
. ^ . - ‘ .
. 、. 一 . . : ‘

Parallel Schemes for Global Iterative Zero-Finding

A Thesis

presented to the Department of Computer Science

of The Chinese University of Hong Kong

in partial fulfillment of the requirements

for the Degree of Master of Philosophy

by

Luk Wai Shing

May 1993

^
v
/

r

/
V
:
:
.
、
一

/

\

^
 .
.
 ..V

\

,

z

墨
,
：
f
 -

 :

 V
 I

少

j
 9
-

N
》

ABSTRACT

In considering the problem of finding all the zeros of the iV-th degree polynomial,

classical algorithms take the form of calculating the zeros one at a time, each followed

by a deflation step to remove the calculated zero oCq from the polynomial. Usually,

synthetic division is used for the deflation step. That is, the polynomial is divided by (z

- o t o) to yield the deflated polynomial. These algorithms seem to be hardly

parallelizable since the deflation step in-between the iterations is inherently sequential.

Two alternative methods, which are natually parallelizable, are the Durand-Kemer

method [13] and the Aberth method [1]. Both of the methods start with N distinct

initial approximations and converge to all the zeros separately. However, we observe

that the Aberth method is a modification of the Newton method by performing a

pseudo-deflation with iterates instead of computed zeros. By this observation, we

introduce parallel versions of a class of existing algorithms, such as the Halley method,

the Laguerre method and the Cluster Adapted method. All the methods of our class

are locally convergent and the convergent rates are increased by one from their

sequential counterparts in case of simple zeros. Moreover, the fourth-order algorithms

are robust in numerical examples. Also, we study the choice of initial approximations

and the improvement on these algorithms in case of multiple zeros.

The global behavior of classical algorithms is investigated by using computer

graphic and visualization techniques. The visualization process is time consuming and

it often takes many hours for a workstation to display a graph. However, an

implementation on the MasPar massively parallel computer shows that the program

running on this machine can provide us a quick response. As a result, we can include

some interactive facilities, such as zoom-in, zoom-out, in our program.

i

Recently, the use of homotopy methods for solving eigenvalue problems and

solving polynomial systems has been studied by many researchers (eg. [15，16, 17]),

due to its naturally parallelizm and its robustness. In this thesis, an homotopy method

that solves single polynomial for all zeros is presented. We illustrate that multiple

bifurcation can occur at this simple case by some examples. A method to overcome

bifurcation is also discussed.

ii

ACKNOWLEDGMENTS

Many people contributed to this project, either directly or indirectly. Particularly, I

would like to thank Mr. Wong-chuen Kwok, who spent many days and nights on

discussing problems with me. Prof. E.V. Krishnamurthy made the helpful comments

on the proposed parallel deflation scheme. Also, Prof. Tony Chan suggested the

homotopy method for global convergent problem. My greatest thanks must go to Prof.

Tien Chi Chen. His discovery and advice was invaluable to this project.

• • • m

Table of Contents

ABSTRACT i

ACKNOWLEDGMENTS ii

CHAPTER 1. INTRODUCTION 1

CHAPTER 2. DRAWBACKS OF CLASSICAL THEORY 4

2.1 Review of Sequential Iterative Methods 4

2.2 Visualization Techniques 8

2.3 Review of Deflation 10

CHAPTER 3. THE IMPROVEMENT OF THE ABERTH METHOD 11

3.1 The Durand-Kemer method and the Aberth method 11

3.2 The generalized Aberth method 13

3.3 The modified Aberth Method for multiple-zero 13

3.4 Choosing the initial approximations 15

3.5 Multiplicity estimation 16

CHAPTER 4. THE HIGHER-ORDER ITERATIVE METHODS 18

4.1 Introduction 18

4.2 Convergence analysis 20

4.3 Numerical Results 28

CHAPTER 5. PARALLEL DEFLATION 32

5.1 The Algorithm 32

5.2 The Problem of Zero Component 34

5.3 The Problem of Round-off Error 35

CHAPTER 6. HOMOTOPY ALGORITHM 36

6.1 Introduction 36

6.2 Choosing Q(z) 37

6.3 The arciength continuation method 38

6.4 The bifurcation problem 40

6.5 The suggested improvement 41

iv

CHAPTER 7. CONCLUSION 42

REFERENCES 44

APPENDIX A. PROGRAM LISTING A-1

APPENDIX B. COLOR PLATES B-1

V

CHAPTER 1. INTRODUCTION

Polynomial zero-finding has been studied for over a century. Earliest studies were

concentrated on real solutions of polynomial with real coefficients only. As time went

by, modem science convinced us that the imaginary part is equally important in nature.

Also, many engineering applications often give rise to solving for complex roots of

polynomials. Therefore, our focus will be concentrated on polynomials with complex

roots.

It is well known that there does not exist a direct method that can find the roots of

a polynomial with degree higher than four. It means that we can only use an iterative

method to solve the problem numerically. The most famous iterative method is

definitely the Newton method. Higher order iterative methods have also been

developed, such as the Halley method, the Laguerre Method, and the Cluster Adapted

formula that was newly developed by Chen [5]. In Section 2.1’ we will review these

formulas and discuss the problems of the classical theory.

Based on the classical theory, the local behavior of these methods has been fully

understood. For example, one can determine whether a formula is locally convergent

or not, and what the order of convergence is. But how about the global behavior? In

the past, we could hardly answer the question because the global behavior is very

complex. With the help of the computer graphics and computer visualization

techniques, we may now realize the global behavior more easily than at any time in the

past. In Section 2.2, we will describe how computer graphics give us the insight of the

global view.

In this thesis, we want to develop parallel and globally convergent algorithms to

find all the zeros of a polynomial. In order to find all the zeros, conventionally (i.e. not

• ‘ 1

Chapter 1. Introduction

in parallel), a deflation process is used. As a zero a � h a s been identified, synthetic

division of P{z) by z - a�y ie lds the deflated polynomial Q{z) such that P(z) = (z - a。）

Q(z). The deflated polynomial has a degree one less than the original and has the roots

exactly the same as the remaining roots of P(z). To find additional zeros of P(z), the

zero-finding method can be applied again to this deflated polynomial. A more detailed

revision of the deflation process will be given in Section 2.3. The deflation process has

two advantages: it prevents the next iterate from approaching the same zero, and the

problem size is deflated by one order after the process. However, the deflation has also

two disadvantages. One is that the roundoff error is accumulated in each deflation

process. Another one is that the algorithm will be inherently sequential. To overcome

this problem, two different parallel schemes are proposed in Section 3 and Section 6.

In Section 3.1’ two parallel iterative methods, the Durand-Kemer method and the

Aberth method, are introduced. We will summarize recent researches on this topic.

One important observation that should be pointed out is that the Aberth method is just

a modification of the Newton method by introducing the concept of "pseudo-

deflation". Therefore, it is not surprising that the Aberth method inherit many

problems from the Newton method. According to this observation, we perform many

improvements on the Aberth method in Section 3.3. Also, by applying the concept of

"pseudo-deflation", we parallelize several other sequential iterative methods in Section

4.

Although this kind of algorithms can approximate all the zeros simultaneously

without an explicit deflation, in certain circumstances, performing an explicit deflation

may make the algorithm more efficient. For example, we observe that a single zero is

converged to more quickly than a multiple zero by using these algorithms. Therefore,

it is better to deflate the zeros which have been computed accurately enough. In

Section 5，we will propose an algorithm for parallel deflation by using the Fourier

Transform.

" “ r "

Chapter 1. Introduction

In recent years, many researches on solving system of polynomial equations are

focused on using an homotopy method (see [15] for example). It is obvious that the

polynomial root-finding is just a particular case of such system of polynomial

equations, i.e., containing only one equation and only one unknown variable of degree

N. In section 6, we intend to investigate the homotopy method on this particular case.

Several modification and improvement are introduced for efficient convergence. The

bifurcation problem will also be studied.

3

CHAPTER 2. DRAWBACKS OF CLASSICAL THEORY

2.1 Review of Sequential Iterative Methods

2,1,1 Consideration of the Symmetric Cluster�51

Consider an iVth degree polynomial with complex coefficients :

i = 0 ；=1

where

a = the j th zero of P(z)

/w = the multiplicity of a .

For convenience, we set % = C = 1 without loss of generality. We define three

auxiliary functions:

_ ^ P (z)) ^ n z) _ f rrtj— (2.1.1)
1 一 J z “ P{z) ^(z-a,)

- d s � P\zf-P"{z)P{z)_f ^ (2.1.2)
� 一 P { z f

� j 一 � 2 f y 饥】Y I f m� (2.1.3)

which are used in classical iterative zero-finding techniques. Conventionally, ^

estimates the multiplicity of the zero being approached.

- “ 4

Chapter 2. Drawbacks of Classical Theory

We define a polynomial with the following form as a "symmetric cluster function"

with n zeros, which all have the multiplicity m, placed symmetrically on a circle with

center A and radius r:

C(z) = \(z-Ay-r"T = Y]U-(A + r- exp(27r/7 / n))T. (2.1.4)
L J 上上L J .

Let t^ {z - A) I r, three regions are then defined with respect to the cluster:

1. The inner region: | ^ | « 1

2. The target region: | = 1

3. The outer region: U | » 1.

The classical theory states that the zeros could be found when the guess 2<幻 is

within the target region. However, global convergence is harder to achieve. In earlier

studies, we observed that a "rebound" phenomenon occurs in such cluster functions

when using the multiple Newton method [4]:

z � _ = N T @ \ p > z ^ - L , (2.1.5)

A

where p = estimated multiplicity. This phenomenon can be illustrated by a simple

example (z - 1.00001)0 - 0.99999) [4]. For 二 1.1, the iterate jumps near the

centroid for/? 二 2 in the first iteration. However, due to the numerical cancellation, the

next iterate for all p>\ jumps further away from the zeros. The process will be
repeated until the iterate approaches infinity. In [4], we conclude that:

1. The convergence of original Newton formula ATXz(幻；1) is linear for r<o) = 1.1,

instead of quadratic, in case of this cluster zeros, as poor as in case of multiple

zeros.

