
ONE-PASS PROCEDURES OF UNEQUAL PROBABILITY SAMPLING 

by 

Kwok-fai LEE 

� 

<t 

A 

Thesis 

Submitted to 

(Division of Statistics) 

The Graduate School 

of 

The Chinese University of Hong Kong 

In Partial Fulfilment 

of the Requirements for the Degree of 

Master of Philosophy 

(M. Phil.) 

May, 1993 



V
A

 /
f
o

 3
 

从

S

力

！
 

_
 

j
」 



THE CHINESE UNIVERSITY OF HONG KONG 

GRADUATE SCHOOL 

The undesigned certify that we have read a thesis, entitled 

"One-pass procedures of unequal probability sampling" submitted to the 

Graduate School by Lee Kwok-fai ( 李國輝）in partial fulfilment of 

the requirements for the degree of Master of Philosophy in Statistics. 

We recommend that it be accepted. 

fCim -沐‘’-''‘4 i/C/\ 

Dr. K.H. Li, 
Supervisor 

[p^U^— 
Dr. S.Y. Lee ^ 

丨 K ^ ^ ( “ _ _ ^ 

Dr. K.H. Wu 

Dr. S.K. Tse, 
External Examiner 



DECLARATION 

No portion of the work referred to in this thesis has been 

submitted in support of an application for another degree or 

qualification of this or any other university or other institute of 

learning. 



ACKNOWLEDGEMENT 

I would like to express my sincere thanks to my supervisor, 

Dr. Kim-huhg Li, for his encouragement and supervision during the course 

of this research programme. It is also a pleasure to express my 

gratitude to the entire staff of the Department of Statistics for their 

kind assistance. 



ABSTRACT 

Various sampling methods have been proposed for weighted sampling 

without replacement. For the ease of computer implementation, it is 

beneficial if the algorithm can draw the sample in one-pass. In this 

thesis, existing one-pass algorithms will be discussed. A new one-pass 

algorithm, which is an extension of Chao's (1982) algorithm, is 

proposed. The new one-pass algorithm generates weighted sample with 

positive second order inclusion probabilities whenever such a sample 

exists. 

Keywords: Sampling without replacement; Unequal probability 

sampling; Sequential sampling. 
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CHAPTER 1. INTRODUCTION 

§1.1 Unequal probabilities sampling schemes without replacement 

There are lots of works involving sampling from finite population. 

We are not only interested in the methods how the sample units are drawn 

from the population, but also in the inferences that are going to be 

made from the sample to the population. Given a population of N units, 
t 

we are interested in estimating the population totals, means or ratios 

from a sample. The most commonly used sampling procedure to select n 

( N ) units with equal probabilities is the simple random sampling 

method. However, if W^ , i = 1, N are known to each population 

unit and it is believed that W^ is correlated with the interesting 

variable Y^, sampling procedure with equal probabilities may not be 

appropriate. It does not take into account the information available in 

{ W^ }. Thus, it arouses the development of the unequal probabilities 

sampling procedures in which we make use of the auxiliary variable W^. 

For simplicity, we assume that W^ is strictly positive and is a measure 

of the ” importance" of Y^ in the sense that Y^ is approximately 

proportional to W^. We call W^ the weight of Y^. A common example of 

{ W^ } in business survey is the company size. The sampling procedures 

with unequal probabilities mainly consist of two categories. 

Algorithms in the first category draw units with the inclusion 

probabilities proportional to their weights while those in second 

category do not have this requirement. The former is often used in 
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unequal probability sampling survey and the well-known Horivitz-Thompson 

estimator of the population total is commonly used. 

Unequal probabilities sampling procedures offer several advantages. 

Similar to ratio estimation, it efficiently makes use of the 

supplementary information. It also resembles more or less a optimally 

allocated sample drawn from the population stratified by the weights. 

However, it does not need the stratification. Besides, this technique 
A 

is also frequently used in selecting the sampling units in the 

multistage sampling. 

Hansen and Hurwitz (1943) demonstrate that the use of unequal 

selection probabilities frequently can improve the efficiency of our 

estimator of total. It is also well-known that by assigning varying 

probabilities of selection to the population units, it is possible to 

reduce considerably the sampling error of the estimates over those from 

sampling with equal probabilities ( Raj, (1956) ). Although it involves 

mathematical and computational difficulties in the development of the 

theory in unequal probabilities sampling without replacement, a general 

theory was first given by Horvitz and Thompson (1952) and various 

researchers have begun to study on this topic. Hanif and Brewer (1983) 

list fifty unequal probabilities sampling procedures and Chaudhuri and 

Vos (1988) also give a review of the sampling procedures from the finite 

populations with unequal probabilities. 
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§1.2 Estimation Problems In unequal probabilities sampling scheme 

without replacement 

Denote the population size as N and the sample size as n 

(1 < n :s N). Let Y^ be quantity associated with the 产 units and W^ 

( W ^ > 0 ) be the corresponding weight. Besides, denote the 

probability of inclusion of the 产 unit as TT , i = 1, ... , N and the 
i f-

Joint probability of inclusion of the and J^^ units as n^^, i 实 j, 

i,J = 1 N. Horvitz and Thompson (1952) provided an unbiased 

A N 

estimator Y町 to estimate Y = J] Y in the unequal probabilities 
i = i 

sampling without replacement. For weighted sampling with 

probabilities proportional to weight, we have n^ = n W^ / T where 

N 

T = J] W . Let S = { i: Y is in the sample of size n } . The estimator 
1 = 1 

is given by 

A Y 

Y = 1 — ^ . 
HT L 

i€S 71 
i 

The following is a summary of the general estimation theory for 

selection with probabilities proportion to weight without replacement 

( H o r v i t z and Thompson (1952) ). For fixed n, the variance of the 

A A 

unbiased estimator var( Y ), is 
HT HT 
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八 N l _ 7 r N n - n n 

var( Y ) = V Y + Y T Y Y “ ^ J 

HT ^ i 乙乙 i 1 • 
i=i n i, J=i J n n 

i 实J ^ J 

For TCij > 0 , 1 < i J < N, there are two unbiased estimators, v^, 

proposed by Horvitz and Thompson (1952), and v , proposed by Sen (1953) 
A 2 

and Yates and Grundy (1953), for var( Y ), where 
HT 

J-

vf Y Y 71 - 71 71 

V, = E ( 1 - ) + E E — ^ ^ (1.1) 
i€S 71 i,j€s 71 n n 

‘ i勺 ^ J IJ 

and 

2 
1 r Y Y 、 TT 71 - n 

V 广 丄 E E {」 -丄 } (1.2) 
2 I, j€S n n n 

i^j i J iJ 

Both (1.1) and (1.2) can assume negative value, but (1.1) takes a 

negative value more frequently than (1.2). (1.2) has also performed 

much better than (1.1) in a number of empirical comparisons, commencing 

with that in Yates and Grundy's (1953) paper. 

If n is zero for some i 类 j, there is no unbiased variance 
ij ^ 

estimator based on the sample. Thus, in order to have unbiased variance 

estimator, it is necessary to find a procedure which guarantees that all 

second order inclusion probabilities are strictly positive. 
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§1.3 Classification of Unequal probabilities sampling schemes without 

replacement 

Brewer (1983) classifies the sampling procedures in a number of 

ways and most of the procedures select a sample of size two. One of the 

classifications is by the manner of selections. It includes five main 

kinds of procedures. ‘ 

(i) Systematic procedure 

It involves the ordering of the population and the inclusion 

probabilities are cumulated at each selection of a unit. A random 

number r ( 0 < r ：̂  1 ) is chosen and the j selected unit is the unit 

whose cumulated value of TT̂  are the smallest one that is greater than or 

equal to each of r+j-1. 

For example, Madow (1949) proposes an ordered systematic procedure. 

It arranges the population units with any order and obtains the skip 

interval I ( = T / n ), where T is the total weights of the population 

units and n is the sample size. Also, choose a random start 0 ^ s < I. 

The first unit selected is that for which the cumulated weight is the 

smallest one greater than or equal to s. In general, the (k+1 unit 

selected is that for which the cumulated weight is the smallest one 

greater than or equal to s + k I. However, this method may produce a 

sample with replicates. Consider that the (k+1 unit is selected and 

m 1) intervals are skipped. If the cumulated weight which is the 

smallest one greater than or equal to s + (k+m) I is the same, the same 
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unit is selected. 

This kind of procedure is usually simple. However, since the 

population units are ordered, 71。may be zero for some pairs. There are 

difficulties in calculating the Joint probabilities of inclusion for the 

purpose of estimating the variance. 

(ii) Draw-by-draw procedure 
>'-

At each draw, one unit is selected from the population units which 

are not previously selected. Their probabilities of selections are 

re-calculated at each draw so that their total probabilities of 

selection, all over the sample drawn, is proportional to their weights. 

The idea is direct and simple. But, to draw each unit, it is often 

required to re-calculate the working probabilities - the probabilities 

of selection at each successive draw according to the outcomes of the 

previous draws. The working probabilities are often not simple and the 

formula for TT̂  and n^^ become rapidly complicated for sample size 

greater than two. 

(iii) Rejective procedure 

At each draw, one unit is drawn from the population units with 

replacement. If any unit is re-selected, all previously selected sample 

units are abandoned and the process is continued until a sample of size 

n, with no duplicated selections, is obtained. The procedure can make 

use of the properties of the sampling with replacement. Nevertheless, 

similar to draw-by-draw procedure, it requires to calculate the working 
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probabilities, which may not be compact. It also requires much time to 

select a complete sample as partial sample is discarded during the 

sampling procedure. The procedure is tedious if there are a large 

number of the population units. 

(iv) Whole sample procedure 

Unlike previous procedures, a number of whole sample of size n are 

given out. The probability for each of the possible sample is chosen so 

that the probabilities of the selection of each sampling unit in the 

sample are proportional to weight. Therefore, once all the 

probabilities of all possible samples have been calculated, the 

selection procedure is easy. But, it may find difficulties to calculate 

all these probabilities as the sample size increases. 

(V) Others 

It includes the procedures that are not classified as one of the 

above four main methods of selections. 

According to the manner of selections, some procedures can draw a 

complete sample with the data read through only one time and they are 

called the one-pass algorithms. The characteristics of one-pass 

algorithm and existing one-pass algorithms will be discussed in 

Chapter 2. 
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When the Joint inclusion probabilities of all possible combinations 

of units for two procedures are the same, they are said to belong to the 

same equivalence class. Each of the procedures discussed in (i), (ii), 

(iii) and (v) belongs to the same equivalence class with a corresponding 

whole sample procedure. 
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CHAPTER 2. ONE-PASS ALGORITHMS 

§2.1 Characteristics of one-pass algorithms 

Usually, the data are stored in a sequential file. One-pass 

algorithm makes use of the sequential nature of the file. It draws the 

sample with the data are read through only one time. Usually, the input 

and output (I/O) process of the file is time-consuming. If the 

algorithms require to read the file many times, much of the time is 

spent on input and output processing. One-pass algorithm, however, 

saves the I/O time in handling the file. It is also more efficient in 

file management than other non-one-pass algorithms. 

During the sampling procedures， some values are stored up for 

calculation. One-pass algorithm only requires finite storage to retain 

relevant information. The storage required remains the same even if 

there is a large amount of records in the data file. Since the space 

requirement for the sampling algorithm is known in advance , one would 

make a better allocation on the use of storage before processing the 

data. 

One-pass algorithms are usually defined by induction and the 

formulas are written in general form and are less complicated. With 

this characteristic, one-pass algorithms are most suitable to be 

implemented on the computer and they are applicable in our daily-life 

situation. 
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§2.2 Existing one-pass algorithms 

Not all of the procedures can be implemented as one-pass 

algorithms. There are only a few one-pass algorithms. 

§2.2.1 Chap's algorithm 

Chao (1982) proposes a sampling algorithm which selects n items 

from { Y^, ... , Y^ } without replacement and the population size' N 

does not have to be known in advance. Let W , W , ... , W ( > 0 ) be 
1 2 N 

the corresponding weights of the units. The algorithm is constructed 

via induction. Let S = { Y , ... , Y } and a sample of size n is 
K X IC 

selected from S without replacement. Furthermore, let 7r(k； i) be the 
jC 

probability that Y、 i s selected, that is, the first order inclusion 

probability with respect to S^. Then 

k 

E 7r(k; i) = n. (2.1) 
i=i 

If it is required that 

7r(k; i) cx W^ for 1 ^ i ：̂  k, (2.2) 

r n W^ , 

some 71 (k; i) = may be greater than one. In this case, Y 
k i 
y w 
L j 
J=1 

with the largest 7i(k; i) is sampled out with probability one. This unit 

is called self-selective unit. Reconsider (2.1) and (2.2) with both n 

a n d k r e d u c e d b y o n e u n t i l a l l 7r(k; i ) , s a r e less t h a n or e q u a l to o n e . 

Given the triangular array { 7r(k; i); i = 1, ..., k; k ^ n }, the 

following four sequences of sets ( k ^ n ) are defined: 
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Ek = { i： 7r(k; i) = 7i(k+l; i) = 1; i< k }, 

Fk = { i: 7r(k; i) = 1, 7r(k+l; i) < 1 ; i< k }, 

Gk = { i: 7r(k; i) < 1, 7r(k+l； i) < i； i < k }, 

Hk = { k+1 }. 

Let I be the number of units in E u F . The I units in E u F 
* k k k k k 

should be sampled with probability one at stage k. Let U = 
k 

7r(k+l; k+1). For J in F define T = { 1 - 7r(k+l； j) } / U . Let T 
* KJ k k 

= E T . with the convention that T = 0 if F is empty. Also define 
J€F J k k 

k 

f 0 ( j € E ) 
k 

R = - T ( 1 € F ) 
k j k j ^ ^ k ^ 

(1 - T )/(n - I ) ( J € G ) 
Ic Ic Ic 

It is shown that for 1 ：̂  i < k and k ^ n, 

7r(k+l; i) = (1 - U R ) TiCk; i), 7i(k+l; k+1) = U , 
Ic k 1 Ic 

where R is the conditional probability that Y (1 i < k) is removed, 
k 1 i 

given that Y, , is selected. It is also shown that for all m s n and 
k + 1 

all I r s i < . . . < i k, k ^ n, 

1 m 
m 

n(k+l; i . ) = ( 1 - U J： R ) 7i(k; i, i ) 
1 m k ^ k i 1 m 

J=1 J 

and for 1 ：̂  i < ... < i ^ k, 
1 m-l 

m-l 
7r(k+l; i , . . . ,i , k+1) = U ( 1 - Y； R ) 7r(k; i , ... , i ). 

1 m - l k k i 1 m - l 

J = 1 J 

For m=2, we have 7r(k; i. j ) 7r(k; i) 7r(k; j) for 1 ^ i < j. The 

procedure is: 
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(i) Select Y with probability U . 
k + i ^ ^ k 

(ii) If Yk+i is not selected, retain the sample at stage k, which is 

of sample size n. 

(iii) If Yk+i is selected, replace an unit in the sample, say K, by 

Yk+i to form the new sample at stage k+1, which is still of sample size 

n. The unit K is selected as follow. With probability T , select the 
ki 

产 unit from F ; if no unit from F is selected, select one unit at 
K K 

random from those n - remaining units in the sample. 

§2.2.2 Other algorithms 

Richardson (1989) proposes a one-pass weighted-selection procedure. 

For m > n, a sample cannot be drawn from ( Y , ... , Y ) unless 
1 m 

n W / T < 1 for i = 1 m (2.3) 
i m 

i 

where T = J] W . The method first sets up a pool of n units as follow, 
i J = i J 

(i) Read a chosen number, say m, ( m > n ) of units from the list and 

check that (2.3) holds. If it does not, increase m until it does. 

(ii) Using any standard method to draw a sample of size n proportional 

to weights without replacement out of the list in (i). 

After setting up the pool, the (k+1 unit is examined. Evaluate the 

probability n W / T . I f this value is greater than one, the unit 
k + 1 k + 1 

Is put on one side for re-examination until all units in the main list 

has been exhausted. If not, admit the (k+1 产 unit to the pool with the 

evaluated probability and choose one of the current pool unit with 

probability 1/n and delete it when the (k+l)^^ unit is admitted. 
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This method may not work for some combinations of weights. For 

example, assume that a sample of size two is drawn from four population 

units with weights 1, 2, 3 and 4. The condition (2.1) is satisfied 

when m = 4. However, it provides no method how the initial pool of 

sample size n is set. Besides, as some units are put on one side for 

re-examinations, the storage requirement is not known in advance. 

