
Fast Frequent Pattern Mining

Yabo XU

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

System Engineering h Engineering Management

Supervised by

Prof. Jeffrey Xu, Yu

©The Chinese University of Hong Kong
July 3, 2003

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in
a proposed publication must seek copyright release from the Dean of the
Graduate School.

2 9 m) | |
" " U N I V E R S I T Y

Ĵ̂ LIBRARY SYSTEM̂ ĵ/̂

Abstract of thesis entitled:
Fast Frequent Pattern Mining

Submitted by Yabo XU
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in July 3, 2003

Advances in information technology and data collection meth-
ods have led to an unprecedented opportunity for data mining
to analyze the huge data and extract intelligent and useful in-
formation. This thesis focuses on two important problems in
data mining applications: frequent pattern mining and sequen-
tial pattern mining.

FP-Tree based algorithm have been recognized as the most
efficient algorithm for mining frequent patterns. However, their
performance suffers the complex data structures and inefficient
traversal fashion. In the first part, we propose another simple
and compact structure, memory-based prefix-path tree. Upon
this structure, a new depth-first frequent pattern discovery al-
gorithm, called PP-Mine, is proposed that outperforms FP-
Growth significantly.

In the second part, we move forward to an more difficult prob-
lem: sequential pattern mining on biological data. We study the
implication of the following biological features on data mining
techniques: the bioalphabet is extremely small, biosequences are
extremely long, and biological patterns occur in short regions of
local similarity and in long regions of global similarity with pos-
sible gaps. These features render a different blow up of search
space from that in classic transaction sequences, thereby, justify-

i

ing new ways of pattern growing/pruning and support counting.
We present a two-phase algorithm to address these issues: the
segment phase and the pattern phase. The purpose of this two-
phase approach is multi-fold: adopt best techniques separately
for local similarity and global similarity, exploit local similarity
for efficient search of global similarity, and grow patterns rapidly
one segment at a time instead of one item at a time. We evaluate
this approach on both synthetic and real life data sets.

ii

論文摘要：

信息技術和數據採集技術的發展給数據挖掘帶來了前所未有

的機遇去從中分析和提取有用的信息。本文主要研究了兩個數據

挖掘應用中的基本問題：Frequent Pattern挖掘和Sequential
Pattern 挖掘。

基於FP-Tree類的算法是當前被認爲最有效的挖掘Frequent
Pattern的算法。然而，他們的效率總是受限於複雜的數據結構和

缺乏效率的遍歷方式。在本文的第一部分中，我們提出了一種簡

單而緊湊的數據結構，置於内存的Prefix-Path樹。在這種數據結

構上，一種新的深度優先的Pattern搜索算法，PP-Mine，被提出，

實驗表明，它的效率完全壓過了 FP-Growth.
在本文的第二部分，我們探討了另一個難度更大的問題：對

生物序列的Sequential Pattern的挖掘。我們研究了生物序列本身

的一些特性對數據挖掘技術的一些潛在的作用：生物序列的組

成元素特別的少，但是卻特別的長；在小範圍内會有一些局部相

似性，在全局範圍内也會有一些整體的一些相似性。這些特性極

大的增加了經典的解決一些交易序列數據挖掘問題的搜索空間，

從而，需要找到新的方法來進行Pattern的搜索和刪減，以及數

據計算。

我們提出了一個分爲兩個階段的算法來解決這個問題：Segment
階段和Pattern階段兩階段算法的目的是多方面的：分別釆用最

適合的技術來處理局部相似性和全局相似性；利用局部的相似性

來提高查找整體相似性的效率；一次增長一個Segment而不是增

長一個單獨的單元。我們分別在人造的数據和真實的生物數據上

做了實驗，結果充分證實了我們方法的有效性。

Acknowledgement

I wish to express my deep gratitude to my supervisor Prof. Jef-
frey Xu. Yu. I thank him for his continuous encouragement,
confidence and support, for creating an free academic atmo-
sphere in these two years. As an advisor, he guided me on the
right road to research.

My gratitude and appreciation also goes to Prof. Ke Wang.
Part of this work is done in collaboration with him. I thank
him for the knowledge and skills they imparted through the
collaboration. Working with him is always enjoyable. I also
thank him for serving as an external examiner of my thesis.

Last but not least, I am very grateful to my parents for their
continuous moral support and encouragement. Their love ac-
companies me wherever I go.

iii

Contents

Abstract i

Acknowledgement iii

1 Introduction 1
1.1 Frequent Pattern Mining 1
1.2 Biosequence Pattern Mining 2
1.3 Organization of the Thesis 4

2 PP-Mine: Fast Mining Frequent Patterns In-Memory 5
2.1 Background 5
2.2 The Overview 6
2.3 PP-tree Representations and Its Construction . . 7
2.4 PP-Mine 8
2.5 Discussions 14
2.6 Performance Study 15

3 Fast Biosequence Patterns Mining 20
3.1 Background 21

3.1.1 Differences in Biosequences 21
3.1.2 Mining Sequential Patterns 22
3.1.3 Mining Long Patterns 23
3.1.4 Related Works in Bioinformatics 23

3.2 The Overview 24
3.2.1 The Problem 24

iv

3.2.2 The Overview of Our Approach 25
3.3 The Segment Phase 26

3.3.1 Finding Frequent Segments 26
3.3.2 The Index-based Querying 27
3.3.3 The Compression-based Querying 30

3.4 The Pattern Phase 32
3.4.1 The Pruning Strategies 34
3.4.2 The Querying Strategies 37

3.5 Experiment 40
3.5.1 Synthetic Data Sets 40

3.5.2 Biological Data Sets 46

4 Conclusion 55

Bibliography 60

V

List of Figures

2.1 The memory representation (PPM-tiee) 8
2.2 A PPM-tvee with four items 11
2.3 An Example 13
2.4 PPM-tvee, FP-tree and H-struct for Example 1

where r = 2 18
2.5 Scalability 19

3.1 Compressing a sequence 31
3.2 The segment tree in Example 4 33
3.3 The pattern tree in Example 5 36
3.4 C128S32N4D100K, MinLen = 5 42
3.5 C128S32N20D100K, MinLen = 3 43
3.6 C256S64N4D100K, MinLen= 7 44
3.7 C256S64N20D100K, MinLen= 3 45
3.8 C20S8N10000D100K, MinLen = 1 50
3.9 Scalability wrt the database size 51
3.10 Biological data sets 52
3.11 The real life DNA dataset, MinLen = 5 53
3.12 The real life protein dataset, MinLen = 3 54

vi

List of Tables

2.1 The transaction database TDB 7

3.1 The sequence database D 29
3.2 The position lists 29
3.3 Parameters of the data generator 48
3.4 Synthetic data sets 49
3.5 Statistics for C128S32N4D100K, MinLen=5 . . . 49

vii

Chapter 1

Introduction

“The universe if full of magical things patiently waiting for our
wits to grow sharper." i Now advances in information technol-
ogy and data collection methods have led to an unprecedented
opportunity to analyze the huge data and extract intelligent and
useful information.

1.1 Frequent Pattern Mining

Frequent patterns play an essential role in many data mining
tasks that try to find interesting patterns from databases, such
as association rules, correlations, sequences, episodes, classifiers,
cluster and many more of which the mining of association rules
is one of the most popular problems. The original motivation
for searching association rules came from the need to analyze
so called supermarket transaction data, that is, to examine cus-
tomer behavior in terms of the purchased products. Association
rules describe how often items are purchased together. Such
rules can be useful for decisions concerning product pricing,
store layout and many others.

Since their introduction in 1993 by Argawal et al.[4], the fre-
quent pattern and association rule mining problems have re-

iBy Eden Phillpotts(1862-1960), English writer, poet, playwright

1

CHAPTER 1. INTRODUCTION 2

ceived a great deal of attention. Within the past decade, hun-
dreds of research papers have been published presenting new al-
gorithms or improvements on existing algorithms to solve these
mining problems more efficiently.

So our work start from this basic mining problem: Frequent
Pattern Mining. FP-Tree based algorithm have been recognized
as the most efficient algorithm for mining frequent patterns.
However, their performance suffers the complex data structures
and inefficient traversal fashion. In the first part of this thesis,
we propose a novel and efficient mining problem, called PP-
Mine, which does not generate any conditional sub-tree, and
counting is done as a side-effort of pushing-right operation in
an accumulated manner. We will report the comparison with
the other popular algorithms in our experimental studies later
in this thesis.

1.2 Biosequence Pattern Mining

In the second part, we move forward to another important but
more difficult mining problem, the sequential pattern problem.
Comparable to frequent patterns, the items occurred in sequen-
tial patterns can be repeated and with order, which lead to the
larger search space.

One important problem arising from bio-applications is the
discovery of sequential patterns that occur in many biosequences
(i.e., DNA or protein sequences). Such patterns often corre-
spond to residues conserved during evolution due to an im-
portant structural or functional role. The "classic" sequen-
tial pattern mining has been studied in market-basket analysis
6, 5，16，20, 27, 17], where the task is to find all frequent sub-

sequences that have some minimum support by occurring in a
required percentage of transaction sequences. Such sequential
patterns capture temporal purchasing behaviors of customers.

CHAPTER 1. INTRODUCTION 3

By treating a biosequence as a transaction sequence, existing
algorithms can be applied to biosequences. However, our exper-
iments show that the efficiency demonstrated on classic trans-
action sequences cannot be retained on biosequences.

In this thesis,we study the implication of the following bio-
logical features on data mining techniques: the bioalphabet is
extremely small, biosequences are extremely long, and biologi-
cal patterns occur in short regions of local similarity and in long
regions of global similarity with possible gaps. These features
render a different blow up of search space from that in classic
transaction sequences, thereby, justifying new ways of pattern
growing/pruning and support counting.

Below are the main ideas of our approach in addressing the
above requirements.

Two-phase pattern growth. We propose a two-phase ap-
proach to grow patterns rapidly in length to reduce the fre-
quency of support counting. The first phase finds frequent seg-
ments Xi, rather efficiently, above a specified minimum length.
The second phase grows patterns using frequent seg-
ments Xi as building blocks. The essence of this two-phase ap-
proach is to grow patterns one segment at a time and to exploit
information about segments for candidate pruning and support
counting in the second phase, as explained below.

