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Abstract 

Satisfiability problem is a well-known NP-complete problem. It consists of testing 
whether the clauses in a Conjuctive Normal Form can all be satisfied by certain con-
sistent assignment of binary values to variables. If it is consistent, the problem is said 
to be satisfiable; otherwise, it is unsatisfiable. The 3-SAT randomized problem is the 
smallest NP-complete problem in SAT. In the literature, many transformations have 
been proposed in converting the satisfiability problem into an integer programming 
problem. These transformations usually create extra variables and constraints that 
would enlarge the problem size. 

In this thesis, we propose a new transformation method with no extra variables 
introduced and a single surrogate constraint is resulted at the end of the process. This 
singly-constrained zero-one polynomial problem can be then solved by certain solution 
techniques in integer programming problem, such as branch-and-bound methods. We 
suggest some branch-and-bound algorithms to tackle the resulted singly-constrained 
zero-one polynomial problem. Revised branch and bound rules are proposed to im-
prove the efficiency of a basic algorithm. Analytical results show that the revised 
branch-and-bound algorithm has a great improvement compared with the basic one, 
in terms of the computation time and the number of backtracking. 



摘要 

可滿足性問題（Satisfiability problem )是一個著名的 N P完全問題，它是指是否 

存在一種對一組布爾變量的賦値使所給的由若干個子句組成的合取範式的値爲 

眞。若這種賦値方法是存在的，則問題稱爲可滿足的；反之，則稱不可滿足 

的。儘含三個子句的隨機可滿足性問題是 S A T中一個 小規模的N P完全問題。 

有關文獻中提出了許多把可滿足性問題轉換成整數規劃問題的方法，遺憾的是 

這些方法通常會產生額外的變量和約束，從而擴大了問題的規模。 

本文建出了一種新的轉換方法，它以一個替代約束代替原有所有約束而不產 

生額外的變量。轉換後得到的單約束 0 - 1多項式問題可用分支定界法來求解。本 

文首先提出了一些基本的分支定界算法’進而提出了改進的分支和定界的法則 

來提高運算的效率；對運算結果的分析顯示了改進的分支定界算法，較之基本 

的方法，無論在計算的時間上，還是在回溯的次數上，均有極大的改善。 
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Chapter 

Introduction 

1.1 Satisfiability Problem 
The prepositional satisfiability problem (SAT) has been classified as the first NP-
complete problem. It consists of testing whether the clauses in a propositional formula 
F in Conjunctive Normal Form (CNF) can all be satisfied by some consistent assign-
ments of true values (0 or 1) to variables. If it is the case, F is said to be satisfiable. 
Otherwise, F is unsatisfiahle. Moreover, if each clause exactly contains r literals, the 
subproblem is called r-SAT problem. 3-SAT is the smallest NP-complete subproblem 
of SAT with its computation time being 0 ( 2 ” while 2-SAT problem is solvable in 
polynomial time [1, 2，3, 4 • 

1.2 Motivation of the Research 
Besides Davis-Putman-Loveland procedure and SATZ methods, satisfiability prob-
lems can be solved by integer programming methods or semidefinite programming 
methods. After transforming the SAT problem into an integer programming prob-



lem, the performance in solving the transformed problem may not be as good as that 
of the original. 

Warren and Alain [5] suggested to convert a pseudo-Boolean function into con-
strained 0-1 polynomial problem. Lagrangian relaxation and roof duality techniques 
can solve the non-convex polynomial problem by testing the duality gap between the 
primal problem and its relaxation. The resulting objective value can be viewed as 
the upper bound of the problem if the duality gap exists. 

The above consideration motivates us to figure out a procedure to convert the 
CNF-SAT problem into an integer programming formulation. In our research, Branch-
and-Bound algorithm can be used to solve the zero-one singly-constrained polynomial 
problem. Thus, we need to develop our branch rule and bound rule that are suit-
able for our problem. The continuous relaxation model from [5] can be used to find 
the upper bound of the subproblem. The existence of duality gap can be checked 
by verifying whether the solution is an integer instead of the consistency of the 0-1 
quadratic posiform suggested by [5]. As a result of studying the branching rules, a 
better understanding in solving SAT by an IP formulation is achieved. 

1.3 Overview of the Thesis 
The thesis is organized as follows. Chapter 2 gives a brief review of the satisfiability 
problem and its solution techniques. Methods like DPL, SATZ and SDO are dis-
cussed and several SAT solvers are listed in the last section. Integer programming, in 
particular, zero-one programming and its continuous relaxation are important tech-
niques adopted in this thesis. We provide some basis on them in Chapter 3. Branch-
and-Bound methods, Cutting plane methods, duality methods and heuristic methods 



are discussed. Solvers found on the internet are listed also. 
We present a two-step transformation for converting an original 3-SAT problem 

into a singly-constrained zero-one polynomial problem in Chapter 4. The first step of 
the transformation changes m SAT clauses into m integer programming constraints 
where m = rz*4.25 and n is the number of variables in the original problem, while the 
second step constructs the resultant zero-one singly-constrained polynomial problem 
from the transformed integer constraints. In Chapter 5，we describe a basic branch-
and-bound method. 

Chapter 6 defines a revised bound rule for the branch-and-bound method. The 
revised bound rule is based on the continuous relaxation of the polynomial integer 
constrained maximization problem shown in [5]. We use a dual simplex method to fig-
ure out the bound for the subproblem after converting the integer singly-constrained 
polynomial problem into a continuous constrained maximization problem. Cplex is 
a solver used to implement the revised bound rule. The example in Chapter 5 is 
tested for a determination of the improvement. A revised branch rule is presented in 
Chapter 7. We consider a similar formula as in [6] to set the weight for variables so 
as to find out the branching variable at each iteration. The example in both Chapter 
5 and 6 is used here again to examine the revised branch-and-bound method. 

Experimental results are reported in Chapter 8. We compare the performance 
between the basic branch-and-bound method and the revised one with different sam-
ple sizes. SATZ is also used to compare with the two branch-and-bound methods. 
Finally, we conclude the thesis in Chapter 9 by summarizing our contributions and 
listing some possible directions for future research. 



Chapter 2 

Constraint Satisfaction Problem 
and Satisfiability Problem 

This chapter provides the background of the thesis. Satisfiability (SAT) problem 
was the first problem shown to be NP-complete [7]. SAT is a cornerstone of com-
putational complexity theory, and thus is commercially important since thousands 
of practical combinatorial problems would benefit from a highly efficient SAT solver. 
Its applications include graph coloring, Boolean N-queens induction, circuit diagnosis 
and scheduling problem [8, 9]. In this chapter, we will define what a satisfiability 
problem is and how to solve the SAT problem. Also, we will list some solvers in the 
last section that have been released recently. 

2.1 Constraint Programming 
Constraint Programming is built upon constraints and constraint solving [10]. The 
three most important types of constraints in constraint programming are arithmatic 
constraints, tree constraints and finite domain constraints. There are three funda-



mental operations in solving a constraint programming problem. First, we need to 
determine whether a constraint is satisfiable. Then, we use simplication to rewrite a 
constraint in a form that makes its information more apparent. Last, we find out the 
"best “ solution under some conditions through an optimization method. 

Primitive constraint consists of a constraint relation symbol from its domain, 
D, together with the appropriate number of arguments [10]. They are constructed 
from the constants, functions of D and other variables. A user-defined constraint is a 
constraint in the form of p(力1，力2，• • •, ^n) where p is an n-ary predicate and 艺1，艺2，...， 

are expressions from the constraint domain [10]. A formula is a primitive constraint 
involving variables that return the value of True or False. A literal is either a primitive 
constraint or a user-defined constraint [10]. In this thesis, the literals we considered 
are primitive constraints. 

A Constraint Satisfaction Problem (CSP) consists of a constraint C over variables 
Xi,X2, and a domain D that maps each variable Xi to a finite set of values, 
written D(xi), that are allowed to take. The CSP can be used to represent the 
constraint C A G D{xi) A . . . A G D(xn), [10]. Complete search strategies for 
constraint satisfaction problems are based on propagate-and-branch and they only 
assign integral values to the variables whose domain includes finite integers [9]. The 
search starts from a partial assignment of the variables. The power of CSP methods 
stems from strong propagation algorithms (eg. arc-consistency) that rule out all 
variable values that are known to be inconsistent with the current partial variable 
assignment and the set of constraints (local consistency). Search in CSP progresses 
in the space of partial variable assignments where variable values are assigned with 
the goal to eventually assign one value to every variable, such that the solution is 
optimal. Hence, the search in CSP maintains integrality and local consistency, but 
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relaxes totality, i.e. require that all variables be assigned one value. 
A CSP can also be defined as below. A CSP consists of a set of variables, each 

with a finite possible value (domain), and a set of constraints which the values as-
signed to the variables must satisfy, [11]. Some discrete optimization problems in 
operational research can be also formulated as constraint satisfaction problems. In 
an optimization constraint satisfaction problem, there is an objective. Each time a 
solution to the CSP is found, a new constraint is added to ensure that any future 
solution must have an improved value of the objective, and this continues until the 
problem becomes infeasible. The last solution found is the optimal solution of the 
problem. 

2.2 Satisfiability Problem 
Consider n propositional variables X = {.Ti , . . . , .xJ . Let L = x… 
denote the set of corresponding literals, where x, = I - Xi denotes the complement 
of Xi. Let 工=(xi, . . . ,Xn) e where B = {0,1}，denote the vectors of binary 
assignments to the propositional variables. A clause is the disjunction of a subset of 
the literals, and a Conjunctive Normal Form (CNF) is a Boolean formula of the form 

where C C is a family of clauses, [12 . 
The satisfiability (SAT) problem for Boolean formulas in conjuctive normal form 

(CNF) was the first problem that was shown to be NP-complete, [7, 13, 14]. It consists 
of finding a binary assignment x* G satisfying all the clauses of a given CNF F , 
i.e., = 1. It tests whether clauses in F can all be satisfied by some consistent 
assignment of true values (0 or 1) to variables, [15, 16]. F is said to be satisfiable if 



there exists a feasible assignment. Otherwise, F is said to be unsatisfiable. Moreover, 
if each clause exactly contains r literals, the subproblem is called r-SAT problem. It 
has been revealed that 2-SAT problem is solvable in polynomial time [1，2，3，4] and 
Even, Itai and Shamir [17] outlined a linear-time algorithm for 2-SAT. Schaefer [18 
also claimed a polynomial time bound for an evaluation problem with 2-SAT although 
he did not prove it. However, 3-SAT is the smallest NP-complete subproblem of SAT 
where its computation time is within 0(2"). On the other hand, if the ratio of 
the number of clauses to the number of variables is approximately equal to 4.25 for 
random 3-SAT problem [19, 20], these problems are very difFcult to be solved. 

2.3 Methods in Solving SAT problem 
There are many different kinds of methods in solving Conjunctive Normal Form Sat-
isfiability {CNF-SAT) problem. The best complete method to solve SAT problems 
is Davis-Putnam-Lovdand (DPL) procedure. 

2.3.1 Davis-Putnam-Loveland Procedure 
Davis-Putnam-Loveland (DPL) procedure was defined by Martin Davis, George Lo-
gemann and Donald Loveland in 1962 [21, 15]. The DPL procedure was based on the 
idea in [22]. The algorithm of [22] consists of two interlocking parts. The first part 
is the QFI - Generator that generates a growing prepositional calculus formulas in 
conjunctive normal form which are called the "quantifier-free lines". The second part 
is the Processor that tests the consistency of these propositional calculus formulas at 
regular stages in its “growth，，. This test is proceeded by first eliminating one-Uteral 
clauses and then atomic formulas all of whose occurrences are positive or negative. 



Finally, the remaining atomic formulas are to be eliminated by using the Rule for 
Eliminating Atomic Formulas. This Rule can be formulated as 

Rule III (A\/p) & (B Vp) & R [21，22 

where A, B and R are free of p. This can be done by grouping the clauses containing 
P and crossing out the occurrences of p to obtain A, grouping the clauses containing 
P and crossing out the p to obtain B, and grouping the remaining clauses to obtain 
R- Then, F is consistent if and only if {A V B)&:R is consistent. 

The DPL procedure replaces the Rule III by Splitting Rule which is defined as 

Rule IIP (AVp) k(BWp) kR [21] 

where A, B and R are free of p. Then F is inconsistent if and only if AkR and 
B舰 are both inconsistent. Rule IIP is more powerful because Rule III can easily 
incorporate large number and long length of the clauses in the expression. Many 
duplicated and redundant clauses are allowed to present. Also, Rule III seldom 
yields new one - literal clauses, whereas Rule III* often does. 

2.3.2 S A T Z by Chu-Min Li 
The Davis-Putnam-Loveland procedure has been so far the best complete method 
to solve SAT problems. It constructs a binary search tree for solving F and each 
recursive called constitutes a node of the tree. In [15], Chu-Min Li indicated that 
random 3-SAT problems become difficult to solve on average when the ratio of clause 
number to variable number is approximately equal to 4.25 [19, 20]. He explained that 
the shape of a search tree is highly related to the width of a search tree rather than 
the mean height of a search tree. The mean height of the class of Hard problems is 
the same as that of the class of Easy problems. However, the width of the class of 



Hard problems is substantially larger than that of the class of Easy problems. It is 
difficult to distinguish satisfiable and unsatisfiable problems here because they give 
the same shape of figures. Also, the widest level of a search tree is at the mid-depth 
approximately equal to n/20 where n is the number of variables in the problem. 

r Z by Chu-Min Li is a DPL procedure that branches on the variable that would 
reduce the largest number of clauses on F at each iteration. Let ？/;(:r:) be the number 
of clauses reduced when x is assigned 1 and w(x) be the number of clauses reduced 
when a; is assigned 0. Then a; is weighted by the equation suggested by Freeman [6], 

= w(x) * w(x) * 1024 + + w � . 
From here, we know that the product term w(x) * gives more information 

in selecting the branching variable in order to balance the search tree. The value 
of 1024 may be used for a quicker multiplication since 1024 = For example, 
there are 10 clauses reduced when is assigned 1 and 6 clauses reduced when 
is assigned 0. And there are 8 clauses reduced when .T2 is assigned 1 and 8 clauses 
reduced when 0；2 is assigned 0. We know that the weights of Xi and X2 are 61456 and 
65552 respectively. We would choose 工2 as the next branching variable. 

On the other hand, Chu-Min Li has made some improvements to DPL procedure. 
In order to speed up a DPL procedure, Li proposes to reduce the width of a search tree 
instead of reducing its mean height. That means, his procedure could reach a dead-
end as early as possible. He had 2 suggestions. First, his procedure would prepare 
and generate more and stronger constraints (A constraint is stronger if it suppresses 
more solutions). If F has n variables, it has possible solutions. Two binary clauses 
sharing a complementary literal, like and Vxg, remove 2打—i solutions while 
two binary clauses sharing an identical literal or having no common variable, such as 
工 1 V X2, Xi V 0；3 or :z;i V and X3VX4, remove 1 - and 1 — solutions 



respectively. Obviously, binary clauses sharing complementary literals remove much 
more solutions and have more chances to lead to a dead-end where all solutions are 
removed. So the DPL procedure would branch next on a variable that generates more 
binary clauses sharing complementary literals. Therefore, the weight of the literal x 
would be changed to 

川(工)~ S/vr is produced by x=l [/(O + /(")]， 

where f(l) is the number of binary occurrences of I in F if there is a sufficient number 
(10 as suggested by Li) of binary clauses in F, otherwise it is the number of weighted 
occurrences of I in F. w{x) is similarly defined. Li [15] then obtains the weight of 
variable x by replacing the value of both w(x) and w{x) in Freeman's formula [6'. 

Li also suggests to use looking further forward to search a dead-end. Unit propaga-
tion is a look-ahead^ searching technique. If the satisfaction of a literal I reduces many 
clauses, i.e., it introduces many strong constraints by unit propagation, it probably 
leads to an imminent dead-end which can be reached by further unit propagations. 
The idea is that if UnitPropagation(F U {/}) reduces more than T (it is fixed to 
65 for hard random 3-SAT problems [15]) clauses, for every variable y in the newly 
produced binary clauses occurring both positively and negatively in binary clauses, 
UnitPropagation{F U {/} U {？/}) and UnitPropagaUon(F U {/} U are executed. 
If both propagations reach a dead-end, I should be satisfied. These two propagations 
are called unit propagations of second level. This has a great impact on the size of a 
search tree. This keeps a balance in the search tree for the branching variable x. It 
is because if w{x) » w{x) or w{x) » w{x), x will not be selected as a branching 
variable. Therefore, the formula for selecting the branching variable would be more 
powerful. 

1 Please refer to Appendix A for details 
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In addition, Li figures out that branches on a variable randomly among the best 
variables may provide a better performance if it creates simpler subproblems. He 
found that the randomized version of SATZ could solve the benchmark problem 
2670-400 in UCSC in 95 seconds while the revised version of SATZ took more than 
7200 seconds to solve the problem [15]. Nevertheless, a constraint hypothesis that 
considers unit propagations in deeper branches might reach a dead-end faster than 
simplified hypothesis that he has used. However, more constraints might be generated 
during the unit propagation process. 

2.3.3 Local Search for SAT 
Local search strategies have recently been used in solving prepositional satisfiability 
problem [9]. It searches a satisfying variable assignment for a set of clauses. It moves 
locally to "flip" variables that are chosen according to a randomized greedy strategy. 
A randomized algorithm is used to select a starting point for the local search and/or 
to drive the search into different regions of the search space, which can reduce the 
dependency of the local search on its starting point and thereby make it less dependent 
on restarts. Hill-climbing is one of the heuristic procedures in solving SAT problems. 
It needs some techniques to overcome trapping in the local minima. Most SAT local 
search algorithms have several static and dynamic policies to select the next variable 
to be flipped. They are the key component to determine the performance of SAT 
local search algorithms. 

For static policy, the probability of a variable to be flipped depends on the current 
variable assignment and on the scheme to compute the score of a variable. For 
example, it depends on the number of clauses satisfied after the flip and the number 
of clauses broken due to the flip. For dynamic policy, the decision can depend on the 
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history of the search. For instance, a Tabu element can break ties between variables 
with an equal score according to how recently a variable has been flipped. 

2.3.4 Integer Linear Programming Method for SAT 
Linear programming (LP) was the first continuous optimization problem to be inves-
tigated. Conjunctive Normal Form Satisfaction problem (CNF-SAT) can be solved 
by an integer linear programming (ILP) model [23], Monfroglio constructed the SAT 
problem as ILP in [23]. The resulting matrix has a regular structure and is no longer 
problem-specified. It does not depend on the structure of the clauses, but the number 
of clauses and the number of variables. The structure of the integer program allows 
us to solve the problem by using standard linear programming techniques. Simplex 
algorithm is one of the methods in solving linear programming problems. However, 
the computational complexity of the simplex algorithm is exponential in the worst 
case. The standard form of linear programming is 

min cx 
s.t. Ax = h,x 

An integer linear programming problem is 
min cx 
s.t. = 6, X > 0, X integer. 

To convert the CNF - SAT problem into ILP problem, Monfroglio [23, 24] sug-
gests to add nonnegative slack or surplus variables in order to convert all inequalities 
to equlities, replace all unrestricted variables by differences of nonnegative variables, 
delete all redundant rows and take the negative value of an objective function to be 
maximized. However, this procedure may make the problem more difficult because 
the additional variables and additional constraints enlarge the size of the original 
CN F -SAT problem. The worst case is to have [n * 2m + 2m * n * (n - 1)/2] for the 
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number of columns and [n + 2m * n * (n - l)/2] for the rows in matrix A, where n 
is the number of literals and m is the number of clauses in the original CNF - SAT 
problem. On the other hand, E. de klerk [25] proposes to convert the SAT prob-
lem into an integer programming problem through elippic representation and uses a 
semi-definite programming method to solve the problem. 

2.3.5 Semidefinite Programming Method 
Semidefinite programming method is a new solution concept in optimization. In-

terior point methods for semidefinite programming (SDP) have been studied recently 
due to their polynomial complexity and practical efficiency. Most of these methods 
are extensions of linear optimization algorithms [26]. The most common solution 
approach in integer programming is to relax the integrality constraints to linear con-
straints and subsequently solve the resulting LP relaxation [27, 28]. Unfortunately, 
the LP relaxation of (IPSAT) is weak. It is easily checked that the trival all-zero 
solution is always feasible when no unit clause is present. By introducing some objec-
tive function, the solution can be steered away from the trival one. The incumbent 
solution may be found by rounding the solution to the LP relaxation. 

There are several different ways of constructing primal-dual search directions in 
SDP. The usual scheme is to apply linearization in conjunction with symmetrization 
to the perturbed optimality conditions of the SDP problem. A boolean quadratic rep-
resentation of a 3-dause can be used in converting a 3-SAT problem into a semidefinite 
programming problem. This representation can be studied as an integer programming 
problem. Consider the 3 - clause Pi Vp2 Vp3. All valid quadratic representations for 
this clause follow from [27, 25，29] are listed in Table 2.1. 

