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ABSTRACT 

In considering the problem of finding all the zeros of the iV-th degree polynomial, 

classical algorithms take the form of calculating the zeros one at a time, each followed 

by a deflation step to remove the calculated zero oCq from the polynomial. Usually, 

synthetic division is used for the deflation step. That is, the polynomial is divided by (z 

- o t o ) to yield the deflated polynomial. These algorithms seem to be hardly 

parallelizable since the deflation step in-between the iterations is inherently sequential. 

Two alternative methods, which are natually parallelizable, are the Durand-Kemer 

method [13] and the Aberth method [1]. Both of the methods start with N distinct 

initial approximations and converge to all the zeros separately. However, we observe 

that the Aberth method is a modification of the Newton method by performing a 

pseudo-deflation with iterates instead of computed zeros. By this observation, we 

introduce parallel versions of a class of existing algorithms, such as the Halley method, 

the Laguerre method and the Cluster Adapted method. All the methods of our class 

are locally convergent and the convergent rates are increased by one from their 

sequential counterparts in case of simple zeros. Moreover, the fourth-order algorithms 

are robust in numerical examples. Also, we study the choice of initial approximations 

and the improvement on these algorithms in case of multiple zeros. 

The global behavior of classical algorithms is investigated by using computer 

graphic and visualization techniques. The visualization process is time consuming and 

it often takes many hours for a workstation to display a graph. However, an 

implementation on the MasPar massively parallel computer shows that the program 

running on this machine can provide us a quick response. As a result, we can include 

some interactive facilities, such as zoom-in, zoom-out, in our program. 
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Recently, the use of homotopy methods for solving eigenvalue problems and 

solving polynomial systems has been studied by many researchers (eg. [15，16, 17]), 

due to its naturally parallelizm and its robustness. In this thesis, an homotopy method 

that solves single polynomial for all zeros is presented. We illustrate that multiple 

bifurcation can occur at this simple case by some examples. A method to overcome 

bifurcation is also discussed. 
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CHAPTER 1. INTRODUCTION 

Polynomial zero-finding has been studied for over a century. Earliest studies were 

concentrated on real solutions of polynomial with real coefficients only. As time went 

by, modem science convinced us that the imaginary part is equally important in nature. 

Also, many engineering applications often give rise to solving for complex roots of 

polynomials. Therefore, our focus will be concentrated on polynomials with complex 

roots. 

It is well known that there does not exist a direct method that can find the roots of 

a polynomial with degree higher than four. It means that we can only use an iterative 

method to solve the problem numerically. The most famous iterative method is 

definitely the Newton method. Higher order iterative methods have also been 

developed, such as the Halley method, the Laguerre Method, and the Cluster Adapted 

formula that was newly developed by Chen [5]. In Section 2.1’ we will review these 

formulas and discuss the problems of the classical theory. 

Based on the classical theory, the local behavior of these methods has been fully 

understood. For example, one can determine whether a formula is locally convergent 

or not, and what the order of convergence is. But how about the global behavior? In 

the past, we could hardly answer the question because the global behavior is very 

complex. With the help of the computer graphics and computer visualization 

techniques, we may now realize the global behavior more easily than at any time in the 

past. In Section 2.2, we will describe how computer graphics give us the insight of the 

global view. 

In this thesis, we want to develop parallel and globally convergent algorithms to 

find all the zeros of a polynomial. In order to find all the zeros, conventionally (i.e. not 
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Chapter 1. Introduction 

in parallel), a deflation process is used. As a zero a � h a s been identified, synthetic 

division of P{z) by z - a�y ie lds the deflated polynomial Q{z) such that P(z) = (z - a。） 

Q(z). The deflated polynomial has a degree one less than the original and has the roots 

exactly the same as the remaining roots of P(z). To find additional zeros of P(z), the 

zero-finding method can be applied again to this deflated polynomial. A more detailed 

revision of the deflation process will be given in Section 2.3. The deflation process has 

two advantages: it prevents the next iterate from approaching the same zero, and the 

problem size is deflated by one order after the process. However, the deflation has also 

two disadvantages. One is that the roundoff error is accumulated in each deflation 

process. Another one is that the algorithm will be inherently sequential. To overcome 

this problem, two different parallel schemes are proposed in Section 3 and Section 6. 

In Section 3.1’ two parallel iterative methods, the Durand-Kemer method and the 

Aberth method, are introduced. We will summarize recent researches on this topic. 

One important observation that should be pointed out is that the Aberth method is just 

a modification of the Newton method by introducing the concept of "pseudo-

deflation". Therefore, it is not surprising that the Aberth method inherit many 

problems from the Newton method. According to this observation, we perform many 

improvements on the Aberth method in Section 3.3. Also, by applying the concept of 

"pseudo-deflation", we parallelize several other sequential iterative methods in Section 

4. 

Although this kind of algorithms can approximate all the zeros simultaneously 

without an explicit deflation, in certain circumstances, performing an explicit deflation 

may make the algorithm more efficient. For example, we observe that a single zero is 

converged to more quickly than a multiple zero by using these algorithms. Therefore, 

it is better to deflate the zeros which have been computed accurately enough. In 

Section 5，we will propose an algorithm for parallel deflation by using the Fourier 

Transform. 

" “ r " 



Chapter 1. Introduction 

In recent years, many researches on solving system of polynomial equations are 

focused on using an homotopy method (see [15] for example). It is obvious that the 

polynomial root-finding is just a particular case of such system of polynomial 

equations, i.e., containing only one equation and only one unknown variable of degree 

N. In section 6, we intend to investigate the homotopy method on this particular case. 

Several modification and improvement are introduced for efficient convergence. The 

bifurcation problem will also be studied. 
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CHAPTER 2. DRAWBACKS OF CLASSICAL THEORY 

2.1 Review of Sequential Iterative Methods 

2,1,1 Consideration of the Symmetric Cluster�51 

Consider an iVth degree polynomial with complex coefficients : 

i = 0 ；=1 

where 

a = the j th zero of P(z) 

/w = the multiplicity of a . 

For convenience, we set % = C = 1 without loss of generality. We define three 

auxiliary functions: 

_ ^ P ( z ) ) ^ n z ) _ f rrtj— (2.1.1) 
1 一 J z “ P{z) ^(z-a,) 

- d s � P\zf-P"{z)P{z)_f ^ (2.1.2) 
� 一 P { z f 

� j 一 � 2 f y 饥】Y I f m� (2.1.3) 

which are used in classical iterative zero-finding techniques. Conventionally, ^ 

estimates the multiplicity of the zero being approached. 

- “ 4 



Chapter 2. Drawbacks of Classical Theory 

We define a polynomial with the following form as a "symmetric cluster function" 

with n zeros, which all have the multiplicity m, placed symmetrically on a circle with 

center A and radius r: 

C(z) = \(z-Ay-r"T = Y]U-(A + r- exp(27r/7 / n))T. (2.1.4) 
L J 上上L J . 

Let t^ {z - A) I r, three regions are then defined with respect to the cluster: 

1. The inner region: | ^ | « 1 

2. The target region: | = 1 

3. The outer region: U | » 1. 

The classical theory states that the zeros could be found when the guess 2<幻 is 

within the target region. However, global convergence is harder to achieve. In earlier 

studies, we observed that a "rebound" phenomenon occurs in such cluster functions 

when using the multiple Newton method [4]: 

z � _ = N T @ \ p > z ^ - L , (2.1.5) 

A 

where p = estimated multiplicity. This phenomenon can be illustrated by a simple 

example (z - 1.00001)0 - 0.99999) [4]. For 二 1.1, the iterate jumps near the 

centroid for/? 二 2 in the first iteration. However, due to the numerical cancellation, the 

next iterate for all p>\ jumps further away from the zeros. The process will be 
repeated until the iterate approaches infinity. In [4], we conclude that: 

1. The convergence of original Newton formula ATXz(幻；1) is linear for r<o) = 1.1, 

instead of quadratic, in case of this cluster zeros, as poor as in case of multiple 

zeros. 

. - • i ‘ 



Chapter 2. Drawbacks of Classical Theory 

2. The multiple zero formula NT\z^k�• p) may fail to converge to cluster zeros due to 

the "rebound" phenomenon. 

Just like the classification between sparse matrix and dense matrix, the 

classification between cluster zero and single zero is somewhat fuzzy. It depends 

relatively on the distances between the individual zeros, and the distances between the 

guess and the individual zeros. Here, we roughly define a cluster zero as a group of 

zeros that can not be distinguished from a multiple zero based on the computed value 

of Cluster zeros yields trap to the Newton method and many other iterative 

methods, that was seldom noticed in the past. 

Another method is called the Halley method [12]: 

二 � ; p ) = z � 一 厂 、 (2.1.6) 

{p MJ 

which is cubically convergent. Similar to Newton's method, the Halley method suffers 

from the fact that a real initial guess can never converge to a complex root of a real 

coefficient polynomial. It is because there is no mechanism for the formulas to produce 

a complex value. 

A better performance results by using the Laguerre method [12]: 

二 ⑷;p) = z ⑷ - 一 ( 、 、 (2.口） 

Tn NN ) 
4 1土 1 1 

\ 人^^ )) 
with a sign chosen to make the real part of the square-root positive. The Laguerre 

method works fine for lower degree of the symmetric cluster function. However, it 

tends to fail to converge for n> A. 

