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Abstract 

Most existing spatial data formats are proprietary. This makes it difficult to 

develop new spatial algorithms requiring low level data access for real spatial 

data. To deal with the problem, this thesis applies Geography Markup 

Language (GML), a variant of extensible Markup Language (XML) for real 

spatial data. We suggest an indexing scheme for GML spatial data. 

A spatial network is one type of spatial data with network characteristics. 

Although a spatial network has many applications, little literature specifically 

studies the data structure of spatial network. We propose an algorithm, called 

Connected Page Algorithm (CPA), which is used to cluster a spatial network. 

In our experiments we find that we can save unnecessary calculations in 

network operations such as shortest path problems in this clustered network. In 

addition, we try to extend the CPA and propose an algorithm called Nearest 

Neighbor in Connected Page Algorithm (NNCPA). 
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摘要 

大多數的空間數據結構是專利的，弓丨致利用真實的空間數據(spatial data) 

作發展新的的空間演算法(spatial algorithms)出現很多困難。本篇論文使 

用地理標記語言(Geography Markup Language, GML) 種可擴充標 

記語言(extensible Markup Language�XML)於空間數據的應用。我們提出 

一個索引方式於地理標記語言形式的空間數據。 

空間網絡爲其中一種空間數據而有網絡的特質。空間網絡有多方面的應 

用，但針對空間網絡數據結構的硏究則不多。我們提出一個數據演算法 

名爲連接頁演算法(Connected Page Algorithm, CPA)以群集空間網絡。我 

們的實驗發現很多的網絡計算如最短路徑問題(Shortest Path Problem)能省 

去於這群集網絡°另外’我們嘗試擴展連接頁演算法之應用於最近鄰查 

詢(Nearest Neighbor Queries) ° 
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Chapter 1 

Introduction 

Technology in Relational Database Management Systems (DBMS or 

RDBMS) has developed rapidly in the past 20 years. With the advancement of 

database technology and algorithms, current database systems can handle 

extremely large amount of data and become the core of information systems. 

Out of many database implementations, relational databases by far are 

the most widely used in the industry. A Relational Database is very efficient in 

storing and retrieving "relational" data, for example, account balance and 

transactions of customers in a banking company, invoice and customer 

information in a logistics company, etc. The application of database 

technology has been extended to Data Mining, Spatial Databases, Multimedia 

Databases, etc. 
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The capabilities of Spatial Databases have been enhanced from an 

traditional approach to store spatial data just for geographic information 

systems (GIS) to many real world applications such as web-based digital map 

access, map display in Wireless Application Protocol (WAP), i-Mode and 

General Packet Radio Service (GPRS) phone or personal digital assistant 

(PDA). 

Although the application of spatial databases has become common and 

is able to satisfy the access needs of most spatial data users, request 

improvement in many areas, particularly in spatial indexing mechanism, is still 

needed. Most of the spatial data formats are proprietary, (i.e., a data format 

structure is not made available to the public and data in a certain format can 

only be used by the corresponding software). This limits the advancement in 

spatial data storage and also in the spatial indexing method needed to fulfill 

individual user's needs. To solve this problem, we will use extensible Markup 

Language (XML) format for spatial data storage and retrieval. 

Based on XML, we build spatial data and spatial databases. Related 

issues such as indexing methods of spatial data, query in spatial networks and 

nearest neighbor queries are discussed. 
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1.2 Motivation 

To demonstrate the motivation of our research, let us consider one of 

the most popular applications of spatial data — web-based digital map access. 

The most comprehensive web-based digital maps in Hong Kong are 

www.ypmap.com and www.centamap.com. 

These two web sites have comprehensive map and related map and 

other commercial information for users to search. Although the users may find 

information on the websites abundant, they often find that the response time is 

exceptionally long. 

Ql^nf PC W€t Application Smtr S>au 
fmprrrs i Server 人 一 

� ' � ‘ fciii^f、 I N I 1 
I., m i l l 

NipiHiiiMi^ppI State Mgmt 
lar ki wnb — H H B 

r ' H � 1 — . _ � � � � M a p 

Fig. 1.1: Server side architecture of web server which support digital map 
[Mapinfo Corporation (2002a)] 

3 

http://www.ypmap.com
http://www.centamap.com


Fig. 1.1 is a server side architecture of MapXtreme, a product from 

Mapinfo Corporation which supports web-based digital map applications 

development. This server side architecture is adapted for most web-based 

digital map servers. It is mainly divided into the user-needed information 

between two servers. Non-spatial data, such as building name and address, are 

stored in a database server. Spatial data which is usually in a proprietary 

format, such as building polygon, are stored in a map server. 

This architecture has several problems, although it is commonly used: 

1. The Map Server and Database Server are independent. Simple 

spatial queries, for example, locating the map and address of a building by the 

building name, must involve the map server, database server and also 

application server. 

2. The Map server is a file-based server. It can only return the whole 

layer that contains the area which the user requests. If the user only wants a 

small region for information from many layers, the map server would have to 

send many layers to the application server. This increases the workload of the 

servers and explains why the response time is often long. 
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Fig. 1.2: Computer maps are organized into layers. You may treat a layer as a transparency. 
Each transparency contains different aspects of the whole map. Transparencies are stacked on 
top of one another to provide needed information. [Mapinfo Corporation (2002b)] 

Fig. 1.3: By stacking these layers one on top of the other, a complete map can be built. 
[Mapinfo Corporation (2002b)] 
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1.3 Purposes of this Research 

Our objective is to increase the efficiency of spatial databases. 

Specially, we attempt to deal with the following issues: 

1. Since most spatial data formats are binary and proprietary, many 

spatial indexing mechanism cannot directly be used in existing and real 

spatial data, for example, digital map data from Lands Department, 

HKSAR Government, (http://www.info.gov.hk/landsd/) (Lands 

Department only provide .eOO, ASCII, DGN and DXF which can only 

open by ESRI (http://www.esri.com), Integraph 

(http://www.intergraph.com/) or AutoCAD (http://www.autocad.com) 

products. For TIFF format, it can be opened by any imaging software 

but it is only a graphic, not spatial data.) This thesis would try to 

convert those real spatial data to Geography Markup Language (GML), 

an extension of extensible Markup Language (XML), so that the 

existing and new spatial indexing mechanism can be built on real 

spatial data. 

2. The characteristics of XML are openness and vendor-neutrality. It is in 

text format and self-explanatory. So GML spatial data can be stored in 

any file or database systems. Therefore, when the user would need to 
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query a GML map with address, i.e. spatial and non-spatial 

simultaneously, only one database system is needed. 

3. For applications (such as finding Shortest Path, solving Vehicle 

Routing Problem, planning electricity, water and drainage systems, 

etc) in Hong Kong, graph representation (i.e. node and arc) is needed. 

Although these graph information is not available from Lands 

Department, HKSAR Government, these graph mformation(e.g. road 

network in Hong Kong) can be retrieved by Geography Markup 

Language (GML). Other problems, such as Nearest Neighbor Problem, 

can also be studied in GML spatial data. 

1.4 Contribution of this Research 

This thesis mainly focuses on XML indexing for spatial data. To the 

best of our knowledge, this is the first work to deal with this issue. Our work 

contributes to the literature in the following ways: 

1. Through extensible Stylesheet Language (XSL), XML documents may 

be transformed to a format suitable for display in different devices, 

such as web, Personal Digital Assistant (PDA) and mobile phone. Most 

existing application servers can only handle one device. The reason is 

that different devices have different displays, resolutions and hardware 
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limitations. (For example, Wireless Application Protocol (WAP) phone 

can only receive several KiloBytes in a WAP page.) 

2. By converting the digital map data which is in a binary and proprietary 

format from HKSAR government to GML format (text format and 

vendor neutral), different existing and new spatial indexing mechanism 

can be easily applied. In this thesis, spatial indexing mechanisms such 

as STR Packed R-tree is implemented with different parameters. 

3. Another contribution in this thesis is on spatial network. Although the 

road center line (RGIOOO) provided by Lands Department, HKSAR 

Government is not in graph representation (node and arc), graph 

representation can be retrieved by converting the road center line 

(RGIOOO) in GML format. The storage of road center line (RGIOOO) is 

not efficient using the existing spatial indexing mechanism for some 

network operations, e.g. shortest path queries. A new algorithm called 

Connected Page Algorithm (CPA) is introduced. Our modification is 

based on the characteristics of spatial network to improve the retrieval 

and update of spatial data. 
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1.5 Outline of the Thesis 

The remaining chapters of this thesis are organized in this way. 

Chapter 2 reviews spatial access methods such as R-Tree, R*-Tree and R+-

Tree. The literature on spatial network and nearest neighbor queries would 

also be investigated. 

Chapter 3 provides the details on the data studied in this thesis. Digital 

Map data from Lands Department, HKSAR Government would be used in this 

thesis. Brief illustration of XML, GML and XML indexing is also used to 

explain the process of conversion of data format to GML format. Based on the 

raw GML data, additional information can be retrieved which is helpful for 

spatial indexing and graph representation of spatial network. 

Chapter 4 describes the implementation of STR Packed R-Tree in 

GML spatial data. It is well-known that STR Packed R-Tree is the most 

efficient for storing static general spatial data. However, the experimental 

result for spatial storage is good for building polygons, but not the road center 

line, i.e. spatial network data. The reason is that spatial network data is inter-

related (the end point of a line segment would also be an end point of another 

line segment), so the overlapping situation of non-leaf level in STR Packed R-

Tree is much worse in spatial network data than other general spatial data. 
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Based on the result from Chapter 4’ Chapter 5 will study Connectivity-

Clustered Access Method (CCAM) and a newly proposed algorithm called 

Connected Page Algorithm (CPA). A simple heuristic which is specifically 

designed for spatial network to try to improve the query time of Dijkstra's 

method would also be introduced. 

Based on shortest path queries, chapter 6 will extend Connected Page 

Algorithm to application of nearest neighbor queries. 

The final chapter of this thesis concludes with questions we are dealing 

with and research findings. Our previous work on web-based digital map is 

discussed and future research directions will be outlined. 
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Chapter 2 

Literature Review and Research Issues 

2.1 Introduction 

In order to handle spatial data efficiently, as required in computer 

aided design and geo-data applications, a database system needs an index 

mechanism that will help it retrieve data items quickly according to their 

spatial locations. 

In this chapter, the literature on index mechanism (or spatial data 

access method) would be discussed. Our review is intended to provide an 

overview. Detailed discussion on the literature relevant to our work will be 

given in subsequent chapters. 

11 



There are three fundamental spatial data types, illustrated in Fig 2.1, 

namely points, lines, and polygons. Points represent an object (e.g. lamp). 

Line segments represent a road segment, electrical wire, etc. Polygons 

represent a building or structure. 

• ( • 
Fig 2.1 The fundamental spatial data types (point, line, polygon). 

