
A n Integer Programming Approach for the Satisfiabil ity P r o b l e m s

by

LUI Oi Lun Irene

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Philosophy

in

Department of Systems Engineering And Engineering Management

©The Chinese University of Hong Kong
August 2001

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)
intending to use a part or whole of the materials in the thesis in a proposed publication
must seek copyright release from the Dean of the Graduate School.

统系馆書因

M 1 2

UNIVER： l̂ JjX^RARY SYSTEM {svdiy<<y/

To All I love

Abstract

Satisfiability problem is a well-known NP-complete problem. It consists of testing
whether the clauses in a Conjuctive Normal Form can all be satisfied by certain con-
sistent assignment of binary values to variables. If it is consistent, the problem is said
to be satisfiable; otherwise, it is unsatisfiable. The 3-SAT randomized problem is the
smallest NP-complete problem in SAT. In the literature, many transformations have
been proposed in converting the satisfiability problem into an integer programming
problem. These transformations usually create extra variables and constraints that
would enlarge the problem size.

In this thesis, we propose a new transformation method with no extra variables
introduced and a single surrogate constraint is resulted at the end of the process. This
singly-constrained zero-one polynomial problem can be then solved by certain solution
techniques in integer programming problem, such as branch-and-bound methods. We
suggest some branch-and-bound algorithms to tackle the resulted singly-constrained
zero-one polynomial problem. Revised branch and bound rules are proposed to im-
prove the efficiency of a basic algorithm. Analytical results show that the revised
branch-and-bound algorithm has a great improvement compared with the basic one,
in terms of the computation time and the number of backtracking.

摘要

可滿足性問題（Satisfiability problem)是一個著名的 N P完全問題，它是指是否

存在一種對一組布爾變量的賦値使所給的由若干個子句組成的合取範式的値爲

眞。若這種賦値方法是存在的，則問題稱爲可滿足的；反之，則稱不可滿足

的。儘含三個子句的隨機可滿足性問題是 S A T中一個 小規模的N P完全問題。

有關文獻中提出了許多把可滿足性問題轉換成整數規劃問題的方法，遺憾的是

這些方法通常會產生額外的變量和約束，從而擴大了問題的規模。

本文建出了一種新的轉換方法，它以一個替代約束代替原有所有約束而不產

生額外的變量。轉換後得到的單約束 0 - 1多項式問題可用分支定界法來求解。本

文首先提出了一些基本的分支定界算法’進而提出了改進的分支和定界的法則

來提高運算的效率；對運算結果的分析顯示了改進的分支定界算法，較之基本

的方法，無論在計算的時間上，還是在回溯的次數上，均有極大的改善。

11

Acknowledgements
I would like to express my deepest gratitude to my supervisor Professor Duan LI for
his guidelines and suggestions. Without his advice, this thesis cannot be completed.

I would also like to thank a lot of my friends, Dr. Sha Dan, Chu Kwok Fai, Tommy
Lee, Jacky Wong, Ada Ng, Cindy Lam, Gary Lee, Jason Choi, Chin Chun Hung, Ada
Luk，Jessica Hui, Paul Fung, Wong Kam Lai, Yvonne Sho, Sunny Man and Bernard
Hui. They bring me much happiness in leisure time and help me a lot in study. In
this two-year graduate study, we share many unforgettable memories and a fruitful
university life. .

Finally, I may express my deepest thanks for the God. He enlight me and set me
free from the sadness and anxiety. The support and encouragement from my fellows
activate the motion of my research.

Ill

Contents

List of Figures vii
List of Tables viii
1 Introduct ion 1

1.1 Satisfiability Problem 1
1.2 Motivation of the Research 1
1.3 Overview of the Thesis 2

2 Constraint Satisfact ion Prob lem and Satisfiabil ity P r o b l e m 4
2.1 Constraint Programming 4
2.2 Satisfiability Problem 6
2.3 Methods in Solving SAT problem 7

2.3.1 Davis-Putnam-Loveland Procedure 7
2.3.2 SATZ by Chu-Min Li 8
2.3.3 Local Search for SAT
2.3.4 Integer Linear Programming Method for SAT
2.3.5 Semidefinite Programming Method

2.4 Softwares for SAT
2.4.1 SATOl :
2.4.2 SATZ and SATZ213, contributed by Chu-Min Li
2.4.3 Others

3 Integer P r o g r a m m i n g
3.1 Introduction

3.1.1 Formulation of IPs and BIPs
3.1.2 Binary Search Tree

3.2 Methods in Solving IP problem
3.2.1 Branch-and-Bound Method 20
3.2.2 Cutting-Plane Method 23
3.2.3 Duality in Integer Programming 26

IV

3.2.4 Heuristic Algorithm 28
3.3 Zero-one Optimization and Continuous Relaxation 29

3.3.1 Introduction 29
3.3.2 The Roof Dual expressed in terms of Lagrangian Relaxation . 30
3.3.3 Determining the Existence of a Duality Gap 31

3.4 Software for solving Integer Programs 33
4 Integer Programming Formulation for SAT P r o b l e m 35

4.1 From 3-CNF SAT Clauses to Zero-One IP Constraints 35
4.2 From m-Constrained IP Problem to Singly-Constrained IP Problem . 38

4.2.1 Example 39
5 A Bas ic Branch-and-Bound Algor i thm for the Zero-One Po lynomia l

Max imiza t ion P r o b l e m 42
5.1 Reason for choosing Branch-and-Bound Method 42
5.2 Searching Algorithm 43

5.2.1 Branch Rule 44
5.2.2 Bounding Rule 46
5.2.3 Fathoming Test 46
5.2.4 Example 47

6 Rev i s ed B o u n d Rule for Branch-and-Bound Algor i thm 55
6.1 Revised Bound Rule 55

6.1.1 CPLEX ^ ' " " 57
6.2 Example 57
6.3 Conclusion 65

7 R e v i s e d Branch Rule for Branch-and-Bound Algor i thm 67
7.1 Revised Branch Rule 67
7.2 Comparison between Branch Rule and Revised Branch Rule 69
7.3 Example 72
7.4 Conclusion 73

8 Exper imenta l Resu l t s and Analys is 80
8.1 Experimental Results 80
8.2 Statistical Analysis 83

8.2.1 Analysis of Search Techniques 83
8.2.2 Discussion of the Performance of SATZ 85

9 Concluding Remarks 87
9.1 Conclusion 87
9.2 Suggestions for Future Research 88

A Searching Procedures for Solving Constraint Satisfact ion P r o b l e m
(C S P) 91
A.l Notation 91
A.2 Procedures for Solving CSP 92

A.2.1 Generate and Test 92
A.2.2 Standard Backtracking 93
A.2.3 Forward Checking 94
A.2.4 Looking Ahead 95

B C o m p l e t e Resul t s for Exper iments 96
B.l Complete Result for SATZ 96

B.1.1 n = 5 95
B.l.2 71 = 10 98
B.1.3 n = 30 99

B.2 Complete Result for Basic Branch-and-Bound Algorithm 101
B.2.1 n = 5 皿

B.2.2 n = 10 104
B.2.3 n 二 30 107

B.3 Complete Result for Revised Bound Rule 109
B.3.1 n = 5 109
B.3.2 n = 10 112
B.3.3 n = 30 II5

B.4 Complete Result for Revised Branch-and-Bound Algorithm 118
B.4.1 n = 5 113
B.4.2 n = 10 121
B.4.3 n = 30 124

Bibl iography 128

VI

List of Figures

3.1 The Solution tree created by the branching for the first iteration of the
BIP branch-and-bound algorithm 21

4.1 Venn Diagram for 3 independent parties Xi,工2 and rr� 37

5.1
5.2

7.

The solution tree for checking the satisfiability of a 5-variables problem. 46
The solution tree of the problem -a；! - 2x2 + 3X1X3 -

-XiX^^ 3x22:4 — 一 X^X^ + 2:4X5 一 2XiX2XZ — XIX2,XA - +
- xix^x^ + 3:13:4X5 + 2:2X3X5 - 0:2X4X5 + 0:3X4X5 > 1 under our

basic searching algorithm 54
The solution tree for the revised bound rule of the problem - x i -

- 2:3 - + 2:1X2 + 3X1:̂ 3 - 2:1X4 — X1X5 + 3X2X4 - X3X4 - X3X5 +

- 2X1X2X3 - 2:1X30:4-0；2̂33；4+0；10；22；5 — 2:1X32:5+3： 1X4X5+̂20：30：5 _
+ 3:3X4X5 > 1 under our searching algorithm 66

The solution tree for the revised branch-and-bound algorithm of the
problem - x i - 2x2 - X3 - X4 + X1X2 + 3X1X3 —工 1X4 — Xi^s + 3x2X4 -
工3工4 - + 工4工5 - 2X1X2X3 -工 1X30:4 — 0:2X32:4 + X1X2X5 - XiXgXs +

+ 工2工3工5 - X2X4X5 + X3X4X5 > 1 under our searching algorithm 7 8

Vll

List of Tables

1
.

2
.

1
.

1
.
 1
2

 1
2

 3

 4

2
 4

 4

 5

c
S
 0
6
0
6
0
6
0
6

 A

 A
 A

 A

Quadratic representation for 3-CNF-SAT clause 14
Axioms for transforming the 3-SAT clause into Integer Programming
format
IP constraint for converting 3-SAT clause 37
The branch-and-bound algorithm for the singly-constrained polyno-
mial CSP 二 48
Revised Bound Rule for the CSP 56
Revised Branch Rule for the CSP 69
Revised Branch-and-Bound Algorithm for the CSP 71
Results for the three methods when n=b 82
Results for the three methods when n=10 82
Results for the three methods when n=30 82
Results for SATZ in n=5，10’ 30 : : : 82
Search Procedure for Generate and Test technique 92
Search Procedure for Standard Backtracking technique 93
Search Procedure for Forward Checking technique 94
Search Procedure for Looking Ahead technique 95

Vlll

Chapter

Introduction

1.1 Satisfiability Problem
The prepositional satisfiability problem (SAT) has been classified as the first NP-
complete problem. It consists of testing whether the clauses in a propositional formula
F in Conjunctive Normal Form (CNF) can all be satisfied by some consistent assign-
ments of true values (0 or 1) to variables. If it is the case, F is said to be satisfiable.
Otherwise, F is unsatisfiahle. Moreover, if each clause exactly contains r literals, the
subproblem is called r-SAT problem. 3-SAT is the smallest NP-complete subproblem
of SAT with its computation time being 0 (2 ” while 2-SAT problem is solvable in
polynomial time [1, 2，3, 4 •

1.2 Motivation of the Research
Besides Davis-Putman-Loveland procedure and SATZ methods, satisfiability prob-
lems can be solved by integer programming methods or semidefinite programming
methods. After transforming the SAT problem into an integer programming prob-

lem, the performance in solving the transformed problem may not be as good as that
of the original.

Warren and Alain [5] suggested to convert a pseudo-Boolean function into con-
strained 0-1 polynomial problem. Lagrangian relaxation and roof duality techniques
can solve the non-convex polynomial problem by testing the duality gap between the
primal problem and its relaxation. The resulting objective value can be viewed as
the upper bound of the problem if the duality gap exists.

The above consideration motivates us to figure out a procedure to convert the
CNF-SAT problem into an integer programming formulation. In our research, Branch-
and-Bound algorithm can be used to solve the zero-one singly-constrained polynomial
problem. Thus, we need to develop our branch rule and bound rule that are suit-
able for our problem. The continuous relaxation model from [5] can be used to find
the upper bound of the subproblem. The existence of duality gap can be checked
by verifying whether the solution is an integer instead of the consistency of the 0-1
quadratic posiform suggested by [5]. As a result of studying the branching rules, a
better understanding in solving SAT by an IP formulation is achieved.

1.3 Overview of the Thesis
The thesis is organized as follows. Chapter 2 gives a brief review of the satisfiability
problem and its solution techniques. Methods like DPL, SATZ and SDO are dis-
cussed and several SAT solvers are listed in the last section. Integer programming, in
particular, zero-one programming and its continuous relaxation are important tech-
niques adopted in this thesis. We provide some basis on them in Chapter 3. Branch-
and-Bound methods, Cutting plane methods, duality methods and heuristic methods

are discussed. Solvers found on the internet are listed also.
We present a two-step transformation for converting an original 3-SAT problem

into a singly-constrained zero-one polynomial problem in Chapter 4. The first step of
the transformation changes m SAT clauses into m integer programming constraints
where m = rz*4.25 and n is the number of variables in the original problem, while the
second step constructs the resultant zero-one singly-constrained polynomial problem
from the transformed integer constraints. In Chapter 5，we describe a basic branch-
and-bound method.

Chapter 6 defines a revised bound rule for the branch-and-bound method. The
revised bound rule is based on the continuous relaxation of the polynomial integer
constrained maximization problem shown in [5]. We use a dual simplex method to fig-
ure out the bound for the subproblem after converting the integer singly-constrained
polynomial problem into a continuous constrained maximization problem. Cplex is
a solver used to implement the revised bound rule. The example in Chapter 5 is
tested for a determination of the improvement. A revised branch rule is presented in
Chapter 7. We consider a similar formula as in [6] to set the weight for variables so
as to find out the branching variable at each iteration. The example in both Chapter
5 and 6 is used here again to examine the revised branch-and-bound method.

Experimental results are reported in Chapter 8. We compare the performance
between the basic branch-and-bound method and the revised one with different sam-
ple sizes. SATZ is also used to compare with the two branch-and-bound methods.
Finally, we conclude the thesis in Chapter 9 by summarizing our contributions and
listing some possible directions for future research.

Chapter 2

Constraint Satisfaction Problem
and Satisfiability Problem

This chapter provides the background of the thesis. Satisfiability (SAT) problem
was the first problem shown to be NP-complete [7]. SAT is a cornerstone of com-
putational complexity theory, and thus is commercially important since thousands
of practical combinatorial problems would benefit from a highly efficient SAT solver.
Its applications include graph coloring, Boolean N-queens induction, circuit diagnosis
and scheduling problem [8, 9]. In this chapter, we will define what a satisfiability
problem is and how to solve the SAT problem. Also, we will list some solvers in the
last section that have been released recently.

2.1 Constraint Programming
Constraint Programming is built upon constraints and constraint solving [10]. The
three most important types of constraints in constraint programming are arithmatic
constraints, tree constraints and finite domain constraints. There are three funda-

mental operations in solving a constraint programming problem. First, we need to
determine whether a constraint is satisfiable. Then, we use simplication to rewrite a
constraint in a form that makes its information more apparent. Last, we find out the
"best “ solution under some conditions through an optimization method.

Primitive constraint consists of a constraint relation symbol from its domain,
D, together with the appropriate number of arguments [10]. They are constructed
from the constants, functions of D and other variables. A user-defined constraint is a
constraint in the form of p(力1，力2，• • •, ^n) where p is an n-ary predicate and 艺1，艺2，...，

are expressions from the constraint domain [10]. A formula is a primitive constraint
involving variables that return the value of True or False. A literal is either a primitive
constraint or a user-defined constraint [10]. In this thesis, the literals we considered
are primitive constraints.

A Constraint Satisfaction Problem (CSP) consists of a constraint C over variables
Xi,X2, and a domain D that maps each variable Xi to a finite set of values,
written D(xi), that are allowed to take. The CSP can be used to represent the
constraint C A G D{xi) A . . . A G D(xn), [10]. Complete search strategies for
constraint satisfaction problems are based on propagate-and-branch and they only
assign integral values to the variables whose domain includes finite integers [9]. The
search starts from a partial assignment of the variables. The power of CSP methods
stems from strong propagation algorithms (eg. arc-consistency) that rule out all
variable values that are known to be inconsistent with the current partial variable
assignment and the set of constraints (local consistency). Search in CSP progresses
in the space of partial variable assignments where variable values are assigned with
the goal to eventually assign one value to every variable, such that the solution is
optimal. Hence, the search in CSP maintains integrality and local consistency, but

5

relaxes totality, i.e. require that all variables be assigned one value.
A CSP can also be defined as below. A CSP consists of a set of variables, each

with a finite possible value (domain), and a set of constraints which the values as-
signed to the variables must satisfy, [11]. Some discrete optimization problems in
operational research can be also formulated as constraint satisfaction problems. In
an optimization constraint satisfaction problem, there is an objective. Each time a
solution to the CSP is found, a new constraint is added to ensure that any future
solution must have an improved value of the objective, and this continues until the
problem becomes infeasible. The last solution found is the optimal solution of the
problem.

2.2 Satisfiability Problem
Consider n propositional variables X = {.Ti , . . . , .xJ . Let L = x…
denote the set of corresponding literals, where x, = I - Xi denotes the complement
of Xi. Let 工=(xi, . . . ,Xn) e where B = {0,1}，denote the vectors of binary
assignments to the propositional variables. A clause is the disjunction of a subset of
the literals, and a Conjunctive Normal Form (CNF) is a Boolean formula of the form

where C C is a family of clauses, [12 .
The satisfiability (SAT) problem for Boolean formulas in conjuctive normal form

(CNF) was the first problem that was shown to be NP-complete, [7, 13, 14]. It consists
of finding a binary assignment x* G satisfying all the clauses of a given CNF F ,
i.e., = 1. It tests whether clauses in F can all be satisfied by some consistent
assignment of true values (0 or 1) to variables, [15, 16]. F is said to be satisfiable if

there exists a feasible assignment. Otherwise, F is said to be unsatisfiable. Moreover,
if each clause exactly contains r literals, the subproblem is called r-SAT problem. It
has been revealed that 2-SAT problem is solvable in polynomial time [1，2，3，4] and
Even, Itai and Shamir [17] outlined a linear-time algorithm for 2-SAT. Schaefer [18
also claimed a polynomial time bound for an evaluation problem with 2-SAT although
he did not prove it. However, 3-SAT is the smallest NP-complete subproblem of SAT
where its computation time is within 0(2"). On the other hand, if the ratio of
the number of clauses to the number of variables is approximately equal to 4.25 for
random 3-SAT problem [19, 20], these problems are very difFcult to be solved.

2.3 Methods in Solving SAT problem
There are many different kinds of methods in solving Conjunctive Normal Form Sat-
isfiability {CNF-SAT) problem. The best complete method to solve SAT problems
is Davis-Putnam-Lovdand (DPL) procedure.

2.3.1 Davis-Putnam-Loveland Procedure
Davis-Putnam-Loveland (DPL) procedure was defined by Martin Davis, George Lo-
gemann and Donald Loveland in 1962 [21, 15]. The DPL procedure was based on the
idea in [22]. The algorithm of [22] consists of two interlocking parts. The first part
is the QFI - Generator that generates a growing prepositional calculus formulas in
conjunctive normal form which are called the "quantifier-free lines". The second part
is the Processor that tests the consistency of these propositional calculus formulas at
regular stages in its “growth，，. This test is proceeded by first eliminating one-Uteral
clauses and then atomic formulas all of whose occurrences are positive or negative.

Finally, the remaining atomic formulas are to be eliminated by using the Rule for
Eliminating Atomic Formulas. This Rule can be formulated as

Rule III (A\/p) & (B Vp) & R [21，22

where A, B and R are free of p. This can be done by grouping the clauses containing
P and crossing out the occurrences of p to obtain A, grouping the clauses containing
P and crossing out the p to obtain B, and grouping the remaining clauses to obtain
R- Then, F is consistent if and only if {A V B)&:R is consistent.

The DPL procedure replaces the Rule III by Splitting Rule which is defined as

Rule IIP (AVp) k(BWp) kR [21]

where A, B and R are free of p. Then F is inconsistent if and only if AkR and
B舰 are both inconsistent. Rule IIP is more powerful because Rule III can easily
incorporate large number and long length of the clauses in the expression. Many
duplicated and redundant clauses are allowed to present. Also, Rule III seldom
yields new one - literal clauses, whereas Rule III* often does.

2.3.2 S A T Z by Chu-Min Li
The Davis-Putnam-Loveland procedure has been so far the best complete method
to solve SAT problems. It constructs a binary search tree for solving F and each
recursive called constitutes a node of the tree. In [15], Chu-Min Li indicated that
random 3-SAT problems become difficult to solve on average when the ratio of clause
number to variable number is approximately equal to 4.25 [19, 20]. He explained that
the shape of a search tree is highly related to the width of a search tree rather than
the mean height of a search tree. The mean height of the class of Hard problems is
the same as that of the class of Easy problems. However, the width of the class of

Hard problems is substantially larger than that of the class of Easy problems. It is
difficult to distinguish satisfiable and unsatisfiable problems here because they give
the same shape of figures. Also, the widest level of a search tree is at the mid-depth
approximately equal to n/20 where n is the number of variables in the problem.

r Z by Chu-Min Li is a DPL procedure that branches on the variable that would
reduce the largest number of clauses on F at each iteration. Let ？/;(:r:) be the number
of clauses reduced when x is assigned 1 and w(x) be the number of clauses reduced
when a; is assigned 0. Then a; is weighted by the equation suggested by Freeman [6],

= w(x) * w(x) * 1024 + + w � .
From here, we know that the product term w(x) * gives more information

in selecting the branching variable in order to balance the search tree. The value
of 1024 may be used for a quicker multiplication since 1024 = For example,
there are 10 clauses reduced when is assigned 1 and 6 clauses reduced when
is assigned 0. And there are 8 clauses reduced when .T2 is assigned 1 and 8 clauses
reduced when 0；2 is assigned 0. We know that the weights of Xi and X2 are 61456 and
65552 respectively. We would choose 工2 as the next branching variable.

On the other hand, Chu-Min Li has made some improvements to DPL procedure.
In order to speed up a DPL procedure, Li proposes to reduce the width of a search tree
instead of reducing its mean height. That means, his procedure could reach a dead-
end as early as possible. He had 2 suggestions. First, his procedure would prepare
and generate more and stronger constraints (A constraint is stronger if it suppresses
more solutions). If F has n variables, it has possible solutions. Two binary clauses
sharing a complementary literal, like and Vxg, remove 2打—i solutions while
two binary clauses sharing an identical literal or having no common variable, such as
工 1 V X2, Xi V 0；3 or :z;i V and X3VX4, remove 1 - and 1 — solutions

respectively. Obviously, binary clauses sharing complementary literals remove much
more solutions and have more chances to lead to a dead-end where all solutions are
removed. So the DPL procedure would branch next on a variable that generates more
binary clauses sharing complementary literals. Therefore, the weight of the literal x
would be changed to

川(工)~ S/vr is produced by x=l [/(O + /(")]，

where f(l) is the number of binary occurrences of I in F if there is a sufficient number
(10 as suggested by Li) of binary clauses in F, otherwise it is the number of weighted
occurrences of I in F. w{x) is similarly defined. Li [15] then obtains the weight of
variable x by replacing the value of both w(x) and w{x) in Freeman's formula [6'.