“ ~ 



Chapter 2. Drawbacks of Classical Theory 

Based on this observation, Chen invented the cluster-adapted method [5]: 

z(众+1) = p) = z � 一 零 〜 ) (2.1.8) 
他- 1 ) 

with 

^ U J! \P 

and the principal value is chosen from the roots of Q^^. The cluster adapted method 

has the ability to reach a zero in one iteration if the polynomial is a symmetric cluster, 

and p exactly matches m. For arbitrary functions, the cluster adapted method also has 

an excellent performance compared with other methods. 

2.1.2 Measure of Multiplicity 

Classically, the function n estimates the multiplicity. However, [i may be either 

infinity, or zero depending on where the guess is. Moreover, it is often a complex 

number with a considerable imaginary part. In order to reflect the multiplicity properly, 

its rounded real part, denoted by w, is used. Moreover, w still may not be directly 

substituted into p, since its extreme values N and 0 will degenerate CMR{z\p) or 

LG{z\p) into the Newton formula of which the convergence rate is quadratic only 

.5]. In [5], Chen suggested that w is qualified if and only if (A'^- 1) > w > 1 and the 

real part of \x is two times larger than the imaginary part of The default choice o f p 

is one ifw is not qualified. The practical scheme of multiplicity estimation is defined as 

below: 

Step 1. LQtw = FLOOR(0.5 + Re(n)) 

Step 2. Then p^w i f f (N-\)>w>\ Sindw> 2|Im(|^)| 

= 1 otherwise 

- - 一 7 



Chapter 2. Drawbacks of Classical Theory 

2.2 Visualization Techniques 

The classical iteration theory cannot give us a global view of the iterative methods, 

and seldom considers the situation of the presence of cluster zeros. In this section, we 

employ a visualization technique for helping us to get some idea of the global 

behavior. See [20] for more details of discussions. 

Undoubtedly, iterative function is an example of dynamical systems. Although the 

theory of dynamical systems is beyond the scope of this thesis, the graphical 

visualization technique, which is often used in that field to observe the chaotic 

behavior, will be helpful for observing the global behavior of iterative methods. 

The number of iterations that is required for convergence depends on where the 

initial guess is in the complex plane. For some initial points, the iterative process will 

quickly converge; for some initial points however, the process may be divergent or 

cyclic. At some regions, a little change of the initial point will make a big difference in 

the number of iterations, or make the iterative process from being convergent to being 

divergent. For a global view of this behavior, we can develop a graph mapping similar 

to the Julia plot. Each initial guess in complex plane is represented by a pixel in 

graphical window. The vertical axis is the real axis and the horizontal axis is the 

imaginary axis. The number of iterations is then represented by a color index of the 

pixel. We developed a set of tools to create this kind of images and display them via 

the MATLAB software. The source codes are listed in Appendix A. All the programs 

can only be run on SUN Sparc system. Appendix B illustrates some results created by 

the tools. 

Fig. A. 1.a illustrates the graph mapping of solving a polynomial - 1 = 0 by the 

Newton method. The color of each pixel represents the number of iterations and is 

defined by the by the default colormap as shown in Fig.A.O.a. The default colormap is 

8 



Chapter 2. Drawbacks of Classical Theory 

generated by a random generating function in MATLAB. We observe that the Newton 

method is not convergent with the initial guess on the symmetrical axis of the roots. 

Around the symmetrical axis, the Newton method exhibits a chaotic behavior and is 

"unstable". What "unstable" here means a small change of the position of the initial 

guess make a great difference in the number of iterations. By using the color mapping 

technique, we can enhance the unstable region with different colors. Fig.A.O.b and 

Fig.A.O.c show two colormaps, HSV and JET, which are used for this purpose. 

Fig.A.2.a is an enhanced graph of Fig. A. La. 

Furthermore, we generate a graph mapping at the unstable region and discover that 

it is self-similar (see Fig.A.3.a). An object that has the property of self-similarity is 

called a Fractal. We can further scale down the graph theoretically at unlimited levels 

without loss of any detail. At the unstable region, we discover the "relatively" stable 

sub-regions. For example, as shown in Fig.A.3.a, we can see many "eyes" which are 

relatively more stable than the other regions in this graph. 

Recently, Hong Kong has installed a MasPar MP-2 massively parallel computer. It 

is SIMD machine with 8,192 processor elements (PFs) and 64Kbytes memory on each 

PE. We have ported our software onto this machine and fully utilize the parallelism. 

Since the communication among the PFs is minimum, it turns out that the 

visualization process can quickly be completed. As a result, we can include some 

facilities, such as zoom-in, zoom-out in our program. 

2.3 Review of Deflation 

When a zero a � o f a polynomial has been identified’ we must do something to 

prevent another guess from converging to this zero. Traditionally, the polynomial is 

9 



Chapter 2. Drawbacks of Classical Theory 

divided by (z - a。）and the iterative method is then applied to the quotient polynomial. 

This process is called deflation. Conventionally, synthetic division is used for deflation 

process. In [12], detailed analysis of this deflation process was discussed and an 

alternative method of suppressing computed zeros without an explicit deflation was 

suggested as follows. 

Suppose the first r zeros {a^^a^^-'-a^) with multiplicities (爪”爪：’…讲广)have 

been identified, the deflated polynomial h(�(z) is given by: 

⑷⑷二 r P � ~ . (2.3.1) 

；=1 

To apply Newton method, we need only s^, [x of /z(') (z) � ’ / /�） .Since 

� - ( 2 . 3 . 3 ) 
；=1 {z-aj) 

^ ) (2.3.4) 

F(z-,p) = z—^ (2.3.5) 

where p is the estimated multiplicity calculated by / / � ( s e e the Section 2.1.2), we can 

compute everything needed by the iterative methods using eq.(2.3.2)-(2.3.5). The 

tradeoff is that we must recompute these equations in each iteration. 

10 



CHAPTER 3. THE IMPROVEMENT OF THE ABERTH 
METHOD 

3.1 The Durand-Kerner method and the Aberth method 

In recent years, there has been much research on parallel root-finding. In this 

section, we introduce two iterative methods and summarize the work done on these 

methods. One of the iteration methods is called the Durand-Kemer method, which was 

proposed independently by E. Durand and I. O. Keraer [13]. The formula of the D-K 

method is the following: 

DK,iZ) = z,-产、 i=h … ( 3 . 1 . 1 ) 

j对 

with Z a vector of Zj (z^, Z2,... , zj^). 

Another method proposed by O. Aberth, which is called the Aberth method, uses 

an approach which uses an analogy with electrostatics [1]. 

风⑷= ！ ^ 丄 —1，••，见 （ 3 1 2 ) 

The following are some properties of the Durand-Kemer method [1,7,8,14]: 

1. The initial approximations must be distinct. 

2. The centroid of the approximations after one iteration is equal to the centroid of 

the zeros of the polynomial and is invariant. 

“ - n “ 



Chapter 3. The Improvement of Aherth method 

3. No two iterates approach the same zero in case of simple zeros. Only M iterates 

approach a zero with multiplicity M 

4. The convergence order is quadratic in case of simple zeros，but only linear in case 

of multiple zeros. 

5. The convergence speed strongly depends on the choice of the starting points. 

6. The several iterates which converge towards the same multiple zero have a 

tendency to approach their limit point from symmetrically distributed directions, 

as if they repell each other. 

7. QLMC (Quadratic-Like Convergence of the Mean): 

The convergence order of the mean of the components converging to the same 

multiple root is quadratic. 

Properties 1,3,5 also hold in the Aberth method. The convergence in the Aberth 

method is cubic in case of simple roots and slow rate of convergence is observed to 

multiple zeros. (Note that the convergence rate is meaningful only if Z is sufficiently 

close to the zeros in both methods.) Because of the drawback of slow convergence in 

case of multiple zeros in both methods, many improvements have been suggested 

[8，18]. Fraigniand [8] made use of property 7 for speeding up the convergence in the 

D-K method. The algorithm cannot be generalized to other iteration methods unless 

they have the same property. Miyakoda [18] made use of property 6 for grouping 

guesses. However, cluster zeros also exhibits a similar property of multiple zero. This 

is the reason why Miyakoda's paper claimed that false grouping often occurred for 

double zeros (the simplest cluster zeros). Many iterative methods fail to converge due 

to the lack of consideration of cluster zeros. 

- 12 



Chapter 3. The Improvement ofAberth method 

3.2 Generalized Aberth Method 

One can observe that the Aberth method is a modification of the Newton method 

although O. Aberth derived it by different approach. The additional summation term 

improves the convergency of Newton method with the help of z^s, making it cubic 

instead of quadratic. What is more important, the summation term prevents the iterates 

from approaching the same zero, which conventionally can only be performed by 

means of deflation. Surprising enough, while comparing the Aberth method with 

eq.2.3.5, we find the great similarity between these two methods except the 

multiplicity. Hence the Aberth method performs a pseudo-deflation by using iterates 

instead of computed zeros. The argument is particularly true when all the zjs are close 

to the zeros except Similarly we can apply the same argument to the D-K method. 

In order to better explain the relationship between the Newton method and the 

Aberth method, we create a generalized Aberth method which use an "M" substituting 

"iV" and M is between 1 and N\ 

Gi(Z) = Zi - 户 , � 1 从 1 … M (3.2.1) 

where \ <M <N. 