Segment-based pruning. Suppose that we know that a
pattern 尸 = X i * . . . * Xk-i * Xk does not extend into a fre-
quent pattern P ^ X for some frequent segment X, or does
not occur before position i in some sequence s. We can infer
this information for any pattern = Xi * . . . * Xk-i * Xĵ or

= Xi * • • • * Xk-i 氺 Xa； * . . . * ̂ k+i, where Xki s a prefix of X � ,
because each occurrence of P' is an occurrence of P. We exploit
these relationships for pattern pruning and pattern matching in
a novel search strategy

Query-based counting. Pattern matching against a long

CHAPTER 1. INTRODUCTION 4

sequence must be significantly faster than scanning the whole
sequence. We formalize this problem as querying the smallest
end positions of a pattern Xi*- • •^Xk'^Xk+i, given such positions
of a pattern * • • • * Xk. This approach benefits from any
efficient querying method. We consider one direct access method
by indexing local similarity and one sequential scan method by
compressing local similarity.

We evaluate this approach on both synthetic and real life
data sets.

1.3 Organization of the Thesis

The rest of the paper is organized as follows. Chapter 2 focus
on our new algorithm PP-Mine. our new approaches on biose-
quence pattern mining will be presented in Chapter 3. For easy
understanding, the background, problem overview, approach de-
tails and experimental study sections will be included in each
chapter separately. Section 7 gives an brief conclusion.

• End of chapter.

Chapter 2

PP-Mine: Fast Mining Frequent
Patterns In-Memory

Summary

In this chapter, we propose a simple and compact struc-
ture, memory-based prefix-path tree. Upon this struc-
ture, a new depth-first frequent pattern discovery al-
gorithm, called PP-Mine, is proposed that outperforms
FP-Growth significantly.

2.1 Background

Recent studies show pattern-growth method is one of the most
effective methods for frequent pattern mining [2, 3, 8, 12, 15, 14,
18]. As a divide-and-conquer method, this method partitions
(projects) the database into partitions recursively, but does not
generate candidate sets. This method also makes use of Apri-
ori property [4]: if any length k pattern is not frequent in the
database, its length {k + 1) super-patterns can never be fre-
quent. It counts frequent patterns in order to decide whether it
can assemble longer patterns. Most of the algorithms use a tree

5

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

as the basic data structure to mine frequent patterns, such as
the lexicographic tree [2, 3, 8, 12] and the FP-tree [15]. Differ-
ent strategies were extensively studied such as depth-first [3, 2],
breath-first [3, 8], top-down [23] and bottom-up [15 .

As one of the most representative pattern-growth algorithm,
FP-growth, it start its mining process with the construction of
FP-Tree: First scan the database to get the frequent items, then
insert the frequent part of every transaction into a prefix-path
tree during the second database scan and link all the same items
together by a header table. FP-growth explores the FP-Tree by
a bottom-up fashion and the conditional FP-Tree will be created
when the pattern is extended by any frequent item. The complex
node-link across the FP-Tree in a unpredictable manner makes
FP-Tree difficult to be materialized on disk and the conditional
FP-Tree generation consume some unnecessary memory. Both
motivate us to study new faster mining algorithms with simpler
data structures. In this chapter, we present our solutions on this
problem: a node-link free tree, called PP-Tree and PP-Mine , a
novel mining algorithm which does not generate any conditional
trees, and outperforms FP-growth significantly.

2.2 The Overview

Let I = {xi , 0：2, • • •, Xn} be a set of items. An itemset X is
a subset of items I, X C 1. A transaction Tx = {tid, X) is
a pair, where X is an itemset and tid is its unique identifier.
A transaction Tx = [tid, X) is said to contain Ty = {tid, Y)
if and only iiYCX. A transaction database TDB is a set of
transactions. The number of transactions in TDB that contains
X is called the support of X , denoted as sup{X). An itemset
X is a frequent pattern, if and only if sup{X) > r, where r is
a threshold called a minimum support. The frequent pattern
mining problem is to find the complete set of frequent patterns

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

in a given transaction database with respect to a given support
threshold, r.

Example 1 Let the first two columns of Table 3.1 be our run-
ning transaction database TDB. Let the minimum support thresh-
old be T = 2. The frequent items are shown in the third column
of Table 3.1.

Trans ID Items Frequent items

100 c，d，e，f,g,i c，d,e，g

200 a’c’d，e’m a,c,d,e

300 a，b，d,g，k a,d,e,g

400 a,c,h a,c

Table 2.1: The transaction database TDB

2.3 PP-tree Representations and Its Construc-
tion

The in-memory representation of PP-tree, denoted PPM-tree, is
of a tree. Despite the pointers to the children nodes, a node in
PPM-tree consists of item-name, count, and a node-link. The
count registers the number of itemsets represented by the por-
tion of the path reaching from the root to this node. The P P - -
tree for Example 1 (r = 2) are shown in Figure 2.1. Recall,
when r = 2, the frequent items are shown in the third column
of Table 3.1.

Given a transactional database TDB and a minimum support
(Tm), an initial PP/vf-tree can be constructed as follows. First,
we scan the database to find all the frequent items, then, we scan

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

C n o o t ^

C d l ^ C d ^

C d ^ C g ^ Cj^P^

C s i j) C^il)

Figure 2.1: The memory representation {PPM-tree)

the database again to construct PP^-tree in memory. For each
transaction, the infrequent items are removed. The remaining
frequent items are sorted in a total order, and are inserted into
PPM-tvee. The constructing time for PPM-tiee is slightly less
than FP-Tree, because it does not need to build node-links in
the tree initially.

2.4 PP-Mine

In this section, we propose a novel mining algorithm, called PP-
Mine, using a PPM-tvee. For simplicity, we use a prefix-path to
identify a subtree. Here, the prefix-path is expressed as a dot-
notation to concatenate items with a total order. For example,
in Figure 2.2, a-prefix identifies the leftmost subtree containing
a, and a.c-prefix identifies the second subtree rooted at a-prefix.
In the following, we use ij and ik for a single item prefix-path,
and use a, /? and 7 for a prefix-path in general which are possible
empty.

The PP-Mine algorithm is based on two properties. The first
property states the Apriori property as below.

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

Property 1 Given a PPM-tree of rank N for a set of frequent
itemsets I = ‘ • • An), where a total order (^) is defined
on I. A pattern represented by a.ij.ik-prefix can be frequent if
the pattern represented by a.ij-prefix is frequent, where ij ：< ik.

The second property specifies subtrees that need to be mined
for a pattern. The second property is given on top of two
concepts: containment and coverage. We describe them be-
low. Given a PPM-tree of rank N for a set of frequent item-
sets I = (ii,i2，...，“)’ where a total order (」）is defined on
I. We say a prefix-path (representing a subtree), a-prefix, is
contained in ij.a-prefix, denoted a-prefix C a-prefix. In ad-
dition, a-prefix C 7-prefix, if a-prefix C /^-prefix and /^-prefix
C 7-prefix. Ao&overage a prefix-path a-prefix is defined as all
the /^-prefixes that contain a-prefix (including a-prefix itself).

Property 2 Given a PPM-tree of rank N for a set of frequent
itemsets I = (ii, 22,..., zn)； where a total order (^) is defined
on I. Mining a pattern represented by a prefix-path a-prefix is
to mine the coverage of a-prefix.

For example, Figure 2.2 shows a PP-tree with four items {a,
b, c, d}. Assume they are in lexicographic order. The coverage
of 6.c.d-prefix includes 6.c.d-prefix and a.6.c.(i-prefix. It implies
that we only need to check these two subtrees, in order to de-
termine whether the pattern, {b, c, d}, is frequent. Also, the
coverage of c.d-prefix includes c.d-prefix, 6.c.d-prefix, a.c.d-prefix
and a.6.c.d-prefix. It implies that we only need to check these
four subtrees, in order to determine whether the pattern, {c, d},
is frequent.

Based on the above two properties, we derive three main fea-
tures including two pushing operations and a no-counting strat-
egy below.

• Push-down: Processing at a node in a PP^-tree is to
check an itemset represented by the prefix-path from the

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

root to the node in question. Pushing-down to one of its
children is to check the itemset with one more item. Prop-
erty 1 states the Apriori heuristic. We implement it as a
depth-first traversal with building a sub header-table.

• Push-right: Mining an itemset requires to identify a min-
imal coverage in PPM-tree to mine. Property 2 specifies
such a minimal coverage for any prefix-path.
Pushing-right is a technique that helps to identify the cov-
erage transitively, based on Property 2. In other words, the
push-right strategy is to push the child to its corresponding
sibling. We implement it as a dynamic link-justification.
It is the best to illustrate it using an example. In Figure 2.2,
after we have mined all the patterns in the leftmost subtree
(a-prefix), we push-right a.6-prefix to the subtree 6-prefix,
push-right a.c-prefix to the subtree c-prefix, and push-right
a.d-prefix to the subtree d-prefix. After these push-right
operations, the whole coverage of 6-prefix: a.6-prefix and
6-prefix and part of the coverage of c-prefix including a.c-
prefix and c-prefix are collected together.
After mining the subtree (6-prefix), 6.c-prefix is pushed to
c, as well as a.6.c-prefix transitively. Plus the two subtrees
a.c-prefix and c-prefix we collected in the former push-right
operations, the whole coverage of c-prefix is identified.
It is worth noting that the subtree a.c-prefix does not need
to be pushed into the subtree 6.c-prefix, because the former
is to check the itemset {a, c, d} excluding {6}，whereas the
latter is to check the item {b, c, d} excluding {a} .

• Nocounting: Counting is done as a side-effort of pushing-
right (dynamic link-justification) in an accumulated man-
ner. For example, after we push-right a.6-prefix to the sub-
tree 6-prefix, all the prefix-paths and their support counts
for 6-prefix are collected by dynamic link-justification an-

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

tomatically. Therefore, all the counting cost is minimized.
No extra counting is needed.

root

a 厂bA ^ d

Figure 2.2: A PPM-tiee with four items

The PP-Mine algorithm is illustrated in Algorithm 1. The
procedure is to check all the items in the header table H passed
(line 1-10). In line 2-3, we check if the corresponding count
(num) for â is greater than or equal to the minimum support,
T. Recall that counts are accumulated through pushing-right.
If num for ai is greater than or equal to r, we output the pat-
tern as represented by the path. Then, at line 4, a sub header
table is created by removing all the entries before ai (including
ttj). Pushing-down â (line 5) is outlined below. Because the
coverage of aj-prefix has already linked through the l ink field
in the header-table H (by the previous push-rights), all a?s j-th
children on the link are pushed-down (chained) into the corre-
sponding j-th entry in the sub header table (丑a.aj. Line 6 calls
PP-Mine recursively to check (k+l)-itemset if the length of the
path is k. After returning, the sub header table will be deleted.
Irrelevant with the minimum support, pushing-right ai (line 9) is

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

described below: a) the coverage of a '̂s left siblings are pushed-
right from ai to its right siblings, b) all a '̂s j-th children on the
link are pushed-right (chained) into the corresponding entry in
the header table H.

