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Abstract 

Nowadays, electrically powered wheelchair is the most commonly adopted mobility 

assistance device utilizing modern electrical and electronic technologies. However, 

it typically offers their disabled passengers some very low-level interfaces for con-

trolling the basic motions of wheelchair, such as a joystick. In this thesis, a novel, 

user-friendly and low-cost mobility system is developed to significantly extend the 

usability over the traditional electric wheelchair and provide a high-level of naviga-

tion autonomy for the user. 

In the platform, a wearable cap device for sensing user's intentional facial muscles 

activation is developed for the user to control the navigation of smart wheelchair, 

by measuring the bioelectrical ionic flow of current on user's eyes and jaw muscles 

with only 3 silver-chloride electrodes attached to the face of user. For navigation 

tasks that need to be performed frequently, the user can teach the system by demon-

strations so that the tasks can be performed autonomously. The human stochastic 

and dynamic navigational skill is learnt with the cascade neural network and trans-

ferred to a robot by showing it how to navigate in different local environments, 

which are modelled in compact, polar representations by limited on-board range 

sensors, throughout a demonstrated route. The learned skill model is a reactive 

sensor-control mapping implicitly stored the relations between different local en-

vironmental features and the corresponding demonstrated control commands. For 
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autonomous navigation, the on-line control command is generated from the learned 

mapping with the on-line new sensor signals. , 

To improve the skill learning performance, an extension and realization of ac-

tive learning for the learning-by-demonstration paradigm is primarily investigated 

with multi-phase human feedback demonstrations. With this experimental design, 

the learning performance is experimentally on-line evaluated throughout the learn-

ing phases. The approach is useful to identify and collect critical training data, 

which is hard to achieve for some systems with different dynamic parameters in the 

demonstration and application stages. 

For localization purpose, the sensor-control mapping for navigation is modular-

ized to constitute the sensor-configuration mapping in the form of look-up table, 

which is learned to localize at demonstrated locations with raw sensor patterns 

inputs and human-assigned configuration outputs. 

The approach is useful as a. simple self-contained system for reactive navigation 

and localization at desired, learned configurations in indoor, static and unstructured 

environments, such as common household settings. With the developed system, 

disability not only can extend his/her mobility, but also can significantly improve 

his/her social life through expanded travel possibilities, closer interaction with other 

people, and enhanced ability to live independently. 
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摘要 

現今，採用現代電氣和電子技術的電動輪椅已經成爲最爲廣泛使用的 

行走輔助設備。然而，它通常只能爲殘疾人士提供一些如遥杆的低階介 

面，以便使用者控制輪椅的基本運動。這項目開發了一個創新的、容易使 

用且成本低廉的移動系統，它顯著地拓展了傳統的電動輪椅的使用模式， 

並且爲使用者提供了一個高階自主導航的行走輔助設備。 

這項目開發的平台還包括一套頭盜裝置，它能夠通過三個氯化銀電極 

檢測用戶眼部和頜部肌肉的生物電流，來獲得用戶面部肌肉的運動資訊， 

進而控制輪椅的運動。對於一些需經常執行的導航任務，使用者可以通過 

示範學習的方法訓練系統，從而使得導航任務可以被自主執行。基於展示 

在如何不同的局部環境進行導航，人類隨機的、動態的導航技巧可以通過 

有限的、機載的感測器以簡潔的極坐標表達方式建模。運用級聯人工神經 

網路，這些技巧被學習和移植到一個行走輔助系統。此技巧學習模型是一 

個反應性的感測器控制映射，它隱含著不同局部環境的特徵和相對應的示 

範控制命令之問的關係。針對自主導航，線上控制命令將由新的線上感測 

器信號經事先完成學習的映射關係計算得到。 

爲了提高模型的學習表現，一個用於示範學習的主動學習的拓展和實 

現被初步硏究，並應用在類比反覆人類回饋範例的導航技巧。通過這項試 

驗設計，學習的表現在整個學習過程中被試驗性地線上評估。這一方法對 

於那些難以分辯和收集在示範和應用階段有不同動態參數的系統中獲取 

的特別訓練資料是很有用的。 



iv 

爲了確定位置的目的，用於導航的感測器控制映射被模組化以便構造 

以查看表格形式存在的感測器組態映射。通過學習，根據原始感測器模型 

的輸入和人類安排組態的輸出，用它來定位於已示範的位置。 

這方法適用於簡單獨立的系統在室內、靜態和不規則（例如一般家庭 

居住的環境）環境中的反應性導航和位置確定。通過這套開發了的系統， 

殘疾人士不僅可以擴大他/她的活動範圍，而且可以藉拓展出來的行走可能 

性來顯著地提高他社會生活，拉近與別人的互動關係，同時增強獨立生活 

的能力。 
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Chapter 1 

Introduction 

1.1 Motivation 

Nowadays, electrically powered wheelchair is the most commonly adopted mobility 

assistance device utilizing modern electrical and electronic technologies. However, 

it typically offers their disabled passengers some very low-level interface devices 

for manual controlling the basic motions of wheelchair, for example a. joystick. At 

present, nowhere do robots promise to enhance the quality of life of humans as 

much as in the area of rehabilitation. In fact, the latest robotics technologies have 

the potential to assist physically handicapped and elderly people, especially in the 

mobility for their day-to-day life [1,2]. 

Let lis look at a typical scenario where a. wheelchair-bound individiial must nav-

igate through close quarters in his/her home, which, like many homes, was not 

designed with elderly or handicapped people in mind, by carefully and slowly ma-

nipulating the bulky wheelchair through a somewhat rudimentary joystick interface. 

Ill order to turn the wheelchair 180 degrees, for example, a laborious sequence of 

back-and-forth movements might be required. This type of low-level control may 

not only be frustrating and time-consuming, but may even be impossible for indi-

vicluals who have only limited control of their arm, such as elderly. On top of that, 
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Chapter 1. Introduction 2 

very similar maneuvering tasks, such as going from the bedroom to the kitchen, may 

be typically part of the individiiars daily routine, which is notoriously difficult to 

successfully navigate. 

Through the smart wheelchair developed, things are made easier and safer for the 

users. The objective here is to develop a novel, user-friendly and low-cost mobility 

system to significantly extend the usability over the traditional electric wheelchair 

and provide a high-level of navigation autonomy for the user. For navigation tasks 

that need to be performed frequently, the user can teach the system so that they 

can be performed autonomously. While application, the user can simply select a. 

route from a list of routes that have already been learned by the system, sit on the 

wheelchair and then being navigated to the destination while avoiding collision from 

any unexpected obstacles. 

With the developed system, disability not only can extend his/her mobility, but 

also can significantly improve his/her social life through expanded travel possibili-

ties, closer interaction with other people, and enhanced ability to live independently. 

Furthermore, the development opens up tremendous new mobility interface possi-

bilities, resulting in rich system integration issues, academic research contents and 

potential product lines in consumer electronics for modern demanding elderly and 

disabilities health care product developments. With the rapidly shrinking costs of 

modern computing and sensing, we can expect that the costs of outfitting the mobile 

platform and interface devices with the required on-board computational hardware 

and sensors can be kept at a niinimum and affordable for the public. 
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1.2 Organization of the Thesis 

111 this thesis, a move towards the development of novel, compact and practical 

robotic wheelchair navigation system is presented for enhancing user mobility in 

indoor applications, with emphasis on the methodology formulation & design and 

experimental design & iniplementation aspects. The thesis is organized as follows. 

Ill Chapter 2，a literature survey is presented, covering the related work for this 

study such as the learning-by-demonstration paradigm, neural network learning, 

robot navigation, localization and robotic wheelchair researches. 

Ill Chapter 3, the technical descriptions of the implemented hardware and soft-

ware platforms, and some basic functionality of the system are presented. The mo-

bile robotic platform I adopted is modified from a commercial robotic wheelchair, 

TAO-6, manufactured by Applied AI, Inc. For processing higher-level computations, 

a laptop computer is connected to the wheelchair computer through RS232. A soft-

ware architecture is designed such that, each computer runs a, "receive" program 

before the counter-part "send" program "transmits" the signal for proper signal 

cominiiiiication between the two computers. Besides, two basic functionalities are 

implemented for navigation and interfacing purposes: collision avoidance and wear-

able eye-jaw control interface. 

In Chapter 4，a minimalistic methodology for developing navigation system with 

polar representation of the local environmental features is presented. The hum an 

stochastic and dynamic navigational skill is learnt with the cascade neural network 

and transferred to a robot by showing it how to navigate in different local environ-

ments, which are modelled in compact polar representations by limited on-board 

range sensors, throughout a demonstrated route. The learned skill model is a re-

active sensor-control mapping implicitly stored the relations between different local 
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environmental features and the corresponding demonstrated control commands. For 

autonomous navigation, the on-line control command is calculated from the learned 

mapping with the on-line new sensor signals. Experimental study on the wheelchair 

platform, which is described in Chapter 3, is conducted for the evaluation of the 

proposed methodology. 