When M is equal to 1, it is the Newton method. When M is equal to N, it is the 

Aberth method. The formula also suggests that it is not necessary to find all the zeros. 

3.3 Modified Aberth Method for multiple-zero 

Similar to the multiple-zero Newton method, Chen suggested the multiple-zero 

Vberth method: 

- “ 13 “ 



— Chapter 3. The Improvement of Aberth method 

pNT似：Zi - % / 二 1，…’" (3.3.1) 
尸（；）y Pj 

P ⑷ — 台 “ 
where 

Pj = estimated multiplicity of Zj， 

；=1 

which can improve the convergence in case of multiple zeros. The method needs to 

group the guesses which are approaching the same multiple zero. The guesses are 

then "merged" to a single guess with an estimated multiplicity. Somehow we may need 

10 "split" the guess in further iterations due to cluster zeros or mis-grouping. 

An alternative method is to ignore the contribution of the nearest (pj - 1) guesses in 

each iteration. Hence we slightly modify eq.(3.3.1) and the formula is: 

= J — i=l,…,N (3.3.2) 
严 ⑷ y 1 

where 

^ =Pi if 
；=1 

= 1 otherwise 

V̂  = {Set of all guesses, except Zj plus the nearest (W^ - 1) iterates o f z j . 

The additional cost is that we need to search the nearest (W^ - 1) iterates if W] is 

not equal to 1. In consideration of parallel processing, it creates an unequal work 

amount in some processors due to different JV,： The need for synchronization of all 

processors in each iteration reduces the efficiency of parallel machine. On the other 

hand, the advantages of this scheme are the simplicity of implementation and the 

" ” l 4 “ 



Chapter 3. The Improvement of Aberth method 

minimum communication cost. Therefore, all the iterative methods discussed below 

will be modified in this manner during implementation. 

3.4 Choosing the initial approximations 

By using the Durand-Kemer method or the Aberth method, the iteration processes 

are always convergent for almost any initial values. However, choosing proper initial 

approximations is also important since it affects the efficiency very much. As far as we 

are concerned, the initial approximations should be as close to the zeros as possible 

and should be calculated easily. 

O. Aberth suggested that the initial approximations should be evenly distributed on 

a circle with the centre A equals the centroid of zeros [1]: 

r f = ^ + + j 二 (3.4.1) 
I N J 

where 

A = . 
N 

The angle (j) is used to break the symmetry with respect to the real axis and usually be 

taken as n/lN. In most cases, we just put it as 0. Aberth also suggested that the radius 

R should be taken such that the circle just encloses all the zeros. However, some 

researchers advised that the optimum radius should be between the minimum length 

and the maximum length of zeros. 

Y. Nagashima proposed a method for calculating R by introducing the concept of 

luasivariance [19], where 

15 
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Nevertheless, he did not mention the situation of = 二 0, which could occur 

commonly. 

H. Guggenheimer claimed that the radius calculated from his procedure produces 

results not far from the optimum [10]. However, if the centroid of polynomial is afar 

from the origin, you must take a translation from the origin to the centroid in order to 

use the procedure efficiently. 

Chen introduced the concept of effective radius for sequential iterative methods 

[6], which can also be applied here: 

Note that R^^ is taken as a complex value. It can be shown that if the polynomial is a 

simple symmetric cluster function with /w = 1, the initial approximations: 

z f = " 1,...,N (3.4.2) 

are already the zeros of the polynomial. 

The effective radius can be calculated more easily compared with the 

Guggenheimer's procedure and exhibits a good performance of convergence. Thus the 

effective radius is used in our scheme. 

3.5 Multiplicity estimation 

Multiplicity is an important quantity for improving the convergence to multiple 

zeros. Nevertheless, it is difficult to measure this quantity exactly. G. Kjellbery first 

observed that m iterates converge towards the same multiple zero with multiplicity m 

from symmetrically distributed direction in using Durand-Kemer method [14]. This 

property was later used for multiplicity judgment by T. Miyakoda [18]. Nevertheless, 

"“ "16 "“ 



— Chapter 3. The Improvement of Aberth method 

this method will take quite a long time in classifying and grouping. Moreover, the 

symmetric cluster shares the same property when the corresponding iterates are afar 

from the cluster. Actually, I suspect that one cannot distinguish cluster zeros from 

multiple zero by numerical means, until the corresponding iterates are sufficiently 

closed to it. So, the multiplicity must necessarily be estimated in each iteration. Here, 

we slightly modify Chen's scheme of multiplicity estimation (Section 2.1.2) to it's 

parallel counterpart. Let us define: 

5 _户‘⑷ 
Oi V 一 

’ 户 ⑷ 

— P’(ZiVP"(Zi) 

Since the multiplicity is a real positive integer, we have 

w. 二 Floor(0.5+|Re(ia)|) 

Pi 二 w,. if 1 < < iV and w, > 2|Im(}ii) 

= 1 otherwise 

where 

Pj 二 estimated multiplicity. 

. - n — 



CHAPTER 4 

THE HIGHER-ORDER ITERATIVE METHODS 

4.1 Introduction 

According to the discussion of Section 3，in principle we can modify other classical 

iterative methods, such as the Halley Method [12], the Laguaerre Method [12] and the 

Cluster Adapter method [6], to their parallel counterparts. Let 

高 尸 〜 - t i (4.11) 

、 = 〜 - 卖 命 （4.1.2) 

(4-1.3) 

� ’ i 

The parallel iterative formulas pF(Z) for the i th iterate are: 

(i) The parallel-Newton formula (the modified Aberth formula): 
pN柳：z「与. (4.1.4) 

(ii) The parallel-Halley formula: 

pHLXZ) = z , “ 2 (4.1.5) 

\Pi "丨 J 

(iii) The parallel-Laguerre formula: 

18 



Chapter 4. The Higher-Order Iterative Methods 

PLGi (Z) = z, - ~ - ~ ~ N (4.1.6) 

〜 1 士 飞 一 - 1 — - 1 

L v U 人 J j 

(vi) The parallel-Cluster Adapted formula: 

pCMRi (Z) = ； - (4.1.7) 

� ( Q - i ) 

(N \ KN \ 
with Q 二 — - 1 / — - 1 • 

J! \Pi J 
We will prove later (Section 4.2) that the orders of convergence of these formulas 

are increased by one from their sequential counterparts in case of all single zeros. 

The overall parallel iterative algorithm are now proposed: 

Step 1. Generate the initial iterates Z(o) = (zf '^zf in parallel: 

+ j 二 …,N. 

Step 2. Compute the next set of iterates in parallel: 

: = � ) where A： = 0 at the beginning. 

Step 3. If +i))| < s for all i, then Exit. 

Step 4. k:=k + l; Goto Step 2. 

4.2 Convergence analysis 

" “ T i — 



Chapter 4. The Higher-Order Iterative Methods 

Table 4.1 illustrates order of convergence of several iterative methods in case of 

single zeros. Some of the results had been proved and well known. In this section, we 

will verify these results, in addition to giving proofs for the rest of the methods that are 

proposed in this thesis. More importantly, we demonstrate the great similarity between 

the sequential algorithms and the pseudo deflation method. 

— — — — — — — — — I 

Sequential formula Order Parallel formula Order 

Newton 2 Aberth 3 

Halley 3 Parallel-Halley 4 

Laguerre 3 Parallel-Laguerre 4 

CMR 3 Parallel-CMR 4 
丨 “ — 一 丨 

Table 4.1 The convergent rate of different iterative formulas in case of single zeros. 

Firstly, we need three equalities deduced from the Taylor expansion: 

Supposing that « 1 . We have, 

(1 + 句 = 1 - S+ + 0(S') (4.2.1) 

(1 + 办口 = l + (4.2.2) 
2 8 

(1 + 办 〜 l + + 斧 斤 + 晰 ) • （4.2.3) 
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Substitute , by eq.(4.2.4), we get 

Z 

1 ^ r 1 1 ) 
二 7+Z 

1 1 1 1 = — + y 

= 丄 _ _ ^ _ _ 1 

= 丄 

where A = T ！— ^ — — — 

From eq.(4.1.2), we get 

、 、 - ( 4 . 2 . 9 ) 

Substitute •s】，, by eq.(4.2.5), we have 

丄 L _ 1 

1 - r 1 1 ) 

：丄 (2z-2aj-Sj)i-Sj)、 

二疋+ 厂 〜 - 炒 J 

《2 
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Chapter 4. The Higher-Order Iterative Methods 

Therefore, we have 

~ 1 
(4.2.10) 

及2’, 二 去 + 为 (4.2.11) 
《 

= M (4.2.12) 
、丨 \-\-BS, 

Since the parallel formulas have the same structure of the sequential formulas 

except , , s ^ ^ , r e p l a c e d by 云、�云2”Mi, we can prove the convergence in the same 

manner. 

(i) The Newton Method 

From eq.(2.1.5), we get 

~ 1 . 

Substitute 气,by eq.(4.2.6), we have 

— + ^ 

Si 

=a, + (5； 
‘ ‘ l + AS, 

ASi" =a. + 
‘ 1 + M 

We assume that z,. is sufficiently close to a, such that Aĥ  « 1, From eq.(4.2.1) 

二 a,. + 乂《2(1 一乂 4 + 0 ( 4 2 ) ) 

二 附 3 ) 

Therefore, the convergent rate of the Newton method is quadratic in case of single 

zero. 

