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Abstract of thesis entitled: 
Fast Frequent Pattern Mining 

Submitted by Yabo XU 
for the degree of Master of Philosophy 
at The Chinese University of Hong Kong in July 3, 2003 

Advances in information technology and data collection meth-
ods have led to an unprecedented opportunity for data mining 
to analyze the huge data and extract intelligent and useful in-
formation. This thesis focuses on two important problems in 
data mining applications: frequent pattern mining and sequen-
tial pattern mining. 

FP-Tree based algorithm have been recognized as the most 
efficient algorithm for mining frequent patterns. However, their 
performance suffers the complex data structures and inefficient 
traversal fashion. In the first part, we propose another simple 
and compact structure, memory-based prefix-path tree. Upon 
this structure, a new depth-first frequent pattern discovery al-
gorithm, called PP-Mine, is proposed that outperforms FP-
Growth significantly. 

In the second part, we move forward to an more difficult prob-
lem: sequential pattern mining on biological data. We study the 
implication of the following biological features on data mining 
techniques: the bioalphabet is extremely small, biosequences are 
extremely long, and biological patterns occur in short regions of 
local similarity and in long regions of global similarity with pos-
sible gaps. These features render a different blow up of search 
space from that in classic transaction sequences, thereby, justify-
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ing new ways of pattern growing/pruning and support counting. 
We present a two-phase algorithm to address these issues: the 
segment phase and the pattern phase. The purpose of this two-
phase approach is multi-fold: adopt best techniques separately 
for local similarity and global similarity, exploit local similarity 
for efficient search of global similarity, and grow patterns rapidly 
one segment at a time instead of one item at a time. We evaluate 
this approach on both synthetic and real life data sets. 
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論文摘要： 

信息技術和數據採集技術的發展給数據挖掘帶來了前所未有 

的機遇去從中分析和提取有用的信息。本文主要研究了兩個數據 

挖掘應用中的基本問題：Frequent Pattern挖掘和Sequential 
Pattern 挖掘。 

基於FP-Tree類的算法是當前被認爲最有效的挖掘Frequent 
Pattern的算法。然而，他們的效率總是受限於複雜的數據結構和 

缺乏效率的遍歷方式。在本文的第一部分中，我們提出了一種簡 

單而緊湊的數據結構，置於内存的Prefix-Path樹。在這種數據結 

構上，一種新的深度優先的Pattern搜索算法，PP-Mine，被提出， 

實驗表明，它的效率完全壓過了 FP-Growth. 
在本文的第二部分，我們探討了另一個難度更大的問題：對 

生物序列的Sequential Pattern的挖掘。我們研究了生物序列本身 

的一些特性對數據挖掘技術的一些潛在的作用：生物序列的組 

成元素特別的少，但是卻特別的長；在小範圍内會有一些局部相 

似性，在全局範圍内也會有一些整體的一些相似性。這些特性極 

大的增加了經典的解決一些交易序列數據挖掘問題的搜索空間， 

從而，需要找到新的方法來進行Pattern的搜索和刪減，以及數 

據計算。 

我們提出了一個分爲兩個階段的算法來解決這個問題：Segment 
階段和Pattern階段兩階段算法的目的是多方面的：分別釆用最 

適合的技術來處理局部相似性和全局相似性；利用局部的相似性 

來提高查找整體相似性的效率；一次增長一個Segment而不是增 

長一個單獨的單元。我們分別在人造的数據和真實的生物數據上 

做了實驗，結果充分證實了我們方法的有效性。 
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Chapter 1 

Introduction 

“The universe if full of magical things patiently waiting for our 
wits to grow sharper." i Now advances in information technol-
ogy and data collection methods have led to an unprecedented 
opportunity to analyze the huge data and extract intelligent and 
useful information. 

1.1 Frequent Pattern Mining 

Frequent patterns play an essential role in many data mining 
tasks that try to find interesting patterns from databases, such 
as association rules, correlations, sequences, episodes, classifiers, 
cluster and many more of which the mining of association rules 
is one of the most popular problems. The original motivation 
for searching association rules came from the need to analyze 
so called supermarket transaction data, that is, to examine cus-
tomer behavior in terms of the purchased products. Association 
rules describe how often items are purchased together. Such 
rules can be useful for decisions concerning product pricing, 
store layout and many others. 

Since their introduction in 1993 by Argawal et al.[4], the fre-
quent pattern and association rule mining problems have re-

iBy Eden Phillpotts(1862-1960), English writer, poet, playwright 
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CHAPTER 1. INTRODUCTION 2 

ceived a great deal of attention. Within the past decade, hun-
dreds of research papers have been published presenting new al-
gorithms or improvements on existing algorithms to solve these 
mining problems more efficiently. 

So our work start from this basic mining problem: Frequent 
Pattern Mining. FP-Tree based algorithm have been recognized 
as the most efficient algorithm for mining frequent patterns. 
However, their performance suffers the complex data structures 
and inefficient traversal fashion. In the first part of this thesis, 
we propose a novel and efficient mining problem, called PP-
Mine, which does not generate any conditional sub-tree, and 
counting is done as a side-effort of pushing-right operation in 
an accumulated manner. We will report the comparison with 
the other popular algorithms in our experimental studies later 
in this thesis. 

1.2 Biosequence Pattern Mining 

In the second part, we move forward to another important but 
more difficult mining problem, the sequential pattern problem. 
Comparable to frequent patterns, the items occurred in sequen-
tial patterns can be repeated and with order, which lead to the 
larger search space. 

One important problem arising from bio-applications is the 
discovery of sequential patterns that occur in many biosequences 
(i.e., DNA or protein sequences). Such patterns often corre-
spond to residues conserved during evolution due to an im-
portant structural or functional role. The "classic" sequen-
tial pattern mining has been studied in market-basket analysis 
6, 5，16，20, 27, 17], where the task is to find all frequent sub-

sequences that have some minimum support by occurring in a 
required percentage of transaction sequences. Such sequential 
patterns capture temporal purchasing behaviors of customers. 
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By treating a biosequence as a transaction sequence, existing 
algorithms can be applied to biosequences. However, our exper-
iments show that the efficiency demonstrated on classic trans-
action sequences cannot be retained on biosequences. 

In this thesis,we study the implication of the following bio-
logical features on data mining techniques: the bioalphabet is 
extremely small, biosequences are extremely long, and biologi-
cal patterns occur in short regions of local similarity and in long 
regions of global similarity with possible gaps. These features 
render a different blow up of search space from that in classic 
transaction sequences, thereby, justifying new ways of pattern 
growing/pruning and support counting. 

Below are the main ideas of our approach in addressing the 
above requirements. 

Two-phase pattern growth. We propose a two-phase ap-
proach to grow patterns rapidly in length to reduce the fre-
quency of support counting. The first phase finds frequent seg-
ments Xi, rather efficiently, above a specified minimum length. 
The second phase grows patterns using frequent seg-
ments Xi as building blocks. The essence of this two-phase ap-
proach is to grow patterns one segment at a time and to exploit 
information about segments for candidate pruning and support 
counting in the second phase, as explained below. 

Segment-based pruning. Suppose that we know that a 
pattern 尸 = X i * . . . * Xk-i * Xk does not extend into a fre-
quent pattern P ^ X for some frequent segment X, or does 
not occur before position i in some sequence s. We can infer 
this information for any pattern = Xi * . . . * Xk-i * Xĵ  or 

= Xi * • • • * Xk-i 氺 Xa； * . . . * ̂ k+i, where Xki s a prefix of X � , 
because each occurrence of P' is an occurrence of P. We exploit 
these relationships for pattern pruning and pattern matching in 
a novel search strategy 

Query-based counting. Pattern matching against a long 
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sequence must be significantly faster than scanning the whole 
sequence. We formalize this problem as querying the smallest 
end positions of a pattern Xi*- • •^Xk'^Xk+i, given such positions 
of a pattern * • • • * Xk. This approach benefits from any 
efficient querying method. We consider one direct access method 
by indexing local similarity and one sequential scan method by 
compressing local similarity. 

We evaluate this approach on both synthetic and real life 
data sets. 

1.3 Organization of the Thesis 

The rest of the paper is organized as follows. Chapter 2 focus 
on our new algorithm PP-Mine. our new approaches on biose-
quence pattern mining will be presented in Chapter 3. For easy 
understanding, the background, problem overview, approach de-
tails and experimental study sections will be included in each 
chapter separately. Section 7 gives an brief conclusion. 

• End of chapter. 