Algorithm 1 PP-Mine(a, H)
Input: A constructed PPM-tvee identified by the prefix-path, a, and the
header table H.

1: for all ai in the header table H do
2: if ais support > r then
3： output a.di and a '̂s support;
4: generate a header-table, Ha.ai, for the subtree rooted at a.ai, based

on H\
5： push-down(ai);
6: PP-Mine(tt.ai, i/a.aj；
7: delete Ha.ai ；

8： end if
9： push-right(ai);

10： end for

Consider the mining process using the constructed PPM-tree
(Figure 2.1(a)). Here, the initial header table H includes all
single items in PPM-tree. Only the children of the root are
linked from the header-table, and their counts are copied into the
corresponding num fields in the header-table. Other links/nums
in the header-table are initialized as null and zero. (The initial
header H is shown in Figure 2.3 (a).)

1. Call PP-Mine(root, H). Item a is first to be processed, as
the first entry in H. The support of a is 3. It is the exact
total support for the item a, because a does not have any
left siblings. Next, the subtree a-prefix is to be mined.
The second header table, Ha, consists of all items in H
except for a. Only the children nodes of a are pushed-down
into Ha(F igure 2.3 (a)). In Ha, c and d counts are copied

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

Header-table H Header table H

Item num link Item num link

a 3 a 3 、•-

d 0 (ro^) _d__0_ Cro^
I I : 1 1 = V X ^ .

g I 0 I I (a ^ (r f I g I 0 I 1 (a j ^ (c ^

Header-table Ha 乂 V \ Header-table Ha

ltem|num|llnk| @ |ltem|num| linkl 贤 （ ^

二口 I @ @ ® 口。I ® ® (&
(a) The header table Ha and its PPm- (b) The header table Ha after mining the

tree rooted at a-prefix PP^f-subtree rooted at a.c-prefix

Figure 2.3: An Example

from the node a.c and a.d, in the PPjif-tree. Their values
are 2 and 1.

2. Call PP-Mine(a-prefix, Ha). Item c is picked up as the first
entry in Ha. Because c's count (num) is 2 (frequent), we
output a.c. Next, the subtree a.c-prefix is to be mined.
The third header-table is constructed for the subtree of a.c-
prefix, denoted as Hac, in which cTs num is 1 and cTs link
points to the node a.c.d. Other fields for e and g are set as
zero/null.

3. Call PP-Mine (a.c-prefix, Hac). Item d is picked up. Be-
cause d,s num is 1 (infrequent), return.

4. Backtrack to the subtree a-prefix. Here, the header-table
Ha is reset (Figure 2.3 (b)). First, the entry c in Ha becomes
null (done). Second, a.c's child, d, is pushed-right into cTs
entry in the header-table Ha. In other words, the l ink of
the entry d in Ha is linked to the node a.d through the node
a.c.d. The d,s count (num) in Ha is accumulated to 2, which
indicates {a, d} occurs 2 times.

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

The correctness of PP-Mine can be showed as follows in brief.
A PPM-tree of rank N has N subtrees. First, we mine patterns
in a subtree following a depth-first traversal order. All patterns
in a subtree will be mined (vertically). Second, the k-th subtree
is mined by linking all required subtrees in its left siblings (hor-
izontally). Linking to those subtrees will be completed at the
time when the /c-subtree is to be mined. Third, the above holds
for any subtrees in the PPM-tree of rank N (recursively).

2.5 Discussions

In this subsection, we discuss the differences between PP-Mine
and other similar approaches, FP-growth [15] and H-Mine [18 .
We mainly compare the mining phase of the three algorithms,
because the cost of constructing the FP-tree/H-struct in mem-
ory is almost the same.

• PP-Mine vs FP-growth: Both FP-growth and PP-Mine
use the very similar data structure. But, the trees being
constructed in memory are different. FP-growth requests
that all nodes with the same item-names in FP-tree must
be linked in the header table from the beginning. For ex-
ample, in Figure 2.4(b), all three d-items must be linked
from the header table. However, PP-Mine does not neces-
sarily require a header table as a part of it (Figure 2.4(a)).
The header table is a data structure used during the min-
ing process, and can be easily constructed by only linking
the children of the root in PP^-tree^ (as shown in Figure
2.3 (a)). With PP-Mine, the number of links is minimized.
The reduction on the number of links has significant im-
pacts on the performance, because the maintenance cost of
those linkings are reduced. It is important to know that

iThe set of frequent 1-itemset is known.

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

FP-tree can not be effectively stored on disk because of its
complex node-link structures. When mining in memory,
FP-growth processes FP-tree in a bottom-up fashion. Con-
ditional FP-trees need to be constructed. Therefore, extra
memory space is needed to further mine FP-tree. On the
other hand, PP-Mine mines PPM-tvee using a depth-first
traversal order. Constructing additional conditional FP-
trees is replaced by dynamic link adjusting in PPM-tree.

• PP-Mine vs H-Mine: While PP-Mine uses a tree struc-
ture, H-Mine uses a hyper-structure, H-struct, as shown in
Figure 2.4(c). The main advantage of H-Mine is the dy-
namic hyper-link adjusting which was implemented at the
expenses of using a hyper-structure. Sharing among item-
sets becomes difficult. The hyper-structure has a problem
such that the space requirement becomes high for dense
dataset. H-Mine needs to be integrated with FP-growth
for dense datasets. In fact, two data structures need to be
used, namely, FP-tree and H-struct. Detecting whether a
dataset is dense at run time is challenging. Relative sup-
port is used to detect if a projected dataset is dense. But,
the accuracy is arguable. Also, the cost of switching from
one structure to another needs to be considered. PP-Mine
uses PPM-tree in a novel way, and uses the similar dynamic
hyperlink adjusting. In addition, PP-Mine uses an accu-
mulation technique, it does not need to count the projected
databases. In other words, we only do addition when we
adjusting links. We do not need to count the projected
database.

2.6 Performance Study

We conducted performance studies to analyze the efficiency of
PP-Mine in comparison of FP-tree [15] and H-Mine [18]. We

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

did not compare PP-Mine with TreeProjection [3], because, as
reported in [15], FP-growth outperforms TreeProjection.

All the three algorithms were implemented using Visual C-H-
6.0. The synthetic data sets were generated using the procedure
described in [4]. All our experimental studies were conducted
on a 900MHz Pentium PC, with 128MB main memory and a
20GB hard disk, running Microsoft Windows/NT.

For a given minimum support r, we assume that we have
to construct PP^-tree, FP-tree and H-struct in memory from
scratch. The constructing time for both H-struct and PPM-tiee
is marginally better than FP-tree construction. To give a fair
view on this three algorithms, here we only compare the mining-
phase of the three algorithms.

We have conducted experimental studies using the same datasets
as reported in [15]. We report our results using one of them,
T25.I20.D100K with lOK items, as representative. In this dataset,
the average transaction size and average maximal potentially
frequent itemset size are set to be 25 and 20, respectively, while
the number of transactions in the dataset is lOOK. There are
exponentially numerous frequent itemsets in this dataset, when
the minimum support is small. The frequent patterns include
long frequent itemsets as well as a large number of short frequent
itemsets.

The scalability of the three algorithms, PP-Mine, FP-tree
and H-Mine, is shown in Figure 2.5 (a). While the support
threshold decreases, the number as well as the length of fre-
quent itemsets increases. High overhead incurs for handling pro-
jected transactions. FP-growth needs to construct conditional
FP-trees using extra memory space repeatedly. H-Mine needs
to count every projected transactions. PP-Mine does not need
to construct conditional trees and uses accumulation technique,
which avoids unnecessary counting. Prom Figure 2.5 (a), we can
see PP-Mine significantly outperforms FP-growth and H-Mine.

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

PP-Mine scales much better than both FP-tree and H-Mine.
We also compared the mining phase of the three algorithms

using a very dense dataset. The dataset was generated with
101 distinct items and IK transactions. The average transac-
tion size and average maximal potentially frequent itemset size
are set to 40 and 10. When the minimum support is 40%, the
number of frequent patterns is 65,540. When the minimum sup-
port becomes 10%, the number of frequent patterns is up to
3,453,240. As shown in Figure 2.5 (b), PP-Mine outperforms
both FP-growth and H-Mine significantly. PP-Mine has the
best scalability while the threshold decreases.

For sparse datasets and small datasets, PP-Mine marginally
outperforms H-Mine, because both use the similar dynamic link
adjusting technique. The effectiveness of PP-Mine's accumula-
tion (or non-counting) techniques becomes weaker. Both PP-
Mine and H-Mine outperform FP-growth.

• End of chapter.

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

(j o o ^

C ^ C ^ ^ (d ^

C d ^ (e ^ (e ^

C^i) c ^ c ^
(a) PPm-tree

(r o ^

Header-table H
item num link

_a 3

_d__3 —

g I 2 I @

(b) FP-tree

Header a c d e g
table H 3 4 3 ^

1 0 0 | d | | e | |g| 一

200 ^ a I c d e

300 y a | | | d | | e | | g | —

400 L̂ a c

(c) H-struct

Figure 2.4: PPM-tvee, FP-tree and H-struct for Example 1 where r = 2

CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1

90 I . 1 1 400 I n ‘ . . , 1
FP-growth 1 FP-growth 1

H-Mlne — — • • j H-Mine — —
80 ‘ ？ PP-Mlne ~ ^ ~ . ^^^ ^ j PP-Mine ^

70 \ - \
[�\ 300 -

60 \ \ - \

1 \ \ I 150 -

0.2 0.4 0.6 0.8 1 10 15 20 25 30 35 40
Support threshold % Support threshold %

(a) small threshold (r) (b) large threshold (r)

Figure 2.5: Scalability

Chapter 3

Fast Biosequence Patterns
Mining

Summary

The biosquences have very small bioalphabet but ex-
tremely long length. We present a two-phase algorithm
to address these issues. The segment phase finds short
regions of local similarity, called segments, and builds an
auxiliary structure to support certain position queries
about segments. The pattern phase grows/prunes pat-
terns of global similarity using segments as building
blocks by answering position queries. The purpose of
this two-phase approach is multi-fold: adopt best tech-
niques separately for local similarity and global similar-
ity, exploit local similarity for efficient search of global
similarity, and grow patterns rapidly one segment at a
time instead of one item at a time. We evaluate this
approach on both synthetic and real life data sets

20

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 21

3.1 Background

3.1.1 Differences in Biosequences

Below, we analyze some differences in biosequences and their
implications on data mining techniques.

