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Abstract 

Applying recurrent neural network for problem-solving in past few years fascinated 
a lot of expertises in different domains from engineering to financing due to its simplicity for 
use, robustness, massive parallelism, etc. As recurrent neural network is considered by the 
domain expertises as a tool for solving problems within their domains, it's very often being 
modified to suit their own needs and thus variations of recurrent neural network existed in 
the literature are really multifarious. However, there are lack of research efforts to generalize 
the different cases of applications and unify them into a more general problem-solving 
technique. So, our project is working in this direction. The recurrent neural network model 
interested is Hopfield network. First, different versions of Hopfield network, a very popular 
recurrent neural network model, are studied, including a generalized Hopfield network model, 
whose connections are of n访 order rather than 1 过 order for original Hopfield network. Also, 
the procedure of utilizing generalized Hopfield network for solving a particular problem is 
discussed, from problem formulation, neural network formulation to network convergence 
assurance. 

After the neural network formulation step, the computational/optimization ability of 
seeking an optimal solution for neural network is investigated. Since, Hopfield network and 
further generalized Hopfield network are derived based on gradient method and thus are just 
gradient system, they can only give a sub-optimal solution. If the particular problem has many 
local minimum points within the problem domain, the solution's quality will be greatly 
limited. Incorporating tunneling algorithm - a global optimization technique, into the Hopfield 
network is proposed. As a result, a novel neural network model, called Tunneling network is 
derived. It has the capability to seek the global minimum state of the problem mapped to the 
network without a prior knowledge to the possible solutions of the problem, or in other 
words, it's a blind-searching method. Two versions of Tunneling network are suggested with 
different means to do the energy barrier tunneling. Through simulation, it's shown that 
Tunneling network is better than simulated annealing in both efficiency and effectiveness. For 
further performance enhancement, a network decomposition scheme is found to be able to 
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achieve the goal by "tunneling" just a small-group of neurons at a time. Furthermore, unlike 
simulated annealing, tunneling network does not require the determination of a cooling 
schedule for more effective performance thus is a much more handy global minimization tool 
for plugging into different applications. 

For practical applications, we choose computer vision as the application domain. 
Recurrent neural network for both gaussian filtering and boundary detection are successfully 
derived. For the former application, the impulse response of the derived network is found to 
be very similar to the ideal gaussian shape and by adjusting a parameter embedded in the 
network's connection, different scale filtering can be achieved. Analogous to setting boundary 

t 

value condition for many image processing algorithms, the assignment of network's 
connections in the image boundary required extra attention or error will arise in the boundary 
and propagate towards the interior part of the network. Formula are derived to ease the 
assignment task. For the second application, we adopted the problem formulation of Active 
Contour Model - Snake and used our novel Tunneling network to derive a recurrent neural 
network for boundary detection. We've applied the derived network to both synthesized and 
real image to detect boundaries. Due to its global minimum seeking ability, it's found to have 
much better performance than some existing implementations of "Snake" using local 
minimization technique. 

The reasons for choosing the two applications are of two folds. Firstly, complete 
investigation of the recurrent neural network alternative for the two problems have not yet 
appeared in the literature. Secondly, the two problems can be considered as the representatives 
of two large categories of computer vision problems. So, it's hoped that our neural network 
solution provided for the two specific applications can be generalized to a wider range of 
applications. 
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Chapter 1 Introduction 

1.1 Programmed computing vs. neurocomputing [Nie90] 

Today, the speed of digital sequential computer has come to an incredible status that 
nobody in ten or twenty years ago could predict. We are now talking of computational speed 
in MIPS (Million Instruction Per Second) and MFLOPS (Million Floating point Per Second). 
With such a computer, a lot of physical systems can be simulated for analysis, which could 
trigger further development in technology. Also, a lot of stuffs required intensive computation 
can now be done in a split of second, which makes a lot of things that only happened in 
scientists' dream in the past, but are now possible in our daily life, eg. weather forecasting. 
All these applications are based on the computational paradigm of "programmed computing", 
introduced by von Neumann long long ago. Instructions have to be executed one after another 
and the computations are governed by algorithms and rules. This intrinsic characteristic of 
the paradigm, however, also pin-points its bottleneck. 

Developing intelligent system using machines based on programmed computing has 
quite a long history. However, with so many powerful machines in our toolbox, the 
intelligence system developed so far is still a long way lagging behind in lots of aspects from 
a little kid, who may even be ignorant of simple addition and subtraction. Visual perception 
is a good example. A little kid can recognise accurately and robustly who his/her mother is 
among the women in the whole world instantly while a computer vision system supported by 
our MFLOPS computers may take some time to just have the concept of correctly recognising 
cubes, cylinders in a clean enough background. This discrepancy is mainly due to the 
completely different computational paradigm of our mind. 

Neuroscientists told us that our neural system is a collection of tremendous amount 
of neural cells called neurons and interconnected in a complicated manner. Based on 
experimental results, they created functional concepts and models for the system. Speculated 
from these models, a very different computational paradigm is developed and called 
neurocomputing. The computation is mainly done by transformation. For a more formal 
definition, we use the one given by Hecht Nielsen [Nie90]. Neurocomputing is the technology 
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discipline concerned with parallel, distributed, adaptive information processing systems that 
develop information processing capabilities in response to expose to an information 
environment. Nielsen's neurocomputing definition contains no biological or neurophysiological 
terms. Thus, neurocomputing is considered to be a very broad term and in fact as a general 
description of Multiple Instruction Multiple Data (MIMD) parallel processing architecture. 
And neural networks are the primary information processing structure of interest in 
neurocomputing due to its possibility in implementation and its substantial information 
processing capability. 

An artificial neural network consists of many simple processing elements (called 
neurons throughout the thesis), which can carry out localized information processing 
operations characterised by their transfer functions, or sometimes called activation functions. 
Each neuron is connected to others via unidirectional signal channels called connections. 
- - --- ；} 

Different connection patterns of an artificial neural network possess different computation _ - - i abilities and determine the network's architecture. They can be mainly categorized into two 
main categories; i) feedforward & ii) feedback (recurrent) neural networks. 

1.2 Development of neural networks - feedforward and feedback models 

Perceptrons can be considered as the pioneer work of feedforward neural network 
model. This model together with the learning rule was developed during 1957 & 1958 by 
Frank Rosenblatt et al with application on pattern recognition. During that period, some other 
models, like AD ALINE were also proposed. However, the development stopped for a long 
time due to Minsky & Papert，s book Perceptrons proving mathematically that a perceptron 
with just two layers of neurons (one input layer and one output layer) could not perform some 
functions, like XOR logical operation. Although it is pointed out that by simply adding 
another layer (hidden layer) of neurons can solve the problem, the learning algorithm for such 
a network was not available until 1986. D. Rumelhart, R. William, et al. [RM86] proposed 
the use of backpropagation for learning and proved that this feedforward model with hidden 
layer can be a powerful mapping network. Its main applications so far are clustering (eg. 
classification of numerical data, determining fuzzy membership sets for building fuzzy control 
systems, etc.) and function approximation (eg. image compression, financial forecasting, 
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process control, etc.) [Kli92] 

For feedback model, which is also called recurrent neural network model, the history 
can be traced back to McCulloch & Pitts，work in 1943 [MP43]. Credit for recent attention 
on this type of model rests entirely with JJ.Hopfield, who was very active in the beginning 
of 1980s in promoting recurrent neural network model. "Hopfield network" is now a 
well-accepted name for a recurrent neural network model which was proposed by him in 1982 
[Hop82]. Since then, a lot of similar network models are developed. Their applications mainly 
fall into associative memory and mathematical programming. For associative memory, it can 
be used, for example, to recover an damaged pattern, like image, instantly without searching 
through the whole database [HKP91, Chapter 2], The current research direction is to study 
the storage capacity of recurrent neural network with the ultimate goal to increase it. On the 
line of mathematical programming, different researchers demonstrated that recurrent neural 
network model can be employed for linear, nonlinear, integer and combinatorial programming 
[KC88] [CS92] [AKH92]. As it's a generic mathematical discipline utilized by a lot of 
researchers in different fields of engineering, the neural network approach for problem-solving 
attracts a large group of audience, from Process Scheduling [Hul91], VLSI layer assignment 
[KLKH91], to Computer Vision [ZC92b]. Since our project selected Computer Vision as the 
application area, a brief state-of-art survey of recurrent neural networks applied in this field 
is given in the coming section. 

1.3 State of art of applying recurrent neural network towards computer 
vision problem 

Researches on computer vision have an ultimate objective of acquiring different levels 
of human visual perception abilities, integrating and implementing them by today's technology 
as a computer vision system. However, so far, the achievement in computer vision is still in 
a very primitive stage due to our limited knowledge on our visual system. A well-accepted 
model of a computer vision system is hierarchial where the high-level visions are making 
some interpretation while the low-level ones are performing preprocessing on images. The 
high-level vision is very much depending on the lower-level vision. Inadequate quality of the 
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low level vision performance will greatly hinder the development of the higher level 
processing and thus the whole hierarchial computer vision system. So, low-level vision plays 
a very important role in the development and caught a lot of attention for years. In general, 
the cues that provided by low-level vision include stereo vision correspondence, detected 
edges and boundaries, optical flow, detected motion, etc. Also due to noise presence, different 
image filtering (both linear and nonlinear) methods are proposed to further enhance the 
reliability of the information extracted by the low-level vision. A lot of different algorithms 
are suggested for different branches of low-level vision. In particular, using regularization 
theory [PTK85], most of the above problems can be modelled by a mathematical 
programming framework to minimize an error function subjected to certain constraints 
inherited from physical properties of visible surfaces. This theory is known to be able to get 
rid of the ill-condition problem existed for various low-level visions. With a proper design 
of the error function and constraints, this minimization algorithm can be very robust and if 
an effective minimization tool is available, the optimal result can be obtained. However, such 
a robust and generic framework obviously requires heavy computational power. For a 
512x512 image, the number of variables involved for the minimization is 262144 (512x512). 
The scale of the problem is much, much greater than the limit manageable for existing 
algorithms based on sequential computer. Furthermore, for real application, we are talking 
about computational speed in real time. Then, this will remain to be an unsolvable problem 
if we still stick on digital sequential machines. Therefore, it is natural that we have to turn 
to parallel machines. 

Artificial neural network with one of its merit being possessing massive parallelism, 
is an attractive outlet. After JJ. Hopfield showed the possibility of using Hopfield network 
to solve NP-complete combinatorial optimization problem [Hop85], a lot of low-level vision 
problems were mapped to neural network formulation and solved using the dynamic of the 
network. Table 1.1 is a summary of the low-level vision branches that have already been 
mapped to neural network formulation of Hopfield network. 
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It can be observed from Table 1.1 that the types of optimization problems fall into two 
categories: i) convex quadratic programming (CxQP), where there is one and only one local 
minimum state in the solution space，which is the interior of the unit hypercube, ii) 
combinatorial quadratic programming (CraQP), where the desired solutions exist only at the 
comers of the unit hypercube and there are lots of local minimum states. 

For the first category - CxQP, the utilization of Hopfield network is not quite the same 
as the original one proposed for Travelling Salesman Problem. In fact, the problems are much 
easier than those of the second category - CmQP, which were what J.J. Hopfield targeted at 
the very beginning. As the Hopfield energy function of problems in this category is convex, 
it's proved that the energy profile is a convex hyperparabola with one and only one minimum 
state. Thus, global minimum state can always be guaranteed by any gradient systems, like 
Hopfield network. 

For the second category - CmQP, they are the real hard ones. The Hopfield network 
can only be stable if only the diagonal elements of the connection matrix are greater than zero 
and the connection matrix is symmetric. However, even so, the network only converges to a 
stable state, which is in fact just a local minimum state and global minimum can't be 
guaranteed. If the initial state is badly placed, the sub-optimal solution's quality will be far, 
far away from the desired optimal one. In Table 1.1，it's noted that a lot of researchers 
incorporated annealing methods with the intention to escape from the local minimum states 
and ultimately be able to obtain a near-optimal solution. Despite its popularity, heavy 
computational complexity greatly limits its practical use. In the literature, some alternative 
methods are proposed but they all bear their own limitations. Thus, this remains to be an open 
question in the neural network field. 

1.4 Objective of the Research 

C.C. Klimasanskas [Kli92] stated that the development of neural computing over the 
past five years has been in the area of plug-compatible replacements for existing technology. 
This statement, to our opinions, best describes the situation. A lot of problems, which were 
long tackled by some classical methods, are plugged in neural network methodology recently 
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to provide an alternative solution means. We too are following this direction. 

For our research, the recurrent neural network model of interest is Hopfield network. 
Although there are already a lot of research works on using Hopfield network for some 
specific applications, a more general and systematic discussion on the procedure of utilizing 
the neural network, in Klimasanska's wordings - the plugging procedure, is not well presented 
in the neural network field. Such a discussion will be of great help to domain expertises who 
may not have much knowledge on recurrent neural network but intend to apply it for specific 
tasks in their expert domains. So, the main objectives of this research is to study the topics 
on mapping to neural network formulation, stability of the formulated network and the local 
minimum limitation of the network with the intention of providing a more general and 
repeatable methodology for designing an appropriate and effective neural network solution 
for problems in, at least, Computer Vision domain. In fact the scope of the applicable 
domains can be much wider as long as the domain problem can be written down as a 
mathematical programming model. 

1.5 Plan of the thesis 

In this thesis, we will first provide background knowledge on Hopfield network in 
Chapter 2. Summary of existing variations of Hopfield network are included and also a 
generalized Hopfield network model, which is an generalized extension of original Hopfield 
network, will be described. 

Thorough discussions on the procedure of utilizing generalized Hopfield network 
model for optimization, from the very beginning - problem formulation, to the end - network 
convergence property, are found in Chapter 3. In particular, a reshaping strategy, which is 
complementary to the neural network formulation step, is proposed and any unstable 
formulated network can then be transformed to a stable one using this strategy. Also, in the 
chapter, the local minimum problem of generalized Hopfield network is addressed and a 
survey on existing methods to solve the problem is given. 

Chapter 4 is devoted to describe a novel recurrent neural network model, named 
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"Tunneling network" which is proposed to solve the local minimum problem of generalized 
Hopfield network. Our Tunneling network comes from the marriage of Hopfield network and 
a global optimization technique known as tunneling algorithm [Yao89]. The intuitive idea of 
the tunneling algorithm is to escape the local minimum by "tunneling" through the nearby 
barriers for a new local minimum valley. In order to well define the Tunneling network 
capability, a thorough convergence analysis is performed and its global minimization ability 
is compared with simulated annealing. Promising results are obtained in terras of both 
efficiency and effectiveness. Besides, to further enhance the quality of the solution, network 
decomposition is proposed and it's found that certain decomposition configuration can push 
the network to a solution closer to the optimal one. 

As described in Section 1.3，Computer Vision problems, in the views of mathematical 
programming, can be categorized mainly into two groups. To have a complete study of our 
neural network solution to the area of Computer Vision, two problems - gaussian filtering and 
boundary detection are chosen from the two categories respectively for study. In Chapter 5， 
recurrent neural networks for both ID and 2D gaussian filtering are derived and the filtering 
properties of the derived networks, based on simulation, are also illustrated. Besides, during 
the application, the difficulty for boundary connection assignment has been identified and 
formula are derived to ease the problem. In Chapter 6, a recurrent neural network for 
boundary detection is derived. Its problem formulation is adopted from one of the active 
contour models, which is of order three. So, we are in fact working on a third-order 
combinatorial problem. To the best of our knowledge, this is the first time using a recurrent 
neural network to tackle a practical problem with order higher than quadratic's. 

Finally, conclusions are made in Chapter 7，where future research suggestions are also 
given. 
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Chapter 2 Background 

Hopfield network is the most popular neural network model applied for optimization 
during recent years. Our neural network solution to optimization problems throughout the 
thesis are developed mainly based on it. In this chapter, background knowledge on Hopfield 
network which are essential to the development of our work are summarized. Also, a 
generalized Hopfield network model, which is an extended model for catering higher-order 
problems, will be introduced. 

2.1 Short history on development of Hopfield-like neural network 

The first suggestion of neural network with architecture similar to Hopfield network 
can be found as early as the one developed by McCuUoch & Pitts in 1943 [MP43]. At that 
time, they proposed a very simple neuron model with binary threshold. Specifically, each 
neuron computes a weighted sum of its inputs from other neurons, and outputs a one or zero 
according to whether this sura is above or below a certain threshold. Let x̂  be the state of 产 
neuron，jû  be its threshold, Wy be the connection weight between 产 and neurons and g{x) 
be the step function, 

对 = g ( - [ I . ) ..(2.1) j 

Eqn.(2.1) characterized McCulloch & Pitts，neuron and it's proved that a synchronous 
assembly of such neurons is capable, in principle, of universal computation when the weights 
Wij are chosen suitably. After the McCulloch & Pitts，threshold network proposal, considerable 
follow-up work were found in literature [Min67] [Ama72]. 

In 1981，J.J. Hopfield [Hop82] restudied the collective computational ability of the 
network and was able to add some physical insight by introducing an energy function, and 
by emphasizing the notion of memories as dynamically stable attractors. The neuron model 
was very similar to McCulloch & Pitt，s，except the two possible neuron states being +1/-1 
instead of 1/0 such that inhibitory force can be introduced for a faster convergence. Hopfield 
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demonstrated the possibility of associative memory application. In 1984 [Hop84], he proposed 
a continuous updating version of Hopfield network, where the neuron model was replaced by 
a sigmoid function which can be represented by the response of an Operation Amplifier. He 
showed that such continuous network possesses similar computational ability as the discrete 
network and the most important implication was that Hopfield network can be implemented 
by realistic analog circuit instead of just a theoretical model. 

The value of Hopfield network became much more apparent since the proposal of its 
application to combinatorial optimization. Hopfield et al [Hop85] attempted to map the 
Travelling Salesman Problem(TSP) to Hopfield network formulation and showed that nearly-
optimal solution can be obtained by the network. As TSP is an NP-complete combinatorial 
optimization problem, which is known to be a really hard problem, the argument of the 
computational power of the neural network is here to stand. 

This section is just a short history on Hopfield network. For more details, interested 
readers are recoramented to refer to the books, [HKP91] [Nie90]. 
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2.2 Hopfield network model 

Hopfield network model is basically represented by a group of neurons, which are 
fully interconnected with an external bias for each individual and form a feedback 
architecture. This framework can also be fully represented by the updating rule, 

X = ^ ( E 产j + Ii ..(2.2) I J 
where x̂  is the state value of 产 neuron, 

T]j is the connection weight between 产 and 产 neurons. All the connection weights 
form a connection weight matrix and it must be symmetric, 

Ii is the external bias for 产 neuron, 
g{x) is the neuron's transfer function 

//..........// 
li 12 In-1 IN 

Fig. 2.1: Basic architecture of Hopfield network 
As there are lots of variations of Hopfield network in the literature, to clarify exactly 

what version of Hopfield network is being used, it's necessary to clearly specify the following 
two aspects, i) neuron's transfer function & ii) neuron's updating sequence. 

2.2.1 Neuron's transfer function 

The characteristics of neuron's transfer function is multifarious. Some even include 
exponential response, logarithm, etc. Here, we will give a summary of them. As some of them 

pg. 2-3 



Recurrent Neural Network for Optimization with Application to Computer Vision Chapter 1 

were proposed in ad hoc manner or just for specific applications, therefore are hard to be 
generalized. Only the more common ones in terms of application possibility are summarized. 

Let u be the input vector to a neuron 
V be the output state of that neuron 
gOc) be the neuron's transfer function 

Then，v. = ^ / u. 
I J 

a) McCulloch & Pitts’ model 
The neuron's transfer function is 

simply a step /hardlimiting function defined ^^ j | 
as： m I 

容 ( ) [ l un ^ I 
and it's a two-state neuron. 

Fig. 2.2: McCulloch & Pitts' model 
ARi: [MP43] [NC92] 

b) Bipolar model 
The neuron's transfer function is 

； — -1 simply a sign function defined as: … \ j I 
r " ^ ^ ： ： ： ： ^ ^ ^ ^ ^ 咖 ^ _ I 

^^^^ 1 1 i f x > 0 i I V 厂 _ I 
and it's a two-state neuron. 1 i 

AR: [Hop82] Fig. 2.3: Bipolar model 

1 AR stands for references applying the neuron model 
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c) Sigmoid model 
The neuron's transfer function is a “ 

r . . I 

sigmoid function. There are two typical j j 
sigmoid function examples. \ j 

：i [ 1 — — — / • h • V 
, � 1 M V y ^ i giix) = i 1 + exp(-Px) un X H i 5 1 

Fig. 2.4: Sigmoid model 
The range of gi(x) is (0,1) and that 

of g2(x) is (-1,1). 6 is the gain of the sigmoid. When 6 approaches positive infinite, the 
sigmoid function approaches the hard-limiting function. 

This neuron model takes continuous value within the range of the sigmoid function. 

AR: [HT85] [TH86] [LLTL91] 

d) Paik，s model 
This neuron model is proposed by 

Paik et al for image restoration application. � "“ "1 
»••..•-...•.,.. •.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.-.•.•.•.•.•.•.•.•.•. . •••.•...•.•...•...•..•..•...:.•.‘.，••.•••... • •.•••...........•..... .•.•A 
« • I I : I •••.-.•.•.•••...-..••.-.•.-.••..•.•.•.•.-.•.-•.••••.•...•.••-.•,..•.•-.•••.••••-.•..••.-. •.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.• •.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•. .-.•. . • • � 

= g( v.(t) + Av,) 二 J v K r p ； i 
where 丨 ^ J ^ v 

0 ；c<0 ^ j 
g(x) = X 0 ^ 2 5 5 I i 

255 x>255 
一 1 w.<-9. . � n '^r. Fig, 2.5: PaiWs model Av. = dfyv) = 0 -e^<w.<e. 6 

‘ ‘ ‘ 1 w.>0. 
where 0. = -T.J2 >0 I n 
It's a multi-state neuron, which can be any integer in the range of [0,255] instead of 

just {0,1}. Thus, we consider it as a generic model for integer programming. 

AR: [PK92] 
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e) Peterson's model 
This neuron model is the most "“ 

complicated one among the four mentioned. i ……] 
It requires communication with other "2 ^ j 
neurons of a group, G to define its transfer ] j I V ^ 
function. ^ ^ ^ ^ ‘ � | 1 fc nomalizationtactoF 1 i cfeteimirtedbythe i 1 "1 Y � � I communrcatton with other ; 

丄/�丄十C：入l̂V 一 I neurons wi&iin a group V^ ； 

辦)J： l/(Ucxp(-Px；) �云)(一j))) 
Fig. 2,5 Peterson 's model 

Firstly, it takes continuous value within the range [0,1]. Moreover, summation of the 
neuron's output among the group will be one. This is a constraint of the neurons' state 
embedded in the model. 

AR: [PS89] [BM90] 

As a neuron is the basic processing element of an artificial neural network, different 
transfer characteristics will imply different collective computational capability. So, for 
different applications, an appropriate models should be chosen accordingly. 

2.2.2 Updating sequence 

Different updating sequence for the neurons will affect the converging behaviour of 
the network. It can be categorised as: 

i) Asynchronous updating. One neuron is selected to be updated at a time. 
ii) Synchronous updating. At each time step, all neurons are updated simultaneously. 
iii) Continuous updating. All the neurons are updated continuously according to the 

network's differential equation corresponding to the network's updating rule. 

For continuous updating, instead of discrete updating rule as described by eqn.(2.2), 
the dynamics of the network is characterised by a differential equation: 
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du. JL u； 
— = y T..X. + f - 」 — 

dt 台 ‘ X "(2.3) 

X = g{u) 

where x is the neuron's decay constant, 
^(jc) is sigmoid function. 

The discrepancy is mainly due to the fact that continuous updating is simulating the time 
evolution of Hopfield network realized by realistic analog circuitry. 

Although all three updating sequences can be simulated by a digital computer, the 
continuous updating, which is corresponding to the real dynamics of a system defined in an 
n-dimensional continuous domain, can only be implemented using numerical method and thus 
takes a much longer time for convergence compared with the other two. Also, using 
asynchronous/synchronous updating, the neuron can only take discrete value while the neuron 
should take continuous value for continuous updating. Besides, an algorithm being capable 
to be implemented using asynchronous updating is more desirable than the synchronous 
counterpart as it can ease the synchronization problems during the implementation step. 

After the proper choice of neuron's transfer function and updating sequence, the 
network can be programmed for different applications by assigning suitable values to the 
connection weight matrix and the external bias vector accordingly. Utilizing the dynamics of 
the Hopfield network, which is massively parallel, real-time applications become possible. For 
a more comprehensive understanding of the network dynamics, the "energy" concept 
described in the coming section will be of great help. 

2.3 Hopfield energy function and network convergence properties 

One of the most important contributions of the paper for the original Hopfield network 
was to introduce the idea of an energy function into neural network theory. Hopfield 
illustrated the fact that the updating rule for the neurons, which determines the network's 
dynamics, is in effect minimizing an energy function defined by, 
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£ = - 1 y y T..XJC. 一 y i . x . ..(2.4) 2 Z^ '； « J Z^ I I 
Assume the 产 neuron is to be updated. According to eqn.(2.1)， 

• 1) = g(ET丨jX/0 + ( • ) 

where ^(jc) is bipolar/sign function for original Hopfield network and the updating sequence 
is asynchronous. 

