
ON THE TRAINING OF FEEDFORWARD

NEURAL NETWORKS

A Thesis

Submitted to

The Department of Electronic Engineering

of

The Chinese University of Hong Kong

In

Partial Fulfilment of the Requirements

for the Degree of
• - � . 、.

- 、 -c.

. - . 〜 \

Master of Philosophy \

KU ra 4 0
f

By Hau-san Wong

June, 1993

U L

(f h j u ^
m

I P f j

fY統系馆•圖

OCT]m j i |

On the Training of Feedforward Neural Networks

ABSTRACT

For the training of feedforward neural networks, the Back-Propagation (BP)

algorithm has almost become the de-facto standard of training algorithms. However, the BP

algorithm suffers from three serious defects, namely that the training speed is in general slow,

that the training process may encounter local minima, and that the hidden layer size of the

network has to be determined arbitrarily. The last problem is in particular serious as an

inaccurate determination of the hidden layer size would indirectly lead to the other two

problems.

Recently, a new training approach known as the dynamic node creation

approach has been derived to counteract this latter problem of indeterminate architecture. The

method employed by this approach is to start with a minimal network and subsequently add

hidden nodes to the network when the need arises. In this way, an inadequate estimation of

the hidden layer size can easily be compensated. However, this new approach of training has

created other problems: for example, these kinds of algorithms either do not possess a

convergence proof or its convergence depends on some artificial parameter initialization

method for the new hidden node which in turn depends on a few patterns with large errors

such that the action of the new node can offset their errors. This approach will in turn lead

to the memorization of noisy patterns. Moreover, these dynamic node creation algorithms

often start with a single-node network which leads to a long training time, and which in turn

leads to poor generalization capability.

In this thesis, a deterministic dynamic node creation training algorithm is

described. The distinctive feature of this algorithm lies in its deterministic new hidden node

initialization scheme which depends on the whole training set rather than a single training

pattern. As a result the memorization of a single noisy training pattern is discouraged.

Moreover, the current algorithm is guaranteed to converge to a finite resulting network.

Two enhancements to this algorithm are also derived: the generalization

measure monitoring scheme is derived to select the most suitable moment during training for

I
I

On the Training of Feedforward Neural Networks

the addition of a new hidden node to the network, thus preventing an overly long waiting time

before the addition of a new node which leads to a deterioration in the generalization

capability of the network. The derivation of the initial hidden layer size estimation scheme

allows the determination of an initial hidden layer size for the dynamic node creation scheme

instead of using an initial single node network, thus leading to less node additions in the

dynamic node creation process which translates in turn to a shorter training time.

ii

On the Training of Feedforward Neural Networks

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor, Dr. T. Lee，who

has provided me with ceaseless inspirations and support during the course of my research, and

who has helped me to discover the real pleasure of research.

I would also grateful to my colleagues in the Image Processing Laboratory,

especially K.W. Cheung, Y.M. Tham, S.W. Chiu，W.K. Lai and H.K. Kwan for the many

stimulating exchanges.

Finally, I would like to offer my deepest thanks to my family for their unfailing

support throughout the course of my research.

iii

On the Training of Feedforward Neural Network

TABLE OF CONTENTS

1 INTRODUCTION

1.1 Learning versus Explicit Programming 1-1

1.2 Artificial Neural Networks 1-2

1.3 Learning in ANN 1-3

1.4 Problems of Learning in BP Networks 1-5

1.5 Dynamic Node Architecture for BP Networks 1-7

1.6 Incremental Learning 1-10

1.7 Research Objective and Thesis Organization 1-11

2 THE FEEDFORWARD MULTILAYER NEURAL NETWORK

2.1 The Perception 2-1

2.2 The Generalization of the Perceptron 2-4

2.3 The Multilayer Feedforward Network 2-5

3 SOLUTIONS TO THE BP LEARNING PROBLEM

3.1 Introduction 3-1

3.2 Attempts in the Establishment of a Viable

Hidden Representation Model 3-5

3.3 Dynamic Node Creation Algorithms 3-9

3.4 Concluding Remarks 3-15

iv

On the Training of Feedforward Neural Network

4 THE GROWTH ALGORITHM FOR NEURAL NETWORKS

4.1 Introduction 4-2

4.2 The Radial Basis Function 4-6

4.3 The Additional Input Node and the Modified
/

Nonlinearity 4-9

4.4 The Initialization of the New Hidden Node 4-11

4.5 Initialization of the First Node 4-15

4.6 Practical Considerations for the Growth

Algorithm 4-18

4.7 The Convergence Proof for the Growth

Algorithm 4-20

4.8 The Flow of the Growth Algorithm 4-21

4.9 Experimental Results and Performance

Analysis 4-21

4.10 Concluding Remarks 4-33

5 KNOWLEDGE REPRESENTATION IN NEURAL NETWORKS

5.1 An Alternative Perspective to Knowledge

Representation in Neural Network: The

Temporal Vector (T-Vector) Approach 5-1

5.2 Prior Research Works in the T-Vector

Approach 5_2

5.3 Formulation of the T-Vector Approach 5-3

V

On the Training of Feedforward Neural Network

5.4 Relation of the Hidden T-Vectors to the

Output T-Vectors 5-6

5.5 Relation of the Hidden T-Vectors to the

Input T-Vectors 5-10

5.6 An Inspiration for a New Training Algorithm

from the Current Model 5-12

6 THE DETERMINISTIC TRAINING ALGORITHM FOR NEURAL NETWORKS

6.1 Introduction 6-1

6.2 The Linear Independency Requirement for the

Hidden T-Vectors 6-3

6.3 Inspiration of the Current Work from the

Barmann T-Vector Model 6-5

6.4 General Framework of Dynamic Node Creation

Algorithm 6-10

6.5 The Deterministic Initialization Scheme for

the New Hidden Nodes

6.5.1 Introduction 6-12

6.5.2 Determination of the Target T-Vector

6.5.2.1 Introduction 6-15

6.5.2.2 Modelling of the Target
A

Vector BqHq 6-16

6.5.2.3 Near-Linearity Condition for

the Sigmoid Function 6-18

vi

On the Training of Feedforward Neural Network

6.5.3 Preparation for the BP Fine-Tuning

Process 6-24

6.5.4 Determination of the Target Hidden

T-Vector 6-28

6.5.5 Determination of the Hidden Weights 6-29

6.5.6 Determination of the Output Weights 6-30

6.6 Linear Independency Assurance for the New

Hidden T-Vector 6-30

6.7 Extension to the Multi-Output Case 6-32

6.8 Convergence Proof for the Deterministic

Algorithm 6-35

6.9 The Flow of the Deterministic Dynamic Node

Creation Algorithm 6-36

6.10 Experimental Results and Performance

Analysis 6-36

6.11 Concluding Remarks 6-50

7 THE GENERALIZATION MEASURE MONITORING SCHEME

7.1 The Problem of Generalization for Neural

Networks 7-1

7.2 Prior Attempts in Solving the Generalization

Problem 7-2

7.3 The Generalization Measure 7-4

vii

On the Training of Feedforward Neural Network

7.4 The Adoption of the Generalization Measure

to the Deterministic Algorithm 7-5

7.5 Monitoring of the Generalization Measure 7-6

7.6 Correspondence between the Generalization

Measure and the Generalization Capability

of the Network 7-8

7.7 Experimental Results and Performance

Analysis 7-12

7.8 Concluding Remarks 7-16

8 THE ESTIMATION OF THE INITIAL HIDDEN LAYER SIZE

8.1 The Need for an Initial Hidden Layer Size

Estimation 8-1

8.2 The Initial Hidden Layer Estimation Scheme 8-2

8.3 The Extension of the Estimation Procedure

to the Multi-Output Network 8-6

8.4 Experimental Results and Performance

Analysis 8-6

8.5 Concluding Remarks 8-16

9 CONCLUSION

9.1 Contributions 9-1

9.2 Suggestions for Further Research 9-3

viii

‘；ri: 二，, On the Training of Feedforward Neural Network
n'.-vi •̂.'•.•..•T • .-t̂ .-i'. - . 1 . ,

REFERENCES R-1
，..,....，••: t

•’. 1. ••• . . . •

APPENDIX , “ A-1

... • . •

. I , I I) ‘ 衛 ’ . . � - ： ：； :. , ；•".：•

. . . . „ • •
. . . ‘ . . . , . , '• 、 - AV

• ‘

,'、•... -；>；' ： • i： . • . *： .. 1. “ ； • ... 1 I
,, i • - . • ^ • t .f • • , . . • . ‘ ‘

‘ ^ • •• “ ： • .

. • . • . ^ ：• , • ； / ‘ ： •‘ . . .

.“ -

- . ’ _ + • • . • . , .
. • - , . - ‘ -

• • / • • •
• ‘ - ‘

• :. . . .
. . - . . . • . . 、 • ' . 、 ： . ： . . . , . • , . ‘

、. . , ‘
. , , • .

‘ ‘ • • . ‘ “

- ‘

； — . , •

• . ‘ - . • ‘ ‘

• •• • “ • • ^ . •„ ： •

, • \ • V- "‘ •

. (： ‘ f .

‘ • . ！ ‘ ‘ ‘‘ • •. .,.，..
.. • - • • - • • . •‘ ‘ .. • • _

• • •• •

- ,.…： ：. ：‘ .•. ,

. . .： --•. . .： - 、

. • ““ (； • • • - • • ‘ •

. , _ ” ： , . . . 气 . ： V ； ... , ： . . . •

- “ . , ‘ ‘ ： . . ： , , . /

： 、 ： … • 广 ： 二 • : . ； ： . . … 、

‘.-• ： ‘ . “ ^ “； ‘ \ ； • - V ‘ . .-
‘“ .. 、 .

• 省 . ‘ . • . • . 、 ‘ 二 ， , • , . ,, . ..

• ：丨 . . .： . I “ 丫. /.....、、. . . 、 • . ••‘
‘ . • +

小 ’ . . .

• ‘ •

• ‘ . I) ‘ r ‘ ‘ . .. • . . I . . - . •• .

- • - ‘

- 、 ： . . .

j. , ‘ T- . — ^
‘ , “ ‘ , 1

. , ： • ； ： ‘ . , ：

V 、 ’ . ix “

‘ ^ ^ ,) > .
. (i- k
, . ^ M " , . . •

C ' l , /) 二 ? , ， 於 卜 , - — ‘ 玄 » . • . 、) • . . …..

On the Training of Feedforward Neural Networks

1 INTRODUCTION

1.1 Learning versus Explicit Programming

The von Neumann computer, the most prominent intelligent device today

besides the human brain, essentially operates by following a set of verbal instructions known

as programs supplied by us human beings. Through this operation mode the von Neumann

computer excels at almost every task ranging from number crunching to database

management. It gradually seems that almost every task conceivable by human beings can be

translated into programs which is then carried out promptly by the sequential computer.

It was when the sequential computer found its way into wider areas of

applications (especially in the field of pattern recognition) that the limitations of the above

approach starts being felt: a simple object recognition task which we human beings take for

granted, would quickly overwhelm the von Neumann computer due to the requirement for

exact specification of the object before the possibility of recognition by the sequential

computer. An entity such as a human face which could be recognized at a glance by us

would have to be, according to the above scheme, broken down into individual feature and

supplied to the computer. But in what way should we break up the human face to obtain

those features (since obviously there is an infinite way of doing so) and how many of these

features are to be supplied to the computer (since we do not know how many of these

features are required to uniquely determine a human face)? Even if we can successfully

supply these primary features to the computer, the computer still could not be qualified as an

effective face recognizer due to the following fact: a human being can still recognize a face

even if the face is somewhat distorted or if the person has aged. For the sequential computer,

a complete re-specification of the features are required due to the variations in many of the

original features. After the re-specification, there is no guarantee that the sequential computer

would still recognize the face. In other words, the sequential computer pattern recognizer has

zero fault tolerance and zero generalization. To continually recognize this face, we must

Page 4-1

On the Training of Feedforward Neural Networks

program the sequential computer such that the two sets of features are associated with the

single face. As can be visualized from the above example, the rule for face recognition

would become overwhelmingly complicated if more examples of subtle variations of the same

face are to be presented to the computer.

We can obtain some hints in solving this problem by questioning our own ways

of recognizing such complicated patterns: the answer is that we simply do not know how we

perform the task! In other words, no matter by what methods we are using in recognizing

patterns, they simply cannot be expressed in verbal forms. As a result we cannot

communicate this method to the sequential computer since it only accepts instructions in the �

form of verbal commands, and the only way to render a machine capable of performing such

complicated pattern recognition tasks is to allow it to learn the rule by itself, since no supply

of rules from the outside world is now possible. In fact, such a machine would mimic the

human brain more closely as the human brain also leams its own rules.

1.2 Artificial Neural Networks

One would expect that such a learning machine would possess structures

drastically different from the conventional sequential computer. In fact, the artificial neural

network, an example of such a learning machine, derive its structure directly from the

arrangemeni of neurons in the human brain: the neurons in the human brain are

interconnected in a dense fashion to each other. Therefore, the signals in one neuron can

simultaneously broadcast to many other neurons. In other words, the human brain operates

in a highly parallel fashion, and this mode of operation may be responsible for the human

brain's capability of recognizing complicated patterns. Researchers [50] therefore adopt this

structure as their model of learning machine in the hope that the pattern recognition capability

of the human brain can be directly grafted onto their machines.

The multilayer feedforward network proposed by Rumelhart et. al [49] is an

example of such an artificial neural net in which the network is composed of layers of

artificial neurons or nodes. The network consists of an input layer of neuron from which the

Page 4-2

On the Training of Feedforward Neural Networks

network accepts external information and an output layer which emits the processed

information. Between the two layers there exists multiple layers of neurons known as the

hidden layers which perform nonlinear transformation on the incoming information. Each

neuron in each hidden layer implements a nonlinear function and is connected to every

neurons in the layer below or above through network weights which are real multiplicative

factors. In general, the multilayer feedforward neural network is considered a mapping device

which performs a mapping from R" (n being the no. of neurons in the input layer) to R™ (m

being the no. of neurons in the output layer). The functional shape of the mapping is defined

by the hidden layers and the network weights. In this way, the topology of the learning

machine in the form of the feedforward multilayer perceptions are completely defined.

1.3 Learning in ANN

With the above learning machine, the process of learning can simply be defined

as the self-adaptation of all the connection weights in the network such that the network

implements a particular mapping specified by the user. In general, the mapping can be

conveniently specified by extracting sample points from the desired mapping and presents

them to the network as training examples. The collection of all these training samples is

known as the training set. With the training set defined, we still have to find an effective way

of modifying all the weights in the network such that the network implements the mapping

at least at those training samples.

A training method can be developed for the feedforward neural network

according to the following train of thoughts: for every possible combination of weights in the

network, a set of network output is defined for every training sample. In general, the network

output do not correspond to the desired output according to the specified mapping, and as a

result a mean square error E is defined which is simply equal to the L^ distance between the

desired mapping and the network implemented by the network. Viewed in another

perspective, a function E(w) is defined with the all network weights concatenated into a

vector w as the function domain and the mean square error E as the function range. This

、 Page 1-3

On the Training of Feedforward Neural Networks

function is normally known as the error surface [20]. In general, the shape of the errcr

surface is unknown and varies with the mapping specified by the user.

At first sight it seems that the above alternative viewpoint in the form of error

surface do not offer any further insight in developing a training method for the multilayer

feedforward network. However, in an intellectual leap, Rumelhart et. al [49] proposed that

one should descent on the error surface from an arbitrary initial state on the surface. Through

this successive descent process the weights in the network will change in such a way that the

system error E will decrease. Eventually the error E will be low enough such that the

network implemented by the network will approximate sufficiently the desired mapping. In

general, the simplest descent procedure on a continuous surface is the steepest gradient

descent process which requires only the evaluation of first order derivatives.

Therefore, the evaluation of the partial derivative of E with respect to all the

network weights is the prerequisite for the successful implementation of the learning process.

The evaluation of this quantity has been successful performed for a primitive version of the

multilayer feedforward networks which is known as the perception [48]. However, for many

years, no attempts have been made to generalize the perceptron though it is well known that

the perceptron cannot solve some very simple problems such as Exclusive OR as pointed out

by Minsky and Papert [36], due to the misconception that the evaluation of the partial

derivative of E with respect to all the weights in the network, if the network is anything more

complicated than the perceptron, would be extremely difficult. Therefore the contributions

of Rumelhart et. al [49] are such that they not only point out the feasibility of the

generalization of the perceptron into the multilayer perceptron but in fact even derive the

explicit expression for the partial derivative of E with respect to every weights in the network.

The achievement of this task is made possible through the adoption of the sigmoid

nonlinearity which possesses continuous derivative at every place instead of the step function

used in perceptrons. In this way，the calculation of the various derivatives with respect to

the network weights is made possible since the derivative expression usually involves the

derivative of the nonlinear function in the node. Moreover, they also discovered that the

Page 4-4

On the Training of Feedforward Neural Networks

partial derivative of E with respect to those weights connected to the hidden nodes in the

lower layer can be expressed as a function of the partial derivative with respect to those

weights connected to the upper layer. In other words, the errors are back-propagated from

the upper network layers to the lower network layers, hence the name back-propagation

algorithm adopted by Rumelhart et. al.

1.4 Problems of Learning in BP Networks

The BP network derived by Rumelhart et. al [49] has since then applied to

many problems including image compression [38], time series modelling [58], handwritten

character recognition [47] and many other pattern recognition problems. Though the BP

algorithm has met with some success in almost every problems it is applied to, its various

problems are also becoming more and more apparent as the algorithms is continually applied

to new problems. In general, these problems can be categorised into the following three

groups:

(1) Local Minimum problem: In principle, the BP algorithm is merely a gradient descent

algorithm which simply seek out those regions with near zero derivative, while ignoring

whether those regions are local minimum or global minimum. Many researchers had claimed

that this problem is not important as through experimentation they have discovered that the

probability of occurrences of local minima is low. However, Hecht-Nielson [20] had

discovered through simulation studies that true local minima really exist. Moreover，Gori et

al [18] also proved that true local minima do exist in some very simple training sets.

Therefore, the problem of local minimum is not merely a fictitious postulation but in fact

poses a real threat to a network's eventual convergence.

(2) The Indeterminate Architecture Problem: Through simulation studies it is discovered that,

in general, a neural network with more hidden layers and more nodes in each hidden layer

can handle more complicated training sets. However, an analytical relationship between the

complexity of a training set and the network size does not exist and the determination of the

network size has to be based on trial and error. The most important theoretical contribution

、 Page 1-5

On the Training of Feedforward Neural Networks

till today towards this direction is the proof derived by Hornik et. al'[23] that a neural

network with only a single hidden layer can represent any arbitrary training set. As a result,

the research work reported in this thesis involves only the single layer network as it is

adequate to represent all possible training sets. Though equipped with this knowledge, we

still have to estimate the number of nodes in the single hidden layer which is as much a

delicate task: an underestimation of the hidden layer size will result in a network which is not

capable of representing the training set, while an overestimation, far from being a bonus,

actually causes a deterioration in the quality of training set representation and its subsequent

generalization capability due to the over-abundance of parameters in the network which render

the network capable of representing not only the general features of the underlying mapping

but also any peculiarities in the particular training set chosen, including noise.

(3) The speed problem: The BP algorithm is in general found to be slow due to the

requirement that the learning step size should be small such as to avoid oscillations of the

network state during training. The lack of criterion in the choice of the learning step size also

contributes towards this problem as researchers, in realizing the oscillation problem, adopt

conservative learning steps for all of their problems when in fact the nature of some training

sets would allow the adoption of larger training steps such that convergence can be achieved

in a smaller number of training epochs (a training sweep through the whole training set).

Moreover, there is also the ill-conditioned behaviour of the gradient descent algorithm on

plateaus of the error surface: when the current state of the network is stuck on a plateau, a

large weight adaptation would be required such that the network state can escape from its

current position. However, due to the near zero gradient on the plateau the weight adaptation

on the plateau would be extremely small, which is the opposite of what we require. This

action of the algorithm would cause the current state to stuck at the plateau for a long time.

The best solution for the above problem would be to change the learning step

size to suit the local curvature of the error surface. The simplest learning step control

strategy is the momentum version of BP algorithm [49] which applies a judicious

Page 4-6

On the Training of Feedforward Neural Networks

reinforcement or damping of the current learning step according to the training history.

Notable among the attempts in directly controlling the learning step size according to the error

surface profile include the works of Jacobs [26], Chan and Fallsicie�51，and Weir[591.

Significant improvements over the fixed learning rate version of BP were reported.

1.5 Dynamic Node Architecture for BP Networks

The three problems stated above are among the most serious problems of BP

and are the main reasons which hinder the adoption of feedforward neural networks as a fully

reliable engineering device. One may note that, among the three problems, the indeterminate

architecture problem would pose a more serious threat to the eventual convergence of the

network: the speed problem is at least partially tractable through the learning step size

adaptation strategy due to the availability of information concerning the local curvature of the

error surface. Though the existence of true local minima is confirmed through the works of

Gori et al [18], the error surface may also contain many global minima due to the various

permutations of the network weights among the different nodes and the chance of the current

state reaching the global minimum would still be quite high. Moreover, we have no

knowledge concerning the depth of the local minimum, and in many situations a local

minimum with a sufficient depth would be almost as good as the global minimum itself.

However, the problem of indeterminate architecture is more intractable as we

cannot simply pool resources into the network at our own expense: the over-abundance of

parameters in the network would cause the over-fitting of the particular training set chosen

to characterize the mapping, thus leading to a deterioration in the generalization performance

of the network concerning the true underlying mapping of the training set. Moreover, when

the number of hidden nodes in the network is inadequate for representing the training set, this

indeterminate network will usually lead to an excessively long or even infinite training time

without any apparent convergence of the network, and the resulting global minimum for the

error surface would be so shallow that it would be almost as bad as a spurious local

minimum. Thus the solution of the indeterminate architecture problem would ease the other

、 Page 1-7

On the Training of Feedforward Neural Networks

two problems to a certain extent.

An apparent solution to the indeterminate architecture problem is the adoption

of a dynamic node creation architecture for the neural network: if we do not know the number

of hidden nodes required to adequately represent a training set, we can simply start with a

single-node network, and subsequently add nodes to the hidden layer as the need arises. This

seems a neat solution to the indeterminate architecture problem, but in fact the process of

hidden node addition is an extremely delicate matter, since the initial values of the various

parameters in the new node would have a large bearing on the subsequent convergence of the

appended network: an improper initialization of the new hidden node will not only cause a

stagnation of the error level of the appended network, it will actually disturb the information

represented by the old network and cause an increase in the overall error level. This situation

is vividly illustrated by the works of Hirose et. al [21]: they have applied the dynamic node

creation strategy to the neural network in solving the XOR problem. This problem is famous

for its complexity [50] but it is still fairly simply when compared to the higher order parity

problems due to the small number of training patterns. This problem can readily be solved

using a two-node network with the conventional BP algorithm. Hirose has attempted two

strategies for node initialization: for the first case he initialized all the parameters with zero

value such that there would be no disturbance to the information represented by the old

network. In the second case he initialized all the parameters with random values. In applying

this strategy to the XOR problem, it was discovered that on the average, as many as four

nodes are added to the network before the error start to decrease, while on the average only

two nodes are required for a conventional BP network to solve the problem. Therefore, the

addition of a new hidden node to a network does not guarantee that the error will

subsequently decrease, and the dynamic node creation process is not as straightforward as it

first seems.

Moreover, a convergence proof would be indispensable for a dynamic node

creation algorithm due to the unidirectional growth of the hidden layer, unless a node pruning

process is also incorporated into the algorithm. Otherwise, there would be the possibility that

、 Page 1-8

On the Training of Feedforward Neural Networks

the node addition process would go on forever without solving the problem，especially for

those schemes in which no effective node initialization strategies are adopted. I n

view of the above difficulties, several improved dynamic node creation algorithms are derived

which attempt to satisfy the above two criteria: that both a systematic node initialization

scheme and a convergence proof must exist Most notable among these efforts are the

derivation of the Tiling Algorithm by Mezard et. al [34] and the Upstart Algorithm by Frean

[13], For the tiling algorithm, new hidden layers are successively defined for the old network

and after which hidden node after hidden node is added to the new layer. Mezard et. al

proved that the overall error of the network will decrease by a finite amount after the addition

of a new layer, and therefore the network will eventually converge to the desired solution

when an adequate number of hidden layers are generated by the algorithm. For the Upstart

algorithm, the convergence of the network is facilitated by the inclusion of the so-called

"daughter" units: when a unit in the network gives an erroneous response, a "daughter" unit

is attached to the erroneous unit and correct its response. A proof of convergence is also

given for the Upstart algorithm by its discoverers.

Although the above attempts represent a large step forward from the practice

of arbitrarily initializing and adding nodes to a neural network, their algorithms are far from

complete: the above two algorithms can only cater for binary inputs and outputs as opposed

to arbitrary real inputs and outputs, as their convergence proofs rely heavily on the

interpretation of the neural networks as a classification device and the hidden node as the

hyperplane which separates two classes. This interpretation lends to a simplification of the

formulation of the convergence proof, but the resulting algorithm cannot guarantee

convergence when it is applied to real-valued mappings. In other words, the above algorithms

are sacrificing the generality of their applications for an absolute guarantee on their eventual

convergence.

Attempts have also been made to adopt the dynamic node creation procedure

to real-valued mappings. The most notable example being the cascade-correlation algorithm

derived by Fahlman et. al [12]. The approach attempts to adopt the correlation measure

Page 4-9

On the Training of Feedforward Neural Networks

between the error vector of the old network and the outputs of the new hidden node as the

new cost function for optimization. The algorithm is successfully applied to the parity

problem and the 2-spiral problem, but no convergence proof has been presented by the two

discoverers.

Recently, a new algorithm called the progressive training algorithm [9] has

been derived. This algorithm involves only a single-layer network as opposed to the above

algorithms in which multiple hidden layers are involved. In fact，such a node creation

algorithm involving single-layer networks should be feasible in view of the proof by Hornik

et. al [23] that a single layer network is adequate to represent arbitrary training sets. The

name "progressive" is used as there is not only progressive growth in the hidden layer but

also progressive growth in the training set: the initial training stage involves only a single

training pattern, and patterns after pattern is added to the training set during the subsequent

training stages until the whole training set is reconstructed. This extra growth process is

required in order to guarantee the convergence of the algorithm: in fact the convergence proof

of the algorithm is built around this extra growth process for the training set. The progressive

training algorithm is the first dynamic node creation algorithm which is guaranteed to

converge for both binary and real-valued training set. However, the algorithm is not without

its problems, its problems mainly arise due to the extra requirement for the growth of the

training set for its convergence, which would not be normal for ordinary BP networks in

which the whole training set is utilized to train the network at any training stage, and its new

hidden node initialization scheme which depend only on a single training pattern. These

problems will be discussed further in Chapter 3. The most serious among these problems

include the inability of the progressive training algorithm in catering for incremental learning.

1.6 Incremental Learning

It is typical for simulation studies in BP networks to adopt a training set with

fixed size. However, it is not atypical for a training set to adopt a continuously increasing

Page 4-10

On the Training of Feedforward Neural Networks

size. Examples of these kinds of training set include speech signals or music signals which

usually arrive in continuous stream, time series modelling [58], power load forecasting [43],

and channel equalization [7] where the training environment would gradually vary throughout

the active operation phase of the neural network. In other words an online network training

process has to be incorporated into the network such that it can continually adapt its weights

to accommodate the new training patterns while retaining its memory for the old training

patterns. As more and more problems of the above nature are considered solvable by the

artificial neural network, researchers are also trying to derive an incremental learning scheme

for the network. For example, Park et. al [43] derived a novel gradient scheme which can

applied to a fully-trained network to adapt all its weights such that the resulting network can

accommodate one extra training pattern on the assumption that the statistics of the incoming

stream of training patterns vary slowly. However, the approach is restricted to only a fixed-

size network: if training patterns are continually being added to the current training set, there

would be a size threshold beyond which the capacity of the current network can no longer

handle, unless we prepare to append extra hidden nodes to the network. In other words, a

dynamic node creation strategy would be indispensable for a network which incorporates

incremental learning. Therefore, if we generalize our concept of training set to include this

class of dynamically expanding training set, we would realize that the dynamic node creation

algorithm would be the corresponding generalization of our current idea of a neural network

training algorithm.

1.7 Research Objective and Thesis Organization

In view of the dominant position of the indeterminate architecture problem

among the three problems of BP, and the important role which would be played by the

dynamic node creation strategy in the incremental learning process, we would focus on the

learning behaviour of BP networks under the dynamic node creation environment. In

particular we would like to develop a universal dynamic node creation strategy which is as

problem-free as possible: the definition of problem-free includes the inclusion of a

Page 4-11

On the Training of Feedforward Neural Networks

convergence proof in the overall scheme (unlike the cascade-correlation algorithm), the

catering for real-valued training patterns as well as binary-valued pattern (unlike the Tiling

Algorithm and the Upstart algorithm), the non-requirement for a specific ordering or

partitioning of the training, and the provision for incremental learning (unlike the progressive

training algorithm). In addition，it has been seen through the works of Hirose et. al [21] that

training a fixed-size network and training a network which is dynamically expanding are very

different tasks. It would be useful if we can compare the quality of the-mapping implemented

by neural networks trained using both methods. A reliable indicator concerning this aspect

is the generalization capability of the trained neural network on a testing data set which is

generated independently from the training set. We have brought up this issue as we expect

that a neural network trained using a dynamic node creation algorithm would in general

exhibit a poorer generalization rate due to the uneven training received by each hidden node

in the network as compared to the hidden nodes in a conventional BP network in which

uniform training is received. Measures are to be derived to counteract this problem such that

the generalization capability of the dynamic network should at least approximate that of the

conventional BP network.

A brief introduction to the contents of each chapter in this thesis is now

appropriate: in chapter 2 a brief synopsis of the historical development of the perceptron and

the multilayer feedforward perceptron will be given: The Back-Propagation algorithm will

be derived and the notations concerning the network weights, and the various node inputs and

outputs will be introduced. In Chapter 3 we would review the various attempts made by

researchers in understanding how the neural network represents a training set through its

weights, which culminates in the discovery of the T-vector approach which would be useful

in our subsequent work. The progressive training algorithm is also introduced in this chapter

and its various advantages and shortcomings are discussed. In Chapter 4，we introduce the

first step in our research work which culminates in the derivation of the growth algorithm:

the discovery of this algorithm allows the application of the dynamic node creation strategy

to an unordered training set as opposed to the progressive training algorithm where an ordered

、 Page 1-12

On the Training of Feedforward Neural Networks

training set according to the Euclidean distance is required to ensure convergence, and which

in turn requires the availability of all training patterns prior to training and precluding any

possibility for incremental learning. Therefore the growth algorithm opens the first step in

the implementation of a dynamic node creation algorithm which is capable of performing

incremental learning. In Chapter 5，the T-vector approach in characterizing the various

parameters of the neural network is introduced. This alternative approach of characterisation

is instrumental in the formulation of the deterministic dynamic node creation algorithm

introduced in Chapter 6: the need for this deterministic dynamic node creation algorithm,

which allows the initialization of the new hidden node by multiple training patterns, preclude

any possibility of the memorization of noisy training patterns which would happen under the

progressive training algorithm and the growth algorithm. The deterministic algorithm

represents a generalization of the above two algorithms and acts as our prototype for the

universal dynamic node creation algorithm. In Chapter 7，a new node addition criterion is

derived which is based on the generalization measure derived by Drucker et. al [11]: the

improved criterion aims at alleviating the ill-conditioned representation inherent in dynamic

node creation algorithms due to uneven training, such that the generalization measure of the

dynamic network can approach that of the conventional BP network. Finally, in Chapter 8,

attempts are made to estimate the initial network size prior to the start of the hidden layer

expansion process such as to alleviate the uneven training problem which is manifested in its

extreme form in a dynamic network built up from a single node architecture.

I

、 Page 1-13

On the Training of Feedforward Neural Networks

2 THE FEEDFORWARD MULTILAYER NEURAL

NETWORK

2.1 The Perceptron

To begin any discussion on the feedforward multi-layer neural network, one

must first discuss its famous predecessor, the perception. It was invented by psychologist

Frank Rosenblatt [48]. It consists of a series of multipliers feeding into a summation device

which produces a corresponding output from the two processes of multiplication and addition.

This device is further improved by Widrow et al [61] into the Adaline which stands for the

ADAptive LINear Element，in which a bias input is present beside the series of multipliers

and in addition a hard limiter is present in the output which limits the output of the device

to +1 to -1. Since these two devices are nearly identical we would concentrate on discussing

the Adaline which is of particular importance to classification problems. The adaline is

depicted in fig 2.1.

Xi=1

X2

)
Wi

y Output
1 =sgn(y)

X n

Fig 2.1 The Adaline

This device is particularly suitable for dealing with simple classification

problem as the binary output of the device can be translated into whether the current training

pattern belongs to class 1 or class 2 for a two-class problems. In general, for different

Page 2-1

On the Training of Feedforward Neural Networks

classification problems which are represented by different training sets, the network weights

Wi, i=l to n would be different for the correct classification of all the training patterns, and

these weights are normally obtained using a gradient descent procedure known as the delta

rule. Suppose that the training set consists of p training patterns. At the presentation of each

pattern, the delta rule attempts to decrease the classification error at that training pattern by

changing all the network weights in the steepest descent direction on the error surface. In

mathematical terms, each weight is to be changed according to Eq (2.1), in accordance with

the steepest descent principle when the t-th pattern is presented to the network

w.it+l)=w.{t)-Vi' (2.1)
‘ dw. I

where

n

E=m) -y{t)f<d{t) Y. (2)(2.2)
i=i

The term d(t) represents the desired output for a particular training pattern.

The partial derivative in Eq (2.1) can be conveniently calculated from Eq (2.2) as

柳 K W (2 3)
ow. i=i � ’ ,

=-2(^/(0-j(0)x(0

Since all the quantities in Eq (2.3) are readily available from the training

pattern and the output of the Adaline, the training procedure can be promptly carried out.

The parameter r| in Eq (2.1) is called the learning step size and controls the speed of learning.