Li also suggests to use looking further forward to search a dead-end. Unit propaga-
tion is a look-ahead^ searching technique. If the satisfaction of a literal I reduces many
clauses, i.e., it introduces many strong constraints by unit propagation, it probably
leads to an imminent dead-end which can be reached by further unit propagations.
The idea is that if UnitPropagation(F U {/}) reduces more than T (it is fixed to
65 for hard random 3-SAT problems [15]) clauses, for every variable y in the newly
produced binary clauses occurring both positively and negatively in binary clauses,
UnitPropagation{F U {/} U {？/}) and UnitPropagaUon(F U {/} U are executed.
If both propagations reach a dead-end, I should be satisfied. These two propagations
are called unit propagations of second level. This has a great impact on the size of a
search tree. This keeps a balance in the search tree for the branching variable x. It
is because if w{x) » w{x) or w{x) » w{x), x will not be selected as a branching
variable. Therefore, the formula for selecting the branching variable would be more
powerful.

1 Please refer to Appendix A for details

10

In addition, Li figures out that branches on a variable randomly among the best
variables may provide a better performance if it creates simpler subproblems. He
found that the randomized version of SATZ could solve the benchmark problem
2670-400 in UCSC in 95 seconds while the revised version of SATZ took more than
7200 seconds to solve the problem [15]. Nevertheless, a constraint hypothesis that
considers unit propagations in deeper branches might reach a dead-end faster than
simplified hypothesis that he has used. However, more constraints might be generated
during the unit propagation process.

2.3.3 Local Search for SAT
Local search strategies have recently been used in solving prepositional satisfiability
problem [9]. It searches a satisfying variable assignment for a set of clauses. It moves
locally to "flip" variables that are chosen according to a randomized greedy strategy.
A randomized algorithm is used to select a starting point for the local search and/or
to drive the search into different regions of the search space, which can reduce the
dependency of the local search on its starting point and thereby make it less dependent
on restarts. Hill-climbing is one of the heuristic procedures in solving SAT problems.
It needs some techniques to overcome trapping in the local minima. Most SAT local
search algorithms have several static and dynamic policies to select the next variable
to be flipped. They are the key component to determine the performance of SAT
local search algorithms.

For static policy, the probability of a variable to be flipped depends on the current
variable assignment and on the scheme to compute the score of a variable. For
example, it depends on the number of clauses satisfied after the flip and the number
of clauses broken due to the flip. For dynamic policy, the decision can depend on the

11

history of the search. For instance, a Tabu element can break ties between variables
with an equal score according to how recently a variable has been flipped.

2.3.4 Integer Linear Programming Method for SAT
Linear programming (LP) was the first continuous optimization problem to be inves-
tigated. Conjunctive Normal Form Satisfaction problem (CNF-SAT) can be solved
by an integer linear programming (ILP) model [23], Monfroglio constructed the SAT
problem as ILP in [23]. The resulting matrix has a regular structure and is no longer
problem-specified. It does not depend on the structure of the clauses, but the number
of clauses and the number of variables. The structure of the integer program allows
us to solve the problem by using standard linear programming techniques. Simplex
algorithm is one of the methods in solving linear programming problems. However,
the computational complexity of the simplex algorithm is exponential in the worst
case. The standard form of linear programming is

min cx
s.t. Ax = h,x

An integer linear programming problem is
min cx
s.t. = 6, X > 0, X integer.

To convert the CNF - SAT problem into ILP problem, Monfroglio [23, 24] sug-
gests to add nonnegative slack or surplus variables in order to convert all inequalities
to equlities, replace all unrestricted variables by differences of nonnegative variables,
delete all redundant rows and take the negative value of an objective function to be
maximized. However, this procedure may make the problem more difficult because
the additional variables and additional constraints enlarge the size of the original
CN F -SAT problem. The worst case is to have [n * 2m + 2m * n * (n - 1)/2] for the

12

number of columns and [n + 2m * n * (n - l)/2] for the rows in matrix A, where n
is the number of literals and m is the number of clauses in the original CNF - SAT
problem. On the other hand, E. de klerk [25] proposes to convert the SAT prob-
lem into an integer programming problem through elippic representation and uses a
semi-definite programming method to solve the problem.

2.3.5 Semidefinite Programming Method
Semidefinite programming method is a new solution concept in optimization. In-

terior point methods for semidefinite programming (SDP) have been studied recently
due to their polynomial complexity and practical efficiency. Most of these methods
are extensions of linear optimization algorithms [26]. The most common solution
approach in integer programming is to relax the integrality constraints to linear con-
straints and subsequently solve the resulting LP relaxation [27, 28]. Unfortunately,
the LP relaxation of (IPSAT) is weak. It is easily checked that the trival all-zero
solution is always feasible when no unit clause is present. By introducing some objec-
tive function, the solution can be steered away from the trival one. The incumbent
solution may be found by rounding the solution to the LP relaxation.

There are several different ways of constructing primal-dual search directions in
SDP. The usual scheme is to apply linearization in conjunction with symmetrization
to the perturbed optimality conditions of the SDP problem. A boolean quadratic rep-
resentation of a 3-dause can be used in converting a 3-SAT problem into a semidefinite
programming problem. This representation can be studied as an integer programming
problem. Consider the 3 - clause Pi Vp2 Vp3. All valid quadratic representations for
this clause follow from [27, 25，29] are listed in Table 2.1.

After converting the problem, we can use Lagrangian dual techniques to solve the

13

[Xl + 1)2 < 4 ， G {

In general, Pi V p2 V . . . V has elliptic representation:

X1X2 + XiX^ - X2- Xs
X1X2 + X2X3 — Xi - X3
XIXS + X2XS — XI - X2

-X1X2 — XIXS - X2X2,-

-X1X2 + 0：! + - 1

-工 1X3 + Xi + X3 - 1
-X2X3 -h X2 X3 - 1

If the elliptic relaxation is infeasible, the original problem is unsatisfiable. New-
ton system for dual interior point methods can efficiently solve the problem. This
elliptic semidefinite feasibility problem is satisfiability-equivalent to SAT for several
classes of polynomially solvable formulas included 2-SAT, pigeonhole formulae and
unsatisfiable formulae from graph colouring instances where clique constraints imply
unsatisfiability [29]. However, there is a gap between the relaxation and its primal
problem. This gap relaxation is always reported as feasible for 3-SAT problems if no
2-litemls clauses present. These problems are reported as satisfiable even they are
infeasible.

14

Table 2.1: Quadratic representation for 3-CNF-SAT clause

problem. Besides, E. de Klerk proposed another transformation of the SAT problem
25]. Each clause pi Vp2 Vp3 has its elliptic representation:

1
/

1

1
，

1}

o
o
o
o
o
o
o
{

<
1
 <_

 <_

 V
I

 <_

 <
1

 V
I

 G

2.4 Softwares for SAT
Many SAT solvers can be found on the internet. The solution schemes in these
softwares include conventional SAT techniques, complete and incomplete searching
algorithms.

2.4.1 SATOl
SATOl solver proves its efficiency empirically on DIM ACS SAT benchmarks. It

turns out that the majority of these SAT instances are fairly easy. Unfortunately,
some instances were not solved because of large memory requirements. Since SATOl
solver was designed to be a general solver for NP problems, it has no specialization
for SAT.

2.4.2 SATZ and SATZ213, contributed by Chu-Min Li
SATZ and SATZ213 are two smart solvers for SAT problems. These two solvers

are developed by Chu-Min Li. SATZ implements the algorithm proposed by Chu-
Min Li that improves the traditional DPL algorithm by considering a new formula in
calculating the weights for variables and using the unit propagation as the searching
technique. SATZ213 is a modification of SATZ.

2.4.3 Others
We list some softwares for SAT available on Internet in this section. Details can be
found in “http://www.intellektik.informatik.tii-darmst;adt.de/SATLIB/solvers.litml，，.

15

Stochast ic Local Search Algor i thms (incomplete a lgori thm)

-GSAT, Version 41 (contributed by Henry Kautz and Bart Selman)
-Walks AT, Version 35 (contributed by Henry Kautz and Bart Selman)

Sys temat i c Search Algor i thms (complete a lgorithm)

-GRASP (version of Feb. 2000; contributed by Joao P. Marques da Silva)
-NTAB (via James Crawford's home page)
-POSIT, Version 1.0 (contributed by Jon W. Freeman)
- REL_SAT, Version 2.00 (contributed by Roberto Bayardo)
-REL_SAT-rand, Version 1.0 (contributed by Henry Kautz)
-SATO, Version 3.2.1 (contributed by Hantao Zhang)
-SATZ-mnd, Version 4.7 (contributed by Henry Kautz)
-SATZ-rmd, Version 2.0 (contributed by Carla Gomes, Henry Kautz, and Bart

Selman)

16

Chapter 3

Integer Programming

In last chapter, we explained what a satisfiability problem is and how to solve such
kind of problem. In this chapter, we are going to review the integer programming.
There are many different ways in solving integer programming. We will introduce
some solution methods in the literature.

3.1 Introduction
Many real-world problems in design, operation and management may be formulated
as optimization problems in which we are seeking for some values of decision variables.
The objective function takes an extreme value while satisfying all the constraints im-
posed on these decision variables [30]. Integer Programming (IP) is a branch of math-
ematical programming where its decision variables are integers [30，31]. In general,
integer programming can be a constrained one or an unconstrained one, while the
constraints and the objective functions can be linear or nonlinear, [32]. The general
integer programming problem can be defined as:

17

maximize (or minimize) z = f{xi,x2,...
subject to 9i(xuX2,...,Xn) < z 6 M = l , 2 , . . . , m

> 0 J =
Xj an integer j G I Q N

If / = TV, the problem is a Pure Integer Programming (PIP) problem, that means all
the variables Xj are restricted to integers. Otherwise, if I C N, the decision variables
consist of both integer and real variables. The problem is called a Mixed Integer
Programming (MIP) problem. If the constraints and the objective function are both
linear in an integer programming problem, the problem is called a Linear Integer
Programming problem. If the domain of the variables is binary, i.e., the decision
variables can only be assigned one of the two values, the problem is called Binary
Integer Programming (BIP) problem.

In reality, many decision making situations can be formulated as integer pro-
gramming problems. Examples include Assignment Problem, 0-1 Knapsack Problem,
Cutting-Stock Problem, Capacitated Plant Location Problem, Set Covering Problem,
Traveling Salesman Problem (TSP), Capital Budgeting Problem, Sequencing Problem,
Scheduling Problem and Fixed-Charge Problem [30, 32, 33 .

3.1.1 Formulation of IPs and BIPs
Before solving the IP problems and the BIP problems, formulation should be done
systematically and properly. We should well define the problem instances and the
decision variables used in the model [33]. The following are some guidelines.
(1) Define the necessary decision variables used in the model.
(2) Define the domain of the decision variables.
(3) Define the objective function as a function of the decision variables.
(4) Define a set of constraints imposed on the decision variables.

18

3.1.2 Binary Search Tree
The enumeration tree of a BIP problem can be represented as a binary tree. A binary
tree consists of external (leaf) nodes and internal (non-leaf) nodes. Every internal
node of a full binary tree has exactly two children. A binary search tree is a data
structure of retrieving objects associated with keys. It corresponds to a full binary
tree with one key stored at every internal node, and none at external nodes [34

3.2 Methods in Solving IP problem
Integer programming solution techniques can be generally classified into two types:
the search methods and the cutting methods [32]. The first type is motivated by
the fact that the feasible solution points of most integer programming problems are
finite (e.g., a subset of {0,1}^). We seek for the solution by enumerating "all" these
points. This type of solution techniques includes implicit numeration techniques and
branch-and-bound techniques. The implicit numeration is suitable for the zero-one
integer programming problem, and may actually be considered as a speical case of the
branch-and-bound methods. Clearly, the efficiency of the resulting "search" algorithm
depends on the power of the techniques that are developed to discard nonpromising
solution points.

Cutting methods are developed for the mixed or pure integer linear programming
problem. The idea is from the fact that the solution in the simplex method must occur
at an extreme point. It adds constraints, that are violated by the current noninteger
solution but never by any feasible integer pointi, in the original problem. Successive
applications of such a procedure should eventually result in a new convex solution
space with its optimum extreme point properly satisfying the integrality condition.

19

It cuts off those infeasible parts of the continuous solution space. However, the
cutting methods can only be applied to convex problems. Also, no feasible solution is
obtained until the very end of the search procedure. In the following sub-sections, we
will describe four methods used in solving integer programming which are Branch-
and-Bound Methods, Cutting-Plane Methods, Duality Methods and Heuristic Methods.

3.2.1 Branch-and-Bound Method
The basic concept underlying the branch-and-bound technique is dividing and con-
quering. Since the original "large" problem is too difficult to be solved directly,
it is divided into smaller and smaller subproblems until these subproblems can be
conquered. The dividing (branching) is done by partitioning the entire set of feasi-
ble solutions into smaller and smaller subsets. The conquering (fathoming) is done
partially by bounding how good the best solution in the subset can be, and then
discarding the subset if its bound indicates that it cannot contain an optimal solution
for the original problem.

Branching

When dealing with binary variables, the most straightforward way to partition the
set of feasible solutions into subsets is to fix the value of one of the variables (say, x^)
at = 0 for one subset and at = 1 for the other subset.

Figure 3.1 portrays the division procedure (branching) into subproblems by a tree
with branches (arcs) from the ALL node (corresponding to the whole problem having
机 feasible solutions) to the two nodes corresponding to the two subproblems. This
tree，which will continue this "branch growing" iteration by iteration, is referred to
as the solution tree (or enumeration tree) for the algorithm. The variable selected to

20

Figure 3.1: The Solution tree created by the branching for the first iteration of the
BIP branch-and-bound algorithm

do a branching at any iteration by assigning its value (as with Xi above) is called the
branching variable.

One of these subproblems can be conquered (fathomed) immediately, whereas the
other subproblem will need to be divided further into smaller subproblems by setting
X2 = 0 or X2 = 1, etc.

For other IP problems where the integer variables have more than two possible
values，the branching can still be done by setting the branching variable at its respec-
tive individual values, thereby creating more than two new subproblems. However, a
good alternate approach is to specify a range of values (eg. Xj < 2 or Xj > 3) of the
branching variable for each new subproblem.

21

B o u n d i n g

For each of these subproblems, we need to obtain a bound on how good its best feasible
solution can be. The standard way of doing this is to solve a simpler relaxation of
the subproblem. In most cases, a relaxation of a problem is obtained by deleting
("relaxing") one set of constraints that have made the problem difficult to solve.
For IP problems, the most troublesome constraints are the ones that require the
respective variables to be integer. Therefore, the most widely used relaxation is the
LP-Relaxation that deletes integer constraints. In the next section, we would talk
more about how to find out the bound by using LP-Relaxation.

Fathoming

A subproblem can be conquered (fathomed), and thereby dismissed from further
consideration, if one of the following three tests is satisfied

Test 1. Its bound < Z* where Z* = m,ax cx : x e St and St is the feasible set
of X.

Test 2. Its LP-Relaxation has no feasible solution.
Test 3. The optimal solution for its LP-Relaxation is integer.

(If this solution is better than the incumbent, it becomes the new
incumbent, and Test 1 is reapplied to all unfathomed subproblems with
the new larger Z*.)

Unfortunately, the worst time complexity of branch-and-bound method is 0(2"). A
very large number of branches and nodes may be created before a feasible solution is
found. The storage space may thus be large.

Techniques in Branch-and-Bound M e t h o d

There are two typical techniques in branch-and-bound-methods ： Best-first branch-
and-bound method and Depth-first branch-and-bound method.

22

Best-first Branch-and-Bound technique applies the branching process to the
subproblem with the best bound. It terminates either when all nodes are reached or
when the optimal solution has been found.

Depth-first Branch-and-Bound technique applies the branching process to a
subproblem that has been generated by the last branching step. The procedure
backtracks to the most recent alternatives when a solution has been found or when
infeasibility has been encountered. It terminates when the optimal solution has been
found or when all the search space has been reached. We tend to use this technique
in solving CSP.

3.2.2 Cutting-Plane Method
Consider the integer programming problem of the following form

(P) v{P) = max {cx\Ax = 6, a: > 0, x € Z"}
where Z饥 is the set of all integer points in

If an optimal solution to the linear programming relaxation, i.e., the solution to
the problem (P)

(P) v{P) = v{Po) = max {cx\Ax = b,x> 0},
is not integer, then cutting-plane methods can be applied. The idea of cutting plane
method consists in adding a new functional constraint (cut) ax < p which cuts off
the optimal solution to Pq from v{P) [30]. This reduces the feasible region for the
LP relaxation without eliminating any feasible solutions for the IP problem. Then,
we can obtain a new linear programming problem (A) from the original problem
(i^). If its optimal solution is an integer, it would be the optimal solution to (P)
also. Otherwise, we can add a new cut to A to obtain A and so on. Assuming the

23

sequence Pq, Pi, . . . is finite, there must exist an index r such that x G v*{Pr) is an
integer.

There are many methods for finding the cutting planes. Hillier and Lieberman
35] proposed a method for generating cutting planes for pure BIP problems. It first

considers any constraint in "<" form with only non-negative coefficients. Then, it
finds a group of variables which is called minimum cover of the constraint such that
the constraint is violated if every variable in the group equals to 1 and all other
variables equal to 0, but the constraint becomes satisfiable if the value of any one of
these variables is changed from 1 to 0. The resulting cutting plane would be

sum of the variables in the minimum cover < N —

where N is the number of variables in the minimum cover. For example, we have
a constraint 3xi + 4x2 + 2x3 + 5^4 < 10. The minimum covers of the constraint
are (xux2,x4), {x2,xs,X4) and (xi, 0:2, X3,3:4). Therefore, the cutting planes of the
contraint would be x^ + X2 ^ x^ < 2, X2 + Xs + X4 < 2 and xi + + .T3 + X4 < 3.

Wolsey, Walukiewicz, and Garfinkel and Nemhaiiser [30, 31, 33] proposed another
cutting plane method for integer programming problems. The idea is to generate a
Chvatal-Gomory inequaliy on the constraint associated with a chosen basic variable
after finding an optimum from the linear programming relaxation. This approach was
the first cutting plane method which was proposed by Gomory [36]. The problem (P)
can be rewritten as

讓 ^OO^ZjeNB^OjXj
s.t. xBu + 灿B ^ujXj = for u = 1,. . . ,772

^ > 0 and integer
with a,,- < 0 for j eNB, a,o > 0 for 1 , . . . , m and xB^ 二 1 for xB, are basic
variables not in NB, where NB is the set of nonbasic variables. If the basic optimal

24

solution X* is not an integer, there exists some row u with a^o 朱 Z � . By choosing this
row, the Chvdtal — Gomory cut for row u is

^Bu + y^jc/vp ^ .̂ uoj •

We can rewrite this inequality by elminating xBu, giving

JljeNB (^uj - > fluO - L^wO. •

Since 0 < fuj < 1 and 0 < < 1, this inequality cuts off x* as x* = 0 for all
nonbasic variables j € NB in the optimal LP solution. As a result, the slack variable
s is a nonnegative integer variable where

S =-(在uO - L̂ woJ) + Y.ifNB (aj - [^uilXj)-

Consider Example 8.9 in [33

4a; 1 -
7x1 — 2X2 <

<
2xi - 2X2 <
工1,工2 > > 0 and integer

By adding integer slack variables x^.x^.x^, we can obtain the solution of the above
problem by solving this LP problem,

z = max 59/7 -4 /7x3 — 1/7:^4
Xi + 1/7x3 + 2/7x4
X2 + X4
-2 /7x3 + 10/7x4 +

= 2 0 / 7
= 3
= 2 3 / 7
> 0 and integer.

Since the optimal linear programming solution is x = (20/7,3,0,0,23/7)朱

we get the cut
1/7x3 + 2/70:4 > 6/7 or s = - 6 / 7 + 1/7x3 + 2/7x4

25

with 5, Xs, > 0 and integer. Then, we add this constraint to the original constraint
set and get the solution x = (2,1/2,1,5/2,0). Then, we generate the cut again for

i.e. 1/2x5 > 1/2 or t = - 1 / 2 + 1/2x5. As a result, we find an integer solution

3.2.3 Duality in Integer Programming
indent Consider the linear programming problem,

max z = cx
s.t. Ax < b

x>0
which is called the primal problem. There is a related LP,

min VQ = vb
vA> c
v>0

called the dual problem where v is an m-dimensional row vector [31，32]. The dual
problem is derived from its primal by using the following conditions:
1. The primal objective is maximization and the dual objective is minimization.
2. The number of variables in the dual is equal to the number of constraints in the
primal.
3. The number of constraints in the dual is equal to the number of variables in the
primal.
4. The coefficients in the objective function of the primal form the right-hand side of
the dual.
5. The right-hand side of the primal forms the coefficient of the objective of the dual.
6. All variables are nonnegative in both problems.

Obviously, the dual of the dual is the primal itself, so that either problem may be
called the primal or the dual. Note that = where xg is the optimal objective

26

value in the primal problem and v^ is the optimal objective value in the dual problem.
Exactly one of the following four relationships between the primal and dual problems
must hold:
1. Both the primal and dual problems have optimal solutions and XQ = v^.
2. The primal is unbounded and the dual is infeasible.
3. The dual is unbounded and the primal is infeasible.
4. The primal and dual are both infeasible.

Here, we know that by solving the primal (dual), we can solve the dual (primal).
For LP, we can apply the simplex method to either one. Sometimes, it is possible to
start with a dual feasible solution and solve the dual using the same tableau that we
use in the primal simplex method. This algorithm is called the dual simplex method.