Chapter 2 

PP-Mine: Fast Mining Frequent 
Patterns In-Memory 

Summary 

In this chapter, we propose a simple and compact struc-
ture, memory-based prefix-path tree. Upon this struc-
ture, a new depth-first frequent pattern discovery al-
gorithm, called PP-Mine, is proposed that outperforms 
FP-Growth significantly. 

2.1 Background 

Recent studies show pattern-growth method is one of the most 
effective methods for frequent pattern mining [2, 3, 8, 12, 15, 14, 
18]. As a divide-and-conquer method, this method partitions 
(projects) the database into partitions recursively, but does not 
generate candidate sets. This method also makes use of Apri-
ori property [4]: if any length k pattern is not frequent in the 
database, its length {k + 1) super-patterns can never be fre-
quent. It counts frequent patterns in order to decide whether it 
can assemble longer patterns. Most of the algorithms use a tree 

5 
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as the basic data structure to mine frequent patterns, such as 
the lexicographic tree [2, 3, 8, 12] and the FP-tree [15]. Differ-
ent strategies were extensively studied such as depth-first [3, 2], 
breath-first [3, 8], top-down [23] and bottom-up [15 . 

As one of the most representative pattern-growth algorithm, 
FP-growth, it start its mining process with the construction of 
FP-Tree: First scan the database to get the frequent items, then 
insert the frequent part of every transaction into a prefix-path 
tree during the second database scan and link all the same items 
together by a header table. FP-growth explores the FP-Tree by 
a bottom-up fashion and the conditional FP-Tree will be created 
when the pattern is extended by any frequent item. The complex 
node-link across the FP-Tree in a unpredictable manner makes 
FP-Tree difficult to be materialized on disk and the conditional 
FP-Tree generation consume some unnecessary memory. Both 
motivate us to study new faster mining algorithms with simpler 
data structures. In this chapter, we present our solutions on this 
problem: a node-link free tree, called PP-Tree and PP-Mine , a 
novel mining algorithm which does not generate any conditional 
trees, and outperforms FP-growth significantly. 

2.2 The Overview 

Let I = {xi , 0：2, • • •, Xn} be a set of items. An itemset X is 
a subset of items I, X C 1. A transaction Tx = {tid, X) is 
a pair, where X is an itemset and tid is its unique identifier. 
A transaction Tx = [tid, X) is said to contain Ty = {tid, Y) 
if and only iiYCX. A transaction database TDB is a set of 
transactions. The number of transactions in TDB that contains 
X is called the support of X , denoted as sup{X). An itemset 
X is a frequent pattern, if and only if sup{X) > r, where r is 
a threshold called a minimum support. The frequent pattern 
mining problem is to find the complete set of frequent patterns 
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in a given transaction database with respect to a given support 
threshold, r. 

Example 1 Let the first two columns of Table 3.1 be our run-
ning transaction database TDB. Let the minimum support thresh-
old be T = 2. The frequent items are shown in the third column 
of Table 3.1. 

Trans ID Items Frequent items 

100 c，d，e，f,g,i c，d,e，g 

200 a’c’d，e’m a,c,d,e 

300 a，b，d,g，k a,d,e,g 

400 a,c,h a,c 

Table 2.1: The transaction database TDB 

2.3 PP-tree Representations and Its Construc-
tion 

The in-memory representation of PP-tree, denoted PPM-tree, is 
of a tree. Despite the pointers to the children nodes, a node in 
PPM-tree consists of item-name, count, and a node-link. The 
count registers the number of itemsets represented by the por-
tion of the path reaching from the root to this node. The P P - -
tree for Example 1 (r = 2) are shown in Figure 2.1. Recall, 
when r = 2, the frequent items are shown in the third column 
of Table 3.1. 

Given a transactional database TDB and a minimum support 
(Tm), an initial PP/vf-tree can be constructed as follows. First, 
we scan the database to find all the frequent items, then, we scan 
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C n o o t ^ 

C d l ^ C d ^ 

C d ^ C g ^ Cj^P^ 

C s i j ) C^il) 

Figure 2.1: The memory representation {PPM-tree) 

the database again to construct PP^-tree in memory. For each 
transaction, the infrequent items are removed. The remaining 
frequent items are sorted in a total order, and are inserted into 
PPM-tvee. The constructing time for PPM-tiee is slightly less 
than FP-Tree, because it does not need to build node-links in 
the tree initially. 

2.4 PP-Mine 

In this section, we propose a novel mining algorithm, called PP-
Mine, using a PPM-tvee. For simplicity, we use a prefix-path to 
identify a subtree. Here, the prefix-path is expressed as a dot-
notation to concatenate items with a total order. For example, 
in Figure 2.2, a-prefix identifies the leftmost subtree containing 
a, and a.c-prefix identifies the second subtree rooted at a-prefix. 
In the following, we use ij and ik for a single item prefix-path, 
and use a, /? and 7 for a prefix-path in general which are possible 
empty. 

The PP-Mine algorithm is based on two properties. The first 
property states the Apriori property as below. 
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Property 1 Given a PPM-tree of rank N for a set of frequent 
itemsets I = ‘ • • An), where a total order (^) is defined 
on I. A pattern represented by a.ij.ik-prefix can be frequent if 
the pattern represented by a.ij-prefix is frequent, where ij ：< ik. 

The second property specifies subtrees that need to be mined 
for a pattern. The second property is given on top of two 
concepts: containment and coverage. We describe them be-
low. Given a PPM-tree of rank N for a set of frequent item-
sets I = (ii,i2，...，“)’ where a total order (」）is defined on 
I. We say a prefix-path (representing a subtree), a-prefix, is 
contained in ij.a-prefix, denoted a-prefix C a-prefix. In ad-
dition, a-prefix C 7-prefix, if a-prefix C /^-prefix and /^-prefix 
C 7-prefix. Ao&overage a prefix-path a-prefix is defined as all 
the /^-prefixes that contain a-prefix (including a-prefix itself). 

Property 2 Given a PPM-tree of rank N for a set of frequent 
itemsets I = (ii, 22,..., zn)； where a total order (^) is defined 
on I. Mining a pattern represented by a prefix-path a-prefix is 
to mine the coverage of a-prefix. 

For example, Figure 2.2 shows a PP-tree with four items {a, 
b, c, d}. Assume they are in lexicographic order. The coverage 
of 6.c.d-prefix includes 6.c.d-prefix and a.6.c.(i-prefix. It implies 
that we only need to check these two subtrees, in order to de-
termine whether the pattern, {b, c, d}, is frequent. Also, the 
coverage of c.d-prefix includes c.d-prefix, 6.c.d-prefix, a.c.d-prefix 
and a.6.c.d-prefix. It implies that we only need to check these 
four subtrees, in order to determine whether the pattern, {c, d}, 
is frequent. 

Based on the above two properties, we derive three main fea-
tures including two pushing operations and a no-counting strat-
egy below. 

• Push-down: Processing at a node in a PP^-tree is to 
check an itemset represented by the prefix-path from the 
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root to the node in question. Pushing-down to one of its 
children is to check the itemset with one more item. Prop-
erty 1 states the Apriori heuristic. We implement it as a 
depth-first traversal with building a sub header-table. 

• Push-right: Mining an itemset requires to identify a min-
imal coverage in PPM-tree to mine. Property 2 specifies 
such a minimal coverage for any prefix-path. 
Pushing-right is a technique that helps to identify the cov-
erage transitively, based on Property 2. In other words, the 
push-right strategy is to push the child to its corresponding 
sibling. We implement it as a dynamic link-justification. 
It is the best to illustrate it using an example. In Figure 2.2, 
after we have mined all the patterns in the leftmost subtree 
(a-prefix), we push-right a.6-prefix to the subtree 6-prefix, 
push-right a.c-prefix to the subtree c-prefix, and push-right 
a.d-prefix to the subtree d-prefix. After these push-right 
operations, the whole coverage of 6-prefix: a.6-prefix and 
6-prefix and part of the coverage of c-prefix including a.c-
prefix and c-prefix are collected together. 
After mining the subtree (6-prefix), 6.c-prefix is pushed to 
c, as well as a.6.c-prefix transitively. Plus the two subtrees 
a.c-prefix and c-prefix we collected in the former push-right 
operations, the whole coverage of c-prefix is identified. 
It is worth noting that the subtree a.c-prefix does not need 
to be pushed into the subtree 6.c-prefix, because the former 
is to check the itemset {a, c, d} excluding {6}，whereas the 
latter is to check the item {b, c, d} excluding {a} . 