After converting the problem, we can use Lagrangian dual techniques to solve the 
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[Xl + 1)2 < 4 ， G { 

In general, Pi V p2 V . . . V has elliptic representation: 

X1X2 + XiX^ - X2- Xs 
X1X2 + X2X3 — Xi - X3 
XIXS + X2XS — XI - X2 

-X1X2 — XIXS - X2X2,-

-X1X2 + 0：! + - 1 

-工 1X3 + Xi + X3 - 1 
-X2X3 -h X2 X3 - 1 

If the elliptic relaxation is infeasible, the original problem is unsatisfiable. New-
ton system for dual interior point methods can efficiently solve the problem. This 
elliptic semidefinite feasibility problem is satisfiability-equivalent to SAT for several 
classes of polynomially solvable formulas included 2-SAT, pigeonhole formulae and 
unsatisfiable formulae from graph colouring instances where clique constraints imply 
unsatisfiability [29]. However, there is a gap between the relaxation and its primal 
problem. This gap relaxation is always reported as feasible for 3-SAT problems if no 
2-litemls clauses present. These problems are reported as satisfiable even they are 
infeasible. 
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Table 2.1: Quadratic representation for 3-CNF-SAT clause 

problem. Besides, E. de Klerk proposed another transformation of the SAT problem 
25]. Each clause pi Vp2 Vp3 has its elliptic representation: 
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2.4 Softwares for SAT 
Many SAT solvers can be found on the internet. The solution schemes in these 
softwares include conventional SAT techniques, complete and incomplete searching 
algorithms. 

2.4.1 SATOl 
SATOl solver proves its efficiency empirically on DIM ACS SAT benchmarks. It 

turns out that the majority of these SAT instances are fairly easy. Unfortunately, 
some instances were not solved because of large memory requirements. Since SATOl 
solver was designed to be a general solver for NP problems, it has no specialization 
for SAT. 

2.4.2 SATZ and SATZ213, contributed by Chu-Min Li 
SATZ and SATZ213 are two smart solvers for SAT problems. These two solvers 

are developed by Chu-Min Li. SATZ implements the algorithm proposed by Chu-
Min Li that improves the traditional DPL algorithm by considering a new formula in 
calculating the weights for variables and using the unit propagation as the searching 
technique. SATZ213 is a modification of SATZ. 

2.4.3 Others 
We list some softwares for SAT available on Internet in this section. Details can be 
found in “http://www.intellektik.informatik.tii-darmst;adt.de/SATLIB/solvers.litml，，. 
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Stochast ic Local Search Algor i thms ( incomplete a lgori thm) 

-GSAT, Version 41 (contributed by Henry Kautz and Bart Selman) 
-Walks AT, Version 35 (contributed by Henry Kautz and Bart Selman) 

Sys temat i c Search Algor i thms (complete a lgorithm) 

-GRASP (version of Feb. 2000; contributed by Joao P. Marques da Silva) 
-NTAB (via James Crawford's home page) 
-POSIT, Version 1.0 (contributed by Jon W. Freeman) 
- REL_SAT, Version 2.00 (contributed by Roberto Bayardo) 
-REL_SAT-rand, Version 1.0 (contributed by Henry Kautz) 
-SATO, Version 3.2.1 (contributed by Hantao Zhang) 
-SATZ-mnd, Version 4.7 (contributed by Henry Kautz) 
-SATZ-rmd, Version 2.0 (contributed by Carla Gomes, Henry Kautz, and Bart 

Selman) 
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Chapter 3 

Integer Programming 

In last chapter, we explained what a satisfiability problem is and how to solve such 
kind of problem. In this chapter, we are going to review the integer programming. 
There are many different ways in solving integer programming. We will introduce 
some solution methods in the literature. 

3.1 Introduction 
Many real-world problems in design, operation and management may be formulated 
as optimization problems in which we are seeking for some values of decision variables. 
The objective function takes an extreme value while satisfying all the constraints im-
posed on these decision variables [30]. Integer Programming (IP) is a branch of math-
ematical programming where its decision variables are integers [30，31]. In general, 
integer programming can be a constrained one or an unconstrained one, while the 
constraints and the objective functions can be linear or nonlinear, [32]. The general 
integer programming problem can be defined as: 
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maximize (or minimize) z = f{xi,x2,... 
subject to 9i(xuX2,...,Xn) < z 6 M = l , 2 , . . . , m 

> 0 J = 
Xj an integer j G I Q N 

If / = TV, the problem is a Pure Integer Programming (PIP) problem, that means all 
the variables Xj are restricted to integers. Otherwise, if I C N, the decision variables 
consist of both integer and real variables. The problem is called a Mixed Integer 
Programming (MIP) problem. If the constraints and the objective function are both 
linear in an integer programming problem, the problem is called a Linear Integer 
Programming problem. If the domain of the variables is binary, i.e., the decision 
variables can only be assigned one of the two values, the problem is called Binary 
Integer Programming (BIP) problem. 

In reality, many decision making situations can be formulated as integer pro-
gramming problems. Examples include Assignment Problem, 0-1 Knapsack Problem, 
Cutting-Stock Problem, Capacitated Plant Location Problem, Set Covering Problem, 
Traveling Salesman Problem (TSP), Capital Budgeting Problem, Sequencing Problem, 
Scheduling Problem and Fixed-Charge Problem [30, 32, 33 . 

3.1.1 Formulation of IPs and BIPs 
Before solving the IP problems and the BIP problems, formulation should be done 
systematically and properly. We should well define the problem instances and the 
decision variables used in the model [33]. The following are some guidelines. 
(1) Define the necessary decision variables used in the model. 
(2) Define the domain of the decision variables. 
(3) Define the objective function as a function of the decision variables. 
(4) Define a set of constraints imposed on the decision variables. 
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3.1.2 Binary Search Tree 
The enumeration tree of a BIP problem can be represented as a binary tree. A binary 
tree consists of external (leaf) nodes and internal (non-leaf) nodes. Every internal 
node of a full binary tree has exactly two children. A binary search tree is a data 
structure of retrieving objects associated with keys. It corresponds to a full binary 
tree with one key stored at every internal node, and none at external nodes [34 

3.2 Methods in Solving IP problem 
Integer programming solution techniques can be generally classified into two types: 
the search methods and the cutting methods [32]. The first type is motivated by 
the fact that the feasible solution points of most integer programming problems are 
finite (e.g., a subset of {0,1}^). We seek for the solution by enumerating "all" these 
points. This type of solution techniques includes implicit numeration techniques and 
branch-and-bound techniques. The implicit numeration is suitable for the zero-one 
integer programming problem, and may actually be considered as a speical case of the 
branch-and-bound methods. Clearly, the efficiency of the resulting "search" algorithm 
depends on the power of the techniques that are developed to discard nonpromising 
solution points. 

Cutting methods are developed for the mixed or pure integer linear programming 
problem. The idea is from the fact that the solution in the simplex method must occur 
at an extreme point. It adds constraints, that are violated by the current noninteger 
solution but never by any feasible integer pointi, in the original problem. Successive 
applications of such a procedure should eventually result in a new convex solution 
space with its optimum extreme point properly satisfying the integrality condition. 
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It cuts off those infeasible parts of the continuous solution space. However, the 
cutting methods can only be applied to convex problems. Also, no feasible solution is 
obtained until the very end of the search procedure. In the following sub-sections, we 
will describe four methods used in solving integer programming which are Branch-
and-Bound Methods, Cutting-Plane Methods, Duality Methods and Heuristic Methods. 

3.2.1 Branch-and-Bound Method 
The basic concept underlying the branch-and-bound technique is dividing and con-
quering. Since the original "large" problem is too difficult to be solved directly, 
it is divided into smaller and smaller subproblems until these subproblems can be 
conquered. The dividing (branching) is done by partitioning the entire set of feasi-
ble solutions into smaller and smaller subsets. The conquering (fathoming) is done 
partially by bounding how good the best solution in the subset can be, and then 
discarding the subset if its bound indicates that it cannot contain an optimal solution 
for the original problem. 

Branching 

When dealing with binary variables, the most straightforward way to partition the 
set of feasible solutions into subsets is to fix the value of one of the variables (say, x^) 
at = 0 for one subset and at = 1 for the other subset. 

Figure 3.1 portrays the division procedure (branching) into subproblems by a tree 
with branches (arcs) from the ALL node (corresponding to the whole problem having 
机 feasible solutions) to the two nodes corresponding to the two subproblems. This 
tree，which will continue this "branch growing" iteration by iteration, is referred to 
as the solution tree (or enumeration tree) for the algorithm. The variable selected to 
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Figure 3.1: The Solution tree created by the branching for the first iteration of the 
BIP branch-and-bound algorithm 

do a branching at any iteration by assigning its value (as with Xi above) is called the 
branching variable. 

One of these subproblems can be conquered (fathomed) immediately, whereas the 
other subproblem will need to be divided further into smaller subproblems by setting 
X2 = 0 or X2 = 1, etc. 

For other IP problems where the integer variables have more than two possible 
values，the branching can still be done by setting the branching variable at its respec-
tive individual values, thereby creating more than two new subproblems. However, a 
good alternate approach is to specify a range of values (eg. Xj < 2 or Xj > 3) of the 
branching variable for each new subproblem. 
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B o u n d i n g 

For each of these subproblems, we need to obtain a bound on how good its best feasible 
solution can be. The standard way of doing this is to solve a simpler relaxation of 
the subproblem. In most cases, a relaxation of a problem is obtained by deleting 
("relaxing") one set of constraints that have made the problem difficult to solve. 
For IP problems, the most troublesome constraints are the ones that require the 
respective variables to be integer. Therefore, the most widely used relaxation is the 
LP-Relaxation that deletes integer constraints. In the next section, we would talk 
more about how to find out the bound by using LP-Relaxation. 

Fathoming 

A subproblem can be conquered (fathomed), and thereby dismissed from further 
consideration, if one of the following three tests is satisfied 

Test 1. Its bound < Z* where Z* = m,ax cx : x e St and St is the feasible set 
of X. 

Test 2. Its LP-Relaxation has no feasible solution. 
Test 3. The optimal solution for its LP-Relaxation is integer. 

(If this solution is better than the incumbent, it becomes the new 
incumbent, and Test 1 is reapplied to all unfathomed subproblems with 
the new larger Z*.) 

Unfortunately, the worst time complexity of branch-and-bound method is 0(2"). A 
very large number of branches and nodes may be created before a feasible solution is 
found. The storage space may thus be large. 

Techniques in Branch-and-Bound M e t h o d 

There are two typical techniques in branch-and-bound-methods ： Best-first branch-
and-bound method and Depth-first branch-and-bound method. 
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Best-first Branch-and-Bound technique applies the branching process to the 
subproblem with the best bound. It terminates either when all nodes are reached or 
when the optimal solution has been found. 

Depth-first Branch-and-Bound technique applies the branching process to a 
subproblem that has been generated by the last branching step. The procedure 
backtracks to the most recent alternatives when a solution has been found or when 
infeasibility has been encountered. It terminates when the optimal solution has been 
found or when all the search space has been reached. We tend to use this technique 
in solving CSP. 

3.2.2 Cutting-Plane Method 
Consider the integer programming problem of the following form 

(P) v{P) = max {cx\Ax = 6, a: > 0, x € Z"} 
where Z饥 is the set of all integer points in 

If an optimal solution to the linear programming relaxation, i.e., the solution to 
the problem (P) 

(P) v{P) = v{Po) = max {cx\Ax = b,x> 0}, 
is not integer, then cutting-plane methods can be applied. The idea of cutting plane 
method consists in adding a new functional constraint (cut) ax < p which cuts off 
the optimal solution to Pq from v{P) [30]. This reduces the feasible region for the 
LP relaxation without eliminating any feasible solutions for the IP problem. Then, 
we can obtain a new linear programming problem (A) from the original problem 
(i^). If its optimal solution is an integer, it would be the optimal solution to (P) 
also. Otherwise, we can add a new cut to A to obtain A and so on. Assuming the 
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sequence Pq, Pi, . . . is finite, there must exist an index r such that x G v*{Pr) is an 
integer. 

There are many methods for finding the cutting planes. Hillier and Lieberman 
35] proposed a method for generating cutting planes for pure BIP problems. It first 

considers any constraint in "<" form with only non-negative coefficients. Then, it 
finds a group of variables which is called minimum cover of the constraint such that 
the constraint is violated if every variable in the group equals to 1 and all other 
variables equal to 0, but the constraint becomes satisfiable if the value of any one of 
these variables is changed from 1 to 0. The resulting cutting plane would be 

sum of the variables in the minimum cover < N — 

where N is the number of variables in the minimum cover. For example, we have 
a constraint 3xi + 4x2 + 2x3 + 5^4 < 10. The minimum covers of the constraint 
are (xux2,x4), {x2,xs,X4) and (xi, 0:2, X3,3:4). Therefore, the cutting planes of the 
contraint would be x^ + X2 ^ x^ < 2, X2 + Xs + X4 < 2 and xi + + .T3 + X4 < 3. 

Wolsey, Walukiewicz, and Garfinkel and Nemhaiiser [30, 31, 33] proposed another 
cutting plane method for integer programming problems. The idea is to generate a 
Chvatal-Gomory inequaliy on the constraint associated with a chosen basic variable 
after finding an optimum from the linear programming relaxation. This approach was 
the first cutting plane method which was proposed by Gomory [36]. The problem (P) 
can be rewritten as 

讓 ^OO^ZjeNB^OjXj 
s.t. xBu + 灿B ^ujXj = for u = 1,. . . ,772 

^ > 0 and integer 
with a,,- < 0 for j eNB, a,o > 0 for 1 , . . . , m and xB^ 二 1 for xB, are basic 
variables not in NB, where NB is the set of nonbasic variables. If the basic optimal 
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solution X* is not an integer, there exists some row u with a^o 朱 Z � . By choosing this 
row, the Chvdtal — Gomory cut for row u is 

^Bu + y^jc/vp ^ .̂ uoj • 

We can rewrite this inequality by elminating xBu, giving 

JljeNB (^uj - > fluO - L^wO. • 

Since 0 < fuj < 1 and 0 < < 1, this inequality cuts off x* as x* = 0 for all 
nonbasic variables j € NB in the optimal LP solution. As a result, the slack variable 
s is a nonnegative integer variable where 

S =-(在uO - L̂ woJ) + Y.ifNB (aj - [^uilXj)-

Consider Example 8.9 in [33 

4a; 1 -
7x1 — 2X2 < 

< 
2xi - 2X2 < 
工1,工2 > > 0 and integer 

By adding integer slack variables x^.x^.x^, we can obtain the solution of the above 
problem by solving this LP problem, 

z = max 59/7 -4 /7x3 — 1/7:^4 
Xi + 1/7x3 + 2/7x4 
X2 + X4 
-2 /7x3 + 10/7x4 + 

= 2 0 / 7 
= 3 
= 2 3 / 7 
> 0 and integer. 

Since the optimal linear programming solution is x = (20/7,3,0,0,23/7)朱 

we get the cut 
1/7x3 + 2/70:4 > 6/7 or s = - 6 / 7 + 1/7x3 + 2/7x4 
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with 5, Xs, > 0 and integer. Then, we add this constraint to the original constraint 
set and get the solution x = (2,1/2,1,5/2,0). Then, we generate the cut again for 

i.e. 1/2x5 > 1/2 or t = - 1 / 2 + 1/2x5. As a result, we find an integer solution 

3.2.3 Duality in Integer Programming 
indent Consider the linear programming problem, 

max z = cx 
s.t. Ax < b 

x>0 
which is called the primal problem. There is a related LP, 

min VQ = vb 
vA> c 
v>0 

called the dual problem where v is an m-dimensional row vector [31，32]. The dual 
problem is derived from its primal by using the following conditions: 
1. The primal objective is maximization and the dual objective is minimization. 
2. The number of variables in the dual is equal to the number of constraints in the 
primal. 
3. The number of constraints in the dual is equal to the number of variables in the 
primal. 
4. The coefficients in the objective function of the primal form the right-hand side of 
the dual. 
5. The right-hand side of the primal forms the coefficient of the objective of the dual. 
6. All variables are nonnegative in both problems. 

Obviously, the dual of the dual is the primal itself, so that either problem may be 
called the primal or the dual. Note that = where xg is the optimal objective 
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value in the primal problem and v^ is the optimal objective value in the dual problem. 
Exactly one of the following four relationships between the primal and dual problems 
must hold: 
1. Both the primal and dual problems have optimal solutions and XQ = v^. 
2. The primal is unbounded and the dual is infeasible. 
3. The dual is unbounded and the primal is infeasible. 
4. The primal and dual are both infeasible. 

Here, we know that by solving the primal (dual), we can solve the dual (primal). 
For LP, we can apply the simplex method to either one. Sometimes, it is possible to 
start with a dual feasible solution and solve the dual using the same tableau that we 
use in the primal simplex method. This algorithm is called the dual simplex method. 

T h e Lagrangian Dual i ty 

Lagrangian Duality is one of the Dual techniques in optimization. In [37], we know 
that the Lagrangian Dual of a linear integer programming problem is usually formu-
lated as a linear programming problem. The objective value in each LP subproblem 
is an upper bound of its original IP subproblem. Thus, Lagrangian Relaxation is 
usually used as the bounding relaxation for the Branch-and-Bound method. If the 
solution from the Lagragian relaxation is an integer, it may be a feasible solution of 
the original integer programming problem. We can stop, check its feasibility and com-
pare its objective value with the incumbent to see whether it is an optimal solution 
for the problem. If the solution is not an integer, we can compare its objective value 
with the bound in the upper level. If it is better, we can branch further. Otherwise, 
we prune this branch and then backtrack to the preceding node. 

An alternative approach to implement Lagrangian Duality without using linear 
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programming problem is a subgradient algorithm. A subgradient at w of a convex func-
tion f •• Rm Ri is a vector j{u) e R 讯 such that f(v) > f{u) + 一 u) for all 
ve R"^ [33]. For a smooth convex function f , ^{u) = Vf{u) = (df/duu ...，df/dum) 
is the gradient of f at u. The subgradient algorithm for the Lagrangian dual can be 
described as follows. 
1. Initialization, u = vP. 
2. Iteration k. Set u = u^. Solve the Lagrangian problem IP[u^) with optimal 
solution x{u^). 
2.1 Set u奸 1 = max{u^ - Mk(d - and /c /c + 1. 
3. Step size. Set Hk = ek{iv — — where w is the upper 
bound in the Lagrangian Duality and iikrightarrowO with l̂ k = +oo. Go to 
step 2. 

The difficulty of this algorithm is in choosing the step size The conver-
gence of the series {//a；} may be too slow. This may affect the solution process. Also, 
a duality gap may exist in Lagrangian relaxation because the subgradient algorithm 
is often terminated before the optimal value is obtained. 

3.2.4 Heuristic Algorithm 
Many combinatorial problems are very difficult to be formulated as an IP or MIP 
when the instance is large. Even if it can be formulated as an IP or MIP, it is 
still difficult or impossible to find feasible solutions by using a branch-and-bound 
method due to its large size. Sometimes, it is easy to find feasible solutions by 
inspection or knowing some problem structures. A general-purpose MIP approach 
without using specific problem structures is usually ineffective. Hence, heuristic or 
approximation algorithms may be preferable because it can find a "good" feasible 
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solution quickly. Examples of applications of heuristic methods include time-tabling 
and sports scheduling problems, set covering, assignment problems and capacitated 
production planning problems [9 . 

3.3 Zero-one Optimization and Continuous Relax-
ation 

Consider a problem of maximizing a general pseudo-Boolean function. We can formu-
late it as a constrained 0-1 polynomial problem. An upper bound on the maximum 
objective function value can be computed by constructing a Lagrangian dual. This 
Lagrangian dual yields an objective value equal to the roof dual value for the orig-
inal 0-1 polynomial problems. Since this Lagrangian dual can be transformed to a 
linear programming problem, we can easily find out the roof or even the solution by 
checking whether a roof duality gap exists. This algorithm constitutes a basis for the 
bounding scheme in the branch-and-bound algorithm in this thesis. 

3.3.1 Introduction 
Consider the following unconstrained 0-1 polynomial programming problem 

( P I ) Z p i = max对o’i广 hix) = Z t i I恥 + E L i 办 FLe耶）工a：. 

Here, k is the number of nonlinear terms and for each k 二 1’ … ， S ( k ) C I = 
{1，2’.. •’ n} is the index set of binary variables whose product with a nonzero constant 
qk defines the kth term. 

From the paper, Roof duality for polynomial 0-1 optimization [5，38], we can 
introduce complemented variables x into h{x) where = 1 - Vz = 1,2, • • •, n. 
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By replacing a variable by its complement in the negative term of degree 2 or more, 
(PI) can be reformulated such that all terms of degree 2 or more have nonnegative 
coefficients, each term contains at most one complemented variable, and no term 
contains the same variable in both the complemented arid uncomplemented forms. 
Without loss of generality, (PI) can be rewritten as 

(P2) Zp2 = max托。，i„̂ o’ii/ci / (x , x) = EILi “而 + E ^ g p dk E U q ^ 工 

Ck^Tik) I L e f i �而 

where P represents the index set of all nonlinear terms which do not contain a com-
plemented variable, N represents the index set of all nonlinear terms which contain a 
complemented variable, Q{k) Q / V/c G P , and B,(k) C I with T{k)朱 R{k) Mk G N. 
For each term k e N, T{k) is the index of the associated complemented variable. 
Also, we define the set 1�as the index set of all variables x whose complement ap-
pears in (P2) and IN as the index set of all variables x whose complement does not 
appear in (P2). Notice that I^IJIN = / . 