. - • i ‘

Chapter 2. Drawbacks of Classical Theory

2. The multiple zero formula NT\z^k�• p) may fail to converge to cluster zeros due to

the "rebound" phenomenon.

Just like the classification between sparse matrix and dense matrix, the

classification between cluster zero and single zero is somewhat fuzzy. It depends

relatively on the distances between the individual zeros, and the distances between the

guess and the individual zeros. Here, we roughly define a cluster zero as a group of

zeros that can not be distinguished from a multiple zero based on the computed value

of Cluster zeros yields trap to the Newton method and many other iterative

methods, that was seldom noticed in the past.

Another method is called the Halley method [12]:

二 � ; p) = z � 一 厂 、 (2.1.6)

{p MJ

which is cubically convergent. Similar to Newton's method, the Halley method suffers

from the fact that a real initial guess can never converge to a complex root of a real

coefficient polynomial. It is because there is no mechanism for the formulas to produce

a complex value.

A better performance results by using the Laguerre method [12]:

二 ⑷;p) = z ⑷ - 一 (、 、 (2.口）

Tn NN)
4 1土 1 1

\ 人^^))
with a sign chosen to make the real part of the square-root positive. The Laguerre

method works fine for lower degree of the symmetric cluster function. However, it

tends to fail to converge for n> A.

“ ~

Chapter 2. Drawbacks of Classical Theory

Based on this observation, Chen invented the cluster-adapted method [5]:

z(众+1) = p) = z � 一 零 〜) (2.1.8)
他- 1)

with

^ U J! \P

and the principal value is chosen from the roots of Q^^. The cluster adapted method

has the ability to reach a zero in one iteration if the polynomial is a symmetric cluster,

and p exactly matches m. For arbitrary functions, the cluster adapted method also has

an excellent performance compared with other methods.

2.1.2 Measure of Multiplicity

Classically, the function n estimates the multiplicity. However, [i may be either

infinity, or zero depending on where the guess is. Moreover, it is often a complex

number with a considerable imaginary part. In order to reflect the multiplicity properly,

its rounded real part, denoted by w, is used. Moreover, w still may not be directly

substituted into p, since its extreme values N and 0 will degenerate CMR{z\p) or

LG{z\p) into the Newton formula of which the convergence rate is quadratic only

.5]. In [5], Chen suggested that w is qualified if and only if (A'^- 1) > w > 1 and the

real part of \x is two times larger than the imaginary part of The default choice o f p

is one ifw is not qualified. The practical scheme of multiplicity estimation is defined as

below:

Step 1. LQtw = FLOOR(0.5 + Re(n))

Step 2. Then p^w i f f (N-\)>w>\ Sindw> 2|Im(|^)|

= 1 otherwise

- - 一 7

Chapter 2. Drawbacks of Classical Theory

2.2 Visualization Techniques

The classical iteration theory cannot give us a global view of the iterative methods,

and seldom considers the situation of the presence of cluster zeros. In this section, we

employ a visualization technique for helping us to get some idea of the global

behavior. See [20] for more details of discussions.

Undoubtedly, iterative function is an example of dynamical systems. Although the

theory of dynamical systems is beyond the scope of this thesis, the graphical

visualization technique, which is often used in that field to observe the chaotic

behavior, will be helpful for observing the global behavior of iterative methods.

The number of iterations that is required for convergence depends on where the

initial guess is in the complex plane. For some initial points, the iterative process will

quickly converge; for some initial points however, the process may be divergent or

cyclic. At some regions, a little change of the initial point will make a big difference in

the number of iterations, or make the iterative process from being convergent to being

divergent. For a global view of this behavior, we can develop a graph mapping similar

to the Julia plot. Each initial guess in complex plane is represented by a pixel in

graphical window. The vertical axis is the real axis and the horizontal axis is the

imaginary axis. The number of iterations is then represented by a color index of the

pixel. We developed a set of tools to create this kind of images and display them via

the MATLAB software. The source codes are listed in Appendix A. All the programs

can only be run on SUN Sparc system. Appendix B illustrates some results created by

the tools.

Fig. A. 1.a illustrates the graph mapping of solving a polynomial - 1 = 0 by the

Newton method. The color of each pixel represents the number of iterations and is

defined by the by the default colormap as shown in Fig.A.O.a. The default colormap is

8

Chapter 2. Drawbacks of Classical Theory

generated by a random generating function in MATLAB. We observe that the Newton

method is not convergent with the initial guess on the symmetrical axis of the roots.

Around the symmetrical axis, the Newton method exhibits a chaotic behavior and is

"unstable". What "unstable" here means a small change of the position of the initial

guess make a great difference in the number of iterations. By using the color mapping

technique, we can enhance the unstable region with different colors. Fig.A.O.b and

Fig.A.O.c show two colormaps, HSV and JET, which are used for this purpose.

Fig.A.2.a is an enhanced graph of Fig. A. La.

Furthermore, we generate a graph mapping at the unstable region and discover that

it is self-similar (see Fig.A.3.a). An object that has the property of self-similarity is

called a Fractal. We can further scale down the graph theoretically at unlimited levels

without loss of any detail. At the unstable region, we discover the "relatively" stable

sub-regions. For example, as shown in Fig.A.3.a, we can see many "eyes" which are

relatively more stable than the other regions in this graph.

Recently, Hong Kong has installed a MasPar MP-2 massively parallel computer. It

is SIMD machine with 8,192 processor elements (PFs) and 64Kbytes memory on each

PE. We have ported our software onto this machine and fully utilize the parallelism.

Since the communication among the PFs is minimum, it turns out that the

visualization process can quickly be completed. As a result, we can include some

facilities, such as zoom-in, zoom-out in our program.

2.3 Review of Deflation

When a zero a � o f a polynomial has been identified’ we must do something to

prevent another guess from converging to this zero. Traditionally, the polynomial is

9

Chapter 2. Drawbacks of Classical Theory

divided by (z - a。）and the iterative method is then applied to the quotient polynomial.

This process is called deflation. Conventionally, synthetic division is used for deflation

process. In [12], detailed analysis of this deflation process was discussed and an

alternative method of suppressing computed zeros without an explicit deflation was

suggested as follows.

Suppose the first r zeros {a^^a^^-'-a^) with multiplicities (爪”爪：’…讲广)have

been identified, the deflated polynomial h(�(z) is given by:

⑷⑷二 r P � ~ . (2.3.1)

；=1

To apply Newton method, we need only s^, [x of /z(') (z) � ’ / /�） .Since

� - (2 . 3 . 3)
；=1 {z-aj)

^) (2.3.4)

F(z-,p) = z—^ (2.3.5)

where p is the estimated multiplicity calculated by / / � (s e e the Section 2.1.2), we can

compute everything needed by the iterative methods using eq.(2.3.2)-(2.3.5). The

tradeoff is that we must recompute these equations in each iteration.

10

CHAPTER 3. THE IMPROVEMENT OF THE ABERTH
METHOD

3.1 The Durand-Kerner method and the Aberth method

In recent years, there has been much research on parallel root-finding. In this

section, we introduce two iterative methods and summarize the work done on these

methods. One of the iteration methods is called the Durand-Kemer method, which was

proposed independently by E. Durand and I. O. Keraer [13]. The formula of the D-K

method is the following:

DK,iZ) = z,-产、 i=h … (3 . 1 . 1)

j对

with Z a vector of Zj (z^, Z2,... , zj^).

Another method proposed by O. Aberth, which is called the Aberth method, uses

an approach which uses an analogy with electrostatics [1].

风⑷= ！ ^ 丄 —1，••，见 （ 3 1 2)

The following are some properties of the Durand-Kemer method [1,7,8,14]:

1. The initial approximations must be distinct.

2. The centroid of the approximations after one iteration is equal to the centroid of

the zeros of the polynomial and is invariant.

“ - n “

Chapter 3. The Improvement of Aherth method

3. No two iterates approach the same zero in case of simple zeros. Only M iterates

approach a zero with multiplicity M

4. The convergence order is quadratic in case of simple zeros，but only linear in case

of multiple zeros.

5. The convergence speed strongly depends on the choice of the starting points.

6. The several iterates which converge towards the same multiple zero have a

tendency to approach their limit point from symmetrically distributed directions,

as if they repell each other.

7. QLMC (Quadratic-Like Convergence of the Mean):

The convergence order of the mean of the components converging to the same

multiple root is quadratic.

Properties 1,3,5 also hold in the Aberth method. The convergence in the Aberth

method is cubic in case of simple roots and slow rate of convergence is observed to

multiple zeros. (Note that the convergence rate is meaningful only if Z is sufficiently

close to the zeros in both methods.) Because of the drawback of slow convergence in

case of multiple zeros in both methods, many improvements have been suggested

[8，18]. Fraigniand [8] made use of property 7 for speeding up the convergence in the

D-K method. The algorithm cannot be generalized to other iteration methods unless

they have the same property. Miyakoda [18] made use of property 6 for grouping

guesses. However, cluster zeros also exhibits a similar property of multiple zero. This

is the reason why Miyakoda's paper claimed that false grouping often occurred for

double zeros (the simplest cluster zeros). Many iterative methods fail to converge due

to the lack of consideration of cluster zeros.

- 12

Chapter 3. The Improvement ofAberth method

3.2 Generalized Aberth Method

One can observe that the Aberth method is a modification of the Newton method

although O. Aberth derived it by different approach. The additional summation term

improves the convergency of Newton method with the help of z^s, making it cubic

instead of quadratic. What is more important, the summation term prevents the iterates

from approaching the same zero, which conventionally can only be performed by

means of deflation. Surprising enough, while comparing the Aberth method with

eq.2.3.5, we find the great similarity between these two methods except the

multiplicity. Hence the Aberth method performs a pseudo-deflation by using iterates

instead of computed zeros. The argument is particularly true when all the zjs are close

to the zeros except Similarly we can apply the same argument to the D-K method.