Spatial data types have complex structures. Consider, for example, the 

line illustrated in Fig 2.1: such a line is represented by a list of connected 

points or line segments, but the number of points to represent a spatial object 

is not fixed, (e.g. The point object in Fig 2.1 can be represented by one point 

coordinates. The line object in Fig 2.1 can be represented by four point 

coordinates. The polygon object in Fig 2.1 can be represented by six point 

coordinates. For some other complex spatial objects, it may consist of 

hundreds of points.) In other words, its representation in a table (according to 

the relational model) or a class (according to the object-oriented model) is not 

straightforward. Spatial operators (e.g., overlap, within) are also more 

computational expensive than the traditional ones (equality, inequality, string 

truncation, etc.) 

12 



Processing spatial queries, such as checking whether two spatial 

objects are overlap or not, is very complex. For example, i f we want to check 

whether the following line segments and polygons overlap or not (Fig. 2.2), 

there will be many tedious calculations for comparison, (e.g. We need to 

check whether there is any point in the line segment bounded by the polygon 

or not.) 

Fig 2.2: Checking if these two objects overlap is a complex task. 

A generally accepted solution is the method of minimum bounding 

rectangle (MBR), which is the smallest rectangle with axis-parallel sides that 

completely covers the object. According to that, any n-dimensional object is 

approximated by 2n numeric values, corresponding to the lower-left and 

upper-right corner (or lower-right and upper-left comer) coordinates. In this 

thesis we only study 2-dimensional objects. Fig 2.3 is an example of using 

MBR to check whether two objects overlap. 

13 



Fig 2.3: The two objects' MBR can determine whether the objects overlap or not can be 
checked easily. 

Some situations make MBR produce a wrong test result. Fig 2.4 

illustrates one such example: 

I 厂 

Fig 2.4: False checking by MBR 

Although MBR approximations cannot guarantee the relationship of 

two spatial objects, it can avoid excessive spatial calculations. The literature 

discusses in this thesis uses MBR as basis to develop spatial access methods. 

2.2 Spatial Access Methods 

spatial Access Methods include space driven algorithms and data 

driven algorithms. In this chapter we review data driven algorithms as the 

research direction of this thesis concentrates on data driven methods. In 

14 



appendix we review some space driven algorithms as some applications use 

space driven algorithms for storage and query of spatial data. 

2.2.1 R-Tree 

One of the first access methods created to support extended objects is 

Guttman's R-tree [Guttman (1984)]. The R-tree is a height-balanced tree 

which is the natural extension of the B-tree for k-dimensions. Objects are 

represented in the R-tree by their minimum bounding rectangle (MBR). R-tree 

is characterized by the following properties: 

1 • Every leaf node contains between m and M index records, unless it is 

the root (where m < MIT). 

2. For each index record (/, tuple-identifier) in a leaf node, I is the 

minimum bounding rectangle that spatially contains the k-dimensional 

data object represented by the indicated tuple. 

3. Every nonleaf node has between m and M children, unless it is a root. 

4. For each entry (I, child-pointer) in a nonleaf node, I is the minimum 

bounding rectangle that spatially contains the rectangles in the child 

node. 

5. The root node has at least two children, unless it is a leaf. 

6. All leaves appear on the same level. 

15 



7. All MBRs have sides parallel to the axis of a global coordinate system. 

In order to efficiently process spatial queries, one needs specific access 

methods relying on a data structure called an index. 

Each node in the tree corresponds to a disk page. A leaf node consists 

of a number of entries with format (/, tuple-id), where I is an MBR, and tuple-

id is the unique identifier for the tuple in the database holding the object 

corresponding to that MBR. I is represented as / = (/q ’...’/�,_i)�where /,. is a 

closed, bounded interval [a，b] along direction i. 

Nonleaf nodes are composed of a number of entries of the format (/, 

child-pointer) where I is the MBR for all rectangles in the lower node entries 

pointed to by child-pointer. Each node in the tree can have a maximum of M 

entries and a minimum m (where m<M/2) entry, unless it is the root. The 

root node has at least two children, unless it is a leaf. 

Point and range queries can be processed in a top-down recursive 

manner on R-tree. The query point (or region) is tested first against each entry 

(/, child-pointer) in the root. If the query point is inside (or query region 

overlaps with) I, then the search algorithm is applied recursively on entries in 

the R-tree node pointed to by the child-pointer. This process stops after 

reaching the leaves of R-tree. The selected entries in leaves are used to retrieve 

the records. 

16 



The PointQuery algorithm (Fig. 2.5) with an R-tree is given as follows. 

RT-PointOuerv (P:point): set (oid) 

begin 
result =伞 

// Step 1: Traverse the tree from the root, and compute SL, the 
// set of leaves whose dr contains P 
SL = RtreeTraversal (root, P) 
// Step 2: scan the leaves, and keep the entries that contains P 
for each L in SL do 

II Scan the entries in the leaf L 
for each e in L do 

if (e.mbb contains P) then result += {e.oid} 
end for 

end for 
return result 

end 

Fig. 2.5 RT-PointQuery 

The window query algorithm is a straightforward generalization of the 

point query in which the "contains P" predicate is replaced by the "intersect 

W" predicate, where W is the window argument. The larger the window, the 

larger the number of nodes to be visited. 

Search performance depends on two parameters: coverage and 

overlap. Coverage of a level of the tree is the total area covered by all MBRs 

of all nodes at that level. This way, coverage is an indirect measure of dead 

space area, or empty space covered by the tree. Overlap of a level of the tree is 

the total area of space covered by more than one rectangle associated with 

nodes at that level. Overlap may make it necessary to visit more than one node 

of the tree to find an object. This problem associated with the R-tree means 
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that a worst case performance of search operations cannot be estimated, even 

i f an attempt is made to minimize overlap. 

The following example illustrates the indexing of spatial objects. 

Example of R-tree with M=4: 

Inserting point 1: 

R 

U R:p l 

Inserting point 2: 

r R 
D r — 

pl，p2 
R:p l ,p2 

c 

Inserting point 3: 

“ R 
0 R:p l ’p2,p3 p l，p2 ’p3 

g 

Inserting point 4: 

0 R:pl ,p2, p3,p4 p i , p2, p3, p4 

g 

18 



Inserting point 5: 

Rl: p i , p4, p5 
n R 
J R: R1,R2 
d l R1,R2 

p— R1 R2 
C R2: p2, p3 

pl,p4, p5 p2, p3 

Fig. 2.6: Example of R-tree 

2.2.2 R*Tree 

R*tree [Beckmann, et al. (1990)] is a variant of R-tree and it supports 

several improvements to the insertion algorithm. Essentially, these 

improvements aim at optimizing the following parameters: (1) node 

overlapping, (2) area covered by a node, and (3) perimeter of a node's 

directory rectangle. 

The R-tree split algorithm first initializes the two groups with the two 

entries that are as far as possible from each other, then assigns each of the 

remaining entries to a group. The R*tree approach is different in the sense that 

it assumes the split to be performed along one axis (say, horizontal), and 

explores all possible distributions of objects above or below the split line. Fig 

2.7 illustrates the difference between R-tree and R*Tree 

19 



1 1 1 1 

I r— 1 I 

I—I I _ I 
n � I rr 1 

• n n p i d ^ g • I 
L ^ DJ [-让-十…」ril l i d 

(a) (b) (c) 

Fig 2.7: Splitting strategies: overflowing node (a), a split of the R-tree (b), and a split of the 
R*tree (c) 

Another improvement of R*tree is the forced reinsertion algorithm. 

The insertion order can dramatically influence the quality of the R-tree 

organization. R*tree tries to avoid the degenerated cases by reinserting some 

entries whenever a node overflows. 

Assume (see Figure 2.8) that rectangle 8 is inserted in the tree of (a). 

Node V overflows, and the R-tree split algorithm w i l l only perform a local 

reorganization with a rather important node overlapping (b). The R*tree tries 

to avoid splitting by reinserting the rectangles in node v and finds that 

removing of rectangle 4 in node v can save a lot of dead space in node v. The 

reinsertion algorithm proceeds as follows: 

• Remove 4 from node v. 

• Compute the new bounding box of node v. 

• Reinsert 4, starting from the root, and insert in node u. 

• Now entry 8 can be inserted in node v, and no split occur. 
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(a) (b) (c) 

Fig 2.8: The R*tree reinsertion strategy: insertion of 8 (v overflows) (a), a split of the R-tree 
(b), and R*tree forced reinsertion of 4 (c). 

2.2.3 R+ Tree 

In R+tree [Sellis, et al. (1987)], the directory rectangles at a given level 

do not overlap. This has as a consequence that for a point query a single path 

is followed from the root to a leaf. R+tree is defined as follows: 

• The root has at least two entries, except when it is a leaf. 

• The directory rectangle (dr) of two nodes at the same level cannot 

overlap. The point query performance benefits from the 

nonoverlapping of dr. 

• If node N is not a leaf, its dr contains all rectangles in the subtree 

rooted at N. 

• Two dr in the same level cannot be overlapped. If a spatial object 

covers two or more drs, this spatial object will be indexed in all drs 

that this spatial object covered. 
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• A rectangle of the collection to be indexed is assigned to all leaf nodes 

the drs of which it overlaps. A rectangle assigned to a leaf node N is 

either overlapping N.Jr or is fully contained in N.Jr. 

Figure 2.9 illustrates an R+tree. Note that objects 8 and 12 referenced 

twice. Object 8 is overlapping leaves p and r, whereas object 12 is overlapping 

leaves p and q. Note also that both at the leaf level and at the intermediate 

level, node drs are not overlapping. 

S i ： f � 

r n r t t r j i 
^ " " " [1-2,5,6] [3,4,7] [14] [8,11,12] [12,13] [8,9,10] 

畔 I 「 a b 

Fig 2.9: The R+tree 

2.3 Spatial Network Analysis 

A spatial network is one type of spatial data which consists of network 

relations. Applications of spatial network include transportation networks, 

drainage systems, electricity systems, etc. In addition to the ordinary insert, 
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update and query operations in spatial data, a spatial network also includes 

shortest path queries and other network related operations. 

[Shashi, et al. (1997)] has evaluated Connectivity-Clustered Access 

Method for Networks and Networks Computations (CCAM). Shashi defines a 

spatial network as follows: 

"A spatial network is a special kind of graph, with nodes located in a 

two-dimensional or three-dimensional Euclidean space. Unlike raster and 

vector area, spatial network data is characterized by rich connectivity. A 

spatial network G = (N, E) consists of a node set N and an edge set E. Each 

element u in N is associated with a pair of real numbers (x, y) representing the 

spatial location of the node in an Euclidean plane. Edge set E is a subset of the 

cross product N*N. Each element (u, v) in E is an edge that joins node u to 

node V. There are attributes associated with the nodes and edges." 

Details of CCAM are illustrated in Chapter 5. The major research 

contribution of this thesis is also related to spatial network. 

2.4 Nearest Neighbor Queries 

Nearest Neighbor Queries is an important application in geographical 

information systems. For example, finding the nearest gas station, car park, 

etc. Nearest Neighbor Queries is also essential in delivery planning systems 
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such as finding the nearest depot to deliver the product to particular customer 

and determine the nearest parking place to deliver the product to the customer. 