3.3.2 The Roof Dual expressed in terms of Lagrangian Re-
laxation 

From [5], we can find a linear function p{x) as a roof for problem (P2) iff 

P � = E t l li工I + EkeN {叫(1 —灯⑷)+ E^eR(k) • 1 � + ZkeP {EzeQ(fc) 

where Vk e TV, Uik 3i e R{k) and k e N, and 入让 V(z,/c) 3i e Q{k) and 
A： e P are scalars satisfying {v,u,l) > 0 with Vk + E i e i ? � w认=Ck ^k e N and 
EiGQ(fc) Xik = dk^ke P. 

Clearly, any roof p(x) is an upper bounding linear function of f{x,x) since for all 
X binary, 
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EreQik) XikXi > EUq�而， ' ^keP 
外{1 — XT{k) + T.ieR{k)叫kXi] > CkXT{k) T^teRik) X i ' i k e N 

Let R represent the set of all roofs, the roof dual is defined as 

W(R) = minp� e 丑 maXa;e(o’i)"P(工), 

and this value can be computed by solving the linear programming problem 

(LP) Zlp max li工丄 + dkh + JlkeN CkWk.‘ 
s.t. tk < xi k) G Q(k) and k £ P, 

V/C G TV, 
VZ E / , 
V/C G P, 
V/C G N. 

Wk<l- XT{k) 

where 4 = ILeQW 工i 补 & P and Wk =无r� ILe讯it) Xi\/k e N ieR{k) 

The set of roofs is complete in the sense that f(x) = mmp(^x)£RP{x) for all x binary. 
The value W{R) is an upper bound on Zpi and the roof duality gap is defined as 

W(R) - Zpi = minp�ei?{maX:Ee(o’i)>Or)} _ m a X : c G ( o , i ) " } • 

3.3.3 Determining the Existence of a Duality Gap 
In order to determine the existence of a duality gap between (PI) and its Lagrangian 
relaxation, we can convert (PI) into the following form by adding some redundant 
constraints, 

(P4) Zp4 = max^e(o,i)nxG(o,i)Uci f(x, x) = Ynei '满 + JlkeP 成 U^eQik)工计 

SfcGiv CkXT{k) rUft(fc)而 
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s.t. Xi-[- = \ Vz € Ic, 
HiGQCfc)而-而 • ( � k ) 3i G Q{k) and /c e P, 

^T{k) nie/?(A：)工i < ^T{k) e iV, 
XT{k) I L e Q �工 i -而 • ( � � ) 玉 e 丑(於)and k e N, 
X i > 0 Vz € / , 
Xi < 1 Vz E IN, 
Xi>0 yi G Ic-

The continuous relaxation of (P4), (CP4), is obtained by treating all product 
terms as continuous variables and eliminating binary restrictions for the x and x by 
tk = rLeQ(fc) X i ^ k e P and Wk = x^k) E U / ? � 补,^ N, 

(CP4) ZcP4 = max Ydei�满 + E^eP + J^keN CkWk 
s.t. Xi-\-Xi = 1 \/i e Ic (24) 

tk < Xi V(i, k)3i e Q{k) andkeP (25) 
Wk < XTik) y k e N (26) 
Wk < Xi V(z, k) 3i e R(k) and /c e TV (27) 
X i > 0 Mi&I (28) 
Xi < 1 Vz 6 In (29) 
Xi > 0 Vz e Ic (30) 

From [5], we know that if there is no duality gap exists between (P4) and (CP4), 
(P4) and (CP4) would be consistent by considering a 0-1 quadratic posiform p{x,x) 
where 

P(:r，x) = + EiG/yvlt^O + 右 + 

However, the value of this p(x,x) is very difficult to be solved. Luckily, we found 
out that p{x,x) is consistent ONLY if all the variables are integer, i.e. = 0 or 1. 
So, if the solution from CP4 is an integer solution, P4 and CP4 would be consistent. 
We can prove by considering the example in [5:. 

Consider the unconstrained 0-1 cubic programming with 4 variables 
maXa； binary h(x) = -X^ + XiX-^ - XiX^ + 0:2X3 + 3:3X4 - .T1X2X3 + .T1X2X4 — X2X3X4 

by substituting Xi = 1 - Xi for the smallest indexed variable in each of the negative 
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nonlinear term X1X4, XiX2Xs and :C2工32:4’ this problem can be rewritten as 
maXa;’s binary /(工,x) = -X3 - X4 + X1X3 + X1X4 + XjXqXs + X1X2X4 + X2X3X4 

By using CPLEX^, the solution is {xi = X2 = Xs = x^ = 0.5). The 0-1 posiform is 
p(x, X) = X1X2+X1X3+X1X4 + X1X4 + X1X4+X1X2 + X1X2 + X1.X3+X1X4 + X2X3+X2X4+X3X4 

Obviously, p(x, x) is inconsistent and so a duality gap exists. 
If we change the coefficients of 1 and -1 on the terms 工32:4 and X2XSX4 to 4 and 

一4 in the original function h(x), the problem becomes 
maXj； binary — -X3 + XiXs -X1X4 + X2XS + 4x3x4 — X1X2XS + X1X2X4 — 4x2X30:4 and 
maXa;’s binary /(工,无)=一_ + OCiX^ + X1X4 + X1X2XS + X1X2X4 + 4X2X3X4 

From CPLEX, we can find out the solution for the problem which is (xi = 1, X2 = 
0,X3 = l，:c4 = 1) and {xi =0,X2 = 0,2:3 = 1^x4 = 1). The 0-1 posiform 

X) = XiX2+XiX2 + XiX3+XiX4 + X2X3 + X2X3 + X2X4+X2X4-hX2X3-\-X2X4+X3X4 + X3X4 
is consistent with the above solutions. From these examples, we find that only integer 
solution would give p(x, x) equal to 1. Thus, we can prove that the 0-1 posiform p(x, x) 
can only be consistent if the solution is an integer solution. 

3.4 Software for solving Integer Programs 
There are many softwares for integer programming problem. MINTO is a software 
system that solves mixed-integer linear programs by a branch-and-bound algorithm 
with linear programming relaxations. It also provides automatic constraint classifi-
cation, preprocessing, primal heuristics and constraint generation. Users can enrich 
the basic algorithm by providing a variety of specialized application routines that can 
customize MINTO to achieve maximum efficiency for a problem class. 

^CPLEX is a commercial LP solver that can be written in C language. Please refer to section 
6.1.1 for more details. 
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The heart of MINTO is a linear programming based branch-and-bound algorithm. 
It can be implemented on top of any LP-solver, like CP LEX that provides capabilities 
to solve and modify linear programs and interpret their solutions. Details can be found 
in http://akula.isye.gatech.edu/ mwps/projects/minto.html. 

To be as effective and efficient as possible when used as a general purpose mixed-
integer optimizer, MINTO attempts to: 
-improve the formulation by preprocessing and probing; 
-construct feasible solutions; 
-generate strong and valid inequalities; 
-perform variable fixing based on reduced prices; 
-control the size of the linear programs by managing active constraints. 
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Chapter 4 

Integer Programming Formulation 
for SAT Problem 

To solve the 3-CNF SAT problem, we can convert a satisfiability problem into an 
integer constrained maximization problem formulation. We can then use a branch-
and-bound algorithm to find out if a feasible solution exist for the original problem. 
By considering the Venn Diagram for 3 independent parties, we can set up some 
axioms for converting the CNF clauses into IP constraints. In this chapter, we would 
show how to set up these axioms and convert the problem into a singly-constrained 
0-1 polynomial problem. 

4.1 From 3-CNF SAT Clauses to Zero-One IP Con-
straints 

There are many methods to convert the 3-SAT clauses into IP constraints. Etienne 
de Klerk [25] proposed to use Semidefinite Programming (SDP) approach to solve the 
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{ x i V 0：2 V X3) = XI X2 XS - X1X2 一 XIXS — X2XS + 0:1X2X3 
( ^ 1 V V : r 3 ) = 1 - 2；3 + XIXS + X2X3 — X1X2X3 

( x i V X 2 \ / X s ) = I - X2X3 + 0:13:2X3 

(^1 V X2 V 5 3 ) = 1 - X1X2XS 

Table 4.1: Axioms for transforming the 3-SAT clause into Integer Programming 
format 

SAT problem. As we stated in chapter 2, there are 7 forms of valid elliptic repre-
sentations for 3-literal clauses [25]. Any clause can be transformed to a combination 
of these elliptic representations. The domain of the variables would be -1 or 1 in-
stead of 0 or 1. If these elliptic representations are infeasible, the primal 3-CNF 
formula will be unsatisfiable. However, the elliptic semidefinite feasiability problem 
is "satisfiabilty-equivalent" to 2-SAT. It is always feasible for "pure 3-SAT" problem. 
It has to make some adjustment so that it can detect the imsatisfiability of 3-SAT 
problem. 

Actually, we have an easier way to convert the CNF clauses into IP constraints. 
Consider the Venn diagram with 3 independent parties in Figure 4.1. The shared 
area of the union of three parties is the sum of these 3 parties, minus the intersection 
of 2 out of these 3 parties, and plus the intersaction of these 3 parties. Thus, we can 
have 

(^1 V 0:3) {XI A X2) — {XI A XS) — {X2 A X3) + ( x i A X 2 A XS) 

=XI + X2 X3 - X1X2 一 XIXS - X2XS + 0:10:2X3 

In addition, we can rewrite Xi as (1 - Xi) and form the axioms listed in Table 4.1. 
Since each literal can only take the true value 0 or 1, each clause should return 

the value 1 if it is consistent. Therefore, we can transform the CNF clause into an IP 
constraint as in Table 4.2. 
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Figure 4.1: Venn Diagram for 3 independent parties Xu 工2 and X3 

(^1 V:C2 V Xs) X1+X2+XS- X1X2 - XiXs - X2XS + 3:1X2X3 > 
(^1 y X2V X3) 1 - XS-\- X1X2, + X2X3 - XIX2X^ > 1 

V V X3) 1 - 2:2X3 + X1X2X3 > 1 
(xi V X2 V X3) 1 - X1X2XS > 1 

Table 4.2: IP constraint for converting 3-SAT clause 
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For example, 

(^1 V :E2 V 3^3) A {xi V 无2 V 无4)冷 3；1 + 2；2 + X3 - X1X2 一 XiX^ 一 0；2工3 + 2：1工2工3 > l A 
1 — X2X4, + X1X2X4, > 1 

Now, we can convert m {= 4.25 * n) clauses into m IP constraints, where n is the 
number of variables in the original CNF problem. 

4.2 From m-Constrained IP Problem to Singly-
Constrained IP Problem 

At this stage, we have total m IP constraints where each constraint is a polynomial 
represenation with its value larger than or equal to 1. That is, 

> 1, > 1, ^m > 1 

where m = 4.25 * n and n is the number of variables in the original problem. 
In this thesis, the domain of variables is binary (0 or 1). There is no doubt 

that each IP constraint can only return the value of 0 or 1, i.e.,仍 e {0,1}. If 
the problem is feasible, such that all the constraints are satisfied, the sum of these 
constraints should be equal to m, YZi 9i(x) = m. If the sum of these constraints is 
less than m (̂；二工 gi(x) < m), the original problem must be infeasible. Thus, we can 
combine these m IP constraints together into an unconstrained zero-one polynomial 
maximization problem, that is 

max 

If the original problem is feasible, the optimal objective value should return a 
value of m. If the value of the optimal objective value is smaller than m, that means 
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the original problem is infeasible. Therefore, the original problem and the singly-
constrained zero-one polynomial problem are equivalent. 

4.2.1 Example 
In order to implement the transformation, we generate a 5-variables problem ran-
domly. There are 22 (4.25*5) clauses where each clause contains exactly 3 literals. 
The problem is listed as below: 
3：4 V V 

V X5 V X2 
无4 V V X̂  

V V 无4 

.̂ 5 V 0；4 V 
X2VX3V Xi 
X5 V X2V Xs 
X4 V Xi V Xs 
Xs V V X4 
X3 V V X4 

V X3 V X5 
X5 V X3 V X4 

V X2V X4 

X5 V X4 V X2 
V 3；4 V 

x^y xiV Xs 
Xs\/ X2\/ Xi 
Xi V 0：2 V 无4 
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3：5 V Xi V X2 
无3 V无2 V Xs 

V V Xi 
3；4 V V Xj, 
Then，we convert these 3-CNF-SAT clauses into IP constraints. The problem can be 
formulated as 
工4 V无2 V工5 1 — 

V Xs V 1 -
V Xi V ^ 1 -

X2 V Xs V X4 => 1 -
Xs V X4 V 1 -
X2 V Xs V Xi 1 -

V V 无3 1 — 

V 3；1 V 2:3 1 -
X5 V V 1 -
X3 V 无2 V 无4 1 -

V X3 V X5 1 -
X5 V V :r4 1 -
0；1 V V 0；4 ^ 1 -
Xs V 0：4 V 1 -
3；2 V 3；4 V 1 -
:r5 V Xi V X3 1 -
Xs V V Xi 1 -

V 工2 V 元4 1 -
X5 V Xi V X2 

X2 + X2X4̂  + X2X̂  — X2X4X̂  > 1 
X2X3 + X2XSX5 > 1 
X1X4X5 > 1 
XsX4 + 0:2X30:4 > 1 
XiXs + X1X4X5 > 1 
X3 + X1X3 + X2X3 — X1X2X3 > 1 
X2XSX5 > 1 
X4 + XiXi + 0:3X4 一 XiXsX4 > 1 
XiXi + X1X4X5 > 1 
X2X3X4 > 1 
Xl + X1X3 + X1X5 — XiXzX^ > 1 

+ > 1 
X2 + 3:1X2 + X2X4 - XiX2X/̂  > 1 
X2X5 + X2X4X5 > 1 
工5 + X2X^ + X4X5 - X2XaX^ > 1 
X̂ X̂  + XiX^X^ > 1 
工 1 + + XiX3 - X1X2X3 > 1 

+ X1X2X4 > 1 

Xi + X2 + X5 - X1X2 一 XiXs — X2X5 + X1X2X5 > 
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V V 3：5 1 - X2X̂  + > 1 
:r5 V X3 V 1 - XiX2,X̂  > 1 
X/^y X2\/ X2, I — X2 X2X3 + X2X4 - X2XSX4 > 1 
Finally, we combine all these constraints together to form a singly-constrained poly-
nomial problem as 

- 2:^2 - x ^ - X^^ X1X2 + 3x12:3 — X1X4 - XiXs + SX2X4 - XsX^ 一 x^x^ + x^x^ -

2 ^ 1 ^ 2 3 : 3 一 XiX^X^^ 一 + 0:1X22:5 - + 3:1X4X5 + 工2工3工5 _ X2X4X5 + X3X4X5 > 1 

Now, we can use branch-and-bound algorithm to solve the resulting singly-constrained 
zero-one polynomial problem, then check the satisfiability of the original problem. 
Branch-and-bound algorithm is a simple method in solving the IP problem. In the 
next chapter, we will show how to choose the branch rule and the bound rule for our 
IP problem. Also, an example is used to show the details of the algorithm. 

1
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Chapter 5 

A Basic Branch-and-Bound 
Algorithm for the Zero-One 
Polynomial Maximization Problem 

After converting the 3-CNF-SAT problem into an IP problem, we would use a branch-
and-bound method to find out whether the problem is feasible. To solve an integer 
programming problem, there are many methods in the literature, such as Branch-
and-Bound methods, Cutting Planes, etc. In this chapter, we will express the reason 
for choosing Branch-and-Bound method as our algorithm rather than others. Also, 
we will discuss our branch and bound rules in the coming sections. 

5.1 Reason for choosing Branch-and-Bound Method 
There are many methods in solving an integer programming problem. Branch-and-
bound and cutting planes are two typical solution schemes in the literature. Branch-
and-bound method is quite popular. However, the time complexity is 0(2^) in the 
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worst case where n is the number of variables. For a large problem, cutting planes 
may do better. In each iteration, it reduces the feasible region by cutting down the 
region that does not contain feasible solutions. However, we can only apply cutting 
planes method to those constraints which are convex. In this thesis, the resulting 
zero-one polynomial maximization problem does not possess a convexity. Branch-
and-bound method seems to be more suitable as being the skeleton of our searching 
algorithm. For a branch-and-bound algorithm, we have to set up a branch rule and 
a bound rule for the search procedure. For the branch rule, we have to identify a 
branching variable at each node by considering the weight of each variable in the 
constraint. In each iteration, we have to define the upper bound and lower bound for 
the subproblem. In the following sections, we will discuss how to choose our branch 
rule and bound rule. 

5.2 Searching Algorithm 
The searching algorithm in this section would begin by checking whether the problem 
is solvable. We would first check the feasibility of the problem. If the right hand side 
of the constraint, 6，is non-positive, we could set all the variables at zero and return 
the solution. If the sum of all the coefficients of the constraint is larger than or equal 
to the right hand side {RHS), then we set all the variables at one and return the 
solution. If it is neither the above two cases, we have to continue an iteration process. 
Thus, we have to execute the following procedure. 

First, we calculate the number of occurrence of each variable according to its 
positive terms and its negative terms in the objective. If the number of occurrence of 
a variable with positive terms is 0, the existence of that variable would lower the LHS 
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value (sum of the coefficients of all the variable terms) of the objective. Thus, we set 
that variable to be 0. On the other hand, if the number of occurrence of a variable 
with negative terms is 0，then we set that variable to be 1 because the existence of 
that variable would raise up the LHS value. 

If it is not the above cases, we need to find out the branching variable by a 
branch rule. We substitute this branching variable by a suitable value (0 or 1) to the 
constraint and simplify it. We will discuss more about this in the next section. Next, 
after updating the constraint, we have to check the LHS value and the RHS value 
of the subproblem. If the right hand side of the constraint, b, is non-positive, we 
would set the unassigned variables at zero, stop and return the solution. If the sum 
of the coefficients of all the variable terms of the constraint is larger than or equal 
to the right hand side, we set all the unassigned variables at one, stop and return 
the solution. Then, we check the satisfiablity of the original problem by substituting 
the solution into the objective function. Here, we can find out the upper and lower 
bound of our subproblem. The values of the upper and lower bound are the sum 
of coefficients of the positive and negative terms, respectively. The upper and lower 
bound at each iteration should be within the boundaries of its predecessor. In section 
5.2.2’ we will explain the details of how the bound works. At this stage, if a dead end 
is reached, we backtrack to the latest node. If a feasible solution is found, we will 
stop and report the feasibility of the problem. Otherwise, we will branch further by 
repeating the above procedures until a dead end is reached or all nodes are checked. 

5.2.1 Branch Rule 
For constrained satisfiability problem, the order of labeling and the domain size of 
the variables are essential in labeling the variables. Domain of a variable is the range 
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that represents the values of the variable. Labeling is a kind of elimination method 
which uses a bakctracking search to find a solution to the constraints. The order of 
labeling is the order of variables being labelled in the binary search tree. A good 
variable ordering can shorten the time of searching. 

In "Programming with Constraints: An Introduction" [10], Marriott and Stuckey 
proposed to separate the variable list into 2 halves and then form in an order. Besides, 
we can choose the branching variables according to the domain size of the variables. 
However, this may not be applicable in this thesis because the domain of the variables 
is binary. It may be meaningless if we sort the variables depending on their domains. 
According to this, we may need to think of a suitable branching rule for our thesis. 

Let us look at the solution tree shown in Figure 5.1. In each iteration, we have to 
find a branching variable to explore. If no variable has a zero positive occurrence or a 
zero negative occurrence in the reduced objective function of a subproblem, we need 
to find out the branching variable that has the largest occurrence of positive terms. 
If more than one variable have the same number of the largest occurrence, we choose 
one involved in a term with the largest absolute coefficient. We set the branching 
variable at 1. 

For example, we have a reduced objective 2x1-4x3-.x 1X2+ 2x2X3. The numbers of 
both positive and negative occurences of these variables are 1. However, the coefficient 
of one term involving 0:3 has the largest absolute value, 4. So, we set X3 as our 
branching variable and set Xs = 1. 
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INFEASIHLE 

Figure 5.1: The solution tree for checking the satisfiability of a 5-variables problem. 

5.2.2 Bounding Rule 
For any IP problem, we can find an upper bound and a lower bound of the subproblem. 
The easiest way is to set the sum of all its positive coefficients as the upper bound 
and the sum of the negative coefficients as its lower bound. During the iterations, 
the region of these bounds should become tighter and tighter. 

5.2.3 Fathoming Test 
The fathoming tests in our algorithm are similar to those in the conventional branch-
and-bound method and are listed as follows 
Test 1. The upper bound is less than the RHS. 
Test 2. An integer optimal solution is found. 

In the following section, we will use a simple example with 5 variables in Chapter 
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4 to test the performance of our algorithm. This example will also be used in the 
following two chapters to check the preformances of the revised branch and bound 
rules. 