The process continues until the classification error on the training set becomes zero. The

action of the adaline on the training set can be depicted pictorially in Fig 2.2.

、 Page 1-2

\

On the Training of Feedforward Neural Networks

X3
*

o
o

\ 。 * * \ . \ 。

Fig 2.2 The separation of the training set by the Adaline

It is seen that the action of the input summation device is equivalent to the

production of a hyperplane which partitions the input pattern space into two half-spaces. In

one of the half spaces, the output of the adaline would be 1, while in the other half-spaces

the output would be -1. The action of the delta rule is to change the orientation of the

hyperplane in such a way as to minimize the classification error on the training set. The most

important characteristic of the Adaline is that, unlike the design of traditional engineering

device in which extensive analytical techniques are involved, the Adaline can instead learn

its own parameters from the training set. Thus it possesses an ability which remotely

resembles one of our abilities which distinguish us from machines, namely the ability of

learning. The creation of such a device at that time has led to much controversy as it reminds

people of science fiction stories where intelligent machines can in turn control the human

race. Unrealistic expectations and exaggerate claims has no doubt lead to these controversies.

However, in the next section, we would realize that the Adaline is in fact a very limited

device in terms of the types of problems it can cater for.

Page 4-3

On the Training of Feedforward Neural Networks

2.2 The Generalization of the Perceptron

In 1969，a book appeared that had almost sounded the death knell for the whole

field of neural networks. The book was titled Perceptions and was written by Minsky and

Papert [36]. They had shown in their book that the perceptron cannot in fact solve some very

simple problems. They illustrated their viewpoints by showing that the perceptron cannot

solve the Exclusive-OR problem. This problem is illustrated pictorially in Fig 2.3.

X3

、
(� ’ 1) (\ ^ � � � � *(1’1) ,

���� \ � � � � � �

\ \ 、、、 Class 1
、、、、Class 2 \ 、、、、 /

N W 、、、、 \ 、、、、、
Class 1 入 \ 、、、、、 * / ^ ^ � � ‘ � \ Q ^ •

(0.0) � � � . \ (1,0) � X3

Fig 2.3 The Exclusive-OR problem

For this XOR problem, the training patterns (0,0), (1,1) belong to one of the

classes，and the patterns (0,1) and (1,0) belong to the other class. It is immediately apparent

that no matter how we change the orientation of the hyperplane, we cannot properly classify

the XOR training set by the Adaline. In fact, this is only one of the many problems which

the Adaline cannot solve. On the contrary, the class of problems which the Adaline is able

to solve belongs to a very restricted class, which is called the class of linearly separable

problems. Therefore, there is the need to extend the capability of the Adaline.

We could take our clue in how to generalize the Adaline from the above XOR

problem: from Fig 2.3，it is obvious that if we can implement two hyperplanes which

correspond to the class boundaries of the XOR problem, the problem can be readily solved.

This implies the requirement of at least two Adalines. Moreover, the two Adalines should

、 Page 1-4

On the Training of Feedforward Neural Networks

be configured such that two separate nonlinearities are required instead of using only one

nonlinearity for two summation devices, as the summation of two hyperplanes is still a single

hyperplane which is equivalent to the action of a single Adaline. Besides, one more

nonlinearity is required which acts as the single output node for the whole network and

accepts its input from the output nonlinearities of the two Adalines. In this way, we have

extend the former simple Adaline into a multi-element, multi-layer network which has the

potential to cater for complex problems.

However, the extension of the architecture for the Adaline has posed another

problems: in the derivation of the delta rule, we are relying on the linearity of the summation

device to calculate the partial derivative of Ê with respect to the network weights. For the

extended device, since the network error occurs at the single output element of the entire

network, we must somehow relate this error to the network weights of the two Adalines.

However, any such relationship must involve the derivative of the individual nonlinearity of

each Adaline. Since the sgn(x) nonlinearity is not differentiable at its transition, an effective

training strategy does not exist for this extended network.

2.3 The Multi-Layer Feedforword Network

In 1985, Rumelhart et. al has, in their famous book [50], solved all the

problems of the generalization of the perceptron in a single stroke. The result of this

generalization is the emergence of the multi-layer feedforward network, which can in theory

possess a large number of network layers with each layer containing multiple network nodes.

Most importantly, Rumelhart et. al has derived an algorithm for training this massive network,

which allows the neural network to be applied to a very wide class of problems, and which

in turn leads to the revival of the field of neural network. Since this generalized learning

algorithm involves the back propagation of the output errors from the uppermost layer of the

network to the lowest layer of the network in order to determine the derivative of the error

with respect to all the weights in the network, this algorithm is thus called the Back

Propagation (BP) Algorithm.

Page 4-5

On the Training of Feedforward Neural Networks

Before introducing the solution proposed by Rumelhart et. al in solving this

network extension problem, we would first introduce the architecture of this extended network

which is depicted in fig 2.4.

yk，k=1tom f j f j Output Layer

Output Weights u

hj，j=1 t o q f) f) () Hidden Layer

Hidden Weights w

XiJ=1 t o n f) () () Input Layer

Fig 2.4 The feedforward multilayer neural network

From Fig 2.4 it is seen that the network consists of three types of layers,

namely the input layer which contains n input nodes, the hidden layer which contains q

hidden nodes, and the output layer which consists of m output nodes. In general, we would

use the index i to identify the input nodes, the index j to identify the hidden nodes, and the

index k to identify the output nodes. In principle, this kind of network can contain multiple

hidden layers between the input layer and the output layer, with the connections between them

resembling those between the hidden layer and the input or output layer. Each hidden node

performs a nonlinear transformation on its inputs as opposed to the Adaline in which a linear

node is used. Since our research work mainly involves the single hidden layer network, we

would present here the single-layer version of this class of networks. The network weights

between the input layer and the hidden layer is known as the hidden weight and is denoted

by Wjj. The network weights between the output larger and the hidden layer is known as the

output weights and is denoted by Uĵ .

、 Page 1-6

On the Training of Feedforward Neural Networks

This network is usually considered as implementing a mapping from R" to R*"

in which the totality of all input node values are considered as vectors in R" and the totality

of all output node values are considered as vectors in R"\ From here on, we would identify

each node output value by two parameters. For example, each input node value is described

by Xj(t), where i identifies the position of the node in the input layer and the parameter t,

which ranges from 1 to p, identifies which pattern in the training set is being presented to the

network. Similarly, the hidden node output is identified by hj(t), and the output of the output

node is given by y^Ct). In addition, the desired output of the network for the various training

patterns is given by d k � which corresponds to y^Ct). In this thesis, we would designate the

node Xi(t) as the bias node, i.e: Xi(t)=l for all t, and hi(t) as the bias hidden node.

Throughout this thesis, we would adopt two principal ways of naming the

parameters of the network, namely the spatial vector or S-vector approach and the temporal

vector or T-vector approach. These two kinds of naming convention would be described in

detail in Chapter 5, and we would like to introduce our way of symbolizing these two kinds

of vectors. The Spatial vector or S-vector approach corresponds to our usual way of

concatenating the node outputs of each layer into a vector. As a result, we could suppress

the subscript i, j or k when identifying these S-vectors, while using the bold-face type to

indicate these S-vectors. For example, the input S-vectors are x(t), the hidden S-vectors are

h(t) and the output S-vectors are y(t). On the other hand, the temporal vector format is an

alternative way of concatenating the parameter of a neural network. In short, this approach

concatenates the whole history of a single node through a sweep of the training set into a

single vector. As a result, the parameter t is suppressed. The input T-vectors are Xj, the

hidden T-vectors are hj and the output T-vectors are ŷ -

With the introduction of the various terminologies, we would now proceed to

introduce how Rumelhart et. al solved the problem training such a massive network. The

answer is that he adopted an alternative nonlinear function for the hidden nodes which is

depicted in Fig 2.5.

、 Page 1-7

On the Training of Feedforward Neural Networks

• f(x)

1.0

0.5 ‘

0 X

Fig 2.5 The sigmoid function

This function is known as the sigmoid function and is defined by the following

relationship

/ W = — 1 — (2.4)

The factor s is a sensitivity factor for the function. When s becomes large, the

sigmoid function would approach the step function. Through the definition of the sigmoid

function, the derivation of the training equation for this multilayer network becomes possible,

as the sigmoid function is differentiable at every point of the function and thus the derivative

of the output error with respect to all the weights in the network can be readily evaluated.

We would first summarize the action of the network. Since this action is independent of

training patterns, we would suppress the parameter t: For the hidden layer:

n

乂 ” （2.5)

hj-Aap

Page 4-8

On the Training of Feedforward Neural Networks

Where aj as defined above is called the activation of the j-th hidden node. For

the output layer,

bk 如 khj (2.6)

y r m

Where b^ is called the activation of the output node. In this way the output

of the network can be calculated from the above set of equations.

Defining the error function of the network as

(2.7)

We would now present the Back-propagation equation for the adaptation of the

hidden weights and the output weights. The derivation of these equations would be given in

the Appendix. For the output weights Uĵ , the equation is

,\、 /、 dE

where

、 Page 1-9

On the Training of Feedforward Neural Networks

While for the hidden weights Wjj, the equation is

“ � aw.. u
p

t=l

where

m

5 / 0 =/i/0(l 认jfM (2.9)
it=i

The factor r| is the usual learning step-size which would hereafter be referred

to as the network adaptation gain. The index n is the training epoch indicator where an epoch

refers to a single presentation of all the training patterns to the network and the subsequent

adaptation of the various weights.

Practically, an additional term is appended to the weight adaptation equation

in order to speed up the training process as shown in the following expressions:

UjJ^n+1) =Uĵ (n) - r | -1))

’ ’ （2.10)

^ifn+1) - r | +a(w..(n)-w.fn -1))

From Eq (2.10), it is seen that these modified equations attempt to add a

portion of the previous adaptation to the current adaptation equation and is thus maintaining

the "momentum" of travel along the error surface. Due to this reason, the factor a is named

the momentum factor and its value is usually between 0 and 1.

At this point the BP training algorithm has been fully presented. In the

Chapter 3 we would review the various modifications to this algorithm such that its various

problems as mentioned in Chapter 1 could be partially alleviated.

Page 4-10

On the Training of Feedforward Neural Networks

3 SOLUTIONS TO THE BP LEARNING PROBLEMS

3.1 Introduction

In searching for an effective solution to the various problems of BP, researchers

have opened up almost every frontiers of attack imaginable: some of them set their aims in

solving the three problem of BP learning: namely the speed problem, the local minimum

problem and the indeterminate architecture problem. On the other hand, some researchers

attempt to probe into the hidden layers of the network in order to decipher what is going on

behind the hidden representation of the neural network, with the hope that once they have

understood the hidden representation of the network for a certain training set, they can apply

the reverse process of synthesizing the representation from the training set. In other words,

they can then build up from scratch a neural network with solely the information of the

training set without any further iterative learning procedure, therefore signifying the discovery

of the ultimate deterministic learning algorithms for neural network which is the dream of

every neural network researcher. Their attempts, however, are met with limited success due

to the fact that, in order to build up a neural network without any iterative procedure, one

cannot avoid dealing with the nonlinearity present in every hidden nodes of the network.

Since the development of nonlinear analysis techniques lag much behind that of linear

analysis techniques, researchers have no tools to deal with the nonlinearities effectively, and

therefore must rely more or less on iterative procedures as part of the strategy in their overall

training scheme. For example, the deterministic training algorithm described in Chapter 6 of

this thesis only involves the deterministic estimation of the initial state of the network: the

network must be guided towards its final state by means of iterative learning procedures.

However, these attempts in understanding the internal representation of the network are not

as futile as they seem, as we can, equipped with these new found knowledge, find ways of

initializing the network in a way which is compatible with this knowledge instead of in a

random way. The network would then start in a much more favourable position than the

conventional arbitrary position a network is required to take up in previous training attempts:

Page 3-1

On the Training of Feedforward Neural Networks

in the terminology of the error surface and weight space, if a really excellent initialization

scheme is derived for the neural network, the current state of the network could be placed just

at the brim of the bowl-shaped global minimum such that the slightest iterative procedure

would send the current state straight into the global minimum. If this ideal initialization

scheme can be realized, it would not be of much difference from a truly deterministic scheme

except for a few epochs of iterative learning cycles. However, the constraints for developing

this initialization scheme would be much relaxed since we only require an approximate initial

state for the network. The algorithm in Chapter 6 was also developed with this aim in mind

and all endeavour described in this chapter concerning the hidden representation model

should, at least for the present moment, seen in this light due to the extreme difficulties for

an exact analysis of the hidden nonlinearities.

The first section in this chapter will trace the various endeavour in developing

a model for the hidden representation of the neural network: the preliminary efforts in the

direction attempt to understand the neural network in terms of spatial vectors or S-vectors:

this term is developed to contrast the temporal vectors or T-vectors which is an alternative

interpretation of the various node outputs of the network and the difference between these two

terms will be clarified in Chapter 5: however, a single example here would serve to illustrate

their differences: an input spatial vector would be what we usually call a training pattern; thus

the concept of S-vector would conform to our usual interpretations of the various parameters

of the neural network. For example, hidden S-vectors would be the transformed input

patterns in the hidden space and an output S-vectors would be the output values of the neural

network at the various output nodes concatenated into a vector. On the contrary, for a

particular node of the network, we can concatenate the whole history of a node's activity into

a vector, i.e. if the training set consists of p patterns, then the corresponding node output for

each of the training pattern for a particular node can be concatenated into a vector called the

temporal vector or T-vector since each component of the T-vector is related to each other

temporally. In summary, the early researchers attempted to investigate the distribution of the

hidden spatial vectors in the hidden space for a particular training set and to decide under

、 Page 1-2

On the Training of Feedforward Neural Networks

what conditions would a hidden S-vector distribution considered valid for an adequate

description of the training set. For example, for a training set which is not linearly separable

and for a neural network which consists of a single output and a single hidden layer only, the

input S-vectors should be transformed by the hidden layer in such a way that the resulting

hidden S-vectors would be linearly separable in the hidden space, such that the hidden space

can be properly partitioned by a certain hyperplane characterized by the output weights of the

single output node. One can immediately realize the difficulties presented by the S-vector

approach from the above example, as there are infinite ways of realizing a hidden

representation which is linearly separable，and it is not at all clear which representation we

should adopt for the current training set. In other words the hidden weights for the network

cannot be uniquely chosen for a particular training set, and in any way we do not have any

pre-conception about the number of dimensions in which the hidden space is to be embedded.

Moreover, for a neural network which possesses multiple output nodes, the hidden

representation should be designed such that it should be simultaneously linearly separable in

multiple direction by hyperplane which are represented by the output weights of the various

output nodes, which is an extremely difficult task since in the first place we do not know the

orientations of these various hyperplane, not to say designing a corresponding hidden

representation which is simultaneously linearly separable by them. The next section would

trace these various efforts in understanding the internal workings of the neural network using

this S-vector approach.

Realizing the futility in relying on the S-vector method for a realizable model

for the hidden representation, researchers have recently turned to the T-vector or temporal

vector method for an alternative representation of the network parameters. It was found out

that the resulting model for the hidden representation is much simplified, as it involves only

the relationship between the input space X，the space spanned by the input T-vectors the

hidden space H which is the space spanned by the hidden T-vectors, and the inverse desired

output space D"̂ which is the space spanned by the inverse desired output T-vectors. These

relationships will be further illustrated in Chapter 5. Through this new approach the problem

、 Page 1-3

On the Training of Feedforward Neural Networks

of arranging the training patterns in the training set into a viable representation has simplified

to the arrangement of a few T-vectors,into their proper positions, since the number of nodes

in each layer of the network is usually much smaller than the number of training patterns, and

the previous rather intractable criterion of linear separability has been converted to the more

tractable criterion of distance measurement between a certain T-vector and its projection on

another space. The development of the T-vector approach is still at a rudimentary stage and

the application is restricted to the tuning of the relative positions between the hidden space

H and the inverse desired output space D ^ which is equivalent to the searching for the

optimal output weights Uĵ for the various output nodes by means of linear least square

optimization methods. The relationship between the input space X and hidden space H is still

largely unknown due to the presence of the sigmoid nonlinearity between the two spaces

which prevent the direct application of linear algebra to the above scenario, and in the

deterministic algorithm described in Chapter 6，an attempt is made to relate these two spaces

through a linear approximation on the sigmoid function which allows a direct contact between

the two spaces. The various early efforts in building an internal representation model of the

neural network using the T-vector approach would be traced in Chapter 5. In addition, the

various terminologies in the above discussion will be clarified further in Chapter 5 which in

addition includes the graphical depiction of the relationship between the various spaces.

The second subsection in this chapter would focus mainly on dynamic node

creation algorithms. In fact, the establishment of a viable hidden representation model is

intimately related to dynamic node creation algorithms as a valid hidden node representation

model should ultimately include directions on how to select the dimension of the hidden space

H, and until recently the most effective practical method in performing this task lies in these

node addition algorithms. Besides, these classes of algorithm are important in their own

rights: it has been seen that the indeterminate architecture problem can be considered the most

serious problem among the three problems of BP, and since the dynamic node creation

algorithms are among the few methods which can effectively deal with its problem, the

establishment of a truly universal dynamic node creation algorithm would serve to eradicate

、 Page 1-4

On the Training of Feedforward Neural Networks

a large portion of the problems inherent in BP learning. Moreover, it has been mentioned that

such a node addition scheme would be indispensable for a training algorithm which performs

incremental learning, and as a result these hidden layer expansion procedures should be

considered standard appendages to future training algorithms as neural networks become

exposed to the ever widening circles of applications.

3.2 Attempts in the Establishment of a Viable Hidden Representation Model

Every investigations and formulation of theories should start with empirical

studies of the actual environment, and there is no exception for the formulation of a viable

hidden representation model for neural networks: researchers at first try to observe the hidden

patterns of trained neural networks to try to understand what is going- on behind the hidden

layer. We would state once again that these early endeavour are chiefly based on the spatial

or S-vector model because it is the conventional way of understanding and categorizing the

various parameters of the networks. In observing the hidden representation of a network

trained with the XOR training set, Pao [42] has discovered that a once linearly inseparable

training set (the set is linearly inseparable due to the disjoint nature of one of the classes) is

transformed into a linearly separable data set at the hidden layer such that it can easily be

partitioned by the hyperplane represented as the output weights of the hidden node. He thus

concluded that the hidden layer has the effect of arranging the relative positions of the class

clusters such that they are more separable by a hyperplane. Webb and Lowe [57] went a step

further and established that for a neural network which is trained to minimize the mean square

error at the network output, the function of the hidden layer is to maximize a discriminant

function which is defined by the inter-class covariances divided by the total covariances. In

this way, the empirical observations of Pao was translated into concrete mathematical terms

which state that in essence the hidden layer tries to maximize the inter-class distance and

separates the classes to as large an extent as possible. However, this insight cannot be

translated into a viable algorithm for synthesizing the hidden representation as the above

condition, that of transforming the classes such that they are more separable is an extremely

、 Page 1-5

On the Training of Feedforward Neural Networks

broad one which is very difficult to establish except for the usage of iterative procedure, in

which case there would be no differences from directly applying BP to the network. As a

result more careful observations of the hidden layer activities are necessary. Gorman and

Sejnowski [19], in analyzing a neural network trained to classify sonar targets, established that

contrary to the popular belief that a hidden unit plays the role of a feature extractor, it can

in fact encode multiple features and even multiple strategies simultaneously. Through this

approach the neural network can make more efficient use of the capacity of each hidden unit.

In other words, the hidden layer may be trying to establish a model for the training set rather

than performing the task of simple feature extraction. This conjecture is further confirmed

when they discovered that the network is able to internally encode pattern variations that do

not decompose simply into a set of feature dimensions. Moreover, they also found that the

network would memorize less frequent training patterns by using a small number of hidden

weights to encode these peculiarities. Thus the hidden layer may be performing functions

which are more complicated then we have usually assumed. Michaels [35] went a step

further by establishing through close observations and subsequent tabulations of all the hidden

weights Wjj and the output weights Uĵ that, though the values of these weights vary greatly

from each training trial, the Network Linear Transform matrix N=UW, where U is the matrix

containing the output weights and W is the matrix containing the hidden weights, is highly

invariant, thus indicating the mutually dependent nature of the output weights and hidden

weights. He also discovered that the hidden weights which exhibit complex and highly

variable waveforms containing multiple positive and negative peaks, are in fact producing

simple differencing operations on the pattern set. This characteristic also explains how the

hidden units, as observed by the author, are able to reject features that are common to all

input patterns. Based on this observation, the author has produced a model which can quite

accurately mimic the performance of a trained BP network. However, the construction of his

model is based on the parameters of a trained network and therefore this method cannot be

adopted in building a network from scratch. Moreover, though we now know that the hidden

weights perform differencing operations on the input patterns, we do not quite know which

、 Page 1-6

On the Training of Feedforward Neural Networks

input patterns among the patterns the network would choose for differencing. As a result,

although the above studies provide interesting insights on the internal representation of neural

networks and elucidate the roles played by the various weights in the network, a clear guide

towards a deterministic construction of the internal representation is still lacking.

Due to the above rather inconclusive search for a deterministic hidden

representation construction scheme from the observation of actual hidden representation alone,

researchers have resorted to their own conceptions of how the hidden unit should process the

input patterns in designing a viable construction scheme for the neural network: An example

of these efforts is the recent resurgence of interests in using the radial basis function [37,55]

as the hidden nonlinearity instead of the sigmoid nonlinearity, due to the resulting rather

intuitive interpretation of how a hidden unit performs its task especially for classification

problems: since the function value of a RBF g(x) is dependent upon only the distance between

the "centre" of the function and x, it can frequently be pictured as a "bump" in the domain

of the training set. For a classification problem, if we select the "centres" of the RBF's in

the hidden units of the network to be the centroid of the various classes and adjust the

"width" of each RBF appropriately to include all patterns belonging to that class, an adequate

model for the training set will emerge. Tsoi [55] has derived criteria for selecting the

"centres" for a RBF network since we have often no a priori knowledge on the class

distribution of the training set. On the other hand, we do not get much insight frorm this

model in designing networks for functional approximation, since these tasks cannot be

conveniently described in terms of classes. Moreover, sigmoidal functions possess several

advantages over the use of RBF for the approximation of functions in high-dimensional

spaces as described in [58]. Therefore, researchers try to synthesize new types of

nonlinearities to capture the essential features of sigmoid and RBF nonlinearity such that the

hidden node possesses the advantages of both types of nonlinearities. The approximation

scheme derived by Girand et. al [17] belongs to this class. In their scheme they adopt a pair

of sigmoidal units as their elementary building blocks in building up the neural network. The

pair of hidden nodes is configured in such a way that it performs a differencing operation on

Page 4-7

On the Training of Feedforward Neural Networks

the two sigmoid functions of the two nodes. The resulting combined nonlinearity of the two

nodes resemble an inverted gully on the domain of the training set which extends infinitely

in its longitudinal direction and confined to a local region in the orthogonal direction. The

authors attempted to construct arbitrary mappings through these inverted gullies by

considering them as plane waves in the Hilbert space, and the representation for the function

is obtained through a Fourier expansion. The advantage of this approach lies in its

mathematical tractability since the Fourier expansion method is a well-established technique.

The disadvantage of this method lies in the special arrangement of the hidden nodes which

require a even number of hidden nodes in every network under this scheme. Since functional

approximation is possible for BP networks using an odd number of hidden nodes, the above

approximation scheme do not represent a realistic scenario of the learning process. Daunicht

[10] went a step further in advocating his own conception of the function of the hidden layers

by proposing a multiple layer network architecture with custom-designed nonlinearity at each

layer which performs a specific function. In summary, hidden layers of the network attempts

to divide the domain of the training set into fine grids, and the function of the output layer

is to fill in the functional value of the mapping to be approximated in each of these grids.

In principle, more accurate approximation of the mapping can be obtained by dividing the

domain of the training set into finer and finer grids. Learning is confined to the output layer

where the functional value at the various grids are to be adjusted to fit the particular mapping

to be approximated. The parameters of the hidden layers are fixed since they are performing

the same function of dividing the training set domain into grids no matter what mappings are

to be approximated. The advantage of this approach is that we are not required to determine

the architecture of the hidden layers since they are essentially fixed, which can equally be its

disadvantage since mapping with simpler structures cannot be represented by a smaller

network and thus signifies a waste of resources.

Clearly realizing the difficulties of the above hidden representation modelling

approaches which involves the spatial vector approach, researchers have turned to the

temporal vector or T-vector approach to find an alternative perspective in order to probe into

Page 4-8

On the Training of Feedforward Neural Networks

the inner workings of the neural network. These efforts will be summarized in Chapter 5

together with an introduction to this T-vector approach.

3.3 Dynamic Node Creation Algorithms

We would now proceed to the discussion of dynamic node creation algorithms:

we would in particular discuss the progressive training algorithm [9] in detail since it is the

first dynamic node algorithm which can cater for function approximation tasks and at the

same time possess a convergence proof. The class of dynamic node algorithms has become

more and more important in recent years due to the increasing complexity of the training set

being exposed to the neural network which makes the determination of the size of the hidden

layer a more and more elusive task. Moreover, the emergence of the concept of incremental

learning through a special class of training set including time series modelling and power load

forecasting has render the inclusion of dynamic node creation algorithms almost mandatory.

This class of algorithms would also be indispensable for the modelling of the hidden

representation in which it plays the role of dimensionality determination for the hidden space

H, since there is until now no effective analytical technique for determining this dimension.

The very early efforts towards this objective are directed towards binary training data set: in

the tiling algorithm proposed by Mezard et. al [34], the architecture of the network is not

fixed in advance and is generated by the algorithm itself. The algorithms add hidden layers,

and units inside a layer, until the network converges. In each layer, the growth of the hidden

unit is initiated by a so called master unit which ensures that the error of the network

decreases strictly from one layer to the next After that, ancillary units are added to the

hidden layer in order to get "faithful" internal representations for the training data, the

definition of "faithful" being that different training patterns should possess different internal

hidden representation. Mezard was also able to prove that through this scheme, the number

of misclassification of the data set decreases from one layer to the next by virtue of the

master unit, and as a result the algorithm will eventually generate a network which possesses

finite number of hidden layers and finite number of hidden nodes within each layer.

Page 4-9

On the Training of Feedforward Neural Networks

Unfortunately, since the convergence proof is based on the strict decrease of the number of

misclassifications of the training data, the algorithm is applicable only to training set with

binary outputs and this constitutes one of the main drawback of this.algorithm. Frean [131

proposed an alternative method called the Upstart Algorithm in which a hierarchical structure

of hidden nodes are suggested to build up a network which is smaller in size than that built

up by the tiling algorithm. In summary, the network starts with a single node Z，and if the

node is "wrongly ON" for some of the training patterns, meaning that the network emits a 1

where the desired output should be 0, a new unit called the "daughter" unit is appended to

the previous "parent" unit which produces a strong inhibitory signal at the "wrongly ON"

pattern. Similarly, if a pattern causes the node to be "wrongly OFF", a new "daughter" unit

which produces a strong excitatory signal is appended to the "parent丨’ unit. In a similar way,

if the daughter unit makes any mistakes, new daughter units are appended to these units, and

the previous daughter units become parent units. As a result, the overall classification error

decreases at every addition of daughter units. Eventually, none of the terminal daughters

units make any mistakes, which in turn implies that their parents do not make any mistakes,

and their parents, and so on. Therefore the above process will eventually produce a network

which is capable of classifying all the training patterns. The main drawback of this algorithm,

however is the same as the tiling algorithm, it can only cater for training set with binary

output since the convergence proof is based on the "wrongly ON" and "wrongly OFF"

concept.

The first dynamic node creation algorithm which can cater for real-valued

training data set is the cascade correlation algorithms proposed by Fahlman et. al [12]. In this

algorithm, the network starts with no hidden unit, and then trained using the delta rule. If the

network does not converge, a new hidden unit is added to the network. Before the addition,

the hidden weights of the units are trained such that the correlation between the error of the

old network and the output of the hidden unit is maximized. The unit is then added to the

network with its hidden weights frozen, and the output weights of the network are then

continuously trained to obtain a solution. A special feature of the node addition scheme is

Page 4-10

On the Training of Feedforward Neural Networks

that a new hidden node not only receives inputs from the input node, but also from all the

previous hidden units added to the network as well, thus the resulting network in fact

possesses a pseudo-multi-layer architecture. Satisfactory performances have been reported

by applying the algorithm to the parity problem and the 2-spiral problem. By the above

scheme the network is able to cater for real-valued outputs since the correlation measure is

also defined for real numbers. However, a convergence proof of the algorithm is lacking, and

the growth of the network is in principle not restricted. Furthermore, it is not clear why

Fahlman has adopted such a specialized architecture for his network instead of the usual

single-layer BP network. Perhaps he has found through experiments that the freezing of all

the hidden weights of the network will severely limit the degrees of freedom of the network,

and this has to be compensated by the incorporation of high-order feature detectors in the

network. Moreover, as pointed out by Michaels [35], the Network Linear Transform (NLT)

which is defined by the multiplication of the output weight and hidden weight matrices are

highly invariant among the various training runs for a single training set, though the

individual hidden weights matrix and the output weight matrix are found to vary widely from

trial to trial. This implies that the output weights and hidden weights may be highly

dependent on one another, and the separate training of these two types of weights as adopted

by the cascade correlation algorithm may not constitute an efficient training strategy.

Hirose [21] has attempted to adopt the dynamic node creation strategy to a

conventional BP network with a single hidden layer. He has no particular node initialization

strategy in mind and attempted to initialize the new node with random weights. However,

it turned out that the addition of a new node does not automatically signify an immediate

corresponding decrease in error. For example, when the above scheme is applied to the XOR

problem which normally requires a two-node network, the overall error of the network does

not start to decrease until the addition of the fourth node. In view of this phenomenon,

Hirose has adopted a pruning procedure for the network in order to counteract the network

growth rate. The experimental results also indicate the definite need for an initialization

scheme for the new hidden node which may help in guiding the overall network to the global

Page 4-11

On the Training of Feedforward Neural Networks

minimum.

The progressive training algorithm proposed by Chung et. al [9J has derived

such a node initialization strategy for a single hidden layer BP network. Moreover, a

convergence proof is given for the training scheme, such that the training will terminate with

the generation of a finite-sized network. However, the convergence is achieved at the cost

of adopting an artificial procedure for feeding the training patterns to the network: all the

training patterns in the training set are first ordered according to their Euclidean distances,

and the training starts with a single-node network and a single training pattern. If the network

is unable to converge a new hidden node which is initialized according to a definite scheme

is appended to the network which ensures the convergence of the network under the partial

training set by the virtue of this very scheme. If the network is able to converge a new

training pattern with the next largest Euclidean distance is appended to the training set. This

process continues until all the training patterns are appended to the training set. The resulting

neural network must be finite in size as the convergence of the network under the addition

of one more training pattern require at most one more new hidden node by virtue of the node

initialization scheme which will be introduced below:

Suppose that pattern x(t) is recently added to the training set and the network

is unable to converge. Suppose also that at this stage the network contains Q hidden nodes.

Thus the non-convergence signifies the requirement for the Q+l-th hidden node. The hidden

weights and hidden bias are initialized according to the manner below:

2<i<n
n 2 (3.1)

i=2

The above initialization scheme allows the hyperplane of the new hidden node

to act as a barrier which separates the old training patterns from the new pattern as depicted

in fig 3.1.

Page 3-12

1

On the Training of Feedforward Neural Networks

X3

:*
* \ hyperplane of the

new hidden node
Fig 3.1 The separation of the new pattern by the hyperplane of the new
node

The direction of the arrow indicates the increasing direction of the sigmoid

surface of the new node. The factor s in Eq. (3.1) is a scale-up parameter which controls the

slope of the sigmoid function. As the value of s increases, the sigmoid surface will more and

more approach a step function, and the disturbance of the new node to the old patterns will

approach zero. By virtue of the above node initialization scheme, the output of the new node

will remain at 0.5. As a result, the height of the sigmoid surface can be scaled by the output

weight of the new node in such a way that the error at the new training pattern can be exactly

compensated when s is large enough. Practically, we start at s=l and apply BP to the

resulting network. Since the node output at the new training pattern is always 0.5, the output

weights Uqk of the new node is determined by

！2-1

广 1 (• - • ⑴ （3 2)

u 饥 .
以 0.5

Prior to applying BP, the current state of the network is recorded, and if the

Page 3-13

On the Training of Feedforward Neural Networks

network does not converge after the BP process, the previous state of the network is restored

and s is increased. In view of the above consideration the network will eventually converge

when s is large enough.

The progressive training algorithm seems to be the ideal algorithm which is

long being sought after, since it both possesses a convergence proof and can cater for both

binary and real-valued training set. However, there are several problems inherent in the

implementation of this algorithm:

(1) It is seen that the new hidden node is initialized by the information of a single

training pattern only. There exists possibilities that the training set will be contaminated with

noise. If incidentally a new hidden node is initialized with such a pattern, it will probably

lead to the memorization of such a noisy pattern which is alien to the rest of the training

patterns and in turn leads to the overall misrepresentation of the training set.

(2) Due to the artificial training sequence, training patterns with small Euclidean norms

are exposed more often to the network than patterns with large Euclidean norms since they

are present in the partial training set early in the training stages and they are not removed as

training proceeds. Therefore, the error at those patterns with small norms are usually smaller

due to the heavy training received, while patterns with large norms often invoke relatively

large error since they receive less training. As a result the overall training process is biased

towards those patterns nearer to the origin.

(3) It will be shown in Chapter 4 that the progressive training algorithm is not capable

of performing the task of incremental learning unless excessive resources are allocated to the

network, due to the requirement that the training set must be ordered according to the

Euclidean distance prior to training. If a new pattern which is to be added to the training set

does not satisfy the maximum norm criterion, then according to the above scheme, the

resulting network is not guaranteed to converge even if a new node which is initialized

according to the new pattern is added to the network.

(4) The algorithm starts with a single node network. As most neural networks which

can cater for common training sets require multiple hidden nodes, a single node network

Page 4-14

On the Training of Feedforward Neural Networks

would be the most unlikely network which can adequately represent a practical training set.

If the resulting network which approximates the target training set would be large, it would

take a long time for the algorithm to build up the eventual network.

