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Abstract 

This thesis describes a methodology of using machine learning techniques for 

natural language understanding and dialog modeling in a human-computer 

conversational system. We aim to reduce the amount of handcrafting in the 

development of spoken language systems and ease portabi l i ty of the systems 

across different application domains. We explore the use of Belief Networks 

(BNs) to capture domain-specific knowledge wi th in a restricted domain, by 

modeling the causal relationships between semantic concepts in the user's 

query and its underlying informational goal. The BNs are used to infer the 

users' underlying intentions in their informational-seeking queries. Concept 

identification and goal inference constitute natural language understanding 

(NLU). Our BN-based framework for NLU includes a methodology whereby 

the BN topology can be automatically learned to capture more sophisticated 

inter-concept dependencies to improve the understanding accuracy. We have 

also shown that our framework is robust against speech recognition errors in 

spoken queries. We use backward inference to ensure that the user's query 

is compatible wi th the domain-specific constraints. Backward inference can 

automatically detect and identify spurious or missing concepts in the query. 

Our BN-based framework can reject the spurious concepts or invoke the dia-

log model to clarify for the spurious concepts. Alternatively, the dialog model 

i 



can be invoked to prompt for missing concepts. As a result, our framework 

can be extended to drive mixed-init iative dialog modeling. We have demon-

strated the scalability of our BN-based dialog model from the simple domain 

of foreign exchange to a more complex domain of air travel information ser-

vice. To ease portabi l i ty across domain, which implies the lack of training 

data, we have proposed a set of principles for probabil i ty assignment to the 

BNs, to reflect the "degree of belief" in the relationships between the con-

cepts and the goals. Applications of our BN-based framework in natural 

language understanding and dialog modeling gave promising results and the 

performances fell wi th in a reasonable range when we compared wi th the 

benchmark. 
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摘要 

本論文主要是研究以機器學習的技術，運用於自然語言的理解及人機 

對話系統的模型塑造。爲了在建立話音語言系統的過程中減省人手及 

增加該系統對不同領域（ d o m a i n ) 的可移植性，我們採用了信念網絡 

(Belief N e t w o r k s )去擴取在特定領域的對話當中，一些不同語意概念的 

配合與所帶出的意向之間的因果關係。模型化後的因果關係可用作推 

斷人們在查詢資訊時的概念及目的，這有助於自然語言理解的運用。 

我們所設計的信念網絡更可從訓練數據中自動學習，去擴取各種語意 

概念之間的依存關係來改良自然語言理解的準確性。在存在語音識別 

錯误的情況下，使用者的查詢會被信念網絡利用追溯推理（ b a c k w a r d 

i n f e r e n c e )所確認，一些被懷疑因識別錯談而產生的概念會被偵、測出 

來 。 這 信 念 網 絡 還 可 伸 延 至 處 理 語 音 對 話 的 查 钩 。 當 追 溯 推 理 從 使 

用者的查钩中铺測出一些可能是欠缺或是錯娱的概念的時候，系統便 

會提示使用者作出確認或橋正。這個偵、測流程使到我們的混合對答 

( m i x e d - i n i t i a t i v e )對話模型能夠自動操作。我們註實這個以信念網絡爲 

本的對話模型從較簡單的外帶兑換（Fore ign Exchange)領域到較複雜的 

航空資訊 ( A i r Travel Information S e r v i c e )領域的可變比例性。對於領域 

可移植性方面，一個新的領域通常會缺乏剣練數據，因此我們提出了 

一系列的法則爲信念網絡裡的或然率賦俊，來反映出不同概念與其目 

的之間的關係的可信度（"degree of belief，，）。基於我們的信念網絡架構 
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的應用系統，在自然語言理解及對話模型方面，有著一定的效果。而 

且在基準測試當中，更有合理的表現。 
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Chapter 1 

Introduction 

1.1 Overview 

In this information age wi th proliferous usage of computers and connectivity 

to the Internet, many people are interested in the abil i ty to access real-time 

information at any time and from anywhere. Many different applications have 

emerged that automate the services that have previously been performed by 

human operators. Nowadays, people can easily interact wi th the computers 

or Web browsers for bi l l payment, retrieve real-time stock quotes from menu-

driven touch tone or voice telephone and view e-mail through WAP phones, 

etc. Effective human-computer communication plays an important role to 

improve overall user's satisfaction and eliminate his / her frustration in using 

the menu-driven services. Speech is one of the most natural and flexible 

human-computer communication as it comes very naturally to most people. 

The use of spoken language offers ease-of-use which reduces caller training 

and allows for both new and experienced users to use the same interface. 

As a result, there has been an increasing number of commercial applications 
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CHAPTER 1. INTRODUCTION 

that enable users to converse wi th computers. 

One of the key enabling technologies for a human-computer conversation 

is spoken language understanding. State-of-the-art conversational systems 

can respond to the user's information-seeking queries for a restricted domain. 

These queries can often be classified into several domain-specific categories. 

However, for a given query type, the informational goal for a query and 

the possible ways of expression are legion. Natural language understanding 

(NLU) requires more than spotting keywords or key phrases in the spoken 

request. I t involves identifying the informational goal(s) from the query's 

semantics, and subsequently retrieving the relevant information to produce 

a coherent response. 

As an example, we can consider an enormously simplified weather domain, 

which only consists of three semantic concepts:〈WEATHER〉，�LOCATION� 

a n d � D A T E � . A query which specifies two of the three concepts is likely to 

be asking for the missing one, e.g. “ What do we expect for Hong Kong 

tomorrow?,,. A query containing all three concepts is likely to be asking for 

a yes / no response, e.g. “ Will there be sunshine in Hong Kong tomorrow?,,. 

Another example is call-routing in AT&T's “How May I Help You?” task [1: 

and other similar call center tasks [5]. Here the caller's informational goal 

determines the destination for call-routing. 

Most of the approaches to spoken language system development require a 

grammar for parsing the user queries into corresponding semantic concepts. 

The grammar is usually handcrafted by a domain or linguistic expert. In 

order for the computer to decode the underlying intentions of the queries 

for understanding, heuristic rules for the specific domain are needed to map 
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CHAPTER 1. INTRODUCTION 

the captured key concepts into informational goal(s). Besides, background 

knowledge on domain-specific constraints is necessary for handling discourse 

context as well as resolving ambiguities. Due to the extensive handcrafting 

in the heuristic design of spoken language systems, portabil i ty to a new 

application domain is an expensive and time-consuming task. 

In order to reduce the amount of handcrafting in the development of 

spoken language systems, this thesis explores the use of machine learning 

techniques to capture the domain-specific knowledge (semantic constraints) 

automatically. We adopt a statistical approach that uses Belief Networks 

(also known as Bayesian Networks, BNs) to capture the causal relationships 

between the semantic concepts in the user's query and its underlying infor-

mational goal. BNs are then able to infer the users' informational goal(s) for 

natural language understanding. We wi l l also focus on improving the spo-

ken language understanding by recovering from speech recognition errors. 

Besides, our BN-based framework is also extended for dialog modeling in a 

spoken language system. 

1.2 Natural Language Understanding 

Our work is motivated by the idea that the understanding component should 

utilize the domain-specific knowledge to infer the speaker's informational 

goal(s) in the spoken query. Also, the query is usually accompanied with in-

complete information and requires reasoning the underlying speaker's inten-

tion under uncertainty. As a result, we devised a methodology that explores 

the use of Belief Networks to capture the statistical dependencies between 

the key semantic concepts and the domain-specific goal(s). The BNs are then 
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CHAPTER 1. INTRODUCTION 

used to identify the user's informational goal(s) out of a finite set of within-

domain goals. We believe that the Belief Networks offer several advantages 

to our problem [16]: 

1. The dependencies between a query's informational goal(s) and the rel-

evant semantic concepts may be effectively captured in the topology of 

the BN. The BN topology can also be automatically learned to capture 

more sophisticated dependencies. 

2. BNs identify the informational goal by means of probabilistic inferenc-

ing. Under situations where massive data is involved, this provides an 

attractive alternative to handcrafting the heuristics between parses and 

their interpretations. 

3. BNs can handle situations where the input observations are incomplete 

or contain uncertainty, and thus may model spoken queries well. 

4. The BN framework is suited for the optional incorporation of prior 

knowledge in order to aid the inference process. 

1.3 BNs for Handling Speech Recognition Errors 

The accuracy of spoken language systems depends critically on the speech 

recognition component. Speech recognition output may have errors which 

lead to mismatches between the system's and the user's expectation. The er-

rors can be associated with word deletions, insertions or substitutions. How-

ever, sometimes the errors cannot be recovered, and the user is forced into a 

spiral of confusions during the interaction. In order to improve the robustness 
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CHAPTER 1. INTRODUCTION 

against the speech recognition errors to prevent misunderstanding between 

the system and the user, recognition errors within a spoken query should be 

detected and rejected automatically. Most of the current approaches incor-

porate the likelihood of the acoustic models in which the TV-best recognition 

hypotheses are computed. The utterance / word whose acoustic score is be-

low a certain level wi l l be identified as potential errors and the system wi l l 

then prompt for the user. 

We have explored a method for automatic post-processing the speech 

recognition output which attempts to recover the recognition errors during 

high level NLU processing. We wi l l not make use of any acoustic scores. 

Only the semantic constraints captured by the Belief Networks are used to 

detect the mis-recognized concepts. While the BNs are used to infer the in-

formational goals of the user's query for natural language understanding, the 

input query is verified against the domain-specific constraints by backward 

inference. The BNs can thus detect the possibly spurious concepts caused 

by mis-recognition. 

1.4 BNs for Dialog Modeling 

So far, our emphasis on natural language understanding is on self-contained 

queries whose meaning is complete. However, when the user converses with a 

real spoken dialog system, the interpretation of the queries may also depend 

on the discourse context. For example, consider the queries below: 

“/ want to go from The Chinese University to Shatin." 
“How far is Shatin from here?” 
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CHAPTER 1. INTRODUCTION 

The former query is self-contained as its context is independent of the 

other query, while the interpretation of the latter query depends on earlier 

discourse (it is referred as a discourse query). The context of the discourse 

wi l l affect the meaning of each individual utterance of the dialog and the 

information of a discourse query carries beyond what is simply expressed in 

the individual sentence. Besides, when the users interact wi th the system 

to access or retrieve the desire information, i t may be impractical for users 

to specify all their requirements wi th in a single query. The query is usually 

incomplete, and sometimes inconsistent wi th respect to the discourse history. 

As a result, the spoken dialog system should be capable of understanding the 

discourse queries as well as providing proper guidance to the users. 

Dialog management plays an important role in spoken dialog systems in 

assisting users to achieve their goal efficiently. I t requires keeping an updated 

history and analyzing the intention of the user incrementally, as the context 

may change while the dialog proceeds. A suitable strategy should also be de-

termined to drive the dialog model. Currently, there are several approaches 

for dialog modeling. The system-initiative dialog model assumes complete 

control in guiding the user through an interaction towards task completion. 

This model often attains high task completion rates, but the user is bound by 

many constraints throughout the interaction. Conversely, the user-initiative 

model offers maximum flexibility to the user in determining the preferred 

course of interaction. However this model often has lower task completion 

rates relative to the system-initiative model, especially when the user's re-

quest falls beyond the system's competence level. To strike a balance between 

these two models, the mixed-initiative dialog model allows both the user and 
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the system to influence the course of interaction. I t is possible to build effec-

tive mixed-initiative interactions by handcrafting flexible transitions between 

the system-initiative and user-initiative models. While handcrafting can pro-

duce a sophisticated dialog flow, this process is expensive, and may become 

intractable wi th increasingly complex domains. 

In this thesis, our BN-based framework is extensible to handling discourse 

queries. Each individual discourse query that contains partial information is 

captured by the BN for goal inferencing. Based on the existing context, the 

BN of the corresponding inferred goal wi l l perform backward inference to de-

tect the missing / spurious concepts automatically. This detection procedure 

automatically governs the model transition for mixed-initiative interactions. 

The problem of out-of-vocabulary (〇〇V) words is also crucial in spoken 

dialog systems. Our BN-based dialog model is also enhanced to identify 0 0 V 

words. Unseen words which are confirmed by the users wi l l be incorporated 

into the lexicon automatically, and the system can guide the users wi th proper 

instructions. 

Scalability of our BN-based dialog model from a simple domain to a 

more complex task domain wi l l be illustrated. To ease the portabil i ty across 

domains, which often implies the lack of training data for the new domain, 

we have incorporated prior knowledge for the development of BNs. A set of 

principles for hand-assigning BN probabilities are developed, based on the 

"degree of belief" in the relationships between concepts and goals. 
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1.5 Thesis Goals 

In this thesis, we wi l l illustrate the feasibility of using Belief Networks (BNs) 

in natural language understanding and dialog modeling. The topologies of 

the Belief Networks are learnable, and are designed to model the relationships 

between the key concepts and goals. The BNs are used to infer the infor-

mational goals of self-contained queries for natural language understanding. 

Input queries can also be verified against the domain-specific constraints by 

backward inference, which can detect missing or spurious concepts. The spu-

rious concepts which are often caused by mis-recognition can be rejected to 

improve the goal identification accuracy. Our BN-based framework is also ex-

tensible to handling the discourse query within a conversation. The detected 

missing or spurious concepts can drive the mixed-initiative interactions. We 

aim to demonstrate that our BN-based dialog model is scalable and portable 

to other new domains so as to reduce the amount of handcrafting in the 

development of spoken language systems. 

1.6 Thesis Outline 

This thesis is organized as follows: Chapter 2 describes some previous work 

in tackling the problems in natural language understanding, speech recogni-

tion error handling and dialog modeling of a spoken dialog system. As we 

propose to use Belief Networks, background and applications of the Belief 

Networks are also introduced. Chapter 3 details the use of Belief Networks 

in natural language understanding to infer the informational goals and handle 

mis-recognized words for the spoken queries. Chapter 4 presents the extensi-
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CHAPTER 1. INTRODUCTION 

bil i ty of our Belief Network framework for mixed-initiative dialog modeling. 

Chapter 5 demonstrates the scalability and portabil i ty of our BN-based dia-

log model across different application domains. Conclusions and future work 

are provided in Chapter 6. 
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Chapter 2 

Background 

This thesis sets out to reduce the amount of handcrafting in the develop-

ment of spoken language systems. Language understanding involves inferring 

the underlying intentions of the self-contained queries and also the queries 

whose meaning is dependent on discourse context in a conversation. An-

other challenging issue in spoken language systems is handling speech recog-

ni t ion output. The presence of mis-recognized words may result in the mis-

communication between the user and the system. Therefore, our natural 

language understanding framework should be robust against recognition er-

rors in spoken queries, as well as extensible to dialog modeling to handle 

discourse queries. Natural language understanding, speech recognition er-

rors handling and dialog modeling are well known problems in the area of 

speech and language technology research. In this chapter, we wi l l describe 

the background information in these areas. In Section 2.1, we wi l l review the 

previous work on understanding natural language queries. In Section 2.2, 

general approaches for handling recognition errors wi l l be presented. In Sec-

t ion 2.3，several approaches adopted in the current spoken language systems 
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are described. Since, we are proposing to use Belief Networks for natural lan-

guage understanding and dialog modeling, we wi l l provide the background 

information of Belief Networks in Section 2.4. 

2.1 Natural Language Understanding 

Understanding wi th natural language (both in text or spoken queries) de-

pends heavily on the knowledge of the application domain. I t requires infer-

ence about the speaker's informational goal(s) and semantic concepts. Be-

sides, the most challenging task for understanding spoken language is that 

the spontaneous speech is often agrammatical, containing false starts, disflu-

encies, filled pauses ("umm", "ah"), etc. Also, i t is inevitable to encounter 

new words uttered by speakers that are out of the system's vocabulary [11. 

Hence, an understanding component designed for text input which assumes 

the entire word string is grammatically correct should be enhanced for spoken 

input. 

Research in natural language understanding has been going on for decades, 

but most efforts are focused on restricted domains. The ATIS (Air Travel 

Information Service) task initiated by the DARPA spoken language systems 

program in late 1980's has spurred different research sites to take part in 

the development of understanding systems. The ATIS project focused on 

the database access task which allowed users to inquire for flight information 

such as flight schedules, air fares, ground transportation at a specific air-

port, etc. Since different systems were developed using the same relational 

database originating from the Official Airline Guide (OAG), it was possible 

to compare system performances based on the correct extracted information 
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using a set of prescribed training and test data [47]. Systems were evaluated 

regularly according to three benchmarks: SPREC (speech recognition per-

formance) , N L (natural language understanding of wri t ten transcriptions of 

the spoken sentences) and SLS (spoken language understanding). 

The simplest approach for natural language understanding is to perform 

keyword spotting on the speech recognizer's output. This technique works 

quite well for small applications. However, i t is difficult to scale up to large 

tasks. When the application domain is more complex, systems require so-

phisticated natural language analysis to achieve understanding. Previous 

approaches to this problem include the use of heuristics to map a parsed 

query into an interpretation. The "parse" may be the output of a grammar-

based parser [51], a stochastic concept decoder [45], probabilistic recursive 

transition networks [35] or semantic interpretation rules [24]. There are also 

approaches that involve the use of a key-phrase spotting technique [5] for 

sentence interpretation. 

2.1.1 Rule-based Approaches 

Most of the rule-based models involve a grammar for meaning interpretation 

4, 21，51，61]. The grammar usually hand-designed by domain and linguistic 

experts can handle syntactic and semantic patterns by attempting to cover 

all the legitimate ways people could ask within a domain. For instance, the 

grammar is written as a set of context-free rules with constraints in the TINA 

parser [51], it is converted to a network structure where each node represents 

a syntactic or semantic category. The utterance can then be parsed into a 

tree structure where non-terminals are mapped into a semantic frame for 
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interpretation. Here the interpretation adopted depends primarily on an 

evaluation among the parse alternatives, and sometimes the heuristics may 

not identify the best interpretation i f task knowledge were to be considered. 

As a result, Ward et al. [61] have proposed a "beam of interpretations" 

approach, where multiple interpretations from multiple parses are used. In 

order to handle disfluent spontaneous speech that is often agrammatical, a 

robust matcher which combines using heuristics is also adopted to analyze 

parsable phrases and clauses [21, 50. 

Since the grammar usually includes the domain-specific constraints, i t is 

difficult to write a set of generalized rules for all domain-independent appli-

cations. Due to the extensive handcrafting on the grammar design, porta-

bil i ty of a natural language component to another application domain is an 

expensive task. However, when the rule-based model is compared wi th the 

statistical model (more details below) which requires a large annotated train-

ing corpus, there might be an advantage in using hand-designed rules for a 

new application whenever annotated training data is unavailable. 

2.1.2 Stochastic Approaches 

Stochastic approaches have been explored in order to incorporate automatic 

learning methods into natural language understanding. Examples include 

the AT&T CHRONUS [45], LIMSI-CNRS [37], BBN-HUM [35] and the 

CHANEL systems [24] for the ARPA-ATIS task. In a stochastic-based model, 

the relationships between the semantic labels (concepts) and corresponding 

word sequence are automatically learned from a large annotated training 

corpus. These relationships are used to decode the word sequence into a 
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set of semantic labels for understanding. There exist different techniques for 

modeling the stochastic-based understanding system. They are illustrated 

as follows: 

2.1.2.1 Hidden Markov Models ( H M M ) 

Hidden Markov Models (HMMs) were used in the A T & T CHRONUS [45； 

and the LIMSI-CNRS systems [37] in which the words are modeled as ob-

servations and the concepts are the hidden states. The model attempts to 

find the sequence of words W and the concept sequence C that maximize 

P{W, C\A), where A is the acoustic evidence. This is equivalent to finding 

the most likely sequence of states in the conceptual HMM, given the word se-

quence. The conceptual decoder then carries out a linear sequential mapping 

between sentence segments and concepts. This approach views understand-

ing as decoding of the concepts "hidden" in an utterance, and portabil i ty 

has been demonstrated by migration from the ATIS (Air Travel Information 

Service) to the French MASK (Multimodal-Multimedia Automated Service 

Kiosk) task [36 . 

2.1.2.2 Hidden Understanding Models (HUM) 

The hidden understanding model (BBN-HUM) system [35] is based on an 

approach similar to the Hidden Markov Models. I t aims to determine mean-

ing directly from a sequence of words. Probabilistic transition networks are 

adopted in which meaning is represented by a tree structure while subcon-

cepts are nested within other concepts. Let M be the meaning of an utter-

ance, and W be the sequence of words that convey the meaning. By Bayes' 
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rule, the problem is formulated as: 

P{M\W) = (2.1) 

Since P{W) is fixed, maximizing P{M\W) is equivalent to maximize the 

product P{W\M)P{M). P{W\M) is a semantic language model that em-

ploys tree-structure meaning representation: concepts are represented as 

nodes in the tree, wi th sub-concepts represented as children. On the other 

hand, P{M) is a lexical realization model which specifies the transition prob-

abilities between words (i.e. bigram language model). As a result, under-

standing a sequence of words requires finding a meaning M such that the 

probability P{W\M)P{M) is maximized. I t is done by finding the maxi-

mum probability path through the network made up of the two combined 

models (semantic language network and lexical realization network). 

2.1.2.3 Semantic Classification Trees (SCTs) 

Semantic interpretation rules have also been used for natural language un-

derstanding, where the rules are learnt automatically by decision trees known 

as Semantic Classification Trees (SCTs) [24]. Each main attribute found in 

the database (e.g. main attribute fare.fare—id in the air-travel database) is 

represented by a SCT that is a binary decision tree with a question associ-

ated with each node. Questions are about a sentence pattern consisting of a 

word sequence or an expression containing words with gaps. Therefore, the 

model is robust to spontaneous speech. Each node of a SCT has two succes-

sors: YES and NO for denoting the presence or absence of the corresponding 

concept, each of which leads to a different successor node. As a result, under-

standing the word sequence is simply formulated as a classification problem 
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performed by the SCTs. 

The stochastic models can be easily adapted to a new domain i f an an-

notated training corpus is available. However, in the domain of natural 

language understanding, data collection and annotation is a difficult and 

time-consuming task. As a result, the corpora wi th l imited data cannot be 

applied to stochastic models easily. 

In this work, we also adopt a statistical approach, except that we use Be-

lief Networks to capture the domain-specific knowledge for natural language 

understanding. Annotated training data is required for training probabilities. 

In addition, we have developed a set of guidelines to reflect the "degree of 

belief" for the Belief Networks so as to ameliorate reliance on the annotated 

corpora. 

2.1.3 Phrase-Spotting Approaches 

In this approach, concept-based phrases are directly related to semantic in-

terpretation for understanding. The phrase-level constraint provides wider 

coverage and i t increases robustness to the ill-formed spontaneous utterance. 

The phrase-spotting model can be achieved by a progressive search strategy 

such as the A * search in [22]. There has also been an approach that involved 

the automatic extraction of phrases in a restricted domain. A set of gram-

mar fragments [1], including both syntactically and semantically organized 

phrases was obtained by clustering of the phrases based on their similarity. In 

the A T & T “How May I Help you?” call-routing service [14], these grammar 

fragments are associated with various call types. The observed fragments in 

an utterance are used to determine the most likely call type by maximiz-
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ing the aposteriori probability for each call type or passing the fragments 

through a classifier. Alternatively, the call-type classification is performed 

by a vector-based information retrieval technique [5] where each utterance 

is represented by a vector of concepts D. The problem is formulated as a 

topic identification or document classification problem, and for every input 

query the system outputs a single identified topic. The corresponding call 

type is determined by finding the closest degree of similarity between the 

input utterance and various documents (call types). 

