
A New Data Structure and Algorithm

for Spatial Network Representation

by

FUNG Tze Wa

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Philosophy

In

Department of Systems Engineering and Engineering Management

©The Chinese University of Hong Kong

June 30, 2003

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)

intending to use a part or whole of the materials in the thesis in a proposed publication must

seek copyright release from the Dean of the Graduate School.

rf 2 9 腦 ®) | |

k

3

•i i

J.

•i
.J
]
2

Abstract

Most existing spatial data formats are proprietary. This makes it difficult to

develop new spatial algorithms requiring low level data access for real spatial

data. To deal with the problem, this thesis applies Geography Markup

Language (GML), a variant of extensible Markup Language (XML) for real

spatial data. We suggest an indexing scheme for GML spatial data.

A spatial network is one type of spatial data with network characteristics.

Although a spatial network has many applications, little literature specifically

studies the data structure of spatial network. We propose an algorithm, called

Connected Page Algorithm (CPA), which is used to cluster a spatial network.

In our experiments we find that we can save unnecessary calculations in

network operations such as shortest path problems in this clustered network. In

addition, we try to extend the CPA and propose an algorithm called Nearest

Neighbor in Connected Page Algorithm (NNCPA).

i

摘要

大多數的空間數據結構是專利的，弓丨致利用真實的空間數據(spatial data)

作發展新的的空間演算法(spatial algorithms)出現很多困難。本篇論文使

用地理標記語言(Geography Markup Language, GML) 種可擴充標

記語言(extensible Markup Language�XML)於空間數據的應用。我們提出

一個索引方式於地理標記語言形式的空間數據。

空間網絡爲其中一種空間數據而有網絡的特質。空間網絡有多方面的應

用，但針對空間網絡數據結構的硏究則不多。我們提出一個數據演算法

名爲連接頁演算法(Connected Page Algorithm, CPA)以群集空間網絡。我

們的實驗發現很多的網絡計算如最短路徑問題(Shortest Path Problem)能省

去於這群集網絡°另外’我們嘗試擴展連接頁演算法之應用於最近鄰查

詢(Nearest Neighbor Queries) °

ii

Acknowledgements

During my M. Phil study I have had many people's support.

First of all, I would like to show my gratitude to Professors C.H. Cheng and

Janny M.Y. Leung. Without their guidance, this thesis cannot be completed.

Also I would like to thank all professors, administrative and technical staff in

the Department of Systems Engineering and Engineering Management. They

provide a good environment and atmosphere for learning and research works

here.

Next, I would like to say special thanks to Jacky Wong, Ada Ng, Lam Ngok,

Ah Kin, Ah Wah since they have helped me a lot in my research work. Also

many people have expressed their concern for me including Ida Hui, Angie

Lim, Gabriel Fung, Fiona Choi, Ah Fan and here I would like to say thanks to

all of them.

Last but not the least, I must thank to my parents for their nourishment and

support.

Fung Tze Wa

June, 2003

iii

Table of Contents

Abstract in English i

Abstract in Chinese i i

Acknowledgements i i i

Table of Contents iv-vi

List of Figures vii-ix

List of Tables x

Chapter 1 Introduction

1.1 Introduction 1

1.2 Motivation 3

1.3 Purposes of this Research 6

1.4 Contribution of this Research 7

1.5 Outline of the Thesis 9

Chapter 2 Literature Review And Research Issues

2.1 Introduction 11

2.2 Spatial Access Methods 14

2.2.1 R-Tree I5

2.2.2 R*-Tree I9

2.2.3 R+-Tree 21

2.3 Spatial Network Analysis 22

2.4 Nearest Neighbor Queries 23

2.5 Summary 25

Chapter 3 Data Preparation

3.1 Introduction (XML, GML), XML indexing 26

3.2 Spatial data from Lands Department 31

3.3 Graph representation for Road Network data.... 32

3.4 Summary 35

iv

Chapter 4 X M L Indexing for Spatial Data

4.1 Introduction 36

4.2 STR Packed R-Tree 38

4.2.1 Implementation 39

4.2.2 Experimental Result 41

4.3 Summary 48

Chapter 5 Spatial Network

5.1 Introduction 50

5.2 CCAM: Connectivity-Clustered Access

Method 53

5.3 Shortest Path in Spatial Network 56

5.4 A New Algorithm Specially for Partitioning

/Clustering Network 63

5.5 A New Simple heuristic for Shortest Path

Problem for Spatial Network 70

5.6 Summary 74

Chapter 6 Nearest Neighbor Queries

6.1 Introduction 75

6.2 Modified Algorithm for Nearest Neighbor

Queries 73

6.3 Summary 83

Chapter 7 Conclusion and Future Work

7.1 Conclusion 84

7.2 Future Work 85

Appendix Space Driven Algorithm

A. l Introduction 87

V

A.2 Fixed Grid 88

A.3 Z-curve 89

A.4 Hilbert curve 90

A.5 Conclusion 91

Bibliography 92

vi

List of Figures
Fig. 1.1 Server side architecture of web server which support

digital map 3

Fig. 1.2 Computer maps are organized into layers. You may treat a
layer as a transparency. Each transparency contains different
aspects of the whole map. Transparencies are stacked on top
of one another to provide needed information 5

Fig. 1.3 By stacking these layers one on top of the other, a complete

map can be built 5

Fig-2.1 The fundamental spatial data types (point, line, polygon) ". . . 12

Fig.2.2 Check these two objects are overlap or not is a complex task. 13

Fig.2.3 The two objects' MBR can determine whether the objects

overlap or not can be checked easily 14

Fig.2.4 False checking by MBR 14

Fig.2.5 RT-PointQuery y j

Fig.2.6 Example of R-tree 18
Fig.2.7 Splitting strategies: overflowing node (a), a split of the

R-tree (b), and a split of the R*tree (c) 20

Fig.2.8 The R*tree reinsertion strategy: insertion of 8 (v overflows)
(a), a split of the R-tree (b), and R*tree forced reinsertion of
4(c) 21

Fig.2.9 The R+tree 22

Fig.3.1 Part of dblp.xml 27

Fig.3.2 Part of dblp.dtd 27

Fig.3.3 A sample GML file 29

Fig.3.3a The line segment represented by the GML file 29

Fig.3.4 Index of the spatial object (line segment) shown in Fig. 3.3... 30

Fig.3.5 RGIOOO Spatial data from HKSAR Government 32

vii

Fig.4.1 Graphical representation of STR Packed R-tree 40

Fig.4.2 Sum of area covered for MBR in different non-leaf level for
b = 3 42

Fig.4.3 Sum of area covered for MBR in different non-leaf level for
b = 5 43

Fig.4.4 Sum of area covered for MBR in different non-leaf level for
b = 10 43

Fig.4.5 Map data from Siu Lek Yuk, Shatin 44

Fig.4.6a Building layer of B20000 45

Fig.4.6b Road Centre Line 45

Fig.4.7a Finding MBRs for 12 spatial objects 45

Fig.4.7b Retrieving the first level non-leaf node 46

Fig.4.7c Retrieving the second level non-leaf node 46

Fig.4.7d Retrieving the third level non-leaf node (root) 46

Fig.4.8a Finding MBRs for 15 line spatial objects 47

Fig.4.8b Retrieving the first level non-leaf node 47

Fig.4.8c Retrieving the second level non-leaf node 47

Fig.4.8c Retrieving the third level non-leaf node (root) 48

Fig.5.1 Node table for CCAM 53

Fig.5.2 Clustering and storing a sample network (key represents
spatial order) 55

Fig.5.3 Linear programming formulation of shortest path problem. • • 57

Fig.5.4 Pseudo Code of Dijkstra's algorithm 58

Fig.5.5 Layered road network from Wong, et al. (2002) 60

Fig.5.6 Hong Kong major roads from traffic department, HKSAR
Government 52

viii

Fig.5.7 Map data from Siu Lek Yuk, Shatin 63

Fig.5.8 The iterations of CPA for partitioning spatial networks 64

Fig.5.9 Tree representation of CPA for partitioning spatial
networks 66

Fig.5.10 An example of CCAM with a page have nodes not all

connected 67

Fig.5.11 Insert new node (m) and arc (XVI) 69

Fig.5.12 Updated tree representation of CPA after node (m) and arc

(XVI) inserted 69

Fig.5.13 Delete node(a), arc(I) and arc(VIII) 70

Fig.5.14 Updated tree representation of CPA after node(a), arc(I)

and arc(VIII) are inserted 70

Fig.5.15 A sample spatial network 71

Fig.5.16 Cluster the network in Region I to IV 72

Fig.6.1 Map data with node and arc index 79

Fig.6.2 Map data with polygon (building) index 79

Fig.6.3 Mapping table for building to node 79

Fig.6.4 Tree representation of CPA for partitioning spatial networks 80

Fig.6.5 Creating the first level in CPA for Fig.6.1 81

Fig.6.6 Comparing the first level in CPA for Fig.6.1 81

Fig.6.7 Comparing the second level in CPA for Fig.6.1 82

Fig.6.8 Tree representation of CPA for partitioning spatial networks 82

Fig.7.1 A webpage which make use of Geotools for spatial data
visualization 86

ix

List of Tables

Table 3.1 Digital Map data used in this research 31

Table 3.2 Node table prepared from RGIOOO spatial data 33

Table 3.3 Arc table prepared from RGIOOO spatial data 34

Table 4.1 Leaf level pages, P and vertical slices, S in different
non-leaf level 40

Table 5.1 Result of calculating shortest path distance from 100 O-D
pairs 59

Table 5.2 Comparison of R-Tree, STR Packed R-Tree, CCAM and
Connect Page Algorithm 75

X

Chapter 1

Introduction

Technology in Relational Database Management Systems (DBMS or

RDBMS) has developed rapidly in the past 20 years. With the advancement of

database technology and algorithms, current database systems can handle

extremely large amount of data and become the core of information systems.

Out of many database implementations, relational databases by far are

the most widely used in the industry. A Relational Database is very efficient in

storing and retrieving "relational" data, for example, account balance and

transactions of customers in a banking company, invoice and customer

information in a logistics company, etc. The application of database

technology has been extended to Data Mining, Spatial Databases, Multimedia

Databases, etc.

1

The capabilities of Spatial Databases have been enhanced from an

traditional approach to store spatial data just for geographic information

systems (GIS) to many real world applications such as web-based digital map

access, map display in Wireless Application Protocol (WAP), i-Mode and

General Packet Radio Service (GPRS) phone or personal digital assistant

(PDA).

Although the application of spatial databases has become common and

is able to satisfy the access needs of most spatial data users, request

improvement in many areas, particularly in spatial indexing mechanism, is still

needed. Most of the spatial data formats are proprietary, (i.e., a data format

structure is not made available to the public and data in a certain format can

only be used by the corresponding software). This limits the advancement in

spatial data storage and also in the spatial indexing method needed to fulfill

individual user's needs. To solve this problem, we will use extensible Markup

Language (XML) format for spatial data storage and retrieval.

Based on XML, we build spatial data and spatial databases. Related

issues such as indexing methods of spatial data, query in spatial networks and

nearest neighbor queries are discussed.

2

1.2 Motivation

To demonstrate the motivation of our research, let us consider one of

the most popular applications of spatial data — web-based digital map access.

The most comprehensive web-based digital maps in Hong Kong are

www.ypmap.com and www.centamap.com.

These two web sites have comprehensive map and related map and

other commercial information for users to search. Although the users may find

information on the websites abundant, they often find that the response time is

exceptionally long.

Ql^nf PC W€t Application Smtr S>au
fmprrrs i Server 人 一

� ' � ‘ fciii^f、 I N I 1
I., m i l l

NipiHiiiMi^ppI State Mgmt
lar ki wnb — H H B

r ' H � 1 — . _ � � � � M a p

Fig. 1.1: Server side architecture of web server which support digital map
[Mapinfo Corporation (2002a)]

3

http://www.ypmap.com
http://www.centamap.com

Fig. 1.1 is a server side architecture of MapXtreme, a product from

Mapinfo Corporation which supports web-based digital map applications

development. This server side architecture is adapted for most web-based

digital map servers. It is mainly divided into the user-needed information

between two servers. Non-spatial data, such as building name and address, are

stored in a database server. Spatial data which is usually in a proprietary

format, such as building polygon, are stored in a map server.

This architecture has several problems, although it is commonly used:

1. The Map Server and Database Server are independent. Simple

spatial queries, for example, locating the map and address of a building by the

building name, must involve the map server, database server and also

application server.

2. The Map server is a file-based server. It can only return the whole

layer that contains the area which the user requests. If the user only wants a

small region for information from many layers, the map server would have to

send many layers to the application server. This increases the workload of the

servers and explains why the response time is often long.

4

/ AugusUk #

/MffsonOty franktoft Richmond 广 , f pOint layer

Fig. 1.2: Computer maps are organized into layers. You may treat a layer as a transparency.
Each transparency contains different aspects of the whole map. Transparencies are stacked on
top of one another to provide needed information. [Mapinfo Corporation (2002b)]

Fig. 1.3: By stacking these layers one on top of the other, a complete map can be built.
[Mapinfo Corporation (2002b)]

5

1.3 Purposes of this Research

Our objective is to increase the efficiency of spatial databases.

