ ^
Variable Values ： i 丨•議_ I j w l f w l ^ l
None M m M None Gr^en |

Solid 0 Forward Dgl A Black 0 Cyan 5

Iransparent 1 Saclcward Dgl 5 Gray [l Blue [6

Horizontal 丨 2 | Cross |6 | Bed \2 Magenta [7

Vertical |3 | Dgl Cross 丨7 | Yellow 丨3 White [s

Figure 23(c) Brush Style Figure 23(d) Brush Color
Figure 23 linking Appearance attributes

3.4.1.3 State

All graphical objects possess state attributes as shown in table 3.

Graphical Objects
Rectangle
Rounded Rect Line

Attributes Text Ellipse Bitmap Curve
Selected = ~ T V i ±

[Visible "I � I • I “

Table 3 State

35

Attribute Selected refers to the state whether a graphical object
is selected by the user. It is frequently used to indicate those graphical
objects to be attached in invocation of a certain method. An example is
the method BubblellpQ, which will bubble up those rectangles selected.
The attributes Selected of the rectangles have been bound to some
variables indicating whether a move should be made to the rectangles
(See figures 24 and 25).

l«g:� im_Tn丽細 I很丨 M m a j g
Attribute Values ： Selected | 灣 _ _

Variable Values ： flag 隨 描 滅

None —

On | l I fiff |0 I

Figure 24 linking State attribute

Panel
jVAuto

•i'Pnin'riM 门
£ Randomize
3 Bubble
4 Insertion / |
5 Selection |

11 11

Number of Swaps ： 0

Methods Panel

e—a—a

B B ~ a ^ ^ *

Number of Swaps ： 0

Figure 25 the method BubbleUp

36

3.4.1.4 Content

Being linked with the attribute Content of a text (See table 4),
the value of a variable can be depicted; namely, the variable count in the
animation Sorting. Beside this, the animator can pre-define several
strings for a text, which will be displayed depending upon the variable
as shown in figure 26.

Graphical Objects
Rectangle
Rounded Rect Line

Attributes Text Ellipse Bitmap Curve
Content V

Table 4 Content

Attribute Values ： Content | 顯 _ _
UaviviffiSi-i-i-i*

Variable Values ： i |獨? ?徽 : !

• By Value

None -1

lî sffmrfsm ‘ I [i I
Insertion Sort 2

Selection Sort 3

Quick Sort 4

Figure 26 linking Content attribute

4.1.5 Attributes for Group Objects

A graphical object can be a group object, which is composed of
several component objects. The attributes of the group object contain
all of the attributes of the component objects.

A WrUe applied to a group object is in turn passed on to all of
the component objects. A Read attempts to retrieve the value but is
sometime undefined if the attributes of the component objects are not
the same. In this case, the None value is used. For example, in figure
23(d)，the variable i will obtain the value -1 when the linked group
object is of more than one color.

37

3.4.2 Background

Background classes can be displayed to assist in the layout of the
graphical objects in the current class.

/

38

3.5 Link

Each object in the program is depicted as one (or more) graphical object.
Figure 27 shows the execution of the animation Sorting.

graphical
text • • • • objects

......... I

count • • • .. • objects in
SortQueue item the program

Figure 27 the execution of Sorting

3.5.1 Linking

As shown in figure 8，the attributes of a graphical object are bound to
some variables declared in a class with the following characteristics.

3.5.1.1 Duality

As compared with the notions of call-by-reference and call-by-
value, a link can be either dual or non-dual. Both Read and Write are
allowed for a dual link; while only Write can have a non-dual link.

To ensure correctness, no two attributes of the graphical objects
can be dual-linked to a single variable. Otherwise, a Read for the
variable is indeterminable when the two attributes have different values.

3.5.1.2 Expression

Not only a variable but also an expression can take part in a
non-dual link. For example, the attribute y of the rectangle is bound to
the expression lOO-Val/2 as illustrated in figure 28. After being re-sized
by the user, the rectangles are to be arranged neatly again (See figure
29).

39

y
> n ~ B ~ n ：

100 f

，厂 j

V 峰 . • t
一 Z ^ _ _ B _ _ i I 一

Figure 28 the expression 100-Val/2

Methods Panel

Number of Swaps ： 0 ； ；

Methods Panel

11 11

Number of Swaps ： 0

Figure 29 rectangles aligned to the bottom

To make linking an expression easy，the system will
automatically compute the range of the expression from the ranges of
the variables involved in the expression.

40

3.5.1.3 Constant

Certain attributes cannot be changed by the users, which can be
accomplished by linking the attributes to a constant, usually zero. For
example, in figure 30, the animator keeps all the attributes y of the
rectangles the same. Even when dragged out of place, a rectangle will
be brought back to the right position.

Methods Panel

Number of Swaps ： 0

4；
p M H f i — • i l l B I I I I I lillil 丨丨 • • 叫

Methods Panel
B

Number of Swaps ： 0

Figure 30 rectangles aligned to the center

41

3.5.2 Interactive Animation

The role of the users in most algorithm animation is passive. Instead,
Pearl enables users to explore certain properties of an algorithm on their own
through trying different input data upon the algorithm. For example, in the
animation Sorting, it is not hard to find out that the number of swaps Bubble
Sort requires will be exactly equal to the number of out-of-order pairs of items
to be sorted�

3.5.3 An Alternative Approach for Sorting

The current approach to produce the animation Sorting does not allow
users to save the execution state of the animation; with each rectangle being re-
sized to a particular length. An alternative approach makes a difference�

\

The approach is to create ten rectangles in the class SortQueue instead
of one general rectangle in the class Item. The attributes x of the rectangles are
linked one by one to each element of an array PosArrayflO]. The rectangles
can then be saved like other graphical objects modeled for a class.

However, a drawback to the approach is that the animator must make
changes to the rectangles one after another if he needs to modify them.

3.5.3.1 Duplicate

To help linking to an array of elements, a graphical object can
be duplicated with the indices of the linked variables advanced each
time. For example, a rectangle is first created with attribute x bound to
the variable PosArrayfO]. The rectangle is then duplicated as shown in
figure 31; yielding nine more rectangles with attributes x bound to
PosArray[l], PosArray[2] and so on so forth.

iMore interestingly, this leads to the proof that the average number of swaps used by Bubble Sort is
n(n-l)/4 where n is the number of items.

42

"̂ ttMlilimnUIBBillHiHHtHilHHi
Number g]

図 increment linkage indices

Figure 31 Duplicate

3.5.4 Exercise

To practice the links built in a class, the animator can invoke the
Exercise as in figure 32. The Exercise lists out all the variables declared in the
class. The animator can assign values to the variables so as to observe the
effects upon the graphical objects. In the other way round, the animator can
directly manipulate the graphical objects to examine the changes in the
variables.