Schultz (1990) proposes an ordered random selection ^ with 

probabilities proportional to weight without replacement. It assumes 

that W^ T^ / n, where T^ is the total weights of N population units 

and n is the sample size. Then 

(i) Set i = 0 

(ii) Set i = i+1 and generate z, a uniform random variate on (0,1). 

(iii) If z :s n W / T , select unit i. Return to step (ii). 
i N 

Each unit is selected with inclusion probability proportional to its 

weight and the expected sample size is n. Besides this method, Schultz 

also proposes a modified one-pass method such that a sample proportional 

to weight is drawn out with an exact sample size n with a very high 

probability. Schultz finds that the probability of not reaching a 

sample of size n depends on the ordering, and differences in weights of 

successive population units, but, it can be expected to be low. Again, 

the total of all weights in the population, T , should be known in 
N 

advance. 

Li (1992) introduces a computer implementation of the Yates-Grundy 

draw-by-draw procedure. It is a sequential method that the total weight 

is not known in advance and the sample, of which the inclusion 
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probabilities are not proportional to weights, can be drawn in one-pass. 

When the sample size n is large and n/N is small, it is shown that Li's 

algorithm is superior to the original Yates-Grundy algorithm in 

comparing the efficiency of the algorithms. 

§2.3 Second order Inclusion probabilities . 

Bethlehem and Schuerhoff (1984) provides the following necessary 

and sufficient conditions for the strictly positive second inclusion 

probabilities of the sample drawn by Chao,s algorithm. 

Theorem 2.1 ( Bethlehem and Schuerhoff (1984)) 

For Chao's algorithm, all the second order inclusion probabilities are 

strictly positive if, and only if at each stage k ( n < k ：̂  N ), the 

sample contain at most n-2 self-selective units. 

Chao's method does not always guarantee that all the second order 

inclusion probabilities are positive. Here is an example. 

Example: 

Suppose the population consists of four units, Y , Y , Y and Y , with 
1 2 3 4 

weights W^ = 8, W^ = 5, W^ = 2 and W^ = 2. A sample of size two is 
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n W 
selected. Since TT = _ ’ we have TT = 花= 

I N 1 ) , 
E w, 17 2 17 

J=i 

双3 = and TT = It can be verified that sample with the 
. 1 7 ^ 17 

following second order inclusion probabilities exists. 

TT - 28 10 10 1 1 

1 2 一 , O » 盯 1 汽 = .TT̂  ̂  = , n = —~~ > and 
1’2 51 1,3 51 1’4 51 2,3 2,4 ^^ 

1 
TT = . 
3’4 51 

All the second order inclusion probabilities are strictly positive. 

Nevertheless, it is impossible to use Chao, s method to draw a sample 

with positive second order inclusion probabilities. Consider the first 

16 

three units. 71(3; 1) = > 1 and thus Y is self-selective unit. 

15 1 

Thus, unit 2 and unit 3 cannot be included in the sample simultaneously. 

Based on Chao's algorithm, no sample with positive second order 

inclusion probabilities is drawn out. There is also no unbiased 

variance estimation. 

We have examined the characteristics of one-pass algorithms and 

some existing algorithms. Clearly, one-pass algorithm is useful when it 

handles a sequential file and is implemented on the computer. Though 

not many of the existing procedures have computer one-pass 

implementation, there are still much rooms for development. Besides, 

the algorithm proposed by Chao has certain advantages. If the existing 
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algorithm can be extended such that it can handle the problem of the 

strictly positive second order inclusion probabilities, it will be more 

helpful in estimating the variance. In this thesis, we propose an 

algorithm such that the problem of strictly positive second order 

inclusion probabilities can be handled. 
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CHAPTER 3. A NEW ONE-PASS ALGORITHM 

§3.1 Introduction 

For simplicity, we use the term "weighted sample" to stand for 

weighted sample without replacement and with inclusion probability 

proportional to weight. Suppose the population is stored in a 

sequential file. There are totally N records from which a weighted 

sample of size n (1 < n N) is selected. Let R^ be the 产 record 

and W^ be its corresponding weight. Each W^ will be divided into two 

parts, Wi⑴ and� ⑵ so that W^ = W!⑴ + W ! ⑵ ， ⑴ > 0 and > 0. 

We will create two sets. As the contents of the sets change as we pass 

through the file, we denote them as S and S , where S = 
l,k 2,k l,k 

{(R , W⑴）： i € L } and S = {(R , W ⑵ ) : i e L } where L £ 
i i k 2,k i i k k 

{1, . . . ,k}, 1 f k ^ N. We refer k as the stage number. Denote the 

maximum weights in each of these two sets as M(j)= max { i € L }, 
k 1 k 

J = 1,2 and the corresponding maximum weight in the set L^ as M^ = 

max {W : i € L >. Also, denote the total weight in each of these two 
i k 

sets as T(” = Y W(”’ i = 1,2, and the total weights in these two 
k ^ 1 

1€L 
k 

sets as T = T⑴ + 丁⑵. 
k k k 

To make the algorithm to be one-pass, both S and S are not 
1 , IC iif K 

needed to be actually stored. Chao,s algorithm is applied to S^ ^ and 

S separately and thus after each stage only a sample of size n from 
2, k 

S and another sample of size n from S^ , are stored. We require 
l,k 2’k 

S to be such that a weighted sample of size n with weights {W。)} and 
1,N 1 
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with strictly positive second order inclusion probability can be drawn 

from S I N. ^^ addition, a weighted sample of size n from S with 
‘ 2 ̂  N 

(2) 

weights {W^ } exists. To achieve these goals, some criteria are 

required to form S , s and S ‘ s. Sometimes a record with ‘ large' 

丄,K ^ y JC 
weight is read in and its weight cannot be divided into two parts 
without violating the above requirement on S ’ s and S ,s. The 

l,k 2,k 

record will be stored in a new set S = { R ： 1 < i < k and i L }. 
3, k i k 

Let J be the size of S In the algorithm，for all R € S , W = 
k 3,k J 3,k' J 

V s max {W }. At each stage k, we are interested in keeping the 
1 到:Sk i 

least total weights that have to be read in order to ensure that the 

sample exists. We define C = n M - T and C* = n V - T . It 
k k k k k k 

follows that C = C + n (V - M )之 C . Clearly, when J = 0, we have 
k k k k k k 
« 

V = M and C = C . If C ：̂  0, the weighted sample drawn from the 
K jv K K ii 

population exists. With the similar argument for S and S , we 
!•, k 2，Ic 

define A = n M ⑴ - T ⑴ and B = n M ⑵ - T ⑵ . 
k k k k k k 

Therefore, at the end of stage k, the 产 record ( i ^ k ) will 

either have its weight divided into two parts “丄⑴ and� ⑵ and 

( R， W⑴） a n d (R , W ⑵ ） b e included in S and S respectively or 
1 1 1 i 1,1c 2 , k 

have R added to S . The requirements to be fulfilled at the end of 

i 3,k 1 

the stage k , where L^ contains at least n+1 elements, are listed as 

follows. There are only two possible cases at the end of stage k. 
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CASE I. 

11. J = 0. 
k 

12. M = M�⑴ + M ⑵ . 
k k k 

13. A, < (n-2) M⑴ . 
k k 

14. Suppose (a-1) M C < a M , for an integer a. 
k Ic Ic 

If Ck - 0, 
J, 

then (a-1) M⑴ < A < a M⑴， 
k k k ‘ 

(a-1) M⑵：^ B < a M(2). 
k k k 

else ( i.e. C < 0 ) 
k 

A, < 0, B < 0 . 
k k 

15. Further, if (a-1) M < C < a M and C > 0 , we additionally 
k k k k 

require (a-1) M⑴ < A . 
k k 

CASE II. 

111. 0 < J < n. 
k 

112. M = M ⑴ + M ⑵ . 
k k k 

113. A < (n-2) M⑴ . 
k k 

114. (n-1) V ：̂  C* < n V . 
k k k 

115. (n-1) M ⑵ - ( V - M ) :s B < n M⑵ . 
k k k k k 

116. (n-1) M�⑴ - ( V - M ) < A < n M⑴ . 
k k k k k 

117. For all J € S , W = V . 
^ 3,k , J k 

- 1 9 -



§3.2 Examination of all possible cases 

Suppose the above requirements are satisfied at the end of stage k, 

where the size of L is at least n+1. When W is read in, we have the 
* k+1 

following fifteen possible cases. We will show that for each case there 

is a way to ensure that the above requirements remain to be satisfied 

at the end of stage k+1. 
•J 

CASE 1 : J = 0, C < W < M . 
k k k+1 k 

CASE 2 : Jk = 0, (a-1) M^ + W^^^ (：让 < a M^^, for a positive 

integer a. 

CASE 3 = = W ：£ M . a M, C < a M + W , for a positive 
k k+1 k k k k k+1 ^ 

integer a. 

CASE 4 : J = 0, M < W < T / (n-1). 
k k k+1 k 

CASE 5 : J = 0, M^ < T / (n-a) W < T / (n-a-1), for a 
k k k k+1 k 

positive integer a s n-2. 

CASE 6 ： J = 0, T / (n-a) ：£ M < W < T / (n-a-1), for a 
k k k k+1 k 

positive integer a ^ n-2. 

CASE 7 : J = 0 , W > M , W 2 : T . 
k k+1 k k+1 k 

CASE 8 : 0 < J < n-1, W = V . 
k k+1 k 

CASE 9 : J = n-1, W = V . 
k k+1 k 

CASE 10 : 0 < J n-1, W ^ M , W :s V - T . 

k k+1 k k+1 k k 
CASE 11 : 0 < J : s n - l , v - T < W ：̂  M . 

k k k k+1 k 

CASE 12 : 0 < J ^ n-1, M < W ^ V - T . 

k k k+1 k k 
CASE 13 : 0 < J ^ n-l, M, < W, . V - T < W^ < 

k k k+1 k k k+1 k 
CASE 14 : 0 < J ^ n-1, M < V < W, . W, ^ 2： T + J^ V 

k k k k+1 k+1 k k k 
CASE 15 : 0 < J ^ n-1. M^ < V^ < W < T + J V 

k k k k+1 k k k 
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Let us examine each case. 

CASE 1 : J = 0, C < W M . 
k k k-t-1 k 

Choose W⑴ such that 
k+l 

max ( Ak + , � , W ^ ^  ̂ - ) - . min ( W^^^ - B^ - , M^)’ 

where j 

0 < V min ( (Wk+i - Ck)/2, M : ) - A^, W^^^ " A^ ), 

0 < \ < min ( Wk+i , (W^^^ 一 B^)/2 ) 

and 

0 < 5 < min ( (W _ C j / 2’ M:?) _ b . (W - B )/2 ). 
3 K+l k k k k+l k 

To prove that , � a n d exist, we show that each component in the 

right hand side is strictly greater than zero. 

(1) (W - C )/2 > 0 
k+l k 

(2) M ⑴ - A > 0 
k k 

(3) W, - A, > 0 because if C < 0 , then A < 0 and hence, W - A 
k+l k k k k+l k 

> 0; and if C 2： 0, then A 2： 0 and B 2： 0, and thus W - A > 
k k k k+l k 

C 一� A = B 0. 
k k k 

(4) M⑴ > 0 
k 

(5) W > 0 
k+l 

(6) (W - B ) / 2 > 0 because if C < 0 , then B < 0 and hence, 
k+l k k k 

W - B > 0; and if C ^ 0, then A ^ 0 and B 2： 0, and thus 
k+l k k k k 

W - B > C - B = A ^ O . 
k+l k k k k 

(7) M ⑵ - B > 0 
k k 
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Now we show the existence of W二 . Again we need only to prove 

that each component in the right hand side of (3.1) is larger than or 

equal to each component in the left hand side. 

⑴ Wk+i - B r� � - （ A k + = Wk+i - Ck - (S^ + V > 0 

⑵ V - Bk - V 占2 > 0 

(4) M ⑴ - ( A + 6 ) > 0 
k k 1 

(5) M ⑴ - 5 > 0 
k 2 

(6) M , ⑴ - ( W - M ⑵ ） = M - W > 0 
k k+1 k k k+1 

(7) W - (A + 6 ) > 0 
k+1 k 1 

(8) W - 6 > 0 
k+1 2 

(9) W, - ( W — M⑵） = M⑵ > 0 
k+1 k+1 k k 

Set S = S^ u {(R , , )}, S = S u {(R , W ⑵ ” 
l,k k+1 k+1 2,k+1 2,k k+1 ‘ k+1 

where W:?) = w - and S ” ， = 0. It can be easily proved that 

k+1 k+1 k+1 3,k+1 r 

conditions II - 15 hold at the end of stage k+1. 

CASE 2 : J = 0, (a-1) M + W ：̂  C < a M , for a positive 
k k k+1 k k 

integer a. 

It implies that M > W , (a-1) M < C < a M and (a-1) M C - W 
^ k k+1， k k k k k k+1 

< a M . Since (a-1) M < C < cc M , we have (a-1) M⑴ < A < a M⑴， 
k k k k k k k ‘ 

and (a-1) M ⑵ B < a M⑵ . Also, A < (n-2) M⑴ . Choose W⑴ such 
k k k k k k+1 

that 
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max ( - B + (a-1) ) ^ W二 s min ( A^ - (a-1) M ⑴ - 5 ’ 
± K+i k k 2 

Wk+i) (3.2) 

w h e r e 

0 < 5 < min ( (A’ - (a-1) M⑴）/2 , W ) 
1 k k k+1 

and 

0 3 min ( (A - (a-1) M,⑴）/2 , C - W _ (a-1) M ), 
t k k k k+1 k 

S can be zero only when (a-1) M = C - W . 丄 
2 k k k+1 

Each component in the right hand side of 5 and 5 is strictly positive 
1 2 

except Ck 一 Wk+i - (a-1) M^ may be zero. We then check the 

non-emptiness of the interval in (3.2). 

(1) \ - (a-1) M ⑴ - 5 - ( W - B + (a-1) M⑵） 
k k 2 k+1 k k 

= C - (a-1) M - W -5 
k k k+1 2 

2： 0 

(2) A - (a-1) M ⑴ - 6 - 5 > 0 
k k 2 1 

(3) W^ - ( W, - B, + (a-1) M ⑵ ) = B - (a-1) M⑵ > 0 

k+1 k+1 k k k k 
(4) W - 5 > 0. 

k+1 1 

Set S , … = S , u {(R , W⑴）}’ S = S u {(R , W⑵）} 
l,k+l l,k k+1 k+1 2,k+1 2,k k+1 ， k+1 

W h e r e W�⑵ = W - W ⑴ ， a n d S = 0. Thus, C = C - W . 
k+1 k+1 k+1 3,k+1 k+1 k k+1 

Conditions II - 15 hold at the end of stage k+1 as 

A 一 (a-1) M(i) = A - W(i) - (a-1) M(i) > d ^ 0, 
k+1 k k k+1 k 2 

B - (a-1) M ⑵ = B - W + W ⑴ - ( a - 1 ) M⑵ > 0, 
k+1 k k k+1 k+1 k 
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k k+1 k k+1 k+1 

“ _ + - BK + ( - 1 ) 

> 0 

and 

CASE 3 : Jk = 0, Wk+i s a Mk Ck < a Mk + for a positive 

integer a. 

It implies that W ^ M . a M, < C < (oc+1) M and (a-1) M < 

K+1 k k k k Ic 

C. - W < a M • Since a M^ :s C < (oc+1) M ’ we have a M⑴ < A < 

* K+1 K k k k k k 
(oc+l) M^i) and a hlf) ：£ B < (a+1) M,⑵. Also, A < (n-2) M⑴ . 