5.2.4 Example 
After converting the CNF problem into IP problem as in Section 4.2.1，the constraint 
becomes 

-OJi - 2X2 + XIX2 + 3工13；3 — X1X4 _ XIX^ + 3X2X4 一 X^X^ _ X3XS + X4X5 一 

— — X2XSX4 + X1X2X5 - X1X3X5 + XIX^XS + 0:2X3X5 - X2X4X5 + X3X4X5 > 1 

Since the RHS of the constraint is positive and the LHS value (adding the coefficients 
of all variable terms) equals to -3，we set the upper and lower bound of the problem 
as 12 and -15 which are the sum of all positive and negative coefficients, respectively. 
Iteration 1: 
(1) We set up an occurrence table as below: 

X2 0：4 工5 

+ve 
-ve 

4 
6 

4 
4 

3 
7 

4 
6 

5 
4 

(2) Since there is no variable that contains only positive or negative occurrence, we 
choose x^ to be the branching variable and set it at 1. 
(3) The constraint can be reduced as 
(I)： -2x1 - 2x2 - 2x3 + 2x1X2 + 2x1x3 + X2X3 + 2x2X4 — 2x1x2x3 一 X1X3X4 — X2X3X4 > 1 
(4) The RHS of the constraint is positive and the LHS value equals to -3. Since the 
upper bound and the lower bound of the subproblem (I) are 7 and -10 respectively, 
we continue branching. 
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� � 

(2) 

(3) 

⑷ 

(5) 

(6) 
(7) 

(8) 

(9) 
(10) 

11 

Searching Algorithm for CSP 
Procedure: 

If the RHS of the constraint is non-positive, set the imassigned variable 
to be 0. Stop and go to (10). 
If the sum of all the coefficient of the constraint is larger than the RHS, 
set the unassigned variable to be 1. Stop and go to (10). 
Set the upper bound and lower bound of the primal problem as the sum of 
positive and negative coefficients of all the terms, respectively. 
Calculate the number of occurrence of each variable in the constraint 
according to 
positive coefficient 
negative coefficient 
If the number of occurrence of variable in (3)(i) is 0, then we set that 
variable to 0. 
If the number of occurrence of variable in (3)(ii) is 0，then we set that 
variable to 1. 
Go to (6). 
Branch Rule: 
Choose the variable with the largest occurrence in positive term. 
If more than one variable have the same weight, choose a variable 
with the largest absolute coefficient of its term. 
Set the branching variable at 1. 
Update the constraint. 
If the RHS of the constraint is non-positive, set the unassigned 
variable to be 0. Stop and go to (10). 
If the sum of all the coefficient in LHS of the constraint is larger 
than the RHS, set the unassigned variable to be 1. Stop and go to (10). 
Bound Rule 
Set the upper and lower bound of the subproblem by adding up the 
positive and negative coefficient of subproblem respectively. 
If solution is found or all the nodes have been reached, 
stop and go to (10). 
If dead end is reached, backtrack to the latest node. 
Go back to (3). 
Return the feasibility of the problem and the feasible solution 
if it is satisfiable. 

(i 
( 

(ii 

(iii 
(i 

(ii 
fiii 

11 

11 

111 

Table 5. 
CSP. 

The branch-and-bound algorithm for the singly-constrained polynomial 
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Iteration 2: 
(1) We set up an occurrence table as below: 

工2 X4 

+ve 
-ve 

2 
3 

3 
3 

2 
4 

1 

2 
negative occurrence, we (2) Since there is no variable that contains only positive 

choose X2 to be the branching variable and set it at 1. 
(3) The constraint can be reduced as 
( 1 1 )： -XJ, + 2X4^ — XSXI — X 1X^X4 > 3 

(4) The RHS of the constraint is positive and the LHS value equals to -1. Since the 
upper bound and the lower bound of the subproblem (II) are 2 and -3 respectively, 
we continue branching. 

Iteration 3: 
(1) We set up an occurrence table as below: 

X4 

+ve 
-ve 

0 
1 

0 
3 

1 
2 

(2) Since Xi and x^ have negative occurrence only, we set both Xi and 0:3 at 0. 
(3) The constraint can be reduced as 
(III): > 3 
(4) The RHS of the constraint is positive and the LHS value equals to 2. Obviously, 
the problem is infeasible and so we backtrack at X2 — 0. 

Backtrack at X2 = 0: 
(1) The constraint can be formed as 
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(IV): -2xi — 2X3 + 2̂ :1X3 - 3:1X3X4 > 1 
(2) The RHS of the constraint is positive and the LHS value equals to -3. From here, 
we find that the upper bound and the lower bound of the subproblem (IV) are 2 and 
-5. We continue branching. 

Iteration 4: 
(1) We set up an occurrence table as below: 

X4 
+ve 
-ve 

1 
2 

1 
2 

0 
1 

(2) Since X4 has the negative occurrence only, we set 工4 at 0. 
(3) The constraint can be reduced as 
(V): - 2 x i - 2x3 + 2xix^ > 1 
(4) The RHS of the constraint is positive and the LHS value equals to -2. From here, 
we find that the upper bound and the lower bound of the subproblem (V) are 2 and 
-4. We continue branching. 

Iteration 5: 
(1) We set up an occurrence table as below: 

+ve 
-ve 

1 
1 

1 
1 

(2) Since there is no variable that contains only positive or negative occurrence, we 
choose xi to be the branching variable and set it at 1. 
(3) The constraint can be reduced as 
(VI): 0 > 3 
(4) Obviously, the problem is infeasible and so we backtrack at xi = 0. 
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Backtrack at xi = 0: 
(1) The constraint can be formed as 
(VII): -2:^3 > 1 
(2) The RHS of the constraint is positive and the LHS value equals to -2. Obviously, 
the problem is infeasible and so we backtrack at 3:5 = 0. 

Backtrack at x^ = 0: 
(1) The constraint can be formed as 
( V I I I ) : - X I - 2 x 2 —X3 — X^+XiX2 + 3X1X3 — XiX^ + 3X2X4 — X-̂ X̂  — 2XiX2X:i — 0:1X3X4 — 

> 1 
(2) Since the RHS of the constraint is positive and the LHS value equals to -4. From 
here, we find that the upper bound and the lower bound of the subproblem (VIII) 
are 7 and -11, respectively. We continue branching. 

Iteration 6: 
(1) We set up an occurrence table as below: 

工2 X4 

+ve 
-ve 

2 
4 

2 
3 

1 

5 
1 
5 

we (2) Since there is no variable that contains only positive or negative occurrence 
choose xi to be the branching variable and set it at 1. 
(3) The constraint can be reduced as 
(IX): -X2 + 2^3 - 2X4 - 2X2X3 + 3X2X4 - 22:3X4 — X2X3X4 > 2 
(4) The RHS of the constraint is positive and the LHS value equals to -3. From here 
we find that the upper bound and lower bound of the subproblem (IX) are 5 and -8 
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respectively. We continue branching. 

Iteration 7: 
(1) We set up an occurrence table as below: 

X2 X4 
4-ve 
-ve 

1 
3 

1 
3 

1 
3 

(2) Since there is no variable that contains only positive or negative occurrence, we 
choose X2 to be the branching variable and set it at 1. 
(3) The constraint can be reduced as 
(X): X4 — 3XsX4 > 3 
(4) The RHS of the constraint is positive and the LHS value equals to -2. From here, 
we find that the upper bound and lower bound of the subproblem (X) are 1 and -3, 
respectively. We continue branching. 

Iteration 8: 
(1) We set up an occurrence table as below: 

x3 2；4 
+ve 
-ve 

0 
1 

1 
1 

(2) Since x^ has negative occurrence only, we set 2:3 at 0. 
(3) The constraint can be reduced as 
(XI)： > 3 
(4) The RHS of the constraint is positive and the LHS value equals to 
the problem is infeasible and so we backtrack at X2 = 0. 

Obviously, 

Backtrack at X2 = 0: 
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(1) The constraint can be formed as 
(XII): 2xs — 2x4 - 2x3x4 > 2 
(2) The RHS of the constraint is positive and the LHS value equals to -2. From here, 
we find that the upper bound and the lower bound of the subproblem (XII) are 2 and 
-4. We continue branching. 

Iteration 9: 
(1) We set up an occurrence table as below: 

X4 
+ve 
-ve 

1 
1 

0 
2 

(2) Since 2:4 has the negative occurrence only, we set X4 at 0. 
(3) The constraint can be reduced as 
(XIII): 2x3 > 2 
(4) From here, we find that the LHS value of the subproblem (XIII) equals to the 
RHS. We set 2:3 = 1. 
(5) Since a feasible solution is found (i.e. Xi - 1,X2 = 0,0:3 = 1,X4 = 0,3:5 = 0), we 
stop and report that the problem is satisfiable. 

Conclus ion 

From the above example, we can see that our branch-and-bound algoithm is better 
than the conventional backtracking method. Although the number of iterations is 
reduced, we still have to branch to a deeper level for checking the satisfiability, espe-
cially for those infeasible branches. In the following chapters, we will discuss revised 
branch and bound rules so as to improve the performance of our branch-and-bound 
method. 
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[-15, 12] 

[-3’ 2] 

[-11’ 7] 

/ x l ^ 
U 3 = 0 J 

infeasihle 

infeasihle infeasihle infeasihle (1 , 0 , 1 , 0 , 0 ) 

Figure 5.2: The solution tree of the problem -3:1 - 2x2 - xs - X4X1X2 + 30:1X3 -
- OCiXs + 3X2X4 - X3X4 - 2:3X5 + X4X5 - 2X1X2X3 — XiXzX^ 一 + XiX2X^ _ 

工 1̂ :33:5 + + X2XSX5 - X2X4X̂  + xsXiXs > 1 Under our basic searching algorithm 
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Chapter 6 

Revised Bound Rule for 
Branch-and-Bound Algorithm 

In last chapter, we have discussed a basic branch-and-bound algorithm to solve our 
zero-one polynomial maximization problem. From the example in section 5.2.4, we 
find that the performance of the algorithm is not so good, that is, we have to search 
in a deeper level for infeasibility. In this chapter, we propose another bound rule that 
can produce a tighter bound for the subproblem. A linear programming problem 
is formed to figure out the upper bound of each subproblem and a powerful solver, 
CPLEX is used to solve the reduced linear programmming problem. We will end 
with an example in section 5.2.4 to see the performance of using this tighter-bound 
rule. 

6.1 Revised Bound Rule 
The procedure of the revised bound rule is described as below. In Chapter 3’ we 
describe a method in solving zero-one optimization problems through its relaxation. 
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Bounding Rule 
(1) Transform the subproblem into P4 and CP4 and solve the CP4 by 

using CPLEX. 
(2) If X is an integer solution, i.e. P4 and CP4 are consistent, 

(i) if ZcpA > RHSsubproblem , return x as the feasible solution of the 
original problem. 

(ii) if ZcpA < RHSsubproblem, the subpioblem is infeasible and backtrack to 
the previous node. 

(3) If X is not an integer solution, i.e. P4 and CP4 are inconsistent, 
(i) ZcpA is the upper bound of the subproblem. 
(ii) if Zcp4 < RHSsubproblem, then stop and return the subproblem as 

infeasible and backtrack to the previous node. 
(iii) if ZcpA > RHSsubproblem, we continue branching. 

Table 6.1: Revised Bound Rule for the CSP 

Now, we will apply a similar way to find out the upper bound or even the feasible 
integer solution of zero-one optimization problem. We first transform the subproblem 
into the form of P4 and CP4 as discussed in Chapter 3. Then, we can find out its 
solution by using a dual method. If x is an integer solution of the dual problem, 
CP4 and P4 are consistent. We can then check the satisfiability by checking whether 
the objective value, Zcp4, is larger than or equal to the R H S of the subproblem. If 
so, we can stop and return the solution x*, where x* is the optimal solution of the 
subproblem. Thus, x* is a feasible solution to the original problem. Otherwise, this 
subproblem is infeasible and we need to backtrack at the previous nodes. 

If X is not an integer solution, CP4 and P4 are inconsistent. We can still find 
the upper bound (ZCPA) of the subproblem. If ZQPA is smaller than the R H S of 
the subproblem, the subproblem is infeasible and we backtrack to the latest node. 
Otherwise, we can continue branching. The revised bound rule is listed in Table 6.1. 
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6.1.1 CPLEX 
In [5], it is suggested to use a Lagrangian dual method to solve the zero-one poly-
nomial problem. Lagrangian dual method is a powerful solution scheme in integer 
programming problem. It reduces the primal zero-one polynomial problem into a 
linear programming problem which is easier to solve. 

In this thesis, we use CPLEX as a solver for solving the linear relaxation of 
the subproblem. CPLEX is designed to solve linear programming problems using 
Simplex method. It can solve a linear programming problem by using the primal-
simplex optimizer, the dual-simplex optimizer or the primal-dual barrier optimizer. 
If a linear program contains a substantial network, a speical network optimizer can 
be used. If the problem includes integer variables, a branch-and-bound method must 
be used. If the problem is a convex quadratic programming problem, the primal-dual 
barrier optimizer must be used. Many pratical problems can be solved faster by its 
dual-simplex. 

On the other hand, CPLEX is callable in C or C + + language and so it can be 
embedded in any programme in C or C++. In this thesis, we use C language to 
implement the whole search procedure, including both branch and bound rules by 
calling CPLEX as a solver for CP4 formulation of the primal subproblem. In the 
following section, we will use the example in last chapter to test the performance of 
our revised bound rule. 

6.2 Example 
Refer to the example in section 5.2.4, the constraint is 

- rr i — 2x2 - xs - 0：4 + XiX2 + Sxi^s - XiX^ — Xxx^ + 3X2X4 - 2:3X4 — x^x^ + 3:4X5 -
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2XiX2X2, — XiX2,X4^ — 2：22：3工4 + 工 1工2工5 — ^iX^X^ + 0:13:4X5 + — X2X4X5 + X^X^X^ > 1 
We do a similar procedure except that we would use the revised bound rule to find 
a solution and a tighter upper bound for the subproblem. Since the RHS of the 
constraint is positive and the LHS equals to 1, we set the upper and lower bound of 
the problem as 16 and -15, respectively. Before processing the search algorithm, we 
set up P4 and CP4 for the primal problem for checking the satisfiability of primal 
problem. P4: Max -̂；丄 一 2工2-32：3-5a:4-3a:5+2:1:1:2 +3工13；3 + 1̂：1；4+̂ 10；5+ 2x22:3 + 

2>X2X̂  + 3X3X4 + + 2X1X2X2, + XiXJ,XA + 工 4 + 工 1 工2工5 + ^l^s^s + XiX/̂ X^ + 
X2XzX^ + + X^X^Xf, 

+ Xi = 1 X2 +X2 = 1 + z= 1 
< 3；1工2 < < 工1工3 < X1X4 < XiX4 < X4 
< < 工5 

秘 3 < X2 办3:3 < X2X4 < X2 X2X4 < X4 
X3X4 < 无3 X3X4 < X4 

< Xs < 
< 无1工2工3 < 工2 < 

X1X3X4 < X1X3X4 < 512:3X4 <工4 X2X3X4 < X2 X2X3X4 < 
工3 X2X3X4 <工4 X1X2X5 < X1X2X5 < 
工2 X1X2X5 <工5 < X1X3X5 < X1X3X5 <工5 X1X4X5 < X1X4X5 < X4 X1X4X5 <工5 X2XSX5 < X2 < X2X3X5 < 3；5 

X2X4X5 < X2 X2X4X5 < X4 X2X4X5 <工5 XsXiXs <工3 X3X4X5 < X4 X3X4X5 < 
> 0 工2 > 0 > 0 0：4 > 0 X5 > 0 < 1 工5 < 1 XI >0 > 

binary 
> 0 

Let ti = X1X2, t2 = X1X3, W3 = X1X4, W4 = X1X5, W5 = X2X3, te = X2X4,W7 = x^x^^w^,= 
X3X5,Wg = XiX2X3,Wio = XiX^Xi^Wn = X2XsX^,ti2 = XiX2X5,Wi3 = XiX^X^.tu = 
XiX4X5,ti5 = X2XsX5,WiQ = = 3:3X4X5 
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CP4: Max - x i - 2x2 _ 3x3 — _ 3工5 + 力i + 3̂ 2 w^ w^ + 3̂ 6 + Zw-j + 
2W8 + 2wg + Wio + Wn + ti2 + Wis + tu + 力 15 + 川 16 + 力 17 

S.t. Xi + Xi = 1 X2 + X2 = 1 + 53 = 1 
h < xi tl < X2 
h < xi h < 3:3 
ws < Xi W3 < 3；4 
11)4 < Xi UOA < X5 
UU5 < X2 W5 < X3 
te < 工2 

k < X4 
Wj < X3 W7 < X4 
m < X3 m < xs 
Wg < Xi W9 < 工 2 < Xs 
Wio < Xi Wio < Wio < X4 
Wn < X2 Wn < X3 Wn < X4 
tl2 < Xi tl2 < 工2 t\2 < 
Wis < Xi '̂ 13 < 幻 

< 工 5 

tu < Xl tl4 < X2 力14 <工5 tl5 < X2 il5 < 工3 
il5 < 

me < X2 m6 < WI6 < 
tl7 < X3 tl7 < 工4 tl7 < 工5 Xi > 0 3：2 > C )Xs > 0 3；4 > 0 X5 > ( )X4 < 1 X5 < 1 Xi >0 X2 

using CPLEX ，we find the solution of the relaxed problem is Xi 
x^ = x^ = 0.5 with the objective value Zcpi = 3.5. The upper bound of the primal 
problem becomes 3.5. 

Iteration 1: 
(1) We set up an occurrence table as below: 

X4 X5 
+ve 
-ve 

4 
6 

4 
4 

3 
7 

4 
6 

5 
4 

(2) Since there is no variable that contains only positive 
choose X5 to be the branching variable and set it at 1. 
(3) The constraint can be reduced as 

negative occurrence, we 
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(I) ： -2xi - 2X2 - 2X3 + 2XIX2 + 2X1X3 + X2X3 + 2^2X4 - 2x11:22:3 — XiX^X^ — X2X3X4 > 1 
(4) Since the RHS of the constraint is positive and the LHS equals to -3, we try the 
revised bound rule to find out the solution of the subproblem and find out its upper 
bound. 
(5) We set up the P4 and CP4 of the subproblem as: 
P4: Max -2xi - 2x2 — 82:3 一 2x4 + '2xiX2 + 22:1X3 + X2X3 + 2x2X4 + 2x3x4 + 2X1X2X3 + 
X1X3X4 + X2XsX4^ 

Xi + Xi X2-\- X2 = 工3 + 无 3 = 

XIX2 < Xl XiX2 < 
X1X3 < Xi X1X3 < X3 
X2X3 < 无2 X2X3 < X3 
X2X^ < X2X4 < X4 
XsX4 < X3 53X4 < 
X1X2X3 < Xi X1X2X3 < X2 X1X2XS < 
XiXsXi < •无1 X1X3X4 < Xs XiX^Xi < X4 
X2XSX4 < X2 52X3X4 < 3:3 X2XSX4 < X4 
Xi>0 > 0 X3 > 0 0：4 > 0 < 1 > 0 > 0 X 3 > 
Xi,X2,Xs,X4,Xi,X2,Xs binary 

Let ti = XiX2,t2 = XiXs.Ws =无23：3,艺4 =工23：4，《 5̂ ―― ： 3̂工4,川6 = ^1X2X3, Wj = 

XiX3Xi,Ws = X2X3X4 
CP4: Max -2xi - 2x2 一 3x3 _ 2x4 + 2力i + 2力2 + 1(；3 + '^U + ^w�+ 2we + wj + ws 

Xi Xi = 1 X2 + X2 
h < 
h < 
心3 < X2 

2:3 + X3 = 
h < X2 
t2 < 
Ws < X3 
力4 < X4 W5 < Xs Ws < X4 

WQ < Xi Wq < X2 < Xs 
< Xi Wl < Xs Wj < X4 

m < X2 W8 < X3 Ws < X4 
Xi > 0 > 0 X3 > 0 , X4 > 0 X4 < 1 xi >0 X2 
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(6) By using CPLEX, we find the solution of subproblem (I) is xi = X2 = x^ = 
X4 = 0.5 with the objective value ZCPA = 2 
(7) Since Zcpi > RHSsubproblem, we continue branching and set the upper bound as 2. 

Iteration 2: 
(1) We set up an occurrence table as below: 

xi X2 X3 X4 
+ve 
-ve 

2 
3 

3 
3 

2 
4 

1 
2 

(2) Since there is no variable that contains only positive occurrence or negative oc-
currence, we choose X2 to be the branching variable and set X2 at 1. 
(3) The constraint can be reduced as 
(II)： —Xs + 22；4 - X3X4 — XiXsX4 > 3 
(4) Since the RHS of the constraint is positive and the LHS equals to -1, we try the 
revised bound rules to find out the solution of the subproblem and its upper bound. 
(5) We set up the P4 and CP4 of the subproblem as: 
P4: Max -xj , + 2x32:4 + 
s.t. Xi Xi = 1 

< 无3 

X1X3X4 < 
> 0 0；3 > 0 a;4 > 0 

工1，3:3,3:4,xi,无3 binary 
Let Wi = X3X4, W2 = X1XSX4 
CP4: Max -X3 + 2wi + W2 
s.t. 

X3 + 53 = 1 
^3X4 < Xi 
XiX^Xi < Xs X1XSX4 < Xi 
X4 <1 > 0 > 0 

Xi-\-Xi = 
Wi < Xs 
W2 < Xi 

+ 无3 : 

Wi < X4 
�——1 W2 < X3 
â i > 0 X3 > 0 3:4 > 0 X4 < 1 

W2 < X4 
> 0 X3 > 0 
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(6) By using CPLEX, we find the solution of subproblem (II) is xi = x^ = 0,X4 = I 
with the objective value Zcpa = 2. Since Zcpa < RHSsubproblem, the problem is in-
feasible and so we backtrack at X2 = 0. 

