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Abstract

Elliptic Curve Cryptography is a subset of the public key

cryptography. It is becoming popular in recent decades due to its highest
security strength per bit, less memory requirement and low processing
power. These advantages make it attractive to be applied in energy
constrained applications such as contact-less smartcard system and
portable cellular phone.
In this project, a 173-bit (m = 173) Type Il Optimal Normal Basis (ONBII)
representation is chosen in the implementation of the Galois Field GF
(2m) arithmetic logic unit over the projective coordinates system. An
efficient Elliptic Curve Crypto-processor which is optimized for low
power consumption is presented in this thesis.

Firstly, the mathematical equations are simplified. Compared with

the original one, the proposed expression can save 7.7% curve addition
operations, which is the major operation in the algorithm.
Secondly, the architecture of the finite field multiplier is modified to
reduce the data transferred between the flip flops and logic elements. By
using a 3-way parallel multiplier, the processor can maintain the speed
performance while achieve the low power consumption.

Furthermore, in the design of curve operations, the field operations
are integrated into one single instruction. This effectively reduces the
number of memory units which are used to store the temporary variables

during the computation.

The test chip was fabricated with a 0.35um CMOS technology. At



27°C and under a 3V supply voltage, this chip can operate at 18MHz and

the time for a key generation is about 7.56 ms.
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Chapter 1 Introduction

1.1 Introduction to Elliptic Curve Crypto-processor

Nowadays, contact-less smartcard systems play an important role in
the market and are widely used in data communication such as
electronic money, identification, etc. As many of these applications
communicate through an insecure channel, the smart card
manufacturers add the public key scheme in order to keep the data in
secrete. The most well known public key algorithm is RSA and ECC
(Elliptic Curve Cryptography). Although RSA is mature and widely used
today, its long key length and huge computational requirement make it
not suitable in the exponential growing market. However, the ECC
proposed by Neal Koblitz [I] and \"ctor Miller [2] is more appropriate do
this task.

In this thesis, a hardware GF(2i73) Elliptic Curve Crypto-processor is
proposed. This cryptosystem is implemented by using 173-bit type Il
Optimal Normal Basis (ONBII) representation. ONB was considered as
the fastest hardware implementation method in ECC over polynomial
basis representation and prime number representation. The basic
operations in ONB are addition, squaring, multiplication, and inversion,
all of which are simple in hardware implementation. The following

chapters will describe how to improve the performance of the ECC

processor in details.
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1.2 Aims

Power saving is one of the most crucial criteria in the contact-less
smart card systems. The objective of this research is to develop a low
power public key crypto-processor which can be embedded into these
systems.

Power efficient architecture can be achieved by:

> Using efficient public key cryptography algorithm like ECC.

Since ECC provides the highest security bit per length and
minimum computational and memory requirements among all
the algorithms, its operating time is very short and thus the
power consumption is small.

> Suitable choosing of the power efficient design methodology like

Optimal Normal Basis (ONB) representation.
> Reducing the switching activities of the logic gates, since the

power consumption is directly proportional to the switching

activities of the logic gates.

1.3 Contributions

The proposed ECC processor has several features, and some of them
even have not been presented by all the previous designs yet. They are'

> Properly choosing the key size of the cryptosystem. Consider the

trade-off between the security strength and power concern, this

research uses 173-bit as the key length. First of all, 173 is a

prime number and the fastest method to crack a 173-bit

cryptosystem is the discrete logarithm problem, which is
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infeasible to crack in short time. Secondly, the security level is
higher than 1024-bit RSA (a commercial standard using
nowadays). And finally, as the Optimal Normal Basis (ONB)
representation is employed in the design, we have to choose some
specific numbers which can be represented by ONBII and the
173-bit number is one of them.

The mathematical expressions of the elliptic curve addition have
been modified. By doing this, one less multiplication is involved
in every curve addition operation.

Combining the instructions of the finite field operations into one
single instruction. This has effectively reduced the power
consumption and the propagation delay.

The ECC processor was designed by using a 0.35um standard
cell library. The interconnections between the logic gates were

minimized by the layout tool "Silicon Ensemble”.

1.4 Thesis Outline

The idea of cryptography is introduced in Chapter 2.

In Chapter 3 the number theory about finite field is presented.

Some examples are given to explain the theory.

Chapter 4 is an introduction to the elliptic curve theory. The

relationship between the curve and cryptography is shown here.

Chapter 5 describes the design methodology of this ECC processor,

the implementation of the crypto-processor will be dissected part by part.

Chapter 6 shows the specification, pin assignment

and the
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communication protocol used in this integrated circuit.

Chapter 7 shows the performance of this cryptosystem. The
comparison between the new processor and the previous work also stated
here.

At last, Chapter 8 is the conclusion of this thesis and some of the

recommendations of the future research are given.
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Chapter 2 Cryptography

2.1 Introduction to Cryptography

Cryptography is the science of using mathematics to encrypt and
decrypt data. It enables you to store secret information or transmit it
across insecure media such as internet, so that it cannot be interpreted
by anyone especially cryptanalysts.

To avoid the cryptanalysts retrieve secret information easily, the
security level of cryptography should be strong enough to against the
attack. Time and resources required to recover the original information
are essential indicators to measure the cryptosystem is strong or not.

Moreover, properly choosing the cryptographic algorithm is also
necessary. For example, Triple DES and RC5 are suitable in symmetric
key encryption (secret key encryption), while ECC and RSA are suitable
in asymmetric key encryption (public key encryption).

A cryptographic algoritliin is a mathematical function used in the
encryption and decryption process. It works in combination with a key to
encrypt the plaintext, and the same plaintext encrypts to different cipher
text with different keys. The security of encrypted data is entirely
dependent on the strength of the algorithm chosen and the size of the
key.

In this chapter, two major classes of cryptosystems e secret key
cryptography and public key cryptography are introduced. Then a brief

overview of discrete logarithm problem is given. Finally, two major public
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key encryption standards, ECC and RSA are compared here.

2.2 Public-key Cryptosystems

Public key cryptosystems are based on mathematical functions
about number theory. It involves the use of two separate keys, so we call
it asymmetric.

Public key algorithms rely on one key for encryption and a different
but related key for decryption. There are two important characteristics in
these algorithms.

> It is computationally infeasible to determine the decryption key

except when the cryptographic algorithm and the encryption key
are known.

> Either of the two related keys can be used for encryption, with

the other is used for decryption.

Public key cryptosystems can be classified into three main categories,
they are:
Encryption/Decryption”™ The sender encrypts a message with the
recipient's public key. Figure 2.1 illustrates this application. Suppose
Alice wants to send a secret message M to Bob through an insecure
channel, she needs to encrypt the message. In the first step, Bob should
generate public key pair (Kbpri, Kbpub), and gives his public key (Kbpub) to
Alice. While Alice gets Bob's public key, she can use this key to encrypt
her message, Kbpub (M), and send the ciphertext, C, to Bob safely. When

Bob receives this ciphertext, he can use his private key, Kbpri, to decrypt
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the information and get the original plaintext, M.

Alice B~
p i a h t e x t K e vy pair
Kbpri, Kbpub
Original
Encrypt by Plaintext > M
B ) b’Bublic 4, =Kb—(C)
key, Kbpub Insecure channel
i L —_ o"mnnn n
k  Decrypt by
Ciphertext’ C ” Bob's Private
=Kbpub (M) keyKbpH

Figure 2.1.  Encryption/decryption using public key cryptosystem

Digital signature- The sender signs a message with its own private key.
Signing is achieved by a cryptographic algorithm applied to the message
or to a small block of data that is a function of the message. Figure 2.2
illustrates this application. In this case, Alice prepares a message to Bob
and encrypts it using her private key before transmitting it. Then Bob
can decrypt the ciphertext using Alice's public key. Because the
ciphertext is signed by Alice's private key, any other public keys cannot

decrypt it except her public key, so we called this digital signature.
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Alice B~
n Original
Plaintext -
Plaintext
M
M
i N
Encryption
Ciphertext, C
=Kapri (M) Insecure channel
Kapri 1 L —-  Decryption
= ! N Kapub (C)
Key pair
Kapri, Kapub

Figure 2.2.  Digital signature in public key cryptosystem

Key exchange- Two sides cooperate to exchange a session key. Several
different approaches are possible, involving the private key of one or both
parties. Figure 2.3 illustrate this application. Suppose Alice and Bob
want to encrypt/decrypt their message using symmetric key encryption »
they need to get a session key first. Key exchange can let them get the
session key safely through an insecure channel. At the beginning, Alice
and Bob exchange their public key to the other, and using their private

key to encrypt the other's public key, the keys generated by this method

are identical, which is called session key.
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Alice Bob
Private Key Private Key
Kapri Kbpri
Public key, Public Key,
Kapub Kbpub
Insecure channel
=
Session key, *  Session Key,
Kapri (Kbpub) ~ Kbpri (Kapub)

Figure 2.3.  Key exchange in public key cryptosystem

2.3 Secret-key Cryptosystems
Secret key cryptosystems also called symmetric key cryptosystems.
It was because the keys used in encryption and decryption are the same.
E (M)=C

D (C)=M

D (E (m)=nu

Where E () for encryption function, D () for decryption function, M is

plaintext and Cis ciphertext.