Biosequences have a very small alphabet. DNA se-
quences are made up of 4 items (i.e., nucleotides) and protein
sequences are made up of 20 items (i.e., amino acids), with re-
peats allowed. In contrast, customer transaction sequences in
market-basket applications are made up of items taken from a
collection of 1,000 to 10,000 items (e.g., sales items in a super-
market) [6，5, 27, 17]. Consequently, while only a tiny fraction
of items occurs in each transaction sequence, most (likely all)
items occur in each biosequence. This has a drastic implica-
tion on all pruning strategies based on absence of items. For
example, with every item occurring in a biosequence, the hash-
partitioning of the hash-tree [5，20] is not effective because most
branches will be searched, and intersecting the idlists/bitmaps
of patterns [6, 27] is not effective because idlists/bitmaps are
very long for long sequences of a small alphabet.

Biosequences have extremely long length. A DNA or
protein sequence is typically a few hundreds in length and can
be up to a few thousands (http://www.ncbi.nlm.iiih.gov), com-
pared to 10 to 20 for a transaction sequence [6, 27, 5, 17]. Long
sequences typically contain long patterns, and the classic "one
item at a time" pattern growth [6, 27, 5, 17] means too many
database scans and support countings. Also, scanning a long se-
quence for pattern matching is not a negligible cost, especially
because pattern matching is performed frequently. The prob-
lem of mining long non-sequential patterns was studied recently
1, 7, 11]. For biosequences, the sequential nature and longer

length make the problem significantly harder. See below and
Section 2 for more discussions.

http://www.ncbi.nlm.iiih.gov

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 22

Biosequence patterns occur in short regions of local
similarity and in long regions of global similarity with
gaps. Such patterns have the form of Xi* . • •本Xk, where each. Xi
is a segment representing several consecutive items, and * rep-
resents a variable length don't care (VLDC). For DNA/protein
sequences, each segment Xi represents to a local similarity con-
served during evolution due to an important structural or func-
tional role, and VLDCs represent the rest. A minimum re-
quirement, such as minimum segment length, can be specified
to remove trivial local similarity. This kind of local similarity
has not been exploited in the classic sequential pattern mining
6, 27, 5, 17] for effective pattern pruning and support counting.

In summary, the blow up of classic sequential patterns is due
to a large cardinality at each position, whereas the blow up of
biosequence patterns is due to a large length. The former can
be dealt with by classic partitioning/indexing/ bitmapping tech-
niques, but the latter requires novel techniques. The look-ahead
technique [1, 7, 11] assumes that each item occurs at most once^
as in a non-sequential pattern, and extends a pattern by all
remaining items. If the extended pattern is frequent, all (non-
maximal) subpatterns can be pruned. However, this technique
is not applicable to sequential patterns where there is a lack
of the notion of "remaining items" because an item can occur
repeatedly. On the other hand, bio-applications ultimately re-
quire non-maximal patterns. For example, classification rules
X — C, where X denotes a biosequence pattern and C denotes
a protein family, are likely non-maximal because they represent
generalized characteristics of protein families.

3.1.2 Mining Sequential Patterns

The work on mining sequential patterns was motivated in market-
basket analysis [6, 5，16, 17, 20, 27], where typically sequences

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 23

are short and the alphabet is large. Both breadth-first genera-
tion [5, 20, 27] and depth-first generation [6, 27, 17] have been
studied. The support counting is by scanning sequences against
candidate patterns, with hash-partitioning to focus on likely
candidates [5, 20], intersecting the idlists/bitmaps of shorter
patterns [6, 27], projecting sequences according to scanned pre-
fixes [17]. For long biosequences of a small alphabet, scanning
or partitioning sequences is not effective as mentioned in Intro-
duction, and idlists/bitmaps are very large because they code
all occurring positions in all sequences. All these methods grow
patterns one item at a time and do not exploit local similarity
for pattern pruning and support counting.

3.1.3 Mining Long Patterns

The look-ahead technique extends a pattern by all "remaining
items", i.e., items that have not occurred [1, 7，11]. This tech-
nique is not applicable to sequential patterns because an item
can occur repeatedly and there is no corresponding notion of
remaining items. The sampling/bordering techniques [21, 25
find the border between frequent patterns and infrequent ones
from a sample of the database, using techniques primarily for
non-sequential patterns (such as those in [1，7，11])，and then
adjust the border on the entire database. These methods still
depend on an efficient mining algorithm in that a sample often
has a non-trivial size to avoid the bias of sampling. For long se-
quences of a small alphabet, sampling (like partitioning) is less
effective in that it does not reduce sequence length or alphabet
size.

3.1.4 Related Works in Bioinformatics

A commonly used biosequence similarity is based on multiple
sequence alignment (see [24]). This notion is useful when an

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 24

entire sequence is similar, but makes no sense for mining short
regions of local similarity. Most approaches to local similarity
enumerate the solution space [10], thus, are very highly expen-
sive. [22] addresses this problem using heuristics at the expense
of missing some patterns. It first ranks patterns using a sample
of database and evaluates only highly ranked patterns against
the entire database. The pattern growth for the sample is by
enumeration, and pattern matching against a sequence is by dy-
namic programming. Their experiments were conduced only for
150 sequences and two-segment patterns. Our approach finds
the complete set of patterns on a large collection of sequences
by exploiting novel pattern pruning and support counting meth-
ods. Another direction is approximate pattern matching [22, 25 .
Our work currently considers exact pattern matching.

3.2 The Overview

3.2.1 The Problem

A sequence database D is a collection of sequences {si,...，Sjv}.
Each sequence is an ordered list of items from a fixed alphabet.
The jth item in a sequence occurs at position j. A segment refers
to one or more items at consecutive positions in a sequence. \X
denotes the number of positions in a segment X. A segment
could occur more than once in a sequence, with each occurrence
having a start position and end position. A pattern has the form

* . •. * Xn (n > 1), where each Xi is a segment and * denotes
the variable length "don't care" (VLDC). In matching a pattern
X i ^ •' • ^ Xn with a sequence Si, each segment X j matches itself
and each * can substitute for zero or more items. If a match of
the pattern is found in Si, we say that Si contains the pattern,
or the pattern occurs in Si.

Definition 1 The support of a pattern is the percentage of the

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 25

sequences in D that contain the pattern. Given a minimum
length MinLen and a minimum support MinSup, a pattern

* • • • * Xn is densely frequent if > MinLen for 1 <i <n
and the support of the pattern is above MinSup. The problem
of mining biosequence patterns is to find all densely frequent
patterns.

A segment Xi captures a short region of local similarity. A
pattern * . . . * Xn captures a global similarity across a global
range separated by gaps For biosequences where most items
occur in most sequences due to the small alphabet size, only
local similarities above some minimum length (usually > 1) are
non-trivial. The minimum support MinSup conveys a statistical
significance requirement on a pattern. In the rest of the paper,
a "frequent pattern" means a "densely frequent pattern".

3.2.2 The Overview of Our Approach

We propose a two-phase approach. The segment phase finds all
frequent segments Xi. The pattern phase generates all frequent
patterns Xi ^ - • • ^ X^ using frequent segments Xi as building
blocks. The purpose of this two-phase approach is to exploit
relationships between frequent segments for the "segment-based
pruning" and "query-based counting" discussed in Section 1.2.
Two issues are addressed. First, how to search the candidate
space Xi * … * Xfc so as to maximize the exploitation of such re-
lationships. We present a novel search strategy, called 2-phased
depth-first (2PDF), to address this issue. Second, how to tell ef-
ficiently if a pattern occurs in a sequence, knowing that it does
not occur before some end position? We solve this problem by
answering the following position query.

Definition 2 A position query has the form of Q{X, s, i), where
X is a frequent segment, s is a sequence id, and i is a position in

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 26

sequence s. The query returns the answer < s,j > if sequence s
contains X at a start position greater than i and j is the smallest
such start position; or returns nil otherwise.

Precisely, suppose that we know the smallest end position
< s, i > of a pattern Pk = * • • • * X̂ ； in each sequence s
containing the pattern (i.e., Pk does not occur before the po-
sition i in s). We find the smallest end positions of a pat-
tern Pk+i = Pk * Xk+i as follows. For each < s,2 > of Pk, if

s, i) returns nil, s does not contain Pk+i] if it returns
an answer < s,j >, s contains Pk+i at the smallest end position
j + IXfc+il — 1. The support count of P^+i is equal to the num-
ber of < > answers. The key to this approach is an efficient
method for answering a position query Q{X, s,z). Scanning the
whole sequence s is not attractive because most part of a long
sequence does not code useful information, nor is materializing
all (X，s) pairs because of a high number of frequent segments
X and sequences s. We propose an index method and a com-
pression method for answering the position query.

3.3 The Segment Phase

3.3.1 Finding Frequent Segments

We use the generalized suffix tree (GST) [22] to find all frequent
segments. A GST is an extension of the suffix tree for repre-
senting a set of sequences. A suffix starting at position p in a
sequence Si is represented by a leaf containing Si : p. The edges
are labeled with items such that the concatenation of the edge
labels on the path from the root to the leaf containing si : p is
the suffix of the sequence Si that starts at position p. We extract
the following information from the GST. (1) The frequent seg-
ments of the length MinLen, called base segments and denoted
by Bi, for each base segment Bi, the position lists Si : Pi,P2，...

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 27

at which Bi starts, where pi < pi+i. This information is used
to build an index. (2) All remaining frequent segments, but no
position lists. This information is used to generate patterns.

Theorem 1 The total length of the positions lists of base seg-
ments is no more than the total length of sequences in D.

Proof. No two base segments occurs at the same position in a
sequence (otherwise, they are identical). Thus, the total length
of the position lists for the base segments in a single sequence is
no more than the length of the sequence.

The time and space needed to construct the GST is 0(|_D|),
where |D| is the total length of the sequences in database D
22]. If the GST of D does not fit in the memory, we can build

the GST for one partition of at a time (that fits in the mem-
ory) and scan D once to count the global support for frequent
segments extracted from each partition. Below, we present two
approaches of exploiting the extracted information for efficient
query answering.

3.3.2 The Index-based Querying

This approach provides a direct access to the positions queried
by Q(X, s, i) by building a main-memory index. Instead of in-
dexing all frequent segments X, which would be too large, we
index only base segments Bi, in the view that every frequent
segment can be rewritten into one or more base segments as
stated below.