Backtrack at X2 = 0: 
(1) The constraint can be formed as 
(III): - 2 x i — 2x3 + 2x1x3 - X1X3XA > 1 
(2) Since the RHS of the 
with our bound rule. 
(3) We set up the P4 and CP4 of the subproblem as 
P4: Max -2xi - 2x2, 一 2:4 + 2xix^ + x^x^ + xix^x^ 
s.t. 

constraint is positive and the LHS equals to -3, we check 

Xi + = 1 
X1X3 < Xi 
X3X4 < X3 
X1XSX4 < Xi 
xi>0xs> 0 :r4 > 0 

X3 + X3 = 1 
X1X3 < Xs 
X^Xi < X4 
X1XSX4 < Xs XiXsX^ < X4 
3:4 < 1 > 0 > 0 

Let X1XSX4 

xi,x3,x4,xi ,xs binary 

ti = XiX3,W2 二 X^X^^Ws 
CP4: Max - 2 x i - 2xs - 3:4 + 2ti + 
s.t. _ 

Xi-\-Xi = 1 Xs+Xs = I 
ti < xi h < X3 
W2 < X3 W2 < X4 
W3 < Xi Ws < Xs xi > 0 X3 > 0 2:4 > 0 Xi<l 

Ws < X4 
： !̂ > 0 X3 > 0 

(4) By using CPLEX, we find the solution of subproblem (III) is Xi = x^ = 0，工4 = 
with the objective value ZCPA = 0 
(5) Since Zcpi < RHSsubproblem, we backtrack at X5 = 0. 
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Backtrack at x^ = 0: 
(1) The constraint can be formed as 
(IV)： —Xi — 2X2 —工3 — + XiX2 + S^i^a — XiX^^ + 3:̂ 2 工 4 —工 33̂ 4 — 2X1X2X3 — 0:1X3X4 — 
工2幻工4 > 1 

(2) The RHS of the constraint is positive and the LHS value equals to -4. 
(3) We set up the P4 and CP4 of the subproblem as: 
P4: Max - x i — 2x2 — 3x3 — 6x4 + X1X2 + 3X1X3 + XiX/̂  + 2x2X3 + 3X2X4 + 3X3X4 + 
2X1X2X3 + X1XSX4 + X2XSX4 
s.t. 

Xi-\- Xi = 1 X2-\-X2 = 

X1X2 < Xi X1X2 < X2 
XlX^ < Xl XiX^ < 3:3 
XiX^ < 无1 X1X4 < X4 
X2X2, < X2X2, < 
X2X^ < X2 < Xi 
53X4 < 

无3 XsXi < X4 
XiX2X^ < Xi X1X2XS < X2 XiX2Xs < 

< xi <工3 X1XSX4 < X4 
X2XSX4 < X2 X2XsXi < 2：3 X2XSX4 < X4 
Xl>0 X2>0 Xs>Q 3；4 > 0 < 1 > 0 X2 > 0 X 3 > 
Xi,X2, xs, X4, Xi,X2, X3 binary 

Let ti = X1X2, t2 = XiX3,Ws = XiXi, = X2X3, = X2X4, WQ = X3X4, W7 = 

X1X2XS, Ws = X1X3X4, W9 = X2X3X4 

CP4: Max - x i - 2x2 — 3^3 - bx^ + ti + 3力2 + ŵ s + 2^4 + 3力5 + 3wq + 2wj -\-W8-\-wq 
s.t. 
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3；1 + = 1 X2 + X2 
tl < Xi 
h < 

< Xi 
W4 < X2 
tb < 

tl < X2 
h < 
川 3 < 3；4 

Wi < Xs 
ts < X4 

We < X3 We < x^ 
W7 < Xi W7 < X2 W7 < X3 
Ws < Xi Ws < Xs Ws < X4 
Wg < X2 W9 < Xs Wg < X4 
xi > 0 X2 > 0 rrs > 0 0：4 > 0 x^ < 1 > 0 > 0 :r3 > 0 

(4) By using CP LEX, we find the solution of siibproblem (IV) is Xi = X2 = Xs = 
X4 = 0.5 with the objective value Zcp4 = 3. 

(5) Since Z CPA > RHSsubprobiem, we continue branching and set the upper bound as 3. 

Iteration 3: 
(1) We set up an occurrence table as below: 

Xi X2 X4 
+ve 
-ve 

2 
4 

2 
3 

1 
5 

1 
5 

(2) Since there is no variable that contains only positive or negative occurrence, we 
choose Xi to be the branching variable and set it at 1. 
(3) The constraint can be reduced as 
(V): —X2 + 2x3 — 2x4 — 2x2X^ + 8X2X4 — 2x32:4 —工2工3工4 > 2 
(4) Since the RHS of the constraint is positive and the LHS equals to -3, we check 
the bound rule. 
(5) We set up the P4 and CP4 of the subproblem as: 
P4: Max —X2 - 5工4 + 2x2X3 + 3x20:4 + 8x32:4 + X2XsXi 
s.t. 
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0；2 + 无2 二 1 X3 + X3 = 1 
< X2 X2X3 < Xs 

X2X4 < X2 X2X^ < 0；4 

XsXi < X3 XsX4 < X4 
X2X3X4 < X2 X2XSX4 < Xs X2XSX4 < XA 

工4 < 1 X3 > 
Xs, X4, X2, Xs binary 

L e t wi = X2XS,力2 = X2X4, W3 =XsX4, W4 = 
CP4: Max -X2 - 5^4 + 2w�+ 3̂ 2 + 3^3 + vm 
s.t. 

X2-1-X2 = 1 X3 + X3 = 1 
Wi < X2 Wi < Xs 
h < X2 t2 < X4 
W3 < Xs Ws < Xi 
W4 < X2 W4 < Xs W4 < Xi 

> 0 Xa > 0 a:4 > 0 X4 < 1 > 0 X3 > 0 
(6) By using CPLEX, we find the solution of subproblem (V) is X2 二 0,3:3 = 0 , = 1 
with the objective value ZCPA = 2 
(7) Since Zcpa = RHSsubproblem, we stop the iterations and report a feasible solution 
of the original problem X2=0,工3=1，0 :5=0. 

6.3 Conclusion 
From the above example, we know that the revised bound rule reduced many branches 
that may contain infeasible solutions. Also, we can prove the satisfiability problem in 
a shorter time. However, is there any further improvement in our branch-and-bound 
method? As we know, the shape of the searching tree is highly related to the order 
of the branching variable list. Thus, we will propose a revised branch rule in the next 
chapter to see whether we can have any further improvement. 
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x 5 = 0 ] Zcp4 = 3 

x 2 = l 1 Zcp4 = 2 

infeasible 

x 2 = 0 ) Zcp4 = 0 

infeasible 

Figure 6.1: The solution tree for the revised bound rule of the problem —xi — 2x2 — 
幻—工4 + + ^ X i X s — X 1 X 4 — X 1 X 5 + 3 X 2 X 4 — X s X 4 — X ^ X ^ + 0 : 4 0 : 5 — 2 X 1 X 2 X 3 — X 1 X 3 X 4 — 
X2XSX4 XiX2X^ — XiXsXs X1X4XS X2XSX5 — X2X4X5-]-XsX4X5 > 1 Under our searching 
algorithm 

66 



Chapter 

Revised Branch Rule for 
Branch-and-Bound Algorithm 

In Chapters 5 and 6, we have developed a basic branch-and-bound algorithm and a 
revised bound rule. Although these two methods improve the traditional branch-and-
bound method, their running time is still slow compared with other SAT searching 
methods. In this chapter, we will explain our revised branch rule and compare it with 
those we discussed in last two chapters. Moreover, we will test the performance of 
the revised branch rule combined with the revised bound rule in last chapter. 

7.1 Revised Branch Rule 
In Chapter 5, we define a branch rule by considering the positive occurrence of the 
variables. This method may be improper because the elimination of a variable would 
affect other variables in both the positive and negative terms. It can be improved by 
considering both the positive and negative occurrences. 

From [15], Chu-Min Li suggested to use Freeman's method [6] to set the branching 
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variable by considering the weight of the variables. The weight can be evaluated by 
the following formula : 

H(x) = w{x) * w{x) * 1024 + w{x) + 

where w{x) is the number of clauses reduced if we set x at 1 and w(x) is the number 
of caluses reduced if we set x at 0. Obviously, the contribution is to give more 
importance to the product w{x) * w(x) to balance the search tree. The value of 1024 
may be used for a quick multiplication because 1024 = 

In this thesis, we would modify this formula to: 

W(x) = [w(x) * w(x) * n + w(x) + * priority{x 

where w{x) is the number of positive occurrence of the variable, x, w{x) is the number 
of negative occurrence of x and n is the number of variables in the problem. Initially, 
the priority{x) is set to 1. After processing the CP4, we can find out whether x 
is integral. From the literature, the value branching variable should be non-integral 
from the relaxed problem. Here, we also prefer to branch on a non-integer variable. 
If X is an integer, we set priority{x) = 0. Otherwise, we set priority(x) = 1. If there 
are more than one variable that contain the same weight, we would randomly choose 
one of them. This randomization approach, instead of branching on the best variable, 
enables our algorithm to find a feasible solution quicker. 

In addition, we have to decide whether to set the branching variable as 0 or 1. 
Let us consider the linear term of the branching variable. If it is positive, we set the 
branching variable at 1. Otherwise, we set it at 0. Fang and Loetamonphong [39 
proved that the cost vectors Q are effective in a constrained problem. In a minimiza-
tion problem, if Ci is larger than zero, we should set x* at its lower bound. Otherwise, 
we should set x* as its upper bound. Therefore, the assignment of the branching 
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Revised Branch Rule 
(1) Evaluate the weight of each variable Xj, i = 1 , . . . ’ n by using the formula 

W{xi) = [w{xi) * w{xi) * n + w(xi) + * priority(xi) 
where priority(^Xi) = 0 if Xj is an integer in CP4 
or priority (Xi) = 1 if Xf is not an integer in CP4. 

(2) (i) Choose the variable,工“ with the highest weight as the branching variable, 
(ii) If more than one variable have the highest weight, choose the branching 

variable Xi randomly among these variables. 
(3) (i) If the linear term of the branching variable is positive, eliminate it 

by setting Xi = 1. 
(ii) Otherwise, set rc,. = 0. 

Table 7.1: Revised Branch Rule for the CSP 

variables should be considered in the sign of the linear term in the constraint. The 
revised branch rule and the revised branch-and-bound algorithm is shown in Table 
7.1 and Table 7.2. 

7.2 Comparison between Branch Rule and Revised 
Branch Rule 

In [15], Chu-Min Li proved that the width of a search tree is more important than 
its mean height. The width and the shape of the search tree are highly related to the 
order in eliminating variables. When n is small, the searching tree is shallow. That 
is, we can find the solution in a short running time no matter how the ordering is. 
However, if n becomes larger, the ordering would be more significant. The weight 
of the product w{x) * w(x) would be heavier. For example, the positive occurrence 
and negative occurrence of Xi are 3 and 5, respectively, and those of X2 are 4 and 4, 
respectively. If n equals to 5, the weights of Xi and X2 are 83 and 88, respectively. 
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(5) 

(6) 
(7) 

(8) 

(9) 
(10) 

(i) 
(ii) 

� 

(2) 

(3) 

(i) 
(ii) 

� （i) 

11 

Revised Searching Algorithm for CSP 
Procedure: 

If the RHS of the constraint is non-positive, set the imassigned variable 
to be 0. Stop and go to (10). 
If the sum of all the coefficient of the constraint is larger than the RHS, 
set the imassigned variable to be 1. Stop and go to (10). 
Use the Revised Bound Rule to check whether the original problem is 
feasible and find its upper bound. 
Calculate the number of occurrence of each variable in the constraint 
according to 
positive coefficient 
negative coefficient 
If the number of occurrence of variable in (3)(i) is 0, then we set that 
variable to 0. 
If the number of occurrence of variable in (3)(ii) is 0，then we set that 
variable to 1. 
Go to (6). 
Use the Revised Branch Rule to find the branching variable and eliminate 
this branching variable. 
Update the constraint. 
If the RHS of the constraint is non-positive, set the imassigned variable to 
be 0. Stop and go to (10). 
If the sum of all the coefficient in LHS of the constraint is larger than 
the RHS, set the imassigned variable to be 1. Stop and go to (10). 
Use the Revised Bound Rule to figure out the upper bound of the 
subproblem. 
If a solution is found or all the nodes have been reached, stop and 
go to (10). 
If dead end is reached, backtrack to the latest node. 
Go back to (3). 
Return the feasibility of the problem and the feasible solution 
if it is satisfiable. 

Revised Branch Rule 

(iii) 

(i) 
(ii) 
(i) 

(ii) 
fiii) 

(1) Evaluate the weight of each variable i = 1 , . . . , n by using the formula 
W(xi) = [w(xi) * w{xi) * n + w{xi) + w(xi)] * priority(Xi) 
where priority(xi) = 0 if is an integer in CP4 and 
priority(xi) = 1 if is a non-integer. 

(2) (i) Choose the variable, Xi, with the highest weight as the branching variable, 
(ii) If more than one variables have the same highest weight, choose the 

branching variable Xi randomly among these variables. 
(3) (i) If the linear term of the branching variable is positive, eliminate it by 

setting Xi = 1. 
(ii) Otherwise, set x, = 0. 

70 



Revised Bound Rule 
(1) Transform the subproblem into P4 and CP4 and solve the CP4 by 

using CPLEX. 
(2) If X is an integer solution, i.e. P4 and CP4 are consistent, 

(i) if ZcpA > RHSsubproblem，retuHi X as the feasible solution of the 
original problem. 

(ii) if ZcpA < RHSsubproblem, the sub-problem is infeasible and backtrack 
to the previous node. 

(3) If X is not an integer solution, i.e. P4 and CP4 are inconsistent, 
(i) Zcp4^ is the upper bound of the subproblem. 

(ii) if Zcp4 < RHSsubproblem, then stop and return the subproblem 
as infeasible and backtrack to the previous node. 

(iii) if > RHSsubproblem, we continue branching. 

Table 7.2: Revised Branch-and-Bound Algorithm for the CSP 

However, if n equals 100, the difference between these two variables is larger (i.e. 
1508 and 1608 respectively). Besides, when n becomes larger, the number of clauses 
generated would be larger. Thus, the number of occurrences (both positive and 
negative) would deviate from variables sharply. That means, we can find a better 
branching variable easier. On the contrary, if we only consider the weight of the 
positive occurrence of the variable, it would be ambiguous if more than one variable 
contain the same number of positive occurrence. A better branching variable can be 
found under our revised branch rule. 

On the other hand, Chu-Min Li also proposed that branching on a variable ran-
domly selected among the best variables may solve the problem faster. Our revised 
branch rule chooses one variable randomly among those variables with the same 
weight. This method is better than comparing the absolute coefficient among those 
variables. The elimination of the branching variable may affect other unassigned vari-
ables deeply in the last method. This changes the width of the search tree in the next 
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level and the shape of the whole searching tree. 
Neverthless, the revised branch rule considers whether to set the branching vari-

able to 0 or 1 by considering the sign of its linear term. The shape of the search tree 
would be different and the width of the serach tree can be reduced. Thus, we can find 
out the feasible solution of the original problem in a shorter running time. According 
to the above reasons, the revised branch rule should have a better performance. We 
can test it by using the example discussed in last two chapters. 

7.3 Example 
Refer to the example in last two chapters, the constraint is 

- 2X2 - Xs- X4-\- X1X2 + SXiXs - X1X4 — X1X5 + SX2X4 — XsX4 — x^x^ + X4X5 -
'^XiX2Xs — X1XSX4 — X2X3Xi + X1X2X5 — X1X3X5 + X1X4X5 + X2X3X5 - X2X4X5 + 3:32:4X5 > 1 

In the following, we will use the revised branch and bound rule to show the improve-
ment of these two methods. Since the RHS of the constraint is positive and the LHS 
equals to 1, we set the upper and lower bound as 16 and -15, respectively. Before 
processing the search procedure, we check the satisfiability of the problem by using 
CPLEX and set up the P4 and CP4 format of the problem as 
P4: Max - x i — 2x2 _ 3^3 — 6x4 — 3x5 + + Sxixs + ^1X4 + 51X5 + 2x2X3 + 3x23:4 + 
3x3X4 + 2^3X5 + 2X1X2X3 + X1X3X4 + X2X3X4 + X1X2X5 + X1X3X5 + X1X4X5 + 0:2X30:5 + 

+ X3X4X5 
s.t. 
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Xi + Xi = 1 X2 +X2 = 1 + = 1 
X1X2 < Xi < 
XiXs < Xi < 
XIX4 < XiX4 < X4 
XIX5 < X1X5 < X5 
秘 3 < X2 ^2X3 < 
X2X4 < 工2 X2X4 < X4 
X3X4 < X3X4 < X4 
X3X5 < 无3 X3X5 < 
X1X2X3 < Xi X1X2XS < X1X2X3 < 工 3 

X1X3X4 < 无1 X1XSX4 < 
工3 X1X3X4 < 3：4 

X2XSX4 < 
无2 X2X3X4 < X2X3X4 < 

X1X2X5 < X1X2X5 < 0:1X2X5 <工5 X1X3X5 < 
无1 XlX^Xs < X1X3X5 <工5 X1X4X5 < XIX4X5 < X4 X1X4X5 < 2：5 

X2X3XS < 工2 002X3X5 < -巧 OO2X3X5 <工5 X2X4X5 < 
无2 X2X4X5 < X4 X2X4X5 < 

X3X4X5 < X3X4X5 < X4 X3X4X5 h 
ooi>0 

工2 > 0 Xs > 0 0；4 > 0 3；5 > 0 
工4 < 1 < 1 x i > 0 无2 > 

XI,X2,XS,X4,XS,XI,X2,XS binary 

Let ti ：二 XiX2, t2 = XiXs, ws = xix^, W4 = X1X5, W5 = X2X3, te = X2X4, Wj = X3X4, wg = 
Wg = XiX2Xs,Wio = XiX^Xi^Wu = X2XsXi,ti2 = XiX2Xs,Wis = XiX^X^.tu = 

XiX4X5,ti5 = X2X3X5, WiQ = X2X4X5, tn = X^X^X^ 
CP4: Max - x i - 2x2 - 3x3 _ 5^4 - 8x5 + 力1 + 3力2 + w s W 4 + + 3力6 + ^w-j + 
如 S + 2W;9 + Wio + Wu + ti2 + Wu + tu + ti5 + ^ig + tu 

S.t. 
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Xi Xi = 1 X2 + X2 = 1 X3-\-X3 = 1 
tl < Xi tl < X2 
h < h < ocs 
W3 < Xi Ws < X4 
W4 < Xi W4 < X5 
yj5 < X2 W5 < Xi 
U <工2 te < X4 
w? < Xs W7 < X4 
Ws < X3 W8 < X5 
WQ < Xi Wg < X2 W9 < 工3 WlO < Xi WlQ < Xs ^ 1 0 < 

wn < X2 Wn < Xs Wn < 3:4 
tl2 < 工 1 

t\2 < X2 tl2 < 工5 m s < Wu < Xs m s < ti4 < Xi tu < X2 tl4 < X5 
tl5 < 工2 tl5 < X3 tl5 < 工5 
则6 < Wi6 < X4 Wi6 < X5 
tl7 < 工3 h i < 工4 tl7 < OC5 
Xi > 0 X2 > 0 Xa > 0 > 0 Xs > 0 3；4 < 1 Xs < 1 Xi >0 X2 

By using CPLEX, we find the solution of relaxed problem is Xi = 0,X2 = Xs = 
X4= Xs = 0.5 with the objective value Zcp\ = 3.5. The priorities of the variables are 

OOl X2 3；4 
priority 0 1 1 1 1 

Iteration 1: 
(1) We set up an occurrence table as below: 

oci 工2 X4 :r5 
+ve 
-ve 

W{x) 
4 
6 
0 

4 
4 
88 

3 
7 

115 
4 
6 

130 
5 
4 

109 
negative occur-
X4 at 0 because 

(2) Since there is no variable that contains only positive occurrence or 
rence, we choose x\ to be the branching variable. Also, we should set 
the sign of its linear term is negative. 
(3) The constraint is reduced to 
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(4) Since the RHS of the constraint is positive and the LHS equals to -3, we try the 
revised bound rules to find out the solution of the subproblem and its upper bound. 
(5) We set up the P4 and CP4 of the subproblem as: 
P4: Max -a：! - 2x2 - 3x3 — 80:5 + X1X2 + Sxix^ + xix^ + 2x2X3 + 2x30:5 + 2X1X2X3 + 
X1X2X5 + X1XSX5 + X2XSX5 
s.t. 