In view of the above problems, there exists a need for a new neural net training

algorithm which can solve these problems. The dynamic node creation nature of the

algorithm would be retained due to its many desirable features and in particular its

indispensability in the implementation of incremental learning. This implies that an

alternative node initialization scheme or even an alternative node addition strategy should be

derived. The course of our research work would be mainly directed towards the realization

of these two goals.

3.4 Concluding Remarks

In this Chapter we have reviewed past research works on the modelling of the

hidden representation of a neural network. We have in addition described various attempts

in deriving a dynamic node creation algorithm for the neural network. These two issues are

placed side by side in this Chapter since they are actually intimately related: any valid model

for the hidden representation of a neural network must include directions on how to select the

dimension of the hidden space, and till today dynamic node creation serves as a viable and

simple strategy for deciding the hidden layer size of the network. The implementation of the

dynamic node creation strategy depends, in turn, on a better model of the hidden

representation in order to design a more accurate new hidden node initialization scheme of

the network. In particular, the progressive training scheme are described which represents an

advanced stage of the development of the dynamic node creation technique since it possesses

both the ability of catering for real-valued training set and a convergence proof, in which one

condition or both is lacking in all of the previous node addition algorithms. Therefore, it

seems that the progressive training scheme serve as a good starting point for our further

course of research. In Chapter 4，we would first develop a dynamic node creation algorithm

based on the overall node addition strategy of the progressive training algorithm but with the

、 Page 1-15

：结；：‘,V .,、• • •‘ • ‘ . ’ . .. r :
[r * On the Training of Feedforward Neural Networks

r 费 sur , ‘ ‘\ f ‘

‘ ,removal of the Euclidean distance ordering requirement of the training set such that the new

丄 algorithm would be suitable for operation in an incremental learning environment.

• 4.. I . • . .
• ‘

‘ - ‘

‘ , ‘ ‘ . . , . ••‘ . « f ‘ • '> ： . .’ ‘
i ； . . . 3. ••• V \ .

. • • - - • - ’ - • • -

. . ： 、 • • “ . 二 , ： . i ： 。 ： 矛 ： _ ‘ . .

• • . •
- .. . • � +

、 - 、 ， . . ， _ - ‘ ， ， 、 ， '丨

/ , • i ‘ • 1：, •
” “ 、 . ’ . ’ … … ： ‘• • .

J W ‘ , .

!ti • ‘ •

•：̂. ‘ 、 • ： . . . (-
• • , - 、 " — — - . . , • . . ' . ‘； ‘ ‘

- „ . ‘ . . ： . ‘

： ： . . • - 、 「 ‘ ； ‘ . •”: . •‘ -

. ；:：."、‘ •

？ i • ‘ ,1, ：. ̂ ’ .. ； • -

‘ -

‘ ‘ ‘ J . t ‘ “ ''' ‘ ‘ , •- “ , ’ \
.'’..•‘.‘.>,.,, ...‘•;:. ... , • ：、’ .

. ！ - “ -

• (’.

. . . • . / ’ . . . • - - . .. „ , - - .

• .

. - . . • .
- • . . . ‘ ， • . • • ‘ ， . ， . . • ‘： • .

r- ！ . ‘‘ - H, • • - ^ ,. 、 - ‘ . -
‘ • . . . 、 ‘

I ：、, :‘. * ,T ：， “ ’.，‘ f . "1 ‘ • • . , -

• .

...：• . ,、•; .… ^ .:‘:::、:..：�1 ’、.： .、.. ’ ..V ： . - ‘

； ‘ > • , ？ , ‘“： ’ ‘ :•‘ ‘ , . ,, • ,

. : • : — — ： ： • - 、• ：. ,

• • • ‘ . “ . - • .
... I • . , . . ‘ . . .

) Page 3-16 ,
. , , ‘ ^ ： - ' ... ’.. . ： .•••̂ i.: i l l . . . ' : ...'-..‘：，. ‘•., • - • . .

‘ * … ， V - ^ � . - ,
‘ ‘ % ‘ • . .. , . . ‘

V 1 % ““ • f . ‘ ‘ . •； •..-
,1V > i-'lvr?̂ - Ss- 1•• ‘ ‘

备;\ r “ 卞 〜 r ? , , 、 . 1、 *
% A ' ' k i： ^ \ ^ ^ ' ^^ i ^ « « . ‘ .. M ； ： " 、 广 ‘ , . / . .. •.‘，」... .• " .. • ,
�'tfe 丨 、 】 A V . % ..:、:::.；..； .蛰，：• . … ： 对 f … 飞 二 身 J Y ‘ 1•.、....、.‘::• 驗飄!li i l ; j ,� ,‘rktil l :�� . .Ld'f: J ;•_,；：:」'二 、：,...�‘ i . 、：

On the Training of Feedforward Neural Networks

4 THE GROWTH ALGORITHM FOR NEURAL

NETWORKS

4.1 Introduction

In this chapter we will develop a new dynamic node creation algorithm for

neural network. In the previous chapters, we have introduced the cascade correlation

algorithm [12] and the progressive training algorithm as examples of dynamic node creation

algorithms. The emphasis of an effective hidden node initialization scheme would reduce the

error invoked by the appended network by substantial amounts such that an adequate

representation of the training set would be achieved within the smallest number of hidden

node additions. On the contrary, an inefficient node addition scheme would cause the

resulting error of the appended network to stay at the same level or even increase to such an

extent that the original useful information embedded in the original network would be lost.

Ignoring the optimality issue at the moment, the node initialization scheme should at the very

least cause a finite error decrease to the appended network such that the algorithm will

generate a final network with a finite hidden layer size. In other words a proof of

convergence is essential to the admissibility of a dynamic node creation algorithm. The

cascade correlation algorithm has not provided such a proof, and therefore the algorithm is

in the above sense incomplete. On the other hand，the progressive training algorithm has

provided such a convergence proof, and in principle the algorithm will terminate with a

resulting network which contains at most p - 1 hidden nodes, with p being the number of

training patterns. But the node initialization procedure which leads to this convergence hinges

heavily on the following conditions:

(1) All the training patterns must first be ordered according to their Euclidean distance

(2) The training set must first be broken down into its constituents and then reassembled

pattern by pattern according to their Euclidean distances until the complete training

set is restored. At each instant the network only sees a partial training set.

The gradual reconstruction of the training set according to the Euclidean

、 Page 4-1

On the Training of Feedforward Neural Networks

distances is important in ensuring that at each stage of training there is only one novel pattern

which will be involved in substantial training, while the other patterns, which have already

been well-learnt by the old network, undergo only slight fine-tuning in order to accommodate

the novel pattern. At the same time, the ascending Euclidean norm condition ensures that the

novel pattern possesses the greatest norm among all the patterns contained in the partial

training set, and there exists a new hidden node such that whenever the hidden node is added

to the network, the error at the novel pattern will immediately go to zero, and since the

remaining patterns have already been well-trained in the old network, we can immediately

obtain a satisfactory representation of the partial training set through the addition of the new

node. The construction of the new hidden node which satisfies this criterion has been

described in Chapter 3: we can simply align the principal axis of the sigmoid surface of the

new node (the principal axis of the sigmoid surface refers to that direction on the surface in

which the variation is greatest) with the position vector of the novel pattern and shift the

surface along the principal axis in such a way that the output of the new node at the novel

pattern would be 0.5. The portion of the surface which asymptotically approaches zero should

be closer to the origin than the portion which asymptotically approaches one such that the

remaining patterns of the training set is not greatly disturbed by the addition of the new

hidden node. Convergence of the algorithm is ensured by allowing the sigmoid function to

approach the step function such that the disturbance to the old patterns in the training set by

the new node approaches zero while the output of the new node at the novel pattern remains

at 0.5. As a result, we can control the network output to whatever value we wish simply by

scaling the height of the sigmoid function in the form of scaling the output weight of the new

hidden node. The portion of the sigmoid surface which asymptotically approaches 1 would

have no effect on the partial training set as by the very definition of the current partial

training set there would be no training patterns in this region. The above process is repeated

until the whole training set is reconstructed.

Despite the various problems with this node initialization scheme mentioned

in the previous chapter such as its artificial training sequence and the low convergence speed,

、 Page 1-2

On the Training of Feedforward Neural Networks

it is quite obvious to see from the above discussion that the progressive training algorithm

would have difficulty in accommodating new information. First of all, we have to order all

the training patterns in the training set according to their Euclidean distances, and this implies

that all the information to be loaded onto the network must be available prior to the

commencement of training. If new information are later appended to the training set, we

cannot simply insert the new pattern into the old training set according to its Euclidean

distance with respect to the old training patterns, as we cannot create a corresponding new

hidden node which elicits zero error at the new training pattern, as the new training pattern

may not possess the greatest Euclidean norm among all the training patterns in the training

set. If we forcefully apply the previous node initialization scheme to prepare a new hidden

node for the new training pattern, we would end up with the situation depicted in fig 4.1.

X3

*

(S *

*
* \ hyperplane of the

new hidden node
•

Fig 4.1 The disturbance of the new hidden node to the old training patterns

The arrow in Fig 4.1 refers to that portion of the sigmoid surface in which the

function value asymptotically approaches 1. We can immediately see that even if we let the

sigmoid function approach a step function, there would still exist a portion of the training set

in which the disturbance of the new hidden node would be finite, which is exactly that portion

in which the training patterns possess a greater Euclidean norms than the new training pattern.

Although there is a possibility that the appended network would again settle down to a stable

Page 4-3

On the Training of Feedforward Neural Networks

solution after the BP process, the previous convergence argument based on the new hidden

node initialization scheme cannot go through, and the convergence of the network after the

BP process may as well be attributed to sheer luck. Moreover, there is no guarantee that the

above process will terminate with a finite network when more and more training pattern are

appended to the training set The author in [9]，clearly anticipating this problem in the

progressive training algorithm, attempts to surmount this difficulty by suggesting the

utilization of a hidden node pair to bound up the pattern whenever a new training pattern not

satisfying the maximum Euclidean norm criterion is appended to the training set. We can

depict this solution in fig 4.2.

X3

%、
_ ~i

Fig 4.2 The bounding up of the new training pattern by a pair of hidden
nodes

From fig 4.2 we can see that the double hidden node approach still cannot

solve the problem described above, as these training patterns which fall within the region A

would still be disturbed by the new hidden nodes. This is due to the fact that the sigmoid

surface extends infinitely not only in its principal direction but also in the transverse direction

as well. Though the double hidden node approach still cannot solve the disturbance problem,

the region of disturbance has shrunk from a half plane to a narrow strip in the domain of the

、 Page 1-4

On the Training of Feedforward Neural Networks

training set. As a result, the true solution to the above problem should be obvious by now:

we need only two more hidden nodes in order to surround the new training pattern as depicted

in fig 4.3.

X3

Fig 4.3 The solution to the disturbance problem

It can be seen that the four hyperplanes have truly solved the problem of

disturbance by restricting the region of disturbance to a finite region in the vicinity of the new

training pattern. However, the production of the four hyperplanes implies the addition of four

hidden nodes to the network for only a single new training pattern. To further worsen the

situation, if there is a stream of new training patterns to be appended to the network, the

above node addition scheme, though ensuring a finite resulting network, will cause the hidden

layer to expand to such an enormous size that its implementation in terms of hardware would

be prohibitively difficult. Moreover the excessiveness of parameters in the network would

most likely cause overfitting of the training set through the BP fine-tuning process. Therefore

we can see that we are paying a high price by insisting on using the sigmoid function as the

exclusive function for the hidden node under the above model.

Page 4-5

On the Training of Feedforward Neural Networks

4.2 The Radial Basis Function

The radial basis function has often been portrayed as an alternative function

to the sigmoid function in the implementation of neural networks. The functional form for

the radial basis function is given by

R(x)=g(\\x-cf) (4.1)

where c is the so-called centre of the radial basis function. It can immediately

be seen that the functional value depends solely on the distance between the patterns and the

centre of the function. The Gaussian function is most often used as the function g in the

above expression

“ “ ； (4 . 2)

'•=1 2a-

where Xj and q are the components of x and c respectively. This function can

be visualized as a local bump in the domain of the training set. The position of the bump can

be changed by varying the centre c，and the width of the bump can be adjusted by varying

the variance of the various dimensions.

The advantage of using the RBF in the hidden node lies in its computational

efficiency, as exemplified by Moody and Darken [37], since the adaptation of the network

involves only the local updates of the relevant hidden node, as each hidden node only covers

a finite region of the training set domain. In addition, the feasibility of using the RBF as a

complete substitute for the sigmoidal nonlinearity is in the hidden units are firmly established

by Park and Sandberg [44], who proved that the radial-basis function is a universal

approximator. In general, the sigmoid function and the radial basis function have their own

advantages and disadvantages and each cannot say to have outperformed the other. However,

we can immediately see that a radial-basis function network is particularly suited to our

、 Page 1-6

On the Training of Feedforward Neural Networks

problem under the above node creation environment. We have seen that at least four hidden

units are required for enclosing a new training pattern which is to be appended to the old

training set, and this represents an especially uneconomical distribution of resources (four

hidden nodes versus one training pattern). With the radial basis function (assuming a

Gaussian function for our RBF), the new training pattern can be enclosed by a single hidden

node as depicted in fig 4.4.

X3

*
*

,丁、、 / ,, 、、
T \

i ~ • o ~1 水

� � � � f ::
*

*

•

Fig 4.4 The solution of the disturbance problem by the RBF hidden unit

The arrows in fig 4.4 indicates those directions in which the radial basis

function approaches its maximum value. We can now, by adjusting the height of the

Gaussian functions through the output weight of the hidden unit, control the output value of

the network at the new training pattern such that the error at the pattern is exactly

compensated. If there is a stream of training patterns to be appended to the training set, each

training pattern could be enclosed in such a radial basis function instead of four hyperplanes,

which constitutes a resulting four-fold decrease in the network size.

Actually, we would not like to have each Gaussian function enclosing only one

training pattern. It would be useful if some kind of iterative optimization process is

incorporated into the above node addition scheme such that each hidden unit can cater for

more than one training pattern. Unfortunately, there is no uniform standard for training RBF

Page 4-7

On the Training of Feedforward Neural Networks

networks: a popular method, as exemplified by Tsoi [55], and Chen and Cowan [7], involves

the pre-selection of all the centres of the RBF in the neural network, and then solves for all

the output weights by linear least-square methods. This approach, however, requires the

knowledge of a priori information on the training set. For example, in the context of

classification, it would be ideal if we first apply some forms of clustering to the original

training set, and select the centroid of each class as the centre for each RBF hidden node.

The resulting network would give a reasonably faithful representation of the training set.

Otherwise, with an arbitrary selection of the centres, the network is not guaranteed to

represent correctly the underlying distribution of the data. An alternative method involves

the adaptation of these centres of the RBF hidden units such that the initial misassignments

can be corrected. In general, we can apply a BP-type optimization procedure to the network

such that the centres and variance of each RBF unit can be independently adapted ie. we

construct aCj and aQj^ such that they are proportional to the partial derivative of the total error

with respect to c � a n d Qĵ . Assuming that we are using the Gaussian function as our RBF

function: since the term c � i s in the numerator of the exponent of the exponential function and

0|2 is in the denominator, the partial differentiation would result in entirely different

adaptation equations for Cj and In addition, the parameters to be adapted include all the

components of c and the Oĵ for all dimensions，thus resulting in a two-fold increase in Ihe

number of parameters to be adapted when compared with a conventional BP network. The

over-abundance of parameters for a single hidden node ,though resulting in a higher

convergence rate for RBF network, is also the source of over-fitting when applying the RBF

network to tasks such as time series modelling as described in [58].

Therefore, it would be ideal if we can derive a method in which whenever a

new training pattern is appended to the training set, it could be enclosed completely by a

single new hidden unit. Moreover, an iterative optimization procedure has to follow the node

assignment such that one hidden unit can in general handle more than one training pattern.

The optimization process should generate a single type of adaptation equation for all the

parameters of the hidden node, and the number of parameters to be adapted should not be

、 Page 1-8

On the Training of Feedforward Neural Networks

more than a small fraction of those in the corresponding sigmoid network. It would be most

ideal if we can directly apply the classical BP process to fine-tune the network. The above

description seems an over-idealization, but the above combination actually exists in the form

of the present growth algorithm to be described in this chapter.

4.3 The Additional Input Node and the Modified Nonlinearity

The ideal network promised in the previous subsection can be realized by

simply appending an additional input node to each hidden node. The situation is depicted in

fig 4.5.

广^^the Q-th hidden node

//。…-Y;
X
入 2

Fig 4.5 The architecture of the modified hidden node in the growth
algorithm

We should now investigate the property of this modified hidden node.

Defining the pre-nonlinearity activation ag for the Q-th hidden node as

/i+i

i=i

and defining

、 Page 1-9

On the Training of Feedforward Neural Networks

n

i=l

The above summation becomes

n n

i=i (4.4)

i=i

From the above pre-nonlinearity activation, we find that the output of the

hidden node, hg, is equal to

(〜）

= i (4.5)
n

l+expCj] b{x-c)^-d)
i=i

It can be seen that the output of the hidden unit depend only on the distance

between the input x and a centre c with its components defined by the hidden weights of the

modified hidden node. Thus the above function can be qualified as a radial basis function.

The functional value at the centre of this radial basis function acts as either the maximum or

minimum of the overall function depending on the sign of b.

The purpose of the derivation of this modified hidden node lies in its

underlying simple weight adaptation strategy: if we ignore the modified functional form of

the modified node and treat it simply as a black box, the modified node is simply a

conventional sigmoid hidden unit with n+1 input nodes. The conventional BP algorithm can

Page 4-10

On the Training of Feedforward Neural Networks

be directly applied to this unit without further modifications. Furthermore, the number of

weights to be adapted is n+1, a negligible increase in the number of modifiable parameters

when compared with a conventional radial basis function where 2n parameters are to be

adapted.

In additions, one may notice that this new radial basis function contains two

additional parameters, b and d, when compared with the conventional RBF function. The

parameter b can be equated with the variance of the traditional RBF，but in the present

case the parameter b can take on positive or negative values depending on the hidden weights

while the only take on positive values. The resulting function thus can vary from the form

in which the centre takes on the maximum value to another form in which the centre takes

on the minimum value. Thus an additional degree of freedom is possessed by the current

node. Furthermore, in conventional RBF, the value of d is always zero. When interpreted

in the context of the current modified hidden node, this implies that all the hidden weights

WjQ must obey a certain relationship among themselves. On the other hand, the current

adaptation scheme attempts to adapt all the weights ŵ q independently, resulting in a value

of d which is normally non-zero. Thus, a further degree of freedom is added to the system.

Finally, there is no reason in the course of weight adaptation which prevents

the weight v ^ i q from attaining a near-zero value, which causes the modified nonlinearity of

the node to revert to a normal sigmoid function. Thus the modified nonlinearity can in fact

change continuously from a normal sigmoid function to a RBF function according to the

requirement posed by the training set, and can thus elicit the advantages of these two kinds

of nonlinearities.

4.4 The Initialization of the New Hidden Node

Suppose that in the course of dynamic node creation, the current restricted

network can no longer cope with the difficulties of the current training set, and there exists

some training patterns at which the representation error is non-negligible. It would be

reasonable if we pick out one training pattern among these patterns which invokes the greatest

、 Page 1-11

On the Training of Feedforward Neural Networks

error and creates a RBF hidden node to enclose this training pattern such that the reduction

of error would be greatest. This node can be created by appropriately choosing the hidden

weights of the modified node. First assuming that b is 1 to give a reasonable variance for

the RBF and set d equal to zero to conform with the conventional RBF, we have

- 广 (4.6)
i=i

It is noticed that the sign of b is positive such that the resulting nonlinearity

attains its maximum at the centre. Designating the pattern which possess the greatest error

as the "difficult" pattern and symbolizing it as x ,̂ we assign this pattern as the centre of the

new hidden node, and the following expression results:

n

t=l

. i=l
n n n

z=l i-l

Designating Xj as the bias unit and comparing this expression with the activation of

the modified node, we obtain

n

i=i

n (4.8)

i=i

The above initialization would result in a RBF which peaks at the "difficult"

pattern and tails off gradually on all sides. The rate of tailing off is controlled by the

、 Page 1-12

On the Training of Feedforward Neural Networks

magnitude of the various hidden weights. Suppose that the various desired output for the

"difficult" pattern at the various output nodes are denoted by d ” . . … , S i n c e the output of

the new hidden node at the "difficult丨’ pattern is 0.5 by the above equation, the output weight

iiQk of the new hidden node can be initialized as

2 - 1

广 1 (… - (4 . 9)

u= 已

以 0.5

where f� represents the inverse of the sigmoid function and hj represents the

output of the various hidden nodes. With all its parameters determined, we can apply the BP

process to the appended network such that further optimization of the parameters are possible.

At this stage we shotild define what is meant by the success of the BP-fine-tuning process:

we would usually stop the BP process if the successive percentage decrease of error aE/E,

where E = E(t+1)-E(t) and t denotes the number of epochs，is less than a pre-determined

threshold G, which we call the error gradient threshold. We would then examine the mean

square error of the resulting network: in a later subsection it would be proved that under the

present node creation scheme, the final network will at most contain p - 1 hidden nodes,

where p is the number of training patterns in the training set. With reference to this final

condition, we could define two practical criteria to determine whether the BP fine-tuning

process is successful:

(1) For a classification problem in which the training data is relatively noise-free (such as the

Parity Problem), we would consider that the BP fine-tuning process has succeeded if one

more training pattern (not necessarily the "difficult" pattern) previously not classified correctly

is now classified correctly on the addition of the new node. (The definition of correct

classification is such that the output of the network should be on the correct half of the

interval [0，1] if the desired output is 0 or 1)

(2) For a training set in which the existence of noisy data are suspected or for a function

approximation task, we could not adopt the number of instances of correct classification as

、 Page 1-13

On the Training of Feedforward Neural Networks

our convergence criterion. Instead we should set a threshold error E j such that if the error

of the overall network is less than E^, the network is said to have adequately represented the

training set. Assuming also that we are at a stage of node creation in which the Q-th node

is recently appended to the network: before the addition of the new node, the error of the

network is Ej, while after the BP fine-tuning the error of the network is Ef. To fully represent

the training set with a network of at most p-1 nodes as would be possible under the current

growth algorithm, the new node should at least cause the error to decrease by an amount of

(Ej - Et)/(p - Q). In other words, the decrease in error E； - Ef through the node addition and

the BP process must satisfy Ej - Ef > (Ej - Et)/(p - Q). If this criterion is satisfied, the BP

fine-tuning process is considered successful.

According to the nature of the training set, we would call the achievement of

the above two criteria the satisfaction of the partial convergence criterion.

In view of the possibilities of unsuccessful instances for the BP process, we

should prepare a precautionary measure for the new hidden node: prior to the BP fine-tuning

process, the state of the network is recorded, and if the BP process is not successful, the

previous state of the network is restored, and the following scale-up is applied to the hidden

weights.

〜 (— 省 麵 (4.10)

The s in the above expression is the scale-up factor and should be greater than

1. This scale-up process is to be repetitively applied if the BP process is persistently

unsuccessful. Since the parameter s, when substituted into the original equation, becomes

synonymous with the variance of the RBF: if we let s approach infinity, the RBF would be

so narrow that the disturbance of the hidden node to all the other training patterns (except the

"difficult" pattern) would be zero, and in this way the error at the "difficult" pattern would

be exactly compensated by the new hidden node without affecting the other training patterns.

Page 6-14

On the Training of Feedforward Neural Networks

4.5 Initialization of the First Node

It is seen in the previous subsection that the various parameters of the new

hidden node is wholly dependent on the "difficult" pattern. Suppose that we are going to start

a new training session and we possess a single-node network. Since the network has never

been trained before and we would not favour a random initialization under the present

scheme, the concept of "difficult" pattern is not defined and alternative initialization scheme

has to be derived for the first node of the network. We would suggest here an initialisation

scheme which when coupled with the preceding initialization scheme for subsequent hidden

nodes, would result in a final network with at most p - 1 hidden nodes.

We would first select among all the training patterns the pair which possesses

the greatest inter-pattem distance, and denote them by x(t) and x(t，). We would now

introduce our initialization scheme for the first hidden node: the hidden weights of the node

are given by:

州1 2二 - i i (义灼-功ox义釣^x(^O)
(4.11)

w.Q=x.{t)-x.(t') 2<i<n

The above initialization essentially places the hyperplane of the first node in

the mid-point between the training patterns x(t) and x(t') with its normal vector aligned with

the difference vector x � - x (t，) between the two vectors. The relationship between the

hyperplane of the first node and the domain of the training set is depicted in fig 4.6.

I

. Page 4-15

On the Training of Feedforward Neural Networks

X ⑴

• yC)
/ / Hyperplane of the

/ ^ ^ ^ first node

X \ Domain of
training set

Fig 4.6 Relation between the hyperplane of the first node and the training
set domain

It is seen in fig 4.6 that the hyperplane of the first node is placed almost across

the centre of the training set domain and partitions the domain into half. Besides acting as

a preparation step for the subsequent exact representation of x(t) and x(t，)，this arrangement

actually facilitates the BP fine-tuning process: as can be seen in the above diagram: no

training patterns are at an excessively large distance from the hyperplane as the hyperplane

is placed almost at the centre of the training set domain. In the context of the sigmoid

nonlinearity, since the hyperplane is the site of the greatest gradient for the function, and no

training patterns are excessively far from this site, this implies that at the various training

patterns the gradient of the sigmoid function would not be excessively small. Since the

adaptation term for the hidden weights in the BP equations is directly proportional to the

gradient of the sigmoid function at the various training patterns, this implies that the

adaptation term at the various training patterns for the first node would not be excessively

small, and the BP process can make a real contribution in reducing the overall error of the

network.

After the initialization of the hidden weights, we can further proceed to

Page 4-16

On the Training of Feedforward Neural Networks

initialize the output weights Wk of the first hidden node (after the bias node) such that the

resulting network can exactly represent the two patterns. Denoting the desired output vector

for the two pattern as d(t) and d(t'), and the corresponding hidden node output for the first

node as h2(t) and ĥG，) respectively (the subscript 1 is reserved for the bias node). We can

solve for the output weight U2k and the bias weight Uĵ by the following pair of linear

equations.

州 (4.12)

Since there are two equations with two unknowns, we can exactly solve for the

bias weight û ^ and the output weight û k of the first node. In this way the parameters of the

first node can be fully initialized.

The criterion of success for the BP fine-tuning process is simple: we must

remember that through the above initialization scheme, the single-node network can already

represent the two patterns x(t) and x(t') exactly. We can simply store the current state of the

network and apply the BP process until aE/E < G and check if the final error Ef is greater

than the initial error Ej (a possibility since the pattern-update mode of BP is not an exact

gradient process). If this is not the case, we can accept this solution as final, otherwise we

can simply restore the previous state of the network.

Finally, one may notice that the searching for x(t) and x(t，）is a very time-

consuming process in that the distance between every pair of training patterns in the training

set have to be obtained. In view of this, we have adopted a simplified and sub-optimal

method in searching for x(t) and x(t'): Each component of each training pattern is shifted by

a suitable constant amount such that all the components of every training pattern is positive

(e.g. in a 2-D training set, all the patterns are shifted to the first quadrant). After that we

calculate the Euclidean distances of all the shifted pattern and selecting the one with the

smallest Euclidean distance as x(t') while selecting the one with the largest Euclidean distance

as x(t).

Page 4-17

On the Training of Feedforward Neural Networks

4.6 Practical Considerations for the Growth Algorithm

It will be shown in subsection 4.7 that the present algorithm will at most

generate p - 1 hidden nodes for every training set, thus satisfying the convergence requirement

for a dynamic node creation algorithm. However, for a given task, we would like the present

algorithm to generate hidden nodes in an effective manner such that the training set can be

represented with as few hidden nodes as possible. The above node initialization scheme

concerns primarily with the eventual convergence aspect of the algorithm while disregarding

the efficiency issue of the node addition procedure. In addition, the BP fine-tuning process

would be applied to the restricted network immediately after the node initialization procedure

but there is no guarantee that the BP process would be well matched with the parameters

evaluated from the deterministic assignment procedure, i.e. we cannot guarantee that the BP

process would make an effective descent starting from the current new configuration of the

network. Through experiments, we have discovered two heuristics which would ensure this

effective descent after the deterministic assignment procedure. These will be described below:

(1) Magnitude Adjustment for w^+i q: The additional weight Wn+i’Q is an exclusive feature of

the current growth algorithm such that a dynamic node creation algorithm can be built on an

unordered training set. This weight is fed by the summation Due to this operation

the magnitude of x̂ +i is usually much greater than the other input components X j , " …，T h i s
I .

fact is not in conflict with the convergency requirement but unfortunately in conflict with the

BP fine-tuning process: since the hidden weight adaptation term in BP is directly proportional

to the magnitude of the input components:

AMA =r |5x (4.13)

The large magnitude of x̂ +̂i will cause a correspondingly large adaptation to

Wn+i Q when compared to other hidden weights. Under this condition the underlying RBF may

not properly preserve its own shape and perform its task of isolating the "difficult" pattern

during the BP fine-tuning phase. In fact, it is observed in experiments that the error decrease

under the BP process when the above scheme is directly applied is not remarkable due to the

Page 4-18

• »

On the Training of Feedforward Neural Networks

reason that the large changes in Wn+i, q results in the underlying RBF not being able to

properly cover the "difficult' pattern. The solution is simple for this problem: we can simply

scale down x̂ +i by a proper amount and scale up the weight w„+i q by the corresponding

amount: Here we scale the input x̂ +i according to the following scheme:

义 二 〜 (4 . 1 4)

where

|x.(0|] Vr,/

Vr

and the corresponding hidden weight q is scaled up as follows

(4.15)

In this way the magnitude of is of the same order as the other input

components Xj. Moreover, by the corresponding scale up in the hidden weight q, the

shape of the RBF established by the node initialization scheme is maintained. Experimentally

it is observed that through the above scaling scheme, the performance of the BP fine-tuning

process is greatly improved, and a true descent of the error surface is achieved.

(2) Monitoring of 5(aE/E): As has been mentioned previously, the end of the BP fine-tuning

process is determined by the quantity aE/E where E =E(t+l) - E(t) signifies the change in

error over one epoch: the BP process is stopped whenever aE /E is smaller than the error

gradient threshold G, indicating that the current state of the network has reached a certain

region in the error surface at which the gradient approaches zero，signifying the possibility

of encountering the global minimum. This monitoring scheme performs satisfactorily during

the intermediate stages of BP fine-tuning process when aE /E gradually decreases as expected,

Page 4-19

On the Training of Feedforward Neural Networks

but not at the stage immediately after a new node is appended to the network: the presence

of the new node provides an alternative dimension through which the current state of the

network can descend, but through experimentation it is discovered that the network may spend

quite some time in searching for this alternative path, and during the searching stage it is

observed that the value of aE/E remains low and may sometimes fall below the threshold G,

indicating that the current state is on a plateau and is about to descend along the alternative

path. In view of this, if the node addition scheme only monitors the value of aE/E, it may

misinterpret the situation immediately after the node addition as the signal for the completion

of a descent and the requirement of a new node. Under this condition, many redundant nodes

may be added to the network before a true descent on the error surface is achieved.

Fortunately, there does exist one difference which distinguishes the cases between the start

of descent on a plateau and the completion of a descent: if we calculate the quantity 5(aE/E)

=AE/E(n+1) -AE/E(n) for both cases, we will find that for the first case, this quantity will be

positive due to the gradual increase in the gradient of the error surface as the current state

gradually approaches the alternative descent path. For the second case, the quantity will be

negative due to the gradual decrease in the gradient of the error surface as the current state

approaches a minimum point. Therefore, if at any stage of the BP fine-tuning process we

discover that aE/E < G, we can, by monitoring the sign of

5(aE/E) in addition, distinguish the above two situations: if 5(aE/E) is negative, we can

terminate the fine-tuning process. If 5(aE/E) is positive, we should continue with the fine-

tuning process until 5(aE/E) is negative, and repeat the above process of monitoring the two

quantities. In this way the addition of redundant nodes to the network due to the above

reason is avoided. This enhanced error gradient monitoring scheme will also be applied to the

deterministic dynamic node creation scheme described in Chapter 6.

4.7 The Convergence Proof for the Growth Algorithm

At this subsection we will prove that the current growth algorithm will

eventually result in a network with a finite hidden layer: the proof will be obvious in view

Page 6-20

On the Training of Feedforward Neural Networks

of the various developments mentioned in the previous subsections concerning the

initialization scheme of the new node.

For the first node, we have ensured that the node can represent exactly two

patterns through the initialization scheme of the first node.

For the other hidden nodes, we have ensured through the hidden node

initialization scheme that the resulting node can at least represent one training pattern exactly.

There are p - 2 such patterns (minus the two patterns represented by the first node) to be

catered for by these additional hidden nodes. Therefore, for the worst case in which the first

node can represent only two patterns and each hidden node can only represent one pattern,

the network consist of 1 + (p-2) = p - 1 hidden nodes. Therefore, thee hidden layer size

generated by the current algorithm will still be finite under the worst condition. It can be

seen that the eventual network size of the current algorithm is the same as that for the

progressive training algorithm [9].

4.8 The Flow of the Growth Algorithm

We may now recapitulate on the flow of the growth algorithm : the flow of the

algorithm is depicted in the flowchart in fig 4.7

4.9 Experimental Results and Performance Analysis

1. The Parity Problem

The growth algorithm is first applied to the parity problem，which is long

considered a very difficult problem because by changing only one bit of information, the

output of the network would be entirely different. In the simulation studies, we adopt the

adaptation gain of 0.5 and a momentum of 0.7. To minimize the training time, we adopt the

following criterion of convergence, if the desired output is 1 for a training pattern, we would

consider that the output of the network is correct if it is greater than 0.5. On the other hand,

if the desired output is 0，the correct classification criterion would be that the network output

is smaller than 0.5. The error gradient threshold G is set at 0.05% since this threshold results

Page 6-21

On the Training of Feedforward Neural Networks

(start)

> f

::a .11 1 wit li
the bias node

y_

add a new
node to the

network

> f

y Ini t ia 1 ize
first node node using Eq

K of the) ~ > (4.11) and
\^^network? (4.12)

n
\t

select
"difficult"
pattern

> f

initialize
node using Eq

(4.8) and
(4.9)

< y
store network

state and
apply BP ^
process

C Converge?) M end)

n

Partial \
C convergence y

ach ieved? y/^

n
^

Restore the .
previous

state of the
network

y
Scale-up the

hidden
weights by
Eq (4 . 10)

Fig 4.7 Flow of the growth algorithm

Page 6-22

On the Training of Feedforward Neural Networks

in a reasonable network size for parity problems of most orders. The scale-up factor for the

growth algorithm is set at 5，5.5，6，6.5，7，and the simulation results presented below is

averaged over these 5 values for the scale-up factor.