As the matrix {7^�} is symmet r i c ,——=-JJ - I . , 
如i Mi ” J ‘ 

i) If Xi remains unchanged, Ax； = 0 and thus = 0. 
ii) If X,. changes state, A^�=jc/^+l) - xft) 

‘ = 2 ‘ 

Mi / \ 
. d E =一 sign — ax. I 

\ 乂 
Thus, AE = < 0 dx. I 
Combining i) and ii), we can see that as the network evolves, the energy function, E 

described by eqn.(2.4) is nonincreasing. Also, as E is bounded below, it is a Lyapunov 
function and this implies convergence of the Hopfield network. Furthermore, the converged 
state is a local minimum point of E, 

Thus, the dynamics of the network can be understood as a trajectory along the energy 
profile. Very often，this energy function is named as "Hopfield energy". For the continuous 
Hopfield network, where the neuron's nonlinearity is a sigmoid function, the Hopfield energy 
will become, 

= _ E + E W d x -(2.5) 
丄 Mi i i i 

The convergence consideration is similar to the discrete model's. Again consider the 
产 neuron, 
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du. _ u. 
—L = y T..X. + J.-」 
dt if ‘ ^ ‘ X 

； = g O O 

where is the sigmoid function. 
As {Tij} is symmetric, 

一 “• 

= - y T .X. - 入 + 」 

dE dE^ dx, 
C一 = c 

dt dt 
dE , du. 
dx. dt 

\ (3E f 
V I / 

0 ,as is a nondecreasing 
differentiable function 

Thus, again E^ is monotonic decreasing as time proceeds. Also, the Hopfield energy described 
by eqn.(2.5) is bounded below. Thus, it is shown to be a Lyapunov function and the 
convergence of the network towards a local minimum point is guaranteed. 

For the relationship between the discrete and continuous model, it can be shown 
[Hop84] that when the gain of the sigmoid function is very large, the energy profile E^ will 
be very close to K Fig. 2.7 illustrate a typical energy profile of £ and corresponding E�with 
different neuron's gain for a neural based 2-bit AD convenor [TH86]. When the gain is very 
small, the only minimum state is all-zero state. As the gain increases, the energy profile will 
start to modify. When the gain is increased to a very large value, E^ will be very close to E. 
This verifies Hopfield's argument that the continuous Hopfield network with large gain is in 
fact a practical implementation of original Hopfield network with very similar computational 
capability. 
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Eaefgy Profile for2-bit AD coaveitor Eneisy Profile for2-Wt A-D coBvolor 
DiKnteoeuroa yA-IMl gij« = 0.02 A 

[0,0] 

Fig. 2,7a Fig, 2.7b 

EocKgy Profile for 2-bU A-D convertor Eoeigy Profile for 2-bit A-D convcrtor 

gain = 4 八 1’11 gain = 10 八,” 

Fig. 2,7c Fig. 2,7d 

Energy Profile for2-bii A-D coavettor Encigy Profile f6r2-bit A-D convcrtor 

gain :20 八["】 —50 Atl.U 

Fig. 2.7e Fig. 2.7/ 

Fig. 2.7a shows the energy profile for discrete Hopfield network. Fig. 2.7b-f shows the energy profiles 
for continuous Hopfield network with the neuron's gain equal, b) 0.02; c) 4; d) 10; e) 20; f ) 50. It's noted 
that the energy profile for continuous Hopfield network with large gain is very similar to that for the discrete 
network. 
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Using the energy concept, the convergence proofs of two most fundamental versions 
of Hopfield networks are shown. However, by changing the neuron's transfer function and 
the updating sequence, possible configurations of Hopfield network are really abundant. As 
long as a new configuration of Hopfield network is proposed，the dynamics of the network 
will change. This means different trajectory on the Hopfield energy profile and thus its 
convergence property has to be studied again to guarantee the network's stability. Following 
is a summary of some existing important theorems for the convergence properties of certain 
configurations of Hopfield network. Their proofs will not be restated here. Interested reader 
can refer to the appropriate references. 

Theorem 2.1 [Hop82] [BG88] 
An asynchronous updating Hopfield network with neurons of McCulloch & Pitts' 

model will converge to a stable state, which is equivalently a local minimum point of the 
corresponding Hopfield energy and is on the comers of the unit-hypercube, provided that the 
connection weight matrix of the network is symmetric and the diagonal elements are all non-
negative. 

Note: For neuron model replaced by large gain sigmoid function, Theorem 2.1 remains to 
be valid, except the stable state will not be exactly on the comers of the unit-
hypercube but very close to it. The situation is revealed in Fig. 2.7f. The Hopfield 
networks satisfying the conditions are mostly the ones considered for combinatorial 
optimization. 

Theorem 2.2 [LMP88] [FMM92] 
A continuous updating Hopfield network with neurons of sigmoid model will converge 

to a stable state, which is equivalently a unique local minimum point of the corresponding 
Hopfield energy and is the interior of the unit-hypercube, provided that the connection weight 
matrix of the network is symmetric and everywhere negative semi-definite within the unit-
hypercube. 

Note: The Hopfield networks satisfying the conditions will associate with a Hopfield energy 
profile of a convex hyperparabola. As the problem domain - unit-hypercube is also 

pg. 2-11 



Recurrent Neural Network for Optimization with Application to Computer Vision Chapter 1 

convex, this network is in fact solving convex programming. This theorem is used in 
in Chapter 5 to guarantee the convergence of a continuous version of recurrent neural 
network for gaussian filtering. 

Theorem 2.3 [PK92] 
An asynchronous updating Hopfield network with neurons of Paik's model will 

converge to a stable state, which is close to the unique local minimum point of the 
corresponding Hopfield energy of the network described by Theorem 2.2 with a small and 
bounded residue error in terras of Hopfield network，provided that the connection weight 
matrix is symmetric and the diagonal elements are all negative. 

Note: This Hopfield network configuration, in fact, can be considered as a discrete 
replacement of the one described in Theorem 2.2. Although Paik's model takes value 
in the set {0，1，….255} and the range of sigmoid's is [0,1], simple scaling of Paik's 
model's (or sigmoid's) output can unify the model's upper and lower limits but it's 
obvious that Paik's model only takes 256 discrete values in the range of [0,1]. Due 
to that quantization, the converged state can't be exactly the minimum point Paik et 
al proved that the error is within a small bound. If that small error is tolerable, this 
discrete replacement is very efficient for simulation. Such configuration is used in 
Chapter 5 for a discrete version of recurrent neural network for gaussian filtering and 
Theorem 2.3 is important for the network convergence guarantee. 

These three convergence theorems are important as they clearly state the stability 
requirement of different versions of Hopfield network studied and adopted in our research. 
Before utilizing particular versions of Hopfield network, the convergence conditions stated 
in the theorems have to be checked beforehand. 
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2.4 Generalized Hopfield network 

2.4.1 Network order and generalized Hopfield network 

From the energy function perspective, the original Hopfield network is in effect 
minimizing a quadratic function. To tackle with a higher-order problem, it's natural to 
generalize the network model by introducing higher-order connections to increase the order 
of the network. To define the network order quantitatively, a Hopfield network is of n^^ order 
if the input to each neuron is determined by an n:方 order polynomial expression. Under this 
definition, the original Hopfield network is a order Hopfield network. We name this 
generalized model as generalized Hopfield network. Inherited from Hopfield network's theory, 
each generalized Hopfield network also associates with a generalized Hopfield energy 
function. For an n̂ ^ order network, the corresponding energy function will be of (n+l/办 order, 
as depicted in next subsection. 

Although the generalized Hopfield network model has already been described by Xu 
et al. [XT91] in great details. However, our generalized Hopfield network model is a little bit 
different from that proposed by Xu et al. Thus it's necessary to state clearly our adopted 
model's characteristics. Let N be the total numbers of neurons whose state variables denoted 
by Xi. The updating rule for our generalized Hopfield network is: 

N N N N N 

L Li h “ "(2.6) 
N + y^ 7. jc. + /. 

where the value of T..^ is independent of the ordering of the index for k=l to N. For Xu's 
model，a coefficient of !/(/:-1)! is introduced to the k也 order term for all possible k. The 
discrepancy is in fact quite minor. By embedding the coefficients into the connection weights, 
Xu's model will be transformed to our's. We incorporate the modification just for the sake 
of updating rule's simplicity. 

2.4.2 Associated energy function and network convergence property 
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As mentioned in 2.4.1，each generalized Hopfield network is also associated with an 
energy function, which is called generalized Hopfield energy function and is described by 
eqn.(2.7). 

^ N N N Y N N N 

^ ^ 1 L� ..(2.7) 
Y N N N -—y^y^x.x. - y^ i.x, 
么 ' 1 '2 ‘ 

It can be proved that the dynamics of the generalized Hopfield network is to minimize 
the energy function depicted in eqn.(2.7) and the convergence property is summarized in 
Theorem 2.4. 

Theorem 2.4 
An asynchronous updating generalized Hopfield network with McCulloch & Pitts， 

neuron model will converge to a stable state, which is equivalently a local minimum point 
of the corresponding generalized Hopfield energy, and is on the comers of the unit-hypercube 
provided that the value of 7.. . is independent of the ordering of the index for k=l to N and 
all self-reinforcement connections, ie. some indices of T.. • being equal, are zero. 

Proof: 
On satisfaction of the two conditions of the theorem, i) the value of T.. . is 

'I'r-'* 

independent of the ordering of the indices for = 1 to iV and ii) all the self-reinforcement 
connections being zero, eqn.(2.6) can be written as 

x.(t+l) =/,-叱 ' \ _ 

Computing AE gives, 
AE = • AJC. dx.(t) ‘ 

i) If Xi remains unchanged, Ax； = 0 and thus AE = 0. 
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ii) If Xi changes state. Ax. = x.(t+l) - x.(t) 
= x a + 1 ) - x.(t) 
= 一 (1 寺 1)) =2x.(t-^l) - 1 

广 \ . dE =-sign ^x.it) V / 
AE = 犯 • Ax. dx-it) ‘ 

/ \ 
dE . dE =一 • sign 

dx.(t) dx.(t) 

dx.{t) 
So, E is nonincreasing. Also, as E is bounded below, the property of convergence 

towards local minimum should follow. • 
Refer to Xu，s work, our generalized Hopfield network model can be easily extended 

to include continuous updating version, which reveals the possibility of implementing it on 
chip by similar argument as Hopfield，s continuous updating version. 

2.4.3 Hardware implementation consideration 

The possibility of implementing Hopfield network by VLSI technology is a quite well 
accepted fact in the neural network field due to a lot of successful works in this direction 
[LS91a] [LS91b] [Als89] [LSCC92]. However, when the implementation of generalized 
Hopfield network is considered，it's obvious that the network model will require a very large 
amount of connection weights, which are hard to be put on silicon chip, and the increase is 
exponentially proportional to the network order. In Chapter 6, we adopted the 2 � � o r d e r 
Hopfield network for a boundary detection problem. The huge requirement of connection 
weight for a practical application will be discussed there. Also, the massive connectivity is 
comparatively difficult in electronic systems because electrical signals must travel through a 
physical wires that consumes area on the chip and require careful design to minimize 
interference and crosstalk. Therefore, establishment of a large network using present VLSI 
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technology is almost impossible. 

A very promising alternative instead of electrical system is optical one. Optical signals 
can propagate through space and pass through on another without interacting. This critical 
characteristics solved all the drawbacks of electrical systems and the huge amount of 
connection weights can be integrated in a smaller space. One of the possible ways to provide 
the massive interconnections required in most neural network models is holography proposed 
by Psoitis et al [PYHLGB89]. Psoitis et al demonstrated an heteroassociative memory using 
optically implemented Hopfield network and the network connections are all embedded in a 
volume hologram. Using this technology, light rays can be redirected in a programmable 
fashion which makes the programming of the Hopfield network possible. In the future, 
success in implementing a larger network using this optical means definitely will push 
generalized Hopfield network to much wider range of practical applications. 

pg. 2-16 



Recurrent Neural Network for Optimization with Application to Computer Vision Chapter 3 

Chapter 3 Optimization by recurrent neural network 

In this chapter, we will consider the steps in utilizing recurrent neural network utilized 
for optimization. First neural network formulation for a particular problem will be addressed, 
with special attention being paid to the formulation for hard constraints. Next, we will 
describe a "reshaping strategy" we proposed to guarantee network convergence. With this 
strategy, any neural network formulations can be transformed to the ones with convergence 
guaranteed. Finally, the local minimum limitation of Hopfield network is pointed out and a 
review on the existing solutions in the literature is given, including Simulated Annealing, 
Mean Field Annealing, Adaptively Changing Neural Network and Correcting current method. 

3.1 Mapping to Neural Network formulation 

To have a problem solved by recurrent neural network, we have to map it to a neural 
network formulation. A standard procedure can be followed. Firstly, identify the problem and 
try to define it using a mathematical programming model and a cost function defined within 
the problem domain bounded by certain constraints. The cost value associated with a solution 
is used to judge the optimality of the solution acquired. About the problem domain, the 
considered one is just the unit-hypercube, which is in fact a convex set. Through scaling the 
neurons' output, it can be extended to a hypercube with arbitrary length. ( Although there 
exists some methods, by which the problem domain can be restricted arbitrarily using both 
equality and inequality constraints [CS92] [AKH92], they will not be considered in our study. 
)This problem formulation step is the most important and difficult one as it requires 
conceptual understanding of the problem and ability to write it down using a reliable and 
objective mathematical programming model. Sometimes, the concept may not be so easily 
defined accurately and objectively. For example, the quality of a restored image is very often 
measured by mean-square-error {mse) with the original image. However, our subjective visual 
system may consider an image with greater mse to be of better visual quality than the one 
with smaller error. Consider, a 512x512 image with every pixel value shifted up by 1 and 
another identical image with just say, twenty salt and pepper noise added. The former one 
definitely has a greater mse but the one with worse visual impression is obviously the latter 
one. 
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After the problem is properly defined, select a proper network configuration according 
to your own need. For examples, for problems with solutions inside the interior of unit-
hypercube, we may need a network configuration with neuron's transfer characteristic of 
continuous type, like sigmoid model. If in some cases where computational complexity is 
important, Park's model can be used instead of sigmoid's (Refer to Section 2.2.1). However, 
if existing configurations can't fulfil your requirement, we have to derive a new one. For a 
new network conftguration, you have to perform convergence analysis to study the network's 
stability and this may require great work load! Then, to obtain the optimal solution with the 
help of the chosen recurrent neural network, we have to map the problem to neural network 
formulation. 

If the problem is of continuous type, the mapping is as straight forward as comparing 
coefficients between the cost function and the generalized Hopfield energy function; then the 
connection weight matrix and the external bias of the network can be defined accordingly. 
However, so far，Hopfield network is only used to solve continuous convex quadratic 
programming and due to the problem's specific nature, the network can always converge to 
global minimum. For higher order cases, only sub-optimal solution can be guaranteed and 
probably, that's the reason why Hopfield network has not been used for solving continuous 
higher-order programming and we don't consider this situation in our research. 

If the problem is of combinatorial type, more have to be considered. If the 
combinatorial problem is quadratic, then the connection weight between 产 and 产 neurons, 
Tij will be defined by their cost contributed to the Hopfield energy when they are activated 
and form a part of the solution. This step is not much different from the one for the 
continuous optimization. However, as the problem is of combinatorial type, solution must be 
equivalent to a meaningful combination. As in most of the situations, we are interested in the 
best combination of fixed number of activated neurons, Hopfield network with such a 
connection weight matrix is not sufficient to obtain a desired solution. 

Let's assume that the energy term to be optimized is always positive. (This is in fact 
a very common fact, eg. mse ) If the network dynamic is to bring the associated Hopfield 
energy to a minimum state, obviously the state with all neurons inactivated will be the 
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solution, ie. JCi = 0 Vi, where jCj is the state variable of 产 neuron. However, this is definitely 
not a meaningful solution. In most of the situations, we are interested in the best combination 
of fixed number of activated neurons. So, we have to force the network to make decision 
instead of just stopping at a all-zero state. With the objective of getting a valid and 
meaningful solution, an additional energy term is then necessary to impose a hard constraint 
to the neural network. To illustrate the concept, let be the energy to be optimized and 
EhaniOd be the additional energy term for hard constraint. An overall energy term can be 
defined as: 

EJx) = EJx) + X E^Jx) 

where E^ardM is formulated such that 

F , . J = 0 ,when x is a valid solution ^hardW 0 ,Otherwise 

The constraint X has to be chosen such that X Ey^̂ Ĵ x) » E^pjix) whenever x is corresponding 
to an invalid state, all the minimum states of E îJix) will be equivalent to those of 
subjected to the hard constraints. This fact is also true for E��人x) being not always possible 
as long as X, is large enough. Such a method is commonly used in mathematical programming 
for changing a constrained problem into an unconstrained one and is known as the penalty 
method. According to the term X E—(x)，another connection weight matrix can be defined. 

The following stage is obvious that proper weighting, ie. X, between the two 
connection matrices (or the energy terras) has to be determined in a trade-off manner. As the 
energy term for the hard constraint must be satisfied or the solution will be meaningless, of 
course X must be relatively large enough. However, if this weighting is too large, the quality 
of the solution will have to be sacrificed. So how to set the optimal weighting is itself not an 
easy problem and is problem dependent. A lot of researchers fixed it by trial and error while 
some spends a lot of effort to perform analysis to determine the value for just a particular 
application [ANF90] [CMS91]. Recently, a Lagrange Programming Neural Network [ZC92] 
is proposed where the weighting, which is also very often named as Lagrange multiplier, is 
obtained dynamically by the network. The robustness and adaptability advantages make it a 
very promising solution for fleeing from the optimal weighting determination. However, in 
this project, this network model has not been tried. 
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Before proceeding to next section，it's worthwhile to point out the step of determining 
the energy term for the hard constraints. Travelling Salesman Problem (TSP) can be 
considered as the first NP-completeness combinatorial optimization problem mapped to neural 
network formulation by JJ.Hopfield [HT85]. A lot of follow-up work proves that the network 
very often converges to an invalid solution no matter how you adjust the weighting for the 
different energy terms [WPS 8]. In fact, the penalty energy term, adopted in [HT85], composes 
several hard constraints. Each has its own constrained solution space. The intersection of the 
constrained solution spaces is the space for valid solution. Setting the weighting among the 
constraints such that the converged solution of the network is valid, is found to be not so 
straight forward. Aiyer et al. [ANF90] performed an eigenvalue analysis and in fact 
reformulated the energy term before a valid solution can be guaranteed. This is an 
discouraging fact as so much effort is necessary to guarantee just valid solution while we are 
in fact expecting the optimal one. Instead of performing involved analysis, it would be nice 
to have a simple guideline to write the energy term for the hard constraints such that it 
confines the space for valid solution directly. 

For example, let's consider our old TSP problem again. The solution is represented 
by a matrix of neurons state variables {v,�} with possible state value equal 0 or 1. The change 
of the denoting variable from x to v for the neuron state is just for the sake of sticking to the 
one used in [HT85]. Row index stands for different cities and the column index stands for the 
sequence of reaching a particular city. The energy term for the hard constraints, Ef̂ ^̂ Jy) is, 

A E E E + B E E E ^ . ^ . - + c ( E E ^ . - N f ..(3.1) X i^j x^y i X i 

For the first two terms, whenever there is more than one neuron activated for each row 
or column, the first or second term will be greater than zero respectively. Thus, they constrain 
the solution to each row and column consisting of less than or equal to one activated neuron. 
For the third term, it is to make sure that total number of activated neurons being N, the 
number of cities or it will be greater than zero. If these three constraints are satisfied 
simultaneously, a valid path will be defined In order to enforce the constraints effectively, 
the corresponding energy terras have to be added together in a proper trade-off manner by 
setting the coefficients A, B and C appropriately. However, it's extremely difficult to set the -
coefficients such that valid solution can be guaranteed for most of the time. In fact, Wilson 
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& Pawley [WP88] found that just around one percent of the network converging trials can 
give a valid solution. A lot of converged states are in fact invalid solutions, which is mainly 
due to the improper formulation of eqn. (3.1). 

Instead of tuning the set of weighting to obtain a proper formulation, in fact, we can 
modify eqn. (3.1) to eqn. (3.2), 

..(3.2) 
\ ‘ ^ JC i 

The first and the second term are corresponding to the constraint of each row only 
consisting of one activated neuron and that of each column only consisting of one activated 
neuron. It's obvious that the importance of the two constraints are of equal rating and also 
due to their expressions' similarity, the weighting for each of them can be simply set to 1. 
And then, for large enough A, the valid solution can be guaranteed easily without the 
troublesome parameters tuning. 

So, in determining the formulation of energy term for the hard constraints, try not to 
use the one with several terms inter-related with one another as eqn.(3.1) such that careful 
relative weighting tuning is necessary to allow the valid solutions to coincide with the local 
minimum states. This will generate a lot of unfavourable local minimum states in the space 
belonging to invalid solutions. 

3.2 Network stability verse Self-reinforcement 

After properly mapping a problem to the neural network formulation, the problem will 
then be fed to a neural network black box and one would expect that the optimal solution can 
be obtained in real time. Unfortunately, we are still far from this goal. Certain primitives 
which are also important properties of the neural network have to be well studied before the 
development can be proceeded. Stability consideration is an example. For discrete version of 
Hopfield network, the condition for network stability is symmetric connection weight matrix 
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with non-negative diagonal elements as stated in Theorem 2.1 in Chapter 2. However, this 
rule is easily violated during practical applications. Consider a constraint for only one neuron 
being activated among n neurons. The corresponding energy term can be written as, 

n 

E = ( J ^ x - 1 
1=1 

By comparing with the Hopfield energy expression eqn.(2.4) stated in Chapter 2, the 
diagonal element of the connection weight matrix should equal -2. The stability condition 
requirement is broken. This is consistent to the experiment done by Wilson and Pawley 
[WP88], viz. the Hopfield network for solving TSP doesn't converge very often. From eqn. 
(3.1)，it is easily noted that the diagonal element of the connection weight matrix (self-
reinforcement weighting) equals -C. This account for the nonconverging cases. Even if with 
our modification, and eqn.(3.2) is used instead, the network instability remains. Some 
researchers solve the problem by adding energy difference calculation. In fact, the instability 
problem can be easily solved by a simple strategy, named here "reshaping strategy". In the 
coming section, we will describe the strategy and explain why it works by simple geometric 
analysis of the energy profile. Then, we extend the strategy from quadratic to higher-order 
cases. With the generalized reshaping strategy, any formulation of generalized Hopfield 
network can be transformed to one with convergence guaranteed. 

3.2.1 Quadratic problem and Hopfield network 
We will consider the quadratic case first. Based on Theorem 2.1, to ensure the stability 

of Hopfield network, two conditions have to be satisfied: 
i) Symmetric condition, T- = 7}�: 

For a quadratic problem, 

2 = E E w ； - 1 ..(3.4) ‘ j i 
it's well-known in linear algebra that eqn.(3.4) can be written as, 
where A' is an nxn symmetric matrix, with Q remaining unchanged. The symmetric matrix 

pg. 2-6 



Recurrent Neural Network for Optimization with Application to Computer Vision Chapter 1 

Q = + B-x -(S-S) 

A' can be obtained by averaging and can be expressed as: 

a卜 •.(3.6) 

ii) Diagonal element non-negative, T;; > 0 : 

An easy and sufficient way to ensure this condition is to reformulate the Hopfield 
network connection by removing the T^ connection but an equivalent term, TJ2 is added to 
the bias term, The process may be appreciated from a geometric perspective. 

At a particular instance, in the 
asynchronous model of Hopfield network, say, dE / 
the 严 neuron is being updated. If Fig, - - ~ 

dXi i 3.1 depicts a typical plot of the corresponding / A j 

, Z / / L 一丄 

Hopfield energy verse the state variable of f I / / 
neuron, x,. This is the case that will lead to ^ jg , , / 
network oscillation. When = 0, referring to dxj^ Xi=0 j v / 
the gradient direction, the network will drive ！ 
Xi to 1. When jc, = 1，the network again will “� 
drive Xi to 0. So, the restriction T- > 0 is to 0 X i 1 
avoid this situation from happening. -：：： — r ^ “ T r n 

Figure 3.1: Hopfield energy plot for Tu < 0 
Suppose now, if we can fit a straight line through the points ( 0石(jc尸0) ) and ( 

l,E{x=l)) The gradient of that line then will provide the right information on which state has 
lower energy and therefore it is desired to reshape the energy profile this way. Instead, we 
can make such a modification to the Hopfield energy function by letting xf = x!, and based 
on the assumption that each neuron only takes on the value of zero or one. For the original 
Hopfield energy, 
Applying the proposed modification, a new energy function, Ê  is obtained. pg. 2-7 
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丑 = - y E E V i � - - ：̂仏 ..(3.7) 

/ \ 

E = - 1 T T T..X.X. - J： I.+IiL X, ..(3.8) r o Z^ ij I J I o ‘ 2 的. I ^ J 
Now, the modified Hopfield network has zero self-feedback connections and the non-

negative condition on the diagonal elements can always be satisfied. Note that the new bias 
for 产 neuron is now (/• + TJl). From eqn.(3.7) & (3.8)，it is obvious that E and E, will take 
on the same value when �{0，1} and E^ is linear with respect to x̂ . Thus, the modification 
xf = Xi leads to a straight line approximation, which is in fact the desired shape for the energy 
profile. As the energy profile has been reshaped, this strategy is named as reshaping strategy, 

3.2.2 Higher-order case and reshaping strategy^ 

Hopfield network only deals with quadratic problem. If we intend to solve higher-order 
problem, obviously generalized Hopfield network is required. Recall from Chapter 2, Section 
2.4 that energy function corresponding to generalized Hopfield network is, 

« "一丄 、 ..(3.9) 

-飞 E E v - - 二 

The network updating rule is given by, 

L “ � ..(3.10) 
…… 

given the value of T.. . is independent of the ordering of the index for k=\ to n. For 
hh—'t 

example, for /:=3, the ordering independence implies T123 =[幻=T223... . This condition is 
analogue to the symmetric requirement on the Hopfield network's connection weight matrix. 

