
Nontermination Debugging
of Prolog Programs

A Thesis

presented to the Department of Computer Science

of the Chinese University of Hong Kong

in partial fulfillment of the requirements

for the Degree of Master of Philosophy

by . \
、 \

L m , HIN-KI ISAAC .，、

• V、
December 1992 ...

''t
(

1

乂 a
 “

 I

參

^

&

^

？
/
 I
文
學
緒

 r

J
 u

A C K N O W T F D G E M E N T S

I would like to acknowledge my supervisor Dr. M.C. Lee for his supervision and

critiques of my work. His comments are crucial in developing the methods presented in

the present thesis. I would also like to acknowledge Dr. L.M. L iu for his valuable

suggestions to my work while he was still working at the Chinese University of Hong

Kong. May God bless him on his further study in theology. Also, I would like to thank

my wife Angel M.Y. L in for giving me support and encouragement throughout my

M.Phil, program. Lastly, I would like to give my deepest gratitude to God Almighty for

giving me wisdom and health to accomplish my work.

V

Abstract

Though Prolog is supposed to be a declarative programming language,

nontermination is a common phenomenon in recursive procedures written by the novice

Prolog programmers. The detection of nontermination errors inherent in Prolog programs

has been investigated by various contemporary research workers. Yet no sound

nontermination diagnosis schemes have been devised. This thesis investigates the

nontermination issue in pure Prolog programs and develops some algorithms based on

certain compile-time techniques for nontermination detection. The compile-time techniques

already devised include static program structure analysis，parameter analysis, and data

analysis，which correspond to the three essential steps for nontermination detection.

To diagnose any nontermination problem in a given program, static program

structure analysis is first performed to identify all the recursive rules. Then parameter analysis

is carried out on each recursive rule to construct cyclic parameter links. The absence of any

cyclic parameter link implies that there is a nontermination error in the recursive procedure.

If one or more cyclic parameter links are found，data analysis has to be performed on each

of the parameter links in order to construct a set of connected data-link lists. A connected

data-link list corresponds to one possible sequence of parameter values to be passed over the

cyclic parameter link through some parameter cycles of recursion. If for each cyclic

parameter link, there is at least one cyclically connected data-link list, it can be concluded

that the recursive procedure will not terminate.

Despite some limitations，the present algorithms can handle many of th^

common recursive definitions in pure Prolog. Moreover, parameter analysis and (i^q

analysis have been shown to be powerful tools for detecting nontermination. J^麵
- •、，、 - .

techniques provide a sound foundation on which further research can be done pnfm (ci
. • ‘： • •

enhance the nonterrnination detection capability of the present algorithms.

TABLE OF CONTENTS

Chapter 1 Introduction i

1.1 The Problem 1

1.2 Related Works 3

1.3 Contribution of the Present Study 8

1.4 Outline of the Thesis • 8

Chapter 2 Nontermination and Recursive Definition i i

2.1 Prolog Execution Model 11

2.2 Nontermination ^

2.3 Exit Condition 21

2.4 Exit-Reaching Process 29

2.5 Parameter Based Detection 35

Chapter 3 Parameter Analysis 38

3.1 Parameter Links 39

3.1.1 Parameter Links and Parameter Modifying Process 39

3.1.2 Parameter Links of Multi-Parameters 43

3.1.3 Parameter Links in Indirect Recursive Definition 44

3.1.4 Parameter Links with Special Parameters

3.1.5 Parameter Links of the Same Name Parameters 47

3.1.6 The Significance of Parameter Links , 9

3.2 Cyclic Parameter Links S專

1

CO

3.3 Parameter Link Detection 」。

3.3.1 Graph Technique g

3.3.1.1 Preliminaries 58

3.3.1.2 on Parameter Links 59

3.3.2 Algorithms 62
r

Chapter 4 Data Analysis 70

4.1 Data Links 72

4.1.1 The Direct Recursive Definition Case 76

4.1.1.1 Subgoal Procedures with Facts Alone 76

4.1.1.2 Procedures with Rules 79

4.1.2 The Indirect Recursive Definition Case 84

4.2 on the Difference between Pure and General Prolog 86

4.3 Data Link Significance 89

4.4 Connected Data-link Lists 92

4.4.1 Data Links and Connected Data-link Lists 92

4.4.1.1 Connected Data-link Lists and Data

Transfer Sequence 95

4.4.1.2 Connected Data-link Lists and Backtracking 97

4.4.1.3 Connected Data-link Lists and

the Recursion Result .

4.4.2 Cyclic and Non-Cyclic Connected Data-link Lists 100

4.4.2.1 Non-Cyclic Connected Data-link Lists

and Exit Conditions 102

4.4.2.2 Cyclic Connected Data-link Lists

and Nontermination 104

4.43 Multi-Connected Data-link Lists 107

4.4.3.1 in One Cyclic Parameter Link 107

4.43.2 in Multi-Cyclic Parameter Links 115

4.4.3.3 The Case of Multiple Recursive Subgoals

in the Same Rule 120

4.5. Special Parameters and Data Links 125

4.5.1. Data Links with Special Parameters Only 126

4.5.2 Data Links with Both Special Parameters and Subgoals 136

4.6 Data Links and Infinite Data Transfer Sequence Detection 142

ii

CHAPTER 5 Special Cases 150

5.1 Interdependent Cyclic Parameter Links 150

5.1.1 Interdependent Cyclic Parameter Links through

Common Parameters 151

5.1.1.1 Interdependency between Cyclic and Non-cyclic

Parameter Links and Interdependency between

Cyclic Parameter Link and Subgoals 158

5.1.1.2 Interdependency between Cyclic

Parameter Links 165

5.1.1.2.1 Lengths of Cyclic Connected-

data Links in Different Ratios 171

5.1.1.2.2 Cyclic Parameter Links with

Lengths in Different Ratios 182

5.1.2 Interdependent Cyclic Parameter Links

through Common Subgoals 196

5.1.3 Interdependent Cyclic Parameter Links

with Special Parameters 202

5.2 A Special Case of Cyclic Parameter Links established

through Special Parameters 208

CHAPTER 6 Discussion and Conclusion 213

6.1 The Results and Implications 213

6.2 Limitations and Future Research 215

6.3 Conclusion 217

Reference 2̂ 9

• • 參

111.

CHAPTER 1 一 Introduction

1.1 The Problem

In Algorithmic Program Debugging’ Shapiro presented a debugging scheme for

logic programs. Based on the procedural semantics of logic programs, he distinguished

three types of semantic errors in logic programs: (i) termination with incorrect output,

(i i) termination with missing output, and (iii) nontermination [14]. Shapiro also provides

algorithms to diagnose erroneous procedures. His algorithms are all based on a

dynamic tracing technique.

However, any debugging algorithm based a dynamic tracing technique can

encounter a problem in detecting nontermination: the simulation of a nonterminating

program may not be able to terminate, and consequently the nontermination detection

process may become nonterminating. In order to prevent from getting into a

nontermination situation, Shapiro's nontermination diagnosis algorithm always requires

its users to supply a safeguard upperbound for any given program. Once the

upperbound is reached, the algorithm stops tracing the program any further no matter

i f a conclusion, concerning whether the program terminates, can be made. In this

situation, it may not be able to determine if the program wil l terminate. Shapiro was

aware of this weakness and admitted that his nontermination diagnosis algorithm "may

fail to detect an error in a program that exhausted a resource, and in such a case it is

up to the programmer to decide which ... action to take" [15].

Shapiro's nontermination diagnosis algorithm has another shortcoming since it

cannot locate precisely what causes a nontermination error. Unlike the algorithm used

for detecting termination with incorrect output or termination with missing output, whic^

1

can identify a particular procedure responsible for the error, the nontermination

diagnosis algorithm can only return the sequence of procedure calls which repeats itself

indefinitely if any nontermination can be detected at all. Evidently, the other problem

is that since the nontermination diagnosis algorithm cannot identify the exact location

of an error, it is up to the user to find out why nontermination occurs in a particular

sequence of calls. (Shapiro's nontermination diagnosis algorithm wil l be examined more

closely in Section 1.2 below; further details can be found in [14] and [13].)

Nontermination is a general phenomenon and a serious problem in Prolog

programming. As the definition of a Prolog program is supposed to be based on a

declarative programming paradigm, a novice programmer may not be aware of any

nontermination errors inherent in his Prolog programs. Therefore, there is indeed a

need to develop nontermination detection algorithms. In view of the limitations of

Shapiro's nontermination diagnosis algorithm, this thesis attempts to explore the

possibility of developing more powerful diagnosis methods. Due to the time constraint,

the scope of the present investigation has been confined to the problem of

nontermination in pure Prolog programs. In particular, the algorithm to be developed

should satisfy the following criteria:

a) I t should not become nonterminating while diagnosing nontermination errors in a
given Prolog program.

b) It should not require the user to provide information such as stack depth like what
is required by Shapiro's algorithm before detecting any potential nontermination
error present in a given program. This is important since the programmer may not
be able to provide the accurate information.

c) I t should be able to locate from a given program the procedure causing
nontermination. In addition, it should also be able to identify accurately which one
of the rules defining the procedure is responsible for the nontermination. Better
still, i f it can locate which part of the rule, which causes the error. I t would be ideal
if the information provided by the algorithm at the end of the diagnosis can help the
user to realize why nontermination occurs in his program.

2

1.2 Related Works

Shapiro's approach to the diagnosis of nontermination is based on a concept he

called well-founded ordering, A set of elements is considered to be in a well-founded

ordering if

(1) the set is not infinite; and

(2) any pair of these elements are in a binary relation which is transitive,
asymmetric and irreflexive.

Shapiro considers terminating programs as those where the computation can only

generate procedure calls which are in a well-founded ordering. In other words, the well-

founded ordering of procedure calls is considered to be the characteristic for the

termination of a Prolog program. Therefore, his nontermination detection method

relates to detecting any procedure call sequence that violates the ordering.

However, Shapiro does not suggest how to implement an exhaustive search for

violation of a well-founded ordering in a sequence of procedure calls. Instead, in

Algorithmic Program Debugging, Shapiro suggests an algorithm that searches for a looping

segment in a procedure call sequence. A looping segment, or a loop, appears in a

procedure call sequence when a procedure is repeatedly called with the same input data

or parameter values. Since two procedure calls are in a well-founded ordering only if

they are in an asymmetric and irreflexive relation, the well-founded ordering is obviously

violated in a procedure call sequence if certain procedures are called repeatedly with

the same parameter values.

Evidently, Shapiro's nontermination diagnosis algorithm is based on the detection of

a looping segment in a particular procedure calls sequence. He makes use of a stack to

keep track of all the procedure calls. The height of the stack is supplied by the user

who is assumed to have knowledge about the intended behavior of the program being

tested. In his algorithm for nontermination detection, the procedure being tested is

simulated with a particular input and the procedures called during the evaluation are

put on the stack. The process then goes on until the simulation is completed by itself

3

or the stack depth exceeds a given upperbound. In the former case, the implication is

that the procedure is free from nontermination with a particular input. However, this

does not imply that the program being tested is free from nontermination under all

circumstances. In the latter case, the simulation is aborted and the procedure calls in

the stack are examined. I f a looping segment is found, the algorithm returns the

segment. Otherwise, a message is returned to the user to indicate that it is not certain

whether the test program has a nontermination problem. Since Shapiro's algorithm for

nontermination detection needs to simulate the evaluation of the procedure being tested,

it can be classified as a kind of run-time or dynamic tracing technique.

One of the most obvious shortcomings of Shapiro's algorithm concerns the way the

stack is used. Since the simulation is aborted once the stack height is exceeded,

determination of the stack height becomes very important for a successful search for the

looping segment. I f i t is too small, the simulation wil l be aborted without yielding any

useful information. Consequently, when a simulation is aborted without returning a

looping segment, we cannot be sure whether the stack height is too small, or the

procedure being tested is nonterminating. On the other hand, if the stack height is too

large, it becomes very time-consuming to n in the test. Since the height of the stack is

supplied by the user, it is assumed that the user has a very clear knowledge of the

intended behavior of his program. However, such an assumption may not always be

valid.

Gelder's Tortoise-and-Hare technique represents a significant improvement on

Shapiro's approach [6]. Gelder's method no longer requires the user to provide the

stack height. But two pointers, the hare and the tortoise, are required to point to

different points of the stack. When simulating the execution of a procedure, the stack

building steps are alternately labelled as hops and walks, starting with a hop. In the

hopping steps, only the hare pointer can move up the stack by one level while i样热癸

walking steps both pointers move up the stack. The result is that the hare always

at the top of the stack while the tortoise always points at about the middle of the ^ ^ ^

After each step, the elements pointed by the two pointers are compared, I f X\ipy ar^

essentially the same，a looping segment is found; otherwise, the process goes pn until 终

..：；；、：.1

4

looping segment is found or is terminated by the user. Two procedure calls are

essentially the same i f they differ only in variable names. For example, two Prolog goals

a(l，X) and a(l，Y) are essentially the same because the variables X and Y can always be

unified. Since the variables in a procedure call is renamed by Prolog during the

evaluation, Gelder specifically introduces the concept of essentially the same to avoid

overlooking certain possible looping segments in Prolog programs. The Tortoise-and-

Hare technique works because the two pointers are always kept apart with a distance of

half of the procedure calls sequence. Therefore, the distance between them increases

as the height of the stack grows. If the procedure calls are in an infinite loop with a

looping segment of length n, the distance between the two pointers wi l l eventually grow

to a multiple of n and catch the looping segment. Similar to Shapiro's algorithm,

Gelder's Tortoise-and-Hare technique is also a kind of run-time tracing technique.

Apart from the attempt to develop diagnostic methods for nontermination in

Prolog programs, there have been efforts to tackle the weakness of the conventional

Prolog execution model in coping with certain special loops. Covington [1] notices that

expressing transitive relations, symmetrical relations or biconditionals in Prolog

programs can lead to infinite loops. Although the aim of Covington's work is to modify

Prolog's implementation in order to enhance the power of Prolog to express transitive

and symmetrical relations and biconditionals, his works [1,2] relate to nontermination

detection in two respects: first, the algorithm suggested in his works can be used for

diagnosing nontermination caused by transitive and symmetrical relations and

biconditionals; second, his works show that some infinite loops are caused by

inappropriate Prolog program structures. Although the first aspect of his work can only

be incorporated into a mn-time tracing algorithm, the second aspect implies that at least

some nontermination errors can be detected by a compile-time analytical approach.

Furthermore, when Nute tries to tackle a similar problem [8], he points out that a looj)

wi l l only occur in a Prolog program with some recursive definitions. Poole and Ggel^^J

[101, on the other hand, suggest that the elimination of loops in Prolog programs c ^ bg

better performed by modifying the program instead of using the methods sugge^t^fl 換

Covington and Nute (see [1], [2] and [8]). Kowalski also points out Ih^lj

inappropriate recursive definition can result in nontermination [7]. He npti^g^ th^t

5

there are two types of infinite loops [7]. Apart from the infinite loops discussed by

Shapiro and Gelder, there are infinite loops caused by divergent recursive calls. A

divergent recursive call can generate an infinite sequence of procedure calls in which

there is neither any exact looping segment nor any elements which are essentially the

same. Although he does not directly suggest any algorithm to handle the inappropriate

recursive definition, he suggests that one can identify the infinite recursive calls by

analyzing the change of the argument values of the recursive definition during its

evaluation. Therefore, his work provides an approach to detect infinite loops that

cannot be detected by Shapiro's and Gelder's mn-time tracing technique. Although his

approach also suggests a mn-time tracing technique, it shows that analysis on the

arguments of a recursive definition can be crucial in detecting nontermination in certain

Prolog programs.

On the other hand, some researchers have tried to explore the compile-time

analytical approach to nontermination detection in Prolog programs. In De Schreye et

al，s work [12]，a directed, weighted graphs technique is employed to detect

nonterminating queries for the recursive definitions of a restricted class: recursive

definitions with left-recursive rules in the form "P(.") :-?(...)"• In [11]，De Schreye et al

prove that there is a necessary and sufficient condition for the existence of a query that

is nonterminating in the absence of occur check. By representing the evaluation

generated by a query with a rational tree, one can adopt a mathematical approach to

analyze the evaluation of the recursive definition with left-recursive rules. This analysis

shows that it is possible to associate a weighted, directed graph to a recursive definition

with left-recursive rules if and only if the recursive definition can admit a

nonterminating query. Although their nontermination detection algorithm has limited

computational complexity at compile time and can be easily implemented, it suffers from

a great disadvantage: it has very limited scope of applicability. There are also other

nontermination detecting techniques based on the compile-time approach [5,16].

Nontermination is detected by a combination of global analysis and methods whiqb

prove that the length of certain data structures becomes increasingly shorter du如g (he

evaluation of the recursive definition.

6

A more general solution is explored under the mathematical approach. In [3],

Baudinet tries to develop a method to prove the termination properties of Prolog

programs. As a system of functional equations, a Prolog program actually maps a goal

to the sequence of answer substitutions that can be generated when the goal is supplied

as a query for the program. Such a sequence can be either finite or infinite depending

on whether a finite or infinite number of answers is produced. In Baudinet's method,

how to translate a Prolog program into some appropriate semantics equations is a

central concern. By transforming a Prolog program to a system of functional equations

of which the least fixpoint is the meaning of the program, he shows that termination or

nontermination properties can be proved by reasoning with these functional equations

and using fixpoint induction or structural induction. Usually, structural induction is

sufficient to prove the universal termination of a program for the type of goals that have

finite and proper answer sequences. When a program loops, fixpoint induction is

needed. Since the properties can only be obtained through reasoning the program

equations through fixpoint or structural induction, the implementation of Baudinet's

method requires a mn-time tracing approach. However, in general, the mathematical

approach employed in this method indicates an analytical approach to nontermination

detection can be fruitful.

Pliimer also uses a mathematical approach to provide a termination proof for Prolog

programs [9]. However, his focus is on the recursive procedure with recursive data

structures. In fact, his work is an attempt to overcome the restrictions of the technique

suggested in [16]. In order to handle the case of certain complicated recursive data

structures, the notion of linear predicate inequalities is introduced in his work. The

presence of linear predicate inequality is a termination proof for a recursive procedm^

with recursive data structures. In Pliimer's method, linear predicate inequalities g p

derived using the technique of AND/OR dataflow graph. In other words, hg

a compile-time analytical approach to nontermination detection for a specij^l p{

Prolog programs: programs with recursive procedures that have recursive data litrwctur^ii.

More importantly, his work shows the possibility of incorporating graph techniques m

the Prolog nontermination detecting methods.

7

1.3 Contribution of the Thesis

The major contributions of the thesis include the following:

i) I t develops a compile-time approach based on static program structure analysis to
detect nontermination in pure Prolog programs. As this approach does not require
the simulation of the execution of a program being examined, therefore, the
diagnosis algorithm would not become nonterminating.

i i) The methodology developed in this thesis can detect nontermination in different
types of Prolog programs, unlike many of those devised by contemporary workers,
which can only handle Prolog programs having some special structures.

i i i) The algorithm based on static structure analysis can locate relatively precisely which
part of a given program responsible for causing nontermination.

iv) The algorithms developed in this thesis can be used to generate useful information
which may help the user to understand why his/her program does not terminate.

V) The parameter and data analysis techniques developed in this thesis provides a
theoretical framework for nontermination diagnosis in pure Prolog programs. The
techniques can also be applied to full Prolog programs with some restrictions.

vi) The successful development of the parameter analysis and the data analysis
technique for nontermination detection provides insight into the cause of
nontermination in a recursive Prolog program. With such a knowkdge, a Prolog
programmer can more easily prevent writing nonterminating recursive programs.

1A Outline of the Thesis

In Chapter 2, the basic concepts of logic programming and the Prolog execution

model are reviewed. Then we investigate how nontermination can occur in a pure

Prolog program; the concepts of exit condition and of exit-reaching process in tbg

context of a recursive procedure in a conventional programming language ^xp
• • • .、 . - ,、 、•：

introduced. We show how such concepts can be applied to a recursive Prolog defiRitiuri,

The presence of an exit^reaching process implies that there must be one pr jgfTigjrg

variables in the exit condition; and the values of the variables must be moclified py the
• . . 、 . . .

8

exit-reaching process during recursion. In a Prolog recursive definition, a variable of the

exit condition must also be related to a parameter, an exit-reaching process should a

parameter modifying process. A t the end of this chapter, we briefly mention the

possibility of developing a preliminary test for nontermination error in a Prolog program

based on the analysis of parameters.

In Chapter 3，we develop parameter analysis algorithms. In Section 3.1，we show

what a parameter link is. Then we explore how a parameter l ink can be formed in

different ways. In Section 3.2, we explain how parameter links can be connected to form

a cyclic parameter link. These two sections also explain how a cyclic parameter l ink can

be related to the parameter modifying process. In Section 3.3，we introduce graphical

notations for representing parameter links and cyclic parameter links. Then algorithms

for constructing parameter links and cyclic parameter links are presented.

In Chapter 4 we develop algorithms for data analysis. In Section 4.1, we explain what

a data l ink is and how it can be formed for a cyclic parameter l ink of a recursive

definition. In Section 4.2, we show the difference between pure Prolog and general

Prolog, and illustrate how such difference can affect the method for data analysis. In

Section 4.3, we show the relationship between data links and nontermination. In Section

4.4，we illustrate how data links can be employed to detect nontermination. I t is also

shown that data links can be connected to form connected data-link lists which can

represent the data transfer through the cyclic parameter link. Consequently,

nontermination can be detected by examining the connected data-link lists. In Section

4.5，the construction of data links and connected data-link lists for special parameters

are considered. Finally, the algorithms for data analysis are presented in Section 4.6,

In Chapter 5，two special cases are considered to enhance the power of d^t^

analysis. I n Section 5.1, the case of interdependent cyclic parameter links is e^^inm^cj?

We show how interdependent cyclic parameter links can arise from cycUc 辦知

links sharing certain common parameters or common subgoals. Then we 哪

the interdependency can cause the method of data analysis mentionec} in QaRt^ r 4 tQ
• . . . •：广:.、•、•、

give incorrect conclusions. We also discuss what adjustments of the fpr^gaing ci^ta
• • 、 . . : . . 、

9

analysis method need to be made in order to handle recursive definitions with

interdependent cyclic parameter links. Concerning the case of cyclic parameter links

established through special parameters, data analysis may be inadequate for detecting

nontermination in a special situation. In Section 5.2, we investigate why data analysis

may fail in some special situations.

I n Chapter 6，the results of the study are presented. Then the limitations of the our

algorithms and the future research are discussed. Finally, a conclusion is made.

10

CHAPTER 2 —Nontermination and
Recursive Definitions

In this chapter, we shall first present an overview of the Prolog execution model.

Through a discussion of the execution model, we shall see that Prolog is different from

conventional programming languages in one important respect: nontermination in Prolog

programs occurs only in the form of recursive definitions. A Prolog program will

terminate properly only if all of its recursive definitions include certain termination

requirements. In general, the requirements for terminating a recursive definition consist

of exit conditions and an exit-condition reaching process [7]. Nontermination in Prolog

programs occurs when any one of these termination requirements is absent from the

recursive definitions in a Prolog program. In the rest of this chapter, we shall analyze

what exactly constitutes the exit condition and the exit-reaching process in Prolog. This

analysis shows two important aspects of the termination requirements. Firstly, it shows

that either the exit condition or the exit-condition reaching process is formed by the

parameters and/or the subgoals in the recursive rule only. Secondly, it shows that the

exit condition and the exit-condition reaching process are in an interdependent

relationship; the existence of one of them implies the existence of the other. These

findings indicate the possibilities of developing a nontermination detection system based

on analyzing parameters.

2.1 Prolog Execution Model

In this section, an overview of Prolog and its execution model is givep iQ provide

a background to the reader. However, the reader who needs more details about Prolog

can refer to [13] and [171. Through a discussion of the execution model, we shall
.••、 .• ，，•“\ -

11

illustrate how nontermination arises in a Prolog program and how nontermination

relates to recursive definitions.

A pure Prolog program, as a logic program, is composed of a bundle of Horn

clauses, or clauses. There are three types of clauses: facts, rules and queries.

The simplest kind of clause is fact. A fact states a specific relationship that holds

between certain objects. I t has a format as

f(ai, a2, •••，a j . where m > = 0

f is usually known as the predicate name while Up …，a爪 are known as arguments. The

predicate name f represents the relationship while the arguments a】，…，represent

the objects. In each fact, the arguments can be either some specific values or some

variables. A specific value is also known as an atom. The predicate name must be an

atom. I f a variable is used as the arguments instead of an atom, it can be instantiated

to whatever objects used, even another variable. A finite set of facts forms the simplest

form of logic program. Atoms and variables are also collectively known as terms.

Moreover, a structure f(tp t^ ••” tj is also a term if f is an atom and tp t^ •••，t„ are

either atoms, variables or structures. A term is known as a compound term if some

structures appear as its arguments. For example, f(l2,3) is a simple terms but / fZ , 1，

g(D，2)) is a compound term. A term not consisting of any variable is considered as a

ground term.

Rules express a conditional relation between some existing relationships. I t has

a general format as:

g s” S2, •••’ Sn. where n > = 0

g is the head of the rule and si，s are the body. They are all goals. Goals in the body are

known as subgoals. Each goal has zero, one or more arguments. Actually a fact can be

viewed as a special case of rules with n = 0. Each subgoal in the body of a rule xmU

be defined either as facts or rules somewhere else in the program. The symbol i备 ‘ • ^^ y
used to denote the implication relation existing between the head and the body,

the head is the conclusion of the preconditions specified in the body. To deiterTnjijp thf

truth value of the head or the values of the arguments used in the head, e恥h Subgoal
• •••.:、-:, 、、/.•.•、：•'、、 •

, . ‘ •

12

must first be evaluated to determine the atomic values for each of its variables. A finite

set of rules and facts constitutes a program. Moreover, a set of rules and facts where

the rule heads and the facts have the same relation name form a procedure.

A procedure is known as a direct recursive definition if the head of one of its

rules also appears as a subgoal in the body (they can have different parameters). This

rule is referred to as a recursive rule and the subgoal is known as a recursive subgoal.

The head of this rule is known as a recursive rule head. Moreover, if there exist several

rules from different procedures such that each of these rules has its head also appearing

as a subgoal in another rule, these rules form an indirect recursive definition. These

subgoals are in fact indirect recursive subgoals. I f we start from any one of these rules

to replace its recursive subgoal with the body of the corresponding rule, we can

eventually produce a rule having its head as a subgoal in the body, just as the case of

direct recursive definitions. Each rule forming this recursive definition (even though

they are from different procedures) is also referred to as a recursive rule.

Queries are the clauses that retrieve information from a logic program. They

have the following general format:

？- gi，g2, •••，gn- where n > 二 1

Each subgoal in a query, gi，has the general format of a goal. I f all subgoals in a query

are ground terms, we can interpret the query as a question of whether all relations

represented by the subgoals can hold at the same time among the objects specified as

the arguments of these subgoals. Usually, uninstantiated variables appear in a query,

In this case, the query can be viewed as a question for finding the unknowns represented

by the variables. For n > 1, all subgoals are solved one by one, and a query is c痛！

sidered to be solved only after every subgoal has been solved. ‘
； . . . ‘ ：

Sometimes a fact appears as a compound term to allow the data to b^ §扮探动 i l l

a more organized style. For example, if we want to store some inform抹ti只!5 '^hmt 终Jl
— 麵；”.、s:h

event, it is more meaningful to store the data as:
- . -

event(place(Where), time(10，25，am)，date(12，6，89))，

13 “

than i n p u t : two terms, T^ and Tg, to be unified

event(ge6:y)0，25，am, q u t p u T : the most general unifier, mgu，or failure

Initialize the mgu to be empty
These non-atomic terms

that are used as the ar- Push T , = V on a stack

guments of facts or goals WHILE the stack is not empty
(e.g., in this case, DO { Pop "X 二 Y，from the stack

place(W here) ， IF X and Y are NOT identical atoms

— m 2 5 ， _) are ^ ^ ^ X is a variable
known as structured data. THEN { Substitute Y for X in the stack
On the other hand, Prolog ^dd "X = Y" to mgu

provides another method ELSE IF Y is a variable
T ^ , THEN { Substitute X for Y in the stack

to store complicated data. ^dd "Y = X" to mgu
By enclosing all related }
, . ^ nsnV nf ELSE IF X and Y are variables

data within a pair of THEN Rename all X and Y in the
square brackets, "[]"， stack to the same name

Prolog can handle them ELSE IF X is f(X XJ and
b Y is f(Yi’ …，Yn) where n > 0

together as one object. THEN Push "Xj 二 丫广，i 二 1，…，n，

Such a structure is known on the stack
ELSE Exit and return failure

as a list. For example, y

[event [place, Where], Return the mgu

[[= : i '：] Figure 2.1 ThP n n i f i c a t i o n a l g o r i t h m

is a list of lists containing more or less the same information encoded in the structured

data above.

-..二，.：

In order to answer a query, the clauses defined in the program are used tp 神样S权

each subgoal in the query. Since Prolog is the realization of logic programTOP| In 錄

sequential machine, it follows a specific sequence to satisfy the subgoals in a gu^ty, Th^

leftmost subgoal is first selected. If it can be satisfied, other subgoals are sel^ t^d Qn^
. 、 .

14

by one in a left-to-right sequence. However, if one of the subgoals fails to be satisfied,

the process wil l go back to the left subgoal of the failing one and attempts to re-satisfy

it with an alternative clause. This process is known as backtracking. I f the left subgoal

does not have an alternative clause, backtracking wil l continue to the next left subgoal

unti l one of those subgoals on the left can be re-satisfied with another clause, or it

reaches beyond the leftmost subgoal. In the latter case, the query results in a failure.

On the other hand, after all subgoals in a query are satisfied, a solution can be obtained

for the query. However, a Prolog user can initiate backtracking himself/herself after a

solution is found. During this backtracking process, other possible clauses in the

program are tried so that alternative solutions can be found. Satisfying a subgoal greatly

depends on matching this subgoal to other terms in the program. This matching process

is known as unification. Its algorithm is shown in Figure 2.1.

In the algorithm, if a fact is used for unification with the subgoal, the subgoal can

be satisfied immediately or the unification fails immediately. However, Prolog also

attempts to use a rule to satisfy a subgoal. In this case, the subgoal is to be unified with

the head of the chosen rule. If it succeeds, the unifier obtained in the unification

process is applied to the body of the chosen rule. Then the subgoals in the body of this

chosen rule are used to replace the original subgoal in the query to form a transformed

query. This replacement process continues by following a depth-first strategy. In other

words, the leftmost subgoal in the body of the chosen rule (it does not need to be the

leftmost subgoal of the transformed query) wil l be replaced with a corresponding rule

body again recursively until the leftmost subgoal can be unified with only a fact. Then

the replacing process is applied to the second left subgoal. This process stops only when

all subgoals in the transformed query can unify with some facts.

^ •

2.2 Nontermination、

As pure Prolog is a declarative language, it does not provide d^y control
... • •

constructs. A pure Prolog program describes only the logic componepf of algorithms
. ’ 、y'y 一::.'''、‘

15

and the Prolog execution model itself will take care of the control component [7].
• 等

Therefore, unlike conventional programming languages, no looping construct exists m

Prolog. A programmer can define iterations in a pure Prolog program by only two
techniques:

(1) backtracking mechanism and

(2) recursive definitions [7].

Using backtracking to generate iteration is a technique unique to Prolog. To see how

an iteration can be generated by a backtracking mechanism, let us consider the case of

supplying a query ？_ path(X，Y) to Program (a) in Figure 2.2. After Prolog finds the

first solution X = a, Y = b , the backtracking mechanism in Prolog wil l search the

procedure path again to find all the other possible solutions. As a result, a total of five

solutions can be found since there are five facts in the procedure path that can satisfy

the query. From the operational point of view, the procedure csllpath(XJ) is repeated

five times and we can consider it as a five-time iteration.

However, in contrast to the iterations generated by the looping constructs in

conventional programming languages, the iteration generated by backtracking in Prolog

has two properties:

(1) it does not need any explicit condition for its termination, and

(2) it can always terminate if no recursive definition is involved.

These properties actually result from the fact that the possible search space in a Prolog

program has only a limited size if no recursive definition is present. Once the whole

search space in a Prolog program is completed, backtracking stops so that no expUcjt

condition is needed to stop the iteration. Moreover, if the possible search space ^ r 终

program has only a finite size, iteration generated by backtracking must stop after 辦热

a finite space has been completely searched; thus it can always terminate.

But how can we be sure that the possible search space for a "recursive definition)

free" Prolog program is always finite? The answer lies in how Prolog ĵ î arghe^ tli^

program during the backtracking process. As has been discussed in SegtipB ？.1，Rrplog
• • • •••• . . •广： • •-

16

tries to find some terms from the program to unify with each subgoal in the query from

the leftmost subgoal to the rightmost subgoal. In this process, a suitable term is found

by searching the corresponding procedure that has the same predicate name as this

particular subgoal. I f the head of a clause in the corresponding procedure can be

unified with the subgoal in the query, this process wil l continue on the next immediate

right subgoal. On the other hand, if it is the rightmost subgoal in the query,

backtracking wil l resume the search on the rest of those not yet searched clauses in the

procedure after a solution is found. However, if the unification process of this particular

subgoal fails, backtracking occurs and renders the procedure corresponding to the

immediate left subgoal to be searched again. The search will resume at the clause next

to the previously searched one.

Therefore, the search space must be finite if all the subgoals in a certain query

are all defined by procedures

that consist of facts only. While | | = = = = = = =]
^ 1 d a …n path(a,b). path(b,c). path(c，d).

a subgoal IS defined by a pro- 二ath(d，e). path(e,f).
cedure consisting of facts only,
the search space for this subgoal can一go(X，Y) path(X，丫)•

is finite. As the search space Program (a)

for each subgoal of a rule is

finite, the search space that can
be generated by the ba。k- gjg；^)： 二 丨 設 _ _

tracking process among these
subgoals is also finite. It is can一go(X,Y) path(X，Y)，path(Y，Z).

obvious that the number of Program (b)

iterations generated cannot be 1 ! = = = = = = = = = ^ ^
Figure 2.2

greater than the product of the

number of facts in each procedure defining the corresponding subgoal in the query. I f

we supply the query ？- path(X，Y)，path(Y，Z) to Program (a) in Figure 2.2，the

upperbound for the number of iterations is 25. Actually, the number of iterations can

be generated is also 25 although many facts cannot succeed in the unification process.

17

In general, there also exists an upperbound for the search space if the procedures

defining certain subgoals in a query is composed of not only facts but also some nmk

recursive rules. The upperbound for the number of iterations generated can be

calculated as the product of the upperbound for the number of iterations generated by

each subgoal. For a subgoal with a procedure of all facts, the upperbound is equal to

the number of clauses in the procedure. For a subgoal with a procedure consisting of

facts and non-recursive rules, the upperbound for the number of iterations generated by

this subgoal is equal to the number of facts plus the upperbound for the number of

iterations generated by every rule. And the upperbound of a rule is just equal to the

product of the upperbounds of all subgoals in this rule. For example, in Program (b) in

Figure 2.2, if we supply the query 7- path(X，Y)，can_go(Y,Z)，the upperbound can be

calculated as:

5 * (0 + (5 * 5))

upperbound number of upperbound for upperbound for
for the facts in the subgoal the subgoal
subgoal procedure path(X，Y) path(X，Y)
path can一go the upperbound for the rule —/

The result is 125. Usually, the actual number of iterations is much less than the

upperbound. In this case, the number of iterations is only 41 with the solutions of X =

a, Y = b, Z = d; Z == 5， y = c，Z = e; X = c，Y = d，Z=f. In pure Prolog, if no

recursive definition is present, each subgoal in a rule must be defined by a procedure

with facts and/or rules which do not contain this subgoal. Since a fact is a rule with an

empty body, it completely defines itself. Each subgoal in a rule must be eventually

defined by some facts. Therefore, the upperbound for the number of iterations

generated by each subgoal can always be calculated as above if the program is in pure

Prolog and no recursive definition exists. Since there exists an upperbound for the

number of iterations generated by backtracking in a non-recursive pure Prolog program,

the search space for backtracking must have only a limited size.

On the other hand, if some terminating recursive definitions are present, there is

still an upperbound for the number of iterations generated by backtracking. With the

18

introduction of recursive definitions, the iteration can no longer be calculated with the

method described above. For example, in Program (a) in Figure 2.3, i f the query of

can_so(XJ) is supplied, the method described above wil l calculate the upperbound as:

0 + (5 * (0 + (5 * . . .
number of upperbound for number of facts upperbound
facts in the subgoa丨 in procedure for the subgoal
procedure path can 一go path
can go \ the upperboundlor the recursive rule /

I t wi l l result in an infinite sequence. We must determine the upperbound for the

number of iterations generated by each recursive subgoal with another method instead

of simply counting the number of the clauses in its corresponding procedure. Since the

exact number of iterations that can be generated by a recursively defined subgoal is not

known unti l semantic knowledge has been provided, there is no simple way to determine

the exact upperbound for the number of iterations generated by these recursively

defined subgoals. However, if the recursive definition involved can itself terminate

p a t h (a , b) . p a t h (b , c) . can—go(口，•)

p a t h (c , d) . p a t h (d , e) . 7 \

p a t h (e , f) . / \
p a t h (a , b) c an g o (b , n)

c a n _ g o (X , Y) : - 7 \
p a t h (X , Z) , c a n _ g o (Z , Y) . / \

一 p a t h (b , c) c a n _ g o (c , 口 ）

Program (a) / \

— / \

p a t h (c , d) c a n _ g o (d , a)

p a t h (a , b) . p a t h (b , c) . / \
p a t h (c , d) . p a t h (d , e) . / \
p a t h (e , a) . p a t h (d , e) c a n

/ V)、
c an go (X , Y) : - / •‘

5 a t h (X , Z) , c a n一 g o (Z , Y) . p a t h (e , a)

Program (b) 口 ： t h e u n i n s t a n t i a t e d I •：'：.'\ •

v a r i a b l e s d u r i n g t h e

e v a l u a t i o n ；:

Search Tree of f r o g r i l

''. ^ ̂ •�拽y:厂谋吃V、.、.」,.:J:y,:長
Figure 2.3

、 - - . ： , .
.•••_•' i ,

“ V . .

19

properly, we can arbitrarily assign the upperbound for the number of the iterations

generated by these recursive subgoals to be any finite number, n .̂ For example, in

Program (a), the recursive definition can terminate, so that the upperbound for the

number of iterations that can be generated by the query ？- path(X，Y)，can』o(Y，Z) is

the product of 5 and n^. It is still a finite number. Thus,the number of iterations

generated by backtracking is still finite if the recursive definitions present can terminate

properly.

But the iteration generated by backtracking can never stop if any nonterminating

recursive definition is present. The number of iterations generated by a nonterminating

recursive subgoal is infinite since no upperbound for the number of recursion levels

implies that there is no upperbound for the number of iterations generated by a

nonterminating recursive subgoal. The search space is infinite in this situation.

Nontermination results. I t can be shown by the search tree of Program (b) in Figure

2.3. Whatever the iteration is generated by the recursive definition or the backtracking

process, the number of iterations can be infinite only if a nonterminating recursive

definition is present. In conclusion, nontermination may occur only in a pure Prolog

program with a recursive definition. However, some recursive programs can terminate

while others cannot. Nontermination can be detected if we can find out the presence of

a nonterminating recursive definition in the underlying program.

To have a recursive definition that terminates properly, two criteria must be

satisfied at the same time:
(1) There must exist some exit conditions.

(2) The recursive definition must be written in such a way that it can bring th^

execution to an exit condition at a certain point during the evaluation.

As shown in the algorithm in Figure 2.1, the parameters in the input goal am} tl^e
、‘；

parameters in the head of those potential clauses play an important role irj tb^

unification process. Since the unification process can determine which to bf

chosen, it implies that parameters can greatly affect which clause to be sele^tgrf 辨讲资

next level of recursion. • Moreover, recursion will stop when the umficatipn tbfe

recursive rule head and the recursive subgoal fails. In the following 终叫客Jq飛,,铁e shall
‘ •-. ‘r - • ,

20

discuss what an exit condition is in Prolog programs and how parameters can be related

to the presence of nontermination errors.

2.3 Exit condition

There must be an exit condition to terminate the evaluation of a recursive

definition. I f after a finite number of recursion levels, the exit condition is reached such

that the recursive path wil l not be visited again. Although how to define an exit

condition in a recursive definition is similar among different conventional programming

languages, how to define an exit condition in a Prolog program is greatly different. In

conventional programming languages, the exit condition is always stated explicitly.

However, as the Prolog execution model completely takes care of the control component

of a program, an exit condition in a Prolog program can exist implicitly in two ways:

(1) as one or more subgoals in the recursive rule that wi l l fai l at a certain point of
the recursion, or

(2) as parameters in the parameter list of the recursive rule head or the recursive
subgoal of a recursive rule that wil l cause the unification process to fail at a
certain level of the recursion.

I n conventional programming || ^ , … ^ , ^ ,
Procedure RRR (arguments)

languages, the recursive part and the non-
recursive part of a recursive definition are b^gin

^ if exit condition
always related to mutually exclusive then
conditions. In general, all recursive defi- do non-recursive part

else
nitions that can terminate properly should call RRR (modified arguments)
have a structure similar to the one shown recursive call *}

end
in Figure 2.4. I t includes a condition and a „| • ,
J . . 1 T 丄 Figure 2.4
decision control structure, in the case ®

.•, • ：

shown in Figure 2.4, once the exit condition is met, the procedure wil l be

from recurring again and wil l terminate. Therefore, the condition specified can s g ^ ' p

an exit condition only with the co-existence of the if-then-else conUpl ^twctur^, The

• .

• • :. •.

21

control structure makes the recursive path and the non-recursive path mutually exclusive.

Without such a control structure, the above condition cannot work as an exit condition.

Program (a) || Program (b)

sum (Var N，Result: integer); jj

Var M，R: integer; ||

Begin II
If N = 0 丨丨 sum(N, 0) :- N = = 0.

{ { exit condition } } ||
then Result := 0 ||
else begin j j sum(N, Result):-

M := N - 1; II M is N - 1，

sum(M, R); II sum(M，R)，
Result := R + N II Result is R + N.
end II

End; II

Figure 2.5

However, such an Algol-like if-then-else control structure does not exist in pure

Prolog. The Prolog programmer has to consider how to achieve a mutually exclusive

relationship between the recursive part and the non-recursive part by himself. As has

been described above in Section 2.2，the pure Prolog programmer must let the Prolog

determine the control. Nevertheless the unique backtracking mechanism in Prolog does

not allow the clauses in the same procedure to be mutually exclusive. This can be

illustrated by comparing the Pascal-like recursive procedure with its Prolog counterpart

in Figure 2.5. In spite of their similar outlooks in logic, Program (a) in Figure 2.5 ca^

terminate while Program (b) is a nonterminating Prolog program. The reason is th^t

the two rules in the procedure sum of the Prolog program are not mutually exc lu^g

under the backtracking mechanism. When Program (b) in Figure 2.5 is e x e c _ (|， •

rule sum(N，0) N = = 0 wi l l be reached after a finite number of recursions p ^ 欢jJ!

return a solution for the variable Result • However, it does not stop 財 this ppjjfj、, b^i
i .

‘.-’，...

22 “

rather it goes to find further solutions due to the backtracking mechanism. This results

in nontermination.

One simple way to achieve a mutually exclusive relationship between the

recursive clauses and the non-recursive clauses is to add some extra subgoals in the

recursive clause so that these subgoals wil l fail when the non-recursive clause is reached.

For example, the second clause in Program (b) in Figure 2.5 can be re-written as:

sum(N，Result) :- N > 0，M is N - 1，sum(M, R)，Result is R + N.

With the introduction of the subgoal N > 0 in the recursive clause，the recursive path

and the non-recursive path now become mutually exclusive and termination can be

ensured.

Since the absence of a mutually exclusive relationship between the recursive

clauses and the non-recursive clauses can cause a recursive definition to be

nonterminating, a diagnostic system that can identify this fault in a recursive definition

can detect some kinds of nontermination errors in Prolog. It would be helpful to the

Prolog novice who has programming experiences in conventional programming

languages. In fact, it is quite easy to build a diagnostic system to detect the absence of

such a mutually exclusive relationship if all the non-recursive clauses in the recursive

definition are made up of facts only. First, the system should test whether the head of

the recursive rule can unify with any of these facts. I f any of them succeeds, the values

specified in the fact are supplied to the recursive rule to instantiate the corresponding

parameters in the rule. I f none of the subgoals preceding the recursive subgoal fails in

this process, the absence of a mutually exclusive relationship between the recursive and

the non-recursive part is confirmed. For example, we can apply this technique to the

program in Program (b) in Figure 2.5 with a minor adjustment. Without any change in

the semantics of the program, the non-recursive clause is modified from mm(N，0) ；- ^

==0 to a fact, sum(0，0)，to permit the application of this technique. Since f^

sum (0,0) can unify with the head sum (N,Result)，we proceed with the test and
. ,:•’•:，'..；• '•‘

the values 0 and 0 to the parameters N and Result in the recursive rule. This mwU^
. . 麵 ”

m:

23

sum(0, 0) :- M is 0 - 1，sum(M, 0)，…

Because the subgoal preceding the recursive subgoal, M is 0 -1 does not fail, this shows

that a mutually exclusive relationship is absent from this recursive definition. However,

this simple technique becomes too weak when the non-recursive clauses are not all

made up of facts. With this technique, we can conclude about the absence or presence

of any mutually exclusive relationship only after we have known that all the possible

values can be accepted by the non-recursive clauses and have tried these values on the

recursive rule. I f some rules exist in the non-recursive part as well, more time is needed

to determine all these possible values.

On the other hand, there is another more fundamental problem in detecting the

exit condition. Although it is a good practice for the Prolog programmer to ensure the

presence of a mutually exclusive relationship between the recursive and non-recursive

clauses, to achieve such a relationship is not the same as supplying an exit condition to

the Prolog program.

= = = = = = = ^ With the backtracking

sum(4,n) mechanism in Prolog,

/ \ reaching a non-recursive
sunn(3,n) sum(3,n) , . ‘ . “

I / \ clause IS not sufficient to

3 = = 0 / \ ensure the presence of
I sum(2，cO sunn(2,n)

fg îl 1 / \ an exit condition because
2 = 二 0 / \ it cannot prevent the re-

I sum(1,a) sum{1,n)
l ^ j j I I \ cursion from taking place

1 = = 0 / \ again in the recursive
I sum(0,0) sum(0,n)

faH I ! \ rules. When a non-
0 = == 0 / \ recursive clause is

succeed sum(-1,n) sum(-1,n) reached after certain

I I levels of recursion, the

口 ： the not yet (backtracking mechanism

instantiated fail • causes the recursion |q
variables • -

resume at the next clau躲
Figure 2 . 6 t h e s e a r c h t r e e o f Program (b) : : 〜 丫 ?

i n F i g u r e 2 . 5 i n t h e p i - Q g e d w j e ,
. • '' • :、 : ’ .、 • ‘ : ‘、々 .

• ‘ � � .V

24

Eventually, the recursive rule will be reached again. It can be illustrated by the search

tree generated after the query of 7- sum(4’X) is supplied to Program (b) in Figure 2.5.

In Figure 2.6 we can clearly see how the Prolog execution model causes the recursive

rule to be used again even when the non-recursive part has been reached. Moreover,

reaching a non-recursive clause is not a necessary condition for termination in Prolog.

I t can be illustrated by the program in Figure 2.7. This program obviously does not

have any non-recursive part for the recursive procedure a一call • However, it can

terminate with any value supplied to the parameters X and Y , The reason behind is

that the subgoal not一exit(X，Z) can stop the evaluation of this recursive definition

a_call(X, Y) > not_exit(X，Z)，
a_call(Z,Y). terminate([X| Y])

terminate(Y).
not 一 exit(1，2).
not:exit(2，3). L = = = J
n o r e x i t (3 , 4) . Figure 2.8 a terminating

— procedure using
L = = = = = = ^ parameter as an
Figure 2.7 a recursive procedure without a exit condition

non-recursive part

once its parameters cannot be instantiated with any one pair of the following values:

(2,2)，(2,3) or (3,4) • The problem of this definition is not one of nontermination but

rather missing solution.

Therefore, the non-recursive part of the definition cannot act as an exit condition

by itself alone in Prolog, although it is important in finding a solution in the evaluation.

Actually, an exit condition in a Prolog program is any constraint that can stop the

re-entrance of the recursive rule at a certain point of the evaluation of the recursive

definition. By examining the above examples carefully, we can discover that in order (q

have a recursive definition to terminate, a certain subgoal in the recursive rule needs

ultimately become unsolvable during the evaluation of this recursive definition. 'J^Jî s,

unlike the situation in conventional programming languages, the exit condition mu§t _

specified somewhere outside the recursive part, the exit condition in Prolog prpgrQin| …....
must be present within the recursive clauses. Usually, an exit condUipns ill a Prqlog

25 ”

recursive definition consists of one or more subgoals (actually, one subgoal is sufficient)

which can become unsolvable at a certain point of the evaluation of the recursive

definition. In some special situations, for example, when lists or structured data are

used as the parameters in the recursive rules, as shown in Figure 2.8，they can cause

unification of these recursive rules to fail and thus stop the next level of recursion.

Therefore the parameters should also be considered alongside with the subgoal when

trying to find an exit condition.

In the following examples, we further show that the exit condition and the

mutually exclusive relationship between the recursive and the non-recursive part are

father(abraham，isaac). ancestor(abraham,isaac).
father (Isaac, jacob). ancestor(abraham,jacob).
fatherGacob, Joseph). ancestor(X，Z):-
fatherGacob, judah). father(X, Y),

ancestor(Y, Z)

Figure 2.9 Example showing that termination can be achieved without
the mutually exclusive relationship

independent to each other in pure Prolog. In Figure 2.9, no mutually exclusive

relationship exists between the recursive clause and the non-recursive clauses. A l l the

facts can unify with the recursive clause in the program. If the values abraham，isaac

are used, the recursive clause will be instantiated as ancestor(abraham，isaac)

father(abraham，Y), ancestor(Y. isaac) . Since the subgoal father(abrahamj) in the

instantiated recursive rule can succeed to unify with the fact oi father(abraham，isaac)，

the next level of recursion can continue with the recursive subgoal instantiated as

ancestor(isaac，isaac) • On the other hand, if the values abraham，jacob are used, the

recursive clause will become ancestor(abraham，jacob) father(abraha^lQ,

ancestor(YJacob) • Because of the fact father(abraham，isaac)，

father(abraham，Y) in the rule can again succeed. The recursive subgoal wm _ _ _

ancestor(isaac, jacob) and one more level of recursion can h a p p e n ,袍

obvious that the recursive part and the non-recursive part of this recurp^ 麵 贿 终 巧

not mutually exclusive. However, even though a mutually exclusive nqt
. 、 • • . . : _ •

•.... ；._'> ；、.••:‘：、二-

26

exist, the evaluation of this recursive definition can terminate. The evaluation of the

recursive definition wil l eventually cause the subgosil father to be instantiated as either

father(joseph J) or father(judah J) which cannot be unified with any clause in the

program and thus this failure in unifying the subgoal with any father clause stops any

further recursion. Again, it shows that it is the unsolvable subgoal in the recursive rule

rather than the non-recursive part of the recursive definition that acts as an exit

condition.

Furthermore, the existence of a mutually exclusive relationship cannot guarantee

the existence of an exit condition because it is possible that the evaluation of such a

father(abraham,isaac). ancestor(abraham’isaac).
father (isaac，jacob) • ancestor (abraham Jacob) •
fatherQacob,Joseph). ancestor(isaac, Z)
father(jacob,abraham). father (X,Y),

a 门 cestor(Y，Z).

ancestor(isaac，Z)
/ \

/ \
father(abraham,isaac) ancestor(isaac,Z)

/ \
/ \

father(abraham，isaac) ancestor(isaac，Z)
/ \

/ \
father(abraham，isaac) ancestor(isaac,Z)

/ \
/ \ 、

father(abraham，isaac) •

-

Figure 2.10 Example showing that nontermination can occur
with the mutually exclusive relationship

27

recursive definition can never invoke those non-recursive clauses. The program in

Figure 2.10 shows such possibilities. In this program, the facts ancestor(abraham,isaac)

and ancestor(abrahamjacob) cannot unify with the head ancestor(isaac，Z) and thus they

are mutually exclusive and thus there is no further evaluation of the recursive definition

once one of the facts has been reached. However, the problem is that the facts can

never be reached once the evaluation of the recursive definition starts to proceeded. I f

the query ？- ancestor(XJ) is supplied, after the two facts are reached,

the backtracking mechanism causes the recursive rule also to be reached. As has been

illustrated in the search tree in Figure 2.10, the recursive subgoal ancestor wil l always

be instantiated as ancestor(isaac，Z) during the evaluation and thus the

non-recursive clauses can never be reached, Nontermination then occurs. In fact,

the mutually exclusive relationship between the facts and the recursive rule has no

effect on the termination of a recursive procedure. Therefore, the mutually exclusive

relationship between the recursive part and the non-recursive part of a recursive

procedure cannot guarantee proper termination.

In conclusion, it is hard to determine which part in a recursive definition is an

exit condition. Unlike the conventional programming languages, in which an exit

condition is always stated explicitly as a part of the decision control construct, an exit

condition in a Prolog program can only be established implicitly through some subgoals

or parameters in the recursive rule only. On the other hand, a mutually exclusive

relationship between the recursive clauses and the non-recursive clauses that is

characteristic of an exit condition in conventional programming languages is neither

sufficient nor necessary to establish an exit condition in Prolog. We therefore cannot

use the mutually exclusive relationship as an indicator of an exit condition. Without any

semantic knowledge, it is impossible to detect whether there is an exit condition. This

difficulty has become a great barrier to the development of any analytical approach foj

nontermination detection.