In addition, the progressive training algorithm is also applied to the same

problem and the results are tabulated alongside the results for the growth algorithm. The

parameters used for the progressive training algorithm is the same as that used for the growth

algorithm and the results are averaged over the same 5 scale-up factors. Finally the BP

algorithm is also applied to the same problem with its hidden layer size equals that for the

growth algorithm for comparison purpose.

parity Growth Algorithm PT Algorithm BP Algorithm

order

No. of No. of No. of No. of No. of No. of

Epochs Nodes Epochs Nodes Epochs Nodes

2 39 2 87 2 107(0%) 2

3 64 3 165 3 62(0%) 3

4 124 4 373 5 698(80%) 4

5 674 4 489 11 565(20%) 5
6 579 9 382 14 92(0%) 9

7 782 10 1050 15 121(20%) 10

Table 4.1 The growth algorithm applied to the parity problem

The figures in the parentheses in Table 4.1 indicates the failure rate among 10

trials of BP. From the above results, we can summarize our observation.

(1) Like the Progressive Training Algorithm, the growth algorithm does not encounter any

local minimum. While there are occasional failure rate among 10 trials of BP for each parity

order, both the growth algorithm and the progressive training algorithm encounter zero failure

Page 6-23

On the Training of Feedforward Neural Networks

rate.

(2) For the convergence speed, the growth algorithm excels at both low-order and high-order

parity problems, while the progressive training excels at parity problems of intermediate

orders. On the other hand, for low-order parity problems, the convergence speed of BP is in

general lower than that of the other two algorithms, while for the higher-order parity

problems, the convergence speed of BP is much greater. This can be explained by the fact

that we have used the same number of hidden nodes for the BP network as for the network

built up using the growth algorithm such that a comparison between these two types of

networks can be made. As in general, the parity problem of order n can be solved by a

network containing n hidden nodes, we are in fact using more nodes than necessary in the BP

case and thus results in a quick convergence. This also highlights one of the problems of

dynamic node creation, that the convergence speed would be slow when compared with BP

networks with a large initial hidden layer size. However, this is more than compensated by

the fact that in the BP case, we have no means whatsoever for determining the network size

and we cannot guarantee the convergence of the network as indicated by the non-zero failure

rate.

(3) The network size built up by the growth algorithm is in general smaller than that for the

progressive training algorithm and is much closer to the optimum size of n hidden nodes for

the n-th order parity problem. In other words, the growth algorithm serves as a better hidden

layer size estimator than the progressive training algorithm in this problem.

2. The Handwritten Character Recognition Problem:

The present algorithm was also applied to a hand-written character recognition

problem. The input features are extracted through the segment projection approach, the

details of which are reported in Lee et. al [31]. This feature extraction method results in 16

input nodes for the input layer. The character set consists of the alphabets A to Z and

includes the numerals 0 to 9. The output layer consists of 36 output nodes with each of the

nodes corresponding to the recognition of a particular character by presenting an output of

Page 4-24

On the Training of Feedforward Neural Networks

1 with the output of all other nodes at zero. The training set consists of 180 examples from

the handwritings of 5 persons. The testing set consists of another 180 examples from the

handwritings of another 5 persons. The training is terminated when the network sum-squared

error E is less than 30, which results in a reasonably low classification error for most of the

cases. The training parameters are identical to the parity case, while we have separately

tabulated the training results for the various error gradient threshold G in order to investigate

its relationship with the generalization capability of the network. The BP results are obtained

from averaging 5 training trials. We first compare the training speed of the various

algorithms.

Error Gradient Growth Algorithm PT Algorithm BP Algorithm

Threshold

0.05% 511 1685 83

0.06% 507 1733 83

0.07% 431 1202 83

0.08% 356 1480 50

0.09% 340 952 67

0.10% 349 1245 50

Table 4.2 The growth algorithm applied to the handwritten character recognition problem

(Training speed comparison)

Since the concept of error gradient threshold is not applicable to the BP case,

the results for BP in Table 4.2 is obtained simply by using a network with the same hidden

layer size built up from the growth algorithm using the corresponding error gradient threshold,

thus resulting in the identical simulation results for BP across several values of error gradient

Page 6-25

On the Training of Feedforward Neural Networks

threshold, since identical network size are generated by the corresponding growth algorithm.

It is noticed that the convergence speed for BP is in general much higher than

that the dynamic node creation algorithms due to its initial large network. Thus the defect

of starting with a single-node network for the node addition algorithm is once more

highlighted. In general, the convergence speed of the growth algorithm is greater than that

for the progressive training approach due to the special training sequence adopted by the latter

algorithm in which the training set has first to be segregated and then reassembled pattern by

pattern during the course of training，thus resulting in a lower speed of convergence.

Moreover, the convergence speed decreases as the error gradient threshold increases for the

two algorithms, which may be due to the reason that the high error gradient threshold

encourages a quick build-up of hidden nodes which in turn removes quickly the initial single-

node network restriction. We would next compare the resulting network size

generated by the two dynamic node creation algorithms:

Error Gradient Growth Algorithm PT Algorithm BP Algorithm

Threshold

0.05% 18 28 18

0.06% 18 26 18

0,07% 18 24 18

0.08% 22 27 22

0.09% 21 25 21

0.10% 22 32 22

Table 4.3 The growth algorithm applied to the handwritten character recognition problem

(Network size comparison)

Page 4-26 •

On the Training of Feedforward Neural Networks

It can again be seen that the growth algorithm produces a smaller hidden layer

size than the progressive training algorithm. In general, the number of hidden nodes

generated by the two algorithms increases when the error gradient threshold is increased

which corresponds to a relaxation of the node addition criterion.

The recognition rate for the various algorithms on the training set is then

compared:

Error Gradient Growth Algorithm PT Algorithm BP Algorithm

Threshold

0.05% 93.3% 97.2% 92.7%

0.06% 92.7% 98.9% 92.7%

0.07% 92.7% 96.7% 92.7%

0.08% 82.2% 97.2% 94.4%

0.09% 88.3% 97.8% 91.1%

0.10% 85% 97.2% 94.4%

Table 4.4 The growth algorithm applied to the handwritten character recognition problem

(Training set recognition rate)

Since we are not pursuing 100% classification in the training exercise, complete

classification is generally not achieved for most of the cases. However, the classification rate

on the training set for all of the 3 algorithms are relatively high, in some cases approaching

100%. In general, the progressive training algorithm achieves the highest classification rate

due to the near individual catering of each training pattern and its long training time. In

general，the classification rate for both the growth algorithm and BP algorithm is similar since

the complete training set is presented to the network in every trial which results in a

Page 4-27

On the Training of Feedforward Neural Networks

generalization over the whole training set rather than the fitting of the individual patterns.

This results in a slightly lower classification rate for these two algorithms but the underlying

natural training sequence can help to prevent overfitting. Finally, it is noticed that the

classification rate for all three algorithm does not vary much across various error gradient

threshold.

Finally, the recognition rate of the networks produced by the various algorithms

on the test set is compared:

Error Gradient Growth Algorithm PT Algorithm BP Algorithm

Threshold

0.05% 81.1% 72.8% 83.3%

0.06% 82.8% 71.7% 83.3%

0.07% 86.1% 74.4% 83.3%

0.08% 80.6% 76.7% 88.9%

0.09% 82.7% 78.3% 85.6%

0.10% 85.0% 71.1% 88.9%

Table 4.5 The growth algorithm applied to the handwritten character recognition problem

(Test set recognition rate comparison)

For the generalization capability on the test set, the conventional BP algorithm

exhibits a higher generalization rate than either of the two dynamic node creation algorithms,

which again confirms the notion that in a dynamic node creation environment, the knowledge

of the training set may already be consolidated in a small network at the early training stages.

This initial small network may be inadequate for that particular training set when compared

to a large network. In addition, the generalization rate of the growth algorithm is greater than

Page 6-28

On the Training of Feedforward Neural Networks

that for the progressive training algorithm due to the shorter training time involved which

reduces the chance of overfitting. In general, it is observed that the generalization rate is

related to the convergence speed which in turn is related to the error gradient threshold，rather

than directly to the threshold itself. For example, the highest generalization rate for the two

node addition algorithms occurs in the intermediate threshold range, which corresponds to the

intermediate range of training speed where the possibility of overfitting and underfitting is

slight.

(3) Time Series Modelling

For this simulation study, we adopt the Mackey-Glass time series as our

training set. The time series is generated from the Mackey-Glass differential equations

0 岭 1 7) _ _) (6.19)

dt

The equation was integrated using a fourth-order Runge-Kutta method to

provide values of x at discrete time steps. The task is to predict x(t+6) from four past data

points x(t), x(t-17), x(t-34), x(t-51). Thus networks with four input nodes and one output

node were employed. In this experiment, the first 400 points of the series were used for

training and the following 543 points were reserved for testing purpose. Thus the

generalization performance of the PT algorithm can be tested. The normalized root-mean-

square error (NRMSE) was used as a generalization performance index:

NRMSE:_ 1 乂 (4.17)

where d ^ � is the target value x(t+6) in the testing data set and y ! � is the network's

prediction.

Page 4-29

On the Training of Feedforward Neural Networks

The training parameters used are the same as the previous two simulation

studies. The error threshold used is 0.1 which provides a reasonable prediction error for all

the training exercises. The training speed of the various algorithms is first compared.

Error Gradient Growth Algorithm PT Algorithm BP Algorithm

Threshold

0.05% 1129 1015 3523

0.06% 891 1177 2824

0.07% 814 1029 1505

0.08% 787 817 2824

0.09% 785 970 2465

0.10% 754 790 2465

Table 4.6 The growth algorithm applied to the time series modelling problem (Training speed

comparison)

For this training exercise, it is discovered that the convergence speed for BP

is lower than that for the two dynamic node creation algorithms, indicating that this training

set, unlike the handwritten character recognition problem, is not at all a simple training data

set for BP，even when it is equipped with the advantage of starting with multiple nodes. The

convergence speed for the two node addition algorithms are similar and exhibit the

characteristic trend of increasing convergence speed for increasing error gradient threshold.

The size of the network generated by the various algorithms is then compared:

Page 4-30

On the Training of Feedforward Neural Networks

Error Gradient Growth Algorithm PT Algorithm BP Algorithm

Threshold

0.05% 5 9 5

0.06% 8 11 8

0.07% 7 10 7

0.08% 8 10 8

0.09% 11 12 11

0.10% 11 12 11

Table 4.7 The growth algorithm applied to the time series modelling problem (Network size

comparison)

These simulation results are consistent with the previous two problems in that

the resulting hidden layer size for the growth algorithm is smaller than that for the progressive

training algorithm. In addition，the results display the characteristic trend of an increasing

hidden layer size with increasing error gradient threshold. This is due to the shortened BP

fine-tuning time applied to the network when a higher error gradient threshold is used. As

a result, a new hidden node is not adequately trained to realize its full error reduction

potential, and additional nodes are required to compensate this reduction in its capacity.

Finally, the generalization capability of the networks generated by the various

algorithms is compared.

Page 6-31

On the Training of Feedforward Neural Networks

Error Gradient Growth Algorithm PT Algorithm BP Algorithm

Threshold

0.05% 0.3213 0.0997 0.1011

0.06% 0.2439 0.1006 0.1013

0.07% 0.2407 0.1028 0.1001

0.08% 0.2391 0.1018 0.1013

0.09% 0.2411 0.0982 0.1092

0.10% 0.2536 0.0999 0.1092

Table 4.8 The growth algorithm as applied to the time series problem (NRMSE comparison)

It is seen that, for this training set, the generalization capability of the growth

algorithm is not as high as that for the other two algorithms. The reason may be due to the

initialization scheme of the growth algorithm which depends on a single training pattern:

though the scheme for the progressive training algorithm also depends on a single training

pattern, the periodic disturbance to the network by the continuous addition of new patterns

would prevent the early consolidation of the training set knowledge in a small network.

Apparently, the possibility of memorizing noisy training patterns is higher for the growth

algorithm than for the PT algorithm.

In general, the growth algorithm provides a greater convergence rate for most

of the training set in the simulation studies, due to the immediate "covering" of the "difficult"

training pattern by the modified nonlinearity of the new hidden node. In addition, the

resulting network built up by the growth algorithm is smaller in size when compared to the

progressive training algorithm, since for the PT algorithm each new pattern added to the

Page 6-32

On the Training of Feedforward Neural Networks

training set would have the potential of creating a new node for the network, which greatly

contributes to the possibility of node addition. On the other hand, the growth algorithm does

not require this segregation of the training set and thus the possibility of node creation is

lowered. However, the generalization rate for the growth algorithm is not satisfactory for

noisy training sets such as time series, due to its single-pattern node initialization scheme

which encourages the memorization of noisy training patterns. It will be seen in Chapter 6

that this restriction is partly alleviated by the deterministic training algorithm.

4.10 Concluding Remarks

We have achieved the first stage of our promised course of algorithm

development in the form of the current growth algorithm which builds a dynamic node

creation process on an unordered training set. This is important for a training scheme which

is capable of accommodating new information since by the very definition of a scheme

involving a training set ordered according to the Euclidean distance, we must have all the

training patterns available prior to the commencement of training such that we can apply the

sorting procedure to the training set. The conception of a node addition scheme on an

unordered training set thus paves the way for a future training algorithm which can achieve

incremental learning. The current growth algorithm achieves this task by including an

additional input node for each hidden node which emits the Euclidean distance of each

training pattern such that the underlying nonlinearlity effectively becomes a radial basis

function, which can in turn completely isolate the so called "difficult" patterns from the other

patterns and control their errors: a task which is impossible for the progressive training

algorithm to achieve except with four sigmoid hidden units. Moreover, the present algorithm

is guaranteed to terminate with a finite network which is an essential requirement for any

dynamic node creation algorithms with no pruning applied. The current algorithm is applied

to the famous parity problem，a handwritten character recognition task and a time series

modelling task. It is observed that in general the performance of the growth algorithm is

comparable to the progressive training algorithm both in terms of training speed and the final

network generated. Unfortunately, it is seen that the generalization performance of the

Page 4-33

On the Training of Feedforward Neural Networks

algorithm on some data sets is not satisfactory when compared with those networks trained

using the conventional BP approach. It will be seen in later chapters that in fact the

unsatisfactory generalization performance is a general feature of dynamic node creation

algorithms (especially for those node creation schemes in which the complete training set is

used as opposed to algorithms in which a partial training set is used such on P.T.) due to the

early consolidation of knowledge in a restricted network which is too small to adequately

represent all the essential features of the current training set. However, this problem will find

relief in the methods proposed in Chapter 7 and 8.

Finally, we may notice that the current growth algorithm is still based on a

single training pattern. It has been mentioned that for some training sets, the training patterns

may be contaminated with noise, and when incidentally one of these patterns is selected as

the "difficult" pattern and used for the initialization of a new hidden node, this noisy pattern

will most probably be memorized by the new hidden node and cause an overall

misrepresentation of the training set, since the noise is not a part of the features possessed by

the training set. The solution to this problem is to initialize the hidden node by large number

of training patterns so that the noisy effects can be averaged out. The conception of this

initialization scheme is not at all easy to carry out in the domain of the training set where the

training patterns are independent entities such that the correlation between them are difficult

to visualize. However, it will be seen in Chapter 5, that just by a simple variation in the

vector concatenation scheme of the training patterns, we will arrive at the T-vector concept

which is conducive to the achievement of the purpose stated above.

Page 4-34

On the Training of Feedforward Neural Networks

5 KNOWLEDGE REPRESENTATION IN NEURAL

NETWORKS

5.1 An Alternative Perspective to Knowledge Representation in Neural Networks:

The Temporal Vector (T-Vector) Model

To facilitate the representation of the various parameters in neural networks,

the associated parameters are often concatenated into a vector. Notable examples are weight

vectors which are the connection of the input to a node (whether output or hidden node),

the input vector which contains all the input to the network, hidden vector which are the

output of all the hidden nodes, and those of all output nodes as output vector. These

conventions originate by considering the neural network as a mapping device from R" to R"\

in which the input nodes and the output nodes naturally cluster into vectors into their

respective R spaces. In other words, these concatenations facilitate the description of the

mapping pairs spatially. The concatenation for the hidden node output merely follows the

convention of the input layer and the output layer, and describes vectors in a fictitious domain

known as the hidden space.

Until recently, the above model has been employed to study the behaviour of

neural networks. The hidden weight vectors are viewed as hyperplanes in separating the input

patterns into clusters, and the hidden space is recognised as the site at which the elements of

the input space are mapped into such that they are more separable by a hyperplane (in the

form of the output weight vector). To gain an understanding of the workings of the neural

networks, one cannot prevent oneself from investigating the distribution of patterns in the

hidden space. However, the determination of the optimum hidden vectors in the hidden space

under this model is by no means a simple task as the optimality criterion, that the hidden

vectors be linearly separable, is an extremely loose one which results in a large number of

possible configurations. In fact, the searching for the optimal hidden vector is not a trivial

task and turns out to be at least as difficult in determining the network mapping itself, which

calls for the usage of iterative learning procedure in determining the network parameters

、 Page 1-1

On the Training of Feedforward Neural Networks

instead of deterministic assignment in the first place. As a result, we can gain little

information from the above spatial model in either enhancing the hidden layer representation

or inspiration in improving the current learning procedures.

In this chapter a slight alteration in the concatenation of the various node

outputs for describing the network is discussed and it will be shown that such a model will

lead to a great enhancement to our understanding of the knowledge representation process in

neural networks.

5.2 Prior Research Works in the T-Vector Approach

Clearly realizing the difficulties of the spatial vector approach, researchers have

turned to the temporal vector or T-vector approach to find an alternative perspective in order

to probe into the inner workings of the neural network. This new approach is still in its

germinating stage as it takes times to turn researchers from working in their favourite S-

domain into a somewhat less familiar and less intuitive T-domain. But the trend of domain

switching is evidently in the ascendancy in view of the increasing amounts of works turned

out in recent years which made use of this T-vector approach, due to the great simplicity

offered by the current approach in visualizing the hidden representation of the neural network.

For example, Chen et. al [7] employed this technique for selecting the "centres" of the RBF

for a RBF network. They concatenated the whole output history of a RBF node through a

sweep of the training set into what is essentially a hidden T-vector. Each training pattern or

S-vector in the training set, if selected as the "centre" of the RBF hidden unit, would generate

a unique hidden T-vector through the action of the RBF, and thus a p-pattern training set

would correspond to a pool of p candidate hidden T-vectors (which the authors referred to

as the regressors) for the RBF network. The authors attempted to draw from these p

candidates q hidden T-vectors with q<P which correspond to q RBF hidden units for the

network. They achieved this by selecting those hidden T-vectors which, when added to the

RBF network, produces the greatest reduction in the unexplained variance of the network

output and thus provides the greatest error reduction. Fujita [14] also derived an algorithm

Page 5-2

On the Training of Feedforward Neural Networks

which produces a new hidden T-vector which approximates the error T-vector of the network.

However, since the author resorted to the use of exhaustive search for the new hidden T-

vector, the application of the network is restricted to binary training set which provides a

finite set for the exhaustive search procedure to operate on. Barmann et. al [2] went a step

further by adopting an iterative procedure to adapt the hidden weights of each hidden unit in

turn such that the corresponding hidden T-vector of each unit align themselves with the error

T-vector of the network at that moment to as close an extent as possible. This algorithm will

be further described in Chapter 6 in order to extend the embryonic ideas concerning T-vectors

in this algorithm into the full formalism required in describing the various spaces spanned by

the T-vectors in a neural network, most notably the input space X，the hidden space H and

the inverse desired output space

5.3 Formulation of the T-Vector Approach

It is well known that the training set presents itself as a steady stream of input

patterns x(t), t=l to p，with components Xi(t), i=l to n, and a stream of desired output patterns

d(t), t=l to p, with components dk(t)，k=l to m. Our strategy involves the concatenation of

the components with a fixed spatial index i or k into a vector for all t. In this way, we obtain

n vectors of dimension p, x;，i=l to n for the input layer, and m vectors y^, k=l to m for the

output layer, with the corresponding desired output T-vector denoted as d^, k=l to m.

Similarly, we can treat the various node outputs of the hidden layer in a similar way. Thus,

if the network possesses q hidden nodes in the hidden layer, we can concatenate these node

outputs into q p-dimensional vectors hj, j=l to q in which the t-th component of each vector

hj(t) represent the hidden node output due to the excitation of the t-th input pattern. As the

components of these new vectors are temporally related, we will hereafter call these vectors

the temporal vectors (or their abbreviated form T-vector) as opposed to the spatial vectors

(o r S-vectors) introduced at the beginning of this chapter.

This slight alteration in the arrangement scheme of the vectors nevertheless

allows us to draw much information from the field of linear algebra in enhancing the

Page 5-3

On the Training of Feedforward Neural Networks

description of the knowledge representation scheme in neural networks. In particular, the

notion of linear independency is particularly important to our further discussion of T-vector

space and would now be introduced:

Definition: A set of vectors v；, i=l to n is said to be linearly independent if and only if aiVi+

..…+(XnV„=0 implies ai=0, i=l to n.

Assuming that we have a set of linearly independent vectors Vj, the set

containing their linear combinations aiVi+..…+a„v„, for all a^eR constitutes what is so called

a vector space. The most prominent characteristic of a vector space is that it has a unique

zero element 0 in accordance with our definition of linear independence. (There are other

properties that a vector space possesses, but for vectors v； in the Euclidean space E" they are

automatically satisfied). The set of vectors Vj is then said to span the vector space V，and the

dimension of this vector space is n.

It is now quite plain to see why we have adopt the alternative concatenation

scheme: the input T-vector Xj, i=l to n，spans an input vector space X of dimension n,

assuming that they are linearly independent. Similarly, the output T-vectors y^, k=l to m,

spans an output vector space Y, the hidden T-vectors hj,j=l to q，spans the hidden space H,

and the desired output T-vectors d^, k=l to m, spans the desired output vector space D. Of

course, we cannot ensure the linear independency of the input and output T-vectors since they

are drawn from an external source - our training environment. But this condition is of slight

importance for T-vectors in the input and output T-vector space as the linear dependency

among these vectors merely results in a finite increase in the number of input dimension n'>n,

and a finite increase in the number of output dimension m'>rn, as the format of our training

set consists only of training patterns of finite dimension.

However, the situation is different for the hidden space H spanned by the

hidden T-vectors hj,j=l to q. Though we are supplied with only a finite number of hidden

nodes we do not have any a priori information on how we should select the size of the hidden

Page 5-4

On the Training of Feedforward Neural Networks

layer. In other words, we do not know the dimension q of the hidden space H. In fact, this

problem is one of those defects which hinder the acceptance of BP in its original form as a

practical training algorithm. Phrased in our new terminologies, inappropriate selection of the

hidden space H, either in orientation or dimension, will result in the neural networks not

being able to adequately represent the training set.

In order to alleviate the above problem, various dynamic node creation method

[9，12，13,34]，have been adopted as seen in previous chapters such that the dimension of the

hidden space can be increased if necessary. The issue of linear independency is particularly

relevant here as any new hidden T-vector is generated by the node creation algorithm and in

principle the algorithms can generate an infinite number of hidden T-vectors. Therefore, it

is important that the new hidden T-vector should be linearly independent from the old hidden

T-vectors in the original network, since otherwise any information contained in the new

hidden T-vector would be embedded in the old set of hidden T-vectors and the node addition

process would in principal go on indefinitely. Fortunately, the linear dependency of the new

hidden T-vector is under our control as this T-vector is not only a function of the training

patterns (of which we have no control over)，but also a function of the hidden weights of

the new node (the design of which is the chief objective of the various node creation

algorithms). In the next chapter, we would formulate a hidden weight design strategy such

that the resulting new hidden T-vector is always linearly independent from the old hidden T-

vectors.

Finally, we would like to have a method to check for the linear independency

of a set of T-vectors. The Gram-Schmidt orthogonalization procedure from the field of linear

algebra readily provides this function:

The Gram-Schmidt Orthogonalization Procedure: Let Vj, i=l to n be a set of vectors

spanning the space V. The Gram-Schmidt procedure transforms the Vj's into an orthogonal

set of vectors u^'s such that the new vectors span the same space V. The procedure is carried

out as follows:

Page 5-5

On the Training of Feedforward Neural Networks

Let Ui=Vi

For 2<i<n

define u.-v.-P._^v. (5.1)

where P； is the projection operator defined by

^ <V.,M> ^ A�
P, ‘ ^ u. 5.2

t_l I JL^ I ,2 J

and < . � i s the usual scalar product.

It is obvious therefore that if a vector v^ is linearly dependent on the preceding

set of vectors Vj,..., v .̂j, the corresponding orthogonal vector u,, would be zero vector 0，since

in this case the projection of v^ on the space spanned by v”."，V r - i (or equivalently Uj, . . . , u^ . i) ,

i.e., Pk.iVk would be equal to v^ itself. Therefore, In this way we have

an efficient method for checking the linear independency of the hidden T-vectors at our

disposal, which is to be applied at every stage of node addition.

In general, the assurance of the linear independency of the hidden T-vectors

is not an adequate guarantee that the knowledge embedded in the training set would be

efficiently represented by the hidden layer. The hidden space H must also satisfy several

relationships with the input space X and the desired output space D such that the above

purpose can be achieved. This will be the topic to be discussed in the next subsection.

5.4 Relation of the Hidden T-Vectors to the Output T-Vectors

At this stage, it is appropriate for us to define several new terms:

D \ the space spanned by the vectors d '̂̂ ,k=l to m, where and f

is the sigmoid function.

Y-i，the space spanned by the vectors k=l to m，where

H.i，the space spanned by the vectors hj \ j=l to q, where hj"^=f^(hj).

Page 6-6

On the Training of Feedforward Neural Networks

Assuming now that we have a neural network which contains q hidden nodes

in its hidden layer and assuming that the hidden T-vectors are linearly independent from each

other. The resulting hidden space H spanned by these vectors are q-dimensional. At the

same time, the network possesses m output nodes, for which our desired output T-vector d^,

k=l to m is defined for each output node. We can apply the inverse sigmoid function f^ to

each output T-vector to obtain a set of new T-vectors，the inverse desired output T-vectors

dk.i，k=l to m，where Each component of each T-vector d '̂̂ represents the

desired pre-nonlinearity summation of each output node.

In order to represent the training set exactly, each T-vector d '̂̂ must be some

linear combinations of the hidden T-vectors, i.e., ..…+I3qhq for all k and for some

Bj, j=l to q. In other words, each d '̂̂ must be a member of the hidden space H spanned by

the hidden T-vectors hj. This leads to the following representation criterion:

Neural Network Representation Criterion: Any training set can be exactly represented by

a neural network provided that d^'^e H for all k, i.e., when D^ is a subspace of H.

At the same time, each d '̂̂ is a member of the p-dimensional Euclidean space

EP，since each d̂ "̂ contains p components. In other words, D � i s a subspace of the Euclidean

space EP. Therefore, the above representation criterion is satisfied when H=Ep. It is well

known that E^ can be spanned by p linearly independent vectors of dimension p. As a result,

the above representation criterion can be satisfied if we include p hidden nodes with each

node emitting a linearly independent T-vector from the other hidden nodes. Since we

normally include a bias node for the hidden layer, we can see that we need at most p-1

hidden nodes for the exact representation of any training set with p patterns. This situation

is depicted in Fig. 5.1.

However, the dimension p of each T-vector is usually a large number in view

of the size of practical training set which usually contains several hundred patterns or more.

To fully represent these training sets, we would have to make use of networks with several

Page 6-7

On the Training of Feedforward Neural Networks

H

Fig 5.1 Condition for Exact Training Set Representation in Neural
Networks

hundred hidden nodes or more. This is clearly not practical in view of the usual hidden size

which contains only a small fraction of the above mentioned number of nodes. To

compromise this inexact representation of the training set due to the inadequate number of

nodes，we would endeavour to align the hidden space H such that the mean square error

between all the T-vectors d̂ "̂ and their corresponding linear combination

where r<p is minimized. When interpreted geometrically, the above condition means that the

distance of all the d^'^'s to the hidden space H is minimized, i.e., that the d^'^'s are closest

to H as shown in Fig. 5.2.

Page 6-8

On the Training of Feedforward Neural Networks

7 丨 dk-i
丨 Z T h e d i s t a n c e

I ^ ^ ^ to b e m i n i m i z e d

H

Fig 5.2 Suboptimal Representation of Training Set by a Small Network

In general, the above objective has to be achieved in two stages:

(1) The orientation of the hidden space H is adjusted using a network

training algorithm (such as BP) such that the space H is reasonably

close to all the dk'^'s.

(2) At each stage of training, the projection of all the d ^ s onto the hidden

space H (denoted by Pndk'̂) is evaluated and the corresponding

d is tance be tween Vn^k'^ and d^^ (denoted as II dk'^-PiiCik"^ II is

calculated in order to evaluate the performance of the network. The

projection operator is defined as

P„v=y： •，〜、"/ h/eH Vy (53)
台 Wh/f

where the T-vectors h , are the orthogonalized version of the hidden T-vectors

hj obtained using the Gram-Schmidt oithogonalization procedure.

For conventional training algorithms such as BP, the second step is implicitly

included in the first step, as the projection coefficients (depicted as the normalized scalar

Page 6-9

On the Training of Feedforward Neural Networks

product term in Eq(5.3)) are determined by the algorithms in the form of output weights Uĵ

together with the hidden space orientation (in the form of hidden weights Wjj). However, for

a dynamic node creation training algorithms, the above equation will be useful in determining

the new output weight for the new hidden node. Several researchers [2,12] have exploited

this possibility while still relying heavily on iterative procedures in determining the orientation

of the hidden space H. It seems that only slight advantages have been gained in using the

new concatenation approach since we are still unable to assign an a priori orientation to the

hidden space even quasi-deterministically. However, the hidden space H is derived chiefly

from the input space X，and we may as well probe into their relationships such that we can

gain some insights into the method of assigning a favourable orientation to the hidden space

through the input space, of which we have greater control over. This will be the topic of the

next subsection.

5.5 Relation of the Hidden T-Vectors to the Input T-Vectors

The hidden space H is related to the input space X through the sigmoid

function f. As seen in previous chapters, the sigmoid function is depicted as a monotonic

increasing function which gradually flattens at both ends. However, the central portion of the

function closely approximates a straight line. The deviation from linearity is slight even for

the relative extreme functional values at f(x)=0.2 and f(x)=0.8. We can exploit this property

in studying the relationship between the hidden space H and the input space X.

In principle, we can hardly visualize any relationship between the input space

and the hidden space since they are related by a nonlinear transformation whose behaviour

is in general not predictable. However, in view of the above described properties for the

sigmoid function, and assuming we have some a priori information on the hidden T-vectors

such that most of the components in these T-vectors do not exceed 0,8 or fall below 0.2 (this

is not an unreasonable assumption as any practical training algorithms which drive the hidden

vectors into deep saturation would severely limit their degrees of freedom and thus curtailing

the ability of the neural network as a whole in representing any training set). Under this

Page 6-10

On the Training of Feedforward Neural Networks

assumption the sigmoid nonlinearity can be well approximated by a straight line and theories

of linear algebra can be employed to estimate the relationships between the two spaces. In

other words, any hidden vectors hj must be reasonably close to the input space X in order to

be well approximated by it, since the sigmoid function is not a radical nonlinear function

which can transform the input space X into any shape to suit the hidden space H. The above

situation is depicted in the following diagram:

X

Fig 5.3 The Relationship between the Input Space X and the Hidden T-
Vectors h�

From the above diagram, if we assume that we have two hidden spaces H

containing the T-vectors hj,j=l to q, and H，containing the T-vectors hj',j=l to q which

represents the space D'̂ equally well, we can see that the hj vectors are more adequately

represented by X than the hj' vectors due to their smaller distances from the space X. This

approach is justified due to the near-linearity of the sigmoid function and the not too

excessive length of the two set of vectors. In general the input space X (as viewed from the

hidden space H) can be visualized as a finite hyperplane with its edges terminating abruptly

in space due to the finite asymptotic values of the sigmoid function. For hidden vectors of

not too excessive length, its projection will fall entirely inside the finite hyperplane and will

Page 6-11

On the Training of Feedforward Neural Networks

not have its tips projected beyond the edges. Under this circumstances the linearity

assumption can be justified to a high degree, and the relationship between the two spaces can

be adequately described by the above diagram.

The above argument is sound except for our assumption that we have a priori

knowledge about the hidden space H which best represents the T-vector space In fact,

finding this optimal hidden space H has been our chief motivation in setting up the above

model in clarifying the knowledge representation strategy of neural networks, so it seems that

we are running into a cyclic argument. However, there is one situation in which we do have

some prior knowledge concerning the hidden T-vectors, and this is the situation when the

neural network is within a dynamic node creation environment, in which an estimation for a

new hidden T-vector can be obtained as a function of the target T-vectors d^ and the old

hidden T-vectors. It will be seen in the next subsection that the above model concerning the

relationship between the input and hidden space fits neatly into the framework of a dynamic

node creation environment.

5.6 An Inspiration for a New Training Algorithm from the Current Model

The knowledge representation model described in the previous subsections

directly leads to a viable implementation of a practical dynamic node creation scheme.

Usually, the most important part of a node creation scheme involves the design of the hidden
f

weights and output weights for the new hidden node. For example, both the designs of the

progressive training scheme [9] and the growth algorithm described in Chapter 4 place great

emphasis on the design of the new hidden weights and the new output weights as their

specifications not only ensure the optimality of the new node with respect to the old network

but actually dictates the ultimate convergency of the corresponding training scheme.