In Chapter 5, in order to improve the learning performance of navigational learn-

ing, which is presented in Chapter 4, in terms of the similarities between the demon-

strations and autonomous navigation, an extension and realization of active learning 

for the learning-by-clemonstration paradigm by multi-phase human feedback demon-

strations is primarily investigated with the application on the liimiaii navigational 

skill inodelling. With this experimental design, the learning performance is experi-

mentally on-line evaluated throughout the learning phases. The approach is useful 

to identify and collect critical training data, which is hard to achieve for some sys-

tems with different dynamic parameters in the demonstration and application stages. 

With this approach, the learning performance of the navigational learning approach 

is improved. 

In Chapter 6, for localization purpose, the sensor-control mapping for naviga-

tion presented in Chapter 4 is modularized to constitute the sensor-configuration 

mapping in the form of look-up table, which is learned to localize at demonstrated 

locations with raw sensor patterns inputs and human-assigned configuration outputs. 

The approach is useful as a. simple self-contained system for reactive localization at 

desired, learned configurations in indoor, static and iinstriictiired environments such 

as common household settings. 

Ill Chapter 7, the key contributions of this study are illustrated. Also, some 

potential future work is highlighted for some possible extensions of the human nav-
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igation skill modelling, multi-phase demonstrations for learning and localization 

learning presented in Chapters 4, 5 and 6 respectively 



Chapter 2 

Literature Survey 

2.1 Learning-by-Demonstration 

In recent years the paradigm of leaniiiig-by-demonstration has attracted certain 

attention. Route programs, which is constituted by step-by-step codes, are the tra-

ditional paradigm for instructing a machine. Although this paradigm is explicit and 

rigorous for human understanding and machine implementation, in some situations 

it is hard to describe the desired instructions into specific and proper code state-

ments, for example when instructing a, robot to follow human actions which are 

hard to be represented explicitly. Learniiig-by-demonstration is a good paradigm 

for tackling this difficulty. With a proper problem formulation and experimental 

design, the instructing tasks for the robot can be demonstrated by human opera-

tor. Then, the demonstrated data, can be abstracted and learned for the robot, by 

constructing coinputational models with existing machine learning techniques, such 

a« neural network learning. In the past decade, several researchers have proposed 

various experimental designs and applications [3,4]. 

6 
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• Bias I imi • liiinit Unii [0 Output Unii 

• Hidden Unit #1 圔 Hitklcn Unit #2 

Figure 2.1: The cascade learning architecture adds hidden units one at a. time to an 
initially minimal network. 

2.2 Neural Networks 

Neural networks are famous for their promising performance as function approxi-

mators. They consist of a, large number of interconnected processing elements in 

an architecture inspired by the structure of the cerebral cortex of the hum an brain. 

In recent years, neural networks have shown great promise in identifying complex 

nonlinear mappings from observed data, and have found many applications in non-

linear control [5]. It is commonly believed that neural networks in general are well 

suited for learning the complex internal mappings from sensory inputs to control 

action outputs that liiimans can produce. 

In this study, I employed the flexible cascade neural network(CNN) architecture 

with node-decoupled extended Kalnian filter(NDEKF) [4] for modelling the hiinian 

skill utilized in navigating obstacle course. Though there are many other potential 

choices of machine learning approaches for the modelling, I adopt the CNN with 

NDEKF as a starting point with a number of reasons. First, no a-priori model 

structure is assumed; the neural network automatically adds hidden units to an ini-
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tially minimal network, as the training requires (Figure 2.1). Theorems by Cybenko 

[6j and Funahashi [7] hold that, standard layered neural networks are universal 

function approximators applies also to the cascade architecture. It is because any 

multi-layer, feed-forward neural network with k hidden units arranged in in layers, 

fully connected between consecutive layers, is a special case of a CNN with k hidden 

units with some weight connections equal to zero. Second, hidden unit activation 

functions are not constrained to be of a. particular type. Rather, for each new hid-

den unit, the incremental learning algorithm can select that functional form, which 

maxiinally reduces the residual error over the training data. Typical alternatives 

to the standard signioidal function are sine, cosine or Gaussian functions. Finally, 

it has been shown that NDEKF, a, quadratically convergent alternative to slower 

gradient descent training algorithms (such as back propagation or quick prop) fits 

well within the cascade learning framework and converges to good local minima 

with less computation. The flexible functional from, which cascade learning allows, 

is ideal for abstracting hiiinan navigational skill since we know very little about its 

underlying nature. By making as few a-priori assumptions as possible in modelling 

the human skill, we improve the likelihood that the learning algorithm will converge 

to a. good model of the data. For reference, the Appendix A in this thesis contains 

further descriptions on the CNN with NDEKF. 

2.3 Navigation Learning 

Essentially, the navigation problem is related to three main questions under a variety 

of technical scopes and limitations: (1)Where am I ? � W h e r e is the goal location 

relative to me? And (3)how do I get to the goal from here [8,9]? In this research area, 

a research group leaded by Xii a.t the Robotics Institute, Carnegie Mellon University 
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was investigating outdoor on-road driving systems with learning-by-deinonstration 

paradigm [4]. Human driving strategies have successfully abstracted and transferred 

to autonomous driving systems. 

Moreover, a, research group leaded by Inoue at the University of Tokyo was in-

vestigating a sequence of images obtained during human-guided movement directed 

aiitononious movement [10]. A model of the mobile robot's route was described 

ill a way that simplified the comparison of stored information and current visual 

information. Image information about the route was required for representing the 

eiivironnieiit. As they themselves noted, their approach was more suitable for routes 

ill surroundings such as corridors. 

Another research group leaded by Miiira. at the Osaka University was investi-

gating a. method using human involvement whereby an operator guided a mobile 

robot to a destination by remote control [11]. During a single demonstration, the 

robot developed a map by observing the siirroimding environment in stereovision. 

It can then localize, compute and follow the shortest path to the pre-determined 

destination. The objective of the hiiman-giiided movement in this case was to build 

a map with less effort. 

In another variation, Kraiss and Kuttelwesdi have simulated vehicle navigation 

through a maze with 5 evenly spaced horizontal bars interspersed with randomly 

placed cut-outs [12]. The simulated vehicle was taught by emulating a human teacher 

who drove a point robot. 

2.4 Localization 

Instead of being the sub-area of navigation problem, the problem "Where am I?" (also 

known as the localization) can also be an individual study for various research needs. 
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In the literatures, extensive researches have been done for solving this problem with 

different practical and theoretical considerations [8,13-15]. 

Actually, environment modelling and localization can be considered as dual prob-

lems; because in order to localize a mobile robot many localization systems require a 

world model to match observed environment characteristic with the modelled ones, 

and also because in order to build a. world model, most systems require precise lo-

calization of the robot [15]. The most common types of environment representations 

are cell decomposition models, geometrical models and topological models. In this 

study, a novel environment modelling approach by explicit local range sensing is 

presented. 

On the other hand, there are several directions of location sensing technique, 

such as scene analysis, triangiilation, proximity and dead reckoning. First, scene 

analysis [16-18], refers to the detection of scene features for inferring the objection 

location. Second, triangiilation is the use of the geometric properties of triangles 

to compute object location. Third, proximity refers to the detection of an object 

when it is near to a known location by taking advantage of the limited range of 

a physical phenomenon. Fourth, dead reckoning refers to incremental positioning 

methods such as odometry and iriertial navigation systems. Among these directions, 

this study is under the scene analysis framework. 

2.5 Robotic Wheelchair 

Aiitonoiiioiis robotic wheelchairs represent an important class of autonomous mo-

bile robots and have received increasing attention from researchers. Many robotic 

wheelchair systems have been developed in a. number of research laboratories world-

wide during the past decade [19-32]. They aimed to aid disabled people who are 



Chapter 2. Literature Survey 11 

unable to drive a standard powered wheelchair. 

Madarasz, et al. were the first to design a. self-navigating wheelchair for disabled 

people [19]. The wheelchair was equipped with an on-board computer together with 

sensors such as ultrasonic range finder, wheel encoders, and a digital camera. The 

system was designed to navigate autonomously in an office building. To find a 

path to its destination, it used a symbolic description of significant features of the 

enviroiiinent, like hallway intersections or locations of offices. 