2.2 Handling Recognition Errors in Spoken 

Queries 

One of the difficult tasks for spoken language understanding is to handle the 

imperfect output from the speech recognizer. I t is important for the sys-

tems to provide graceful recovery from errors. Most of the systems make 

use of the confidence scores for the iV-best hypothesized outputs. The sys-

tems are then able to identify and reject the utterances that are likely to be 

mis-recognized. Information on the semantic interpretation from natural lan-

guage components can also provide an indication of possible mis-recognition 

if there is a parse failure on the sentence hypothesis [41 . 

Spoken language systems which depend on utterance-level confidence 

scores for detecting mis-recognized words cannot provide optimal rejections, 

as the overall confidence scores cannot reflect the correctness of a specific 

word. Therefore, most of the recent speech recognizers have the capability 

to output word-level confidence scores for each word of the hypotheses in 
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the TV-best list [15]. The word wi th confidence score lower than a certain 

threshold is likely to be mis-recognized and the systems can take different 

appropriate actions such as confirmation, rejection, etc. Some systems even 

integrate the individual word confidence score to generate slot-based (se-

mantic) confidence scores [6]. By combining the prior knowledge of the task 

with slot-based confidence scores, the slot with low confidence scores which 

violates the (lomain-specific constraints wil l be rejected automatically. 

Other than using the acoustic confidence measure to detect the potential 

errors in the recognizer's hypotheses, some approaches make use of semantic 

and discourse ii iformatioii [26, 41, 59]. The annotated training hypothc-

scs (lai)el correct or incorrect with respect to the reference tmiiscTiptioii) 

together with the correspoiiding features (e.g. acoustic coiifideiice scores, 

scinaiitic iiiforniatioii, parse status, etc) are used to train a classifier. Hence 

thr classifier (usually a decision tree) is able to generate an ()v(、rall conficlcMice 

likelihood s('()r(、that can he used to make accept / r(、j(n.t (Irrisioii for vdvh 

hyj)()t h(\siz('(l sent (Mice. 

In this work, we also att(Mii|)t t(>d(,t(、(.t the iiiis-rcco^iii/cd words from spo-

ken (jucrics to improve t hv undcrstaiKliiig accuracy. As acoiist ic iiifm inat i(m 

is not readily available in our data set, we will niakr use of (loiiiaiii-spccilic 

const raiiits to (lrt(、(.t potriit ial errors in I he spoken i i i j)Ut (jucrics. 
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2.3 Spoken Dialog Systems 

Spoken dialog systems can interact with users to retrieve information so as 

to complete a goal-oriented task for a restricted domain. The speech rec-

ognizer transforms speech to text, the natural language component analyzes 

the meaning of the user input, the dialog manager determines the appro-

priate action, the response / retrieved information delivered to the users is 

expressed in natural language by language generation and the text-to-speech 

synthesizer. Figure 2.1 depicts the basic components for a spoken dialog 

system [63 . 

Spoken 一 Speech Language 
Output Synthesis Generation 

^ ^ ^ Manager ^ Database 

—Spoken ^ Speech ^ Natural Language 
Input Recognition Understanding 

Figure 2.1: Basic components for a spoken dialog system. 

There are many spoken dialog systems designed to support mixed-initiative 

dialog interaction in a multitude of application domains. Examples include 

air travel (e.g. ATIS, MERCURY, PEGASUS) [47，52, 65], train schedules 

(e.g. RAILTEL, MASK, ARISE) [3, 25, 55], electronic automobile classi-

fieds (e.g. WHEELS) [31], weather (e.g. JUPITER) [64], restaurant guide 

(e.g. BeRP) [21], ferry timetable (e.g. WAXHOLM) [4] and call-routing 

service [5]. The languages concerned include English and a number of Eii-
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ropean languages. A few systems have also been developed for Mandarin 

Chinese [19, 60] and for Cantonese Chinese [32，34 . 

Dialog management is the key component in spoken-language systems; 

i t guides the users to complete their goals. The dialog strategies of these 

systems usually range from system-initiative to user-initiative. The system-

ini t iat ive dialog model provides directed questions and guides the users through 

an interaction. This model is relatively straightforward to design because i t 

is usually modeled as a tree structure. Each node represents a system prompt 

and i t branches out w i th a l imi ted number of user responses. As the system-

init iat ive system usually acquires one attr ibute in each dialog turn, i t can 

usually attain a higher task completion rate. However, the system-initiative 

dialog tends to be inflexible, and the user is bound by many constraints 

throughout the interaction. Conversely, the natural language-based user-

init iat ive dialog model allows for unconstrained input from users. However, 

this model usually has lower task completion rates relative to the system-

init iat ive model, often because the user's request falls beyond the system's 

competence level. Among the various dialog strategies, the mixed-initiative 

model is deemed most desirable, since both the user and the system can in-

fluence the dialog flow over the course of interaction. This provides greater 

f lexibil i ty than the system-initiative model or user-initiative model. 

In the following sections, we wi l l describe several general approaches to 

the dialog modeling, including finite-state networks (FSN) [23, 62], form-

based approaches [12, 43] and sequential decision approaches [27，44]. Re-

cent research has explored the use of machine learning techniques [13，28] to 

automatically determine an appropriate dialog strategy. 
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2.3.1 Finite-State Networks 

One of the simplest approaches to handle human-computer interaction is 

based on finite-state networks [23, 62]. In a finite-state network, each state 

represents a particular dialog state, which illustrates the amount of infor-

mation acquired in the dialog thus far. The transition arc connected wi th 

each state represents the corresponding action to be carried out. The tran-

sition arc is usually accompanied by a probability value to indicate which 

action is the most likely for each state, and the probabilities can be either 

hand-designed by a domain expert or learnt from an annotation corpus. The 

dialog manager can then determine the appropriate action according to the 

user's input query. 

The finite-state systems are relatively easy to design, as the conversation 

flow is conducted by traversing one of the pre-defined paths in the network. 

This dialog model is suitable for domains with a l imited number of domain-

specific concepts where the interaction is well defined and can be structured 

as a tree, with one question at each branch of the tree. However, in a more 

complex domain with a large number of domain-specific concepts, the dialog 

space may be quite large, and it then becomes difficult and inefficient to 

associate the entire space of dialog states with corresponding actions and 

transition arcs. 

2.3.2 The Form-based Approaches 

Many current dialog systems adopt a form-based approach which handles the 

dialog status by filling an electronic form (or E-form) [2, 7, 9, 12，43，46]. The 

E-form consists a set of attribute-value slots, representing the constraints 
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acquired for database access. The user's utterance, once i t has been con-

verted into the semantic frame via the natural language processing, wi l l 

subsequently be mapped to the canonical format of the E-form. For each 

attribute, i t is indicated whether the value should be mandatory, forbid-

denly or optionally supplied so that the corresponding query type is fully 

specified and consistent. The system wi l l reason the current status of the E-

form based on the hand-designed rules or control table [2] and determine the 

appropriate response. Context-inheritance is carried out by integrating cur-

rent dialog context in the E-form. Heuristic rules are often needed to resolve 

the ambiguity when additional constraints are filled in the slots. When the 

system acquires all the necessary attribute values for a certain query type, 

the E-form is ready for database retrieval. 

The E-form paradigm provides more flexibility than the finite-state ap-

proach, and it can pursue a mixed-initiative dialog model. While the system 

elicits attribute-value pairs for the users, they do not need to comply wi th 

the system's prompt. They can specify their constraints and requirements 

in any order and fill more than one slot in a single turn. However, the E-

form approach is l imited to a single-goal approach. I t is difficult to handle a 

complex task with multiple goals. 

2.3.3 Sequential Decision Approaches 

Some of the mixed-initiative dialog systems have extended the finite-state 

paradigm to a sequential decision model strategy [27, 44, 52]. The model 

is described with a set of dialog states, actions and strategy. Dialog states 

are state variables which represent the amount of information available at 
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a certain point in the dialog. Actions (:OIT(、SI)()II(1 to t'lir interact ions of t he 

system wi th the eiivironii ici it (e.g. users, datal)as(、）at (lifr(、i.(�iit, dialofi, states. 

Strategy is the mapping of the dialog states wi th tlio (:()m\si)()ii(liiig actions. 

Figure 2.2 illustrates the algorithm of the A T & T dialog syst,(、m，which adopts 

a sequential decision model [29 . 

St = Si 

while St ^ Sf { 
At = NextAction{St) 

Invoke At 
Ot = environment response to At 
Si+i = NextState{St,At,Ot) 

t = t + 1 

} 

where 

St, At denote the state and action at turn t. 
Si and Sf stand for in i t ia l state and final state. 
Function Next Action determines the next action At. 
Function Next St ate updates the state variable. 

Figure 2.2: A dialog described as a sequential process. 

The strategy for determining the action for the current dialog state can be 

implemented in different ways. The A T & T A M I G A framework [27] adopts 

an approach in which the strategy is represented as a recursive transition 

network. While the arcs of the network il lustrate the conditions on the dialog 

state (e.g. inconsistent, missing mandatory information), the nodes represent 

different actions (e.g. verification, getting information). As a result, the 
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dialog manager is required to analyse the current dialog state and then refer 

to the control state in the recursive transition network for determining the 

appropriate action. For the Mercury Flight Reservation System [52] and 

the other G A L A X Y domains [64, 65], the dialog strategy is controlled by 

a dialog control table. A set of ordered rules are designed which represent 

the conditions of the dialog state wi th the corresponding actions. Hence the 

system consults the dialog control table at each dialog turn and fires the 

action when a specified condition is met. 

Spoken dialog systems using a sequential decision process model usually 

require a mechanism (dialog strategy) for mapping an appropriate action to 

each dialog state. The dialog strategy is usually hand-designed by domain 

experts. I t is difficult to explore all the possible situations the dialog system 

might encounter and portabil i ty of the dialog model to a new domain requires 

the whole design process to be started from scratch. In the next section, 

we wi l l describe the recent research effort that explores the use of machine 

learning techniques to automatically determine the optimal dialog strategy. 

2.3.4 Machine Learning Approaches 

In order to reduce the handcraft design of a spoken dialog system, there 

are previous efforts that explore the use of machine learning techniques to 

automatically determine the optimal dialog strategy [13, 28, 30, 58]. A dia-

log system is described as a sequential decision process (Section 2.3.3) that 

consists of state space, action set and strategy. While the dialog is formu-

lated as an optimization problem, an optimal strategy can be obtained by 

reinforcement learning. 
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Reinforcement learning [56], which is commonly adopted in artificial in-

telligence problems, involves the agent (i.e. decision maker) learning from 

interaction wi th an external environment to achieve a goal. A t each time 

step, the agent receives the environment's state St, and then the agent se-

lects and executes an action at. The agent's action causes a change to a 

new state 5^+1 and the agent receives a reward, r + 1 from the environment. 

Figure 2.3 illustrates the agent-environment interaction in the reinforcement 

learning framework. 

Agent 

State, s t Reward, r, Action，a, 

一 rt+l 

Environment ^ 
St+l 

Figure 2.3: The framework of reinforcement learning. 

For each interaction, the agent wi l l map the corresponding state to prob-

abilities of selecting each possible action. This mapping is called the agent's 

strategy / policy and denoted as Tif Reinforcement learning specifies how 

the agent changes its strategy so as to maximize the total amount of reward 

it receives over the long term. 

To apply reinforcement learning in finding an optimal strategy for a di-

alog system, a reward function is designed. For example in [28], the reward 

measure is defined as a cost function: a linear combination of the costs such 

as the duration of the dialog, number of errors, etc. Since the reward func-

tion only indicates the immediate reward at a specific state-action pair, a 

25 



CHAPTER 2. BACKGROUND ； 

state-action value function Q{st, at) is required to specify the total amount 

of reward accumulated over the future starting from that state. The optimal 

state-action value Q*(St, at) is the expected sum of costs incurred from state 

St wi th action at and following the optimal strategy TT* unt i l the final state is 

reached. This value can be estimated using reinforcement learning in which 

the accumulated reward wi l l be successively improved at each iteration. The 

best dialog strategy is then obtained by selecting the action wi th the optimal 

value function at each dialog state. 

The methodology of using reinforcement learning in dialog design can 

automate the development process of a dialog system [28]. Based on a 

large training corpus, i t can explore many possible dialog strategies and keep 

adapting to user behavior and learning from interaction. The only l imitat ion 

is that i t may be difficult to choose a reward measure or represent the dialog 

in terms of state space and a set of actions. 

Our BN-based dialog model is similar to the machine learing approach. 

The BNs are trained from the training corpus and the mapping of the user 

query to the corresponding system response is also performed by the back-

ward inference of the BNs automatically. Since we have developed a set of 

guidelines for hand-assigning the probabilities for the BNs, our framework 

can stil l be applied to a domain where there is a lack of training data. 
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2.4 Belief Networks 

2.4.1 Introduction 

Reasoning wi th uncertain knowledge and beliefs has been an important re-

search issue in the field of artificial intelligence for many years. Several 

methodologies have been proposed, including certainty factors, fuzzy logic, 

Dempster-Shafer theory, and probability theory [38]. The probabilistic ap-

proach is by far the most popular among all these alternatives. Belief Net-

works [42] (also known as Bayesian Networks, Causal Networks) are com-

monly adopted to model the causal structure of a non-deterministic process 

and apply probability theory for reasoning about incomplete knowledge. 

The Belief Network is a directed graph consisting of nodes and directed 

arcs. While the node represents a random variable wi th a set of mutually 

exclusive states, the directed arc models the causal influences between the 

linked variables. For each variable v with parents / ascendants wi,... , Wn, a 

conditional probability table P{v\wi,... , Wn) is defined. Obviously, i f v has 

no parents, this table reduces to the prior probability P{v). 

The advantage of a network representation is that i t allows the causal 

dependencies among the variables to be interpreted easily. Consider a typi-

cal example from [42], an apartment is installed with an alarm system and 

the alarm can be set off by two things, an earthquake or a burglary. The 

likelihood of the earthquake causing the alarm to go off is small compared 

to a burglary in progress. A radio announcement would be strong evidence 

supporting an earthquake. Another way to find out about the state of the 

alarm is through a call from the neighbor. Since a burglary is probably inde-

27 



CHAPTER 2. BACKGROUND ； 

pendent of an earthquake, the occurrence of a radio announcement about an 

earthquake reduces the likelihood of a burglary. We can represent the causal 

relationships between the events in a directed graph as shown in Figure 2.4. 

Each node in this network represents a Boolean variable. The value becomes 

true i f a certain event takes place. The diagram expresses certain probabilis-

tic relationships between the events. I f there is an observation of a certain 

event, the probability of each event in the network wi l l be updated. 

{R(Radio Announcement) J ( S(Alarm System) ) 

y ‘ 

Figure 2.4: A Belief Network depicting the Earthquake-Burglary example. 

Conditional independencies among variables in the Belief Network can 

reduce the amount of computation in finding out the joint probability. The 

chain rule of probability theory illustrates that the joint probability for the 

network in Figure 2.4 can be derived from conditional probabilities: 

P{N, S, R, E, B) = P{N\S, R, E, B)P{S\R, E, B)P{R\E, B)P{E\B)P{B) 

(2.2) 
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We can simplify the above equation due to conditional independence as-

sumptions for the variables. For example, N (neighbor call) is dependent 

only on S (alarm system), so P(N\S,R,E,B、= P{N\S). Finally, we have: 

P{N, 5, R, E, B) = 取 B)P(R\E)P(E)P(B) (2.3) 

In general, given nodes X = Xi,... ,Xn for a. Belief Network, the joint 

probability function for any Belief networks can be represented as: 

n 

P{X) = Y[ parents{xi)) (2.4) 

2.4.2 Bayesian Inference 

Suppose we observe a certain value for one or more of the variables in the 

Belief Network, these variables wi l l be instantiated and the beliefs (prob-

abilities) of the variables in the network wi l l be revised. Hence inference 

involves updating the probabilities of each node in a Belief Network from the 

instantiated nodes. There are different algorithms for Bayesian inferencing. 

Details can be found in [38, 42]. A brief description is provided here for a 

simple structure of a Belief Network. For a network with very complex struc-

ture, one of the efficient methods for updating probabilities is the cluster-tree 

method [20] that transforms the complex network into a set of clusters. The 

updating of the probabilities in Belief networks is quite complicated; details 

can be found in Appendix C. 

Consider the Belief Network in Figure 2.5. The pre-defined structure 

of the BN leads to computation equivalent to Naive Bayesian inference. I t 

consists of a hypothesis node H and three evidence nodes Ei, E2 and E3. 

Table 2.1 shows the probability distribution of each variable. 
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GD 
Figure 2.5: A Belief Network wi th pre-defined structure. 

& 二 1 丑二 0 

丑 = 0 0.55 _ _ ^ 
^1 = 0 0.2 0.4 

n I p(五31丑）— 

丑二 1 I H ^ H = 1 I H ： ^ 

五2 = 1 0.5 0.7 I 五3 ： 1 0.1 0.4 

丑2 = 0 0.5 0.3 丑3 = 0 0.9 0.6 

Table 2.1: Probability distribution of each node of the Belief Network in 

Figure 2.5. 
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Now if we have observed the evidence nodes wi th the values of E i = 1, 

丑2 = 0 and 丑3 = 1, we want to infer whether the hypothesis node H is 

true {H = 1) for the given evidence nodes. The observed values from the 

evidence nodes can give an updated probability for the value of H by Bayesian 

inferencing. In the other words, P(/ i |ei , 62, 63) is computed (the lowercase 

symbols stand for the particular values of the corresponding variable). By 

Bayes' rule, we have: 

尋 , 6 2 , 6 3 ) 

Since the value of h is mutually exclusive and exhaustive, the denominator 

of Equation 2.5 can be transformed to: 

八％1姻)=广1，幻，幻） (2.6) 

h' 

By Equation 2.4 as described in Section 2.4.1, the joint probability for 

the numerator and denominator of Equation 2.6 can be factored as follows: 

尋 6 3 ) = • ^ 剛 P ⑷ 释 3 | 哪 ） 

h' 

Then, Equation 2.7 can be computed by inserting the values for the vari-

ables: 

P ( / l = l | e i 二 1,62 = 0,63 = 1) 
=P(ei = l\h 二 l)P(e2 = 0|/i 二 l)P(e3 = 二 1) 

0.018 
— 0 . 0 1 8 + 0.0396 
二 0.3125 
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While the prior probability of the hypothesis H is 0.45, the inferred prob-

abil ity of H , given the other variables, is 0.3125. 

2.4.3 Applications of the Belief Networks 

Applications of the Belief Networks mainly involve dynamic reasoning under 

uncertainty. Either handcrafted or automatically learned BNs are embedded 

in the system for inferencing. The major application area has been problem 

diagnosis [42], which computes the likelihood of alternate diseases in patients 

or disorders in machines. For example, the Belief Network framework in [54 

automates the troubleshooting process by modeling the relationships between 

various types of printing system problems and their causes. 

Belief Networks have also been explored as a representation for common 

sense reasoning. For instance, they are adopted to make inference about the 

goals of car drivers in navigating in traffic in which the aim is to induce the 

plan of driving action from the partial observation of the traffic or highway 

status [48 . 

The Lumiere [17] project from the Microsoft research group also makes 

use of Belief Networks in creating software that can automatically and intel-

ligently interact with software users. When the users want to get assistance 

from online help, they always attempt to communicate their goal with com-

mon words and phrases instead of jargon. Hence the Belief Networks, which 

model the relationships between words in a user's query and the correspond-

ing informational goal, can reason about the goal from the observed actions 

and queries [16]. This project eventually resulted in the “Office Assistant" in 

the Microsoft application, which allows users to request assistance by com-
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posing natural language queries. Another project from the Microsoft research 

group called the Bayesian Receptionist focuses on modeling the users' goals 

typically handled by a receptionist at the front desk [18]. The Belief Net-

works developed in different levels of task hierarchy can decompose the user's 

goal into several sub-goals for reasoning. Other than the linguistic features 

of the user query, the model also makes use of visual finding and gesture to 

infer the goals of the speakers. 

2.5 Chapter Summary 

In this chapter, we have described the background information of this thesis. 

Previous approaches on understanding natural language queries are reviewed. 

We have also presented the general approaches for handling the recognition 

errors in the spoken queries so as to improve the understanding accuracies. 

Besides, several approaches adopted in current spoken language systems are 

described. Finally, we have given a brief introduction on the use of Belief 

Networks for reasoning uncertainty. A number of current applications using 

Belief Networks are also examined. 
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Belief Networks for Natural 

Language Understanding 

In this chapter, we explore the use of machine learning techniques in natural 

language understanding. We adopt a statistical approach, which uses Belief 

Networks (BNs) to model the domain-specific constraints in a restricted do-

main. The BNs are intended to capture the causal relationships between the 

key semantic concepts and the domain-specific goal, and infer the underlying 

intention of a spoken utterance for natural language understanding. How-

ever, in a real spoken language system, the presence of mis-recognized words 

often causes the system to misunderstand the user query and results in an 

inappropriate response. As a result, we have devised a methodology which 

extends our BN framework to handle noisy concepts in the spoken queries. 

BNs are used to detect and reject mis-recognized concepts automatically and 

hence infer the user's informational goal(s) correctly. 
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3.1 The ATIS Domain 

We have chosen the ATIS (Air Travel Information Service) domain [47] to 

investigate the feasibility of using the Belief Networks (BNs) for natural 

language understanding. ATIS is a common task which was adopted in 

the DARPA (Advanced Research Projects Agency) Speech and Language 

Program in the USA. The database is based on the Official Airl ine Guide 

(OAG) for airlines operating in North America and Canada. 

Our experiments are conducted using the ATIS-3 Class A sentences, 

wi th disjoint training and test sets of 1564，448 (1993 test), and 444 (1994 

test) transcribed utterances respectively. A class A sentence is a context-

independent query whose interpretation is independent of the dialog context. 

ATIS-3 Class A 1993 Training 1993 Test 1994 Test 
# Transcribed Utterances 1,564 448 444 

Table 3.1: Breakdown of the ATIS-3 Class A sentences. 

Each utterance (or query) is accompanied with a corresponding SQL 

query for retrieving the relevant information. An example Class A query 

is shown below. Notice that the SQL query is a simplified one. The two 

original SQL queries which are for maximum and minimum answer can be 

found in Appendix A. 

Query : “show me the united airlines flights from denver to haltimore 

leaving on june fourteenth” 

S Q L : select flight-id f rom flight where airline-name 二 “united air-

lines'' and origin = “derwer” and destination = “baltimore” 

and month = “june” and day = “fourteen” 
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Thus we derived the informational goal for each utterance from the main 

attribute label of its SQL query. In our training set, we counted a total of 32 

query types (or informational goals, e.g. flight identification, fare identifica-

tion, etc). Inspection of the training utterances reveals that out of 32 goals, 

only 11 of them are instantiated 10 times or more. These 11 goals cover over 

95% of the training set, 93% of the 1993 test set, and 92% of the 1994 test 

set. As a result, we treat the queries whose goals are not covered by these 11 

goals as out-of-domain (〇〇D). Besides, we also found 24 training utterances 

with more than one informational goal. Examples of single goal, multiple 

goal and 〇〇D queries are shown in Table 3.2. 

Single Goal Query 
Query : "chicago to san frandsco on continental” 

Goal : FlightJD 

Multiple Goal Query 
Query : "give me the least expensive first class round trip ticket on u s 

air from Cleveland to miami" 

Goal : Flight—ID，Fare—ID 

OOD Query 
Query : “show me the cities that midwest express serves” 

Goal : City-Code (OOD, as City—Code is outside the set of 11 goals) 

Table 3.2: Examples of single / multiple goal and OOD queries. 

