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Abstract 

A novel method for locating landmarks, which is call the empirical landmarks, in 

inferred Markov networks is present~d in this thesis. The method is based on the 

property of Markov network inference which retains the landmark substrings of the 

input strings. An empirical landmark is another kind of forced landmark which may 

be found in all kinds of input strings. Advantages of the empirical landmarks are 

clear, no a priori knowledge on the segmentation of the input strings are needed and 

the forced landmark speedup can be applied to all kinds of data with empirical 

landmarks. Statistics are conducted on the banded human chromosome which have 

shown that the centromere positions can be located as an empirical landmark in 

most chromosome types. Experiments on chromosome classification have shown 

that the discrimination power of Markov network inference with empirical 

landmarks is similar to that of inherited landmarks. 

Manipulations of empty states in the inferred Markov networks are the 

crucial part of the dynamic programming inference. But it is not easily to 

understand since it is embedded in the string-to-network alignment. Aspects 

concerning the empty states in modifying the inferred Markov networks are 

illustrated extensively in the thesis. 

In order to find out the power of the inferred Markov networks on speech 

recognition in both Western and Eastern languages, extensive experiments on 

recognizing English phonemes and a Chinese dialect (Cantonese) have been carried 

out. It has been found that, the inferred Markov network is slightly better than the 

HMM for the English phonemes recognition. For the Cantonese recognition research 

in this project, despite that it is one of the very few first attempts, the results are 

encouraging. 
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Chapter 1 Introduction 

Chapter 1 

Introduction 

Pattern recognition is very important in the field of machine intelligence. Input data 

can be categorized into different pattern classes based on the characteristic features. 

The characteristic features used to distinguish between classes are referred to as the 

interested features and are extracted from a large amount of background details of 

the given data. 

The two main streams in the field of pattern recognition are the statistical 

and the structural approaches. 

Feature extraction is emphasized ill statistical approaches and is indeed the 

key to success. Statistical methods are employed to cluster the interested features as 

well as to assign the features of unknown classes to those of the known clusters. 

Features are measured numerically so that their numerical differences can be 

interpreted. 

In structural pattern recognition, structural model is inferred from a finite set 

of input samples. Each sample is expressed as a sequence of discrete symbols where 

no numerical difference can be defined. Each symbol represents a set of 

configurations of the features which are measured in a restricted context. Inference 

methods are based on the formal language theory and the automata theory. Since 

samples are expressed in terms of strings, both symbolic information and the 

sequential properties of symbols are considered in the inference methods. 

Chromosome classification is an important but time-consuming task in 

cytogenetic analysis. Automation of chromosome classification has been studied 
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Chapter 1 Introduction 

since late 50's. With the inventions of different staming techniques, many features 

can be measured from -a single sample. Chromosome recognition is a common 

example in many textbooks concerning the structural pattern recognition. The 

outline of a chromosome can be expressed in terms of a set of boundary elements. A 

structural model called the chromosome grammar can be constructed where the 

boundary description of the chromosomes can be derived from the grammar. 

However, different chromosome classes may have similar outline, using 

chromosome grammar for chromosome classification is impractical. 

Significant advances in automation of chromosome classification were 

observed when G-banded patterns in chromosome were discovered with special 

stains. Most attempts in automation of chromosome classification have used global 

statistical properties only for band pattern description. Only few structural 

approaches rely on the locally dependent details of the band patterns. 

Among the structural approaches for automated chromosome classification, 

inference of Markov networks by dynamic programming is the most successful one. 

Such an approach can be used for general structural pattern recognition problems 

with suitable preprocessing of input data. Since the complexity of the computation 

of a inferred Markov network is proportional to the size of the network and the 

input string, considerable computations are needed when the size of the inferred 

Markov network is getting l~rger. Inference of Markov networks with forced 

landmarks provides an alternative to the original approach which speed up the 

computations based on the inherited properties of the input samples. 

In this thesis, a method called the empirical landmark finding is investigated 

which enables the forced landmark speed-up for general types of input samples 

with inherited properties concerning the forced landmarks. Further computational 

savings may be obtained by employing more than one forced landmarks. 

Chromosome classification is selected again for the testing and analysis of the 

empirical landmarks. 
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Chapter 1 Introduction 

Aspects of the automated chromosome classification are reviewed in 

Chapter 2. Inference of Markov networks by dynamic programming and the forced 

landmark speed-up are given in Chapter 3. Chapter 4 discusses the empirical 

landmark finding with experiments on chromosome classification. Chapter 5 

presents a series of experiments concerning the speech recognition using , inferred 

Markov networks with empirical landmarks. Finally, a conclusion on the further 

development of the inferred Markov network will be presented in Chapter 6. 
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Chapter 2 

Automated Chromosome 

Classification 

Automation in cytology has gone a long way in the past forty years. As early as 

1950's, several systems had been developed for carrying out simple tasks in 

cytological sample analysis. In fact, these systems were implemented on circuits 

which ran in video rate. Later, in the 1960's, a revolution in the computer industry 

led to the decreasing of the hardware cost and the increasing in the degree of 

sophistication of computers. Relative complicated tasks can be achieved with the 

help of the general-purposed computers. This led to the development of several 

highly complex research projects whose performance, at least in some areas of 

cytology, came close to equaling that of the human technologist. 

The major applications of the automation in cytology include the blood cell 

analysis in Hematology, chromosome analysis in genetic and the cervical smear 

analysis. Since the preparation of the blood sample is relatively simple, automation 

in Hematology has been developed very well. Most successfully automatic systems 

in the early era of this field were hematological analysis systems. Commercial 

systems are also available which include the automatic sample preparation and 

analysis. With the increasing of the speed of the general-purposed computers, it is 

possible to implement an automatic system for practical chromosome analysis and 

cervical smear analysis. 
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The characteristics of cytological analysis is the minute size of the objects (cell 

range from 1 to 100 micrometer in diameter). Hence, the technician should use the 

microscope to perform the visual examination. In order to simplify the visual degree 

of individual cell, samples will be stained with various organic chemicals. Interested 

cells attached with the organic chemicals form the significant chromatic labels for an 

individual cell such that it can be uniquely identified by the technician. 

The size of the sample cells is small with respect to the microscope slides. 

Normally, a sample will consists of hundreds of cells. Therefore, visual examination 

of individual cells is a tedious and time-consuming task. In fact, these mechanical 

tasks are often poorly performed. Hence, the need for automation in cytology is very 

keen. 

Chromosomes are resided in the nucleus of people's nucleated cell which is 

the carrier of genetic information for the development of an individual. The majority 

of people have 46 chromosomes in a single ~~1J which can be grouped as 22 pairs of 

autosomes and two sex chromosomes1. Each pair of autosomes contains one 

chromosome inherited from the father and the other from the mother. 

The aim of chromosome analysis is to determine the major chromosome 

structures of the species. Many chromosome abnormalities caused by enviro,nmental 

agents and radiation can be detected by examination of chromosome structures. It 

has been proposed that at least one genetic analysis should be carried out for each 

new born. However, chromosome analysis, as other cytological tasks, is an 

expensive and time-consuming task. So automation in chromosome analysis is in 

great demand. 

Chromosomes in a species should be paired before it can be analyzed. The 

process of pairing is called karyotyping and the resulted graph which list all the 

ITheoretically, two chromosomes in a pair have identical properties. This may not be true, since 
two chromosomes are inherited from different individals. 
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chromosomes in pairs is called the karyotype of a species. Normally, 22 pairs of 

autosomes in a normal human cell is indexed from 1 to 22 and the index itself is the 

class number or the type of that pair2. The properties of a specific chromosome class 

is similar between human cells. Therefore, a standard labeling method is constructed 

for human chromosome analysis such that the class number of a _ specific 

chromosome can be determined. In other words, karyotyping is a classification 

pro blem which determines the class index of each chromosome in a species. 

Expert knowledge is required in analyzing the karyotype of a species. Such 

process is the routine jobs for a cytogeneticist and is difficult to be automated. 

Therefore, most researches in automation of chromosome analysis concentrated in 

the classification of chromosomes which is tedious for human to carry [26] [22]. 

The main procedures concerning the classification of chromosomes will be 

introduced in next section. The preview and previous works of each part of the 

classification procedures will be discussed in the subsequent sections. 

2.1 Procedures in Chrolllosollle Classification 

Normally, the task of chromosome classification can be divided into several 

proced ures: 

a. Biochemical staining (homogeneous or banded). 

b. Image acquisition. 

c. Segmentation of chromosomes. 

d. Centromere finding. 

e. Features measurement or selection. 

f. Classification. 

g. Rearrangement. 

2Two sex chromosome may not appears in pair. A species from a female contains 44 autosomes 
and two identical sex chromosome which is called the class X chromosomes. On the other hand, a 
species from a male have a class X chromosomes, and a sex chromosome which belongs to a new class 

called class Y instead of 2 class X chromosome. 
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The above procedures should be carried out in sequence. In fact, each 

procedure is independent from each other. However~ it has been noticed that the 

intermediate classification result can be consider as a features for further 

segmentation of the chromosomes. Therefore, we can consider the whole analysis 

procedure as an iterative procedure [14] (iterate from step c to step f or step c to 

step g). 

2.2 Satnple Preparation 

For every cytological image processing project, sample preparation is the key to 

success. This is true when the population of the sample cells is huge and only a 

small amount of them are of interest. The choice of the staining chemicals will help 

the technician to select the interested cells from a large population. Normally, the 

sample cells are extracted from the cultured tissue of human body. The culture 

process is out of the scope of this paper and will not be discussed here. This section 

will focus on the choice of staining techniques and its relative changes in 

measurement features of an image. 

There are two general-purposed stains called the Feulgen and the 

Papanicolaou stains. With Feulgen stain, the nuclei are stained very dark and are easy 

to be thresholded. Cytoplasm under Feulgen stain is nearly invisible. On the 

contrary, cytoplasm is visible under Papanicolaou stain. It is suitable for calculating 

nucleus-to-cytoplasm ratio in cancerous cell recognition. 

For chromosome analysis, chromosomes are extracted from the blood smear 

of the patient. The cultured blood cells are arrested at the metaphase3 stage of the cell 

development with biochemicals. Once the cultured blood specimen is ready, it is 

3Chromosomes in metaphase stage was located altogether as a small black object and such object 

is called metaphase. 
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treated with a hypotonic solution (staining chemicals) which enlarges the metaphase 

cells so that the chromosomes are spread on the microscopic slide very well. 