• 1114!Wif� FT fffllllllllHIli
Variables

圖

P I

1 1
p � - D 圓

Figure 32 Exercise

43

3.6 Options

Before putting an animation in action, the animator has to specify various
options as shown in figure 33. A class in the program is designated as the entry point
of the program. The methods of the class can be either appended to the menu or
selected as Auto methods. Users can also pause the animation in action. In addition,
the smoothness for tweening can be precisely controlled.

Class Caption

[SortQueue 讀 jSorting |

Method Menu
• |B"bbleUp I
^ ^ liHiI'MiilHlW

-=L
ISelection

• _ ^

[0 _ J l i m e [^ S m o o t h n e s s ^ ^

_ e y Pressed] I滿腳滿 j

Figure 33 Options

3.6.1 Class

One of the classes defined in the program should be chosen as the Main
class，for example, SortQueue in figure 33. An instance of the class will be
created to start an animation.

3.6.2 Method

Methods (without parameter) of the Main class can be either inserted
into the animation menu or chosen as Auto methods. Selecting the
corresponding item, the user can invoke the methods added into the menu. For
example, choosing the item Bubble starts to sort the items using Bubble sort.
On the other hand, Auto methods like ArrangeQ are activated succeeding each
user interaction with the display.

44

Being enabled. Auto methods are used to recover the state of the
objects in the program from inconsistency due to user interaction. An example
is the Atrange()，which prevents users from placing two rectangles to an
identical position as shown in figure 34.

Methods Panel

Number of Swaps ： 0

i •••.y
i

Methods Panel

n—B—a
f

__g

Number of Swaps ： 0

Figure 34 the Auto method Arrange

3.6.3 Pause

An algorithm can be paused after each display update. It can be delayed
for a few seconds or suspended until the user choose the item StepOver as
shown in figure 35. The pause can be enabled or disabled during the animation
so that users have full discretion to control the flow of the animation.

45

画 • _ i r i l i i i i imMmmLa f l J l i l l _ l l i—a iMB—領
Methods ^ j ^EHJ I

Close

Number of Swaps ： 8

Figure 35 Pause

3.6.4 Tweening

The smoothness for tweening is used to reflect the number of in-
between frames required; as illustrated in figure 36. The lower the smoothness
(with 1 as the lowest) is used, the smoother the motion can be achieved but the
slower is the performance. ,

|.|:::jE^、 ……pi
L rzib.., —I f - j

L I .__h-LB R~~a~~n
i i =
：...! A n ……+ O

B — B — a I B — B ~ a

Smoothness = 1 Smoothness = 2

Figure 36 Tweening

46

3.7 Examples

Six more examples made using Pearl are described below; namely, Stack, Tic-
tac-toe, Knapsack Problem, Turing Machine, N Queens Problem and Maximal
Matching. Our experience in implementing the examples shows that developing each
example takes on average one day to complete.

3.7.1 Stack

On the right hand side of figure 37 is a stack, in which insertions and
deletions are always made at the top. To push a selected object, the user
chooses the item Push from the menu. The object is then projected into the
stack. To pop the stack, the top entry is removed.

3.7.2 Tic-tac-toe

The user and the computer alternate in the moves for the game Tic-tac-
toe. While looking for the most favorable move for the computer, the system
depicts each of the expected move in gray (See figure 38)，on the analogy of a
max-min game tree. After several level of searching, the board position is
associated with a score, which is measured by subtracting the number of open
rows, columns and diagonal for the computer by that open for the user. The
move leading to the highest score will be made.

3.7.3 Knapsack Problem

Several items are to be packed into a knapsack. Each of the items is
given a utility, which as well as the size are modified by the user. The total
utility is to be maximized, subject to the size constraint. The optimal solution is
found using exhaustive search since the Knapsack Problem is known to be NP-
complete. (See figure 39)

47

3.7.4 Turing Machine

A Turing Machine is consisted of a finite control, a tape and a head that
can be used for reading or writing on the tape. The finite control is specified in
the form of a table. Each entry of the table denotes respectively the next state,
the symbol to write and the move (left or right) with respect to the current
state and the tape symbol. In figure 40, the user has stated explicitly the finite
control to accept the language { | n >= 1 } and an input of 000111. After
several steps of computation, the Turing Machine has left an answer Y (Yes).

3.7.5 N Queens Problem

The N Queens Problem is to place N queens on an N x N board such
that no two queens will attack one another. After each queen Q has been ,
placed, improper squares are crossed out as shown in figure 41. Backtracking
is used when no available square remains in one of the unoccupied rows, which
is indicated as a list of fs (Fail). This method is called Forward Checking.

/

3.7.6 Maximal Matching (of Bipartite Graph)

A matching is a subset of edges with no two edges incident upon the
same node. Started with an empty matching, a matching is improved using
several augmenting paths. The augmenting paths alternates with edges included
and excluded in the matching and end with excluded edges. To enlarge the
matching, the edges in the augmenting path are to be accordingly removed and
added to the matching. In figure 42, the matching is represented by heavy
edges and the augmenting paths are displayed in gray.

48

PH
IH

H
H

H
H

H
H

B
H

B
H

H
H

^
PH

H
H

H
H

H
BK

ffi
H

H
H

H
H

BH
K

^
PH

H
H

H
H

H
H

H
H

ffl
BH

H
H

BH
H

H
^

PB
H

H
H

H
H

Sl
SH

H
H

H
H

H
H

ill
^

I
EQ

Bfl
l

r
I

m
m

m
m

i
i

i
m

^

H
B

E
E

H

^
b

e
e

c
i

]
H

^

E
E

E
B

B

岛
•

•H
pH

H
B

B
H

i^
iB

IB
IB

iB
B

Ii
l^

P

K
^^

H
H

H
nH

H
H

H
H

B
K

^
pH

B
B

B
H

H
H

ra
B

lH
H

H
H

H
El

l
pH

H
H

H
H

^H
K

ES
BH

BB
BH

H
BS

^
Vf

tu
to

I

1
Re

ce
t

,~
—

,
•
讓

0

2P*
r

i
1

->

—

il
l

B

B

B

B

B
B

H

H

gT
!

B
B

B

B

BT
j

B
H

H

H

^
^•

H
H

H
H

H
H

SH
H

H
H

H
H

H
H

H
^

^H
H

H
H

H
^m

H
H

H
H

H
H

H
H

K
l^

PH

H
H

H
H

H
H

H
H

aH
H

H
H

H
H

lE
^

PH
H

H
H

H
B

H
ra

H
H

H
H

H
H

H
I^

^r

iff
iiP

iR
l

P
…

‘
M
•

饭
•“

Ei

>c
{

E»
w«

l

I
1

Re
se

t
I

1

BB
ZB

i
^

n

np
pH

H
H

H
K

SS
H

H
H

H
H

H
K
；
^

nH
H

H
H

H
H

H
aS

H
H

H
H

H
H

H
H

m

iH
pH

H
H

lH
ra

H
H

H
II

^H
H

K
^

p
H

H
H

M
H

S
H

H
H

H
K

!^

吓
广

I
Mc

th•
“

e*i>
cl

•
‘
，
EMM

 P
m

m
ct

Me
<t>4

«
1

1
Re

se
t

穩
怕

！
 M

'jyW
i'lM

_I

H
_J

a
二
;n

^
^

[T
]^

•
[

旧
曰

•

r@
r|

B
B

H

黒

p
•

曰

H

岛

p
B

B
岛

Fi
gu

re
 3

7
St

ac
k

49

r
o

n
o

" ~

r
5

0
1

x
1

0
IX

IO

|〇

10

…
Q

O
X

“
…

l
o

l
r

_
lo

l
-

…
"