3.2 Problem Formulation 

We need to infer an appropriate goal for a query, out of the finite set of goals 

(iV) in a restricted domain. One may formulate the problem as N binary 
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decisions, or a single iV-ary decision. We have chosen the former approach 

to facilitate the identification of cases wi th multiple goals, as well as the 

rejection of cases wi th previously unseen, OOD goals. On the other hand, 

the latter single iV-ary decision approach has no rejection capability and can 

only classify the query to be one of the N goals. We have implemented the 

A/'-ary decision approach using decision trees for benchmarking purpose. 

We use a semantic tagger to transform the input query into a sequence 

of semantic concepts. These form the input to our BNs for inferring the 

query's informational goal(s). Our approach utilizes multiple BNs 一 each a 

distinct classifier for making the binary decision regarding a unique goal. A 

BN outputs the confidence level for its decision regarding an input query, in 

terms of the aposteriori probability. W i th the use of a probability threshold, 

the BN outputs for a particular goal may be quantized into a binary decision. 

Hence, queries for which all BNs vote negative are rejected as OOD. 

3.3 Semantic Tagging 

Semantic tagging abstracts the words in a query into a set of semantic con-

cepts. While the main attribute label(s) in the SQL query is adopted as 

the informational goal(s), the remaining attribute labels are identified as key 

semantic concepts for the ATIS domain, and serve as a reference when we de-

sign our semantic tags for labeling an input transcription. We have included 

semantic concepts for database access, as well as others that play a syntactic 

role for natural language understanding. Therefore, we have a total of 60 

hand-designed semantic tags, where both syntactic (e.g.�PREPOSITION〉， 

�SUPERLATIVE〉）and semantic concepts (e.g. <AIRLINE_NAME>, <DAY〉， 
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<FLIGHT_NUMBER>) are included. Previous work has also devised a semi-

automatic procedure for discovering such semantic categories from unanno-

tated corpora [53]. Both the hand-designed and semi-automatically gener-

ated semantic tags (also known as grammar) are listed in Appendix B. 

Training utterances are automatically tagged, using a heuristic proce-

dure. This identifies the semantic concepts in the utterance transcriptions. 

The following shows an example of an utterance transcription and its corre-

sponding tags: 

Query : "what are the dinner flights from indianapolis to san diego on 
Wednesday may twelfth “ 

Tags ： < W H A T > < D U M M Y > <MEAL_DESCRIPTION> � F L I G H T � 

< F R O M > <CITY—ORIGIN� < T O > <CITY—DESTINATION� 

< P R E P > < D A Y — N A M E � < M O N T H > < D A Y > 

Since our semantic tagger can segment a given utterance into individual 

semantic concepts, it can handle spontaneous spoken queries which are filled 

with pauses or partial words. Henceforth each training query is represented 

by its annotated goal and a sequence of semantic concepts. These are used 

to train our BNs, as described in the following section. 

3.4 Belief Networks Development 

The Belief Network (BN) is a probabilistic causal network, arid for our irnple-

iiieiitation, we adopt a pre-defined structure as depicted in Figure 3.1. This 

is equivalent to a Naive Bayes formulation and it models the causal rela-

tionships between the concepts and the goal. Concepts within the query are 

assumed to be independent of one another. Directed arrows are drawn from 
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cause to effect. Hence they show the statistical dependencies between the 

concepts and goal, which are represented by conditional probabilities of the 

concepts given the goal. To further simplify our model, each concept node 

receives a binary input for the concepts occurrence (either present or absent). 

( G O A L ( G , . ) ) 

Figure 3.1: The pre-defined structure of a BN. 

3.4.1 Concept Selection 

For a given goal Gi, and its instantiations in the training set, we record the 

semantic concepts that are indicative of Gi. The recorded set is l imited to 

M or below in size, in order to constrain computation during training. We 

compare the use of two measures to select the concepts (C) with strongest 

dependency on Gi\ 

(i.) Mutual Information [8], which measures the degree of co-occurrence of 

concept (Cj) and the corresponding goal (Gi) {where i=l,2 •.. N and 

j=l,2 ... M). 

M l i C ] , G,) 二 P(C„ G.) log 溫 溫 ) (3.1) 
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(ii.) Information Gain [10], which is also known as expected mutual infor-

mation, considers both the presence and absence of the concept and 

the corresponding goal. 

尊 ] , = g i g i P ( C �一 g) l � g 二 ⑵ g ) (3.2) 

Based on these measures, the top M semantic concepts wi l l be selected 

as the feature set for the i仇 goal. Hence, each goal may have a different set 

of selected concepts.i 

3.4.2 Bayesian Inferencing 

We develop one BN for each informational goal. The probabilistic informa-

tion on the goal node, i.e. P{Gi) and the dependency of each concept on the 

corresponding goal, i.e. P{Cj\Gi) are obtained by tallying the counts from 

the training data. 

Given N trained BNs, we can identify the concepts in the user query by 

semantic tagging, and employ the BNs for inferring the user's informational 

goal(s). Each BN with pre-defined topology can apply Bayes' Theorem as 

shown in Equation 3.3 to infer the likelihood of the corresponding informa-

tional goal given the observed concepts C. 

(3.3) 

3.4.3 Thresholding 

Each BN outputs its confidence level for the case that the input query is con-

veying its corresponding goal. Choosing a probability threshold allows for 

1 Since we select a set of concepts for each goal, we will only assume the concepts are 
conditionally independent of each other. 
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quantization of this confidence level into a binary decision. I t may be reason-

able to set the probability threshold at 0.5, since 

P{G\C) + P{G\C) = 1. Alternatively the threshold can be chosen such 

that the performance on goal inference is maximized. Related performance 

measures include recall (R), the percentage of queries correctly inferred by 

the BN for Gi out of all the Gi queries; and precision (P), the percentage of 

queries correctly inferred by the BN for Gi out of all the inferred Gi queries. 

We combine both into a single score by optimizing wi th the F-measure as 

shown in Equation 3.4 [57]: (/3=1 in our experiments to treat precision and 

recall wi th equal importance). 

f — m^p ( ) 

3.4.4 Goal Identification 

We develop one BN per informational goal in the training corpus and we 

have a total of N BNs to represent a finite set of goals in the restricted 

domain. Each BN outputs the confidence level for its decision regarding an 

input query, in terms of the aposteriori probability. One decision scheme is 

to adopt the goal wi th maximum aposteriori probability for the input query, 

but i t cannot classify the multiple goals and OOD queries. Wi th the use of a 

probability threshold, the BN outputs for a particular goal may be quantized 

into a binary decision. The decisions across all the BNs are then combined 

to identify the output goal of an input query. Therefore, we can revert to 

an alternative scheme: the query is labeled with the goals for which the BNs 

vote positive, which achieves multiple goal identification; in the case where 

all BNs vote negative, the input query is rejected as OOD. 
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3.5 Experiments on Natural Language 

Understanding 

Our experiments are based on the ATIS-3 Class A (context-independent) 

sentences. As mentioned previously, only 11 goals (out of 32) are instantiated 

10 times or more. These 11 goals cover 95% of the training set. Consequently, 

we have 11 (7V=11) BNs in total to avoid using sparsely trained networks. 

The remaining goals and utterances are treated as OOD. 

3.5.1 Comparison between Mutual Information and 

Information Gain 

For each of the 11 BNs, we select (M=20) concepts wi th the strongest depen-

dency on the goal. Mutual Information (MI) and Information Gain {IG) are 

compared as the dependency measure. Only the selected goals in the training 

query are considered during classification, which maximizes the aposteriori 

probability in Equation 3.3. 

Since IG considers both the presence and absence of concepts for goal 

classification, i t can extract 20 concepts for all of our goals. MI considers 

only the cases when a concept is present, and extracts fewer than 20 con-

cepts for a number of goals. Therefore when MI is used we normalize the 

aposteriori probability prior to goal classification, by padding wi th a mult i-

plicative constant of 0.5. For example, MI selects 16 concepts for the BN of 

Ground-Transport. Therefore, four extra concepts wi th a probability distri-

bution of P{Ci\G) = 0.5 and P{Ci\G) = 0.5 wi l l be padded to the network 

for normalization. 
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We adopt the goal wi th maximum aposteriori probability for the input 

query. Comparisons between the use of two different measures for concept 

selection {MI vs. IG) are tabulated in Table 3.3. The results are based on 

the goal classification accuracies on the training set. 

Concept Selection Measure Performance (Training) 
Mutual Information (MI) 85.42% (1336/1564) 

Information Gain (IG) 93.67% (1465/1564) 

Table 3.3: Comparison between two different measures for concept selection 

{MI vs. IG) 

I t is observed that IG performs better than MI in concept selection for 

goal classification. This implies that the absence of certain concepts may be 

indicative of the informational goal under some situations. To illustrate wi th 

an example, consider a query from our training set: 

Query : “TTiay I have a listing of flight nuuibeTS from coluinbus ohio to 
minneapolis minnesota on monday” 

Tags ： < D U M M Y > < H A V E > < D U M M Y > < P R E P > < F L I G H T _ N U M > 

< F R O M > < C I T Y一O R I G I N � < S T A T E _ N A M E > < T O > 

< C I T Y _ D E S T I N A T I O N > < S T A T E _ N A M E > < P R E P > < D A Y — N A M E � 

Goal : Flight-Number 

According to the set of concepts selected by MI for the goal FlightJD, 

all the query's semantic tags are indicative of the goal. The set of con-

cepts selected by IG was similar, but i t is also augmented by the absence 

o f < F L I G H T _ N U M > . T h e o c c u r r e n c e o f � F L I G H T — N U M � i n t h e i n p u t q u e r y 

lowers the aposteriori probability for the goal Flight」D, which is eventually 
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outweighed by the goal Flight_Number. 

3.5.2 Varying the Input Dimensionality 

A series of experiments were conducted in which we varied the BN input 

dimensionality, which is equivalent to the number of stored concepts per 

goal. Variation covered the range from 15 concepts to the ful l set of 60 

concepts. The goal identification accuracies for the training set, 1993 test 

and 1994 test sets are tabulated in Figure 3.2. 

Performance accuracies in the plot are normalized based on the ful l size of 

the training / test sets. Since our decision scheme is based on the maximum 

aposteriori probability among 11 BNs, queries which do not belong to the 11 

goals are counted as errors. As observed in Figure 3.2, training accuracies 

increase wi th input dimensionality, while testing accuracies tend to decrease 

beyond 20 concepts per goal, possibly due to overfitting of the training data. 

This suggests that 20 concepts per goal is a suitable parameter setting. Per-

formance wi th different normalization schemes — over the entire set, versus 

normalizing only over the relevant queries that belong to the 11 goals, are 

shown in Table 3.4. 

Normalization Training 1993 Test 1994 Test 
Over All Queries 93.7% (1465/1564) 87.9% (394/448) 86.7% (385/444) 
Queries of 11 Goals 97.1% (1465/1509) 95.4% (394/413) 94.6% (385/407) 

Table 3.4: Goal classification accuracies computed using different normaliza-

tion schemes. 
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Figure 3.2: Goal identification accuracies for different BN input dimension-

alitie schemes. 
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3.5.3 Multiple Goals and Rejection 

Thresholding enables the BN to make a binary decision about its goal. For 

a given query, we can look across all BNs to see if more than one network 

has voted positive (the case of multiple goals), or i f all networks have voted 

negative (the case of unseen goal). A conversational system, which identi-

fies an information-seeking query to have multiple informational goals, may 

provide additional relevant information in the response. Alternatively i f the 

query is identified wi th an unseen goal, i t may be rejected as an OOD. 

We can either set the probability threshold at 0.5 (外.5), or at a value 

which maximizes the F-measure (Of) as described in Section 3.4.3. The 

results obtained with the threshold of 0.5 and the values which maximize 

the F-measure are shown in Table 3.5. Their comparison is based on the 

performance of the two test sets 一 correct single goal classification, number 

of rejected queries, correct rejection, number of multiple goal queries, correct 

multiple goal classification and overall correctly handled queries. Table 3.5 

suggests that the threshold should be set by the F-measure, rather than 

at 0.5. This increases the rejection rate, but also improves the rejection 

accuracy. Moreover, i t drastically reduces the number of queries identified to 

have multiple goals, while maintaining the same correct identification rate. 

Correctly handled cases include queries wi th correct goal classification, as 

well as those with correct rejection. Comparison with our results without 

using a probability threshold (Table 3.5, bottom row) suggests that there 

is a slight performance advantage if an appropriate probability threshold is 

used. 
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1993 Test 1994 Test 
Threshold 6>o.5 Of 6>o.5 Of 
Single Goal Correct 382/405 381/405 372/401 373/401 

# Rejection 19 39 30 35 
Rejection Correct 8/35 23/35 12/37 13/37 

• Multiple Goals 119 51 69 ^ 
Multiple Goals Correct 5/8 5/8 4/6 4/6 
Total Correctly Handled 88.2% 91.3% 87.4% ^ 8 7 . 8 % 

(395/448) (409/448) (388/444) (390/444) 
Total Correctly Handled ^ , , , 〜， 
, � 87.9% 394/448) 86.7% 385/444 
(No Threshold) � / / � / / 

Table 3.5: Comparing the use of different probability thresholds — the use 

of 0.5 vs. other values which maximize the F-measure. The values in the 

denominators illustrated the total number of the corresponding queries. 

3.5.4 Comparing Grammars 

In prior work at our laboratory, a statistical approach [53] was implemented 

to capture semantic categories from unannotated corpus so as to get r id of 

daunting grammar writ ing by domain experts. When we apply this semi-

automatic procedure on the ATIS domain, i t results in the discovery of 36 

semantic categories (non-terminals), in both semantic and syntactic dimen-

sions. Table 3.6 tabulates the size of our hand-designed grammar {Gh ) as 

well as the semi-automatically generated grammar Semantic cate-

gories of both grammars are listed in Appendix B. The smaller size of the 

Gsa can be explained by the occurrence of sparse semantic concepts, which 

cannot be discovered during the automatic grammar induction process. 
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Grammar Non-terminals Terminals 
Semi-automatically Generated (Gsa) 36 446 
Hand-designed (GH) 60 483 

Table 3.6: The size of semi-automatically generated (Gsa) and hand-designed 
grammars (Gh)-

We have tested the goal identification performance using the Gsa- Com-

parative results on goal identification accuracies using the Gh and Gsa (with 

probability threshold of 0.5) are illustrated in Table 3.7. This suggests that 

the Gsa gives promising results and has only small degradation in goal iden-

tification accuracies. 

ATIS-3 1993 Test | 1994 Test 
Grammar Used Gh Gsa Gh Gsa 

Single Goal Correct 382/405 364/405 372/401 370/401 
Rejection Correct 8/35 8/35 12/37 11/37 
Multiple Goals Correct 5/8 5/8 4/6 4/6 
Total Correctly Handled 88.2% 84.2% 87.4% 86.7% 

Table 3.7: Comparative results on goal identification accuracies based on 

a hand-designed [Gh ) and a semi-automatically generated grammar {Gsa) 

respectively. 

3.6 Benchmark with Decision Trees 

As mentioned previously, to benchmark our approach we have implemented 

an alternative approach using decision trees [49]. We adopt C4.5 decision 
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tree, which learns production rules from the training set and generates the 

tree automatically. I t also involves heuristic methods for simplifying the 

decision tree (pruned tree), wi th the aim of producing more comprehensible 

structure. A single decision tree is developed to make the 11-way decision on 

goal classification. The ful l set of 60 semantic concepts is used as input, and 

attribute selection for tree branching is based on the information-theoretic 

criterion. Assume that the training set T contains Gi classes (i.e. goals) and 

T\ denotes the number of cases (i.e. queries) in T. We can use Equation 3.5 

to measure the average amount of information needed to identify the classes 

in training set T. (This quantity is also known as the entropy of T.) 

i n M T 、 = — ± l ^ 、 l ^ (3.5) 
i = l 

I f we partit ion the training set T on the attribute X (i.e. a semantic 

concept) into subsets: 7\ , T2 .., T^, and \Ti\ denotes the number of cases in 

Ti, the expected information requirement can be found as the weighted sum 

over the subsets, as in Equation 3.6. 

(3.6) 
i=l 

Information gain by branching on attribute X can be computed from 

Equation 3.7, and the attribute with the greatest information gained is se-

lected as the root of the tree (sub-tree). 

Gain(X) = info{T) - info^{T) (3.7) 

Part of the decision tree representing the ATIS domain in classifying the 

11 goals is shown in Figure 3.3. Each node has two successors for denoting 

the presence or absence of the corresponding concept. The decision tree 
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hence classifies the user query by starting at the root of the tree and moving 

through unt i l a leaf (goal) is encountered (without confidence levels in the 

output). Since the decision tree has no rejection capability, OOD queries 

are counted as errors. Performance was 90.0% (403/448) for the 1993 test 

set, and 88.7% (394/444) for the 1994 test set. On the other hand, our TV-

binary approach using BNs wi th probability threshold that maximizes the 

F-measure can facilitate the identification of cases of single, multiple goal 

and OOD queries. Comparative results are illustrated in Table 3.8, which 

suggests that both approaches deliver comparable performance for our task. 

presence absence 
z 

Goal: Fare—Basis—Code 广 ^ 
- _ 

presence absence 
z \ 

Goal: Flight-Number 

Figure 3.3: Part of the decision tree for the AXIS task. 

Approach 1993 Test Set 1994 Test Set 
BNs (iV-binary) 91.3% (409/448) 87.8% (390/444) 
Decision Tree (iV-ary) 90.0% (403/448) 88.7% (394/444) 

Table 3.8: Goal identification accuracies obtained using TV-binary (BN) and 

iV-aiy approach (decision tree) respectively. 
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3.7 Performance on Natural Language 

Understanding 

We have also evaluated our outputs in terms of their extracted semantic 

categories [37], where the evaluation metric is the sentence error rate. The 

evaluation procedures are illustrated on Figure 3.4. Each semantic case frame 

generated is compared against the attribute labels from the corresponding 

SQL query. A sentence is considered correct only i f the inferred goal and 

extracted concepts in the generated semantic frame agree wi th those in the 

reference semantic frame (derived from the SQL in the ATIS corpora). The 

sentence error rates for the ATIS-3 1993 test set and 1994 test set are 9.8% 

and 13.7% as shown in Table 3.9. When we compare our results wi th the 

NL (natural language understanding of writ ten transcriptions of the spoken 

sentences) results from the 10 ATIS evaluation sites [39] [40] as shown in 

Table 3.10, our performances fall within a reasonable range. 

User Query SQL Reference 
"show me the dinner flights from boston tola" sdcct flightJd fromflight where 

ORIGIN = ‘ ‘boston’，and 
DESTINATION = ‘7 a，，and 
MEAL_DESCRIPTION = “dinner” 

Semantic Tagging & 
BN Goal Inferencing Extraction of Attribute Labels and Values 

Semantic Case Frame Compare for Attribute Labels and Values 
Infer Goal: Flight—ID Evaluation Reference Goal: FlightJD 
CITY-ORIGIN: boston . . ORIGIN: boston 
CITY-DESTINATION: 1 a DESTINATION： 1 a 
MEAL_DESCRIFTION: dinner MEAL_DESCRIPTION: dinDer 

Figure 3.4: Procedures for semantic case frame evaluation. 
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ATIS-3 Class A | 1993 Test Set | 1994 Test S ^ 
Sentence Error Rate 9.8% 13.7% 

Table 3.9: The sentence error rates of Class A queries of ATIS-3 1993 and 

1994 test sets respectively. 

ATIS-3 Class A 1993 Test Set 1994 Test Set 
Sentence Error Rate 6.0 一 28.6% 3.8 — 30.6% 

Median Value 7.0% 12.4% 

Table 3.10: Benchmark NL results from the 10 ATIS evaluation sites. 

3.8 Handling Speech Recognition Errors in 

Spoken Queries 

Speech recognition greatly affects the natural language understanding accu-

racies, as the presence of mis-recognized words always results in the inevitable 

mismatch wi th the user's expectation. Recognition errors may substitute a 

single word for another, replace a single word wi th multiple smaller words or 

erroneously concatenate multiple words to substitute for a longer word. A l l 

of these errors are stumbling blocks for understanding. To help alleviate this 

problem, we have extended the BN framework from natural language under-

standing to the detection of mis-recognized words. The learnable topology 

of our BNs is enhanced to capture the causal relationships between the con-

cepts and the goal as well as among the concepts. The input query can then 

be verified against the domain-specific constraints by using backward infer-

ence, so that spurious concepts which are caused by mis-recognition can be 

detected and rejected. 
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3.8.1 Corpus Preparation 

Our experiments are based on the t ra in ing and 1993 test sets of the ATIS-3 

Class A queries. In order to simulate the corrupted queries, i.e. w i th the 

presence of mis-recognized words, we w i l l randomly convert a word unigram 

/ bigram / t r ig ram to their confusable counterparts based on the algor i thm 

below: 

Step 1 : Extract al l the unigrams, bigrams and tr igrams from the train-

ing set and find their corresponding phonetic pronunciation. 

Step 2 : Generate a confusion matr ix for al l the extracted words or 

phrases. 

Step 3 : Use a seed to randomly pick up a unigram / bigram / t r igram 

wi th in a user query and convert to its corresponding confusion 

counterparts w i th a phonetic distance of 1 or 2? 

Figure 3.5: A lgor i thm for simulating corrupted queries. 

Some examples from ATIS domain includes: 

Original Query : Cleveland to miami on Wednesday arriving before four 
p m 

Corrupted Query : Cleveland to miami on to Wednesday arriving before 
fare p m 

Original Query : give me the flights and fares for a trip to Cleveland from 
miami on Wednesday 

Corrupted Query : give me the flights land for a trip to Cleveland from 
miami on Wednesday 

2 Phonetic distance is the count of the difference between the the two sequences of 
phonetic symbols. 
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3.8.2 Enhanced Belief Network Topology 

The pre-defined BN topology incorporates the simplifying assumption that 

all concepts are dependent only on the goal, but are independent of one 

another. The topology can be enhanced by learning the inter-concept depen-

dencies from training data according to the Minimum Description Length 

(MDL) principle [33]. The inclusion of inter-concept dependencies brought 

performance improvements in goal identification on ATIS-3 Class A queries 

by 3.5%. The resultant topology is illustrated in Figure 3.6. Notice that i t 

captures not only the causal dependencies between the informational goals 

and the corresponding concepts, but i t also shows the relations between the 

concepts (the dotted arrows). Hence, we have 11 BNs (with learnt topol-

ogy) to represent each of the informational goals in the ATIS domain. In 

order to further improve the overall performance — single, multiple goals 

and OOD identification, we adopt a probability threshold which maximizes 

the F-measure (Of) as described in Section 3.4.3. 

(ILIIGHT: NUMBER) 

- repesents a goal node 

-represents a concept node 

Figure 3.6: Topology of the BN for the informational goal Aircraft_Code. 
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3.8.3 BNs for Handling Speech Recognition Errors 

The algorithm for detecting the mis-recognized concepts is summarized in 

Figure 3.7. The approach mainly involves: identification of informational 

goal, detection and rejection of spurious concepts. 

For each noisy query 
1 For each BN {i): 
2 Informational goal inference: 

Output a confidence level and make a binary decision by the 
threshold determined by the F-measure (Of). 

3 Detection of spurious concepts by backward inference: 
i. Instantiate the goal node P*{Gi) to 1 or 0 to infer backwards 

for 
ii. I f Cj is present in the query and P*{Cj) from backward 

inference is lower than the threshold Cj is deemed spurious. 
4 Infer the query again wi th the spurious concepts removed. 
5 Compare the inference results among 11 BNs. Trust the BN wi th 

maximum updated probability P*{Gi) and reject the spurious concepts 
according to its decision. 