Definition 3 For two base segments Bi and B2 such that the
last k items in Bi are identical to the first k items in B2, the
k-join of Bi and B2, denoted Bi N^ B:, is the segment obtained
by overlapping the last k items of Bi with the first k items of
B2.

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 28

Corollary 1 A frequent segment Xi can be rewritten into sev-
eral k-joins of base segments:

Bi Mo 召2 Xo … N o Bp Nfc Bp+i，

where k = 0 except for the last k-join. p = [Jlil/MiriLeriJ and
k = \Xi\ — UH/MSnl/eri�x MinLen.

Example 2 Table 3.1 shows a sequence database containing three
sequences, with the alphabet of {a, 6, c, d}. Let MinSup = 2/3,
and MinLen = 2. We have the frequent segments:

ab{2), ac(3)，acd{3), acda{2), cd{2), cda{2), da{2),

where the integers in the brackets are support counts. The base
segments are

Bi = ab, B2 = ac, B3 = cd, B4 = da,

and their position lists are given in Table 3.2. ab * cda occurs in
Si and S2, so is a frequent pattern, ab * cda can be rewritten as
Bi * (B3 Ml B4) using only base segments. Similarly, ab * acda
is frequent and can be rewritten as Bi * {B2 Nq B4).

Definition 4 The SP-index (Segment-to-Position index) has two
components, the root directory and the SP-trees. For each base
segment Bi, the root directory has an entry for the root of the
SP-tree for Bi. The SP-tree for Bi is a B-tree containing an
entry (< s,p >^ptr) for each position s : p in the position lists
of Bi. < > is the search key of the B-tree. ptr points to
the entry (< + \Bi\>^ ptr') in the SP-tree for some Bj, if it
exists, or ptr = nil, otherwise. (We have omitted the usual tree
pointers in the B-tree.)

Intuitively, ptr in an entry (< s，p >^ptr) links the entries for
Bi and Bj (in different SP-trees if Bi + Bj) that 0-joins, i.e.,
Bi Nq Bj, at the start position s : p. At any entry (< s，p >,ptr)
in the SP-tree for Bi, we can

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 29

ID Sequence

51 abacdab

52 abcacda

53 baacdca

Table 3.1: The sequence database D

Base Segments Position Lists

ab (Si : 1,6)，（S2 : 1)

ac (Si : 3), (S2 ： 4), (S3 : 3)

cd (Si : 4),(S2 : 5)，(S3 : 4)

da (Si : 5), (S2 : 6)

Table 3.2: The position lists

• check if a frequent segment X = N • • • N Bg occurs
at the start position s : p by following the ptr pointers
(possibly across SP-trees) at most q times starting from
the entry (< >,ptr). We refer to this chain of ptr
pointers as the join chain of Bi.

• move to the next entry of Bi in the search key order as
provided by the standard B-tree. We refer to this chain
of "next entry" as the occurrence chain of Bi, the end of
which is indicated by a change of sequence id in a search
key.

Now we compute the position query using the SP-index as
follows.

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 30

C o m p u t e Q{X,s,i), where X = N • • • N g > 1.
Search the SP-tree for Bi by the search key < s,i > for the
smallest start position in s greater than i. If the search is not
successful, return nil. Assume that the search is successful and
ends at an entry (< s,p〉，ptr). Check if X occurs at the current
start position s : p by following the join chain of Bi. If not, move
to the next entry of Bi in s by following the occurrence chain of
Bi, and check again. This "move and check" is repeated until
either the end of the occurrence chain of Bi is reached or the
checking is successful. In the former case, return nil. In the
latter case, return the key value < > in the last entry of Bi
accessed, which is the smallest start position of X in 5 greater
than i.

The partial-key technique for main-memory indexes [9] can be
applied to eliminate repeated store of sequence ids s in key values
< > in a SP-tree. This not only reduces the index size, but
also increases the fanout of the tree structure and reduces the
access time.

3.3.3 The Compression-based Querying

Alternatively, we can answer the query s, i) by simply
scanning the sequence s for the next occurrence of X start-
ing from the position i. For a long sequence, this suffers from
scanning a long region not coding useful information. In the
compression-based querying, we first compress each input se-
quence by collapsing consecutive non-coding regions, i.e., posi-
tions not expandable to either sides into a frequent segment, into
a new item e. Intuitively, each e represents a variable length non-
coding region between two closest coding regions in a sequence.
For large MinLen and MinSup and a large alphabet size, a
long sequence tends to contain long non-coding regions and the
compressed sequence will shrink in length substantially. The

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 31

Input: a sequence s in D and MinLen\
Ouput: the compressed sequence of s and length;

1： k = l]
2: for j = l] j < |s|;i + + do
3： if s[j,j + MinLen — 1] is a base segment then
4: fill S[k] with s[j];
5： /c + +;
6： coding ^ MinLen — 1;
7： else if coding > 0 then
8： fill S[k] with s[j]]
9： A: + +;
10： coding ；

11： else if k > I and S[k — 1] is not e then
12： fill S[k] with e;
13： k = k + +;
14： end if;
15： end for;
16： return S and k — 1.

Figure 3.1: Compressing a sequence

procedure in Figure 3.1 compresses a given sequence.

Example 3 For the database in Example 2, the compressed se-
quences are

51 : abacdab
52 ： abeacda (ca is collapsed into e)
Ss ： eacde (ha and ca are collapsed into e)

To apply the compression-based approach, we first extract
base segments (without position lists this time) and frequent
segments from the sequence database D, as described earlier.
We then compress each sequence s in D using the algorithm in
Figure 3.1. Subsequently in the pattern phase, we shall answer
a query S, i) by scanning compressed sequences S instead
of input sequences s.

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 32

Compute S, z), where 5 is a compressed sequence, X
is a frequent segment and Hs a position in S. Scan the sequence
S starting from the position i and search for the next occurrence
of X. Return the position of the next occurrence of X if found,
and return nil if not. Note that, in matching X against S,
the new item e in 5 does not match any item in X because it
represents a non-coding region.

3.4 The Pattern Phase

This phase generates all frequent patterns * . . . * X於 using
frequent segments Xi found in the segment phase. The depth-
first generation is to extend the current pattern Xi * • • • *
by each frequent segment Xk+i in the depth-first manner, and if
X i * . . -^Xk^Xk-i-i is frequent (by support counting), recursively
extend the pattern Xi * . . . * X；；； * Xk+i- However, this simple
method is not efficient because the number of candidates Xi
at each step can be very large (as Xi can be repeatedly used
in a pattern) and the support counting is independent for each
pattern. We are interested in exploiting "interactions" between
patterns for pruning candidates and sharing support counting.
Below, we present a search strategy with this mind.

Definition 5 The 2-phased depth-first generation is the depth-
first generation of the pattern tree defined below:

• The segment tree represents all frequent segments: each
node (except the root) is labeled by a base segment Bi, each
non-terminal edge is labeled by integer 0, and each terminal
edge is labeled by an integer k > 0, such that a node w
represents the frequent segment Nq • • • Nq Bp—i Nj^ Bp,
denoted seg{w), where (root, 0, jBi, 0，. •.，0，Bp—i,k, Bp) is
the path from the root to a node w.

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 33

• The pattern tree represents all patterns: every node has
the child nodes Vi,... ,Vn labeled by seg{wi)^.. •, seg{wn)
such that wi,...iUn are the non-root nodes in the depth-
first order in the segment tree. A node v in the pattern tree
represents the pattern Xi * • • • * Xk, denoted pat{v), where
Xi, -' • ,Xk are on the labels on the path from the root to v.

A snode refers to a node in the segment tree, and a pnode
refers to a node in the pattern tree. Similarly, sroot and proot
refer to the root of the segment tree and pattern tree. Note that
pat {proot) = 0 and seg{sroot) = 0.

Example 4 Figure 3.2 shows the segment tree for Example 2.
Wi denotes the ith node in the depth-first order. The path {root^ 0,
jB2, 1, B^) or node w^ represents the frequent segment acd =
B2 Xli B^, the path (root^ 0, B2,0，B4) or node W4 represents the
frequent segment acda = B2 Nq B4, and the path {root, 0, Bz, 1, B4)
or node wq represents the frequent segment cda — B^ Nj B4.

sroot

w l : B l w2:B2 w5:B3 w7:B4

, 1
w3:B3 w4:B4 w6:B4

Figure 3.2: The segment tree in Example 4

Consider 二 J î 氺...氺 Xk—i 氺 Xk, = Xi * •..氺 Xk—i 氺 Xj.
or = Xi * • • • * Xk-i 氺 Ĵ̂T；̂, * . . . * Xk+i, where Xk is a prefix
of X’k. Note that each occurrence of P' is an occurrence of P.

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 34

An important property of the 2-phased depth-first generation
is that P is generated before P' generation because P is either
a left sibling or an ancestor of P'. The following observations,
which exploit some information about P for generating P', form
the basis of our pruning and querying strategies.

Observation 1. If P does not extend into a frequent pattern
P * X for some frequent segment X, neither does P'.

Observation 2. If P does not occur before position i in some
sequence 5, neither does P'.

We present pruning strategies based on Observation 1 and
querying strategies based on Observation 2.

3.4.1 The Pruning Strategies

Consider a pnode v and a snode w. The pruning signature of
the pattern pat(v) refers to the set of snodes w that failed to
extend v, i.e., pat{v) * seg{w) was known not frequent. Let
V.failed denote the pruning signature of pat{v). Since w G
V.failed implies that w' G v.failed for all descendants w' of w,
the implementation of v.failed needs to contain only highest
possible snodes on a path. We assume that proot.failed = 0.

Rationale I. If w failed to extend v (i.e., w G v. failed), for
all snodes w' below w, w' will fail to extend v. Therefore, we do
not need to extend v by w'.

Pruning I. For every w G v.failed, we can prune the subtree
rooted at w from extending v.

Rationale 11. For the parent Vp of v, if w failed to extend Vp,
w fails to extend v (Observation 1). Therefore, we do not need
to extend v by w.

Pruning II. For the parent Vp of v, v.failed D Vp.failed.

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 35

Rationale III. For any sibling Vg of v such that the label of Vs
is a prefix of the label of v, if w failed to extend Vg, w fails to
extend v (Observation 1).

Pruning III. For any sibling Vg of v such that the label of
Vs is the parent of the label of v in the segment tree, v.failed D
Vs. failed.