o
-

x
^

x
a

x
X

—
X

^^
^M

H
H

M
m

nB
H

H
H

H
I^

^a

H
H

H
H

H
H

H
H

ia
nH

H
H

m
H

IS

I^
H

H
H

H
H

H
im

an
H

IH
m

i^

kE
H

M
H

B
H

H
ff

lB
H

H
im

^^
^i

i

o
〇

n

r
~

〇

〇

p
—

II

—
XI

OI
X

—
II

o

o
…

，

o
‘

一

o
Ix

,〜

一

M
X

,
—

—
~~

 ~
〇

r

〇
‘

〇

”一

〇

^
：
一

X

〇

^
0

X
^

一

0
iS

lx

x
o

x
^^

^B
H

H
B

H
H

H
nn

H
H

H
H

H
H

gl

SB
B

nH
B

H
H

Q
m

H
H

H
IH

H

k^
i^

H
H

H
BB

H
I^

ffi
BH

aB
BB

H
K

o
"~

o
o

o
—

一
o

一

—

一
 U

—

—

C
 :

,叫

C

t
t

O
X

X
fw

。

mv
,

^m
aa

m
m

am
m

am
m

m
m

m
m

m

m
m

gm
m

m
m

as
m

sm
m

tm
m

nm

"^
am

m
m

m
am

m
m

m
m

m
m

m
lB

E^

m
aa

m
m

m
m

as
m

m
m

m
m

m
m

s
m

H
E

S
H

H
H

H
H

^
PH

H
H

H
H

H
Q

SS
SS

H
H

H
H

H
H

K
^

PH
H

aH
H

H
BB

ffl
H

ffl
af

flH
M

eB
H

H
^

PH
HH

HH
HB

HB
BH

BH
HH

HH
K^

to
CO

M

H

71

SI

M

M

M

70

38

丨

M

“

M
M

M

M

M

->

—

-
>

20

20

60

20

M

M

0
tt

“
1U

^•
•^

••
••

B
E&

SS
ff

iH
H

H
H

H
H

^S

^•
••

••
B

H
SS

^K
H

H
B

B
B

H
B

^^

PH
HH

BH
HH

HS
SH

SH
HH

BH
HS

^
^H

IB
IIj

m
H

Q
^^

SS
Si

lH
III

H
lH

i^

Ca

M
M

M

71

M

M

M

1
0

(
•

M
，

。
I

M
SO

M
7
0

2
0

SB

3*

(I

2
0

C
I

M

20
*

18«

17$

1M

jm
B

m
m

m
m

im
w

m
m

m
m

aa
m

am

_
f

i
m

_
w

s
g

^
pi

ii
iii

iii
M

—
M

w
rn

pH

H
H

H
H

B
sn

m
H

H
H

H
H

^
ye

W
t•“

U
*9

io
4%

E>

ntt

•‘
亀

 g
ane

l

Si

3«

>•

7S

SO

M

70

69

€0

M

—

—

“
«•

W

“
20

SO

CO

20

 30

JO
 M

Tt

|
tn

丨
4«

5«

til

^m
m

m
^m

m
m

m
m

am
m

M
m

m
^m

p—

ium
i丨

丨
丨
丨
|ii

'in丨
丨
丨
丨
丨

iii,i
m

m
—

n̂
^

ii
ii

ii
ii

—
ar

n
e

h
h

h
h

h
h

b
ih

h
h

h
h

h
h

^
M

*••
“

•“

C>
*el

I

Me
thod

*
g

也
“•

E»»
e_

I
I

)|
I

1
j

1
(

1
j

1
j

j I

I
I

p
1

j
I j

I

穿參

M

7_

SO

»
to

30

M

79

M

10

I

1 I

11

II
1

I_
I

I
1

1
1

I_
I I

11

II

II
1

I_
I I

->

->

,

->

»。
 “

“

30

M

j
Sfl

~

M

7$

~

Fi
gu

re
 3

9
Kn

ap
sa

ck
 P

ro
bl

em

51

^•
••

•H
H

H
iS

Si
lH

H
H

H
H

H
II

M
S

pH
H

H
H

H
H

H
K

af
fl

H
H

B
B

H
K

^
pH

H
H

BH
H

H
H

ffi
Sa

iH
H

H
H

H
H

l^

pH
H

lH
H

ra
ra

aa
H

H
H

H
H

n^

M
**•

“
e»>

cl
Me

tha<
»

E«
n«l

Me

th»d
«

E«i>
e>

•“

&*i»

cl
•

I
X

Y
»

•
J

X
Y

U

Inp
ut

•
1

X
Y

«
Ifîu

t
0

1
X

Y
f

Sto
lĉ

t
lX

R
5

1
R

5
X

R
3

Y
R

5
t

R

參
 1

X
R

S
1

R
S

X
R

3
Y

f
t

S
*

R

鲁
 1

X
R

5
1

R
5

X
R

3
Y

R
S

«
R

•

I
X

R
S

1
R

S
X

R
3

Y
R

S
*

R

»
I

•
R

l
V

L
S

X
R

l
Y

R
S

f
R

SW

êl

1
d

R
l

Y
L

S
X

R
I

Y
R

S
I

R

St.
le

}
1

(
n

Z
V

L
S

X
R

I
V

R
S

f
R

1

1
«

R
2

Y
L

S
X

R
1

Y
R

S
f

f
R

»

2
t

L
5

I
R

i
X

R
?

Y
L

5
f

f
t

？

*
®

L
5

1
R

f
l

X
R

?
V

L
5

«
R

Z

Z
I

L
S

l
f

t
^

X
R

l
Y

L
S

f
R

SU

te
2

Z
t

L
S

I
R

I
X

R
Z

Y
L

S
f

R

—
^

—

—
>

^
1

s
R

 I
S

R
 I

 5
 X

 R
 I

3
V

R
 |

4
»

ft
|

3
S

fl
R

 |
5

R
 |

 S
 X

 R
 |

 3
 V

 R
 |

 4
 t

R

 |
3

S
t

R
 |

 S
 1

 R
 |

 5
 X

 R
 |

 3
 V

 R
 4

 «
 R

S

S
O

R
S

I
R

S
X

R
I

V
R

I
f

R

P
j

D
]

…
D

]
•

]
-I

'I
'I

'I
'h

hI
'l

'l
-

.-
H

:H
 小

卜
 I
 小

I-

-I
xM

'I
^M

'I
'l

-
-|

xM
:M

’M
.M

-

^•
^•

^•
•S

ff
i^

M
H

B
H

B
H

B
B

Ii
ES

^I

H
BH

H
H

H
H

^^
^H

BI
H

H
BH

H
E^

pH

HB
BH

dB
BB

KB
EM

HH
BH

HH
HH

B̂

^H
HB

HH
HH

KK
QB

HH
HH

HH
HH

^
M

*••
“

Me
tho

 “
e>«»

e>

gao
et

‘
‘

^
V

*
l*P
 供

 >
1

X
Y

i
Inp

ut
t

I
X

Y
»

•
1

X
Y

«
•

‘
X

ft
<

1
R

 ^

X
R

 i

Y
R

 5
 M

 R

•
\

X
R

 S
 1

 f
t

i
X

R
 3

 Y
 R

 5
 «

 R

8
1

X
H

5
1

R
5

X
R

3
Y

R

"
j

f
^

I
["!