1 This work has been submitted for consideration towards presentation in IJCNN，93 
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To achieve this condition, averaging process can be performed and is expressed as follows: 

Let <ij,....,ip> be the set containing all possible permutations of p chosen neuron index. 
y s : s e <i 广…’ ip> & V;7:0</7 “ 

E T ， ...(3.11) T (new) _ T _ s ^ <'r••••, 
‘“…’�-<'�’ �> ‘ size(<i，…”ip>) 

As the energy function is now a 
higher-order polynomial, the shape of the 

/ d X i 
energy profile is governed by a lot of J^V r— 
coefficients and can be very complicated. Fig. Z 一一一 
3.2 shows a typical example. Definitely, ^ ̂  - - ' " ' 7 
updating rule based on eqn.(3.10) will not be * d l N l / 
a correct one in judging which state of the / J (Jxj Xi=0 
neuron has a lower energy value for such type 
of energy function and thus the convergence 0 X j 1 
cannot be guaranteed. We propose to apply 

Figure 3.2: Energy plot for 
the similar reshaping strategy as to the higher-order network 
Hopfield energy function by letting x产=Xj for 

k being an integer. The energy function eqn.(3.9) will become ( Appendix in )， 

^^ •— ŷ • • • • T* • . jc. jc • • • • . 
” yy ̂  ^ ^ h '2 

ij 类 jj …•？ti” n-1 «-m+l ^ ‘ («-!)! 1 
“S^；：：? 5 5 . … £ " ^ " -”人；…八：^‘“^：枯…、 

- J ^ y y . . , . y T . . x.x..…x 
n-2 , , n-2-yX n-2 n-m "-m+l-X, ^ (« -2 ) ! 1 

S _ V v....八;!!’'�” 
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1 ̂ ^̂  I ^ rrr 1 ！ 1 rr* 
- 一 》 > T.. X. X. - > • T. x. 

' 丨 今 0! 2! ‘山‘丨 -

- E ..(3.12) 
where T ] � � . � i s connection weight with \ index i” followed by index i�’ ....followed 

m-1 
by K index & 八二= 一 入： 

Z=1 

By grouping the terms with same number of variables, Ê  becomes, 

E 一 一 —• X • •• • X T*• • _ X' X' ••••X' 

f \ 

V y 

/ \ J-2 
, . . ^ k-i-yx 

1 n k-j+1 台：（it-1)! 1 
- - j Y l T i i � + [ [ [ . … [ . . 1 、 | ~ ： ~ — A 〜 J ‘ … ( / - I ) ! 入 1!.…入 ' ” ― 1 ‘ 

V J J 
/ \ 

- E + i + + i X • 糊 V ' 2 3 n ‘ V y 

which determines the connection weights of the "reshaped" network. According to eqn.(3.13), 
it is noted that every terms in is linear with respect to x̂  and partial derivative of Ê  with 
respect to x̂  will then be independent of x-̂ . Therefore, imposing our strategy leads to an 
approximation of energy profiles by straight lines as illustrated in Fig. 3.2. The "reshaped" 
network can now be guaranteed to converge towards a local minimum situated at the comers 
of [0，l]n hypercube according to Theorem 2.4 in Chapter 2. 
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3.2.3 Numerical Example 
The reshaping strategy is illustrated through a numerical example. Assume a 

combinational programming with the function to be optimized being defined by, 
f{x) = axlx^ + bx^x2 + cx^xl + dxf + ex�+ fxf + gxl + ix^ + jx^ ..(3.14) 

Obviously, it's a higher-order problem with 2 independent variables. According, a higher-
order Hopfield network with two neurons of McCulloch and Pitts' model is required. 
Comparing with generalized Hopfield energy function eqn.(3.9) and applying eqn.(3.11), the 
connection weight assignment can be obtained as eqn.(3.15). 

= Tf A = (-4)1 = -a 
土 各 1 1 1 2 4 

1121 
1211 
2111 T = V 乂 h -2h in ^^ T,^. = Tfn22\ = ( - 4 ) 4 = = - 3 c : -1212 O J T O < 
1221 7 = -Zf ( 3 1 5 ) 2211 rr /•) .A-J-AJ； 
2121 = 一2 容 
2112 T . 

� J c A = 
Tn^ = T f ”（-4)4 = _c J : . 1222 4 2 J 2122 

2212 

Following the reshaping strategy of eqn.(3.13), the new connection weight assignment 
is, 

ijf ’ 3 ！ 1 fjf + 3! 1 Fjf + 3 ！ 1 rjf 
_ (2-1)! 3!1! + (2-1)! 3!1! + (2-1)! 2 ! 2 ! ‘ � 

3 rri rrn 口 rj-» = + + 

= - ( a + Z? + c ) 
T T 

" = A + + + 子 = _ ( / + / + … 

I, = - { j .g . e ) ..(3.16) 
and the corresponding energy function is, 

E^ = ( a+^+c ) x^x^ + ( d+f+i + ( e+g+j 
which is identical to the original function, eqn.(3.14), with ；ĉ  being replaced by x. Fig. 3.3a-b 
illustrate the original and reshaped energy profiles. It can be noted that all the rippling 
features are removed after the reshaping step. 

pg. 2-11 



Recurrent Neural Network for Optimization with Application to Computer Vision Chapter 1 

IWl I"-'! 

Fig 33a: Energy Profile Fig. 3.3b: Reshaped Energy 
without reshaping Profile 

33 Local minimum limitation and existing solutions in the literature 

After going through the neural network formulation procedure described in Section 3.1 
and performing the reshaping strategy in Section 3.2, what we have now is a proper neural 
network formulation describing the problem and the neural network with the corresponding 
formulation will converge to a stable state, which is equivalent to a local minimum state and 
representing a valid/meaning solution. The most undesirable wording of the above statement 
is "local minimum". In fact, the neural network formulation we adopted here will result in an 
energy profile with a great set of local minimum states. Among all of them, only a small 
amount are corresponding to the global minimum states. In order to yield the optimal solution, 
the initial state of the network has to be put near enough to a global minimum state. 
However, Hopfield network was proposed with the intention of providing an optimum seeking 
method without a prior knowledge on the problem itself. So, we should have no idea of where 
to put the initial state and thus the optimal solution can't be guaranteed. 

To escaping from the local minimum state, existing solutions in the literature can be 
categorized into two main streams. One stream solves the problem by using stochastic means, 
like Simulated Annealing while the other stream modifies the Hopfield energy profile, like, 
Mean Field Annealing, Hardware Annealing, Adoptively changing neural network and 
Correcting Current Method. 
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3.3.1 Simulated Annealing (SA) [KGV83] [HSA84] 

Simulated Annealing method applied in optimization problem is originated from 
statistical mechanics. Statistical mechanics is the central discipline of condensed matter 
physics, a body of methods for analyzing aggregate properties of the large numbers of atoms 
to be found in samples of liquid or solid matter. Viewing the atoms as a system, each 
configuration, defined by the set of atomic positions, { r j of the system is weighted by te 
Boltzraann probability factor, exp(cE{{r-})lk^T), where £({r j ) is the energy of the 
configuration, k^ is Boltzraann's constant and T is temperature. The probability distribution 
of different configuration's energy is shown in Fig. 3.4. It has been shown that to have a 
configuration with lower energy state, the temperature should be low. 

In practical context, low temperature alone is not a sufficient condition for finding 
ground states of matter. Experiments that determine the low-temperature state of a material, 
for example, growing a single crystal from a melt, are done by careful annealing, first melting 
the substance, then lowering the temperature slowly and spending a long time at temperatures 
in the vicinity of the freezing point. If this is not done, and the substance is allowed to get 
out of equilibrium, the resulting crystal will have many defects, or the substance may form 
a glass, with no crystalline order and only raetastable, a locally optimal structure (local 
minimum state). 

P(E) 1.2 

1 K 
\\\ T1>T2>T3 

mK 

n "••••• 一 — 

oi 一 E 

Figure 8,4: Probability distribution of different 
system configuration at different temperature 
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To apply the concept to solve Hopfield network's local minimum problem, a stochastic 
neural network model can be adopted and the neuron's transfer function will then be, 

1-jc广 if5H<0 
xr = I l-Jc广 if 5H > Q 8c e < Qxp(-bH/T) 

xfd if otherwise 

where = - ^ T.pcf' + 7. ( l -2x?) ’ 
- j . 

T = annealing temperature 
e = a random number between 0 and 1 
Tij = connection weight between 产 and 产 neurons 
Ii = external bias for 产 neuron 
jc, = state variable of 产 neuron 

At the very high temperature, the dynamic of the network will become almost like a 
random walk. As temperature decreases, the probability that the dynamic of the network 
follows the gradient information of the Hopfield energy profile increases. The network will 
change back to a gradient system when the temperature is sufficiently low. If the cooling 
schedule is slow enough, it can be proved that the global minimum state can be obtained in 
infinite time. However, the main disadvantage of Simulated Annealing is the extensive 
computational time. Using a faster cooling schedule will sacrifice the quality of the solution. 
Nevertheless, still a lot of researchers [Hua92] [WZX92] [TGD91] use it when optimal 
solution is wanted. The main reason most probably is its simplicity. If we can tolerate waiting 
for a really long time, setting a very slow schedule, then the system can converge to a 
solution very close to the global minimum state. To be a wiser user, the cooling schedule can 
be set wisely according to the problem, eg. starting the process at critical temperature when 
the network almost starts to be dominated by the gradient information instead of random 
walk. However, to estimate that critical temperature, analysis has to be performed and then 
the neural network is no longer an effective problem independent black box for optimization. 

pg. 2-14 



Recurrent Neural Network for Optimization with Application to Computer Vision Chapter 1 

3.3.2 Mean Field Annealing (MFA) [BMMS89] 

Mean Field Annealing is in fact a speed-up version of SA using mean field 
approximation，a simple approximation of the behaviour of system particles in equilibrium. 
For SA, at a particular temperature, we have to wait for a period long enough till an 
equilibrium is established and then the temperature is lowered again and another equilibrium 
has to be waited for. Using mean field approximation, this process can be approximated by 
a relaxation phase with the dynamic equation; 

d<u> 二 
L_ = y T.. <v > + /. - <u> dt U ' ' ' 

= [ 1 + exp( -<M>^^/ r ) ]-i 
where <x> stands for equilibrium average of the entity x, 

T is the annealing temperature, 
<v,> is the 产 spin/particle state average of the system, 
<M:> is the mean field affecting spin v,. 

There are two interesting findings. Firstly, the relaxation phase is much faster than SA 
to come to equilibrium. That's why MFA is a speed-up version of SA. Secondly, the 
relaxation phase dynamic equation is exactly the same as that of continuous Hopfield network 
with gain varied by the T parameter. The analogy is revealed in Table 3.1. 

MFA Algorithm Hopfield Neural Network 
The mean field The neuron input 
The spin average The neuron output 
The Boltzmann The sigmoid amplifier 
probability 

Temperature Reciprocal of neuron gain 

Table 3,1: A Comparison of quantities found in Hopfield Network and MFA Algorithm 
So, the cooling schedule becomes a schedule for varying the neuron gain and the 

whole system can be implemented by a continuous Hopfield network. The concept of varying 
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the neuron gain to improve the quality of the solution obtained by Hopfield network has been 
mentioned by JJ. Hopfield in 1985 to solve TSP. But the relationship with mean field theory 
was firstly drawn in [BMMS89]. Also, Lee et al [LS91a] suggested a scheme called 
Hardware Annealing, which is basically the same as MFA. 

The MFA model mentioned above is the most original one. There is a variation of the 
model proposed in [PS89], which can enforce.some exclusivity constraints without using 
penalty method in the problem formulation step. The modification is as simple as introducing 
normalization division operation among a group of neurons where only one of them is to be 
activated for a final valid solution. Besides, critical temperature can also be estimated to cut 
down the converging time by similar argument mentioned for SA. This algorithm has been 
applied to solve graph partition problem [BM90]. Although it has a lot of advantages, it 
remains to be an annealing based one. Cooling schedule determination and critical temperature 
estimation are all problem dependent, the same drawback of SA. 

3.3.3 Adaptively changing neural network [XT91] 

The intuitive idea of this algorithm is just filling up the local minimum valley. To 
have this being done, a higher-order terra which will have a large value only at the local 
minimum state is added to the Hopfield energy. As it is a higher-order term, generalized 
Hopfield network model is necessary. Consider a network with ten neurons and the local 
minimum state to escape is {1010011001}. Then the energy term to be added is kxjx^x^yxjo 
where k is a large enough constant determined heuristically. The number of four-order 
connection needed will be of 0(5!). So, the network's associated energy profile, and thus the 
structure is changing adaptively during the optimum searching process. As the number of 
connections to be added during the course of searching is large and unpredictable, this 
algorithm is only suitable for the type of the problem formulation used by Xu, where a prior 
knowledge on the type of local minimum states is used during the algorithm derivation. So, 
this is not a generic solution as the previous two. 
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3.3.4 Correcting Current Method [LS91] 

Xu et al，s adaptively changing neural network modifies the energy profile by higher-
order term so that the local minimum valley can be filled. With a similar concept, Lee et al. 
[LS91b] suggested using correcting current method to fill the valley. Although the energy 
profile and thus the network architecture has been modified, its order remains the same. This 
simplicity makes this algorithm very attractive. However, to derive the correcting current 
terras, a prior knowledge on the local minimum states is again necessary. Although Lee et al. 
successfully built a neural-based AD converter hardware with global minimum guaranteed, 
for much more hard problem like TSP, where we have not much knowledge on the local 
minimum states, determination of the correcting current terra will become very difficult. Lack 
of easy generalization of this method is its main shortcoming. 

3.4 Conclusions 

The procedure of mapping a problem to neural network formulation is discussed and 
the guidance on how to introduce hard constraints into the formulation to avoid converging 
to some invalid state is described. Moreover, we proposed a "reshaping strategy" which can 
be used to transform any neural network formulation to a proper one such that convergence 
can always be guaranteed. Lastly, Hopfield network's local minimum problem is addressed 
and some existing methods with the ability to escape from local minimum are discussed. 

Among the suggested remedies for Hopfield network's defect in the literature, MFA 
is recognized as the most effective and successful one so far, due to its reduced computational 
time compared with SA and problem-solving generality. However, it has to be accompanied 
with the step of getting a proper cooling schedule and estimating critical temperature for a 
particular problem. As this requires some advanced knowledge on the topic, MFA is not so 
easily plug into an application if ones who want to use it are lack of annealing background. 
In the following chapter, we propose a novel neural network, named Tunneling network with 
capability of escaping from local minimum to seek the optimal solution. Instead of following 
the old annealing method, a well-known global optimization technique called tunneling 
algorithm is adopted. This is a completely new approach to solve the local minimum problem -二 •：： 
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of Hopfield network and no advance knowledge is necessary for using it，which makes it a 
very handy tool in our neural network toolbox. 
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Chapter 4 A Novel Neural Network for Global Optimization 
-Tunneling Network 

In this Chapter, a novel neural network with seeking optimal solution capability is 
proposed. The intuitive idea is originated from a well-known global optimization technique 
called "tunneling algorithm", which escapes from the local minimum state by adding pole 
there so that the nearby barriers can be tunneled through to seek a better solution. We will 
first describe the original tunneling algorithm in Section 4.1 and then in Section 4.2，a 
proposed tunneling network, using pole shifting technique, will be described with analysis on 
network stability and global convergence property given in Section 4.3. The effect of varying 
the pole expression is studied and another Tunneling network, which is adaptive in nature, 
is proposed in the subsection 4.3.3.3. Simulation experiments are performed for the efficiency 
and effectiveness comparison with Simulated Annealing using TSP as the benchmark test. 
Promising results are obtained. Furthermore, for the enhancement of the proposed network's 
performance, a network decomposition strategy is attempted with two different partition 
schemes. All the results will be illustrated in Section 4.4. Lastly, suggestion on hardware 
implementation of the two proposed Tunneling networks are given in Section 4.5. 

4.1 Tunneling Algorithm: 

Tunneling algorithm is one of the algorithms using penalty : methods for global 
optimization. 1-dimensional version of the algorithm was first proposed by A.V.Vilkov et al. 
[VZS75]. Later on, A.V.Levy et al. [LM85] named it "Tunneling" and generalized it to cover 
also the multidimensional case. 

4.1.1 Description of Tunneling Algorithm 

Tunneling algorithm consists of two phases, namely, minimization phase and 
tunneling phase. The two phases are used sequentially to approach the global minimizer of 
fix), the function to be optimized. In the minimization phase, for a given starting point j f , any 
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minimization algorithm with a local descent property on Jix) can be used to find a local 
minimum off{x), say at x*. Then, in the tunneling phase, an auxiliary function T(x) is defined, 
where T(x), the tunneling function, is a scalar function with continuous first derivatives, 
whose zero-set coincides with the set wherey(jc) =f{x*). The objective of defining the function 
is to seek a new point x。，starting at any point in a neighborhood of x*, such that < 0. 

4.2.2 Tunneling Phase 

The minimization phase can be achieved by any existing local minimization schemes, 
such as, gradient descent, conjugate gradient or Newton，s method. The most mystery part of 
tunneling algorithm is the tunneling phase. 

After the minimization phase, assume x reaches x* mdf{x*) is the corresponding local 
minimum value. The tunneling phase will then start to find a point g such that 

JU) <Jix) 

where Q is the domain ofj{x) 

f \ ^ Ĵ ...V 
• minimization 
• tunneling Fig. 4.1: Tunneling concept 

To illustrate the concept, suppose the initial point is ；c, as shown in Fig. 4.1. In 
minimization phase, the point will move until x!* is reached. Then, in tunneling phase, the 
tunneling path can be either T1 or T2 and { jCj/, x � � � } are the set of points targeted for. 
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When either of them is reached, switching back to minimization phase will move the point -
to X21 or ；C22*. And by repeating the process, a better minimum can always be found 
sequentially. 

To perform the tunneling phase, a tunneling function is defined. Before coming to the 
tunneling function used in the original paper, a simple example can be used to illustrate the 
main idea. In fact, tunneling phase of tunneling algorithm is achieved by pole-adding scheme. 
Say, X is a local minimizer of f{x). Adding a pole with a suitable strength to f(x) at x* can 
destroy the local minimum valley. Define an auxiliary function T(x) such that 

T ( x ) = 彻 - . . ( 4 . 1 ) 
(JC-,,(JC-JC”f 

The numerator is defined such that whenever T(x) < 0 is detected, the tunneling phase 
is finished, i.e. a better local minimizer has been found. The denominator is a pole at jc = x*. 
For the pole strength X, if fix) is polynomial, X can be set deterrainistically to half of the 
order of fix). If fix) is a highly non-linear function, like exponential, X determining step has 
to be done heuristically and it will be described later. 

if(x) • f(x) - jot ) 

I 

J j ^ j ^ jx* ^ ~o i? i i i 
Fig. 4.2: Function to be optimized Fig, 4,3: The corresponding tunneling 

function of Fig, 4.2 

After defining the key function for the algorithm, the basic idea of the algorithm can 
be well illustrated. Referring to Fig. 4.2 & Fig. 4.3，starting from a point in the neighborhood 
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of a local miniraizer jc•，performing local minimization or zero-seeking step on can : 
"tunnel" through the neighboring barrier oif{x) around x\ That's why T{x) is in fact named 
"tunneling function" and the algorithm called "tunneling". 

In order to cope with more generalized and complicated function, A.V.Levy [LM85] 
defined a much more complicated tunneling function, 

. = , 彻 " ( f ) 
T^i ^ "(4.2) 

n [ ix-x:nx-x：) [ { x - x j { x - x j t 
卜 1 ) 

The parameters to be determined for the tunneling function are [ /，{x*, i= 1，2, ... /)， 

(Th，/= 1，2,…/)，jc„̂ ，Xo,J{x*)] 

i) j{x*): With this parameter, we accomplish our objective of tunneling below irrelevant 
local minima even if we do not know how many they are nor their locations. 

ii) r|, and x : : ( /=1, 2, ... I ) 
1) assume there is one local minimum at jc,. Then the tunneling function is 

T , , M - fOO , * M ox T(x) - ,where x = x^ + 8 ..(4.J) 
[ ( x -x :nx -x：) t 

2) The correct value of \ is found iteratively. Starting from = 1, it is updated 
iteratively until • Aa: < 0 ,provided e^ Ax > 0. e is a random vector with 
|e|| « 1 and hx is produced by the tunneling phase such that TXx̂ +Ajc) < 0. 

A.V.Levy used Restoration Algorithm to produce it. 

If the above condition can't be satisfied, increase by AX-i until the above 
descent property is satisfied. Then, r|i is given by eqn.(4.4): 

pg. 2-4 



Recurrent Neural Network for Optimization with Application to Computer Vision Chapter 1 

0 (f Y > 1 + ê  

” . 人 1 i f ' … � ..(4.4) 

if 1 -e,<Y<l +e2 
where y = II x - x* || and e? is a small prescribed number. 

For some functions, the denominator might become very large when -
» 1，forcing the tunneling function to become very flat and close to zero and thus 
slowing down the convergence of the tunneling algorithm. That's why the switching 
operation is incorporated so that the pole far away from the current position is 
switched off. 

Region (a) : Pole with full contribution i 

Region (b) : Diminishing polejcontributi<>n 

Region (c) : Neglecting the poje 

I 
：孝 •» ：拿 

X - 1 X x + 1 
\ 、， A , A � ’ A \ / V I V 1 V 

(c) (b) (a) (b) (c) Fig. 4.4: Regions of pole contribution 

3) I is the number of local minima found at the fianctional level equal ^jc*). As 
long as a new local minimum found has a lower value than the previous one, it is 
reset to 1. 

iii) Determination of x„ and Xq： 
The main function of these two parameters is to cancel out any undesirable 

relative minimum that the tunneling function T{x) might have. When a local minimum 
is detected during tunneling ( The detection is achieved by changing sign of the 
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gradient of consecutive paths )，a moving pole will be assigned by eqn.(4.5). 

. X 4fi\x - x\\<l 
"一 je + (i-�);c ,if\\x - x\\>i 

..(4.5) 
，where 0 < £ < 1 such that \\x-x 11 < 1 ^ .. ftt 

X : present point 
X : previous point I I I I : * 

: i : : 

Xi-l Xi Xi+i 

Fig. 4.5: determine the local minimum in 
tunnelling phase 

For Xq, which determines the strength of the pole (x-xj^ix-xj, assume 
->jc. . Define u = If w > 0，retain the value of 

Otherwise, + AÂ^ until u > 0. 
To ensure x will leave the attraction basin of the detected local minimum, a 

heuristic rule was proposed : 
1) compute and Ax(0) for current value of Xq 

0 if Axm-MK) > 0 ,… 
2) = j ..(4.6) 

� 卜 0 if < 0 
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The features of the tunneling function can be summarized by the following diagram: 

for zero crossing detection 

. T W = 彻 - � r ) 

n k^ - - x n f \(x - x j ( x - x j f 
L , f 

-storage of current local 
‘storage of local minimizers with minimizer encountered 

functional value equal fix*) during tunneling and it's 
movable. 
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4.2 A Neural Network with tunneling capability — Tunneling network: 

To realize the tunneling algorithm, both minimization and tunneling phases have to 
be implemented. For minimization, generalized Hopfield network can do the job effectively 
until a local minimum state is converged. For tunneling phase, a new neural network model, 
which we name throughout the thesis "Tunneling network" is required. Before deriving the 
architecture of the Tunneling network, we have to specify clearly the network specifications. 

4.2.1 Network Specifications: 

5.1) Neuron model and the problem domain: 
McCulloch and Pitts neuron model is adopted and each neuron can only have 

state value in the set {0,1}. If the size of network is n, the domain of the problem 
solved by the network is the comers of the unit-hypercube of n dimensional. Thus, 
that is, only combinatorial optimization problem is addressed. 

5.2) Asynchronous updating: 
There is only one neuron picked up randomly and updated at a time. 

5.3) Hopfield network association and tunneling capability: 
Each tunneling network is associated with a generalized Hopfield network. The 

former one minimizes the tunneling function defined corresponding to the Hopfield 
energy function of the latter so that tunneling network should be able to escape from 
local minimum state of the associated Hopfield energy function to approach to a lower 
energy state. 

5.4) Hardware simplicity: 
The derived architecture should be simple enough to make the hardware 

realization possible. 

With the defined specifications, the architecture of the tunneling network, which is 
characterized by the network's dynamic equation (dynamic system theory) or updating rule 
(neural network theory), can be derived. For the updating rule of generalized Hopfield 
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network, as the required dynamic of the network is to minimize the corresponding Hopfield 
energy function, partial derivative information of the energy function is adopted. However， 
the convergence of the network can only be guaranteed with satisfaction of the conditions of 
Tii > 0 and = 7},- for a order Hopfield network. A simple reshaping strategy, proposed 
in Chapter 3，Section 3.2，can be employed to modify the shape of the Hopfield energy 
function and guarantee network convergence. The strategy can also be extended to w也 order 
Hopfield network. However, analogous strategy is not so easily obtained for tunneling 
network. So, instead of partial derivative, energy difference between adjacent states is used 
as the information for updating rule derivation. 