Below is the nearest neighbor queries by R-tree proposed in 

Roussopoulos, et al. (1995), Papadopoulos, et al. (1997), Cheung, et. al. 

(1998), Tao, et al. (2002). 

Define (i)Point P\ the query point 

(ii)Rectangle R\ the directory rectangle or minimum bounding 

rectangle in R-tree 

(iii)Vertex V: the nearest vertex of R from P. 

i\\\)Min'distance(P, = 0 if P is inside R or on boundary ofR 

Min-distance(P, R) = Euclidean distance between P and 

any edge of if P is outside R 

(iv)Min-Max-distance (P, R) is the distance of P from the 

farthest point on any face of the R containing vertex V 

The search algorithm for nearest neighbor starts with the root node of 

the R-tree and traverses the tree. For example, a breadth first traversal of the 

R-tree will visit MBRs of the children of the interior nodes of current node for 

pruning using the above rules. The remaining children will be expanded in the 

next iteration. The final iteration will have a set of leaf nodes (database object 

level) from the MBRs that survive level-wise pruning. The algorithm will need 
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to compute the distance of each leaf from query point P to determine the 

nearest neighbor. 

2.5 Summary 

In this chapter we have reviewed some representative literature: 

(i) Spatial Access Method 一 R-Tree, R+Tree, R*Tree 

(ii) Spatial Network Analysis 

(iii) Nearest Neighbor Queries 

In the following chapters, the above algorithms would be applied to 

develop new algorithms. 
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Chapter 3 

Data preparation 

3.1 Introduction - XML, GML, XML Indexing 

extensible Markup Language (XML), according to 

www.webopedia.com, is defined as follows: "XML is a specification 

developed by the World Wide Web Consortium (W3C). XML is a pared-down 

version of Standard Generalized Markup Language (SGML), designed 

especially for web documents. It allows designers to create their own 

customized tags, enabling the definition, transmission, validation, and 

interpretation of data between applications and between organizations." 

Here we use an example to illustrate one popular usage of XML and 
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illustrate the benefits of using XML: 

In http://www.informatik.uni-trier.de/~ley/db/�two files(dblp.xml and 

dblp.dtd) are available for download among 380,000 articles. Parts of dblp.xml 

and dblp.org are shown in Fig. 3.1 and Fig. 3.2, respectively: 

Address � C:\U5ER\seg3560\dblp.xml ‘ 

<?xml version="1.0" ?> 
<1— •n.Tunplc; xnU clocuinent t row db Ip —> 
<!DOCTYPE dblp (View Source for Mdocfype…)> 

-<dblp> 
-<book l<ey="books/dtiv/Schoning93"> 

<author>Harald Schoning</author> 
<tit l6>AnfragevBrarbeitung in KomplBxobjekt-Datenbanksystemen</t i t le> 
<publish8r>Deutscher Universitatsverlag</pubiisher> 
<year> 1993</y8ar> 

</bool<> 
-cincollection keys-books /mk/gravQl /Turby f l l lOBQl^ 

<author>Carolvn TurbvfIII</author> 
<author>Cyril U. Orji</author> 
<author>Dina Bitton</author> 

- < t i t l B > 
AS 
<sup>3</sup> 
AP: An ANSI SQL Standard Scaloable and Portable Benchmark for Relational Database Systems. 

</title> 
<pages>167-207</pages> 
<year> 199 l</year> 
<booktitle>The Benchmark Handbook</booktitle> 
<url>db/books/collections/gray91.html#TurbvfillOB91</url> 

</incolIection> 

Fig 3.1 Part of dblp.xml 

< ！ ELEMENT dtolp (aj:ticle| iJiproceedings 丨 proceedings 丨 booJcl incollection| 
phdthesis|roastersthesi3| uutj) »> 

<！ENTITY H field 
"author I editor I tit le IboDktitleI pages I year�address I JournalI volume I iumiber|month|urilee|cdr 
<!ELEMENT article (Afield;)*> 
<!ATTLIST article 

key CDATA R̂EQUIRED 
revieuid CDATA #IHPLIED 
rating CDATA #IHPLIED 

> 

<'ELEMENT inproceedings (%field;)»> 
<!ATTLIST inproceedings key CDATA #REQUIRED> 
<!ELEMENT proceedings (Afield;)*> 
<!ATTLIST proceedings key CDATA #REQUIRED> 
<!ELEMENT book (Afield;)*> 
<!ATTLIST book key CDATA #REQUIREr)> 

Fig 3.2 Part of dblp.dtd 
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Even a person has little or even no knowledge of XML, he or she can 

get the details of particular articles by browsing the dblp.xml files. For 

example, according to Fig 3.2, it describes what type of materials is saved in 

dblp (articles, inproceedings, proceedings, book, etc.). For each article, it must 

contain the key and other fields, such as author, editor, title, etc. 

Here we can summarize the benefits of using XML: 

• XML is indeed a text file with a structured format possessing self-

described characteristics. The format is described in the corresponding 

Data Type Definition (DTD) file. The data stored in a DTD file is also 

called metadata. 

• Although the storage space would be larger for a XML file than other 

binary file, XML is vendor-neutral and XML file can be read and 

modified through any text editor. This turns out to be effective in 

dealing with the compatibility problem. The storage space problem of 

a XML file can be alleviated by using some compression mechanism. 

Geography Markup Language is "an XML encoding for the transport 

and storage of geographical information, including both spatial and nonspatial 

properties of geographic features" [GML]. It is a recommended standard to 

encode or mark up spatial and nonspatial information in XML format by 

OGC. GML provides a standard way to encode spatial features, feature 

properties, feature geometries, and the location of the feature geometries based 

on a standard spatial data model. 
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Fig. 3.3 is a sample GML file that is extracted from Lands Department, 

HKSAR Government: 

<?xml version='1.0' encoding='UTF-8'?> 
<dataset xmlns="http://www.safe.com/xml/namespaces/fmegml2" 
xrnIns:fme="http://www.safe.com/xmI/namespaces/fmegml2" 
xmlns:gml="http://www.opengis.net/gml" 
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance" 
xsi:schemaLocation=''http://www.safe.com/xml/schemas/fmegml2.xsd"> 
<schemaFeatures> 
<gml:featureMember> 
<Feature> 
<featureType>30</featureType> 
〈property fme:name="igds_class">fme 一 decimal(5，0)</property> 
〈property fme:name="igds_color">fme_decimal(5,0)</property> 
〈property fme:name=’’igds_graphic_group">fme_decimal(5，0)</property> 
〈property fme:name="igds_style">fme_decimal(5,0)</property> 
<property fme:name="igds_weight">fme_decimal(5,0)</property> 
c/Featuro 
</gml:featureMember> — 
</schemaFeatures> (838920.253,827495.65) 
<dataFeatures> 

<gml:featureMember> (838943.247,82748rn^ 
<Feature> \ 
<featureType>30</featureType> \ 
�property fme:name="igds_class">0</property> (838954.949,827461.57) 
〈property fme:name="igds_color">l</property> 
〈property fme:name="igds_graphic_group">0</property> 
〈property fme:name="igds_style">0</property> Fig 3.3a: The line segment 
〈property fme:name="igds_weight">0</property> represented by the GML file. 
<property f me:name= "gml2_coordsys "></property> 
<gmI:lineStringProperty> 
<gml:LineString gml:srsName=""><gml:coordinates>838920.253,827495.65,0 
838943.247,827483.115,0 838954.949,827461.57,0</gmI:coordinates></gml:LineString> 
</gml:lineStringProperty> 
</Feature> 
</gml:featureMember> 
</dataFeatures> 
</dataset> 

Fig 3.3: A sample GML file 

In Fig 3.3, the GML file contains only one linestring (i.e. line) that is 

composed of three points (i.e. (838920.253,827495.65), 

(838943.247,827483.115), (838954.949,827461.57) ). The graphical 

representation of this line string is in Fig 3.3a. 
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In search, query, and update of a GML file, the searching time will be 

quite large (0(n)) if no indexing is used. (This is because we need to compare 

one by one of each spatial object stored for query or update. Hence, we need 

an index scheme in the GML file to facilitate the spatial index method as 

mentioned in Chapter 2. 

By finding the minimum bounding rectangle (MBR) of each spatial 

object, we can make index for each spatial object, for example, the index of 

the object represented in Fig 3.3 is as follows (Fig. 3.4): 

<featureMember> 
<linestring_key>lkl4806</linestring_pk> 
<Box> 

<min_x_coord>838920.253</min_x_coord> 
<max_x_coorci>838954.949</max_x_coord> 
<min_y_coord>827461.57</min_y_coorci> 
<max_y_coord>827495.65</max_y_coorcl> 
<centre_x>838937.601</centre_x> “ 
<centre_y>827478.610</centre_y> 

</Box> 
<start_x>838920.253</start_x> 
<start_y>827495.65</start_y> 
<end_x>838954.949</eiid_x> 
<end_y>827461.57</end_y> 
<absolute_distance>48.634</absolute_distance> 
〈relative 一 distance>48.634</relative 一 d i s t a n c e 〉 

</featureMember> 

Fig 3.4: index of the spatial object (line segment) shown in Fig 3.3 

In the index, it contains the following items: 

(i) linestring_key: a unique spatial object key, e.g. Ik 14806 

(ii) Box: minimum bounding rectangle (MBR) with lower-left, upper-

right and center coordinates 
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(iii) Coordinates of two end-points 

(iv) Distance of the line string and distance of the two end points 

The above index can be used to search (i) a unique key and (ii) by 

coordinates key. (e.g. by any data-driven algorithm such as R-Tree) 

3.2 Spatial data from Lands Department 

This thesis uses the real spatial data from Lands Department, HKSAR 

Government. Table 3.1 is the table showing the geographical data from Lands 

Department. 

Code Name Scale Area purchased 

B20000 Digital Topographic Map 1:20000 Whole Hong Kong area 
Database (16 sheets) 

BGIOOO Geo-Reference Database - 1:10000 7SE, 7SW, 7NE’ 7NW, 
Building Name and Address USE, 11SW’ 11NE, 

I I N W ‘ ‘ 
SGI000 Geo-Reference Database — 1:10000 7SE, 7SW, 7NE, 7NW, 

Site Polygon USE, l l ' sw , ' I I N ^ 
I I N W 

RGIOOO Geo-Reference Database - 1:10000 7SE, 7SW, 7NE, 7NW, 
Road Centre Line USE, I ISW, ‘ I INE, 

I I N W 
Table 3.1: Digital Map data used in this research 
(Ref: http://www.info.gov.hk/landsd/mapping/web/page/d_m_prod_new.htm) 

The data format provided by Lands Department are all in proprietary 

format. 

(http://www.info.gov.hk/landsd/mapping/web/page/d format new.htm) 
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We use Feature Manipulation Engine (FME) 

(http://www.safe.com/products/fme/index.htm) to convert the data from 

Arclnfo Ungenerated format(.eOO) to Geography Markup Language (.xml). 