一 “ ^ “ 
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(ii) The Aberth method 

From eq.(4.1.4)，we get 

~ 1 

Similar to the Newton method, we have 

= 浏 《 . 2 + 呢 3) 

Again, we assume that z,. is sufficiently close to a, for all / such that A « 1 and 

= 0⑷，w e have 

•二 竹 

Therefore, the convergent rate of the Aberth method is cubic in case of all single 

zeros. 

(iin The Halley Method 

From eq.(2.1.6), we get 

~ 一 2 

Zj 二 Zj 7 .. 

〜 1 + 一 
I A J 

Substitute , and by eq.(4.2.6) and eq.(4.2.8), we have 

� + ( i + M ) 2 人成 + J 

=(X + d. r 

一 (A'+B)S' 
二 ai + + + (乂2+灼《2 
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Therefore, the convergent rate of the Halley method is cubic in case of single zeros. 

(iv) The parallel-Hallev method 

From eq.(4.1.5)，we get 

~ - 2 
Z/ 二 Zi 7 ^ 

V Mi) 

Similar to (iii), we have 

z. 二 a � + 旬《3 矿） 

二 矿). 

Therefore, the convergent rate of the parallel-Halley method is fourth order in case of 

all single zeros. 

(V) The Laguerre method 

From eq.(2.1.7), we get 

~ 一 ^ 

； 一 ； 一 f I ( .r W 

Substitute and by eq.(4.2.6) and eq.(4.2.8), we have 

~ N 
乏i 二 cci + J, 7 ‘ r ^ 

[ H 1 + ( M i ^ - i J 

V 乂 
“ 25 ^ 
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(N-1)B-A2� 
^ + 晰 ） 

Therefore, the convergent rate of the Laguerre method is cubic in case of single zeros. 

(vi) The parallel-Laguerre method 

From eq.(4.1.6), we get 

~ N 

I V JJ 

Similar to (v), we have 

~ ( N - l ) B - A ' . … 4 、 
z, = a,. +- d + 0(d ) 
‘ ‘ 2�N -V) ‘ � … 

Therefore, the convergent rate of the parallel-Laguerre method is fourth order in case 

of all single zeros. 

(wil) The CMR method 

From eq.(2.1.8)，we get 

• • -1) 

‘ ‘ ^ u ( e - i ) 

with 0 = 
一 VM- )l 

Substitute � a n d /i,. by eq.(4.2.6) and eq.(4.2.8) and after some simplications, we 

have 

“ Te — “ 
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Therefore, the convergence rate of the CMR method is cubic in case of single zeros. 

(viiD The parallel-CMR method 

From eq.(4.1.7), we get 

一増广-1) 

‘ ‘ ^ u ( Q - i ) 

with 
VMi )丨 

Similar to (vii), we have 

,,二 仅 广 丄 一 矿 ） 
‘ ‘ 2 _ 3(N_1) _ ‘ � “ 

二 a丨 

Therefore, the convergence rate of the parallel-CMR method is fourth order in case of 

all single zeros. 

Because of the great similarity between the pseudo deflation method and the 

sequential algorithms, the pseudo deflation has a potential to capture the rich 

knowledge from the classical theory. 
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4.3 Numerical Results 

In [7], T.L. Freeman did a survey on several parallel algorithms which have orders 

of convergence two, three and four. According to this survey, the fourth order 

algorithm that he examined is not robust, with many failures to converge. It turns out 

that a proof of locally convergence does not imply that the algorithm has a good 

overall performance. 

We implemented the pseudo deflation method in APL (Appendix A). The floating 

point precision that we used is double precision. For all the experiments below, the 

iterations were stopped when max| | < lE-10 for / 二 1, 2, ... iV. The initial 

approximations were selected to be symmetrically distributed in a circle (see the 

Section 3.4). 

The convergent rate of parallel mehods in case of single 
zero 

14! / 
12 - ^ 

I 10 - X “Aberth 
I 8 - •Kerner 
i Q ^ ‘MAberth 
J 4 - ^ ^ ^ PHalley 

2 
0 J 1 I 1 ‘ 

0 5 10 15 20 
Degree of polynomial 

Fig. 4.1 
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In the first experiment, we randomly generated a wide range of degree of 

polynomials for our test data. Each polynomial had all distinct zeros which were in the 

range of 0 + Oz to 1 + 1/. We used a hundred sample polynomials for each degree and 

took the average values at each measurement. Fig.4.1 shows the results of the 

convergence on several parallel iterative methods. The Durand-Kemer method had the 

slowest convergence rate among all the methods. The average number of iterations 

was increased almost linearly against the degree. The rest of the methods required 

more or less the same number of iterations although they had different local 

convergence rate. The convergence rate was sub-linearly increased against the degree. 

We may conclude that the rest of the methods have better performances than the 

Durand-Kemer method for large degree. The parallel Halley method converged in all 

he sample polynomials. It illustrated the robustness of this algorithm although it took 

longer computing time on each iteration than the Aberth method. However, it may be 

better than the Aberth method if we have good initial approximations in some 

applications. 

The convergent rate of parallel methods in case of 
multiple zero 

18 T 

16 1 I 

穿 ‘ “ • K e r n e r 

I 12 --
^ ——•——MAberth 
g 1 0 丄 

0 6 -- 0 ~ P H a l l e y 

1 4 - -

2 
0 J i 1 ‘ ‘ — 

0 2 4 6 8 10 12 
Degree of polynomial 

Fig. 4.2 
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In the second experiment, we randomly generated our test polynomials similar to 

the first experiment, except each polynomial had exactly one double zero and the rest 

of zeros were all distinct. As we expected, the Durand-Kemer method and the Aberth 

method converged slowly in case of multiple zero, as shown in Fig.4.2. Since the 

double zero dominated the longest convergent time, the number of iterations was more 

or less independant of the degree. The modified Aberth method tackled this problem in 

this case. Compare with Fig.4.1, we got a similar curve of the modified Aberth method 

as if the polynomials had only single zeros. 

No. of iter, against radius 

3 0 丁场 

2 5 -

W) ^ 

I 20 --
S f ~ ~ • ~ A b e r t h 
c 1 5 - 1 ^ ^ ^ ^ ^ 
- T ^ ^ ——®——Kerne r 

0 J 1 1 

0 5 1 0 

Radius (x Refi) 

Fig. 4.3 

For the choice of the initial approximations, we have discussed the effective radius 

in Section 3.4. We pointed out that the effective radius can be calculated more easily 

compared with the Guggenheimener's procedure. Moreover, it also exhibits a good 

performance of convergence. In the third experiment, we examined the number of 
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iterations against a range of radius relative to the effective radius. Similar to the first 

experiment, we randomly generated a thousand sample polynomials with degree six. 

The Durand-Kemer method and the Aberth method were selected in this experiment, 

rhe results are plotted as Fig.4.3. Obviously the convergence was slow while the 

radius was too large such that the initial approximations were far from the zeros. We 

observed that the convergence was also slow while the radius was too small. In the 

Durand-Kemer method, it was because the iterates repelled each other in the first 

iteration such that the iterates were far from the zeros in the next step. In the Aberth 

method, we noted that the iterates were improved very little in each iteration as if the 

centriod attracted them. Fig.4.4 showed the same result with log scale in x axis. It is 

interesting that the optimum radius was near the effective radius in both methods in 

this experiment. 

No. of iter, against Radius (log scale) 

30 T 

. \ ^ 
I \ 20 -
z V ~“Ab e r t h 
二 \ 15- ^ ^ 
« V ^ ^ a K e m e r 

I ^ H 
0.1 1 10 

Radus (xRefi) 

Fig. 4.4 



CHAPTER 5. PARALLEL DEFLATION 

In section 4, we have discussed a family of parallel algorithms which can 

approximate all the zeros simultaneously without an explicit deflation. However, the 

convergence rate of each zero may be different. For example, the convergence rate of 

a multiple zero is much slower that a single zero by using the Aberth method. It is 

wiser for us to explicitly deflate the polynomial if several iterates have been accurate 

enough in order to reduce the problem size and make the rest of the iterates converge 

more quickly. Conventionally, synthetic division is used for deflation. However, 

synthetic division is a sequential process and difficult to be parallelized on a parallel 

machine. In this section，we propose an algorithm for parallel deflation by utilizing the 

Fourier Transform. 

5.1 The Algori thm 

First, let us take an example to illustrate how the polynomial multiplication can be 

performed by Fast Fourier Transform, which has been mentioned in many textbooks 

(see [2] for example). Suppose we intent to multiply the two polynomials 

(2z+ 1) and (3z + 2). 