4.2.2 Tunneling function for Hopfield energy function and the corresponding updating 
rule: 

According to the specifications stated in the last section, certain simplifications on the 
original tunneling function proposed by A.V.Levy et al. can be made. 

C.l) Switching function of the original tunneling function for avoidance of slow 
convergence can be neglected as each updating step can only be one which is the 
result of S.l and S.2. 

C.2) To meet the specification of hardware simplicity, only the movable pole is left in the 
tunneling function. Whenever a local minimum state is found during the tunneling 
phase, simply shift the pole there. 

Based on the above simplification, the tunneling function we use is, 

Tw = A 

f m Y ..(4.7) 
I J 

where \ is the pole strength, E(x) is Hopfield energy function and ；c* is the latest found local 
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minimum state. 

Assume current value of ；c, is xf. Then, the other possible value of x! is l-x^. The 
tunneling energy difference due to the change in state value of the 产 neuron equals/ 

A r ( 礼 , 风 ’ 

- Eixn E(X) I . - E{x*) 

[ ( i r ‘） + [^-Xi-x-) te i^r^k) + [x'-xi) 
hti lati : V / \ / 

D k^i ‘ ‘ 
乂 乂 1 

- E (1厂义:)2+(1 -x:-xnA\E{x) I.-E(x*)) 
V '̂ J -- f \ 

= 1 ("Z y 则 厂 取 A x , . D tr ‘ . 
\ / ‘ V / 

卜 厂 ‘ ，」 

AE dE The validity of last step requires the assumption that ——=—which can be Ax. dx. 
achieved by the reshaping strategy proposed in Section 3.2. 

二去 众 - (l-2x:)[E(x)l-E(x*)) -Ax, "(4.8) 

assuming X = I, Ax. = (1 一 ; c 广 ） - x - = l-2x广 

The updating rule for the tunneling network then can be obtained as: 

1 A7(A:) means AT(x) evaluated for x. = JC广 
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L ‘ � "(4.9) 
p. 一 

k ox. 
• • 

where /；, is hard-limiting function and 1/D is dropped as D > 0. 

According to the rule eqn.(4.9), a Tunneling network can be defined. As we haven't 
put any constraints on the order of the Hopfield energy function E(x)，the network model is 
basically a generalized one in terms of network order. If a tunneling network is associated 
with an n也 order Hopfield network, its order is defined to be also n. 

The most important simplification we made here is assuming X = l , This simplification 
can make the updating rule simple enough for implementation,especially when hardware is 
taken into consideration. Albeit this may sacrifice its effectiveness, it's still a feasible way for 
escaping from local minimum state due to the moving pole. 

In the following sections, we will investigated the stability and convergence properties 
of the tunneling network and also will discuss more on the effect of varying the pole strength, 
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4.3 Tunneling network stability and global convergence property: 

Before studying the performance of a newly proposed network, its stability has to be 
guaranteed first. 

4.3.1 Tunneling network stability: 

In this subsection, we are going to show that Tunneling network is stable and will 
converge to a local minimum state. 

Let H" be the set containing all the comers of the close hypercube in R" defined by 
= { JC =�Xi,…JcjT € : Xi e {0,1}, /=1”..� } 

Definition 4.1: 
Neighborhood of a state, x, denoted by N(x), is defined as, N(x)三{ = (y!，…yjT 

G i f : II y - y' II1 = 1 }, where || a - b || 工 is the Lj norm between vector a and b. 

Definition 4.2: 

jc* is a local minimum point of a function, if V x € N(x*), J{x*) < J{x). 

Theorem 4.1: 
Tunneling network with asynchronous updating rule as eqn.(4.9) and neuron model 

being McCulloch & Pitts，will converge to a stable state, which is a local minimum state of 
the associated tunneling function, defined by eqn.(4.7). 
Proof: 

To prove the theorem, we first show that � < 0. Then, we prove that T(x) is At 
bounded below and the guarantee of network stability follows. For the stable state being local 
minimum state, we show it by contradiction. 
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Lemma 4.1: Show that •彻 < 0. 
Af 

Proof: 
Based on the asynchronous model assumption and without loss of generality, assume 

at a particular time, t, only 产 neuron with its state denoted by ；c； is to be updated. Let the 
current state value of x, equals ；c,. 

Then, the updating rule of the tunneling network is 

‘ ‘Ax,it) 
V / 

The timing parameter is introduced for the convenience of the proof. After updating 
based on the rule above, the change of x̂  can be, 

I 0 if x.(t+l)=x.(t)"…case I 
“ l-2x.(t) or 2x.it+l)-l_ if x.(t+l)^x.it)..…case U -

Case I: As jc, is not changed, 

明 = 标 、 

V ‘ / 

^ = 0 tst 

Case n： 

_ Ax.(̂ ) ~Er 

Ax 州 Ar 
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= • 1 L ta.f^t) Af 
- ( / \\ 

= A r _ • 2 1 一 f A r _ ) 
一 坤 ) A 玄 ‘Ajc.(?) ‘ L V V ‘ 7/ 

/ \ 
ATWO • ArWO) 

=一——sign ——--Li-
‘ V ‘ y 

= _ , 1 
Ax.(t) At 

Combining case I and II，it's proved that A取(,))< q h isx 
Lemma 4.2: The tunneling function defined by eqn.(4.7) with bounded \ is bounded below. 
Proof: 

Consider the tunneling function T{x), 

roc) = E(x)-Eixn 

jfc=i 
� m i n {E(x)-E(x*)) 

T~ > 
n max As E(x) is bounded below by, 

一 — • . 一 I I I I • M ^ y • 一 、 I • 

n ^ 'i'2."'” n-1 2 ^ : 
which is a finite value. It follows immediately that T(x) is bounded below. • 

By Lemma 4.1 and 4.2，thus T(x) is a Lypunov function and by dynamic system 
theory, the network converging to a stable point can be guaranteed. 
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Lemma 4.3: Stable states of a tunneling network are e q u i v a l e n t to the local minimum states 
of the network. 
Proof: 

Assume a stable state, say x** is not a local minimum state, ie. there exists some i such 
that T(x)l^c > or A r ( j c ) < 0. As the network will move to an adjacent state with 
lower energy, state value of jc, will change from jc/" to l-x' after updating, which contradicts 
the fact that x** is a stable point. This completes the proof of Theorem 4.1. • 

4.3.2 Global Convergence property: 

As tunneling is just an algorithm capable of escaping from local minimum state, 
convergence towards global minimum state can't be guaranteed within finite time. However, 
analogous to the annealing strategy [RV91], tunneling network can be proved to converge to 
global minimum in probability sense. Ahead of the proof, we need a stochastic model to 
represent the dynamic of the network. 

4.3.2.1 Markov chain model for Hopfield network 

Due to the fact that Hopfield network has the state set S with the states initially 
uniformly distributed and the transition property from one state to another is independent of 
the transitions beforehand, it can be represented by a markov chain as the stochastic model 
for analysis. [Ios80] 

Let the number of nodes of the network be n and the number of possible states will 
be 2°. Thus，the corresponding markov chain model (later named as Hopfield markov chain 
)will have 2° states. Throughout the whole subsection, the state set is denoted as X. The 
construction of the transition probability matrix is based on the fact that the probability of 
choosing one of the neighbors is Vn and the probability of acceptance of the updating 
depends on the energy difference. (See Fig. 4.6) It is defined in Definition 4.3. 
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Definition 4.3: Let N(Xi) = { x”’ ...，jc知} be the set of neighbors of state^ x̂ . 
Probability of transition from state Xi to Xj is defined as: 

L , if E(x) > E(Xj) and x. € N{x) 
p{x.，x)= “ 

0 ，otherwises ‘ -

pi^i, x) = 1 - Y,贼，ip 

where E(x) is the Hopfield energy of state x. 

For number of neighbors = 5， 

H O . 6 ^ ^ 
0 響 

•以I 
Local energy prome for The corresponding transition 

an arbitrary state probability Fig. 4.6: state diagram derived from energy profile 
4.3.2.2 Classification of the Hopfield markov chain 

As it's known that whenever a local minimum state is reached in Hopfield network, 
it will get stuck at it. Let X* = { x : } be the set of local minimum states. The above fact can 
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be rewritten as: 
，x ) = 1 for X. € X* 

and thus the local minimum states are equivalent to the absorbing states of the Hopfield 
Markov Chain. 

Existence of absorbing states implies that Hopfield markov chain is absorbing. As 
Pi^i^) - 1，the corresponding transition probability matrix is stochastic. Without loss of 

i 
generality, number the states in such a way that the absorbing states are numbered first and 
then followed by the transient states in ascending order of Hopfield energy value. The 
transition probability matrix, denoted as P，will then be of canonical form: 

"I O “ 
p = 

_R T _ 

(Ml) 
where I is the identity matrix, 

O is the zero matrix, 
R is the matrix comprises the transition probability from transient states to absorbing 
states, 
T is the matrix comprises the transition probability from transient states to transient 
states. 

The global minimizers will then be at the top of the state list. 

To calculate the probability matrix A = { aix^^*) } which comprises the probability 
starting at transient state x^ ends up at absorbing state x*, first generate the fundamental 
matrix, N of the associated markov chain as eqn.(4.10) and A matrix is then calculated by 
eqn.(4.11). 

N = {I -T)-' ..(4.10) 
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A = NR ..(4.11) 

4.3.2.3 Markov chain model for tunneling network and its convergence towards global 
minimum 

In the following, the perspective of viewing Tunneling network as another markov 
chain is adopted and a transition probability matrix for each tunneling phase in averaging 
sense is established. It reveals that tunneling phase can be modelled by an ergodic markov 
chain and the global convergence property can be investigated based on the model. 

For Tunneling network, the lastly found local minimizer, say x^ (the J^ element in 
the local minimum state list ) in minimization phase will become a pole, ie. the transition 
probability matrix of the Hopfield markov chain will be modified as: 

p{x：，；c；) = 0 & pOc:，；c,) = 1 for X戶N(x:) "(4.12) n 

The transition probability matrix then becomes: 

PT= 
T L r T 

(M2) 
where is equivalent to identity matrix I，except the k也 diagonal element being zero 

Ok，is equivalent to zero matrix O, except the k也 row being not all zero. 

The markov chain with transition probability matrix, P j is describing the state 
transition phenomenon for a particular pole location. However, the pole is migrating during 
the tunneling phase. Thus, Pj- will be varying. So, Pt is not a good stochastic model for 
describing the tunneling phase. However, we can use it to construct another markov chain to 
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model the whole tunneling process. 

Consider a markov chain with the state set being X*, As Transition from state x* to 
x* is only defined by From matrix, we can obtain the transition 
probability starting from x* and terminating at x f , when the pole is atx*. Thus, based on the 
defined transition probability, a new markov chain is established. Whenever the network 
jumps a state, the pole will move to that state. So, this markov chain, named "tunneling 
markov chain", has the transition probability matrix, defined by the formula, 

= \pole = V 

As tunneling markov chain with ：太•，{ jc/ € V j右i } are the only absorbing 
state, 

E 以 = 1 
XJ£X' 

Therefore, is a stochastic matrix with only ^(x*^*) = 0. All the other elements 
are positive. 

It is easy to observe that for size of X* > 3, T'̂  is a regular^ stochastic matrix as all 

the elements of T^^ are greater than zero. By the theory of markov chain� [Ios80], 7^” will 
converge to a limiting probability matrix as n tends to infinity. Thus, tunneling markov chain 
is ergodic and all the states are recurrent states, ie. prob. that each state being reached for 
infinite time is 1. In other words, global minimum state being one of the recurrent states must 
be reached for sufficiently long time. Although the proof is in fact quite trivial, the tunneling 

2 p is a regular matrix if there exists n st. P > 0, ie. every element of P is positive. 

3 If P is a regular stochastic matrix, then P° converges as n -» <» to a positive stable stochastic matrix n 
= e TĈ  where e = (1’1,1...1)丁，E jq = 1 and Ttj > 0 V i. 
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markov chain framework can allow us to study the stochastic property of tunneling phase very 
effectively. 

Lastly, the cases with size of < 2 haven't been treated. For size ofX^= 1, tunneling 
is not necessary as global minimum state can be found by any local minimization technique. 
For size of = 2, 

一 MMM 「 • 

•7j-2fl+l _ 0 1 _ 1 0 
^T = 1 0 = 0 1 — J L — 

Thus, it's oscillating. In fact, when the pole is added at one local minimum state, the 
probability that the only other local minimum state being reached is one. Therefore, global 
minimum state can be reached by just one tunneling transition without any pole moving 
required. 

4.3.3 Variation of pole strength and its effect: 

Variation of pole strength of tunneling network can affect the network's tunneling 
capability, or in other words, local minimum attraction basin destroying ability. To understand 
whether an added pole can completely destroy a local minimum attraction basin of the 
Hopfield network function, the profile of the energy function has to be investigated. Aiyer et 
a/.[ANF90] and C.Chuan et a/.[CMS91] performed analysis on the characteristics of the 
Hopfield energy profile for Travelling Salesman Problem(TSP) and Dynamic 
Programming(DP) respectively. However, there is an intrinsic difference between their 
analysis and the one we performed here. The solution space or the domain of the network 
studied by Aiyer et al. and C.Chuan et al. is the unit hypercube, H" where HJ' = {x = {xj, 
....;c„)T € : 0 < < 1, /= 1，.... n } while the space we are investigating is ^ = { x = (xj, 
....x„f e JR" : Xi = {0,1}, i= 1, .... n }. 
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. ‘ , . . . « 4.3.3.1 Energy Profile analysis: 
For typical Hopfield energy function, E{x), according to Section 3.1，it can be divided 

into two terms, one is the cost for optimization and the other is the cost for the constraints. 
This is just the penalty method well-adopted for transforming a constrained optimization 
problem to an unconstrained one. 

Let El{x) denote the cost for the constraints, 
E2(x) denote the cost for optimization & 

is the trade-off weighting for the two costs. 
E(x) = EI(x) + E2(x) 

Although, we can have unlimited forms for the constraints, the most common one used 
so far are: 

Ti) xjc. - preventing more than one neuron being active for a 
‘ j group of neurons. 

/ _ \2 ensuring n neurons being on for a group of 
7 . ^！ 一打 

‘ neurons. 

Constraints with the form 77 must go with those of the form T2 as the former ones 
just standing alone will very easily yield a solution with all zero for x. Furthermore, in fact, 
the constraint with the form T1 is somehow reductant and can be replaced by T2 form. 

Consider the example by C.Chuan et al [CMS91]. The cost for the constraints is 

S i j s I 

where s is the index for stage and ij are the index for nodes per stage. 

The first term is to prevent more than one neuron being active for each stage of the 
DP network while the second one is to ensure only n neurons are active for the whole 
network. In fact, the whole statement can be rephrased to be simply only one neuron is active 
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for each stage of the DP network and the corresponding cost term can be, 

mx) = i:(I：艾si - 1 ” 
J \ i I 

which is summation of the costs with form 77. Thus, by the above argument, analysis of the 
constraints with only the form T2 is sufficient and generic enough for most of the problems 
and thus will be the only form investigated throughout the analysis. 

Definition 4.4: 
V is the set of valid states and defined as y = { x={xi, ... jc„} € H" : ^ Xi = n }. 

i 

Thus, Vis a subset of IT and ETW will be the set of invalid states. 

Definition 4.5: 
L is the set of local minimum state and defined as L = { x={xi, ... x j e /T : ;c is a 

local minimum state* }. 
Proposition 4.1: 

For sufficiently large Wĵ ^̂ , only the states, jcg Vare the local minimum states of E(x)， 
or L = y. 

Proof: 
For sufficiently large w^^�沙 the energy profile of E(x) is dominated by that of EJ(x), 

The major characteristics, eg. minimum states will be dominated by EJ(x), 

Lemma 4.4: v is a valid state if and only if v is a global minimum state of EJ(x) in H". 
Proof: 

For every state vector x e B"， 

4 Refer to Definition 3. pg. 6-22 
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EJ(x) = - n > 0 

If jce V, by the definition of valid state, it follows that 二 打.Thus, EJ(x) = 0 and 
i 

X is the global minimum state of EJ(x), 

On the other hand, if jc is a global minimum state of EJ(x)y then EI (x) = 0. This 
implies { ^ x . - n f = 0 and J^jc. = n. Therefore, v is a valid state. This completes the 

i i 

proof for the lemma. • 

Lemma 4.5: There are no local minimum states among the invalid states of Elix) in ET. 
For every invalid state vector x e H\V, 

叫 2 > o 
I ‘ 

it's obvious that there must exist i such that changing jc； to 1-jc, will result in decrease in 
E](X)，ie. closer to one of the neighboring valid states. Thus, there are no local minimum 
states among the invalid states of El(x) m H", M 

By Lemmas 4.4 and 4.5，we can conclude that only the states ；ce Vare the minimum 
states for EI{x) and thus E(x\ ie. V=L, This proves Proposition 4.1. • 

Before ending up this subsection, it is necessary to point out that the argument of 
El(x) being dominating part is a very important fact for further analysis. Although a lot of 
Hopfield network applications are basically quadratic programming, there still exists a lot of 
problem which are of higher order. This means a higher order Hopfield energy function will 
result. Nevertheless, very likely cost for the constraints will remain generally the same, ie. 
( - n By the Proposition 4.1, the energy profile is dominated by the constraint term. 

i 

This implies that the above analysis is still valid for general order Hopfield network and 
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furthermore it makes the existing analysis of standard Hopfield network still valid for higher-
order one. 

4.3.3.2 Size of attractive basin and pole strength required: 
Again, by Proposition 4.1，the analysis is performed only for El{x) and expected that 

it applies to E(x) at the same time. It's obvious that size of attraction basin for the local 
minimum state of EI(x) is problem dependent or in fact constraint dependent. 

Definition 4.6: 
b is the corresponding size of attraction basin of a local minimum state, of El(x) 

if 3 jc: II X'X* II1 < ^ and x can converge to x* by the network dynamics. 

Proposition 4.2: 
The size of attraction basin of El{x) for every local minimum state is the same. 

Proof: 
As El(x) puts equal penalty according to distance measure from local minimum state 

and it is independent of the explicit local minimum location and the distance between adjacent 
local minimum states in L is constant, it's obvious that the attraction basin of E2{x) should 
all be the same. • 

By this proposition, the size of attraction basin in fact equals to the half of the Lj 
norm between two adjacent local minimum states. Let's consider two common examples. 

Example 4.1: Constraint: For a nim matrix of neurons, there can only be one neuron active 
per row. 

Elix) = 丨 5：�_ 1)2 
‘ \ J 

Obviously, the Lj norm between two local minimum states (or two adjacent valid state) 
is 2 and thus the size of the attraction basin is 1. 
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Example 4.2: Constraint: For a nxm matrix of neurons, there can only be one neuron active 
per row and column. 

EKx) = E ( E ( E - M ' 
‘ \ j I J \ ’ I 

An adjacent valid state can be obtained by swapping any two rows or columns, the 
Lj norm difference is 4 and thus the size of the attraction basin is 2. 

Definition 4.7: 

Sequence W,)} is an uphill path for El(x) iff ^八义)> 0. 

Definition 4.8: 
Sequence {x(t)} is a downhill path for El(x) iff ��� < 0. 

At 
Proposition 4.3: 

, A _-义 1 1 1 
Along an uphill path within the local minimum basin of x， > 0. Ar 

Proof: 
By Definition 4.7，along an uphill path, 

AEljx) > Q 
Ar 

As El{x) = { ^ x . - n increasing t to t+l yields 
i 

AEl{x) = ( _ « _ ( _ “ 
= 牵劝 + 1 ) - E 冲)）(石冲+1) + E 圳 - 2 n j > 0 

pg. 6-25 



Recurrent Neural Network for Optimization with Application to Computer Vision References 

Case I: Y^ x.it^l) > Y, ^ f t ) & Y^ 对� > 2" 
i i i i 

••• A > 0 V t 

When r=0, x(t) = x\ 
A||jc �-x.lli = + A\\x(t)Mt-l)\\i + .... + A\\xil)-x% 

> 0 

Case n： 5>私 + 1 ) < 5>州 & 对r+1) + 5 > 州 < 
i i i i 

Again ••• A _ + l ) - > 0 V t 
=> A | | j c�- j c l i > 0 

Thus, > 0 IS proved. • . At 

Proposition 4.4: 

Along a downhill path within the local minimum basin of x， < 0. At 
Proof: 

The proof is very similar to that of Proposition 4.3 and is not repeated here. 

According to Proposition 4.3 & 4.4，Fig. 4.7 shows a typical Hopfield energy profile 
from one local minimum state to an adjacent local minimum state with size of attraction basin 
= 2 . 
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Energy Profile 

t ^(X)' ！ 

^ Basin! A ~ z z r i ^ . . . . . B 助 B 

：：：：43 ….……… 
yi 1 ……..… 

丄 The difference 
* i 1 1 ： . : . ： ^ . 丁 is contributed 
匕… 个byE2(x) 

current Hamming distance from adjacent 
local the current local minimum local 
minimum state minimum 
state state 

Fig. 4.7: Hopfield energy profile between two 
adjacent local minimum states for problem with 

attraction basin size = 2 

Definition 4.9: 
\ is said to be a currently sufficient pole strength of a tunneling function if the 

associated tunneling network always converge to a state beyond the current local minimum 
attraction basin. 

For a sufficient pole strength. Basin A of Fig. 4.7 should be destroyed. As El(x) is 
quadratic, the just sufficient pole strength should be greater than two^. For a more detailed 
illustration, assuming the constraint of example 4.2， 

‘ i j ‘ 

which is an energy profile with size of attraction basin = 2. 

f \\ E C c + 1 ^ ^ ^ J k ^ • Then, V y 
will then become a sufficient pole strength. 
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Assume a trajectory from current local minimum state x to an adjacent local minimum 
state be the sequence { jc!，x:, Xj, jĉ , x̂  }，where Xi equals ；c* and x̂  equals an adjacent local 
minimum state. 

By the Proposition 4.2，4.3，4.4， 

\\x.-x% = /-1 V I G { 1,2,3,4,5 } & EI{xj) < Elix^) < El(xs) > > Elix^l 
Assume the corresponding tunneling function, T(x) is: 

El(x) - El(x*) = El(x) - Eljx*) 

k 

=El{x) - El{x*) 
( / - I f 

For X = 2, For X = 2.1, 
T{Xi) = oo T{xi) = oo 
T{x,) = 2 r � = 2 
T{xs) = 2 T{xs) = 1.867 
r ( j c � = 0 . 2 2 r(jc,) = 0.199 
T{x,) = 0 T{x,) = 0 

Energy Profile pole strength入=2 

^——Basin! A ~Bas i r i B 

W - — % ) \ i 
： j — � • � 

current Hamming distance from adjacent 
local the current local minimum local 
minimum state minimum 
state state 

Fig, 4. 8a 
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Energy Profile pole strength 入=2.1 
I ： ： ： 

： ： ： • ! i r ! t 
^ Basin! A ^ y ^ B ；^ 

ti 7 i � i ^ - W — . 
： ！ 

： j ； 一 1 
current Hamming distance from adjacent 
local the current local minimum local 
minimum state minimum 
state state Fig. 4.8b 

Fig, 4.8: Showing Hopfield energy profile and the corresponding Tunneling energy profile 
with pole strength equals a) X = 2 and b) X = 2.1 

It's noted that for X just being larger than 2, T(x(t)) becomes raontonic decreasing as 
time proceeds. If X, is fixed to 1，the profile then becomes as Fig. 4.9. So，入=1 is not a 
sufficient pole strength for the problem with size of attraction basin = 2. But it doesn't mean 
that tunneling network doesn't work. The local minimum created within the current local 
minimum basin can be escaped by shifting the pole there. However, the efficiency of the 
network may be reduced. 

Energy Profile pole strength入=1 
i i I j. i ； i i i 

_ Basiri A Basiri B m, 

= = : f : 卿 
I 
. ； ； 

current Hamming distance from adjacent 
local the current local minimum local 
minimum state minimum 
state state 

Fig. 4.9: Showing Hopfield energy profile and the 
corresponding tunneling energy profile 

with pole strength,入=J 
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Recall the examples of the constraints. Example 4.1 required X = 1 as sufficient pole 
strength while example 2 required X, = 2 as sufficient pole strength. 

Here, come up with an interesting argument If we can increase the pole strength 
continuously, not only the current local minimum basin is destroyed, the other local minimum 
basins can also be destroyed, provided the energy value of the other local minimum states is 
not the same as the current one.̂  However, new set of local minimum states, are created 
and defined as = { jc = (Xj，.…jc„)t e IT : (x-x^ (x-x*) = n }. So, we are not interested in 
this extreme case. However, we can increase the pole adaptively during the course of 
tunneling and can escape from the local minimum encountered without the necessity of 
shifting pole. After playing with the fantasy in theoretical aspect, practical perspective have 
to be considered. An adaptive pole is not so easily implemented as the updating rule involves 
difference of two terms with the pole strength as the power. 

4.3.3.3 A new type of pole eases the implementation problem : 

ix-xy-
Let the pole be of the form K ‘ ‘ where 足 is a prescribed constant. The updating 

rule based on that form of pole will be: 
- / \ 

ATW =丄 � ; c ) | 厂五 ( , ) + 学 

-•咖、(礼-五(义•)) 

where D' IT > 0 

=丄•欠？-� ( l -2;c . ) ( l - i ^ ( i - « i ’ ( £ O c ) | r^”）+ ^ k D' ‘ ‘ dXi 
无i 

• —' 

6 If some local minimum states have energy value equal to that of the current local minimum states, the 
tunneling function there will remain zero no matter how large the pole strength is. 
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05 Ax = l-2x. & (1 - = 1 

Then, 
；c = / [ 糊 ] 

p. -

ox. • J 

To vary the pole strength, simple vary the value of K. And also, as the power of K is 
either 1 or -1, we don't really need power function at all. For a particular K，only two 
memory are needed, one for K and one for UK. 

