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V. 

Abstract 

A representation result of Cominetti and Correa's generalized 

second-order directional derivative is given in chapter 2 and then 

applied to obtain a Taylor theorem type result. A conjecture made by 

Cominetti and Correa concerning functions of the form 

is proved under a strengthened assumption, but not true otherwise. 

In chapter 3, we generalize and sharpen R. W . Chaney's results 

on unconstrained and constrained second-order necessary and sufficient 

optimality conditions f or general Lipschitz functions without the 

semismooth assumption. 
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Introduction 

Since the pioneering works of F. Clarke and B. N. Pshenichnyi 

[4, 6]1 generalized directional derivatives have been studied, and 

successfully applied in various fields especially in optimization and 

control theory. The study of generalized second—order directionai 

derivatives with its applications in the optimization theory is more 

recent. 

In chapter 2, we consider a generalized second-order directional 

derivative defined by Cominetti''and Correa [5】： 

00 1 
f (x;u,v): = lim sup -^f(y+tu+sv) - f(y+tu) - f(y+sv) + f(y)\, 

y IX ts、 

where f is a continuous function of a locally convex space X into IR and 

X, u, V € X. In Proposition 2.2.4 w e represent f⑴(x;u,v) in the form 

of upper limit of the rates of changes of the lower or upper Dini 

directional derivatives： 

① D+f(y+tv;u) - D+f(x;u) 
f (x;u,v) = lim sup 

t 

D+f(y+tv;u) - D+f(x;u) 
= l i m sup . 

yjx t 

This result enables us to establish a generalized second-order Taylor 

expansions (Theorem 2.4.2 and 2.4.3) for nonsmooth functions. These 

extend the corresponding results of Cominetti and Correa who assume the 

function f is In section 6 of this chapter, w e apply our results 

to a large class of functions (for example, convex and concave 

1 References for this Introduction are listed in page 5. Separated 

references for each subsequent chapter of this thesis are listed at the 

end of that chapter. 
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functions) which are not covered by [5, Prop. 4.1]. Some applications 

to optimization theory are presented in section 7. In [5]’ a 

conjecture was made about the possible validity of 

h°°(x;u,v) = MA^ D \ ( X ; U , V ) , 

1—1一n 1 

where each g. is C^ and D^g. denotes the second-order directional 

derivative. In section 3 of this chapter, w e provide an example 

[Example 2.3.3] which shows that the conjecture is incorrect. An 

affirmative answer is given in Corollary 2.3.5 and Corollary 2.3.7 

under some strengthened conditions. 

In chapter 3， we consider the necessary and sufficient 

conditions for optimal solutions in the following nonsmooth 

optimization problems (P ) or (P ):. 
1 2 

(i) Problem (P ) minimize f(x) 
1 • 

(ii) Problem (P^) minimize f{x) 

subject to g^(x) ^ 0 for i = 1, 2,…，m; 

gj(x) = 0 for i = m+1, ••., m+p, 

where x € X and X is a normed space and f, g^, i = 1, 2, • • •, m+p, are 

locally Lipschitz functions of an open subset W of X into OR. In recent 

years, many of results on the above problems have been presented. A 

common feature of these results is the use of various kinds of 

conditions such as semismoothness, regularity or convexity to replace 

the assumption of differentiability. In order to weaken the above 

additional conditions, we make use Chaney's generalized lower and upper 

second-order directional derivatives introduced in [1】， [2] ( for 

definition see Definition 3.1.3). Note that if x is a local minimum 

point of f then the lower Dini directional derivative D+f(x;u) ^ 0 at 

3 



V. 

each direction u. If D/(x;u) = 0 for some u, then w e show (Theorem 

3.2.2) that 0 belongs to Chaney's subdifferential a^f(x) and so 

f二（x;0,u) is meaningful and r:(x;0,u) > 0. This result was proved by 

Chaney in [1] in the special case when X = r"" under an additional 

semismooth assumption of f. N o w let T be the set of all vectors w = 

“m+p 

(w。，Wi, •.., w ) € oT+P with y (w)2 = 1 and w ^ 0 for i = 0. 1 
Lt I 1 ‘ 

1=0 

• • ., m . Let L(x,w) denote the Lagrangean function on W x T defined by 

m + p 

L(x，w): = w。f(x) + ^ w^g,(x) 

i=l 

and define the function 

G(x’f): = m a x {L(x，w) - w^f(x): w € T} 

as in [1] and [2]. Then, for x to be a local minimum point of f for 

problem (P^), the following conditions are shown to be necessary 

(Theorem 3.3.6): 

(i) G二(二0’u) ^ 0, and (ii) L;^(X,W,0,U) > 0 

for some Lagrange multiplier w" in whenever D+G(. ,f)(义u) = 0. 

Further, for X =沢〜 t h e complementary results on sufficient optimality 

conditions for unconstrained/constrained problems are obtained (Theorem 

3.2.8, Theorem 3,4.2 and Theorem 3.4.8) and thereby not only the 

related results in [2] are generalized (to not necessarily semismooth 

functions) but also the conclusions are considerably sharpened. 

4 
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V. 

Chapter 1. S o m e elementary results in nonsmooth analysis and 

optimization 

In this chapter, w e summarize some preliminary background 

material necessary for the later chapters. In section 1, w e list some 

computation rules of "lim sup" and "lim inf" in the extended real field 

which will be made use in computing the generalized directional 

derivatives. In section 2, w e review an elementary result with respect 

to the directional derivative of the so-called sup-type function 
J 

h(x)： = max{f(x，t); t € T}. 

In section 3, some elementary results in nonsmooth analysis and 

optimization theory are recalled for easy reference. 

Throughout this chapter, X will be denoted as a locally convex 

space except when it is mentioned specially. R = IR u {-oo,+co} will be 

the extended real field with the usual operations, order and topology 

familiar in convex analysis. 

1. S o m e properties for "lim sup" and "lim inf" 

Let W be a subset of a locally convex space X with closure 

denoted by W . For x € W , let V^ be the neighbourhood system at x 

restricting to W . The upper limit and lower limit of f at x [5] are 

defined by 

lim sup f(x): = inf sup f(y) 
” X y € U 

and 

6 
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lim inf f(x)： = sup inf f(y) 

respectively. Clearly these definitions are unchange if % is replaced 

by the subfamily consisting of the sets of the form W n V, where V runs 

over a neighbourhood base at x. For a net {x̂； t € D in W 

convergening to x, where 厂 is a direct set, we can also form the upper 

and lower limits of fCx^) [5]. They are denoted by 

lim sup f(xt): = inf sup f(x^) and lim inf fCx.)： = sup inf f(xj. 

From the definitions, we obtain immediately the following 

L e m m a 1.1.1. [5] For any x e W, 

(1) for any net y^ e W with y^ —» x, one has 

lim sup f(yt) - lim sup f(y) and lim inf fiy^) 2： lim inf f(y). 

(2) there exist nets y^, z^ € W with y^ — > x and z^ x such 

that 

lim fiy^) = lim sup f(y) and lim f(zj = lim inf f(y)； 

t y->X S S y ^ x J 

L e m m a 1.1.2. [6，pp. 37] Suppose that f^ and『2 are functions 

of W into IR and X € W . 

(1) If lim sup fj(y) and sup f2(y) are not simultaneously 

infinity, opposite in sign, then one has 

lim sup (fi + f2)(y) ^ lim sup fj(y) + lim sup f2(y); 

(2) If lim sug fi(y) and lim sug f2(y) are not simultaneously 

infinity, same in sign, then one has 

lim sup (fj 一 f2)(y) ̂  lim sug f^Cy) - lim sug f2(y); 

(3) If lim inf fi(y) and lim inf fo(y) are not simultaneously 
y->x 1 y->x “ 
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infinity, opposite in sign, then one has 

U m inf (fi + f2)(y) ^ lim inf f^Cy) + lim inf f̂ iy)-, 

(4) If lim inf fjy) and lim inf f2(y) are not simultaneously 

infinity, same in sign, then one has 

lim inf (f^ -广2)(力 ^ lim inf f^iy) - lim inf fJy)； 

(5) The following inequalities hold 

lim inf (f! + f2)(y) - lim inf f^Cy) + lim sup 

^ lim su^ (fi + f2)(y) 

provided the right hand side of the first inequality is not of the 

form 00 - 00. 

2. The directional derivative of the sup-type function 

Let T be a compact metric space, {f(-,t); t € T} a collection of 

continuous functions of X into (R and let h be defined by 

h(x): = m a x (f(x,t)； t € T>. (x € X). 

Let X € X. By a slight abuse of notations w e write f(x) for the 

indexed set (f(、t))teT of values of the function t h^ f(x,t), and let 

I(f(x)) denote the set of all t for which h(x) = f(x,t). 

Recall that the one side-directional derivative of a function g: 

X — R at X in the direction v € X is defined by 

(x;v)： = 1 丄 m i{g(x+sv) 一 g(x)}. 
s 0 S 

L e m m a 1.2.1. Suppose that f (•, •) is continuous on X x T. Then 

h is continuous on X. 

Proof： Let x € X. By the definition of h and the compactness 
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of T, for any y e X’ there exists ty such that h(y) = f(y,ty) and hence 

that 

(1-2.1) h(y) - h(x) ^ f(y,ty) - f(x,ty). 

Also similarly, take A e I(f(x)), i.e. h(x) = f(x,A); hence 

(L2.2) h(y) - h(x) ^ f(y,A) - f(x,A). 

N o w w e let y x. By the compactness of T and considering a subnet if 

necessary, w e can assume that TY —> T. Thus, by the continuity of 

f(.,.) on X X T, (1.2.1) and (1.2.2) w e obtain 

lim sup {h(y) - h(x)} ：< lim {f(y,t„) - f(x,tj} 
y y->x ‘‘ y y 

‘ = f ( x , T ) - f(X,T) : 0 

and 

lim inf (h(y) - h(x)} ^ lim {f(y,A) - f(x,A)} 
y y— X 

:f(x,A) - f(x,入）=0. 

Combining the above two inequalities w e see that h is continuous at x. 

L e m m a 1.2.2. Suppose that f (.，.）is continuous on X x T, y —> x 

in X and TY € I(f(y)). Let T be a cluster point of TY. Then 

T € I(f(X)). 

Proof： Take a subnet y^ of y with TŶ  ~> T. Note that 

ty^ € KfCji；,)) and that ŷ ^ — ^ x since y — x. Since h is continuous on 

X by L e m m a 1.2.1 and f(.，•）is on X x T, w e have 

h(x) = H m H(YY) = H m = f(x,T) 

and so T € I(f(x)). • 

Proposition 1.2.3. Suppose that f( •, •) is continuous on X x T, 

X € X and f( • ,t) is directionally differentiable at x for each t € T. 

9 



Then for any v € X, one has 

if (1) T is a finite set or (2) f'(.’.) is continuous on X x T. 

Further, if X is the finite dimensional space and (2) holds, 

then h is locally Lipschitz on 沢". 

Proof: Note that I(f(x)) is compact subset of T (and finite if 

T is finite). Thus, in either (1) or (2), there exists T e I(f(x)) at 

which f'(x, O v attains its maximum on I(f(x)): 

Then for any 入 > 0> one has , 

f(x’T) = h(x) and h(x+入v) > f(x+Av,T) 

and so 

i{h(x+Av) - h(x)} 

^ i(f(x+Av,T) - f(x,.T)}; 

consequently 

(1.2.3) lim i{h(x+Av) - h(x)} 

^ lim 树 去 { f ( x + 入 v ’ T ) - f (x,T)> 

=广（x，Tr)v = m a x f'(x’t)v’ 
t€I ( f (X)) 

where the first equality holds since f ( - , T ) is directionally 

differentiable at x by assumption. On the other hand, for any t入 € 

I(f(x+Av)), one has 

(1.2.4) i{h(x+Av) - h(x)} 

=i{f(x+Av,tx) - f(x，t入)} + *{f(x’t入)-h(x)} 

i{f(x+Av,tx) - f(x,t入)}. 

By considering subnets if necessary, we can assume that 

(1.2.5) t入—> to 

10 
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(hence t。€ I(f(x)) by L e m m a 1.2.2) and 

(1-2.6) lim sup i{h(x+Av) - h(x)} 

X^o八 

^ lim sup i{f(x+Av,t； )̂ - f(x’t入)} 

= I j m i{f(x4-Av,tx) - :f(x,t入)}. 

N o w w e suppose that (1) holds, that is, T is a finite set. In 

this case, (1.2.5) ensures that there exist infinitely many of t入 = t ^ . 

Thus, (1.2.6) can be rewritten by 

lim sup i{h(x+Av) - h(x)} 
A^o A 

= l i m |{f(x+Av,tx) - f(x,t入)} 
入山0 A ” 

= l i m i{f(x+Av,to) - f(x，to)} 
A山0八 

：厂(x’t。)v ̂  t^m矜X)广 

where the last equality follows from the directional differentiability 

of f( • ,t) on X for any t e T and the last inequality holds since tg € 

I(f(x)). Together with (1.2.3) w e conclude that 

h'{x;v) = lim i{h(x+Av) - h(x)} = m a x f' (x,t)v. 

X山 0 A t€I ( f ( X)) 

Next w e consider the case (2). By the Mean-Value Theorem 

(1.2.4) can be rewritten by 

i{h(x+Av) - h(x)} ^ f' (x+S入v,t入)V，where 3入 € (0,入)• 

By considering a subnet if necessary, w e can assume that t；̂̂  ~ > t。and 

so to € I(f(x)) by part (2) of L e m m a 1.2.2 since t；̂  € I(f(x+Av)). 

Thus, it follows from the continuity of f' (•, • )v on X x T that 

lim sup i{h(x+Av) - h(x)} 

A^o入 
：̂  lim sup f'(x+5入v,t入)V 

A^o 

11 



Therefore, together with (1.2.3) w e also obtain 

h'(x;v) = lim i{h(x+Av) - h(x)} = m a x f'(x,t)v. 

A^ 0 入 t€I ( f (X)) ’ ' 

For the last assumption of the Proposition 1.2.3, suppose on 

the contrary that there exist x。e and sequences 乂让，^k 运 " ^口 with 

llyk-Xo丨丨，llZk-Xoll —> 0 such that 

丨 h(yk) - h(Zk)| > Kllyk-ZjJI, 

for each k. In general, w e can further assume that h(y^) > h(Zk). Let 

y^-Zk 

tk = "yic-Zk", Uk = and hCy^) = 

By considering a subsequences if necessary, w e can assume that Uĵ  — > u 

and 入k — 入 . In terms of these, one has 

"yk-^k'i 一 ^ . 

and so it follows from the continuity of f (•, •) and the Mean-Value 

Theorem that 

‘ < 「 二 ， 入 n ) - Hz,,A,) 
+00 ^ Urn ^ = f'(Xo,A)u. 

This is a contradiction. • 

3. S o m e results in nonsmooth analysis and optimization 

In this section, w e give some well-known results in nonsmooth 

analysis and optimization for convenient background. The details of 

proofs are ref erred to, e.g. [1], [2】. 

Let f： X~~> R be a function. Recall that the Clarke's 

directional derivative at x in the direction u is defined by 

f。(x;u): 二 lim sup ^{f(y+tu) - f(y)} (：£ +co) 
yfx t 
t^o 

12 
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and that the Clarke's subdifferential of f at x is the subset of the 

topological dual X* of X defined by 

3f(x): = {x* € X*; <x*,v> < f°(x;v) for all v € X}. 

It is clear that 5f(x) is a w*-closed convex subset of X*. Recall that 

a function f of X into R is said to be locally Lipschitz at x if there 

exist a neighbourhood U of x and a continuous seminorm p on X such that 

lf(y) - f(z)| < p(y-z) 

for all y, z in U. Further, if it is locally Lipschitz at each point 

of X, then w e call it a locally Lipschitz function on X. 

The following result was given in [2, pp 25-27] for the case 

when X is a normed space. 

Theorem 1.3.1. [2, pp. 25-27] Suppose that f is a real-valued 

function of X. Then the following hold： 

(1) For any oc ^ 0 and u, v € X, one has 

(i) f°(x;au) = af°(x;u)； 

(ii) if r(x;u) and r(x:v) are not simultaneously 

infinity, opposite in sign, then 

f。(x;u+v) ^ f。(x;ii) + fO(x;v). 

(2) • ,u) is upper semicontinuous for any u € X. 

Furthermore, if f is locally Lipschitz on X，then f°(x; •) is a locally 

Lipschitz function for any x and f°(•，•）is upper semicontinuous. 

(3) If X is a normed space and f is a locally Lipschitz 

function on X，then the multi-function x 9f(x) locally takes values 
* 

in a w -compact convex set, that is, for any x € X, there exist a 

来 

neighbourhood U of x and a w -compact convex subset K of X such that 

13 



af(z) C K for all z € U. 

Proof: (1) (i) follows from the definition of f° and (ii) 

follows from applying (1) of L e m m a 1.1.2 to the following equality: 

1 1 1 
-{f(y+t(u+v)) - f(y)} = -{f(y+tu+tv) - f(y+tu)} + -{f(y+tu) - f(y)} 

(We note that, y —> x if and only if y+tu x because t 山 0). 