T h e Lagrangian Dual i ty

Lagrangian Duality is one of the Dual techniques in optimization. In [37], we know
that the Lagrangian Dual of a linear integer programming problem is usually formu-
lated as a linear programming problem. The objective value in each LP subproblem
is an upper bound of its original IP subproblem. Thus, Lagrangian Relaxation is
usually used as the bounding relaxation for the Branch-and-Bound method. If the
solution from the Lagragian relaxation is an integer, it may be a feasible solution of
the original integer programming problem. We can stop, check its feasibility and com-
pare its objective value with the incumbent to see whether it is an optimal solution
for the problem. If the solution is not an integer, we can compare its objective value
with the bound in the upper level. If it is better, we can branch further. Otherwise,
we prune this branch and then backtrack to the preceding node.

An alternative approach to implement Lagrangian Duality without using linear

27

programming problem is a subgradient algorithm. A subgradient at w of a convex func-
tion f •• Rm Ri is a vector j{u) e R 讯 such that f(v) > f{u) + 一 u) for all
ve R"^ [33]. For a smooth convex function f , ^{u) = Vf{u) = (df/duu ...，df/dum)
is the gradient of f at u. The subgradient algorithm for the Lagrangian dual can be
described as follows.
1. Initialization, u = vP.
2. Iteration k. Set u = u^. Solve the Lagrangian problem IP[u^) with optimal
solution x{u^).
2.1 Set u奸 1 = max{u^ - Mk(d - and /c /c + 1.
3. Step size. Set Hk = ek{iv — — where w is the upper
bound in the Lagrangian Duality and iikrightarrowO with l̂ k = +oo. Go to
step 2.

The difficulty of this algorithm is in choosing the step size The conver-
gence of the series {//a；} may be too slow. This may affect the solution process. Also,
a duality gap may exist in Lagrangian relaxation because the subgradient algorithm
is often terminated before the optimal value is obtained.

3.2.4 Heuristic Algorithm
Many combinatorial problems are very difficult to be formulated as an IP or MIP
when the instance is large. Even if it can be formulated as an IP or MIP, it is
still difficult or impossible to find feasible solutions by using a branch-and-bound
method due to its large size. Sometimes, it is easy to find feasible solutions by
inspection or knowing some problem structures. A general-purpose MIP approach
without using specific problem structures is usually ineffective. Hence, heuristic or
approximation algorithms may be preferable because it can find a "good" feasible

28

solution quickly. Examples of applications of heuristic methods include time-tabling
and sports scheduling problems, set covering, assignment problems and capacitated
production planning problems [9 .

3.3 Zero-one Optimization and Continuous Relax-
ation

Consider a problem of maximizing a general pseudo-Boolean function. We can formu-
late it as a constrained 0-1 polynomial problem. An upper bound on the maximum
objective function value can be computed by constructing a Lagrangian dual. This
Lagrangian dual yields an objective value equal to the roof dual value for the orig-
inal 0-1 polynomial problems. Since this Lagrangian dual can be transformed to a
linear programming problem, we can easily find out the roof or even the solution by
checking whether a roof duality gap exists. This algorithm constitutes a basis for the
bounding scheme in the branch-and-bound algorithm in this thesis.

3.3.1 Introduction
Consider the following unconstrained 0-1 polynomial programming problem

(P I) Z p i = max对o’i广 hix) = Z t i I恥 + E L i 办 FLe耶）工a：.

Here, k is the number of nonlinear terms and for each k 二 1’ … ， S (k) C I =
{1，2’.. •’ n} is the index set of binary variables whose product with a nonzero constant
qk defines the kth term.

From the paper, Roof duality for polynomial 0-1 optimization [5，38], we can
introduce complemented variables x into h{x) where = 1 - Vz = 1,2, • • •, n.

29

By replacing a variable by its complement in the negative term of degree 2 or more,
(PI) can be reformulated such that all terms of degree 2 or more have nonnegative
coefficients, each term contains at most one complemented variable, and no term
contains the same variable in both the complemented arid uncomplemented forms.
Without loss of generality, (PI) can be rewritten as

(P2) Zp2 = max托。，i„̂ o’ii/ci / (x , x) = EILi “而 + E ^ g p dk E U q ^ 工

Ck^Tik) I L e f i �而

where P represents the index set of all nonlinear terms which do not contain a com-
plemented variable, N represents the index set of all nonlinear terms which contain a
complemented variable, Q{k) Q / V/c G P , and B,(k) C I with T{k)朱 R{k) Mk G N.
For each term k e N, T{k) is the index of the associated complemented variable.
Also, we define the set 1�as the index set of all variables x whose complement ap-
pears in (P2) and IN as the index set of all variables x whose complement does not
appear in (P2). Notice that I^IJIN = / .

3.3.2 The Roof Dual expressed in terms of Lagrangian Re-
laxation

From [5], we can find a linear function p{x) as a roof for problem (P2) iff

P � = E t l li工I + EkeN {叫(1 —灯⑷)+ E^eR(k) • 1 � + ZkeP {EzeQ(fc)

where Vk e TV, Uik 3i e R{k) and k e N, and 入让 V(z,/c) 3i e Q{k) and
A： e P are scalars satisfying {v,u,l) > 0 with Vk + E i e i ? � w认=Ck ^k e N and
EiGQ(fc) Xik = dk^ke P.

Clearly, any roof p(x) is an upper bounding linear function of f{x,x) since for all
X binary,

30

EreQik) XikXi > EUq�而， ' ^keP
外{1 — XT{k) + T.ieR{k)叫kXi] > CkXT{k) T^teRik) X i ' i k e N

Let R represent the set of all roofs, the roof dual is defined as

W(R) = minp� e 丑 maXa;e(o’i)"P(工),

and this value can be computed by solving the linear programming problem

(LP) Zlp max li工丄 + dkh + JlkeN CkWk.‘
s.t. tk < xi k) G Q(k) and k £ P,

V/C G TV,
VZ E / ,
V/C G P,
V/C G N.

Wk<l- XT{k)

where 4 = ILeQW 工i 补 & P and Wk =无r� ILe讯it) Xi\/k e N ieR{k)

The set of roofs is complete in the sense that f(x) = mmp(^x)£RP{x) for all x binary.
The value W{R) is an upper bound on Zpi and the roof duality gap is defined as

W(R) - Zpi = minp�ei?{maX:Ee(o’i)>Or)} _ m a X : c G (o , i) " } •

3.3.3 Determining the Existence of a Duality Gap
In order to determine the existence of a duality gap between (PI) and its Lagrangian
relaxation, we can convert (PI) into the following form by adding some redundant
constraints,

(P4) Zp4 = max^e(o,i)nxG(o,i)Uci f(x, x) = Ynei '满 + JlkeP 成 U^eQik)工计

SfcGiv CkXT{k) rUft(fc)而

31

s.t. Xi-[- = \ Vz € Ic,
HiGQCfc)而-而 • (� k) 3i G Q{k) and /c e P,

^T{k) nie/?(A：)工i < ^T{k) e iV,
XT{k) I L e Q �工 i -而 • (� �) 玉 e 丑(於)and k e N,
X i > 0 Vz € / ,
Xi < 1 Vz E IN,
Xi>0 yi G Ic-

The continuous relaxation of (P4), (CP4), is obtained by treating all product
terms as continuous variables and eliminating binary restrictions for the x and x by
tk = rLeQ(fc) X i ^ k e P and Wk = x^k) E U / ? � 补,^ N,

(CP4) ZcP4 = max Ydei�满 + E^eP + J^keN CkWk
s.t. Xi-\-Xi = 1 \/i e Ic (24)

tk < Xi V(i, k)3i e Q{k) andkeP (25)
Wk < XTik) y k e N (26)
Wk < Xi V(z, k) 3i e R(k) and /c e TV (27)
X i > 0 Mi&I (28)
Xi < 1 Vz 6 In (29)
Xi > 0 Vz e Ic (30)

From [5], we know that if there is no duality gap exists between (P4) and (CP4),
(P4) and (CP4) would be consistent by considering a 0-1 quadratic posiform p{x,x)
where

P(:r，x) = + EiG/yvlt^O + 右 +

However, the value of this p(x,x) is very difficult to be solved. Luckily, we found
out that p{x,x) is consistent ONLY if all the variables are integer, i.e. = 0 or 1.
So, if the solution from CP4 is an integer solution, P4 and CP4 would be consistent.
We can prove by considering the example in [5:.

Consider the unconstrained 0-1 cubic programming with 4 variables
maXa； binary h(x) = -X^ + XiX-^ - XiX^ + 0:2X3 + 3:3X4 - .T1X2X3 + .T1X2X4 — X2X3X4

by substituting Xi = 1 - Xi for the smallest indexed variable in each of the negative

32

nonlinear term X1X4, XiX2Xs and :C2工32:4’ this problem can be rewritten as
maXa;’s binary /(工,x) = -X3 - X4 + X1X3 + X1X4 + XjXqXs + X1X2X4 + X2X3X4

By using CPLEX^, the solution is {xi = X2 = Xs = x^ = 0.5). The 0-1 posiform is
p(x, X) = X1X2+X1X3+X1X4 + X1X4 + X1X4+X1X2 + X1X2 + X1.X3+X1X4 + X2X3+X2X4+X3X4

Obviously, p(x, x) is inconsistent and so a duality gap exists.
If we change the coefficients of 1 and -1 on the terms 工32:4 and X2XSX4 to 4 and

一4 in the original function h(x), the problem becomes
maXj； binary — -X3 + XiXs -X1X4 + X2XS + 4x3x4 — X1X2XS + X1X2X4 — 4x2X30:4 and
maXa;’s binary /(工,无)=一_ + OCiX^ + X1X4 + X1X2XS + X1X2X4 + 4X2X3X4

From CPLEX, we can find out the solution for the problem which is (xi = 1, X2 =
0,X3 = l，:c4 = 1) and {xi =0,X2 = 0,2:3 = 1^x4 = 1). The 0-1 posiform

X) = XiX2+XiX2 + XiX3+XiX4 + X2X3 + X2X3 + X2X4+X2X4-hX2X3-\-X2X4+X3X4 + X3X4
is consistent with the above solutions. From these examples, we find that only integer
solution would give p(x, x) equal to 1. Thus, we can prove that the 0-1 posiform p(x, x)
can only be consistent if the solution is an integer solution.

3.4 Software for solving Integer Programs
There are many softwares for integer programming problem. MINTO is a software
system that solves mixed-integer linear programs by a branch-and-bound algorithm
with linear programming relaxations. It also provides automatic constraint classifi-
cation, preprocessing, primal heuristics and constraint generation. Users can enrich
the basic algorithm by providing a variety of specialized application routines that can
customize MINTO to achieve maximum efficiency for a problem class.

^CPLEX is a commercial LP solver that can be written in C language. Please refer to section
6.1.1 for more details.

33

The heart of MINTO is a linear programming based branch-and-bound algorithm.
It can be implemented on top of any LP-solver, like CP LEX that provides capabilities
to solve and modify linear programs and interpret their solutions. Details can be found
in http://akula.isye.gatech.edu/ mwps/projects/minto.html.

To be as effective and efficient as possible when used as a general purpose mixed-
integer optimizer, MINTO attempts to:
-improve the formulation by preprocessing and probing;
-construct feasible solutions;
-generate strong and valid inequalities;
-perform variable fixing based on reduced prices;
-control the size of the linear programs by managing active constraints.

34

http://akula.isye.gatech.edu/

Chapter 4

Integer Programming Formulation
for SAT Problem

To solve the 3-CNF SAT problem, we can convert a satisfiability problem into an
integer constrained maximization problem formulation. We can then use a branch-
and-bound algorithm to find out if a feasible solution exist for the original problem.
By considering the Venn Diagram for 3 independent parties, we can set up some
axioms for converting the CNF clauses into IP constraints. In this chapter, we would
show how to set up these axioms and convert the problem into a singly-constrained
0-1 polynomial problem.

4.1 From 3-CNF SAT Clauses to Zero-One IP Con-
straints

There are many methods to convert the 3-SAT clauses into IP constraints. Etienne
de Klerk [25] proposed to use Semidefinite Programming (SDP) approach to solve the

35

{ x i V 0：2 V X3) = XI X2 XS - X1X2 一 XIXS — X2XS + 0:1X2X3
(^ 1 V V : r 3) = 1 - 2；3 + XIXS + X2X3 — X1X2X3

(x i V X 2 \ / X s) = I - X2X3 + 0:13:2X3

(^1 V X2 V 5 3) = 1 - X1X2XS

Table 4.1: Axioms for transforming the 3-SAT clause into Integer Programming
format

SAT problem. As we stated in chapter 2, there are 7 forms of valid elliptic repre-
sentations for 3-literal clauses [25]. Any clause can be transformed to a combination
of these elliptic representations. The domain of the variables would be -1 or 1 in-
stead of 0 or 1. If these elliptic representations are infeasible, the primal 3-CNF
formula will be unsatisfiable. However, the elliptic semidefinite feasiability problem
is "satisfiabilty-equivalent" to 2-SAT. It is always feasible for "pure 3-SAT" problem.
It has to make some adjustment so that it can detect the imsatisfiability of 3-SAT
problem.

Actually, we have an easier way to convert the CNF clauses into IP constraints.
Consider the Venn diagram with 3 independent parties in Figure 4.1. The shared
area of the union of three parties is the sum of these 3 parties, minus the intersection
of 2 out of these 3 parties, and plus the intersaction of these 3 parties. Thus, we can
have

(^1 V 0:3) {XI A X2) — {XI A XS) — {X2 A X3) + (x i A X 2 A XS)

=XI + X2 X3 - X1X2 一 XIXS - X2XS + 0:10:2X3

In addition, we can rewrite Xi as (1 - Xi) and form the axioms listed in Table 4.1.
Since each literal can only take the true value 0 or 1, each clause should return

the value 1 if it is consistent. Therefore, we can transform the CNF clause into an IP
constraint as in Table 4.2.

36

Figure 4.1: Venn Diagram for 3 independent parties Xu 工2 and X3

(^1 V:C2 V Xs) X1+X2+XS- X1X2 - XiXs - X2XS + 3:1X2X3 >
(^1 y X2V X3) 1 - XS-\- X1X2, + X2X3 - XIX2X^ > 1

V V X3) 1 - 2:2X3 + X1X2X3 > 1
(xi V X2 V X3) 1 - X1X2XS > 1

Table 4.2: IP constraint for converting 3-SAT clause

37

For example,

(^1 V :E2 V 3^3) A {xi V 无2 V 无4)冷 3；1 + 2；2 + X3 - X1X2 一 XiX^ 一 0；2工3 + 2：1工2工3 > l A
1 — X2X4, + X1X2X4, > 1

Now, we can convert m {= 4.25 * n) clauses into m IP constraints, where n is the
number of variables in the original CNF problem.

4.2 From m-Constrained IP Problem to Singly-
Constrained IP Problem

At this stage, we have total m IP constraints where each constraint is a polynomial
represenation with its value larger than or equal to 1. That is,

> 1, > 1, ^m > 1

where m = 4.25 * n and n is the number of variables in the original problem.
In this thesis, the domain of variables is binary (0 or 1). There is no doubt

that each IP constraint can only return the value of 0 or 1, i.e.,仍 e {0,1}. If
the problem is feasible, such that all the constraints are satisfied, the sum of these
constraints should be equal to m, YZi 9i(x) = m. If the sum of these constraints is
less than m (̂；二工 gi(x) < m), the original problem must be infeasible. Thus, we can
combine these m IP constraints together into an unconstrained zero-one polynomial
maximization problem, that is

max

If the original problem is feasible, the optimal objective value should return a
value of m. If the value of the optimal objective value is smaller than m, that means

38

the original problem is infeasible. Therefore, the original problem and the singly-
constrained zero-one polynomial problem are equivalent.

4.2.1 Example
In order to implement the transformation, we generate a 5-variables problem ran-
domly. There are 22 (4.25*5) clauses where each clause contains exactly 3 literals.
The problem is listed as below:
3：4 V V

V X5 V X2
无4 V V X̂

V V 无4

.̂ 5 V 0；4 V
X2VX3V Xi
X5 V X2V Xs
X4 V Xi V Xs
Xs V V X4
X3 V V X4

V X3 V X5
X5 V X3 V X4

V X2V X4

X5 V X4 V X2
V 3；4 V

x^y xiV Xs
Xs\/ X2\/ Xi
Xi V 0：2 V 无4

39

3：5 V Xi V X2
无3 V无2 V Xs

V V Xi
3；4 V V Xj,
Then，we convert these 3-CNF-SAT clauses into IP constraints. The problem can be
formulated as
工4 V无2 V工5 1 —

V Xs V 1 -
V Xi V ^ 1 -

X2 V Xs V X4 => 1 -
Xs V X4 V 1 -
X2 V Xs V Xi 1 -

V V 无3 1 —

V 3；1 V 2:3 1 -
X5 V V 1 -
X3 V 无2 V 无4 1 -

V X3 V X5 1 -
X5 V V :r4 1 -
0；1 V V 0；4 ^ 1 -
Xs V 0：4 V 1 -
3；2 V 3；4 V 1 -
:r5 V Xi V X3 1 -
Xs V V Xi 1 -

V 工2 V 元4 1 -
X5 V Xi V X2

X2 + X2X4̂ + X2X̂ — X2X4X̂ > 1
X2X3 + X2XSX5 > 1
X1X4X5 > 1
XsX4 + 0:2X30:4 > 1
XiXs + X1X4X5 > 1
X3 + X1X3 + X2X3 — X1X2X3 > 1
X2XSX5 > 1
X4 + XiXi + 0:3X4 一 XiXsX4 > 1
XiXi + X1X4X5 > 1
X2X3X4 > 1
Xl + X1X3 + X1X5 — XiXzX^ > 1

+ > 1
X2 + 3:1X2 + X2X4 - XiX2X/̂ > 1
X2X5 + X2X4X5 > 1
工5 + X2X^ + X4X5 - X2XaX^ > 1
X̂ X̂ + XiX^X^ > 1
工 1 + + XiX3 - X1X2X3 > 1

+ X1X2X4 > 1

Xi + X2 + X5 - X1X2 一 XiXs — X2X5 + X1X2X5 >

40

V V 3：5 1 - X2X̂ + > 1
:r5 V X3 V 1 - XiX2,X̂ > 1
X/^y X2\/ X2, I — X2 X2X3 + X2X4 - X2XSX4 > 1
Finally, we combine all these constraints together to form a singly-constrained poly-
nomial problem as

- 2:^2 - x ^ - X^^ X1X2 + 3x12:3 — X1X4 - XiXs + SX2X4 - XsX^ 一 x^x^ + x^x^ -

2 ^ 1 ^ 2 3 : 3 一 XiX^X^^ 一 + 0:1X22:5 - + 3:1X4X5 + 工2工3工5 _ X2X4X5 + X3X4X5 > 1

Now, we can use branch-and-bound algorithm to solve the resulting singly-constrained
zero-one polynomial problem, then check the satisfiability of the original problem.
Branch-and-bound algorithm is a simple method in solving the IP problem. In the
next chapter, we will show how to choose the branch rule and the bound rule for our
IP problem. Also, an example is used to show the details of the algorithm.

1

4

Chapter 5

A Basic Branch-and-Bound
Algorithm for the Zero-One
Polynomial Maximization Problem

After converting the 3-CNF-SAT problem into an IP problem, we would use a branch-
and-bound method to find out whether the problem is feasible. To solve an integer
programming problem, there are many methods in the literature, such as Branch-
and-Bound methods, Cutting Planes, etc. In this chapter, we will express the reason
for choosing Branch-and-Bound method as our algorithm rather than others. Also,
we will discuss our branch and bound rules in the coming sections.

5.1 Reason for choosing Branch-and-Bound Method
There are many methods in solving an integer programming problem. Branch-and-
bound and cutting planes are two typical solution schemes in the literature. Branch-
and-bound method is quite popular. However, the time complexity is 0(2^) in the

42

worst case where n is the number of variables. For a large problem, cutting planes
may do better. In each iteration, it reduces the feasible region by cutting down the
region that does not contain feasible solutions. However, we can only apply cutting
planes method to those constraints which are convex. In this thesis, the resulting
zero-one polynomial maximization problem does not possess a convexity. Branch-
and-bound method seems to be more suitable as being the skeleton of our searching
algorithm. For a branch-and-bound algorithm, we have to set up a branch rule and
a bound rule for the search procedure. For the branch rule, we have to identify a
branching variable at each node by considering the weight of each variable in the
constraint. In each iteration, we have to define the upper bound and lower bound for
the subproblem. In the following sections, we will discuss how to choose our branch
rule and bound rule.

5.2 Searching Algorithm
The searching algorithm in this section would begin by checking whether the problem
is solvable. We would first check the feasibility of the problem. If the right hand side
of the constraint, 6，is non-positive, we could set all the variables at zero and return
the solution. If the sum of all the coefficients of the constraint is larger than or equal
to the right hand side {RHS), then we set all the variables at one and return the
solution. If it is neither the above two cases, we have to continue an iteration process.
Thus, we have to execute the following procedure.

First, we calculate the number of occurrence of each variable according to its
positive terms and its negative terms in the objective. If the number of occurrence of
a variable with positive terms is 0, the existence of that variable would lower the LHS

43

value (sum of the coefficients of all the variable terms) of the objective. Thus, we set
that variable to be 0. On the other hand, if the number of occurrence of a variable
with negative terms is 0，then we set that variable to be 1 because the existence of
that variable would raise up the LHS value.

If it is not the above cases, we need to find out the branching variable by a
branch rule. We substitute this branching variable by a suitable value (0 or 1) to the
constraint and simplify it. We will discuss more about this in the next section. Next,
after updating the constraint, we have to check the LHS value and the RHS value
of the subproblem. If the right hand side of the constraint, b, is non-positive, we
would set the unassigned variables at zero, stop and return the solution. If the sum
of the coefficients of all the variable terms of the constraint is larger than or equal
to the right hand side, we set all the unassigned variables at one, stop and return
the solution. Then, we check the satisfiablity of the original problem by substituting
the solution into the objective function. Here, we can find out the upper and lower
bound of our subproblem. The values of the upper and lower bound are the sum
of coefficients of the positive and negative terms, respectively. The upper and lower
bound at each iteration should be within the boundaries of its predecessor. In section
5.2.2’ we will explain the details of how the bound works. At this stage, if a dead end
is reached, we backtrack to the latest node. If a feasible solution is found, we will
stop and report the feasibility of the problem. Otherwise, we will branch further by
repeating the above procedures until a dead end is reached or all nodes are checked.