The "adaptive pole tunneling network" is applied to TSP and it，s shown that it can 
escape from local minimum and approach to the global minimum. Its effectiveness compared 
with the pole shifting version is manifested in the following section. 

4.4 Simulation result and performance comparison: 

Tunneling network is being simulated on DEC machine to verify its capability of 
performing global optimization. To compare its performance with some other existing 
optimization algorithms, including Simulated Annealing, Discrete & Continous Hopfield 
network. Travelling Salesman Problem is chosen to be the benchmark test and different 
algorithms are applied to find the optimal path. The testing set includes randomly generated 
ten 10-city TSP problems and ten 20-city TSP problems. Two converging properties are 
measured: 

i) Optimal solution obtained after the optimization process stopped, 
ii) Average convergence rate, r during the first half life, which is defined as: 
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一 Energy{t-Q) - Energy{t=stopped) 
r 一 0.5 *(half-life) + 025 ^{quarter-life) 

where half-life and quarter-life are respectively the time when half and quarter of the 
numerator is reached. 

4.4.1 Simulation Experiment: 

The problem we choose for the benchmark test is 10-city and 20-city Travelling 
Salesman Problem (TSP). So we first formulate TSP as a neural network formulation. As the 
most original TSP neural network formulation by JJ.Hopfield et al. [HT85] will converge to 
invalid solution very often, we choose the modified formulation by Aiyer et al [ANF90]. The 
proposed neural network formulation is stated below; 

T幻j = - A 5 J 1 - 5 P - A 5 , ( 1 - 5 ^ 
- 2 2 (An - A + AJ - C + 
- D d 巧 + 5.,.,) 

7. = Cn 
XI 

where n is the number of cities, 
x，y and i，j are the city and time index respectively, 
5ab are the delta function, which equals 1 only when a = b, 
d̂ y is the distance between city x and city y. 

Through an eigenvalue analysis on the connection matrix, the weighting parameters 
A, Al, C and D can set according to following deterministic rules. 

t l = 1 - J L C = AIn D = An/80 A 322 
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Following is a table of the parameters calculated from the above rules used in our simulation. 
No. of cities A Aj C D 

10 8 7.75 0.8 1 
20 8 7.75 0.4 2 

Table 4.1: Parameters used for the TSP problem formulation 

After the neural network formulation step, followings are the detailed descriptions of 
the implementation of the different optimization schemes that we adopted for the experiment. 

a) Hopfield network: 

Neuron model: McCulloch & Pitt model 
Updating sequence: Asynchronous 
Stopping rule: All neurons remain unchanged after updating all of them 
Initial state: All neurons set to 1/no. of cities 

do until stopping rule is satisfied 
select a node x̂  at random 
Xj <= hardlimit( -

dx. 
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b) Continuous Hopfield network: 

Neuron model: Sigmoid nonlinearity, g{x) = [l+exp(-x/uj]~^ where Uq = 
0.0001 

Updating sequence: Asynchronous 
Network dynamic: simulated by fourth order Runge-Kutta method 
Stopping rule: Changes of the output of the neurons are all less then 0.0001 
Initial state: All the neurons output, v, set to 1/no. of cities while all the 

neurons input, m:. set to -uJn{no, of cities - 1) + small random 
noise, h = 0.00001 and decay constant for each neuron, x = 1 

do until stopping rule is satisfied 
select 产 node at random 
K ^ h*f(u) 
k^ <J= h*f(Ui+0.5*ki)-
k3 h*f(Ui+0.5*k2) 
k4 h*f(Ui+k3) 
Ui <= Ui + 0.167*(ki+2k2+2k3+k4) 
Vi <= g (Ui ) 

* where f(Ui) = - -— - u/x ox. 
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c) Simulated Annealing: 
Cooling schedule: 

Fast schedule: Initial temperature, T � = 3 
Decreasing rate, r = 0.95 

Slow schedule: Initial temperature, T � = 5 
Decreasing rate, r = 0.99 

Stopping rule: - stopping rule for equilibrium being established at a particular 
temperature: all neurons updated ten times 
-stopping rule for the cooling scheme: temperature is decreased 
to 0.01 

T ^ T , 
while (T>T^) 

do until equilibrium is established 
select a node Xj at random 
R = randora(l.O) 

(1-2^,) 
if (exp( — ) > R) ox. T I 

Xj = l-Xj 

T 仁 r*T 
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d) Tunneling network: 

Stopping rule: Best solution obtained remains unchanged for 200 iterations 
Local minimum detection: All nodes remains unchanged after updating 

X* <= latest found local minimum state 
select a node x̂  at random; change it to l-Xj 
do until stopping rule is satisfied 

select a node x̂  at random 
Td ^ Li norm between x and x* 

dx. 

if Xi changed, E(x) ^ 广 1) ox. 

if local minimum encountered, x* <= x 
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e) Adaptive Tunneling network: 

Stopping rule: Best solution obtained remains unchanged for 200 iterations 
Local minimum detection: All nodes remains unchanged after updating 
Initial pole strength, K^ = 1 
Pole strength increment, AK = 0.05; 

K e K o 
X丰仁 latest found local minimum state 
select a node Xj at random; change it to l-x^ 
do until stopping rule is satisfied 

select a node Xj at random 
Xi hardlimit( 

(1 -2jc.)(1 -powiKXl-2x:)(l-2x)){E{x)-E{x*)) ) OX. I 

if Xi changed, E(x) <= E(jc)+«^，(2x厂 1) ax. 

if local minimum encountered, K <= K+AK 

4.4.2 Simulation result and discussion: 
4.4.2.1 Comparisons on optimal path obtained and the converging rate 

From Table 4.2 and 4.3，it's obvious that Tunneling network can obtain solution much 
better than Simulated Annealing with an even faster converging rate. And the algorithm still 
performs very well when problem size increased to 20 city, at which Simulated , 
Annealing(SA)，s solution quality is far from satisfaction. Of course, if we further slow down 
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the cooling schedule, a better solution can be found by SA. However, the converging rate will 
drop very serious and will be simply too long for acceptance. Fig. 4.10 shows typical 
converging curves for the different algorithms and Fig. 4.11 show the best city maps that they 
got. It's observed that Adaptive Tunneling network(ATN) almost can get the optimal solution 
and Tunneling network(TN) is the second best. For ATN, the converging rate is comparable 
to the slow SA algorithm. However, a lot of iterations are in fact spent on the pole strength 
increment. If this limitation can be solved in the hardware implementation step, the 
converging rate can be greatly improved. 

Besides the above advantages, Tunneling network is a generic solution for global 
optimization and there is no advanced knowledge needed for usage. Comparing with SA and 
some other existing algorithms, like mean field annealing, parameters, like the cooling 
schedule, have to be estimated before the algorithm can be applied effectively. 

4.4.2.2 On Decomposition of Tunneling network 

For any optimum searching algorithms including tunneling, the time required to get 
an even better solution is increasing exponentially as better and better solution is found. To 
improve the situation, we can decompose the network to different partitions and restrict the 
updating to particular partition at a time. By this method, the exploring power of tunneling 
network can be enhanced. We have tried two decomposition schemes; i) fixed ( partition set 
of the network is fixed )，ii) random (partition set of the network is time-varying in a random 
manner). 

The simulation result is illustrated in Fig. 4.12 and Fig. 4.13. It is observed that small 
size partitioning scheme can result in converging to a better solution in general. Between 
fixed and random partitioning, the latter one appears to be a better choice as fixed partitioning 
unreasonably confines the searching space such that the whole solution space can't be 
covered. 
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Problem SA(Fast) SA(Slow) DHop CHop TN ATN 

d* r d* r d* r d' r d' r d' r 

1 9.24 丨 0.05 8.10 I 0.015 11.90 ； - 12.3 | - 6.64 丨 0.130 6.64 丨 0.005 

2 9.06 丨 0.007 7.34 丨 0.006 9.70 丨 - 12.64 • - 7.22 | 0.019 6.42 丨 0.002 

3 7.78 丨 CO 7.28 丨 0.002 7.78 丨 - 8.94 丨 - 6.56 丨 0.003 6.50 丨 0.002 

4 7.38 I 0.216 7.24 | 0.028 12.14 ] - 11.56 | - 6.04 | 1.53 5.10 ] 0.020 

5 6.74 ‘ 0.184 6.12 | 0.118 8.96 | - 8.22 j - 5.94 ； 0.025 5.68 | 0.109 

6 6.64 • 0.007 5.94 ‘ 0.005 7.12 \ - 5.96 ‘ - 5.10 丨 0.006 3.70 丨 0.010 

7 6.18 • 0.024 5.98 ‘ 0.010 7.52 ‘ - 10.04 ‘ - 4.94 | 0.004 4.88 | 0.008 

8 6.52 • 0.070 6.36 \ 0.015 9.88 | - 7.04 | - 5.18 | 0.390 5.02 ] 0.054 

9 9.26 ； 0.023 9.24 | 0.006 11.14 ； - 15.0 | - 7.18 | 0.180 6.66 | 0.012 

10 10.8 \ 0.077 8.86 | 0.039 14.5 \ - 13.7 ) - 7.86 | 0.368 6.62 ； 0.018 

mean of r 0.067 0.0243 - - 0.266 0.024 

Table 4.2: Comparison on best path length, (C obtained and converging rate, r between different algorithms on 10-city TSP 
SA: Simulated Annealing, DHop & CHop: Discrete and Continuous Hopfield network, 
TN: Tunneling Network, ATN: Adaptive Tunneling Network 

Problem SA(Fast) SA(Slow) DHop CHop TN ATN 

d' r d. r d' r d* r d' r d' r 

1 18.39 • 0.048 15.61 | 0.020 22.72 | - 23.99 | - 12.94 | 0.540 10.67 | 0.078 

2 16.24 I 0.042 13.79 | 0.016 19.54 ) - 17.64 j - 11.53 | 0.220 8.06 | 0.040 

3 11.93 • 0.120 13.91 ) 0.020 20.96 | - 18.55 ； - 11.93 | 0.260 8.30 | 0.056 

4 15.36 • 0.010 13.04 | 0.008 16.30 | - 18.21 | - 9.74 | 0.050 8.95 | 0.027 

5 17.39 ) 0.030 13.84 ) 0.015 19.69 ； - 19.60 | - 9.93 ) 0.080 8.36 | 0.030 

6 15.05 • 0.053 13.09 | 0.014 18.87 | - 14.65 ) - 10.70 | 2.720 8.10 | 0.024 

7 10.26 • 0.074 13.20 ‘ 0.010 17.15 j - 18.12 ； - 11.05 | 0.150 9.18 | 0.015 

8 14.90 言 0.094 14.75 ； 0.026 22.08 j - 19.98 | - 10.87 | 0.630 9.02 | 0.044 

9 17.15 I 0.060 16.00 | 0.019 21.78 | - 22.44 | - 13.32 | 1.060 8.56 | 0.024 

10 18.20 ] 0.051 17.45 | 0.014 22.19 | - 19.85 | - 13.30 | 0.250 10.44 | 0.022 

mean of r 0.0584 0.0162 - - 0.596 0.036 

Table 4.3: Comparison on best path length, d* obtained and converging rate, r between different algorithms on 20-city TSP 
SA: Simulated Annealing, DHop & CHop: Discrete and Continuous Hopfield network, 
TN: Tunneling Network, ATN: Adaptive Tunneling Network 
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Problem pt = 4 pt = 6 pt = 8 pt = 10 

d* r d' r d' r d* r 

I 1 I 1 

1 6.30 I 0.039 5.98 丨 0.036 6.64 j 0.125 6.64 | 0.130 

2 6.64 ‘ 0.019 6.72 “ 0.009 6.74 ‘ 0.025 7.22 ‘ 0.019 1 1 1 1 
3 6.46 I 0.011 6.44 ‘ 0.003 6.30 ‘ 0.004 6.56 ‘ 0.003 1 1 1 1 
4 5.94 • 0.240 5.62 “ 0.090 5.88 “ 1.040 6.04 ‘ 1.53 1 1 1 1 
5 5.78 丨 0.047 5.58 丨 0.015 5.64 丨 0.018 5.94 | 0.026 

6 5.36 i 0.029 4.84 • 0.002 5.18 ‘ 0.013 5.10 ‘ 0.006 1 1 1 1 
7 4.88 I 0.029 5.62 ‘ 0.023 5.38 _ 0.019 4.94 ‘ 0.004 1 1 1 1 
8 5.18 “ 0.062 5.70 ” 0.130 5.16 ‘ 0.067 5.18 “ 0.391 1 1 1 1 
9 7.52 I 0.009 7.50 • 0.007 8.32 _ 0.015 7.18 • 0.180 1 1 1 1 
10 8.08 ‘ 0.190 7.94 • 0.120 7.70 ‘ 0.150 7.86 ‘ 0.370 

通 I 書 • • • • 

mean d', r 6.21 i 0.068 6.20 1 0.032 6.29 I 0.148 6.27 i 0.266 
I I I I . 

Table 4.4 : Comparison on best path length, d' obtained and converging rate between different size fixed partition decomposition of tunneling 
network on 10-city TSP. The fixed partition scheme is grouping consecutive rows of neurons together and the partitions are overlapping, 
"pt" stands for number of rows of neurons for each partition, pt = 10 means whole network forming one and only one partition. 

Problem pt = 4 pt = 8 pt = 12 pt = 16 pt = 20 

d' r d' r d' r d' r d* r ‘ ‘ ‘ ‘ 1 
1 14.26 j 0.090 13.68 | 0.150 12.12 | 0.060 11.61 | 0.550 12.94 j 0.540 

2 11.59 j 0.210 11.30 I 0.060 10.35 | 0.150 9.82 j 0.060 9.80 j 0.070 

3 11.68 j 0.100 11.25 j 0.092 11.45 | 0.210 10.26 | 0.046 11.92 j 0.260 

4 11.53 j 0.088 9.34 j 0.036 10.09 j 0.480 9.87 j 0.230 9.74 | 0.051 

5 13.84 I 0.202 10.96 | 0.110 10.76 | 0.297 12.38 | 0.280 9.93 j 0.079 

6 9.65 “ 0.071 8.61 • 0.076 10.12 ‘ 0.194 10.10 ‘ 0.460 10.70 ‘ 2.720 1 1 1 1 1 
7 10.17 j 0.104 10.51 I 0.041 9.88 | 0.025 9.47 | 0.044 11.08 | 0.152 

8 9.86 丨 0.256 10.50 | 0.212 9.70 | 0.303 11.40 丨 1.340 10.86 丨 0.63 

9 12.54 j 0.048 10.79 j 0.145 11.87 | 0.117 11.66 | 0.147 13.32 | 1.058 

10 13.10 I 0.103 14.13 ) 0.448 12.58 ] 0.081 12.21 | 0.071 13.31 | 0.254 

mean d', r 11.82 i 0.128 11.11 I 0.137 10.89 i 0.197 10.88 i 0.323 11.36 i 0.627 • ' • I I 1 » I 
Table 4.5 : Comparison on best path length, d' obtained and converging rate between different size fixed partition decomposition of tunneling 

network on 20-city TSP. The fixed partition scheme is grouping consecutive rows of neurons together and the partitions are overlapping, 
"pt" stands for number of rows of neurons for each partition, pt = 20 means whole network forming one and only one partition. 
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Problem pt = 4 pt = 6 pt = 8 pt = 10 

d' r d' r d' r d' r II I I • I I I I 
1 5.98 • 0.030 6.22 ‘ 0.045 7.06 ‘ 0.403 6.70 • 0.065 1 1 1 1 
2 6.94 j 0.024 6.98 j 0.075 7.42 | 0.230 7.16 j 0.022 

3 6.22 I 0.008 6.62 ‘ 0.007 6.56 ‘ 0.006 6.98 ‘ 0.004 
1 1 ！ 1 

4 5.10 ‘ 0.019 5.10 I 0.503 6.32 • 0.243 6.08 • 1.510 1 1 1 1 
5 5.66 I 0.016 5.76 ‘ 0.012 5.76 ‘ 0.011 6.30 ‘ 0.058 

1 1 f 1 

6 4.42 I 0.013 5.06 丨 0.004 5.10 丨 0.063 5.36 丨 0.019 

7 4.88 I 0.002 5.92 • 0.009 5.48 ‘ 0.113 5.64 “ 0.009 1 1 1 1 
8 5.02 I 0.044 5.04 | 0.052 5.26 j 0.085 5.18 j 1.173 

9 6.66 I 0.042 7.66 ‘ 0.053 6.92 ‘ 0.023 7.40 ‘ 0.156 1 1 I 1 
10 6.62 I 0.080 7.90 ‘ 0.366 8.14 “ 0.117 7.52. “ “ 0.580 I I ‘ ‘ 

mean d', r 5.75 i 0.028 6.23 i 0.113 6.40 ！ 0.128 6.43 I 0.359 —II I I I I 

Table 4.6 : Comparison on best path length, d* obtained and converging rate between different size random partition decomposition of 
tunneling network on 10-city TSP. The random partition scheme is picking rows of neurons randomly and grouping them together at a time 
and thus the partition is time-varying in random manner, "pt" stands for number of rows of neurons for each partition, pt = 10 means whole 
network forming one and only one partition. 

Problem pt = 4 pt = 8 pt = 12 pt = 16 pt = 20 

d* r d* r d* r d* r d* r 

1 8.76 I 0.082 11.56 ； 0.248 12.47 j 0.168 12.0 | 0.137 12.79 | 0.093 

2 8.61 I 0.053 10.14 | 0.142 11.36 | 0.182 8.82 ) 0.037 11.53 ‘ 0.222 

3 9.40 I 0.250 10.47 | 0.181 11.68 | 0.155 10.35 ) 1.061 10.86 | 0.069 

4 8.06 丨 0.069 8.21 丨 0.021 8.72 | 0.075 9.87 丨 0.083 10.03 丨 0.087 

5 10.91 ； 0.071 10.28 ) 0.048 10.73 | 0.172 12.59 j 0.104 11.14 | 0.120 

6 8.50 I 0.130 9.72 | 0.223 11.31 | 1.510 9.54 ； 0.22 9.817 • 0.220 

7 8.68 I 0.072 9.82 | 0.198 11.24 | 0.128 10.54 | 0.066 10.88 | 0.065 

8 8.84 I 0.170 9.74 ) 1.377 9.63 | 0.266 10.55 ； 1.05 9.81 | 0.536 

9 10.38 I 0.069 12.42 | 0.164 13.37 | 0.172 11.57 | 0.34 10.83 • 0.215 

10 10.29 ] 0.140 12.08 ) 0.187 13.31 | 2.960 12.53 | 0.075 13.73 | 0.197 

mean d', r 9.25 i 0.111 10.44 i 0.279 11.38 i 0.579 10.84 i 0.317 11.14 _ 0.182 11 I I I I I I I I 
Table 4.7 : Comparison on best path length, d' obtained and converging rate between different size random partition decomposition of 

tunneling network on 20-city TSP. The random partition scheme is picking rows of neurons randomly and grouping them together at a time 
and thus the partition is time-varying in random manner, "pt" stands for number of rows of neurons for each partition, pt - 20 means whole 
network forming one and only one partition. 
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Fig. 4,10: Illustration of typical converging curve for different optimization schemes on 
a) 10-city and b) 20-city TSP 
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Fig. 4.11e 

Fig. 4.11: Illustration of best result obtained by different optimization schemes on 20-city TSP 
a) Discrete Hopfield network; b) Simulated Annealing (Fast); 
c) Simulated Annealing (Slow); d) Tunneling network; 
e) Adaptive Tunneling network. 
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Figure 4.12: Effect of different partition sizes on the quality of solution obtained, 
a) 10-city TSP, b) 20-city TSP (Fixed Partition) 
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Figure 4.13: Effect of different partition sizes on the quality of solution obtained, 
a) 10-city TSP, b) 20-city TSP (Random Partition) 
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4.5 Suggested hardware implementation of tunneling network : 

4.5.1 Tunneling network hardware implementation: 

Based on the updating rule of tunneling network, a possible hardware realization is 
proposed. Although we have tried to make the hardware as simple as possible，we have no 
intention to claim that our suggestion is the best one but just to show the implementation 
possibility which is a very important fact for real-time application. 

The updating rule of (w-1)也 order tunneling network is restated here, 

- f \ -

X = 5 > � ; 0 2 _ ^ + (1-2^: - ) (_-丑oo) k ox. L 乂 乂 」 

i) _ T. . xx...^. +.... y^ T. X. + /. 
L '1 '» _ 

This can be implemented simply by a Hopfield network. 
辽） E (�-々2 

k 

This can be implemented by a set of n EXOR gates and an analog summer. (Refer to 
Fig. 4.15) 
iii) E(x)-E{x*) 

This can be implemented by extracting information from Hopfield network with proper 
weighting. (Refer to Fig. 4.16 & Fig. 4.17) 

The whole network structure is revealed in Fig. 4.14. 

For the hardware implementation of Adaptive Tunneling network, we are also starting 
with the corresponding updating rule, 
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Xi = / , (1 - 2;c)( l-严 :)(1-均)_ 母•)）+ 學 ox. 

This can be implemented by a scaling component with gain switching between 1-K 
and 1-1/K while the switching is controlled by the value of jc, and x*, (Refer to Fig. 4.18) 

The whole network structure is revealed in Fig. 4.19. 

Hopfield Network 

； I I 
a| i i 

I I I T 本 
Fig. 4.14: Hardware architecture for Tunneling network 
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X 2 — 

• - (CiX^ 
1、 J 

X 3 -妇1>—— z . 
i 入 

Fig. 4.15: Hardware architecture for the term E (x^xif J Xi I 

Si 二p[D> I 二 [ \ 
• 1 • - y s 1 
• i • / \ “ ( — — ) ： — 

• I : s ： • 1 / . / \ I 

Fig, 4.16: Hardware architecture for 
the term E{x)-E{x*) 
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丨 I 
I Fig. 4.17: Detailed architecture for the square 

summer in Fig. 4.19 I ^ ^ ^ I 
={01.10} 

^ ^ ’ X i ) ^ ^ ={00.11 } 

Fig. 4.18: Hardware architecture for triangular component with label 
K, in Fig. 4.19 
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Hopfield Network 

^ ' Z l y ^ X. 

Fig. 4.19: Hardware architecture for 
Adaptive Tunneling Network 

4.5.2 Alternative implementation theory: 

With the objective of minimizing the hardware cost, we proposed a possible realization 
of tunneling network. The structure is obviously quite different from the standard Hopfield-
like recurrent neural network. In this subsection, we are going to show that it is possible to 
realize the Tunneling network by the standard generalized Hopfield network. Same as before, 
the updating rule is the only thing to be manipulated. Assume the function to be optimized 
is of n也 order and the connection weight symmetric property holds. 

By expanding the updating rule of Tunneling network, 
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k k 
+ ( y Xu) ( . . 丄 … 工 . + …y^r. • x.,.jc. +...+ y^ T.X. +1, 

* V '2 »«-! h Lz h 
f \ • 

+ ( i - 2 x ； ) - 丄 丄 . . 工 - ^ y r . . - . . . . - yi.x. - ecx*) 
� ‘� V / '.-I y 

[ (1 -
= A y y … y ( i-2x;)r. . . . 一 _： X 

' I ^ V ^ 
/ \ 

+ ( 1 - 广 ) r . . . + . . - — — . r . • x . … 工 h \ I � , / 
/ \ 

+ E E - E ( 1 - 明 、 + ( I > X � � -〜 九 

參 

+ ( E 碼 一 ( i - 2 x ; y . k 
V I / 

I 

Therefore, we can build an n^ order generalized Hopfield network with the neural 
network formulation being, 

j ] � j ： = (i-2x； )r. . . + (Tx：)!.. . . - - lir.. 

T - = (1-<兄.+ ( E ^ / X ^ - ( 1 - 碑 

i r = (E^/Vi + 购•） / 
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Although the symmetric property of the connection weight is not satisfied, it can 
undergo the reshaping treatment as described in Section 3.2 so that the convergence of the 
network can be guaranteed. What we have done in this subsection can be concluded as 
follows: Any Tunneling network corresponding to an (n-1)也 order generalized Hopfield 
network can be realized by a standard model of n也 order generalized Hopfield network. 
However, in terras of hardware cost, this may not be a good choice because of the tremendous 
increase in number of connection weights. To have this implementation scheme possible, the 
advance in technology of implementation of higher-order Hopfield network has to be waited. 
In fact, recently, implementation of higher-order Hopfield network by optical neurocomputer 
is being studied and hopefully, their success can make this implementation scheme much 
more practical. More detailed discussion on this topic can be found in Section 2.4 of Chapter 
2. 