3.3 Graph representation for Road Network data 

One type of data available in Lands Department is road centre line 

(RGIOOO). Fig. 3.5 is an example. 

y ^ Region 7 and 11 

i g 
Fig 3.5: RGIOOO Spatial data from HKSAR Government 

The data format of RGIOOO is in linestring (line) format. It stores all 

the line data like the format shown in Fig. 3.4. Indeed RGIOOO contains the 
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road network data and we can make network operations on it. But it do not 

contain the necessary information for network operations such as nodes and 

length of linestring. We cannot effect network operations on it directly. 

However, we can retrieve the network representation of RGIOOO 

spatial data as following node and arc table (Table 3.2 and Table 3.3): 

Primary X_Coord Y_Coord Fore ign~ No. of Connected 
Key of Key for Node or not 
Node Road Connected 

_0 830000.000 823316.956 0 1 l 
~ r ~ 830000.000 823331.336 1 1 1 — 
2 "830000.000 823351.209 2 " l 1 

T " "S^OOO.QOO "^3483.587 T T ~ T ~ 
T " 830000.000 823513.003 4 1 | 1 

13792 845000.000 832203.152 | 34168 1 | 0 
13793 845000.000 832221.393 丨 34169 1 Q 

(total 13794 records in node table) 
Primary Key of Node: Unique key of each node (end point of line segment) 
X_Coord: X-Coordinates of node 
Y一Coord: Y-Coordinates of node 
Foreign Key for Road: Set Relations to the primary key in the road table 
No. of Node Connected: This column store the no. of arc connected with this node 
Connected or not: This column stores whether this node is connected with the major road 
network or not. 

Table 3.2: Node table prepared from BGIOOO spatial data 
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Primary Primary X_Coord of Y_Coord of X_Coord of Y_Coord of Absolute path 
Key of Key of Start Node Start Node End Node End Node distance length 
Start End 
Node Node 

"o 103 "830000.000 "823316.956 "830104.688 823349.207 " 109.543 109.643 
J 141 830000.000" 823331.336" 830187.380" 823424.39?" 209.215 213.177 
2 98 830000.000 823351.209" 830096.751— 823378.116 100.423 100.423 

_3 362 " ^ 0 0 0 . 0 0 0 "823483.587 " ^699 .882 " ^ 6 3 4 . 4 8 1 715.964 112.11f 
~ 4 ~ 75 830000.000 823513.003 830054.567 823537.665 59.881 60.200 

"13792 13734 845000.000 832203.152 844968.833 832160.401 52.906 55.512 
"13793 13653 845000.000 832221.393 844859.687 832221.758 140.313 198.639 

(total 34170 records in arc table) 
Primary Key of Start Node: Unique key of start node (end point of line segment) 
Primary Key of End Node: Unique key of end node (end point of line segment) 
X_Coord: X-Coordinates of start node 
Y_Coord: Y-Coordinates of start node 
X_Coord: X-Coordinates of end node 
Y_Coord: Y-Coordinates of end node 
Absolute distance: the distance between two end points in metres 
Path length: the length of the road 

Table 3.3: Arc table prepared from BGIOOO spatial data 

Since RGIOOO data do not contain the directed information (one-way 

or two-way road), we assume all the arcs are undirected (two-way road) and 

we formulate the directed network by duplicating an arc with swapping of start 

node and end node. Therefore, we have 17085 (no. of records of RGIOOO in 

our studied area) x 2 = 34170 arcs. 

We would use the above real spatial data for trying different spatial 

data access algorithms in the following chapters. The major different of this 

proposed indexing mechanism is that it can be use for spatial query as it has 

the Minimum Bounding Rectangle (MBR) in each index page and also the 
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primary key of each spatial object which can be used for mapping of non-

spatial data such as building name and address. 

3.4 Summary 

In this chapter, we discussed how to prepare data in a format suitable 

for our research. Spatial data will be represented in GML, that is a variant of 

XML. An index scheme is also defined for quick accesses. 
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Chapter 4 

XML Indexing for Spatial Data 

4.1 Introduction 

In the previous chapters we have described the existing vendor-specific 

spatial data formats. They are not suitable for the study of our spatial access 

methods. By converting those vendor-specific spatial data formats to vendor-

neutral Geography Markup Language [GML], we would be able to develop 

and study spatial access methods in this chapter. 

The spatial access method algorithms presented in chapter 2 for 

inserting entries in an R-tree, R*-tree, R+-tree are dynamic in the sense that 
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they enable concurrent insertions and deletions in an already existing R-tree. 

However, the evolution of the structure over time does not allow one to 

optimize the space utilization and thus might lead to a degradation in 

performance as a number of insertions and deletions has been performed. 

In the static case, when the collection of rectangles is stable over time, 

one can pre-process the data before creating an associated R-tree. Several 

algorithms, called packing algorithms, have been proposed for a R-tree. The 

packed R-tree is described below [Leutenegger, et al, (1996)]: 

1 • Preprocess the data file so that the r rectangles are ordered in「r/Z? 

consecutive groups of b rectangles, where each group of b is intended 

to be placed in the same leaf level node. Note that the last group may 

contain fewer than b rectangles. 

2. Load the「,"/?] groups of rectangles into pages and output the (MBR, 

page-number) for each leaf level page into a temporary file. The page 

numbers are used as the child pointers in the nodes of the next higher 

level. 

3. Recursively pack these MBRs into nodes at the next level, proceeding 

upwards, until the root node is created. 
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4.2 STR Packed R-Tree 

STR Packed R-Tree is a Packed R-Tree with a specific sorting order. 

The following is the description of STR Packed R-tree [Leutenegger, et al. 

1996]: 

"Consider a k-dimensional data set of r hyper-rectangles. A hyper-

rectangle is defined by k intervals of the form [A,.,5J and is the locus of 

points whose i-th coordinate falls inside the i-th interval, for all 1 < / < . 

STR is best described recursively with k = 2 providing the base case. 

(The case k = I is already handled well by a regular B-tree.) Accordingly, we 

first consider a set of rectangles in the plane. The basic idea is to "tile" the 

data space using y[r/n vertical slices so that each slice contains enough 

rectangles to pack roughly nodes. Once again we assume coordinates are 

for the center points of the rectangles. Determine the number of leaf level 

pages /» =「/•//?] and let S = yfp . Sort the rectangles by ^-coordinates and 

partition them into S vertical slices. A slice consists of a run of S-b 

consecutive rectangles from the sorted list. Note that the last slice may contain 

fewer than S-b rectangles. Now sort the rectangles of each slice by ;y-

coordinate and pack them into nodes by grouping them into runs of length b 

(the first b rectangles into the first node, the next b into the second node, and 

so on). 
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The case k>2 is a simple generalization of the approach described 

above. First, sort the hyper-rectangles according to the first coordinates of 

“ A z i . 
their center. Then divide the input set into S = P ^ slabs, where a slab 

“ k ~ l ‘ 

consists of a run of b . � � • consecutive hyper-rectangles from the sorted 

list. Each slab is now processed recursively using the remaining k - 1 

coordinates (i.e., treated as a k - 1-dimensional data set)." 

The following section illustrates the implementation of STR Packed R-

tree for spatial data. 

4.2.1 Implementation 

We use the data shown in Fig 3.5 (Road Centre Line, RGIOOO of 

Region 7 and 11. The data cover the whole Kowloon Peninsula and more than 

half of Hong Kong Island). We prepare the index of the data as the structure 

shown in Fig 3.4. 

The parameters which are needed for applying STR Packed R-tree 

include: 

1. The total number of line string in RGIOOO of Region 7 and 11 are 

17085，i.e. r = 17085; 

2. It is a 2-dimensional data, i.e. k = 2; 
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3. Assume that 3 objects are saved in a directory rectangle, b = 3; 

4. Number of leaf level pages, P = [r/Z?] =「17085/3] = 5695 ； 

5. Number of vertical slices, S = = a/5695 =76. 

To recursively pack the MBRs to next level, we have the following leaf level 

(Table 4.1): 

r = 17085, k = 2,b = 3 

Non-leaf Level 1 2 3 4 5 6 7 8 
P 1899 m 7 l ~ ~ 24 8 — " 3 ~ ~ 
S I 76 I 44 I 26 I 15 | 9 5 3 | l ~ ~ 

Table 4.1: Leaf level pages, P and vertical slices, S in different non-leaf level 

Tree representation of our experiment is shown in Figure 4.1 (for b = 3): 

Non-leaf level 8 

Non-leaf level 7 

N。n- le� level 6 ^ • • [ ^ b i D t ] 

'' / J \ /!、、、 /]、、、 
Non-leaf level 1 p D b t l 6 b 

二 二 66bJ\3lD 
Fig 4.1: Graphical representation of STR Packed R-tree 

We implement the STR Packed R-tree in Java 1.3.1 with operating 

system Redhat 7.2 running on a desktop computer. The configuration of the 
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computer is AMD Duron 1.1 G CPU, 256MB SD-RAM with an IBM 9.1G 

SCSI Harddisk. 

4.2.2 Experimental Result 

As it is mentioned earlier, the data we study cover the whole Kowloon 

Peninsula and more than half of Hong Kong Island. This area consists of the 

most urban area of Hong Kong although it only covers about one-eighth of the 

whole territory. The region ranges from x-coordinates with (830000 - 845000) 

and y-coordinates (812000 - 836000). The coordinates system using is Hong 

Kong 1980 Grid System and the distance can be easily calculated by this 

coordinates system. For example, suppose we have two points (830000, 

812000) and (845000, 836000) and we want to find the distance between the 

two points. 

We may use Distance Formula (based on Pythagorean Theorem). 

Hence, the Cartesian distance d is 

= ^li^a-xJ + {y„-yoy 

= V(845000 - 830000)' + (836000 - 812000)' 
= 28301.94 (meters) 
= 28.3 (kilometers) 
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The area we study is 

= 1(845000 - 830000)* (836000 -812000)| 
n 

= 3.6 X 10 (sq. meters) 
= 360 (sq. kilometers) 

Fig. 4.2 is the sum of the area of the minimum bounding rectangles (MBR) in 

non-leaf level for STR Packed R-Tree for Z? = 3: (The blue or upper line is the 

sum of area of MBR. The pink or lower line is the whole area (i.e. 360 sq. km) 

for the sample data. (i.e. The total sum of MBR in the non-leaf level with more 

than 360 sq. km means the overlapping of MBR). 

8.00E+08 T�——� � 

7.00E+08 ^ — — Z 令 尊 ： ^ 

6.00E+08 

5.00E+08 - _ _ ‘ ― _ _ _ 

4.00E+08 - _ _ ！ ： \ 

3.00E+08 ： ^ ~ — - — — _ _ _ • • • • . •： 

2.00E+08 - ： . ： ~ ~ ~ — ^ — — _ _ _ .1: •• • ： - “ ： • “ •： 

1.00E+08 — 
• ’ • . . • I “； ,• '•• ‘ , . •： . 、 ‘ 
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1 2 3 4 5 6 7 8 

Fig 4.2: Sum of area covered for MBR in different non-leaf level for b = 3. 
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7.00E+08 I J i S f ^ S 纖 娜 驢 】 术 發 淑 — 力 禅 W 、 ‘ � , 仏 、 碰 餐 j 

Le\^l 1 Leve\ 2 Le\^l 3 Le\je\ 4 Le\^l 5 Lev l̂ 6 Root 

Fig 4.3: Sum of area covered for MBR in different non-leaf level for b = 5. 