• Nocounting: Counting is done as a side-effort of pushing-
right (dynamic link-justification) in an accumulated man-
ner. For example, after we push-right a.6-prefix to the sub-
tree 6-prefix, all the prefix-paths and their support counts 
for 6-prefix are collected by dynamic link-justification an-
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tomatically. Therefore, all the counting cost is minimized. 
No extra counting is needed. 

root 

a 厂bA ^ d 

Figure 2.2: A PPM-tiee with four items 

The PP-Mine algorithm is illustrated in Algorithm 1. The 
procedure is to check all the items in the header table H passed 
(line 1-10). In line 2-3, we check if the corresponding count 
(num) for â  is greater than or equal to the minimum support, 
T. Recall that counts are accumulated through pushing-right. 
If num for ai is greater than or equal to r, we output the pat-
tern as represented by the path. Then, at line 4, a sub header 
table is created by removing all the entries before ai (including 
ttj). Pushing-down â  (line 5) is outlined below. Because the 
coverage of aj-prefix has already linked through the l ink field 
in the header-table H (by the previous push-rights), all a?s j-th 
children on the link are pushed-down (chained) into the corre-
sponding j-th entry in the sub header table (丑a.aj. Line 6 calls 
PP-Mine recursively to check (k+l)-itemset if the length of the 
path is k. After returning, the sub header table will be deleted. 
Irrelevant with the minimum support, pushing-right ai (line 9) is 
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described below: a) the coverage of a '̂s left siblings are pushed-
right from ai to its right siblings, b) all a '̂s j-th children on the 
link are pushed-right (chained) into the corresponding entry in 
the header table H. 

Algorithm 1 PP-Mine(a, H) 
Input: A constructed PPM-tvee identified by the prefix-path, a, and the 
header table H. 

1: for all ai in the header table H do 
2: if ais support > r then 
3： output a.di and a '̂s support; 
4: generate a header-table, Ha.ai, for the subtree rooted at a.ai, based 

on H\ 
5： push-down(ai); 
6: PP-Mine(tt.ai, i/a.aj； 
7: delete Ha.ai ； 

8： end if 
9： push-right(ai); 

10： end for 

Consider the mining process using the constructed PPM-tree 
(Figure 2.1(a)). Here, the initial header table H includes all 
single items in PPM-tree. Only the children of the root are 
linked from the header-table, and their counts are copied into the 
corresponding num fields in the header-table. Other links/nums 
in the header-table are initialized as null and zero. (The initial 
header H is shown in Figure 2.3 (a).) 

1. Call PP-Mine(root, H). Item a is first to be processed, as 
the first entry in H. The support of a is 3. It is the exact 
total support for the item a, because a does not have any 
left siblings. Next, the subtree a-prefix is to be mined. 
The second header table, Ha, consists of all items in H 
except for a. Only the children nodes of a are pushed-down 
into Ha(F igure 2.3 (a)). In Ha, c and d counts are copied 
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Header-table H Header table H 

Item num link Item num link 

a 3 a 3 、•-

d 0 (ro^) _d__0_ Cro^ 
I I : 1 1 = V X ^ . 

g I 0 I I ( a ^ ( r f I g I 0 I 1 ( a j ^ ( c ^ 

Header-table Ha 乂 V \ Header-table Ha 

ltem|num|llnk| @ |ltem|num| linkl 贤 （ ^ 

二口 I @ @ ® 口。I ® ® (& 
(a) The header table Ha and its PPm- (b) The header table Ha after mining the 

tree rooted at a-prefix PP^f-subtree rooted at a.c-prefix 

Figure 2.3: An Example 

from the node a.c and a.d, in the PPjif-tree. Their values 
are 2 and 1. 

2. Call PP-Mine(a-prefix, Ha). Item c is picked up as the first 
entry in Ha. Because c's count (num) is 2 (frequent), we 
output a.c. Next, the subtree a.c-prefix is to be mined. 
The third header-table is constructed for the subtree of a.c-
prefix, denoted as Hac, in which cTs num is 1 and cTs link 
points to the node a.c.d. Other fields for e and g are set as 
zero/null. 

3. Call PP-Mine (a.c-prefix, Hac). Item d is picked up. Be-
cause d,s num is 1 (infrequent), return. 

4. Backtrack to the subtree a-prefix. Here, the header-table 
Ha is reset (Figure 2.3 (b)). First, the entry c in Ha becomes 
null (done). Second, a.c's child, d, is pushed-right into cTs 
entry in the header-table Ha. In other words, the l ink of 
the entry d in Ha is linked to the node a.d through the node 
a.c.d. The d,s count (num) in Ha is accumulated to 2, which 
indicates {a, d} occurs 2 times. 
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The correctness of PP-Mine can be showed as follows in brief. 
A PPM-tree of rank N has N subtrees. First, we mine patterns 
in a subtree following a depth-first traversal order. All patterns 
in a subtree will be mined (vertically). Second, the k-th subtree 
is mined by linking all required subtrees in its left siblings (hor-
izontally). Linking to those subtrees will be completed at the 
time when the /c-subtree is to be mined. Third, the above holds 
for any subtrees in the PPM-tree of rank N (recursively). 

2.5 Discussions 

In this subsection, we discuss the differences between PP-Mine 
and other similar approaches, FP-growth [15] and H-Mine [18 . 
We mainly compare the mining phase of the three algorithms, 
because the cost of constructing the FP-tree/H-struct in mem-
ory is almost the same. 

• PP-Mine vs FP-growth: Both FP-growth and PP-Mine 
use the very similar data structure. But, the trees being 
constructed in memory are different. FP-growth requests 
that all nodes with the same item-names in FP-tree must 
be linked in the header table from the beginning. For ex-
ample, in Figure 2.4(b), all three d-items must be linked 
from the header table. However, PP-Mine does not neces-
sarily require a header table as a part of it (Figure 2.4(a)). 
The header table is a data structure used during the min-
ing process, and can be easily constructed by only linking 
the children of the root in PP^-tree^ (as shown in Figure 
2.3 (a)). With PP-Mine, the number of links is minimized. 
The reduction on the number of links has significant im-
pacts on the performance, because the maintenance cost of 
those linkings are reduced. It is important to know that 

iThe set of frequent 1-itemset is known. 
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FP-tree can not be effectively stored on disk because of its 
complex node-link structures. When mining in memory, 
FP-growth processes FP-tree in a bottom-up fashion. Con-
ditional FP-trees need to be constructed. Therefore, extra 
memory space is needed to further mine FP-tree. On the 
other hand, PP-Mine mines PPM-tvee using a depth-first 
traversal order. Constructing additional conditional FP-
trees is replaced by dynamic link adjusting in PPM-tree. 

• PP-Mine vs H-Mine: While PP-Mine uses a tree struc-
ture, H-Mine uses a hyper-structure, H-struct, as shown in 
Figure 2.4(c). The main advantage of H-Mine is the dy-
namic hyper-link adjusting which was implemented at the 
expenses of using a hyper-structure. Sharing among item-
sets becomes difficult. The hyper-structure has a problem 
such that the space requirement becomes high for dense 
dataset. H-Mine needs to be integrated with FP-growth 
for dense datasets. In fact, two data structures need to be 
used, namely, FP-tree and H-struct. Detecting whether a 
dataset is dense at run time is challenging. Relative sup-
port is used to detect if a projected dataset is dense. But, 
the accuracy is arguable. Also, the cost of switching from 
one structure to another needs to be considered. PP-Mine 
uses PPM-tree in a novel way, and uses the similar dynamic 
hyperlink adjusting. In addition, PP-Mine uses an accu-
mulation technique, it does not need to count the projected 
databases. In other words, we only do addition when we 
adjusting links. We do not need to count the projected 
database. 

2.6 Performance Study 

We conducted performance studies to analyze the efficiency of 
PP-Mine in comparison of FP-tree [15] and H-Mine [18]. We 
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did not compare PP-Mine with TreeProjection [3], because, as 
reported in [15], FP-growth outperforms TreeProjection. 

All the three algorithms were implemented using Visual C-H-
6.0. The synthetic data sets were generated using the procedure 
described in [4]. All our experimental studies were conducted 
on a 900MHz Pentium PC, with 128MB main memory and a 
20GB hard disk, running Microsoft Windows/NT. 

For a given minimum support r, we assume that we have 
to construct PP^-tree, FP-tree and H-struct in memory from 
scratch. The constructing time for both H-struct and PPM-tiee 
is marginally better than FP-tree construction. To give a fair 
view on this three algorithms, here we only compare the mining-
phase of the three algorithms. 

We have conducted experimental studies using the same datasets 
as reported in [15]. We report our results using one of them, 
T25.I20.D100K with lOK items, as representative. In this dataset, 
the average transaction size and average maximal potentially 
frequent itemset size are set to be 25 and 20, respectively, while 
the number of transactions in the dataset is lOOK. There are 
exponentially numerous frequent itemsets in this dataset, when 
the minimum support is small. The frequent patterns include 
long frequent itemsets as well as a large number of short frequent 
itemsets. 