5.2.1 Branch Rule
For constrained satisfiability problem, the order of labeling and the domain size of
the variables are essential in labeling the variables. Domain of a variable is the range

44

that represents the values of the variable. Labeling is a kind of elimination method
which uses a bakctracking search to find a solution to the constraints. The order of
labeling is the order of variables being labelled in the binary search tree. A good
variable ordering can shorten the time of searching.

In "Programming with Constraints: An Introduction" [10], Marriott and Stuckey
proposed to separate the variable list into 2 halves and then form in an order. Besides,
we can choose the branching variables according to the domain size of the variables.
However, this may not be applicable in this thesis because the domain of the variables
is binary. It may be meaningless if we sort the variables depending on their domains.
According to this, we may need to think of a suitable branching rule for our thesis.

Let us look at the solution tree shown in Figure 5.1. In each iteration, we have to
find a branching variable to explore. If no variable has a zero positive occurrence or a
zero negative occurrence in the reduced objective function of a subproblem, we need
to find out the branching variable that has the largest occurrence of positive terms.
If more than one variable have the same number of the largest occurrence, we choose
one involved in a term with the largest absolute coefficient. We set the branching
variable at 1.

For example, we have a reduced objective 2x1-4x3-.x 1X2+ 2x2X3. The numbers of
both positive and negative occurences of these variables are 1. However, the coefficient
of one term involving 0:3 has the largest absolute value, 4. So, we set X3 as our
branching variable and set Xs = 1.

45

I-“IF, INF]

INFEASIHLE

Figure 5.1: The solution tree for checking the satisfiability of a 5-variables problem.

5.2.2 Bounding Rule
For any IP problem, we can find an upper bound and a lower bound of the subproblem.
The easiest way is to set the sum of all its positive coefficients as the upper bound
and the sum of the negative coefficients as its lower bound. During the iterations,
the region of these bounds should become tighter and tighter.

5.2.3 Fathoming Test
The fathoming tests in our algorithm are similar to those in the conventional branch-
and-bound method and are listed as follows
Test 1. The upper bound is less than the RHS.
Test 2. An integer optimal solution is found.

In the following section, we will use a simple example with 5 variables in Chapter

46

4 to test the performance of our algorithm. This example will also be used in the
following two chapters to check the preformances of the revised branch and bound
rules.

5.2.4 Example
After converting the CNF problem into IP problem as in Section 4.2.1，the constraint
becomes

-OJi - 2X2 + XIX2 + 3工13；3 — X1X4 _ XIX^ + 3X2X4 一 X^X^ _ X3XS + X4X5 一

— — X2XSX4 + X1X2X5 - X1X3X5 + XIX^XS + 0:2X3X5 - X2X4X5 + X3X4X5 > 1

Since the RHS of the constraint is positive and the LHS value (adding the coefficients
of all variable terms) equals to -3，we set the upper and lower bound of the problem
as 12 and -15 which are the sum of all positive and negative coefficients, respectively.
Iteration 1:
(1) We set up an occurrence table as below:

X2 0：4 工5

+ve
-ve

4
6

4
4

3
7

4
6

5
4

(2) Since there is no variable that contains only positive or negative occurrence, we
choose x^ to be the branching variable and set it at 1.
(3) The constraint can be reduced as
(I)： -2x1 - 2x2 - 2x3 + 2x1X2 + 2x1x3 + X2X3 + 2x2X4 — 2x1x2x3 一 X1X3X4 — X2X3X4 > 1
(4) The RHS of the constraint is positive and the LHS value equals to -3. Since the
upper bound and the lower bound of the subproblem (I) are 7 and -10 respectively,
we continue branching.

47

� �

(2)

(3)

⑷

(5)

(6)
(7)

(8)

(9)
(10)

11

Searching Algorithm for CSP
Procedure:

If the RHS of the constraint is non-positive, set the imassigned variable
to be 0. Stop and go to (10).
If the sum of all the coefficient of the constraint is larger than the RHS,
set the unassigned variable to be 1. Stop and go to (10).
Set the upper bound and lower bound of the primal problem as the sum of
positive and negative coefficients of all the terms, respectively.
Calculate the number of occurrence of each variable in the constraint
according to
positive coefficient
negative coefficient
If the number of occurrence of variable in (3)(i) is 0, then we set that
variable to 0.
If the number of occurrence of variable in (3)(ii) is 0，then we set that
variable to 1.
Go to (6).
Branch Rule:
Choose the variable with the largest occurrence in positive term.
If more than one variable have the same weight, choose a variable
with the largest absolute coefficient of its term.
Set the branching variable at 1.
Update the constraint.
If the RHS of the constraint is non-positive, set the unassigned
variable to be 0. Stop and go to (10).
If the sum of all the coefficient in LHS of the constraint is larger
than the RHS, set the unassigned variable to be 1. Stop and go to (10).
Bound Rule
Set the upper and lower bound of the subproblem by adding up the
positive and negative coefficient of subproblem respectively.
If solution is found or all the nodes have been reached,
stop and go to (10).
If dead end is reached, backtrack to the latest node.
Go back to (3).
Return the feasibility of the problem and the feasible solution
if it is satisfiable.

(i
(

(ii

(iii
(i

(ii
fiii

11

11

111

Table 5.
CSP.

The branch-and-bound algorithm for the singly-constrained polynomial

48

Iteration 2:
(1) We set up an occurrence table as below:

工2 X4

+ve
-ve

2
3

3
3

2
4

1

2
negative occurrence, we (2) Since there is no variable that contains only positive

choose X2 to be the branching variable and set it at 1.
(3) The constraint can be reduced as
(1 1)： -XJ, + 2X4^ — XSXI — X 1X^X4 > 3

(4) The RHS of the constraint is positive and the LHS value equals to -1. Since the
upper bound and the lower bound of the subproblem (II) are 2 and -3 respectively,
we continue branching.

Iteration 3:
(1) We set up an occurrence table as below:

X4

+ve
-ve

0
1

0
3

1
2

(2) Since Xi and x^ have negative occurrence only, we set both Xi and 0:3 at 0.
(3) The constraint can be reduced as
(III): > 3
(4) The RHS of the constraint is positive and the LHS value equals to 2. Obviously,
the problem is infeasible and so we backtrack at X2 — 0.

Backtrack at X2 = 0:
(1) The constraint can be formed as

49

(IV): -2xi — 2X3 + 2̂ :1X3 - 3:1X3X4 > 1
(2) The RHS of the constraint is positive and the LHS value equals to -3. From here,
we find that the upper bound and the lower bound of the subproblem (IV) are 2 and
-5. We continue branching.

Iteration 4:
(1) We set up an occurrence table as below:

X4
+ve
-ve

1
2

1
2

0
1

(2) Since X4 has the negative occurrence only, we set 工4 at 0.
(3) The constraint can be reduced as
(V): - 2 x i - 2x3 + 2xix^ > 1
(4) The RHS of the constraint is positive and the LHS value equals to -2. From here,
we find that the upper bound and the lower bound of the subproblem (V) are 2 and
-4. We continue branching.

Iteration 5:
(1) We set up an occurrence table as below:

+ve
-ve

1
1

1
1

(2) Since there is no variable that contains only positive or negative occurrence, we
choose xi to be the branching variable and set it at 1.
(3) The constraint can be reduced as
(VI): 0 > 3
(4) Obviously, the problem is infeasible and so we backtrack at xi = 0.

50

Backtrack at xi = 0:
(1) The constraint can be formed as
(VII): -2:^3 > 1
(2) The RHS of the constraint is positive and the LHS value equals to -2. Obviously,
the problem is infeasible and so we backtrack at 3:5 = 0.

Backtrack at x^ = 0:
(1) The constraint can be formed as
(V I I I) : - X I - 2 x 2 —X3 — X^+XiX2 + 3X1X3 — XiX^ + 3X2X4 — X-̂ X̂ — 2XiX2X:i — 0:1X3X4 —

> 1
(2) Since the RHS of the constraint is positive and the LHS value equals to -4. From
here, we find that the upper bound and the lower bound of the subproblem (VIII)
are 7 and -11, respectively. We continue branching.

Iteration 6:
(1) We set up an occurrence table as below:

工2 X4

+ve
-ve

2
4

2
3

1

5
1
5

we (2) Since there is no variable that contains only positive or negative occurrence
choose xi to be the branching variable and set it at 1.
(3) The constraint can be reduced as
(IX): -X2 + 2^3 - 2X4 - 2X2X3 + 3X2X4 - 22:3X4 — X2X3X4 > 2
(4) The RHS of the constraint is positive and the LHS value equals to -3. From here
we find that the upper bound and lower bound of the subproblem (IX) are 5 and -8

51

respectively. We continue branching.

Iteration 7:
(1) We set up an occurrence table as below:

X2 X4
4-ve
-ve

1
3

1
3

1
3

(2) Since there is no variable that contains only positive or negative occurrence, we
choose X2 to be the branching variable and set it at 1.
(3) The constraint can be reduced as
(X): X4 — 3XsX4 > 3
(4) The RHS of the constraint is positive and the LHS value equals to -2. From here,
we find that the upper bound and lower bound of the subproblem (X) are 1 and -3,
respectively. We continue branching.

Iteration 8:
(1) We set up an occurrence table as below:

x3 2；4
+ve
-ve

0
1

1
1

(2) Since x^ has negative occurrence only, we set 2:3 at 0.
(3) The constraint can be reduced as
(XI)： > 3
(4) The RHS of the constraint is positive and the LHS value equals to
the problem is infeasible and so we backtrack at X2 = 0.

Obviously,

Backtrack at X2 = 0:

52

(1) The constraint can be formed as
(XII): 2xs — 2x4 - 2x3x4 > 2
(2) The RHS of the constraint is positive and the LHS value equals to -2. From here,
we find that the upper bound and the lower bound of the subproblem (XII) are 2 and
-4. We continue branching.

Iteration 9:
(1) We set up an occurrence table as below:

X4
+ve
-ve

1
1

0
2

(2) Since 2:4 has the negative occurrence only, we set X4 at 0.
(3) The constraint can be reduced as
(XIII): 2x3 > 2
(4) From here, we find that the LHS value of the subproblem (XIII) equals to the
RHS. We set 2:3 = 1.
(5) Since a feasible solution is found (i.e. Xi - 1,X2 = 0,0:3 = 1,X4 = 0,3:5 = 0), we
stop and report that the problem is satisfiable.

Conclus ion

From the above example, we can see that our branch-and-bound algoithm is better
than the conventional backtracking method. Although the number of iterations is
reduced, we still have to branch to a deeper level for checking the satisfiability, espe-
cially for those infeasible branches. In the following chapters, we will discuss revised
branch and bound rules so as to improve the performance of our branch-and-bound
method.

53

[-15, 12]

[-3’ 2]

[-11’ 7]

/ x l ^
U 3 = 0 J

infeasihle

infeasihle infeasihle infeasihle (1 , 0 , 1 , 0 , 0)

Figure 5.2: The solution tree of the problem -3:1 - 2x2 - xs - X4X1X2 + 30:1X3 -
- OCiXs + 3X2X4 - X3X4 - 2:3X5 + X4X5 - 2X1X2X3 — XiXzX^ 一 + XiX2X^ _

工 1̂ :33:5 + + X2XSX5 - X2X4X̂ + xsXiXs > 1 Under our basic searching algorithm

54

Chapter 6

Revised Bound Rule for
Branch-and-Bound Algorithm

In last chapter, we have discussed a basic branch-and-bound algorithm to solve our
zero-one polynomial maximization problem. From the example in section 5.2.4, we
find that the performance of the algorithm is not so good, that is, we have to search
in a deeper level for infeasibility. In this chapter, we propose another bound rule that
can produce a tighter bound for the subproblem. A linear programming problem
is formed to figure out the upper bound of each subproblem and a powerful solver,
CPLEX is used to solve the reduced linear programmming problem. We will end
with an example in section 5.2.4 to see the performance of using this tighter-bound
rule.

6.1 Revised Bound Rule
The procedure of the revised bound rule is described as below. In Chapter 3’ we
describe a method in solving zero-one optimization problems through its relaxation.

55

Bounding Rule
(1) Transform the subproblem into P4 and CP4 and solve the CP4 by

using CPLEX.
(2) If X is an integer solution, i.e. P4 and CP4 are consistent,

(i) if ZcpA > RHSsubproblem , return x as the feasible solution of the
original problem.

(ii) if ZcpA < RHSsubproblem, the subpioblem is infeasible and backtrack to
the previous node.

(3) If X is not an integer solution, i.e. P4 and CP4 are inconsistent,
(i) ZcpA is the upper bound of the subproblem.
(ii) if Zcp4 < RHSsubproblem, then stop and return the subproblem as

infeasible and backtrack to the previous node.
(iii) if ZcpA > RHSsubproblem, we continue branching.

Table 6.1: Revised Bound Rule for the CSP

Now, we will apply a similar way to find out the upper bound or even the feasible
integer solution of zero-one optimization problem. We first transform the subproblem
into the form of P4 and CP4 as discussed in Chapter 3. Then, we can find out its
solution by using a dual method. If x is an integer solution of the dual problem,
CP4 and P4 are consistent. We can then check the satisfiability by checking whether
the objective value, Zcp4, is larger than or equal to the R H S of the subproblem. If
so, we can stop and return the solution x*, where x* is the optimal solution of the
subproblem. Thus, x* is a feasible solution to the original problem. Otherwise, this
subproblem is infeasible and we need to backtrack at the previous nodes.

If X is not an integer solution, CP4 and P4 are inconsistent. We can still find
the upper bound (ZCPA) of the subproblem. If ZQPA is smaller than the R H S of
the subproblem, the subproblem is infeasible and we backtrack to the latest node.
Otherwise, we can continue branching. The revised bound rule is listed in Table 6.1.

56

6.1.1 CPLEX
In [5], it is suggested to use a Lagrangian dual method to solve the zero-one poly-
nomial problem. Lagrangian dual method is a powerful solution scheme in integer
programming problem. It reduces the primal zero-one polynomial problem into a
linear programming problem which is easier to solve.

In this thesis, we use CPLEX as a solver for solving the linear relaxation of
the subproblem. CPLEX is designed to solve linear programming problems using
Simplex method. It can solve a linear programming problem by using the primal-
simplex optimizer, the dual-simplex optimizer or the primal-dual barrier optimizer.
If a linear program contains a substantial network, a speical network optimizer can
be used. If the problem includes integer variables, a branch-and-bound method must
be used. If the problem is a convex quadratic programming problem, the primal-dual
barrier optimizer must be used. Many pratical problems can be solved faster by its
dual-simplex.

On the other hand, CPLEX is callable in C or C + + language and so it can be
embedded in any programme in C or C++. In this thesis, we use C language to
implement the whole search procedure, including both branch and bound rules by
calling CPLEX as a solver for CP4 formulation of the primal subproblem. In the
following section, we will use the example in last chapter to test the performance of
our revised bound rule.

6.2 Example
Refer to the example in section 5.2.4, the constraint is

- rr i — 2x2 - xs - 0：4 + XiX2 + Sxi^s - XiX^ — Xxx^ + 3X2X4 - 2:3X4 — x^x^ + 3:4X5 -

57

2XiX2X2, — XiX2,X4^ — 2：22：3工4 + 工 1工2工5 — ^iX^X^ + 0:13:4X5 + — X2X4X5 + X^X^X^ > 1
We do a similar procedure except that we would use the revised bound rule to find
a solution and a tighter upper bound for the subproblem. Since the RHS of the
constraint is positive and the LHS equals to 1, we set the upper and lower bound of
the problem as 16 and -15, respectively. Before processing the search algorithm, we
set up P4 and CP4 for the primal problem for checking the satisfiability of primal
problem. P4: Max -̂；丄 一 2工2-32：3-5a:4-3a:5+2:1:1:2 +3工13；3 + 1̂：1；4+̂ 10；5+ 2x22:3 +

2>X2X̂ + 3X3X4 + + 2X1X2X2, + XiXJ,XA + 工 4 + 工 1 工2工5 + ^l^s^s + XiX/̂ X^ +
X2XzX^ + + X^X^Xf,

+ Xi = 1 X2 +X2 = 1 + z= 1
< 3；1工2 < < 工1工3 < X1X4 < XiX4 < X4
< < 工5

秘 3 < X2 办3:3 < X2X4 < X2 X2X4 < X4
X3X4 < 无3 X3X4 < X4

< Xs <
< 无1工2工3 < 工2 <

X1X3X4 < X1X3X4 < 512:3X4 <工4 X2X3X4 < X2 X2X3X4 <
工3 X2X3X4 <工4 X1X2X5 < X1X2X5 <
工2 X1X2X5 <工5 < X1X3X5 < X1X3X5 <工5 X1X4X5 < X1X4X5 < X4 X1X4X5 <工5 X2XSX5 < X2 < X2X3X5 < 3；5

X2X4X5 < X2 X2X4X5 < X4 X2X4X5 <工5 XsXiXs <工3 X3X4X5 < X4 X3X4X5 <
> 0 工2 > 0 > 0 0：4 > 0 X5 > 0 < 1 工5 < 1 XI >0 >

binary
> 0

Let ti = X1X2, t2 = X1X3, W3 = X1X4, W4 = X1X5, W5 = X2X3, te = X2X4,W7 = x^x^^w^,=
X3X5,Wg = XiX2X3,Wio = XiX^Xi^Wn = X2XsX^,ti2 = XiX2X5,Wi3 = XiX^X^.tu =
XiX4X5,ti5 = X2XsX5,WiQ = = 3:3X4X5

58

CP4: Max - x i - 2x2 _ 3x3 — _ 3工5 + 力i + 3̂ 2 w^ w^ + 3̂ 6 + Zw-j +
2W8 + 2wg + Wio + Wn + ti2 + Wis + tu + 力 15 + 川 16 + 力 17

S.t. Xi + Xi = 1 X2 + X2 = 1 + 53 = 1
h < xi tl < X2
h < xi h < 3:3
ws < Xi W3 < 3；4
11)4 < Xi UOA < X5
UU5 < X2 W5 < X3
te < 工2

k < X4
Wj < X3 W7 < X4
m < X3 m < xs
Wg < Xi W9 < 工 2 < Xs
Wio < Xi Wio < Wio < X4
Wn < X2 Wn < X3 Wn < X4
tl2 < Xi tl2 < 工2 t\2 <
Wis < Xi '̂ 13 < 幻

< 工 5

tu < Xl tl4 < X2 力14 <工5 tl5 < X2 il5 < 工3
il5 <

me < X2 m6 < WI6 <
tl7 < X3 tl7 < 工4 tl7 < 工5 Xi > 0 3：2 > C)Xs > 0 3；4 > 0 X5 > ()X4 < 1 X5 < 1 Xi >0 X2

using CPLEX ，we find the solution of the relaxed problem is Xi
x^ = x^ = 0.5 with the objective value Zcpi = 3.5. The upper bound of the primal
problem becomes 3.5.

Iteration 1:
(1) We set up an occurrence table as below:

X4 X5
+ve
-ve

4
6

4
4

3
7

4
6

5
4

(2) Since there is no variable that contains only positive
choose X5 to be the branching variable and set it at 1.
(3) The constraint can be reduced as

negative occurrence, we

59

(I) ： -2xi - 2X2 - 2X3 + 2XIX2 + 2X1X3 + X2X3 + 2^2X4 - 2x11:22:3 — XiX^X^ — X2X3X4 > 1
(4) Since the RHS of the constraint is positive and the LHS equals to -3, we try the
revised bound rule to find out the solution of the subproblem and find out its upper
bound.
(5) We set up the P4 and CP4 of the subproblem as:
P4: Max -2xi - 2x2 — 82:3 一 2x4 + '2xiX2 + 22:1X3 + X2X3 + 2x2X4 + 2x3x4 + 2X1X2X3 +
X1X3X4 + X2XsX4^

Xi + Xi X2-\- X2 = 工3 + 无 3 =

XIX2 < Xl XiX2 <
X1X3 < Xi X1X3 < X3
X2X3 < 无2 X2X3 < X3
X2X^ < X2X4 < X4
XsX4 < X3 53X4 <
X1X2X3 < Xi X1X2X3 < X2 X1X2XS <
XiXsXi < •无1 X1X3X4 < Xs XiX^Xi < X4
X2XSX4 < X2 52X3X4 < 3:3 X2XSX4 < X4
Xi>0 > 0 X3 > 0 0：4 > 0 < 1 > 0 > 0 X 3 >
Xi,X2,Xs,X4,Xi,X2,Xs binary

Let ti = XiX2,t2 = XiXs.Ws =无23：3,艺4 =工23：4，《 5̂ ―― ： 3̂工4,川6 = ^1X2X3, Wj =

XiX3Xi,Ws = X2X3X4
CP4: Max -2xi - 2x2 一 3x3 _ 2x4 + 2力i + 2力2 + 1(；3 + '^U + ^w�+ 2we + wj + ws

Xi Xi = 1 X2 + X2
h <
h <
心3 < X2

2:3 + X3 =
h < X2
t2 <
Ws < X3
力4 < X4 W5 < Xs Ws < X4

WQ < Xi Wq < X2 < Xs
< Xi Wl < Xs Wj < X4

m < X2 W8 < X3 Ws < X4
Xi > 0 > 0 X3 > 0 , X4 > 0 X4 < 1 xi >0 X2

60

(6) By using CPLEX, we find the solution of subproblem (I) is xi = X2 = x^ =
X4 = 0.5 with the objective value ZCPA = 2
(7) Since Zcpi > RHSsubproblem, we continue branching and set the upper bound as 2.

Iteration 2:
(1) We set up an occurrence table as below:

xi X2 X3 X4
+ve
-ve

2
3

3
3

2
4

1
2

(2) Since there is no variable that contains only positive occurrence or negative oc-
currence, we choose X2 to be the branching variable and set X2 at 1.
(3) The constraint can be reduced as
(II)： —Xs + 22；4 - X3X4 — XiXsX4 > 3
(4) Since the RHS of the constraint is positive and the LHS equals to -1, we try the
revised bound rules to find out the solution of the subproblem and its upper bound.
(5) We set up the P4 and CP4 of the subproblem as:
P4: Max -xj , + 2x32:4 +
s.t. Xi Xi = 1

< 无3

X1X3X4 <
> 0 0；3 > 0 a;4 > 0

工1，3:3,3:4,xi,无3 binary
Let Wi = X3X4, W2 = X1XSX4
CP4: Max -X3 + 2wi + W2
s.t.