However, even when the necessary semantic knowledge is available, \\ cannot
• :， 、 ’

definitely show whether the evaluation of a recursive definition can terminate. l\

becomes more obvious when we consider the situation in conventippal prpgrft|toming

‘ 28

languages as an example. The explicitly stated exit condition in conventional

programming languages cannot guarantee termination. Although a certain condition has

been specified in a recursive definition as the exit condition, if the recursive definition

is erroneously defined, the evaluation can never reach the intended exit condition.

Therefore, nontermination can be avoided only if this recursive definition has both an

exit condition and an exit-condition reaching process at the same time. We also need

to investigate what constitute an exit-condition reaching process before we can provide

a solution to all these problems. For briefness, exit-reaching process is used instead of

exit-condition reaching process in the following descriptions.

2.4 Exit-reaching process

In addition to an exit condition, a process is required to bring the evaluation to

reach the exit condition specified. To detect the presence of such an exit-reaching

process, we must know how such a process is established in a recursive definition. By

comparing Prolog with conventional programming languages, we discover that the exit-

reaching process in Prolog programs is closely related to those parameters in the

recursive rule head and the recursive subgoal. They are closely related due to two facts:

(1) parameters are part of an exit condition, and

(2) parameters are used to pass values to the next level of recursion.

In general, an exit condition usually contain a variable and an invariant. During

the evaluation of a recursive definition, the value of the variable would be modified at

the different levels of recursion while the invariant always remains the same. When the

variable attains a particular relationship with the invariant, the exit condition becomes

effective and thus stops the recursion. This can be illustrated by the Pascal-like program

in Program (a) in Figure 2.5. This program has an explicitly stated exit condition N.烹

0，where N is the variable and 0 is the invariant. During the evaluation pf 器

recursive definition, the variable is continuously modified by the statement M N ： I

. A t the point where the specific relationship between the variable and the invariant,
' . • • 、

• ‘ . .

29

i.e., N = 0 achieved, the exit condition becomes effective and blocks the evaluation

from going into the recursive part again. The recursion thus terminates. Similarly,

termination can also occur if a specific relationship between variables is achieved. For

example, the condition N > X can serve as an exit condition in the below modified

version of Program (a) in Figure 2.5.

sum(Var N, X，Result: integer):

Var M, Y, R: integer;

Begin
If N > X

Then Result : 二 0
Else Begin

M := N - 1;
Y := X + 1;
sum(M, Y，R);
Result := R + N
End

End;

Since an exit condition must contain such a variable to be effective, this variable can be

referred to as an exit-variable. Hence, an exit-reaching process can be established only

if two conditions are both fulfilled:

(1) the recursive definition must be defined in such a way that the exit-variable can

be modified during the evaluation; and

(2) the exit-variable must be modified in a direction in which the specific

relationship between the variable and the invariant or between variables can be

achieved.

If condition (1) cannot be met, the evaluation of this recursive definition will cer^i j l ly

result in nontermination. The exit-variable remains the same during the sugce$sjy§
-:、:.'.筑、

levels of recursion and thus the exit condition can never be met. However. condUiqij (l)

only guarantees the existence of an exit-variable modifying process. If the ^ritrS^^ri^blp
. . 、 ： 發

- . / • -
- . - -

• : - r •

30

modifying process cannot modify the exit-variable to reach the exit condition, the

evaluation wil l end up in nonlermination as well.

Obviously, the fulfilment of condition (2) requires the fulfilment of condition (1)

as a prerequisite. If condition (1) cannot be satisfied in a recursive definition, condition

(2) wil l also be absent in the definition. Thus the detection of an exit-reaching process

can be conducted in two steps. Firstly, we detect whether an exit-variable modifying

process exists. If it does not exist, we can conclude that condition (2) does not exist

either and the exit-reaching process is absent. Hence nontermination is detected.

However, when condition (1) is found, we need to further examine whether the exit-

variable modifying process can act as an exit-reaching process. In other words, the exit-

variable modifying process is a potential exit-reaching process. To detect the presence

of an exit-reaching process, we first need to have a method to find the potential one.

Then we also need another method that can verify whether the potential process found

is an actual exit-reaching process. So we can detect an exit-reaching process only if we

have methods to detect the two cases.

In conventional programming languages, it

is quite easy to identify the exit-variable and the j j = = = = j

invariant used because the exit condition is stated ^ ^ ^ N，Result: integer);
explicitly. Since condition (1) demands an exit-

variable modifying process in the recursive Var M, R: integer;

definition, the exit-variable must appear some- Begin

where before the point at which the recursive call condition } }

is invoked. If such a variable is absent, it indi- then Result : = 0

cates that condition (1) cannot be met and non- .

termination wil l surely occur. In Figure 2.11, we sum(M, R);
Dpqi lit • =： R + fSl

use a Pascal-like program again to give a clearer ^^^ •一 -

illustration. The exit-variable and the invariant End；

are also N and 0 respectively. Although it is pjgm-e 211 ： ^

similar to Program (a) in Figure 2.5, it cannot

terminate. By examining this program carefully, we can see that the variable 汉 does
； ‘ • - ‘ -

• .- •

31

not appear before the recursive call. Therefore, the variable can never be modified

during the recursion. Nontermination happens due to the absence of an exi t-variable

modifying process.

I t follows that the method to detect an exit-variable modifying process is quite

simple. First, we identify all the possible condition variables. By analyzing the recursive

definition, we can know whether these variables appear in any statements before the

recursive call. I f they are found in some statements, we then examine the recursive call

to find what variables are used and whether these variables also appear in the same

statement. In Program (a) in Figure 2.5, we first examine whether the variable N exists

before the recursive call. Then we examine what variable is used in the recursive call,

which i s M in this case. Since both of them exist in the statement M ; = N - i , an exit-

variable modifying process is considered to be found. We shall find that the same

method can be applied to Prolog programs.

In Prolog, as discussed in Section 2.3’ the exit condition is stated implicitly

through certain subgoals in the recursive rule or some parameters in the head of the

recursive rule. To simplify the discussion, we first consider the case of the exit condition

that is formed by parameters only. If the example in Figure 2.8 is examined, we can see

that nontermination occurs if an uninstantiated variable is supplied to the parameter

[X\Y] . This situation in fact is part of the well-known occur check problem. However,

if any value or instantiated variable is supplied, the parameters in the head of the

recursive rule in Figure 2.8 can act as an exit condition because the parameters can be

unified with only a certain range of values; in this case, it is any non-empty list. Once

the value supplied is not in this range, i.e., the empty list in this example, the unification

of this recursive rule fails and the next level of recursion is denied. Hence, for the

program in Figure 2.8，we can consider that the exit-variable is the parameter [X \ Y l

while the invariant is the empty list [] • Obviously, the particular relationship betw^eiji
- • , . . - - I •

the exit-variable and the invariant that needs to be achieved to exit the recursion is;

the value supplied for the parameter is an empty lUt.

32

| j = — — = 1 1 Although the parameter does not appear in the body

, , n 、 of the recursive rule, the head-tail separator in the
a(1,0). .

parameter [X\Y] does the job of the e x i t-vanable

a(f(X), N) ：- a(X, N) modifying process so that condition (1) is met.
L — — — — ^ Therefore, the parameter [X\Y] does not only
Figure 2.12 , . , ,

constitute an exit condition but also an exit-variable

modifying process. Furthermore, the head-tail separator always cuts one element from

the head of the list at each level of recursion. Eventually all the elements wi l l be taken

away. A n empty list wi l l result and thus the exit condition is met. I t satisfies condition

(2). Thus, it also works as an exit-reaching process. Besides the list, structured data can

also be u，sed as a parameter in the head of a recursive rule to have similar effect.

Similarly, we can consider the parameter/fZ) in Figure 2.12 to be the exit condition.

When a value supplied to the parameter is not a structured data with the predicate

name f ’ the next level of recursion wil l be blocked. On the other hand, the parameter

itself can be considered as the exit-variable while the invariant is any term which is

neither a variable nor a compound term with predicate n a m e / .

However, if other data structure is used

as the parameters in the head of the recursive a(1，X，0).

rule，the result is quite different from the a(Omi， Ĵ̂ ix，Y，z)，a(Z，Y’N).

above two cases. When a certain constant is

used，as what is illustrated in Figure 2.13, it can 二

still work as an exit condition in some modify(1,3,1).

situations. In Figure 2.13, the first parameter 丨；—2.13

in the recursive rule head is 0，thus the uni-

fication fails when any value other than 0 is supplied. Therefore the value 0 is the

invariant of the exit condition. But what is the exit-variable? By analyzing the recursip

definition, one wi l l see that the first parameter cannot act as an exit-variable bepaws? jt^

value is already fixed to be 0 . Actually, the exit-variable is in the second p a r ^ ^ g ^ ^

The exit-variable modifying process is provided by the subgoal modiJy(XXZ) . S i i i ^ ^ ^ f

first parameter of the recursive subgoal is Z and the only parameter from thg 辩 0 i终

33

X in the subgoal modify，we can conclude that the second parameter X in the head

acts as the exit-variable.

|| Through the discussions of the different

Program (a) cases of using parameters as the exit condition,

we can see how the exit-variable modifying

g îx N) process, or even the exit-reaching process, is

modify(X,Y), a(Y,N). closely related to the parameters used in the

modify(1 2) recursive rule head and the recursive subgoal.

nnodify(2,3). Although it demands different skills to state an

modify(3，4). exit-variable modifying process with different

types of parameters, we can see that the
o 「 o g r帅 (b) presence of an exit-variable modifying process

a(X,N) can be detected by analyzing the parameters
modify(X，Z)，a(Y,N). i t is due to the fact that the

modify(1，2). parameter is a part of the exit condition. In

[^Q^il^p Prolog, the exit-variable, and sometimes the

invariant, is constituted by the parameter.

Figure 2.14

In the case of the exit condition that is

made up of subgoals, parameters play a significant role as well. In Program (a) in

Figure 2.14，since all the parameters in the head of the recursive rule are variable, they

can no longer act as an exit condition. This recursive definition can terminate because

of the subgoal modify(X，Y) • Since the first parameter of the subgoal modify can only

accept the values 1，2，3 , any value out of this range can cause it to fail and stop further

levels of recursion. Moreover, the subgoal modify plays the role of an exit-variable

modifying process. It is responsible for the change of the first parameter in each ley$?l

of recursion. By comparing it to Program (b) in Figure 2.14, which does not 樹用 i n祐g，

we can see the important role of a parameter in the exit-reaching process. By

the subgoal modify (X，Y) to modify (X,Z)，the exit-variable modifying procff^^ is dcr
. • • • ' • ..

stroyed. In this case, its importance is due to the fact that the^e p^r^me^rs a ^
responsible for passing data from one level of recursion to the next lev^ej. Jf the linkage

34

is broken, the exit condition can never be reached. Therefore, an exit-variable

modifying process in a Prolog program can be identified with a similar method applied

in conventional programming languages. First we analyze the subgoal preceding the

recursive subgoal. I f there exist some subgoals that have the parameter corresponding

to the exit-variable, we can consider the exit-variable modifying process to be present.

In Program (b) in Figure 2,14, since the parameter Y in the recursive subgoal is not

present in the subgoal modify，an exit-variable modifying process cannot be established.

Hence, it is possible to have a method to detect an exit-variable modifying

process through the analysis of parameters involved in the recursive rule. On the other

hand, it is difficult to verify whether an exit-variable modifying process is also an exit-

reaching process. Semantic knowledge is needed to determine the direction of the

evaluation of the recursive definition that will be brought about by the exit-variable

modifying process found. However, in pure Prolog, because no built-in predicate exists,

every term should be defined in the program. It allows us to develop a method to

examine what kind of data would be passed through the exit-variable modifying process

during the successive levels of recursion. In Chapter 4，we shall show how one can

verify an exit-variable modifying process through data analysis.

2.5 Parameter Based Detection

In considering how to terminate a Prolog recursive definition, two aspects of the

termination requirement can be identified:

(1) exit conditions and

(2) an exit-reaching process.

However, both of them must co-exist in one recursive definition in order to make 中is
‘：‘- ”

definition terminate properly. When considering what an exit condition is, we c m S经e

that the presence of an exit condition implies the presence of an exit-reaching gĵ ppps ,̂

The absence of a mechanism in a recursive definition to direct its evaluati^a lo the
• •- • •. ^ -

35

supposed exit condition is equivalent to the absence of an exit condition in this recursive

definition. On the other hand，the presence of an exit-reaching process implies that

there exists at least one exit condition for the process to reach. Therefore, they are in

an interdependent relationship.

Because of this interdependent relationship, any nontermination detection

method which considers only one aspect of the termination requirement or tries to

handle them separately cannot succeed. Moreover, because an exit condition is stated

implicitly in Prolog, it seems to require semantic knowledge for detecting exit conditions.

I t becomes a great problem in the attempt to develop an approach to detect

nontermination in Prolog.

However, the interdependent relationship also implies that a method that can

detect an exit condition can also detect an exit-reaching process or vice-versa. In

Section 2.4, we show the possibilities to detect an exit-variable modifying process, i.e.,

the potential exit-reaching process, through the analysis of the parameters in the

recursive rule. Because of the interdependent relationship between an exit condition

and an exit-reaching process, the task of detecting nontermination in Prolog programs

can be accomplished if we can have a method to identify an exit-variable modifying

process and then a method to verify whether it is also an exit-reaching process.

Therefore, we propose a nontermination detection technique based on parameter

analysis as follows:

(1) By analyzing the parameters, we first find the potential exit-variable modifying
process. In Prolog, since all the exit-variables are made up of the parameters \\\
a recursive subgoal, to detect a potential exit-variable modifying process U
equivalent to detect a parameter modifying process

(2) I f a parameter modifying process exists in a recursive definition, it can be sho\y^
in pure Prolog that there also exists a technique that can detect whether 终 Pjrpjpg
program wil l terminate without any prior knowledge of the presence o(

condition. : 。
• : . •••.

36

Since the absence of any parameter modifying process implies the absence of an exit-

variable modifying process, this can show how the detection of a parameter modifying

process plays a role in nontermination detection in Prolog. Actually, as we shall see

later, the detection of a parameter modifying process constitutes the basis of our non-

tracing nontermination detection technique. Therefore, our technique for

nontermination detection consists of two parts: detection of parameter modifying

processes and verification of the detected parameter modifying processes. The first part

of our technique wil l be discussed in Chapter 3. We shall explore how to detect the

parameter modifying process in Prolog programs. The second part of the technique is

based on an analysis of data passing through the parameters involved in the parameter

modifying process. In a pure Prolog program, it can be shown that it is possible to know

what values can pass through the parameters in a parameter modifying process merely

by analysis. It will be discussed in Chapter 4 in detail. However, a program structure

analysis must first be performed to identify all the recursive definitions in a Prolog

program before parameter analysis and data analysis can be conducted. As implied by

the above discussion, an exit-reaching process only exists in a recursive definition.

Therefore, only the recursive definitions require our concerns in nontermination

detection and parameter analysis and data analysis should be conducted on them alone.

Since it is trivial to detect a recursive definition, no detail on recurisve definition

detection algorithms is given in the thesis.

In conclusion, our analysis of the relationship between recursive definitions and

nontermination is intended to develop a new nontermination detection technique in pure

Prolog. With the emphasis of the relationship between the exit-reaching process and

nontermination, it can be shown later that this provides a new starting point to detect

nontermination in pure Prolog programs. In the following chapters, we shall see how an

exit-reaching process can be detected step by step by analyzing the parameters and
‘ • .

used in the recursive definitions of a Prolog program. Therefore, our discussion abuye

provides a basis to develop a technique based on a compile-time program slfrwiQUlje

analysis approach instead of the run-time tracing technique. Moreover, underst^iii^ing
.：''v •J、""."-

of the cause of nontermination in pure Prolog programs gives us insights in deyelopini^

methods to overcome the limitation of the run-time tracing technique.
37

CHAPTER 3 —Parameter Analysis

To detect whether a parameter modifying process is present in a certain recursive

definition, an appropriate technique is needed. However, a parameter modifying

process cannot be detected by analyzing the parameters alone. To detect whether

values in a parameter are modified during recursion, one needs to analyze the values

transferring in the parameter too. In this chapter, however, a technique, parameter

analysis, which can identify a set of potential parameter modifying processes by

analyzing the parameters alone is developed. It is based on detecting some unique

characteristics of potential parameter modifying processes that are reflected in the

relation among the different parameters in a recursive definition. The analysis consists

of two steps:

(1) to detect the presence of any parameter links in a certain recursive definition,
and

(2) to verify whether any parameter link found is a cyclic parameter link.

In Section 3.1, we shall discuss what a parameter link is in a pure Prolog program and

how it is related to the parameter modifying process. In Section 3.2, we shall further see

how a parameter link can become a cyclic parameter link and why a cyclic parameter

link is a potential parameter modifying process, which must exist in a recursive

definition in order to have the presence of a parameter modifying process. After

discussing what constitutes the characteristics of a potential parameter modifying

process, we introduce our systematic approach to detect the process through graphical

representation of parameter links. A set of graphic notations is introduced to explain

how the technique works. Finally algorithms are also provided to show how one can

detect a potential parameter modifying process in general.

38

3.1 Parameter Link

The concept of parameter link is developed as a preliminary step for identifying

a potential parameter modifying process. A parameter link is considered to be present

between a parameter in the head of a certain recursive rule and a parameter in the

corresponding recursive subgoal if the value of the parameter in the recursive subgoal

is dependent on the value of the parameter in the recursive rule head. When there is

a dependent relationship between a parameter in the recursive rule head and a

parameter in the recursive subgoal, the value used in the parameter in the recursive rule

head wil l affect the value assigned to the parameter in the recursive subgoal. Due to

the characteristics of the Prolog execution model, the same variable in a rule cannot be

instantiated to different values. If we want to receive a value from a previous level of

recursion and then modify it and pass it to the next level, we must have at least two

different variables that have a dependent relationship. Therefore, this dependent

relationship between two parameters can also be described by a data transfer analogy.

This analogy will be used to facilitate our discussion. In the following sections, we shall

discuss how a parameter link relates to a parameter modifying process and how a

parameter link can be identified in different kinds of Prolog recursive definitions.

3.1.1 Parameter Link and Parameter Modifying Process

As discussed in Section 2.4, an exit-variable needs to be a parameter in Prolog

programs. In other words, a parameter modifying process is a potential exit-variable

modifying process. Since an exit-reaching process implies the presence of an exit-

variable modifying process, a method detecting parameter modifying process can provide

potential exit-reaching processes for our further analysis. The concept of parameter linH

is thus introduced to facilitate the detection of parameter modifying process. To sep

how a parameter link relates to a parameter modifying process, we must first understand

fully what constitutes a parameter modifying process. A parameter modifying process

consists of two aspects:

39

(1) it can modify a parameter in a recursive definition at each level of recursion, and

(2) the effect of the modification can be passed along to successive levels of

recursion continuously.

Aspect (1) of the parameter modifying process is obvious. As a parameter modifying

process, it must be capable modifying a parameter at every level of recursion. However,

aspect (2) needs some further elaboration. It will become clearer if we consider the

opposite case.

In a recursive definition, ii
goal exit_if_NOT_in_range(Variable),

there may exist a process that can mo^cvanabie. New_variabie),
goal.

modify a parameter at each level of x̂it if NOTjn̂ ranged). modify(o,i).
. cxit_if_NOT_iii^range(2). modifyCU).

recursion separately. But this pro- exitjf一NOT_in_range(3). mo^as).

cess does not really modify the in-
goal

volved parameter if the recursive 一 ^ ^ ^ 一 / \

exit_if_NOT_iiurange(l) , , \

definition is considered as a whole. modify(i，2)
This can be shown by the example goal

— \
in Figure 3.1. In Figure 3.1，the exit_if_NOT_in_range(i) / \

modify (1,2) \

s u b g o a l modify (Variable, 、\
\

New一Variable) is intended to modify

the parameter variable. Because the mo^aa)

variables with the same name in the •

same rule cannot be instantiated to

different values in Prolog, another Figure 3 . i

variable New一Variable, instead of the original Variable, is used to contain the result of

the modification.

Although the subgoal modify (Variable’ New一Variable) can modify the paraipeter

Variable at each level of recursion, Variable still remains the same throughou| (h^

evaluation as shown by the search tree in Figure 3.1. The reason is obvious: since th窃

parameter New一Variable which contains the result of the modification does not ^ff^c)

any parameter in the recursive subgoal, the change made on the parameter Variakk

40

cannot be passed onto the next recursion level. As a result, all the parameters in the

recursive definition are instantiated to same values during every level of recursion. Thus

nontermination results. This is the reason of why a parameter modifying process cannot

really fulfill aspect (1) without fulfilling aspect (2). No parameter can really be modified

if aspect (2) cannot be met.

However, aspect (2) of the parameter modifying process requires that there exists

at least a process which can pass data from the previous level of recursion to the param-

eter modifying process and subsequently can also pass the result of the parameter

modifying process to the next level of recursion. Such a process can be achieved if:

(1) a parameter can be supplied with a value from the previous level of recursion,

and

(2) the value of the modified parameter can be passed onto the next level of

recursion.

To have a value supplied from
eoairVar) exit_if_NOT_in_range(Variable), , , ‘

in<̂ (Variabie, New—Variable), the pievious level, somc parameters
goal(Var).

exit if NOT in^ed). modify(o,i). —St appear in the head of the recursive

rule. Similarly, to have a value passed
一 一 “ modify(3,4).

onto the next level of recursion, there

must be requires some parameters in the

exit.if_NOT_m.range(i) / \ rccursivc subgoal. The lesult of the
modify(l^) \

〉ai({̂) absence of any parameter in the recur-

\ sive subgoal has also been shown in

modify(î) \ Figure 3.1. But the presence of parame-

ters in the recursive rule head and the

«dt_if_NOT_m_range(i) recuTsive subgoal caiuiot guarantee the

口） • presence of a parameter modifying

© ： uninstantiated parameter • Process in the recursive definitipq. |l>
= = = = = ! 1 Figure 3.2, there is a recursive definitioQ

Figure 3 . 2

similar to the one in Figure 3.1 p^pp}

that there are some parameters in the recursive rule head and the recursive subgOQi.

• • .

41

Although there exists a parameter Var in the recursive rule head and the recursive

subgoal, Var is not related to any parameter appearing in the recursive rule body.

Therefore, the result of the modification can never be passed onto the next level of

recursion. Moreover, the result of the modification from the previous level cannot affect

the modification of any parameter in the present level of recursion. This is shown by

the search tree in Figure 3.2. Parameters are instantiated to the same values if the

parameters in the recursive rule head and the recursive subgoal do not related to the

parameters in the recursive rule body.

Since a parameter link indicates the presence of a dependent relationship

between a parameter in the recursive rule head and a parameter in the recursive

subgoal, a parameter link can indicate that values can be received from the previous

level of recursion and subsequently some modified values can be passed onto the next

level of recursion from one level of recursion. Although the presence of a parameter

link itself cannot completely satisfy the requirements of aspect (2) of the parameter

modifying process, the existence of a parameter link in a recursive definition implies that

a parameter modifying process of one level of recursion exists in the recursive definition.

Therefore, a parameter link is a necessary condition for the presence of the parameter

modifying process. That is because the ef fect of modification can be passed onto

successive levels of recursion continuously only if there at least exist some mechanisms

to receive and to pass on the values in each level of recursion. Without a parameter

link, no parameter modifying process can be present. In other words, parameter links

serve as an indication of all the possible parameter modify processes in a recursive

definition.

With respect to aspect (1) of the parameter modifying process, parameter links

also cannot completely satisfy its requirement. Detecting a parameter link, we can only

conclude that the two parameters from the recursive rule head and the recursive

are in a dependent relationship. But a parameter link does not guarantee (ji^i tb^

content of involved parameters must be changed during recursion. For e x̂ai[ppjg，ijf | | | |

procedure defining the subgoal modify (Variable, New一Variable) is 移

procedure consisting of only one fact: modify(1,1) in the above two example ,̂,

- . i . 1 -‘ . • • 5 y . -J- > - .

42

instantiated to the parameters Variable and New—Variable are all remained as 1 even

though a parameter link can be established in the recursive definition. We can be sure

that parameters involved in a parameter link can be modified during the recursion only

after we have analyzed the data transferring through the parameter link. However,

parameter links in a recursive definition provide us with a pool of parameters that

involve in the potential parameter modifying process. Thus parameter links can serve

as an indicator of parameter modifying processes. Moreover, since a parameter

modifying process is a potential exit-variable modifying process, the parameters involved

in parameter links are also the potential exit-variables in a recursive definition.

3.1.2 Parameter Links of Multi-Parameters

Sometimes, a parameter link is not obvious. A parameter link can also be estab-

lished between a parameter in the recursive rule head and a parameter in the recursive

subgoal through a number of other parameters in the rule. In Figure 3.3，both the

parameter Variable，which is modified by the subgoal modify, and the parameter New一

Variable, which contains the result of the modification, do not appear as any parameter

in the recursive rule head or the recursive subgoal. Yet this recursive definition includes

a parameter modifying process. We can see this clearly if we consider it in terms of the

dependent relationship. In the recursive definition in Figure 3.3, the parameter in the

recursive subgoal, A, is dependent on the parameter New—Variable because of the

subgoal link2(New_ Variable⑷ while New_ Variable is also determined by Variable.

Moreover, the parameter Variable depends on the parameter X through the subgoal

linkl(X，Variable) where X is the parameter in the recursive rule head. Thus, A, (tig

parameter in the recursive subgoal, can be considered to be dependent on X � 购

rameter in the recursive rule head. A parameter link exists in this recursive definftiqi^

between parameters A and X though it is established through a transitive relat|pn§)tlig,
-、’.. >

• .- • . ；
. » ‘ ‘ • , 」

.-、.，，.，.

I - …

43

goal(4, exit).

goal(X,Y) linkl(X, Variable),
exit_if_NOT_in_range(Variable),
mo^y(Variable, New一Variable),
link2(New_Variable,A),
goal(A, Y).

exitJf_NOT Jn_range(l). modify(0,1).
exit_if_NOT_m_range(2). modify (1,2).
exitJf_NOT_in_range(3). modify(2,3).

modify (3,4).

lmkl(X,X). lmk2(Y,Y).

goal(2,X)

exit_if_NOT_in_range(2) / \

modify(2,3) / \

link2(3,3) \

_ _ _ _ _ goal(3,X)

{ ？ / I \

exitJf_N0T_m_range(3) / \

modify(3,4) / \

lmk2(4,4) •

參

Figure 3 . 3

3.1.3 Parameter Links in Indirect Recursive Definition

So far, we have focused our discussion on direct recursive definitions only. We

must also consider the case of indirect recursive definitions to have a complete picture

of parameter links. In Figure 3.4，there is an indirect recursive definition. To solve

goall, the subgoal goal2 must be evaluated. But the subgoal goal3 must be first evaju射-

ed to solve goal2. Then the evaluation oigoalS requires goall to be solved. IUustr^t|i[i|

this by the search tree in 3.4, we can see clearly how these three rules indirectly

a recursion. Moreover, the search tree in Figure 3.4 also shows that a p^l^mp^pj

modifying process is present in this indirect recursive definition througjiput 事

•

44

successive levels of recursions. If j p = = = = = = = ^

the recursive definition is examined, goall(X,Y) exit_if_NOT_m_raiige(X), modify(X^),

, . , , goaI2(A,Y)." 一
we can see that, m the recursive rule

goall, there is a dependent goal2(X,Y) linka(XA), goal3(A,Y).

relationship betweenZ, a parameter g 。必⑶力：• g 。 叫 入 灯

. 丄 , , , , . linkaCX^. liiikb(Y,Y).
m the recursive rule head, and A , a exit if.NOT.in ranged). modify(U).
n^irj^m^-tPr in the rpriir^i'vp cnhanal exitJf_N0TJn_raiige(2). modify(2^). parameter in the recursive subgoal. exitJf_N0TJn_raiige(3). modify(3,4).

Rules goal2 and goalS are in a

similar situation. By applying the (2.x)
exiLlf_N0TJn_range(2)Z \

definition of parameter link —(2,3) ^ goai2(3’X)

provided above to these cases, we iinka(3;ir^ g^3(3,x)

can conclude that a parameter link iinkb(3,3) goaii(3,x)

exists in the rules of this indirect QyAjmijnjsnQQ^/^

recursive definition. Furthermore, modify(3,4)
L , 4 1. 1 . 1 linka(4,4) goal3(4.X)
because the parameter link in rule ^ ^ \

linkb(4,4) goall (4,X)
goall passes data to rule goal2

through the first parameter in the goaii(4.exrt)

recursive subgoal while the Figure 3.4

parameter link in rule goal2 receives

data from rule goall through the first parameter in the head, data can be passed from

the parameter link in rule goall to the parameter link in rule goal2. We can consider

that the parameter link in rule goall is linked to the parameter link in rule goal2.

Again, the same situation happens between the rules goal2 and goal3 and also the rules

goals and goall. Since there exists a dependent relationship between a parameter in the

head of rule goall and a parameter in the recursive subgoal of rule goal3, a parameter

link is present in this indirect recursive definition. It is similar to the case of direct

recursive definition. In summary, a parameter link exists in an indirect recursive

definition if:

(1) parameter links exist in each rule involved in the indirect recursive definition,

and

(2) at least one of the parameter links in each rule can be linked to the parameter

link in the rule corresponding to the recursive subgoal.

45

3.1.4 Parameter Links with Special Parameters

Moreover, in pure Prolog, a parameter link can be actually formed in three ways:

(a) through some subgoals,
(b) through some special parameters, or
(c) through some subgoals and some special parameters.

I n the above
Program (a) Program (b) examples, all the

g ⑷(0, e 邮 go 识0’ e 邮 parameter links
goal([XlA], Y) goal(A, Y). goal(f(X). Y) goal(X, Y). ,

found are formed

Search Tree for Example (a) Search Tree for Example(b) by subgoals. We
shall refer to them

goal([l^,3], Y) goal(f(f(f(0))), Y)
a s s u b g o a l

goal([2,3]. Y) goal(f(f(0)), Y) parameter links.

In Figure 3.3，the
goal([3], Y) goal(f(0), Y)

parameter link is

goal(n, Y) goal(0, Y) f o r m e d by a

sequence of sub-
goamexit) g。al(0，exit) goals： linkl(X，

Figure 3.5 一 Variable), exit一
if NOT in ran-

ge (Variable)’ modify (V a r i a b l e ， N e w 一 Variable) and link! (V a r i a b l e , A). In Figure 3.4，the

sequence of subgoals that form the parameter link are exitjf_NOTJnjange(X) and

modify(X，A) in rule goall, linka(X，A) in rule goal2’ and linkb(X，A) in rule goal3. But

a parameter link can be established through some special parameters using lists and

structured data. In Program (a) in Figure 3.5, we can see that, due to the head-tail

separator, only the tail part of the list in the first parameter in the rule head can be

passed onto the next level of recursion through the first parameter in the recursive sub-

goal. Therefore, it can be considered as a parameter link between the first

46

goal(口，odd).
goal([^, even).

goal([X|A], Y) exitJf_NOTJn_range(A), modify(A^J, goal(A_, Y).

exitJf_NOTJn_range(n).

exit_if_NOT_m_range([X|Y]) :- atJeast_one_elemeiit(Y).

atJeast_one_element([X]).
at 一 l e a s t 一 o n e 一 e l e m e i i t ([X f L]) .

modifyOXlL], L).

Figure 3 • 6

parameter in the recursive rule head and the first parameter in the recursive subgoal.

A similar situation happens in Program (b). In this case, structured data are used to

achieve a parameter link. However, subgoals and special parameters can also be mixed

together to build a parameter link. In Figure 3.6，due to the list used in the first

parameter in the recursive rule head, the first parameter in the head is linked to the

parameter 乂 in the rule body. Then^l is linked ioA_ through the subgoal modify(A4」

where A_ appears as one of the parameters in the recursive subgoal. Therefore, a

parameter link is established using both subgoal and special parameter. In these cases，

we shall refer to the parameter links as special parameter links.

3.1.5 Parameter Links of the Same Name Parameters

In addition to subgoals and special parameters, a special case should also be

considered when we construct parameter links through different data structures. I t is

the case of parameters with the same name in the same rule. We can consider that 钱

parameter link exists in both Program (a) and Program (b) in Figure 3.7 because dat今

can be passed from the recursive rule head to the recursive subgoal in both case§, Py

the search tree of Program (a) in Figure 3.7, we can clearly see that a value fe辦熊

passed onto the recursive definition by the parameter X can surely be passec) {tiirpugti
• • • - ' ^

the successive levels of recursion. It is due to the fact that the first parameter in

recursive rule head and the first parameter of the recursive subgoal share tlie

47

[= = = = ^ = = = j] name. This is also true

⑷ Pregnun (b) 化【the rule gl in
g(X, Y) :- modi^B), gl(X, A) :- g2(X, A).

^ B). g2(x. A) ：- modify(x, Y), gi(Y. A). Program (b)

3 1 1 S I 3 1 3 1 ’
searcn Tree lor trogiam ⑷ Search Tree for Program (b) with the However， a pa-
with the query "？• g(l,X)" query •?- gl(l, X) ”

g(i 肩） rameter link formed by
gi(i.®〉

modrfy1i.2) common name pa-

modifytT：^ m o d i f y (i , 2) Z rameters can never make
\ np/p any modification on the

mod丨fy(1.2) go.®) , 2 (2 Q)
I modify(2.3)z 31(3)⑩） data passing these
• parameters since the pa-

«

⑩：uninstantiated parameter rameters of the same

Figure 3.7 name in the same rule

must be instantiated to the same value in Prolog. Since modification of the transferring

values (which is required by aspect (1) of a parameter modifying process) is absent in

this kind of parameter links, the two same-name parameters in the recursive rule head

and in the recursive subgoal cannot form a parameter link. So Program (a) is

considered to have no parameter link. But Program (b) illustrates a different situation,

where a parameter link is considered to be present.

The two parameters sharing the same name in the rule gl are important to

establish the parameter link in Program (b). In the rule g2 of Program (b), the first

parameter in the rule head forms a parameter link to the first parameter in the

recursive subgoal through the subgoal modify. But a parameter link cannot be

established in this indirect recursive definition if there is no parameter link in the rule

g l . In this case, the parameters sharing the same name in the rule gl provide a channel

for passing on the modified data from the rule g2 of the last level of recursion to the

rule g2 of the next level of recursion. In this situation, the same-name parameters in tt̂ e

rule 2I must be considered to form a parameter link in the rule gl so that we do not

miss the parameter link existing in the whole indirect recursive definition.
• ‘

48

The situation illustrated in Program (b) is only one of the many special cases in

which a parameter link can be considered to exist between two same-name parameters.

These special cases can only arise in a recursive definition with other parameter links

formed by subgoals or special parameters. It is also true in Program (b) which has a

parameter link formed by the subgoal modify(XJ) in the rule g2. Since a complicated

situation can result from using different types of parameter links, we need to develop a

systematic approach to detect and analyze the recursive definition with different kinds

of parameter links. This will be discussed in Section 3.3 in detail. In general, we

conclude that a parameter link is formed between two same-name parameters in the

recursive rule head and in the recursive subgoal only if it can pass data to other

parameter links formed by subgoals or special parameters.

3,1.6 The Significance of Parameter Links

In conclusion, the relationship between a parameter link and a parameter

modifying process is clear. A parameter link is an indicator of all the processes that

involve passing and modifying some values from some parameters in the head to some

parameters in the recursive subgoal of one level of recursion. Although a parameter

link can always ensure that some values can pass through at least one level of recursion,

it cannot guarantee that the value passed to the next level of recursion will always be

different from the value received from the previous level. This is particularly true in the

case where the parameter link is formed by subgoals. In Figure 3.4，we originally have

a parameter link that can change and pass values in different levels of recursion.

However, a little change in the procedure defining the subgoal modify(X^) can take

away the modification ability of the parameter link. The parameter link no longer

transfers a different value if the procedure modify is alternated as:

modify(l,l). modify(2,2). modify(3,3).

Therefore, parameter links alone are too weak for detecting parameter modifying

processes in a recursive definition.

49

However, we may see the significance of parameter links with respect to aspect

(2) of the parameter modifying process. With parameter links, we have a tool to

identify all the possible channels in a recursive definition for passing (but not modifying)

data through one level of recursion. As shown above, the ability for passing data is a

necessary (but not sufficient) condition for the presence of aspect (2) of the parameter

modifying process and consequently a necessary condition for the existence of any

parameter modifying process. Thus, the detection of parameter links in a recursive

definition indicates a potential presence of aspect (2) in a recursive definition. There

are two implications:

(1) If no parameter link can be found in a recursive definition, one can be sure that

it is a nonterminating recursive definition^

(2) I f there exist some parameter links, further steps should be taken to test for the
presence of a parameter modifying process.

Therefore, as indicated in aspect (1)，to construct parameter links in a recursive

definition provides a preliminary test for nontermination in Prolog. Furthermore, it is

a test without using any semantic knowledge as the detection of parameter links does

not require any semantic knowledge. It constitutes the first step of our non-tracing

s eman t i c -knowledge-free pure Prolog nontermination detection technique. Parameter

links are thus important in providing a basis for the further steps in nontermination

detection. After identifying the parameter links, one can isolate all the possible

candidates for the further detection of the parameter modifying process in a recursive

definition.

1. A recursive definition without any parameter link usually run into pncl-
less recursion once the recursive definition is evaluated. However, ^i^qh
a recursive definition can sometimes be prevented from nontermination “ “
cause no recursion can be invoked under some situation. For example/ if
we supply the query "？一 g { l , X) “ for the following recursive definitlqni
no nontermination occurs although nontermination will be the r^Qult i j
the query "？- g (X , Y) " or "？- g (2 , X) " is supplied. ••；••"'"AX

g (X , Y) :- a(X, A) , g(P , Q) .
a (2 , 3) .

50

3.2 Cyclic Parameter Link

However, the presence of a parameter link cannot guarantee that data can be

passed through other successive levels of recursion after the. first one. The example in

Figure 3.8 shows how a recursive definition can have no parameter modifying process

even though some [j = = = = = = = = = = = = |

parameter links are
^ g(X, Y, Z)

present. I f the query P- y, z) ：. change(X, Q, c h a W T ^ i ^ Y 2)

g(Xy Yy Z) is given for the cnangeu’ 〜 g ， “ 〈 7

evaluation, the value of 2 changc(l,2). changed, 2) g(X, Y. 2)

will always be passed changed,3). •
change(l,4).

onto the next level of :

recursion through the

third parameter of the figure 3.8

recursive subgoal. But the value is also lost in every level of recursion. Although the

parameter link between parameters X and C can transfer data through one level of

recursion, it does not pass data continuously throughout every level of recursion. This

kind of parameter link cannot really establish aspect (2) of the parameter modifying

process. Although it can pass some values to the next level of recursion, no value is

passed on continuously during the recursion. And it does not provide a means to modify

the data throughout the recursion. The search tree in Figure 3.8 clearly shows that the

third parameter of the recursive subgoal is always instantiated to the same value in an

endless recursion. I t is obvious that an exit condition can never be reached in this

situation. In fact, to have data passed through the successive levels of recursion

continuously, a recursive definition must include not only a parameter link but also a

cyclic parameter link.

A cyclic parameter link is said to exist in a recursive definition when:

(1) there is a dependent relationship extending over all levels of recursion, ^nd

(2) there are two parameters in two different levels of recursion, mH

51

(3) these two parameters occupy the same position in the parameter list of the
recursive definition.

The parameter list of a direct recursive definition refers to the parameters used in the

recursive subgoal and the parameters used in the head of the recursive rule. For

example, the recursive definition below has a parameter list of n parameters.

g(Xi，X2，…，XJ :-...，g(Yi，Y2,…，Yn)’ . . . •

A cyclic parameter link is formed if there is a dependent relationship between X^ and

Yj, or there are dependent relationships between X^ and Y】and between Xj and Yj. In

the following paragraphs, we shall show how a cyclic parameter link can be constructed

out of parameter links. We shall also explain how a cyclic parameter link can ensure

that the result of modification will be passed onto the different levels of recursion. In

fact, a cyclic parameter link represents a dependent relation extending over all levels of

recursion. Then the difference between the cyclic parameter link in the direct recursive

definition and the cyclic parameter link in the indirect recursive definition will be

discussed.

Before we begin our discussion on cyclic parameter link, we must first look at

how data are transferred in Prolog programs. Two different situations will need to be

considered separately:

(1) passing data from one subgoal to another subgoal within the same rule, and

(2) passing data from one rule to another rule.

There are two ways to accomplish data passing: (1) Data are passed by using parameters

with the same name, and (2) data are passed by using the parameters at the same

position in the parameter list of a recursive definition. In situation (1)，dat今终I[擎

transferred through parameters with the same name. We have seen many examples

the discussion of parameter links. In situation (2)，parameters at the same posiUpn jp

the parameter list are used to pass data between different rules. Situation (2) [叩pe购

when a subgoal in a rule is defined by a procedure that includes some rules, Purfiig the
• • • . . . , __ -

evaluation of this rule, this particular subgoal needs to be solved, so th^ î Qifip^ îpQ
•• - •.: V '- ' ,

y.、-- 一

52

process as described in Figure 2.1 is invoked to solve it. This subgoal wil l be unified

with the head of the rule defining this subgoal. Therefore the parameters in the

parameter list of the subgoal are unified with the parameters at corresponding positions

in the parameter list of the head of the selected rule. If any parameter in the subgoal

in the original rule has already been instantiated to any value, the parameter at the

same position in the parameter list of the head of the selected rule now has also the

same value. From another point of view, the value in the subgoal of a particular rule

can be considered to be transferred to the head of another rule through the two

parameters at the same parameter list position of the subgoal in the original rule and

the head of the selected rule.

To establish aspect (2) of the parameter modifying process in a recursive

definition, the recursive definition must have a parameter link to permit data to be

transferred between successive levels of recursion. Therefore, when one considers how

to establish aspect (2) of the parameter modifying process, he is actually considering

how to pass data along parameter links during recursion. If we examine the evaluation

of a recursive definition, we can see that passing data from one level of recursion to the

next is equivalent to passing data from one rule to another rule (although the another

rule is equivalent to the original one in a direct recursive definition). Therefore, passing

data between different levels of recursion is accomplished by parameters at the same

position in the parameter list of the recursive definition. To simplify our discussion, we

can say that two parameter links are connected to each other if the following situation

happens:

In a certain rule, a parameter link is established between a parameter in the
rule head and a particular parameter in a certain subgoal in the body. This
subgoal invokes another rule which also has a parameter link and this
parameter link extends from a parameter in the rule head. This parameter ivi
the rule head has the same parameter list position as the parameter ix\
subgoal of the original rule. •斤...

• s . .

So, to establish aspect (2) of the parameter modifying process in 铁 recursive ^eQmtioi^,
• • ’ » . . y / : r-.i • ••, •'.

at least one of the parameter links in each level of recursion mus(always be tp

a parameter link in a previous level of recursion and to a parameter link next

• • • ‘ ‘

53

level. However, when parameter links in different levels of recursion are linked

together, the parameters involved in these parameter links are all in a dependent

relationship. In other words, a dependent relationship that extends over different levels

of recursion has been established.

Through the parameters that have the same parameter list position, a parameter

link in one recursion level can be further connected to another parameter link in the

next recursion level. However, the presence of aspect (2) of the parameter modifying

process requires that these parameter links are linked up not only for a limited number

of recursion levels but for all levels of recursion. In other words, the parameter links

must be linked up indefinitely throughout all the recursion process. Otherwise, the

recursive definition given is an improper recursive definition. The reason is obvious:

I f parameter links in one level of recursion cannot be connected to the parameter links

in the next level, the result of modification will be lost in the next level. Usually,

nontermination wil l happen. However, a more serious problem is that such a recursive

definition is meaningless. Recursion goes on without performing any real data

processing. To have certain parameter links in a recursive definition to be linked up

throughout all recursion levels, each parameter link must in some way be linked up to

itself again after a certain number of recursion levels. Since the number of parameters

in the parameter list of a recursive definition is limited, the number of parameter links

that can be formed is also limited. To have a limited number of parameter links to be

linked up throughout an
Program (a) Program (b)

indefinitely number of
a(X, Y, Z) g l (X . B), a(X, Y, Z) g l (X , B). recursion levels, some of

g2(Y, C), g2(Y, A).

a(A, B, Q. a(A, B, Q. them must be repeatedly

Figure 3.9 used in the process, \i\

Figure 3.9, P r o g 哪 (^)

and (b) both have parameter links that extend over more than one level of r(̂ cui:siQi[\«
- -S - 广 ： ‘

But the parameter links in Program (a) can extend over only two levels of cec^rsipi)

while those in Program (b) can extend indefinitely. The difference biejtween t b f ^ l i ^ t

the parameter links in Program (b) can be linked up to themselves ^fter ley els of
- - • • . • ‘ ‘ ‘

recursion. To have a parameter link linked up to itself after several levels of r^qiirsion,

54

there must be a dependent relationship extending over several levels of recursion with

two parameters in different levels but at the same position in the parameter list. In

other words, there is a cyclic parameter link in the recursive definition. Thus aspect (2)

of the parameter modifying process requires the presence of a cyclic parameter link.

There are two different situations that require a different consideration in

establishing cyclic parameter links. They are situations in which:

(1) only one parameter link exists in the recursive definition, or

(2) more than one parameter link exists in the recursive definition.

I f there is only one parameter link in a recursive definition, it is easy to determine

whether this parameter | j ^ = = = = = = = j

1 . „ … Program (a) Program (b)
link IS cyclic or not. A

parameter link can be a(3,4, 5). a(3,4，5).

a cyclic parameter link a(X, Y, Z) ：- g(X,A), ^ a(X, Y, Z) ：- S 二 ^

only if the position of ^。、 。…
】 ^ g(l, 2). g(l，2).

the parameter in the g(2，3). g(2,3).

rule head involved in 一
^ + , . a (i M i ， _ _ ， _ , _) the parameter link is \ ^ ^

equal to the position of gi(i,2) a(2,⑩，⑩） gKU) , 2’ _)

the parameter in the \ ^ ^ ^ ^ \

recursive subgoal in- g(2,3) a(3,®) gd, 2) a(〇，2,⑩）

volved in the parame- 。
a(3, 4, 5) •

ter link. I f there is •
only one parameter ⑩：uninstantiated parameter • |

link in the recursive Figure 3.10

definition, the parame-

ter link must be linked up to itself in the immediately next level of recursion.

Otherwise, the data passed onto the next level will be lost. The difference between the
recursive definitions with and without a cyclic parameter link can be illustrated in Figure

•. ..

3.10. In the search trees given, we can see how data are modified along a cyclif?

55

parameter link, and on the other hand how the result of modification is lost in the

recursive definition i f there is no cyclic parameter link. When more than one parameter

l ink exist in a recursive definition, there are different ways in which these parameter

links can be linked up to form a cyclic parameter link. The different examples in Figure

3.11 show how different cyclic parameter links can be formed in a recursive definition

with multiple parameter links. In general, a cyclic parameter l ink is formed by either

l inking up a parameter l ink to itself directly or indirectly. For a recursive definition with

o n l y o n e [j = = = = = = = = = = = = = = = j

parameter l ink Program (a) Program (b) Program (c)

as what is a(X，Y，Z):- a(X, Y, Z) a(X，Y，Z):-
shown by Pro- g l (X , B)， gl(X，B), gl(X，A),

(、 . g2(Y, C), g2(Y, A), g2(Y, C)，
gram (a) m 各 g、3(k，Z)， a(A，B，C). a(A, B, Q .
Figure 3.10 or a(A, B, C).

Program (c) in F igure 3.11

Figure 3.11, a

cyclic parameter is formed by linking up the parameter to itself directly. In Examples

(a) and (b) of Figure 3.11, the cyclic parameter link is formed completely by indirect

linking-up.

To establish that a cyclic parameter link exists in an indirect recursive definition,

it is necessary to establish some ordinary parameter links in the indirect recursive

definition first. As described in Section 3.1，the parameter l ink of an indirect recursive

definition can be established by linking up parameter links in every rule involved in the

definition. Then a cyclic parameter link can be formed if certain parameter links of the

recursive definition can somehow be connected to themselves. I t is similar to the case

of direct recursive definitions.

I f there is a cyclic parameter link in a recursive definition，we can say tha|

recursive definition has a potential parameter modifying process since a cyclic parameter

l ink guarantees that: V

(1) there is a process in which the values in some parameters can be inodiQ^^
in each level of recursion, and

56

(2) the result of modification can be passed from the recursion level, and the
modified result can be passed onto the next level.

The effect of a cyclic parameter link is equal to a parameter modifying process if one of

the parameters involved in the cyclic parameter link can be modified during the

recursion. On the other hand, i f no cyclic parameter link exists in a recursive definition,

the implication is that no potential parameter modifying process exists, and thus a

parameter modifying process does not exist either. Therefore, parameter analysis

provides a means to detect the nontermination caused by the absence of a parameter

modifying process, and it does not require any semantic knowledge. Moreover,

parameter analysis is important in the whole process of nontermination detection as it

also identifies any potential parameter modifying process. The next step is to verify

whether these potential parameter modifying processes (which are also potential exit-

variable modifying processes), can act as an exit-reaching process. This requires the

detection of the exit condition in a Prolog program, which in turn implies the need for

semantic knowledge of the program. However, we can show in Chapter 4 that this is

not necessarily the case as far as pure Prolog is concerned. The technique to be

presented in Chapter 4 and parameter analysis together form a diagnostic test for

nontermination in pure Prolog programs without the need of semantic knowledge.

Parameter analysis is an important part in the test as it supplies the necessary data—the

potential parameter modifying processes, (i.e., the cyclic parameter links)--for further

examination.

In the following sections, we shail show how parameter analysis can be achieved

by incorporating the graph technique in the cyclic parameter link detection. I n the

methods below, no special handling is provided for the improper recursive defimtiqi|
I . "’ V.

mentioned in Section 3.2. I f in a recursive definition there are several parameter
.、“r\--，V ：) ,//-:、:，

that can be linked up together across several levels of recursion but they do |

cyclic parameter link, this recursive definition wil l be treated like any other ceqU^siyi
-,.i' •、- • *

definitions having no cyclic parameter link. 、:.、:::::).'.

- •“

57

3.3 Parameter Link Detection

In this section, we shall describe how a systematic approach can be developed to

detect a parameter l ink and in turn a cyclic parameter link. Essentially, our method is

based on the graph technique. After showing how to use the graph technique to detect

parameter links and cyclic parameter links, algorithms wil l be developed to illustrate the

method of parameter analysis.

3.3.1 Graph Technique

3.3.1.1 Preliminaries

To establish a graph technique to detect parameter links and cyclic parameter

links, we must first develop some notations to represent the recursive definition being

analyzed.

In each rule, the parameters in the rule head and the parameters in the recursive

subgoal are represented by circles with a number inside. The number within the circle

indicates the position of this parameter at the parameter list. Those parameters in the

same parameter list are arranged in the same row enclosed by a pair of parentheses with

a predicate name at the leftmost position. The example below wi l l have a graphical

representation for its parameters as the one in Figure 3.12.

a(X，Y，[Z|C]) g(X，B)，h(Y,D), a(X，B，C).

The upper row of circles in Figure 3.12 indicates the parameters from the head of the

rule a. The row representing the parameters from the rule head is always placed above

the row representing the parameters from the subgoal.

I f a parameter l ink exists between a parameter in the rule head and the

parameter in the recursive subgoal, and this parameter l ink is not formed by the

58

parameters with the same name, a solid line is drawn

®) between the two circles representing these two parameters.

^ ^ (^) I f it is formed by the parameters with the same name, a

I丨 broken line is drawn instead. So the above rule wi l l have
Figure 3 . 1 3

a graphical representation as in Figure 3.13.

3.3.1.2 on Parameter Links

To detect a parameter link in a direct recursive definition, we need to first find

out all the parameters linked to the parameter in the head of the recursive rule. Then

we check whether some of these parameters are also present in the parameter list of the

recursive subgoal. For the parameters within the same subgoal, they are already linked

together since they are dependent on each other. However, among the different

subgoals, the parameters are linked only i f they can pass data from one parameter to

another. Hence two parameters in different subgoals are linked together only i f they

have the same name. For each pair of parameters with the same name but in different

subgoals, an arc is placed above them in the rule. Only those subgoals preceding the

recursive subgoal are considered because those subgoals after the recursive subgoal

cannot have effect on the data being passed onto the next level of recursion. Therefore

the rule below:

a(X，Y，[Z| C]) g(X，B)，h(C，D)，f(B,M), f(D，N) a(M’N，0)，g(D，0).

wi l l have arcs over it l ike this:

a(X. Y, [Z|CD :-g(X, B), h(C, E^B, M^D. N ^ a ^ , O),g(D,O).

Now, by adding

more arcs to jo in the parameters in the body and the parameters in the head that have

the same name, we can find out which parameter in the head forms a parameter l ink to

the parameter in the recursive subgoal. The final result for the above example is:

a p C ^ l Z I C]) ^ . KiC^^^^^r^，N. O). g(D. O).

59

Parameter links are found between parameters in the head

and the parameters in the recursive subgoal at the

(3)) following positions: first to first and third to second. The

L = ^ = = = J 1 graphical representation for the parameter links in this

Figure 3.14 recursive definition can be drawn as Figure 3.14.

