
A Solution Scheme of Satisfiability Problem by Active Usage

of Totally Unimodularity Property

By

Mei LONG

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Philosophy

in

Department of Systems Engineering And Engineering Management

， _

� The Chinese University of Hong Kong
June 2003

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)
intending to use a part or whole of the materials in the thesis in a proposed publication
must seek copyright release from the Dean of the Graduate School.

iuf統系餘書圓一

fpf 3 0 m)i|
UNIVERSITYy ĵf

THE CHINESE UNIVERSITY OF HONG KONG
DEPARTMENT OF

THE SYSTEMS ENGINEERING AND ENGINEERING
MANAGEMENT

The undersigned hereby certify that they have read and recommend
to the Faculty of Graduate Studies for acceptance a thesis entitled
"A Solution Scheme of Satisfiability Problem by Active Usage

of Totally Unimodularity Property" by Mei LONG in partial
fulfillment of the requirements for the degree of Master of Philosophy.

Dated: June 2003

External Examiner:
, Xiaoling Sun

Research Supervisor:
Duan LI

Examing Committee:
Leung May-Yee, Janny

Shu Zhong Zhang

ii

THE CHINESE UNIVERSITY OF HONG KONG

Date: June 2003

Author: Mei LONG

Title: A Solution Scheme of Satisfiability Problem by
Active Usage of Totally Unimodularity Property

Department: The Systems Engineering and Engineering
Management

Degree: M. Phil Convocation: July Year: 2003

Permission is herewith granted to The Chinese University of Hong Kong
to circulate and to have copied for non-commercial purposes, at its discretion,
the above title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

iii

‘ To All I Love,

• ；�..J.:«A . •：̂. • r：) /

� . . : ; . :. - r
. t . :-、.'. • •

. . •• : • - r - : :
.... • • • r *. • • ,..

I • , ： }：'
； f . , •. •
、 . < • . , • ‘ . . …

’:;；’.丄;•:.‘..：:？': -. “ / 丨

/ .r. • ,. '» { ‘.. .
• • • ；;. • I •• . -/'f' 1 ； ‘ • ‘

. ： .
• . 、 ， -

• . • - 、 . .

； ‘ ：‘‘ - ； _

： - ； •

：• . •••• ； • .

. . . . '• •

. ， - : : " . 、

• V' . ：

广.•• .. •. ，.... .
• . ,

• jr • • ‘ ‘ •«••.... .
： ：_...：：...

. iv

.

•. "•‘ ；- • ‘

Table of Contents

Table of Contents v

Abstract viii

Acknowledgements x

1 Introduction 1
1.1 Satisfiability Problem 1
1.2 Motivation of the Research 1
1.3 Overview of the Thesis 2

2 Satisfiability Problem 4
2.: Se.tisfiability Problem , 5

2.1.1 Basic Definition 5
2.1.2 Phase Transitions 5

2.2 History 6
2.3 The Basic Search Algorithm 8
2.4 Some Improvements to the Basic Algorithm 9

2.4.1 Satz by Chu-Min Li 9
2.4.2 Heuristics and Local Search 12
2.4.3 Relaxation 13

2.5 Benchmarks 14
2.5.1 Specific Problems 14
2.5.2 Randomly Generated Problems 14

2.6 Software and Internet Information for SAT solving 16
2.6.1 Stochastic Local Search Algorithms (incomplete) 16
2.6.2 Systematic Search Algorithms (complete) 16
2.6.3 Some useful Links to SAT Related Sites 17

V

3 Integer Programming Formulation for Logic Problem 18
3.1 SAT Problem 19
3.2 MAXSAT Problem 19
3.3 Logical Inference Problem 19
3.4 Weighted Exact Satisfiability Problem 20

4 Integer Programming Formulation for SAT Problem 22
4.1 Erom 3-CNF SAT Clauses to Zero-One IP Constraints 22
4.2 Integer Programming Model for 3-SAT 23
4.3 The Equivalence of the SAT and the IP 23
4.4 Example 24