Chromosome sample using classical staining techniqu~s appeared as a set of 

black connected objects. Hence, for a given sample, only the morphological features 

can be measured. These features include the shape and size of the individual 

chromosomes and the centromeric index (the ratio of the two short chromosome 

arms to the two long ones). With the Caspersson stain, the banding patterns appears 

in individual chromosomes as shown in Fig 2.1(c). The visual analysis of 

chromosomes is changed since the banding pattern of individual class of 

chromosome is unique and standardized. 

Shortest 
arm paIr, 
p-arms --. 

Chromatids 

I~ 

Centromere ~ ···· · · ······ · · l··· · · ············· ~ ··· · ···· ····· ··-! 

Longest 
arm pair, 
q-arms --. 

medial axis -. 

(a) 

3 

2 

1 

1 

2 

3 

4 

(b) (c) 

Fig 2.1 (a) The structure of a chromosome extracted in metaphase. 

(b) The reference band model of the chromosome class 2. 

(c) A real sample of chromosome class 1 with band patterns. 
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2.3 Low Level Processing and Measurement 

Since the size of the chromosomes is so small that a high-magnification microscope 

is needed in order to finish the visual examination. In an automated environment . , 

the images of the stained cell will be captured at magnification x100. Metaphases in 

the stained cell will be located by the Metaphase finders. The image of met~phases 

will be captured at magnification x1000 for further processing. Most preliminary 

features of a chromosome such as area, shape, axis as well as the centromeric index 

can be measure in the 2-D image without further projection into profile domain. 

2.3.1 Segmentation of chromosomes 

For poorly prepared samples, some chromosomes will touch or overlap with 

another chromosomes. In such cases, these chromosomes cannot be separated very 

well by simple thresholds or boundary tracing. If two chromosomes are heavily 

overlapped, some banding patterns will be covered. In order to maintain the speed 

of the whole system, the overlapping cases may be left for human handling. 

Most segmentation techniques in image processing c).omain such as heuristic 

search and region growing can be used for separating touched chromosomes. Also, 

some specifically designed techniques have been proposed for splitting 

chromosomes. Vanderheydt et al [37] have proposed a method which applies the 

generalized fuzzy binary relation to assist the decision making in decomposition. 

Apart from the structural method as mentioned above, Ji et al [13] has shown 

that by carefully selecting the shape of the structuring elements, slightly touched 

chromosomes can be split by erosion which is a local transformation in mathematical 

morphology. Since the transformation is independent of the size of objects, with 

interval coding of binary images [28], it is considered to be an efficient method that 

can be implemented on a serial computer. 
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As summar~zed by L. Ji [14], the chromosome segmentation problem can be 

solved in most cases by a procedure which based on the concavity analysis in 

relation to expected chromosome shape and a heuristic search for the minimum 

density path. In fact, a 95% success rate can be achieved by a algorithm based on the 

above assumption as reported in [14]. 

2.3.2 Centromere finding 

The determination of the centromere position is an important step in chromosome 

analysis. Centromere is the reference point of a chromosome. By locating the 

centromere position, we can determine the proper orientation of the chromosome. 

Centromere position itself is an important feature in chromosome classification. For 

old staining techniques, such as homogeneous stain, centromere position can be 

found by locating the point with minimum width. Structural methods such as 

locating the maximum concavity in the chromosome contour have been introduced. 

While another method approximate the chromosome with a convex hull of the 

boundary and calculate the centromere position with different morphological 

features [26]. 

Groen et al [12] have evaluated two new methods for determining the 

centromere position. The first method aims at searching the closes pair of opposite 

contour points. Since the search will be done exhaustively along the opposite pair of 

contours of a clipped chromosome, the complexity and time requirement are critical. 

The second method based o~ the profile of the width of the chromosome, defined as 

the distance between the borders ' measured perpendicular to the main axis. The 

method search for the relative minimum between two maxima of a smoothed 

profile. The original profile will be fitted with an second order polynomial to find 

the precise position of the centromere if the relative minimum exists. 
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2.4 Feature Extraction 

The goal of feature extraction is to find a transformation from an n-dimensional 

observation space X to a smaller m-dimensional feature space' Y that retains most of 

the information needed for pattern classification [33]. The computational complexity 

for pattern classification is reduced by dealing with the data in a lower dim~nsional 

space. On the other hand, generalization can be obtained from a given number of 

training samples such that a more reliable decision rule can be formulated. 

Features in chromosome analysis can be classified into four levels according 

to the robustness (how much a priori information is needed before it can be measured) 

of features [9] [27]. Level 1 features can be obtained immediately after thresholding, 

when the chromosome outline is know. Features like area, average and integrated 

density, other density histogram features and contour measure can be calculated. Level 2 

features include knowledge of object orientation and medial axis which allows the 

measure of length and width, and the derivation of the profile. Level 3 features require 

both the axis and profile and the knowledge of chromosome polarity which is 

necessary for making use of the centromere position. Level 4 features require the 

axis, the polarity and the centromere position. An example of level 4 features is the 

centromeric index of a chromosome which requires different lower levels of features 

to determine. 

A good feature extraction method is also a key to the success of the whole 

classification algorithm. Most feature extraction part cannot be isolated or reused 

from the whole classification algorithm. For the chromosomes band patterns, the 

original 2-D image will be transformed into a 1-D profile along the medial axis of 

one of the chromatids. Such profile exhibits most characteristics of the original bands 

and becomes the standard feature of the most modem chromosome classifier. 

The research of automation in chromosome analysis has been developed 

rapidly since the discovery of the banding pattern. Up to now, the successful 

-11-



Chapter 2 Automated Chromosome Classification 

classification rate is around 70-80%. One reason for failing to fully automated the 

task is that chromosomes are not as 'stable' objects as human expected [12]. 

Although, the bandmg patterns of chromosome classes are I<t:0wn, the appearances 

of these patterns are not clear in real life cases. It has been reported that, using band 

staining techniques, not more than 58% of all bands supposedly present are found in 

reality [21]. Most recent approaches combine both banding patterns and 

morphological characteristics for classification. 

Band pattern description 

The chromosome profile along the medial axis is a projection of the 

chromosome which can be used for the description of band patterns. A set of 

simplified parameters can be generated from this profile. This set of parameters can 

be used to ·measure the similarity between a profile and a set of templates 

representing the ideal chromosomes. The method used to describe the band patterns 

can be subdivided into global and local methods according to Piper's classification 

[26]. 

2.4.1 Global band descriptor 

With global band descriptors the number of features is fixed in advance. Therefore, 

the classification scheme based on the global band descriptor is relatively simple 

because of it's lower degrees of freedom. The problem with the global band 

descriptor is that the small abnormality may be indistinguishable from random 

noise and the position of the abnormality is not known even it is detectable. 

Although the classification schemes from the global band descriptor are 

relatively simple, the better results in chromosome classification are based on this 

type of descriptors. The human chromosomes, represented by their density profiles, 

are described by a set of distribution function called the Weighted Density 

Distributions (WDDs) [5] [18] by application of a number of sawtooth-like weighting 
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functions. The chromosome profile is correlated with these functions to produce the 

global features. 

2.4.2 Local band descriptor 

The local descriptor aims at isolating the individual bands in a density profile, and 

describes them by size and position. Since this is a two stages process, segmentation 

and measurement, the success of the operation may be evaluated at different stages. 

Also, the analysis of the bands may be named individually. Thus, band description 

may be expressed in a format which is suitable for visual examination and 

comparable to the one used by a cytogeneticist. Such an approach is capable of 

identifying small anomalies such as extra or missing bands explicitly. Four different 

local descriptors are reviewed in the following paragraphs. 

2.4.2.1 Gaussian decomposition of banding profile 

Most early local descriptors aim at the decomposition of the density profile of the 

chromosome into a sum of Gaussian distribution, whose mean, standard deviation 

and peak ~alue effectively describe a band in the profile -[8]. The descriptors are 

generated by an iterative procedure which, in each turn, with reference to the first 

peak remains in the profile, applied a different Gaussian curve with a peak height, 

width and position. In each iteration, the selected Gaussian function will be 

subtracted from the profile such that the first peak remains will be eliminated. Such 

iterative procedure will be repeated until some prescribed condition is satisfied. 

2.4.2.2 Encoding of profiles 

Lundsteen [19] introduced a method which encoded each peak in a nonlinear 

filtered profile into a simple sequence of band transitions (BT -sequence). The code 

represents three attributes of the peak: 
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a. Density of the peak. 

b. Density difference between the peak and the neighboring valley. 

c. Position of the peak. 

The BT -profile retrieved from the BT -sequence representation can also be 

used for visual classification [20]. 

On the other hand, the BT -profile is based on a subset of the information of 

the idealized profile. The idealized profile can be used to approximate the original 

profile with fewer density levels. Granum et al [7] have developed an inferred 

Markov network model for chromosome classification which based on the 

"difference-string" (the encoding of the idealized profile based on the transition 

between incremental bands) . 

. 2.4.2.3 Tree structure "split and merge" description 

As described by Rosenfeld [31], the gray-level-dependent properties of image 

subsets can all be naturally extended to fuzzy subsets m by simply weighting each 

pixel by its degree of membership in m. Region splitting and merging techniques are 

often used to improve a given segmentation of an 2-D image. The 1-0 analogy of the 

"split and merge" procedure can be applied to the integrated density profile based 

on the line pattern obtained from different thresholds [38] [39]. At each increment of 

the threshold level, connected segment of dark line within the same level form a 

node of the tree, linked to the connected segment at the previous threshold which 

contains them. Following the split procedure, non-branching node sequences are 

merged into single nodes. 

2.4.2.4 Laplace local band descriptor 

While other descriptors concentrated on the chromosome profile along the medial 

axis, Groen [12] developed a Laplace descriptor based on 2-D Laplace filter which 

operate on individual isolated chromosome images directly. Such second derivative 
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filter leads to the detection of peaks and valleys (convex and concave regions) in 

gray scaled images. Normally, bands in the image form the concave regions such 

that labeling is possible. 

A set of band parameters for each band such as the area, darkness, and the 

minimum, maximum and middle position will be measured. The features generated 

by the descriptor is a set of locations of different bands such as the location of the 

band with the largest area, the darkest band and the first band after the centromere. 

2.5 Classification 

Classifiers in chromosome classification, as other classification problems, can be 

categorized into structural approaches and statistical approaches. Although, 

chromosome grammar is a common example in structural pattern recognition, there 

is a small number of chromosome classifiers using structural approaches [20] [34]. 

Inference of Markov networks by dynamic programming is the best classifier among 

all structural approaches [7]. This approach constructs a Markov network from a 

,given set of samples in string form using string-to-network alignment which is a 

dynamic programming computation. The string-to-network alignment can be 

accelerated when forced landmark is considered [10]. This accelerating method will · 

be generalized in this thesis such that sample data with no a priori information on 

the landmark position can be considered. 