X3 + 53 = 1
^3X4 < Xi
XiX^Xi < Xs X1XSX4 < Xi
X4 <1 > 0 > 0

Xi-\-Xi =
Wi < Xs
W2 < Xi

+ 无3 :

Wi < X4
�——1 W2 < X3
â i > 0 X3 > 0 3:4 > 0 X4 < 1

W2 < X4
> 0 X3 > 0

61

(6) By using CPLEX, we find the solution of subproblem (II) is xi = x^ = 0,X4 = I
with the objective value Zcpa = 2. Since Zcpa < RHSsubproblem, the problem is in-
feasible and so we backtrack at X2 = 0.

Backtrack at X2 = 0:
(1) The constraint can be formed as
(III): - 2 x i — 2x3 + 2x1x3 - X1X3XA > 1
(2) Since the RHS of the
with our bound rule.
(3) We set up the P4 and CP4 of the subproblem as
P4: Max -2xi - 2x2, 一 2:4 + 2xix^ + x^x^ + xix^x^
s.t.

constraint is positive and the LHS equals to -3, we check

Xi + = 1
X1X3 < Xi
X3X4 < X3
X1XSX4 < Xi
xi>0xs> 0 :r4 > 0

X3 + X3 = 1
X1X3 < Xs
X^Xi < X4
X1XSX4 < Xs XiXsX^ < X4
3:4 < 1 > 0 > 0

Let X1XSX4

xi,x3,x4,xi ,xs binary

ti = XiX3,W2 二 X^X^^Ws
CP4: Max - 2 x i - 2xs - 3:4 + 2ti +
s.t. _

Xi-\-Xi = 1 Xs+Xs = I
ti < xi h < X3
W2 < X3 W2 < X4
W3 < Xi Ws < Xs xi > 0 X3 > 0 2:4 > 0 Xi<l

Ws < X4
： !̂ > 0 X3 > 0

(4) By using CPLEX, we find the solution of subproblem (III) is Xi = x^ = 0，工4 =
with the objective value ZCPA = 0
(5) Since Zcpi < RHSsubproblem, we backtrack at X5 = 0.

62

Backtrack at x^ = 0:
(1) The constraint can be formed as
(IV)： —Xi — 2X2 —工3 — + XiX2 + S^i^a — XiX^^ + 3:̂ 2 工 4 —工 33̂ 4 — 2X1X2X3 — 0:1X3X4 —
工2幻工4 > 1

(2) The RHS of the constraint is positive and the LHS value equals to -4.
(3) We set up the P4 and CP4 of the subproblem as:
P4: Max - x i — 2x2 — 3x3 — 6x4 + X1X2 + 3X1X3 + XiX/̂ + 2x2X3 + 3X2X4 + 3X3X4 +
2X1X2X3 + X1XSX4 + X2XSX4
s.t.

Xi-\- Xi = 1 X2-\-X2 =

X1X2 < Xi X1X2 < X2
XlX^ < Xl XiX^ < 3:3
XiX^ < 无1 X1X4 < X4
X2X2, < X2X2, <
X2X^ < X2 < Xi
53X4 <

无3 XsXi < X4
XiX2X^ < Xi X1X2XS < X2 XiX2Xs <

< xi <工3 X1XSX4 < X4
X2XSX4 < X2 X2XsXi < 2：3 X2XSX4 < X4
Xl>0 X2>0 Xs>Q 3；4 > 0 < 1 > 0 X2 > 0 X 3 >
Xi,X2, xs, X4, Xi,X2, X3 binary

Let ti = X1X2, t2 = XiX3,Ws = XiXi, = X2X3, = X2X4, WQ = X3X4, W7 =

X1X2XS, Ws = X1X3X4, W9 = X2X3X4

CP4: Max - x i - 2x2 — 3^3 - bx^ + ti + 3力2 + ŵ s + 2^4 + 3力5 + 3wq + 2wj -\-W8-\-wq
s.t.

63

3；1 + = 1 X2 + X2
tl < Xi
h <

< Xi
W4 < X2
tb <

tl < X2
h <
川 3 < 3；4

Wi < Xs
ts < X4

We < X3 We < x^
W7 < Xi W7 < X2 W7 < X3
Ws < Xi Ws < Xs Ws < X4
Wg < X2 W9 < Xs Wg < X4
xi > 0 X2 > 0 rrs > 0 0：4 > 0 x^ < 1 > 0 > 0 :r3 > 0

(4) By using CP LEX, we find the solution of siibproblem (IV) is Xi = X2 = Xs =
X4 = 0.5 with the objective value Zcp4 = 3.

(5) Since Z CPA > RHSsubprobiem, we continue branching and set the upper bound as 3.

Iteration 3:
(1) We set up an occurrence table as below:

Xi X2 X4
+ve
-ve

2
4

2
3

1
5

1
5

(2) Since there is no variable that contains only positive or negative occurrence, we
choose Xi to be the branching variable and set it at 1.
(3) The constraint can be reduced as
(V): —X2 + 2x3 — 2x4 — 2x2X^ + 8X2X4 — 2x32:4 —工2工3工4 > 2
(4) Since the RHS of the constraint is positive and the LHS equals to -3, we check
the bound rule.
(5) We set up the P4 and CP4 of the subproblem as:
P4: Max —X2 - 5工4 + 2x2X3 + 3x20:4 + 8x32:4 + X2XsXi
s.t.

64

0；2 + 无2 二 1 X3 + X3 = 1
< X2 X2X3 < Xs

X2X4 < X2 X2X^ < 0；4

XsXi < X3 XsX4 < X4
X2X3X4 < X2 X2XSX4 < Xs X2XSX4 < XA

工4 < 1 X3 >
Xs, X4, X2, Xs binary

L e t wi = X2XS,力2 = X2X4, W3 =XsX4, W4 =
CP4: Max -X2 - 5^4 + 2w�+ 3̂ 2 + 3^3 + vm
s.t.

X2-1-X2 = 1 X3 + X3 = 1
Wi < X2 Wi < Xs
h < X2 t2 < X4
W3 < Xs Ws < Xi
W4 < X2 W4 < Xs W4 < Xi

> 0 Xa > 0 a:4 > 0 X4 < 1 > 0 X3 > 0
(6) By using CPLEX, we find the solution of subproblem (V) is X2 二 0,3:3 = 0 , = 1
with the objective value ZCPA = 2
(7) Since Zcpa = RHSsubproblem, we stop the iterations and report a feasible solution
of the original problem X2=0,工3=1，0 :5=0.

6.3 Conclusion
From the above example, we know that the revised bound rule reduced many branches
that may contain infeasible solutions. Also, we can prove the satisfiability problem in
a shorter time. However, is there any further improvement in our branch-and-bound
method? As we know, the shape of the searching tree is highly related to the order
of the branching variable list. Thus, we will propose a revised branch rule in the next
chapter to see whether we can have any further improvement.

65

x 5 = 0] Zcp4 = 3

x 2 = l 1 Zcp4 = 2

infeasible

x 2 = 0) Zcp4 = 0

infeasible

Figure 6.1: The solution tree for the revised bound rule of the problem —xi — 2x2 —
幻—工4 + + ^ X i X s — X 1 X 4 — X 1 X 5 + 3 X 2 X 4 — X s X 4 — X ^ X ^ + 0 : 4 0 : 5 — 2 X 1 X 2 X 3 — X 1 X 3 X 4 —
X2XSX4 XiX2X^ — XiXsXs X1X4XS X2XSX5 — X2X4X5-]-XsX4X5 > 1 Under our searching
algorithm

66

Chapter

Revised Branch Rule for
Branch-and-Bound Algorithm

In Chapters 5 and 6, we have developed a basic branch-and-bound algorithm and a
revised bound rule. Although these two methods improve the traditional branch-and-
bound method, their running time is still slow compared with other SAT searching
methods. In this chapter, we will explain our revised branch rule and compare it with
those we discussed in last two chapters. Moreover, we will test the performance of
the revised branch rule combined with the revised bound rule in last chapter.

7.1 Revised Branch Rule
In Chapter 5, we define a branch rule by considering the positive occurrence of the
variables. This method may be improper because the elimination of a variable would
affect other variables in both the positive and negative terms. It can be improved by
considering both the positive and negative occurrences.

From [15], Chu-Min Li suggested to use Freeman's method [6] to set the branching

67

variable by considering the weight of the variables. The weight can be evaluated by
the following formula :

H(x) = w{x) * w{x) * 1024 + w{x) +

where w{x) is the number of clauses reduced if we set x at 1 and w(x) is the number
of caluses reduced if we set x at 0. Obviously, the contribution is to give more
importance to the product w{x) * w(x) to balance the search tree. The value of 1024
may be used for a quick multiplication because 1024 =

In this thesis, we would modify this formula to:

W(x) = [w(x) * w(x) * n + w(x) + * priority{x

where w{x) is the number of positive occurrence of the variable, x, w{x) is the number
of negative occurrence of x and n is the number of variables in the problem. Initially,
the priority{x) is set to 1. After processing the CP4, we can find out whether x
is integral. From the literature, the value branching variable should be non-integral
from the relaxed problem. Here, we also prefer to branch on a non-integer variable.
If X is an integer, we set priority{x) = 0. Otherwise, we set priority(x) = 1. If there
are more than one variable that contain the same weight, we would randomly choose
one of them. This randomization approach, instead of branching on the best variable,
enables our algorithm to find a feasible solution quicker.

In addition, we have to decide whether to set the branching variable as 0 or 1.
Let us consider the linear term of the branching variable. If it is positive, we set the
branching variable at 1. Otherwise, we set it at 0. Fang and Loetamonphong [39
proved that the cost vectors Q are effective in a constrained problem. In a minimiza-
tion problem, if Ci is larger than zero, we should set x* at its lower bound. Otherwise,
we should set x* as its upper bound. Therefore, the assignment of the branching

68

Revised Branch Rule
(1) Evaluate the weight of each variable Xj, i = 1 , . . . ’ n by using the formula

W{xi) = [w{xi) * w{xi) * n + w(xi) + * priority(xi)
where priority(^Xi) = 0 if Xj is an integer in CP4
or priority (Xi) = 1 if Xf is not an integer in CP4.

(2) (i) Choose the variable,工“ with the highest weight as the branching variable,
(ii) If more than one variable have the highest weight, choose the branching

variable Xi randomly among these variables.
(3) (i) If the linear term of the branching variable is positive, eliminate it

by setting Xi = 1.
(ii) Otherwise, set rc,. = 0.

Table 7.1: Revised Branch Rule for the CSP

variables should be considered in the sign of the linear term in the constraint. The
revised branch rule and the revised branch-and-bound algorithm is shown in Table
7.1 and Table 7.2.

7.2 Comparison between Branch Rule and Revised
Branch Rule

In [15], Chu-Min Li proved that the width of a search tree is more important than
its mean height. The width and the shape of the search tree are highly related to the
order in eliminating variables. When n is small, the searching tree is shallow. That
is, we can find the solution in a short running time no matter how the ordering is.
However, if n becomes larger, the ordering would be more significant. The weight
of the product w{x) * w(x) would be heavier. For example, the positive occurrence
and negative occurrence of Xi are 3 and 5, respectively, and those of X2 are 4 and 4,
respectively. If n equals to 5, the weights of Xi and X2 are 83 and 88, respectively.

69

(5)

(6)
(7)

(8)

(9)
(10)

(i)
(ii)

�

(2)

(3)

(i)
(ii)

� （i)

11

Revised Searching Algorithm for CSP
Procedure:

If the RHS of the constraint is non-positive, set the imassigned variable
to be 0. Stop and go to (10).
If the sum of all the coefficient of the constraint is larger than the RHS,
set the imassigned variable to be 1. Stop and go to (10).
Use the Revised Bound Rule to check whether the original problem is
feasible and find its upper bound.
Calculate the number of occurrence of each variable in the constraint
according to
positive coefficient
negative coefficient
If the number of occurrence of variable in (3)(i) is 0, then we set that
variable to 0.
If the number of occurrence of variable in (3)(ii) is 0，then we set that
variable to 1.
Go to (6).
Use the Revised Branch Rule to find the branching variable and eliminate
this branching variable.
Update the constraint.
If the RHS of the constraint is non-positive, set the imassigned variable to
be 0. Stop and go to (10).
If the sum of all the coefficient in LHS of the constraint is larger than
the RHS, set the imassigned variable to be 1. Stop and go to (10).
Use the Revised Bound Rule to figure out the upper bound of the
subproblem.
If a solution is found or all the nodes have been reached, stop and
go to (10).
If dead end is reached, backtrack to the latest node.
Go back to (3).
Return the feasibility of the problem and the feasible solution
if it is satisfiable.

Revised Branch Rule

(iii)

(i)
(ii)
(i)

(ii)
fiii)

(1) Evaluate the weight of each variable i = 1 , . . . , n by using the formula
W(xi) = [w(xi) * w{xi) * n + w{xi) + w(xi)] * priority(Xi)
where priority(xi) = 0 if is an integer in CP4 and
priority(xi) = 1 if is a non-integer.

(2) (i) Choose the variable, Xi, with the highest weight as the branching variable,
(ii) If more than one variables have the same highest weight, choose the

branching variable Xi randomly among these variables.
(3) (i) If the linear term of the branching variable is positive, eliminate it by

setting Xi = 1.
(ii) Otherwise, set x, = 0.

70

Revised Bound Rule
(1) Transform the subproblem into P4 and CP4 and solve the CP4 by

using CPLEX.
(2) If X is an integer solution, i.e. P4 and CP4 are consistent,

(i) if ZcpA > RHSsubproblem，retuHi X as the feasible solution of the
original problem.

(ii) if ZcpA < RHSsubproblem, the sub-problem is infeasible and backtrack
to the previous node.

(3) If X is not an integer solution, i.e. P4 and CP4 are inconsistent,
(i) Zcp4^ is the upper bound of the subproblem.

(ii) if Zcp4 < RHSsubproblem, then stop and return the subproblem
as infeasible and backtrack to the previous node.

(iii) if > RHSsubproblem, we continue branching.

Table 7.2: Revised Branch-and-Bound Algorithm for the CSP

However, if n equals 100, the difference between these two variables is larger (i.e.
1508 and 1608 respectively). Besides, when n becomes larger, the number of clauses
generated would be larger. Thus, the number of occurrences (both positive and
negative) would deviate from variables sharply. That means, we can find a better
branching variable easier. On the contrary, if we only consider the weight of the
positive occurrence of the variable, it would be ambiguous if more than one variable
contain the same number of positive occurrence. A better branching variable can be
found under our revised branch rule.

On the other hand, Chu-Min Li also proposed that branching on a variable ran-
domly selected among the best variables may solve the problem faster. Our revised
branch rule chooses one variable randomly among those variables with the same
weight. This method is better than comparing the absolute coefficient among those
variables. The elimination of the branching variable may affect other unassigned vari-
ables deeply in the last method. This changes the width of the search tree in the next

71

level and the shape of the whole searching tree.
Neverthless, the revised branch rule considers whether to set the branching vari-

able to 0 or 1 by considering the sign of its linear term. The shape of the search tree
would be different and the width of the serach tree can be reduced. Thus, we can find
out the feasible solution of the original problem in a shorter running time. According
to the above reasons, the revised branch rule should have a better performance. We
can test it by using the example discussed in last two chapters.

7.3 Example
Refer to the example in last two chapters, the constraint is

- 2X2 - Xs- X4-\- X1X2 + SXiXs - X1X4 — X1X5 + SX2X4 — XsX4 — x^x^ + X4X5 -
'^XiX2Xs — X1XSX4 — X2X3Xi + X1X2X5 — X1X3X5 + X1X4X5 + X2X3X5 - X2X4X5 + 3:32:4X5 > 1

In the following, we will use the revised branch and bound rule to show the improve-
ment of these two methods. Since the RHS of the constraint is positive and the LHS
equals to 1, we set the upper and lower bound as 16 and -15, respectively. Before
processing the search procedure, we check the satisfiability of the problem by using
CPLEX and set up the P4 and CP4 format of the problem as
P4: Max - x i — 2x2 _ 3^3 — 6x4 — 3x5 + + Sxixs + ^1X4 + 51X5 + 2x2X3 + 3x23:4 +
3x3X4 + 2^3X5 + 2X1X2X3 + X1X3X4 + X2X3X4 + X1X2X5 + X1X3X5 + X1X4X5 + 0:2X30:5 +

+ X3X4X5
s.t.

72

Xi + Xi = 1 X2 +X2 = 1 + = 1
X1X2 < Xi <
XiXs < Xi <
XIX4 < XiX4 < X4
XIX5 < X1X5 < X5
秘 3 < X2 ^2X3 <
X2X4 < 工2 X2X4 < X4
X3X4 < X3X4 < X4
X3X5 < 无3 X3X5 <
X1X2X3 < Xi X1X2XS < X1X2X3 < 工 3

X1X3X4 < 无1 X1XSX4 <
工3 X1X3X4 < 3：4

X2XSX4 <
无2 X2X3X4 < X2X3X4 <

X1X2X5 < X1X2X5 < 0:1X2X5 <工5 X1X3X5 <
无1 XlX^Xs < X1X3X5 <工5 X1X4X5 < XIX4X5 < X4 X1X4X5 < 2：5

X2X3XS < 工2 002X3X5 < -巧 OO2X3X5 <工5 X2X4X5 <
无2 X2X4X5 < X4 X2X4X5 <

X3X4X5 < X3X4X5 < X4 X3X4X5 h
ooi>0

工2 > 0 Xs > 0 0；4 > 0 3；5 > 0
工4 < 1 < 1 x i > 0 无2 >

XI,X2,XS,X4,XS,XI,X2,XS binary

Let ti ：二 XiX2, t2 = XiXs, ws = xix^, W4 = X1X5, W5 = X2X3, te = X2X4, Wj = X3X4, wg =
Wg = XiX2Xs,Wio = XiX^Xi^Wu = X2XsXi,ti2 = XiX2Xs,Wis = XiX^X^.tu =

XiX4X5,ti5 = X2X3X5, WiQ = X2X4X5, tn = X^X^X^
CP4: Max - x i - 2x2 - 3x3 _ 5^4 - 8x5 + 力1 + 3力2 + w s W 4 + + 3力6 + ^w-j +
如 S + 2W;9 + Wio + Wu + ti2 + Wu + tu + ti5 + ^ig + tu

S.t.

73

Xi Xi = 1 X2 + X2 = 1 X3-\-X3 = 1
tl < Xi tl < X2
h < h < ocs
W3 < Xi Ws < X4
W4 < Xi W4 < X5
yj5 < X2 W5 < Xi
U <工2 te < X4
w? < Xs W7 < X4
Ws < X3 W8 < X5
WQ < Xi Wg < X2 W9 < 工3 WlO < Xi WlQ < Xs ^ 1 0 <

wn < X2 Wn < Xs Wn < 3:4
tl2 < 工 1

t\2 < X2 tl2 < 工5 m s < Wu < Xs m s < ti4 < Xi tu < X2 tl4 < X5
tl5 < 工2 tl5 < X3 tl5 < 工5
则6 < Wi6 < X4 Wi6 < X5
tl7 < 工3 h i < 工4 tl7 < OC5
Xi > 0 X2 > 0 Xa > 0 > 0 Xs > 0 3；4 < 1 Xs < 1 Xi >0 X2

By using CPLEX, we find the solution of relaxed problem is Xi = 0,X2 = Xs =
X4= Xs = 0.5 with the objective value Zcp\ = 3.5. The priorities of the variables are

OOl X2 3；4
priority 0 1 1 1 1

Iteration 1:
(1) We set up an occurrence table as below:

oci 工2 X4 :r5
+ve
-ve

W{x)
4
6
0

4
4
88

3
7

115
4
6

130
5
4

109
negative occur-
X4 at 0 because

(2) Since there is no variable that contains only positive occurrence or
rence, we choose x\ to be the branching variable. Also, we should set
the sign of its linear term is negative.
(3) The constraint is reduced to

74

(4) Since the RHS of the constraint is positive and the LHS equals to -3, we try the
revised bound rules to find out the solution of the subproblem and its upper bound.
(5) We set up the P4 and CP4 of the subproblem as:
P4: Max -a：! - 2x2 - 3x3 — 80:5 + X1X2 + Sxix^ + xix^ + 2x2X3 + 2x30:5 + 2X1X2X3 +
X1X2X5 + X1XSX5 + X2XSX5
s.t.

Xi -{- Xi = 1 X2 + X2 = 1 工3 + = 1

X1X2 < Xi 工 2 <

XiXz < Xi ^ixz < X3
XiX^ < Xi XlX^ <
X2X2, < X2 X2X3 <
X3X5 < X3 X3X5 <
X1X2XS < Xi X1X2XS < 工 2 5 1工2工3 < 工 3

X1X2X5 < Xi X1X2XS < X2 工1工2工5 <工5
XiX^Xs < Xi X1XSX5 <工3 ^1X3X5 < 工5
X2OC3X5 < X2 X2X3X5 < 3；2 <
X l > 0 X 2 > 0 X s > 0 X 5 > 0 X5 < 1 Xi > 0 X2 >

无 13̂ 5, = X2X3,Ws = X^X^, WQ = ^1X2X3,̂ 7 =

xi,x2,xs,x5,xi,x2, X3 binary

Let ti = X1X2, t2 = xiXs, ws =

CP4: Max -Xi — 2X2 _ Sxg — 3工5 + 力i + 3力2 + ws + 2w4 + 2秘5 + 2we - ^ h + ws + tg
s.t. Xi -h Xi = 1 X2-h X2 = 1 X3 + X3 = 1

tl < 工 1
h < X2

h < Xi h < Xs
心3 < Xi W2 < X5 W4 < X2 W4 < 工 3
W5 < X3 W5 < X5 We < xi We < X2 U>6 <
h < t? < 工2 h < 工 5 W8 < Xs Wg < X5
h < 工 2 力9 < Xs h <工5 a：! > 0 0；2 > 0 0；3 > 0 0；5 > 0 Xs < 1 > 0 > 0

By using CPLEX, we find the solution of subproblem (I)

75

= 0.5 with the objective value Zcp4 = 2.5. The priorities of the variables are
xi 工 2

priority 1 1 1 1
(7) Since Zcp4 > RHSsubprobiem, we continue branching and set the upper bound as
2.5.