For commercial applications, Applied AI Systems, Inc. has developed a, number 

of robotic wheelchair prototypes called TAO [20]. A behavior-based approach is 

used to establish sufficient on-board autonomy at minimal cost, material usage, 

efficiency, maximum safety, transparency in appearance, and extendibility. The 

platform adopted in this study is modified from the robotic wheelchair TAO-6 from 

Applied AI System, Inc. 

Although each research group has their own set of requirements for a. robotic 

wheelchair, they all share two basic features [21]. First, a user must be able to 

navigate a. robotic wheelchair safely, and failures must not endanger users. Second, 

it must interact effectively with the user. Each of the groups has already achieved 

certain goals in robotic wheelchair development. 



Chapter 3 

System Implementation 

111 this chapter, the technical descriptions of the implemented hardware and software 

platforms, and some basic functionality of the system are presented. The mobile 

robotic platform I adopted is modified from a commercial robotic wheelchair, TAO-

6, manufactured by Applied AI, Inc. For processing higher-level computations, a, 

laptop computer is connected to the wheelchair computer through RS232. A soft-

ware architecture is designed such that, each computer runs a, "receive" program 

before the counter-part "send" program "transmits" the signal for proper signal 

coinrniiiiication between the two computers. Besides, two basic functionalities are 

iiiiplemented for navigation and interfacing purposes: collision avoidance and wear-

al)le eye-jaw control interface. 

3.1 Hardware Platform 

The mobile robotic platform I adopted is modified from a. commercial robotic wheelchair, 

TAO-6, manufactured by Applied AI, Inc. TAO-6 has two motors in a, mid wheel 

drive configuration providing good power, acceleration and stability (Figure 3.1). 

It has two sealed Lead Acid batteries; each of them is 12V, 50 Ah, for a total of 

1200W capacity. Most of the electronics are housed in a protective box beneath 

12 
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Figure 3.1: The wheelchair platform with 7 ultrasonic sensors in the front (Circled). 

the seat. The sensors, joystick, and keypad are connected directly to the electronics 

box. The CPU of the original TAO-6 platform is the Motorola. MC68332 32-bit 

iiiicro-controller. This unit and additional I /O boards handle all the sensor inputs 

and the user interface. Since the on-board CPU in original TAO-6 can only handle 

limited calculations. For processing higher-level computations, a laptop computer is 

connected to the wheelchair computer through RS232. The sensor, keypad and joy-

stick signals are passed to the laptop computer for processing and planning，wliicli 

can return the control signal to the wheelchair platform. 

7 wide-angle(around 60 degrees of directivity) ultrasonic range sensors, a keypad 

and a joystick, which are available as parts of the facilities from the original TAO-6 

platform, are used in the experiments of this study. The sensors are re-located to 
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Figure 3.2: Serial communication between wheelchair and laptop computers. 

achieve great coverage of the front local environment with respect to the platform. 

Each sensor returns the "distance to obstacle" value at a resolution of about 35mm 

per step (discrete value). The sensors have a limited range but can accurately detect 

obstacles up to around 1.5m. They are operated at different carrier frequencies, 

sampling siinultaiieously and repeatedl,y at a, constant frequency about 5 Hz. 

3.2 Software Platform 

The functioning navigation programs in the wheelchair and laptop computers are 

written in C programining language. Each program can "transmit" a, signal to 

the counter-part "receive" program despite whether the counter-part can "receive" 

or not, while the "receive" program "waits" until a, signal is received. For proper 

comiimiiication, a conimimicatioii architecture is designed such that, each computer 
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runs a "receive" program before the counter-part "send" program "transmits" the 

signal (Figure 3.2). 

3.3 Basic Functionality 

111 order to fulfill the requirements of the wheelchair users with different degrees of 

disability, I believe that both autonomy and interfacing are important in a smart 

wheelchair navigation system. A wheelchair user with minor motor impairment may 

wish to control the wheelchair more effectively. This requires that, the wheelchair 

offers certain interactions for manual operations. On the other hand, for a user who 

1ms limited voluntary body movement, he/she would rely heavily on the autonomous 

functions. Therefore, besides the developed autonomous navigation to be mentioned 

in the later chapters with the emphasis on the functionality, two basic functionalities 

are also implemented for navigation and interfacing purposes with the emphasis on 

the usability: (l)collision avoidance and (2)wearable eye-jaw control interface. 

3.3.1 Collision Avoidance 

Collision avoidance is one of the critical factors in the design of robotic wheelchair. 

Numerous methods for collision avoidance have been proposed and developed ex-

tensively [8,9]. The avoidance system has to detect obstacles through its sensors 

and plan for a suitable action in order to avoid the collision with obstacles. In my 

system, I utilize ultrasonic range sensors to detect obstacles close to the front of 

platform. 

Ultrasonic range sensor is a good, low-cost obstacle detection solution. The sen-

sor emits a. short burst of ultrasound waves when it is "fired". If an object is located 

in front of the sensor, then some of the ultrasound waves reflect back to the sensor. 

When the echo from the object is received at the sensor, its associated circuitry 
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sends an signal to the computer which controls the sensor. The computer measures 

tlie time that elapsed between firing the sensor and receiving the echo. Since the 

velocity of ultrasound travelling through air is roughly constant, the computer can 

calculate the distance between the object and the sensor from the measured time-

of-flight. For the simplest case, my smart wheelchair is designated to stop when 

there is any obstacle under a pre-defined threshold of clearance distance near to the 

wheelchair. 

3.3.2 Wearable Eye-jaw Control Interface 

The most typical liuiiian control device in a robotic wheelchair is the joystick. How-

ever, the joystick requires fine control that some users may have difficulty accom-

plishing. Alternative advanced controls and interfaces for the robotic wheelchair 

users are worth exploring, which can meet the requirements for users with different 

levels of disability. A solution for the problem is to perform the control by eye-gaze 

and jaw motion [33-38]. In some cases, the users suffer from diseases which dam-

age a majority of the nervous and muscular system in their bodies (such as legs, 

arms and/or spine cords), but leave the brains and eye movements unimpaired. To 

this end, an interface is developed which enable a, user to control a wheelchair with 

simple eye-jaw movements. The method presents here is different from the existing 

work with lesser iiiiiiiher of electrodes used. 

In my platform, a wearable cap device for sensing user's intentional facial muscles 

activation is developed for the user to control the navigation of smart wheelchair, 

by measuring the bioelectrical ionic flow of current on user's eyes and jaw muscle 

fibre movements (Electro-ociilograpliic(EOG) potential for eye muscles and Electro-

myogTapliic(EMG) potential for general muscles), with only 3 silver-chloride elec-

trodes attached to the face of user (Figure 3.3). H2 and HI detect the horizontal left 
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/ • 

需 
/ \ Figure 3.3: The placement of 3 silver-chloride electrodes on the user's face. 

Figure 3.4: The ocular muscle (Region A) and temporal muscle (Region B) on a fa.ce. 

and right eye movement respectively together with the jaw activation. Ref. serves as 

the reference point of facial electrical potential. When an electrode is placed at the 

overlapping areas of facial ocular iiiuscle(Regioii A) and temporal muscle (Region B), 

both EGG and EMG signals produced by the eyes and jaw movements are detected 

(Figure 3.4). 

The location of the overlapping area is roughly the location of temple between 

the eye and ear on each side of the head, and is slightly different from person to 
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person. The 3 electrodes are sufficient to guide a smart wheelchair: one for the 

ground signal, the remaining two for measuring (l)the eye-gaze at the horizontal 

direction, and (2)activation of the jaw muscles to trigger the forward/backward 

commaiicl. There is a typical problem for commanding the wheelchair by eye-gaze: 

user's eyes may move for other purposes than wheelchair navigation control, such 

as for eiivironiiieiital exploration or object/obstacle tracking. To deal with the 

this problem, the eye movements are treated as the "switches" to trigger different 

commands instead of using the interface signals as a. direct control. 

Comparing with other alternatives for eye-jaw activation detection and measure-

ment (such as eye-balls tracking with vision camera), lower computation and simpler 

hardware are achieved with this direct contact method. Also, the bio-electric signals 

are detected with surface electrodes which are easy to apply and can be worn for a. 

long period of time, while posing no safety risk to the user. 

For practical implementation, since the bioelectrical signals are weak, an instru-

meritatioii amplifier is used as the pre-amplifier. Each signal is a combination of a. 

muscle movement (AC signal) and a potential difference of skin positioii(DC offset). 

Two operational amplifiers are used to eliminate the DC offset and amplify the AC 

signal further. The overall voltage gain is 72dB. In order to separate the signals 

generated by the eyes and the jaw, three more operational amplifiers are used. The 

value of the potentiometers are adjusted for the corresponding amplifier hi order to 

match different muscle strengths. Next, two mono-stable multi-vibrators are used 

to generate a standard TTL signal format. A logic circuit is used to prevent the 

resultant signals from appearing simultaneously. Two 3-volt 500mAh Lithium coin 

cells are applied to drive the circuit with the life about 50 hours. Calibration is 

needed for the electrodes placement and skin conductivity of each iiidivicinal. 
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Figure 3.5: Activation of the jaw movement (Top) and the corresponding detected 
electrical signal(Bottoiii). 

