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Abstract 

Though Prolog is supposed to be a declarative programming language, 

nontermination is a common phenomenon in recursive procedures written by the novice 

Prolog programmers. The detection of nontermination errors inherent in Prolog programs 

has been investigated by various contemporary research workers. Yet no sound 

nontermination diagnosis schemes have been devised. This thesis investigates the 

nontermination issue in pure Prolog programs and develops some algorithms based on 

certain compile-time techniques for nontermination detection. The compile-time techniques 

already devised include static program structure analysis，parameter analysis, and data 

analysis，which correspond to the three essential steps for nontermination detection. 

To diagnose any nontermination problem in a given program, static program 

structure analysis is first performed to identify all the recursive rules. Then parameter analysis 

is carried out on each recursive rule to construct cyclic parameter links. The absence of any 

cyclic parameter link implies that there is a nontermination error in the recursive procedure. 

If one or more cyclic parameter links are found，data analysis has to be performed on each 

of the parameter links in order to construct a set of connected data-link lists. A connected 

data-link list corresponds to one possible sequence of parameter values to be passed over the 

cyclic parameter link through some parameter cycles of recursion. If for each cyclic 

parameter link, there is at least one cyclically connected data-link list, it can be concluded 

that the recursive procedure will not terminate. 

Despite some limitations，the present algorithms can handle many of th^ 

common recursive definitions in pure Prolog. Moreover, parameter analysis and (i^q 

analysis have been shown to be powerful tools for detecting nontermination. J^麵 
- •、，、 - . 

techniques provide a sound foundation on which further research can be done pnfm (ci 
. • ‘： • • 

enhance the nonterrnination detection capability of the present algorithms. 
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CHAPTER 1 一 Introduction 

1.1 The Problem 

In Algorithmic Program Debugging’ Shapiro presented a debugging scheme for 

logic programs. Based on the procedural semantics of logic programs, he distinguished 

three types of semantic errors in logic programs: (i) termination with incorrect output, 

(i i) termination with missing output, and (iii) nontermination [14]. Shapiro also provides 

algorithms to diagnose erroneous procedures. His algorithms are all based on a 

dynamic tracing technique. 

However, any debugging algorithm based a dynamic tracing technique can 

encounter a problem in detecting nontermination: the simulation of a nonterminating 

program may not be able to terminate, and consequently the nontermination detection 

process may become nonterminating. In order to prevent from getting into a 

nontermination situation, Shapiro's nontermination diagnosis algorithm always requires 

its users to supply a safeguard upperbound for any given program. Once the 

upperbound is reached, the algorithm stops tracing the program any further no matter 

i f a conclusion, concerning whether the program terminates, can be made. In this 

situation, it may not be able to determine if the program wil l terminate. Shapiro was 

aware of this weakness and admitted that his nontermination diagnosis algorithm "may 

fail to detect an error in a program that exhausted a resource, and in such a case it is 

up to the programmer to decide which ... action to take" [15]. 

Shapiro's nontermination diagnosis algorithm has another shortcoming since it 

cannot locate precisely what causes a nontermination error. Unlike the algorithm used 

for detecting termination with incorrect output or termination with missing output, whic^ 
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can identify a particular procedure responsible for the error, the nontermination 

diagnosis algorithm can only return the sequence of procedure calls which repeats itself 

indefinitely if any nontermination can be detected at all. Evidently, the other problem 

is that since the nontermination diagnosis algorithm cannot identify the exact location 

of an error, it is up to the user to find out why nontermination occurs in a particular 

sequence of calls. (Shapiro's nontermination diagnosis algorithm wil l be examined more 

closely in Section 1.2 below; further details can be found in [14] and [13].) 

Nontermination is a general phenomenon and a serious problem in Prolog 

programming. As the definition of a Prolog program is supposed to be based on a 

declarative programming paradigm, a novice programmer may not be aware of any 

nontermination errors inherent in his Prolog programs. Therefore, there is indeed a 

need to develop nontermination detection algorithms. In view of the limitations of 

Shapiro's nontermination diagnosis algorithm, this thesis attempts to explore the 

possibility of developing more powerful diagnosis methods. Due to the time constraint, 

the scope of the present investigation has been confined to the problem of 

nontermination in pure Prolog programs. In particular, the algorithm to be developed 

should satisfy the following criteria: 

a) I t should not become nonterminating while diagnosing nontermination errors in a 
given Prolog program. 

b) It should not require the user to provide information such as stack depth like what 
is required by Shapiro's algorithm before detecting any potential nontermination 
error present in a given program. This is important since the programmer may not 
be able to provide the accurate information. 

c) I t should be able to locate from a given program the procedure causing 
nontermination. In addition, it should also be able to identify accurately which one 
of the rules defining the procedure is responsible for the nontermination. Better 
still, i f it can locate which part of the rule, which causes the error. I t would be ideal 
if the information provided by the algorithm at the end of the diagnosis can help the 
user to realize why nontermination occurs in his program. 

2 



1.2 Related Works 

Shapiro's approach to the diagnosis of nontermination is based on a concept he 

called well-founded ordering, A set of elements is considered to be in a well-founded 

ordering if 

(1) the set is not infinite; and 

(2) any pair of these elements are in a binary relation which is transitive, 
asymmetric and irreflexive. 

Shapiro considers terminating programs as those where the computation can only 

generate procedure calls which are in a well-founded ordering. In other words, the well-

founded ordering of procedure calls is considered to be the characteristic for the 

termination of a Prolog program. Therefore, his nontermination detection method 

relates to detecting any procedure call sequence that violates the ordering. 

However, Shapiro does not suggest how to implement an exhaustive search for 

violation of a well-founded ordering in a sequence of procedure calls. Instead, in 

Algorithmic Program Debugging, Shapiro suggests an algorithm that searches for a looping 

segment in a procedure call sequence. A looping segment, or a loop, appears in a 

procedure call sequence when a procedure is repeatedly called with the same input data 

or parameter values. Since two procedure calls are in a well-founded ordering only if 

they are in an asymmetric and irreflexive relation, the well-founded ordering is obviously 

violated in a procedure call sequence if certain procedures are called repeatedly with 

the same parameter values. 

Evidently, Shapiro's nontermination diagnosis algorithm is based on the detection of 

a looping segment in a particular procedure calls sequence. He makes use of a stack to 

keep track of all the procedure calls. The height of the stack is supplied by the user 

who is assumed to have knowledge about the intended behavior of the program being 

tested. In his algorithm for nontermination detection, the procedure being tested is 

simulated with a particular input and the procedures called during the evaluation are 

put on the stack. The process then goes on until the simulation is completed by itself 
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or the stack depth exceeds a given upperbound. In the former case, the implication is 

that the procedure is free from nontermination with a particular input. However, this 

does not imply that the program being tested is free from nontermination under all 

circumstances. In the latter case, the simulation is aborted and the procedure calls in 

the stack are examined. I f a looping segment is found, the algorithm returns the 

segment. Otherwise, a message is returned to the user to indicate that it is not certain 

whether the test program has a nontermination problem. Since Shapiro's algorithm for 

nontermination detection needs to simulate the evaluation of the procedure being tested, 

it can be classified as a kind of run-time or dynamic tracing technique. 

One of the most obvious shortcomings of Shapiro's algorithm concerns the way the 

stack is used. Since the simulation is aborted once the stack height is exceeded, 

determination of the stack height becomes very important for a successful search for the 

looping segment. I f i t is too small, the simulation wil l be aborted without yielding any 

useful information. Consequently, when a simulation is aborted without returning a 

looping segment, we cannot be sure whether the stack height is too small, or the 

procedure being tested is nonterminating. On the other hand, if the stack height is too 

large, it becomes very time-consuming to n in the test. Since the height of the stack is 

supplied by the user, it is assumed that the user has a very clear knowledge of the 

intended behavior of his program. However, such an assumption may not always be 

valid. 

Gelder's Tortoise-and-Hare technique represents a significant improvement on 

Shapiro's approach [6]. Gelder's method no longer requires the user to provide the 

stack height. But two pointers, the hare and the tortoise, are required to point to 

different points of the stack. When simulating the execution of a procedure, the stack 

building steps are alternately labelled as hops and walks, starting with a hop. In the 

hopping steps, only the hare pointer can move up the stack by one level while i样热癸 

walking steps both pointers move up the stack. The result is that the hare always 

at the top of the stack while the tortoise always points at about the middle of the ^ ^ ^ 

After each step, the elements pointed by the two pointers are compared, I f X\ipy ar^ 

essentially the same，a looping segment is found; otherwise, the process goes pn until 终 

..：；；、：.1 
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looping segment is found or is terminated by the user. Two procedure calls are 

essentially the same i f they differ only in variable names. For example, two Prolog goals 

a(l，X) and a(l，Y) are essentially the same because the variables X and Y can always be 

unified. Since the variables in a procedure call is renamed by Prolog during the 

evaluation, Gelder specifically introduces the concept of essentially the same to avoid 

overlooking certain possible looping segments in Prolog programs. The Tortoise-and-

Hare technique works because the two pointers are always kept apart with a distance of 

half of the procedure calls sequence. Therefore, the distance between them increases 

as the height of the stack grows. If the procedure calls are in an infinite loop with a 

looping segment of length n, the distance between the two pointers wi l l eventually grow 

to a multiple of n and catch the looping segment. Similar to Shapiro's algorithm, 

Gelder's Tortoise-and-Hare technique is also a kind of run-time tracing technique. 

Apart from the attempt to develop diagnostic methods for nontermination in 

Prolog programs, there have been efforts to tackle the weakness of the conventional 

Prolog execution model in coping with certain special loops. Covington [1] notices that 

expressing transitive relations, symmetrical relations or biconditionals in Prolog 

programs can lead to infinite loops. Although the aim of Covington's work is to modify 

Prolog's implementation in order to enhance the power of Prolog to express transitive 

and symmetrical relations and biconditionals, his works [1,2] relate to nontermination 

detection in two respects: first, the algorithm suggested in his works can be used for 

diagnosing nontermination caused by transitive and symmetrical relations and 

biconditionals; second, his works show that some infinite loops are caused by 

inappropriate Prolog program structures. Although the first aspect of his work can only 

be incorporated into a mn-time tracing algorithm, the second aspect implies that at least 

some nontermination errors can be detected by a compile-time analytical approach. 

Furthermore, when Nute tries to tackle a similar problem [8], he points out that a looj) 

wi l l only occur in a Prolog program with some recursive definitions. Poole and Ggel^^J 

[101, on the other hand, suggest that the elimination of loops in Prolog programs c ^ bg 

better performed by modifying the program instead of using the methods sugge^t^fl 換 

Covington and Nute (see [1], [2] and [8]). Kowalski also points out Ih^lj 

inappropriate recursive definition can result in nontermination [7]. He npti^g^ th^t 
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there are two types of infinite loops [7]. Apart from the infinite loops discussed by 

Shapiro and Gelder, there are infinite loops caused by divergent recursive calls. A 

divergent recursive call can generate an infinite sequence of procedure calls in which 

there is neither any exact looping segment nor any elements which are essentially the 

same. Although he does not directly suggest any algorithm to handle the inappropriate 

recursive definition, he suggests that one can identify the infinite recursive calls by 

analyzing the change of the argument values of the recursive definition during its 

evaluation. Therefore, his work provides an approach to detect infinite loops that 

cannot be detected by Shapiro's and Gelder's mn-time tracing technique. Although his 

approach also suggests a mn-time tracing technique, it shows that analysis on the 

arguments of a recursive definition can be crucial in detecting nontermination in certain 

Prolog programs. 

On the other hand, some researchers have tried to explore the compile-time 

analytical approach to nontermination detection in Prolog programs. In De Schreye et 

al，s work [12]，a directed, weighted graphs technique is employed to detect 

nonterminating queries for the recursive definitions of a restricted class: recursive 

definitions with left-recursive rules in the form "P(.") :-?(...)"• In [11]，De Schreye et al 

prove that there is a necessary and sufficient condition for the existence of a query that 

is nonterminating in the absence of occur check. By representing the evaluation 

generated by a query with a rational tree, one can adopt a mathematical approach to 

analyze the evaluation of the recursive definition with left-recursive rules. This analysis 

shows that it is possible to associate a weighted, directed graph to a recursive definition 

with left-recursive rules if and only if the recursive definition can admit a 

nonterminating query. Although their nontermination detection algorithm has limited 

computational complexity at compile time and can be easily implemented, it suffers from 

a great disadvantage: it has very limited scope of applicability. There are also other 

nontermination detecting techniques based on the compile-time approach [5,16]. 

Nontermination is detected by a combination of global analysis and methods whiqb 

prove that the length of certain data structures becomes increasingly shorter du如g (he 

evaluation of the recursive definition. 
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A more general solution is explored under the mathematical approach. In [3], 

Baudinet tries to develop a method to prove the termination properties of Prolog 

programs. As a system of functional equations, a Prolog program actually maps a goal 

to the sequence of answer substitutions that can be generated when the goal is supplied 

as a query for the program. Such a sequence can be either finite or infinite depending 

on whether a finite or infinite number of answers is produced. In Baudinet's method, 

how to translate a Prolog program into some appropriate semantics equations is a 

central concern. By transforming a Prolog program to a system of functional equations 

of which the least fixpoint is the meaning of the program, he shows that termination or 

nontermination properties can be proved by reasoning with these functional equations 

and using fixpoint induction or structural induction. Usually, structural induction is 

sufficient to prove the universal termination of a program for the type of goals that have 

finite and proper answer sequences. When a program loops, fixpoint induction is 

needed. Since the properties can only be obtained through reasoning the program 

equations through fixpoint or structural induction, the implementation of Baudinet's 

method requires a mn-time tracing approach. However, in general, the mathematical 

approach employed in this method indicates an analytical approach to nontermination 

detection can be fruitful. 

Pliimer also uses a mathematical approach to provide a termination proof for Prolog 

programs [9]. However, his focus is on the recursive procedure with recursive data 

structures. In fact, his work is an attempt to overcome the restrictions of the technique 

suggested in [16]. In order to handle the case of certain complicated recursive data 

structures, the notion of linear predicate inequalities is introduced in his work. The 

presence of linear predicate inequality is a termination proof for a recursive procedm^ 

with recursive data structures. In Pliimer's method, linear predicate inequalities g p 

derived using the technique of AND/OR dataflow graph. In other words, hg 

a compile-time analytical approach to nontermination detection for a specij^l p{ 

Prolog programs: programs with recursive procedures that have recursive data litrwctur^ii. 

More importantly, his work shows the possibility of incorporating graph techniques m 

the Prolog nontermination detecting methods. 
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1.3 Contribution of the Thesis 

The major contributions of the thesis include the following: 

i) I t develops a compile-time approach based on static program structure analysis to 
detect nontermination in pure Prolog programs. As this approach does not require 
the simulation of the execution of a program being examined, therefore, the 
diagnosis algorithm would not become nonterminating. 

i i) The methodology developed in this thesis can detect nontermination in different 
types of Prolog programs, unlike many of those devised by contemporary workers, 
which can only handle Prolog programs having some special structures. 

i i i) The algorithm based on static structure analysis can locate relatively precisely which 
part of a given program responsible for causing nontermination. 

iv) The algorithms developed in this thesis can be used to generate useful information 
which may help the user to understand why his/her program does not terminate. 

V) The parameter and data analysis techniques developed in this thesis provides a 
theoretical framework for nontermination diagnosis in pure Prolog programs. The 
techniques can also be applied to full Prolog programs with some restrictions. 

vi) The successful development of the parameter analysis and the data analysis 
technique for nontermination detection provides insight into the cause of 
nontermination in a recursive Prolog program. With such a knowkdge, a Prolog 
programmer can more easily prevent writing nonterminating recursive programs. 

1A Outline of the Thesis 

In Chapter 2, the basic concepts of logic programming and the Prolog execution 

model are reviewed. Then we investigate how nontermination can occur in a pure 

Prolog program; the concepts of exit condition and of exit-reaching process in tbg 

context of a recursive procedure in a conventional programming language ^xp 
• • • .、 . - ,、 、•： 

introduced. We show how such concepts can be applied to a recursive Prolog defiRitiuri, 

The presence of an exit^reaching process implies that there must be one pr jgfTigjrg 

variables in the exit condition; and the values of the variables must be moclified py the 
• . . 、 . . . 
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exit-reaching process during recursion. In a Prolog recursive definition, a variable of the 

exit condition must also be related to a parameter, an exit-reaching process should a 

parameter modifying process. A t the end of this chapter, we briefly mention the 

possibility of developing a preliminary test for nontermination error in a Prolog program 

based on the analysis of parameters. 

In Chapter 3，we develop parameter analysis algorithms. In Section 3.1，we show 

what a parameter link is. Then we explore how a parameter l ink can be formed in 

different ways. In Section 3.2, we explain how parameter links can be connected to form 

a cyclic parameter link. These two sections also explain how a cyclic parameter l ink can 

be related to the parameter modifying process. In Section 3.3，we introduce graphical 

notations for representing parameter links and cyclic parameter links. Then algorithms 

for constructing parameter links and cyclic parameter links are presented. 

In Chapter 4 we develop algorithms for data analysis. In Section 4.1, we explain what 

a data l ink is and how it can be formed for a cyclic parameter l ink of a recursive 

definition. In Section 4.2, we show the difference between pure Prolog and general 

Prolog, and illustrate how such difference can affect the method for data analysis. In 

Section 4.3, we show the relationship between data links and nontermination. In Section 

4.4，we illustrate how data links can be employed to detect nontermination. I t is also 

shown that data links can be connected to form connected data-link lists which can 

represent the data transfer through the cyclic parameter link. Consequently, 

nontermination can be detected by examining the connected data-link lists. In Section 

4.5，the construction of data links and connected data-link lists for special parameters 

are considered. Finally, the algorithms for data analysis are presented in Section 4.6, 

In Chapter 5，two special cases are considered to enhance the power of d^t^ 

analysis. I n Section 5.1, the case of interdependent cyclic parameter links is e^^inm^cj? 

We show how interdependent cyclic parameter links can arise from cycUc 辦知 

links sharing certain common parameters or common subgoals. Then we 哪 

the interdependency can cause the method of data analysis mentionec} in QaRt^ r 4 tQ 
• . . . •：广:.、•、•、 

give incorrect conclusions. We also discuss what adjustments of the fpr^gaing ci^ta 
• • 、 . . : . . 、 . .. . 
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analysis method need to be made in order to handle recursive definitions with 

interdependent cyclic parameter links. Concerning the case of cyclic parameter links 

established through special parameters, data analysis may be inadequate for detecting 

nontermination in a special situation. In Section 5.2, we investigate why data analysis 

may fail in some special situations. 

I n Chapter 6，the results of the study are presented. Then the limitations of the our 

algorithms and the future research are discussed. Finally, a conclusion is made. 
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CHAPTER 2 —Nontermination and 
Recursive Definitions 

In this chapter, we shall first present an overview of the Prolog execution model. 

Through a discussion of the execution model, we shall see that Prolog is different from 

conventional programming languages in one important respect: nontermination in Prolog 

programs occurs only in the form of recursive definitions. A Prolog program will 

terminate properly only if all of its recursive definitions include certain termination 

requirements. In general, the requirements for terminating a recursive definition consist 

of exit conditions and an exit-condition reaching process [7]. Nontermination in Prolog 

programs occurs when any one of these termination requirements is absent from the 

recursive definitions in a Prolog program. In the rest of this chapter, we shall analyze 

what exactly constitutes the exit condition and the exit-reaching process in Prolog. This 

analysis shows two important aspects of the termination requirements. Firstly, it shows 

that either the exit condition or the exit-condition reaching process is formed by the 

parameters and/or the subgoals in the recursive rule only. Secondly, it shows that the 

exit condition and the exit-condition reaching process are in an interdependent 

relationship; the existence of one of them implies the existence of the other. These 

findings indicate the possibilities of developing a nontermination detection system based 

on analyzing parameters. 

2.1 Prolog Execution Model 

In this section, an overview of Prolog and its execution model is givep iQ provide 

a background to the reader. However, the reader who needs more details about Prolog 

can refer to [13] and [171. Through a discussion of the execution model, we shall 
.••、 .• ，，•“\ -
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illustrate how nontermination arises in a Prolog program and how nontermination 

relates to recursive definitions. 

A pure Prolog program, as a logic program, is composed of a bundle of Horn 

clauses, or clauses. There are three types of clauses: facts, rules and queries. 

The simplest kind of clause is fact. A fact states a specific relationship that holds 

between certain objects. I t has a format as 

f(ai, a2, •••，a j . where m > = 0 

f is usually known as the predicate name while Up …，a爪 are known as arguments. The 

predicate name f represents the relationship while the arguments a】，…，represent 

the objects. In each fact, the arguments can be either some specific values or some 

variables. A specific value is also known as an atom. The predicate name must be an 

atom. I f a variable is used as the arguments instead of an atom, it can be instantiated 

to whatever objects used, even another variable. A finite set of facts forms the simplest 

form of logic program. Atoms and variables are also collectively known as terms. 

Moreover, a structure f(tp t^ ••” tj is also a term if f is an atom and tp t^ •••，t„ are 

either atoms, variables or structures. A term is known as a compound term if some 

structures appear as its arguments. For example, f(l2,3) is a simple terms but / fZ , 1， 

g(D，2)) is a compound term. A term not consisting of any variable is considered as a 

ground term. 

Rules express a conditional relation between some existing relationships. I t has 

a general format as: 

g s” S2, •••’ Sn. where n > = 0 

g is the head of the rule and si，s are the body. They are all goals. Goals in the body are 

known as subgoals. Each goal has zero, one or more arguments. Actually a fact can be 

viewed as a special case of rules with n = 0. Each subgoal in the body of a rule xmU 

be defined either as facts or rules somewhere else in the program. The symbol i备 ‘ • ^^ y 
used to denote the implication relation existing between the head and the body, 

the head is the conclusion of the preconditions specified in the body. To deiterTnjijp thf 

truth value of the head or the values of the arguments used in the head, e恥h Subgoal 
• •••.:、-:, 、、/.•.•、：•'、、 • 

, . ‘ • 
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must first be evaluated to determine the atomic values for each of its variables. A finite 

set of rules and facts constitutes a program. Moreover, a set of rules and facts where 

the rule heads and the facts have the same relation name form a procedure. 

A procedure is known as a direct recursive definition if the head of one of its 

rules also appears as a subgoal in the body (they can have different parameters). This 

rule is referred to as a recursive rule and the subgoal is known as a recursive subgoal. 

The head of this rule is known as a recursive rule head. Moreover, if there exist several 

rules from different procedures such that each of these rules has its head also appearing 

as a subgoal in another rule, these rules form an indirect recursive definition. These 

subgoals are in fact indirect recursive subgoals. I f we start from any one of these rules 

to replace its recursive subgoal with the body of the corresponding rule, we can 

eventually produce a rule having its head as a subgoal in the body, just as the case of 

direct recursive definitions. Each rule forming this recursive definition (even though 

they are from different procedures) is also referred to as a recursive rule. 

Queries are the clauses that retrieve information from a logic program. They 

have the following general format: 

？- gi，g2, •••，gn- where n > 二 1 

Each subgoal in a query, gi，has the general format of a goal. I f all subgoals in a query 

are ground terms, we can interpret the query as a question of whether all relations 

represented by the subgoals can hold at the same time among the objects specified as 

the arguments of these subgoals. Usually, uninstantiated variables appear in a query, 

In this case, the query can be viewed as a question for finding the unknowns represented 

by the variables. For n > 1, all subgoals are solved one by one, and a query is c痛！ 

sidered to be solved only after every subgoal has been solved. ‘ 
； . . . ‘ ： 

Sometimes a fact appears as a compound term to allow the data to b^ §扮探动 i l l 

a more organized style. For example, if we want to store some inform抹ti只!5 '^hmt 终Jl 
— 麵；”.、s:h 

event, it is more meaningful to store the data as: 
- . -

event(place(Where), time(10，25，am)，date(12，6，89))， 
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than i n p u t : two terms, T^ and Tg, to be unified 

event(ge6:y)0，25，am, q u t p u T : the most general unifier, mgu，or failure 

Initialize the mgu to be empty 
These non-atomic terms 

that are used as the ar- Push T , = V on a stack 

guments of facts or goals WHILE the stack is not empty 
(e.g., in this case, DO { Pop "X 二 Y，from the stack 

place(W here) ， IF X and Y are NOT identical atoms 

— m 2 5 ， _ ) are ^ ^ ^ X is a variable 
known as structured data. THEN { Substitute Y for X in the stack 
On the other hand, Prolog ^dd "X = Y" to mgu 

provides another method ELSE IF Y is a variable 
T ^ , THEN { Substitute X for Y in the stack 

to store complicated data. ^dd "Y = X" to mgu 
By enclosing all related } 
, . ^ nsnV nf ELSE IF X and Y are variables 

data within a pair of THEN Rename all X and Y in the 
square brackets, "[ ]"， stack to the same name 

Prolog can handle them ELSE IF X is f(X XJ and 
b Y is f(Yi’ …，Yn) where n > 0 

together as one object. THEN Push "Xj 二 丫广，i 二 1，…，n， 

Such a structure is known on the stack 
ELSE Exit and return failure 

as a list. For example, y 

[event [place, Where], Return the mgu 

[ [ = : i '： ] Figure 2.1 ThP n n i f i c a t i o n a l g o r i t h m 

is a list of lists containing more or less the same information encoded in the structured 

data above. 

-..二，.： 

In order to answer a query, the clauses defined in the program are used tp 神样S权 

each subgoal in the query. Since Prolog is the realization of logic programTOP| In 錄 

sequential machine, it follows a specific sequence to satisfy the subgoals in a gu^ty, Th^ 

leftmost subgoal is first selected. If it can be satisfied, other subgoals are sel^ t^d Qn^ 
. 、 . 
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by one in a left-to-right sequence. However, if one of the subgoals fails to be satisfied, 

the process wil l go back to the left subgoal of the failing one and attempts to re-satisfy 

it with an alternative clause. This process is known as backtracking. I f the left subgoal 

does not have an alternative clause, backtracking wil l continue to the next left subgoal 

unti l one of those subgoals on the left can be re-satisfied with another clause, or it 

reaches beyond the leftmost subgoal. In the latter case, the query results in a failure. 

On the other hand, after all subgoals in a query are satisfied, a solution can be obtained 

for the query. However, a Prolog user can initiate backtracking himself/herself after a 

solution is found. During this backtracking process, other possible clauses in the 

program are tried so that alternative solutions can be found. Satisfying a subgoal greatly 

depends on matching this subgoal to other terms in the program. This matching process 

is known as unification. Its algorithm is shown in Figure 2.1. 

In the algorithm, if a fact is used for unification with the subgoal, the subgoal can 

be satisfied immediately or the unification fails immediately. However, Prolog also 

attempts to use a rule to satisfy a subgoal. In this case, the subgoal is to be unified with 

the head of the chosen rule. If it succeeds, the unifier obtained in the unification 

process is applied to the body of the chosen rule. Then the subgoals in the body of this 

chosen rule are used to replace the original subgoal in the query to form a transformed 

query. This replacement process continues by following a depth-first strategy. In other 

words, the leftmost subgoal in the body of the chosen rule (it does not need to be the 

leftmost subgoal of the transformed query) wil l be replaced with a corresponding rule 

body again recursively until the leftmost subgoal can be unified with only a fact. Then 

the replacing process is applied to the second left subgoal. This process stops only when 

all subgoals in the transformed query can unify with some facts. 

^ • 

2.2 Nontermination、 

As pure Prolog is a declarative language, it does not provide d^y control 
... • • 

constructs. A pure Prolog program describes only the logic componepf of algorithms 
. ’ 、y'y 一::.'''、‘ 
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and the Prolog execution model itself will take care of the control component [7]. 
• 等 

Therefore, unlike conventional programming languages, no looping construct exists m 

Prolog. A programmer can define iterations in a pure Prolog program by only two 
techniques: 

(1) backtracking mechanism and 

(2) recursive definitions [7]. 

Using backtracking to generate iteration is a technique unique to Prolog. To see how 

an iteration can be generated by a backtracking mechanism, let us consider the case of 

supplying a query ？_ path(X，Y) to Program (a) in Figure 2.2. After Prolog finds the 

first solution X = a, Y = b , the backtracking mechanism in Prolog wil l search the 

procedure path again to find all the other possible solutions. As a result, a total of five 

solutions can be found since there are five facts in the procedure path that can satisfy 

the query. From the operational point of view, the procedure csllpath(XJ) is repeated 

five times and we can consider it as a five-time iteration. 

However, in contrast to the iterations generated by the looping constructs in 

conventional programming languages, the iteration generated by backtracking in Prolog 

has two properties: 

(1) it does not need any explicit condition for its termination, and 

(2) it can always terminate if no recursive definition is involved. 

These properties actually result from the fact that the possible search space in a Prolog 

program has only a limited size if no recursive definition is present. Once the whole 

search space in a Prolog program is completed, backtracking stops so that no expUcjt 

condition is needed to stop the iteration. Moreover, if the possible search space ^ r 终 

program has only a finite size, iteration generated by backtracking must stop after 辦热 

a finite space has been completely searched; thus it can always terminate. 

But how can we be sure that the possible search space for a "recursive definition) 

free" Prolog program is always finite? The answer lies in how Prolog ĵ î arghe^ tli^ 

program during the backtracking process. As has been discussed in SegtipB ？.1，Rrplog 
• • • •••• . . •广： • •-
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tries to find some terms from the program to unify with each subgoal in the query from 

the leftmost subgoal to the rightmost subgoal. In this process, a suitable term is found 

by searching the corresponding procedure that has the same predicate name as this 

particular subgoal. I f the head of a clause in the corresponding procedure can be 

unified with the subgoal in the query, this process wil l continue on the next immediate 

right subgoal. On the other hand, if it is the rightmost subgoal in the query, 

backtracking wil l resume the search on the rest of those not yet searched clauses in the 

procedure after a solution is found. However, if the unification process of this particular 

subgoal fails, backtracking occurs and renders the procedure corresponding to the 

immediate left subgoal to be searched again. The search will resume at the clause next 

to the previously searched one. 

Therefore, the search space must be finite if all the subgoals in a certain query 

are all defined by procedures 

that consist of facts only. While | | = = = = = = = ] 
^ 1 . . .. d a …n path(a,b). path(b,c). path(c，d). 

a subgoal IS defined by a pro- 二ath(d，e). path(e,f). 
cedure consisting of facts only, 
the search space for this subgoal can一go(X，Y) path(X，丫)• 

is finite. As the search space Program (a) 

for each subgoal of a rule is 

finite, the search space that can 
be generated by the ba。k- gjg；^)： 二 丨 設 _ _ 

tracking process among these 
subgoals is also finite. It is can一go(X,Y) path(X，Y)，path(Y，Z). 

obvious that the number of Program (b) 

iterations generated cannot be 1 ! = = = = = = = = = ^ ^ 
Figure 2.2 

greater than the product of the 

number of facts in each procedure defining the corresponding subgoal in the query. I f 

we supply the query ？- path(X，Y)，path(Y，Z) to Program (a) in Figure 2.2，the 

upperbound for the number of iterations is 25. Actually, the number of iterations can 

be generated is also 25 although many facts cannot succeed in the unification process. 
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In general, there also exists an upperbound for the search space if the procedures 

defining certain subgoals in a query is composed of not only facts but also some nmk 

recursive rules. The upperbound for the number of iterations generated can be 

calculated as the product of the upperbound for the number of iterations generated by 

each subgoal. For a subgoal with a procedure of all facts, the upperbound is equal to 

the number of clauses in the procedure. For a subgoal with a procedure consisting of 

facts and non-recursive rules, the upperbound for the number of iterations generated by 

this subgoal is equal to the number of facts plus the upperbound for the number of 

iterations generated by every rule. And the upperbound of a rule is just equal to the 

product of the upperbounds of all subgoals in this rule. For example, in Program (b) in 

Figure 2.2, if we supply the query 7- path(X，Y)，can_go(Y,Z)，the upperbound can be 

calculated as: 

5 * ( 0 + ( 5 * 5 ) ) 

upperbound number of upperbound for upperbound for 
for the facts in the subgoal the subgoal 
subgoal procedure path(X，Y) path(X，Y) 
path can一go the upperbound for the rule —/ 

The result is 125. Usually, the actual number of iterations is much less than the 

upperbound. In this case, the number of iterations is only 41 with the solutions of X = 

a, Y = b, Z = d; Z == 5， y = c，Z = e; X = c，Y = d，Z=f. In pure Prolog, if no 

recursive definition is present, each subgoal in a rule must be defined by a procedure 

with facts and/or rules which do not contain this subgoal. Since a fact is a rule with an 

empty body, it completely defines itself. Each subgoal in a rule must be eventually 

defined by some facts. Therefore, the upperbound for the number of iterations 

generated by each subgoal can always be calculated as above if the program is in pure 

Prolog and no recursive definition exists. Since there exists an upperbound for the 

number of iterations generated by backtracking in a non-recursive pure Prolog program, 

the search space for backtracking must have only a limited size. 

On the other hand, if some terminating recursive definitions are present, there is 

still an upperbound for the number of iterations generated by backtracking. With the 
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introduction of recursive definitions, the iteration can no longer be calculated with the 

method described above. For example, in Program (a) in Figure 2.3, i f the query of 

can_so(XJ) is supplied, the method described above wil l calculate the upperbound as: 

0 + ( 5 * ( 0 + ( 5 * . . . 
number of upperbound for number of facts upperbound 
facts in the subgoa丨 in procedure for the subgoal 
procedure path can 一go path 
can go \ the upperboundlor the recursive rule / 

I t wi l l result in an infinite sequence. We must determine the upperbound for the 

number of iterations generated by each recursive subgoal with another method instead 

of simply counting the number of the clauses in its corresponding procedure. Since the 

exact number of iterations that can be generated by a recursively defined subgoal is not 

known unti l semantic knowledge has been provided, there is no simple way to determine 

the exact upperbound for the number of iterations generated by these recursively 

defined subgoals. However, if the recursive definition involved can itself terminate 

p a t h ( a , b ) . p a t h ( b , c ) . can—go(口，•) 

p a t h ( c , d ) . p a t h ( d , e ) . 7 \ 

p a t h ( e , f ) . / \ 
p a t h ( a , b ) c an g o ( b , n ) 

c a n _ g o ( X , Y ) : - 7 \ 
p a t h ( X , Z ) , c a n _ g o ( Z , Y ) . / \ 

一 p a t h ( b , c ) c a n _ g o ( c , 口 ） 

Program (a) / \ 

— / \ 

p a t h ( c , d ) c a n _ g o ( d , a ) 

p a t h ( a , b ) . p a t h ( b , c ) . / \ 
p a t h ( c , d ) . p a t h ( d , e ) . / \ 
p a t h ( e , a ) . p a t h ( d , e ) c a n 

/ V )、 
c an go (X , Y) : - / •‘ 

5 a t h ( X , Z ) , c a n一 g o ( Z , Y ) . p a t h ( e , a ) 

Program (b) 口 ： t h e u n i n s t a n t i a t e d I •：'：.'\ • 

v a r i a b l e s d u r i n g t h e 

e v a l u a t i o n ；: 

Search Tree of f r o g r i l 

''. ^ ̂  •�拽y:厂谋吃V、.、.」,.:J:y,:長 
Figure 2.3 

、 - - . ： , . 
.•••_•' i , 

“ V . . 
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properly, we can arbitrarily assign the upperbound for the number of the iterations 

generated by these recursive subgoals to be any finite number, n .̂ For example, in 

Program (a), the recursive definition can terminate, so that the upperbound for the 

number of iterations that can be generated by the query ？- path(X，Y)，can』o(Y，Z) is 

the product of 5 and n^. It is still a finite number. Thus,the number of iterations 

generated by backtracking is still finite if the recursive definitions present can terminate 

properly. 

But the iteration generated by backtracking can never stop if any nonterminating 

recursive definition is present. The number of iterations generated by a nonterminating 

recursive subgoal is infinite since no upperbound for the number of recursion levels 

implies that there is no upperbound for the number of iterations generated by a 

nonterminating recursive subgoal. The search space is infinite in this situation. 

Nontermination results. I t can be shown by the search tree of Program (b) in Figure 

2.3. Whatever the iteration is generated by the recursive definition or the backtracking 

process, the number of iterations can be infinite only if a nonterminating recursive 

definition is present. In conclusion, nontermination may occur only in a pure Prolog 

program with a recursive definition. However, some recursive programs can terminate 

while others cannot. Nontermination can be detected if we can find out the presence of 

a nonterminating recursive definition in the underlying program. 

To have a recursive definition that terminates properly, two criteria must be 

satisfied at the same time: 
(1) There must exist some exit conditions. 

(2) The recursive definition must be written in such a way that it can bring th^ 

execution to an exit condition at a certain point during the evaluation. 

As shown in the algorithm in Figure 2.1, the parameters in the input goal am} tl^e 
、‘； 

parameters in the head of those potential clauses play an important role irj tb^ 

unification process. Since the unification process can determine which to bf 

chosen, it implies that parameters can greatly affect which clause to be sele^tgrf 辨讲资 

next level of recursion. • Moreover, recursion will stop when the umficatipn tbfe 

recursive rule head and the recursive subgoal fails. In the following 终叫客Jq飛,,铁e shall 
‘ •-. ‘r - • , ....... 
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discuss what an exit condition is in Prolog programs and how parameters can be related 

to the presence of nontermination errors. 

2.3 Exit condition 

There must be an exit condition to terminate the evaluation of a recursive 

definition. I f after a finite number of recursion levels, the exit condition is reached such 

that the recursive path wil l not be visited again. Although how to define an exit 

condition in a recursive definition is similar among different conventional programming 

languages, how to define an exit condition in a Prolog program is greatly different. In 

conventional programming languages, the exit condition is always stated explicitly. 

However, as the Prolog execution model completely takes care of the control component 

of a program, an exit condition in a Prolog program can exist implicitly in two ways: 

(1) as one or more subgoals in the recursive rule that wi l l fai l at a certain point of 
the recursion, or 

(2) as parameters in the parameter list of the recursive rule head or the recursive 
subgoal of a recursive rule that wil l cause the unification process to fail at a 
certain level of the recursion. 

I n conventional programming || ^ , … ^ , ^ , 
Procedure RRR (arguments) 

languages, the recursive part and the non-
recursive part of a recursive definition are b^gin 

^ if exit condition 
always related to mutually exclusive then 
conditions. In general, all recursive defi- do non-recursive part 

else 
nitions that can terminate properly should call RRR (modified arguments) 
have a structure similar to the one shown recursive call *} 

end 
in Figure 2.4. I t includes a condition and a „| • , 
J . . 1 T 丄 Figure 2.4 
decision control structure, in the case ® 

.•, • ： . . . . 

shown in Figure 2.4, once the exit condition is met, the procedure wil l be 

from recurring again and wil l terminate. Therefore, the condition specified can s g ^ ' p 

an exit condition only with the co-existence of the if-then-else conUpl ^twctur^, The 

• . 

• • :. •. 
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control structure makes the recursive path and the non-recursive path mutually exclusive. 

Without such a control structure, the above condition cannot work as an exit condition. 

Program (a) || Program (b) 

sum (Var N，Result: integer); jj 

Var M，R: integer; || 

Begin II 
If N = 0 丨丨 sum(N, 0) :- N = = 0. 

{ { exit condition } } || 
then Result := 0 || 
else begin j j sum(N, Result):-

M := N - 1; II M is N - 1， 

sum(M, R); II sum(M，R)， 
Result := R + N II Result is R + N. 
end II 

End; II 

Figure 2.5 

However, such an Algol-like if-then-else control structure does not exist in pure 

Prolog. The Prolog programmer has to consider how to achieve a mutually exclusive 

relationship between the recursive part and the non-recursive part by himself. As has 

been described above in Section 2.2，the pure Prolog programmer must let the Prolog 

determine the control. Nevertheless the unique backtracking mechanism in Prolog does 

not allow the clauses in the same procedure to be mutually exclusive. This can be 

illustrated by comparing the Pascal-like recursive procedure with its Prolog counterpart 

in Figure 2.5. In spite of their similar outlooks in logic, Program (a) in Figure 2.5 ca^ 

terminate while Program (b) is a nonterminating Prolog program. The reason is th^t 

the two rules in the procedure sum of the Prolog program are not mutually exc lu^g 

under the backtracking mechanism. When Program (b) in Figure 2.5 is e x e c _ ( |， • 

rule sum(N，0) N = = 0 wi l l be reached after a finite number of recursions p ^ 欢jJ! 

return a solution for the variable Result • However, it does not stop 財 this ppjjfj、, b^i 
i . 

‘.-’，... 
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rather it goes to find further solutions due to the backtracking mechanism. This results 

in nontermination. 

One simple way to achieve a mutually exclusive relationship between the 

recursive clauses and the non-recursive clauses is to add some extra subgoals in the 

recursive clause so that these subgoals wil l fail when the non-recursive clause is reached. 

For example, the second clause in Program (b) in Figure 2.5 can be re-written as: 

sum(N，Result) :- N > 0，M is N - 1，sum(M, R)，Result is R + N. 

With the introduction of the subgoal N > 0 in the recursive clause，the recursive path 

and the non-recursive path now become mutually exclusive and termination can be 

ensured. 

Since the absence of a mutually exclusive relationship between the recursive 

clauses and the non-recursive clauses can cause a recursive definition to be 

nonterminating, a diagnostic system that can identify this fault in a recursive definition 

can detect some kinds of nontermination errors in Prolog. It would be helpful to the 

Prolog novice who has programming experiences in conventional programming 

languages. In fact, it is quite easy to build a diagnostic system to detect the absence of 

such a mutually exclusive relationship if all the non-recursive clauses in the recursive 

definition are made up of facts only. First, the system should test whether the head of 

the recursive rule can unify with any of these facts. I f any of them succeeds, the values 

specified in the fact are supplied to the recursive rule to instantiate the corresponding 

parameters in the rule. I f none of the subgoals preceding the recursive subgoal fails in 

this process, the absence of a mutually exclusive relationship between the recursive and 

the non-recursive part is confirmed. For example, we can apply this technique to the 

program in Program (b) in Figure 2.5 with a minor adjustment. Without any change in 

the semantics of the program, the non-recursive clause is modified from mm(N，0) ；- ^ 

==0 to a fact, sum(0，0)，to permit the application of this technique. Since f^ 

sum (0,0) can unify with the head sum (N,Result)，we proceed with the test and 
. ,:•’•:，'..；• '•‘ 

the values 0 and 0 to the parameters N and Result in the recursive rule. This mwU^ 
. . 麵 ” 

m: 
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sum(0, 0) :- M is 0 - 1，sum(M, 0)，… 

Because the subgoal preceding the recursive subgoal, M is 0 -1 does not fail, this shows 

that a mutually exclusive relationship is absent from this recursive definition. However, 

this simple technique becomes too weak when the non-recursive clauses are not all 

made up of facts. With this technique, we can conclude about the absence or presence 

of any mutually exclusive relationship only after we have known that all the possible 

values can be accepted by the non-recursive clauses and have tried these values on the 

recursive rule. I f some rules exist in the non-recursive part as well, more time is needed 

to determine all these possible values. 

On the other hand, there is another more fundamental problem in detecting the 

exit condition. Although it is a good practice for the Prolog programmer to ensure the 

presence of a mutually exclusive relationship between the recursive and non-recursive 

clauses, to achieve such a relationship is not the same as supplying an exit condition to 

the Prolog program. 

= = = = = = = ^ With the backtracking 

sum(4,n) mechanism in Prolog, 

/ \ reaching a non-recursive 
sunn(3,n) sum(3,n) , . ‘ . “ 

I / \ clause IS not sufficient to 

3 = = 0 / \ ensure the presence of 
I sum(2，cO sunn(2,n) 

fg îl 1 / \ an exit condition because 
2 = 二 0 / \ it cannot prevent the re-

I sum(1,a) sum{1,n) 
l ^ j j I I \ cursion from taking place 

1 = = 0 / \ again in the recursive 
I sum(0,0) sum(0,n) 

faH I ! \ rules. When a non-
0 = == 0 / \ recursive clause is 

succeed sum(-1,n) sum(-1,n) reached after certain 

I I levels of recursion, the 

口 ： the not yet ( backtracking mechanism 

instantiated fail • causes the recursion |q 
variables • -

resume at the next clau躲 
Figure 2 . 6 t h e s e a r c h t r e e o f Program (b) : : 〜 丫 ? 

i n F i g u r e 2 . 5 i n t h e p i - Q g e d w j e , 
. • '' • :、 : ’ .、 • ‘ : ‘、々 . 

• ‘ � � .V 
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Eventually, the recursive rule will be reached again. It can be illustrated by the search 

tree generated after the query of 7- sum(4’X) is supplied to Program (b) in Figure 2.5. 

In Figure 2.6 we can clearly see how the Prolog execution model causes the recursive 

rule to be used again even when the non-recursive part has been reached. Moreover, 

reaching a non-recursive clause is not a necessary condition for termination in Prolog. 

I t can be illustrated by the program in Figure 2.7. This program obviously does not 

have any non-recursive part for the recursive procedure a一call • However, it can 

terminate with any value supplied to the parameters X and Y , The reason behind is 

that the subgoal not一exit(X，Z) can stop the evaluation of this recursive definition 

a_call(X, Y) > not_exit(X，Z)， 
a_call(Z,Y). terminate([X| Y]) 

terminate(Y). 
not 一 exit(1，2). 
not:exit(2，3). L = = = J 
n o r e x i t ( 3 , 4 ) . Figure 2.8 a terminating 

— procedure using 
L = = = = = = ^ parameter as an 
Figure 2.7 a recursive procedure without a exit condition 

non-recursive part 

once its parameters cannot be instantiated with any one pair of the following values: 

(2,2)，(2,3) or (3,4) • The problem of this definition is not one of nontermination but 

rather missing solution. 

Therefore, the non-recursive part of the definition cannot act as an exit condition 

by itself alone in Prolog, although it is important in finding a solution in the evaluation. 

Actually, an exit condition in a Prolog program is any constraint that can stop the 

re-entrance of the recursive rule at a certain point of the evaluation of the recursive 

definition. By examining the above examples carefully, we can discover that in order (q 

have a recursive definition to terminate, a certain subgoal in the recursive rule needs 

ultimately become unsolvable during the evaluation of this recursive definition. 'J^Jî s, 

unlike the situation in conventional programming languages, the exit condition mu§t _ 

specified somewhere outside the recursive part, the exit condition in Prolog prpgrQin| ….... 
must be present within the recursive clauses. Usually, an exit condUipns ill a Prqlog 
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recursive definition consists of one or more subgoals (actually, one subgoal is sufficient) 

which can become unsolvable at a certain point of the evaluation of the recursive 

definition. In some special situations, for example, when lists or structured data are 

used as the parameters in the recursive rules, as shown in Figure 2.8，they can cause 

unification of these recursive rules to fail and thus stop the next level of recursion. 

Therefore the parameters should also be considered alongside with the subgoal when 

trying to find an exit condition. 

In the following examples, we further show that the exit condition and the 

mutually exclusive relationship between the recursive and the non-recursive part are 

father(abraham，isaac). ancestor(abraham,isaac). 
father (Isaac, jacob). ancestor(abraham,jacob). 
fatherGacob, Joseph). ancestor(X，Z):-
fatherGacob, judah). father(X, Y), 

ancestor(Y, Z) 

Figure 2.9 Example showing that termination can be achieved without 
the mutually exclusive relationship 

independent to each other in pure Prolog. In Figure 2.9, no mutually exclusive 

relationship exists between the recursive clause and the non-recursive clauses. A l l the 

facts can unify with the recursive clause in the program. If the values abraham，isaac 

are used, the recursive clause will be instantiated as ancestor(abraham，isaac) 

father(abraham，Y), ancestor(Y. isaac) . Since the subgoal father(abrahamj) in the 

instantiated recursive rule can succeed to unify with the fact oi father(abraham，isaac)， 

the next level of recursion can continue with the recursive subgoal instantiated as 

ancestor( isaac，isaac) • On the other hand, if the values abraham，jacob are used, the 

recursive clause will become ancestor(abraham，jacob) father(abraha^lQ, 

ancestor(YJacob) • Because of the fact father(abraham，isaac)， 

father(abraham，Y) in the rule can again succeed. The recursive subgoal wm _ _ _ 

ancestor(isaac, jacob) and one more level of recursion can h a p p e n ,袍 

obvious that the recursive part and the non-recursive part of this recurp^ 麵 贿 终 巧 

not mutually exclusive. However, even though a mutually exclusive nqt 
. . . . . 、 • • . . : _ • 

•.... ；._'> ；、.••:‘：、二-
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exist, the evaluation of this recursive definition can terminate. The evaluation of the 

recursive definition wil l eventually cause the subgosil father to be instantiated as either 

father(joseph J) or father(judah J) which cannot be unified with any clause in the 

program and thus this failure in unifying the subgoal with any father clause stops any 

further recursion. Again, it shows that it is the unsolvable subgoal in the recursive rule 

rather than the non-recursive part of the recursive definition that acts as an exit 

condition. 

Furthermore, the existence of a mutually exclusive relationship cannot guarantee 

the existence of an exit condition because it is possible that the evaluation of such a 

father(abraham,isaac). ancestor(abraham’isaac). 
father (isaac，jacob) • ancestor (abraham Jacob) • 
fatherQacob,Joseph). ancestor(isaac, Z) 
father(jacob,abraham). father (X,Y), 

a 门 cestor(Y，Z). 

ancestor(isaac，Z) 
/ \ 

/ \ 
father(abraham,isaac) ancestor(isaac,Z) 

/ \ 
/ \ 

father(abraham，isaac) ancestor(isaac，Z) 
/ \ 

/ \ 
father(abraham，isaac) ancestor(isaac,Z) 

/ \ 
/ \ 、 

father(abraham，isaac) • 

-

Figure 2.10 Example showing that nontermination can occur 
with the mutually exclusive relationship 
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recursive definition can never invoke those non-recursive clauses. The program in 

Figure 2.10 shows such possibilities. In this program, the facts ancestor(abraham,isaac) 

and ancestor(abrahamjacob) cannot unify with the head ancestor(isaac，Z) and thus they 

are mutually exclusive and thus there is no further evaluation of the recursive definition 

once one of the facts has been reached. However, the problem is that the facts can 

never be reached once the evaluation of the recursive definition starts to proceeded. I f 

the query ？- ancestor(XJ) is supplied, after the two facts are reached, 

the backtracking mechanism causes the recursive rule also to be reached. As has been 

illustrated in the search tree in Figure 2.10, the recursive subgoal ancestor wil l always 

be instantiated as ancestor(isaac，Z) during the evaluation and thus the 

non-recursive clauses can never be reached, Nontermination then occurs. In fact, 

the mutually exclusive relationship between the facts and the recursive rule has no 

effect on the termination of a recursive procedure. Therefore, the mutually exclusive 

relationship between the recursive part and the non-recursive part of a recursive 

procedure cannot guarantee proper termination. 

In conclusion, it is hard to determine which part in a recursive definition is an 

exit condition. Unlike the conventional programming languages, in which an exit 

condition is always stated explicitly as a part of the decision control construct, an exit 

condition in a Prolog program can only be established implicitly through some subgoals 

or parameters in the recursive rule only. On the other hand, a mutually exclusive 

relationship between the recursive clauses and the non-recursive clauses that is 

characteristic of an exit condition in conventional programming languages is neither 

sufficient nor necessary to establish an exit condition in Prolog. We therefore cannot 

use the mutually exclusive relationship as an indicator of an exit condition. Without any 

semantic knowledge, it is impossible to detect whether there is an exit condition. This 

difficulty has become a great barrier to the development of any analytical approach foj 

nontermination detection. 

However, even when the necessary semantic knowledge is available, \\ cannot 
• . . . . . : .....， 、 ’ 

definitely show whether the evaluation of a recursive definition can terminate. l\ 

becomes more obvious when we consider the situation in conventippal prpgrft|toming 
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languages as an example. The explicitly stated exit condition in conventional 

programming languages cannot guarantee termination. Although a certain condition has 

been specified in a recursive definition as the exit condition, if the recursive definition 

is erroneously defined, the evaluation can never reach the intended exit condition. 

Therefore, nontermination can be avoided only if this recursive definition has both an 

exit condition and an exit-condition reaching process at the same time. We also need 

to investigate what constitute an exit-condition reaching process before we can provide 

a solution to all these problems. For briefness, exit-reaching process is used instead of 

exit-condition reaching process in the following descriptions. 

2.4 Exit-reaching process 

In addition to an exit condition, a process is required to bring the evaluation to 

reach the exit condition specified. To detect the presence of such an exit-reaching 

process, we must know how such a process is established in a recursive definition. By 

comparing Prolog with conventional programming languages, we discover that the exit-

reaching process in Prolog programs is closely related to those parameters in the 

recursive rule head and the recursive subgoal. They are closely related due to two facts: 

(1) parameters are part of an exit condition, and 

(2) parameters are used to pass values to the next level of recursion. 

In general, an exit condition usually contain a variable and an invariant. During 

the evaluation of a recursive definition, the value of the variable would be modified at 

the different levels of recursion while the invariant always remains the same. When the 

variable attains a particular relationship with the invariant, the exit condition becomes 

effective and thus stops the recursion. This can be illustrated by the Pascal-like program 

in Program (a) in Figure 2.5. This program has an explicitly stated exit condition N.烹 

0，where N is the variable and 0 is the invariant. During the evaluation pf 器 

recursive definition, the variable is continuously modified by the statement M N ： I 

. A t the point where the specific relationship between the variable and the invariant, 
' . • • 、 

• . . . . ‘ . . 
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i.e., N = 0 achieved, the exit condition becomes effective and blocks the evaluation 

from going into the recursive part again. The recursion thus terminates. Similarly, 

termination can also occur if a specific relationship between variables is achieved. For 

example, the condition N > X can serve as an exit condition in the below modified 

version of Program (a) in Figure 2.5. 

sum(Var N, X，Result: integer): 

Var M, Y, R: integer; 

Begin 
If N > X 

Then Result : 二 0 
Else Begin 

M := N - 1; 
Y := X + 1; 
sum(M, Y，R); 
Result := R + N 
End 

End; 

Since an exit condition must contain such a variable to be effective, this variable can be 

referred to as an exit-variable. Hence, an exit-reaching process can be established only 

if two conditions are both fulfilled: 

(1) the recursive definition must be defined in such a way that the exit-variable can 

be modified during the evaluation; and 

(2) the exit-variable must be modified in a direction in which the specific 

relationship between the variable and the invariant or between variables can be 

achieved. 

If condition (1) cannot be met, the evaluation of this recursive definition will cer^i j l ly 

result in nontermination. The exit-variable remains the same during the sugce$sjy§ 
-:、:.'.筑、 

levels of recursion and thus the exit condition can never be met. However. condUiqij ( l) 

only guarantees the existence of an exit-variable modifying process. If the ^ritrS^^ri^blp 
. . 、 ： 發 

- . / • -
- . - -

• : - r • 
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modifying process cannot modify the exit-variable to reach the exit condition, the 

evaluation wil l end up in nonlermination as well. 