2.4 Discrete Logarithm Problem

Discrete Logarithm Problem (DLP) is fundamental to a number of
public key algorithms, such as Diffie-Hellman key exchange and the
digital signature algorithm. There are some efficient algorithms that can

9
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efficiently reduce the DLP in the group. They are-
> Pohlig-Hellman algorithm [1]
> Pollard's p method [2]
> Index-calculus methods [3]

Consider the following equation:

e d

ve mod n

Where g x, n are the elements in the group.
Calculate y by given g, x, n is straightforward. However, giveny, g, n,
it is very difficult to calculate x » which is the discrete logarithm problem.
For example in elliptic curve DLP, Pollard's p method has an expected

running time of ylm/2 elliptic curve operations, which is the best

general purpose algorithm known.

2.5 Comparison between ECC and RSA

In the public key cryptosystems, there are two main encryption
algorithm, they are RSA and ECC.

RSA was published by Ron Rivest, Adi Shamir, and Len Adleman at
MIT in 1978 [4]. This algorithm is a block cipher in which the plaintext
and ciphertext are integers between 0 and n - 1 for some n. In the
generation of the key pair, it involves two prime numbers, which is
sufficiently large to prevent the discovery of the keys by exhaustive
search method. Nowadays, the commercial systems use 1024-bit RSA for
encryption applications.

ECC was proposed by Neal KobHtz [6] and Victor Miller [7] in 1985.

This algorithm based on the "addition" properties of the elliptic curve.

10
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Details of the elliptic curve will be introduced in Chapter 4. The key size
used in ECC is much shorter than RSA with approximately the same
security level. The amount of work required to solve 128-bit ECC was
about fifty times that required to solve the 512-bit RSA. Therefore, ECC

will become popular in public key cryptosystems.

COMPARISON OF SECURITY LEVELS
~ A ECC and RSA
6000 -|
5000 - >
4000 -

3000 - iT

o

[\

2000 -

1000 - . —

e 5?55 N N N

-"ECC
Time to Break Key (MIPS Years) | —rsa&dsa
Figure 2.4.  Comparison of security levels

(Source from www.certicom.com)

Figure 2.4 shown above is the security strength of ECC and RSA
against the time to break. In the graph, we can see that ECC has a
potential to replace RSA in the coming future due to its high security
stren”™h per bit. Table 2.1 and Figure 2.5 show the time used for
different applications of ECC and RSA. The overall performance of ECC
is better than RSA due to its shorter key length, especially in the key

generation. In the conclusion, RSA is a mature algorithm and commonly


http://www.certicom.com
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used in the commercial systems. However, ECC is a new mathematical

algorithm, which has alarge improvement in the research area.

API Function = ECC Engine RSA Engine
(163 bits) (1024 hits)

Key generation, 3.19 681.63
EnciypUis 9.72 2.09 =
Decrypt’ ms 16.36 31.64

s S tms 3 1 . 5 4 _
Verify, ms 833 = 206 |

Table 2.1.  Comparison between the applications of ECC and RSA

ECC vs RSA

Time
(ms) - -

legn eoyt de_. sn My o
IJD_JCt:

Figure 2.5. The plot of the applications of ECC and RSA

12
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2.6 Summary

This chapter has given an introduction about the topics of
cryptography, the different between symmetric and asymmetric key
cryptography, the applications of the public key cryptography, and the
discrete logarithm problem about the cryptography. At last, the

comparison between two major public key cryptography algorithms was

presented.

13
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Chapter 3 Mathematical Background in

Number Systems

3.1 Introduction to Number Systems

Elliptic curve mathematics is based on abstract algebra in particular
finite fields. In this chapter, some basic concepts of Groups, Rings and
Fields are introduced. Then follow with the modular arithmetic used in
Finite Fields. Finally, the arithmetic operations in the optimal normal

basis mathematics are discussed in details.

3.2 Groups, Rings and Fields

Group theory is concerned with systems in which always have a
unique solution. It requires only that a mathematical system obey a few
simple rules. The theory then seeks to find out properties common to all
systems that obey these few rules.

The axioms for a group are-

> Closure- If a and b are in the group then a ¢ b is also in the

group.

> Associativity- If a, b and c are in the group then

. (@aeb)ec=ace(bec)

> ldentity: There is an element e of the group such that for any

element a of the groupa ce=¢e *»a=a.

> Inverse: For any element a of the group there is an element ai

such that

14
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. a *a.i= e and

. a-i*a=-¢e

The theory does not concern itself with what a and b actually are nor
with what the operation symbolized by *e<* actually is. For example, if
the group operation is replaced by multiplication “X” > then the group is
said to be multiplicative group.

The group is called abelian if the operation is commutative, i.e.

A ring R’+ X consists of a set R, addition operation “+” > and

multiplication operation ‘X’ on R.

The axioms of a ring are:

> (R,+’x > 0) is and abelian group.
>  The operation x is associative, i.e. (ax b) xc=ax (b x c).
>  There exists an identity 1such that Ixa =ax| = a.
>  The operation x is distributive over +. i.e.
. aXb+c)=(@Xb)+ (aXc)

. b+c)Xa=0MOXa)+ (cXa)

Afield is a commutative ring in which every non-zero element has a

multiplicative inverse, i.e.aixa=axa!=1fora 0.

3.3 Finite Fields

A finite field is a field which contains a finite number of elements
with several properties:

15
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> Every element in the finite field has an inverse.
> The finite field contains an additive identity element in the rules

of addition.

> The finite field contains a multiplicative identity element in the

rules of multiplication.

3.4 Modular Arithmetic

In integer field, if b is any integer and n is a positive integer, we
write b mod n for the remainder in {O,--- » n-1} that occurs if b is divided
by n. Suppose ais ainteger in {0-...” n-1} > we call a, b congruent modulo n,

written as a = b (mod n) if and only if one of the following equivalent

conditions holds:
> their difference is divisible by n.
> they leave the same remainder when divided by n.
> a- b =kn for some integer k.

> a-b in the ideal of all integers divisible by n.

3.5 Optimal Normal Basis

optimal normal basis were considered the fastest implementation
method in the elliptic curve cryptosystems. Only AND, XOR and rotation
operations are needed, which are very efficient in hardware. In the
following sub-sections, the theory of normal basis mathematics will be
described first, and then discuss the theory behind the normal basis

multiplication and inversion.

16
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3.5.1 What is a Normal Basis?

A normal basis representation can be described with algebraic
polynomials. Suppose p is an element in the field ' the polynomial
representation is-

P - ++ +a

Where n < m.

A normal basis can be formed using the set:

¥p, -, ,.”, pp¥op, p¥
For the ease of hardware implementation, we always use characteristic 2
in the finite field, (i.e. set p = 2, [1270.

Any element e in the finite field can be represented in a normal

basis format-

3.5.2 Addition
The addition in finite field is simple, different from the addition over

real number field, only involve XOR logic, no carry path is needed in the

operation.

17
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For

3.5.3 Squaring
Squaring is the special case of multiplication. It only involves
rotating one bit from least significant bit to most significant bit.

There are two reasons for this-
>

. Proof : (/?2')2=012(2"):1] 2"+,

. Proof : p~" =/?""""fmod =
v PJ

18
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3.5.4 Multiplication

Multiplication over is defined as follows.

For

1=0

/=0 7=0

by rearranging this term:

k=0 k=0
where Aijjkis called the ‘lambda matrix", and
m mi

Ck=2:$Z“/Mi#
R yo

The mathematicians proved that the above equation can be further
simplified to:

WA vl

Ck = o+ L+ e

H yo

3.5.5 Optimal Normal Basis

The lambda matrix described in the previous sections is am x m
multiplication table. The more the zero terms in the table, the more the
efficient of the multiplier. We called it an "Optimal Normal Basis (ONB)"
if it has the minimum number of nonzero terms.

There are two types of optimal normal basis over They are called

TVpe | ONB and Type Il ONB. Different types of ONB have different

19



Chapter 3 Mathematical Background in Number Systems

rules, as shown in follows.
> Type | Optimal Normal Basis over [J27(
. m + 1 must be prime.
. 2 must be primitive in Zm+i.
> lype Il Optimal Normal Basis over FV*
. 2m + 1is prime
. and either two of the following
. 2 is primitive in Z2mHi.
. 2m +1 = 3 mod 4 and 2 generates the quadratic
residues in Z2mi.
where Zm is a set of integers in the range 1... m.
Although the theory behind ONB seems very difficult, the
generation of the lambda matrix is petty easy. Next section will show you

an example on how to generate this matrix over

3.5.6 Generation of the Lambda Matrix

Suppose using the field with m =4 in ONB representation.
F24is alype | ONB because,
> 4+ 1=5is prime
> 2 is primitive in Zs.
Then define the irreducible polynomial for i.e.
[(1)=7+27+X2+1 +1

and setup the polynomial for normal basis of F24 over F2.

(x%25%
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Next, construct a 4x4 matrix A as follows:

RowO: X mod /(x)=0 - x ~~ = © 010
Row 1:%2 mod /(x)=0-x"+l-je+0-;¢c"+0-x°=(0 1 0 0)
Row 2: mod = 111
Row 3: >X® mod f{x) =\-x'+0-x"+0-x"+0-x'={\ 0 00

‘0 0 10
0 10 O

1111
I 00
FindA-i’
00T
,0 10 O
10 0 O
1111,
Construct another 4x4 matrix T"as follows:

RowO: x-x mod /W =0-¢cM+1-x"+0-x"+0-x°=(0 1 0 0)

Row 1: A:-2 mod f{x) =\'x'+0-x"+0-x'+0-x'=(\ 000
Row 2: mod /(;e)=0-x"+0-x"=(0 001
Row 3: mod f{x) =\-x' +\-x*+\-x'+\-x'={l 111

0 10
T,_l 0 0O

0 001

and calculate, T = TtxAI

O 10o0Wo 00iWo 100

"00017r1000~1111
01 1L 111i) io0) 10
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The lambda matrix can be found by-
'r0’o) n3°3 r(22) r(i’i))1 001010
N—r{i>0 ro-3) r(32) r2i _ 0 0 11
_r(20) r(i,3) ro:°2 r3ji) —1 1 0 0
r(3,0) r(23) r(i,2) r(oi)JJ [o 1 0

Actually, this lambda matrix is a table used for wiring the circuit like

that, suppose j{ “ [T “»*)] A=fe)A> J32> Mand C ={cq,c’,C2 c’}

bo t\ 7B
0 1 0
a, 0 0 1 1
a1 10 O
7O 10

@=ab Ml | (62® 7R)® fe) ® FN® fe [13)
C=al63s -0 @60)®"3 (61 (@S2 Diofe
Q=ajb’e e )0 fed® fe ® )
QG =36 | DU OEO® - fe® [

The example shown above is the method used to generate the ONB
multiplication table. This matrix only give the information in the
connection between the input A, input B and the output C, which can be

done using Matlab simulation.