Specially, we attempt to deal with the following issues:

1. Since most spatial data formats are binary and proprietary, many

spatial indexing mechanism cannot directly be used in existing and real

spatial data, for example, digital map data from Lands Department,

HKSAR Government, (http://www.info.gov.hk/landsd/) (Lands

Department only provide .eOO, ASCII, DGN and DXF which can only

open by ESRI (http://www.esri.com), Integraph

(http://www.intergraph.com/) or AutoCAD (http://www.autocad.com)

products. For TIFF format, it can be opened by any imaging software

but it is only a graphic, not spatial data.) This thesis would try to

convert those real spatial data to Geography Markup Language (GML),

an extension of extensible Markup Language (XML), so that the

existing and new spatial indexing mechanism can be built on real

spatial data.

2. The characteristics of XML are openness and vendor-neutrality. It is in

text format and self-explanatory. So GML spatial data can be stored in

any file or database systems. Therefore, when the user would need to

6

http://www.info.gov.hk/landsd/
http://www.esri.com
http://www.intergraph.com/
http://www.autocad.com

query a GML map with address, i.e. spatial and non-spatial

simultaneously, only one database system is needed.

3. For applications (such as finding Shortest Path, solving Vehicle

Routing Problem, planning electricity, water and drainage systems,

etc) in Hong Kong, graph representation (i.e. node and arc) is needed.

Although these graph information is not available from Lands

Department, HKSAR Government, these graph mformation(e.g. road

network in Hong Kong) can be retrieved by Geography Markup

Language (GML). Other problems, such as Nearest Neighbor Problem,

can also be studied in GML spatial data.

1.4 Contribution of this Research

This thesis mainly focuses on XML indexing for spatial data. To the

best of our knowledge, this is the first work to deal with this issue. Our work

contributes to the literature in the following ways:

1. Through extensible Stylesheet Language (XSL), XML documents may

be transformed to a format suitable for display in different devices,

such as web, Personal Digital Assistant (PDA) and mobile phone. Most

existing application servers can only handle one device. The reason is

that different devices have different displays, resolutions and hardware

7

limitations. (For example, Wireless Application Protocol (WAP) phone

can only receive several KiloBytes in a WAP page.)

2. By converting the digital map data which is in a binary and proprietary

format from HKSAR government to GML format (text format and

vendor neutral), different existing and new spatial indexing mechanism

can be easily applied. In this thesis, spatial indexing mechanisms such

as STR Packed R-tree is implemented with different parameters.

3. Another contribution in this thesis is on spatial network. Although the

road center line (RGIOOO) provided by Lands Department, HKSAR

Government is not in graph representation (node and arc), graph

representation can be retrieved by converting the road center line

(RGIOOO) in GML format. The storage of road center line (RGIOOO) is

not efficient using the existing spatial indexing mechanism for some

network operations, e.g. shortest path queries. A new algorithm called

Connected Page Algorithm (CPA) is introduced. Our modification is

based on the characteristics of spatial network to improve the retrieval

and update of spatial data.

8

1.5 Outline of the Thesis

The remaining chapters of this thesis are organized in this way.

Chapter 2 reviews spatial access methods such as R-Tree, R*-Tree and R+-

Tree. The literature on spatial network and nearest neighbor queries would

also be investigated.

Chapter 3 provides the details on the data studied in this thesis. Digital

Map data from Lands Department, HKSAR Government would be used in this

thesis. Brief illustration of XML, GML and XML indexing is also used to

explain the process of conversion of data format to GML format. Based on the

raw GML data, additional information can be retrieved which is helpful for

spatial indexing and graph representation of spatial network.

Chapter 4 describes the implementation of STR Packed R-Tree in

GML spatial data. It is well-known that STR Packed R-Tree is the most

efficient for storing static general spatial data. However, the experimental

result for spatial storage is good for building polygons, but not the road center

line, i.e. spatial network data. The reason is that spatial network data is inter-

related (the end point of a line segment would also be an end point of another

line segment), so the overlapping situation of non-leaf level in STR Packed R-

Tree is much worse in spatial network data than other general spatial data.

9

Based on the result from Chapter 4’ Chapter 5 will study Connectivity-

Clustered Access Method (CCAM) and a newly proposed algorithm called

Connected Page Algorithm (CPA). A simple heuristic which is specifically

designed for spatial network to try to improve the query time of Dijkstra's

method would also be introduced.

Based on shortest path queries, chapter 6 will extend Connected Page

Algorithm to application of nearest neighbor queries.

The final chapter of this thesis concludes with questions we are dealing

with and research findings. Our previous work on web-based digital map is

discussed and future research directions will be outlined.

10

Chapter 2

Literature Review and Research Issues

2.1 Introduction

In order to handle spatial data efficiently, as required in computer

aided design and geo-data applications, a database system needs an index

mechanism that will help it retrieve data items quickly according to their

spatial locations.

In this chapter, the literature on index mechanism (or spatial data

access method) would be discussed. Our review is intended to provide an

overview. Detailed discussion on the literature relevant to our work will be

given in subsequent chapters.

11

There are three fundamental spatial data types, illustrated in Fig 2.1,

namely points, lines, and polygons. Points represent an object (e.g. lamp).

Line segments represent a road segment, electrical wire, etc. Polygons

represent a building or structure.

• (•
Fig 2.1 The fundamental spatial data types (point, line, polygon).

Spatial data types have complex structures. Consider, for example, the

line illustrated in Fig 2.1: such a line is represented by a list of connected

points or line segments, but the number of points to represent a spatial object

is not fixed, (e.g. The point object in Fig 2.1 can be represented by one point

coordinates. The line object in Fig 2.1 can be represented by four point

coordinates. The polygon object in Fig 2.1 can be represented by six point

coordinates. For some other complex spatial objects, it may consist of

hundreds of points.) In other words, its representation in a table (according to

the relational model) or a class (according to the object-oriented model) is not

straightforward. Spatial operators (e.g., overlap, within) are also more

computational expensive than the traditional ones (equality, inequality, string

truncation, etc.)

12

Processing spatial queries, such as checking whether two spatial

objects are overlap or not, is very complex. For example, i f we want to check

whether the following line segments and polygons overlap or not (Fig. 2.2),

there will be many tedious calculations for comparison, (e.g. We need to

check whether there is any point in the line segment bounded by the polygon

or not.)

Fig 2.2: Checking if these two objects overlap is a complex task.

A generally accepted solution is the method of minimum bounding

rectangle (MBR), which is the smallest rectangle with axis-parallel sides that

completely covers the object. According to that, any n-dimensional object is

approximated by 2n numeric values, corresponding to the lower-left and

upper-right corner (or lower-right and upper-left comer) coordinates. In this

thesis we only study 2-dimensional objects. Fig 2.3 is an example of using

MBR to check whether two objects overlap.

13

Fig 2.3: The two objects' MBR can determine whether the objects overlap or not can be
checked easily.

Some situations make MBR produce a wrong test result. Fig 2.4

illustrates one such example:

I 厂

Fig 2.4: False checking by MBR

Although MBR approximations cannot guarantee the relationship of

two spatial objects, it can avoid excessive spatial calculations. The literature

discusses in this thesis uses MBR as basis to develop spatial access methods.

2.2 Spatial Access Methods

spatial Access Methods include space driven algorithms and data

driven algorithms. In this chapter we review data driven algorithms as the

research direction of this thesis concentrates on data driven methods. In

14

appendix we review some space driven algorithms as some applications use

space driven algorithms for storage and query of spatial data.

2.2.1 R-Tree

One of the first access methods created to support extended objects is

Guttman's R-tree [Guttman (1984)]. The R-tree is a height-balanced tree

which is the natural extension of the B-tree for k-dimensions. Objects are

represented in the R-tree by their minimum bounding rectangle (MBR). R-tree

is characterized by the following properties:

1 • Every leaf node contains between m and M index records, unless it is

the root (where m < MIT).

2. For each index record (/, tuple-identifier) in a leaf node, I is the

minimum bounding rectangle that spatially contains the k-dimensional

data object represented by the indicated tuple.

3. Every nonleaf node has between m and M children, unless it is a root.

4. For each entry (I, child-pointer) in a nonleaf node, I is the minimum

bounding rectangle that spatially contains the rectangles in the child

node.

5. The root node has at least two children, unless it is a leaf.

6. All leaves appear on the same level.

15

7. All MBRs have sides parallel to the axis of a global coordinate system.

In order to efficiently process spatial queries, one needs specific access

methods relying on a data structure called an index.

Each node in the tree corresponds to a disk page. A leaf node consists

of a number of entries with format (/, tuple-id), where I is an MBR, and tuple-

id is the unique identifier for the tuple in the database holding the object

corresponding to that MBR. I is represented as / = (/q ’...’/�,_i)�where /,. is a

closed, bounded interval [a，b] along direction i.

Nonleaf nodes are composed of a number of entries of the format (/,

child-pointer) where I is the MBR for all rectangles in the lower node entries

pointed to by child-pointer. Each node in the tree can have a maximum of M

entries and a minimum m (where m<M/2) entry, unless it is the root. The

root node has at least two children, unless it is a leaf.

Point and range queries can be processed in a top-down recursive

manner on R-tree. The query point (or region) is tested first against each entry

(/, child-pointer) in the root. If the query point is inside (or query region

overlaps with) I, then the search algorithm is applied recursively on entries in

the R-tree node pointed to by the child-pointer. This process stops after

reaching the leaves of R-tree. The selected entries in leaves are used to retrieve

the records.

16

The PointQuery algorithm (Fig. 2.5) with an R-tree is given as follows.

RT-PointOuerv (P:point): set (oid)

begin
result =伞

// Step 1: Traverse the tree from the root, and compute SL, the
// set of leaves whose dr contains P
SL = RtreeTraversal (root, P)
// Step 2: scan the leaves, and keep the entries that contains P
for each L in SL do

II Scan the entries in the leaf L
for each e in L do

if (e.mbb contains P) then result += {e.oid}
end for

end for
return result

end

Fig. 2.5 RT-PointQuery

The window query algorithm is a straightforward generalization of the

point query in which the "contains P" predicate is replaced by the "intersect

W" predicate, where W is the window argument. The larger the window, the

larger the number of nodes to be visited.

Search performance depends on two parameters: coverage and

overlap. Coverage of a level of the tree is the total area covered by all MBRs

of all nodes at that level. This way, coverage is an indirect measure of dead

space area, or empty space covered by the tree. Overlap of a level of the tree is

the total area of space covered by more than one rectangle associated with

nodes at that level. Overlap may make it necessary to visit more than one node

of the tree to find an object. This problem associated with the R-tree means

17

that a worst case performance of search operations cannot be estimated, even

i f an attempt is made to minimize overlap.

The following example illustrates the indexing of spatial objects.

Example of R-tree with M=4:

Inserting point 1:

R

U R:p l

Inserting point 2:

r R
D r —

pl，p2
R:p l ,p2

c

Inserting point 3:

“ R
0 R:p l ’p2,p3 p l，p2 ’p3

g

Inserting point 4:

0 R:pl ,p2, p3,p4 p i , p2, p3, p4

g

18

Inserting point 5:

Rl: p i , p4, p5
n R
J R: R1,R2
d l R1,R2

p— R1 R2
C R2: p2, p3

pl,p4, p5 p2, p3

Fig. 2.6: Example of R-tree

2.2.2 R*Tree

R*tree [Beckmann, et al. (1990)] is a variant of R-tree and it supports

several improvements to the insertion algorithm. Essentially, these

improvements aim at optimizing the following parameters: (1) node

overlapping, (2) area covered by a node, and (3) perimeter of a node's

directory rectangle.

The R-tree split algorithm first initializes the two groups with the two

entries that are as far as possible from each other, then assigns each of the

remaining entries to a group. The R*tree approach is different in the sense that

it assumes the split to be performed along one axis (say, horizontal), and

explores all possible distributions of objects above or below the split line. Fig

2.7 illustrates the difference between R-tree and R*Tree

19

1 1 1 1

I r— 1 I

I—I I _ I
n � I rr 1

• n n p i d ^ g • I
L ^ DJ [-让-十…」ril l i d

(a) (b) (c)

Fig 2.7: Splitting strategies: overflowing node (a), a split of the R-tree (b), and a split of the
R*tree (c)

Another improvement of R*tree is the forced reinsertion algorithm.

The insertion order can dramatically influence the quality of the R-tree

organization. R*tree tries to avoid the degenerated cases by reinserting some

entries whenever a node overflows.

Assume (see Figure 2.8) that rectangle 8 is inserted in the tree of (a).

Node V overflows, and the R-tree split algorithm w i l l only perform a local

reorganization with a rather important node overlapping (b). The R*tree tries

to avoid splitting by reinserting the rectangles in node v and finds that

removing of rectangle 4 in node v can save a lot of dead space in node v. The

reinsertion algorithm proceeds as follows:

• Remove 4 from node v.