6 Use the updated concepts, and feed into the 11 BNs again to obtain 
the informational goal again. Each trained BN (11 BNs) wi l l make a 
binary decision by Of regarding the presence or absence of its 
corresponding informational goal. Decision across all BNs results in 
the identification of single goal, multiple goals or OOD query. 

Figure 3.7: Algorithm for handling noisy queries. 

3 The asterisk (*) denotes an updated probability. 
4 We can simply choose threshold at 0.5 since P{Cj) + P(U]) = 1. Experiments on 

varying the threshold value 9 are discussed later. 
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3.8.3.1 Informational Goal Inferencing 

Each BN wi l l output a confidence level regarding the presence or absence of 

its informational goal. Probability propagation within the learnt BN topol-

ogy is more complex and the Bayes' Theorem as described in Equation 3.3 

cannot be applied for the calculation of the aposteriori probability P*{Gi\C) 

directly. According to the learnt topology as shown in Figure 3.6, the network 

is divided into sub-networks: {Aircraft_Code, CITY_ORIGIN, CITY_DESTINATION}, 

{Aircraft-Code, FLIGHT—NUMBER, AIRLINE_NAME}, {Aircraft_Code, 

TIME_VALUE}, etc. Updated joint probabilities P*{Gi, C) are iteratively com-

puted according to the Equation 3.8 by each sub-network. The updated 

probability P*{Gi) is hence computed^ by the marginalization of the updated 

joint probability P*{Gi, C). Notice that the probability associated wi th the 

asterisk (*) means its value has been updated by the instantiation of its / 

other nodes. P*{Gi) is then compared to the threshold Of (determined by 

the F-measure) to make the binary decision for the presence or absence of 

the goal. 

C) = P{G,\C)P\C) — P*{Gi, C) = (3.8) 

where P*{C) is instantiated to the presence or absence of the concepts. 

is the joint probability obtained from training set. 

C) is the updated joint probability. 

5 Detailed calculation of P*{Gi) is illustrated in Appendix C. 

56 



CHAPTER 3. BELIEF NETWORKS FOR NATURAL LANGUAGE 
UNDERSTANDING 

3.8.3.2 Detecting Mis-Recognized Concepts 

Each BN wi l l then perform backward inference to test the network's confi-

dence for each input concept. Backward inference involves probability propa-

gation within the BN. The goal node of the corresponding BN is instantiated 

to either 1 or 0 (this value is dependent on the binary decision of the BN). 

The updated goal probability P*{Gi) then propagates to update the joint 

probability of P(C, Gi) for each sub-network by Equation 3.9: 

P ' { C , G i ) = P{C\Gi)P*{G,) (3.9) 

where P*{Gi) is updated and instantiated to 1 or 0. 

P{C\Gi) is the conditional probability obtained from training data. 

P*(C, Gi) is the updated joint probability. 

Thereafter we can obtain P*{Cj) by marginalization.^ By comparing this 

value wi th the threshold Q, we can determine whether the concept should 

be present or absent in the query. The value of 0 can be pre-set as 0.5 

or determined by maximizing the overall performance of the training set 

described in a later section. We can hence reject the spurious concepts that 

may be caused by mis-recognition i f the concepts' occurrences do not match 

with the binary decision from the backward inference. 

6 Detailed calculation of P*{Cj) from backward inference is shown in Appendix C. 
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3.8.3.3 Rejecting Mis-Recognized Concepts 

The detected spurious concepts are then rejected by the corresponding BN 

and each BN wi l l perform goal inference again. The BN wi th the maximum 

updated probability P*{G) is accepted and we wi l l update the concepts ac-

cording to the decision from this BN. Then we wi l l feed the updated query to 

the 11 BNs again for goal inference, the decisions across all BNs are combined 

to identify the informational goal of the input query. We labeled the query 

wi th a goal if the corresponding BN votes positive wi th the maximum up-

dated probability P*{G). Alternatively, we may label the query wi th all goals 

for which the BNs vote positive. In the case where all BNs vote negative, 

the input query is rejected as OOD. 

To provide an example, consider a FlightJD query “Cleveland to miami on 

Wednesday arriving before four p m”. We have simulated recognition errors 

within the query, and the corrupted query becomes: ''Cleveland to miami 

on to Wednesday arriving before fare p m". Our previous BN framework 

infers this query goal as FareJD wrongly. Table 3.11 shows the processes 

for rejecting the mis-recognized words and inferring the informational goal 

correctly. 
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Q u e r y : ''Cleveland to miami on to Wednesday arriving before fare p m " 
T a g s ： <CITY_ORIGIN> < T O > <CITY_DESTINATION> <PREP> <PREP> 

< D A Y 一 N A M E � < T O > < P R E _ T I M E > < F A R E > < T I M E _ U N I T > 

Step 1: Informational goal inference by each BN. 
Each BN outputs binary decision by using threshold 6f： 

P{Goal = Aircraft-Code | Query) = 0.0000 — Goal Absent (Oj for this goal is 0.83) 
P、Goal = Fare-ID | Query) 二 0.5035 Goal Present (Of for this goal is 0.30) 
P{Goal = FlightJD | Query) = 0.4902 -> Goal Present ((9/ for this goal is 0.37) 

Step 2: Detection of spurious concepts by backward inference of each BN. 
e.g. For the BN of FlightJD: (below shows the probabilities obtained from 
backward inference using 0.5 as threshold 0. Notice that <FARE> is spurious 
because its presence violates the binary decision from backward inference.) 
Concept J- (Cj) P*(Cj) Binary Decision Actual Occurrence 
CITY-ORIGIN 0.9548 Present Present 
CITYJDESTINATION 0.8757 Present Present 
FARE 0.0234 Absent Present 
CODE_NAME 0.0000 Absent Absent 
Step 3: Each BN performs goal inference again with the corresponding spurious 

concepts removed. 
P{Goal = FlightJD | Query) 二 0.9462 (with <FARE> removed) 
P{Goal = FareJD | Query) 二 0.6585 (with <PRE—TIME〉removed) 

P[Goal 二 Aircraft-Code | Query) - 0.0000 (no concept is removed) 
Step 4: Reject the spurious concepts according to the BN with maximum apos-

teriori probability. 
Since the BN of FlightJD has maximum aposteriori probability, we wil l reject 
� F A R E � f r o m the input query. 
Step 5: Use the updated query to infer the goal again. 
P{Goal = F l ightJD | Updated Query) = 0.9462 
PiGoal 二 FareJD | Updated Query) = 0.0023 

P{Goal 二 Aircraft_Code | Updated Query) 二 0.0000 
The inferred goal is FlightJD 

Table 3.11: Procedures for recovery from speech recognition errors. 
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3.8.4 Experiments on Handling Speech Recognition 

Errors 

3.8.4.1 Varying the threshold value 9 

Since some of the concepts are sparsely trained, i f our threshold 0 for reject-

ing the spurious concepts is too high, some concepts w i l l be wrongly rejected. 

To il lustrate w i th an example, consider the query: 

Query : i'd like a one way ticket from milwaukee to orlando either 

Wednesday evening or thursday morning 
Corrupted : i'd like a one way ticket from milwaukee orlando either wednes-
Query day evening or thursday morning (deletion of <TO> between 

the two cities) 

Tags ： <ONE_WAY> <FROM> CCITY—ORIGIN� 

<CITY_DESTINATION> <DAY—NAME�<PERIOD> 
<DAY_NAME> <PERIOD> 

Inferred : FlightJD (Correct) 

Goal 

Our BN for Flight」D votes positive for this query. I t then performs back-

ward inference and the results in Table 3.12 using 0.5 as threshold indicated 

that the concepts <DAY_NAME> a n d � P E R I O D � a r e spurious. Since such of 

these coiiccpts only act as additional specification for database access, they 

are optional in the qu(、rv. 

HeIICO we have conducted a series of exporiiiients in which th(、value for 

the threshold 0 is varied from 0.1 to 0.5.' The inferred goal(s) are considered 

(、om、(、t only if they agrre with those iii the reference SQL. Qu(>rif\s whose 

goals are not c w e m i bv our 11 BNs are treatofl as GOD. and are corisiclc^rofl 

‘ T h e maximum value of the threshold is 0.5 sincc PiC) + P ( C ) = 1. 
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Conceptj (Cj) ) Binary Decision Actual Occurrence 

(Part of concepts) for Cj for Cj 

CITY_0RIGIN 0.9548 Present Present 
CITY一DESTINATION 0.8757 Present Present 
PERIOD 0.2719 Absent Present 
DAY 一 NAME 0.3333 Absent Present 
FARE 0.0234 Absent Absent 
CODE 一 NAME 0.0000 Absent Absent 

Table 3.12: Updated probabilities obtained from backward inference (BN 

of FlightJD) using 0.5 as threshold for the corrupted query “i，d like a one 

way ticket from milwaukee orlando either Wednesday evening or thursday 

mroning,,. 

to be identified correctly if there are classified as such. The goal identification 

accuracies for the noisy training set are shown in Figure 3.8. The curve in 

Figure 3.8 shows the goal identification accuracies when the spurious words 

are rejected based on our algorithm using various threshold values, while 

the straight line shows the goal identification accuracy (81.5%) when the 

spurious words are not rejected (i.e. no threshold used). By optimizing on 

overall goal identification accuracy based on the training set, i t is suggested 

that the threshold 9 for rejecting the spurious concepts should be set to 0.15. 

3.8.4.2 Results 

We adopt a suitable threshold [6 = 0.15) to reject the spurious concepts in 

our algorithm. We have tested the corrupted ATIS-3 1993 test set which is 

generated randomly based on the algorithm described in Section 3.8.1. Table 

3.13 shows the breakdown of the corrupted queries in the 1993 test set. For 
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85 • Results with threshold 
血 Results without threshold 

s 80 
£ X 

I \ c 75 V y 

\ . . . . . . . 一 — . . . . \ — _ — 

^ 70 \ 

65 ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘ ‘ 1 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 

Threshold Values 

Figure 3.8: Goal identification accuracies of the corrupted training set when 

threshold Q ranges from 0.05 to 0.5. 
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the total of 448 test queries, only 262 have been corrupted. The rest of the 

queries are identical to the original (they are referred to clean queries). We 

show the comparative results on the original set and the corrupted set in 

Table 3.14. The set of corrupted queries has degraded from 91.3% to 82.8%. 

By rejecting the spurious words, the result has been improved by 2% (from 

82.8% to 85.0%). 

Clean Queries 186 
Corrupted Queries 262 
Total Queries 448 

Table 3.13: Breakdown of the ATIS-3 1993 corrupted test set. 

. Corrupted Set 
ATIS-3 1993 Test Set Gngmal Corrupted (�eject the spur-

Set Set V J P� 

ous concepts) 
Single Goal Correct 381 347 357 
Rejection Correct 23 22 22 
Multiple Goal Correct 5 2 2 
Total Correctly Handled 409/448 371/448 381/448 

(91.3%) (82.8%) (85.0%) 

Table 3.14: Overall goal identification accuracies using the rejection threshold 

of 0.15 for the ATIS-3 1993 original and corrupted test sets. 
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3.8.5 Significance Testing 

From the corrupted ATIS-3 1993 test set (448 queries in total) , 371 (82.8%) 

queries were identified correctly wi thout the rejection of spurious words; and 

381 (85.0%) queries were identified correctly w i t h the rejection of spurious 

words. We conducted a significance test on the performance difference as 

follow: 

The nul l hypothesis (Hq) and alternate hypothesis (Hi) are: 

Hq \ d = Pi-p2 = 0 

Hi : d = Pi - p2 < 0 

where a is 0.05 {significance level), hence ZQ.OS is 0.8289. 

Pi is proportion of correctly identified queries without the rejection 

of spurious words. 

P2 is proportion of correctly identified queries with the rejection of 

spurious words. 

The test statistic is: 

Z o = I 仍 1 2 (3.10) 

, 371 381 
where »i 二 , Oo = 

^ 448' M 448 
m = 712 — 448 

Til +722 448 + 448 

We reject Hq i f ZQ < -ZQ.OS-

Since ZQ = -0.9096 < -ZQ.OS, we conclude that the rejection of the 

spurious words which may be due to speech recognition error gives better 
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goal identification accuracies, and the performance difference is statistically 

significant. 

3.8.6 Error Analysis 

We found that out of the total 262 corrupted queries in the ATIS-3 1993 

corrupted test set (Table 3.13), the goal identification for 211 queries have 

not been changed. This can be explained that the mis-recognized words do 

not affect the meaning for understanding (Table 3.15, Example 1). For the 

rest of the corrupted (51) queries in which the goal identification has been 

changed, 38 of them (out of 51) which are inferred wrongly wi th the presence 

of the mis-recognized words (they are inferred correctly when they are not 

corrupted). By rejecting the spurious words, 8 queries are recovered and 

inferred correctly (Table 3.15，Example 2). There are 13 queries (out of 51) 

which are inferred correctly wi th the presence of mis-recognized words. They 

are inferred wrongly when they are not corrupted (Table 3.15, Example 3). 

For the rest of the 186 clean queries, there are 3 cases of false rejection which 

lead to an incorrect goal identification (Table 3.15, Example 4). 

65 



CHAPTER 3. BELIEF NETWORKS FOR NATURAL LANGUAGE 
UNDERSTANDING 

Example 1 : Mis-recognition does not affect the goal inference. 
Original Query : yes Vd like to find a flight from memphis to tacoma stop-

ping in los angeles 
I n f e r r ed Goa l : FlightJD (Correct) 
Corrupted Query : yes i'd like two friends flight from memphis to tacoma 

stopping in los angeles 
Inferred Goal : FlightJD (Correct) — 
Example 2 : Mis-recognition causes the incorrect goal inference but 

can be recovered by our algorithm. 
Original Query : Cleveland to miami on Wednesday arriving before four p m 
Inferred Goa l : FlightJD (Correct) 
Corrupted Query : Cleveland to miami on to Wednesday arriving before fare 

p m 
Inferred Goal : Fare_ID (Wrong) 
N e w In fe r red Goa l : FlightJD (Correct, <FARE> is rejected) 
(with rejection algo-
rithm) 
Example 3 : Inferred goal is corrected for the corrupted query, it is 

inferred wrongly in the original query. 
Original Query : what is the seating capacity on the aircraft m eight zero 
Inferred Goal : A i r c r a f t — C o d e ( W r o n g , t l ^ g ^ s h o u l d b e A i r -

craft_Capacity which is OOD) 
Corrupted Query : what is the seating capacity on the air cost m eight zero 
Inferred Goal (with : OOD (Correct) 
or without rejection 
algorithm) 
Example 4 : False rejection for the clean query. 
Original Query : flight number from houston to dallas 
I n fe r red Goal : Flight-Number (Cor rec t 
Clean Query : flight number from houston to dallas 
I n fe r red Goal (wi th : FlightJD (Wrong, since <Flight_Number> has been re-
re jec t ion a lgor i thm) jected by backward inference) 

Table 3.15: Example queries and corresponding inferred goals generated by 

the BN framework with capability of rejection of mis-recognized concepts. 
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3.9 Chapter Summary 

This chapter describes our in i t ia l attempt in applying Belief Networks for 

the identification of informational goals in information-seeking queries. The 

BNs can model the causal relations between the query's semantic concepts 

and the underlying informational goal(s). By formulating our TV-way clas-

sification problem as N binary classifications, we are able to (i) identify 

queries wi th multiple informational goals, and (ii) reject queries whose goals 

are outside of the prescribed knowledge domain, without significant loss in 

goal classification performance. Our experiments also found IG and the F-

measure to be favorable, for their respective tasks of feature selection and 

probability thresholding in binary classifications. We also have extended the 

use of BNs from natural language understanding to the detection of mis-

recognized concepts in the spoken queries. In order to capture the domain-

speccific constraints wi th the inter-concept dependencies, we adopt the Min-

imum Description Length (MDL) principle to automatically learn the least 

complex topologies for the BNs. User input can then be verified against the 

domain-specific constraints by using backward inference. Therefore, spuri-

ous concepts which are caused by speech recognition errors can be detected 

and rejected. By rejecting the spurious concepts wi th in the spoken query 

automatically, an improvement in goal identification accuracy was realized, 

from 82.8% to 85.0%. The improvement was statistically significant. 
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Chapter 4 

Belief Networks for 

Mixed-Initiative Dialog 

Modeling 

We have demonstrated the feasibility of using Belief Networks (BNs) for nat-

ural language understanding in the previous chapter. However, in spoken 

dialog systems, most of the users do not specify all the required informa-

tion attributes within a query, and they usually engage with the system for 

several dialog turns in order to achieve their goals. Among the various dia-

log strategies of spoken dialog systems, the mixed-initiative model is deemed 

most desirable, since both the user and the system can influence the dialog 

flow over the course of interaction. This provides greater flexibility than 

the system-initiative model or user-initiative model. I t is possible to build 

effective mixed-initiative interactions by handcrafting flexible transitions be-

tween the system-initiative and user-initiative models. While handcrafting 
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can produce a sophisticated dialog flow, the task is expensive, and may be-

come intractable wi th increasingly complex domains. In this chapter, we 

propose to use Belief Networks to automatically govern the model transi-

tions for mixed-initiative interactions. We have extended the BN framework, 

previously used for natural language understanding, for the current task of 

mixed-initiative dialog modeling within the context of the CU FOREX sys-

tem. 

4.1 The CU FOREX Domain 

4.1.1 Domain-Specific Constraints 

We have chosen to investigate the feasibility of using BNs for dialog mod-

eling, within the context of the CU FOREX system [34]. This is a bilingual 

(English and Cantonese) conversational hotline that supports inquiries about 

foreign exchange information. I t supports inquiries regarding the exchange 

rates between a currency pair, as well as the interest rates for various time 
durations for a currency. The domain is relatively simple, and is character-
ized by two query types (or informational goals - Exchange Rates and Interest 
Rates); and five domain-specific concepts (a CURRENCY PAIR, TIME DURA-

TION, EXCHANGE RATE and INTEREST RATE). For database retr ieval, there 

are two constraints: An inquiry regarding exchange rates mandates that the 
currencies to be bought and sold be specified. An inquiry regarding interest 
rates mandates that a currency and a time duration be specified. 
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4.1.2 Two Interaction Modalities 

The CU FOREX has been made available for experimentation by the public 

since August 1999. Since then, we have received a few hundred calls per 

month on average. I t currently supports two interaction modalities, based 

on Speech Works 4.0 [34]. The Directed Dialog (DD), designed for novice 

users, guides the user through a session and elucidates what may be said 

at various stages of the interaction. Table 4.1 shows a directed dialog (DD) 

interaction between the system and the user. Notice that at every dialog 

turn, the system guides the user to provide a specific information attribute. 

The Natural Language Shortcut (NLS) is designed for expert users who want 

to expedite the inquiry session by uttering a ful l query, thus traversing the 

entire session within one interaction. Hence the query may carry multiple at-

tributes for database retrieval, as opposed to a single attribute per utterance 

in the directed dialog case. Example dialog for Natural Language Shortcut 

interaction is shown in Table 4.2. 

4.2 The Belief Networks 

We adopt the use of BNs in mixed-initiative dialog modeling. I t involves the 

processes of (i) inferring the informational goal of a user's query, as well as 

(ii) verifying the input query against domain-specific constraints. To identify 

the user's informational goal, we have devised a framework that utilizes BNs, 

as described in Chapter 3. A brief description is provided as follows. 
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System : “ Welcome to C U FOREX. Which language would you prefer, 

Cantonese or English?” 

User : “English.” ~ 

System : “ Would you like exchange rates or interest rates?,. 

User : “Interest rates.,. 

System : “ Which currency are you interested in?” 

User : “Hong Kong dollar.” 

System : “Would you like deposit durations for twenty-four hours, one 

month . . . or one year?'' 

User : “One month.” 

System : “The quotes we provided are for reference only. The interest 

rate of the Hong Kong dollar for one month is XXX.” 

Table 4.1: D i rected dia log (DD) in teract ion between the system and the user, 

for an interest rates inquiry. 

System : ''Welcome to C U FOREX. Which language would you prefer, 

Cantonese or English?” 

User : “English.” — 

System : “What kind of currency information are you interested in?,. 

User : “rd like to know the exchange rates between the US dollar and 

the Hong Kong dollar please.” 

System : “The quotes we provided are for reference only. Exchange rate: 

The US dollar to the Hong Kong dollar, the buying rate is XXX, 

the selling rate is XXX.” 

Table 4.2: Na tu ra l language shortcut (NLS) in teract ion between the system 

and the user, for an exchange rates inquiry. 
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4.2.1 Informational Goal Inference 

A BN is trained for each domain-specific informational goal. In this domain, 

there are two informational goals - Exchange Rates and Interest Rates. Hence 

we developed two BNs, one for each goal, using the natural language queries 

we have collected.i Each BN receives as input all of the five domain-specific 
concepts： CURRENCY」，CURRENCY_2, DURATION, EXCHANGE_RATE and 

INTEREST—RATE.2 We have also enhanced the pre-defined topo logy by means 

of automatic learning using the Minimum Description Length (MDL) prin-

ciple [33]. The resulting topology is illustrated in Figure 4.1. Notice that i t 

captures not only the causal dependencies between the information goal and 

the corresponding concepts, but i t also shows the dependencies between the 

concepts (i.e. the dotted arrow). 

( D U R A T I O N ) ^ 

Figure 4.1: The enhanced topology of our BNs in the CU FOREX domain. 

A trained BN is then used to make a binary decision based on the concepts 

present in the input query, regarding the presence or absence of the goal Gi. 

As mentioned before, in order to compute the likelihood of the goal given the 

1 We have transcribed around 500 natural language queries for training the BNs. 
2 Since our domain is relatively simple, we did not select the input concepts for the BN 

using the Information Gain criterion. 
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present concepts, the learnt network should first be divided into several sub-

networks: {Goal, CURRENCY」，CURRENCY_2}, {Goal, DURATION}, {Goal, 

EX_RATE} and {Goal, INT_RATE}. T h e upda ted j o i n t p robab i l i t ies C) 

are then iteratively computed according to Equation 3.8 by each sub-network, 

and the updated probability P*{Gi) can be obtained by the marginalization 

of the updated joint probability. P*{Gi) is then compared to a threshold 

to make the binary decision — 0 may be set to 0.5 (外.5), or an optimized 

value for each goal by F-measure {Of). Details for computing the updated 

probability P*{Gi) by Bayesian inferencing can be found in Appendix C. 

The decisions across all the BNs are combined to identify the output goal 

of an input query. We can adopt a goal i f the corresponding BN votes positive 

wi th the highest updated probability P*{Gi). Alternatively, we may label the 

query wi th all the goals for which the BNs vote positive. Should all BNs vote 

negative, the input query is rejected as 〇〇D. Consider an example query: 

“Can I have the exchange rate of the yen please”. Typ i ca l values of the 

updated probabilities that are obtained from goal inference of the two BNs 

are shown in Table 4.3. These values are compared with a pre-set threshold 

0̂.5 for making the binary decision and the input is hence classified as an 
Exchange Rates query. For the other example query: “tell me about stock 

quotes”. The two BNs both vote negative for the query as depicted in Table 

4.3 and hence the input is classified as OOD. 
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Query: “ Can I have the exchange rate of the Yen please?^^ 
BN for Exchange Rates: 

P*{Goal = Exchange Rates) — 0.823 — goal present 
BN for Interest Rates: 

P*{Goal = Interest Rates) = 0.256 — goal absent 
Hence, the inferred goal is Exchange Rates. 