Obviously, the fulfilment of condition (2) requires the fulfilment of condition (1) 

as a prerequisite. If condition (1) cannot be satisfied in a recursive definition, condition 

(2) wil l also be absent in the definition. Thus the detection of an exit-reaching process 

can be conducted in two steps. Firstly, we detect whether an exit-variable modifying 

process exists. If it does not exist, we can conclude that condition (2) does not exist 

either and the exit-reaching process is absent. Hence nontermination is detected. 

However, when condition (1) is found, we need to further examine whether the exit-

variable modifying process can act as an exit-reaching process. In other words, the exit-

variable modifying process is a potential exit-reaching process. To detect the presence 

of an exit-reaching process, we first need to have a method to find the potential one. 

Then we also need another method that can verify whether the potential process found 

is an actual exit-reaching process. So we can detect an exit-reaching process only if we 

have methods to detect the two cases. 

In conventional programming languages, it 

is quite easy to identify the exit-variable and the j j = = = = j 

invariant used because the exit condition is stated ^ ^ ^ N，Result: integer); 
explicitly. Since condition (1) demands an exit-

variable modifying process in the recursive Var M, R: integer; 

definition, the exit-variable must appear some- Begin 

where before the point at which the recursive call condition } } 

is invoked. If such a variable is absent, it indi- then Result : = 0 

cates that condition (1) cannot be met and non- . 

termination wil l surely occur. In Figure 2.11, we sum(M, R); 
Dpqi lit • =： R + fSl 

use a Pascal-like program again to give a clearer ^^^ •一 -

illustration. The exit-variable and the invariant End； 

are also N and 0 respectively. Although it is pjgm-e 211 ： ^ 

similar to Program (a) in Figure 2.5, it cannot 

terminate. By examining this program carefully, we can see that the variable 汉 does 
； ‘ • - ‘ -

• .- • 
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not appear before the recursive call. Therefore, the variable can never be modified 

during the recursion. Nontermination happens due to the absence of an exi t-variable 

modifying process. 

I t follows that the method to detect an exit-variable modifying process is quite 

simple. First, we identify all the possible condition variables. By analyzing the recursive 

definition, we can know whether these variables appear in any statements before the 

recursive call. I f they are found in some statements, we then examine the recursive call 

to find what variables are used and whether these variables also appear in the same 

statement. In Program (a) in Figure 2.5, we first examine whether the variable N exists 

before the recursive call. Then we examine what variable is used in the recursive call, 

which i s M in this case. Since both of them exist in the statement M ; = N - i , an exit-

variable modifying process is considered to be found. We shall find that the same 

method can be applied to Prolog programs. 

In Prolog, as discussed in Section 2.3’ the exit condition is stated implicitly 

through certain subgoals in the recursive rule or some parameters in the head of the 

recursive rule. To simplify the discussion, we first consider the case of the exit condition 

that is formed by parameters only. If the example in Figure 2.8 is examined, we can see 

that nontermination occurs if an uninstantiated variable is supplied to the parameter 

[X\Y] . This situation in fact is part of the well-known occur check problem. However, 

if any value or instantiated variable is supplied, the parameters in the head of the 

recursive rule in Figure 2.8 can act as an exit condition because the parameters can be 

unified with only a certain range of values; in this case, it is any non-empty list. Once 

the value supplied is not in this range, i.e., the empty list in this example, the unification 

of this recursive rule fails and the next level of recursion is denied. Hence, for the 

program in Figure 2.8，we can consider that the exit-variable is the parameter [ X \ Y l 

while the invariant is the empty list [ ] • Obviously, the particular relationship betw^eiji 
- • , . . - - I • 

the exit-variable and the invariant that needs to be achieved to exit the recursion is; 

the value supplied for the parameter is an empty lUt. 
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| j = — — = 1 1 Although the parameter does not appear in the body 

, , n 、 of the recursive rule, the head-tail separator in the 
a(1,0). . 

parameter [X\Y] does the job of the e x i t-vanable 

a(f(X), N) ：- a(X, N) modifying process so that condition (1) is met. 
L — — — — ^ Therefore, the parameter [X\Y] does not only 
Figure 2.12 , . , , 

constitute an exit condition but also an exit-variable 

modifying process. Furthermore, the head-tail separator always cuts one element from 

the head of the list at each level of recursion. Eventually all the elements wi l l be taken 

away. A n empty list wi l l result and thus the exit condition is met. I t satisfies condition 

(2). Thus, it also works as an exit-reaching process. Besides the list, structured data can 

also be u，sed as a parameter in the head of a recursive rule to have similar effect. 

Similarly, we can consider the parameter/fZ) in Figure 2.12 to be the exit condition. 

When a value supplied to the parameter is not a structured data with the predicate 

name f ’ the next level of recursion wil l be blocked. On the other hand, the parameter 

itself can be considered as the exit-variable while the invariant is any term which is 

neither a variable nor a compound term with predicate n a m e / . 

However, if other data structure is used 

as the parameters in the head of the recursive a(1，X，0). 

rule，the result is quite different from the a(Omi， Ĵ̂ ix，Y，z)，a(Z，Y’N). 

above two cases. When a certain constant is 

used，as what is illustrated in Figure 2.13, it can 二 

still work as an exit condition in some modify(1,3,1). 

situations. In Figure 2.13, the first parameter 丨；—2.13 

in the recursive rule head is 0，thus the uni-

fication fails when any value other than 0 is supplied. Therefore the value 0 is the 

invariant of the exit condition. But what is the exit-variable? By analyzing the recursip 

definition, one wi l l see that the first parameter cannot act as an exit-variable bepaws? jt^ 

value is already fixed to be 0 . Actually, the exit-variable is in the second p a r ^ ^ g ^ ^ 

The exit-variable modifying process is provided by the subgoal modiJy(XXZ) . S i i i ^ ^ ^ f 

first parameter of the recursive subgoal is Z and the only parameter from thg 辩 0 i终 
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X in the subgoal modify，we can conclude that the second parameter X in the head 

acts as the exit-variable. 

|| Through the discussions of the different 

Program (a) cases of using parameters as the exit condition, 

we can see how the exit-variable modifying 

g îx N) process, or even the exit-reaching process, is 

modify(X,Y), a(Y,N). closely related to the parameters used in the 

modify(1 2) recursive rule head and the recursive subgoal. 

nnodify(2,3). Although it demands different skills to state an 

modify(3，4). exit-variable modifying process with different 

types of parameters, we can see that the 
o 「 o g r帅 ( b ) presence of an exit-variable modifying process 

a(X,N) can be detected by analyzing the parameters 
modify(X，Z)，a(Y,N). i t is due to the fact that the 

modify(1，2). parameter is a part of the exit condition. In 

[^Q^il^p Prolog, the exit-variable, and sometimes the 

invariant, is constituted by the parameter. 

Figure 2.14 

In the case of the exit condition that is 

made up of subgoals, parameters play a significant role as well. In Program (a) in 

Figure 2.14，since all the parameters in the head of the recursive rule are variable, they 

can no longer act as an exit condition. This recursive definition can terminate because 

of the subgoal modify(X，Y) • Since the first parameter of the subgoal modify can only 

accept the values 1，2，3 , any value out of this range can cause it to fail and stop further 

levels of recursion. Moreover, the subgoal modify plays the role of an exit-variable 

modifying process. It is responsible for the change of the first parameter in each ley$?l 

of recursion. By comparing it to Program (b) in Figure 2.14, which does not 樹用 i n祐g， 

we can see the important role of a parameter in the exit-reaching process. By 

the subgoal modify (X，Y) to modify (X,Z)，the exit-variable modifying procff^^ is dcr 
. • • • ' • .. 

stroyed. In this case, its importance is due to the fact that the^e p^r^me^rs a ^ 
responsible for passing data from one level of recursion to the next lev^ej. Jf the linkage 
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is broken, the exit condition can never be reached. Therefore, an exit-variable 

modifying process in a Prolog program can be identified with a similar method applied 

in conventional programming languages. First we analyze the subgoal preceding the 

recursive subgoal. I f there exist some subgoals that have the parameter corresponding 

to the exit-variable, we can consider the exit-variable modifying process to be present. 

In Program (b) in Figure 2,14, since the parameter Y in the recursive subgoal is not 

present in the subgoal modify，an exit-variable modifying process cannot be established. 

Hence, it is possible to have a method to detect an exit-variable modifying 

process through the analysis of parameters involved in the recursive rule. On the other 

hand, it is difficult to verify whether an exit-variable modifying process is also an exit-

reaching process. Semantic knowledge is needed to determine the direction of the 

evaluation of the recursive definition that will be brought about by the exit-variable 

modifying process found. However, in pure Prolog, because no built-in predicate exists, 

every term should be defined in the program. It allows us to develop a method to 

examine what kind of data would be passed through the exit-variable modifying process 

during the successive levels of recursion. In Chapter 4，we shall show how one can 

verify an exit-variable modifying process through data analysis. 

2.5 Parameter Based Detection 

In considering how to terminate a Prolog recursive definition, two aspects of the 

termination requirement can be identified: 

(1) exit conditions and 

(2) an exit-reaching process. 

However, both of them must co-exist in one recursive definition in order to make 中is 
‘：‘- ” 

definition terminate properly. When considering what an exit condition is, we c m S经e 

that the presence of an exit condition implies the presence of an exit-reaching gĵ ppps ,̂ 

The absence of a mechanism in a recursive definition to direct its evaluati^a lo the 
• •- • •. ^ -
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supposed exit condition is equivalent to the absence of an exit condition in this recursive 

definition. On the other hand，the presence of an exit-reaching process implies that 

there exists at least one exit condition for the process to reach. Therefore, they are in 

an interdependent relationship. 

Because of this interdependent relationship, any nontermination detection 

method which considers only one aspect of the termination requirement or tries to 

handle them separately cannot succeed. Moreover, because an exit condition is stated 

implicitly in Prolog, it seems to require semantic knowledge for detecting exit conditions. 

I t becomes a great problem in the attempt to develop an approach to detect 

nontermination in Prolog. 

However, the interdependent relationship also implies that a method that can 

detect an exit condition can also detect an exit-reaching process or vice-versa. In 

Section 2.4, we show the possibilities to detect an exit-variable modifying process, i.e., 

the potential exit-reaching process, through the analysis of the parameters in the 

recursive rule. Because of the interdependent relationship between an exit condition 

and an exit-reaching process, the task of detecting nontermination in Prolog programs 

can be accomplished if we can have a method to identify an exit-variable modifying 

process and then a method to verify whether it is also an exit-reaching process. 

Therefore, we propose a nontermination detection technique based on parameter 

analysis as follows: 

(1) By analyzing the parameters, we first find the potential exit-variable modifying 
process. In Prolog, since all the exit-variables are made up of the parameters \\\ 
a recursive subgoal, to detect a potential exit-variable modifying process U 
equivalent to detect a parameter modifying process 

(2) I f a parameter modifying process exists in a recursive definition, it can be sho\y^ 
in pure Prolog that there also exists a technique that can detect whether 终 Pjrpjpg 
program wil l terminate without any prior knowledge of the presence o( 

condition. : 。 
• : . •••. 
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Since the absence of any parameter modifying process implies the absence of an exit-

variable modifying process, this can show how the detection of a parameter modifying 

process plays a role in nontermination detection in Prolog. Actually, as we shall see 

later, the detection of a parameter modifying process constitutes the basis of our non-

tracing nontermination detection technique. Therefore, our technique for 

nontermination detection consists of two parts: detection of parameter modifying 

processes and verification of the detected parameter modifying processes. The first part 

of our technique wil l be discussed in Chapter 3. We shall explore how to detect the 

parameter modifying process in Prolog programs. The second part of the technique is 

based on an analysis of data passing through the parameters involved in the parameter 

modifying process. In a pure Prolog program, it can be shown that it is possible to know 

what values can pass through the parameters in a parameter modifying process merely 

by analysis. It will be discussed in Chapter 4 in detail. However, a program structure 

analysis must first be performed to identify all the recursive definitions in a Prolog 

program before parameter analysis and data analysis can be conducted. As implied by 

the above discussion, an exit-reaching process only exists in a recursive definition. 

Therefore, only the recursive definitions require our concerns in nontermination 

detection and parameter analysis and data analysis should be conducted on them alone. 

Since it is trivial to detect a recursive definition, no detail on recurisve definition 

detection algorithms is given in the thesis. 

In conclusion, our analysis of the relationship between recursive definitions and 

nontermination is intended to develop a new nontermination detection technique in pure 

Prolog. With the emphasis of the relationship between the exit-reaching process and 

nontermination, it can be shown later that this provides a new starting point to detect 

nontermination in pure Prolog programs. In the following chapters, we shall see how an 

exit-reaching process can be detected step by step by analyzing the parameters and 
‘ • . 

used in the recursive definitions of a Prolog program. Therefore, our discussion abuye 

provides a basis to develop a technique based on a compile-time program slfrwiQUlje 

analysis approach instead of the run-time tracing technique. Moreover, underst^iii^ing 
.：''v •J、""."-

of the cause of nontermination in pure Prolog programs gives us insights in deyelopini^ 

methods to overcome the limitation of the run-time tracing technique. 
37 



CHAPTER 3 —Parameter Analysis 

To detect whether a parameter modifying process is present in a certain recursive 

definition, an appropriate technique is needed. However, a parameter modifying 

process cannot be detected by analyzing the parameters alone. To detect whether 

values in a parameter are modified during recursion, one needs to analyze the values 

transferring in the parameter too. In this chapter, however, a technique, parameter 

analysis, which can identify a set of potential parameter modifying processes by 

analyzing the parameters alone is developed. It is based on detecting some unique 

characteristics of potential parameter modifying processes that are reflected in the 

relation among the different parameters in a recursive definition. The analysis consists 

of two steps: 

(1) to detect the presence of any parameter links in a certain recursive definition, 
and 

(2) to verify whether any parameter link found is a cyclic parameter link. 

In Section 3.1, we shall discuss what a parameter link is in a pure Prolog program and 

how it is related to the parameter modifying process. In Section 3.2, we shall further see 

how a parameter link can become a cyclic parameter link and why a cyclic parameter 

link is a potential parameter modifying process, which must exist in a recursive 

definition in order to have the presence of a parameter modifying process. After 

discussing what constitutes the characteristics of a potential parameter modifying 

process, we introduce our systematic approach to detect the process through graphical 

representation of parameter links. A set of graphic notations is introduced to explain 

how the technique works. Finally algorithms are also provided to show how one can 

detect a potential parameter modifying process in general. 
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3.1 Parameter Link 

The concept of parameter link is developed as a preliminary step for identifying 

a potential parameter modifying process. A parameter link is considered to be present 

between a parameter in the head of a certain recursive rule and a parameter in the 

corresponding recursive subgoal if the value of the parameter in the recursive subgoal 

is dependent on the value of the parameter in the recursive rule head. When there is 

a dependent relationship between a parameter in the recursive rule head and a 

parameter in the recursive subgoal, the value used in the parameter in the recursive rule 

head wil l affect the value assigned to the parameter in the recursive subgoal. Due to 

the characteristics of the Prolog execution model, the same variable in a rule cannot be 

instantiated to different values. If we want to receive a value from a previous level of 

recursion and then modify it and pass it to the next level, we must have at least two 

different variables that have a dependent relationship. Therefore, this dependent 

relationship between two parameters can also be described by a data transfer analogy. 

This analogy will be used to facilitate our discussion. In the following sections, we shall 

discuss how a parameter link relates to a parameter modifying process and how a 

parameter link can be identified in different kinds of Prolog recursive definitions. 

3.1.1 Parameter Link and Parameter Modifying Process 

As discussed in Section 2.4, an exit-variable needs to be a parameter in Prolog 

programs. In other words, a parameter modifying process is a potential exit-variable 

modifying process. Since an exit-reaching process implies the presence of an exit-

variable modifying process, a method detecting parameter modifying process can provide 

potential exit-reaching processes for our further analysis. The concept of parameter linH 

is thus introduced to facilitate the detection of parameter modifying process. To sep 

how a parameter link relates to a parameter modifying process, we must first understand 

fully what constitutes a parameter modifying process. A parameter modifying process 

consists of two aspects: 
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(1) it can modify a parameter in a recursive definition at each level of recursion, and 

(2) the effect of the modification can be passed along to successive levels of 

recursion continuously. 

Aspect (1) of the parameter modifying process is obvious. As a parameter modifying 

process, it must be capable modifying a parameter at every level of recursion. However, 

aspect (2) needs some further elaboration. It will become clearer if we consider the 

opposite case. 

In a recursive definition, ii 
goal exit_if_NOT_in_range(Variable), 

there may exist a process that can mo^cvanabie. New_variabie), 
goal. 

modify a parameter at each level of x̂it if NOTjn̂ ranged). modify(o,i). 
. cxit_if_NOT_iii^range(2). modifyCU). 

recursion separately. But this pro- exitjf一NOT_in_range(3). mo^as). 

cess does not really modify the in-
goal 

volved parameter if the recursive 一 ^ ^ ^ 一 / \ 

exit_if_NOT_iiurange(l) , , \ 

definition is considered as a whole. modify(i，2) 
This can be shown by the example goal 

— \ 
in Figure 3.1. In Figure 3.1，the exit_if_NOT_in_range(i) / \ 

modify (1,2) \ 

s u b g o a l modify (Variable, 、\ 
\ 

New一Variable) is intended to modify 

the parameter variable. Because the mo^aa) 

variables with the same name in the • 

same rule cannot be instantiated to 

different values in Prolog, another Figure 3 . i 

variable New一Variable, instead of the original Variable, is used to contain the result of 

the modification. 

Although the subgoal modify (Variable’ New一Variable) can modify the paraipeter 

Variable at each level of recursion, Variable still remains the same throughou| (h^ 

evaluation as shown by the search tree in Figure 3.1. The reason is obvious: since th窃 

parameter New一Variable which contains the result of the modification does not ^ff^c) 

any parameter in the recursive subgoal, the change made on the parameter Variakk 
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cannot be passed onto the next recursion level. As a result, all the parameters in the 

recursive definition are instantiated to same values during every level of recursion. Thus 

nontermination results. This is the reason of why a parameter modifying process cannot 

really fulfill aspect (1) without fulfilling aspect (2). No parameter can really be modified 

if aspect (2) cannot be met. 

However, aspect (2) of the parameter modifying process requires that there exists 

at least a process which can pass data from the previous level of recursion to the param-

eter modifying process and subsequently can also pass the result of the parameter 

modifying process to the next level of recursion. Such a process can be achieved if: 

(1) a parameter can be supplied with a value from the previous level of recursion, 

and 

(2) the value of the modified parameter can be passed onto the next level of 

recursion. 

To have a value supplied from 
eoairVar) exit_if_NOT_in_range(Variable), , , ‘ 

in<̂ (Variabie, New—Variable), the pievious level, somc parameters 
goal(Var). 

exit if NOT in^ed). modify(o,i). —St appear in the head of the recursive 

rule. Similarly, to have a value passed 
一 一 “ modify(3,4). 

onto the next level of recursion, there 

must be requires some parameters in the 

exit.if_NOT_m.range(i) / \ rccursivc subgoal. The lesult of the 
modify(l^) \ 

〉ai({̂ ) absence of any parameter in the recur-

\ sive subgoal has also been shown in 

modify(î ) \ Figure 3.1. But the presence of parame-

ters in the recursive rule head and the 

«dt_if_NOT_m_range(i) recuTsive subgoal caiuiot guarantee the 

口） • presence of a parameter modifying 

© ： uninstantiated parameter • Process in the recursive definitipq. |l> 
= = = = = ! 1 Figure 3.2, there is a recursive definitioQ 

Figure 3 . 2 

similar to the one in Figure 3.1 p^pp} 

that there are some parameters in the recursive rule head and the recursive subgOQi. 

• • . 
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Although there exists a parameter Var in the recursive rule head and the recursive 

subgoal, Var is not related to any parameter appearing in the recursive rule body. 

Therefore, the result of the modification can never be passed onto the next level of 

recursion. Moreover, the result of the modification from the previous level cannot affect 

the modification of any parameter in the present level of recursion. This is shown by 

the search tree in Figure 3.2. Parameters are instantiated to the same values if the 

parameters in the recursive rule head and the recursive subgoal do not related to the 

parameters in the recursive rule body. 

Since a parameter link indicates the presence of a dependent relationship 

between a parameter in the recursive rule head and a parameter in the recursive 

subgoal, a parameter link can indicate that values can be received from the previous 

level of recursion and subsequently some modified values can be passed onto the next 

level of recursion from one level of recursion. Although the presence of a parameter 

link itself cannot completely satisfy the requirements of aspect (2) of the parameter 

modifying process, the existence of a parameter link in a recursive definition implies that 

a parameter modifying process of one level of recursion exists in the recursive definition. 

Therefore, a parameter link is a necessary condition for the presence of the parameter 

modifying process. That is because the ef fect of modification can be passed onto 

successive levels of recursion continuously only if there at least exist some mechanisms 

to receive and to pass on the values in each level of recursion. Without a parameter 

link, no parameter modifying process can be present. In other words, parameter links 

serve as an indication of all the possible parameter modify processes in a recursive 

definition. 

With respect to aspect (1) of the parameter modifying process, parameter links 

also cannot completely satisfy its requirement. Detecting a parameter link, we can only 

conclude that the two parameters from the recursive rule head and the recursive 

are in a dependent relationship. But a parameter link does not guarantee (ji^i tb^ 

content of involved parameters must be changed during recursion. For e x̂ai[ppjg，ijf | | | | 

procedure defining the subgoal modify (Variable, New一Variable) is 移 

procedure consisting of only one fact: modify(1,1) in the above two example ,̂, 

- . i . 1 -‘ . • • 5 y . -J- > - . 
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instantiated to the parameters Variable and New—Variable are all remained as 1 even 

though a parameter link can be established in the recursive definition. We can be sure 

that parameters involved in a parameter link can be modified during the recursion only 

after we have analyzed the data transferring through the parameter link. However, 

parameter links in a recursive definition provide us with a pool of parameters that 

involve in the potential parameter modifying process. Thus parameter links can serve 

as an indicator of parameter modifying processes. Moreover, since a parameter 

modifying process is a potential exit-variable modifying process, the parameters involved 

in parameter links are also the potential exit-variables in a recursive definition. 

3.1.2 Parameter Links of Multi-Parameters 

Sometimes, a parameter link is not obvious. A parameter link can also be estab-

lished between a parameter in the recursive rule head and a parameter in the recursive 

subgoal through a number of other parameters in the rule. In Figure 3.3，both the 

parameter Variable，which is modified by the subgoal modify, and the parameter New一 

Variable, which contains the result of the modification, do not appear as any parameter 

in the recursive rule head or the recursive subgoal. Yet this recursive definition includes 

a parameter modifying process. We can see this clearly if we consider it in terms of the 

dependent relationship. In the recursive definition in Figure 3.3, the parameter in the 

recursive subgoal, A, is dependent on the parameter New—Variable because of the 

subgoal link2(New_ Variable⑷ while New_ Variable is also determined by Variable. 

Moreover, the parameter Variable depends on the parameter X through the subgoal 

linkl(X，Variable) where X is the parameter in the recursive rule head. Thus, A, (tig 

parameter in the recursive subgoal, can be considered to be dependent on X � 购 

rameter in the recursive rule head. A parameter link exists in this recursive definftiqi^ 

between parameters A and X though it is established through a transitive relat|pn§)tlig, 
-、’.. > 

• .- • . ； 
. » ‘ ‘ • , 」 

.-、.，，.，. 

I - … 
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goal(4, exit). 

goal(X,Y) linkl(X, Variable), 
exit_if_NOT_in_range(Variable), 
mo^y(Variable, New一Variable), 
link2(New_Variable,A), 
goal(A, Y). 

exitJf_NOT Jn_range(l). modify(0,1). 
exit_if_NOT_m_range(2). modify (1,2). 
exitJf_NOT_in_range(3). modify(2,3). 

modify (3,4). 

lmkl(X,X). lmk2(Y,Y). 

goal(2,X) 

exit_if_NOT_in_range(2) / \ 

modify(2,3) / \ 

link2(3,3) \ 

_ _ _ _ _ goal(3,X) 

{ ？ / I \ 

exitJf_N0T_m_range(3) / \ 

modify(3,4) / \ 

lmk2(4,4) • 

參 

Figure 3 . 3 

3.1.3 Parameter Links in Indirect Recursive Definition 

So far, we have focused our discussion on direct recursive definitions only. We 

must also consider the case of indirect recursive definitions to have a complete picture 

of parameter links. In Figure 3.4，there is an indirect recursive definition. To solve 

goall, the subgoal goal2 must be evaluated. But the subgoal goal3 must be first evaju射-

ed to solve goal2. Then the evaluation oigoalS requires goall to be solved. IUustr^t|i[i| 

this by the search tree in 3.4, we can see clearly how these three rules indirectly 

a recursion. Moreover, the search tree in Figure 3.4 also shows that a p^l^mp^pj 

modifying process is present in this indirect recursive definition througjiput 事 

• 
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successive levels of recursions. If j p = = = = = = = ^ 

the recursive definition is examined, goall(X,Y) exit_if_NOT_m_raiige(X), modify(X^), 

, . , , goaI2(A,Y)." 一 
we can see that, m the recursive rule 

goall, there is a dependent goal2(X,Y) linka(XA), goal3(A,Y). 

relationship betweenZ, a parameter g 。必⑶力：• g 。 叫 入 灯 

. 丄 , , , , . linkaCX^. liiikb(Y,Y). 
m the recursive rule head, and A , a exit if.NOT.in ranged). modify(U). 
n^irj^m^-tPr in the rpriir^i'vp cnhanal exitJf_N0TJn_raiige(2). modify(2^). parameter in the recursive subgoal. exitJf_N0TJn_raiige(3). modify(3,4). 

Rules goal2 and goalS are in a 

similar situation. By applying the (2.x) 
exiLlf_N0TJn_range(2)Z \ 

definition of parameter link —(2,3) ^ goai2(3’X) 

provided above to these cases, we iinka(3;ir^ g^3(3,x) 

can conclude that a parameter link iinkb(3,3) goaii(3,x) 

exists in the rules of this indirect QyAjmijnjsnQQ^/^ 

recursive definition. Furthermore, modify(3,4) 
L , 4 1. 1 . 1 linka(4,4) goal3(4.X) 
because the parameter link in rule ^ ^ \ 

linkb(4,4) goall (4,X) 
goall passes data to rule goal2 

through the first parameter in the goaii(4.exrt) 

recursive subgoal while the Figure 3.4 

parameter link in rule goal2 receives 

data from rule goall through the first parameter in the head, data can be passed from 

the parameter link in rule goall to the parameter link in rule goal2. We can consider 

that the parameter link in rule goall is linked to the parameter link in rule goal2. 

Again, the same situation happens between the rules goal2 and goal3 and also the rules 

goals and goall. Since there exists a dependent relationship between a parameter in the 

head of rule goall and a parameter in the recursive subgoal of rule goal3, a parameter 

link is present in this indirect recursive definition. It is similar to the case of direct 

recursive definition. In summary, a parameter link exists in an indirect recursive 

definition if: 

(1) parameter links exist in each rule involved in the indirect recursive definition, 

and 

(2) at least one of the parameter links in each rule can be linked to the parameter 

link in the rule corresponding to the recursive subgoal. 
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3.1.4 Parameter Links with Special Parameters 

Moreover, in pure Prolog, a parameter link can be actually formed in three ways: 

(a) through some subgoals, 
(b) through some special parameters, or 
(c) through some subgoals and some special parameters. 

I n the above 
Program (a) Program (b) examples, all the 

g ⑷(0, e 邮 go 识0’ e 邮 parameter links 
goal([XlA], Y) goal(A, Y). goal(f(X). Y) goal(X, Y). , 

found are formed 

Search Tree for Example (a) Search Tree for Example(b) by subgoals. We 
shall refer to them 

goal([l^,3], Y) goal(f(f(f(0))), Y) 
a s s u b g o a l 

goal([2,3]. Y) goal(f(f(0)), Y) parameter links. 

In Figure 3.3，the 
goal([3], Y) goal(f(0), Y) . . . . 

parameter link is 

goal(n, Y) goal(0, Y) f o r m e d by a 

sequence of sub-
goamexit) g。al(0，exit) goals： linkl(X， 

Figure 3.5 一 Variable), exit一 
if NOT in ran-

ge (Variable)’ modify ( V a r i a b l e ， N e w 一 Variable) and link! ( V a r i a b l e , A). In Figure 3.4，the 

sequence of subgoals that form the parameter link are exitjf_NOTJnjange(X) and 

modify(X，A) in rule goall, linka(X，A) in rule goal2’ and linkb(X，A) in rule goal3. But 

a parameter link can be established through some special parameters using lists and 

structured data. In Program (a) in Figure 3.5, we can see that, due to the head-tail 

separator, only the tail part of the list in the first parameter in the rule head can be 

passed onto the next level of recursion through the first parameter in the recursive sub-

goal. Therefore, it can be considered as a parameter link between the first 
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goal(口，odd). 
goal([^, even). 

goal([X|A], Y) exitJf_NOTJn_range(A), modify(A^J, goal(A_, Y). 

exitJf_NOTJn_range(n). 

exit_if_NOT_m_range([X|Y]) :- atJeast_one_elemeiit(Y). 

atJeast_one_element([X]). 
at 一 l e a s t 一 o n e 一 e l e m e i i t ( [ X f L ] ) . 

modifyOXlL], L). 

Figure 3 • 6 

parameter in the recursive rule head and the first parameter in the recursive subgoal. 

A similar situation happens in Program ( b). In this case, structured data are used to 

achieve a parameter link. However, subgoals and special parameters can also be mixed 

together to build a parameter link. In Figure 3.6，due to the list used in the first 

parameter in the recursive rule head, the first parameter in the head is linked to the 

parameter 乂 in the rule body. Then^l is linked ioA_ through the subgoal modify(A4」 

where A_ appears as one of the parameters in the recursive subgoal. Therefore, a 

parameter link is established using both subgoal and special parameter. In these cases， 

we shall refer to the parameter links as special parameter links. 

3.1.5 Parameter Links of the Same Name Parameters 

In addition to subgoals and special parameters, a special case should also be 

considered when we construct parameter links through different data structures. I t is 

the case of parameters with the same name in the same rule. We can consider that 钱 

parameter link exists in both Program (a) and Program (b) in Figure 3.7 because dat今 

can be passed from the recursive rule head to the recursive subgoal in both case§, Py 

the search tree of Program (a) in Figure 3.7, we can clearly see that a value fe辦熊 

passed onto the recursive definition by the parameter X can surely be passec) {tiirpugti 
• • • - ' ^ 

the successive levels of recursion. It is due to the fact that the first parameter in 

recursive rule head and the first parameter of the recursive subgoal share tlie 
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[ = = = = ^ = = = j ] name. This is also true 

⑷ Pregnun (b) 化【the rule gl in 
g(X, Y) :- modi^B), gl(X, A) :- g2(X, A). 

^ B). g2(x. A) ：- modify(x, Y), gi(Y. A). Program (b) 

3 1 1 S I 3 1 3 1 ’ 
searcn Tree lor trogiam ⑷ Search Tree for Program (b) with the However， a pa-
with the query "？• g(l,X)" query •?- gl(l, X) ” 

g(i 肩） rameter link formed by 
gi(i.®〉 

modrfy1i.2) common name pa-

modifytT：^ m o d i f y ( i , 2 ) Z rameters can never make 
\ np/p any modification on the 

mod丨fy(1.2) go.®) , 2 ( 2 Q) 
I modify(2.3)z 31(3)⑩） data passing these 
• parameters since the pa-

« 

⑩：uninstantiated parameter rameters of the same 

Figure 3.7 name in the same rule 

must be instantiated to the same value in Prolog. Since modification of the transferring 

values (which is required by aspect (1) of a parameter modifying process) is absent in 

this kind of parameter links, the two same-name parameters in the recursive rule head 

and in the recursive subgoal cannot form a parameter link. So Program (a) is 

considered to have no parameter link. But Program (b) illustrates a different situation, 

where a parameter link is considered to be present. 

The two parameters sharing the same name in the rule gl are important to 

establish the parameter link in Program (b). In the rule g2 of Program (b), the first 

parameter in the rule head forms a parameter link to the first parameter in the 

recursive subgoal through the subgoal modify. But a parameter link cannot be 

established in this indirect recursive definition if there is no parameter link in the rule 

g l . In this case, the parameters sharing the same name in the rule gl provide a channel 

for passing on the modified data from the rule g2 of the last level of recursion to the 

rule g2 of the next level of recursion. In this situation, the same-name parameters in tt̂ e 

rule 2I must be considered to form a parameter link in the rule gl so that we do not 

miss the parameter link existing in the whole indirect recursive definition. 
• ‘ 
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The situation illustrated in Program (b) is only one of the many special cases in 

which a parameter link can be considered to exist between two same-name parameters. 

These special cases can only arise in a recursive definition with other parameter links 

formed by subgoals or special parameters. It is also true in Program (b) which has a 

parameter link formed by the subgoal modify(XJ) in the rule g2. Since a complicated 

situation can result from using different types of parameter links, we need to develop a 

systematic approach to detect and analyze the recursive definition with different kinds 

of parameter links. This will be discussed in Section 3.3 in detail. In general, we 

conclude that a parameter link is formed between two same-name parameters in the 

recursive rule head and in the recursive subgoal only if it can pass data to other 

parameter links formed by subgoals or special parameters. 

3,1.6 The Significance of Parameter Links 

In conclusion, the relationship between a parameter link and a parameter 

modifying process is clear. A parameter link is an indicator of all the processes that 

involve passing and modifying some values from some parameters in the head to some 

parameters in the recursive subgoal of one level of recursion. Although a parameter 

link can always ensure that some values can pass through at least one level of recursion, 

it cannot guarantee that the value passed to the next level of recursion will always be 

different from the value received from the previous level. This is particularly true in the 

case where the parameter link is formed by subgoals. In Figure 3.4，we originally have 

a parameter link that can change and pass values in different levels of recursion. 

However, a little change in the procedure defining the subgoal modify(X^) can take 

away the modification ability of the parameter link. The parameter link no longer 

transfers a different value if the procedure modify is alternated as: 

modify(l,l). modify(2,2). modify(3,3). 

Therefore, parameter links alone are too weak for detecting parameter modifying 

processes in a recursive definition. 
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However, we may see the significance of parameter links with respect to aspect 

(2) of the parameter modifying process. With parameter links, we have a tool to 

identify all the possible channels in a recursive definition for passing (but not modifying) 

data through one level of recursion. As shown above, the ability for passing data is a 

necessary (but not sufficient) condition for the presence of aspect (2) of the parameter 

modifying process and consequently a necessary condition for the existence of any 

parameter modifying process. Thus, the detection of parameter links in a recursive 

definition indicates a potential presence of aspect (2) in a recursive definition. There 

are two implications: 

(1) If no parameter link can be found in a recursive definition, one can be sure that 

it is a nonterminating recursive definition^ 

(2) I f there exist some parameter links, further steps should be taken to test for the 
presence of a parameter modifying process. 

Therefore, as indicated in aspect (1)，to construct parameter links in a recursive 

definition provides a preliminary test for nontermination in Prolog. Furthermore, it is 

a test without using any semantic knowledge as the detection of parameter links does 

not require any semantic knowledge. It constitutes the first step of our non-tracing 

s eman t i c -knowledge-free pure Prolog nontermination detection technique. Parameter 

links are thus important in providing a basis for the further steps in nontermination 

detection. After identifying the parameter links, one can isolate all the possible 

candidates for the further detection of the parameter modifying process in a recursive 

definition. 

1. A recursive definition without any parameter link usually run into pncl-
less recursion once the recursive definition is evaluated. However, ^i^qh 
a recursive definition can sometimes be prevented from nontermination “ “ 
cause no recursion can be invoked under some situation. For example/ if 
we supply the query "？一 g { l , X ) “ for the following recursive definitlqni 
no nontermination occurs although nontermination will be the r^Qult i j 
the query "？- g ( X , Y ) " or "？- g ( 2 , X ) " is supplied. ••；••"'"AX 

g (X , Y) :- a(X, A ) , g(P , Q ) . 
a ( 2 , 3 ) . 
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3.2 Cyclic Parameter Link 

However, the presence of a parameter link cannot guarantee that data can be 

passed through other successive levels of recursion after the. first one. The example in 

Figure 3.8 shows how a recursive definition can have no parameter modifying process 

even though some [ j = = = = = = = = = = = = | 

parameter links are 
^ g(X, Y, Z) 

present. I f the query P- y, z) ：. change(X, Q, c h a W T ^ i ^ Y 2) 

g(Xy Yy Z) is given for the cnangeu’ 〜 g ， “ 〈 7 

evaluation, the value of 2 changc(l,2). changed, 2) g(X, Y. 2) 

will always be passed changed,3). • 
change(l,4). 

onto the next level of : 

recursion through the 

third parameter of the figure 3.8 

recursive subgoal. But the value is also lost in every level of recursion. Although the 

parameter link between parameters X and C can transfer data through one level of 

recursion, it does not pass data continuously throughout every level of recursion. This 

kind of parameter link cannot really establish aspect (2) of the parameter modifying 

process. Although it can pass some values to the next level of recursion, no value is 

passed on continuously during the recursion. And it does not provide a means to modify 

the data throughout the recursion. The search tree in Figure 3.8 clearly shows that the 

third parameter of the recursive subgoal is always instantiated to the same value in an 

endless recursion. I t is obvious that an exit condition can never be reached in this 

situation. In fact, to have data passed through the successive levels of recursion 

continuously, a recursive definition must include not only a parameter link but also a 

cyclic parameter link. 

A cyclic parameter link is said to exist in a recursive definition when: 

(1) there is a dependent relationship extending over all levels of recursion, ^nd 

(2) there are two parameters in two different levels of recursion, mH 
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(3) these two parameters occupy the same position in the parameter list of the 
recursive definition. 

The parameter list of a direct recursive definition refers to the parameters used in the 

recursive subgoal and the parameters used in the head of the recursive rule. For 

example, the recursive definition below has a parameter list of n parameters. 

g(Xi，X2，…，XJ :-...，g(Yi，Y2,…，Yn)’ . . . • 

A cyclic parameter link is formed if there is a dependent relationship between X^ and 

Yj, or there are dependent relationships between X^ and Y】and between Xj and Yj. In 

the following paragraphs, we shall show how a cyclic parameter link can be constructed 

out of parameter links. We shall also explain how a cyclic parameter link can ensure 

that the result of modification will be passed onto the different levels of recursion. In 

fact, a cyclic parameter link represents a dependent relation extending over all levels of 

recursion. Then the difference between the cyclic parameter link in the direct recursive 

definition and the cyclic parameter link in the indirect recursive definition will be 

discussed. 

Before we begin our discussion on cyclic parameter link, we must first look at 

how data are transferred in Prolog programs. Two different situations will need to be 

considered separately: 

(1) passing data from one subgoal to another subgoal within the same rule, and 

(2) passing data from one rule to another rule. 

There are two ways to accomplish data passing: (1) Data are passed by using parameters 

with the same name, and (2) data are passed by using the parameters at the same 

position in the parameter list of a recursive definition. In situation (1)，dat今终I[擎 

transferred through parameters with the same name. We have seen many examples 

the discussion of parameter links. In situation (2)，parameters at the same posiUpn jp 

the parameter list are used to pass data between different rules. Situation (2) [叩pe购 

when a subgoal in a rule is defined by a procedure that includes some rules, Purfiig the 
• • • . . . , __ -

evaluation of this rule, this particular subgoal needs to be solved, so th^ î Qifip^ îpQ 
•• - •.: V '- ' , 

y.、-- 一 
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process as described in Figure 2.1 is invoked to solve it. This subgoal wil l be unified 

with the head of the rule defining this subgoal. Therefore the parameters in the 

parameter list of the subgoal are unified with the parameters at corresponding positions 

in the parameter list of the head of the selected rule. If any parameter in the subgoal 

in the original rule has already been instantiated to any value, the parameter at the 

same position in the parameter list of the head of the selected rule now has also the 

same value. From another point of view, the value in the subgoal of a particular rule 

can be considered to be transferred to the head of another rule through the two 

parameters at the same parameter list position of the subgoal in the original rule and 

the head of the selected rule. 

To establish aspect (2) of the parameter modifying process in a recursive 

definition, the recursive definition must have a parameter link to permit data to be 

transferred between successive levels of recursion. Therefore, when one considers how 

to establish aspect (2) of the parameter modifying process, he is actually considering 

how to pass data along parameter links during recursion. If we examine the evaluation 

of a recursive definition, we can see that passing data from one level of recursion to the 

next is equivalent to passing data from one rule to another rule (although the another 

rule is equivalent to the original one in a direct recursive definition). Therefore, passing 

data between different levels of recursion is accomplished by parameters at the same 

position in the parameter list of the recursive definition. To simplify our discussion, we 

can say that two parameter links are connected to each other if the following situation 

happens: 

In a certain rule, a parameter link is established between a parameter in the 
rule head and a particular parameter in a certain subgoal in the body. This 
subgoal invokes another rule which also has a parameter link and this 
parameter link extends from a parameter in the rule head. This parameter ivi 
the rule head has the same parameter list position as the parameter ix\ 
subgoal of the original rule. •斤... 

• s . . 

So, to establish aspect (2) of the parameter modifying process in 铁 recursive ^eQmtioi^, 
• • ’ » . . y / : r-.i • ••, •'. 

at least one of the parameter links in each level of recursion mus( always be tp 

a parameter link in a previous level of recursion and to a parameter link next 

• • • ‘ ‘ 
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level. However, when parameter links in different levels of recursion are linked 

together, the parameters involved in these parameter links are all in a dependent 

relationship. In other words, a dependent relationship that extends over different levels 

of recursion has been established. 

Through the parameters that have the same parameter list position, a parameter 

link in one recursion level can be further connected to another parameter link in the 

next recursion level. However, the presence of aspect (2) of the parameter modifying 

process requires that these parameter links are linked up not only for a limited number 

of recursion levels but for all levels of recursion. In other words, the parameter links 

must be linked up indefinitely throughout all the recursion process. Otherwise, the 

recursive definition given is an improper recursive definition. The reason is obvious: 

I f parameter links in one level of recursion cannot be connected to the parameter links 

in the next level, the result of modification will be lost in the next level. Usually, 

nontermination wil l happen. However, a more serious problem is that such a recursive 

definition is meaningless. Recursion goes on without performing any real data 

processing. To have certain parameter links in a recursive definition to be linked up 

throughout all recursion levels, each parameter link must in some way be linked up to 

itself again after a certain number of recursion levels. Since the number of parameters 

in the parameter list of a recursive definition is limited, the number of parameter links 

that can be formed is also limited. To have a limited number of parameter links to be 

linked up throughout an 
Program (a) Program (b) 

indefinitely number of 
a(X, Y, Z ) g l ( X . B), a(X, Y, Z ) g l ( X , B). recursion levels, some of 

g2(Y, C), g2(Y, A). 

a(A, B, Q. a(A, B, Q. them must be repeatedly 

Figure 3.9 used in the process, \i\ 

Figure 3.9, P r o g 哪 ( ^ ) 

and (b) both have parameter links that extend over more than one level of r(̂ cui:siQi[\« 
- -S - 广 ： ‘ 

But the parameter links in Program (a) can extend over only two levels of cec^rsipi) 

while those in Program (b) can extend indefinitely. The difference biejtween t b f ^ l i ^ t 

the parameter links in Program (b) can be linked up to themselves ^fter ley els of 
- - • • . • ‘ ‘ ‘ 

recursion. To have a parameter link linked up to itself after several levels of r^qiirsion, 
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there must be a dependent relationship extending over several levels of recursion with 

two parameters in different levels but at the same position in the parameter list. In 

other words, there is a cyclic parameter link in the recursive definition. Thus aspect (2) 

of the parameter modifying process requires the presence of a cyclic parameter link. 

There are two different situations that require a different consideration in 

establishing cyclic parameter links. They are situations in which: 

(1) only one parameter link exists in the recursive definition, or 

(2) more than one parameter link exists in the recursive definition. 

I f there is only one parameter link in a recursive definition, it is easy to determine 

whether this parameter | j ^ = = = = = = = j 

1 . „ … Program (a) Program (b) 
link IS cyclic or not. A 

parameter link can be a(3,4, 5). a(3,4，5). 

a cyclic parameter link a(X, Y, Z) ：- g(X,A), ^ a(X, Y, Z) ：- S 二 ^ 

only if the position of ^。、 。… 
】 ^ g(l, 2). g(l，2). 

the parameter in the g(2，3). g(2,3). 

rule head involved in 一 
^ + , . a ( i M i ， _ _ ， _ , _ ) the parameter link is \ ^ ^ 

equal to the position of gi(i,2) a(2,⑩，⑩） gKU) , 2’ _ ) 

the parameter in the \ ^ ^ ^ ^ \ 

recursive subgoal in- g(2,3) a(3,® ) gd, 2) a(〇，2,⑩） 

volved in the parame- 。 
a(3, 4, 5) • 

ter link. I f there is • 
only one parameter ⑩：uninstantiated parameter • | 

link in the recursive Figure 3.10 

definition, the parame-

ter link must be linked up to itself in the immediately next level of recursion. 

Otherwise, the data passed onto the next level will be lost. The difference between the 
recursive definitions with and without a cyclic parameter link can be illustrated in Figure 

•. .. 

3.10. In the search trees given, we can see how data are modified along a cyclif? 

55 



parameter link, and on the other hand how the result of modification is lost in the 

recursive definition i f there is no cyclic parameter link. When more than one parameter 

l ink exist in a recursive definition, there are different ways in which these parameter 

links can be linked up to form a cyclic parameter link. The different examples in Figure 

3.11 show how different cyclic parameter links can be formed in a recursive definition 

with multiple parameter links. In general, a cyclic parameter l ink is formed by either 

l inking up a parameter l ink to itself directly or indirectly. For a recursive definition with 

o n l y o n e [ j = = = = = = = = = = = = = = = j 

parameter l ink Program (a) Program (b) Program (c) 

as what is a(X，Y，Z):- a(X, Y, Z) a(X，Y，Z):-
shown by Pro- g l ( X , B)， gl(X，B), gl(X，A), 

( 、 . g2(Y, C), g2(Y, A), g2(Y, C)， 
gram (a) m 各 g、3(k，Z)， a(A，B，C). a(A, B, Q . 
Figure 3.10 or a(A, B, C). 

Program (c) in F igure 3.11 

Figure 3.11, a 

cyclic parameter is formed by linking up the parameter to itself directly. In Examples 

(a) and (b) of Figure 3.11, the cyclic parameter link is formed completely by indirect 

linking-up. 

To establish that a cyclic parameter link exists in an indirect recursive definition, 

it is necessary to establish some ordinary parameter links in the indirect recursive 

definition first. As described in Section 3.1，the parameter l ink of an indirect recursive 

definition can be established by linking up parameter links in every rule involved in the 

definition. Then a cyclic parameter link can be formed if certain parameter links of the 

recursive definition can somehow be connected to themselves. I t is similar to the case 

of direct recursive definitions. 

I f there is a cyclic parameter link in a recursive definition，we can say tha| 

recursive definition has a potential parameter modifying process since a cyclic parameter 

l ink guarantees that: V 

(1) there is a process in which the values in some parameters can be inodiQ^^ 
in each level of recursion, and 

56 



(2) the result of modification can be passed from the recursion level, and the 
modified result can be passed onto the next level. 

The effect of a cyclic parameter link is equal to a parameter modifying process if one of 

the parameters involved in the cyclic parameter link can be modified during the 

recursion. On the other hand, i f no cyclic parameter link exists in a recursive definition, 

the implication is that no potential parameter modifying process exists, and thus a 

parameter modifying process does not exist either. Therefore, parameter analysis 

provides a means to detect the nontermination caused by the absence of a parameter 

modifying process, and it does not require any semantic knowledge. Moreover, 

parameter analysis is important in the whole process of nontermination detection as it 

also identifies any potential parameter modifying process. The next step is to verify 

whether these potential parameter modifying processes (which are also potential exit-

variable modifying processes), can act as an exit-reaching process. This requires the 

detection of the exit condition in a Prolog program, which in turn implies the need for 

semantic knowledge of the program. However, we can show in Chapter 4 that this is 

not necessarily the case as far as pure Prolog is concerned. The technique to be 

presented in Chapter 4 and parameter analysis together form a diagnostic test for 

nontermination in pure Prolog programs without the need of semantic knowledge. 

Parameter analysis is an important part in the test as it supplies the necessary data—the 

potential parameter modifying processes, (i.e., the cyclic parameter links)--for further 

examination. 

In the following sections, we shail show how parameter analysis can be achieved 

by incorporating the graph technique in the cyclic parameter link detection. I n the 

methods below, no special handling is provided for the improper recursive defimtiqi| 
I . "’ V. 

mentioned in Section 3.2. I f in a recursive definition there are several parameter 
.、“r\--，V ： ) ,//-:、:， 

that can be linked up together across several levels of recursion but they do | 

cyclic parameter link, this recursive definition wil l be treated like any other ceqU^siyi 
-,.i' •、- • * 

definitions having no cyclic parameter link. 、:.、:::::).'. 

- •“ 
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3.3 Parameter Link Detection 

In this section, we shall describe how a systematic approach can be developed to 

detect a parameter l ink and in turn a cyclic parameter link. Essentially, our method is 

based on the graph technique. After showing how to use the graph technique to detect 

parameter links and cyclic parameter links, algorithms wil l be developed to illustrate the 

method of parameter analysis. 

3.3.1 Graph Technique 

3.3.1.1 Preliminaries 

To establish a graph technique to detect parameter links and cyclic parameter 

links, we must first develop some notations to represent the recursive definition being 

analyzed. 

In each rule, the parameters in the rule head and the parameters in the recursive 

subgoal are represented by circles with a number inside. The number within the circle 

indicates the position of this parameter at the parameter list. Those parameters in the 

same parameter list are arranged in the same row enclosed by a pair of parentheses with 

a predicate name at the leftmost position. The example below wi l l have a graphical 

representation for its parameters as the one in Figure 3.12. 

a(X，Y，[Z|C]) g(X，B)，h(Y,D), a(X，B，C). 

The upper row of circles in Figure 3.12 indicates the parameters from the head of the 

rule a. The row representing the parameters from the rule head is always placed above 

the row representing the parameters from the subgoal. 

I f a parameter l ink exists between a parameter in the rule head and the 

parameter in the recursive subgoal, and this parameter l ink is not formed by the 
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parameters with the same name, a solid line is drawn 

® ) between the two circles representing these two parameters. 

^ ^ ( ^ ) I f it is formed by the parameters with the same name, a 

I丨 broken line is drawn instead. So the above rule wi l l have 
Figure 3 . 1 3 

a graphical representation as in Figure 3.13. 

3.3.1.2 on Parameter Links 

To detect a parameter link in a direct recursive definition, we need to first find 

out all the parameters linked to the parameter in the head of the recursive rule. Then 

we check whether some of these parameters are also present in the parameter list of the 

recursive subgoal. For the parameters within the same subgoal, they are already linked 

together since they are dependent on each other. However, among the different 

subgoals, the parameters are linked only i f they can pass data from one parameter to 

another. Hence two parameters in different subgoals are linked together only i f they 

have the same name. For each pair of parameters with the same name but in different 

subgoals, an arc is placed above them in the rule. Only those subgoals preceding the 

recursive subgoal are considered because those subgoals after the recursive subgoal 

cannot have effect on the data being passed onto the next level of recursion. Therefore 

the rule below: 

a(X，Y，[Z| C]) g(X，B)，h(C，D)，f(B,M), f(D，N) a(M’N，0)，g(D，0). 

wi l l have arcs over it l ike this: 

a(X. Y, [Z|CD :-g(X, B), h(C, E^B, M^D. N ^ a ^ , O),g(D,O). 

Now, by adding 

more arcs to jo in the parameters in the body and the parameters in the head that have 

the same name, we can find out which parameter in the head forms a parameter l ink to 

the parameter in the recursive subgoal. The final result for the above example is: 

a p C ^ l Z I C ] ) ^ . KiC^^^^^r^，N. O). g(D. O). 

59 



Parameter links are found between parameters in the head 

and the parameters in the recursive subgoal at the 

( 3 ) ) following positions: first to first and third to second. The 

L = ^ = = = J 1 graphical representation for the parameter links in this 

Figure 3.14 recursive definition can be drawn as Figure 3.14. 

In an indirect re- [ | = = = = = = = = j 
. ^ [1] a(X, Y，Z) gl(X，A), g2(Z, B), b(A，B). 

cursive denmtion, param-
r 1 . , , [2] b(A, Y) a(X, Y, Z). 

eter links in each rule 

must first be constructed 

and drawn in a manner graphical representation ® ② ^ ) 

similar to above. After a for the rule [1] ：睡 b d @ ) 

graphical representation 

for each rule involved in g哪W e a l representation •_ b ( ① 多 ） 

this indirect recursive 【。̂ 也^ ^ul t [2] ' 

definition has been drawn, or e ru e 0 ( ? ) ( 3 ) ) 

we go on to check whether 
1 . 1 . the result after the merging process 

the parameter links in 

these rules can be linked 身 ^ ^ 、 \ 
, , a ( ① ( 2 ) (3) ) \ 

up together to form a pa- X " 丫 j 

rameter l ink for the entire ^ ) J 

recursive definition. This 

can be accomplished by Yigare 3.15 

using graphical representa-

t ion as well. The graphical representations of the rules are examined. I f any rule has 

the upper row identical to the lower row of another rule (two rows are identical i f they 

have the same predicate name and same number of circles), these two graphical r 印僚 

sentations are merged together as is illustrated in Figure 3.15 and Figure 346, A 

parameter l ink for the entire recursive definition is said to be present i f a ^aj^ ^ 

drawn from the first row to the second row. Attention must be paid tQ handling 

different types of parameter links. When a broken line is linked to a soU^ |inc, J^g 

broken line becomes a solid line. Otherwise, the broken line remains as 终 birp|(en li^p. 
-.'.• • .•- “ • 

•-知 
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A broken line becomes a solid one in this case because it indicates that the parameter 

link formed by the parameters with the same name (represented by the broken line) is 

now responsible for passing some data and plays a significant role in the parameter link. 

j = = = = ^ = = " j ] Compar ing the 

[1] a(X, Y，Z) :- gl(X, A), g2(Z, B)，b(A，B). results of these two ex-

[2] b(A, B) ••• g3(B, X), g4(A, Z), a(X, Y，Z). amples，we can clearly see 

the difference between 

a ( ① ② ® ) them. I n Figure 3.16, the 
graphical representation \ / …， ，.， 

/ final graphical representa-for the rule [1] u/ ^ \ 
w W , tion shows that a cycle is 

, . ^ ^ X formed among its parame-
graphical representation >>( v ly ④ ‘ 

:_ ters involved in the pa-
for the rule [2] a( ( g ) rameter links while no 

— cycle appears in the graph-
the result after the merging process . , … . . 

® ical representation of the 

example in Figure 3.15. 

j ‘/ \ Actually, only the example 

Vb( ® ⑤ ) j in Figure 3.16 has a cyclic 

. 乂 parameter link. This is 
I 一， the reason for the name， Figure 3.16 

cyclic parameter link: the 
l ink appears as a cycle in the graph. This merging process can also be applied to the 

graph obtained from a direct recursive definition. 