5 Integer Solvability of Linear Programs 27
5.1 Unimodularity 27
5.2 Totally Unimodularity 28
5.3 Some Results on Recognition of Linear Solvability of IP 32

6 TU Based Matrix Research Results 33
6.1 2x2 Matrix's TU Property 33
6.2 Extended Integer Programming Model for SAT 34
6.3 3x3 Matrix's TU Property 35

7 Totally Unimodularity Based Branchkig-and-Bound Algorithm 38
7.1 Introduction 38

7.1.1 Enumeration Trees 39
7.1.2 The Concept of Branch and Bound 42

7.2 TU Based Branching Rule 43
7.2.1 How to sort variables based on 2x2 submatrices 43
7.2.2 How to sort the rest variables 45

7.3 TU Based Bounding Rule 46
7.4 TU Based Branch-and-Bound Algorithm 47
7.5 Example 49

8 Numerical Result 57
8.1 Experimental Result 57
8.2 Statistical Results of ILOG CPLEX 59

9 Conclusions 61
9.1 Contributions 61
9.2 Future Work 62

vi

A The Coefficient Matrix A for Example in Chapter 7 64

B The Detailed Numerical Information of Solution Process for Exam-
ple in Chapter 7 66

C Experimental Result 67
C.l # of variables: 20, # of clauses: 91 67
C.2 # of variables: 50, # of clauses: 218 70
C.3 # of variables: 75, # of clauses: 325 73
C.4 # of variables: 100, # of clauses: 430 76

D Experimental Result of ILOG CPLEX 80
D.l # of variables: 20，# of clauses: 91 80
D.2 # of variables: 50, # of clauses: 218 83
D.3 # of variables: 75, # of clauses: 325 86
D.4 # of variables: 100, # of clauses: 430 89

Bibliography 93

vii

Abstract

Satisfiability problem is a well-known NP-complete problem. It consists of testing
whether the clauses in a Conjunctive Normal Form can all be satisfied by certain
consistent assignment of binary values to variables. If it is consistent, the problem is
said to be satisfiable; otherwise, it is unsatisfiable. The 3-SAT randomized problem is
the smallest NP-complete problem in SAT. In literature, many transformations have
been proposed in converting the satisfiability problem into an integer programming
problem. These transformations usually create nonlinear integer programming prob-
lems that are very difficult to solve.

The dim of this work is to generate a novel simple equivalent linear integer, program-
ming model. This simple integer programming model is then solved by our suggested
branch-and-bound linear relaxation programming algorithm. The order principle in
the branch-and-bound method is derived from the Totally Unimodularity property
of the constraint matrix. Computational results show that the proposed algorithm
is very effective for both randomly generated 3-SAT problems and some hard 3-SAT
problems reported in literature.

viii

ix

摘 要

可滿足性問題(Satisfiability problem)是一個非常著名的NP完全問題。它是指檢驗

是否存在一種對一組布林變量的賦值使得由若干個子句組成的合取範式的集合爲

真。如果存在賦值滿足全部子句，此問題被稱爲可滿足的，否則，此問題是不可滿

足的。每個子句只含有三個文字的隨機可滿足性問題(3-SAT)是可滿足性問題中的

最小的NP完全問題。關於把滿足性問題轉化爲整數規劃問題，文獻中多有提及。

遺憾的是這些轉換通常因爲生成了非線性的整數規劃問題而使問題變得更加難以解

決。

我們這項研究工作的目的是産生一個新穎簡單而與原問題等價的線性整數規劃問

題。這個簡單的整数規劃模型可用我們提出的分支定界線性鬆驰演算法求解。在分

之定界法中的變量排序原則是來自約束係数矩陣的單模性質。大量的計算結果表

明，對於隨機産生的3-SAT問題和一些非常難的3-SAT問題，我們的演算法都是非

常有效的。

Acknowledgements

I would like to express my deepest gratitude to Professor Duan LI, my supervisor, for

his guidelines, many suggestions and constant support during this research. Without

his advice, this thesis cannot be completed.