In order to better explain the relationship between the Newton method and the

Aberth method, we create a generalized Aberth method which use an "M" substituting

"iV" and M is between 1 and N\

Gi(Z) = Zi - 户 , � 1 从 1 … M (3.2.1)

where \ <M <N.

When M is equal to 1, it is the Newton method. When M is equal to N, it is the

Aberth method. The formula also suggests that it is not necessary to find all the zeros.

3.3 Modified Aberth Method for multiple-zero

Similar to the multiple-zero Newton method, Chen suggested the multiple-zero

Vberth method:

- “ 13 “

— Chapter 3. The Improvement of Aberth method

pNT似：Zi - % / 二 1，…’" (3.3.1)
尸（；）y Pj

P ⑷ — 台 “
where

Pj = estimated multiplicity of Zj，

；=1

which can improve the convergence in case of multiple zeros. The method needs to

group the guesses which are approaching the same multiple zero. The guesses are

then "merged" to a single guess with an estimated multiplicity. Somehow we may need

10 "split" the guess in further iterations due to cluster zeros or mis-grouping.

An alternative method is to ignore the contribution of the nearest (pj - 1) guesses in

each iteration. Hence we slightly modify eq.(3.3.1) and the formula is:

= J — i=l,…,N (3.3.2)
严 ⑷ y 1

where

^ =Pi if
；=1

= 1 otherwise

V̂ = {Set of all guesses, except Zj plus the nearest (W^ - 1) iterates o f z j .

The additional cost is that we need to search the nearest (W^ - 1) iterates if W] is

not equal to 1. In consideration of parallel processing, it creates an unequal work

amount in some processors due to different JV,： The need for synchronization of all

processors in each iteration reduces the efficiency of parallel machine. On the other

hand, the advantages of this scheme are the simplicity of implementation and the

" ” l 4 “

Chapter 3. The Improvement of Aberth method

minimum communication cost. Therefore, all the iterative methods discussed below

will be modified in this manner during implementation.

3.4 Choosing the initial approximations

By using the Durand-Kemer method or the Aberth method, the iteration processes

are always convergent for almost any initial values. However, choosing proper initial

approximations is also important since it affects the efficiency very much. As far as we

are concerned, the initial approximations should be as close to the zeros as possible

and should be calculated easily.

O. Aberth suggested that the initial approximations should be evenly distributed on

a circle with the centre A equals the centroid of zeros [1]:

r f = ^ + + j 二 (3.4.1)
I N J

where

A = .
N

The angle (j) is used to break the symmetry with respect to the real axis and usually be

taken as n/lN. In most cases, we just put it as 0. Aberth also suggested that the radius

R should be taken such that the circle just encloses all the zeros. However, some

researchers advised that the optimum radius should be between the minimum length

and the maximum length of zeros.

Y. Nagashima proposed a method for calculating R by introducing the concept of

luasivariance [19], where

15

I

Chapter 3. The Improvement of Aberth method

Nevertheless, he did not mention the situation of = 二 0, which could occur

commonly.

H. Guggenheimer claimed that the radius calculated from his procedure produces

results not far from the optimum [10]. However, if the centroid of polynomial is afar

from the origin, you must take a translation from the origin to the centroid in order to

use the procedure efficiently.

Chen introduced the concept of effective radius for sequential iterative methods

[6], which can also be applied here:

Note that R^^ is taken as a complex value. It can be shown that if the polynomial is a

simple symmetric cluster function with /w = 1, the initial approximations:

z f = " 1,...,N (3.4.2)

are already the zeros of the polynomial.

The effective radius can be calculated more easily compared with the

Guggenheimer's procedure and exhibits a good performance of convergence. Thus the

effective radius is used in our scheme.

3.5 Multiplicity estimation

Multiplicity is an important quantity for improving the convergence to multiple

zeros. Nevertheless, it is difficult to measure this quantity exactly. G. Kjellbery first

observed that m iterates converge towards the same multiple zero with multiplicity m

from symmetrically distributed direction in using Durand-Kemer method [14]. This

property was later used for multiplicity judgment by T. Miyakoda [18]. Nevertheless,

"“ "16 "“

— Chapter 3. The Improvement of Aberth method

this method will take quite a long time in classifying and grouping. Moreover, the

symmetric cluster shares the same property when the corresponding iterates are afar

from the cluster. Actually, I suspect that one cannot distinguish cluster zeros from

multiple zero by numerical means, until the corresponding iterates are sufficiently

closed to it. So, the multiplicity must necessarily be estimated in each iteration. Here,

we slightly modify Chen's scheme of multiplicity estimation (Section 2.1.2) to it's

parallel counterpart. Let us define:

5 _户‘⑷
Oi V 一

’ 户 ⑷

— P’(ZiVP"(Zi)

Since the multiplicity is a real positive integer, we have

w. 二 Floor(0.5+|Re(ia)|)

Pi 二 w,. if 1 < < iV and w, > 2|Im(}ii)

= 1 otherwise

where

Pj 二 estimated multiplicity.

. - n —

CHAPTER 4

THE HIGHER-ORDER ITERATIVE METHODS

4.1 Introduction

According to the discussion of Section 3，in principle we can modify other classical

iterative methods, such as the Halley Method [12], the Laguaerre Method [12] and the

Cluster Adapter method [6], to their parallel counterparts. Let

高 尸 〜 - t i (4.11)

、 = 〜 - 卖 命 （4.1.2)

(4-1.3)

� ’ i

The parallel iterative formulas pF(Z) for the i th iterate are:

(i) The parallel-Newton formula (the modified Aberth formula):
pN柳：z「与. (4.1.4)

(ii) The parallel-Halley formula:

pHLXZ) = z , “ 2 (4.1.5)

\Pi "丨 J

(iii) The parallel-Laguerre formula:

18

Chapter 4. The Higher-Order Iterative Methods

PLGi (Z) = z, - ~ - ~ ~ N (4.1.6)

〜 1 士 飞 一 - 1 — - 1

L v U 人 J j

(vi) The parallel-Cluster Adapted formula:

pCMRi (Z) = ； - (4.1.7)

� (Q - i)

(N \ KN \
with Q 二 — - 1 / — - 1 •

J! \Pi J
We will prove later (Section 4.2) that the orders of convergence of these formulas

are increased by one from their sequential counterparts in case of all single zeros.

The overall parallel iterative algorithm are now proposed:

Step 1. Generate the initial iterates Z(o) = (zf '^zf in parallel:

+ j 二 …,N.

Step 2. Compute the next set of iterates in parallel:

: = �) where A： = 0 at the beginning.

Step 3. If +i))| < s for all i, then Exit.

Step 4. k:=k + l; Goto Step 2.

4.2 Convergence analysis

" “ T i —

Chapter 4. The Higher-Order Iterative Methods

Table 4.1 illustrates order of convergence of several iterative methods in case of

single zeros. Some of the results had been proved and well known. In this section, we

will verify these results, in addition to giving proofs for the rest of the methods that are

proposed in this thesis. More importantly, we demonstrate the great similarity between

the sequential algorithms and the pseudo deflation method.

— — — — — — — — — I

Sequential formula Order Parallel formula Order

Newton 2 Aberth 3

Halley 3 Parallel-Halley 4

Laguerre 3 Parallel-Laguerre 4

CMR 3 Parallel-CMR 4
丨 “ — 一 丨

Table 4.1 The convergent rate of different iterative formulas in case of single zeros.

Firstly, we need three equalities deduced from the Taylor expansion:

Supposing that « 1 . We have,

(1 + 句 = 1 - S+ + 0(S') (4.2.1)

(1 + 办口 = l + (4.2.2)
2 8

(1 + 办 〜 l + + 斧 斤 + 晰) • （4.2.3)

— ‘ 20 “

Chapter 4. The Higher-Order Iterative Methods

Substitute , by eq.(4.2.4), we get

Z

1 ^ r 1 1)
二 7+Z

1 1 1 1 = — + y

= 丄 _ _ ^ _ _ 1

= 丄

where A = T ！— ^ — — —

From eq.(4.1.2), we get

、 、 - (4 . 2 . 9)

Substitute •s】，, by eq.(4.2.5), we have

丄 L _ 1

1 - r 1 1)

：丄 (2z-2aj-Sj)i-Sj)、

二疋+ 厂 〜 - 炒 J

《2

“ “ 22 “

Chapter 4. The Higher-Order Iterative Methods

Therefore, we have

~ 1
(4.2.10)

及2’, 二 去 + 为 (4.2.11)
《

= M (4.2.12)
、丨 \-\-BS,

Since the parallel formulas have the same structure of the sequential formulas

except , , s ^ ^ , r e p l a c e d by 云、�云2”Mi, we can prove the convergence in the same

manner.

(i) The Newton Method

From eq.(2.1.5), we get

~ 1 .

Substitute 气,by eq.(4.2.6), we have

— + ^

Si

=a, + (5；
‘ ‘ l + AS,

ASi" =a. +
‘ 1 + M

We assume that z,. is sufficiently close to a, such that Aĥ « 1, From eq.(4.2.1)

二 a,. + 乂《2(1 一乂 4 + 0 (4 2))

二 附 3)

Therefore, the convergent rate of the Newton method is quadratic in case of single

zero.

一 “ ^ “

Chapter 4. The Higher-Order Iterative Methods

(ii) The Aberth method

From eq.(4.1.4)，we get

~ 1

Similar to the Newton method, we have

= 浏 《 . 2 + 呢 3)

Again, we assume that z,. is sufficiently close to a, for all / such that A « 1 and

= 0⑷，w e have

•二 竹

Therefore, the convergent rate of the Aberth method is cubic in case of all single

zeros.

(iin The Halley Method

From eq.(2.1.6), we get

~ 一 2

Zj 二 Zj 7 ..

〜 1 + 一
I A J

Substitute , and by eq.(4.2.6) and eq.(4.2.8), we have

� + (i + M) 2 人成 + J

=(X + d. r

一 (A'+B)S'
二 ai + + + (乂2+灼《2

- ^ ~

Chapter 4. The Higher-Order Iterative Methods

Therefore, the convergent rate of the Halley method is cubic in case of single zeros.