• Compute the new bounding box of node v.

• Reinsert 4, starting from the root, and insert in node u.

• Now entry 8 can be inserted in node v, and no split occur.

20

vj ~~「 V W I V「丨
i 4 , - 4 L " u 4 L l j ~

• = t 二 � - [z 二
j U--… j I:: u I —
P 8 P 8 t p l
I I I I I |_| I [I |_J I

(a) (b) (c)

Fig 2.8: The R*tree reinsertion strategy: insertion of 8 (v overflows) (a), a split of the R-tree
(b), and R*tree forced reinsertion of 4 (c).

2.2.3 R+ Tree

In R+tree [Sellis, et al. (1987)], the directory rectangles at a given level

do not overlap. This has as a consequence that for a point query a single path

is followed from the root to a leaf. R+tree is defined as follows:

• The root has at least two entries, except when it is a leaf.

• The directory rectangle (dr) of two nodes at the same level cannot

overlap. The point query performance benefits from the

nonoverlapping of dr.

• If node N is not a leaf, its dr contains all rectangles in the subtree

rooted at N.

• Two dr in the same level cannot be overlapped. If a spatial object

covers two or more drs, this spatial object will be indexed in all drs

that this spatial object covered.

21

• A rectangle of the collection to be indexed is assigned to all leaf nodes

the drs of which it overlaps. A rectangle assigned to a leaf node N is

either overlapping N.Jr or is fully contained in N.Jr.

Figure 2.9 illustrates an R+tree. Note that objects 8 and 12 referenced

twice. Object 8 is overlapping leaves p and r, whereas object 12 is overlapping

leaves p and q. Note also that both at the leaf level and at the intermediate

level, node drs are not overlapping.

S i ： f �

r n r t t r j i
^ " " " [1-2,5,6] [3,4,7] [14] [8,11,12] [12,13] [8,9,10]

畔 I 「 a b

Fig 2.9: The R+tree

2.3 Spatial Network Analysis

A spatial network is one type of spatial data which consists of network

relations. Applications of spatial network include transportation networks,

drainage systems, electricity systems, etc. In addition to the ordinary insert,

22

update and query operations in spatial data, a spatial network also includes

shortest path queries and other network related operations.

[Shashi, et al. (1997)] has evaluated Connectivity-Clustered Access

Method for Networks and Networks Computations (CCAM). Shashi defines a

spatial network as follows:

"A spatial network is a special kind of graph, with nodes located in a

two-dimensional or three-dimensional Euclidean space. Unlike raster and

vector area, spatial network data is characterized by rich connectivity. A

spatial network G = (N, E) consists of a node set N and an edge set E. Each

element u in N is associated with a pair of real numbers (x, y) representing the

spatial location of the node in an Euclidean plane. Edge set E is a subset of the

cross product N*N. Each element (u, v) in E is an edge that joins node u to

node V. There are attributes associated with the nodes and edges."

Details of CCAM are illustrated in Chapter 5. The major research

contribution of this thesis is also related to spatial network.

2.4 Nearest Neighbor Queries

Nearest Neighbor Queries is an important application in geographical

information systems. For example, finding the nearest gas station, car park,

etc. Nearest Neighbor Queries is also essential in delivery planning systems

23

such as finding the nearest depot to deliver the product to particular customer

and determine the nearest parking place to deliver the product to the customer.

Below is the nearest neighbor queries by R-tree proposed in

Roussopoulos, et al. (1995), Papadopoulos, et al. (1997), Cheung, et. al.

(1998), Tao, et al. (2002).

Define (i)Point P\ the query point

(ii)Rectangle R\ the directory rectangle or minimum bounding

rectangle in R-tree

(iii)Vertex V: the nearest vertex of R from P.

i\\\)Min'distance(P, = 0 if P is inside R or on boundary ofR

Min-distance(P, R) = Euclidean distance between P and

any edge of if P is outside R

(iv)Min-Max-distance (P, R) is the distance of P from the

farthest point on any face of the R containing vertex V

The search algorithm for nearest neighbor starts with the root node of

the R-tree and traverses the tree. For example, a breadth first traversal of the

R-tree will visit MBRs of the children of the interior nodes of current node for

pruning using the above rules. The remaining children will be expanded in the

next iteration. The final iteration will have a set of leaf nodes (database object

level) from the MBRs that survive level-wise pruning. The algorithm will need

24

to compute the distance of each leaf from query point P to determine the

nearest neighbor.

2.5 Summary

In this chapter we have reviewed some representative literature:

(i) Spatial Access Method 一 R-Tree, R+Tree, R*Tree

(ii) Spatial Network Analysis

(iii) Nearest Neighbor Queries

In the following chapters, the above algorithms would be applied to

develop new algorithms.

25

Chapter 3

Data preparation

3.1 Introduction - XML, GML, XML Indexing

extensible Markup Language (XML), according to

www.webopedia.com, is defined as follows: "XML is a specification

developed by the World Wide Web Consortium (W3C). XML is a pared-down

version of Standard Generalized Markup Language (SGML), designed

especially for web documents. It allows designers to create their own

customized tags, enabling the definition, transmission, validation, and

interpretation of data between applications and between organizations."

Here we use an example to illustrate one popular usage of XML and

26

http://www.webopedia.com

illustrate the benefits of using XML:

In http://www.informatik.uni-trier.de/~ley/db/�two files(dblp.xml and

dblp.dtd) are available for download among 380,000 articles. Parts of dblp.xml

and dblp.org are shown in Fig. 3.1 and Fig. 3.2, respectively:

Address � C:\U5ER\seg3560\dblp.xml ‘

<?xml version="1.0" ?>
<1— •n.Tunplc; xnU clocuinent t row db Ip —>
<!DOCTYPE dblp (View Source for Mdocfype…)>

-<dblp>
-<book l<ey="books/dtiv/Schoning93">

<author>Harald Schoning</author>
<tit l6>AnfragevBrarbeitung in KomplBxobjekt-Datenbanksystemen</t i t le>
<publish8r>Deutscher Universitatsverlag</pubiisher>
<year> 1993</y8ar>

</bool<>
-cincollection keys-books /mk/gravQl /Turby f l l lOBQl^

<author>Carolvn TurbvfIII</author>
<author>Cyril U. Orji</author>
<author>Dina Bitton</author>

- < t i t l B >
AS
³
AP: An ANSI SQL Standard Scaloable and Portable Benchmark for Relational Database Systems.

</title>
<pages>167-207</pages>
<year> 199 l</year>
<booktitle>The Benchmark Handbook</booktitle>
<url>db/books/collections/gray91.html#TurbvfillOB91</url>

</incolIection>

Fig 3.1 Part of dblp.xml

< ！ ELEMENT dtolp (aj:ticle| iJiproceedings 丨 proceedings 丨 booJcl incollection|
phdthesis|roastersthesi3| uutj) »>

<！ENTITY H field
"author I editor I tit le IboDktitleI pages I year�address I JournalI volume I iumiber|month|urilee|cdr
<!ELEMENT article (Afield;)*>
<!ATTLIST article

key CDATA R̂EQUIRED
revieuid CDATA #IHPLIED
rating CDATA #IHPLIED

>

<'ELEMENT inproceedings (%field;)»>
<!ATTLIST inproceedings key CDATA #REQUIRED>
<!ELEMENT proceedings (Afield;)*>
<!ATTLIST proceedings key CDATA #REQUIRED>
<!ELEMENT book (Afield;)*>
<!ATTLIST book key CDATA #REQUIREr)>

Fig 3.2 Part of dblp.dtd

27

http://www.informatik.uni-trier.de/~ley/db/%ef%bc%8ctwo

Even a person has little or even no knowledge of XML, he or she can

get the details of particular articles by browsing the dblp.xml files. For

example, according to Fig 3.2, it describes what type of materials is saved in

dblp (articles, inproceedings, proceedings, book, etc.). For each article, it must

contain the key and other fields, such as author, editor, title, etc.

Here we can summarize the benefits of using XML:

• XML is indeed a text file with a structured format possessing self-

described characteristics. The format is described in the corresponding

Data Type Definition (DTD) file. The data stored in a DTD file is also

called metadata.

• Although the storage space would be larger for a XML file than other

binary file, XML is vendor-neutral and XML file can be read and

modified through any text editor. This turns out to be effective in

dealing with the compatibility problem. The storage space problem of

a XML file can be alleviated by using some compression mechanism.

Geography Markup Language is "an XML encoding for the transport

and storage of geographical information, including both spatial and nonspatial

properties of geographic features" [GML]. It is a recommended standard to

encode or mark up spatial and nonspatial information in XML format by

OGC. GML provides a standard way to encode spatial features, feature

properties, feature geometries, and the location of the feature geometries based

on a standard spatial data model.

28

Fig. 3.3 is a sample GML file that is extracted from Lands Department,

HKSAR Government:

<?xml version='1.0' encoding='UTF-8'?>
<dataset xmlns="http://www.safe.com/xml/namespaces/fmegml2"
xrnIns:fme="http://www.safe.com/xmI/namespaces/fmegml2"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation=''http://www.safe.com/xml/schemas/fmegml2.xsd">
<schemaFeatures>
<gml:featureMember>
<Feature>
<featureType>30</featureType>
〈property fme:name="igds_class">fme 一 decimal(5，0)</property>
〈property fme:name="igds_color">fme_decimal(5,0)</property>
〈property fme:name=’’igds_graphic_group">fme_decimal(5，0)</property>
〈property fme:name="igds_style">fme_decimal(5,0)</property>
<property fme:name="igds_weight">fme_decimal(5,0)</property>
c/Featuro
</gml:featureMember> —
</schemaFeatures> (838920.253,827495.65)
<dataFeatures>

<gml:featureMember> (838943.247,82748rn^
<Feature> \
<featureType>30</featureType> \
�property fme:name="igds_class">0</property> (838954.949,827461.57)
〈property fme:name="igds_color">l</property>
〈property fme:name="igds_graphic_group">0</property>
〈property fme:name="igds_style">0</property> Fig 3.3a: The line segment
〈property fme:name="igds_weight">0</property> represented by the GML file.
<property f me:name= "gml2_coordsys "></property>
<gmI:lineStringProperty>
<gml:LineString gml:srsName=""><gml:coordinates>838920.253,827495.65,0
838943.247,827483.115,0 838954.949,827461.57,0</gmI:coordinates></gml:LineString>
</gml:lineStringProperty>
</Feature>
</gml:featureMember>
</dataFeatures>
</dataset>

Fig 3.3: A sample GML file

In Fig 3.3, the GML file contains only one linestring (i.e. line) that is

composed of three points (i.e. (838920.253,827495.65),

(838943.247,827483.115), (838954.949,827461.57)). The graphical

representation of this line string is in Fig 3.3a.

29

http://www.safe.com/xml/namespaces/fmegml2
http://www.safe.com/xmI/namespaces/fmegml2
http://www.opengis.net/gml
http://www.w3.org/2000/10/XMLSchema-instance
http://www.safe.com/xml/schemas/fmegml2.xsd

In search, query, and update of a GML file, the searching time will be

quite large (0(n)) if no indexing is used. (This is because we need to compare

one by one of each spatial object stored for query or update. Hence, we need

an index scheme in the GML file to facilitate the spatial index method as

mentioned in Chapter 2.

By finding the minimum bounding rectangle (MBR) of each spatial

object, we can make index for each spatial object, for example, the index of

the object represented in Fig 3.3 is as follows (Fig. 3.4):

<featureMember>
<linestring_key>lkl4806</linestring_pk>
<Box>

<min_x_coord>838920.253</min_x_coord>
<max_x_coorci>838954.949</max_x_coord>
<min_y_coord>827461.57</min_y_coorci>
<max_y_coord>827495.65</max_y_coorcl>
<centre_x>838937.601</centre_x> “
<centre_y>827478.610</centre_y>

</Box>
<start_x>838920.253</start_x>
<start_y>827495.65</start_y>
<end_x>838954.949</eiid_x>
<end_y>827461.57</end_y>
<absolute_distance>48.634</absolute_distance>
〈relative 一 distance>48.634</relative 一 d i s t a n c e 〉

</featureMember>

Fig 3.4: index of the spatial object (line segment) shown in Fig 3.3

In the index, it contains the following items:

(i) linestring_key: a unique spatial object key, e.g. Ik 14806

(ii) Box: minimum bounding rectangle (MBR) with lower-left, upper-

right and center coordinates

30

(iii) Coordinates of two end-points

(iv) Distance of the line string and distance of the two end points

The above index can be used to search (i) a unique key and (ii) by

coordinates key. (e.g. by any data-driven algorithm such as R-Tree)

3.2 Spatial data from Lands Department

This thesis uses the real spatial data from Lands Department, HKSAR

Government. Table 3.1 is the table showing the geographical data from Lands

Department.