Query: “ Tell me about stock quotes,^'' 
BN for Exchange Rates: 
P*{Goal = Exchange Rates) = 0.14 goal absent 
BN for Interest Rates: 
P*{Goal = Interest Rates) = 0.13 goal absent 
Hence, the user's query is considered as OOD. 

Table 4.3: Typical values of the updated probabilities obtained from goal 

inference using BNs in the CU FOREX domain. 

4.2.2 Detection of Missing / Spurious Concepts 

Having inferred the informational goal of the query, the corresponding goal 

node is instantiated, and we perform a backward inference to test the net-

work's confidence in each input concept. When the goal node is instantiated, 

the joint probability of P{C, Gi) wi l l be updated for each sub-network as in 

Equation 3.9. 

By marginalization of the updated joint probability, we can get P * ( Q ) . 

This probability is compared with the threshold 6 = 0.5 to determine whether 

the concept should be present or absent. Details for obtaining the updated 

probability P*(Cj) by backward inferencing can be found in Appendix C. 
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f 
> d Cj should be present in the given Gi query 

= 

I < ^ —Cj should be absent in the given Gi query 

Backward inference verifies the validity of the input query against domain-

specific constraints. In this way, we can test for cases of spurious and missing 

concepts,3 and generate the appropriate system responses. 

As an example, consider an interest rates query “Can I have the interest 

rates of the Yen for one month please?". We instantiated the goal node 

of the BN (for Interest Rates) to 1，and performed backward inference for 

each input concept Cj to obtain P*{Cj). The associated probabilities and 

binary decisions are shown in Table 4.4. The corresponding binary decisions 

obtained for each concept (using 0 = 0.5) agrees wi th the actual occurrences 

in the input query. The semantic frame is thus ready to be processed for 

database retrieval. 

Conceptj {Cj) P*{Cj) Binary Decision for Cj Actual Occurrence for Cj 
CURRENCY.l 0.910 Present Present 
CURRENCY_2 0.006 Absent Absent 
DURATION 0.770 Present Present 
EX_RATE 0.011 Absent Absent 

INT—RATE 0.867 Present Present 

Table 4.4: The binary decision for each concept from backward inference 

(BN of Interest Rates) agrees with their actual occurrence. 

3 These may be due to speech recognition errors in an integrated spoken dialog system. 
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However, in situations where the binary decision for each concept disagree 

with its actual occurrence, further processing is necessary. The following 

shows two cases: 

• Case 1: Missing Concepts 

I f the binary decision for conceptj is positive but i t is absent in the 

input query, a missing concept is detected. The dialog model is de-

signed such that the system wi l l prompt for the missing concept. Table 

4.5 illustrates the associated probabilities and binary decisions from 

backward inference for an interest rates query “ Can I have the interest 

rate of the Yen?”. Backward inference produces P*{Cj) and threshold-

ing gives the binary decision regarding the presence or absence of Cj. 

When we compare the binary decision from backward inference and the 

actual occurrences of Cj in the input query, we detect that the concept 

�DURATION� i s missing. This invokes the dialog model to generate 

the prompt , “How long would you like to deposit?”. 

Conceptj {Cj)户*((7)) Binary Decision for Cj Actual Occurrence for Cj 
CURRENCY, ! 0.910 Present Present 
CURRENCY-2 0.006 Absent Absent 
DURATION 0.770 Present Absent 
EX-RATE 0.011 Absent Absent 
INTJRATE 0.867 Present Present 

Table 4.5: The binary decision of the concept〈DURATION〉from backward 

inference (BN of Interest Rates) does not agree with the actual occurrence. 

Hence〈DURATION〉is deemed missing and the dialog model prompts for it. 
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• Case 2: Spurious concepts 

Should a spurious concept be detected, i.e. the presence of conceptj 

violates the binary decision, the system would automatically ask the 

user for clarification. For example, consider the query “Can I have the 

interest rate of the Lira against the Yen”, the in fer red goal is Exchange 

Rates (where P*(fioal = Exchange Rates) = 0.79). The corresponding 

probabilities and binary decisions from backward inferencing are shown 

in Table 4.6. I t can be seen that the concept <INT_RATE> is spuri-

ous. The BN for Exchange Rates indicates that this concept should not 

be present. Hence, the system will follow the inferred goal (Exchange 
Rates) to generate the clarification response: ''Are you referring to the 

exchange rate between the Lira and the Yen?^\ 

Conceptj (Cj) P*{Cj) Binary Decision for Cj Actual Occurrence for Cj 
CURRENCY� 0.910 Present Present 
CURRENCY-2 0.920 Present Present 
DURATION 0.017 Absent Absent 
EX_RATE 0.840 Present Absent 
INT_RATE 0.023 Absent Present 

Table 4.6: The binary decision of the concept <INT_RATE> from backward 

inference (BN of Exchange Rates) conflicts with the actual occurrence. Hence 

<INT—RATE� is deemed spurious and the dialog model issues a clarification 

response. 
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4.3 Integrating Two Interaction Modalities 

We have developed a dialog system using BNs. Automatic detection of miss-

ing / spurious concepts drives the mixed-init iative dialog model and hence 

integrates the two interactions modalities (DD, NLS). The example dialogs in 

Table 4.7 show that the BN-based dialog model can handle pure DD or NLS 

as well as mixed-initiative interactions. I t can prompt for missing concepts, 

ask for clarification from the user when spurious concepts are detected, and 

reject OOD input. 

Dialogs 1 and 2 in Table 4.7 show that the BN-based dialog model can 

produce pure DD or NLS interactions identical to the those of previous dialog 

models il lustrated in Tables 4.1 and 4.2. In the system-initiative DD interac-

tion, the BN-based dialog model detects the missing concepts and prompts 

the user unt i l all concept occurrences agree wi th the domain-specific con-

straints. In the user-initiative NLS interaction, the concepts agree wi th the 

domain-specific constraints and hence the system is able to produce a re-

sponse directly. 

The BN-based dialog model can also freely transit between the DD and 

NLS interactions. Users are no longer constrained to input one information 

attribute per dialog turn. In addition, the system is capable of prompting 

for missing information as shown in Dialog 3, or clarifying confusion due to 

spurious concepts in Dialog 4. 

The system is also able to provide a mixed-initiative interaction wi th 

either novice or expert users in a single spoken interface in Dialog 5, as well 

as reject OOD input automatically as shown in Dialog 6. 
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Dialog 1: Pure DD, asking for exchange rates information. 
System : "What kind of currency information are you interested in?" 
User : ^^Exchange rates” 
System : "Which currency would you like to sell?" 
User : “Hong Kong dollar.,. 
System : "Which currency would you like to buy?" 

: “US dollar.” ‘ 
System : "The exchange rate of the Hong Kong dollar against the US dollar is XXX. " 
Dialog 2: Pure NLS interaction, asking for interest rates information. 
System : "What kind of currency information are you interested in?" 
User : “I would like the interest rate of the Yen for one year.” 
System : “The interest rate of the Yen for one year is XXX. " ‘ 
Dialog 3: Prompting for missing information. 
System : "What kind of currency information are you interested in?" 
U s e r : “I would like the interest rate of the Yen.” (NLS interact ion) 
System : "How long would you like to deposit?" ~ 
User : “Two months.” (DD interaction) 
System : "The interest rate of the Yen for two months is XXX: 
Dialog 4: Asking for clarification upon the detection of spurious concepts. 
System : "What kind of currency information are you interested in?” 
User : “Interest rate of the Hong Kong dollar against the Yen." 
System : "Are you referring to the exchange rate of the Hong Kong dollar against the 

Yen?" 
User : “Yes please.” 
System : “The exchange rate of the Hong Kong dollar against the Yen is XXX. ” 
Dialog 5: Handling mixed-initiative interaction. 
Sys tem : "What kind of currency information are you interested in?” 
User : “Exchange rate.” (DD interaction) 
System : "Which currency would you like to sell?" ‘ 
U s e r : “Hong Kong dollar against the US dollar” (NLS interact ion) 
System : "The exchange rate of the Hong Kong dollar against the US dollar is XXX.，， 

Dialog 6: Handling OOP query. _ ~ 
System : "What kind of currency information are you interested in?" 
U s e r : “ Tell me about stock quotes.” ( O O D query) 
System : "Sorry we don't have the information you want. Please input service, ex-

change rates or interest rates." 

Table 4.7: Example dialogs produced by the BN-based dialog model. 
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4.4 Incorporating Out-of-Vocabulary Words 

When users interact wi th a dialog system, they usually do not know the 

system's capability and they may therefore inquire for information that is 

outside the scope of the system's competence. Hence i t is important for 

a dialog system to detect the out-of-vocabulary (OOV) words and guide 

the users wi th proper instructions. In the CU FOREX system, we observed 

that 3.6% of users have asked about unknown currencies which resulted in 

incorrect responses from the system. In this task, we aim to incorporate the 

capability of OOV detection in the BN-based dialog model in the CU FOREX 

domain. 

4.4.1 Natural Language Queries 

Detection of missing concepts from the user query may imply that the user 

has input some unseen vocabulary items which lead to parse failures. For 

example, for the query illustrated in Table 4.8 “ What is the interest rate of 

Finland Markka for three months?”, since “Finland Markka” lies outside of 

our grammar's terminal categories, i t is tagged as <OOV>. The BN dialog 

model detects a missing concept of〈CURRENCY〉from backward inference. 

Instead of prompting the user for missing concepts, the model is designed to 

examine the <OOV> tag first. 

We make use of the contextual information to identify a possible tag for 

the < o o v > . Based on the training data of the natural language spoken 

queries, we have designed a few contextual rules as illustrated in Table 4.9 

to transform the <OOV> to an unseen currency (<OOV_CURRENCY>). 
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System : “What kind of currency information are you interested in?” 

User : “ What is the interest rate of Finland Markka for 

three months?,, 

< W H A T > < D U M M Y > <INT—RATE> < P R E P > < O O V > 

< P R E P > < D U R A T I O N > 

System : [Detection of a missing concept〈CURRENCY�] 

Table 4.8: Occurrence of OOV words in a natural language query. 

Rule Occurrence of the tag order Then 

1. < I N T — R A T E � < P R E P > < O O V > < P R E P > 

� D U R A T I O N � 

— — <oov>-> 
2 . < I N T — R A T E � < P R E P > < O O V > 

— <OOV_CURRENCY> 
3 . < E X _ R A T E > < P R E P > < O O V > < A G A I N S T > 

� C U R R E N C Y � 

Table 4.9: Some of the contextual rules for transforming the <OOV> tag to 

<OOV_CURRENCY>. 
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O u r example query in Table 4.8 matches Rule 1, in which the < O O V > 

is preceded by b i g r a m tags <INT_RATE> <PREP> and succeeded by bi-

gram tags <PREP>�DURATION� . Therefore the < o o v > tag is induced as 

<OOV 一 CURRENCY� . 

4.4.2 Directed Queries 

We can use the contextual information in the natural language queries to 

identify a possible tag for the <OOV>. However, for directed queries whereby 

the user usually responds to the system wi th a specific attribute, we can 

only determine a possible tag for the <OOV> based on the dialog flow. An 

example illustrated in Table 4.10 shows that the occurrence of the < o o v > 

in a directed dialog interaction wi l l be induced as <OOV_CURRENCY> based 

on the dialog context. 

System : “ What kind of currency information are you interested in?” 

User : “Can I have the exchange rate please?” 

System : “Please tell me the currency you want to sell.” 

User : “Finland Markka” [Directed dialog response] 
<OOV> wi l l be induced as <oov—CURRENCY� 

Table 4.10: Based on the dialog context, we can determine the <OOV> to 

be an unseen currency <OOV_CURRENCY> . 

Af te r the system has determined the <OOV> as an <OOV_CURRENCY>, 

i t wi l l ask the user for clarification, which results in 2 cases: 
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• Case 1: The assumption of the OOV words as a currency is 

correct 

I f the user confirms the unseen words <00V_CURRENCY> as a cur-

rency, our system wi l l automatically add the new currency to the lexi-

con. A correct response wi l l then be provided for the user. An example 

dialog is shown in Table 4.11. 

• Case 2: The assumption of the OOV words as a currency is 

wrong 

Sometimes, the occurrence of OOV words may be due to speech recog-

nition errors. As a result, i f the BN-based dialog model induces the 

<OOV_CURRENCY> wrongly as a currency, the system will then prompt 

the user again for the missing concepts. An example dialog is shown 

in Table 4.12. 
System : “ What kind of currency information are you interested in?” 

User : “What is the interest rate of Finland Markka for three months?” 

System : “The currency you are referring is Finland Markka, is that cor-

rect?'' 

User : ''Yes：' ‘ 

System : “The interest rate of Finland Markka for three months is XXX" 
Or 

“Sorry, we do not have the currency information you want:. 

Table 4.11: The user confirms the OOV word as a currency. 
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System : “ What kind of currency information are you interested in?” 

User : “Can I have the exchange rate please? 

System : “Please tell me the currency you want to sell? 

User : “E U.” (E U lies outside of our lexicon and i t is tagged as < o o v > . 
I t becomes <00V_CURRENCY> based on the dialog flow.) 

System : “The currency you are referring is E U, is that correct 
U s e r ~ : “No.” ‘ 
System : “Please tell me the currency you want to sell?^^ 
U s e r : “E C XT — 

Table 4.12: The 〇0V words may be caused by a speech recognition error, in 

which case the system wi l l prompt the user for the missing currency again. 

4.5 Evaluation of the BN-based Dialog Model 

Our evaluation is based on 550 dialog sessions collected using the CU FOREX 

system during the period between November and December 1999. Approxi-

mately 17% were rejected manually, as the users were clearly attempting to 

break the system. Of the remaining queries, 285 sessions were obtained from 

the DD while 170 sessions were obtained from NLS hotlines. The failure 

point recovery rates of the DD and NLS models are shown in Table 4.13. 

Failures in the DD model are mainly caused by queries with multiple infor-

mation attributes, OOV or OOD input. Failures in the NLS model are due 

to missing, spurious or OOV concepts or OOD queries. Detailed statistics 

are tabulated in Table 4.14. In comparison, the BN-based mixed-initiative 

dialog model can automatically reject OOD input, and successfully handle 

all the dialogs. Table 4.15 shows the typical causes of failure in the original 

DD and NLS models, in which the BN-based dialog model can handle all the 
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cases well and offer a continuation option at the failure point. 

Failure Point Recovery Rate 
CU FOREX BN-based Dialog Model 

DD (total: 285 sessions) 85% 100% 
NLS (total: 170 sessions) 63% 100% 

Table 4 .13: Failure point recovery rates of the original CU FOREX system 

with Directed Dialog (DD) and Natural Language Shortcut (NLS) interac-

tions, in comparison wi th failure point recovery rates from the BN-based 

dialog model. 

Failures for the CU FOREX Dialog Model 
Multiple Missing Spurious O O V / 

Attributes Concepts Concepts OOD 
D P 11% — — 4% 
NLS 一 30% 4% 一 ^ 

Table 4.14: Causes of failure for the CU FOREX dialog model. Percentages 

refer to the proportion of the evaluated queries (285 DD and 170 NLS). 
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Dialog 1: DD Interaction 
System : “ Would you like exchange rates or interest rates?” 

User : “Exchange rates.,. 
System : “ Which currency you would like to sell?” 

User : "Yen to Hong Kong dollars please.” 

System : Failed. 
( C U F O R E X ) (Multiple information attributes in a DD interaction.) 
System : “The exchange rate between the Yen and the Hong Kong 

(BN-based dollar is XXX：' 

Dialog Model) (Concepts pass the domain constraints.) 

Dialog 2: NLS Interaction 
System : “ What kind of currency information are you interested in?” 

User : “ Tell me about interest rates: 

System : Failed. 
( C U F O R E X ) (Missing concepts:〈CURRENCY」〉and〈DURATION〉.） 

System : “Please tell me the curreiicy you are interested in.” 

(BN-based (Prompt for the missing concepts.) 
Dialog Model) 

Table 4.15: Comparison of the DD / NLS interactions i^etwecii the original 

CU FOREX system ami the BX-based dialog i i iodfl. 
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4.6 Chapter Summary 

This chapter describes our first attempt in applying Belief Networks for dialog 

modeling in a simple foreign exchange domain. The topologies of the BNs 

are designed to capture domain-specific constraints. The presence / absence 

of concepts are used to infer the presence / absence of each goal, by means 

of the BN. Automatic detection of missing / spurious concepts is achieved 

by backward inference using the BN corresponding to the inferred goal. This 

detection procedure hence invokes the dialog model to prompt for missing 

information, and ask for clarification. Besides, our dialog mode is enhanced 

to incorporate the OOV currency. In the next chapter, we wi l l investigate 

the domain portabil i ty issue as well as testing our BN-based dialog model in 

a more complex domain. 
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Chapter 5 

Scalability and Portability of 

Belief Network-based Dialog 

Model 

In this chapter, we wi l l explore the scalability and portabil i ty of our pro-

posed Belief Network (BN)-based dialog model across application domains. 

In dialog modeling, the BNs are used to automatically govern the transi-

tions between a system-initiative and a user-initiative dialog model, in order 

to produce mixed-initiative interactions. We have already demonstrated its 

feasibility in the simple CU FOREX (foreign exchange) domain, which is char-

acterized by two query types and five domain-specific concepts. In this work, 

we wi l l migrate our dialog model from the simple domain of foreign exchange 

to a more complex domain of air travel information service (ATIS). 
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5.1 Migration to the ATIS Domain 

We wi l l test the BN-based dialog model in a more complex domain. We 

have chosen the ATIS (Air Travel Information Service) domain due to data 

availability. ATIS is characterized by 11 query types and 60 hand-designed 

semantic tags. Hence we need to scale up our BN-based dialog model for the 

ATIS application. We have used the ATIS-3 Class A (context-independent) 

queries in our BN-based framework for natural language understanding as 

described in Chapter 3. However, in the current task of dialog modeling, 

both the ATIS-3 Class A and Class D (context-dependent) queries are used. 

Class A queries are self-contained while interpretation of the Class D queries 

is dependent on the discourse context. 

The disjoint training and test sets consist of 2820, 773 (1993 test), and 

732 (1994 test) transcribed utterances, wi th the breakdown of Class A and 

D queries tabulated in Table 5.1. Each utterance is accompanied wi th its 

corresponding SQL query for retrieving the relevant information. Some ex-

amples are illustrated in Table 5.2. Notice that the SQL query of the Class 

D utterance is associated with additional semantic concepts from the earlier 

discourse. 

ATIS-3 Training 1993 Test 1994 TesT 
Class A Queries 1564 448 444 
Class D Queries 1256 325 288 
Total 2820 773 ^ 

Table 5.1: Breakdown of ATIS-3 Class A and D queries. 
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Query (Class A ) : “find me a flight that flies from memphis to tacoma,, 

SQL : select flight-id f r o m flight where origin = “memphis” 

and destination = “tacoma” 

Query (Class D ) : “which of these flights stop in los angeles” 

SQL : select flight-id f r o m flight where origin — “memphis” 

and destination 二 “tacoma” and stopover — “los an-

geles” 

Query (Class D ) : “does that flight serve dinner” 

SQL : select flightJd f r om flight where origin 二 “memphis” 

and destination — “tacoma” and stopover = “los an-

geles” and meal-description — “dinneT” 

Table 5.2: Sample ATIS Class A and Class D queries. They are in sequential 

order and belong to the same dialog session. 

5.2 Scalability of the BN-based Dialog Model 

5.2.1 Informational Goal Inference 

There are a total of 60 hand-designed semantic concepts in the ATIS domain. 

In order to constrain computation time for goal inference, we have limited the 

number of semantic concepts (M) that are indicative of each goal Gi. The 

parameter M (=20) has been selected using the Information Gain criterion as 

described in Section 3.5.1 to optimize on overall goal identification accuracy 

with reference to the Class A training utterances. 

We have also refined the pre-defined BN topology using the Minimum 

Description Length (MDL) principle to model concept dependencies. An 

example of the BN for Aircraft—Code is shown in Figure 5.1. 

Each BN has a classification-based network topology — there are M (二 20) 
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…… 

[！̂^ ^ ^ ^ ^ ^ ^ ^ _ repesents a goal node 

： _ represents a concept node 

Figure 5.1: Topology of the BN for the informational goal Aircraft_Code. 

input concept nodes (e.g. AIRLINE_NAME, FLIGHT—NUMBER, etc.) and a sin-

gle output node. To avoid the use of sparsely trained BNs, we have developed 

11 BNs to capture the domain-specific constraints for each informational goal 

using Class A training data. The remaining goals are treated as 〇0D. 

A trained BN is used to infer the presence / absence of its correspond-

ing informational goal, based on the input concepts. The updated joint 

probabilities are iteratively computed by each sub-network, and the updated 

probability P*(Gi) is computed by the marginalization of the updated joint 

probability P*{Gi ,C) . Thresholding P * 仰 wi th the threshold of 0.5 (6>o.5) 

determines the presence or absence of the goal Gi. 

The binary decisions across all BNs are combined to identify the infor-

mational goal of the input query. We may label the query to a goal based on 

the maximum aposteriori rule. Alternatively, we may label the query wi th 

all the goals for which the BNs vote positive. Should all BNs vote negative, 

the input query is rejected as OOD. 
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5.2.2 Detection of Missing j Spurious Concepts 

Having inferred the informational goal of the query, the corresponding goal 

node is instantiated, and we perform backward inference to obtain P*{Cj). 

Comparing this probabi l i ty w i th the threshold {9 — 0.5) decides whether the 

concept Cj should be present or absent according to domain-specific con-

straints. The binary decision is compared w i th the actual occurrence of the 

concept Cj in the input query for detecting missing or spurious concepts. 

These are, in turn, used to drive the dialog model. However, as we migrated 

from the CU FOREX domain to the ATIS domain, we discovered that this 

methodology often produces several missing or spurious concepts for an input 

query. For example, consider the query: 

Query : “what type of aircraft is used in american airlines flight number 

seventeen twenty three,. 

C o n c e p t s ： < W H A T > < T Y P E > � A I R C R A F T � <AIRLINE_NAME> 

<FLIGHT_NUMBER> 

I n f e r r e d G o a l : Aircraft_Code (Correct) 

Our BN for Aircraft.Code performed backward inference and the updated 

probabilities P*{Cj) obtained are shown in Table 5.3. Our detection algo-

r i thm labels the concepts <CITY—ORIGIN�and <CITY_DESTINATION> to be 

missing, and <FLIGHT_NUMBER> to be spurious. One reason is because in 

the training data, most queries wi th the goal Aircraft—Code provided the city 

pair instead of the flight number, but both serve equally well as an additional 

specification for database access. I f our dialog model followed through wi th 

these detected missing and spurious concepts, i t would prompt the user for 

the city of origin, then the city of destination; and then clarify that the flight 
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number is spurious. Such a dialog model has too much redundancy, and 

fails to realise that the attribute pair (AIRLINE_LINE, FLIGHT—NUMBER) pro-

vides an equivalent amount of constraints as the attribute pair (CITY_ORIGIN, 

CITY-DESTINATION) for retrieving an Aircraft_Code query. As a result, we 

defined two thresholds for backward inferencing, as follows: 

> Oupper — Cj should be present in the given Gi query 

== < < Oupper and > Oiower — Cj is optional in the given Gi query 

� < Oiower —Cj should be absent in the given Gi query 

Conceptj {Cj) p*(C Binary Decision Actual Occurrence 
(Subset) ( j) for Cj for Cj 
AIRCRAFT 1.000 Present Present 

AIRLINE_NAME 0.538 Present Present 

CITY_0RIGIN 0.645 Present Absent 

CITY_DESTINATI0N 0.615 Present Absent 

TIME-VALUE 0.201 Absent Absent 

FLIGHT_NUMBER 0.420 Absent Present 

Table 5.3: Updated probabilities obtained from backward inferencing (BN of 

Aircraft_Code) using 0.5 as threshold for the query “what type of aircraft is 

used in american airlines flight number seventeen twenty three”. 