The scalability of the three algorithms, PP-Mine, FP-tree 
and H-Mine, is shown in Figure 2.5 (a). While the support 
threshold decreases, the number as well as the length of fre-
quent itemsets increases. High overhead incurs for handling pro-
jected transactions. FP-growth needs to construct conditional 
FP-trees using extra memory space repeatedly. H-Mine needs 
to count every projected transactions. PP-Mine does not need 
to construct conditional trees and uses accumulation technique, 
which avoids unnecessary counting. Prom Figure 2.5 (a), we can 
see PP-Mine significantly outperforms FP-growth and H-Mine. 
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PP-Mine scales much better than both FP-tree and H-Mine. 
We also compared the mining phase of the three algorithms 

using a very dense dataset. The dataset was generated with 
101 distinct items and IK transactions. The average transac-
tion size and average maximal potentially frequent itemset size 
are set to 40 and 10. When the minimum support is 40%, the 
number of frequent patterns is 65,540. When the minimum sup-
port becomes 10%, the number of frequent patterns is up to 
3,453,240. As shown in Figure 2.5 (b), PP-Mine outperforms 
both FP-growth and H-Mine significantly. PP-Mine has the 
best scalability while the threshold decreases. 

For sparse datasets and small datasets, PP-Mine marginally 
outperforms H-Mine, because both use the similar dynamic link 
adjusting technique. The effectiveness of PP-Mine's accumula-
tion (or non-counting) techniques becomes weaker. Both PP-
Mine and H-Mine outperform FP-growth. 

• End of chapter. 



CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1 

( j o o ^ 

C ^ C ^ ^ ( d ^ 

C d ^ ( e ^ ( e ^ 

C^i) c ^ c ^ 
(a) PPm-tree 

( r o ^ 

Header-table H 
item num link 

_a 3 

_d__3 — 

g I 2 I @ 

(b) FP-tree 

Header a c d e g 
table H 3 4 3 ^ 

1 0 0 | d | | e | |g| 一  

200 ^ a I c d e 

300 y a | | | d | | e | | g | —  

400 L̂  a c 

(c) H-struct 

Figure 2.4: PPM-tvee, FP-tree and H-struct for Example 1 where r = 2 



CHAPTER 2. PP-MINE: FAST MINING FREQUENT PATTERNS IN-MEMORYl 1 

90 I . 1 1 400 I n ‘ . . , 1 
FP-growth 1 FP-growth 1  

H-Mlne — — • • j H-Mine — — 
80 ‘ ？ PP-Mlne ~ ^ ~ . ^^^ ^ j PP-Mine ^ 

70 \ - \ 
[�\ 300 -

60 \ \ - \ 

1 \ \ I 150 -

0.2 0.4 0.6 0.8 1 10 15 20 25 30 35 40 
Support threshold % Support threshold % 

(a) small threshold (r) (b) large threshold (r) 

Figure 2.5: Scalability 



Chapter 3 

Fast Biosequence Patterns 
Mining 

Summary 

The biosquences have very small bioalphabet but ex-
tremely long length. We present a two-phase algorithm 
to address these issues. The segment phase finds short 
regions of local similarity, called segments, and builds an 
auxiliary structure to support certain position queries 
about segments. The pattern phase grows/prunes pat-
terns of global similarity using segments as building 
blocks by answering position queries. The purpose of 
this two-phase approach is multi-fold: adopt best tech-
niques separately for local similarity and global similar-
ity, exploit local similarity for efficient search of global 
similarity, and grow patterns rapidly one segment at a 
time instead of one item at a time. We evaluate this 
approach on both synthetic and real life data sets 

20 
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3.1 Background 

3.1.1 Differences in Biosequences 

Below, we analyze some differences in biosequences and their 
implications on data mining techniques. 

Biosequences have a very small alphabet. DNA se-
quences are made up of 4 items (i.e., nucleotides) and protein 
sequences are made up of 20 items (i.e., amino acids), with re-
peats allowed. In contrast, customer transaction sequences in 
market-basket applications are made up of items taken from a 
collection of 1,000 to 10,000 items (e.g., sales items in a super-
market) [6，5, 27, 17]. Consequently, while only a tiny fraction 
of items occurs in each transaction sequence, most (likely all) 
items occur in each biosequence. This has a drastic implica-
tion on all pruning strategies based on absence of items. For 
example, with every item occurring in a biosequence, the hash-
partitioning of the hash-tree [5，20] is not effective because most 
branches will be searched, and intersecting the idlists/bitmaps 
of patterns [6, 27] is not effective because idlists/bitmaps are 
very long for long sequences of a small alphabet. 

Biosequences have extremely long length. A DNA or 
protein sequence is typically a few hundreds in length and can 
be up to a few thousands (http://www.ncbi.nlm.iiih.gov), com-
pared to 10 to 20 for a transaction sequence [6, 27, 5, 17]. Long 
sequences typically contain long patterns, and the classic "one 
item at a time" pattern growth [6, 27, 5, 17] means too many 
database scans and support countings. Also, scanning a long se-
quence for pattern matching is not a negligible cost, especially 
because pattern matching is performed frequently. The prob-
lem of mining long non-sequential patterns was studied recently 
1, 7, 11]. For biosequences, the sequential nature and longer 

length make the problem significantly harder. See below and 
Section 2 for more discussions. 

http://www.ncbi.nlm.iiih.gov
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Biosequence patterns occur in short regions of local 
similarity and in long regions of global similarity with 
gaps. Such patterns have the form of Xi* . • •本Xk, where each. Xi 
is a segment representing several consecutive items, and * rep-
resents a variable length don't care (VLDC). For DNA/protein 
sequences, each segment Xi represents to a local similarity con-
served during evolution due to an important structural or func-
tional role, and VLDCs represent the rest. A minimum re-
quirement, such as minimum segment length, can be specified 
to remove trivial local similarity. This kind of local similarity 
has not been exploited in the classic sequential pattern mining 
6, 27, 5, 17] for effective pattern pruning and support counting. 

In summary, the blow up of classic sequential patterns is due 
to a large cardinality at each position, whereas the blow up of 
biosequence patterns is due to a large length. The former can 
be dealt with by classic partitioning/indexing/ bitmapping tech-
niques, but the latter requires novel techniques. The look-ahead 
technique [1, 7, 11] assumes that each item occurs at most once^ 
as in a non-sequential pattern, and extends a pattern by all 
remaining items. If the extended pattern is frequent, all (non-
maximal) subpatterns can be pruned. However, this technique 
is not applicable to sequential patterns where there is a lack 
of the notion of "remaining items" because an item can occur 
repeatedly. On the other hand, bio-applications ultimately re-
quire non-maximal patterns. For example, classification rules 
X — C, where X denotes a biosequence pattern and C denotes 
a protein family, are likely non-maximal because they represent 
generalized characteristics of protein families. 

3.1.2 Mining Sequential Patterns 

The work on mining sequential patterns was motivated in market-
basket analysis [6, 5，16, 17, 20, 27], where typically sequences 
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are short and the alphabet is large. Both breadth-first genera-
tion [5, 20, 27] and depth-first generation [6, 27, 17] have been 
studied. The support counting is by scanning sequences against 
candidate patterns, with hash-partitioning to focus on likely 
candidates [5, 20], intersecting the idlists/bitmaps of shorter 
patterns [6, 27], projecting sequences according to scanned pre-
fixes [17]. For long biosequences of a small alphabet, scanning 
or partitioning sequences is not effective as mentioned in Intro-
duction, and idlists/bitmaps are very large because they code 
all occurring positions in all sequences. All these methods grow 
patterns one item at a time and do not exploit local similarity 
for pattern pruning and support counting. 

3.1.3 Mining Long Patterns 

The look-ahead technique extends a pattern by all "remaining 
items", i.e., items that have not occurred [1, 7，11]. This tech-
nique is not applicable to sequential patterns because an item 
can occur repeatedly and there is no corresponding notion of 
remaining items. The sampling/bordering techniques [21, 25 
find the border between frequent patterns and infrequent ones 
from a sample of the database, using techniques primarily for 
non-sequential patterns (such as those in [1，7，11])，and then 
adjust the border on the entire database. These methods still 
depend on an efficient mining algorithm in that a sample often 
has a non-trivial size to avoid the bias of sampling. For long se-
quences of a small alphabet, sampling (like partitioning) is less 
effective in that it does not reduce sequence length or alphabet 
size. 