In Figure 3.14, the graphical representation is now ^ 

merged and becomes the picture in Figure 3.17. ( a( 》 

In this case, a cycle also appears at the first :’ 
... I 

parameter of the recursive definition. t igure 3.17 '' ‘ 淨:. 
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3.3.2 Algorithms 

The first algorithm to be presented in this section identifies a parameter link 

within one rule. In order to improve the readability of the algorithms, comments 

enclosed between "[ ]" are given in the algorithms. 

Algorithm 3.1 Constructing parameter links in one rule 

INPUT : a rule, g(A,,...,BJ :- sg,(…)，…，sgk(B”…，BJ’ ...，sq,{：.). and the position of the recursive 
subgoal sĝ，k. (In a direct recursive definition,sg^C..) = g(...).) 

OUTPUT : PS, a set of sets {(X，Y，Z)，s, p}. The triple indicates a parameter link between the 
recursive rule head and the recursive subgoal: X is a parameter position in rule head, Z is 
a parameter positions in the recursive subgoai and Y shows the parameter type, s is a set 
of subgoals that form the parameter link; p is a set of parameters involved in the 
parameter link. 

[1] S := { {sgi(X” …，X J } } [ S is a set of subgoal sets ] 
[2] P := { {X„ ..., X J } [ P i s a set of parameter sets ] 

[3] PS:= {} 

[4] Fori 2 to k - 1 Do 
Begin [ to form subgoal sets and parameter sets ] 

[5] count := 0 
[6] For each subset s； in S Do 
[7] If any parameter in …，XJ appears in p； in P Or any parameter in sgjPC” …， X J 

is related to any parameter in p, through special parameters 
Then Begin 

[8] count: = count + 1 
[9] Si := Si U { sgj(Xi,…’ XJ } 

[10] Pi ：= Pi U ，...’ Xb } 
End 

[11] If count = 0 
Then Begin 

[12】 S := S U { { sgj(X„ X,) } } 

[13] P ：= P U { {Xi，.... X, } } 
End 

[14] End 
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Algorithm 3.1 (continued) 

[15】For each subset p, in P Do [ to form all possible parameter links ] 

Begin 
[16] If any parameter in p, is also in set Pj, Pj e P Or 

any parameter in p； is related to a parameter in Pj through special parameters 
[17] Then Begin 

Stemp Si U Sj 

[18] S ：= S - { S i } - { S j } 

[19] S ：= S y { S — } 

[20] Ptemp Pi y Pj 

[21] P ：= P - { Pi } - { Pj } 
[22】 P ：= P y { Ptemp} 

End 
End 

[23] For a : = 1 to n Do [to form parameter links between ] 
Begin [ parameters in the recursive rule ] 

[24] For each set p； in P Do [ head and the recursive subgoal ] 

[ 2 5 ] If parameter A^ in the rule head g also appears in p； Or 
Aa is related to a parameter in p, through special parameters 

[26] Then For b : = 1 to m Do 
[ 2 7 ] If Bb in the recursive subgoal sg^ also appears in p, Or 

Bb is related to a parameter in p； through special parameters 
[28] Then PS : = PS y { {(a,1,b), S, p J } [ T , is for a normal ] 

End [ parameter link ] 
[29】For I := 1 to n Do [ "0" is for a same-name ] 

[30] For j := 1 to m Do [ parameter link ] 
[31] If parameter A； in g = parameter Bj In sg^ 
[32] Then PS := PS y { {(i，0,j)，{}’ { } } } 

[33] For i := 1 to n Do 
[34] For j := 1 to m Do 
[35] If parameter A丨 in g is directly related to parameter B】in sg^ through special parameters 

[36】 Then PS := PS y { {(i’1J), {}，{A丨,B }̂} } 

W e can show h o w this a lgo r i t hm works by considering that the fo l l ow ing ru le supp l ied • • 

as input : 
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a(X，Y，[Z|L]) :- g1(A，C)，g2(M,N), g3(A，L)，g4(X，M)，g5(N，B)，b(A，B，C，Y). 

where b(A,B,C,Y) is the recursive subgoal. In lines [1] and [2] of the algorithm, the 

subgoal set S is initialized to be {{gl(A，C)}} while the parameter set P is initialized to 

be {{A，C}}. Because there are five subgoals preceding the recursive subgoal, line [4: 

to line [14] wi l l be repeated four times. In the first iteration, because the parameters in 

gl(A,C) do not appear in the parameters of the subgoal the variable count remained 

as zero and the If statement from line [11] to line [14] is performed. S becomes 

{{gl(A，C)}，{g2(M，N)}} and P becomes {{A，C}，{M，N}}. In the second iteration, 

because parameter A in the subgoal g3(A,L) also appears in the set {gl(A，C)} of the 

subgoal set S, the If statement from lines [7] through [10] can be activated so that 

{gl(A，C)} is modified to be {gl(A，C)，g3(A，L)} and {A，C} in P is modified to be 

{A，C，L} after the For loop from line [6] to line [10] is completed. The subgoal set S 

becomes {{gl(A，C)，g3(A，L)}，{g2(M，N)}} while P becomes {{A，C，L}，{M，N}}. After 

exiting the first nested For loop, the subgoal set S becomes {{gl(A，C)，g3(A，L)}， 

{g2(M，N)，g4(X，M)，g5(N，B)}} and the parameter set P becomes { {A,C,L} , {M’N，X，B}}. 

Since the two sets in P do not have any parameter in common, lines [15] through [22； 

of the algorithm do not have any effect on S and P. From line [23] to line [28], the set 

PS is formed. Because there are three parameters in the recursive rule head, lines [23； 

through [28] are repeated three times. In the first iteration, the parameters in every 

subset in P are compared to the first parameter in the recursive rule head, X, and all the 

parameters in the recursive subgoal, A，B，C，Y. Since X, the first parameter in the 

recursive rule head, and B’ the parameter in the recursive subgoal, both appear in the 

second subset of P {M，N，X，B}, the set PS is changed from { } io { { (112), 
{g2(M，N)，g4(X，M)，g5(N，B)}，{M，N’X，B} } } after the first iteration. After the three 

iterations, the resulting PS becomes { {(1，1，2)，{g2(M，N)，g4(X，M)，g5(N，B)}’ 
{M，N，X，B}h {(3，1，1)，{gl(A，C)，g3(A，L)}，{A，C，L}}，{(3，1，3)，{gl(A，C)，g3(A，L)}， 

{A，C，L}} }• Finally, lines [29] through [32] expand PS to be { {(1，1，2)， 

{g2(M，N)，g4(X，M)，g5(N，B)}，{M，N，X，B}}，{(3，1，1)，{gl(A，C)，g3(A，L)}，{A，C，L}}，{(3，1，3)， 

{gl(A，C)，g3(A，L)}，{A，C，L}}，{(2A4h {}，{}} }, Because no parameter in recursive 

rule head can relate to any parameter in recursive subgoal through special parameters, 

lines [33] through [36] do not affect the output PS. The result indicates that three 

proper parameter links' exist between the parameters in the rule head and the 

parameters in the recursive subgoal with the following positions: third to first, third to 
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third and first to second. Moreover, there is a parameter link formed by the parameters 

with the same name in the position: second to fourth. 

The next algorithm shown below constructs parameter links for the entire 

recursive definition with different rules involved in an indirect recursive definition. I f 

i t is a direct recursive definition, the result of Algorithm 3.1 indicates the parameter 

links occurring in one level of recursion. 

Algorithm 3.2 Constructing parameter links for an indirect recursive definition 

INPUT : a sequence of sets of triples PS” PS2, .... PS,; each set is for one rule. (If only a direct 
recursive definition is examined, k = 1; otherwise, k is a finite number which is greater than 
1 if an indirect recursive definition is Involved.) They are arranged in an order the same as 
the order of evaluation. 

OUTPUT : the set PS，which contains some triples indicating the positions of the parameters involved 
in a parameter link of an indirect recursive definition. 

[ 1 ] P S ' ：= { } 

[2] PS— := {} 
[3] s — := {} 

[ 4 ] Ptemp { } 

[5] i ：= 1 

[6] While i < k and PS；丰{} Do 
Begin 

[7] For each set in PS" {(X^.Y^.ZJ, s^, p j ’ Do 

[8] For each set in PS丨+” {(X„Y„ZJ, p j , Do 
[9] if Z , = Xn 
[10] Then If Y , = 1 Or Y, = 1 

Then Begin 
[11] If i = 1 Then Begin 
[12] { s 巾，Sn} 

[ 1 3 ] Ptemp : = { P m . P J 

End 
Else Begin 

[ 1 4 ] Stemp : = Stemp ^ J { S j 

[ 1 5 ] Ptemp • = Ptemp \ J { P j 

End 

[ 1 6 ] P S , e m p P S t e m p \J { { ( ^ m ， 1 , ^；)，Sfemp, P t e m p } } 

End 

[17] 曰se PStemp ••= PStemp [ j { {(^m, 0，Z丄{}, {}} } 
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Algorithm 3.1 (continued) 

[18] i := i + 1 
[19】 PSi:=PStemp 

End 

[20] PS，：=PSk 

Consider the following example indirect recursive definition involving three rules: 

a(X，Y，[Z|L]) g1(A，C)，g2(M，N)，g3(A，L), g4(X，M)，g5(N，B)，b(A，B，C). 
b(X, Y, Z) f1(Y, D), f2(Z，A), c(A，B，C). 
c(X, Y，Z) :- g1(X，C)，g2(Y, B)，a(A，B, C). 

By applying Algori thm 3.1 to every rule, PS! of the first rule is { {(3,1,1), 

{gl(A，C)，g3(A，L)}，{A，C，L}}，{(3，1，3)，{gl(A，C)，g3(A，L)}，{A，C，L}}，{(1，1，2)，{g2(M，N)， 

g4(X，M)，g5(N，B)}，{M，N，X，B}}，{(2’0，4)，{}，{}} }, PS〗 of the second rule is { {(2，1，4)， 

{fl(Y，D)}h {(3，1，1)，{f2(Z^)}} } and PS3 of the th i rd rule is { {(1,1,3), {gl(X，C)}， 

{X，C}}，{(2，1，2)，{g2(Y，B)}，{Y，B}} }• In this case, the constant, k, in line [6] is 3 so 

that only two iterations can occur. After the first iteration generated by the While loop 

in lines [6] through [19], becomes { {(3,1,1), {{gl(A，C)，g3(A，L)}，{f2(ZA)}h 

{{A，C，L}，{ZA}} }，{(U4), {{g2(M，N)，g4(X,M), g5(N，B)}，{fl(Y，D)}}，{{M，N，X，B}， 

{Y，D}} } } because of the triples (3,13) and (1，1，2) in PS^ and (2，1，4), (3,1,1) i n PS!. 

I n line [19], PSt̂ mp is assigned to PS〗 in the first iteration. Therefore, the triples in PS2 

for the second iteration are (3,1,1) and (1，1，4). Since the original PS3 has the triples 

(1，1，3) and (2，1，2), becomes { {(3，1，3)，{{gl(A，C)，g3(A，L)}，{f2(Z^)h 

{gl(X，C)}}，{{A，C，L}，{ZAh {X，C}} } } because only (3，1，1) i n PS^ and (1，1，3) i n the 

original PS3 can satisfy the condition Z饥=X^ in line [9]. After the While loop, PS3 

becomes { {(3，1，3)，{{gl(A，C)，g3(A，L)}，{f2(Z^)h {gl(X，C)}}，{{A，C，L}，{ZAh 

{XyC}} } } too. Eventually, the set PS，attains the same set of elements as the set PS3 

because of line [20]. 

Finally, the complete algorithm for parameter analysis is presented as follows: 
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Algorithm 3.3 A parameter analysis algorithm 

INPUT : a recursive definition 

OUTPUT : CPS, a set of cyclic parameter links, and PS', a set of parameter link sets. 

apply Algorithm 3.1 to each recursive rule in the recursive definition to generate PS ,̂ PS2,…，PS；, 
[ k = 1 for a direct recursive definition ] 

If only one rule is involved in the recursive definition [ i.e., it is a direct ] 

Then PS^.^^ ：= PS^ [ recursive definition ] 

PS' := { PSi } [ PS is a parameter link set ] 

Else apply Algorithm 3.2 with PS’，PS2’ …，PŜ  
PSnew PS’ 

[1] PS—:= { } 
[2] CPS := { } 
[3] CPS' := { } 
[4] PS。|d ：= PSnew 
[5] k 1 

[6] While k < n and PŜew {} Do [ n = arity of the recursive rule head ] 
Begin 

[7] For each set {(K,, Y, Z)，s, p j in PS随 Do 
[8] For each set {(Xj, Y丨，Z), s” Pj} in PS^^ Do 
[9] l f ^ = Xj 
[10] Then If Y, = 1 Or Y】=1 

Then Begin 
[11] If k = 1 

Then Begin 
[12] ss—:= {Si. Sj} 
[ 1 3 ] SPtemp : = { P i ， P j } 

End 
Else Begin 

[14】 ss—:= SStemp U {Sj} 

[15] SPtemp := SP temp U {Pj} 
End 

[16] PSte叩：=PSt抓p U {{(Xi，1，Zi)，SStemp,SPtemp}} 
End 

[17] 曰se PStemp := PStemp U { {(X丨’ 0, Zj), {}，{}} } 
[18] For each set {(X,, Y丨，ZJ, ss丨，spj in PSt^p Do [ to identify the cyclic parameter links ] 
[19] If Xj = Zi Then Begin 
[20】 • CPS，:： CPS，U {{(X, Y, Z,). ss, s p j } 
[211 PStemp ： = PSte„,p - { {(X, Y, Z), SS, spj } 

End 
\ 
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Algorithm 3.1 (continued) 

[22] PSnew ：= PS,ew U PS— 
[23】 PS,卿：={} 
[24] k := k + 1 

End 

[25] For each set {(Xj, Y；, Z；), ss；, sp；} in CPS' Do 
[26] If Y, <> 0 
[27] Then CPS := CPS U { {X-,, ss„ s p j } 

Consider the following simplified example. In the following discussion, only the 

positions of the parameters involved are mentioned to give a clearer picture of how the 

method of parameter analysis can detect cyclic parameter links. Suppose that the 

application of Algori thm 3.2 to a certain recursive definition results in a PS^^^ of { 

{(3，1，3)，".}，{(1，0，2)，".}，{(5，1，2)，."}，{(2，1，4)，•"}，{(2,1,5), ...} }• Lines [1], [2] and [3] 

initialize all the sets P S ^ ^ ^ p , CPS and CPS，to be empty sets while line [4] initialize the 

sets PSnew and PSqui to contain the same set of elements. The number of iterations n in 

line [6] is obtained by counting the number of parameters in the recursive rule head. 

Suppose that there are five parameters in the recursive rule head ( in our example, the 

number of parameters cannot be less than 5 since PS，contains (5，1，2) and (2,1,5)), the 

While loop located between line [6] and line [24] can repeat five times. In the first 

iteration, PŜ en̂ p is first changed from { } to { {(3,1,3), .“}，{(1，1，4)，…}，{(11,5),…}， 

{(5，1，4)，…}，{(5，1，5)’ …}，{(2，1，2)，"•} } after line [17]. However, the set PS^.^p is 

further modified in lines [18] through [21]. In the For loop located in lines [18] through 

[21], all cyclic parameter links in P S j ^ ^ p are taken away and added to the set CPS'. 

Therefore, the resulting PStemp becomes { {(1，1，4)，."}，{(1，1，5)，,"}，{(5，1，4)，…} } while 

CPS' becomes { {(3，1，3)，•"}，{(5，1，5)，…}，{(2,1,2),…} }. Then, in line [22], the set 

PStemp and the set PSnew is merged together to form a new PS^̂ w for the next iteration. 

Consequently, the set PS^̂ w for the second iteration becomes { {(1,1’4)’ …}，{(1,1,5), “•}， 

{(5，1，4)，•"}，{(3，1，3)，…}，{(10,2), "•}，{(5，1，2)，…}，{(2，1，4)，…}，{(2，1，5)，…} }. After 

five iterations of the While loop, the set CPS' becomes { {(3，1，3)，"•}，{(5，1，5)，•"}， 

{(2，1，2)，"•} }. Finally, the set of cyclic parameter links CPS is calculated from CPS' in 
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lines [25] through [27] by eliminating the cyclic parameter links established through only 

same-name parameter. Therefore, only the appropriate cyclic parameter links, i.e., the 

cyclic parameter links of type "1", wil l be included in the final set of cyclic parameter 

links. 

In conclusion, if the set of cyclic parameter links, CPS, obtained is an empty set, 

then no cyclic parameter link exists in the recursive definition or the recursive definition 

is not properly defined. In the former case, nontermination wil l occur in the evaluation 

of this recursive definition since no parameter modifying process exists. In the latter 

case, it is not certain at this stage whether there is nontermination. Otherwise, the 

elements in CPS wi l l indicate the positions of parameters involved in the cyclic 

parameter link. PS，is also provided since any further analysis wil l require not only the 

parameters involved in the cyclic parameter link but also each parameter l ink occurring 

in this recursive definition. 
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CHAPTER 4— Data Analysis 

The parameter analysis described in the last chapter actually plays a twofold role 

in detecting nontermination in Prolog programs. On the one hand, the parameter 

analysis itself is a nontermination detection technique because it can identify all those 

recursive definitions that do not have any proper parameter modifying process. As 

shown in the last chapter, a recursive definition without such process wi l l definitely lead 

to nontermination. Therefore, parameter analysis is an essential preliminary step in 

nontermination detection. Through checking cyclic parameter links, any potential exit-

reaching processes can be located in a recursive definition. The next step is to develop 

a method that can identify the exit-reaching process from these cyclic parameter links. 

Apparently, this can only be done by finding all the exit conditions present in a recursive 

definition. However, as pointed out in the last chapter, semantic knowledge is required 

to locate an exit condition and this is inconsistent with the goal of this study. 

I t can be demonstrated that the verification of a potential exit-reaching process 

is feasible without having to detect directly any exit condition in a Pure Prolog recursive 

definition. In other words, the verification can be done without resorting to any 

semantic knowledge in a pure Prolog program. In parameter analysis, i f all recursive 

definitions are found to have at least one cyclic parameter link, data analysis developed 

in this chapter can then be applied to confirm whether nontermination wi l l really occur. 

Data analysis involves constructing data links for these recursive definitions. Essentially 

this technique relies on analyzing the data which would pass through the 殘 特 
- 、 .-

parameter links. 

Our discussion wi l l be divided into six sections. First, we shall discuss what 拜 jfl^ta 

l ink is and how to form it for a recursive definition. Then we 冲明 ^xa^ii^^ 

difference between pure Prolog and general Prolog. This wi l l show \yhy sbPWW 

limit our discussion to pure Prolog. Third, we shall show the relationsl^iR t̂ etMT^en da t ‘ 
• ‘“ ‘ V'V；：• • •.、. ” •. . .,、 •. 

• • • ,. . ‘ ：... 
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links and nontermination. Our main concern of how to detect nontermination with the 

use of data links is discussed in the fourth part of this chapter. By linking up the data 

links to form a connected data-link list, we can detect nontermination by examining the 

connected data-link list. In the fifth part, a special situation in constructing a data link, 

namely, the presence of special parameters, wi l l be discussed. Finally, we shall present 

our method of data analysis with algorithms. 

By combining parameter analysis and data analysis, we shall be able to detect the 

nontermination errors in pure Prolog programs without resorting to any semantic 

knowledge. This would provide a helpful alternative to the traditional tracing technique 

in nontermination diagnosis. To prevent our discussions from becoming too confusing, 

in this chapter, we l imit our scope to the case of recursive definitions that have only one 

cyclic parameter link or several independent cyclic parameter links. Cyclic parameter 

links are independent from each other if, for the same recursive definition, the 

parameters and the subgoals which involve in one cyclic parameter link are entirely 

different f rom those which involve in another cyclic parameter link. Then, the recursive 

rule below has two independent cyclic parameter links: 

g(X，Y，Z) linkl(X，A), link2(Y, B), g(A, B, C). 

while the next recursive rule has two interdependent cyclic parameter links: 

g(X，Y, Z ) l ink(X, A, Y, B)，g(A, B, C). 

The subgoal that forms the first cyclic parameter link between X andv4 and the subgoal 

that forms the second link between Y and B are in fact the same subgoal, link, in the 

second recursive rule. Moreover, the recursive rule below has two interdependent cyclic 

parameter links because they share certain common parameters: 

g(X,Y,Z) l inkl_a(X,C), l inkl_b(C,A), 
lmk2__a(Y,C), liiik2_b(C,B), g(A,B,C). 

The method developed in this chapter therefore does not handle recursive definitions 

with multiple interdependent cyclic parameter links. The general treatment of them wil l 

be explored in the next chapter. 
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4.1 Data Links 

First, we examine what a data link is and how it can be formed in a recursive 

definition. A data link exists between any parameter in the head of a recursive rule and 

any parameter in a recursive subgoal if: 

(1) there already exists a cyclic parameter link between these two parameters, and 

(2) each parameter in the cyclic parameter link can be successfully instantiated to 
a certain value; that is, from the perspective of data transfer, some data can pass 
through this cyclic parameter link in at least one complete cycled 

Because a cyclic parameter link can extend more than one level of recursion, a 

parameter cycle of recursion can consist of one or more levels of recursion. In order to 

simplify our discussion, the following discussion wil l usually be based on the examples 

with cyclic parameter links extending over only one level of recursion. 

In Figure 4.1， 

two almost identical | j = — = = = — = = = = j 

programs are given. program (a) Recursive definition Program (b) Recursive definition 

” ， . with a data link without any data link 
However, only one of 

them has data links goal(X,Y):- link1(X,A). link2(A,P), goal(X,Y):- link1(X,A), Iink2(A,P), m e m nab udLd 以 腿 . goal(P,Q). goal(P,Q). 
The contrast between 
L •” L 1 . Iink1(1.2). Iink2(3.4). 丨ink1(1,2). rmk2(4.5). 

them wi l l help us to 丨ink1(2,3). Iink2(4,5). Iink1(2,3). 

understand how one |l 

can establish a data Figure 4.1 

link. Program (a) and Program (b) both have the same recursive rule, where subgoals 

linkl(XyA) and link2(A，P) form a cyclic parameter link between the first parameter in the 

head, X, and the first parameter in the recursive subgoal, P, However, only the recursive 

1 Because a cyclic parameter link can extend over one or more levels of recursion, one CQrnpi^^f 
cycle of cyclic parameter link can have one or more levels of recursion involved. To facll i^Q 
discussion, since a data" link always represents a data transfer through a cyclic parame^r I 嫁 I j 
data link can be considered to represents a data transfer through a "cyclic parameter iink 
(or simply "parameter link"、of recursion. Therefore, a data link may have one or rmr^ 
recursion involved but still represents a data transfer through one parameter cycle of 
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definition in Program (a) has a data link. There is no data link in the recursive defini-

tion in Program (b) where requirement (2) for a data link cannot be met in Program (b) 

as no data can pass through the cyclic parameter link. 

The procedure defining the subgoal linkl in both programs is formed by two facts, 

linkl(l，2) and UnJd(2，3). Therefore, the first parameter oi linkl can only be instantiated 

to the values 1 or 2. However, the first parameter of linkl，X, is one of the parameters 

in the cyclic parameter link formed by the subgoals linkl and lmk2 and is also the 

parameter of the rule head, goal(X,Y). Therefore, the parameter X regulates the data 

passed into the cyclic parameter link and the only data that can be passed into this cyclic 

parameter link are 1 and 2 according to the two facts defining linkl. I f the value 1 is 

supplied to the cyclic parameter link, according to the recursive definition in Program 

(b)，the parameters of the subgoals in the cyclic parameter link are instantiated as: 

linkl (1，2)，link2(2,P). But the subgoal Unk2 is defined by a procedure with only one fact, 

Unk2(4，5), in Program (b). It is obvious that the term lmk2(2,P) cannot be unified with 

link2(4,5). Thus unification fails and no data can be successfully passed on. Moreover, 

i f the value 2 is supplied, the parameters of the subgoals will be instantiated as linkl (2,3), 

link2(3,P). The term lmk2(3,P) also fails in any unification. A value that satisfies the 

subgoal linkl cannot simultaneously satisfy the subgoal link2 and vice versa. Therefore, 

in the concept of the data transfer analogy\ no data can pass through this cyclic 

parameter link. Requirement (2) of the data link cannot be fulfilled and no data link 

exists in Program (b). 

On the other hand, a data link can be established in Program (a). No data cun 

pass through the cyclic parameter link when the value 1 is bound to the parameter 雾 
； .• •, ‘ •“ 

But Program (a) is different from Program (b) because the procedure defining" 

subgoal linkl is formed by two facts, link2(3，4) and link2(4，5), instead of link2(4,5l mh, 

When the value 2 is bound to the parameter X, the subgoals are in^t^nif^ted ^ 

linkl (2,3), link2(3，P), The term link2(3,P) can be instantiated as 

(a) and thus the value 4 can be passed onto the next level of recursjon,核減滴men本 
• .. . 二 ,.::、：./。" -v. 

. • • •、:•、、-.. 

1. Please refer to the discussion in the first paragraph of SectiQil in (Jhapter 3, 
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(2) is thus satisfied and a data link is considered to be present in the cyclic parameter 

link for Program (a). 

The examples in Figure 4.1 shows that the procedures defining the subgoals in 

the cyclic parameter l ink determine the existence of data l ink because the procedures 

defining these subgoals can determine whether requirement (2) for data links can be 
/ 

satisfied. In other words, a data link can only be established if the subgoals in a cyclic 

parameter l ink have all been defined by some appropriate procedures. An appropriate 

procedure contains at least one fact that can form a data link. Therefore the procedures 

of subgoals linkl and link! in Program (a) are still appropriate for forming data links if 

they are reduced to: 

linkl(2,3). Iink2(3,4). 

Because the fact linkl (1^2) in the procedure defining the subgoal linkl and the fact 

link2(4，5) in the procedure of Unk2 are not relevant in forming a data link, they can be 

removed without taking away the data links formed in this recursive definition. 

Moreover, data can also pass through a cyclic parameter link that is completely 

or partially formed by some special parameters, i.e, lists or structured data. Then, apart 

from subgoals, special parameters can also be used to establish a data link. But the data 

link formed by a pair of special parameters will have certain special properties that 

require some complicated analysis. The most significant difference between the data 

links formed by subgoals and those formed by special parameters is this: while, in the 

former case, all the subgoals in 

the data link must be defined by ^ ^ ^ = 二 。 = by 

by certain procedures, the 
L , . . 丄 』 + 1. 1 goal( l.stop). goal(f(),stop). 、： 

subgoals forming the data link goal([X|Ll,N)goal(L,N). goal(f(X),N) :• goal(X,N). 
are not necessarily defined by 

L •••，， 

any procedure in the latter Figure 4.2 

case. This can be illustrated 

by the examples in Figure 4.2. The first parameter of the recursive definition goal bd§ 

a cyclic parameter link in both examples. A list can pass through the cyclic par^metfir 

link in Program (a) while a structured data can pass through the cyclic parameter link 

74 



in Program (b). A data link is established in both cases. However, these data links are 

very different from the one built from subgoals. 

(1) For the data link established through subgoals, there must exist at least a subgoal, 
besides the recursive subgoal, in the cyclic parameter link which is defined by an 
appropriate procedure; on the other hand, the data link established through 
special parameters may not have any subgoal in the cyclic parameter link at all. 

(2) The implication of (1) is: When a data link is formed purely by subgoals, one can 
always find the values passed in and out the data link by merely analyzing the 
recursive definition. But there is no simple way to predict what data can pass 
through the data link established through special parameters. 

One can simply analyze the recursive definition in Program (a) of Figure 4.1 to 

find out the values passed in and out of the data link. Because the only cyclic parameter 

link in the recursive definition exists between the first parameter in the head X and the 

first parameter in the recursive subgoal P, data links can only be established between 

parameter X and parameter P. As shown above, data can pass from XXo P only if the 

subgoals linkl(X^) and link2(A，P) are instantiated as linkl(2，3) and Unk2(3，4) 

respectively. Thus the possible values that can pass in and out of the data link are 2 and 

4. By merely analyzing the recursive definition, we can discover the particular values 

passing through the cyclic parameter link in a particular data link. On the other hand, 

when the recursive definition in Program(a) of Figure 4.2 is analyzed, only two points can 

be sure: (1) all lists except the empty list can pass through, and (2) the list passed to the 

next level of recursion wil l be one element less than the list in the present level. 

Analysis of Program (b) in Figure 4.2 gives a similar result: (1) all structured data with 

functor/can pass through except/(), and (2) the structured data passed to the next level 

of recursion wil l be one functor less than the one in the present level, eg., if the 
..... 

structured data isf(f(f(l))) in the present level of recursion, the structured data in the 
• • • 、•；'、. 

next level wi l l h&f(f(l)), Therefore, the data links in the recursive definitions est 热椒 

through special parameters have different properties from the data links in tbe 

definitions established through subgoals. As shown by the examples ^ 

instead of particular values, only a set of possible values can be fajf 细劲 

the recursive definitions. Since the presence of this special data 终tly 
complicate or even confuse our discussion, the case of the special 如t终 link^ 

.... - , • .,,...、. .、 .》 , . .• ••‘ 

, . ： . , 、“ 
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wi l l be examined after we explain how data links can indicate nontermination errors in 

a Prolog program. In the following sections, we shall l imit our scope to data links 

formed by subgoals only. Then a general discussion wil l be given in Section 4.5. 

To simplify our discussion, we shall divide the analysis into two steps 

corresponding to two types of recursive definitions. We shall first examine how to 

construct data links for subgoal cyclic parameter links in direct recursive definitions and 

then data links in indirect recursive definitions. 

4.1.1 The Direct Recursive Definition Case 

The case of direct recursive definition can be further broken down into two 

different sub-cases. The direct recursive definition with procedures consisting of facts 

alone requires a much simpler technique than the one with subgoal procedures consisting 

of some rules. We shall first show how to analyze the simpler case. 

4.1.1.1 Subgoal Procedures with Facts Alone 

I f the subgoal procedures [ j = = = = = = = = j 
goal(X,Y)l ink1(X,A), Iink2(Z,X), 

defining all the subgoals involved link3(A,B), rmk4(B,P), 

in a direct recursive definition con-

sist of only facts, data links wi l l rmk1(1,2). Iink2(y.1). Iink3(2’a). Iink4(a，x). 
• ‘ L • ‘ 1 。 Iink1(3,4). Iink3(4.b). Iink4(e,y). 

exist when some apprppnate values nnk1(5,6). Iink3(6,e). 

are used as the particular 

arguments of the particular facts 广 ^ , ~ ^ ^ 
goal(X,Y) :• llnki (X,A), link2(Z,X), llnlc3(A,B). link4(B,P), 

i n these procedures. I n Figure 4.3， 腕,s_ng a cydic parameter link existed bei^-
a cyclic parameter l ink is found the parameter "X'and "P" 
between the parameter X and the 。.‘,.,.. 耀 親 

. 1 Figure 4 3 •‘.. •..�:.�..鄉聰.叛 para-meter P in the recursive den- ^ 

nition. As shown in Figure 4.3，the subgoals that establish the cyclic parametei； 树e 

linkl, links and link4. To have a data link formed among these subgoals, d 糊 m^H be 
.. ‘:. .:‘,•广、••-.., 
. r ‘ •‘ ； •；, 

• • . . • . 
‘ • • • . 
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passed through these subgoals. Within the same rule, as shown in Chapter 3, data can 

only be transferred between the different subgoals through the parameters with the same 

name. Therefore, as indicated by those arcs in the diagram, data can pass from the 

subgoal linkl to linkS through the common parameter 义 and then from the subgoal linkS 

to link4 through the parameter B, However, it requires that the common parameter 

must be instantiated to the same value for all the subgoals sharing this parameter within 

this rule during its evaluation. If all the subgoals are defined by the procedures with 

facts alone, a data link can only be formed when some facts in these procedures have the 

same parameter values at the corresponding positions of the common parameter names 

in the subgoals of the recursive definition. Therefore, whether a data link can be formed 

depends on how the subgoal procedures have been defined by the facts. 

For example, the second argument of some of those facts defining linkl must be 

equal to the first argument of some of those facts defining linkS. In Figure 4.3, the facts 

defining linkl are linkl (1，2), linkl (3,4) and linkl (5,6) while those defining link3 are 

links(2，a)’ link3(4,b) and link3(6，e). Since the values 2，4 and 6 can be passed to the 

common parameter shared by the two subgoals, we can consider that a partial data l ink 

is formed between the subgoals linkl and link3. Similarly, we can also conclude that a 

partial data link exists between link3 and Unk4 for the same reason. Then the next step 

is to show that a data link can be formed out of these partial data links; i.e., to show that 

these partial data links can be linked up. 

To show how two partial data links can be linked up, we first consider a counter 
...-'••' • 

example. No data link can be formed if the definitions of linkl, linkS and lmk4 in pig^jg 

4.3 are changed to the following: 

l inkl( l ,2). Iink3(2，a). Iink4(b，5). 
Iink3(a，b). Iink4(b，7). 

In this case, the fact linkl (1,2) and the fact link3(2，a) can form a partial linl； 
- - • .•) ,、• •-‘ 、r ~ •,、 

this is also true for the fact lmk3(a,b) and link4(hj). Although th^r^ 麟 ^j l^f ient 

facts in the procedure linkS that can separately satisfy the partial 如 m 彻 ( i f i k h - l i n k S 

and Iink3'-Unk4, none of them can satisfy the requirement to form lA true data link 
、： ；•：；•"• 專A、...： 
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involving Unkl, linkS and link4. Therefore, it is possible that the subgoal procedures can 

form some partial data links but not true data link. On the other hand, in the recursive 

definition in Figure 4.3, a data link can be formed between the parameters X and P 

because of the fact link3(2，a). The first argument value 2 of link3(2，a) allow both 

subgoals Unkl and linkS to have a common value for the shared parameter j while its 

second argument value a allow both subgoal link3 and link4 to have a common value for 

their common parameter As a result, a data link can be formed with the facts 

linkl(l，2)，link3(2，a) and link4(a，x). In this case, the fact link3(2，a) can be considered as 

a connector which can connect two partial data links. In conclusion, two partial data 

links can be linked up if the common subgoal involved in both links can be bound to 

a connector. 

Apart from the procedures defining the subgoals in a cyclic parameter link, the 

procedures defining the subgoals not included in the cyclic parameter link may become 

significant in determining the existence of a data link. We can illustrate it by modifying 

the link2 procedure. The procedures for subgoals Unkl, Unk2, linkS and link4 now 

becomes: 

l ink l ( l ,2) . I ink2(y^). liiiJc3(2,a). Iink4(a,x). 
l inkl(3,4). Iink3(4,b). Iink4(e，y). 
linkl(5，6). 、 link3(6,e). 

This modification can completely eliminate the data link originally existing in Figure 4.3. 

I f we temporarily ignore the subgoal link2, we can construct four partial data links which 

can be linked up to form two data links. However, with the updated Unk2，no data linjc 

can in fact be formed because no data can be transferred in the recursive definitipn, 

Due to the presence of the subgoal link2, which shares one of the 

involved in the cyclic parameter link (i.e., X) so that the 
• •. • 、.、-•’； 

determine what data can be transferred to the parameter Z in the recursive rule, } { the 

subgoals Unkl, linkS and Unk4 are instantiated with the facts lmkl(l,2), lmk3(2,a}明 

link4(a,x) respectively, the second parameter X in the subgoal be instantiated with h 

But the procedure of link! consists of the fact link2(y’2) alone. I t causes the p^ritmeter 

78 



X to have value 2 only. Therefore, the subgoal linkl can no longer be instantiated to 

linkl{1,2), So, there is no data link among the subgoals linkl, link3 and Unk4. More-

over, i f the three subgoals are instantiated with the facts linkl (5，6), link3(6,e) and 

link4(e，y), the parameter X now needs to be 5. But this is also inconsistent with the 

procedure defining the subgoal link2. On the other hand, i f the value 2 is supplied to 

the parameter X to be consistent with the procedure of link2, i t then becomes 

inconsistent with the procedures defining the subgoals linkl, link3 and link4. Whatever 

value is instantiated to the parameter X, the evaluation of this recursive definition wi l l 

always fail. So, no data can be transferred through the cyclic parameter link. Through 

this example, we can see that the construction of a data link involves all the subgoals 

sharing those parameters included in the cyclic parameter link rather than just the 

subgoals involved directly in the cyclic parameter link. 

Therefore, detecting a data link in a recursive definition involves the following 

steps: 

(1) Identify the cyclic parameter link and all those subgoals which are not part of the 
cyclic parameter l ink but share some common parameters with the subgoals in 
the cyclic parameter link. 

(2) Construct partial data links between two subgoals with some common 
parameters. 

(3) Examine all the partial data links sharing a certain common subgoal and see 
whether each common subgoal in two partial data links can be connected to a 
connector (i.e., a common fact). 

(4) Examine those subgoals that are not involved in the cyclic parameter l ink but 
share some common parameters with some subgoals in the cyclic parameter l ink 
and check whether the common parameters can all be bound to some common 
values. ,v5-

‘ •、”： 

4.1.1.2 Procedures with Rules 

So far we have discussed the data link formed by the subgoals defmec) by fac^s ‘ • . ‘ ‘ ‘ . ‘ 
only. But subgoals can also be defined by rules alone or both rules and f^cXh |n the 

•“'：‘ :::..；：" 
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latter case, a data l ink can also be established in a similar but more complicated way. 

For a procedure consisting of some rules, the subgoals of these rules must be defined by 

some other procedures. Apart from the procedures defining the subgoals which form 

the cyclic parameter link, we must also examine the procedure of each subgoal involved 

in the rules. This process is repeated until a level is reached where all subgoals used in 

a rule are defined completely by facts. 

I n Figure 4.4，a cyclic j j = = = = = = = = = = — = = | 
build(stop,part end). 

parameter l ink is formed be- buildp(,Y)assemblel (Y,A), assemble2(A,B), finish(B,Q), 
build(P,Q). 

tween the parameter Y and Q 
assemble"! (part_a, part_4). 

through the subgoals assemblel， assemblel(X,Y)link^d^,P), linked(Q,Y), connect(P,Q). 

assemble) and finish. To verify assemble2(part一a, part一b). finish(part_b, part_1). 
assemble2(part_b, part一d). finish(partj, part_a). 

whether a data l ink exists in this assemble2(part_c, part_f), 

cyclic parameter link, we must linked(part_c, partj). Iinked(part一2’ part_a). 
Iinked(part_d, part J ) . linked(part_4, part_b). 

examine each subgoal involved linked(part_e, part_2). Iinked(part_6, part_c). 

in the cyclic parameter link. In connect(partJ, part一2). 
connect(part_4, part一 6). 

order to f ind whether a partial _ 
data l ink can be formed Figure 4.4 

between the subgoals assemblel and finish, we can directly analyze the procedures 

defining them as discussed in Section 4.2.1.1. as the subgoals are defined by facts alone. 

We can then easily notice that two partial data links exist. They are established through 

the facts assemblel (partji, part Jb), finish (part_b, part一1) and the facts assemblel (part_c, 

partfinish(part_f，part一a)• However, the existence of a partial data link between the 

subgoals assemblel and assemble! cannot be determined in this way. There is a rule in 

the procedure defining the subgoal assemblel. Although it is obvious that the fact 

semhlel(part_a, part一4) does not supply appropriate data to form a partial data linjc 

tween assemblel and assemblel, we need a method to analyze the rule to see whether 
- • . .. ,, V < \ 

the rule can supply data to form a partial data link. 

In order to determine whether a partial data link can be formed between the 

subgoal assemblel (Y^) and the subgoal assemblel (A,B), we must know ^heih^r dat终 

can be transferred through the subgoal parameter link formed betwc^en ibese two 
.::'、.-:::;.:::》.,V? ' rM； ‘ •，广:: 
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subgoals in the rule build. By analyzing the procedure defining assemble!, we already 

know which values can be assigned to parameters A and B in the subgoal assemble!. 

But we must also determine which values can be assigned to parameters Y andv4 in the 

subgoal assemhlel. This is tantamount to finding out what values can be assigned to the 

parameters X and Y in the head of the rule defining the subgoal assemhlel. 

I n our data transfer analogy, to assign a value to a parameter of a subgoal in a 

rule can be viewed as to transfer data through this parameter to the subgoals in the rule. 

This is similar to the steps followed in detecting data links mentioned in the previous 

section. Actually, the steps for subgoals defined by rules are the same except for the 

first one. For the previous case, in the first step to detect data links, we need to identify 

the cyclic parameter link. For the present case, the first step requires us to identify a 

potential transfer link. To transfer data from one subgoal to another in the same rule, 

there must be some common parameters. A potential transfer l ink indicates all the 

subgoals that are linked up by some common parameters to allow data to be transferred 

f rom one parameter to another in the same rule. Therefore, in the example in Figure 

4.4, there is a potential transfer link between the parameter X and the parameter Y as 

shown in the following diagram: 

asseniblel(X;^^liiiked(X jTiinke^C^^，connect^^. 

The arcs show how a potential transfer link is formed among those subgoals through 

some common parameters. The potential transfer l ink in the rule assemhlel involves all 

its three subgoals. 

The next step is to construct partial transfer links, which are similar to partial 

data links. While a partial data link indicates that two subgoals in a cyclic parametei： 
:.、_ 

l ink are joined by a common parameter, a partial transfer l ink is formed between 镇 9 

subgoals with a common parameter in a potential transfer link. There are two p^rtif^l 
.... -：̂ :.::;-:,、）• 

transfer links in our example: between the first linked and connect mA between the 

second linked and connect• The former partial transfer l ink is formed by the fo^fs as: 
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linked(part_c, part_l), and connect(part_l, part_2). 
l inked(part_d, part一 1)， 

and the latter partial transfer link is formed by the facts as: 

linked(part_2,part_a) and connect(part_l,part_2) • 
l inked(parr6,parrc). connect(part_4,part_6). 

Examining these partial transfer links, we can now decide whether a transfer l ink 

exists. A transfer l ink exists among all the partial transfer links i f there are common 

subgoals to l ink up the partial transfer links and these common subgoals can be bound 

to at least one fact. I n this example, the common subgoal is the subgoal connect and 

there is a fact in the procedure defining connect to link these two partial transfer links 

together. I t is the fact connect (partJ，part 一2), Therefore, a transfer l ink exists among 

the first and second linked and connect so that a transfer l ink also exists between the two 

parameters X and Y, The last step is to determine what data can be transferred through 

the transfer l ink between parameters X and Y. By examining all the facts used in 

forming the partial transfer links, we find that only the facts below are consistent in 

forming the transfer l ink among all three subgoals in the rule assemble 1: 

linke(i(part_c,part_l). linked(part_d,part_l). 
coiinect(part_l,part_2). linked(part_2,part_a). 

Therefore, we can conclude that the values that can be assigned to the parameter JT are: 

part一c and partji while the value that can be assigned to the parameter Y is: part_a. 

The process of determining the values that can be assigned to a subgoal defined by a 

rule can be summarized as follows: 
• • , -

(1) Identify the potential transfer link and all those subgoals which are not part of 
it but share some common parameters with the subgoals involved in the poten|ifti 
transfer l ink. , k•戮、 -“• •‘；..，：-

：‘―••‘ 

(2) Construct partial transfer links between two subgoals with some 
parameters. : : � 

(3) Examine all the partial transfer links sharing a certain comnioil i ^ b ^ ^ j ^ n d 
check whether each common subgoal can be bound to the sĵ m释 : 终 ， , 

, '• . : , : . , ' • ' - . , ‘ ‘ . . . • - ; -

..‘... 、-
一 • V;、，•-
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(4) Examine those subgoals that are not involved in the transfer link but share some 
common parameter with some subgoals in the transfer link and check whether 
the common parameters can be instantiated to a set of common values. I f the 
requirements in both steps (3) and (4) are fulfilled, a transfer link exists and the 
values assigned to a particular parameter are equal to the values used in the facts 
that make the transfer link possible. 

Moreover, the more complicated situation can be handled in a similar manner. 

I f the procedure defining any subgoal of any rule used in a definition also involves some 

rules, we just need to take care of the more fundamental rules first. For example, i f the 

recursive definition in Figure 4.4 remains the same except that the definition of the 

subgoal assemblel is changed to: 

assemblel(part_a, part_4). 
assemblel(X，Y) li i ik(X, Y, P, Q), connect(P,Q). 
l ink(X, Y, P, Q) liiiked(X,P), linked(Q，Y). 

We can see that we need to first deal with the rule Unk(X，Y，P，Q) Unked(X，P)， 

linked(Q，Y). However, the above process can again be applied to this rule without the 

need for any modification. The same result can be obtained as in the original example 

of the recursive definition in Figure 4.4. This process can work in a recursive manner. 

I t recurs at the point where the subgoal is defined with some rules until a subgoal 

defined by all facts is reached. Then the process is applied to this rule (with subgoals 

defined by all facts) to find out all the possible values that can be transferred through 

the subgoal defining by this rule. I f this subgoal is also a part of a rule that defines 

another subgoal, the process continues until it reaches the rule that forms the recursive 

definition. In our example, the process stops when it solves the subgoal assemblel in the 

rule build which forms the recursive definition. 
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4.1.2 The Indirect Recursive Definition Case 

I n an indirect recursive definition, a cyclic parameter l ink extends over more than 

one rule. To achieve requirement (2) of the data link in such a situation, it requires the 

condition that data can pass from the data link in one rule to the data l ink in the other 

rule. As described in Chapter 3，data can be transferred between two rules through the 

parameters at the same position in the parameter list of the recursive subgoal and the 

head of the next rule. Thus a data link can be established if each rule involved in the 

indirect recursive definition can have a data link and the data l ink of each rule can be 

linked up by the parameter that passes data from one rule to another. In other words, 

we can consider each rule in the indirect recursive definition separately and then 

examine whether data links found in each rule can be joined together to form a data 

l ink of the entire recursive definition. 

I n Figure 4.5, 

• ^ ^ • t ^ ^ 

indirectjecur(X,Y)linkjeveh (X,A), notJink(Z,X), nextJevel(A,Q). 
definition has a cyclic ^ t 丨eve丨(A，Q)丨inkjeve丨2a(A，B)，linkJevel2b(B.P). 

parameter link shown indir8ct_recur(P.Q). 
by the arcs i n the link Ievel1(1,2). notJink(y,1). Iinkjevel2a(2,a). Iinkjevel2b(a,x). 

linkjevell (3,4). Iinkjevel2a(4.b). Iinkjevel2b(e,y). 
diagram. Actually, the Ilnkjevel1(5,6). Iinkjev9i2a(6,e). 
i n d i r e c t recu rs i ve ^ ^ ^ ^ ^ 

definition in Figure 4.5 mdirect_recur(X,Y) :- linkjevdicx )̂, notJink(Z»X), next_level(A,Q). 

is equivalent to the , ^ ^ ^ ^ 
d i r e c t r e c u r s i v e nextJevel(A,Q) ••- linkJevel2a(A3), liiik_level2b(BJ»), mdirect_recur(P,Q). 

definition in Figure Diagram showing a cydic parameter link existed between 

.^ T 1 • the parameter and 'P' 
4.3. In the rule m- “ • 
direct 一 r e c u r ， t h e r e is 

only one (rather than Figure 4.5 

three) data l ink formed by the facts linkjevell (1，2) between the subgoals linkj^el^ 

and next level due to the limitation imposed by the subgoal not Jink. For rulQ 
• . r •‘ 

nextjevel, two data links can be formed by the facts link_ level2a(2，a)，lmkjevel2b^ ^ 

and link level2a(6，e), link level2b(e，y). However, if the entire recursive defliUtlpn k 
一 一 • ‘：• • . : . v . r , 、 , y . . . ： ‘ ： 
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considered, there is only one data link that consists of facts: link一 lev ell (1, 2)，linkjevel-

2a(2，a)，linkjevel2h(a,x). 

By analyzing the data links in these two rules, we can see why only one data link 

can be formed. According to the procedure defining linkjevell, we can find that the 

data link in the rule indirect一recur can pass only the value 2 to the data link in the rule 

nextjevel. However, the procedure defining linkjevella can allow the data link in the 

rule nextjevel to accept only values 2 or 6. (The values are not 2，4 and 6 since the 

concern is not the subgoal link level2a but the data link formed in the whole rule.) So 

only the value 2 can be successfully transferred from the data link in the rule 

indirect recur to the data link in the rule next level. Hence, only one data link can be 

formed in this indirect recursive definition. 

This example shows how data links can be constructed from the different rules 

involved in an indirect recursive definition: first, we try to construct data links in 

different rules separately; then we analyze the values passing through the data links of 

each rule to see whether some common values exist in the different data links of 

different rules. In this example, the common value that allows a data link to form is the 

value 2 for the parameter in the rule nextjevel and the rule indirect一recur. Therefore, 

there wil l be no data link in this indirect recursive definition if we make a little change 

in the procedures of subgoals used in the second rule as follows: 

link_level2a(2,b). Iinkjevel2b(a,x). 
Iiiik_level2a(4,a). Iiiik__level2b(e,y). 
Iink_level2a(6,e). 

Although two data links still exist in the rule nextjevel, the values passing through the 

data links are 4’ x and 6,y for the parameters 為尸.Thus no common value 

to connect the data link in the first rule and the data link in the second :: 
• • • - -,。""_ .. • • . “ “ 

In this example, except for the recursive subgoal, all other subgoals 终r资 d^Qaec) 

by facts alone. The example is so constructed to keep the illustr^t{p;9 ^s clear 

possible. However, the method outlined in this section can CQpil^ined with tho 
. . 窗 ‘ . . . 

• . • 
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transfer l ink constructing method described in the above section to handle those 

indirect recursive definitions with subgoals defined by rules only (or by both rules and 

facts). In the first step of detecting a data link in an indirect recursive definition, we 

consider each rule defining this indirect recursive definition separately. I f any subgoal 

in one of these rules (that are defined by some rules) is encountered, we can examine 

the transfer l ink (if there is any) to determine the values that can be assigned to the 

parameters of this subgoal. With these values, we can move on to analyze the cyclic 

parameter l ink to detect the data link of a particular rule as what is done in the case of 

indirect recursive definitions with subgoals of facts alone. Then we examine all the data 

links in every rule used in the indirect recursive definition to determine whether there 

exists a data l ink in the indirect recursive definition. By applying the strategies in 

Section 4.2.1.1 and Section 4.2.1.2，we can detect the presence of any data l ink in each 

rule used in an indirect recursive definition and also the values passing through the data 

l ink (if any) no matter the subgoals involved are defined by facts or rules. 

4.2 on the Difference between Pure and General Prolog 

The above discussion on how a data link can be established shows why it is 

possible to detect data links in pure Prolog programs by analyzing the procedures of 

those subgoals involved in the recursive rule without the need for semantic knowledge. 

But the situation wi l l be different if general Prolog programs are considered. The 

difference between pure Prolog and general Prolog arises from the presence of built-in 

predicates in general Prolog. 

The procedure defining the built-in predicate is not provided by the progranw^er, 

Since the built-in predicates are not defined by any procedure in the program, the yalue^ 

that can be unified with the arguments of these built-in predicates are ^qt 賴会 i祭癌 jp 

the program. Instead, the data passing through a cyclic parameter l ink 双 i椒协§ 

built-in predicate are calculated only when the recursive definition is evaluated. )n other 

words, there is simply no procedure of built-in predicate for us to analyz^, ^ ^ p ^ a n t t9 
• ''' ,. •’•-- ‘ ... .. ； ‘ 、 .‘ 
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f ind the data links in a certain recursive definition in general Prolog, some kinds of run-

time tracing technique must be used to identify the kinds of data that can pass through 

a built-in predicate. Furthermore, semantic knowledge must be provided to guide the 

tracing because most built-in predicates have arguments that can be unified with an 

infinite set of values. 

Figure 4.6 shows an program(a) with'built-in" Program(b) pure Prolog 

example of how semantic predicate version 
add2(0, N, N). add2(0, N, N). 

knowledge is needed to find adci2(Ni, N2. R) :• add2(Ni, H2 R)：-

r m t n Hpta l i n k i n a g e n e r a l N2一 isN2 + 1. succ8SS0r(N2,N2J, out a data i inK m a general add2(Ni一，R). add2(NL, N2一, R). 

Prolog recursive definition. succesor(0.i). successor(5.6). 

There are two almost succesor(i ,2). succ8ssor(6,7). 
succesor(2,3). successor(7,8). 

e q u i v a l e n t r e c u r s i v e succesor(3.4). successor(8.9). 

definitions. Both have two succesor(4,5). successor(9,i0). 

cyclic parameter links bet- | = = = = = = 1 
Figure 4 . 6 

ween parameters N1 and N1 一 

and between parameters N2 and N2_. Their semantics are almost identical. But only 

Program (a) has a much greater calculating power: Program (a) can theoretically add 

up any two numbers while Program (b) can only handle numbers from 1 to 10. The 

powerful calculating ability in Program (a) comes from the built-in predicates: Nl_ is N1 

- 1 and N2一 is N2 + 1. Basically, successor(NlNl) and successor(N2，N2」are 

semantically equivalent to Nl一 is Nl - 1 and N2一 is N2 + 1 except for their l imited 

range of inputs. I n the pure Prolog version, the subgoal successor is defined by a finite 

number of facts. This results in a l imit on the range of values that can be unified with 

variables Nl and N2. This provides us a way to determine the existence of any data l ink 

in the recursive definition by analyzing the procedure that defines the subgoal successor， 

However, there is no procedure for us to analyze when we attempt to 如绕事抽 
i — r‘ f .•“ • 

data l ink in Program (a). We, therefore, can only conclude the existence of a 如t终 I M 

between the parameter Nl to Nl一 and N2 to N2_ by either one of two 

semantic knowledge of these built-in predicates or (2) tracing the ey拜lu拜tiî 妖洽| 琳g 

recursive definition. Once we understand that the predicate 〜釋 缺pp(辦 j t 
、.> … 1 : : : : . . . 
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calculates the Expression on its right hand side and then assigns the result to the variable 

on its left, we can show that some data can be transferred from the parameter N1 to the 

parameter Nl_ by the predicate N1 一 is N1 - 1 during the recursion. Since a cyclic 

parameter l ink is also formed between parameters N1 and A/7_, a data l ink exists 

between them. The semantic knowledge of this predicate can be used to determine 

partiaUy whether a data l ink exists. I t is partially determined because, sometimes, it 

depends on the input value to determine any data transferring through the predicate. 

For example, i f the Expression supplied to the predicate is 10/N, an error occurs when 

N is 0 and no data can be transferred through this predicate. On the other hand, we 

can also know whether any data can be transferred through a cyclic parameter l ink by 

simply tracing it during the evaluation. But semantic knowledge may be required in 

some situations in the tracing. In this case, the parameter N1 must be first unified with 

some values before the predicate Nl_ is N1 - 1 is evaluated. The evaluation of 

subtracting 1 from an uninstantiated variable results in failure. Tracing without 

initializing the parameters N1 and N2 wi l l not give a correct conclusion. Moreover, 

semantic knowledge may be required for choosing the initial values for the parameters 

involved in the tracing. In Program (a), it does not matter what values are chosen to 

initialize the parameters N1 and N2. However, it becomes important if the recursive 

rule is modified as follows: 

add2(Nl, N2，R) N1 一 is N1 - 1，N2一 is N2 + 1， 

m ~ > N2_, add2(Nl_, N2_, R). 