⑵ By definition of f。，for any c > 0 there exist an open 

neighbourhood U of x and 6 > 0 such that 

去{f(y+tu) - f(y)} < c + f。(x;u) +co) 

for all y € U and 0 < t < 5. Since U is an open neighbourhood of each 

z in U, this implies that 

fO(z;u) = lim sup i{f(y+tu) - f(y)} < f°(x;u) + c 

f^O 

and so lim sup f°(z;u) < f°(x;u) since e is arbitrary. This shows the 
Z / X 

first result. For the second, since f is locally Lipschitz on X, 

f°(x;ii) is finite for any x and u. By (ii) of this theorem w e have 

(1.1.1) f°(x;u) - f。(x;v) < f。(x;u-v) = lim sup i(f(y+t(u-v)) - f(y)}. 
y ? x t 
t^O 

For any x € X，applying the Lipschtz condition of f, w e can find an 

open neighbourhood U of x and a continuous seminorm p such that 

|f(z) - f(w)| ^ p(z-w) 

for all z, w € U. Then, for all u, v in X and y e U consider t > 0 

small enough such that y+t(u-v) € U. Then 

|f(y+t(u-v)) - f(y)| tp(u-v). 

It follows from (1.1.1) (applied to z in place of x) that 

f°(z;u) - f。(z;v) ̂  p(u-v) 

valid for all z in U. This proves the second result, and further 

implies that 

14 
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lim sup fO(z;u) ^ lim sup f。(z;v) + lim sup p(u-v) s f°(x;v) + 0, 
^ 2-7 X 

u->v 

showing the last assertion of this part. 

(3) See [2, proposition 2.1.2]. • 

Theorem 1.3.2. [2,Proposition 2.3.3] Suppose that f^, f^ are 

the locally Lipschitz functions of a normed space X into (R. Let f = f\ 

+ Then for any x € X, one has 

af(x) c af^(x) + 5f2(x). • 

Ekeland’s variational principle. [3 or 2, Theorem 7.5.1] 

Suppose that (X’p) is a complete metric space and f is a lower 

semicontinuous function which is bounded below. For x € X and c > 0, 

if one has 

f(x) ^ inf{f(y)； y € X} + e, 

then for any 入 > 0, there exists XQ c X such that 

(i) p(Xq,x) s a； 

(ii) f(Xo) s f(x)； 

and 

(iii) f(xo) ^ f(y) + 妥 p(y,Xo). • 

In the following, w e give some results in nonsmooth 

optimization. Theorem 1.3.3 is given in [2, Proposition 2.3.2] in the 

case when X is a normed space. 

Theorem 1.3.3. [2, Proposition 2.3.2] Suppose that f is a 

15 
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function of X into (R and XQ is a local minimum (resp local maximum) for 

f, that is, there exists a neighbourhood U of XQ such that 

f(Xo) ^ f(x) (resp f(x) ：£ f(Xo)) 

for all X € U. Then 

f。(Xo;ii) > 0 

for all u € X, equivalently, 0 € 3f(Xo) by definition of 5f. 

Proof: First w e consider the case when XQ is a local minimum. 

Then it follows from the definitions that one has 

0 ^ lim 溯 ^(f(xo+tu) - f(xo)} ^ fO(Xo;u) 

for any u € X. Secondly, w e consider the case of that XQ is a local 

m a x i m u m . For any u € X, t > 0 and x^ = XQ-tu, one has x^ — > XQ as 

t ^ 0; hence 

fO(Xo;u) 2： lim sijig 去{f(Xt+tu) — f(Xt)} 

=lim s^p i{f(Xo) 一 f(Xt)} ^ 0. • 
VJ L 

Recall that the lower Dini directional derivative D一f(x;v) of f： 

X — R at X in the direction v is defined by 

D.f(x;v)： = lim inf ^{f(x+tu) - f(x)}. 

t外 t 

Ioffe，s Proposition. [4, Proposition 1] Let XQ € and f be a 

locally Lipschitz function of into R. If D_f(Xo;v) ^ 0 for all v in 

rU, then for any c > 0, there exists 5 > 0 such that 

(1.3.1) f(Xo) < f(x) + cIIx-XqII 

for all 0 < IIX-XQII 5. 

Proof： If the desired conclusion is false, then there exist 

E > 0 and a sequence Zĵ  € with XQ 本 ẑ ^ such that ZR — XQ and 

16 
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f(Xo) > f(z„) + CllZk-Xoll. 

Zk - XQ 
Let tk =丨丨Zk-Xo 丨丨 and u^ = — . Then by considering a subsequence if 

'-k 

necessary, w e can assume that Uj, converges to some unit vector u. 

Thus, one has 

D_f(Xo;u) ^ lim inf ^{f(xo+t.u) - f(xo)> 

k->00 tk U K VJ 

~ U m inf - f(Xo)} + lim s ^ ^{fCxo+tj^u) _ fiz^]} < -e, 

where the second inequality follows from (5) of L e m m a 1.1.2 and the 

third inequality follows from (1.3.1) and the Lipschitz condition of f 

(notice that fCxQ+t^u) - fiẑ )̂ ^^ Ltĵ llu-uj,!! for some Lipschitz constant 

L). This contradicts the assumption of the proposition. • 

W e end this section by Clarke's nonsmooth Lagrange multiplier 

rule. Let X be a normed space and f a locally Lipschitz function of X 

into IR. Further, w e let g be a locally Lipschitz function from X into 

[RU and C a closed subset of X. 

N o w w e consider the minimization problem with constraint: 

(P) minimizing {f(x); x € Q}’ 

where Q: = {x € C; g(x) ：̂  0}. Define the distance function d^； X IR 

by 

d^(x): = infdix-yll； Vy e C). 

In terms of this, w e have the following Lagrange multiplier rule： 

Theorem 1.3.4. [2, Theorem 6.1.1] Suppose that XQ is a local 

minimum for the problem (P), that is, there exists a neighbourhood U of 

XQ such that for any x € U n Q, one has Hx。）^ f(x). Then there 
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exists a multiplier (A, € IR x R。with A, ^ 0, 1 < i < n and 

n 

入 + 1 ^ 1 = 1 such that 
i = l 

^g(xo) = 0 and 0 < L°(xo;v) 

for any v € X, where L is the Lagrangian function defined by 

L(x)：=入 f(x) + rg(x) + ad^(x) 

and a is constant strictly larger than a Lipschitzian constant for both 

f and g on a neighbourhood of Xq. 口 

J. 
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V. 

Chapter 2. On generalized second-order derivatives and 

Taylor expansions in nonsmooth optimization 

1. Introduction 

In this chapter we study a generalized second-order 

directional derivative f①（x;u,v) recently introduced by Cominetti 

and Correa [2]. Based on their work, in proposition 2.2.4 we 

represent f①（x;ii,v) in the form of the upper limit of the rates of 

changes of the first order Dini directional derivatives. This 

representation enables us to establish a second-order Taylor 

expansions (Theorems 2.4,2 and 2.4.3) for nonsmooth functions. 

These extend the corresponding results of Cominetti and Correa who 

assumed the C^-condition. In §6 we apply our results to a large 

class of functions (e.g. convex and concave functions) which are 

not covered by [2. Prop. 4.1]. Applications to optimization 

theory are presented in § 7. 

In [2], a conjecture was made about the possible validity of 

h"(x;u, v) = v), where each g^ is C^ and D^g^ denotes 

the second-order directional derivative. Example 2.3.3 shows that 

the conjecture is incorrect and an affirmative answer is given in 

Corollary 2.3.5 and Corollary 2.3.7 under strengthened but similar 

conditions. 

2. Dini-directional derivatives, Clarke's directional derivatives 

and generalized second-order directional derivatives. 
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Let X be a locally convex space and f： X ~~> R a function. We 

consider the extended real field R = R u with the usual 

operations, order and topology familiar in convex analysis. 

Denote the upper and lower Dini-directional derivatives by 

D+f(x;v): = lim sug - i (f(x+tv) 一 f(x))’ 

D+f(x;v): = lim inf -1 (f(x+tv) - f(x)), 

and the upper and lower Clarke's directional derivatives at x 

along the direction v € X by 

fO(x;v): = lim sup i(f(y+tv) - f(y)) 
y "vx u 
U o 

and 

fo(x;v): = lim inf i(f(y+tv) - f(y)). 

If X = [R and V = 1, we shall write D+f(x) for D+f(x;v) and 

similarly for (x), f°(x). We shall often make use of the 

elementary computation rules (see, Proposition 1.1.2) for lim sup 

and lim inf without further comments, e.g., if f = f - f then 
1 2 

D+f(x) ^ D f (x) - D f (X), 

provided that the two terms on the right are finite. Also D+f(x) 

^ D f (x) - D f 

(X) with similar provisions. 

Furthermore, as in [2], [4] and [5] we define the upper and 

lower generalized second-order directional derivatives at x in the 

direction (u,v) € X x X by 

f"(x;u,v): = lim sup -irjf(y+tu+sv) - f(y+tu) - f(y+sv) + f(y). 

t 口 S H J 
and 
f⑴(x;u,v): = lim inf - ^ f ( y + t u + s v ) - f(y+tu) - f(y+sv) + f(y)j. 

If f is a C^-function, then applying the Mean Value Theorem to 

the function F(t)： = f(y+sv+tu) - fCx+tu), we verify that and 
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f① are Just the second-order directional derivatives of f (or see 

Prop. 2.2.4 later). For the sake of convenience, we list some of 

their properties in the following Proposition (their proof is 

given in Lemma A1 of the Appendix). For further properties of f① 

we refer to [2], [4]. 

Proposition 2.2.1 [2]. Let f: X — > R and x € X. Then： 

(i) The map (u,v) i ~ > f①（x;ii,v) is symmetric, and sublinear 

on each variable s e p a r a t e l y . . 

(ii) The map y H f"°(y;u,v) is upper semi-continuous at x 

for every (u,v) € X x X. 

( m ) f⑴(x;u,-v) = f"(x;-u.v) = ( - f A x ; u , v ) = -f (x;u,v). 
00 

Before studying the relationship among these directional 

derivatives, we give a few lemmas which will often be used in the 

sequel. Lemma 2.2.2 has appeared in [2, Lemmas 1.4, 1.5] and its 

proof is given in Lemma A2 of the Appendix. 

Lemma 2.2.2. Let f： X ~~、IR be a continuous function, x, v € X, 

and t > 0. Then there exists a € (0,t) such that 

f(x+tv) - f(x) ^ 、 
£ s D+f(x+av;v). 

Consequently, 

lim sup D+f(y;v) = lim sug D+f(y;v) = lim sug f°(y； v) = f°(x； v). 

Remark: Let f = -g. Then we have 

g(x+tv) - g(x) ^ , 、 
^ 之 D g(x+av； v), 

and the corresponding results for f。(x;v) follows. 
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From Lemma 2.2.2 we have the following 

Lemma 2.2.3. Suppose that f： X ~~> [R is continuous and x, u, 

V € X. Then for any t。> 0, t € (0,t^) and s € R there exists a € 

(0,t) such that 

(2.2.1) ^[f(x+sv+tu) - f(x+sv) - f(x+tu) + f(x)] 

- D + f (x+(xu+sv; u) - D+f(x+(xu;u) 

and 

1 
(2.2.2) ^[f(x+sv+tu) - f(x+sv) - f(x+tu) + f(x)] 

-D+f(x+aii+sv;u) - D+f(x+au;u) 

if D+f(•；u) and D f(.;u) are finite on the segments (x,x+t u) and 
0 

(x+sv,x+sv+t u). 
0 

Remark: If we let f = -g, then we have 

1 

(2.2.1), ^[g(x+sv+tu) - g(x+sv) - g(x+tu) + g(x)] 

^ D+g(x+cai+sv; u) - D+g(x+cai;u) 

and 

(2.2.2)’ i[g(x+sv+tu) - g(x+sv) - g(x+tu) + g(x)] 

^ D+g(x+oai+sv; u) - D+g(x+cai;u) 

Proof of Lemma 2.2.3: Let us fix an arbitrary s € R and 

denote the left number of (2.2.1) by 

<l>(t)—少（0) 
t 

where $(t): = f(x+sv+tu) - f(x+tu) = $ (t) - $ (t) with the 
1 2 

obvious meaning of $ ， $ . If t > 0 and t € (0,t ) then, by 

1 2 0 0 

Lemma 2.2.2, there exists a e (0,t) such that 

$(t) - $(0) ^ ^ , 

where D+$((x) denotes D+$(a;l) for short. By assumption (a), 
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D+$2(a) are finite and it follows that 

歪（t) 一 $(0) n 、 + , 、 + 
1 ^ D ^ D $ (a) - D $ (a) 
L 十 1 2 

= D + f (x+ooi+sv; u) - D+f (x+coi; u). 

This proves (2.2.1), and similarly one can prove (2.2.2) because 

< (a) - D $ (a) 
+ + 1 + 2 

as the two terms on the right are finite. • 

Recall that f is regular at x [1] if the one sided directional 

derivative 

f'(x;v) = lim i(f(x+tv) - f(x)), 
t+o z 

exists and f'(x;v) = f°(x； v) for all v. 

Proposition 2.2,4. Let f: X ~~> (R be a continuous function. 

Let X, u, V € X and suppose that •； u), D+f (•； u) and D+f (•； u) 

are finite near x. Then one has 

(2.2.3) (fO(•；ii))o(x;v) 

^ f⑴(x;u,v) = (D+f(.;u))。(x;v) = (D+f(•；ii))o(x;v), 

that is, 

(2.2.4) lim sup—(f°(y+sv;u) - f°(y;u)) 
y->x S 

00 1 

：̂  f (x； u, v) = lim s u p — ( D f (y+sv； u) - D f (y; u)) 
y ^ x S + + 

M 1 + + 
= l i m s u p — ( D f(y+sv； u) - D f(y;u)). 

y->x S 

Dually one also has 

(2.2.5) (f (.;u)) (x;v) 
0 0 > f (x;u,v) = (D^f(•；u)) (x;v) = (D+f(•；u))A(x;v) 

00 + 0 0 

if f。(•； u), D+f(•；u) and D+f(.;u) are finite near x. 

Furthermore, if f is regular near x, then the inequality in 
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(2.2.3) becomes an equality. 

Proof: We need only to prove (2.2.3) as (2.2.5) will then 

follow by considering -f = g (the assertion for the regular case 

is evident from (2.2.4) because then D+f(y+sv;u) = f°(y+sv;u) for 

all y near x and small v). By Lemma 2.2.2 we have 

lim sup D+f(z + sv;u) = f°(y + sv;u). 

Thus, since f°( •；u) is finite near x, it follows from the 

subadditivity of lim sup that 

fO(y + sv;u) - fO(y;u) < lim sup (D+f(z + sv;u) - D+f(z;u)). 
z->y 

This implies that 

(2.2.6) (fO(•；u))。(x,v) 

= l i m sug-i(f°(y + sv;u) - f°(y； u)) 

^ lim sup lim s u p — ( z + sv; u) - D+f(z;u)) 
y — X S 

^ lim sup~i(D+f(y + sv； u) - D+f(y;u)) 

y->x S 

=(D+f(•；u))。(x;v), 

showing the inequality in (2.2.3). 

On the other hand, since D+f(•；u) and D+f(•；u) are finite near 

X， one has, by the subadditivity of lim sup, 

D+f(y+sv;u) - D+f(y;ii) 
：£ lim sup i[f (y+sv+tu) - f (y+sv) - f (y+tu) + f (y)] 

t+o t 
and also 

D+f(y+sv;u) - D+f(y;u) 

^ lim sug i[f(y+sv+tu) - f(y+sv) - f(y+tu) + f(y)]. 
14/ 

These imply that 

(2.2.7) (D+f(•；u))。(x;v) 
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= l i m s u p - i ( D ' ' f ( y + s v ; u ) - D + f ( y ; u ) ) 

I 
- l i m sup -^[f(y+sv+tu) - f(y+sv) - f(y+tv) + f(y)] 

s, t^o 

= f ( x ; u , v ) 

and, similarly, 

( 2 . 2 . 8 ) ( D + f ( . ; u ) ) o ( x ; v ) 

= l i m s u p - | ( D _ ^ f ( y + s v ; u ) - D + f ( y ; u ) ) 

I 
- l i m sup -^[f(y+sv+tu) 一 f(y+sv) - f(y+tu) + f(y)] 

=f*^(x;u，v). “ 

By definition and (2.2.2) of Lemma 2.2.3, 

(2.2.9) f ①(x;u,v) 

= l i m s u g - ^ [ f ( y + s v + t u ) - f ( y + s v ) - f ( y + t u ) + f ( y ) ] 

- l i m sup (y+au+sv;u) - D+f (y+coj; u) ] a € (0, t) 
t.s^o 

I 
= l i m sup -(D^f(y + sv;u) - D+f(y;u)) 

= ( D + f (•； u ) )。 ( x ; v )， 

where we have written a for a = a(y,s,u, v) for the sake of 

simplicity in notations. Similarly, 

(2.2.10) f①（x;u，v) < (D+f(.;ii))o(x;v). 

Together with (2.2.6), (2.2.7), (2.2.8) and (2.2.9), we have 

( 2 . 2 . 3 ) . • 

Remark: There are examples of Lipschitz functions on an 

interval, say [0, b], which fail to be right-differentiable at 

infinitely many points near 0. Thus the representation given in 

the preceding proposition is valid， but cannot be expressed in the 

form of (3) in [2, Proposition 1.3]. For example, write 
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00 
(0,1/271] = U [x^ J , X, = l/2k7r. 

k=l k+1 k k 

Define f(0) = 0 , f(x ) = 0 and 
k 

f(x) = (x-x, )(x -x)sin (x-x 广 
k+1 k k+1 

if X € (Xk+i, x j . Then f二(x) does not exist at each x . 
ic 

In view of proposition 2.2.4 we introduce the following 

generalized second directional derivative in line of Clarke's 

derivatives as an alternative to f①(x;u,v). 