K k k k k k 
Choose W�⑴ such that 

k+1 

max ( A - a M�⑴ + 5 , 5 , W - M�⑵ ) < W�⑴ < 
k k 1 2 ' k+1 k k+1 

min ( Wk+i - B^ + a 一�� ， m ^ D ) (3.3) 

where 

0 < 5 < min ( (a M - C + W )/2, (a+1) M ⑴ - A ), 
1 k k k+1 k k 

0 < 5 < min ( (W - B + <x M⑵）/2, M ⑴ ） 
2 k+1 k k ' k 

and 

0 < 6 < min ( (W - B + a M⑵）/2’ (a+1) M⑵ - B ， 
3 k+1 k k k k 

(a M - C + W )/2 ), 
k k k+1 

It is easy to show that each component in the right hand side of 6 , 5 
1 2 

and is strictly positive. We then check the existence of W二 in 

(3.3). 
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⑴� _ Bk + « 一〜一（Ak - oc M ^ + 

= W - C + a M - (5 + 5 ) 
k+l k k 1 3 

> 0 

(2) W, - B + a M ⑵ - 6 - 5 > 0 
k+l k k 3 2 

(3) Wk+i - Bk + « M 。 - 63 - (Wk+i - = ( a n ) M ? " B^ - > 0 

(4) - (A - a M,⑴ + 5 ) = (a+1) M ⑴ - A - 5 > 0 
k k k 1 k k 1 

(5) M ⑴ - 5 > 0 ^ 

k 2 
(6) M ⑴ - ( W - M ⑵ ） > 0 

k k+l k 

Set S, , = S u {(R ’ W ⑴ S = S w {(R , W⑵）} 
l,k+l l,k k+l ’ k + l " , 2,k+l 2,k u k+l , k + l " 

where W ? ) = w … - W,⑴，and S = 0 . Thus, C = C - W . 
k+l k+l k+l 3,k+l k+l k k+l 

Conditions II 一 14 hold at the end of stage k+l as 

a M ⑴ - A = a M ⑴ - A + W⑴ 2： 6 > 0, 
k k+l k k k+l 1 

a M ⑵ - B = a M ⑵ - B + W - W⑴ > 5 > 0, 
k k+l k k k+l k+l 3 

M ⑴ - W ⑴ ^ 0’ 
k k+l 

w(2) 口 （ 2 ) ^(2) ,, 1 „(1)�、 ̂  
M - W = M - W + W ^ 0 
k k+l k k+l k+l 

and 

V/(2) = w - V/(1) 2： B - a M(2) + 5 > 8 > 0 . 
k+l k+l k+l k k 3 3 

If, in addition t o a M < C < a M + W , it implies that a M < C < 
k k k k+l k k 

(a+1) M and (a-1) M < C - W < a M . Since a M, < C < (a+1) M, ’ 
k k k k+l k k k k 

we additionally have a < A^. The previous choice of W二 can 

still guarantee that the condition 15 is satisfied because 

A - (a-1) M ⑴ = A - W⑴ - (a-1) M⑴ 2：�A - M,⑴—(a-1) M:” > 0. 
k+l k k k+l k k k k 
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CASE 4 ： J = 0, M < W < T / (n-1). 
k k k+l k 

As W < T / (n-1), we have W < (n M - C ) / (n-1). Since M < 
"•Ti K k+l k k Ic 

Wjc+I, it follows that C < M^. We have A < M⑴， B < M⑵ and A < 
K” Ic k k k k k k 

(n-2) M ,⑴ . C h o o s e W⑴ such that 
k k+l 

max ( W - (n M , ⑵ - B )/(n-l) + 3 , M ⑴ ) < W⑴ < 
k+l k k 1 k k+l 

min ( (n M:” - A, )/(n-l) - 5 , n M ⑴ - A - 5 , W - M⑵） 
k k 2 k k 3 ' k+l k 

(3.4) 

where 

0 < 5 < min ( ((n M - C )/(n-l) - W )/ 2’ 
1 k k k+l 

( ( n - A ) + (n M , ⑵ - B )/(n-l) - W ) / 2, 
k k k k k+l 

(M二2) - B, )/(n~l)), 
k k 

0 < 5 < min ( ((n M, - C )/(n-l) - W )/ 2, ( M ⑴ - A )/(n-l)) 
2 k k k+l k k 

and 

0 < < min ( ((n M ⑴ - A ) + (n M⑵ - B )/(n-l) - W ) / 2, 
3. k k k k k+l 

(n-1) M ⑴ - A ). 
k k 

To prove that 5 , 5 and 5 exist, we show that each component in the 
1 2 3 

right hand side is strictly greater than zero. 

(1) ((n M - C )/(n-l) - W )/ 2 > 0 
k k k+l 

(2) ( (n M ⑴ - A ) + (n M⑵ - B )/(n-l) - W ) / 2 
k k k k k+l 

> ( ( n M 一 C )/(n-l) 一 W )/2 
k k k+l 

> 0 

(3) ( M ⑵ - B )/(n-l) > 0 
k k 

(4) ( M ⑴ - A )/(n-l) > 0 
k k 

(5) (n-1) M ,⑴ - A ^ > 0 

k k 
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To show the existence of such a W二 ’ we check the non-emptiness 

of the interval in (3.4). 

(1) (n M 广 - A J / ( n - l ) - $ - - (n M ⑵ - B )/(n-l) + 5 ) > 0 
^ * 2 k+1 k k 1 

(2) (n - A )/(n-l) - 5 - M ⑴ = ( M ⑴ - A )/(n-l) - 5 > 0 
* K 2 k k k 2 

(3) n M ^ ) - A 厂 5。- (W，，- (n M�⑵ - B )/(n-l) + 5 ) > 0 
k k 3 k+1 k k 1 

(4) n M , ⑴ - A - 5 - M ⑴ = ( n - 1 ) M ⑴ - A - 5 > 0 . 
k k 3 k k k 3 

(5) W^ , - M ,⑵ - ( W -（n M ⑵ - B )/(n-l) + 5 ) 
k+1 k k+1 k k 1 

= ( M ⑵ - B )/(n-l) - 5 
k k 1 

> 0 

(6) W - M ⑵ - M ⑴ > 0 
k+1 k k 

Set S , … = S u {(R ’ W⑴）}, S = S u {(R , W⑵）} 
l,k+l l,k k+1 k+1 2,k+1 2,k k+1 ‘ k+1 

where W ⑵ = W — W⑴， a n d S = 0 . Thus, C = (n-1) W -
k+1 k+1 k+1 3,k+1 k+1 k+1 

(n M - C ). Conditions II 一 15 hold at the end of stage k+1. That is 
k k 

A < 0 , 
k+1 

B < 0 , 
k+1 

A < (n-2) W⑴�
k+1 k+1 

and 

M ⑴ < W ⑴ W 一 M⑵. 
k k+1 k+1 k 

where 

A 二 (n-1) W ⑴ - ( n M ⑴ - A ), 
k+1 k+1 k k 

B = (n-1) W ⑵ - ( n M ⑵ - B ). 
k+1 k+1 k k 
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CASE 5 ： Jk = 0’�� < Tk / (n-a) ^ W^^^ < T^ / (n-a-1), for a 

positive integer a ^ n-2. 

It implies that M < W C < a M and (a-1) W < (n-1) W - T < 
K k+1 k k k+1 k+1 k 

a for a positive integer a ：< n-2. Since C < a M ’ we have 
K ” k k 

\ < a and B^ < a M:?) • Also, A^ < (n-2) M:”. Choose W二 such 

that 

max ( (n M:!)- A )/(n-a) , W^ - (n M⑵ - B )/(n-a-n + 5 ) 

* * 1 K+1 k k 2 

w二 ^ min ( (n M ⑴ - A )/(n-a-1) — 6 , 
k+1 k k 3 

V i - (n - BJ/(n-a) ) (3.5) 

where 

0 =s min ( (n M ⑴ - A )/2 (n-a) (n-a-1), 
1 k k 

W - (n M^ - C )/(n-a)), 
k+1 k k 

0 < < min ( ((n M - C )/(n-a-l) - W )/2 , 
2 k k k+1 

(n M ⑵ - B )/(n-a) (n-a-1)) 
k k 

and 

0 < 5 < min ( ((n M - C )/(n-a-1) - W )/2 , 
3 k k k+1 

(n M ⑴ - A )/2(n-a) (n-a-1)). 
k k 

S can be zero only when (a-1) W = (n-1) W 一 T . 
1 】 k+1 k+1 k 

Each component in the right hand side of 5 , 5 and 5 is strictly 
1 2 3 

positive because 

(1) (n M ⑴ - A )/2(n-a) (n-a-1) > 0 
k k 

(2) W - (n M - C )/(n-a) 2： 0 as 
k+1 k k 

(n-1) W - T 2： (a-1) W , 
k+1 k k+1 

(n-1) W - (n M, - C ) ^ (a-1) W^ , , 
k+1 k k k+1 
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(n-a)W s： n M - C , 
k+1 k k 

W…2： (n M, - C )/(n-a) • 
k+1 k k 

(3) ((n M, 一 C )/(n-a-1) - W )/2 > 0 as 
k k k+1 

(n-1) W, - T < a W , 
k+1 k k+1 

(n-1) W, - (n M - C ) < a W , 
k+1 k k k+1 

(n-a-1 )W < n M 一 C , 
k+1 k k 

W^ < (n M, -C )/(n-a-1). 
k+1 k k 

(4) (n M , ⑵ - B )/(n-a) (n-a-1) > 0. 
k k 

To show the existence of W二 ’ we check the interval in (3.5) is 

not empty. 

(1) (n - A )/(n-a-1) - 5 - ( (n M⑴ - A )/(n-a) + 5 ) 
Ic Ic 3 k k 1 

= ( n M⑴ - A )/(n-a) (n-a-1) - ( 3 + 6 ) 
k k 1 3 

> 0 

(2) (n M , ⑴ - A )/(n-a-l) - 5 - (W -（n M ⑵ - B )/(n-a-l) + 5 ) 
k k 3 k+1 k k 2 

= ( n M - C )/(n-a-l) - W - (5 + 5 ) 
k k k+1 2 3 

> 0 

(3) W - (n M⑵ - B )/(n-a) - ( (n M⑴ - A )/(n-a) + 5 ) 
k+1 k k k k 1 

= W - (n M - C )/(n-a) 一 8 
k+1 k k 1 

^ 0 

(4) W - (n M ⑵ - B )/(n-a) - (W -（n M ⑵ - B )/(n_a-l) + 6 ) 
k+1 k k k+1 k k 2 

= ( n M ⑵ — B )/(n-a) (n-a-1) — 5 
k k 2 

> 0 . 
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set S 二 = u “Rk+i ’ S2’k+i = \ k - “Rk+i ’ W 二)> 

where W二 = W^^^ - W二， a n d = 0. Thus, C^^^ = (n-1) W^^^ - T^. 

Conditions II 一 15 hold at the end of stage k+1 as 

一 («-” W二 = (n-1) W二 - (n - Ak) _ (a-1) W二 

= ( n - a ) W , ⑴ - ( n M⑴ - A ) 
k+1 k k 

(n-a) 

^ 0 , 

a <：： - = « C - (n-1) W二 + (n M ^ - A^) 

= ( n M ⑴ - A ) - (n-a-1) W⑴�
k k k+1 

5： (n-a-1) 5 
3 

> 0, 
B - (a-1) = (n-i) _ ^(2) _ g ^ _ w⑵�
k+1 k+1 k+1 k k k+1 

= ( n - a ) W - (n-a) W ⑴ — ( n M ⑵ - B ) 
k+1 k+1 k k 

0 

and 

a - B, = (n M ⑵ - B ) - (n-a-1) W + (n-a-1) W⑴�
k+1 k+1 k k k+1 k+1 

2： (n-a-1) 6 
2 

> 0. 

CASE 6 : J = 0, T / (n-a) ：£ M < W < T / (n-a-1), for a 
k k k k+1 k 

positive integer a s n-2. 

It implies that M < W , a M C < (a+1) M, and (a-1) W , , < 
^ k k+1 k k k k+1 

(n-1) W - T < a W • Since a M ：̂  C < (a+1) M , we have a M⑴ : s 
k+1 k k+1 k k k k 
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\ < and a M:?) < < (a+1) Also k、 < (n-2) M(i). 

Choose such that 
k+1 

max ( (n M _ A )/(n-a) + 5 . W^ - (n M,⑵ - B )/(n-a-l) + 5 ’ M ⑴ ) 

K K 1 k+1 k k 2 k 

《 卜 m i n ( (n M:” - A ^ ) / ( n - a - l ) - � ’ ^ + 厂 ！ ^ : ' ) ) (3.6) 

where 

0 < 5 < min ( (n M ⑴ - A )/2 (n-a) (n-a-1), 
1 k k 

Wk+i - - (n - Ak)/(n-a)), . ‘ 

0 < < min ( ((n M - C )/(n-a-l) - W )/2, 
2 k k k+1 

((a+1) M ⑵ - B )/(n-a-l)) 
k k 

and 

0 < < min ( ((n M - C )/(n-a-l) 一 W )/2, 
3 k k k+1 

((a+1) M ⑴ - A )/(n-a-l), 
k k 

(n M ⑴ - A )/ 2(n-a)(n-a-l)). 
k k 

Each component in the right hand side of 5 , 5 and 5 is strictly 
1 2 3 

positive. We then check that the interval in (3,6) is not empty. 

(1) (n M ⑴ - A )/(n-a-l) -8 - ( (n M - A )/(n-a) + 5 ) > 0 
k k 3 k k 1 

(2) (n M ⑴ - A )/(n-a-l) - 5 - (W - (n M ⑵ - B )/(n-a-1) + 5 ) 
k k 3 k+1 k k 2 

= ( n M - C )/(n-a-l) - W - (5 + 5 ) 
k k k+1 2 3 

> 0 

(3) (n M ⑴ - A )/(n-oc-1) - 5 - M⑴�
k k 3 k 

= ( ( a + 1 ) M ⑴ - A )/(n-a-l) — 5 
k k 3 

> 0 

(4) W 一 M ⑵ - ( ( n M - A )/(n-a) + 5 ) > 0 
k+1 k k k 1 
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(5) Wk+i _ _ (Wk+i - (n - Bj/(n-a-l) + 〜） 

= ( ( a + 1 ) M ? ) - B )/(n-a-1) - 5 
k k 2 

> 0 

(6) W 一 M⑵ - M⑴ > 0 
k+1 k k 

Set S = S KJ {(R W⑴） } S = q .. / fR u ⑵ ” 

(2) (1 ) 

where W^^^ = W^^^ " and = 0. Thus, C^^^ = (n-1) W^^^ _ T^. 

Conditions 1 1 - 1 5 hold at the end of stage k+1 as 

« C _ V i = a w二 - ( (n-1) W::; _ (n - A ^ ) ) 

= n M�⑴ - A - (n-a-1) W�⑴�
k k k+1 

(n-a-1) 6 
3 

> 0 

a W二 - B " = n M,⑵ ~ B - (n-a-1) W + (n-a-1) W⑴�
k+1 k+1 k k k+1 k+1 

^ (n-a-1) 5 
2 

> 0 

A - (a-1) W ⑴ = ( n - 1 ) W ⑴ - ( n M ⑴ - A ) - (a-1) W⑴�
k+1 k+1 k+1 k k k+1 

= ( n - a ) W�⑴ 一 ( n M�⑴ — A ) 
k+1 k k 

2： (n-a) 

> 0. 