I f the init ial values of N1 and N2 are 1 and 2, a simple tracing wi l l detect that there is 
-!, -一，• 

no data l ink in this recursive definition. But there wi l l always exist a data l ink whe^ N1 

is assigned a value greater than the value instantiated to N2 by 3 or more. So, trapiog 

requires semantic knowledge in this case. 

In conclusion, although parameter analysis can be applied in the sanie w^y 

both pure Prolog and general Prolog, data analysis cannot be applied tQ [ 块 ^ l a g 

in the same way as pure Prolog. To detect a data l ink in a gene镇I 1[资g^今iy| 

definition, semantic knowledge must be provided. Data analysiji, ii} gen^i^l J^rolog, 

needs to be conducted with an interactive or a run-time tracing Howey^j,糾 I 
‘ • ‘ '̂•：，. V' 
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these problems in the case of general Prolog do not exist in the case of pure Prolog. 

Due to the absence of the built-in predicate in pure Prolog, one can detect 

nontermination with an analytical approach. 

4.3 Data Link Significance 

After we have discussed what a data link is and how it can be established in 

different situations, we move on to discuss the significance of data link. From the above 

discussions, we can see that a data link exists i f some data can pass through a certain 

cyclic parameter l ink in one complete cycle. In other words, the presence of a data l ink 

guarantees that some values can pass through one parameter cycle of recursion 

(however, as explained in Section 4.1，one or more levels of recursion may be involved 

depending on the number of recursion levels involved in the corresponding cyclic 

parameter link). 

Therefore, the significance of the data link is: the existence of a data l ink 

indicates that the corresponding cyclic parameter l ink can act as a parameter modifying 

process in at least one parameter cycle of recursion. On the other hand, the cyclic 

parameter l ink that cannot form a data link implies that it is not a parameter modifying 

process at all. The reason is simple: no parameter can be really modified if no value 

can be successfully transferred through a cyclic parameter link. 

As has been pointed out in Chapter 3, to verify whether a cyclic parameter l ink 

is an exit-reaching process involves two steps: first, to show that some data can 

through this cyclic parameter link; second, to show that an exit condition exists Jo thg 

cyclic parameter link. Although the presence of a data l ink cannot provW矿 
….…、聰舞鴨 

necessary semantic knowledge to verify whether an exit condition is presen《抽 

corresponding cyclic parameter link, the absence of data l ink in a rec诉乡权会；^祭卯 

indicates that the corresponding cyclic parameter link cannot include any' i ^ l exit 

condition. Even though a cyclic parameter link may include an intended ^ p d i t i p n , 
• - - • , • . ‘ . - . . . . . ' • . ' 

• � t • «’.\.v._. ’• 
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the absence of data l ink shows that no data can ever be modified through this cyclic 

parameter link. I f no data can pass through a cyclic parameter link, the cyclic 

parameter l ink cannot act as an exit-reaching process and consequently the intended exit 

condition can never act as a real exit condition. In other words, the absence of data link 

in a cyclic parameter link indicates that the cyclic parameter link is not an exit-

reaching process. 

But there is one interesting point: the absence of any data l ink does not imply 

the presence of nontermination error. In contrast, the evaluation of such a recursive 

definition can always terminate. The absence of data links implies that no data can pass 

through some of the subgoals involved in the cyclic parameter link. Therefore, these 

subgoals always fai l to be instantiated with any value. Any attempt to evaluate such a 

recursive definition can only result in failure. In fact, not even one level of recursion 

can proceed in the recursive definition that has no data link. Therefore, the apparent 

dilemma can be solved i f we can distinguish the exit condition in action f rom the 

semantic exit condition. Since the absence of data links forms an exit condition in action, 

it can terminate even though there is semantically no proper exit condition. 

This can be illus- ^ „ 
Program (a) Program (b) 

trated by the examples in Nonterminating recursive Recursive definition without 
_ definition: with data link nontermination: without data link 

Figure 4.7. In both Pro- —— 
, . ,,V path(a,e). path(a.b). path(a,e). path(a，b). 

gram (a) and Program (b) path(b’c). path(c,cl). path(b,c). path(c,d). 
path(d,a). path(d,a). 

of Figure 4.7，the second 
b go(X,Y):- path(X,Y). go(X,Y):- path(X,Y). 

rule of so forms a direct go(X.Y)path(X.A) go(X.Y)path(X A) path(A.A). 
。 go(A,Y). go(A,Y). 

recursive definition with a , ' , . 

cyclic parameter l ink The cyclic graph defined by 
the Procedure 韓path" ( b 

b e t w e e n t h e f i r s t 

parameter of the rule G ) _ 

head, X and the first 

parameter of the recursive Figure 4.7 輝 P” : 1 

subgoal, A, Although 

there is no real difference between these two programs in terms of th^ r|9su)ts of ‘ .. ；.- . ,. ..: ..-•• • .... 
90 ， 



parameter analysis, they are greatly different from each other in terms of the results of 

data analysis. In Program (a), data can be transferred through the subgodXpath(XyA) so 

that data links can be established between parameters X and A. However, in Program 

(b), the cyclic parameter l ink is formed by the two subgoals path(X^) and path(A^) 

instead of the subgoalpath(XyA) in the case of Program (a). By analyzing the procedure 

defining path, i t is clear that no fact in the procedure of the subgoal path can be instan-

tiated with the subgoal path (A, A). Therefore, no data l ink can be formed in Program 

(b) despite the great similarity between the two programs. In spite of the absence of 

data link, the evaluation of Program (b) wi l l definitely come to an end. I n fact, no 

evaluation can be carried out at all because any value supplied to this recursive 

definition wi l l end up in failure at the subgoalpath(AyA). The problem is, not one of 

nontermination, but that the supposedly recursive definition go can never recur. In other 

words, there is a semantic error in this recursive definition. 

On the other hand, while a data link shows that a cyclic parameter l ink can 

actually transfer data and modify them for at least one level of recursion, this is not the 

proof of termination. This is shown by Program (a) in Figure 4.7. Because the 

procedure of the subgoal go actually defines a cyclic graph as shown in the diagram 

inserted in Figure 4.7, the evaluation of Program (a) eventually leads to nontermination. 

Contrasting these two examples, we can see that a data link indicates whether a cyclic 

parameter l ink can allow any value to pass through itself in at least one level of 

recursion; its absence indicates that the corresponding recursive definition is nqt 

properly defined. In other words, nontermination cannot be detected by constructin| 

data links alone; our data analysis is not complete unti l we take into consideration tbg 

cyclically and non-cyclically (or simply cyclic and non-cyclic) connected data-link }_!， 

I n the following sections, we shall discuss how nontermination in pure Prolog ^ 

detected by examining whether data links found in a recursive definition can ^IsQ ^ i j j 

some connected data-link lists and what kind of connected data-link lists C^n 
、\ f � " 

by these data links. 、., 
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4.4 Connected Data-link Lists 

4.4.1 Data Links and Connected Data-link Lists 

A data link represents a data transfer in one parameter cycle of recursion 

through a cyclic parameter link. But in the nonterminating evaluation of a recursive 

definition, the data transfers in a cyclic parameter link during the recursion actually l ink 

up to form a infinitely long data transfer sequence. The length of a data transfer 

sequence in a certain cyclic parameter l ink depends on how many levels of recursion 

involved in one parameter cycle and how many parameter cycles can be completed 

during the evaluation. Therefore, a data transfer sequence can represent a data transfer 

through one or more parameter cycles of recursion. Since a data transfer sequence of 

one parameter cycle can be represented by a data link, several data links can be 

connected together to represent a data transfer sequence of multiple parameter cycles. 

The result of these connected data links is referred to as a^connected data-link list. 

In order to show how a connected data-link list can be formed from a set of data 

links, we can consider the situation of more than one data links for the same cyclic 

parameter link. The situation implies that there are several possible values that can be 

transferred through the same cyclic parameter link. Although each of these data links 

only indicates that certain values can be transferred through the recursive definition in 

only one parameter cycle of recursion, some of these data links in the same cyclic 

parameter l ink may be combined together to represent a data transfer sequence through 

more than one parameter cycles of recursion. Therefore, the concept of connected data-

l ink lists is an extension of the concept of data links to describe the data transfer over 

all recursion levels in one complete recursion. 

Therefore, the difference between a data link and a connected data-link l is| is 
* : . . . • : . � • V : 

v.- ‘、广 ‘../• 
only a difference of length, i.e., a difference in the number of recursion 鮮辯 

which a data transfer takes place. On the other hand, the difference between \hp 

absence and the presence of data link is great; it is tantamount to tbp diff^yenjie 

between a proper recursive definition and an improper one. Hence, we inust ignpre 
. . . • . 、 知 . ? : : : — 、 92 



the data transfer sequence of one single parameter cycle of recursion. In other words, 

a data l ink must be considered as a special case of connected data-link list. The 

following discussion on the cyclic and non-cyclic connected data-link list is therefore also 

applicable to data links. 

The example in Figure 4.8 illustrates how a connected data-link list can be 

constructed out of some | | = = = = = = = = = = [ 

simple data links. I n a(X,Y)link(X,P), a(P,Q). 

Figure 4.8，there is a link(1，2). Iink(3,4). iink(5.6). link(2,a). Iink(4,b). Iink(b,5). 

simple recursive defini- Search tree (a) Search tree (b) 

t ion with a cyclic pa- a(i,G) ) 3 ， ^ ^ 

rameter l ink between >，•) 丨丨nk(3,4) 

parameters X and P / 丨丨nk(4,b) 
.丄 1 丄 u 1 link(2,a) a(a,0) Z \ 

with only the subgoal ^ iink(b,5) ， , • ) 

link involved in the cy- 丨ink(a,©) H n k ( ‘ ^ q ) 

d ie parameter link. fail WnkiSQ) 

According to the proce- ⑩ .un in i t ia ted parameter fLi 
dure defining the sub- _ _ = = = = = J 

goal link, there are six F i g u r e 4 . 8 

data links between Z a n d P. They are formed by the facts link(l，2), link(3, 4), Unk(5，6)， 

link(2，a), link(4, b) and link(b，5). In considering the data link from the viewpoint of the 

data transfer analogy, we can consider that the values 1, 5, 5, 2, 4 and b are passed intp 

the cyclic parameter l ink through the parameter X with values 2，4，6, a an^ | 

respectively coming out from the parameter 尸.There fo re , we denote these data Jj[喊秀 

in this example as 1-2�3—4, 5-6, 2--a，4--b and b--5. I f we just l ink up any Jwp ^af^ 
‘ . - • . . • •、 . :、、J 、“ ‘... .‘ • ' r { ， '' . • '：.","» 

links, with the tail of one data link and the head of the other one having th^ 
‘.-•‘- i'-- - . ‘ - . . . . .<••.. 

as 1-2 and 2 - a respectively, we can form a connected data-link list 躲 i”》?-錢，Six 

connected data-link lists can be formed in the example. They are l - l - ^ a . 

5 -6 , 4'-b-5"6 and Z?--5-6. : 4 j .....,、•：I、’ ： • ... • • 

I f we examine how a recursive definition is evaluated, yi令 caif Pf^d a gre^t s(m{-

larity between connected data-link lists and the values passing thrpugh each ley^l of 
. 厂 二 . . , : ： . 

• . ^ ； • V • � 
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recursion. For example, on the one hand, if the query ？- a(l，X) is supplied, a two-level 

recursion occurs with a calling sequence of the goal a as a(l,X), a(2，X)，a{a, X), (where 

X is the uninstantiated parameter) as shown by the search tree (a) in Figure 4.8. On the 

other hand, i f we identify the connected data-link list which is started by i , we can f ind 

one connected data-link list with a length of two data links: 1-2-a. Moreover, i f the 

query ？-a(3yX) is supplied, it results in a calling sequence of the goal a as a(3，X)，a(4，X)， 

a(b，X) a(5，X)，a(6，X) (where X is the uninstantiated parameter) and then the goal fails. 

The number of recursion levels is four. We also have a connected data-link list with a 

length of four data links started by 5: 3--4--b--5--6. We can find the one-to-one 

correspondence between a data transfer sequence and the connected data-link list. 

Although the data transfer sequence is different when different queries are 

supplied, our connected data-link list technique has no difficulty in predicting whether 

a certain query can have a data transfer sequence and what this connected data-link list 

looks like. For example, i f the query ？-a(5,X) is supplied, we can simply check the 

connected data-link lists started by 5. There exists a connected data-link list 5--6, which 

indicates that this query can have a data transfer sequence which is: a(5,X), a(6, X ) and 

then it fails. I f the query ？'a(7,X) is supplied, our technique shows that no data transfer 

occurs because there is no connected data-link list started with 7. Both predictions can 

be confirmed by drawing search trees for the two queries. 

Before we continue our discussion on connected data-link lists, we must note that 

the data links and also the possible connected data-link lists for a cyclic parameter can 

extend to more than one level of recursion. In the above example in Figure 4.8, we only 

consider the data links in the single-level cyclic parameter link. In this case, the (J终t接 

l ink is always one level long. However, in the case of multi-level cyclic parameter： I jnL 

any data l ink formed must also extend over several levels of recursion. In j^^grppj 

in Figure 4.9，the cyclic parameter link is actually two levels long. Th^ 绕 海 _ _ 

between a multi-level cyclic parameter link and a single-level cyclic 喊 权 

obvious i f Program (a) and Program (b) are compared. I f we are o n ^ 效gpi商经4 Q j l j 

the change of data when passing one cycle of the cyclic parameter liiijc, {Jje ^ i a MnU 

can be expressed as 1-3’ 3-5 and 5-1. On the other hand, i f the (?h卯g‘ pf dat“ in 
. ‘ • •• • . 

.. ‘ V；' . � . • � ‘ • 
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data in every level of recursion 

is considered, it is better to Program (a) 

express the data links as 1-2-3, goal(AX，BX) ：- rmk(AX,XA), goal(XA,XB). 

5 - 4 - 5 and 5 - - 6 - i . Both can iink(i,3).丨ink(3,5). Iink(5.i). 
work well in our discussion on 

how to construct connected 
Program (b) 

data-link lists out of data links. 
t t l goal(AX,BX)丨inka(AX，XB)，linl<b(BX,XA), 
H o w e v e r , b e c a u s e o u r y 、 / goal(XA,XB). 

discussion is based on the 
linka(1,2). Iinkb(2，3). 

concept of cyclic parameter linka(3,4). linkb(4,5). 
Iinka(5,6). Iinkb(6，1). 

links and the concept of 

parameter cycles of recursion, ^ ^ 

we shall denote a data l ink with 

the change of data in a complete parameter cycle instead of with the change of data in 

each level of recursion. Therefore, both single-level cyclic parameter link in Program 

(a) and multi-level cyclic parameter link in Program (b) in Figure 4.9 have the same 

notation of their data l inks: i "5, 3 - 5 and 5-1. Since there is no significant difference 

between a single-level data link and a multi-level data link, the following discussion on 

connected data-link lists wi l l be based on a data link of one level in order to simplify 

our discussion. 

4.4.1.1 Connected Data-link Lists and Data Transfer Sequences 

By comparing the sequence of values passing through the consecutive parameter 

cycles of recursion with the connected data-link list, we can see that the connected data? 

link list represents exactly the same sequence of values passing through the cyclic 

parameter link during each successive parameter cycle of recursion. The relatipQ 
� - V： 

between them is obvious: ( 
(1) A data l ink indicates that some data can pass through a certain cyclic 

l ink in one parameter cycle of recursion. /-y；,̂ -̂；̂  

(2) The first value shown in a data link indicates what value is p严琴_ tWs 
parameter cycle of recursion. ' 售 〔 、 ” ” ： ...‘•：.：•.？ • :« ,、 
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(3) The second value in a data link shows what value can come out after this 
parameter cycle of recursion. 

(4) The cyclic parameter link implies that the value coming out of the parameter 
cycle of recursion can be transferred to the same parameter in the next 
parameter cycle of recursion. 

(5) Therefore, two data links that can be linked up together indicate that some data 
can pass through two consecutive parameter cycles of recursion. 

This is the reason why we only link up two data links with a common value. The 

common value implies that this value passing out from one parameter cycle of recursion 

can be immediately fed to the same parameter in the next parameter cycle of recursion. 

For example, in Figure 4.8, there is a connected data-link list of 3'-4'-b-'5-6. Since four 

data links are involved and one parameter cycle of recursion of the data links only 

involves one level of recursion, we can predict that a four levels of recursion wi l l result 

and the first parameter of the goal a wil l be instantiated with values of 5, 4, b, 5 and 6 

during successive level of recursion. This is just confirmed by Search tree (b) in Figure 

4.8. 

In addition to the data transfer sequence, the connected data-link list can also 

indicate the maximum number of levels of recursion that can be reached before 

termination occurs. By examining the levels of recursion indicated in Search trees (a) 

and (b), we can also find that the maximum number of levels of recursion can be 

reflected by the length of the connected data-link list. The longest connected data-link 

list can indicate the maximum number of recursion levels that can be reached. Th^ 

length of a connected data-link list indicates how many parameter cycles of recursipn 

can be reached by the corresponding data transfer sequence. I f the number of recijj辦侧 

levels involved in one parameter cycle is known, we can calculate the length Qf 热g 

connected data-link list in terms of levels of recursion. In Figure 4.8, the para屯jgijier 

cycle of each data l ink involves only one level of recursion. Therefore, the 

number of recursion levels that can be reached by the connected data-link Jj|絲！赫鳥麵 

a length of two data links is two levels of recursion while a connected jis| pf 

four data links long can represents a data transfer sequence of four levels Qf c^cmrsipn, 

This is clearly shown by Search trees (a) and (b) in Figure 4 各 ' p j © rgj^on % this 

、.，二“!. -'N,"' '.•twX'. 
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relationship between the length of connected data-link list and the number of levels of 

recursion is the same reason for the relationship between a connected data-link list and 

the value transfer sequence of the successive level of recursion. 

As discussed in Sections 4.1 and 4.3, a data link indicates what kind of values can 

pass into and out of a parameter cycle of recursion. But data transfer in one parameter 

cycle of recursion, as shown in this chapter and the last chapter, is completely 

determined (if we put aside the case of special parameters for a while) by the definitions 

of the subgoals forming the cyclic parameter link. Therefore the connected data-link list 

in fact represents the data transfer sequence made possible by the definitions of 

subgoals involved in a certain cyclic parameter link. I t explains why there is a 

correspondence between the data transfer sequence and the connected data-link list: (1) 

correspondence between the number of parameter cycles of recursion and the length of 

connected data-link list, (2) correspondence between the values in the data transfer 

sequence and the values in the connected data-link list, and (3) correspondence between 

the order of values in the data transfer sequence and the order of values in the 

connected da-link set. 

4.4.1.2 Connected Data-link Lists and Backtracking 

Moreover, a connected data-link list can accurately account for a data transfer 

sequence even if backtracking happens. In Prolog, the backtracking mechanism always 

causes all possible data transfer sequences to be tried. Backtracking occurs when a data 

transfer sequence comes to its end. Therefore the point where backtracking occurs ^ 

independent f rom other data transfer sequences. However, the point where evalugtjaij 

is resumed, that is, the point where the backtracking mechanism leads the evaluatiqii ^ 

is affected by other data transfer sequences. .."M .:”、〔 
( V 窗 

..：？;斤• 
. . . V . , .. • • � � . -

I n Prolog, the backtracking mechanism always tries to resume evaluat i照辦州e 

latest level of recursion if it is possible. I f it is not, it backtracks to the previous 
. -:::.‘、捷:纟厂^^巧 

That is, if necessary, i t can backtrack all levels, one by one, unti l level one is r^^phed. 
Backtracking goes on unti l it can find another possible data transfer sequi&^e pi： l int i l 

、：_•:- : - • 、、‘ V '-、:••: ‘ \ ‘. 
‘ — : - • 、 • 、 -

9 7 



j = ^ = = = = = = j ] all possibilities are ex-
叩)，goal(P.Q). hausted. Therefore, 

link(1,2). Iink(2.3). Iink(2,4). Iink(4.5). evaluation can be re-
link(5,7). _5 ,9) . Iink(9.10). sumed at the very point 

一 二 二 J r 一 ~ — where an alternate data 

goal_, 1) transfer sequence is 

link(i,2^oaip,2) found. I f an alternate 

\linl<2.4) goal(|M) data transfer sequence is 

iL iink(< )̂ go^i.5) found, it is not necessary 
to backtrack to the very 

link(5.7) goal(國,7)/link(5,9) goal(_,9) . 
I ： \ / beginning of the recur-

1 -.uninstantiatedparameter fail Iink(9,10) goal(圓，10) s i o n I f a recursive 
• • 11 : backtracking path . 

goal(end. 10) definition has several 

L . ^ _ data links all with the 
F i g u r e 4 . 1 0 

first value being the 

same, there are different possible values for the next level of recursion. It can be 

illustrated by the example in Figure 4.10. There are two data links, 2 - 5 and 2-4, which 

are started by the same value 2. I f the value 2 is supplied to this level of recursion, the 

value transferred to the next level of recursion can be either 3 or 4. Because of the 

backtracking mechanism in Prolog, both of the two possibilities wil l be tried eventually. 

I t is shown by the search tree^ in Figure 4.10. At the first level of recursion, after the 

data transfer sequence corresponding to 2-3 is tried, backtracking occurs and leads the 

evaluation to the point to try the data transfer sequence corresponding to 2-4. 

Therefore we have some data transfer sequences which have a common segment. The 

point where backtracking resumes the evaluation of a recursive definition is the point 

1 This search tree does not show further searches after the unification of "goal([uniii-
stantiated parameter], 10)" with the fact "goal(end，10)" at the fifth level of recursion 
because it has already served our purpose here to illustrate the relationship between 
a connected-data link and backtracking. However, the backtracking mechanism wil l 
continue to search for other possible solutions for the parameter "X" with the 
parameter "Y" instantiated with "1". But all the subsequent searches wil l result in 
failure. 
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where the common segment ends. Of course, we can eliminate the common segment by 

viewing these data transfer sequences as a single data transfer sequence as follows: 

goal(X，Y)，goal(X, 1)，goal(X, 2)，goal(X, 3)，backtrack, goal(X, 4)，goal(X, 5)， 

goal(X, 7)，backtrack, goal(X, goal(X, 10) and goal(end, 10) where X is the 
uninstantiated parameter 

However, this view is less satisfactory because it cannot show important information 

such as the number of parameter cycles of recursion and the point where backtracking 

resumes the evaluation. 

Therefore, i f we follow the view that there are several different data transfer 

sequences with a common segment instead of one single data transfer sequence, each 

connected data-link list can account for a data transfer sequence just as the case of no 

backtracking. In Figure 4.10，there is a recursive definition which has only one cyclic 

parameter l ink between the second parameter in the recursive rule, head and the second 

parameter in the recursive subgoal. The data links in the recursive definition are 1—2, 

2-5, 2-4, 4—5’ 5—7，5-9 and 9-10. Therefore, eleven connected data-link lists can be 

formed, they are 1-2-3,1-2-4-5-7,1--2-4--5--9-10,2--3,2-4-5-7,2-4-5-9-10,4-

5—7，4-5-9-10, 5-7, 5-9-10 and 9-10. With the query ？-goal(X，l)，there are three 

possible data transfer sequences since there are three connected data-link lists started 

by 1:1-2-3,1—2—4—5—7 and l-2-4-5"9-10. By comparing them with the search tree 

in Figure 4.10，we can see the common segment in the connected data-link lists 

correspond to the common segment in the data transfer sequences. And the length of 

and the values in the connected data-link list can also show the number of parameter 

cycles of recursion and the values being transferred in the corresponding data transfer 

sequence as usual. 

4.4.1.3 Connected Data-link Lists and the Recursion Result 

The example in Figure 4.10 also shows that a data transfei* ^ecj^enci ！共 j| 

recursive definition does not guarantee that the evaluation of this recwrsiy^ d^gnit ion 
. . . .• •/.、,,•/ • 、 • 

can succeed. In other words, as data transfer sequences are represeiitpcj Iq^ jpgniippted 
• • • ‘ 、 . - , . . 、 - . 、 ‘ 
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data-link lists, the presence of a connected data-link list in a recursive definition does 

not guarantee the evaluation of this recursive definition will succeed. For example, the 

data transfer sequences corresponding to the connected data-link lists 1-2-3 and 

4-5'-7 all lead the recursion to failure. The recursion can only succeed when the data 

transfer sequence can assign a value that can agree with some facts in the procedure 

that defines the recursive goal. In this example, the value 10 can agree with the fact 

goal(end, 10) so that the recursion succeeds. (However, the solution of the parameter 

X is still an uninstantiated parameter since there is no data link to transfer the value end 

back.) 

Therefore, a connected data-link list can also be used to check whether a 

recursive definition can succeed. If a recursive definition has a connected data-link list 

which has a tail value that can agree with a certain value of one of the facts defining the 

recursive subgoal, the evaluation of this recursive definition can succeed. Therefore, if 

we change the fact in the procedure goal in Figure 4.10 fromgoal(end, 10) to goal(end,5), 

we can still conclude that the recursion in Figure 4.10 can succeed by analyzing the 

connected data-link lists. (There are three connected data-link lists that end in value 5: 

4-5, 2-4-5 and 1-2-4-5) 

4.4.2 Cyclic and Non-Cyclic Connected Data-link Lists 

Besides the connected data-link list of finite length, the data links from some 

recursive definitions can form a connected data-link list of infinite length. We shall 

refer to the finite set as a non-cyclic connected data-link list while the infinite one is 

referred as cyclic connected data-link list. Actually, we have an example of cyclic 

connected data-link list back in Figure 4.7. A cyclic connected data-link list exi^t^ ip 

Program (a). Comparing it with the example in Figure 4.8, we can find great siipilgrij^ 

between them. Although the rule go in Program (a) of Figure 4.7 is depnp^ :，:楚;̂  

. g o ( X , Y ) path(X,A), go(A,Y). . : : 、 : : : 

and the rule a in Figure 4.8 is defined as: 
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‘ a(X，Y) :- link(X,P), a(P,Q). 

They are the same if we can put aside the naming of the parameters and the subgoals 

for a while. The rule a is exactly the same as the rule go if we replace a with goal, link 

with path, P with A, and Q with Y. In Prolog, naming does not play an important role 

in the evaluation of a program as long as the changes are consistent. Therefore, we can 

consider that both of them have the same recursive rule and the same cyclic parameter 

link. But there is a significant difference between them when we consider the 

procedures defining the subgoals path and link in these two examples. They result in 

two different sets of data links in these two different examples. The data links in Figure 

4.8 are 1-2, 3—4’ 5-6, 2-a, 4-b and h-5 while the data links in Program (a) of Figure 

4.7 are a-e, a-b, d-c, c-d, and d-a. They are two distinctively different sets of data 

links. As shown above, the first set of data links can just form two chains with finite 

length. But if we try to link up the data links in Program (a) of Figure 4.7 as what has 

been discussed above, we shall soon find ourselves engaged in an infinite task. Suppose 

we start with the data link a--e，we first only form a single data link chain. But if we 

start with the data link a--b’ the connected data-link list can be infinite as a-b-c-d-a-

b - ' C - d - a - ... . However, it is obvious that this infinite sequence is constructed by 

repeating a segment of a-b-c-d and it can be represented as a cycle of a-b--c—d-a. 

This is the reason why we refer to such a connected data-link list of infinite length as a 

cyclic connected data-link list. In contrast to the cyclic connected data-link list, we refer 

to the finite connected data-link list as a non-cyclic connected data-link list because we 

cannot find a repeating segment in it. 

With the idea of cyclic and non-cyclic connected data-link lists, we can proceed 

to develop our technique for detecting nontermination without the need of semantic 

knowledge in pure Prolog. As shown in the above discussion, the need for sei^^ltic 

knowledge occurs only after a cyclic parameter link is found. In our app稱解為 

developed so far, one can conclude from the absence of any cyclic parameter thgl 

nontermination wil l occur. Further examination, however, is required fo 

whether nontermination will occur when some cyclic parameter links are detected As 

shown in Chapter 3, a cyclic parameter link is a potential exit-reaching process, 

a definite conclusion can be drawn only after we can verify whether 明 y Pt j| j i | cyclic 
.• - V̂  iVv--- . ‘，、•::'... •• 
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parameter links found can work as an exit-reaching process. A t first glance, semantic 

knowledge seems to be needed to determine which is the exit condition in the recursive 

definition in order to decide whether a cyclic parameter link can act as an ex i t-reaching 

process. Moreover, i t also seems necessary to have semantic knowledge of how the data 

passing through the exit condition is modified during the process since a cyclic 

parameter l ink can act as an exit-reaching process only if the exit condition can be met 

at a certain point during the evaluation of the recursion. 

However, the concepts of cyclic and non-cyclic connected data-link lists can be 

used to develop a new approach to detect nontermination in pure Prolog programs 

without the need of any semantic knowledge. According to the cyclic or non-cyclic 

connected data-link list formed out of the data links in a pure Prolog program, we can 

bypass the verification steps that require the semantic knowledge of this program. In 

the following sections, we shall show that nontermination wi l l arise i f al l the cyclic 

parameter links in one recursive definition have at least one cyclic connected data-link 

l ist. To understand why the cyclic or non-cyclic connected data-link list can be used to 

detect nontermination in Prolog, we shall examine the relationship among cyclic 

connected data-link list, non-cyclic connected data-link list and exit-reaching process. 

4.4.2.1 Non-Cyclic Connected Data-link Lists and Exit Conditions 

As discussed in Chapter 2, the exit condition of a recursive definition in Prolog 

is simply formed by some subgoals or special parameters (i.e, lists or structured data) 

which can block the evaluation of a recursive definition at a certain point in Us 

evaluation. In Chapter 2, we have also shown how a subgoal or special parameter q p 

work this way. A t a certain point in the recursion, one or more subgoals' fail or 舟g 

special parameter becomes non-unifiable in all situations. Therefore the r e c ^ j p 

subgoal cannot be reached and the next level of recursion is stopped. Re〒拜 

... * 广 
• » .V� ‘，.•‘. 

1. One such subgoal is a necessary and sufficient condition to block fwr^ber 
I f a programmer puts more than one of such subgoals in a recursiyig 如 “ 鲍 ; ' 细 J y 
the one that is first encountered during the course of the reoirsipn is wtyalW 
effective. : : : : : 々 产 

,’• ‘.，’.、..、 . . 
. • * ,� • . V -

‘ • \ i . 
1 0 2 



reason given in Section 4.1, we limit our discussion at this point to only the case of 

subgoals. On the other hand, if a recursive definition is properly defined, there must 

be one or more levels of recursion before the evaluation of this recursive definition is 

blocked by such a subgoal. In other words, before this subgoal can act as an exit 

condition, some data can also pass through this subgoal in one or more levels of 

recursion. Therefore, the role of an exit condition and the role of data transfer can be 

accomplished by the same subgoal without any conflict. This point is important to an 

understanding of how an exit-reaching process can be a parameter modifying process at 

the same time. 

Because this subgoal is part of the exit condition, it must also be part of the exit-

reaching process. Since a cyclic parameter link is a potential exit-reaching process, this 

subgoal must form part of the cyclic parameter link. On the other hand, a proper 

recursive definition must allow some levels of recursion to occur before it stops, some 

data have to be transferred through the subgoal that can later act as an exit condition 

in several levels of recursion. Consequently, data links must be constructed out of the 

subgoals involved in this cyclic parameter link. As one or more levels of recursion is a 

basic requirement for a proper recursive definition, these data links can always form 

some connected data-link lists. 

In other words, the subgoal that acts as the exit condition must be involved in a 

part of a certain connected data-link list. Obviously, the data links obtained from a 

recursive definition with an exit-reaching process must be capable of being linked 

together to form a non-cyclic connected data-link list. Because the subgoal that caij _ 

as an exit condition stops further data transfer through itself when the exit conditiqix ^ 

met, there is a point where no more data link can be linked up to the connected 

link list that has already been constructed. The length of the connected data-li;^ 
- • > - ‘. ，、,•.，•.、 

formed out of a terminating recursive definition must be finite. In other vj/pr^s^ ft 

recursion wil l terminate only if a non-cyclic connected data-link list is fqun^ j n 钱 
• ； A-、-.人..'A ‘、’•. 

recursive definition. One can conclude that the presence of an exit CQndi|iQii (如4；胁 

exit-reaching process) necessitates the existence of a non-cyclic conne^f^d 终•特她料等j 

in a recursive definition. 

. • V 、 ..•：••，. ‘ 
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On the other hand, the existence of some non-cyclic connected data-link lists in 

a cyclic parameter can also indicate that there is an exit-reaching process (and an exit 

condition) in a recursive definition. I f at least one cyclic parameter link can be 

established in a recursive definition and the procedure defining the subgoals in this 

cyclic parameter l ink can form one or more non-cyclic connected data-link lists, this 

cyclic parameter l ink wi l l act as an exit-reaching process (even though the programmer 

may not intend this cyclic parameter link to be an exit-reaching process). That is 

because this cyclic parameter l ink is the only way in the recursive definition to allow 

data transfer and the non-cyclic connected data-link list indicates that data transfer 

through this cyclic parameter link wil l be terminated at a certain point of the recursion. 

This implies that there wi l l be a blockage in the data transfer process during the 

recursion. This blockage of data transfer wi l l terminate the recursion. From another 

point of view, with a cyclic parameter link in a recursive definition, nontermination can 

occur only i f data can pass through this cyclic parameter link infinitely in every level of 

recursion. I f the data links in this cyclic parameter link can be linked up to form a non-

cyclic connected data-link list, then no data can pass through this cyclic parameter l ink 

at a certain point in the recursion. Then, nontermination wi l l not occur under such a 

situation. 

Therefore, if a recursive definition has at least one cyclic parameter link in which 

only non-cyclic connected data-link lists can be formed, we can conclude that the 

evaluation of this recursive definition wi l l terminate. We can also conclude that the 

cyclic parameter l ink is an actual exit-reaching process even without any semantic 

knowledge of this recursive definition. In other words, the absence of non-cyclic 

connected data-link lists is a sufficient indicator of nontermination. The relationship 

between connected data-link lists and nontermination can be more thoroughly p^rc^iv^^ 

after we have also examined the case of cyclic connected data-link lists, C J 

• • , ‘ 
V • * • 

4.4.2.2 Cyclic Connected Data-link Lists and Nonterm|n糾gn 

At the beginning of Section 4.4.2，we have discussed how |fnkS| pan form a 

cyclic connected data-link list with the example from Figure 4.7. \Ve hm^ 科Iso seen that 
,、. » • ‘ f '> • 
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a cyclic connected data-link list can be 
. , , ,, , , . goal(X,Y)link(Y,Q), goal(P,Q). 

considered as the repeating segment of goal(end,iO). 

a connected data-link list with infinite link(2,4). Iink(4,5). 
Iink(5,10). Iink(10,2). 

length. I n this section, we shall see how = = = = = = 
Diagram showing the evaluation of the above program 

a cyclic connected data-link list is with the query"?- goal(X, y)" 
related to nontermination. goal(回，ĵ ) 

_ , 4 ) goal(E3,4) 
In Figure 4.11, the search tree ^ 

® Hnk(4，5) goal([x],5) 
shows a data transfer sequence that \ 

llnk(5.10) goal([x], 10) 
leads to nontermination. I f we compare \ 

the example m Figure 4.10 with this ^ 
1 . J .1 link(2,4) goal([2l, 4) 

example in Figure 4.11, we can easily ^ 

recognize that it is the same recursive 隨(4’ 5) g^ED 

rule in both programs. The two iink(5.io) ^ m ^ 

programs are different only in the iink(io,2) goai(E3,2) 

procedures defining the subgoal link. 
” ” pp [̂ 丨:uninstantiated parameter • 

This seemingly small difference wil l ^ • 
however result in different data links, 
and eventually totally different kinds of F i g u r e 4 . 1 1 

connected data-link lists in the two programs. This shows us that nontermination in a 

pure Prolog program results from some inappropriate procedures defining the subgoals 

involving in the cyclic parameter link. 

As mentioned in the above sections, a cyclic parameter link is a potential exit-

reaching process. The subgoals involved in the cyclic parameter link can determine the 

values to be passed through the cyclic parameter l ink during the recursion by the 

procedures defining them while one of these subgoals can act as the exit conditioi| a| | 

certain point of the recursion. A subgoal acts as an exit condition because it fail与辨终 

certain point before the recursive subgoal can be evaluated. From the perspective ^ 

data transfer, a subgoal acts as an exit condition because it can stop furt}ier 

into another level of recursion. Nontermination occurs in a pure Prolog prpgr^pi IJ ihe 

subgoals involved in the cyclic parameter link are inappropriately defined, al l f j^ ing p 
‘ ， » 

..,.... .：..:..、： 1 0 5 



infinite data transfer sequence to occur. In pure Prolog, an infinite data transfer 

sequence can be constructed only by repeating a common segment. The search tree m 

Figure 4.11 clearly shows this characteristic of the infinite data transfer sequence. 

The reason for the above situation can be better understood i f we consider the 

case in terms of data links. As shown at the beginning of Section 4.4.2，a connected 

data-link list is the representation of a data transfer sequence • Since a connected data-

l ink list is constructed out of data links formed in a recursive definition, an infinite data 

transfer sequence without a common segment can be represented only by an infinite 

non-cyclic connected data-link list. I f there is an infinite non-cyclic connected data-link 

list in a recursive definition, there must exist an infinite number of data links in the 

recursive definition to form the infinite non-cyclic connected data-link list. However, in 

pure Prolog, each data l ink is eventually based on one or more facts in some procedures 

that directly or indirectly define the subgoals involved in the cyclic parameter l ink in this 

recursive definition. A n infinite number of data links can only result from an infinite 

number of facts in a recursive definition, that is, a recursive definition of infinite size. 

However, a recursive definition of infinite size is practically impossible. 

Therefore, the procedures defining the subgoals that form the cyclic parameter 

l ink wi l l lead to nontermination if they allow the data transfer sequence to have a 

repeating common segment. Because a cyclic connected data-link list is a representation 

of such a data transfer sequence, a cyclic connected data-link list is an indicator of 

nontermination in pure Prolog. A one-one correspondence between the infinite data 

transfer sequence and the cyclic connected data-link list can also be established in this 

case as well as the case of non-cyclic connected data-link list. On the one hand, the 

values appearing in the cyclic connected data-link list are also the values appearing 

the corresponding data transfer sequence; on the other hand, the length of 誦 _ 

connected data-link list can indicates the length of the repeating segment of the 

transfer sequence in terms of the number of parameter cycles. I n Figure 4,11, | | | 

example has data links of 2-4, 4-5,5-10 and 10--2 so that a cyclic connect^ 

list of 2-'4-5-'10"2 can be constructed. I f we compare this cyclic c o 哪 贼 : 縫 赫 

list with the search tree in Figure 4.11, the one-one correspondence? p a n gigftifliy 

shown. 
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4.4.3 Multi-Connected Data-link Lists 

Although cyclic and non-cyclic connected data-link lists are considered separately 

in the above sections to keep the discussion simpler, there are cases in which more than 

one connected data-link lists and even more than one kinds of connected data-link lists 

exist in a cyclic parameter link. Furthermore, the case of multi-connected data-link lists 

can occur either in a recursive definition with one cyclic parameter link or a recursive 

definition with multi-cyclic parameter links. Combining these possibilities together, there 

are many different cases of multi-connected data-link lists. 

4.4.3.1 in One Cyclic Parameter Link 

There are three possible cases of multi-connected data-link lists in a recursive 

definition with only one cyclic parameter link: 

(1) all connected data-link lists are non-cyclic; 

(2) all connected data-link lists are cyclic; and 

(3) some connected data-link lists are cyclic and some are non-cyclic for the same 
cyclic parameter link. 

While the multi-connected data-link lists are homogeneous in the first two cases, they are 

heterogeneous in the third case. 

The two kinds of homogeneous connected data-link lists are significantly different 

from each other. This can be shown by comparing the example in Figure 4.10 with the 

one in Figure 4.12. In Figure 4.10，the recursive definition has some homogeneous m|i|ti^ 

non-cyclic connected data-link lists for its only cyclic parameter link. In Section 

we have already discussed how the backtracking mechanism plays an importanj tgig 

this case of multi-non-cyclic connected data-link lists. In contrast, the 

mechanism does not have any effect in the case of homogeneous multl-cyc|l^ 
、•‘ • ； • -.-','.、•，'.，_:、•'、） ... 、.• 

data-link lists. This is shown by Figure 4.12. The search tree in Figure 442 ishp^^ why 
\ 

‘.‘.：?.... -. 
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no backtracking can happen in the case of homogeneous multi-cyclic connected data-link 

lists. 1 1 = = = = = = = 
• goal(X,Y)link(Y,Q), goal(P,Q). 

goal(end,10). 

The recursive definition in rmk(1,3). Iink(2.4). 丨ink(3,7). Iink(4,5). 
Iink(7,9). Iink(5,10).丨 ink(9,1). 丨 ink(10,2). 

Figure 4.12 is similar to the one in = _ = — — — = = = 
Search tree (a) with the Search tree (b) with the 

Figure 4.11 except wi th more than ^^^ of "？• ^ ^ ^ ^y query of"?- goal(X, 3)" 
one cyclic connected data-link lists , 

goal([3.4) floa 丨(0,3) 
in for same cyclic parameter link. ^ ^ \ \ 

link(4.5) goal(E],5) link(3,7) goal®,?) 
The two cyclic connected data-link | Z I 

^ ^ C tn / u- 1 nnk(5.10) goaI(E].10) ""̂ (7.9) goal®. 9) 
lists are: 2--4--5--10--2, (which also 义 丨 ^ 丨 

. • L , . . ||nk(10.2) goa l(0.2) link(9’ 1) goa l (E l . l ) 

exists in the recursive defmition in "“*"、]"’ ^ / ^ | 
Figure 4.11) and l-3_7--9-L I f we _ . 4 ) ^ ’ 4 ) iink(i.3)^a.(0.3) 

supply different queries, different 丨 _ , 5 )义 (0丨 5 ) 丨 _ . s .丨乃 

data transfer sequences may a r i s e .隨 ( 5 , 1 0 ) ^ ( E D 10) iink(7.9)，<S.广） 

I n Search tree (a) in Figure 4.12, the _10,2) g ^ m . 2) "nk(9’ 1) ^ S, J) 

result of the query of ？-goal(X，4) is iink(2. 4) goai(C3,4) Hnk(i,3) goai([3,3) 

shown. I f we examine the search • • 

tree, we can f ind that it is basically • • ： iminstantiated parameter • 

the same search tree as the one in Figure 4.12 

Figure 4.10. With the values 2，4, 5 

or 10 supplied to the second parameter in the query, only the data transfer sequence 

corresponding to the cyclic connected data-link list of 2—4—5—10—2 can arise. On the 

other hand, if values i , 5 , 7 or 9 are used, only the data transfer sequence corresponding 

to the cyclic connected data-link list of 1--3--7--9--1 occurs. Search tree (b) shows the 

result f rom the query of ？-goal(X，3). Different from the case of multi-non-cyclic 

connected data-link lists, in which the backtracking mechanism allows all the possibly 

data transfer sequences corresponding to each non-cyclic connected data-lii^k 

tried, no backtracking occurs in this case of multi-cyclic connected data-l}i>J; jj^g 

reason can be seen by examining these search trees. Because the data tran^jfec 

is infinite, the evaluation of the recursive definition following this particul^y^ 样9只?P餘 

cannot come to an end : Backtracking occurs only at the point where 热(jl^ta l^^sjfcc 
....,、:..> ：-.‘厂〜“、 

sequence comes to an end. Therefore, the nonterminating evaluation suPi^cdilig |P an 
...:々 .•：•>：••:'. • • • • •： ...、,： V .•；.,,.�， . 

，、 • •i . . � - • 
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infinite data transfer sequence will not allow backtracking to take place and 

consequently it will not try other possible data transfer sequences. 

Moreover, a particular data transfer sequence generated in the evaluation is 

determined by the particular value in a certain cyclic connected data-link list. In the 

example in Figure 4.12, since the value 4 in the query is a value in the cyclic connected 

data-link list of 2--4--5--10—2’ the data transfer sequence according to this connected 

data-link list is followed in the evaluation of this recursive definition; when the value 

used in the query is changed to 3, the data transfer sequence corresponding to the cyclic 

connected data-link list of 1-3—7—9—1 is generated. But what wil l happen if no value 

is supplied to the parameter of the cyclic parameter link in the query, e.g., ？'goal(X,Y). 

In this case, it depends on Prolog's search strategy. As discussed in Chapter 2，Prolog 

searches through the procedure defining a particular subgoal to find a fact or a rule to 

unify with the subgoal in the recursive rule. Therefore, which data transfer sequence can 

be generated with the query of ？-goal(XJ) depends on the order of the facts that form 

part of a particular cyclic connected data-link list. In this case, if the searching 

mechanism in Prolog is from left to right, the first fact in the procedure link that wil l be 

encountered is link(l，3) which forms part of the cyclic connected data-link list oi 1-3-7-

9—1. Hence, the data transfer sequence corresponding to 1-3-7-9-1 is generated. 

In the above example, the two cyclic connected data-link lists are independent 

from each other. The values appearing in one cyclic connected data-link list are entirely 

different from those appearing in the other cyclic connected data-link list. However,舟 | 

case of multi-cyclic connected data-link lists does not need to be the case of mu}|i|>lg 

independent cyclic connected data-link lists. For example, if the procedure 涵 

above example is modified as follows: 
- • . , 产 

• • . . . . . • 

l i i ik(l,3). link(2,3). link(3,7). link(3,5), 
link(7,9). link(5,10). link(9，l). liiik(10,2), 

.！... 
.v:‘. 

The facts in bold typeface are the ones different from those in 4,12, ？^Uh this 

modification, another two cyclic connected data-link lists, l -3 "7 - '9 r rJ 知 

can also be constructed but they are not independent from e^ch otNir；每oth share a 
• . , . 〜 • . ..•：, A . ‘ , . ‘ �-

. . . . .、 
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common value 3. On the other hand, instead of the above two short cyclic connected 

data-link lists, we can construct the long cyclic connected data-link list oU--3-5--10--2--

3..7..9-I (or 2 - 3 - 7 - 9 - 1 - 3 - 5 - 1 0 - 2 , they are the same). Unlike the case of the 

common segment in the multi-non-cyclic connected data-link lists, no backtracking can 

occur in the evaluation following an infinite data transfer sequence. This has already 

been shown by the example and its search tree in Figure 4.12. Since the two short cyclic 

connected data-link lists also represent two infinite data transfer sequences, the long 

cyclic connected data-link list cannot be the result of joining the two short ones through 

backtracking as the case of multi-non-cyclic connected data-link lists. Therefore, there 

are two alternative methods to construct cyclic connected data-link lists from the same 

set of data links if the values in one cyclic connected data-link list are not all different 

from the values in other cyclic connected data-link lists for the same cyclic parameter. 

Since each connected data-link list represents a particular data transfer sequence passing 

through the cyclic parameter link during the recursion, the two alternatives indicate that 

there are two alternative methods to evaluate the same recursive definition by following 

different data transfer sequences. One alternative is to follow the longer data transfer 

sequence corresponding to the long cyclic connected data-link list; the other alternative 

is to follow either one of the two shorter data transfer sequences corresponding to the 

two short cyclic connected data-link lists. It can be shown that the decisive factors in 

determining which alternative to follow are the positions of the facts in the procedures 

defining the subgoals involved in the cyclic parameter link and the execution model of 

Prolog. To simplify our discussion in this point, we shall leave the discussion of this case 

to the next chapter. In this chapter, we shall be concerned only with the case of 

independent cyclic connected data-link list. 

In the case of heterogeneous multi-connected data-link lists, both cyclic an^ mn-

cyclic connected data-link lists exist in the same cyclic parameter link. At first 

nontermination does not seem to be the inevitable result because some finite d ^ ^ 

fer sequences indicated by the non-cyclic connected data-link lists are also 如 

same cyclic parameter link. However, because of the backtracking m ^ f i p ^ ^ jg 

the presence of heterogeneous multi-connected data-link lists in 终 齒 辨 錄 制 如 i f j 

always implies that the evaluation of this recursive definition will 知fi树冬琴IjTipnd ini 
• • • ； . <. ../‘ . "！ 、• • • • 

« .., • \ > 、•’ ， 
. • . ‘ •. ‘ 
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nonterminat ion. j | = = = = = = = = = " ^ 

I t c a n b e g (X .Y) f (Y .Q) , g(P,Q). 

illustrated by f(0,7). f(1，2). f(1.3). f(2.9). f(3.4). f(4.1). f(7,8). f(8.9). 
p . e 4 13 A Diagram showing the evaluation of the above program 

啊 with the query ”-g(X»Yr 
cyclic parameter g(圏，國） 

l i业 is located at f ( 。 ; ^ r a r ^ d ^ S i i i i i i l 
t h e s e c o n d z^^ = ： ： ： ： ： ： ： ： ：!： ： ： ：̂;̂̂̂：：-：：-

、 ’ ^ \ , , ••..、.，.*.. •.了.、..•. .， ： \ 
parameter of the ^ ^ I • 

r e c u r s i v e __ : : : : : : : : \ Xm^^^^m；^ 
d e f i n i t i o n i n 丄 乂, 难！^枯:::::考:潮_:运M4板: 

F i g u r e 4 . 1 3 • ： uninstantiated parameter _ _ : _ _ _ _ | | | | : _ 丨 

b e t w e e n t h e …•…ii!"' ： backtracking path |;_;翁___|;__;;^：：：：：^：：：：：^|；：：：：：：：^ 
「1 . 1 . . • ......J • 

parameters of Y tb« repeated block • 
and Q, There p i g u r e 4.13 

are two non-

cyclic connected data-link lists, 0--7--8--9 and 1-2-9, and one cyclic connected data-link 

list, 1-3-4-1, that are formed from the data links 0—7、1-2, 1-3, 2-9, 3-4, 4-1, 7-8 

and 8-9. By the search tree in Figure 4.13，we can clearly see that the evaluation of this 

program wi l l result in nontermination although there exist two non-cyclic connected data-

l ink lists. 

Due to the backtracking mechanism in Prolog, the evaluation wi l l resume at Other 

remaining possible data transfer sequences when the end of each finite data transfer 辨， 

quence is reached, just as the case of multi-non-cyclic connected data-link l ist | ^ b p ^ 

earlier in the example and its search tree in Figure 4.10. However, in this igif 

heterogeneous multi-connected data-link lists, as shown by the search tr辟 ix\ f i g 淋多各 

backtracking does not only lead the evaluation to other possible f m \ c (l^t^ transfer 
‘ .'•： - •、.‘..‘人、：广广.• 

sequences but also to the infinite data transfer sequence as well. Th^ piily (^^jt^ |fansfer 

sequences that cannot be reached through the backtracking median暮各用財资 t b l jtines thai 
. . ••-•••： ., V " . . • ?“."：. ./ 

are blocked by the nonterminating evaluation following an l^fi i i i te cj^t^ t rai^fcr 

sequence. Therefore, after the finite data transfer sequences to the two 

non-cyclic connected data-link lists, 0-7-8-9 and i - 2 - 9 arp ^|fck|facking wi l l 
•‘ 、： < 
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cause the evaluation of the recursive definition in Figure 4.13 to resume and to follow 

the infinite data transfer sequence corresponding to the cyclic connected data-link list of 

1--3--4--1, By this example, we can see that nontermination can always result from the 

presence of an infinite data transfer sequence although there also exist some finite data 

transfer sequences. 

Moreover, comparing the search tree in Figure 4.13 with the one in 4.12, we can 

see how nonterminating evaluation can result through different ways of following an 

infinite data transfer sequence. In the search tree in Figure 4.12，the evaluation follows 

the infinite data transfer sequence closely without ever branching to other data transfer 

sequences. It is because the two possible cyclic connected data-link lists are independent 

from each other. Once one of them is followed during the recursion, the data 

transferred from the previous parameter cycle of recursion determines the data 

transferred into the next parameter cycle. In Figure 4.13, the non-cyclic connected data-

link list 1-2-9 and the cyclic connected data-link list 1-3-4-1 are not independent from 

each other. Both share the value L At a certain level of recursion where the data 

transferred from the previous parameter cycle is 1, the evaluation of the recursive 

definition has two alternatives to follow: one is the infinite data transfer sequence and 

the other is the finite one. Usually, the Prolog execution model wil l decide which course 

to take in this case by the positions of the facts used to define the procedures forming 

the cyclic parameter link (i.e, also the procedures forming the connected data-link lists). 

In Figure 4.13，the finite data transfer sequence corresponding to 1-2-9 is considered 

to be located before the infinite one corresponding to 1—3--4—1 and therefore the finite 

data transfer sequence is chosen to be followed first. However, at the end of the finite 

data transfer sequence, backtracking takes place again and resumes the evaluatic^o 

according to the infinite data transfer sequence corresponding to 1-3-4-1. Thus, ^ 

evaluation can never escape from this nonterminating cycle. This is inclicate4,^ |l]|e 
,-• St . -t „ • - “ -r 

. ,., y. •、，• 

repeated blocks (the shaded areas) in the search tree in Figure 4.13. In 辦珊钱ij^j^ | | | f 

presence of one cyclic connected data-link list in a recursive definition Aflly 

cyclic parameter link is a sufficient indicator of nontermination. ) 
• \ 
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The discussion of the presence of multi-connected data-link lists in a cyclic 

parameter link is not complete if we do not consider the evaluation order for the 

different data transfer sequences represented by the different connected data-link lists. 

To construct a connected data-link list, a set of data links must be first constructed out 

of the analysis of the procedures defining the subgoals of a cyclic parameter link. 

According the sequence of different facts in different procedures, different data links are 

constructed in a certain sequence. For example, in the recursive definition in Figure 

4.13, the first data link formed is 0-7 and then is followed by 1—2’ 1-3, 2-9, 3-4, 4-1, 

J..S and 8-9. According to the sequence of these data links, connected data-link lists 

are also constructed following a specific sequence: 0—7—8-9, 1--2—9 and 1-3-4-1. 

Since the order of these connected data-link lists is based on of the data links, we can 

view that the connected data-link list of 0-7-8-9 is located before the connected data-

link list of 1-2-9 while the set of 1-2-9 is located before the set of 1-3-4-1, For each 

connected data-link list, there is one data transfer sequence that wil l be followed in the 

course of the evaluation of the recursive definition. As indicated in the above discussion 

on the effect of backtracking, another data transfer sequence is not started until one is 

ended. This is shown by the search trees in Figures 4.10, 4.12 and 4.13. Therefore, the 

relative locations of the different connected data-link lists can indicate the order of the 

corresponding data transfer sequences that will be followed in the course of the 

evaluation. 