Definition 2.2.5 Let f: X > R. x, v € X’ and suppose that 

fO(x;v) and • ； v) are finite near x. Then the upper and lower 

generalized second directional derivatives are defined 

respectively by 

f。o(x;u，v): = lim sup i(f°(y+tu; v) - f。(y;v)) 

and 

foo(x;ii’v): = lim inf i(f^(y+tu;v) - f^(y;v)). 

It is easy to see that the function u i~> 严(x;u,v) is 

sub linear and the function x i~> 严(x;ii,v) is upper 

semi-continuous. Furthermore, if f is continuous and f°(x; v), 

f。(x;v) are finite near x, then from the above proposition we have 

f (x;u, v) < f (x;u, v) < f°°(x;u, v) ：£ 广(x;u,v); 
CO 00 

and f⑵(x;u，v) = u, v) if f is regular near x. 

00 00 

In § 7 we shall give applications of f and f in the 

second-order necessary optimality condition for constrained 

problem. 
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3. On Cominetti and Correa,s conjecture. 

In this section we study second-order directional derivative 

of the function h of the form 

h(x) = max{g (X), g ( x ) , … ， g (x)} (x e X) 
丄 n 

where each g^ is a real-valued function on X. Note that h = fog 

if one writes g = (g , g …， g ) and defines 
1 2 n 

f(a) = max {a >, for any a = (a , • • • ,a ) € R"" 
i 6 丄 i 1 n 

where I: = {1,2, • • • , n}. Let 1(a) denote the subset of I 

consisting of all i for which f(a) = a . 
i 

For X, 11，V € X we shall write H(x； u, v) oc 0 to denote the 

following condition： 

(g;(x;u) - g;(x;u))(g'i(x;v) - g;(x;v)) < 0 

for all i, J € I(g(x)), and H(x;u, v) <x 0 to denote the condition 

that the strict inequality holds for all distinct i, J € I(g(x)). 

2 -
Suppose each g is a C -function with the usual second-order 

1 

directional derivative at x with respect to the directions u, v 

denoted by D^g^(x； u, v). Cominetti and Correa conjectured in [2] 

that if {g'i(x); i € I(g(x))} is affinely independent and if 

H(x; u, v) oc 0, then the following formula holds 

(2.3. 1) h ①(x;u,v) = max , D^g^ (x;u, v). 

( g ( x ) ) i 

This is incorrect as shown by Example 2.3.3 below, but true if the 

condition is strengthened to H(x；u,v) « 0 (Corollary 2.3.5). 

In the following we first consider a property related to the 

set 1(a). 

Lemma 2.3.1. Suppose that X is a locally convex space and g 
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is an arbitrary continuous function of X into 沢。denoted by g = 

(gi".、gn). Then for the above f and for any x € X, there exists 

a neighbourhood W of x such that 

I(g(y)) S I(g(x)) 

for all y € W. 

Proof: We fix i € I(g(x)). Then, for each j e I \ I(g(x)), 

g . ( • ) < g i ( . ) 

at X and hence on a neighbourhood W of x. Do this for each such 
j 

J and let W denote the intersection of W^'s. Then W has the 

required property： if y € W and j I(g(x)), then g^(y) < g^(y) 

showing that J € I(g(y)). • 

Lemma 2.3.2. Suppose that g'(•) = (g'(•),•••, (•)) is 
1 n 

continuous near x and {g； (x)； i € I(g(x))} are affinely 

independent. Then either there exists a neighbourhood W of x such 

that the following condition H(y；u,v) « 0 holds for each y e W: 

(g;(y;v) - g^(y;v))(g：(y;u) - g^(y;u)) ^ 0’ Vi, J e I(g(y)) 

or 

,00, 、 
h (X; u, V ) = +00. 

Proof. By the continuity of g' at x it is easy to show that 

there exists a neighbourhood W^ of x such that 

{g:(y); i e I(g(x))} 
1 

are affinely independent for all y e W^. Now if for each 

neighbourhood U of x, there exists y € U n W^ so that the 

condition H(y; u, v) « 0 is not satisfied, then by [2，Proposition 

3.9] or Lemma A4. h ①(y;u,v) = +oo. Hence by the upper 

semicontinuity of (•； u,v), 

29 



V. 

u, v) = +00. • 

Example 2.3.3. Let g = (g g g ) with the C^-functions 

^ ^ O 

gi(x,y,z) = ？ ( x ) + X + y, g^(x,y,z) = x + 2y and g ^ ( x , y , z ) = 

4(x-y) + z for all x, y, z € R’ where 

C(x) = ( x'sin i X ^ 0 

L 0, X = 0 

Let X = (0,0,0). Since g^, g^, g] = 0 at x, I(g(x)) = {1,2,3}. 
Further, g'(x) = (1,1,0), g'Cx) = (1,2,0) and g'(x) = (4,-4, 1). 

2 3 

Thus, g^(x), g^(x) and g^(x) are linearly independent. Let 

u = (1,0,0) and v = (1,1,0). 

Then 

g^(x;u) — g^Cx-.u) = 1 - 1 = 0 and v) — g^(x； v) = 2 - 3 < 0. 

Similarly we can verify, for all other pairs of distinct i, J, 

that g'̂  (x;u) - g^ (x； u) and g'̂  (x； v) 一 g^ (x； v) are of opposite signs 

(or zero) ； that is, the Cominetti and Correa’s condition 

H(x；u,v) « 0 is satisfied. But, in constrast to their conjecture, 

(2.3.1) does not hold. In fact, we will prove that 

(2.3.2) h°°(x;u, v) = +00. 

Let P : = (X ,y ,0) with 
n n n 

1 1 5 
X = 一 and y = = -x . 
n 21171 + I n (2n 兀 + 昼 n 

Then, 

g (P ) = -x^ + X + y = g。(P ). 
I n n n n 2 n 

This implies that I(g(P^)) = {1,2} because x^ ^ 2 y^. Further, 

g'(P ) = (1-5(21171+芸广，1,0) 
I n 乙 

and so 

g'(P ； u) - g'(P ;u) = - 5(2n7r+芸广 < 0 
I n 2 n 己 
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- = 2 - 5 ( 2 n 7 r +昼 _ 3 < 0. 

Thus the condition H(P^;u,v) « 0 does not hold for all n. Since 

、X, it follows from Lemma 2.3.2 that (2.3.2) must hold. 

The above example actually shows that for n ̂  2 (if n = 2, we 

ignore g^), the condition H(x;u,v) « 0 is not sufficient for 

l A x ; u， v ) = ici 撒))DVX;U’V). 

We shall show however that the strengthened condition H(x;u,v) « 0 

will be sufficient. Before our proof we recall an elementary fact 

(see, Proposition 1.2.3) that if each g^ is directionally 

differentiable at x, then one has 

(2.3.3) h'(x;u) = 、、g'(x;u) 
1 ( g (X) ) 1 

for all u € X. 

Proposition 2.3.4. Suppose that each g^ is a C^-function (that 

is, continuous Gateaux differentiable function) at x. If for all 

i, J € I(g(x)), i 实 j, one has 

(2.3.4) [g：(x;u) -g;(x;u)][g;(x;v) - g;(x;v)] < 0, 

then 

h ①(x;u，v) < max g°'(x;u, v). 
1 1 1 ( g ( X; ； 1 

Proof. By Proposition 2.2.4, we take a net (z ,入） € X x R 
V V V + 

written for short (z,A) with z ——> x and A ̂  0 such that 

00 1 
h (x;u,v) = lim (z+Au； v) 一 h'(z;v)) 

z-^x A 

1 
= l i m max . (z+Au；v) - max g'(z;v)). 

2->x 入 i € I ( g ( z + 入 i € I ( g { z ) 

In view of lemma 2.3. 1, we can assume that 

(2.3.5) I(g(z)), I(g(2+Au)) c I(g(x)). 

Since I is a finite set and considering a subnet if necessary we 

31 



V, 

can assume without loss of generality that 

= i^K^ax ^g;(z;v) = g;(z;v) say, 

and 

h ' ( z + A u ; v ) = 旧 ( 巧 会 = g； (z^Au;v) 

0 

for some i。 € I(g(z+入u)) and for all (z,A). 

We claim that there exists a subnet (z ) of (z,A) such that 
S S 

g; (z ; V ) - g : ( z ; V ) < 0. 
io s I s 

In this case we will then obtain 

00 1 
h (x;u, v) = lim T [g' (z +Au； v) - g' (z ； v) 

s A i s i s 
s 0 0 

+ g: ( Z ; V ) - g: (z ； v)] 
1 ̂  s I s 
0 

1 
- l i m sup ^ [g； (z + 入 u ; v ) - (z ；V))] 

s A 1 s i s 
s 0 0 

^ g了（ X ; U ’ V ) . 
IQ 

By (2.3.5), € I(g(x)) and so we are done. 

If our claim is false then, by considering a subnet if 

necessary, we assume that for all (z,入） 

(2.3.6) g; (z;v) - g;(z;v) > 0 
1 0 

where 

(2.3.7) i。 € I(g(z+Au)) and 1 e I(g(z)) 

for all (z,入）. It follows that g' (x; v) - g'(x;v) ^ 0 and from 

(2.3.4) that the strict inequality must hold and 

(2.3.8) g; (x;u) - g;(x;u) < 0. 

Since g^ is C^, the formula (2.3.8) can be rewritten as 

lim i[g. (y+tu) - g. (y) - g (y+tu) + g (y)] < 0 
y->x t 1 1 1 1 
t^O 0 0 

and so we can choose a neighbourhood W of x and 5 > 0 such that 
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( 2 . 3 . 9 ) (g. (y+tu) - g ( y ) - g (y+tu) + g ( y ) ) < 0 

0 0 1 

for a l l y € W and 0 < t < 5. Without loss of generality, we can 

assume that 

(z,A) € W X (0,5). 

From (2.3.6) and the choice of 1， we see that i。毛 I(g(z)) and so 

gi (z) < gi(z) for all (z,A). Thus, together with (2.3.9) we 
0 

conclude that 

g. (z+Au) - g (z+Au) 

< gi (z+Au) - g. (z) - g (z+Au) + g (z) < 0. 
0 IQ 1 

But this is imposible since 

IQ € I(g(z+Au)). • 

Corollary 2.3.5. Suppose that each g, is a C^-function at x, 

1 - i - and the derivatives {gj (x)； i € I(g(x))} are affinely 

independent. If for all i. J e I(g(x))， i 本 J, one has 

(g 二（x;u) -g'.(x;u))(g； (x;v) - g'(x;v)) < 0, 
1 J 1 j 

then 

lAx;u’v) = max D^g. (x;u, v). 

1 E I ( g ( X； ； 1 

Proof： Since each g is a C^-function, 
i 

g"(x;u, v) = v). 

It follows from Proposition 2.3.4 that 

h°°(x； u, v) max D^g (x; u, v). 

i € I (g (X)) ' ' 

But the assumption on affinely independence ensures 

h°°(x;u, v) > max D^g. (x;u, v) 

1 € I ( g ( X) ) 1 

by [2, Prop. 3.7 and 3,8] or Lemma A3. • 
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For normed spaces, we have another sufficient condition result 

for the similar representation of h①： 

Proposition 2.3.6. Let X be a normed space, u, x € X and g " 

^ - i - be C -functions at x. Suppose that W is a 

neighbourhood of x such that for all y € W and i, J e I(g(y)), one 

has g'i(y;ii) = g^(y;u). Then 

lAx;u’ii) = max D^g. (x;u,u). 

1€I(g(x)) 1 

Proof: Note first that since g^, 1 ^ i < n, are C^-f unctions, 

g”.；u) are continuous on some neighbourhood W^ c w of x [l,p.32, 

cor.]. Consequently by Lemma 2.3.1 and (2.3.3) h'(• ;u) is also 

continuous. Next we show that 

(2.3.10) D+(h'(.;u))(z;u) = max D^g (z;u,u) 

i € I ( g ( z ) ) i 

for any z € W . To do this, we choose a subnet t > 0 written for 
1 V 

short t such that 

D+(h'(•；u))(z;u) = lim (z+tu;u) - h'(z;u)} 
t 

= l i m max g' (z+tu； u) - max g' (z： u)}. 

By Lemma 2.3.1 we can assume that I (g(z+tu)) S I (g(z)) and z+tu € 

W^. Since I is a finite set and considering a subnet if necessary 

we can assume without loss of generality that there exists 

i € I(g(z+tu)) c l(g(z)) such that 
Z 

max g'(z+tu；u) = g' (z+tu;u) 
z 

for all t. By assumption, gj (z; u) = gj (z; u) so 
z 

max g: (z;u) = g; (z;u)) 
1 € I ( g ( z ) ) 1 i 

z 

it follows that 

D+(h'(.;u))(z;u) = Urn i{g； (z+tu;u) - g; (z;u)} 
t I 0 L I 1 

^ Z 2 
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= D ^ g . (z； u,u). 
1 
z 

Now if (2.3.10) is not true there must exists i € I(g(z)) such 

that 

D^g^(z;u,u) > D^g. (z;u,u), 

z 

since g'i(y;u) = gj (y;u) by assumption, it follows that 

z 

g' (z+TU；u) - g' (z+TU；u) > 〇 
1 - i 

2 . 

for all small enough T > 0. Now we choose a small enough t from 

our net {t^} and recall that i.; € I(g(z+tu)). But 
t z 

S (gj-g^ )' ( z + T U ; U ) D T = g^(z+tu) -g (z+tu) > 0, 
0 Z ^Z 

contrading the given assumption. Thus (2.3.10) is proved. On the 

other hand, we have by Proposition 2.2.4 that 

h①（x;u,u) = (•;u))°(x;u) = lim sup D+(h'(•；u))(z;u) 
z->x 

= H m sup D'g.(z;u,u) = D^g. (x;u,u) 
0 

for some i。 € I(g(x)), where the last equality is valid because of 

Lemma 2.3.1 and the fact that I is a finite set. Since 

l A x ; u , u ) ^ D+(h'(•；u))(x;u) 

and, by (2.3.10) 

+ 2 
D (h'(•； u) ) (X; u) = max D g (x; u, u), 

i€I(g ( x) ) i 

it follows that 

h"(x;u, u) = ^^ max ^ D^g^ (x;u,u). • 

i€I( g ( x)) i 

Corollary 2.3.7. Let X be a normed space, u, x € X and g^, 

2 

1 i ：̂  n, be C -functions at x. Suppose further that 

{g：(x)： i € I(g(x))} 

are affinelly independent, Then 
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h ①（X;U’U) ： i e i ? 計 x ) ) D 2 g i ( x ; u , u ) 

if and only if there exists a neighbourhood W of x such that 

g: (y;u) = g: (y;u) 
1 J 

for all y € W and i, j € I(g(y)). 

Proof: The sufficency follows from Proposition 2.3.6. 

Conversely if h"(x;u,u) = ^ ̂ ^max^^ ̂ d V (x; u, u), then h"(x;u,u) is 

finite and hence, by Lemma 2.3.2, there exists a neighbourhood W 

of X such that the condition H(y;u,u) a 0 holds for each y € W. 

This implies immediately that . 

g； (y;u) - (y;u) = 0 
i J 

for all y € W and i, J e I(g(y)). • 

4. Generalized Second-order Taylor expansion. 

Suppose that X and f are as in § 1, we define the generalized 

Hessian [2] of f at x by 

2 亲 来 来 

5 f(x)(u): = {x € X ; <x .v> < f①(x;u,v) for all v € X}’ 

来 
where the symbol X denotes the dual space of X. It is easy to 

2 * 
see that d f(x)(u) is a closed convex subset of X with respect to 

the w*-topology. If f is twice C-differentiable at x [2], that 

is, f ⑴(X; •’ V) (or equivalently f°°(x;v, •)) is lower semi-continuous 

for each v € X, then one has 

(2.4.1) f"^(x;u,v) = sup0^f(x)(u),v>. 

Now for a, u, v and x € X， we consider the following new kinds of 

first and second-order directional derivatives respectively 

defined by 

f°(x； u): = lim ^ug H f (x+Aa+su) - f Cx+Aa) I, 
a s 二 0 s L i 
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= lim^^ug ^ f ( x + A a + s u ) - f(x+Aa)j, 

f 二 = lim ^ f ( x + A a + s u ) - f(x+Aa)l, 

L J 

入 + 

f (x;u): = -(-f)°(x;u), f (x;u)： : _(-f)o (x;u) 
<j，卞a + a 

and 

f=(x;u,v): = lim (x+Aa+tu+sv) - f(x+Aa+tu) 

-f (x+Aa+sv) + f (x+Aa) i, 

fco’a(x;u,v): = U m ^nf - ^ f ( x + A a + t u + s v ) - f(x+入a+tu) 

-f(x+Aa+sv) + f(x+入a)|, 

0 00 
(fa and f ^ are different from f° and 广 as here we only consider 

x + Aa ~~> X 

along the direction a). 

In terms of and f 二 w e have the following 

Lemma 2.4.1. Suppose that f： X ~~> R is a continuous 

function. Then one has 

a) = lim 灵up D+f(x+;\a;a), 

f一a(x;a) = lim 灵ijig (x+Aa;a), 

and 

f°(x； a) = lim ^ug D'^f (x+Aa;a) 

Proof： Let x, a € X, and A < 0, s > 0. By Lemma 2.2.2 there 

exists a € (0,s) such that 

^ f (x+Aa+sa) - f (x+Aa) - ̂  D+f (x+入a+aa; a). 

Hence, by the definition of we have 
一 a 

f a) ：̂  lim 灵 jjtg D+f(x+入 a;a). 