CASE 7 : J = 0, W > M , W 2： T . 
k k+1 k k+1 k 

Set S = S , S = S and S = { R }. Also, J = 1 . 
l,k+l l,k 2, k+1 2,k 3,k+1 k+1 k+1 

Clearly, T = T . Thus, V = W, . Since 
】' k+1 k k+1 k+1 
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0 < T < W , 
k k+l’ 

O C T ^ W , 
k+l k+l' 

n W , > n W - T > (n-1) W , 
k+l k+l k+l ^ k+l' 

(n-1) \ ， ^ C* < n V ’ 
k+l k+l k+l 

Obviously, A = A < n M 广 = n , B^ ^ < n M⑵ and A 
k+l k k k+l k+l k+l k+l 

= A < (n-2) M ^ ) = (n-2) Since W, 2： T , we have W - M ^ 
* k k+l k+l k k+l k 

(n-1) M - C . 
k k 

Consider 

A - (n-1) M ⑴ + ( V - M ) 
k+l k+l k+l k+l 

= A - (n-1) M (” + ( W - M ) 
k k k+l k 

^ A - (n-1) M ⑴ + (n-1) M - C 
k k k k 

= ( n - 1 ) M(2)_ B 
k k 

> 0 as B = n M广 - T ? ) = (n-1) M⑵ + ( M(2) - T ⑵ ) < (n-1) M⑵ . 
k k k k k k k 

Hence, A > (n-1) - ( V … - M, , ). Similarly, B 乏(n-1) M ⑵�
k+l k+l k+l k+l k+l k+l 

- ( V - M, ^ ). Thus, all conditions III 一 117 are satisfied, 
k+l k+l 

CASE 8 : 0 < J < n-1, W = V . 
k k+l k 

We simply set S = S , S = S and S = S u { R }. 
^ 7 l,k+l l,k 2,k+l 2,k 3,k+l 3,k k+l 

CASE 9 : J = n-1, W = V . 
k k+l k 

« (1) 
From (114), (116) and (115), we have (n-1) V C < n V , (n-1) M, -

k k k k 
(V - M ) < A < n M�⑴ and (n-1) M�⑵ - ( V - M ) : s B < n M ,⑵ . A l s o , 

k k k k k k k k k 

A < (n-2) M ⑴ . C h o o s e L such that 
k k 

M⑴ < L ^ V - M⑵ (3.7) 
k k k 
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Obviously, such a L in (3.7) exists. Set W ^ ) = L for J =k+l or R € 

Update = Si’k { ( R , W；”）： J = k+1 or R^ e S^^^}, 

= S u “Rj, ： w - and J = k+1 or R , 它� S } 
, J J J J J J 3,1c 

and Sg.k+i = 0. It can be proved that the conditions II - 15 hold at 

the end of stage k+1. That is, 

A < 0 , 
k+1 ‘ 

B < 0 , 
k+1 ‘ 

A, , < (n-2) W ⑴ ， 
k+1 k+1, 

M ⑴ W ⑴ ^ V - M⑵ . 
k k+1 k k 

It is because A = n W丄）- 丁 二 ） = n L _ (n L + T ⑴ ） = - T ⑴ < 0 
K+1 K+1 k+1 k ic 

and hence A < (n-2) W二) ； B“i = n W二 - = ^ w ⑵ - ( n W ⑵ + 
k+1 k+1 k+1 k+1 k+1 k+1 k + 1 

T ⑵ ） = - T ⑵ < 0 . 
k k 

CASE 10 : 0 < J ：£ n-1, W ：̂  M , W < V - T . 
k k+1 k’ k+1 k k 

From (114), W…：s M, and ：< V - T ’ it implies (n-1) V C* 

k+1 k k+1 k k ^ k k 
- W b 1 < n From (116) and (115), (n-1) M ⑴ - ( V - M ) < A < 

k+1 k k k k k 

n M:i)and (n-1) - (y - M ) B < n M ⑵ . A l s o , A < (n-2) M"). 
k k k k k k k k 

Choose W⑴ such that 
k+1 

max ( W - B + (n-1) M ⑵ - ( V - M ) , 5 , W - M ⑵ ） 
k+1 k k k k ’ 1 ’ k+1 k 

< W ⑴ m i n (A - ( n - 1 ) M ⑴ + (V - M ) - 5 ’ M ⑴ ， W ) 
k+1 k k k k 2 * k ' k+1 

(3.8) 
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where 

0 < 8 < min ((A - (n-1) M广 + (V - M ))/2 ’ M⑴ ’ W ) 
1 k k k k k k+l 

and 

0 < 5 < min ( C 一 (n-1) M + 2 ( V - M ) - W , 
2 k k k k k+l ' 

(A^ - (n-1) M⑴ + (V - M ))/2 , 
k k k k 

(2) 

n M ^ + n (V - M ) - (n-1) V + A - W ). 
k k k k k k+l 

We have to show that each component in the right hand side of 5 and 5 
1 2 

is strictly positive. 

(1) (A，- (n-1) M⑴ + (V - M ))/2 > 0 as 
k k k k 

c* > (n-1) V + W , 
k k k+l' 

n V - T 2： (n-1) V + W , 
k k k k+l 

\ > Tk, 

since T⑵ > M⑵， 
k k , 

T > T⑴ + M(2), 
k k k * 

V > T ⑴ + M ⑵ ， 
k k k 

V > n M�⑴ - A + M� ⑵ ， 
k k k k 

hence, A - (n-1) M⑴ + (V - M ) > 0. 
k k k k 

(2) M ⑴ > 0 
k 

(3) W … > 0 
k+l 

(4) C 一 (n-1) M + 2 (V - M ) - W 
k k k k k+l 

= C * - W - (n-1) V + V - M 
k k+l k k k 

S: V - M 
k k 

> 0 
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(5) n M广）+ n (Vk _ M^) - (n-1) V^ + A^ - W^^^ ^ n M广）-B^ > 0 as 

(n-1) V :sc + n ( V - M ) ~ W , 
k k k k k+1 

A + B, 2： (n-1) V - n ( V - M ) + W , 
k k k k k k+1， 

- B ^ n (V^ - M J - (n-1) V + A - W . 
k k k k k k+1 

We then check the non-emptiness of the interval in (3.8). 

(1) A - (n-1) M⑴ + (V - M ) - 6 
k k k k 2 

- （ - Bk + (n-1) - (Vk - M k ) ) 

= C - (n-1) M + 2 ( V - M ) - W 一 8 
k k k k k+1 2 

> 0 

(2) A, - (n-1) M�⑴ + (V - M ) - 5 - 5 > 0 
k k k k 2 1 

(3) A, - (n-1) M�⑴ + (V - M ) - 5 - ( W - M� ⑵ ) 
k k k k 2 k+1 k 

= M ,⑵ - (n-1) M⑴ + (V - M ) + A - W - 5 
k k k k k k+1 2 

(2) 
= n M, + n (V - M ) - (n-1) V + A - W 一 S 

k k k k k k+1 2 

> 0 

(4) M ⑴ - ( W - B + (n-1) M⑵ -（ V - M ) ) 
k k+1 k k k k 

= M�⑴ - ( n - 1 ) M�⑵ + (V - M ) + B - W 
k k k k k k+1 

> 0 

(5) M ⑴ - 5 > 0 
k 1 

(6) M ⑴ - ( W - M ⑵ ) ^ 0 

k k+1 k 
(7) W - ( W - B + (n-1) M ⑵ - ( V - M ) ) 

k+1 k+1 k k k k 

= B - (n-1) M⑵ + (V - M ) 
k k k k 

之 0 

(8) W^ - 5 > 0 

k+1 1 

- 3 6 -



( 9 ) - ( - ) > 0 

Set S … - - Si,k u {(Rk+i, W 二 ” and -- S^^^ w {〜！’ W 二 ” 

W h e r e W 二 = W^^^ - W::; and = S^ ,. Thus, C : = C: - 、 ！ . It 

can be proved that conditions III _ 117 hold at the end of stage k+1 as 

(n-1) M 广 - ( V - M J < A < n M ⑴ ， 
k k k k+1 k 

(n-1) - (Vk - Mk) , Bk+i < n 

V i < (n-2) < ” ， 

0 < W�⑴ M ⑴ ， 
k+1 k ‘ 

0 ^ W ⑵ s M⑵�
k+1 k 

w h e r e 

A = A - W ⑴ ， 
k+1 k k+1 

B = B - W⑵ . 
k+1 k k+1 

It is because 

A - (n-1) M⑴ + (V - M ) 
k+1 k k k 

= A - W ⑴ - ( n - 1 ) M⑴ + (V - M ) 
k k+1 k k k 

^ 6 
2 

> 0 

and 

B 一 (n-1) M⑵ + (V - M ) 
k+1 k k k 

= B - W + W ⑴ - ( n - 1 ) M⑵ + (V - M ) 
k k+1 k+1 k k k 

2： 0. 
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CASE 11 ： 0 < J < n-1, V - T < W < M 
k k k k+1 k' 

From (114) and V - T < W s M it implies that (n-2) V < C* - W 
* K+1 k k k k+1 

< (n-1) V . 
k 

We first consider From (114)’（116) and (115), we have (n-1) V^ 

< n (n-1) - (Vk - V < Ak < n M:') and (n-1) M:?) 

一 - M ) < B < n M ^ ) . Also, A^ < (n-2) M ⑴ . C h o o s e W⑴ such 
* * K k k+1 

that 

臓 （ - Bk + (n-2) _ 2 (Vk - Mk) , , W^^^ - M : ? ) ) 

^ W丄L) ^ min (A, - (n-2) M⑴ + 2 (V - M ) - 6 , 
k+1 k k k k 2 ' 

Wk+I _ Bk + (n-1) M : ) - � , ’ Wk+I ) (3.9) 

where 

0 < 5 < min ( ( A - (n-2) M�⑴ + 2 (V - M ) )/2 , 
1 k k k k 

(Wk+i 一 Bk + (n-1) ’ , Wk+i )’ 

0 < < min ( C - (n-2) M + 4(V - M ) - W , 
2 k k k k k+1 

( A ^ - (n-2) M⑴ + 2 (V - M ) )/2 , 
k k k k 

A, 一 (n-2) M⑴ + 2 (V - M ) - W + M ⑵ ) 
k k k k k+1 k 

and 

(r>\ 
0 < 5 < min ( M + 2 (V - M ) , 

3 k k k 

(W - B + (n-1) M⑵）/2 , n M ⑵ - B ). 
k+1 k k k k 

To prove that 5 , 5 and 5 exist, we need to show that each component 
1 2 3 

in the right hand side is strictly greater than zero. 

(1) ( A - (n-2) M�⑴ + 2 (V - M ) )/2 
k k k k 

= ( A - (n-1) M⑴ + (V - M ) + M⑴ + (V - M ) )/2 
k k k k k k k 

> 0 

- 3 8 -



⑵ （ V i - \ ^ (n-1) > 0 
* 

as ^k 一 < (n-1) Vk, which implies A^ + B^ + n (V^ - M ) - W 

< (n-1) Vk , and thus, W^^^ - B^ + (n-1) > A^ + (V^ 一 M^) -

(n-1) M⑴ > 0. 
k 

(3) M⑴ > 0 
k 

(4) W > 0 
k+1 

(5) C, - (n-2) M + 4 (V - M ) - W 
k k k k k+1 

= C : 一 - 2 Mk - (n-4) Vk 

> (n-2) V^ + 2 (V - M ) - (n-2) V 

k k k k 

> 0 

(6) A^ - (n-2) M⑴ + 2 (V - M ) - W + M⑵�

k k k k k+1 k 
= A _ (n-1) M:” + (V _ M ) + M⑴ + (V - M ) - W + M⑵�

k k k k k k k k + l k 

> V - W 
k k+1 

> 0 

(7) M⑵ + 2 (V - M ) > 0 
k k k 

(8) n M ⑵ - B > 0 
k k 

To show the existence of W�⑴ ， w e check the non-emptiness of the 
k+1 

interval in (3.9). 

(1) A - (n-2) M⑴ + 2 (V - M ) - 5 
k k k k 2 

- ( W - B + (n-2) M ⑵ - 2 (V - M ) ) 
k+1 k k k k 

= C - (n-2) M + 4(V - M ) - W - 5 
k k k k k-t-1 2 

> 0 

(2) A - (n-2) M�⑴ + 2 (V - M ) - 5 - 5 > 0 
k k k k 2 1 
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(3) Ak - (n-2) + 2 (Vk _ M^) - � - ( W ^ ^  ̂ - ) > 。�

(4) Wk+i - Bk + (n-1) - ��

-（ W k + i 一 \ + (n-2) _ 2 (Vk _ M k ) ) 

= + 2 (V - M ) - 5 
k k k 3 

> 0 

(5) W - B, + (n-1) M ⑵ - 6 - 5 > 0 
k+1 k k 3 1 

(6) w _ B, + (n-1) M ⑵ - 5 - ( W - M ⑵ ) 
k+1 k k 3 k+1 k 

= n M ⑵ - B - 5 
k k 3 

> 0 

(7) - ( W^ - B, + (n-2) M⑵ - 2 (V - M ) ) 
k k+1 k k k k 

= B ^ - (n-1) M，⑵ + (V - M ) + M⑵ + (V - M ) - W + M⑴�
k k k k k k k k + l k 

2：� V - W 
k k+1 

> 0 

(8) M ⑴ - 5 > 0 
k 1 

(9) M ， ⑴ - ( W - M ⑵ ） = M - W ^ 0 

k k+1 k k k+1 
(10) W - ( W - B + (n-2) M ⑵ - 2 (V - M ) ) 

k+1 k+1 k k k k 

= B - (n-1) M⑵ + (V - M ) + M⑵ + (V - M ) 
k k k k k k k 

> 0 

(11) W - 6 > 0 
k+1 1 

(12) W - ( W - M ⑵ ) > 0 
k+1 k+1 k 

* * 

It can be proved that conditions III 一 117 hold and C = C -
^ k+1 k 

Wk+1 up to this point . That is, 

(n-2) M ⑴ - 2 (V - M ) < A < (n-1) M⑴’ 
k k k k+1 k 

(n-2) M ⑵ - 2 (V - M ) ^ B < (n-1) M ⑵ ， 
k k k k+1 k 
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A^ , < (N-2) M⑴， 
k+l k ‘ 

0 < W⑴ ^ M(1), 
k+l k * 

• 一）SM⑵. 
k+l k 

where 

A = A - W ⑴ ， 
k+l k k+l 

B, = B - W ⑵. 
k+l k k+l 

It is because 

- ( n - 2 ) + 2 (Vk _ M k ) = A ^ _ W二 一 (n-2) M :” + 2 (V^ - M J 

^ 5 
2 

> 0 

B - (n-2) M，⑵ + 2 (V - M ) 
k+l k k k 

= B - W + - (n-2) M,⑵ + 2(V - M ) 
k k+l k+l k k k 

^ 0 

(n-1) M , ⑵ - B = (n-1) M ⑵ - B + W — W⑴ > 5 > 0 
k k+l k k k+l k+l 3 

After considering W … ， w e reconsider the J elements in S . 
k+l k 3,k 

Since (n-2) V < C，. - W … < (n-1) V , ( o r equivalently, (n-2) V < 
k k k+l k k 

C* , < (n-1) V ), we re-label the index as (n-2) V < C* < (n-1) V for 
k+l k k k k 

convenience and there are J elements in S and A , B and C are the 
k 3,k k’ k k 

updated value. 

From the previous intermediate step, we have (n-2) V < C* < (n-1) 
k k 

V , (n-2) M ⑴ - 2 (V - M ) < A < (n-1) M⑴ and (n-2) M ⑵ -
k k k k k k k 

2 (V - M ) B < (n-1) M⑵ . Also, A < (n-2) M⑴ . When the J 
k k k k k k k 

» ⑴ 》(2) 

elements in S are considered, we let V = W + W and choose 
3,k k k+l k+l 

W’⑴ such that 
k+l 
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max ( (n M:” - A )/2 + 6 , V - (n M⑵� _ B ) + S ’ M ⑴ ) < W,⑴�
k k I k k k 2 k k+l 

^ min( n M丄” _ \ - 〜 ， \ _ (n M:?) 一 b^)/2 , \ 一 M:?)) (3.10) 

where 

0 < 5 < min ( (n M ⑴ - A )/4 , V -（ n M - C )/2 , 
1 k k k k k 

( 2 ( v - M ) - (n-2) M⑴ + A )/2 ) , 
k k k k 

0 < 3 < min ( (n M - C - V )/2 , (n M ⑵ - B )/2 , 
2 k k k k k 

(n-1) M ⑵ - B ) 
k k 

and 

0 < < min ( (n M⑴ - A )/4 , (n M - C - V )/2 , 
3 k k k k k ' 

(n-1) M ⑴ - A ). 
k k 

We have to prove that each component in the right hand side of� ��

and is strictly positive. 

(1) (n M ⑴ - A )/4 > 0 
k k 

(2) V - (n M - C )/2 > 0 as 
k k k 

C* > (n-2) V , 
k k 

C + n V - n M > n V - 2 V , 
k k k k k 

C - n M + 2 V > 0 
k k k 

(3) ( 2(V - M ) - (n-2) M⑴ + A )/2 > 0 
k k k k 

(4) (n M - C - V )/2 > 0 as 
k k k 

C < (n-1) V , 
k k 

C + n V - n M < n V - V , 
k k k k k 

n M - C - V > 0 
k k k 

(5) (n M ⑵ - B )/2 > 0 
k k 
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(6) (n-1) M ⑵ - B > 0 
k k 

(7) (n-1) M⑴ - A > 0 
k k 

To show the existence of such a W ^ ) , we check the non-emptiness 

of the interval in (3.10). 