In the case of multi-non-cyclic connected data-link lists, the relative positions of 

the connected data-link lists has no significance since the backtracking mechanism in 

Prolog can guarantee all finite data transfer sequences are tried. But, in the case of 

multi-cyclic connected data-link lists, the relative locations of the different c y御 

connected data-link lists are significant to determine which data transfer wil l be follq^gd 

during the recursion. It is already shown by the discussion on the example in F i p j i 

4.12. However, the locations of cyclic connected data-link lists are not sigmfjg^gt 

terms of nontermination. Although different infinite data transfer sequences roay; fee 

followed, all lead to nontermination. : 
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In the case of the mixed kinds of connected data-link lists in one cyclic parameter 

link, the relative locations of different connected data-link lists are also significant in 

determining which data transfer sequence to be followed during the course of the 

recursion. As shown by the search tree in Figure 4.13, the data transfer sequences 

corresponding to the non-cyclic connected data-link lists are evaluated first while the 

non-cyclic connected data-link lists have relative locations ahead of the cyclic one. 

However, a small modification made to the example in Figure 4.13 can change the 

course of evaluation completely. Consider the case with the only modification on the 

positions of the facts in the procedure f as follows: 

f(l,3). f(0，7). f(l，2). f(2，9). f(3，4). f(4，l). f(7，8). f(8，9). 

I f we compare it to the procedure / in Figure 4.13, the only change is that the fact f(l，3) 

is moved to the front of the procedure. However, because of this change in the positions 

of the facts, the first connected data-link list that can be formed is the cyclic connected 

data-link list of 1--3-4-1 instead of the non-cyclic one of 0-7-8-9. On the other hand, 

because of this change, the first fact that is encountered in the search for the fact to 

unify with the subgoal/in the recursive rule during the evaluation is not f(0，7) but f(l,3). 

Therefore, the data transfer sequence that will be followed by the evaluation is not the 

one corresponding to the non-cyclic connected data-link list oi0"7-8-9 but the infinite 

data transfer sequence corresponding to 1-3-4-1, It can be shown by the search tree 

in Figure 4.14. The locations of the connected data-link lists are important in deciding 

which data transfer sequence to follow during the recursion; however, as in the case of 

multi-cyclic connected data-link lists, they have no effect on whether a recursive defini-

tion can terminate or not. Nevertheless, the existence of an infinite data tra科s!耗 

• 、V, ‘ •"••̂.： 
sequence wil l eventually lead the evaluation into a nonterminating process in spitg 由g 

existence of other finite data transfer sequences for the same cyclic parameter ！mlj；, 

Therefore, we can conclude that the presence of at least one cyclic connec,明遍書 

. J " V � . ，-
list is a sufficient indicator of nontermination in the case of multi-coi|i|，,绅 ASlj^'H^H 

lists if there is only one cyclic parameter link in the recursive 

- . 、 、，.、 
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4.4.3.2 in Multi-Cyclic Parameter | j — = = — = | 
L inks g(X.Y) ：• f(Y.Q), g(P.Q). 

f(1,3). f(0.7). f(1,2). f(2,9). 
f(3,4). 1(4,1). f(7,8). f(8,9). 

The case of multi-connected data-
Search Tree showing the evaluation of 

l ink lists can be found in a recursive defini- 也。program modified from the one in 

t ion with more than one cyclic parameter Figure 4.12 with the query "？-g(X,Y)" 

links as well. There are seven possible ways 9 ( _ ’ _ ) 

in which multi-connected data-link lists exist t(1 ^ ^ 

in a recursive definition with multi-cyclic ^ ^ ^ ^ ^ 

parameter links: 9(11,4) 

(1) only multi-non-cyclic connected data-
f(4，i) g ( l . i ) 

l ink lists exist for all cyclic | 
parameter links; f(1,3) g(圓，3) 

(2) only multi-cyclic connected data-link ^ T ^ ^ m 4、 
lists exist for all cyclic parameter T(d，斗）9(國，) 
links; 

f(4,i) g ( _ , i ) 
(3) for some cyclic parameter links, only 

homogeneous non-cyclic connected 
d a t a - l i n k l i s ts exist wh i l e • 
homogeneous cyclic connected data-
link lists exist for the remaining _ ： unlnstantlated parameter 
cyclic parameter links; I' 

F i g u r e 4 . 1 4 
(4) heterogeneous connected data-link 

lists exist for all cyclic parameter 
links; 

(5) for some cyclic parameter links, only homogeneous non-cyclic connected data-lioH 
lists exist while heterogeneous connected data-link lists exist for the remaimng 
cyclic parameter links; ‘ ：气 

(6) for some cyclic parameter links, only homogeneous cyclic connected lisjs 
exist while heterogeneous connected data-link lists exist for t h e 镇 : 

parameter links; and 浮、瑪 

(7) for some cyclic parameter links, only homogeneous non-cyclic cpnnecte^ j ^a ja- l i ^ 
lists exist; for some cyclic parameter links, only homogenepus f p j i ^ CQR^gied 
data-link lists exih, and heterogeneous connected data•尽！喊 Kj^s "专擁【紐”ihg 
remaining cyclic parameter links. 「 

• • > 
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In case (1)，if only non-cyclic connected data-link lists can be constructed in all 

the cyclic parameter links, it is obvious that the evaluation of this recursive definition 

wil l terminate. Based on the concept of an exit-reaching process, if only non-cyclic 

connected data-link lists exist for all the cyclic parameter links in the recursive definition, 

each cyclic parameter link can act as an exit-reaching process itself. None of the cyclic 

parameter links wil l lead the evaluation into endless recursion. On the other hand, 

based on the concept of data transfer, each non-cyclic connected data-link list represents 

a finite data transfer sequence. The evaluation of a recursive definition that has only 

finite data transfer sequences to follow in all of its potential exit-reaching processes wil l 

surely terminate. 

In the discussion in Section 4.4.3.1，we have found that nontermination occurs if 

at least one cyclic connected data-link list is present in a recursive definition with only 

one cyclic parameter link. Therefore, the case of homogeneous multi-cyclic connected 

data-link lists is no different from the case of heterogeneous connected data-link lists in 

terms of nontermination. In the case of multi-cyclic parameter links, cases (2)，(4) and 

(6) have at least one cyclic connected data-link list in all of their cyclic parameter links. 

Since only independent cyclic parameter links are considered in this chapter, cases (2)， 

(4) and (6) can be considered together as the extended cases of the case discussed in 

Section 4.4.3.1 (i.e., the case with at least one cyclic connected data-link list in a 

recursive definition with only one cyclic parameter link). This can be explained by 

considering the extended cases in two respects. On the one hand, because cyclic 

parameter links are independent from each other, the data transfer sequences for one 

cyclic parameter link has no effect on the data transfer sequences in other cyclic 

parameter links; on the other hand, as shown in the previous section, because the valu0§ 

passing through the cyclic parameter link with at least one cyclic connected data-link li^jt 

can always form an infinite sequence due to the backtracking mechanism, the r^c^rsl^f 

definition with a cyclic parameter link in which only some connected da t^ - l i ^ f ^ j j l 

connected data-link lists are cyclic will result in nontermination. | f m ^ PI： cyclic 

connected data-link lists exist for all the cyclic parameter links ^ idgflnltipn, 

the implication is that all these cyclic parameter links cannot ac| ^ ^^ 

process and the evaluation of this recursive definition will end in i jpntermiptipn. JTiis 
‘•“ \ •；; ... 
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can be better understood by using the data transfer analogy. With the presence of at 

least one infinite data transfer sequence in each independent cyclic parameter link, there 

wi l l always be some values that can pass through all of the different cyclic parameter 

links in each level of recursion. Hence, none of these cyclic parameter links can act as 

an exit-reaching process. Without an exit-reaching process, a recursive definition is 

cannot terminate. Therefore, nontermination occurs in cases (2)，（4) and (6). 

On the other hand, in cases (3)，(5) and (7)，not all non-cyclic connected data-link 

lists exist for all of their cyclic parameter links, nor at least one cyclic connected data-

link list exists in all of their cyclic parameter links. However, some of their cyclic 

parameter links have only non-cyclic connected data-link lists while the remaining cyclic 

parameter links have at least one cyclic connected data-link list. In the same recursive 

definition, we can consider that there are two kinds of cyclic parameter links: some of 

its cyclic parameter links seem to indicate the evaluation of the recursive definition can 

terminate (i.e., the ones with the presence of only non-cyclic connected data-link lists) 

while the remaining ones seem to indicate that the evaluation wi l l end in nontermination 

(i.e., the ones with at least one cyclic connected data-link list). Even though these cases 

consist of only independent cyclic parameter links, they cannot be considered as the 

extended cases of any case discussed in Section 4.4.3.1 since it is not possible to have two 

or more different kinds of cyclic parameter links in the recursive definition with only one 

cyclic parameter link. In order to determine the outcome of these cases, we must study 

how the presence of two different, or even apparently opposite, kinds of cyclic parameter 

links affects the evaluation of a recursive definition. 

r . . , 

In Figure 4.15, there is a multi-cyclic parameter links recursive definition. 

are two independent cyclic parameter links and one of them has only nQp-^Jff； 

connected data-link lists while the other cyclic parameter link has at least p S C ^ i W 

connected data-link list. The result is shown by the search tree in f l ^ iSMh^ 

evaluation of such a recursive definition can terminate although onjs pf t N 

parameter links of the recursive definition has a cyclic connected data-link list, ThQ 

example shows that the cyclic parameter link with a non-cyclic connecitefl list 

is more dominant in the course of evaluation than the cyclic pa『嘱賴「“j^^c >yitb a 
,.、.、:、’，，,-‘’ .、• • . • . . 、 ‘ _ • 

‘ : , 、 , .. . 、 • 
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goal(X,Y,Z)linkJ_a(X,A). linkJ_b(A,P), link_2(Y.Q), goal(P.Q,R). 

Iinkj_a(1,2). HnkJ_b(2,3). link一2(a,b). 
Ilnk_1_a(3,a). Iinkj_b(a,1). link一2(b,c). 

link一2(c,cl). 

Diagram showing the evaluation of the above program with the query "?- goal(X,YjZ)" 

^ g o a i d . a . i i ) _ _ 

goal(4b.B) \ "nKJ-a(3,a)] goal(1 ,b.B) 
linkj_b(^3) ^ l ^ - -：：^ \ I 丨丨 

l i n k 丄 g o a l ( i c , _ \ 丨•丨nkj_a(1,2) goal(3,c,_) 

goaK1，d，_ 

Iink_1_at3^) /1 ink_2(d. | 1 ) \ I link_1 一 a(1，2) ZHnk一2(cl,圓） 

linkj_b(a.1) \ | link_1_b(2.3) 
fail ••，"̂ fail 

t：：：；：：：! • yĵ yistsntiELtcd p3r3in6tcr 丨“""…:!!… 
:backtracking path 

(N.B. : some intermediate steps are not shown) 

Figure 4 .15 

cyclic connected data-link list. By examining the search tree in Figure 4.15，we can see 

why the two independent cyclic parameter links can affect each other. They are inde-

pendent from each other since they are formed by two different sets of subgoals so that 

the data transfer sequence in one of them cannot affect the sequences in the other. 

However, the two cyclic parameter links in the recursive definition in Figure 4.15 

affect each other not in terms of the data transfer sequence but in terms of where the 

evaluation ends. Two independent cyclic parameter links can affect each other because 

the subgoals forming each of them are parts of the same recursive rule. I f any subgp l 

in a rule fails, the evaluation of the whole rule fails. Therefore, the evalu^Jtort | | % 

recursive definition can continue only as long as the evaluation of each subgoa! i i j f ^ r y 

cyclic parameter l ink in the recursive definition can succeed. 
’ . V i ,‘>,,' ‘ i . 

‘...tV':*乂、,•/.‘.、‘：；‘： 
\ ： •:.,. • • ’ . • 

I f a cyclic parameter link has only one non-cyclic connectei) ||st, the 
• 、 ^ ；‘ ： “ 

values passing through this cyclic parameter link can only form finite d拜！终 fmn^fer 

sequences. One of the subgoals forming the cyclic parameter link must l d l wlii jn the enc) 
• ‘ ‘ • . 

... 
. • ” � . 
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of the finite data transfer sequence is reached. In the case of more than one non-cyclic 

connected data-link lists for one cyclic parameter link, there are more than one possible 

data transfer sequences when values are transferred through the cyclic parameter link. 

The backtracking mechanism can resume evaluation at the next possible data transfer 

sequence once a subgoal fails at the end of the previous data transfer sequence. 

However, when the last possible data transfer sequence is exhausted, one subgoal in this 

cyclic parameter l ink wi l l fail and no further backtracking within the same cyclic 

parameter l ink can occur. 

The case of multi-cyclic parameter links recursive definition can also be 

understood in terms of an exit-reaching process. Based on the concept of an exit-

reaching process, each cyclic parameter link in a recursive definition with a multi-cyclic 

parameter l ink is a potential exit-reaching process. A subgoal in a cyclic parameter l ink 

can act as an exit condition when it fails and blocks any further evaluation of the 

recursive definition. Therefore the subgoals forming the cyclic parameter l ink are 

potential exit conditions. In Prolog, as discussed in Chapter 2，if there are more than 

one possible exit condition in a recursive definition, it is only necessary to reach one of 

them to terminate the evaluation of the recursive definition. For a cyclic parameter l ink 

with only non-cyclic connected data-link lists, one of the subgoals forming this cyclic 

parameter l ink must fail at a certain point of the recursion and become an exit condition. 

Therefore this cyclic parameter link is an actual exit-reaching process. With the presence 

of an exit-reaching process, the recursive definition wi l l terminate even though the other 

cyclic parameter link may contain infinite data transfer sequences. 

As a conclusion, nontermination occurs i f all of the cyclic parameter links of ^ y 

one of the recursive definitions have at least one cyclic connected data-Unk IM| I f | 

Prolog program with only independent cyclic parameter links. Therefore, yŷ ^ 賺 

nontermination in a pure Prolog program (if it contains only 

parameter links) by examining the presence of any cyclic connect;终“终•购约 In a^ 
• • •.•,.”、- )..•:.;,«、 . ：'，?,•‘. 

of the cyclic parameter links in each of its recursive definitions, ” 種〉.“、:::,) 
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4.4.3.3 The Case of Multiple Recursive Subgoals 
in the Same Rule 

The last case of multi-connected data-link lists to be considered is a special case 

o f mu l t i -connected data-link lists. Unlike the cases discussed in Sections 4.4.3.1 and 

4.4.3.2, which are the cases of multi-connected data-link lists in a recursive definition 

with only one recursive subgoal, the case discussed in this section is the case of multi-

connected data-link lists in multiple recursive subgoals in the same recursive rule. 

I n Figure 4.16，there are two examples of this kind of special cases. For both 

examples, there are two recursive subgoals in the same recursive rule in一order. They are 

identical except for the fact that the positions of two recursive subgoals are interchanged. 

I n both programs, there is a cyclic parameter link at the second parameter for 

both recursive subgoals. By analyzing the procedure defining the subgoal tree, we can 

f ind that the first recursive subgoal in Program (a) and the second recursive subgoal in 

Program (b) have data links a--b，b-a, c-nil and d-nil while the second recursive 

subgoal in Program (a) and the first recursive subgoal in Program (b) have data links a-c, 

b--d, c-nil and d-nil. Therefore, for the first recursive subgoal in Program (a) and the 

second recursive subgoal in Program (b)，we can find a cyclic connected data-link list of 

a-b—a and two non-cyclic connected data-link lists of c-nil and d-nil, while the second 

recursive subgoal in Program (a) and the first recursive subgoal in Program (b) have only 

non-cyclic connected data-link lists of a--c--nil and b--d--nil. I n the same rule, there exist 

both a recursive subgoal that has only finite data transfer sequences, and a recursive 

subgoal that has at least one infinite data transfer sequence. On the one hand, 

cyclic connected data-link list in one of the two recursive subgoals, a—b—a, 

the evaluation of the corresponding recursive subgoal wil l not terminate. On the | t f | ^ 

hand, the presence of only non-cyclic connected data-link lists in the other 喊 纖 

subgoal indicates that the evaluation of the other recursive subgoal wi l l come 镇 | | 編 

i f i t is considered in isolation. ‘ I f they are located in two different recursive 

can conclude that nontermination wil l arise when the program is e v a l 叫 綱 , 叙 變 g 

in Chapter 2，nontermination in one recursive definition in a program ^ 

cause nontermination for the whole program. However, in cxf tmp^i in Jplgure 
,,.• ,,、> V、:；.,,.. •:•‘{ r-• >> . 、 - , '..•, 、•’ * ； • •、 . .， 

• \ • � 
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program(a) Search tree for the program (a) 
with the query "?- in_ordei:(root>X，Y)" 

tree(root, a,b,c). — 

i T e i l T e 丨 i n - O r d e r ( r o o t . 藝 I ®1) 
tree(node,d,nil,nil). \ 
in order(SXlXlLD：- tree(root.a.b,c) ln_order( ®,b,【b| @1) 
"tree(SXY^, \ 

ln_ord0r(S'.Y.L1). ln_order(S".Z.L2). \ 
append(L1.L2,L). tree(node,b,a,d) ln_order( ®,a,[a| ®D 

in一order(S,niUl). ^ ^ ^ ^ 乂 

lppeIIdaX|Lj.Y!̂ }ZD ：• append(L.Y .̂ tree(root,a,b c) in_order( ®,b,lb| 細 

i TTic graph defined by the procedure 丨 tree(node,b,a d) ln_order( ||),a.[a| 翁]) 
j of the subgoal "tree* in both j 

j Programs (a) and (b) 1 : uninstantiated 
： i parameter • 

1 • 
i j Search tree for the program (b) with the query 

I 1 / JJJ l nil nil 丨 "？- m,order(root,X,Y)̂ ^ 
nil nil 1 i 丨 ln_order_,藝膽 _ ) 

Program 减：：:::::::::：̂::: ：：: ： 

• I 1. Jg 1 n I 1 1 I I V • • • / , . . , 
• A r - •./••.•..,,....... . . . . 

^ ... 
’ . * . 

/ • • • . . . • . .̂ v. _________ 
• • • • • • • V > \ 

二 船 二 ： - a p p e n 辑 丨 : : : : : : : : : : : : 酬 _ _ 酬 _ _ 
tree(root.a.b.c). 丨::::::::::::::::::::::::::::::::::::::::::::::::::::::::丨 ::::::::::::::::::::::::: 
treenode.b.a,d). ；：：：：：：：：：：；：：：：：：：：：：：：：：：：：：：：：：：：：：：：：:：:：:：:：:：:：:：:̂ 

tree node,c,nil.niO. :::::::::::::※：::::::〕 
I • J •• an ‘ r . . I'K • . . . . . . 

丨 : repeated block • : uninstantiated 

• 

Figure 4.16 

4.16, both recursive subgoals are located on the same recursive rule. As discusse^ in 热e 
‘ > 

previous section, the different subgoals in the same rule can affect the cqujfg p实 

recursion of each other because only one subgoal is sufficient to block the cour^^q 

recursion of all other subgoals in the same rule. Can the recursive subgoal with gnly 

finite data transfer sequences block the nontermination caused by the evaluation 
‘\ . - *、.、 V 、. 

： 、 J 
‘ , . �‘ • . 
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recursive subgoal with some infinite data transfer sequences? We must examine how the 

two recursive subgoals, recursive subgoal that has only non-cyclic connected data-link lists 

and recursive subgoal that has at least one cyclic connected data-link list, interact with 

each other in the same rule before we can conclude whether nontermination wi l l occur 

in such a special case. 

In Program (a), for there is a cyclic connected data-link list in the only cyclic 

parameter l ink of its first recursive subgoal, the evaluation of its first recursive subgoal 

wi l l not terminate. However, i f the evaluation of the first recursive subgoal does not 

terminate, the second recursive subgoal can never be reached. Search tree (a) in Figure 

4.16 clearly shows this. Although the non-cyclic connected data-link lists in the second 

recursive subgoal indicate that the evaluation of this second recursive subgoal wi l l 

terminate if it is evaluated by itself alone, the second recursive subgoal can never be 

evaluated and cannot affect the termination of this program. Nontermination occurs. 

By examining Search tree (a), we can clearly see that only the first recursive subgoal is 

evaluated in a nonterminating sequence. The evaluation of the second recursive subgoal 

is blocked and has no effect in this case. Therefore, if there are several recursive 

subgoals in the same recursive rule and the nonterminating one precedes all other 

terminating ones, the evaluation of this recursive rule wil l result in nontermination. 

In Program (b), we interchange the positions of these two recursive subgoals. 

What has been the first recursive subgoal in Program (a) now becomes the second 

recursive subgoal in Program (b) so that the recursive subgoal that has only finite data 

transfer sequences precedes the nonterminating one. However, the evaluation of th^ 

program still results in nontermination if the first recursive subgoal can terminate 

its evaluation being successful. Search tree (b) in Figure 4.16 shows why the 

subgoal that can terminate by itself cannot block the evaluation of the otb环 f：专 

subgoals located behind it. Although the first recursive subgoal in Pfogmi^ (fe), % 

indicated by the non-cyclic connected data-link lists, can terminate prop树y ^jy jts^j^ ife^ 

execution of the whole recursive rule cannot. I f any subgoal, including thp. r^gwrsive 

subgoal, succeeds in its evaluation, the next step is to evaluate pthf^r ^ijitgo^ls 

following it one by one. Therefore, in Program (b), after the first refJursiye Wbgoaj is 
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successfully evaluated, the next step is to evaluate the second recursive subgoal. The 

evaluation of the second recursive subgoal causes the recursion to go down one more 

level where everything that has happened before repeats again: the first recursive subgoal 

is evaluated again and the next level of recursion is tried for the evaluation of the second 

recursive subgoal. These are all shown in Search tree (b). The evaluation wi l l not stop 

unti l the evaluation of the second recursive subgoal can stop. However, there is an 

infinite data transfer sequence in the second recursive subgoal. Hence, the evaluation 

of the second recursive subgoal cannot stop and the entire recursive rule runs into 

nontermination. Therefore, nontermination wil l arise if there exists any cyclic connected 

data-link list for all the cyclic parameter links of any recursive subgoal despite the 

number and the location of the recursive subgoal in one recursive rule. 

However, Program (b) can avoid nontermination under a special situation i f the 

procedure defining the subgoal tree is modified as follows: 

tree(root，a，b,c). tree(node,b,a,d). tree(node，d，nil，nil). 

By removing the fact tree(node, c，nil，nil), the evaluation of the first recursive data 

transfer sequence in the only cyclic parameter link in the first recursive subgoal. (There 

is no cyclic parameter l ink in the first parameter of the first recursive subgoal between 

parameters 5 and 5，nor in the first parameter of the second recursive subgoal between 

parameters S and 5 " because there is no subgoal nor any special parameter to l ink them 

up. The first parameter in both recursive subgoals are used to regulate the program so 

that there is no backtracking to the subtrees once the whole binary tree is traversed.) 

Because the evaluation of the first recursive subgoal fails, the first recursive subgoal 

blocks further evaluation of any other subgoals in the same rule. Therefore, 

evaluation of Program (b) can termination but no evaluation can succeed. This is s l j ^ 

by Search tree (a) in Figure 4.17. 、、：_:難.-

• • . > ‘ , � 

Moreover, a similar result can be obtained if we remove the (ree^m^^ 4 oH 

nil) instead of the fact tree(node，c, nil, nil). The result of removing the ^(npde, 
• .’ ‘ •. ‘ . . • • • 

d，nil, nil) is shown by Search tree (b) in Figure 4.17. With th^ pyg^enip^ Rf the (act 
’ .. 、 .‘‘， 、，.. i. ‘、‘ • . ； . • . • • 
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^ = = = = = = = 1 1 data transfer sequence in 

Program (a) Propm modified from Program (b) the first recursive subgoal 
— in Figure 4.16 by removing the fact 

"tree(c, nil, nil)". allows the evaluation ot the 

ln_order(S.X,[X|L})> tr6e(S.X.Y7). tree(root, a,b,c). f i rs t recurs ive SubgOal tO 
ln_orcler(S'Z,L2), tre6(node,b,a,d). 
'"ap^Sd(uilt)!' tree(node,d,nii,nii). succeed in the first level of 

in_order(S,nll,ll). ‘ , / j .7 .7、^u^，。 
, ^ ^ tree(node，c，nil，nil), the re-

Search tree for Program (a) 
in 一 o r d e r ( r o o t , _ , _ _ cursion. However, by 

^ ^ removing the fact tree(node， 

t r e e ( r o o t , a ^ ^ C o r d e r ( ® A l c | _ 头喊.the evaluation of 
the first recursive subgoal 

tree(node,c，⑩，⑩） in the second level of 
recursion fails. Since there 

® : uninstantiated is [。o the r possible data 

Program (b) Program modified from Program (b) transfer sequence in the 
i ^ ^ r n i S ： 膽 0 _ 也e fact first recursive subgoal, no 

In order(S.X.[X|L}):.tree(S,X.Y.Z). tree(root.a.b.c). b a c k t r a c k i n g O C C U T S . 
- in_order(S'Z,L2), tree(node,b.a.d). ！了 . . , 

in_order(S",Y,u). tree(nod9,c,nii,nio. Hence, the failure 01 the 
appnd(L1,L2,L). 

in_order(S.nii.iD. first recursive subgoal 

Search tree for Prgoram(b) blocks the evaluation of the 
•m 一 o r d e _ t , ⑩ , _ _ 

^ ^ j nonterminating second re-

tree(root,a,b,c) / cursion. However, by 
in.order(⑩.(；拟丨]]) in一order( ® ’b’【b| ⑩]) 

I / removing the fact tree (node, 
tree(node.c.nil.nil) / 咖 ^ , . , 、 , t . , 

in order(⑩.niU ) 这 nil, ml), the evaluation qf 
’ „ 丨 丨 【 、 in一order(⑩,d,【d| ® 1) ^ . ^ • 
in一order(®，n丨丨，【） the first recursive sulb||Qa| 

app€nd([],ll.[]) . ,, , I 
m the second level q( 

tree(node,d,⑩，眷） … V 
recursion faife. S ^ e th?^^ 

ft : uninstantiated . . . L , 巧 煤 
^ fail IS no Other 彻 殘 

‘‘ transfer (u i^lhc 
Figure 4.17 雜 邏 • 麵 

first recurMy§ 辨 轻 _ _ pp 
•：‘ • ‘ ” , • . . 、 : . ：：、. 

, r • • ‘ 
...’>‘••，. 

’、‘,• 
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backtracking occurs. Hence, the failure of the first recursive subgoal blocks the 

evaluation of the nonterminating second recursive subgoal. The above discussion shows 

that: i f any recursive subgoal in a recursive rule with multiple recursive subgoals has 

some infinite data transfer sequence, either the entire recursive rule becomes non-

terminating due to this nonterminating recursive subgoal or the whole recursive rule 

terminates improperly, i.e., none of any recursive subgoal in the recursive rule can suc-

ceed in its evaluation. In general, each recursive subgoal in a recursive rule of multiple 

recursive subgoals needs to be evaluated successfully in order to perform any function. 

Therefore, the presence of any nonterminating recursive subgoal in a recursive rule with 

multiple recursive subgoals should be regarded as an indication of nontermination al-

though the evaluation of the recursive rule may eventually escape from nontermination 

by another error: that is, the recursive subgoals in this recursive rule fail to perform any 

function. 

4.5. Special Parameters and Data Links 

I n this section, we shall extend our discussion to the relationship between npater-

mination and connected data-link lists by considering the cases with special 

involved. As has been pointed out in Chapter 3，apart from subgoals, lists and/pt Struc-

tured data can be used to form a cyclic parameter link. As discussed in the begint^ipg 

of Section 4.1，if any data can be transferred through any cyclic parameter Ilok fe^e^ 

by these lists and/or structured data, which are the special parameters,终 

be established through some special parameters. Therefore, we 餅 n data Unks 

into three different kinds: 
：；.、.�•. 

(1) data-links formed purely with subgoals, 

(2) data-links formed with special parameters only, and 

(3) data-links with both subgoals and special parameters (nvolvcd* 
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. ,丨 i 
I 

As special parameters greatly differ from subgoals, the data links formed with only 

special parameters behave very differently from those formed purely by subgoals. The ：、 

difference is so great that it is necessary to consider the above three cases separately. 

I n the above sections, we are only concerned with case (1). In the following sections, 

we shall discuss how case (2) and (3) can be handled. Later, we shall show how the 

nontermination detecting strategy outlined in the above sections can be generalized to 

cover all the different kinds of data links. 

4.5.1. Data Links with Special Parameters Only 
：-i 
I 

Unlike the data link established through subgoals, the data link formed purely by j 

special parameters does not have any procedure to be analyzed. By comparing the 

simple examples in Figure 4.1 and in Figure 4.2, we can see this difference. ！ 

Consequently, we cannot analyze the procedure defining any subgoal to predict what are 

the exact data to be transferred through the connected data-link list. A new technique 

needs to be developed to deal with this type of data links. The key factor in the 

development of this new test is the length of the lists and/or the structured data being 

transferred in a data link. 

To explain this technique, we would need to look back on how a cyclic parameter 

l ink is formed by the special parameters. In Program (a) in Figure 4.18，there is one 

proper cyclic parameter link in the first parameter of the recursive definition goal 

between the parameters List and NewList formed by lists, while an improper cyclic 

parameter l ink exists in the second parameter of the recursive definition (which is 

established through the common parameter X) in both the recursive rule head and the 

recursive subgoal. Since the improper cyclic parameter l ink does not relate to any 

other proper cyclic parameter link, it can be neglected in the analysis of the recursive 

definition. As shown by Search tree (a), this improper cyclic parameter link of ； 

common parameters cannot contribute any effect to the recursion; i t is only used as a 

channel to transfer back the value end once the evaluation of the recursive definition 

succeeds. For the proper cyclic parameter link, although this cyclic parameter link 

seems to be formed by the subgoal cut一one, data link cannot be established by 
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Program (a) Search tree (a) 
„ . - ^ . . Search tree for Program (a) 

with si^cial 碰 - q u e r y of "？- g。am3,4],X)" 
parameters that can tenninate goal([2，3,4】，©) 

goal(Ust. X):- cut一one(Ust,NewList), cut_one(【2,3，4】,[3,41)，丨(丨3,4】,© ) 
goai(NewUst, X). 

goalffl, end). cut_one([3,4】,[4]) goal([41, © ) 

cut one([XjUstRemainl, ListRemain). tn i 、 
— cut一one([4U]) goal([l, © ) 

• 一 

iiiiiiiiiiiiiii 
ill! : backtracking route cut一one([ ], © ) / 7 ‘ goal([ I, end) 

齒 :uninstantiated parameter / 
^ f油 、一丨•丨 

Program (b) Search tree (b) 
. . ！ “ « .“ . . Search tree for Program (b) 

Nontermmatmg recursive definition with ^ i th the query of "?- goal([2,3,4]^" 
data links formed by special parameters ^ 

that has data of constant length nnfll^fP 41 、 
during the recursion 

QoaI(Ust, X ) c u t one(l2.3,41, [3.4]) / goal([1,3,4], © ) 
cut one(Ust,NGwUst), 一 rr!Vj，、 ^ ^ 
add_one(1 ,NewUst,NewList'), add_one(1 ,[3,4]7[1 

g o a C f f i — t , 外 中 _， 3 , 4 1 , 1 §； 5 ^： ^ , 3 ， 4 】， © ) 

cut onedXlUstRemain]. ListRemain). add—one(1 ’ 丨 M l ^ l f ； ^ ^ ^ 

add" one(X.Ust,X|Ustl). cuU>_’3，4】，T^^^oal([1,3,4】，© ) 
- 、 adcLone(1,[3,4】,[1 ,̂4]) 

© •• uninstantiated parameter • 

Program (c) Search tree (c) 
. ！ ‘ 。 . “ Search tree for Program (c) 

Nontemimatmg lecuisive defmition with ^i th the query of "？- goal([2,3,4]^" 
data links formed by special parameters ^ 

that has data ofincreasing length goal(I2,3,4I, © ) ‘ 
during the recursion ^ ^ 、 l 

goal(Ust, X ) c u t 一 o n e ( [ 2 ， 3 , 4 】 , [ 3 , 4 1 ) I goal([1,1.3,4], © ) j 
add_two(1A41.[i:i:M]) / / 

goal(NewUst.X). 乂 / H 
goal(D. end). ^ ^ ^ ^ ^ ^ 
cut.one([XlUstRemainl. UstRemain). cut.one(l1.1.3.4]. [1.3.4iy^goaiai.1.1.3.4]. © ) 
add 一one(X,Ust,lX|Ust]). add_two(1，[1,3,4】,丨1,1,1,3,4]) 

add.two(X,Ust,NewUst) > 
add_one(X’Ust，NUst). 

add_one(X.NUst.NewUst). • 

⑩:uninstantiated parameter ； . ::、 

(N.B.: The intermediate steps for the evaluation of the subgoal "addjwo” are nPl fft̂ OWp ) 
P I 1.1 II; . 
Figure 4.18 … . : 」 . 、 . . . ： 歡 • . 
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analyzing the procedure of this subgoal in the manner described in the above sections 

because the only fact defining the subgoal is cut一one([X\ListRemain]，ListRemain) in 

which all its arguments have no specific value. If Program (a) in Figure 4.18 is 

compared to Program (a) in Figure 4.2，we can easily recognize that, although a 

subgoal is involved in forming the cyclic parameter link of Program (a) in Figure 4.18， 

the cyclic parameter link in Program (a) in Figure 4.18 is not a cyclic parameter link of 

subgoals. Instead, both examples belong to the same kind: they both form cyclic 

parameter links and data links only through some special parameters. By analyzing the 

procedure defining the subgoal cut—one, one can be sure about three things: first， 

since the subgoal cut一one(List，NewList) is defined only by the fact 

cutjme([X\ListRemain]，ListRemain)，the parameters List and NewList can only be 

instantiated with lists; second, the second parameter is always a result of taking away 

the first element of the list in the first parameter; third, the subgoal cut一one wil l 

become fail i f any non-list data or an empty list is passed to the first parameter. In 

other words, as long as non-empty lists are used, an infinite number of data links can 

be formed between the parameters List and NewList, This is the same conclusion ob-

tained in the discussion about the examples in Figure 4.2 in the beginning of Section 

4.1. In this situation, we cannot detect cyclic connected data-link lists with the method 

discussed above because we cannot obtain a specific set of data links and so it is not 

possible to link the data links to form any connected data-link lists for further analysis. 

However, this problem can be solved if we can find other indicators for detecting infi-

nite data transfer sequences. The length of the list transferred during the recursion is 

an indicator of infinite data transfer sequences in the case of special parameters. This 

can be clearly shown by comparing Programs (a), (b) and (c) and their corresponding 

search trees in Figure 4.18. 

As mentioned above, in Program (a), data can be transferred through its cyclfc 

parameter link into the next level of recursion as long as the data transferred are npt 

empty lists. On the other hand, because of the subgoal cut一one, the list that can pass 

into the next level of recursion through the cyclic parameter link must be a list hayjng 

the length of one element shorter than the list passed from the previous level p( 

recursion. Therefore, during the recursion, the list passing through becomes l^llQIt时 • • • , . <• • 
. . . • •� 

‘ • ‘ • , . 

1 2 8 



and shorter and eventually becomes an empty list. At this point, the subgoal cut一one 

fails and stop farther recursion. Although the fact goal([], end) wi l l provide the 

solution for the parameter Z in the query eventually, it is not the exit condition to stop 

further recursion along the recursive rule. I t is reached by the backtracking mechanism 

after the recursion is terminated by the subgoal cut—one. Search tree (a) also illustrates 

this clearly. Therefore, the subgoal cut—one acts as an exit condition at this point and 

the cyclic parameter l ink established through the subgoal cut一one actually performs as 

an exit-reaching process. Hence, there exists a finite data transfer sequence in this 

cyclic parameter l ink although we cannot construct a non-cyclic connected data-link list 

as in the case of cyclic parameter links involving only subgoals. By examining Search 

tree (a), we can find that the data transfer sequence passing through the cyclic pa-

rameter l ink between List and NewList during the evaluation of the recursive definition 

with the query ？- goal([2，3，4]，X) is [2,3,4], [3.4], [4]，[]• With a list of three elements 

long, the length of the data transfer sequence is also three. I f we compare Search tree 

(a) with the recursive definition in Program (a), we can see why there exists a 

correspondence between the length of the data transfer sequence and the length of the 

list. Since the list wi l l be reduced by one element in every level of recursion and wil l 

block the recursion once it becomes empty, the levels of recursion that can occur is 

equal to the number of elements in the list. Since any list that can be supplied in the 

query wi l l always be a list of finite length, the number of recursions that can occur is 

also finite. In this way, no nontermination occurs in Program (a). However, not all 

recursive definitions with cyclic parameter links formed by lists can have its lists 

reduced in length during the recursion. In those cases, nontermination wil l occur. 

In Program (b), there is a recursive definition similar to the one in Program (a) 

except that the subgoal add—one is added to the cyclic parameter link. However, due to 

the fact add一one(X，List, [X\List]) used to define the subgoal, any data passing through 

the cyclic parameter l ink established through the second and the third argument of 

subgoal wi l l have its length increased by one element. Therefore, any no严赚p块 ||st 

passing through the cyclic parameter link in Program (b) wi l l first have oiw 例 

off from its head and then, according to the subgoal add一one(l，NewList, 
. , : : . • :、、〜:？：々. :� ’ 

, • ’�•• ,, •气 • A , • 

element 1 is added to it at its head. The length of the list transferred tq the (ev^J 
. T . � •• 
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of recursion wi l l be equal to the list passed from the previous level. And the length of 

the list remains the same during the recursion. As indicated in Program (a), the 

subgoal cut—one can act as an exit condition only when an empty list is encountered 

during the recursion and therefore the cyclic parameter l ink can work as an exit-

reaching process only i f the list passing through can become shorter during the 

evaluation of the recursive definition. But the list passing through the cyclic parameter 

l ink always has the same length. The exit condition can never be reached and 

nontermination occurs. By comparing Search tree (b) with Search tree (a), it is easy to 

figure out how the subgoal add一one cancels out the effect of the subgoal cut一one to 

result in nontermination. 

For Program (c), the subgoal addjwo replaces the sub- goal add—one in Pro-

gram (b) to form a cyclic parameter link in the recursive definition. When we examine 

the procedure defining the subgoal addjwo, it is not hard to find that it can add two 

elements to the head of any list passing through its second and third parameter. 

Therefore, any non-empty list passing through the cyclic parameter l ink in Program (c) 

wi l l have its first element cut off first and then have two elements added at the head of 

the remaining list. In terms of the length of the list, any non-empty list wi l l gain one 

element in length when one level of recursion is completed. Instead of having a 

shorter and shorter length, the length of the list passing through the recursive definition 

increases continuously during the recursion. This can be shown by Search tree (c) in 

Figure 4.18. Therefore, the exit condition can never be met and nontermination also 

occurs just as what is indicated by Search tree (c). 

‘ -

I n the three examples of Figure 4.18, only lists are used to illustrate how the 

length of the data can be an indicator of the data links formed by special parameters. 
�•• • 

However, the same is true for structured data, which represent another case of special 
parameters. Actually, we can give examples of structured data similar to those giv食殊 |n 

Figure 4.18. In Figure 4.19, the subgoal cutjme has a similar function ^s 
一 . ' " • • • f 

counterpart in Figure 4.18. However, instead of taking away the first e}资用痛 j j f l ||st, 

cutyne in Figure 4.19 cuts away the functor of any structured data 只 衡 【 ^ l i l g ) ^ 
• ‘ •-:-‘‘. . • • ， . 

‘_ : •.. ,,,.. 
• ： ‘ 
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P r o g r a m 
R e c u r s i v e d e f i n i t i o n w i t h d a t a l i n k s f o r m e d 
by special parameters that can terminate. 

g o a l ( S D a t a , X) c u t _ o n e ( S D a t a , N e w S D a t a ) , 
g o a l ( N e w S D a t a , X ) . 

g o a l ( f ( ) , e n d ) . 

cu t一 o n e < f ( X ) , X ) , 

P r o g r a m ( h ) 
Nonterminating recursive definition with data links 

formed by special parameters that has data of 
constant length during the recursion. 

g o a l ( S D a t a , X) cu t一one<SData , N e w S D a t a ) , 
add_one (NewSData , N e w S D a t a ' ) , 

g o a l ( N e w S D a t a 、 X ) . 
g o a l ( f ( > , e n d ) . 

c u t一 o n e ( f (X〉，X) . add__one(X, f ( X ) ) . 

P r o g r a m ^c ) 
Nonterminating recursive definition with data links 

formed by special parameters that has data of 
increasing length during the recursion. 

g o a l ( S D a t a , X) ：- cut一 o n e ( S D a t a , NewSDa ta ) , 
add_ two (NewSDa ta , N e w S D a t a ' ) , 

g o a l ( N e w S D a t a ' , X ) . 

goal(f(), end). 
c u t _ o n e ( f ( X ) , X ) . add一one(X, f ( X ) ) . 

a d d _ t w o ( X , f ( Y ) ) : - add一one(X, Y ) . 

Figure 4.19 

the subgoal. Therefore, if the query ？- goal(f(f_)))，X) is supplied, the data tramfec 

sequence for the first parameter of the recursive definition is f(f(f(f()))), f(f(f()))，f(f()h 

f(). I n a similar manner, add one adds one more functor to any structured data pass-

ing through the subgoal while addjwo adds two more. Comparing these 

with those in Figure 4.18，it can be easily seen that the exit condition is cutj)ne( 

NewSData)，which fails inevitably when the structured data f() is suppUed tq flr^ 

argument, blocking further data transfer to the next level of recursion. (W 
、• 、"''': •：'•：• • 
:• .. :、‘.;“".. ？,？:？.-,,、 
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and (c) in Figure 4.19，this exit condition can never be reached since the structured 

data can never become/ f j . 

By examining these examples in Figures 4.18 and 4.19, we draw this conclusion: 

i f we have a way to analyze the length of the data during the evaluation of the 

recursive definition, we can detect any infinite data transfer sequence in the case of 

special parameters although we cannot construct connected data-link lists as in the case 

of subgoals. By analyzing the operations performed on the special parameters in these 

examples, we can analyze the cyclic parameter links to determine the tendency of the 

change in the length of the data passing through these cyclic parameter links during the 

recursion. I f lists are involved in a data link, either it involves subgoals defined by facts 

whose arguments are lists, or some list operators are involved, like head-tail separator, 

“I "，used in the examples in Figure 4.18. I f it is the first case, it is no different from the 

data links formed by subgoals and can be treated in the same way. I t is in the second 

case that we cannot use the method developed in the above sections to determine what 

the exact data links are. 

However, for a data link or partial data link that can be established with the use 

of head-tail separator, the data transferred to other parameters must be part of the 

original list. For example, in Figure 4,18, the fact cut_one ([X | ListRemain], 

ListRemain) allows data links to be formed because the tail of the list in the first 

argument of the subgoal cut—one can be transferred to its second argument. I f we 

change the fact to be cutjme([X\List]，ListRemain), no data link can be considered to 

exist because List and ListRemain are two independent variables. The values that can 

be instantiated to the variable List bears no relation to the values that can be 

instantiated to the variable ListRemain, Such a modification breaks down any 

dependency between the first argument and the second argument of the subgoal 

cut one. Therefore no data link can be established i f the fact is changed in this 一 — 

In order to complete a data link, part of the original list must be passed tq ptlief 

parameters in the cyclic parameter link. Therefore, there always exists a differeiifp 

the length of the original list and the length of the remaining part transferred tp 
-穿 v .： . 

parameters, and the difference in length between the data that can be instan)i<^t(sd 客9 
...• ..,•-‘、•...二••、,...，‘ 

1 3 2 



these two parameters is the same in every level of recursion. For Program (a) in 

Figure 4.18, the list that is transferred to the parameter NewList always has one 

element shorter than its original list transferred to the parameter List, I f no other 

factor operates to increase the length of the remaining list before it is transferred into 

the next level of recursion, as in the case of Program (a) in Figure 4.18，the list 

becomes shorter and shorter during the recursion and is eventually reduced to an 

empty list. However, the mechanism that cuts the list short, in this case, the head-tail 

separator, wi l l fail when an empty list is encountered. I t blocks further recursion along 

the same recursive rule. A t this point, the data transfer sequence comes to an end. 

However, since the head-tail separator is a standard operator in Prolog and its behavior 

is fully defined, the relation between the length of the original list and its remaining 

part can be expressed by a formula as follows: 

M = N + 1 

where M is the length of the original list while N is the length of the remaining part. 

Therefore, for Program (a) in Figure 4.18, the length of the list passed from the 

previous level and the length of the list passed into the next level of recursion has the 

relation: 

length of length of 
list to next level = list from previous level - 1. 

For Program (b) in Figure 4.18, the relation of the length of the data transfer between 

the parameters List and NewList through the subgoal cut一one can be expressed as： 

length of NewList = length of List • 1 

while the relation between the length of the data passing through the parameter^ .w, ‘.、 •. • . • •.. 
NewList and NewLisf through the subgoal addyne is: : 

length of NewList' = length of NewList + 1. 

Therefore, the relation of the data passing through the parameters List and Newest \ 
_. ‘>'：六:V 

that is, the relation between the list from the previous level of recursion and 依尹 list (q 

the next level of recursion, is: 
length of NewList，= length of List - 1 + 1. 
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This implies that the length of the list does not change during the recursion. I f we 

apply the same analysis to Program (c) in Figure 4.18, the relation between the list 

passed in and the list passed out can be expressed as: 

length of NewList = length of List - 1 + 1 + 1 

Thus, the list passed to the next level of recursion has one more element than the list 

passed from the previous level. Since finite data transfer sequence can be obtained 

only if the list passing through the recursion can become shorter and shorter. The last 

two cases indicate the presence of some infinite data transfer sequences. 

Therefore, i f a data link is formed through lists with the presence of a head-tail 

separator as in the examples in Figure 4.18, we can know whether the list is growing or 

shrinking during the recursion by analyzing which parameter is responsible for the tail 

part of a list and where the tail goes to. I f the tail directly or indirectly goes to the 

parameter in the recursive subgoal, we can be sure that the list passing through the 

recursion wi l l be shrinking. I f it goes to other special parameters that can also 

manipulate lists through a head-tail separator as in Program (b) and (c) in Figure 4.18, 

we can calculate the net difference in length between the list from the previous level of 

recursion and the list to the next level of recursion, to determine whether the list is 

growing, shrinking or remaining constant during the evaluation of the recursive 

definition. This is also true for the data links formed by structured data. For 

Program (a) in Figure 4.19，the fact cut一one(f(X)，X) defining the subgoal 

cutj)ne(SData, NewSData) causes the most outer functor f to be removed from the 

data transferred from the parameter SData to the pjarameter NewSData. This can also 

be considered as reducing one element from the length of the structured data passing 

to the next level of recursion. Moreover, a data l ink can also be established through 
-.、：釋, 

lists without a head-tail separator. We can introduce a small change to Program (a) ip 

Figure 4.18 to remove the head-tail separator as follows: ； 

goal(List, X ) cut—one(List，NewList), goal(NewList,X). 
goal([], end). 

cut一one([X，ListRemain]，ListRemain). 
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A similar result wi l l be obtained if the query to be supplied is modified as P- goal([2, 

[3，[4，[]] ] ],X). In this case, the list that can be passed through the recursion must be 

a list of lists with only two elements and the second element must be a list too. 

However, we can also be sure about how the length of the list changes during the 

recursion. There are many more possible ways to cut a list or structured data than we 

can consider. For example, we can have one parameter defined unusually as 

[X，Y’Z\L]• However, we can still analyze it and know the difference between 

[X,YyZ\L] and L to be three elements in length. Without the need to know whether 

lists or structured data are transferred through these cyclic parameter links of special 

parameters, we can always find out the difference in length between one parameter and 

the other parameter in one level of recursion because the operators such as “ | ”，"，•• or 

the operation that takes away the functor of a structured data can only increase or 

reduce a fixed amount of length from the data transferred through the two parameters. 

Since all the rules and facts cannot be modified during the evaluation of a pure Prolog 

program, we can always be sure that the change in length in one level of recursion can 

be accumulated to form either a finite or an infinite data transfer sequence. This 

provides us with a way to detect the presence of infinite data transfer sequences for the 

cyclic parameter link established through special parameters in which the detection of 

connected data-link list cannot be done. 

The method to detect infinite data transfer sequence in a cyclic parameter link 

established through special parameters can be briefly described as follows: 

(1) Trace the cyclic parameter link. Identify the pair(s) of parameters P丨 and F-, 
where only part of the list in Pj is transferred to Pj. 

(2) Evaluate the difference of length for each pair: if Pj is the parameter responsible 
for receiving data from the previous level of recursion, the difference is a 
negative value; if P! is responsible for sending data to the next level, the 
difference is a positive value. “ : ; 

(3) Add up the differences of all pairs in the cyclic parameter link. 

(4) I f the result is zero or positive, the data transfer sequence is infinite; pt^erw^e, 
the data transfer sequence is finite. 、 
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For example, i f we modify the fact cut一one in Program (a) to cutjme(ListRemain， 

[XI ListRemain]), the cyclic parameter link goes from ListRemain to [X \ ListRemain]. 

The result of the analysis described above shows a positive value, so an infinite data 

transfer sequence is present in this cyclic parameter link. I f the query ？- goal([2，3，4]，X) 

is supplied again, the data transfer sequence wil l be [2，3，4]，[X 2，3，4]，[X，X, 2, 3， 

4], [X，X’ X，2，3，4]，…where X is the uninstantiated parameter. For Program (b)，the 

result is zero and for Program (c), the result is positive. This shows that all of them 

have infinite data transfer sequences for their cyclic parameter link. 

4.5.2 Data Links with Both Special Parameters and Subgoals 

To form a data link with both special parameters and subgoals, the 

corresponding cyclic parameter link must also be established through some subgoals 

and some special pa- ^ ^ = = = = = = = = = | 

rameters. Therefore, i f 
Procrram (a) 

we break down a data Recursive definition with data links of 
both subgoals and special parameters 

l ink into its partial 

data links, we can find goal (List, X) :- linkl(List, NewList), 1ink2(NewList, Value), 
that some of them are goal (value, x ) . 

goal⑴，end). 
established through . . . . linkl([X!ListRemain], ListRemain). 
special parameters u n k 2 ( [ 2 , 3 , 4 ] , 5 ) . i i n k 2 m , 6 ) . 
while other partial _ = = _ _ _ = _ = 

data links are formed Program (b、 

by subgoals. Although Recursive definition without any data link 

the types of data trans- goal (List, X) :- linkl(List, NewList), 
^ , , , , link2(NewList, Value), 
ferred through each goal (value, x ) . 
partial dataUnk do not goa l⑴，end) . 

linkl([XIListRemain], ListRemain)• 
need to be the same, 

• l ink2(3 , 5) . I ink2(4 , 6) , 
the parameter that 

connects two part ial 

data links, i.e, the Figure 4.20 
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parameter being shared by the two partial data links, must have the same kind of data. 

I n Figure 4.20，there are data links of both subgoals and special parameters in Program 

(a). The subgoal linkl can only form partial data links through special parameters 

while the procedure defining the subgoal linkl provides two partial data links of [2，3， 

4]"5 and [�—6. The two partial data links can be linked together because the common 

parameter of the two partial data links can be instantiated with the same kind of data. 

I f we compare Program (a) with Program (b), we can clearly see the importance of 

having the same kind of data for the common parameter. In spite of the great 

similarity between the two recursive definitions, no data link can be formed out of the 

partial data links because the types of data of the two partial data links are no longer 

compatible. The change in the facts in the procedure defining the subgoal link2 

destroys the compatibility of data type between the two partial data links. 

Moreover, the kind of data that can pass into the next level of recursion is 

important in determining whether a data transfer sequence can go beyond one level of 

recursion. For example, the recursive definition in Program (a) in Figure 4.20 does not 

have a data transfer sequence that is longer than one level of recursion. Due to the 

second partial data l ink established by the subgoal Unk2，the data that can be 

transferred into the next level of recursion is, not a list, but just a value. But the first 

argument of the subgoal linkl always demands a list. Therefore, the subgoal linkl wi l l 

fai l at the second level of recursion and blocks further recursion along the same 

recursive rule. Moreover, we can understand the case as a mismatching of the type of 

data supposed to be received and the type of data actually sent. On the one hand, 

since List, the first parameter of the subgoal linkl (which forms a partial data l ink 

through the special parameter of list), is also the parameter that receives data from the 

previous level of recursion for this cyclic parameter link, the type of data that can bg 

received from the previous level of recursion must be lists. On the other hapcj, 

are transferred into the next level of recursion through the parameter Value k 

also the second parameter of the subgoal linkl. However, according to the pf^^Q^yr^ 
_ ‘ • A-'； A ‘V，心、’:、：；‘ 

defining the subgoal, the type of data that can be instantiated to the parameter 

some simple values of 5 and 6 but not a list. This implies that the type pf jfcj^i 咖 

be transferred to the next level of recursion cannot match the type pf d^ta tbM “‘.、•• ’-. ;' -r,、:-: •:‘• i ••.. • ' • ..、r- ... •. X • 
. . . . . 、 • ： . . . . •••: ‘\ 

' . � . ‘ 
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supposed to be received from the previous level. In other words, in order to have a 

data transfer sequence to go beyond one level of recursion, the type of data that can 

be transferred to the next level of recursion and the type of data that can be received 

from the previous level must be the same. This condition required for the formation of 

connected data-link lists for a cyclic parameter link formed by both subgoals and 

special parameters is actually no different from the condition required for the 

formation of data links out of partial data links. For the latter case, the type of data 

must be the same for the common parameters of two partial data links to allow data to 

pass from one partial data link to another. For the former case, the parameters that 
are responsible fo r 

goal (List, X) ：一 iinki(List, NewList)' passing data from one 
link2(NewList, Value), ^ ° 

, � goal (Value, X). level of recursion to the goal([], end). 
linkl{[XlListRemain], ListRemain). Other muSt have the 

Iink2([2,3,4], [5]). iink2([], [6]). Same type of data. 

Hence, Program (a) in 

Figure 4.21 Figure 4.20 can be mod-
ified, resulting in the recursive definition in Figure 4.21，which has data transfer se-

quences that can go beyond one level of recursion. The only modification needed is to 

change values 5 and 6 in the procedure defining link! to the lists [5] and [6]. 

Moreover, the recursive definition in Figure 4.21 provides an example of how an 

infinite data transfer sequence can be formed from data links which are formed by both 

subgoals and special parameters. I f the query ？- goal([h 2, 3，4]，X) (or any query with 

its first argument being four elements long with the last three elements being 2, 3 and 

4) is supplied, nontermination occurs and an infinite data transfer sequence is formed 

in the cyclic parameter link as [1，2，3，4]，[5]，[6]，[6】，[6]，.... A n examination of the 

data transfer sequence shows that the repeating segment is essential to the formation of 

an infinite data transfer sequence. The relationship between the repeating segment 

and the infinite data transfer sequence can be shown more clearly i f we change t^^ 

procedure of the subgoal link2 as follows: • ：；̂ 
• ' . 