But 
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lim 灵îg D+f(x+入a;a) = lim ^^g H m sug 入 a + s a ) - f(x+Aa)"-

- l i m H f ( x + A a + s a ) _ f(x+Aa)| = f° (x;a). 

S4.0 ^ J 一 a 
入+ s:£0 

So we have f二（x;a) = lim ^i^g D+f(x+入a;a). Similarly, we have 

= lim 灵up D^f(x+Aa;a). Thus, one has 

f。x;a) = lim ^ug D+f (x+入a; a). • 

The following Theorem provides an answer to the question of 

Cominetti and Correa [2] about" Taylor's expansion. 

Theorem 2.4.2. Let f: [x,y] > R be a continuous function on 

a line segment in a locally convex space X. Suppose that 

Df(•；y-x) is finite, upper semi-continuous on (x’y) and 

f 二（y-x)(x;y-x)’ are finite. Then there exists 

t〇 € (0, 1) such that 

(2.4.2) if" (x+t (y-x);y-x,y-x) > f(y) - f(x) - f。 （x;y-x) 
L u +(y-x) 

. - . c o ， y - x ( x + t o ( y - x ) ; y - x ’ y - x ) . 

Hence, we also have 

(2.4.3) |f;x(x+to(y-x);y-x’y-x) + f°_^(x;y-x) ^ f(y) 一 f(x) 

^ + k ^ y - x ( X + V y - X ) ; y _ X ’ y - X ) . 

The following theorem is a corollary of Theorem 2.4.2. 

Theorem 2.4.3. Suppose that the assumptions in Theorem 2.4.2 

hold. If in addition f is defined on X and is twice 

C-differentiable at each point of (x,y), then there exists t。€ 

(0,1) such that 
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(2.4.4) f(y) - f(x) - - i<a^f(xn^(y-x))(y-x),y-x>; 

and also 

(2.4.5) f(y) 一 f(x) € <af(x),y-x> -f | <a^f (x+t^(y-x)) (y-x), y-x> 

if 5f(x) is nonempty and f°(x;y-x) = * sup <x*,y-x>, where af(x) 

X €5f (x) 

denotes the Clarke's subdifferential and the "bar" denotes the 

closure of the set. The bar is superfluous if f is C^'^ [2] on 

(x,y). 

Indeed, granting Theorem 2.4.2， we have 

1 00 

乏f (x+t^(y-x);y-x,y-x) + f°(x;y-x) 

- - ^ fo(x;y-x) + if^(x+t^(y-x);y-x,y-x) 

by (2.4.3). Thus, by (2.4.1) and our assumptions for any c > 0 

there exist x* € af(x) and x* e a^f (x+t^(y-x)) (y-x) such that 

f(y) - f(x) ^ <x*+ix*,y-x> + c. 
X 丄 2 

Similarly, since f^(x+t^(y-x) ； y-x, y-x) = -f^'Cx+t^Cy-x) ； y-x, x-y) 

and f^(x;y-x) = -f°(x;x-y), there exist 

Z* € 5f(x) and z* € a^f (x+t^(y-x)) (y-x) 
such that 

f(x) - f(y) < <2*+iz*,x-y> + c. 
li ̂  2 

Hence we can choose A e (0,1) such that 

f(y) - f(x) = <(Az*+(l-A)x*)4(A2*+(l-A)x*),y-x> + (l-A)c -Ac. 
丄 1 ^ dt iL 

2 
Since 5f(x) and d f(x+t^(y-x))(y-x) are convex, 

Az%(l-A)x* 6 df(x) and Az%(l-A)x* € S^f (x+t^(y-x)) (y-x). 

We then have 

f(y) - f(x) € <af(x),y-x> + i (x+t (y-x))(y—x)’y-x> 

u 0 

as required to show for (2.4.5). Similarly one can prove (2.4.4). 

Thus it remains only to prove Theorem 2.4.2. 
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5. Detailed Proof of Theorem 2.4.2. 

This section is entirely devoted to the proof of theorem 2.4.2. 

Let r： [0,1] — R be defined by r(t) = f(x+t(y-x)). Then it is 

easy to see that 

D+f(x+t(y-x);y-x) = D+“t;l)， 

一 X ) = 一 X ) = 万 0 ( 0 ; 1 ) 

and 

f«，y-x(x+t。（y-x);y-x’y-x) = ①（t。；l，l). 

Then Theorem 2.4.2 can be rewritten as 

Theorem 2.5.1. Let r： [0,1] ~~> (R be a continuous function. 

Suppose that D+万（•；1) is finite, upper semi-continuous on (0,1) 

and r°(l； 1), 1) are finite. Then there exists t。 € (0,1) 

such that 

(2.5.1) . A t ;1,1) > ^(1) - t(0) - r。(0;l) ^ L (t ；1,1) 
^ u + 00 0 

and so 

(2.5.2).广(t ;1’1) + /(0;1)々（1) 一 r(0;i) + ir (t ；i,i). 
乙 u 0 ^ CO 0 

To show Theorem 2.5.1， we need the following 

Lemma 2.5.2. Suppose that the function h： [0，1]——> R is 

upper semi-continuous on (0,1) with h(0) = h( 1) and 

lim sug hCt) = h(0), lim 判 h(t) = h(l). 
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Then one of the following properties holds： 

(i) h attains a local maximum at some t^ € (0,1); 

(ii) there exists t。 € (0,1) such that h is decreasing on 

[0,to) and increasing on (t^,1]. 

Proof: By assumptions, h is upper semi-continuous on [0,1]. 

Suppose (i) does not hold. Then' h is neither decreasing on [0,1) 

nor increasing on (0,1], for otherwise the assumptions of the 

lemma would imply that h is a constant function. Thus there exist 

t^ € [0,1) with ti < t^ and h(ti) < h(t^). We then claim that 

h is increasing on (t 1]. In fact if there exist t ’ t e (t 1] 
2 3 4 2' 

With 、 < 、 such that h(t^) > h ( t j the upper semi-continuity of 

h on [ti，tj will imply that (i) holds at some interior point of 

[ v v . 

Let to denote the greatest lower bound of the non-empty set 

T: = € (0,1); h is increasing on (t,1]|. Then t^ ^ t^ < 1 and 

also ^ 0 because h is not increasing on (0,1]. Note further 

that h is decreasing on [0, t^) for otherwise one can show as above 

that there exist t^, t^ € [0, t^) with t^ < t^, h(t^) < h(t^) and 

hence that h is increasing on (t ,1], contradicting the definition 

of t。. It is now clear that t。has the properties required in 

(ii). • 

Now we prove Theorem 2.5.1. Define the function h: [0,1] —> R 

by 

h(t): = T(t) - 了(1) + (l-t)^(t) + (l-t)2|>(l) - rCO) - /(0;1)], 

where 
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rr°(0; 1) t = 0 

？(t): = - D \ ( t ; 1) 0 < t < 1. 

t = 1 
、一 

Then by the finitness assumption of / ( 1 ; 1 ) and / ( 0 ; 1 ) it follows 

from Lemma 2.4.1 that h(0) = h(l) = 0 , 

lim sug h(t) = lim sup D \ ( t ; l ) - / ( 0 ; 1 ) = 0 = h(0) 

and 

lim 阿 h(t) = 0 = h(l). 

Further h is upper semi-continuous on (0,1) since (•； 1) is 

assumed upper semi-cont inuous' on (0,1). Thus, Lemma 2.5.2 is 

applicable to h and so there exists t。e (0,1) such that either 

(i) h attains a local maximum at t^ or (ii) h is decreasing on 

[0,t ) and increasing on (t , 1]. 
u 0 

(I) Suppose (i) holds. Then we have 

(a) 0 >： D+h(t ； 1) 
0 

and 

(b) 0 < 1) 

by Theorem 1.3.3. Note that, by subadditivity, 

h。(to;l) ^ r。(to;l) - + (l-to)(D+9^(.;l))。(to;l) 

-2(l-t^)[r(l) - r(0) - /(0;1)], 

where the first two terms can be -cancelled out because 

lim sup D\(t； 1) = / ( t ； 1) 
0 

by Lemma 2.2.2 and lim sug 1) ； 1) by the upper 

0 

semi-continuity assumption of D \ ( . ; 1 ) . Hence (b) and (2.2.3) of 

Proposition 2.2.4 imply that 

(2.5.3) r(l) - 7(0) - / ( 0 ; 1 ) ^ i(DV(-;l))°(t ； 1 ) = .广 ( t ；1,1). 
+ iL 0 ^ 0 

This verifies one inequality required in (2.5.1). The other 
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inequality in (2.5.1) follows similarly from (a) because, by (2.2.5) 

of proposition 2.2.4, one has 

D+(D\(.;l))(t ;1) > r (t ;1,1) 
0 00 0 

and, by elementary computation rules for D+ and D+, that 

(2.5.4) D+h(to;l) ^ D+“to;l) - D+“to;l) + (1、)0+(0\(•； 1)) (t。; l) 

-2(l-to)[^^(l) - y(0) - /(0;1)]. 

(11) We next consider the case when (ii) holds： h is 

decreasing on [0,t^) and increasing on Take a sequence 

t 个 t^ and note that 
n 0 

(a) 0 ^ D \ ( t ； 1) 
n 

for each n and 

(b) 0 < h Pt。; 1). 

As done above (b) ensures that "(2.5.3) holds while (a) implies 

that 

- 3^(0) - > io (D\(.;l))(t ；1) > iy (t ；1,1) 

乙 n d CO n 

because (2.5.4) holds with t replaced by t . Since 飞(.;i,i) is 
Q n 00 , ' 

lower semi-continuous (Proposition 2.2.1) we have the other 

inequality required in (2.5.1) in addition to (2.5.3). • 

6. Corollaries of Theorem 2.4.2 and Theorem 2.4.3. 

Corollary 2.6.1. [2’ Prop. 4.1.] Suppose that f: X > R is 

continuously Gateaux differentiable and twice C-differentiable on 

a segment [x，y] c x. Then there exists t^ € (0,1) such that 

f(y) 一 f(x) - f (x;y-x) e i <a^f(x+t (y-x)) (y-x), y-x>. 

已 U 
If f is ci’i on [x,y], then the closure can be ignored. 

Proof： Since f is continuously Gateaux differentiable at each 
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point of [x’y], it satisfies the assumptions in Theorem 2.4.2. Now 

apply Theorem 2.4.3. • 

Corollary 2.6.2. Suppose that f: X — ^ R is continuous at 

each point of a segment [x,y]. Then f satisfies (2.4.2) in each 

of the following cases： 

(i) D+f(.;y-x), f" (•;y-x,y-x) and f _(.;y-x，y-x) are 
】 to, y X 

finite on (x,y) and f 二 （x; y-x)，f^y一父）（y; y-x) are finite； 

(ii) D+f(z;y-x) = y-x) at each point of (x’y) and 

are finite； 

(iii) f is regular in the Clarke's sense at each point of 

(x’y) and『二广父）（乂；广乂），(y； y-x) are finite; 

Proof: Suppose that (i) is true. Let r(t)： = f(x+t(y—x)), 

t € (0,1). Clearly, it suffices to show that d"V(•； 1) is upper 

semi-continuous on (0,1). Now D+3^(t;l) and , ( t ; l , l ) are finite 

for any t € 〔0,1). Take a finite number K > 广(t;l,l). Then, by 

(2.2.4) of Proposition 2.2.4, there exists 6 > 0 such that 

K > 卧 + T ( t ’ + ; v ; l ) - D \ ( t M ) j 

whenever |t，-t| < <5 and 0 < 入 < Passing to the limits as A ^ 0 

and t’ ~~> t it follows that 

0 > lim^sup jo^Ct'+A； 1) - D \ ( t ' ； 1)1 

A+o L J 

and so 

0 ^ lim 灵ug D+T(t+A;l) - D \ ( t ; 1). 

Thus, 

(2.6. 1) D+了（t;l) > lim 灵 ug D ^ C t + A ; 1) = lim sup D \ ( t ' ; 1). 

Similarly, since、（t;l,l) is finite, one can apply (2.2.5) of 

Proposition 2.2.4 to show that 
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0 ^ l i m j n f |D\(t'-HA;l) _ D+“t,;l)}. 

入山0 L J 
Letting T, = t, + 入 we then obtain 

0 ^ LIM^sup |D\(T'-A； 1) - D \ ( T ' ； 1)1 
入4̂0 L J 

- l i m ^ug D\(t-A； 1) 一 D\(t； 1) 
si' 

and so 

(2.6.2) D \ ( t ; l ] > lim ^ug D+“t-入；1) = lim^sj^p D \ ( t M ) . 

Together with (2.6.1) we have 

D+r(t; 1) > lim^sug D \ ( t ' ; 1), 

showing that is upper semi-continuous on (0,1). 

In the case (ii) D+f(•；y_x) is upper semi-continuous on (x,y) 

since f°_^(2;y-x) is clearly so. Consequently Theorem 2.4.2 is 

applicable. 

For the case (iii), let z = x + t(y-x), t € (0,1). Then, by 

the regularity of f, Lemmas 2.2.2 and 2.4.1 one has 

f (z;y-x) = f°(z;y-x) = lim sup f'(z’；y-x) 
Z � Z 

- l i m sup f'(x+t’（y-x);y-x) = (z;y-x) 
t -^t y-x 

showing that 

广(z;y-x) = f° (z;y-x) 
y-x 

for any z € (x，y). Thus, the result holds from the case (ii). • 

Corollary 2.6.3. Let -f: [x,y] > (R satisfy the assumptions 

in Theorem 2.4.2. Then there exists t^ € (0,1) such that 

(2.6.1) if" (x+t^(y-x);y-x,y-x) ^ f(y) - f(x) — f , (x;y-x) 
么 y-x 0 0，+(y-x) 

and so (2.4.3) holds, where f (x;y-x) = - ( - f ( x ; y - x ) . 
0,+(y-x) +(y-x) 

Proof： By Theorem 2.4.2， we have 
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-(-f):x(x+to(y-x);y-x，y-x) ^ .f(x) _ f(y) 一 (-f)。 (x;y-x) 
+(y-x) 

1 

and so, by elementary results similar to (iii) of proposition 2.2.1， 

1 00 ‘ 

2fy-x(x+t。（y-x);y-x,y-x) > f(y) - f(x) - f (x;y-x) 
0,+(y-x) " 

This implies immediately that 

1 CO 

?fy-x(x+to(y-x);y-x，y-x) + f°_^(x;y-x) > f(y) - f(x) 

Remark 1: By [1, prop. 2.3.6], it follows from part (ii) of 

Corollary 2.6.2 and Corollary 2.6.3 that a convex function 

satisfies (2.4.2) and a concave function satisfies (2.6.1) 

respectively, and both satisfy (2.4.3). 

Remark 2： In each of the cases (i) — (iii), it is well-known 

that f can fail to have Gateaux derivative at some points so [2. 

Prop. 4.1] is not applicable. 

7. Some applications in optimization. 

Definition 2.7.1. Let f： X > IR and x € X. a^f(x) will be 

said to be positively definite [2] if f (x;u,u) > 0 for every 
0 0 一 

u € X, u ^ 0. Furthermore, a function f: X ~ > R is called twice 

uniformly locally Lipschitzian at x [2] if there exist 

neighbourhoods X^ of x and U of zero such that U) is 

bounded in (R. This condition implies in particular that f is 

twice C-dif ferent iable at each point x in X because then, for 
0 0 
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each u € U, the sublinear map v h is bounded on U and 

hence continuous on X. 

Proposition 2.7.2. Let x € X =沢卩，『： X — 沢 ^e locally 

Lipschitz near x and twice uniformly locally Lipschitzian at x. 

If > 0 for all u € X, then a sufficient condition for x 

to be a strict local minimum point of f is that a^f (x) is 

positively definite. 

Proof: By assumption,, take a constant M > 1 and 

neighbourhoods X。 of x and U of zero such that 

(2.7.1) 丨f①(Xo;U，U)| < M 

and that f on X。is Lipschitz. Let B： = {u € X； Hull = 1} and 

u € B. By the strict positivity of f (x;u,u) and the lower 
00 

semi-continuity of f①（•； u’ u) one has a convex neighbourhood W(u) 

of X contained in X^ and 1 > 5(u) > 0 such that 

f (y;u,u) > 5(u) 
00 

for all y € W(u). Let 1 > A > 0 with ；Ui € U and U ( u ) =入彻 ) u . 
8M 

For any v € u + U(u), y e W(u), it follows from proposition 2.1.1 

that 

f (y;v，v) = f (y；u+(v-u),u+(v-u)) 
00 00 

^ f①(y;u,u) + f①(y; v-u，V-u) + 2f (y； u, v-u) 

> 5(u) 一 一 之 g ^ : 。 . 
s V ^ ^ 

Since X = (R", by the compactness of B we can choose m 

neighbourhoods u^ + U(u ), •••， u + U(u ) whose union covers B. 
1 1 m m 

Let 

W = n W(u ) and 5 = min {5(u )} 
i = 1 i 1 i 

Then for any v € B, y e W, 
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f①(y;v,v) > 5/2; 

consequently f①（y;v’v) > 0 for all v 日 X, and y € W. In view of 

the assumption (2.7.1)，it follows from part (i) of Coorollary 

2.6.2, that for any y e W ,、本 x. there exists t。€ (0,1) such 

that 

f(y) _f(x) ^ + .①（y+to(x-y);y-x,y-x) > 0 

because (二广力（x; y-x) > 0 and y+t^(x-y) e W. Therefore x is a 

strictly local minimal point. • 

Remark： The preceding proposition can be deduced from [2, 

Prop. 5.2] because the twice uniformly locally Lipschitzian of f 

implies f € C^'^ [18]. We are indebted to the referee for the 

reference [18]. 