Prom Pruning II, Vg.failed D Vp.failed, thus, Pruning III has
priority over Pruning II because of stronger pruning. Pruning
II is used only in the case that the parent of the label of v is
the sroot, in which case the sibling Vg in Pruning III does not
exist. Pruning I and II provide ample opportunities of pruning:
whenever either or it; is not a leaf node and w failed to extend
V, the whole subtree at w is pruned in the subspace below v
in the pattern tree. Pruning III improves on this with even
stronger pruning.

Example 5 Consider the pattern tree in Figure 3.3 generated
using the segment tree in Figure 3.2. vi denotes the ith node
in the depth-first generation. Initially, Vi.failed = 0 . After
extending v\ by w\, we find that seg{wi)^seg{wi) (i.e.，ab^ab) is
not frequent, so vi. failed = {w^i}. At node V3，v^. failed = {i^i}
from Pruning II, so we do not extend vs by wi. After extending
Vs by W2, we find that seg{wi)^seg{w2)^seg{w2) (i.e., ab^ac^ac)
is not frequent, so v^.failed = {wi,w2}. From Pruning I, we
do not need to extend v^ by any node in the subtree below W2
(i.e., w^ and W4). At node V5，since the label of the sibling v^
(i.e., seg{w2)) is the parent of the label of v^ (i.e., seg{ws)) in
the segment tree, from Pruning III, v^.failed = {wi^w2}. So,
all the pruning at node v^ applies to node v^.

Algorithm. Consider the current path X i , - - - ,Xk in the 2-
phased depth-first generation. Assume that Xi is represented by
a path - •• in the segment tree, which is the current path
in the depth-first generation of Xi. Note that Xi = seg�w\� . Let

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 36

入 1 X I O X I 1

/ \ X 2 X 3 \

/ 丨 \ X ' 2 -
X 4 X 6 X 7

/ \
X 8 X 9

Figure 3.3: The pattern tree in Example 5

failed^ denote the pruning signature of * . . . i * seg{w^j).
For 1 < 2 < A;, we push {w\, failed\), • • •, {wi^, failed^) onto
the stack TT̂ in the depth-first generation of Xi. node{'Ki) and
failed{'Ki) return the top entry on the stack TT̂ , i.e., w^^ and
failed\. Thus, seg{node{TTi)) * ... * seg{node{TTk)) represents
the current pattern, and failed(jrk) gives its pruning signature.
2PDF�k, w) in Algorithm 2 finds all frequent patterns that have
the prefix seg(node�ni)) * . . . * seg{node{7Tk)) * seg{w'), where
w' is either w or a child node of w. 2PDF(0, sroot) finds all
frequent patterns.

2PDF{k, w): If w is the sroot, lines 2-4 recursively call 2PDF{k, w,�

for all children w' of w not in failed(jrk) (Pruning I). If if； is not
the sroot, line 6 extends seg{node{7ri)) * •.. * seg{node{7rk)) by
seg{w). If the extension fails, lines 20-21 add w to failed{7Tk)
and remove any descendant of w because we keep only highest
possible nodes in failed{7rk). Assume that the extension suc-
ceeds. Line 13 creates a new pnode for the extension by pushing
w and failed onto stack Wk+i, where failed is initialized at lines

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 37

Algorithm 2 The 2-phased depth-first with pruning strategies —
2PDF(k,w): an integer k >0, a, snode w,

1： if w is the sroot then
2： for all children w' of w, not in failedijTk) do
3： 2PDF(k,w')]
4: end for;
5： else
6: if seg{node{'Ki)) * ... * seg{node('Kk)) * seg(w) is frequent then
7: output seg{node(7ri)) * . . . * seg{node{'Kk)) * seg{w)]
8： if TTfc+i is empty then
9： failed — failed('Kk)\

10： else
11: failedfailedi^Tk+i).�
12： end if;
13： push{w, f ailed, TTk+i)',
14： 2PDF{k + l,sroot);
15: 卿(TTfc+i);
16： for all children w' of w, not in failed{jrk) do
17： 2PDF{k,w'y,
18： end for;
19： else
20： add w to failed{'Kk)\
21： remove any descendant of w from failed('Kk)\
22: end if;
23: end if;

9 and 11 according to Pruning II and III, respectively, and line
14 recursively calls 2PDF(k + 1, sroot) for the new pnode. On
return, lines 16-18 recursively call 2PDF{k, w') for all children
w' of w not in failed(jrk) (Pruning I). We omit the formal proof
of correctness.

3.4.2 The Querying Strategies

In a similar spirit, we can prune the work of support counting
based on Observation 2. The querying signature of Pk = Xi ^
…本 Xk refers to the set of < s, i �p a i r s such that i is the

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 38

smallest start position of Xk in any occurrence of Pk in s. This
implies that Pk does not occur before the end position i + \Xk
in s. Prom Observation 2, we have two ways to compute the
querying signature (and the support count) of = Pk * Xk+i.
In the first way, for each < s, z > in the querying signature of P^,
we perform the query Q{Xk+i,s,i + to find the smallest
start position < s,j > of Xk+i in any occurrence of Pk+i- The
querying signature (resp. the support count) of P^+i is the set
(resp. the number) of < s J > answers to such queries. In the
second way, we use the querying signature of P h = Pk * 义‘+丄

instead, where is a prefix of X^+i.
In implementation, we now push failed\, ans\),..

{wl̂ , failedlj^ anŝ)̂ onto the stack tt̂ , where ans) represents the
querying signature of the pattern * . . . * Xi - i * j). Let
ansijTi) return the top querying signature of 兀“ i.e., ans� . The
querying strategies for Pjt+i =尸A； * ^k+i are as follows.

Querying I. If the parent of Xk+i is the sroot, in which case
TT/c+i is empty, compute Q(Xk+i,s,i + |义於|) for each < s,2 > in
the querying signature of Pk, given by ans(nk).

Querying II. If the parent of Xk+i is not the sroot,
compute i) for each < s, i > in the querying signature
of Pfc+i, given by ans(jrk+i).

Algorithm. 2PDF(k, w) in Algorithm 3 describes the depth-
first generation with both pruning and querying strategies. The
main difference from Algorithm 2 is the function Count(seg[w�, k)
at line 6 for computing the support and querying signature of
the candidate seg{node(jri)) * ... * seg{node{7Tk)) * seg{w). If
TTk+i is empty, Count{seg{w)^ k) applies Querying I at lines 4-9,
if not, Querying II at lines 11-16.

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 39

Algorithm 3 The 2-phased depth-first with pruning/querying strategies
2PDF{k,wy.

1： if w is the sroot then
2： for all children w' of w, not in failed('Kk) do
3： 2PDF(k,w')]
4: end for;
5： else
6： (sup, ans)卜 Count{seg{w), /c);
7： if sup/N > MinSup then
8： output seg{node('Ki)) * • • • * seg{node{'Kk)) * seg{w)\
9： if TTjt+i is empty then
10： failed failed(7Tk).,
11： else
12: f ailed 卜 failed(jrk+i);
13： end if;
14： push{w, failed, ans, tt^+i);
15： 2PDF{k-\-l,sroot)]
16: 卿(TTfc+i);
17: for all children w' of w, not in failed(jrk) do
18： 2PDF{k,w')\
19： end for;
20: else
21： add w to failed{'Kk)\
22: remove any descendant of w from failed{nk)',
23: end if;
24： end if;

Count{X, k):
1： sup 卜 0;

2: ans 0;

3： if TTfc+i is empty then
4: f o r a l l < s,i>e ans(7rjt) d o

5： if Q(X,s,i + \seg{node(7rk))\) returns < s,j > then
6: sup + +;
7： ans ^ ans U { < s, j >} ;
8： end if;
9： end for

10： else
11： for all < s,z > e ans(TTk+i) do
12: if Q(X,s,i) returns < s,j > then
13： sup + +;
14： ans <r- ans U { < s,j >};
15： end if;
16： end for;
17： end if;
18： return {sup, ans);

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 40

3.5 Experiment

We evaluated the performance of our methods, denoted by 2PDF-
Index for index-based querying and 2PDF-Compression for
compression-based querying. We compare them with two depth-
first sequential pattern mining algorithms, PrefixSpan [17] and
SPAM [6], which were shown to outperform earlier algorithms
such as [5，20，27]丄.To be consistent with our notion of patterns,
we made two modifications to PrefixSpan and SPAM: simplify-
ing each transaction in a customer sequence to a single item, and
considering two types of pattern growth, i.e., adding the next
item to join the last segment in a pattern, or adding the next
item to start a new segment in a pattern. These modifications
make PrefixSpan and SPAM more efficient. We do not compare
with [22] that does not find all patterns. All experiments were
conducted on a PC with 2GHZ CPU and 1GB memory running
the Windows 2000 Professional.

3.5.1 Synthetic Data Sets

The first set of experiments was conducted on the synthetic data
sets generated as in [5] using the parameters in Table 3.3. We
used the data sets named in Table 3.4. The data sets with
N = 4 (the alphabet size) simulate DNA sequences, the data
sets with N = 20 simulate protein sequences, and the data set
with N = 10,000 simulates customer sequences. The average
length C of simulated biosequences, i.e., 128 or 256, is much
longer than that of simulated customer sequences, i.e., 20. N! is
equal to N because all transactions are singletons. Like in [5],
Ns was set to 5000. For a larger C and a smaller N, we use a
larger MinLen due to more expected local similarity. For the
customer sequence data set, the setting of MinLen = 1 yields

iPor PrefixSpan, we used the pseudo-projection technique as suggested in [17], which

makes PrefixSpan faster than SPAM.

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 41

classic sequential patterns.
Execution time. In Figures 3.4-3.7, the first column plots

the execution time in logarithm scale, i.e., logioT where T is
the execution time, against MinSup. For 2PDFs, this includes
the time for both phases. The most significant finding is that
both versions of 2PDF are several orders of magnitude faster
than PrefixSpan and SPAM on long sequences of a small alpha-
bet. Several factors contributed to this speedup: the reduced
frequency of support counting, the pruning of candidates in the
pattern phase, and the indexed access or reduced sequence scan
in support counting. Table 3.5 shows the number of base seg-
ments, frequent segments, and frequent patterns for the data
set C128532A^4i:>100ir at MinLen = 5. The second finding
is that 2PDF-Index is more scalable wrt MinSup than 2PDF-
Compression, due to the insensitivity of index access cost to the
increase of base segments.

Figure 3.8 shows the execution time for the simulated cus-
tomer data set and reveals two things. First, the mining task for
biosequences is much more difficult than for classic transaction
sequences, as indicated by the huge difference in both execution
time and minimum support. Second, the 2PDFs, though aimed
at long sequences of small alphabets, are also highly competitive
for short sequences of large alphabets.