Iink2([2，3，4]，[4,5]). Iink2([5]，[a，b，c，d，e]). 
Iiiik2([b,c,d,e], [a，2，3，4]). 
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and evaluate the recursive definition with the query of ？- goal([1,2,3,4], X). We shall 

get an infinite data transfer sequence of [1,2,3,4], [4,5], [ayb，c，d，e]，[0,2,3,4], [4，5]， 

[a,hyC4,e], [a,2,3y4], [4,5], [c0，c，d，e]，[a^2，3，4]，.... On the one hand, it does not show 

any similarity to the infinite data transfer sequence from the data links formed by only 

special parameters. For those data links formed by special parameters alone, the 

length of the data transferred is the indicator for detecting an infinite sequence. 

However, the infinite data transfer sequence in the case of data l ink of both subgoals 

and special parameters does not show the same regularity in the length of the data 

transferred as what has been shown in the case of data links formed by special 

parameters alone. On the other hand, we cannot directly construct a connected data-

l ink list (as in the pure subgoals case) to find the data transfer sequence if both special 

parameters and subgoals are used to form some data links. However, the examples in 

Figures 4.20 and 4.21 show that the infinite data transfer sequence in the case of data 

l inks of both special parameters and subgoals must appear in the form of some 

repeating identical segments. A repeating segment therefore can be an indicator of an 

infinite data transfer sequence in this case. 

I f we consider the concept of the cyclic connected data-link list again, we shall 

note that a cyclic connected data-link list actually represents an infinite data transfer 

sequence formed out of a repeating segment. When the repeating segment in the case 

of data links of only subgoals is compared with the repeating segment in the case of 

data links of both special parameters and subgoals, we can find that the repeating 

segments in both cases have the same nature. Since the fact defining the subgoal link! 

in Figure 4.21 implies List has one more element at the head of the list than New^^t, 

while NewList must be able to be instantiated with the values specified 書 

procedure defining the subgoal link2, we can assume that the partial data links I j ^ ^ ^ g p 
- , .y-' "*f > 

• “ ‘‘ • ‘ ‘ / 

the parameters List and NewList are: 

[X，2，3，4]-[2，5, 4] and [ X H ] , 

where X is any uninstantiated parameter. On the other hand, the partial 样a j ‘ links 
• : ‘： .•！ •- ‘ ‘ 

between the parameters NewList and Value can be concluded from the of the 
« • ： ： . •� • \ '• ‘ � � 

procedure of the subgoal link2. They are: 
•r 、 
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[2，3，4]--[5] and [h[6]. 

I f we try to connect these partial data links, we have two data links: 

[X，2，3，4]--[5] and [X]-[6]. 

Because the uninstantiated parameter X can be instantiated with the value 5，using a 

data transfer analogy, the value 5 can be considered to be transferred from one data 

link to the next one. In other words, the list [5] can be considered to be equivalent to 

the list [X] when the data links are connected to form a connected data-link list 

[X，2，3，4]--[5]--[6]. Moreover, the data link [X]--[6] can be linked up to itself because 

of the same reason. Therefore, an infinite connected data-link list of [X，2，3，4]—[5]--

[6]-'[6]-[6]-... can be formed. The correspondence between this infinite connected 

data-link list and the infinite data transfer sequence shown above is obvious. The 

correspondence is even more obvious in the case where the procedure of the subgoal 

link2 is modified. In that case, linkl is defined by three facts: link2([2，3，4]，[4，5]), 

^ = = = = = = = 1 ] link2([5]，[a，b，c，d，e]) 

… 1 , . , 1 and link2([h, c，d’e]， 
Example of how connected data-link set 又 can be formed in the case of Fn 0 ̂  dU Qn fh户 nnr-

da-ba links of both special parameters and 。。，山c P山 subgoals with using the operator ,� " in lists ‘• i j ‘ r i 
^ tial data links that can 

g o a l ( L i s t , X) l i n k l ( L i s t , N e w L i s t ) , . 
I ink2 (NewList, Value), be formed by this sub-

g o a l ( V a l u e , X ) . 

goal⑴，end) . goal are: [2,3, 4]—[4，5], 

linkl ([X,ListRemain], ListRemain). [5]-[a,b, C，d，e] and 
l i n k 2 ( [ 2 , 3 , 4 ] , [ 4 , [ 5 ] ] ) . fh r fn 9 ^41) 
l i n k 2 ( [ 5 ] , [ a , [ b , c , d , e ] ] ) • lb，C，d，eJ—la，2，J，4J). 
I i n k 2 ( [ b , c , d , e ] , [ a , [ 2 , 3 , 4 ] 〗） . . , ^ 

For the partial data 

links formed by the sub-
Data Links [X, [2,3,4] ]--[4, [5]] 

goal 滅1’ d肚 to the 

Linked Data Link Set : - facts in the procedure of 

[X, [2 ,3 ,4] ] - - [ 4 , [5] ]-_ [ a , [b , c ,d , e ] ]-- link2, we can consider 
[ a , [ 2 ,3 ,4 ] ] — [ 4 , [ 5 ] ] — • • • ， 後 

that there exist thrpe 
‘ t -i .' 'v V 

- • < • I : A .�•> 

part ia l dat^ _ _ 
Figure 4.22 [X，2，3，4]-[2，X 41�(講 

-[5�and [X，b，c，d，e]-[b，c，d，e]. Three data links can be formed: [X，2，3，4]—[4，5��(X^SJ^^ 
...、：嫌拽、 

辄 
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[ayb，c，d，e] and [X，b，c，d，e]—[a，2，3，4]. Because the uninstantiated parameter X can be 

instantiated with any value, lists [X，5], [X，b，c，d，e] and [X，2，3，4] can be instantiated as 

[4,5], [ayb，c，d，e] and [a,2,3,4] respectively. Therefore, an infinite connected data-link 

lists, [X，2，3，4]—[4，5]--[a^b，c，d，eh [a^2，3，4]—[4，5]—[aAc，d，eHM^h…can be 

obtained. 

Example showing how a connected data-link set can be formed 
from data-links of both special parameters and subgoals 

using Structured Data 

goal(SData, X) ：- linkl(SData, NewSData), link2(NewSData, ModiSDa-
ta), goal(ModiSData, X). 

goal(f(), end). 
linkl(Y(X), X). Iink2(f(2,3,4), g(f(5))). 

Iink2(f(5), h(f(b,c,d,e)))• 
link2(f(b,c,d,e), i{f(2,3,4))). 

Data Links ••- Y(f (2,3,4) )--g(f (5)) Y(f (5) )--h(f (b,c,d,e)) Y(f(b,c,d,e)—i(f (2,3,4)) 
Connected Data Link Set :-

Y(f (2,3,4) )—g(f (5) )—h(f (b ,c ,d ,e ) )— 
i ( f ( 2 , 3 , 4 ) ) - - g ( f ( 5 ) ) — • • • 

Figure 4.23 

Moreover, the above discussion can be extended to the case of operator "，” in 

lists and the case of structured data. This can be shown by the examples in Figure 4.22 

and Figure 4.23. By recognizing that the uninstantiated parameter can be considered to 

be connected to any value, list or structured data，we can establish a connected data-

l ink list as in the case of data links of only subgoals. The appearance of repeating 

segment shows that the connected data-link list formed has infinite length (just like the 

cyclic connected data-link list formed in the case of data links of only subgoals). 

Therefore, the appearance of a repeating segment indicates that the correspo發與_ 

cyclic parameter l ink contains an infinite data transfer sequence, and so it cannp| 
、：��:i'i’r吟身於 

t ion as an exit-reaching process. 
；‘ ： . ‘ 

• . . . . - ： 

•+ ；. • -

- • • • . . . 
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We have compared the case of data links involving both special parameters and 

subgoals with the case of data links involving only special parameters or only subgoals. 

The former case should not be confused with the latter two cases. In the latter cases, 

we can analyze different types of cyclic parameter links with different methods, either 

by constructing connected data-link lists or by analyzing the tendency of the length of 

the data transfer sequence, to determine which cyclic parameter link contains infinite 

data transfer sequences. As discussed in Section 4.4.3, if all the cyclic parameter links 

contain at least one infinite data transfer sequence, we know that nontermination can 

occur. I n the former case, the result of the analysis is only limited to the cyclic 

parameter l ink formed by both special parameters and subgoals. However, it is 

necessary to examine all other cyclic parameter links in the same recursive definition 

before we can draw any conclusion about whether this recursive definition wi l l 

terminate. 

4.6 Data Links and Infinite Data Transfer Sequence Detection 

I n this section, we shall describe how a systematic approach can be developed to 

detect a data link and in turn an infinite data transfer sequence. In the case of data 

links of only subgoals, it is a' question of how to systematically construct a cyclic 

connected data-link list out of the data links. In the case of data links of only special 

parameters, it is a question of how to detect the change tendency of the length of the 

data being transferred during recursion. In the case of data links of both special 

parameters and subgoals, it is a question of how to identify the repeating segment. 

These method are developed on the foundation of parameter analysis elaborated in 

Chapter 3. The methods for detecting infinite data transfer sequences wi l l be presented 

in following algorithms. " 

142 



Algorithm 4.1 Data Analysis 

i n p u t : a recursive definition and its set of cyclic parameter links CPS (which can be obtained by 
applying Algorithm 3.3 to the recursive definition. CPS is a set of sets {X. ss, sp}. X 
indicates the position of the parameter involved in a cyclic parameter link, ss is a set of sets 
containing subgoals that form the cyclic parameter link, and sp is a set of sets containing 
parameters involved in the cyclic parameter link. (The details of ss and sp can be found in 
Algorithm 4.2.1.) 

OUTPUT : a message to indicate whether the input recursive definition can terminate 

. = 0 [ NI: the nontermination indicator ] 

If CPS 丰{} Then 

^ ^ F o r each set in CPS Do [ that is, for each cyclic parameter link ] 
Begin 

If only subgoals involved in the cyclic parameter link 
Then Begin 

apply Algorithm 4.2 
If the set of cyclic connected data-link lists SCCD 丰{} 

Then Nl := Nl + .1 
End 

Else If only special parameters involved 
Then Begin 

apply Algorithm 4.3 
If the change tendency integer C is not negative 

Then N l := Nl + 1 
End 

Else If both subgoals and special parameters involved 
Then Begin 

detect the repeating segment in the data transfer sequence 
If there is a repeating segment 

Then Nl := Nl + 1 
End 

End 
End 

if Nl = the number of cyclic parameter links 
Then output an appropriate nontermination error message 
Else output a message to indicate that the input recursive definition can terminate 
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Algorithms 4.2 and 4.2.1 are developed for detecting the cyclic connected data-link lists 

for a cyclic parameter l ink involving only subgoals. 

) 

Algorithm 4.2 Constructing a set of cyclic connected data-link lists 
for a cyclic parameter link involving only subgoals 

INPUT : a set { X’ ss, sp } in CPS 

OUTPUT : a set of cyclic connected data-link lists SCCD, { (VpVa,•..,•„)’ … } 

SCCD := { } . 

Apply Algorithm 4.2.1 to { X，ss, sp } to form the set of data links SDL, {DL” ...，DLJ, where 
DL, = (Va. Vb) 

For each data link DL,, (v^. Vb), in SDL Do 
Begin 

If Va = Vb Then 
Begin 

SCCD := SCCD U {DLJ 
SDL:= S D L ] DLJ 

End 

SDl̂ ew ••= SDL ‘ 
SDL。丨 d:=SDL 

While i ^ the number of data links in SDL and SDL^^ * . { } Do 

Begin [ to form the cyclic connected data-link list ] 

SDU, { } 
For each DLj, (Va”"，Vb)，in Do 

For every data link DLj, (v^.v j in SDL。丨d Do 
if Vb = 

Then If v^ = 
Then Begin 

SCCD ：= SCCD U { (Va” ”Vb’Vn) } 

SDL,,. := SDLde丨 U {D‘DL^} 
End 

Else Begin 
• SDL̂ 辦：=SDL̂ emp u {(Va,“•，Vb’vJ } 

SDL,„ := SDL,,, U {OK DLj} 
End 
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Algorithm 4.2 (countined) 

SDL̂ ew ：= SDL^e, U SDl̂ emp 

End 

eliminate any redundant cyclic connected data-link lists in SCCD 
[ any two cyclic connected data-link lists having the same elements are considered the same, eg•，(1,2,3,1) 

and (2’3,1，2) are equivalent ] 

The algorithm below finds data links in a recursive definition for Algorithm 4.2. 

> 

Algorithm 4.2.1 Constructing data links for a cvdic 
parameter link established through only subgoals 

input : a set { X，ss, sp } in CPS. ss = { s ” Sg, s^ }. s； = { sgs” sgsg, ...，sgŝ  }. 
sgs, = {sQi,…，sgj. For a direct recursive definition, b = 1. 
sg, is a subgoal involved in a parameter link. 
sgs, is a set of all subgoals related to a parameter link for a recursive rule. 
s. is a set of all sgs/s involved in one or more recursive rules in one recursive definition, 
i.e., a set of sets includes all subgoals for one parameter link. 
ss is a set of sets containing all subgoals for one cyclic parameter link. 
Similarly, sp is a set of sets containing all the parameters involved in a cyclic parameter link 
corresponding to the subgoals in ss. 
sp = {p” .... Pa}. Pi = { pas” .... paSb }. pas, = { {X” •••，X̂ + J }• 
The number of parameters involved is one more than the number of subgoals involved when 
one recursive rule is considered. The reason can be shown by considering a simple example, 
in a recursive rule: g(A，B) > llnk1(AP1), link2(P1,X), g(X,Y). There are two subgoals involved: 
Iink1 and Iink2, while there are three parameters A, P1 andX involved in the parameter link. 

OUTPUT : the set of data links SDL, {DL” DL^, .... DLJ where each data link is: 
DL, = (Va, Vb). 

arrange the subgoals in sgs, and parameters in pas丨 according to 
the order of forming the parameter link 

[eg., for a recursive rule a(A,B) Imkl(PZPl), link2(PlA), link3(P2,X), a(X,Y)., the order of the subgoals 
and parameters forming the parameter link is: HnkZ Unkl, linkS and 為 PI, P2, X respectively. They 
are different from their orders appearing in the recursive rule. ] 
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Algorithm 4.2.1 (countined) 

CV ：= { } [CV : a set of partial data link values for all parameter links] 

For each set s^ in ss Do 
Begin [find partial data links for all parameter links] 

DV ：= { } [DV : a set of partial data link values for one parameter l ink ] 
[ involving all recursive rules in one recursive definition ] 

For each set sgsy in s^ Do 
Begin [find partial data links for all recursive rules] 

RV := { } [RV: a set of partial data link values for] 
[ all subgoals in one recursive rule] 

For each subgoal sg^ in sgSy Do 
:Begin [find partial data links for all subgoals] 

V := { } [V: a set of all possible partial] 
[ d a t a link values for one subgoal] 

I 
If the procedure defining subgoal sg? does not consist of facts alone 

Then transform the original procedure into an equivalent one consisting of facts only 

For each fact sg,(..., v" v” ...) of sĝ  Do , . , 
[v. and V- are the values corresponding to the parameters X , and X , + ^ which are used m the 
[subgoal sg,(..., Vi, Vj，...）to establish the parameter link, they can be found f rom the set pas^] 

i Begin 

Find V丨，Vj f rom the fact sg,(.... v丨’…，v�，•••），which corresponds to the position of X, and 

V := V u { (V丨,V丨)} 

End 

RV := RV U { V } 
End 

For each V , a n d V , ^ , in RV Do c : : : . — 「 

Begin , 丨 、 、！ , 工 ‘ . ‘ -
V - w ' 、 、 - ' … ’ \ 乂一 
*temp •一 1/ J 
For each pair (v丨，y) in V^ Do 

For each pair v J in V ^ ^ , Do 

If V丨=Vm Then Vt^p := Vt^p U { (v..、) } 
V V 

+ 1 •一 *temp 
End 

DV:= DV U { V — } 

End 

146 



Algorithm 4.2.1 (countined) 

For each V^ and Vb +1 in DV Do 
Begin 

•temp := { } 
For each pair (v丨，Vj) In V^ Do 

For each pair (v^, vJ in V^ + ^ Do 
If V丨 二 Vm Then V— ：= V— U { (v丨,vJ } 

Vb+ 1 Vfemp 
End 

cv := CV u { V — } . 
End 

For each V。and V。+1 in CV Do [find all the data link values] 
Begin [for one cyclic parameter link] 

Vtemp { } 
For each pair (v丨，v) in V。Do 

For each pair (v^, vJ in V…Do 
If Vj = Vm Then V , 細 卩 : = U { (v, vJ } 

v V 
+ 1 *temp 

End 
SDL:= V — 

Algorithm 4.3 is developed for detecting the presence of any infinite data transfer 

sequence in a recursive definition with cyclic parameter links established through only 

special parameters. 

Algorithm 4.3 detecting the presence of any infinite data transfer sequence for a 
cyclic parameter link involving only special parameter 

INPUT : aset{ X，ss, sp } in CPS 

OUTPUT : the change tendency of data passing through the cyclic parameter link, measured in terms 
of an integer C; a non-negative value of C means that the data transfer sequence is infinite 

C 0 
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Algorithm 4.2 (countined) 

arrange the parameters in pas, according to the order of forming the parameter link 

CV { } [ CV : a set of change tendency values for all parameter l inks,] 
[ C V = { Ci，…，C„ } ] 

For each set p^ in sp Do 
Begin [ find the change tendency value for a parameter link ] 

DV ：= { } [ DV : a set of change tendency values for one parameter link ] 
[ involving all recursive rules in one recursive definition ] 

For each set paSy in p^ Do 
Begin [ find the change tendency values for all recursive rules ] 

RV ：= { } [ RV: a set of change tendency values for all subgoal parameters ] 
[ related to the parameter link in a recursive rule ] 

For i : = 2 to n Do [ n = number of parameters in paSy ] 
Begin [ find the change tendency values for all subgoal parameters ] 

If X, is part of X;., and their lengths 
have a difference of x elements [ eg., X j . i = [H|L] and Xj = L ] 
ThenC—i -X 
曰 seCtempi:: X 

RV:= RV U {Ctempi } 
End 

Gtemf>2 0 [ Ctemp2: chanQQ tendency values for one recursive rule ] 

For each Ĉ empl RV Do C,ê p2 ： = Ctemp2 + Ctempi 

DV:= DV u { C — 2 } 

End 

Ctemp3 ••= 0 [ Ctemp3 : Change tendency values for one parameter link ] 

For each Cte^pz in DV Do Ct̂ mpa • 二 Ctemp3 + t̂empa 

CV:= CV u { C — } 

End 

For each C,卿3 in CV Do C := C + Cte巾p3 [ C : change tendency values for 】 
[ one cyclic parameter link 】 
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Since the case of data links formed by mixing both special parameters and subgoals 

is a rare case, no discussion of how to detect infinite data transfer sequences in this case 

is provided in this section. As discussed in Section 4.5.2, although an analytical 

approach for detecting the infinite data transfer sequence in this case is possible, the 

uninstantiated parameters appearing in data links causes a lot of problems in the 

detection for the repeating segment of a data transfer sequence. We suggest that a run-

time tracing approach may provide a easier approach to detect the repeating segment. 
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CHAPTER 5—Special Cases 

I n Chapter 4，we have developed a nontermination detection technique, which we 

call data analysis, based on detecting the presence of any infinite data transfer sequence 

in any recursive definition of a pure Prolog program. By constructing connected data-

l ink lists, the presence of an infinite data transfer sequence is indicated when any cyclic 

connected data-link list is found or the size of the data passing through any cyclic 

parameter l ink does not tend to become smaller. However, in the case of 

interdependent cyclic parameter links, data analysis may overlook some possible exit 

conditions and so the cyclic connected data-link list found does not really represent an 

infinite data transfer sequence. A false warning of nontermination may result in this 

case. Moreover, in the cyclic parameter l ink with special parameters, data analysis may 

also be inadequate for detecting nontermination under a special situation. We shall see 

why data analysis may fail in the two special cases and suggest necessary modifications 

on data analysis to remedy the problem. Since all the special cases are rare cases in 

Prolog programming, we shall only discuss the general concept underlying the necessary 

modifications and leave the unnecessary details behind. Therefore, no algorithms wi l l 

be given in this chapter. 

5.1 Interdependent Cyclic Parameter Links 

As mentioned in the beginning of Chapter 4，it is possible to form interdependent 

cyclic parameter links through some common parameters and/or conm^ 熟明秀 If 

there exist more than one cyclic parameter link in a recursive definiUpn, §jj}矣g clat^ 

analysis developed in Chapter 4 is expected to handle recursive de£initiai>| 麵协 only 
- ... ..•‘ ：-

independent cyclic parameter links, the technique may yield an ^rroneq^i p^ii^lmslQii 
. . . . • • .‘ 

r - - • 
. . . . s ‘ -
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when it is applied to a recursive definition with some interdependent cyclic parameter 

links. For instance, data analysis may incorrectly lead to the conclusion that 

nontermination can occur in a certain recursive definition when its interdependent cyclic 

parameter links can work together to provide an exit condition at a certain point of the 

recursion. In this section, we shall first discuss how interdependent and independent 

cyclic parameter links are different from each other. The discussion can reveal to us 

how the presence of interdependent cyclic parameter links can provide a unique way to 

avoid nontermination. Then we shall explore how data analysis can be adapted to a 

recursive definition consisting of some interdependent cyclic parameter links. 

5.1.1 Interdependent Cyclic Parameter Links 
through Common Parameters 

Program (b) in Figure 5.1 provides an example of interdependent cyclic 

parameter links sharing a common parameter, while Program (a) consists of 

independent cyclic parameter links only. By contrasting Program (b) with Program (a), 

we can see how interdependent and independent cyclic parameter links are differentially 

related to the exit-reaching process. When Program (a) is examined, we can find that 

i t is almost identical to Program (b) except that its two cyclic parameter links are 

formed by one subgoal instead of two. However, nontermination can occur in Program 

(a) but not Program (b). In Program (a), two independent cyclic parameter links are 

formed between the parameters Plin and Flout through the subgoal linkl, and between 

the parameters P2in and P2out through the subgoal link2. Each of them has data lin|cs 

that can form a cyclic connected data-link list. Hence, each o t ,待；-终 

transfer sequence during the evaluation of the recursive definition so that none o 【舟 _ 

can perform as an exit-reaching process. The evaluation of the recursive defimtipii 55111 

result in nontermination. This is clearly shown by Search tree (a) in 

However, nontermination can be eliminated by a minor modification op t l ^ ^ f 1 f y ^ U f ? 

parameter links. Program (b) shows how the modification can be . ‘ :窗: 
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Program (a) the recursive definition with two Program (b) the recursive definition with two dependent 
independent cyclic parameter links cycUc parameter links that can tennmat 

^at leads to nontermination 
2_cyclic_parameter_links(yiiiu ^ ^ ^ ^ 

Z-cyc l i^^^ t fJ^)『&货改:ut ) , lmk2a(Kî  d>), 
2 cycUcjjarameter links(Plout, P2out, X). 2_cyclic_parameter_linte(Plout, P2out, X). 

2cyclic_p2^eter_links(a, 1, not.end). 2cycUc_j)arameter_links(a, 1, not.end). 
linkUa W link2afl linkla(a» x). linklMx. b). Iink2a(l’ x). Iink2b(x, 2). 

K：!)： linkla^.y). lmklb(y, c). Iink2a(2, y). _ ( y , 1). 
linklCc. a). linkla(c, z). lmklb(z, a). 

Search Tree (a) Search Tree (b) 

2_cydlc_paramet9Uinks(©. © , © ) 2 cyclic』arameterj_©,© , © ) 

Iink1(a,b) Ilnk2(1.2) link1aMflink2a(1,x) 
2’ (；^) ,ink1b(x,b) Iink2b(x,2) 

Iink1 2_cycli^arameterjinks(b. 2, © ) 

Iink1a(b,y)[link2a(2.y) | 
Ilnk1(c,a) Iink2(1,2) Iink1b(y,c) Iink2b(y.1) 

2 ^ ^ a m e t 6 r j i n k s ( a . 2, © ) 2_cydic_parameterjinks(c. 1. © ) 

2_cyclic_parameterjinks(b, 1 • © ) 丨 ink1 a(c,z) j Iink2a(1, © ) 
Iink1b(z,a) | 

Iink1(b,c) Iink2(1,2) fail fail 
2_cydic_parameterjlnks(c, 2 , 

Iink1(c.a) Iink2(2,1) 

|jnk1(a.b) Ilnk2(1,2) • 
• 

• @ ： uninstantiated parameter 

Figure 5 .1 

I n Program (b), each cyclic parameter link is established out of two jsujigpa^ 

instead of one. By using two subgoals, we can introduce another p a r a讲巧块稱料 

cyclic parameter link. As the subgoal lmkl(Plin, Plout) in Program (a) R舰 j^rpHen 

down into two subgoals, linkla(Plin, CP) and Unklb(CP, Plout), the • • 麵 C J ^ 

is introduced to the cyclic parameter link between parameters ？ _ |n 终 

similar way, the parameter CP is also introduced to the cyclic param^ff： J|nk between 
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P2in and Plout, Through the common parameter CP, the two cyclic parameter links 

have now become interdependent because infinite data transfer sequences can exist in 

these two cyclic parameter links only if both data transfer sequences have the same 

value to pass through the common parameter in every level of recursion. For example, 

the second argument of both the subgoals linkla and link2a constitutes the common 

parameter CP, In order to allow data to pass through them, the same value must be 

instantiated to both of their second arguments. Therefore, when the fact Unkla(b，y) is 

instantiated to the subgoal linkla, the subgoal link2a must be instantiated with the fact 

link2a(2,y) to allow the same value y to be instantiated to the common parameter CP in 

both subgoals. Therefore, the data transfer in one cyclic parameter link and the data 

transfer in another cyclic parameter link affect each other due to the presence of a 

common parameter and that is the reason why the two cyclic parameter links are 

considered to be interdependent. 

I f each of the cyclic parameter links in Program (b) is examined separately, it has 

data links that can form a cyclic connected data-link list: a-b-c-a for the first cyclic 

parameter link and 1-2-1 for the second one. So data analysis wil l conclude that 

nontermination can arise during the evaluation of the recursive definition because all of 

its cyclic parameter links cannot function as an exit-reaching process. However, Search 

tree (b) clearly shows that such a conclusion is erroneous. The evaluation of the 

recursive definition in Program (b) does terminate at the third level of recursion 

because the subgoal linkla fails and blocks further backtracking. I f we examine why the 

subgoal link2a fails at this point, we can see that it fails because the only value that can 

be instantiated to the common parameter CP in the cyclic parameter link formed by Xhn 

subgoals linkla and linklb cannot agree with the only value that can be instanti|||(J {q 

the same parameter CP in the cyclic parameter link formed by the subgoals lir^^^ 

link2b. Since the procedure of the subgoal lmk2a only consists of the 

and link2a(2，y), the parameter CP, as the second argument of the subgo^J 

instantiated only to either x or y m the second cyclic parameter l i妹 , j ^ y H f e p S m ^ 

parameter CF must be instantiated to be z in the first cyclic p a r 严丹 J u ^ foi^Qi^ by 

the subgoals linkla and linklb when the recursion reaches the tWfd Igp l , p e conflict 

of values at the common parameter shared between two interdep^n^en| cyclic parameter 
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links blocks any further recursion. This can be easily perceived if we compare the 

recursive definition in Program (b) with a modified one as follows: 

2 cyclic一parameterJinks(P1 in，P2in, X) 
一 link1a(P1inrCP1), link1b(CP1, P1out), 

rmk2a(P2in, CP2), rmk2b(CP2, P2out), 
2—cyclic—parameter」inks(P1 out, P2out, X). 

2__cyclic_parameterjinks(a, 1，not_end). 

Iink1a(a,x). 丨 inMb(x，b). 丨 ink2a(1,x). Iink2b(x，2). 
丨 ink1a(b，y). 丨 ink1b(y，c). rmk2a(2,y). 丨 ink2b(y，1). 
Iink1a(c,z). rmk1b{z,a). 

By only replacing the common parameter CP in both cyclic parameter links with two 

different parameters CPl and CP2, we can eliminate the blockage completely. The 

values instantiated to the parameter CFl no longer affect the values instantiated to the 

parameter CP2. Therefore, the two cyclic parameter links become independent again. 

When this modified version of Program (b) is examined, we can see that it actually 

behaves like as Program (a). By sharing a common parameter, some restrictions are 

imposed on the values that can be transferred through the common parameter of these 

cyclic parameter links. By removing the common parameter, the restrictions can be 

lifted. Using a data transfer analogy, we can view the common parameter as a common 

channel for two (or more) data transfer sequences. Although each data transfer 

sequence is infinite if they are considered separately, the blockage at common channel 

can block all the involved data transfer sequences. Due to this characteristic of th^ 

common parameter in interdependent cyclic parameter links, the common p a r a i ^ ^ 

can act as an exit condition in some situations. Consequently, the cyclic coiinec||| 

link list detected by data analysis cannot be a proper indicator of an i 辨 痛 塵 _ 

transfer sequence in a recursive definition with some interdependent cycUi? p •涵鍵 | 

links if no consideration is 

paid to the values passing through the 

Therefore, the method developed in Chapter 4 can yield invalid c o n _ { _ 

of interdependent cyclic parameter links in some situations. ？ 
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However, the interdependent cyclic parameter links do not necessarily form an 

^ 5 = = = = = = = = = = ^ exit condition. 

the recursive definition modified from Program (b) in T h e b lockage 
Figure 5.1 that also leads to nontenninatioa despite the 

presence of two dependent cyclic parameter links a t C O m m o n 

p a r a m e t e r 
2_cyclic_parameter_links(Plm, P2in, X):-

linklaCPlin, CP), liiiklb(CP, Plout), r a n h e 
link2a(P2iii, CP), liiik2b(CP, P2out), i a u ^ 

2_cyclic_parametex_liiiks(Plout, P2out, X). a v o i d e d 
2cyclic_parameter_links(a, 1, not一end). 
linkla(a, x). liiiklb(x, b). Iink2a(l, x). Iink2b(x, 2). w i t h o u t 
linkla(b, y). lmklb(y, c). Iink2a(2, y). Iink2b(y, 1). . 
linklaCc, z). linklb(z,a). Iink2a(l, z). Iink2b(z,2). e l i m i n a t i n g 

link2a(2,x). Iink2b(x» 1). 
Iink2a(l, y). Imk2b^, 2). the COmmon 
link2a(2, z). Iink2b(z, 1). 

p a r a m e t e r . 

Search Tree for the above recursive defmition By comparing 
the recursive 

2_cydlcj)arameterJinks( © , © ) 
I definition in 

linkl a(a,x) linkl b(x,b) Iink2a(1.x)丨ink2b(x,2) 2_cydic_parameterjinks(b. 2, © ) Program (b) 
in Figure 5.1 

linkl a(b,y) linkl b(y.c) Iink2a(2,y) Iink2b(y.1) 2^cydic_parameterjinks(c, 1. to the one in 
Figure 5.2, we 

linkl a(c,z) linkl b(z，a) Iink2a(1.z) Iinlc2b(z.2) 2^cydicj)arameterJinks(a, 2, can see that 
I 二 is no 

—一 — f\ 1 t t 户 T* 户 T1 O ^ 
linkl a(a,x) linkl b(x,b) Iink2a(2,x) Iink2b(x,1) 2_cyclicj)arameterJlnks(b, 1, © ) 

between these 

^ •• … . I … A two recursive 
Ilnk1a(b,y) linkl b(y,c) rmk2a(1,y) link2b(y,2) 2_cydicj)arameterJinks(c, 2, ( ^ ) 

d e f i n i t i o n s 

linkl a(c,z) Iink1b(z,a) Iink2a(2,z) Iink2b(z,1) 2_cyclic_parameterjinks(a, 1, © ) except for thp 

linkl a(a,x) linkl b(x,b) Iink2a(1.x) Ilnk2b(x,2) • ^ S ^ p l 

^ . . , • : I _ 緩 _ 

: uninstantiated parameter I 
I _ « I 「 ! b 

Figure 5.2 〜 

、：：•、- -,.., . 
common parameter C? is involved. I f we examine these two p r o c ^ ^ ^ 5 ‘ : _ j;̂ jan 0 叫 
how they are carefully rewritten to avoid the conflict in the value p^s jng |t|iroug^ tb^ 

• • ‘.. • \ -‘： • ‘ 
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common parameter. By expanding the procedure of the subgoals linkla and linklh, the 

conflict in the value passing through the common parameter can be solved. The search 

tree in Figure 5.2 shows how the newly added facts in the procedures of the subgoals 

linkla and linklh can allow the common parameter CP to be instantiated to the same 

value in different levels of recursion. Although the size of the procedures of the sub-

goals linkla and linklh in Figure 5.2 is double the size of the procedures of linkla and 

linklh in Program (b) in Figure 5.1, only one cyclic connected data-link list 1-2-1 exists 

i n both cases. The newly added facts do not increase the number of cyclic connected 

data-link list in any cyclic parameter link but form more alternative paths to allow data 

to be transferred through the common parameter. The example in Figure 5.2 also 

shows that data analysis developed in Chapter 4 is not completely irrelevant in the case 

of interdependent cyclic parameter links. Since at least one cyclic connected data-link 

list is present in all the cyclic parameter links, if data analysis in Chapter 4 is applied to 

the recursive definition in Figure 5.2, a correct conclusion wil l be drawn: nontermination 

can occur, just as what is indicated by the search tree in Figure 5.2. 

Therefore, the examples in Figures 5.1 and 5.2 show that, in the case of 

interdependent cyclic parameter links, the mere presence of the cyclic connected data-

l ink lists in those interdependent cyclic parameter links is not sufficient to indicate the 

presence of any infinite data transfer sequence. On the other hand, the mere presence 

of interdependent cyclic parameter links cannot constitute an exit condition by itself. 

Infinite data transfer sequences can be formed only if the cyclic connected data-link lists 

found in the interdependent cyclic parameter links do not form any blockage at common 

parameter shared by these interdependent cyclic parameter links. In other words, the 

values passing through the common parameter in all the involved interdependent 
-’ v'、二‘“ ‘‘ ‘ • 

parameter links must be the same. Therefore, the presence of interdepend||i| 

parameter links does not require a completely different method. Instead, | | | | 

connected data-link lists are detected by data analysis, we only need - f ^ a f f p ^ f ^ f l 

to verify whether these cyclic connected data-link lists can f o r 网 , 縣 朗 , | 
I . ： 丨 ： 赛 嚷 _ : 

common parameter. 
• •• • , 
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Case (1) I Case (Ii) 
the common parameter is also j the common parameter is only 

the parameter of the | the parameter of some subgoal 
recursive rule head and | in the recursive rule 
the recursive subgoal j 

I goal(AX,BX,CX,DX):-
goal(AX,BX,CX) | 丨ink1a(XA，XB), 

linkl a(AX,XB), 丨 linMb1(BX，CP)， 
l inkl b(BX，XA)， | linkl b2(CP，XA), 

link2a(BX,XC), | 丨 ink2a(CX，XD)， 
link2b(CX，XB)， 丨 丨 ink2b1 (DX，CP)， 

goal(XA,XB,XC). 丨 link2b2(CP，XC)， 
丨 goal(XA’XB，XC，XD). 

Figure 5.3 

However, there are two ways to form interdependent cyclic parameter links 

through common parameters. The difference between them can be illustrated by the 

two recursive rules in Figure 5.3. We can find that two interdependent cyclic 

parameters in Case (II) are formed in the same way as other examples shown in Figures 

5.1 and 5.2 through the common parameter CP, However, the interdependent cyclic 

‘ parameter links formed in this way can be easily converted into independent ones. The 

subgoals linklbl(BX，Cr) and linklb2(CP，XA) can be simply merged into one subgoal 

linklb(BXyKA) to eliminate the common parameter CP without any significant effect on 

the other cyclic parameter link. It is also true for the subgoals link2bl and linklhl. But 

the common parameters in the interdependent cyclic parameter links in Case (I) cannot 

be eliminated in this manner. In Case (I), all the common parameters BX and XB are 

also the parameters in the recursive rule head or the recursive subgoal. They cannot be 

removed without significantly altering the recursive definition itself. Therefore, befor^ 

we discuss how to revise data analysis, we must find out whether the interdepend绅J 

• . . i - •、.、广. 
cyclic parameter links formed in these two different manners are significantly 

in terms of nontermination detection. By comparing the 

parameter links in Case (I) with those in Case (H), we can find that the'每績 

difference is this: while there are definitely two different cyclicparameK^f l in^ l j p lRa^ 
•• -、-、... ‘： • •• ./. - ： t... . . 、• 

(II)，the two interdependent cyclic parameter links in Case (I) can • 聽 _ one 

longer cyclic parameter l ink extended over four levels of recurslp^, | f _椒麵11116卢紐 
VV ； . ；••'： 157 



data-link lists are found in the two interdependent cyclic parameter links and no conflict 

of values occurs at the common parameter between these cyclic connected data-link lists, 

we can f ind that at least one cyclic connected data-link list can be formed in the longer 

cyclic parameter l ink formed by combining the two shorter interdependent cyclic 

parameter links. However, i f a cyclic connected data-link list can be formed among the 

subgoals forming the longer cyclic parameter link, this indicates that an infinite data 

transfer sequence can be formed without blockage at common parameter and thus 

nontermination wi l l occur. The same reasoning that is used to develop the method of 

data analysis in Chapter 4 can also be applied in this case. In other words, the test for 

nontermination described in Chapter 4 can also be applied to the recursive definitions 

of Case (I) without any modification with the only constraint that i t must be conducted 

on the longer cyclic parameter l ink instead of the shorter interdependent cyclic 

parameter links. But the two interdependent cyclic parameter links in Case ( I I ) cannot 

form a longer cyclic parameter l ink. We need to develop a certain technique to check 

whether the blockage of data transfer can happen in every common parameter shared 

among the interdependent cyclic parameter links. Therefore, it is Case (I I) that requires 

modifications to the method of data analysis developed in Chapter 4. Since the problem 

of the presence of common parameters in both cases is the problem of how to know 

whether blockage of data transfer can occur at the common parameters, any adaptation 

of the method of data analysis to handle the presence of interdependent cyclic 

parameter links in Case (I I) can also be applied to Case (I). Our discussion therefore 

wi l l concentrate on the interdependent cyclic parameter l ink formed by the type of 

common parameters shown in Case (II). 
r - - . -

‘ A； 

5.1.1.1 Interdependency between Cyclic and Non-cyclic Parameter ^ 
Links and Interdependency between Cyclic Parame敗口誠 
and Subgoals " \ ' 

- . - . 

..• ',V、广；. 
. . . . - • �- -

- v . . -
- , • i r-• , ' - V \ ^ 

1 •• \ : -

Before examining interdependent cyclic parameter links, we sba|| ^h^ jde r 

the interdependency between a cyclic parameter link and something p翻『稱铁 | 身 d i e 

parameter link. That is, through a common parameter, a non-cycJip M ^ ^ ^ l g r l ink or 

a subgoal can also establish interdependency with a cyclic p a r a m e t f 《 } 秦 _ ， t h o 
•• « •‘ 

158 



case of interdependent cyclic parameter links, data analysis may sometimes yield 

erroneous conclusions about nontermination when a cyclic parameter link shares a 

common parameter with some non-cyclic parameter links or subgoals. A n appreciation 

of this case can help us to understand the case of interdependent cyclic parameter links. 

In the discussion on the modified version of the recursive definition in Figure 4.3 

( in Section 4.1.1.1)，we have already shown an example in which the subgoals that are 

not part of a cyclic parameter l ink can significantly affect the construction of the data 

l ink in the corresponding cyclic parameter link. I f we examine the recursive definition 

in Figure 4.3 again, we can find that the common parameter X shared between the cyclic 

parameter l ink and the subgoal linkl is crucial. Comparing the case in Figure 4.3 and 

its modified version discussed in Section 4.1.1.1 with the interdependent cyclic parameter 

links in Figures 5.1 and Figure 5.2，we can find that the common parameter plays the 

same role in both cases. Due to the common parameter, the values transferred through 

the common parameter need to be regulated by all the subgoals sharing this common 

parameter, just like the case of interdependent cyclic parameter links, in which all the 

cyclic parameter links sharing the same parameter can regulate the values passing 

through it. 

By the same reason, a cyclic parameter link and a non-cyclic parameter l ink are 

considered to be interdependent i f both are sharing at least one common parameter. In 

Figure 5.4, we form a recursive definition that has interdependent cyclic and non-cyclic 

parameter links by slightly modifying the recursive definition in Figure 4.3. By changing 

the subgoal Unk2(Z，X) to lmk2(Q,X), the subgoal lmk2 form a non-cyclic parameter l ink 

between the first and second parameter of the recursive definition. (It can show hp\y 
- ^ 

closely a non-cyclic parameter l ink and a mere subgoal are related to each other.) The 

procedures of the subgoals used in the recursive rule are also modified so that two 摄镇 

connected data-link lists can be present in the cyclic parameter link fonriej^ ^ Itijg 

subgoals linkl, linkS and link4. Since it is the only cyclic parameter link ^ _ _ 『 秀 隨 

definition, data analysis wi l l indicate that the recursive definition is n o 嘛顯 i ^ j f ^ l i f the 

cyclic parameter l ink is considered in isolation. However, the cycliq p拜【鲜風号’癸『lipHĴ  

interdependent with the non-cyclic parameter link formed by the mbgQ^l Mnk^. l i \ 
••“灣•':；：).._。、‘ 

、 . ： … V ••. .+•• • •:.• • • � • 
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goal(X,Y) linkKXA), lmk2(Q,X), link3(A3), lmk4(B,P), goal(P,Q). 

lmkl(l,2). Iiiik3(2,a). Iiiik4(a,3). 
lkkl(3,4). Iink3(4,b). Iink4(b,l). 
linkl(a,b). Iink3(b,c). Iink4(c,a). 

CASE I CASE n C A S E m CASE I V 
link2(x,l). Iink2(z，3). Ii„k2(z,3). 碰(y，a). 

Mc2(p，q). Imk2(y,a). 

Search tree for Case I Search tree for Case n 

^ ^ ^ g o a l ( e ) (D) 

Iink1(1.2) / / ^ I i n k 1 ( 3 . 4 ) ] \ \ \ _ 叫 丨 i _ , 2 ) 7 / 隨 ( x , i ) 二 _ 

link3(2.a) / / ：： _ 4 , b ) \ \ _(b,c) Iink3(2.a) / J I \ 
l i n k W / \ 丨 i n _ \ 丨 _ _ 丨lnk4(a,3) i i n k 1 ( 3 . 4 ) ^ / \ 

nnk2(i,1) "： l i n _ , 3 ) \ _ 0 ) a ) .ink2(z.^goa.(U) 
: ： nnk4(b.1) ^ ^ ^ ^ \ 

fail ： fail i fail rmk3(2,a)Z / link2(x.^goal(3.x) 

、 、 丨 • 乂 r m k 1 ( 3 . 4 ) ： 
Iink3(4,b) / 

Search tree for Case IV 丨 ink4(b,1) 

S^^h tree for Case in 

_ / - ) / ： \ , lnk3(2 .aW/ : _ _ 

fail / Iink2(0.1) ： Iink2(z.3) linK2(0,a) 

/ / goal(1,z) •••• 

Aink3(b,c) Iink2(y.a) f^l ： Iink1(1,2) ̂ ^ \ 零坤 

Iink4(c,a) floal(a,y) Iink3(2,a) Hnk2(€),1) 

！ 叫 . 沟 fail j 

… “ ： backtracking path 藝 ： ^ i n s t a n t i a t e d p a r a ^ 

F i g u r S . 4 
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Figure 5.4, four different procedures for the subgoal link2 are given to illustrate how the 

interdependency between the cyclic parameter link and the non-cyclic parameter link 

can eliminate nontermination in some cases. In Case I，nontermination is eliminated 

because the fact defining the subgoals link2, Unk2(p，q) does not allow the common 

parameter X to share the same value in both parameter links at the same time. The 

search tree for Case I in Figure 5.4 shows this clearly. In order to have data transferring 

through the cyclic parameter link, the parameter X must be instantiated to the value of 

1,3 or a in the cyclic parameter link. But the procedure defining the subgoal link! 

which forms the interdependent non-cyclic parameter link only allow the parameter X 

to be instantiated to the value q. The conflict of values blocks the infinite data transfer 

sequence in the cyclic parameter link so that nontermination does not result. Similarly, 

the procedure of link! in Case ffl produces the same effect on the infinite data transfer 

sequence in the interdependent cyclic parameter link. As indicated by the process to 

form the cyclic connected data-link list 1--3--1, both facts Unkl(12) and Unkl(3,4) are 

essential. Hence, the infinite data transfer sequence corresponding to the connected 

data-link list 1-3-1 can exist only if both the values 1 and 3 can pass through the 

common parameter X Although the fact link2(Z，3) can allow the value 3 to be shared 

between two interdependent parameter links, the procedure defining the subgoal link2 

cannot allow the value 1 to pass through the common parameter. I t can be shown by 

the search tree for Case III . The infinite data transfer sequence thus cannot be 

completed and no nontermination can happen. On the other hand, the presence of the 

additional fact link2(x，l) in Case I I makes it possible to transfer the value 1 through the 

common parameter. So, the infinite data transfer sequence is now completed and 

nontermination occurs, as indicated by its corresponding search tree. Nonterii im^tipf| 

also happens in Case IV. The search tree for Case I V shows that it is cai^^d ft 

similar reason. 
With the fact link2(y，a) in its procedure, the non-cyclic pa ram| tp 

allows only the value a to pass through the common parameter X. Howey热 換 

connected data-link list, a-a, can be established in the cyclic parameter 解 隨 _ 

a can be transferred through the common parameter. Because only 哪 M m t i ^ l p f t 

transfer sequence is sufficient to cause nontermination to arise, noii|，|*j[||賺 

in Case IV as well as in Case H. In fact, by examining the search g ^ j l a n | 

Case IV, we can find that only one infinite data transfer sequence te 娜爾爱d u r i f j g ' t h ^ 
..•、•+-.、.•. ：-.'、，- t ‘... 、 - ‘ • > > < -. 161 



recursion. Even though the fact Unk2(y，a) is also present in the procedure of link2 in 

Case II，only the infinite data transfer sequence corresponding to the cyclic connected 

data-link list 1--3—1 is followed in Case II. By comparing these cases and their 

corresponding search trees, we can conclude that nontermination can occur if 

(1) there is at least a cyclic connected data-link lists in the interdependent cyclic 
parameter link; and 

(2) the value(s) passing through the common parameter according to the cyclic 
connected data-link list in the interdependent cyclic parameter link can agree 
with the value(s) passing through the same common parameter according to any 
data transfer sequence of the interdependent non-cyclic parameter link. 

I f a subgoal that is not part of any parameter link happens to share a common 

parameter with a subgoal sharing some common parameter with the subgoal in a cyclic 

parameter link, the effect is the same as in the case of interdependent cyclic and non-

cyclic parameter links. Consequently, the method of data analysis can be adapted to 

the case of cyclic parameter links sharing a common parameter with other subgoals or 

non-cyclic parameter links. The following are the steps in the adapted method: 

(1) Find out the common parameter(s) shared between the interdependent cyclic 
parameter link and the interdependent non-cyclic parameter link or subgoal. 

(2) I f any cyclic connected data-link list can be found in an interdependent cyclic 
parameter link, for each data link used to construct a cyclic connected data-link 
list, find out the value(s) transferred through the common parameter(s). (The 
value(s) can be found either by simply checking up the facts in the procedure(s) 
defining the subgoal(s) with the common parameter(s) involved, or by analyzing 
the rule(s) in the corresponding procedure(s) in a way similar to how connected 
data-link list is constructed in data analysis.) As suggested in Figure 5.4, 
common parameter value(s) can be inserted into the cyclic connected dat%辑趣 
list as part of it. : f • 纏 

.. . � • - ‘ •'»-

(3) Apply step (2) to the interdependent non-cyclic parameter link qc 
construct in them all the possible connected data-link lists 喊 } I : : 输 雞 缺 | 
passing through the common parameter indicated. 《藝？‘：广安 

‘：.:‘.化 V於.,、>:..< -V 
. ： I “ 

(4) For each cyclic connected data-link list found in step (2)，compare 
passing the common parameter to the value(s) passing through ̂  (^TOUOn 
parameter found in step (3). ？巧您tv 

- . . . . • • • ‘ 

162 



(5) I f at least one cyclic connected data-link list of the interdependent cyclic 
parameter l ink can match all the value(s) of its common parameter(s) to any 
common parameter value(s) in any connected data-link list of the interdependent 
non-cyclic parameter link or subgoal, nontermination occurs during the 
evaluation of the corresponding recursive definition; otherwise, the evaluation of 
the recursive definition can terminate. 

I f we apply the above steps to Case III，the parameter X can be identified as the 

common parameter in step (1). In the only cyclic parameter link, which is formed by 

the subgoals linkl, linkS and link4, there are two cyclic connected data-link lists in the 

cyclic parameter link: 1--3--1 and a-a. In step (2)，the facts constructing the two cyclic 

connected data-link lists are examined to find out what values can be transferred 

through the common parameter: the values for the cyclic connected data-link list 1-3-1 

are 1 and 5, while the value for the cyclic connected data-link list a-a is a. Then the 

connected data-link list of the non-cyclic parameter link is constructed in step (3) and 

the value passing through the common parameter is recorded. Only the value 3 is 

possible. By comparing the value found in step (3)，we can see that 3 does not match 

a. Therefore, the cyclic connected data-link list a-a can be eliminated from our 

consideration. On the other hand, although the value from step (3) can match one of 

the values of the common parameter in the cyclic connected data-link list 1--3--1, not all 

the values of the common parameter in this cyclic connected data-link list can be 

matched. Hence, nontermination does not occur. 

On the other hand, if Case I V is considered, even though the application of steps 

(1) and (2) yields the same result as in Case II I : the values of the common parameter 

in the cyclic connected data-link list 1—3—1 are 1 and 3 and the value of the c o i ^ q j j 
••. - ' 、： • "V 

:！ •• 

parameter in the set a-a is a, the value passing through the common parameter f p j 毫 
〜 -v . : 

non-cyclic parameter l ink is found to be a in step (3). As these values are comp减gj^ ^ 

step (4), all the values of the common parameter in the cyclic connected 拜拽 ;难 { i s j 

a - a can be matched to the values of the common parameter fqr 中 -

parameter l ink found in step (3). Therefore, we can conclude that n o 併 协 

result during the evaluation of the recursive definition in Figure 5.4’v^协 ^ b^i^duipg 
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of the subgoal linkl in Case IV. In other words, nontermination occurs only i f at least 

an infinite data transfer sequence can be formed in the interdependent cyclic parameter 

links without blockage at common parameter shared by other subgoals in the recursive 

definition. The above steps therefore can be added to data analysis to detect whether 

any blockage exists at the point where the potential infinite data transfer sequence 

passes through each common parameter. These steps can eliminate the possibility of 

false warning. 

Although the examples shown in Figure 5.4 consist of only non-cyclic parameter 

links of one recursion level, the above steps are also applicable to non-cyclic parameter 

links extending over multiple levels of recursion. Step (3) is not l imited to one-level 

non-cyclic parameter links as long as the interdependent cyclic and non-cyclic parameter 

links share only one common parameter. I f they both share only one common 

parameter, the other part of the multi-level non-cyclic parameter l ink cannot affect the 

other common parameters on the interdependent cyclic parameter link. For 

interdependent cyclic and non-cyclic parameter links that share more than one common 

parameter, the above method requires some modification. In some situations, blockage 

at common parameter can be avoided only if al l the common parameters shared 

between the interdependent cyclic and non-cyclic parameter links come from the same 

cyclic connected data-link list formed from the cyclic parameter links and the same 

connected data-link list formed from the non-cyclic parameter links. Although the stejp^ 
.'、’ •’、、）-

(2) and (4) can make sure that only common parameter from the same cyclic cqim^gtld 

data-link list wi l l be tested, the steps (4) and (5) wi l l allow the values o( 

parameters from different connected data-link lists from the non-cyclic parag] | | i i | IJglte 
- :-.、•'.，••、:. ‘-. 

to match to the values of the common parameters in the interdep明翻益 

parameter link. Therefore, the above method may yield an e r r q • • ， ， 搏 顯 

some situations. However, since the interdependent cyclic aiuj 勵 肖 聽 _ .•:.�.，"《‘ -‘-‘‘ -••«. ,, • • f. •• . • ‘ ‘ ':/.，’、„>-• ‘ - --'v ^： 

links with more than one common parameter is a very rare cas^ 棋樹gg progr今 f l^J^, 

(it is extremely confusing even to the programmer himself/herself,) wi?辨all not ga intQ 

detail in this thesis. 、、 - ' 
:�xiV',。：广. 
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5.1.1.2 Interdependency between Cyclic Parameter Links 

Similar to the case in which a common parameter is shared by non-cyclic 

parameter links and cyclic parameter links, two or more cyclic parameter links become 

interdependent cyclic parameter links when they share a common parameter. In Figure 

5.1 and Figure 5.2, we have already seen some examples of interdependent cyclic 

parameter links. As shown in these examples, sharing a common parameter in these 

cyclic parameter links can provide a way to form an exit condition, which is not present 

in the case of independent cyclic parameter links. Since data analysis has not 

considered such a possibility, some modification to the method is needed. However, 

unlike the case of interdependent cyclic and non-cyclic parameter links described in the 

previous section, the cyclic connected data-link lists in these interdependent cyclic 

parameter links usually involve more than one common parameter. 

I n Figure 5.5, there is a recursive definition with two interdependent cyclic 

parameter links. The first cyclic parameter link is located between parameters AX/XA 

and BX/XB, while the second one is located between parameters CX/XC and DX/XD, 

By analyzing the subgoals in the recursive rule, we can see that the two cyclic parameter 

links are of the same length. Both extend over two levels of recursion. Between the 

interdependent cyclic parameter links, only one common parameter CP is shared. On 

the other hand, the cyclic connected data-link lists of these two cyclic parameter links 

extend over two cycles of its corresponding cyclic parameter link. In other words, the 

cyclic connected data-link lists from both interdependent cyclic parameter links extend 

over four levels of recursion. Since they both extend over two cycles of the cyclic 

parameter links that share a common parameter, the two cyclic connected data-link lists 

share two common parameters. It can be shown by the graphical representatipn jp 

Figure 5.5. We can trace one complete cycle of the two cyclic connected P i l l 

f rom both cyclic parameter links to see how the two common parameters r̂̂ ^ ^ m ^ 

between the two cyclic connected data-link lists. 、广:免:VVf;>。3 f v 
- V:.、二七•广 

'：“! , - T r ‘ . . . ： 、 
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goal(AX3X,CXJ>X)linklal(AX,CP), liiikla2(CP>XB), linklb(BX»XA), 

lmk2a(CX;XD), link2bl(DX,CP). link2b2(CP^Q. goal(XA, XB, XC, XD). 

l inklaKU). liiiklal(3,b). Iiiik2a(ll,12). Iink2a(13，14). 
Iiiikla2(a^). Iiiikla2(b,4). Iiiik2bl(12 办 link2al(14’b). 
linklb(2,3). linklb(4,l). Iiiik2b2(a,13). Iink2b2(b,ll). 

the graphical representation showing values transferring through each 
parameter of all the cyclic parameter links in the above recursive definition 

the cyclic parameter links among the cydic parameter links among 
"linkl a1" l ink l a2" and "linkl b" "link2a", Tink2b1 ” and "link2b2" 

AX/XA BX/XB CX/XC DX/XD 

； … ⑦ � 
1st level / ' l a W -

2nd level ^ ^ ^ 湿 … 汽 . ；：：^….0、^ 

3rd level " ^ ： ^ ® ^ 

4th level 八 A"®----；：：：" ：^：-：0 \ 一 

5th level / O a ] — ^ ^ 、 、 

Split into two graphical representations J V t o show two pairs of dependent cyclic 
parameter links 

AX/XA BX/XB CX/XC DX/XD AX/XA BX/XB CX/XC DX/XD 

Q ^ UUev. O , . . z一⑦ • . . . . . . . . . . . . . . O 
O i ® : . . . . . . m 〇 

/ X 4111 level 、a. a'' 

© C ^ O Q ^ g ) . 〇 ， : : ® 〇 

〇 f X D ( g r ^ 〇 ： 1 O O •： • 

Figure 5•5 | 

I n Figure 5.5, we modify the graphical representation scheme in 

Chapter 3 to illustrate how the common parameters are shar^4 fc^ftw?^ two 

interdependent cyclic parameter links. Circles indicate the p a r a i ^ ^ ^ jrg^^jj^l树p fqi： 

transferring data from one level of recursion to next level, i.e., @ M^t 
. . . •-• 
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CX, DX, X 4 , XB, XC and XD, which are the parameters in the recursive rule head or in 

the recursive subgoal. Squares indicate the common parameters shared between the 

two interdependent cyclic parameter links. The squares are located between two circles 

because they are responsible for the formation of a parameter link from the parameter 

in the recursive rule head to the parameter in the recursive subgoal. I f the two 

interdependent cyclic parameter links can transfer the same value through the common 

parameter at a particular level of recursion, we indicate the absence of blockage at 

common parameter by the squares connected with a solid or dotted line. 