However, as has been mentioned before, their hidden node initialization schemes which

depend on only a single training data will most possibly result in the memorization of noisy

training patterns. It will be seen later that the model derived above allows the possibility of

initializing the new hidden node with multiple training patterns.

Page 6-12

On the Training of Feedforward Neural Networks

The only occasion in a neural network when we have some a priori knowledge

concerning the hidden T-vectors h � i s when we are under a dynamic node creation

environment. Under this context we can derive an estimation for the new hidden T-vector

hQ as a function of T-vectors in the D'̂ space and the old hidden T-vectors hj,..…，Hq.j,

provided that we assume an adequate representation of the training set by the appended neural

network after the addition of the current new node, which is not an unreasonable assumption

as we should take every opportunities to minimize the number of hidden nodes in a neural

network: if the training set can really be adequately represented by the addition of a single

node, and we initialize the weights of the new hidden node in such a way as to be compatible

with this expectation, we can actually solve our problem using the minimum number of

additional nodes, while any deviation from the above initialization may lead to unnecessary

addition of hidden nodes.

It is appropriate for us to give a brief sketch of the training algorithm inspired

from the above model, the full algorithm presentation will be given in the next chapter. To

summarize from the above analysis, for a hidden T-vector Iiq to be considered as a valid

candidate for adequately representing a training set, it must satisfy the following two criteria:

(1) It must be close enough to the T-vector space D

(2) It must be close enough to the input space X.

For simplicity's sake, we first consider the single-output network. Ln other

words, the T-vector space D^ contains only the vector According to the above

discussion, the estimation for the new hidden T-vector BqHq，which we will call the target

T-vector (the presence of the factor Bq will be explained in the next chapter. We can

temporarily regard the above combination as a single entity) can be expressed as a linear

combination of d f i and the old hidden T-vectors hi,..…,hQ.i

M ^ i - i + S p A (5.4)

This is the most general expression for the estimation of the new hidden T-

Page 4-13

On the Training of Feedforward Neural Networks

•A 1 、 1

vector. By the above expression, we have assumed that I^qIiq is within the space D .

The next task concerns the selection of the coefficients (3,，.",I3Q_广 such that the

resulting estimation is closest to the input space X. Mathematically speaking, we would like
A A A *

to minimize || BQhQ-PxBghQ || ^ where Px is the projection operator on X. The resulting BqIiq

can be solved by linear optimization method and results in an estimation which is closest to

X. The situation is depicted in the following diagram:

XiSq̂ Q

X

A

Fig 5.4 The Optimization of BqHq

From the optimum target vector BqIiq*, we can obtain the true hidden T-vector

Hq as described in Chapter 6. The true T-vector Hq may neither be in the T-vector space D '

or in the input space X due to the presence of the sigmoid function. But the above

procedures guarantee sufficient closeness of this resulting Iiq to either the hidden space H and

the input space X such that it qualifies as a candidate T'-hidden vector in a neural network

which efficiently represents the training set.

The situation is slightly more complicated for the multi-output neural network.

For this case the T-vector space is spanned by the T-vectors Though we can

apply the above procedure to each of the the original set of T-vectors is not the only set

of basis which spans the T-vector space Unlike the case for a single output in which we

have no further choice in selecting our basis, we can transform the T-vectors d̂ "̂ into another

Page 6-14

On the Training of Feedforward Neural Networks

set of basis vectors ĉ "̂ which span the same space D"̂ but with their tips being much closer

to the input space X. After this, we apply the single-output optimization procedure to each

of the T-vectors c^'^ Since each of these T-vectors is now much closer to the input space X，

these vectors will be much more well represented by T-vectors in X than the original T-

vectors d ^ I n addition, the number of hidden nodes required to approximate each � “ will

be reduced and thus results in an overall reduction in network size. Finally, since these

vectors c^'^'s span the same space D \ our purpose of exact training set representation can be

equivalently achieved. This situation is depicted in Fig.5.5.

\ — \ i � � � � � i \

X

Fig 5.5 Transformation of the Basis Spanning D'̂

Page 4-15

On the Training of Feedforward Neural Networks

However, in carrying out the above procedure, we may have to tackle the

following issues:

(1) We must rotate the c^'^'s such that their tips should be as close to the

input space X as possible, while keeping them in the same space

(2) The transformed c^'^'s should still be linearly independent from each

other such that the dimension of D'̂ is maintained.

We will addressed these issues altogether in Chapter 6 in the form of the multi-

output version for the deterministic training algorithm.

Page 6-16

On the Training of Feedforward Neural Networks

6. THE DETERMINISTIC TRAINING ALGORITHM FOR

NEURAL NETWORKS

6.1 Introduction

From the knowledge representation model of the previous chapter, it is clear

that we should derive a neural network training scheme such that it conforms with the

knowledge representation model mentioned in the previous chapter. In this way，the

algorithm will eventually lead to a viable solution for the training set at hand. As has been

mentioned the model involves the input space X，the hidden space H and the inverse desired

output space D'^ The primary objective of the new algorithm should be such that a proper

relationship is maintained between these three spaces.

In addition, the new algorithm must address some of the problems which

constantly plagues the classical BP algorithm such as the local minima problem, the

indeterminate architecture problem and the generalization problem, etc. It has been mentioned

that the progressive training algorithm [9] has addressed both the problem of local minima

and the problem of indeterminate architecture, but the algorithm has brought up other

problems which are equally pressing and which requires a new perspective on data

representation in neural network such that the new algorithm resulting from the new

perspective not only solves the present problems of progressive training (and indirectly those

of classical BP), but may lead to new insights in future courses of neural network training

algorithm development.

A brief recapitulation on our course of research is appropriate here: we have

mentioned that one of the defects of progressive training lies on the dependence of the

parameters of the new hidden node on a single training data. Whenever the training data is

contaminated with a non-negligible amount of noise, and when incidentally this training data

is selected as the candidate for the initialization of a new hidden node, (which is most likely

due to the often large magnitude deviation of a noisy training data from the rest of the

training set, and from the viewpoint of the progressive training algorithm, this signals the

Page 6-1

On the Training of Feedforward Neural Networks

requirement of a new hidden node to cater for the noisy training data) the memorization of

that noisy training data which is alien to the training set would result.

It has been mentioned that the progressive training algorithm has other

problems, such as its artificial training sequence which results in the more frequent exposure

of the training data with small Euclidean norms to the network and the proportional reduction

in exposure frequency to the network for those training data with large Euclidean norm. This

training sequence eventually results in an equivalent training sequence in which the training

data with small Euclidean norm occurs will higher probability than those training data with

large Euclidean norm. This training scheme may eventually lead to a biased solution of the

problem at hand where the phenomenon of over-fitting may be prominent in those regions

around the origin in the function domain, and where the problem of under-representation may

occasionally be observed at the periphery of the support region of the mapping, thus resulting

in an inaccurate representation of the mapping by the neural network when compared to those

networks trained with a standard training set with each training data occurring with equal

probabilities.

It is seen that the growth algorithm introduced in the previous chapter has

solved the above problem by adopting an additional input node for each hidden node, thus

converting the original sigmoid node into a quasi-radial basis network which can easily isolate

any training data from the rest of the training set by choosing that training data as the centre

of the new hidden node. Moreover, the algorithm is formulated in such a framework such

that conventional BP algorithm can be directly applied to the network without further

modification (for conventional RBF network, separate centre and variance adaptation

equations have to be used). However, the growth algorithm has not solved the first problem

mentioned at the start of the chapter: that the new hidden node initialization scheme is still

based on a single training data only. As a result, the chief merit of the growth algorithm only

lies in its ability to cater for an unordered training set as compared to the progressive training

algorithm in which an ordered training set is crucial to the convergence of the algorithm. A

new hidden node initialization scheme has yet to be found in which the hidden weights and

Page 5-2

On the Training of Feedforward Neural Networks

output weight values are based on multiple training data. In this way, each hidden node on

the average accounts for more that one training data and is thus biased against the

memorization of a single training data. Moreover, this arrangement ensures that the number

of hidden nodes will be well below the number of training data.

Thus, we are facing a dilemma here: on the one hand, we have to ensure that

each new hidden node should cater for more that one training data such that the number of

hidden nodes would be well below the training set size and the overall generalization

capability of the network would not be seriously disturbed by the memorization of a single

noisy training data by a new hidden node. On the other hand, the single data initialization

requirement is the very condition which ensures the convergence of these two previous

algorithms. In other words，a new hidden node initialization strategy has to be found which

simultaneously allows multiple training data initialization and ensures the convergence of the

resulting network configuration to the desired solution. The new model introduced in the

previous chapter provides us with the solution: the key to the convergence of the network lies

in the linear independency of the hidden vectors.

6.2 The Linear Independency Requirement for the Hidden T-vectors

With reference to the previous chapter, we devote the space spanned by the

hidden T-vectors as the hidden space H, the space spanned by the inverse desired output T-

vectors as the inverse desired output space D \ and that spanned by the input T-vectors as the

input space X. From this new perspective on the knowledge representation mode in neural

networks we can immediately see that a necessary and sufficient condition for the adequate

representation of a training set by the neural network is the inclusion of the inverse desired

output space D"̂ in the hidden space H.

By the very word "span" we have assumed the linear independency of the basis

vectors in the corresponding space. However, this condition is not ensured for most real

world training data set. For example, either the input or desired output space or both may

include linearly dependent T-vectors.

Page 4-3 •

On the Training of Feedforward Neural Networks

The linear independency condition of the input T-vectors and output T-vectors

can be checked by the Gram-Schmidt orthogonalization procedure, and the linearly dependent

T-vectors can thus be duly removed such that the remaining T-vectors truly span the input

or output space. As a result, the adherence of the input and output T-vectors to the condition

of linear independency is directly under our control.

The situation becomes more complicated if we consider the linear independency

of the hidden T-vectors, as

(a) We cannot predetermine the values of each component of the hidden T-vectors, and

(b) We cannot predetermine the eventual number of hidden T-vectors (or number of

hidden nodes when viewed in the network perspective) required to accurately represent

the training set.

As can be seen from these two problems, we cannot be satisfied with only the

existence of a method for checking the linear independency of the hidden T-vectors, we must

also alter the hidden T-vectors appropriately such as to ensure their linear independency. As

has been mentioned in the Introduction section, the new deterministic algorithm will still

include a hidden node addition mechanism in which the initial weights and bias will depend

on multiple training data. In other words, besides building a measure of optimality into the

new hidden node initialization strategy，as in the case of the progressive training algorithm

and the growth algorithm, we must also further alter these weights and biases in such a way

that the new hidden T-vector is linearly independent from the hidden T-vectors generated by

the old network.

It will be seen later in this chapter that the linear independency condition can

be achieved by progressively reducing the size of the training subset used to initialize the new

hidden node. It is proved that whenever the size of the subset is reduced beyond the number

of hidden nodes, the new hidden T-vector can be made to be linearly independent from the

old hidden T-vectors and thus at some point in the course of reducing the training subset we

are guaranteed to obtain a linearly independent hidden T-vector. The progressive training

algorithm and growth algorithm are seen as limiting cases of the present algorithm in which

Page 6-4

On the Training of Feedforward Neural Networks

the training subset is stripped of all but one training data (the present algorithm will never

reach this stage due to the reason above), and this training data is utilized to construct an

linearly independent hidden T-vector (an obvious intention of these two algorithms though

the corresponding initialization schemes are phrased in different wordings.) In light of this,

the present algorithm can be viewed as a generalization of these two algorithms with the

added advantage that no new hidden node will ever be initialized by a single training data.

At this point one may appreciate the significance of the linearly independency

requirement: whether or not a new hidden T-vector is linearly independent from the old

hidden T-vectors signifies whether the new hidden T-vector contains any new information :

if the new hidden T-vector is linearly dependent on the old hidden vectors, it means that any

information contained in the new hidden vector is embedded in the old hidden vectors. In

other words, the new hidden T-vector does not bring any new information to the network.

This directly affects the convergence of any node addition algorithm as the exclusion of any

new information signifies a non-decreasing mean square error which is synonymous with non-

convergence.

6.3 Inspiration of the Current Work from the Barmann T-Vector Model

The algorithm proposed by Barmann et al [2] adopts a new iterative learning

procedure for a single-layer artificial neural network which is different from the conventional

BP approach. In summary, the algorithm changes the hidden node outputs of all the hidden

nodes in the network such that the "solvability condition “ is satisfied: when phrased in the

terminologies of Chapter 5, the "solvability condition “ is equivalent to saying that all the

inverse desired output T-vectors d^^ are within the hidden space. The authors ensured this

condition by cyclically adapting the hidden weights of each hidden node in turn in such a way

that the solvability condition is eventually satisfied. Suppose that the current network

contains q hidden nodes and we are currently adapting the hidden weights of the r-th hidden

node. The current error T-vector Ej (assuming a single-output network) is defined by Eq

(6.1)：

Page 6-5

On the Training of Feedforward Neural Networks

where Ujj represent the output weights and hj signifies all the hidden T-

vectors excluding the r-th hidden T-vector. An attempt is then made to maximize the

following "normalized scalar product" Sj between the error T-vector Ej and the j-th hidden

T-vector hj

巧 = 丝 （6.2)
• ‘ I I " /

The maximization of this function is achieved through a gradient ascent

procedure in which the adaptation equation for the various hidden weight is obtained by

differentiating S � w i t h respect to all the hidden weights. After the completion of this

maximization procedure, the output weight of the new node is obtained by projecting the error

T-vector Ej onto hj

<E.,h>
M = _ L J - (6.3)

Whjf

The procedure is divided into 2 procedures: in the first part，a number of inner

iterations C, is performed for each hidden node which correspond to the maximization of Sj

for each hidden node and the subsequent determination of the output weight Uĵ . A sweep

through all the hidden nodes of the network is known as an outer iteration. The completion

of an outer iteration is typically followed by several "post-iterations" which continuously

apply Eq (6.2) to all the output weights of the network. This latter procedure is adopted since

it usually takes a longer time for the algorithm to complete an inner iteration while the time

spent on performing a "post-iteration" is much shorter. Therefore, it is worthwhile to spend

Page 6-6

On the Training of Feedforward Neural Networks

more time on the "post-iteration" stage such that the accuracy of the output weights are

increased before applying the inner iteration. The flow of the algorithm is depicted in the

flowchart in fig 6.1.

� start)

<
V

start outer
iteration

^

for each hidden
node from 1 to
q perform Ci
inner iteration

\ /

Perform Cp
post-iterations
on the whole

network

X
C iterations>Co)

Y

Y
C encl)

Fig 6.1 Flow of the Algorithm proposed by Barmann et al

In the flowchart, the symbol C； indicates the number of inner iterations, C„

indicates the number of outer iterations, and Cp indicates the number of post-iterations.

For the multi-output network, we have to select a T-vector E � i n order to carry

out the inner iterations. If the network has m output nodes, we would in general have m such

error vectors which are indexed by the double subscript Ej^, k=l to m. Barmann proposed

Page 6-7

On the Training of Feedforward Neural Networks

that we should select the Ej^ with the greatest norm, and use this T-vector to carry out the

inner iteration step. From the above discussion it is seen that, though the authors are not

explicitly developing a dynamic node creation algorithm, the above algorithm can be easily

adapted to include a node addition procedure as the hidden nodes are adapted cyclically in

the inner iteration process.

It seems that we can directly modify the above algorithm into a dynamic node

creation algorithm and adopt the iterative learning procedure instead of the conventional BP

process. However, it is noticed that, when we apply the above algorithm to the parity

problem from order 2 to 4，the convergence failure rate of the network is very high. The

situation becomes more and more serious as the order of parity increases. In Table 6.1，we

have tabulated the results of our simulations together with the conventional BP results to

serve as a comparison . The various parameters are defined as Ci=4, Cp=5

Parity Order No. of Outer Iterations No. of Epochs (BP

(Barmann's Algorithm) Algorithm)

2 1(80%) 107(0%)

3 -- (100%) 62(0%)

4 -- (100%) 698(80%)

Table 6.1 Comparison between Barmann's Algorithm and the BP Algorithm

The figure in the parentheses indicates the failure rate among 10 trials of each

algorithm. Since a single outer iteration corresponds to approximately 7 epochs of BP as

estimated by the authors, it is seen that the convergence rate of Barmann's algorithm is

extremely fast if the number of training patterns is approximately the same as the number of

nodes as in the case for the parity-2 problem. However, it is observed that the failure rate of

the new algorithm is also very high. This situation was further worsened when the algorithm

is applied to higher order parity problem where none of the trials converged. The high failure

rate of the above algorithm may be due to the following reason:

Page 6-8

On the Training of Feedforward Neural Networks

In the cost function for the maximization of S, the expression involves the

factor Ej which in turn depends on only the inverse desired output T-vector dy, \ In other

words，the cost function does not take into consideration the function provided by the

nonlinearity at the output node. Suppose that y '̂̂ is the output of the network prior to the

output nonlinearity, the maximization of S would have the effect of minimizing the sum

squared error between ŷ "̂ and However, this process only minimizes the overall sum-

squared error and does not consider the distribution of error at the various training patterns.

Considering a single component of y^"' and a single component 屯“⑴ of d^ ^

Through the above optimization process, we would like to minimize the difference between

y^-L� and However, if and both have large magnitudes, such that they

are within the saturation region of the output nonlinearity, the compression effect of the

output nonlinearity will bring them close together even though they may have a large

difference. In other words, the difference between the two components is less important when

their magnitudes are large than when they are small. The current optimization of S does not

take this fact into account, and thus the optimization process would attempt to minimize the

error at those patterns where the weighting of the error is not so important at the expense of

those patterns where the minimization of the error is critical,thus resulting in an overall

mapping which is less desirable than one which is obtained using a conventional BP network.

In view of these，we should adopt the BP process for the optimization in the

above algorithm if we are to modify the above algorithm into a dynamic node creation

algorithm. The maximization of S should only be considered as an approximate process

which should then be followed by the global BP process. However, this practice would be

excessively cumbersome since it involves a double iterative learning procedure in which the

result of the first optimization process would soon be rendered invalid by the global BP

optimization process. As a result, it would be ideal if we can deterministically assign an

initial state for the new hidden node such that the maximization of S is approximately

satisfied and then apply the BP fine-tuning process to the network. The initialization scheme

of the deterministic training algorithm described in this Chapter is developed along this line

\

Page 6-9

On the Training of Feedforward Neural Networks

with the purpose of a similar optimization criterion: that of the distance between the target
A

vector BghQ and the input space X. The definition of this target vector will be given later on.

However, we would first describe the general framework of a dynamic node creation

algorithm and how the various steps of the general framework correspond to the steps in the

present deterministic algorithm.

6.4 General Framework of Dynamic Node Creation Algorithm

From the description of the progressive training algorithm and the growth

algorithm we can generalize their methodologies into a general framework for a dynamic node

creation algorithm which is given in the flowchart in fig 6.2:

The section number beside some boxes identify those subsections which

describe the corresponding procedure in the present deterministic algorithm. The meaning

of the procedure described in most of the boxes is self-explanatory, except for the following

terms:

(1) Complete Convergence, which means that the output error of the network has fallen below

a pre-specified threshold.

(2) Partial Convergence, which means that a temporary convergence criterion is achieved and

which differs from algorithm to algorithm. For example, in the progressive training scheme

it means the complete convergence of the network with respect to the partial training set. In

the growth algorithm, it means that a portion of the training patterns which is equal to the

present number of hidden nodes is within a certain error threshold. In the deterministic

algorithm this implies the linear independency of all the hidden T-vectors in the restricted

network.

(3) The tuning of the network parameters: for any dynamic node construction scheme, one

must first build up an artificial model for the new hidden node which will ensure the partial

Page 4-10

On the Training of Feedforward Neural Networks

^^^ start ^^

N f
Start with the
bias hidden
node and

initialize its
output weights

< 1
•

Add a new
hidden node

to the
network

w
init:ialize Section 6.5.2, 6.5.4,
its hidden
weights and 6.5.5

output
weights

> / •

store the
network state
and apply BP Section 6.5.3
fine-tuning
process

I >
> f

,
^ Complete ^f
(Convergence y ^ end)
\^chieved? V y

n
> f

X Partial \
(Convergence)

n
> f

restore the ‘
previous
state of
network

V

Tune the
parameters of Section 6.6
the network

Fig 6.2 The general framework for a dynamic node creation algorithm

Page 6-11

On the Training of Feedforward Neural Networks

convergence of the appended network and then relax this constraint and apply the BP

algorithm to the network in the hope of finding a better overall solution. For example, in the

progressive training algorithm this model is a step function with the new training pattern

situated at the step transition. In the growth algorithm the model is an impulse which peaks

at the "difficult" pattern. It will be seen in subsection 6.6 (as indicated in fig 6.2) that we

have prepare a corresponding model in the present algorithm for the new node which ensures

its linear independency from the old hidden T-vectors. However, when the node is first added

to the network，this model is relaxed in the form of the smooth sigmoid transition in the

progressive training algorithm and the smooth quasi-radial basis function in the growth

algorithm such that the BP process can operate in a normal network environment. However,

the final exact model is approachable through the gradual scale-up process in both of the

above algorithms if the network fails to achieve partial convergence through the BP process.

The corresponding tuning process for the present algorithm is described in subsection 6.6.

In summary, it could be seen that the present algorithm fits the overall «

framework of a dynamic node algorithm and the corresponding process is described in the

indicated subsection: the new hidden node initialization scheme is described in subsection 6.5.

In subsection 6.5.3 we describe some pre-processing steps to the parameters of the new

hidden node before applying the BP fine-tuning process such that the iterative learning

procedure can be operated in a more favourable pedestal. In subsection 6.6，we describe the

partial convergence assurance procedure which guarantees the eventual linear independency

of the new hidden T-vector from the old hidden T-vectors.

6.5 The Deterministic Initialization Scheme for the New Hidden Nodes

6.5.1 Introduction

The new node initialization scheme of the present algorithm consists of the

following modules as expressed in the flowchart in fig 6.3

Page 6-12

On the Training of Feedforward Neural Networks

(start)

\/
9 - I I I I I —

Determine the
target vector
for the new Section 6.5.2

node

V

Pre-process
the target Section 6.5.3

vector
^

Determine the
target hidden
vector . for Section 6.5.4

the new node
^

Determine the
hidden Section 6.5.5
weights

J/

Determine the
output weight Section 6.5.6

^

� end)

Fig 6.3 Flow of the hidden node initialization scheme

The description of the process in each box is contained in the subsection

number beside the box. A synopsis of the contents of each subsection is given below:

Page 6-13

On the Training of Feedforward Neural Networks

In subsection 6.5.2, we determine the target T-vector symbolized by BghQ for

the new hidden node (the meaning of the symbols and the multiplicative factor Bq will be

given in the subsection). The target T-vector is distinguished from the target hidden T-vector
/V

hQ (to be mentioned shortly) by the multiplicative factor Bq. As a result these two T-vectors

point in the same direction. The purpose of the determination of these two T-vectors is to

provide a guideline for calculating the hidden weights of the new hidden node. An important

notion to be introduced in this subsection is the near linearity assumption of the sigmoid

nonlinearity which allows a simple criterion for the selection of the target T-vector to be

applied to the node initialization process: that the distance of the target vector (which is

generated from the inverse desired output space D^ and the old hidden space H) should be

as near to the input space X as possible so that the resulting target hidden vector (derived

from the target vector) could be well approximated by the input space X.

In subsection 6.5.3, a pre-processing step for the target vector is introduced.

In general, the target T-vector is generated in a deterministic way from the inverse desired

output space D^ and the old hidden space H，and there is no guarantee that the subsequent

BP fine-tuning process will find itself situated in a favourable position on the error surface

such that it can begin the descent process efficiently. In this subsection, guidelines will be

given for deriving a suitable pre-processing step for the target vector such that the above

purpose is achieved.

In subsection 6.5.4, we would describe our methodology for determining the

target hidden T-vector from the target T-vector. As we have seen, since these two T-vectors

are pointing in the same direction, what we have to do is to perform a simple scaling on the

target T-vector. The scaling factor should be chosen such that the magnitude of the resulting

target hidden T-vector is small enough in order that the near linearity assumption of the

sigmoid nonlinearity is satisfied.

In subsection 6.5.5, the actual process of node initialization begins by the

determination of the hidden weights of the new node from the target hidden vector which is

Page 6-14

On the Training of Feedforward Neural Networks

all the information that are required.

In subsection 6.5.6, the process of determining the output weights of the

appended network would be introduced, the determination process would involve the T-

vectors in the inverse desired output space D^ and all the hidden T-vectors in the network.

6.5.2 Determination of the Target T-vector

6.5.2.1 Introduction

Based on this notion, a target vector for the new node would be defined which

would be instrumental in generating the hidden weights of the new node. The term "target"

is adopted as we would like the actual hidden T-vector of the new node to actually resemble

this target T-vector.

We could summarize the generation process of the target vector in the following two

steps:

(1) Formulate a model for the target vector in terms of the T-vectors in the inverse desired

output space D^ and the old hidden T-vectors hi,..., Hq.i of the old network.

(2) Determine the parameters of the model such that the resulting target vector is closest to

the input space X.

For step (1)，the formulation of the model of the target T-vector would depend

on an assumption which is to be introduced in the subsection 6.5.2.2. The realization of step

(2) depends strongly on the near linearity assumption of the sigmoid nonlinearity which will

be discussed in subsection 6.5.2.3. Finally, the evaluation for the target T-vector would also

be described in subsection 6.5.2.3.

The deterministic initialization scheme for the new hidden nodes will now be

introduced: this introduction will draw heavily on materials from the Chapter 5 as the present

Page 4-15

On the Training of Feedforward Neural Networks

algorithm is wholly inspired by the data representation model described there.

As described before, the present algorithm incorporates a dynamic network

architecture in order to counteract the problem of indeterminate architecture. As a result, the

focus of the new algorithm should be on the initialization scheme of the new hidden node as

in the previous two algorithms. The new algorithm differs from the previous two algorithm

in that multiple training data are used to initialize the new hidden node such that

memorization of a noisy data by the new node is avoided. Moreover, no special assumption

or segregation of the training set (as in progressive training) or of the network structure (as

in the growth algorithm) is required. In other words, the input to the algorithm is the full-

sized training set and the output of the algorithm is a standard BP network.

Let us first review our concept of input space X，hidden space H and inverse

desired output space For simplicity it has been mentioned that the neural network can

perfectly represent the training set if the inverse desired output space D'̂ is included in the

hidden space H. It is also known that the hidden space is derived from the input space X

through the nonlinear sigmoid transformation. Without the sigmoid transformation, no

enhancement to the solution is possible through multiple hidden nodes, and the network can

as well be represented by a single linear node. However, the sigmoid transformation is not

a drastically nonlinear transformation in that a large portion of the function approximates a

linear function. Due to this nature, all hidden T-vectors should be reasonably "close" to the

input space X in order to be well approximated by the input T-vectors." In other words, the

new node initialization scheme must choose among all the possible new hidden T-vectors the

one which is "closest" to the input space X，such that the former can be well approximated

by the latter.

6.5.2.2 Modelling of the Target Vector GqAq
A

The modelling of the target vector BqHq depends on the assumption that on

addition of the next new hidden node, the problem will be fully solved. If this is assumed

and the training set can really be adequately represented on the addition of the next new

Page 6-16

On the Training of Feedforward Neural Networks

hidden node, then we have made a decision compatible with this reality and the final network

will contain the minimum number of nodes required to solve the problem. Otherwise, there

is the possibility that additional nodes would be required before the network converges and

thus the network would contain redundant nodes. Following this assumption and assuming

a single-output network, we model our expected new hidden vector as

(6.4)
>I

A

The T-vector BqIiq would be what we call the target vector. A slight rearrangement of Eq

(6.4) would clarify the adoption of this equation as our model as shown in Eq (6.5)

(6.5)
y=i

which is equivalent to saying that the desired output of all the training patterns

can be approximated by a neural network with output weights Bi,..…,Bq and hidden T-vectors
A. A

hi,..…，hQ_i，hQ. It is seen that for every 6̂ ,62,.•…，Bq-” the corresponding target T-vector CqJiq,

when considered as a new hidden T-vector, and added to the network, would allow the exact

representation of d " . Therefore, we would adjust the coefficients B^,.....,Bq.i such that the

resulting target T-vector is closest to the input space X，so that the actual hidden T-vector

emitted by the new hidden node would somewhat resemble this target T-vector, since all

hidden T-vectors eventually originate from the input space X. Originally, the definition of

a distance measure between the target T-vector and the input space X is invalid due to the

presence of the sigmoid nonlinearity in the hidden node. However, if some portion of the

nonlinearity resembles a straight line, we can still talk about the distance between the target

T-vector and the input space X by suitably restricting the magnitude of the target T-vector

which is equivalent to controlling the magnitude of the target hidden T-vector through the

parameter I3q. The requirement of near linearity condition of the sigmoid function will be

given in the next subsection.

Page 6-17

On the Training of Feedforward Neural Networks

6.5.2.3 Near-Linearity Condition for the Sigmoid Function

The near-linearity assumption of the sigmoid function is derived such that the

double iterative learning procedure associated with the derivation of a dynamic node

construction scheme through the T-vector approach can be avoided as mentioned in the

section 6.1 of this Chapter. The double iterative learning procedure consists of a global BP

process which tunes the parameters of the whole network and a local update process which

tunes the parameters of the new hidden node. Normally，researchers, when designing neural

network according to the T-vector model, adopt only the latter approach. For example

，the cascade correlation algorithms [12] and the algorithm proposed by Barmann et al [2]，

utilizes an approach in which the hidden weights WjQ of the new node are iteratively adjusted

to align the resulting hidden T-vector to the residual vector. However, they have utilized this

local adaptation approach as the exclusive optimization procedure for their networks in the

form of freezing the other weights in the old network while adapting the new node as in

cascade correlation algorithm or adapting each hidden node in turn as in Barmann et.al [2].

It has been mentioned in the previous chapters that the approach of the first

algorithm, by freezing the weights of the old network, severely restricts the degrees of

freedom of the neural network. For the second approach, it has been mentioned that the cost

function of the local adaptation involves only the space D'̂ and H, and does not take into

consideration the output sigmoid nonlinearity. As a result, the final solution may exhibit a

distribution of errors among the various training patterns which is incompatible with the

sigmoid function. In view of these, the BP process would serve well as the iterative

optimization procedure after node initialization since:

(1) It is simple to implement.

(2) It provides a global update for all the weights in the network.

(3) It takes into account the characteristics of the output nonlinear function.

Therefore, the ideal algorithm should incorporate a hybrid process which

includes both the BP global update procedure and a local hidden node update procedure, but

this hybrid process involves a repetition of gradient descent processes in which the first local

Page 6-18

On the Training of Feedforward Neural Networks

update is based on those information (the frozen weights and bias of the old network) which

will be rendered invalid soon after by the global BP update process. As a result, excessive

accuracy in the first process is not necessary and the result of this local update is at best

transient. Instead, it is much more desirable if we can synthesize a new hidden T-vector for

the hidden node by deterministic methods (rather than by iterative method) which is

reasonably close to the input space X，and then immediately apply the global BP process to

the network. In this way we can avoid the repetition of the gradient descent processes. To

achieve this, we have to make an approximation on the sigmoid function. As have been

mentioned, the central portion of the sigmoid function closely approximates a linear function.

To avoid the iterative adaptation approach, we can treat the sigmoid function simply as a

linear function, and the previous iterative procedure would reduce to a deterministic weight

assignment procedure. In this way the double gradient descent procedure mentioned

previously has been avoided. The linear approximation is valid whenever the magnitude of

each component of the new hidden vector remains within the linear range of the sigmoid

function, which extends from approximately the sigmoid function value f(x) of 0.2 to 0.8.

This can be controlled by appropriately increasing the multiplicative factor in the target T-
a a

vector BqUq such that all the components of Hq are within this magnitude. This practice in

turn implies small hidden weight magnitudes for the new hidden node. The above linear

approximation does not actually pose such a serious disadvantage and accuracy compromise

to the hidden vector optimization process as the procedure seems to suggest as

(1) the deviation of the central portion of the sigmoid function from linearity is actually

very small, even within the above rather large functional range of 0.2 to 0.8，which

includes most instances of hidden node output. Therefore, the above assumption

serves as an appropriate model for the actual hidden node.

(2) Small hidden weights for the network actually facilitates generalization [11] as the

resulting sigmoid transition is less abrupt and the overall functional shape applies to

a larger domain. As a result, we should at least allow the new hidden node to pass

through this stage prior to further training instead of clamping it to the highly

Page 6-19

On the Training of Feedforward Neural Networks

saturated extremes of the sigmoid function and

(3) We would further apply the BP process to fine-tune the network and thus any local

hidden node training process needs only be approximate. Besides, our initialization

process places the extreme values of the new hidden vector components at 0.2 and 0.8，

which is almost at the onset of the nonlinearity. Thus any requirement of a saturated

hidden node (e.g. in memorizing any peculiar pattern in the training set) would be

quickly met through the BP fine-tuning process.

We first based our discussion on neural networks with single output. We will

next extend our algorithm to neural networks with multiple outputs in subsection 6.7. As

mentioned before, the target T-vector BqIIq is to be modelled as:

P A - ^ ^ E P A (6.4)

A

The model of the target T-vector BqJIq consists of unknown parameters

B,,..…,Bq.i. To fully determine the target T-vector, we must determine these unknown

parameters according to a certain criterion. Under the present scheme these parameters are

determined such that the distance between the target T-vector and the input space X is

minimized. Mathematically, we would like to minimize the following cost function

where Px is the projection operator on the input space X. It is explicitly expressed as

(6.7)

where the x" vectors are the orthogonalized version of the input T-vectors x,, obtained using

the Gram-Schmidt orthogonalization process. Substituting the expression for the target T-

Page 6-20

On the Training of Feedforward Neural Networks

A

vector BghQ into the above expression，we obtain

P 从 1 ? ； , 丨 丨 2

A < " i V > o A ^ < P A . ， < 〉 o (6.8)
= E ———+E E — ^

'•=1 I K f '=1 片 K f

———-^E E — ^ — — X i

iijc/f \\x;r

As can be seen from the above expression, the projection of the target T-vector

A

BqHq onto the input space X is equal to the summation of the projections of the inverse

desired output T-vector df^ and the projections of all the old hidden T-vectors hj, j=l to Q-1,

multiplied by their corresponding unknown factor Bj，onto X. Since the various parameters

in the above equation including \ x-̂ and hj are known, the above equation is a linear

equation of the unknown B” …，Bq.̂ . Finally, we would evaluate the expression BqIiq -

PxBqHq：

P e V尸从
= P A - (E " " ^ V + E E " / I/)

\\x:f j^ttt iix/T
= (i + E P A - (尸 A i + E 尸;M) (6.9)

；=1 M
M M 尸 A'+lip/VPA)
；=1

Page 6-21

On the Training of Feedforward Neural Networks

Our objective is that we should minimize the squared norm of the above

expression,

m i n | l P � V尸A〜丨丨H I � + E
1 片 1 (6.10)

where ^^d-^i 一尸âi .
ei^h.-P^.