Step 1: Take the FFT on coefficients of both polynomials: 

f l 1 1 1 Y O f 3 ) 
1 7 一 1 -i 2 _ 1 + 2/ 
1 - 1 1 - 1 0 " - 1 

U - i - 1 J [l-2i) 
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( \ 1 1 1 ( 5 ) 
1 i - 1 —i 3 _ 2 + 3/ 
1 一 1 1 - 1 0 一 一 1 • 

U - 1 / 人 o j U - 3 / J 

Step 2: Componentwise multiply the corresponding elements of the resulting 

sequences: 

f 3 W 5 W 15 ^ 
1 + 2/ Y 2 + 3/ _ 一 4 + 7/ 

—1 —1 一 1 * 

U - 3 / J 1 - 4 - 7 / J 

Step 3: Take the inverse FFT. The resulting sequence of numbers are the coefficients 

of the product polynomial: 

(I 1 1 l Y i M ( A 
1 1 —i - 1 i - 4 + 7/ 7 n r ，丄 7，丄“2 — 1 1 1 1 1 = ( or 2 + 7Z + OZ . 

i —1 1 一丄 1 0 
1 -1 - d - 4 - 7 / J [ O j 

Generally, the Fourier Transform cannot be applied for polynomial division since 

the result may not be a polynomial. However in deflation process, we assume that the 

guess z � i s sufficiently close to the zero and (z - z ) is assumed to be a factor of the 

original polynomial. So we propose a method of parallel deflation by reversing the 

steps of above: 

Step 1. Before iteration, compute the FFT of the original polynomial. This produces a 

sequence {/?�，A, ，…，/V} where N is the degree of polynomial. 

Step 2. Suppose we want to deflate { z - a ^ ) simultaneously, 

compute the FFT of each factor and componentwise multiply each 

corresponding elements. This produces a sequence [ d 乂, d ” " � d N ) . 
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Chapter 5. Parallel Deflation 

Step 3. Compute the divisionpjdj fory = 0,1,2, ... N. 

Step 4. Compute the inverse FFT of the sequence { p j I d ^ } . 

The resulting sequence of numbers are the coefficients of the deflated 

polynomial. 

By using butterfly processors, it takes only 0(logAO time to perform deflation, 

compared with linear time in tradition. 

5.2 The Problem of Zero Component 

One of the problems in using this method is that if the original polynomial contains 

a zero which is a root of unity, wJ, where w 二 Q27tif�N+V), the pj and dj will become 

zero. The resulting pjdj is undetermined. Fortunately, the missing component can be 

computed by the fact that since the deflated polynomial has a degree (AM), the A -̂th 

coefficient of the deflated polynomial should be zero. Therefore, 

f \ 

k=0 V̂Ar y 

where w = qI職n+i), and we have 

P � , £^_二 _ - V ^ . 
dj l^XdJ 

The problem is then solved although more effort will be added in this special 

case. 
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5.3 The Problem of Round-off Error 

Due to round-off errors, the sought-after zero a � i s different from the real zero by 

s. The FFT of (z - a � ) distributes this error to each component of the resulting vector. 

It makes the error analysis difficult. 

We implemented this algorithm by using APL (Appendix A). Several polynomials 

were tested and the results are listed in Table 5.1. By this experiment, we may 

conclude that the method is quite acceptable. 

Tested Computed zeros Actual Deflated polynomial by Actual deflated 

Polynomial zeros using proposed parallel polynomial 

deflation scheme 

2^ + 4 1+/, 1-/ 1+/, 1-7 + +2 + 2z + 2 

z^ + 4 1.00001+1.0000 1+/, 1-/ + (1.999999998- z^ + 2z +2 

l7, 0.99999- 5.024390237E-5 /> + 

0.99999/ (1.999999997-

6.04878Q477E-6 /) 

z3 . 76.2 . 76.001 76 + (4.328167807E-6)z - z^ - 25 

25z+ 1900 24.999999858 

0 - 2 ) 1 0 |ninea0000iys |nine2 's | z - 1.999910005 z-2 

Table 5.1 Numerical results of proposed parallel deflation scheme. 
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CHAPTER 6. HOMOTOPY ALGORITHM 

6.1 Introduction 

Homotopies are a part of topology and have been applied for solving eigenvalue 

problems and solving polynomial systems [15,16，17,23] . In this section, we give a 

brief introduction for only considering the application on the polynomial root-finding 

problem. See [23] for more general descriptions and more applied areas. The 

homotopy that we will consider is: 

H(zJ) = (l-t)Q(z) + tP(z) (6.1.1) 

where P{z) is a complex polynomial to be solved: 

Q(z) is a predefined polynomial with the same degree such that its zeros are all known: 

and t is a real parameter varied from 0 to 1. At a fixed t, H{z,t) is also a polynomial 

with the same degree. As t is changed from 0 to 1，each zero of H{z,t) will form a 

root-path that starts from a known value to a unknown solution we want to solve (Fig. 

6.1). The idea of homotopy method is that we follow the root-path to get the solution. 

Since the root-path is continuous, it makes the path-tracing possible. Moreover, the 

Transversality theorem from differential topology [23] says that the curves will be 

smooth, without bifurcations if Q{z) is choosen at random. This property makes the 

homotopy algorithm more practical because prediction techniques can be applied. For 
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the parallel aspect, since each path can be followed individually without any 

communication overhead, it is also attractive. 

z /f̂  ； 

^ > 

0 1 t 

Fig.6.1. 

6.2 Choosing Q(z) 

In order to shorten the root-path, the zeros of Q{z) should be as close to the 

zeros of P{z) as possible. The circumstance is the same as the discussion of Section 

3.4. Therefore, we suggest the following Q{z)\ 

Q{z) = f{{z-zf ) = fl[z-[A + R,^'Qxp(2 nij / AO]} (6.2.1) 
；=1 ；=1 

where 

N 

Obviously the centroid of Q(z) is equal to that of P{z), i.e., A. It implies that the 

centroid ofH{z,t) remains constant against /. Beside this, since 
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N r 
Q(^) = + Reff .exp(2Tdj/ AO]} 

；=1 

;=i 

= P(A). 

Hence, 

H(A,t) = (l-t)Q(A) + tP(A) 

= (l-t)P(A) + tP(A) 

= P(A). 

Therefore, the effective radius of H(z,t) is also invariant with t. 

6.3 Arciength Continuation Method 

In this section, we describe an arciength continuation method for path-

following [3]. Instead of parametrizing z in term of t, we use an arciength parameter s. 

The arciength condition is: 

网 |2+|/⑷卜 1. (6.3.1) 

By differentiating eq. (6.1.1) with respect to s, we have 

(6.3.2) 

or 

where 
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Let 

By solving eq.(6.3.1) and eq.(6.3.2)，we have 

《力=土 I 1 2 (6.3.3) 
Vi+H 

z(s) = V't(s). (6.3.4) 

By the fundamental theorem of Algebra, there can only exist one zero in each root-

path for a fixed t, hence there does not exist a turning point in the path. Therefore, we 

can alway choose the positive value of t(s). Therefore, we can compute the unit 

tangent vector (i。，/。）at a fixed point (zqJq) and predict the next step , t ( ) using 

the Euler prediction: 

f，’、 f r \ (z \ 
；1 U ô K J ^ o (6.3.5) 

V'ly v̂ oy v'oy 
where is a stepsize parameter, as shown in Fig.6.2. By using the iterative method 

such as the Newton method and using z[ as an initial guess, the solution path can be 

corrected to {z^J^). The selection of stepsize h could be adaptive for efficiency. For 

example, if the previous prediction is fine, we may double h at the next step, and half/z 

if the previous prediction is poor. Of course, we can adjust the stepsize in a more 

intelligent way. 

6.4 The bifurcation problem 

The bifurcation (see Fig.6.3) can occur if and only if H{z,t) has a multiple root at 

some tfj, i.e., = 0. We observed that the bifurcation points often occur when 

the roots of Piz) and Q{z) preserve some symmetry. In the same way as the Aberth 
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method suffers from this symmetric problem [1], the bifurcation points produce many 

problems: 

root-path | ^ ^ ^ ^ ^ ^ 湖 

^ < ^ ， t i ) 

N^h——H \ 

Fig. 6.2 

(1) Path-jumping problem 

By using the root-finding method for path-following, it has a possibility to 

converge to another root, especially near the bifurcation point. 

(2) Path-stopping problem 

Near the bifiircation point, i is very small. Hence the stepsize of t is small, too. 

Many efforts will be added in order to converge to the bifurcation point. 

Unfortunately, it is almost a must if we want to identify the bifurcation point. 

(3) Lost-tracking problem 

If we over-jump the bifurcation point with a larger stepsize, the iteration will 

probably not converge because of the symmetry. Although we may not intend to 

over-jump the bifurcation point on purpose in most cases, it could have occurred 

before we know that there is a bifurcation point. 

_ _ - — 一 
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A ~ 7 1 
^ ^ bifUr,tioii point / I 

。：rr̂̂f 
Inag 0 I } ~ Z ^ ~ j 1 

{ 产 
-0.5 V / y 0 Real 

-乂 F广 
^ ^ o ^ 1 

t 
Fig. 6.3 

6.5 The suggested improvement 

To avoid the path-jumping problem described in the previous section, one of the 

suggestions is to utilize the pseudo-deflation method for path-following instead of the 

classical iterative method. We implemented a prototype program in APL (Appendix 

A). The program uses the Euler method for prediction and the parallel-Halley method 

for correction at each step. Several polynomials were tested. We report that the 

program will converge successfully in general. Also, the program always needs only 

one or two iterations to converge at each step. However, the investigation is 

preminary and it is difficult to compare with the pseudo-deflation method in current 

state. Any further improvement and comparsion are beyond the scope of this thesis. 
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CHAPTER 7. CONCLUSION 

In [22], Saad concluded that, "It is interesting to observe that the successful ideas 

in parallel numerical methods have often been derived from existing techniques that are 

either adapted or slightly modified ……The search for parallelism has forced 

researchers to take a second look at many old techniques, sometime resulting in 

remarkable success." This is the case of pseudo-deflation method. In this thesis, the 

general idea of the pseudo-deflation method have been presented. The advantage of 

this method is that it is reliable and well understood. According to this method, we 

parallelized a family of existing sequential algorithms. All these algorithms were 

proven to be locally convergent. Moreover, numerical experiments have shown that 

they are robust. Since the connection between the sequential algorithms and their 

parallel counterpart has been established, we expect that more classical theory and 

techniques will be captured by this new branch of parallel algorithms in the future. For 

example, the idea of the effective radius have been added to the parallel algorithms in 

considering the choice of initial approximations. 