Iteration 2:
(1) We set up an occurrence table as below:

xi .T5
+ve
-ve

W(x)

3
4

67
3
2

35
2
4

46
2
3

35
(2) Since there is no variable that contains only positive occurrence or negative oc-
currence, we choose Xi to be the branching variable (xi has the largest weight). Also,
we should set xi at 0 because the sign of its linear term is non-positive.
(3) The constraint can be reduced as
(II): -2X2 -幻一 XsX5 + X2XSX5 > 1
(4) Since the RHS of the constraint is positive and the LHS equals to
revised bound rules to find out the solution of the subproblem and its
(5) We set up the P4 and CP4 of the subproblem as:
P4: Max - 2 x 2 - X2,- + 元3X5 + X2X3X5
s.t.

X3 + X3 = 1
无3工5 < 无3 <

X2XSX5 < X2 X2XiX5 < Xs X2X3X5 < X5
X2>0Xs>0Xs>0 X2<1X^<1 Xs>0
x2,xs,x5,xs binary

Let Wi = X3X5,t2 = X2X3X5

-3，we
upper

try the
bound.

76

CP4: Max -2x2 - xs - x ^ w i 1 2
s.t.

工3 + 无 3 = 1

Wl < X3 Wi < Xs
h < X2 t2 < Xa h < 工5

> 0 > 0 3；5 > 0 0；2 < 1 X5 < 1 > 0
(6) By using CPLEX, we find the solution of subproblem (II) is X2 = 2:3 = 0,0:5 = 1
with the objective value Zcp4 = 0. Since Zcpa < RHSsubproblem, the problem is in-
feasible and so we backtrack at xi = 1.

Backtrack at Xi = 1:
(1) The constraint can be formed as
(III)： -X2 + 2X3 - X5- 2X2X3 + X2X5 - 2X3X5 + X2X3X5 > 2
(2) The RHS of the constraint is positive and the LHS value equals to -1 when all
variables are set at 1.
(3) We set up the P4 and CP4 of the subproblem as:
P4： Max -X2 - 30：5 + 2X2X2, + X2Xr, + 2X3X5 + X2X2,X^

X2-\- X2 = 1 工3 + 53 = 1

X2X3 < X2 办工3 <

X2X5 < X2 工2^5 < X3X5 < Xs
< 工5 X2XSX5 < %2 X2X3X5 < X3

> 0 Xa > 0 3：5 > 0 < 1

X2,Xs,X5,X2,Xs binary

Let wi = X2X3, t2 = X2X5, ws 二 xsx^, W4 = X2XSX5
CP4: Max -X2 — 3x5 + 2wi + 力2 + '̂ w^ + m
s.t.

X2XSX5 < X5
X2>0X3>0

77

15’ 12]

infeasible

xl=l) Zcp4 = 2

(1 , 0 , 1 , 0 , 0)

Figure 7.1: The solution tree for the revised branch-and-bound algorithm of the
problem —xi — 2x2-X2,-X4^-\-xiX2-\- ？ i X i X y , - x i x ^ - x i x ^ + 83:20:4 一 x^x/^ - x^x^ + 0:4X5 -
2X1X2X2, - XiX2,X4̂ — 2:2X3X4 + XiX2X^ - XiX^X^ + XiX^X^ + ：1：2工3工5 _ + X^X^X^ > 1
under our searching algorithm

+ =
y^i <
h < X2
m <

m <
h <
W3 < Xs

Wi < X2 Wi < X3
> 0 > 0 > 0 rcs < 1

W4 < X5
X 2 > 0 X 3 > 0

(4) By using CPLEX, we find the solution of subproblem (III) is = 1, X2 = 0:5 = 0
with the objective value Zcpa = 2. Since Zcpa = RHSsubproblem, we stop here and
report the problem is satisfiable with the solution (a;i = x^ = l,X2 = X4 = x^ = 0).

7.4 Conclusion
From the above example, we observe that the revised branch rule gets a great improve-
ment from the original branch-and-bound-algorithm. It is significant that nine steps

78

are saved compared with the basic branch-and-bound algorithm. In the next chapter,
we will present experimental results and analysis from different sizes of problems.
Moreover, we will compare our algorithm with other methods, like SATZ.

79

Chapter 8

Experimental Results and Analysis

In this chapter, experimental results for the three methods, the basic branch-and-
bound method, the revised bound rule method and the revised branch-and-bound
method, are presented in the first section. The statistics include the satisfiability
of the problem, the mean and standard deviation of the computational time, the
maximum number of backtracking and the maximum number of constraints generated
in CP4. We discuss the performance of the three methods and compare them with
SATZ under the same computing environment. We only present part of the results
here and the complete results can be found in Appendix B. In the second section,
we study the significance on the difference between our revised branch-and-bound
method and SATZ and find out some reasons of outperformance of SATZ.

8.1 Experimental Results
Table 8.1, Table 8.2 and Table 8.3 list the mean and standard deviation of the com-
putational time, the maximum number of backtracking and the maximum number
of constraints generated in CP4 for n=5, n=10 and n=30 under 100 samples respec-

80

tively. All methods are written in C language and the samples are run under Sun
Workstation, Ultra-60. In Table 8.1, 76 samples are satisfiable while 24 samples are
unsatisfiable. In Table 8.2, 74 samples are satisfiable while 26 samples are unsatisfi-
able. In Table 8.3, 73 samples are satisfiable while 27 samples are unsatisfiable. From
the results, we can see that the performance of the three methods are in the same level
when n is small. When n=5 and 10, the basic branch-and-bound algorithm runs in
the shortest time although its maximum number of backtracking is much larger than
that of the revised bound rule and the revised branch-and-bound algorithm. These
two methods may take longer time in running the CPLEX for bounding parts.

However, when n is larger (i.e. n=30), the revised branch-and-bound algorithm
does the best in both the mean computational time and the maximum number of
backtracking. Obviously, the completion time becomes less for a smaller number of
backtracking. This finding agrees with what we state in Chapter 5 that the efficiency
of a searching procedure is highly related to the order of labeling. It means that
the decision for choosing a branching variable is significant in branch-and-bound
algorithm.

Table 8.4 gives the computational result of SATZ by using the same data we
used for testing the basic branch-and-bound algorithm, the revised bound rule and
the revised branch-and-bound algorithm. From the result, we find that the mean
computational time of SATZ is less than one second. In Appendeix B, we can see
that the running time of SATZ is within 2 seconds, which is 251 times faster than
our revised branch-and-bound algorithm. In the next section, we will analyze the
computational result of the four methods.

81

Maximum
Mean Standard Deviation Maximum number of

Completion of Computational number of Constraints Method Time (sec.) Time (sec.) Backtracking in CP4 Basic B&B 0.0001 0.001000 20 0 Revised Bound Rule 0.0137 0.011777 6 52 Revised B&B 0.0109 0.011110 7 52

Table 8.1： Results for the three methods when n=5

Maximum Mean Standard Deviation Maximum number of Completion of Computational number of Constraints Method Time (sec.) Time (sec.) Backtracking in CP4 Basic B&B 0.0143 0.012248 382 0 Revised Bound Rule 0.1046 0.062729 48 196 Revised B&B 0.0918 0.052134 31 196

Table ^ >•2： Results for the three methods when n=10

Maximum Mean Standard Deviation Maximum number of Completion of Computational number of Constraints Method Time (sec.) Time (sec.) Backtracking in CP4 Basic B&B 26315.6411 18579.064637 11772316 0 Revised Bound Rule 214.0988 148.253970 15006 729 Revised B&B 130.9823 111.793230 7372 729

Table 8.3: Results for the three methods when n=30
Mean Computational S.D. of Computaional

n Time (sec.) Time (sec.)
5 0.0120 0.006963 10 0.0210 0.008933 30 0.5400 0.261437

Table 8.4: Results for SATZ in n=5, 10, 30

82

8.2 Statistical Analysis
In last section, we know that our revised branch-and-bound algorithm has a great im-
provement when compared to the basic branch-and-bound algorithm and the revised
bound rule method. In section 8.2.1, we will discuss the performance of the above
methods. Also from Table 8.4 and Appendix B, we know that SATZ implemented
by Chu-Min Li runs much faster than our methods. We will talk over how it works
in section 8.2.2.

8.2.1 Analysis of Search Techniques
From Appendix B, we can see that our basic branch-and-bound algorithm has the
shortest running time when n is small (i.e. n=5, 10). The basic algorithm takes less
than 0.01 seconds to complete all the samples. However, its number of backtrack-
ing is more than the revised bound rule method and the revised branch-and-bound
algorithm. The maximum number of backtracking is 20 and 382 for n=5 and 10，

respectively while they are 6 and 48 in the revised bound rule for n=b and 10, re-
spectively and they are 7 an 31 in the revised algorithm for n=5 and 10, respectively.
Obviously, the latter two methods take time to find out the upper bound of the
subproblems by using CPLEX. The computational time of these two methods may
be larger than that of the basic algorithm although the number of backtracking of
these two methods is smaller than that of the basic algorithm. However, when n is
large (i.e. n=30), the order of variable labeling would be significant. As we state in
Chapters 3 and 7, the choice of next branching variable may affect the efficiency for
finding the feasible solution of the problem. A better branch rule is necessary for a
large and hard problem.

83

Let us look at the results for the revised bound rule method and the revised branch-
and-bound algorithm. Our revised branch-and-boimd algorithm has an improvement
especially when n becomes large. We can see that both two methods have the same
degree of performance for n=5 from Appendix B. The revised bound rule method runs
faster in 27 samples out of 100 while the revised branch-and-boimd algorithm does 40.
They have the same computational time in 33 samples. In that 27 samples, where the
revised bound rule method does better, there are 3 samples that the revised branch-
and-bound algorithm has smaller number of backtracking. The revised branch-and-
bound algorithm may consume more time in computing the weight formula as we
state in Chapter 7.

For n=10, the revised branch-and-bound algorithm does better than the revised
bound rule method. There are 57 samples that our revised branch-and-bound algo-
rithm has a shorter computational time while 31 samples that the revised bound rule
method does better. In these 31 samples, where the revised bound rule method has a
better performance, the number of backtracking of our revised branch-and-bound al-
gorithm is smaller than that of the revised bound rule method. Evidently, our revised
branch-and-bound algorithm produces a shorter enumeration tree during execution.
On the other hand, we can see that the revised branch-and-bound algorithm performs
much better for n=30. There are 83 samples that our revised algorithm has both a
shorter computational time and a smaller number of backtracking, and there are 15
samples that the revised algorithm runs less than 10 seconds. In sample 50’ 69, and
86, our revised algorithm runs at around 2 seconds when the revised bound rule takes
more than 100 seconds. Clearly, the revised branch rule is powerful in general.

84

8.2.2 Discussion of the Performance of SATZ
The SATZ implemented by Chu-Min Li is a powerful solution scheme in SAT,

especially when n is large. From Appendix B, we can see that SATZ takes at most
1.6 seconds for computing a sample with 30 variables. Why is SATZ so efficient
especially when n is large? For any 3-SAT problem, every clause contains only three
literals. That means, we can easily figure out whether the problem is feasible after
several eliminations. Let's consider an example with 5 variables and 5 clauses.

Xi V 3：2 V Xs
工2 V 3；3 V Xi
Xi V V
X2 V 0：4 V Xs

V V
First, we evaluate the weight of each variable by using the formula

H{x) = w{x) * w(x) * 1024 + w{x) + w(x)

and the weights are
variable Xi X2 X4 2:5
weight 2 4100 2051 2051 2051

Since Xi has the only positive occurrence, we better set Xi = 1 and the problem
reduces as

T
2：2 V 0：3 V
T
X2 V :r4 V Xs
X3 V V .T5

and the weights for the remaining variables are
variable 工2 工 4

weight 1026 1026 2051 1026

85

We now set ^4=0 as the number of negative occurrence is larger and the problem
becomes

T
T
T
X2 VF V xs
T

Obviously, we choose x^ or X2 as our next branching variable so that (4) is satisfiable.
We can set 2:5=1 and so the problem becomes satisfiable.

T
T
T
T
T

We can easily see that SATZ is very powerful for 3-SAT problem. If the number of
variables, n, is large, i.e. the number of clauses is large, we can find out whether the
subproblem is satisfiable after doing three to four times of eliminations. We backtrack
earlier even the problem is hard.

86

Chapter 9

Concluding Remarks

We conclude the thesis by stating our contributions and possible directions for future
research.

9.1 Conclusion
The contributions of our work can be summarized as follows. We derive a two-step
transformation for converting any 3-CNF-SAT problem into a singly-constrained zero-
one polynomial problem. With the help of this transformation, techniques in solving
integer programming problem, such as branch-and-bound method, can be applied
directly for finding the satisfiability of the original CNF-SAT problem. Based on the
transformed singly-constrained zero-one polynomial problem, we propose our branch-
and-bound algorithm in solving the SAT problem. Revised branch-and-bound rules
are suggested to increase the efficiency.

In the literature, there are several transformations for converting CNF-SAT prob-
lem into an integer programming problem. These transformations usually produce
extra variables and constraints that enlarge the storage size. Luckily, no additional

87

variables and constraints are generated during our transformation and only a single
surrogate constraint is formed at the end of the transformation. The storage space
is smaller compared with other IP transformations. However, information may be
lost in the proposed singly-constrained problem. For the 3-CNF-SAT problem, there
are only 3 literals in each clause. Information gap exists between the two kinds of
problems although they are equivalent.

Branch-and-bound method is suggested in solving the singly-constrained zero-one
polynomial problem. Both revised bound and branch rules are proposed in Chapter
6 and 7, respectively. The basic branch-and-bound algorithm can solve a small-size
problem in a short running time. It is ineffective for a large problem because of the
loose bound and the weak branch rule. The solution tree becomes deeper when n is
large and so the algorithm performs poorly. The revised bound rule provides a tighter
upper bound for the subproblems so that backtracking can be carried out earlier.
Furthermore, CPLEX is a strong solver in solving linear programming problems.
It is used to find out the upper bound of the subproblems after relaxing. So, the
computational time is shortened after using CPLEX. In addition, the weight formula
in the revised branch rule can be used to obtain a better branching variable which
balances the enumeration tree. Thus, the feasible solution can be figured out quickly.
As a result, the revised branch-and-bound algorithm is more efficient.

9.2 Suggestions for Future Research
Our work represents a major step toward the understanding of satisfiability problem
and integer programming problem. The two-step transformation provides a new
way for tackling the satisfiablity problem. However, the resulting singly-constrained

88

problem after the transformation may lose the structural property of the 3-CNF-SAT
problem. The 3-CNF-SAT problem has a special structure: each clause contains
exactly three literals. It is easy to figure out the satisfiability of the problem after
several eliminations in general. The solution tree is short such that backtracking may
occur earlier in every subproblem. On the other hand, the singly-constrained problem
includes n variables in a single constraint and it may become inefficient when n is large.
The enumeration tree is relatively large and backtracking may happen in a deeper
level. Thus, a new approach is needed. Remaining m constraints after converting
the 3-CNF clauses into integer programming format may be appliable since each new
constraint contains at most three variables. This reformulated problem may be easier
to solve.

Nevertheless, we can determine the next branching variable by using the idea in
5]. Considering the singly-constrained polynomial problem in Chapter 4，5, 6 and

71，we can first evaluate the sum of all coefficient of the terms involving each variable
and form the table

Xi X2 X2, 3；4 X^
Sum -1 - 1 - 3 0 1

Then we choose the variable with the largest absolute sum, X3, as the next branching
variable. Next, we differentiate f{x) with respect to X3 and get

兹= — 1 + 3xi — X4 — xs — 2X1X2 — X1X4 — X2X4 — X1X5 + X2X5 + X4X5

After converting it into CP4 format, we can use CPLEX to find out its upper and
lower bounds which are 2 and -8，respectively. Since the absolute value of the lower
bound is larger than the lower bound, we set X3 = 0. The subproblem becomes

iThe singly-constrained polynomial problem is f{x) = —xi — 2x2 - X3 - X4 + X1X2 + 3x1x3 -
xix^ — X3X4 -x^x^ + x^x^ - 2X1X2X2 -x\xzx/i — X2X3X4 + X1X2X5 -X1X3X5 + a：!2:40:5 +
X2X3X5 - X2X4,X5 + X3X4X5 > 1

89

fl(x) = — 2 : ^ 2 —工1工2—工 1 工4—工1 而+3:̂ 2工4+3：4工5+工10：2工5+工1 工4工5—3：2工4工5 > 1

By using CP LEX, we find that the solution of the siibproblem is xi = X2 = x^ =
X5 = 0.5 with Zcp4 = 1.5. Since it is feasible, we continue branching by setting up
the table

Xi X2 X :4 X^
Sum 0 2 ‘‘ I 1

Now, we choose X2 as the branching variable because X2 has a term containing the
largest absolute coefficient in fi(x). We differentiate fi{x) w.r.t. X2 and get

dhjx dX2 = — 2 + Xi + 8X4 + X1X5 — .T4X5.

Since the upper and lower bounds are 2 and -3, respectively, we set X2 = 0. We
simplify the subproblem as

/ 2 � = - X i - X i - X1X4 + X^Xs + XiX^Xs > 1

and find that ZCPA of the objective function is 0. The subproblem is infeasible and
we backtrack at X2 = 1. The subproblem becomes

fsix) = 2x4 — X1X4 + 2:1X42:5 > 3

which is also infeasible because its ZCPA = 2. So, we backtrack at X3 = 1. By
using CPLEX, we find that the problem is feasible with the solution (1,0,1,0,0). This
approach helps us to get more information of how the branching variable effects in
the objective function. Backtracking occurs earlier under this consideration.

90

Appendix A

Searching Procedures for Solving
Constraint Satisfaction Problem
(CSP)

The present appendix is devoted to the presentation of some tree search procedures
in solving CSPs. These procedures include generate and test, standard backtracking,
forward checking and looking ahead. For convenience, we restricted our scope in the
area of binary CSPs.

A . l Notation
Let X i , X 2 , . . .,Xn be the variables occurring in the binary CSP with their domains
Di,D2,…，Dn on the binary values. Let Cij(xi,xj) be the constraint between the
variables Xi and Xj where i < j. We say that values Vi and Vj for variables Xi and Xj
are consistent if and only if Cij{vi, vj) is true for i + j. Also, a value Vi for Xi is said
to be consistent with the values for the variables Xi,. . . ,Xk iff values Vi and

91

GENERATE AND TEST f ^ v i , . •., Vk) is true for all /c < n iff
1. Vi 6 Di for (1 < z < k).

Table A.l: Search Procedure for Generate and Test technique

Vj for variables xi and Xj are consistent for I < j < k.

A.2 Procedures for Solving CSP
In this section, we review 4 methods to solve the CSPs. In general, the searching pro-
cedure consists of testing whether (?；!,..., Vn) satisfies some property P„(i；!,..., Vn),
where v i , . . . ,Vn are the values of Xi, . . . and holds if all the constraints are
satisfied for this assignment [40 .

A.2.1 Generate and Test
"Generate and Test" is the reverse of the constraint and generate methodology [10
It is the simpliest way to find out the optimal solution of CSP. It first generates all the
possible solutions and then tests them to see whether they satisfy all the constraints.
The procedure is listed in Table A.l

However, "generate and test" is not an efficient way in solving CSP. All its con-
straints are only used to test whether the overall assignment is a solution or not.
Actually, no pruning occurs in the search. Thus, it explores all the search space. On
the other hand, the size of the enumeration tree is roughly proportional to the number
of nodes in the tree. Therefore, "generate and test" is an inefficient search procedure
with time complexity of 2” where n is the number of variable in the problem.

92

STANDARD BACKTRACKING Pk(vu... is true for all /c < n iff
1. Vi e Di for (1 < z < k).
2. for all i,j {I < i < j < k), Cij(vi, Vj) is true.

Table A.2: Search Procedure for Standard Backtracking technique

A.2.2 Standard Backtracking
One of the simplest techniques for determining the satisfiablity of a CSP is back-
tracking. The idea is to choose a variable, and for each value of its domain, replacing
the variable with that value in the constraints and determining the satisfiability of
the constraints. This process repeats until a solution is found or all the variables are
reached and then returns true or false indicating whether the constraints are satis-
fiable. Moreover, if a dead end is reached, it will return to the previous stage and
check on the other side. The procedure is listed in Table A.2.

In standard backtracking, constraints are used backward to achieve a posteriori
pruning. Given a sequence < vi , . . .,Vk >，the problem is to extend it by finding a
value Vk+i for x^+i in such a way that all the constraints involving Xk+i and a variable
from Xi , . . . ,Xk are satisfied. If there exists no such value, the sequence < Vi,. . . ,Vk >
cannot be extended and there is no need to search further in this part of the tree.
This posterior pruning enables a drastic improvement in efficiency over "generate and
test", which has to test all the assignments beginning by < v i , . . . ,Vk >. However,
if standard backtracking rediscovers the same fact continually, detects the failures
and useless generation lately or backtracks to the first choice, it will suffer from a
pathological behavior called thrashing.

93

FORWARD CHECKING Pk(vu ...,叫)is true for sl\ k < n iff
1. Vi e Di for (1 < z < k).
2. for all i,j (1 < z < j < k), Cij{vi, vj) is true.
3. for all I (/c < / < n), there exists a value vi in Di such that
Cii{vuvi), . . . , Cki(vk, vi) are true.

Table A.3: Search Procedure for Forward Checking technique

A.2.3 Forward Checking
Forward checking is the easiest way to prevent future conflicts. It checks only the
constraints between the current variable and the future variables. When a value is
assigned to the current variable, any value in the domain of an unassigned variable,
which conflicts with this assignment, is removed from the domain. The advantage of
this is that if the domain of an unassigned variable becomes empty, it is known imme-
diately that the current partial solution is inconsistent. Forward checking therefore
allows branches of the search tree that will lead to failure to be pruned earlier than
with simple backtracking. Note that whenever a new variable is considered, all its
remaining values are guaranteed to be consistent with the past variables. So checking
an assignment against the past assignments is no longer necessary.