3.5.7 Inversion
Suppose a is an element over the inversion of a is denoted by a"i
and defined as:
aa =1
By Fermat's Theorem [5]-

124V
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If mis odd,
By considering the exponent, it can be factorized to:
21 i el YR
T F - +O) Eqg. 3.1
Recursively decompose term until m = 2 (i.e. a™”~=a), the
algorithm can be solved. In this case, we only need to compute &[ | 4| >
and computing this term is easy, just rotate it by (m-1)/2 bit to left.

It is little complicated when m is even, the exponent can be

factorized to:

L= -+ 1) 41

substitute it back to a, the equation will become:
~H Eq. 3.2

this means, an extra multiplication and shifting operations are needed to
compute the result.
Since this research is to implement a 173-bit Elliptic Curve

Crypto-processor, let's pick m = 173 as an example to describe this

inversion algorithm in practice.

Since

g 1oy 22
«27-2 = “228VI\286H) apply Eqg. 3.1 ... 173 is odd
‘- | 2R« | J(<AHD) apply Eqg. 3.2 ... 86 is even
Y2431 =222 +HYN apply Eqg. 3.1 ... 43 is odd
“2201 =122, 132" v apply Eg. 3.1 ... 21 is odd
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“2--1 = (2'-iM2M apply Eq. 3.2 ... 10is even
“2'-i =2V-iK2'+ifi apply Eq. 3.1 ... 5is odd
°2M = “22+) = ™) apply Eg. 3.2 ... 2is even

For m=173 bit, it takes 10 multiplication operations.
The pseudo-code is shown below-
Given ain F2'", find a'l.
Convert m into binary format
s = (number of bits in m) « 1
Settempl=a
For i =s downto 0
Set temp2 =temp1l
Set shift = shift m to right by s bit(s)
Rotate temp2 to left ""truncate (shift)" bit(s)
temp 1=temp1lx temp2
If shiftis odd
Rotate temp 1to left 1 bit
templ=templx a
End
End

Set a'l = Rotate tempi to left 1 bit

3.6 Summary

This chapter has discussed about the theory of the ONB finite field

arithmetic. It was considered the fastest implementation method in the
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elliptic curve cryptography at the present time. Furthermore, the
efficient algorithm in ONB arithmetic also provides the benefit for low
power consumption and small area design. This research has taken an
advantage of these to implement a 173-bit Type Il ONB elliptic curve

cryptosystem.
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Chapter 4 Introduction to Elliptic Curve

Mathematics

4.1 Introduction

The Elliptic Curve theory has been well studied by mathematicians
for many years, and it has yielded some significant results in an
application of the cryptographic field in the later century. Actually,
these curves are the simple functions that contains x and y coordinates.
Besides real number system, these curves can also be applied into finite
field arithmetic over polynomial basis and optimal normal basis number
systems.

In this chapter, the elliptic curves over real number system will be
introduced first as it is easier to interpret. Afterwards, the elliptic curves
over finite field are detailed. For an efficient hardware implementation,
projective coordinates system will be introduced. Finally, the applications

in cryptography using the elliptic curves are shown.

4.2 Mathematical Background of Elliptic Curves

The following general equation is the ‘Weierstrass > > form of the
elliptic curves, where ai, a2, as, a4 and ae are the coefficients, x and y
cover a plane, this plane can be real, complex, integer, polynomial basis,
optimal normal basis and any other kind of field element.

y +axy+ay=x +tax +ax+
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In 1985 - Koblitz [6] and Miller [7] proposed using elliptic curves for
cryptographic purposed. They found that when taking any two points on
the same elliptic curve, add them together, the resulting point also lie on
the same curve. This is difficult to figure out which two points adding
together to get the result, and this is exponential to the key length.
Therefore, this discrete logarithm problem on the elliptic curves is an
attractive one way function because there is no sub-exponential attack

known to solve this problem.

4.3 Elliptic Curve over Real Number System

This section starts with the most familiar elliptic curve over the real
number system on a real plane. The following equation is the simple form

of elliptic curve, which will use in this section:

By putting si4 = "8 and ae = 8. Fi“re 4.1 shows the plot of this curve.

Y =X -8+ 8

Ll =
N
W
Rl
[85(]

Figure 4.1.  Plot of Elliptic Curve : y2=x"- 8x + 8
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4.3.1 Order of the Elliptic Curves

The term order of the elliptic curves is defined by the number of
elements lie on the elliptic curve over a finite field, and this must satisfy
“Hasse's Theorem™.

N-{qg + D¥2°

Where Nis the order of the curve and ~is the field size.

4.3.2 Negation of Point P

In the elliptic curves, for every solvable value of x, there exist two

values of y.
F+/b=V:c3—8,C +8

Therefore, the relationship between P and-P is:

If F=(, yX then -P= (x, —y).

4.3.3 Point at Infinity

Since, the magic of the elliptic curve is adding two point lies on this
curve, and get another point lies on the same curve. Therefore, we need
to find a way for the "Addition™ of two points. Before that, we define a
point at infinity, called "ldentity element, 0J".

This is a special point on the elliptic curves and has two major
properties. One of the major properties of this point is when adding CL

with other points on the curve would give the same point back. i.e.
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(P) + (0J = (P)
The other property is when adding two points, P and -P, the

resulting point will come to the point at infinity, CL. See Fi*re 4.2.

Y= -&+8
1 11 Rit a iy /
8. I /
. | /

1P .y /

o

-6- | \
8- | \
il | | 1 | 1 1 1 1 1 4

Figure 4.2. Adding P and -P to get the point at infinity
The point at infinity is the special case of the elliptic curves that
defined by the mathematicians who want to fulfill all the cases. Under
normal conditions, the engineers would avoid the occurrence of this

special case.

4.3.4 Elliptic Curve Addition

Elliptic Curve Addition is known as the point addition. In
mathematical representation, itis R=P + Q.

Figure 4.3 shows the geometrical relationship of the curve addition.
Suppose there are two distinct points P and Q lie on the curve and
connecting these two points by a line, it must passing through another

point which lies on the same curve -R, by negating the y-coordinate of-R,
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the solution R is obtained.

In mathematical approach, by solving the simultaneous equations on
the elliptic curve and the straight line, three solutions we can solved
because the elliptic curve equation variable x-is in the power of three.
This is not difficult to understand that why the line must intersect

another point on the elliptic curve.

Y= -8&+8

Fi~re 4.3. Curve Addition of Elliptic Curve points

4.3.5 Elliptic Curve Doubling

Elliptic Curve Doubling is a special case in Curve Addition. The line
is tangent to the curve at point P and then intersecting at another point
R. This is shown in Figure 4.4.

In mathematical approach, firstly, by differentiating the elliptic
curve, and finding the slope of the straight line, i.e. the gradient at point
P (XI' yi). The coordinates -R can be solved by finding the intersecting

point of the elliptic curve and that line.

30



Chapter 4 Introduction to Elliptic Curve Mathematics

yr=x*-8x+8

Figure 4.4.  Curve Doubling of Elliptic Curve point

4.3.6 Equations of Curve Addition and Curve Doubling
Here are the mathematical equations to find the solution of R:

Let
Il(Wi)
0 = 0272
R=ix,y,) =P+0Q

XN 20—k —Xj
H3=4AX1+X3)-D |
where

e = hiLL. if p 4 Q {Curve Addition)

or

RO+ O if P=Q {Curve Doubling)
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4.4 Elliptic Curve over Finite Fields Number

System

Because of the efficiency, the elliptic curve cryptography always
implements over the finite fields curves rather than real number curves.
Among the finite fields, polynomial basis and optimal normal basis
representations are favor in both software and hardware
implementations respectively. This is because of the finite fields
arithmetic is more efficient than the real number arithmetic. Details can
refer to Chapter 3.

Since the arithmetic operations in the finite fields are different from
real number arithmetic, there has another set of equations different from
the one stated in Chapter 4.3. Moreover, to avoid the cryptanalyst attack
the system easily, the mathematicians have proved that using a
""non-supersingular' elliptic curve could provide a maximum benefit of
security.

Here is the general form of "non-supersin”ar' elliptic curve.
y/\ +Xy :X/\ + a/\X/\ + a/\

Where a2, ae are finite field number and ae 0.

4.4.1 Elliptic Curve Operations in Optimal Normal Basis Number

System

This section shows the set of equations of elliptic curves using in the

optimal normal basis arithmetic.
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Let
= (Wi)
Q= {x2yi)
x= (W3)

For curve addition, P9tQ;R =p + Q

B =M+ X2 HR

For curve doubling, P=Q; R=2Q

N

+0+ a2

The number of finite field operations involved in the curve operations is

shown in Table 4.1.