I am also thankful to Dr. Jun WANG, for his guidance through the early time of

chaos and confusion.

� ’ I would also like to thank my parentis and my boyfriend, f � r p-^oviding so much tan-

gible support and help.

Finally, I wish to thank the following:

Han ZHANG and Ruizhang HUANG(for their friendships);

Yongwei HUANG (for discussion of some mathematical problems);

Tong WANG, Li CHEN, Li ZHANG, (for all the unforgettable memories we had

together).

They enlight me and set me free from the sadness and anxiety. Their support and

encouragement activate the motion of my research.

X

Chapter 1

Introduction

1.1 Satisfiability Problem

The prepositional satisfiability problem (SAT) consists of finding a truth assignment

that satisfies all the clauses in S [satisfiahle) or showing that none exists (unsatisfi-

able).

SAT problem has been classified as the first NP-complete problem. If each clause

exactly contains r literals, the problem is called an r-SAT problem. 2-SAT problem is

solvable in polynomial time ([AU74, Coo71, RD77, AT79]), and 3-SAT is the smallest

NP-complete subproblem of SAT with its computation time 0(2几).If the ratio of the

number of clauses to the number of variables is approximately equal to around 4.25

for a random 3-SAT problem, the problem is very difficult to solve.

1.2 Motivation of the Research

Besides Davis-Putman-Loveland procedure and Satz methods, satisfiability problems

can be solved by integer programming methods or semidefinite programming meth-

ods. Many transformations have been proposed in literature, but they usually create

1

2

nonlinear integer programming models which may not be solved as easily as the orig-

inal ones. Based on this consideration, a novel simple model that is equivalent to the

original problem is proposed.

In the section of solving the proposed integer programming model, we focus on the

Totally Unimodularity property of the constraint matrix. From the Totally Unimod-

ularity property theory, if the constraint matrix is Totally Unimodular, it can be

solved by its linear relaxation. In literature, researchers have discussed how to solve

SAT if the constraint matrix is Totally Unimodular[CC95], and how to recognize the

Totally Unimodular matrix[CCKV01]. However, the majority of SAT problems is not

totally unimodular in its initial setting. Thus, we develop a branch-and-bound rule

that can make the constraint matrix closer and closer to a totally unimodular one in

the process of fixing variables one by one. In this way, the probability of solving the

SAT problem by linear program relaxation will increase in the middle of the solution

process.

The above consideration motivates us lo develop a procedure to convert the conjunc-

tive norm form (CNF) SAT problem into a novel simple equivalent integer program-

ming problem, and then solve it by our proposed branch and bound algorithm.

1.3 Overview of the Thesis

This thesis is organized as follows. Chapter 2 gives a brief review of the satisfia-

bility problem, its history, some typical and popular solution techniques, and some

useful information on the internet. We mainly discuss the basic DPL search algo-

rithm and three important improvements to the basic algorithm: Satz, heuristics and

local search, and relaxations. Integer programming formulation and its continuous

3

relaxation are important tools for this research. We provide some basic integer pro-

gramming formulations for logic problems in Chapter 3 and for the SAT problem in

Chapter 4, and explain the equivalence between the IP formulation and the original

SAT problem. An example is given in Chapter 4 to illustrate the model conversion.

Some classes of logic problems are solvable by linear programming. We introduce two

types of them in Chapter 5: unimodularity and totally unimodularity. Totally uni-

modularity is the theoretical foundation of this thesis. Based on totally unimodularity

(TU) theorems, some matrix research results are described in Chapter 6. In Chapter

7，we introduce our TU-based branch-and-bound algorithm in details. A simple ex-

ample is given to illustrate this algorithm step by step. In order to test the efficiency

of our algorithm, we perform large-scale computational experiment in Chapter 8 for

some hard problems posted on SAT-related web-pages. Chapter 9 summarizes the

research contributions and discusses possible future work.