The procedure of forward checking is listed in Table A.3. It overcomes many
drawbacks in "generate and test" and backtracking. It spends more time in each
node of the serach tree to reduce the number of nodes considered, the set of possible
values for the not-yet-assigned variables and the number of constraints checks so as
to achieve an overall improvement in performance.

94

LOOKING AHEAD …,Vk) is true for all A; < n iff
1. Vi G Di for (1 < z < k).
2. for all (I < i < j < k) Cij{vi, Vj) is true.
3. for all I (k < I < n), there exists a value vi in Di such that
Cu(vi,vi), •..，Ckiivk, vi) are true.
4. for all I {k <l < n), there exists a value vi in Di such that it is possible to find
values
Wfc+i，•. • ， . • •， i n Dk+i, . . . ’ A - i , A+i,…，Dn which satisfy
Ck+u{Vk+l,Vl), • . • , Ci-ii{vi^i,vi),cii+i{vi, Vi+i), • • •，Cin(v“ Vn).

Table A.4: Search Procedure for Looking Ahead technique

A.2.4 Looking Ahead
The techniques used in looking ahead is similiar to that of forward checking. In looking
ahead, constraints are used even when more than one variable are left uninstantiated.
It reduces the set of possible values that can be assigned to these variables. It prunes
the variables earlier than that in forward checking. Therefore, the search size is
reduced due to the smaller search space.

Looking ahead avoids much redundant work and also makes failures appear earlier
in the search tree. It prevents bad backtracking points because of the directly prop-
agated consequences of the choices to the unassigned variables. However, it is less
incremental than forward checking. Indeed, looking ahead cannot remember and save
most of the test results when checking the unassigned variables against the unassigned
variables. Therefore, omitting these tests often results in a better efficiency.

95

Appendix B

Complete Results for Experiments

B . l Complete Result for SATZ
B. n = 5

Sample no. Completion time (sec.) Sample no. Completion time (sec.)
1 0.0100 16 0.0100
2 0.0200 17 0.0200
3 0.0100 18 0.0100
4 0.0000 19 0.0000
5 0.0200 20 0.0100
6 0.0000 21 0.0200
7 0.0100 22 0.0000
8 0.0100 23 0.0100
9 0.0200 24 0.0100
10 0.0100 25 0.0100 11 0.0200 26 0.0300 12 0.0100 27 0.0200 13 0.0200 28 0.0200 14 0.0000 29 0.0100 15 0.0200 30 0.0100

continued on next page

96

Sample no. Completion time (sec.) Sample no. Completion time (sec.)
31 0.0200 66 0.0100
32 0.0200 67 0.0200
33 0.0100 68 0.0100
34 0.0200 69 0.0100
35 0.0200 70 0.0200
36 0.0200 71 0.0200
37 0.0100 72 0.0000
38 0.0100 73 0.0200
39 0.0200 74 0.0100
40 0.0200 75 0.0100
41 0.0100 76 0.0000
42 0.0000 77 0.0100
43 0.0100 78 0.0200
44 0.0000 79 0.0000
45 0.0000 80 0.0100
46 0.0100 81 0.0200
47 0.0000 82 0.0100
48 0.0100 83 0.0200
49 0.0200 84 0.0100
50 0.0200 85 0.0100
51 0.0000 86 0.0100
52 0.0100 87 0.0100
53 0.0100 88 0.0100
54 0.0100 89 0.0100
55 0.0000 90 0.0200
56 0.0100 91 0.0200
57 0.0200 92 0.0100
58 0.0100 93 0.0200
59 0.0000 94 0.0100
60 0.0100 95 0.0200
61 0.0100 96 0.0100 62 0.0200 97 0.0100
63 0.0100 98 0.0100 64 0.0100 99 0.0100 65 0.0200 100 0.0100

97

B.1.2 n = 10
Sample no. Completion time (sec.) Sample no. Completion time (sec.)

1 0.0200 41 0.0100
2 0.0300 42 0.0300
3 0.0100 43 0.0300
4 0.0300 44 0.0300
5 0.0200 45 0.0200
6 0.0400 46 0.0200
7 0.0100 47 0.0200
8 0.0200 48 0.0200
9 0.0300 49 0.0200
10 0.0300 50 0.0200
11 0.0200 51 0.0300
12 0.0300 52 0.0100
13 0.0200 53 0.0300
14 0.0300 54 0.0300
15 0.0200 55 0.0100
16 0.0100 56 0.0100
17 0.0100 57 0.0300
18 0.0200 58 0.0300
19 0.0200 59 0.0200
20 0.0300 60 0.0300
21 0.0300 61 0.0100
22 0.0300 62 0.0200
23 0.0100 63 0.0100
24 0.0100 64 0.0300
25 0.0200 65 0.0300
26 0.0100 66 0.0100
27 0.0200 67 0.0100
28 0.0100 68 0.0300
29 0.0200 69 0.0100
30 0.0100 70 0.0200 31 0.0300 71 0.0300 32 0.0300 72 0.0200 33 0.0200 73 0.0200 34 0.0200 74 0.0300 35 0.0300 75 0.0300 36 0.0300 76 0.0300 37 0.0200 77 0.0200 38 0.0200 78 0.0200 39 0.0200 79 0.0200 40 0.0200 80 0.0200

continued on next page
98

Sample no. Completion time (sec.) Sample no. Completion time (sec.)
81 0.0100 91 0.0200
82 0.0400 92 0.0200
83 0.0100 93 0.0000
84 0.0200 94 0.0300
85 0.0100 95 0.0000
86 0.0300 96 0.0000
87 0.0200 97 0.0100
88 0.0200 98 0.0200
89 0.0100 99 0.0400
90 0.0300 100 0.0300

. 1 . 3 n = 3 0
Sample no. Completion time (sec.) Sample no. Completion time (sec.)

1 0.8900 26 0.7000
2 0.1000 27 0.8600
3 0.5800 28 0.6100
4 0.1500 29 0.7500
5 0.1100 30 0.5000
6 0.6500 31 0.4900
7 0.5000 32 1.0200
8 0.5700 33 0.7100
9 0.0700 34 0.7200
10 1.0300 35 0.5700
11 0.6000 36 0.6000
12 0.6700 37 0.4500
13 0.3000 38 0.3800
14 0.6600 39 0.2800
15 0.3400 40 0.4100
16 0.7900 41 0.3800
17 0.2700 42 0.7900
18 0.7000 43 0.5700
19 0.6000 44 0.6500
20 0.2900 45 0.3000 21 0.4400 46 0.7000 22 1.1200 47 0.4900
23 0.6900 48 0.7500 24 0.6400 49 0.4200
25 1.5800 50 0.7400

continued on next page

99

Sample no. Completion time (sec.) Sample no. Completion time (sec.)
51 0.2500 76 0.3400
52 0.7700 77 0.5500
53 0.1300 78 0.4200
54 0.4700 79 0.8000
55 0.5600 80 0.3100
56 0.8100 81 0.7900
57 0.4400 82 0.5500
58 0.1400 83 1.1100
59 0.8500 84 0.4700
60 0.2600 85 0.3600
61 0.3100 86 0.7600
62 0.3200 87 0.4200
63 0.9100 88 0.2500
64 0.6000 89 1.0100
65 0.6500 90 0.3500
66 0.4700 91 0.4800
67 0.6300 92 0.5800
68 0.0400 93 0.7500
69 0.3400 94 0.4700
70 0.4900 95 0.2500
71 0.1400 96 0.5900
72 0.2700 97 0.4000
73 0.6100 98 0.8700 74 0.3000 99 0.3200
75 0.3700 100 0.4900

100

B.2 Complete Result for Basic Branch-and-Bound
Algorithm

B.2. n = 5
Sample no. Completion time (sec.) Number of backtrack Number of iteration

1 0.0000 12 9
2 0.0000 0 1
3 0.0000 3 6
4 0.0000 15 11
5 0.0000 9 10
6 0.0000 3 7
7 0.0000 2 0
8 0.0000 0 5
9 0.0000 12 10
10 0.0000 0 4
11 0.0000 13 10
12 0.0000 0 4
13 0.0000 17 13
14 0.0000 0 5
15 0.0000 3 6
16 0.0000 0 3
17 0.0000 9 10
18 0.0000 2 6
19 0.0000 4 5
20 0.0000 5 5
21 0.0000 11 12
22 0.0000 0 5
23 0.0000 7 8
24 0.0000 0 5
25 0.0000 18 14
26 0.0000 7 9
27 0.0000 0 4
28 0.0000 0 2
29 0.0000 0 5
30 0.0000 0 1

continued on next page

101

Sample no. Completion time (sec.) Number of backtrack Number of iteration
31 0.0100 2 5
32 0.0000 7 9
33 0.0000 5 7
34 0.0000 2 6
35 0.0000 9 11
36 0.0000 7 9
37 0.0000 1 4
38 0.0000 12 10
39 0.0000 0 1
40 0.0000 7 7 41 0.0000 11 10 42 0.0000 2 5 43 0.0000 7 10 44 0.0000 17 13 45 0.0000 14 14
46 0.0000 15 12
47 0.0000 0 1
48 0.0000 5 6
49 0.0000 11 11
50 0.0000 20 15
51 0.0000 0 4
52 0.0000 7 8
53 0.0000 0 4
54 0.0000 14 12
55 0.0000 5 0
56 0.0000 9 10 57 0.0000 0 5
58 0.0000 0 4
59 0.0000 0 5
60 0.0000 7 8 61 0.0000 18 14 62 0.0000 8 10 63 0.0000 15 12 64 0.0000 0 1 65 0.0000 0 4 66 0.0000 13 10 67 0.0000 10 8 68 0.0000 9 9 69 0.0000 0 4 70 0.0000 14 11

continued on next page

102

Sample no. Completion time (sec.) Number of backtrack Number of iteration
71 0.0000 5 7 72 0.0000 3 6 73 0.0000 0 2 74 0.0000 0 4 75 0.0000 16 13 76 0.0000 5 0 77 0.0000 17 13 78 0.0000 16 13 79 0.0000 0 4 80 0.0000 0 1 81 0.0000 0 1 82 0.0000 5 7 83 0.0000 0 3 84 0.0000 18 14 85 0.0000 0 5 86 0.0000 13 11 87 0.0000 9 10 88 0.0000 0 1 90 0.0000 0 2 91 0.0000 5 8 92 0.0000 14 11 93 0.0000 0 4 94 0.0000 13 10 95 0.0000 14 11 96 0.0000 0 1 97 0.0000 9 9 98 0.0000 3 4 99 0.0000 1 5 100 0.0000 0 5

103

B.2.2 n = 10
Sample no. Completion time (sec.) Number of backtrack Number of iteration

1 0.0300 159 119 2 0.0300 261 193 3 0.0300 262 193 4 0.0000 12 19 5 0.0200 192 144 6 0.0400 382 269 7 0.0200 95 77 8 0.0000 78 62 9 0.0100 70 57 10 0.0100 96 77 11 0.0300 241 178 12 0.0000 0 1 13 0.0000 31 32 14 0.0400 278 201 15 0.0000 17 20 16 0.0000 0 9 17 0.0100 0 9 18 0.0200 148 112 19 0.0000 131 102 20 0.0000 13 17 21 0.0100 64 52 22 0.0100 87 67 23 0.0200 131 101 24 0.0100 78 63 25 0.0100 6 12 26 0.0000 20 23 27 0.0000 6 13 28 0.0000 64 55 29 0.0300 197 149 30 0.0200 139 110 31 0.0300 286 204 32 0.0300 279 202 33 0.0200 165 129 34 0.0200 177 130 35 0.0100 104 85
continued on next page

104

Sample no. Completion time (sec.) Number of backtrack Number of iteration 36 0.0200 324 233 37 0.0300 190 138 38 0.0100 0 9 39 0.0100 75 59 40 0.0000 22 24 41 0.0000 0 6 42 0.0200 143 114 43 0.0000 67 56 44 0.0300 286 211 45 0.0100 337 244 46 0.0300 242 184 47 0.0000 2 11 48 0.0100 106 86 49 0.0100 23 24 50 0.0000 12 17 51 0.0300 242 177 52 0.0000 0 7 53 0.0100 80 69 54 0.0100 64 53 55 0.0300 249 182 56 0.0100 44 40 57 0.0000 39 37 58 0.0200 174 135 59 0.0200 129 102 60 0.0300 234 173 61 0.0000 11 14 62 0.0200 145 115 63 0.0300 229 167 64 0.0000 6 12 65 0.0000 58 48 66 0.0300 256 193 67 0.0100 204 149 68 0.0100 15 19 69 0.0100 6 12 70 0.0200 81 70
continued on next page

105

Sample no. Completion time (sec.) Number of backtrack Number of iteration 71 0.0100 11 15 72 0.0300 237 174 73 0.0000 70 61 74 0.0100 82 69 75 0.0200 159 122 76 0.0100 93 74 77 0.0100 65 56 78 0.0100 189 141 79 0.0400 327 237 80 0.0000 0 7 81 0.0200 168 126 82 0.0100 33 31 83 0.0200 153 115 84 0.0100 68 56 85 0.0400 309 223 86 0.0300 271 194 87 0.0100 9 15 88 0.0000 86 72 89 0.0300 296 213 90 0.0400 293 210 91 0.0300 229 170 92 0.0100 77 65 93 0.0100 48 43 94 0.0100 13 18 95 0.0000 13 15 96 0.0000 25 27 97 0.0000 2 10 98 0.0000 169 128 99 0.0200 236 173 100 0.0200 132 101

106

B.2.3 n 二 30
Sample no. Completion time (sec.) Number of backtrack Number of iteration 1 10727.7600 1575732 1187777 2 187.7100 29071 22095 3 35452.8800 5529659 4170098 4 41224.5200 6083949 4602421 5 8862.9700 1304851 992397 6 45583.2600 6809587 5128830 7 35174.5200 5248507 3948288 8 41064.2800 4558643 3434278 9 21446.7100 3343211 2528336 10 34701.6200 5423585 4102313 11 2516.6900 391402 295066 12 14781.3300 2310952 1739584 13 75195.1100 11772316 8842614 14 8474.8100 1306260 992032 15 27262.4700 4206767 3184373 16 14899.1200 2319646 1745341 17 39267.3500 6096143 4600421 18 35008.0900 5399612 4101859 19 9025.4400 1405705 1060508 20 4156.0800 643662 485374 21 17920.8300 2785663 2102286 22 3050.7900 475756 358963 23 32000.9700 4982253 3754772 24 55037.6300 8567071 6413401 25 14405.6900 2243578 1687770 26 40577.5300 6321933 4744907 27 50001.5100 7509983 5629201 28 15279.7800 2364208 1792056 29 5692.4000 882469 665490 30 15178.2300 2355677 1785754

continued on next page

107

Sample no. Completion time (sec.) Number of backtrack Number of iteration
31 46526.9000 6944312 5198023
32 67410.8300 9908148 7498961
33 7377.6600 1145283 861818
34 7775.9200 1202975 911410
35 35130.8000 5200526 3936922
36 394.9100 61430 46294
37 4413.1100 679639 515112
38 39731.7400 5890582 4445993
39 20492.2900 3192373 2410813
40 30370.6100 4728537 3564827
41 3782.6700 584415 442536
42 1316.1400 204228 153985
43 39621.9400 6209183 4653914
44 741.5300 116015 86858
45 31521.3400 4901398 3710782
46 5376.3600 797927 601290
47 52873.6900 7857952 5922740
48 35363.4200 5225284 3955174
49 32277.9100 4749665 3600649
50 31782.4100 4711417 3553183
51 12746.8500 1893829 1425197
52 31111.7000 4652442 3484544
53 22902.3500 3422493 2570778
54 11533.3800 1701968 1292010
55 50392.9400 7534113 5663159
56 72138.2400 10755194 8079082
57 10743.3800 1673983 1258206
58 39655.2000 5880949 4432966
59 46881.4300 6974524 5259028
60 11956.5500 1862328 1402868
61 34186.5700 5077899 3813711
62 62983.4900 9375250 7056047
63 19552.5700 2920613 2201361 64 50643.9700 7504727 5657906 65 42091.7400 6239241 4706913 66 55900.3400 8253388 6239150 67 32500.6000 4817626 3633354 68 18550.6300 2788543 2106355 69 29470.1600 4360551 3293909 70 2163.7300 330682 252449

continued on next page

108

Sample no. Completion time (sec.) Number of backtrack Number of iteration
71 20794.9600 3212761 2429045
72 15114.7400 2335160 1771537
73 24082.7600 2635406 1993972
74 17830.5300 2635406 1993972
75 33901.3500 5008215 3799110
76 12649.1400 1934404 1469105
77 9.4400 1416 1097
78 42614.4200 6339793 4779648
79 23356.9000 3509844 2659156
80 25737.9800 3954266 2988154
81 140.8700 21474 16455
82 12319.5100 1811001 1370018
83 22642.7700 3360847 2534561 84 40221.2200 5976391 4514993
85 53090.2200 7988510 5972516
86 4976.2400 765347 575670
87 25635.3800 3797407 2866227
88 38169.6200 5662305 4267173
89 4654.2800 686394 515315
90 24856.5100 3666525 2763633
91 4476.8800 686394 515315
92 24885.4000 3668878 3668878
93 62419.2700 9326257 7020550
94 20146.6000 2984110 2246253
95 12878.4300 1910416 1441161
96 50457.4700 7500996 5644830
97 11909.3100 1773485 1335448
98 51638.7100 7743731 5810020
99 42899.1500 6360133 4801420
100 507.9700 78514 59072

B.3 Complete Result for Revised Bound Rule
B.3. n = 5

109

Completion Number of Number of Maximum number of Sample no. time (sec.) backtrack iteration Constraints generated in CP4
1 0.0100 4 4 19 2 0.0000 0 1 0 3 0.0000 1 3 22 4 0.0300 2 3 21 5 0.0200 3 6 25 6 0.0000 1 3 18 7 0.0000 0 2 0 8 0.0100 0 3 16 9 0.0100 4 4 17 10 0.0000 0 3 22 11 0.0100 1 2 14 12 0.0100 0 3 18 13 0.0100 4 4 24 14 0.0000 0 3 17 15 0.0100 1 3 22 16 0.0100 0 3 23 17 0.0100 2 4 21 18 0.0200 0 3 14 19 0.0000 1 2 12 20 0.0000 2 3 21 21 0.0100 2 4 24 22 0.0300 0 3 20 23 0.0100 1 3 16 24 0.0300 0 3 27 25 0.0000 4 4 21 26 0.0200 1 3 24 27 0.0000 0 3 19 28 0.0000 0 2 0 29 0.0000 0 3 24 30 0.0000 0 1 0

continued on next page

110

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

31 0.0000 1 3 16
32 0.0000 2 3 19
33 0.0200 0 2 18
34 0.0200 0 3 22
35 0.0400 2 4 24
36 0.0000 1 3 15
37 0.0000 0 3 21
38 0.0000 5 5 24
39 0.0000 0 1 0
40 0.0100 2 4 17
41 0.0200 3 4 22
42 0.0100 1 3 21
43 0.0100 2 4 23
44 0.0500 4 4 21
45 0.0300 3 4 22
46 0.0300 4 4 18
47 0.0000 0 1 0
48 0.0200 1 3 20
49 0.0100 2 3 21
50 0.0200 4 4 27
51 0.0000 0 3 24
52 0.0200 2 3 13
53 0.0000 0 2 14
54 0.0100 4 4 27
55 0.0200 0 4 19
56 0.0100 6 7 23
57 0.0100 0 3 19
58 0.0000 0 3 23
59 0.0000 0 3 27
60 0.0200 2 4 22
61 0.0000 2 3 18
62 0.0100 2 4 24
63 0.0200 3 3 19
64 0.0000 0 1 0
65 0.0000 0 2 15

continued on next page

111

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

66 0.0300 4 4 18
67 0.0100 1 2 16
68 0.0200 3 4 22
69 0.0200 0 4 24
70 0.0000 1 2 19
71 0.0300 2 3 19 72 0.0200 1 3 19 73 0.0000 0 2 0 74 0.0000 0 3 27 75 0.0200 2 3 21
76 0.0000 0 3 22 77 0.0200 4 4 24
78 0.0200 4 4 25 79 0.0100 0 3 24
80 0.0000 0 1 0
81 0.0000 0 1 0 82 0.0000 0 2 15
83 0.0000 0 3 22
84 0.0100 4 4 21
85 0.0100 0 3 25
86 0.0100 3 3 21
87 0.0000 2 5 16
88 0.0000 0 1 0
89 0.0000 0 1 0
90 0.0000 0 2 0 91 0.0300 1 3 21
92 0.0100 4 4 22
93 0.0200 0 3 18 94 0.0000 2 3 20 95 0.0000 3 3 16 96 0.0000 0 1 0 97 0.0300 3 5 21 98 0.0000 1 2 10 99 0.0100 0 3 22 100 0.0100 0 2 15