4.4.2 Elliptic Curve Operations in Projective Coordinates

In the previous section, the set of curve operation equations are in
affine coordinates (i.e. only x, y axis are involved). In affine coordinates,
both curve addition and doubling consist of one field inversion operation.
As we have discussed in Chapter 3 - field inversion process is the most
time consuming process in field operation, to eliminate this field
inversion in every curve operations, a projective coordinates system is
suggested in the implementation of elliptic curve.

Projective coordinates system consists of x, y, z axis, every point in
affine coordinates (x, y) can be converted to projective coordinates (X, y, z)

and vice versa. The conversion methods are given as follows-
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Affine coordinates to Projective coordinates
P{x,y)-"Pix,y,\)

Projective coordinates to Affine coordinates

z J
where P, Q and F, Q- arein affine coordinates and projective coordinates
respectively.

The conversion from affine coordinates to projective coordinates is
easy, just assigning 1 to z-coordinate is enough, no extra operation
required. However, when converting projective coordinates to affine
coordinates, the z-axis is needed to convert to 1 first by finding the
inverse of z, and then multiply the inverse of z to x and y coordinates

respectively as shown above.

4.4.3 Elliptic Curve Equations in Projective Coordinates

This section will show the equations of the curve operations in the
projective coordinates.

Let

12=02"/12-2)
12 = (X3+ y3-293)
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For curve addition, P;"Q;R =P +Q

A - +

B:Yl"\l' +//Ii

C=A+B
JC3 = AD
y» =CD + Ay

For curve doubling, P=Q; R=2Q

/T
B =aMzl +2
X3 =AB
Affine Coordinates Projective Coordinates
Addition Doubling Addition Doubling
Field Addition 9 5 7 4
Field Squaring 1 2 1 6
Field Multiplication 2 2 13 7
Field Inversion 1 1 0 0

Table 4.1.  The relationship between finite field operation and curve
operation in different coordinates system

In the above table, we can conclude that using projective coordinates
should have a better performance that affine coordinates. It was because
in implementing 173 bit elliptic curve as an example, one field inversion
operation consists of ten field multiplication operations, although the

number of multiplications in projective coordinates increased, the overall
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performance can be increased.

4.5 Curve Multiplication

The Elliptic Curve Multiplication is defined by repeating the Elliptic

Curve Addition. The rule of this multiplication is described as follows.

Let
=Cw )
2 =32 702)
For
Q= cxP

Q=P+P+"-+P (c times)
Where P, Q are the points lie on the elliptic curve over affine coordinates,

and cis an integer.

This is the definition of the curve multiplication. In the computation
algorithm, we can implement this by curve addition and curve doubling
operations. The algorithm can be divided into 4 steps and stated below.

Step 1: convert the integer c into binary form.

Step 2: count down the integer c bit by bit and start from the second

MSB to LSB.

Step 3: if the bit is ‘1> »then compute curve doubling and then curve

addition ; if the bitis ‘0> > then compute curve doubling only.

Step 4: repeat Step 2 and Step 3 until the LSB is computed.

For example, suppose we want to compute 21 P.
Step l:integer ¢ = 21 = IOIOlii
Step 2: V 2nd MSB = 0 > then compute 2P by doubling.

Step 3: 3rd MSB = 1> then compute 4P and 5P by doubling and
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addition respectively.
Step 4: V 4th MSB = 0 > then compute IOP by doubling.
Step 5: e LSB = 1 then compute 20P and 2I1P by doubling and
addition respectively. And the result 21P is obtained.
When implementing the curve multiplication over projective
coordinates, there have a conversion from projective coordinates back to

affine coordinates once the multiplication process is done.

4.6 Elliptic Curve Discrete Logarithm Problem

Let P(x’ y) be a point lies on elliptic curve of order n. The Elliptic
Curve Discrete Logarithm Problem (ECDLP) is to find the integer k, for 0
" k " n-1 suchthat  @=kP.

There is no index-calculus method known for solving the ECDLP
that has a sub-exponential running time by given Q and P to compute k.
However, the most efficient algorithm known for solving the ECDLP is
using Pollard's p method [8]. This algorithm was improved by Gallant,
Lambert and Vanstone [9] and Wiener and Zuccherato [10] which has an
expected running time of yfmH elliptic curve operations. Therefore,
the known methods for computing ECDLP are still exponential in n and
less efficient than those for factoring and discrete logarithm problem

used in other cryptography attacking approach. As a result, Elliptic

Curve Cryptography could be a better cryptosystem over the others with

the same key sizes.
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4.7 Public-key Cryptography in Elliptic Curve

Cryptosystem

The elliptic curve cryptosystem can be used as a public key
cryptosystem. When the parties want to send or receive the private
information through the insecure channel using ECC, they need to know
the sender or receiver's public key. Therefore, ECC key pairs are
generated before the communication.

In the elliptic curve cryptosystems, the key pair generation method
is defined as follows.

Step 1: define a set of elliptic curve domain parameters, include

elliptic curve equation, (i.e. a2 and ae.) and generator point
G (x, y), (i.e. the initial point which lies on the specified
elliptic curve). And these parameters are set public to
everyone.

Step 2: select a random number k where 1 ™~ k ~ n - 1 (n- order of

the curve).

Step 3: Compute Q = kG. (Q is set public to everyone.)

Then, k and Q are the private key and public key respectively.

4.8 Diffie-Hellman Key Exchange in Elliptic Curve

Cryptosystem

Diffie-Hellman Key Exchange scheme is the first public key
algorithm invented by Diffie and Hellman. The purpose of this algorithm

is to enable two users to exchange a session key (secret key) that can be
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used for subsequent encryption of the messages. The generation method
of the session key is defined as follows.
Step 1:suppose there are two users Alice and Bob who have already
known the elliptic curve domain parameters.
Step 2: then, both of them generate their own public key pair first,
(i.e. Alice : ka, Qa; Bob: kb, Qb).
Step 3: they can send their own public key (Qa and Qb) to the other.
Step 4’ Once they exchange their public key, they can compute the

session key by multiplying their own private key with the

other's public key like that:

session  key =£%,, Xg7/p

4.9 Summary

In this chapter, the idea of elliptic curve over real number and finite
field coordinates systems were introduced. And then follow with the
comparison between the number of operations in the af&ne coordinates
and the projective coordinates over the finite fields. We can conclude that
using projective coordinates system is more efficient than affine
coordinates system. Afterwards, two of the elliptic curve applications,
public key cryptography and Dif&e-Hellman Kkey exchange, were

described. And these applications still have no known sub-exponential

time algorithm to solve.
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Chapter 5 Design Architecture

5.1 Introduction

In this chapter, a new implementation of the 173-bit elliptic curve
over type Il ONB is presented. This new architecture is based on the
optimization of the mathematical equations to reduce the number of
multiplication used. Furthermore, the combination of the field operations
into single instruction would reduce the frequently fetch and retrieved
data between ALU and register unit. The following sections will dissect

the research part by part.

5.2 Criteria for the Low Power System Design

One of the objectives of this research is low power consumption. It
has many different ways to achieve this goal. They are summarized as
follows-

Use of efficient algorithm :

In this research, TVpe Il ONB is chosen rather than using
polynomial basis representation or even prime field. It was because the
multiplication operation is the most efficient one than the others, and the
inversion operation can be avoid by using projective coordinates.
Moreover, the newly proposed idea has simplified the mathematical
equations to save one multiplication operation in curve addition. These

improvements directly reduce the number of operations in the
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computation of the results, so that, the overall power consumption can be

reduced.
Using standard cell library:

This research is using 0.35um technology standard cell library
provided by Austria Micro System (AMS). Compared with the other
hardware design approach such as FPGA, the standard cell library
provided a more power efficient solution by minimizing the routing
distance of the wires between the logic gates which would reduce the
capacitive loading in the metal lines. Furthermore, the standard cell
library provided by the manufacture is compact, especially the complex
gates. This is also a benefit to high speed low power design.

Reduce the switching activities of the logic:

For digital design, the power consumption can be expressed by this

formula-

P = afCv”
where a is the switching activities of the logic gates, f is the operating
frequency of the system, C is the overall parasitic capacitance, and V is
the operating voltage.

Since the switching activities of the logic is directly proportional to

the power consumption, minimize the variable a is a possible solution.

5.3 Simplification in ONB Curve Addition

Equations over Projective Coordinates

Recall the elliptic curve mathematical equation over projective

coordinates described in Chapter 4.4.3.
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Curve Addition : ? * Q

A= +X, Eq. 5.1
BAy~zA Eq. 5.2
C=A+B Eqg. 5.3
D =AMNA +azM)+2"BC Eg. 5.4
X3 = AD

/I8 =CD + ANBX" +Ay") Eq. 5.5
B=A"z"

The mathematical expression shown above is commonly used
equations in the implementation of ONB elliptic curve cryptosystems
nowadays. This operation involves 13 multiplications, 7 additions and 1
squaring.

The equations shown below are the new expression of the curve

addition operation.

A=XZL + X Eq. 5.6

B = y22» Eq. 5.7

D =AMNA +az)+z{AB + B") Eg. 5.8
= AD

YN =AD + b{a™x" Eq. 5.9

3= Az,

This operation involves 12 multiplications, 8 additions and 2
squaring, which can save 1 field multiplication operation. The proof is
based on the original expression as shown below.