6.00E+08 I I 备 , I 厂 6 ~ A " 、 “ 、 、 ' I 鄉 ， 

5.00E+08 ) • ' � 

：：：：：： 

Le\^l 1 Le\e\ 2 Le\je\ 3 Le\je\ 4 Root 

Fig 4.4: Sum of area covered for MBR in different non-leaf level for b = 10 

Fig. 4.2 - 4.4 show the implementation of STR Packed R-Tree with different 

b, i.e. different number of spatial objects saved in each non-leaf page. By 

increasing b the overlapping area in each non-leaf level would be smaller. 
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Although STR Packed R-Tree is optimized for storage of spatial data, the 

overlap of STR Packed R-Tree for RGIOOO data of Lands Department is still 

quite large. This indicates that in general STR Packed R-Tree is optimized for 

general points and polygon spatial objects which have no inter-relationship. 

But for line spatial object which is the element of a spatial network, the MBR 

of the line elements overlaps with one another, as most of the line element are 

connected. This makes the chance of false query (for details please refer to 

Fig. 2.5 in Chapter 2) much larger than other point or region MBR. Let us 

illustrate the difference for storage of line spatial objects and other spatial 

objects by the following example from our real data (Fig 4.5): 

觀 
Fig 4.5: Map data from Siu Lek Yuk, Shatin 
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Above region (Fig 4.5) consists of two layers: Road Center Line (RGIOOO) 

(Fig. 4.6a) and Building layer (one layer in B20000) (Fig. 4.6b). And we 

illustrate the example by only the dotted region: 

Fig. 4.6a: Building layer of B20000 Fig. 4.6b: Road Centre Line 

Fig. 4.7a-d illustrates for building up the STR Packed R-Tree for Fig 4.6a 

(assume b = 3): 

‘ 0 0 0 0 0 0 〇 〇 〇 〇 〇 〇 

Fig. 4.7a: Finding MBRs for 12 spatial objects 
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^ I P K ^ ‘ o6b dl；^ 66b d\)t) 
Fig 4.7b: Retrieving the first level non-leaf node 

冬 \ > 》 ； / k k 
、义、沙// ‘ 6t)bo'b、o6Dbd、o、o 

Fig 4.7c: Retrieving the second level non-leaf node 

众 � T V ‘ 6 6 b o V o 6 6 b o ' ^ o 

n 軌 y 
Fig 4.7(1: Retrieving the third level non-leaf node (root) 
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Fig. 4.8a-d illustrates for building up the STR Packed R-Tree for Fig 4.6b 

(assume b = 3): 

fia 
〇〇〇〇〇000〇〇〇〇〇〇〇 

Fig. 4.8a: Finding MBRs for 15 line spatial objects 

6Dbd、o、oo|、o、o 6Dbo'b、o 

Fig 4.8b: Retrieving the first level non-leaf node 

, / i : \ A � 
6Dbd、o、odb、o 6Dbd、o、o 

Fig 4.8c: Retrieving the second level non-leaf node 
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_ 八 
\ x ^ 晨 \ 

\ z y ^ z z / I I \、、 I \、、 , ' / I I、、、 

6t)b(r〇、odb、o oDbdb^o 
Fig 4.8d: Retrieving the third level non-leaf node (root) 

Fig 4.8a-d show that building up STR Packed R-Tree for line string causes 

many overlaps. These overlaps increase the number of false retrieval for 

query, delete and update of spatial data. Also, there are many other operations 

regarding the traditional spatial query, delete and update, for example, 

(l)finding the shortest path from the original to destination in the road network 

and (2) finding the nearest neighbor objects along the shortest path. Chapter 5 

will describe shortest path queries, nearest neighbor queries and also the new 

algorithms for road network spatial data. 
4.3 Summary 

This chapter discusses STR Packed R-Tree and its implementation in 

both ordinary spatial data and spatial network data (i.e. road network). We 

concludes the result as follows: 
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1. The overlapping of STR Packed R-Tree in spatial network is quite 

serious. This increases the time of query for spatial network data 

2. The network operations of STR Packed R-Tree in spatial data are 

difficult, as pages in non-leaf level are not connected. 

Network operations of digital map data will be further discussed in 

chapter 5. 
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Chapter 5 

Spatial Network 

5.1 Introduction 

Spatial Data Accesses such as insert, update and delete are the most 

primitive operations in many geographical applications. With the advance of 

spatial research, the spatial technology has extended to other areas of practical 

applications including Intelligent Transportation System (ITS), Transport 

Information System (TIS), Scheduling and Distribution for Vehicle Routing 

System, electricity, water and drainage system, etc. 
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Besides simple spatial queries such as finding the location of a 

building, many applications also make use of network operations on spatial 

data, for example, finding the shortest path in a road network, minimizing the 

cost (e.g., the distance traveled) for delivery by vehicles in a road network, etc. 

These types of applications are referred to as spatial network applications. 

A spatial network refers to a network containing spatial data. The main 

difference between a spatial network from other spatial data is that line 

segments are usually inter-related. For instance, the end point of one line 

segment is also the end point of another line segment. This characteristic is 

different from other ordinary spatial data. For instance, building polygon that 

is not inter-related. In Chapter 4，we find that the storage of spatial elements of 

a spatial network is not as efficient as other ordinary spatial data. Also some 

modifications in the access methodology can be made to help improve the 

efficiency of spatial accesses needed in accessing a spatial network. 

A spatial network is also a network, i.e. it has all the network 

characteristics. Algorithms solving shortest path problem, maximum flow 

problem, and minimum cost flow problem can be applied to a spatial network 

to model the real world problems. One such real world problem may involve 

solving traffic congestion. All these applications are developed using spatial 

data and help us in route planning, and electricity and drainage systems 

planning, etc. 
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On the other hand, applications of a spatial network usually require 

more information than that provided by these theoretical algorithms. For 

example, the optimal path found by the shortest path algorithm such as 

Dijkstra's algorithm can only get the shortest distance and also the index keys 

of line segments of the optimal path. However, the user of route planning 

would like to have the graphical representation of the optimal path and 

probably the nearby buildings to identify the exact locations he/she wants. All 

these applications require spatial accesses and nearest neighbor queries (that 

will be discussed in Chapter 6). 

Indeed for spatial network operations such as finding the optimal path 

in a digital map, most existing digital map applications would only retrieve the 

corresponding layer and programming developments are needed in application 

servers to find the optimal path as well as the nearby spatial objects (refer to 

Fig. 1 in Chapter 1 for details). Although it is a generic architecture (i.e., the 

spatial database only stores three types of spatial objects: point, line and 

polygon), it is not very efficient for complex spatial query operations such as 

shortest path queries and nearest neighbor queries. 

In the next section of this chapter, we review a connectivity-clustered 

access method for networks and network computations [Shekhar, et al. 

(1997)]. In Section 3’ we provide the definition of Shortest Path and its 

implementation in spatial networks based on the existing spatial access 

methods (e.g. STR Packed R-Tree). These techniques are useful in 
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understanding our new algorithm. In Section 4，we propose a new algorithm 

called Connected Page Algorithm that is specially for a spatial access method 

in a spatial network Section 5 proposes a modified shortest path algorithm that 

can be implemented for spatial network. 

5.2 Connectivity-Clustered Access Method (CCAM) 

Since a line segment in a road network consists of two end points (i.e., 

nodes), CCAM [Shekhar, et al. (1997)] firstly stores the node data, 

coordinates, successor list, and predecessor list. A successor list (predecessor 

list) contains a set of outgoing (incoming) edges, each of which is represented 

by the node-id of its end (start) node and the associated edge cost. The 

successor list is also called the adjacency list, and is used in network 

computations. The predecessor list is used in updating the successor list in 

InsertO and Delete。operations. CCAM refers to the neighbor list of a node x 

as the set of nodes whose node-id appears in the successor list or predecessor 

list of X. CCAM notes that records do not have fixed formats because the size 

of the successor list and predecessor list varies across nodes. 

Node 
2 

• Nid X y Successors Predessors 

^ ^ 1 1 (2，5，6) 0 
3 • 、 塵 

r ^ 1 - … … （ 3 ’ 5) (1) 

丄 ^ ^ 丄 1 ⑷ （3) 

\ ji • 1 � � 
4 6 1 (6) (2’1) 

I - - 0 (1,5) 
Fig. 5.1 ： Node table for CCAM | | | | 
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Assume that the node relation is physically clustered as shown in Fig. 

5.1 according to the value of the node-id and the disk page size is two tuples 

for the node relation. In other words, node 1 and 2 share a page. There are two 

other pages, one with nodes (3,4) and other with nodes (5,6). This makes one 

unsplit edge (1,2) and two split edge (1,5) and (1,6). If the nodes can be 

clustered to minimize the number of unsplit edges, then it will reduce the I/O 

cost of network operations. 

To check the number of split and unsplit edges, a term, called 

Connectivity Residue Ratio (CRR) can be introduced: 

CRR = Total number of unsplit edges / Total number of edges. 

It can be shown that maximizing the CRR will minimize the average 

I/O cost of network operations [Shekhar, et al. (1997)]. As an example, 

consider the CRR for the example in Fig. 5.1. For pages ((1,2)，(3,4), (5,6)), 

the CRR is 3/8 = 0.375. If each page accommodates three nodes, then higher 

CRR can be achieved. For example, CRR ((1,2,3), (4,5,6)) is 4/8 = 0.5 and 

CRR ((1,5,6), (2,3,4)) is 5/8 = 0.625. 

CCAM assigns nodes to the data page by a graph partitioning 

approach, which tries to maximize the connectivity residue ratio (CRR). Each 

data page is kept at least half full whenever possible. Records of the data file 

are not physically ordered by node-id values. A primary index cannot be 

created without renaming the nodes to encode disk-page information in the 
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node-id, and it requires additional overhead during update operations. 

Therefore, a secondary index can be created on top of the data file with an 

index entry for each record in the data file. 

If networks are embedded in geographic space, (x, y) coordinates for 

each node are also stored in the record. Then a spatial indexing scheme on the 

( X，y ) coordinates can be used as the s e c o n d a r y i n d e x . This s e c o n d a r y i n d e x 

can support point and range queries on spatial databases. 
I 

/

Key 0 Node 0 
Key 1 劣 Node 1 
Key 2 v ^ Node 4 
Key 3 O C ^ Node 5 
Key 4 狐 

Keys r ^ r — — 
Key 6 , i Node 2 

U J - > U J - ( l ) - ’ - i C ) — Key? \ t Node 3 
4 r i ！、 1 4 W y f Node 8 

「 L “ 14 Key? \ \ / / Node 9 
( ) 0 ’ 丨 i Q l . l 0 2 . 1 - , ( ) 3 ’ 1 

1 / 3 T \ 11 I • 
r h o ’ o / Q l ’ 。 丄 2,。、、丄 3,0 t A . 