With the statistical approaches, discrimination functions are employed after 

features have been measured. For within-cell chromosome classification, there are 

three main classification approaches as follows. 

1. Simple context-free classifiers using such methods as linear or quadratic 

discriminant functions [25][30], distance functions to pre-learned classes, or a 

Bayesian approach. 
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2. Fuzzy subset theory classifier [39] evaluates an unknown chromosome 

according to the model of a particular chromosome. With the tree structure 

description obtained from the "split and merge" procedure ~d the global features 

such as the length, a model can be built to aggregate the goodness of fit of measured 

features to the learned features of the class and the complements of the , overall 

goodness of fit of the unknown chromosome to neighboring classes. The 

aggregation function is a generalization of a \\reighted mean of the features. 

3. Context sensitive (rearrangement) classifiers exploit the assumption that most 

cells are normal. For example, given an initial guess (which normally be obtained 

from other contex-free classifier) of a karyogram from the classification procedure, 

we can rearrange the chromosomes in each group by shifting chromosomes from a 

group with too many chromosomes to one with too few chromosomes such that the 

class size is two (the normal class size). Most contex sensitive classifiers use 

maximum likelihood methods for the preliminary classification. For each shifting of 

a chromosome from a class to another class, an additional likelihood will be 

accumulated to the total likelihood reflecting the similarity of the chromosome to the 

new class and the dissimilarity to the old class. 

Piper [29] has reviewed four rearrangement classifier which resulted in small 

improvement to the accuracy of chromosome classification. Tso et al [35] has 

proposed a transportation algorithm which rearrange chromosomes in the 10 

Denver groups based on the maximum likelihood approach. The algorithm is 

extended later [36] for rearranging chromosomes in the 24 groups. 
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Chapter 3 

Inference of Markov Networks by 

Dynamic Programming 

In this chapter, a data-driven inference method based on dynamic programming 

(DP) will be reviewed. As proposed by Thomason and Granum [34], such method 

constructs a structural model called the Markov NetwDrks from a finite set of sample 

strings. The DP inference method can be applied to different classification problems 

. with suitable feature extraction and encoding method which encode testing samples 

into symbol strings. With the profile processing method described in next chapter, 

the DP inference can be used as a chromosome classifier which produced the 

su perior results as claimed in [7] [6] . 

The definition of the Markov networks, as a constrained Markov chain, will 

be given in Section 3.1. Section 3.2 describes the DP solution to a string-to-string 

correction problem where the concept of the minimal CDSt editing is introduced. 

Section 3.3 describes the DP computations for string-ta-network alignments. 

Section 3.4 introduces the forced landmark concept as a speedup in the DP for 

string-to-network alignments. 
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3.1 Markov Networks 

The string-to-network alignment described in Section 3.3 creates a first-order, finite

state Markov chain from a finite set 0 of sample strings. A finite Markov-Chain is 

defined as [24]: 

Let {Xn} be a sequence of random variables taking the values i E 1. {Xn} is 

said to be a first-order Markov chain or Markov-dependent, if for all io, ... , in+I E I, 

and \:In 

If I is a finite set of integers, {Xn} is said to be a finite Markov chain. 

Normally, an arbitrary first-order Markov chain is characterized by five 

items [34]: 

1. the set of states, S = {so, SI"··' Sn , Sf }, also called nodes; 

2. the set of outputs assignable to states, V = {vo, VI'···' vT }; 

3. the initial state distribution (pg ,p~, ... ,p~); 

4. the state transition matrix P with entries Py = prob( ;~+lls: ); 

5. the output matrix B with entries bik = prob(s~ls:); 

The inference method described in Section 3.3 constructs a constrained 

Markov chain called Markov networks. A Markov network M is a first-order, finite-

state Markov chain for which: 

1. the initial state distribution is (1, 0, ... , 0), i.e. there is a unique starting 

2. Pii = 0 for i<>f, i.e. no cycle can be created in M; 

3. Pff= 1, i.e. there is a single absorbing state sf; 
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4. the states are ordered such that i < j implies Pu = 0, i.e., a realization of the 

process moves "left-to-right" from So without loops or cycles until absorption 

in sf; 

5. each state deterministically outputs one specific symbol, but different states 

may output the same symbol. 

For each node in the network, the transition probabilities to other states can 

be measured by the relative frequencies. For the first sample string in 0 , a single

path network will be created. Subsequent sample strings will be installed into the 

network through the string-to-network alignment which maximizes the sample's 

probability as a network realization. At the same time, common substrings in the 

sample strings can be retained. Network modifications will be applied for each 

installation of sample string according to the DP computation in string-to-network 

alignment. In order to achieve the alignment, empty states will be introduced which 

generates the empty string e (null string). 

3.2 String-to-String Correction 

Dynamic programming technique has been used for finding the minimal cost 

editing sequence between the landmark string and the input'string [40][3]. For a 

landmark character sequence A = a1 a2 ... am and text B = b1 b2 ... bn , a k-approximate match 

is a match of A in B that has at most k differences. The differences may be any of the 

following three types: 

1. The corresponding characters in A and B are different; 

2. A is missing a character that appears in B; 

3. B is missing a character ~hat appears in A. 

The above three differences are corresponding to three edit operations [40]. 

An edit operation is a pair (a, b) *- (A, A) of strings of length less than or equal to 1 
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and is usually written as a ~ b :where A is defined as null string. A is transformed to 

B, written as A => B, via a '~ b if A = aa't and B = ab't for some string a and 'to String B 

results from the applications of at most k edit operations t~ string A. The above 

differences can be viewed as: 

1. Change operation: a *- A and b *- A; 

2. Insert operation: b *- A; 

3. Delete operation: a *- A. 

The k-approximate match can be computed by using the dynamic 

programming technique. Each element I?M in the cost matrix D represents the 

minimum number of differences between a1 ... ai and a segment of B ending at bj . Di,j 

is the minimum of the follOWing three values: 

1. if ai = bj then D i-l,j-l (match) else D i-l,j-l + 1 (substitute); 

2. Di_1,j+l (insert) 

3. Di,j_l+l (delete) 

The rows in D are the elements in A and the columns are the elements in B. 

Thus Drn n is the minimum number of edit operations required in order to change A , 

into B. The actual edit operations can be traced in the backward direction for D rn n to , 

Do o. The complexity of the whole computation is O(mn) for two string with lengths , 

m and n. 

Fig 3.1 illustrates an example of string matching. The computation aims at 

finding a I-approximate match between the landmark string A = "happy" and the 

checking sentence B = "Have a hsppy". The approximated string can be found by 

backtracking the column with a value of 1 in the fifth row, i.e., the matched string is 

"hsppy" in this example. 
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H a v e a h s p P Y 

0 0 0 0 0 0 0 0 0 0 0 0 0 

h 1 1 1 1 1 1 1 1 0 1 1 1 1 
a 2 2 1 2 2 2 1 2 1 1 2 2 2 
p 3 3 2 2 3 3 2 2 2 2 1 2 3 

p 4 4 3 3 3 4 3 3 3 3 2 1 2 

y 5 5 4 4 4 4 4 4 4 4 3 2 

Fig 3.1 Cost matrix for aligning the string "Have a hsppy" 

with the landmark "happy" 

Similar techniques has been employed into various fields concerning the 

recognition of landmark patterns [16]. 

3.3 String-to-Network Alignlllent 

For a given network M and a sample string, the task of the string-to-network 

alignment is to modify the network to include the sample string explicitly. String-to

network alignment is a dynamic programming computation which finds the 

minimum total cost of the network modification to have the sample string installed. 

The total cost is the logarithm of the probability of the generation of the string. 

The dynamic programming matrix for alignmg a string O=ZlZ2···Zj···zm 

into a network M is shown in ~ig 3.3. In actual computation, a null character zo= A is 

attached to the beginning of 0 in order to maintain the homogeneity of the 

computation. As in the string-to-string correction problem, rows in the matrix are 

the elements in the landmark string. However, in this case, the landmark string is 

the spread of the networkM. A spread of M is a string in which each element is a 

character generated from a state in M. Therefore, each character corresponds to a 

state in M. A spread of a network can be obtained by applying a topological sort 

over this network. The sequence generated from the topological sort represents the 

dependence of the states in the network. 
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Since relative frequency estimates of transition probabilities, Pi,k are used, 

each network arc is also labeled with its frequency of use on sample string 

alignments, denoted by J;,k for an arc from Si to Sk' so thatPi,k=Jj,k/ J; where 

(3.1) 

For the dynamic programming matrix D, antilog Di,j is the maximum 

probability with which a modified network can generate substring zl""" Z j by an 

alignment for which the neighborhood of Si is the point reached in the network so 

far. For any node Si in the network, modifications allowed in the neighborhood of Si 

are shown in Fig 3.2. The optimal value for Di,j is the maximum values of Di-I.j' 

Di-1,j-l' and Di,j-1 (Eq(3.2 - 3.4) respectively) such that substring Zl""" Zj is generated 

by one of the following possible modifications with maximum probability, i.e., Di,j is 

the maximum of : 

[h 1
0 

+ 1] [1] 1. D
i
-

1 
j + log 1- ,I + log --
, h-1 + 1 h + 1 

(3.2) 

2. DO_1 0-1 + IOg[f-1,i + 1] +{l [ 0 1 ] 
1 ,j I'. + 1 og 

J i-I h + 1 

(3.3) 

(3.4) 

which correspond to the deletion, match or substitution, and insertion cases in 

Fig 3.2, respectively. 

D is the last element of the cost matrix D which is the logarithm of the 
f,m 

maximum probability with which a modified network can generate the sample 

string. 
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The initial values in the cost matrix D can be filled in the follOWing manner 

[40]: 

1. Do,o = 0 

2. Di,o = L~=l (cost of delete the state Si) 

3. Do,j = L~=l (cost of insert Zj after the initial state so). 

In order to find out the optimal trace (the editing sequence) after the cost 

matrix has been filled, a path matrix has been created and updated in parallel with 

the cost matrix. Each entry in the path matrix contains the choice in calculating the 

corresponding entry in the cost matrix according to the minimum cost criteria. The 

optimal modification can be obtained by tracing the path matrix in backward 

direction from the lower-right entry to the upper-left entry. 

network paths 
to node Si 

1. delete Si 

3. insert Zj after Si 

2. substitute Zj for Si 

Fig 3.2 Neighborhood of node Si 
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Initial State So Do,o 

Network M 

Absorbing State sf 

Sample String 

Zj-l 

Di-1,j-l (2) 

Di,j-l (3) 

Di-1,j (1) 

D . . 
1,) 

. " , 

Fig 3.3 Dynamic programming matrix. (1) Deletion, (2) Match or substitution, 

New 
String 

(a) ABD 

(b) ABCD 

(c) BCD 

(d) XBCD 

1 

(3) insertion. 