Bioelectrical signals 

• I 、： 厂 — " T - — ： ： 二r,-‘ 
•. r ’ . » • , ‘ fe- t- ̂；̂ 
•.‘-*-*.’.’.，，’ ^BifeBrflkMiiMMMNMMMIMMaî '‘了承承.‘�fYM 
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Figure 3.6: Activation of the left-eye movement (Top) and the corresponding detected 
electrical signal(Bottom). 
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Figure 3.8: The implemented eye-jaw control interface. 

When the user issues a jaw motion command, both the electrodes at HI and 

H2 detect the electrical activities from the jaw muscle (Figure 3.4), so that the 



Chapter 3. System Im/plementation 21 

resultant signal oscillates at a. very high frequency (Figure 3.5). When the user is 

looking to the left or right, a, large potential difference will be detected at HI and H2: 

a negative change indicates the left (Figure 3.6), while a positive change indicates 

the right (Figure 3.7). 

With these results, the interface is verified that it is able to detect 3 types of 

face motion: (l)looking to the left, (2)looking to the right, and (3)tigliteiiiiig the 

jaw. Since I have not applied any electrode along the vertical direction of the eye, 

eyelid movement such as blinking does not interfere with the signals in the H1-H2 

electrode pair. The implemented eye-jaw control interface is contained in a cap for 

wearable convenience (Figure 3.8). 



Chapter 4 

Learning Human Navigational 
Skill 

111 this chapter, a miniinalistic methodology for developing navigation system with 

polar representation of the local enviroiimental features is presented. The human 

stochastic and dynamic navigational skill is learnt with the cascade neural network 

and transferred to a robot by showing it how to navigate in different local environ-

ments, which are modelled in compact polar representations by limited on-board 

range sensors, throughout a demonstrated route. The learned skill model is a re-

active sensor-control mapping implicitly stored the relations between different local 

eiivironrnental features and the corresponding demonstrated control commands. For 

autonomous navigation, the on-line control command is calculated from the learned 

mapping with the on-line new sensor signals. Experimental study on the wheelchair 

platform, which is described in Chapter 3，is conducted for the evaluation of the 

proposed methodology. 

4.1 Introduction 

Essentially, the navigation problem is related to three main questions under a variety 

of technical scopes and limitations: (1)Where am I? (2)Where is the goal location 

22 
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relative to me? (3)How do I get to goal from here [8,9]? In practice, the environments 

in which mobile platforms operate a,re usually modelled in highly complex forms, 

such as geometric or image representations, and as a result real-time autonomous 

navigation and localization can be difficult. The difficulty is exacerbated for real 

platforms with limited on-board computational resources since this paradigm of 

enviroiinieiital modelling requires enormous computational power. 

Moreover, existing navigation systems for electrically powered wheelchair usu-

ally adopt the advanced developments of robotic motion planning research. Since 

the motion planning researches aim at developing a "versatile" motion planner for 

tackling the planning task in various operational situations, they have complex al-

gorithms and expensive hardware. 

4.2 Problem Formulation 

The objective here is to develop a minimalistic methodology for developing navi-

gation system by learning-by-denionstration paradigm with polar representation of 

the local enviroiimental features. Human stochastic and dynamic navigational skill 

is learnt and transferred to a mobile robot by showing the robot how to navigate 

ill different local eiiviroiinieiits throughout a demonstrated, designated route. The 

aim of this study is to abstract and learn the human navigational task, instead of 

achieving any optimal motion planning criteria. However, it is a very practical and 

useful for smart wheelchair to perform route-specific navigation in learned routes. 

4.3 Approach 

By using ultrasonic range sensing representation, the autonomous navigation sys-

tem is capable of extracting the features in different local environments and nav-
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Figure 4.2: The use of learned skill model for reactive autonomous navigation. 

igating along the route in real-time by using cascade neural network(CNN) [4]. 

Node-decoupled extended Kalmaii filter(NDEKF) is applied to learn and model the 

demonstrated sensor-motor reactive mapping. The learned network is the reactive 

sensor-control mapping [39] implicitly stored the relations between different local 

environmental features and the corresponding demonstrated control commands for 

autonomous navigation (Figure 4.1). The mapping is used for classification of the 

distribution of features and the corresponding control commands. On-line control 

coiiiinaiid is calciilated(mapped) from the learned mapping with the on-line sam-

pled new sensor signals (Figure 4.2). Since each set of real-time sensor reading is 
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considered as a raw pattern, local surrounding environment is not necessary to be 

well specular reflectors for the ultrasonic sensing. No noise filtering is undertaken 

to preserve the all information in the signals. Therefore, the raw sensing data was 

used directly as training data for learning without any pre-processing. 

The sensor vector is chosen as the learning input since it is a compact fea-

ture representation describing the surrounding environmental information in term 

of "polar distance" with respect to the robot/platform during navigation. The ul-

trasonic range sensor signals are discrete-time, discrete-value with limited sensing 

range. Therefore, each sensor signal constitutes one dimension in the sensor space, 

which is in high-dimension with fixed-size. Since different local environments are 

having different features, which are the sensor patterns in this study, a longer demon-

strated route has more sampled sensor vectors(patteriis) in the sensor space with 

more complex distribution. Each sensor vector is associated with a, corresponding 

demonstrated control command. For this reason, unstructured environments, such 

as a common household setting, are particiilax suitable for pattern recognition with 

the developed approach since they have more distinctive local features for recogniz-

ing various particular robot/platform configurations in the workspace. In general, 

each particular route is unique that, its series of local environments (and the corre-

sponding features) are different from that of other routes. Therefore, each specific 

route is characterized by a specific distribution of all sampled sensor patterns. 

Some interpretations can be drawn here for illustrating the characteristics of the 

approach. First, each pattern of sensor readings (sensor vector) is used for envi-

ronmental pattern recognition. Second, each associated control command is used 
\ 

for on-line incremental movement. Third, the complete sequence of sensor vectors 

sampled along the route is actually an acquisition of local environmeiital(spatial) in-
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Figure 4.3: A demonstration route in an unstructured indoor environment. 

formation, which is the complete global environmental model. Fourth, the complete 

sequence of control commands(trajectory) applied along the route is actually an ac-

quisition of "sub-goal" information, which gives the complete, sufficient destination 

infonnatioii. With the presented methodology, the navigation problem and its asso-

ciated environmental modelling issues are tackled for the specific mobility-assisting 

rehabilitation applications. 

4.4 Experimental Study 

4.4.1 Settings 

By liuiiiaii operation, the wheelchair platform is controlled via the use of keypad(3 

discrete control states: move straight, turn left or right) to navigate a. designated 

route 10 times in a. static indoor unstructured environment, intending to obtain the 

similar position/velocity profile. In each operation, the platform moves at speed 
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Figure 4.4: The sensor trajectory and corresponding deiiionstrated control command 
ill the first deiiionst,ration. 

about 0.8in/s for sensors sampling along the demonstrated route (Figure 4.3). 

Throughout each operation, signals from the 7 sensors are sampled constantly 

as the CNN learning inputs. At the time of each sampling, the control command, 

deteniiiiiecl by the demonstrator, corresponding to the sampled sensor pattern is 

also recorded to form a. set of training data. Throughout each operations, about 320 
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Figure 4.5: The sensor trajectory and corresponding demonstrated control command 
in the second deiiionstratioii. 

pairs of CNN inputs and output are sampled. For the off-line supervised learning, 

totally about 3200 sensor-control training sets are recorded in 10 demonstrations 

(Figures 4.4,4.5, B.1-B.8). In the figures, the coininands 1，2 and 3 refer to the 

discrete control commands turn left, move straight and turn right respectively. The 

data is firstly shuffled randomly and then used for training and cross validation. To 
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Figure 4.G: The sensor trajectory and corresponding control command resulted from 
the first learned skill model in the first testing of autonomous navigation. 

remain the simple input-output relationship, no previous input or output state is 

adopted. 
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Figure 4.7: The sensor tra jectory and corresponding control command resulted from 
the first learned skill model in the second testing of autonomous navigation. 