In an indirect re- [| = = = = = = = = j
. ^ [1] a(X, Y，Z) gl(X，A), g2(Z, B), b(A，B).

cursive denmtion, param-
r 1 . , , [2] b(A, Y) a(X, Y, Z).

eter links in each rule

must first be constructed

and drawn in a manner graphical representation ® ② ^)

similar to above. After a for the rule [1] ：睡 b d @)

graphical representation

for each rule involved in g哪W e a l representation •_ b (① 多 ）

this indirect recursive 【。̂ 也^ ^ul t [2] '

definition has been drawn, or e ru e 0 (?) (3))

we go on to check whether
1 . 1 . the result after the merging process

the parameter links in

these rules can be linked 身 ^ ^ 、 \
, , a (① (2) (3)) \

up together to form a pa- X " 丫 j

rameter l ink for the entire ^) J

recursive definition. This

can be accomplished by Yigare 3.15

using graphical representa-

t ion as well. The graphical representations of the rules are examined. I f any rule has

the upper row identical to the lower row of another rule (two rows are identical i f they

have the same predicate name and same number of circles), these two graphical r 印僚

sentations are merged together as is illustrated in Figure 3.15 and Figure 346, A

parameter l ink for the entire recursive definition is said to be present i f a ^aj^ ^

drawn from the first row to the second row. Attention must be paid tQ handling

different types of parameter links. When a broken line is linked to a soU^ |inc, J^g

broken line becomes a solid line. Otherwise, the broken line remains as 终 birp|(en li^p.
-.'.• • .•- “ •

•-知
60

A broken line becomes a solid one in this case because it indicates that the parameter

link formed by the parameters with the same name (represented by the broken line) is

now responsible for passing some data and plays a significant role in the parameter link.

j = = = = ^ = = " j] Compar ing the

[1] a(X, Y，Z) :- gl(X, A), g2(Z, B)，b(A，B). results of these two ex-

[2] b(A, B) ••• g3(B, X), g4(A, Z), a(X, Y，Z). amples，we can clearly see

the difference between

a (① ② ®) them. I n Figure 3.16, the
graphical representation \ / …， ，.，

/ final graphical representa-for the rule [1] u/ ^ \
w W , tion shows that a cycle is

, . ^ ^ X formed among its parame-
graphical representation >>(v ly ④ ‘

:_ ters involved in the pa-
for the rule [2] a((g) rameter links while no

— cycle appears in the graph-
the result after the merging process . , … . .

® ical representation of the

example in Figure 3.15.

j ‘/ \ Actually, only the example

Vb(® ⑤) j in Figure 3.16 has a cyclic

. 乂 parameter link. This is
I 一， the reason for the name， Figure 3.16

cyclic parameter link: the
l ink appears as a cycle in the graph. This merging process can also be applied to the

graph obtained from a direct recursive definition.

In Figure 3.14, the graphical representation is now ^

merged and becomes the picture in Figure 3.17. (a(》

In this case, a cycle also appears at the first :’
... I

parameter of the recursive definition. t igure 3.17 '' ‘ 淨:.

61

3.3.2 Algorithms

The first algorithm to be presented in this section identifies a parameter link

within one rule. In order to improve the readability of the algorithms, comments

enclosed between "[]" are given in the algorithms.

Algorithm 3.1 Constructing parameter links in one rule

INPUT : a rule, g(A,,...,BJ :- sg,(…)，…，sgk(B”…，BJ’ ...，sq,{：.). and the position of the recursive
subgoal sĝ，k. (In a direct recursive definition,sg^C..) = g(...).)

OUTPUT : PS, a set of sets {(X，Y，Z)，s, p}. The triple indicates a parameter link between the
recursive rule head and the recursive subgoal: X is a parameter position in rule head, Z is
a parameter positions in the recursive subgoai and Y shows the parameter type, s is a set
of subgoals that form the parameter link; p is a set of parameters involved in the
parameter link.

[1] S := { {sgi(X” …，X J } } [S is a set of subgoal sets]
[2] P := { {X„ ..., X J } [P i s a set of parameter sets]

[3] PS:= {}

[4] Fori 2 to k - 1 Do
Begin [to form subgoal sets and parameter sets]

[5] count := 0
[6] For each subset s； in S Do
[7] If any parameter in …，XJ appears in p； in P Or any parameter in sgjPC” …， X J

is related to any parameter in p, through special parameters
Then Begin

[8] count: = count + 1
[9] Si := Si U { sgj(Xi,…’ XJ }

[10] Pi ：= Pi U ，...’ Xb }
End

[11] If count = 0
Then Begin

[12】 S := S U { { sgj(X„ X,) } }

[13] P ：= P U { {Xi，.... X, } }
End

[14] End

62

Algorithm 3.1 (continued)

[15】For each subset p, in P Do [to form all possible parameter links]

Begin
[16] If any parameter in p, is also in set Pj, Pj e P Or

any parameter in p； is related to a parameter in Pj through special parameters
[17] Then Begin

Stemp Si U Sj

[18] S ：= S - { S i } - { S j }

[19] S ：= S y { S — }

[20] Ptemp Pi y Pj

[21] P ：= P - { Pi } - { Pj }
[22】 P ：= P y { Ptemp}

End
End

[23] For a : = 1 to n Do [to form parameter links between]
Begin [parameters in the recursive rule]

[24] For each set p； in P Do [head and the recursive subgoal]

[2 5] If parameter A^ in the rule head g also appears in p； Or
Aa is related to a parameter in p, through special parameters

[26] Then For b : = 1 to m Do
[2 7] If Bb in the recursive subgoal sg^ also appears in p, Or

Bb is related to a parameter in p； through special parameters
[28] Then PS : = PS y { {(a,1,b), S, p J } [T , is for a normal]

End [parameter link]
[29】For I := 1 to n Do ["0" is for a same-name]

[30] For j := 1 to m Do [parameter link]
[31] If parameter A； in g = parameter Bj In sg^
[32] Then PS := PS y { {(i，0,j)，{}’ { } } }

[33] For i := 1 to n Do
[34] For j := 1 to m Do
[35] If parameter A丨 in g is directly related to parameter B】in sg^ through special parameters

[36】 Then PS := PS y { {(i’1J), {}，{A丨,B }̂} }

W e can show h o w this a lgo r i t hm works by considering that the fo l l ow ing ru le supp l ied • •

as input :

63

a(X，Y，[Z|L]) :- g1(A，C)，g2(M,N), g3(A，L)，g4(X，M)，g5(N，B)，b(A，B，C，Y).

where b(A,B,C,Y) is the recursive subgoal. In lines [1] and [2] of the algorithm, the

subgoal set S is initialized to be {{gl(A，C)}} while the parameter set P is initialized to

be {{A，C}}. Because there are five subgoals preceding the recursive subgoal, line [4:

to line [14] wi l l be repeated four times. In the first iteration, because the parameters in

gl(A,C) do not appear in the parameters of the subgoal the variable count remained

as zero and the If statement from line [11] to line [14] is performed. S becomes

{{gl(A，C)}，{g2(M，N)}} and P becomes {{A，C}，{M，N}}. In the second iteration,

because parameter A in the subgoal g3(A,L) also appears in the set {gl(A，C)} of the

subgoal set S, the If statement from lines [7] through [10] can be activated so that

{gl(A，C)} is modified to be {gl(A，C)，g3(A，L)} and {A，C} in P is modified to be

{A，C，L} after the For loop from line [6] to line [10] is completed. The subgoal set S

becomes {{gl(A，C)，g3(A，L)}，{g2(M，N)}} while P becomes {{A，C，L}，{M，N}}. After

exiting the first nested For loop, the subgoal set S becomes {{gl(A，C)，g3(A，L)}，

{g2(M，N)，g4(X，M)，g5(N，B)}} and the parameter set P becomes { {A,C,L} , {M’N，X，B}}.

Since the two sets in P do not have any parameter in common, lines [15] through [22；

of the algorithm do not have any effect on S and P. From line [23] to line [28], the set

PS is formed. Because there are three parameters in the recursive rule head, lines [23；

through [28] are repeated three times. In the first iteration, the parameters in every

subset in P are compared to the first parameter in the recursive rule head, X, and all the

parameters in the recursive subgoal, A，B，C，Y. Since X, the first parameter in the

recursive rule head, and B’ the parameter in the recursive subgoal, both appear in the

second subset of P {M，N，X，B}, the set PS is changed from { } io { { (112),
{g2(M，N)，g4(X，M)，g5(N，B)}，{M，N’X，B} } } after the first iteration. After the three

iterations, the resulting PS becomes { {(1，1，2)，{g2(M，N)，g4(X，M)，g5(N，B)}’
{M，N，X，B}h {(3，1，1)，{gl(A，C)，g3(A，L)}，{A，C，L}}，{(3，1，3)，{gl(A，C)，g3(A，L)}，

{A，C，L}} }• Finally, lines [29] through [32] expand PS to be { {(1，1，2)，

{g2(M，N)，g4(X，M)，g5(N，B)}，{M，N，X，B}}，{(3，1，1)，{gl(A，C)，g3(A，L)}，{A，C，L}}，{(3，1，3)，

{gl(A，C)，g3(A，L)}，{A，C，L}}，{(2A4h {}，{}} }, Because no parameter in recursive

rule head can relate to any parameter in recursive subgoal through special parameters,

lines [33] through [36] do not affect the output PS. The result indicates that three

proper parameter links' exist between the parameters in the rule head and the

parameters in the recursive subgoal with the following positions: third to first, third to

64

third and first to second. Moreover, there is a parameter link formed by the parameters

with the same name in the position: second to fourth.

The next algorithm shown below constructs parameter links for the entire

recursive definition with different rules involved in an indirect recursive definition. I f

i t is a direct recursive definition, the result of Algorithm 3.1 indicates the parameter

links occurring in one level of recursion.

Algorithm 3.2 Constructing parameter links for an indirect recursive definition

INPUT : a sequence of sets of triples PS” PS2, PS,; each set is for one rule. (If only a direct
recursive definition is examined, k = 1; otherwise, k is a finite number which is greater than
1 if an indirect recursive definition is Involved.) They are arranged in an order the same as
the order of evaluation.

OUTPUT : the set PS，which contains some triples indicating the positions of the parameters involved
in a parameter link of an indirect recursive definition.

[1] P S ' ：= { }

[2] PS— := {}
[3] s — := {}

[4] Ptemp { }

[5] i ：= 1

[6] While i < k and PS；丰{} Do
Begin

[7] For each set in PS" {(X^.Y^.ZJ, s^, p j ’ Do

[8] For each set in PS丨+” {(X„Y„ZJ, p j , Do
[9] if Z , = Xn
[10] Then If Y , = 1 Or Y, = 1

Then Begin
[11] If i = 1 Then Begin
[12] { s 巾，Sn}

[1 3] Ptemp : = { P m . P J

End
Else Begin

[1 4] Stemp : = Stemp ^ J { S j

[1 5] Ptemp • = Ptemp \ J { P j

End

[1 6] P S , e m p P S t e m p \J { { (^ m ， 1 , ^；)，Sfemp, P t e m p } }

End

[17] 曰se PStemp ••= PStemp [j { {(^m, 0，Z丄{}, {}} }

65

Algorithm 3.1 (continued)

[18] i := i + 1
[19】 PSi:=PStemp

End

[20] PS，：=PSk

Consider the following example indirect recursive definition involving three rules:

a(X，Y，[Z|L]) g1(A，C)，g2(M，N)，g3(A，L), g4(X，M)，g5(N，B)，b(A，B，C).
b(X, Y, Z) f1(Y, D), f2(Z，A), c(A，B，C).
c(X, Y，Z) :- g1(X，C)，g2(Y, B)，a(A，B, C).

By applying Algori thm 3.1 to every rule, PS! of the first rule is { {(3,1,1),

{gl(A，C)，g3(A，L)}，{A，C，L}}，{(3，1，3)，{gl(A，C)，g3(A，L)}，{A，C，L}}，{(1，1，2)，{g2(M，N)，

g4(X，M)，g5(N，B)}，{M，N，X，B}}，{(2’0，4)，{}，{}} }, PS〗 of the second rule is { {(2，1，4)，

{fl(Y，D)}h {(3，1，1)，{f2(Z^)}} } and PS3 of the th i rd rule is { {(1,1,3), {gl(X，C)}，

{X，C}}，{(2，1，2)，{g2(Y，B)}，{Y，B}} }• In this case, the constant, k, in line [6] is 3 so

that only two iterations can occur. After the first iteration generated by the While loop

in lines [6] through [19], becomes { {(3,1,1), {{gl(A，C)，g3(A，L)}，{f2(ZA)}h

{{A，C，L}，{ZA}} }，{(U4), {{g2(M，N)，g4(X,M), g5(N，B)}，{fl(Y，D)}}，{{M，N，X，B}，

{Y，D}} } } because of the triples (3,13) and (1，1，2) in PS^ and (2，1，4), (3,1,1) i n PS!.

I n line [19], PSt̂ mp is assigned to PS〗 in the first iteration. Therefore, the triples in PS2

for the second iteration are (3,1,1) and (1，1，4). Since the original PS3 has the triples

(1，1，3) and (2，1，2), becomes { {(3，1，3)，{{gl(A，C)，g3(A，L)}，{f2(Z^)h

{gl(X，C)}}，{{A，C，L}，{ZAh {X，C}} } } because only (3，1，1) i n PS^ and (1，1，3) i n the

original PS3 can satisfy the condition Z饥=X^ in line [9]. After the While loop, PS3

becomes { {(3，1，3)，{{gl(A，C)，g3(A，L)}，{f2(Z^)h {gl(X，C)}}，{{A，C，L}，{ZAh

{XyC}} } } too. Eventually, the set PS，attains the same set of elements as the set PS3

because of line [20].

Finally, the complete algorithm for parameter analysis is presented as follows:

66

Algorithm 3.3 A parameter analysis algorithm

INPUT : a recursive definition

OUTPUT : CPS, a set of cyclic parameter links, and PS', a set of parameter link sets.

apply Algorithm 3.1 to each recursive rule in the recursive definition to generate PS ,̂ PS2,…，PS；,
[k = 1 for a direct recursive definition]

If only one rule is involved in the recursive definition [i.e., it is a direct]

Then PS^.^^ ：= PS^ [recursive definition]

PS' := { PSi } [PS is a parameter link set]

Else apply Algorithm 3.2 with PS’，PS2’ …，PŜ
PSnew PS’

[1] PS—:= { }
[2] CPS := { }
[3] CPS' := { }
[4] PS。|d ：= PSnew
[5] k 1

[6] While k < n and PŜew {} Do [n = arity of the recursive rule head]
Begin

[7] For each set {(K,, Y, Z)，s, p j in PS随 Do
[8] For each set {(Xj, Y丨，Z), s” Pj} in PS^^ Do
[9] l f ^ = Xj
[10] Then If Y, = 1 Or Y】=1

Then Begin
[11] If k = 1

Then Begin
[12] ss—:= {Si. Sj}
[1 3] SPtemp : = { P i ， P j }

End
Else Begin

[14】 ss—:= SStemp U {Sj}

[15] SPtemp := SP temp U {Pj}
End

[16] PSte叩：=PSt抓p U {{(Xi，1，Zi)，SStemp,SPtemp}}
End

[17] 曰se PStemp := PStemp U { {(X丨’ 0, Zj), {}，{}} }
[18] For each set {(X,, Y丨，ZJ, ss丨，spj in PSt^p Do [to identify the cyclic parameter links]
[19] If Xj = Zi Then Begin
[20】 • CPS，:： CPS，U {{(X, Y, Z,). ss, s p j }
[211 PStemp ： = PSte„,p - { {(X, Y, Z), SS, spj }

End
\

67

Algorithm 3.1 (continued)

[22] PSnew ：= PS,ew U PS—
[23】 PS,卿：={}
[24] k := k + 1

End

[25] For each set {(Xj, Y；, Z；), ss；, sp；} in CPS' Do
[26] If Y, <> 0
[27] Then CPS := CPS U { {X-,, ss„ s p j }

Consider the following simplified example. In the following discussion, only the

positions of the parameters involved are mentioned to give a clearer picture of how the

method of parameter analysis can detect cyclic parameter links. Suppose that the

application of Algori thm 3.2 to a certain recursive definition results in a PS^^^ of {

{(3，1，3)，".}，{(1，0，2)，".}，{(5，1，2)，."}，{(2，1，4)，•"}，{(2,1,5), ...} }• Lines [1], [2] and [3]

initialize all the sets P S ^ ^ ^ p , CPS and CPS，to be empty sets while line [4] initialize the

sets PSnew and PSqui to contain the same set of elements. The number of iterations n in

line [6] is obtained by counting the number of parameters in the recursive rule head.

Suppose that there are five parameters in the recursive rule head (in our example, the

number of parameters cannot be less than 5 since PS，contains (5，1，2) and (2,1,5)), the

While loop located between line [6] and line [24] can repeat five times. In the first

iteration, PŜ en̂ p is first changed from { } to { {(3,1,3), .“}，{(1，1，4)，…}，{(11,5),…}，

{(5，1，4)，…}，{(5，1，5)’ …}，{(2，1，2)，"•} } after line [17]. However, the set PS^.^p is

further modified in lines [18] through [21]. In the For loop located in lines [18] through

[21], all cyclic parameter links in P S j ^ ^ p are taken away and added to the set CPS'.

Therefore, the resulting PStemp becomes { {(1，1，4)，."}，{(1，1，5)，,"}，{(5，1，4)，…} } while

CPS' becomes { {(3，1，3)，•"}，{(5，1，5)，…}，{(2,1,2),…} }. Then, in line [22], the set

PStemp and the set PSnew is merged together to form a new PS^̂ w for the next iteration.

Consequently, the set PS^̂ w for the second iteration becomes { {(1,1’4)’ …}，{(1,1,5), “•}，

{(5，1，4)，•"}，{(3，1，3)，…}，{(10,2), "•}，{(5，1，2)，…}，{(2，1，4)，…}，{(2，1，5)，…} }. After

five iterations of the While loop, the set CPS' becomes { {(3，1，3)，"•}，{(5，1，5)，•"}，

{(2，1，2)，"•} }. Finally, the set of cyclic parameter links CPS is calculated from CPS' in

68

lines [25] through [27] by eliminating the cyclic parameter links established through only

same-name parameter. Therefore, only the appropriate cyclic parameter links, i.e., the

cyclic parameter links of type "1", wil l be included in the final set of cyclic parameter

links.

In conclusion, if the set of cyclic parameter links, CPS, obtained is an empty set,

then no cyclic parameter link exists in the recursive definition or the recursive definition

is not properly defined. In the former case, nontermination wil l occur in the evaluation

of this recursive definition since no parameter modifying process exists. In the latter

case, it is not certain at this stage whether there is nontermination. Otherwise, the

elements in CPS wi l l indicate the positions of parameters involved in the cyclic

parameter link. PS，is also provided since any further analysis wil l require not only the

parameters involved in the cyclic parameter link but also each parameter l ink occurring

in this recursive definition.

69

CHAPTER 4— Data Analysis

The parameter analysis described in the last chapter actually plays a twofold role

in detecting nontermination in Prolog programs. On the one hand, the parameter

analysis itself is a nontermination detection technique because it can identify all those

recursive definitions that do not have any proper parameter modifying process. As

shown in the last chapter, a recursive definition without such process wi l l definitely lead

to nontermination. Therefore, parameter analysis is an essential preliminary step in

nontermination detection. Through checking cyclic parameter links, any potential exit-

reaching processes can be located in a recursive definition. The next step is to develop

a method that can identify the exit-reaching process from these cyclic parameter links.

Apparently, this can only be done by finding all the exit conditions present in a recursive

definition. However, as pointed out in the last chapter, semantic knowledge is required

to locate an exit condition and this is inconsistent with the goal of this study.

I t can be demonstrated that the verification of a potential exit-reaching process

is feasible without having to detect directly any exit condition in a Pure Prolog recursive

definition. In other words, the verification can be done without resorting to any

semantic knowledge in a pure Prolog program. In parameter analysis, i f all recursive

definitions are found to have at least one cyclic parameter link, data analysis developed

in this chapter can then be applied to confirm whether nontermination wi l l really occur.

Data analysis involves constructing data links for these recursive definitions. Essentially

this technique relies on analyzing the data which would pass through the 殘 特
- 、 .-

parameter links.

Our discussion wi l l be divided into six sections. First, we shall discuss what 拜 jfl^ta

l ink is and how to form it for a recursive definition. Then we 冲明 ^xa^ii^^

difference between pure Prolog and general Prolog. This wi l l show \yhy sbPWW

limit our discussion to pure Prolog. Third, we shall show the relationsl^iR t̂ etMT^en da t ‘
• ‘“ ‘ V'V；：• • •.、. ” •. . .,、 •.

• • • ,. . ‘ ：...

70

links and nontermination. Our main concern of how to detect nontermination with the

use of data links is discussed in the fourth part of this chapter. By linking up the data

links to form a connected data-link list, we can detect nontermination by examining the

connected data-link list. In the fifth part, a special situation in constructing a data link,

namely, the presence of special parameters, wi l l be discussed. Finally, we shall present

our method of data analysis with algorithms.

By combining parameter analysis and data analysis, we shall be able to detect the

nontermination errors in pure Prolog programs without resorting to any semantic

knowledge. This would provide a helpful alternative to the traditional tracing technique

in nontermination diagnosis. To prevent our discussions from becoming too confusing,

in this chapter, we l imit our scope to the case of recursive definitions that have only one

cyclic parameter link or several independent cyclic parameter links. Cyclic parameter

links are independent from each other if, for the same recursive definition, the

parameters and the subgoals which involve in one cyclic parameter link are entirely

different f rom those which involve in another cyclic parameter link. Then, the recursive

rule below has two independent cyclic parameter links:

g(X，Y，Z) linkl(X，A), link2(Y, B), g(A, B, C).

while the next recursive rule has two interdependent cyclic parameter links:

g(X，Y, Z) l ink(X, A, Y, B)，g(A, B, C).

The subgoal that forms the first cyclic parameter link between X andv4 and the subgoal

that forms the second link between Y and B are in fact the same subgoal, link, in the

second recursive rule. Moreover, the recursive rule below has two interdependent cyclic

parameter links because they share certain common parameters:

g(X,Y,Z) l inkl_a(X,C), l inkl_b(C,A),
lmk2__a(Y,C), liiik2_b(C,B), g(A,B,C).

The method developed in this chapter therefore does not handle recursive definitions

with multiple interdependent cyclic parameter links. The general treatment of them wil l

be explored in the next chapter.

71

4.1 Data Links

First, we examine what a data link is and how it can be formed in a recursive

definition. A data link exists between any parameter in the head of a recursive rule and

any parameter in a recursive subgoal if:

(1) there already exists a cyclic parameter link between these two parameters, and

(2) each parameter in the cyclic parameter link can be successfully instantiated to
a certain value; that is, from the perspective of data transfer, some data can pass
through this cyclic parameter link in at least one complete cycled

Because a cyclic parameter link can extend more than one level of recursion, a

parameter cycle of recursion can consist of one or more levels of recursion. In order to

simplify our discussion, the following discussion wil l usually be based on the examples

with cyclic parameter links extending over only one level of recursion.

In Figure 4.1，

two almost identical | j = — = = = — = = = = j

programs are given. program (a) Recursive definition Program (b) Recursive definition

” ， . with a data link without any data link
However, only one of

them has data links goal(X,Y):- link1(X,A). link2(A,P), goal(X,Y):- link1(X,A), Iink2(A,P), m e m nab udLd 以 腿 . goal(P,Q). goal(P,Q).
The contrast between
L •” L 1 . Iink1(1.2). Iink2(3.4). 丨ink1(1,2). rmk2(4.5).

them wi l l help us to 丨ink1(2,3). Iink2(4,5). Iink1(2,3).

understand how one |l

can establish a data Figure 4.1

link. Program (a) and Program (b) both have the same recursive rule, where subgoals

linkl(XyA) and link2(A，P) form a cyclic parameter link between the first parameter in the

head, X, and the first parameter in the recursive subgoal, P, However, only the recursive

1 Because a cyclic parameter link can extend over one or more levels of recursion, one CQrnpi^^f
cycle of cyclic parameter link can have one or more levels of recursion involved. To facll i^Q
discussion, since a data" link always represents a data transfer through a cyclic parame^r I 嫁 I j
data link can be considered to represents a data transfer through a "cyclic parameter iink
(or simply "parameter link"、of recursion. Therefore, a data link may have one or rmr^
recursion involved but still represents a data transfer through one parameter cycle of

72

definition in Program (a) has a data link. There is no data link in the recursive defini-

tion in Program (b) where requirement (2) for a data link cannot be met in Program (b)

as no data can pass through the cyclic parameter link.

The procedure defining the subgoal linkl in both programs is formed by two facts,

linkl(l，2) and UnJd(2，3). Therefore, the first parameter oi linkl can only be instantiated

to the values 1 or 2. However, the first parameter of linkl，X, is one of the parameters

in the cyclic parameter link formed by the subgoals linkl and lmk2 and is also the

parameter of the rule head, goal(X,Y). Therefore, the parameter X regulates the data

passed into the cyclic parameter link and the only data that can be passed into this cyclic

parameter link are 1 and 2 according to the two facts defining linkl. I f the value 1 is

supplied to the cyclic parameter link, according to the recursive definition in Program

(b)，the parameters of the subgoals in the cyclic parameter link are instantiated as:

linkl (1，2)，link2(2,P). But the subgoal Unk2 is defined by a procedure with only one fact,

Unk2(4，5), in Program (b). It is obvious that the term lmk2(2,P) cannot be unified with

link2(4,5). Thus unification fails and no data can be successfully passed on. Moreover,

i f the value 2 is supplied, the parameters of the subgoals will be instantiated as linkl (2,3),

link2(3,P). The term lmk2(3,P) also fails in any unification. A value that satisfies the

subgoal linkl cannot simultaneously satisfy the subgoal link2 and vice versa. Therefore,

in the concept of the data transfer analogy\ no data can pass through this cyclic

parameter link. Requirement (2) of the data link cannot be fulfilled and no data link

exists in Program (b).

On the other hand, a data link can be established in Program (a). No data cun

pass through the cyclic parameter link when the value 1 is bound to the parameter 雾
； .• •, ‘ •“

But Program (a) is different from Program (b) because the procedure defining"

subgoal linkl is formed by two facts, link2(3，4) and link2(4，5), instead of link2(4,5l mh,

When the value 2 is bound to the parameter X, the subgoals are in^t^nif^ted ^

linkl (2,3), link2(3，P), The term link2(3,P) can be instantiated as

(a) and thus the value 4 can be passed onto the next level of recursjon,核減滴men本
• .. . 二 ,.::、：./。" -v.

. • • •、:•、、-..

1. Please refer to the discussion in the first paragraph of SectiQil in (Jhapter 3,

73

(2) is thus satisfied and a data link is considered to be present in the cyclic parameter

link for Program (a).

The examples in Figure 4.1 shows that the procedures defining the subgoals in

the cyclic parameter l ink determine the existence of data l ink because the procedures

defining these subgoals can determine whether requirement (2) for data links can be
/

satisfied. In other words, a data link can only be established if the subgoals in a cyclic

parameter l ink have all been defined by some appropriate procedures. An appropriate

procedure contains at least one fact that can form a data link. Therefore the procedures

of subgoals linkl and link! in Program (a) are still appropriate for forming data links if

they are reduced to:

linkl(2,3). Iink2(3,4).

Because the fact linkl (1^2) in the procedure defining the subgoal linkl and the fact

link2(4，5) in the procedure of Unk2 are not relevant in forming a data link, they can be

removed without taking away the data links formed in this recursive definition.

Moreover, data can also pass through a cyclic parameter link that is completely

or partially formed by some special parameters, i.e, lists or structured data. Then, apart

from subgoals, special parameters can also be used to establish a data link. But the data

link formed by a pair of special parameters will have certain special properties that

require some complicated analysis. The most significant difference between the data

links formed by subgoals and those formed by special parameters is this: while, in the

former case, all the subgoals in

the data link must be defined by ^ ^ ^ = 二 。 = by

by certain procedures, the
L , . . 丄 』 + 1. 1 goal(l.stop). goal(f(),stop). 、：

subgoals forming the data link goal([X|Ll,N)goal(L,N). goal(f(X),N) :• goal(X,N).
are not necessarily defined by

L •••，，

any procedure in the latter Figure 4.2

case. This can be illustrated

by the examples in Figure 4.2. The first parameter of the recursive definition goal bd§

a cyclic parameter link in both examples. A list can pass through the cyclic par^metfir

link in Program (a) while a structured data can pass through the cyclic parameter link

74

in Program (b). A data link is established in both cases. However, these data links are

very different from the one built from subgoals.

(1) For the data link established through subgoals, there must exist at least a subgoal,
besides the recursive subgoal, in the cyclic parameter link which is defined by an
appropriate procedure; on the other hand, the data link established through
special parameters may not have any subgoal in the cyclic parameter link at all.

(2) The implication of (1) is: When a data link is formed purely by subgoals, one can
always find the values passed in and out the data link by merely analyzing the
recursive definition. But there is no simple way to predict what data can pass
through the data link established through special parameters.

One can simply analyze the recursive definition in Program (a) of Figure 4.1 to

find out the values passed in and out of the data link. Because the only cyclic parameter

link in the recursive definition exists between the first parameter in the head X and the

first parameter in the recursive subgoal P, data links can only be established between

parameter X and parameter P. As shown above, data can pass from XXo P only if the

subgoals linkl(X^) and link2(A，P) are instantiated as linkl(2，3) and Unk2(3，4)

respectively. Thus the possible values that can pass in and out of the data link are 2 and

4. By merely analyzing the recursive definition, we can discover the particular values

passing through the cyclic parameter link in a particular data link. On the other hand,

when the recursive definition in Program(a) of Figure 4.2 is analyzed, only two points can

be sure: (1) all lists except the empty list can pass through, and (2) the list passed to the

next level of recursion wil l be one element less than the list in the present level.

Analysis of Program (b) in Figure 4.2 gives a similar result: (1) all structured data with

functor/can pass through except/(), and (2) the structured data passed to the next level

of recursion wil l be one functor less than the one in the present level, eg., if the
.....

structured data isf(f(f(l))) in the present level of recursion, the structured data in the
• • • 、•；'、.

next level wi l l h&f(f(l)), Therefore, the data links in the recursive definitions est 热椒

through special parameters have different properties from the data links in tbe

definitions established through subgoals. As shown by the examples ^

instead of particular values, only a set of possible values can be fajf 细劲

the recursive definitions. Since the presence of this special data 终tly
complicate or even confuse our discussion, the case of the special 如t终 link^

.... - , • .,,...、. .、 .》 , . .• ••‘

, . ： . , 、“

75

wi l l be examined after we explain how data links can indicate nontermination errors in

a Prolog program. In the following sections, we shall l imit our scope to data links

formed by subgoals only. Then a general discussion wil l be given in Section 4.5.

To simplify our discussion, we shall divide the analysis into two steps

corresponding to two types of recursive definitions. We shall first examine how to

construct data links for subgoal cyclic parameter links in direct recursive definitions and

then data links in indirect recursive definitions.

4.1.1 The Direct Recursive Definition Case

The case of direct recursive definition can be further broken down into two

different sub-cases. The direct recursive definition with procedures consisting of facts

alone requires a much simpler technique than the one with subgoal procedures consisting

of some rules. We shall first show how to analyze the simpler case.

4.1.1.1 Subgoal Procedures with Facts Alone

I f the subgoal procedures [j = = = = = = = = j
goal(X,Y)l ink1(X,A), Iink2(Z,X),

defining all the subgoals involved link3(A,B), rmk4(B,P),

in a direct recursive definition con-

sist of only facts, data links wi l l rmk1(1,2). Iink2(y.1). Iink3(2’a). Iink4(a，x).
• ‘ L • ‘ 1 。 Iink1(3,4). Iink3(4.b). Iink4(e,y).

exist when some apprppnate values nnk1(5,6). Iink3(6,e).

are used as the particular

arguments of the particular facts 广 ^ , ~ ^ ^
goal(X,Y) :• llnki (X,A), link2(Z,X), llnlc3(A,B). link4(B,P),

i n these procedures. I n Figure 4.3， 腕,s_ng a cydic parameter link existed bei^-
a cyclic parameter l ink is found the parameter "X'and "P"
between the parameter X and the 。.‘,.,.. 耀 親

. 1 Figure 4 3 •‘.. •..�:.�..鄉聰.叛 para-meter P in the recursive den- ^

nition. As shown in Figure 4.3，the subgoals that establish the cyclic parametei； 树e

linkl, links and link4. To have a data link formed among these subgoals, d 糊 m^H be
.. ‘:. .:‘,•广、••-..,
. r ‘ •‘ ； •；,

• • . . • .
‘ • • • .

76

passed through these subgoals. Within the same rule, as shown in Chapter 3, data can

only be transferred between the different subgoals through the parameters with the same

name. Therefore, as indicated by those arcs in the diagram, data can pass from the

subgoal linkl to linkS through the common parameter 义 and then from the subgoal linkS

to link4 through the parameter B, However, it requires that the common parameter

must be instantiated to the same value for all the subgoals sharing this parameter within

this rule during its evaluation. If all the subgoals are defined by the procedures with

facts alone, a data link can only be formed when some facts in these procedures have the

same parameter values at the corresponding positions of the common parameter names

in the subgoals of the recursive definition. Therefore, whether a data link can be formed

depends on how the subgoal procedures have been defined by the facts.

For example, the second argument of some of those facts defining linkl must be

equal to the first argument of some of those facts defining linkS. In Figure 4.3, the facts

defining linkl are linkl (1，2), linkl (3,4) and linkl (5,6) while those defining link3 are

links(2，a)’ link3(4,b) and link3(6，e). Since the values 2，4 and 6 can be passed to the

common parameter shared by the two subgoals, we can consider that a partial data l ink

is formed between the subgoals linkl and link3. Similarly, we can also conclude that a

partial data link exists between link3 and Unk4 for the same reason. Then the next step

is to show that a data link can be formed out of these partial data links; i.e., to show that

these partial data links can be linked up.

To show how two partial data links can be linked up, we first consider a counter
...-'••' •

example. No data link can be formed if the definitions of linkl, linkS and lmk4 in pig^jg

4.3 are changed to the following:

l inkl(l ,2). Iink3(2，a). Iink4(b，5).
Iink3(a，b). Iink4(b，7).

In this case, the fact linkl (1,2) and the fact link3(2，a) can form a partial linl；
- - • .•) ,、• •-‘ 、r ~ •,、

this is also true for the fact lmk3(a,b) and link4(hj). Although th^r^ 麟 ^j l^f ient

facts in the procedure linkS that can separately satisfy the partial 如 m 彻 (i f i k h - l i n k S

and Iink3'-Unk4, none of them can satisfy the requirement to form lA true data link
、： ；•：；•"• 專A、...：

77

involving Unkl, linkS and link4. Therefore, it is possible that the subgoal procedures can

form some partial data links but not true data link. On the other hand, in the recursive

definition in Figure 4.3, a data link can be formed between the parameters X and P

because of the fact link3(2，a). The first argument value 2 of link3(2，a) allow both

subgoals Unkl and linkS to have a common value for the shared parameter j while its

second argument value a allow both subgoal link3 and link4 to have a common value for

their common parameter As a result, a data link can be formed with the facts

linkl(l，2)，link3(2，a) and link4(a，x). In this case, the fact link3(2，a) can be considered as

a connector which can connect two partial data links. In conclusion, two partial data

links can be linked up if the common subgoal involved in both links can be bound to

a connector.

Apart from the procedures defining the subgoals in a cyclic parameter link, the

procedures defining the subgoals not included in the cyclic parameter link may become

significant in determining the existence of a data link. We can illustrate it by modifying

the link2 procedure. The procedures for subgoals Unkl, Unk2, linkS and link4 now

becomes:

l ink l (l ,2) . I ink2(y^). liiiJc3(2,a). Iink4(a,x).
l inkl(3,4). Iink3(4,b). Iink4(e，y).
linkl(5，6). 、 link3(6,e).

This modification can completely eliminate the data link originally existing in Figure 4.3.

I f we temporarily ignore the subgoal link2, we can construct four partial data links which

can be linked up to form two data links. However, with the updated Unk2，no data linjc

can in fact be formed because no data can be transferred in the recursive definitipn,

Due to the presence of the subgoal link2, which shares one of the

involved in the cyclic parameter link (i.e., X) so that the
• •. • 、.、-•’；

determine what data can be transferred to the parameter Z in the recursive rule, } { the

subgoals Unkl, linkS and Unk4 are instantiated with the facts lmkl(l,2), lmk3(2,a}明

link4(a,x) respectively, the second parameter X in the subgoal be instantiated with h

But the procedure of link! consists of the fact link2(y’2) alone. I t causes the p^ritmeter

78

X to have value 2 only. Therefore, the subgoal linkl can no longer be instantiated to

linkl{1,2), So, there is no data link among the subgoals linkl, link3 and Unk4. More-

over, i f the three subgoals are instantiated with the facts linkl (5，6), link3(6,e) and

link4(e，y), the parameter X now needs to be 5. But this is also inconsistent with the

procedure defining the subgoal link2. On the other hand, i f the value 2 is supplied to

the parameter X to be consistent with the procedure of link2, i t then becomes

inconsistent with the procedures defining the subgoals linkl, link3 and link4. Whatever

value is instantiated to the parameter X, the evaluation of this recursive definition wi l l

always fail. So, no data can be transferred through the cyclic parameter link. Through

this example, we can see that the construction of a data link involves all the subgoals

sharing those parameters included in the cyclic parameter link rather than just the

subgoals involved directly in the cyclic parameter link.

Therefore, detecting a data link in a recursive definition involves the following

steps:

(1) Identify the cyclic parameter link and all those subgoals which are not part of the
cyclic parameter l ink but share some common parameters with the subgoals in
the cyclic parameter link.

(2) Construct partial data links between two subgoals with some common
parameters.

(3) Examine all the partial data links sharing a certain common subgoal and see
whether each common subgoal in two partial data links can be connected to a
connector (i.e., a common fact).

(4) Examine those subgoals that are not involved in the cyclic parameter l ink but
share some common parameters with some subgoals in the cyclic parameter l ink
and check whether the common parameters can all be bound to some common
values. ,v5-

‘ •、”：

4.1.1.2 Procedures with Rules

So far we have discussed the data link formed by the subgoals defmec) by fac^s ‘ • . ‘ ‘ ‘ . ‘
only. But subgoals can also be defined by rules alone or both rules and f^cXh |n the

•“'：‘ :::..；："

79

latter case, a data l ink can also be established in a similar but more complicated way.

For a procedure consisting of some rules, the subgoals of these rules must be defined by

some other procedures. Apart from the procedures defining the subgoals which form

the cyclic parameter link, we must also examine the procedure of each subgoal involved

in the rules. This process is repeated until a level is reached where all subgoals used in

a rule are defined completely by facts.

I n Figure 4.4，a cyclic j j = = = = = = = = = = — = = |
build(stop,part end).

parameter l ink is formed be- buildp(,Y)assemblel (Y,A), assemble2(A,B), finish(B,Q),
build(P,Q).

tween the parameter Y and Q
assemble"! (part_a, part_4).

through the subgoals assemblel， assemblel(X,Y)link^d^,P), linked(Q,Y), connect(P,Q).

assemble) and finish. To verify assemble2(part一a, part一b). finish(part_b, part_1).
assemble2(part_b, part一d). finish(partj, part_a).

whether a data l ink exists in this assemble2(part_c, part_f),

cyclic parameter link, we must linked(part_c, partj). Iinked(part一2’ part_a).
Iinked(part_d, part J) . linked(part_4, part_b).

examine each subgoal involved linked(part_e, part_2). Iinked(part_6, part_c).

in the cyclic parameter link. In connect(partJ, part一2).
connect(part_4, part一 6).

order to f ind whether a partial _
data l ink can be formed Figure 4.4

between the subgoals assemblel and finish, we can directly analyze the procedures

defining them as discussed in Section 4.2.1.1. as the subgoals are defined by facts alone.

We can then easily notice that two partial data links exist. They are established through

the facts assemblel (partji, part Jb), finish (part_b, part一1) and the facts assemblel (part_c,

partfinish(part_f，part一a)• However, the existence of a partial data link between the

subgoals assemblel and assemble! cannot be determined in this way. There is a rule in

the procedure defining the subgoal assemblel. Although it is obvious that the fact

semhlel(part_a, part一4) does not supply appropriate data to form a partial data linjc

tween assemblel and assemblel, we need a method to analyze the rule to see whether
- • . .. ,, V < \

the rule can supply data to form a partial data link.

In order to determine whether a partial data link can be formed between the

subgoal assemblel (Y^) and the subgoal assemblel (A,B), we must know ^heih^r dat终

can be transferred through the subgoal parameter link formed betwc^en ibese two
.::'、.-:::;.:::》.,V? ' rM； ‘ •，广::

»、. 80

subgoals in the rule build. By analyzing the procedure defining assemble!, we already

know which values can be assigned to parameters A and B in the subgoal assemble!.

But we must also determine which values can be assigned to parameters Y andv4 in the

subgoal assemhlel. This is tantamount to finding out what values can be assigned to the

parameters X and Y in the head of the rule defining the subgoal assemhlel.

I n our data transfer analogy, to assign a value to a parameter of a subgoal in a

rule can be viewed as to transfer data through this parameter to the subgoals in the rule.

This is similar to the steps followed in detecting data links mentioned in the previous

section. Actually, the steps for subgoals defined by rules are the same except for the

first one. For the previous case, in the first step to detect data links, we need to identify

the cyclic parameter link. For the present case, the first step requires us to identify a

potential transfer link. To transfer data from one subgoal to another in the same rule,

there must be some common parameters. A potential transfer l ink indicates all the

subgoals that are linked up by some common parameters to allow data to be transferred

f rom one parameter to another in the same rule. Therefore, in the example in Figure

4.4, there is a potential transfer link between the parameter X and the parameter Y as

shown in the following diagram:

asseniblel(X;^^liiiked(X jTiinke^C^^，connect^^.

The arcs show how a potential transfer link is formed among those subgoals through

some common parameters. The potential transfer l ink in the rule assemhlel involves all

its three subgoals.

The next step is to construct partial transfer links, which are similar to partial

data links. While a partial data link indicates that two subgoals in a cyclic parametei：
:.、_

l ink are joined by a common parameter, a partial transfer l ink is formed between 镇 9

subgoals with a common parameter in a potential transfer link. There are two p^rtif^l
.... -：̂ :.::;-:,、）•

transfer links in our example: between the first linked and connect mA between the

second linked and connect• The former partial transfer l ink is formed by the fo^fs as:

81

linked(part_c, part_l), and connect(part_l, part_2).
l inked(part_d, part一 1)，

and the latter partial transfer link is formed by the facts as:

linked(part_2,part_a) and connect(part_l,part_2) •
l inked(parr6,parrc). connect(part_4,part_6).

Examining these partial transfer links, we can now decide whether a transfer l ink

exists. A transfer l ink exists among all the partial transfer links i f there are common

subgoals to l ink up the partial transfer links and these common subgoals can be bound

to at least one fact. I n this example, the common subgoal is the subgoal connect and

there is a fact in the procedure defining connect to link these two partial transfer links

together. I t is the fact connect (partJ，part 一2), Therefore, a transfer l ink exists among

the first and second linked and connect so that a transfer l ink also exists between the two

parameters X and Y, The last step is to determine what data can be transferred through

the transfer l ink between parameters X and Y. By examining all the facts used in

forming the partial transfer links, we find that only the facts below are consistent in

forming the transfer l ink among all three subgoals in the rule assemble 1:

linke(i(part_c,part_l). linked(part_d,part_l).
coiinect(part_l,part_2). linked(part_2,part_a).

Therefore, we can conclude that the values that can be assigned to the parameter JT are:

part一c and partji while the value that can be assigned to the parameter Y is: part_a.

The process of determining the values that can be assigned to a subgoal defined by a

rule can be summarized as follows:
• • , -

(1) Identify the potential transfer link and all those subgoals which are not part of
it but share some common parameters with the subgoals involved in the poten|ifti
transfer l ink. , k•戮、 -“• •‘；..，：-

：‘―••‘

(2) Construct partial transfer links between two subgoals with some
parameters. : : �

(3) Examine all the partial transfer links sharing a certain comnioil i ^ b ^ ^ j ^ n d
check whether each common subgoal can be bound to the sĵ m释 : 终 ， ,

, '• . : , : . , ' • ' - . , ‘ ‘ . . . • - ; -

..‘... 、-
一 • V;、，•-

82

(4) Examine those subgoals that are not involved in the transfer link but share some
common parameter with some subgoals in the transfer link and check whether
the common parameters can be instantiated to a set of common values. I f the
requirements in both steps (3) and (4) are fulfilled, a transfer link exists and the
values assigned to a particular parameter are equal to the values used in the facts
that make the transfer link possible.

Moreover, the more complicated situation can be handled in a similar manner.

I f the procedure defining any subgoal of any rule used in a definition also involves some

rules, we just need to take care of the more fundamental rules first. For example, i f the

recursive definition in Figure 4.4 remains the same except that the definition of the

subgoal assemblel is changed to:

assemblel(part_a, part_4).
assemblel(X，Y) li i ik(X, Y, P, Q), connect(P,Q).
l ink(X, Y, P, Q) liiiked(X,P), linked(Q，Y).

We can see that we need to first deal with the rule Unk(X，Y，P，Q) Unked(X，P)，

linked(Q，Y). However, the above process can again be applied to this rule without the

need for any modification. The same result can be obtained as in the original example

of the recursive definition in Figure 4.4. This process can work in a recursive manner.

I t recurs at the point where the subgoal is defined with some rules until a subgoal

defined by all facts is reached. Then the process is applied to this rule (with subgoals

defined by all facts) to find out all the possible values that can be transferred through

the subgoal defining by this rule. I f this subgoal is also a part of a rule that defines

another subgoal, the process continues until it reaches the rule that forms the recursive

definition. In our example, the process stops when it solves the subgoal assemblel in the

rule build which forms the recursive definition.

83

4.1.2 The Indirect Recursive Definition Case

I n an indirect recursive definition, a cyclic parameter l ink extends over more than

one rule. To achieve requirement (2) of the data link in such a situation, it requires the

condition that data can pass from the data link in one rule to the data l ink in the other

rule. As described in Chapter 3，data can be transferred between two rules through the

parameters at the same position in the parameter list of the recursive subgoal and the

head of the next rule. Thus a data link can be established if each rule involved in the

indirect recursive definition can have a data link and the data l ink of each rule can be

linked up by the parameter that passes data from one rule to another. In other words,

we can consider each rule in the indirect recursive definition separately and then

examine whether data links found in each rule can be joined together to form a data

l ink of the entire recursive definition.

I n Figure 4.5,

• ^ ^ • t ^ ^

indirectjecur(X,Y)linkjeveh (X,A), notJink(Z,X), nextJevel(A,Q).
definition has a cyclic ^ t 丨eve丨(A，Q)丨inkjeve丨2a(A，B)，linkJevel2b(B.P).

parameter link shown indir8ct_recur(P.Q).
by the arcs i n the link Ievel1(1,2). notJink(y,1). Iinkjevel2a(2,a). Iinkjevel2b(a,x).

linkjevell (3,4). Iinkjevel2a(4.b). Iinkjevel2b(e,y).
diagram. Actually, the Ilnkjevel1(5,6). Iinkjev9i2a(6,e).
i n d i r e c t recu rs i ve ^ ^ ^ ^ ^

definition in Figure 4.5 mdirect_recur(X,Y) :- linkjevdicx)̂, notJink(Z»X), next_level(A,Q).

is equivalent to the , ^ ^ ^ ^
d i r e c t r e c u r s i v e nextJevel(A,Q) ••- linkJevel2a(A3), liiik_level2b(BJ»), mdirect_recur(P,Q).

definition in Figure Diagram showing a cydic parameter link existed between

.^ T 1 • the parameter and 'P'
4.3. In the rule m- “ •
direct 一 r e c u r ， t h e r e is

only one (rather than Figure 4.5

three) data l ink formed by the facts linkjevell (1，2) between the subgoals linkj^el^

and next level due to the limitation imposed by the subgoal not Jink. For rulQ
• . r •‘

nextjevel, two data links can be formed by the facts link_ level2a(2，a)，lmkjevel2b^ ^

and link level2a(6，e), link level2b(e，y). However, if the entire recursive defliUtlpn k
一 一 • ‘：• • . : . v . r , 、 , y . . . ： ‘ ：

84

considered, there is only one data link that consists of facts: link一 lev ell (1, 2)，linkjevel-

2a(2，a)，linkjevel2h(a,x).

By analyzing the data links in these two rules, we can see why only one data link

can be formed. According to the procedure defining linkjevell, we can find that the

data link in the rule indirect一recur can pass only the value 2 to the data link in the rule

nextjevel. However, the procedure defining linkjevella can allow the data link in the

rule nextjevel to accept only values 2 or 6. (The values are not 2，4 and 6 since the

concern is not the subgoal link level2a but the data link formed in the whole rule.) So

only the value 2 can be successfully transferred from the data link in the rule

indirect recur to the data link in the rule next level. Hence, only one data link can be

formed in this indirect recursive definition.

This example shows how data links can be constructed from the different rules

involved in an indirect recursive definition: first, we try to construct data links in

different rules separately; then we analyze the values passing through the data links of

each rule to see whether some common values exist in the different data links of

different rules. In this example, the common value that allows a data link to form is the

value 2 for the parameter in the rule nextjevel and the rule indirect一recur. Therefore,

there wil l be no data link in this indirect recursive definition if we make a little change

in the procedures of subgoals used in the second rule as follows:

link_level2a(2,b). Iinkjevel2b(a,x).
Iiiik_level2a(4,a). Iiiik__level2b(e,y).
Iink_level2a(6,e).

Although two data links still exist in the rule nextjevel, the values passing through the

data links are 4’ x and 6,y for the parameters 為尸.Thus no common value

to connect the data link in the first rule and the data link in the second ::
• • • - -,。""_ .. • • . “ “

In this example, except for the recursive subgoal, all other subgoals 终r资 d^Qaec)

by facts alone. The example is so constructed to keep the illustr^t{p;9 ^s clear

possible. However, the method outlined in this section can CQpil^ined with tho
. . 窗 ‘ . . .

• . •

85

transfer l ink constructing method described in the above section to handle those

indirect recursive definitions with subgoals defined by rules only (or by both rules and

facts). In the first step of detecting a data link in an indirect recursive definition, we

consider each rule defining this indirect recursive definition separately. I f any subgoal

in one of these rules (that are defined by some rules) is encountered, we can examine

the transfer l ink (if there is any) to determine the values that can be assigned to the

parameters of this subgoal. With these values, we can move on to analyze the cyclic

parameter l ink to detect the data link of a particular rule as what is done in the case of

indirect recursive definitions with subgoals of facts alone. Then we examine all the data

links in every rule used in the indirect recursive definition to determine whether there

exists a data l ink in the indirect recursive definition. By applying the strategies in

Section 4.2.1.1 and Section 4.2.1.2，we can detect the presence of any data l ink in each

rule used in an indirect recursive definition and also the values passing through the data

l ink (if any) no matter the subgoals involved are defined by facts or rules.

4.2 on the Difference between Pure and General Prolog

The above discussion on how a data link can be established shows why it is

possible to detect data links in pure Prolog programs by analyzing the procedures of

those subgoals involved in the recursive rule without the need for semantic knowledge.

But the situation wi l l be different if general Prolog programs are considered. The

difference between pure Prolog and general Prolog arises from the presence of built-in

predicates in general Prolog.

The procedure defining the built-in predicate is not provided by the progranw^er,

Since the built-in predicates are not defined by any procedure in the program, the yalue^

that can be unified with the arguments of these built-in predicates are ^qt 賴会 i祭癌 jp

the program. Instead, the data passing through a cyclic parameter l ink 双 i椒协§

built-in predicate are calculated only when the recursive definition is evaluated.)n other

words, there is simply no procedure of built-in predicate for us to analyz^, ^ ^ p ^ a n t t9
• ''' ,. •’•-- ‘ ； ‘ 、 .‘

86

f ind the data links in a certain recursive definition in general Prolog, some kinds of run-

time tracing technique must be used to identify the kinds of data that can pass through

a built-in predicate. Furthermore, semantic knowledge must be provided to guide the

tracing because most built-in predicates have arguments that can be unified with an

infinite set of values.

Figure 4.6 shows an program(a) with'built-in" Program(b) pure Prolog

example of how semantic predicate version
add2(0, N, N). add2(0, N, N).

knowledge is needed to find adci2(Ni, N2. R) :• add2(Ni, H2 R)：-

r m t n Hpta l i n k i n a g e n e r a l N2一 isN2 + 1. succ8SS0r(N2,N2J, out a data i inK m a general add2(Ni一，R). add2(NL, N2一, R).

Prolog recursive definition. succesor(0.i). successor(5.6).

There are two almost succesor(i ,2). succ8ssor(6,7).
succesor(2,3). successor(7,8).

e q u i v a l e n t r e c u r s i v e succesor(3.4). successor(8.9).

definitions. Both have two succesor(4,5). successor(9,i0).

cyclic parameter links bet- | = = = = = = 1
Figure 4 . 6

ween parameters N1 and N1 一

and between parameters N2 and N2_. Their semantics are almost identical. But only

Program (a) has a much greater calculating power: Program (a) can theoretically add

up any two numbers while Program (b) can only handle numbers from 1 to 10. The

powerful calculating ability in Program (a) comes from the built-in predicates: Nl_ is N1

- 1 and N2一 is N2 + 1. Basically, successor(NlNl) and successor(N2，N2」are

semantically equivalent to Nl一 is Nl - 1 and N2一 is N2 + 1 except for their l imited

range of inputs. I n the pure Prolog version, the subgoal successor is defined by a finite

number of facts. This results in a l imit on the range of values that can be unified with

variables Nl and N2. This provides us a way to determine the existence of any data l ink

in the recursive definition by analyzing the procedure that defines the subgoal successor，

However, there is no procedure for us to analyze when we attempt to 如绕事抽
i — r‘ f .•“ •

data l ink in Program (a). We, therefore, can only conclude the existence of a 如t终 I M

between the parameter Nl to Nl一 and N2 to N2_ by either one of two

semantic knowledge of these built-in predicates or (2) tracing the ey拜lu拜tiî 妖洽| 琳g

recursive definition. Once we understand that the predicate 〜釋 缺pp(辦 j t
、.> … 1 : : : : . . .