Deletion 

Substitution 

New 
Network 

Insertion 

Fig 3.4 Simple example illustrated the possible network modifications 
of the inference process. 
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Network modifications are illustrated in Fig 3.4 [7] where a small inferred 

Markov network was constructed from the strings "ABD", "ABCD", "BCD", and "XBCD". 

From the inferred Markov network in Fig 3.4, the strings can ~e aligned as follows (e 

represents the null character) 

A B e D 

A B C D 

e B C D 

X B C D 

Classifiers can be constructed based on the string-to-network alignment 

which consists of two phases, the training and the recognition phases. In the training 

phase, a Markov network will be constructed based on the training sample strings as 

described in Section 3.1. In the recognition phase, the testing string will be aligned 

into the network to find out the maximum probability that generating the string. 

However, no modification will be applied after the alignment is completed. The 

resulting probability of generation for a testing string can be used as a 

discrimination between others testing strings. 

3.3.1 Aspects concerning the empty-states 

As stated in Section 3.1, the introduction of the empty states in the inferred Markov 

networks is to ensure the consistency between the string-to-network alignment and 

the network modifications. That is, the, criteria for the insertion of empty states are 

embedded in the cost functions in equation (3.2 - 3.4). For the alignment between the 

single-path network containing the string" abed" and the string" abd", the result can 

be simply obtained by observation as follows: 

a bed 

a bed 
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Character "e" is missing in the incoming string. So, the network 

modifications needed in order to incorporate the incoming string are 

1. Match "a", 

2. Match "b", 

3. Delete "e", and 

4. Match "d". 

and the resulting network is 

1 

Fig 3.5 The resulting which incorporates the string "abd" into 
the single path network constructed from the string "abed" 

In general, the deletion and substitution applied on a state Si , where s/1:So 

and S{1:Sf' can be illustrated in Fig 3.6(b) and Fig 3.6(c) respectively with Si-1 as the 

predecessor in the last modification and si+ 1 as the successor· in the next modification 

as shown in Fig 3.6(a). As in Fig 3.6(b), the first subexpression, log ((I;-u+ 1)/(1;-1+ 1)), 

contributing to the overall probability of generation in Eq(3.2) is corresponding to 

the arc from Si-1 to e1 . The second subexpression, log (1/(1;+ 1)), is the arc from e 1 to 

e
2 

by passing Si' where both eland e2 are inserted empty states which generate the 

empty string e. The situation is similar in the case of substitution as in Fig 3.6(c). 

In most cases, the empty states inserted can be elirrtinated. For instance, in 

Eq(3.2), the only elimination can be done between the second and the third 

subexpressions when 

h-1,i + 1 = h + 1 

=> h-1,i = h 

-26-



Chapter 3 Inference of Markov Networks by Dynamic Programming 

That means Si-l is the only predecessor of Si . As in Fig 3.6(b), the edge a l and the 

empty state e l can be eliminated if a l is the only path from the Si_l to e l . In addition, 

a2 and e2 can be eliminated if h = h,i+l . This required that the next modification 

should be a match, a deletion, or a substitution. Such elimination cannot be applied 

when Si is being considered since future modification information is required. For a 

special case when 

which means that Si_l is the only predecessor and Si+l is the sole successor of Si' then 

both eland e2 can be eliminated. This is the case occurred in Fig 3.5. 

f 1 .+1 Ji- ,1 

f-l + 1 

f.l·+1 
1- ,1 

-h-l + 1 
.... 

1 

(b) 

1 
~ 

-h-l + 1 

(c) 

Fig 3.6 (a) A non-terminate state Si with pred:ce~sor Si-l 

and successor Si+l . (b) Deletion. (c) Substitution. 
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In real implementation, eliminations need not be considered one by one. 

Cases can be summarized and pre-computed in order to speedup the time for the 

network modifications. The network modifications will be applied from the 

absorbing state sf back to the starting state So as the path matrix is traced in reverse 

order. The insertion of empty states can be summarized as follows: 

If the current and the next (which modify the previous state as the modification is 

done in reverse order) modification is deletion, substitution, or "insert after", then a 

empty state should be inserted between the current and the previous state. 

3.3.2 Entropy characteristics of Markov networks 

This section aims at finding a good measure to discriminate between alternate 

maximum probability traces. Detailed analysis concerning the properties of the 

inferred Markov networks can be found in [34]. 

The entropy of a random variable is defined in terms of its probability 

distribution and can be shown to be a good measure of randomness or uncertainty. 

Let x be a random variable with sample space . X = {Xl' X2 , ... , X N} and 

probability measure p{ Xn} = Pn . The entropy of x is defined as [23] 

N 

Hx = - LPn log(Pn) (3.5) 
n=l 

3.3.2.1 Network Entropy 

An inferred Markov network M can be viewed as a Markov source of 

information with sample space S = {SO,SI'·· ,Sf} · From the long-run property of the 

absorbing Markov chain, a recurrent chain MR can be constructed from M by 

changing P if from 1 to 0 and P fa from 0 to 1 for starting state So and final state sf· 

M h a steady-state distribution over the nodes, The new process R as 
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11 M == (110 ,111 ,. .. , 11 n , 11 f ), such that I1k is the asymptotic probabi/i ty of being in S k' It 

has been shown that ilk is also the expected fraction of time that M is in Sk [1][2][34]. 

The entropy for an inferred Markov network M with steady-state distribution 

ilM can be formulated as 

HITM = -L IIj log(il j ) , (3.6) 
IT 

3.3.2.2 Path Entropies 

Let X = {Xl' X 2 , ... , X N } be a set of mode sequences through the network M, the path 

entropy of X and M is 

Hpx = - LPx; log(px;) (3.7) 
x; eX 

(3.8) 
r 

where Pr is the probability of path r inM. 

In fact, HpM reflects the landmarking inferred from the training set in the 

sense that the lower the path entropy, the greater the con"centration of probability 

mass in repetitive substrings. 

The value of HpM is smart enough for evaluating the goodness of the 

installation of a new string into a network. However, information for calculating the 

value is not available until the string-to-network alignment process is completed. As 

stated in the previous section, if more than one alignment achieve the same 

maximum probability, only one of them is used to modify the network. In order to 

enable the decision within the alignment process, a new criterion which enables 

quicker compu ta tion will be discussed in the next section. 
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3.3.2.3 Network Modification and Entropies 

In this section, a faster calculation will be discussed in order to approximate the 

changes in the network entropy after the substring ZIZ2",Zj has been installed. 

Suppose the network M has n non-e node (non-empty node which generate 

non-e symbol) with frequencies J; where 1 ~ i ~ n and F == 11 + 12 + ... + In . 

From Eq(3.6), we have 

H(rr ) == H[/l 12 ... J;] 
M F' F' F 

= - 'L/; IOg[J;] 
IT F F 

== ~ 'Lf(logF -Iogf) 
FIT 

(3.9) 

For any trace which install a new sample string Ok with length m in M, we 

can write 

m = m1 + m2 

where m1 = number of new non-e nodes crea~ed 

m
2 

= number of non-e nodes matched 

M will be modified into M' after the installation of Ok and F' = F + M. 

Therefore, the entropy of the new network M' is the sum of Eq(3.10), Eq(3.11), and 

Eq(3.12). 

1. m
1 

new nodes, each contributing 10g(F')/F'. (3.10) 

2. m
2 

reenforced nodes, each contributing a term 

[ f + 1]10 [ F' ] 
F' g f + 1 

(3.11) 
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3. n - m2 unreenforced nodes, each contributing a term 

(3.12) 

The changes caused by installing Ok is 

Mf = m
1 

logF' +_1 ~ J;. logF' +m
2 

logF' 
F' F' LJ I . F' 

n 

1 1 - F'LCt; +1)log(}; +1)- F L};log}; 
m2 n-m2 

-~ L}; logF - ~ L}; log}; (3.13) 
n n 

F' m 1 '· . 
= log F + FF' L}; log}; + F' L (}; log}; - (}; + I) log(}; + I)) 

n m2 

From Eq(3.13), the only factor depending on the actual trace for Ok is 

L (J; logJ; - (J; + 1) log(J; + 1)) (3.14) 

This factor can be used to discriminate between alternate maximum 

probability traces, i.e., one can choose the alternative match with the smaller value 

calculated by Eq(3.14). 

3.4 Forced Landlllarks in String-to-Network 
Alignlllent 

For a finite set 0 of sample strings, Landmarks are the substrings appearing in large 

percentages of samples [34]. The network representation of the landmark substrings 

is called the forced landmarks. The computation which incorporates the forced 

landmarks in the DP for string-to-network alignment was introduced by Gregor & 

Granum in [10]. The following paragraphs summarizes the basic ideas of such 

computation. 
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Inference of Markov networks with forced landmarks corresponds to 

constraining the dynamic programming string-to-network alignment to take place 

on a per substring basis [10]. Each sample string in 0 will be partitioned into N 

substrings using a priori knowledge about unique landmarks. Such substrings are 

then be grouped into N subsets Ok' k = 1,"', N. The Markov subnetworks Mk 

inferred from the data subsets Ok will be concatenated into a single network, 

M = M 1M 2 • .. M N' which model the structure of the pattern class represented by O. 

A forced landmark is a single arc which links up the absorbing state of on 

subnetwork, Mk , and the starting state of the next, Mk+ l' Both states output the 

empty string e since the landmark represents a transition. 

The time complexity for the inference of forced landmark inferred Markov 

networks can be reduced since the substrings, Ok' in a sample string, 0, are required 

to align with one corresponding subnetwork, M k , only. Computational savings can 

be shown in Fig 3.7 [10]. Fig 3.7(a) illustrates a unconstrained string alignment with 

an ordinary Markov network where the whole cost matrix should be computed. 

Fig 3.7(b) and (c) illustrates the constrained alignments with Markov networks with 

one and two forced landmarks respectively where the shaded areas of the cost 

matrices are not computed. 

String 

Network 

(a) 

String 
I 

(b) 

String 
I I 

(c) 

Fig 3.7 (a) Unconstrained string-to-network alignment. (b) and (c) Constrained 
alignments with networks that have one and two landmarks, respectively. 
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Perhaps the most important step for the inference of Markov networks with 

forced landmarks is the estimation of landmark positions in the sample strings. A 

stronger confidence estimation can be achieved if the position of a unique landmark 

is typical for the pattern class represented by a network. It has been shown that, 

with the centromere position as an estimated landmark, the classification 

(recognition) rate of 7 chromosome classes can compete with the original model 

which uses the unconstrained Markov networks. 