~X

R
 {

 S
~

1
rT

sX

R
 I

3
Y

R
 I

5
f

^
'»

•

W
 »

 Y
 L

S

X
R

t
Y

R
S

t
R

1

1
t

R
J

Y
L

S
X

R
l

Y
R

S
f

R

SU
tê

l
t

參
 R

2
Y

L
S

X
R

1
Y

R
S

X
R

SU

te
1

}
a

R
Z

Y
L

S
X

R
t

Y
R

S
f

f
R

>

'
•

l
-

5
1

R
i

X
R

f
Y

t
S

t
R

'

Z
i

L
S

I
R

I
x

n
i

Y
L

S
f

R

Z
Z

O
L

S
t

R
f

l
X

R
Z

Y
L

S
t

R

、

2
2

I
L

5
1

R
t

X
R

{
V

L
S

«
R

—

^
—

>
—

>
1

S
R

 I
 S

 1
 R

 I
 S

 X
 R

 I
 3

 V
 R

 I
 4

 t

R
 |

3
| S

 »
 R

 |
5

I
n|

S
X

r|
3

V
r|

4
f

R
|

1
S

fl
R

 |
 S

！

 R
 |

 S
 X

 R
 |

 3
 V

 R
 |

4
g

R

)
5

0
R

S
l

R
S

X
n

3
Y

R
4

f
f

t

小
H
小

丨
小

M
小

I小
I—

-I

xM
^M

'I
'I

'M
-

小
丨

小
化

小
丨

小

M
M

—
l

E
E

^
^m

am
m

m
m

m
m

am
m

m
m

aa
m

m
m

m

ph
hh

hh
hh

us
hi

^h
^H

H
H

II

二

*
丨

.

X
•

Y
•

*
.

—

•
*

X
V

*
I»>p

*rt
e

1
X

Y
f

0
I

X
Y

a
•

•
1

X
R

5
t

R
5

X
R

3
Y

R
S

I
R

SU

It 一
 •

1
X

R
5

I
R

5
X

R
3

Y
R

S

I
R

 j
•

"l
X

R
 1

1
~R

" ~
5X

R

 J
 Y

 R
 1

f
f

^
‘

‘
•

R
»

Y
L

S
X

R
I

V
R

S
»

R

I
'

»
R

»
V

t
S

X
R

1
V

R
5

1
R

1

]
>

R

？

 V
L

5
X

R
I

Y
R

S
*

R

SW
c,

1
l

o
n

i
Y

L
S

X
R

I
Y

R
S

f
R

>

SU
.、

t
t

e
t

S
t

R
t

X
R

t
V

t
S

i
R

>

l
Z

e
L

5
1

R
t

X
R

Z
V

L
«

*
R

2

7
0

L
1

""
i~

^
•

X
ft

Z
V

L
S

«
R

—
丨

小
工

 y
|.丨

•
丨
小

.
—

W
i,丨

小
 1

,1.
丨
小

••

|x
^|

v|
v|

.|,
|.l

..
-|x

hM
^v

|v
|. [

71
71

7-

^H
H

H
H

H
nK

H
II

^H
H

H
l^

^H

H
H

H
H

H
SS

^H
H

H
H

H
H

m

pH
H

H
H

H
H

^K
U

H
H

H
H

H
H

m

^H
H

H
H

H
H

H
m

U
H

H
H

H
H

K
ll

"•p

'
‘

,
X

•
Y

‘
•

•
‘

X
Y

«
1

1
X

V
1

ta
,«

0

I
X

Y
M

•

•
a

l
X

小

l
r

t
x

r
j

Y
R

 i

l
r

,
H

~x

r
I s

~
ir

Is

X
r|

]
y

rI
s

f
r{

^i

^V

t
Y

L
S

X
R

 .

Y
B

‘
‘

C
R

t
V

L
S

X
B

l
Y

R
S

I
R

I

1
«

R
 t

Y

U
 S

 X
 r

"
I

Y
R

 5
 ,

R

.

l
O

R
t

V
L

S
X

R
I

V
R

S
.

R

‘
_

*
L

‘
‘

“
‘

^
»

‘
�

-
>

>
 S

,.�
l

t

»
I

5
I

R
 .

X

R
 t

Y

L
S

f
R

t

t
g

L
S

I
R

I
X

R
l

Y
L

S
t

R

‘
•

"
‘

‘
“

‘
X

R
 1

 V
 R

 4

I
H

J

S
0

R
 S

 1
 R

 i

X
W

 3
 V

 R
 <

 I

R

3
[

5
e

R
[

s
i

R
5

X
R

3
V

R
«

,
R

Sl.

t.̂
3

S
0

R
S

I
R

S
}

(
R

)
V

R
4

t
R

…
.

D
]

…

•
]

Q
i

..
.H

小
丨

小
丨

小
丨

’
丨

-
:

.“
丨
小
丨
小
丨
；
丨
小
丨
小

.小
…
：
丨
小
丨
丫
丨
小
丨
,.
.

-|
x|

K
|>

<
|V

|V
|V

|.
|.

|_

Fi
gu

re
 4

0
Tu

rin
g

M
ac

hi
ne

52

£
5

：

iU
3|

qo
Jc

J
su

ae
nQ

 n

ip
 e

jn
O

jj

I
I

I
I

|0
| I

 I
 I

|x

|:x
|x

|x
|D

|x
|x

|x
|

“
|x

|
|x

|
|x
丨

X

x
|

|x
|

|x
|

=
=

=
=

=
=

互
=

m
=

=
工

=
=

Z
—

x
~

T

=
巨

=
=

=
=

=
=

工
S

Z
!
工

工
工

工
=
工

=
工

=
=
工

一

 i
ir

X
—

T

=
=

=
=

=
互

=
=

工
工

工
工

工
互

工
工

工
=
=
工

7

xT

iri
r

X"

=
=
互

=
=

=
=

=
—

工

工
互

工
工

工
工

工

=
=
工

=
工

=
工

工

<
-

xi
ri

ri
ri

r
x

互
=

=
=

=
=

=
=

T
ir

 o
'l

ri
ri

rT
'i

r
=

=
=

互
=

=
=

=
I

工
工

互
工

工
工

I

工
 IE

 工
互

 Z
Z^

Z!

xi
ri

ri
ri

r"
D

"i
ri

r
I

I
I

I
I

I
I

|o
l

Ix
|x

|x
|x

|x
|x

|x
|d

1
I x

|x
|x

|x
|x

|x
|x

|o
|

|x
 |

 x
|

x
 i

ri
ri

ri
r"

D

Em
M

m
m

m
m

m
m

m
m

am
m

m
m

m
B

E^
Km

m
m

m
m

sm
m

EE
m

m
m

m
m

m

m
m

m
m

m
m

m
m

m
^M

m
m

m
m

m
m

E

E
^H

M
H

H
nm

sH
H

H
M

K

丨
〒
丨

|X

|X
|X

|
IXI

 X
|

|X
| |

X
| |

X
|

X

X
 I

 X
|

X

I X
|

丨
 X

| x
|

丨
 x

| x
| x

|
工

工

工
工

工
三

'T

H
.