Chapter 2

Satisfiability Problem

In this chapter I give the background of this thesis. Satisfiability (SAT) problem

is the first NP-complete problem[Coo71]. SAT is also a footstone of computational

complexity theory, and it is of commercial importance because of the great benefit

from a highly efficient SAT solver for thousands of practical combinatorial problems.

Its applications include graph coloring, Boolean N-queen induction, circuit diagnosis

and scheduling problem [Roj, Wal99 .

There are 6 sections in this chapter. The first section presencs the definition of

satisfiability problem. The second briefly discusses the history of SAT. The third

describes a basic search algorithm for solving SAT. The fourth describes the general

improvements to this algorithm. The fifth discusses benchmarks for evaluating a SAT

tester's performance. We will list some recently released solvers in the last section.

4

5

2.1 Satisfiability Problem

2.1.1 Basic Definition

In prepositional logic area, atomic propositions xi, • • • , Xj, • • • , Xn can be either true

or false. A truth assignment is an assignment array of "true" or "false" to every atomic

proposition. A literal is an atomic proposition Xi or its negation (complement) Xi.

A clause is a disjunction of literals and is satisfied by a given truth assignment if at

least one of its literals is true. Otherwise, the clause is unsatisfied. [CC95

The set of S clauses can be represented by the conjunctive normal form (CNF)

ies jePi jeNi

where Pi is the set of x's subscript in i-th clause, N.： is the set of x's subscript in z-th

clause.

Consider a propositional formula S in Conjunctive Normal Form (CNF) on a set of

Boolean variables Xi, X2, • • •,工n, the satisfiability (SAT) problem consists of testing

whether clauses in S can all be satisfied by some consistent assignment of truth

values (1 or 0) to variables. If it is the case, S is said satisfiable; otherwise, S is

said unsatisfiable. If each clause exactly contains r literals, the subproblem is called

r-SAT problem. 3-SAT is the smallest NP-complete sub-problem of SAT. [Li99:

2.1.2 Phase Transitions

Phase transition phenomenon is an interesting property of uniform Random-3-SAT.

i. e.，when systematically change (increasing or decreasing) the number of clauses,

k, for fixed problem size n, a rapid change in satisfiability occurs. More precisely,

6

when the number of clauses, k, is small enough for problem size n, almost all prob-

lems are satisfiable; when k is increased to some critical k = k,, the problem sud-

denly turns to be very difficult to be satisfied, i.e., with probability zero, we can

find a satisfiable assignment to such a problem. Beyond k', almost all instances

are unsatisfiable. Intuitively, k' characterizes the transition between a region of un-

derconstrained instances which are almost satisfiable and overconstrained instances

which are mostly unsatisfiable [CKT91]. We call this k' the phase transition critical

number/ratio. For Random-3-SAT, this phase transition phenomenon occurs approx-

imately at k' = 4.26n for large n; for smaller n, the critical ratio of clauses/variable

{k'/n) is slightly higher (around 4.27). Furthermore, for growing n the transition crit-

ical value k' becomes increasingly sharp. The problems from phase transition region

are generally called hard problems. Man)' researchers use test-sets sampled from the

phase transition region of uniform Random-3-SAT to test their algorithms. Similar

phase transition phenomena have been observed for other classes of SAT, including

uniform Random k-SAT with /c ：> 4. But uniform Random-3-SAT is still the most

popular instances for solver testing and algorithm research. In section 2.5.2, we will

talk about this phenomena again.

2.2 History

As early as 1971, Stephen Cook has proved that SAT is NP-complete in his paper [？]

that defined the notion of NP-completeness.

SAT problems can be regarded as a class of special cases of constraint satisfaction

problems(CSF), in which each variable can take one of a finite number from a set of

possible values. A plenty of solution techniques on CSP can be found in literature.

7

Dechter and Mackworth both provide excellent overviews in 1992 [Dec92, Mac92 .