3.1.4 Related Works in Bioinformatics 

A commonly used biosequence similarity is based on multiple 
sequence alignment (see [24]). This notion is useful when an 



CHAPTER 3. FAST BIOSEQUENCE PATTERNS MINING 24 

entire sequence is similar, but makes no sense for mining short 
regions of local similarity. Most approaches to local similarity 
enumerate the solution space [10], thus, are very highly expen-
sive. [22] addresses this problem using heuristics at the expense 
of missing some patterns. It first ranks patterns using a sample 
of database and evaluates only highly ranked patterns against 
the entire database. The pattern growth for the sample is by 
enumeration, and pattern matching against a sequence is by dy-
namic programming. Their experiments were conduced only for 
150 sequences and two-segment patterns. Our approach finds 
the complete set of patterns on a large collection of sequences 
by exploiting novel pattern pruning and support counting meth-
ods. Another direction is approximate pattern matching [22, 25 . 
Our work currently considers exact pattern matching. 

3.2 The Overview 

3.2.1 The Problem 

A sequence database D is a collection of sequences {si,...，Sjv}. 
Each sequence is an ordered list of items from a fixed alphabet. 
The jth item in a sequence occurs at position j. A segment refers 
to one or more items at consecutive positions in a sequence. \X 
denotes the number of positions in a segment X. A segment 
could occur more than once in a sequence, with each occurrence 
having a start position and end position. A pattern has the form 

* . •. * Xn (n > 1), where each Xi is a segment and * denotes 
the variable length "don't care" (VLDC). In matching a pattern 
X i ^ •' • ^ Xn with a sequence Si, each segment X j matches itself 
and each * can substitute for zero or more items. If a match of 
the pattern is found in Si, we say that Si contains the pattern, 
or the pattern occurs in Si. 

Definition 1 The support of a pattern is the percentage of the 
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sequences in D that contain the pattern. Given a minimum 
length MinLen and a minimum support MinSup, a pattern 

* • • • * Xn is densely frequent if > MinLen for 1 <i <n 
and the support of the pattern is above MinSup. The problem 
of mining biosequence patterns is to find all densely frequent 
patterns. 

A segment Xi captures a short region of local similarity. A 
pattern * . . . * Xn captures a global similarity across a global 
range separated by gaps For biosequences where most items 
occur in most sequences due to the small alphabet size, only 
local similarities above some minimum length (usually > 1) are 
non-trivial. The minimum support MinSup conveys a statistical 
significance requirement on a pattern. In the rest of the paper, 
a "frequent pattern" means a "densely frequent pattern". 

3.2.2 The Overview of Our Approach 

We propose a two-phase approach. The segment phase finds all 
frequent segments Xi. The pattern phase generates all frequent 
patterns Xi ^ - • • ^ X^ using frequent segments Xi as building 
blocks. The purpose of this two-phase approach is to exploit 
relationships between frequent segments for the "segment-based 
pruning" and "query-based counting" discussed in Section 1.2. 
Two issues are addressed. First, how to search the candidate 
space Xi * … * Xfc so as to maximize the exploitation of such re-
lationships. We present a novel search strategy, called 2-phased 
depth-first (2PDF), to address this issue. Second, how to tell ef-
ficiently if a pattern occurs in a sequence, knowing that it does 
not occur before some end position? We solve this problem by 
answering the following position query. 

Definition 2 A position query has the form of Q{X, s, i), where 
X is a frequent segment, s is a sequence id, and i is a position in 
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sequence s. The query returns the answer < s,j > if sequence s 
contains X at a start position greater than i and j is the smallest 
such start position; or returns nil otherwise. 

Precisely, suppose that we know the smallest end position 
< s, i > of a pattern Pk = * • • • * X̂ ； in each sequence s 
containing the pattern (i.e., Pk does not occur before the po-
sition i in s). We find the smallest end positions of a pat-
tern Pk+i = Pk * Xk+i as follows. For each < s,2 > of Pk, if 

s, i) returns nil, s does not contain Pk+i] if it returns 
an answer < s,j >, s contains Pk+i at the smallest end position 
j + IXfc+il — 1. The support count of P^+i is equal to the num-
ber of < > answers. The key to this approach is an efficient 
method for answering a position query Q{X, s,z). Scanning the 
whole sequence s is not attractive because most part of a long 
sequence does not code useful information, nor is materializing 
all (X，s) pairs because of a high number of frequent segments 
X and sequences s. We propose an index method and a com-
pression method for answering the position query. 

3.3 The Segment Phase 

3.3.1 Finding Frequent Segments 

We use the generalized suffix tree (GST) [22] to find all frequent 
segments. A GST is an extension of the suffix tree for repre-
senting a set of sequences. A suffix starting at position p in a 
sequence Si is represented by a leaf containing Si : p. The edges 
are labeled with items such that the concatenation of the edge 
labels on the path from the root to the leaf containing si : p is 
the suffix of the sequence Si that starts at position p. We extract 
the following information from the GST. (1) The frequent seg-
ments of the length MinLen, called base segments and denoted 
by Bi, for each base segment Bi, the position lists Si : Pi,P2，... 
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at which Bi starts, where pi < pi+i. This information is used 
to build an index. (2) All remaining frequent segments, but no 
position lists. This information is used to generate patterns. 

Theorem 1 The total length of the positions lists of base seg-
ments is no more than the total length of sequences in D. 

Proof. No two base segments occurs at the same position in a 
sequence (otherwise, they are identical). Thus, the total length 
of the position lists for the base segments in a single sequence is 
no more than the length of the sequence. 

The time and space needed to construct the GST is 0(|_D|), 
where |D| is the total length of the sequences in database D 
22]. If the GST of D does not fit in the memory, we can build 

the GST for one partition of at a time (that fits in the mem-
ory) and scan D once to count the global support for frequent 
segments extracted from each partition. Below, we present two 
approaches of exploiting the extracted information for efficient 
query answering. 

3.3.2 The Index-based Querying 

This approach provides a direct access to the positions queried 
by Q(X, s, i) by building a main-memory index. Instead of in-
dexing all frequent segments X, which would be too large, we 
index only base segments Bi, in the view that every frequent 
segment can be rewritten into one or more base segments as 
stated below. 

Definition 3 For two base segments Bi and B2 such that the 
last k items in Bi are identical to the first k items in B2, the 
k-join of Bi and B2, denoted Bi N^ B:, is the segment obtained 
by overlapping the last k items of Bi with the first k items of 
B2. 
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Corollary 1 A frequent segment Xi can be rewritten into sev-
eral k-joins of base segments: 

Bi Mo 召2 Xo … N o Bp Nfc Bp+i， 

where k = 0 except for the last k-join. p = [Jlil/MiriLeriJ and 
k = \Xi\ — UH/MSnl/eri�x MinLen. 

Example 2 Table 3.1 shows a sequence database containing three 
sequences, with the alphabet of {a, 6, c, d}. Let MinSup = 2/3, 
and MinLen = 2. We have the frequent segments: 

ab{2), ac(3)，acd{3), acda{2), cd{2), cda{2), da{2), 

where the integers in the brackets are support counts. The base 
segments are 

Bi = ab, B2 = ac, B3 = cd, B4 = da, 

and their position lists are given in Table 3.2. ab * cda occurs in 
Si and S2, so is a frequent pattern, ab * cda can be rewritten as 
Bi * (B3 Ml B4) using only base segments. Similarly, ab * acda 
is frequent and can be rewritten as Bi * {B2 Nq B4). 

Definition 4 The SP-index (Segment-to-Position index) has two 
components, the root directory and the SP-trees. For each base 
segment Bi, the root directory has an entry for the root of the 
SP-tree for Bi. The SP-tree for Bi is a B-tree containing an 
entry (< s,p >^ptr) for each position s : p in the position lists 
of Bi. < > is the search key of the B-tree. ptr points to 
the entry (< + \Bi\>^ ptr') in the SP-tree for some Bj, if it 
exists, or ptr = nil, otherwise. (We have omitted the usual tree 
pointers in the B-tree.) 

Intuitively, ptr in an entry (< s，p >^ptr) links the entries for 
Bi and Bj (in different SP-trees if Bi + Bj) that 0-joins, i.e., 
Bi Nq Bj, at the start position s : p. At any entry (< s，p >,ptr) 
in the SP-tree for Bi, we can 
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ID Sequence 

51 abacdab 

52 abcacda 

53 baacdca 

Table 3.1: The sequence database D 

Base Segments Position Lists 

ab (Si : 1,6)，（S2 : 1) 

ac (Si : 3), (S2 ： 4), (S3 : 3) 

cd (Si : 4),(S2 : 5)，(S3 : 4) 

da (Si : 5), (S2 : 6) 

Table 3.2: The position lists 

• check if a frequent segment X = N • • • N Bg occurs 
at the start position s : p by following the ptr pointers 
(possibly across SP-trees) at most q times starting from 
the entry (< >,ptr). We refer to this chain of ptr 
pointers as the join chain of Bi. 