The second column in Figures 3.4-3.8 shows the portion of
execution time prior to the depth-first generation, called "Build-
ing Time". This refers to the segment phase for 2PDFs and the
preparation time for other algorithms. 2PDFs, especially 2PDF-
Index, spend more building time than the other algorithms to
build the index or compress sequences. However, the reduced
overall execution time, as shown above, confirms that this "in-
vestment" is worthwhile.

Space consumption. The third column of Figures 3.4-
3.8 shows the maximum space required for the current path in

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 42

‘ ‘ 2PDF'-lndex - -H 6 � � ‘ 2PDF-index - -H ~
2PDF-Compresslon Q — 卡、2PDF-Compresslon — - q —

6 • PrefixSpan — — — • �-�• PrefixSpan ——^—
Q SPAM e V SPAM e ~

500 • \ \ -

r \ r \
I V � S 200 - \
I 3 . ^ � � � . \

2 - ""-13
I 1 • ‘ ‘ • O I ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100

Minimum support % Minimum support %

50 I . 1 1 j 200 I 1 . 1 1
2PDF-lndex 1 2PDF-lndex h---

Q 2PDF-Compresslon Q—• 2PDF-Compresslon — B —
\ PrefixSpan ~ ^ ~ Dataset ~ ~
\ SPAM ~ e ~

40 - \ - 160 -

. V \ t 30 V . i 120 - \

I V I \
•a <o ��

I 20 - ^^^ - _ 80 - �+--�

^ \
10 - 40 - 十 -

0 I I 0 I • • • •
0 20 40 60 80 100 0 20 40 60 80 100

Minimum support % Minimum support %

Figure 3.4: C128S32N4D100K, MinLen = 5

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 43

I 1 , . 1 1 800 I 1 1 , , j
2PDF-lndex 1 2PDF-lndex 1

o 2PDF-Compresslon •… 由 2PDF-Compress lon —-d-— e - \ PrefigSp̂ ^ . 1 ProfigŜ ^ ~a~

1 \ 600 - I -

•卜 k
•I \ \ \ + � � - � �
I ^ • W ^ ^ 200 • \ � � -

、、:::• …+ '-CD
2 - ^ a f

I 1 • • 1 o ^ ‘ ‘ 1
0 5 10 15 20 25 0 5 10 15 20 25

Minimum support % Minimum support %

30 I 1 . 1 J I , , , , 1
2PDF-lndox ——I 2PDF-lndex 1

2PDF-Compresslon 160 • 2PDF-Compresslon ~ B — -
ProflxSpan ~ ^ ~ + Dataset ~ ~

SPAM ~ ^ ― \
25 - � -\ - \

V — 1 2 0 - \

r \ . ！ \
l i s - \ a 8 � \ •i \ 2 80 - \ I \ s \

10 - - 、-.、、
\

40 - \

- - ^ t ： —

^ ,、、
o 1 o i . i ““ffl

0 5 10 15 2 0 25 0 5 10 15 20 25
Minimum support % Minimum support %

Figure 3.5: C128S32N20D100K, MinLen = 3

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 44

I . 1 , , 1 1000 I 1 , , , >
e Q 2PDF-lndex ——\—— 2PDF-lndex 1——
o - \ 2PDF-Compresslon •…s•… ？PDF-Compression

\ PrefixSpan ~ ^ ~ \ PreflxSpan ~ ^ ~ ~
\ SPAM e ~ \ SPAM ~ e

I - \ _ � � � _ \ -
1 . \ \ 1 6 � � -
h - X • I \ �+
i \ \ ^ S 400 • \ ti \\ \
8
•J3 \ \ \

續 3 - V.口
�� Q -ED
、、\ „ , ,„

Q- -El 0-—€>~O O & O
2 I ‘•———‘ ‘ ‘ 1 0 I ‘ ‘ ‘

0 20 40 60 80 100 0 20 40 60 80 100
Minimum support % Minimum support %

120 I 1 1 , , 1 200 i 1 , , , 1
2PDF-lndex 1 2PDF-lndex 1

2PDF-Compression —Q—• 2PDF-Compresslon — Q ~
Q PreflxSpan ~ ^ " Dataset ~ ~
\ SPAM ~ a ~ -t

1 0 0 \ \ \ 16� _ \
^ 8 0 - \ \

t V i 120 - \
I \ t \
房 60 - \ a \
0 \ CO v
E V B
1 \ 君 80 • 、：‘ -

\ V \
20 - 40 . -̂EK-̂ V—..+ -

• • [3 EU
—

0 I 0 I 1 1 I .
0 20 40 60 80 100 O 20 40 60 80 100

Minimum support % Minimum support %

Figure 3.6: C256S64N4D100K, MinLen= 7

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 45

e 2"PDF-lndex --H——~] | ‘ ‘ 2PbF-lndex —H
® 2PDF-Compresslon —-B—• “ 1200 - 2PDF-Compression -Q—

P _ Q _ + PrefixSp^ — ^ —

I . . . \ \ 1 \ ^ ^ i 600 - \ ��� -
I \ 1 \ +
1 \ \ 'b
！ 3 + - 300- \

"•-ID o © e ê o
2 I ‘ ‘ ‘ ‘ ‘ 1 0 I ‘ ‘ ： ‘ •

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Minimum support % Minimum support %

60 I 1 . . 1 r~-——I 250 I r 1 1 . , 1
2PDF-lndex 1 2PDF-lndex 1

2PDF-Compresslon •…Eh-… 2PDF-Compression ~ B ~
PrefixSpan ~ ^ + Dataset ~ ~ o 6L SPAM \

50 - - \ ^——« 200 - \ -
^ ^ \ 40 - ^ \

2 i 150 - \
I t V w 30 g. \ •i 二 、、、 I 麗 1 � � . \ .

2 0 - - + �

50 • 一 “ ^ ^ 一 、 ： 一

1 0 - - ���

0 I J 0 I ‘ I I 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Minimum support % Minimum support %

Figure 3.7: C256S64N20D100K, MinLen= 3

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 46

depth-first generation, called "Dynamic Space". Both 2PDFs
have little dynamic space consumption because only one po-
sition is kept for each containing sequence of a pattern. The
last column of Figures 3.4-3.8 shows the space for storing the
index in 2PDF-Index and the compressed database in 2PDF-
Compression, called "Static Space", compared to the input database
size denoted by “ Dataset". For a small MinSup, the static space
of 2PDF-Index is high, due to the repeated store of sequence ids
in SP-trees. However, main-memory index techniques such as
the partial-key technique [9] are available to significantly reduce
this space. Also, with multi-gigabyte main memories easily af-
fordable nowadays, this is less likely a major concern. The static
space for 2PDF-Compression is always less than, often much less
than, the database size. Therefore, 2PDF-Compression is a bet-
ter alternative if the memory size becomes a concern.

Scalability. Figure 3.9 shows, from left to right, the execu-
tion time after scaling up the database size of C128»S327V4i)100i^
{MinLen = 5, MinSup = 30%), C2565'647V4Z)100ii： {MinLen =
7, MinSup = 25%), C2058A^10000L>100i^ {MinLen = 1，MinSup =
0.2%) up to 500K sequences. Both versions of 2PDF show a lin-
ear scalability with respect to the database size. On the most
time-consuming C256564A/'4D100K' (the center figure), 2PDF-
Index is superior to 2PDF-Compression. This confirms the intu-
ition that the index method has a better scalability for handling
larger data sets.

3.5.2 Biological Data Sets

The second set of experiments was conducted on DNA and pro-
tein sequences extracted from the website of National Center
for Biotechnology Information (http://www.ncbi.nlm.nih.gov).
The DNA data set was extracted by specifying the conjunc-
tion of the search category "Nucleotide", the range [200:300

http://www.ncbi.nlm.nih.gov

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 47

for sequence length, and the submission date from 2002/12 to
2003/02. The protein data set was extracted by specifying
the conjunction of the search category "Protein", the range
150:250] for sequence length, and submission date from 2002/12

to 2003/02. The description of these data sets as of the extrac-
tion time is given in Table 3.10.

Figures 3.11-3.12 show the execution time, building time, dy-
namic space and static space. The comparison of 2PDFs with
PrefixSpan and SPAM is similar to that for synthetic data sets
in Section 6.1. This experiment confirms the superiority of the
proposed methods on real life biosequence data.

• End of chapter.

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 48

Symbol Meaning in [5] Adopted to biosequences

D Number of customers Number of sequences

C Average number of Average length of

transactions per customer sequences

T Average number of 1

items per transaction

S Average length of maximal no change

potentially frequent sequences

I Average size of itemsets in maximal 1

potentially frequent sequences

Ns Number of maximal no change

potentially frequent sequences

Ni Number of maximal equal to N

potentially frequent itemsets

N Number of items 4 or 20

Table 3.3: Parameters of the data generator

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 49

Simulated Name C S N D Size MinLen

category (MB)

DNA C256564A^4i:)100i^ 256 64 4 lOOK 70.6 7

sequences Cl2SSS2N4DmK 128 32 4 lOOK 35.1 5

Protien C2b6S64N20DmK 256 64 20 lOOK 65.3 3

sequences C12SS32N20D100K 128 32 20 lOOK 32.5 3

Customer C2058A^10000D100i(： 20 8 10,000 lOOK 4.7 1

sequences

Table 3.4: Synthetic data sets

MinSup # base segment # segment • pattern

5% 223 1288 557722

10% 142 602 471015

15% 101 313 18502

20% 91 240 6131

Table 3.5: Statistics for C128S32N4D100K, MinLen二5

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 50

1500 I . . . , . 1 50 I 1 , , , ,
2PDF-lndex 1—— 2PDF-lndex 1

2PDF-Compression Q—• 2PDF-Compression q—•
Q PrefixSpan ~ ^ ~ PrefixSpan ~ • ~
\ SPAM e ~ SPAM e

1200 \ 40 - -

i 900 - \ I 30

¥ \ 芝 +、、、

1 \ I ���
I \ - i 20 - � \- � � . -

GJ \ o e e e ^
, � � . . 1 � . _

0 I • 0 1 ‘ -- . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Minimum support % Minimum support %

1 1 1 1 1 , —I 25 I 1 1 , , , 1
2PDF-lndox ——I 2PDF-lndex ——\

2PDF-Compresslon - … 2 P D F - C o m p r e s s l o n — 曰 —
PrefixSpan ~ ^ ~ + Dataset ~ ^ ~

SPAM ~ 3 ~ \
150 \

2 0 - \ -

广 \ - 蔓 1 5 . \
I eo- \ . I \
'I © s O •名 \
I 君 1。- \

60 - \

s . ^ .‘ . \ 一 -
30 - H K. 干、、 P "ffl；/.、、 、、

^--•g- 5} -S} � � +

o l . I , . . o l — — . — — .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Minimum support % Minimum support %

Figure 3.8: C20S8N10000D100K, MinLen = 1

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 51

“ ‘or^r^r^ 2PDF-lndox h - - ~ I I ‘ 2PDF-lndex
2PDF-Compression ~ Q ~ 2PDF-Compression ~ a ~

25 - .