In next chapter, a new landmark estimating method will be introduced 

which employs no inherit information on the landmark position. More 

computational savings can be achieved when more forced landmarks are employed. 
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Chapter 4 

Landmark Finding in Markov 

Networks 

The basic forced landmark model which required a priori knowledge on the 

segmentation of sample strings is presented in last chapter. In this chapter, a new 

string segmentation method will be presented. This method can deal with sample 

strings without a priori knowledge on the segmentation of the sample strings. The 

segmentation method will be presented in Section 4.1. Section 4.2 provides a profile 

processing algorithm which transforms the chromosome profiles into strings for 

analysis in Section 4.3. In Section 4.3, chromosomes in string representation will be 

employed as an example for the analysis of the string segmentation method. Finally, 

an experiment on the chromosome classification with forced landmarks found by 

the segmentation method will be presented in Section 4.4. 

4.1 Landtnark Finding without a priori 
KnolVledge 

Landmarks of a set of sample strings are retained in the inferred Markov network 

through the string-to-network alignment. The string segmentation method 

introduced in this section uses the string-to-network alignment as an empirical 

landmark finder for a given set of strings. Landmarks found in an inferred Markov 

network guarantees that it can be found in all aligned strings. The algorithm uses 
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the positions of landmarks in the aligned strings to approximate those in the 

unaligned strings. In the area of classification problems, the landmark positions can 

be found in the Markov network inferred from the training set and such landmark 

information will be applied to subsequent testing strings. 

Given a inferred Markov network, M, all the nodes which occurs with 

probability 1 will be identified in order to find the landmarks of the training set of 

strings, O. Such a set of nodes, which are called the landmark states as convenient, 

will be partitioned into two sets, one for the nodes that generate observed outputs 

and the other for the empty states. A forced landmark can be found by inserting an 

empty state between a landmark state and it's successors as shown in Fig 4.1. The 

relative landmark positions in the training strings which corresponds to the 

landmark states in the Markov network will be extracted. For a given training string, 

such positions can be measured by following the state sequence in the realization of 

the Markov network that generates the string. 

...... ............ ........ ........ subnetwork M n ........... .............................. ; 
forced 

landmark subnetworkM n+ 1······ ············ 

paths to ~0~-~.fe\\..-_--j.~fe\L 
stateS / V ~ 

A A A 

Landmark 
state 

. l 
Absorbing state Starting state 
of subnetwork M n of subnetwork M n+ 1 

paths from 
stateS 

Fig 4.1 Construction of a forced landmark from 
a landmark state. 

Since more than one landmark state may be found in a Markov network, one 

must decide which landmark(s) will be used for recognition. The original Markov 

network will then be split into a number of subnetworks according to the landmark 

states selected. As in Fig 4.1, two empty states which formed a forced landmark will 

be inserted for each selected landmark state. The first empty state is the absorbing 

state of the subnetwork Mn while the second empty state is the starting state of 

M These subnetworks together with the relative landmark positions can be 
n+l • 
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applied in the recognition phase which provides a faster alternative to the original 

alignment. 

In recognition phase, each string in the testing set ~ill be partitioned into 

substrings according to the selected relative landmark positions. Normally, the 

realization of a landmark state in an input string can be found in the neighborhood 

of the estimated position 1 where the character in such position is equal to the 

character generate by the landmark state. The substrings extracted from an input 

string will be aligned with the Markov subnetworks in sequ~nce. As stated in 

Section 3.4, the string-to-network with forced landmarks is a concept which uses a 

sequence of small alignments to approximate the original alignment. Therefore, in 

the sequence of small alignments, the result of the previous alignment will be 

propagated to the current computation. The probability of generating the whole 

string by the sequence of subnetworks is identical to the product of the probability 

of generating the substrings in the corresponding subnetworks. 

With the aid of a priori knowledge, the string segmentation model described 

in Section 3.4 can speed up the string-to-network alignment in both training and 

testing phase of a classification problem. The method presented in this section 

requires the result from the training phase to find out the landmark states. 

Therefore, computational savings can be obtained in the testing phase only. This can 

be justified since more landmarks can be found by the empirical landmark finder 

and the computation saving is proportional to the number of landmarks used while 

the size of the testing set is much larger in real life applications. 

1 The estimated position of a forced landmark in a string can be calculated as 

estimated position = relative landmark position * length of the string. 

H~wever, the character in such position in the string may not equal to the character generated by the 
corresponding landmark state (which generate a obser~~ble o~tput, a. non-empty state). Therefore, a 
search scheme should be deSigned in order to find a poSItion WIth the nght character. 
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4.2 Chromosome Profile Processing 

A chromosome profile is a series of data points sampled along the medial axis of a 

chromosome. Each data point represents the grey level of the corresponding location 

in the original chromosome image. The aim of the profile processing, on the one 

hand, is to minimize the effect of the interference produced in the image a~quisition 

procedure. On the other hand, essential features can also be extracted in the profile 

processing phase. 

The approach described in this section, which is called Idealized Profile [7], 

tries to include the sequential nature of the band patterns explicitly. With similar 

philosophy, the Band-Transition Sequences (BTS) has been employed for both 

automatic and visual classification with competitive levels of success. The following 

procedure consisting of 4 phases describes the construction of a discrete version of 

the Idealized Profile which transform the chromosome profiles into character strings 

such that both sequential and band-transition nature of band patterns can be 

preserved [7]. 

(1). 3-point smoothing (weights: 1,2,1) : The smoothing pro~essing aims at reducing 

the noise in the profile. Such noise may appear in a form of local extremum with 

unreasonable increment or decrement with its neighbors. These extremums will 

affect the result very much since it will be selected as the sample level of its 

neighborhood. 

{2). Differential analysis [15] The differential analysis is a non-linear 

transformation applied on the smoothed profile. The process tries to establish the 

positions of inflection of the profile. The hypothesis is that positions of inflection can 

be used as estimations of transitions between bands of different densities. Normally, 

one local extremum will exists between two inflections along the profile. The 

subprofile lies between two successive inflections can be estimated by the 
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corresponding local extremum by extending its density over that region. As a result, 

the smoothed profile will be transformed into simpler distinguishable bands. 

For each finite set X, if N(x)' is the neighborhood of x and F is a function of X , , 

we associate F with two other functions, the local maximum function F and the 

local minimum function F as follows: 

F(x) = max{F(Y)IY EN(x)}, 

F(x) = min {F(Y )Iy E N(x)}. 

We define the sharpening transformation Sas 

(SF)(x) = {F(X) if (F(x) - F(x)) ~ (F(x) - F(x)) 
F(x) otherwise 

It has been proved that the sequence snF is pointwise converged where n is 

the number of applications of S. 

The non-linear transformation IS the applications of the sharpening 

transformation iteratively over a finite set X until S converge. For a 2-D image, the 

neighborhood N(x) can be defined as 4- or 8-neighbor. In 1:.0 cases, N(x) is defined 

as a 2-neighbor case (ie. only the immediately left and right neighbor of a point is 

considered). 

(3). Non-linear mapping: In this phase, a non-linear mapping will be applied over 

the band sequence obtained from the previous phase. The transformation simplifies 

the profile by remapping the density of bands into six levels [7] while retaining all 

the transitions between bands. This can be accomplished by scaling the bands 

linearly and then examining the transitions one by one from left to right. If two 

adjacent bands have been mapped onto the same level, then the one in the right 

hand side must be modified in order to maintain the transition before the mapping. 

The adjustment is done according to the difference between the densities of two 

bands before mapping. 
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(4). String construction: The band patterns in the discrete idealized profUe obtained 

from phase 3 will be expressed in the form of a difference string. Band transitions 

are emphasized in strings based on the differences between successive incremental 

bands. In the experiments, the symbols { ... ,c,b,a,=,A,B,C, .. } are used to represent the 

differences { ... ,-3,-2,-1,0,1,2,3, ... }. 

4.3 Analysis of Chrotnosotne Networks 

This section aims at providing a bri~f picture on the distribution of the empirical 

landmarks in chromosome networks. As stated in [10], the mean and the variance of 

the distribution of the estimated landmarks may be obtained from the string-to

network alignment if it is a Gaussian distribution and based on one-dimensional 

feature vector. In fact, it is very difficult in giving a model for the distribution of the 

estimated landmarks especially a model which depends on one-dimensional feature 

vector. Therefore, the remaining of this section is to show that the distribution of the 

empirical landmarks in chromosome networks is near normal so that the landmark 

position can be estimated. 

The Copenhagen chromosome database has been selected for analysis. The 

database contains 180 blood cells. For each chromosome type, 100 samples were 

extracted which after the profile processing stage described in the previous section, 

were aligned sequentially to form a Markov network. The empirical landmark states 

were extracted and the relative positions of such landmarks in the aligned samples 

were measured. Table 4.1 summarizes the empirical landmarks found in the 

chromosome networks with size 100 together with the relative positions of the 

centromeres which are employed in the basic forced landmark model [10]. As 

described in Section 4.1, each empirical landmark corresponds to a landmark state in 

the inferred Markov network. The landmark states considered in Table 4.1 are the 

states which output observable symbol (non-empty states). The relative positions of 

-39-



Chapter 4 Landmark Finding in Markov Networks 

the centromeres are calculated according to the information provided in the 

Copenhagen chromosome database. 

Type Max.length Min. length Avg.length Centromere Number of 
position Empirical LMs 

1 130 64 90.66 0.4571 22 

2 121 63 86.19 0.3702 16 

3 103 45 73.74 0.4368 16 

4 97 47 69.80 0.2774 16 

5 99 48 67.65 0.2768 14 

6 90 49 66.14 0.3679 11 .. 