L^et f: X > IR and g： X ~ > ^e locally Lipschitz functions, 

C be a closed subset of X. 

Now we consider the minimization problem with constaint: 

(P) min {f(x); X € Q}， 

where Q: = {x € C and g(x) ：̂  〇 } . If x is a solution of problem 

(P), then by Theorem 1.3.4 there exists a multiplier 

e (R1 X [Rn 

n 

with 入，了i 2： 0，1 i < n and A + J r. = 1 such that 

i = i 1 

(2.7.2) d'g(x^) = 0 and 0 ^ L°(x^;u) 

for any u e X, where 

L(x)：=入f(x) + rg(x) + ad^Cx) 

and a is a Lipschitzian constant for both f and g on a 
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neighbourhood of x 
0 

Propposition 2.7.3. Suppose that x。i s a solution of the 

problem (P). Let A： = {v； rg(v) ^ 0} with the contingent cone 

T (X ) [3]. Then 
A 0 

( i ) L① ( X o ; u’u) > 0 , f o r a n y u i n T ( x j w i t h D L ( x ； u ) = 0 . 
A O + 0 , 

(ii) ^ 0, for any u in T (x ) with L。（x ； u ) = 0. 
A U 0 

Proof: (i) Since f(x^) ^ f(x) for any x 日 Q, by [1, Prop. 

2.4.3] f + ad^ attains a local minimum at x . Let u € T (x ) 
0 A 0 

with D+L(Xo;u) = 0 and take sequences u. u and t , 0 with x + 
i i 0 

€ A. Therefore, one has 

U x o + t i 、 ） - U X Q ) 

=Af(x^+t.u.) + rgCx^+t^u.) + adQ(x^4-t.u.) - Af(x^) 

= + 〜 x 。 + t , i ) - f ( X o ) } + r g ( x ^ n ^ u ^ ) 

+ (1 一入)ccd̂(x +t u ) > 0. 
Q 0 i i 

By Lemma 2.2.2 there exists T € (〇’T ) such that 
i i 

D L(x +T u;u) > ^ ( L ( x +t u) 一 L(x )) > 0 
T U i "C. 0 i 0 

Therefore lim sup ^D L(x + T U ; U ) > 0. Since D L(x ；u) = 0 it 

T 十 0 + 0 

follows from Proposition 2.2.4 that 

00 1 
L (x ;u,u) = lim sup -(D^L(y+tu； u) - D L(y;u)) 

O y->x t + + 
0 

1 
之 l i m s u p r ( D ^ L ( x ^ + t u ; u ) 一 D L ( x ； u ) ) 

t 山 0 L + 0 + 0 

1 

= l i m s u p - D L ( x + t u； u ) > 0 . 

t 山 0 L + 0 

(ii) By definition 2.2.5 and similar proof of part (i), one has 

u, u) = lim sug i(L°(y+tu；u) - L°(y; u)) 
y 0 
t山。 

^ l i m s u p +tu； u ) - L°(x ； u ) ) 
t ^ O t 0 0 
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V. 

Chapter 3. Second-order necessary and sufficient conditions 

in nonsmooth optimization 

1. Introduction. 

In this Chapter, w e consider a locally Lipschitz real-valued 

function f on a normed space X. It is well-known that if x is local 

minimum point of f then the lower Dini-directional derivative D+f(义u) 

must be nonnegative at each direction u. If D^f(x;u) = 0 for some u, 

w e show (Theorem 3.2.2) that 0 must be in the Chaney，s subdifferential 

5uf(x) of f at X in the direction u and the second order directional 

derivative f二'（疋0，u) ^ 0 (see below for definitions). This result was 

proved by Chaney in [5] in the special case when X =沢打 under an 

additional semismooth assumption of f. Likewise, for x to be a local 

minimum point of f with inequality and equality constraints the 

following conditions are shown to be necessary (in Theorem 3.3.6) ： (i) 

G:'(x，0，u) > 0，and (ii) L ^ (x,w,0,u) > 0 for some Lagrange multiplier 

w in M^(x) whenever • ,f )(x;u) = 0. Further, for X =沢“，the 

complementary results on sufficient optimality conditions for 

unconstrained/constrained problems are obtained and thereby the related 

results in [6] are not only generalized (to not necessarily semismooth 

functions) but also the conclusions are considerably sharpened. In 

constrast to Chaney's approach, our arguments rely heavily on Ekeland's 

variational principle [1] and a result of Ioffe，s Proposition [10] (as 

well as its generalization presented in lemma 3.4.1). 
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W e turn now to some definitions and notations which are mostly 

taken from Chaney's papers [5，6]. Let X be a normed space, W an open 

subset of X and f a locally Lipschitz function of X into R. Denote the 

unit ball of X by B^, the open and closed balls centred at x with 

radius 8 by 

B(x’5): = {y； lly - xll < 6} and B[x’5]: = {y； IIy - xll < 6} 

respectively. Recall that the lower and upper Dini-directional 

derivatives at x € X in the direction u € X are defined by 

D f(x;u) = lim inf i{f(x+tu') - f(x)} 

u'->u t 
, t山0 

and 

D+f(x;u) = lim sup ^{f(x+tu') - f(x)} 

t^O 

respectively. In the case of f being locally Lipschitz function, we 

have 

D f(x;u) = lim inf i{f(x+tu) - f(x)} 
十 t山0 t 

and 

D+f(x;u) = lim sup i{f(x+tu) - f(x)}. 
t^o 

Definition 3.1.1. Let u be a nonzero vector in X. Suppose 

that the sequence {x^} in X converges to x. W e say that x^ converges 

X — X 
to X in the direction u, denoted by x ——> x, if the sequence -77-̂  

k u llx - xll 
k 

converges to u/llull. 

Definition 3.1.2. Let u be a nonzero vector in X. As in [5,6] 

* 

define the subset 5^f(x) of the dual space X of X by 

54 



V, 

auf(x): = {x : there exist sequences x and x* € af(x ) such that 
k k k 

来 * 

Xk X and x^ > x in norm respectively}, 

where af(y) denotes the Clarke's subdifferential of f at y. Thus, 

V ^ x ) is a subset of 5f(x); and a^f(x) is nonempty if X =沢打 W e 

emphasize that though the convergence of x* e 5f(x^) are usually 

considered in the w*-topology of X* in similar situations, but here, it 

is considered in norm topology of X*. 

Definition 3.1.3. Let u be a nonzero vector in X. Suppose 
* * 

that X € 5^f(x), Then f ? (x，x ,u) is defined to be the infimum of all 

numbers 

lim inf ^{f(x ) - f(x) - x*(x -x)}， 
t k k 
k 

taken over all triples of sequences x，x*，and t for which 
k k k 

(a) t^ > 0 for each k and x^ converges to x, 

(b) t^ converges to 0 and converges to u, 

来 来 来 

(c) X, converges to x with x in af(x ) for each k. 
k k k 

Similarly, w e define f:'(x，x*，u) to be the supremum of all 

numbers 

lim sup ^{f(x ) - f(x) - x*(x -X)}， 
•f-̂  k k 
k 

来 

taken over all triples of sequences x ， x ， a n d t for which (a), (b), 
k k k 

and (c) above all hold. 

Remark: By (b), w e see that 

(X -x)/llx -xll = [(X -x)/t ].[t /llx -xll] > u/llull, 
k k k k k k 

that is, x^ converges to x in the direction u. Thus, 
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、 

lim inf ^{f(x^) - f(x) _ x*(x^-x)} 

k 

2 
= l i m inf ^ (f(x, ) - f(x) - x*(x -x)} 

lix -Xll k k t 
k k 

=llu"2 lim inf ~ ~ i — ^ {f(x, ) - f(x) - x*(x -x)}. 
Ilx -xll k k 

k 
* 

Hence, f'J (x,x ,u) equals to the infimum of all numbers 

llull̂ lim inf {f(x ) - f(x) - x*(x -x)}/llx -xll?， 
k k k 

taken over the set of all sequences x such that both 
k 

(a,) x^ converges to x in the direction u 

and 

(b') there exists a sequence x* € 5f (x ) converging to x*. 

k Ic 

2. Second-order necessary and sufficient conditions without 

constraint. 

In this section w e consider the problem of minimizing f(x), 

over all x in W . 

L e m m a 3.2.1. Suppose that f(x) ^ f(x) for all x € B[x,5]. Let 

O ^ i u e X , t > 0 , a > l a n d O < e < (allull)̂  such that 

(3.2.1) f(x+tu) - f(x) s te and tdlull + 严）< 5. 

一 来 

Then there exist z ^̂  x in X and z € 3f(z) such that 

(i) llz-x-tull ^ teizV"i (< teiz2)， 

(ii) f(z) ^ f(x+tu) 

and 

(iii) llz*ll ^ aeiZ2 
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Proof. Let B denote the closed ball with center x+tn and 

• 1/2 

radius te . Then B is contained in B(x,3) by the second inequality 

in (3.2.1) and hence 

f(x+tu) < inf f(x) + tc 
x € B 

by other assumptions of theorem. It follows from the Ekeland's 

variational principle [1] with A = that there exists z € B 

satisfying (i), (ii) and 

(iv) f(z) s f(y) + (aeiZ2)||z-yll for all y € B. 

By (i), z X since e < (allull)̂ , and z is in the interior of B since 

a > 1. By basic calculus for subdifferentiais (see，Theorem 1.3.2 and 

1.3.3) it then follows from (iv) that 0 € df{z) + ac^^V where B* 
1 1 

denotes the unit ball in X*. Thus (iii) holds for some z* € af(z). 
• 

The following theorem 3.2.2 provides first and second-order 

necessary conditions in nonsmooth optimization without constraint. 

Theorem 3.2.2. Suppose that x is a local minimum point for f 

and u e X with norm 1 such that D f(x;u) = 0. Then 0 e d f(x), and 
+ u 

f y (x,0,u) ^ 0. 

Proof. Let a = 2 and e € (0,1). Since D+f(x;u) < e, there 

exists an arbitrarily small t > 0 satisfying (3.2.1) with 5 > 0 being 
来 

the same as in L e m m a 3.2.1. Thus there exist z, z satisfying the 

properties stated in L e m m a 3.2.1. Take a sequence c^ ^ 0. W e apply 

* 

the above to t ^ 0 (for t = t) to obtain z， z satisfying the 
k k k k 
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properties stated in L e m m a 3.2.1 (for z and In particular (i) 

reads as 

llz -x-t ull < t 
k k k k 

Dividing both side by t it follows that 
k 

[Z, - x]/t — U, 
k k 

showing that z > x in the direction u. Since z* e df(z ) and 
^ k k 

* 1/2 

- by (iii), it follows that 0 € a^f(x). Further, f''(x,0,u) 

is then defined by definition 3.1.3 and in fact it is non-negative 

since x is a local minimum point. • 

In order to compare Chaney's theorem [7，theorem 1] with our 

result，we let X = [R"" and define the sets in 沢̂  by 

来 n 
D (x,f)： = {u € [R ； 35(u) > 0 such that v.u < 0 for all 

llw — ull < 5(u) and v € a^f(x)} 

and 

D#(x，f) = {u € Rn; <v,u> < 0 for all v € a^f(x)}. 

Thus, one has D*(x,f) c D#(x，f). 

L e m m a 3.2.3. (i) For any x, u € IR̂ , there exist w + and w + in 

a^f(x) such that 

<w+,u> = D+f(x;ii) and <w+，u> = D+f(x;ii). 

(ii) D*(x,f) c D#(x，f) c {u € Rn; D+f(x;u) ^ 0}. 

(iii) If X is a local minimum point for f(x), over all x in IR̂ , 

then ‘ 

D*(xJ] c D*(x,f) c {u € 1R"； D_^f(x;u) = 0}. 

Proof. By Lebourg's mean valued theorem [9，theorem 2.3.7] for 
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any x’ u € 沢。and t > 0, there exist some a^ € (0，t) and some w^ € 

af(x+a^u) such that 

i{f(x+tu) - f(x)} = <w^,u>. 

Hence, one has 

D+f(x;ii) = lim sup i{f(x+tu) - f(x)} = lim sup <w ,u>. 
t^o L t^o t 

Since the multifunction x > df(x) is closed and locally takes values 

in a compact set by (3) of Theorem 1.3.1，we can choose a sequence t 山 
n 

0 such that lim w = w+ € af(x) and 
tn 

D+f(x;u) = lim <w ,u> = <w+,u>. 
,n->00 tn 

Since x + a u converges to x in the direction u, one has w+ € 5 f(x). 
tn 

Similarly, we can show the corresponding result for D+f(x;u). 

Thus, we have shown (i). (ii) follows immediately from (i), and (iii) 

from (ii) as D+f(x;v) ^ 0 for all v in IR̂  if x is a local minimum point 

of f. • 

Therefore, from above L e m m a 3.2.3 and Theorem 3.2.2, we arrive 

at the following result which was proved by Chaney [7, theorem 1] under 

additional assumption that f is semismooth [11]. 

Corollary 3.2.4. Suppose that x is an unconstrained local 

n 来 一 

minimizer for f(x)’ over x in W 二 IR . If u belongs to D (x，f), then 0 

belongs to a/(x) and f^'(x,0,u) ^ 0. 

Since the local minimality assumptions of f at x clearly 

implies D_^f(x;v) > 0 for all v, Theorem 3.2.6 below strengthens the 
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first conclusion of Theorem 3.2.2 for the special case when X = R^. To 

prepare the proof w e need a technical result which follows from L e m m a 

3.2.1 immediately. 

L e m m a 3.2.5. Let X be a normed space. Suppose that x is a 

local minimum point for f and u € X with norm 1 such that D_^f(x;u) < e, 

where 0 < e. Let > 1，e. Then there exist arbitrarily small t > 0， 

z € X \ {x} and z* € dfiz) such that 

(i) llz-x-tull < t严/a， 

(ii) f(z) ^ f(x+tu) '' 

and 

(iii) llz*ll ^ 

Specializing in the case when X = IR̂ , w e have: 

Theorem 3.2.6. Suppose that f： R^ ~ > IR is a locally Lipschitz 

function and D+f(x;v) ^ 0 for all v € [R . For u in DR with norm 1, if 

D^f(x;u) = 0, then 0 € a/(x). 

Proof. Let a > 1. Since D^f(x;v)之 0 for all v € R^, one has 

by loffe's proposition that for any e ^ 0 with 0 < e < a /2, there 
k k 

exists 6 ^ 0 such that F (x) ^ F (x) for all llx-xll ^ 6， w h e r e 
k C C k 

k k 

F (X): = f(x) + e llx-xll. Thus, if u is a unit vector with D f(x;u)= 
€ k + 
k 

0 then 

D F (x;u) = lim inf 秦{F (x+tu) - F (x)} 
+ 〜 t^o t 〜 

= l i m inf i{f(x+tu) - f(x)} + c t} = c, < 2e 
— 0 t k k k 
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for all k. By L e m m a 3.2.5 one can find t 山 0， z e X \ {x} 
k k ‘ 

来 

\ 日己(z^) satisfying the properties stated in L e m m a 3.2.5 (for 
k 

function F instead of f and 2c instead of e). In particular (i) 
k k 

reads 

Hz -x-t ull < t (2e )iZ2/a < t (2c 严. 
k k k k k k 

Dividing by t it follows that 
k 

[z - X]/t —^ U 
k k 

showing that z —> x in the direction u. Since 
k 

* * * 1/9 
z € dF (z ) c af(z ) + 8 B and Hz 丨丨 < a(2c ) 
k e k - k k 1 k k 

k 

by (iii), it follows that 0 € d f(x). • 
u 

The converse of Theorem 3.2.6 is false as the following example 

shows. 

Example 3.2.7. Let ̂ ： R > R be defined by 

2 . -1 4 n 

〜 、 / X Sin X X 0 

and f: IR > IR by f(x) = log(l+1 x | + | ̂ (x) |). 

Let X = l/ZkTT, k = ±1， ±2， • • • • Since the derivative of f at 
k 

X 茫(0, l/kn:k = ±1，±2, • • .} 

is 

f'(x) = 1 + 丨 二 诉 ) I {sgn(x) + 2x I sin x ’ - sgn(sin x ^)-cos x 

One has by [8，Lemma 1.5] that, 

f。(x ；1) = lim sup r(x;l) 
k x->x 

k 

二 - lim inf sgn(sin x"^)] = 

k 
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fO(x ;-1) = lim sup f (x;-l) 

k 

= i [ l - lim sup sgn(sin x"^)] = 0， 

k 

for all k = 1, 2, • • •. Hence, the subdifferential of f at x is 
k 

m x ) = [0,2(l+l/2k7r)"^], k = 1, 2,.... 

iv 

Similarly, w e have 

af(x^) = [-2(l+l/2k7r)-i，0], k = -1, -2,.... 

This implies that 

0 e d f(0) and 0 € a f(0). 
1 - 1 

But 

D f(0;l) = lim inf ilog(l+t+t^|sin t"^ |) = lim iogd+t) = 1 

+ t山 0 t — 0 t 
and 

D f(0;-l) = lim inf ilog(l+t+t^|sin (-t—丄）|) = lim 秦log(l+t) = 1. 

Theorem 3.2.8. (Second-order sufficient conditions without 

constraint) Suppose that f： > R is a locally Lipschitz function. 

Suppose that D f(x;u) ^ 0 for all unit vectors u in IR . If f''(x，0，u) + 一 

n 

> 0 for all unit vectors u in IR for which D+f(x;u) = 0, then there 

exists 5 > 0 such that f(x) > f(x) for ail Ilx-xll s 5. 