The first SAT search algorithm is owed to Davis and Putnam [DP60] and has been

named as the Davis-Putnam procedure, or simply DP. In fact, we should mention

that 50 years earlier before Davis and Putnam published their algorithm in 1960, L.

Lowenheim has actually discovered it [CS88]. The difference between DP and the later

version contributed by Davis, Logeman, and Loveland [DLL62], which well known as

DPL, is as follows: DPL uses a splitting rule to replace the original problem by two

smaller subproblems, whereas DP uses a variable elimination rule to replace the orig-

inal problem usually by one larger siibproblem [DR94, Fre95]. DPL is implemented

more often than DP due to the four key disadvantages of variable elimination rule: it

is more difficult to implement than the splitting rule; it tends to rapidly increase the

length and number of clauses; it tends to generate a lot of redundant clauses; and it

rarely generates new unit clauses [DLL62, Fre95 .

There has been a common understanding that the history of SAT search techniques

since 1960 has largely been the history of the various techniques that researchers have

proposed to speed up and improve DPL.

Recently, the international interest in SAT algorithms has never been so high. Many

professional web-pages and recent conferences have been set up to emphasized both

analytical and experimental research on SAT [BB93, Com93]. Many people have

been involved in SAT research and have developed much fast SAT testers. We will

list some in the later section.

8

2.3 The Basic Search Algorithm

In literature, many kinds of methods have been released for solving Conjunctive Nor-

mal Form Satisfiability (CNF-SAT) problems.

As we all know, The Davis-Putnam-Loveland procedure (DPL)[DLL62] is the best

complete algorithm to solve SAT problems. It was named after Martin Davis, George

Logemann and Donald Loveland in 1962 [DLL62]. It is also one of the major practical

methods for the SAT problems. The basic idea of the DPL procedure was presented in

DP60]. Figure 2.1 shows the basic version of DPL. It is a depth-first search algorithm

through the set of all possible truth assignments until it either finds a satisfying truth

assignment or detects the entire possible solution space without finding any.

Function Search(S') =
case Truth-Vector(5) of

T ^ (true, Trirtli-AssignmeirtC*?))
F=> (false,Truth-Assignment(5))
I=4> l e t /=an open l i t e r a l in tha open clauses of S ,

ibool,v)=Sea.Tch(S[l T])

in i f bool then (true, v) e lse Search(5[/ ^ F]) end;

Figure 2.1: The basic search algorithm

Initially, we call it with So(F). This function takes an argument vector as the system

state and returns a <truth value, truth assignment> pair. The literal I in this function

is called the premise, and the proposition associated with I is called the branching

proposition or branching variable.

9

2.4 Some Improvements to the Basic Algorithm

In this section we briefly describe the main ways in which we can improve the basic

search algorithm and explain the basic idea behind each of them. These techniques

are conceptually general and well known, although not all of them are necessarily

useful in practice.

2.4.1 Satz by Chu-Min Li

To our best knowledge, Satz, contributed by Chu-Min Li, is the fastest DPL procedure

on random 3-SAT problems [Li99]. Roughly speaking, Satz is a very simple DPL

procedure in which the next branches on the variable reduce the largest number of

clauses in S at every node. More precisely, let 'w{x) be the number of clauses reduced

when X is assigned 1, and 'w{x) the number of clauses reduced when x is assigned 0.

The weight of x is defined by the equation suggested by Freeman in his PhD thesis

Fre95]: ' . '

H{x) = w(x) * w(x) * 1024 + w(x) + (2.4.1)

Satz branches on x with the largest H{x). Note that there is a balance in this

equation. If w{x) » w(x) or w{x) » w(x), x will generally not be selected as a

branching variable.