7 89 36 60.29 0.3620 13 

8 100 40 56.19 0.3304 11 

9 70 39 53.42 0.3286 11 

10 74 19 52.85 0.3133 6 

11 72 39 53.21 0.3676 7 

12 73 39 52.98 0.2888 10 

13 62 30 44.82 0.1879 7 

14 68 31 43.85 0.1961 6 

15 58 31 42.90 0.2081 7 

16 54 30 39.22 0.4042 5 

17 54 29 38.99 0.3148 5 

18 48 28 36.31 0.2854 7 

19 44 21 32.23 0.3866 2 

20 44 24 32.48 0.3971 2 

21 36 17 26.21 0.2437 5 

22 43 20 28.98 0.2593 3 

Table 4.1 Empirical landmarks found in chromosome networks with size 100. 
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A series of histograms which exhibit the distribution of the empirical 

landmarks of types 5, ' 13, and 22 are shown in Fig 4.2. These histograms were 

sampled with an interval of 0.05. As shown in the histogram for types 5 and 13, the 

distributions of the relative positions of .centromeres in these types can be 

approximated by an empirical landmark which appears to be normal. Such 

empirical landmarks can also be found in other 8 types. In fact, the centromere 

position of a chromosome can be deduced from an inferred Markov network with 

the centromere position in the training set as a forced landmark [11]. Therefore, if 

the centromere position can be used as a forced landmark, other empirical 

landmarks can also be employed. On the other hand, the distribution of the 

centromere position may not appeared to be normal nor can be approximated by an 

empirical landmark as shown in the histogram for the type 22. 

The rest of this section will show, in numerical calculations, the normality of 

the distribution of the empirical landmarks found in types 5, 13, and 22. If the 

distribution of the relative position of a empirical landmark is normal among all the 

training samples, then the mean of the relative positions of the landmark is expected 

to be a proper estimation of the empirical landmark 

For a normal distribution with mean J..l and standard deviation cr, the 

intervals (J..l-cr, J..l+a), (J..l-2cr, J..l+2cr), and (J..l-3cr, J..l+3a) contain the probabilities 0.6826, 

0.9544, and 0.9974, respectively. Alternatively, the probabilities outside these 

intervals are roughly 1/3, 1/20, and 1/300, respectively. With a reasonably large 

sample size, one can expect the sample mean X to be close to J..l and the sample 

standard deviation s to be close to a. 
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Fig 4.2 Histograms of the distribution of empirical landmarks in types 5, 13, and 22. 

(Bold line represents the centromere) 
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In order to estimate the quantitative measure on the normality of the 

distribution of the empirical landmarks, the sample mean X and the sample 

standard deviation S have been measure based on the relative landmark position 

extracted from the chromosome networks with size 100. Since the sample size is 

relatively small, intervals which closed to the sample mean are tested. Such intervals 

include (f.l-a / 2, f.l+a/2), (f.l-a, f.l+a), and (f.l-3a/2, f.l+3a/2) which contain the 

probabilities 0.3830, 0.6826, and 0.8664, respectively. The discrepancy measure 

has been employed which measure the discrepancy between the observed relative 

frequency p and the expected fraction p. A large discrepancy, say 3, would indicate 

lack of normality. 

Table 4.2 shows the discrepancy measure of the empirical landmarks in type 

5, 13, and 22. It has been shown in the table that the discrepancy measure for the 

distribution of most empirical landmarks are relatively small. Therefore, the 

distribution of most empirical landmarks are nearly normal and X can be used as 

an approximation of f.l in most cases. There are a few exceptional cases such as last 2 

landmarks in type 5. The reason for such a large discrepancy is that these landmarks 

are closed to the end of the sample string (the mean relative position of the second to 

last landmark for type 5 is 0.979 and exactly 1 for the last one). For example, symbol 

'a' occurs in the last position in every sample strings of type 5, so the discrepancy 

measure is relatively large which is greater than 12. 
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TypeS Relative position Discrepancy measure 
Landmark Mean Std. dev. cr/2 cr 3cr/2 

1 0.1054 0.0195 0.5554 1.0183 0.9876 
2 0.1463 0.0207 2.2011 1.6629 0.7760 
3 0.2761 0.0196 1.3783 0.1590 0.4820 
4 0.2915 0.0201 1.1726 0.0559 0.4820 
5 0.3278 0.0214 1.5840 0.9152 0.1058 
6 0.4728 0.0424 2.8182 0.8035 1.3638 
7 0.5223 0.0510 1.2960 0.7004 0.1058 
8 0.5426 0.0491 0.4731 0.0559 0.7760 
9 0.6667 0.0442 1.5017 1.1301 0.6937 
10 0.7727 0.0323 2.2011 1.2332 0.4820 
11 0.8321 0.0184 2.8182 1.4480 0.1881 
12 0.9332 0.0258 1.7074 1.1301 1.5754 
13 0.9790 0.0147 5.4925 4.8854 1.2815 
14 1 0 12.6924 6.8190 3.9268 

Type 13 Relative position Discrepancy measure 
Landmark Mean Std. dev. cr/2 cr 3cr/2 

1 0.2124 0.0351 1.9954 0.1590 0.3997 

2 0.3028 0.0284 1.7897 2.3074 1.8694 . 

3 0.4063 0.0294 1.9954 2.0925 2.1633 

4 0.4293 0.0299 1.9954 2.5222 2.1633 

5 0.4981 0.0320 1.9954 2.3074 2.1633 

6 0.5211 0.0329 0.9668 2.0925 1.5754 

7 0.8713 0.0378 0.4731 1.1301 1.2815 

Type 22 Relative position Discrepancy measure 

Landmark Mean Std. dev. cr/2 cr 3cr/2 

1 0.4489 0.0850 0.8846 0.5887 0.1058 

2 0.6149 0.0435 1.9954 1.2332 0.1058 

3 0.6513 0.0438 1.7897 1.6629 0.3997 

Table 4.2 Discrepancy measure of the distribution of landmarks in 
type 5, 13, and 22. 
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4.4 Classification Results 

With the inferred Markov networks created in Section' 4.3, two classification 

experiments have been conducted. The first experiment tests the inferred Markov 

network with one empirical landmark (LM). While the second experiment examines 

the effect of two empirical landmarks networks. 

6 chromosome types have been selected. In each type, a total of 100 

chromosomes were extracted to create the inferred Markov network (chromosome 

network) and 30 extra chromosomes for the testing set. In the first experiment, a 

empirical landmark was employed in the testing phase. Such empirical landmarks 

are summarized in Table 4.3. 

Type 5 13 18 20 21 22 

Relative 0.3280 0.4981 0.6532 0.6789 0.5040 0.6149 
landmark 
position 

Table 4.3 Empirical landmarks used in experiment one. 

The aligned probabilities in each alignment were normalized with the 

Maximum Representative Probability (MRP) of the tested chromosome networks 

which minimized the effect of the length of the samples in the alignment process. 

The result of this experiment is shown in Table 4.4. 

Type 5 13 18 20 21 22 Average 

NoLM 90% 90% 83.3% 83.3% 100% 83.3% 88.3% 

1LM 96.7% 90% 83.3% 86.7% 96.7% 86.7% 90% 

Table 4.4 Classification result of experiment one. 
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The average correct rate is 90% which can be c.ompared with the original 

forced landmark model (92-93%) as claimed in [10]. 

In the second experiment, two empirical landmarks, was employed. Since 

only 2 empirical landmarks were found in type 20 and these landmarks are closed 

together (0.6789 and 0.7528), therefore only one of them was selected. ' Table 4.5 

summarizes the empirical landmarks used in this experiment. 

Type 5 13 18 20 21 22 

LM1 0.2924 0.2124 0.2389 0.6789 0.3363 0.4489 

LM2 0.7728 0.4981 0.6532 Not applied 0.5040 0.6149 

Table 4.5 Landmarks used in experiment two. 

The classification is shown in Table 4.6. There is a penalty on the correct rate 

(5 %) when two empirical landmarks are employed. The tradeoff with such penalty is 

the time saved in the string-to-network alignments. 

Type 5 13 18 20 21 22 Average 

NoLM 90% 90% 83.3% 83.3% 100% 83.3% 88.3% 

2LM 93.3% 83.3% 83.3% 96.7% 83.3% 70% 85% 

Table 4.6 Classification result of experiment two. 

Type 5 13 18 20 21 22 Average 

1LM 0.5593 0.5 , 0.5469 0.5640 0.5 0.5264 0.5328 

2LM 0.3679 0.3786 0.3490 0.5640 0.3863 0.3774 0.4039 

Table 4.7 Fraction of time needed. 

Table 4.7 shows the fraction of time, with respect to computation with no 

landmarks, needed in the string-to-network alignments when forced landmark is 
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considered. This table was calculated with the assumption that given a relative 

landmark position a, ' the fraction of edges that precedes the corresponding 

landmark state is near or equal to a. For the cases with one landmark, if a is the 

relative position of the landmark, the fraction of time needed to complete the string

to-network alignment is 

The computation is similar in two landmarks case. If a and b represent the 

relative position of the first and second landmark, respectively, then the fraction of 

time needed is 
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Chapter 5 · 

Speech Recognition using Inferred 

Markov Networks 

The inferred Markov networks with empirical landmarks were employed in this 

chapter for the classification of speaker independent speech data. The TIMIT speech 

database has been used in this chapter. The database consists of the phonemes from 

continuous English sentences. The features used in the experiments were similar to 

the traditional approaches which concentrates on the spectrum of the speech 

windows. Section 5.1 describes the preprocessing tools for the feature extraction 

delineated in Section 5.3. The data set used in the experiments is discussed in 

Section 5.2. Section 5.4 discusses the empirical landmarks used in the experiment. 

Lastly, the classification results are presented in Section 5.5. 

5.1 Linear Predictive Analysis 

There is a high correlation between adjacent samples of speech waveforms. The 

basic idea of linear prediction of speech is to express the current signal Yn as a linear 

combination of the past signals [32] as 

(5.1) 

where {a
i
}, i = 1,2,'··' P are linear predictive coefficients which satisfy the least 

mean square prediction error criterion. 
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By minimizing the mean square prediction, which is the difference between 

the predicted value and the real value, a p-dimensional first-order simultaneous 

equations can be obtained as follows: 

(5.2) 

where rj = Y nY n+ j is a correlation coefficient of waveform {y n }, and {u
i

} can be 

derived by solving Eq(5.2). In practice, rj is defined within a finite number of 

samples of N of {y n }. A time-window of N samples is applied where Y n exists inside 

the window (w n = 1) and equals to zeros (w n = 0) outside the window. Thus 

1 N-l 

rj = - LYnwnYn+jWn+j, 
N n=j 

(5.3) 

Calculation of rj with the time-window assumption is called the correlation method. 

Since the linear predictive analysis of speech is based solely on the output 

samples, an all-pole system (an autoregression (AR) process in statistical sense) is 

identified. The poles correspond to the formants of the speech spectrum. 

An all-pole system can be identified by the following system response 

function 

(5.4) 

where A(z)=1+UIZ-l+U2Z-2+ ... +Upz-P, and {ui } are the linear predictive 

coefficients derived by analysis. The poles of H( z) can be found from the roots of 

(5.5) 
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By solving Eq(5.5), where it is a p-order equation, p roots can be found in the 

form of pl2 complex conjugate pairs. For each conjugate pair 

. - fS; - - -fS;, I 2 z . - re z . - re 1 = ... P 
II '11 , ",' 

a formant in the speech spectrum can be identified and the formant frequency,1;, 

and the bandwidth, hi' are given by 

1 1 f =-8i =-arg(zi)Hz 
2rcT 2rcT 
1 

hi =-llog'tI Hz 
rcT 

where T is the sampling period. 