(iv) The parallel-Hallev method

From eq.(4.1.5)，we get

~ - 2
Z/ 二 Zi 7 ^

V Mi)

Similar to (iii), we have

z. 二 a � + 旬《3 矿）

二 矿).

Therefore, the convergent rate of the parallel-Halley method is fourth order in case of

all single zeros.

(V) The Laguerre method

From eq.(2.1.7), we get

~ 一 ^

； 一 ； 一 f I (.r W

Substitute and by eq.(4.2.6) and eq.(4.2.8), we have

~ N
乏i 二 cci + J, 7 ‘ r ^

[H 1 + (M i ^ - i J

V 乂
“ 25 ^

Chapter 4. The Higher-Order Iterative Methods

(N-1)B-A2�
^ + 晰 ）

Therefore, the convergent rate of the Laguerre method is cubic in case of single zeros.

(vi) The parallel-Laguerre method

From eq.(4.1.6), we get

~ N

I V JJ

Similar to (v), we have

~ (N - l) B - A ' . … 4 、
z, = a,. +- d + 0(d)
‘ ‘ 2�N -V) ‘ � …

Therefore, the convergent rate of the parallel-Laguerre method is fourth order in case

of all single zeros.

(wil) The CMR method

From eq.(2.1.8)，we get

• • -1)

‘ ‘ ^ u (e - i)

with 0 =
一 VM-)l

Substitute � a n d /i,. by eq.(4.2.6) and eq.(4.2.8) and after some simplications, we

have

“ Te — “

Chapter 4. The Higher-Order Iterative Methods

Therefore, the convergence rate of the CMR method is cubic in case of single zeros.

(viiD The parallel-CMR method

From eq.(4.1.7), we get

一増广-1)

‘ ‘ ^ u (Q - i)

with
VMi)丨

Similar to (vii), we have

,,二 仅 广 丄 一 矿 ）
‘ ‘ 2 _ 3(N_1) _ ‘ � “

二 a丨

Therefore, the convergence rate of the parallel-CMR method is fourth order in case of

all single zeros.

Because of the great similarity between the pseudo deflation method and the

sequential algorithms, the pseudo deflation has a potential to capture the rich

knowledge from the classical theory.

"" “ 27

Chapter 4. The Higher-Order Iterative Methods

4.3 Numerical Results

In [7], T.L. Freeman did a survey on several parallel algorithms which have orders

of convergence two, three and four. According to this survey, the fourth order

algorithm that he examined is not robust, with many failures to converge. It turns out

that a proof of locally convergence does not imply that the algorithm has a good

overall performance.

We implemented the pseudo deflation method in APL (Appendix A). The floating

point precision that we used is double precision. For all the experiments below, the

iterations were stopped when max| | < lE-10 for / 二 1, 2, ... iV. The initial

approximations were selected to be symmetrically distributed in a circle (see the

Section 3.4).

The convergent rate of parallel mehods in case of single
zero

14! /
12 - ^

I 10 - X “Aberth
I 8 - •Kerner
i Q ^ ‘MAberth
J 4 - ^ ^ ^ PHalley

2
0 J 1 I 1 ‘

0 5 10 15 20
Degree of polynomial

Fig. 4.1

28

Chapter 4. The Higher-Order Iterative Methods

In the first experiment, we randomly generated a wide range of degree of

polynomials for our test data. Each polynomial had all distinct zeros which were in the

range of 0 + Oz to 1 + 1/. We used a hundred sample polynomials for each degree and

took the average values at each measurement. Fig.4.1 shows the results of the

convergence on several parallel iterative methods. The Durand-Kemer method had the

slowest convergence rate among all the methods. The average number of iterations

was increased almost linearly against the degree. The rest of the methods required

more or less the same number of iterations although they had different local

convergence rate. The convergence rate was sub-linearly increased against the degree.

We may conclude that the rest of the methods have better performances than the

Durand-Kemer method for large degree. The parallel Halley method converged in all

he sample polynomials. It illustrated the robustness of this algorithm although it took

longer computing time on each iteration than the Aberth method. However, it may be

better than the Aberth method if we have good initial approximations in some

applications.

The convergent rate of parallel methods in case of
multiple zero

18 T

16 1 I

穿 ‘ “ • K e r n e r

I 12 --
^ ——•——MAberth
g 1 0 丄

0 6 -- 0 ~ P H a l l e y

1 4 - -

2
0 J i 1 ‘ ‘ —

0 2 4 6 8 10 12
Degree of polynomial

Fig. 4.2

“ 29

Chapter 4. The Higher-Order Iterative Methods

In the second experiment, we randomly generated our test polynomials similar to

the first experiment, except each polynomial had exactly one double zero and the rest

of zeros were all distinct. As we expected, the Durand-Kemer method and the Aberth

method converged slowly in case of multiple zero, as shown in Fig.4.2. Since the

double zero dominated the longest convergent time, the number of iterations was more

or less independant of the degree. The modified Aberth method tackled this problem in

this case. Compare with Fig.4.1, we got a similar curve of the modified Aberth method

as if the polynomials had only single zeros.

No. of iter, against radius

3 0 丁场

2 5 -

W) ^

I 20 --
S f ~ ~ • ~ A b e r t h
c 1 5 - 1 ^ ^ ^ ^ ^
- T ^ ^ ——®——Kerne r

0 J 1 1

0 5 1 0

Radius (x Refi)

Fig. 4.3

For the choice of the initial approximations, we have discussed the effective radius

in Section 3.4. We pointed out that the effective radius can be calculated more easily

compared with the Guggenheimener's procedure. Moreover, it also exhibits a good

performance of convergence. In the third experiment, we examined the number of

30

Chapter 4. The Higher-Order Iterative Methods

iterations against a range of radius relative to the effective radius. Similar to the first

experiment, we randomly generated a thousand sample polynomials with degree six.

The Durand-Kemer method and the Aberth method were selected in this experiment,

rhe results are plotted as Fig.4.3. Obviously the convergence was slow while the

radius was too large such that the initial approximations were far from the zeros. We

observed that the convergence was also slow while the radius was too small. In the

Durand-Kemer method, it was because the iterates repelled each other in the first

iteration such that the iterates were far from the zeros in the next step. In the Aberth

method, we noted that the iterates were improved very little in each iteration as if the

centriod attracted them. Fig.4.4 showed the same result with log scale in x axis. It is

interesting that the optimum radius was near the effective radius in both methods in

this experiment.

No. of iter, against Radius (log scale)

30 T

. \ ^
I \ 20 -
z V ~“Ab e r t h
二 \ 15- ^ ^
« V ^ ^ a K e m e r

I ^ H
0.1 1 10

Radus (xRefi)

Fig. 4.4

CHAPTER 5. PARALLEL DEFLATION

In section 4, we have discussed a family of parallel algorithms which can

approximate all the zeros simultaneously without an explicit deflation. However, the

convergence rate of each zero may be different. For example, the convergence rate of

a multiple zero is much slower that a single zero by using the Aberth method. It is

wiser for us to explicitly deflate the polynomial if several iterates have been accurate

enough in order to reduce the problem size and make the rest of the iterates converge

more quickly. Conventionally, synthetic division is used for deflation. However,

synthetic division is a sequential process and difficult to be parallelized on a parallel

machine. In this section，we propose an algorithm for parallel deflation by utilizing the

Fourier Transform.

5.1 The Algori thm

First, let us take an example to illustrate how the polynomial multiplication can be

performed by Fast Fourier Transform, which has been mentioned in many textbooks

(see [2] for example). Suppose we intent to multiply the two polynomials

(2z+ 1) and (3z + 2).

Step 1: Take the FFT on coefficients of both polynomials:

f l 1 1 1 Y O f 3)
1 7 一 1 -i 2 _ 1 + 2/
1 - 1 1 - 1 0 " - 1

U - i - 1 J [l-2i)

Chapter 5. Parallel Deflation

(\ 1 1 1 (5)
1 i - 1 —i 3 _ 2 + 3/
1 一 1 1 - 1 0 一 一 1 •

U - 1 / 人 o j U - 3 / J

Step 2: Componentwise multiply the corresponding elements of the resulting

sequences:

f 3 W 5 W 15 ^
1 + 2/ Y 2 + 3/ _ 一 4 + 7/

—1 —1 一 1 *

U - 3 / J 1 - 4 - 7 / J

Step 3: Take the inverse FFT. The resulting sequence of numbers are the coefficients

of the product polynomial:

(I 1 1 l Y i M (A
1 1 —i - 1 i - 4 + 7/ 7 n r ，丄 7，丄“2 — 1 1 1 1 1 = (or 2 + 7Z + OZ .

i —1 1 一丄 1 0
1 -1 - d - 4 - 7 / J [O j

Generally, the Fourier Transform cannot be applied for polynomial division since

the result may not be a polynomial. However in deflation process, we assume that the

guess z � i s sufficiently close to the zero and (z - z) is assumed to be a factor of the

original polynomial. So we propose a method of parallel deflation by reversing the

steps of above:

Step 1. Before iteration, compute the FFT of the original polynomial. This produces a

sequence {/?�，A, ，…，/V} where N is the degree of polynomial.

Step 2. Suppose we want to deflate { z - a ^) simultaneously,

compute the FFT of each factor and componentwise multiply each

corresponding elements. This produces a sequence [d 乂, d ” " � d N) .

- “ 33 —

Chapter 5. Parallel Deflation

Step 3. Compute the divisionpjdj fory = 0,1,2, ... N.

Step 4. Compute the inverse FFT of the sequence { p j I d ^ } .

The resulting sequence of numbers are the coefficients of the deflated

polynomial.

By using butterfly processors, it takes only 0(logAO time to perform deflation,

compared with linear time in tradition.