(1) n M 广 - A - 6 - ( (n M(i) - A )/2 + 5 ) 
* K 3 k k 1 

= ( n M , ⑴ - A )/2 - (6 + 5 ) 
k k 1 3 

> 0 

(2) n - Ak - � - （ V k _ (n - B^) + ) > 0 

(3) n M丄 1) - A - 5 - M ⑴ = ( n - 1 ) M ⑴ - A - 5 > 0 
k k 3 k k k 3 

(4) V - (n - B )/2 - ( (n M ⑴ - A )/2 + 6 ) > 0 
k k k k k 1 

(5) V - (n 一 B, )/2 - ( V -（ n M ⑵ - B ) + 5 ) > 0 
k k k k k k 2 

(6) V - (n M ⑵ - B )/2 - M⑴�
k k k k 

= ( - M ) - (n-2) M⑵ + B )/2 
k k k k 

2： 0 

(7) V - M ⑵ - ( ( n M ⑴ - A )/2 + 5 ) 
k k k k 1 

= ( 2 ( V - M ) - (n-2) M⑴ + A )/2 - 5 
k k k k 1 

> 0 

(8) \ - 一（� V - (n M , ⑵ - B ) + 5 ) = (n-1) M ⑵ - B - 5 > 0 
k k k k k 2 k k 2 

(9) V - M⑵ - M⑴ > 0 
k k k 

Set S = S u “ R“1, W二 )} W { ( R . : R e S^ } , 
l,k+l l,k k+1 k+1 J k+1 j 3,k 

S = S U {( R , W ⑵ ) > U { ( R , W , ⑵ ） ： W ’ ⑵ = V - W’(1! 
2,k+1 2,k k+l' k+1 j’ k+1 k+1 k k+l' 

R € S > and S = 0 , where W ⑵ = W 一 W⑴ . Thus, C = 
J 3,k 3,k+1 k+1 k+1 k+1 k+1 

( n - J ) V - ( n M - C ). It can be proved that the conditions II 一 
k k k k 

15 hold at the end of stage k+1. That is, 
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(n-J -2) < A^ < (n-J -1) W’�⑴’ 
k k+1 k+1 k k+1 ‘ 

(n-J -2) w'^f ^ B^ < (n-J -1) 

k k+1 k+1 k k+1 
\ , < (n-2) W’�⑴’ 
k+1 k+1 ‘ 

M ⑴ … 1 ) " - M⑵ . 
k k+1 k k 

where 

= ( n - V C - ( n - A , 

Bk+i = ( n - V - （ n M广 一 V ' 

It is because 

- ( n - � - 2 ) W::;) = 2 W::;) _ ( n M:” - A^ ) - 2 > 0, 

(n-Jk-1) C ) - = ( n _ Ak ) _ W::;) . > 0, 

Bk+i - ( n - V 2 ) = 2 Vk _ 2 W::;) - ( n - B^ ) . 0, 

(n-J -1) W?，）- B, = ( n M⑵ - B ) - V + W’ ⑴之� 3 > 0 
k k+1 k+1 k k k k+1 2 

and 

(n-2) W:]) - A^ = (J - 2) W,⑴ + ( n M⑴ - A ) 
k+1 k+1 k k+1 k k 

^ ( n M�⑴ - A ) - W’⑴�
k k k+1 

^ 5 

3 
> 0 

CASE 12 : 0 < J n-1, M < W =s V - T . 
k k k+1 k k 

From (114) and 0 < W ：£ V - T , i t implies that (n-1) V C* - W 
k+1 k k ^ k k k+1 

< n V . Since (n-1) V ：̂  C* < n V , we have (n-1) M ⑴ - ( V - M ) < A 
k k k k' k k k k 

< n M ⑴ and (n-1) M ⑵ - ( V - M ) B < n M⑵ . Also, A < (n-2) 
k k k k k k ' k 

M⑴ . Choose W�⑴ such that 
k k+1 

M⑴ ^ W ⑴ m i n (n M ⑴ - A - 5 , W - M ⑵ ) (3.11) 
k k+1 k k 1 k+1 k 

where 

- 4 4 -



0 < 5 < (n-1) M⑴ - A . 
1 k k 

Obviously, (n-1) M ^ ) - A is greater than zero and the interval of W⑴�

* * k+1 
in (3.11) is non-empty. Set S = u { (R ’ W�⑴ ) } and 

l,k k+1 k+1 

S2k+1 = S u { (R )} where W ⑵ = w - W⑴ and S = 
k+1 2,k k+1 k+1 k+1 k+1 k+1 3, k+1 

S3’ic. It can be proved that the conditions III - 117 hold at the end of 

stage k+1. That is, 

( n - 1 ) - (V - W, ) < A < n W。）， 
k+1 k k+1 k+1 k+1 

(n-1) - (V _ W ) ^ B < n W ⑵ ， 
k+1 k k+1 k+1 k+1 

A < (n-2) W ⑴ ， 

k+1 k+r 
M ⑴ ^ W ⑴ s W - M⑵�
k k+1 k+1 k 

where 

A, , = (n-1) W ⑴ - ( n M ⑴ - A )’ 
k+1 k+1 k k 

B, , = (n-1) W ⑵ - ( n M ⑵ - B ). 
k+1 k+1 k k 

It is because 

A 一 (n-1) W⑴ + (V - W ) 
k+1 k+1 k k+1 

= ( n - 1 ) W ⑴ - ( n M ⑴ - A ) - (n-1) W⑴ + ( V - W ) 
k+1 k k k+1 k k+1 

= V - W - （ n M�⑴ - A ) 
k k+1 k k 

= V - W - T�⑴�
k k+1 k 

> 0 as 

(n-1) V < C* - W = n V - T - W , 
k k k-t-1 k k k+1 

0 < - T + V - W , 
k k k+1 

T V - W , 
k k k+1 

T�⑴ < T < V - W . 
k k k k+1 

Therefore, A > (n-1) W ⑴ - ( V - W ) will hold. Similarly for 
k+1 k+1 k k+1 

B 2： (n-1) - (V - W^ ), 
k+1 k+1 k k+1 
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CASE 13 ： 0 < J < n-1, M < W , V - T < W < V 
k k k+1, k k k+1 k. 

From (114), M^ < W^^^ and V^ - T^ < W^^^ < it implies that (n-2) V 
* k 

< Cfc "" W < (n-1) V We first consider W, . Since (n-1) V s C来 
k+1 k k 

< n Vk’ we have (n-1) M:” _ (V^ - M ) < A, < n M⑴ and (n-1) M ⑵ -

K Ic Ic k k k 
(V - M ) ^ B < n Also, A^ < (n-2) M ^ ) . Choose W⑴ such that 

* * K K k k+1 
max ( n M:”- A - 2 (V - W ) + 5 , M ⑴ ) < W⑴�

k k k k+1 1 ' k k+1 

^ min( Wk+i - ( n M:^) - B J . 2 ( V^ - W^,^ ), n M:” - A^ -〜， 

L7 w(2)、�
Wk+1 - \ ) (3.12) 

where 

0 < 6 < min ( C* - W - (n-4) V - 2 W ’ 
1 k k+1 k k+1 

W^ , - M丄2) 一 n M,⑴ + A + 2 (V - W ) ’ 
k+1 k k k k k+1 ' 

V - W ) 
k k+1 

and 

0 < 6 < min ( (n-1) M ⑴ - A , V - W ). 
2 k k ' k k+1 

To prove that 5 and 8 exist, we show that each component in the right 
丄 ^ 

hand side is strictly greater than zero. 

(1) C* - W - (n-4) V - 2 W 
k k+1 k k+1 

= C * - W - (n-2) V + 2 (V - W ) 
k k+1 k k k+1 

> 0 

(2) W - M⑵ - n M⑴ + A + 2 (V - W ) 
k+1 k k k k k+1 

= A - (n-1) M⑴ + (V - M ) + (V - W ) 
k k k k k k+1 

> 0 

(3) V^ - W^ > 0 

k k+1 
(4) (n-1) M ⑴ - A > 0 

k k 
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To show the existence of W ^ ) in (3.12)’ we then check the non-emptiness 

of the interval. 

⑴ - ( n M 广-B ) + 2 ( V - W ) 
k+1 k k k k+1 

- ( n M!"- A - 2 (V - W ) + 5 ) 
k k k k+1 1 

= w - ( n M - C ) + 4 ( V - W ) - 5 
k+1 k k k k+1 1 

= C * - W - (n-4) V - 2 W - 5 
k k+1 k k+1 1 

> 0 

(2) W - ( n M ? ) - B ) + 2 ( V - W ) - M⑴�
k+1 k k k k+1 k 

= B - (n-1) Ml�⑵ + (V - M ) + ( V - W ) 
k k k k k k+1 

> 0 

(3) n - A - 5 - ( n M⑴ - A - 2 (V - W ) + 5 ) 
k k 2 k k k k+1 1 

= 2 ( V - ) - ( 6 + 6 ) 
k k+1 1 2 

> 0 

(4) n M ⑴ - A - 5 - M ⑴ = ( n - 1 ) M ⑴ - A - 5 > 0 
k k 2 k k k 2 

(5) W, , - M,⑵ 一 ( n M ⑴ - A - 2 (V - W ) + 5 ) > 0 
k+1 k k k k k+1 1 

(6) W - M⑵ - M⑴ > 0 
k+1 k k 

It can also be proved that the conditions III - 117 hold and C* = C* 
k+1 k 

-Wk+i up to this point. That is, 

(n-2) W ⑴ - 2 (V - W ) < A < (n-1) W ⑴ ， 
k+1 k k+1 k+1 k+1 

(n-2) W ⑵ - 2 (V - W ) B < (n-1) W ⑵ ， 
k+1 k k+1 k+1 k+1 

A < (n-2) W⑴’ 
k+1 k+1 

M ⑴ ^ W ⑴ s W - M⑵�
k k+1 k+1 k 

where 
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= ( n - " W二� _ ( n - Ak )’ 

Bk+i = (n-1) - ( n _ Bk )• 

It is because 

- (n-2) C + 2 (Vk 一 Wk+i) 

= ~ ( n - Ak ) + 2 (Vk - Wk+i) 

2： 5 
1 

> 0. 

B 一 (n-2) W⑵ + 2 (V - W ) 
k+1 k+1 k k+1 

= W - - ( n M , ⑵ - B ) + 2 (V - W ) 
k+1 k+1 k k k k+1 

^ 0 

and 

(n-2) - A = ( n M⑴ 一 A ) - W⑴ ^ 5 > 0. 
k+1 k+1 k k k+1 2 

After considering W, ^, we reconsider the J elements in S . 

k+1 k 3,k 
Since (n-2) V < C* - W < (n-1) V , ( o r equivalently, (n-2) V < 

ic k+l Ic ic 

C* ^ < (n-1) V , ), we re-label the index as (n-2) V < C* < (n-1) V 
k+1 k k k k 

for convenience and there are J elements in S . From the previous 
k 3,k 

intermediate step, we have (n-2) V < C* < (n-1) V , (n-2) M , ⑴ - 2 
k k k k 

» » » f 1) »(p) » » 
(V - M ) < A < (n-1) M ^ and (n-2) M - 2 (V - M ) B < (n-1) 

k k k k k k k k 

M’（2). Also, A’ < (n-2) M , ⑴ . N o t e that A’ ’ B,, C’ ’ M’�⑴ ， M , ⑵ and 
k k k k' k* k' k ' k 
» 

M^ are updated after the previous intermediate step. Similar in 

»(1) 
CASE 11, when the J elements in S are considered, we let V = W 

k 3,k k k+1 
» (2) * (1) 

+ W and choose W such that 
k+1 k+1 
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max ( (n M；^⑴� _ A:)/2 + , V^ - (n h (⑵ 一 B ) +� � ， M : ⑴ ） s W 二 

min( n M；；") _ A: _ 〜 ， \ -（n M:⑵ - ’ V^ - M :⑵ ) (3.13) 

where 

0 < 6 < min ( (n M:⑴ - A:)/4 , V _ (n M’ - C, )/2 , 
上 k k k k k 

( - M J - (n-2) M,(1)+ A, )/2 ) ’ 
k k k k 

0 < 6 < min ( (n m' - - V )/2 , (n M,⑵ 一 B, )/2 , 
2 k k k k k ‘ 

(n-1) M,⑵ - B’ ) 
k k 

and 

0 < a < min ( (n M:⑴ - A: )/4 , (n M, - C, _ V )/2 , 
3 k k k k k ， 

(n-1) M , ⑴ - A ’ ) 
k k 

Set = u <( Rk+i’ W::; ) } … R j , W::;) ) : R " S^R >, 

S = S u {( R , W�⑵ ) } U { ( R w ’ ⑵ ） . w ’ ⑵ = V - W’�⑴�
2,k+l 2’k k+l' Ic+l " u \ 、 K j , V l ) • k+l Vfc k+l , 

R , e S } and S = 0, where = W^ ^ - W,":. Thus, C = 
J 3,k+l k+l k+l k+l k+l 

( n - J ^ ) V^ - ( n M^ - C^ ). It can be proved that the conditions II -

15 hold at the end of stage k+l. 

CASE 14 : 0 < J : S n - l , M < V < W , W + J V . 
k k k k+l k+l k k k 

From (114) and W ^ T + J V , it implies that (n-1) W ^ C* + 

k+l k k k k+l k 

n W - (n+J ) V < n W . From (114)’ (116) and (115), we have 
k+l k k k+l 

(n-1) V C* < n V , (n-1) M ⑴ - ( V - M ) < A < n M ⑴ and (n-1) 
k k k k k k k k 

M ⑵ - ( V - M ) B < n M ⑵ . Also A < (n-2) M⑴ . We examine the 
k k k k k k k 

* M ) * (O) * M ) *(2) 
J elements in S . Let V = w / : , + w/二'，where W, ? ’ W 二 are 
k 3,k k k+l k+l k+l k+l 

weights included in S and S in this stage respectively. 
1., k+l 2 f k+l 
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⑴ J . = 1. 
k 

Choose such that 
k+l 

s W二 ) . min (n " A^ > , V^ - ) (3.14) 

where 

0 < 5 < (n-1) M ⑴ - A . 
1 k k 

Obviously, (n-1) M=” - A^ is greater than zero and the interval of 

in (3.14) is non-empty. Set = S^ ^ u { (〜， W : : ; ) ) ： R」€ 

} , S = S u { ( R , W • ⑵ ） . w • ⑵ = V - W•⑴ R ^ 

2’ k+l 2,k V l J . V l Vk Wk+i , Rj € 

\ k > and S3,k+1 = <� � + 1 >• Thus, (：二 = C: + n W^^^ _ (n+1) V^. It 

can be proved that the conditions III - 117 hold at the end of stage 

k+l. That is, 

(n-1) - (W, - V ) < A < n W *⑴， 
k+l k+l k k+l k+l 

(n-1) - (W - V ) ：£ B < n� / ⑵ ， 
k+l k+l k k+l k+l ‘ 

A < (n-2)� / ⑴ ， 
k+l k+l ’ 

M ⑴ 二� / ⑴ ^ V - M ⑵ . 
k k+l k k 

where 

A = (n-1) W • ⑴ - ( n M ⑴ - A ), 
k+l k+l k k 

B = (n-1)�/ ⑵ - ( n M ⑵ - B ). 
k+l k+l k k 

It is because 

A - (n-1) W•⑴ + (W - V ) 
k+l k+l k+l k 

= ( n - 1 ) W • ⑴ - ( n M ⑴ - A ) - (n-1) W*⑴ + ( W - V ) 
k+l k k k+l k+l k 

= W - V - ( n M�⑴ - A ) 
k+l k k k 
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= W - V - T�⑴�
k+1 k k 

> 0 as 

(n-1) K + n - (n+1) 

(n-1) Wk+i … 让� _ Tk + n Wk+i _ (n+1) 

\ ^ 一 V 
since T⑴ < T , T⑴ < W - V 

k k k k+1 k' 

Therefore, A^^^ > (n-1) - (W^^^ - V^) will hold. Similarly for 

-(n-1) - (w - V ). 
k+1 k+1 k+1 k 

( i i ) 1 < J :s n - 1 . 
k 

* M ) 
Choose W such that 

k+1 

隨（V, - [ Wk+1 - \ _ (n b J ] / (Jk-l)’ )忘 W::;) s 

min ( [ Wk+i _ Vk - (n A J ] / (J^-1) - n M:” _ A^ 一 〜， 

Vk - ) (3.15) 

where 

0 < 5 < min ( [ 2(W, - V ) - (n M - C ) - (J -1) V ] / (J -1), 
1 k+1 k k k k k k 

[ - V - (n a ) - (J -1) ] / (J - 1 ) ) 
k+1 k k k k k k 

and 

0 < 5 < min ( (n M�⑴ - A ) - V + [ W - V -（ n M ⑵ - B ) ] 
2 k k k k+1 k k k 

/ (J -1) , (n-1) M ⑴ - A ). 
k k k 

To prove that and exist, we show that each component in the right 

hand side is strictly greater than zero. 