Proof. Suppose that the desired conclusion is false. Then, by 

continuity, one has for each r > 0 that f attains its minimum on B[x，y] 
at some point y e B[x,3r] \ {x}. W e have two cases to consider. 

If 

(I) Suppose that there exists a sequence 山 0 such that each 
iC 

y is in the open ball B(x,r )• Then 0 € af(y ) by Theorem 1.3.3 and 
\ k \ 

the definition of 5f. By passing to a subsequence, w e can assume that 
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y converges to x in a direction u. Hence, 0 € 5 f(5E). By 
k u 

assumption, 

0 < D f(x;u) < lim inf [f(y ) - f(x)]/lly -xil < 0 

+ k确 了 k \ 
since f(y ) ̂  f(x) for all k. Thus D f(x;u) = 0 and so f"(x,0,u) > 0 

^k + -

by hypothesis. But by definition of f:'， 

fl'(x,0,u) < lim inf [f(y ) — f(x)]/lly -xll^ < 0. 
- \ ^k 

Therefore this case cannot happen. 

(II) Suppose that there exists if'> 0 with 

(3.2.1) lly -xll = r 
If 

for all 0 < 3r < Since D+f(5E;u) ^ 0 for all unit vectors in 沢口 and 

by loffe，s proposition, for any e > 0, there exists 广 > 0 such that 

(3.2.2) f(x) ̂  f(x) + ellx-xll 

for all llx-xll ^ r " . W e let 

= min、飞'、飞•'、and r = T k = 1, 2, •... 
0 k 0 

By (3.2.1), (3.2.2) and the definition of y , one has 
K 

(1) lly -xll = r = ^ /2 for k = 0, 1,.... 
】飞 k+l " k 

k+l 
(2) f(y ) ̂  f(x) ̂  f(x) + q for all x e ] 

T k k 
k+l 

and k = 0，1, • • •. 

It follows from the Ekeland, s variational principle (with 入 = \ + 2 ) 

that there exists x € B[x,万]such that 
k+l k 

⑴ 丨 丨 \ + 1 、 丨 丨 ” 仆’ 
k+l 

(ii) f(x】)^ ); 
k+l 

(iii) f(x ) ̂  f(x) + 4ellx-x II 

k+l k+l 
for all X € B[x,r ]. It follows from (2) and (ii) that 

k 
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(3.2.3) f(x ) < f(x) 
k+l 

and from (1) and (i) that x^^^ 本 x and x^^^ € Together with 

(iii) w e have 0 € + 4eB* by Theorem 1.3.3 and 1.3.2 and so we 

obtain 

(3.2.4) y* € 5f(x ) with lly*ll < 4c. 
k k+l ^k 

Thus w e have constructed for any e > 0, sequences x and y* € 5f(x ) 
k k k 

such that X X x, f(x ) ：£ f(x) and lly*ll < 4e. 
k k w 

N o w w e let e^ 山 0. W e can inductively choose a sequence x(n) 

convergent to x in some direction u and a sequence y*(n) € 5f(x ) such 
n 

一 来 — 

that f(x(n)) ：̂  f(x) and y (n) converges to 0 (and so 0 € a f(x)). 
u 

Note that for this u, one has 

D f(x;u) ^ lim inf ——L^{f(x(n)) - f(x)} ̂  0 
+ n确 llx(n) -xll 

showing that D f(x;u) = 0 by assumption. By Theorem 3.2.6’ 0 e d f(x) 
+ u 

and f^' (x,0,u) is meaningfully defined and 

f"(x,0,u) ^ lim inf[f(x(n)) - f(x)]/llx(n)-xll^ ^ 0 

“ n->oo 

since f(x^) f(x) for all n. This contradicts an given assumption of 

the theorem and so w e complete the proof. • 

Observe that if v u 之 0 for all unit vector u in IR̂  and all v 

in 3uf(x)， then D+f(x;u) ^ 0 for all unit vectors in R^. This is 

because, for any unit vector u in and by lemma 3.2.3 there exists w+ 

€ a^jf(x) such that D^f(x;u) = <w+，u>. Theorem 1 of Chaney in [6] is a 

weak form of the following result where be assumed the following 

stronger condition in place of (ii): 

(ii)* f'J (x,0,u) > 0 for all unit vectors u in R^ for which 
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0 € a^f(x). 

Corollary 3.2.9. Let x € 沢〜and suppose that 

(i) v u > 0 for all unit vectors u in r"" and v in a^f(x). 

(ii) f'J (x,o,u) > 0 for all unit vectors u in r"" for which 

D^f(x;u) = 0. 

Then there exists 6 > 0 such that f(x) > f(x) for all 0 < llx-xll < 6. 

W e end this section with an example of non-semismooth function 

which in particular shows the situation that our Theorem 3.2.2 and 

Theorem 3.2.8 can be applied but not [5，Theorem 1] and [6’ Theorem 1]. 

Example 3.2.10. Let f(x)： = g(x) + x^, where 

2 1 
,、 f X 1 sin —I X 0 

g(x) X . 
、0 X = 0 

Then f, g are Locally Lipschitz functions that are not semismooth at 0 

[11]. Note that f' (x) = 2x|sin - \ 一 sgn(sin 丄).cos - + 2x for all x 本 
X b X X 

0. Let x^ = — 2kn+n+{l/ky k = 1, 2，• • •. Then x^ converges to 0 in 

the direction -1 and f' (x ) (€ 5f(x )) ^ 1 € 5f(0). So 1 € 5 f(0). 

k k -1 

Hence f does not satisfies the conditions of [5, Theorem 1] and [6, 

2 

Theorem 1]. Since |g(x) i ：£ x , f(x) ̂  0 and so x = 0 is a minimum 

point of f. Note that 

(3.2.4) D f(0;±l) = lim inf i{t^|sin ^？丨 + = 0. 
+ t^o t 

Thus one may apply either Theorem 3.2.2 or Theorem 3.2.6 to conclude 
that 0 € a, f(0). Furthermore, that x = 0 is a local minimum point of 

±1 

f can also be seen from Theorem 3.2.8. 
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3. Second-order necessary conditions with constraints 

Let f，gi，• . •, gm, • • •, gm+p be real-valued locally Lipschitz 

functions on an open set W in a normed space X. W e consider the 

following optimization problem P(X): 

minimize f(x) 

subject to g.(x) 0 for i = 1, 2,…，m; 

g^(x) = 0 for i = m+1, • • m+p. 

In particular, if X = IR̂ , the n-dimensional real Euclidean space, then 

above optimization problem is denoted by PdR'^). W e shall prove 

necessary conditions theorems for P(X) and sufficient conditions 

theorems for problem PdR^^), which extend the theorems of Chaney [5， 

Theorem 2] and [6, Theorem 4, 5] to the case without his assumption of 

semismoothness. Throughout S denotes the set of all points in W which 

are feasible for problem P(X). For x € S，K^(x) denotes the contingent 

cone [9] of S at x. I(x) denotes the set of all "active indices" i 

with 1 ：< i ：< m such that g^(x) = 0. NI(x) denotes the set of all 1 ：̂  i 

^ m such that g^(x) < 0. For convenience, w e agree to adopt the same 

definitions for I(x), NI(x) even if x is not feasible. It is well-

known and can easily be verified that each u in K^(x) satisfies the 

"tangantial constraints": 

‘D^g.(x;u) ：̂  0, for all i € I(x) 

一 _ _ _ + 華 

D g (x;u) ：̂  0 ：̂  D g (x;u) for all k = m+1, • • • ,m+p 
、 + k k 

Let T be the set of all vectors w = (w^, w . •••，w ) in 

0 1 m+p 
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m + p 
們 l+m+p r^ 2 
R such that ^ (wj = 1 and w^ ^ 0 for i = 0, 1, • . •，m. Let 

i =0 

U x , w ) denote the Lagrangean function on W x T defined by 

m + p 

L(x’w): = w f(x) + y W g (X). 

0 U i 1 
i =1 

W e fix X € S and, as in [5, 6], define the function G from W 

X 

to R by 

G (x，f): = max{L(x,w) — w f(x)： w € T} 
- 0 
X 

That is, 

m + p 

(3.3.1) G (x,f) = max{ T wg(x): w € T}, 
- i i 
X i =0 

w h e r e g^(x)： = f(x) - f(x). Let 

T (x): = {w € T: w = 0, Vi € NKx)} 
1 i 

= { w € T: w g (x) = 0, Vi = 1, 2, ,m+p>. 
i i 

Thus, 

m + p 

G (x,f) 二 max{ J； wg.(x): w € T (x)}. 
X i =0 1 

If X is clear from the text，we shall simply write G for G， a n d T for 
- 1 
X 

T^(x). Let 

M(x): = {w € T: 0 € 5L( • ,w)(x) and = 0 for i = 1, • • • ,m} 

and for any u € X, let 

Mu(x): = {w 6 M(x): 0 € 5uU.,w)(x)} 

and 

M (X): = {w € T: 0 D L(-,w)(x;v) for all v € X 一 + 

and w.g.(x) = 0 for i = 1, • . - ,111}. 
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Note: If the equality constraints are not appear (i.e.，p = 0) 

and g.(x) < 0 for all i = 1，• • .，m, then the problem P(X) becomes an 

unconstrained problem already studied in section 2. W e henceforth 

assume that there is j with 1 ：£ j m + p such that g^(x) = 0. With 

this provision, the m a x i m u m in (3.3.1) can only possibly be attained at 

those w in T^(x). 

L e m m a 3.3.1. Let g^(x) = 0 for some j with 1 < j < m + p. 

Then, for all x near x, one has 

m + p 

G(x，f) = m a x {w [f(x) - f(x)] + V w g (x): w € T} 
0 i i 

i =1 

m + p 

= m a x {Wo[f(x) - f(x)] + J] w g (x): w € T (x)} 
i =1 

m + p 

= m a x { 2 w.g (x)： w € T (x)} 
i =0 1 

where g^(x): = f(x) - f(x). Moreover, for x near x, if w € T is such 

that 

m + p 

(3.3.1)' G(x，f) = Wo[f(x) - f(x)] + Y. w.g.(x), 

i =1 “ 

then w € T (X). 
1 

Proof. Clearly w e need only prove the last assertion. For 

each i € NI(x) w e have g^(x) < g^(x) and so g.( •) < gS ‘) on some ball 

B(x,5 ) with a > 0. Take 6 = min {6 : i € NI(x)}. Let x € B(x,5) and 
i i i 

w € T satisfy (3.3.1)'. Then, since 

g.(x) < gj(x) and 0 w^, 

it follows from the maximality of G(x’f) in its definition that w^ must 

be zero. This argument is valid for all i in NI(x) so w € T^(x). 口 
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For the following lemma w e take constant r > 0 with the 

following property： 

m + p m + p 

Z I w.-s. I ^ ^ ( = rllw-sll) 

i =0 i =0 

for any w , s € Ri+m+P. 

L e m m a 3.3.2. Suppose that M is a Lipschitzian constant of f， 

g., i = 1’ • • • ,m+p, on a neighbourhood B(x,5) for some 5 > 0. Then for 

any w , s € T, t > 0, llvll = 1 with y, y+tv € B(x,5), w e have 

(i) L(y+tv,w) - L(y,w) - [L(y+tv,s) - L(y,s)] ^-Mtllw-sll; 

(ii) L°(-,w)(x;v) - L。(•’s)(x;v) ：̂  洲Iw-sll. 

Proof. By definitions one has 

m + p 

L(y+tv,w) - L(y+tv,s) = (w -s )f(y+tv) + V (w -s )g (y+tv) 
0 0 Lt i i i 

i =1 

and 

m + p 

L(y,w) - L(y,s) = (w -sjf(y) + V (w -s )g (y). 
0 0 Li i l l 

i =1 

Hence the left menber of (i) is 

m + p 

(w -s )[f(y+tv) - f(y)] + y (w -s.)[g (y+tv) - g.(y) 
0 0 La i l l 1 

i =1 

m + p m + p 

厂 r̂  9 1/2 

< ^ I w.-s. I Mt ^ 3'Mt( X iw^-sj ) = rMtllw-sll; 

i =0 i =0 

proving (i). (ii) follows immediately from (i) by taking upper limits 

in 

i {L(y+tv,w) - L(y,w)} ：£ i {L(y+tv,s) - L(y,s)} + ^rMllw-slI. • 

Our next lemma deals with a relationship between G and L with 
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regard to their subdifferentials. 

L e m m a 3.3.3. Let g.(x) = 0 for some j with 1 < j < m+p. Then, 

for some 5 > 0 and all x € B(x,5), there exists w € T^(x) such that 

(i) G(x,f) = L(x’w) - w f(x). 
0 

(U) G。(•，f)(x;v) < L°(-,w)(x;v) for all v € X. 

(iii) 3G(-,f)(x) c aL(-,w)(x). 

R e m a r k . By L e m m a 3.3.1, there exists 5 > 0 such that for each 

X € B(x,5) there exists w € T^(x) with property (i). The point is that 

w e want this w concurently satisfies (ii) and (iii). 

Proof of L e m m a 3.3.3. Let 5 > 0 be such that each x € B(x,6) 

satisfies (i) with some w € T^(x). Thus, for x € B(x,5) y near x and 

t > 0 near zero such that y + tv, y € B(x,5), there exists w = w(y,t) € 

T^(x) such that 

(3.3.2) G(y+tv,f) = L(y+tv,w) - w^f(x). 

Since, by definition 

G(y,f) ^ L(y,w) — w^f(x), 

it follows that 

\ {G(y+tv,f) - G(y,f)} ^ ^ {L(y+tv,w) - L(y,w)} 

and consequently 

(•’f)(x;v) < lim sup I {L(y+tv,w(y,t)) - Uy,w(y,t))} 

t ^ o 

(3.3.3) = lim ^{L(y +t - L(y 
n—00 \ n n n 

where {y }，{t } are appropriate sequences satisfying the last equality 
n n 

with y — > X and t 山 0 (and w ^ stands for w(y ,t )). By compactness 
n n n n 

of T^(x), w e assume without of generality that w " converges to some w € 

70 



V. 

T^(x). By (3.3.3) and L e m m a 3.3.2 w e then have 

G°(-,f)(x;v) ^ lim sup ^{[L(y +t v,w) - L(y ,w)] + ^Mt llŵ '-wll} 

n - ^ n n n n n 

^ L°( • ,w)(x;v). 

Thus (ii) holds if w is replaced by w . With the same replacement (i) 

and (iii) also hold. Indeed, (iii) follows from (ii) by definitions. 

For (i), w e note from the definition of w ^ and (3.3.2) that 

L(y +t v’wn) - w'^fCx) = G(y +t v,f) > L(y +t v,u) - u f(x) 
n n 0 n n n n 0 

for all u = (u,) € T. By continuities, it follows that 

L(x,w) - w f(x) 5： L(x,u) - u f(x) 
0 0 

showing that G(x,f) = L(x’w) - w。f(x). • 

Finally, for the sake of easy reference, w e list below a few 

preparative results from Chaney [5, L e m m a 1] and for the sake of self-

contain, w e give their proofs in L e m m a A5 of Appendix. 

L e m m a 3.3.4. [5, lemma 1]. (i) x is a strictly local solution 

to problem P(X) if and only if w e have G(x’f) > 0 = G(x,f) for all x 

near x with x ^ x. 

(ii) If X is a local solution to problem P(X), then G(x’f)之 0 = 

G(x,f) for all x near x. 

W e are now ready to present the following technical result 

which will play important role for both necessary and sufficient 

conditions theorems. 

71 



V. 

Theorem 3.3.5. Let u be a unit vector in X and suppose that 

gj(x) = 0 for some j. 

(i) If 0 € 〜G(.，f)® then M^(x) is nonempty. 

In fact, if {x^} is a sequence convergent to x in the direction of u 

and {x } is a sequence converget to zero and if x* € dG{ ‘ ,f)(x ) for 
k k k 

each k then there exists sequence {w^} in T^(x) with a cluster point w , 

* 

and there exists a sequence {y } such that 
k 

. _ m + p 

(a) G(x f) = w二(f(x ) - f(x)) + Y. w^[g.(x )]; 
O k i l k 

i =1 
* 一 

(b) y € 5L( • ,w)(x ) for each k; 
k k 

(c) lly*ll —> 0 as k ^ 00. 

k 

Consequently 0 € 5 L(.’w)(x) and w € M (x). 
u u 

(ii) If X = ipn and if u is a unit vector such that D+G( - ,f )(x;u)= 

0 then M (x) 2 M (x). 
u 一 

Proof (i). By L e m m a 3.3.3，for all large enough k, there 

k — 
exists w € T^(x) such that 

r G ( x ,f) = L(x ,wk) - w^f(x) 
k k 0 

(3.3.4) G°( •，f)(x，V) L°( . ,w )(x ；v) for all v € X. 

k k k 
‘ dG{ •’f)(X ) Q dL{ .,wk) (X ) 

k k 

Thus, by the first equality, (a) holds. By compactness of T^(x), w e 

can assume that {w^} converges to some w € T^(x). By L e m m a 3.3.2 (and 

the positive homogenuity), w e have, for each v € X, that 

(3.3.5) L。(•’ wk)(x ；V) ^ L°(-,w)(x ；v) + ^Mllw^-wll llvll. 
k k 

Then 

(3.3.6) S aL(-,w)(x^) + g-Mllw^-wllB*. 