4.4.2 Results 

After off-line learning, a trained CNN with 15 hidden nodes had the capacity to com-

plete the learning navigation with the platform moving at the speed 0.8ni/s. Two 

testings of autonomous navigation are undertaken (Figures 4.6,4.7). The thresh-
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olds for detennining the discrete control command, 1 for turning left, 2 for moving 

straight and 3 for turning right, are 1.75 and 2.44. From my experimental expe-

rience, 6 to 10 human demonstrations are sufficient for the navigational learning 

task. Since the mapping is reactive, the platform is capable of starting at mid-way 

and continues to navigate to the destination of the demonstrated route. Compare 

with the liuinan demonstrated control command trajectories, the CNN control com-

maiid trajectories have many noises. However, the platform acts as a low-pass filter 

and performs similar motion as human demonstrations. Further study for a. "smart 

filtering" technique should be investigated for this meaningful problem. 

The approach presented in this chapter is suitable for the demonstrated route 

without involving many robot configurations at which the sampled sensor patterns 

are very similar. In the case when many similar sensor patterns exist, the trained 

model is unable to learn the classification as the training data, contradicts. For 

solving this problem, we can include the temporal dimension as an additional learn-

ing input, counting from zero at the beginning of navigation. The sampled sensor • 

patterns collected along the route are "separated" by the time at which they are 

sampled. In other words, the local environmental features are now described by one 

more (liineiisioii, the time. This additional time input adjustment is also tested in 

the experiiiieiits, yet the learned model is still able to finish the autonomous navi-

gation task without much difference in performance. However, some demonstrated 

routes could be problematic and will be discussed in Chapter 6. 

4.5 Discussions 

The experimental study on a smart wheelchair shows the feasibility of this practi-

cal autonomous navigation approach for indoor route-specific application. As the 
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learned model is able to lead the smart wheeld.ia.ir to accomplish the demonstrated 

route, the model is defined being capable of effectively abstracting human naviga-

tional skill with limited environmental information sufficient for the navigational 

task. With this autonomous navigation ability, the platform can free the user from 

miidi of the low-level control now required in electrically powered wheelchairs. 

Depending on the complexity of the skill model, the overall human skill model 

can typically be composed of a inimber of simpler sub-models that each of which spe-

cializes a specific segment of the learned route. The transition between consecutive 

skill models is according to recognition of the ending patterns of former model. An 

certain overlapping route segment for the skill models is needed for the transition. 



Chapter 5 

Learning from Multi-phase 
Demonstrations 

111 this chapter, an extension and realization of active learning for the learning-

by-denionstration paradigm by multi-phase human feedback demonstrations is pri-

marily investigated with the application on the human indoor navigational skill 

modelling presented in Chapter 4. With this experimental design, the learning per-

formance is experimentally on-line evaluated and improved over the learning phases 

in terms of the similarities between demonstrations and autonomous navigation. 

The approach is useful to identify and collect critical training data, which is hard 

to achieve for some systems with different dynamic parameters in the demonstra-

tion and application stages. With this approach, the learning performance of the 

navigational learning approach is improved, as shown in the experimental results. 

5.1 Introduction 

Conventional leaniing-by-clemonstration paradigm utilizes off-line learning to cap-

ture the features exhibited during demonstrations. However, the dynamics param-

eters of the system are in general different in the demonstrations and application 

stages. For instance, when the control profiles of a human demonstrator arid a coiii-

33 
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putational skill model (for automation) are different, their corresponding dynamics 

of the platform are in general different, such as frictional and slipping effects. As a 

result, significant errors can exist in the application stage. 

One of the leading, emerging topics in current machine learning research is active 

learning [40-42], which provides automated means of determining which potential 

new data, points would be most useful to label. It could suggest new data, that 

would allow machine learning classifier to best correct the predictions coining from 

the realistic model, towards much more accurate overall classifications. Thus active 

learning methods directly address the issue of automating the process of determining 

what predictions to make and what data, to gather to test them. However, since 

active learning is aimed at automatically determining new critical training data, this 

concept is not directly applicable for the learning-by-demonstration applications, in 

which the training data is provided during human demonstration. 

Ill order to achieve a reliable and systematic learning process for the learniiig-

by-demonstration paradigm, I extend and realize the concept of active learning by 

performing iiiiilti-phase on-line human feedback demonstrations. The approach is 

useful to identify and collect critical training data, which is hard to achieve for 

some systems in a single-phase demonstration for learning. Moreover, the learning 

perfoniiance can be observed in the learning process in an experimental way. 

5.2 Problem Formulation 

The learning procedure takes several phases. At the first phase, the off-line learning 

is adopted. After the testing of the learned training model, liumaii demonstra-

tor investigates the learning performance and performs correctioiis(clemonstrations) 

whenever faults occur in critical segments of the trajectory. At the same time, the 
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critical training data, is found actively and manually for learning in order to achieve 

better learning performance in next learning phase. Hence, the approach is an ex-

tension of active learning for the learning-by-demonstration paradigm. The new 

training data, obtained in a new demonstration is added to the previous training 

data, for new model training. Several phases go on until the learning performance is 

satisfied by the demonstrator. 

5.3 Approach 

In order to illustrate the developed experimental design, I apply this approach to 

abstract and learn human navigational skill with the cascade neural network. At 

the first demonstration phase, a. trained skill model is obtained from the training of 

the demonstrated data. Then, in the first autonomous navigation, whenever human 

discovers any improper motion control determined from the skill model, a correction 

is made by adjusting the control command to a correct one. The new corrected 

control commands and their corresponding sampled sensor patterns are added to 

the training data, obtained in previous training step(s) for new model training. The 

procedure goes on in the next a few aiitoiiomoiis navigation in order to find critical 

training data for improvement of learning performance (Figure 5.1). 

5.4 Experimental Study 

5.4.1 Settings 

In the whole learning and demonstration process, there are a total of 3 demonstra-

tions and 3 aiitoiiomoiis navigation. In all aiitoiioinoiis navigation, the wheelchair 

completed the learning tasks without collision with the surrounding obstacles. Dur-

ing each phase of autonomous navigation, around 20 control commands are corrected 
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Figure 5.1: A 3-pliase demonstration process in learning human skill for the au-
tonomous robot navigation. 

(demonstrated) and added with their corresponding sampled sensor patterns to the 

training data obtained in previous demonstration pliase(s). The corrections are 

based on the human control strateg}^ adopted in the first phase of demonstratioii( 10 

times). The reason that, small amounts of data are corrected in each later demon-
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stration phase is aimed at keeping the percentage of new training data low. This is 

likely to allow slow change of the characteristics of learned CNN model. 

The experimental settings in Chapter 4 are adopted in this experiment that, 

the demonstrated route, the CNN inputs, output and number of hidden nodes, 

navigation speed and sensor sampling rate are the identical. The 10 demonstrations 

and 2 testings of autonomous navigation are the starting point of this study. Here, 

these demonstrations are considered to be the first demonstration phase. Also, that 

2 testings of navigation are considered to be the first phase of autonomous navigation 

for the second demonstration phase conducted in this study. 

5.4.2 Results 

At the second and third phases of autonomous navigation, the thresholds are 1.7 

and 2.4 respectively, which are slightly different from that of the first phase of 

autonomous navigation mentioned in Chapter 4. The shift in the two thresholds 

refers to the adjustment of classification boundary(according to the new critical 

training data) for better classification in navigation control commands. Though 

the classification thresholds are changed, the training coefficients remain unchanged 

with those used in Chapter 4. The two testings of second phase of autonomous 

navigation (Figures 5.2,5.3) are where the final demonstration phase took place. 

The two testings of third phase of autonomous navigation (Figures 5.4,5.5) are the 

final testings. 

5.5 Evaluation of Learning Performance 

The feasibility of this approach is defined as the achievement of the 2 learning ob-

jectives: ( l )The completion of all autonomous navigation along the demonstrated 

route without any collision, and (2) An increase in similarities between the demon-
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Figure 5.2: The sensor trajectory and corresponding control command resulted from 
the second learned skill model in the first testing of autonomous navigation. 

strations and autonomous navigation over the learning phases.The first requirement 

has been satisfied in the experimental study. Therefore, an analysis is needed for 

evaluating the fulfillment of the second requirement in the study. 

During each navigation in the experiments, a. sensor trajectory is sampled wliicli 

is a unique series of the local environmeiital features (with orientation) along the 
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Figure 5.3: The sensor trajectory and corresponding control command resulted from 
the second learned skill model in the second testing of aiitoiiomoiis navigation. 

specific navigation route with respect to the moving wheelchair. Since all the human 

demonstrations and autonomous navigation have certain stochastic variations in mo-

tion, the sampled sensor trajectories also possess this kind of statistical property. 

In other words, all sensor trajectories are slightly different. To evaluate the simi-

larity between human demonstrations and aiitoiiomoiis navigation in terms of this 
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Figure 5.4: The sensor trajectory and corresponding control command resulted from 
the third learned skill model in the first testing of autonomous navigation. 

characteristic, I adopt Hidden Markov Moclel(HMM) to account for the similarity 

measure. 