87

calculates the Expression on its right hand side and then assigns the result to the variable

on its left, we can show that some data can be transferred from the parameter N1 to the

parameter Nl_ by the predicate N1 一 is N1 - 1 during the recursion. Since a cyclic

parameter l ink is also formed between parameters N1 and A/7_, a data l ink exists

between them. The semantic knowledge of this predicate can be used to determine

partiaUy whether a data l ink exists. I t is partially determined because, sometimes, it

depends on the input value to determine any data transferring through the predicate.

For example, i f the Expression supplied to the predicate is 10/N, an error occurs when

N is 0 and no data can be transferred through this predicate. On the other hand, we

can also know whether any data can be transferred through a cyclic parameter l ink by

simply tracing it during the evaluation. But semantic knowledge may be required in

some situations in the tracing. In this case, the parameter N1 must be first unified with

some values before the predicate Nl_ is N1 - 1 is evaluated. The evaluation of

subtracting 1 from an uninstantiated variable results in failure. Tracing without

initializing the parameters N1 and N2 wi l l not give a correct conclusion. Moreover,

semantic knowledge may be required for choosing the initial values for the parameters

involved in the tracing. In Program (a), it does not matter what values are chosen to

initialize the parameters N1 and N2. However, it becomes important if the recursive

rule is modified as follows:

add2(Nl, N2，R) N1 一 is N1 - 1，N2一 is N2 + 1，

m ~ > N2_, add2(Nl_, N2_, R).

I f the init ial values of N1 and N2 are 1 and 2, a simple tracing wi l l detect that there is
-!, -一，•

no data l ink in this recursive definition. But there wi l l always exist a data l ink whe^ N1

is assigned a value greater than the value instantiated to N2 by 3 or more. So, trapiog

requires semantic knowledge in this case.

In conclusion, although parameter analysis can be applied in the sanie w^y

both pure Prolog and general Prolog, data analysis cannot be applied tQ [块 ^ l a g

in the same way as pure Prolog. To detect a data l ink in a gene镇I 1[资g^今iy|

definition, semantic knowledge must be provided. Data analysiji, ii} gen^i^l J^rolog,

needs to be conducted with an interactive or a run-time tracing Howey^j,糾 I
‘ • ‘ '̂•：，. V'

88

these problems in the case of general Prolog do not exist in the case of pure Prolog.

Due to the absence of the built-in predicate in pure Prolog, one can detect

nontermination with an analytical approach.

4.3 Data Link Significance

After we have discussed what a data link is and how it can be established in

different situations, we move on to discuss the significance of data link. From the above

discussions, we can see that a data link exists i f some data can pass through a certain

cyclic parameter l ink in one complete cycle. In other words, the presence of a data l ink

guarantees that some values can pass through one parameter cycle of recursion

(however, as explained in Section 4.1，one or more levels of recursion may be involved

depending on the number of recursion levels involved in the corresponding cyclic

parameter link).

Therefore, the significance of the data link is: the existence of a data l ink

indicates that the corresponding cyclic parameter l ink can act as a parameter modifying

process in at least one parameter cycle of recursion. On the other hand, the cyclic

parameter l ink that cannot form a data link implies that it is not a parameter modifying

process at all. The reason is simple: no parameter can be really modified if no value

can be successfully transferred through a cyclic parameter link.

As has been pointed out in Chapter 3, to verify whether a cyclic parameter l ink

is an exit-reaching process involves two steps: first, to show that some data can

through this cyclic parameter link; second, to show that an exit condition exists Jo thg

cyclic parameter link. Although the presence of a data l ink cannot provW矿
….…、聰舞鴨

necessary semantic knowledge to verify whether an exit condition is presen《抽

corresponding cyclic parameter link, the absence of data l ink in a rec诉乡权会；^祭卯

indicates that the corresponding cyclic parameter link cannot include any' i ^ l exit

condition. Even though a cyclic parameter link may include an intended ^ p d i t i p n ,
• - - • , • . ‘ . - ' • . '

• � t • «’.\.v._. ’•

89

the absence of data l ink shows that no data can ever be modified through this cyclic

parameter link. I f no data can pass through a cyclic parameter link, the cyclic

parameter l ink cannot act as an exit-reaching process and consequently the intended exit

condition can never act as a real exit condition. In other words, the absence of data link

in a cyclic parameter link indicates that the cyclic parameter link is not an exit-

reaching process.

But there is one interesting point: the absence of any data l ink does not imply

the presence of nontermination error. In contrast, the evaluation of such a recursive

definition can always terminate. The absence of data links implies that no data can pass

through some of the subgoals involved in the cyclic parameter link. Therefore, these

subgoals always fai l to be instantiated with any value. Any attempt to evaluate such a

recursive definition can only result in failure. In fact, not even one level of recursion

can proceed in the recursive definition that has no data link. Therefore, the apparent

dilemma can be solved i f we can distinguish the exit condition in action f rom the

semantic exit condition. Since the absence of data links forms an exit condition in action,

it can terminate even though there is semantically no proper exit condition.

This can be illus- ^ „
Program (a) Program (b)

trated by the examples in Nonterminating recursive Recursive definition without
_ definition: with data link nontermination: without data link

Figure 4.7. In both Pro- ——
, . ,,V path(a,e). path(a.b). path(a,e). path(a，b).

gram (a) and Program (b) path(b’c). path(c,cl). path(b,c). path(c,d).
path(d,a). path(d,a).

of Figure 4.7，the second
b go(X,Y):- path(X,Y). go(X,Y):- path(X,Y).

rule of so forms a direct go(X.Y)path(X.A) go(X.Y)path(X A) path(A.A).
。 go(A,Y). go(A,Y).

recursive definition with a , ' , .

cyclic parameter l ink The cyclic graph defined by
the Procedure 韓path" (b

b e t w e e n t h e f i r s t

parameter of the rule G) _

head, X and the first

parameter of the recursive Figure 4.7 輝 P” : 1

subgoal, A, Although

there is no real difference between these two programs in terms of th^ r|9su)ts of ‘ .. ；.- . ,. ..: ..-•• •
90 ，

parameter analysis, they are greatly different from each other in terms of the results of

data analysis. In Program (a), data can be transferred through the subgodXpath(XyA) so

that data links can be established between parameters X and A. However, in Program

(b), the cyclic parameter l ink is formed by the two subgoals path(X^) and path(A^)

instead of the subgoalpath(XyA) in the case of Program (a). By analyzing the procedure

defining path, i t is clear that no fact in the procedure of the subgoal path can be instan-

tiated with the subgoal path (A, A). Therefore, no data l ink can be formed in Program

(b) despite the great similarity between the two programs. In spite of the absence of

data link, the evaluation of Program (b) wi l l definitely come to an end. I n fact, no

evaluation can be carried out at all because any value supplied to this recursive

definition wi l l end up in failure at the subgoalpath(AyA). The problem is, not one of

nontermination, but that the supposedly recursive definition go can never recur. In other

words, there is a semantic error in this recursive definition.

On the other hand, while a data link shows that a cyclic parameter l ink can

actually transfer data and modify them for at least one level of recursion, this is not the

proof of termination. This is shown by Program (a) in Figure 4.7. Because the

procedure of the subgoal go actually defines a cyclic graph as shown in the diagram

inserted in Figure 4.7, the evaluation of Program (a) eventually leads to nontermination.

Contrasting these two examples, we can see that a data link indicates whether a cyclic

parameter l ink can allow any value to pass through itself in at least one level of

recursion; its absence indicates that the corresponding recursive definition is nqt

properly defined. In other words, nontermination cannot be detected by constructin|

data links alone; our data analysis is not complete unti l we take into consideration tbg

cyclically and non-cyclically (or simply cyclic and non-cyclic) connected data-link }_!，

I n the following sections, we shall discuss how nontermination in pure Prolog ^

detected by examining whether data links found in a recursive definition can ^IsQ ^ i j j

some connected data-link lists and what kind of connected data-link lists C^n
、\ f � "

by these data links. 、.,

91

4.4 Connected Data-link Lists

4.4.1 Data Links and Connected Data-link Lists

A data link represents a data transfer in one parameter cycle of recursion

through a cyclic parameter link. But in the nonterminating evaluation of a recursive

definition, the data transfers in a cyclic parameter link during the recursion actually l ink

up to form a infinitely long data transfer sequence. The length of a data transfer

sequence in a certain cyclic parameter l ink depends on how many levels of recursion

involved in one parameter cycle and how many parameter cycles can be completed

during the evaluation. Therefore, a data transfer sequence can represent a data transfer

through one or more parameter cycles of recursion. Since a data transfer sequence of

one parameter cycle can be represented by a data link, several data links can be

connected together to represent a data transfer sequence of multiple parameter cycles.

The result of these connected data links is referred to as a^connected data-link list.

In order to show how a connected data-link list can be formed from a set of data

links, we can consider the situation of more than one data links for the same cyclic

parameter link. The situation implies that there are several possible values that can be

transferred through the same cyclic parameter link. Although each of these data links

only indicates that certain values can be transferred through the recursive definition in

only one parameter cycle of recursion, some of these data links in the same cyclic

parameter l ink may be combined together to represent a data transfer sequence through

more than one parameter cycles of recursion. Therefore, the concept of connected data-

l ink lists is an extension of the concept of data links to describe the data transfer over

all recursion levels in one complete recursion.

Therefore, the difference between a data link and a connected data-link l is| is
* : . . . • : . � • V :

v.- ‘、广 ‘../•
only a difference of length, i.e., a difference in the number of recursion 鮮辯

which a data transfer takes place. On the other hand, the difference between \hp

absence and the presence of data link is great; it is tantamount to tbp diff^yenjie

between a proper recursive definition and an improper one. Hence, we inust ignpre
. . . • . 、 知 . ? : : : — 、 92

the data transfer sequence of one single parameter cycle of recursion. In other words,

a data l ink must be considered as a special case of connected data-link list. The

following discussion on the cyclic and non-cyclic connected data-link list is therefore also

applicable to data links.

The example in Figure 4.8 illustrates how a connected data-link list can be

constructed out of some | | = = = = = = = = = = [

simple data links. I n a(X,Y)link(X,P), a(P,Q).

Figure 4.8，there is a link(1，2). Iink(3,4). iink(5.6). link(2,a). Iink(4,b). Iink(b,5).

simple recursive defini- Search tree (a) Search tree (b)

t ion with a cyclic pa- a(i,G)) 3 ， ^ ^

rameter l ink between >，•) 丨丨nk(3,4)

parameters X and P / 丨丨nk(4,b)
.丄 1 丄 u 1 link(2,a) a(a,0) Z \

with only the subgoal ^ iink(b,5) ， , •)

link involved in the cy- 丨ink(a,©) H n k (‘ ^ q)

d ie parameter link. fail WnkiSQ)

According to the proce- ⑩ .un in i t ia ted parameter fLi
dure defining the sub- _ _ = = = = = J

goal link, there are six F i g u r e 4 . 8

data links between Z a n d P. They are formed by the facts link(l，2), link(3, 4), Unk(5，6)，

link(2，a), link(4, b) and link(b，5). In considering the data link from the viewpoint of the

data transfer analogy, we can consider that the values 1, 5, 5, 2, 4 and b are passed intp

the cyclic parameter l ink through the parameter X with values 2，4，6, a an^ |

respectively coming out from the parameter 尸.There fo re , we denote these data Jj[喊秀

in this example as 1-2�3—4, 5-6, 2--a，4--b and b--5. I f we just l ink up any Jwp ^af^
‘ . - • . . • •、 . :、、J 、“ ‘... .‘ • ' r { ， '' . • '：.","»

links, with the tail of one data link and the head of the other one having th^
‘.-•‘- i'-- - . ‘ -<••..

as 1-2 and 2 - a respectively, we can form a connected data-link list 躲 i”》?-錢，Six

connected data-link lists can be formed in the example. They are l - l - ^ a .

5 -6 , 4'-b-5"6 and Z?--5-6. : 4 j,、•：I、’ ： • ... • •

I f we examine how a recursive definition is evaluated, yi令 caif Pf^d a gre^t s(m{-

larity between connected data-link lists and the values passing thrpugh each ley^l of
. 厂 二 . . , : ： .

• . ^ ； • V • �

’ � : � l . •. ... 、•. i ,
9 3

recursion. For example, on the one hand, if the query ？- a(l，X) is supplied, a two-level

recursion occurs with a calling sequence of the goal a as a(l,X), a(2，X)，a{a, X), (where

X is the uninstantiated parameter) as shown by the search tree (a) in Figure 4.8. On the

other hand, i f we identify the connected data-link list which is started by i , we can f ind

one connected data-link list with a length of two data links: 1-2-a. Moreover, i f the

query ？-a(3yX) is supplied, it results in a calling sequence of the goal a as a(3，X)，a(4，X)，

a(b，X) a(5，X)，a(6，X) (where X is the uninstantiated parameter) and then the goal fails.

The number of recursion levels is four. We also have a connected data-link list with a

length of four data links started by 5: 3--4--b--5--6. We can find the one-to-one

correspondence between a data transfer sequence and the connected data-link list.

Although the data transfer sequence is different when different queries are

supplied, our connected data-link list technique has no difficulty in predicting whether

a certain query can have a data transfer sequence and what this connected data-link list

looks like. For example, i f the query ？-a(5,X) is supplied, we can simply check the

connected data-link lists started by 5. There exists a connected data-link list 5--6, which

indicates that this query can have a data transfer sequence which is: a(5,X), a(6, X) and

then it fails. I f the query ？'a(7,X) is supplied, our technique shows that no data transfer

occurs because there is no connected data-link list started with 7. Both predictions can

be confirmed by drawing search trees for the two queries.

Before we continue our discussion on connected data-link lists, we must note that

the data links and also the possible connected data-link lists for a cyclic parameter can

extend to more than one level of recursion. In the above example in Figure 4.8, we only

consider the data links in the single-level cyclic parameter link. In this case, the (J终t接

l ink is always one level long. However, in the case of multi-level cyclic parameter： I jnL

any data l ink formed must also extend over several levels of recursion. In j^^grppj

in Figure 4.9，the cyclic parameter link is actually two levels long. Th^ 绕 海 _ _

between a multi-level cyclic parameter link and a single-level cyclic 喊 权

obvious i f Program (a) and Program (b) are compared. I f we are o n ^ 效gpi商经4 Q j l j

the change of data when passing one cycle of the cyclic parameter liiijc, {Jje ^ i a MnU

can be expressed as 1-3’ 3-5 and 5-1. On the other hand, i f the (?h卯g‘ pf dat“ in
. ‘ • •• • .

.. ‘ V；' . � . • � ‘ •
9 4

data in every level of recursion

is considered, it is better to Program (a)

express the data links as 1-2-3, goal(AX，BX) ：- rmk(AX,XA), goal(XA,XB).

5 - 4 - 5 and 5 - - 6 - i . Both can iink(i,3).丨ink(3,5). Iink(5.i).
work well in our discussion on

how to construct connected
Program (b)

data-link lists out of data links.
t t l goal(AX,BX)丨inka(AX，XB)，linl<b(BX,XA),
H o w e v e r , b e c a u s e o u r y 、 / goal(XA,XB).

discussion is based on the
linka(1,2). Iinkb(2，3).

concept of cyclic parameter linka(3,4). linkb(4,5).
Iinka(5,6). Iinkb(6，1).

links and the concept of

parameter cycles of recursion, ^ ^

we shall denote a data l ink with

the change of data in a complete parameter cycle instead of with the change of data in

each level of recursion. Therefore, both single-level cyclic parameter link in Program

(a) and multi-level cyclic parameter link in Program (b) in Figure 4.9 have the same

notation of their data l inks: i "5, 3 - 5 and 5-1. Since there is no significant difference

between a single-level data link and a multi-level data link, the following discussion on

connected data-link lists wi l l be based on a data link of one level in order to simplify

our discussion.

4.4.1.1 Connected Data-link Lists and Data Transfer Sequences

By comparing the sequence of values passing through the consecutive parameter

cycles of recursion with the connected data-link list, we can see that the connected data?

link list represents exactly the same sequence of values passing through the cyclic

parameter link during each successive parameter cycle of recursion. The relatipQ
� - V：

between them is obvious: (
(1) A data l ink indicates that some data can pass through a certain cyclic

l ink in one parameter cycle of recursion. /-y；,̂ -̂；̂

(2) The first value shown in a data link indicates what value is p严琴_ tWs
parameter cycle of recursion. ' 售 〔 、 ” ” ： ...‘•：.：•.？ • :« ,、

95 ，

(3) The second value in a data link shows what value can come out after this
parameter cycle of recursion.

(4) The cyclic parameter link implies that the value coming out of the parameter
cycle of recursion can be transferred to the same parameter in the next
parameter cycle of recursion.

(5) Therefore, two data links that can be linked up together indicate that some data
can pass through two consecutive parameter cycles of recursion.

This is the reason why we only link up two data links with a common value. The

common value implies that this value passing out from one parameter cycle of recursion

can be immediately fed to the same parameter in the next parameter cycle of recursion.

For example, in Figure 4.8, there is a connected data-link list of 3'-4'-b-'5-6. Since four

data links are involved and one parameter cycle of recursion of the data links only

involves one level of recursion, we can predict that a four levels of recursion wi l l result

and the first parameter of the goal a wil l be instantiated with values of 5, 4, b, 5 and 6

during successive level of recursion. This is just confirmed by Search tree (b) in Figure

4.8.

In addition to the data transfer sequence, the connected data-link list can also

indicate the maximum number of levels of recursion that can be reached before

termination occurs. By examining the levels of recursion indicated in Search trees (a)

and (b), we can also find that the maximum number of levels of recursion can be

reflected by the length of the connected data-link list. The longest connected data-link

list can indicate the maximum number of recursion levels that can be reached. Th^

length of a connected data-link list indicates how many parameter cycles of recursipn

can be reached by the corresponding data transfer sequence. I f the number of recijj辦侧

levels involved in one parameter cycle is known, we can calculate the length Qf 热g

connected data-link list in terms of levels of recursion. In Figure 4.8, the para屯jgijier

cycle of each data l ink involves only one level of recursion. Therefore, the

number of recursion levels that can be reached by the connected data-link Jj|絲！赫鳥麵

a length of two data links is two levels of recursion while a connected jis| pf

four data links long can represents a data transfer sequence of four levels Qf c^cmrsipn,

This is clearly shown by Search trees (a) and (b) in Figure 4 各 ' p j © rgj^on % this

、.，二“!. -'N,"' '.•twX'.

9 6

relationship between the length of connected data-link list and the number of levels of

recursion is the same reason for the relationship between a connected data-link list and

the value transfer sequence of the successive level of recursion.

As discussed in Sections 4.1 and 4.3, a data link indicates what kind of values can

pass into and out of a parameter cycle of recursion. But data transfer in one parameter

cycle of recursion, as shown in this chapter and the last chapter, is completely

determined (if we put aside the case of special parameters for a while) by the definitions

of the subgoals forming the cyclic parameter link. Therefore the connected data-link list

in fact represents the data transfer sequence made possible by the definitions of

subgoals involved in a certain cyclic parameter link. I t explains why there is a

correspondence between the data transfer sequence and the connected data-link list: (1)

correspondence between the number of parameter cycles of recursion and the length of

connected data-link list, (2) correspondence between the values in the data transfer

sequence and the values in the connected data-link list, and (3) correspondence between

the order of values in the data transfer sequence and the order of values in the

connected da-link set.

4.4.1.2 Connected Data-link Lists and Backtracking

Moreover, a connected data-link list can accurately account for a data transfer

sequence even if backtracking happens. In Prolog, the backtracking mechanism always

causes all possible data transfer sequences to be tried. Backtracking occurs when a data

transfer sequence comes to its end. Therefore the point where backtracking occurs ^

independent f rom other data transfer sequences. However, the point where evalugtjaij

is resumed, that is, the point where the backtracking mechanism leads the evaluatiqii ^

is affected by other data transfer sequences. .."M .:”、〔
(V 窗

..：？;斤•
. . . V . , .. • • � � . -

I n Prolog, the backtracking mechanism always tries to resume evaluat i照辦州e

latest level of recursion if it is possible. I f it is not, it backtracks to the previous
. -:::.‘、捷:纟厂^^巧

That is, if necessary, i t can backtrack all levels, one by one, unti l level one is r^^phed.
Backtracking goes on unti l it can find another possible data transfer sequi&^e pi： l int i l

、：_•:- : - • 、、‘ V '-、:••: ‘ \ ‘.
‘ — : - • 、 • 、 -

9 7

j = ^ = = = = = = j] all possibilities are ex-
叩)，goal(P.Q). hausted. Therefore,

link(1,2). Iink(2.3). Iink(2,4). Iink(4.5). evaluation can be re-
link(5,7). _5 ,9) . Iink(9.10). sumed at the very point

一 二 二 J r 一 ~ — where an alternate data

goal_, 1) transfer sequence is

link(i,2^oaip,2) found. I f an alternate

\linl<2.4) goal(|M) data transfer sequence is

iL iink(<)̂ go^i.5) found, it is not necessary
to backtrack to the very

link(5.7) goal(國,7)/link(5,9) goal(_,9) .
I ： \ / beginning of the recur-

1 -.uninstantiatedparameter fail Iink(9,10) goal(圓，10) s i o n I f a recursive
• • 11 : backtracking path .

goal(end. 10) definition has several

L . ^ _ data links all with the
F i g u r e 4 . 1 0

first value being the

same, there are different possible values for the next level of recursion. It can be

illustrated by the example in Figure 4.10. There are two data links, 2 - 5 and 2-4, which

are started by the same value 2. I f the value 2 is supplied to this level of recursion, the

value transferred to the next level of recursion can be either 3 or 4. Because of the

backtracking mechanism in Prolog, both of the two possibilities wil l be tried eventually.

I t is shown by the search tree^ in Figure 4.10. At the first level of recursion, after the

data transfer sequence corresponding to 2-3 is tried, backtracking occurs and leads the

evaluation to the point to try the data transfer sequence corresponding to 2-4.

Therefore we have some data transfer sequences which have a common segment. The

point where backtracking resumes the evaluation of a recursive definition is the point

1 This search tree does not show further searches after the unification of "goal([uniii-
stantiated parameter], 10)" with the fact "goal(end，10)" at the fifth level of recursion
because it has already served our purpose here to illustrate the relationship between
a connected-data link and backtracking. However, the backtracking mechanism wil l
continue to search for other possible solutions for the parameter "X" with the
parameter "Y" instantiated with "1". But all the subsequent searches wil l result in
failure.

9 8

where the common segment ends. Of course, we can eliminate the common segment by

viewing these data transfer sequences as a single data transfer sequence as follows:

goal(X，Y)，goal(X, 1)，goal(X, 2)，goal(X, 3)，backtrack, goal(X, 4)，goal(X, 5)，

goal(X, 7)，backtrack, goal(X, goal(X, 10) and goal(end, 10) where X is the
uninstantiated parameter

However, this view is less satisfactory because it cannot show important information

such as the number of parameter cycles of recursion and the point where backtracking

resumes the evaluation.

Therefore, i f we follow the view that there are several different data transfer

sequences with a common segment instead of one single data transfer sequence, each

connected data-link list can account for a data transfer sequence just as the case of no

backtracking. In Figure 4.10，there is a recursive definition which has only one cyclic

parameter l ink between the second parameter in the recursive rule, head and the second

parameter in the recursive subgoal. The data links in the recursive definition are 1—2,

2-5, 2-4, 4—5’ 5—7，5-9 and 9-10. Therefore, eleven connected data-link lists can be

formed, they are 1-2-3,1-2-4-5-7,1--2-4--5--9-10,2--3,2-4-5-7,2-4-5-9-10,4-

5—7，4-5-9-10, 5-7, 5-9-10 and 9-10. With the query ？-goal(X，l)，there are three

possible data transfer sequences since there are three connected data-link lists started

by 1:1-2-3,1—2—4—5—7 and l-2-4-5"9-10. By comparing them with the search tree

in Figure 4.10，we can see the common segment in the connected data-link lists

correspond to the common segment in the data transfer sequences. And the length of

and the values in the connected data-link list can also show the number of parameter

cycles of recursion and the values being transferred in the corresponding data transfer

sequence as usual.

4.4.1.3 Connected Data-link Lists and the Recursion Result

The example in Figure 4.10 also shows that a data transfei* ^ecj^enci ！共 j|

recursive definition does not guarantee that the evaluation of this recwrsiy^ d^gnit ion
. . . .• •/.、,,•/ • 、 •

can succeed. In other words, as data transfer sequences are represeiitpcj Iq^ jpgniippted
• • • ‘ 、 . - , . . 、 - . 、 ‘

9 9

data-link lists, the presence of a connected data-link list in a recursive definition does

not guarantee the evaluation of this recursive definition will succeed. For example, the

data transfer sequences corresponding to the connected data-link lists 1-2-3 and

4-5'-7 all lead the recursion to failure. The recursion can only succeed when the data

transfer sequence can assign a value that can agree with some facts in the procedure

that defines the recursive goal. In this example, the value 10 can agree with the fact

goal(end, 10) so that the recursion succeeds. (However, the solution of the parameter

X is still an uninstantiated parameter since there is no data link to transfer the value end

back.)

Therefore, a connected data-link list can also be used to check whether a

recursive definition can succeed. If a recursive definition has a connected data-link list

which has a tail value that can agree with a certain value of one of the facts defining the

recursive subgoal, the evaluation of this recursive definition can succeed. Therefore, if

we change the fact in the procedure goal in Figure 4.10 fromgoal(end, 10) to goal(end,5),

we can still conclude that the recursion in Figure 4.10 can succeed by analyzing the

connected data-link lists. (There are three connected data-link lists that end in value 5:

4-5, 2-4-5 and 1-2-4-5)

4.4.2 Cyclic and Non-Cyclic Connected Data-link Lists

Besides the connected data-link list of finite length, the data links from some

recursive definitions can form a connected data-link list of infinite length. We shall

refer to the finite set as a non-cyclic connected data-link list while the infinite one is

referred as cyclic connected data-link list. Actually, we have an example of cyclic

connected data-link list back in Figure 4.7. A cyclic connected data-link list exi^t^ ip

Program (a). Comparing it with the example in Figure 4.8, we can find great siipilgrij^

between them. Although the rule go in Program (a) of Figure 4.7 is depnp^ :，:楚;̂

. g o (X , Y) path(X,A), go(A,Y). . : : 、 : : :

and the rule a in Figure 4.8 is defined as:

1 0 0

‘ a(X，Y) :- link(X,P), a(P,Q).

They are the same if we can put aside the naming of the parameters and the subgoals

for a while. The rule a is exactly the same as the rule go if we replace a with goal, link

with path, P with A, and Q with Y. In Prolog, naming does not play an important role

in the evaluation of a program as long as the changes are consistent. Therefore, we can

consider that both of them have the same recursive rule and the same cyclic parameter

link. But there is a significant difference between them when we consider the

procedures defining the subgoals path and link in these two examples. They result in

two different sets of data links in these two different examples. The data links in Figure

4.8 are 1-2, 3—4’ 5-6, 2-a, 4-b and h-5 while the data links in Program (a) of Figure

4.7 are a-e, a-b, d-c, c-d, and d-a. They are two distinctively different sets of data

links. As shown above, the first set of data links can just form two chains with finite

length. But if we try to link up the data links in Program (a) of Figure 4.7 as what has

been discussed above, we shall soon find ourselves engaged in an infinite task. Suppose

we start with the data link a--e，we first only form a single data link chain. But if we

start with the data link a--b’ the connected data-link list can be infinite as a-b-c-d-a-

b - ' C - d - a - However, it is obvious that this infinite sequence is constructed by

repeating a segment of a-b-c-d and it can be represented as a cycle of a-b--c—d-a.

This is the reason why we refer to such a connected data-link list of infinite length as a

cyclic connected data-link list. In contrast to the cyclic connected data-link list, we refer

to the finite connected data-link list as a non-cyclic connected data-link list because we

cannot find a repeating segment in it.

With the idea of cyclic and non-cyclic connected data-link lists, we can proceed

to develop our technique for detecting nontermination without the need of semantic

knowledge in pure Prolog. As shown in the above discussion, the need for sei^^ltic

knowledge occurs only after a cyclic parameter link is found. In our app稱解為

developed so far, one can conclude from the absence of any cyclic parameter thgl

nontermination wil l occur. Further examination, however, is required fo

whether nontermination will occur when some cyclic parameter links are detected As

shown in Chapter 3, a cyclic parameter link is a potential exit-reaching process,

a definite conclusion can be drawn only after we can verify whether 明 y Pt j| j i | cyclic
.• - V̂ iVv--- . ‘，、•::'... ••

1 0 1

parameter links found can work as an exit-reaching process. A t first glance, semantic

knowledge seems to be needed to determine which is the exit condition in the recursive

definition in order to decide whether a cyclic parameter link can act as an ex i t-reaching

process. Moreover, i t also seems necessary to have semantic knowledge of how the data

passing through the exit condition is modified during the process since a cyclic

parameter l ink can act as an exit-reaching process only if the exit condition can be met

at a certain point during the evaluation of the recursion.

However, the concepts of cyclic and non-cyclic connected data-link lists can be

used to develop a new approach to detect nontermination in pure Prolog programs

without the need of any semantic knowledge. According to the cyclic or non-cyclic

connected data-link list formed out of the data links in a pure Prolog program, we can

bypass the verification steps that require the semantic knowledge of this program. In

the following sections, we shall show that nontermination wi l l arise i f al l the cyclic

parameter links in one recursive definition have at least one cyclic connected data-link

l ist. To understand why the cyclic or non-cyclic connected data-link list can be used to

detect nontermination in Prolog, we shall examine the relationship among cyclic

connected data-link list, non-cyclic connected data-link list and exit-reaching process.

4.4.2.1 Non-Cyclic Connected Data-link Lists and Exit Conditions

As discussed in Chapter 2, the exit condition of a recursive definition in Prolog

is simply formed by some subgoals or special parameters (i.e, lists or structured data)

which can block the evaluation of a recursive definition at a certain point in Us

evaluation. In Chapter 2, we have also shown how a subgoal or special parameter q p

work this way. A t a certain point in the recursion, one or more subgoals' fail or 舟g

special parameter becomes non-unifiable in all situations. Therefore the r e c ^ j p

subgoal cannot be reached and the next level of recursion is stopped. Re〒拜

... * 广
• » .V� ‘，.•‘.

1. One such subgoal is a necessary and sufficient condition to block fwr^ber
I f a programmer puts more than one of such subgoals in a recursiyig 如 “ 鲍 ; ' 细 J y
the one that is first encountered during the course of the reoirsipn is wtyalW
effective. : : : : : 々 产

,’• ‘.，’.、..、 . .
. • * ,� • . V -

‘ • \ i .
1 0 2

reason given in Section 4.1, we limit our discussion at this point to only the case of

subgoals. On the other hand, if a recursive definition is properly defined, there must

be one or more levels of recursion before the evaluation of this recursive definition is

blocked by such a subgoal. In other words, before this subgoal can act as an exit

condition, some data can also pass through this subgoal in one or more levels of

recursion. Therefore, the role of an exit condition and the role of data transfer can be

accomplished by the same subgoal without any conflict. This point is important to an

understanding of how an exit-reaching process can be a parameter modifying process at

the same time.

Because this subgoal is part of the exit condition, it must also be part of the exit-

reaching process. Since a cyclic parameter link is a potential exit-reaching process, this

subgoal must form part of the cyclic parameter link. On the other hand, a proper

recursive definition must allow some levels of recursion to occur before it stops, some

data have to be transferred through the subgoal that can later act as an exit condition

in several levels of recursion. Consequently, data links must be constructed out of the

subgoals involved in this cyclic parameter link. As one or more levels of recursion is a

basic requirement for a proper recursive definition, these data links can always form

some connected data-link lists.

In other words, the subgoal that acts as the exit condition must be involved in a

part of a certain connected data-link list. Obviously, the data links obtained from a

recursive definition with an exit-reaching process must be capable of being linked

together to form a non-cyclic connected data-link list. Because the subgoal that caij _

as an exit condition stops further data transfer through itself when the exit conditiqix ^

met, there is a point where no more data link can be linked up to the connected

link list that has already been constructed. The length of the connected data-li;^
- • > - ‘. ，、,•.，•.、

formed out of a terminating recursive definition must be finite. In other vj/pr^s^ ft

recursion wil l terminate only if a non-cyclic connected data-link list is fqun^ j n 钱
• ； A-、-.人..'A ‘、’•.

recursive definition. One can conclude that the presence of an exit CQndi|iQii (如4；胁

exit-reaching process) necessitates the existence of a non-cyclic conne^f^d 终•特她料等j

in a recursive definition.

. • V 、 ..•：••，. ‘

1 0 3

On the other hand, the existence of some non-cyclic connected data-link lists in

a cyclic parameter can also indicate that there is an exit-reaching process (and an exit

condition) in a recursive definition. I f at least one cyclic parameter link can be

established in a recursive definition and the procedure defining the subgoals in this

cyclic parameter l ink can form one or more non-cyclic connected data-link lists, this

cyclic parameter l ink wi l l act as an exit-reaching process (even though the programmer

may not intend this cyclic parameter link to be an exit-reaching process). That is

because this cyclic parameter l ink is the only way in the recursive definition to allow

data transfer and the non-cyclic connected data-link list indicates that data transfer

through this cyclic parameter link wil l be terminated at a certain point of the recursion.

This implies that there wi l l be a blockage in the data transfer process during the

recursion. This blockage of data transfer wi l l terminate the recursion. From another

point of view, with a cyclic parameter link in a recursive definition, nontermination can

occur only i f data can pass through this cyclic parameter link infinitely in every level of

recursion. I f the data links in this cyclic parameter link can be linked up to form a non-

cyclic connected data-link list, then no data can pass through this cyclic parameter l ink

at a certain point in the recursion. Then, nontermination wi l l not occur under such a

situation.

Therefore, if a recursive definition has at least one cyclic parameter link in which

only non-cyclic connected data-link lists can be formed, we can conclude that the

evaluation of this recursive definition wi l l terminate. We can also conclude that the

cyclic parameter l ink is an actual exit-reaching process even without any semantic

knowledge of this recursive definition. In other words, the absence of non-cyclic

connected data-link lists is a sufficient indicator of nontermination. The relationship

between connected data-link lists and nontermination can be more thoroughly p^rc^iv^^

after we have also examined the case of cyclic connected data-link lists, C J

• • , ‘
V • * •

4.4.2.2 Cyclic Connected Data-link Lists and Nonterm|n糾gn

At the beginning of Section 4.4.2，we have discussed how |fnkS| pan form a

cyclic connected data-link list with the example from Figure 4.7. \Ve hm^ 科Iso seen that
,、. » • ‘ f '> •

1 0 4

a cyclic connected data-link list can be
. , , ,, , , . goal(X,Y)link(Y,Q), goal(P,Q).

considered as the repeating segment of goal(end,iO).

a connected data-link list with infinite link(2,4). Iink(4,5).
Iink(5,10). Iink(10,2).

length. I n this section, we shall see how = = = = = =
Diagram showing the evaluation of the above program

a cyclic connected data-link list is with the query"?- goal(X, y)"
related to nontermination. goal(回，ĵ)

_ , 4) goal(E3,4)
In Figure 4.11, the search tree ^

® Hnk(4，5) goal([x],5)
shows a data transfer sequence that \

llnk(5.10) goal([x], 10)
leads to nontermination. I f we compare \

the example m Figure 4.10 with this ^
1 . J .1 link(2,4) goal([2l, 4)

example in Figure 4.11, we can easily ^

recognize that it is the same recursive 隨(4’ 5) g^ED

rule in both programs. The two iink(5.io) ^ m ^

programs are different only in the iink(io,2) goai(E3,2)

procedures defining the subgoal link.
” ” pp [̂ 丨:uninstantiated parameter •

This seemingly small difference wil l ^ •
however result in different data links,
and eventually totally different kinds of F i g u r e 4 . 1 1

connected data-link lists in the two programs. This shows us that nontermination in a

pure Prolog program results from some inappropriate procedures defining the subgoals

involving in the cyclic parameter link.

As mentioned in the above sections, a cyclic parameter link is a potential exit-

reaching process. The subgoals involved in the cyclic parameter link can determine the

values to be passed through the cyclic parameter l ink during the recursion by the

procedures defining them while one of these subgoals can act as the exit conditioi| a| |

certain point of the recursion. A subgoal acts as an exit condition because it fail与辨终

certain point before the recursive subgoal can be evaluated. From the perspective ^

data transfer, a subgoal acts as an exit condition because it can stop furt}ier

into another level of recursion. Nontermination occurs in a pure Prolog prpgr^pi IJ ihe

subgoals involved in the cyclic parameter link are inappropriately defined, al l f j^ ing p
‘ ， »

..,.... .：..:..、： 1 0 5

infinite data transfer sequence to occur. In pure Prolog, an infinite data transfer

sequence can be constructed only by repeating a common segment. The search tree m

Figure 4.11 clearly shows this characteristic of the infinite data transfer sequence.

The reason for the above situation can be better understood i f we consider the

case in terms of data links. As shown at the beginning of Section 4.4.2，a connected

data-link list is the representation of a data transfer sequence • Since a connected data-

l ink list is constructed out of data links formed in a recursive definition, an infinite data

transfer sequence without a common segment can be represented only by an infinite

non-cyclic connected data-link list. I f there is an infinite non-cyclic connected data-link

list in a recursive definition, there must exist an infinite number of data links in the

recursive definition to form the infinite non-cyclic connected data-link list. However, in

pure Prolog, each data l ink is eventually based on one or more facts in some procedures

that directly or indirectly define the subgoals involved in the cyclic parameter l ink in this

recursive definition. A n infinite number of data links can only result from an infinite

number of facts in a recursive definition, that is, a recursive definition of infinite size.

However, a recursive definition of infinite size is practically impossible.

Therefore, the procedures defining the subgoals that form the cyclic parameter

l ink wi l l lead to nontermination if they allow the data transfer sequence to have a

repeating common segment. Because a cyclic connected data-link list is a representation

of such a data transfer sequence, a cyclic connected data-link list is an indicator of

nontermination in pure Prolog. A one-one correspondence between the infinite data

transfer sequence and the cyclic connected data-link list can also be established in this

case as well as the case of non-cyclic connected data-link list. On the one hand, the

values appearing in the cyclic connected data-link list are also the values appearing

the corresponding data transfer sequence; on the other hand, the length of 誦 _

connected data-link list can indicates the length of the repeating segment of the

transfer sequence in terms of the number of parameter cycles. I n Figure 4,11, | | |

example has data links of 2-4, 4-5,5-10 and 10--2 so that a cyclic connect^

list of 2-'4-5-'10"2 can be constructed. I f we compare this cyclic c o 哪 贼 : 縫 赫

list with the search tree in Figure 4.11, the one-one correspondence? p a n gigftifliy

shown.

1 0 6

4.4.3 Multi-Connected Data-link Lists

Although cyclic and non-cyclic connected data-link lists are considered separately

in the above sections to keep the discussion simpler, there are cases in which more than

one connected data-link lists and even more than one kinds of connected data-link lists

exist in a cyclic parameter link. Furthermore, the case of multi-connected data-link lists

can occur either in a recursive definition with one cyclic parameter link or a recursive

definition with multi-cyclic parameter links. Combining these possibilities together, there

are many different cases of multi-connected data-link lists.

4.4.3.1 in One Cyclic Parameter Link

There are three possible cases of multi-connected data-link lists in a recursive

definition with only one cyclic parameter link:

(1) all connected data-link lists are non-cyclic;

(2) all connected data-link lists are cyclic; and

(3) some connected data-link lists are cyclic and some are non-cyclic for the same
cyclic parameter link.

While the multi-connected data-link lists are homogeneous in the first two cases, they are

heterogeneous in the third case.

The two kinds of homogeneous connected data-link lists are significantly different

from each other. This can be shown by comparing the example in Figure 4.10 with the

one in Figure 4.12. In Figure 4.10，the recursive definition has some homogeneous m|i|ti^

non-cyclic connected data-link lists for its only cyclic parameter link. In Section

we have already discussed how the backtracking mechanism plays an importanj tgig

this case of multi-non-cyclic connected data-link lists. In contrast, the

mechanism does not have any effect in the case of homogeneous multl-cyc|l^
、•‘ • ； • -.-','.、•，'.，_:、•'、） ... 、.•

data-link lists. This is shown by Figure 4.12. The search tree in Figure 442 ishp^^ why
\

‘.‘.：?.... -.
1 0 7

no backtracking can happen in the case of homogeneous multi-cyclic connected data-link

lists. 1 1 = = = = = = =
• goal(X,Y)link(Y,Q), goal(P,Q).

goal(end,10).

The recursive definition in rmk(1,3). Iink(2.4). 丨ink(3,7). Iink(4,5).
Iink(7,9). Iink(5,10).丨 ink(9,1). 丨 ink(10,2).

Figure 4.12 is similar to the one in = _ = — — — = = =
Search tree (a) with the Search tree (b) with the

Figure 4.11 except wi th more than ^^^ of "？• ^ ^ ^ ^y query of"?- goal(X, 3)"
one cyclic connected data-link lists ,

goal([3.4) floa 丨(0,3)
in for same cyclic parameter link. ^ ^ \ \

link(4.5) goal(E],5) link(3,7) goal®,?)
The two cyclic connected data-link | Z I

^ ^ C tn / u- 1 nnk(5.10) goaI(E].10) ""̂ (7.9) goal®. 9)
lists are: 2--4--5--10--2, (which also 义 丨 ^ 丨

. • L , . . ||nk(10.2) goa l(0.2) link(9’ 1) goa l (E l . l)

exists in the recursive defmition in "“*"、]"’ ^ / ^ |
Figure 4.11) and l-3_7--9-L I f we _ . 4) ^ ’ 4) iink(i.3)^a.(0.3)

supply different queries, different 丨 _ , 5)义 (0丨 5) 丨 _ . s .丨乃

data transfer sequences may a r i s e .隨 (5 , 1 0) ^ (E D 10) iink(7.9)，<S.广）

I n Search tree (a) in Figure 4.12, the _10,2) g ^ m . 2) "nk(9’ 1) ^ S, J)

result of the query of ？-goal(X，4) is iink(2. 4) goai(C3,4) Hnk(i,3) goai([3,3)

shown. I f we examine the search • •

tree, we can f ind that it is basically • • ： iminstantiated parameter •

the same search tree as the one in Figure 4.12

Figure 4.10. With the values 2，4, 5

or 10 supplied to the second parameter in the query, only the data transfer sequence

corresponding to the cyclic connected data-link list of 2—4—5—10—2 can arise. On the

other hand, if values i , 5 , 7 or 9 are used, only the data transfer sequence corresponding

to the cyclic connected data-link list of 1--3--7--9--1 occurs. Search tree (b) shows the

result f rom the query of ？-goal(X，3). Different from the case of multi-non-cyclic

connected data-link lists, in which the backtracking mechanism allows all the possibly

data transfer sequences corresponding to each non-cyclic connected data-lii^k

tried, no backtracking occurs in this case of multi-cyclic connected data-l}i>J; jj^g

reason can be seen by examining these search trees. Because the data tran^jfec

is infinite, the evaluation of the recursive definition following this particul^y^ 样9只?P餘

cannot come to an end : Backtracking occurs only at the point where 热(jl^ta l^^sjfcc
....,、:..> ：-.‘厂〜“、

sequence comes to an end. Therefore, the nonterminating evaluation suPi^cdilig |P an
...:々 .•：•>：••:'. • • • • •： ...、,： V .•；.,,.�， .

，、 • •i . . � - •

108

infinite data transfer sequence will not allow backtracking to take place and

consequently it will not try other possible data transfer sequences.

Moreover, a particular data transfer sequence generated in the evaluation is

determined by the particular value in a certain cyclic connected data-link list. In the

example in Figure 4.12, since the value 4 in the query is a value in the cyclic connected

data-link list of 2--4--5--10—2’ the data transfer sequence according to this connected

data-link list is followed in the evaluation of this recursive definition; when the value

used in the query is changed to 3, the data transfer sequence corresponding to the cyclic

connected data-link list of 1-3—7—9—1 is generated. But what wil l happen if no value

is supplied to the parameter of the cyclic parameter link in the query, e.g., ？'goal(X,Y).

In this case, it depends on Prolog's search strategy. As discussed in Chapter 2，Prolog

searches through the procedure defining a particular subgoal to find a fact or a rule to

unify with the subgoal in the recursive rule. Therefore, which data transfer sequence can

be generated with the query of ？-goal(XJ) depends on the order of the facts that form

part of a particular cyclic connected data-link list. In this case, if the searching

mechanism in Prolog is from left to right, the first fact in the procedure link that wil l be

encountered is link(l，3) which forms part of the cyclic connected data-link list oi 1-3-7-

9—1. Hence, the data transfer sequence corresponding to 1-3-7-9-1 is generated.

In the above example, the two cyclic connected data-link lists are independent

from each other. The values appearing in one cyclic connected data-link list are entirely

different from those appearing in the other cyclic connected data-link list. However,舟 |

case of multi-cyclic connected data-link lists does not need to be the case of mu}|i|>lg

independent cyclic connected data-link lists. For example, if the procedure 涵

above example is modified as follows:
- • . , 产

• • •

l i i ik(l,3). link(2,3). link(3,7). link(3,5),
link(7,9). link(5,10). link(9，l). liiik(10,2),

.！...
.v:‘.

The facts in bold typeface are the ones different from those in 4,12, ？^Uh this

modification, another two cyclic connected data-link lists, l -3 "7 - '9 r rJ 知

can also be constructed but they are not independent from e^ch otNir；每oth share a
• . , . 〜 • . ..•：, A . ‘ , . ‘ �-

.、

1 0 9

common value 3. On the other hand, instead of the above two short cyclic connected

data-link lists, we can construct the long cyclic connected data-link list oU--3-5--10--2--

3..7..9-I (or 2 - 3 - 7 - 9 - 1 - 3 - 5 - 1 0 - 2 , they are the same). Unlike the case of the

common segment in the multi-non-cyclic connected data-link lists, no backtracking can

occur in the evaluation following an infinite data transfer sequence. This has already

been shown by the example and its search tree in Figure 4.12. Since the two short cyclic

connected data-link lists also represent two infinite data transfer sequences, the long

cyclic connected data-link list cannot be the result of joining the two short ones through

backtracking as the case of multi-non-cyclic connected data-link lists. Therefore, there

are two alternative methods to construct cyclic connected data-link lists from the same

set of data links if the values in one cyclic connected data-link list are not all different

from the values in other cyclic connected data-link lists for the same cyclic parameter.

Since each connected data-link list represents a particular data transfer sequence passing

through the cyclic parameter link during the recursion, the two alternatives indicate that

there are two alternative methods to evaluate the same recursive definition by following

different data transfer sequences. One alternative is to follow the longer data transfer

sequence corresponding to the long cyclic connected data-link list; the other alternative

is to follow either one of the two shorter data transfer sequences corresponding to the

two short cyclic connected data-link lists. It can be shown that the decisive factors in

determining which alternative to follow are the positions of the facts in the procedures

defining the subgoals involved in the cyclic parameter link and the execution model of

Prolog. To simplify our discussion in this point, we shall leave the discussion of this case

to the next chapter. In this chapter, we shall be concerned only with the case of

independent cyclic connected data-link list.

In the case of heterogeneous multi-connected data-link lists, both cyclic an^ mn-

cyclic connected data-link lists exist in the same cyclic parameter link. At first

nontermination does not seem to be the inevitable result because some finite d ^ ^

fer sequences indicated by the non-cyclic connected data-link lists are also 如

same cyclic parameter link. However, because of the backtracking m ^ f i p ^ ^ jg

the presence of heterogeneous multi-connected data-link lists in 终 齒 辨 錄 制 如 i f j

always implies that the evaluation of this recursive definition will 知fi树冬琴IjTipnd ini
• • • ； . <. ../‘ . "！ 、• • • •

« .., • \ > 、•’ ，
. • . ‘ •. ‘

1 1 0

nonterminat ion. j | = = = = = = = = = " ^

I t c a n b e g (X .Y) f (Y .Q) , g(P,Q).

illustrated by f(0,7). f(1，2). f(1.3). f(2.9). f(3.4). f(4.1). f(7,8). f(8.9).
p . e 4 13 A Diagram showing the evaluation of the above program

啊 with the query ”-g(X»Yr
cyclic parameter g(圏，國）

l i业 is located at f (。 ; ^ r a r ^ d ^ S i i i i i i l
t h e s e c o n d z^^ = ： ： ： ： ： ： ： ： ：!： ： ： ：̂;̂̂̂：：-：：-

、 ’ ^ \ , , ••..、.，.*.. •.了.、..•. .， ： \
parameter of the ^ ^ I •

r e c u r s i v e __ : : : : : : : : \ Xm^^^^m；^
d e f i n i t i o n i n 丄 乂, 难！^枯:::::考:潮_:运M4板:

F i g u r e 4 . 1 3 • ： uninstantiated parameter _ _ : _ _ _ _ | | | | : _ 丨

b e t w e e n t h e …•…ii!"' ： backtracking path |;_;翁___|;__;;^：：：：：^：：：：：^|；：：：：：：：^
「1 . 1 . . •J •

parameters of Y tb« repeated block •
and Q, There p i g u r e 4.13

are two non-

cyclic connected data-link lists, 0--7--8--9 and 1-2-9, and one cyclic connected data-link

list, 1-3-4-1, that are formed from the data links 0—7、1-2, 1-3, 2-9, 3-4, 4-1, 7-8

and 8-9. By the search tree in Figure 4.13，we can clearly see that the evaluation of this

program wi l l result in nontermination although there exist two non-cyclic connected data-

l ink lists.

Due to the backtracking mechanism in Prolog, the evaluation wi l l resume at Other

remaining possible data transfer sequences when the end of each finite data transfer 辨，

quence is reached, just as the case of multi-non-cyclic connected data-link l ist | ^ b p ^

earlier in the example and its search tree in Figure 4.10. However, in this igif

heterogeneous multi-connected data-link lists, as shown by the search tr辟 ix\ f i g 淋多各

backtracking does not only lead the evaluation to other possible f m \ c (l^t^ transfer
‘ .'•： - •、.‘..‘人、：广广.•

sequences but also to the infinite data transfer sequence as well. Th^ piily (^^jt^ |fansfer

sequences that cannot be reached through the backtracking median暮各用財资 t b l jtines thai
. . ••-•••： ., V " . . • ?“."：. ./

are blocked by the nonterminating evaluation following an l^fi i i i te cj^t^ t rai^fcr

sequence. Therefore, after the finite data transfer sequences to the two

non-cyclic connected data-link lists, 0-7-8-9 and i - 2 - 9 arp ^|fck|facking wi l l
•‘ 、： <

1 1 1

cause the evaluation of the recursive definition in Figure 4.13 to resume and to follow

the infinite data transfer sequence corresponding to the cyclic connected data-link list of

1--3--4--1, By this example, we can see that nontermination can always result from the

presence of an infinite data transfer sequence although there also exist some finite data

transfer sequences.

Moreover, comparing the search tree in Figure 4.13 with the one in 4.12, we can

see how nonterminating evaluation can result through different ways of following an

infinite data transfer sequence. In the search tree in Figure 4.12，the evaluation follows

the infinite data transfer sequence closely without ever branching to other data transfer

sequences. It is because the two possible cyclic connected data-link lists are independent

from each other. Once one of them is followed during the recursion, the data

transferred from the previous parameter cycle of recursion determines the data

transferred into the next parameter cycle. In Figure 4.13, the non-cyclic connected data-

link list 1-2-9 and the cyclic connected data-link list 1-3-4-1 are not independent from

each other. Both share the value L At a certain level of recursion where the data

transferred from the previous parameter cycle is 1, the evaluation of the recursive

definition has two alternatives to follow: one is the infinite data transfer sequence and

the other is the finite one. Usually, the Prolog execution model wil l decide which course

to take in this case by the positions of the facts used to define the procedures forming

the cyclic parameter link (i.e, also the procedures forming the connected data-link lists).

In Figure 4.13，the finite data transfer sequence corresponding to 1-2-9 is considered

to be located before the infinite one corresponding to 1—3--4—1 and therefore the finite

data transfer sequence is chosen to be followed first. However, at the end of the finite

data transfer sequence, backtracking takes place again and resumes the evaluatic^o

according to the infinite data transfer sequence corresponding to 1-3-4-1. Thus, ^

evaluation can never escape from this nonterminating cycle. This is inclicate4,^ |l]|e
,-• St . -t „ • - “ -r

. ,., y. •、，•

repeated blocks (the shaded areas) in the search tree in Figure 4.13. In 辦珊钱ij^j^ | | | f

presence of one cyclic connected data-link list in a recursive definition Aflly

cyclic parameter link is a sufficient indicator of nontermination.)
• \

1 1 2

The discussion of the presence of multi-connected data-link lists in a cyclic

parameter link is not complete if we do not consider the evaluation order for the

different data transfer sequences represented by the different connected data-link lists.

To construct a connected data-link list, a set of data links must be first constructed out

of the analysis of the procedures defining the subgoals of a cyclic parameter link.

According the sequence of different facts in different procedures, different data links are

constructed in a certain sequence. For example, in the recursive definition in Figure

4.13, the first data link formed is 0-7 and then is followed by 1—2’ 1-3, 2-9, 3-4, 4-1,

J..S and 8-9. According to the sequence of these data links, connected data-link lists

are also constructed following a specific sequence: 0—7—8-9, 1--2—9 and 1-3-4-1.

Since the order of these connected data-link lists is based on of the data links, we can

view that the connected data-link list of 0-7-8-9 is located before the connected data-

link list of 1-2-9 while the set of 1-2-9 is located before the set of 1-3-4-1, For each

connected data-link list, there is one data transfer sequence that wil l be followed in the

course of the evaluation of the recursive definition. As indicated in the above discussion

on the effect of backtracking, another data transfer sequence is not started until one is

ended. This is shown by the search trees in Figures 4.10, 4.12 and 4.13. Therefore, the

relative locations of the different connected data-link lists can indicate the order of the

corresponding data transfer sequences that will be followed in the course of the

evaluation.