8 、.10 I K e y s l ^ i j | Nocle6 
Key 9 Node 7 
Key 10 s V r Node 12 

O Key 11 ^ Node 13 
^ Node(x’y) Key 12 

Key 13 
。 Key 14 Node 10 
Sample Network Edge Key 15 - - J J - Node 11 

Node 14 
I Node 15 

LJ I 
[ 

Fig. 5.2: Clustering and storing a sample network (key represents spatial order). 

In Fig. 5.2, a sample network and its CCAM are shown. The left half 

of Fig. 5.2 shows a spatial network. Nodes are annotated with the node-id (an 

integer) and geographical coordinates (a pair of integers). To simplify the 

example, the node-id is an integer representing the Z-order of the (x, y) 

coordinates. For example, the node with the coordinates (1，1) gets a node-id 
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of 3. The solid lines that connect the nodes represent edges. The dashed lines 

show the cuts and partitioning of the spatial network into data pages. There 

exists a cut on edge e(u, v) if node u and node v fall into different partitions. 

The partitions are (0’ 1’ 4, 5)，(2, 3’ 8, 9)，（6，7, 12, 13)，and (10, 11, 14，15). 

The right half of Fig. 5.2 shows the data pages and the secondary index. We 

note that the nodes are clustered into data pages by CCAM, using a graph 

partitioning approach. Nodes in the same partition set are stored on the same 

data page. They are not physically ordered by their node-id values. A 

secondary index ordered by node-id is used to facilitate the Find() operation. 

The secondary index in this example is a B+ tree on the Z-order of (x, y) 

coordinates of each node. 

5.3 Shortest Path in Spatial Network 

To solve the shortest path problem in a spatial network, firstly we need 

to define the problem. 

In shortest path problem, we consider a network G = (iV, A) with an 

arc length (or arc cost) c". associated with each arc (/，7)6 A. The network has 

a distinguished node s, called the source. Let represent the arc adjacency 

list of node i and let C = max{c,.. :{i,j)e A\. We define the length of a 

directed path as the sum of the lengths of arcs in the path. The shortest path 

problem is to determine for every non-source node N shortest length 
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directed path from node s to node i. Alternatively, we might view the problem 

as sending 1 unit of flow as cheaply as possible (with arc flow costs as c,..) 

from node s to each of the nodes 'm N — [s} in an un-capacitated network. This 

viewpoint gives rise to the following linear programming formulation of the 

shortest path problem (Fig. 5.3). 

Minimize (5.3a) 
iiJ>A 

subject to 

^ {n-\ fori = s 
l ^ X i j - L ^ J i = 1 . , , r . (5.3b) 

{ j i i j > A } I-1 f o r a l h G A ^ - { s \ 

>0 for all { i j ) e A. (5.3c) 

Fig 5.3: Linear programming formulation of shortest path problem 

For a spatial network (e.g., a road network), all arc length must be 

positive. Hence, all algorithms for shortest path problem can be applied on 

spatial network. Some algorithms, such as Dijkstra's algorithm [Dijkstra 

(1959)], cannot be applied for solving shortest path problems with negative arc 

lengths. 

The pseudo code of Dijkstra's algorithm is given in Fig 5.4: 
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algorithm Dijkstra'’ 
begin 

S = 7V; 
d[i) := oo for each node i e N-, 
d{s):= 0 and pred(s) := 0; 
while < «do 
begin 

let / G 5 be a node for which d{i) = min{^(;): j 6 s}; 
S:=S\j\i}, 

S:=S-\il 
for each {i,j)e A{i) do 

if d{j)>d{i) + Cij then d{j):= d{i) +c^ and 
pred{j) := i ； 

end; 
end; 

Fig.5.4: Pseudo Code of Dijkstra's algorithm 

We implement the Dijkstra's Algorithm in C Programming Language 

(gcc 2.96) with operating system Redhat 7.2 running on a desktop computer. 

The configuration of the computer is AMD Duron I . IG CPU, 256MB 

SD-RAM with an IBM 9.1G SCSI Harddisk. We randomize 100 origin-

destaination (0-D) pairs and search the shortest path from the above node and 

arc table. The result is shown in Table 5.1: 
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Primary Key Primary Key No. of Shortest Path Absolute 
of Start Node of End Node iterations Distance Distance 
11455 5463 ~ 3930 — 10877.903" 7318.271 
10687 "T^893 "TI46.848 594.809 
12400 " ^ 8 9 "9850 15351.885 11182.973 
4684 ~m475 15370 13410.543 9809.265 

7602 4138 5935.353 4509.505 
； > 100 records 

11368 I 12596 | 1773 丨 6719.771 3501.051~~ 
11888 I 11337 I 5384 10081.420 | 5638.070 | 」 

(total 100 0 -D pairs) 
Primary Key of Start Node: Unique key of start node 
Primary Key of End Node: Unique key of end node 
No. of iterations: No. of nodes visited before finding the shortest path (i.e. S in Fig. 5.4) 
Shortest path distance: the shortest path distance of start and end points in metres 
Absolute distance: the distance between start and end points in metres 

Table 5.1: Result of calculating shortest path distance from 100 0-D pairs 

The total iteration for finding these 100 0-D pairs is 708296. And the 

total time for finding the 100 0-D pairs shortest path is 2140 seconds. On 

average each shortest path would need around 7083 iterations and 21 seconds. 

The time complexity of the original implementation of Dijkstra's 

algorithm is 0{tr}. Other implementation of Dijkstra's algorithm such as 

Fibonacci heap implementation have time complexity 0(m + n log n) but it 

needs specific data structure which is different from ours. Other algorithms 

such as Floyd-Warshall Algorithm has the time complexity of 0(n勺.Indeed, 

to solve the problems in the network with 13794 nodes and 34170 arcs is a 

very tedious operation. 
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Some applications which require road networks for their problems 

have a different method to deal with this complex problem. Wong, et al. 

(2002) try to formulate the layered networks for Hong Kong road network. 

Layered network is a directed network G = (N, A) with a specified 

source node s and a specified sink node t i f we can partition its node set N into 

k layers Nu Ni, ..”N、so that = {s}’ N、= {t}’ and for every arc A, 

nodes i and j belong to adjacent layers (i.e., ie iV, and je A/‘,̂ , for some 

1 < / < / : - ! ) . Fig. 5.5 is the graphical representation of the layered network 

model used in Wong, et al. (2002): 

Main Level 

Dummy arcs：^!^. \ � � 

Regional Level 

Fig. 5.5: Layered road network from Wong, et al. (2002) 

In Wong, et al. (2002), the main level layer contains 691 nodes and 

1932 directed arcs which cover the main roads for the whole Hong Kong 

territory. Other regional level layers contain no more than 200 nodes and 500 

directed arcs. This can save many tedious calculations in finding the shortest 

60 



path in the whole road network by calculating three shortest paths with 

hundreds of nodes. 

Layered network is a possible solution for managing a large scale 

network such as the road network for the whole Hong Kong territory. It can be 

also easily applied to existing geographic information system which is 

described in Fig. 2 of chapter 1. However, a solution of shortest path problem 

in layered network may not be the optimal solution for the original network 

since one or more of the connected nodes must be used. The accuracy of 

shortest path depends on clustering of the large scale networks and the number 

of connected nodes between main level layer and regional level layers. 

Another problem to apply layered network is that its design must be 

based on the main level layer first. But the determination of which arc should 

be contained in the main layer is also a problem: Decrease of the number of 

arc in the main layer network can decrease the complexity but also the 

accuracy of network operations. For example, applying the following main 

level layer (Fig. 5.6) which consists of main roads of Hong Kong territory 

with around 50 nodes is also feasible but may not be optimal for network 

operations: 
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l̂ iCMB a .MiWIMM - -

Fig. 5.6: Hong Kong major roads from traffic department, HKSAR Government 
http://traffic.td.gov.hk/snapshots/eng/index.htni 

Also, there is still not a standard layered network design for Hong 

Kong road network. (Digital Map RGIOOO data from Lands Department only 

divides the data in region, but not in main level and regional level.) To 

implement a layered network for Hong Kong road network requires excessive 

computations. 

In the fol lowing section we wi l l propose a new algorithm which can 

easily partition a spatial network such as the Hong Kong road network and the 

existing algorithms for network operations can also be easily applied with 

slight modifications. 
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5.4 Connected-Page Algorithm (CPA) - A New algorithm 

specifically for partitioning/clustering spatial networks 

We illustrate the new algorithm by using the area of Siu Lek Yuk, 

Shatin (Fig. 5.7). There are totally 12 nodes and 15 arcs in these area. i.e. G = 

(N, A) = (12, 15). We name the nodes in order (a, b, ...’ k, 1) and arcs in order 

( I , II，...，XV). 

.爆 
Fig. 5.7: Map data from Siu Lek Yuk, Shatin 

Connected-Page Algorithm (CPA) for spatial network partition is 

given in the following. We assume that each page can store 4 nodes in 

maximum with all arcs connected for the 4 nodes. 

Step 1: Randomize choosing a particular node (say (a)), find the nearest three 

nodes which is connected to node (a) (i.e. (b), (d) and (e)) 
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Step 2: Remove the node (a) and three nearest connected node ((b), (d) and 

(e)) in N. N2 stores (b), (d) and (e). Node (a), (b), (d) and (e) and arcs 

(I)’（VIII)，（XV) are stored in one page (say Page (1))’ also find the 

MBR of the page. 

Step 3: Repeat the Step 1 and 2 by choosing a node in Nzfor step 1 until all 

nodes are stored in Pages (i.e. N2 = 0 ) 

Step 4: Repeat the step 1 process by assuming the pages created in the 

previous level as node in the next level, (Page 1, 2 and 3 created in the 

first level are assumed to be three node in second level. And we found 

that in second level there are three "page" nodes and six arcs (XIV), 

(XIII), (XII)，(XI), (II) and (VI)) until the root node is found. 

We use an example to illustrate the function of the algorithm. 

Step 1: (first level) 

^ ^ / \ Randomly choose a node (say node 
W / ^ \ (a)) 

% 
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Step 2: (first level) 

^ y ^ / y ^ c ) \ Page 1 stores nodes (a), (b), (d) and 
y y / W \ (e) and arc (I), (VIII) and (XV). 

N2 stores (c), (f), (i), (j). • 
Step 1 and 2: (first level) 

V ^ / \ Page 2 stores nodes (i), (j), (k) and 
y y / y \ (l) and arc (VII), (IX) and(X). 

Z X r c y ^ N2 removes (i), (j)，and add (h). 
( j C Le.N2 stores (c), (f) and (h). 

Step 1 and 2: (first level) 

^y^Z/ \ Page 3 stores nodes (c), (f), (g) and 
V (h) and arc (III), (IV) and (V). 