One of the challenges in the future may be the cases of cluster zeros and multiple 

zeros. We suggest that the two cases should not be considered separately because we 

jbserve that the cluster zeros often create difficulties to the root-finding methods. 

Moreover, the current technique of multiplicity estimation in classical theory has many 

pitfalls, as we have mentioned before. The searching for better estimation is needed. In 

case of multiple zeros, most of the existing parallel algorithms, which are modified 

from the Durand-Kemer method or the Aberth method, often use the grouping 

technique [8,18]. However, this technique is time consuming and may not be 

competitive with the original algorithms that assume all the zeros are simple. 
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Chapter 7. Conclusion 

The research of the homotopy method is active. In this thesis, we have presented 

the application of this method in parallel root-finding problem. The key problem of this 

method is the bifurcation problem. Without the bifurcation, this method is actually a 

globally convergent algorithm. In our case, multiple bifurcation occurs whenever 

H{z,t) has multiple zero(s) at some t. Finally, we have suggested the improvement for 

solving the path-jumping problem. 
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APPENDIX A - PROGRAM LISTING 

A-1 datagen.cc 
II datagen.cc : This program is used to generate a bitmap file 
II according to a description file. 
// b y Danny Luk. 21/1/93 
#include <stdio.h> 
#include <stdlib.h> 
#include <stream.h> 
#include <coinplex.h> 
#include <rand48.h> 

#define MAXDEGREE 20 
#define tolrences 1.4E-4 
#define PI2 6.28318530718 
unsigned int width,height; 

double real一 min,real一 max,imag—min,imag_max; 
int max—iterations; 
int method; 
int scheme; 
char outfile[25]; 
int color—cycle; 
int degree; 
complex C[MAXDEGREE+1]； 
complex CP[MAXDEGREE]； 
complex CPP[MAXDEGREE-1]; 
int perturb; 

complex formula(complex z, int k, double *fmag); 

m a i n ( i n t argc, char *argv[]) 
{ 

FILE *img,*dpt; 
int k; 
double 
double deltax,deltay; 
int col,row; 
complex z； 
double fmag; 
char line[100]; 

if (argc ！= 2) { 
printf{"No. of arguments not match!\n")； 
exit (0)； 

} 

if ({dpt = f o p e n ( a r g v [ l ] ) == NULL) { 
printf("Can't read Description file！\n")； 
exit(0); 

} 
// Read in the description. 

fscanf(dpt,"%d %s",&width, line)； 
fscanf(dpt,"%d %s",&height, line)； 
fscanf(dpt,"%lf %s",&real一 min, line)； 
fscanf (dpt, "%lf %s", &real~inax, line)； 
fscanf (dpt, "%lf %s", &iinag二min, line); 
fscanf (dpt, "%lf %s", &iinag_max, line); 
fscanf(dpt,"%d %s",&max_iterations, line); 
fscanf(dpt,"%d %s",Smethod, line); 
fscanf(dpt,"%d %s”，&scheme, line)； 
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fscanf(dpt,"%s %s”，outfile, line); 
fscanf(dpt,"%d %s",Scolor一cycle, line); 
fscanf(dpt,"%d %s",&degree, line); 

for (k=0; k<=degree; k++) 
{ 

fscanf(dpt,”％lf %lf”，&r,&i),• 
C[k] = complex(r,i)； 

} 
fscanf (dpt, "%d %s”，&pertiirb, line); 
printf("perturb = %d\n",perturb); 
fclose(dpt); 

if ((img = fopen(outfile,"wb")) == NULL) { 
printf("Can‘t open Image output file！\n"); 
exit(0); 

for (k=0; k<=degree-l; k++) 

CP[k] = C[k+1] * (k+1); 

for (k=0; k<=degree-2; k++) 

CPP[k] = CP[k+l] * (k+1)； 

deltax = (real一 max - real_min)/width; 
deltay = {imag_max — iinag_min) /height; 
for (col=0; col<width; coI++) { 

for (row=0; row<height; row++) { 
z = complex (real_min + col * deltax, iitiag一max - row * 

deltay)； 
k = 1; 
while (k<max一iterations) { 

z = formula(z,k,&fmag); 
if (fmag < tolrences) break; 
if (perturb) { 

double a; 

a = PI2 * drand4 8(); 
z = z + tolrences * fmag * complex(cos(a),sin(a)); 

} 
k++; 

} 
fputc(k,img); 

} 
} 
fclose(img); 

} 

‘ “ A ^ “ "“ 
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A-2 methods.cc 
#include <stdio.h> 
#include <stdlib.h> 
#include <stream.h> 
#incliide〈complex.h> 
#include "descriptor.h" 

complex S； 
c o m p l e x MU; 
int P; 

c o m p l e x newton(complex z) 
{ 

return(z - P/S); 

} 

complex laguerre(complex z) 
{ 

return(z - degree/(1+sqrt((degree/MU-1)*((double)degree/ 
(double)P-1)))/S); 
} 

complex cmr(complex z) 
{ 

complex Q; 

Q = (degree/MU-1)/((double)degree/(double)P-1)； 

return(z - degree*(pow(Q,(double)P/(double)degree)-1)/(Q-1)/S); 

} 
complex halley(complex z) 
{ 

return(z - 2.0/S/(1+1/MU))； 

} 

complex formula(complex z, int k, double *fmag) 
{ 

int i ; 
complex F,FP,FPP; 
complex z_new,F一new; 
complex U; 
complex Aeff; 
int qx,qc,W,V; 

F = complex(0.0, 0.0); 
FP = complex(0.0,0.0); 
FPP = complex(0.0, 0.0)； 

for (i=degree; i>=0; i--) 
F = F*z + C[i]； 

for {i=degree-l; i>=0; i--) 
FP = FP*z + CP[i]； 

for (i=degree-2; i>=0; i--) 
FPP = FPP*z + CPP[i]; 

S = FP / F; 
MU = 1 / ( 1 - F * F P P / F P / F P )； 

W = (int) (0.5 + real(MU)); 

if (W>1 && W<degree && ( ( (double)W) >= 2.O^fabs(imag(MU)))) 

qx = W; 

else 

- 一 A^ “ 
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qx = 1; 

A e f f = -C[degree-1]/C[degree]/degree; 
U = (degree-S* (z-Aeff))/(1-S*(z-Aeff)/MU); 
V = (int) (0.5 + real(U)); 
if (V>1 && V <degree && { ( (double)V) >= 2.0*fabs (iinag(U)))) 

qc = V; 
else 

qc = 1; 

switch (scheme) { 
case 1: 

P = In-
break; 

case 2: 
switch (k % 3) { 

case 1: P = qx; break; 
case 2: if (qx < P) P = qx; break; 
case 0: P = 1; break; 

} 
break; 

case 3: 
if (k==l) 

P = qc; 
else 

P = qx; 
break; 

case 4: 
P = qx; 
break; 

default: 
printf("Unknown P scheme！\n"); 
exit(0)； 

} 
switch (method) { 

case 1: z_new = newton(z); break; 
case 2: z一new = laguerre(z); break; 
case 3: z~new = cmr(z); break; 
case 4: z~new = halley(z)； break; 
d e f a u l t : 

printf("Unknow method!\n"); 
exit (0); 

} 
F一new = complex(0.0,0.0)； 
for (i=degree; i〉=0; i--) 

F_new = F_new* z_new + C [ i ]; 
*fmag = abs(F_new)； 

return(z_new)； 
} 一 

“ “ A ^ “ 
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A-3 descriptor.h 
#define MAXDEGREE 20 
extern unsigned int width,height; 
extern double real一 min,real—max,imag—min,imag一 max; 
extern int max 一 iterationi"; — ~ 
extern int method; 
extern int scheme; 
extern int degree; 
extern complex C [MAXDEGREE+1]； 
extern complex CP[MAXDEGREE]; 
extern complex CPP[MAXDEGREE-1]； 

A-4 Makegen 
# M a k e g e n - make file for generate executable file "datagen" 
# This make file needs SUN C++ complier with complex library 
# type "make -f Makegen" at command line 
EXEC= datagen 
CFLAGS=-〇 
LIBS= -工/usr/CC/sun/incl -L/usr/CC/sun4/ -1X11 -1complex -Im -IC 
〇BJECTS= methods.o \ 

datagen.o 
$(EXEC): $(OBJECTS) 

cc -o $(EXEC) $(OBJECTS) $(LIBS) 