The above cost function can be minimized if we choose -Ej BjĈ h"' to be equal

to the projection of e^j onto the space spanned by the T-vectors ê ^^ which we denoted as E.

In other words，-Zj Bjê h'' should be equal to Ê'̂ xd in order for the distance between the target
A

T-vector BqIIq and the input space X to be minimized. Since the projection operator on E is

given by

2-1 � p pOj� ！2-1
（6.11)

j-i I k i f 片

where the T-vectors êh""* is the orthogonalized version of 心 obtained using

the Gram-Schmidt process. As a result, the coefficients Oj above can be obtained as the

normalized scalar product between and ê ,,,"-". The original coefficients Bj can be obtained

as a linear combination of a � by the following inversion algorithm on the Gram-Schmidt

process.

The Inversion Algorithm for the Gram-Schmidt Process: Given a set of vectors v；,

i=l to n, and their orthogonalized counterpart Uj, i=l to n, and given an arbitrary linear

combination of the orthogonalized vectors w = I：； oc丨Uj, the stated algorithm finds the

coefficients Bj, i=l to n which expresses w as a linear combination of the unorthogonalized

vectors Vj, i.e., w = E； BjVi.

Page 6-22

On the Training of Feedforward Neural Networks

As mentioned in Chapter 5, the orthogonalized vectors u! are related to the
/

unorthogonalized vectors Vj by the following relation:

(6.12)
w,=v.-F._iV. 2<i<n

From the above expressions and from the definition of Pj.i, it is seen that u^

can be expressed as the linear combination p^i^i + …l̂ kkVk，如 k ^ since Pĵ .iV^ is a function

of the T-vectors Vj... v^.i. In other words，the unorthogonalized vector v^ is contained in the

linear combination expression of u„ k^<n. In view of the relationship between the

orthogonalized vectors and the unorthogonalized vectors, the coefficients p f̂ can be

recursively determined as below:

For \<i<n
u . . = l

“ - I <v ^ > (6.13)

Therefore, the linear combination coefficients Bj for the unorthogonalized

vectors Vj can be obtained as a function of the coefficients obtained above:

p . = y a u . l<i<n (6.14)
m=l •

From the inversion algorithm, one can obtain the coefficients B； in the linear

combination expression for Pgexd in terms of its unorthogonalized T-vectors In other

words, we obtain the estimation for the hidden T-vector for the new hidden node since the

same coefficients Bj can be substituted into the expression for the model for the optimum

target T-vector BqIiq*.

In summary, when we would like to evaluate the coefficients Bj in Eq(6.10),

we are dealing with a linear least square problem in which these parameters are determined

to minimize the squared norm in the expression. Our method of obtaining these coefficient,

by first orthogonalizing the e^J's, obtain the scalar product Oj，and then calculate the original

coefficient 13�in the least square expression, is equivalent to the QR-process of finding a least

Page 6-23

On the Training of Feedforward Neural Networks

square solution in linear algebra [41]. We have phrased the QR-process in the above form

such as to give a physical meaning to the intermediate results of the QR-process as the

orthogonalized version of the basis spanning the space on which the vector to be

approximated is projected such that the projection operator can be expressed in a particular

simple form which involves only the normalized scalar product between the vector to be

approximated and the various basis vectors.

Hereafter, whenever the projection P^v is represented as a linear combination

of the unorthogonalized T-vectors Vj, we may denote the linear combination coefficient for

the j-th basis as (PhV)』，with full understanding that we first obtain the coefficients in terms

of the orthogonalized T-vectors and then apply the inversion algorithm to obtain the

coefficients in terms of the unorthogonalized T-vectors.

The remaining steps in the hidden node initialization scheme involves the

extraction of the actual hidden T-vector Hq from the optimum target T-vector BqIiq*, the

calculation of the hidden weights Wjg for the new hidden node, and calculation of the output

weights Uji l<j<Q for all the hidden nodes. However, additional adjustment steps are required

for the new hidden T-vector in addition to the above mentioned straightforward calculations

in order to provide a favourable initial state for the BP fine tuning process.

6.5.3 Preparation for the BP fine tuning process

The present algorithm attempts to assign the new hidden and output weights

deterministically and in such a way that the appended network is relatively close to the global

minimum of the current restricted network due to the error minimization strategy introduced

in the subsection 6.5.2.3. However, a BP fine-tuning process, i.e. applying the classical BP

algorithm to the appended network immediately after the new hidden node initialization, is

indispensable for the completeness of the algorithm due to the various approximation

assumption made during the derivation of the node addition strategy. These include:

(1) The linear approximation for the sigmoid function. The BP fine-tuning process will

appropriately introduce controlled degrees of non-linearity to the new hidden node

Page 6-24

On the Training of Feedforward Neural Networks

whenever the linear representation is not adequate.

(2) The approximate assignment of Bq from the optimum target T-vector BgiiQ*: it will be

seen later that our criterion of assignment for Bg consists of only ensuring that each

component of the resulting optimum target hidden T-vector YIq does not exceed a

certain limit such that the linearity assumption for the sigmoid function is not violated.

As a result, the assignment of the hidden T-vector Hq is only an approximate process

and has to be further fine-tuned by an additional optimization procedure.

Therefore, the necessity for the BP fine-tuning process is apparent for the

completeness of the deterministic algorithm. We can carry out the fine-tuning process by

calculating all the relevant parameters for the new hidden node and apply the classical BP

process to the network. However, these deterministic assignments do not necessarily

constitute a favourable initial state for the BP fine-tuning process. We should instead pre-

process the parameters of the new node such that the fine-tuning process can be carried out

with the greatest efficiency. The preparation step for the BP process concerns two aspects:

(1) The suitability of target T-vector BqAq as an initial state for the fine-tuning process:
A 承

It is seen that the evaluation process leading to the optimum target T-vector BqHq for the new

hidden node is wholly deterministic, and there is no guarantee that the BP fine-tuning process

will operate effectively at this state : the criterion of effectiveness being that the gradient of

the error surface at most training patterns should not be excessively small such that the BP

process can make a real contribution towards reducing the error of the network. Otherwise,

when the gradient of the error surface are small, the BP process cannot make a true descent

on the error surface, despite the addition of a new hidden unit, and the error of the network

will remain more or less the same, i.e., the node addition has not served its purpose of further

reducing the error of the network. As a result, the first preprocessing step for the new hidden

node should satisfy the following two criterion:

(a) It should adjust the optimum target T-vector BqIiq" such that the resulting optimum

target T-vector BqHq* should induce a reasonably large gradient at the error surface at

most training patterns.

Page 8-25

On the Training of Feedforward Neural Networks

(b) The pre-processing step should not disturb the state of optimality induced by the

previous deterministic assignment.

The idea of the pre-processing step originates from the observation that there

is one condition in which the error gradient induced by the new hidden node will be small

at most training patterns and that is the case when the disparity between the number of

positive components and the number of negative components in the optimum target T-vector
八孝 1

BqHq is large. Assuming for the moment that the sigmoid function of the new hidden node

has a zero average value and denote this function by f � . i.e. fo(x)=f(x)-0.5. We have

introduced this assumption because in the previous process of determining the target T-vector

which is closest to the input space X, we should have formally subtracted 0.5 from the target

vector since，although we have assumed the near linearity of the sigmoid function, the

resulting function still has an offset of 0.5 which is to be catered for. However, at this stage

we temporarily assume the replacement of f by f � s u c h that the output of the new hidden node

can be described more conveniently in terms of positive or negative entities instead of values
A 伞

which are greater or less than 0.5. Assuming that the optimum target T-vector BghQ is

approximated reasonably accurately by the new hidden node, the resulting sigmoid function

when superimposed on the training set domain will give the following picture.

V - - + Domain of
^ ^ ^ ^ Training Set

fo(x)=0

Fig 6.4 Relationship of the new sigmoid surface to the training set domain
before pre-processing

Page 4-26

On the Training of Feedforward Neural Networks

It is seen that due to the more numerous positive components contained in
A 本

target T-vector BqHq，the locus f̂ Cx) =0 of the sigmoid hypersurface has shifted almost to the

periphery of the training set domain. As the gradient of the sigmoid surface is greatest in the

vicinity of the locus f j x) = 0，and this region has been shifted away from the centre of the

training set domain, most of the training patterns will be under the saturation region of the

sigmoid hypersurface which possesses a small gradient. As the hidden weight adaptation term

in the BP equation is directly proportional to the sigmoid surface gradient at the various

training patterns, the adaptation of the hidden weight for the new node will be small for most

of the training patterns under the above situation.

Fortunately, a single shifting of all the components of the target T-vector BqIIq*

will remedy the above problem. Let h+ be the average value of the positive components of
A Hi

BqIIq and h" the negative average value for the components. Then we can apply the

following shifting procedure to each component of BqHq*, for l<t<p

2 (6.15)
谁) 一 华 r\>\h-\

The purpose of the above shifting procedure tends to "equalize" the number of

positive components and negative components of Bghq*. The relationship of the new sigmoid

surface to the training set domain after pre-processing is shown in the fig 6.5:

Page 8-27

On the Training of Feedforward Neural Networks

两)、\
- - / \ Domain of

- 一 - / Training Set
^ ^ _ ^ ^ f。(x)=0

Fig 6.5 Relationship of the new sigmoid surface to the training set domain
after pre-processing

From the above diagram it is seen that most of the training patterns are under the

"steep" region of the sigmoid surface. As a result, the BP process will induce a non-

negligible adaptation for the new hidden weights for most of the training patterns which

effects the searching of the global minimum in the restricted network.

This shifting of BqIIq* will not cause any disturbance to the optimality ensured

by the previous deterministic assignment process since the bias vector x! is a member of the

basis spanning the input space X. As the shifting of BqHq* involves the addition of a bias
A 傘 A .

vector to BqHq and we would like to maintain the previous relationship between BqIiq* and

X，we would simply add the same bias vector to the projection of BqIIq* on X in order to

maintain the above relationship. Therefore the shifting process satisfies criteria (a) and (b)

mentioned above and qualifies as a valid pre-processing step.

6.5.4 Determination of the Target Hidden T-vector

With the determination of the shifted target T-vector BghQ*,, we obtain an

estimation for h^* according to the relation below

Page 8-28

On the Training of Feedforward Neural Networks

h . - r U ^ X 0 , 3 + 0 . 5 ,乙 1 。

口 fr (6.16)
�25,max

The s subscript indicates the shifted T-vectors with respect to the original T-

vectors prior to the pre-processing step. In Eq (6.16), we have included the factor 0.3 as we

have to ensure that the optimum target hidden T-vector Hq* is within the range [0.2,0.8]. As

we have ignored this offset in the determination of the target T-vector, we have to compensate

by adding 0.5 to our previous target T-vector. In order to satisfy the above magnitude

criterion, we have to restrict the magnitude of the target T-vector to [-0.3 ,0.3], which is the

reason for the factor 0.3 in Eq (6.16).

By utilizing the above relationships, we can ensure that the norm of the T-

vector Hq* stays well within the norm in which the linearity assumption for the hidden node

remains valid.

6.5.5 Determination of the Hidden Weights

After obtaining the optimum target hidden T-vector Hq*, we can evaluate the

hidden weights Wjq of the new node in a straightforward way. Define

石厂 = / - i (� (6.17)

The hidden weights of the new node is given by

尸幻‘ (6.18)

From the hidden weights of the new node, we can thus determine the hidden

T-vector IIq of the new node by propagating the input T-vectors through the new hidden node.

Page 8-29

On the Training of Feedforward Neural Networks

6.5.6 Determination of the Output Weight

With the availability of the hidden T-vectors h”…..，Iiq and the inverse desired

output T-vector d { \ the output weights of the network Uq, of the whole network can simply

be determined as

Similarly, for a multi-output network with inverse desired output T-vectors d{

1，,.“，(1|；1，the output weights Uĵ are determined from Eq (6.19) with the subscript 1 replaced

by k

u , (r A � (6.20)

6.6 Linear Independency Assurance for the New Hidden T-Vector

The procedure for ensuring the linear independency of the new hidden T-vector

would now be given. This procedure is instrumental in ensuring the convergence of the

overall algorithm as mentioned in the first section of this Chapter. First we would like to

introduce some terminologies: we define the set of T-vectors n” …，n̂，which we call the

neural basis,as

(6.21)

=0 j<t

and the set of vectors Cj, ... ep，which we call the standard basis as

I

Page 6-30

On the Training of Feedforward Neural Networks

Oj=[〜/，.•.〜...,:/，lT 1 . .
1 H (6.22) jt J

=0 Mt

It is seen that both sets of vectors span the Euclidean space E^. The set of

vectors Hj is particular relevant to our present discussion as each iij can be reproduced by a

hidden node by applying Eq (3.1) with a large scale-up factor to the j-th pattern after the

pattern is arranged in Euclidean distance. In general, if the training pattern is not ordered

according to the Euclidean distance and the new hidden node is initialized with Eq (3.1), the

hidden T-vector of the new node will be a permuted version of iij. Nevertheless, we will

here after refer to these permuted version under the same name iij, as the present algorithm

does not require the ordering of the training set according to the Euclidean distance. The

growth algorithm mentioned in Chapter 4，on the other hand, produces hidden node which

emit the ej's such that isolation of the "difficult" training pattern is possible.

Suppose that at a certain stage of node addition the resulting new hidden T-

vector Hq is linearly dependent on the old hidden T-vectors and Q is smaller than p，then we

can replace Hq by an appropriate member of n�which is linearly independent from the old

hidden T-vectors, since the old hidden space H spanned by h” …，Iiq.i contains at most (Q-1)

of the iij which is smaller than p. The question is : what iij should we choose? Though we

can choose any Hj which is linearly independent from the old hidden T-vector set, we are

clearly sacrificing the optimality condition imposed by the previous node initialization scheme

by abruptly pursuing for the linear independency condition. Instead we should adopt the

procedure below:

Whenever the linear dependency condition is encountered, remove 10% of the

components of each T-vector involved in the node initialization procedure and repeat the

procedure. The components removed are those invoking the smallest error at the network

output such that the resulting node initialization procedure with the reduced T-vectors still

cater sufficiently for those patterns invoking large errors. This progressive reduction

procedure is suggested because the present node initialization scheme depends on multiple

training patterns for its optimality, while the satisfaction of linear independency condition

Page 8-31

On the Training of Feedforward Neural Networks

depends on only one training pattern (which corresponds to the particular n�chosen) .

Therefore, it would be reasonable to reduce the training set progressively such that the

transition from optimality to linear independency would be gradual. The reduction should be

implemented in such a way that the training set is reduced pattern by pattern until 10% of the

pattern are removed while the linearly independent condition is checked at each stage. If the

reduced old hidden T-vectors ever become linearly dependent, replace the components

removed previously and remove that pattern with the next smallest error instead.

Suppose that the dimension of all the T-vectors involved in the optimization

process is reduced to Q, the number of hidden nodes in the appended network, and the new

hidden vector Hq is still linearly dependent on the old hidden T-vectors. At this stage the old

hidden T-vectors hj, Iiq.i must be linearly independent from at least one of the neural basis

Hj ,since the Q-1 old hidden T-vectors cannot span the whole space E^. We could then pick

all of those neural basis which are linearly independent from the old set of hidden T-vectors

(this could be checked using the Gram-Schmidt process) and choose among these linearly
A 傘

independent basis the one which is closest to the optimum target T-vector BqHq . We could

now simply choose this neural basis as our new hidden T-vector and initialize the new hidden

node accordingly to Eq (3.1) with a large enough scale up factor. The above last measure

serves mainly as a precautionary measure as it is observed in simulation studies that linear

independency is achieved long before the dimension of each T-vector is reduced beyond Q.

Finally, if the new hidden T-vector is found to be linearly dependent on the old

hidden T-vectors, we should first record the present state of the network and apply the BP

fine-tuning process, since there may be a chance that the resulting hidden T-vectors after the

fine-tuning process may become linear independent. It was only when this process fails that

we restore the previous state of the network and apply the progressive reduction process.

6.7 Extension to the Multi-output Case

In the previous chapter it has been briefly mentioned how we should adapt the

present algorithm to the multi-output neural network: we should transform the inverse output

Page 4-32

On the Training of Feedforward Neural Networks

T-vector d̂ "̂ into another set of T-vectors ĉ '̂ which spans the same space D'̂ and which are

much closer to the input space X.

The above purpose can be achieved if we first project each elk] onto the input

space X and then re-project the resulting projection Pxdk'̂ back onto the space i.e., we

would like to evaluate as depicted in the following diagram

\
Fig 6.6 The evaluation of the double projection vector

It can be seen in the above diagram that the resulting double projected T-vector

is in general much closer to the input space X than the original T-vector d ^ T h e double

projection vector can be made closer to the input space X by adopting the following approach,

we first form the T-vector f^ which is the difference between d '̂̂ and the double projection

vector.

/广 4 I - / V ,尸 A l (6.23)

and construct the following T-vector

Page 4-33

On the Training of Feedforward Neural Networks

(6.24)

We can subsequently search for the parameter a which minimizes the distance

between c,̂ "̂ and its projection onto the input space X，PxCiji，i.e., we would like to minimize

I Ck'i - P x C k ' i I I 2 . The above construction is depicted in the following diagram.

Fig 6.7 The construction of ĉ '̂

It can be seen in the above diagram that the resulting ĉ "̂ * is closer to the input

space X than the original double projection vector. The form of the cost function as

described above which involves the minimization of the distance between a T-vector and its

projection on the input space X is identical to that involved in the optimization of target T-
A t

vector BqHq . Therefore, identical methods can be used to optimize the current cost function

for each d '̂̂ such that we obtain a set of new T-vectors ĉ '̂ which is much closer to X.

An additional issue to be considered is the linear independency of the new set

of T-vectors c^'^ To ensure the linear independency of the new T-vectors, we can include

a backtracking process for each c,,"̂ After the evaluation of each we check for the linear

independency of the whole set of T-vectors, c { \ …，dk+rV..，d^'^ using the Gram-Schmidt

orthogonalization procedure. If the linear independency criterion is satisfied, we retain the

Page 8-34

(

On the Training of Feedforward Neural Networks

current c '̂̂ as member of the new set of vectors. Otherwise, we backtrack through the

parameter a:

/=0.9,0.8，..…,0.1，0 (6.25)

It is seen that with i=0, the c '̂̂ reverts to the former vector which by

definition is linear independent from all vectors in the partially converted set, and therefore

in the course of backtracking there exists an i such that the resulting ĉ '̂ is linearly

independent from the rest of the set.

Finally we represent each ĉ "̂ with a cluster of hidden nodes according to the

single-output network construction scheme. The cluster of hidden nodes which represents a
A

particular c^ is labelled with double subscript h^j such that the first subscript identifies the

cluster of hidden nodes approximating the ĉ '̂ and the second subscript identifies each hidden

node in the cluster. By virtue of the above conversion of basis, each cluster would contain

less nodes than it would have been if it directly approximates each d ^ F i n a l l y , instead of

approximating each c '̂̂ in isolation, we can amalgamated these approximation procedures into

a single node addition procedure according to the node addition sequence described below

办 11,办 21 ,…力 m r 办 12，办 22,

and apply the BP fine-tuning procedure after the addition of each node. In this way we allow

the hidden space H to expand quickly in all its major linear independent directions. During

the approximation of each we do not have to restrict ourselves to consider only h^j, h^j'

. “ ， a s our old hidden T-vector set. The inclusion of all other hidden nodes in the optimization

process of fikgh^Q provides more degrees of freedom to the approximation process. In other

words, each stage of node addition resembles the node addition process of the single-output

network except with different ĉ '̂ at each stage.

6.8 Convergence Proof for the Deterministic Algorithm

In view of the course of development for the present deterministic algorithm,

the convergence proof for the algorithm is almost self-evident. Assuming that for a multi-

Page 4-35

On the Training of Feedforward Neural Networks

output neural network with inverse desired output T-vector d{\ …，d,/，and assuming that

the p-th hidden node is added to the network and the corresponding new hidden T-vector, by

virtue of the linearly independent assurance scheme, is linearly independent from the old

hidden T-vectors. As a result the whole set of hidden t-vectors form a basis for the space E^.

As a result, the neural network representation criterion mentioned in Chapter 5 is satisfied and

the corresponding training set can be exactly represented by the neural network.

6.9 The Flow of the Deterministic Dynamic Node Creation Algorithm

We may now capitulate on the flow of the deterministic dynamic node creation algorithm by

the following flowchart:

6.10 Experimental Results and Performance Analysis

(1) Parity Problem

The deterministic algorithm is first applied to the parity problem as in the case

for the growth algorithm. The node addition monitoring scheme for the present algorithm is

identical to that for the growth algorithm and we would not repeat it here. The training

parameters and convergence criterion used are the same as in the previous simulation studies.

Page 4-36

On the Training of Feedforward Neural Networks

〔 start)

y

Start w i t h
t h e b i a s n o d e

I >

�f
add a new

node to the

n e t w o r k

y

‘ De t e r m i n e the
target h i d d e n

v e c t o r by
solving Eq

(6.4)

> J
i n i t i a l i z e

n o d e using Eq
(6.18) and Eq

(6.19)

<
\ f

s t o r e the
n e t w o r k s t a t e
and apply BP

p r o c e s s

> f

C o n v e r g e ? ^ ^ ^ ^ end ^

x X
n

Partial \
(c o n v e r g e n c e ^

a c h i e v e d ?

n
^

r e s t o r e the
p r e v i o u s

s t a t e of the
n e t w o r k

V
a p p l y the *
1inear

i n d e p e n d e n c y
a s s u r a n c e
p r o c e d u r e

Fig 6.8 Flow of the deterministic dynamic node creation algorithm

Page 8-37

On the Training of Feedforward Neural Networks

Parity Deterministic Algorithm BP Algorithm

Order ‘

No. of Epochs No. of Nodes No. of Epochs No. of Nodes

2 21 2 107(0%) 2

3 228 3 62(0%) 3

4 296 5 126(20%) 5
5 457 7 167(20%) 7

0

6 585 6 583(60%) 6

7 405 7 181(60%) 7

Table 6.2 The deterministic algorithm applied to the parity problem

No. of Epochs
1,200

A //-�

1,000 - -/..
/

- /

8 0 0 - …
/ z

6 0 0 -

400 - .，••、•、送

200 - .r^^；^^^：：^…./

0 Las：^ 1 1 I I |_
2 3 4 5 6 7

Parity Order
Deterministic Algorithm Growth Algorithm PT Algorithm

0 — rl? A" —
Fig 6.9 Speed comparison between the three dynamic node creation algorithms (parity
problem)

Page 8-38

On the Training of Feedforward Neural Networks

No. of Nodes
16 —

一 一

14 -
- Z

12 -

- 么 z
- / 二

/ 广 一 ，

e ：

4 • . - • 一 一 一 ^ y i

. “‘

2

0 Lj 1 1 1 I L_
2 3 4 5 6 7

Parity Order
Deterministjc Algorithm Growth Algorithm PT Al^r i thm

Fig 6.10 Network size comparison between the three dynamic node creation
algorithms (Parity problem) .

The figure in the parentheses in Table 6.2 indicates the failure rate among 10

trials of BP. It is noticed from the above results that the present algorithm does not encounter

any local minima. Moreover, the hidden layer size estimated by present algorithm is smaller

than that for the previous 2 algorithms, and the network size approaches the optimal network

size even for high-order parity problems, thus illustrating that the present algorithm is an even

more accurate hidden layer size estimator than the previous 2 algorithms. In addition, there

are sharp rises in the number of training epochs required for both the growth and PT

glaorithm with the complexity of the training set, while the rise in the case of the

deterministic algorithm remains steady, indicating that its global node initialization scheme

reflects more accurately the network's internal status than for local node initialization scheme.

From these results, we can once more appreciate the important function of dynamic node

creation: in this example, since the present algorithm gives a lower estimate on the hidden

layer size, we have used the corresponding number of nodes in the BP networks. The failure

rate immediately rises dramatically when compared with the BP networks of Chapter 4 in

Page 8-39

On the Training of Feedforward Neural Networks

which larger networks are used. We can thus imagine the difficulties of training a network

if we have underestimated the hidden layer size of a conventional BP network.

2. The Handwritten Character Recognition Problem

The present deterministic algorithm is then applied to the same character

recognition problem as in Chapter 4. The same training parameters and convergence criterion

is applied to the present training situations. This training set also serves as a good testing

example for the multi-output version of the deterministic algorithm as the required network

network contains 36 output nodes. The results of the simulation studies are presented below:

Error Deterministic Algorithm BP Algorithm

Gradient
No. of Epochs No. of Nodes No. of Epochs No. of Nodes

Threshold

0.05% 1189 30 42 30

0.06% 1365 26 53 26

0.07% 960 27 46 27

0.08% 850 26 53 26

0.09% 818 27 46 27

0.10% 656 27 46 27

Table 6.3 The deterministic algorithm applied to the handwritten character recognition

problem (training speed and hidden layer size comparison)

Page 4-40

On the Training of Feedforward Neural Networks

No. of Epochs
2,000

1 華 - x
-A \

1,600 -

1,4。。：……^^^^^^^^；；；；：：^…、、;:…….；7………、；、 ；

1 , 2 0 0 ：無z �� ； 〉 . ^ : . .

1，000 - ^^^^""^^^IZ：：：：：：^^：；；^ "

800 - .……..

600 - •••••

4 0 0 - T . 7 . T . w T - - . - r一� � -

• _ — ^ G
200 LJ 1 1 1 L. L_

0.05 0.06 0.07 0.08 0.09 0.10

Error Gradient Threshold (%)
Deterministic Algorithm Growth Algorithm PT Algorithm

• 0 t.T - - “ —

Fig 6.11 Speed comparison between the three dynamic node creation algorithms
(Handwritten character recognition problem)

No. of Nodes
34

32 - />-
/

30 :/………
28 ^ ； /
26 - ……Z：：：̂：；；；;̂̂̂；；：：̂̂̂^̂̂̂!̂：：̂：：；；̂..…/.

- ��� z 、分、
24 - 、 - 、

2 2 - ； 5 «、“： ： 二 普

- Z … � � B
20 - ；v"-'

18 - G E1 ET-''

16 LJ 1 1 1 1 L_
0.05 0.06 0.07 0.08 0.09 0.10

Error Gradient Threshold (。/。）

Deterministic Algorithm Growth Algorithm PT Algorithm
0 f3 一

Fig 6.12 Network size comparison between the three dynamic node creation algorithms
(Handwritten character recognition problem)

Page 8-41

On the Training of Feedforward Neural Networks

From the above results it is seen that contrary to its behaviour in the parity

problem, the resulting network for this algorithm is greater than the one estimated by the

growth algorithm while almost the same size as the one created by the PT algorithm. This

may be due to the reason that the convergence criterion for this problem involved a fixed

sum-squared error threshold of 30. Experimentally, it is observed that the deterministic

algorithm is able to achieve a sum-squared error near the error threshold with a hidden layer

size similar to that for the growth algorithm. However, through observation it is found that

in order to achieve the error threshold exactly, a great many more nodes are required. In

other works, the asymptotic training behaviour of the deterministic algorithm is not as good

as the growth algorithm since the latter possesses the ability of immediately "covering" a

"difficult" pattern with its modified nonlinearity while the former has adopted a less radical

multiple training pattern node initialization scheme. Therefore, it would be suitable if we can

derive a modified convergence criterion in which the error threshold is slightly raised. This

also explains the longer training time of the current algorithm.

As usual, the training time decreases when the error gradient threshold

increases and is greater than that for the conventional BP algorithm due to the initial single-

node network.

Next we would like to compare the recognition rate of the algorithm on both

the training set and the test set.

Page 4-42

On the Training of Feedforward Neural Networks

Error Deterministic Algorithm BP Algorithm

Gradient
Thr sh Id Recognition Recognition Recognition Recognition

Rate (Training Rate (Test Set) Rate (Training Rate (Test Set)

Set) Set)

0.05% 97.8% 78.3% 92.2% 86.7%

0.06% 97.2% 78.9% 90.6% 87.8%

0.07% 96.1% 80.0% 94.4% 87.2%

0.08% 96.1% 81.7% 90,6% 87.8%

0.09% 97.2% 78.9% 94.4% 87.2%

0.10% 96.1% 78.9% 94.4% 87.2%

Table 6.4 The deterministic algorithm applied to the handwritten character recognition

problem (recognition rate comparison)

Due to the prolonged training time of the current algorithm as mentioned

above, the generalization rate is lower than that of BP and the growth algorithm while higher

than that for the PT algorithm. As a result, the advantage of the multi-pattern initialization

scheme cannot manifest itself due to the requirement of achieving the error threshold. This

would not be the case for the time-series training set as will be seen in the next section. The

above conjecture also explains the rather high recognition rate on the training set achieved

by the current algorithm as compared to both the BP and the growth algorithm due to the

relatively longer training time.

Page 8-43

On the Training of Feedforward Neural Networks

Recognition Rate in % (Training Set)
100 —

一 A s �

95 - -

•
- El - q

\

、
、

90 - \
- \ , " 、 、 、 、 、

、 z 、
\ ^ ��

\ 、\、
85 - \ y ，-••-

、 / \ z

- V '
80 LJ 1 i I 1 1-

0.05 0.06 0.07 0.08 0.09 0.10

Error Gradient Threshold (。/。)
Deterministic Algorithm Growth Algorithm PT Al^rithm

Fig 6.13 Recognition rate (training set) comparison between the three dynamic node
creation algorithms (handwritten character recognition problem)

Recognition Rate in % (Test Set)
90

z ' a �

85 - 7 "，X
.•SrV �� r：；! -

- •着 N 參八to

30 ……………：……………

c ^ — ^ ^ ^ ^
3 一 一 一 、

z Z 一 \
75 - ： ； y Z • … …

- 众 、 S z Z \

70 LJ 1 1 1 1 i -
0.05 0.06 0.07 0.08 0.09 0.10

Error Gradient Threshold (%)
Deterministic Algorithm Growth Algorithm PT Alqorithm O 1? Sfr 一

Fig 6.14 Recognition rate (test set) comparison between the two dynamic node creation
algorithms (Handwritten character recognition problem)

Page 8-44

On the Training of Feedforward Neural Networks

The generalization capability of the current algorithm also exhibits the

characteristic trend of peaking at the intermediate values of error gradient threshold which

corresponds to an intermediate training time where either the phenomenon of overfitting or

underfitting is not prominent.

3. Time Series Modelling

Finally, the current algorithm is applied to the time series modelling problem

using the same training parameters and convergence criterion as in Chapter 4. The results

of the various simulation studies is given below.

Error Deterministic Algorithm BP Algorithm

Gradient
No. of Epochs No. of Nodes No. of Epochs No. of Nodes

Threshold

0.05% 1520 4 4690 4

0.06% 1457 4 4690 4

0.07% 1413 4 4690 4

0.08% 1365 5 3523 5

0.09% 1337 5 3523 5

0.10% 1276 6 2867 6
I i

Table 6.5 The deterministic algorithm applied to the time series modelling problem (Training

speed and network size comparison)

Page 4-45

On the Training of Feedforward Neural Networks

No. of Epochs
1,600

1,400 - ^^^^^^^^^^^^^^^

1,200 - vs
^ ^ ^ 、

_ � � z , � � �

、、、 、众
1’_ 、、 •义

���� ��� Z � �
�� \ z ���

、”？ 、2^, 《
8 0 0 - :'，.’ 备-二二二.二-二•二•二•二•二.二-二•二.二.二二•二•二.••二• •^、.

—"di

600 Ll 1 1 1 1 ： L_
0.05 0 .06 . 0 .07 0.08 0.09 0.10

Error Gradient Threshold (%)
Deterministic Algorithm Growth Algorithm PT Algorithm

• — _ — — • — 之 • - •

Fig 6.15 Speed comparison between the three dynamic node creation algorithms (Time
series modelling problem)

No. of Nodes
14

1 2 — -j^-jfe 亡、"

- z ' ^ � � � 妇 日 z �� z Z 1Q Ttt. —— — —• —• ——- —- tŝ
- Z z

8 - ；Ov：.-：- •^r.'

- Z --El--

6 -…7乙. ： ：：：：^：^^
-[？r e ^ ^

4 -O— S aŷ rrT-r： .̂.

2 U I I I I L_
0.05 0.06 0 .07 0.08 0.09 0.10

Error Gradient Threshold (%)
Deterministic Algorithm Growth Algorithm PT Algorithm

@ • - - 0 — —A" —
Fig 6.16 Network size comparison between the three dynamic node creation algorithms
(Time series modelling problem)

Page 8-46

On the Training of Feedforward Neural Networks

It has been observed in Chapter 4 that the time series training set serves as a difficult

problem for the conventional BP network. This phenomenon is again manifested in the

current training exercise: the convergence speed of the BP network using the same number

of hidden nodes as the current algorithm is in general much lower than that for the current

deterministic algorithm. This situation is also much accentuated by the fact that the current

algorithm generates a very small resulting network, in fact much smaller than those generated

by the growth algorithm and the progressive training algorithm. As a result the current

algorithm serves as a better estimator for the network size than for the previous 2 algorithms,

while the corresponding small network size used for the BP comparison exercises further

accentuate its convergence speed problem.