We have known that the basic idea of the DPL procedure is to construct a binary

search tree for solving 5, each recursive call constituting a node of the tree. It is well

known that given the number of variables, some problems, when the ratio of clause

number to variable number is approximately equal to around 4.25, are much harder

than others, necessitating construction of a much larger tree. In [Li99], Chu-Min

10

Li pointed out that the mean height of a search tree is somewhat irrelevant in the

hardness of random 3-SAT problems when using a DPL, and if a search tree is larger,

it is only because the search tree is wider. One of the objectives to implement a DPL

procedure is to minimize the mean height of search trees (depth-first algorithm in

DPL). Li figures out through experimental study that the essential objective should

be minimizing the width (instead of the mean height) of search trees, which roughly

implies using constraints to find contradictions (or reach the dead-node) as early as

possible.

Based on such consideration, Chu-Min Li makes some improvements to DPL proce-

dure. First, Li modifies the branching rule of Satz in order to generate more and

stronger constraints. It is indicated that i) the constraint is stronger if it suppresses

more solutions; ii) binary clauses sharing complementary literals can remove much

more solutions and have more chances to lead to a dead-node where all solutions are

removed. The improved DPL procedure suggested by Li branches next on the variable

that can generate siibproblems in which more binary) clauses share complementary

literals. So, the weight of the literal x is revised to:

w{x) = [/(o+/(ni
IVl'is produced by x = l

where I and I' denote two different literals, and / ([) is the number of binary occur-

rences of I ill S if there is a sufficient number (larger than 10 as suggested by Li) of

binary clauses in S otherwise it is the number of weighted occurrences of I in S. A

clause of length > 2 is counted as 5一 (�—2) binary occurrences. The weight w{x) can be

similarly defined. The weight of variable x is then obtained by simply replacing the

value of both w{x) and w[x) in Freeman's formula in (2.4.1).

Li also suggested to use a looking further forward technique to search a dead-node.

11

The idea of a lookahead algorithm, or constraint propagator, is to set up a function

that takes a state vector S and returns a state vector S' such that the function runs in

low-order polynomial time. The satisfaction of S' is equivalent with the satisfaction of

S, but S' is in some sense easier to be satisfied than S. For example, S' may have more

valued propositions than S. In other words, S' may have fewer open propositions or

clauses than 5, or S' may stipulate some relationship between the truth values of two

of more open propositions in S [Fre95 .

Typically, many SAT search methods use more than one lookahead algorithm at ev-

ery node of the search tree to simplify the remaining problem as much as possible.

Li's looking further forward technique actually uses a lookahead algorithm ——unit

propagation in two levels. If the satisfaction of a literal I reduces many clauses, i.

e., it introduces many strong constraints by unit propagation, it probably leads to

an imminent dead-node which can be reached by further (second level) unit propa-

gations. If Unitpropagation{F U { / }) reduces more than T (empirically fixed to 65

for hard random 3-SAT problems) clauses, then tor every variable y in the newly

produced binary clauses occurring both positively and negatively in binary clauses,

Umtpropagation{F U { / } U {y}) and Unitpropagation{F U { / } U {y}) should be ex-

ecuted. If both propagations reach a dead-node, then I should be satisfied [Li99 .

These two propagations are called unit propagations of second level. This technique

enables Satz to reach dead-node earlier so as to narrow a search tree and speed up

the resolution.

12

2.4.2 Heuristics and Local Search

Optimization methods can be classified to two main categories - exact and approx-

imate methods. Exact methods perform a systematic search for optimal solutions,

while approximate methods can not theoretically guarantee to find optimal or even

feasible solutions. It is designed to find a relative "good" or near-optimal solutions

quickly. In operations research, approximate methods are commonly termed heuris-

îcs [Wal99]. Heuristics have received much interests in recent years due to their

practical applications [Ree93, RSOR96, AL97 .

Local search is an important class of heuristics with a long history for combinatorial

optimization. Research work on local search can date back to 1950s and 1960s, when

methods for the travelling salesman problem are presented. The basic idea of local

search is to start from one of a feasible solution and iteratively make changes to

improve the current solution. All variations of local search methods in literature have

the common idea of local moves which a,re transitions in the space of all possible

solutions no matter it is feasible or infeasible, typically according to a strategy that

works by improving the local gradient of a measure of the solution quality (a strategy

called hillclimbing) [Wal99 .