In the case of multi-non-cyclic connected data-link lists, the relative positions of

the connected data-link lists has no significance since the backtracking mechanism in

Prolog can guarantee all finite data transfer sequences are tried. But, in the case of

multi-cyclic connected data-link lists, the relative locations of the different c y御

connected data-link lists are significant to determine which data transfer wil l be follq^gd

during the recursion. It is already shown by the discussion on the example in F i p j i

4.12. However, the locations of cyclic connected data-link lists are not sigmfjg^gt

terms of nontermination. Although different infinite data transfer sequences roay; fee

followed, all lead to nontermination. :

1 1 3

In the case of the mixed kinds of connected data-link lists in one cyclic parameter

link, the relative locations of different connected data-link lists are also significant in

determining which data transfer sequence to be followed during the course of the

recursion. As shown by the search tree in Figure 4.13, the data transfer sequences

corresponding to the non-cyclic connected data-link lists are evaluated first while the

non-cyclic connected data-link lists have relative locations ahead of the cyclic one.

However, a small modification made to the example in Figure 4.13 can change the

course of evaluation completely. Consider the case with the only modification on the

positions of the facts in the procedure f as follows:

f(l,3). f(0，7). f(l，2). f(2，9). f(3，4). f(4，l). f(7，8). f(8，9).

I f we compare it to the procedure / in Figure 4.13, the only change is that the fact f(l，3)

is moved to the front of the procedure. However, because of this change in the positions

of the facts, the first connected data-link list that can be formed is the cyclic connected

data-link list of 1--3-4-1 instead of the non-cyclic one of 0-7-8-9. On the other hand,

because of this change, the first fact that is encountered in the search for the fact to

unify with the subgoal/in the recursive rule during the evaluation is not f(0，7) but f(l,3).

Therefore, the data transfer sequence that will be followed by the evaluation is not the

one corresponding to the non-cyclic connected data-link list oi0"7-8-9 but the infinite

data transfer sequence corresponding to 1-3-4-1, It can be shown by the search tree

in Figure 4.14. The locations of the connected data-link lists are important in deciding

which data transfer sequence to follow during the recursion; however, as in the case of

multi-cyclic connected data-link lists, they have no effect on whether a recursive defini-

tion can terminate or not. Nevertheless, the existence of an infinite data tra科s!耗

• 、V, ‘ •"••̂.：
sequence wil l eventually lead the evaluation into a nonterminating process in spitg 由g

existence of other finite data transfer sequences for the same cyclic parameter ！mlj；,

Therefore, we can conclude that the presence of at least one cyclic connec,明遍書

. J " V � . ，-
list is a sufficient indicator of nontermination in the case of multi-coi|i|，,绅 ASlj^'H^H

lists if there is only one cyclic parameter link in the recursive

- . 、 、，.、
1 1 4

4.4.3.2 in Multi-Cyclic Parameter | j — = = — = |
L inks g(X.Y) ：• f(Y.Q), g(P.Q).

f(1,3). f(0.7). f(1,2). f(2,9).
f(3,4). 1(4,1). f(7,8). f(8,9).

The case of multi-connected data-
Search Tree showing the evaluation of

l ink lists can be found in a recursive defini- 也。program modified from the one in

t ion with more than one cyclic parameter Figure 4.12 with the query "？-g(X,Y)"

links as well. There are seven possible ways 9 (_ ’ _)

in which multi-connected data-link lists exist t(1 ^ ^

in a recursive definition with multi-cyclic ^ ^ ^ ^ ^

parameter links: 9(11,4)

(1) only multi-non-cyclic connected data-
f(4，i) g (l . i)

l ink lists exist for all cyclic |
parameter links; f(1,3) g(圓，3)

(2) only multi-cyclic connected data-link ^ T ^ ^ m 4、
lists exist for all cyclic parameter T(d，斗）9(國，)
links;

f(4,i) g (_ , i)
(3) for some cyclic parameter links, only

homogeneous non-cyclic connected
d a t a - l i n k l i s ts exist wh i l e •
homogeneous cyclic connected data-
link lists exist for the remaining _ ： unlnstantlated parameter
cyclic parameter links; I'

F i g u r e 4 . 1 4
(4) heterogeneous connected data-link

lists exist for all cyclic parameter
links;

(5) for some cyclic parameter links, only homogeneous non-cyclic connected data-lioH
lists exist while heterogeneous connected data-link lists exist for the remaimng
cyclic parameter links; ‘ ：气

(6) for some cyclic parameter links, only homogeneous cyclic connected lisjs
exist while heterogeneous connected data-link lists exist for t h e 镇 :

parameter links; and 浮、瑪

(7) for some cyclic parameter links, only homogeneous non-cyclic cpnnecte^ j ^a ja- l i ^
lists exist; for some cyclic parameter links, only homogenepus f p j i ^ CQR^gied
data-link lists exih, and heterogeneous connected data•尽！喊 Kj^s "专擁【紐”ihg
remaining cyclic parameter links. 「

• • >

1 1 5

In case (1)，if only non-cyclic connected data-link lists can be constructed in all

the cyclic parameter links, it is obvious that the evaluation of this recursive definition

wil l terminate. Based on the concept of an exit-reaching process, if only non-cyclic

connected data-link lists exist for all the cyclic parameter links in the recursive definition,

each cyclic parameter link can act as an exit-reaching process itself. None of the cyclic

parameter links wil l lead the evaluation into endless recursion. On the other hand,

based on the concept of data transfer, each non-cyclic connected data-link list represents

a finite data transfer sequence. The evaluation of a recursive definition that has only

finite data transfer sequences to follow in all of its potential exit-reaching processes wil l

surely terminate.

In the discussion in Section 4.4.3.1，we have found that nontermination occurs if

at least one cyclic connected data-link list is present in a recursive definition with only

one cyclic parameter link. Therefore, the case of homogeneous multi-cyclic connected

data-link lists is no different from the case of heterogeneous connected data-link lists in

terms of nontermination. In the case of multi-cyclic parameter links, cases (2)，(4) and

(6) have at least one cyclic connected data-link list in all of their cyclic parameter links.

Since only independent cyclic parameter links are considered in this chapter, cases (2)，

(4) and (6) can be considered together as the extended cases of the case discussed in

Section 4.4.3.1 (i.e., the case with at least one cyclic connected data-link list in a

recursive definition with only one cyclic parameter link). This can be explained by

considering the extended cases in two respects. On the one hand, because cyclic

parameter links are independent from each other, the data transfer sequences for one

cyclic parameter link has no effect on the data transfer sequences in other cyclic

parameter links; on the other hand, as shown in the previous section, because the valu0§

passing through the cyclic parameter link with at least one cyclic connected data-link li^jt

can always form an infinite sequence due to the backtracking mechanism, the r^c^rsl^f

definition with a cyclic parameter link in which only some connected da t^ - l i ^ f ^ j j l

connected data-link lists are cyclic will result in nontermination. | f m ^ PI： cyclic

connected data-link lists exist for all the cyclic parameter links ^ idgflnltipn,

the implication is that all these cyclic parameter links cannot ac| ^ ^^

process and the evaluation of this recursive definition will end in i jpntermiptipn. JTiis
‘•“ \ •；; ...

1 1 6

can be better understood by using the data transfer analogy. With the presence of at

least one infinite data transfer sequence in each independent cyclic parameter link, there

wi l l always be some values that can pass through all of the different cyclic parameter

links in each level of recursion. Hence, none of these cyclic parameter links can act as

an exit-reaching process. Without an exit-reaching process, a recursive definition is

cannot terminate. Therefore, nontermination occurs in cases (2)，（4) and (6).

On the other hand, in cases (3)，(5) and (7)，not all non-cyclic connected data-link

lists exist for all of their cyclic parameter links, nor at least one cyclic connected data-

link list exists in all of their cyclic parameter links. However, some of their cyclic

parameter links have only non-cyclic connected data-link lists while the remaining cyclic

parameter links have at least one cyclic connected data-link list. In the same recursive

definition, we can consider that there are two kinds of cyclic parameter links: some of

its cyclic parameter links seem to indicate the evaluation of the recursive definition can

terminate (i.e., the ones with the presence of only non-cyclic connected data-link lists)

while the remaining ones seem to indicate that the evaluation wi l l end in nontermination

(i.e., the ones with at least one cyclic connected data-link list). Even though these cases

consist of only independent cyclic parameter links, they cannot be considered as the

extended cases of any case discussed in Section 4.4.3.1 since it is not possible to have two

or more different kinds of cyclic parameter links in the recursive definition with only one

cyclic parameter link. In order to determine the outcome of these cases, we must study

how the presence of two different, or even apparently opposite, kinds of cyclic parameter

links affects the evaluation of a recursive definition.

r . . ,

In Figure 4.15, there is a multi-cyclic parameter links recursive definition.

are two independent cyclic parameter links and one of them has only nQp-^Jff；

connected data-link lists while the other cyclic parameter link has at least p S C ^ i W

connected data-link list. The result is shown by the search tree in f l ^ iSMh^

evaluation of such a recursive definition can terminate although onjs pf t N

parameter links of the recursive definition has a cyclic connected data-link list, ThQ

example shows that the cyclic parameter link with a non-cyclic connecitefl list

is more dominant in the course of evaluation than the cyclic pa『嘱賴「“j^^c >yitb a
,.、.、:、’，，,-‘’ .、• • . • . . 、 ‘ _ •

‘ : , 、 , .. . 、 •

1 1 7

goal(X,Y,Z)linkJ_a(X,A). linkJ_b(A,P), link_2(Y.Q), goal(P.Q,R).

Iinkj_a(1,2). HnkJ_b(2,3). link一2(a,b).
Ilnk_1_a(3,a). Iinkj_b(a,1). link一2(b,c).

link一2(c,cl).

Diagram showing the evaluation of the above program with the query "?- goal(X,YjZ)"

^ g o a i d . a . i i) _ _

goal(4b.B) \ "nKJ-a(3,a)] goal(1 ,b.B)
linkj_b(^3) ^ l ^ - -：：^ \ I 丨丨

l i n k 丄 g o a l (i c , _ \ 丨•丨nkj_a(1,2) goal(3,c,_)

goaK1，d，_

Iink_1_at3^) /1 ink_2(d. | 1) \ I link_1 一 a(1，2) ZHnk一2(cl,圓）

linkj_b(a.1) \ | link_1_b(2.3)
fail ••，"̂ fail

t：：：；：：：! • yĵ yistsntiELtcd p3r3in6tcr 丨“""…:!!…
:backtracking path

(N.B. : some intermediate steps are not shown)

Figure 4 .15

cyclic connected data-link list. By examining the search tree in Figure 4.15，we can see

why the two independent cyclic parameter links can affect each other. They are inde-

pendent from each other since they are formed by two different sets of subgoals so that

the data transfer sequence in one of them cannot affect the sequences in the other.

However, the two cyclic parameter links in the recursive definition in Figure 4.15

affect each other not in terms of the data transfer sequence but in terms of where the

evaluation ends. Two independent cyclic parameter links can affect each other because

the subgoals forming each of them are parts of the same recursive rule. I f any subgp l

in a rule fails, the evaluation of the whole rule fails. Therefore, the evalu^Jtort | | %

recursive definition can continue only as long as the evaluation of each subgoa! i i j f ^ r y

cyclic parameter l ink in the recursive definition can succeed.
’ . V i ,‘>,,' ‘ i .

‘...tV':*乂、,•/.‘.、‘：；‘：
\ ： •:.,. • • ’ . •

I f a cyclic parameter link has only one non-cyclic connectei) ||st, the
• 、 ^ ；‘ ： “

values passing through this cyclic parameter link can only form finite d拜！终 fmn^fer

sequences. One of the subgoals forming the cyclic parameter link must l d l wlii jn the enc)
• ‘ ‘ • .

...
. • ” � .

118

of the finite data transfer sequence is reached. In the case of more than one non-cyclic

connected data-link lists for one cyclic parameter link, there are more than one possible

data transfer sequences when values are transferred through the cyclic parameter link.

The backtracking mechanism can resume evaluation at the next possible data transfer

sequence once a subgoal fails at the end of the previous data transfer sequence.

However, when the last possible data transfer sequence is exhausted, one subgoal in this

cyclic parameter l ink wi l l fail and no further backtracking within the same cyclic

parameter l ink can occur.

The case of multi-cyclic parameter links recursive definition can also be

understood in terms of an exit-reaching process. Based on the concept of an exit-

reaching process, each cyclic parameter link in a recursive definition with a multi-cyclic

parameter l ink is a potential exit-reaching process. A subgoal in a cyclic parameter l ink

can act as an exit condition when it fails and blocks any further evaluation of the

recursive definition. Therefore the subgoals forming the cyclic parameter l ink are

potential exit conditions. In Prolog, as discussed in Chapter 2，if there are more than

one possible exit condition in a recursive definition, it is only necessary to reach one of

them to terminate the evaluation of the recursive definition. For a cyclic parameter l ink

with only non-cyclic connected data-link lists, one of the subgoals forming this cyclic

parameter l ink must fail at a certain point of the recursion and become an exit condition.

Therefore this cyclic parameter link is an actual exit-reaching process. With the presence

of an exit-reaching process, the recursive definition wi l l terminate even though the other

cyclic parameter link may contain infinite data transfer sequences.

As a conclusion, nontermination occurs i f all of the cyclic parameter links of ^ y

one of the recursive definitions have at least one cyclic connected data-Unk IM| I f |

Prolog program with only independent cyclic parameter links. Therefore, yŷ ^ 賺

nontermination in a pure Prolog program (if it contains only

parameter links) by examining the presence of any cyclic connect;终“终•购约 In a^
• • •.•,.”、-)..•:.;,«、 . ：'，?,•‘.

of the cyclic parameter links in each of its recursive definitions, ” 種〉.“、:::,)

119

4.4.3.3 The Case of Multiple Recursive Subgoals
in the Same Rule

The last case of multi-connected data-link lists to be considered is a special case

o f mu l t i -connected data-link lists. Unlike the cases discussed in Sections 4.4.3.1 and

4.4.3.2, which are the cases of multi-connected data-link lists in a recursive definition

with only one recursive subgoal, the case discussed in this section is the case of multi-

connected data-link lists in multiple recursive subgoals in the same recursive rule.

I n Figure 4.16，there are two examples of this kind of special cases. For both

examples, there are two recursive subgoals in the same recursive rule in一order. They are

identical except for the fact that the positions of two recursive subgoals are interchanged.

I n both programs, there is a cyclic parameter link at the second parameter for

both recursive subgoals. By analyzing the procedure defining the subgoal tree, we can

f ind that the first recursive subgoal in Program (a) and the second recursive subgoal in

Program (b) have data links a--b，b-a, c-nil and d-nil while the second recursive

subgoal in Program (a) and the first recursive subgoal in Program (b) have data links a-c,

b--d, c-nil and d-nil. Therefore, for the first recursive subgoal in Program (a) and the

second recursive subgoal in Program (b)，we can find a cyclic connected data-link list of

a-b—a and two non-cyclic connected data-link lists of c-nil and d-nil, while the second

recursive subgoal in Program (a) and the first recursive subgoal in Program (b) have only

non-cyclic connected data-link lists of a--c--nil and b--d--nil. I n the same rule, there exist

both a recursive subgoal that has only finite data transfer sequences, and a recursive

subgoal that has at least one infinite data transfer sequence. On the one hand,

cyclic connected data-link list in one of the two recursive subgoals, a—b—a,

the evaluation of the corresponding recursive subgoal wil l not terminate. On the | t f | ^

hand, the presence of only non-cyclic connected data-link lists in the other 喊 纖

subgoal indicates that the evaluation of the other recursive subgoal wi l l come 镇 | | 編

i f i t is considered in isolation. ‘ I f they are located in two different recursive

can conclude that nontermination wil l arise when the program is e v a l 叫 綱 , 叙 變 g

in Chapter 2，nontermination in one recursive definition in a program ^

cause nontermination for the whole program. However, in cxf tmp^i in Jplgure
,,.• ,,、> V、:；.,,.. •:•‘{ r-• >> . 、 - , '..•, 、•’ * ； • •、 . .，

• \ • �

120

program(a) Search tree for the program (a)
with the query "?- in_ordei:(root>X，Y)"

tree(root, a,b,c). —

i T e i l T e 丨 i n - O r d e r (r o o t . 藝 I ®1)
tree(node,d,nil,nil). \
in order(SXlXlLD：- tree(root.a.b,c) ln_order(®,b,【b| @1)
"tree(SXY^, \

ln_ord0r(S'.Y.L1). ln_order(S".Z.L2). \
append(L1.L2,L). tree(node,b,a,d) ln_order(®,a,[a| ®D

in一order(S,niUl). ^ ^ ^ ^ 乂

lppeIIdaX|Lj.Y!̂ }ZD ：• append(L.Y .̂ tree(root,a,b c) in_order(®,b,lb| 細

i TTic graph defined by the procedure 丨 tree(node,b,a d) ln_order(||),a.[a| 翁])
j of the subgoal "tree* in both j

j Programs (a) and (b) 1 : uninstantiated
： i parameter •

1 •
i j Search tree for the program (b) with the query

I 1 / JJJ l nil nil 丨 "？- m,order(root,X,Y)̂ ^
nil nil 1 i 丨 ln_order_,藝膽 _)

Program 减：：:::::::::：̂::: ：：: ：

• I 1. Jg 1 n I 1 1 I I V • • • / , . . ,
• A r - •./••.•..,,.......

^ ...
’ . * .

/ • • • . . . • . .̂ v. _________
• • • • • • • V > \

二 船 二 ： - a p p e n 辑 丨 : : : : : : : : : : : : 酬 _ _ 酬 _ _
tree(root.a.b.c). 丨::丨 :::::::::::::::::::::::::
treenode.b.a,d). ；：：：：：：：：：：；：：：：：：：：：：：：：：：：：：：：：：：：：：：：：:：:：:：:：:：:：:：:̂

tree node,c,nil.niO. :::::::::::::※：::::::〕
I • J •• an ‘ r . . I'K •

丨 : repeated block • : uninstantiated

•

Figure 4.16

4.16, both recursive subgoals are located on the same recursive rule. As discusse^ in 热e
‘ >

previous section, the different subgoals in the same rule can affect the cqujfg p实

recursion of each other because only one subgoal is sufficient to block the cour^^q

recursion of all other subgoals in the same rule. Can the recursive subgoal with gnly

finite data transfer sequences block the nontermination caused by the evaluation
‘\ . - *、.、 V 、.

： 、 J
‘ , . �‘ • .

- 」 • ， * … 121

recursive subgoal with some infinite data transfer sequences? We must examine how the

two recursive subgoals, recursive subgoal that has only non-cyclic connected data-link lists

and recursive subgoal that has at least one cyclic connected data-link list, interact with

each other in the same rule before we can conclude whether nontermination wi l l occur

in such a special case.

In Program (a), for there is a cyclic connected data-link list in the only cyclic

parameter l ink of its first recursive subgoal, the evaluation of its first recursive subgoal

wi l l not terminate. However, i f the evaluation of the first recursive subgoal does not

terminate, the second recursive subgoal can never be reached. Search tree (a) in Figure

4.16 clearly shows this. Although the non-cyclic connected data-link lists in the second

recursive subgoal indicate that the evaluation of this second recursive subgoal wi l l

terminate if it is evaluated by itself alone, the second recursive subgoal can never be

evaluated and cannot affect the termination of this program. Nontermination occurs.

By examining Search tree (a), we can clearly see that only the first recursive subgoal is

evaluated in a nonterminating sequence. The evaluation of the second recursive subgoal

is blocked and has no effect in this case. Therefore, if there are several recursive

subgoals in the same recursive rule and the nonterminating one precedes all other

terminating ones, the evaluation of this recursive rule wil l result in nontermination.

In Program (b), we interchange the positions of these two recursive subgoals.

What has been the first recursive subgoal in Program (a) now becomes the second

recursive subgoal in Program (b) so that the recursive subgoal that has only finite data

transfer sequences precedes the nonterminating one. However, the evaluation of th^

program still results in nontermination if the first recursive subgoal can terminate

its evaluation being successful. Search tree (b) in Figure 4.16 shows why the

subgoal that can terminate by itself cannot block the evaluation of the otb环 f：专

subgoals located behind it. Although the first recursive subgoal in Pfogmi^ (fe), %

indicated by the non-cyclic connected data-link lists, can terminate prop树y ^jy jts^j^ ife^

execution of the whole recursive rule cannot. I f any subgoal, including thp. r^gwrsive

subgoal, succeeds in its evaluation, the next step is to evaluate pthf^r ^ijitgo^ls

following it one by one. Therefore, in Program (b), after the first refJursiye Wbgoaj is

122

successfully evaluated, the next step is to evaluate the second recursive subgoal. The

evaluation of the second recursive subgoal causes the recursion to go down one more

level where everything that has happened before repeats again: the first recursive subgoal

is evaluated again and the next level of recursion is tried for the evaluation of the second

recursive subgoal. These are all shown in Search tree (b). The evaluation wi l l not stop

unti l the evaluation of the second recursive subgoal can stop. However, there is an

infinite data transfer sequence in the second recursive subgoal. Hence, the evaluation

of the second recursive subgoal cannot stop and the entire recursive rule runs into

nontermination. Therefore, nontermination wil l arise if there exists any cyclic connected

data-link list for all the cyclic parameter links of any recursive subgoal despite the

number and the location of the recursive subgoal in one recursive rule.

However, Program (b) can avoid nontermination under a special situation i f the

procedure defining the subgoal tree is modified as follows:

tree(root，a，b,c). tree(node,b,a,d). tree(node，d，nil，nil).

By removing the fact tree(node, c，nil，nil), the evaluation of the first recursive data

transfer sequence in the only cyclic parameter link in the first recursive subgoal. (There

is no cyclic parameter l ink in the first parameter of the first recursive subgoal between

parameters 5 and 5，nor in the first parameter of the second recursive subgoal between

parameters S and 5 " because there is no subgoal nor any special parameter to l ink them

up. The first parameter in both recursive subgoals are used to regulate the program so

that there is no backtracking to the subtrees once the whole binary tree is traversed.)

Because the evaluation of the first recursive subgoal fails, the first recursive subgoal

blocks further evaluation of any other subgoals in the same rule. Therefore,

evaluation of Program (b) can termination but no evaluation can succeed. This is s l j ^

by Search tree (a) in Figure 4.17. 、、：_:難.-

• • . > ‘ , �

Moreover, a similar result can be obtained if we remove the (ree^m^^ 4 oH

nil) instead of the fact tree(node，c, nil, nil). The result of removing the ^(npde,
• .’ ‘ •. ‘ . . • • •

d，nil, nil) is shown by Search tree (b) in Figure 4.17. With th^ pyg^enip^ Rf the (act
’ .. 、 .‘‘， 、，.. i. ‘、‘ • . ； . • . • •

123

^ = = = = = = = 1 1 data transfer sequence in

Program (a) Propm modified from Program (b) the first recursive subgoal
— in Figure 4.16 by removing the fact

"tree(c, nil, nil)". allows the evaluation ot the

ln_order(S.X,[X|L})> tr6e(S.X.Y7). tree(root, a,b,c). f i rs t recurs ive SubgOal tO
ln_orcler(S'Z,L2), tre6(node,b,a,d).
'"ap^Sd(uilt)!' tree(node,d,nii,nii). succeed in the first level of

in_order(S,nll,ll). ‘ , / j .7 .7、^u^，。
, ^ ^ tree(node，c，nil，nil), the re-

Search tree for Program (a)
in 一 o r d e r (r o o t , _ , _ _ cursion. However, by

^ ^ removing the fact tree(node，

t r e e (r o o t , a ^ ^ C o r d e r (® A l c | _ 头喊.the evaluation of
the first recursive subgoal

tree(node,c，⑩，⑩） in the second level of
recursion fails. Since there

® : uninstantiated is [。o the r possible data

Program (b) Program modified from Program (b) transfer sequence in the
i ^ ^ r n i S ： 膽 0 _ 也e fact first recursive subgoal, no

In order(S.X.[X|L}):.tree(S,X.Y.Z). tree(root.a.b.c). b a c k t r a c k i n g O C C U T S .
- in_order(S'Z,L2), tree(node,b.a.d). ！了 . . ,

in_order(S",Y,u). tree(nod9,c,nii,nio. Hence, the failure 01 the
appnd(L1,L2,L).

in_order(S.nii.iD. first recursive subgoal

Search tree for Prgoram(b) blocks the evaluation of the
•m 一 o r d e _ t , ⑩ , _ _

^ ^ j nonterminating second re-

tree(root,a,b,c) / cursion. However, by
in.order(⑩.(；拟丨]]) in一order(® ’b’【b| ⑩])

I / removing the fact tree (node,
tree(node.c.nil.nil) / 咖 ^ , . , 、 , t . ,

in order(⑩.niU) 这 nil, ml), the evaluation qf
’ „ 丨 丨 【 、 in一order(⑩,d,【d| ® 1) ^ . ^ •
in一order(®，n丨丨，【） the first recursive sulb||Qa|

app€nd([],ll.[]) . ,, , I
m the second level q(

tree(node,d,⑩，眷） … V
recursion faife. S ^ e th?^^

ft : uninstantiated . . . L , 巧 煤
^ fail IS no Other 彻 殘

‘‘ transfer (u i^lhc
Figure 4.17 雜 邏 • 麵

first recurMy§ 辨 轻 _ _ pp
•：‘ • ‘ ” , • . . 、 : . ：：、.

, r • • ‘
...’>‘••，.

’、‘,•

124 一

backtracking occurs. Hence, the failure of the first recursive subgoal blocks the

evaluation of the nonterminating second recursive subgoal. The above discussion shows

that: i f any recursive subgoal in a recursive rule with multiple recursive subgoals has

some infinite data transfer sequence, either the entire recursive rule becomes non-

terminating due to this nonterminating recursive subgoal or the whole recursive rule

terminates improperly, i.e., none of any recursive subgoal in the recursive rule can suc-

ceed in its evaluation. In general, each recursive subgoal in a recursive rule of multiple

recursive subgoals needs to be evaluated successfully in order to perform any function.

Therefore, the presence of any nonterminating recursive subgoal in a recursive rule with

multiple recursive subgoals should be regarded as an indication of nontermination al-

though the evaluation of the recursive rule may eventually escape from nontermination

by another error: that is, the recursive subgoals in this recursive rule fail to perform any

function.

4.5. Special Parameters and Data Links

I n this section, we shall extend our discussion to the relationship between npater-

mination and connected data-link lists by considering the cases with special

involved. As has been pointed out in Chapter 3，apart from subgoals, lists and/pt Struc-

tured data can be used to form a cyclic parameter link. As discussed in the begint^ipg

of Section 4.1，if any data can be transferred through any cyclic parameter Ilok fe^e^

by these lists and/or structured data, which are the special parameters,终

be established through some special parameters. Therefore, we 餅 n data Unks

into three different kinds:
：；.、.�•.

(1) data-links formed purely with subgoals,

(2) data-links formed with special parameters only, and

(3) data-links with both subgoals and special parameters (nvolvcd*

1 2 5

. ,丨 i
I

As special parameters greatly differ from subgoals, the data links formed with only

special parameters behave very differently from those formed purely by subgoals. The ：、

difference is so great that it is necessary to consider the above three cases separately.

I n the above sections, we are only concerned with case (1). In the following sections,

we shall discuss how case (2) and (3) can be handled. Later, we shall show how the

nontermination detecting strategy outlined in the above sections can be generalized to

cover all the different kinds of data links.

4.5.1. Data Links with Special Parameters Only
：-i
I

Unlike the data link established through subgoals, the data link formed purely by j

special parameters does not have any procedure to be analyzed. By comparing the

simple examples in Figure 4.1 and in Figure 4.2, we can see this difference. ！

Consequently, we cannot analyze the procedure defining any subgoal to predict what are

the exact data to be transferred through the connected data-link list. A new technique

needs to be developed to deal with this type of data links. The key factor in the

development of this new test is the length of the lists and/or the structured data being

transferred in a data link.

To explain this technique, we would need to look back on how a cyclic parameter

l ink is formed by the special parameters. In Program (a) in Figure 4.18，there is one

proper cyclic parameter link in the first parameter of the recursive definition goal

between the parameters List and NewList formed by lists, while an improper cyclic

parameter l ink exists in the second parameter of the recursive definition (which is

established through the common parameter X) in both the recursive rule head and the

recursive subgoal. Since the improper cyclic parameter l ink does not relate to any

other proper cyclic parameter link, it can be neglected in the analysis of the recursive

definition. As shown by Search tree (a), this improper cyclic parameter link of ；

common parameters cannot contribute any effect to the recursion; i t is only used as a

channel to transfer back the value end once the evaluation of the recursive definition

succeeds. For the proper cyclic parameter link, although this cyclic parameter link

seems to be formed by the subgoal cut一one, data link cannot be established by

1 2 6

Program (a) Search tree (a)
„ . - ^ . . Search tree for Program (a)

with si^cial 碰 - q u e r y of "？- g。am3,4],X)"
parameters that can tenninate goal([2，3,4】，©)

goal(Ust. X):- cut一one(Ust,NewList), cut_one(【2,3，4】,[3,41)，丨(丨3,4】,©)
goai(NewUst, X).

goalffl, end). cut_one([3,4】,[4]) goal([41, ©)

cut one([XjUstRemainl, ListRemain). tn i 、
— cut一one([4U]) goal([l, ©)

• 一

iiiiiiiiiiiiiii
ill! : backtracking route cut一one([], ©) / 7 ‘ goal([I, end)

齒 :uninstantiated parameter /
^ f油 、一丨•丨

Program (b) Search tree (b)
. . ！ “ « .“ . . Search tree for Program (b)

Nontermmatmg recursive definition with ^ i th the query of "?- goal([2,3,4]^"
data links formed by special parameters ^

that has data of constant length nnfll^fP 41 、
during the recursion

QoaI(Ust, X) c u t one(l2.3,41, [3.4]) / goal([1,3,4], ©)
cut one(Ust,NGwUst), 一 rr!Vj，、 ^ ^
add_one(1 ,NewUst,NewList'), add_one(1 ,[3,4]7[1

g o a C f f i — t , 外 中 _， 3 , 4 1 , 1 §； 5 ^： ^ , 3 ， 4 】， ©)

cut onedXlUstRemain]. ListRemain). add—one(1 ’ 丨 M l ^ l f ； ^ ^ ^

add" one(X.Ust,X|Ustl). cuU>_’3，4】，T^^^oal([1,3,4】，©)
- 、 adcLone(1,[3,4】,[1 ,̂4])

© •• uninstantiated parameter •

Program (c) Search tree (c)
. ！ ‘ 。 . “ Search tree for Program (c)

Nontemimatmg lecuisive defmition with ^i th the query of "？- goal([2,3,4]^"
data links formed by special parameters ^

that has data ofincreasing length goal(I2,3,4I, ©) ‘
during the recursion ^ ^ 、 l

goal(Ust, X) c u t 一 o n e ([2 ， 3 , 4 】 , [3 , 4 1) I goal([1,1.3,4], ©) j
add_two(1A41.[i:i:M]) / /

goal(NewUst.X). 乂 / H
goal(D. end). ^ ^ ^ ^ ^ ^
cut.one([XlUstRemainl. UstRemain). cut.one(l1.1.3.4]. [1.3.4iy^goaiai.1.1.3.4]. ©)
add 一one(X,Ust,lX|Ust]). add_two(1，[1,3,4】,丨1,1,1,3,4])

add.two(X,Ust,NewUst) >
add_one(X’Ust，NUst).

add_one(X.NUst.NewUst). •

⑩:uninstantiated parameter ； . ::、

(N.B.: The intermediate steps for the evaluation of the subgoal "addjwo” are nPl fft̂ OWp)
P I 1.1 II; .
Figure 4.18 … . : 」 . 、 . . . ： 歡 • .

127

analyzing the procedure of this subgoal in the manner described in the above sections

because the only fact defining the subgoal is cut一one([X\ListRemain]，ListRemain) in

which all its arguments have no specific value. If Program (a) in Figure 4.18 is

compared to Program (a) in Figure 4.2，we can easily recognize that, although a

subgoal is involved in forming the cyclic parameter link of Program (a) in Figure 4.18，

the cyclic parameter link in Program (a) in Figure 4.18 is not a cyclic parameter link of

subgoals. Instead, both examples belong to the same kind: they both form cyclic

parameter links and data links only through some special parameters. By analyzing the

procedure defining the subgoal cut—one, one can be sure about three things: first，

since the subgoal cut一one(List，NewList) is defined only by the fact

cutjme([X\ListRemain]，ListRemain)，the parameters List and NewList can only be

instantiated with lists; second, the second parameter is always a result of taking away

the first element of the list in the first parameter; third, the subgoal cut一one wil l

become fail i f any non-list data or an empty list is passed to the first parameter. In

other words, as long as non-empty lists are used, an infinite number of data links can

be formed between the parameters List and NewList, This is the same conclusion ob-

tained in the discussion about the examples in Figure 4.2 in the beginning of Section

4.1. In this situation, we cannot detect cyclic connected data-link lists with the method

discussed above because we cannot obtain a specific set of data links and so it is not

possible to link the data links to form any connected data-link lists for further analysis.

However, this problem can be solved if we can find other indicators for detecting infi-

nite data transfer sequences. The length of the list transferred during the recursion is

an indicator of infinite data transfer sequences in the case of special parameters. This

can be clearly shown by comparing Programs (a), (b) and (c) and their corresponding

search trees in Figure 4.18.

As mentioned above, in Program (a), data can be transferred through its cyclfc

parameter link into the next level of recursion as long as the data transferred are npt

empty lists. On the other hand, because of the subgoal cut一one, the list that can pass

into the next level of recursion through the cyclic parameter link must be a list hayjng

the length of one element shorter than the list passed from the previous level p(

recursion. Therefore, during the recursion, the list passing through becomes l^llQIt时 • • • , . <• •
. . . • •�

‘ • ‘ • , .

1 2 8

and shorter and eventually becomes an empty list. At this point, the subgoal cut一one

fails and stop farther recursion. Although the fact goal([], end) wi l l provide the

solution for the parameter Z in the query eventually, it is not the exit condition to stop

further recursion along the recursive rule. I t is reached by the backtracking mechanism

after the recursion is terminated by the subgoal cut—one. Search tree (a) also illustrates

this clearly. Therefore, the subgoal cut—one acts as an exit condition at this point and

the cyclic parameter l ink established through the subgoal cut一one actually performs as

an exit-reaching process. Hence, there exists a finite data transfer sequence in this

cyclic parameter l ink although we cannot construct a non-cyclic connected data-link list

as in the case of cyclic parameter links involving only subgoals. By examining Search

tree (a), we can find that the data transfer sequence passing through the cyclic pa-

rameter l ink between List and NewList during the evaluation of the recursive definition

with the query ？- goal([2，3，4]，X) is [2,3,4], [3.4], [4]，[]• With a list of three elements

long, the length of the data transfer sequence is also three. I f we compare Search tree

(a) with the recursive definition in Program (a), we can see why there exists a

correspondence between the length of the data transfer sequence and the length of the

list. Since the list wi l l be reduced by one element in every level of recursion and wil l

block the recursion once it becomes empty, the levels of recursion that can occur is

equal to the number of elements in the list. Since any list that can be supplied in the

query wi l l always be a list of finite length, the number of recursions that can occur is

also finite. In this way, no nontermination occurs in Program (a). However, not all

recursive definitions with cyclic parameter links formed by lists can have its lists

reduced in length during the recursion. In those cases, nontermination wil l occur.

In Program (b), there is a recursive definition similar to the one in Program (a)

except that the subgoal add—one is added to the cyclic parameter link. However, due to

the fact add一one(X，List, [X\List]) used to define the subgoal, any data passing through

the cyclic parameter l ink established through the second and the third argument of

subgoal wi l l have its length increased by one element. Therefore, any no严赚p块 ||st

passing through the cyclic parameter link in Program (b) wi l l first have oiw 例

off from its head and then, according to the subgoal add一one(l，NewList,
. , : : . • :、、〜:？：々. :� ’

, • ’�•• ,, •气 • A , •

element 1 is added to it at its head. The length of the list transferred tq the (ev^J
. T . � ••

1 2 9

of recursion wi l l be equal to the list passed from the previous level. And the length of

the list remains the same during the recursion. As indicated in Program (a), the

subgoal cut—one can act as an exit condition only when an empty list is encountered

during the recursion and therefore the cyclic parameter l ink can work as an exit-

reaching process only i f the list passing through can become shorter during the

evaluation of the recursive definition. But the list passing through the cyclic parameter

l ink always has the same length. The exit condition can never be reached and

nontermination occurs. By comparing Search tree (b) with Search tree (a), it is easy to

figure out how the subgoal add一one cancels out the effect of the subgoal cut一one to

result in nontermination.

For Program (c), the subgoal addjwo replaces the sub- goal add—one in Pro-

gram (b) to form a cyclic parameter link in the recursive definition. When we examine

the procedure defining the subgoal addjwo, it is not hard to find that it can add two

elements to the head of any list passing through its second and third parameter.

Therefore, any non-empty list passing through the cyclic parameter l ink in Program (c)

wi l l have its first element cut off first and then have two elements added at the head of

the remaining list. In terms of the length of the list, any non-empty list wi l l gain one

element in length when one level of recursion is completed. Instead of having a

shorter and shorter length, the length of the list passing through the recursive definition

increases continuously during the recursion. This can be shown by Search tree (c) in

Figure 4.18. Therefore, the exit condition can never be met and nontermination also

occurs just as what is indicated by Search tree (c).

‘ -

I n the three examples of Figure 4.18, only lists are used to illustrate how the

length of the data can be an indicator of the data links formed by special parameters.
�•• •

However, the same is true for structured data, which represent another case of special
parameters. Actually, we can give examples of structured data similar to those giv食殊 |n

Figure 4.18. In Figure 4.19, the subgoal cutjme has a similar function ^s
一 . ' " • • • f

counterpart in Figure 4.18. However, instead of taking away the first e}资用痛 j j f l ||st,

cutyne in Figure 4.19 cuts away the functor of any structured data 只 衡 【 ^ l i l g) ^
• ‘ •-:-‘‘. . • • ， .

‘_ : •.. ,,,..
• ： ‘

1 3 0

P r o g r a m
R e c u r s i v e d e f i n i t i o n w i t h d a t a l i n k s f o r m e d
by special parameters that can terminate.

g o a l (S D a t a , X) c u t _ o n e (S D a t a , N e w S D a t a) ,
g o a l (N e w S D a t a , X) .

g o a l (f () , e n d) .

cu t一 o n e < f (X) , X) ,

P r o g r a m (h)
Nonterminating recursive definition with data links

formed by special parameters that has data of
constant length during the recursion.

g o a l (S D a t a , X) cu t一one<SData , N e w S D a t a) ,
add_one (NewSData , N e w S D a t a ') ,

g o a l (N e w S D a t a 、 X) .
g o a l (f (> , e n d) .

c u t一 o n e (f (X〉，X) . add__one(X, f (X)) .

P r o g r a m ^c)
Nonterminating recursive definition with data links

formed by special parameters that has data of
increasing length during the recursion.

g o a l (S D a t a , X) ：- cut一 o n e (S D a t a , NewSDa ta) ,
add_ two (NewSDa ta , N e w S D a t a ') ,

g o a l (N e w S D a t a ' , X) .

goal(f(), end).
c u t _ o n e (f (X) , X) . add一one(X, f (X)) .

a d d _ t w o (X , f (Y)) : - add一one(X, Y) .

Figure 4.19

the subgoal. Therefore, if the query ？- goal(f(f_)))，X) is supplied, the data tramfec

sequence for the first parameter of the recursive definition is f(f(f(f()))), f(f(f()))，f(f()h

f(). I n a similar manner, add one adds one more functor to any structured data pass-

ing through the subgoal while addjwo adds two more. Comparing these

with those in Figure 4.18，it can be easily seen that the exit condition is cutj)ne(

NewSData)，which fails inevitably when the structured data f() is suppUed tq flr^

argument, blocking further data transfer to the next level of recursion. (W
、• 、"''': •：'•：• •
:• .. :、‘.;“".. ？,？:？.-,,、

131 一

and (c) in Figure 4.19，this exit condition can never be reached since the structured

data can never become/ f j .

By examining these examples in Figures 4.18 and 4.19, we draw this conclusion:

i f we have a way to analyze the length of the data during the evaluation of the

recursive definition, we can detect any infinite data transfer sequence in the case of

special parameters although we cannot construct connected data-link lists as in the case

of subgoals. By analyzing the operations performed on the special parameters in these

examples, we can analyze the cyclic parameter links to determine the tendency of the

change in the length of the data passing through these cyclic parameter links during the

recursion. I f lists are involved in a data link, either it involves subgoals defined by facts

whose arguments are lists, or some list operators are involved, like head-tail separator,

“I "，used in the examples in Figure 4.18. I f it is the first case, it is no different from the

data links formed by subgoals and can be treated in the same way. I t is in the second

case that we cannot use the method developed in the above sections to determine what

the exact data links are.

However, for a data link or partial data link that can be established with the use

of head-tail separator, the data transferred to other parameters must be part of the

original list. For example, in Figure 4,18, the fact cut_one ([X | ListRemain],

ListRemain) allows data links to be formed because the tail of the list in the first

argument of the subgoal cut—one can be transferred to its second argument. I f we

change the fact to be cutjme([X\List]，ListRemain), no data link can be considered to

exist because List and ListRemain are two independent variables. The values that can

be instantiated to the variable List bears no relation to the values that can be

instantiated to the variable ListRemain, Such a modification breaks down any

dependency between the first argument and the second argument of the subgoal

cut one. Therefore no data link can be established i f the fact is changed in this 一 —

In order to complete a data link, part of the original list must be passed tq ptlief

parameters in the cyclic parameter link. Therefore, there always exists a differeiifp

the length of the original list and the length of the remaining part transferred tp
-穿 v .： .

parameters, and the difference in length between the data that can be instan)i<^t(sd 客9
...• ..,•-‘、•...二••、,...，‘

1 3 2

these two parameters is the same in every level of recursion. For Program (a) in

Figure 4.18, the list that is transferred to the parameter NewList always has one

element shorter than its original list transferred to the parameter List, I f no other

factor operates to increase the length of the remaining list before it is transferred into

the next level of recursion, as in the case of Program (a) in Figure 4.18，the list

becomes shorter and shorter during the recursion and is eventually reduced to an

empty list. However, the mechanism that cuts the list short, in this case, the head-tail

separator, wi l l fail when an empty list is encountered. I t blocks further recursion along

the same recursive rule. A t this point, the data transfer sequence comes to an end.

However, since the head-tail separator is a standard operator in Prolog and its behavior

is fully defined, the relation between the length of the original list and its remaining

part can be expressed by a formula as follows:

M = N + 1

where M is the length of the original list while N is the length of the remaining part.

Therefore, for Program (a) in Figure 4.18, the length of the list passed from the

previous level and the length of the list passed into the next level of recursion has the

relation:

length of length of
list to next level = list from previous level - 1.

For Program (b) in Figure 4.18, the relation of the length of the data transfer between

the parameters List and NewList through the subgoal cut一one can be expressed as：

length of NewList = length of List • 1

while the relation between the length of the data passing through the parameter^ .w, ‘.、 •. • . • •..
NewList and NewLisf through the subgoal addyne is: :

length of NewList' = length of NewList + 1.

Therefore, the relation of the data passing through the parameters List and Newest \
_. ‘>'：六:V

that is, the relation between the list from the previous level of recursion and 依尹 list (q

the next level of recursion, is:
length of NewList，= length of List - 1 + 1.

1 3 3

This implies that the length of the list does not change during the recursion. I f we

apply the same analysis to Program (c) in Figure 4.18, the relation between the list

passed in and the list passed out can be expressed as:

length of NewList = length of List - 1 + 1 + 1

Thus, the list passed to the next level of recursion has one more element than the list

passed from the previous level. Since finite data transfer sequence can be obtained

only if the list passing through the recursion can become shorter and shorter. The last

two cases indicate the presence of some infinite data transfer sequences.

Therefore, i f a data link is formed through lists with the presence of a head-tail

separator as in the examples in Figure 4.18, we can know whether the list is growing or

shrinking during the recursion by analyzing which parameter is responsible for the tail

part of a list and where the tail goes to. I f the tail directly or indirectly goes to the

parameter in the recursive subgoal, we can be sure that the list passing through the

recursion wi l l be shrinking. I f it goes to other special parameters that can also

manipulate lists through a head-tail separator as in Program (b) and (c) in Figure 4.18,

we can calculate the net difference in length between the list from the previous level of

recursion and the list to the next level of recursion, to determine whether the list is

growing, shrinking or remaining constant during the evaluation of the recursive

definition. This is also true for the data links formed by structured data. For

Program (a) in Figure 4.19，the fact cut一one(f(X)，X) defining the subgoal

cutj)ne(SData, NewSData) causes the most outer functor f to be removed from the

data transferred from the parameter SData to the pjarameter NewSData. This can also

be considered as reducing one element from the length of the structured data passing

to the next level of recursion. Moreover, a data l ink can also be established through
-.、：釋,

lists without a head-tail separator. We can introduce a small change to Program (a) ip

Figure 4.18 to remove the head-tail separator as follows: ；

goal(List, X) cut—one(List，NewList), goal(NewList,X).
goal([], end).

cut一one([X，ListRemain]，ListRemain).

134

A similar result wi l l be obtained if the query to be supplied is modified as P- goal([2,

[3，[4，[]]]],X). In this case, the list that can be passed through the recursion must be

a list of lists with only two elements and the second element must be a list too.

However, we can also be sure about how the length of the list changes during the

recursion. There are many more possible ways to cut a list or structured data than we

can consider. For example, we can have one parameter defined unusually as

[X，Y’Z\L]• However, we can still analyze it and know the difference between

[X,YyZ\L] and L to be three elements in length. Without the need to know whether

lists or structured data are transferred through these cyclic parameter links of special

parameters, we can always find out the difference in length between one parameter and

the other parameter in one level of recursion because the operators such as “ | ”，"，•• or

the operation that takes away the functor of a structured data can only increase or

reduce a fixed amount of length from the data transferred through the two parameters.

Since all the rules and facts cannot be modified during the evaluation of a pure Prolog

program, we can always be sure that the change in length in one level of recursion can

be accumulated to form either a finite or an infinite data transfer sequence. This

provides us with a way to detect the presence of infinite data transfer sequences for the

cyclic parameter link established through special parameters in which the detection of

connected data-link list cannot be done.

The method to detect infinite data transfer sequence in a cyclic parameter link

established through special parameters can be briefly described as follows:

(1) Trace the cyclic parameter link. Identify the pair(s) of parameters P丨 and F-,
where only part of the list in Pj is transferred to Pj.

(2) Evaluate the difference of length for each pair: if Pj is the parameter responsible
for receiving data from the previous level of recursion, the difference is a
negative value; if P! is responsible for sending data to the next level, the
difference is a positive value. “ : ;

(3) Add up the differences of all pairs in the cyclic parameter link.

(4) I f the result is zero or positive, the data transfer sequence is infinite; pt^erw^e,
the data transfer sequence is finite. 、

1 3 5

For example, i f we modify the fact cut一one in Program (a) to cutjme(ListRemain，

[XI ListRemain]), the cyclic parameter link goes from ListRemain to [X \ ListRemain].

The result of the analysis described above shows a positive value, so an infinite data

transfer sequence is present in this cyclic parameter link. I f the query ？- goal([2，3，4]，X)

is supplied again, the data transfer sequence wil l be [2，3，4]，[X 2，3，4]，[X，X, 2, 3，

4], [X，X’ X，2，3，4]，…where X is the uninstantiated parameter. For Program (b)，the

result is zero and for Program (c), the result is positive. This shows that all of them

have infinite data transfer sequences for their cyclic parameter link.

4.5.2 Data Links with Both Special Parameters and Subgoals

To form a data link with both special parameters and subgoals, the

corresponding cyclic parameter link must also be established through some subgoals

and some special pa- ^ ^ = = = = = = = = = |

rameters. Therefore, i f
Procrram (a)

we break down a data Recursive definition with data links of
both subgoals and special parameters

l ink into its partial

data links, we can find goal (List, X) :- linkl(List, NewList), 1ink2(NewList, Value),
that some of them are goal (value, x) .

goal⑴，end).
established through linkl([X!ListRemain], ListRemain).
special parameters u n k 2 ([2 , 3 , 4] , 5) . i i n k 2 m , 6) .
while other partial _ = = _ _ _ = _ =

data links are formed Program (b、

by subgoals. Although Recursive definition without any data link

the types of data trans- goal (List, X) :- linkl(List, NewList),
^ , , , , link2(NewList, Value),
ferred through each goal (value, x) .
partial dataUnk do not goa l⑴，end) .

linkl([XIListRemain], ListRemain)•
need to be the same,

• l ink2(3 , 5) . I ink2(4 , 6) ,
the parameter that

connects two part ial

data links, i.e, the Figure 4.20

1 3 6

parameter being shared by the two partial data links, must have the same kind of data.

I n Figure 4.20，there are data links of both subgoals and special parameters in Program

(a). The subgoal linkl can only form partial data links through special parameters

while the procedure defining the subgoal linkl provides two partial data links of [2，3，

4]"5 and [�—6. The two partial data links can be linked together because the common

parameter of the two partial data links can be instantiated with the same kind of data.

I f we compare Program (a) with Program (b), we can clearly see the importance of

having the same kind of data for the common parameter. In spite of the great

similarity between the two recursive definitions, no data link can be formed out of the

partial data links because the types of data of the two partial data links are no longer

compatible. The change in the facts in the procedure defining the subgoal link2

destroys the compatibility of data type between the two partial data links.

Moreover, the kind of data that can pass into the next level of recursion is

important in determining whether a data transfer sequence can go beyond one level of

recursion. For example, the recursive definition in Program (a) in Figure 4.20 does not

have a data transfer sequence that is longer than one level of recursion. Due to the

second partial data l ink established by the subgoal Unk2，the data that can be

transferred into the next level of recursion is, not a list, but just a value. But the first

argument of the subgoal linkl always demands a list. Therefore, the subgoal linkl wi l l

fai l at the second level of recursion and blocks further recursion along the same

recursive rule. Moreover, we can understand the case as a mismatching of the type of

data supposed to be received and the type of data actually sent. On the one hand,

since List, the first parameter of the subgoal linkl (which forms a partial data l ink

through the special parameter of list), is also the parameter that receives data from the

previous level of recursion for this cyclic parameter link, the type of data that can bg

received from the previous level of recursion must be lists. On the other hapcj,

are transferred into the next level of recursion through the parameter Value k

also the second parameter of the subgoal linkl. However, according to the pf^^Q^yr^
_ ‘ • A-'； A ‘V，心、’:、：；‘

defining the subgoal, the type of data that can be instantiated to the parameter

some simple values of 5 and 6 but not a list. This implies that the type pf jfcj^i 咖

be transferred to the next level of recursion cannot match the type pf d^ta tbM “‘.、•• ’-. ;' -r,、:-: •:‘• i ••.. • ' • ..、r- ... •. X •
. 、 • ： •••: ‘\

' . � . ‘

137

supposed to be received from the previous level. In other words, in order to have a

data transfer sequence to go beyond one level of recursion, the type of data that can

be transferred to the next level of recursion and the type of data that can be received

from the previous level must be the same. This condition required for the formation of

connected data-link lists for a cyclic parameter link formed by both subgoals and

special parameters is actually no different from the condition required for the

formation of data links out of partial data links. For the latter case, the type of data

must be the same for the common parameters of two partial data links to allow data to

pass from one partial data link to another. For the former case, the parameters that
are responsible fo r

goal (List, X) ：一 iinki(List, NewList)' passing data from one
link2(NewList, Value), ^ °

, � goal (Value, X). level of recursion to the goal([], end).
linkl{[XlListRemain], ListRemain). Other muSt have the

Iink2([2,3,4], [5]). iink2([], [6]). Same type of data.

Hence, Program (a) in

Figure 4.21 Figure 4.20 can be mod-
ified, resulting in the recursive definition in Figure 4.21，which has data transfer se-

quences that can go beyond one level of recursion. The only modification needed is to

change values 5 and 6 in the procedure defining link! to the lists [5] and [6].

Moreover, the recursive definition in Figure 4.21 provides an example of how an

infinite data transfer sequence can be formed from data links which are formed by both

subgoals and special parameters. I f the query ？- goal([h 2, 3，4]，X) (or any query with

its first argument being four elements long with the last three elements being 2, 3 and

4) is supplied, nontermination occurs and an infinite data transfer sequence is formed

in the cyclic parameter link as [1，2，3，4]，[5]，[6]，[6】，[6]，.... A n examination of the

data transfer sequence shows that the repeating segment is essential to the formation of

an infinite data transfer sequence. The relationship between the repeating segment

and the infinite data transfer sequence can be shown more clearly i f we change t^^

procedure of the subgoal link2 as follows: • ：；̂
• ' .

Iink2([2，3，4]，[4,5]). Iink2([5]，[a，b，c，d，e]).
Iiiik2([b,c,d,e], [a，2，3，4]).

1 3 8

and evaluate the recursive definition with the query of ？- goal([1,2,3,4], X). We shall

get an infinite data transfer sequence of [1,2,3,4], [4,5], [ayb，c，d，e]，[0,2,3,4], [4，5]，

[a,hyC4,e], [a,2,3y4], [4,5], [c0，c，d，e]，[a^2，3，4]，.... On the one hand, it does not show

any similarity to the infinite data transfer sequence from the data links formed by only

special parameters. For those data links formed by special parameters alone, the

length of the data transferred is the indicator for detecting an infinite sequence.

However, the infinite data transfer sequence in the case of data l ink of both subgoals

and special parameters does not show the same regularity in the length of the data

transferred as what has been shown in the case of data links formed by special

parameters alone. On the other hand, we cannot directly construct a connected data-

l ink list (as in the pure subgoals case) to find the data transfer sequence if both special

parameters and subgoals are used to form some data links. However, the examples in

Figures 4.20 and 4.21 show that the infinite data transfer sequence in the case of data

l inks of both special parameters and subgoals must appear in the form of some

repeating identical segments. A repeating segment therefore can be an indicator of an

infinite data transfer sequence in this case.