Put (Eq. 5.3) into (Eq. 5.4), we get (Eqg. 5.8)
Put (Eq. 5.3) into (Eq. 5.5) to compute ya, we have:

/3=GD + 3. + 3 ))
= (A+B)D + A BxitdyJ

= AD + B{A'X
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which is the same as (Eqg. 5.9). Since the term AD and A" in ya, can be
calculated in X3 and Z3 respectively, 1 field multiplication is saved. In
conclusion, over 90% of the curve operations involve the field
multiplication, reduction of the field multiplication would greatly

enhance the overall performance of the system.

5.4 Finite Field Adder Architecture

The finite field operations consist of four major operators. They are
addition, squaring, multiplication and inversion. Since, the inversion
algorithm is derived by several multiplications and squaring. Therefore,
only the other three operators can be implemented on the ALU.

Adding two finite field numbers is simple. The result is just computed by

applying bitwise exclusive-OR on two input numbers.

Figure 5.1.  The circuit design of the finite field addition
In the figure, 173 XOR gates are used to compute the addition in parallel,

Ci= aie bifori=0to 172.

5.5 Finite Field Squaring Architecture
Squaring of the finite field number is a special case of the
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multiplication. It can be implemented by using multiplexer to rotate the
input 1 bit to left as shown below. In Figure 5.2 > 173 multiplexers are
used in parallel to select the input a to the output. When the "Ctrl" signal
is reset, the output c store the value of a, otherwise, the output ¢ store

the value of a®which is rotating 1bit to left.

o
a | 0 o17? N2
N0-172 1 > 0
X 173
7) = > Coir2
3
d1-1720 1

Figure 5.2.  The circuit diagram of the finite field squaring

5.6 Finite Field Multiplier Architecture

Since we have discussed about the theory behind the field multiplier
in Chapter 3:-in this section, the optimized low power consumption GF
(2173) parallel multiplication architecture is proposed. The idea of this
architecture is efficiently use of Latches in FIFO pipelines by reducing
the switching activities in the register unit. When latching the data in
the registers, a significant portion of power is consumed in the latches
and the clock tree rather than the combinatorial logics, therefore,
decreasing the number of switching in flip flops would greatly reduce the
overall power consumption. Figure 5.3 shows the combinatorial logic
used in the multiplier element. It is a 3-level logic, 3 gate delays are

needed to wait for the result. The input of bit pattern aij and by to the
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multiplier element is based on the lambda matrix (see Appendix).

a: [z> J

Figure 5.3.  The combinatorial logics used in multiplier element

The input ay, bij are the multiplier and multiplicand over F2I73
respectively, c¢ is the partial product in the previous state and c - is the
partial product in the current state. The mechanism of this field
multiplier circuit is shown in Fi~re 5.4. In the figure, block ME
represents "multiplier element" and block FF is the flip flop to hold data.
At the beginning, data Cis initialized to 0. In the first clock cycle, data A
and data B is input into the circuit, the bit pattern of data A and data B
then rearrange inside the "wiring" block, and pass into ME and FF. The
"wiring" block does not consist any logic cell, it is only a rewiring of the
connections based on the lambda matrix described in Chapter 3.5.6. The
data stored in the FF is the partial product C - which is ready to feedback
in the next cycle. Both A, B and C are needed to rotate 1bit to leftin each
cycle as shown in the fi*re. Since, this is a 173-bit field multiplier, the

final product will be stored in C after 173 clock cycles.
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A f — Rotate 1 bit to left
I |
B _ Rotate 1 bit to left
al | )
e bd ME  FF c’o
€9] |
aij ’
\ bij me FF + ¢
W ci
0]
A o o
| 3 g N |
r— C —_ a , _ — —_—
bij ME e FF c’i7i
Cl71
ad
bij ME e FF + c¢'m
I iz 1 I L_J i

Rotate 1 bit to left “

Figure 5.4.  The finite field multiplier circuit over

5.7 3-way Parallel Finite Field Multiplier

Previous section shown is the finite field multiplier proposed by G. B.
Agnew [11]. This multiplier has some disadvantages that are not suitable
in low power design.

In each multiplication, the flip flops used in the circuit are operated

frequently. Since the flip flop is one of the most high power consumption
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logic cells, the reduction of the switching activity of the flip flop would
reduce the power consumption greatly. Furthermore, the logic delay in
the flip flops is also a serious problem that reduces the overall speed of
the circuit. In this circuit, 173 logic delays by the flip flops are wasted in

each multiplication. Therefore, the efficient use of the flip flops is

essential to low power design.

c [IZ>

Figure 5.5.  The used of parallel combinatorial logic in multiplier
element

To overcome these problems, the multiplier element can be modified
to compute 3 cycles at a time as shown in Figure 5.5. Simply replace the
multiplier element by this one, only 44 clock cycles are used to complete
each multiplication. Compare with the original one using 173 clock cycles,

over 70% power and time consumption inside flip flops can be saved.

5.8 Finite Field Arithmetic Logic Unit

In this section, a newly proposed finite field ALU is presented. This

ALU combines all the field operations into single instruction, so that, the
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data transfer between ALU and the registers are greatly reduced. As a
result, the power consumption and the propagation delay due to the
registers can be minimized.

Refer to the mathematical equations over projective coordinates,

they can be arranged into the form: @ =AxB +C

Let
R2 =y,
R3 =z"
R4 = X2
7S =10
R6 =z

Curve Addition

R9 = mxR6 + R4

mO = R2xR6 +R5
Rn = R7xR6 + R9
RI2 = R9xR\0 + RIO"
R\2=R\2xR6 +0
R\2=R9™xRIl +R\2
mi = R9%xRI2 +0

m2 = R9"xR4 + RI2
Rn =mOxRl2 +R\\
R9 = R9"xR9 +0
R5=R9xR5 +R\2
R6 = R9xR6 +0

R4 = Rn

48



Chapter 5 Design Architecture

Curve Doubling

R9 = R4xR6 +0

RIO = R6'xRS + R4’
RIl = R9xR\0 +0
R\2 = R5xR6 + R4"
R\2=mOxRI2 + R\l
R5 = R4”xR9 +R\2
R6 = R9"xR9 +0

R4 = RII

The code shown above is the computation of the curve operations. It
can be seen that implementing the function: @ =AxB +C is enough for
the curve operations. Combining these operations would not increase the
hardware usage, and the execution time would be decreased due to the
"squaring' operation is integrated into the proposed architecture, so that
an extra clock cycle for the squaring process is omitted. Fi”“re 5.6 shows

the circuit dia”~am of the ALU.

. — 1 - @
cczbhugLAia g E 7

Figure 5.6.  The finite field arithmetic logic unit

The function of the 8 to 1 multiplexer is designed for the inversion

operation to avoid the continuous rotating process. The input R, R2: R4
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R5> RIO, R21, R43and RB® represents the number of bit need to rotate (i.e.
R2 : rotate 2 bit to left, R4 : rotate 4 bit to left and so on). Since Ris a 173
databus, in databus representation, the input of the 8 to 1 multiplexer
are:

For R=<0 : 172>

R2 =<2 :172°0 : 1>

R4 =<4 :172-0 :3>

R5 =<51:172°0 : 4>

RIO =<10 :172-0 :9>

R21 =<21 : 172,0 :20>

R43 = <43 :172-0 : 42>

R86 = <86 :172-0 : 85>

5.9 Elliptic Curve Crypto-processor Control Unit

The curve operations described in the previous section are the
implementation of the finite field ALU. In the system level, a control unit
is designed to control the whole system. This control unit has two major
functions. Firstly, it is used to control the data transfer between the
register unit and the finite field ALU. Secondly, it controls the finite field
ALU to execute suitable curve operations. Figure 5.7 shows the

architecture of the elliptic curve crypto-processor control unit.
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I

Curve Doubling

A Control Path

< N~ = > Data Path

The architecture of Elliptic Curve Crypto-processor

First of all, when a start signal received, the processor performs the

Curve Multiplication (CM) based on the private key stored in the register

unit. When the current bit of the private key is set, CM will send a start

signal to Curve Doubling (CD) block and then Curve Addition (CA) block

after CD is done. When the current bit of the private key is reset, CM will

only send a start signal to CD block to compute curve doubling, no curve

addition is needed.

Both CD and CA blocks are the control units to control the relative

data fetch and retrieved from the register unit and also control the

computation inside the finite field ALU.

When the calculation is complete, the results will store in the
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register unit and ready to be retrieved from the 1/O pad.

5.10 Register Unit

One of the advantages of ECC is its less memory requirements, there
are only 8 parameters involves in the elliptic curve cryptosystems in this
research, they are'

> the coefficients a2 in the elliptic curve equation,

> the coefficients SLG in the elliptic curve equation,

> x-coordinates of the generator (elliptic curve point),

> y-coordinates of the generator (elliptic curve point),

> x-coordinates of the public key (elliptic curve point),

> y-coordinates of the public key (elliptic curve point),

> z-coordinates of the public key (elliptic curve point), and
> the private key which is a 173 bit random number.

Including 4 extra variables to store the temporary results during the
curve operations, totally only 173x12=2076 bit memory is needed for
173-bit ECC. This is extremely low memory usage compared with
1024-RSA. Figure 5.8 shows the register allocation inside the

crypto-processor.
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Private key

X
Public key 'y

z

Generator

Temporary
variables - —
T3

Figure 5.8.  Configuration of the register unit

5.11 Summary

In this chapter, the idea of the design methodology is proposed. It
begins with the criteria essential for the low power design, and then
based on these criteria we improve the processor so that it can fulfill the
requirements. By modifying the mathematical expressions in the elliptic
curve equations and reducing the switching activities of the logic gates,

the processor is a low power consumption one.
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Chapter 6 Specifications and

Communication Protocol of the 1C

6.1 Introduction

In this chapter, the specifications of the elliptic curve cryptosystem
integrated circuit are presented. This integrated circuit was fabricated
using AMS 0.35um technology with 48-pin dual-in-line packaging.
Among these 48 pins, 5 are power sources, 5 are grounds, 16 are data
I/0s and the remaining 22 are the control signals. The communication

protocol will be described after the specification.