Hence concepts whose probabilities (from backward inference) score be-

tween Oupper and Oiower wi l l not take effect in response generation (i.e. prompt-

ing / clarification). Concepts whose scores exceed Qupper, i f they also corre-

spond to an SQL attr ibute, wi l l be prompted i f missing; concepts whose 
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scores scant 6lower, i f they correspond to an SQL attribute, wi l l be clarified 

if spurious. By minimizing number of dialog turns interacting wi th the users 

in the training data, we have empirically adopted 0.7 and 0.2 for Oupper and 

Qlower respectively. The double threshold scheme enables the dialog model to 

prompt for missing concepts that are truly needed, and clarify for spurious 

concepts that may confuse the query's interpretation. 

5.2.3 Context Inheritance 

The ATIS corpus contain both Class A and Class D queries. While the 

semantics of the Class A queries are self-contained, those of the Class D 

queries are context-dependent. Interpretation of the Class D queries requires 

referencing discourse context from previous dialog turns. Consequently, we 

have enhanced our BN-based dialog model wi th the capability of context 

inheritance for handling ATIS queries. 

In our ini t ial approach to context inheritance, the current query inherits 

all the semantic concepts from the previous query (of the same dialog session) 

prior to goal inference. However, we found that this scheme is too aggres-

sive, and the extra concepts affected the goal identification performance. An 

example is shown in Table 5.4. 
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System : “what kind of flight information are you interested in，， 

User : “find me a flight from Cincinnati to westchester county arriving 

next Saturday before six p m” 

(Concepts) ： <CITY_ORIGIN> <CITY_DESTINATION> <DAY_NAME> < T I M E > 

System : Goal Inference: FlightJD (Correct) 

User : “tell me the airports in new york city area” 

(Concepts) ： <CITY_ORIGIN> <CITY_DESTINATION> < D A Y — N A M E � < T I M E > 

< A I R P O R T � < C I T Y - N A M E � ( A l l concepts from previous query 
are inherited) 

System : Goal Inference: FlightJD (Wrong, the correct goal is Airport—Code, 
the additional concepts inherited from previous query result in the 
wrong identification of the informational goal.) 

Table 5.4: Addit ional inherited concepts affect the goal identification perfor-

mance. 

As a result, context inheritance wi l l be invoked for goal inference only if 

the query was previously (prior to context inheritance) classified as OOD. 

Otherwise, the original inferred goal of the query is maintained. For example, 

our previously illustrated query in Table 5.4 “tell me the airports in new york 

city area”, is inferred as Airport_Code correctly prior to the context inheri-

tance. Table 5.5 illustrates another example in which the system retrieves 

the concepts from the discourse context and infers the goal again when the 

query is first classified as OOD. 

Besides, context inheritance serves to fill in the concepts detected missing 

from the original query. An example ATIS dialog is shown in Table 5.6. The 

Class D Fare J D query ( " /o r this flight how much would a first class fare cost") 

mandates t h e <CITY—ORIGIN�a n d <CITY_DESTINATION>. Hence t h e s y s -

tem will automatically retrieve these concepts from the discourse context. 
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System : “what kind of flight information are you interested in” 

User : “i,d like to fly from miami to chicago on american airlines” (Class A ) 

(Concepts) ： <FLIGHT> <FROM> <CITY_ORIGIN> < T O > <CITY_DESTINATION> 

<PREP> <AIRLINE_NAME> 

System : Goal Inference: FlightJD (Correct) 
User : “which ones arrive around five p m " (Class D ) 

(Concepts) : < T O > <TIME_VALUE> (From current query) 

<FLIGHT> <FROM> <CITY_ORIGIN> < T O > <CITY_DESTINATION> 

<PREP> <AIRLINE_NAME> ( Inher i ted from previous query) 

System : Goal Inference: FlightJD (Correct. The query is first classified as OOD, 
we try to infer the goal again (becomes FlightJD) after the inheritance 

of discourse context.) 

Table 5.5: Examples of ATIS dialogs produced by the BN-based dialog model. 

The system invokes goal inference again when the query is first classified as 

OOD. 
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System : “what kind of flight information are you interested in?” 

User : “please list all the flights from chicago to kansas city on june 

seventeenth.,, (Class A) 
Sys tem : Goal Inference: FlightJD (Correct, the decisions from backward 

inference agree wi th actual occurrence of the concepts) 
U s e r : “for this flight how much would a first class fare cost.,, (Class D ) 

System : Goal Inference: Fare—ID (Correct) 

(Backward inference results as shown below using double 
threshold scheme indicating that the concepts <CITY_ORIGIN> 
and <CITY_DESTINATI0N> are missing. These concepts are 
automatically retrieved from the discourse context.) 

Co脈Pt] ( C � Decision for C] Actual Occurrence 
(subset) ” ] for C] 
AIRPORT—NAME 0.0000 Absent Absent 
CITY—ORIGIN 0.9629 Present Absent 
CITY—DESTINATION 0.9629 Present Absent 
CLASS_NAME 0.2716 Optional Present 
FARE 0.8765 Present Present 

Table 5.6: Our BN-based dialog model is enhanced with the capability of 

inheritance for the missing concepts. 
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We inherit discourse context for all the Class D queries.i This inheritance 

scheme may be to aggressive under certain situations. Based on the train-

ing data, we have designed three context "refresh rules" to "undo" context 

inheritance for several query types. The rules and the examples (the queries 

are in sequential order within the same dialog session) are described below: 

• R u l e 1. Disinherit previous context for Class D Airline-Name queries. 

I f the goal of the Class D query is Airline—Name, i t is usually asking 

about the full name of a specific airline code, (a typical example is 

“what does d I mean", where d I stands for Delta Airlines.) This query 

type is usually a context-independent query and only the key concept 

� A I R L I N E — C O D E � i s required and the rest of the keys from previous 

discourse are redundant and wi l l not be inherited. Table 5.7 shows an 

example of "undoing" the context for the Class D Airline—Name query. 

Query 1 : “from milwaukee to atlanta before ten a m daily” (Class A ) 

Inferred Goal : Flight」D 
Case Frame : CITY—ORIGIN = ‘milwaukee, 

CITY_DESTINATI0N = 'atlanta' 

DEPARTURE_TIME = 'ten a 

Query 2 : “what does y od^mean” (Class D) 
Inferred Goal : Airline_Name (This query is asking for the full name for the 

airline code x\ hence the concepts from previous query, 
e.g. CITY—NAME, DEPARTURE-TIME are not inherited.) 

Case Frame : AIRLINE_CODE = ‘Y 

Table 5.7: Previous context wil l not be inherited for the Class D 
Airline_Name queries (Query 2 in this table). 

1 We assume we know which queries are Class A and D respectively. 
^ y X stands for Midwest Express Airlines. 
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• Rule 2. Class D Airline_Code queries disinherit the concepts <AIRLINE_NAME> 

or <AlRLlNE_CODE> from the previous discourse. 

I f the goal of the Class D query is Airline一Code, i t is obviously asking 

about an airline for a specific flight (the typical example is “which air-

lines have first class flights toda/y,,), hence the concepts�AIRLINE—NAME� 

or <AlRLiNE_CODE> from the previous discourse will not be inherited. 

A sequence of example queries is illustrated in Table 5.8. 

Query 1 : “show me all flights from san jose to phoenicc,, (Class A ) 

Inferred Goal : FlightJD 
Case Frame : CITY_ORIGIN = 'san jose, 

CITY-DESTINATION = ‘ phoenico. 

Query 2 : “what airline is h (Class D) 

Inferred Goal : Airline_Name 

Case Frame : AIRLINE_CODE = P. 

Q u e r y 3 : “what airline has flight four four six” (Class D ) 

I n fe r red Goa l : Airline_Code (This query is asking for an airline, so 
AIRLINE—CODE = from Query 2 is not inherited.) 

Case Frame : CITY—ORIGIN = 'san jose, 

CITY-DESTINATION — 'phoenix' 

FLIGHT_NUMBER 二 446 

Table 5.8: Concepts of <AIRLINE_CODE> or <AIRLINE_NAME> w i l l no t be 

inherited for the Class D Airline_Code query (Query 3 in this table). 

^ h p stands for America West Airlines. 
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• R u l e 3. Class D Flight」D or FareJD queries disinherit the concept 

<CODE_NAME>. 

I f the goal of the Class D query is FlightJD or FareJD, that is, the 

user is asking for a fl ight or a fare, the concept <CODE_NAME> (which 

refers to the fare code or restriction code) w i l l not be inherited. Table 

5.9 il lustrates an example of this rule. 

Query 1 : “one way ticket from milwaukee to orlando either Wednesday 

evening or thursday morning” (Class A) 

Inferred Goal : FlightJD 
Case Frame : CITY .ORIGIN = 'milwaukee' 

CITY_DESTINATI0N = ‘ orlando, 

PERIOD = eWednesday evening^ 

PERIOD = Hhursday evening. 

Query 2 : “what does fare code y mean,, (Class A) 

Inferred Goal : Fare_Basis_Code 

Case Frame ： CODE—NAME = V 

Q u e r y 3 : “now show me all flights leaving before eight a m" (Class D) 

I n f e r r e d G o a l : FlightJD (This query is asking for flight information and 

CODE—NAME = 'i/' from Query 2 which refers to fare code 
is not inherited.) 

Case Frame : CITY .ORIGIN — 'milwaukee' 
CITY_DESTINATI0N = ' orlando' 

DEPARTURE—TIME 二 800 

Table 5.9: Concept <C0DE_NAME> is irrelevant for the FlightJD or FareJD 

queries and is not inherited (Query 3 in this table). 
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5.3 Portability of the BN-based Dialog Model 

In addit ion to scalability, this work also includes a prel iminary examination 

of the por tabi l i ty of the BN-based framework across different application 

domains. Migrat ion to a new application often implies the lack of domain-

specific data to t ra in the B N probabilit ies. Under such circumstances, the 

B N probabilit ies can be hand-assigned to reflect the "degree of belief" of 

the knowledge domain expert. We have designed some general principles 

for probabil i ty assignment, as w i l l be presented in the following subsections. 

Since the ATIS corpus only provides reference semantic frames but not mixed-

init iat ive interactions, our evaluation for por tabi l i ty focuses on the abi l i ty of 

the ported BNs to correctly identify goals and concepts in the user's query. 

We assume that B N probabilit ies that achieve good performance in goal and 

concept identif ication should have captured domain-specific constraints well. 

Such constraints are crit ical for automatic detection of missing or spurious 

concepts in order to drive mixed-init iat ive dialog modeling. 

5.3.1 General Principles for Probability Assignment 

Under the condition that there is l i t t le or no training data, we do not have 

a statistical basis for selecting the relevant concepts for each BN. (Recall 

that previously we have used the Information Gain criterion for this pur-

pose). Hence we begin by identifying the concepts that are directly rel-

evant to each goal according to human judgement. Doing so for all the 

11 goals in ATIS extracts a set of 23 concepts in total. Among these, 13 

are semantic concepts that correspond to SQL attributes for database ac-

cess, e.g. < AIRPORT _NAME>,�AIRLINE—NAME〉，�TRANSPORT—TYPE〉； 
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and the remaining ones are keyword-based concepts, e.g. 〈AIRCRAFT� , 

<FARE>,<FROM〉).4 For the sake of simplicity, we assumed independence 

among concepts in the BN (i.e. adopt the pre-defined topology), and develop 

11 BNs wi th 23 concepts each. We then hand-assigned the four probabilities 

for each BN, namely P{Cj\G^), P{C~j\Gi), P{Cj\G；), We avoid 

assigning the probabilities of 1 or 0 since they are not supportive of prob-

abilistic inference. In the following we describe the general principles for 

assigning P{Cj \Gi) and P{Cj\Gl). The remaining P{C~j\Gi) and P { C ] \ ^ ) 

can be derived by the complement of the former two probabilities. 

5.3.1.1 Probability Assignment for P{Cj\Gi) 

Table 5.10 displays the guidelines by which we assign values to the proba-

bilities P{Cj\Gi). The assignment is based on human judgement of possible 

occurrence frequency of a concept Cj in queries of goal Gi. 

• Case 1. Cj must occur given Gi 

If we identify a concept Cj to be mandatory for a query of goal Gi, 
we will hand-assign a high probability roughly from 0.95 to 0.99 for 

P{Cj\Gi). For example, this applies to the concept <FARE> (corre-

sponding to the words e.g. /are, price^ etc.) which must occur in a 

FareJD query, (e.g. “what is the first class fare from detroit to las 

vegas" and “show me the first class and coach price"). 

4 The 23 semantic concepts for each handcrafted BN are listed in Appendix D. 
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• Case 2. Cj often occurs given Gi 

I f the concept often occurs wi th the Gi query, then we wi l l lower the 

assigned value of to the range 0.7 to 0.8. For example, a 

FareJD query often occurs with the concepts <ClTY_ORlGlN> and 

<CITY_DESTINATION>. 

• Case 3. Cj may occur given Gi 

This applies to the concepts that act as additional constraints for 

database access. Examples are <TIME_VALUE>, < D A Y — N A M E � , � P E R I O D � 

specified in the user query, the assigned values for P{Cj\Gi) range be-

tween 0.4 and 0.6. 

• Case 4. Cj seldom occurs given Gi 

This is the case where the occurrence of concept Cj in queries wi th 

goal Gi is infrequent. Examples include the concept〈STOPS〉which 

specifies a request for a nonstop flight is not usually associated wi th 

the FareJD queries, and so the assigned value for P{Cj\Gi) ranges from 

0.2 to 0.3. 

• Case 5. Cj never occurs given Gi 

I f the presence of concept Cj usually implies absence of goal Gi, then the 

probability of P{Cj\Gi) is set to low values between 0.01 and 0.1. Ex-

amples include the concept <FLIGHT_NUMBER> in the FlightJD query, 

1.e. the presence of <FLIGHT_NUMBER> in the input query implies that 

the goal FlightJD is unlikely, because the aposteriori probability for the 

BN of FlightJD is lowered. 
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Condition Probability of P{Cj\Gi) 

1. Cj must occur given Gi 0.95 - 0.99 
2. Cj often occurs given Gi 0-7 - 0.8 
3. Cj may occur given Gi 0.4 - 0.6 
4. Cj seldom occurs given Gi 0.2 — 0.3 
5. Cj never occurs given Gi 0.01 — 0.1 

Table 5.10: Conditions for assigning the probability P{Cj\Gi). 

5.3.1.2 Probability Assignment for P{Cj\Gl) 

Table 5.11 displays the guidelines by which we assign values to the prob-

abilities P{Cj\Gl) ). The assignment is based on human judgement of the 

possible occurrence frequency of a concept Cj in queries of goals other than 

Gi-

• Case 1. Cj always occurs for goals other than Gi 

Consider the relationship between the concept <CITY—ORIGIN> and 

the goal Aircraft—Code. Since <CITY_ORIGIN> always occurs in other 

informational goals, (e.g. FlightJD, Fare—ID, etc.), we assign 

P(C<CITY_0RIGIN�二 1| G<Aircraft_Code> = 0) in the range from 

0.7 to 0.9. 

• Case 2. Cj sometimes occurs for goals other than Gi 

Consider the relationship between the c o n c e p t � C L A S S � a n d the goal 

Aircraft_Code. S ince�CLASS�somet imes occurs in the informational 

goals other than Aircraft_Code, and acts as an additional constraint for 

database access, we assign P(C<CLASS> 二 1|G<Aircraft—Code〉= 0) 

in the range from 0.2 to 0.5. 
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• Case 3. Cj seldom occurs for goals other than Gi 

This applies to the concepts that are strongly dependent on a specific 

goal and hence seldom appear for other goals. For example, the concept 

� T R A N S P O R T � u s u a l l y accompanies the goal Ground .Transport only. 

Hence P ( C < T R A N S P O R T > = 1| G<Ground_Transport> = 0) is set 

close to 0. 

— Condition Probability of P{Cj\Gl)~ 
1. Cj always occurs for goals other than Gi 0 .7—0.9 
2. Cj sometimes occurs for goals other than Gi 0.2 — 0.5 
3. Cj seldom occurs for goals other than Gi 0.01 - 0.1 

Table 5.11: Conditions for assigning the probability P{Cj\Gi). 

5.3.2 Performance of the BN-based Dialog Model with 

Hand-Assigned Probabilities 

BNs wi th hand-assigned probabilities achieved a goal identification accuracy 

of 80.9% for the ATIS-3 1993 test set (Class A and D queries included). This 

compares to 84.6% when they have been automatically trained on the train-

ing data. We identify the queries wi th a single goal based on the maximum 

aposteriori rule. On the other hand, the queries whose goals are not covered 

by our 11 BNs are treated as OOD. Queries are considered to be identified 

correctly if there are classified as such. The availability of training data for 

the BNs enhances performance in goal identification. An example ATIS dia-

log generated by the BN-based dialog model with hand-assigned probability 

is shown in Table 5.12. 
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System : “what kind of flight information are you interested in” 

User : “find me a flight that flies from memphis to tacoma” (Class A ) 

(Concepts) ： � F L I G H T � � F R O M � < C I T Y _ O R I G I N > < T O > <CITY—DESTINATION� 

System : Goal Inference: Flight—ID (Correct) 

User : “which of these flights stop in los angeles,, (Class D ) 

(Concepts) ： <FLIGHT> <STOP> <CITY一STOPOVER� 

System : Goal Inference: Flight」D (Correct, results from backward inference indi-
cate t h a t the concepts <CITY_0RIGIN> and <CITY_DESTINATION> are 

missing. These concepts are automatically retrieved from the previous 
discourse.) 

Table 5.12: Examples of ATIS dialogs produced by the BN-based dialog 

model wi th hand-assigned probabilities. 

Besides, we have compared the hand-assigned probabilities wi th the trained 

probabilities based on natural language understanding, where the evaluation 

metric is the sentence error rate. A sentence is considered correct only i f the 

inferred goal and extracted concepts in the generated semantic frame agree 

with those in the reference semantic frame (derived from the SQL query in 

the ATIS corpus). The goal identification accuracies and the sentence error 

rates for the ATIS-3 1993 test set are summarized in Table 5.13. When we 

compare our results wi th the NL understanding results from the 10 ATIS 

evaluation sites [39] shown in Table 5.14, our performance falls within a rea-

sonable range. 
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Class BNs (Handcrafted) BNs ( T r a i n e d 

Goal ID A c c u r a c y A (448) 90.2% 91.7% 
D (325) 68.3% 74.8% 
A + D 80.9% 84.6% 

Sentence Error Rate A (448) 12.1% 9.2% 
D (325) 40.9% 33.9% 
A + D 24.2% 19.5% 

Table 5.13: Goal identification accuracies and sentence error rates of Class 

A and D queries of ATIS-3 1993 test data for the hand-assigned probabilities 

and automatically trained probabilities respectively. 

Class Sentence Error Rate Median Value 
A (448) 6.0 - 28.6% 12.8% 
D (325) 13.8 - 63.1% 29.1% 
A + D (773) 9.3 - 43.1% 19.5% 

Table 5.14: Benchmark NL results from the 10 ATIS evaluation sites. 
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5.3.3 Error Analysis 

The query is considered correct in our evaluation if the inferred goal together 

wi th the extracted concepts agree wi th all the attributes in the reference SQL 

query. Although we have the context "refresh rules" to "undo" context inher-

itance for several query types, we have observed that our strategy for context 

inheritance sti l l leads to insertion errors in the extracted concepts in the gen-

erated semantic frame. This is illustrated in the example in Table 5.15. 

Query 1: “list flights from Oakland to salt lake city before six a m 

thursday morning,, (Class A ) 

(Our system generates a correct semantic frame.) 
Query 2: “list delta flights before six a m” (Class D ) 

(Our system generates a correct semantic frame.) 
Query 3: “list all flights from twelve oh one a m until six a m" (Class D ) 

(Semantic frame is shown below) 

Case Frame SQL Reference 
Goal: Flight-ID Flight-ID 
Concepts： CITY—ORIGIN: ORIGIN： 

Oakland Oakland 

CITY—DESTINATION: DESTINATION： 

salt lake city salt lake city 

DEPARTURE-TIME: DEPARTURE—TIME: 

twelve oh one a m until six a m > 1 & < 600 

AIRLINE-NAME: 

delta (a concept insertion error) 

Table 5.15: The semantic frame of Query 3 indicates that our context inher-

itance strategy may be too aggressive, resulting in a concept insertion error 

in the generated semantic frame. 
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Further inspection of the high sentence error rate of the Class D context-

dependent queries (33.9% for the trained BN) reveals that the BNs which 

are trained from the Class A queries cannot model the Class D queries well. 

The degradation of goal identification performance from 91.7% (Class A) 

to 74.8% (Class D) is not surprising. For example, most of the Class A 

training queries with the goal FareJD are associated with the concepts of 
<FARE>, <CiTY_ORlGlN> and <ClTY_DESTlNATlON>, a typical example 

being “what is the price of flights from indianapolis to memphis”. However, 

for the Class D FareJD query “what is the cost of the flight on u s air” 

(Table 5.16, second query), although the city of origin and destination are 

inherited for goal inference, the presence of the concept <AIRLINE_NAME>, 

which is sparse in the Class A FareJD queries, wi l l lower the probability of 

occurrence of the goal FareJD. This query is eventually outweighed by the 

goal FlightJD, which is thus inferred wrongly. 

Query (Class A) : “show flights from Cleveland to mi ami that arrive 
before four p m" 

Concepts ： <FLIGHT> < F R O M > <CITY_ORGIN> < T O > 

CCITY—DESTINATION� < T O > < P R E P > 

<TIME_VALUE> 

Inferred Goal : FlightJD (Correct) 

Query (Class D) : “what is the cost of the flight on u s air” 
Concepts ： < W H A T > < F A R E > < F L I G H T > <AIRLINE—NAME> 

I n fe r red Goa l : FlightJD (Wrong, the correct goal is FareJD) 

Table 5.16: This table provides an example where the Class D query is 

inferred wrongly because the BN trained from the Class A queries cannot 

model the Class D queries well. 
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5.4 Enhancements for Discourse Query 

Understanding 

From the previous section, we have identified two problems in our BN-based 

dialog model. First, our framework is not robust on the Class D context-

dependent queries. Since the probabilities of the BNs are tailor-made for 

Class A queries only, i t is not surprising that there is a degradation on 

the goal identification accuracies from Class A (91.7%) to Class D (74.8%) 

queries. Second, our model cannot capture some of the equivalence classes. 

Our experiments show that in the complex ATIS domain wi th more seman-

tic concepts, some concepts are sparsely trained. Some concepts need to be 

present, others should be absent, but st i l l others should be optional. We pre-

viously proposed the two levels of thresholding (0.7 and 0.2) in the backward 

inferencing to decide if a concept be present, optional or absent in the query. 