The modified graphical representation also shows that more than one cyclic 

parameter l ink are formed among the same set of parameter. For the parameters 

AX/XA 2indBX/XB, there are actually two cyclic parameter links. When we re-examine 

the recursive definition, we can see that all subgoals needed to form the same cyclic 

connected data-link list exist in the same recursive rule. Hence, in each level of 

recursion, two parameter links exist between the parameters AXjXA and BX/XB. 

Eventually, these parameter links are connected to form two cyclic parameter links i f the 

successive levels of recursion are considered. Therefore, as shown by the graphical 

representation in the center of Figure 5.5, there are actually two pairs of interdependent 

cyclic parameter links instead of one pair. These two pairs of interdependent cyclic 

parameter links are represented by the dotted line and solid line respectively. I f only 

one pair of interdependent cyclic parameter links is considered, it seems to be that no 

value is transferred through the common parameter in every alternate level of recursion. 

However, the evaluation of the recursive definition can continue only if some value can 

be passed through the common parameter CP in every level of recursion; otherwise, th窃 

subgoals with CP as one of its argument, linklal, linklal link2bl and Iink2b2’ f明 

and block further recursion. The graphical representation in the center pf f igure 秦 

shows us how two pairs of interdependent cyclic parameter links can JQ ,• * '. . 'if../--—. : . ‘ \ ‘： - : • A： / -、. ‘：'*>' S • .、：、• 

pass values through the common parameter in every level of recursion, 
• 

； . • ;、...-、-.-• 
. ' • • • . ' • . - . . . . 

However, i t is not necessary to examine all cyclic coimectp^ fn 

pairs of interdependent cyclic parameter links. The example in 殘 s h p w s us t^at, 

in some situation, examining only the cyclic connected data-linH fTQiTJ one pf 
•• •••• ‘ . - . . • • 
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several pairs of interdependent cyclic parameter links is sufficient to know whether 

blockage at common parameter wil l occur. A t the bottom of Figure 5.5, we split the 

original graphical representation into two, in which only one pair of interdependent 

cyclic parameter links is shown. They clearly show that the pairs of cyclic connected 

data-link lists used in both pairs of interdependent cyclic parameter l ink are actually 

the same. The graphical representation in the bottom right hand corner is identical to 

the result obtained by shifting the one at the bottom left hand comer one level up. The 

reason is as follows: Although there are actually two pairs of interdependent cyclic 

parameter links, they are identical except for the fact that they are located one level of 

recursion apart. I f there exists a pair of infinite data transfer sequences without 

blockage at common parameter in any one pair of interdependent cyclic parameter links, 

this pair of infinite data transfer sequences can also exist in the other identical pair of 

cyclic parameter links. Since the cyclic connected data-link list in each cyclic parameter 

l ink represents the infinite data transfer sequence in this cyclic parameter link, we need 

to examine only one pair of cyclic connected data-link lists from one pair of 

interdependent cyclic parameter links. Actually, there are three different situations: 

(1) all the involved interdependent cyclic parameter links have the same length, 

(2) the lengths of the involved interdependent cyclic parameter links are different in 
a ratio of an exact multiple, and 

(3) the lengths of the involved interdependent cyclic parameter links are in a ratiq 
that cannot be reduced to an exact multiple. 

Their graphical representations of these three situations appear in Figure 5 T [ t i | 

example in Figure 5.5 is in the situation (1) and it is the simplest case,. 

interdependent cyclic parameter links have the same length, the commpp m 

their corresponding cyclic connected data-link lists are located in thg k ^ l ftf 

recursion. This is clearly shown by the graphical representations m | | | u r g Mf： |n thg 

graphical representation of the interdependent cyclic parametei： y 咖 gf e ^ a l Ignph^ 

every common parameter in both cyclic parameter links caii J p . I ^ l f | | 

indicated by the dotted lines between the pairs of squares. H c ^ _ 【 , n o t t r ) | | Cqr 

interdependent cyclic parameter links with different lengths, J ^ the grag^icaj 

representations of the interdependent cyclic parameter Un)ai iy|lh ft f^tio of an cxact 
. - • - � 
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, graphical representation of the 
crapliical representation of tlie grapMcal rcpresentafaon of the evaluation of a recursive definition 
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Figure 5.6 

multiple or with a ratio that is not an exact multiple, there are some common 

parameters in one or both cyclic parameter links that cannot be connected to the 

common parameter in the other cyclic parameter link. Therefore, in situation (2) and 

situation (3)，there are more than one pair of interdependent connected data-link lists 

to be examined. These situations will be discussed in Section 5.1.1.2.2 to see how the 

test of blockage at common parameter can be conducted in the more complicated 

situations. 

. . . . . . 

Furthermore, the graphical representation of the recursive definition in Figi^釋 |，| 

shows us how nontermination occurs in a recursive definition with interdependent 錄谢g 

parameter links. I f there is no blockage at common parameter in one of the if考携 

segments in an infinite data transfer sequence, there is no blockage 

parameter in other repeating segments as well. I t means that there yiq 树 肩 

any point of the infinite data transfer sequence. I f this is true for at |•够觀g i ^ p i t e 
V . ？-、:::’‘ 

. . • -..._、. ：•-. • -V . -•+. • ；- • • -- •• • ... ‘• 
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data transfer sequence in the cyclic parameter links in a recursive definition, 

nontermination results. Since a cyclic connected data-link list actually represents the 

repeating segment of an infinite data transfer sequence, we only need to conduct the test 

of blockage to every common parameter in one complete cycle of the cyclic connected 

data-link list to find out whether any blockage can happen in the entire data transfer 

sequence. In the recursive definition in Figure 5.5, the graphical representation shows 

that each cyclic parameter link has a cyclic connected data-link list. The graphical 

representation also shows that there is no blockage at common parameter for a 

complete cycle of the cyclic connected data-link list in each cyclic parameter link. 

Therefore, an infinite data transfer sequence exists in both cyclic parameter links and 

consequently nontermination occurs. 

Therefore, i f we compare the example in Figure 5.5 with the case of 

interdependent cyclic and non-cyclic parameter links in Section 5.1.1.1, we can find that 

both illustrate the same phenomenon, that is, nontermination can occur i f there is no 

blockage at all the common parameters on the cyclic connected data-link lists involved. 

However, the way to detect blockage at common parameter may be very different in 

these two cases. In the case of interdependent cyclic and non-cyclic parameter links, 

there is no constraint on the non-cyclic connected data-link lists involved since they 

represent the values passing through the non-cyclic parameter links. In the case of 

interdependent cyclic and non-cyclic parameter links, the same cyclic connected data-link 

list can share the common parameters with several different non-cyclic connected data-

l ink list, yet the values transferring in a non-cyclic connected data-link list do not affect 

the values in another non-cyclic connected data-link list. On the contrary, in the case cif 

interdependent cyclic parameter links, all connected data-link lists involved are 续琳 

connected data-link lists. Blockage at common parameter occurs at the cyclic 

links involved unless the same pair of cyclic connected data-link lists can fliiAirf^ al l M 

common parameters in every level of recursion. In the following 
c’}^：^键:耗衫簿长接? 

explore how interdependent cyclic parameter links and cyclic 卿 滅 勝 ? i s 镜 

with lengths in different ratios can complicate the situation an(| 

blockage at common parameter in these situations. 二没::,:’“：逝 

170 



5.1,1.2.1 Lengths of Cyclic Connected Data-link Lists 
in Different Ratios 

Before we discuss the case of interdependent cyclic parameter links with lengths 

in different ratios, we shall first examine how the cyclic connected data-link lists of 

different lengths can affect the detection of blockage at common parameter. Similar to 

the case of interdependent cyclic parameter links, the lengths of the cyclic connected 

data-link lists can be classified into three categories: 

(1) the lengths of the cyclic connected data-link lists in the different interdependent 
cyclic parameter links are the same, 

(2) the lengths of the cyclic connected data-link lists in the different interdependent 
cyclic parameter links are different but in the ratio of an exact multiple, and 

(3) the lengths of the cyclic connected data-link lists in the different interdependent 
cyclic parameter links are different and their lengths are in a ratio that cannot be 
reduced to an exact multiple. 

To examine how the difference in the lengths of the cyclic connected data-link lists can 

complicate the detection of blockage at common parameter, we start with a simple case. 

I n this section, we only consider the cyclic connected data-link lists with lengths in 

different ratios in those interdependent cyclic parameter links with equal length. Then 

in the next section we shall generalize the conclusion of our discussion to 

interdependent cyclic parameter links with different lengths. 

I n Figure 5.5, we already have an example of cyclic connected data-link lists wi ih 
：广《V:绍《.: 

equal length. In the discussion of the example in Figure 5.5, we have also seen h ^ 

nontermination can occur in such a situation. To detect nontermination in this 

only need to slightly modify the data analysis method. Data analysis should b^ 

to also record the common parameter value sequence when cons t ru ing t b | 

connected data-link list in each of the interdependent cyclic parametigr J f l h g 

common parameter value sequences in different connected data-l i i^ |j||$ m i 

blockage at common parameter does not occur and 

modification on data analysis to handle the equal-length interdepf ndgiljt ^g l j ^ paramete| 

links with equal-length cyclic connected data-link lists is 终 | 讲 g j j - If!终ight每jv^k^j, 
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However, it becomes complicated if the cyclic connected data-link lists involved have 

different lengths. 

In Figure 5.7, there is a recursive rule similar to the one in Figure 5.5 and there 

are four different sets of procedures. Similar to the recursive definition in Figure 5.5， 

there are two cyclic parameter links that both extend over two levels of recursion. The 

first one is located between parameters AX/XA and BX/XB while the second one is 

located between parameters CX/XC and DX/XD. With four different sets of 

procedures, four examples of interdependent cyclic parameter links are given. Each has 

interdependent cyclic parameter links of equal length sharing only one common 

parameter. However, in all four examples, the cyclic connected data-link list in the 

second cyclic parameter link extends over two cycles of the corresponding cyclic 

parameter link. Therefore, the lengths of the two cyclic connected data-link lists are 

different. When the lengths of the cyclic connected data-link lists are compared, we can 

see that their lengths are in the ratio of an exact multiple of 2. On the other hand, 

while the cyclic connected data-link list in the first cyclic parameter link only involves 

one common parameter, the one in the second cyclic parameter link involves two 

common parameters. By modifying the notion of cyclic connected data-link list used in 

Chapter 4，the common parameter values can be shown on the cyclic connected data-

link list as well. The value indicated between [ ] is the value passing through the com-

mon parameter in this particular cyclic connected data-link list. It allows the difference 

between the cyclic connected data-link list from the first cyclic parameter link and thf 

one from the second cyclic parameter link to be shown. 、 

In Case (I), the cyclic connected data-link list formed in the first cycHp 

link is 1--2--1’ with a length of 2, while the cyclic connected data-link |i§( 

cyclic parameter link is 11--12--13--14--11’ with a length of 4. S o , f e l ^ g t b M i f e 

cyclic connected data-link list in the second cyclic parameter link isj jpy^lg 書秘 filf 

the cyclic connected data-link list in the first cyclic p a r a m e t e r ^ thf 

graphical representation of Case (I), the cyclic connected data-link W ^ ^ formed by 

the facts linklal(l，a), linkla2(a,2) and Unklb(2，l) in the first 御：pQrpieter liiiH C ^ 

pass only the value a through the common parameter f ^ ^Hflwg |he j^gjirslpn, 
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goal(AX3X,CXJDX) :- liiiklal(AX,CP). liiikla2(CP,XB), Iinklb(BX«XA), 
link2a(CX»XD), link2bl(DX»CP), link2b2(CP»XC), goal(XA, XB. XC, XD). 

cydic Unkad data Onk set cydic linked data Bnkŝ  (he cycfic parameter tha cydic paramstor 
In th® cyclic parametaf link in the cyclic parameter link ink formed by the Dnk formed by the 
fomi«d by the subgoals formed by th« subgoal* subgoals linkl al*. subgoals 1ink2a'. 

CASE (I) •Bnk1ar.11nk1a2"andTlnk1b' 1lnk2a'.Tlnkarand 1lnk2t)2' i'linklb* *11nk2b1'&'|]nk2b2-
linkUl(U) iink2t(ll.l2). value® passing (wtthlhe values passing 

* , ’ through the common parameter through the common parameter A X / X A B X / X B C X / X C D X / X D 
linkU2C«2). _13’M)’ bviicatedbetween 1 ]*) (i^ Q 〇 ® 
輯 2 4 ) . 隱 鳴 ^ ^ ^ 1st level 

Unk2bl(U.b). Q 〇 

Unk2h2(M3). Ha]-2-l 11-12孙13-14>肿11 2nd level 

n ~ D : 彻 common parameter 门 . ⑵ 门 level 
sharing the same value ^ ^ ^ ^ 

CASE ( I I ) O X 〇 〇 

H 1st level 
linkUKU). Uflk2»(ll,12). • ‘ ― V g ^ ( g T ^ ^ Q 

Unk2a(13’14). ll-12-[al-13-14^]-ll y / ^ 2nd level 

linkibai). iiBk2bi(i2̂ ). (TXT 〇 〇 

linkUlOb). Unk2bl(14 )̂. © ― 3rd level 

o ® ®： o 
Z 4tli level 

_ , U ) . 〇 〇 
^ J T j ^ 5th level 

O (SC 〇 
j [ Q ： the common parametCT ； 

sharing the same value ； • * 
‘ o 〇 “ 

CASE ( I I I ) 1st level 

liDkUl(U). Iiak2a(ll,12). 〇 ( S i 〇 

1 孙 l l - 1 2 - [ a H 3 - 1 4 - l a M l ^ ^ ^ 

l i n k _ ) . Iudc2bl(12 )̂. ^ ^ 3rd level 

lbk2bK144)’ O ^ O 
Iink2b2(a.l3). 4th level 

n • ： the commouparameter 〇 〇 ： ^ ： 
sharing the same value I • 

— 一 — G I O O ^ 
linkUlOt). Iinlc2a(11.12). ^ 1st levef 

finklaltO). Iink2a(13.14). 〇 ® C 〇，】 . ; 
Hal-2-l ll-12-[al-13-14-tb]-ll ^ 9mA linklbai). Iiiik2bl(124). 【训 X ^ ^ [PV̂^ 

linklaiab). link2M(W«b). 3"0)l-5~3 
o r o o M … : ， I 

— — ) . • _ _ • 〇 〇 （ O r ^ O 够 ， 
liiiklb(53). ]ink2b2(b.ll). snanng uie same vaiuc w 、 Vcf .. 

figure 5.7 ； ^ ^ ^ 於？辩••署 

' . • ‘ - — 
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However, the cyclic connected data-link list in the second cyclic parameter link, as 

shown by the diagram in Figure 5.7, can complete a cycle i f only both the values a and 

b are passed through the common parameter sequentially. A t the third level of 

recursion, the cyclic connected data-link list in the first cyclic parameter l ink can allow 

only the value a to pass through the common parameter while the cyclic connected data-

l ink list i n the second cyclic parameter link can only allow the value b to pass through 

the common parameter. Such a conflict of value at common parameter causes the 

evaluation to stop at the subgoal linklbl. Therefore, nontermination is avoided in Case 

(I) due to the common parameter blockage at the third level of recursion. 

I n Case (II)，the blockage at common parameter is eliminated because new facts 

are introduced to the procedures of the subgoals linklal and linkla2. As shown in 

Figure 5.7, i f we also consider the value passing through the common parameter, we 

have only one cyclic connected data-link list, l-[a]-2--l in Case (I), but two cyclic 

connected data-link lists, l-[a]-2--l and l-[b]-2--l in Case (II). The new cyclic 

connected data-link list l-[b]-2-l is formed because of the newly introduced facts. As 

indicated by the graphical representation of Case (II)，the blockage is eliminated 

because the two cyclic connected data-link lists can be connected to form a longer cyclic 

connected data-link list of l-[a]-2—l-[b]-2—l with a length of four. This new cyclic 

connected data-link list is an exact match to the long cyclic connected data-link list 11-

12'[a]-13-14-[h]-11 in the second cyclic parameter l ink in terms of length and the 

sequence of values passing through the common parameter. In Case (I I I) , there is 

another way to eliminate the blockage. The cyclic connected data-link list in the se^Q?}̂  

cyclic parameter l ink is modified to pass only value a through the common parafijg拷『， 

Although Case ( I I ) and Case (HI) demonstrate two different ways to allow i i ^ i j i t g 

transfer sequences to exist in the interdependent cyclic parameter links ( i a ^ b i g j 

length of their cyclic connected data-link lists have a ratio of exact multiple^, ！！̂!̂  棘 睡 

the two same basic conditions: ；̂ 麵管.嘆: 

- 煤 辦 . • 厂 •. 

(1) the shorter cyclic connected data-link list can be ^ r p ^ cycHg 
connected data-link list with a length the same as pf ^ ^ ^ ^ c r (^cU^ 
connected data-link list, and ‘ ：? 

• . ‘ 
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(2) the cyclic connected data-link list formed by the shorter cyclic connected data-
l ink list and the longer cyclic connected data-link list have the same sequence of 
common parameter values. 

I n Case (I), although condition (1) is fulfilled, condition (2) cannot be met. The 

cyclic connected data-link list in the first cyclic parameter link has the common 

parameter value sequence of a-a while the one in the second cyclic parameter l ink has 

the sequence of a-b. Case ( IV) again shows how the two conditions are needed for 

eliminating blockage at common parameter. In Case (IV), condition (1) cannot be 

satisfied and blockage occurs at the second common parameter shared between these 

two cyclic connected data-link lists. There are two cyclic connected data-link lists: l-[a]-

2-1 and 3_[b]-5—3, Although each of them can match to one of the two values 

transferred through the common parameter by the long cyclic connected data-link list in 

the second cyclic parameter link, they cannot form a long cyclic connected data-link list 

that matches exactly the length of ll--12-[a]-13--14-[b]-ll as in Case (II). Because the 

value transferred through the common parameter is only a in the cyclic connected data-

l ink list l-[a]-2--l, the conflict of values causes blockage to occur at the common 

parameter in the second half of the cyclic connected data-link list 11-12-[a]-13-14-[h]-

11，in which only the value b can be transferred through the common parameter. The 

graphical representation of Case ( IV) shows how evaluation fails at the third level of 

recursion due to this conflict of values at the common parameter. Although the 

backtracking mechanism wi l l cause other alternative paths to be tried after blockage 

occurs, the conflict of values wi l l not be resolved in other alternative paths and^wjjl 
• ' . . . . . . 

block further recursion. 尊 
、+ • , 

The four cases in Figure 5.7 show the basic concept underlying the modific^tipij -• . - , ‘ J • t • ^ - • - - . ? - � � . � . . , . : �• . ..- •.. • 

of data analysis to handle cyclic connected data-link lists with lengths in the iM ig Qf 

exact multiple. As shown in Chapter 4, the cause of nontermination _ 機 _ 爾 ‘ 械 

an infinite data transfer sequence in the cyclic parameter links - fg例|；礙奚身乡fiî "钟冬 

On the other hand, i f the blockage at common parameter is nqt 雜 喊 令 磁 | 雕 

connected data-link list found in a cyclic parameter link actually 核拜 reppftt i i^ 

segment of an infinite data transfer sequence in this cyclic p狀珍讲射gj \\n\i. Therefore, 
、‘• . J:、.-:,.々 ••• 
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data analysis can be adapted to the case of interdependent cyclic parameter links with 

the addition of a process to verify whether a cyclic connected data-link list detected by 

data analysis can or cannot form any blockage at common parameter. In the case of 

equal length cyclic connected data-link lists as in the example in Figure 5.5, comparing 

the common parameter value sequences in all the involved cyclic connected data-link 

lists directly can verify whether any blockage at common parameter occurs. However, 

in the case of cyclic connected data-link lists with lengths in the ratio of an exact 

multiple (as shown by the examples in Figure 5.7) the common parameter value 

sequences from the cyclic connected data-link lists with different lengths cannot be 

compared directly because the lengths of these common parameter value sequences are 

also different. However, as shown by Case (II) and Case (HI) in Figure 5.7, a cyclic 

connected data-link list can be linked to itself or another cyclic connected data-link list 

with certain appropriate values to form a longer cyclic connected data-link list. As 

suggested by the four examples in Figure 5.7, we can link the shorter cyclic connected 

data-link lists to form a cyclic connected data-link list with a length equal to that of the 

longer cyclic connected data-link list. Then the common parameter value sequences in 

both the cyclic connected data-link list (constructed from the shorter ones) and the 

longer cyclic connected data-link list have the same length and they can be compared 

directly. I f nontermination occurs, there wil l exist a repeating segment in an infinite 

data transfer sequence which has the same common parameter value sequence in each 

of the involved interdependent cyclic parameter links. Since the cyclic connected data-

l ink list constructed out of the shorter ones can also represent a repeating segment of 

an infinite data transfer sequence, the absence of any blockage at common p a r a i p _ 

is indicated if the common parameter value sequence from the longer cyclic coniifptgid 

data-link list is equal to the sequence from the cyclic connected data-link list cons t i | i | | ^ 

out of the shorter ones. 
• ： i * -vV-

-垂 ‘‘. - • ； 
• . ‘ • -H 

...-..:，�.-!；； 一 
I n conclusion, the adaptation of data analysis for the 灘 _ | , _麵！ 

interdependent cyclic parameter links with the lengths of their 

lists in the ratio of an exact multiple is as follows: According tQ ^ 饼 | 輩 麵 i J ^ f • 

cyclic connected data-link list is connected to itself or another _ 核llJp热 

in the same cyclic parameter link for a number of times as iiH|丨场棒_ _ 『at丨热 
• , • - -•• . . . . . . 

• ' . - 3 -
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example, i f the cyclic connected data-link lists from the interdependent cyclic parameter 

links CPl and CP2 are in the ratio of 3:1，the cyclic connected data-link list in the cyclic 

parameter l ink CP2 must be connected to itself three times while the cyclic connected 

data-link list in CP! is unchanged. Then the common parameter value sequences of 

these equal-length cyclic connected data-link lists are compared. I f the same common 

parameter value sequence can be found in cyclic connected data-link lists from different 

interdependent cyclic parameter links, there is no blockage at common parameter 

between a certain pair of infinite data transfer sequences and nontermination wi l l 

happen. I f cyclic connected data-link lists from more than two interdependent cyclic 

parameter links are involved, their lengths are considered to be in the ratio of an exact 

multiple only i f every pair of the cyclic connected data-link lists have lengths in the ratio 

of an exact multiple. For example, suppose that there are five cyclic parameter links, 

say, CPl, CP2, C P 3 , CP4 and C P 5 with the lengths of their cyclic connected data-link lists 

in the ratio of 1:2:4:8:16 respectively. Their cyclic connected data-link lists are in the 

ratio of an exact multiple since the lengths of any pair is in the ratio of an exact 

multiple. However, i f the lengths of the cyclic connected data-link lists of CP” CP2, C P 3 , 

C P 4 and CP5 are in the ratio of 1:2:4:6:8 respectively, the ratio between the lengths of 

the cyclic connected data-link lists from the cyclic parameter links C P 4 and C P 5 is 2:3， 

which is not in the ratio of an exact multiple. Because there is one pair of cyclic pa-

rameter links with lengths that cannot be reduced to an exact multiple, there is a shorter 

cyclic connected data-link list which cannot construct a new cyclic connected data-link 

list with the length equal to the length of the longest one. In this example, the cyclip 
-y.、、、,./ 

connected data-link list in the cyclic parameter link CP4 (with the length of 6) canjigj 

form a cyclic connected data-link list with the length of 8, 
. ‘ . - ‘ • \ 

•-�7、• : , '. . .. •、-：•'/ 

Similarly, data analysis can be adapted to the case of cyclic coniiect^d, 

Usts with their lengths not in the ratio of an exact multiple by 

connected data-link lists of equal length in every involved cyclic par巧現__！睡 W M M ^ 

shorter cyclic connected data-link lists in these cyclic parameter Ugli^ : 会^ji誠 fe 

just the same as that discussed above: for every interdepended 

find an appropriate repeating segment of an infinite data tr̂ Cfsfej： in ^ 
common parameter value sequence has its length equal tQ the |eau§nces fron^ other r : ... ：二?At 
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goal(AX3X,CXJ)X) linklal(AX,CP), linkla2(CP,XB), lkklb(BX»XA), 

l i n k 2 a ( D X ^ Q , l ink2bl(CX,CP), l i n k 2 b 2 ( C P观，g o a l ( X A , X B , X C , X D ) . 

Case (I) Case (II) 
n (T) rvD n 脑 _ , i ink_. 

linklW). linklb(4,l). (2 O O linkl 丨 1(1,c>. linkUl(3.t). 
M2a(16,ll). M2a(12.13). liBk2a(14,15). ^ 

M2b2(a.l2). Iink2b2(b,14). Iink2b2(a,16). m Inl 

o ® © o o > 二 ： 

6 <〇 o > 二 二 ： 

S . . . . . 2 终......$ = 
. . . . . . ^ . . . . . . . V 

ff/o n% O > ( 〇 
^ w ^ rK. fe cydic connected data-link sets 

一 ^ between parameters "AXTXA" and 
(Sj O ( J .BXyXB":- 1-lal-2~3̂ bH~1, 

cydic connected data-link set between Hcl-2~3^al-4~i,& 
parameters ”AXTXA" and " B X T X B " _ ^ ^ ^ 一 1 -lbl.2-3-[c 
•l-lal-2-3-lbH-1 • 0 _ ® 5 O “ 

r^.... . 袍 cydic connected data-link set 
cydic connected data-link set between ^ between parameters "CX"rxC" 
p^meters ”CXTXC” and " D X T X D " U . U U _ and ”dx,/"XD" :• 
？1.lal.12..13Wl4--15-lal-16..11 ： ： IHaM 2-13.lbH4~l5-lcM 6-11 

Figure 5.8 ;; ;二 7 

cyclic parameter links so that it can be compared directly to them. By conti；种 

( I) and Case ( I I ) in Figure 5.8, we can see how one can find the appropri^jf^ 

segment: i t is tantamount to constructing an equal-length cyclic coimecte>4 d^t^dittK 114 

in all the involved cyclic parameter links from the shorter cyclic conne0g^ _ _ _ 

As shown by the graphical representation of Case (I), the abs评釋械 售 
.：：‘撫』 

common parameter is not guaranteed even though we cannot f ln i l ICPf^ l 

complete cycle of both long and short cyclic connected data-liiJc p^phica| 

representation of Case (I), we can see that no blockage at pg^irs g 

the first three levels of recursion. Since the shorter cyclic Cpjfm^ipt^^ 舶j[||，}ink list (Jnly 
...•..——+• - . 1 • -/. .. • ： • 
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extends over two levels of recursion while the longer one extends over only three levels, 

there is no blockage at common parameter at the first cycle of each long and short 

cyclic connected data-link lists. Because the lengths of a repeating segment of an 

infinite data transfer sequence represented by a cyclic connected data-link list must be 

equal to, or a multiple of the length of this cyclic connected data-link list, for the first 

cyclic parameter l ink between the parameters AX/XA and BX/XB, the repeating 

segment of the infinite data transfer sequence represented by this shorter cyclic 

connected data-link list can only have the length of 4 or 8 but not 6. Therefore, the 

absence of blockage at common parameter in a segment with the length of 6 in the first 

cyclic parameter l ink does not guarantee the absence of blockage in a repeating segment 

of the entire infinite data transfer sequence in the first cyclic parameter link. However, 

blockage at common parameter is surely absent only if there is a common parameter 

value sequence shared by the repeating segments of the infinite data transfer sequences 

in every involved cyclic parameter link. In Case (I), therefore, the same common 

parameter value sequence is not truly shared by the repeating segments of two infinite 

data transfer sequences from the two involved cyclic parameter links. 

On the other hand, Case (II) shows how a common parameter value sequence 

can be truly shared by the repeating segments of two infinite data transfer sequences 

from the interdependent cyclic parameter links. By the graphical representation of Case 

( I I ) we can see that nontermination occurs i f the same common parameter value 

sequence is shared by two cyclic connected data-link list with equal length and botj^ 辩 | 
.* • '.. ，.• * 

constructed out of some shorter cyclic connected data-link lists. The cyclic ？冊糖！琴 

data-link list formed by linking up some shorter cyclic connected data-link l i s t s^R 

represent a repeating segment of an infinite data transfer sequence. 

cyclic connected data-link lists constructed out of the shorter ong^ 树 麵 : 

parameter links in the graphical representation of Case (I I) represfRl tfeg 
r 、::、•!:::々(.，字裙德载 
segment with equal length in both cyclic parameter links. A n 头 講 _ 戯 缴 _ 
segment have the common parameter value sequences of equal 核 ! ^ 舊 處 暖 雜 • 
two sequences can be compared directly to determine wb^th^S M ^ i P i P ^ ^ ^ W ® 

. . 一.较/.'乂_":;\:.:森;产…、 
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I n other words, in the case of cyclic connected data-link lists with lengths not in 

a ratio of an exact multiple, the common parameter value sequence to be compared 

needs to come from the equal length cyclic connected data-link lists from different 

interdependent cyclic parameter links, and these equal cyclic connected data-link lists 

are formed by connecting the shorter cyclic connected data-link lists. Therefore, the 

resulting cyclic connected data-link lists from the shorter ones must have a length equal 

to the least common multiple of the lengths of the involved cyclic connected data-link 

lists. For example, in Case (II)，since the length of the cyclic connected data-link list in 

the first cyclic parameter l ink between AAr/X4 and BX/XB is 4，while the length of the 

cyclic connected data-link list in the second cyclic parameter l ink between CX/XC and 

DX/XD is 6，the length of the new cyclic connected data-link list must be the least 

common multiple of 4 and 6，which is 12. This is confirmed by the graphical 

representation of Case ( I I ) in Figure 5.8. Therefore, we only need to compare the 

common parameter value sequences which come from the cyclic connected data-link lists 

formed by repeating the cyclic connected data-link list in the first cyclic parameter l ink 

three times and the one in the second cyclic parameter link twice. 

In conclusion, for cyclic connected data-link lists with lengths in different ratios, 

the adaptation of data analysis to the case of interdependent cyclic parameter links is to 

include the comparison among the common parameter value sequences from the 

repeating segment of the infinite data transfer sequence from different interdependent 

cyclic parameter links. I f there is a common parameter value sequence shared by thp 

repeating segments of all involved cyclic parameter links, we can be sure about thi© 

二 管 缺 遞 

absence of any blockage at common parameter and the occurrence of nontermJafttiQQ 

during the evaluation of the corresponding recursive definition. Data analysis 

us the repeating segment of the infinite data transfer sequence in each cyclic 

l ink by detecting the cyclic connected data-link list in each cyclic parameter Unk« : K AM^ 

analysis is slightly modified to also provide the values passing 條驟; 

parameter when constructing the cyclic connected data-link Itef^ • 

common parameter value sequence of the repeating segment of 咏 | ！ 編 挺 冬 ! ^ _ 
sequence represented by this connected data-link list. 义攀..'、-：？ 
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I f the involved connected data-link lists have the same length, the common 

parameter value sequence from the connected data-link lists can be directly compared. 

On the other hand, i f the cyclic connected data-link lists are of different lengths, we 

need to construct some new connected data-link lists from the involved cyclic parameter 

links before the comparison. By connecting the shorter cyclic connected data-link lists 

to itself or to some cyclic connected data-link lists with appropriate values to form a 

longer cyclic connected data-link list with a length equal to the least common multiple 

of the lengths of all the involved cyclic connected data-link lists, the appropriate 

connected data-link lists can be formed. Then the common parameter value sequences 

from these new connected data-link lists can be compared to detect blockage at common 

parameter. I f we compare the discussion on the cases in Figure 5.7 with the discussion 

on the cases in Figure 5.8, we can see that the case of equal length and the case of 

lengths in a ratio of an exact multiple are in fact special cases of the more general case 

of cyclic connected data-link lists with their lengths not in a ratio of an exact multiple. 

On the one hand, in the case where the lengths are in a ratio of an exact multiple, the 

least common multiple is always equal to the length of the longest cyclic connected data-

l ink list. On the other hand, in the case of equal length, the least common multiple is 

always equal to the original length of all the involved cyclic connected data-link lists. 

Therefore, we can summarize the method adaptation required to handle the 

interdependent cyclic parameter links with all equal-lengths cyclic parameter links as 

follows: 

(1) I f any cyclic connected data-link list is detected in every interdependent cyclijc 
parameter link, examine the cyclic connected data-link lists by following the s tep 
(2) to (7); otherwise, no test of blockage at common parameter is needed. 

‘ • . . . • v''. : 

(2) Find the common parameter value sequences of each cyclic connected cjat^rljg^ 
list in each interdependent cyclic parameter link. ’、： 二 ” ,、 

(3) Find the least common multiple of the length of all involved pyclic C^Wfle^eil 
data-link lists. 

：：：變.;•::::,:.’ 

(4) Connect the original cyclic connected data-link list (formecj pjf 终pgj|j^_》 

each cyclic parameter link to some longer cyclic coimectf；‘歸竊膽 | |麵神{备 
length equal to the least common multiple. - f 、 ” 誦 
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(5) Find out the common parameter value sequence of each cyclic connected data-
link list constructed in step (4). 

(6) Compare the common parameter value sequences of the new cyclic connected 
data-link lists constructed by the step (4). 

(7) I f at least one cyclic connected data-link list formed by steps (3) and (4) in all 
the interdependent cyclic parameter links share the same common parameter 
value sequence, there is no blockage at common parameter and nontermination 
is detected; otherwise, nontermination will not occur. 

5.1.1.2.2 Cyclic Parameter Links with Lengths 
in Different Ratios 

Because of the presence of multi-level cyclic parameter links, as shown by the 

graphical representations in Figure 5.6, there are three ways to classify interdependent 

cyclic parameter links in terms of their lengths. First, the interdependent cyclic 

parameter links can all have the same length, i.e., all extend to the same number of 

levels of recursion. The interdependent cyclic parameter links in Figure 5.2 and Figure 

5.5 are examples. Second, interdependent cyclic parameter links have different lengths 

but their lengths are in the ratio of an exact multiple. The interdependent cyclic 

parameter links in the recursive rule below is an example of this case: 

rule1(AX, BX, CX, DX, EX, FX):-
rmk1a1(BX, CP), linkla2(CP, XA), linklb(AX, XB), 

rmk2a(CX, XF), link2b{DX, XC), rmk2c(EX, XD), 
rmk2d1 (FX, CP), link2d2(CP, XE), 

rule1(XA, XB, XC, XD, XE, XF). 

. . � - , • 

We can find that the subgoals linklal, linklal and linklb actually form 终疫 

parameter link which extends over two levels of recursion while the cycl|c 

link formed by the subgoals link2a’ linklb, linklc, link2dl and link2^ _ 

four levels of recursion. Therefore the length of the cyclic pa ra呼海 ^ 鎮 该 teg 

subgoals lmk2a, linklb, link2c, linkldl and linkldl is exactly t^jCg pf _ 拷紐_ pf _ 

one formed by the subgoals linklal, linklal and linklb. The 猛 剛 糊 辨 雜 後 明 
， f - . . '.V • •v. .r 
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at the center in Figure 5.6 can be the graphical representation of the above recursive 

rule. In the case where more than two cyclic parameter links are involved, (which is 

similar to the case of more than two cyclic connected data-link lists with their lengths in 

the ratio of an exact multiple), we can consider their lengths to be in the ratio of an 

exact multiple i f the ratio of the length of every pair of the cyclic parameter links is an 

exact multiple. The reason is the same as that for the lengths of cyclic connected data-

l ink lists in the ratio of an exact multiple discussed in the previous section. Third, the 

interdependent cyclic parameter links involved have different lengths and the ratio of 

their lengths is not an exact multiple. The interdependent cyclic parameter links in the 

recursive rule below is an example: 

rule2(AX, BX, CX, DX, EX):- 、 
link1a1(BX, X)，link1a2(X, XA), link1b(AX. XB), 

link2a(DX, XC). link2b(CX. XE), 
link2c1(EX，X)，link2c2(X, XD), 

rule2(XA. XB, XC, XD, XE). 

Again, the length of the first cyclic parameter link formed by linklal, linkla! and linklh 

is two levels of recursion. But the length of the second cyclic parameter link formed by 

linkla, linklb, linklcl and Iink2c2 is three levels. Therefore their lengths are in the ratio 

of 2:3 which is not an exact multiple. This can be represented by the graphical repre-

sentations at the right hand side in Figure 5.5. We can see that the cycle of the first 

cyclic parameter l ink overlap with the cycle of the second cyclic parameter link. 

Because a common parameter is shared by all the interdepended '錄银终 

parameter links, we cannot consider each cyclic parameter l ink separately as ii^ 热窝紐多g 

of independent cyclic parameter links. However, as shown by ：； 

representations in Figure 5.6, the interdependent cyclic parameter links _ _ | 楊 

different ratios can share the common parameter in different w 町 : 费 i ^ f i 始 

interdependent cyclic parameter links of the same length, they s h _ 物 

parameter. In the graphical representation of the equal-lengtl| 

parameter links in Figure 5.6, we can clearly see that all the commQP ip q m 

•‘ * ‘ --、 •• 二、-
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cyclic parameter l ink can be paired up with a line to the common parameter in another 

cyclic parameter l ink at the same level of recursion. However, we can find that some 

common parameters cannot be shared between two interdependent cyclic parameter 

links i f their lengths are not equal. The graphical representations in the center and at 

the right hand side show that some squares cannot be connected to the other squares by 

a line. In fact, there is simply no other square in the other cyclic parameter link that is 

at the same level of recursion. In the case where their lengths are in the ratio of an 

exact multiple, every common parameter in the longer cyclic parameter l ink can always 

be paired up with a common parameter in the shorter cyclic parameter link but not vice 

versa. In the case of their lengths in a ratio which is not an exact multiple, both cyclic 

parameter links have some common parameters cannot be paired up. 

the expanded version of the graphical representation in Figure 5.6 of a recmsive definition 
with two interdependent cyclic parameter links with their lengths in a ratio 

which cannot be reduced into an exact multiple 

first first second second sccond 
cyclic cyclic cyclic cyclic cyclic 

parameter par̂ eter pa^eter Pâ eter ^ ^ 

( O P 0 0 Q O O 0 0 O 0 _ _ 0 P ^ 1 二 
t ^o - < C f O O ^ 0 0 ^ o i l O 〇 〇 P O Lara^^er 
parameter r ^ ^ ^ ^ / V Knk 

Q ; 0 0 ^ 0 〇 O O 0 0 ：： = 
over two JJ" j j ^ ^ ^ ^ ^ ^ ^ levels of 
levels of Q O 0 _ P C ^ O O O P O O O P j recursion 
recursion d V - • • • • • - - - • • - - X ； i l f 

〇 》 . 〇 ^ cCo o 〇 ^ o 

o > cTo C ^ 〇 … … 
C ^ O … … … c £ ^ 〇 0 ^ 0 

o ^ a o 〇 0 0 0 0 ^ 0 0 〇 
： ： ： •• :• 

Figure 5,9 
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However, the lack of paired up common parameters at certain points shown by 

the graphical representations in Figure 5.6 does not mean that the corresponding inter-

dependent cyclic parameter links must have data transfer blockage at these points. The 

graphical representations in Figure 5.6 only show one pair of all the possible cyclic pa-

rameter links. I f Figure 5.9 is compared with the graphical representation at the right 

hand side in Figure 5.6, we can see that both graphical representations on the left hand 

side of Figure 5.6 and Figure 5.9 are the graphical representation of the above recursive 

rule mle2, except that the one in Figure 5.9 is an expanded version of the one in Figure 

5.6. I n Figure 5.9, all the cyclic parameter links are shown. As explained in Section 

5.1.1.2，in order to form a cyclic parameter link extending over two levels between the 

parameter AX/XA and BX/XB, two identical parameter links must exist in the same set 

of parameters. Similarly, three identical cyclic parameter links are also present in the 

parameters CX/XQ DX/XD and EX/XE. Therefore, there are two groups of 

interdependent cyclic parameter links instead of two interdependent cyclic parameter 

links. I f the above recursive rule is considered, it is easier to see that some values must 

be transferred through the common parameter X in every level of recursion when 

nontermination occurs. I f the graphical representation in Figure 5.6 is considered, it is 

hard to see how some values can be transferred through the common parameter during 

the recursion. The graphical representation in Figure 5.6 seems to suggest that some 

common parameter cannot be shared between the interdependent cyclic parameter links 

since it shows that some squares in both cyclic parameter links cannot be paired up with 

other squares. This implies blockage at common parameter and no nontermination wi l l 

happen. But Figure 5.9 reveals that all common parameters can actually be paired up 

with other common parameters if all the possible cyclic parameter links are consider纳. 

The interaction does not exist between two cyclic parameter links but in fact betvyggiĵ  

two groups of cyclic parameter links. The graphical representation in Fi评r琴 

indicates how the connected data-link lists with different lengths can interact j j f t j j i p h 

Other at the common parameters in different levels of recursion. ；' '‘t、f:.魏: 

Therefore, there is a basic difference between the ways to ha叫掉 Intef^jep^nd^nt 

cyclic parameter links with equal length and those with different lengrtjs. | | | . 秘 仲 辨 pf 

equal length, for every involved cyclic parameter link, the to叫tlft辦 pf cpiwno^ 
• ；. 
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parameters in a cyclic parameter link are also the same. Therefore, every cyclic 

connected data-link list in these interdependent cyclic parameter links have their 

common parameter in the same level of recursion. In this situation, for every group of 

cyclic parameter l inks formed among the same set of parameters, only one of them 

(rather than the whole group) requires consideration. On the other hand, in the case 

of the interdependent cyclic parameter links with different lengths, as shown by Figure 

5.9，more than one cyclic parameter l ink in each group of cyclic parameter links among 

the same set of parameters should be our concern. As what has been shown by the 

graphical representation in Figure 5.9, all the two identical cyclic parameter links formed 

between the parameters v4X/X4 md BX/XB and all the three identical cyclic parameter 

links among the parameters CX/XQ DX/XD and EX/XE all act together to allow no 

blockage to exist at all common parameters appearing in the infinite data transfer 

sequences. In the following sections, we shall see how one can handle the two different 

cases of interdependent cyclic parameter links with different lengths: lengths in the ratio 

of an exact multiple and lengths not in the ratio of an exact multiple. However, since 

they are rare cases in Prolog programming, we only discuss the basic concept of how to 

detect blockage at common parameter without too many unnecessary details. 

I n Figure 5.9，the graphical representation describes interdependent cyclic 

parameter links with lengths in a ratio that cannot be reduced to an exact multiple. I t 

shows how the two groups of cyclic parameter links can share the common parameters 

during the different levels of recursion. In each particular level of recursion, a common 

parameter must appear in one of all the cyclic parameter links in each group of 

involved cyclic parameter links. By comparing the values transferring through the 

common parameter in each group of cyclic parameter links, we can determine whether 

there is any blockage occurs. As suggested in the previous discussion, we can know 

whether blockage at common parameter appears in the entire infinite data transfer 

sequences of the involved cyclic parameter links by examining a repeating segment of 

each of these infinite data transfer sequences. Therefore, if there is a repeating segment 

of a data transfer sequence appearing in each group of cyclic parameter links and the 

common parameters from different groups of cyclic parameter links share the 考终mf̂  “ ... 
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value at every level of recursion in the repeating segment, there is no blockage at 

common parameter and nontermination wil l result. 

As discussed, though the lengths of the different groups of cyclic parameter links 

are different, we can find repeating segments of the infinite data transfer sequences in 

every cyclic parameter l ink with the same length. Because their lengths are equal, they 

represent one complete cycle of infinite data transfer sequences in all the involved cyclic 

parameter links. I f there is no blockage in this cycle of all the involved infinite data 

transfer sequences, we can be sure that there is no blockage at all. However, in order 

to determine the length of the repeating segment in the case of interdependent cyclic 

parameter links with their lengths in the ratio of an exact multiple, we must also 

consider the relation between the length of the cyclic connected data-link lists and the 

length of their corresponding cyclic parameter links. Because a cyclic connected data-

link list in fact represents a repeating segment of an infinite data transfer sequence, the 

length of cyclic connected data-link list is crucial in determining the length of the 

repeating segment of any infinite data transfer sequence in a cyclic parameter link. 

However, it is obvious that the length of a cyclic connected data-link list can either be 

equal to or a multiple of the length of its corresponding cyclic parameter l ink (because 

an infinite data transfer sequence is formed by the values that can pass through one or 

several complete cycles of a cyclic parameter link). I f they are the same, the lengths of 

the cyclic connected data-link lists of the involved interdependent cyclic parameter l i n _ 

must be in a ratio that cannot be reduced to an exact multiple. On the other hand, ijf 

they are not the same, the lengths of the involved cyclic connected data-link lists c ^ ^ ^ 

in one of the three relations: equal length, different length in the ratio of 

multiple or not in an exact multiple, just as what has been described in SectiQil|^J4.i.i» 

However, as also shown in Section 5.1.1.2.1, the cyclic connected 

different lengths can become the cyclic connected data-link lists, p | 

reflexive connecting several times. The length of the longer c y , 

lists constructed out of the shorter ones is equal to the least 謂 g g l 

lengths of all these shorter cyclic connected data-link lists. T h e r e ^ , 麵 

shorter cyclic connected "data-link list to form the cyclic c o r n i 〒 麵 麵 缺 list 义舟 

length equal to the least common multiple of the lengths of all i j ^ f t f e ^ O^clic conpect^|j 
•I. > ： • • \ -： 
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data-link lists, we can find that the cyclic connected data-link list represents the 

repeating segment that has equal length in every group of involved cyclic parameter 

links. So the modification on data analysis to determine the presence of blockage at 

common parameter can be summarized as follows: 
(1) Find the least common multiple of the lengths of the cyclic connected data-link 

lists present in every interdependent cyclic parameter link. 

(2) For every interdependent cyclic parameter links, construct some cyclic connected 
data-link lists with a length equal to the least common multiple obtained by step 
⑴ . 

(3) For each cyclic connected data-link list constructed by step (2)，find the value 
used in the common parameter in each level of recursion. I f no common 
parameter is used in a particular level, mark the corresponding level. Put the 
marks and values together in the order of their appearance in different levels of 
recursion to form a common parameter value sequence. 

(4) Combine the common parameter value sequence of the same cyclic connected 
data-link list or other cyclic connected data-link lists from the same cyclic 
parameter l ink to form a common parameter value sequence without any mark. 
I f two common parameter value sequence have values at the same level of 
recursion, shift one of them a number level up or down and try again. 

(5) Compare the common parameter value sequence constructed in step (4). I f at 
least one common parameter value sequence is shared by the cyclic connected 
data-link lists from every cyclic parameter link, the absence of blockage at 
common parameter is confirmed. Nontermination wil l result. 

This modification may be very time-consuming in some situations. However, the above 

steps only serve as a summary of our above discussion. Since rarely do we have^^ 

recursive definition with interdependent cyclic parameter links in different lengths ^Jig 

it is even more rare for their lengths to be non-reducible to an exact multiple, we da t m 

go into further detail in this work. Actually, it is not only hard to determine 

presence of blockage at common parameter in this case, it is also hard to understand 终 

Prolog program with any interdependent cyclic parameter links with lengthy Jp 

ratio of an exact multiple. 賴 瞬 

Figure 5.10 shows an example of interdependent cyclip par终l^l^l^f Ij^lS ivitjjj 

lengths in the ratio of an exact multiple and their graphical r w r a n ^ t a t i ^； 

graphical representation at the bottom of Figure 5.10 shows how t)l0 年去| 
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AX/XA BX/XB CX/XC DX/XD EX/XE FX/XF 

ro O O ^ 〇 

linkla(BX,XA). linklb(CX.XB), linklc(DX.XC), \ 0 O / ® 〇 ^ 

I 丨 丨 ， l i n k 2 b 2 ( C P , X F ) , 丨 〇 〇 o ] ^ 」 。 ? " 
- goal(XA.XB^C.XD.XE.XF). | O O ^ O 

! linkl a(3.4). Ilnk1b(2,3). Ilnk1c(1,2). f n T ® ^ 
i Ilnk1cl1(4.a). linkld2(a.1). ^ ^ ^ ^ 
jlink2aOc.y). Ilnk2b1(y,a). Iink2b2(a,x). 〇 O / ^ O 

」 〇 > 〇 〇 〇 ’ 
the graphical representation below showing how the same ^ 。 。 O (yY^'^C) 
pair of data transferring sequences in two interdependent ^ 

cyclic parameter M s with their lengths in a 〇 Q ^ O ® 〇 ^ ^ 
relation of exact multiple can share the same value at ： • 

the common parameter during every levels of recursion • * 

麗 A B 画 c m c 腿 D 諷 k B 廳 腿 D 雇 A 匪 B 面 • 蒙 腿 ^ 應 。 麗 匪 D 脈 [ ^ 碰 E X / X E 隠 ^ 

O O O ^ O O J S O O y S O O .........O^..... 

〇 〇 ^ o 〇 ^ ^ o 〇 S L Q ^ O o ^ .......... 
〇 ^ O 〇 O 〇 . . . . . 5 ! ! S 5 . . . . .•！ . . . . . . . . . . . 0 3 ? . . . . . . 

( ^ C o o o • . . . . O — ^ ^ ^ 

o ‘.-•o" 0 : 0 〇 O "oTo O @ 0 : 0 O 〇 > ® : 0 

Figure 5.10 

in every level of recursion is shared between the two groups of cyclic parameter links. 

A t first glance, i t is similar to the case of interdependent cyclic parameter links with 

their lengths not in the ratio of an exact multiple. I f only two cyclic parameter links 

instead of two groups of cyclic parameter links are considered, there are some levels of 

recursion with a common parameter appearing in only one cyclic parameter link. 

However, there is a significant difference between the two cases of different length 

interdependent cyclic parameter links. In the case of the cyclic parameter links with 

lengths not in the ratio of an exact multiple, when only two cyclic parameter l inta 

instead of two groups of cyclic parameter links are considered, both cyclic p a r a m e ^ 

links have common parameters in only one of the two cyclic parameter links 

be paired up by the common parameter in the other cyclic parameter ITlg f l l p I g 

group of cyclic parameter-links among the same set of parameters is r 巧 鄉 械 场 挪 _ 

all common parameters to be paired up. But in the case of interd癸p^lHkiJt:炒cliip 
、 v.- ‘ V k ••、... '•”*、•、, ‘••、、'‘ ‘ r • ... '• .,‘，• / .“• • 
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parameter links in the ratio of an exact multiple, we can see that all common 

parameters in the longer cyclic parameter l ink can be paired up by the common 

parameters from the shorter cyclic parameter link. In the graphical representation at 

the bottom of Figure 5.10, we can find that only two out of the group of four longer 

cyclic parameter links can provide the common parameters to pair up all common 

parameters in the shorter cyclic parameter link. Moreover, the cyclic connected data-

l ink lists in these two longer cyclic parameter links are identical. Therefore, it shows 

that, in the case of an exact multiple ratio, there are certain situation in which we only 

need to consider two cyclic parameter links instead of two groups of cyclic parameter 

links when detecting the blockage at common parameter. The modifications to the 

method of data analysis can be summarized as follows: 

(1) I f the lengths of the interdependent cyclic parameter links are in the ratio of an 
exact multiple and the length of their cyclic connected data-link lists are equal to 
or in a multiple of the lengths of the cyclic parameter links, find the common 
parameter value sequences of each involved cyclic connected data-link list as in 
step (2) below. 

(2) If, at certain level of recursion, no common parameter is involved to transfer 
value, put a mark on the common parameter value sequence; otherwise, put the 
value used in the common parameter into the sequence. 

(3) Compare the common parameter value sequences of the cyclic connected data-
link list from different interdependent cyclic parameter links. I f there at least 
one common parameter value sequence is shared among all the cyclic parameter 
links, nontermination will occur. 

In this example, the lengths of the cyclic connected data-link lists and the lengths 

of cyclic parameter links are equal in all the involved interdependent cyclic parameter 

links so that the ratio of the lengths of their cyclic connected data-link lists are also in 

an exact multiple. Moreover, the length of the cyclic connected data-link list can relate 

to the length of the cyclic parameter link in different ways to allow the lengths of 

different cyclic connected data-link lists to form different ratios. In Figure 5.11, there 

is an example of interdependent cyclic parameter link which have lengths in the ratio of 

an exact multiple but the lengths of their cyclic connected data-link lists are equal. In 

Figure 5.12, the lengths of their cyclic connected data-link list are not in a ratio p( an 
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goal(AXJBX，CX，DX，EXJFX) 
linkla(BX,XA), linklb(CX，XB)，linklc(DX,CX), 

linkldl(AX,CP), linkld2(CP,XD), 
lmk2a(FX,XE), link2bl(EX,CP), lmk2b2(CP,XF), 

goal(XA,XB,XC;XD,XE^. 

Case (I) Case (II) 

linkla(23,24). linklb(22,23). linklc(21,22). linkldl(24,a). Imkld2(a^l). 
linkldl(24,a). Iinkld2(a 卯 . Iink2bl(y,a). Imk2b2(a^). 
Iink2a(x,y). Iink2bl(y,a). I i i i k2b2(a ,z ) .碰 a(z，w). Iiiik2bl(w，a). Iiiik2b2(a 力. 
link2a(z,w). Iink2bl(w,b). Imk2b2(b^). 