4.6 Conclusion: 

A neural network named Tunneling network (TN), together with a modified adaptive 
version of it named Adaptive Tunneling network (ATN) are proposed and is shown to have 
optimal solution seeking capability through simulation. The network is proved to be stable 
and converge to global minimum state for infinite time. Through extensive performance 
comparison, TN and ATN are shown to be much more effective than simulated annealing. 
Between TN and ATN, the former one is found to have higher converging rate while ATN 
is attractive in terms of the quality of solutions it found. Also, hardware implementation 
suggestion for both TN and ATN are depicted. In particular, we have shown that (n-1)也 order 
tunneling network can be implemented by an n也 order generalized Hopfield network. 
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Chapter 5 Recurrent Neural Network for Gaussian Filtering 

In this chapter, a recurrent neural network will be designed to perform Gaussian 
Filtering. This application is equivalent to solving a Convex Quadratic Programming 
problem, which belongs to the category of continuous optimization with one and only one 
local minimum state within the problem domain. In Section 5.1, an introduction on gaussian 
filtering and some existing neural network models with filtering capability will be given first. 
Then, the derivation of a recurrent neural network for gaussian filtering, using the problem 
formulation adopted from regularization theory, is described in Section 5.2. The derived 
network is simulated and its filtering property is investigated. All the simulation results are 
illustrated and discussed in Section 5.3. 

5.1 Introduction 

On extracting information from an image, it's obvious that an image carries 
information with different scales. Differentiating the information according to different scales 
can provide a better understanding of an image. For example, consider edge information from 
an image with a human face. At coarse scale, only the outline of the human face will be 
expected to be included. At fine scale, outline of the face and also that of the eyes, ears, nose, 
etc. will also be revealed. So, large-scale feature can be easily judged to be the human face 
while small-scale features will be the organs on the face. Although this example is posed in 
a very simplified way as there are a lot of practical considerations in real situation, this shows 
the main idea of the importance of scale-space concept. 

This scale-space concept, speculated from psychological observation [MH80], has been 
widely accepted for a long time and proved to have a lot of applications in computer vision 
and image processing [Wit83] [Ter86b] [RC92]. In particular, Witkin, in 1983, proposed a 
scale-space filtering. By detecting the zero-crossings of the laplacian of the image filtered at 
different scale, a scale-space map is created as a representation of the image. The kernel used 
for the filtering is of gaussian shape. The scale of the kernel is equivalent to the standard 
derivation of its gaussian shape. It's proved that the kernel being of gaussian shape possesses 
a nice and unique property that zero crossings will not be created as the scale increased 
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[PT86] [BWBD86] [YP86]. Moreover, it has been proved that gaussian distributed kernel is 
an optimal smoothing filter in terms of the localization requirement in both spatial and 
spectral domains for an image [MH80]. Filtering using gaussian kernel is named as 
"Gaussian Filtering". 

To implement gaussian filtering, the simplest way is to convolve the image with a 
gaussian distributed weighting template. However, in order to have a precise gaussian 
template, a large template size will be necessary. This implies heavy calculation required ( 
No. of multiplications needed = template size). Instead of this type of digital implementation, 
gaussian filtering can be achieved by an analog resister network. Using regularization theory 
[PTK85], Poggio et al casted the filtering part of the ill-posed edge detection problem as a 
minimization problem where the energy is the deviation of the expected pixel value and the 
input pixel value regulated by the smoothness among the neighboring pixels. By minimizing 
the energy, the minimum state obtained will be a smoothed version of the input image. 
Besides, the regularization is controlled by a regularization parameter. Varying this parameter 
will vary the degree of smoothing. In fact, Poggio et al. showed that the obtained result is 
very similar to that obtained by convolving the image with gaussian template. Thus, in fact, 
the regularization with different regularization parameters can be interpreted as gaussian 
filtering with different scales. One of the main difference is that the former one has an analog 
type implementation. 

Poggio et al. suggested that the minimization can be solved by an analog resistive 
network. H.Kobayashi et al., in 1991，implemented an active resistive network for gaussian 
filtering on a silicon chip [KWA91]. Incorporating the regularization theory, they modified 
the implementation of "Silicon Retina" [MM88], which was proposed by CA. Mead as an 
analog model of the first stage of retinal processing. This can be considered as the first time 
putting neural network model and gaussian filtering together (although gaussian filtering is 
in fact originated from psychological understanding on human visual system). In the following 
subsections, we will describe more on Silicon Retina and the active resistive network for 
gaussian filtering. Then, our implementation using Hopfield network will be illustrated. 
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5.1.1 Silicon Retina: [MM91] 

Study on the characteristics of retina has been carried out by the psychophysiologists 
for several decades. According to the past knowledge on the structure of the retinas of higher 
animal, C.A. Mead et al constructed an analog model of the first stages of retinal processing 
on a single silicon chip. The model, Mead called it "Silicon Retina", is the first neural 
network model proposed for the early vision processing. In the following, the analogy 
between biological retina and "Silicon Retina" will be described and the spatially smoothing 
property of the latter one will be explained. 

Biological Retina and Silicon Retina: 
The major divisions of the retina can be seen in the Fig. 5.1. Light is transduced into 

an electrical potential by the "photoreceptors" at the top. The primary signal pathway proceeds 
from the receptors through the "triad synapses" to the invaginating "bipolar cells", and thence 
to the ganglian cells. 

《 ， I 

Fig. 5.1: Cross Section through the 
biological retina 

The "Silicon Retina" model is given in Fig. 5.2. It mainly consists of photo sensors, 
conductance, G, an amplifier and a resistor network (Mead called it electrotonic spread). In 
Fig. 5.2, the original image is smoothed by the resistor network and the difference between 
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the image (at point B) and its smoothed version (at point A) is amplified as the network 
output. Comparing Fig. 5.1 and 5.2, the analogies between the biological model and the 
silicon model can be summarized in the following table. 

Biological Silicon Retina 
Photoreceptors Photo Sensors 
Bipolar Cells Resistor network 

Triad Synapses A conductance & an amplifier 

( A ) smoothed image 

^ P h o t o s e n s o r ⑤ original image 

( £ > — I 

X 计 Amplifier 
resistor network -

• output 

Fig. 5,2: Silicon Retina structure 

Spatial Impulse Response of "Silicon Retina": 
To study the spatial impulse response of the network, the 1-D "Silicon Retina" model 

presented by Mead et al. is utilized and it is repeated here in Fig. 5.3a for reference. The 
corresponding spatial impulse response of the resistor sheet is given by the expression, 

where n is the number of nodes away from the excitation. 

It is a decaying characteristics of the network due to the continuous leakage to ground. 
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The spatial impulse response can be viewed as the convolution kernel of the resistive network 
and it's illustrated in Figure 5.3b. From the filtering perspective, "Silicon Retina" is 
performing low-pass filtering/smoothing with exponential decaying kernel. 

^ ^ I is the image signal 

R R R R R R 

^ 華 Ro ^Ro 華 Ro 華 Ro 

Fig, 5.3a: 1-D Silicon Retina architecture 

• \ 
/ \ 

/ \ • \ 
/ \ 

/ \ 
/ \ 

/ \ 
/ \ / � • � 

• \ • \ 

/ V / \ 

. 一 - • _ L _ _ - • 
Fig. 5.3b: The convolution kernel of Silicon Retina 

Mead et al. implemented the model on a silicon chip and compared the response of 
the chip with the data from the experimental measurement of the retina's response. The result 
is found to be qualitatively similar. Thus, the first stage of retinal processing involves 
smoothing is a rather confirmed fact. However, "Is the real model of retina so simple?" 
remains to be a question to answer. 

5.1.2 An Active Resistor Network for Gaussian Filtering of Image: [KWA91] 

H. Kobayashi et al. putted together the "Silicon Retina" model and the "nice property" 
of gaussian filter. He suggested a new resistive network with gaussian-like kernel. Its structure 
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is shown in Fig. 5.4a and its kernel is shown in Fig. 5.4b. The main difference of this 
network from "Silicon Retina" is that there are negative resistors between second nearest 
neighbours of the resistive network. Although there is no evidence obtained so far proving 
the fact that our retina is preforming gaussian filtering, the research on gaussian filter is 
partially originated from the psychophysiological observation [MH80]. Drawing their 
relationship together may not be just a coincidence. 

R2 = - 4 Ri 
� Ro= A, Ri 

R2 R2 ‘ 7 « 2 ~ W M VW\A/ 
-A/VM r W M ^——WAAr-

R R R R R R 

華 R � 皇 R � 皇 R � 奢 � ^ R o 
•^― 圓丨• III! II I _ • • 

— — • • 一 

Fig. 5.4a: Active Resistor Network architecture 

參 s 
, \ / \ / \ 

身 � 
/ V 

/ \ 
/ \ 

/ \ 
/ � 

/ � 
/ \ 

0 \ 
/ � 

z 扇 
•“ lIJl. 

Fig. 5.4b: The convolution kernel of Active resistor network 

Design the network using energy minimization approach: 
H. Kobayashi utilized the result obtained by Poggio et al. [PTK85] [PT86] to design 

the resistive network. Poggio casted the gaussian filtering as a regularization problem, which 
can be solved by energy minimization approach. The energy function is defined as, 
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f Y 

£ = U{x^)-V;f ^X^ ^ dx ..(5.” 

The first term being the least-mean-square difference of the sample points Vj and the 
fitting function U(x=j) is the data error or external error. The second term being the square 
of the second derivative of U(x) is the internal error and can be viewed as the constraint that 
suppresses the excessive fluctuation of U(x) and ensure the continuity of the first derivative 
of U(x).入，being the regularization parameter governs the degree of the constraint application. 
K had been shown [PTK85] that the solution of minimizing eqn.(5.1) is very similar to the 
result of convolving { Vj } with gaussian kernel. The spread of the gaussian kernel increases 
as X increases. 

To acquire the solution of minimizing eqn.(5.1), Haruo Kobayashi adopted the 
Kirchhoffs laws from circuit theory, which states that the constituent relations of the 
components drive a network to a state of minimum energy dissipation. He constructed the 
active network whose energy dissipation is described by eqn.(5.1). 

Using a discrete estimate of the second derivative in eqn.(5.1), we get， 

E = E IF厂v;f + \ 5： ..(5.2) 
j J 

where Uj = U(x=j). This is a quadratic form, and therefore has a unique minimum where, 
= 0 for all j, so, 

a”. 
0 = 2 ( U - V p + 一 . . ( 5 3 ) 

dU. Differentiating the terms in the sura and noting that ——-=0 if / j. oU. J 
0 = {U.-V) + X ( + � U j _ , U j J ) .,(5.4) 

This describes the node equation of a one-dimensional mesh in Figure 5.4a. 
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5.1.3 Motivations of using recuirieiit neural network: 

In the following section, we are going to implement gaussian filter using a Hopfield 
network. Although there already exists an active resistive network for gaussian filtering, we 
got several motivation of the implementation. 

Firstly, it can be considered as a representative of continuous convex quadratic 
programming problems which is characterized by possessing one and only one local minimum 
state situated in the interior of the unit hypercube. Issues involved in the implementation of 
it to a certain extend are generic to problem within this category, ie. the neuron model, 
boundary connection assignment, etc. which are going to be discussed in more details. 

Secondly, recurrent neural network model is a much more general one compared to 
resistive network model. Increasing the order of the network can extend its application to an 
even wider range of tasks. This generalization suggested the possibility that the future 
recurrent neural chip may possess similar role as that of the general-purpose microprocessor 
of the nowadays conventional digital computer. 

Thirdly, in Section 5.1.1, it has already been pointed that whether the real model of 
retina is as simple as "Silicon Retina" - a resistor network, remains to be a question. However 
as the idea of the resistor network model is originated from physiological observation, there 
is a strong reason that any suggested network model for replacement must be structurally 
similar to that of the resistive network model. Recurrent neural network, in fact, can also be 
viewed as a resistive network. From Fig. 5.5, the proposed recurrent neural network model 
has the local connection property as that of the resistor network model although the way of 
connection is different. So, using recurrent neural network to replace the resistive network 
model is not a totally new thing and the basis of the physiological observations which triggers 
the establishment of the resistive network model inherited to the recurrent neural network 
model we proposed. 
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5.1.4 Difference between the active resistor network model and recurrent neural network 
model for gaussian filtering 

The active resistive network utilizes the network property of driving itself to a state 
of minimum energy dissipation. The term "energy" is physically meaning the electrical 
energy. However, for recurrent neural network, it utilizes the dynamics of the network which 
is brought by its feedback structure to minimize an "energy" function. The energy function 
is a theoretical concept and doesn't mean any physical form of energy. So, the two network 
models utilizes different network's characteristics to achieve the minimization task and that's 
the main intrinsic difference of the two. 

5.2 From Problem formulation to Neural Network formulation 

The procedure of implementing 1-D and 2-D gaussian filters using Hopfield network 
are shown as follows. 

5.2.1 One Dimensional Case 

Problem Formulation: 
According to Poggio's work [PTK85] [PT86], the energy function corresponding to 

gaussian filter is given by, 
/ \ / \ 

^ = iv明 4 - + (1-入)5： i�+i-2Viii2 4 - "(5.5) 
J ^ e x t J ^ i n t 

\ ) V / 

where d. : the value of产 neuron 
dj : the value o f , sample point of the original data 
CT战 & : normalization constant for external error and internal error 

Recurrent neural network model used: 
The feedback architecture of first order Hopfield network is adopted and two different 

neuron models are incorporated, one being discrete and one being continuous. For the discrete 
one, Paik's neuron model is used and for the continuous one, shifted sigmoid function with 
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upper and lower limit being 255 and 0 is used^ Each neuron will be representing one single 
pixel. Detailed description of the neuron models can be referred to Section 2.1 in Chapter 2. 

Neural Network formulation: 

Taking partial derivative of E with respect to d. to obtain the dynamic equation of the 
corresponding network, 

dE X d I J 1 2 \ d I ：) I)丄）2 
dd. CT 战 ddi� ^int dd. 

+ 1 式 戈 

• +1 戈+2-2元 1 + � 2 ) 

= A ( 2d-2d, )- — ( 1 2 V 8 4 i - 8 i i + 2 � + 2 + 2 i 2 ) ..(5.6) 
O" G . , 

ext tnt 

Therefore, from the dynamic equation eqn.(5.6)，the neural network formulation is 
given by: 

r ‘ 入 n l-X Let a =——，p = 

T.. = -12p - 2a ..(5.7) 
= T � = 8 P 

r. = r. ’. = -2p 
i+2,z 1-2,1 厂. 

I. = 2ad. 
I I 

The network architecture can be represented by Fig. 5.5. Local connectivity 
characteristics of the network can be revealed. 

1 The definition of the sigmoid gain used in this chapter is just the recipical of the one 
used in Section 2.2.1. 
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y = -12^ '2a 

'2 a -2 a .2a .2ct -2 a 
^i-2 di.1 dj d “1 d 1^2 

Fig, 5.5; The architecture of recurrent neural network model for 
gaussian filtering 

Convergence of the network and boundary connection ； 
According to Theorem 2.3，the discrete recurrent neural network model we used is 

proved [PK92] to converge to a local minimum (or in other words, the corresponding energy 
function is a Lyapunov one) as long as the following two conditions are satisfied; 

C.1 The connection weights are symmetric, ie. T- = Tji 
C.2 The value of self-feedback weight, must not be greater than zero. 

For the second condition, by examining the neural network formulation of the network 
eqn.(5.7), 

T..=-降入).Z^.O 

Thus, C.2 is satisfied. 

The problem left is the first condition C I . Again referring to eqn.(5.7), the network's 
connection weight matrix remains to be symmetric until the boundary connections are 
encountered. The nature of the problem encountered is similar to the situation of setting the 
boundary condition in image processing. However, the consequence is comparatively more 
serious. Breaking the symmetric rule will incur nonconverging phenomenon of the network. 
So, the strategy for assigning the boundary connection has to take condition C.l into 
consideration. 
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At the boundary, i.e. the first two neurons and the last two neurons, the energy to be 
minimized is different from eqn.(5.5) and thus the connection weights are different. 

Let Eq be the terms in E involving the first neuron 
El be the terms in E involving the second neuron 

五0 = a(式-�f + ？^(d^-uyd^ 

= 2 a ( V � + 2 p ( V 2 V 式） 

= 2 ( a + ( 3 ) ( i o - A^d^ + 一 2ad^ 

Therefore, the connections involving the first neuron are; 

Too = 
Toi = 4p ..(5.8) 
0̂2 = 

A) = 

E, = a ( V � ) 2 + p ( } 

= (毛-2 式+冷20(^252+々1) 

= - 4 p 式+(10p+2a)式-8p 式+2P 式-2ct< 

Therefore, the connections involving the second neuron are; 
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Tio = 4P 
Til = -10p-2a 
7；, = 8P ..(5.9) 
Tn = -2P = 2adi 

The connections at the other boundary are assigned similarly and the connection 
matrix generated this way remains to be symmetric and thus the corresponding energy is still 
Lyapunov function. 

For the continuous model, according to the energy function (5.5), as it is quadratic and 

always greater than or equal to zero for any d , it's a convex quadratic function. Thus, the 

Hessian of E will be a positive semi-definite matrix and the connection matrix, which is 
negative of the Hessian of E will then be negative semi-definite. It's proved that a Hopfield 
network with negative semi-definite symmetric connection weight matrix will converge to a 
local minimum of E. The symmetric property of the connection weight matrix is just and thus 
the guarantee of the convergence of our continuous model of gaussian filter follows. Besides, 
the local minimum is unique for E，ie. it's the global minimum. However, the global 
minimum state can't be reached by the discrete model as quantization of the neuron state is 
applied. Thus, filtering using the discrete model will introduce a noise due to quantization. 

5.2.2 Two Dimensional Case 

As we are interested in applying the network to do gaussian filtering for image. 
Extending the 1-D network to 2-D counterpart is the natural flow of thinking. The extension 
we performed is rather straight forwards except that more attention have to be paid to the 
boundary connection of the network. 

To obtain the energy function for 2-D case, we simply include the smoothness 
constraints of both vertical and horizontal direction in the regularizing term. The 
corresponding energy function for the 2-D network becomes; 
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E = — Y Y d -d 2 + L h y y l d , -id ^d , ^ : -
^ e x t X y ^ i n t ^ y -W'AW； 

+ I 毛” 1 - 2 之 , ‘ J 2 } 

The terms in E involving d 

• / A •A \ 2 / y\ JK / y\ •A •A \ 2 = ^ d , -2d +d , ] + d , -2d , +d ] + (d -2d , +d 
/a ^ ^ �2 I A ^ A \2 / -A A \2 

+ [d �-2d +d A + (d -2d �+d + id -2d �+d J 
卜 、 2 + a d -d ] 

� � = ^ \ 2Ad -M , -M , -8d -8d , 
dd 1 ’ 々 一 . . ( 5 . 1 1 ) 

+ 2d , +2d , +2d ^ \ + 2a (d -d ) 
From this dynamic equation, the neural network formulation for the 2-D network is 

given by; 
T = -24(3 - 2a 
T - T = T = T = 8B … 一 、 

x*l,y,x,y x-l,y,x,y r' ..(5.12) T = T = T = T = -26 
x+2,y^,y x-2,y^,y x,y*2-^,y ^ I = lad x,y x,y 

The idea of assigning the boundary connections is more or less the same as the 1-D 
case. As it is a 2-D network, the assignment is much more tedious. So, the mathematical 
details are included in Appendix I. To ease the tedious work, we succeeded in deriving 
formulae for the boundary connection assignment and proved that the connection weight 
matrix still satisfies the symmetric property. More details can be referred to Appendix n. 
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5.3 Simulation Results and Discussions 

5.3.1 Spatial impulse response of the 1-D network 

Spatial impulse responses of 1-D recurrent neural network for gaussian filtering with 
different regularization parameters' value are illustrated in Fig. 5.6a-d. They are obtained by 
feeding impulse signal to the network. Simulation is performed using both discrete and 
continuous model. The result obtained using either discrete or continuous model is consistent 
to the theoretical expectation, i.e. as the regularization parameter, r ( = 1-X,. Refer to Section 
5.2.1 ) increases, the variance of the convolving kernel increases accordingly. 

However, it's noted that the convolving kernels of discrete model is not perfectly 
symmetric as the ones of continuous model. By checking the corresponding network's energy 
value, it's noted that the result obtained by continuous network is at a lower energy state. So, 
the performance of continuous model a bit outweighs that of discrete one. However, the 
simulation time is much longer using continuous model. 

Besides, for continuous model, it's also observed that varying the neuron's gain will 
affect the finally converged state. The phenomenon is illustrated in Figure 5.7a-b. It is 
observed that for r = 0.5，the variation is not significant. The variation becomes more 
significant when r is increased to 0.95. To get a more clear picture, we try to compare ideal 
gaussian shape with the network's convolving kernels. The result is illustrated in Figure 5.8a-
b. The y-axis, mse(std) is the minimal mean square error between gaussian shape with 
standard deviation equal std and the network's convolving kernels with regularization 
parameter varying from 0 to 0.95. It is observed that the continuous models with neuron gain 
=0.01 and 0.1 approximate gaussian shape better than continuous model with neuron gain 
= 1 and discrete model. Also, the deviation from gaussian shape is very serious for very small 
value of std. 

5.3.2 Filtering property of the 1-D network 

A signal with information of different scales is applied to the network to illustrate its 
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filtering property. From Fig. 5.9a-f, it is observed that as the regularization parameter 
increases, features with smaller scale are removed. This illustrates the scale-space filtering 
property of the designed network. 

To study its effect to a step edge, step edge signal is applied to the network. The result 
is presented in Fig. 5.10. There are two findings. Firstly, edge blurring is more serious as r 
increases. This result again is consistent to our theoretical expectation. Secondly, it's found 
that there is "overshoot" and "undershoot", ahead and behind a step edge respectively. The 
existence of negative portions of the filter kernel accounts for the phenomenon. We called it 
"step edge contrast enhancement effect". This is the characteristics owned by our network but 
not ideal gaussian filter, and in fact, is a defect of our network in terms of gaussian filtering 
application as the image filtered by the network will have several zero-crossings in the vincity 
of one step edge. Then, the accurate position of the edge will be difficult to locate. In order 
to remove the defect, further development have to be done at the very beginning step, the 
problem formulation, by introducing some more terms to reshape the network kernel to ideal 
gaussian-shaped one. 

53.3 Spatial impulse response of the 2-D network and some filtering results 

Similar to the 1-D case, we apply a 2-D impulse signal to 2-D recurrent neural 
network for gaussian filtering to obtain the spatial impulse response of the network. Again, 
the result is what we are expecting. As r increases, the spread of the 2-D convolving kernel 
increases and the result is clearly shown in Fig. 5.11a-e. Besides, it also possesses all the 
filtering property mentioned in the subsection 5.3.2. We have applied the network to 128x128 
"Lenna" image and the smoothed versions with different values of r are shown in Fig. 5.12a-
e. 

5.4 Conclusions 

A recurrent neural network is successfully designed for gaussian filtering. The spatial 
impulse response for both one-dimensional and 2-dimensional network as well as their 
filtering properties are investigated and it's observed that they are very similar to the gaussian ： 二 
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filter. Both discrete and continuous model are simulated and their difference is, in general, 
not very significant except that the former one wins in terms of simulation speed while the 
latter wins in terms of kemel，s quality. Also, boundary connection assignment, which is 
analogous to the issue of assigning boundary value condition for a lot of image processing 
algorithms, is found to be the most tedious but important part during the network derivation. 
Some formula are derived to ease the problem and are given in the chapter. 
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Fig, 5.6a-d: Spatial impulse response of ID network 
with different regularization parameter 

and different neuron gain 
a) discrete; b) gain = 0.01; 
c) gain = 0.1; d) gain = 1 
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Fig. 5.9a 

Fig. 5.9b 

Fig. 19c 
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Fig. 5.9d 

Fig. 5.9e 

Figure 5.9a-e: Filtering of signal with information of different scale. Note that the 
network with greater regularization parameter removes small scale 
information, a) r = 0.0; (original) b) r = 0.3; c) r = 0.5; 

d) r = 0,7; e) r = 0.9; 
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Figure 5.11a-e : Spatial impulse response of2-D network with 
regularization parameter 

a) 0,1; b) 0.3; c) OJ; 
d) 0.7; e) 0.9 
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Fig, 5,12: "Lenna" image smoothed by recurrent neural network, 
a)r = 0.2; b)r = OA; c) r = 0.6; d) r = 0.8; e) r = 0.99 

pg. 5-24 



Recurrent Neural Network for Optimization with Application to Computer Vision Chapter 6 

Chapter 6 Recurrent Neural Network for Boundary Detection: 

In this chapter, the novel recurrent neural network model, named Tunneling network, 
derived in Chapter 4 is used to tackle an optimal boundary detection problem. The problem 
formulation is adopted from that of "active contour model - snake" and is in fact a order 
combinatorial programming. As Tunneling network has optimum seeking power, we expect 
the neural network implemented boundary detection scheme can detect a nearly optimal 
boundary. In Section 6.1，we will give an introduction on boundary detection using active 
contour model - snake. Then, the derivation of a recurrent neural network for boundary 
detection based on the problem formulation of the "Snake" is shown in Section 6.2. 
Simulation of applying derived network to detect boundaries on both synthesized and real 
image is performed and performance comparisons are made with existing boundary detection 
means using local minimization scheme. All the results are illustrated and discussed in Section 
6.3. 

6.1 Introduction 

Extracting important features correctly from an image is a very important step in a 
computer vision system. Among others, edges and boundaries are the features commonly 
sought in an image. However, owing to noise, breaks in boundary due to nonuniform 
illumination, spurious intensity discontinuity, the extracting them from an image is not so 
straight forward. For boundary detection, most of the classical techniques can be divided into 
two categories; local analysis, like contour following vs. global analysis, like Hough 
Transform. They bear their own limitations as the former one, being totally data-driven, will 
break down when noise and breaks in boundary are significant while the latter one, being 
totally model-driven, can't capture the local features. In 1988, Kass et al [KWT88] suggested 
using regularization technique to make a compromise between the two extrema and proposed 
a boundary detection scheme named "Active contour model - Snake". 