T
~

~
x
 r

"
"
x

X

X

T

T
ie

 x

工
工

工
工

=
工

工

工
工

工
工

工

x
T

T

T
丁

T
丁

丁
丁

丁
丁

工

工
!Z

!互
IE

工
工

工
=

IE
=
工

TI

TT

x
T

xi

rir

xT
ir

工
互

工
工

工
IE

工
工

—

工
互

工
工

工
Z

!工

—

=
=

工
工

工
工

ir

x"
)r

T
ir

T
D

"T
"

工
 I

工

互
 iT

iT
ir

ir

ir
ir

ir
'D

'ir
ir

ir
T

"
ir

ir
T

ii
ri

rn

T
ir

ir
^i

ri
ri

rT
"

工
 Z

!三
工
工
互
工
工

H

^T
三

工
互

 了
了

ir

ir
ir

ir
ir

'D
 "

Ti
r

•
了
了

 I

了

T

了
了

 T
IT

了
了

xi

ri
T

T
'X

T
ir

'D

xi
rT

T
ir

ir
ir

"D

bB
^H

H
H

H
H

nn
na

H
H

nH
H

m
^

to
—

W
SM

M
—

—
^

iM
H

H
H

H
H

H
S

S
B

na
H

nm
ii

EE

H
BH

H
H

H
H

K
Bf

fln
H

H
H

H
M

H

X

|x
|x

|
|x

|x
pT

]
IX

I
IX

I
I X

I
p

r|

X

丨
 X

I
[T

]
n

n
~

n
n

"
T

^
X

T

"
x

X

X

r
~

1
(

X

T

X

T

T
ir

ir
ir

ir
ir

T
ir

)r~

x"
ir

^"
x

x

r
t

t
JT

iT
ir

X

r
)r

"x

x

x"

x

>r

iT
T

iT
T

T
iT
 万
了

<

r-

)r
ir

ir
i(

t
t

<
-

x

t
工

工
 I

互

 iT
T

iT
ir

"T

iT
iT

'o
'ir

ir
ir

ir

5
ri

m
r

>r

t
ir

ir
ir

ir
ir

"^
ir

ir

ir
ir

 x
 x

 ir
"o

ir
ir

了
了

了
了

了
万

了
了

r
ir

x

iT
T

T
T

ir
ir

'^

X
T

ir
ir

ir
ir

T
"^

ir

ir
 了

ir
iT

T
ir

i
xi

ri
rT

ir
ir

"x
"D

i^

H
H

IH
H

^H
Bi

K
BS

m
H

H
H

BH
i^

ĝ

îS
HH

IIH
HH

Ŝ
SS

SB
HH

HB
BH

Il̂

IS
^I

B
H

H
B

H
S

S
nm

iB
H

l^

(S
U

H
im

H
S

n
H

S
m

H
IH

K

[I

I
I

I
I

I
pT

]
I

I
I

丨
 I
 I

 丨
 ~

~

丨

I
 I

I
 I

 丨
丨

 ~
~

I

[
I

[
I

I
I

I~
~

_ —

—

=
=

IE

—

=

—

=
—

=
—

=
=

=
=

—

=
=

=
=

=
=

=
=

_
=

=
=

=
=

=
—

—

-

T
iT

iT
 了
了
了
了

"5
"

T
iT

ir
ir

ir

了

了

t 万

"D̂

m
m

m
m

m
^m

Em
m

m
m

m
m

m
m

km

m
m

m
m

am
m

m
sm

m
m

Bm
m

m

m
m

am
m

m
m

sm
ss

m
m

m
m

m
m

^
m

M
M

m
m

m
m

m
m

am
am

m
m

m
m

B

sH
Î

Ĥ̂
HE

mB
Ef

im
nE

HD
SS

IIĤ
HH

ĵ
！

ẑĤ
HH

KB
SS
EE

EQ
SD

DK
&
BQ

HIĤ
HK

iiii
gĤ

HH
HE

SB
DB

BID
QlS

ID
SB

DB
nH

HI
IH

IIî

g—
—

—
ww

ww
miu
丨
丨
丨

ri
T

M
T

ff
T

r
—

.
..

. j
 •

.,
•,

 •

a—
—

PB
M

CM
M

Iffl
ftH

M
IIIJ

gff
igi—

—
Eg

gm

ga
m

ieB
Bg

sss
BH

CB̂
ŜH

HI
HH

EE

^H
H

m
E^

K
SS

SQ
B^

SH
^^

H
IB

f^

Sb
H

H
H

BH
EB

^^
^S

SE
^S

H
H

^H
^^

a
H
 _

n

r
r

—
iM

iM
ii

ii
iy

g
^

IT
" I

M
ii

H
ii

ii
iM

.i
th

Y
iW

im
v

V
H

W
m

W
ff

M
iM

M
tl

W
W

im
iM

n

\
ir

-i
im

m

nf
fiii

Ff
nr

™
iiii

iiii
 i—

m
n—

^m
uJ

^
；

^^
^•

^^
^•

m
iB

£B
lii

N
iii

ni
i^

fi”
n_

iii
aB

gg
iIM

^M
^

a
J—

—
a

sa
n

ri
M

il
lJ

Ji
lt

il
ir

ff
lg

S
g

a
—

^―
t^

！
M

B
T

if
i•

丨
f

B
B

B
B

B
—

—

M
c»

。
“

«
«

«
>

•“

e»
«e

l
M

et
ho

d.

E>
r>

d
M

et
ti>

d«

rW
T

iT
M

T
r

['B
'."

i!l
!J

ilH
ill

••

•_
_

_
_

_
I

i
i

«
•_

_
_

_
_

I
M

ct
h

•“

E
.f

td

U
ei

tto
dB

M

ct
ht

tO

E
.f

td

M
ca

t«
“

e
^

e
l

w
a

n
rw

ir
T

Fi
gu

re
 4

2
M

ax
im

al
 M

at
ch

in
g

of
 B

ip
ar

tit
e

G
ra

ph

54

3.8 Conclusion

An algorithm animation system Pearl has been designed and developed. In
essence, Pearl makes the exploration of animated algorithms to be at one's own pace.
Users can acquire a thorough understanding of the algorithms by experimenting with a
variety of input upon the algorithms. Moreover, algorithms are explicitly stated in a
way independent of the animation，which simplifies the production of multiple
animation for users to look at an algorithm from different points of view. Furthermore,
the C++ encapsulation enables the reuse of common data classes. Hence, the time for
animating algorithms on the data classes can be significantly reduced.