B.3.2 n 二 10

112

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

1 0.0700 13 15 99
2 0.1800 25 19 131
3 0.2000 29 21 111
4 0.0300 1 5 101
5 0.0700 12 9 107
6 0.2400 31 22 136
7 0.0800 10 12 117
8 0.0600 6 8 120
9 0.0500 6 10 123
10 0.0500 5 7 101
11 0.1000 19 14 111
12 0.0000 0 1 0
13 0.1000 2 6 127
14 0.1700 25 18 120
15 0.0500 1 6 104
16 0.0400 0 7 123
17 0.0400 0 7 111
18 0.1300 15 15 115
19 0.0900 12 13 114
20 0.0400 1 6 128
21 0.0600 7 11 125
22 0.0500 5 9 120
23 0.0700 9 10 108
24 0.0800 3 9 110
25 0.0300 1 7 112
26 0.0300 1 5 109
27 0.0400 0 6 132
28 0.0300 2 7 110
29 0.1300 12 12 107
30 0.0900 9 11 108
31 0.1600 27 20 105
32 0.1600 28 20 116
33 0.0900 14 14 123
34 0.0700 18 13 102
35 0.1100 9 11 94

continued on next page

113

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

36 0.1900 27 20 124
37 0.1200 18 14 102
38 0.0400 0 5 111
39 0.0500 3 6 109
40 0.0300 1 7 102
41 0.0300 0 6 117
42 0.0900 9 13 114
43 0.0700 5 8 125
44 0.2000 33 24 130
45 0.2600 48 34 131
46 0.1200 15 14 109
47 0.0300 0 7 119
48 0.0900 9 11 101
49 0.0300 1 5 121
50 0.0300 0 5 106
51 0.1300 25 19 116
52 0.0500 0 6 100
53 0.1000 13 16 98
54 0.0700 5 9 101
55 0.1500 26 19 132
56 0.0200 2 6 79
57 0.0300 3 7 96
58 0.1200 14 14 128
59 0.0600 9 10 104
60 0.0100 15 11 108
61 0.0300 1 6 117
62 0.0400 0 5 117
63 0.0400 6 9 102
64 0.0300 0 6 127
65 0.0600 4 8 118
66 0.1600 20 20 128
67 0.1300 18 14 114 68 0.0400 1 6 144 69 0.0400 1 7 119 70 0.0700 6 8 103

continued on next page

114

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

71 0.0200 2 7 101
72 0.1500 22 16 109
73 0.0400 3 8 115
74 0.0600 3 5 97
75 0.1400 15 15 119
76 0.0900 6 9 96
77 0.0200 4 8 115
78 0.1100 19 15 119
79 0.1600 21 16 107
80 0.0300 0 7 107
81 0.1100 16 12 120
82 0.0200 1 5 113
83 0.1000 9 12 101
84 0.0500 6 10 119
85 0.1300 29 21 105
86 0.1400 22 16 106
87 0.0500 1 6 118
88 0.0600 17 17 113
89 0.1700 27 19 126
90 0.1700 25 18 128
91 0.1500 26 23 110
92 0.0700 5 9 124
93 0.0500 2 7 112
94 0.0600 2 8 126
95 0.0400 1 6 122
96 0.0500 2 8 125
97 0.0200 0 5 114
98 0.1300 15 14 117
99 0.1600 30 20 128
100 0.0700 8 10 119

B.3.3 n = 30

115

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

1 90.0100 1749 1240 595
2 3.7300 49 52 607
3 230.1500 4007 2763 647
4 268.0600 4749 3333 617
5 123.6100 2319 1648 583
6 508.2200 10206 7265 604
7 226.9500 4016 2823 617
8 261.4100 4608 3188 617
9 333.6000 6206 4439 599
10 327.3400 5954 4179 623
11 28.2700 531 389 588
12 34.1300 580 409 619
13 513.1500 9339 6486 660
14 94.7600 1706 1210 613
15 226.0000 4112 2912 602
16 111.1600 1977 1383 635
17 339.9800 6262 4254 623
18 417.9000 7790 5480 624
19 126.4600 2191 1600 622
20 60.4500 1078 773 612
21 162.0100 2870 2032 595
22 68.0400 1233 914 609
23 311.2900 5618 3886 608
24 311.5900 5898 4148 592
25 193.5600 3452 2364 619
26 237.1200 4214 2917 620
27 444.0900 8184 5711 642
28 111.4100 1927 1342 626
29 54.7700 960 695 617
30 200.5000 3592 2581 570
31 249.5000 4422 3049 611 32 458.1400 8462 5756 614
33 132.3700 2569 1870 628 34 53.3700 911 645 592
35 334.7700 6125 4280 609

continued on next page

116

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

36 7.1300 114 94 604
37 58.6000 1065 799 573
38 183.1600 3411 2422 611
39 145.6000 2546 1774 614
40 246.3700 4719 3260 574
41 39.8300 710 535 603
42 2.1400 18 23 633
43 194.5200 3434 2401 624
44 6.0300 92 77 579
45 291.2100 5384 3796 592
46 47.0600 839 608 615
47 367.5900 6162 4250 589
48 287.0800 5144 3559 599
49 239.8900 4239 2970 605
50 361.4600 6519 4603 568
51 63.6400 1079 782 582
52 154.8000 2626 1824 612
53 127.2200 2169 1511 607
54 157.8900 2734 1994 606
55 363.2600 6438 4430 576
56 441.8300 8103 5617 621
57 100.0300 1754 1242 632
58 440.1400 7960 5635 611
59 365.7900 6498 4509 637
60 52.9000 864 609 593
61 142.6200 2313 1645 611
62 379.3400 6630 4626 598
63 95.9400 1591 1115 606
64 332.2200 5574 3879 622
65 342.8200 5932 4146 605 66 542.6400 9627 6675 577 67 288.7900 4052 2871 620 68 157.6400 2695 1907 598 69 192.2600 3285 2297 603 70 28.7200 507 365 641

continued on next page

117

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

71 302.3400 5520 3960 581
72 93.5900 1516 1071 582
73 254.5100 4475 3171 623
74 223.8000 4023 2864 590
75 480.2500 8625 6118 629
76 89.9600 1576 1085 601
77 1.5900 2 15 639
78 360.6900 6440 4440 623
79 207.5600 3683 2643 606
80 257.8400 4665 3327 589
81 6.8600 106 101 611
82 139.3500 2380 1682 609
83 198.7400 3386 2426 643
84 284.0400 4963 3531 609
85 324.9600 5891 4069 619
86 30.7200 508 377 627
87 255.5600 4576 3175 611
88 441.6500 7602 5296 639
89 37.6600 620 449 613
90 218.3300 3952 2695 594
91 776.6000 15006 10699 599
92 303.4800 5637 3950 607
93 514.3600 8820 6091 644
94 142.3000 2479 1716 580
95 122.7300 2139 1553 565
96 264.8200 4680 3196 597
97 96.4300 1709 1228 578
98 435.3200 7888 5448 631 99 276.5000 4792 3288 609 100 8.8400 135 117 654

B.4 Complete Result for Revised Branch-and-Bound
Algorithm

B.4. n — 5

118

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

1 0.0200 4 4 27 2 0.0000 0 1 0
3 0.0400 3 4 23 4 0.0100 3 3 21
5 0.0000 2 4 22
6 0.0000 0 3 16 7 0.0000 1 3 24
8 0.0000 0 3 18 9 0.0100 4 4 17 10 0.0200 0 3 19 11 0.0100 1 2 14 12 0.0100 0 1 18 13 0.0400 4 4 24 14 0.0000 0 3 22 15 0.0000 0 3 19 16 0.0000 0 4 23 17 0.0000 0 2 18 18 0.0200 0 2 9

19 0.0000 0 2 0
20 0.0000 2 3 21
21 0.0200 3 4 20
22 0.0100 2 3 20
23 0.0100 0 3 16 24 0.0100 0 3 25 25 0.0100 4 4 21 26 0.0100 0 3 19 27 0.0000 0 3 21 28 0.0000 0 2 0 29 0.0000 3 4 24 30 0.0000 0 1 0

continued on next page

119

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

31 0.0000 1 3 12
32 0.0200 2 3 19
33 0.0100 0 2 18
34 0.0300 2 3 21
35 0.0100 0 3 22
36 0.0000 0 3 19
37 0.0200 1 3 21
38 0.0200 2 3 15
39 0.0000 0 1 0
40 0.0300 0 3 17
41 0.0100 0 2 16
42 0.0100 0 3 17
43 0.0000 2 4 23
44 0.0200 4 4 18
45 0.0200 0 3 16
46 0.0100 4 4 18
47 0.0000 0 1 0
48 0.0100 0 3 20
49 0.0000 0 2 13
50 0.0000 4 4 23
51 0.0100 1 3 13
52 0.0000 0 3 13
53 0.0200 0 2 13
54 0.0400 3 3 19
55 0.0000 0 3 16
56 0.0000 0 3 18
57 0.0100 0 3 14
58 0.0000 1 3 20
59 0.0100 0 3 27 60 0.0200 5 6 21 61 0.0000 4 4 20 62 0.0100 1 3 25 63 0.0100 1 2 15 64 0.0000 0 1 0 65 0.0100 2 3 15

continued on next page

120

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

66 0.0100 4 4 18
67 0.0100 1 2 16
68 0.0300 2 4 18
69 0.0000 0 3 20
70 0.0100 1 2 19
71 0.0100 0 2 16
72 0.0000 0 3 21
73 0.0000 0 3 20
74 0.0000 1 3 27
75 0.0100 2 3 21
76 0.0000 0 3 22
77 0.0000 4 4 25 78 0.0300 4 4 25 79 0.0100 2 4 24 80 0.0000 0 1 0 81 0.0000 0 1 0 82 0.0000 0 2 15
83 0.0100 0 3 22
84 0.0100 4 4 21
85 0.0300 2 4 19
86 0.0300 2 3 16
87 0.0200 2 5 16
88 0.0000 0 1 0
89 0.0000 0 1 0 90 0.0000 0 2 0 91 0.0000 0 3 21 92 0.0100 2 3 19 93 0.0100 3 4 21 94 0.0300 4 4 25 95 0.0100 2 3 16 96 0.0000 0 1 0 97 0.0000 0 2 0 98 0.0000 1 2 10 99 0.0100 0 2 16 100 0.0100 0 2 15

B.4.2 n = 10

121

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

1 0.0300 1 6 99
2 0.1600 28 21 109
3 0.1400 21 16 111
4 0.0500 3 5 101
5 0.0800 14 11 99
6 0.2100 33 23 135
7 0.1400 16 16 115
8 0.0400 0 7 113 9 0.0600 5 8 123 10 0.0300 2 5 99 11 0.1200 14 11 109 12 0.0000 0 1 0 13 0.0200 1 6 102 14 0.1400 22 16 120 15 0.0300 0 4 104 16 0.0500 3 8 124 17 0.0300 0 9 108 18 0.0200 0 5 107

19 0.1200 8 10 114
20 0.0800 6 11 128 21 0.0200 0 4 117
22 0.1200 14 13 120
23 0.0400 1 5 104 24 0.0300 1 7 110 25 0.0300 1 5 107 26 0.2000 21 18 118 27 0.0400 0 6 122 28 0.0300 0 4 113 29 0.0800 3 7 97 30 0.0500 2 6 104 31 0.1500 26 20 105 32 0.1500 20 16 106 33 0.0300 0 5 112 34 0.0900 17 13 107 35 0.0200 1 7 89

continued on next page

122

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

36 0.1800 22 16 124
37 0.1100 15 11 102
38 0.0400 2 6 109
39 0.0700 11 13 109
40 0.0200 0 7 102
41 0.0800 10 11 118
42 0.0300 0 5 108
43 0.0200 0 6 125 44 0.1300 20 15 116 45 0.1000 14 11 105
46 0.0200 0 4 107 47 0.0400 2 6 117 48 0.0200 1 6 101
49 0.1900 22 18 120 50 0.0300 1 5 108
51 0.1400 22 16 116 52 0.0400 5 8 100
53 0.0100 0 5 92
54 0.0700 5 10 101
55 0.1400 22 17 122
56 0.0300 2 6 79
57 0.0100 0 5 88
58 0.1300 9 11 116
59 0.0300 0 4 102
60 0.0700 14 11 108 61 0.0000 0 2 0 62 0.0100 0 4 113 63 0.0300 8 5 98 64 0.0500 5 8 115 65 0.0300 0 6 118 66 0.0400 1 6 126 67 0.1200 18 13 111 68 0.1400 22 18 130 69 0.0900 6 9 108 70 0.0700 5 8 103

continued on next page

123

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

71 0.0300 0 5 112
72 0.1100 19 14 109
73 0.0300 0 6 115
74 0.0300 0 5 101
75 0.1300 15 15 119
76 0.0900 9 10 99
77 0.0900 5 9 123
78 0.0800 12 10 108
79 0.1500 23 18 107
80 0.0400 0 5 119
81 0.1100 15 12 120
82 0.0300 0 5 108
83 0.0600 3 6 101
84 0.0800 12 12 119
85 0.1700 24 18 109
86 0.0900 12 9 102
87 0.0700 5 8 120
88 0.1200 12 14 124
89 0.1300 18 14 121
90 0.1800 25 18 128
91 0.0600 2 6 108
92 0.1200 15 15 135
93 0.0200 0 5 112
94 0.0300 0 5 119
95 0.0400 1 8 122
96 0.0400 1 7 125
97 0.0600 7 9 114
98 0.1500 13 14 116
99 0.2100 31 22 128
100 0.0600 2 9 119

B.4.3 n = 30

124

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

1 108.2700 1868 1285 695
2 4.0700 47 54 676
3 121.2800 2081 1466 727
4 204.9700 3623 2521 715
5 129.3000 2256 1605 667
6 389.5900 7372 5226 698
7 14.3300 228 172 683
8 47.1000 816 570 599
9 22.1300 378 289 669
10 218.3100 3793 2626 695
11 5.1900 66 67 687
12 22.4800 359 265 695
13 335.8600 5692 3935 729
14 50.6400 905 661 691
15 27.2700 460 338 667
16 10.5000 154 126 720
17 283.0800 4934 3437 710
18 236.0600 4135 2909 705
19 99.7100 1797 1323 714
20 27.6100 465 353 684
21 3.1200 28 32 706
22 130.7300 2317 1647 678
23 121.1200 2106 1479 676
24 241.9400 4249 3032 670
25 45.9200 78 569 683
26 177.7400 3063 2143 687
27 83.6900 1483 1073 715 28 108.7400 1872 1316 706 29 71.4800 1197 858 695 30 151.9000 2695 1945 658 31 211.4300 3657 2556 698 32 373.0300 6530 4599 696 33 87.2300 1586 1126 718 34 48.3700 814 576 663 35 231.3300 3992 2869 696

continued on next page

125

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

36 20.8100 357 268 706
37 45.6000 820 594 664
38 45.1300 830 595 664
39 209.9000 3601 2525 680
40 134.8200 2315 1651 654
41 2.8500 26 34 697
42 4.3700 60 61 716
43 146.4600 2494 1739 687
44 1.5000 0 16 667
45 97.7300 1969 1197 679
46 14.8600 248 190 697
47 308.3700 5346 3724 665
48 247.2600 4526 3214 675
49 150.2200 2665 1902 691 50 1.3100 0 13 670
51 34.9300 635 484 669
52 191.1400 3415 2415 683
53 180.1400 3102 2167 680
54 9.1800 152 123 683
55 296.0600 5057 3543 670
56 396.6900 7030 4919 703
57 42.8600 715 516 699
58 325.0700 5794 4061 692
59 174.3200 3088 2136 703
60 177.0100 3073 2117 583
61 3.0500 28 35 688 62 143.5900 2514 1768 675 63 2.8800 26 35 693 64 241.4900 4231 2916 701 65 83.9200 1438 1030 688 66 17.5800 315 234 664 67 280.7000 4854 3435 694 68 31.0600 550 406 678 69 1.5600 0 18 672 70 8.0200 122 101 722

continued on next page

126

Completion Number of Number of Maximum number of
Sample no. time (sec.) backtrack iteration Constraints generated in CP4

71 205.2400 3626 2535 653
72 103.4000 1863 1329 670
73 36.1700 613 457 673
74 176.7000 3181 2265 676
75 376.4900 6688 4677 688
76 178.0400 3099 2211 686
77 32.6000 576 415 711
78 270.0300 4739 3341 697
79 108.9600 1977 1468 676
80 220.7600 3841 2743 678
81 134.9900 2411 1731 703
82 39.6100 666 483 700
83 122.5500 2008 1441 643
84 244.7400 4177 2952 688
85 190.2400 3379 2355 706
86 1.6300 1 18 697
87 189.5100 3274 2304 681
88 120.0100 2041 1457 719
89 50.5500 883 628 695
90 47.1000 848 606 680
91 8.0100 141 108 580
92 175.8100 3095 2199 675
93 375.1000 6601 4621 724
94 8.5000 141 108 678
95 58.1000 997 715 670
96 209.0200 3540 2453 675 97 32.7100 571 419 659
98 359.8600 6265 4438 687
99 235.1300 4137 2880 700 100 268.7100 4678 3374 726

127

Bibliography

J. H. A.V. Aho and J. Ullman, The Design and Analysis of Computer Algorithms.
Addison-Wesley，1974.

2] S. Cook, "The complexity of theorem proving processing," Proceeding of the
Third Annual ACM Symposium, Theory of Computing, pp. 151-158, 1971.

3] J. N. E.M. Reingold and N. Deo, Combinatorial Algorithms: Theory and Prac-
tice. Prentice-Hall, 1977.

4] M. F. P. Bengt Aspvall and R. E. Tarjan, "A linear-time algorithm for testing
the truth of certain quantified boolean formulas," Information Prvccssing Letters,
vol. 8, pp. 121-123, Mar. 1979.

5] A. B. Warren E. ADAMS and A. SUTTER, "Unconstrained 0-1 optimization
and lagrangean relaxation," Discrete Applied Mathematics, vol. 29, pp. 131-142,
1990.

6] J. Freeman, Improvements to Propositional Satisfiability Search Algorithms. PhD
thesis, University of Pennsylvania, Philadelphia, PA, 1995.

7] S. Cook, "The complexity of theorem proving procedures," Proceedings of the
Third Annual ACM Symposium on Theory of Computing, no. 151-158, 1971.

128

8] M. C. R. Rojas, "From quasi-solutions to solution: An evolutionary algorithm
to solve csp."

9] J. P. Walser, Integer Optimization by Local Search : A Domain-Independent
Approach, vol. 1637 of Lecture Notes in Artificial Intelligence. Springer, 1999.

10] K. Marriott and P. J. Stuckey, Programming with Constraints: An Introduction.
The MIT Press, 1998.

11] P. M. H. Barbara M. Smith, Sally C. Brailsford and H. P. Williams, "The pro-
gressive party problem: Integer linear programming and constraint programming
compared,"

12] E. Boros, "Maximum renamable horn sub-cnfs," Discrete Applied Mathematics,
vol. 96-97, pp. 29-40, 1999.

13] P. Heusch, "The complexity of the falsifiability problem for pure implicational
formulas," Discrete Applied Mathematics, vol. 96-97, pp. 127-138, 1999.

14] H. V. M. Joost P. Waners, "Recognition of tractable satisfiability problems
through balanced polynomial representations," Discrete Applied Mathematics,
vol. 99, pp. 229-244，2000.

15] C. M. Li, "A constraint-based approach to narrow search trees for satisfiability,"
Information Processing Letters, vol. 71, pp. 75-80, 1999.

16] C. Li, "Heuristics based on unit propagation for satisfiability problem," Proc.
IJCAI-97, pp. 336-371, Aug. 1997. Nagoya, Japan.

129

17] A. I. S. Even and A. Shamir, "On the complexity of timetable and multi-
commodity flow problems," SI AM, Journal of Computing, vol. 5，no. 4, pp. 691-
703, 1976.

18] T. Schaefer, "The complexity of satisfiability problems," Proceedings in the Theth
Annual ACM Symposium, Theory of Computer Science, pp. 216-226, 1978.

19] B. S. D. Mitchell and H. Levesque, "Hard and easy distributions of sat problems,"
Proceedings of 10th National Conference on Artificial Intelligence, pp. 459-465,
1992.

20] J. Crawford and L. Auton, "Experimental results on the crossover point in ran-
dom 3-sat," Artificial Intelligence, vol. 81，pp. 31-57, 1996.

21] G. L. Martin Davis and D. Loveland, "A machine program for theorem-proving,"
Communications of the ACM, 1974.

22] M. Davis and H. Putman, "A computing procedure for quantification theory,"
Journal of ACM, vol. 7, pp. 201—215，1960.

23] A. Monfroglio, "Connectionist networks for pivot selection in linear program-
ming," Neurocomputing, vol. 8, pp. 51-78, 1995.

24] H. Zimmermann and A. Monfroglio, "Linear programs for constraint satisfaction
problems," European Journal of Operational Research, vol. 97, pp. 105-123,1997.

25] E. Klerk, "Semidefinite programming approaches for satisfiability," Aug. 2000.
http://ssor.twi.tudelft.nl/ deklerk/.

26] C. R. E. de Klerk, J. Peng, "A scaled gauss-newton primal-dual search direction
for semidefinite optimization," 2000. http://ssor.twi.tudelft.nl/ deklerk/.

130

http://ssor.twi.tudelft.nl/
http://ssor.twi.tudelft.nl/

27] H. V. M. Etenne de Klerk and J. P. Warners, "Relaxations of the satisfiability
problem using semidefinite programming," 2000. http://ssor.twi.tudelft.nl/ dek-
lerk/.

28] E. Klerk, "Approximating the stability number of a graph via copositive and
semidefinite programming," Sept. 2000. http://ssor.twi.tudelft.nl/ deklerk/.

29] E. de Klerk and H. van Maaren, "On semidefinite programming relaxations of
(2+p)-sat," Apr. 2000. http://ssor.twi.tudelft.nl/ deklerk/.

30] S. Waluliewicz, Integer Programming，Mathematics and Its Application, vol. 46.
Kluwer Academic Publishers, 1990.

31] R. S. Garfinkel and G. L. Nemhauser, Integer Programming. John Wiley & Sons,
1972.

32] H. A. Taha, Integer Programming Theory, Applications, and Computations. Aca-
demic Press, 1975.

33] L. A. Wolsey, Integer Programming. John Wiley & Sons, Inc., 1998.

34] T. Hu and P. Tucker, "Optimal alphabetic trees for binary search," Information
Processing Letters, vol. 67, pp. 137-140, 1998.

35] F. S. Hiller and G. J. Liberman, Introduction to Operations Research. McGraw-
Hill, Inc., 7th edition ed.，2001.

36] R. Gomory, An algorithm for integer solutions to linear programming, in recent
advances in mathematical programming. McGraw-Hill, 1962.

37] R. G. Parker and R. L. Rardin, Discrete Optimization. Academic Press, Inc,
1998.

1

3

1

http://ssor.twi.tudelft.nl/
http://ssor.twi.tudelft.nl/
http://ssor.twi.tudelft.nl/

38] S. H. Lu and A. C. Williams, "Roof duality of 0-1 optimization," Mathematical
Programming, vol. 37, pp. 357-360, 1987.

39] S.-C. Fang and J. Loetamonphong, "Optimization of fuzzy relation equations
with max-product composition," Fuzzy Sets and Systems, vol. 118, pp. 509—517,
2001.

40] P. V. Hentenryck, Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge, Mass., cl989.

132

CUHK

•Q3a715f i f i