However, this prototype needed further improvement as i t is infeasible to 

determine the two new thresholds when we migrate to other domains. I t is 

deemed desirable to use a single pre-set threshold {9 = 0.5) for backward in-

ference in all the application domains. In order to tackle these two problems, 

we propose two measures as follows: 

5.4.1 Combining Trained and Handcrafted 

Probabilities 

Since the BNs were trained on Class A queries only, they cannot ful ly capture 

the concept dependencies in the Class D queries. By analyzing the errors in 

the Class D training queries, we attempt to modify the BN probabilities. 
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For instance, a number of Class D FareJD queries that contain the concept 

<AIRLINE_NAME> were handled incorrectly by the BNs. Investigation shows 

that: 

P(C<AIRLINE_NAME> = l |G<Fare」D〉二 1) = 0.19 

The value is low because there are few occurrences of this concept together 

wi th the goal in the Class A training queries. W i t h reference to the guidelines 

presented in Table 5.10, the concept <AIRLINE_NAME> may occur for Fa「e」D 

queries. Hence we revised the probability P{Cj\Gi) from 0.19 to 0.4. By 

incorporating some hand-assigned probabilities to the trained BNs, we hope 

that our framework is able to capture the concept dependencies for Class D 

queries. 

5.4.2 Handcrafted Topology for BNs 

The BN topologies learnt from training data may not be able to capture 

some of the equivalence classes due to the lack of data. As we have dis-

cussed in Section 5.2.2, the learnt topology of the BN for Aircraft—Code only 

captures the city of origin and destination for the specification for database 

access. Therefore, the Aircraft-Code query (in Table 5.17) specifying the air-

line and the flight number wil l obtain several missing / spurious concepts 

when the single threshold scheme for backward inference is used. A pair of 

cities wil l be prompted for missing while the flight number is clarified as spu-

rious. However, the flight number together with the airline serve equally well 

for database access. There is a causal dependence between the equivalence 

classes, which is an OR relationship: 

(CITY-ORIGIN and CITY-DESTINATION) Or (FLIGHT—NUMBER and AIRLINE—NAME) 
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The occurrence of the second attribute pair (FLIGHT—NUMBER and AIR-

LINE_NAME) is relatively sparse in the training corpus, and the topology 

of our BN is unable to reflect the equivalence classes. The learnt topology of 

the original BN for Aircraft-Code in Figure 5.1 shows that there is no link-

age between the two attribute pairs, an indication that they are independent 

wi th each other. 

Query : “what type of aircraft is used in american airlines flight 

number seventeen twenty three” 

Concepts ： <WHAT> < T Y P E > <AIRCRAFT> <AIRLINE_NAME> 

<FLIGHT_NUMBER> 

Inferred Goa l : Aircraft—Code (Correct) 

Table 5.17: An Aircraft_Code query that specifies the airline together wi th 

the flight number. 

We attempt to refine the BN topologies by adding linkage(s) that are 

obvious but have not been learnt due to training data sparseness. For ex-

ample, for the Aircraft-Code BN, we notice that there should be dependence 

between the two attribute pairs: (<CITY_0RIGIN>, <CITY_DESTINATION>) 

and (<AIRLINE—NAME〉，<FLIGHT_NUMBER>) and we add a link between 

them. The refined topology is depicted in Figure 5.2. From the new topol-

ogy, the occurrence of the concept <FLIGHT_NUMBER> not only depends on 

<AIRLINE_NAME>, but also the pair of cities. 
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• - original linkage ^ ^ ^ ^ ^ ^ - repesents a goal node 

• - new linkage between concepts _ represents a concept node 

Figure 5.2: The new topology of the BN for the informational goal Air-

craft_Code. 

5.4.2.1 New Mechanism for Backward Inference 

The probabilities of the BN with the new topology can be obtained from the 

training data. Then the BN is ready for goal inference and detection of the 

missing / spurious concepts by backward inference. Using the example Air-

craft-Code query in Table 5.17, our BN for Aircraft—Code performed backward 

inference. The original scheme for backward inference simply involves the in-

stantiation of the corresponding goal node. However, in order to consider 

the dependence between the concepts, we adopt a new scheme for backward 

inference as shown in Figure 5.3. The new backward inference results using 

a single threshold {6 = 0.5) are tabulated in Table 5.18. 

The results indicate that the query passes the domain-specific constraints 

and the query is ready for database retrieval. Notice that our previous 

learnt BN using the original backward inference scheme with a single thresh-

old indicated that the concepts <CITY_0RIGIN> and <CITY_DESTINATION> 
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For the BN of inferred goal Gi wi th concepts Cj : 
1 Instantiate the goal node to 1 
2 For each concept {Ck) of goal Gi (where Ck / Cj) 

Identify its parent(s) Ck (i.e. there is a l ink going from Ck to Cj). 
Instantiate the node for Ck node according to its occurrence in 
the user's query. 

3 Obtain the updated probability for P*(Cj) 

Figure 5.3: New mechanism for backward inference. 

Conceptj {Cj) Binary Decision Actual Occurrence 
(subset) ( j � f o r Cj for Cj 
AIRCRAFT 1.000 Present Present 
AIRLINE-NAME 0.583 Present Present 
CITY-ORIGIN 0.000 Absent Absent 
CITY-DESTINATION 0.000 Absent Absent 
TIME-VALUE 0.201 Absent Absent 
FLIGHT_NUMBER 0.600 Present Present 

Table 5.18: Updated probabilities obtained from using new mechanism of 

backward inferencing (BN of Aircraft-Code) using 0.5 as threshold for the 

query “what type of aircraft is used in american airlines flight number sev-

enteen twenty three”. 
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are missing, while <FLIGHT_NUMBER> is spurious for this query (refer to 

Table 5.3). 

To further i l lustrate the behavior of the hand-refined B N topology, con-

sider another Aircraft—Code query which specifies the city pair as shown in 

Table 5.19. Our B N for Aircraft-Code performed backward inference using 

the new mechanism and the results using the single threshold scheme are 

also tabulated in the same table. I t is found that the occurrence of the 

a t t r i b u t e pa i r (<CITY_ORIGIN>, <CITY_DESTINATION>) w i l l a u t o m a t i c a l l y 

lower the probab i l i t ies o f the <AIRLINE_NAME> and <FLIGHT_NUMBER>. 

Our new BN for Aircraft-Code can thus capture more sophisticated concept 

dependence by incorporating handcrafted linkage. 

However, some of the optional concepts which are sparse in the training 

data are st i l l classified as spurious when we use a single threshold in the 

backward inference. From the previous example query w i th the backward 

inference results shown in Table 5.19, the concept〈TIME—VALUE〉，which is 

an additional specification for database access, is classified as spurious. In 

order to clarify the t ru ly spurious concepts, we wi l l identify a set of "optional" 

concepts for each goal described in the following section. 
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Query : “display types of aircraft departing from Cleveland to dal-
las before noon” 

Concepts ： � T Y P E � � A I R C R A F T � � F R O M � � C I T Y — O R I G I N � 

< T O > <CITY_DESTINATION> < P R E P > <TIME_VALUE> 

Inferred Goa l : AircraftXode (Correct) 

Conceptj (Cj) � Binary Decision Actual Occurrence 
(subset) ‘ for Q for Cj 
AIRCRAFT 1.000 Present Present 
AIRLINE—NAME 0.000 Absent Absent 
ClTY_ORiGlN 1.000 Present Present 
CITY 一 DESTINATION 1.000 Present Present 
TIME 一 V A L U E 0.201 Absent Present 
FLIGHT-NUMBER 0.000 Absent Absent 

Table 5.19: This table shows an Aircraft—Code query specified with a city pair 

and the updated probabilities obtained from the new mechanism of backward 

inferencing with 0.5 as the threshold for this query. 
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5.4.2.2 Identification of the Optional Concepts 

We have a total of 60 hand-designed semantic concepts in the ATIS domain. 

In order to identify a set of optional semantic concepts for each goal, the 

frequency of each concept associated wi th the corresponding goal is obtained 

from the training set. Concepts whose frequency exceeds 0 and scant the 

threshold Ooi wi l l be classified as optional, where the threshold Oci is half of 

the number of the Gi queries, i.e. — 朴 已 严 . 

For example, the frequency of the semantic concepts for the goal Air-
craftXode are listed in Table 5.20. Since the training queries for Aircraft-Code 

were instantiated 13 times, the threshold is 7. We can then determine the 

optional concepts for the BN of Aircraft-Code (shaded part in Table 5.20). As 

a result, optional concepts will not be considered spurious during backward 

inference, and the BN-baased dialog model wi l l not generate a clarification 

response for the concepts. 

5.4.3 Performance of the Enhanced BN-based Dialog 

Model 

We have modified the probabilities of the trained BN so that our framework 

can model the Class D queries as well. Besides, in order to capture the 

equivalence classes that are sparsely trained, we wil l handcraft the topology 

for the BN (insert linkage by hand). By adopting the new mechanism for 

the backward inference scheme and identifying a set of optional concepts 

associated with each goal, we can use a single pre-set threshold {6 — 0.5) 

to identify the presence or absence of the concepts. Robustness of our BN-

based dialog model is hence achieved, and the performance of our BN-based 
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Concepts Frequency 
<AIRCRAFT> 1 3 

<PREP> 1 0 

< T O > 8 

<FROM> 8 

<CITY_ORIGIN> 8 

<CITY_DESTINATION> 8 

<AIRLINE_NAME> 7 

<KIND> 6 

<FLIGHT_NUMBER> 4 

<WHAT> 5 

�SUPERLATIVE� 2 

<TIME_VALUE> 2 

<MONTH> 2 

<FLIGHT> 2 

<DAY> 2 

<PRE_TIME> 1 

<PERIOD> 1 

<DAY_NAME> 1 

Table 5.20: Frequency of concepts associated with Aircraft-Code from the 
training set. The shaded concepts whose frequency is below the threshold 
{9g = 7) are identified as optional concepts. 
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dialog model is improved. The goal identification accuracies and the sentence 

error rates for the ATIS-3 1993 test set are summarized in Table 5.21. When 

we compare the new results (with the enhancement of incorporating the 

handcrafted probabilities into the trained BN, using the handcrafted topology 

wi th the new backward inference scheme) to the one using the trained BNs 

only (for the convenience of reading, the fourth column of Table 5.13 is 

duplicated to be the rightmost column of Table 5.21), the goal identification 

accuracy for the Class D queries is increased by 8.6% (absolute) while the 

sentence error rate is decreased by 7.0% (absolute). 

Class BNs (Enhanced) BNs (Original)— 

Goal ID A c c u r a c y A (448) 91.7% 91.7% 
D (325) 83.4% 74.8% 
A + D 88.2% 84.6% 

Sentence Error Rate A (448) 9.2% 
D (325) 26.8% 33.9% 
A + D 16.6% 19.5% 

Table 5.21: Goal identification accuracies and sentence error rates for the 

ATIS-3 1993 test data (especially the Class D queries) are improved when 

we have incorporated into our framework hand-assigned probabilities and a 

handcrafted topology. 
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5.5 Chapter Summary 

This chapter describes the scalability and portabi l i ty of the BN-based dialog 

model as we migrate from a simpler foreign exchange domain (CU FOREX) to 

the relatively more complex air travel domain (ATIS). The adapted processes 

include: (i) automatic selection of specified concepts in the user's query, for 

the purpose of informational goal inference; (ii) automatic detection of miss-

ing / spurious concepts based on backward inference using the BN. Two levels 

of thresholding are adopted in backward inference to decide which concepts 

are present, absent or optional in the given query. The dialog model can thus 

identify the t ru ly missing / spurious concepts. We have also enhanced our 

dialog model wi th the capability of discourse context inheritance. 

To ease portabil i ty across domains, which often implies the lack of train-

ing data for the new domain, we have developed a set of principles for hand-

assigning BN probabilities, based on the "degree of belief" in the relation-

ships between concepts and goals. Since the ATIS data only provides refer-

ence semantic interpretations, we are constrained to evaluate the proposed 

BN framework based on goal identification performance and sentence error 

rates respectively. I t is found that application of our model to the ATIS 

data gave promising results. However, our BNs which are trained from the 

Class A queries, cannot model the Class D queries well. The performance of 

our dialog model is further improved if the hand-assigned probabilities are 

incorporated wi th the trained BNs. Furthermore, in order to improve the 

robustness of our BN-based dialog model in which a single pre-set threshold 

is adopted for backward inference in all application domains, we have incor-

porated prior knowledge in the development of the BN topology. Linkages 
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between concepts are handcrafted to reflect the equivalence classes. Also, 
optional concepts for each goal are identified so that they are not deemed as 
spurious from backward inference. 
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Chapter 6 

Conclusions 

6.1 Summary 

In this thesis, we have presented a methodology of using Belief Networks 

(BNs) for natural language understanding and dialog modeling in human-

computer conversational systems. The BNs model the causal relationships 

between the semantic concepts in the user's query and its underlying informa-

tional goal. They are used to infer the users' intentions in their information-

seeking queries. By formulating our TV-way classification problem as N bi-

nary classifications, each performed by a BN, our framework has the ca-

pabil ity of (i) identifying queries wi th multiple informational goals, and (ii) 

rejecting queries whose goals are outside of the prescribed knowledge domain. 

The topology of our BNs can also be automatically learned to capture 

more sophisticated domain-specific constraints so as to improve the under-

standing accuracy. We have demonstrated that our BN-based framework 

in natural language understanding is robust against speech recognition er-

rors. The user's input is validated against the domain constraints by using 
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backward inference of the BNs. The spurious concepts which may be caused 

by speech recognition errors can be rejected automatically. Our BN-based 

framework can be further enhanced to handle dialog modeling. The detection 

of missing / spurious concepts from backward inference governs the model 

transitions for mixed-initiative dialog modeling. 

We tested the BN-based dialog model in the context of the CU FOREX 

domain. The CU FOREX system is a bilingual hotline for real-time foreign 

exchange information. I t presently supports two separate interaction modal-

ities: a direct dialog (DD) interaction, which is system-initiative for novice 

users; as well as natural language shortcut (NLS), which is user-initiative for 

expert users. While the BNs are used to infer the informational goals of the 

user's query, we also attempt to verify the validity of the input query against 

the domain-specific constraints by using backward inference. The BNs can 

thus detect missing concepts as well as spurious concepts, invoke the dialog 

model to prompt for missing information, and ask for clarification. As a re-

sult, the BN-based dialog model can integrate the two interaction modalities 

to achieve mixed-initiative interaction. Furthermore, we have enhanced our 

dialog model with the capability of incorporating OOV words. 

We have also investigated the scalability and portabil i ty of the BN-based 

dialog model as we migrated from the simple foreign exchange domain (CU 

FOREX) to the relatively more complex air travel domain (ATIS). The com-

plexity of an application domain is characterized in part by the number of 

ill-domain informational goals and concepts. The presence / absence of con-

cepts are used to infer the presence / absence of each goal, by means of the 

corresponding BN. When a large number of in-domain concepts are available 
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(especially for complex domains), we used an information-theoretic criterion 

(Information Gain) to automatically select the small set of concepts most in-

dicative of a goal, and do so for every in-domain goal. Automatic detection 

of missing / spurious concepts is achieved by backward inference using the 

B N corresponding to the inferred goal. For the simple CU FOREX domain, 

detection of missing / spurious concepts was based on a single probability 

threshold. However, scaling up to ATIS (which has many more concepts) 

shows that some concepts need to be present, others should be absent, but 

sti l l others should be optional. Hence we need to use two levels of threshold-

ing to decide if a concept should be present, optional or absent in the query. 

We have also enhanced our BN-based dialog model wi th the capability of 

context-inheritance, in order to handle the context-dependent user queries 

in the ATIS domain. Discourse context is inherited for the Class D queries, 

and we invoke goal inference again after context inheritance if a query was 

previously classified as OOD. 

As regards portability, migration to a new application domain often im-

plies the lack of domain-specific training data. Hence we have proposed a set 

of general principles for probability assignment to the BNs, as a reflection of 

our "degree of belief" in the relationships between concepts and goals. We 

compared the goal identification performances, as well as sentence error rates 

between the use of hand-assigned probabilities, and the probabilities trained 

from the ATIS training set. Results show that the hand-assigned probabili-

ties offer a decent starting performance to ease portabil ity to a new domain. 

The system performance is improved if user data is available to train the 

probabilities. 
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Since our BNs are trained from the Class A context-independent queries, 

they cannot model the Class D context-dependent queries well. This results 

in high sentence error rate in the Class D queries. Therefore, we incorporate 

the trained BN wi th handcrafted probabilities to model the domain-specific 

constraints for Class D queries as well. Besides, the learnt topology of the 

BNs are not able to capture the sparsely trained concept dependencies as 

well as some optional concepts. Therefore, the two levels of thresholding 

previously adopted in the ATIS domain determined which concepts should 

be present, absent or optional in the given query. However, i t is desirable to 

replace the double threshold detection scheme wi th a single threshold scheme, 

which to avoid setting ad hoc threshold value. In order to capture the con-

cept dependencies which are lacking in the training queries, we handcrafted 

the linkages for the BNs. A set of optional concepts for each informational 

goal is also identified so that the dialog model wi l l not clarify them as spu-

rious. Robustness of our BN-based dialog model is achieved and the system 

performance has been further improved when we adopted this new approach. 
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6.2 Contributions 

This work is one of the first attempts in applying Belief Networks to the 

problem of natural language understanding and dialog modeling. Our BN-

based framework has a number of innovative features which are contributive 

to the field. They are listed as follows: 

1. BNs are used to model the causal relationships between the user's 

informational goal and the semantic concepts provided in his / her 

query. Hence our BN-based framework is capable of natural language 

understanding. Our approach is capable of rejecting out-of-domain 

queries that lie outside of the system's scope of competence and is 

robust against speech recognition errors. 

2. The BNs are automatically trainable and the i r topologies are automat-

ically learnable from training data. This reduces handcrafting involved 

in the design of conventional natural language understanding systems. 

3. We have shown how our BN-based framework can be extended for 

mixed-initiative dialog modeling. In enforcing domain-specific constraints, 

our framework is capable of automatically detecting missing or spuri-

ous concepts. This is in turn used to drive the mixed-initiative dialog 

model to prompt for missing concepts and clarify spurious concepts. 

4. In order to enhance portability of our BN-based framework across appli-

cation domains, we have developed a set of principles for hand-assigning 

probabilities for the BN. This ameliorates the reliance on the availabil-

ity of large amounts of annotated training data. 
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5. We have also included an ini t ia l attempt to demonstrate the scala-

bility of our BN-based framework in modeling increasingly complex 

domains, i.e. migrating from the foreign exchange domain to the air 

travel domain. As the complexity of an application domain increases, 
the domain-specific constraints may involve mandatory concept sets, 

optional concept sets and concepts sets that should be absent. We 

have proposed a possible method to model such phenomena by means 

of manual enhancements of BN topologies. The approach seems promis-

ing but further investigation wi l l be needed. 

6.3 Future Work 

Possible extensions of this work include: 

1. Incorporating the confidence scores of the spoken queries from the 

speech recognizer in the BN-based dialog model. We can then uti-

lize the scores with the binary decision of the BNs to further detect the 

errors that may lead to misunderstanding. More appropriate responses 

such as rejection, implicit / explicit confirmation can also be included. 

Besides, the dialog model can adapt to be more system-initiative i f i t 

detects that the user has difficulty in achieving his / her goal. 

2. Modeling the informational goals that are in-domain but not statisti-

cally significant. For the ATIS-3 domain, there are a total of 32 query 

types but we only model 11 goals to avoid sparse data. In order to 

model all query types, we can inject prior knowledge to reflect "degree 

of belief" for the network probabilities. 
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3. Modeling the concept dependencies of the BNs manually. As discussed 

in Section 5.3, when we port the BN-based dialog model to a new do-

main wi th insufficient training data, we can hand-assign probabilities 

for the BNs to reflect the "degree of belief" and we assume indepen-

dence among concepts in the BNs for simplicity. However, we can 

further improve the performance of the BN-based dialog model by in-

serting linkage(s) between the concepts in the BNs. Since we do not 

have any training data to estimate the inter-concept dependencies, we 

can randomly assign values for the BN probabilities and refine their 

values when we get the real data. 

4. Determining context inheritance by BNs. As mentioned in Section 

5.2.3, we inherit discourse context for all the Class D queries and adopt 

some "refresh rules" to undo context inheritance for several query types. 

I t is seem that the exploration of including Class D queries in train-

ing the BNs may be useful. The BNs can hence capture the causal 

relationships between the Class A and Class D queries and determine 

which attributes should be inherited. 

5. Integrating external factors into the BN-based dialog model to drive 

the dialog flow. Most current E-commerce related applications require 

authentication of user identity, e.g. by means of speaker verification 

technology. I f the user passes the verification, it wil l drive the system 

one way. I f not, i t wi l l drive the system another way. Our BN-based 

dialog model is also extensible to include an external engine to affect 

the dialog flow. 
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Appendix A 

The Two Original SQL Query 

select d ist inct ''''\\v0.flighUd\[''\ ''''\\v0.airline.code\\'''\ ''''\\vLairporLcode\\'''\ 
，”，11 ug. city-code 11，，，，，，，，，| 卜忍.city-name 11，，，，，’，，，| 卜又 airport—code 11，，，，， 

" " 1 1 ? ; ^ . c i t y一 c o d e c i t y . n a m e " " | | ? ; 5 . d a y s — c o d e 1 1，，，，， 

(/a?/_name||"",油.year, v6.month-number^ v6.day-number from 
flight vO, airportservice vl, city v2, airportservice v3, city v4, days v5, date—day v6 
where (( vO. airline^code = ' U A ' ) 
and ((( vO.from-airport = any vl.airporLcode ) 
and (( vl.city-code = any v2.city-Code ) 
and ( v2.city-name = 'DENVER') ) ) 
and ((( vO.to—airport = any ”3.airport丄ode ) 
and (( v3. city-Code — any v4-city-Code ) 
and ( v4.city-name — 'BALTIMORE'))) 
and (( vO.flight-days = any days—code ) 
and (( n5. day-name — any d6. day-name ) 
and ((( vd.year 二 1993 ) 
and ( d6.month-number == 6 )) 
and ( v6.day-number — 14 ) ) ) ) ) ) ) 

Figure A . l : SQL query for max imum reference answer. 
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select d is t inc t flight.flight-id f r o m flight where 
( f l i g h t , airline-code = "UA" and 

(flight.frorri-airport i n 
(se lec t airportservice. airport-Code f r o m airportservice where 

airport—service, city—code i n 
(se lec t city, city_code f r o m city where 

city, city-name = "DENVER" 
) 

) a n d 
( f l i g h t , to ̂ airport i n 

(se lec t airports ervice. airport^code f r o m 
airports ervice where airports ervice. city-Code i n 

(se lec t city, city-Code f r o m city where 
city, city-name = "BALTIMORE" 

) 
) a n d flight.flight-days i n 
(se lec t days, days-code f r o m days where days, day-name i n 

(se lect date—day. day-name f r o m date-day where 
date-day.year = 1993 and date_day.month—number = 6 and 
date-day. day-number = 14 

) 
) 

) 
) 

) 

Figure A.2: SQL query for m i n i m u m reference answer. 
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Appendix B 

The Two Grammars, Gh and 
G s a 

AIRCRAFT： 

aircraft, plane, aircrafts, planes, airplane, airplanes, aeroplane, 
aeroplanes 
AIRCRAFT_CODE： 

d ten, seventy three s, seven fifty seven, m eighty, seven thirty 
three, m eight zero, seventy two s, d nine s, d c tens, d c ten, 
MANUFACTURE + DIGIT, AIRCRAFT + DIGIT 

AIRLINE： 

airline, airlines 
AIRLINE-NAME: 
american, american airline, american airlines, american flights, 
air Canada, alaska airlines, alaska airline, continental, continental air-
line, continental airlines, Canadian airline, anadian airlines, Canadian 
airlines international, delta, delta airline, delta airlines, tower air, 
america west, northwest, northwest airline, nationair, t w, united, 
southwest, southwest air, southwest airlines, midwest express, united 
airline, united airlines, trans world airlines, trans world airline, a a, a 
c, a s, c o, c p, d 1, f f, h p, n w, n X, t w a, u a, u s, u s air, w n, y x, 
k w 
AIRPORT： 

airport, airports 
continued on next page ... 
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continued from previous page … 
AIRPORT-NAME： 

boston airport, love field, dulles, houston intercontinental, kennedy, 
kennedy airport, John f kennedy, John f kennedy airport, midway, los 
angeles international, los angeles international airport, los angeles 
airport , la guardia, la guardia airport , orlando airport, orlando 
international, general mitchell, general mitchell international, general 
mitchell international aiport, ontario airport, ontario international, 
o'hare, saint Petersburg airport, san francisco international, san 
francisco international airport, san francisco airport, salt lake airport, 
salt lake city airport, toronto international, toronto international 
airport, lester pearson airport, newark airport, b n a, b o s, b u r, d a 
1, d f w, e w r, h o u, i a d,i a h, j f k, 1 a X, m c o, m a, m k e, o r d, p 
i e, s f o, s 1 c, c V g, t p a, 1 g a, b w i, d t w, y y z 
BACK： 

returns, return, returning 
CITY： 

cities, city 
CITY-NAME: 
westchester, westchester county, atlanta, baltimore, boston, bur-
bank, charlotte, chicago, Cincinnati, Cleveland, columbus, dallas, 
denver, detroit, fort worth, houston, Indianapolis, kansas city, vegas, 
las vegas, long beach, los angeles, memphis, miami, milwaukee, 
inneapolis, montreal, nashville, new york, new york's, new york city, 
newark, Oakland, ontario, orlando, philadelphia, phoenix, Pittsburgh, 
salt lake, salt lake city, san diego, san francisco, san jose, Seattle, st. 
louis, saint louis, st. paul, saint paul, st. Petersburg, saint Petersburg, 
tacoma, tampa, toronto, Washington, 1 a, philly, Canada 
CLASS： 

classes, class 
CLASS-NAME： 

business, business class, first class, coach, economy 
CODE： 

code, codes 
CODE—NAME: 
s, s slash, a p, a p slash, h, f, y, y n, q, q oh, b, q o, s a, a p 
fifty eight, b h, a p slash fifty seven 

continued on next page ... 
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continued from previous page ... 