A snake is a set of ordered points (named snaxels in the remaining text) with an 
associated energy consisting two terms; 
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i) . an internal energy terra which defines a deformable model constraining the shape of 
the snake, eg. smoothness and comer sharpness, 

ii) an external energy term which pushes the snake to the desired location according to 
the underlying image data. 

By minimizing the energy, the snake will jiggle on the image until it converges. The 
boundary will then be obtained by interpolating the set of points of the snake according to 
their orders. The main advantage of using snake to detect object boundary in an image is that 
it can locate a lot of problematic boundaries, including subjective boundary, which was 
demonstrated by Kass et al. [KWT88]. 

How to design the internal and external energy terms is one of the crucial steps 
determining how good a boundary can be detected. Besides the problem formulation, how to 
do the minimization is also a very important for the quality of the detected boundary and the 
corresponding computational complexity is important for the possibility of real-time 
application. Originally, variational calculus [KWT88] [BM90] [Coh91] was used to solve the 
minimization task and the computational complexity is 0(n), where n is the number of 
snaxels. Amini et al. [AWJ90] pointed out that variation calculus method suffers from 
numerical stability problem and also the uniqueness of the solution can't be guaranteed as 
external energy term is not convex most of the time. Therefore, they formulate the problem 
directly on the discrete grid and the minimization becomes a combinatorial one with 
computational complexity being where m is the size of the searching window for each 
snaxel. By dynamic programming approach, the minimization problem was then decomposed 
and casted into a discrete multistage decision process and the computational complexity can 
be reduced to 0{nm^). Within the area allowing the snake to move, which is determined by 
the value m, the optimal solution can be guaranteed by the principal of optimality. As m 
increases, the quality of the detected boundary will be improved. However, the high 
computational complexity is the cost to be paid. Although Williams & Shah [WS92] attempts 
to improve the speed by a greedy algorithm, it's a local minimization method and sub-optimal 
solution will result. Therefore, Amini et aL's dynamic programming method remains to be 
the only means for optimal boundary detection. Instead of reducing the computational 
complexity by sacrificing the solution quality, neural network, which possesses a massive 
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parallel framework for computation ultimately possibly in real time, is an attractive 
alternative. In this chapter, we will describe how the snake formulation can be mapped to a 
generalized Hopfield network model and then correspondingly to a tunneling network so that 
the nearly optimal solution can be obtained. Then, results of applying neural network 
implemented snake to detect object boundary in both synthesized and real images are shown 
and compared with a modified greedy algorithm in Section 6.3. 

6.2 From Problem formulation to Neural Network formulation: 

6.2.1 Problem Formulation 

For the problem formulation, we use Lai-Chin "snake" formulation [LC93]. The 
internal energy term is corresponding to constraints for equal spacing between snaxels and 
smoothness along the boundary. This defines the characteristics of the deformable model. The 
external energy term is to push the snaxels to latch on edges and comers. Mathematically, the 
formulation is: 

Internal energy term at 产 snaxel: 
物 : + 五層丄•） "(6.1) 

Energy terra corresponding to the equal spacing constraint: 

E (V.) = … ( 6 . � 
oo 

V / 
Energy term corresponding to the smoothness constraint: 

1 V. ,-V. V.-V. 1 2 /广 ii_� 
E Xv) = ± ' - ‘ …(6.1b) 一奴' 4 V.厂V. V.-V.+1 1-1 t i j+i 

External energy term 严 snaxel: 

E Xv.) = 1 - V/(v.) V/(v.)' ...(6.2) 
««�I, w ' V -V 

‘ 

The overall energy function is: 
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EtoJyX) = + 丨)+ ¥ — ( � • ) ) …(6.3) 
i=l 

where v,- is the 严 snaxel coordinates 
d^ is the average of the infinite norm of inter-snaxel spacing 
WI(vJ is the gradient vector at 产 snaxel normalized among the whole image 
\ is the compromising weights of different energy terms at /伙 snaxel and 

lis is the number of snaxels. 

Lai et al. [LC93] proposed to use minimax rule to determine the set of X so that 
choosing them wisely without human-interaction can be achieved. Experimental result showed 
that this rule can achieve the least mean-square-error among the cases with all possible 
globally constant X under different noise levels. Incorporating the minimax rule, the overall 
energy function becomes: 

E t - = i ： niax{ EJv)，，E膽Jv丨)} …(6.4) 
i=l 

6.2.2 Recurrent Neural Network Model used 

We represent each snaxel and its neighbours on the image by a layer of neurons of 
McCuUough-Pitts type and there are totally n layers, where n is the no. of snaxels. If a neuron 
is activated in a particular layer, the corresponding snaxel will take that location. For the 
neurons' connection, according to the overall energy function for the "Snake", each term is 
defined by combination of at most three consecutive snaxels. Thus, it's obvious that we have 
to deal with a higher-order combinatorial optimization problem. To cope with the situation, 
a second order Hopfield network becomes necessary. However, as mentioned in Chapter 3， 
the quality of the solution obtained by Hopfield network is very much limited. In order to 
seek the optimal solution, we use our novel Tunneling network, which is thoroughly described 
and analysed in Chapter 4 and shown to be able to approach to a solution much better than 
Hopfield network. Pole shifting version of Tunneling network is used instead of the adaptive 
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one as for the case of synthesized image，there are a lot of local minimum states having same 
energy value and the adaptive version can't tunneling through that type of problem. 

6.2.3 Neural Network formulation 

As mentioned in Chapter 4，Tunneling network uses the neural network formulation 
of generalized Hopfield network. To derive the neural network formulation, according to 
Section 3.1, we have to map the problem's cost function to generalized Hopfield energy with 
some penalty terms for the validity of the converged solution. The "Snake" problem of 
eqn.(6,4) can be written as a cost function of third order combination of neuron's state value 
together with a penalty as: 

E E E x{l-hp)x{Uq)x{l^U) 
户 1 ..(6.5) 

/:i 卜 1 ) 
where I is the layer index 

p, q, r are the index of the neurons at particular layer 
m is the size of the neighborhood included for a snaxel 
n̂  is the number of snaxels 
x{Up) is the state variable of the p^ neuron at 产 layer. 

The first part includes the complete snake formulation into the neural network 
formulation/ They can be interpreted as soft constraints. However, in order that the neural 
network will work properly, we need some hard constraints to ensure that the network is 
making a meaningful/valid combinatorial solution. For our problem, it's obvious that one and 
only one neuron has to be activated for each layer. As normal practice, we impose this hard 
constraint by penalty method, ie. adding a penalty term to the energy function as the second 
term of eqn.(6.5). It's noted that the weighting should be sufficiently large to ensure the 
satisfaction of the hard constraint. According to eqn. (6.5)，the neural network formulation can 
be derived as eqn.(6.6). 

1 Evaluation of E一h(M’r) & 办，仏are equivalent to that of 五叫(v丨•)， 
ŝmoothî i) & 五 s i m p l y by substituting the corresponding coordinates of neuron p, 

q & r to Vi.j, Vi & respectively and thus they can be evaluated using eqn.(6,l-2). 
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參 
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' j r hard ^ s o f t ^ ^ ^ ^ y ^ layer I 

Fig. 6.1: Network architecture for snake 
application 

It's noted that the 7；。户 governs the interlayer connection while governs the 
intralayer connection and the network architecture can be shown as Fig. 6.1. Based on eqn. 
(6.6)，the Tunneling network can be defined accordingly. 

Besides, it's to point out that the penalty term will become zero when the hard 
constraint is satisfied. So, the energy value of eqn.(6.5) will be the same as that of eqn.(6.4) 
at all the valid solutions, which is in fact the local minimum state of eqn.(6.5). Therefore, the 
local minima set of eqn. (6.4)，denoted by L„ will be subset of that of eqn.(6.5), denoted by 
4 . Thus, as the tunneling network possesses the ability to escape from L̂ , its ability escape 
from L„ is implied obviously. So, it's expected that the neural network approach for "Snake" 
can detect a better boundary than the existing local minimization techniques' implementation. 
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6.3 Simulation Results and Discussions: 

6.3.1 Feasibility study and Performance comparison 

Based on the neural network formulation in Section 6.2.3, we apply Tunneling network 
implemented snake on synthesized 128x128 "Square" image ( whose centre is at (64,64) and 
each side is of 64 pixel long ) to illustrate the feasibility of this scheme. The initial snake is 
fixed to be a circle. The searching window is fixed to be 3x3. Then, an experimental 
sensitivity analysis of the proposed scheme towards initial snake position is performed and 
the result is compared to that of modified greedy algorithm, which is a modified version of 
Williams and Shah's greedy algorithm [WS92] for convergence assurance by Lai et al 
[LC93]. For the experiment, we try to vary the initial snake position by i) rotating the initial 
snake, ii) changing the initial snake radius & iii) shifting the initial snake centre to test the 
quality of the converged snake. We measure the performance by three parameters, defined for 
an n-point snake as: 

a) Intersnaxel distance deviation 
n 

^ ( distance between 产 & /+1法 snaxels - average intersnaxel distance ) 
_ i 

n 
b) Corner deviation^ 

n 

\distance between snaxels and the corner\ ) 
i 

n 
c) No. of snaxels on the expected boundary^ 

1 As a square has four comers，we take average among the four corner deviation values. 
1 The boundary for the square is { JC = 33, 33 < >； < 96 } or { x = 96, 33 < y < 96 } 

or { y = 33, 33 < x < 96 } or { y = 96, 33 < X < 96 } 
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E.l) Experiment One: 
Image for boundary detection: Synthesized "Square" image 
Initial snake setting: - Number of snaxels =16 

-Ci rcu la r shape 
- C e n t r e of the snake = (64,64) 
- R a d i u s of the snake = 35 

Initial snake variation: Rotating the initial snake with different angle 

Result: The experiment result is presented in Table 6.1. It's observed that both 
Modified Greedy Algorithm (MGA) and Tunneling network (TN) have similar performance 
in boundary detection although the latter one is better in terms of intersnaxel distance 
deviation all the time. 

E.2) Experiment Two: 
Image for boundary detection: Synthesized "Square" image 
Initial snake setting: - Number of snaxels = 16 

-Ci rcu la r shape 
- C e n t r e of the snake = (64,64) 
-S ta r t ing angle being fixed 

Initial snake variation: Varying the initial snake's radius 

Result: The experimental result is presented in Table 6.2, It's observed that the 
sensitivity of TN towards initial snake's radius is much lower than that of (MGA). For 
instance, when radius of the initial snake is 30，snake by MGA totally break down and can 
only have 2 snaxels finding the expected boundary while snake by TN can have all 16 snaxels 
correctly latching on it. The situation is shown in Fig. 6.3a-c. 

E.3) Experiment Three: 
Image for boundary detection: Synthesized "Square" image 
Initial snake setting: - Number of snaxels = 16 

-Ci rcu la r shape 
- R a d i u s of the snake = 35 
-S tar t ing angle being fixed 
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Initial snake variation: The centre of the snake is shifted to the right from (64,64) to different extent 

Result: From Table 6.3，we found that the sensitivity of TN towards initial snake 
shifting is also much lower than that of MGA. For example, when the initial snake centre is 
at (74,64), snake by MGA only have 5 snaxels on the expected boundary while snake by TN 
can have 15 snaxels correctly latching on it. Similar situation is shown in Fig. 6,2a-f. 

6.3.2 Smoothing and Boundary Detection 

In order to further improve the quality of the detected boundary, scale-space smoothing 
scheme can be introduced to the image from coarse to fine. At each scale, let the snake to 
converge and the converged snake is used as the initial snake for the next finer scale 
smoothed image. There are mainly two advantages. 

i) The quality of the detected boundary becomes less sensitive towards the initial snake 
placement. Even if global optimization scheme is used, initialization of the snake is still a 
problem if the searching window for each snaxel is not large enough. For small window size， 

edges far from the snaxels can't be located. According to Fig. 6.5b, both MGA & TN failed 
in detecting the square's boundary as the snaxels of the initial snake are too far from the 
edges and local information gives no idea where to find the boundary. If the above smoothing 
scheme is applied as preprocessing step, the edge information will be dispersed out and the 
snake initialization sensitivity can be significantly improved. The result is clearly revealed in 
Fig. 6.5c-f. Although another obvious solution is to increase the searching window size, this 
method leads to tremendous increase in number of connection weights and is not a cost-
effective mean. 

ii) When applying snake on real image, even if the initial snake is placed near enough to the 
desired object, small local features due to the background and some other objects nearby can 
block the snake from locating the desired object boundary accurately. By coarse to fine scale 
smoothing, the undesirable local features can be escaped at coarse scale so that the snake can 
move near enough to the desired object boundary and at fine scale, the desirable local features 
on the object boundary can then be located accurately. Fig. 6.6 illustrates detection of the 
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girl's head in "Lenna" image with and without the scale-space smoothing scheme. It's 
obviously noted that at coarse scale, the snake can get the rough shape and the snake jiggles 
as the scale decreases to locate the boundary of the girFs head accurately. 

6.3.3 Convergence improvement by network decomposition 

In Section 4.4.2.2, it's shown that small-size decomposition of tunneling network can 
speed up a tunneling network such that it can yield a better solution within a fixed number 
of iterations. In this application, same strategy is introduced. However, we use fixed 
partitioning for consecutive layers of neurons instead of random partitioning as the neurons 
are only connected to that in the consecutive layers for this application. Coherent result is 
found and convergence towards global minimum state is faster for decomposition scheme 
using small-size partitioning. The result is obviously illustrated in Fig. 6.7. 

According to the problem formulation, neurons with 2 layers between them will be 
independent. We can take advantage of the independence such that parallelism can be 
incorporated together with decomposition and all the independent partitions can be updated 
at a time. The idea is clearly shown in Fig. 6.8 

6.3.4 Hardware implementation consideration 

After proofing the feasibility, studying the effectiveness and efficiency of the 
algorithm, the hardware implementation has to be considered. Even if we can successfully 
build the tunneling network architecture, there still remains two problems required further 
investigation. 

Firstly, the external energy term for the snake problem formulation involves 
complicated calculation between the input data/image and the possible snake positions. This 
implies that network connection has to be modified for different images and the possibility 
of implementing an image independent hard-wired chip for boundary detection can only be 
achieved by introducing dedicated hardware for the calculation. 
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Secondly, the huge number of network connection is another limitation. Number of 
connection needed can be found to be m^xnx6 ( 0{nm^)). 

Window size, m Connection No. 
3x3 131.22k 
5x5 2.18M 
7x7 21.18M 

This great amount of connection requirement is inherited from the higher-order 
architecture and hinders the possibility of building the hardware on a single chip. For more 
detailed discussion, interested readers can refer to Section 2.4.3 in Chapter 2. 

6.4 Conclusions 

The boundary detection problem using "Snake" has been successfully mapped to a 
generalized higher-order Hopfield network and then to a Tunneling network, a recurrent 
neural network with a massively parallel platform. Performance comparison through a 
sensitivity analysis between the existing local minimization technique. Modified Greedy 
Algorithm and the neural network alternative proved that the neural network technique can 
yield a better solution due to its capability in seeking global minimum state and is much less 
sensitive towards initial snake position. Furthermore, the converging rate of the neural 
network is found to be increased by using network decomposition technique described in 
Section 4.4.2.2 and the performance of the boundary detection scheme can be further 
enhanced by using scale-space filtering as preprocessing step. 
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—- ---•*•"'，—̂  — 

MGA TN 
Rotated Angle « ^ s： 又 „ 

(in radian) 5 � n S, A n 
0.00 7.25 0.00 16 3.18 2.00 16 

^ M M ^ ^ ^ M M M M ^ ^ ^ ^ M ^ ^ ^ ^ 

0.05 7.25 Q.OQ 16 2.88 2.00 16 
0.10 7.25 0.00 16 2.81 1.75 16 
0.15 4.47 2.00 16 3.94 3.30 16 
0.20 5.17 4.50 16 3,67 3.50 16 
0.25 5.19 4.75 16 3.50 3.00 16 
0.30 5.00 3.00 16 3.38 2.00 16 
0.35 5.33 1.25 16 0.375 0.00 16 
0.40 5.92 0.50 16 0.375 0.00 16 
0.45 7.25 0.00 16 2.75 1.00 16 

Table 6.1: Sensitivity analysis towards detecting boundary of "Square" image by rotating 
circular initial snake ( Centre at (64,64); radius = 35 ). MGA stands for 
Modified Greedy Algorithm and TN stands for Tunneling network 

i) bj is the intersnaxel distance deviation, 
ii) is the average comer deviation, 
iii) n is the number of snaxels on the expected edge, 
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MGA TN 
Radius of Initial ^ ^ ^ 

Snake 8 n 5 n 
35 7.25 0.00 16 2.88 2.0 16 
34 5.97 0.50 16 1.78 0.75 16 
33 5.91 4.25 11 0.94 0.0 16 
32 6.38 4.50 11 1.78 0.75 16 
31 0.75 10.50 3 1.78 0.75 16 
30 0.84 10.50 2 3.41 2.00 16 
29 1.25 11.50 0 1.25 11.50 0 

Table 6.2: Sensitivity analysis towards detecting boundary of "Square" image by varying 
the radius of circular initial snake ( Centre at (64,64); Fixed starting angle j. 
MGA stands for Modified Greedy Algorithm and TN stands for Tunneling 
network. i) 5j is the intersnaxel distance deviation, 

ii) is the average comer deviation, 
Hi) n is the number of snaxels on the expected edge. 

MGA TN 
Shifted pixels of ^ „ s： s： „ 

Initial Snake 5� n 5 � n 
2 7.25 0.00 16 2.88 1.50 16 
4 6.38 2.00 15 2.60 1.75 16 
6 5.813 7,25 10 4.38 3.50 15 
8 6.86 6.50 9 4.06 2.00 16 
10 3.56 9.50 5 2.88 1.50 15 

Table 6,3: Sensitivity analysis towards detecting boundary of "Square" image by shifting 
the initial snake to the right ( Radius = 35; Fixed starting angle ), MGA 
stands for Modified Greedy Algorithm and TN stands for Tunneling 
network, i) is the intersnaxel distance deviation, 

ii) is the average comer deviation, 
Hi) n is the number of snaxels on the expected edge. 
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• u 
Fig. 6.2a Fig, 6.2b 

^^m 
• • • 

Fig 6.2c Fig. 6,2d Fig. 6.2e 

n 
Fig. 6.2f 

Fig. 6.2: Comparison of modified greedy algorithm and tunneling network 
implemented snake on "Square" image with the centre of the initial 
circular snake shifted to (71,64). a) Initial snake position; b) 
Converged Snake by modified greedy algorithm; c-e) Snake position 
after 10, 20, 30, 40 tunneling iteration; f ) Converged Snake by 
tunneling network. 
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D • D 
^^m ^^m 

Fig. 6.3a Fig. 6.3b Fig. 6.3c 
Fig. 6.3: Comparison of modified greedy algorithm and tunneling network 

implemented snake on "Square" image with the radius of the inital 
circular snake equal 20. a) Initial snake position; b) Converged Snake 
by modified greedy algorithm; c) Converged Snake by tunneling 
network, 

• Mill III III Ij.m [•肝們,••腳 n n n lljgpflpflfmMWffltfBffiFB] Fig. 6,4a Fig, 6,4b Fig, 6Ac 

Fig, 6.4: Comparison of modified greedy algorithm and tunneling network 
implemented snake on "Flower" image, a) Initial snake position; b) 
Converged snake by modified greedy algorithm; c) Converged Snake 
by tunneling network 
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^ ^ H 9 1 i i ^ ^ B ^ ^ B B i I I ^ ^ m ^ H 聽 i l l , • • 
jgggggĝ p̂ ggŷ ĵjqjy ŜSjpp SHR RRRHB •ffiJWWQQMWWQWC fiflflfl? BjoSmRSSf 

mm^p 疆 I 圏 ^ ^ ^ ^ 

I 
Fig. 6.5a Fig, 6,5b — 1 ^ ^ M 
Fig, 6.5c Fig, 6,5d Fig. 6.5e 

• 

Fig, 6.5f 

Fig. 6.5: Figures to illustrate how coarse to fine scale-space filtering can be 
used to further relax the sensitivity of initial snake position, a) Initial 
snake position on "Square" image; b) Converged snake without 
applying any smoothing for both MGA & TN; c-f) Converged snake 
for coarse to fine scale smoothed image. The converged snake at a 
particular scale is used as the initial snake position for the next finer 
scale. It's noted that the snake is brought to the right position at 
coarse scale and latches on the edge accurately at fine scale. 
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• 圓 
Fig. 6.6a Fig, 6.6b 

mmm 
Fig. 6.6c Fig. 6.6d Fig. 6.6e 

m Fig, 6.6f 

Fig. 6.6: Figures to illustrate how coarse to fine scale-space filtering can be used to 
detect boundary of real image, TN is used for the minimization, a) Initial 
snake position on "Lenna" image; b) Converged snake without applying any 
smoothing; c-f) Converged snake for coarse to fine scale smoothed image. The 
converged snake at a particular scale is used as the initial snake position for 
the next finer scale. It's noted that the snake captures the outline of the girl's 
head at coarse scale and latches on the local features accurately at fine scale. 
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N T u n n e l i n g a t t e m p t s / i t e r a t i o n = 5 i 0 
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ojT m I 
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, K-：-• X ••• w X \ 
1 � ^ I 
兮 I O lO 20 30 40 1 1 e r a. t i o n s sp = 1 — — sp = 3 sp = 5 sp = 10 sp = 15 

Fig. 6,7: Converaging rate comparison by different size network decomposition. The 
problem consists of 15 snaxels to detect "Square" image's boundary and the 
variable, "sp" used in the legend means the number of consecutive layers 
grouped at a time for updating. For this simulation, 5 tunneling attempt per 
iteration is adopted, ie, all the neurons within the current updating group are 
checked and updated accordingly for five times during each iteration. It's 
noted that the cases, with smaller number of neurons grouped at a time, 
converge faster and are able to obtain a state with lower energy value, 
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Fig. 6.8: Figure to illustrate how parallelism can be incorporated into the decomposed 
recurrent neural network for snake so that all the neurons can be updated at 
least once within 4 iterations. The neurons within the boxes with dotted line 
are meant to be updated. Boxes are separated by two neurons as neurons with 
that separation are independent Simultaneously updating them won't give rise 
to conflicts in determining the neurons' state, 
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Chapter 7 Conclusions and Future Researches 

Through our research, different limitations arisen within the procedure of utilizing 
generalized Hopfield network for optimization are addressed. Suggested solutions are then 
provided accordingly, including a novel neural network model for global optimization. Finally, 
we succeed in providing neural network solutions for two computer vision problems, gaussian 
filtering and boundary detection. In this chapter, we will first summarize our contributions and 
draw some conclusions based on them, then, limitations of our work and suggested future 
researches are followed. 

7.1 Contributions and Conclusions 

Discussions on the procedure of utilizing generalized Hopfield network model for 
optimization are provided from the very beginning of problem formulation to the end of 
network stability assurance. They have been verified to be useful during our derivation of the 
recurrent neural networks for the applications, gaussian filtering and boundary detection. 
Although we can't prove that this is a universal procedure as there are so many different 
problems in the world, it can be used as an application reference for some domain expertises 
who are new in this field but may be interested in neural network problem-solving paradigm. 

Within the procedure, one of the important steps is to assure the formulated network's 
convergence. From a geometric perspective, we have shown that all generalized Hopfield 
networks with their formulations having non-zero self-reinforcement terms will not be stable. 
In view of the fact that this condition frequently happened in practice, a "reshaping strategy" 
is thus proposed to reformulate (reshape) the neural network formulation such that the 
"reshaped" network can always converge. So, by this proposed strategy, whenever there is a 
problem mappable to generalized Hopfield network, a corresponding neural network 
formulation with convergence guaranteed can always be found. This is a simple yet important 
step when generalized Hopfield network is considered for combinatorial optimization. 
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For contribution in improving the quality of the solution obtained, a novel neural 
network model - Tunneling network is proposed and derived from the marriage of generalized 
Hopfield network and a global optimization technique called tunneling algorithm. The 
tunneling process is achieved by a pole shifting scheme. The stability and global convergence 
property of the newly proposed network are both investigated. It's proved to converge to a 
local minimum state for a fixed pole and to the global minimum state in infinite time during 
the whole tunneling process. This provides the concrete backup of the global optimization 
capability possessed by Tunneling network. 

Through modifying the pole expression of the Tunneling network associated energy 
function, different versions of Tunneling network can be derived. In this thesis, by considering 
hardware implementation simplicity, two variations are proposed. Besides the pole shifting 
version, an adaptive version is also posed. To solve TSP problem, simulation results reveal 
that adaptive version is a much better one in terms of the quality of solutions obtained. 
However, under the situation that the current local minimum state surrounded by some other 
local minimum states with same energy value, the adaptive Tunneling network can't tunnel 
through nearby barrier and will be stuck at the state forever. Thus, this version will not 
always guarantee convergence to the global minimum. In such a situation, the pole shifting 
version becomes the only choice as it doesn't have this defect. Therefore, modifying the 
Tunneling network's pole is a way to adjust its tunneling power and generality of its problem-
solving capability. 

In considering average performance of Tunneling network in terms of the quality of 
solutions obtained and the convergence rate, both versions, through simulations, are found to 
overwhelm simulated annealing, a popular global optimization technique very often 
accompanying with Hopfield network when an optimal result is desired. For further 
enhancement, a network decomposition strategy is proposed by grouping certain number of 
neurons at a time such that the solution space is confined according for more thorough 
optimum searching by tunneling. Simulation result manifested that small-size grouping of 
neurons with random partitioning scheme can converge to a better solution. All these 
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simulation results prove that Tunneling network is a very promising means for global 
optimization. 