(1) [ 2(W - V ) - (n M - C ) - (J -1) V ] / (J -1) 
k+1 k k k k k k 

= [ 2 ( W - V ) - T - J V + V ] / (J -1) 
k+1 k k k k k k 
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“ [ - Vk) - Wk+i + Vk ] / ( V I ) 

= - V / (VI) 
> 0 

⑵ [ - \ • (n Ak) - ( V I ) ] / (Jk-1) 

= [ - Vk _ Tk + (n Bk) : (Jk-1) Vk + _ M:”）] 

/ ( J k - 1 ) 

^ [ (n b ) + (J -i)( V - M ⑴ ） ] / (J 一 1) 
K k k k k k 

> 0 

(3) (n M:” _ Ak) - Vk + [ Wk+i - Vk _ (n B J ] / (J^-1) 

= [ ( J k - l ) ( n K T ) - Ak) - ( V l ) V ^ + Wk+i - Vk - (n M ^ ) - B ^ ) ] 

/ (J -1) 
k 

= [ J (n M , ⑴ - A ) - T - (J -1)V + W - V ] / (J -1) 
k k k k k k k+1 k k 

= [ J , (n M ,⑴ - A ) - T + W - J V ] / (J -1) 
k k k k k+1 k k k 

J. (n M ⑴ - A ) / (J -1) 
k k k k 

> 0 

(4) (n-1) M ⑴ - A > 0. 
k k 

We then check the non-emptiness of the interval in (3.15). 

(1) [ W - V - (n M ⑴ - A ) ] / (J -1) - 5 
k+1 k k k k 1 

- { V - [ W - V - (n M(2)- B ) ] / (J -1) } 
k k+1 k k k k 

= [ 2 ( W - V ) - (n M - C ) - (J -1) V ] / (J -1) - 5 
k+1 k k k k k k 1 

> 0 

(2) [ W - V - (n M ⑴ - A ) ] / (J -1) - 5 - M’⑴�
k+1 k k k k I k 

= [ W - V - (n M ⑴ - A ) - (J -1) M , ⑴ ] / (J -1) ) -
k+1 k k k k k k 1 

> 0 
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( 3 ) n M : i ) - Ak - � - " k - [ _ Vk - ( n M : ^ ) 一 b J ] / ( J ^ - 1 ) } 

> 0 

( 4 ) n - A - 5 - M : = ( n - 1 ) M ? ) - A - 5 > 0 
* K 2 k k k 2 

( 5 ) Vk - M 广 _ { Vk _ [ Wk+i _ Vk _ ( n M ^ ) - B^ ) ] / ( J ^ - l ) > 

= [ W k + i - Vk _ ( n Bk) _ ] / ( V I ) 

= [ W k + i _ \ _ Tk + (n Ak) - ( V I ) Vk + - ] 

/(Jk-l) 

[ ( n M 广 - A ) + ( J - 1 ) ( V - M ⑵ ） ] / ( J - 1 ) 
k k k k k k 

> 0 

( 6 ) V - M ⑵ - M ⑴ > 0 
k k k 

Set = \ k … V O : Rj ^ > , \ k + i = \ k u { ( V 

C ) ) : = \ - Rj 它 > a n d S3’k+1 = < Rk+i >. T h u s , 

* * 
C, ^ = C + n W, , - ( n + J ) V . I t c a n b e p r o v e d t h a t t h e c o n d i t i o n s 

k+1 k k+1 k k 

I I I - 1 1 7 h o l d a t t h e e n d o f s t a g e k + 1 . T h a t i s , 

* f 1 ) • f 1、�
( n - 1 ) W ^ - (W - V ) < A < n W ^ , 

k+1 k+1 k k+1 k+1 

( n - 1 ) W* ⑵ - ( W - V ) ^ B < n W* ⑵ ， 
k+1 k+1 k k+1 k+1 

< (n-2) C ) , 

M ⑴ ^ W * ⑴ s V - M ⑵ . 
k k+1 k k 

w h e r e 

A = (n-J ) W • ⑴ - ( n M ⑴ - A ) , 
k+1 k k+1 k k 

B = (n-J ) W • ⑵ - ( n M ⑵ - B ) . 
k+1 k k+1 k k 

I t i s b e c a u s e 

A - ( n - 1 ) W • ⑴ + (W - V ) 
k+1 k+1 k+1 k 

= ( n - J ) W * ⑴ - ( n M ⑴ - A ) - (n-1 ) + ( W^ - V^ ) 
k k+1 k k k+1 k+1 k 
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=Wk+1 - Vk - ( n M:1) - Ak 卜 " k 一 1 ) <:;) 

> 0; 

and 

Bk+i - (n-1) W:::) + (Wk+I 一 Vk) 

= - \ _ ( n _ Bk ) 一 (J^-l) Vk + (Jk-l) W::;) 

2： 0 

CASE 15 : 0 < J : s n - l , M < V < W < T + J V 
k k k k+1 k k k' 

From W < T + J V it implies that C* + n W - (n+J ) V < 
K 个土 * K k k k+1 k k 

(n一 1) J. elements in S (= + V/:(〒）)and W will be 
* 3,k k+1 k+1 k+1 

examined in the following three steps. 

Step 1: find an m( 1 :s m ：̂  J ) such that 
k 

(n-2) Wk+i < C* + n W^^^ - (n+m) V^ < (n-1) W^^^ (3.16) 

is satisfied. 

(i) J = 1. 
k 

Obviously, (n-2) U ^ < C* + n W - (n+1) V < (n-1) W . Define C*^ 

k+1 k k+1 k k+1 k 

= C * + n (W ^ - V ). It is the CASE 13 and hence, choose W*⑴ such 
k k+1 k k+1 

that 

max ( n M ⑴ - A - 2 (W - V ) + 6 , M ⑴ ) < W*�⑴ ^ 

k k k+1 k I k k+1 

min( V - ( n M�⑵ - B ) + 2 ( W - V ) , n M�⑴ - A - 5 , 
k k k k+1 k ' k k 2 

V - M ⑵ ) (3.17) 
k k 
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where 

0 < 5 < min ( C*^ - V - (n-4) W _ 2 V , 
1 k k k+1 k 

Vk - M : 、 n + Ak + 2 (Wk+i - Vk), 

and 

0 < 6 < min ( (n-1) M⑴ - A , W - V ) 
2 k k ' k+1 k 

(ii) 1 < J < n-1. 
k 

We first check that whether m=l makes the inequality (3.16) satisfy. If 

it does, choose W二） b y the interval given in (3.17) and set m=l； 

otherwise, it is the CASE 14 and choose W*⑴ such that 
k+1 

K T ) - ^ min (n M^” - A厂 S广 \ 一 M^^^) (3.18) 

where 

0 < 5 < (n-1) M⑴ - A . 
1 k k 

The remaining (J -1) elements in S are examined one-by-one and it is 

followed by CASE 10 (or CASE 11). In either cases, W*⑴ will be chosen 
k+1 

with the identical weights which is chosen in (3.18). This step stops 

until CASE 11 is reached. That is, there is a m (> 1) such that (3.16) 

is satisfied. Denote S Q S be the set containing the records 
3, k 3, Ic 

examined in this step. 

Step 2: temporary omit the (J -m) elements in S and examine W 
Ic 3, Ic ic+1 

( = W + W ). 
k+1 k+1 

After step 1, (3.16) holds. It resembles the consideration of the 
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maximum weight in CASE 13 (or CASE 11) . Since (n-2) W < C* + 
k+1 k 

n Wk+i “ (n+m) V < (n-1) W ( or equivalently, (n-2) W < C’. < 
K+1 k+1 k+1 

(n-l) Wk+i ), we re-label the index as (n-2) V’ < C’* < (n-1) V’ for 
k k ic 

convenience . From the previous intermediate step, we have (n-2) V, < 
,• k 

( < (n-1) V:, (n-2) M:⑴� _ 2 (V: - M；) < A: < (n-1) M ^ ^ a n d (n-2) 

2 (V；； - M J s B: < (n-1) M；；⑵.Also, A: < (n-2) M:"). Note 

‘ , * '(1) ，（2) ^ f 
that Ak, Bk, Ck, Mk , M^ , M^ and V^ are updated after step 1. 

Choose W⑴ such that 
k-H 

max ( (n M :⑴ - a ' ) / 2 + 乂 厂 （ n M’ ⑵ 一 B,) + 3 , M’ ⑴） ^ W⑴�
K * l k + 1 k k 2 k k+1 

^ min( n M : ⑴ - A ' - 5 . W^ - (n M,⑵� _ B, )/2 , W 一 M’ ⑵） 
k k 3 k+1 k k k+1 k 

(3.19) 

where 

» M ) » f i 
0 < 5 < min ( (n M - A )/4 , W - (n M - C )/2 , 

1 k k k+1 k k 

( 2 (、， - M:) - (n-2) M’�⑴ + A’ )/2 ) ’ 
k+1 k k k 

» » * (o\ * 
0 < 5。< min ( (n M, - C - W )/2’（n M� ⑶ - B )/2’ 

2 k k k+1 k k 

(n-1) M’�⑵ - B , ) 
k k 

and 

• M ) » » » 
0 < 5 < min ( (n M ' - A )/4 , (n M - C - W )/2 . 

3 k k k k k+1 
(n-1) M’�⑴ - A ) . 

k k 

If we temporary omit the (J - m) elements in S after step 2, 
Ic 3, Ic 

condition II - 15 are satisfied. 

Step 3: re-examine the remaining (J 一 m ) elements in S . 
k 3, k 

In this case, since the maximum weight has been examined in step 2 and 
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conditions II - 15 are satisfied, the remaining (J -m) elements in S 
k 3,k 

are simply the CASE 1, CASE 2 or CASE 3. We can examine them one-by-one 

such that conditions II - 15 hold at the end of this step. Denote S 

\ contains the records examined in this step. 

= \ k - ^ C ) ) : RJ - 卜 H RK+i’ > 

u H V w ; ” ） ： \ <’k >, \ k + i = u H V 

: ’ 一一 \ - w::;), R j . s;,k … （ R k + i ’ w - ), w - = 

- C H V ) : S3’k \ W - = Wj 一 W - > 

and S = 0 . 
3,k+l 

§3.3 Initialization 

After examining each case, we consider the initialization step - to 

guarantee that the conditions (CASE I or CASE II in section 3.1) are 

satisfied at the end of stage k, where k ：̂  2n. We rearrange the first 

2n-l weights such that W^ ^ " •“ " 1 and examine these weights 

one-by-one in non-descending order. The order of the remaining weights 

are preserved and are denoted as W , W . . . . Choose U such that 
2n 2n+l 

0 < U < W and set W ⑴ = W ⑴ = U . Hence, 
1 1 2 

S = { (R . U), (R . U) }, 
± p ̂  X ^ 

s^ = { (R . W, - U)’ (R . W。 - U) } 
2f 2 1 1 2 2 

and 

S = 0. 
3,2 
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Besides, we have 

C* = C^ = n W^ - ( W^ + W^ ) = (n-1) W^ - W^ 2： 0, 

八2 = n M ^ _ 2 = (n-2) M 广 

B = n (W - U) - ( (W, - U) + (W - U ) ) 
^ 2 1 2 

= ( n - 1 ) (W - U) - (W - U). 
2 1 

Thus, 

(n-2) W^ < C^ < (n-1) W^, 

(n-2)� A。< (n-1) M⑴’ 
2 2 2 

(n-2) (W。- U) B < (n-1) (W - U). 
2 2 2 

Clearly, A^ = (n-2) M广 contradicting condition 13. Moreover, 

condition 15 may also fail. In stage three, the third record is read 

in. It will be followed by one of the following cases: CASE 1, 

CASE 3, CASE 4, CASE 6 or CASE 7. If it is followed by CASE 1, CASE 4 

or CASE 6, W can be divided into two parts as discussed in the previous 
O 

section such that 

= - < (V - ^r) > 
and 

S = 0 , where 0 < W⑴：^ W . 
3,3 3 3 

All conditions II - 15 are satisfied after stage three because from 

stage two to stage three, there is no need for the conditions 13 or 15 

to hold at stage two. If it is followed by CASE 3, conditions II - 14 

will hold after stage three because, again, from stage two to stage 

three, there is no need for the condition 13 to hold at stage two. 
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However, condition 15 still fails and will hold if (i) the next incoming 

weight is strictly greater than the current maximum weight or (ii) W = 
3 

W , … = ^ n + r Then’ C^ < 0 and there is no need to satisfy condition 

15. Either one of the above two cases must occur. 

On the other hand, if it is followed by CASE 7, W cannot be 
3 

divided into two parts in stage three and we have S = S S = 
1,3 1,2 , 2 ,3 

^2,2 and S^ 3 = { R^ >. The following records are read in one-by-one. 

There will be two main cases. 

(i) W^ = ... = Wn+2. It is the CASE 9 and the weights W , W 
3 4 

Wn+2 are divided into two parts according CASE 9. After the stage, 

condition II - 15 will hold even conditions 13 and 15 are not satisfied 

at stage two. 

(ii) W = W = . . . = W for 1 m < n-1 and V ( > W ). Then, it 
3 4 m+3 in+4 3 

will come to one of the following cases: CASE 12 - CASE 15. In CASE 12, 

Vm+4 is divided into two parts accordingly. After this stage, condition 

III - 117 will hold even conditions 13 or 15 are not satisfied at stage 

two. In CASE 13, V is divided into two parts and followed by the 
m+4 

weights W . where R. € S . All conditions II - 15 are satisfied 
j J 3,m+4 

after this stage because from stage two to this stage, there is no need 

for the conditions 13 or 15 to hold at stage two. In CASE 14, the 

weights W , where R € S , are divided into two parts and after 
J J 3,m+4 

this stage, conditions III - 117 will hold though conditions 13 or 15 

are not satisfied at stage two. Lastly, in CASE 15, the weights W」， 

where R € S , are divided into two parts, followed by V and the 
J 3,m+4 ^ ^ in+4 

weights W , where R € S \ s' . Conditions II - 15 will satisfy 
b J J 3, m+4 3,m+4 
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after this stage even conditions 13 or 15 are not satisfied at stage 

two. 

The reason why the first 2n-l weights are sorted is as follows. To 

guarantee that at stage k', there are at most (n-2) self-selective units 

in Si,k’，we have to ensure that the (n-1)^^ largest weight in S is 
l , k , 

smaller than the sum of the weights which are included in S and 
l,k’ 

smaller than that weight. The proof will be given in Theorem 3.4. 

Since for the first two units in we include two identical weights 

U. As the incoming weights are sorted in non-descending order, a new 

maximum weight, which is smaller than the sum of the weights already in 

Si,k’ will be included in S^^^ at stage k ( >2 ). For the worst case, 

after 2n-l units are examined, there are n units included in S and 
l , 2 n - l 

n-1 units in with identical weights. For the n units included 

in the the (n-1)^^ unit is of weight at least U. When the 

(2n)th unit is examined, at least an element will divide into two parts 

out of the CASE 9 - CASE 15 and is included in S and S 
l , 2 n 2 , 2 n 

respectively, no matter what the weight is. After examining at 

most 2n units, the (n-1)^^ largest weight in S is smaller than the 
1, 2n 

sum of the weights which are included in S and smaller than that 
IfZn 

weight. Besides, S,�。 contains at least (n+1) elements when the 
1 f 2 n 

initialization step finishes. 