An HMM is a Markov chain (doubly stochastic trainable model) whose states 

cannot be observed directly, and was developed for solving real-life problems [43]. 

For example, HMMs have found their widest application in speech recognition 
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Figure 5.5: The sensor trajectory and corresponding control command resulted from 
the third learned skill model in the second testing of autonomous navigation. 

[44], where hiiinan auditory signals are analyzed as speech patterns by a, variety 

of stochastic signal processing. This technique provides an efficient and effective 

method to induce invariants during modelling. Also, trajectories with high degree 

of sequential structure and in different lengths can be encoded with this statistical 

modelling technique without any priori assumption about its statistical distribii-
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tion. With these properties, HMM is a suitable tool for modelling and analysis of 

the sensor trajectories in this study. It consists of a set of n states, interconnected 

through probabilistic transitions; each of these states has some output probability 

distribution associated with it. In the performance evaluation here, the continuous 

HMM is adopted for similarity measurement. 

At each state, an output observation will be randomly produced. The HMM A 

can l)e specified by 3 matrices. 

X = {A,B,tt} (5.1) 

is the state transition matrix which shows the probability of transition between 

different states at any given state. B is the output probability matrix which shows 

the probability of producing different output observations at any given state, TT 

is the initial state probability distribution vector. For a given A, it is capable of 

producing a series of output symbols which we call observation sequence O. There 

are two HMM operations I performed for the sensor trajectories similarity study. 

• Traill HMM A given an observation sequence : maximize P(A|0) using Bauni-

Welch Expectation Maxiinization algorithm. 

• Calculate the probability that a. given observation sequence O is generated 

from a HMM model A : calculate P{0\X) using Forward-Backward Algorithm. 

After calculating P(0|A), it is normalized by the length of the sequence T, then 

being applied log to prevent the data, underflow problem. This probability is 

called log-likelihood. 

To show the stochastic similarities between sensor trajectories obtained from 

liiiinaii demonstrations and autonomous navigation, a. left-right Gaussian HMM is 
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Table 5.1: The log-likelihoods of sensor trajectories in autonomous navigation with 
2 trained HMMs. 

HMM with 7 HMM with 8 
Hidden Nodes Hidden Nodes 

Navigation 1: Test 1 - 9 5 8 7 . 7 = -9587.5 
Navigation 1: Test 2 — -9657.1 — -9585.6 

‘ Navigation 2: Test 1 -9332.0 -9147.2 
Navigation 2: Test 2 -9080.9 -9179.6 
Navigation 3: Test 1 -8972.1 ° -8995.1 
Navigation 3: Test 2 — -8657.1 一 -8774.2 

trained with the first 10 demonstrated sensor trajectories. Then the sensor trajecto-

ries sampled during different phases of autonomous navigation are used to calculate 

the log-likelihood values with the trained HMM of demonstrations (Table 5.1). From 

the results, the increase in the log-likelihood values in the later autonomous naviga-

tion reflects the higher similarity between the later autonomous navigation and the 

initial 10-time human demonstrations. 

5.6 Discussions 

The preliminary results are positive to show that the multi-phase demonstration 

process yields positive result for the learning performance. However, there are two 

possible sources of factor accounting for this improvement: (l)Tlie developed miilti-

pliase learning is a feasible experimental design for increasing the learning perfor-

mance, and (2)Tlie increase in training data yields a. better learning performance. 

The argument of the source of iinprovenient factor here is a. future work for this 

study. Nonetheless, the developed multi-phase approach is shown as a systemic 

learning process for identifying and collecting critical learning data for the learning-

by-demonstration paradigm. 



Chapter 6 

Localization Learning 

In this chapter, for localization purpose, the sensor-control mapping for navigation 

presented in Chapter 4 is modularized to constitute the sensor-configiiration map-

ping in the form of look-up table, which is learned to localize at demonstrated lo-

cations with raw sensor patterns inputs and human-assigned configuration outputs. 

The approach is useful as a simple self-contained system for reactive localization at 

desired, learned configurations in indoor, static and unstructured environments such 

as common household settings. 

6.1 Introduction 

This study is inspired by the previous study on developing a navigation approach 

with local eiiviroiimeiit modelling in unstriictiired environments, presented in Chap-

ter 4. As an extension of this navigation approach，there is a. possibility to mod-

ularize the sensor-control mapping into the sensor-configuration and configuration-

control mappings. The seiisor-coiifigiiration mapping is actually the localization 

problem, which is essential for achieving the context-awareness (such as locate the 

user) ill a pervasive computing/robotic system, and is the concern in this study. 

With this motivation, I developed a. localization system for practical applications 

44 
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with similar formulation and settings of the presented human navigation skill mod-

elling. The difference and difficulty here are to achieve precise mapping for the 

accAirate mapping output (configuration). 

6.2 Problem Formulation 

The objective of this study is to utilize on-board range sensing information to con-

cisely model local unstructured environment (with respect to the robot/platform) 

for localization in the learned configurations in order to achieve acceptable accuracy 

with low on-line computational demand and low-cost hardware requirements. With 

this objective, I formulate the localization problem into 2 consecutive sub-tasks: 

(l)model the local environment in a, polar coordinate representation with on-board 

range sensing, and (2)coiistnict a. mapping between range sensing patterns(polar 

input) and absolute robot/platform configur at ion (Cartesian output) for real-time 

sensor pattern recognition and configuration estimation. The feasibility of this study 

depends on the practical localization accuracy, which is off-line investigated. 

6.3 Approach 

The developed localization approach has five steps: (l)iise sensor patterns, which 

are sampled from several ultrasonic range sensors at various robot/platform config-

uration, to model local environments, (2)manually estimate and assign the corre-

sponding configuration to each sampled sensor pattern, (3)form a, look-up table for 

the sensor-configuration mapping, (4)on-line search the closest sensor pattern in the 

constructed look-up table for the real-time sampled sensor pattern, and (5)adopt 

the corresponding configuration output of the closest sensor pattern in the table as 

the real-time configuration. 
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Figure 6.1: A deinoiistrated roiite(A to B to A) in an unstructured environment. 

Instead of achieving function approximation with machine or statistical learning 

techniques [40], such as neural network and support vector machine, the constructed 

mapping is explicitly listed out in a look-up table for real-time sensor input searching 

while avoiding approximation and simplification of the actual complex mapping 

relationship. 

6.4 Experimental Study 

6.4.1 Settings 

7 ultrasonic range sensors and a joystick are used in this experiment. By human 

operation, the wheelchair platform is controlled via the use of joystick to navigate a 

designated route 5 times in a. static, unstructured eiivironinent (Figure 6.1), intend-

ing to obtain the similar position/velocity profiles. In each operation, the platform 
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moves at speed about 0.8m/s for collecting raw local range patterns(about 260 sam-

ples) along the route. 

Since the platform is operated at roughly constant speed along the designated 

route, the platform configuration(planar position and orientation) is off-line assigned 

by human estimation to the corresponding sensor pattern. A look-up table is coii-

stnicted with all raw sensor patteriis(iiiput) sampled along the route and its labelled 

coiifiguration(output). One (Figures 6.2,6.3) and three (Figures 6.2-6.7) naviga-

tional operations are used to construct two independent localization look-up tables 

from 259 and 79G sensor patterns respectively. Another two operations are used to 

off-line evaluate the localization performance of the two constructed look-up tables 

(Figures 6.8-6.11). The accuracy of the assigned robot configuration x, y and orien-

tation, due to human labelling errors, is an issue to be investigated in the later part 

of this diapter. 

6.4.2 Result 1: Localization Performance 

Each constructed localization look-up tables are evaluated with two new navigational 

operation data (Figures 6.8-6.11). Each untrained sensor pattern is matched with the 

closest sensor pattern stored in each look-up table with minimum Euclidean distance 

ill the 7-D sensor space as criteria. The corresponding configiiration output for the 

matched sensor pattern in the table is considered to be corresponding configuration 

of the matching sensor pattern. From the results, the errors in configuration output 

X, y and orientation are bounded aroiincl + / - 25 cm/degree between the actual values 

ill most times, except for a. few significant errors (Figures 6.12-6.15). Therefore, the 

developed approach lias acceptable accuracy, even with the involvement of human 

assignment errors. 

Also, it is clear that the two look-up tables constructed from one and three op-
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Figure 6.2: The sensor trajectory of first training route. 