Code Name Scale Area purchased

B20000 Digital Topographic Map 1:20000 Whole Hong Kong area
Database (16 sheets)

BGIOOO Geo-Reference Database - 1:10000 7SE, 7SW, 7NE’ 7NW,
Building Name and Address USE, 11SW’ 11NE,

I I N W ‘ ‘
SGI000 Geo-Reference Database — 1:10000 7SE, 7SW, 7NE, 7NW,

Site Polygon USE, l l ' sw , ' I I N ^
I I N W

RGIOOO Geo-Reference Database - 1:10000 7SE, 7SW, 7NE, 7NW,
Road Centre Line USE, I ISW, ‘ I INE,

I I N W
Table 3.1: Digital Map data used in this research
(Ref: http://www.info.gov.hk/landsd/mapping/web/page/d_m_prod_new.htm)

The data format provided by Lands Department are all in proprietary

format.

(http://www.info.gov.hk/landsd/mapping/web/page/d format new.htm)

31

http://www.info.gov.hk/landsd/mapping/web/page/d_m_prod_new.htm
http://www.info.gov.hk/landsd/mapping/web/page/d

We use Feature Manipulation Engine (FME)

(http://www.safe.com/products/fme/index.htm) to convert the data from

Arclnfo Ungenerated format(.eOO) to Geography Markup Language (.xml).

3.3 Graph representation for Road Network data

One type of data available in Lands Department is road centre line

(RGIOOO). Fig. 3.5 is an example.

y ^ Region 7 and 11

i g
Fig 3.5: RGIOOO Spatial data from HKSAR Government

The data format of RGIOOO is in linestring (line) format. It stores all

the line data like the format shown in Fig. 3.4. Indeed RGIOOO contains the

32

http://www.safe.com/products/fme/index.htm

road network data and we can make network operations on it. But it do not

contain the necessary information for network operations such as nodes and

length of linestring. We cannot effect network operations on it directly.

However, we can retrieve the network representation of RGIOOO

spatial data as following node and arc table (Table 3.2 and Table 3.3):

Primary X_Coord Y_Coord Fore ign~ No. of Connected
Key of Key for Node or not
Node Road Connected

_0 830000.000 823316.956 0 1 l
~ r ~ 830000.000 823331.336 1 1 1 —
2 "830000.000 823351.209 2 " l 1

T " "S^OOO.QOO "^3483.587 T T ~ T ~
T " 830000.000 823513.003 4 1 | 1

13792 845000.000 832203.152 | 34168 1 | 0
13793 845000.000 832221.393 丨 34169 1 Q

(total 13794 records in node table)
Primary Key of Node: Unique key of each node (end point of line segment)
X_Coord: X-Coordinates of node
Y一Coord: Y-Coordinates of node
Foreign Key for Road: Set Relations to the primary key in the road table
No. of Node Connected: This column store the no. of arc connected with this node
Connected or not: This column stores whether this node is connected with the major road
network or not.

Table 3.2: Node table prepared from BGIOOO spatial data

33

Primary Primary X_Coord of Y_Coord of X_Coord of Y_Coord of Absolute path
Key of Key of Start Node Start Node End Node End Node distance length
Start End
Node Node

"o 103 "830000.000 "823316.956 "830104.688 823349.207 " 109.543 109.643
J 141 830000.000" 823331.336" 830187.380" 823424.39?" 209.215 213.177
2 98 830000.000 823351.209" 830096.751— 823378.116 100.423 100.423

_3 362 " ^ 0 0 0 . 0 0 0 "823483.587 " ^699 .882 " ^ 6 3 4 . 4 8 1 715.964 112.11f
~ 4 ~ 75 830000.000 823513.003 830054.567 823537.665 59.881 60.200

"13792 13734 845000.000 832203.152 844968.833 832160.401 52.906 55.512
"13793 13653 845000.000 832221.393 844859.687 832221.758 140.313 198.639

(total 34170 records in arc table)
Primary Key of Start Node: Unique key of start node (end point of line segment)
Primary Key of End Node: Unique key of end node (end point of line segment)
X_Coord: X-Coordinates of start node
Y_Coord: Y-Coordinates of start node
X_Coord: X-Coordinates of end node
Y_Coord: Y-Coordinates of end node
Absolute distance: the distance between two end points in metres
Path length: the length of the road

Table 3.3: Arc table prepared from BGIOOO spatial data

Since RGIOOO data do not contain the directed information (one-way

or two-way road), we assume all the arcs are undirected (two-way road) and

we formulate the directed network by duplicating an arc with swapping of start

node and end node. Therefore, we have 17085 (no. of records of RGIOOO in

our studied area) x 2 = 34170 arcs.

We would use the above real spatial data for trying different spatial

data access algorithms in the following chapters. The major different of this

proposed indexing mechanism is that it can be use for spatial query as it has

the Minimum Bounding Rectangle (MBR) in each index page and also the

34

primary key of each spatial object which can be used for mapping of non-

spatial data such as building name and address.

3.4 Summary

In this chapter, we discussed how to prepare data in a format suitable

for our research. Spatial data will be represented in GML, that is a variant of

XML. An index scheme is also defined for quick accesses.

35

Chapter 4

XML Indexing for Spatial Data

4.1 Introduction

In the previous chapters we have described the existing vendor-specific

spatial data formats. They are not suitable for the study of our spatial access

methods. By converting those vendor-specific spatial data formats to vendor-

neutral Geography Markup Language [GML], we would be able to develop

and study spatial access methods in this chapter.

The spatial access method algorithms presented in chapter 2 for

inserting entries in an R-tree, R*-tree, R+-tree are dynamic in the sense that

36

they enable concurrent insertions and deletions in an already existing R-tree.

However, the evolution of the structure over time does not allow one to

optimize the space utilization and thus might lead to a degradation in

performance as a number of insertions and deletions has been performed.

In the static case, when the collection of rectangles is stable over time,

one can pre-process the data before creating an associated R-tree. Several

algorithms, called packing algorithms, have been proposed for a R-tree. The

packed R-tree is described below [Leutenegger, et al, (1996)]:

1 • Preprocess the data file so that the r rectangles are ordered in「r/Z?

consecutive groups of b rectangles, where each group of b is intended

to be placed in the same leaf level node. Note that the last group may

contain fewer than b rectangles.

2. Load the「,"/?] groups of rectangles into pages and output the (MBR,

page-number) for each leaf level page into a temporary file. The page

numbers are used as the child pointers in the nodes of the next higher

level.

3. Recursively pack these MBRs into nodes at the next level, proceeding

upwards, until the root node is created.

37

4.2 STR Packed R-Tree

STR Packed R-Tree is a Packed R-Tree with a specific sorting order.

The following is the description of STR Packed R-tree [Leutenegger, et al.

1996]:

"Consider a k-dimensional data set of r hyper-rectangles. A hyper-

rectangle is defined by k intervals of the form [A,.,5J and is the locus of

points whose i-th coordinate falls inside the i-th interval, for all 1 < / < .

STR is best described recursively with k = 2 providing the base case.

(The case k = I is already handled well by a regular B-tree.) Accordingly, we

first consider a set of rectangles in the plane. The basic idea is to "tile" the

data space using y[r/n vertical slices so that each slice contains enough

rectangles to pack roughly nodes. Once again we assume coordinates are

for the center points of the rectangles. Determine the number of leaf level

pages /» =「/•//?] and let S = yfp . Sort the rectangles by ^-coordinates and

partition them into S vertical slices. A slice consists of a run of S-b

consecutive rectangles from the sorted list. Note that the last slice may contain

fewer than S-b rectangles. Now sort the rectangles of each slice by ;y-

coordinate and pack them into nodes by grouping them into runs of length b

(the first b rectangles into the first node, the next b into the second node, and

so on).

38

The case k>2 is a simple generalization of the approach described

above. First, sort the hyper-rectangles according to the first coordinates of

“ A z i .
their center. Then divide the input set into S = P ^ slabs, where a slab

“ k ~ l ‘

consists of a run of b . � � • consecutive hyper-rectangles from the sorted

list. Each slab is now processed recursively using the remaining k - 1

coordinates (i.e., treated as a k - 1-dimensional data set)."

The following section illustrates the implementation of STR Packed R-

tree for spatial data.

4.2.1 Implementation

We use the data shown in Fig 3.5 (Road Centre Line, RGIOOO of

Region 7 and 11. The data cover the whole Kowloon Peninsula and more than

half of Hong Kong Island). We prepare the index of the data as the structure

shown in Fig 3.4.

The parameters which are needed for applying STR Packed R-tree

include:

1. The total number of line string in RGIOOO of Region 7 and 11 are

17085，i.e. r = 17085;

2. It is a 2-dimensional data, i.e. k = 2;

39

3. Assume that 3 objects are saved in a directory rectangle, b = 3;

4. Number of leaf level pages, P = [r/Z?] =「17085/3] = 5695 ；

5. Number of vertical slices, S = = a/5695 =76.

To recursively pack the MBRs to next level, we have the following leaf level

(Table 4.1):

r = 17085, k = 2,b = 3

Non-leaf Level 1 2 3 4 5 6 7 8
P 1899 m 7 l ~ ~ 24 8 — " 3 ~ ~
S I 76 I 44 I 26 I 15 | 9 5 3 | l ~ ~

Table 4.1: Leaf level pages, P and vertical slices, S in different non-leaf level

Tree representation of our experiment is shown in Figure 4.1 (for b = 3):

Non-leaf level 8

Non-leaf level 7

N。n- le� level 6 ^ • • [^ b i D t]

'' / J \ /!、、、 /]、、、
Non-leaf level 1 p D b t l 6 b

二 二 66bJ\3lD
Fig 4.1: Graphical representation of STR Packed R-tree

We implement the STR Packed R-tree in Java 1.3.1 with operating

system Redhat 7.2 running on a desktop computer. The configuration of the

40

computer is AMD Duron 1.1 G CPU, 256MB SD-RAM with an IBM 9.1G

SCSI Harddisk.

4.2.2 Experimental Result

As it is mentioned earlier, the data we study cover the whole Kowloon

Peninsula and more than half of Hong Kong Island. This area consists of the

most urban area of Hong Kong although it only covers about one-eighth of the

whole territory. The region ranges from x-coordinates with (830000 - 845000)

and y-coordinates (812000 - 836000). The coordinates system using is Hong

Kong 1980 Grid System and the distance can be easily calculated by this

coordinates system. For example, suppose we have two points (830000,

812000) and (845000, 836000) and we want to find the distance between the

two points.

We may use Distance Formula (based on Pythagorean Theorem).

Hence, the Cartesian distance d is

= ^li^a-xJ + {y„-yoy

= V(845000 - 830000)' + (836000 - 812000)'
= 28301.94 (meters)
= 28.3 (kilometers)

41

The area we study is

= 1(845000 - 830000)* (836000 -812000)|
n

= 3.6 X 10 (sq. meters)
= 360 (sq. kilometers)

Fig. 4.2 is the sum of the area of the minimum bounding rectangles (MBR) in

non-leaf level for STR Packed R-Tree for Z? = 3: (The blue or upper line is the

sum of area of MBR. The pink or lower line is the whole area (i.e. 360 sq. km)

for the sample data. (i.e. The total sum of MBR in the non-leaf level with more

than 360 sq. km means the overlapping of MBR).

8.00E+08 T�——� �

7.00E+08 ^ — — Z 令 尊 ： ^

6.00E+08

5.00E+08 - _ _ ‘ ― _ _ _

4.00E+08 - _ _ ！ ： \

3.00E+08 ： ^ ~ — - — — _ _ _ • • • • . •：

2.00E+08 - ： . ： ~ ~ ~ — ^ — — _ _ _ .1: •• • ： - “ ： • “ •：

1.00E+08 —
• ’ • . . • I “； ,• '•• ‘ , . •： . 、 ‘

0.00E+00 - I — , 1 • , ~ ~ T - ~ ^ — — - r — ~ -J
Le\al Level Level Le\^l Le\«l Level Levsl Level Root

1 2 3 4 5 6 7 8

Fig 4.2: Sum of area covered for MBR in different non-leaf level for b = 3.

42

7.00E+08 I J i S f ^ S 纖 娜 驢 】 术 發 淑 — 力 禅 W 、 ‘ � , 仏 、 碰 餐 j

Le\^l 1 Leve\ 2 Le\^l 3 Le\je\ 4 Le\^l 5 Lev l̂ 6 Root

Fig 4.3: Sum of area covered for MBR in different non-leaf level for b = 5.

6.00E+08 I I 备 , I 厂 6 ~ A " 、 “ 、 、 ' I 鄉 ，

5.00E+08) • ' �

：：：：：：

Le\^l 1 Le\e\ 2 Le\je\ 3 Le\je\ 4 Root

Fig 4.4: Sum of area covered for MBR in different non-leaf level for b = 10

Fig. 4.2 - 4.4 show the implementation of STR Packed R-Tree with different

b, i.e. different number of spatial objects saved in each non-leaf page. By

increasing b the overlapping area in each non-leaf level would be smaller.