I f we consider the concept of the cyclic connected data-link list again, we shall

note that a cyclic connected data-link list actually represents an infinite data transfer

sequence formed out of a repeating segment. When the repeating segment in the case

of data links of only subgoals is compared with the repeating segment in the case of

data links of both special parameters and subgoals, we can find that the repeating

segments in both cases have the same nature. Since the fact defining the subgoal link!

in Figure 4.21 implies List has one more element at the head of the list than New^^t,

while NewList must be able to be instantiated with the values specified 書

procedure defining the subgoal link2, we can assume that the partial data links I j ^ ^ ^ g p
- , .y-' "*f >

• “ ‘‘ • ‘ ‘ /

the parameters List and NewList are:

[X，2，3，4]-[2，5, 4] and [X H] ,

where X is any uninstantiated parameter. On the other hand, the partial 样a j ‘ links
• : ‘： .•！ •- ‘ ‘

between the parameters NewList and Value can be concluded from the of the
« • ： ： . •� • \ '• ‘ � �

procedure of the subgoal link2. They are:
•r 、

139 …

[2，3，4]--[5] and [h[6].

I f we try to connect these partial data links, we have two data links:

[X，2，3，4]--[5] and [X]-[6].

Because the uninstantiated parameter X can be instantiated with the value 5，using a

data transfer analogy, the value 5 can be considered to be transferred from one data

link to the next one. In other words, the list [5] can be considered to be equivalent to

the list [X] when the data links are connected to form a connected data-link list

[X，2，3，4]--[5]--[6]. Moreover, the data link [X]--[6] can be linked up to itself because

of the same reason. Therefore, an infinite connected data-link list of [X，2，3，4]—[5]--

[6]-'[6]-[6]-... can be formed. The correspondence between this infinite connected

data-link list and the infinite data transfer sequence shown above is obvious. The

correspondence is even more obvious in the case where the procedure of the subgoal

link2 is modified. In that case, linkl is defined by three facts: link2([2，3，4]，[4，5]),

^ = = = = = = = 1] link2([5]，[a，b，c，d，e])

… 1 , . , 1 and link2([h, c，d’e]，
Example of how connected data-link set 又 can be formed in the case of Fn 0 ̂ dU Qn fh户 nnr-

da-ba links of both special parameters and 。。，山c P山 subgoals with using the operator ,� " in lists ‘• i j ‘ r i
^ tial data links that can

g o a l (L i s t , X) l i n k l (L i s t , N e w L i s t) , .
I ink2 (NewList, Value), be formed by this sub-

g o a l (V a l u e , X) .

goal⑴，end) . goal are: [2,3, 4]—[4，5],

linkl ([X,ListRemain], ListRemain). [5]-[a,b, C，d，e] and
l i n k 2 ([2 , 3 , 4] , [4 , [5]]) . fh r fn 9 ^41)
l i n k 2 ([5] , [a , [b , c , d , e]]) • lb，C，d，eJ—la，2，J，4J).
I i n k 2 ([b , c , d , e] , [a , [2 , 3 , 4] 〗） . . , ^

For the partial data

links formed by the sub-
Data Links [X, [2,3,4]]--[4, [5]]

goal 滅1’ d肚 to the

Linked Data Link Set : - facts in the procedure of

[X, [2 ,3 ,4]] - - [4 , [5]]-_ [a , [b , c ,d , e]]-- link2, we can consider
[a , [2 ,3 ,4]] — [4 , [5]] — • • • ， 後

that there exist thrpe
‘ t -i .' 'v V

- • < • I : A .�•>

part ia l dat^ _ _
Figure 4.22 [X，2，3，4]-[2，X 41�(講

-[5�and [X，b，c，d，e]-[b，c，d，e]. Three data links can be formed: [X，2，3，4]—[4，5��(X^SJ^^
...、：嫌拽、

辄
1 4 0

[ayb，c，d，e] and [X，b，c，d，e]—[a，2，3，4]. Because the uninstantiated parameter X can be

instantiated with any value, lists [X，5], [X，b，c，d，e] and [X，2，3，4] can be instantiated as

[4,5], [ayb，c，d，e] and [a,2,3,4] respectively. Therefore, an infinite connected data-link

lists, [X，2，3，4]—[4，5]--[a^b，c，d，eh [a^2，3，4]—[4，5]—[aAc，d，eHM^h…can be

obtained.

Example showing how a connected data-link set can be formed
from data-links of both special parameters and subgoals

using Structured Data

goal(SData, X) ：- linkl(SData, NewSData), link2(NewSData, ModiSDa-
ta), goal(ModiSData, X).

goal(f(), end).
linkl(Y(X), X). Iink2(f(2,3,4), g(f(5))).

Iink2(f(5), h(f(b,c,d,e)))•
link2(f(b,c,d,e), i{f(2,3,4))).

Data Links ••- Y(f (2,3,4))--g(f (5)) Y(f (5))--h(f (b,c,d,e)) Y(f(b,c,d,e)—i(f (2,3,4))
Connected Data Link Set :-

Y(f (2,3,4))—g(f (5))—h(f (b ,c ,d ,e))—
i (f (2 , 3 , 4)) - - g (f (5)) — • • •

Figure 4.23

Moreover, the above discussion can be extended to the case of operator "，” in

lists and the case of structured data. This can be shown by the examples in Figure 4.22

and Figure 4.23. By recognizing that the uninstantiated parameter can be considered to

be connected to any value, list or structured data，we can establish a connected data-

l ink list as in the case of data links of only subgoals. The appearance of repeating

segment shows that the connected data-link list formed has infinite length (just like the

cyclic connected data-link list formed in the case of data links of only subgoals).

Therefore, the appearance of a repeating segment indicates that the correspo發與_

cyclic parameter l ink contains an infinite data transfer sequence, and so it cannp|
、：��:i'i’r吟身於

t ion as an exit-reaching process.
；‘ ： . ‘

• - ：

•+ ；. • -

- • • • . . .

1 4 1

We have compared the case of data links involving both special parameters and

subgoals with the case of data links involving only special parameters or only subgoals.

The former case should not be confused with the latter two cases. In the latter cases,

we can analyze different types of cyclic parameter links with different methods, either

by constructing connected data-link lists or by analyzing the tendency of the length of

the data transfer sequence, to determine which cyclic parameter link contains infinite

data transfer sequences. As discussed in Section 4.4.3, if all the cyclic parameter links

contain at least one infinite data transfer sequence, we know that nontermination can

occur. I n the former case, the result of the analysis is only limited to the cyclic

parameter l ink formed by both special parameters and subgoals. However, it is

necessary to examine all other cyclic parameter links in the same recursive definition

before we can draw any conclusion about whether this recursive definition wi l l

terminate.

4.6 Data Links and Infinite Data Transfer Sequence Detection

I n this section, we shall describe how a systematic approach can be developed to

detect a data link and in turn an infinite data transfer sequence. In the case of data

links of only subgoals, it is a' question of how to systematically construct a cyclic

connected data-link list out of the data links. In the case of data links of only special

parameters, it is a question of how to detect the change tendency of the length of the

data being transferred during recursion. In the case of data links of both special

parameters and subgoals, it is a question of how to identify the repeating segment.

These method are developed on the foundation of parameter analysis elaborated in

Chapter 3. The methods for detecting infinite data transfer sequences wi l l be presented

in following algorithms. "

142

Algorithm 4.1 Data Analysis

i n p u t : a recursive definition and its set of cyclic parameter links CPS (which can be obtained by
applying Algorithm 3.3 to the recursive definition. CPS is a set of sets {X. ss, sp}. X
indicates the position of the parameter involved in a cyclic parameter link, ss is a set of sets
containing subgoals that form the cyclic parameter link, and sp is a set of sets containing
parameters involved in the cyclic parameter link. (The details of ss and sp can be found in
Algorithm 4.2.1.)

OUTPUT : a message to indicate whether the input recursive definition can terminate

. = 0 [NI: the nontermination indicator]

If CPS 丰{} Then

^ ^ F o r each set in CPS Do [that is, for each cyclic parameter link]
Begin

If only subgoals involved in the cyclic parameter link
Then Begin

apply Algorithm 4.2
If the set of cyclic connected data-link lists SCCD 丰{}

Then Nl := Nl + .1
End

Else If only special parameters involved
Then Begin

apply Algorithm 4.3
If the change tendency integer C is not negative

Then N l := Nl + 1
End

Else If both subgoals and special parameters involved
Then Begin

detect the repeating segment in the data transfer sequence
If there is a repeating segment

Then Nl := Nl + 1
End

End
End

if Nl = the number of cyclic parameter links
Then output an appropriate nontermination error message
Else output a message to indicate that the input recursive definition can terminate

143

Algorithms 4.2 and 4.2.1 are developed for detecting the cyclic connected data-link lists

for a cyclic parameter l ink involving only subgoals.

)

Algorithm 4.2 Constructing a set of cyclic connected data-link lists
for a cyclic parameter link involving only subgoals

INPUT : a set { X’ ss, sp } in CPS

OUTPUT : a set of cyclic connected data-link lists SCCD, { (VpVa,•..,•„)’ … }

SCCD := { } .

Apply Algorithm 4.2.1 to { X，ss, sp } to form the set of data links SDL, {DL” ...，DLJ, where
DL, = (Va. Vb)

For each data link DL,, (v^. Vb), in SDL Do
Begin

If Va = Vb Then
Begin

SCCD := SCCD U {DLJ
SDL:= S D L] DLJ

End

SDl̂ ew ••= SDL ‘
SDL。丨 d:=SDL

While i ^ the number of data links in SDL and SDL^^ * . { } Do

Begin [to form the cyclic connected data-link list]

SDU, { }
For each DLj, (Va”"，Vb)，in Do

For every data link DLj, (v^.v j in SDL。丨d Do
if Vb =

Then If v^ =
Then Begin

SCCD ：= SCCD U { (Va” ”Vb’Vn) }

SDL,,. := SDLde丨 U {D‘DL^}
End

Else Begin
• SDL̂ 辦：=SDL̂ emp u {(Va,“•，Vb’vJ }

SDL,„ := SDL,,, U {OK DLj}
End

144

Algorithm 4.2 (countined)

SDL̂ ew ：= SDL^e, U SDl̂ emp

End

eliminate any redundant cyclic connected data-link lists in SCCD
[any two cyclic connected data-link lists having the same elements are considered the same, eg•，(1,2,3,1)

and (2’3,1，2) are equivalent]

The algorithm below finds data links in a recursive definition for Algorithm 4.2.

>

Algorithm 4.2.1 Constructing data links for a cvdic
parameter link established through only subgoals

input : a set { X，ss, sp } in CPS. ss = { s ” Sg, s^ }. s； = { sgs” sgsg, ...，sgŝ }.
sgs, = {sQi,…，sgj. For a direct recursive definition, b = 1.
sg, is a subgoal involved in a parameter link.
sgs, is a set of all subgoals related to a parameter link for a recursive rule.
s. is a set of all sgs/s involved in one or more recursive rules in one recursive definition,
i.e., a set of sets includes all subgoals for one parameter link.
ss is a set of sets containing all subgoals for one cyclic parameter link.
Similarly, sp is a set of sets containing all the parameters involved in a cyclic parameter link
corresponding to the subgoals in ss.
sp = {p” Pa}. Pi = { pas” paSb }. pas, = { {X” •••，X̂ + J }•
The number of parameters involved is one more than the number of subgoals involved when
one recursive rule is considered. The reason can be shown by considering a simple example,
in a recursive rule: g(A，B) > llnk1(AP1), link2(P1,X), g(X,Y). There are two subgoals involved:
Iink1 and Iink2, while there are three parameters A, P1 andX involved in the parameter link.

OUTPUT : the set of data links SDL, {DL” DL^, DLJ where each data link is:
DL, = (Va, Vb).

arrange the subgoals in sgs, and parameters in pas丨 according to
the order of forming the parameter link

[eg., for a recursive rule a(A,B) Imkl(PZPl), link2(PlA), link3(P2,X), a(X,Y)., the order of the subgoals
and parameters forming the parameter link is: HnkZ Unkl, linkS and 為 PI, P2, X respectively. They
are different from their orders appearing in the recursive rule.]

145

Algorithm 4.2.1 (countined)

CV ：= { } [CV : a set of partial data link values for all parameter links]

For each set s^ in ss Do
Begin [find partial data links for all parameter links]

DV ：= { } [DV : a set of partial data link values for one parameter l ink]
[involving all recursive rules in one recursive definition]

For each set sgsy in s^ Do
Begin [find partial data links for all recursive rules]

RV := { } [RV: a set of partial data link values for]
[all subgoals in one recursive rule]

For each subgoal sg^ in sgSy Do
:Begin [find partial data links for all subgoals]

V := { } [V: a set of all possible partial]
[d a t a link values for one subgoal]

I
If the procedure defining subgoal sg? does not consist of facts alone

Then transform the original procedure into an equivalent one consisting of facts only

For each fact sg,(..., v" v” ...) of sĝ Do , . ,
[v. and V- are the values corresponding to the parameters X , and X , + ^ which are used m the
[subgoal sg,(..., Vi, Vj，...）to establish the parameter link, they can be found f rom the set pas^]

i Begin

Find V丨，Vj f rom the fact sg,(.... v丨’…，v�，•••），which corresponds to the position of X, and

V := V u { (V丨,V丨)}

End

RV := RV U { V }
End

For each V , a n d V , ^ , in RV Do c : : : . — 「

Begin , 丨 、 、！ , 工 ‘ . ‘ -
V - w ' 、 、 - ' … ’ \ 乂一
*temp •一 1/ J
For each pair (v丨，y) in V^ Do

For each pair v J in V ^ ^ , Do

If V丨=Vm Then Vt^p := Vt^p U { (v..、) }
V V

+ 1 •一 *temp
End

DV:= DV U { V — }

End

146

Algorithm 4.2.1 (countined)

For each V^ and Vb +1 in DV Do
Begin

•temp := { }
For each pair (v丨，Vj) In V^ Do

For each pair (v^, vJ in V^ + ^ Do
If V丨 二 Vm Then V— ：= V— U { (v丨,vJ }

Vb+ 1 Vfemp
End

cv := CV u { V — } .
End

For each V。and V。+1 in CV Do [find all the data link values]
Begin [for one cyclic parameter link]

Vtemp { }
For each pair (v丨，v) in V。Do

For each pair (v^, vJ in V…Do
If Vj = Vm Then V , 細 卩 : = U { (v, vJ }

v V
+ 1 *temp

End
SDL:= V —

Algorithm 4.3 is developed for detecting the presence of any infinite data transfer

sequence in a recursive definition with cyclic parameter links established through only

special parameters.

Algorithm 4.3 detecting the presence of any infinite data transfer sequence for a
cyclic parameter link involving only special parameter

INPUT : aset{ X，ss, sp } in CPS

OUTPUT : the change tendency of data passing through the cyclic parameter link, measured in terms
of an integer C; a non-negative value of C means that the data transfer sequence is infinite

C 0

147

Algorithm 4.2 (countined)

arrange the parameters in pas, according to the order of forming the parameter link

CV { } [CV : a set of change tendency values for all parameter l inks,]
[C V = { Ci，…，C„ }]

For each set p^ in sp Do
Begin [find the change tendency value for a parameter link]

DV ：= { } [DV : a set of change tendency values for one parameter link]
[involving all recursive rules in one recursive definition]

For each set paSy in p^ Do
Begin [find the change tendency values for all recursive rules]

RV ：= { } [RV: a set of change tendency values for all subgoal parameters]
[related to the parameter link in a recursive rule]

For i : = 2 to n Do [n = number of parameters in paSy]
Begin [find the change tendency values for all subgoal parameters]

If X, is part of X;., and their lengths
have a difference of x elements [eg., X j . i = [H|L] and Xj = L]
ThenC—i -X
曰 seCtempi:: X

RV:= RV U {Ctempi }
End

Gtemf>2 0 [Ctemp2: chanQQ tendency values for one recursive rule]

For each Ĉ empl RV Do C,ê p2 ： = Ctemp2 + Ctempi

DV:= DV u { C — 2 }

End

Ctemp3 ••= 0 [Ctemp3 : Change tendency values for one parameter link]

For each Cte^pz in DV Do Ct̂ mpa • 二 Ctemp3 + t̂empa

CV:= CV u { C — }

End

For each C,卿3 in CV Do C := C + Cte巾p3 [C : change tendency values for 】
[one cyclic parameter link 】

148

Since the case of data links formed by mixing both special parameters and subgoals

is a rare case, no discussion of how to detect infinite data transfer sequences in this case

is provided in this section. As discussed in Section 4.5.2, although an analytical

approach for detecting the infinite data transfer sequence in this case is possible, the

uninstantiated parameters appearing in data links causes a lot of problems in the

detection for the repeating segment of a data transfer sequence. We suggest that a run-

time tracing approach may provide a easier approach to detect the repeating segment.

149

CHAPTER 5—Special Cases

I n Chapter 4，we have developed a nontermination detection technique, which we

call data analysis, based on detecting the presence of any infinite data transfer sequence

in any recursive definition of a pure Prolog program. By constructing connected data-

l ink lists, the presence of an infinite data transfer sequence is indicated when any cyclic

connected data-link list is found or the size of the data passing through any cyclic

parameter l ink does not tend to become smaller. However, in the case of

interdependent cyclic parameter links, data analysis may overlook some possible exit

conditions and so the cyclic connected data-link list found does not really represent an

infinite data transfer sequence. A false warning of nontermination may result in this

case. Moreover, in the cyclic parameter l ink with special parameters, data analysis may

also be inadequate for detecting nontermination under a special situation. We shall see

why data analysis may fail in the two special cases and suggest necessary modifications

on data analysis to remedy the problem. Since all the special cases are rare cases in

Prolog programming, we shall only discuss the general concept underlying the necessary

modifications and leave the unnecessary details behind. Therefore, no algorithms wi l l

be given in this chapter.

5.1 Interdependent Cyclic Parameter Links

As mentioned in the beginning of Chapter 4，it is possible to form interdependent

cyclic parameter links through some common parameters and/or conm^ 熟明秀 If

there exist more than one cyclic parameter link in a recursive definiUpn, §jj}矣g clat^

analysis developed in Chapter 4 is expected to handle recursive de£initiai>| 麵协 only
-•‘ ：-

independent cyclic parameter links, the technique may yield an ^rroneq^i p^ii^lmslQii
. . . . • • .‘

r - - •
. . . . s ‘ -

150

when it is applied to a recursive definition with some interdependent cyclic parameter

links. For instance, data analysis may incorrectly lead to the conclusion that

nontermination can occur in a certain recursive definition when its interdependent cyclic

parameter links can work together to provide an exit condition at a certain point of the

recursion. In this section, we shall first discuss how interdependent and independent

cyclic parameter links are different from each other. The discussion can reveal to us

how the presence of interdependent cyclic parameter links can provide a unique way to

avoid nontermination. Then we shall explore how data analysis can be adapted to a

recursive definition consisting of some interdependent cyclic parameter links.

5.1.1 Interdependent Cyclic Parameter Links
through Common Parameters

Program (b) in Figure 5.1 provides an example of interdependent cyclic

parameter links sharing a common parameter, while Program (a) consists of

independent cyclic parameter links only. By contrasting Program (b) with Program (a),

we can see how interdependent and independent cyclic parameter links are differentially

related to the exit-reaching process. When Program (a) is examined, we can find that

i t is almost identical to Program (b) except that its two cyclic parameter links are

formed by one subgoal instead of two. However, nontermination can occur in Program

(a) but not Program (b). In Program (a), two independent cyclic parameter links are

formed between the parameters Plin and Flout through the subgoal linkl, and between

the parameters P2in and P2out through the subgoal link2. Each of them has data lin|cs

that can form a cyclic connected data-link list. Hence, each o t ,待；-终

transfer sequence during the evaluation of the recursive definition so that none o 【舟 _

can perform as an exit-reaching process. The evaluation of the recursive defimtipii 55111

result in nontermination. This is clearly shown by Search tree (a) in

However, nontermination can be eliminated by a minor modification op t l ^ ^ f 1 f y ^ U f ?

parameter links. Program (b) shows how the modification can be . ‘ :窗:

151

Program (a) the recursive definition with two Program (b) the recursive definition with two dependent
independent cyclic parameter links cycUc parameter links that can tennmat

^at leads to nontermination
2_cyclic_parameter_links(yiiiu ^ ^ ^ ^

Z-cyc l i^^^ t fJ^)『&货改:ut) , lmk2a(Kî d>),
2 cycUcjjarameter links(Plout, P2out, X). 2_cyclic_parameter_linte(Plout, P2out, X).

2cyclic_p2^eter_links(a, 1, not.end). 2cycUc_j)arameter_links(a, 1, not.end).
linkUa W link2afl linkla(a» x). linklMx. b). Iink2a(l’ x). Iink2b(x, 2).

K：!)： linkla^.y). lmklb(y, c). Iink2a(2, y). _ (y , 1).
linklCc. a). linkla(c, z). lmklb(z, a).

Search Tree (a) Search Tree (b)

2_cydlc_paramet9Uinks(©. © , ©) 2 cyclic』arameterj_©,© , ©)

Iink1(a,b) Ilnk2(1.2) link1aMflink2a(1,x)
2’ (；^) ,ink1b(x,b) Iink2b(x,2)

Iink1 2_cycli^arameterjinks(b. 2, ©)

Iink1a(b,y)[link2a(2.y) |
Ilnk1(c,a) Iink2(1,2) Iink1b(y,c) Iink2b(y.1)

2 ^ ^ a m e t 6 r j i n k s (a . 2, ©) 2_cydic_parameterjinks(c. 1. ©)

2_cyclic_parameterjinks(b, 1 • ©) 丨 ink1 a(c,z) j Iink2a(1, ©)
Iink1b(z,a) |

Iink1(b,c) Iink2(1,2) fail fail
2_cydic_parameterjlnks(c, 2 ,

Iink1(c.a) Iink2(2,1)

|jnk1(a.b) Ilnk2(1,2) •
•

• @ ： uninstantiated parameter

Figure 5 .1

I n Program (b), each cyclic parameter link is established out of two jsujigpa^

instead of one. By using two subgoals, we can introduce another p a r a讲巧块稱料

cyclic parameter link. As the subgoal lmkl(Plin, Plout) in Program (a) R舰 j^rpHen

down into two subgoals, linkla(Plin, CP) and Unklb(CP, Plout), the • • 麵 C J ^

is introduced to the cyclic parameter link between parameters ？ _ |n 终

similar way, the parameter CP is also introduced to the cyclic param^ff： J|nk between

152

P2in and Plout, Through the common parameter CP, the two cyclic parameter links

have now become interdependent because infinite data transfer sequences can exist in

these two cyclic parameter links only if both data transfer sequences have the same

value to pass through the common parameter in every level of recursion. For example,

the second argument of both the subgoals linkla and link2a constitutes the common

parameter CP, In order to allow data to pass through them, the same value must be

instantiated to both of their second arguments. Therefore, when the fact Unkla(b，y) is

instantiated to the subgoal linkla, the subgoal link2a must be instantiated with the fact

link2a(2,y) to allow the same value y to be instantiated to the common parameter CP in

both subgoals. Therefore, the data transfer in one cyclic parameter link and the data

transfer in another cyclic parameter link affect each other due to the presence of a

common parameter and that is the reason why the two cyclic parameter links are

considered to be interdependent.

I f each of the cyclic parameter links in Program (b) is examined separately, it has

data links that can form a cyclic connected data-link list: a-b-c-a for the first cyclic

parameter link and 1-2-1 for the second one. So data analysis wil l conclude that

nontermination can arise during the evaluation of the recursive definition because all of

its cyclic parameter links cannot function as an exit-reaching process. However, Search

tree (b) clearly shows that such a conclusion is erroneous. The evaluation of the

recursive definition in Program (b) does terminate at the third level of recursion

because the subgoal linkla fails and blocks further backtracking. I f we examine why the

subgoal link2a fails at this point, we can see that it fails because the only value that can

be instantiated to the common parameter CP in the cyclic parameter link formed by Xhn

subgoals linkla and linklb cannot agree with the only value that can be instanti|||(J {q

the same parameter CP in the cyclic parameter link formed by the subgoals lir^^^

link2b. Since the procedure of the subgoal lmk2a only consists of the

and link2a(2，y), the parameter CP, as the second argument of the subgo^J

instantiated only to either x or y m the second cyclic parameter l i妹 , j ^ y H f e p S m ^

parameter CF must be instantiated to be z in the first cyclic p a r 严丹 J u ^ foi^Qi^ by

the subgoals linkla and linklb when the recursion reaches the tWfd Igp l , p e conflict

of values at the common parameter shared between two interdep^n^en| cyclic parameter

153

links blocks any further recursion. This can be easily perceived if we compare the

recursive definition in Program (b) with a modified one as follows:

2 cyclic一parameterJinks(P1 in，P2in, X)
一 link1a(P1inrCP1), link1b(CP1, P1out),

rmk2a(P2in, CP2), rmk2b(CP2, P2out),
2—cyclic—parameter」inks(P1 out, P2out, X).

2__cyclic_parameterjinks(a, 1，not_end).

Iink1a(a,x). 丨 inMb(x，b). 丨 ink2a(1,x). Iink2b(x，2).
丨 ink1a(b，y). 丨 ink1b(y，c). rmk2a(2,y). 丨 ink2b(y，1).
Iink1a(c,z). rmk1b{z,a).

By only replacing the common parameter CP in both cyclic parameter links with two

different parameters CPl and CP2, we can eliminate the blockage completely. The

values instantiated to the parameter CFl no longer affect the values instantiated to the

parameter CP2. Therefore, the two cyclic parameter links become independent again.

When this modified version of Program (b) is examined, we can see that it actually

behaves like as Program (a). By sharing a common parameter, some restrictions are

imposed on the values that can be transferred through the common parameter of these

cyclic parameter links. By removing the common parameter, the restrictions can be

lifted. Using a data transfer analogy, we can view the common parameter as a common

channel for two (or more) data transfer sequences. Although each data transfer

sequence is infinite if they are considered separately, the blockage at common channel

can block all the involved data transfer sequences. Due to this characteristic of th^

common parameter in interdependent cyclic parameter links, the common p a r a i ^ ^

can act as an exit condition in some situations. Consequently, the cyclic coiinec|||

link list detected by data analysis cannot be a proper indicator of an i 辨 痛 塵 _

transfer sequence in a recursive definition with some interdependent cycUi? p •涵鍵 |

links if no consideration is

paid to the values passing through the

Therefore, the method developed in Chapter 4 can yield invalid c o n _ { _

of interdependent cyclic parameter links in some situations. ？

154

• /

However, the interdependent cyclic parameter links do not necessarily form an

^ 5 = = = = = = = = = = ^ exit condition.

the recursive definition modified from Program (b) in T h e b lockage
Figure 5.1 that also leads to nontenninatioa despite the

presence of two dependent cyclic parameter links a t C O m m o n

p a r a m e t e r
2_cyclic_parameter_links(Plm, P2in, X):-

linklaCPlin, CP), liiiklb(CP, Plout), r a n h e
link2a(P2iii, CP), liiik2b(CP, P2out), i a u ^

2_cyclic_parametex_liiiks(Plout, P2out, X). a v o i d e d
2cyclic_parameter_links(a, 1, not一end).
linkla(a, x). liiiklb(x, b). Iink2a(l, x). Iink2b(x, 2). w i t h o u t
linkla(b, y). lmklb(y, c). Iink2a(2, y). Iink2b(y, 1). .
linklaCc, z). linklb(z,a). Iink2a(l, z). Iink2b(z,2). e l i m i n a t i n g

link2a(2,x). Iink2b(x» 1).
Iink2a(l, y). Imk2b^, 2). the COmmon
link2a(2, z). Iink2b(z, 1).

p a r a m e t e r .

Search Tree for the above recursive defmition By comparing
the recursive

2_cydlcj)arameterJinks(© , ©)
I definition in

linkl a(a,x) linkl b(x,b) Iink2a(1.x)丨ink2b(x,2) 2_cydic_parameterjinks(b. 2, ©) Program (b)
in Figure 5.1

linkl a(b,y) linkl b(y.c) Iink2a(2,y) Iink2b(y.1) 2^cydic_parameterjinks(c, 1. to the one in
Figure 5.2, we

linkl a(c,z) linkl b(z，a) Iink2a(1.z) Iinlc2b(z.2) 2^cydicj)arameterJinks(a, 2, can see that
I 二 is no

—一 — f\ 1 t t 户 T* 户 T1 O ^
linkl a(a,x) linkl b(x,b) Iink2a(2,x) Iink2b(x,1) 2_cyclicj)arameterJlnks(b, 1, ©)

between these

^ •• … . I … A two recursive
Ilnk1a(b,y) linkl b(y,c) rmk2a(1,y) link2b(y,2) 2_cydicj)arameterJinks(c, 2, (^)

d e f i n i t i o n s

linkl a(c,z) Iink1b(z,a) Iink2a(2,z) Iink2b(z,1) 2_cyclic_parameterjinks(a, 1, ©) except for thp

linkl a(a,x) linkl b(x,b) Iink2a(1.x) Ilnk2b(x,2) • ^ S ^ p l

^ . . , • : I _ 緩 _

: uninstantiated parameter I
I _ « I 「 ! b

Figure 5.2 〜

、：：•、- -,.., .
common parameter C? is involved. I f we examine these two p r o c ^ ^ ^ 5 ‘ : _ j;̂ jan 0 叫
how they are carefully rewritten to avoid the conflict in the value p^s jng |t|iroug^ tb^

• • ‘.. • \ -‘： • ‘
. . ； ‘

. ‘‘

155

common parameter. By expanding the procedure of the subgoals linkla and linklh, the

conflict in the value passing through the common parameter can be solved. The search

tree in Figure 5.2 shows how the newly added facts in the procedures of the subgoals

linkla and linklh can allow the common parameter CP to be instantiated to the same

value in different levels of recursion. Although the size of the procedures of the sub-

goals linkla and linklh in Figure 5.2 is double the size of the procedures of linkla and

linklh in Program (b) in Figure 5.1, only one cyclic connected data-link list 1-2-1 exists

i n both cases. The newly added facts do not increase the number of cyclic connected

data-link list in any cyclic parameter link but form more alternative paths to allow data

to be transferred through the common parameter. The example in Figure 5.2 also

shows that data analysis developed in Chapter 4 is not completely irrelevant in the case

of interdependent cyclic parameter links. Since at least one cyclic connected data-link

list is present in all the cyclic parameter links, if data analysis in Chapter 4 is applied to

the recursive definition in Figure 5.2, a correct conclusion wil l be drawn: nontermination

can occur, just as what is indicated by the search tree in Figure 5.2.

Therefore, the examples in Figures 5.1 and 5.2 show that, in the case of

interdependent cyclic parameter links, the mere presence of the cyclic connected data-

l ink lists in those interdependent cyclic parameter links is not sufficient to indicate the

presence of any infinite data transfer sequence. On the other hand, the mere presence

of interdependent cyclic parameter links cannot constitute an exit condition by itself.

Infinite data transfer sequences can be formed only if the cyclic connected data-link lists

found in the interdependent cyclic parameter links do not form any blockage at common

parameter shared by these interdependent cyclic parameter links. In other words, the

values passing through the common parameter in all the involved interdependent
-’ v'、二‘“ ‘‘ ‘ •

parameter links must be the same. Therefore, the presence of interdepend||i|

parameter links does not require a completely different method. Instead, | | | |

connected data-link lists are detected by data analysis, we only need - f ^ a f f p ^ f ^ f l

to verify whether these cyclic connected data-link lists can f o r 网 , 縣 朗 , |
I . ： 丨 ： 赛 嚷 _ :

common parameter.
• •• • ,

156

Case (1) I Case (Ii)
the common parameter is also j the common parameter is only

the parameter of the | the parameter of some subgoal
recursive rule head and | in the recursive rule
the recursive subgoal j

I goal(AX,BX,CX,DX):-
goal(AX,BX,CX) | 丨ink1a(XA，XB),

linkl a(AX,XB), 丨 linMb1(BX，CP)，
l inkl b(BX，XA)， | linkl b2(CP，XA),

link2a(BX,XC), | 丨 ink2a(CX，XD)，
link2b(CX，XB)， 丨 丨 ink2b1 (DX，CP)，

goal(XA,XB,XC). 丨 link2b2(CP，XC)，
丨 goal(XA’XB，XC，XD).

Figure 5.3

However, there are two ways to form interdependent cyclic parameter links

through common parameters. The difference between them can be illustrated by the

two recursive rules in Figure 5.3. We can find that two interdependent cyclic

parameters in Case (II) are formed in the same way as other examples shown in Figures

5.1 and 5.2 through the common parameter CP, However, the interdependent cyclic

‘ parameter links formed in this way can be easily converted into independent ones. The

subgoals linklbl(BX，Cr) and linklb2(CP，XA) can be simply merged into one subgoal

linklb(BXyKA) to eliminate the common parameter CP without any significant effect on

the other cyclic parameter link. It is also true for the subgoals link2bl and linklhl. But

the common parameters in the interdependent cyclic parameter links in Case (I) cannot

be eliminated in this manner. In Case (I), all the common parameters BX and XB are

also the parameters in the recursive rule head or the recursive subgoal. They cannot be

removed without significantly altering the recursive definition itself. Therefore, befor^

we discuss how to revise data analysis, we must find out whether the interdepend绅J

• . . i - •、.、广.
cyclic parameter links formed in these two different manners are significantly

in terms of nontermination detection. By comparing the

parameter links in Case (I) with those in Case (H), we can find that the'每績

difference is this: while there are definitely two different cyclicparameK^f l in^ l j p lRa^
•• -、-、... ‘： • •• ./. - ： t... . . 、•

(II)，the two interdependent cyclic parameter links in Case (I) can • 聽 _ one

longer cyclic parameter l ink extended over four levels of recurslp^, | f _椒麵11116卢紐
VV ； . ；••'： 157

data-link lists are found in the two interdependent cyclic parameter links and no conflict

of values occurs at the common parameter between these cyclic connected data-link lists,

we can f ind that at least one cyclic connected data-link list can be formed in the longer

cyclic parameter l ink formed by combining the two shorter interdependent cyclic

parameter links. However, i f a cyclic connected data-link list can be formed among the

subgoals forming the longer cyclic parameter link, this indicates that an infinite data

transfer sequence can be formed without blockage at common parameter and thus

nontermination wi l l occur. The same reasoning that is used to develop the method of

data analysis in Chapter 4 can also be applied in this case. In other words, the test for

nontermination described in Chapter 4 can also be applied to the recursive definitions

of Case (I) without any modification with the only constraint that i t must be conducted

on the longer cyclic parameter l ink instead of the shorter interdependent cyclic

parameter links. But the two interdependent cyclic parameter links in Case (I I) cannot

form a longer cyclic parameter l ink. We need to develop a certain technique to check

whether the blockage of data transfer can happen in every common parameter shared

among the interdependent cyclic parameter links. Therefore, it is Case (I I) that requires

modifications to the method of data analysis developed in Chapter 4. Since the problem

of the presence of common parameters in both cases is the problem of how to know

whether blockage of data transfer can occur at the common parameters, any adaptation

of the method of data analysis to handle the presence of interdependent cyclic

parameter links in Case (I I) can also be applied to Case (I). Our discussion therefore

wi l l concentrate on the interdependent cyclic parameter l ink formed by the type of

common parameters shown in Case (II).
r - - . -

‘ A；

5.1.1.1 Interdependency between Cyclic and Non-cyclic Parameter ^
Links and Interdependency between Cyclic Parame敗口誠
and Subgoals " \ '

- . - .

..• ',V、广；.
. . . . - • �- -

- v . . -
- , • i r-• , ' - V \ ^

1 •• \ : -

Before examining interdependent cyclic parameter links, we sba|| ^h^ jde r

the interdependency between a cyclic parameter link and something p翻『稱铁 | 身 d i e

parameter link. That is, through a common parameter, a non-cycJip M ^ ^ ^ l g r l ink or

a subgoal can also establish interdependency with a cyclic p a r a m e t f 《 } 秦 _ ， t h o
•• « •‘

158

case of interdependent cyclic parameter links, data analysis may sometimes yield

erroneous conclusions about nontermination when a cyclic parameter link shares a

common parameter with some non-cyclic parameter links or subgoals. A n appreciation

of this case can help us to understand the case of interdependent cyclic parameter links.

In the discussion on the modified version of the recursive definition in Figure 4.3

(in Section 4.1.1.1)，we have already shown an example in which the subgoals that are

not part of a cyclic parameter l ink can significantly affect the construction of the data

l ink in the corresponding cyclic parameter link. I f we examine the recursive definition

in Figure 4.3 again, we can find that the common parameter X shared between the cyclic

parameter l ink and the subgoal linkl is crucial. Comparing the case in Figure 4.3 and

its modified version discussed in Section 4.1.1.1 with the interdependent cyclic parameter

links in Figures 5.1 and Figure 5.2，we can find that the common parameter plays the

same role in both cases. Due to the common parameter, the values transferred through

the common parameter need to be regulated by all the subgoals sharing this common

parameter, just like the case of interdependent cyclic parameter links, in which all the

cyclic parameter links sharing the same parameter can regulate the values passing

through it.

By the same reason, a cyclic parameter link and a non-cyclic parameter l ink are

considered to be interdependent i f both are sharing at least one common parameter. In

Figure 5.4, we form a recursive definition that has interdependent cyclic and non-cyclic

parameter links by slightly modifying the recursive definition in Figure 4.3. By changing

the subgoal Unk2(Z，X) to lmk2(Q,X), the subgoal lmk2 form a non-cyclic parameter l ink

between the first and second parameter of the recursive definition. (It can show hp\y
- ^

closely a non-cyclic parameter l ink and a mere subgoal are related to each other.) The

procedures of the subgoals used in the recursive rule are also modified so that two 摄镇

connected data-link lists can be present in the cyclic parameter link fonriej^ ^ Itijg

subgoals linkl, linkS and link4. Since it is the only cyclic parameter link ^ _ _ 『 秀 隨

definition, data analysis wi l l indicate that the recursive definition is n o 嘛顯 i ^ j f ^ l i f the

cyclic parameter l ink is considered in isolation. However, the cycliq p拜【鲜風号’癸『lipHĴ

interdependent with the non-cyclic parameter link formed by the mbgQ^l Mnk^. l i \
••“灣•':；：).._。、‘

、 . ： … V ••. .+•• • •:.• • • � •
t . . � . • . -

159

goal(X,Y) linkKXA), lmk2(Q,X), link3(A3), lmk4(B,P), goal(P,Q).

lmkl(l,2). Iiiik3(2,a). Iiiik4(a,3).
lkkl(3,4). Iink3(4,b). Iink4(b,l).
linkl(a,b). Iink3(b,c). Iink4(c,a).

CASE I CASE n C A S E m CASE I V
link2(x,l). Iink2(z，3). Ii„k2(z,3). 碰(y，a).

Mc2(p，q). Imk2(y,a).

Search tree for Case I Search tree for Case n

^ ^ ^ g o a l (e) (D)

Iink1(1.2) / / ^ I i n k 1 (3 . 4)] \ \ \ _ 叫 丨 i _ , 2) 7 / 隨 (x , i) 二 _

link3(2.a) / / ：： _ 4 , b) \ \ _(b,c) Iink3(2.a) / J I \
l i n k W / \ 丨 i n _ \ 丨 _ _ 丨lnk4(a,3) i i n k 1 (3 . 4) ^ / \

nnk2(i,1) "： l i n _ , 3) \ _ 0) a) .ink2(z.^goa.(U)
: ： nnk4(b.1) ^ ^ ^ ^ \

fail ： fail i fail rmk3(2,a)Z / link2(x.^goal(3.x)

、 、 丨 • 乂 r m k 1 (3 . 4) ：
Iink3(4,b) /

Search tree for Case IV 丨 ink4(b,1)

S^^h tree for Case in

_ / -) / ： \ , lnk3(2 .aW/ : _ _

fail / Iink2(0.1) ： Iink2(z.3) linK2(0,a)

/ / goal(1,z) ••••

Aink3(b,c) Iink2(y.a) f^l ： Iink1(1,2) ̂ ^ \ 零坤

Iink4(c,a) floal(a,y) Iink3(2,a) Hnk2(€),1)

！ 叫 . 沟 fail j

… “ ： backtracking path 藝 ： ^ i n s t a n t i a t e d p a r a ^

F i g u r S . 4

160

Figure 5.4, four different procedures for the subgoal link2 are given to illustrate how the

interdependency between the cyclic parameter link and the non-cyclic parameter link

can eliminate nontermination in some cases. In Case I，nontermination is eliminated

because the fact defining the subgoals link2, Unk2(p，q) does not allow the common

parameter X to share the same value in both parameter links at the same time. The

search tree for Case I in Figure 5.4 shows this clearly. In order to have data transferring

through the cyclic parameter link, the parameter X must be instantiated to the value of

1,3 or a in the cyclic parameter link. But the procedure defining the subgoal link!

which forms the interdependent non-cyclic parameter link only allow the parameter X

to be instantiated to the value q. The conflict of values blocks the infinite data transfer

sequence in the cyclic parameter link so that nontermination does not result. Similarly,

the procedure of link! in Case ffl produces the same effect on the infinite data transfer

sequence in the interdependent cyclic parameter link. As indicated by the process to

form the cyclic connected data-link list 1--3--1, both facts Unkl(12) and Unkl(3,4) are

essential. Hence, the infinite data transfer sequence corresponding to the connected

data-link list 1-3-1 can exist only if both the values 1 and 3 can pass through the

common parameter X Although the fact link2(Z，3) can allow the value 3 to be shared

between two interdependent parameter links, the procedure defining the subgoal link2

cannot allow the value 1 to pass through the common parameter. I t can be shown by

the search tree for Case III . The infinite data transfer sequence thus cannot be

completed and no nontermination can happen. On the other hand, the presence of the

additional fact link2(x，l) in Case I I makes it possible to transfer the value 1 through the

common parameter. So, the infinite data transfer sequence is now completed and

nontermination occurs, as indicated by its corresponding search tree. Nonterii im^tipf|

also happens in Case IV. The search tree for Case I V shows that it is cai^^d ft

similar reason.
With the fact link2(y，a) in its procedure, the non-cyclic pa ram| tp

allows only the value a to pass through the common parameter X. Howey热 換

connected data-link list, a-a, can be established in the cyclic parameter 解 隨 _

a can be transferred through the common parameter. Because only 哪 M m t i ^ l p f t

transfer sequence is sufficient to cause nontermination to arise, noii|，|*j[||賺

in Case IV as well as in Case H. In fact, by examining the search g ^ j l a n |

Case IV, we can find that only one infinite data transfer sequence te 娜爾爱d u r i f j g ' t h ^
..•、•+-.、.•. ：-.'、，- t ‘... 、 - ‘ • > > < -. 161

recursion. Even though the fact Unk2(y，a) is also present in the procedure of link2 in

Case II，only the infinite data transfer sequence corresponding to the cyclic connected

data-link list 1--3—1 is followed in Case II. By comparing these cases and their

corresponding search trees, we can conclude that nontermination can occur if

(1) there is at least a cyclic connected data-link lists in the interdependent cyclic
parameter link; and

(2) the value(s) passing through the common parameter according to the cyclic
connected data-link list in the interdependent cyclic parameter link can agree
with the value(s) passing through the same common parameter according to any
data transfer sequence of the interdependent non-cyclic parameter link.

I f a subgoal that is not part of any parameter link happens to share a common

parameter with a subgoal sharing some common parameter with the subgoal in a cyclic

parameter link, the effect is the same as in the case of interdependent cyclic and non-

cyclic parameter links. Consequently, the method of data analysis can be adapted to

the case of cyclic parameter links sharing a common parameter with other subgoals or

non-cyclic parameter links. The following are the steps in the adapted method:

(1) Find out the common parameter(s) shared between the interdependent cyclic
parameter link and the interdependent non-cyclic parameter link or subgoal.

(2) I f any cyclic connected data-link list can be found in an interdependent cyclic
parameter link, for each data link used to construct a cyclic connected data-link
list, find out the value(s) transferred through the common parameter(s). (The
value(s) can be found either by simply checking up the facts in the procedure(s)
defining the subgoal(s) with the common parameter(s) involved, or by analyzing
the rule(s) in the corresponding procedure(s) in a way similar to how connected
data-link list is constructed in data analysis.) As suggested in Figure 5.4,
common parameter value(s) can be inserted into the cyclic connected dat%辑趣
list as part of it. : f • 纏

.. . � • - ‘ •'»-

(3) Apply step (2) to the interdependent non-cyclic parameter link qc
construct in them all the possible connected data-link lists 喊 } I : : 输 雞 缺 |
passing through the common parameter indicated. 《藝？‘：广安

‘：.:‘.化 V於.,、>:..< -V
. ： I “

(4) For each cyclic connected data-link list found in step (2)，compare
passing the common parameter to the value(s) passing through ̂ (^TOUOn
parameter found in step (3). ？巧您tv

- • • • ‘

162

(5) I f at least one cyclic connected data-link list of the interdependent cyclic
parameter l ink can match all the value(s) of its common parameter(s) to any
common parameter value(s) in any connected data-link list of the interdependent
non-cyclic parameter link or subgoal, nontermination occurs during the
evaluation of the corresponding recursive definition; otherwise, the evaluation of
the recursive definition can terminate.

I f we apply the above steps to Case III，the parameter X can be identified as the

common parameter in step (1). In the only cyclic parameter link, which is formed by

the subgoals linkl, linkS and link4, there are two cyclic connected data-link lists in the

cyclic parameter link: 1--3--1 and a-a. In step (2)，the facts constructing the two cyclic

connected data-link lists are examined to find out what values can be transferred

through the common parameter: the values for the cyclic connected data-link list 1-3-1

are 1 and 5, while the value for the cyclic connected data-link list a-a is a. Then the

connected data-link list of the non-cyclic parameter link is constructed in step (3) and

the value passing through the common parameter is recorded. Only the value 3 is

possible. By comparing the value found in step (3)，we can see that 3 does not match

a. Therefore, the cyclic connected data-link list a-a can be eliminated from our

consideration. On the other hand, although the value from step (3) can match one of

the values of the common parameter in the cyclic connected data-link list 1--3--1, not all

the values of the common parameter in this cyclic connected data-link list can be

matched. Hence, nontermination does not occur.

On the other hand, if Case I V is considered, even though the application of steps

(1) and (2) yields the same result as in Case II I : the values of the common parameter

in the cyclic connected data-link list 1—3—1 are 1 and 3 and the value of the c o i ^ q j j
••. - ' 、： • "V

:！ ••

parameter in the set a-a is a, the value passing through the common parameter f p j 毫
〜 -v . :

non-cyclic parameter l ink is found to be a in step (3). As these values are comp减gj^ ^

step (4), all the values of the common parameter in the cyclic connected 拜拽 ;难 { i s j

a - a can be matched to the values of the common parameter fqr 中 -

parameter l ink found in step (3). Therefore, we can conclude that n o 併 协

result during the evaluation of the recursive definition in Figure 5.4’v^协 ^ b^i^duipg

163

of the subgoal linkl in Case IV. In other words, nontermination occurs only i f at least

an infinite data transfer sequence can be formed in the interdependent cyclic parameter

links without blockage at common parameter shared by other subgoals in the recursive

definition. The above steps therefore can be added to data analysis to detect whether

any blockage exists at the point where the potential infinite data transfer sequence

passes through each common parameter. These steps can eliminate the possibility of

false warning.

Although the examples shown in Figure 5.4 consist of only non-cyclic parameter

links of one recursion level, the above steps are also applicable to non-cyclic parameter

links extending over multiple levels of recursion. Step (3) is not l imited to one-level

non-cyclic parameter links as long as the interdependent cyclic and non-cyclic parameter

links share only one common parameter. I f they both share only one common

parameter, the other part of the multi-level non-cyclic parameter l ink cannot affect the

other common parameters on the interdependent cyclic parameter link. For

interdependent cyclic and non-cyclic parameter links that share more than one common

parameter, the above method requires some modification. In some situations, blockage

at common parameter can be avoided only if al l the common parameters shared

between the interdependent cyclic and non-cyclic parameter links come from the same

cyclic connected data-link list formed from the cyclic parameter links and the same

connected data-link list formed from the non-cyclic parameter links. Although the stejp^
.'、’ •’、、）-

(2) and (4) can make sure that only common parameter from the same cyclic cqim^gtld

data-link list wi l l be tested, the steps (4) and (5) wi l l allow the values o(

parameters from different connected data-link lists from the non-cyclic parag] | | i i | IJglte
- :-.、•'.，••、:. ‘-.

to match to the values of the common parameters in the interdep明翻益

parameter link. Therefore, the above method may yield an e r r q • • ， ， 搏 顯

some situations. However, since the interdependent cyclic aiuj 勵 肖 聽 _ .•:.�.，"《‘ -‘-‘‘ -••«. ,, • • f. •• . • ‘ ‘ ':/.，’、„>-• ‘ - --'v ^：

links with more than one common parameter is a very rare cas^ 棋樹gg progr今 f l^J^,

(it is extremely confusing even to the programmer himself/herself,) wi?辨all not ga intQ

detail in this thesis. 、、 - '
:�xiV',。：广.

:•、•： '• " V •“ 164

5.1.1.2 Interdependency between Cyclic Parameter Links

Similar to the case in which a common parameter is shared by non-cyclic

parameter links and cyclic parameter links, two or more cyclic parameter links become

interdependent cyclic parameter links when they share a common parameter. In Figure

5.1 and Figure 5.2, we have already seen some examples of interdependent cyclic

parameter links. As shown in these examples, sharing a common parameter in these

cyclic parameter links can provide a way to form an exit condition, which is not present

in the case of independent cyclic parameter links. Since data analysis has not

considered such a possibility, some modification to the method is needed. However,

unlike the case of interdependent cyclic and non-cyclic parameter links described in the

previous section, the cyclic connected data-link lists in these interdependent cyclic

parameter links usually involve more than one common parameter.

I n Figure 5.5, there is a recursive definition with two interdependent cyclic

parameter links. The first cyclic parameter link is located between parameters AX/XA

and BX/XB, while the second one is located between parameters CX/XC and DX/XD,

By analyzing the subgoals in the recursive rule, we can see that the two cyclic parameter

links are of the same length. Both extend over two levels of recursion. Between the

interdependent cyclic parameter links, only one common parameter CP is shared. On

the other hand, the cyclic connected data-link lists of these two cyclic parameter links

extend over two cycles of its corresponding cyclic parameter link. In other words, the

cyclic connected data-link lists from both interdependent cyclic parameter links extend

over four levels of recursion. Since they both extend over two cycles of the cyclic

parameter links that share a common parameter, the two cyclic connected data-link lists

share two common parameters. It can be shown by the graphical representatipn jp

Figure 5.5. We can trace one complete cycle of the two cyclic connected P i l l

f rom both cyclic parameter links to see how the two common parameters r̂̂ ^ ^ m ^

between the two cyclic connected data-link lists. 、广:免:VVf;>。3 f v
- V:.、二七•广

'：“! , - T r ‘ . . . ： 、

165

goal(AX3X,CXJ>X)linklal(AX,CP), liiikla2(CP>XB), linklb(BX»XA),

lmk2a(CX;XD), link2bl(DX,CP). link2b2(CP^Q. goal(XA, XB, XC, XD).

l inklaKU). liiiklal(3,b). Iiiik2a(ll,12). Iink2a(13，14).
Iiiikla2(a^). Iiiikla2(b,4). Iiiik2bl(12 办 link2al(14’b).
linklb(2,3). linklb(4,l). Iiiik2b2(a,13). Iink2b2(b,ll).

the graphical representation showing values transferring through each
parameter of all the cyclic parameter links in the above recursive definition

the cyclic parameter links among the cydic parameter links among
"linkl a1" l ink l a2" and "linkl b" "link2a", Tink2b1 ” and "link2b2"

AX/XA BX/XB CX/XC DX/XD

； … ⑦ �
1st level / ' l a W -

2nd level ^ ^ ^ 湿 … 汽 . ；：：^….0、^

3rd level " ^ ： ^ ® ^

4th level 八 A"®----；：：：" ：^：-：0 \ 一

5th level / O a] — ^ ^ 、 、

Split into two graphical representations J V t o show two pairs of dependent cyclic
parameter links

AX/XA BX/XB CX/XC DX/XD AX/XA BX/XB CX/XC DX/XD

Q ^ UUev. O , . . z一⑦ • O
O i ® : m 〇

/ X 4111 level 、a. a''

© C ^ O Q ^ g) . 〇 ， : : ® 〇

〇 f X D (g r ^ 〇 ： 1 O O •： •

Figure 5•5 |

I n Figure 5.5, we modify the graphical representation scheme in

Chapter 3 to illustrate how the common parameters are shar^4 fc^ftw?^ two

interdependent cyclic parameter links. Circles indicate the p a r a i ^ ^ ^ jrg^^jj^l树p fqi：

transferring data from one level of recursion to next level, i.e., @ M^t
. . . •-•

166

CX, DX, X 4 , XB, XC and XD, which are the parameters in the recursive rule head or in

the recursive subgoal. Squares indicate the common parameters shared between the

two interdependent cyclic parameter links. The squares are located between two circles

because they are responsible for the formation of a parameter link from the parameter

in the recursive rule head to the parameter in the recursive subgoal. I f the two

interdependent cyclic parameter links can transfer the same value through the common

parameter at a particular level of recursion, we indicate the absence of blockage at

common parameter by the squares connected with a solid or dotted line.

The modified graphical representation also shows that more than one cyclic

parameter l ink are formed among the same set of parameter. For the parameters

AX/XA 2indBX/XB, there are actually two cyclic parameter links. When we re-examine

the recursive definition, we can see that all subgoals needed to form the same cyclic

connected data-link list exist in the same recursive rule. Hence, in each level of

recursion, two parameter links exist between the parameters AXjXA and BX/XB.