6.2 Specifications

The system architecture of the design is shown in Figure 6.1 and
Figure 6.2 shown is the pin assignment, the description of the pins can be

found in Table 6.1.
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I 111
' i a a n
Reset 1 1
Clk 1 1
— t Control n start
N
br
3 Memory
OutRSel -y - — * — .
Field
3 /I W N ALU
InRSel -y - —
N
1/0 Interface

=i #
s 1 1 1

Figure 6.1.  The system architecture of the Elliptic Curve cryptosystem

AllFinish— 1 48 — AddFinish
DblFinish — — GND
InvFinish— — InRSC
VDD— — InRSB
Reset — — InRSA
Clk— — OutRSA
Start — — VDD
GND— —OutRSE
InSelA — — OutRSC
InSelB — — 1/0J5
InSelC — —GND
InSelD — —1/0J 4
VDD— — 1/0J3
OutSelA — —1/0J 2
OutSelB — — 1/0J1
OutSelC — —VDD
OutSelD — —1/0J0
GND — —1/0_9
1/0_0 — —1/0_8
110 — —EN
1/0—2— —GND
1/10_3 — —1/0_7
VDD— —1/0_6
110_4 — 24 25 —1/0_5

Figure 6.2.  Pin assignment of the Elliptic Curve integrated circuit

55



Chapter 6 Specifications and Communication Protocol of the IC

Pin Name 1/0 TVpe Description
4,13,23,33,42 VDD Input Power Supply
8,18,28,38,47 GND Input Ground

The signal is set when the key is
1 AllFinish Output
generated.
The signal is set when the curve
2 DblFinish Output
doubling is done.
The signal is set when the field
3 InvFinish Output
inversion is done.
Master reset signal to reset the
5 Reset Input
circuit.
6 Clk Input Clock signal.
The operation will start when the
7 Start Input o )
~rising edge is detected.
0 Write the input data from the data
910112 InSel(A-D) Input
bus to the selected memory location.
Fetch the data from the selected
14,1516 > 17 OutSel(A-D) Input memory location to the output data
bus.
19-22,24-27’ , 0 Input/
1/0—(0-15) 16-bit bidirectional data bus.
30-32,34-37,39 Output
Data bus load data from the pin
29 EN Input when the bit is set, write data to the
pin when the bit is reset.
0 Select the memory location to be
40,41,43 OUtRS(A-C) Input
. output. )
0 Select the memory location to be
44,45,46 InRSHA-C) Input ]
) _written.
o The signal is set when the curve
48 AddFinish Output
addition is done.
Table 6.1.  Description of the pin assignment
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6.3 Communication Protocol

The operation of this integrated circuit is simple. Firstly, prepare all
the input parameters, and then load all these data into the register unit
and follow with a starting signal, the result will be computed
automatically and an acknowledgement signal is given out once the
result is complete.

This integrated circuit uses 16-bit databus as a communication path
to the peripheral. Since, the data are 173 bit length, each data will be
divided into 173/16=11 parts and input to the register unit part by part.
Table 6.2 shows the relationship between the control signals and the bits

of data to be written in.

InSel / OutSel Data written
A B C D
0 0 0 0 Bit (15... 0)
0 0 0 1 Bit (31 ... 16)
0 0 1 0 Bit (47 ... 32)
0 0 1 1 Bit (63 ... 48)
0 1 0 0 Bit (79 ...64)
0 1 0 1 Bit (95 ... 80)
0 1 1 0 Bit (111 ... 96)
0 1 1 1 Bit (127... 112)
1 0 0 0 Bit (143... 128)
1 0 0 1 Bit (159 ... 144)
1 0 1 0 Bit ( 172... 160)
1 0 1 1 Unused
1 1 X X Unused

Table 6.2.  The relationship between the control and the mapping of
data
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Several parameters such as the generator, a2, ae and the private key
should be loaded into the register unit before the computation start.
Table 6.3 shows how these parameters loaded into the register unit.
When generating the public key pair, X, ycoordinates of the generator
should load into the address 010 and Oil respectively, otherwise, X,
ycoordinates of the public key should load into that address when

computing the Di£B.e-HeUman key exchange.

InNRS / Out RS
Parameter written into the register unit

A B C
0 0 0 x-coordinate of the generator
0 0 1 ycoordinate of the generator
0 1 0 x-coordinate of the generator or the public key
(0] i | y-coordinate of the generator or the public key
1 0 0 a2
1 0 1 ae
1 1 0 The private key
1 1 1 unused

Table 6.3.  The relationship between the control and the parameters
written into the register unit

After all the parameters have loaded into the circuit already, the
operation can be activated by feeding a pulse into the 'Start" signal.

When the result is complete, the "AUFinish" signal will change to logic

high.

58



Chapter 7 Results

Chapter 7 Results

7.1 Introduction

In this chapter, a post-layout simulation of the public key generation
and the session key generation is presented. The simulation is conducted
by Verilog-XL in Cadence under 3V power supply at 27°C, the operating
frequency is 20MHz. In the following sections, the private keys are
randomly chosen and the numbers are represented in hexadecimal form
with MSB on the LHS.

The measurement results will also be given in this chapter, including
the comparison between the post-layout simulation result and the testing
result, and the power consumption of this crypto-processor. Some
discussions about this crypto-processor are given in the end of this

chapter.

7.2 Results of the Public-key Cryptography

In this section, two sets of the public key pair are generated using
the same curve parameters. These results will be forwarded to the next

section for Diffie-Hellman key exchange.

Example I:

Input:
az = 0000 00000000 00000000 OOOOOOCOO 0OOOOOOO 0O0O00OCO3
ae = 0000 00000000 00000000 00000000 00000000 OOOOOOOA

Generator- P
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X = 0000 00000000 00OOOOOOO 0OOOOCOOOO 0OOOOOOOO o0OOOOOO3

y 0000 00000000 OOOOOOOO OOOOOOOO 00000000 00000004
Private Key A:
KA = 07TEA 1ECCE3FB A449B1B6 185262CB 4EA6A7 0B 2CFDAC21
Output-

Public Key (KpubA):

X = 0400 45474113 8OBAB85A 66F69A87 B4FOA4E2 64D58442

y = 0737 7026E7BD DC66B577 758A5426 2A85D9BA 282235A2
[ [ toi~ 1f~3 [Ward AKX |j I 200R j gf-Amil Givile || B8
17WMVTIWMTMAE T M; snbmfilim 5 W7 ") =t - ) C o - s K] ] LI TR S W i

TimeA - 0(0) ps jCursorl - 6,723,729,0

Sim End - 10,000, 000,000 ps Cuic3or2 » 0 p3

Cur2-Curl - -6,723, 729.000 pa 0 : , 10, 000, 000,
! "WZw
AddPinish « 0 Qiinnnmnannninnmng
Al1Tinish - 1 -
k1
DblTinish . 0 111111111 11B] 1 imi 111111
InvFinish - 1
Start - 0 _i
01(172:0) - ’h IFFF FFFFFFFF ITFFFFFF FPFFFFFF FFFFFFFF FFFFFFFC IFFFFFFFFFFFFFFFFFFFFLL FFFFFFFRF*
Q21172:01 - ’h IFFF ITFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF PFFFFFFB IFFFFFFFFFFFFFFFFFFFF FFFFFFFFF*
Q41172:01 - “h IBFF BABSBEEC 7F4S47A5 99096578 4BOFSB1D 9B2A7BBD "IBFFBABSB*
%35]1_{22(6] - %&%81-‘1)91842 23994A88 B8ATSABD9 D57A264S D7DDCASD ’\]ﬁfﬁfDi\
Q7[172.0) - ’h irrr rrrrrrrr FFFFFFFF  FFFFFFFF rmrrrr rrrrrrre IFFFFFFFFFFFFFFFFFFFF]FFFFFFFFFF~ @
Q8/172;0] - 'h IFFF FCFFFFPF FFFFFEFF FPFFFFFF FFFFFFFF FFFFFFFS IFFFFCFFFFFFFFFFFEFFFyFFrFFFFFF* |
Q91172:01 - "h ODIC 938D0C62 4EB356E4 21B6B91A BDEC62DD S37FDCF7 176d1c938D0%* j
Datall72:01 - "h O7EA 1ECCE3FB A449B1B6 185262CB 2CFDAC21 O7EMECCE3FBM49B1B6185262CB4EA*

Fi~re 7.1. The postlayout simulation of the public key pair

(Example 1)
In Figure 7.1 the public key pair is shown in the waveform "Q4" and
‘@ 0 > where Q4 and Q5 are the complement of x and y-coordinates of the
public key respectively. And "Data" is the private key. The names of these

waveforms are also applied to the following waveforms. In this example,
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the computation time is about 6.72ms.