43

Although STR Packed R-Tree is optimized for storage of spatial data, the

overlap of STR Packed R-Tree for RGIOOO data of Lands Department is still

quite large. This indicates that in general STR Packed R-Tree is optimized for

general points and polygon spatial objects which have no inter-relationship.

But for line spatial object which is the element of a spatial network, the MBR

of the line elements overlaps with one another, as most of the line element are

connected. This makes the chance of false query (for details please refer to

Fig. 2.5 in Chapter 2) much larger than other point or region MBR. Let us

illustrate the difference for storage of line spatial objects and other spatial

objects by the following example from our real data (Fig 4.5):

觀
Fig 4.5: Map data from Siu Lek Yuk, Shatin

44

Above region (Fig 4.5) consists of two layers: Road Center Line (RGIOOO)

(Fig. 4.6a) and Building layer (one layer in B20000) (Fig. 4.6b). And we

illustrate the example by only the dotted region:

Fig. 4.6a: Building layer of B20000 Fig. 4.6b: Road Centre Line

Fig. 4.7a-d illustrates for building up the STR Packed R-Tree for Fig 4.6a

(assume b = 3):

‘ 0 0 0 0 0 0 〇 〇 〇 〇 〇 〇

Fig. 4.7a: Finding MBRs for 12 spatial objects

45

^ I P K ^ ‘ o6b dl；^ 66b d\)t)
Fig 4.7b: Retrieving the first level non-leaf node

冬 \ > 》 ； / k k
、义、沙// ‘ 6t)bo'b、o6Dbd、o、o

Fig 4.7c: Retrieving the second level non-leaf node

众 � T V ‘ 6 6 b o V o 6 6 b o ' ^ o

n 軌 y
Fig 4.7(1: Retrieving the third level non-leaf node (root)

46

Fig. 4.8a-d illustrates for building up the STR Packed R-Tree for Fig 4.6b

(assume b = 3):

fia
〇〇〇〇〇000〇〇〇〇〇〇〇

Fig. 4.8a: Finding MBRs for 15 line spatial objects

6Dbd、o、oo|、o、o 6Dbo'b、o

Fig 4.8b: Retrieving the first level non-leaf node

, / i : \ A �
6Dbd、o、odb、o 6Dbd、o、o

Fig 4.8c: Retrieving the second level non-leaf node

47

_ 八
\ x ^ 晨 \

\ z y ^ z z / I I \、、 I \、、 , ' / I I、、、

6t)b(r〇、odb、o oDbdb^o
Fig 4.8d: Retrieving the third level non-leaf node (root)

Fig 4.8a-d show that building up STR Packed R-Tree for line string causes

many overlaps. These overlaps increase the number of false retrieval for

query, delete and update of spatial data. Also, there are many other operations

regarding the traditional spatial query, delete and update, for example,

(l)finding the shortest path from the original to destination in the road network

and (2) finding the nearest neighbor objects along the shortest path. Chapter 5

will describe shortest path queries, nearest neighbor queries and also the new

algorithms for road network spatial data.
4.3 Summary

This chapter discusses STR Packed R-Tree and its implementation in

both ordinary spatial data and spatial network data (i.e. road network). We

concludes the result as follows:

48

1. The overlapping of STR Packed R-Tree in spatial network is quite

serious. This increases the time of query for spatial network data

2. The network operations of STR Packed R-Tree in spatial data are

difficult, as pages in non-leaf level are not connected.

Network operations of digital map data will be further discussed in

chapter 5.

49

Chapter 5

Spatial Network

5.1 Introduction

Spatial Data Accesses such as insert, update and delete are the most

primitive operations in many geographical applications. With the advance of

spatial research, the spatial technology has extended to other areas of practical

applications including Intelligent Transportation System (ITS), Transport

Information System (TIS), Scheduling and Distribution for Vehicle Routing

System, electricity, water and drainage system, etc.

50

Besides simple spatial queries such as finding the location of a

building, many applications also make use of network operations on spatial

data, for example, finding the shortest path in a road network, minimizing the

cost (e.g., the distance traveled) for delivery by vehicles in a road network, etc.

These types of applications are referred to as spatial network applications.

A spatial network refers to a network containing spatial data. The main

difference between a spatial network from other spatial data is that line

segments are usually inter-related. For instance, the end point of one line

segment is also the end point of another line segment. This characteristic is

different from other ordinary spatial data. For instance, building polygon that

is not inter-related. In Chapter 4，we find that the storage of spatial elements of

a spatial network is not as efficient as other ordinary spatial data. Also some

modifications in the access methodology can be made to help improve the

efficiency of spatial accesses needed in accessing a spatial network.

A spatial network is also a network, i.e. it has all the network

characteristics. Algorithms solving shortest path problem, maximum flow

problem, and minimum cost flow problem can be applied to a spatial network

to model the real world problems. One such real world problem may involve

solving traffic congestion. All these applications are developed using spatial

data and help us in route planning, and electricity and drainage systems

planning, etc.

51

On the other hand, applications of a spatial network usually require

more information than that provided by these theoretical algorithms. For

example, the optimal path found by the shortest path algorithm such as

Dijkstra's algorithm can only get the shortest distance and also the index keys

of line segments of the optimal path. However, the user of route planning

would like to have the graphical representation of the optimal path and

probably the nearby buildings to identify the exact locations he/she wants. All

these applications require spatial accesses and nearest neighbor queries (that

will be discussed in Chapter 6).

Indeed for spatial network operations such as finding the optimal path

in a digital map, most existing digital map applications would only retrieve the

corresponding layer and programming developments are needed in application

servers to find the optimal path as well as the nearby spatial objects (refer to

Fig. 1 in Chapter 1 for details). Although it is a generic architecture (i.e., the

spatial database only stores three types of spatial objects: point, line and

polygon), it is not very efficient for complex spatial query operations such as

shortest path queries and nearest neighbor queries.

In the next section of this chapter, we review a connectivity-clustered

access method for networks and network computations [Shekhar, et al.

(1997)]. In Section 3’ we provide the definition of Shortest Path and its

implementation in spatial networks based on the existing spatial access

methods (e.g. STR Packed R-Tree). These techniques are useful in

52

understanding our new algorithm. In Section 4，we propose a new algorithm

called Connected Page Algorithm that is specially for a spatial access method

in a spatial network Section 5 proposes a modified shortest path algorithm that

can be implemented for spatial network.

5.2 Connectivity-Clustered Access Method (CCAM)

Since a line segment in a road network consists of two end points (i.e.,

nodes), CCAM [Shekhar, et al. (1997)] firstly stores the node data,

coordinates, successor list, and predecessor list. A successor list (predecessor

list) contains a set of outgoing (incoming) edges, each of which is represented

by the node-id of its end (start) node and the associated edge cost. The

successor list is also called the adjacency list, and is used in network

computations. The predecessor list is used in updating the successor list in

InsertO and Delete。operations. CCAM refers to the neighbor list of a node x

as the set of nodes whose node-id appears in the successor list or predecessor

list of X. CCAM notes that records do not have fixed formats because the size

of the successor list and predecessor list varies across nodes.

Node
2

• Nid X y Successors Predessors

^ ^ 1 1 (2，5，6) 0
3 • 、 塵

r ^ 1 - … … （ 3 ’ 5) (1)

丄 ^ ^ 丄 1 ⑷ （3)

\ ji • 1 � �
4 6 1 (6) (2’1)

I - - 0 (1,5)
Fig. 5.1 ： Node table for CCAM | | | |

53

Assume that the node relation is physically clustered as shown in Fig.

5.1 according to the value of the node-id and the disk page size is two tuples

for the node relation. In other words, node 1 and 2 share a page. There are two

other pages, one with nodes (3,4) and other with nodes (5,6). This makes one

unsplit edge (1,2) and two split edge (1,5) and (1,6). If the nodes can be

clustered to minimize the number of unsplit edges, then it will reduce the I/O

cost of network operations.

To check the number of split and unsplit edges, a term, called

Connectivity Residue Ratio (CRR) can be introduced:

CRR = Total number of unsplit edges / Total number of edges.

It can be shown that maximizing the CRR will minimize the average

I/O cost of network operations [Shekhar, et al. (1997)]. As an example,

consider the CRR for the example in Fig. 5.1. For pages ((1,2)，(3,4), (5,6)),

the CRR is 3/8 = 0.375. If each page accommodates three nodes, then higher

CRR can be achieved. For example, CRR ((1,2,3), (4,5,6)) is 4/8 = 0.5 and

CRR ((1,5,6), (2,3,4)) is 5/8 = 0.625.

CCAM assigns nodes to the data page by a graph partitioning

approach, which tries to maximize the connectivity residue ratio (CRR). Each

data page is kept at least half full whenever possible. Records of the data file

are not physically ordered by node-id values. A primary index cannot be

created without renaming the nodes to encode disk-page information in the

54

node-id, and it requires additional overhead during update operations.

Therefore, a secondary index can be created on top of the data file with an

index entry for each record in the data file.

If networks are embedded in geographic space, (x, y) coordinates for

each node are also stored in the record. Then a spatial indexing scheme on the

(X，y) coordinates can be used as the s e c o n d a r y i n d e x . This s e c o n d a r y i n d e x

can support point and range queries on spatial databases.
I

/

Key 0 Node 0
Key 1 劣 Node 1
Key 2 v ^ Node 4
Key 3 O C ^ Node 5
Key 4 狐

Keys r ^ r — —
Key 6 , i Node 2

U J - > U J - (l) - ’ - i C) — Key? \ t Node 3
4 r i ！、 1 4 W y f Node 8

「 L “ 14 Key? \ \ / / Node 9
() 0 ’ 丨 i Q l . l 0 2 . 1 - , () 3 ’ 1

1 / 3 T \ 11 I •
r h o ’ o / Q l ’ 。 丄 2,。、、丄 3,0 t A .

8 、.10 I K e y s l ^ i j | Nocle6
Key 9 Node 7
Key 10 s V r Node 12

O Key 11 ^ Node 13
^ Node(x’y) Key 12

Key 13
。 Key 14 Node 10
Sample Network Edge Key 15 - - J J - Node 11

Node 14
I Node 15

LJ I
[

Fig. 5.2: Clustering and storing a sample network (key represents spatial order).

In Fig. 5.2, a sample network and its CCAM are shown. The left half

of Fig. 5.2 shows a spatial network. Nodes are annotated with the node-id (an

integer) and geographical coordinates (a pair of integers). To simplify the

example, the node-id is an integer representing the Z-order of the (x, y)

coordinates. For example, the node with the coordinates (1，1) gets a node-id

55

of 3. The solid lines that connect the nodes represent edges. The dashed lines

show the cuts and partitioning of the spatial network into data pages. There

exists a cut on edge e(u, v) if node u and node v fall into different partitions.

The partitions are (0’ 1’ 4, 5)，(2, 3’ 8, 9)，（6，7, 12, 13)，and (10, 11, 14，15).

The right half of Fig. 5.2 shows the data pages and the secondary index. We

note that the nodes are clustered into data pages by CCAM, using a graph

partitioning approach. Nodes in the same partition set are stored on the same

data page. They are not physically ordered by their node-id values. A

secondary index ordered by node-id is used to facilitate the Find() operation.

The secondary index in this example is a B+ tree on the Z-order of (x, y)

coordinates of each node.

5.3 Shortest Path in Spatial Network

To solve the shortest path problem in a spatial network, firstly we need

to define the problem.

In shortest path problem, we consider a network G = (iV, A) with an

arc length (or arc cost) c". associated with each arc (/，7)6 A. The network has

a distinguished node s, called the source. Let represent the arc adjacency

list of node i and let C = max{c,.. :{i,j)e A\. We define the length of a

directed path as the sum of the lengths of arcs in the path. The shortest path

problem is to determine for every non-source node N shortest length

56

directed path from node s to node i. Alternatively, we might view the problem

as sending 1 unit of flow as cheaply as possible (with arc flow costs as c,..)

from node s to each of the nodes 'm N — [s} in an un-capacitated network. This

viewpoint gives rise to the following linear programming formulation of the

shortest path problem (Fig. 5.3).

Minimize (5.3a)
iiJ>A

subject to

^ {n-\ fori = s
l ^ X i j - L ^ J i = 1 . , , r . (5.3b)

{ j i i j > A } I-1 f o r a l h G A ^ - { s \

>0 for all { i j) e A. (5.3c)

Fig 5.3: Linear programming formulation of shortest path problem

For a spatial network (e.g., a road network), all arc length must be

positive. Hence, all algorithms for shortest path problem can be applied on

spatial network. Some algorithms, such as Dijkstra's algorithm [Dijkstra

(1959)], cannot be applied for solving shortest path problems with negative arc

lengths.

The pseudo code of Dijkstra's algorithm is given in Fig 5.4:

57

algorithm Dijkstra'’
begin

S = 7V;
d[i) := oo for each node i e N-,
d{s):= 0 and pred(s) := 0;
while < «do
begin

let / G 5 be a node for which d{i) = min{^(;): j 6 s};
S:=S\j\i},

S:=S-\il
for each {i,j)e A{i) do

if d{j)>d{i) + Cij then d{j):= d{i) +c^ and
pred{j) := i ；

end;
end;

Fig.5.4: Pseudo Code of Dijkstra's algorithm

We implement the Dijkstra's Algorithm in C Programming Language

(gcc 2.96) with operating system Redhat 7.2 running on a desktop computer.