Xi -{- Xi = 1 X2 + X2 = 1 工3 + = 1 

X1X2 < Xi 工 2 < 

XiXz < Xi ^ixz < X3 
XiX^ < Xi XlX^ < 
X2X2, < X2 X2X3 < 
X3X5 < X3 X3X5 < 
X1X2XS < Xi X1X2XS < 工 2 5 1工2工3 < 工 3 

X1X2X5 < Xi X1X2XS < X2 工1工2工5 <工5 
XiX^Xs < Xi X1XSX5 <工3 ^1X3X5 < 工5 
X2OC3X5 < X2 X2X3X5 < 3；2 < 
X l > 0 X 2 > 0 X s > 0 X 5 > 0 X5 < 1 Xi > 0 X2 > 

无 13̂ 5, = X2X3,Ws = X^X^, WQ = ^1X2X3,̂ 7 = 

xi,x2,xs,x5,xi,x2, X3 binary 

Let ti = X1X2, t2 = xiXs, ws = 

CP4: Max -Xi — 2X2 _ Sxg — 3工5 + 力i + 3力2 + ws + 2w4 + 2秘5 + 2we - ^ h + ws + tg 
s.t. Xi -h Xi = 1 X2-h X2 = 1 X3 + X3 = 1 

tl < 工 1 
h < X2 

h < Xi h < Xs 
心3 < Xi W2 < X5 W4 < X2 W4 < 工 3 
W5 < X3 W5 < X5 We < xi We < X2 U>6 < 
h < t? < 工2 h < 工 5 W8 < Xs Wg < X5 
h < 工 2 力9 < Xs h <工5 a：! > 0 0；2 > 0 0；3 > 0 0；5 > 0 Xs < 1 > 0 > 0 

By using CPLEX, we find the solution of subproblem (I) 
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= 0.5 with the objective value Zcp4 = 2.5. The priorities of the variables are 
xi 工 2 

priority 1 1 1 1 
(7) Since Zcp4 > RHSsubprobiem, we continue branching and set the upper bound as 
2.5. 

Iteration 2: 
(1) We set up an occurrence table as below: 

xi .T5 
+ve 
-ve 

W(x) 

3 
4 

67 
3 
2 

35 
2 
4 

46 
2 
3 

35 
(2) Since there is no variable that contains only positive occurrence or negative oc-
currence, we choose Xi to be the branching variable (xi has the largest weight). Also, 
we should set xi at 0 because the sign of its linear term is non-positive. 
(3) The constraint can be reduced as 
(II): -2X2 -幻一 XsX5 + X2XSX5 > 1 
(4) Since the RHS of the constraint is positive and the LHS equals to 
revised bound rules to find out the solution of the subproblem and its 
(5) We set up the P4 and CP4 of the subproblem as: 
P4: Max - 2 x 2 - X2,- + 元3X5 + X2X3X5 
s.t. 

X3 + X3 = 1 
无3工5 < 无3 < 

X2XSX5 < X2 X2XiX5 < Xs X2X3X5 < X5 
X2>0Xs>0Xs>0 X2<1X^<1 Xs>0 
x2,xs,x5,xs binary 

Let Wi = X3X5,t2 = X2X3X5 

-3，we 
upper 

try the 
bound. 
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CP4: Max -2x2 - xs - x ^ w i 1 2 
s.t. 

工3 + 无 3 = 1 

Wl < X3 Wi < Xs 
h < X2 t2 < Xa h < 工5 

> 0 > 0 3；5 > 0 0；2 < 1 X5 < 1 > 0 
(6) By using CPLEX, we find the solution of subproblem (II) is X2 = 2:3 = 0,0:5 = 1 
with the objective value Zcp4 = 0. Since Zcpa < RHSsubproblem, the problem is in-
feasible and so we backtrack at xi = 1. 

Backtrack at Xi = 1: 
(1) The constraint can be formed as 
(III)： -X2 + 2X3 - X5- 2X2X3 + X2X5 - 2X3X5 + X2X3X5 > 2 
(2) The RHS of the constraint is positive and the LHS value equals to -1 when all 
variables are set at 1. 
(3) We set up the P4 and CP4 of the subproblem as: 
P4： Max -X2 - 30：5 + 2X2X2, + X2Xr, + 2X3X5 + X2X2,X^ 

X2-\- X2 = 1 工3 + 53 = 1 

X2X3 < X2 办工3 < 

X2X5 < X2 工2^5 < X3X5 < Xs 
< 工5 X2XSX5 < %2 X2X3X5 < X3 

> 0 Xa > 0 3：5 > 0 < 1 

X2,Xs,X5,X2,Xs binary 

Let wi = X2X3, t2 = X2X5, ws 二 xsx^, W4 = X2XSX5 
CP4: Max -X2 — 3x5 + 2wi + 力2 + '̂ w^ + m 
s.t. 

X2XSX5 < X5 
X2>0X3>0 
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15’ 12] 

infeasible 

xl=l ) Zcp4 = 2 

( 1 , 0 , 1 , 0 , 0 ) 

Figure 7.1: The solution tree for the revised branch-and-bound algorithm of the 
problem —xi — 2x2-X2,-X4^-\-xiX2-\- ？ i X i X y , - x i x ^ - x i x ^ + 83:20:4 一 x^x/^ - x^x^ + 0:4X5 -
2X1X2X2, - XiX2,X4̂  — 2:2X3X4 + XiX2X^ - XiX^X^ + XiX^X^ + ：1：2工3工5 _ + X^X^X^ > 1 
under our searching algorithm 

+ = 
y^i < 
h < X2 
m < 

m < 
h < 
W3 < Xs 

Wi < X2 Wi < X3 
> 0 > 0 > 0 rcs < 1 

W4 < X5 
X 2 > 0 X 3 > 0 

(4) By using CPLEX, we find the solution of subproblem (III) is = 1, X2 = 0:5 = 0 
with the objective value Zcpa = 2. Since Zcpa = RHSsubproblem, we stop here and 
report the problem is satisfiable with the solution (a;i = x^ = l,X2 = X4 = x^ = 0). 

7.4 Conclusion 
From the above example, we observe that the revised branch rule gets a great improve-
ment from the original branch-and-bound-algorithm. It is significant that nine steps 
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are saved compared with the basic branch-and-bound algorithm. In the next chapter, 
we will present experimental results and analysis from different sizes of problems. 
Moreover, we will compare our algorithm with other methods, like SATZ. 

79 



Chapter 8 

Experimental Results and Analysis 

In this chapter, experimental results for the three methods, the basic branch-and-
bound method, the revised bound rule method and the revised branch-and-bound 
method, are presented in the first section. The statistics include the satisfiability 
of the problem, the mean and standard deviation of the computational time, the 
maximum number of backtracking and the maximum number of constraints generated 
in CP4. We discuss the performance of the three methods and compare them with 
SATZ under the same computing environment. We only present part of the results 
here and the complete results can be found in Appendix B. In the second section, 
we study the significance on the difference between our revised branch-and-bound 
method and SATZ and find out some reasons of outperformance of SATZ. 

8.1 Experimental Results 
Table 8.1, Table 8.2 and Table 8.3 list the mean and standard deviation of the com-
putational time, the maximum number of backtracking and the maximum number 
of constraints generated in CP4 for n=5, n=10 and n=30 under 100 samples respec-
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tively. All methods are written in C language and the samples are run under Sun 
Workstation, Ultra-60. In Table 8.1, 76 samples are satisfiable while 24 samples are 
unsatisfiable. In Table 8.2, 74 samples are satisfiable while 26 samples are unsatisfi-
able. In Table 8.3, 73 samples are satisfiable while 27 samples are unsatisfiable. From 
the results, we can see that the performance of the three methods are in the same level 
when n is small. When n=5 and 10, the basic branch-and-bound algorithm runs in 
the shortest time although its maximum number of backtracking is much larger than 
that of the revised bound rule and the revised branch-and-bound algorithm. These 
two methods may take longer time in running the CPLEX for bounding parts. 

However, when n is larger (i.e. n=30), the revised branch-and-bound algorithm 
does the best in both the mean computational time and the maximum number of 
backtracking. Obviously, the completion time becomes less for a smaller number of 
backtracking. This finding agrees with what we state in Chapter 5 that the efficiency 
of a searching procedure is highly related to the order of labeling. It means that 
the decision for choosing a branching variable is significant in branch-and-bound 
algorithm. 

Table 8.4 gives the computational result of SATZ by using the same data we 
used for testing the basic branch-and-bound algorithm, the revised bound rule and 
the revised branch-and-bound algorithm. From the result, we find that the mean 
computational time of SATZ is less than one second. In Appendeix B, we can see 
that the running time of SATZ is within 2 seconds, which is 251 times faster than 
our revised branch-and-bound algorithm. In the next section, we will analyze the 
computational result of the four methods. 
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Maximum 
Mean Standard Deviation Maximum number of 

Completion of Computational number of Constraints Method Time (sec.) Time (sec.) Backtracking in CP4 Basic B&B 0.0001 0.001000 20 0 Revised Bound Rule 0.0137 0.011777 6 52 Revised B&B 0.0109 0.011110 7 52 

Table 8.1： Results for the three methods when n=5 

Maximum Mean Standard Deviation Maximum number of Completion of Computational number of Constraints Method Time (sec.) Time (sec.) Backtracking in CP4 Basic B&B 0.0143 0.012248 382 0 Revised Bound Rule 0.1046 0.062729 48 196 Revised B&B 0.0918 0.052134 31 196 

Table ^ >•2： Results for the three methods when n=10 

Maximum Mean Standard Deviation Maximum number of Completion of Computational number of Constraints Method Time (sec.) Time (sec.) Backtracking in CP4 Basic B&B 26315.6411 18579.064637 11772316 0 Revised Bound Rule 214.0988 148.253970 15006 729 Revised B&B 130.9823 111.793230 7372 729 

Table 8.3: Results for the three methods when n=30 
Mean Computational S.D. of Computaional 

n Time (sec.) Time (sec.) 
5 0.0120 0.006963 10 0.0210 0.008933 30 0.5400 0.261437 

Table 8.4: Results for SATZ in n=5, 10, 30 
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8.2 Statistical Analysis 
In last section, we know that our revised branch-and-bound algorithm has a great im-
provement when compared to the basic branch-and-bound algorithm and the revised 
bound rule method. In section 8.2.1, we will discuss the performance of the above 
methods. Also from Table 8.4 and Appendix B, we know that SATZ implemented 
by Chu-Min Li runs much faster than our methods. We will talk over how it works 
in section 8.2.2. 

8.2.1 Analysis of Search Techniques 
From Appendix B, we can see that our basic branch-and-bound algorithm has the 
shortest running time when n is small (i.e. n=5, 10). The basic algorithm takes less 
than 0.01 seconds to complete all the samples. However, its number of backtrack-
ing is more than the revised bound rule method and the revised branch-and-bound 
algorithm. The maximum number of backtracking is 20 and 382 for n=5 and 10， 

respectively while they are 6 and 48 in the revised bound rule for n=b and 10, re-
spectively and they are 7 an 31 in the revised algorithm for n=5 and 10, respectively. 
Obviously, the latter two methods take time to find out the upper bound of the 
subproblems by using CPLEX. The computational time of these two methods may 
be larger than that of the basic algorithm although the number of backtracking of 
these two methods is smaller than that of the basic algorithm. However, when n is 
large (i.e. n=30), the order of variable labeling would be significant. As we state in 
Chapters 3 and 7, the choice of next branching variable may affect the efficiency for 
finding the feasible solution of the problem. A better branch rule is necessary for a 
large and hard problem. 
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Let us look at the results for the revised bound rule method and the revised branch-
and-bound algorithm. Our revised branch-and-boimd algorithm has an improvement 
especially when n becomes large. We can see that both two methods have the same 
degree of performance for n=5 from Appendix B. The revised bound rule method runs 
faster in 27 samples out of 100 while the revised branch-and-boimd algorithm does 40. 
They have the same computational time in 33 samples. In that 27 samples, where the 
revised bound rule method does better, there are 3 samples that the revised branch-
and-bound algorithm has smaller number of backtracking. The revised branch-and-
bound algorithm may consume more time in computing the weight formula as we 
state in Chapter 7. 

For n=10, the revised branch-and-bound algorithm does better than the revised 
bound rule method. There are 57 samples that our revised branch-and-bound algo-
rithm has a shorter computational time while 31 samples that the revised bound rule 
method does better. In these 31 samples, where the revised bound rule method has a 
better performance, the number of backtracking of our revised branch-and-bound al-
gorithm is smaller than that of the revised bound rule method. Evidently, our revised 
branch-and-bound algorithm produces a shorter enumeration tree during execution. 
On the other hand, we can see that the revised branch-and-bound algorithm performs 
much better for n=30. There are 83 samples that our revised algorithm has both a 
shorter computational time and a smaller number of backtracking, and there are 15 
samples that the revised algorithm runs less than 10 seconds. In sample 50’ 69, and 
86, our revised algorithm runs at around 2 seconds when the revised bound rule takes 
more than 100 seconds. Clearly, the revised branch rule is powerful in general. 
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8.2.2 Discussion of the Performance of SATZ 
The SATZ implemented by Chu-Min Li is a powerful solution scheme in SAT, 

especially when n is large. From Appendix B, we can see that SATZ takes at most 
1.6 seconds for computing a sample with 30 variables. Why is SATZ so efficient 
especially when n is large? For any 3-SAT problem, every clause contains only three 
literals. That means, we can easily figure out whether the problem is feasible after 
several eliminations. Let's consider an example with 5 variables and 5 clauses. 

Xi V 3：2 V Xs 
工2 V 3；3 V Xi 
Xi V V 
X2 V 0：4 V Xs 

V V 
First, we evaluate the weight of each variable by using the formula 

H{x) = w{x) * w(x) * 1024 + w{x) + w(x) 

and the weights are 
variable Xi X2 X4 2:5 
weight 2 4100 2051 2051 2051 

Since Xi has the only positive occurrence, we better set Xi = 1 and the problem 
reduces as 

T 
2：2 V 0：3 V 
T 
X2 V :r4 V Xs 
X3 V V .T5 

and the weights for the remaining variables are 
variable 工2 工 4 

weight 1026 1026 2051 1026 

85 



We now set ^4=0 as the number of negative occurrence is larger and the problem 
becomes 

T 
T 
T 
X2 VF V xs 
T 

Obviously, we choose x^ or X2 as our next branching variable so that (4) is satisfiable. 
We can set 2:5=1 and so the problem becomes satisfiable. 

T 
T 
T 
T 
T 

We can easily see that SATZ is very powerful for 3-SAT problem. If the number of 
variables, n, is large, i.e. the number of clauses is large, we can find out whether the 
subproblem is satisfiable after doing three to four times of eliminations. We backtrack 
earlier even the problem is hard. 
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Chapter 9 

Concluding Remarks 

We conclude the thesis by stating our contributions and possible directions for future 
research. 

9.1 Conclusion 
The contributions of our work can be summarized as follows. We derive a two-step 
transformation for converting any 3-CNF-SAT problem into a singly-constrained zero-
one polynomial problem. With the help of this transformation, techniques in solving 
integer programming problem, such as branch-and-bound method, can be applied 
directly for finding the satisfiability of the original CNF-SAT problem. Based on the 
transformed singly-constrained zero-one polynomial problem, we propose our branch-
and-bound algorithm in solving the SAT problem. Revised branch-and-bound rules 
are suggested to increase the efficiency. 

In the literature, there are several transformations for converting CNF-SAT prob-
lem into an integer programming problem. These transformations usually produce 
extra variables and constraints that enlarge the storage size. Luckily, no additional 
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variables and constraints are generated during our transformation and only a single 
surrogate constraint is formed at the end of the transformation. The storage space 
is smaller compared with other IP transformations. However, information may be 
lost in the proposed singly-constrained problem. For the 3-CNF-SAT problem, there 
are only 3 literals in each clause. Information gap exists between the two kinds of 
problems although they are equivalent. 

Branch-and-bound method is suggested in solving the singly-constrained zero-one 
polynomial problem. Both revised bound and branch rules are proposed in Chapter 
6 and 7, respectively. The basic branch-and-bound algorithm can solve a small-size 
problem in a short running time. It is ineffective for a large problem because of the 
loose bound and the weak branch rule. The solution tree becomes deeper when n is 
large and so the algorithm performs poorly. The revised bound rule provides a tighter 
upper bound for the subproblems so that backtracking can be carried out earlier. 
Furthermore, CPLEX is a strong solver in solving linear programming problems. 
It is used to find out the upper bound of the subproblems after relaxing. So, the 
computational time is shortened after using CPLEX. In addition, the weight formula 
in the revised branch rule can be used to obtain a better branching variable which 
balances the enumeration tree. Thus, the feasible solution can be figured out quickly. 
As a result, the revised branch-and-bound algorithm is more efficient. 

9.2 Suggestions for Future Research 
Our work represents a major step toward the understanding of satisfiability problem 
and integer programming problem. The two-step transformation provides a new 
way for tackling the satisfiablity problem. However, the resulting singly-constrained 
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problem after the transformation may lose the structural property of the 3-CNF-SAT 
problem. The 3-CNF-SAT problem has a special structure: each clause contains 
exactly three literals. It is easy to figure out the satisfiability of the problem after 
several eliminations in general. The solution tree is short such that backtracking may 
occur earlier in every subproblem. On the other hand, the singly-constrained problem 
includes n variables in a single constraint and it may become inefficient when n is large. 
The enumeration tree is relatively large and backtracking may happen in a deeper 
level. Thus, a new approach is needed. Remaining m constraints after converting 
the 3-CNF clauses into integer programming format may be appliable since each new 
constraint contains at most three variables. This reformulated problem may be easier 
to solve. 

Nevertheless, we can determine the next branching variable by using the idea in 
5]. Considering the singly-constrained polynomial problem in Chapter 4，5, 6 and 

71，we can first evaluate the sum of all coefficient of the terms involving each variable 
and form the table 

Xi X2 X2, 3；4 X^ 
Sum -1 - 1 - 3 0 1 

Then we choose the variable with the largest absolute sum, X3, as the next branching 
variable. Next, we differentiate f{x) with respect to X3 and get 

兹= — 1 + 3xi — X4 — xs — 2X1X2 — X1X4 — X2X4 — X1X5 + X2X5 + X4X5 

After converting it into CP4 format, we can use CPLEX to find out its upper and 
lower bounds which are 2 and -8，respectively. Since the absolute value of the lower 
bound is larger than the lower bound, we set X3 = 0. The subproblem becomes 

iThe singly-constrained polynomial problem is f{x) = —xi — 2x2 - X3 - X4 + X1X2 + 3x1x3 -
xix^ — X3X4 -x^x^ + x^x^ - 2X1X2X2 -x\xzx/i — X2X3X4 + X1X2X5 -X1X3X5 + a：!2:40:5 + 
X2X3X5 - X2X4,X5 + X3X4X5 > 1 
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fl(x) = — 2 : ^ 2 —工1工2—工 1 工4—工1 而+3:̂ 2工4+3：4工5+工10：2工5+工1 工4工5—3：2工4工5 > 1 

By using CP LEX, we find that the solution of the siibproblem is xi = X2 = x^ = 
X5 = 0.5 with Zcp4 = 1.5. Since it is feasible, we continue branching by setting up 
the table 

Xi X2 X :4 X^ 
Sum 0 2 ‘‘ I 1 

Now, we choose X2 as the branching variable because X2 has a term containing the 
largest absolute coefficient in fi(x). We differentiate fi{x) w.r.t. X2 and get 

dhjx dX2 = — 2 + Xi + 8X4 + X1X5 — .T4X5. 

Since the upper and lower bounds are 2 and -3, respectively, we set X2 = 0. We 
simplify the subproblem as 

/ 2 � = - X i - X i - X1X4 + X^Xs + XiX^Xs > 1 

and find that ZCPA of the objective function is 0. The subproblem is infeasible and 
we backtrack at X2 = 1. The subproblem becomes 

fsix) = 2x4 — X1X4 + 2:1X42:5 > 3 

which is also infeasible because its ZCPA = 2. So, we backtrack at X3 = 1. By 
using CPLEX, we find that the problem is feasible with the solution (1,0,1,0,0). This 
approach helps us to get more information of how the branching variable effects in 
the objective function. Backtracking occurs earlier under this consideration. 
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Appendix A 

Searching Procedures for Solving 
Constraint Satisfaction Problem 
(CSP) 

The present appendix is devoted to the presentation of some tree search procedures 
in solving CSPs. These procedures include generate and test, standard backtracking, 
forward checking and looking ahead. For convenience, we restricted our scope in the 
area of binary CSPs. 

A . l Notation 
Let X i , X 2 , . . .,Xn be the variables occurring in the binary CSP with their domains 
Di,D2,…，Dn on the binary values. Let Cij(xi,xj) be the constraint between the 
variables Xi and Xj where i < j. We say that values Vi and Vj for variables Xi and Xj 
are consistent if and only if Cij{vi, vj) is true for i + j. Also, a value Vi for Xi is said 
to be consistent with the values for the variables Xi,. . . ,Xk iff values Vi and 
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GENERATE AND TEST f ^ v i , . •., Vk) is true for all /c < n iff 
1. Vi 6 Di for (1 < z < k). 

Table A.l: Search Procedure for Generate and Test technique 

Vj for variables xi and Xj are consistent for I < j < k. 

A.2 Procedures for Solving CSP 
In this section, we review 4 methods to solve the CSPs. In general, the searching pro-
cedure consists of testing whether (?；!,..., Vn) satisfies some property P„(i；!,..., Vn), 
where v i , . . . ,Vn are the values of Xi, . . . and holds if all the constraints are 
satisfied for this assignment [40 . 