As expected, the training time required for the current algorithm is longer than

that for the growth algorithm due to the special nature of the hidden node initialization

scheme of the latter. In this case the progressive training algorithm also outperforms the

current algorithm in terms of training speed, but the resulting network size generated by the

progressive training algorithm is much larger than that generated by the current algorithm

Next we would like to compare the generalization capability of the various

dynamic node creation algorithms:

Page 8-47

On the Training of Feedforward Neural Networks

Error Gradient Threshold NRMSE (Deterministic NRMSE (BP Algorithm)

Algorithm)

0 . 0 5 % 0 . 1 0 3 3 0 . 1 0 7 4

0.06% 0.1032 0.1074

0.07% 0.1031 0.1074

0.08% 0.1041 0.1010

0.09% 0.1052 0.1010

0.10% 0.1090 0.1008

Table 6.6 The deterministic algorithm applied to the time series modelling problem (NRMSE

comparison)

NRMSE
0.35

、
0.3 -…、，、；

\
%

S

、、、
S

、
0.25 - 、乂 -二—二 E

iz-
0 .2 -

0.15 -

0.1 . 媒 . 一 把 A g -

0.05 LJ 1 1 ： 1 1 L.
0.05 0.06 0.07 0.08 0.09 0.10

Error Gradient Threshold (%)
Deterministic Algorithm Growth Algorithm PT Algorithm

• 0 Et ^�

Fig 6.17 NRMSE comparison between the three dynamic node creation algorithms (Time
series modelling problem)

Page 8-48

On the Training of Feedforward Neural Networks

It is seen that the generalization capability of the current algorithm is much

higher that for the growth algorithm for this particular noisy training set. Thus the advantage

of the multi-pattern node initialization scheme has manifested itself in this case when

compared with the single pattern initialization scheme of the growth algorithm. In general,

the generalization capability of the current algorithm is almost on an equal footing with the

BP algorithm and the progressive training algorithm. The simulation results for the current

algorithm also exhibits the characteristic trend of peaking at the intermediate range of error

gradient threshold values.

In general, the current deterministic dynamic node creation algorithm can

successfully cater for the three training sets described in this thesis. The convergence speed

for the current algorithm is in general lower than that of the growth algorithm since the node

initialization scheme of the deterministic algorithm is not designed to directly "cover" a

"difficult" pattern. On the other hand, the merit of the new algorithm lies in its improved

new hidden node initialization scheme which makes use of multiple training patterns and thus

would give a more accurate estimate for the underlying mapping of the training set，which

is indicated by the resulting smaller network size generated by the current algorithm.

Moreover, this node initialization strategy discourages the memorization of a single noisy

training pattern, which is manifested ins its high generalization capability on encountering

noisy data sets such as time series samples when compared with algorithms employing single-

pattern initialization such as the growth algorithm. However, the generalization capability of

the current algorithm still lags behind that of the BP network due to the early consolidation

of the knowledge of the training set in an initial small network. In Chapter 7，the approach

of monitoring the generalization measure proposed by Drucker et.al [11] is derived to

counteract this problem. In addition, the initial single node network for the current algorithm

has manifested itself in the long training time when compared with conventional BP network

which starts with multiple hidden nodes. In Chapter 8，an initial hidden layer size estimation

procedure is derived such that the current algorithm can start with an initial multiple hidden

node network instead of a single node network.

Page 8-49

On the Training of Feedforward Neural Networks

6.11 Concluding Remarks

We have achieved the next step in our course of algorithm development as

promised in Chapter 1，in that multiple training patterns can now be utilized to initialize a

new hidden node in a dynamic node creation environment, thus avoiding once and for all the

possibility of the memorization of noisy training data by the new hidden node, as would be

possible under the progressive training algorithm and the growth algorithm. Moreover, the

current algorithm do not assume any specific features either in the training sequence or in the

training set organisation (as in progressive training) or in the architecture of the network (as

in the growth algorithm). The conception of the current algorithm is made possible through

the knowledge representation model developed in Chapter 5, in which the powerful T-vector

approach help us to elucidate more details concerning the relationship between the hidden

layer and the output layer in which the conventional S-vector approach is unable to provide.

The current algorithm is successfully applied to the parity problem, a handwritten character

recognition problem, and a time series prediction problem. The resulting network generated

by the current algorithm all compares favourably with that generated by the progressive

training algorithm and the growth algorithm in terms of both the network size and training

speed. In addition, the algorithm generates a near optimal network size for all parity orders

in the training of the parity data set. However, it is observed over the past few chapters we

have noticed that networks created by dynamic node creation algorithm generally exhibit

lower generalization rate than their BP counterparts, and the training speed is low whenever

the training set is simple enough for the conventional BP algorithm such that BP has a

headstart with its initial multi hidden node network. In Chapter 7 we explore the possibility

of using the generalization measure derived by Drucker et.al [11] as a node addition criterion.

In addition, we explore the possibility of generating a multi hidden node initial network for

the present algorithm in contrast to the initial single node network in Chapter 8.

Page 8-50

On the Training of Feedforward Neural Networks

7 THE GENERALIZATION MEASURE MONITORING

SCHEME

7.1 The Problem of Generalization for Neural Networks

Through the development of the BP training process, the artificial neural

network has become a truly practical mapping device in that a training set can be constructed

from the mapping by appropriately sampling the function and produce an adequate number

of input-output pairs. The BP process can then accept these input-output pairs (or training

patterns) and produce a neural network with the appropriate network weights to implement

the desired mapping. But in a strict sense the neural network is not learning the underlying

mapping of the training set but only the restricted mapping represented by the training

patterns. As a result, if the training pattern is not selected properly such that their

characteristics are general enough to represent the underlying mapping of the training set, the

mapping obtained by the neural network by loading these training patterns onto the network

would differ considerably from the original mapping. This is a severe limitation of data

representation by neural network as it is not possible to train a neural network with a training

set of infinite size. However, if the underlying mapping of the training set is smooth enough

such that the value of the function at a certain point is well-approximated by the function

values at neighbouring points, then the training of the network is equivalent to the learning

of the underlying mapping of the training set, provided that the training time is not so long

as to cause the cohesion of the network mapping to the sample points of the training set,

which result in an overall "wrinkled" surface instead of the smooth surface we have desired.

The generalization capability of the network would not be severely disturbed under this

situation, but it is almost certain that the generalization capability under this prolonged

training condition would be lower than the case where the training time is suitably adjusted

such that the mapping retains its smooth appearance. The problem is: how can we define this

so called suitable training time? We may attempt to train the network for a "not so long"

period, but since we have no guideline in selecting this training time, the approximation error

Page 7-1

On the Training of Feedforward Neural Networks

on the training set may worsen due to the shortened training time. Any attempt in deciding

this training time through the monitoring of the mean square error of the network is also futile

as there seems no clue as to which mean square error exhibited by the network would lead

to the best generalization capability for the network, except that an overly small mean square

error value would definitely lead to a worsened generalization capability. It is obvious from

the above consideration that we must rely on additional information in solving the

generalization problem, as the information given by the training set does not prepare the

neural network for the infinite varieties of test set that it would meet.

7.2 Prior Attempts in Solving the Generalization Problem

Traditionally, it is believed that a network with a smaller number of hidden

nodes will generalize better than a network with a larger number of hidden nodes, since the

smaller number of parameters in a small network forces the training algorithm to generalize

over the training patterns instead of memorizing each pattern individually，as this is the only

alternative for the training algorithm to produce an acceptable mean square error at the

network output since it simply does not have enough resources. On the other hand, for a

network with a large number of hidden nodes, the network will tend to memorize some of the

training patterns due to the large number of training parameters available. Some researchers

[52] suggested that the reduced computational power of a small network can be compensated

by using more hidden layers. The increased number of parameters would not affect the

generalization capability of the network as the information in the training set has already been

squeezed into a compact code at the lower layer to be interpreted at the higher layer, which

is different from the situation where the same number of parameters is present in a single

hidden layer. Adhering to this principle of minimum network size, Rumelhart et. al [58] has

derived a pruning procedure for the hidden layer which attempts to remove redundant nodes

in a network with the hope that the resulting smaller network will perform a better task of

generalization. They achieved this by including an additional term in the BP cost function

which encourages the rapid decay of network weights with small magnitudes, thus hidden

Page 7-2

On the Training of Feedforward Neural Networks

nodes which play minor roles in the approximation of the training set will gradually wither

away. Rumelhart applied this algorithm to the task of time series prediction in which the

training patterns are especially susceptible to noise and found that the pruning process has

actually improved the prediction capability of the network. They have also proposed an

alternative method in which a portion of the training set is chosen as a so-called validation

set and does not participate in the training process. During the training process, the mean

square error invoked at the training patterns in the validation set are monitored, and when the

mean square error at these points reaches a minimum and starts to rise, the training process

is terminated. It was found that this process can also improve the generalization capability

of the network. In general, the two methods have their respective disadvantages: for the first

method，delicate balance has to be achieved between the two terms in the cost function to

achieve the optimum effect. For the second method, we have to sacrifice a portion of the

training patterns which should have been used to decrease the mean square error of the

network. The above methods, in particular the pruning approaches, are based on the notion

that small networks tend to generalize better. However, the notion is found to be invalid for

some training sets. For example, Siestma et. al [52] discovered that, for networks trained

with noisy inputs, large networks actually generalize better than small networks, thus

indicating that the above notion cannot be applied universally. An alternative method of

improving the generalization capability of a network is to generate additional training patterns

from the original training patterns by adding noises to the original patterns. The intention of

the above practice is clear: besides requiring the network to attain the desired output at a

designated training pattern, we would also require that patterns at the vicinity of the chosen

training pattern should adopt a more or less similar network output. Interpreted in another

context, we are trying to anticipate the possible patterns in the test set by disturbing in

different ways the training patterns which are available to us. Matsuoka [33] proved

mathematically that the adoption of this noise injection approach would actually reduce the

sensitivity of the network to variation in the input, which is another way of saying that the

generalization capability of the network is increased. Holmstrom et. al [22] provided

Page 7-3

On the Training of Feedforward Neural Networks

guidelines for selecting the probability density of the noises to be added to the training

patterns if this approach is adopted in improving the generalization capability of the network.

Recently, a completely new approach is derived to address this problem, which is to be

described in the next section.

7.3 The Generalization Measure

The generalization measure derived by Drucker and Le Cun [11] represents a

completely new way of addressing the problem of generalization. The derivation of this

method is based on the notion that a network mapping which serves as a good model of

generalization should be relatively smooth and free of abrupt transitions. This in turn implies

that the derivative of the error function with respect to the input patterns should be small,

such that the network error will not change much when the input patterns are changed

slightly, as will be the case for most patterns in the test set. Drucker et. al simply adopted

this derivative as part of the BP cost function such that in the BP training process, this

quantity is minimized alongside the mean square error function in a way such that the

generalization capability and mean square performance of the network. Formally, this

additional term E^ for the cost function is given as

丄 (7.1)
2 Tif dx.

Where the Xj's, i=l to n, are the various network inputs and E is the normal

sum-squared error function. This derivative, multiplied by the generalization coefficient a ,

is added to the original sum-squaxed error function to produce the total error function Ê

E=E+aE, (7.2)
I o

We would hereafter call this total error function the generalization measure of

the network. Drucker et. al has evaluated the derivative of Ê with respect to all weights in

Page 7-4

On the Training of Feedforward Neural Networks

the network such that a BP-type algorithm can be applied using the total error function Et

instead of the usual mean square error function E. Since the calculation; of all the derivatives

involve a first pass through the original network and a second pass through a so called

appended network which helps in calculating the derivative of E^ with respect to all weights,

the new learning algorithm is referred to by the authors as the double backpropagation

algorithm. As can be seen from the above description, the evaluation of the derivative of Ê

with respect to all weights in the network can be a complicated process as a double pass

through the network is required. However, the calculation of E^ is a simple task as all the

quantities required for its calculation is available from the original BP process: in the original

BP process a quantity 5】，j=l to q, is defined for each hidden node. We can backpropagate

these error terms through one more step to the input layer using the original BP rule to obtain

each of the terms in E^:

W..5. / = ! , . . . (7 . 3)

With the availability of these partial derivatives, we can calculate E^ by

squaring each derivative and summing together.

7.4 The Adoption of the Generalization Measure to the Deterministic Algorithm

We have mentioned the calculation of E^ only, since this is the only calculation

procedure required for adopting the concept of generalization measure to the deterministic

algorithm. The motivation for the adoption of this approach to the deterministic algorithm

is due to the observation that the generalization capability of the network created by the

present algorithm is in general not as high as a network created by the conventional BP

process. For some training set (especially the handwritten character recognition set), this

phenomenon is not restricted to the deterministic algorithm but is observed whenever a

network is created through the dynamic node creation method, as can be seen in the case of

the progressive training algorithm and the growth algorithm. This may be due to the early

Page 7-5

On the Training of Feedforward Neural Networks

consolidation of the knowledge embedded in the training set in a small network which the

further training step is unable to eradicate. Since a small network is in general not adequate

to represent most training sets, misrepresentation of the training set will result and leads to

a poor generalization rate. This problem can be alleviated if the error gradient threshold G,

which is an essential parameter in deciding when to add new nodes to the network, is raised

such that the training set knowledge is not so deeply embedded in the early small network.

This approach, however, will in general lead to a large network due to the relaxation of the

node addition criterion and in turn lead to a waste of resources. It would be ideal if the error

gradient threshold G can vary suitably in each instance of node addition such that a balance

can be struck between generalization capability and the network size. Here we suggest the

monitoring of the previous generalization measure throughout the whole BP fine-tuning

process on the addition of a new node to find a suitable moment to terminate the training.

If the generalization measure really corresponds to the generalization capability of the

network, then the presence of the generalization measure is equivalent to the presence of a

validation set in the sense defined by Rumelhart et. al [58]. However, in this case, we have

the added advantage that we do not have to sacrifice any training patterns in the training set

to create the validation set. The correspondence between the generalization measure and the

generalization capability of the network will be studied in section 7.6. In the next section,

we would first describe our proposed method of monitoring the generalization measure.

7.5 Monitoring of the Generalization Measure

Through experimental studies, it is observed that on addition of a new hidden

node and the application of the BP fine-tuning process, the generalization measure will

assume the shape as depicted in Fig 7.1.

Page 7-6

On the Training of Feedforward Neural Networks

Generalization
Measure

“ ^ ^ ^ ^ ^ ^ ^ No. of
~ — • E p o c h s

Fig 7.1 The generalization measure profile

Corresponding to the approach of Rumelhart et. al [58] on the validation set,

we would terminate the training whenever the generalization measure exhibit its deepest

trough. This can be equivalently achieved by the following series of steps:

(1) Set Et min to a large number .

(2) Calculate Et = Et(n) - Et(n - 1) at each step of the BP fine-tuning process.

(3) Whenever Ej > 0，compare Et min with the current E” If Ê is smaller than E �

min，record the current state of the network and replace Et min with the current

value of E”

(4) At the end of the BP fine-tuning process when AE/E is smaller than its

threshold, compare the current Ê with Et min. If Ê is larger than Ê min，replace

the current state of the network with the stored state, otherwise retain the

current state of the network.

The above process constitutes a simple process of monitoring the generalization

measure. In addition, since the generalization measure can be calculated using quantities

which are already available through the standard BP process, the monitoring of this additional

quantity does not constitute a substantial overhead in the implementation of the deterministic

Page 7-7

、

On the Training of Feedforward Neural Networks

algorithm and thus serves as a practical method for improving the generalization capability

of the network under a dynamic node creation environment.

7.6 Correspondence between the Generalization Measure and the Generalization

Capability of the Network

The variation of the generalization measure and the generalization capability

of the network throughout a certain BP fine-tuning process is depicted in Fig 7.2 to Fig 7.7.

The first three figures correspond to the handwritten character recognition problem and the

last three figures correspond to the time series modelling problem. For each training set, the

three figures correspond to a= l , 2 and 3.

Generalization Measure 1-Recognition Rate
102 0.85

100 - . � \ - 0.8
• \ •

98 - 、、>、 - 0.75

- \ \ . \ \ \
96 - 、 \ 、 — 0.7

、…、、、 、 〜 、
- V _

一、、 ^̂〜〜〜〜
〜 、、 〜 〜

94 一 、、〜 广 、 一 0.65

92 L J I ~ I ~ I ！ _ I I _ i _ _ I _ I _ I _ _ I _ _ I _ _ I _ I _ _ I _ _ I _ _ I _ I I I I I I I 0.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ‘

No. of Epochs
Generalization ^ _

, , 1-Recognition Rate Measure

Fig 7.2 Generalization measure profile of the handwritten character recognition problem
(a=l)

Page 7-8

On the Training of Feedforward Neural Networks

Generalization Measure 1-Recognition Rate
103 0.85

1 0 2 � •

\ - 0.8

101 -

_ V � �
100 - ^Xn

. \ � \ - 0.75
99 - \ \ -
98 - \ - 0.7

>> 一、 - \ \ 、、、、- -
97 - 、、<；：〜…一、
95 _

95 Lj_I_I__I__I__I_I__I__I__I_II_I__I__I__I__I__I__I__I__I I i I I 0 6
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

No. of Epochs
Generalization

. . 1-Recognition Rate
Measure ^

Fig 7.3 Generalization measure of the handwritten character recognition problem (a=2)

Generalization Measure 1-Recognition Rate
103 — 0.85 �

- \ -
102 - \ -A _ � . 8
101 - \ _

- - 0.75
100 - \ \

‘ \ � - 0.7
99 - V — � � �

- 、 、 、 - … … “

一 \ \ 、 、 : \ 、 、 … - - 、 、 一 、 - 0 . 6 5

Is 二 一

97 LJII__II_I__I__I__I___I_I_I_I__I__I__I_I_I__I_I__I_I__I__J 0 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ‘

No. of Epochs
Generalization … .. r̂

Measure [一 n i t i o n Rate

Fig 7.4 Generalization measure for the handwritten character recognition problem (a=3)

Page 8-9

On the Training of Feedforward Neural Networks

Generalization Measure NRMSE
0.9 0.25

.�� z
0 . 8 8 一 \ 一 0 - 2 4 5

\ . z
- 、、 z Z -

0.86 - \ - 0.24
- \ \ / Z .

\ \ f
0.84 - \ 、 \ / - 0.235

\ \ /
- \ 、 、 \ / -

/
0.82 一 、、〉、] - 0.23

、、，’

0 8 LJ 1 1 1 1 1 1 1 1 1 1 L——I i J 0.225
一 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No. of Epochs
Generalization , , NRMSE

Measure

Fig 7.5 Generalization measure profile of the time series modelling problem (a=l)

Generalization Measure NRMSE
1.12 0.25

1.1 - � � z '
- \ z Z - 謹

1.08 - \ z Z -
- 、 z

\ - 0.24
1.06 - \ Z

- \ , -

1-04 - 、 \ / - 0.235
• \ 、 /

1�2 、、>:—」
-、、、〜 一 一 、 、 、 - 0.23

1 -
0 98 LJ 1 1 1 1 — I 1 1 1 1 1 1 1 l J 0.225

1 2 3 4 5 6 7 8 9 10 11 12 13 14
No. of Epochs

Generalization . NRMSE Measure

Fig 7.6 Generalization measure profile of the time series modelling problem (a=2)

Page 8-10

On the Training of Feedforward Neural Networks

Generalization Measure NRMSE
1.35 0.25

“ \ Z
\ z Z - 0.245

1.3 - \ / Z
\ z Z

_ \ z Z ' z - 0.24
、、 ^

1.25 - 、、、、 Z
、、、 /

\ / - 0.235
“ � � \ y

1.2 - z 八 、
一 Z \ 、 Z - 0.23

—W � ,
1.15 L ' — — I — — I — — ‘ — — I — — I — — I — — ' — — I — — I — — I — — I — — ' — — J 0.225

1 2 3 4 5 6 7 8 9 10 11 12 13 14
No. of Epochs

Generalization nrmse
Measure

Fig 7.7 Generalization measure profile of the time series modelling problem (a=3)

For investigating the generalization measure profile of the handwritten character

recognition problem, we have made use of the quantity (1-Recognition Rate) on the test set,

since this quantity decreases with the generalization capability of the network which

corresponds to the behaviour of the generalization measure, such that an effective comparison

can be made between these two quantities. In Fig 7.2, 7.3 and 7.4，which corresponds to

oc=l，2 and 3，we can observe that the generalization measure correlates highly with the

generalization capability of the network in that both decreases almost in a monotonic way

during almost the entire course of training while exhibiting a slight upturn at the end of

training which indicates the beginning of deterioration of the network's generalization

capability. Thus the generalization measure can replace the validation set as an effective

indicator of the network's generalization capability. For a=3, the upturn for the

generalization measure occurs earlier due to the more important role played by the input

derivative terms in the overall error function. Thus a large value of a will lead to a more

conservative estimate of the overall generalization situation and the generalization measure

monitoring scheme would attempt to restore the network to a state before the deterioration

of the generalization capability. Therefore, from the above empirical observations we can

Page 8-11

On the Training of Feedforward Neural Networks

conclude that a=2 serves as a suitable parameter for the generalization measure monitoring

scheme.

In Fig 7.4，7.5 and 7.6，the same phenomenon is observed for the time series

modelling problem in that the same correspondence between the generalization measure and

NRMSE is found. The NRMSE at first decreases in a iTionotonic way and then starts to

increase due to the overfitting of the training set. The generalization measure exhibits a

similar trend by starting to increase at a moment which depends on the value of a. In

general, the upturn for a = l occurs at a later period and that for a=3 occurs at an earlier

period which constitutes a conservative estimate of the overall generalization situation.

Therefore, we can conclude that the parameter a=2 is again suitable for the current time

series modelling problem.

7.7 Experimental Results and Performance Analysis

In [11], the authors suggested that the value of the generalization coefficient

a should be greater than unity. In the simulation studies, we have attempted the values of

oc=l, 1.5, 2，2.5, 3 and to observe the subsequent generalization behaviour of the network.

The lowest error gradient threshold value of 0.05% is chosen for the simulation studies in

order that a wider range of the variations of the generalization measure is experienced. We

have tested this generalization measure monitoring scheme on the handwritten character

recognition problem and the time series modelling problem.

(1) The Handwritten Character recognition Problem

The results of applying the scheme to the character recognition problem is

given below:

Page 4-12

On the Training of Feedforward Neural Networks

Generalization No. of epochs No. of nodes Recognition Recognition

coefficient a rate (training rate (test set)

set)

1.0 420 25 97.8% 79.4%

1.5 389 21 96.7% 78.9%

2.0 288 22 98.3% 85.0%

2.5 269 16 96.7% 86.1%

3.0 193 18 96.7% 83.9%

Table 7.1 The generalization measure monitoring scheme as applied to the handwritten

character recognition problem

Error Gradient No. of Epochs No. of Nodes Recognition Recognition

Threshold rate (training rate (test set)

set)

0.05% 1189 30 97.8% 78.3%

0.06% 1365 26 97.2% 78.9%

0.07% 960 27 96.1% 80.0%

0.08% 850 26 96.1% 81.7%

0.09% 818 27 97,2% 78.9%

0.10% 656 27 97.2% 78.9%

Table 7.2 The original deterministic algorithm without the monitoring scheme as applied to

the handwritten character recognition problem

Page 8-13

On the Training of Feedforward Neural Networks

From the results it is observed that for a = l , the generalization rate is almost

the same as that for the case when no monitoring of the generalization measure is applied,

since the weighting of the additional term is relatively low. However, it is observed that as

a increases, the generalization rate of the network increases accordingly. The rate peaks at

a=2.5 after which it starts to fall off. As a result, we can conclude that monitoring the

generalization measure is an effective means of improving the generalization capability of

dynamic node creation algorithm provided that the correct range of a is chosen. The results

also confirmed the conjecture of Drucker et. al [11] that the value of a should be much

greater than 1 in order for the measure to mirror correctly the generalization capability of the

network. Moreover, it is observed that the convergence speed is greater than that of the

unenhanced scheme. This can be explained by the realization that the current monitoring

scheme would in general restore the network to an earlier stage of training in the BP fine-

tuning process than the unenhanced scheme. As a result, the monitoring scheme is equivalent

to the selection of a higher error gradient threshold and thus the greater convergence speed

for the network.

(2) Time Series Modelling

The results for applying this scheme to the time series modelling problem is

given below:

Page 8-14

On the Training of Feedforward Neural Networks

Generalization No. of epochs No. of nodes NRMSE

coefficient a

1.0 1555 4 0.1033

1.5 1534 9 0.1027

2.0 852 10 0.1024

2.5 772 6 0.1106

3.0 863 7 0.1099
I I I I

Table 7.3 The generalization measure as applied to the time series modelling problem

Error Gradient No. of epochs No. of nodes NRMSE

Threshold

0.05% 1520 4 0.1033

0.06% ‘ 1457 4 0.1032

0.07% 1413 4 0.1031

0.08% 1365 5 0.1041

0.09% 1337 5 0.1052

0.10% 1276 6 0.1090
I I I I I

Table 7.4 The original deterministic algorithm without the monitoring scheme as applied to

the time series modelling problem

The results for the training of the Mackay Glass time series is similar to that

of the previous problem. In this case, the generalization capability of the network peaks at

Page 8-15

On the Training of Feedforward Neural Networks

a=2. However, the improvement in the generalization capability is not dramatic as the

generalization capability of the unenhanced scheme for this problem is already very high.

However, in view of the fact that the enhanced scheme with the optimum a still provides a

lower NRMSE than the unenhanced scheme and there is substantial improvement in the

generalization capability for some other training sets (e.g. the character recognition training

set)，it is still worthy to implement the enhanced monitoring scheme.

Summarizing the experience of the previous two simulation studies, we can

conclude that the value of a should be approximately between 2 and 2.5, since too low a

value of a would result in only a scant improvement in the overall generalization capability

of the network, while too large a value of a would on the contrary decrease the generalization

performance of the network. Through the simulation studies, it is observed that, though the

generalization performance of the network has improved, the convergence speed is still low

when compared with the Conventional BP approach. In chapter 8，an initial hidden layer size

estimation procedure would be derived to counteract this problem.

7.8 Concluding Remarks

In this Chapter we have derived a method of monitoring the generalization

measure proposed by Drucker et. al [11] in order to improve the generalization capability of

networks built up under the dynamic node creation environment. The utilization of this

approach is equivalent to the adoption of an adaptive AE/E threshold at each stage of node

addition instead of adopting a fixed threshold, which helps to prevent the early consolidation

of the training set into a small network. We have applied this procedure to the handwritten

character recognition data set and the time series data set. We have found that the

generalization capability of the network has actually increased in some instances, especially

for those cases when the generalization capability discrepancy between a network created

using node addition methods and a network created using BP is large. We have observed in

Chapter 6 that the networks created by these two methods are not interchangeable as can be

observed from the different generalization capability of the two network when the same

terminating error threshold is applied to both of the networks. The suggested monitoring

Page 4-16

On the Training of Feedforward Neural Networks

scheme would serve to narrow this gap by first attempting to narrow their generalization gap

such that a dynamic node creation algorithm can eventually produce a network of the same

quality as that created by BP in order to pave the way for the replacement of BP with the

former learning strategy.

. i

Page 7-17

On the Training of Feedforward Neural Networks

8 THE ESTIMATION OF THE INITIAL HIDDEN LAYER

SIZE

8.1 The Need for an Initial Hidden Layer Size Estimation

A common characteristic for dynamic node creation algorithm is that the

process must start with a single node network, as for the cases in the progressive training

algorithm, the growth algorithm and the deterministic algorithm. The reason for this initial

state of the network is that if we start with any other network configuration other than a

single-node network, there is the possibility that the initial network may already be more than

adequate in solving the problem presented by the training set，which leads to a waste of

resources. Therefore, we should start with as few hidden nodes as possible, and sinces a

single-node network is the barest minimum of all networks which contains a hidden layer, we

should adopt this configuration as our initial network state. The advantage of this approach

is that the possibility of the inclusion of redundant nodes in the network is greatly reduced.

The disadvantage of this approach is that the training time would be greatly prolonged as can

be seen from the experimental results in Chapter 6. This situation becomes more and more

critical when the eventual network size which is capable of representing the training set is

large, which translates into a great many number of node addition procedures for the dynamic

node creation algorithm. The situation is further worsened when the problem would be

simple once when the adequate number of hidden nodes are provided, but would otherwise

by very difficult. The disparity between the two modes of training under this situation would

be further widened.

The problem stated above seems to be an unsolvable one since we really cannot

estimate the hidden layer size of the network, or there would be no need for the derivation

of dynamic node creation algorithm! However, it would still be possible that an approximate

initial number of hidden nodes is estimated for the network before applying the dynamic node

creation algorithm, provided that we are willing to tolerate the existence of a few redundant

nodes: an underestimation of the initial hidden layer size would not pose too much a problem

Page 8-1

On the Training of Feedforward Neural Networks

as the subsequent node addition procedure would attempt to fill in the missing nodes.

However, there would be the possibility that the initial hidden layer size would be an

overestimation, in which case redundant nodes would be included in the network. Therefore,

an ideal initial hidden layer estimation scheme should attempt to minimize the occasions of

overestimation.

We would now suggest an initial hidden layer estimation scheme for the

deterministic dynamic node creation algorithm proposed in Chapter 6. This scheme is based

on the notion that the hidden T-vector will become one of the neural basis rij introduced in

Chapter 6 when the hidden weights of the node is large enough. This scheme is described

in the next section.

8.2 The Initial Hidden Layer Estimation Scheme

Based on the notion that each hidden node will eventually emit one of the

neural bases n』，we could visualize the estimation of the initial hidden layer size as the

selection of the appropriate neural basis to be included in the initial collection of hidden T-

vectors. For an arbitrary training set containing p patterns, in general the full set of neural

basis rij j=l to p, would be required to exactly represent the training set. However, it is

observed through experimental studies that a neural network is capable of adequately

representing a training set using far fewer hidden nodes than the case when the full set of

neural basis are required. The reason for this small hidden layer size is that the inverse

desired output T-vector df^ (assuming a single-output network) is closer to a subset of the

complete set of neural bases such that the former can already be well approximated by the

latter when only this subset of neural bases is present in the neural network. This situation

is depicted in fig 8.1.

Page 8-2

On the Training of Feedforward Neural Networks

i i n ,
« I A A w
I I •
» ‘ / t » / » • / » I
» I
• » /
« » /
I I /
I I t
I I /

• I I *
I I t
I I • ‘ ‘ /
• • / I • » • 1 »' t I丨/ 11/

d; ^rr：^

. Z /

Fig 8.1 The relationship between d,'^ and the neural basis

From Fig 8.1 It is seen that it is not necessary for the inverse desired output

df i to be equidistant from all the neural basis, and that it may preferentially incline towards

a special subset of the neural basis and being far away from all the other basis in the

complete basis set. Although the notion that the hidden nodes are emitting only the neural

basis must be based on the assumption that the underlying hidden weights of the node must

be relatively large, which may not be true in practice, this picture of the relationship between

di'i and the neural basis at least provides a possible channel for the estimation of the initial

hidden layer size of the network through this initial assignment. Moreover, even when the

hidden weights of a node is not sufficiently large, the hidden T-vector would still somewhat

resemble the underlying neural basis of the node as the same orientation of the hyperplane

of that hidden node would correspond to one of the neural basis when the hidden weights

become large. In fact, after we have determined the initial hidden layer size, by selecting the

appropriate subset of neural basis, we would not initialize each of the nodes with the exact

neural basis by assigning an arbitrary large values of hidden weights, but would instead adopt

a relaxed version of initialization, as for example, using Eq (3.1) when the scale-up factor is

small. This process is followed by a BP fine-tuning process such that the correct weights of

the network can be estimated.

Page 8-3

On the Training of Feedforward Neural Networks

The detailed procedure for the estimation of the initial hidden layer size will

now be described. Assuming a single-output network with a single inverse desired output T-

vector d " and defining the operator ang(x，y) as the cosine of the angle between the two

vector X and y, i.e.

浙 汝 (8 . 1)
IW.W

The patterns in the training set is first ordered according to their Euclidean

distances such that our subsequent work can involve the original neural basis n � w i t h its

various components unpermuted. This does not constitute a restriction of the ability of the

algorithm in performing incremental learning, as only the initial state of the network depends

on this ordering process, while the subsequent node addition process does not depend on this

process. As a result, new training patterns can still be added to the training set with the

confidence that new nodes can always be added to the network to cater for the new training

patterns.

We would first proceed to calculate this angle operator between the inverse

desired output vector and all the neural basis, i.e. we would calculate

_/=l”...，p (8.2)

and selecting the maximum value of Sj as

Vy (8.3)

The value of s � i s an indication of the angular distance between d f i and the

various n � . T h e larger the Sj for a particular rij，the nearer will df^ be closer to this n � i n

terms of angular distance. The n � w h i c h corresponds to is the neural basis which is

closest to the desired inverse output T-vector. Therefore we must select those rij with a

corresponding large Sj into the initial set of neural basis in the network which we designated

Page 8-4

On the Training of Feedforward Neural Networks

as N. Unfortunately, the criterion of being "relatively near" to the inverse desired output T-

vector is difficult to define: we cannot determine for what range of Sj should the

corresponding n � b e considered relatively close to As a result, we must resort to

simulation studies to determine in what magnitude range of Sj should the corresponding iij be

adopted into the set N. The implementation of this process is facilitated by the definition of

an additional quantity r�where

vy (8.4)
� s max

The magnitude range of r � i s between 0 and 1 and there is at least one n�whose

corresponding ij is 1. We should hereafter place a certain Oj into the initial neural basis set

N if the corresponding r � i s greater than a certain threshold T, i.e

n&N if r>T (8.5)

We designate the quantity T as the angular distance threshold. This threshold

T should be smaller than 1 such that the initial neural basis set consists of at least one n� .

The decision of the value of T is equivalent to deciding a measure of closeness between d̂ "̂

and the iij and is the one value which we should resort to experiments to decide. A

reasonable basis of selection is to choose those T values which are close to one. In the

simulation studies we have assigned the values of 0.95, 0.9，0.85, 0.8 and 0.75 for the T

values and compared the size of the network generated by the present estimation procedure

and the deterministic dynamic node creation procedure in order to decide on a suitable T for

further works.