There is a property when the initialization steps are finished. 

Define W")"、be the 产 largest weight included in S and therefore, 
k , (1) l , k 

we have ^ ^ 、乏 . . . ^：� 、. Also, define the following 
k , ( 1 ) k , ( 2 ) k , ( n - 1 ) 

function, 
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I( W⑴ < W⑴ 1 = 1 if w⑴，、< W⑴ ； 
I V ( i ) ‘ ) k’ ⑴ k , ( J ) , 

= 0 otherwise. 

Recall the initialization step, records are read in with non-descending 

order and the procedure continues. Note that at stage J ( 3 j ) ’ 

the weight W ( 3 :s u :s j ) is divided into two parts, W•⑴ and W•⑵�
u U u 

with M j ⑴ = W : ⑴ and M 」 ⑵ = w : ⑵ . S i n c e� A 」 < (n-2) M;” is 

satisfied, we have n M;” - J： W " ) < (n-2) M⑴o r equivalently, M⑴�
1€L j j 

J 
< E W⑴ . For each of the weight divided, it satisfies 13 

i € L广 { u > 

( o r 113 )• Therefore, after stage Ic, ( 2n )’ where the size of L » is 
k 

at least n+1, we have 

< ^ W : ) ) I ( w ⑴ < w ⑴ ） ， f o r ” 1 n - 1 

k’，（" k ’ ’（J) 

where 

L , c { 1 k ' }, 1 < k ' < N. 
k* 

§ 3.4 Final step 

As described previously, Chao's algorithm is applied on S and 
1, k 

S^ k respectively to select two samples of size n. Thus, after the file 

is read through one time, two samples of size n, S and S , say, are 
1 2 

obtained from S and S . We have the following five possible cases: 
1, N 2’ N 

(i) = 0, C > 0, 
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(ii) J N = 0, C^ < 0, 

(iii) 0 < J < n-1, 
N 

(iv) J = n-1, (n-1) V^ < C* , and 

** N N 

(V) J = n-1, (n-1) V = C*. 
N N N 

For case (i), n M^ / T^ = (C/T^) + 1 > 1. By Theorem 3.1’ no 

sample exists. For case (iii), there are J elements in S and 
N 3,N 

(n-1) V^ :s C* < n VN. Note that C* is the least weights required 

n V n V 
for the sample to exist. — = ！? > 

V u (n+J ) V - C* 
L W N N N 
J = 1 

n VN 
— > 1. From Theorem 3.1, no sample exists. 

(n+(n-2)) V 一 (n-1) V 
N N 

n V n V 
Similarly, for case (iv), — = ？! > 

V (n+n-1) V - C* 
I, W N N 

J=I 

n V 

= 1 . By Theorem 3.1, it implies that the sample 
(2n-l) V 一 (n-1) V 

N N 

does not exist. 

N 

E w⑴�
u 

For case (ii), define 0 < p s < i. Then, with 
N 

Z w 
j=i 

probability p, we select S^ as our sample and with probability 1 -p, 

select S as our sample. As will be proved in Theorem 3.7, a weighted 2 

sample with positive second order inclusion probabilities is obtained. 

For case (v), n W / T = 1 for all i such that R € S . We have 
i N i 3, N 

(n-1) self-selective units. By Theorem 3.2, no sample with all second 
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order inclusion probability positive may exist. Recall T = 
N 

^ ' ^N = E W⑴，T二2) = J W⑵ . We need to perform one additional 
1=1 1=1 1 

step. Because (n-1) V^ = C*, we have V^ = T^. Consider the updated C^, 

C: say, 

C 〉 n V N -（ T N + (n-1) V = 0. 

If, further, V^ (= W•⑴ + W • ⑵ ） i s divided into two parts, W * ( i ) = 

and W • ⑵ = ^ ^ ^ ^ 

\ = n T - - ( T - + (n-1) T ^ ) = 0’ 

Update the new S by S,记 u { (R , W • ⑴ ） : R € S } ( = s' 

1’N 1,N J J 3,N 1,N 

say). the new S by S^ ^ u { (R . W *⑵）： R € S , W • ⑵ = V -
2»N 2,N J j 3 , N , N 

* (1 ) , , 
w } ( = S say), and S = 0. Thus, there are no more records 

N 31N 

N 
11一 1 

in S . Define 0 < p = —^ < 1. Then, with probability p’ we 

E w 
j=i 

select S^ as our sample and with probability 1-p , select S^ as our 

sample. As will be proved in Theorem 3.6, a weighted sample is 

obtained. 
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§3.5 Theorems 

The following Theorem 3.1 is a well-known theorem for the necessary and 

sufficient conditions of the existence of a weighted sample. 

Theorem 3.1 

Given that W^ > 0 for i = 1, ... a weighted sample of size n (1 n 

n W 
- N ) exists if, and only if ^ ^ s i for i = 1 N. 

Z w 
j=i 

Theorem 3.2 

Given that a weighted sample of size n (2 ：< n < N) exists from N units, 

with Wi > 0 for i = 1 N. Then, there is a weighted sample of 

size n with all the second order inclusion probability strictly positive 

if and only if there are at most n-2 self-selective units in the sample. 

Proof of Theorem 3.2: 

n W 
Recall that if = 1 , W is called a self-selective unit. 

N 1 

E w 
j=i 

Without loss of generality, suppose that W^ < < W^ and there are 

k self-selective units in the population. Assume 0 ：̂  k ^ n-2. Denote 
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一 J T 
Tj = We have T^ = + k W^ and W^ = —5L for i = N-k+1, 

“1 n 

• •., N. As the k self-selective units must be included in the sample, 

we need only to select n-k units from the remaining N-k units. Let 

Si: a simple random sample of size n-k without replacement from the 

remaining N-k units 

^2* a weighted sample of size n-k without replacement with weight W*. 

for i = 1 N-k, 

where 

„ P ^N-K 
W = W - ， i = 1, . N-k 

N-k 

and 

， ( n - k ) W N-k (n-k) W 

0 < p < min — , 1 一 < 1. 
Ti, , N-n T 
N-k N-k 

Let S be the a set containing those k self-selective units. We accept 

* 奈 

S^ = S^ u S^ as our sample S with probability p and accept S^ = S^ u S^ 

with probability 1-p. 

來 
S^ exists as the remaining n-k units are drawn using simple random 

(n-k) W 
sampling without replacement. Besides, as p < , that is, 

T 
N-k 

(n-k) W - p T > 0 and thus, W* > 0. Because M* ：< M* ^ . . . < W* , 

1 ^ N-k 1 1 2 N-k, 

W* > 0 for i = 1, ...,N-k. Consider 
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• N-k 

(n-k) W - y W 
1 u j 

J=i J 

P T 

= ( n - k ) ( W. - — ) - (l-p) T 
i N-k N-k 

p (N-n) T 
^ ( (n-k) W - T ) + 

N-k N-k , 
N-k 
‘ (n-k) W 

< ( ( n - k ) W 一 T ) + T 1 - N-k 
N-k N-k N-k _ 

T 
N-k 

= 0 . 

奉 N - K柰 
Thus, (n-k) W^ ~ J； W < 0 for i = 1 N-k. That is, 

1=1 

(n-k) W* 

~ ~ < 1 , for i = 1 , … ， N - k . 

E W； 
1 = 1 

From Theorem 3.1, it implies that the sample from S* exists. For 
2 

N-k+l i < N, 

n W 
Pr ( i € S ) = 1 = — • 

T 
N 

For 1 i N-k, 

P r ( i € S ) = p P r ( i € S ) + (l-p) Pr ( i € S ) 
1 2 

n-k (n-k) W* 
= P + (l-p) ~ ~ " " " 

N-k " K * 

N K E Wi 
1 = 1 

n-k (n-k)( (N-k) W 丨 - P T , ) 
r A \ i N-k 

= p + (l-p) 
N-k (N-k) (l-p) T , 

N—k 
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(n-k) Wi 

T 
N-k 

n W 
_ i _ 

9 

T 
N 

A sample with probabilities proportional to weight is obtained. Next we 

consider the second order inclusion probability. 

For N-k+1 :s i, J :s N’ Pr( i,J € S ) = 1. 

For N-k+1 ：̂  i < N and 1 < j < N-k, 

n W 
Pr( i,J € S ) = Pr( j e S ) = L. > o. 

T 
N 

For 1 i,j < N-k, 

Pr(i,J € S) 

= P Pr( i,J € S ) + (1-p) Pr( i,j € S ) 
1 2 

^ P Pr(i,J € Si) 

> 0. 

The last statement holds as n-k st 2. Thus, if there are at most n-2 

self-selective units in the sample, there is a weighted sample such that 

the second order inclusion probabilities are strictly positive. 

The ‘ only i f part can be shown by contradiction. Assume that 

there are more than n-2 self-selective units, that is, there are n-1 

self-selective units. Because only one unit is selected from N-n+1 

2) non-self-selective units, the second order inclusion probability 

of any two non-self-selective units is zero. Q.E.D. 
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Theorem 3.3 

Suppose at stage k (n < k ^ N) of the Chao's algorithm, the k weights 

are sorted in descending order and are denoted as W > w 乏 > 
(1) (2) … 

IF 

(n-J+l) W 

Qj 安 K < 1 , J = 1, n-1, 

W(t) 

then W(j) is a non-self-selective unit. 

Proof of Theorem 3.3; 

First, if W(j) is a non-self-selective unit, ^。.“ is also a 

non-self-selective unit. 

To determine whether a weight, W 。 ） ， is self-selective or 

non-self-selective at stage k ( n < k < N ), we first check the value 

n W ,、�

If this value is less than one, W ⑴ is a non-self-selective unit. With 

the above argument, all weights are also non-self-selective units. If 

this value is greater than or equal to one, W ⑴ is a self-selective 

unit and we further consider the value ( by reducing the sample size by 

one ) 
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(n-1) W (n-2+1) W。、�
Q = = ^ 

2 k k 

Again, if this value is less than one, W^^^ ( and those less than or 

equal to W^^^ ) is a non-self-selective unit. Otherwise, it is a 

self-selective unit and continues the procedure. Suppose Q < l. Let i 

be the smallest integer such that 1 ^ i ^ J and Q^ < 1. From above 

argument, W(" is a non-self-selective unit. Hence, W。） is a 

non-self-selective unit. Q.E.D. 

Theorem 3.4 

Suppose at stage k (n < k ：< N) of the Chao,s algorithm, the k weights 

are sorted in descending order and are denoted as W > W > ...> 
k ⑴ ⑵ 

W(k). If < E W(t) ’ there are at most n-2 self-selective 
t = n 

units in the sample at stage k. 

Proof of Theorem 3.4: 

k k 
A t stage k , if W < E W … ， t h e n 2 W , ,、 < J] W,‘、，and thus 

(n-1； (t} (n-1) (t) 
t = n t = n - l 

2 W(n ” 
< 1 . By Theorem 3.3, W is a non-self-selective unit. 

k 】 (n-1) 

t = n - l 

Therefore, there are at most n-2 self-selective units in the sample at 

stage k. Q.E.D. 
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Theorem 3.5 

For the proposed algorithm, when n < k N and the size of L is at 
k 

least n+1, we have 

U⑴ Z V 1,⑴ T 
V ( J ) < W ) I W⑴ < W ⑴ ） ’ ” 1 N-1 

k ’（ i ) k , (J ) 

where 

Wi!”r,、： the 产 largest weight included in S , 
w 1, k 

w⑴ > w⑴ > > w⑴�
k ’ ( l ) k , ( 2 ) … - ( n - 1 ) , 

L k S { l , k }, 1 < k : s N , which is defined in section 3.1 

and 

I r \J(” ，U⑴� 、=1 if W⑴，、< w⑴； 
( \ ( 1 ) < \ 。 ） ) k ’ ( i ) k ’ ( J ) , 

= 0 otherwise. 

Proof of Theorem 3.5: 

It can be proved by mathematical induction on k. Let be the smallest 

stage number where there are exactly n+1 elements in S From 
1, k 

section 3.3, we have 

( > ( ” T : : ’ ) " ） I ( V % ) < " J : ) ⑴ ） f o r ” i n-1. 
k ‘ 

Assume that the theorem is true for k=m. At stage m ( n < k’ ：̂  m < N), 

W�⑴ < J； w�⑴ … I r „ (1) ^ „ (1) 1 j = 1 n-1. 
m, (J ) •二 m, (1 ) [ W < W ) 

i € L in, ( i ) m, (J) 
m 

It can be shown that at each step in a particular stage, when the 

- 7 0 -



condition 13 or 113 holds, the largest weight included in S is 
l,k 

smaller than the sum of the weights smaller than the largest weight 

included. Consider k = m+1. If S^ and are unchanged, 

clearly the inequalities hold. We will consider the stages where only 

one element enters The proof when more than one elements enter 

Si m+i is similar and therefore is omitted. At stage m+1, let W = 
* m+1 

《二 + and (Rm+i, <。），（Rm+i’ be the elements included 

in S i m , to form 日之’肌+丄 respectively. There are three 

possible cases. 

(i) W•⑴ > M ⑴ = W ⑴ . 
m+1 m m, (1) 

Since A < (n-2) M " ; = (n-2)� / ⑴ ， w e have W*⑴ < T W ⑴ • 
+1 m+1 m + 1 m+1 L 阳’⑴ 

i€L m 

Consider 

W ⑴ = W ⑴ 
m + 1 , (n-1) m , ( n - 2 ) 

< E w ⑴ … I ( (1) (1) 、 
.二， m , ⑴ ( W , < W ) 
1€L m , (i ) m , ( n - 2 ) 

m 

= ^ w 二 I� ⑴ ) • 
i€L . m + 1 , (i) i n + l , ( n - l ) 

m + l 

Also, … = W ⑴ 4 、 f o r J = 2, . . . , n-2. Therefore, we have 
m + l , (J) m, (J-1) 

,•、< E … I r „(i) „(i)� 、for J = 1 ’ ....n-l. 
m+l,(J) u m+1,(i) ( W < W ) ^ 

i€L , m + 1 , ( i ) m + 1 , (j) 
m + l 

(ii) W < W M ( or W ：̂  W , , < W … 

m , ( n - 1 ) m + 1 m m , ( n - 1 ) m , ( t + l ) m+1 in,(t) 

M⑴ for some positive integer t ). We first consider W ⑴ 身 、 ， 

m m + l , ( t ) 
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+ and w : 。 ） f o r J = t + 2 , … ， n - 1 . 

Consider 

W⑴ = w ⑴�
m + l , ( t ) m , (t) 

< i ( ) " ) I ( W⑴ M < W ( 1 ) ) 
m , (1) m , (t) 

m 

< E w 二 I (1)� ⑴ + 

m 

= w 二 , ⑴ I ( W。; (、< w ⑴ ) . 
i 乱m+1 m+l,⑴ m+l,(t) 

Consider 

W⑴ = W • ⑴�
m + l , (t + 1 ) tn+1 

^ w⑴�
m , (t) 

< E w�⑴ … I ( (1) , , ( 1 ) , 
.^r m , ( i ) ( W ,, < W ) 

m , (i ) m , (t) 
m 

T̂  ”�⑴ T 

= L W I , (1) (1) • 
,二I m + l , (i ) ( W < W ) 
i€L m + l , ( i ) m + l , (t+1) 

m + l 

For J = t+2, ... , n-1, consider 

W⑴ = W ⑴�
m + l , ( J ) m , (J-1) 

< ^ V ' m I ( w⑴ < w ( i ) ) 
1€L m , (i) m , (j-1) 

m 

= ^ C ( n i ( w ⑴ < w (” ）• 
1€L m + l , ( i ) m + l , ( J ) 

m + l 

Also, W⑴ = W ⑴ for J = 1 , … ， t . Therefore, we have 
m + l , (j) m , (J) ^ 
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W ⑴ <r r l t d ) T 

丄 I ( W ⑴ < w ⑴ ） f o r J = 1 
i � + 1 m+l, (i) m+l,(J) 

(iii) W•⑴ ^ W ⑴ . 

m+1 m, ( n - 1 ) 

Consider 

W⑴ = W ⑴�
m+ l , ( n - 1 ) m, ( n - 1 ) 

< 〈:;）I (� 、< w ⑴ ) 
m, ( i ) m, (n-1) 

m 

< E V/ I (1)� ⑴ + w•⑴�

ID 

= W m : : ; ) I ( y d ) , w⑴ ) • 
丄項 ro+l,(l) m+1, (n-1) 

m +1 

Also, W二’(J) = V/:”(J) for J = 1, ..., n-2. Therefore, we have 

W二’（J) < W 二 ） I ( w� ⑴ < w ⑴ ） f o r J = 1,..•’n-1. 
i € L m+1, (1 ) m+1, ( J ) 

in +1 

By mathematical induction, 

< E I (W⑴ < W ⑴ ) f o r J = 1 n-1, is true 
k , (1) k ’（J ) 

for all positive integer k, where n < k ^ N and the size of L is at 
k 

least n+1. Q.E.D. 