5.2 The Problem of Zero Component

One of the problems in using this method is that if the original polynomial contains

a zero which is a root of unity, wJ, where w 二 Q27tif�N+V), the pj and dj will become

zero. The resulting pjdj is undetermined. Fortunately, the missing component can be

computed by the fact that since the deflated polynomial has a degree (AM), the A -̂th

coefficient of the deflated polynomial should be zero. Therefore,

f \

k=0 V̂Ar y

where w = qI職n+i), and we have

P � , £^_二 _ - V ^ .
dj l^XdJ

The problem is then solved although more effort will be added in this special

case.

~ “ 34 "“

— Chapter 5. Parallel Deflation

5.3 The Problem of Round-off Error

Due to round-off errors, the sought-after zero a � i s different from the real zero by

s. The FFT of (z - a �) distributes this error to each component of the resulting vector.

It makes the error analysis difficult.

We implemented this algorithm by using APL (Appendix A). Several polynomials

were tested and the results are listed in Table 5.1. By this experiment, we may

conclude that the method is quite acceptable.

Tested Computed zeros Actual Deflated polynomial by Actual deflated

Polynomial zeros using proposed parallel polynomial

deflation scheme

2^ + 4 1+/, 1-/ 1+/, 1-7 + +2 + 2z + 2

z^ + 4 1.00001+1.0000 1+/, 1-/ + (1.999999998- z^ + 2z +2

l7, 0.99999- 5.024390237E-5 /> +

0.99999/ (1.999999997-

6.04878Q477E-6 /)

z3 . 76.2 . 76.001 76 + (4.328167807E-6)z - z^ - 25

25z+ 1900 24.999999858

0 - 2) 1 0 |ninea0000iys |nine2 's | z - 1.999910005 z-2

Table 5.1 Numerical results of proposed parallel deflation scheme.

•“ 35 “

CHAPTER 6. HOMOTOPY ALGORITHM

6.1 Introduction

Homotopies are a part of topology and have been applied for solving eigenvalue

problems and solving polynomial systems [15,16，17,23] . In this section, we give a

brief introduction for only considering the application on the polynomial root-finding

problem. See [23] for more general descriptions and more applied areas. The

homotopy that we will consider is:

H(zJ) = (l-t)Q(z) + tP(z) (6.1.1)

where P{z) is a complex polynomial to be solved:

Q(z) is a predefined polynomial with the same degree such that its zeros are all known:

and t is a real parameter varied from 0 to 1. At a fixed t, H{z,t) is also a polynomial

with the same degree. As t is changed from 0 to 1，each zero of H{z,t) will form a

root-path that starts from a known value to a unknown solution we want to solve (Fig.

6.1). The idea of homotopy method is that we follow the root-path to get the solution.

Since the root-path is continuous, it makes the path-tracing possible. Moreover, the

Transversality theorem from differential topology [23] says that the curves will be

smooth, without bifurcations if Q{z) is choosen at random. This property makes the

homotopy algorithm more practical because prediction techniques can be applied. For

36

Chapter 6. Homotopy Algorithm

the parallel aspect, since each path can be followed individually without any

communication overhead, it is also attractive.

z /f̂ ；

^ >

0 1 t

Fig.6.1.

6.2 Choosing Q(z)

In order to shorten the root-path, the zeros of Q{z) should be as close to the

zeros of P{z) as possible. The circumstance is the same as the discussion of Section

3.4. Therefore, we suggest the following Q{z)\

Q{z) = f{{z-zf) = fl[z-[A + R,^'Qxp(2 nij / AO]} (6.2.1)
；=1 ；=1

where

N

Obviously the centroid of Q(z) is equal to that of P{z), i.e., A. It implies that the

centroid ofH{z,t) remains constant against /. Beside this, since

- 37

Chapter 6. Homotopy Algorithm

N r
Q(^) = + Reff .exp(2Tdj/ AO]}

；=1

;=i

= P(A).

Hence,

H(A,t) = (l-t)Q(A) + tP(A)

= (l-t)P(A) + tP(A)

= P(A).

Therefore, the effective radius of H(z,t) is also invariant with t.

6.3 Arciength Continuation Method

In this section, we describe an arciength continuation method for path-

following [3]. Instead of parametrizing z in term of t, we use an arciength parameter s.

The arciength condition is:

网 |2+|/⑷卜 1. (6.3.1)

By differentiating eq. (6.1.1) with respect to s, we have

(6.3.2)

or

where

“ “ “ 3 8 “

Chapter 6. Homotopy Algorithm

Let

By solving eq.(6.3.1) and eq.(6.3.2)，we have

《力=土 I 1 2 (6.3.3)
Vi+H

z(s) = V't(s). (6.3.4)

By the fundamental theorem of Algebra, there can only exist one zero in each root-

path for a fixed t, hence there does not exist a turning point in the path. Therefore, we

can alway choose the positive value of t(s). Therefore, we can compute the unit

tangent vector (i。，/。）at a fixed point (zqJq) and predict the next step , t () using

the Euler prediction:

f，’、 f r \ (z \
；1 U ô K J ^ o (6.3.5)

V'ly v̂ oy v'oy
where is a stepsize parameter, as shown in Fig.6.2. By using the iterative method

such as the Newton method and using z[as an initial guess, the solution path can be

corrected to {z^J^). The selection of stepsize h could be adaptive for efficiency. For

example, if the previous prediction is fine, we may double h at the next step, and half/z

if the previous prediction is poor. Of course, we can adjust the stepsize in a more

intelligent way.

6.4 The bifurcation problem

The bifurcation (see Fig.6.3) can occur if and only if H{z,t) has a multiple root at

some tfj, i.e., = 0. We observed that the bifurcation points often occur when

the roots of Piz) and Q{z) preserve some symmetry. In the same way as the Aberth

- 39 —

Chapter 6. Homotopy Algorithm

method suffers from this symmetric problem [1], the bifurcation points produce many

problems:

root-path | ^ ^ ^ ^ ^ ^ 湖

^ < ^ ， t i)

N^h——H \

Fig. 6.2

(1) Path-jumping problem

By using the root-finding method for path-following, it has a possibility to

converge to another root, especially near the bifurcation point.

(2) Path-stopping problem

Near the bifiircation point, i is very small. Hence the stepsize of t is small, too.

Many efforts will be added in order to converge to the bifurcation point.

Unfortunately, it is almost a must if we want to identify the bifurcation point.

(3) Lost-tracking problem

If we over-jump the bifurcation point with a larger stepsize, the iteration will

probably not converge because of the symmetry. Although we may not intend to

over-jump the bifurcation point on purpose in most cases, it could have occurred

before we know that there is a bifurcation point.

_ _ - — 一

Chapter 6. Homotopy Algorithm

A ~ 7 1
^ ^ bifUr,tioii point / I

。：rr̂̂f
Inag 0 I } ~ Z ^ ~ j 1

{ 产
-0.5 V / y 0 Real

-乂 F广
^ ^ o ^ 1

t
Fig. 6.3

6.5 The suggested improvement

To avoid the path-jumping problem described in the previous section, one of the

suggestions is to utilize the pseudo-deflation method for path-following instead of the

classical iterative method. We implemented a prototype program in APL (Appendix

A). The program uses the Euler method for prediction and the parallel-Halley method

for correction at each step. Several polynomials were tested. We report that the

program will converge successfully in general. Also, the program always needs only

one or two iterations to converge at each step. However, the investigation is

preminary and it is difficult to compare with the pseudo-deflation method in current

state. Any further improvement and comparsion are beyond the scope of this thesis.

41

CHAPTER 7. CONCLUSION

In [22], Saad concluded that, "It is interesting to observe that the successful ideas

in parallel numerical methods have often been derived from existing techniques that are

either adapted or slightly modified ……The search for parallelism has forced

researchers to take a second look at many old techniques, sometime resulting in

remarkable success." This is the case of pseudo-deflation method. In this thesis, the

general idea of the pseudo-deflation method have been presented. The advantage of

this method is that it is reliable and well understood. According to this method, we

parallelized a family of existing sequential algorithms. All these algorithms were

proven to be locally convergent. Moreover, numerical experiments have shown that

they are robust. Since the connection between the sequential algorithms and their

parallel counterpart has been established, we expect that more classical theory and

techniques will be captured by this new branch of parallel algorithms in the future. For

example, the idea of the effective radius have been added to the parallel algorithms in

considering the choice of initial approximations.

One of the challenges in the future may be the cases of cluster zeros and multiple

zeros. We suggest that the two cases should not be considered separately because we

jbserve that the cluster zeros often create difficulties to the root-finding methods.

Moreover, the current technique of multiplicity estimation in classical theory has many

pitfalls, as we have mentioned before. The searching for better estimation is needed. In

case of multiple zeros, most of the existing parallel algorithms, which are modified

from the Durand-Kemer method or the Aberth method, often use the grouping

technique [8,18]. However, this technique is time consuming and may not be

competitive with the original algorithms that assume all the zeros are simple.

42

Chapter 7. Conclusion

The research of the homotopy method is active. In this thesis, we have presented

the application of this method in parallel root-finding problem. The key problem of this

method is the bifurcation problem. Without the bifurcation, this method is actually a

globally convergent algorithm. In our case, multiple bifurcation occurs whenever

H{z,t) has multiple zero(s) at some t. Finally, we have suggested the improvement for

solving the path-jumping problem.

“ ‘ 43 “

REFERENCES

'1] O. Aberth. Iteration methods for finding all zeros of a polynomial

simultaneously. Math. Comp. 27(22) (1973) pp339-344.

[2] Selim G. Akl. The Design and Analysis of Parallel Algorithms, Prentice-Hall

International Editions (1989) pp232-233.

'3] Tony F. Chan. Newton-like Psuedo-arclength Methods for Computing Simple

Turning Point, SIAM J. Sci. Stat. Comput. Vol. 5, No.l, March 1984，ppl35-

148

[4] Tien Chi Chen. Global Iterative Convergence to Zeros in the Presence of

Clusters, Proc. Intern. Symp., Taipei, Taiwan (1988) pp. 270-276.