With the determination of the initial neural basis set N, we can prepare the

same number of initial hidden nodes as the number of neural basis in N, and initialize each

hidden node according to Eq (3.1) with the scale-up factor s equal to 1, i.e. if n�belongs to

the set N, then Eq (3.1) is applied to one of the initial hidden node using the j-th pattern x(j).

Page 8-5

On the Training of Feedforward Neural Networks

The output weights of the network is determined in the usual way using Eq

(6.19) and from then on the present initial hidden layer size procedure can then be coupled

to the former deterministic dynamic node creation algorithm.

8.3 The Extension of the Estimation Procedure to the Multi-Output Network

Instead of using the original inverse desired output T-vectors k=l to m in

the multi-output network, we use the converted basis ĉ "̂ k=l to m which span the same space

D-i and which are much closer to the input space X. The estimation procedure is applied to

each of the converted basis ĉ "̂ which results in m sets of initial neural basis set N”.....N,„.

We suggest that the initial neural basis set for the whole network should be given by

N=NXJN\J.......UN (8.6)
1 Z m

This assignment method for N will ensure that the resulting network will cater

sufficiently for all the converted bases c^'^

8.4 Experimental Results and Performance Analysis

(1) The Parity Problem

The initial hidden layer estimation scheme, when applied to the parity problem gives

the following results. The training parameters for the dynamic node creation portion of the

algorithm are the same as those used for the same problem in Chapter 6:

Page 8-6

On the Training of Feedforward Neural Networks

Parity Order angular Initial hidden Final hidden Hidden Layer

distance layer size layer size Size (Original

threshold r̂ (Enhanced (Enhanced Algorithm)

algorithm) algorithm)

7 0.95 1 11 7
V

0.90 3 11

0.85 5 9

0.80 8 9

0.75 12 13

6 0.95 1 9 6

0.90 2 10

0.85 4 7

0.80 5 8

0.75 8 9

5 0.95 1 10 7

0.90 2 5

0.85 2 5

0.80 3 6

0.75 4 6

Table 8.1 Initial hidden layer size estimation procedure applied to the parity problem (parity

order 5 to 7，hidden layer size comparison)

Page 8-7

On the Training of Feedforward Neural Networks

Parity order angular Initial hidden Final hidden Hidden layer

distance layer size layer size size (Original

threshold r̂ (Enhanced (Enhanced algorithm)

algorithm) algorithm)

4 0.95 1 4 5

0.90 1 4

0.85 1 4

0.80 1 4

0.75 1 4

3 0.95 2 3 3

0.90 2 3

0.85 2 3

0.80 2 3

0.75 2 3

2 0.95 1 2 2

0.90 1 2

0.85 1 2

0.80 1 2

I 0.75 1 2

a

Table 8.2 Initial hidden layer size estimation procedure applied to the parity problem (parity

order 2 to 4，hidden layer size comparison)

Page 8-8

On the Training of Feedforward Neural Networks

Parity Order angular No. of Epochs No. of Epochs

distance (Enhanced (Original

threshold r̂ algorithm) Algorithm)

7 0.95 • 111 405

0.90 739

0.85 447

0.80 414

0.75 425

6 0.95 629 585

0.90 585

0.85 211

0.80 306

0.75 247

5 0.95 245 457

0.90 135

0.85 135

0.80 98

0.75 264

Table 8.3 Initial hidden layer size estimation procedure applied to the parity problem (parity

order 5 to 7, training speed comparison)

Page 9-9

On the Training of Feedforward Neural Networks

Parity order angular No. of Epochs No. of Epochs

distance (Enhanced (Original

threshold algorithm) algorithm)

4 0.95 147 296

0.90 147

0.85 147

0.80 147

0.75 147

3 0.95 153 228

0.90 153

0.85 153

0.80 153

0.75 153

2 0.95 23 21

0.90 23

0.85 23

0.80 23

0.75 23

Table 8.4 Initial hidden layer size estimation procedure applied to the parity problem (parity

order 2 to 4，training speed comparison)

Page 8-10

On the Training of Feedforward Neural Networks

In our simulation studies, the values of r̂ from 0.95 to 0.75 are used. In

general，a lower value of r̂ will correspond lo a larger inilial hidden layer size as can be seen

in the simulation results, since more neural basis are included in the initial neural basis set

N. It is seen that the current estimation process，when applied to the parity problem，tends

to underestimate the initial network size required to solve the problem, thus for most of the

cases additional nodes are required for the network to converge. However, since the initial

hidden layer in general contains more than one hidden node especially for the higher-order

parity problems, the convergence speed is much higher than the case when the node addition

algorithm starts with a single node network, as can be seen from the results. We can in

particular notice that when 1^=0.8, the initial hidden layer size estimation for the higher-order

parity is relatively close to the optimum network size for solving that problem, and the final

network corresponding to this angular distance threshold does not constitute much of an

overestimation of the hidden layer size. Therefore, we can determine empirically that 1^=0.8

constitutes a suitable value for this initial hidden layer size estimation exercise. For large r"

the situation is almost the same as for the unenhanced scheme and no improvement is

apparent. For small r” the initial hidden layer size is usually large and the final network tends

to be an overestimation of the actual network required to solve the problem. For low-order

parity problems, the estimated initial hidden layer size is small due to the small number of

training patterns which in turn implies a small number of neural basis in the initial neural

basis set N

(2) Handwritten Character Recognition Set

The estimation scheme, when applied to the handwritten character recognition

problem, gives the following results. In both the present problem and the time series

modelling problem, we have utilized the generalization measure monitoring scheme with the

respective generalization coefficient which is optimum for each problem as shown in Chapter

7.

Page 8-11

On the Training of Feedforward Neural Networks

angular No. of Initial Final hidden Recognition Recognition

distance epochs hidden layer layer size rate rate (test

threshold r̂ size (training set)

set)

0.95 290 7 18 95.6% 84.4%

0.90 397 10 20 97.2% 80.0%

0.85 197 13 20 96.7% 82.2%

0.80 140 17 17 912% 87.2%

0.75 • 93 21 21 93.8% 85.6%

Table 8.5 The initial hidden layer size estimation procedure as applied to the handwritten

character recognition problem

Error Gradient No. of Epochs No. of Nodes Recognition Recognition

Threshold rate (training rate (test set)

set)

0.05% 1189 30 97.8% 78.3%

0.06% 1365 26 97.2% 78.9%

0.07% 960 27 96.1% 80.0%

0.08% 850 26 96.1% 81.7%

0.09% 818 27 97.2% 78.9%

0.10% 656 27 96.1% 78.9%

Table 8.6 The original deterministic algorithm as applied to the handwritten character

recognition problem

Page 8-12

On the Training of Feedforward Neural Networks

From the results it is seen that the hidden layer size increases with the angular

distance threshold as expected. Moreover, it is found that the estimation for the initial hidden

layer size corresponds roughly to the hidden layer size estimated by the unenhanced algorithm

which starts with a single hidden node, thus establishing the validity of the range of r̂ chosen.

Moreover, it is noticed that the convergence speed is much greater than that for the

unenhanced node addition scheme which starts with a single hidden node, and almost matches

the convergence speed of BP for this particular problem, thus indicating the effectiveness of

this estimation scheme. It is also noticed that the generalization capability of the network has

increased when compared with the unenhanced scheme since the early consolidation of the

knowledge of the training set in a small network is avoided. For values for r̂ between 0.85

and 0.95，additional hidden nodes are required to complete the training task, while for r̂

between 0.8 and 0.75, no additional hidden nodes are required. We again see that for this

problem, the parameter rpO.8 constitutes a suitable value for the initial hidden layer

estimation process, since it corresponds to the smallest initial network where no further node

additions are required. Moreover, this value of r̂ corresponds to the highest recognition rate

on the test set.

(3)Time Series Modelling

The present estimation scheme, when applied to the time series modelling

problem, gives the following results:

Page 8-13

On the Training of Feedforward Neural Networks

angular No. of Epochs Initial hidden Final hidden NRMSE

distance layer size layer size

threshold r̂

0.95 1517 4 10 0.1086

0.90 781 12 12 0.1033

0.85 549 14 16 0.1005

0.80 741 17 19 0.1037

0.75 1585 20 21 0.1018

Table 8.7 The initial hidden layer size estimation procedure applied to the time series

modelling problem

Error Gradient No. of Epochs No. of nodes NRMSE

Threshold

0.05% 1520 4 0.1033

0.06% 1457 4 0.1032

0.07% 1413 4 0.1031

0.08% 1365 5 0.1041

0.09% 1337 5 0.1052

0.10% 1276 6 0.1090

Table 8.8 The original deterministic algorithm as applied to the time series modelling problem

Page 8-14

On the Training of Feedforward Neural Networks

From the results, it is noticed that for most values of ij，the initial network

constitutes an overestimation of the number of hidden nodes required to solve the problem

except for rpO.95, where the correct hidden layer size of 4 as estimated by the unenhanced

algorithm is generated. In general, further node additions are required to generate the final

network, indicating that the current training set constitutes a complex problem even for an

initial multi-node network. Convergence speed reduction is achieved when r̂ is within the

range of [0.8,0.9] at the expense of a large hidden layer size. It is interesting to note that an

overly large network would, on the contrary, decrease the convergence speed as for the cases

when rpO.8 and 1^=0.75. As a result, the most suitable value of r̂ for the above problem has

shifted from 0.8 from the previous two problems to 0.85 in terms of the achievement of the

greatest convergence speed. In the case for 1^=0.95, though the correct minimum size of the

network for solving this problem is estimated, the eventual network size generated by the

dynamic node creation algorithm is still large. As a result, the merit of the current estimation

procedure when applied to the time series modelling problem lies in the speeding up of the

training process rather than the correct estimation of the initial hidden layer size.

To summarize, the original purpose of the initial hidden layer size estimation

procedure is achieved through the parity problem and the handwritten character recognition

problem in that an approximately correct initial hidden layer is estimated and a real increase

in convergence speed is achieved. For the time series modelling problem, the original

purpose is only partly achieved since only the speed up portion is achieved: the estimation

procedure in general produces an overestimation for the hidden layer size. While the time

series modelling problem belongs to the category of function approximation while the

previous two problems belong to the category of classification problems, the above problem

for the time series modelling training set may be due to the reason that we are using the

neural basis, which is binary in nature, as a model for the hidden T-vectors. As a result, this

model may be more suitable in representing binary training set than for real-valued training

set. We have adopted this approach in estimating the initial hidden layer size due to its

simplicity. It is hoped that further research would reveal a more generalized model which

Page 8-15

On the Training of Feedforward Neural Networks

caters equally well for real-valued training set.

8.5 Concluding Remarks

In this Chapter we have derived a method in estimating the initial hidden layer

size of the network prior to the application of the dynamic node creation procedure. The

motivation for the derivation of this procedure lies in the fact that the starting network for

most dynamic node creation algorithm which consists of a single hidden node is often unable

to cater for most real world training sets. As a result, it would be useful if we can obtain an

initial estimate of the hidden layer size using the information from the training set. This

procedure is particularly relevant for those training sets requiring a relatively large network,

in which case a great many number of node addition procedures can be saved. This

procedure is applied to the three training sets presented in the previous chapters with various

angular distance threshold T. In general, if a fixed threshold T is applied to all the training

sets, there would be cases of underestimation of the initial hidden layer size in some training

cases, while for the same threshold there would be cases of overestimation for other training

sets. Therefore, the question of how to select the optimum T is still unsolved. However, for

angular distance threshold T within the range of [0.75, 0.95], the resulting initial hidden layer

size of the network all lies within reasonable limits and is consistent with the hidden layer

size generated by the deterministic dynamic node creation algorithm from a single-node

network. As a result, the present estimation approach would serve as a promising

enhancement to all dynamic node creation algorithms.

Page 4-16

On the Training of Feedforward Neural Networks

9 CONCLUSION

9.1 Contributions

We would now summarize the contributions resulting from our course of

research on dynamic node creation algorithms:

1. Formalization of the T-vector approach: The use of T-vectors as an alternative approach

of summarizing the parameters of a neural network has been applied by a number of

researchers [2,7,14] as an alternative to the traditional spatial vector or S-vector approach.

This approach has the advantage that the representation capability of a neural network can be

visualized in the form of the relationship between a few T-vectors and their respective linear

spaces, instead of visualizing these relationships in the S-vector domain where the number

of entities to be visualized is numerous. However, the past researchers applied this approach

in an ad hoc manner to solve their own particular problems. The current research work

attempts to place this alternative representation scheme in a formal framework. The name

temporal vector or T-vector is first assigned to this alternative arrangement scheme to

characterize this particular approach and to distinguish this approach from the usual parameter

characterization method, which we have named the spatial vector or S-vector approach. The

inverse desired output space D"̂ and its spanning inverse desired output T-vectors d ^ t h e

hidden space H and its spanning hidden T-vectors hj, the input space X and its spanning input

T-vectors Xj, are introduced to summarize the activities of the network nodes at the various

layers of the network. The result of this formalization provides new insights in the

relationship between the hidden space H and the input space X，which other researchers have

not explored before. Moreover, this formalization results in the most general formulation of

the convergence criterion of a neural network in terms of the linear independency requirement

for the hidden T-vectors and the subsequent suitable assignment of the output weights of the

network. This new insight is instrumental in the formulation of the deterministic dynamic

node creation algorithm.

Page 9-1

On the Training of Feedforward Neural Networks

2 The Formulation of a general node initialization scheme under the dynamic node

creation environment: the dynamic node creation approach has been adopted to counteract

the problem of indeterminate architecture. However, the various dynamic node creation

algorithm proposed are somewhat restricted either in the scope of problems that it can cater

for or in its own convergence capability. For example, some algorithms only cater for binary-

• valued training set [13,34], some algorithms do not possess a convergence proof [12], and

some algorithms cannot be conveniently applied under an incremental learning environment

[9]. In view of these, the growth algorithm and the deterministic dynamic node creation

algorithms proposed in this thesis can be regarded as more general dynamic node creation

algorithms when compared with the above algorithms in the sense that the two new

algorithms are both able to fill in the missing capabilities of the above algorithms. In

addition, the initialization of the parameters of the new hidden node in the deterministic

algorithm depends on multiple training patterns which is thus a more preferable scheme than

the growth algorithm in which the new hidden node parameters depend on a single training

pattern, in that the memorization of a single noisy training pattern by the new hidden node

is discouraged. In this way, the deterministic dynamic node creation algorithm can serve as

the prototype for future models of similar kinds of algorithms.

3. Enhancement to the Dynamic Node Addition Process: The dynamic node addition

process, which can partially alleviate the problem of indeterminate architecture, is unable to

replace the conventional BP training process as the dynamic node addition process has bring

some additional problems of its own. For example, the node addition scheme would require

the monitoring of the error gradient parameter AE/E. The termination of the BP fine-tuning

process is signified when this parameter falls below a certain threshold. This choice of this

threshold would in general affect the final size of the network generated: a low threshold

would result in a smaller final network, while a larger threshold would result in a larger final

network. It would seem that small gradient threshold would lead to substantial saving of

resources. However, the corresponding prolonged training would lead to a deterioration in

the generalization capability of the network. In the current research work, an attempt is made

to monitor the generalization measure derived by Drucker et al [11] and detect its minimum

values during the course of BP fine-tuning instead of the usual monitoring of the error

gradient such as to prevent the overfitting of the training data due to prolonged training. In

Page 9-2

On the Training of Feedforward Neural Networks

addition, the traditional dynamic node creation algorithms usually start with a single-node

network. If a complex training set is encountered, it would in general take many steps of

node addition before the network size is large enough to cater for the training set, which

translates into a much prolonged training time compared with the same network being trained

with the conventional BP approach. As a result, it would be beneficial if we can give a rough

estimate of the initial hidden layer size of the network required to represent a particular

training set, such that the final network would be built up using the smallest number of node

additions. The last stage of our course of research attempts to derive such an initial hidden

layer size estimation scheme such that a single procedure can be applied to a wide range of

training data set in estimating the initial hidden layer size instead of using ad-hoc measures

to derive this estimate for each individual training set. These two enhancements of the

dynamic node creation algorithms would pave the way for the complete replacement of the

conventional training approach with this new node creation approach.

9.2 Suggestions for Further Research

(1) A "Parameter-Free" training Algorithm: Besides the usual variable parameters of gain and

momentum in the BP fine-tuning process, the deterministic dynamic node creation algorithm

has introduced several new parameters. For example, the error gradient threshold is such a

parameter which may affect the eventual size of the network. In general, such additional

parameters are not desirable as they have to be supplied externally and the relationship

between these parameters and the training performance of the network is often difficult to

determine. In other words, the full automation of the training process is not possible with the

existence of these parameters, and human intervention must be involved in controlling the

training process. It would be ideal if we can extract all the relevant training information from

the training set itself without any other independent information. The monitoring of the

generalization measure during the BP fine-tuning process instead of the error gradient is the

first attempt in removing the need for determining the error gradient threshold, and subsequent

research efforts are required to remove the other training parameters. •

(2) A more exact initial hidden layer size estimation: On realizing the various problems

associated with starting the dynamic node creation training process with a single node

network, we have derived an initial hidden layer size estimation procedure such that in

Page 9-3

On the Training of Feedforward Neural Networks

general fewer node addition are required to achieve the same approximation error as for the

case when the initial network consists of only one hidden node. However，it is observed that

this estimation procedure still depends on an angular distance threshold r̂ which affects the

initial size of the network. The utilization of this approach represents a great simplification

in the estimation of the hidden layer size as we now only require to search through a

relatively narrow range of the angular distance threshold for every training set instead of

estimating in an arbitrary way the hidden layer size for each individual training set.

However, there is still a degree of indeterminacy in the estimation procedure due to the finite

possible range of the angular distance threshold. Experimentally, it was discovered that a

threshold value of 0.8 would be applicable to a wide range of training sets and the resulting

initial network size estimation would fall within a reasonable limit. However, this threshold

value may not be suitable for some other training sets as we have only explored a limited

number of training sets in our simulation studies. In general, it would be ideal if we can

determine this angular distance threshold solely from the training set itself without resorting

to any external determination of this parameter. In addition, we have made the approximation

that each hidden node approximately emits one of the neural basis n � i n order that the initial

hidden layer size estimation can be carried out. There would be the need for further

explorations into the characteristics of the hidden nodes of a neural network in order to

remove the above restriction such that a more accurate initial network state can be estimated

which in turn leads to a shorter convergence time.

(3) The search for the fully deterministic training algorithm: the conventional BP approach

of training the neural network does not possess any deterministic elements, the initial state

of the network is generated wholly in a random fashion and the final state of the network is

determined wholly by an iterative gradient descent procedure. As a result, we do not in

general know the initial position of the current state of the network on the error surface and

thus the random initialization does not constitute an effective search over the weight space

for the global minimum. The current deterministic dynamic node creation algorithm attempts

to assign initial states for every new hidden node added to the network based on information

from the training set such that the eventual convergence of the network will be achieved.

This deterministic assignment procedure can be interpreted as the placement of the current

state of the network in the vicinity of the global minimum. However, due to the various

Page 9-4

On the Training of Feedforward Neural Networks

approximations made during the deterministic assignment procedure, we have to follow this

procedure with a BP fine-tuning process in order to obtain the exact parameters for the

network. Moreover, this approximation is restricted to those networks possessing a monotonic

increasing nonlinear function and would not be appropriate for some other kinds of

nonlinearities. A main reason for the necessity of this approximation is due to the presence

of the hidden nonlinearities in the hidden node which complicates any attempts in analyzing

the activities of the hidden node.

As a result, research efforts should be directed towards the detailed

investigation of the hidden nonlinearity. This would at first seem to be a daunting task as we

are crossing into the realm of nonlinear analysis. However, as the number of nonlinearities

which are used in neural networks is rather restricted, we can attempt to concentrate on

investigating the properties of these few kinds of nonlinearities which is a much more

simplified task than attempting to analyze the general properties of nonlinearities. These

investigations would help to provide better and better approximations to the real situation in

the deterministic assignment procedure and would eventually lead to a truly deterministic

algorithm which is free of the need of an iterative learning procedure.

Page 9-5

On the Training of Feedforward Neural Networks

REFERENCES

[1] S.I. Amari, "Mathematical Foundations of Neurocomputing," Proc. IEEE, vol.78, no.9,

pp. 1443-1463, September 1990.

[2] F. Barmann and F. Biegler-Konig，"On a Class of Efficient Learning Algorithms for

Neural Networks," Neural Networks, vol.5,pp. 139-144,1992.

[3] E.B. Baum and D. Haussler, "What Size Net Gives Valid Generalization ？，“ Neural

Computation, vol.l, no.l pp. 151-160，1989.

[4] S. Becker and Y. Le Cun, "Improving the Convergence of Back-Propagation Learning

with Second Order Methods," in Proc. of the J988 Connectionist Models Summer

School, D. Touretzky, G. Hinton, and T. Sejnowski, eds., pp.29-37, San Mateo,

CA:Morgan Kaufmann, 1989.

[5] L.W. Chan and F. Fallside, "An Adaptive Training Algorithm for Back-Propagation

Network," Computer Speech and Language, vol.2, pp.205-218, 1987.

[6] Y. Chauvin, "A Back-Propagation Algorithm with Optimal Use of Hidden Units," in

Advances in Neural Information Processing Systems /，D.S. Touretzky, ed., Morgan

Kaufmann, pp.519-526, 1989.

[7] S. Chen, C.F.N. Cowan, and P.M. Grant, "Orthogonal Least Squares Learning

Algorithm for Radial Basis Function Networks," IEEE Trans, on Neural Networks,

vol.2, no.2, pp.302-309, March 1991.

[8] J.Y. Choi and C.H. Choi, "Sensitivity Analysis of Multilayer Perceptron with

Differentiable Activation Functions," IEEE Trans, on Neural Networks, vol.3, no.l,

pp.101-107, January 1992.

[9] F.L. Chung, "Dynamic Construction of Back-Propagation Artificial Neural Networks,"

MPhil Thesis, The Chinese University of Hong Kong, 1991.

[10] W.J. Daunicht, "DEFAnet - A Deterministic Neural Network Concept for Function

Approximation," Neural Networks, vol.4, pp.839-845, 1991.

Page 4-1

On the Training of Feedforward Neural Networks

[11] H. Drucker and Y. Le Cun, "Improving Generalization Performance Using Double

Backpropagation," IEEE Trans, on Neural Networks, vol.3, no.6, pp.991-997,

November 1992.

[12] S.E. Fahlman and C. Lebiere, "The Cascade-Correlation Learning Architecture," in

Advances in Neural Information Processing 2, D.S. Touretsky, Ed., Morgan

Kaufmann, PP. 524-532, 1990.

[13] M. Frean，"The Upstart Algorithm: A Method for Constructing and Training

Feedforward Neural Networks," Neural Computation, vol.2, pp. 198-209, 1990.

[14] O. Fujita, "A Method for Designing the Internal Representation of Neural Networks

and Its Application to Network Synthesis," Neural Networks, vol,.4, pp.827-837, 1991.

[15] K. Funahashi, "On the Approximate Realization of Continuous Mappings by Neural

Networks," Neural Networks, vol.2，pp. 183-192，1989.

[16] A.R. Gallant and H. White, "On Learning the Derivatives of an Unknown Mapping

With Multilayer Feedforward Networks," Neural Networks, vol.5, pp.129-138, 1992.

[17] B. Giraud, L.C Liu, C. Bernard, and H. Axelrad, "Optimal Approximation of Square

Integrable Functions by a Flexible One-Hidden-Layer Neural Network of Excitatory

and Inhibitory Neuron Pairs," Neural Networks, nol.4，pp.803-815, 1991.

[18] M. Gori and A. Tesi, "On the Problem of Local Minima in Bachpropagation," IEEE

Trans, on Pattern Analysis and Machine Intelligence, vol. 13, no.l, pp.76-86, January

1992.

[19] R.P. Gorman and T.J. Sejnowski, "Analysis�of Hidden Units in a Layered Network

Trained to Classify Sonar Targets," Neural Networks, vol.l’ pp.75-89, 1988.

[20] R. Hecht-Nielsen, Neurocomputing. Addison-Wesley, 1990.

[21] Y. Hirose, K. Yamashita, and S. Hijiya, "Back-Propagation Algorithm Which Varies

the Number of Hidden Units," Neural Networks, vol.4，pp.61-66, 1991.

[22] L. Holmstrom and P. Koistinen, "Using Additive Noise in Back-Propagation Training,"

IEEE Trans, on Neural Networks, vol.3, no.l, pp.24-37, January 1992.

Page 8-2

On the Training of Feedforward Neural Networks

[23] K. Hornik, M. Stinchcombe, and H. White, "Multilayer Feedforward Networks are

Universal Approximators," Neural Networks, vol.2, pp.359-366, 1989.

[24] S.C. Huang and Y.F. Huang, "Bounds on the Number of Hidden Neurons in

Multilayer Perceptrons,'7EEE Trans, on Neural Network” vol.2 no.l, pp.47-55,

January 1991.

[25] Y. Ito, "Approximation of Continuous Functions on R" by Linear Combinations of

Shifted Rotations of A Sigmoid Function With and Without Scaling," Neural

Networks, vol.5，pp. 105-115，1992.

[26] R.A. Jacobs, "Increased Rates of Convergence Through Learning Rate Adaptation,"

Neural Networks, woU, pp.295-307, 1988.

[27] W.H. Joerding and J丄.Meador, "Encoding A Priori Information in Feedforward

Networks," Neural Networks, vol.4，pp.847-856, 1991.

[28] E.D. Karnin, "A Simple Procedure for Pruning Back-Propagation Trained Neural

Networks", IEEE Trans, on Neural Networks, vol.l，pp.239-242, 1990.

[29] Y. Le Cun, J.S. Denker, and S.A. Solla, "Optimal Brain Damage," in Advances in

Neural Information Processing 2, D.S. Touretzky, Ed., Morgan Kaufmann, pp.598-

605, 1990.

[30] T. Lee and F.L. Chung, "A BP-Watchdog Process for Training Multilayer

Perceptrons," in Proc. Int. Conf. on Automation, Robotics, and Computer Vision '90,

Singapore, pp.260-264, Sept. 1990.

[31] T. Lee and H.K. Kwan, "Experiments on Neural Net Recognition of Handwritten

Character," Proc. Inter. Multiconference Neural Networks, Modelling and Simulation，

Knowledge Processing, Chicago (USA), vol.l, pp. 15-24, 1992

[32] M. Mackey and L. Glass, "Oscillation and Chaos in Physiological Control System,"

Science, pp. 197-287, 1977.

[33] K. Matsuoka, "Noise Injection into Inputs in Back-Propagation Learning," IEEE Trans,

on Systems, Man, and Cybernetics, vol.22, no.3, pp.436-440，May/June 1992.

Page 8-3

On the Training of Feedforward Neural Networks

[34] M. Mezard and J.P. Nadal, "Learning in Feedforward Layered Networks: The Tiling

Algorithm," J.Physics A: Math. Gen” vol.22, pp.2191-2203, 1989.

[35] D.F. Michaels, "Internal Organization of Classifier Networks Trained by

B a c k p r o p a g a t i o n , J . of Pattern Recognition and Artificial Intelligence, vol 6，no.l，

pp. 63-92, 1992.

[36] M. Minsky and S. Papert, Perceptions. Cambridge MAiMIT Press, 1969.

[37] J. Moody and C. Darken, "Fast-learning in Networks of Locally-tuned Processing

Units," Neural Computation, voLl, no.2, pp. 281-294, 1989.

[38] M. Mougeot, R. Azencott and B. Angeniol ,"Image Compression With Back

Propagation: Improvement of the Visual Restoration Using Different Cost Functions,"

Neural Networks, vol.4，pp. 467-476, 1991.

[39] M.C. Mozer and P. Smolensky, "Skeletonization: A Technique for Trimming the Fat

from a Network via Relevance Assessment," Advances in Neural Information

Processing 7, D.S Touretsky, Ed” Morgan Kaufmann, PP. 107-115, 1989.

[40] NJ . Nilsson, Learning Machine. New York:McGraw-Hill, 1965.

[41] B. Noble and J.W. Daniel, Applied Linear Algebra. New Jersey:Prentice-Hall, 1988.

[42] Y.H. Pao, Adaptive Pattern Recognition and Neural Networks. MA:Addison-Wesley,

1989.

[43] D .C Park, M.A. El-Sharkawi, and R.J. Marks II，"An Adaptively Trained Neural

�Network , " IEEE Trans, on Neural Networks, vol. 2, no.3, pp,334-345, May 1991.

[44] J. Park and I.W. Sandberg, "Universal Approximation Using Radial-Basis-Function

Networks," Neural Computation, vol.3, pp.246-257, 1991.

[45] M.M. Polycarpou and P.A. loannou, "Learning and Convergence Analysis of Neural-

Type Structured Networks," IEEE Trans, on Neural Networks, vol.3, no.l, pp.39-50，

January 1992.

[46] S.Z. Qin，H.T. Su, and T J . McAvoy, "Comparison of Four Neural Net Learning

Methods for Dynamic System Identification," IEEE Trans, on Neural Networks, vol.3，

no.l, pp.122-129，January 1992.

Page 8-4

On the Training of Feedforward Neural Networks

[47] A. Rajavelu, M.T. Musavi, and M.V. Shirvaikar, "A Neural Network Approach to

Character Recognition," Neural Networks, vol.2, pp.387-393, 1989.

[48] F. Rosenblatt, Principles of Neurodynamics. Washington DCiSpartan Books, 1961.

[49] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, "Learning Internal Representations

by Error Propagation," in Parallel Distributed Processing, Vol.1 and II.’ D.E.

Rumelhart and J.L. McClelland, eds. Cambridge, MA:MIT Press, 1986.

[50] D.E. Rumelhart and J.L. McClelland, eds. Parallel Distributed Processing, VoLI and

II. Cambridge, MA:MIT Press, 1986.

[51] R.S. Scalero and N. Tepedelenlioglu, "A Fast New Algorithm for Training

Feedforward Neural Networks," IEEE Trans, on Signal Processing, vol,.40, no.l,

pp.202-210, January 1992.

[52] J. Sietsma and RJ.F. Dow, "Creating Artificial Neural Networks That Generalize,"

Neural Networks, vol.4, pp.67-79, 1991.

[53] M.F. Tenorio and W. T. Lee, "Self-Organizing Network for Optimum Supervised

Learning," IEEE Trans, on Neural Networks, vol.1, no.l, pp. 100-110，March 1990.

[54] T. Tollenaere, "SuperSAB: Fast Adaptive Back Propagation with Good Scaling

Properties," Neural Networks, vol.3, pp. 561-573, 1990.

[55] A.C. Tsoi, "Multilayer Perceptron Trained Using Radial Basis Functions," Electronic

Letters, vol.25, no. 19, pp. 1296-1297, September 1989.

[56] A. Waibel, T. Hanazawa, G.E. Hinton, D. Shikano, and K. Lang, "Phoneme

Recognition Using Time-delay Neural Network," IEEE Trans. Acoust., Speech, Signal

Proc., voL37, no.3，pp.328-339，March 1989.

[57] A.R. Webb and D. Lowe, "The Optimised Internal Representation of Multilayer

Classifier Networks Performs Nonlinear Discriminant Analysis," Neural Network,

vol.3, pp.367-375, 1990

[58] A.S. Weigend, B.A. Huberman, D.E. Rumelhart, "Predicting the Future: A

Connectionist Approach," Int. J. Neural Syst., vol.1, no.3，pp. 193-209, 1990.

Page 4-5

On the Training of Feedforward Neural Networks

[59] M.K. Weir, "A Method for Self-Determination of Adaptive Learning Rates in Back

Propagation," Neural Networks, vol.4, pp.371-379, 1991.

[60] PJ . Werbos, "Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences," Doctoral Dissertation, Appl. Math., Harvard University, Nov.

1974.

[61] B. Widrow and S.D. Stearns, Adaptive signal Processing, New Jersey:Prentice-Hall,

1985.

I

Page 4-6

On the Training of Feedforward Neural Networks

APPENDIX

The derivation of the BP algorithm will now be given by evaluating the

derivatives of E with respect to the various network weights.

In Eq (2.8)

dE 孙k�

^ 台 db^(t) dUjk

J ^ dE (A.i)
db.it) d �

where the derivative f (bk(t)) is given by

/ _) = 7 “ 0 (卜力 (0) (a.2)

Defining

-y,md,(t)-y,{t)) (A.3)

we obtain the results of Eq (2.8)

In Eq (2.9)

Page A-1

On the Training of Feedforward Neural Networks

dE ^^ dE dh/t)
dw.j ,=i dh.{t) dw.j

(y犯办,⑴严/O

^ " dE dh (t)
= 〉 (〉) _ i _

e 台 办 州 岭 ）

A dhft) da^it)
r=i k=i oa^it) dw^j

p m

(吵)W O E 敬)〜
/=i k^i

p m

/=1 k=i

Defining

m

5/0-hj(t){ \ -/z/0)E Uj鄰 (A.5)

We obtain the results of Eq (2.9)

Page 8-2

了 “ > ， T r i - • . :

N

 - - ' ~ = - •

- J 1 I , 々 r : - • « r - -

J " - - 、 ̂ . -

f \ " . , -

, - - . s

' -

<

 . ,
、

 . J . . . ,

• . -

• - -

“ / - . . / . - : -

(- . • • - J . -

• I - - . . .

. _ . . . < 、 . -

• • . ， ‘

.. ’. -

.,

. . . . • 4 .

- t - - . .
-

• / .

^ .
I I .. . ,

- . •

. . - I •

. . • - .

..

, . • -

. .

• - • • : J •

• - 』 - , ,

. . • • ; > • - • . ̂ .

• 1 . • ， . _ (一 ： ： • • . . : .

- • . - + • -

： 广 ； - . • - (： ： . r ‘ . •

, ： . : - . 」 > : 、 ： - 「 • . . . - . . - - : : - . - . ：

、 . . ： (I . - .

> I - ̂ . , • .. -

〜
i . ？ ： ： . ： 』 . ， ： . 1 “ . . . • . . -

隱 尊 ： 靠 广 - ： ‘ ， 「 _ ‘ . ： ： 、 ： ？ ：

C U H K L i b r a r i e s

__圓丨_1丨1
•0D3fifiTlfi