1 6 -

卜 I ： X :
5[/ Z •

0 I ‘ ‘——‘ • 1 0 I ‘ ‘ . .
100 200 300 400 500 100 200 300 400 500

of sequoncos(thousand) # of sequences(thousand)

2PDF-lndex 1——
2PDF-Compression — a —

3 - -

f 2.4 -
I -
^ 1.8 - Z /
p y^ /
UJ jzf,-

。 、 一 • -
0 I ‘ ‘ ‘

100 200 300 400 500
of sequences(thousand)

Figure 3.9: Scalability wrt the database size

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 52

Data set # sequences Min length Max length Avg length Size (MB)

DNA 122,855 200 300 254 124.9

data set

Protein 192,497 150 250 198 152.9

data set

Figure 3.10: Biological data sets

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 53

‘ � …二一 2 P D ’ F - | 叫 “ - i - - — I 5000 I ' I 2PDF-lndex -——h---I
2PDF-Compression … ^ ^ 2PDF-Compression •…Q-…

7 - P r e 微 - \ -

ST \ 4000 - \ •

§ 6 • \ \

I I 3000 - \ \ .

^ ^ - I \ \
\......... \ . ， \ \ .

^ 、、、、、.、拉-�. 1000 - N

、：:;、• \ \ a
I ？ I 0 ^ • g?
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Minimum support % Minimum support %

o 2PDF-lndex h-— ~ 叨 �| ‘ ‘ '2PDF-lndex H—•
\ 2PDF-Compression •…s…. 2PDF-Compresslon ~ B ~
\ PreUfpPAl̂ 700 - Dataset

100 - \ \

\ 600 - \

§ \ m 500 - \ -
I \ t \ 60 - \ - a 400 - \
I \ S \
i W 300 - \ -

40 - - \

200 - \

2 0 - s ~ 困 • ^

100 - V
•I • ——• — •

0 i P m- ffl m- 1 o I ‘ • . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Minimum support % Minimum support %

Figure 3.11: The real life DNA dataset, MinLen = 5

CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 54

7 I G t ‘ 2PDF-lndex - - H — — | | ‘ ‘ ~2PbF- lndex --H——
2PDF-Compression Q—• + 2PDF-Compresslon … • …

PrefixSpan ~ \ PrefixSpan ~ ^ —
^ SPAM ——e~ \ SPAM — e —

一 \ 5000 - \ -

售 6 - \ \
• 一 4000 - \ -

f 5 . � < X . t \
i X 广 。 i -
I , \ \ I \
c 4 \ îg � - 2000 • \
I \ \ V I \��ix... �-�----�.

� • - . : - � - . - 1000 - + -
3 - -

——•——•——•——^―^0 _ . ~s__
0 2 4 6 8 10 0 2 4 6 8 10

Minimum support % Minimum support %

~ ‘ ‘ “ 2PDF-lndex —H | 1000 | r ~ ‘ 2PDF-lndex —H——~
2PDF-Compression -—EI}-— 2PDF-Compression ~ B ~

PrefixSpan ~ ~ Dataset ~
SPAM ~ e ~

200 h 入 - 800 - -

150 \ 600 - \ ~

I \ I \ Y <2 \
100 - (、 ^ — 1 400 - \ -

乂
\

50 - - 200 - ���� -

0 m^cb- 1 由 ~ ‘ 由 一 ~ 0 ——

0 2 4 6 8 10 0 2 4 6 8 10

Minimum support % Minimum support %

Figure 3.12: The real life protein dataset, MinLen 二 3

Chapter 4

Conclusion

Two parts of our work are included in this thesis.

First we propose a novel and efficient algorithm PP-Mine,
which outperform FP-Tree significantly, because PP-Mine does
not need to construct any conditional FP-Trees for handling
projected databases. Instead, dynamic link adjusting are used.
Both PP-Mine and H-Mine adopt dynamic link adjusting tech-
nique. In addition, PP-Mine further minimizes counting cost.
Accumulation technique is used, and therefore, unnecessary count-
ing is avoided. PP-Mine outperforms H-Mine significantly when
dataset is dense, and outperforms H-Mine marginally when dataset
is sparse and is small.

Then our research focus move onto the sequential mining
problem in bio-applications. We analyzed the implications of
several home features of biosequences on data mining techniques,
namely, extremely small alphabet, extremely long length, and
combination of local similarity and global similarity. These fea-
tures render a different blow up of search space from that in clas-
sic transaction sequences, and traditional indexing/partitioning/
bitmapping techniques are not effective for mining such sequences.
To address this issue, we proposed to extract and exploit local
similarity before searching for global similarity. This is done by
indexing or compressing local similarity in the first phase. In

55

CHAPTER 4. CONCLUSION 56

the second phase, we search for global similarities using local
similarities as building blocks, exploiting relationships between
them for pruning candidates and sharing support counting, and
benefiting from indexed or compressed local similarities. The
experiments on both synthetic and real life data sets demon-
strated significant speed up over classic methods.

• End of chapter.

Bibliography

1] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth
first generation of long patterns. In SIGKDD, 2000.

2] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad.
Depth first generation of long patterns. In Proc. 6th ACM
SIGKDD Int. Conf. on Knowledge discovery and data min-
ing, pages 108-118. ACM Press, 2001.

3] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A tree
projection algorithm for generation of frequent item sets.
Journal of Parallel and Distributed Computing, 61:350-371,
2001.

4] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In J. B. Bocca, M. Jarke, and C. Zan-
iolo, editors, Proc. 20th Int. Conf. Very Large Data Bases，

VLDB, pages 487-499. Morgan Kaufmann, 12-15 1994.

5] R. Agrawal and R. Srikant. Mining sequential patterns. In
Proc. 11th Int. Conf. Data Engineering, ICDE, pages 3—14.
IEEE Press, 6-10 1995.

6] J. Ay res, J. Gehrke, T. Yiu, and J. Flannick. Sequential
pattern mining using a bitmap representation. In ACM
SIGKDD, pages 215-224, 2002.

7] R. J. Bayardo. Efficiently mining long patterns from
databases. In ACM SIGMOD, pages 85-93, 1998.

57

BIBLIOGRAPHY 5g

8] R. J. Bayardo. Efficiently mining long patterns from
databases. In 1998 ACM SIGMOD Intl. Conference on
Management of Data, pages 85-93. ACM Press, 05 1998.

9] P. Bohannon, P. Mcllroy, and R. Rastogi. Main-memory
index structures with fixed-size partial keys. In SIGMOD,
2001. ,

10] A. Brazma, I. Jonassen, 1. Eidhammer, and D. Gilbert. Ap-
proaches to the automatic discovery of patterns in biose-
quences. In Technical Report, Department of Informatics,
University of Bergen, Norway, 1995.

11] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal
frequent itemset algorithm for transactional databases. In
ICDE, 2001.

12] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maxi-
mal frequent itemset algorithm for transactional databases.
In 2001 Intl. Conference on Data Engineering, ICDE, pages
443-452, 04 2001.

13] B. Dunkel and N. Soparkar. Data organization and access
for efficient data mining. In Proc. of 15th IEEE Intl. Conf.
on Data Engineering, pages 522-529, 03 1999.

14] J. Han and J. Pei. Mining frequent patterns by pattern-
growth: Methodology and implications. In ACM SIGKDD
Explorations. ACM Press, 12 2001.

15] J. Han, J. Pei, and Y. Yin. Mining frequent patterns with-
out candidate generation. In W. Chen, J. Naughton, and
P. A. Bernstein, editors, 2000 ACM SIGMOD Intl. Confer-
ence on Management of Data, pages 1-12. ACM Press, 05
2000.

BIBLIOGRAPHY 5g

16] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery
of frequent episodes in event sequences. Journal of Data
Mining and Knowledge Discovery, 1:259-289, 1997.

17] J. Pei, J. Han, B. Asl, Q. Chen, U. Dayal, and M. Hsu.
Prefixspan: mining sequential patterns efficiently by prefix-
projected pattern growth. In ICDE, 2001.

18] J. Pei, J. Han, H. Lu, S. Nishio, and D. Y. S hiwei Tang.
H-mine:hyper-structure mining of frequent patterns in large
databases. In 2001 IEEE Conference on Data Mining.
IEEE, 11 2001.

19] P. Shenoy, J. R. Haritsa, S. Sudarshan, G. Bhalotia,
M. Bawa, and D. Shah. Turbo-charging vertical mining
of large databases. In 2000 ACM SIGMOD Intl. Confer-
ence on Management of Data, pages 22-33. ACM Press, 05
2000.

20] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In Proc.
5th Int. Conf. Extending Database Technology, EDBT, vol-
ume 1057, pages 3-17. Springer-Verlag, 25-29 1996.

21] H. Toivonen. Sampling large databases for association rules.
In VLDB, pages 134-145, 1996.

22] J. Wang, G.W.chirn, T. Marr, B. Shapiro, D. Shasha, and
K. Zhang. Combinatorial pattern discovery for scientific
data: some preliminary results. In SIGMOD, 1994.

23] K. Wang, L. Tang, J. Han, and J. Liu. Top down fp-growth
for association rule mining. In Proc. of 6th Pacific-Asia
conference on Knowledge Discovery and Data Mining, 2002.

24] M. Waterman. Mathematical methods for DNA sequence
analysis. CRC Press, Boca Raton, FL, 1989.

BIBLIOGRAPHY 5g

25] J. Yang, W. Wang, P. Yu, and J. Han. Mining long sequen-
tial patterns in a noisy environment. In ACM SIGMOD,
pages 406-417. ACM, 2002.

26] M. J. Zaki. Scalable algorithms for association mining.
Knowledge and Data Engineering, 12(2):372-390, 2000.

27] M. J. Zaki. SPADE: An efficient algorithm for mining fre-
quent sequences. Machine Learning Journal, Special Issue
on Unsupervised Learning, 42(l/2):31-60, 2001.

f
t

C U H K L i b r a r i e s

1圓_丨_丨1丨11丨1
DDMD7713fl