55

— 4
Conclusion

4.1 Future Directions
4.2 Summary
4.3 Epilogue

4.1 Future Directions

Four directions in future research are identified; namely, Algorithm Debugging,
General Algorithm Language, Parallel Algorithm and Algorithm User Interface
Generator. The first two sticks to the current prototype; whereas the last two should
deserve an entire new model.

4.1.1 Algorithm Debugging

At present, an algorithm being animated is assumed to be error-free.
However, the algorithm should be refined from time to time in practice. Not
until the completion of the entire animation, current prototype provides no
means to obtain feedback from the algorithm so as to justify the correctness,
which in other words obstructs the development of the algorithm. Hence, we
are going to build an algorithm debugger, which helps programmers examine
the data in each C++ class. The C++ classes can then be verified one after
another; like performing a bottom-up testing. Before animated, the algorithm
can be sure of being trouble-shot. In a sense, this direction approaches the
notion of Code Visualization, which aims at facilitating software development.

4.1.2 General Algorithm Language

Current prototype is bound to the C++ language. However, algorithms
are frequently written in language specific to the problem; for example, using
Prolog for problems in AI. Hence, linking up current graphical display with
algorithms in different languages is to be investigated. An intuitive idea is to
use a general script as Stills and Movie� does. P r i n t f statements are
annotated into a C program in order to generate a text file of script; describing
the program execution. Undoubtedly, the script file can be produced regardless
of the language in use. However, the algorithm is shown in action usually after
the generation of the script file has been completed, which does not allow users
to interact with the algorithm.

1 mentioned in section 3.2.3.

57

4.1.3 Parallel Algorithm

Our model binds graphical objects to a single execution of the program,
which can be extended to enable executing programs concurrently, thus,
animating parallel algorithms. A typical example is parallel sorting, in which
each object compares itself to its neighbors and moves itself if necessary.
Specifying the motion of one object can in turn define the behavior of the entire
animation. In addition, current prototype is running on the Microsoft Windows
3.1, which adopts a co-operative multitasking scheme. Being restricted by the
scheme, the prototype can never run programs in parallel, thus, disallowing
parallel algorithm animation. Nevertheless, the latest Windows NT (New
Technology) will soon be shipped, which should embrace a true preemptive
multitasking.

4.1.4 Algorithm User Interface Generator

Enhancing the notion of interactive animation has given rise to the
building of a user interface upon algorithms. Graphical objects on display can
include some Windows Controls as well; including button and menu. They
should be similarly bound to some data declared in a class. This direction goes
toward research in UIMS (User Interface Management Systems).

58

4.2 Summary

The main contributions of this thesis are the two models: the Lecture
Presentation and the Animation Production Models. The models have been realized
through the design and implementation of the Pearl system. Using the system, we have
also animated a wide range of data structures and algorithms; including, Sorting,
Stack, Tic-tac-toe，Knapsack Problem, Turing Machine, N Queens Problem and
Maximal Matching.

The Lecture Presentation Model is well-suited for classroom presentation. In
the model, delivering a lecture is decomposed into four procedures; namely, Materials
Organization, Slide Preparation, Animation Production and Actual Presentation.
Various novel features have been proposed for each procedure respectively; including,
history, story board, highlight and zooming. Examples of using the features to assist in
teaching have also been given. More importantly, helping actual presentation is
generally unnoticed elsewhere.

In the Animation Production Model, an animation is made in three steps.
Firstly, an algorithm is implemented as a C++ program. Secondly, direct manipulation
is used to create the graphical objects in display. Thirdly, the variables in the program
and the attributes of the graphical objects are bound together to form an animation.
Additional options can also be specified so as to adjust the controls of the animation.
Throughout the previous sections, animating the sorting algorithms has demonstrated
how to produce an animation with the model.

The Animation Production Model has three main characteristics. Firstly，users
are allowed to have interactions with the underlying algorithms. For example, users
can interactively arrange the items to be sorted at will. Not accepting user interactions
is also one of the shortcomings of existing systems. Secondly，being independent of the
display, algorithms can be easily represented in different ways. For example, the items
can be denoted as a list of numbers as well as several rectangles. Thirdly, the
implemented programs are highly reusable since object oriented C++ classes are used.

Furthermore, future directions in research have been made known; including
Algorithm Debugging, General Algorithm Language, Parallel Algorithm and Algorithm
User Interface Generator.

59

4.3 Epilogue

This thesis compiles technical issues on using computer to assist in lecture
presentation and to produce animation for showing algorithms in action. In spite of its
success, there are actually non-technical problems involved, which have been
previously ignored.

Lecturing technology is going forward faster than its popularity. Although
these teaching aids have been available for years, few educators are now aware of their
advantages. Moreover, some teachers, especially non-technical people, are having
phobia in using computer. Their inertia in retaining current teaching methodologies
gets in the way of applying computer in teaching.

Although preliminary trials of Algorithm Animation are "promising", we are
short of formal evidence to prove its usefulness. Experiments should be conducted to
contrast the learning rates of two groups of students; one with the use of the algorithm
animation while the other without. Actually, we are interested in delivering the courses
on data structures and algorithms with the Pearl system provided that we have a wide
assortment of animated algorithms.

Furthermore, making an animation is indeed an art, which cannot be directly
improved through technology. Producing an attractive and impressive animation
requires knowledge in aesthetic. Teaching effectively with animation further demands
expertise in education. Perhaps, much more work crossing various disciplines has to be
continued to make teaching with animated algorithms happen.

60

Appendix A
PostScript Optimization

A . l Introduction
A.2 The Current Approach
A.3 Implementation
A.4 An Example
A.5 Observations
A.6 Conclusion

i

A.1 Introduction

Most software generates PostScript programs [42] by rules so that the
PostScript programs are frequently not concisely written. For example, lengthy
flmction definitions are always included as header no matter whether the functions will
be used in the program or not. Clumsiness of the programs not only takes up much
space but also slows down the execution time; especially, when the PostScript
programs are to be printed in a large quantity.

This appendix documents our study of designing a heuristic to produce
efficient PostScript programs through using an optimizer to simplify the style in
writing of the programs, which is analogous to performing code optimization during
conventional program compilation. The current approach is to schedule the objects to
be printed, and in turn get together objects with adjacent attributes. In this way,
number of necessary changes in attributes is reduced to a minimum.

In addition, a tentative optimizer has been designed and developed to arrange
text objects of similar fonts. Using the optimizer, we have also conducted an
experiment to measure the performance of the programs against the optimized one.