As revealed in Section 1.3，computer vision problems can be categorised mainly into 
convex quadratic programming and combinatorial programming. To evaluate our neural 
network methodology in computer vision domain, gaussian filtering and boundary detection 
are chosen from the two categories respectively. They are successfully mapped to neural 
network formulation and solved by using different recurrent neural networks. In the gaussian 
filtering application, the impulse response of the derived recurrent neural network is found 
to be very much like a gaussian-shape. Deriving this recurrent neural network is rather 
straight forward but the most tedious but important part is the boundary connection 
assignment Mis-assignment may lead to error arisen at the boundary. The error will propagate 
to the interior part and the performance of the network will be greatly deteriorated. In fact, 
similar problem was noted by Zhou et al. [ZCVJ88] during their establishment of recurrent 
neural network for image restoration. Ringing effect is resulted due to the boundary error. For 
this particular application, we derived some formula to cope with the situation. Thus, the 
boundary connection assignment can be concluded as the step requiring the most attention in 
deriving recurrent neural network for image processing algorithms which requires boundary 
value consideration. 

In the boundary detection application, we adopted active contour model - snake as our 
problem formulation and our novel Tunneling network is chosen as the recurrent neural 
network model. Due to its optimal boundary seeking capability, the derived network is found 
to be able to detect a much better object boundary than some existing implementations of 
active contour model. Moreover, its performance is much less sensitive to initial conditions. 
Thus, through this application, the tunneling network has once again demonstrate its value in 
seeking optimal solution for practical problems of combinatorial type. Moreover, as it，s a 
blind-searching method with no a prior knowledge on the problems，solution being required, 
it can be easily plugged into other applications. This reveals the fact that our Tunneling 
network is in fact a very generic solution for a large group of combinatorial problems. 
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12 Limitations and Suggested Future Researches � 

i) Necessity of general-purpose neurocomputer : —— 

Despite the impressive results obtained by Tunneling network for both benchmark and 
practical problems, lengthy computation time for simulation will disappoint ones who intend 
to use it. As all the neural network algorithms, including our Tunneling network, are designed 
based on a parallel distributed structure, to simulate its dynamic using digital sequential 
computer will definitely take a very long time. Also, due to the requirement of huge amount 
of memory for the storage of the connections, substantial memory swapping will further lower 
the computational speed. To testify whether a neural network algorithm can fulfil its duty in 
real-time and furthermore, to speed up the development, instead of building dedicated 
hardware, a general-purpose neurocomputer with architecture specially designed for neural 
network algorithms wiU be of great help inevitably. Although, in the market, there are some 
models available, their capability is very limited. More fundamentally, in fact, the 
specification of a neurocomputer eligible for general development is not yet well discussed 
by the neurocomputing expertises. So, researches in development of a general-purpose 
neurocomputer will be of great value in triggering further development of neurocomputing 
paradigms. 

ii) Further work on Tunneling network 

As mentioned in Section 7.1，modifying the pole expression of Tunneling network 
associated tunneling function can affect its tunneling power and generality in problem-solving 
capability. In our researches, we only provide two possible variations. Not much effort is 
specially put to optimize the pole expression for network performance. So, it's believed that 
further adjustment or using different functions for the expression may come out with an even 
better version. 

For evaluation, only simulated annealing is compared and found to be inferior to 
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proposed Tunneling network. Recently, mean field annealing (MFA) and genetic algorithm 
(GA) are found to be two very promising methods for blind-searching. For MFA, it's in fact 
a speedup version of SA. Using MFA involves the cooling scheduling determination and 
critical temperature estimation which complicates its comparison with other algorithms. 
Preliminary simulation is performed using a slow enough schedule and starting the annealing 
at a high enough temperature and the solutions so obtained are also inferior to the ones 
obtained by Tunneling network ( not presented in this thesis ). For genetic algorithm, it 
possesses a very attractive property - learning during searching, which is not possessed by our 
Tunneling network. However, so far it remains to be an algorithm based on programmed 
computing paradigm instead of neurocomputing's. To correctly rank them according to their 
performance, a more thorough performance comparison between MFA, GA and our Tunneling 
network can be a topic for further investigation. However, it is not necessary to put them into 
competitive relationship. There exist some hybrid models of GA，eg. GA + gradient descent, 
which can perform better than the individuals. So, integrating GA and Tunneling network may 
be able to establish a hybrid-model of Tunneling network with learning capability during the 
tunneling phase because during the study of our Tunneling network, it's observed that lots of 
local minimum states are revisited a number of times. If it's possible to direct the tunneling 
trajectory to the promising region using the knowledge learnt during the previous tunneling 
phases to avoid revisits, the time for locating the global minimum state can be reduced and 
the performance will undoubtedly be improved. 

iii) Parameter-free recurrent neural network model 

Other than further enhancement of Tunneling network, a general parameter-free 
recurrent neural network model for problem-solving is another possible research direction. A 
typical problem formulated as mathematical programming model may consist of soft 
constraints together with hard constraints, like our problem formulation of boundary detection 
application. Different sets of weighting for the soft constraint terms and the hard constraint 
terms will affect the quality of the solutions obtained. So far, the researchers assign the 
weighting’s values experimentally. This parameter tuning process is known to be a non-
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desirable one. In fact, there exist algorithms to determine the optimal set of weighting. For 
the soft constraints, min-max rule [GY88] can be used to flee the parameter tuning process 
for the optimal set of weighting. For hard constraints, Lagrange multiplier method can be used 
to calculate the required hard constraints' weighting. In fact, some research works have been 
started to implement a Lagrange Programming neural network [ZC92a] and Minimax neural 
network [CU92]. If the optimal set of weighting for both soft and hard constraints can be 
determined by the network dynamics itself, we then can have a really parameter-free recurrent 
neural network model, possessing the advantage of fully autonomy in problem-solving. 

iv) Further research direction on applying Neural Network to Computer Vision 

Including our work, most of the research works on applying neural network to 
Computer Vision are implementing different low-level or intermediate-level visions. Zhou et 
al. in the book Artificial neural network for computer vision pointed out that a very 
challenging research direction in the future is to establish a unified neural network model 
which can utilize different cues, including edges, texture, stereo, motion information obtained 
for recognition. In fact, not only in the neural network field, such a conceptual unified model 
is not much investigated in the computer vision field. Recently, Manjunath and Chellapa 
[MC93] start working in this direction and a conceptual unified approach to boundary 
perception is studied. 

To realize such a model using neural network, the already established recurrent neural 
networks for different low-level visions, including our gaussian filtering and boundary 
detection ones, can be considered as building blocks of a feature extraction layer of the 
model. Then, the converged state of those blocks can provide cues to another layer, which can 
be responsible for the interaction between the different cues in order to merge the information 
extracted from different perspectives, ( For example, edges from texture and edges from 
intensity. ) and transform them to some more meaningful representation. Finally, at the 
toppest layer, some neural networks with classification capability, eg. Backpropagation 
network, can be used to make the final decision of recognizing an object in the scene. 
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Although development of such a neural network system is really worth taking, it requires a 
very substantial system support, including speedy processing system and huge amount of 
memory for storage all the connections of such a large network, and this may hinder the 
emergence of the system in the coming few years. 
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Appendix I: 
The assignment of the boundary connection of 2-D recurrent neural network for 
gaussian filtering: 

The corresponding energy of the 2-D recurrent neural network for gaussian filtering 
is restated here for reference. 

E = — T T d -d ^ h h y y i d , -2d , 2 
^ext ^ y ^int ^ y .八m.ij 

\ A -A -A _ 

+ d 、 一 2d +d 1 4 
The consideration of the assignment can be divided into eight parts A-H as illustrated 

in Fig. ALL 

Region A Region B ReQi On E ^ 
(0,0) (0,1) 

Region C Region D 
Region F • 

(1,0) (ID 33 33 (D ， 
j a _ _ 

Q： Q 
二 二 Ci a： 

: T T 

Fig. ALL' Figure showing how the network's 
boundary is divided for connection weights 

assignment 

Part A: The terras involving 毛� i n eqn.(Al.l), denoted by Eqo，are given as: 

五� � = a (^oo-^oof + P 
+ (4) -2‘+4))2 } 
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^ = 2a (4-^00) + 2p{ ( 4 - 2 4 + 4 ) ) + ‘ — - :-
邮0 

=4)(2a+4p) - - 4p式。+ 2 | 3 4 + l^d , , _ l ad , . 

The corresponding connection weights are: 

7；0;0�= - (2cx + 4p) 
r = r = 4B 
0̂2;00 - 了20;00 一 - 2 P 
0̂0 = 2oc 心 

Part B: The terms involving d̂ ^ in eqn.(Al.l)，denoted by Eq” are given as: 

^01 = a ( 4 - " � i f 
+ p { ( 4 - 2 4 + y + (4)-24+式2)2 + { 4 - 2 4 + y } 

^ = 2CX (d�i-djj 

2(4-2式1+4)-4(4。-24+式2)+2(4-2之2+4 ； 

=-4P(5��+(12P + 2 a ) 4 - 8 p 4 + 2 p 4 - 4 p 式 i + 2 p 4 - 2 a 式 1 

The corresponding connection weights are: 

ôo;oi - 4p 
r�i ;�i = -(12p+2a) 
0̂2;01 = 8P 

01 = -2P 
Tn-M = 4P 
r華 = - 2 P 
‘ = 2 K i 
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Parte : The terms involving 式� i n eqn.(Al.l)，denotedby £川，are given as: 

1̂0 = a 
+ P { fc-2式 1+4)2 + (式。 - 2式。+ { 4 - 2 4 + y ； 

Comparing with E � ” the neural network formulation can be obtained by swapping the 
first and second index, third and forth index. The corresponding connection weights are: 

T = 4B 
丄 0 0 ; 1 0 ” 

了 撃 = - ( 1 邓+2a) 
了20;10 = 8p 
�30;10 = -2P 
T = -23 i 12; 10 
,10 = 2cx"oi 

Part D: The terms involving d̂ ^ in eqn.(A.l)，denoted by E”，are given as: 

丑 11 = a R r ^ i i f 
+ P I ft�-2式 1+4)2 + (式 1-2式 

- 4 (2。1-2式1+毛1) + 2(4-24+331) } 

The corresponding connection weights are: 

Tn;n = -(20P+2CX) 
Tro-M = 0̂1；11 = 4P 

= = 8P Tum = = -2P Al = 
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* According to the network geometric symmetry, the connection weights assignment 
of the other three comers can be copied from Part A to Part D. 

•A 

Part E: For this part of the network，let one of the neurons，value denoted by d � ) . 

(In fact, y=0 ) The terms involving in eqn.(Al.l)，denoted by £,，are given as: 
E = B U , , + d , -2d , +d ] -

‘ / V \2 I A. ^ \2 I 

卜 \2 + a Kr^J 

Ky 
+ 2cx 

The corresponding connection weights are: 
T = -14B -2a 

x,y,x,y r 

T 一 T _ 8 5 

了 一 = 

T , = -2p 
I = 2ad 

xy xy 

Part F: For this part of the network, again let one of the neurons' value denoted by 

d . (Here, y=l) The terms involving it in eqn.(Al.l), denoted by Ep are given as: 

I A. /V \2 
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Cm ( ^ ^ A • A ' ^ A -A 

K y 

+ 2a 

The corresponding connection weights are: 
T = -226 -2a x,r,x,y r 
T = T = 8B 

T , = -2B 
W， y = - 2P 
I = lad xy xy 

Part G: Connection weights can be obtained simply by swapping index of Part E.The 
connection weights are then: 

T = -14(3 - 2 a r T = T = 8B = 
T , = -2B 
T , = -2P 

‘ = 气 
Part H: Connection weights can be obtained by swapping index of Part F. The 
connection weights are then: 

T = -226 -2a x.r,x,y r T = T = 8B x,y-l-,x,y x,y+V,x,y ^ 
T � = 8p 
'^x+2,y,x,y - 2P 
T , = -2p 
r 一 ’ = -2P 

= 4P 
I巧=滅巧 

* Again, due to the network symmetry, the assignment of the connection weights in the 
bottom and right boundary can be directly copied from Part E to H. 
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Appendix II: 
Formula for connection weight assignment of 2-D recurrent neural network for gaussian 
filtering and the proof on symmetric property 

In Section 5.2，a neural network for gaussian filtering is derived and it's shown that 
the network's connection weight matrix is symmetric with nonnegative diagonal elements and 
thus the convergence of the network can be guaranteed. However, it has been noticed that the 
connection weight assignment in the boundary region is very tedious (Refer to Appendix I). 
If the network's structure is modified, the connection weight assignment in the boundary has 
to be repeated again. To simplify the assignment task, we generalize the network structure, 
assuming each neuron connected to m neurons on the left and ra neurons on the right. Then, 
we derive the formula for the connection weight assignment for the core part and the 
boundaries of the network and the symmetric property of the connection weight matrix is 
proved. 

Consider the neural network for gaussian filtering with N neurons, the terms describing 
the neighboring relationship of the neurons is given by: 

>2 
where dj is the value of the , neuron. 

For other applications, which may utilize other form of neighboring relationship of the 
neurons, we generalize the expression (A2.1) to the following form: 

E = ^ iw d. +w 2. i+�+Wni"K..+w�+J2 ..(A2.2) 
/ V \ m j-m m-1 7-m+l 0 j m j+mf 

•A A 

where is the coefficient of either of 
iV is the number of neurons in the network. 

The corresponding network will have nodes connected to m neurons on the left and 
m neurons on the right To obtain the dynamic equation of the network, firstly consider the 

pg. A2-1 



Recurrent Neural Network for Optimization with Application to Computer Vision Appendix U 

neuron in the core part ( ie. V i: 2m+l < i < N-2m f . The terms in E involving it are, 
i+m .2 

E. = y^ (w 1 J . … … 戈 J 
I / ^ \ m j-m m-1 7-m+l 0 j m j+mf 

I ^^ A, 1 \2 
= 〜 《 如 1+ … � i ) , / . . . v2 ..(A2.3) + [w d. ^ , + ... 1+ ^d：+wd.^ \ m i-2m+l m-2 i-l m-1 t m i+lf + 

+ i^Ji + 元 戈 + 2 J 2 

A Then, differentiate E with respect to J . , 

od. 
+ 2vViM 如 1+ … w ^ J . ^ w X , ) ,XA2A) 
+ 

+ 2w (w d. + w 1 次 … 州 ） 
T m\ m t m-1 i+l m i+2mf 

According to the dynamic equation (A2.4), the connection weight from the n'̂  
neighbor to the current neuron, 7]+队i and equals the negative value of the coefficient of^^^ 

and d. and can be formulated as: 1-/1 
V/: 2m+l< i^ -2m A Vn: O ^ ^ m 

2m-n T = T = w w ..(A2.5) 
y=0 

It's noted that the connection weights are independent of i and thus are geometric 
invariant within the core part of the network. The proof of the connection weight's symmetric 
property is pretty straight forward and is given at the back of this Appendix. 

Then, consider the 产 neuron in the boundaries, ie. Vz: l<i^m & 纵 As 

2 The indexing scheme is such that the leftest neuron has an index 1 and the “ 
lightest neuron has the index N. 
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there are two boundaries, one being on the left side and the other on the right side, here we 
just consider the left side and the situation on the right side is exactly the same. For the 
neurons in the left boundary, the number of terms corresponding to the neighboring 
relationship with the other neurons, comparing with eqn.(A2.3) is reduced due to the boundary 
existence. And the number of reduced terms depends on i and thus the connection weights 
in the boundary are geometric specific. 

To derive the formula for the connection weights in the left boundary, let's consider 
the terms in E involving node i in the boundary. Take the derivative and note that coefficients 
of d. and 1，the connection weights from the n'^ node to the left and right of the current 
neuron are respectively: 
V/: l<i^m A Vn: 

2m-n 
= 2 Y： 丨—1 

Vi: l < / ^ m A Vn: 0^<2m 

It can be proved that the connection weight symmetric property is also hold in the 
boundary and the mathematical proof is given at the back of this Appendix. Moreover, as it's 
obvious that all the above derivation remains the same if we reverse the indexing scheme, ie. 
the lightest neuron has index no. 1 and the leftest one N, the connection weight at the right 
boundary can be easily deduced to be: 
Vf: 剑 A Vn: 

2m-n 

T = 7 w w ,.(A2.8) 

V/: � A Vn: O ^ ^ m 
y=0 

The symmetric property remains to be hold. Thus, it can be concluded that the way 
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we adopted to assign the connection weights of the recurrent neural network including the 
boundary region can be formulated as eqn.(A2.5-9) and can guarantee the connection weight 
symmetric property throughout the network. Thus, the convergence of the network is proved. 

* Note to 2-D case: 

All the work is done on 1-D gaussian filtering. However, extension to 2-D case is 
pretty straight forward and the symmetric property will be inherited then. 

Firstly, the energy terms involving neuron with index {i,k), which describes the 
horizontal neighboring relationship with m neurons on both left and right side and vertical 
neighboring relationship with p neurons on both upper and lower side, are: 
Vi: 2m+l< /^ -2m 八 VA:: 2p+l<k^-2p 

j+m ^ %2 
E.，= V \w d. A ,.+... +wl+W J 

ik / ^ \ m j_m,k m-1 y-m+1̂  o jjc m j+mjcf 

l=k-p 

where N is horizontal dimension of the network, 
P is vertical dimension of the network. 

As the energy terras corresponding to the vertical and horizontal neighboring 
relationship are independent, the connection weight can be easily deduced from the case of 
ID and referring to eqn.(A2.10-ll), their formula are: 
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— — . . . -

2m 2p 
7=0 1=0 

Vm: l ^ ^ m 
2m-n T _ T - 9 w w ..(A2.10) 
y=o 

Vn: l ^ ' ^ p 
2p-n 

r _ T zz 0 r r .,(A2,11) 
1 i’k-n;i，k 一 ^ i M n ; i , k “ “ L ^ ' \p-l\' \ - p * n * l \ /=0 

At the boundaries, first consider the upper comer. The energy terms involving neuron 
in that region are: 
Vf: \ < i ^ m 八 Vit: l<K2p 

N-m %2 

j=m+l 
P-P I A ^ ^ ^ \2 

+ V Ird., +r 'd.j d.,+...+rd；, J 
l^p+l 

Again due to the independence between the vertical and horizontal relationship. The 
corresponding connection assignment formula are, 
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y=0 1=0 
Vn: 

2m-n 
= 2 E〜—丨〜一丨 ..⑷.切 

y=2m-i Vn: l ^ ^ m 
mm(2m-n,t) 

= 2 E 冰 I-—I ..(A 么切 y=o 
Vn: 1么众 

T = 2 V r r ,.(A2.14) 

Vn: 1么穿 

/=0 
The connection weights in the other three comer can be obtained in a similar manner. 

Proof on the symmetric property of the connection weight matrix derived for 1-D 
gaussian filtering: 

The core part includes the neurons with index within the range [2m+lJ^-2m] while the 
boundaries part includes neurons with index within the range [1,2m] and [N-lm+lJ^, 

i) Prove the connection weight symmetric property in the core part: 
The formula for the connection weight in the core part is restated here. 

V/: 2m+l</^-2m A V«: O ^ ^ m 
2m-n 

. 7=0 

To prove the symmetric property, we have to show that: 
Ti-n’i = Ti，i-n， 

办)T一 = 
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a) For 7；’,.” is defined by eqn.(A2.7) 
min(2m-rt,0 

；=0 2m-n 
= 2 y^ w, as i > 2m-n / >> |m-� \-m+n+j\ 

；=0 = T . . 
l-riyl 

For is then defined by eqn.(A2.5) 
T.. = T, V 2m+l< f i,i-n I +n,i 2m-n = 2 ^ W, ..W, ._ 

7=0 = T . . Therefore, V 2m+l</^-2m, it's proved that = T̂ -.̂ ,-. 

b) For N-4m+l</^-2m, is defined by eqn.(A2.9) 
inin(2m-/iJV-0 

7=0 
2m-n 

= 2 w, as N-i > 2m-n 
；=0 

= T . . 
For is then defined by eqn.(A2.5) 

T.. = 7., .， V 4m+l< r 
M + r t z - n , l 2m-n 

= 2 冰卜讲 
；=0 

= T . . 

Therefore, V 2m+l</^-2m, it's proved that = 
which completes the proof. • 

ii) Prove the connection weight symmetric property in the boundaries part: 
First, consider the left boundary, the formula for the connection weights is: 

V/: \< i ^m A Vn: 
2m-n 

T = 2 V w w .,(^2J6) y=2m-i 
Vi: l<i^m A Vn: 0^<2m 
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min(2m-rt,0 
7. . = 2 y w, , ..(A2.17r y=o 

A) When min(2m-n,i) = 2m-n, 2m-n < i or i+n > 2m. 

To prove = T]“+„: 
2m-n 
>0 

describes the connection from the neurons with index no. greater than 2m. The reverse 
connection weight value, !；•“+„ thus is determined by eqn.(A2^) which agrees with 
eqn.(A2.18). 
To prove = 7]"; 
From eqn.(A2.16), 

m'm(2m-n,i) 

Tun’i = 2 冰 |m-y|州卜m+”+_/| 

Put i = i - n, 
min 

Tu-n = 2 E 
J=0 
i-n 

二 2 冰|m-y|冰卜m+n+yl y=o 
2m-i 

= 2 、-丨沙丨 y=2m-rt 2m-n 
=2 州卜 m+«+y|�m-_/| 

2m-n 

= 2 y^ >V| :丨 
y=2m-i = T . . 1-/1,1 

• 

B) When mm(2m-n,i) = i, 
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To prove 丨’： 
Starting with 

2m-n 

Put i = i + n， 

2m - n 

j-2m-i-n 
0 

- 2 � : ^\m-j-2m+n\^\-m+n+j+2ni-n\ 

0 

=2 冰卜•丨冰|m-_/| H 
i 

= 2 w丨饥丨w卜力.1 >0 
= T . . 

• 

To prove = : 

Starting with 
i 

Ti+n，i : 252 州丨力州卜m+”+_/| 
；=0 

Put i 二 i - n， 

i-n 

Tu-n = 2 丨 ― 丨 >0 
i-2m 

j=~2m+n 
2m~n 

= 2 州|m-力州卜 m+n+yi 
= T . . 

• 

This completes the proof. • 
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Appendix i n 
On index manipulation for reshaping higher-order Hopfield energy function 

In Chapter 3，using linear approximation to reshape the Hopfield energy function, the 
energy function of eqn.(3.9) can be written as eqn.(3.12) by grouping different terms together. 
The grouping and the index manipulation are depicted in the following. 

Consider the expression 

^ ？广i灰 z, ij Ji 

and assume that the value of the weighting, T.. , is independent of the index ordering. The 
assumption can be ensured by using the averaging method described by eqn.(3.11). 

Definition A3.1: The distinct index set of a weighting is defined as a set with elements 
being the distinct indices of the weighting. For example, the distinct 
index set of T)腦 and T ^ e are {1,2,3} and {2,3,4,6} respectively. 

Recall from Chapter 3，the basic idea of the reshaping strategy is to replace x^ by x,-. 
Refer to the expression (A3.1), let m be the number of different indices, k be the total number 
of indices, i�’ . . . i j be the distinct index set and denote the number of occurrence of the 

XX X 

index i： as 入,，where V X . = A:. Using the strategy, 广…义,,has to be substituted by 
J J ^ 1 2 m i=i XX...X for any possible set of X. After the substitution, the weightings with same distinct 

'1 '2 

index set will be grouped together. 

i) For a fixed m and a particular set of the number of weightings with \ index i” \ 
index /之，…，̂m index within the expression (A3.1) equals 

k\ 
xjnzxj 

1 2 m 
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Due to the assumption that the value of the weighting being independent of the index 
ordering, 

Tmm .�= Tmm .V = constant '1 h …'” <'l '2 … 
where . � i s the weighting with Xj index i” followed by \ index /】，.…followed by 

index i^. < … > stands for any possible combination oiXi index i ” � i n d e x 
i2，…\n index 

Therefore, the sum of the weightings of x.x. ..JC. for a fixed m and a particular set of X i 2 n 
kl ^ = 1 M.h .K 

！ … 、 1 Z fn 

ii) By grouping together the weightings with same distinct index set, i.e. grouping of 丁̂⑵， 
Ti2333, and so on, the sum will then be 

k-m+l k-\-m+2 台： 众！ 

X ) . … T v n ” t t T 拍 … 

iii) Afterwards, this sum should be averaged and assigned to every element of the new 
weighting set . . This is to ensure the derived network convergence by the similar 

argument of eqn.(3.11). The sum is corresponding to the terra ^ � of eqn.(3.11) and 
s e 

size(<ii，". equals m!. Thus, each element of the new weighting set 丁<��广�> will be 
m-2 

E x ^ K * 丄 T > •… > 1 ； K 
M m! W . . . . � ! … ” 

iv) Also, the number of different indices, m can be 1 to k-l. Therefore, the expression (A3.1) 
can be written as 
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1 f y y t x.x•.…x 
V , \ 

k-\ )k-m+l 众! 1 
+ ^ . . . . 》 、 》 、 》 、 . . . . . 》 、 * . , T ; . ； X - X . 

m=l 类/j … X , = l 〜：八2 m' ) 
By repeating the above steps, eqn.(3.12) can be obtained from eqn.(3.9) in a similar 

manner. 
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