COMPARSION: 
less than, more than, equal, equal to, same, same as 
CONNECTIONS： 

connection, connections, combination, combinations, connecting, 
connecting flights, direct flights, connecting flight 
CONNECTIVE： 

slash, and, or, either, but, also 
COST： 

DIGIT + MONEY-UNIT 
DAY： 

second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, 
eleventh, twelfth, thirteenth, fourteenth, fifteenth, sixteenth, seven-
teenth, eighteenth, nineteenth, twentieth, twenty first, twenty second, 
twenty third, twenty fourth, twenty fifth, twenty sixth, twenty seventh, 
twenty eighth, twenty ninth, thirtieth, thirty first 
DAY-NAME: 
day, days, week, weeks, weekday, weekend, week days, week day, 
weekdays, monday, tuesday, Wednesday, thursday, friday, Saturday, 
Sunday, during the week, today, yesterday, tomorrow, tonight, 
monday's, tuesday,s，Wednesday's, thuraday's, friday's, Saturday's, 
sunday's, now, mondays, tuesdays, Wednesdays, thursdays, fridays, 
Saturdays, Sundays 
DIGIT： 

oh, zero, one, two, three, four, five, six, seven, eight, nine, ten, 
eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, 
nineteen, twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety, 
hundred, thousand, hundreds, thousands, single, double, ones, twos, 
threes, fours, fives, sevens, eights, nines, tens, twentys, thirtys, fortys, 
fiftys, sixtys, seventys, eightys, ninetys 
DUMMY： 

may i, need to, want to, like to, would like to, i would like, i 
would like to, show me, ineed, i want, i need to, i want to, trying to, 
try to, the, a，an, please 
FARE： 

fare, costs, cost, price, fares, airfare, airfares, prices, air fare, air 
fares, flight fare, flight fares, flight price 

continued on next page ... 
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FIRST： 

first 
FLIGHT： 

flight, flights, fly, flies, flying 
FLIGHT-DAYS: 
everyday, daily 
FLIGHT—NUM: 
flight number, flight numbers 
FLIGHT-NUMBER: 
FLIGHT + DIGIT, AIRLINE_NAME + DIGIT 
FROM： 

from, departing from, depart from, leave from, leaving, start 
from, starting from, flying from, fly from, flies from, takeoff from, 
goes from, go from, take off, takes off, taking off, travel from, departs, 
depart, departure, departing, leave, leaves, leaving from, takeoff, 
takeoffs, come from, coming from, comes from 
HOW： 

how much, how many, how far, how long, how about 
KIND： 

kind, type, types, kinds, sort 
MUNUFACTURER： 

boeing, mcdonell donglas 
MEAL： 

meal, meals 
MEAL-DESCRIPTION: 
dinner, lunch, snack, supper, breakfast, snacks 
MEAN： 

mean, stand for, meaning, stands for 
MODIFIER： 

late, early, earliest, earlier, mid, latest, last, later, next, red 
eye 
MONEY—UNIT: 
dollar, dollars 
MONTH： 

January, february, march, april, may, june, July, august, Septem-
ber, october, november, december 

continued on next page ... 
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ONE 一 WAY: 
one way 
OR: 
slash, or 
PERIOD： 

morning, afternoon, evening, day, night, midday, mid-day, breakfast 
time, lunch time, dinner time, lunchtime, lunch time, dinnertime, 
noontime, noon, mornings, nights, midnight, mid-night 
PRE_TIME： 

before, after, at, around, about, by 
PREP： 

on, in, between, with, of, for, up, out, under, off 
RESTRICTION： 

restriction, restrictions 
ROUND_TRIP： 

round trip, round trip flight, round trip ticket, round trips, and 
back 
SERVE： 

serve, served, serves, service, serving 
STATE-CODE: 
d c 
STATE_NAME： 

arizona, California, Colorado, florida, Indiana, michigan, minnesota, 
missouri, nevada, new jersey, new york, north Carolina, ohio, quebec, 
tennessee, texas, utah, Washington 
STOPS： 

nonstops, nonstop, one stop, at least one stop 
SUPERLATIVE： 

cheapest, closest, expensive, highest, lowest, shortest, smallest, 
minimum, maximum, most, least 
TO： 

be there, into, to, arrive to, arriving to, arrives to, arrived to, 
landing in, land in, fly to, destination, back to, go to, arrive, arrives, 
arriving, arrived, landed, land, lands, landing, landings, arrival, reach, 
reaches, reaching 
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TIME： 

time, times 
TIME-UNIT: 

a m, p m, o' clock, o'clock, o clock, hour, hours 
TIME_VAULE： 

DIGIT + TIME-UNIT, PRE—TIME + DIGIT 
TRANSPORT： 

transport, transportation, ground transportation, ground trans-
port 
TRANSPORT-TYPE: 
rental car, rent a car, need a car, taxi, limousine, train 
VIA： 

via, by way, stop, stopover, stopovers, stopping, stoping in, stops in, 
stopover in, stop over in, stopping over in, layover in, laying over in, 
make a stop, goes through, go through 
WHAT： 

what're, what's, what 
WHERE： 

where, anywhere 
WHICH： 

which 
YEAR： 

nineteen ninety three 

Table B.l: The hand-designed grammar (Gh)-
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AIRCRAFT： 

aircraft, plane, aircrafts, planes 
AIRLINE 一 NAME: 
air Canada, alaska airline, alaska airlines, america west, ameri-
can, american airline, american airlines, american flights, Canadian 
airline, Canadian airlines, Canadian airlines international, continental, 
delta, delta airline, delta airlines, midwest express, n w, n x, nationair, 
northwest, northwest airline, southwest, southwest air, southwest 
airlines, t w, t w a, tower air, trans world airline, trans world airlines, 
united, united airline, united airlines, a a, a c, a s, u a, u s，u s air, c 
o, c p, d 1, f f, h p, k w, w n, y X 
AIRPORT-NAME: 
boston airport, dulles, general mitchell, general mitchell inter-
national, general mitchell international aiport, h o u, houston 
intercontinental, kennedy airport, la guardia, la guardia airport, 
lester pearson airport, los angeles airport, los angeles international, 
los angeles international airport, love field, newark airport, o'hare, 
ontario airport, ontario international, ord, orlando airport, orlando 
international, saint Petersburg airport, salt lake airport, salt lake city 
airport, san francisco airport, san francisco international, san francisco 
international airport, toronto international, toronto international 
airport, b n a, b o s, b u r, b w i, c v g, d a 1, d f w, d t w, e w r, i a d, 
i a h, j f k，1 a X，1 g a, m c o, m i a, m k e, o r d, p i e, s f o, s 1 c, t p 
a，y y z 
CITY—NAME: 
atlanta, baltimore, boston, burbank, Canada, charlotte, chicago, 
Cincinnati, Cleveland, columbus, dallas, denver, detroit, fort worth, 
houston, Indianapolis, kansas city, 1 a，las vegas, long beach, los an-
geles, memphis, miami, milwaukee, minneapolis, montreal, nashville, 
new york, new york city, new york's, newark, Oakland, ontario, orlando, 
Philadelphia, philly, phoenix, Pittsburgh, saint louis, saint paul, saint 
Petersburg, salt lake, salt lake city, san diego, san francisco, san jose, 
Seattle, st. louis, st. paul, st. Petersburg, tacoma, tampa，toronto, 
Washington, westchester, westchester county 
COST： 

DIGIT + MONEY—UNIT 

CLASS_NAME： 

business, business class, coach, economy, first class 
continued on next page ... 
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CODE-NAME: 
s, s slash, a p, a p slash, h, f, y, y n, q, q oh, b, q o, s a, a p 
fifty eight, b h, a p slash fifty seven 
COMPARSION： 

less than, more than, equal, equal to, same, same as 

CONNECTIONS： 

connecting flights, direct flights, connecting flight 
DAY： 

first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, 
tenth, eleventh, twelfth, thirteenth, fourteenth, fifteenth, sixteenth, 
seventeenth, eighteenth, nineteenth, twentieth, twenty first, twenty 
second, twenty third, twenty fourth, twenty fifth, twenty sixth, twenty 
seventh, twentyeighth, twenty ninth, thirtieth, thirty first 
DAY-NAME: 
weekday, weekend, week days, week day, weekdays, monday, tuesday, 
Wednesday, thursday, friday, Saturday, Sunday, today, yesterday, 
tomorrow, tonight, monday's, tuesday's, Wednesday's, thuraday's, 
friday's, Saturday's, sunday's, now, mondays, tuesdays, Wednesdays, 
thursdays, fridays, saturdays, Sundays 
DIGIT： 

oh, zero, one, two, three, four, five, six, seven, eight, nine, ten, 
eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, 
nineteen, twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety, 
hundred, thousand, hundreds, thousands, single, double, ones, twos, 
threes, fours, fives, sevens, eights, nines, tens, twentys, thirtys, fortys, 
fiftys, sixtys, seventys, eightys, ninetys 
FARE： 

fare, costs, cost, price, fares, airfare, airfares, prices 
FLIGHT： 

flight, flights, fly, flies, flying 
FLIGHT—DAYS: 
daily, everyday 
FLIGHT—NUM: 
flight number, flight numbers 
FLIGHT—NUMBER: 
FLIGHT + DIGIT, AIRLINE.NAME + DIGIT 
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FROM： 

from, departing from, depart from, leave from, leaving, start 
from, starting from, flying from, fly from, flies from, takeoff from, 
goes from, go from, take off, takes off, taking off, travel from, departs, 
depart, departure, departing, leave, leaves, leaving from, takeoff, 
takeoffs, come from, coming from, comes from 
HOW： 

how much, how many 
KIND： 

kind, type, types 
MEAL-DESCRIPTION: breakfast, dinner, lunch, snack, snacks, supper 
MODIFIER： 

earliest, latest 
MONTH： 

January, february, march, april, may, june, July, august, Septem-
ber, october, november, december 
MONEY—UNIT: 
dollar, dollars 
PERIOD： 

afternoon, breakfast time, day, dinner time, dinnertime, evening, 
lunch time, lunchtime, mid-day, mid-night, midday, midnight, 
morning, mornings, night, nights, noon, noontime 
PRE_TIME： 

before, after, at, around, about, by 
ROUND-TRIP: 
round trip, round trip flight, round trip ticket, round trips 
STATE_NAME： 

arizona, California, Colorado, florida, Indiana, michigan, minnesota, 
missouri, nevada, new jersey, new york, north Carolina, ohio, quebec, 
tennessee, texas, utah, Washington 
STOPS： 

nonstops, nonstop, one stop, at least one stop 
SUPRELATIVE： 

cheapest, closest, expensive, highest, lowest, shortest, smallest, 
minimum, maximum, most, least 

continued on next page ... 
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continued from previous page ... 

TRANSPORT： 

transport, transportation, ground transportation, ground trans-
port 
TRANSPORT-TYPE: 
rental car, rent a car, need a car, taxi, limousine, train 
TIME_UNIT： 

a m, p m, o' clock, o'clock, o clock, hour, hours 
TIME-VALUE： 
DIGIT + TIME-UNIT 
TO: 
to, arrive to, arriving to, arrives to, arrived to, landing in, land 
in, fly to, destination, back to, go to, arrive, arrives, arriving, arrived, 
landed, land, lands, landing, landings, arrival, reach, reaches, reaching 
VIA： 

via, by way, stop, stopover, stopovers, stopping, stoping in, stops in, 
stopover in, stop over in, stopping over in, layover in, laying over in, 
make a stop 

Table B.2: The semi-automatically generated grammar 
( q . 
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Appendix C 

Probability Propagation in 

Belief Networks 

The algorithm for computing the probabilities of the Belief Network (BN) 

in Bayesian inferencing is quite complicated as the probabil ity propagat-

ing effect wi l l be different for the networks wi th different topologies. We 

wi l l illustrate an example using a network as depicted in Figure C. l . For 

quantitative modeling, we wi l l assign conditional probabilities for each node 

P{x\ parent(x)) i f there are arcs coming into the node x; or prior probability 

P{x) i f the node x has no parents nodes. Hence we have several probability 

assessments for our BN : P{Ci\G), P(C2|Ci, G) and P{C^\G), in which 

P{G) — (0.5,0.5) and the remaining probabilities are listed in Table C. l . 

As introduced in Section 3.4.2, Bayes' rule can be applied directly for 

BN wi th pre-defined structure for Bayesian inferencing. However, for our 

example BN wi th U 二 {G, Ci , C2, C3), in order to compute the probability 

of each node, we have to represent our BN as a cluster tree [20]. A cluster 

tree which is corresponded to our BN is depicted in Figure C.2, i t is a tree of 
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Figure C. l : The topology of the BN. 

P{Ci\G) PiC2\CuG) P{Cs\G) 

G = l\ G = l G = 0 \ g = i \ G = 0 
Ci = 1 0.3 \Ci = l ( 0 . 8 ,0 .2 ) ( 0 .2 ,0 .8 ) I C3 = 1 0.55 0.4 

CI = 0 ^ ^ 二 0 ( 0 .5 ,0 .5 ) ( 0 .1 ,0 .9 ) Cs = 0 0.45 0.6 

Table C. l : The conditional probabilities for the BN in Figure C. l . The 

vector (a, /3) in the middle table represents {C2 = 1, C2 = 0). 

clusters of variable from U. There are two clusters: {G, Ci, C2) and {G, C3). 

The cluster is also known as clique is subset of U, and the union of all cliques 

is U. Notice that a l ink is labeled as separator which consists of the intersec-

t ion of the adjacent nodes. The probability propagation wi l l communicate 

through the separator for Bayesian inferencing. Besides, each clique is asso-

ciated wi th a joint probability table while the separator is associated wi th 

the prior probability. 

G 

Figure C.2: The clusters for our BN example. The clusters can communicate 

through the separator variable G. 
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We have established joint probabil ity tables for the two cliques based on 

the Bayes' rule: 

i. P{C2.Cr ,G) = P {C2 \CuG)P{C i \G)P{G) 

i i . P{Cs,G) = P{Cs\G)P{G) 

The results of the P(C2, Cu G) and P(C3, G) are tabulated in Table C.2. 

Marginalizing the C i and C2 out of P(C2,C\ ,G) and C3 out of P(C3,G) 

yield the prior information of Ci, C2 and C3: P(Ci) = (0.55,0.45), = 

(0.435,0.565), and PiCs) = (0.475,0.525). 

P 队 Ch,G、 PjCs^G) 

G = 1 G = 0 I G = 1 I G ^ 

Ci = 1 ( 0 . 3 2 , 0 . 0 8 ) (0.03,0.12) = l 0.275 0.2 
Ci = 0 (0.05,0.05) (0.035,0.315) (̂ 3 = 0 0.225 0.3 

Table C.2: The joint probabilities for the two clusters. The vector (a, in 

the left-hand table represents {C2 = 1,(^2 二 0). 

C.l Computing the aposteriori probability of 

P*(G) based on input concepts 

Suppose we have evidence 二 1, (̂ 2 = 1 and C3 = 0 for the BN, and we 

aim to compute the updated probability P*{G). Notice that the probability 

associated wi th the asterisk (*) means its value has been updated by the 

instantiation of its / other nodes. 
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step 1: For the input evidence Ci 二 1, (i.e. P\Ci = 1) = 1) 

We wi l l instantiate the node Ci , (i.e. the value of the node is known from 

observation), the probabilities of the network wi l l be updated and it is done 

by the propagation of the instantiated node Ci . Since Ci belongs to the 

clique (C2, Ci , G), the joint probability of P{C2, Ci , G) wi l l be updated first. 

Based on the Bayes' rule, we have: 

P*{C,G) = P{G\C)P*{C) and = 

Hence we get the equation below for updating the joint probability of 

P (C2,C I ,G ) , and the table for the updated P*(C2, Ci , G) is tabulated in 

Table C.3. 

P*(C2，Ci, G) 二 Ci , G ) ^ ^ (C. l ) 

G = 1 G=0 G 二 1 
Ci - 1 (0.32,0.08) X ^ ( 0 . 0 3 , 0 . 1 2 ) x ^ | 二 1 0.5818 0.0545 
Ci - 0~(0 .05 ,0 .05) X 0 ( 0 . 0 3 5 , 0 . 3 1 5 ) x 0 二 Q | 0.1455 0.218 — 

Table C.3: Updated joint probability P*(C2, Cu G). 

By marginalization, we get 户*((：72) = (0.6363,0.3637). The updated joint 

probability table of C'l, G) is also reduced to P*(C2, G). 

Step 2: For the input evidence C2 = 1，(i.e. = 1) = 1) 

The joint probability of P*((72，G) wil l be updated again by Equation C.2 

and the result is shown in Table C.4. 

(C.2) 
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G = \ G = Q \G = I \ G 

C2 = 1 " ^ 1 8 X ^ 0.0545 X ^ I C2 = 1 0.9143 0.0857 

C2 = 0 0.1455 X 0 0 . 2 1 8 x 0 ~ | C2 = 0 | 0 0 _ 

Table C.4: Updated joint probabil i ty P**(C2, G). 

Again by marginalization, we get P*{G) = (0.9143，0.0857). Since G is the 

separator between the two clusters, we wi l l then update the probabil i ty in 

the cluster (C3, G) by G based on the Equation C.3, and the result is shown 

in Table C.5. 

= (C.3) 

G = 1 G = 0 ~| I G = 1 I G ^ 

C3 = 1 0.275 X 帶 0.2 X ^ I = 1 ~Q.5029 0.0343" 
C3 = 0 0.225 X ^ 0.3 X ^ 二 0 0.4114 0.0514 

Table C.5: Updated joint probabil i ty P*(C3, G). 

By marginalization, we get P^iCs) = (0.5372,0.4628). 

Step 3: For the input evidence C3 = 0, (i.e. P**(C3 = 1) = 0) 

Again, the joint probabil ity of P*((73，G) wi l l be updated according to Equa-

t ion C.4 and the result is tabulated in Table C.6. 

P**(C3，G) = P*(C3, G ) ^ ^ (C.4) 
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G = 1 G = : 0 I G = 1 I G ^ 

Cs = 1 0.5029 X 0 ^ 0.0343 x 0 — | (̂ 3 二 1 0 0 
Ca = 0 0.4114 X 0.0514 x ^^ C3 = 0 0.8889 0.1111 

Table C.6: Updated joint probability P*(C3, G). 

We get the final updated P**{G) by marginalization of the joint probability 

in Table C.6, and the updated value of P**(G) is (0.8889,0.1111). 

C.2 Computing the aposteriori probability of 

P\Cj) by backward inference 

When the BN performs backward inference, the node G is instantiated to a 

value (either 1 or 0). In this example, we wi l l illustrate the calculation of the 

updated value of P*(Ci ) , P*{C2) and when the node G is instanti-

ated to value of 1 (i.e. wi th the observed evidence of P*(G = 1) = 1). Again, 

since our BN is divided into two cluster trees, the aposteriori probabilities 

of P*[Cj) is obtained by the marginalization of the corresponding updated 

joint probabilities. 

Step 1: Update the joint probability of P(C2，Ci,G) to get 

and P*(C2) 

The new joint probability, P*(C2, Ci, G) can be obtained based on Equation 

C.5 with the evidence of P*(G = 1) = 1 and the result is shown in Table 

C.7. 

P'(C2, C^,G) = F(C2, C^, G ) ^ ^ (C.5) 
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G = 1 G = 0 G = 1 \G = 0 
Ci = 1 (0.32,0.08) X • (0.03,0.12) x 0 = I (0.64, 0.16) (0,0) 
Ci = 0 (0.05,0.05) X ^ (0.035，0.315) x 0 Ci = 0 (0.1,0.1) (0,0) 

Table C.7: Updated joint probability 户*((：72, C \ ， T h e vector (a,/3) rep-

resents (C2 = 1, (72 = 0). 

By marginalization from the updated joint probability P*(C2, Ci , G), we get 

the updated values of P*(Ci ) = (0.8,0.2) and P*(C2) = (0.74,0.26) respec-

tively. 

Step 2: Update the joint probability of to get P*(C3). 

The new joint probability is again obtained by the Equation C.6, and the 

result is illustrated in Table C.8. 

= (C.6) 

G = 1 G = 0 I G = 1 I G ^ 
C3 = 1 0.275 X ^ 0.2 X 0 I C 3 = 1 0.55 0 ^ 
C3 = 0 0.225 X ^ 0.3 X 0 C 3 = 0 0.45 0 

Table C.8: Updated joint probability P*(C3, G). 

Finally,we get the updated value of P*(C3) 二（0.55,0.45) by the marginal-

ization of the updated joint probability P(C3, G). 
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Appendix D 

Total 23 Concepts for the 

Handcrafted BIS 

<AIRCRAFT> <CODE> <MONTH> 

<AIRLINE> <CODE_NAME> <PERIOD> 

<AIRLINE_NAME> <DAY> <STOPS> 

<AIRPORT> <DAY_NAME> <TIME_VALUE> 

<AIRPORT_NAME> <FARE> < T O > 

CCITY—ORIGIN� <FLIGHT> � T R A N S P O R T � 

CCITY—DESTINATION� <FLIGHT_NUMBER> �TRANSPORT—TYPE� 

<CLASS_NAME> <FROM> 

Table D . l : Total 23 concetps for handcrafted BN. 
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