Next section flilly describes the current approach; followed by the
implementation details of the optimizer. The succeeding section gives an example
showing the operation of the optimizer. The findings of the experiment are then
reported. This appendix is concluded in the last section with a discussion of problems
encountered.

62

A.2 The Current Approach

As mentioned before, the current approach is to sort out the objects to be
printed such that the total number of changes in attributes between the objects is
minimized. Preliminary experiments have been carried out, in which text objects of
identical font are gathered to be printed at the same time.

Actually, modifying the font in use of a printer is indeed time-consuming since
a new set of fonts has to be loaded onto the memory of the printer; moreover, each
coordinate of all characters has to be computed for the particular point size.

Intuitively, text objects are put in the order of occurrence in the PostScript
program as most word processors do. For example, "14 th February" is separated and
arranged into "14 "th" and “ February" in turn. As such, the PostScript interpreter
has first to be set to font Times Roman with point size 12 for the foremost token "14

The token ”th" in between then causes the interpreter to be modified to point size
10. Finally, the interpreter is required to be re-set to the original point size 12 so as to
print the last token •丨 February". A total of three changes in point size is then involved.
However, obviously, putting the token "th" in the first place followed by the tokens
"14 “ and “ February" together will cut down the number of changes to two.

63

A.3 Implementation

To justify the notional approach, a PostScript optimizer has been designed and
implemented for a restricted domain of PostScript commands. The optimizer has been
written using C in the Ultrix environment. The following enters into the details of the
data structure and algorithm used in the optimizer.

• FontTable maintains all the various fonts which have been made use in the
PostScript program so far. Associated with each font is a list of copies of text to
be printed in that particular font.

• FontDefault indicates the current font by default.

Using FontTable and FontDefault, the algorithm to sort out the text objects is
definitely stated in figure A. 1.

Set FontTable empty;
Set FontDefault NULL;
while not EOF do

begin
Read a line;
if the line sets to a font then

begin
Append the font to FontTable;
Set FontDefault to the font

end
else if the line prints a text then

Append the text to the entry pointed to by FontDefault
else

begin
for each entry of the FontTable do

begin
Output the Set statement of the font of the entry;
Output the Print statement(s) of the text of the entry

end;
Output the line;

end
end

Figure A.1 Algorithm of the current approach

64

A.4 An Example

To concretely illustrate the algorithm, an example is made as follows. The
PostScript program to print "92-501+6" is similar to codes in figure A.2.

/Symbol fmdfont 12 scalefont setfont (1)
315 267 moveto (q) show (2)
/Times-Roman fmdfont 10 scalefont setfont (3)
341 280 moveto (2) show (4)
/Times-Roman fmdfont 12 scalefont setfont (5)
362 273 moveto (-5) show (6)
/Symbol fmdfont 12 scalefont setfont (7)
404 267 moveto (q) show (8)
/Times-Roman fmdfont 10 scalefont setfont (9)
430 280 moveto (1) show (10)
/Times-Roman fmdfont 12 scalefont setfont (11) ’ - - ---- --
451 273 moveto (+6) show (12)
showpage (13)

Figure A.2 Original Program

After line 12 has been read，the FontTable has grown into the stage depicted in
figure A.3.

FontTable

Symbol 12 -> 6 1315, — 9 404, 267

Times Roman 10 - > | 2 341, 280 -> | j 430，280

Times Roman* 12 -> | -5 362，2731 -> | +6 | 451，273

*FontDefault
Figure A.3 FontTable and FontDefault

Line 13 triggers off the re-generation of the PostScript program (See figure
A.4). The length of the program has been shortened to 10 lines; whereas the number of
setfont operation has been significantly reduced from 6 to 3.

65

/Symbol fmdfont 12 scalefont setfont (1)
315 267 moveto (q) show (2)
404 267 moveto (q) show (3)
/Times-Roman fmdfont 10 scalefont setfont (4)
341 280 moveto (2) show (5)
430 280 moveto (1) show (6)
/Times-Roman fmdfont 12 scalefont setfont (7)
362 273 moveto (-5) show (8)
451 273 moveto (+6) show (9)
showpage (10)

Figure A.4 Optimized Program

66

A.5 Observations

A number of arbitrary PostScript programs generated by the printer driver in
Microsoft Windows are chosen to be examined. The time to print the programs and
the size of the programs are measured before and after optimization (See table A.l).
The findings show on average a reduction of 20% in printing time and 17% in program
size.

Before After Speed Up
Trial Time Size Time Size "Time Size

J 25s 15267 Bytes 20s 13788 Bytes 20.0% ~9.7%
_2 17900 20 14252 23.1 20.3
J 17988 21 —14683 “ 19.2 “ 18.4
I 4 17687 21 14379 16.0 18.7

Table A.1 Results

The time to optimize the PostScript programs is negligible since all the
programs take up less than one second to be optimized. In addition, the experiment has
been performed using the DEC personal station DEC5025 connected to the Apple
Laser Writer Ilg.

67

A-6 Conclusion

A heuristic bringing objects of adjacent attributes together has been designed to
enhance the printing of PostScript programs. In practice，an experimental optimizer
has been implemented to improve on printing text objects with various fonts. Using the
optimizer upon several PostScript programs has shown a decrease in both printing
time and program size.

However, tuning general PostScript programs raises much difficulty. For
example, one can never avoid program undecidibility, which means that the state of a
program is non-determinable except really putting the program in execution. Being
likely to alleviate the problem, data flow analysis unfortunately demands enormous
effort.

1

68

Appendix B
Thesis Publications

1. H.C. Lam, C.S. Chang, K.S. Leung and T.C. Chen, "A Computer Graphics Aided
Lecture Presentation System", to appear in proceedings of 1993 International
Conference on Computers in Education, Taiwan, Dec. 1993.

2. H.C. Lam, K.S. Leung and C.S. Chang, "Exploring Animated Algorithms with
Direct Manipulation", in preparation.

69

References
1.Microsoft Windows 3.1, Microsoft Corporation, Washington, 1992.
2. Turbo C++ 3.0 for Windows, Borland International Inc., California, 1991.

3. Microsoft Windows Software Development Kit, Microsoft Corporation,
Washington, 1990.

4. Peter Norton and Paul Yao，Windows 3.0 Power Programming Techniques,
Bantam Computer Books, New York, 1990.

5. Carol S. Holzberg, "LCD Panels", Electronic Learning, Mar. 1991, pp.46-49.
6. Authorware Professional, Authorware, Inc., Minnesota, 1989.
7. Carol B. Macknight, Santosh Balagopalan, "Authoring Systems: Some

Instructional Implications"，Journal of Educational Technology Systems, Vol. 17,
No. 2, 1988-89，pp.123-134.

8. "Presenting with the PC", Personal Computer World, Nov. 1990，pp.228-236.
9. "The Macintosh presents..."，Personal Computer World, Nov. 1990，pp.250-256.
10. Luisa Simone, "2-D Animation Software: The Motion Is the Message", PC

Magazine, Aug. 1992，pp.435-467.
11. Anton S. Y. Lam and C. S. Chang, "Prototype of a Courseware Production and

Presentation System, Educational Technology••，Vol. 32, No. 4，Apr. 1992, pp.20-
28.