[5] Tien Chi Chen. Iterative zero-fmding revisited, pp. 583-590 in W. L. Hogarth

and B. J. Noye (Eds.), Computational Techniques and Applications: CTAC-89

(Proc. Computational Techniques and Applications Conference, Brisbane,

Australia, July 1989), Hemisphere Pub. Corp. (New York 1990).

[6] Tien Chi Chen. Globally Convergent Polynomial Iterative Zero-Finding using

APL, presented at APL92 International Conference, St. Petersburg, Russia, July

1992.

[7] M. Cosnard and P. Fraigniaud. Finding the roots of a polynomial on an MIMD

multicomputer. Parallel Computing 15 (1990) pp.75-85.

•g] p. Fraigniaud. The Durand-Kerner polynomial root-finding method in case of

multiple roots, BIT 31 (1991) pp. 112-123.

[9] T.L. Freeman. Calculating polynomial zeros on a local memory parallel

computer. Parallel Comput. 12 (1989) pp. 351-358.

[10] H. Guggenheimer. Initial Appoximatiom in Durand-Kerner's Root Finding

Method, BIT 26 (1986) pp. 537-539.

[11] E. Hansen and M. Patrick. Estimating the multiplicity of a root, Numerishe

Math., vol 27 (1976), pp. 121-131.

44

References

[12] E. Hansen and M. Patrick. A family of root finding methods, Numerishe Math.,

vol. 27 (1977), pp. 257-269.

[13] Immo O. Kemer. Simultaneous Displacement of Polynomial Roots if real and

simple. Comm. ACM 9(4), April (1966)，pp. 273.

[14] Goran Kjellberg. Two observations on Durand-Kerner root-finding method, BIT

24 (1984) pp556-559.

[15] T. Y. Li and Tim Sauer. Regularity Results for Solving Systems of Polynomials

by Homotopy Method, Numerishe Math., vol. 50 (1987)，pp. 283-289.

[16] T. Y. Li and N.H. Rhee. Homotopy Algorithm for Symmetric Eigenvalue

Problems, Numerishe Math., vol. 55 (1989), pp. 265-280.

[17] T.Y. Li, Z.G. Zeng and L. Cong. Solving Eigenvalue Problems of Real

Nonsymmtric Matrices with Real Homotopys, SIAM J. Numer. Anal., vol 29,

No. 1，Feb (1992), pp. 229-248.

[18] T. Miyakoda. Iterative methods for multiple zeros of a polynomial by clustering,

J. Comput. Appl. Math. 28 (1989) pp315-326.

[19] Y. Nagashima, Y. Kanda and H. Nagashima. Improvement on Aherth's method

for choosing initial approximations to zeros of polynomial, lEE Proceeding,

vol. 136, Pt. E, No.2(1989), pp. 101-106.

[20] Clifford A. Pickover. A Note on Chaos and Halley's Method, Comm. ACM

31(11), Nov. (1988), pp. 1326-1329.

[21] A. Ralston and P. Rabininowitz. A First Course in Numerical Analysis, 2nd. Ed.，

McGraw-Hill (New York 1978). pp371, 372.

[22] Y. Saad. Krylov Subspace methods on Supercomputers, SIAM J. Sci. Stat.

Comput., vol. 10’ No. 6’ Nov. 1989, ppl200-1232.

[23] L. T. Watson, S.c. Billups and A. P. Morgan. Algorithm 652: HOMPACK: A

suite of codes for globally convergent homotopy algorithms, ACM Trans. Math.

Software, vol. 13 (1987), pp. 281-310.

[24] J.H. Wilkinson. The Algebraic Eigenvalue Problem, Clarendon Press Oxford

1965, pp464-465, pp475-476.

- —

APPENDIX A - PROGRAM LISTING

A-1 datagen.cc
II datagen.cc : This program is used to generate a bitmap file
II according to a description file.
// b y Danny Luk. 21/1/93
#include <stdio.h>
#include <stdlib.h>
#include <stream.h>
#include <coinplex.h>
#include <rand48.h>

#define MAXDEGREE 20
#define tolrences 1.4E-4
#define PI2 6.28318530718
unsigned int width,height;

double real一 min,real一 max,imag—min,imag_max;
int max—iterations;
int method;
int scheme;
char outfile[25];
int color—cycle;
int degree;
complex C[MAXDEGREE+1]；
complex CP[MAXDEGREE]；
complex CPP[MAXDEGREE-1];
int perturb;

complex formula(complex z, int k, double *fmag);

m a i n (i n t argc, char *argv[])
{

FILE *img,*dpt;
int k;
double
double deltax,deltay;
int col,row;
complex z；
double fmag;
char line[100];

if (argc ！= 2) {
printf{"No. of arguments not match!\n")；
exit (0)；

}

if ({dpt = f o p e n (a r g v [l]) == NULL) {
printf("Can't read Description file！\n")；
exit(0);

}
// Read in the description.

fscanf(dpt,"%d %s",&width, line)；
fscanf(dpt,"%d %s",&height, line)；
fscanf(dpt,"%lf %s",&real一 min, line)；
fscanf (dpt, "%lf %s", &real~inax, line)；
fscanf (dpt, "%lf %s", &iinag二min, line);
fscanf (dpt, "%lf %s", &iinag_max, line);
fscanf(dpt,"%d %s",&max_iterations, line);
fscanf(dpt,"%d %s",Smethod, line);
fscanf(dpt,"%d %s”，&scheme, line)；

Appendix A

fscanf(dpt,"%s %s”，outfile, line);
fscanf(dpt,"%d %s",Scolor一cycle, line);
fscanf(dpt,"%d %s",°ree, line);

for (k=0; k<=degree; k++)
{

fscanf(dpt,”％lf %lf”，&r,&i),•
C[k] = complex(r,i)；

}
fscanf (dpt, "%d %s”，&pertiirb, line);
printf("perturb = %d\n",perturb);
fclose(dpt);

if ((img = fopen(outfile,"wb")) == NULL) {
printf("Can‘t open Image output file！\n");
exit(0);

for (k=0; k<=degree-l; k++)

CP[k] = C[k+1] * (k+1);

for (k=0; k<=degree-2; k++)

CPP[k] = CP[k+l] * (k+1)；

deltax = (real一 max - real_min)/width;
deltay = {imag_max — iinag_min) /height;
for (col=0; col<width; coI++) {

for (row=0; row<height; row++) {
z = complex (real_min + col * deltax, iitiag一max - row *

deltay)；
k = 1;
while (k<max一iterations) {

z = formula(z,k,&fmag);
if (fmag < tolrences) break;
if (perturb) {

double a;

a = PI2 * drand4 8();
z = z + tolrences * fmag * complex(cos(a),sin(a));

}
k++;

}
fputc(k,img);

}
}
fclose(img);

}

‘ “ A ^ “ "“

Appendix A

A-2 methods.cc
#include <stdio.h>
#include <stdlib.h>
#include <stream.h>
#incliide〈complex.h>
#include "descriptor.h"

complex S；
c o m p l e x MU;
int P;

c o m p l e x newton(complex z)
{

return(z - P/S);

}

complex laguerre(complex z)
{

return(z - degree/(1+sqrt((degree/MU-1)*((double)degree/
(double)P-1)))/S);
}

complex cmr(complex z)
{

complex Q;

Q = (degree/MU-1)/((double)degree/(double)P-1)；

return(z - degree*(pow(Q,(double)P/(double)degree)-1)/(Q-1)/S);

}
complex halley(complex z)
{

return(z - 2.0/S/(1+1/MU))；

}

complex formula(complex z, int k, double *fmag)
{

int i ;
complex F,FP,FPP;
complex z_new,F一new;
complex U;
complex Aeff;
int qx,qc,W,V;

F = complex(0.0, 0.0);
FP = complex(0.0,0.0);
FPP = complex(0.0, 0.0)；

for (i=degree; i>=0; i--)
F = F*z + C[i]；

for {i=degree-l; i>=0; i--)
FP = FP*z + CP[i]；

for (i=degree-2; i>=0; i--)
FPP = FPP*z + CPP[i];

S = FP / F;
MU = 1 / (1 - F * F P P / F P / F P)；

W = (int) (0.5 + real(MU));

if (W>1 && W<degree && (((double)W) >= 2.O^fabs(imag(MU))))

qx = W;

else

- 一 A^ “

Appendix A

qx = 1;

A e f f = -C[degree-1]/C[degree]/degree;
U = (degree-S* (z-Aeff))/(1-S*(z-Aeff)/MU);
V = (int) (0.5 + real(U));
if (V>1 && V <degree && { ((double)V) >= 2.0*fabs (iinag(U))))

qc = V;
else

qc = 1;

switch (scheme) {
case 1:

P = In-
break;

case 2:
switch (k % 3) {

case 1: P = qx; break;
case 2: if (qx < P) P = qx; break;
case 0: P = 1; break;

}
break;

case 3:
if (k==l)

P = qc;
else

P = qx;
break;

case 4:
P = qx;
break;

default:
printf("Unknown P scheme！\n");
exit(0)；

}
switch (method) {

case 1: z_new = newton(z); break;
case 2: z一new = laguerre(z); break;
case 3: z~new = cmr(z); break;
case 4: z~new = halley(z)； break;
d e f a u l t :

printf("Unknow method!\n");
exit (0);

}
F一new = complex(0.0,0.0)；
for (i=degree; i〉=0; i--)

F_new = F_new* z_new + C [i];
*fmag = abs(F_new)；

return(z_new)；
} 一

“ “ A ^ “

Appendix A

A-3 descriptor.h
#define MAXDEGREE 20
extern unsigned int width,height;
extern double real一 min,real—max,imag—min,imag一 max;
extern int max 一 iterationi"; — ~
extern int method;
extern int scheme;
extern int degree;
extern complex C [MAXDEGREE+1]；
extern complex CP[MAXDEGREE];
extern complex CPP[MAXDEGREE-1]；