The configuration of the computer is AMD Duron I . IG CPU, 256MB

SD-RAM with an IBM 9.1G SCSI Harddisk. We randomize 100 origin-

destaination (0-D) pairs and search the shortest path from the above node and

arc table. The result is shown in Table 5.1:

58

Primary Key Primary Key No. of Shortest Path Absolute
of Start Node of End Node iterations Distance Distance
11455 5463 ~ 3930 — 10877.903" 7318.271
10687 "T^893 "TI46.848 594.809
12400 " ^ 8 9 "9850 15351.885 11182.973
4684 ~m475 15370 13410.543 9809.265

7602 4138 5935.353 4509.505
； > 100 records

11368 I 12596 | 1773 丨 6719.771 3501.051~~
11888 I 11337 I 5384 10081.420 | 5638.070 | 」

(total 100 0 -D pairs)
Primary Key of Start Node: Unique key of start node
Primary Key of End Node: Unique key of end node
No. of iterations: No. of nodes visited before finding the shortest path (i.e. S in Fig. 5.4)
Shortest path distance: the shortest path distance of start and end points in metres
Absolute distance: the distance between start and end points in metres

Table 5.1: Result of calculating shortest path distance from 100 0-D pairs

The total iteration for finding these 100 0-D pairs is 708296. And the

total time for finding the 100 0-D pairs shortest path is 2140 seconds. On

average each shortest path would need around 7083 iterations and 21 seconds.

The time complexity of the original implementation of Dijkstra's

algorithm is 0{tr}. Other implementation of Dijkstra's algorithm such as

Fibonacci heap implementation have time complexity 0(m + n log n) but it

needs specific data structure which is different from ours. Other algorithms

such as Floyd-Warshall Algorithm has the time complexity of 0(n勺.Indeed,

to solve the problems in the network with 13794 nodes and 34170 arcs is a

very tedious operation.

59

Some applications which require road networks for their problems

have a different method to deal with this complex problem. Wong, et al.

(2002) try to formulate the layered networks for Hong Kong road network.

Layered network is a directed network G = (N, A) with a specified

source node s and a specified sink node t i f we can partition its node set N into

k layers Nu Ni, ..”N、so that = {s}’ N、= {t}’ and for every arc A,

nodes i and j belong to adjacent layers (i.e., ie iV, and je A/‘,̂ , for some

1 < / < / : - !) . Fig. 5.5 is the graphical representation of the layered network

model used in Wong, et al. (2002):

Main Level

Dummy arcs：^!^. \ � �

Regional Level

Fig. 5.5: Layered road network from Wong, et al. (2002)

In Wong, et al. (2002), the main level layer contains 691 nodes and

1932 directed arcs which cover the main roads for the whole Hong Kong

territory. Other regional level layers contain no more than 200 nodes and 500

directed arcs. This can save many tedious calculations in finding the shortest

60

path in the whole road network by calculating three shortest paths with

hundreds of nodes.

Layered network is a possible solution for managing a large scale

network such as the road network for the whole Hong Kong territory. It can be

also easily applied to existing geographic information system which is

described in Fig. 2 of chapter 1. However, a solution of shortest path problem

in layered network may not be the optimal solution for the original network

since one or more of the connected nodes must be used. The accuracy of

shortest path depends on clustering of the large scale networks and the number

of connected nodes between main level layer and regional level layers.

Another problem to apply layered network is that its design must be

based on the main level layer first. But the determination of which arc should

be contained in the main layer is also a problem: Decrease of the number of

arc in the main layer network can decrease the complexity but also the

accuracy of network operations. For example, applying the following main

level layer (Fig. 5.6) which consists of main roads of Hong Kong territory

with around 50 nodes is also feasible but may not be optimal for network

operations:

61

l̂ iCMB a .MiWIMM - -

Fig. 5.6: Hong Kong major roads from traffic department, HKSAR Government
http://traffic.td.gov.hk/snapshots/eng/index.htni

Also, there is still not a standard layered network design for Hong

Kong road network. (Digital Map RGIOOO data from Lands Department only

divides the data in region, but not in main level and regional level.) To

implement a layered network for Hong Kong road network requires excessive

computations.

In the fol lowing section we wi l l propose a new algorithm which can

easily partition a spatial network such as the Hong Kong road network and the

existing algorithms for network operations can also be easily applied with

slight modifications.

62

http://traffic.td.gov.hk/snapshots/eng/index.htni

5.4 Connected-Page Algorithm (CPA) - A New algorithm

specifically for partitioning/clustering spatial networks

We illustrate the new algorithm by using the area of Siu Lek Yuk,

Shatin (Fig. 5.7). There are totally 12 nodes and 15 arcs in these area. i.e. G =

(N, A) = (12, 15). We name the nodes in order (a, b, ...’ k, 1) and arcs in order

(I , II，...，XV).

.爆
Fig. 5.7: Map data from Siu Lek Yuk, Shatin

Connected-Page Algorithm (CPA) for spatial network partition is

given in the following. We assume that each page can store 4 nodes in

maximum with all arcs connected for the 4 nodes.

Step 1: Randomize choosing a particular node (say (a)), find the nearest three

nodes which is connected to node (a) (i.e. (b), (d) and (e))

63

Step 2: Remove the node (a) and three nearest connected node ((b), (d) and

(e)) in N. N2 stores (b), (d) and (e). Node (a), (b), (d) and (e) and arcs

(I)’（VIII)，（XV) are stored in one page (say Page (1))’ also find the

MBR of the page.

Step 3: Repeat the Step 1 and 2 by choosing a node in Nzfor step 1 until all

nodes are stored in Pages (i.e. N2 = 0)

Step 4: Repeat the step 1 process by assuming the pages created in the

previous level as node in the next level, (Page 1, 2 and 3 created in the

first level are assumed to be three node in second level. And we found

that in second level there are three "page" nodes and six arcs (XIV),

(XIII), (XII)，(XI), (II) and (VI)) until the root node is found.

We use an example to illustrate the function of the algorithm.

Step 1: (first level)

^ ^ / \ Randomly choose a node (say node
W / ^ \ (a))

%
64

Step 2: (first level)

^ y ^ / y ^ c) \ Page 1 stores nodes (a), (b), (d) and
y y / W \ (e) and arc (I), (VIII) and (XV).

N2 stores (c), (f), (i), (j). •
Step 1 and 2: (first level)

V ^ / \ Page 2 stores nodes (i), (j), (k) and
y y / y \ (l) and arc (VII), (IX) and(X).

Z X r c y ^ N2 removes (i), (j)，and add (h).
(j C Le.N2 stores (c), (f) and (h).

Step 1 and 2: (first level)

^y^Z/ \ Page 3 stores nodes (c), (f), (g) and
V (h) and arc (III), (IV) and (V).

^ (N2 removes (c), (f), and (h). I.e.N:
^ ^ ^ ^ ^ ^ 舰 0 .

Page 1 Since all nodes are stored in
^ J ^ s / ^ ' different pages, next iterations will

Page 2 ^ ^ ^ ^ continue in second level

65

Step 4: (second level)

\ Assume Page 1, 2, 3 become
y y ^ y ^ r 、 d u m m y node in the next level, and
y ^ W ^ P a g e ^ ^ then repeat step 1.

\ "Page 4" stores Page 1,2,3 and arc
^ \ \ - y (XIV), (XIII), (XII), (XI), (II) and

^^age x / ^ ^ ^ Since all (dummy) nodes are stored
，next iterations will continue in
third level

Step 1: (third level)
Page 4

~ / / X Since "Page 4" is the root node,
/ / the algorithms can be stopped.

H
Fig. 5.8: The iterations of CPA for partitioning spatial networks

The tree representation of the new algorithm is:

Page 4

Pagel 卜 x - v . ^ Page3
I ^ ^ ^ ^ ^ ^ (XI) ^

I ^ I ^ e V 4) - | ^ ^ ^
~ ‘ 一 (__ (丨 V 、

眷（丨)參(Vll l f (XV)參 參(X)參(丨X)參(VII)着 參(1丨丨)參(V)參 參

(b) (a) (d) ⑷ I |(i) (1) (k) (1)1 1(c) (g) (f) (h)
Fig. 5.9: Tree representation of CPA for partitioning spatial networks

66

The main difference of this new algorithm from CCAM is all nodes in

each page must be connected. CCAM can only find the minimum cut between

the pages but cannot ensure the nodes in the same pages are connected, Fig

5.10 is an example:

» /
cp0’3\、9 丨’3 o2.3 /q3.3 The page for nodes (1,1), (2,1),

\ I (1,0) and (2,0) are not connected.
oo,2 \ r v , 2 ch^'^i r v ’ 2 j j
• 0,1 ,1 d v ’ 丨 门 2 ’ l \ , 门 3 , 1 〇 Node(x, y)

I \
I \

() 0 ’ 0 j / 门 1,0 门 2,0) 3,0 Sample Network Edge

/ \

Fig. 5.10: An example of CCAM with a page have nodes not all connected.

The unconnected nodes within a page make some network operations

failed. For example, if we want to find the shortest path or optimal path

between the node (3,0) to (2,1), we would check the pages which contain these

two nodes, although Page ((3,0), (3,1), (3,2), (3,3)) and Page ((1,1), (2,1),

(1,0), (2,0)) are connected by arc ((2,0), (3,0)). The shortest path or optimal

path could not be obtained by just consider these two pages. The whole

network would need to visit to find the shortest path or optimal path.

But for CPA, all algorithms for network operations can be easily

applied. Let us find the shortest path algorithm for (a) to (1). (This algorithm

can also give the coordinates of origin and destination instead of specifying

the index key of nodes.)：

67

Step 1 ： Check which pages contained the origin and destination:

(i.e. Origin: Page 4(root) -> Page 1，Destination: Page 4(root)->

Page 2)

Step 2: Find the (shortest) path(s) connected for the origin page and

destination page (i.e. arc (XIV) and (XIII)).

Step 3: Find the path which is the shortest for using path (XIV) and (XIII).

(i.e. Check whether (VIII) -> (XIV) -> (IX) -> (VII) or (VIII) -> (XV)

-> (XIII) -> (X) -> (IX) -> (VII)) Then we can find the shortest path is

(VIII) -> (XIV) -> (IX) -> (VII).)

In the remaining section, we discuss insert and delete operations for

CPA:

Insert:

I f a node and corresponding arc(s) are inserted, firstly we need to

check the nearest leaf pages (those pages contain nodes) can accommodate

this new node, if not, then a new leaf page can be created. If only an arc is

inserted, then the arc can be inserted in leaf pages or non-leaf pages. (If a new

page is inserted, updating of arc connection is also needed in leaf pages.)

For example, node (m) and arc(XVI) is inserted (Fig. 5.11)

(arc (XVI) connect node (m) and (a):

68

Fig 5.11: Insert new node (m) and arc (XVI)

The tree representation of CPA will be updated as follows (Fig. 5.12):
Page 4

(YII)

Page > - 、 ^)] Page 3
I x ； ； ; ; ^ 1 — ^ ^ ^ (XI) - y

i i — I

f b) ⑴ ? a r f d r f n j 岡 " ¥ (g) %

Fig 5.12: Updated tree representation of CPA after node (m) and arc (XVI) inserted

Delete:

I f a node and/or corresponding arc(s) are deleted, we need to check

whether the deleted node would change the connectivity within a leaf page and

also the connectivity in non-leaf pages. A leaf page needs to split i f the node in

this page is not connected. If a page is no longer connected with other then this

part of tree would need to move to the root node. (For this reason, a root node

would require to have unlimited node connected.)

For example, node (a), arc(I) and arc(VIII) are deleted (Fig. 5.13):

69

Fig 5.13: Delete node (a), arc (I) and arc(VlII)

Page 4

— — z 广‘一 r � � � �
< " " " " " ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
^ Page 5 Page 1 厂 ^ ^ 夕 _ 、 ^) 二 Page 3
j I — "y ^^^—(XI) — y

i j ^ ^ m n) — - ^ j m - V - ^ , ~ ^
丨 一 — (_ (IV、

(?) f r f e j TR 彻 | f c r ? i y ? f) ？h)

Fig 5.14: Updated tree representation of CPA after node (a), arc (I) and arc (VIII) are inserted

Indeed the insert and delete operation of CFA is quite complicated. But

mostly spatial network would not have frequently changed and it is quite easy

to rebuild the CFA tree after any insert or delete.

5.5 A New Simple heuristic for shortest path problem for spatial

network

70

In this section, we will introduce a new simple heuristic for shortest

path problem by using the characteristics of spatial network based on

Dijkstra's algorithm.

Each spatial object contains coordinates. For finding the shortest path

between two points with coordinates, we can compare the coordinates for

searching.

Fig. 5.15 is an example to illustrate the heuristic by considering the

coordinates of origin and destination node.