Theorem 3.6 

A weighted sample of size n 2) is drawn from N units, where W^ > 0 

for i = 1 , … , N and n < N. The proposed algorithm can find a 

weighted sample if the following conditions are satisfied: 
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(i) J = 0 and C < 0; or 
N N 

(ii) J站 = n - 1 and (n-1) V = C*. 
N N N 

Proof of Theorem 3.6: 

Without loss of generality, assume that M ^ < ^ w 

1 2 … N' 
Consider (i) J = 0 and C ^ 0. Since C ^ 0, we have A < 0 and B < 

« N N N N 

nV^N⑴ n W ⑵�
0. It implies that — 1 and - j - ^ — — < 1. By Theorem 

E w;i) E 

J=i j J = i J 

3.1, both samples, S and� S。， which are the samples drawn from S and 
1 2 f 1,N 

N Z W -
S2 N respectively, exist. Define 0 < p = < 1. We accept S 

, ^ W 1 

J=i 

as our sample S with probability p and accept S with probability 1-p. 

That is, 

Pr ( i € S ) = p Pr ( i € S ) + (1-p) Pr ( i € S ) 
1 2 

i W ⑴ “ ⑴ I W⑵ (2) 
u n w ^ u n w 

= u = i 1 + u=i 1 

N N II N “ 

E W E w 1) E w E w 2) 
J=I J=I J=I J=I 

n W 
I 

N 

E W 
J=I 

Therefore, a sample with probabilities proportional to weight, is 

obtained. 

For (ii) J^ = n-1 and (n-1) V^ = C*. In section 3.4’ we have 
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, , n W ^ n W� ⑴�
performed one additional step such that - = l ^ = 

N ' N 

E w;i) E 
j=i j=i “‘ 

^ „ (2) 
n w^ 

and — = 1. By Theorem 3.1’ both samples. S and S exist. 
一 f2) 1 2 
Z W ) 
j=i J 

With the same argument in (i), a sample with probabilities proportional 

to weight exists. Q.E.D. 

Theorem 3.7 

Suppose 2 ^ n < N and W^ > 0 for 1 = 1 ’ ... ， N. The proposed algorithm 

can find a sample of size n with positive second order inclusion 

probability if J = 0 and C ：̂  0. 
N N 

Proof of Theorem 3.7: 

Since C ^ 0 and J = 0, we have A ：̂  0 and B 0. By Theorem 3.1, 

N N N N 

samples drawn from S and S exist and denote the samples as S and 
1 y N 2, N 1 

S . By Theorem 3.6, a weighted sample is obtained. Besides, at each 

stage k ( where the size of L is at least n+1 ), A < (n-2) M⑴ . By 
k k k 

Theorem 3.4, there are at most n-2 self-selective units in the sample 

drawn from S at stage k, and by Theorem 2.1, the second order 
1»K 

inclusion probability are strictly positive in the sample drawn from 

S . We accept the sample drawn from S with probability p which is 
1, N 1, N 

defined in Theorem 3.6, and from S with probability 1-p. Thus, 
2, N 
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Pr(i,J € S) 

= P Pr( i,J € Si ) + (1-p) Pr( i’J € S ) 

乏 P Pr(i,j € S^) 

> 0. 

Therefore, the proposed algorithm can find a sample of size n with 

positive second order inclusion probabilities. Q.E.D. 

§3.6 Worked example 

The data file contains ten records R^ R^^ ( N = 10 ) with weights 

60, 20, 60’ 10, 20, 30, 20, 230, 240 and 50, denoted as W W 
1 10' 

We want to draw a weighted sample of size three ( n = 3 ). 

We first sort the leading five ( that is 2n-l ) units in ascending 

order. The weights are 10, 20, 20, 60 and 60 and are denoted as W . 
( 1 ) ' 

W(2)’ W(3)， W(4) and Consider the first two units and the 

algorithm starts from stage two. 

Stage Two: 

Choose U such that 0 < U < W , say U = 5. Then, set W ⑴ = W ⑴ = 5 . 
⑴ (1) (2) 

Si,2 = { (R4, 5), ( V 5) >. 

S , = { (R . 5), (R . 15) } 
2,2 4 2 

and 

S = 0. 
3,2 

Also, we have A = 5, B = 25, C = 30; M ⑴ = 5 ， M ⑵ = 1 5 , M = 20; 
2 2 2 2 2 2 

T ⑴ = 1 0 , T ⑵ = 2 0 , and T = 30. 
2 2 2 
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stage Three: 

Handle W = 20. 
(3) 

Since W ⑶ = M ^ and M^ < C^ < M^ + W。）’ it is the CASE 3. Choose W⑴�
(3) 

such that 

max ( 5 ) wj^j ^ min ( 10 - 5 ) 

where 

0 < a^ < min ( 5, 5 ), 

0 < 5 < min ( 5, 5 ) 

and 

0 < 5 < min ( 5, 5, 5 ). 

Take W】” = 5 and = 15 Thus, after this stage, 

= ^ { (V 5) 
= - < ( V 15) > 

and 

So o = 0. 
3 , 3 

Also, we have A = 0, B = 10, C = 10; M ⑴ = 5 , M ⑵ = 1 5 , M = 2 0 ; 
3 3 3 3 3 3 

T丄” = 1 5 , T丄2) = 35, and T = 5 0 . 
3 3 3 

stage Four: 

Handle W = 60. 
(4) 

Since W^ > M and W > T , it is the CASE 7. Set S = S , 

(4) 3 (4) 3 ’ 1,4 1,3’ 

S = S and S = { R }. We have A = 0, B = 10, C = 10; 
2,4 2,3 3,4 1 4 4 4 

M ⑴ = 5 , M ⑵ = 1 5 , M = 20; T ⑴ = 1 5 , T ⑵ = 3 5 , T = 50； C* 
4 4 ' 4 4 4 , 4 ’ 4 

= 1 3 0 , V = 60 and J = 1. 
‘ 4 4 
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stage Five: 

Handle W = 6 0 . 
(5) 

Since W = V and J = 1, it is the CASE 8. Set S = s , S = 
(5) 4 4 1,5 1,4' 2,5 

^2,4 and S3’5 = { Ri’ R^ }• We have A^ = 0, B^ = 10, C^ = 10； M;” 

= 5 ’ = 15 , M^ = 20; T丄 1) = 15, = 35, 丁日=50； C* = 130, V^ 

= 6 0 and J = 2. 
5 

stage Six： 

Handle W = 30. 
6 

Since J = 2, M < W and V^ - T^ < W < V— it is the CASE 13. Choose 
=> 5 6 5 5 6 5 

W⑴ such that 
6 

max ( -45 + 5 . 5 ) ^ W ⑴ m i n ( 5 5 , 15 - 5 , 15 ) 
1 6 2 

where 

0 < 6 < min ( 100, 60, 30 ) and 0 < 6 < min ( 10, 30 ). 
1 2 

Take W 广 = 1 4 and W ⑵ = 1 6 . Denote the updated values of A, B, C, 
6 6 

( 1 ) ⑵ （ 1 ) ( 2 ) * ’ ‘ ‘ ’（1) ’ ⑵ 
1 , 1 , T , M , M , M , C , V a n d J a s A , B , C , T , T , 

6 6 6 6 6 
, * (1) , (2) , »* » » 

T , M , M , M , C , V and J . After this intermediate step, 
6 6 6 6 6 * 6 6 ^ 

» » » » M ) » (O) » » (1 ) 
we have A = 13, B = -3, C = 10，T� ⑴ = 2 9 , T ‘ = 5 1 , T = 80, M 

6 6 6 6 6 6 6 

= 1 4 , M’�⑵ = 1 6 , = 30, C,. = 100, V' = 60 and J = 1. Consider the 
6 ‘ 6 6 6 6 

’ » » M) • (P) » ( 1 ) 
two units in S , that is V . Let V = W�⑴ + W� ⑷ . Choose W 

3 , 6 6 6 6 6 6 

such that 

max ( 14.5 + 5 . 9 + 6 . 14 ) ：£ W : ⑴ m i n ( 29 - d . 34.5, 44 ) 
1 2 6 3 

where 

0 <� � < min ( 7.25, 20, 29.5 ) 

0 < 5 < min ( 10, 25.5, 35 ) 
2 
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and 

0 < S3 < min ( 7.25’ 10, 15 ). 

Take� ⑴ = 2 8 and� ⑵ = 3 2 . Thus, after this stage, 

Si,6 = ^1,5 u { ^ V 14) } u { (Ri, 28)’（R3, 28) >, 

\ 6 = u { ( V 16) > “ O V 32)’（R3, 32) } 

and 

\ 6 = 0. 

Also, we have A^ = -1, B^ = -19, C = -20; M ⑴ = 2 8 , M ⑵ = 3 2 , M = 
(1) 6 6 , 6 

60; T ” = 85, T丄2) = 115^ T = 200 and J = 0. 
° o 6 6 

Stage Seven: 

Handle W = 20. 
7 

Since (：6 < W7 < M^, it is the CASE 1. Choose W^^^ such that 

max ( -1 + 5 6 -12 ) ^ W丄” ̂  min ( 39 - 5 , 28, 20 ) 
1 ^ 7 3 

where 

0 < < min ( 20’ 29, 21 ), 

0 < 6 < min ( 28, 20, 19.5 ) 

and 

0 < 6 < min ( 20, 51’ 19.5). 

Take W ⑴ = 2 0 and W ⑵ = 0 . Thus, 
7 7 

^1,7 = U { ( V 20) >’ 

= \ e - { (V 0) > 
and 

S = 0 . 
3 ,7 

Also, we have A = -21, B = -19, C = -40; M ⑴ = 2 8 , M ⑵ = 3 2 , M 
7 7 7 7 7 7 

= 6 0 ; T ⑴ = 1 0 5 , T ⑵ = 1 1 5 , and T = 220. 
7 7 ‘ 7 
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stage Eight: 

Handle W = 230. 
8 

Since Wg > M7 and W^ > T?’ it is the CASE 7. Set S = S , S = 

1*7 2,8 

^2,7 and S3,8 = " 8 We have A^ = -21’ B^ = _19, C^ = -40; M ^ 

= 2 8 , = 32 , M^ = 60; T : ) = 105, = 115, and T^ = 220. Also, 
C: = 470,�V。 = 230 and J = 1 . 
O 8 8 

Stage Nine: 

Handle W = 240. 9 

Since Mg < Vg < W^ < Tg + V^, it is the CASE 15. Consider V^ and 

let V = V/:⑴ + V/:⑵.Oioose /�⑴ such that 
0 9 9 9 

m a x ( 8 5 + 2 8 )� ⑴ < m i n ( 1 3 5 , 1 0 5 - 〜， 1 9 8 ) 

where 

0 < < min ( 50, 113, 10) and 0 <�� < min ( 77, 10 ). 

Take� ⑴ = 1 0 4 and W广） = 1 2 6 . Denote the updated values of A, B, C, 

T ⑴ ， T ⑵ ， T , M ⑴ ， M ⑵ ， M ’ （ ： • ’ V and J as A’ ’ B, ’ C’，T’�⑴’ T ,⑵， 

9 9 9 9 9 
, ,(1) , (2) , ,* , , 

V , Mg ’ M9 , c^ , V9 and J^. After this intermediate step, 

we have A, = 103, B’ = 137, C = 240, T’�⑴ = 2 0 9 , T , ⑵ = 2 4 1 , T ' = 
9 9 9 9 9 9 

» M ) » (p) » 
450’ M9、 = 104, M9I = 126 , M^ = 230’ C^ = 270. Then consider W^ 

and choose W�⑴ such that 9 

max ( 104.5 + 5 , -1 + 5 , 104 ) W ⑴ m i n ( 209 - 5 , 119.5, 114 ) 
1 2 9 3 

where 

0 < < min ( 52.25, 15, 9.5 ), 

0 < 6 < min ( 105, 120.5, 115 ) 

and 
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0 < < min ( 52.25, 105’ 105 ). 

Take W 广 = 1 1 4 and = 125. Thus, after this stage, 

Si’9 = ^1,8 ^ < ( V 104), O y 114) }, 

= ^ {(只8’ 126), O V 126) } 

and 

= 0 . 

Also, we have A = 19, B = 11’ C = 30; M ⑴ = 1 1 4 , M ⑵ = 1 2 6 , M = 
^ y 9 9 9 9 

240; T二 1) = 323’ T 广 = 3 6 7 , T = 690 and J = 0. 
9 9 9 9 

Stage Ten： 

Handle W = 5 0 . 
10 

Since J9 = 0 and C^ < W^。< M^, it is the CASE 1. Choose W^^^ such 

that 

max ( 19 + 5 . 5 , -76 ) W(二）min ( 39 - 5 , 114’ 50 ) 
1 ^ 10 3 

where 

0 < < min ( 10, 95， 31 )， 

0 < 6 < min ( 114, 50, 19.5 ) 
iL 

and 

0 < 5 < min ( 10 , 115, 19.5 ). 

Take W ⑴ = 3 8 and W ⑵ = 1 2 . Thus, 
10 10 ’ 

S = S u { m , 38) }, 
1,10 1,9 10' , 

S = S u { (R , 12) } 
2,10 2,9 10' 

and 

S = 0 . 
3,10 

We have A = -19, B = -1, C = -20; M ⑴ = 1 1 4 , M ⑵ = 1 2 6 , M = 
10 10 10 10 10 10 

240; T ⑴ = 3 6 1 , T ⑵ = 3 7 9 , and T = 740. 
10 10 10 
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When four units have been included in the set S and S , we 
19 6 2,6 

begin the selection of two samples of size three from S and S 
1,6 2,6 

respectively by Chao's method. Whenever there is a new unit included in 

Si,ic and S^ k at stage k, we select samples of size three from S and 

1，k 

respectively, by Chao,s method. At the end of the file, we select 

the sample drawn from as our sample with probability 361/740 and 

select the sample drawn from S^ ^^ as our sample with probalDility 

379/740. At the end of the file, C < 0 and S is empty and hence a 
丄 U ^ 1U 

weighted sample exists with positive second order inclusion 

probabilities. 
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CHAPTER 4. CONCLUSION 

We have presented a new one-pass algorithm that selects an unequal 

probability sample proportional to weight without replacement. Since 

the algorithm incorporates with the Chao's algorithm, it still retain 

the advantages of the Chao's algorithm. More importantly, the proposed 

algorithm guarantees the positive second order inclusion probabilities 

and there is an unbiased variance estimate whenever it is possible. 

At each stage, one of the fifteen cases will occur and examine. 

Comparing with the Chao's algorithm, the proposed algorithm makes much 

considerations and seems much complicated. For each weight, it is 

either divided into two parts and included in S and S or its unit 
l,k 2,k 

is added to S . In each of S, , and� S。，，a sample is selected based 
K 1, Ic 2, k 

on the Chao's algorithm. Obviously, the storage requirement, including 

the working storage for the three sets, is at least two times as much 

as that for the Chao,s algorithm. Since the Chao's algorithm is 

performed two times at each stage, the computer time required is nearly 

double the Chao's algorithm. However, the overall computer time can be 

reduced. At each stage, there is an interval in choosing the weight 

divided into S . If we choose the upper bound of the interval, the 
1, k 

weight divided into S may be close to zero in some cases. When the 
2, k 

new weight in S is zero, the sample at previous stage retains and 
2, k 

there is no need to perform the Chao's algorithm at this stage. 

Overall to say, the proposed algorithm is most suitably implemented 

on the computer to select a sample with probabilities proportional to 
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weight without replacement and it can guarantee the positive second 

order Inclusion probabilities. 
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