Example II:

Input-
a2

as

0000 00000000

0000 0O0O0OCOCOOO

Generator''- P

X

y

0000 00OO00OOO

0000 0O0OOOOOO

Private Key B:

KB = 1FE9 12FE919F

Output:

Public Key (KpubB):

X

0204 B2A9CBBF

03A9 5AEBEFC2

00000000 00000000

00000000 00000000

00000000 00000000

00000000100000000

52C74DE4 477EA45E4

448A84E0 3D324023

19E83E06 9149AC7F
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00000000

00000000

00000000

00000000

2367C21A

7CE20COE

278566BD

00000003

0000000A

00000003

00000004

EO79D1E2

F3512780

D82BB463
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I SU&abcu Wvefom: 1 IKTUBIBH
j u’ j oit -IT tFy 0 Ffw- 1T T ZoonlnX || ZoDXC'tX [j e='rd |j CrtHal" jDesBrous : ! [j Birary—'j .>tq
TUeA - 0(0) pYH ‘Curorr’ "?872rS9r000° 7" 7 n
Si» End - 10,000, 000. 000 pa | 'r s or2 -0p » J
Cuc2-Curl - -6,872.529,000 pa o , 1,000, 000, 000 000, 000, 0OP 37, 000, 000, 000
o .
i j I |
Addrini’h - O pill [ [BBIIL[ Q[ [ [ |--imi_im_iii imiiit fc
— . I ¢ . :f
— 1
DbiTinish + O |niMmiimm Hi_ ii iiiiiB i iMiBiHiii_iil |
InvFinish + 1 | i
Start - 0 I !
Q1U72.01 - 'h irrr rrrrrrrr remrrr rreeeerr reeeeFFr rreerrere | iveeFRerrerFRerFRRerrFrFRFFrrrFRerFRreer ] [Fre
Q2[172:0 - 'h irrr rrrrrrrr rrreerer rreefrer rrererer rerereeB iFrrrrFrFFrrrFrfrrrerrrfrrrrrrrFrrerrfrerrrFB

04[172:0] ~ "h 10FB 4D563440 BB7S7Bir C2CDBFDC 831DF3rl OCAEDSTF | inill_MY_W_IHII_imw| /niDDin

[ FE4D5S3440b6757

Q5[172:0] - "h 1056 A514103Q E617C1r9 60665380 DSTA9942 27D44BIC | IMTIWMIWW_THHimwnniilH|MI « « [ -] | 56A514103DEgT7c”
061172:01 « 'h 0000 00000000 00000000 00000000 00000000 00000000 [iIHIMITHIIIIWBWIIITIIH|MHIIIHIIiIimi;000DDDOOODDO0O0O0O0O0O*
07(172:01 - 'h irrr rrerrrer rrrrrrrr reeeerrr reeeeerr reeeeere | ieerFEFReFrrrr FEFrFreFRer FrErFRFrFrFrFReFERe

| {rrrFCFFFFrrFrFrriFRrrrrrFrrrFRFFFFFLRRF rrs
[ [=M1-n""11W "T72DC4BDEE6TrAT2FO0*
1FE912rE919F52CT4DE447TE45E42367C2IM0TIP1ES

08[172:01 - "h irrr rcrrrrrr rrrrrtrr YYCCCCrr FEFFrrrr rrrrrrs
Q9(172:0] - "h 172D CASDI:EBF A72rOE79 03M)E61B 105E7CCD F964r4B3
DataU72:0 [ - " hirE9 12rE919r 52C74DE4 477EA5E4 2367C21A EOTIDIE2

Figure 7.2. The postlayout simulation of the public key pair (Example 2)

The computation time in this example is about 6.87ms.

7.3 Results of the Session-key Cryptography

Example I-

Input-
a2 = 0000 00000000 00000000 00000000 00000000 00000003
ae = 0000 00000000 0OOOOOOO 00000000 00000000 OOOCOOOOA

Public Key A:

X 0400 45474113 B8OBAB85A 66F69A87

0737 7026E7BD DC66B577 758A5426

62

B4FOA4E2 64D58442

2A85D9BA 282235A2
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Private KeyB:

Kb = 1FE9 12FE919F 52C74DE4 477E45E4 2367C21A EO079D1E2

Output-

Session Key: KpriB (KpubA)

IH

X = 05BE 7CBB790A 237588F0 40029129 13FCD581 A41CEAO04
y = 1305 119305EB A93459EB 5D8CF3FF D15E7062 ODF18C18
Tiiru-HBk m m
- 000) p9 g jCuroorl — S, 876,329, 000 pa
Sin End - 10, 000,000,000 ps |Cur3or2 - 0 ps H
Cur2-Curl - -6, B76. 329,000 pa Bq g O0P, 00P, ojjp 510, 000, 000, 000 p:
1 [ H
AddTinsh « 0 liiiiiiiiiMiiiiiiiiiiiiiiiiiiaiiiiiiiiniiiBiiiii» mm _
MlTinish -1 I ; r
DblTiniah — O ML~ 2/ [ 11 JELIBM] [1[B[) | 1 [pem]] [A] |9 [
InvFinish - 1 H

QL[172.01

02(172:01 -
041172:0) -
05[172:0] -
Q6]172:0) - ’
071172:01 -

08(172:01
091172:0)
Datft[172:0]

Figure 7.3.

Start - 0 i

- "h IBFP BABSBEEC TF454TA5 99096578 4BOPSBID 962A7BED  1BFFBABCBRRCTF454TAG5505g5754B0rBLDGBSA’ |BBD

’h 18C8 erD91942 23994M8 8A7SABD9 DS7A2S4S D7DDCYSD  15c£16FD91545555MA5e5A?5ABDID57Age " D7DD"ASD

“h IM1 834486rS DCSAT70F BITD6DC6 ECO32ATE SBE315rB  WWH WIHIIIniff1IWI_HIIH “iA4i8544f1SF5DC:6AT*
"h OCFA EE6CrAl4 BA(DIi6l14ft2730C002FAiaF9D r20E73E7 |111WWIfMIMBBITIIIT11111IMraW1111Bim (£lcrM:E6CIMA56CBA*
h 0000 00000000 00000D00 o oEF) [ [ e e [-Me ]« M | JTOITo G000
’h irfr CITCTTIT IITTIrTT rrrrrrrr rrrrerrr reererre | iFFFrrrrrFPrirPrrrreFRRreFRrRrrrrrrrreFrre

- ’h irrr remrrr rrrrrar rreeeeer reeeeerr mm v s | IrrreeFrrreerrFreFEFFrrrerrreFeFrrrerrrrer rs

_ "h 0000 rD712A7S 28942AS9 19436U2 FF5923B2 C308CDTE

- 'N 1rE9 12rB919r 52C74DE4 477E45B4 2367C2U E079DLE2 FESIZFESIFSXCADRAT TRASE3GICAARDNE?

— i SAN S 5 A —

rJd”nNsi

The postlayout simulation of the Diffie-Hellman key

exchange (using A's public key to generate the session key)

In this example, the session key is generated by using A's public key, and

then it is multiplied with the B's private key using curve multiplication.

The computation time is about 6.88 ms.

63



Chapter 7 Results

Example Il:

Input”
a2 = 0000 00000000 00000000 00000000 00000000 00000003
as = 0000 00000000 00000000 00000000 00000000 OOOOOOOA
Public Key B:

X

0204 B2A9CBBF 448A84E0 3D324023 7CE20COE F3512780

y 03A9 5AEBEFC2 19E83E06 9149ACT7F 278566BD D82BB463

Private Key A:
Ka = 07EA 1ECCE3FB A449B1B6 185262CB 4EA6A7 0B 2CFDAC21

Output-
Session Key: KpubB (KpriA)

X

05BE 7CBB790A 237588F0 40029129 13FCD581 A41CEA04

1305 119305EB A93459EB 5D8CF3FF D15E7062 ODF18C18

<
1

In this example, the session key is generated by using B-s public key, and
then is multiplied with the A's private key using curve multiplication.
The computation time is about 6.73 ms. Compare Figure 7.3 and Figure
7.4 > we can see that Q4 and Q5 are the same. This is the session key

generation method in ECC.
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Figure 7.4.  The postlayout simulation of the Diffie-Hellman key
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exchange (using B's public key to generate the session key)
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7.4 Comparison with the Existing Crypto-processor

pi

- e = —

Since ECC can be implemented by different approaches, for example,

polynomial basis vs optimal normal basis, affine coordinates system vs

projective coordinates system. In 2001, a microcoded ECC processor is

proposed [12]. This processor is implemented by FPGA using optimal

normal basis representation over projective coordinates. The comparison

between the proposed ECC processor and the FPGA one is shown in

Table 7.1.
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Simulation Measurement )
Microcoded
Results of the Results of the
ECC Improvements
Proposed ECC  Proposed ECC
Processor
Processor Processor
Operating 35.71%
20 MHz 18 MHz 28 MHz
Frequency reduced
Execution
) 6.8 ms 7.56 ms 11.1ms 31.89% faster
Time
59.1%
Technology 0.35 umn 0.35 umn 0.22 urn )
increased

Table 7.1.  Comparison between the 173-bit ECC Processors

As shown in Table 7.1, the proposed ECC processor is much better
than the ECC processor implemented by FPGA. This is mainly due to the
modification of the mathematical expressions, the use of efficient finite

field multiplier and the integration of the finite field instructions.

7.5 Power Consumption

In the public key pair generation, the maximum measured power
consumption of the crypto-processor is 95mW when it operates at 18
MHz and 3 V. In the power saving mode, that is, the clock frequency is 1
MHz and the power supply is 1.6 V - the crypto-processor consumes at
most 20mW in the public key pair generation. The power consumption of
the 1/O pads is included here. If we do not count the energy consumed by
the 1/O pads, the power consumption will be smaller. Table 7.2 shows the
power consumption of this IC under different operating voltage for a

single key pair generation.
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. Power
Operating Voltage

Consumption

3.0V 95 mw
25V 54 mW
20V 33 mw
16V 20 mwW

Table 7.2.  The power consumption of ECC crypto-processor under different
operating voltage
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Chapter 8 Conclusion

A 173-bit type Il Optimal Normal Basis Elliptic Curve
Crypto-processor is implemented. This processor is a public key
cryptosystem that can generate the key pair for public key cryptography
and perform Diffie-Hellman key exchange using the elliptic curve.