A-5 newtonOl.dpt - Sample description file 
512 width 
512 height 
-3 .5 real—min 
+3 . 5 real一max 
-3.5 imag_min 
+3.5 imag_max 
200 max一iterations 
1 method=Laguerre 
1 scheme 
newtonOl.img output—file 
200 color一cycle 
7 degree 
-1.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
1.0 0.0 
0 perturbation 

Comments: 

1 F(z) = z**7 — 1 
II scheme = 1 p=l always 

= 2 generalise Laguerre 
= 3 cluster adapted 
= 4 p=qx always 

工工工 method = 1 Newton 
= 2 Laguerre 
= 3 Cluster Adapted 
= 4 Halley 
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A-6 display.m - Matlab M-fiie 
function r = display(fname); 
% d i s p l a y image file generated by "datagen" 
% This function can only be worked on MATLAB 4.0 
% By Danny Luk, 21 Jan 93 
% 

% U s a g e : display("img_file") 
fid = fopen(fname,'r'); 
ima = fread(fid,[512,512]); 
h = image (ima)； 
axis(‘square‘)； 
axis('off'); 
% load the file itiymap.mat 
load mymap; 
colormap (myitiap)； 
r = h; 

- A ^ "" 
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A-7 Subroutines for the pseud-deflation method in APL 

• P I T E R[口] • 
[ 0 ] D—PITER'.T'.K 
[1] K—0 O , POLYNOMIAL COEFFICENTS ？, O C—0 • , INITIAL GUESSES ？, O Z—• 
[ 2 ] LT： '0 E X I T / l D - K / 2 ABERTH/3 MABERTH/4 PHALLEY/5 MPHALLY/6 PLAG/7 PCMR ” 
[3] —(0,LK,LA,LM,LH,LQ,LL,LC) [l+a]AS T—'K = ' , K + 1 • 
[ 4 ] LK:—LZ AS Z—C KERNER Z AS T R DURAND-KENRER METHOD 
[ 5 ] LA:—LZ AS Z—C ABERTH Z AS T A GENERALIZED ABERTH METHOD 
[6] LM:̂ LZ AS. Ẑ C MABERTH Z AS T A MODIFIED ABERTH METHOD 
[ 7 ] LH:—LZ AS Z—C PHALLEY Z AS T A PARALLEL HALLEY METHOD 
[ 8 ] LQ:—LZ AS Z<-G MP HALLEY Z AS T n MULTIPLE PHALLEY METHOD 
[ 9 ] LL:—LZ AS Z—C FLAG Z AS T A PARALLEL LAGUERRE METHOD 
[ 1 0 ] LC:-^LZ AS Z—C PCMR Z AS T fl PARALLEL CMR METHOD 
[ 1 1 ] L Z : 0 ^ ' Z • CX Z • ' I F Z I = ‘ , $CXMAG C CXPOLY Z O —LT 

V K E R N E R C D ] V 

[ 0 ] Z2—C KERNER Z ; P S Z J S ; Z I P ' . T 
[ 1 ] P S — C X P O L Y Z O Z — O p i 
[ 2 ] L:—0 IF(02 :pPS) 
[ 3 ] ZJS—2iZ AS ZI—2TZ AS P—2TPS 
[ 4 ] —L4 IF(1E~10<CXMAG P) 
[ 5 ] AS Z2—Z2 ,Z I 
[ 6 ] L4 :Z2—Z2, Z I - P ZDIV CXPRO Z I CXMINUS ZJS 
[ 7 ] L5 :—L AS Z — Z J S ' Z I AS PS—2丄PS 

•ABERTH[口]• 
[ 0 ] Z2—C ABERTH Z ; POS ;P1S ; ZJS ; ; PO ;；?1 ;T 
[ 1 ] Z2—pi • P O S — C X P O L Y Z • PIS —, (CXDIFF C) CXPOLY Z 
[2] Z— 
[ 3 ] L : - 0 IF(02 :pP0S) 
£ 4 5 Z J S — 2 i Z O Z I — 2 T Z O P O — 2 T P 0 S • P I — 2 T P 1 S 
[ 5 J — L I I F ( 0 9 i P 0 ) 
[ 6 ] - L 2 AS Z2—Z2,Z I . 
[ 7 ] L I : Z2 —Z2, Z I - P O ZDIV P l -PO ZTIMES CXSUM 1 0 CXDIV Z I CXMINUS ZJS 
[ 3 ] — • POS—2 丄 POS O P l S - 2 i P l S 
[9] - L 

• M A B E R T H [ • ] • 
[ 0 ] Z2-C MABERTH Z P O S ; P I S Z J S ; Z I ; P O P I ; M ; M I ; T ; DZI 
[ 1 ] POS—,公C CXPOLY Z O PIS—,<?(CXDIFF C) CXPOLY Z 
[ 2 ] N—一 1+pM—C MUILTI Z • Z — • Z2产pi 
[ 3 ] L : - 0 IF (O^pPOS) 
[4] T — Z J S — 2 I Z O Z I — 2 T Z O P O — 2 T P 0 S • P I — 2 T P 1 S O M I — I T M 

[ 5 ] IF (05 iP0 ) • Z 2 , Z I • —L2 
[ 6 ] L I : — L 3 ] :F (1=MI ) • DZI—CXMAG Z I CXMINUS ZJS • DZI—(2 , N) p D Z I , LN 
[ 7 ] T—(CX ZJS) [；, ( 1 0)丄（0,MI-1) i D Z I [ ] 
[ 3 ] L 3 : Z 2 —Z2,ZI-M工 ZTIMES PO ZDIV P l -PO ZTIMES CXSUM 1 0 CXDIV Z I CXMINUS T 
[9] :L2:Z — Z J S , Z I • P O S — 2 I P 0 S O P I S — 2上 P I S O M ^ L I M 

[10] —L 
• P H A L L E Y [ 0 ] V 

[ 0 ] Z2—C P H A L L E Y Z ; P O S ; P 1 S ; P 2 S ; Z J S Z I ,-P0 S I S2 DZ 
[ 1 ] POS—,«)C CXPOLY Z • P I S — C ) CXPOLY Z 
[ 2 ] P2S—,«>(CXDI:FF CXDIFF C) CXPOLY Z • Z — O Z2—pi 
[ 3 ] L:—0 IF(02 :pP0S) 
[ 4 ] ZJS«-2iZ AS Z工—2TZ AS P0«-2TP0S AS PI—2TP1S AS P2—2TP2S 
[ 5 ] —LI IF (07 iP0 ) • Z2—Z2,Z I • —L2 
[ 6 ] L 1 : S 2 — ( S I ZTIMES SI—PI ZDIV P0 ) -P2 ZDIV PO 
[ 7 ] SI—Sl-CXSUM 1 0 CXDIV DZ—ZI CXMINUS ZJS 
[ 8 ] MU—SI ZTIMES S I ZDIV S2—S2-CXSUM 1 0 CXDIV DZ CXTIMES DZ 
[ 9 ] Z 2 — Z 2 , Z I - 2 0 ZDIV S I ZTIMES 1 0 + 1 0 ZDIV MU 
[ 1 0 ] L2:-^L a s Z — a s P O S — 2 1 P 0 S A S P I S — 2 i P l S A S P 2 S < - 2 I P 2 S 

A-7 



Appendix A. Program Listings 

V M P H A L L E Y [ • ] • 
[0] Z 2 — C M P H A L L E Y Z ; P O S P I S ; P 2 S Z J S ; ZI; PO PI; P2 ;MU,. SI S2 ; DZ P I ; M N ;T DZI 
[1] Z 2 — p i • P O S ^ , C X P O L Y Z O P I S — , 5? (CXDIFF C) C X P O L Y Z 
[2] P 2 S — , ̂ ^(CXDIFF C X D I F F C) C X P O L Y Z • N—一 1+pM—C Z 
[3] Z— 
[4] L : — 0 IF(02:pP0S) 
[5] T ^ Z J S ^ 2 i Z O Z I — 2 T Z O P O — 2 T P 0 S • PI—2TP1S • P 2 — 2 T P 2 S O M I — I T M 
[6] —lil IF(0?tP0) 
[7] — L 2 A S Z 2 — Z 2 , Z I 
[8] L I : — L 3 I F ( 1 = M I ) 
[9] DZ工—（2 ,N) p ( C X M A G ZI C X M I N U S ZJS) , LN 
[10] T<-(CX ZJS) C ； , (1 0)丄（0,MI-1) iDZIC 7A<5DZI]] 
[11] L 3 : S 2 — ( S I Z T I M E S S I — P I ZDIV PO)-P2 ZDIV PO 
[12] S I — S l - C X S U M 1 0 C X D I V D Z — Z I CXMINUS T 
[13] M U — S I Z T I M E S S I Z D I V S 2 — S 2 - C X S U M 1 0 CXDIV DZ C X T I M E S DZ 
[14] Z 2 — Z 2 , Z I - 2 0 Z D I V S I Z T I M E S ((l+MI) , 0) + 1 0 ZDIV M U 
[15] :L2 : Z — Z J S , ZI • P O S —2丄POS • PlS<-2iPlS • P2S—2上P2S • M^-liM 
[16] —L 