• move to the next entry of Bi in the search key order as 
provided by the standard B-tree. We refer to this chain 
of "next entry" as the occurrence chain of Bi, the end of 
which is indicated by a change of sequence id in a search 
key. 

Now we compute the position query using the SP-index as 
follows. 
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C o m p u t e Q{X,s,i), where X = N • • • N g > 1. 
Search the SP-tree for Bi by the search key < s,i > for the 
smallest start position in s greater than i. If the search is not 
successful, return nil. Assume that the search is successful and 
ends at an entry (< s,p〉，ptr). Check if X occurs at the current 
start position s : p by following the join chain of Bi. If not, move 
to the next entry of Bi in s by following the occurrence chain of 
Bi, and check again. This "move and check" is repeated until 
either the end of the occurrence chain of Bi is reached or the 
checking is successful. In the former case, return nil. In the 
latter case, return the key value < > in the last entry of Bi 
accessed, which is the smallest start position of X in 5 greater 
than i. 

The partial-key technique for main-memory indexes [9] can be 
applied to eliminate repeated store of sequence ids s in key values 
< > in a SP-tree. This not only reduces the index size, but 
also increases the fanout of the tree structure and reduces the 
access time. 

3.3.3 The Compression-based Querying 

Alternatively, we can answer the query s, i) by simply 
scanning the sequence s for the next occurrence of X start-
ing from the position i. For a long sequence, this suffers from 
scanning a long region not coding useful information. In the 
compression-based querying, we first compress each input se-
quence by collapsing consecutive non-coding regions, i.e., posi-
tions not expandable to either sides into a frequent segment, into 
a new item e. Intuitively, each e represents a variable length non-
coding region between two closest coding regions in a sequence. 
For large MinLen and MinSup and a large alphabet size, a 
long sequence tends to contain long non-coding regions and the 
compressed sequence will shrink in length substantially. The 
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Input: a sequence s in D and MinLen\ 
Ouput: the compressed sequence of s and length; 

1： k = l] 
2: for j = l ] j < |s|;i + + do 
3： if s[j,j + MinLen — 1] is a base segment then 
4: fill S[k] with s[j]; 
5： /c + +; 
6： coding ^ MinLen — 1; 
7： else if coding > 0 then 
8： fill S[k] with s[j]] 
9： A: + +; 
10： coding ； 

11： else if k > I and S[k — 1] is not e then 
12： fill S[k] with e; 
13： k = k + +; 
14： end if; 
15： end for; 
16： return S and k — 1. 

Figure 3.1: Compressing a sequence 

procedure in Figure 3.1 compresses a given sequence. 

Example 3 For the database in Example 2, the compressed se-
quences are 

51 : abacdab 
52 ： abeacda (ca is collapsed into e) 
Ss ： eacde (ha and ca are collapsed into e) 

To apply the compression-based approach, we first extract 
base segments (without position lists this time) and frequent 
segments from the sequence database D, as described earlier. 
We then compress each sequence s in D using the algorithm in 
Figure 3.1. Subsequently in the pattern phase, we shall answer 
a query S, i) by scanning compressed sequences S instead 
of input sequences s. 
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Compute S, z), where 5 is a compressed sequence, X 
is a frequent segment and Hs a position in S. Scan the sequence 
S starting from the position i and search for the next occurrence 
of X. Return the position of the next occurrence of X if found, 
and return nil if not. Note that, in matching X against S, 
the new item e in 5 does not match any item in X because it 
represents a non-coding region. 

3.4 The Pattern Phase 

This phase generates all frequent patterns * . . . * X於 using 
frequent segments Xi found in the segment phase. The depth-
first generation is to extend the current pattern Xi * • • • * 
by each frequent segment Xk+i in the depth-first manner, and if 
X i * . . -^Xk^Xk-i-i is frequent (by support counting), recursively 
extend the pattern Xi * . . . * X；；； * Xk+i- However, this simple 
method is not efficient because the number of candidates Xi 
at each step can be very large (as Xi can be repeatedly used 
in a pattern) and the support counting is independent for each 
pattern. We are interested in exploiting "interactions" between 
patterns for pruning candidates and sharing support counting. 
Below, we present a search strategy with this mind. 

Definition 5 The 2-phased depth-first generation is the depth-
first generation of the pattern tree defined below: 

• The segment tree represents all frequent segments: each 
node (except the root) is labeled by a base segment Bi, each 
non-terminal edge is labeled by integer 0, and each terminal 
edge is labeled by an integer k > 0, such that a node w 
represents the frequent segment Nq • • • Nq Bp—i Nj^ Bp, 
denoted seg{w), where (root, 0, jBi, 0，. •.，0，Bp—i,k, Bp) is 
the path from the root to a node w. 
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• The pattern tree represents all patterns: every node has 
the child nodes Vi,... ,Vn labeled by seg{wi)^.. •, seg{wn) 
such that wi,...iUn are the non-root nodes in the depth-
first order in the segment tree. A node v in the pattern tree 
represents the pattern Xi * • • • * Xk, denoted pat{v), where 
Xi, -' • ,Xk are on the labels on the path from the root to v. 

A snode refers to a node in the segment tree, and a pnode 
refers to a node in the pattern tree. Similarly, sroot and proot 
refer to the root of the segment tree and pattern tree. Note that 
pat {proot) = 0 and seg{sroot) = 0. 

Example 4 Figure 3.2 shows the segment tree for Example 2. 
Wi denotes the ith node in the depth-first order. The path {root^ 0, 
jB2, 1, B^) or node w^ represents the frequent segment acd = 
B2 Xli B^, the path (root^ 0, B2,0，B4) or node W4 represents the 
frequent segment acda = B2 Nq B4, and the path {root, 0, Bz, 1, B4) 
or node wq represents the frequent segment cda — B^ Nj B4. 

sroot 

w l : B l w2:B2 w5:B3 w7:B4 

, 1 
w3:B3 w4:B4 w6:B4 

Figure 3.2: The segment tree in Example 4 

Consider 二 J î 氺...氺 Xk—i 氺 Xk, = Xi * •..氺 Xk—i 氺 Xj. 
or = Xi * • • • * Xk-i 氺 Ĵ̂T；̂, * . . . * Xk+i, where Xk is a prefix 
of X’k. Note that each occurrence of P' is an occurrence of P. 
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An important property of the 2-phased depth-first generation 
is that P is generated before P' generation because P is either 
a left sibling or an ancestor of P'. The following observations, 
which exploit some information about P for generating P', form 
the basis of our pruning and querying strategies. 

Observation 1. If P does not extend into a frequent pattern 
P * X for some frequent segment X, neither does P'. 

Observation 2. If P does not occur before position i in some 
sequence 5, neither does P'. 

We present pruning strategies based on Observation 1 and 
querying strategies based on Observation 2. 

3.4.1 The Pruning Strategies 

Consider a pnode v and a snode w. The pruning signature of 
the pattern pat(v) refers to the set of snodes w that failed to 
extend v, i.e., pat{v) * seg{w) was known not frequent. Let 
V.failed denote the pruning signature of pat{v). Since w G 
V.failed implies that w' G v.failed for all descendants w' of w, 
the implementation of v.failed needs to contain only highest 
possible snodes on a path. We assume that proot.failed = 0. 

Rationale I. If w failed to extend v (i.e., w G v. failed), for 
all snodes w' below w, w' will fail to extend v. Therefore, we do 
not need to extend v by w'. 

Pruning I. For every w G v.failed, we can prune the subtree 
rooted at w from extending v. 

Rationale 11. For the parent Vp of v, if w failed to extend Vp, 
w fails to extend v (Observation 1). Therefore, we do not need 
to extend v by w. 

Pruning II. For the parent Vp of v, v.failed D Vp.failed. 
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Rationale III. For any sibling Vg of v such that the label of Vs 
is a prefix of the label of v, if w failed to extend Vg, w fails to 
extend v (Observation 1). 

Pruning III. For any sibling Vg of v such that the label of 
Vs is the parent of the label of v in the segment tree, v.failed D 
Vs. failed. 

Prom Pruning II, Vg.failed D Vp.failed, thus, Pruning III has 
priority over Pruning II because of stronger pruning. Pruning 
II is used only in the case that the parent of the label of v is 
the sroot, in which case the sibling Vg in Pruning III does not 
exist. Pruning I and II provide ample opportunities of pruning: 
whenever either or it; is not a leaf node and w failed to extend 
V, the whole subtree at w is pruned in the subspace below v 
in the pattern tree. Pruning III improves on this with even 
stronger pruning. 