The aim of this research is to optimize the design for low power
consumption so that it can be applied in the contact-less smartcard
applications. The advantages of this crypto-processor are summarized as
follows-

> Reduce the number of field multiplications in curve addition by

simplification of the mathematical expressions.

> Reduce the frequency the flip flops used in the field

multiplication by using 3-way parallel multiplier architecture, so
that both the power consumption and the propagation delay are
minimized.

> Integrate the field addition, squaring and multiplication into one

single instruction @ =Ay.B-\-C so that the number of the
registers used is reduced.

Furthermore, many other advantages of ECC also make it favorable
in the public key cryptography such as high security strength per bit,
efficient hardware implementation over finite field systems, etc.

Since the Elliptic Curve Cryptography is not mature enough and
there are still spaces for future improvement, we believe that it will

become broad applied in the cryptographic field and will be dominated in
the market in the near future.
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Appendix

173-bit Type 11 ONB Multiplication Table

The following logic expressions are the pin assignment of the
multiplier element used in the 173-bit field multiplier. These expressions
are based on the information given in the 173-bit lambda matrix. >

represents logic AND, “©> > represents logic XOR.

€000 = a0 + (bl)

cOOIl = a2 « (bl ©bl53)
c002 = a4*(bl106ebl54)
c003 = a6*(bl19ebl34)
c004 = a8 « (bl4 @ b87)

c005 = al0.(b59 @ b83)
c006 = al2+(b80[02)
c007 = al4*(b39ebl35)
c008 = al6*(b7iebl01)
c009 = al8*(b91 []bl53)
c010 = a20*(bldebl42)
c011 = a22”(b58 [ b89)
c012 = a24* (b62 ©h82)
c013 = a26¢(b40[bj54)
c014 = a28 « (bl61 ®bl)
c015 = a30»(b73 @ b76)
c016 = a32.(bl08ebl72)
c017 = a34.(b50eb93)
c018 = a36»(b7iebl27)

cO19 = a38*(b103 0b137)

c020 = a40*(bl44ebl56)
c021 = a42*(b43eb44)
c022 = a44 « (b43 @D bl47)
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c023 = a46.(b44ebl60)
c024 = a48 « (b 144 @ b 149)
c025 = a50»(blliebl8)
c026 = a52 « (b66 [ b94)
c027 = a54 » (b40 @ b98)
c028 = a56*(bl62eblb)
c029 = a58«(b67 0bl52)
c030 = a60”(bl41 @ bl49)
cO31 =a62.(b158 0bl69)
cO32 = a64.(b39 0blO7)
c033 = a66.(b50ebl26)
c034 = a68 « (bl24 @ bl43)
c035 = a70*(bl0iebl7)
c036 = a72 « (b95 ® b25)
c037 =a74. (b94 0bl59)
c038 = a76 ¢ (b67 0 b26)
c039 = a78_(bl06ebl50)
cO40 = a80.(b66 0bl27)
c041 = a82 « (b54 0 b92)
c042 = a84»(b87ebl6)
c043 = a86*(blieb28)
c044 = a88 « (b151 eb17)
c045 = a90 « (b87 0 b97)
c046 = a92*(bl23eb3l)
c047 = a%4 « (b58 @ b7)
c048 = a9%6 « (bl18 & M20)
cO49 = a98_(blI8 0b44)
c050 = al00.(b62ebl29)
c051 = al02 0392 @ bl39)
c052 = al04 « (b97 @ bl60)
c053 = al06»(b71 (] bl30)
c054 = al08*(b59ebl138)
c055 = all0*(bl29eb47)
c056 = all2*(b4eb22)
c057 = all4»(b94 @bll7)
cO58 = all6.(b73 0b46)
c059 = all8»(b95eb42)
c060 = al20-(bll7eb27)
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c061 = al22»(b76eb36)
c062 = al24.(bl54ebl63)
c063 = al26«(b71 [bl9)

c064 = al28*(bl46ebl62)
cO65 = al30«(b9 0b46)
c066 = al32«(bl0ieb3)
c067 = al34*(bl06 @ b56)
c068 = al36 « (b94 (1 b62)
c069 =al38.(bll18 [Jbl40)
c070 = al40.(b82 1 bll8)
c071 = al42_(b98 1 bl40)
c072 = al44.(bl120eb33)
c073 = al46 « (b64 ® b68)
c074:al48.(b80ebl29)
c075 = al50*(bl07eb4l)
c076 = al52*(b93eb60)
c077 = al54.(bl123 [ bl30)
c078 = al56*(b83 ( b89)
c079 = al58*(bl129eb75)
c080 = al60 « (bl68 P b20)
c081 = al62-(b5eb5l)
c082 = al64«(b9iebl46)
cO83 = al66.(b87 0b27)

c084 = al68 « (bI03 0 blI38)
c085 = al70*(b48eb77)
c086 = al72“bllI®b39)
c087 = al*(b127©b26)
c088 = a3.(bl39 @ bl68)
c089 = a5 « (b24 (P b59)
c090 = a7#(bl24ebll)
c091 = a9»(bl8eb73)
c092 = all*(bl08ebl54)
c093 = al3*(bl01 @ bl26)

c094 = al5-(blieb65)
c095 = al7 « (b22 @ b28)
c0% = al9.(b65 0b72)
c097 = a21.(b5eb38)

cO98 = a23*(bl62 0b55)
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c099
Cl00
Clo1
clo2
Ccl03
clo4
Cl05
clo6
clo7
C108
cl09
cllo
clll

Cll2
cli3
Cll4
Clls
Cclle
cli7
cll8
cllg
cl20
cl21
cl22
cl23
Cl24
Cl25
cl26
Cl27
Cl28
cl29
Cl30
Cl31
cl32
Cl33
Cl34
Cl135
cl36

= a25*(b31©b80)

= a27.(bl8eb22)

= a29«(bl163eb77)
= a31*(b58ebl00)
= a33.(b45eb81)

= a35«(bl06eb84)
= a37*(b3ieb63)
=a39.(b28 ®h78)

= a41.(bl5ieb76)
= a43_(b160 @ b24)
= a45*(bl127 M bl43)
= a47»(h30©b55)

= a49*(bl41 ® bl50)
= a51«(b26(0l66)

= a53.(b20ebll0)
= a55*(b38ebol)

= a57»(b450b72)

= a59*(bll9eb96)
= a6l»(b9eb27)

= a63*(bl37eb55)
= a65*(bl49eb70)
= a67»(bl44eb85)
= a69*(b4ebll4)

= a71*(bl59 @® bll2)
= a73*(bl52eb85)
= a75*(bl44eb70)
= a77*(bl47ebl49)
=a79*(b39 ®b90)

= a8l»(bl58eb66)
= a83»(bl35ebl25)
= a85-(bl9%eb58)

= a87.(b55®b72)

= a89*(bl34eb63)
= a9l « (bl42 0blO4)
= a93»(b7ebll9)

= a95*(bl62eb33)
= a97.(b85ebl26)
= a99*(bl56eb48)
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cl37 =
cl38 =
Cl39 =
Cl40 =
cldal =
cld2 =
Cl43 =
Cl44 =
Cl45 =
cld6 =
cl47 =
Cl48 =
Cl49 =
cl50 =
cl5l =
Clh2 =
cl53 =
clb4 =
Cl55 =
Cl56 =
clb7 =
Cl58 =
Cl59 =
cl60 =
clel =
cl62 =
cl63 =
cle4d =
Cl65 =
Cl66 =
Cle7 =
cl68 =
Cl69 =
cl70 =
Cl71 =

cl72 = al71*(b150 @ b171)

alol +(bl60eb90)
al03.(bl169 0b85)
al05*(b22eb4l)
al07* (b27eb124)
al09*(blI®bll6)
alll*(b65eb76)
all3»(b5ieb59)
allb5*%(b153eb65)
all7*(b78ebl04)
all9*(bl7ebl32)
al2l - (b16ieb16)
al23%(b36eb116)
al25*(b72eb77)
al27% (b91 @ b148)
al29 -0)81 @ bl50)
al31<(b153eb154)
al33.(b84eb96)
al35¢(b46 P b80)
al37*(bl7eb73)
al39. (b1720b42)
aldl*(b60 @ bl24)
al43»(b28eb3l)
al45%(b119¢b132)
al47*(biebl5s)
al49*(b26eb46)
al51*(b25eb56)
al53«(bll12ebl57)
al55«(b64ebl26)
al57-(b47eb77)
al59*(bl8ebll4)
al61*(b62eb157)
al63 - (b44 0 b68)
al65*(b2eb75)
al67<(b110eb125)
al69% (b100eb148)
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Appendix

Schematics of the Elliptic Curve Crypto-processor
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Appendix

Schematics of the System Level Design

oo WLt

o 112 »F imiininniiHtHAi-
AN : ?

1 M- - - F F

T .0 11 s

JAU « (.17 -T-" o=

[RERE

- [

AR Ao iyt ol

PjlijiililMHIIM IMIiiJi ,

® i HEESRTRI P | 5 I S S

AR
" .
| o

- Hv] ..
P - B NI

78



Schematics of the 1/0O Control Interface
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Schematics of the Curve Addition Module
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Schematics of the Curve Doubling Module
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Appendix

Schematics of the Field Inversion Module
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Appendix

Schematics of the Register Unit
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Schematics of the Finite Field ALU
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Appendix

Schematics of the Field Adder
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Appendix

Schematics of the Control of the Demultiplexer
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