400 1 I I I 1 
£ / \ 
1 200 - / \ -
X / \ 

0 . I ,_̂ ^——r- =1 
4 0 0 . 1 1 , . 

i 200 • / \ -
“ ,- ’ • X 
— 0 ki I I I I I：： J 

400 . . i 1 1 a> 
— . ‘ —— 

c 200 - \ / -
.9 , , , 
05 \ 
I Ot ——z , , , , 
g 0 50 100 150 200 250 300 

Time 

Figure 6.3: The human-assigned control command trajectory of first training route. 
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Figure 6.4: The sensor trajectory of second training route. 
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Figure 6.5: The liiimaii-assigned control command trajectory of second training 
route. 
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Figure 6.6: The sensor trajectory of third training route. 
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Figure 6.7: The hiimaii-assigiied control command trajectory of third training route. 
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Figure 6.8: The sensor trajectory of the first untrained route. 
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Figure 6.9: The human-assigned control command trajectory of the first untrained 
route. 
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Figure 6.10: The sensor trajectory of the second untrained route. 
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Figure 6.11: The human-assigned control command trajectory of the second un-
trained route. 
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erations obtain similar localization results for the two new operation data. In other 

words, the iiiiinber of demonstrations does not have much effect on the localiza-

tion performance in the experimental settings. Therefore, the sampling rate is high 

enough to generate a look-up table with fine resolution in the settings. 

Moreover, we can observe that the sensor patterns are very similar (high preci-

sion) when sampling at the similar configuration in the workspace in all operations 

(Figures 6.2-G.ll). Hence, the localization results of the 2 untrained routes are very 

similar (Figures 6.12-G.15). 

6.4.3 Result 2: Similar Sensor Patterns in Various Config-
urations 

From the results (Figures 6.16-6.19), we can observe that at each of the loca-

tions /configurations where significant localization errors exist, the on-line sampled 

sensor pattern is matched to a "far-away" and mismatched location at which the 

sensor patterns are still similar and closest to the on-line sampled one in Euclidean 

distance on the 7-D sensor space. The "Resultant Error" in the Figures 6.16-6.19 

refers to the magnitude of the resultant vector formed by the 3 scalar errors in x, y 

and orientation, and represents the overall of 3 output errors. The physical meaning 

of this result refers to that, there are some configurations at which their sampled 

sensor patterns are very similar. Conceptually and empirically, this phenomenon is 

often to occur in the daily life experience (Figure 6.20). 

6.4.4 Result 3: Small Variations in Major Dimensions of 
Environmental Feature along the Route 

From the experimental results, we can observe that the variations in each sensor 

signal are little at most of the time along the route (Figures 6.21,6.22). Also, for 

eadi sensor, at the times when significant variations exist, the variations in the 
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Figure 6.12: The errors(x, y & orientation) in the look-up table with 1 training route 
for the first untrained route. 
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Figure 6.13: The errors(x, y & orientation) in the look-up table with 1 training route 
for the second untrained route. 

other sensor signals are relatively little. In other words, significant variations do 

not happen siiiiultaneously in the majority of sensors. Moreover, the average of 

variations in all sensor signals alone the route is roughly bound around + / - 15 cm 
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Figure 6.14: The errors(x, y & orientation) in the look-up table with 3 training 
routes for the first untrained route. 
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Figure G.15: The errors(x, y k orientation) in the look-up table with 3 training 
routes for the second iiiitraiiied route. 

(Figure G.23). The physical meaning of this result is that, nearby configurations have 

similar sensor patterns which describing the similar local environmental features. 

Empirically, this explanation matches with the daily life experience that, similar 
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Figure 6.16: In the look-up table with 1 training route for the first untrained route, 
significant errors appear when similar sensor patterns occur in various configurations. 
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Figure 6.17: In the look-up table with 1 training route for the second untrained route, 
significant errors appear when similar sensor patterns occur in various configurations. 

visual images are perceived when liiiman senses in nearby locations and/or orienta-

tions. Moreover, the less difference in sensing positions and/or orientations yields 

the higher similarity in the perception. On the other hand, it is reasonable to state 
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Figure 6.18: In the look-up table with 3 training routes for the first untrained route, 
significant errors appear when similar sensor patterns occur in various configurations. 
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Figure 6.19: In the look-up table with 3 training routes for the second untrained 
route, significant errors appear when similar sensor patterns occur in various con-
figurations. 

that, the less "percentage" or "weight" of the environmental change yields higher 

similarity between the original environment and changed environnient at the same 
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Figure 6.20: An example of the existence of similar local environments(Circled). 
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Figure 6.21: Variations in each sensor signal along the first untrained route. 

sensing configuration in term of the environmental representation. Therefore, the 

robustness of the environmental model for localization is proportional to the "per-

centage" and "weighting" of the environmental change. 
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Figure 6.22: Variations in each sensor signal along the second untrained route. 
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Figure 6.23: Mean of variations in all sensor signals along the route. 

6.5 Discussions 

6.5.1 Accuracy 

There are two possible sources of errors: (l)assigned mapping output (configuration), 

and (2)similar sensor patterns in different configurations. For the first error source, 
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the acceptable error bound does exist for the assigned mapping output, as shown 

in the experimental results (Figures 6.12-6.15). For the second error source, more 

sensors for achieving higher environmental sensing resolution is likely to reduce the 

similarity of the sensor patterns sampled at different configurations. The number 

of sensor is likely to be proportional to the resolution of environmental features 

modelling. Another way to improve the accuracy of the system is to perform con-

secutive samplings in nearby positions or orientations. Then, the resultant look-up 

table outputs are smoothed out with linear interpolation based on the actual position 

or orientation differences. 

6.5.2 Choices of Sensor-Configuration Mappings 

Instead of having purely reactive planning, we may also try to include the tem-

poral dimension for better configuration pattern recognition. With this additional 

dimension, all sensor patterns are "separated" along the time they sampled in the 

demonstrated route. The time is counted from the beginning of the route. The 

curse of dimensionality referred here has been widely addressed in the framework 

of dynamic programming in the literatures [45,46]. While real-time sensing infor-

inatioii acts as the system external feedback, the time input serves as the internal 

iiifoniiatioii for localization. On the other hand, we may adopt the previous sensor 

states as the additional mapping inputs for pattern recognition. 

Although these choices of look-up table axe likely to reduce similar patterns in 

different configurations, they have their constraints for practical applications. For 

the time input case, the robot/platform is required to perform the same navigation 

as that of demonstration in order to have same temporal dimension or trajectory 

profile. For the previous sensor states case, the robot/platform is required to have 

part of navigation same as that of demonstration in order to have same previous 
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states. Both the time input case and previous sensor states case have velocity and 

position/orientation constraints based on the demonstration. 



Chapter 7 

Conclusion 

In this chapter, the key contributions of this study are illustrated. Also, some 

potential future work is highlighted for possible extensions of the human navigation 

skill modelling, multi-phase demonstrations for learning and localization learning 

presented in Chapters 4，5 and 6 respectively. 

7.1 Contributions 

In this thesis, a. move towards the development of novel, compact and practical 

robotic wheelchair navigation system is presented for enhancing user mobility in 

indoor applications. Human skill abstraction, environmental modelling, and navi-

gation & localization learning are the core theoretic foci of the investigations and 

evaluations done in this study, with emphasis on the methodology fonniilation k 

design, and experimental design & implementation aspects. Several significant con-

tributions have been established in the study presented in this thesis, as stated in 

the following. 

Ill Chapter 3, a. novel wearable eye-jaw control cap interface is developed and 

tested. It is a simple, low-cost and effective solution for maniial control on an 

electrically powered wheelchair for users even with limited dexterity on their legs, 

2 
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arms and/or spine cords. 

In Chapter 4, a navigation learning approach is presented. Cascade neural net-

work is adopted for abstracting the human skill in form of reactive mapping between 

raw sensor pattern inputs and human-assigned control command outputs, sampled 

in the deinonstrations. Local Environments are represented in form of range sensor 

vector for pattern recognition during autonomous navigation. With this approach, 

high-level navigation autonomy is achieved for applications in robotic wheelchairs. 

Also, the approach possesses several advantages for practical applications. First, en-

vironment is represented in an efficient and compact computational model, instead 

of the existing complex representations such as cell decomposition, geometric, topo-

logical or vision models. All of these benefits are good for real-time robot planning. 

As a result, relative less on-line computational demand, lower data storage memory 

and cheaper hardware equipments are required. Second, since the trajectory plan-

ning is reactive and in real-time, the planning has certain fault-tolerant capability 

that, monientary control errors, ambiguous sensory data and little errors in the 

trained model are by-passed. Third, with this leaniing-by-demoiistration method, 

user who does not have technical backgrounds is still able to easily teach his/her 

platform personally in a simple arid direct way. Fourth, limited local environmental 

information is sensed and processed with the on-board computing in a. self-contained 

platform for navigation, without any additional positioning device. Fifth, instead 

of simulating physical plienomenoii, this reactive mapping is obtained from human 

demonstrations. Hence, arbitrary desired path shape can be achieved as needed. 