Indeed, if x* is a member of the set on the left then w e have from 
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(3.3.5) that 

x*(v) - L°(-,w)(x ；V) ^ rMllw^-wll llvll 
k 

for all V € X. By the Separation Theorem, there exists y* € rMllw^-wllB* 

such that x*(v) - y*(v) ：̂  L°( • ,w)(x^;v), for all v e X’ i.e. x* - y* € 

aL(-,w)(x^), proving (3.3.6). 

By definiion of x* it follows from (3.3.4) and (3.3.6) that 

there exists y, € aL( • ,w)(x ) such that x € y + 万Mllw -wllB . Passing 
k k k k 1 。 

来 

to the limits as k oo w e see that II y II — 0. 

(ii) Let w € M (x): w g (x) = 0 for all i = 1 , … ， m + p and 
i i 

D+L(.’W)6E;V) ^ 0 for all V € X = Then L(x,w) = w^f(x) and, by 

L e m m a 3.3.1，G(x，f) = 0. By definition of G, w e also have, for each 

t > 0，that 

G(x+tu,f) ^ L(x+tu,w) - w^f(x) 

i.e. 

G(x+tu,f) - G(x,f) ^ L(x+tu,w) - L(x,w). 

Dividing by t and taking lower limits, it follows that 

D+G(.，f)(5;u) ^ D+L(.,W)(5E;U). 

Since the left member is assumed zero, the right member must 

also be zero as D^L( • ,w)(x;v)之 0 for all v by assumption. N o w , by 

Theorem 3.2.6 (applicable for X = IR''), 0 € a^L(-,w)(x). Hence 

w € M (X). • 
u 

Theorem 3.3.6. (Second-order necessary condition with 

constraint) Suppose that x is a local minimum solution of problem P(X) 

and that u is a unit vector with • ,f )(x;u) = 0 (a fortiori, if 

0 € a G(-,f)(x)). Then G " (x,0,u) 2： 0 and there exists a Lagrange 
u _ 
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multiplier w in M^(x) such that L^'(x,w,0,u) > 0. 

R e m a r k 1. In constrast to theorem 3.2.2’ the conclusion in 

theorem 3.3.5 cannot be strengthened to L^' (x,w,0,u) >： 0 even if 

X = Rn’ and f and all g. are semismooth (see [5]). 

R e m a r k 2. If the equality constraints are not appear (i.e. p = 

0) and g^(x) < 0 for all i = 1’ 2’ … ’ m , then all x near to x are 

feasible for problem (P) and hence f(x)之 f(x) by assumption. 

Therefore, similar arguments given for L e m m a 3.3.1 show that G(x，f)= 

f(x) - f(x) and L(x,w) = f(x) for w = (1’ 0，•••， 0 ) the only element 

in M(x). Thus, in this case theorem 3.3.6 follows from theorem 3.2.2. 

Proof of Theorem 3.3.6. In view of the preceding Remark 2, w e 

can assume that there is j with g (x) = 0. By L e m m a 3.3.4 (ii), x is a 
j 

local minimum point (with value 0) for G(•，f) as it is so for problem 

(P). By assumption of • ,f )(x;u) = 0 it follows from Theorem 3.2.2 

that 

0 € a G(-,f)(x), and G " (x,0,u) 2： 0. 
u -

Take a sequence {x^> convergent to x in the direction u, and take 

来 来 

X € 5G(.，f)(x ) for each k such that llx II — 0. In view of Theorem 
k k k 

k 一 

3.3.5，we can further assume that there are sequence {w > in T^(x) 

convergent to w and a sequence {y^} such that (a), (b), (c) of Theorem 

3.3.5 (i) hold. In particular, by (b) and (c), 0 € a^L(-,w)(x) and 

consequently w € M^(x) as w € T^(x). It remains to show that 

L^' (x,w,0,u) s： 0. In view of the definition of L二' it suffices to show 

that there exists a subsequence x of x, such that L(x ,w) - L(x,w) ^ 
k k K 
n n 

0 for all n. To prove this we suppose on the contrary that, for all 

74 



V. 

large k, one has L(x^,w) - L(x,w) < 0’ that is, 

一 m + p 

W^[f(x ) - f(x)] + Y W g (x ) < 0 
O k L î i k 

i =1 

because L(x,w) = w^f(x) as w € T^(x). Writing g。for the function 

f(.) - f(x), w e see that there exist some index, say I (0 I ：< m + p), 

such that 

(3.3.7) w [g (x )] < 0 

I l k 

for infinitely many k. By considering a subsequence if necessary, w e 

k 

can assume that this is so for all k. Since w ~ > w , w e can further 

assume that , 

(3.3.8) < 0 

for all k. 

W e next claim that there exists some index J with J I such 

that g (X ) ^ 0 for infinitely many k. In fact, if not then there 
J k 

exists K such that 

(3.3.9) g.(x^) < 0, for all i € {0，1, 2 , … ， m + p} \ {1} 

and all k ^ K. But, as w € T^(x) and 
(3.3.9)' 0 ^ G(x ,f) = ) w^g (x ) 

k L i l k 
i =0 

(by a remark at the beginning of our proof and property (a) of Theorem 

3.3.5 (i)), it follows that p o and so 

(3 3 10) Wj = 0 f or i = 0 , 1, •. •，m w i t h I 

w 卜 0 for i = m + 1 , …， m + p with i 本 I 

by virtue of the maximality of G(x，f) in its definition. If p = 1 and 
Ic 

I = m+1 that (3.3.8)，（3.3.9), (3.3.10) are clearly not consistent and 

therefore w e can suppose that p > 1 and some i 本 I with m+1 ：̂  i m+p. 
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W e define a new multiplier w = (w , … ， w ) € T by 

0 w+p 

Wi = 0，Wi = -[(wT)2 + (W!)2]1Z2 

and all other coodinations coincide with that of w^. Then it follows 

from (3.3.8) and (3.3.9) that 

w [g (X )] > w^[g (x )] + (x )] 
I l k I l k I l k 

and so 

m + p m+p 

I > I = V ) 
i =0 i =0 

contradicting the maximality of G(x，f) in its definition. Therefore 
k 

our claim must stand and w e then take some x^ satisfying (3.3.8) and 

J I such that g^(x^) ^ 0. One defines a new multiplier w € T with 

w = 0， and 
I 

r, k、2 t kv2,l/2 

Wj “ [(WI) + (Wj) J 

and a contradiction is obtained same as above. • 

If w e consider the problem P in n-dimensional real Euclidean 

X = that is, the functions f, g, i = 1 ， 2 ， … ， m + p are defined 

on X = Rn, then w e have the following strengtheneed result： 

Theorem 3.3.7. (Second-order necessary condition with 

constraints in r"") Suppose that x is a local minimum solution of 

problem PdR^") and that u is a unit vector with • ,f )(x;u) = 0. Then 

G ' ‘ (x,0,u) ^ 0, M (x) 2 M (x) and there exists a Lagrange multiplier w 
- u 

in M (x) such that L ^ (x,w,0,u) 2： 0. 
u + 

Proof. Again w e can assume that g.(x) = 0 for some j. N o w the 

theorem follows from Theorem 3.3.6 together with Theorem 3.5 (ii). • 
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In view of L e m m a 2.2.3，the preceding theorem 3.3.6 certainly 

implies the following 

Theorem 3.3.8. Suppose that x provides a local solution to 

problem PdR。）and let u e D*{x,G). Then there exists a Lagrange 

multiplier w in M(x) such that (i) 0 € a^L(x,w) and (ii) L^'(x,w,0,u) > 

0. 

R e m a r k . This theorem was proved by Chaney [5, Theorem 2] under 
J-

additional assumption that f is semismooth, 

4. Sufficient Conditions Theorem with Constraints. 

W e begin with the following result which was proved by Ioffe，s 

Proposition in the special case of unconstrained problems. 

L e m m a 3.4.1. Suppose that f is a locally Lipschitz function of 

flR^ into R. Suppose that D f(x;u) ^ 0 for any u € K (x). Then x 

provides a strictly local minimum for the following problems： for any 

e > 0, 

minimize F (x):= f(x) + cllx-3cll 
e 

P(e) ^ subject to g^(x) ：̂  0 for i = 1 , 2 , •••’ m , 

gj(x) = 0 for i = m+1, • • ., m + p. 

Proof. Suppose that the desired conclusion is false. Then 

there exists a feasible sequence z^ convergent to x (say in direction u 

without loss of generality) such that for all k, one has 
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f(z ) — f(x) < -ellz -xll. 
k k 

Clearly u € K (x). Then with t = IIz -xll, one has 
S k k 

D f(x;u) ^ lim inf ^{f(z ) — f(x)} < -e, 

+ k->oo \ k 

contradicting a given assumption. • 

W e next prepare a technical result for the proof of our main 

results on second-order sufficient conditions theorems with 

constraints. 

L e m m a 3.4.2. Let x € S S ir"" such that D^f(x;v) > 0 for all v € 

K (x). Then 
s 

(i) D+G(.，f)(5E;v) 2： 0 for all v € IR''; 

(ii) For each unit vector u with D+G(•’f)(x;u) = 0, one has that 

0 € a G(-,f)(x), M (x) 2 M (x) and M (x) is nonempty. 
u u - u 

Remark. If there are no equality constraints (i.e.,p = 0) and 

g (x) < 0 for all i = 1, . . •, m , then K (x) = r"". It then follows from 

i S 

assumption that D^f(x;v) s： 0 for all v e IR̂ , and hence that 
f(.) - f(x) > g(-) 

i 

for all i and x near x. Consequently, by definition of G, 

G(x,f) = f(x) - f(x). 

Thus (i) holds by assumption. Note also that T^(x) is the singleton 

consisting of w = (1’ 0’ …， 0 ) , L(x,w) = f(x) and therefore 

M_(x) = {w>. By (i) and Theorem 3.2.6, the hypothesis 

D^G(-,f)(x;u) = 0 
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implies that 0 € d G(-,f)(x) = d L(-,w)(x) = d f(x) and hence that 

u u u 

Mu(x) 2 M_(x) (so equal to the singleton {w}). 

Proof of L e m m a 3.4.2. In view of the preceding remark, we can 

suppose that g^(x) = 0 for some j with 1 < j < m + p. Let c > 0. By 

Lemmas 3.4.1, 3.3.4 (i), x provides a strict local minimum for G(.,F ) 
€ 

without constraints so D G(-,F )(x;v) > 0 for all v. By definitions. 
+ e 

it is easy to verify that G(x,f) = 0 = G(x,F )， 
e 

G(x+tv,F ) G(x+tv,f) + etilvll 
e 

and 

D G(.,F )(x;v) < D G(-,f)(x;v) + cllvll 

for all t > 0 and v € Therefore, it follows that 

0 ^ D+G(•’f)(^v) + ellvll 

and (i) is proved as c is arbitrary. 

(ii) follows from (i), Theorem 3.2.6 and parts ⑴，(ii) of 

Theorem 3.3.5. 口 

Our proof of theorem 3.4.4 later will be based on the following 

generalization of theorem 3.2.8. 

Theorem 3.4.3 (Second-order sufficient conditions with 

constraints I). Let x € S c such that D^f(x;u) 2： 0 for all u € 

K (x). Suppose that for every unit vector u with D+G(. ,f )(x;u) = 0，we 
s 

have G^'(x,0,u) > 0. Then there exists 5 > 0 such that f(x) > f(x) for 

all X € B[5E,5] n S and x ^ x. 

Proof. By assumptions. L e m m a 3.4.2 (i) and Theorem 3.2.8’ x 
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provides a strictly local minimum for G(•，f) and hence for the problem 

P([Rn) by part (i) of L e m m a 3.3.4. • 

W e n o w state the main result of this section. 

Theorem 3.4.4 (Second-order sufficient conditions with 

constraints Ila). Let x e S Q r"" such that D^f(x;v) ^ 0 for all v € 

K^(x). Suppose that for every unit vector u with properties 

D G( • ,f)(x;u) = 0, M (x) nonempty and M (x) 2 M (x), w e have either (1) 
十 u u -

G"(x,0,u) > 0 or (2) L"(x,w,0,u) > 0 for all w in M (x). Then there 
- - u 

exists 5 > 0 such that f(x) > f(x) for all x € B[x,5] n S and x * 5E. 

By part (ii) of L e m m a 3.4.2 the preceding theorem is equivalent 

to the following formally weaker one： 

Theorem 3.4.5 (Second-order sufficient conditions with 

constraints lib). Let x € S Q R^ and suppose that D+f(x;v) ^ 0 for all 

V € K (x). Suppose also that for every unit vector u with 

D^G(-,f)(x;u) = 0, 

w e have either (1) G ^ (x,0,u) > 0 or (2) L:'(5E,w,0，ii) > 0 for all w in 

M (x). Then there exists 6 > 0 such that f(x) > f(x) for all x € 
u 

B[x,5] n S and x ^ x. 

Proof of Theorem 3.4.4. In view of L e m m a 3.4.2, it suffices to 

prove theorem 3.4.5 which in turn follows immediately from Theorem 

3.4.3 and the following L e m m a (the inclusion of part (i) is to 
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facilitate the comparison of our Theorem 3.4.4 with a result of 

Chaney). 

Suppose that u is a unit vector for which M (x) is nonempty. 

Following [6], the modified lower second-order directional derivative 

G::(x,0,u) of G at 5E, 0 in the direction u is defined to be the infimum 

of all numbers 

lim inf [G(x ,f) - G(x,f)]/llx - 紀 
k k 

taken over the set of all sequences {x } such that both 
k 

(a') {x } converges to x in the direction u and 
I v 

(b') There exist w in M^(x) and a sequence x* converging to 0 
* 

such that X € aUx，w) for all k. 
k k 

L e m m a 3.4.6. Let u be a unit vevtor, and 0 € d G(-,f)(x) 
u 

(e.g., by L e m m a 3.4.2， this condition will be satisfied if 

D G(-,f)(x;u) = 0 and D f(x;v) 2： 0 for all v € K (x)). Then 
+ + s 

(i) G"(x,0,u) 2： G ' ‘ (x,0,u) 
- - m 

and 

(ii) G y (x,0,u) ̂  L;_'(X,W,0,U) 

for some w € M (x). 
u 

Proof. W e suppose that G^' (x,0,u) is finite and let A > 

C y (x,0,u). By the Remark following definition 3.1.3, there exist a 
一 来 

sequence {x^> convergent to x in the direction u, and a sequence {x^} 
来 

convergent to zero with each x € 5G( • ,f)(x ), such that 
IC IV 

(3.4.1) X > lim inf {[G(x ,f) - G(x,f)]/llx -xll^}. 
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By Theorem 3.3.5 (i) there exist w € T (x) with 0 € d L(x,w) (i.e. w € 
1 u 

Mu(x)) and a sequence {y*} convergent to zero such that each y* e 
^ k 

孔(.,w)(Xk). Then, by definition of G:二，right member of (3.4.1) is 

greater than or equal to G:二(5E,0,u). Therefore (i) follows. Moreover, 

as in the proof for Theorem 3.3.5 (ii), one has 

G(Xk,f) - G(x,f) > L(x^,w) - L(x,w). 

"""2 

Dividing by llx̂ -xll and taking lower limits, w e see that the right 

member of (3.4.1) is greater then or equal to L ^ (x,w,0,u), and so (ii) 

follows. • 
J-

To compare the Theorem 3.4.4 with theorem 5 of [6], w e define 

D(x) in Rn by 

D(x)： = {u € Rn: D_^f(x;u) < 0’ 0. Vi € I(x), 

and ：̂  0 ：̂  D"^g^(x;u) for i = m+1, • • • 

If for each i = m+1, •••，m+p, the function g has the directional 
i 

derivative at x, that is the limit 

(x;u): = lim I {g (x+tu) - g (x)} 
1 t小 0 t i i 

exists for all u € R^, then the set D(x) becomes 

iu € fff: D^f(x;u) ：£ 0, D^g^(x;u) ：£ 0, Vi € I(x), 

g'i(x;u) = 0 for i = m+1, • • • ,m+p.}, 

the one considered by Chaney [6]. 

L e m m a 3.4.7. If u € with D+G(. ,g。)(5E;u) = 0，then u € D(x). 

Proof. As before w e can suppose that g.(x) = 0 for some j with 

1 j s m+p. Recalling from L e m m a 3.3.1 that 
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m + p 

G(x,f) = m a x { J； w g (x)： w € T, w g (x) = 0, Vi = 1, 2, • • •’ m+p} 
i =0 

for all X near x. Considering all w of the form (w , w , • • •, w ) 
0 1 m + p 

whose coordinates all zero except at a coordinate i and at this i’ 

f 1 if i = 0 or i € I(x)； 
w = -I 

i ±1 if m + 1 “ m + p, 

it follows that G(x,f) > f(x) - f ® , g.(x), 土舀乂(乂）for all i € I(x) 

and k = m+1, •••’ m+p. Since G(x,f) = 0 = g^(x) = g^(x), it follows 

from the definitions that 

D G(-,f)(x;u) ̂  D f(x;u), D 2(x;u), D丄(土g )(x;u). 
T 十 + i + k 

Since D^(-g^)(x;u) = the required result follows. • 

In view of this lemma and since each u in K (x) satisfies the 
s 

tangential constraints as noted at the beginning of section 3’ Theorem 

3.4.4 clearly strengthens Chaney's theorem 5 in [6] even under his 

additional semismoothness assumption as he replaces (1) of Theorem 

3.4.4 by a stronger and somewhat unnatural condition: 

(1*) Gi'(x,0,u) > 0. 