A X / B V C X / D X / A X / BXy CXy DXy EX. F X . A X , B X / C X / DXy AX. B y C y D y E y FXy 
Z k A B A C A D A A A B /5<C A D A E A F A A A B A C A D A A A B A C / X D A E A F 

o o o e o o o o o ^ Ĵ f恋 e j o 〇 o © o p 〇 〇 o ® 

〇 〇 f O O 〇 < 〇 \ o o ^ o ^ { o O 〇 

〇 y ^ o 〇 〇 o o ^ o ^ f i T b i r ^ o y 〇 〇 〇 o o ^ 〇 > 

^ { o 〇 〇 〇 〇 f o ( / o l K o o 〇〇 O J ^ O ^ o 

〇 o o j ^ o p o 〇 O ^ I p o o ^ o ^ o o 〇 > 

〇 〇 ^ o ^ { o o 〇 < 〇 〇 o / 〇 ^ C o o 〇 4 o 

〇 d / o 〇 〇 o o ^ o \ oj{〇〇〇o 〇 》 

〇 〇 〇 〇 ^ o < 〇 ^ { o o 〇 〇 o 主 〇 ^ o 

〇 o o ^ 〇 o o 〇 o ® o o o ^ o o o o o ® • : : : : •• : • 
Figure 5.11 

exact multiple. 

I n Figure 5.11, the graphical representations of both Case (I) and Case (I I ) show 

how the cyclic connected data-link list in the shorter cyclic parameter l ink can have the 

same length as the length of the cyclic connected data-link list in the longer cyclic 

parameter link. In the shorter cyclic parameter link, the length of the cyclic connected 

data-link list is twice the length of the cyclic parameter link. Therefore, in the shorter 

cyclic parameter link, a cyclic connected data-link list in fact represents a repeating 

segment of an infinite data transfer sequence that passes through two cycles of the 
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goal(AX，BX，CX，DX，EXJFX):-
liiikla(BX,XA), linklb(CX,XB), linklc(DX,CX), 

lmkldl(AX,CP), linkld2(CP,XD), 
link2a(FX,XE), link2bl(EX,CP), liiik2b2(CP,XF), 

goal(XA;XB,XC,XD,XE,XF). 
Case (I) Case (II) 

ljnk2a{x,y). Iiiik2bl(y,a). Iiiik2b2(a 力. lmkldl(24，c). Imkld2(c 刘 . 
liiik2a(z,w). Iink2bl(w,b). Imk2b2(b,p). Iink2a(x，y). ^激，z )、 . 
Iink2a(p,q). Iink2bl(q,c). Iink2b2(c^). Iink2a(z,w). Imk2bl(w，b). 
^ ^ 必… lmk2a(p,q). Imk2bl(q,c). Imk2b2(c,x). 

A X / B X / C X / D X / A X / B X / C X / D X / E X , F X / A X / B X , c y D X / A y BXy c y o y E y F y 
^A /̂ B AC /XD AA AB AC /XD AE AF AA 4 4(D AA 日々C /XD AE AF 
o o o ^ o o o o 〇 力 〇 〇 o © o e 〇 〇 o ® 

〇 〇 p o ^{o 〇 〇 ( / o î ĉ de O O ^ O d l o O 〇 

〇 p o 〇 〇 O O ^ O ^ ^n^^t- o p o O O O O ^ 〇 ) 

^ { ^ o 〇 〇 乂 〇 〈 。 兹 ' 〇 々 

〇 o o ^ 〇 p o 〇 〇 > 〇 o o ^ o p o o 〇 》 

〇 O / ^ O < 〇 O / o 《 〇 

〇 j / o 〇 〇 o ^ o / 〇 〇 〇 o 〇 > 

d ^ 〇 〇 〇 〇 ^ o < 〇 ^ { o O 〇 〇 O ^ O ( ^ 〇 

〇 o o ^ 〇 O O 〇 O ® 〇 〇 < 〇 o 〇 > 
I • • 
• • • 

Figure 5•12 

• • . ‘ - - . . ‘ 
cyclic parameter l ink. Since a common parameter is involved in each cycle of the cyclic 

parameter link, two common parameters are involved in the cyclic connected data-link 

list in the shorter cyclic parameter link. In Case (I) in Figure 5.11, the graphical 

representation of the shorter cyclic parameter link between the parameters EX/XE and 

FX/XF shows this clearly. On the other hand, the longer cyclic parameter l ink among 

the parameters AX/XA, BX/XB, CX/XC and DX/XD has a cyclic connected data-link 

list only involved one common parameter. Because the cyclic connected data-link list 

in the longer cyclic parameter link can only involve one common parameter, i t can only 

-• ； -.、• • • 
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share one of the two common parameters involved in the shorter cyclic parameter link. 

I f the values passing through the two involved common parameters in the shorter cyclic 

parameter l ink are different, as in the example of Case (I) in Figure 5.11, it takes two 

cyclic connected data-link lists with different values passing through the common 

parameter to avoid any blockage at common parameter. The values passing through the 

common parameter in these two cyclic connected data-link lists must be the same as the 

values passing through the two common parameters in the cyclic parameter l ink between 

EXjXE and FX/XF, However, if the values passing through the two common 

parameters involved in the cyclic connected data-link list in the shorter cyclic parameter 

l ink are the same, as in the example of Case (II)，only one cyclic connected data-link list 

in the longer cyclic parameter link is required. 

The case illustrated by the examples in Figure 5.11 is in fact similar to the earlier 

mentioned case of equal-length cyclic connected data-link lists. The only difference is 

that several common parameters are involved in the shorter cyclic parameter l ink in this 

case while only one common parameter is involved in the previous case. Therefore, i f 

the same value is used in all the involved common parameters, as in Case (I I ) in Figure 

5.11，the method used for the previous case can also be applied to the present case. 

Further modification is necessary if the values used in these common parameters are 

different. The presence of different values requires different cyclic connected data-link 

lists in the longer cyclic parameter link to share the common parameter with the shorter 

cyclic parameter l ink in order to avoid common parameter blockage. Therefore, in the 

case of interdependent cyclic parameter links with lengths in the ratio of an exact 

multiple and with their cyclic connected data-link lists of equal length, the modification 

is as follows: 

(1) Follow steps (1) and (2) of the modification of the interdependent cyclic 
parameter l ink with their lengths and the lengths of their cyclic connected data-
l ink lists in the ratio of an exact multiple. 

(2) I f the values passing through the common parameters in the shorter cyclic 
parameter l ink are all the same, follow step (3) of the above modification too; 
otherwise, follow step (3) below. 
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(3) Compare each value in the common parameter value sequence of the cyclic 
connected data-link lists in the shorter cyclic parameter link with the common 
parameter value sequence of the cyclic connected data-link lists in the longer 
cyclic parameter link. I f the values are the same, blockage at common parameter 
is absent from these two cyclic parameter links. 

Case (I) in Figure 5.12 is an example which have the lengths of cyclic connected 

data-link lists not in the ratio of an exact multiple. If only the cyclic connected data-link 

lists are considered, the ones in the longer cyclic parameter link have length of four 

while the length of the cyclic connected data-link list in the shorter cyclic parameter link 

is six. Their ratio is 2:3 which is not an exact multiple. Blockage at common parameter 

occurs in this example. Its graphical representation in Figure 5.12 can clearly show that 

blockage occurs at the sixth level of recursion. Because the lengths of the involved 

cyclic parameter links are in the ratio of an exact multiple, as shown by the graphical 

representations, the common parameters from the two different cyclic parameter links 

wi l l be paired up at a fixed interval. The graphical representation in Figure 5.12 shows 

that the common parameters from the two cyclic parameter links need to be paired up 

in every four levels of recursion if only two cyclic parameter link from the two groups 

of cyclic parameter links are considered. (If the two groups of cyclic parameter links 

instead of two cyclic parameter link out of the two group are considered, the common 

parameters are paired up in each recursion level.) To avoid blockage at common 

parameter, the values passing through the point where the common parameters from the 

two different cyclic parameter link are paired up must be the same. In other words, in 

the case of interdependent cyclic parameter links with lengths in the ratio of an exact 

multiple, the same value in the common parameter value sequences from different 

involved cyclic parameter links should be repeated at the same interval. However, the 

length of the cyclic connected data-link list also affects the interval of the same value to 

be repeated in its corresponding common parameter value sequence. As shown by the 

graphical representation of Case (I), the value a or 5 is repeated in every four levels in 

the cyclic connected data-link list among the parameters BX/XB, CX/XC and 

DX/XD which has the length of four levels while the values a, b and c are repeated in 

an interval of six recursion levels in a cyclic connected data-link list with the length of 

six levels. On the one hand, the cyclic connected data-link lists with lengths not ix\ 中 e 
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ratio of an exact multiple cause the values passing through the common parameter to be 

repeated in different intervals in different cyclic connected data-link lists. On the other 

hand, the cyclic parameter links with lengths in the ratio of an exact multiple require the 

common parameter values to be repeated at the same interval in different involved 

cyclic connected data-link lists. The conflict is unsolvable. Hence, blockage at common 

parameter wi l l always happen if the lengths of the different cyclic connected data-link 

lists of the interdependent cyclic parameter link (which have lengths in the ratio of an 

exact multiple) are themselves in a ratio that cannot be reduced to an exact multiple. 

In Case (I I ) in Figure 5.12, we present an example which seems to contradict our 

above conclusion. However, i f we examine the cyclic connected data-link lists carefully, 

we can f ind that the cyclic connected data-link lists in the first cyclic parameter l ink 

among the parameters AX/XA, BX/XB, CX/XC and DX/XD does not exactly have the 

length of four levels as the one in Case (I). With the common parameter values shown 

between [ ] in the modified notion of cyclic connected data-link list described in Section 

5.1.1.2.1，we can clearly see that the cyclic connected data-link list in the first cyclic 

parameter l ink which can avoid blockage at common parameter is the cyclic connected 

dataAinkJistof 11—12-13—M-fbJ-n—12--13--14-faJ-ll--12--13--14-fcJ-llinsteadoUl--

12-13-14-11. Although the latter notation only indicates the presence of a cyclic 

connected data-link list of the length of 4，the former notation shows the presence of a 

cyclic connected data-link of the length of 12. Therefore, the lengths of the cyclic 

connected data-link lists of the two interdependent cyclic parameter links in Case (I I) 

has a ratio of 12:6 which can be reduced to a ratio of an exact multiple: 2:1. By 

examining the two examples in Figure 5.12, we can conclude that the modification for 

the data analysis method in this case is to modify data analysis slightly to produce cyclic 

connected data-link lists with common parameter values. I f all the cyclic connected 

data-link lists with common parameter values from different involved cyclic parameter 

links show their lengths in a ratio of not an exact multiple, it indicates that blockage at 

common parameter wi l l occur and the corresponding recursive 
t 

nontermination. ：̂； 
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5.1.2 Interdependent Cyclic Parameter Links through Common Subgoals 

I n the above ii 

discussion, we have Recursive Rule with Interdependent 
， Cyclic Parameter Links through Common Parameter 

seen how in te r -
dependency between g(x,Y,Z)丨inkl_a(X，C)，linkl_b(C,A). 
the different cyclic pa- nnk2—•̂ (Y，C)’ nnk2_b(C,B). g(A’B,C). 

rameter links in the — 

same recursive defi- Recursive Rule with Interdependent 
L Cyclic Parameter Links through Common Subgoal 

n i t i o n c a n be 

established through 。(父，丫，？）：_ 丨丨„k(x，A, Y, B)，g(A, B，C). 
s o m e c o m m o n 
parameter. We have Figure 5.13 

a l s o s e e n h o w 

interdependent cyclic parameter links can form extra exit conditions that cannot be 

detected in data analysis and how we can modify data analysis to adapt it to different 

situations. I n this section, we shall examine the another possible way to establish inter-

dependent cyclic parameter links: to establish interdependent cyclic parameter links 

through common subgoals. At the beginning of Chapter 4，there are two examples of 

interdependent cyclic parameter links. One of them is a recursive rule with 

interdependent cyclic parameter links through common parameter while the another is 

a recursive rule with interdependent cyclic parameter links through common subgoal. 

These two recursive rules are displayed in Figure 5.13 again. I f we just look at the two 

recursive rules, the two seem to be very different. However, if we express them in 

graphical representations, the similarity between them can be clearly shown. With a 

single dotted line to indicate that the two cyclic parameter links are interdependent in 

Figure 5.14, we can see that all the subgoals involved in both cases must not fail in 

order to avoid blockage in the infinite data transfer sequences (if any) passing through 

the cyclic parameter links. To allow the involved subgoals in these interdependent cyclic 

parameter links not to fail, in the case of common parameter, the values passing through 

the common parameters in the cyclic connected data-link lists from both involved cyclic 

parameter links must be the same. On the other hand, in the case of common subgoals, 
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the involved subgoal can , . , . 4 " I 
graaphical representation (I) for the recursive rule with interdependent 

o n l y succeed on l y i f t he cyclic parameter links throu^ common parameters in Figure 5.13 

common subgoal is used to ^ ^ ^ ^ 
, ‘ J kJ) CJ L J 三 represents ,Tink1_a" 

form the cyclic connected ^ -
d a t a - l i n k lists f r o m the two X 9 | represents "linki_b" 

involved cyclic parameter V V � ： : represents ,."nk2_a,‘ 

links at the same time. It D - "U 

can be explained by the 0 O O II「啊-tsTink2jy. 
e x a m p l e s i n F i g u r e 5.15. graaphical representation (D) for the lecuisive rule with interdependent 

cyclic parameter links through common parameters in Figure 5.13 
X/A Y/B Z/C 

The common subgoal Q Q O represents 
in the recursive rule in ^ TT the common 

^ X subgoal "link" 

Figure 5.13 has two C j U U 

different procedures in two " X • 

different cases in Figure 

5.15. In Case (I), as shown Figure 5.14 

by its graphical representation, the recursion is blocked at the fourth level although data 

analysis can detected a cyclic connected data-link list in each of two interdependent 

cyclic parameter links. On the one hand, the common subgoal that can allow values to 

be transferred through the cyclic parameter link between parameters X and A at the 

fourth level of recursion is Unk(2，l，b，c). On the other hand, the common subgoal that 

must be used to pass value through the cyclic parameter link between parameters Y and 

B at the fourth level of recursion is link(l，2，a^b). Because two different common 

subgoals are required by the two different involved cyclic parameter links, blockage 

occurs. In Case (II)，the situation is different, with three more facts added to the 

procedure link，the conflict of the subgoals is resolved and nontermination happens as 

indicated by the graphical representation of Case (H) in Figure 5.15. If we compare the 

two cases in Figure 5.15 with the examples of interdependent cyclic parameter links 

through common parameters in Program (b) in Figure 5.1 and Figure 5.2, we 

immediately recognize the striking similarity between the case of interdependent cyclic 

parameter links through' common parameters and the case of interdependent cyclic 

parameter links through common subgoals. 
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They show that 

the data analysis method g(X，Y，Z):- link(X，A, Y, B), g(A3,C). 

fails for the same Case (I) Case (11) 

reason: data analysis link(l，2’a’b). link(2，l，b，a). 乂义丫,曰 Z^C 
. link(l，2，c，a). ( p ® 〇 i i n m 2 a b 、 c a n n o t r e c o g n i z e imK、i，z，a，Dj. 

^ X/A Y/B"Z/C" 1 A ^ lmk(2,l,b,c). 
blockage at common 爪 ^ v ^ link(l，2，c，a). 

Y ^ ^ liiik(2,l,a,b). 
parameter or common O link(l，2，b，c). 
\ , (b © O r-T link^lca). 
subgoal as a possible Y Y K A ^ 
exit condition. The 0 ) (O O T … f 

reasons for the presence O 0 Y ^ 

of blockage in both fail at | ^ r ^ 
仙 l e v e l 各 ⑦ 门 ( p ^ U 

cases are the same: … A J w … I 
although there are some cydic connected data-link set in (p O 

b the cyclic parameter link between 
common parameters or 二 =[fe”二tJ；二:pa;二？二 © (© O 

"Y" & "B":- "a~b--c-a" • • • 
subgoals t ha t are ： ： ： 

supposed to be shared 1 1 = = = = = = = = ^ 
“ Figure 5•15 

among the involved 

cyclic parameter links, the possible data transfer sequences in these cyclic parameter 

links require conflicting values to pass through some of these parameters or subgoals. 

The conflict of values can be resolved, as shown in both Case (I I) in Figure 5.15 and 

Figure 5.2, by adding more facts into the corresponding procedures to produce alternate 

data transfer sequences. Furthermore, when the multi-level interdependent cyclic 

parameter links are considered, the similarity between the interdependent cyclic 

parameter links through common parameters and the interdependent cyclic parameter 

links through common subgoals is evident in the similarity of the relations of the lengths 

of the interdependent cyclic parameter links and the relations of the lengths of the 

involved cyclic connected data-link lists. The examples and their graphical 

representations in Figure 5.16 show that the three types of relations of the lengths of 

interdependent cyclic parameter links are also present in the interdependent cyclic 

parameter l ink through common subgoals. Similarly, the cyclic connected data-link lists 

in the interdependent cyclic parameter links through common subgoals can be related 

together in terms of their lengths as the cyclic connected data-link lists in the case of 
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Case (II) the example of interdependent cyclic 
g o a l ( A X , B X , C X j D X ) p a r a m e t e r links with their lengths 

lmkl(AX,XB), in a ratio of an exact multiple 
P a 明 " 、 臓 邮 , x c ) ， 

VI； clink(BX,XA,CX,XD) goal(AXJ3X,CX,DX,EX风:-
goal(XA,XB,XC;XD). linkl(AX,XB), lmk2b(DX,XE), link2c(EX;XF), 

the 右 link2ci(FX,CX), cliiik(BX;XA,CX,XD), 
example goal(XA,XB,XC,XD,XE,XF). 
S S e n t ^ Q^ DĴ  
SSic 4 ‘ AX B^ ex. D> E> FX. 

N i a 
A /II丨、the example of interdependent cyclic parameter links 
Case (III) established through subgoals with thier lengths not in 

a ratio of an exact multiple 
g 。 a l ( A X ， B X ， C X ， D X ， E X ) ： - = 综 翌 ； ^ ^ 激 滥 S ^ ) . 

A々 A B̂ re BĴ e D备 • 备 • 务 ^^E • 务 • 务 [ 絮 O ^ Q O Q O 〇 o OJD 〇 QO … ( X ： ^ 〇 o o > 
办 … 〇 … 〇 \ 〇 〇 

. o > . O ： ^ 〇 o ^ 
( ^ ― … … 〇 \ 〇 〇 
o > 〇-；；；；5> o X o 

I cffS…'STo … o ( T ^ 〇〇 9 O 
Figure 5.16 

common parameter. In Figure 5.17, we show some examples of the case of equal-length 

cyclic connected data-link lists, the case of cyclic connected data-link lists with lengths 
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in the ratio of an exact multiple, and the case of cyclic connected data-link lists with 

lengths not in the ratio of an exact multiple in a recursive definition with interdependent 

cyclic parameter links of equal length. A l l these similarities between the interdependent 

goal(AX,BX,CX4>X) > linkl(AX,XB), lmk2(DX.XC). c l i i ik(BX»XA,CX现 goal(XA^,XC;XD). 
Case (I) an example of cydic Case (II) an example of cydic 

connect^ data-link sets coliFi^data-link sets with their ^nnected data-link sets ̂ th ^ e r 
with equal length lengths in a ratio of an eact multiple lengths not in a ratio of an exact multiple 

J ^ p 3). l i n k l ( 4 , l ) . I i n l c 2 ( a . b ) . 腿 ( 2 , 3 ) . 脑 糊 . J j ^ g ^ g : 

« 4 , b , c ) . c _ a , b ) . c U n 1 c _ . c 。 二 c j j ^ 忠 念 

cliiik(3,4,e 办 

f 〇 J ) @ o 2 

f o JD_ 

) o > c ^ o f / ^ . . . . C ^ y 

1<〇.0>」 < o 
o > Co <〇.〇> 交 … \ 
<〇…〇> 办•<〇 Cp ' o ^ J 

g T • … 〇 、 r < 0 
) : o n e cycle of a cyclic 门 ( T ) (7) (~) 

) connected data-link set w w w w 

L _ — — — — — — — — — — — — — 
Figure 5.17 

cyclic parameter links through common parameters and the interdependent cyclic 

parameter links through common subgoals show that the above discussion on how to 

adapt data analysis to handle the presence of interdependent cyclic parameter links 

through common parameters can also be applied to the presence of interdependent 

cyclic parameter links through common subgoals with only slight modifications. 

In the case of common parameters, we can detect blockage at common parameter 

by comparing the common parameter value sequences from different cyclic parameter 

links. The absence of blockage at common parameter is indicated by the presence of a 

common parameter value sequence shared among all involved cyclic parameter links. 

However, in the case of common subgoals, there are no common parameter value 
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sequences to be compared. We need another indicator. The indicator is the common 

subgoal sequence. Data analysis can be modified to record each common subgoal used 

during the cyclic connected data-link lists construction to form a sequence which is the 

common subgoal sequence. In Figure 5.17, the cyclic parameter link between 

parameters and BX/XB forms the cyclic connected data-link list of 2-3-4-1-2 

in all three cases. Its corresponding common subgoals sequence is clink(3，4，b，c)--

clink(l2，d，a) in all three cases as well. Moreover, we can also modify the notion of 

cyclic connected data-link list in a way similar to the case of common parameters to 

incorporate the value of the common subgoals used in a particular cyclic connected 

data-link list. For example, the cyclic connected data-link list of 2-3-4-1-2 can be 

transformed to 2—3-[clink(3，4，b，c)]-4--l-[dink(l，2，d，a)]-2. The value between [ ] 

indicates the common subgoal responsible for forming the particular segment of the 

cyclic connected data-link list. There is no blockage at common subgoal between two 

cyclic parameter links if their common subgoal sequences are the same. For example, 

for Case (I) in Figure 5.15, if data analysis is used, the cyclic connected data-link list in 

the cyclic parameter link between parameters X and A is 1-2-1. But this cyclic 

connected data-link list can have two different common subgoals sequences: link(l,2,a,h) 

or link(l，2，c，a). For the cyclic parameter link between parameters Y and B, the cyclic 

connected data-link list is a-h-c-a and there is only one possible common subgoal 

sequence which is link(l，2，a，b)--link(2，l，b，c)--link(l，2，c，a). Obviously, the common 

subgoals sequences from these two cyclic parameter links are different. The conclusion 

drawn from this difference coincides with the result shown by the graphical 

representation. On the other hand, in Case (II) in Figure 5.15, if common subgoals are 

also considered in constructing the connected data-link list. One of the cyclic connected 

data-link lists that can be formed in the first cyclic parameter link between parameters 

X and is l-[Unk(l，2，a^b)]-2-[link(2，l，b，c)]-l-[link(l，2，c，a)]-2-[link(2，l，a^ b)]-!-

[link(l，2，b，c)]-2-[link(2，l，c，a)]-L The common subgoal sequence therefore is 

Unk(l，2，aJjhlink(2，l，b，c)-4ink(l，2，c，a)--Unk(2，l，aJy)--link(l，2，b，c)--link(2，l，c，a). F o r the 

cyclic parameter link between parameters Y and B，we can also form an equal-lengt衫 

cyclic connected data-link list as a-[link(l，2，a^b)]-b-[link(2，l，b，c)�-c-[link(l，2，c，a)� 

[link(2，l，aj))]-b-[Unk(l，2，b’c)�-c-[lin_，c，a)]-cL The common subgoal sequep?^ 

therefore is also link(l，2，a^b)--lmk(2，l，b，c)--link(l，2，c，a)—Unk(2，l，a^b)—link(l,2,l^，S)l” 
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link(2J，c，a). So the same common subgoal sequence in the two interdependent cyclic 

parameter links indicates that there is no blockage at common subgoal between these 

two interdependent cyclic parameter links. The graphical representation of Case (II) in 

Figure 5.15 can confirm this conclusion. Therefore, by replacing the step of comparing 

common parameter value sequence with the step of comparing common subgoal 

sequence, the modification of data analysis for the case of common parameters can be 

adapted to the case of common subgoals. 

5.1.3 Interdependent Cyclic Parameter Links with Special Parameters 

So far, our discussion has included only the cases of interdependent cyclic 

parameter links formed by subgoals only. In this section, we shall look at 

interdependent cyclic parameter links formed by special parameters. To reduce 

redundancy, our discussion shall focus on interdependent cyclic parameter links formed 

by lists because the similarity between lists and structured data, and lists are more 

common in Prolog programming. 

Although there are two kinds of interdependent cyclic parameter links for the 

cyclic parameter links formed by subgoals, i.e，the interdependent cyclic parameter links 

through common parameters or through common subgoals, there is only one type of 

interdependent cyclic parameter links for the cyclic parameter links formed by special 

parameter only. The reason is obvious. Since the cyclic parameter links formed by 

special parameters contain no subgoal, interdependency must be established among the 

cyclic parameter links through some common parameters. Of course, we can establish 

interdependent cyclic parameter links through common subgoals in the case of cyclic 

parameter links formed by both special parameters and subgoals. However, this is a 

rare case and the case of interdependent cyclic parameter links with both special 

parameters and subgoals is even more rare. Therefore, we do not go into detail. The 

general principle for detecting any blockage at common subgoal in the case of the 

interdependent cyclic parameter links formed by both special parameters and subgoals 

is similar to the case of the interdependent cyclic parameter links formed by subgoals. 
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As shown in Section 4.5.2, we can construct connected data-link lists in the cyclic 

parameter l ink with both special parameters and subgoals in a way similar to the case 

of cyclic parameter links with subgoals. Therefore, we can detect the infinite data 

transfer sequence in cyclic parameter links with both subgoals and special parameters by 

detecting the presence of cyclic connected data-link lists. I f cyclic connected data-link 

lists can be constructed in the interdependent cyclic parameter links with both subgoals 

and special parameters and the interdependency is established through the common 

subgoal, the modification for data analysis in the case of the interdependent cyclic 

parameter links formed by only subgoals can also be applied to the case of the 

interdependent cyclic parameter links formed by both subgoals and special parameters. 

The discussion in Section 5.1.2 can be applied to this case without any adjustment. 

Before we discuss how interdependent cyclic parameter links through common 

parameters can be formed by the cyclic parameter links with special parameters only, we 

shall first examine a special case. The well-known recursive definition append below can 

be an example of the special case. In the recursive definition append, there are 

append([E|X], Y, [E|Z]) append(X, Y, Z). 

append([], L, L). 

two cyclic parameter links. At first glance, they are interdependent because the 

parameter E is shared between them. However, i f we examine the concept of cyclic 

parameter link, we shall immediately notice that the parameter E actually is not 

responsible for transferring data into the next level of recursion. It is the tails of the 

lists in both cyclic parameter links, X and Z, that are passed into the next level. The 

two cyclic parameter links are interdependent because blockage at common parameter 

can happen if the values in the common parameter E are different in these two involved 

cyclic parameter links. Therefore, the common parameter E can be an exit condition in 

some situations. This wil l not be obvious if the recursive definition append is considered 

alone. However, the common parameter E can be clearly shown as an exit condition by 
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is_prefix(Prefix, List) 
一 append(Prefix, Remain, List). 

append([E|X], Y, [E|Z]) append(X, Y, Z). 
append([】，L，L). 

using append to build the definition is prefix: in the definition is j)refix, the recursive 

definition append wi l l terminate at the point where the list in the parameter Prefix 

becomes empty or the first element in Prefix is different from the first element in List. 

I f the recursive definition append is considered, the recursion stops when the values 

passing through the common parameter E in the two interdependent cyclic parameter 

links are different. Hence, the common parameter acts as an exit condition in this 

situation. 

However, if data analysis is applied to the recursive definition append, it wi l l 

detect no infinite data transfer sequences in both interdependent cyclic parameter links. 

When the evaluation of the recursive definition goes one level further, the lengths of the 

connected data-link lists in both cyclic parameter links are one element shorter. Hence, 

data analysis wil l yield the conclusion that the data transfer sequences can only be finite 

in both cyclic parameter links. However, in the case of common parameters, data 

analysis can correctly predict the result without any concern for the extra exit condition 

provided by the common parameter. 

Therefore, for the interdependent cyclic parameter links formed by special 

parameters, the data analysis method only needs to be modified to handle those which 

can form infinite data transfer sequences. As shown in Chapter 4, in the case of special 

parameters, an infinite data transfer sequence implies that the lengths of the data 

passing through all the involved cyclic parameter links either increase or remain 

unchanged during the evaluation of the recursive definition. Therefore, we can change 

the recursive definition append into the following recursive definition, which ^a^ 

interdependent cyclic parameter links through common parameters and requireis 

consideration on its common parameter: 
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apd(X, Y, Z) :- apd([E|X], Y, [E |Z] ) . 

apd([], L, L). 

In this recursive definition apd, the data transfer sequences in both interdependent cyclic 

parameter links are infinite as indicated by some connected data-link lists with growing 

lengths. Although a common parameter E appears in both cyclic parameter links, the 

common parameter cannot act as an exit condition in this recursive definition. As 

mentioned in our discussion on the case of interdependent cyclic parameter links formed 

by only subgoals shown, the mere presence of common parameters does not necessarily 

lead to blockage at common parameter. Nontermination can be avoided by common 

parameter blockage only when the values passing through the common parameter in 

different cyclic parameter links are in conflict. However, in order to have any conflict 

in values, at least some values must be transferred through the common parameter 

during the recursion. But if we examine the recursive definition apd again, we can see 

that no value is transferred through the common parameter E during the recursion. In 

fact, the common parameter E remains uninstantiated during the infinite evaluation. 

By the example of the recursive definition apd, we can understand that the 

common parameter in the interdependent cyclic parameter links formed by only special 

parameters cannot provide extra exit conditions as in the ones formed by subgoals only. 

Without any impurities, there is no input/output predicate in a pure Prolog program to 

assign value to the parameter during the evaluation of a recursive definition. However, 

an infinite data transfer sequence in the interdependent cyclic parameter links formed 

by special parameters can only occur when the data passing through the cyclic parameter 

links are lists of increasing length or lists of fixed length. In the case of increasing 

length, new elements must be added into the list during the recursion. But since there 

is no other way to input new values into a recursive definition during its evaluation 

except through the arguments of the recursive definition themselves, the new elem^fit 

that can be added into the list during the recursion can only be an uninstantf^tf^ 

variable as shown by the recursive definition apd. Uninstantiated common pamrngt̂ i：^ 
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do not have any conflict in values and no blockage at common parameter wil l occur. I f 

the infinite data transfer sequence is formed by passing some lists of fixed length during 

the recursion, the values passing through the common parameter either are always some 

new values, appearing in a repeating sequence or just are some uninstantiated 

variables. As stated above, the values passing through the common parameter cannot 

always be new values, therefore, the values passing through the common parameter can 

either form a repeating sequence or are made up by some uninstantiated variables. I f 

only uninstantiated variables appear in the common parameter, blockage at common 

parameter wil l never occur. Then the only remaining possibility of common parameter 

blockage is the case of common parameters with repeating values. The above recursive 

definition apd is altered to provide the example below. 

appd([E|X], Y, [E|Z]) :• appd([E|X], Y，[E|Z]). 

appd([], L，L). 

In appd, if any recursion can occur, the lists passing through both interdependent 

cyclic parameter links will remain the same and the values passing through the common 

parameter E wil l repeat infinitely. Although we can have the common parameter E to 

be instantiated with some value in this case, the values passing through E will not be 

different in different cyclic parameter links. On the other hand, if there is a conflict of 

values in the argument of the recursive definition, eg” appd([l，2，3]，Y，[4，5，6])，no 

recursion wil l ever happen. So, either there is no recursion or no blockage is possible 

in this situation. In conclusion, we find that the common parameter cannot an extra exit 

condition once infinite data transfer sequences occur. If we analyze the reason for the 

absence of blockage at common parameter, we can realize that the infinite data transfer 

sequences in the cyclic parameter links formed by special parameters can appear only 

when there is no blockage at common parameter possible. Therefore, no modification 

is needed for the data analysis method when the interdependent cyclic parameter 

with only special parameters are considered. 
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Before we close our discussion on the interdependent cyclic parameter links with 

special parameters, we must consider the possibility of forming interdependent cyclic 

parameter links between the cyclic parameter links formed by special parameters alone 

and the cyclic parameter links formed by subgoals only. Although it is a rare case to 

mix these two types of cyclic parameter links together, we would like to examine this 

case to complete our discussion on the interdependent cyclic parameter links with 

special parameters. Let us consider the example below: 

goaI(X, Y, Z) :- linka(Y,E), linkb(E,B), 
goal([E|X], B, [E|Z]). 

goaiai, L，L). 

rmka(1，a). Iinkb(a,2). 
Iinka(2,b). Iinkb(b,1). 

In the recursive definition goal, there are three interdependent cyclic parameter links. 

Two are formed by special parameters and one by subgoals. The common parameter 

E is shared by all three. Although the uninstantiated variables no longer appear in the 

common parameter, no commpn parameter blockage is possible in this example. In 

order to have any conflict of values at the common parameter, the cyclic parameter links 

formed by the special parameters need to have some solid values to be passed along. 

However, as mentioned in the above discussion, this is not possible if any infinite data 

transfer sequence can be formed in the cyclic parameter links with only special 

parameters. Therefore, there is no need to modify the data analysis method in the case 

of interdependent cyclic parameter links that are formed from cyclic parameter links 

with only special parameters and cyclic parameter links with only subgoals. 
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5.2 A Special Case of Cyclic Parameter Links 
established through Special Parameters 

I n the pre- | j = = = = = = = = = = j 
. . goal(D, end). 

VIOUS section, we goal([X|L],Y) > goal(L,Y). 
have discussed the Case (I) Case (II) 

situation in which with the query "?- goal([a,b,c,d],Y)'' with the query "?- goal(L,Y)" 

data analysis may goaI([a. b. c, d).⑩） goal (⑩，©) 

overlook some po-

tential exit condi- ― ？ — ) goal ( ③ , © ) 

tions and give a false goal([(j，d],©) 

w a r n i n g 。 f 9oal([dl.©) ^ 娜 〒 ⑩ ） 

nontermination. In goal([], @ ) goal(@,⑩) 
this section, we shall 

. L . fail : goal([], end) 
examine the situa- • 
t ion in which data 、, ；：•: backtracking path • 

⑩ :iminstantiated parameter • 
analysis fails to indi- L _ _ _ ™ _ = = = = = = J 

c a t e p o s s i b l e Figure 5.18 

nontermination. In Figure 5.18, there is a simple recursive definition with only one 

cyclic parameter l ink which is formed by special parameters. Because the length of the 

list passed into the next level of recursion through the parameter L is one element 

shorter than the list in the previous level, data analysis wi l l conclude that the data 

transfer sequence in the cyclic parameter link is finite and wi l l consider the 

corresponding recursive definition to be free of nontermination. However, the search 

trees in Figure 5.18 show the above conclusion to be only partially true. In general, the 

evaluation of a recursive definition can be terminated properly i f any list (or any value) 

is supplied to be the first argument of the query. As shown by the search tree of Case 

(I), the list supplied is shortened by one element in each level of recursion and 

eventually brings the recursion to an end when the list becomes empty. But Case ( I I ) 

shows that the evaluation of the recursive definition in Figure 5.18 can end in 

nontermination in a special situation: i.e., when an uninstantiated variable is supplied 

to the cyclic parameter l ink. The search tree of Case (I I) in the figure shows how 
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nontermination occurs. Unlike an empty list or a value, an uninstantiated variable can 

succeed to be instantiated with the list [X\L]. So the head-tail separator, cannot act 

as an exit condition. This is true for the operator，as well. Usually, such a problem is 

considered as part of the well-known occur check problem. 

In other words, for the cyclic parameter link established through special 

parameters, we can be certain about the presence or absence of nontermination only 

after we know what data are supplied to the cyclic parameter l ink when the recursive 

definition is evaluated. However, there is no easy solution to this problem in an 

analytical approach. The data supplied to the cyclic parameter link established through 

special parameters are usually unknown until it is evaluated. For example, there is no 

way to tel l whether the query ？- goal([a,b,c,d], Y) or the query ？- goal(•，Y) wi l l be used 

if we just analyze the recursive defimtion goal. In more complicated Prolog programs, 

the situation can become even worse. Merely analyzing the recursive definition or even 

the entire program cannot determine what data wi l l be supplied to a particular cyclic 

parameter l ink in a particular recursive definition. That can only be done by checking 

the supplied data during the evaluation. 

Figure 5.19 shows how the situation becomes more complicated if more than one 

recursive definition are involved in the same recursive rule while a variable is supplied 

to the cyclic parameter link with special parameters in one recursive definition. There 

are two semantically identical Prolog programs in Figure 5.19. The only difference 

between them is the position of the definitions prefix and suffix. In Program (a), the 

definition prefix comes first while in Program (b) the definition suffix comes first. In 

both definitions, there is a recursive definition appnd. I f it is analyzed with the data 

analysis method, the cyclic parameter link in appnd is established through special 

parameters and the data transfer sequence is finite because the list passed into the next 

level of recursion is shorter than the one from the previous level. Therefore, according 

to data analysis, no nontermination wil l occur in both programs. However, the search 

trees in Figure 5.19 contradict this conclusion. Because the variable L is supplied to the 
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Program (a) test(L) :- preftx(L,[a]), suffix([a]»L). 
prefix(X,L) :- appiid(X,Y工). suffix(Y,L) :- appnd(X,Y,L). 
appnd(D,LJL). appnd([HjX],Y,[H|Z]) appnd(X,Y;Z). 

Search Tree (a) using the query "？- test(L)" for Program (a) 

test(O) -

pr9fix(O.IaD / / pref«(0.lal) • ̂ ^ ^ 、 prefix(0. [a]) 
/ -prefix(ll.[a]) / / -prefixaa], [aD \ 

appnc/(0,©,【a» r / appnd( O.O. [a]) r ； appnd( o . Q. (aD 
-appnd(ll.[al.la])/ | «appndaa].ll.[aD *appnd( © ’©, Q) 

• iron : I *appnd(G.O.n): 
appnd(n.lal.[al) ； suffix(【a】,D) ... | 細"n、 

I I - appnd(D,l],n) 、 fail 
/ , appnd(n,D,ID ::’ suffixda】,丨冲 \ 

、、--_ •'' appnd(G).laUl) , / • ^偷帆帥 
/ ‘ \ \ / … / •：•• \ appnd(Q,[a]. [a])... 

fail i appnd(0.[al,D) : -appnd(D.[al.[aD 
. » ； ?、 

\ appnd(n.[al.[a]) 
fail 

• ‘ > , 
* 

：the point where backtracking resumes the evaluation • : uninstantiated parameter 

Program (b) test(L) > suffix([a]»L), prefix(L,[a]). 
prefix(X,L) appnd(X,Y,L). suffix(Y»L) :- appnd(X»Y»L). 
appnd(•’L，L). appnd(剛,Y，剛）:-appiid(X,Y^. 

Search Tree (b) using the query "？- test(L)^ for Program (b) 

test(O) • testaaD ^ \ 
丄、、 ”8uf f lxaa l .G) \ 

、、， 、、、,、 \ ”轉 " 〇 , 。 • • , » \ ... 
suffix([al.O) / *"^fa】’〇）, 、appnd(0.la].0) \ • 
/ -suffix([al.la])/ \ 敵aaUO’aD \ appnda〇.0_0’G),aD \ \ • 
丄……、r / ； •appncl(Q,[a].0) 、‘ *。丄h … r 。 … 、 \ 

appnd( O. W. G) / \ appnd( O. N. O) \ 
-appndaMaUa])/ : \ • apP崎q]MlG.aD : appndaOlMlO.aD \ \ 

appndOHallaD : / .卿nd(0’〖a】,0) app\d( Q. la]. O) V ： 
• , , prefixdal,帥.. \ - appnd(n.[a].la]) \ - appnd(D.la],[aD \ ： 

•’..、 / I - r ^ ^ P - d Q . a U a l T 、 、丄•间 )： - ^ - V ； 

… / 一 《 二 棚 f a ^ • 眺 珊 ； 
/ \ ^ ^ ^ appnd(Ial,〇，[D / ippndao.al.0.laD ； fall ;appnd(n.O.D •• f ^ > \ fafl > | 

\ .appndai.D.l]) / \ f/appndaal.0.n) 

;aPPncKD.D-D): 咖 f^ ^^^ : 

. . . " fail fall / 

* : the point where backtracking resumes the evaluation Q ： uninstantiated parameter 
Figure 5.19 210 



second parameter of the subgoal suffix in both programs, according to the procedure of 

suffix, variables are then supplied to the first and third parameter of the subgoal appnd. 

I f we examine the procedure of appnd, we can see both the first and third parameter are 

the special parameters used in forming the two cyclic parameter links. This implies that 

variables are indeed supplied to the cyclic parameter links by the subgoal suffix([a]，L) 

in both programs in Figure 5.19. According to our earlier discussion in this section, we 

can conclude that nontermination will occur in both programs. 

But the search trees in Figure 5.19 again contradict this conclusion to be wrong. 

Search tree (b) for Program (b) shows that nontermination will occur in Program (b) 

and the reason of nontermination is exactly what we have discussed above: a variable is 

supplied to the cyclic parameter link established through special parameters. However, 

Search tree (a) indicates that it is difficult to approach the problem by merely analyzing 

the program. Search tree (a) reveals why Program (a) can terminate. The variable L 

can be instantiated to a certain value after the evaluation of the subgoal prefix. Because 

the subgoal suffix([a]，L) is placed after the subgoal prefbc(L, [a]), the parameter L in 

the subgoal suffix is no longer an instantiated parameter. Search tree (a) shows either 

list [ ] or [a] wil l be instantiated with L when the subgoal suffix is evaluated. Because 

the content of a parameter changes during the evaluation of a program, the real value 

that is supplied to a cyclic parameter link during the evaluation of a recursive 

definition can hardly be predetermined by an analytical approach alone. However, one 

can handle this situation by tracing the input data for the cyclic parameter link 

established with only special parameters during the recursion. 

Although the data analysis method cannot detect nontermination caused by the 

inappropriate data supplied, it can help to discern its cause. After data analysis yields 

the conclusion that a cyclic parameter link with only special parameter can only have a 

finite data transfer sequence, our discussion in this section indicates that any infinite 

data transfer sequence appearing in this cyclic parameter link must have resulted from 

the supply of inappropriate data. This piece of information will be very helpful to 终 
t 、 ' � • 

Prolog programmer remedying the problem. Since nontermination arises when any - / 、'； 

uninstantiated variable is supplied to the cyclic parameter link established through 
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special parameters, nontermination due to this cause can be easily detected in a run-

time tracing approach by detecting any attempt to pass an uninstantiated variable to a 

cyclic parameter link. Although it is hard to develop an algorithm to handle the entire 

occur check problem, it can be seen that the present problem is much less serious and 

can be tackled with a tracing approach. 
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CHAPTER 6 —Results and Conclusion 

I n the foregoing chapters, the cause of nontermination in Prolog programs was 

analyzed, algorithms were developed, and special recursive programs were investigated. 

I n this concluding chapter, the results of the study are summarized; the limitations of the 

algorithms are explained; some future research works are suggested, and a conclusion 

is finally presented. 

6.1 The Results and Implications 

This thesis develops a new approach to detect nontermination errors in pure 

Prolog programs, providing a theoretical framework based on static program structure 

analysis for nontermination detection. The new method for nontermination detection 

involves essentially the following steps: program structure analysis, parameter analysis and 

data analysis. 

Through program structure analysis, all the recursive rules in a given Prolog 

program are identified. Then for each recursive procedure in a given program, 

parameter analysis is carried out on each of its recursive rules. I f no cyclic parameter 

links can be found, the recursive procedure would not be able to terminate. According 

to our findings, such nontermination can be attributed to an improper definition of the 

recursive procedure. The absence of a cyclic parameter link implies that i t is impossihlf^ 

to pass parameter values from the initial procedure call into successive parameter 麵喊锋• 

or levels of recursion. As an exit condition should contain one or more variables 

related to the formal parameters of a recursive procedure, i f the exit variable^ 

related to the formal parameters, the underlying exit condition cannot be a pfop^tione. 
疼祐 

..•••：,'.. •/•�.........-‘ 

• i.- .:、..“.、.1 ..V：：: • •• • 
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I n the absence of a cyclic parameter link, there cannot be a proper exit condition for the 

recursive procedure. Therefore, nontermination wil l occur. 

On the other hand, the presence of a cyclic parameter link in recursive procedure 

implies that the parameter values first input from a procedure call to the recursive 

procedure can be modified and transferred to successive parameter cycles or levels of 

recursion. Therefore, the presence of a cyclic parameter link also implies that there is 

a parameter modifying mechanism also known as parameter modifying process which is 

usually a conjunction of one or more subgoals preceding the recursive subgoal, which 

modifies the values of the formal parameters to other values for passing to the recursive 

subgoal. Such a parameter modifying process is also a potential exit-reaching process 

since there is a possibility that the initial parameter values may be so modified during 

successive parameter cycles of recursion that they may eventually reach the state 

required to satisfy the exit condition. Consequently, with a cyclic parameter link alone, 

we can only conclude that there is a potential exit-reaching process. However, we 

cannot be certain whether the potential exit-reaching process is a real exit-reaching 

process; that is, whether the potential exit-reaching process can modify the parameter 

values of the recursive procedure to reach the exit condition during recursion. In order 

to confirm whether the recursive procedure can terminate, data analysis has to be 

carried out. 

For each cyclic parameter link, the data analysis algorithm first attempts to 

construct a set of data links. Each data link represents the presence of certain 

parameter (or data) values passing through the corresponding cyclic parameter link for 

at least one parameter cycle of recursion. Then the data links are connected together 

as far as possible, forming a set of connected data-link lists. Each finite connected data-

l ink list represents certain parameter values being able to be transferred over tb^ 

corresponding cyclic parameter link through several parameter cycles of reciir|iQi}, 
•；-、‘粥•沙戈 

From the data transfer analogy, a connected data-link list represents a d^X^ tr^psfef 

sequence over the cyclic parameter link. I f there is at least one cyclic ^ 
• 'V • ••;.、:*,:- ”：，?•-

recursion of the procedure wi l l not terminate; a cyclic data-link list implies ；it̂ t̂ gll Qr 
... .'；.,’V广、、• :： 

part of the underlying parameter values can be repeatedly transferred pygr 
. • . ... • • . 
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parameter link during recursion. So, a cyclic data-link list corresponds to an infinite 

data transfer sequence. In this situation, we can confirm that the parameter modifying 

process is not an exit-reaching process since it cannot modify during recursion the 

parameter values to satisfy the condition for exiting the recursion. On the other hand, 

if the set of connected data-link lists contains only finite connected data-link lists, the 

recursive procedure can be confirmed to have no nontermination problem. It can also 

be confirmed that parameter modifying process is an exit-reaching process. 

For a cyclic parameter link established through special parameters such as those 

based on list structures, instead of constructing a set of connected data-link lists, the 

data analysis algorithm attempts to find out the change tendency of the data (or 

parameter) values over the cyclic parameter link for one parameter cycle of recursion. 

I f change tendency is not a negative value, the recursive program cannot terminate as a 

negative change tendency value represents the presence of an infinite data transfer 

sequence over the cyclic parameter link. 

6.2 Limitations and Future Research 

Although parameter analysis can generally be used to detect the presence of any 

potential exit-reaching process by constructing cyclic parameter links, data analysis is 

limited to pure Prolog programs. As pure Prolog is a subset of general Prolog, data 

analysis cannot be always applied to general Prolog programs. However, further 

research should be conducted for incorporating the data analysis and certain run-time 

tracing techniques for the detection of nontermination in general Prolog programs. 

Moreover, our compile-time approach to nontermination detection provides a sound 

foundation for the implementation of a relatively powerful nontermination d m g ^ } ^ 
� ‘ : ？ 、 ‘ 

system. 
：. > » 

Another limitation of our present data analysis algorithm is tliat _ solutigp fe巧乡 

been found for nontermination caused by the input parameter prphj^m； i l f ft Prolog 
".、、、:..：:巧.紀《.::‘..：；、 
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recursive procedure, some of its special parameters should be classified as input 

parameters. That is, when such a procedure is called, those input parameters should 

be instantiated to some values. For instance, the data analysis algorithm wil l conclude 

that there is no nontermination problem in the recursive definition defined by the 

recursive rule below: 

append([X|L], L_, [X|L__L]) :- append(L, L一，L L). 

I t is obvious that the above recursive rule wil l terminate only if the first parameter of 

append is bound to a ground list structure when it is invoked. Otherwise, a query of the 

form ？-append(X,Y,Z) can cause the evaluation of this recursive definition to become 

nonterminating. In fact, Pliimer has worked on this problem with a mathematical 

approach [9]. Evidently, a compile-time method cannot easily handle the problem since 

the termination of this type of procedure wi l l depend on whether there is any ground 

value bound to its input parameter. 

One more limitation of the present data analysis algorithm is that it cannot 

handle the situation of having multiple recursive subgoals in a single recursive rule. 

Although we have illustrated in Figure 4.16 in Chapter 4 how data analysis can handle 

the case of multiple recursive subgoals in a single recursive rule, there is a subset of the 

case which data analysis cannot deal with. As an example, consider the recursive rule 

below: 
goal(X,Y) subgoal_l(X，A)，goal(A,B), goal(B,C). 

Although our data analysis can deal with the first recursive subgoal in this recursive rule, 

it cannot handle the second one because the cyclic parameter link for the second 

recursive subgoal is established through the first recursive subgoal. Though the presejit 

algorithm can determine whether the first recursive subgoal in the recursive r u k 咖 

terminate or not, i t cannot find out what data can be passed in and out q | tj^e 
. . .讚 .職 

parameters A and B. Therefore, it cannot be applied to the second recursive 

The two examples in Section 5.2 of Chapter 5 also demonstrate that {he PCf^s îlt 

algorithm cannot handle the case of a cyclic parameter link establishe(J l^rQ^gh 绝缺|终I 

「 . . . .:、:、.:“).、、 
.....：.V •::�::.:.; . 
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parameters. Since a recursive rule with multiple recursive subgoals is quite important 

in Prolog programming, further research should be done in this direction. 

Chapter 5 shows that the data analysis algorithm formulated in Chapter 4 has 

another limitation. That is, it does not handle a recursive definition with 

interdependent cyclic parameter links. In fact, the interdependency between different 

cyclic parameter links can establish a kind of exit condition in some situations. Chapter 

5 has already provided some useful ideas concerning how to handle this type of recursive 

definitions. Therefore, what remains to be done is to spend more effort on 

reformulating the present data analysis algorithm in order to include the ideas depicted 

in Chapter 5. 

The present parameter analysis and data analysis algorithms focus only on 

sequential Prolog programs. It may be fruitful to do more research to explore using and 

expanding the techniques devised in thesis to handle the nontermination problems in 

parallel Prolog programs. 

6.3 Conclusion 

« 

This thesis develops a compile-time analytical approach for detecting 

nontermination in pure Prolog programs. The underlying theories and algorithms can 

serve as a sound framework for nontermination detection. 

Before the algorithms in Chapters 3 and 4 were formulated, the cause of 

nontermination of pure Prolog programs was first examined. In the context of a Prolog 

recursive definition, an exit condition should contain variables related to thg^ 

parameters. The exit-reaching process, which modifies the exit condiJipQ tp 

reach the state for exiting the recursion, is in general a conjunction of p 伸 蘇 赫 殘 

subgoals preceding the recursive subgoal in a recursive rule. In fact, reaf^bing gQ 

condition means that reaching the state at which the conjunction of ^ubgo^ls 
• - .- . :� “ • . • • ‘ � . 

_ ‘ ^ r ；. 
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representing the exit condition fails, thus preventing any further recursion from taking 

place. Therefore, our method of nontermination detection involves detecting the 

presence of an exit condition and the necessary exit-reaching process. 

The parameter analysis algorithm presented in Chapter 3 can be used to analyze 

a recursive rule to check for the presence of an exit condition by constructing cyclic 

parameter links. The absence of any cyclic parameter link may be interpreted as having 

an exit condition; thus the recursive definition wil l not terminate. I t also means that the 

recursive rule has not been properly defined. On the other hand, the presence of one 

or more cyclic parameter links for a recursive definition means that there is an exit 

condition, implying there is a parameter modifying process which is a potential exit-

reaching process. To confirm the presence of an exit-reaching process, data analysis has 

to be performed. Subsequently, it can be concluded whether the recursive procedure 

can terminate. 

Though restricted to handling pure Prolog programs, the present algorithms are 

relatively powerful when compared with those devised by Shapiro. They can work quite 

independently. In general, they do not require the user to supply any information, 

whereas Shapiro's nontermination diagnosis algorithm requires the user to provide a 

query and a stack depth. The result of his algorithm may rely on the information 

provided the user. I t is believed that the present data analysis algorithm can be 

enhanced considerably to cope the special types of recursive definitions. However, the 

parameter analysis algorithm is applicable to both pure and general Prolog programs, 
. . � 

Further, the compile-time analytical techniques developed in this thesis and the run, 

time tracing techniques used by Shapiro can be merged together to formulate morp 

powerful nontermination diagnosis algorithms for general Prolog programs. Lastly,协e 

parameter l ink graphs and the data link graphs developed in this thesis havQ shqxvn tp 
> •；..V •• ‘- •'•« ... • ；•• - •• .. •. 1 

be powerful for facilitating respectively the analysis of parameters an动 d a t ， j p 

a recursive procedure. ’ ；'、‘ 
•、.“..广广i . V .:厂-丄. 
'.....•‘ ： “ • X.. • A . . » • 
•. ‘ _ ： '. -，，‘-'i."V、.、-i.、 . . “；' ” .- » 

2 1 8 



t 」 • 

Reference 

[1] M.A. Covington. Eliminating Unwanted Loops in Prolog, ACM SIGPLAN 
Notices, 1985, Vol. 20，#1. 

[2] M.A. Covington. Further Note on Looping in Prolog, ACM SIGPLAN Notices, 
1985，Vol. 20，#8. 

3] M. Baudinet. Proving Termination Properties of PROLOG Programs: A 
Semantic Approach, the Proc. of the Symposium on Logic in Computer Science， 
IEEE, July 1988. 

[4] D.R. Brough, CJ. Hogger. The Treatment of Loops in Logic Programming, 
Technical Report DoC 86/16, Department of Computing，Imperial College of 
Science and Technology, London，September 1986. 

[5] D.R. Brough, A. Walker. Some practical properties of logic programming 
interpreters, Proc. FGCS, 1984，p.149-156. 

[6] A. Van Gelder. Efficient Loop Dectection in Prolog-Using the Tortoise-an令 
Hare Technique, J. Logic Programming, 1987, #4，p.23-31. 

. . . . . . , • . 

• - . . . . 

7] R. Kowalski. Logic for Problem Solving, North Holland, 1979. 

[8] D. Nute. A Programming Solution to Certain Problems with Loop^ ill I!lrpl9||, 
ACM SIGPALN Notices，1985，Vol. 20，#8. •糖：坊 ) 

. 霄 V . 。 ： 
• . ‘ ( 

• - • < • ‘ . • 

[9] L. Pliimer. Termination Proofs for Logic Programs b ŝipd 刚 i ^ t c a f ^ 
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