Sixth, the platform's physical shape and size are abstracted in the skill model dur-

ing the learning process. Therefore, the approach is suitable for mobile platform 

with any shape and size. With the approach presented in Chapter 4, the user can 
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teach the system so that they can be performed autonomously for the navigation 

tasks, that need to be performed frequently. While application, the user can simply 

select a. route from a list of learned routes, sit on the wheelchair and then being 

transported to the destination. 

Ill Chapter 5, an extension and realization of active learning for the learning-by-

deinonstratioii paradigm is primarily investigated, achieving good learning perfor-

mance in terms of the similarities between demonstrations and autonomous naviga-

tion. The approach is presented and illustrated with an example of human indoor 

navigational skill modelling by multi-phase human demonstrations. With this ap-

proach, demonstrations are learned in several phases with on-line human feedback 

assistance. The learning performance is directly, experimentally observed and eval-

uated by on-line testing throughout the learning phases. The approach is useful to 

strategically identify and collect critical training data, which is hard to achieve for 

some systems with different dynamic parameters in the demonstration and applica-

tion stages. Moreover, the concept is generic and hence can be adopted on many 

learning-by-demonstration applications. 

In Chapter 6, a localization learning approach is presented. A explicit look-up 

table is used for localization at demonstrated locations with raw sensor patterns 

inputs and liiunaii assigned position/orientation outputs. This approach is useful, 

easy to iinplemeiit, and suitable as a. simple, low-cost and self-contained system for 

reactive localization at desired, learned configurations in indoor, static and unstruc-

tured environments such as common household settings with acceptable accuracy. 

As an alternative, the approach can be used with existing simple positioning sys-

tems, such as wheel encoder, to achieve low-cost error-compensation for increasing 

the overall localization accuracy of those existing positioning systems. 
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The impacts of this study are: (l)The extension of the usability and function-

ality over the traditional electric wheelchair, which significantly assists the user's 

mobility in his/her day-to-day life. (2)The remarkable improvement of a wheelchair-

bound user's social life, through closer and more interactions with his/her family and 

friends, and more participation in variety of public activities. (3)Tremendous new 

mobility interface possibilities could be open up and investigated as a. result of the 

findings, resulting in rich system integration issues, academic research contents and 

potential product lines in consumer electronics for modern demanding rehabilitation 

and health-care product developments. 

7.2 Future Work 

Besides the above contributions, the study can be generalized in certain aspects. 

For the navigation study, there are certain issues we may explore. First, how does 

the niiiiiber and location of sensors on the platform affect the navigation learning? 

Also, are there cases where the limited number of sensors becomes problematic? 

Second, is it possible to replace the implicit CNN skill model by an explicit look-

up table? Is it possible to make some comparisons between the 2 methods? Third, 

what kinds of dynamic obstacles, and how much changes in the learned environment 

can the trained model tolerate? Since static obstacles cannot be identified from its 

siirrouiidiiig environment in the approach, all static objects in the environment are 

considered as static obstacles for the navigation of platform. Therefore, the existence 

of new static obstacles can be considered as the change in the learned environment. 

For the multi-phase demonstrations study, we may extend the work to rigorously 

show that, the better learning performance over the learning phases is caused by 

adding the strategically collected critical data, in the neural network training data 
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sets, rather than caused by adding merely more data. Moreover, the x-y Carte-

sian trajectory exhibited in navigation is also a suitable measure for performance 

evaluation. 

For the localization study, we may explore some investigations in certain prospec-

tive. First, two types of sensing information could be adopted: color sensors (for ex-

ample a camera) and range sensors (for example an ultrasonic or laser range finder). 

Each of them can be used individually for localization, while they also can form 

a, liyl)rid/integration system for error-compensation purpose. Instead of comparing 

the localization performances between vision and range sensing [47], we aim at the 

synthesis of vision and range sensing from the view point of their physical meanings. 

Second, two types of sensing coverage could be considered: planar and spherical. 

Third, three types of Cartesian mapping outputs could be learned by demonstration: 

roiite(l-D), area(2-D) and space(3-D) of configurations. Therefore, this study is a 

localization work focusing on one of these scope combinations. 



Appendix A 

Cascade Neural Network 

Since most neural networks used today rely on rigid, fixed architecture networks 

and/or with slow gradient descent-based training algorithms, they may not be a 

suitable method to model complex, dynamic and nonlinear sensor-control mapping. 

To avoid these problems, a neural network learning methodology is adopted, which 

can efficiently model human control skill [4]. This methodology consists (l)flexible 

cascade neural networks (CNN), which dynamically adjust the size of the neural 

network as part of the learning process, and (2)node-decoupled extended Kalman 

filter(NDEKF), a. faster converging alternative to backpropagation. 

Denote o^ as the input-side weight vector of length at iteration k, for i e 

{0 ’ 1 , . . . ’ 77.0}’ and, 

i = I riin + riH _ 1 i = 0 (A \ Uin + n,, i e . 
The NDEKF weight-update recursion is given by, staring from Eqs. (A.3) to 

(A.6), {}，s, O's and []’s evaluate to scalars, vectors and matrices respectively 

+ (A.2) 

where “ is the no-dimensional error vector for the current training pattern, is 

67 
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the no-dimensional vector of partial derivatives of the network's output unit signals 

with respect to the zth unit's net input, and, 

= nci (a.3) 
� 1 - 1 

= / + (A.4) 
- i=o . 

巧+1 = (a.5) 
P(S = ( lA/p) / (A.6) 

where Q- is the nj^-dimensional input vector for the ztli unit, and PI is the r^ x n]̂  

approximate conditional error covariance matrix for the ？th unit. The parameter 

r]Q is introduced in Eq. (A.6) to avoid the singularity problems for error covariance 

matrices. Throughout the training, we use r]Q = 0.0001 and rjp = 0.01. 

The vector 'ipl can be computed in this way: let Oi be the value of the v'tli output 

node, Fo be its corresponding activation function, netoi be its net activation, Th 

be the activation function for the current hidden unit being trained, and neth be 

its net activation. We have, 

= o y i ^ j (A.7) 
onetoj 

SO 
^ ^ = r ' o ( n e t o O , ? : e { l , . . . ’ n � } (A.8) 
onetoi 

= wm • r 'oinetoi) • r 'ninetj , ) (A.9) 
anet h 

where whi is the weight connecting the current hidden node to the ？'th output node. 
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Figure B.l : The sensor trajectory and corresponding demonstrated control com-
niaiid ill the third demonstration. 
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Figure B.2: The sensor trajectory and corresponding demonstrated control coin-
mand in the fourth demonstration. 
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Figure B.3: The sensor trajectory and corresponding demonstrated control com-
inancl in the fifth demonstration. 
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Figure B.4: The sensor trajectory and corresponding demonstrated control coni-
mancl in the sixth demonstration. 
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i i 40Ci jĵ fj . . i~~—~. • 

� o t _ • 一、？-..《―‘扎、• • L-.-�--••. 
S 400 R — — - ^ ： ^ — • • 
s � ― , ， / ^ ^ \ - — � -

� qI . r - . > V - _ _ 
400 I . . 

^ 一 - - - . 、 一 〜 、 _ _ . v 、 - — - - - 、 一 _ . . . 。 一 “ 

Q 1 1 I I T — - _ I 
400 . . —. , . . 

•、 几〜、…〜_ -
Q L I I , • 一 

0 50 100 150 200 250 300 350 
Time 

I r I - • • ‘ “ i 
I I . ' U - ^ L J : 
fc I I 1 ———I I I I I J 

O 0 50 100 150 200 250 300 350 
Time 

Figure B.5: The sensor trajectory and corresponding demonstrated control com-
111 and ill the seventh demonstration. 
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Figure B.6: The sensor trajectory and corresponding demonstrated control com-
inaiicl ill the eighth demonstration. 
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Figure B.7: The sensor trajectory and corresponding demonstrated control com-
inand in the ninth demonstration. 
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Figure B.8: The sensor trajectory and corresponding demonstrated control com-
mand ill the tenth demonstration. 
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Publications Resulted from the 
Study 

1. H.N. Chow and Y. Xii, "Human inspired approach to navigation control", 

Inter-national Journal of Robotics and Automation, 17(4), pp.171-177, 2002. 

2. H.N. Chow, Y. Xu and S.K. Tso, "Learning human navigational skill for smart 

wheelchair", in Proceedings of the 2002 lEEE/RSJ International Conference 

on Intelligent Robots and Systems, vol. 1, pp.996-1001, 2002. 
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