Likewise, his Theorem 4 can also be strengthened by the 

f ollowing 

Theorem 3.4.8 (Second-order sufficient conditions with 

constraints III). Let f, g^, i = 1, 2, •••，m+p, be locally Lipschitz 

functions at x € S and M (x) nonempty. If for any u € D(x) n K (x) 
- s 

with M (x) 2 M (x) w e have ‘ (x,w,0,u) > 0 for some w € M (x), then 
U — — — 

there exists 5 > 0 such that f(x) > f(x) for every x € B(x,5) n S with 

X X. 
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Proof. Suppose that the desired conclusion is false. Then 

there exists a feasible sequence {x^} convergent to x in the direction 

u such that f(x ) s f(x). Then u € D(x) n K (x). N o w w e claim M (x) c 
K S — 

M u (巧 . L e t w € M_(x). Then D^L( • ,w)(x,v) > 0 for all v € But 

D L(-,w)(x.u) ^ lim inf ~ ~ L ^ { L ( X ,W) - L(x,w)]} < 0 

+ k确 llx -xll k 
k 

since L(x^,w) ^ w^f(x^) < w^f(x) = L(x,w). Thus, D+L( • ,w)(5E;u) = 0. 

By Theorem 3,2.6 w e have 0 € 5 L(-,w)(x) and so w € M (x). This implies 
U U 

that M_(x) Q M^(x). Then by assumption there exists w € M (x) such 

that L y (x,w,0,u) > 0. On the other hand, for any w € M (x), since 
一 

D^L(-,w)(x;v) > 0 for all v € Rn, it follows from loffe's Proposition 

that for any e^ 山 0, there exists ^ 0 such that 

F (X): = L(x,w) + € llx-xll 
^ i 

attains a minimum x on B[x,5 ]. N o w for each i, w e can find a x such 
i k 

i 
一 1 

that X € ] and 
k 4 i 
i 

L(x，w) ：< L(x,w) ：£ L(x,w) + e llx-5Ell 

for all X € B[x,5^]. Hence 

L(x，w) ^ L(x,w) + 2c llx -xll 
k i k 
i i 

for all X € B[x’2llx -xll]. By Ekeland variation principle with 

i 

A = eiZ2||x -xll/2, 
i k 

i 

w e have z € B[x,2llx -xll] such that 
k k 
i i 

1/2 一 

(i) llz -X II ̂  e llx -xll/2; 
k k i k 
i i i 

(ii) L(z, ,w) ：̂  L(x,，w); 
k k 
i i 

and 
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(iii) U z w ) ^ L(x,w) + 4e:Z2||x-z，II for all x € B[x,3llx -xll]. 
K, i k k 

i i 〜 
From (i) w e w e have x 本 z^ and z^ € B(x,3llx^-xll). Thus, from (iii) w 

i i 

Obtain 0 € a U •,w)(z ) + Thus, there exists 
i i 1 

* 来 

z € aL(-w)(z ) with Hz II < 4 严 

and so z^ 0 € aL(-,w)(x). Note that by (i) 
i 

(z, -X )/llx -工 11 — 0. 
k k k 
i i i 

Then 

[(Zjc ) 他 k - ⑶ + [ ( x - x ) / l l x -xll] 

, , 一 、 一 i i i k 
(Zk - x)/llz -xll = ： ^ u. 

i ||[(Z _ x )/||x -Xll ] + [(X -5E)/IIX -Xil ] II 
k. k, k, k k 
i i i i i 

Hence it follows from the definition of L " , (ii) and L(x ’w) ：£ L(x,w) 

- k 
i 

that 

L"(x,w,0,u) < lim inf ,w) - L(x,w)} < 0. 

- i-^ Hz -xll k 

k 1 
i 

Since w is arbitrary in M_(x), this is a contradiction. • 

The following result was proved by Chaney [6, Theorem 4] under 

additional assumption that f, g^, i = 1, 2 , …， m + p , are semismooth at 

X. 

Corollary 3.4.9. Let f, g^, i = 1, 2 , … ， m + p , be locally 

Lipschitz functions at x € S and M(x) nonempty. Suppose that the 

function L(.,w) is regular at x for every w in M(x). If for any 

u € D(x) r\ K (x) with M (x) = M(x) we have L''(x,w,0,u) > 0 for some 
s u -

w € M(x), then there exists 5 > 0 such that f(x) > f(x) for every 
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X € B(x,5) n S with x x. 

Proof. In the case of regularity, w e have M(x) = M_(x). Then, 

M (x) 2 M (x) 
- u 

for any u € 沢".Hence, if u € D(x) n K (x) with M (x) 2 M (x), then 
S u -

M (x) = M (x) (= M(x)) 
U 一 

and so by the assumption w e have D^L(x,w,0,u) > 0 for some w € M (x) 

(=M(x)). By Theorem 3.4.8 w e complete the proof. • 

86 



V. 

Ref erences 

[1] J-P Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & 

Sons, 1984. 

[2] A. Ben-Tal, Second-order and related extremality conditions in 

nonlinear programming, J. Optim. Theory Appl, 31(1980), 143-165. 

[3】A. Ben-Tal and Zowe, A unified theory of first and second order 

conditions for extremum problem in topological vector spaces, 

Math. Programming Stud. 19(1982), 39-76. 

[4] A. Ben-Tal and Zowe, Necessary and sufficient optimality 

conditions for a class of nonsmooth minimization problems. 

Math. Programming 24 (1982), 70-91. 

[5] R. W . Chaney, Second-order necessary conditions in constrained 

semismooth optimization, SIAM J. Control and Optim. Vol. 25, No. 

4(1987)，1072-1081. 

[6] R. W . Chaney, Second-order sufficient conditions in nonsmooth 

optimization, Math. Oper. Res. Vol. 13. No. 4(1988), 660-673. 

[7】R. W . Chaney, Second-order necessary conditions in semismooth 

optimization, Math. Programming 40(1988), 95-109. 

[8] R. Cominetti and R. Correa, A generalized second-order derivative 

in nonsmooth optimization, SIAM J. Control and Optim. Vol. 28, No. 

4(1990)，789-809. 

[9] F. H. Clarke, Optimization and Nonsmooth Analysis. Wiley-

Interscience, N e w York, 1983. 

[10] A. D. loffe, Calculus of Dini subdifferentials of functions and 

contingent coderivatives of set-valued maps, Nonlinear Analysis, 

87 



V. 

Theory, Methods & Applications, Vol. 8. No. 5(1984), 517-539. 

[11] R. Mifflin, Semismooth and semiconvex functions in constrained 

optimization, SIAM J. Control and Optim. Vol. 15’ No. 6 (1977), 

959-972. 

[12] R. T. Rockafellar, Second-order optimality conditions in 

nonlinear programming obtained by way of epi-derivatives, Math. 

Oper. Res. vol.14. No. 3(1989), 462-484. 

[13] M . Studniarski, Second-order necessary conditions for 

optimality in nonsmooth nonlinear programming, J. Math. Anal. 

Appl., Vol. 154, No. 2(1991), 303-317. 

88 



V, 

Appendix 

For convenience of reference, we review here some known 

results with proofs that have been used by us in the preceding 

chapters. 

Let X be a locally convex space and f"(x； u, v) be as in chapter 

2. 

Lemma Al. [2]. Let f: X . - > R and x € X. Then: 

(i) The map (u, v) i——> f"(x;u, v) is symmetric, and sublinear 

on each variable separately. 

(ii) The map y i~> f°°(y； u, v) is upper semi-continuous at x 

for every (u,v) € X x X. 

( i i i ) f " ( x ； u , - v ) = f ①(X; - ii’v) 二 ( - f 广(x;u，v) = - f ( x ; u , v ) . 
00 

Proof: By definition 

f°°(x； u, v) ： = lim sup t, s, u, v), 

where 

(y, t，s,u，V) = f (y+tu+sv) - f (y+tu) - f (y+sv) + f(y) j . 

Then for any a > 0 and z, w e X, 

(4.1) n^Cy,t,s,u,av) = an^(y,t,as,u, v) 

=aa^Cy,t,X,u,v), (X = as) 

(4.2) Of (y, t’s’ii, z+w) 

= ^ f ( y + t u + s ( z + w ) ) - f(y+tu) - f(y+s(z+w)) + f(y)| 

= ^ f ((y+sz)+tu+sw)-f ((y+sz)+tu)-f ((y+sz)+sw)+f (y+sz)| 

+ ^ f ( y + t u + s z ) - f(y+tu) - f(y+sz) + f(y)-
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= O f (y+sw’ t，s，ii’z) + •f(y,t，s,u’w) 

and 

(4.3) •f(y’t’s’u’-v) 

= l ^ f ( y + t u - s v ) - f(y+tu) - f(y-sv) + f(y). 

= 財 f ( 。 - f ( ? + s v ) - f(?-tu) + f ( ? - t u + s v ) . 

= D f ( ?， t , S’ - U , V )， 

where ？ = y+tu-sv. Similarly, let C = y-sv; then one has 

(4.4) n^Cy, t,s,u,-v), 

= - f(<+tu+sv) - f(<) + f(<+sv)j 

= • ( _ f ) ( C t ’ s , u ， v ) . 

⑴ The symmetry of f①(x;.,•) follows from the definition and 

the sublinearity of f"(x;u,•) follows from taking upper limits on 

(4.1) and (4.2). 

(iii) The last equality follows easily from definitions. The 

other equalities follow from (4.3) and (4.4). 

(ii) The proof is similar to the proof of (2) of Theorem 

1.3.1. • 

Lemma A2. Let f: X > R be a continuous function, x, v € X, 

and t > 0. Then there exists a € (0,t) such that 

f(x+tv) 一 f(x) < n "丄 飞 
1 ：̂  D f(x+av;v). 
"C + 

Consequently, 

lim sup D+f(y;v) = lim sup D+f(y;v) = lim sug f°(y;v) = f°(x;v). 

Remark: If let f = -g, then we have 
g(x+tv) - g(x) ^ D+g(x+av;v), 

u 
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and so the corresponding results for f^(x； v). 

Proof: By introducing 

M s ) = f(x+sv) - ^ [f(x+tv) - f(x)], 

we have 

h(a+;U - h(a) = f(x+av+Av) 一 f(x+av) - ^[f(x+tv) - f(x)] 

and so 

f(x+tv) - f(x) ^ ^ 、 
^ ^ D+f (x+av; V) 

is equivalent to 

D+h(a;l) = lim ^nf i{h(a+A) - h(a)} > 0. 

Since h(0) = h(t), there exists t。€ (0,t] being a global 

maximum point of h. Let t^ € (0,t^). Then we either have 

D+h(ti;l) > 0, in which case we are done by taking a = 、 ， o r 

D+h(ti;l) < 0 in which case h attains a local minimum at some a € 

(ti,to) and clearly D+h(a;l) > 0. The proof of the first 

conclusion is completed. 

Now for any y € X and t > 0, we apply our first assertion to 

obtain a € (0,t) such that 

f(y+tv) - f(v) + 
— ~ ~ I — ^ D+f(y+(xv;v) ^ D f(y+av;v). 

Taking upper limits in the above inequalities, we conclude that 

f°(x;v) < lim supD+f(y;v) s lim sup D+f(y;v). 

On the other hand, the opposite inequalities must also hold 

because by D+f(y;v) ：£ D+f(y;v) ：̂  f°(y; v) and the upper 

semicontinuity of f°°( •, v) ( see Theorem 1.3.1. (2)), we have 

lim sup D+f(y;v) s lim sup D+f(y;v) 

^ lim sup fO(y;v) ：̂  f°(x； v). • 

Let g, h and I(g(x)) be as in chapter 2 (pp. 27-28). 
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Lemma A3. [2, Prop. 3.7 and 3.8] Suppose that each g is a 

2 C -function at x, 1 ：£ i ：£ n, and the derivatives 

{g;(x); i € I(g(x))> 

are affinely independent. Then for any u，v € X, 

h①(x;ii,v) > max D^g(x;u,v). 

1 € I ( g ( x)) 

Proof: Let J € I(g(x)). Since {gj(x)； i e I(g(x))} are 

affinely independent, the following system 

一 g〔（x.); k € I(g(x))’ k J} 

is linearly independent. Then there exists w € X such that 

(x; w) - g'(x； w) = 1 
J 汉 

for all k € I(g(x)) and k ^ j. Consequently, there exists M > 0 

such that 

g (x+tw) > g (x+tw) 
J i 

for all i ^ J, 1 ^ i ^ n and all t ^ M since J e I(g(x)). By 

continuity, it follows that the equality 

g.(-) > (k = 1, 2, n； k ；̂  J) 

on an open neighbourhood U^ of x + tw. Consequently, by 

definition of h, one has 

g = h on U 
j t 

2 00 
and so D g^ (x+tw； u, v) = h (x； u, v). By passing to the limits as 

t ^ 0 it follows from Proposition 2.2.4 that 

2 00 
D gj(x;ii，v) ：̂  h (x； u, v). • 

Lemma A4. [2. Prop. 3.9] Let u, v € X. If each g. is a 

C^-function at x, 1 ：̂  i ：£ n, {g^(x) ； k e I(g(x))} are affinely 

independent and there are i, J € I(g(x)) such that 
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[g'i(x;v) - g;(x;v)][g;(x;u) - g;(x;u)] > 0, 

then h⑴(x;ii,v) = +co. 

Proof: Since h⑴(x;ii’v) = h"(x;-u,-v) by (iii) of Lemma Al, we 

may assume (by changing u to -u and v to -v if necessary) that 

g'i(x;v) > g;. (x;v) and g;(x;u) > g^ (x;u). 

Since {g^(x), k € I(g(x))} are affinely independent, 

{g'(x) - g' (x): k J and k € I(g(x))} 
^ J 

are linearly independent. Thus, there exists w € X such that 

(4.5) g[ix;w) - g;(x;w) = 0 

and 

(4.6) g： (x;w) - g'.(x;w) = -1, k ^ i, J and k € I(g(x)). 

^ J 

It follows from a standard implicit function theorem [3, Theorem 

5.2] that we may find a path x(t) € X and 5 > 0 such that 

x(0) = X， X'(0) = w and 

g^(x(t)) = g^(x) + tg'i(x;w), 1 € I(g(x)) 

for all It I < 8. Thus, by (4.5) and (4.6) we obtain 

(4.7) g (x(t)) = g.(x(t)) > g j x ( t ) ) 
1 J k 

for every k € I(g(x)), k ^ i, j and |tl ：£ 8. By taking smaller 5 

if necessary we can further assume the above inequality in (4.7) 

holds even if k I(g(x)) (because g.， g are continuous and 
J k 

g. (x(t)) > g (x(t)) at t = 0). Consequently, 
1 k 

I(g(X(t))) = {i, J}. 

Since g:(x;u) > g^(x;u), by continuity of g;(•；u) and g^(•;u) 

the same holds with x replaced by x(t) provided t > 0 is small. 

Then it follows from Lemma 2.3.1 and the definition of 

(g'Jx(t)) - g;(x(t)))u 

we may find e^ > 0 such that 
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I(g(x(t)+|u)) = {i} and I(g(x(t)-|u)) = {J} 

for all s € (0,e ) and t near zero. 
t 

Take s^ € with s^ ^ 0 and set 

s 
y(t) = X(t) - ^ U. 

Then 

lig (y(t)+s^u;v) = lim gj(y(t)+s^u；v) = g;(x;v), 

Jim h'(y(t);v) = lim g'(y(t);v) = g'(x;v), 

and since g;(x;v) > g;(x;v) we conclude from Proposition 2.2.4 

that ’ 

eo h'(y(t)+s u;v) - h'(y(t);v) 

h (x； u, v) > lim sup 
Sf ’ 

because the numerator converges to the finite limit 

g;(x;v) - g^(x;v) > 0 . • 

Let the problem P(X) and S, T be defined as in chapter 3 

(p. 64) and let x € S. Also define the function G(x,f) as in pages 

64-65. 

Lemma A5. [1， Lemma 1] (i) x is a strictly local solution to 

problem PCX) if and only if we have G(x,f) > 0 = G(x,f) for all x 

near x with x x. 

(ii) If X is a local solution to problem P(X), then G(x，f) > 

0 = G(x,f) for all X near x. 

Proof： (ii) Suppose that x is a local solution to the 

problem PCX). Then there exists a neighbourhood U of x such that 

(a) for each feasible x in U, f (x) 2： f (x); 

(b) for each unfeasible point x in U, there exists i such 

that g.(x) > 0 if 1 i < m or g^(x) ；t 0 if m+1 ^ i ：£ m+p. 
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For the case (a), we pick w = (1, 0, •••， 0) and note that 

G(x，f) > L(x，w) - f(x) ^ f(x) — f(x) > 0 

by definitions. For the case (b), we choose w € T with 

w. = 0 for all J i and w = ( / ,、、 if 1 “ 二 m 
J i sgn(g^(x)) if m+1 < i < m+p' 

Then we also have 

L(x，w) - w f (x) = w g (X) > 0 
0 i i 

SO that G(x，f) > 0. That G(x,f) = 0 follows from the definition 

一 m + p 

of G and noting that x is a feasible point (so that J] w.g. (x) < 0 
i = 1 1 1 

for all w € T). 

(i) The "only if" part follows similarly as (ii). Conversely, 

suppose there exists a neighbourhood U of x such that G(x,f) > 0 = 

) for all X e U \ {x}. Then for any feasible point x in 

U \ {x} and w € T, one has 

m + p 

E W.g.(x) < 0 
i =1 1 1 

S O t h a t 

m + p 

〇 < G(x,f) = max{w (f(x) - f(x)) + J w.g. (x)； w € T} 
i =1 1 1 

^ max{w^(f(x) - f(x)); w € T}. 

This implies that f(x) > f(x) for all feasible points x in U \ {x}. 

• 
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