A.2.1 Generate and Test 
"Generate and Test" is the reverse of the constraint and generate methodology [10 
It is the simpliest way to find out the optimal solution of CSP. It first generates all the 
possible solutions and then tests them to see whether they satisfy all the constraints. 
The procedure is listed in Table A.l 

However, "generate and test" is not an efficient way in solving CSP. All its con-
straints are only used to test whether the overall assignment is a solution or not. 
Actually, no pruning occurs in the search. Thus, it explores all the search space. On 
the other hand, the size of the enumeration tree is roughly proportional to the number 
of nodes in the tree. Therefore, "generate and test" is an inefficient search procedure 
with time complexity of 2” where n is the number of variable in the problem. 
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STANDARD BACKTRACKING Pk(vu... is true for all /c < n iff 
1. Vi e Di for (1 < z < k). 
2. for all i,j {I < i < j < k), Cij(vi, Vj) is true. 

Table A.2: Search Procedure for Standard Backtracking technique 

A.2.2 Standard Backtracking 
One of the simplest techniques for determining the satisfiablity of a CSP is back-
tracking. The idea is to choose a variable, and for each value of its domain, replacing 
the variable with that value in the constraints and determining the satisfiability of 
the constraints. This process repeats until a solution is found or all the variables are 
reached and then returns true or false indicating whether the constraints are satis-
fiable. Moreover, if a dead end is reached, it will return to the previous stage and 
check on the other side. The procedure is listed in Table A.2. 

In standard backtracking, constraints are used backward to achieve a posteriori 
pruning. Given a sequence < vi , . . .,Vk >，the problem is to extend it by finding a 
value Vk+i for x^+i in such a way that all the constraints involving Xk+i and a variable 
from Xi , . . . ,Xk are satisfied. If there exists no such value, the sequence < Vi,. . . ,Vk > 
cannot be extended and there is no need to search further in this part of the tree. 
This posterior pruning enables a drastic improvement in efficiency over "generate and 
test", which has to test all the assignments beginning by < v i , . . . ,Vk >. However, 
if standard backtracking rediscovers the same fact continually, detects the failures 
and useless generation lately or backtracks to the first choice, it will suffer from a 
pathological behavior called thrashing. 
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FORWARD CHECKING Pk(vu ...,叫)is true for sl\ k < n iff 
1. Vi e Di for (1 < z < k). 
2. for all i,j (1 < z < j < k), Cij{vi, vj) is true. 
3. for all I (/c < / < n), there exists a value vi in Di such that 
Cii{vuvi), . . . , Cki(vk, vi) are true. 

Table A.3: Search Procedure for Forward Checking technique 

A.2.3 Forward Checking 
Forward checking is the easiest way to prevent future conflicts. It checks only the 
constraints between the current variable and the future variables. When a value is 
assigned to the current variable, any value in the domain of an unassigned variable, 
which conflicts with this assignment, is removed from the domain. The advantage of 
this is that if the domain of an unassigned variable becomes empty, it is known imme-
diately that the current partial solution is inconsistent. Forward checking therefore 
allows branches of the search tree that will lead to failure to be pruned earlier than 
with simple backtracking. Note that whenever a new variable is considered, all its 
remaining values are guaranteed to be consistent with the past variables. So checking 
an assignment against the past assignments is no longer necessary. 

The procedure of forward checking is listed in Table A.3. It overcomes many 
drawbacks in "generate and test" and backtracking. It spends more time in each 
node of the serach tree to reduce the number of nodes considered, the set of possible 
values for the not-yet-assigned variables and the number of constraints checks so as 
to achieve an overall improvement in performance. 
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LOOKING AHEAD …,Vk) is true for all A; < n iff 
1. Vi G Di for (1 < z < k). 
2. for all (I < i < j < k) Cij{vi, Vj) is true. 
3. for all I (k < I < n), there exists a value vi in Di such that 
Cu(vi,vi), •..，Ckiivk, vi) are true. 
4. for all I {k <l < n), there exists a value vi in Di such that it is possible to find 
values 
Wfc+i，•. • ， . • •， i n Dk+i, . . . ’ A - i , A+i,…，Dn which satisfy 
Ck+u{Vk+l,Vl), • . • , Ci-ii{vi^i,vi),cii+i{vi, Vi+i), • • •，Cin(v“ Vn). 

Table A.4: Search Procedure for Looking Ahead technique 

A.2.4 Looking Ahead 
The techniques used in looking ahead is similiar to that of forward checking. In looking 
ahead, constraints are used even when more than one variable are left uninstantiated. 
It reduces the set of possible values that can be assigned to these variables. It prunes 
the variables earlier than that in forward checking. Therefore, the search size is 
reduced due to the smaller search space. 

Looking ahead avoids much redundant work and also makes failures appear earlier 
in the search tree. It prevents bad backtracking points because of the directly prop-
agated consequences of the choices to the unassigned variables. However, it is less 
incremental than forward checking. Indeed, looking ahead cannot remember and save 
most of the test results when checking the unassigned variables against the unassigned 
variables. Therefore, omitting these tests often results in a better efficiency. 
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Appendix B 

Complete Results for Experiments 

B . l Complete Result for SATZ 
B. n = 5 

Sample no. Completion time (sec.) Sample no. Completion time (sec.) 
1 0.0100 16 0.0100 
2 0.0200 17 0.0200 
3 0.0100 18 0.0100 
4 0.0000 19 0.0000 
5 0.0200 20 0.0100 
6 0.0000 21 0.0200 
7 0.0100 22 0.0000 
8 0.0100 23 0.0100 
9 0.0200 24 0.0100 
10 0.0100 25 0.0100 11 0.0200 26 0.0300 12 0.0100 27 0.0200 13 0.0200 28 0.0200 14 0.0000 29 0.0100 15 0.0200 30 0.0100 

continued on next page 
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Sample no. Completion time (sec.) Sample no. Completion time (sec.) 
31 0.0200 66 0.0100 
32 0.0200 67 0.0200 
33 0.0100 68 0.0100 
34 0.0200 69 0.0100 
35 0.0200 70 0.0200 
36 0.0200 71 0.0200 
37 0.0100 72 0.0000 
38 0.0100 73 0.0200 
39 0.0200 74 0.0100 
40 0.0200 75 0.0100 
41 0.0100 76 0.0000 
42 0.0000 77 0.0100 
43 0.0100 78 0.0200 
44 0.0000 79 0.0000 
45 0.0000 80 0.0100 
46 0.0100 81 0.0200 
47 0.0000 82 0.0100 
48 0.0100 83 0.0200 
49 0.0200 84 0.0100 
50 0.0200 85 0.0100 
51 0.0000 86 0.0100 
52 0.0100 87 0.0100 
53 0.0100 88 0.0100 
54 0.0100 89 0.0100 
55 0.0000 90 0.0200 
56 0.0100 91 0.0200 
57 0.0200 92 0.0100 
58 0.0100 93 0.0200 
59 0.0000 94 0.0100 
60 0.0100 95 0.0200 
61 0.0100 96 0.0100 62 0.0200 97 0.0100 
63 0.0100 98 0.0100 64 0.0100 99 0.0100 65 0.0200 100 0.0100 
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B.1.2 n = 10 
Sample no. Completion time (sec.) Sample no. Completion time (sec.) 

1 0.0200 41 0.0100 
2 0.0300 42 0.0300 
3 0.0100 43 0.0300 
4 0.0300 44 0.0300 
5 0.0200 45 0.0200 
6 0.0400 46 0.0200 
7 0.0100 47 0.0200 
8 0.0200 48 0.0200 
9 0.0300 49 0.0200 
10 0.0300 50 0.0200 
11 0.0200 51 0.0300 
12 0.0300 52 0.0100 
13 0.0200 53 0.0300 
14 0.0300 54 0.0300 
15 0.0200 55 0.0100 
16 0.0100 56 0.0100 
17 0.0100 57 0.0300 
18 0.0200 58 0.0300 
19 0.0200 59 0.0200 
20 0.0300 60 0.0300 
21 0.0300 61 0.0100 
22 0.0300 62 0.0200 
23 0.0100 63 0.0100 
24 0.0100 64 0.0300 
25 0.0200 65 0.0300 
26 0.0100 66 0.0100 
27 0.0200 67 0.0100 
28 0.0100 68 0.0300 
29 0.0200 69 0.0100 
30 0.0100 70 0.0200 31 0.0300 71 0.0300 32 0.0300 72 0.0200 33 0.0200 73 0.0200 34 0.0200 74 0.0300 35 0.0300 75 0.0300 36 0.0300 76 0.0300 37 0.0200 77 0.0200 38 0.0200 78 0.0200 39 0.0200 79 0.0200 40 0.0200 80 0.0200 

continued on next page 
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Sample no. Completion time (sec.) Sample no. Completion time (sec.) 
81 0.0100 91 0.0200 
82 0.0400 92 0.0200 
83 0.0100 93 0.0000 
84 0.0200 94 0.0300 
85 0.0100 95 0.0000 
86 0.0300 96 0.0000 
87 0.0200 97 0.0100 
88 0.0200 98 0.0200 
89 0.0100 99 0.0400 
90 0.0300 100 0.0300 

. 1 . 3 n = 3 0 
Sample no. Completion time (sec.) Sample no. Completion time (sec.) 

1 0.8900 26 0.7000 
2 0.1000 27 0.8600 
3 0.5800 28 0.6100 
4 0.1500 29 0.7500 
5 0.1100 30 0.5000 
6 0.6500 31 0.4900 
7 0.5000 32 1.0200 
8 0.5700 33 0.7100 
9 0.0700 34 0.7200 
10 1.0300 35 0.5700 
11 0.6000 36 0.6000 
12 0.6700 37 0.4500 
13 0.3000 38 0.3800 
14 0.6600 39 0.2800 
15 0.3400 40 0.4100 
16 0.7900 41 0.3800 
17 0.2700 42 0.7900 
18 0.7000 43 0.5700 
19 0.6000 44 0.6500 
20 0.2900 45 0.3000 21 0.4400 46 0.7000 22 1.1200 47 0.4900 
23 0.6900 48 0.7500 24 0.6400 49 0.4200 
25 1.5800 50 0.7400 

continued on next page 
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Sample no. Completion time (sec.) Sample no. Completion time (sec.) 
51 0.2500 76 0.3400 
52 0.7700 77 0.5500 
53 0.1300 78 0.4200 
54 0.4700 79 0.8000 
55 0.5600 80 0.3100 
56 0.8100 81 0.7900 
57 0.4400 82 0.5500 
58 0.1400 83 1.1100 
59 0.8500 84 0.4700 
60 0.2600 85 0.3600 
61 0.3100 86 0.7600 
62 0.3200 87 0.4200 
63 0.9100 88 0.2500 
64 0.6000 89 1.0100 
65 0.6500 90 0.3500 
66 0.4700 91 0.4800 
67 0.6300 92 0.5800 
68 0.0400 93 0.7500 
69 0.3400 94 0.4700 
70 0.4900 95 0.2500 
71 0.1400 96 0.5900 
72 0.2700 97 0.4000 
73 0.6100 98 0.8700 74 0.3000 99 0.3200 
75 0.3700 100 0.4900 

100 



B.2 Complete Result for Basic Branch-and-Bound 
Algorithm 

B.2. n = 5 
Sample no. Completion time (sec.) Number of backtrack Number of iteration 

1 0.0000 12 9 
2 0.0000 0 1 
3 0.0000 3 6 
4 0.0000 15 11 
5 0.0000 9 10 
6 0.0000 3 7 
7 0.0000 2 0 
8 0.0000 0 5 
9 0.0000 12 10 
10 0.0000 0 4 
11 0.0000 13 10 
12 0.0000 0 4 
13 0.0000 17 13 
14 0.0000 0 5 
15 0.0000 3 6 
16 0.0000 0 3 
17 0.0000 9 10 
18 0.0000 2 6 
19 0.0000 4 5 
20 0.0000 5 5 
21 0.0000 11 12 
22 0.0000 0 5 
23 0.0000 7 8 
24 0.0000 0 5 
25 0.0000 18 14 
26 0.0000 7 9 
27 0.0000 0 4 
28 0.0000 0 2 
29 0.0000 0 5 
30 0.0000 0 1 

continued on next page 
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Sample no. Completion time (sec.) Number of backtrack Number of iteration 
31 0.0100 2 5 
32 0.0000 7 9 
33 0.0000 5 7 
34 0.0000 2 6 
35 0.0000 9 11 
36 0.0000 7 9 
37 0.0000 1 4 
38 0.0000 12 10 
39 0.0000 0 1 
40 0.0000 7 7 41 0.0000 11 10 42 0.0000 2 5 43 0.0000 7 10 44 0.0000 17 13 45 0.0000 14 14 
46 0.0000 15 12 
47 0.0000 0 1 
48 0.0000 5 6 
49 0.0000 11 11 
50 0.0000 20 15 
51 0.0000 0 4 
52 0.0000 7 8 
53 0.0000 0 4 
54 0.0000 14 12 
55 0.0000 5 0 
56 0.0000 9 10 57 0.0000 0 5 
58 0.0000 0 4 
59 0.0000 0 5 
60 0.0000 7 8 61 0.0000 18 14 62 0.0000 8 10 63 0.0000 15 12 64 0.0000 0 1 65 0.0000 0 4 66 0.0000 13 10 67 0.0000 10 8 68 0.0000 9 9 69 0.0000 0 4 70 0.0000 14 11 

continued on next page 
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Sample no. Completion time (sec.) Number of backtrack Number of iteration 
71 0.0000 5 7 72 0.0000 3 6 73 0.0000 0 2 74 0.0000 0 4 75 0.0000 16 13 76 0.0000 5 0 77 0.0000 17 13 78 0.0000 16 13 79 0.0000 0 4 80 0.0000 0 1 81 0.0000 0 1 82 0.0000 5 7 83 0.0000 0 3 84 0.0000 18 14 85 0.0000 0 5 86 0.0000 13 11 87 0.0000 9 10 88 0.0000 0 1 90 0.0000 0 2 91 0.0000 5 8 92 0.0000 14 11 93 0.0000 0 4 94 0.0000 13 10 95 0.0000 14 11 96 0.0000 0 1 97 0.0000 9 9 98 0.0000 3 4 99 0.0000 1 5 100 0.0000 0 5 
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B.2.2 n = 10 
Sample no. Completion time (sec.) Number of backtrack Number of iteration 

1 0.0300 159 119 2 0.0300 261 193 3 0.0300 262 193 4 0.0000 12 19 5 0.0200 192 144 6 0.0400 382 269 7 0.0200 95 77 8 0.0000 78 62 9 0.0100 70 57 10 0.0100 96 77 11 0.0300 241 178 12 0.0000 0 1 13 0.0000 31 32 14 0.0400 278 201 15 0.0000 17 20 16 0.0000 0 9 17 0.0100 0 9 18 0.0200 148 112 19 0.0000 131 102 20 0.0000 13 17 21 0.0100 64 52 22 0.0100 87 67 23 0.0200 131 101 24 0.0100 78 63 25 0.0100 6 12 26 0.0000 20 23 27 0.0000 6 13 28 0.0000 64 55 29 0.0300 197 149 30 0.0200 139 110 31 0.0300 286 204 32 0.0300 279 202 33 0.0200 165 129 34 0.0200 177 130 35 0.0100 104 85 
continued on next page 
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Sample no. Completion time (sec.) Number of backtrack Number of iteration 36 0.0200 324 233 37 0.0300 190 138 38 0.0100 0 9 39 0.0100 75 59 40 0.0000 22 24 41 0.0000 0 6 42 0.0200 143 114 43 0.0000 67 56 44 0.0300 286 211 45 0.0100 337 244 46 0.0300 242 184 47 0.0000 2 11 48 0.0100 106 86 49 0.0100 23 24 50 0.0000 12 17 51 0.0300 242 177 52 0.0000 0 7 53 0.0100 80 69 54 0.0100 64 53 55 0.0300 249 182 56 0.0100 44 40 57 0.0000 39 37 58 0.0200 174 135 59 0.0200 129 102 60 0.0300 234 173 61 0.0000 11 14 62 0.0200 145 115 63 0.0300 229 167 64 0.0000 6 12 65 0.0000 58 48 66 0.0300 256 193 67 0.0100 204 149 68 0.0100 15 19 69 0.0100 6 12 70 0.0200 81 70 
continued on next page 
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Sample no. Completion time (sec.) Number of backtrack Number of iteration 71 0.0100 11 15 72 0.0300 237 174 73 0.0000 70 61 74 0.0100 82 69 75 0.0200 159 122 76 0.0100 93 74 77 0.0100 65 56 78 0.0100 189 141 79 0.0400 327 237 80 0.0000 0 7 81 0.0200 168 126 82 0.0100 33 31 83 0.0200 153 115 84 0.0100 68 56 85 0.0400 309 223 86 0.0300 271 194 87 0.0100 9 15 88 0.0000 86 72 89 0.0300 296 213 90 0.0400 293 210 91 0.0300 229 170 92 0.0100 77 65 93 0.0100 48 43 94 0.0100 13 18 95 0.0000 13 15 96 0.0000 25 27 97 0.0000 2 10 98 0.0000 169 128 99 0.0200 236 173 100 0.0200 132 101 
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B.2.3 n 二 30 
Sample no. Completion time (sec.) Number of backtrack Number of iteration 1 10727.7600 1575732 1187777 2 187.7100 29071 22095 3 35452.8800 5529659 4170098 4 41224.5200 6083949 4602421 5 8862.9700 1304851 992397 6 45583.2600 6809587 5128830 7 35174.5200 5248507 3948288 8 41064.2800 4558643 3434278 9 21446.7100 3343211 2528336 10 34701.6200 5423585 4102313 11 2516.6900 391402 295066 12 14781.3300 2310952 1739584 13 75195.1100 11772316 8842614 14 8474.8100 1306260 992032 15 27262.4700 4206767 3184373 16 14899.1200 2319646 1745341 17 39267.3500 6096143 4600421 18 35008.0900 5399612 4101859 19 9025.4400 1405705 1060508 20 4156.0800 643662 485374 21 17920.8300 2785663 2102286 22 3050.7900 475756 358963 23 32000.9700 4982253 3754772 24 55037.6300 8567071 6413401 25 14405.6900 2243578 1687770 26 40577.5300 6321933 4744907 27 50001.5100 7509983 5629201 28 15279.7800 2364208 1792056 29 5692.4000 882469 665490 30 15178.2300 2355677 1785754 

continued on next page 
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Sample no. Completion time (sec.) Number of backtrack Number of iteration 
31 46526.9000 6944312 5198023 
32 67410.8300 9908148 7498961 
33 7377.6600 1145283 861818 
34 7775.9200 1202975 911410 
35 35130.8000 5200526 3936922 
36 394.9100 61430 46294 
37 4413.1100 679639 515112 
38 39731.7400 5890582 4445993 
39 20492.2900 3192373 2410813 
40 30370.6100 4728537 3564827 
41 3782.6700 584415 442536 
42 1316.1400 204228 153985 
43 39621.9400 6209183 4653914 
44 741.5300 116015 86858 
45 31521.3400 4901398 3710782 
46 5376.3600 797927 601290 
47 52873.6900 7857952 5922740 
48 35363.4200 5225284 3955174 
49 32277.9100 4749665 3600649 
50 31782.4100 4711417 3553183 
51 12746.8500 1893829 1425197 
52 31111.7000 4652442 3484544 
53 22902.3500 3422493 2570778 
54 11533.3800 1701968 1292010 
55 50392.9400 7534113 5663159 
56 72138.2400 10755194 8079082 
57 10743.3800 1673983 1258206 
58 39655.2000 5880949 4432966 
59 46881.4300 6974524 5259028 
60 11956.5500 1862328 1402868 
61 34186.5700 5077899 3813711 
62 62983.4900 9375250 7056047 
63 19552.5700 2920613 2201361 64 50643.9700 7504727 5657906 65 42091.7400 6239241 4706913 66 55900.3400 8253388 6239150 67 32500.6000 4817626 3633354 68 18550.6300 2788543 2106355 69 29470.1600 4360551 3293909 70 2163.7300 330682 252449 

continued on next page 
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Sample no. Completion time (sec.) Number of backtrack Number of iteration 
71 20794.9600 3212761 2429045 
72 15114.7400 2335160 1771537 
73 24082.7600 2635406 1993972 
74 17830.5300 2635406 1993972 
75 33901.3500 5008215 3799110 
76 12649.1400 1934404 1469105 
77 9.4400 1416 1097 
78 42614.4200 6339793 4779648 
79 23356.9000 3509844 2659156 
80 25737.9800 3954266 2988154 
81 140.8700 21474 16455 
82 12319.5100 1811001 1370018 
83 22642.7700 3360847 2534561 84 40221.2200 5976391 4514993 
85 53090.2200 7988510 5972516 
86 4976.2400 765347 575670 
87 25635.3800 3797407 2866227 
88 38169.6200 5662305 4267173 
89 4654.2800 686394 515315 
90 24856.5100 3666525 2763633 
91 4476.8800 686394 515315 
92 24885.4000 3668878 3668878 
93 62419.2700 9326257 7020550 
94 20146.6000 2984110 2246253 
95 12878.4300 1910416 1441161 
96 50457.4700 7500996 5644830 
97 11909.3100 1773485 1335448 
98 51638.7100 7743731 5810020 
99 42899.1500 6360133 4801420 
100 507.9700 78514 59072 