Example 5 Consider the pattern tree in Figure 3.3 generated 
using the segment tree in Figure 3.2. vi denotes the ith node 
in the depth-first generation. Initially, Vi.failed = 0 . After 
extending v\ by w\, we find that seg{wi)^seg{wi) (i.e.，ab^ab) is 
not frequent, so vi. failed = {w^i}. At node V3，v^. failed = {i^i} 
from Pruning II, so we do not extend vs by wi. After extending 
Vs by W2, we find that seg{wi)^seg{w2)^seg{w2) (i.e., ab^ac^ac) 
is not frequent, so v^.failed = {wi,w2}. From Pruning I, we 
do not need to extend v^ by any node in the subtree below W2 
(i.e., w^ and W4). At node V5，since the label of the sibling v^ 
(i.e., seg{w2)) is the parent of the label of v^ (i.e., seg{ws)) in 
the segment tree, from Pruning III, v^.failed = {wi^w2}. So, 
all the pruning at node v^ applies to node v^. 

Algorithm. Consider the current path X i , - - - ,Xk in the 2-
phased depth-first generation. Assume that Xi is represented by 
a path - •• in the segment tree, which is the current path 
in the depth-first generation of Xi. Note that Xi = seg�w\� . Let 
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入 1 X I O X I 1 

/ \ X 2 X 3 \ 

/ 丨 \ X ' 2 -
X 4 X 6 X 7 

/ \ 
X 8 X 9 

Figure 3.3: The pattern tree in Example 5 

failed^ denote the pruning signature of * . . . i * seg{w^j). 
For 1 < 2 < A;, we push {w\, failed\), • • •, {wi^, failed^) onto 
the stack TT̂  in the depth-first generation of Xi. node{'Ki) and 
failed{'Ki) return the top entry on the stack TT̂ , i.e., w^^ and 
failed\. Thus, seg{node{TTi)) * ... * seg{node{TTk)) represents 
the current pattern, and failed(jrk) gives its pruning signature. 
2PDF�k, w) in Algorithm 2 finds all frequent patterns that have 
the prefix seg(node�ni)) * . . . * seg{node{7Tk)) * seg{w'), where 
w' is either w or a child node of w. 2PDF(0, sroot) finds all 
frequent patterns. 

2PDF{k, w): If w is the sroot, lines 2-4 recursively call 2PDF{k, w,� 

for all children w' of w not in failed(jrk) (Pruning I). If if； is not 
the sroot, line 6 extends seg{node{7ri)) * •.. * seg{node{7rk)) by 
seg{w). If the extension fails, lines 20-21 add w to failed{7Tk) 
and remove any descendant of w because we keep only highest 
possible nodes in failed{7rk). Assume that the extension suc-
ceeds. Line 13 creates a new pnode for the extension by pushing 
w and failed onto stack Wk+i, where failed is initialized at lines 
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Algorithm 2 The 2-phased depth-first with pruning strategies — 
2PDF(k,w): an integer k >0, a, snode w, 

1： if w is the sroot then 
2： for all children w' of w, not in failedijTk) do 
3： 2PDF(k,w')] 
4: end for; 
5： else 
6: if seg{node{'Ki)) * ... * seg{node('Kk)) * seg(w) is frequent then 
7: output seg{node(7ri)) * . . . * seg{node{'Kk)) * seg{w)] 
8： if TTfc+i is empty then 
9： failed — failed('Kk)\ 

10： else 
11: failedfailedi^Tk+i).� 
12： end if; 
13： push{w, f ailed, TTk+i)', 
14： 2PDF{k + l,sroot); 
15: 卿(TTfc+i); 
16： for all children w' of w, not in failed{jrk) do 
17： 2PDF{k,w'y, 
18： end for; 
19： else 
20： add w to failed{'Kk)\ 
21： remove any descendant of w from failed('Kk)\ 
22: end if; 
23: end if; 

9 and 11 according to Pruning II and III, respectively, and line 
14 recursively calls 2PDF(k + 1, sroot) for the new pnode. On 
return, lines 16-18 recursively call 2PDF{k, w') for all children 
w' of w not in failed(jrk) (Pruning I). We omit the formal proof 
of correctness. 

3.4.2 The Querying Strategies 

In a similar spirit, we can prune the work of support counting 
based on Observation 2. The querying signature of Pk = Xi ^ 
…本 Xk refers to the set of < s, i �p a i r s such that i is the 
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smallest start position of Xk in any occurrence of Pk in s. This 
implies that Pk does not occur before the end position i + \Xk 
in s. Prom Observation 2, we have two ways to compute the 
querying signature (and the support count) of = Pk * Xk+i. 
In the first way, for each < s, z > in the querying signature of P^, 
we perform the query Q{Xk+i,s,i + to find the smallest 
start position < s,j > of Xk+i in any occurrence of Pk+i- The 
querying signature (resp. the support count) of P^+i is the set 
(resp. the number) of < s J > answers to such queries. In the 
second way, we use the querying signature of P h = Pk * 义‘+丄 

instead, where is a prefix of X^+i. 
In implementation, we now push failed\, ans\),.. 

{wl̂ , failedlj^ anŝ )̂ onto the stack tt̂ , where ans) represents the 
querying signature of the pattern * . . . * Xi - i * j). Let 
ansijTi) return the top querying signature of 兀“ i.e., ans� . The 
querying strategies for Pjt+i =尸A； * ^k+i are as follows. 

Querying I. If the parent of Xk+i is the sroot, in which case 
TT/c+i is empty, compute Q(Xk+i,s,i + |义於|) for each < s,2 > in 
the querying signature of Pk, given by ans(nk). 

Querying II. If the parent of Xk+i is not the sroot, 
compute i) for each < s, i > in the querying signature 
of Pfc+i, given by ans(jrk+i). 

Algorithm. 2PDF(k, w) in Algorithm 3 describes the depth-
first generation with both pruning and querying strategies. The 
main difference from Algorithm 2 is the function Count(seg[w�, k) 
at line 6 for computing the support and querying signature of 
the candidate seg{node(jri)) * ... * seg{node{7Tk)) * seg{w). If 
TTk+i is empty, Count{seg{w)^ k) applies Querying I at lines 4-9, 
if not, Querying II at lines 11-16. 
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Algorithm 3 The 2-phased depth-first with pruning/querying strategies 
2PDF{k,wy. 

1： if w is the sroot then 
2： for all children w' of w, not in failed('Kk) do 
3： 2PDF(k,w')] 
4: end for; 
5： else 
6： (sup, ans)卜 Count{seg{w), /c); 
7： if sup/N > MinSup then 
8： output seg{node('Ki)) * • • • * seg{node{'Kk)) * seg{w)\ 
9： if TTjt+i is empty then 
10： failed failed(7Tk)., 
11： else 
12: f ailed 卜 failed(jrk+i); 
13： end if; 
14： push{w, failed, ans, tt^+i); 
15： 2PDF{k-\-l,sroot)] 
16: 卿(TTfc+i); 
17: for all children w' of w, not in failed(jrk) do 
18： 2PDF{k,w')\ 
19： end for; 
20: else 
21： add w to failed{'Kk)\ 
22: remove any descendant of w from failed{nk)', 
23: end if; 
24： end if; 

Count{X, k): 
1： sup 卜 0; 

2: ans 0; 

3： if TTfc+i is empty then 
4: f o r a l l < s,i>e ans(7rjt) d o 

5： if Q(X,s,i + \seg{node(7rk))\) returns < s,j > then 
6: sup + +; 
7： ans ^ ans U { < s, j >} ; 
8： end if; 
9： end for 

10： else 
11： for all < s,z > e ans(TTk+i) do 
12: if Q(X,s,i) returns < s,j > then 
13： sup + +; 
14： ans <r- ans U { < s,j >}; 
15： end if; 
16： end for; 
17： end if; 
18： return {sup, ans); 
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3.5 Experiment 

We evaluated the performance of our methods, denoted by 2PDF-
Index for index-based querying and 2PDF-Compression for 
compression-based querying. We compare them with two depth-
first sequential pattern mining algorithms, PrefixSpan [17] and 
SPAM [6], which were shown to outperform earlier algorithms 
such as [5，20，27]丄.To be consistent with our notion of patterns, 
we made two modifications to PrefixSpan and SPAM: simplify-
ing each transaction in a customer sequence to a single item, and 
considering two types of pattern growth, i.e., adding the next 
item to join the last segment in a pattern, or adding the next 
item to start a new segment in a pattern. These modifications 
make PrefixSpan and SPAM more efficient. We do not compare 
with [22] that does not find all patterns. All experiments were 
conducted on a PC with 2GHZ CPU and 1GB memory running 
the Windows 2000 Professional. 