^ ( N2 removes (c), (f), and (h). I.e.N: 
^ ^ ^ ^ ^ ^ 舰 0 . 

Page 1 Since all nodes are stored in 
^ J ^ s / ^ ' different pages, next iterations will 

Page 2 ^ ^ ^ ^ continue in second level 
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Step 4: (second level) 

\ Assume Page 1, 2, 3 become 
y y ^ y ^ r 、 d u m m y node in the next level, and 
y ^ W ^ P a g e ^ ^ then repeat step 1. 

\ "Page 4" stores Page 1,2,3 and arc 
^ \ \ - y (XIV), (XIII), (XII), (XI), (II) and 

^^age x / ^ ^ ^ Since all (dummy) nodes are stored 
，next iterations will continue in 
third level 

Step 1: (third level) 
Page 4 

~ / / X Since "Page 4" is the root node, 
/ / the algorithms can be stopped. 

H 
Fig. 5.8: The iterations of CPA for partitioning spatial networks 

The tree representation of the new algorithm is: 

Page 4 

Pagel 卜 x - v . ^ Page3 
I ^ ^ ^ ^ ^ ^ (XI) ^ 

I ^ I ^ e V 4 ) - | ^ ^ ^ 
~ ‘ 一 (__ (丨 V 、 

眷（丨)參(Vll l f (XV)參 參(X)參(丨X)參(VII)着 參(1丨丨)參(V)參 參 

(b) (a) ( d ) ⑷ I |( i ) (1) (k) (1)1 1(c) (g) (f) (h) 
Fig. 5.9: Tree representation of CPA for partitioning spatial networks 
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The main difference of this new algorithm from CCAM is all nodes in 

each page must be connected. CCAM can only find the minimum cut between 

the pages but cannot ensure the nodes in the same pages are connected, Fig 

5.10 is an example: 

» / 
cp0’3\、9 丨’3 o2.3 /q3.3 The page for nodes (1,1), (2,1), 

\ I (1,0) and (2,0) are not connected. 
oo,2 \ r v , 2 ch^'^i r v ’ 2 j j 
• 0,1 ,1 d v ’ 丨 门 2 ’ l \ , 门 3 , 1 〇 Node(x, y) 

I \ 
I \ 

( ) 0 ’ 0 j / 门 1,0 门 2,0 ) 3,0 Sample Network Edge 

/ \ 

Fig. 5.10: An example of CCAM with a page have nodes not all connected. 

The unconnected nodes within a page make some network operations 

failed. For example, if we want to find the shortest path or optimal path 

between the node (3,0) to (2,1), we would check the pages which contain these 

two nodes, although Page ((3,0), (3,1), (3,2), (3,3)) and Page ((1,1), (2,1), 

(1,0), (2,0)) are connected by arc ((2,0), (3,0)). The shortest path or optimal 

path could not be obtained by just consider these two pages. The whole 

network would need to visit to find the shortest path or optimal path. 

But for CPA, all algorithms for network operations can be easily 

applied. Let us find the shortest path algorithm for (a) to (1). (This algorithm 

can also give the coordinates of origin and destination instead of specifying 

the index key of nodes.)： 
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Step 1 ： Check which pages contained the origin and destination: 

(i.e. Origin: Page 4(root) -> Page 1，Destination: Page 4(root)-> 

Page 2 ) 

Step 2: Find the (shortest) path(s) connected for the origin page and 

destination page (i.e. arc (XIV) and (XIII)). 

Step 3: Find the path which is the shortest for using path (XIV) and (XIII). 

(i.e. Check whether (VIII) -> (XIV) -> (IX) -> (VII) or (VIII) -> (XV) 

-> (XIII) -> (X) -> (IX) -> (VII)) Then we can find the shortest path is 

(VIII) -> (XIV) -> (IX) -> (VII).) 

In the remaining section, we discuss insert and delete operations for 

CPA: 

Insert: 

I f a node and corresponding arc(s) are inserted, firstly we need to 

check the nearest leaf pages (those pages contain nodes) can accommodate 

this new node, if not, then a new leaf page can be created. If only an arc is 

inserted, then the arc can be inserted in leaf pages or non-leaf pages. (If a new 

page is inserted, updating of arc connection is also needed in leaf pages.) 

For example, node (m) and arc(XVI) is inserted (Fig. 5.11) 

(arc (XVI) connect node (m) and (a): 
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Fig 5.11: Insert new node (m) and arc (XVI) 

The tree representation of CPA will be updated as follows (Fig. 5.12): 
Page 4 

(YII) 

Page > - 、 ^ ) ] Page 3 
I x ； ； ; ; ^ 1 — ^ ^ ^ (XI) - y 

i i — I 

f b ) ⑴ ? a r f d r f n j 岡 " ¥ ( g ) % 

Fig 5.12: Updated tree representation of CPA after node (m) and arc (XVI) inserted 

Delete: 

I f a node and/or corresponding arc(s) are deleted, we need to check 

whether the deleted node would change the connectivity within a leaf page and 

also the connectivity in non-leaf pages. A leaf page needs to split i f the node in 

this page is not connected. If a page is no longer connected with other then this 

part of tree would need to move to the root node. (For this reason, a root node 

would require to have unlimited node connected.) 

For example, node (a), arc(I) and arc(VIII) are deleted (Fig. 5.13): 
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Fig 5.13: Delete node (a), arc (I) and arc(VlII) 

Page 4 

— — z 广‘一 r � � � � 
< " " " " " ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 
^ Page 5 Page 1 厂 ^ ^ 夕 _ 、 ^ ) 二 Page 3 
j I — "y ^^^—(XI) — y 

i j ^ ^ m n ) — - ^ j m - V - ^ , ~ ^ 
丨 一 — ( _ ( IV、 

(?) f r f e j TR 彻 | f c r ? i y ? f ) ？h) 

Fig 5.14: Updated tree representation of CPA after node (a), arc (I) and arc (VIII) are inserted 

Indeed the insert and delete operation of CFA is quite complicated. But 

mostly spatial network would not have frequently changed and it is quite easy 

to rebuild the CFA tree after any insert or delete. 

5.5 A New Simple heuristic for shortest path problem for spatial 

network 
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In this section, we will introduce a new simple heuristic for shortest 

path problem by using the characteristics of spatial network based on 

Dijkstra's algorithm. 

Each spatial object contains coordinates. For finding the shortest path 

between two points with coordinates, we can compare the coordinates for 

searching. 

Fig. 5.15 is an example to illustrate the heuristic by considering the 

coordinates of origin and destination node. 

B (840288.879,827130.052) 门 P F (840376.112’ 
' " k / 827062.024) 

A (840376.112’ 827062.024) ^ / 

E (840450.003, 827039.620) 

[J D (840411.859, 827024.420) 

C (840210.521, 827001.672) 

Fig. 5.15: A sample spatial network 

I f we want to find the path from node D to node B in Fig 5.15，by Dijkstra's 

algorithm, the path will be D -> A -> B. And the node iterated will be (D, A, E, 

B). 

However i f we divide the network in four regions where the start node (D) is 

the origin: 
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j 门 F (840376.112， 
B (840288.879,827130.052) 门 丨 尸 827062.024) 

I I \ I / I 
A (840376.112,827062.024) V i ： / 

E (840450.003, 827039.620) 

D j D (840411.859, 827024.420) 

C (840210.521,827001.672) I I I ： I V 

Fig. 5.16: Cluster the network in Region I to IV 

Comparing the coordinates of B and D: 

x_coordinates of B - x_coordinates of D = 840288.879 - 840411.859 = -

122.98 (negative) 

y_coordinates of B - y_coordinates of D = 827130.052 - 827024.420 = 

105.632 (positive) 

I f we only expand the shortest path tree in region 2，the path will also be D -> 

A -> B. And the node iterated (i.e. S in Fig. 5) will be (D, A, B). i.e. Iteration 

of E is saved. 

In general, we can start the iteration in a particular region based on following 

conditions: 

Region I: 

X一coordinates of destination node - x_coordinates of origin node = (positive) 
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y—coordinates of destination node - y_coordinates of origin node = (positive) 

Region II: 

x_coordinates of destination node - x—coordinates of origin node = (negative) 

y_coordinates of destination node - y—coordinates of origin node = (positive) 

Region III: 

x_coordinates of destination node — x_coordinates of origin node = (negative) 

y—coordinates of destination node — y_coordinates of origin node = (negative) 

Region IV: 

X—coordinates of destination node - x_coordinates of origin node = (positive) 

y—coordinates of destination node — y_coordinates of origin node = (negative) 

In the best case, this heuristic can saved third-fourth of the iterations compared 

with traditional Dijkstra's algorithm. 

This heuristic uses the same algorithm of Dijkstra's algorithm. But in 

searching i in the line "let ie She a. node for which d(i) = mm[d{j): js 5};" 

(Line 8 of Pseudo Code of Dijkstra's algorithm in Fig 5.4). The choice of i 

would only choose the node in the region specified. 

Deficiencies in the heuristic: 
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If we search the path from D to C, the path cannot be found in region 

III. In this case, this heuristic fails. Even the path can be found, this heuristic 

cannot ensure that the path found is optimal, while the path found by 

Dijkstra's algorithm is an optimal path. 

5.6 Summary 

In this chapter we have proposed a new algorithm - Connected Page 

Algorithm (CPA) for storage of spatial networks. This algorithm based on the 

connectivity instead of proximity (e.g. STR Packed R-Tree) and we found that 

the overlapping area can be saved. CPA is also easier to implement than 

CCAM (Connectivity Clustered Access Method) and more suitable for 

network operations in spatial network. In the next chapter we would extend 

the usage of CPA. A simple heuristic which is based in the characteristics of 

spatial network (i.e. each spatial object has the corresponding coordinates) is 

also introduced. 

Table 5.2 shows the comparison of R-Tree STR Packed R-Tree, 

CCAM and Connected Page Algorithm: 
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R-Tree STR Packed CCAM Connected Page 
R-Tree Algorithm 

Data type Genera丨 General Spatial Spatial 
being used spatial data spatial data Network Network 

Inserting Dynamic Static Static Static 
procedure 

Overlap of Many Less overlap — No overlap 
non-leaf MBR overlap 

Preprocessi No No Yes (network Yes (network 
n g o f data representations) representations) 

Network No support No support Support Support 
computations 

Multi-layer Yes Yes No Yes 
clustered 

Table 5.2: Comparison of R-Tree, STR Packed R-Tree, CCAM and Connect Page Algorithm 
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Chapter 6 

Nearest Neighbor Queries 

6.1 Introduction 

Nearest Neighbor Queries is an important application in geographical 

information systems. Examples include finding the nearest gas station, car 

park, etc. Nearest Neighbor is also essential in delivery planning systems. 

Examples include finding the nearest depot to deliver the product to particular 

customer and determine the nearest parking place to deliver the product to the 

customer. 

The following is the nearest neighbor queries by R-tree proposed in 

Roussopoulos, et al. (1995), Papadopoulos, et al. (1997), Cheung, et al. 