A-4 Makegen
M a k e g e n - make file for generate executable file "datagen"
This make file needs SUN C++ complier with complex library
type "make -f Makegen" at command line
EXEC= datagen
CFLAGS=-〇
LIBS= -工/usr/CC/sun/incl -L/usr/CC/sun4/ -1X11 -1complex -Im -IC
〇BJECTS= methods.o \

datagen.o
$(EXEC): $(OBJECTS)

cc -o $(EXEC) $(OBJECTS) $(LIBS)

A-5 newtonOl.dpt - Sample description file
512 width
512 height
-3 .5 real—min
+3 . 5 real一max
-3.5 imag_min
+3.5 imag_max
200 max一iterations
1 method=Laguerre
1 scheme
newtonOl.img output—file
200 color一cycle
7 degree
-1.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
1.0 0.0
0 perturbation

Comments:

1 F(z) = z**7 — 1
II scheme = 1 p=l always

= 2 generalise Laguerre
= 3 cluster adapted
= 4 p=qx always

工工工 method = 1 Newton
= 2 Laguerre
= 3 Cluster Adapted
= 4 Halley

“ “ A ^ “

Appendix A

A-6 display.m - Matlab M-fiie
function r = display(fname);
% d i s p l a y image file generated by "datagen"
% This function can only be worked on MATLAB 4.0
% By Danny Luk, 21 Jan 93
%

% U s a g e : display("img_file")
fid = fopen(fname,'r');
ima = fread(fid,[512,512]);
h = image (ima)；
axis(‘square‘)；
axis('off');
% load the file itiymap.mat
load mymap;
colormap (myitiap)；
r = h;

- A ^ ""

Appendix A. Program Listings

A-7 Subroutines for the pseud-deflation method in APL

• P I T E R[口] •
[0] D—PITER'.T'.K
[1] K—0 O , POLYNOMIAL COEFFICENTS ？, O C—0 • , INITIAL GUESSES ？, O Z—•
[2] LT： '0 E X I T / l D - K / 2 ABERTH/3 MABERTH/4 PHALLEY/5 MPHALLY/6 PLAG/7 PCMR ”
[3] —(0,LK,LA,LM,LH,LQ,LL,LC) [l+a]AS T—'K = ' , K + 1 •
[4] LK:—LZ AS Z—C KERNER Z AS T R DURAND-KENRER METHOD
[5] LA:—LZ AS Z—C ABERTH Z AS T A GENERALIZED ABERTH METHOD
[6] LM:̂ LZ AS. Ẑ C MABERTH Z AS T A MODIFIED ABERTH METHOD
[7] LH:—LZ AS Z—C PHALLEY Z AS T A PARALLEL HALLEY METHOD
[8] LQ:—LZ AS Z<-G MP HALLEY Z AS T n MULTIPLE PHALLEY METHOD
[9] LL:—LZ AS Z—C FLAG Z AS T A PARALLEL LAGUERRE METHOD
[1 0] LC:-^LZ AS Z—C PCMR Z AS T fl PARALLEL CMR METHOD
[1 1] L Z : 0 ^ ' Z • CX Z • ' I F Z I = ‘ , $CXMAG C CXPOLY Z O —LT

V K E R N E R C D] V

[0] Z2—C KERNER Z ; P S Z J S ; Z I P ' . T
[1] P S — C X P O L Y Z O Z — O p i
[2] L:—0 IF(02 :pPS)
[3] ZJS—2iZ AS ZI—2TZ AS P—2TPS
[4] —L4 IF(1E~10<CXMAG P)
[5] AS Z2—Z2 ,Z I
[6] L4 :Z2—Z2, Z I - P ZDIV CXPRO Z I CXMINUS ZJS
[7] L5 :—L AS Z — Z J S ' Z I AS PS—2丄PS

•ABERTH[口]•
[0] Z2—C ABERTH Z ; POS ;P1S ; ZJS ; ; PO ;；?1 ;T
[1] Z2—pi • P O S — C X P O L Y Z • PIS —, (CXDIFF C) CXPOLY Z
[2] Z—
[3] L : - 0 IF(02 :pP0S)
£ 4 5 Z J S — 2 i Z O Z I — 2 T Z O P O — 2 T P 0 S • P I — 2 T P 1 S
[5 J — L I I F (0 9 i P 0)
[6] - L 2 AS Z2—Z2,Z I .
[7] L I : Z2 —Z2, Z I - P O ZDIV P l -PO ZTIMES CXSUM 1 0 CXDIV Z I CXMINUS ZJS
[3] — • POS—2 丄 POS O P l S - 2 i P l S
[9] - L

• M A B E R T H [•] •
[0] Z2-C MABERTH Z P O S ; P I S Z J S ; Z I ; P O P I ; M ; M I ; T ; DZI
[1] POS—,公C CXPOLY Z O PIS—,<?(CXDIFF C) CXPOLY Z
[2] N—一 1+pM—C MUILTI Z • Z — • Z2产pi
[3] L : - 0 IF (O^pPOS)
[4] T — Z J S — 2 I Z O Z I — 2 T Z O P O — 2 T P 0 S • P I — 2 T P 1 S O M I — I T M

[5] IF (05 iP0) • Z 2 , Z I • —L2
[6] L I : — L 3] :F (1=MI) • DZI—CXMAG Z I CXMINUS ZJS • DZI—(2 , N) p D Z I , LN
[7] T—(CX ZJS) [；, (1 0)丄（0,MI-1) i D Z I []
[3] L 3 : Z 2 —Z2,ZI-M工 ZTIMES PO ZDIV P l -PO ZTIMES CXSUM 1 0 CXDIV Z I CXMINUS T
[9] :L2:Z — Z J S , Z I • P O S — 2 I P 0 S O P I S — 2上 P I S O M ^ L I M

[10] —L
• P H A L L E Y [0] V

[0] Z2—C P H A L L E Y Z ; P O S ; P 1 S ; P 2 S ; Z J S Z I ,-P0 S I S2 DZ
[1] POS—,«)C CXPOLY Z • P I S — C) CXPOLY Z
[2] P2S—,«>(CXDI:FF CXDIFF C) CXPOLY Z • Z — O Z2—pi
[3] L:—0 IF(02 :pP0S)
[4] ZJS«-2iZ AS Z工—2TZ AS P0«-2TP0S AS PI—2TP1S AS P2—2TP2S
[5] —LI IF (07 iP0) • Z2—Z2,Z I • —L2
[6] L 1 : S 2 — (S I ZTIMES SI—PI ZDIV P0) -P2 ZDIV PO
[7] SI—Sl-CXSUM 1 0 CXDIV DZ—ZI CXMINUS ZJS
[8] MU—SI ZTIMES S I ZDIV S2—S2-CXSUM 1 0 CXDIV DZ CXTIMES DZ
[9] Z 2 — Z 2 , Z I - 2 0 ZDIV S I ZTIMES 1 0 + 1 0 ZDIV MU
[1 0] L2:-^L a s Z — a s P O S — 2 1 P 0 S A S P I S — 2 i P l S A S P 2 S < - 2 I P 2 S

A-7

Appendix A. Program Listings

V M P H A L L E Y [•] •
[0] Z 2 — C M P H A L L E Y Z ; P O S P I S ; P 2 S Z J S ; ZI; PO PI; P2 ;MU,. SI S2 ; DZ P I ; M N ;T DZI
[1] Z 2 — p i • P O S ^ , C X P O L Y Z O P I S — , 5? (CXDIFF C) C X P O L Y Z
[2] P 2 S — , ̂ ^(CXDIFF C X D I F F C) C X P O L Y Z • N—一 1+pM—C Z
[3] Z—
[4] L : — 0 IF(02:pP0S)
[5] T ^ Z J S ^ 2 i Z O Z I — 2 T Z O P O — 2 T P 0 S • PI—2TP1S • P 2 — 2 T P 2 S O M I — I T M
[6] —lil IF(0?tP0)
[7] — L 2 A S Z 2 — Z 2 , Z I
[8] L I : — L 3 I F (1 = M I)
[9] DZ工—（2 ,N) p (C X M A G ZI C X M I N U S ZJS) , LN
[10] T<-(CX ZJS) C ； , (1 0)丄（0,MI-1) iDZIC 7A<5DZI]]
[11] L 3 : S 2 — (S I Z T I M E S S I — P I ZDIV PO)-P2 ZDIV PO
[12] S I — S l - C X S U M 1 0 C X D I V D Z — Z I CXMINUS T
[13] M U — S I Z T I M E S S I Z D I V S 2 — S 2 - C X S U M 1 0 CXDIV DZ C X T I M E S DZ
[14] Z 2 — Z 2 , Z I - 2 0 Z D I V S I Z T I M E S ((l+MI) , 0) + 1 0 ZDIV M U
[15] :L2 : Z — Z J S , ZI • P O S —2丄POS • PlS<-2iPlS • P2S—2上P2S • M^-liM
[16] —L

V P L A G [•] •
[0] Z 2 — C F L A G Z,.P0S;P1S;P2S;ZJS,.ZI,.P0,-P1,.P2;MU;S1,.S2,.DZ;N,.ZQ
[1] P O S — C X P O L Y Z O PIS—,<»(CXDIFF C) CXPOLY Z • N ^ ~ l + 0 . 5 x p , C
[2] (C X D I F F C X D I F F C) C X P O L Y Z O Z — • Z 2 — p i
[3] I F C O i p P O S)
[4] ZJS<-2iZ A S Z I — 2 T Z A S P O — 2 T P 0 S AS PI—2TP1S A S P 2 ^ 2 T P 2 S
[5] — L I I F (O ^ P O) O Z 2 — Z 2 , Z I • —L2
[6] LI： S2^-(S1 Z T I M E S S I — P I ZDIV PO) -P2 ZDIV PO
[7] S I — S l - C X S U M 1 0 C X D I V D Z — Z I CXMINUS ZJS
[8] M U — S I Z T I M E S S I Z D I V S 2 — S 2 - C X S U M 1 0 CXDIV DZ C X T I M E S DZ
[9] ZQ—ZSQIIT((N-1) , 0) Z T I M E S 一 1 0 +(N,0)ZDIV M U • Z Q — Z Q x x C X R E A L ZQ
[10] Z 2 — Z 2 , Z工 - (N , 0) Z D I V S I Z T I M E S (1 0)+ZQ
[11] L 2 : — L A S Z — Z J S , Z I A S P O S — 2 i P 0 S AS PIS—2iPlS A S P 2 S — 2 i P 2 S