B.3 Complete Result for Revised Bound Rule 
B.3. n = 5 
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Completion Number of Number of Maximum number of Sample no. time (sec.) backtrack iteration Constraints generated in CP4 
1 0.0100 4 4 19 2 0.0000 0 1 0 3 0.0000 1 3 22 4 0.0300 2 3 21 5 0.0200 3 6 25 6 0.0000 1 3 18 7 0.0000 0 2 0 8 0.0100 0 3 16 9 0.0100 4 4 17 10 0.0000 0 3 22 11 0.0100 1 2 14 12 0.0100 0 3 18 13 0.0100 4 4 24 14 0.0000 0 3 17 15 0.0100 1 3 22 16 0.0100 0 3 23 17 0.0100 2 4 21 18 0.0200 0 3 14 19 0.0000 1 2 12 20 0.0000 2 3 21 21 0.0100 2 4 24 22 0.0300 0 3 20 23 0.0100 1 3 16 24 0.0300 0 3 27 25 0.0000 4 4 21 26 0.0200 1 3 24 27 0.0000 0 3 19 28 0.0000 0 2 0 29 0.0000 0 3 24 30 0.0000 0 1 0 

continued on next page 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

31 0.0000 1 3 16 
32 0.0000 2 3 19 
33 0.0200 0 2 18 
34 0.0200 0 3 22 
35 0.0400 2 4 24 
36 0.0000 1 3 15 
37 0.0000 0 3 21 
38 0.0000 5 5 24 
39 0.0000 0 1 0 
40 0.0100 2 4 17 
41 0.0200 3 4 22 
42 0.0100 1 3 21 
43 0.0100 2 4 23 
44 0.0500 4 4 21 
45 0.0300 3 4 22 
46 0.0300 4 4 18 
47 0.0000 0 1 0 
48 0.0200 1 3 20 
49 0.0100 2 3 21 
50 0.0200 4 4 27 
51 0.0000 0 3 24 
52 0.0200 2 3 13 
53 0.0000 0 2 14 
54 0.0100 4 4 27 
55 0.0200 0 4 19 
56 0.0100 6 7 23 
57 0.0100 0 3 19 
58 0.0000 0 3 23 
59 0.0000 0 3 27 
60 0.0200 2 4 22 
61 0.0000 2 3 18 
62 0.0100 2 4 24 
63 0.0200 3 3 19 
64 0.0000 0 1 0 
65 0.0000 0 2 15 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

66 0.0300 4 4 18 
67 0.0100 1 2 16 
68 0.0200 3 4 22 
69 0.0200 0 4 24 
70 0.0000 1 2 19 
71 0.0300 2 3 19 72 0.0200 1 3 19 73 0.0000 0 2 0 74 0.0000 0 3 27 75 0.0200 2 3 21 
76 0.0000 0 3 22 77 0.0200 4 4 24 
78 0.0200 4 4 25 79 0.0100 0 3 24 
80 0.0000 0 1 0 
81 0.0000 0 1 0 82 0.0000 0 2 15 
83 0.0000 0 3 22 
84 0.0100 4 4 21 
85 0.0100 0 3 25 
86 0.0100 3 3 21 
87 0.0000 2 5 16 
88 0.0000 0 1 0 
89 0.0000 0 1 0 
90 0.0000 0 2 0 91 0.0300 1 3 21 
92 0.0100 4 4 22 
93 0.0200 0 3 18 94 0.0000 2 3 20 95 0.0000 3 3 16 96 0.0000 0 1 0 97 0.0300 3 5 21 98 0.0000 1 2 10 99 0.0100 0 3 22 100 0.0100 0 2 15 

B.3.2 n 二 10 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

1 0.0700 13 15 99 
2 0.1800 25 19 131 
3 0.2000 29 21 111 
4 0.0300 1 5 101 
5 0.0700 12 9 107 
6 0.2400 31 22 136 
7 0.0800 10 12 117 
8 0.0600 6 8 120 
9 0.0500 6 10 123 
10 0.0500 5 7 101 
11 0.1000 19 14 111 
12 0.0000 0 1 0 
13 0.1000 2 6 127 
14 0.1700 25 18 120 
15 0.0500 1 6 104 
16 0.0400 0 7 123 
17 0.0400 0 7 111 
18 0.1300 15 15 115 
19 0.0900 12 13 114 
20 0.0400 1 6 128 
21 0.0600 7 11 125 
22 0.0500 5 9 120 
23 0.0700 9 10 108 
24 0.0800 3 9 110 
25 0.0300 1 7 112 
26 0.0300 1 5 109 
27 0.0400 0 6 132 
28 0.0300 2 7 110 
29 0.1300 12 12 107 
30 0.0900 9 11 108 
31 0.1600 27 20 105 
32 0.1600 28 20 116 
33 0.0900 14 14 123 
34 0.0700 18 13 102 
35 0.1100 9 11 94 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

36 0.1900 27 20 124 
37 0.1200 18 14 102 
38 0.0400 0 5 111 
39 0.0500 3 6 109 
40 0.0300 1 7 102 
41 0.0300 0 6 117 
42 0.0900 9 13 114 
43 0.0700 5 8 125 
44 0.2000 33 24 130 
45 0.2600 48 34 131 
46 0.1200 15 14 109 
47 0.0300 0 7 119 
48 0.0900 9 11 101 
49 0.0300 1 5 121 
50 0.0300 0 5 106 
51 0.1300 25 19 116 
52 0.0500 0 6 100 
53 0.1000 13 16 98 
54 0.0700 5 9 101 
55 0.1500 26 19 132 
56 0.0200 2 6 79 
57 0.0300 3 7 96 
58 0.1200 14 14 128 
59 0.0600 9 10 104 
60 0.0100 15 11 108 
61 0.0300 1 6 117 
62 0.0400 0 5 117 
63 0.0400 6 9 102 
64 0.0300 0 6 127 
65 0.0600 4 8 118 
66 0.1600 20 20 128 
67 0.1300 18 14 114 68 0.0400 1 6 144 69 0.0400 1 7 119 70 0.0700 6 8 103 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

71 0.0200 2 7 101 
72 0.1500 22 16 109 
73 0.0400 3 8 115 
74 0.0600 3 5 97 
75 0.1400 15 15 119 
76 0.0900 6 9 96 
77 0.0200 4 8 115 
78 0.1100 19 15 119 
79 0.1600 21 16 107 
80 0.0300 0 7 107 
81 0.1100 16 12 120 
82 0.0200 1 5 113 
83 0.1000 9 12 101 
84 0.0500 6 10 119 
85 0.1300 29 21 105 
86 0.1400 22 16 106 
87 0.0500 1 6 118 
88 0.0600 17 17 113 
89 0.1700 27 19 126 
90 0.1700 25 18 128 
91 0.1500 26 23 110 
92 0.0700 5 9 124 
93 0.0500 2 7 112 
94 0.0600 2 8 126 
95 0.0400 1 6 122 
96 0.0500 2 8 125 
97 0.0200 0 5 114 
98 0.1300 15 14 117 
99 0.1600 30 20 128 
100 0.0700 8 10 119 

B.3.3 n = 30 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

1 90.0100 1749 1240 595 
2 3.7300 49 52 607 
3 230.1500 4007 2763 647 
4 268.0600 4749 3333 617 
5 123.6100 2319 1648 583 
6 508.2200 10206 7265 604 
7 226.9500 4016 2823 617 
8 261.4100 4608 3188 617 
9 333.6000 6206 4439 599 
10 327.3400 5954 4179 623 
11 28.2700 531 389 588 
12 34.1300 580 409 619 
13 513.1500 9339 6486 660 
14 94.7600 1706 1210 613 
15 226.0000 4112 2912 602 
16 111.1600 1977 1383 635 
17 339.9800 6262 4254 623 
18 417.9000 7790 5480 624 
19 126.4600 2191 1600 622 
20 60.4500 1078 773 612 
21 162.0100 2870 2032 595 
22 68.0400 1233 914 609 
23 311.2900 5618 3886 608 
24 311.5900 5898 4148 592 
25 193.5600 3452 2364 619 
26 237.1200 4214 2917 620 
27 444.0900 8184 5711 642 
28 111.4100 1927 1342 626 
29 54.7700 960 695 617 
30 200.5000 3592 2581 570 
31 249.5000 4422 3049 611 32 458.1400 8462 5756 614 
33 132.3700 2569 1870 628 34 53.3700 911 645 592 
35 334.7700 6125 4280 609 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

36 7.1300 114 94 604 
37 58.6000 1065 799 573 
38 183.1600 3411 2422 611 
39 145.6000 2546 1774 614 
40 246.3700 4719 3260 574 
41 39.8300 710 535 603 
42 2.1400 18 23 633 
43 194.5200 3434 2401 624 
44 6.0300 92 77 579 
45 291.2100 5384 3796 592 
46 47.0600 839 608 615 
47 367.5900 6162 4250 589 
48 287.0800 5144 3559 599 
49 239.8900 4239 2970 605 
50 361.4600 6519 4603 568 
51 63.6400 1079 782 582 
52 154.8000 2626 1824 612 
53 127.2200 2169 1511 607 
54 157.8900 2734 1994 606 
55 363.2600 6438 4430 576 
56 441.8300 8103 5617 621 
57 100.0300 1754 1242 632 
58 440.1400 7960 5635 611 
59 365.7900 6498 4509 637 
60 52.9000 864 609 593 
61 142.6200 2313 1645 611 
62 379.3400 6630 4626 598 
63 95.9400 1591 1115 606 
64 332.2200 5574 3879 622 
65 342.8200 5932 4146 605 66 542.6400 9627 6675 577 67 288.7900 4052 2871 620 68 157.6400 2695 1907 598 69 192.2600 3285 2297 603 70 28.7200 507 365 641 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

71 302.3400 5520 3960 581 
72 93.5900 1516 1071 582 
73 254.5100 4475 3171 623 
74 223.8000 4023 2864 590 
75 480.2500 8625 6118 629 
76 89.9600 1576 1085 601 
77 1.5900 2 15 639 
78 360.6900 6440 4440 623 
79 207.5600 3683 2643 606 
80 257.8400 4665 3327 589 
81 6.8600 106 101 611 
82 139.3500 2380 1682 609 
83 198.7400 3386 2426 643 
84 284.0400 4963 3531 609 
85 324.9600 5891 4069 619 
86 30.7200 508 377 627 
87 255.5600 4576 3175 611 
88 441.6500 7602 5296 639 
89 37.6600 620 449 613 
90 218.3300 3952 2695 594 
91 776.6000 15006 10699 599 
92 303.4800 5637 3950 607 
93 514.3600 8820 6091 644 
94 142.3000 2479 1716 580 
95 122.7300 2139 1553 565 
96 264.8200 4680 3196 597 
97 96.4300 1709 1228 578 
98 435.3200 7888 5448 631 99 276.5000 4792 3288 609 100 8.8400 135 117 654 

B.4 Complete Result for Revised Branch-and-Bound 
Algorithm 

B.4. n — 5 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

1 0.0200 4 4 27 2 0.0000 0 1 0 
3 0.0400 3 4 23 4 0.0100 3 3 21 
5 0.0000 2 4 22 
6 0.0000 0 3 16 7 0.0000 1 3 24 
8 0.0000 0 3 18 9 0.0100 4 4 17 10 0.0200 0 3 19 11 0.0100 1 2 14 12 0.0100 0 1 18 13 0.0400 4 4 24 14 0.0000 0 3 22 15 0.0000 0 3 19 16 0.0000 0 4 23 17 0.0000 0 2 18 18 0.0200 0 2 9 

19 0.0000 0 2 0 
20 0.0000 2 3 21 
21 0.0200 3 4 20 
22 0.0100 2 3 20 
23 0.0100 0 3 16 24 0.0100 0 3 25 25 0.0100 4 4 21 26 0.0100 0 3 19 27 0.0000 0 3 21 28 0.0000 0 2 0 29 0.0000 3 4 24 30 0.0000 0 1 0 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

31 0.0000 1 3 12 
32 0.0200 2 3 19 
33 0.0100 0 2 18 
34 0.0300 2 3 21 
35 0.0100 0 3 22 
36 0.0000 0 3 19 
37 0.0200 1 3 21 
38 0.0200 2 3 15 
39 0.0000 0 1 0 
40 0.0300 0 3 17 
41 0.0100 0 2 16 
42 0.0100 0 3 17 
43 0.0000 2 4 23 
44 0.0200 4 4 18 
45 0.0200 0 3 16 
46 0.0100 4 4 18 
47 0.0000 0 1 0 
48 0.0100 0 3 20 
49 0.0000 0 2 13 
50 0.0000 4 4 23 
51 0.0100 1 3 13 
52 0.0000 0 3 13 
53 0.0200 0 2 13 
54 0.0400 3 3 19 
55 0.0000 0 3 16 
56 0.0000 0 3 18 
57 0.0100 0 3 14 
58 0.0000 1 3 20 
59 0.0100 0 3 27 60 0.0200 5 6 21 61 0.0000 4 4 20 62 0.0100 1 3 25 63 0.0100 1 2 15 64 0.0000 0 1 0 65 0.0100 2 3 15 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

66 0.0100 4 4 18 
67 0.0100 1 2 16 
68 0.0300 2 4 18 
69 0.0000 0 3 20 
70 0.0100 1 2 19 
71 0.0100 0 2 16 
72 0.0000 0 3 21 
73 0.0000 0 3 20 
74 0.0000 1 3 27 
75 0.0100 2 3 21 
76 0.0000 0 3 22 
77 0.0000 4 4 25 78 0.0300 4 4 25 79 0.0100 2 4 24 80 0.0000 0 1 0 81 0.0000 0 1 0 82 0.0000 0 2 15 
83 0.0100 0 3 22 
84 0.0100 4 4 21 
85 0.0300 2 4 19 
86 0.0300 2 3 16 
87 0.0200 2 5 16 
88 0.0000 0 1 0 
89 0.0000 0 1 0 90 0.0000 0 2 0 91 0.0000 0 3 21 92 0.0100 2 3 19 93 0.0100 3 4 21 94 0.0300 4 4 25 95 0.0100 2 3 16 96 0.0000 0 1 0 97 0.0000 0 2 0 98 0.0000 1 2 10 99 0.0100 0 2 16 100 0.0100 0 2 15 

B.4.2 n = 10 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

1 0.0300 1 6 99 
2 0.1600 28 21 109 
3 0.1400 21 16 111 
4 0.0500 3 5 101 
5 0.0800 14 11 99 
6 0.2100 33 23 135 
7 0.1400 16 16 115 
8 0.0400 0 7 113 9 0.0600 5 8 123 10 0.0300 2 5 99 11 0.1200 14 11 109 12 0.0000 0 1 0 13 0.0200 1 6 102 14 0.1400 22 16 120 15 0.0300 0 4 104 16 0.0500 3 8 124 17 0.0300 0 9 108 18 0.0200 0 5 107 

19 0.1200 8 10 114 
20 0.0800 6 11 128 21 0.0200 0 4 117 
22 0.1200 14 13 120 
23 0.0400 1 5 104 24 0.0300 1 7 110 25 0.0300 1 5 107 26 0.2000 21 18 118 27 0.0400 0 6 122 28 0.0300 0 4 113 29 0.0800 3 7 97 30 0.0500 2 6 104 31 0.1500 26 20 105 32 0.1500 20 16 106 33 0.0300 0 5 112 34 0.0900 17 13 107 35 0.0200 1 7 89 

continued on next page 

122 



Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

36 0.1800 22 16 124 
37 0.1100 15 11 102 
38 0.0400 2 6 109 
39 0.0700 11 13 109 
40 0.0200 0 7 102 
41 0.0800 10 11 118 
42 0.0300 0 5 108 
43 0.0200 0 6 125 44 0.1300 20 15 116 45 0.1000 14 11 105 
46 0.0200 0 4 107 47 0.0400 2 6 117 48 0.0200 1 6 101 
49 0.1900 22 18 120 50 0.0300 1 5 108 
51 0.1400 22 16 116 52 0.0400 5 8 100 
53 0.0100 0 5 92 
54 0.0700 5 10 101 
55 0.1400 22 17 122 
56 0.0300 2 6 79 
57 0.0100 0 5 88 
58 0.1300 9 11 116 
59 0.0300 0 4 102 
60 0.0700 14 11 108 61 0.0000 0 2 0 62 0.0100 0 4 113 63 0.0300 8 5 98 64 0.0500 5 8 115 65 0.0300 0 6 118 66 0.0400 1 6 126 67 0.1200 18 13 111 68 0.1400 22 18 130 69 0.0900 6 9 108 70 0.0700 5 8 103 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

71 0.0300 0 5 112 
72 0.1100 19 14 109 
73 0.0300 0 6 115 
74 0.0300 0 5 101 
75 0.1300 15 15 119 
76 0.0900 9 10 99 
77 0.0900 5 9 123 
78 0.0800 12 10 108 
79 0.1500 23 18 107 
80 0.0400 0 5 119 
81 0.1100 15 12 120 
82 0.0300 0 5 108 
83 0.0600 3 6 101 
84 0.0800 12 12 119 
85 0.1700 24 18 109 
86 0.0900 12 9 102 
87 0.0700 5 8 120 
88 0.1200 12 14 124 
89 0.1300 18 14 121 
90 0.1800 25 18 128 
91 0.0600 2 6 108 
92 0.1200 15 15 135 
93 0.0200 0 5 112 
94 0.0300 0 5 119 
95 0.0400 1 8 122 
96 0.0400 1 7 125 
97 0.0600 7 9 114 
98 0.1500 13 14 116 
99 0.2100 31 22 128 
100 0.0600 2 9 119 

B.4.3 n = 30 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

1 108.2700 1868 1285 695 
2 4.0700 47 54 676 
3 121.2800 2081 1466 727 
4 204.9700 3623 2521 715 
5 129.3000 2256 1605 667 
6 389.5900 7372 5226 698 
7 14.3300 228 172 683 
8 47.1000 816 570 599 
9 22.1300 378 289 669 
10 218.3100 3793 2626 695 
11 5.1900 66 67 687 
12 22.4800 359 265 695 
13 335.8600 5692 3935 729 
14 50.6400 905 661 691 
15 27.2700 460 338 667 
16 10.5000 154 126 720 
17 283.0800 4934 3437 710 
18 236.0600 4135 2909 705 
19 99.7100 1797 1323 714 
20 27.6100 465 353 684 
21 3.1200 28 32 706 
22 130.7300 2317 1647 678 
23 121.1200 2106 1479 676 
24 241.9400 4249 3032 670 
25 45.9200 78 569 683 
26 177.7400 3063 2143 687 
27 83.6900 1483 1073 715 28 108.7400 1872 1316 706 29 71.4800 1197 858 695 30 151.9000 2695 1945 658 31 211.4300 3657 2556 698 32 373.0300 6530 4599 696 33 87.2300 1586 1126 718 34 48.3700 814 576 663 35 231.3300 3992 2869 696 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

36 20.8100 357 268 706 
37 45.6000 820 594 664 
38 45.1300 830 595 664 
39 209.9000 3601 2525 680 
40 134.8200 2315 1651 654 
41 2.8500 26 34 697 
42 4.3700 60 61 716 
43 146.4600 2494 1739 687 
44 1.5000 0 16 667 
45 97.7300 1969 1197 679 
46 14.8600 248 190 697 
47 308.3700 5346 3724 665 
48 247.2600 4526 3214 675 
49 150.2200 2665 1902 691 50 1.3100 0 13 670 
51 34.9300 635 484 669 
52 191.1400 3415 2415 683 
53 180.1400 3102 2167 680 
54 9.1800 152 123 683 
55 296.0600 5057 3543 670 
56 396.6900 7030 4919 703 
57 42.8600 715 516 699 
58 325.0700 5794 4061 692 
59 174.3200 3088 2136 703 
60 177.0100 3073 2117 583 
61 3.0500 28 35 688 62 143.5900 2514 1768 675 63 2.8800 26 35 693 64 241.4900 4231 2916 701 65 83.9200 1438 1030 688 66 17.5800 315 234 664 67 280.7000 4854 3435 694 68 31.0600 550 406 678 69 1.5600 0 18 672 70 8.0200 122 101 722 
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Completion Number of Number of Maximum number of 
Sample no. time (sec.) backtrack iteration Constraints generated in CP4 

71 205.2400 3626 2535 653 
72 103.4000 1863 1329 670 
73 36.1700 613 457 673 
74 176.7000 3181 2265 676 
75 376.4900 6688 4677 688 
76 178.0400 3099 2211 686 
77 32.6000 576 415 711 
78 270.0300 4739 3341 697 
79 108.9600 1977 1468 676 
80 220.7600 3841 2743 678 
81 134.9900 2411 1731 703 
82 39.6100 666 483 700 
83 122.5500 2008 1441 643 
84 244.7400 4177 2952 688 
85 190.2400 3379 2355 706 
86 1.6300 1 18 697 
87 189.5100 3274 2304 681 
88 120.0100 2041 1457 719 
89 50.5500 883 628 695 
90 47.1000 848 606 680 
91 8.0100 141 108 580 
92 175.8100 3095 2199 675 
93 375.1000 6601 4621 724 
94 8.5000 141 108 678 
95 58.1000 997 715 670 
96 209.0200 3540 2453 675 97 32.7100 571 419 659 
98 359.8600 6265 4438 687 
99 235.1300 4137 2880 700 100 268.7100 4678 3374 726 
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