In practice, the order of the linear predictive coefficients, p, should be two 

times of the number of formants in the frequency range of 0 to l/2T. This criterion 

guarantees that the roots in Eq(5.5) correspond almost exactly to the formants. 

5.2 TIMIT Speech Database 

The TIMIT speech database consist 6300 English sentences recorded from 630 

speakers where each speaker spoken 10 sentences. The speakers came from 8 major 

regions of the United States. The speech signals were digitized into 16-bit peM 

format with a frequency of 16 KHz. 20 male speakers were selected in the 

experiments with each spoke around five sentences. Six phoneme groups were 

extracted from the sentences by the labeling index provided by the TIMIT database. 

The phoneme groups are "aa", "ae", "ah", "er", "ih", and "iy". From each of the 

phoneme group, 100 samples were extracted which consists of 50 training samples 

and 50 testing samples. 
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5.3 Feature Extraction 

A preprocessed speech sample will be divided into a number of overlapped speech 

windows where each speech window contains a fixed numBer of data points (the 

window size). A feature vector will be extracted for each speech window. Therefore, a 

speech sample can be expressed in terms of a set of ordered feature vectors. All 

feature vectors from the speech samples will be collected and grouped, according to 

a certain distance measure, into a number of clusters. The collection of the 

characteristic feature vectors (which are called the centroids of the clusters) is called a 

codebook. The size of the codebook is identical to the number of clusters which is 

selected before the feature vectors are grouped. An index will be assigned to each 

feature vector according to the cluster to which the feature vector belongs. Since the 

string-to-network alignment can accept symbol strings only, a symbol is assigned to 

each codebook index. For a size-8 codebook, symbols 'A', ... , 'H' are selected. A 

speech sample will be transformed into a string where the n-th character in the string 

represents the codebook index of the feature vector of the n-th speech window. 

The features used in the experiments were based on the distribution of the 

first and the second formants, 11 and 12' of the speech signals. These formants were 

extracted by solving the all-pole system response function with l4-order LPC 

coefficients. The setting of the window size is 25.6ms (256 data points) and the 

window overlap is lOms. The feature vectors, (11,12)' from the windows of speech 

samples were vector quantized to create a codebook with the given size. A symbol 

was assigned to each feature vector (which was extracted from a speech window) of 

a speech sample according to the codebook index where the vector belongs after 

quantization. 

Half of the speech samples in string representation in each speech group will 

be used to create the inferred Markov networks using the string-to-network 

alignment. The classification results of the speech groups will be presented in later 

sections. 
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The codebook sizes 16, 32 and 64 were tested for the TIMIT speech database. 

The best performance was obtained when codebook size 32 is employed. There are 

no rules on the determination of the codebook size with r~~pect to the recording 

conditions (continuous or isolated). The choice for TIMIT database is different from 

that of in other experiments where a speech corpus with isolated Cantonese 

syllables (a Chinese dialect) is considered. For the Cantonese speech corpus, 

codebook size 8 is selected which is relatively small among other models using 

Hidden Markov Models (HMM). The main different is that phonemes in TIMIT 

database were extracted in continuous sentences while the Cantonese syllables were 

recorded in isolated manner. Experiments on Cantonese speech recognition is 

presented in Appendix A. 

5.4 Elllpirical Landlllarks in Speech Networks 

In Section 4.3, chromosome networks were selected in order to investigate the 

distributions of the empirical landmarks. The discrepancy measures were employed 

to examine the normality of the distributions of the empirical landmarks. 

Chromosomes are the samples with strong sequential nature in selected features. 

For the analysis in Section 4.3, the states in chromosome networks which output 

observable symbol (non-empty states) with probability equal to 1 were selected as 

empirical landmarks. The robustness of such empirical landmarks have been proved 

in the analysis in Section 4.3 and the classification result given in Section 4.4. 

As discussed in the next . section, phoneme samples in TIMIT database does 

not exhibit strong sequential nature, no empirical landmarks which were formed by 

non-empty states can be found in the speech networks. In these cases, empty states 

with probability equal to 1 should be considered. Table 5.1 summarizes the 

characteristics of the phoneme samples and the speech networks with size 50. As 

shown in the table, the numbers of empirical landmarks found in the speech 

networks are large. On the other hand, the normality of the distributions of the 
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empirical landmarks are varying as shown in Table 5.2 which given the discrepancy 

measure of the empirical landmarks in group "aa". Therefore, the actual empirical 

landmarks used in the string-to-network alignment should be ~ selected carefully, i.e., 

the relative position of the landmark should be roughly in the middle of the string 

and the corresponding discrepancy measures should be small. 

Phoneme Sample length Number of 

Group Max. Min. Mean S.D. Empirical LMs 

aa 64 10 31.86 10.97 25 

ae 65 17 37.54 11.76 62 

ah 35 9 19.66 6.30 24 

er 57 6 30.06 9.72 '36 

ih 40 10 18.56 6.55 21 

iy 45 5 17.54 7.28 14 

Table 5.1 Characteristics of the phoneme samples and empricial 
landmarks found in the speech networks. 
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Group "aa" Relative Position Discrepancy Measure 

Landmark ' Mean S.D. a/2 a 3a/2 

1 0.1183 ' 0.1465 1.4982 2.6950 0.6983 

2 0.1839 0.1637 1.2073 2.3911 1.1140 

3 \ 0.2354 0.1662 1.2073 0.0395 1.1140 

4 0.2373 0.1649 0.9164 0.6472 1.1140 

5 0.3165 0.1748 1.2073 0.6472 0.6983 

6 0.3274 0.1723 0.3346 0.9510 0.6983 

7 0.3311 0.1692 0.3346 0.6472 0.6983 

8 0.4020 0.1764 0.6255 1.5586 0.1330 

9 0.4037 0.1760 0.6255 1.2548 0.6983 

10 0.4054 0.1760 0.6255 1.2548 0.6983 

11 0.4085 0.1757 0.6255 1.2548 0.6983 

12 0.4128 0.1737 1.4982 1.2548 0.6983 

13 0.4211 0.1772 1.2073 1.8625 1.1140 

14 0.5067 0.2026 1.7892 0.6472 0.1330 

15 0.5481 0.2036 1.4982 0.6472 0.1330 

16 0.5987 0.1903 1.2073 0.6472 0.1330 

17 0.6768 0.1920 1.4982 2.1663 0.6983 

18 0.6800 0.1918 0.9164 1.8625 0.6983 

19 0.7536 0.1826 1.2073 0.6472 0.1330 

20 0.7620 0.1760 1.7892 0.0395 0.2827 

21 0.7690 0.1787 1.2073 0:0395 0.1330 

22 0.8250 0.1780 1.4982 1.7835 0.5487 

23 0.8272 0.1778 1.4982 1.7835 0.5487 

24 0.9734 0.0894 7.2294 3.9103 1.5297 

25 0.9992 0.0059 8.6840 4.5179 2.3610 

Table 5.2 Discrepancy measure of the distribution of landmarks in group "aa" 
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5.5 Classification Results 

The experiments conducted with the TIMIT database were' carried in a context-

independent manner. Each phoneme was treated as an independent speech signal. 

With the Hidden Markov Model using one feature, the recognition rate 49.78% was 

reported for the context-independent phone model with a single codebook [17]. 

Three experiments have been conducted. Experiment 1 tests the phoneme 

speech networks with respect to the training set. Experiment 2 deals with the testing 

sets. The empirical landmarks discussed in last section were employed in 

experiment 3 concerning the classification of the testing sets with one landmark. 

Table 5.3 shows the empirical landmarks used in experiment 3 which are located 

near the middle of the sample strings such that half of the computations needed in 

string-to-network can be saved. The aligned probabilities were normalized with the 

Maximum Representative Probability (MRP) of the tested networks. 

Group aa ae ah er ih iy 

Relative 0.5067 0.4813 0.4936 0.4870 0.4888 0.4897 
landmark 
position 

Table 5.3 Empirical landmarks used in experiment 3 

The recognition rate for the training set is 79% as shown in Table 5.4. The 

recognition rate for the testing set is 59%. The performance is better that the one 

using HMM (49.78%) [17]. However, the number of phoneme groups used here is 

relatively small. The recognition rate dropped to 53% in experiment 3 where one 

. empirical landmark was employed. Dropping of recognition rate indicates that 

empirical landmarks formed by non-empty states are more robust than the one 

formed by empty states. However, the recognition rate of individual groups 

between experiments 2 and 3 are consistent. Further normalzation on the 

classification result with landmarks may be applied. 
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Group aa ae ah er ih iy average 

Train set 86% ' 72% 78% 76% 78% 84% 79% 

Test set 52% 50% 62% 58% 58% 72% 59% 
, 

Test set & 46% 44% 64% 46% 50% 68% 53% 
1LM 

Table 5.4 Classification result of the TIMIT database. 

Training \ Testing aa ae ah er ih iy 

aa 86 0 12 0 2 0 

ae 4 72 4 0 12 8 

ah 10 2 78 6 0 4 

er 2 0 14 76 2 6 

ih 0 2 2 2 78 16 

iy 0 0 0 0 16 84 

Table 5.5 Confusion matrix of experiment 1. 

Training \ Testing aa ae ah er ih iy 

aa 52 2 34 0 10 2 

ae 2 50 8 0 34 6 

ah 8 2 62 2 12 14 

er 6 0 22 58 10 4 

ih 0 0 10 8 58 24 

iy 0 0 0 0 28 72 

Table 5.6 Confusion matrix of experiment 2. 

Training \ Testing aa ae ah er ih iy 

aa 46 2 42 0 8 4 

ae 2 44 14 0 26 '14 

ah 12 4 64 2 8 10 

er 8 0 30 46 12 4 

ih 0 0 16 4 50 30 

iy 0 0 0 0 32 68 

Table 5.7 Confusion matrix of experiment 3. 
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Conclusion 

Automation of chromosome classification is a challenging and rewarding task since 

it is tedious and time consumed. Most effort have been devoted to the statistical 

approaches as most classification problems do. Structural approaches can be applied 

because of the sequential nature of the band patterns on chromosomes. The band 

patterns are also the basis of visual classification. 