12. Lam Shing-yung, "Visual Interaction Techniques for Courseware Production and
Presentation", M.Phil. Thesis, The Chinese University of Hong Kong, Shatin,
Hong Kong, 1991.

13. Cristina Stuart, Effective Speaking, Gower, Hants, England, 1989.
14. Ivan Tomek, Saleem Khan, Tomasz Muldner, Mostata Wassar, George Novak and

Piotv Proszynski, "Hypermedia ~ Introduction and Survey", Journal of
Microcomputer Applications, Vol. 14, No. 12, Apr. 1991，pp.63-103.

15. HyperCard Reference, Claris Corporation, California, 1990.
16. Brad A. Myers, "Taxonomies of Visual Programming and Program Visualization",

Journal of Visual Languages and Computing, Vol. 1, No. 1，1990，pp.97-123.
17. Marc H. Brown, Algorithm Animation, The MIT Press, Massachusetts, 1988.
18. Marc H. Brown and Robert Sedgewick, "A System for Algorithm Animation",

Computer Graphics, Vol. 18，No. 3，Jul. 1984, pp.177-186.
19. Marc H. Brown and Robert Sedgewick, "Techniques for Algorithm Animation",

IEEE Software, Vol. 2’ No. 1，Jan. 1985, pp.28-39.

70

20. Marc H. Brown, "Exploring Algorithms Using Balsa-II"，Computer, Vol. 21, No.
5, May 1988，pp. 14-36.

21. Marc H. Brown, "Perspectives on Algorithm Animation", Proceedings of CHI'88
conference on Human Factors in Computing Systems, Washington, DC, May
1988, pp.33-38.

22. Marc H. Brown and John Hershberger, "Color and Sound in Algorithm
Animation", Computer, Vol. 25, No. 12, Dec. 1992, pp.52-63.

23. Marc H. Brown and John Hershberger, "Zeus: A System for Algorithm Animation
and Multi-View Editing", Proceedings of IEEE Workshop on Visual Languages,
Kobe, Japan, Sept. 1991，pp. 4-9.

24. Ralph L. London and Robert A. Duisberg, "Animating Programs Using Smalltalk",
Computer, Vol. 18, No. 8, Aug. 1985，、pp.61-71.

25. Robert Adamy Duisberg，"Animation Using Temporal Constraints: An Overview
of the Animus System", Human-Computer Interaction, Vol. 3, No. 3, 1987-88,
pp.275-307.

26. Robert A. Duisberg, "Visual Programming of Program Visualizations",
Proceedings of IEEE Workshop on Visual Languages, Linkoping, Sweden，Aug.
1987, pp.55-66. '‘

27. Jon L. Bentley and Brian W. Kernighan, "A System for Algorithm Animation:
Tutorial and User Manual", Computing Science Technical Report No. 132, AT&T
Bell Laboratories, Murray Hill, New Jersey, Jan. 1987.

28. Esa Helttula, Aulikki Hyrskykari and Kari-Jouko Raiha, "Graphical Specification
of Algorithm Animations with ALADDIN", Proceedings of 22nd Hawai.
International Conference on System Sciences, Kailua-Kona, Hawai, Jan. 1989，

IEEE Computer Society Press, pp.892-901.
29. John T. Stasko，"TANGO: A Framework and System for Algorithm Animation",

Ph.D. thesis, Technical Report No. CS-89-30, Department of Computer Science,
Brown University, Providence, RI, May 1989.

30. John T. Stasko, "Simplifying Algorithm Animation with TANGO", Proceedings of
IEEE Workshop on Visual Languages, Skokie, IL, 1990，pp. 1-6.

31. John T. Stasko, "TANGO: A Framework and System for Algorithm Animation",
Computer, Vol. 23，No. 9，Sept. 1990，pp.27-39.

32. John T. Stasko, "Using Direct Manipulation to Build Algorithm Animations by
Demonstration", Proceedings of ACM CHI Conference on Human Factors in
Computing Systems, pp.307-314.

71

33. Kenneth C. Cox and Gruia-Catalin Roman, "Abstraction in Algorithm Animation",
Proceedings of IEEE Workshop on Visual Languages, Seattle，WA, Sept. 1992,
pp. 18-24. Also available as Technical Report No. WUCS-92-14, Department of
Computer Science, Washington University, Campus Box 1045, One Brookings
Drive, Saint Louis, MO.

34. Kenneth C. Cox and Gruia-Catalin Roman, "Experiences with the Pavane Program
Visualization Environment", Technical Report No. WUCS-92-40, Department of
Computer Science, Washington University, Campus Box 1045, One Brookings
Drive, Saint Louis, MO.

35. Robert R. Henry, Kenneth M. Whaley and Bruce Forstall, "The University of
Washington Illustrating Compiler", Technical Report No. 90-07-01，Department of
Computer Science and Engineering, FR-35, University of Washington, Seattle，

WA.

36. Heinrich Muller, Jorg Winckler, Stefan Grzybek, Matthias Otte, Bertram Stoll，

Frederic Equoy and Nicolas Higelin, "The Program Animation System PASTIS 丨•，

The Journal of Visualization and Computer Animation, Vol. 2, 1991, pp.26-33.
37. Ricardo A. Baeza-Yates, Luis Jara and Gaston Quezada, "VCC: Automatic

Animation of C Programs", Proceedings of COMPUGRAPHICS'92, Lisboa,
Portugal, Dec. 1992.

38. Michael T. Heath, Jennifer A. Etheridge，"Visualizing the Performance of Parallel
Programs", IEEE Software, Vol. 8, No. 5, Sept. 1991, pp.29-39.

39. Ulla Solin，"Parallel Algorithm Animation", Technical Report Series A, No. 50，

Institutionen for Informationsbehandling, Abo Akademi, Fanriksgatan 3, SF-20500
Abo, Finland, 1986.

40. Konstantinos Konstantinides, "Algorithm Visualization using Tree Graphs", the
Visual Computer, Springer-Verlag, No. 7，1991，pp.220-228.

41. Blaine A. Price, "A Principled Taxonomy of Software Visualization", to appear in
Journal of Visual Languages and Computing, Vol. 4，No. 3, Sept. 1993.

42. PostScript Language Reference Manual, Tutorial and Cookbook and Program
Design, Adobe Systems Incorporated, Addison Wesley, Massachusetts, 1985.

72

W
i -

M

.‘

：

.

.
.
.
蕭

：
響

.
>

•

-
〜一
仁

r

.

“
：

'V
；

‘
•

.
i

.

.

：
 •

^

‘
 •

：

-

.

.

-:-‘
，

-
•

•
-

•
.

-
.

.‘

•
,

,
•

-
•

CUHK L i b r a r i e s

_ _ _ :
•003flflT3D