VPCMR[n]V
-[0] Z 2 — C P C M R Z;P0S,-P1S;P2S,.ZJS;ZI;P0,-P1;P2,.MU,-S1,.S2,.DZ'.N,.Q
[1] POS—,<5C C X P O L Y Z • PIS—,<5 (CXDIFF C) CXPOLY Z • N ^ ~ l + 0 . 5 x p , C
[2] P 2 S — , (CXDIFF C X D I F F C) CXPOLY Z • Z — • Z 2 — p i
[3] IF(0之pPOS)
[4] Z J S ^ Z i Z AS ZI — 2 T Z A S P0<-2tP0S AS P1^2TP1S A S 2TP2S
[5] ”LI IF(05iP0) • Z 2 — Z 2 , Z I • —L2
[6] L 1 : S 2 — (S I Z T I M E S S I — P I ZDIV PO)-P2 ZDIV PO
[7] S l ^ S l - C X S U M 1 0 C X D I V D Z — Z I CXMINUS ZJS

[8] M U — S I Z T I M E S S I Z D I V S 2 ^ S 2 - G X S U M 1 0 CXDIV DZ C X T I M E S DZ

[9] Q—(一1 0 + (N , 0) Z D I V M U) — (N - 1)
[10] Z 2 — Z 2 , ZI-(N,〇）ZTIMES (一1 0 +Q CXPOWER 1+N) Z D I V SI Z T I M E S Q - 1 0
[11] L 2 : ^ L A S Z — A S P 0 S ^ 2 i P 0 S AS PIS—2iPlS A S P 2 S - 2 i P 2 S

• M U L T I [口] •
[01 P ^ G IfULTI Z'.CC7N;M7A,.FPPZ;FPZ,.CXM;FZ;S;MU;T;U;•；W;Q;K

[1] A—一 (2T 一4TCC) ZDIV(_;2TCC) xN AS M—(0 . , CX 2；) pN—_1丁0 • 5 xpCC—, CX C
[2] C X M ^ M J 0 O F P Z — (C X D I F F G)CXPOLY Z • F P P Z ^ (C X D I F F C X D I F F C) C X P O L Y Z
「3] S — F P Z C X D I V l E - 1 4 + F Z ^ G CXPOLY Z AS
[4] M U — T C X D I V (T — F P Z C X T I M E S FPZ) CXMINUS FPPZ C X T I M E S FZ AS 'MU = '

[5] P—l「Wx(W<M) xW>l 2 x C X I M A G M U AS W<-L 0 . 5 + C X R E A L M U AS • — ' Q X = '
[6] P — A D J U S T P P

V A D J U S T ? [•] V -
[0] P — A D J U S T P T；K
[1] K ^ l O P — T
[2] Ll:-»L2 IF • K—K十 1 • —0 IF 0 = + / 0 < T — T — 1 •
[3] L 2 : P ^ N p l

A-8

Appendix A. Program Listings

A-8 Subroutines for the parallel deflation method by FFT in APL

V P D E F L A T E [•] V
[0] C2—C PDEFLATE Z 工NVQ FC
[1] Q—PURIFY (, 1 R01x2^N) GXPOWER (N I To . . 5xp , C) J 0
[2] INVQ—CXCONJ Q4-N • FC—Q CXMATTIMES (N, 1) CXRESHAPE C O M — 0 . 5 x p , Z
[3] MZ<-Q CXMATTIMES (N,M) CXRESHAPE CX(,<9-Z) , ((2xM) p 1 0) , (2 x M x N - 2) pO
[4] FR—PURIFY INVQ CXMATTIMES PURIFY FC CXDIV (N , 1) CXRESHAPE CXPRO MZ
[5] FR CXDIV " 2 ? , 5jFR<-GXRAVEL((N-M) , 1) CXRESHAPE FR

• P U R I F Y [•] 7

[0] A—PURIFY B
[1] A ^ B x (l E ~ 9 i l B)

A-9 Subroutines for the homotopy method in APL

V H T E S T [n i V .
[0] D—P H T E S T " Z ; E P S ; C 0 U N T ; L ; K ; V ; B ; T ; H ; Q ; T 2 ; S S ; Z 2 ; H 3 ; H 4 ; A
[1] EPS—IE一10 • SS—0.1 • M—0.5xp ,Z
[2] 'Program is Running!！1 I ! 1 i Please Do NOT interrupt...,
[3] V—acURSOR O L—0 • • —Z—CX Z O T—0 O Q—ZTOPOLY Z …
[4] L 1 : T 2 —ILT工SS • SS—T2-T • H^ (PxT2) + Q x l - T 2 • K—0 • Z2—T EULER Z
[5] L2 :K—K+1 • ERR—CXMAG H CXPOLY Z2—CX H PKALLEY Z2
[6] L4 :—L2 I F (E P S ^ E R R)
[7] K , S S O Z—Z2 • T—T2
[8] ， L I I F (T < 1)

V E U L E R C O] V

[0] Z2—T EULER Z
[1] Z2^Z+SSXT DZDT Z

•DZDT[口] •
[0] D—T DZDT Z
[1] . D—((Q CXPOLY Z) - P CXPOLY Z) CXDIV(CXDIFF (T x p) + Q X 1 - T) CXPOLY Z

•CXPOLY[口]7
[0] P—C CXPOLY CXZ
[1] P—一2 卞 C—
[2] I F (0 2 : p C ^ " 2 i C)
[3] - L AS ？ • - (~ 2 T C) CXPLUS CXZ CXTIMES P

V C X D I F F [0] V
[0] C2—C:<DIFF C ; N
[1] C2<-GX Cx , 5) (2 ,N) pLN«-0 . 5xpC<-2 iC^, «)C

A-9

APPENDIX B CmOR PLATES

Fig A.O.a Default coiormap

邏“.’’画

_ ‘ '1

Fig A.O.b JET coiormap

HPB
p m B ^ ^ ^ S i l l P v 』 ' 、 J

I / • • 細 爾

ft “ 、 \ «
、< , ”）！

� . .. I

Fig A.O.C HSV coiormap

— — H — “ “ 力 - 1 Si

lliii麗i!丨'：'•" ' , ‘“ _
_ _ _ _ 出 : 丨 丨 丨 「 ： … ‘

_ - — “ ~

• Appendix B. Color Plates

Fig A.I.a Solving z八7 — 1 = o by Newton method

_

Real (一 3 . 5 to 3.5)

Fig A.l.b Solving 2^7 - 1 = 0 by Halley method

I 』

Real (-3.5 to 3.5)

• Appendix B. Color Plates

Fig A.1.C Solving 之八7 - 1 = 0 by Laguerre method

Real (-3.5 to 3.5)

Fig A.1.d Solving z"? - 1 = 0 by CMR method

圓
Real (-3,5 to 3.5)

• Appendix B. Color Plates

Fig A‘2‘a Solving z - 7 - i = 0by Newton method (Colormap: jet)

i s i iH
j
H H

Real (-3.5 to 3.5)

Fig A.Z.b Solving - 1 - 0 by Halley method (Colormap: hsv)

. 輪 、

_::_警 1
Real (-3.5 to 3.5)

—

• Appendix B. Color Plates

Fig A.3.a Magnifying part of Fig A.I.a

Real (-0.77 to -0.63)

Fig A.3.b Magnifying part of Fig A.l.b

[IWIIMlttlliB&ir™ ff^flMt^fflffl^f,—W^^fffi^ffjffi^My i H ^树 j W W w ^ lOTIWl
Real (-0.77 to -0.63)

• Appendix B. Color Plates

Fig A.4.a Magnifying part of Fig A.l.a (Colormap: jet)

Real (-0.77 to -0.63)

Fig AAb Magnifying part of Fig A.1.b (Colormap: hsv)

§ —： •爹’顯：^——一 一 —

H . 1.
Real (-0.77 to -0.63)

• Appendix B. Color Plates

Fig A.5.a Solving + z'̂ Z - 1 = 0 by Newton method

Real (-3.5 to 3.5)

Fig A.5.b Solving + - 1 = 0 by Halley method

M .kJ
Real (-3.5 to 3.5)

_ - _ ^ B-7 —

• Appendix B. Color Plates

Fig A.5.C Solving 2八7 + - 1 = 0 by Laguerre method

I g ^ S t ： ^ 瑪 . W.
Real (-3.5 to 3.5)

Fig A,5.d Solving + z-̂ Z - 1 = 0 by CMR method

r M i
馳

Real (-3.5 to 3.5)

” ’ 、 丫•‘ . .
‘ ， ^ . ..‘.

'1. I -气

_； • .‘；:-:、一.. .‘‘ .

-- . \ ‘

• ‘.

^ ... ：

• ‘」：.. r • . . ,

"丨 .， •

_ ‘ "• ；‘ -

. ：丨 . ..

• , •• r • ‘
� 1 • “ , • . • .

•‘ ：办

• ‘“ • , . .

.‘1 • , •

. • , .

. - , . • “ - - .

� I . . • t -
.II • • •-•

• • .、... -’，‘ .， •

- . : 、 . . • . •

、> • . 、： .“、乂-.:、卞 ‘；
卞 •

,• • •; ； •• „ |.,„ f • . ‘ , ..
. J ..,.. .••, " • 't . , •• ,

. ？ - I- • • ' 、 V , - -

• L : . 、 . 1 •• ..

“：； 、 •• ,” .
‘ k , 、 丄 产 r 、 -
^ . , ； - . ^ ^ , . . .

‘、’;、…‘‘‘ 、 .

C U H K L i b r a r i e s mmm
ooDBaavm