(1998), Tao, et al. (2002). 
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Define (i)Point P\ the query point 

(ii)Rectangle R: the directory rectangle or minimum bounding 

rectangle(MBR) in R-tree or any other algorithms using 

MBR 

(iii)Vertex V: the nearest vertex of R from P. 

{m)Min-distance(P, = 0 if P is inside R or on boundary of R 

Min-distance(P, R) = Euclidean distance between P and 

any edge of R if P is outside R 

(iy)Min-Max-distance (P, R) is the distance of P from the 

farthest point on any face of the R containing vertex V 

Min-distance(P, R) represents the lower bound on the distance of any 

object inside R from P and it provides an optimistic ordering of subtrees in 

nearest neighbor search. Min-max-distance(P, R) guarantees that there is an 

object O inside rectangle R in the R-tree such that (0，P) < Min-max-

distance(P, R), and it provides a pessimistic ordering. 

Search pruning strategies can be based on these measures, as well. For 

example, an MBR M can be eliminated if there is another MBR M' such that 

with min-distance (P, M) > Min-max-distance(P, R，). An MBR M can also be 

eliminated if there is an object O such that distance (P, O) < min-distance(P, 

M). Finally an object O can be eliminated if there is an MBR M such that 

distance (P，O) > min-max-distance (P，M). 

77 



The search algorithm for nearest neighbor starts with the root node of 

the R-tree and traverses the tree. For example, a breadth first traversal of the 

R-tree will visit MBRs of the children of the interior nodes of current node for 

pruning using the above rules. The remaining children will be expanded in the 

next iteration. The final iteration will have a set of leaf nodes (database object 

level) from the MBRs that survive level-wise pruning. The algorithm needs to 

compute the distance of each leaf from query point P to determine the nearest 

neighbor. 

6.2 Modified algorithm for Nearest Neighbor Queries 

We can apply nearest neighbor queries to many situations such as 

finding the shortest path from one building to another in Hong Kong, we need 

to find the nearest nodes of an origin building and destination building from 

the Hong Kong Road Network. 

It is a tedious operation if we need to find nearest nodes of origin 

building and destination building once we need to find the shortest path of 

these two buildings. Some literatures (e.g. [Wong, et al. 2002]) use a mapping 

table, i.e. setting many-to-one relationship for buildings to nodes. For 

example, Fig. 6.3 is a mapping table for buildings to nodes in Siu Lek Yuk, 

Shatin. 
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In Wong, et al. (2002), a distribution and delivery system named 

VANS is created. VANS involves to find the vehicle routing solution for 

customers address (buildings). 

Fig. 6.1: Map data with node and arc index 

i i 
Fig. 6.2: Map data with polygon (building) index Fig. 6.3: Mapping table for building to 

node 
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By using mapping table, if the shortest path from building (1) to (8) is 

needed, the shortest path from node (d) to (1) would be found instead. 

Based on the new algorithm — Connected Page Algorithm (CPA), we 

extend the nearest neighbor queries for CFA to enhance the usage of CFA in 

more applications (e.g. mapping the spatial objects such as buildings to the 

spatial networks). The name of this extension is Nearest Neighbor in 

Connected Page Algorithm (NNCPA). 

To illustrate NNCPA, we try to map the building shown in Fig. 6.2 to 

the tree representation of CPA (Fig. 6.4). 

Page 4 

^ ^ ^ ^ 
Page 1 广、^ ^••^」Page3 

I ^ ^ ^ ^ ~ ~ ~ ( X I ) y 
I I ^ ^ 
^ 一 / _ (丨 V 、 

眷 ⑴ 參 ( V l l l f (XV)眷 參(X) ® ( IX)® (VII)® 鲁(丨丨丨)鲁(V)鲁 眷 

Fig. 6.4: Tree representation of CPA for partitioning spatial networks 
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PageK \ P a g e 2 / / 

Fig 6.5: Creating the first level in CFA for Fig. 6.1 

In generating the first level of CFA (Page 1，2 and 3), we can compare 

the Minimum Bounding Rectangle (MBR) of building with the MBR of Page 

1，2 and 3. If any MBR of building can be included in any page, those building 

will be stored or indexed in that page. Fig 6.6 illustrates this comparison and 

indexing: 

_ 

Fig 6.6: Comparing the first level in CPA for Fig. 6.1 

In Fig 6.6, we can see the first level CPA page (Page 1, 2 and 3). Page 

1 covers building (1). Page 2 covers building (11) and (12). Page 3 covers 

building (3). Since other buildings cannot be totally covered by the first level 
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pages, these buildings will be continuously checked in the next level pages 

until all buildings are covered and indexed in CPA pages. In this example all 

other buildings can be indexed in the next level page, i.e. Page 4. i.e. Building 

(2), (4)-(10) are indexed in Page 4. 

藝： 
Fig 6.7: Comparing the second level in CPA for Fig. 6.1 

(2), (4). (5), (6), p i Page 4 
(7). (8). (9). (10) 一一一一-|j、、、、、 

I • ^m _ mmm m •— — ^ ― _ ^m m —» - ^ ― « hm • tmm ^ ^ 

(1) Pagel ^ (11),(12) ^ . - 、 ^ (3) ) 」 P a g e 3 
I (XIV) — ^ w - H ( X I )丨 ^ ^ - y 
I j m - — z __ 
： — 乙 ( I V 、 

鲁 ⑴ 眷 ( V l l l f (XV)眷 參(X) ® ( IX)® (VII)® 參 ( I I I )眷 (V )參 參 

Fig. 6.8: Tree representation of CPA for partitioning spatial networks 

In solving the shortest path in buildings of NNCPA, the operation is 

similar to solving shortest path of nodes in CPA. For example, if we want to 
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find the shortest path from building (1) to building (12), we can find the 

indexed pages of building (1) and building (12), i.e. Page 1 to Page (2). Two 

paths, (XIV), (XIII) connect Page 1 and Page 2. And now we can choose the 

path between (XV) -> (XIII) -> (X) -> (IX) or (XIV) -> (IX) and find the 

shortest path between these two paths. 

6.3 Summary 

NNCPA is suitable for real-time road guidance for vehicles, e.g. 

transportation and emergency services. If one road is blocked by traffic 

congestion or traffic accident, there are many alternatives to choose which can 

also go to the destination. NNCPA is more flexible than just mapping the 

buildings to specific nodes and NNCPA can also save many calculations in 

network operations for spatial networks with thousands of nodes. 

83 



Chapter 7 

Conclusion and Future Work 

In this thesis we address spatial data and spatial databases. Since most 

spatial data are in proprietary formats, we propose to use Geography Markup 

Language (GML) for indexing scheme for spatial access which can be used in 

any spatial data access algorithms. 

STR Packed R-Tree [Leutenegger, et al. (1996)] is efficient to store 

general point and polygon spatial data. But it is not efficient for line segments. 

CCAM [Shekhar, et al. (1997)] focuses on the storage of a spatial 

network based on connectivity of spatial network. Based on CCAM, we 

propose a new algorithm - Connected Page Algorithm (CPA) for clustering a 
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spatial network. We also illustrate how to extend the capabilities of CPA to 

nearest neighbor queries 

7.2 Future Work 

A spatial network we study in this thesis is in static mode. There are 

many real-life problems that is dynamic in nature. For example, a real road 

network consists of real time traffic information. To model the real road 

network for applications such as real time road guidance, additional 

algorithms and heuristics would be needed to develop for spatial network. 

Dynamic insert, delete and update of spatial networks are also 

important operations in spatial networks. The challenge is not only optimized 

the network storage but also the spatial data query. 

In this thesis we also deal with the shortest path problem for a spatial 

network. There are many other network operations such as traveling salesman 

problem, vehicle routing problem, maximum flow problem, minimum cut 

problem which can also be applied in a spatial network. 

Geotools is one of the open source mapping toolkit for spatial data 

which support GML. To make some system implementation for spatial 

network, nearest neighbor queries we suggest making use of this toolkit. 

Fig. 7.1 shows a webpage which use Geotools for web-based spatial data 

visualization. 
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Fig.7.1: A webpage which make use of Geotoo/s for spatial data visualization 
http://www.se.cuhk.eclu.hk/~vans/cu_map/ 
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Appendix 

Space Driven algorithms 

A.l Introduction 

Spatial Access Methods include space driven algorithms and data 

driven algorithms. In chapter 2 we have reviewed data driven algorithms as 

the research direction of this thesis concentrates on data driven methods. In 

this appendix we discuss data driven algorithms. Three data driven algorithms 

are introduced: fixed grid, Z-curve, Hilbert Curve. 

The grid file was initially designed for indexing objects on the value of 

several attributes. Unlike the B-tree, it is a multikey index that supports 

queries on any combination of these attributes. Linear structures enable a 
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simple integration with the B+-tree of existing database management systems. 

A.2 Fixed grid 

In fixed grid [Bentley, et al. (1979), Nievergelt, et al. (1984)]，the 

search space is decomposed into rectangular cells. The resulting regular grid is 

an n^X n^ array of equal-size cells. Each cell c is associated with a disk page. 

Point P is assigned to cell c if the rectangle c.rect associated with cell c 

contains P. The objects mapped to a cell c are sequentially stored in the page 

associated with c. 

A Direjctory. 

y I • ! • ! ny 
拳 

^ •_!_ 
y - " " r ; ~ 

i • 

y i . • • ^ 1 
• 

yO Pages 1 • Rx I 

xo 众 ” …丨』 . . .I i�kVr 
X 

Fig. A. l : Fixed Grid 
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0x0 x l x2 x3 \4i 

Fig. A.2: A fixed grid for rectangle indexing. 

A.3 Z-curve 

For Z-curve [Orenstein, et al. (1984)], a label is associated with each 

node of the complete quadtree, chosen among strings over the alphabet (0’ 1, 

2, 3). The root has for a label the empty string. The NW (respectively, NE, 

SW, SE) child of an internal node with label k has for a label 众.0 (respectively, 

k.l, k.2, k.3), where denotes string concatenation. Then the cells are labeled 

with strings of size d. We can sort the cells according to their labels (in 

lexicographic order). For example, choosing a depth d - 3 and ascendant 

order, cell 212 is before cell 300 and after cell 21. The ordering NW, NE, SW, 

SE justifies its z-order name. 
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Fig. A.3: Z-curve 

A.4 Hilbert curve 

Hilbert curve likes Z-curve but the shape is n but not Z. Unlike Z-

curve, the Hilbert curve consists of segments of uniform length; that is, we 

never have to "jump" to a distant location while scanning the cells (Fig. A.4). 

It is easy to see that in both cases there exist some unavoidable situations in 

which two objects are close in the 2D space, but far from one another on the 

space-filling curve. 

“ I ‘ I I I I I 
I——i—I i I~i—— 

I ： I ： 

i i i i 
• 

i I i ； 
\ i ! I _ i i 

i i 
j i 1 
I i 1 

！ i i i 

Fig. A.4: Hilbert curve 
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A.5 Conclusion 

In this appendix we have reviewed some space-driven algorithms such 

as Fixed Grid, Z-curve and Hilbert curve. 
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