V P L A G [ • ] • 
[0] Z 2 — C F L A G Z,.P0S;P1S;P2S;ZJS,.ZI,.P0,-P1,.P2;MU;S1,.S2,.DZ;N,.ZQ 
[1] P O S — C X P O L Y Z O PIS—,<»(CXDIFF C) CXPOLY Z • N ^ ~ l + 0 . 5 x p , C 
[2] ( C X D I F F C X D I F F C) C X P O L Y Z O Z — • Z 2 — p i 
[3] I F C O i p P O S ) 
[4] ZJS<-2iZ A S Z I — 2 T Z A S P O — 2 T P 0 S AS PI—2TP1S A S P 2 ^ 2 T P 2 S 
[5] — L I I F ( O ^ P O ) O Z 2 — Z 2 , Z I • —L2 
[6] LI： S2^-(S1 Z T I M E S S I — P I ZDIV PO) -P2 ZDIV PO 
[7] S I — S l - C X S U M 1 0 C X D I V D Z — Z I CXMINUS ZJS 
[8] M U — S I Z T I M E S S I Z D I V S 2 — S 2 - C X S U M 1 0 CXDIV DZ C X T I M E S DZ 
[9] ZQ—ZSQIIT( (N-1) , 0) Z T I M E S 一 1 0 +(N,0)ZDIV M U • Z Q — Z Q x x C X R E A L ZQ 
[10] Z 2 — Z 2 , Z工 - ( N , 0 ) Z D I V S I Z T I M E S ( 1 0)+ZQ 
[11] L 2 : — L A S Z — Z J S , Z I A S P O S — 2 i P 0 S AS PIS—2iPlS A S P 2 S — 2 i P 2 S 

VPCMR[n]V 
-[0] Z 2 — C P C M R Z;P0S,-P1S;P2S,.ZJS;ZI;P0,-P1;P2,.MU,-S1,.S2,.DZ'.N,.Q 
[1] POS—,<5C C X P O L Y Z • PIS—,<5 (CXDIFF C) CXPOLY Z • N ^ ~ l + 0 . 5 x p , C 
[2] P 2 S — , (CXDIFF C X D I F F C) CXPOLY Z • Z — • Z 2 — p i 
[3] IF(0之pPOS) 
[4] Z J S ^ Z i Z AS ZI — 2 T Z A S P0<-2tP0S AS P1^2TP1S A S 2TP2S 
[5] ”LI IF(05iP0) • Z 2 — Z 2 , Z I • —L2 
[6] L 1 : S 2 — ( S I Z T I M E S S I — P I ZDIV PO)-P2 ZDIV PO 
[7] S l ^ S l - C X S U M 1 0 C X D I V D Z — Z I CXMINUS ZJS 

[8] M U — S I Z T I M E S S I Z D I V S 2 ^ S 2 - G X S U M 1 0 CXDIV DZ C X T I M E S DZ 

[9] Q—(一1 0 + ( N , 0 ) Z D I V M U ) — ( N - 1 ) 
[10] Z 2 — Z 2 , ZI-(N,〇）ZTIMES (一1 0 +Q CXPOWER 1+N) Z D I V SI Z T I M E S Q - 1 0 
[11] L 2 : ^ L A S Z — A S P 0 S ^ 2 i P 0 S AS PIS—2iPlS A S P 2 S - 2 i P 2 S 

• M U L T I [口 ] • 
[01 P ^ G IfULTI Z'.CC7N;M7A,.FPPZ;FPZ,.CXM;FZ;S;MU;T;U;•；W;Q;K 

[1 ] A—一 (2T 一4TCC) ZDIV(_;2TCC) xN AS M—( 0 . , CX 2；) pN—_1丁0 • 5 xpCC—, CX C 
[2] C X M ^ M J 0 O F P Z — ( C X D I F F G)CXPOLY Z • F P P Z ^ ( C X D I F F C X D I F F C ) C X P O L Y Z 
「3] S — F P Z C X D I V l E - 1 4 + F Z ^ G CXPOLY Z AS 
[4] M U — T C X D I V ( T — F P Z C X T I M E S FPZ) CXMINUS FPPZ C X T I M E S FZ AS 'MU = ' 

[5] P—l「Wx(W<M) xW>l 2 x C X I M A G M U AS W<-L 0 . 5 + C X R E A L M U AS • — ' Q X = ' 
[6] P — A D J U S T P P 

V A D J U S T ? [ • ] V -
[0] P — A D J U S T P T；K 
[1] K ^ l O P — T 
[2] Ll:-»L2 IF • K—K十 1 • —0 IF 0 = + / 0 < T — T — 1 • 
[3] L 2 : P ^ N p l 
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A-8 Subroutines for the parallel deflation method by FFT in APL 

V P D E F L A T E [ • ] V 
[ 0 ] C2—C PDEFLATE Z 工NVQ FC 
[1] Q—PURIFY ( , 1 R01x2^N) GXPOWER (N I To . . 5xp , C) J 0 
[ 2 ] INVQ—CXCONJ Q4-N • FC—Q CXMATTIMES (N, 1) CXRESHAPE C O M — 0 . 5 x p , Z 
[ 3 ] MZ<-Q CXMATTIMES (N,M) CXRESHAPE CX( ,<9-Z) , ( (2xM) p 1 0) , ( 2 x M x N - 2 ) pO 
[ 4 ] FR—PURIFY INVQ CXMATTIMES PURIFY FC CXDIV (N , 1) CXRESHAPE CXPRO MZ 
[ 5 ] FR CXDIV " 2 ? , 5jFR<-GXRAVEL( (N-M) , 1) CXRESHAPE FR 

• P U R I F Y [ • ] 7 

[ 0 ] A—PURIFY B 
[ 1 ] A ^ B x ( l E ~ 9 i l B ) 

A-9 Subroutines for the homotopy method in APL 

V H T E S T [ n i V . 
[ 0 ] D—P H T E S T " Z ; E P S ; C 0 U N T ; L ; K ; V ; B ; T ; H ; Q ; T 2 ; S S ; Z 2 ; H 3 ; H 4 ; A 
[ 1 ] EPS—IE一10 • SS—0.1 • M—0.5xp ,Z 
[2] 'Program is Running!！1 I ! 1 i Please Do NOT interrupt..., 
[ 3 ] V—acURSOR O L—0 • • —Z—CX Z O T—0 O Q—ZTOPOLY Z … 
[ 4 ] L 1 : T 2 —ILT工SS • SS—T2-T • H^ (PxT2) + Q x l - T 2 • K—0 • Z2—T EULER Z 
[ 5 ] L2 :K—K+1 • ERR—CXMAG H CXPOLY Z2—CX H PKALLEY Z2 
[ 6 ] L4 :—L2 I F ( E P S ^ E R R ) 
[ 7 ] K , S S O Z—Z2 • T—T2 
[ 8 ] ， L I I F ( T < 1 ) 

V E U L E R C O ] V 

[ 0 ] Z2—T EULER Z 
[ 1 ] Z2^Z+SSXT DZDT Z 

•DZDT[口] • 
[ 0 ] D—T DZDT Z 
[ 1 ] . D—((Q CXPOLY Z) - P CXPOLY Z) CXDIV(CXDIFF ( T x p ) + Q X 1 - T ) CXPOLY Z 

•CXPOLY[口]7 
[ 0 ] P—C CXPOLY CXZ 
[ 1 ] P—一2 卞 C— 
[ 2 ] I F ( 0 2 : p C ^ " 2 i C ) 
[ 3 ] - L AS ？ • - ( ~ 2 T C ) CXPLUS CXZ CXTIMES P 

V C X D I F F [ 0 ] V 
[ 0 ] C2—C:<DIFF C ; N 
[ 1 ] C2<-GX Cx , 5) ( 2 ,N) pLN«-0 . 5xpC<-2 iC^, «)C 
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Fig A.O.a Default coiormap 
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• Appendix B. Color Plates 

Fig A.I.a Solving z八7 — 1 = o by Newton method 

_ 

Real (一 3 . 5 to 3.5) 

Fig A.l.b Solving 2^7 - 1 = 0 by Halley method 
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• Appendix B. Color Plates 

Fig A.1.C Solving 之八7 - 1 = 0 by Laguerre method 

Real (-3.5 to 3.5) 

Fig A.1.d Solving z"? - 1 = 0 by CMR method 
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• Appendix B. Color Plates 

Fig A‘2‘a Solving z - 7 - i = 0by Newton method (Colormap: jet) 
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Fig A.Z.b Solving - 1 - 0 by Halley method (Colormap: hsv) 
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• Appendix B. Color Plates 

Fig A.3.a Magnifying part of Fig A.I.a 

Real (-0.77 to -0.63) 

Fig A.3.b Magnifying part of Fig A.l.b 
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• Appendix B. Color Plates 

Fig A.4.a Magnifying part of Fig A.l.a (Colormap: jet) 

Real (-0.77 to -0.63) 

Fig AAb Magnifying part of Fig A.1.b (Colormap: hsv) 
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• Appendix B. Color Plates 

Fig A.5.a Solving + z'̂ Z - 1 = 0 by Newton method 

Real (-3.5 to 3.5) 

Fig A.5.b Solving + - 1 = 0 by Halley method 
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• Appendix B. Color Plates 

Fig A.5.C Solving 2八7 + - 1 = 0 by Laguerre method 
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Fig A,5.d Solving + z-̂ Z - 1 = 0 by CMR method 
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