Inference of Markov network by dynamic programming is the most 

successful method among all structural approaches in automated chromosome 

classification. Samples are incorporated into the Markov network through the 

dynamic programming search on the optimal modification of the original inferred 

Markov network. The dynamic programming search guarantees that the probability 

of which the modified network generates a given sample is maximum among all 

other modifications. 

6.1 Suggested Illlprovelllents 

Improvements on the performance of the inferred Markov networks may 

concentrates on two external aspects. The first aspect concerns the speed of the 

string-to-network alignment (the dynamic programming search). The complexity of 

the string-to-network alignment is proportional to the size of the inferred Markov 

network being modified. The network is getting larger when more samples are 

incorporated. The forced landmark concept can speedup the string-to-network 

alignment which employes the inherited knowledge to segment the input strings. 
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This concept has been generalized into empirical landmarks where the speedup can 

be applied with no inherited knowledge on the segmentation of input strings. 

The second aspects aims at improving the recognition rate of the 

classification by inferred Markov networks. The alignment probability of a given 

input string with the inferred Markov network has been employed as the 

discrimination criteria. Such alignment probability was calculated by string-to-

network alignment and was affected by the size of the network. Therefore, 

normalization is needed in order to obtain better recognition results. Normalization 

used in the experiments of this thesis is based on the Maximum Representative 

Probability (MRP) of the tested inferred Markov network. The input strings will be 

aligned with networks of different types. The alignment probabilities will be divided 

(normalized) by the MRP of the corresponding networks. For a given input string, 

the network which produces the maximum among all normalized probabilities is the 

type of this sample. A method for explicit normalization of the alignment 

probabilities may be developed by investigating the probability distribution 

functions of the inferred Markov networks. 

Better recognition result may be obtained by adjusting the normalization 

parameter where MRP is the initial guess. An optimization problem can be 

constructed which maximizies the recognition rate of the training set (the input 

samples which constructed the networks). The idea can be demonstrated by a 

problem with two types. For each type, N samples are selected to construct the 

network for that type. Let ~,j,k be the logarithm alignment probability of the kili 

sample of type j and the network i, and mi ' the normalization parameter of network 

i. The following inequalities are expected to be satisfied if the recognition rate is 

100%: 

~,l,n - ml > P2,1,n - m 2 , n = 1,· .. , N (6.1) 

P 2,1,n -m2 > ~,2,n -m1 , n = 1,···,N (6.2) 
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Let D1,n = P2,1,n - fJ.,l,nand D 2,n = fJ. ,2,n - P2,2,n , Eq(6.1) and Eq(6.2) become 

n=l··· N , " (6.3) 

'n = 1 ... N , " (6.4) 

Eq(6.3) and Eq(6.4) can be simplified by finding 

n=l··· N , " (6.5) 

n=l··· N , " (6.6) 

Therefore, Eq(6.3) and Eq(6.4) become 

(6.7) 

(6.8) 

The inequalities Eq(6.7) and Eq(6.8) can be solved as in Fig6.1. 

From Fig 6.1, the solution space can be found when two shadowed regions 

are intersected. This required that one of DIor D2 is negative and the absolute value 

is greater than another one, or both Dl and D2 are negative. However, Dl and D2 are 

positive in most cases. Therefore, the criteria in Eq(6.5) and Eq(6.6) should be relaxed 

such that the smaller values can be considered. By relaxing the conditions, some 

inequalities in Eq(6.1) and Eq(6.2) will never be satisfied. Therefore, the recognition 

rate will less that 100% even a solution is found after relaxation. The optimization 

problem is to find the optimal combination of Dl and D2 such that the recognition 

rate is maximum. 
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(a) Dl > 0 & D2 > 0 

Fig 6.1 Possible solutions of the inequalities Eq(6.7) and Eq(6.8) 

where represents the solution space of Eq(6.7), 

for Eq(6.8), and for both Eq(6.7) and Eq(6.8). 
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6.2 Concluding Retnarks 

A method for locating empirical landmarks in inferred Markov networks, which 

requires no a priori information on the segmentation of the input strings, has been 

introduced. The method is based on the property of the Markov network inference 

which retains the landmark substrings of the input strings. This property is 

important for the inference since the probability of an input string generated by the 

modified netw9-!k (the output of the string-to-network alignment) is proportional to 

the number of landmark substrings (in any length) fOlffid in the input string. In 

other words, the Markov network inference can be interpreted as a string 

segmentation process. In fact, one of the applications of the forced landmark model 

'is to estimated the centromere position of human chromosomes [10]. 

Analysis on the distributions of the empirical landmarks of human 

chromosomes have been carried out. It has been shown that the distributions of 

most relative landmark positions are normal. Therefore, the mean of the relative 

landmark positions is a proper estimation. In compare with the distributions of 

centromere position of 22 human chromosome types, half of it can be estimated by 

an empirical landmark. Experiments on chromosome classification have shown that 

the discrimination power of Markov network inference with empirical landmarks is 

similar to that of inherited landmarks. 

Manipulations of empty states in the inferred Markov networks are the 

crucial part of the dynamic programming inference. Network modifications are 

directed by the result and the cost function of the string-to-network alignment 

expliCitly. The str.ucture of the cost function for the string-to-network alignment 

have been illustrated and explained extensively. 

In last chapter, the inferred Markov networks have been employed for 

speech recognition. Extensive experiments on recognizing phonemes in the TIMIT 
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database and isolated speech in a Cantonese speech corpus have been conducted. 

The result on phoneme recognition is better than the one using HMM with single 

codebook. With the application of empirical landmarks, half of the computations can 
. ' 

be saved without sacrificed much of classification power. Since the size of the 

Cantonese speech corpus is relatively small, only tone independent classification can 

be tested. The result are encouraging despite no strong sequential nature in the 

speech data (phonemes, especially) can be found by the primitive feature extractor. 
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Appendix A 

Classification experiments on a Cantonese speech corpus using inferred Markov 

networks are described in this appendix. The aims of these experiments is to provide 

a reference case for the feature selection and classification of isolated speech using 

inferred Markov networks where the sequential nature of the feature patterns are 

supposed to be strong. 

A.I Cantonese Speech Corpus 

The Cantonese speech corpus used in the experiments was originally created for the 

recognition of tone in Cantonese syllables [4]. A Cantonese syllables may consist of 

three phonemes, which are Initial Consonant (lC), Middle Vowel and Final Consonant 

(FC) as shown in Fig A.l. 

IC + Vowel 
( optional) 

I .... 

+ 

Final 

FC 

(optional) 

~I 

Fig A.l Components of a Cantonese Syllable. 

The final of a Cantonese syllable is defined to be the concatenation of the 

middle vowel and the final consonant. According to the reference [41], there are 36 

non-entering tone finals and 17 entering tone finals where each non-entering tone 

finals can be pronounced in 6 different tones while each entering tone finals in 3 

different tones. So there are 267 different syllables (36x3 + 17x3) with which 234 
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syllables are validl
. For each syllable, a valid Cantonese syllable was selected which 

is the concatenation of a initial consonant and the syllable itself. 

The Cantonese speech corpus is a collection of such selected Cantonese 

syllables which were pronounced in isolated form by a group of 20 native Cantonese 

speakers aged around 20 (10 male and 10 female). Each speaker was asked to 

pronounced each syllable three times. So there are total 14040 speech samples ~ The 

speech signals were bandpass filtered with a passband from 100 Hz to 4.3 KHz and 

were digitized by a 12-bits linear AjD converter at 10 KHz sampling rate. 

For each Cantonese syllable, there are 60 samples (3 times from 20 speakers). 

This is a relatively small sample set for the classification experiments with inferred 

Markov networks. Therefore, the speaker independent, tone independent syllable 

groups were selected. Each group is a collection of identical syllables regardless of 

tones. Six Cantonese syllable groups were selected as shown in Table A.1. In each 

group, 100 samples were extracted which consists of 50 training samples and 50 

testing sampl~s. 

Group IPA Mnemonic Sample in A vailable tones 
symbol tone 1 

1 jaj ah O~ I, 3, 5 

2 /fu/ fu 7( 3,4,5 

3 /hauj hau ~X . I, 3, 5 

4 jjij J1 1X I, 2, 3, 4, 5, 6 

5 jjyn/ jyn iMM I, 2, 3, 4, 5, 6 

6 /t~m1 rm ~ I, 3, 5 

Table A.1 Six Cantonese syllable groups. 

1 A valid syllable here is a syllable that can produced valid Cantonese syllables with the 
concatenations of some initial consonants. 
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A.2 Feature Extraction 

The feature extraction process is the same process as described in Section 5.3. 

For the Cantonese speech corpus, the codebook sizes 8 and 16 were tested and the 

size 8 codebook turned out to be a better choice. It is reasonable for more sequential 

nature can be exhibited with less symbols in quantization. For the case of 

chromosome classification, 5 to 7 symbols ('c', tb', 'a', '=', 'A', 'B', 'Cl) were active. 

Therefore, size 8 codebook seems to be a reasonable choice. 

A.3 Classification Results 

Two classification experiments have been conducted. The first experiment tests the 
. . 

capability of the syllable networks with respect to the training set itself while the 

second experiment deals with the testing set. Again, the aligned probabilities were 

normalized with the MRP of the tested networks. 

As shown in Table A.2, the average correct rate for the training sets is 

79.67%, while the correct rate for the testing set is 64.67%. The syllable group "jyn" 

turns out to be the worst among the six groups in both experiments. Part of the 

reasons of the bad performance is that the inferred Markov network for this group is 

the biggest one (such network have 1316 states). Such phenomenon indicates that 

the MRP normalization method should be reconsidered. From the confusion matrix 

shown in Tables A.3 and A.4, "jyn" is often confused with "ji" and getting worse 

when the testing set is examined in experiment 2. 
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Group ab fu hau ji jyn rm average 

Train set 82% 88% 84% 78% 68% 78% 79.67& 

Test set 70% 78% 62% 62% 52% -64% 64.67% 

Table A.2 Classification result of the Cantonese syllables. 

Training \ Testing ah fu hau ji jyn rm 

ah 82 0 2 0 14 2 

fu 4 88 0 2 0 6 

hau 2 2 84 0 10 2 

Jl 4 8 0 78 8 2 

jyn 0 14 0 18 66 2 

rm 8 2 8 0 4 78 

Table A.3 Confusion matrix of classification of training set. 

Training \ Testing ab fu hau ji jyn rm 

ab 70 0 2 4 14 10 

fu 2 78 0 10 2 8 

hau 20 0 62 0 12 6 

Jl 0 24 0 62 14 0 

jyn 0 12 0 32 52 4 

rm 16 4 10 0 6 64 

Table A.4 Confusion matrix of classification of testing set. 
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