B (840288.879,827130.052) 门 P F (840376.112’
' " k / 827062.024)

A (840376.112’ 827062.024) ^ /

E (840450.003, 827039.620)

[J D (840411.859, 827024.420)

C (840210.521, 827001.672)

Fig. 5.15: A sample spatial network

I f we want to find the path from node D to node B in Fig 5.15，by Dijkstra's

algorithm, the path will be D -> A -> B. And the node iterated will be (D, A, E,

B).

However i f we divide the network in four regions where the start node (D) is

the origin:

71

j 门 F (840376.112，
B (840288.879,827130.052) 门 丨 尸 827062.024)

I I \ I / I
A (840376.112,827062.024) V i ： /

E (840450.003, 827039.620)

D j D (840411.859, 827024.420)

C (840210.521,827001.672) I I I ： I V

Fig. 5.16: Cluster the network in Region I to IV

Comparing the coordinates of B and D:

x_coordinates of B - x_coordinates of D = 840288.879 - 840411.859 = -

122.98 (negative)

y_coordinates of B - y_coordinates of D = 827130.052 - 827024.420 =

105.632 (positive)

I f we only expand the shortest path tree in region 2，the path will also be D ->

A -> B. And the node iterated (i.e. S in Fig. 5) will be (D, A, B). i.e. Iteration

of E is saved.

In general, we can start the iteration in a particular region based on following

conditions:

Region I:

X一coordinates of destination node - x_coordinates of origin node = (positive)

72

y—coordinates of destination node - y_coordinates of origin node = (positive)

Region II:

x_coordinates of destination node - x—coordinates of origin node = (negative)

y_coordinates of destination node - y—coordinates of origin node = (positive)

Region III:

x_coordinates of destination node — x_coordinates of origin node = (negative)

y—coordinates of destination node — y_coordinates of origin node = (negative)

Region IV:

X—coordinates of destination node - x_coordinates of origin node = (positive)

y—coordinates of destination node — y_coordinates of origin node = (negative)

In the best case, this heuristic can saved third-fourth of the iterations compared

with traditional Dijkstra's algorithm.

This heuristic uses the same algorithm of Dijkstra's algorithm. But in

searching i in the line "let ie She a. node for which d(i) = mm[d{j): js 5};"

(Line 8 of Pseudo Code of Dijkstra's algorithm in Fig 5.4). The choice of i

would only choose the node in the region specified.

Deficiencies in the heuristic:

73

If we search the path from D to C, the path cannot be found in region

III. In this case, this heuristic fails. Even the path can be found, this heuristic

cannot ensure that the path found is optimal, while the path found by

Dijkstra's algorithm is an optimal path.

5.6 Summary

In this chapter we have proposed a new algorithm - Connected Page

Algorithm (CPA) for storage of spatial networks. This algorithm based on the

connectivity instead of proximity (e.g. STR Packed R-Tree) and we found that

the overlapping area can be saved. CPA is also easier to implement than

CCAM (Connectivity Clustered Access Method) and more suitable for

network operations in spatial network. In the next chapter we would extend

the usage of CPA. A simple heuristic which is based in the characteristics of

spatial network (i.e. each spatial object has the corresponding coordinates) is

also introduced.

Table 5.2 shows the comparison of R-Tree STR Packed R-Tree,

CCAM and Connected Page Algorithm:

74

R-Tree STR Packed CCAM Connected Page
R-Tree Algorithm

Data type Genera丨 General Spatial Spatial
being used spatial data spatial data Network Network

Inserting Dynamic Static Static Static
procedure

Overlap of Many Less overlap — No overlap
non-leaf MBR overlap

Preprocessi No No Yes (network Yes (network
n g o f data representations) representations)

Network No support No support Support Support
computations

Multi-layer Yes Yes No Yes
clustered

Table 5.2: Comparison of R-Tree, STR Packed R-Tree, CCAM and Connect Page Algorithm

75

J

Chapter 6

Nearest Neighbor Queries

6.1 Introduction

Nearest Neighbor Queries is an important application in geographical

information systems. Examples include finding the nearest gas station, car

park, etc. Nearest Neighbor is also essential in delivery planning systems.

Examples include finding the nearest depot to deliver the product to particular

customer and determine the nearest parking place to deliver the product to the

customer.

The following is the nearest neighbor queries by R-tree proposed in

Roussopoulos, et al. (1995), Papadopoulos, et al. (1997), Cheung, et al.

(1998), Tao, et al. (2002).

76

Define (i)Point P\ the query point

(ii)Rectangle R: the directory rectangle or minimum bounding

rectangle(MBR) in R-tree or any other algorithms using

MBR

(iii)Vertex V: the nearest vertex of R from P.

{m)Min-distance(P, = 0 if P is inside R or on boundary of R

Min-distance(P, R) = Euclidean distance between P and

any edge of R if P is outside R

(iy)Min-Max-distance (P, R) is the distance of P from the

farthest point on any face of the R containing vertex V

Min-distance(P, R) represents the lower bound on the distance of any

object inside R from P and it provides an optimistic ordering of subtrees in

nearest neighbor search. Min-max-distance(P, R) guarantees that there is an

object O inside rectangle R in the R-tree such that (0，P) < Min-max-

distance(P, R), and it provides a pessimistic ordering.

Search pruning strategies can be based on these measures, as well. For

example, an MBR M can be eliminated if there is another MBR M' such that

with min-distance (P, M) > Min-max-distance(P, R，). An MBR M can also be

eliminated if there is an object O such that distance (P, O) < min-distance(P,

M). Finally an object O can be eliminated if there is an MBR M such that

distance (P，O) > min-max-distance (P，M).

77

The search algorithm for nearest neighbor starts with the root node of

the R-tree and traverses the tree. For example, a breadth first traversal of the

R-tree will visit MBRs of the children of the interior nodes of current node for

pruning using the above rules. The remaining children will be expanded in the

next iteration. The final iteration will have a set of leaf nodes (database object

level) from the MBRs that survive level-wise pruning. The algorithm needs to

compute the distance of each leaf from query point P to determine the nearest

neighbor.

6.2 Modified algorithm for Nearest Neighbor Queries

We can apply nearest neighbor queries to many situations such as

finding the shortest path from one building to another in Hong Kong, we need

to find the nearest nodes of an origin building and destination building from

the Hong Kong Road Network.

It is a tedious operation if we need to find nearest nodes of origin

building and destination building once we need to find the shortest path of

these two buildings. Some literatures (e.g. [Wong, et al. 2002]) use a mapping

table, i.e. setting many-to-one relationship for buildings to nodes. For

example, Fig. 6.3 is a mapping table for buildings to nodes in Siu Lek Yuk,

Shatin.

78

In Wong, et al. (2002), a distribution and delivery system named

VANS is created. VANS involves to find the vehicle routing solution for

customers address (buildings).

Fig. 6.1: Map data with node and arc index

i i
Fig. 6.2: Map data with polygon (building) index Fig. 6.3: Mapping table for building to

node

79

By using mapping table, if the shortest path from building (1) to (8) is

needed, the shortest path from node (d) to (1) would be found instead.

Based on the new algorithm — Connected Page Algorithm (CPA), we

extend the nearest neighbor queries for CFA to enhance the usage of CFA in

more applications (e.g. mapping the spatial objects such as buildings to the

spatial networks). The name of this extension is Nearest Neighbor in

Connected Page Algorithm (NNCPA).

To illustrate NNCPA, we try to map the building shown in Fig. 6.2 to

the tree representation of CPA (Fig. 6.4).

Page 4

^ ^ ^ ^
Page 1 广、^ ^••^」Page3

I ^ ^ ^ ^ ~ ~ ~ (X I) y
I I ^ ^
^ 一 / _ (丨 V 、

眷 ⑴ 參 (V l l l f (XV)眷 參(X) ® (IX)® (VII)® 鲁(丨丨丨)鲁(V)鲁 眷

Fig. 6.4: Tree representation of CPA for partitioning spatial networks

80

PageK \ P a g e 2 / /

Fig 6.5: Creating the first level in CFA for Fig. 6.1

In generating the first level of CFA (Page 1，2 and 3), we can compare

the Minimum Bounding Rectangle (MBR) of building with the MBR of Page

1，2 and 3. If any MBR of building can be included in any page, those building

will be stored or indexed in that page. Fig 6.6 illustrates this comparison and

indexing:

_

Fig 6.6: Comparing the first level in CPA for Fig. 6.1

In Fig 6.6, we can see the first level CPA page (Page 1, 2 and 3). Page

1 covers building (1). Page 2 covers building (11) and (12). Page 3 covers

building (3). Since other buildings cannot be totally covered by the first level

81

pages, these buildings will be continuously checked in the next level pages

until all buildings are covered and indexed in CPA pages. In this example all

other buildings can be indexed in the next level page, i.e. Page 4. i.e. Building

(2), (4)-(10) are indexed in Page 4.

藝：
Fig 6.7: Comparing the second level in CPA for Fig. 6.1

(2), (4). (5), (6), p i Page 4
(7). (8). (9). (10) 一一一一-|j、、、、、

I • ^m _ mmm m •— — ^ ― _ ^m m —» - ^ ― « hm • tmm ^ ^

(1) Pagel ^ (11),(12) ^ . - 、 ^ (3)) 」 P a g e 3
I (XIV) — ^ w - H (X I)丨 ^ ^ - y
I j m - — z __
： — 乙 (I V 、

鲁 ⑴ 眷 (V l l l f (XV)眷 參(X) ® (IX)® (VII)® 參 (I I I)眷 (V)參 參

Fig. 6.8: Tree representation of CPA for partitioning spatial networks

In solving the shortest path in buildings of NNCPA, the operation is

similar to solving shortest path of nodes in CPA. For example, if we want to

82

find the shortest path from building (1) to building (12), we can find the

indexed pages of building (1) and building (12), i.e. Page 1 to Page (2). Two

paths, (XIV), (XIII) connect Page 1 and Page 2. And now we can choose the

path between (XV) -> (XIII) -> (X) -> (IX) or (XIV) -> (IX) and find the

shortest path between these two paths.

6.3 Summary

NNCPA is suitable for real-time road guidance for vehicles, e.g.

transportation and emergency services. If one road is blocked by traffic

congestion or traffic accident, there are many alternatives to choose which can

also go to the destination. NNCPA is more flexible than just mapping the

buildings to specific nodes and NNCPA can also save many calculations in

network operations for spatial networks with thousands of nodes.

83

Chapter 7

Conclusion and Future Work

In this thesis we address spatial data and spatial databases. Since most

spatial data are in proprietary formats, we propose to use Geography Markup

Language (GML) for indexing scheme for spatial access which can be used in

any spatial data access algorithms.

STR Packed R-Tree [Leutenegger, et al. (1996)] is efficient to store

general point and polygon spatial data. But it is not efficient for line segments.

CCAM [Shekhar, et al. (1997)] focuses on the storage of a spatial

network based on connectivity of spatial network. Based on CCAM, we

propose a new algorithm - Connected Page Algorithm (CPA) for clustering a

84

spatial network. We also illustrate how to extend the capabilities of CPA to

nearest neighbor queries

7.2 Future Work

A spatial network we study in this thesis is in static mode. There are

many real-life problems that is dynamic in nature. For example, a real road

network consists of real time traffic information. To model the real road

network for applications such as real time road guidance, additional

algorithms and heuristics would be needed to develop for spatial network.

Dynamic insert, delete and update of spatial networks are also

important operations in spatial networks. The challenge is not only optimized

the network storage but also the spatial data query.

In this thesis we also deal with the shortest path problem for a spatial

network. There are many other network operations such as traveling salesman

problem, vehicle routing problem, maximum flow problem, minimum cut

problem which can also be applied in a spatial network.

Geotools is one of the open source mapping toolkit for spatial data

which support GML. To make some system implementation for spatial

network, nearest neighbor queries we suggest making use of this toolkit.

Fig. 7.1 shows a webpage which use Geotools for web-based spatial data

visualization.

85

i p y • • 隱 • 删 圓 丨 隱 — — 丨 丨 I

I m « Vtew ^ ^[gaSateSiS

iii^g^Wff"***.•成 I n -

叩 * OJ 且 — 触 j

Fig.7.1: A webpage which make use of Geotoo/s for spatial data visualization
http://www.se.cuhk.eclu.hk/~vans/cu_map/

86

http://www.se.cuhk.eclu.hk/~vans/cu_map/

Appendix

Space Driven algorithms

A.l Introduction

Spatial Access Methods include space driven algorithms and data

driven algorithms. In chapter 2 we have reviewed data driven algorithms as

the research direction of this thesis concentrates on data driven methods. In

this appendix we discuss data driven algorithms. Three data driven algorithms

are introduced: fixed grid, Z-curve, Hilbert Curve.

The grid file was initially designed for indexing objects on the value of

several attributes. Unlike the B-tree, it is a multikey index that supports

queries on any combination of these attributes. Linear structures enable a

87

simple integration with the B+-tree of existing database management systems.