Eventually, these parameter links are connected to form two cyclic parameter links i f the

successive levels of recursion are considered. Therefore, as shown by the graphical

representation in the center of Figure 5.5, there are actually two pairs of interdependent

cyclic parameter links instead of one pair. These two pairs of interdependent cyclic

parameter links are represented by the dotted line and solid line respectively. I f only

one pair of interdependent cyclic parameter links is considered, it seems to be that no

value is transferred through the common parameter in every alternate level of recursion.

However, the evaluation of the recursive definition can continue only if some value can

be passed through the common parameter CP in every level of recursion; otherwise, th窃

subgoals with CP as one of its argument, linklal, linklal link2bl and Iink2b2’ f明

and block further recursion. The graphical representation in the center pf f igure 秦

shows us how two pairs of interdependent cyclic parameter links can JQ ,• * '. . 'if../--—. : . ‘ \ ‘： - : • A： / -、. ‘：'*>' S • .、：、•

pass values through the common parameter in every level of recursion,
•

； . • ;、...-、-.-•
. ' • • • . ' • . -

However, i t is not necessary to examine all cyclic coimectp^ fn

pairs of interdependent cyclic parameter links. The example in 殘 s h p w s us t^at,

in some situation, examining only the cyclic connected data-linH fTQiTJ one pf
•• •••• ‘ . - . . • •

167

several pairs of interdependent cyclic parameter links is sufficient to know whether

blockage at common parameter wil l occur. A t the bottom of Figure 5.5, we split the

original graphical representation into two, in which only one pair of interdependent

cyclic parameter links is shown. They clearly show that the pairs of cyclic connected

data-link lists used in both pairs of interdependent cyclic parameter l ink are actually

the same. The graphical representation in the bottom right hand corner is identical to

the result obtained by shifting the one at the bottom left hand comer one level up. The

reason is as follows: Although there are actually two pairs of interdependent cyclic

parameter links, they are identical except for the fact that they are located one level of

recursion apart. I f there exists a pair of infinite data transfer sequences without

blockage at common parameter in any one pair of interdependent cyclic parameter links,

this pair of infinite data transfer sequences can also exist in the other identical pair of

cyclic parameter links. Since the cyclic connected data-link list in each cyclic parameter

l ink represents the infinite data transfer sequence in this cyclic parameter link, we need

to examine only one pair of cyclic connected data-link lists from one pair of

interdependent cyclic parameter links. Actually, there are three different situations:

(1) all the involved interdependent cyclic parameter links have the same length,

(2) the lengths of the involved interdependent cyclic parameter links are different in
a ratio of an exact multiple, and

(3) the lengths of the involved interdependent cyclic parameter links are in a ratiq
that cannot be reduced to an exact multiple.

Their graphical representations of these three situations appear in Figure 5 T [t i |

example in Figure 5.5 is in the situation (1) and it is the simplest case,.

interdependent cyclic parameter links have the same length, the commpp m

their corresponding cyclic connected data-link lists are located in thg k ^ l ftf

recursion. This is clearly shown by the graphical representations m | | | u r g Mf： |n thg

graphical representation of the interdependent cyclic parametei： y 咖 gf e ^ a l Ignph^

every common parameter in both cyclic parameter links caii J p . I ^ l f | |

indicated by the dotted lines between the pairs of squares. H c ^ _ 【 , n o t t r) | | Cqr

interdependent cyclic parameter links with different lengths, J ^ the grag^icaj

representations of the interdependent cyclic parameter Un)ai iy|lh ft f^tio of an cxact
. - • - �

168

, graphical representation of the
crapliical representation of tlie grapMcal rcpresentafaon of the evaluation of a recursive definition

c S t o o f T ^ v c d ^ t i o a with two interdependent cycUc
with two interdependent cyclic i S ^ ^ S in parameter links with their lengths in

parameter links o f S e same length V ^ ^ I m k s ， t h o r m ^ ratio which cannot be reduced into
the relation of exact multiple 姐 exact multiple

first second fiist second first second
cyclic cyclic cyclic cyclic cyclic cyclic

patametef pannetet parameter p«ram«tar parameter parameter
link link link link link link

icyda r o p o p O p O O O p ^ o p O O p ^

o > O j 3 o x / o 〇 / L Z 〇 》 〇 f l =
over two P" '；• /Q / over four levels of
tevelsof O O Q O 0 O 6 O 〇 〇 Q O O O p j recursion
r«curaion 、、、_ recursion ij^ 乂

〇 》 〇 > 〇 〇 q j D j o ^ 〇 c T o

c ^ o c ^ o 〇 o ^ p o Q ^ o

o ^ o ^ o > 〇 c) 〇 〇 o ^ o

c ^ 〇 — c ^ 〇 (^ o 〇 < (5 o ^ o

o o o o o o o o o o o o • - - • • : . - - “ “ •
. 垂 • • • •

Figure 5.6

multiple or with a ratio that is not an exact multiple, there are some common

parameters in one or both cyclic parameter links that cannot be connected to the

common parameter in the other cyclic parameter link. Therefore, in situation (2) and

situation (3)，there are more than one pair of interdependent connected data-link lists

to be examined. These situations will be discussed in Section 5.1.1.2.2 to see how the

test of blockage at common parameter can be conducted in the more complicated

situations.

.

Furthermore, the graphical representation of the recursive definition in Figi^釋 |，|

shows us how nontermination occurs in a recursive definition with interdependent 錄谢g

parameter links. I f there is no blockage at common parameter in one of the if考携

segments in an infinite data transfer sequence, there is no blockage

parameter in other repeating segments as well. I t means that there yiq 树 肩

any point of the infinite data transfer sequence. I f this is true for at |•够觀g i ^ p i t e
V . ？-、:::’‘

. . • -..._、. ：•-. • -V . -•+. • ；- • • -- •• • ... ‘•

169

data transfer sequence in the cyclic parameter links in a recursive definition,

nontermination results. Since a cyclic connected data-link list actually represents the

repeating segment of an infinite data transfer sequence, we only need to conduct the test

of blockage to every common parameter in one complete cycle of the cyclic connected

data-link list to find out whether any blockage can happen in the entire data transfer

sequence. In the recursive definition in Figure 5.5, the graphical representation shows

that each cyclic parameter link has a cyclic connected data-link list. The graphical

representation also shows that there is no blockage at common parameter for a

complete cycle of the cyclic connected data-link list in each cyclic parameter link.

Therefore, an infinite data transfer sequence exists in both cyclic parameter links and

consequently nontermination occurs.

Therefore, i f we compare the example in Figure 5.5 with the case of

interdependent cyclic and non-cyclic parameter links in Section 5.1.1.1, we can find that

both illustrate the same phenomenon, that is, nontermination can occur i f there is no

blockage at all the common parameters on the cyclic connected data-link lists involved.

However, the way to detect blockage at common parameter may be very different in

these two cases. In the case of interdependent cyclic and non-cyclic parameter links,

there is no constraint on the non-cyclic connected data-link lists involved since they

represent the values passing through the non-cyclic parameter links. In the case of

interdependent cyclic and non-cyclic parameter links, the same cyclic connected data-link

list can share the common parameters with several different non-cyclic connected data-

l ink list, yet the values transferring in a non-cyclic connected data-link list do not affect

the values in another non-cyclic connected data-link list. On the contrary, in the case cif

interdependent cyclic parameter links, all connected data-link lists involved are 续琳

connected data-link lists. Blockage at common parameter occurs at the cyclic

links involved unless the same pair of cyclic connected data-link lists can fliiAirf^ al l M

common parameters in every level of recursion. In the following
c’}^：^键:耗衫簿长接?

explore how interdependent cyclic parameter links and cyclic 卿 滅 勝 ? i s 镜

with lengths in different ratios can complicate the situation an(|

blockage at common parameter in these situations. 二没::,:’“：逝

170

5.1,1.2.1 Lengths of Cyclic Connected Data-link Lists
in Different Ratios

Before we discuss the case of interdependent cyclic parameter links with lengths

in different ratios, we shall first examine how the cyclic connected data-link lists of

different lengths can affect the detection of blockage at common parameter. Similar to

the case of interdependent cyclic parameter links, the lengths of the cyclic connected

data-link lists can be classified into three categories:

(1) the lengths of the cyclic connected data-link lists in the different interdependent
cyclic parameter links are the same,

(2) the lengths of the cyclic connected data-link lists in the different interdependent
cyclic parameter links are different but in the ratio of an exact multiple, and

(3) the lengths of the cyclic connected data-link lists in the different interdependent
cyclic parameter links are different and their lengths are in a ratio that cannot be
reduced to an exact multiple.

To examine how the difference in the lengths of the cyclic connected data-link lists can

complicate the detection of blockage at common parameter, we start with a simple case.

I n this section, we only consider the cyclic connected data-link lists with lengths in

different ratios in those interdependent cyclic parameter links with equal length. Then

in the next section we shall generalize the conclusion of our discussion to

interdependent cyclic parameter links with different lengths.

I n Figure 5.5, we already have an example of cyclic connected data-link lists wi ih
：广《V:绍《.:

equal length. In the discussion of the example in Figure 5.5, we have also seen h ^

nontermination can occur in such a situation. To detect nontermination in this

only need to slightly modify the data analysis method. Data analysis should b^

to also record the common parameter value sequence when cons t ru ing t b |

connected data-link list in each of the interdependent cyclic parametigr J f l h g

common parameter value sequences in different connected data-l i i^ |j||$ m i

blockage at common parameter does not occur and

modification on data analysis to handle the equal-length interdepf ndgiljt ^g l j ^ paramete|

links with equal-length cyclic connected data-link lists is 终 | 讲 g j j - If!终ight每jv^k^j,
171

However, it becomes complicated if the cyclic connected data-link lists involved have

different lengths.

In Figure 5.7, there is a recursive rule similar to the one in Figure 5.5 and there

are four different sets of procedures. Similar to the recursive definition in Figure 5.5，

there are two cyclic parameter links that both extend over two levels of recursion. The

first one is located between parameters AX/XA and BX/XB while the second one is

located between parameters CX/XC and DX/XD. With four different sets of

procedures, four examples of interdependent cyclic parameter links are given. Each has

interdependent cyclic parameter links of equal length sharing only one common

parameter. However, in all four examples, the cyclic connected data-link list in the

second cyclic parameter link extends over two cycles of the corresponding cyclic

parameter link. Therefore, the lengths of the two cyclic connected data-link lists are

different. When the lengths of the cyclic connected data-link lists are compared, we can

see that their lengths are in the ratio of an exact multiple of 2. On the other hand,

while the cyclic connected data-link list in the first cyclic parameter link only involves

one common parameter, the one in the second cyclic parameter link involves two

common parameters. By modifying the notion of cyclic connected data-link list used in

Chapter 4，the common parameter values can be shown on the cyclic connected data-

link list as well. The value indicated between [] is the value passing through the com-

mon parameter in this particular cyclic connected data-link list. It allows the difference

between the cyclic connected data-link list from the first cyclic parameter link and thf

one from the second cyclic parameter link to be shown. 、

In Case (I), the cyclic connected data-link list formed in the first cycHp

link is 1--2--1’ with a length of 2, while the cyclic connected data-link |i§(

cyclic parameter link is 11--12--13--14--11’ with a length of 4. S o , f e l ^ g t b M i f e

cyclic connected data-link list in the second cyclic parameter link isj jpy^lg 書秘 filf

the cyclic connected data-link list in the first cyclic p a r a m e t e r ^ thf

graphical representation of Case (I), the cyclic connected data-link W ^ ^ formed by

the facts linklal(l，a), linkla2(a,2) and Unklb(2，l) in the first 御：pQrpieter liiiH C ^

pass only the value a through the common parameter f ^ ^Hflwg |he j^gjirslpn,

172

goal(AX3X,CXJDX) :- liiiklal(AX,CP). liiikla2(CP,XB), Iinklb(BX«XA),
link2a(CX»XD), link2bl(DX»CP), link2b2(CP»XC), goal(XA, XB. XC, XD).

cydic Unkad data Onk set cydic linked data Bnkŝ (he cycfic parameter tha cydic paramstor
In th® cyclic parametaf link in the cyclic parameter link ink formed by the Dnk formed by the
fomi«d by the subgoals formed by th« subgoal* subgoals linkl al*. subgoals 1ink2a'.

CASE (I) •Bnk1ar.11nk1a2"andTlnk1b' 1lnk2a'.Tlnkarand 1lnk2t)2' i'linklb* *11nk2b1'&'|]nk2b2-
linkUl(U) iink2t(ll.l2). value® passing (wtthlhe values passing

* , ’ through the common parameter through the common parameter A X / X A B X / X B C X / X C D X / X D
linkU2C«2). _13’M)’ bviicatedbetween 1]*) (i^ Q 〇 ®
輯 2 4) . 隱 鳴 ^ ^ ^ 1st level

Unk2bl(U.b). Q 〇

Unk2h2(M3). Ha]-2-l 11-12孙13-14>肿11 2nd level

n ~ D : 彻 common parameter 门 . ⑵ 门 level
sharing the same value ^ ^ ^ ^

CASE (I I) O X 〇 〇

H 1st level
linkUKU). Uflk2»(ll,12). • ‘ ― V g ^ (g T ^ ^ Q

Unk2a(13’14). ll-12-[al-13-14^]-ll y / ^ 2nd level

linkibai). iiBk2bi(i2̂). (TXT 〇 〇

linkUlOb). Unk2bl(14)̂. © ― 3rd level

o ® ®： o
Z 4tli level

_ , U) . 〇 〇
^ J T j ^ 5th level

O (SC 〇
j [Q ： the common parametCT ；

sharing the same value ； • *
‘ o 〇 “

CASE (I I I) 1st level

liDkUl(U). Iiak2a(ll,12). 〇 (S i 〇

1 孙 l l - 1 2 - [a H 3 - 1 4 - l a M l ^ ^ ^

l i n k _) . Iudc2bl(12)̂. ^ ^ 3rd level

lbk2bK144)’ O ^ O
Iink2b2(a.l3). 4th level

n • ： the commouparameter 〇 〇 ： ^ ：
sharing the same value I •

— 一 — G I O O ^
linkUlOt). Iinlc2a(11.12). ^ 1st levef

finklaltO). Iink2a(13.14). 〇 ® C 〇，】 . ;
Hal-2-l ll-12-[al-13-14-tb]-ll ^ 9mA linklbai). Iiiik2bl(124). 【训 X ^ ^ [PV̂^

linklaiab). link2M(W«b). 3"0)l-5~3
o r o o M … : ， I

— —) . • _ _ • 〇 〇 （ O r ^ O 够 ，
liiiklb(53).]ink2b2(b.ll). snanng uie same vaiuc w 、 Vcf ..

figure 5.7 ； ^ ^ ^ 於？辩••署

' . • ‘ - —

-八〜 -.-
173

However, the cyclic connected data-link list in the second cyclic parameter link, as

shown by the diagram in Figure 5.7, can complete a cycle i f only both the values a and

b are passed through the common parameter sequentially. A t the third level of

recursion, the cyclic connected data-link list in the first cyclic parameter l ink can allow

only the value a to pass through the common parameter while the cyclic connected data-

l ink list i n the second cyclic parameter link can only allow the value b to pass through

the common parameter. Such a conflict of value at common parameter causes the

evaluation to stop at the subgoal linklbl. Therefore, nontermination is avoided in Case

(I) due to the common parameter blockage at the third level of recursion.

I n Case (II)，the blockage at common parameter is eliminated because new facts

are introduced to the procedures of the subgoals linklal and linkla2. As shown in

Figure 5.7, i f we also consider the value passing through the common parameter, we

have only one cyclic connected data-link list, l-[a]-2--l in Case (I), but two cyclic

connected data-link lists, l-[a]-2--l and l-[b]-2--l in Case (II). The new cyclic

connected data-link list l-[b]-2-l is formed because of the newly introduced facts. As

indicated by the graphical representation of Case (II)，the blockage is eliminated

because the two cyclic connected data-link lists can be connected to form a longer cyclic

connected data-link list of l-[a]-2—l-[b]-2—l with a length of four. This new cyclic

connected data-link list is an exact match to the long cyclic connected data-link list 11-

12'[a]-13-14-[h]-11 in the second cyclic parameter l ink in terms of length and the

sequence of values passing through the common parameter. In Case (I I I) , there is

another way to eliminate the blockage. The cyclic connected data-link list in the se^Q?}̂

cyclic parameter l ink is modified to pass only value a through the common parafijg拷『，

Although Case (I I) and Case (HI) demonstrate two different ways to allow i i ^ i j i t g

transfer sequences to exist in the interdependent cyclic parameter links (i a ^ b i g j

length of their cyclic connected data-link lists have a ratio of exact multiple^, ！！̂!̂ 棘 睡

the two same basic conditions: ；̂ 麵管.嘆:

- 煤 辦 . • 厂 •.

(1) the shorter cyclic connected data-link list can be ^ r p ^ cycHg
connected data-link list with a length the same as pf ^ ^ ^ ^ c r (^cU^
connected data-link list, and ‘ ：?

• . ‘

174

(2) the cyclic connected data-link list formed by the shorter cyclic connected data-
l ink list and the longer cyclic connected data-link list have the same sequence of
common parameter values.

I n Case (I), although condition (1) is fulfilled, condition (2) cannot be met. The

cyclic connected data-link list in the first cyclic parameter link has the common

parameter value sequence of a-a while the one in the second cyclic parameter l ink has

the sequence of a-b. Case (IV) again shows how the two conditions are needed for

eliminating blockage at common parameter. In Case (IV), condition (1) cannot be

satisfied and blockage occurs at the second common parameter shared between these

two cyclic connected data-link lists. There are two cyclic connected data-link lists: l-[a]-

2-1 and 3_[b]-5—3, Although each of them can match to one of the two values

transferred through the common parameter by the long cyclic connected data-link list in

the second cyclic parameter link, they cannot form a long cyclic connected data-link list

that matches exactly the length of ll--12-[a]-13--14-[b]-ll as in Case (II). Because the

value transferred through the common parameter is only a in the cyclic connected data-

l ink list l-[a]-2--l, the conflict of values causes blockage to occur at the common

parameter in the second half of the cyclic connected data-link list 11-12-[a]-13-14-[h]-

11，in which only the value b can be transferred through the common parameter. The

graphical representation of Case (IV) shows how evaluation fails at the third level of

recursion due to this conflict of values at the common parameter. Although the

backtracking mechanism wi l l cause other alternative paths to be tried after blockage

occurs, the conflict of values wi l l not be resolved in other alternative paths and^wjjl
• '

block further recursion. 尊
、+ • ,

The four cases in Figure 5.7 show the basic concept underlying the modific^tipij -• . - , ‘ J • t • ^ - • - - . ? - � � . � . . , . : �• . ..- •.. •

of data analysis to handle cyclic connected data-link lists with lengths in the iM ig Qf

exact multiple. As shown in Chapter 4, the cause of nontermination _ 機 _ 爾 ‘ 械

an infinite data transfer sequence in the cyclic parameter links - fg例|；礙奚身乡fiî "钟冬

On the other hand, i f the blockage at common parameter is nqt 雜 喊 令 磁 | 雕

connected data-link list found in a cyclic parameter link actually 核拜 reppftt i i^

segment of an infinite data transfer sequence in this cyclic p狀珍讲射gj \\n\i. Therefore,
、‘• . J:、.-:,.々 •••

175 一

data analysis can be adapted to the case of interdependent cyclic parameter links with

the addition of a process to verify whether a cyclic connected data-link list detected by

data analysis can or cannot form any blockage at common parameter. In the case of

equal length cyclic connected data-link lists as in the example in Figure 5.5, comparing

the common parameter value sequences in all the involved cyclic connected data-link

lists directly can verify whether any blockage at common parameter occurs. However,

in the case of cyclic connected data-link lists with lengths in the ratio of an exact

multiple (as shown by the examples in Figure 5.7) the common parameter value

sequences from the cyclic connected data-link lists with different lengths cannot be

compared directly because the lengths of these common parameter value sequences are

also different. However, as shown by Case (II) and Case (HI) in Figure 5.7, a cyclic

connected data-link list can be linked to itself or another cyclic connected data-link list

with certain appropriate values to form a longer cyclic connected data-link list. As

suggested by the four examples in Figure 5.7, we can link the shorter cyclic connected

data-link lists to form a cyclic connected data-link list with a length equal to that of the

longer cyclic connected data-link list. Then the common parameter value sequences in

both the cyclic connected data-link list (constructed from the shorter ones) and the

longer cyclic connected data-link list have the same length and they can be compared

directly. I f nontermination occurs, there wil l exist a repeating segment in an infinite

data transfer sequence which has the same common parameter value sequence in each

of the involved interdependent cyclic parameter links. Since the cyclic connected data-

l ink list constructed out of the shorter ones can also represent a repeating segment of

an infinite data transfer sequence, the absence of any blockage at common p a r a i p _

is indicated if the common parameter value sequence from the longer cyclic coniifptgid

data-link list is equal to the sequence from the cyclic connected data-link list cons t i | i | | ^

out of the shorter ones.
• ： i * -vV-

-垂 ‘‘. - • ；
• . ‘ • -H

...-..:，�.-!；； 一
I n conclusion, the adaptation of data analysis for the 灘 _ | , _麵！

interdependent cyclic parameter links with the lengths of their

lists in the ratio of an exact multiple is as follows: According tQ ^ 饼 | 輩 麵 i J ^ f •

cyclic connected data-link list is connected to itself or another _ 核llJp热

in the same cyclic parameter link for a number of times as iiH|丨场棒_ _ 『at丨热
• , • - -••

• ' . - 3 -

176

example, i f the cyclic connected data-link lists from the interdependent cyclic parameter

links CPl and CP2 are in the ratio of 3:1，the cyclic connected data-link list in the cyclic

parameter l ink CP2 must be connected to itself three times while the cyclic connected

data-link list in CP! is unchanged. Then the common parameter value sequences of

these equal-length cyclic connected data-link lists are compared. I f the same common

parameter value sequence can be found in cyclic connected data-link lists from different

interdependent cyclic parameter links, there is no blockage at common parameter

between a certain pair of infinite data transfer sequences and nontermination wi l l

happen. I f cyclic connected data-link lists from more than two interdependent cyclic

parameter links are involved, their lengths are considered to be in the ratio of an exact

multiple only i f every pair of the cyclic connected data-link lists have lengths in the ratio

of an exact multiple. For example, suppose that there are five cyclic parameter links,

say, CPl, CP2, C P 3 , CP4 and C P 5 with the lengths of their cyclic connected data-link lists

in the ratio of 1:2:4:8:16 respectively. Their cyclic connected data-link lists are in the

ratio of an exact multiple since the lengths of any pair is in the ratio of an exact

multiple. However, i f the lengths of the cyclic connected data-link lists of CP” CP2, C P 3 ,

C P 4 and CP5 are in the ratio of 1:2:4:6:8 respectively, the ratio between the lengths of

the cyclic connected data-link lists from the cyclic parameter links C P 4 and C P 5 is 2:3，

which is not in the ratio of an exact multiple. Because there is one pair of cyclic pa-

rameter links with lengths that cannot be reduced to an exact multiple, there is a shorter

cyclic connected data-link list which cannot construct a new cyclic connected data-link

list with the length equal to the length of the longest one. In this example, the cyclip
-y.、、、,./

connected data-link list in the cyclic parameter link CP4 (with the length of 6) canjigj

form a cyclic connected data-link list with the length of 8,
. ‘ . - ‘ • \

•-�7、• : , '. . .. •、-：•'/

Similarly, data analysis can be adapted to the case of cyclic coniiect^d,

Usts with their lengths not in the ratio of an exact multiple by

connected data-link lists of equal length in every involved cyclic par巧現__！睡 W M M ^

shorter cyclic connected data-link lists in these cyclic parameter Ugli^ : 会^ji誠 fe

just the same as that discussed above: for every interdepended

find an appropriate repeating segment of an infinite data tr̂ Cfsfej： in ^
common parameter value sequence has its length equal tQ the |eau§nces fron^ other r : ... ：二?At

為. •‘ , - •
‘ ‘ •• . -‘.， . -

184

goal(AX3X,CXJ)X) linklal(AX,CP), linkla2(CP,XB), lkklb(BX»XA),

l i n k 2 a (D X ^ Q , l ink2bl(CX,CP), l i n k 2 b 2 (C P观，g o a l (X A , X B , X C , X D) .

Case (I) Case (II)
n (T) rvD n 脑 _ , i ink_.

linklW). linklb(4,l). (2 O O linkl 丨 1(1,c>. linkUl(3.t).
M2a(16,ll). M2a(12.13). liBk2a(14,15). ^

M2b2(a.l2). Iink2b2(b,14). Iink2b2(a,16). m Inl

o ® © o o > 二 ：

6 <〇 o > 二 二 ：

S 2 终......$ =
. ^ V

ff/o n% O > (〇
^ w ^ rK. fe cydic connected data-link sets

一 ^ between parameters "AXTXA" and
(Sj O (J .BXyXB":- 1-lal-2~3̂ bH~1,

cydic connected data-link set between Hcl-2~3^al-4~i,&
parameters ”AXTXA" and " B X T X B " _ ^ ^ ^ 一 1 -lbl.2-3-[c
•l-lal-2-3-lbH-1 • 0 _ ® 5 O “

r^.... . 袍 cydic connected data-link set
cydic connected data-link set between ^ between parameters "CX"rxC"
p^meters ”CXTXC” and " D X T X D " U . U U _ and ”dx,/"XD" :•
？1.lal.12..13Wl4--15-lal-16..11 ： ： IHaM 2-13.lbH4~l5-lcM 6-11

Figure 5.8 ;; ;二 7

cyclic parameter links so that it can be compared directly to them. By conti；种

(I) and Case (I I) in Figure 5.8, we can see how one can find the appropri^jf^

segment: i t is tantamount to constructing an equal-length cyclic coimecte>4 d^t^dittK 114

in all the involved cyclic parameter links from the shorter cyclic conne0g^ _ _ _

As shown by the graphical representation of Case (I), the abs评釋械 售
.：：‘撫』

common parameter is not guaranteed even though we cannot f ln i l ICPf^ l

complete cycle of both long and short cyclic connected data-liiJc p^phica|

representation of Case (I), we can see that no blockage at pg^irs g

the first three levels of recursion. Since the shorter cyclic Cpjfm^ipt^^ 舶j[||，}ink list (Jnly
...•..——+• - . 1 • -/. .. • ： •

. - '* /-*,‘•*••
‘： .• .. J •

178

extends over two levels of recursion while the longer one extends over only three levels,

there is no blockage at common parameter at the first cycle of each long and short

cyclic connected data-link lists. Because the lengths of a repeating segment of an

infinite data transfer sequence represented by a cyclic connected data-link list must be

equal to, or a multiple of the length of this cyclic connected data-link list, for the first

cyclic parameter l ink between the parameters AX/XA and BX/XB, the repeating

segment of the infinite data transfer sequence represented by this shorter cyclic

connected data-link list can only have the length of 4 or 8 but not 6. Therefore, the

absence of blockage at common parameter in a segment with the length of 6 in the first

cyclic parameter l ink does not guarantee the absence of blockage in a repeating segment

of the entire infinite data transfer sequence in the first cyclic parameter link. However,

blockage at common parameter is surely absent only if there is a common parameter

value sequence shared by the repeating segments of the infinite data transfer sequences

in every involved cyclic parameter link. In Case (I), therefore, the same common

parameter value sequence is not truly shared by the repeating segments of two infinite

data transfer sequences from the two involved cyclic parameter links.

On the other hand, Case (II) shows how a common parameter value sequence

can be truly shared by the repeating segments of two infinite data transfer sequences

from the interdependent cyclic parameter links. By the graphical representation of Case

(I I) we can see that nontermination occurs i f the same common parameter value

sequence is shared by two cyclic connected data-link list with equal length and botj^ 辩 |
.* • '.. ，.• *

constructed out of some shorter cyclic connected data-link lists. The cyclic ？冊糖！琴

data-link list formed by linking up some shorter cyclic connected data-link l i s t s^R

represent a repeating segment of an infinite data transfer sequence.

cyclic connected data-link lists constructed out of the shorter ong^ 树 麵 :

parameter links in the graphical representation of Case (I I) represfRl tfeg
r 、::、•!:::々(.，字裙德载
segment with equal length in both cyclic parameter links. A n 头 講 _ 戯 缴 _
segment have the common parameter value sequences of equal 核 ! ^ 舊 處 暖 雜 •
two sequences can be compared directly to determine wb^th^S M ^ i P i P ^ ^ ^ W ®

. . 一.较/.'乂_":;\:.:森;产…、
occur. .节

179

I n other words, in the case of cyclic connected data-link lists with lengths not in

a ratio of an exact multiple, the common parameter value sequence to be compared

needs to come from the equal length cyclic connected data-link lists from different

interdependent cyclic parameter links, and these equal cyclic connected data-link lists

are formed by connecting the shorter cyclic connected data-link lists. Therefore, the

resulting cyclic connected data-link lists from the shorter ones must have a length equal

to the least common multiple of the lengths of the involved cyclic connected data-link

lists. For example, in Case (II)，since the length of the cyclic connected data-link list in

the first cyclic parameter l ink between AAr/X4 and BX/XB is 4，while the length of the

cyclic connected data-link list in the second cyclic parameter l ink between CX/XC and

DX/XD is 6，the length of the new cyclic connected data-link list must be the least

common multiple of 4 and 6，which is 12. This is confirmed by the graphical

representation of Case (I I) in Figure 5.8. Therefore, we only need to compare the

common parameter value sequences which come from the cyclic connected data-link lists

formed by repeating the cyclic connected data-link list in the first cyclic parameter l ink

three times and the one in the second cyclic parameter link twice.

In conclusion, for cyclic connected data-link lists with lengths in different ratios,

the adaptation of data analysis to the case of interdependent cyclic parameter links is to

include the comparison among the common parameter value sequences from the

repeating segment of the infinite data transfer sequence from different interdependent

cyclic parameter links. I f there is a common parameter value sequence shared by thp

repeating segments of all involved cyclic parameter links, we can be sure about thi©

二 管 缺 遞

absence of any blockage at common parameter and the occurrence of nontermJafttiQQ

during the evaluation of the corresponding recursive definition. Data analysis

us the repeating segment of the infinite data transfer sequence in each cyclic

l ink by detecting the cyclic connected data-link list in each cyclic parameter Unk« : K AM^

analysis is slightly modified to also provide the values passing 條驟;

parameter when constructing the cyclic connected data-link Itef^ •

common parameter value sequence of the repeating segment of 咏 | ！ 編 挺 冬 ! ^ _
sequence represented by this connected data-link list. 义攀..'、-：？

• ... - •

180

I f the involved connected data-link lists have the same length, the common

parameter value sequence from the connected data-link lists can be directly compared.

On the other hand, i f the cyclic connected data-link lists are of different lengths, we

need to construct some new connected data-link lists from the involved cyclic parameter

links before the comparison. By connecting the shorter cyclic connected data-link lists

to itself or to some cyclic connected data-link lists with appropriate values to form a

longer cyclic connected data-link list with a length equal to the least common multiple

of the lengths of all the involved cyclic connected data-link lists, the appropriate

connected data-link lists can be formed. Then the common parameter value sequences

from these new connected data-link lists can be compared to detect blockage at common

parameter. I f we compare the discussion on the cases in Figure 5.7 with the discussion

on the cases in Figure 5.8, we can see that the case of equal length and the case of

lengths in a ratio of an exact multiple are in fact special cases of the more general case

of cyclic connected data-link lists with their lengths not in a ratio of an exact multiple.

On the one hand, in the case where the lengths are in a ratio of an exact multiple, the

least common multiple is always equal to the length of the longest cyclic connected data-

l ink list. On the other hand, in the case of equal length, the least common multiple is

always equal to the original length of all the involved cyclic connected data-link lists.

Therefore, we can summarize the method adaptation required to handle the

interdependent cyclic parameter links with all equal-lengths cyclic parameter links as

follows:

(1) I f any cyclic connected data-link list is detected in every interdependent cyclijc
parameter link, examine the cyclic connected data-link lists by following the s tep
(2) to (7); otherwise, no test of blockage at common parameter is needed.

‘ • . . . • v''. :

(2) Find the common parameter value sequences of each cyclic connected cjat^rljg^
list in each interdependent cyclic parameter link. ’、： 二 ” ,、

(3) Find the least common multiple of the length of all involved pyclic C^Wfle^eil
data-link lists.

：：：變.;•::::,:.’

(4) Connect the original cyclic connected data-link list (formecj pjf 终pgj|j^_》

each cyclic parameter link to some longer cyclic coimectf；‘歸竊膽 | |麵神{备
length equal to the least common multiple. - f 、 ” 誦

-...-？

181

(5) Find out the common parameter value sequence of each cyclic connected data-
link list constructed in step (4).

(6) Compare the common parameter value sequences of the new cyclic connected
data-link lists constructed by the step (4).

(7) I f at least one cyclic connected data-link list formed by steps (3) and (4) in all
the interdependent cyclic parameter links share the same common parameter
value sequence, there is no blockage at common parameter and nontermination
is detected; otherwise, nontermination will not occur.

5.1.1.2.2 Cyclic Parameter Links with Lengths
in Different Ratios

Because of the presence of multi-level cyclic parameter links, as shown by the

graphical representations in Figure 5.6, there are three ways to classify interdependent

cyclic parameter links in terms of their lengths. First, the interdependent cyclic

parameter links can all have the same length, i.e., all extend to the same number of

levels of recursion. The interdependent cyclic parameter links in Figure 5.2 and Figure

5.5 are examples. Second, interdependent cyclic parameter links have different lengths

but their lengths are in the ratio of an exact multiple. The interdependent cyclic

parameter links in the recursive rule below is an example of this case:

rule1(AX, BX, CX, DX, EX, FX):-
rmk1a1(BX, CP), linkla2(CP, XA), linklb(AX, XB),

rmk2a(CX, XF), link2b{DX, XC), rmk2c(EX, XD),
rmk2d1 (FX, CP), link2d2(CP, XE),

rule1(XA, XB, XC, XD, XE, XF).

. . � - , •

We can find that the subgoals linklal, linklal and linklb actually form 终疫

parameter link which extends over two levels of recursion while the cycl|c

link formed by the subgoals link2a’ linklb, linklc, link2dl and link2^ _

four levels of recursion. Therefore the length of the cyclic pa ra呼海 ^ 鎮 该 teg

subgoals lmk2a, linklb, link2c, linkldl and linkldl is exactly t^jCg pf _ 拷紐_ pf _

one formed by the subgoals linklal, linklal and linklb. The 猛 剛 糊 辨 雜 後 明
， f - . . '.V • •v. .r

182

at the center in Figure 5.6 can be the graphical representation of the above recursive

rule. In the case where more than two cyclic parameter links are involved, (which is

similar to the case of more than two cyclic connected data-link lists with their lengths in

the ratio of an exact multiple), we can consider their lengths to be in the ratio of an

exact multiple i f the ratio of the length of every pair of the cyclic parameter links is an

exact multiple. The reason is the same as that for the lengths of cyclic connected data-

l ink lists in the ratio of an exact multiple discussed in the previous section. Third, the

interdependent cyclic parameter links involved have different lengths and the ratio of

their lengths is not an exact multiple. The interdependent cyclic parameter links in the

recursive rule below is an example:

rule2(AX, BX, CX, DX, EX):- 、
link1a1(BX, X)，link1a2(X, XA), link1b(AX. XB),

link2a(DX, XC). link2b(CX. XE),
link2c1(EX，X)，link2c2(X, XD),

rule2(XA. XB, XC, XD, XE).

Again, the length of the first cyclic parameter link formed by linklal, linkla! and linklh

is two levels of recursion. But the length of the second cyclic parameter link formed by

linkla, linklb, linklcl and Iink2c2 is three levels. Therefore their lengths are in the ratio

of 2:3 which is not an exact multiple. This can be represented by the graphical repre-

sentations at the right hand side in Figure 5.5. We can see that the cycle of the first

cyclic parameter l ink overlap with the cycle of the second cyclic parameter link.

Because a common parameter is shared by all the interdepended '錄银终

parameter links, we cannot consider each cyclic parameter l ink separately as ii^ 热窝紐多g

of independent cyclic parameter links. However, as shown by ：；

representations in Figure 5.6, the interdependent cyclic parameter links _ _ | 楊

different ratios can share the common parameter in different w 町 : 费 i ^ f i 始

interdependent cyclic parameter links of the same length, they s h _ 物

parameter. In the graphical representation of the equal-lengtl|

parameter links in Figure 5.6, we can clearly see that all the commQP ip q m

•‘ * ‘ --、 •• 二、-
183

cyclic parameter l ink can be paired up with a line to the common parameter in another

cyclic parameter l ink at the same level of recursion. However, we can find that some

common parameters cannot be shared between two interdependent cyclic parameter

links i f their lengths are not equal. The graphical representations in the center and at

the right hand side show that some squares cannot be connected to the other squares by

a line. In fact, there is simply no other square in the other cyclic parameter link that is

at the same level of recursion. In the case where their lengths are in the ratio of an

exact multiple, every common parameter in the longer cyclic parameter l ink can always

be paired up with a common parameter in the shorter cyclic parameter link but not vice

versa. In the case of their lengths in a ratio which is not an exact multiple, both cyclic

parameter links have some common parameters cannot be paired up.

the expanded version of the graphical representation in Figure 5.6 of a recmsive definition
with two interdependent cyclic parameter links with their lengths in a ratio

which cannot be reduced into an exact multiple

first first second second sccond
cyclic cyclic cyclic cyclic cyclic

parameter par̂ eter pa^eter Pâ eter ^ ^

(O P 0 0 Q O O 0 0 O 0 _ _ 0 P ^ 1 二
t ^o - < C f O O ^ 0 0 ^ o i l O 〇 〇 P O Lara^^er
parameter r ^ ^ ^ ^ / V Knk

Q ; 0 0 ^ 0 〇 O O 0 0 ：： =
over two JJ" j j ^ ^ ^ ^ ^ ^ ^ levels of
levels of Q O 0 _ P C ^ O O O P O O O P j recursion
recursion d V - • • • • • - - - • • - - X ； i l f

〇 》 . 〇 ^ cCo o 〇 ^ o

o > cTo C ^ 〇 … …
C ^ O … … … c £ ^ 〇 0 ^ 0

o ^ a o 〇 0 0 0 0 ^ 0 0 〇
： ： ： •• :•

Figure 5,9

184

However, the lack of paired up common parameters at certain points shown by

the graphical representations in Figure 5.6 does not mean that the corresponding inter-

dependent cyclic parameter links must have data transfer blockage at these points. The

graphical representations in Figure 5.6 only show one pair of all the possible cyclic pa-

rameter links. I f Figure 5.9 is compared with the graphical representation at the right

hand side in Figure 5.6, we can see that both graphical representations on the left hand

side of Figure 5.6 and Figure 5.9 are the graphical representation of the above recursive

rule mle2, except that the one in Figure 5.9 is an expanded version of the one in Figure

5.6. I n Figure 5.9, all the cyclic parameter links are shown. As explained in Section

5.1.1.2，in order to form a cyclic parameter link extending over two levels between the

parameter AX/XA and BX/XB, two identical parameter links must exist in the same set

of parameters. Similarly, three identical cyclic parameter links are also present in the

parameters CX/XQ DX/XD and EX/XE. Therefore, there are two groups of

interdependent cyclic parameter links instead of two interdependent cyclic parameter

links. I f the above recursive rule is considered, it is easier to see that some values must

be transferred through the common parameter X in every level of recursion when

nontermination occurs. I f the graphical representation in Figure 5.6 is considered, it is

hard to see how some values can be transferred through the common parameter during

the recursion. The graphical representation in Figure 5.6 seems to suggest that some

common parameter cannot be shared between the interdependent cyclic parameter links

since it shows that some squares in both cyclic parameter links cannot be paired up with

other squares. This implies blockage at common parameter and no nontermination wi l l

happen. But Figure 5.9 reveals that all common parameters can actually be paired up

with other common parameters if all the possible cyclic parameter links are consider纳.

The interaction does not exist between two cyclic parameter links but in fact betvyggiĵ

two groups of cyclic parameter links. The graphical representation in Fi评r琴

indicates how the connected data-link lists with different lengths can interact j j f t j j i p h

Other at the common parameters in different levels of recursion. ；' '‘t、f:.魏:

Therefore, there is a basic difference between the ways to ha叫掉 Intef^jep^nd^nt

cyclic parameter links with equal length and those with different lengrtjs. | | | . 秘 仲 辨 pf

equal length, for every involved cyclic parameter link, the to叫tlft辦 pf cpiwno^
• ；.

185

parameters in a cyclic parameter link are also the same. Therefore, every cyclic

connected data-link list in these interdependent cyclic parameter links have their

common parameter in the same level of recursion. In this situation, for every group of

cyclic parameter l inks formed among the same set of parameters, only one of them

(rather than the whole group) requires consideration. On the other hand, in the case

of the interdependent cyclic parameter links with different lengths, as shown by Figure

5.9，more than one cyclic parameter l ink in each group of cyclic parameter links among

the same set of parameters should be our concern. As what has been shown by the

graphical representation in Figure 5.9, all the two identical cyclic parameter links formed

between the parameters v4X/X4 md BX/XB and all the three identical cyclic parameter

links among the parameters CX/XQ DX/XD and EX/XE all act together to allow no

blockage to exist at all common parameters appearing in the infinite data transfer

sequences. In the following sections, we shall see how one can handle the two different

cases of interdependent cyclic parameter links with different lengths: lengths in the ratio

of an exact multiple and lengths not in the ratio of an exact multiple. However, since

they are rare cases in Prolog programming, we only discuss the basic concept of how to

detect blockage at common parameter without too many unnecessary details.

I n Figure 5.9，the graphical representation describes interdependent cyclic

parameter links with lengths in a ratio that cannot be reduced to an exact multiple. I t

shows how the two groups of cyclic parameter links can share the common parameters

during the different levels of recursion. In each particular level of recursion, a common

parameter must appear in one of all the cyclic parameter links in each group of

involved cyclic parameter links. By comparing the values transferring through the

common parameter in each group of cyclic parameter links, we can determine whether

there is any blockage occurs. As suggested in the previous discussion, we can know

whether blockage at common parameter appears in the entire infinite data transfer

sequences of the involved cyclic parameter links by examining a repeating segment of

each of these infinite data transfer sequences. Therefore, if there is a repeating segment

of a data transfer sequence appearing in each group of cyclic parameter links and the

common parameters from different groups of cyclic parameter links share the 考终mf̂ “ ...

186

value at every level of recursion in the repeating segment, there is no blockage at

common parameter and nontermination wil l result.

As discussed, though the lengths of the different groups of cyclic parameter links

are different, we can find repeating segments of the infinite data transfer sequences in

every cyclic parameter l ink with the same length. Because their lengths are equal, they

represent one complete cycle of infinite data transfer sequences in all the involved cyclic

parameter links. I f there is no blockage in this cycle of all the involved infinite data

transfer sequences, we can be sure that there is no blockage at all. However, in order

to determine the length of the repeating segment in the case of interdependent cyclic

parameter links with their lengths in the ratio of an exact multiple, we must also

consider the relation between the length of the cyclic connected data-link lists and the

length of their corresponding cyclic parameter links. Because a cyclic connected data-

link list in fact represents a repeating segment of an infinite data transfer sequence, the

length of cyclic connected data-link list is crucial in determining the length of the

repeating segment of any infinite data transfer sequence in a cyclic parameter link.

However, it is obvious that the length of a cyclic connected data-link list can either be

equal to or a multiple of the length of its corresponding cyclic parameter l ink (because

an infinite data transfer sequence is formed by the values that can pass through one or

several complete cycles of a cyclic parameter link). I f they are the same, the lengths of

the cyclic connected data-link lists of the involved interdependent cyclic parameter l i n _

must be in a ratio that cannot be reduced to an exact multiple. On the other hand, ijf

they are not the same, the lengths of the involved cyclic connected data-link lists c ^ ^ ^

in one of the three relations: equal length, different length in the ratio of

multiple or not in an exact multiple, just as what has been described in SectiQil|^J4.i.i»

However, as also shown in Section 5.1.1.2.1, the cyclic connected

different lengths can become the cyclic connected data-link lists, p |

reflexive connecting several times. The length of the longer c y ,

lists constructed out of the shorter ones is equal to the least 謂 g g l

lengths of all these shorter cyclic connected data-link lists. T h e r e ^ , 麵

shorter cyclic connected "data-link list to form the cyclic c o r n i 〒 麵 麵 缺 list 义舟

length equal to the least common multiple of the lengths of all i j ^ f t f e ^ O^clic conpect^|j
•I. > ： • • \ -：

- •； • V -

、- 、‘ .V 187

data-link lists, we can find that the cyclic connected data-link list represents the

repeating segment that has equal length in every group of involved cyclic parameter

links. So the modification on data analysis to determine the presence of blockage at

common parameter can be summarized as follows:
(1) Find the least common multiple of the lengths of the cyclic connected data-link

lists present in every interdependent cyclic parameter link.

(2) For every interdependent cyclic parameter links, construct some cyclic connected
data-link lists with a length equal to the least common multiple obtained by step
⑴ .

(3) For each cyclic connected data-link list constructed by step (2)，find the value
used in the common parameter in each level of recursion. I f no common
parameter is used in a particular level, mark the corresponding level. Put the
marks and values together in the order of their appearance in different levels of
recursion to form a common parameter value sequence.

(4) Combine the common parameter value sequence of the same cyclic connected
data-link list or other cyclic connected data-link lists from the same cyclic
parameter l ink to form a common parameter value sequence without any mark.
I f two common parameter value sequence have values at the same level of
recursion, shift one of them a number level up or down and try again.

(5) Compare the common parameter value sequence constructed in step (4). I f at
least one common parameter value sequence is shared by the cyclic connected
data-link lists from every cyclic parameter link, the absence of blockage at
common parameter is confirmed. Nontermination wil l result.

This modification may be very time-consuming in some situations. However, the above

steps only serve as a summary of our above discussion. Since rarely do we have^^

recursive definition with interdependent cyclic parameter links in different lengths ^Jig

it is even more rare for their lengths to be non-reducible to an exact multiple, we da t m

go into further detail in this work. Actually, it is not only hard to determine

presence of blockage at common parameter in this case, it is also hard to understand 终

Prolog program with any interdependent cyclic parameter links with lengthy Jp

ratio of an exact multiple. 賴 瞬

Figure 5.10 shows an example of interdependent cyclip par终l^l^l^f Ij^lS ivitjjj

lengths in the ratio of an exact multiple and their graphical r w r a n ^ t a t i ^；

graphical representation at the bottom of Figure 5.10 shows how t)l0 年去|

: :广 ‘ V , . u:、、 ,:;、:、:、‘.，
188

AX/XA BX/XB CX/XC DX/XD EX/XE FX/XF

ro O O ^ 〇

linkla(BX,XA). linklb(CX.XB), linklc(DX.XC), \ 0 O / ® 〇 ^

I 丨 丨 ， l i n k 2 b 2 (C P , X F) , 丨 〇 〇 o] ^ 」 。 ? "
- goal(XA.XB^C.XD.XE.XF). | O O ^ O

! linkl a(3.4). Ilnk1b(2,3). Ilnk1c(1,2). f n T ® ^
i Ilnk1cl1(4.a). linkld2(a.1). ^ ^ ^ ^
jlink2aOc.y). Ilnk2b1(y,a). Iink2b2(a,x). 〇 O / ^ O

」 〇 > 〇 〇 〇 ’
the graphical representation below showing how the same ^ 。 。 O (yY^'^C)
pair of data transferring sequences in two interdependent ^

cyclic parameter M s with their lengths in a 〇 Q ^ O ® 〇 ^ ^
relation of exact multiple can share the same value at ： •

the common parameter during every levels of recursion • *

麗 A B 画 c m c 腿 D 諷 k B 廳 腿 D 雇 A 匪 B 面 • 蒙 腿 ^ 應 。 麗 匪 D 脈 [^ 碰 E X / X E 隠 ^

O O O ^ O O J S O O y S O OO^.....

〇 〇 ^ o 〇 ^ ^ o 〇 S L Q ^ O o ^
〇 ^ O 〇 O 〇 5 ! ! S 5•！ 0 3 ?

(^ C o o o • O — ^ ^ ^

o ‘.-•o" 0 : 0 〇 O "oTo O @ 0 : 0 O 〇 > ® : 0

Figure 5.10

in every level of recursion is shared between the two groups of cyclic parameter links.

A t first glance, i t is similar to the case of interdependent cyclic parameter links with

their lengths not in the ratio of an exact multiple. I f only two cyclic parameter links

instead of two groups of cyclic parameter links are considered, there are some levels of

recursion with a common parameter appearing in only one cyclic parameter link.

However, there is a significant difference between the two cases of different length

interdependent cyclic parameter links. In the case of the cyclic parameter links with

lengths not in the ratio of an exact multiple, when only two cyclic parameter l inta

instead of two groups of cyclic parameter links are considered, both cyclic p a r a m e ^

links have common parameters in only one of the two cyclic parameter links

be paired up by the common parameter in the other cyclic parameter ITlg f l l p I g

group of cyclic parameter-links among the same set of parameters is r 巧 鄉 械 场 挪 _

all common parameters to be paired up. But in the case of interd癸p^lHkiJt:炒cliip
、 v.- ‘ V k ••、... '•”*、•、, ‘••、、'‘ ‘ r • ... '• .,‘，• / .“• •

189

parameter links in the ratio of an exact multiple, we can see that all common

parameters in the longer cyclic parameter l ink can be paired up by the common

parameters from the shorter cyclic parameter link. In the graphical representation at

the bottom of Figure 5.10, we can find that only two out of the group of four longer

cyclic parameter links can provide the common parameters to pair up all common

parameters in the shorter cyclic parameter link. Moreover, the cyclic connected data-

l ink lists in these two longer cyclic parameter links are identical. Therefore, it shows

that, in the case of an exact multiple ratio, there are certain situation in which we only

need to consider two cyclic parameter links instead of two groups of cyclic parameter

links when detecting the blockage at common parameter. The modifications to the

method of data analysis can be summarized as follows:

(1) I f the lengths of the interdependent cyclic parameter links are in the ratio of an
exact multiple and the length of their cyclic connected data-link lists are equal to
or in a multiple of the lengths of the cyclic parameter links, find the common
parameter value sequences of each involved cyclic connected data-link list as in
step (2) below.

(2) If, at certain level of recursion, no common parameter is involved to transfer
value, put a mark on the common parameter value sequence; otherwise, put the
value used in the common parameter into the sequence.

(3) Compare the common parameter value sequences of the cyclic connected data-
link list from different interdependent cyclic parameter links. I f there at least
one common parameter value sequence is shared among all the cyclic parameter
links, nontermination will occur.

In this example, the lengths of the cyclic connected data-link lists and the lengths

of cyclic parameter links are equal in all the involved interdependent cyclic parameter

links so that the ratio of the lengths of their cyclic connected data-link lists are also in

an exact multiple. Moreover, the length of the cyclic connected data-link list can relate

to the length of the cyclic parameter link in different ways to allow the lengths of

different cyclic connected data-link lists to form different ratios. In Figure 5.11, there

is an example of interdependent cyclic parameter link which have lengths in the ratio of

an exact multiple but the lengths of their cyclic connected data-link lists are equal. In

Figure 5.12, the lengths of their cyclic connected data-link list are not in a ratio p(an

190

goal(AXJBX，CX，DX，EXJFX)
linkla(BX,XA), linklb(CX，XB)，linklc(DX,CX),

linkldl(AX,CP), linkld2(CP,XD),
lmk2a(FX,XE), link2bl(EX,CP), lmk2b2(CP,XF),

goal(XA,XB,XC;XD,XE^.

Case (I) Case (II)

linkla(23,24). linklb(22,23). linklc(21,22). linkldl(24,a). Imkld2(a^l).
linkldl(24,a). Iinkld2(a 卯 . Iink2bl(y,a). Imk2b2(a^).
Iink2a(x,y). Iink2bl(y,a). I i i i k2b2(a ,z) .碰 a(z，w). Iiiik2bl(w，a). Iiiik2b2(a 力.
link2a(z,w). Iink2bl(w,b). Imk2b2(b^).

A X / B V C X / D X / A X / BXy CXy DXy EX. F X . A X , B X / C X / DXy AX. B y C y D y E y FXy
Z k A B A C A D A A A B /5<C A D A E A F A A A B A C A D A A A B A C / X D A E A F

o o o e o o o o o ^ Ĵ f恋 e j o 〇 o © o p 〇 〇 o ®

〇 〇 f O O 〇 < 〇 \ o o ^ o ^ { o O 〇

〇 y ^ o 〇 〇 o o ^ o ^ f i T b i r ^ o y 〇 〇 〇 o o ^ 〇 >

^ { o 〇 〇 〇 〇 f o (/ o l K o o 〇〇 O J ^ O ^ o

〇 o o j ^ o p o 〇 O ^ I p o o ^ o ^ o o 〇 >

〇 〇 ^ o ^ { o o 〇 < 〇 〇 o / 〇 ^ C o o 〇 4 o

〇 d / o 〇 〇 o o ^ o \ oj{〇〇〇o 〇 》

〇 〇 〇 〇 ^ o < 〇 ^ { o o 〇 〇 o 主 〇 ^ o

〇 o o ^ 〇 o o 〇 o ® o o o ^ o o o o o ® • : : : : •• : •
Figure 5.11

exact multiple.