3.5.1 Synthetic Data Sets 

The first set of experiments was conducted on the synthetic data 
sets generated as in [5] using the parameters in Table 3.3. We 
used the data sets named in Table 3.4. The data sets with 
N = 4 (the alphabet size) simulate DNA sequences, the data 
sets with N = 20 simulate protein sequences, and the data set 
with N = 10,000 simulates customer sequences. The average 
length C of simulated biosequences, i.e., 128 or 256, is much 
longer than that of simulated customer sequences, i.e., 20. N! is 
equal to N because all transactions are singletons. Like in [5], 
Ns was set to 5000. For a larger C and a smaller N, we use a 
larger MinLen due to more expected local similarity. For the 
customer sequence data set, the setting of MinLen = 1 yields 

iPor PrefixSpan, we used the pseudo-projection technique as suggested in [17], which 

makes PrefixSpan faster than SPAM. 
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classic sequential patterns. 
Execution time. In Figures 3.4-3.7, the first column plots 

the execution time in logarithm scale, i.e., logioT where T is 
the execution time, against MinSup. For 2PDFs, this includes 
the time for both phases. The most significant finding is that 
both versions of 2PDF are several orders of magnitude faster 
than PrefixSpan and SPAM on long sequences of a small alpha-
bet. Several factors contributed to this speedup: the reduced 
frequency of support counting, the pruning of candidates in the 
pattern phase, and the indexed access or reduced sequence scan 
in support counting. Table 3.5 shows the number of base seg-
ments, frequent segments, and frequent patterns for the data 
set C128532A^4i:>100ir at MinLen = 5. The second finding 
is that 2PDF-Index is more scalable wrt MinSup than 2PDF-
Compression, due to the insensitivity of index access cost to the 
increase of base segments. 

Figure 3.8 shows the execution time for the simulated cus-
tomer data set and reveals two things. First, the mining task for 
biosequences is much more difficult than for classic transaction 
sequences, as indicated by the huge difference in both execution 
time and minimum support. Second, the 2PDFs, though aimed 
at long sequences of small alphabets, are also highly competitive 
for short sequences of large alphabets. 

The second column in Figures 3.4-3.8 shows the portion of 
execution time prior to the depth-first generation, called "Build-
ing Time". This refers to the segment phase for 2PDFs and the 
preparation time for other algorithms. 2PDFs, especially 2PDF-
Index, spend more building time than the other algorithms to 
build the index or compress sequences. However, the reduced 
overall execution time, as shown above, confirms that this "in-
vestment" is worthwhile. 

Space consumption. The third column of Figures 3.4-
3.8 shows the maximum space required for the current path in 
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Figure 3.4: C128S32N4D100K, MinLen = 5 
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Figure 3.5: C128S32N20D100K, MinLen = 3 
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Figure 3.6: C256S64N4D100K, MinLen= 7 
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Figure 3.7: C256S64N20D100K, MinLen= 3 
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depth-first generation, called "Dynamic Space". Both 2PDFs 
have little dynamic space consumption because only one po-
sition is kept for each containing sequence of a pattern. The 
last column of Figures 3.4-3.8 shows the space for storing the 
index in 2PDF-Index and the compressed database in 2PDF-
Compression, called "Static Space", compared to the input database 
size denoted by “ Dataset". For a small MinSup, the static space 
of 2PDF-Index is high, due to the repeated store of sequence ids 
in SP-trees. However, main-memory index techniques such as 
the partial-key technique [9] are available to significantly reduce 
this space. Also, with multi-gigabyte main memories easily af-
fordable nowadays, this is less likely a major concern. The static 
space for 2PDF-Compression is always less than, often much less 
than, the database size. Therefore, 2PDF-Compression is a bet-
ter alternative if the memory size becomes a concern. 

Scalability. Figure 3.9 shows, from left to right, the execu-
tion time after scaling up the database size of C128»S327V4i)100i^ 
{MinLen = 5, MinSup = 30%), C2565'647V4Z)100ii： {MinLen = 
7, MinSup = 25%), C2058A^10000L>100i^ {MinLen = 1，MinSup = 
0.2%) up to 500K sequences. Both versions of 2PDF show a lin-
ear scalability with respect to the database size. On the most 
time-consuming C256564A/'4D100K' (the center figure), 2PDF-
Index is superior to 2PDF-Compression. This confirms the intu-
ition that the index method has a better scalability for handling 
larger data sets. 

3.5.2 Biological Data Sets 

The second set of experiments was conducted on DNA and pro-
tein sequences extracted from the website of National Center 
for Biotechnology Information (http://www.ncbi.nlm.nih.gov). 
The DNA data set was extracted by specifying the conjunc-
tion of the search category "Nucleotide", the range [200:300 

http://www.ncbi.nlm.nih.gov
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for sequence length, and the submission date from 2002/12 to 
2003/02. The protein data set was extracted by specifying 
the conjunction of the search category "Protein", the range 
150:250] for sequence length, and submission date from 2002/12 

to 2003/02. The description of these data sets as of the extrac-
tion time is given in Table 3.10. 

Figures 3.11-3.12 show the execution time, building time, dy-
namic space and static space. The comparison of 2PDFs with 
PrefixSpan and SPAM is similar to that for synthetic data sets 
in Section 6.1. This experiment confirms the superiority of the 
proposed methods on real life biosequence data. 

• End of chapter. 
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Symbol Meaning in [5] Adopted to biosequences 

D Number of customers Number of sequences 

C Average number of Average length of 

transactions per customer sequences 

T Average number of 1 

items per transaction 

S Average length of maximal no change 

potentially frequent sequences 

I Average size of itemsets in maximal 1 

potentially frequent sequences 

Ns Number of maximal no change 

potentially frequent sequences 

Ni Number of maximal equal to N 

potentially frequent itemsets 

N Number of items 4 or 20 

Table 3.3: Parameters of the data generator 
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Simulated Name C S N D Size MinLen 

category (MB) 

DNA C256564A^4i:)100i^ 256 64 4 lOOK 70.6 7 

sequences Cl2SSS2N4DmK 128 32 4 lOOK 35.1 5 

Protien C2b6S64N20DmK 256 64 20 lOOK 65.3 3 

sequences C12SS32N20D100K 128 32 20 lOOK 32.5 3 

Customer C2058A^10000D100i(： 20 8 10,000 lOOK 4.7 1 

sequences 

Table 3.4: Synthetic data sets 

MinSup # base segment # segment • pattern 

5% 223 1288 557722 

10% 142 602 471015 

15% 101 313 18502 

20% 91 240 6131 

Table 3.5: Statistics for C128S32N4D100K, MinLen二5 
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Figure 3.8: C20S8N10000D100K, MinLen = 1 
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Data set # sequences Min length Max length Avg length Size (MB) 

DNA 122,855 200 300 254 124.9 

data set 

Protein 192,497 150 250 198 152.9 

data set 

Figure 3.10: Biological data sets 
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Figure 3.12: The real life protein dataset, MinLen 二 3 



Chapter 4 

Conclusion 

Two parts of our work are included in this thesis. 

First we propose a novel and efficient algorithm PP-Mine, 
which outperform FP-Tree significantly, because PP-Mine does 
not need to construct any conditional FP-Trees for handling 
projected databases. Instead, dynamic link adjusting are used. 
Both PP-Mine and H-Mine adopt dynamic link adjusting tech-
nique. In addition, PP-Mine further minimizes counting cost. 
Accumulation technique is used, and therefore, unnecessary count-
ing is avoided. PP-Mine outperforms H-Mine significantly when 
dataset is dense, and outperforms H-Mine marginally when dataset 
is sparse and is small. 

Then our research focus move onto the sequential mining 
problem in bio-applications. We analyzed the implications of 
several home features of biosequences on data mining techniques, 
namely, extremely small alphabet, extremely long length, and 
combination of local similarity and global similarity. These fea-
tures render a different blow up of search space from that in clas-
sic transaction sequences, and traditional indexing/partitioning/ 
bitmapping techniques are not effective for mining such sequences. 
To address this issue, we proposed to extract and exploit local 
similarity before searching for global similarity. This is done by 
indexing or compressing local similarity in the first phase. In 
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the second phase, we search for global similarities using local 
similarities as building blocks, exploiting relationships between 
them for pruning candidates and sharing support counting, and 
benefiting from indexed or compressed local similarities. The 
experiments on both synthetic and real life data sets demon-
strated significant speed up over classic methods. 

• End of chapter. 
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