A.2 Fixed grid

In fixed grid [Bentley, et al. (1979), Nievergelt, et al. (1984)]，the

search space is decomposed into rectangular cells. The resulting regular grid is

an n^X n^ array of equal-size cells. Each cell c is associated with a disk page.

Point P is assigned to cell c if the rectangle c.rect associated with cell c

contains P. The objects mapped to a cell c are sequentially stored in the page

associated with c.

A Direjctory.

y I • ! • ! ny
拳

^ •_!_
y - " " r ; ~

i •

y i . • • ^ 1
•

yO Pages 1 • Rx I

xo 众 ” …丨』 . . .I i�kVr
X

Fig. A. l : Fixed Grid

88

vA
J Directory

y3 " ^ p S ^ — — 千 一]
v2 [1 3 ~
yz _ ŷ

mm
y l Data pages ‘ j —

• • • 8,12 … 8,11 11,15
•

0x0 x l x2 x3 \4i

Fig. A.2: A fixed grid for rectangle indexing.

A.3 Z-curve

For Z-curve [Orenstein, et al. (1984)], a label is associated with each

node of the complete quadtree, chosen among strings over the alphabet (0’ 1,

2, 3). The root has for a label the empty string. The NW (respectively, NE,

SW, SE) child of an internal node with label k has for a label 众.0 (respectively,

k.l, k.2, k.3), where denotes string concatenation. Then the cells are labeled

with strings of size d. We can sort the cells according to their labels (in

lexicographic order). For example, choosing a depth d - 3 and ascendant

order, cell 212 is before cell 300 and after cell 21. The ordering NW, NE, SW,

SE justifies its z-order name.

89

i 0.0 i 0.1 1.0 ！ 1.1

0 1 " T Z

—寧.—：：議=
i i I I

Fig. A.3: Z-curve

A.4 Hilbert curve

Hilbert curve likes Z-curve but the shape is n but not Z. Unlike Z-

curve, the Hilbert curve consists of segments of uniform length; that is, we

never have to "jump" to a distant location while scanning the cells (Fig. A.4).

It is easy to see that in both cases there exist some unavoidable situations in

which two objects are close in the 2D space, but far from one another on the

space-filling curve.

“ I ‘ I I I I I
I——i—I i I~i——

I ： I ：

i i i i
•

i I i ；
\ i ! I _ i i

i i
j i 1
I i 1

！ i i i

Fig. A.4: Hilbert curve

90

A.5 Conclusion

In this appendix we have reviewed some space-driven algorithms such

as Fixed Grid, Z-curve and Hilbert curve.

91

. - t

-••J

..Y
•； .

Bibliography

Abel D.，Ooi B. C. (1993). Advances in spatial databases : Third International
Symposium, SSD '93, Singapore.

、”

1 Ahuja R. K.，Magnanti T. L.，Orlin J. B. (1993). Network Flow: Theory,
Algorithms, And applications. Prentice Hall.

Bailey T. C.，Gatrell A. C. (1995). Interactive Spatial Data Analysis, Longman
Scientific & Technical, New York.

/•I
Beckmann N., Kriegel H. P., Schneider R.，Seeger B. (1990). The R*Tree: An

Efficient and Robust Access Method for Points and Rectangles, In
Proc. ACM SIGMOD Intl. Symp. on the Management of Data pages

I 322-331. ,

Bentley J. L.，Friedman J. H. (1979). Data Structures for Range Searching,
ACM Computing Surveys, 11(4), 1979. ’

Bemhardsen T. (2002). Geographic Information Systems, An Introduction,
John Wiley & Sons，Inc., New York. ‘

Bertino E.’ Castano S.’ Ferrari E.，Mesiti M. (1999). Controlled Access and
Dissemination of XML Documents, In Proceedings of 2nd ACM
Workshop on Web Information and Data Management,Kansas City
(Missouri), pp. 22-27.

Cheung K., Fu A. (1998). Enhanced Nearest Neighbor Search on the R-tree.
ACM SIGMOD Record, 27(3): 16-21. ‘

Chou Y.L., Romejin H.E., Smith R丄.（1998). Approximating Shortest Paths
in Large-Scale Networks with an Application to Intelligent
Transportation Systems, INFORMS Journal on Computing, Vol. 10,
No. 2，Spring 1998. ’

Dijkstra, E. (1959). A note on tM>o problems in connexion with graphs,
Numeriche Mathematics 1，pp.269-271.

Eggenhofer M. J., Herring J. R. (eds.) (1995). Advances in spatial databases :
1 4th international symposium, SSD '95, Portland, ME, USA.

Fu L.’ Rilett L.R. (1998). Expected Shortest Paths in Dynamic and Stochastic
Traffic Networks, Transportation Research B, Vol. 32, No. 7，pp. 499-
516.

Garcia R. Y. J., Lopez M. A., Leutenegger S. T. (1998). On Optimal Node

92

Splitting for R-trees, Proc. ofVLDB, New York； USA.

Geotools - open source mapping toolkit from sourceforge.net
http://geotools.sourceforge.net

Graves M. (2001). Designing XML Databases, Prentice Hall, USA. ,

Green D.，Boossomaier T. (2002). Online GIS and Spatial Metadata, Taylor &
Francis, London.

GML . http://opengis.net/gml/01-029/GML2.html, OGC Document
Number: 01-029’ OpenGIS® Implementation Specification, 20
February 2001.

Gunther O.，Schek H. J. (eds.) (1991). Advances in spatial databases : 2nd
Symposium, SSD '91, Zurich, Switerland.

Guting R. F. (1994). GraphDB: Modeling and Querying Graphs in Databases,
Proc. ofVLDB, Santiago, Chile.

Guting R. H.，Papadias D.，Lochovsky F. (eds.) (1999). Advances in spatial
databases : 6th International Symposium, SSD'99 : Hong Kong, China.

Guttman A. (1984). R-Trees: A Dynamic Index Structure for Spatial
Searching, In Proc. ACM SIGMOD Intl. Symp. on the Management of
Data, pages 45-57.

Jagadish H.V. (1990). On Indexing Line Segments’ Proceedings of the 16th
VLDB Conference, Brisbane, Australia.

Jensen C. S., Schneider M.，Seeger B.，Tsotras V. J. (eds.) (2001). Advances in
spatial and temporal databases : 7th International Symposium, SSTD
2001, USA.

Kha D.D.，Yoshikawa M., Uemura S. (2001). An XML Indexing Structure
with Relative Region Coordinate, 17th International Conference on
Data Engineering April 02 - 06，2001.

Kollios G., Gunopulos D.，Tsotras Y. J. (1999). On Indexing Mobile Objects,
in Proc. ACM PODS, 1999.

Leutenegger S.T., Edgington J. M.，Lopez M. A. (1996). STR: A Simple and
Efficient Algorithm for R-Tree Packing, In Proc. IEEE Intl. Conf. on
Data Engineering (ICDE).

Lin H•，Huang B • (2001). SQL/SDA: A Queiy Language for Supporting

93

http://geotools.sourceforge.net
http://opengis.net/gml/01-029/GML2.html

Spatial Data Analysis and Its Web-based Implementation, IEEE
Transaction of Knowledge and Data Engineering (TKDE), July/August,
2001.

Manolopoulos Y.，Theodoridis Y., Tsotras V. J. (2000). Advanced Database
Indexing, Kluwer Academic Publishers, London.

Mapinfo Corporation(2002a). Mapinfo MapXtreme 4.0 documentation
http ://www. mapinfo. com/common/docs/mapxtreme-j ava一 edition-4.0-

dev-pdf-none-eng/MXTJ40DevGuide.pdf

Mapinfo Corporation(2002b). Mapinfo Professional 7.0 documentation
http://www.mapinfo.com/common/docs/mipro/mipro—70 一users .pd f

Minieka E. (1978). Optimization Algorithms for Networks and Graphs,
Marcel Dekker, Inc. New York.

Newton P. W.，Zwart P. R.，Cavill M. E. (1992). Networking Spatial
Information Systems, Belhaven Press, Britain.

Nievergelt, J., Hinterger, H.，Sevick K. C. (1984). The Grid File: An
Adaptable Symmetric Multikey File Structure, ACM Trans, on Database
Systems, 9(1):38-71，1984.

Orenstein J., Merrett T. H.，(1984). A Class of Data Structures for Associative
Searching, In Proc. ACM Intl., Symp. on Principles of Database
Systems(PODS), 1984, pp. 181-190.

Pagel B. U.，Six H. W.，Winter M. (1995). Window Query-Optimal Clustering
of Spatial Objects, PODS 1995: 86-94.

Papadias D.，Theodoridis Y.，Sellis T. K.，Egenhofer M. (1995). Topological
Relations in the World of Minimum Bounding Rectangles: A Study
with R-Trees, In Proc. ACM Intl. Symp. on the Management of Data,
pages 92-103.

Papadopoulos A., Manolopoulos Y. (1997). Performance of Nearest Neighbor
Queries in R-trees, ICDT 1997, pp. 394-408.

The Paradise Team (1995). Paradise: A Database System for GIS
Applications, SIGMOD Conference, San Jose, USA, 1995, pp.485.

Patel J., Yu J.B., Kabra N.，Tufte K.，Nag B.，Burger J., Hall N.，Ramasamy K.,
Lueder R.，Ellmann C.，Kupsch J., Guo S.，Larson J., DeWi t t D. ,
Naughton J. (1997). Building a Scalable Geo-Spatial DBMS:
Technology, Implementation, and Evaluation, SIGMOD Conference,
AZ, USA, 1997，pp.336-347.

94

http://www.mapinfo.com/common/docs/mipro/mipro%e2%80%9470

Peng Z. R.，Tsou M.H. (2003). Internet GIS, Distributed Geographic
Information Services for the Internet and Wireless Networks, John
Wiley & Sons，Inc., Hoboken.

Richardson D. E.，Oosterom P. V. (eds.) (2002). Advances in spatial data
handling : 10th International Symposium on Spatial Data Handling,
Berlin, New York. Springer.

Rigaux P., Scholl M., Voisard A. (2002). Spatial Databases with Applications
to GIS, Morgan Kaufmann Publishers.

Roussopoulos N., Kelley S., Vincent F. (1995). Nearest Neighbor Queries,
Proceedings of ACM Sigmod , May 1995.

Scholl M.，Voisard A. (eds.) (1997). Advances in spatial databases : 5th
international symposium, SSD '97, Berlin, Germany.

Sellis T.’ Roussopoulos N.’ Faloutsos C. (1987). The R+-Tree: A Dynamic
Index for Multi-dimensional Objects, In Proc. Intl. Conf. On Very
Large Data Bases (VLDB), pages 507-518.

Shekhar S., Chawla S. (2003). Spatial Databases: A Tour, Prentice Hall.

Shekhar S.，Liu D.R. (1997). CCAM: A Connectivity-Clustered Access
Method for Networks and Network Computations, IEEE Transactions
on Knowledge and Data Engineering, Vol. 9’ No. 1，pages 102-119.

Shi W.’ Goodchild M. F.，Fisher P.F. (1999). Proceedings of The International
Symposium on Spatial Data Quality '99, Department of Land
Surveying and Geo-Informatics, The Hong Kong Polytechnic
University, Hong Kong.

Shi W.，Goodchild M. R，Fisher P.F. (2003). Proceedings of The 2nd
International Symposium on Spatial Data Quality '03, Department of
Land Surveying and Geo-Informatics, The Hong Kong Polytechnic
University, Hong Kong.

Tao Y.，Papadias D., Shen Q. (2002). Continuous Nearest Neighbor Search,
Proceedings of the 28th VLDB Conference, Hong Kong, China.

Tao Y., Papadias D. (2002). Time-Parameterized Queries in Spatio-Temporal
Databases, ACM SIGMOD 2002，June4-6, Madison, Wisconsin, USA.

Wei Z. K .，O h Y. H.，Lee J. D., K im J. H., Park D. S.，Lee Y. G.，Bae H. Y.
(1999). Efficient Spatial Data Transmission in Web-Based GIS,

95

Kansas City, Missouri, United States, Pages: 38 - 42.

Wong J. C.F., Fung T.W•，Cheng C.H., Leung J. M.Y. (2002). A Map-based
Decision-support System for Delivery Planning in Hong Kong, :
Technical Report SEEM2002-03, Dept. of Systems Engineering and j
Engineering Management, The Chinese University of Hong Kong.

Wu W. Paper Link related with spatial data:
http://www-users, cs, umn. edu/~wuw/8705Paper.html

XML http://www.w3.org/XML/

Yu H. B. (2001). Data Organization for Routing on the Multi-modal Public
Transportation System: A GIS-T Prototype of Hong Kong Island,
Thesis of Master of Philosophy, Department of Geography and
Resources Management, The Chinese University of Hong Kong.

Zhan F.B., Noon C.E. (1998). Shortest Path Algorithms: An Evaluation using
Real Road Networks, Transportation Science B, Vol. 32，No. 1，pages
65-73.

96

http://www-users
http://www.w3.org/XML/

_

_

QSEiiDhOD