I n Figure 5.11, the graphical representations of both Case (I) and Case (I I) show

how the cyclic connected data-link list in the shorter cyclic parameter l ink can have the

same length as the length of the cyclic connected data-link list in the longer cyclic

parameter link. In the shorter cyclic parameter link, the length of the cyclic connected

data-link list is twice the length of the cyclic parameter link. Therefore, in the shorter

cyclic parameter link, a cyclic connected data-link list in fact represents a repeating

segment of an infinite data transfer sequence that passes through two cycles of the

191

goal(AX，BX，CX，DX，EXJFX):-
liiikla(BX,XA), linklb(CX,XB), linklc(DX,CX),

lmkldl(AX,CP), linkld2(CP,XD),
link2a(FX,XE), link2bl(EX,CP), liiik2b2(CP,XF),

goal(XA;XB,XC,XD,XE,XF).
Case (I) Case (II)

ljnk2a{x,y). Iiiik2bl(y,a). Iiiik2b2(a 力. lmkldl(24，c). Imkld2(c 刘 .
liiik2a(z,w). Iink2bl(w,b). Imk2b2(b,p). Iink2a(x，y). ^激，z)、 .
Iink2a(p,q). Iink2bl(q,c). Iink2b2(c^). Iink2a(z,w). Imk2bl(w，b).
^ ^ 必… lmk2a(p,q). Imk2bl(q,c). Imk2b2(c,x).

A X / B X / C X / D X / A X / B X / C X / D X / E X , F X / A X / B X , c y D X / A y BXy c y o y E y F y
^A /̂ B AC /XD AA AB AC /XD AE AF AA 4 4(D AA 日々C /XD AE AF
o o o ^ o o o o 〇 力 〇 〇 o © o e 〇 〇 o ®

〇 〇 p o ^{o 〇 〇 (/ o î ĉ de O O ^ O d l o O 〇

〇 p o 〇 〇 O O ^ O ^ ^n^^t- o p o O O O O ^ 〇)

^ { ^ o 〇 〇 乂 〇 〈 。 兹 ' 〇 々

〇 o o ^ 〇 p o 〇 〇 > 〇 o o ^ o p o o 〇 》

〇 O / ^ O < 〇 O / o 《 〇

〇 j / o 〇 〇 o ^ o / 〇 〇 〇 o 〇 >

d ^ 〇 〇 〇 〇 ^ o < 〇 ^ { o O 〇 〇 O ^ O (^ 〇

〇 o o ^ 〇 O O 〇 O ® 〇 〇 < 〇 o 〇 >
I • •
• • •

Figure 5•12

• • . ‘ - - . . ‘
cyclic parameter l ink. Since a common parameter is involved in each cycle of the cyclic

parameter link, two common parameters are involved in the cyclic connected data-link

list in the shorter cyclic parameter link. In Case (I) in Figure 5.11, the graphical

representation of the shorter cyclic parameter link between the parameters EX/XE and

FX/XF shows this clearly. On the other hand, the longer cyclic parameter l ink among

the parameters AX/XA, BX/XB, CX/XC and DX/XD has a cyclic connected data-link

list only involved one common parameter. Because the cyclic connected data-link list

in the longer cyclic parameter link can only involve one common parameter, i t can only

-• ； -.、• • •
192

share one of the two common parameters involved in the shorter cyclic parameter link.

I f the values passing through the two involved common parameters in the shorter cyclic

parameter l ink are different, as in the example of Case (I) in Figure 5.11, it takes two

cyclic connected data-link lists with different values passing through the common

parameter to avoid any blockage at common parameter. The values passing through the

common parameter in these two cyclic connected data-link lists must be the same as the

values passing through the two common parameters in the cyclic parameter l ink between

EXjXE and FX/XF, However, if the values passing through the two common

parameters involved in the cyclic connected data-link list in the shorter cyclic parameter

l ink are the same, as in the example of Case (II)，only one cyclic connected data-link list

in the longer cyclic parameter link is required.

The case illustrated by the examples in Figure 5.11 is in fact similar to the earlier

mentioned case of equal-length cyclic connected data-link lists. The only difference is

that several common parameters are involved in the shorter cyclic parameter l ink in this

case while only one common parameter is involved in the previous case. Therefore, i f

the same value is used in all the involved common parameters, as in Case (I I) in Figure

5.11，the method used for the previous case can also be applied to the present case.

Further modification is necessary if the values used in these common parameters are

different. The presence of different values requires different cyclic connected data-link

lists in the longer cyclic parameter link to share the common parameter with the shorter

cyclic parameter l ink in order to avoid common parameter blockage. Therefore, in the

case of interdependent cyclic parameter links with lengths in the ratio of an exact

multiple and with their cyclic connected data-link lists of equal length, the modification

is as follows:

(1) Follow steps (1) and (2) of the modification of the interdependent cyclic
parameter l ink with their lengths and the lengths of their cyclic connected data-
l ink lists in the ratio of an exact multiple.

(2) I f the values passing through the common parameters in the shorter cyclic
parameter l ink are all the same, follow step (3) of the above modification too;
otherwise, follow step (3) below.

193

(3) Compare each value in the common parameter value sequence of the cyclic
connected data-link lists in the shorter cyclic parameter link with the common
parameter value sequence of the cyclic connected data-link lists in the longer
cyclic parameter link. I f the values are the same, blockage at common parameter
is absent from these two cyclic parameter links.

Case (I) in Figure 5.12 is an example which have the lengths of cyclic connected

data-link lists not in the ratio of an exact multiple. If only the cyclic connected data-link

lists are considered, the ones in the longer cyclic parameter link have length of four

while the length of the cyclic connected data-link list in the shorter cyclic parameter link

is six. Their ratio is 2:3 which is not an exact multiple. Blockage at common parameter

occurs in this example. Its graphical representation in Figure 5.12 can clearly show that

blockage occurs at the sixth level of recursion. Because the lengths of the involved

cyclic parameter links are in the ratio of an exact multiple, as shown by the graphical

representations, the common parameters from the two different cyclic parameter links

wi l l be paired up at a fixed interval. The graphical representation in Figure 5.12 shows

that the common parameters from the two cyclic parameter links need to be paired up

in every four levels of recursion if only two cyclic parameter link from the two groups

of cyclic parameter links are considered. (If the two groups of cyclic parameter links

instead of two cyclic parameter link out of the two group are considered, the common

parameters are paired up in each recursion level.) To avoid blockage at common

parameter, the values passing through the point where the common parameters from the

two different cyclic parameter link are paired up must be the same. In other words, in

the case of interdependent cyclic parameter links with lengths in the ratio of an exact

multiple, the same value in the common parameter value sequences from different

involved cyclic parameter links should be repeated at the same interval. However, the

length of the cyclic connected data-link list also affects the interval of the same value to

be repeated in its corresponding common parameter value sequence. As shown by the

graphical representation of Case (I), the value a or 5 is repeated in every four levels in

the cyclic connected data-link list among the parameters BX/XB, CX/XC and

DX/XD which has the length of four levels while the values a, b and c are repeated in

an interval of six recursion levels in a cyclic connected data-link list with the length of

six levels. On the one hand, the cyclic connected data-link lists with lengths not ix\ 中 e

194

ratio of an exact multiple cause the values passing through the common parameter to be

repeated in different intervals in different cyclic connected data-link lists. On the other

hand, the cyclic parameter links with lengths in the ratio of an exact multiple require the

common parameter values to be repeated at the same interval in different involved

cyclic connected data-link lists. The conflict is unsolvable. Hence, blockage at common

parameter wi l l always happen if the lengths of the different cyclic connected data-link

lists of the interdependent cyclic parameter link (which have lengths in the ratio of an

exact multiple) are themselves in a ratio that cannot be reduced to an exact multiple.

In Case (I I) in Figure 5.12, we present an example which seems to contradict our

above conclusion. However, i f we examine the cyclic connected data-link lists carefully,

we can f ind that the cyclic connected data-link lists in the first cyclic parameter l ink

among the parameters AX/XA, BX/XB, CX/XC and DX/XD does not exactly have the

length of four levels as the one in Case (I). With the common parameter values shown

between [] in the modified notion of cyclic connected data-link list described in Section

5.1.1.2.1，we can clearly see that the cyclic connected data-link list in the first cyclic

parameter l ink which can avoid blockage at common parameter is the cyclic connected

dataAinkJistof 11—12-13—M-fbJ-n—12--13--14-faJ-ll--12--13--14-fcJ-llinsteadoUl--

12-13-14-11. Although the latter notation only indicates the presence of a cyclic

connected data-link list of the length of 4，the former notation shows the presence of a

cyclic connected data-link of the length of 12. Therefore, the lengths of the cyclic

connected data-link lists of the two interdependent cyclic parameter links in Case (I I)

has a ratio of 12:6 which can be reduced to a ratio of an exact multiple: 2:1. By

examining the two examples in Figure 5.12, we can conclude that the modification for

the data analysis method in this case is to modify data analysis slightly to produce cyclic

connected data-link lists with common parameter values. I f all the cyclic connected

data-link lists with common parameter values from different involved cyclic parameter

links show their lengths in a ratio of not an exact multiple, it indicates that blockage at

common parameter wi l l occur and the corresponding recursive
t

nontermination. ：̂；

195

5.1.2 Interdependent Cyclic Parameter Links through Common Subgoals

I n the above ii

discussion, we have Recursive Rule with Interdependent
， Cyclic Parameter Links through Common Parameter

seen how in te r -
dependency between g(x,Y,Z)丨inkl_a(X，C)，linkl_b(C,A).
the different cyclic pa- nnk2—•̂ (Y，C)’ nnk2_b(C,B). g(A’B,C).

rameter links in the —

same recursive defi- Recursive Rule with Interdependent
L Cyclic Parameter Links through Common Subgoal

n i t i o n c a n be

established through 。(父，丫，？）：_ 丨丨„k(x，A, Y, B)，g(A, B，C).
s o m e c o m m o n
parameter. We have Figure 5.13

a l s o s e e n h o w

interdependent cyclic parameter links can form extra exit conditions that cannot be

detected in data analysis and how we can modify data analysis to adapt it to different

situations. I n this section, we shall examine the another possible way to establish inter-

dependent cyclic parameter links: to establish interdependent cyclic parameter links

through common subgoals. At the beginning of Chapter 4，there are two examples of

interdependent cyclic parameter links. One of them is a recursive rule with

interdependent cyclic parameter links through common parameter while the another is

a recursive rule with interdependent cyclic parameter links through common subgoal.

These two recursive rules are displayed in Figure 5.13 again. I f we just look at the two

recursive rules, the two seem to be very different. However, if we express them in

graphical representations, the similarity between them can be clearly shown. With a

single dotted line to indicate that the two cyclic parameter links are interdependent in

Figure 5.14, we can see that all the subgoals involved in both cases must not fail in

order to avoid blockage in the infinite data transfer sequences (if any) passing through

the cyclic parameter links. To allow the involved subgoals in these interdependent cyclic

parameter links not to fail, in the case of common parameter, the values passing through

the common parameters in the cyclic connected data-link lists from both involved cyclic

parameter links must be the same. On the other hand, in the case of common subgoals,

196

the involved subgoal can , . , . 4 " I
graaphical representation (I) for the recursive rule with interdependent

o n l y succeed on l y i f t he cyclic parameter links throu^ common parameters in Figure 5.13

common subgoal is used to ^ ^ ^ ^
, ‘ J kJ) CJ L J 三 represents ,Tink1_a"

form the cyclic connected ^ -
d a t a - l i n k lists f r o m the two X 9 | represents "linki_b"

involved cyclic parameter V V � ： : represents ,."nk2_a,‘

links at the same time. It D - "U

can be explained by the 0 O O II「啊-tsTink2jy.
e x a m p l e s i n F i g u r e 5.15. graaphical representation (D) for the lecuisive rule with interdependent

cyclic parameter links through common parameters in Figure 5.13
X/A Y/B Z/C

The common subgoal Q Q O represents
in the recursive rule in ^ TT the common

^ X subgoal "link"

Figure 5.13 has two C j U U

different procedures in two " X •

different cases in Figure

5.15. In Case (I), as shown Figure 5.14

by its graphical representation, the recursion is blocked at the fourth level although data

analysis can detected a cyclic connected data-link list in each of two interdependent

cyclic parameter links. On the one hand, the common subgoal that can allow values to

be transferred through the cyclic parameter link between parameters X and A at the

fourth level of recursion is Unk(2，l，b，c). On the other hand, the common subgoal that

must be used to pass value through the cyclic parameter link between parameters Y and

B at the fourth level of recursion is link(l，2，a^b). Because two different common

subgoals are required by the two different involved cyclic parameter links, blockage

occurs. In Case (II)，the situation is different, with three more facts added to the

procedure link，the conflict of the subgoals is resolved and nontermination happens as

indicated by the graphical representation of Case (H) in Figure 5.15. If we compare the

two cases in Figure 5.15 with the examples of interdependent cyclic parameter links

through common parameters in Program (b) in Figure 5.1 and Figure 5.2, we

immediately recognize the striking similarity between the case of interdependent cyclic

parameter links through' common parameters and the case of interdependent cyclic

parameter links through common subgoals.

197

They show that

the data analysis method g(X，Y，Z):- link(X，A, Y, B), g(A3,C).

fails for the same Case (I) Case (11)

reason: data analysis link(l，2’a’b). link(2，l，b，a). 乂义丫,曰 Z^C
. link(l，2，c，a). (p ® 〇 i i n m 2 a b 、 c a n n o t r e c o g n i z e imK、i，z，a，Dj.

^ X/A Y/B"Z/C" 1 A ^ lmk(2,l,b,c).
blockage at common 爪 ^ v ^ link(l，2，c，a).

Y ^ ^ liiik(2,l,a,b).
parameter or common O link(l，2，b，c).
\ , (b © O r-T link^lca).
subgoal as a possible Y Y K A ^
exit condition. The 0) (O O T … f

reasons for the presence O 0 Y ^

of blockage in both fail at | ^ r ^
仙 l e v e l 各 ⑦ 门 (p ^ U

cases are the same: … A J w … I
although there are some cydic connected data-link set in (p O

b the cyclic parameter link between
common parameters or 二 =[fe”二tJ；二:pa;二？二 © (© O

"Y" & "B":- "a~b--c-a" • • •
subgoals t ha t are ： ： ：

supposed to be shared 1 1 = = = = = = = = ^
“ Figure 5•15

among the involved

cyclic parameter links, the possible data transfer sequences in these cyclic parameter

links require conflicting values to pass through some of these parameters or subgoals.

The conflict of values can be resolved, as shown in both Case (I I) in Figure 5.15 and

Figure 5.2, by adding more facts into the corresponding procedures to produce alternate

data transfer sequences. Furthermore, when the multi-level interdependent cyclic

parameter links are considered, the similarity between the interdependent cyclic

parameter links through common parameters and the interdependent cyclic parameter

links through common subgoals is evident in the similarity of the relations of the lengths

of the interdependent cyclic parameter links and the relations of the lengths of the

involved cyclic connected data-link lists. The examples and their graphical

representations in Figure 5.16 show that the three types of relations of the lengths of

interdependent cyclic parameter links are also present in the interdependent cyclic

parameter l ink through common subgoals. Similarly, the cyclic connected data-link lists

in the interdependent cyclic parameter links through common subgoals can be related

together in terms of their lengths as the cyclic connected data-link lists in the case of

198

Case (II) the example of interdependent cyclic
g o a l (A X , B X , C X j D X) p a r a m e t e r links with their lengths

lmkl(AX,XB), in a ratio of an exact multiple
P a 明 " 、 臓 邮 , x c) ，

VI； clink(BX,XA,CX,XD) goal(AXJ3X,CX,DX,EX风:-
goal(XA,XB,XC;XD). linkl(AX,XB), lmk2b(DX,XE), link2c(EX;XF),

the 右 link2ci(FX,CX), cliiik(BX;XA,CX,XD),
example goal(XA,XB,XC,XD,XE,XF).
S S e n t ^ Q^ DĴ
SSic 4 ‘ AX B^ ex. D> E> FX.

N i a
A /II丨、the example of interdependent cyclic parameter links
Case (III) established through subgoals with thier lengths not in

a ratio of an exact multiple
g 。 a l (A X ， B X ， C X ， D X ， E X) ： - = 综 翌 ； ^ ^ 激 滥 S ^) .

A々 A B̂ re BĴ e D备 • 备 • 务 ^^E • 务 • 务 [絮 O ^ Q O Q O 〇 o OJD 〇 QO … (X ： ^ 〇 o o >
办 … 〇 … 〇 \ 〇 〇

. o > . O ： ^ 〇 o ^
(^ ― … … 〇 \ 〇 〇
o > 〇-；；；；5> o X o

I cffS…'STo … o (T ^ 〇〇 9 O
Figure 5.16

common parameter. In Figure 5.17, we show some examples of the case of equal-length

cyclic connected data-link lists, the case of cyclic connected data-link lists with lengths

199

in the ratio of an exact multiple, and the case of cyclic connected data-link lists with

lengths not in the ratio of an exact multiple in a recursive definition with interdependent

cyclic parameter links of equal length. A l l these similarities between the interdependent

goal(AX,BX,CX4>X) > linkl(AX,XB), lmk2(DX.XC). c l i i ik(BX»XA,CX现 goal(XA^,XC;XD).
Case (I) an example of cydic Case (II) an example of cydic

connect^ data-link sets coliFi^data-link sets with their ^nnected data-link sets ̂ th ^ e r
with equal length lengths in a ratio of an eact multiple lengths not in a ratio of an exact multiple

J ^ p 3). l i n k l (4 , l) . I i n l c 2 (a . b) . 腿 (2 , 3) . 脑 糊 . J j ^ g ^ g :

« 4 , b , c) . c _ a , b) . c U n 1 c _ . c 。 二 c j j ^ 忠 念

cliiik(3,4,e 办

f 〇 J) @ o 2

f o JD_

) o > c ^ o f / ^ C ^ y

1<〇.0>」 < o
o > Co <〇.〇> 交 … \
<〇…〇> 办•<〇 Cp ' o ^ J

g T • … 〇 、 r < 0
) : o n e cycle of a cyclic 门 (T) (7) (~)

) connected data-link set w w w w

L _ — — — — — — — — — — — — —
Figure 5.17

cyclic parameter links through common parameters and the interdependent cyclic

parameter links through common subgoals show that the above discussion on how to

adapt data analysis to handle the presence of interdependent cyclic parameter links

through common parameters can also be applied to the presence of interdependent

cyclic parameter links through common subgoals with only slight modifications.

In the case of common parameters, we can detect blockage at common parameter

by comparing the common parameter value sequences from different cyclic parameter

links. The absence of blockage at common parameter is indicated by the presence of a

common parameter value sequence shared among all involved cyclic parameter links.

However, in the case of common subgoals, there are no common parameter value

200

sequences to be compared. We need another indicator. The indicator is the common

subgoal sequence. Data analysis can be modified to record each common subgoal used

during the cyclic connected data-link lists construction to form a sequence which is the

common subgoal sequence. In Figure 5.17, the cyclic parameter link between

parameters and BX/XB forms the cyclic connected data-link list of 2-3-4-1-2

in all three cases. Its corresponding common subgoals sequence is clink(3，4，b，c)--

clink(l2，d，a) in all three cases as well. Moreover, we can also modify the notion of

cyclic connected data-link list in a way similar to the case of common parameters to

incorporate the value of the common subgoals used in a particular cyclic connected

data-link list. For example, the cyclic connected data-link list of 2-3-4-1-2 can be

transformed to 2—3-[clink(3，4，b，c)]-4--l-[dink(l，2，d，a)]-2. The value between []

indicates the common subgoal responsible for forming the particular segment of the

cyclic connected data-link list. There is no blockage at common subgoal between two

cyclic parameter links if their common subgoal sequences are the same. For example,

for Case (I) in Figure 5.15, if data analysis is used, the cyclic connected data-link list in

the cyclic parameter link between parameters X and A is 1-2-1. But this cyclic

connected data-link list can have two different common subgoals sequences: link(l,2,a,h)

or link(l，2，c，a). For the cyclic parameter link between parameters Y and B, the cyclic

connected data-link list is a-h-c-a and there is only one possible common subgoal

sequence which is link(l，2，a，b)--link(2，l，b，c)--link(l，2，c，a). Obviously, the common

subgoals sequences from these two cyclic parameter links are different. The conclusion

drawn from this difference coincides with the result shown by the graphical

representation. On the other hand, in Case (II) in Figure 5.15, if common subgoals are

also considered in constructing the connected data-link list. One of the cyclic connected

data-link lists that can be formed in the first cyclic parameter link between parameters

X and is l-[Unk(l，2，a^b)]-2-[link(2，l，b，c)]-l-[link(l，2，c，a)]-2-[link(2，l，a^ b)]-!-

[link(l，2，b，c)]-2-[link(2，l，c，a)]-L The common subgoal sequence therefore is

Unk(l，2，aJjhlink(2，l，b，c)-4ink(l，2，c，a)--Unk(2，l，aJy)--link(l，2，b，c)--link(2，l，c，a). F o r the

cyclic parameter link between parameters Y and B，we can also form an equal-lengt衫

cyclic connected data-link list as a-[link(l，2，a^b)]-b-[link(2，l，b，c)�-c-[link(l，2，c，a)�

[link(2，l，aj))]-b-[Unk(l，2，b’c)�-c-[lin_，c，a)]-cL The common subgoal sequep?^

therefore is also link(l，2，a^b)--lmk(2，l，b，c)--link(l，2，c，a)—Unk(2，l，a^b)—link(l,2,l^，S)l”

201

link(2J，c，a). So the same common subgoal sequence in the two interdependent cyclic

parameter links indicates that there is no blockage at common subgoal between these

two interdependent cyclic parameter links. The graphical representation of Case (II) in

Figure 5.15 can confirm this conclusion. Therefore, by replacing the step of comparing

common parameter value sequence with the step of comparing common subgoal

sequence, the modification of data analysis for the case of common parameters can be

adapted to the case of common subgoals.

5.1.3 Interdependent Cyclic Parameter Links with Special Parameters

So far, our discussion has included only the cases of interdependent cyclic

parameter links formed by subgoals only. In this section, we shall look at

interdependent cyclic parameter links formed by special parameters. To reduce

redundancy, our discussion shall focus on interdependent cyclic parameter links formed

by lists because the similarity between lists and structured data, and lists are more

common in Prolog programming.

Although there are two kinds of interdependent cyclic parameter links for the

cyclic parameter links formed by subgoals, i.e，the interdependent cyclic parameter links

through common parameters or through common subgoals, there is only one type of

interdependent cyclic parameter links for the cyclic parameter links formed by special

parameter only. The reason is obvious. Since the cyclic parameter links formed by

special parameters contain no subgoal, interdependency must be established among the

cyclic parameter links through some common parameters. Of course, we can establish

interdependent cyclic parameter links through common subgoals in the case of cyclic

parameter links formed by both special parameters and subgoals. However, this is a

rare case and the case of interdependent cyclic parameter links with both special

parameters and subgoals is even more rare. Therefore, we do not go into detail. The

general principle for detecting any blockage at common subgoal in the case of the

interdependent cyclic parameter links formed by both special parameters and subgoals

is similar to the case of the interdependent cyclic parameter links formed by subgoals.

202

As shown in Section 4.5.2, we can construct connected data-link lists in the cyclic

parameter l ink with both special parameters and subgoals in a way similar to the case

of cyclic parameter links with subgoals. Therefore, we can detect the infinite data

transfer sequence in cyclic parameter links with both subgoals and special parameters by

detecting the presence of cyclic connected data-link lists. I f cyclic connected data-link

lists can be constructed in the interdependent cyclic parameter links with both subgoals

and special parameters and the interdependency is established through the common

subgoal, the modification for data analysis in the case of the interdependent cyclic

parameter links formed by only subgoals can also be applied to the case of the

interdependent cyclic parameter links formed by both subgoals and special parameters.

The discussion in Section 5.1.2 can be applied to this case without any adjustment.

Before we discuss how interdependent cyclic parameter links through common

parameters can be formed by the cyclic parameter links with special parameters only, we

shall first examine a special case. The well-known recursive definition append below can

be an example of the special case. In the recursive definition append, there are

append([E|X], Y, [E|Z]) append(X, Y, Z).

append([], L, L).

two cyclic parameter links. At first glance, they are interdependent because the

parameter E is shared between them. However, i f we examine the concept of cyclic

parameter link, we shall immediately notice that the parameter E actually is not

responsible for transferring data into the next level of recursion. It is the tails of the

lists in both cyclic parameter links, X and Z, that are passed into the next level. The

two cyclic parameter links are interdependent because blockage at common parameter

can happen if the values in the common parameter E are different in these two involved

cyclic parameter links. Therefore, the common parameter E can be an exit condition in

some situations. This wil l not be obvious if the recursive definition append is considered

alone. However, the common parameter E can be clearly shown as an exit condition by

203

is_prefix(Prefix, List)
一 append(Prefix, Remain, List).

append([E|X], Y, [E|Z]) append(X, Y, Z).
append([】，L，L).

using append to build the definition is prefix: in the definition is j)refix, the recursive

definition append wi l l terminate at the point where the list in the parameter Prefix

becomes empty or the first element in Prefix is different from the first element in List.

I f the recursive definition append is considered, the recursion stops when the values

passing through the common parameter E in the two interdependent cyclic parameter

links are different. Hence, the common parameter acts as an exit condition in this

situation.

However, if data analysis is applied to the recursive definition append, it wi l l

detect no infinite data transfer sequences in both interdependent cyclic parameter links.

When the evaluation of the recursive definition goes one level further, the lengths of the

connected data-link lists in both cyclic parameter links are one element shorter. Hence,

data analysis wil l yield the conclusion that the data transfer sequences can only be finite

in both cyclic parameter links. However, in the case of common parameters, data

analysis can correctly predict the result without any concern for the extra exit condition

provided by the common parameter.

Therefore, for the interdependent cyclic parameter links formed by special

parameters, the data analysis method only needs to be modified to handle those which

can form infinite data transfer sequences. As shown in Chapter 4, in the case of special

parameters, an infinite data transfer sequence implies that the lengths of the data

passing through all the involved cyclic parameter links either increase or remain

unchanged during the evaluation of the recursive definition. Therefore, we can change

the recursive definition append into the following recursive definition, which ^a^

interdependent cyclic parameter links through common parameters and requireis

consideration on its common parameter:

204

apd(X, Y, Z) :- apd([E|X], Y, [E |Z]) .

apd([], L, L).

In this recursive definition apd, the data transfer sequences in both interdependent cyclic

parameter links are infinite as indicated by some connected data-link lists with growing

lengths. Although a common parameter E appears in both cyclic parameter links, the

common parameter cannot act as an exit condition in this recursive definition. As

mentioned in our discussion on the case of interdependent cyclic parameter links formed

by only subgoals shown, the mere presence of common parameters does not necessarily

lead to blockage at common parameter. Nontermination can be avoided by common

parameter blockage only when the values passing through the common parameter in

different cyclic parameter links are in conflict. However, in order to have any conflict

in values, at least some values must be transferred through the common parameter

during the recursion. But if we examine the recursive definition apd again, we can see

that no value is transferred through the common parameter E during the recursion. In

fact, the common parameter E remains uninstantiated during the infinite evaluation.

By the example of the recursive definition apd, we can understand that the

common parameter in the interdependent cyclic parameter links formed by only special

parameters cannot provide extra exit conditions as in the ones formed by subgoals only.

Without any impurities, there is no input/output predicate in a pure Prolog program to

assign value to the parameter during the evaluation of a recursive definition. However,

an infinite data transfer sequence in the interdependent cyclic parameter links formed

by special parameters can only occur when the data passing through the cyclic parameter

links are lists of increasing length or lists of fixed length. In the case of increasing

length, new elements must be added into the list during the recursion. But since there

is no other way to input new values into a recursive definition during its evaluation

except through the arguments of the recursive definition themselves, the new elem^fit

that can be added into the list during the recursion can only be an uninstantf^tf^

variable as shown by the recursive definition apd. Uninstantiated common pamrngt̂ i：^

205

do not have any conflict in values and no blockage at common parameter wil l occur. I f

the infinite data transfer sequence is formed by passing some lists of fixed length during

the recursion, the values passing through the common parameter either are always some

new values, appearing in a repeating sequence or just are some uninstantiated

variables. As stated above, the values passing through the common parameter cannot

always be new values, therefore, the values passing through the common parameter can

either form a repeating sequence or are made up by some uninstantiated variables. I f

only uninstantiated variables appear in the common parameter, blockage at common

parameter wil l never occur. Then the only remaining possibility of common parameter

blockage is the case of common parameters with repeating values. The above recursive

definition apd is altered to provide the example below.

appd([E|X], Y, [E|Z]) :• appd([E|X], Y，[E|Z]).

appd([], L，L).

In appd, if any recursion can occur, the lists passing through both interdependent

cyclic parameter links will remain the same and the values passing through the common

parameter E wil l repeat infinitely. Although we can have the common parameter E to

be instantiated with some value in this case, the values passing through E will not be

different in different cyclic parameter links. On the other hand, if there is a conflict of

values in the argument of the recursive definition, eg” appd([l，2，3]，Y，[4，5，6])，no

recursion wil l ever happen. So, either there is no recursion or no blockage is possible

in this situation. In conclusion, we find that the common parameter cannot an extra exit

condition once infinite data transfer sequences occur. If we analyze the reason for the

absence of blockage at common parameter, we can realize that the infinite data transfer

sequences in the cyclic parameter links formed by special parameters can appear only

when there is no blockage at common parameter possible. Therefore, no modification

is needed for the data analysis method when the interdependent cyclic parameter

with only special parameters are considered.

206

Before we close our discussion on the interdependent cyclic parameter links with

special parameters, we must consider the possibility of forming interdependent cyclic

parameter links between the cyclic parameter links formed by special parameters alone

and the cyclic parameter links formed by subgoals only. Although it is a rare case to

mix these two types of cyclic parameter links together, we would like to examine this

case to complete our discussion on the interdependent cyclic parameter links with

special parameters. Let us consider the example below:

goaI(X, Y, Z) :- linka(Y,E), linkb(E,B),
goal([E|X], B, [E|Z]).

goaiai, L，L).

rmka(1，a). Iinkb(a,2).
Iinka(2,b). Iinkb(b,1).

In the recursive definition goal, there are three interdependent cyclic parameter links.

Two are formed by special parameters and one by subgoals. The common parameter

E is shared by all three. Although the uninstantiated variables no longer appear in the

common parameter, no commpn parameter blockage is possible in this example. In

order to have any conflict of values at the common parameter, the cyclic parameter links

formed by the special parameters need to have some solid values to be passed along.

However, as mentioned in the above discussion, this is not possible if any infinite data

transfer sequence can be formed in the cyclic parameter links with only special

parameters. Therefore, there is no need to modify the data analysis method in the case

of interdependent cyclic parameter links that are formed from cyclic parameter links

with only special parameters and cyclic parameter links with only subgoals.

207

5.2 A Special Case of Cyclic Parameter Links
established through Special Parameters

I n the pre- | j = = = = = = = = = = j
. . goal(D, end).

VIOUS section, we goal([X|L],Y) > goal(L,Y).
have discussed the Case (I) Case (II)

situation in which with the query "?- goal([a,b,c,d],Y)'' with the query "?- goal(L,Y)"

data analysis may goaI([a. b. c, d).⑩） goal (⑩，©)

overlook some po-

tential exit condi- ― ？ —) goal (③ , ©)

tions and give a false goal([(j，d],©)

w a r n i n g 。 f 9oal([dl.©) ^ 娜 〒 ⑩ ）

nontermination. In goal([], @) goal(@,⑩)
this section, we shall

. L . fail : goal([], end)
examine the situa- •
t ion in which data 、, ；：•: backtracking path •

⑩ :iminstantiated parameter •
analysis fails to indi- L _ _ _ ™ _ = = = = = = J

c a t e p o s s i b l e Figure 5.18

nontermination. In Figure 5.18, there is a simple recursive definition with only one

cyclic parameter l ink which is formed by special parameters. Because the length of the

list passed into the next level of recursion through the parameter L is one element

shorter than the list in the previous level, data analysis wi l l conclude that the data

transfer sequence in the cyclic parameter link is finite and wi l l consider the

corresponding recursive definition to be free of nontermination. However, the search

trees in Figure 5.18 show the above conclusion to be only partially true. In general, the

evaluation of a recursive definition can be terminated properly i f any list (or any value)

is supplied to be the first argument of the query. As shown by the search tree of Case

(I), the list supplied is shortened by one element in each level of recursion and

eventually brings the recursion to an end when the list becomes empty. But Case (I I)

shows that the evaluation of the recursive definition in Figure 5.18 can end in

nontermination in a special situation: i.e., when an uninstantiated variable is supplied

to the cyclic parameter l ink. The search tree of Case (I I) in the figure shows how

208

nontermination occurs. Unlike an empty list or a value, an uninstantiated variable can

succeed to be instantiated with the list [X\L]. So the head-tail separator, cannot act

as an exit condition. This is true for the operator，as well. Usually, such a problem is

considered as part of the well-known occur check problem.

In other words, for the cyclic parameter link established through special

parameters, we can be certain about the presence or absence of nontermination only

after we know what data are supplied to the cyclic parameter l ink when the recursive

definition is evaluated. However, there is no easy solution to this problem in an

analytical approach. The data supplied to the cyclic parameter link established through

special parameters are usually unknown until it is evaluated. For example, there is no

way to tel l whether the query ？- goal([a,b,c,d], Y) or the query ？- goal(•，Y) wi l l be used

if we just analyze the recursive defimtion goal. In more complicated Prolog programs,

the situation can become even worse. Merely analyzing the recursive definition or even

the entire program cannot determine what data wi l l be supplied to a particular cyclic

parameter l ink in a particular recursive definition. That can only be done by checking

the supplied data during the evaluation.

Figure 5.19 shows how the situation becomes more complicated if more than one

recursive definition are involved in the same recursive rule while a variable is supplied

to the cyclic parameter link with special parameters in one recursive definition. There

are two semantically identical Prolog programs in Figure 5.19. The only difference

between them is the position of the definitions prefix and suffix. In Program (a), the

definition prefix comes first while in Program (b) the definition suffix comes first. In

both definitions, there is a recursive definition appnd. I f it is analyzed with the data

analysis method, the cyclic parameter link in appnd is established through special

parameters and the data transfer sequence is finite because the list passed into the next

level of recursion is shorter than the one from the previous level. Therefore, according

to data analysis, no nontermination wil l occur in both programs. However, the search

trees in Figure 5.19 contradict this conclusion. Because the variable L is supplied to the

209

•I

Program (a) test(L) :- preftx(L,[a]), suffix([a]»L).
prefix(X,L) :- appiid(X,Y工). suffix(Y,L) :- appnd(X,Y,L).
appnd(D,LJL). appnd([HjX],Y,[H|Z]) appnd(X,Y;Z).

Search Tree (a) using the query "？- test(L)" for Program (a)

test(O) -

pr9fix(O.IaD / / pref«(0.lal) • ̂ ^ ^ 、 prefix(0. [a])
/ -prefix(ll.[a]) / / -prefixaa], [aD \

appnc/(0,©,【a» r / appnd(O.O. [a]) r ； appnd(o . Q. (aD
-appnd(ll.[al.la])/ | «appndaa].ll.[aD *appnd(© ’©, Q)

• iron : I *appnd(G.O.n):
appnd(n.lal.[al) ； suffix(【a】,D) ... | 細"n、

I I - appnd(D,l],n) 、 fail
/ , appnd(n,D,ID ::’ suffixda】,丨冲 \

、、--_ •'' appnd(G).laUl) , / • ^偷帆帥
/ ‘ \ \ / … / •：•• \ appnd(Q,[a]. [a])...

fail i appnd(0.[al,D) : -appnd(D.[al.[aD
. » ； ?、

\ appnd(n.[al.[a])
fail

• ‘ > ,
*

：the point where backtracking resumes the evaluation • : uninstantiated parameter

Program (b) test(L) > suffix([a]»L), prefix(L,[a]).
prefix(X,L) appnd(X,Y,L). suffix(Y»L) :- appnd(X»Y»L).
appnd(•’L，L). appnd(剛,Y，剛）:-appiid(X,Y^.

Search Tree (b) using the query "？- test(L)^ for Program (b)

test(O) • testaaD ^ \
丄、、 ”8uf f lxaa l .G) \

、、， 、、、,、 \ ”轉 " 〇 , 。 • • , » \ ...
suffix([al.O) / *"^fa】’〇）, 、appnd(0.la].0) \ •
/ -suffix([al.la])/ \ 敵aaUO’aD \ appnda〇.0_0’G),aD \ \ •
丄……、r / ； •appncl(Q,[a].0) 、‘ *。丄h … r 。 … 、 \

appnd(O. W. G) / \ appnd(O. N. O) \
-appndaMaUa])/ : \ • apP崎q]MlG.aD : appndaOlMlO.aD \ \

appndOHallaD : / .卿nd(0’〖a】,0) app\d(Q. la]. O) V ：
• , , prefixdal,帥.. \ - appnd(n.[a].la]) \ - appnd(D.la],[aD \ ：

•’..、 / I - r ^ ^ P - d Q . a U a l T 、 、丄•间)： - ^ - V ；

… / 一 《 二 棚 f a ^ • 眺 珊 ；
/ \ ^ ^ ^ appnd(Ial,〇，[D / ippndao.al.0.laD ； fall ;appnd(n.O.D •• f ^ > \ fafl > |

\ .appndai.D.l]) / \ f/appndaal.0.n)

;aPPncKD.D-D): 咖 f^ ^^^ :

. . . " fail fall /

* : the point where backtracking resumes the evaluation Q ： uninstantiated parameter
Figure 5.19 210

second parameter of the subgoal suffix in both programs, according to the procedure of

suffix, variables are then supplied to the first and third parameter of the subgoal appnd.

I f we examine the procedure of appnd, we can see both the first and third parameter are

the special parameters used in forming the two cyclic parameter links. This implies that

variables are indeed supplied to the cyclic parameter links by the subgoal suffix([a]，L)

in both programs in Figure 5.19. According to our earlier discussion in this section, we

can conclude that nontermination will occur in both programs.

But the search trees in Figure 5.19 again contradict this conclusion to be wrong.

Search tree (b) for Program (b) shows that nontermination will occur in Program (b)

and the reason of nontermination is exactly what we have discussed above: a variable is

supplied to the cyclic parameter link established through special parameters. However,

Search tree (a) indicates that it is difficult to approach the problem by merely analyzing

the program. Search tree (a) reveals why Program (a) can terminate. The variable L

can be instantiated to a certain value after the evaluation of the subgoal prefix. Because

the subgoal suffix([a]，L) is placed after the subgoal prefbc(L, [a]), the parameter L in

the subgoal suffix is no longer an instantiated parameter. Search tree (a) shows either

list [] or [a] wil l be instantiated with L when the subgoal suffix is evaluated. Because

the content of a parameter changes during the evaluation of a program, the real value

that is supplied to a cyclic parameter link during the evaluation of a recursive

definition can hardly be predetermined by an analytical approach alone. However, one

can handle this situation by tracing the input data for the cyclic parameter link

established with only special parameters during the recursion.

Although the data analysis method cannot detect nontermination caused by the

inappropriate data supplied, it can help to discern its cause. After data analysis yields

the conclusion that a cyclic parameter link with only special parameter can only have a

finite data transfer sequence, our discussion in this section indicates that any infinite

data transfer sequence appearing in this cyclic parameter link must have resulted from

the supply of inappropriate data. This piece of information will be very helpful to 终
t 、 ' � •

Prolog programmer remedying the problem. Since nontermination arises when any - / 、'；

uninstantiated variable is supplied to the cyclic parameter link established through

211

special parameters, nontermination due to this cause can be easily detected in a run-

time tracing approach by detecting any attempt to pass an uninstantiated variable to a

cyclic parameter link. Although it is hard to develop an algorithm to handle the entire

occur check problem, it can be seen that the present problem is much less serious and

can be tackled with a tracing approach.

212

CHAPTER 6 —Results and Conclusion

I n the foregoing chapters, the cause of nontermination in Prolog programs was

analyzed, algorithms were developed, and special recursive programs were investigated.

I n this concluding chapter, the results of the study are summarized; the limitations of the

algorithms are explained; some future research works are suggested, and a conclusion

is finally presented.

6.1 The Results and Implications

This thesis develops a new approach to detect nontermination errors in pure

Prolog programs, providing a theoretical framework based on static program structure

analysis for nontermination detection. The new method for nontermination detection

involves essentially the following steps: program structure analysis, parameter analysis and

data analysis.

Through program structure analysis, all the recursive rules in a given Prolog

program are identified. Then for each recursive procedure in a given program,

parameter analysis is carried out on each of its recursive rules. I f no cyclic parameter

links can be found, the recursive procedure would not be able to terminate. According

to our findings, such nontermination can be attributed to an improper definition of the

recursive procedure. The absence of a cyclic parameter link implies that i t is impossihlf^

to pass parameter values from the initial procedure call into successive parameter 麵喊锋•

or levels of recursion. As an exit condition should contain one or more variables

related to the formal parameters of a recursive procedure, i f the exit variable^

related to the formal parameters, the underlying exit condition cannot be a pfop^tione.
疼祐

..•••：,'.. •/•�.........-‘

• i.- .:、..“.、.1 ..V：：: • •• •

213

I n the absence of a cyclic parameter link, there cannot be a proper exit condition for the

recursive procedure. Therefore, nontermination wil l occur.

On the other hand, the presence of a cyclic parameter link in recursive procedure

implies that the parameter values first input from a procedure call to the recursive

procedure can be modified and transferred to successive parameter cycles or levels of

recursion. Therefore, the presence of a cyclic parameter link also implies that there is

a parameter modifying mechanism also known as parameter modifying process which is

usually a conjunction of one or more subgoals preceding the recursive subgoal, which

modifies the values of the formal parameters to other values for passing to the recursive

subgoal. Such a parameter modifying process is also a potential exit-reaching process

since there is a possibility that the initial parameter values may be so modified during

successive parameter cycles of recursion that they may eventually reach the state

required to satisfy the exit condition. Consequently, with a cyclic parameter link alone,

we can only conclude that there is a potential exit-reaching process. However, we

cannot be certain whether the potential exit-reaching process is a real exit-reaching

process; that is, whether the potential exit-reaching process can modify the parameter

values of the recursive procedure to reach the exit condition during recursion. In order

to confirm whether the recursive procedure can terminate, data analysis has to be

carried out.

For each cyclic parameter link, the data analysis algorithm first attempts to

construct a set of data links. Each data link represents the presence of certain

parameter (or data) values passing through the corresponding cyclic parameter link for

at least one parameter cycle of recursion. Then the data links are connected together

as far as possible, forming a set of connected data-link lists. Each finite connected data-

l ink list represents certain parameter values being able to be transferred over tb^

corresponding cyclic parameter link through several parameter cycles of reciir|iQi},
•；-、‘粥•沙戈

From the data transfer analogy, a connected data-link list represents a d^X^ tr^psfef

sequence over the cyclic parameter link. I f there is at least one cyclic ^
• 'V • ••;.、:*,:- ”：，?•-

recursion of the procedure wi l l not terminate; a cyclic data-link list implies ；it̂ t̂ gll Qr
... .'；.,’V广、、• :：

part of the underlying parameter values can be repeatedly transferred pygr
. • • • .

214

\>

parameter link during recursion. So, a cyclic data-link list corresponds to an infinite

data transfer sequence. In this situation, we can confirm that the parameter modifying

process is not an exit-reaching process since it cannot modify during recursion the

parameter values to satisfy the condition for exiting the recursion. On the other hand,

if the set of connected data-link lists contains only finite connected data-link lists, the

recursive procedure can be confirmed to have no nontermination problem. It can also

be confirmed that parameter modifying process is an exit-reaching process.

For a cyclic parameter link established through special parameters such as those

based on list structures, instead of constructing a set of connected data-link lists, the

data analysis algorithm attempts to find out the change tendency of the data (or

parameter) values over the cyclic parameter link for one parameter cycle of recursion.

I f change tendency is not a negative value, the recursive program cannot terminate as a

negative change tendency value represents the presence of an infinite data transfer

sequence over the cyclic parameter link.

6.2 Limitations and Future Research

Although parameter analysis can generally be used to detect the presence of any

potential exit-reaching process by constructing cyclic parameter links, data analysis is

limited to pure Prolog programs. As pure Prolog is a subset of general Prolog, data

analysis cannot be always applied to general Prolog programs. However, further

research should be conducted for incorporating the data analysis and certain run-time

tracing techniques for the detection of nontermination in general Prolog programs.

Moreover, our compile-time approach to nontermination detection provides a sound

foundation for the implementation of a relatively powerful nontermination d m g ^ } ^
� ‘ : ？ 、 ‘

system.
：. > »

Another limitation of our present data analysis algorithm is tliat _ solutigp fe巧乡

been found for nontermination caused by the input parameter prphj^m； i l f ft Prolog
".、、、:..：:巧.紀《.::‘..：；、

• •、： 、么.•於 215

recursive procedure, some of its special parameters should be classified as input

parameters. That is, when such a procedure is called, those input parameters should

be instantiated to some values. For instance, the data analysis algorithm wil l conclude

that there is no nontermination problem in the recursive definition defined by the

recursive rule below:

append([X|L], L_, [X|L__L]) :- append(L, L一，L L).

I t is obvious that the above recursive rule wil l terminate only if the first parameter of

append is bound to a ground list structure when it is invoked. Otherwise, a query of the

form ？-append(X,Y,Z) can cause the evaluation of this recursive definition to become

nonterminating. In fact, Pliimer has worked on this problem with a mathematical

approach [9]. Evidently, a compile-time method cannot easily handle the problem since

the termination of this type of procedure wi l l depend on whether there is any ground

value bound to its input parameter.

One more limitation of the present data analysis algorithm is that it cannot

handle the situation of having multiple recursive subgoals in a single recursive rule.

Although we have illustrated in Figure 4.16 in Chapter 4 how data analysis can handle

the case of multiple recursive subgoals in a single recursive rule, there is a subset of the

case which data analysis cannot deal with. As an example, consider the recursive rule

below:
goal(X,Y) subgoal_l(X，A)，goal(A,B), goal(B,C).

Although our data analysis can deal with the first recursive subgoal in this recursive rule,

it cannot handle the second one because the cyclic parameter link for the second

recursive subgoal is established through the first recursive subgoal. Though the presejit

algorithm can determine whether the first recursive subgoal in the recursive r u k 咖

terminate or not, i t cannot find out what data can be passed in and out q | tj^e
. . .讚 .職

parameters A and B. Therefore, it cannot be applied to the second recursive

The two examples in Section 5.2 of Chapter 5 also demonstrate that {he PCf^s îlt

algorithm cannot handle the case of a cyclic parameter link establishe(J l^rQ^gh 绝缺|终I

「:、:、.:“).、、
.....：.V •::�::.:.; .

二••.....
216

parameters. Since a recursive rule with multiple recursive subgoals is quite important

in Prolog programming, further research should be done in this direction.

Chapter 5 shows that the data analysis algorithm formulated in Chapter 4 has

another limitation. That is, it does not handle a recursive definition with

interdependent cyclic parameter links. In fact, the interdependency between different

cyclic parameter links can establish a kind of exit condition in some situations. Chapter

5 has already provided some useful ideas concerning how to handle this type of recursive

definitions. Therefore, what remains to be done is to spend more effort on

reformulating the present data analysis algorithm in order to include the ideas depicted

in Chapter 5.

The present parameter analysis and data analysis algorithms focus only on

sequential Prolog programs. It may be fruitful to do more research to explore using and

expanding the techniques devised in thesis to handle the nontermination problems in

parallel Prolog programs.

6.3 Conclusion

«

This thesis develops a compile-time analytical approach for detecting

nontermination in pure Prolog programs. The underlying theories and algorithms can

serve as a sound framework for nontermination detection.

Before the algorithms in Chapters 3 and 4 were formulated, the cause of

nontermination of pure Prolog programs was first examined. In the context of a Prolog

recursive definition, an exit condition should contain variables related to thg^

parameters. The exit-reaching process, which modifies the exit condiJipQ tp

reach the state for exiting the recursion, is in general a conjunction of p 伸 蘇 赫 殘

subgoals preceding the recursive subgoal in a recursive rule. In fact, reaf^bing gQ

condition means that reaching the state at which the conjunction of ^ubgo^ls
• - .- . :� “ • . • • ‘ � .

_ ‘ ^ r ；.

217

‘‘

representing the exit condition fails, thus preventing any further recursion from taking

place. Therefore, our method of nontermination detection involves detecting the

presence of an exit condition and the necessary exit-reaching process.

The parameter analysis algorithm presented in Chapter 3 can be used to analyze

a recursive rule to check for the presence of an exit condition by constructing cyclic

parameter links. The absence of any cyclic parameter link may be interpreted as having

an exit condition; thus the recursive definition wil l not terminate. I t also means that the

recursive rule has not been properly defined. On the other hand, the presence of one

or more cyclic parameter links for a recursive definition means that there is an exit

condition, implying there is a parameter modifying process which is a potential exit-

reaching process. To confirm the presence of an exit-reaching process, data analysis has

to be performed. Subsequently, it can be concluded whether the recursive procedure

can terminate.

Though restricted to handling pure Prolog programs, the present algorithms are

relatively powerful when compared with those devised by Shapiro. They can work quite

independently. In general, they do not require the user to supply any information,

whereas Shapiro's nontermination diagnosis algorithm requires the user to provide a

query and a stack depth. The result of his algorithm may rely on the information

provided the user. I t is believed that the present data analysis algorithm can be

enhanced considerably to cope the special types of recursive definitions. However, the

parameter analysis algorithm is applicable to both pure and general Prolog programs,
. . �

Further, the compile-time analytical techniques developed in this thesis and the run,

time tracing techniques used by Shapiro can be merged together to formulate morp

powerful nontermination diagnosis algorithms for general Prolog programs. Lastly,协e

parameter l ink graphs and the data link graphs developed in this thesis havQ shqxvn tp
> •；..V •• ‘- •'•« ... • ；•• - •• .. •. 1

be powerful for facilitating respectively the analysis of parameters an动 d a t ， j p

a recursive procedure. ’ ；'、‘
•、.“..广广i . V .:厂-丄.
'.....•‘ ： “ • X.. • A . . » •
•. ‘ _ ： '. -，，‘-'i."V、.、-i.、 . . “；' ” .- »

2 1 8

t 」 •

Reference

[1] M.A. Covington. Eliminating Unwanted Loops in Prolog, ACM SIGPLAN
Notices, 1985, Vol. 20，#1.

[2] M.A. Covington. Further Note on Looping in Prolog, ACM SIGPLAN Notices,
1985，Vol. 20，#8.

3] M. Baudinet. Proving Termination Properties of PROLOG Programs: A
Semantic Approach, the Proc. of the Symposium on Logic in Computer Science，
IEEE, July 1988.

[4] D.R. Brough, CJ. Hogger. The Treatment of Loops in Logic Programming,
Technical Report DoC 86/16, Department of Computing，Imperial College of
Science and Technology, London，September 1986.

[5] D.R. Brough, A. Walker. Some practical properties of logic programming
interpreters, Proc. FGCS, 1984，p.149-156.

[6] A. Van Gelder. Efficient Loop Dectection in Prolog-Using the Tortoise-an令
Hare Technique, J. Logic Programming, 1987, #4，p.23-31.

. , • .

• -

7] R. Kowalski. Logic for Problem Solving, North Holland, 1979.

[8] D. Nute. A Programming Solution to Certain Problems with Loop^ ill I!lrpl9||,
ACM SIGPALN Notices，1985，Vol. 20，#8. •糖：坊)

. 霄 V . 。 ：
• . ‘ (

• - • < • ‘ . •

[9] L. Pliimer. Termination Proofs for Logic Programs b ŝipd 刚 i ^ t c a f ^
Inequalities. ”（

- .： . . ’::.X...取r
[10] D. Poole, R. Goebel. On Eliminating Loops in Prolog, SlGFl^ff 如ces’ 1984,

Vol. 20，#8，p.38-40. ‘ .?「’-、，.:::::” 广兴势•辩
• • . ：； ,••‘ •

• •,. + :..... ‘‘ 、- .、:•？-
• •• .. •

219

[11] D. De Schreye, K. Verschaetse, M. Bruynooghe, On the Existence of
Nonterminating Queries for a Restricted Class of Prolog-clauses, Artificial
Intelligence, 41，1989，p.237-248

12] D. D e Schreye, K. Verschaetse, M. Bruynooghe, A practical technique for
detecting non-terminating queries for a restricted class of Horn clauses, using
directed, weighted graphs.

[13] E.Y. Shapiro. The Art of Prolog, MIT Press, 1986.

[14] E.Y. Shapiro. Algorithmic Program Debugging, MIT Press, 1983.

[15] Ibid., p.59.

16] J.D. UUman, A. Van Gelder. Efficient tests for top-down termination of logical
rules, JACM 35, (1988), p.345-373.

[17] W.F. Clocksin, C.S. Mellish. Programming in Prolog, Springer-Verlag, 1981

—,-”；.

220

画
一

 ：
惑

i..
 _

：

1
 I

•

"
‘
，
一

.
.
.
.

.

.

.

.

.

、

_

-

_

.

：

.

一

.
广
.

 f

.
 .

 .

 -

 .

 .

 .

ijr、：，
 .
.
.

.

一

•

”

.

 ：、

费•繁，r-BV、、？-..-...:..>〔.f-....‘？

•

.

.

.

.

.

.

.

.

.

 •:.、.

 ..

洽
 x
i

了
t

！

-

H

.

-

, -

’
a
t
 ：“

.

.

-

 .
:
厂

.

.

-

‘
 .
.
.

.

：

•

 ..

：

 •
•

.

 ,.

,

,

歡

？
 .
 f

 v
 •

 •

 -

-

.

：

•

,

：
,

-

.

 -

 ,

 r•
一

”•

“

/
2

.

•

.

•

.

，

，

 .：,.

 •
•
 .
 S
遍

,

：

.

.

•

 •——

.

•

.

 -
.

.

 ̂
^

“
炉
I
i

 〜.
 .

 .
.

 、

 .

 ,,

 .
.

 c
-
滅

；

：

•

•

.

.

,

.

：

 •

 .

 1

 ‘

 _

 ..

 .J

•
 t’

...

.

.

：

,

•

：

-

.

.

.

K
 ‘、

.

.

“

.

.

.

： .

：

.

、

；

 r

 ：

,

5

CUHK L i b r a r i e s tmmm