Recently, local search techniques have gotten much success for model finding in propo-

sitional satisfiability [SLM92, Gu92, GW93]. This kind of local search strategies is

also termed as iterative repair: Given a problem stated in terms of some variables and

some constraints, one first generates an initial truth assignment of all variables. Nor-

mally it will violate a number of constraints. Iteratively, variable values are changed

in order to reduce the number of conflicts with the constraints, i. e.，in order to repair

the current variable assignment to iteratively close to a satisfying variable assignment.

13

Among many efficient local search strategies for SAT, the Walks at Strategy con-

tributed by Selman, Kautz, and Cohen[SKC94, MSK97] is the most successful one.

The basic Walksat strategy performs a greedy local search equipped with a "noise"

strategy. In [Wal99], Joachim Paul Walser discribes the method as follows: Initially,

all variables are assigned a random value from {0,1}. It then iteratively selects a

violated clause, from which it selects a variable such that changing its value yields

the largest increase in the total number of satisfied clauses. If no such variable exists,

a variable from this clause is selected randomly according to some detailed scheme.

Such variable changes are repeated a fixed maximal number of iterations and then

a restart takes place. If no satisfying assignment is found after a fixed number of

restart, the procedure is terminated unsuccessfully.

2.4.3 Relaxation

If there exist some spedal cases of SAT and other appropriate problems which can

be solved in low-order polynomial time, we can use Relaxation. Part of the algorithm

proposed in this thesis use the idea of Relaxation. Given a CNF formula S, the idea of
i.

Relaxation here is to construct a subproblem SP{S) such that it can be solved in low-

order polynomial time, and solving it can sometimes indicate the satisfiability of the

original problem. Although the subproblem need not be a SAT problem, generally it

is. Two general techniques are used to construct such low-order subproblem [Fre95]:

1). deleting some clauses from S until the resulting problem is a special case (easy

problem) of SAT[JSD93], or 2). deleting literals from each of the clauses in S until

the resulting problem is a special case of SAT. The special cases of SAT are 2-SAT

(every clause has at most 2 literals) and Horn-SAT (every clause has at most one

14

positive literal). Both of the two special cases are solvable in linear time[APT79,

DG84, Scu90 .

2.5 Benchmarks

We need some benchmark problems to evaluate the performance of a SAT tester/solver.

Generally, there are two main classes: specific problems, which may be encodings of

real-world practical problems; and randomly generated problems, which can be very

difficult to solve but with rare practical application.

2.5.1 Specific Problems

There are two widely known collections of specific problems. The fist was contributed

by Mitterreiter and Radermacher in 1991 [MR91], and the second was created in con-

junction form with the Second DIMACS Implementation Challenge in 1993 [Com92 .

The first collection is available via anonymous FTP from dimacs. rutgers. edu/pub/

challenge/sat/benchmarks/cnf/f aw. cnf . Z. The second collection are currently

available via anonymous FTP from ftp:/ /climacs.rirtgers.edu/pub/diallenge/

sat/benchmarks.

2.5.2 Randomly Generated Problems

We can also create benchmark problems by some random problem generators. One of

this type of benchmarks is fixed probability problems which is due to Goldberg[Gol79 .

There are three parameters to generate the instances (P, N, p), where P is the number

of propositions, N is the number of clauses, and p (0 < p < 0.5) is a fixed number

15

indicating the common appearance probability for each proposition /; Its complement

I appears with probability p; neither I nor I appears with probability 1 — 2p; clauses

containing 0 or 1 literals are not allowed. The N clauses are generated independently,

and within each clause, a given proposition I also appears independently.

Another class of randomly generated problems is fixed clause length problems, which

is due to Franco and Paull [FP83]. Instances are generated from three parameters

(P, N, K)^ where P and N have the same meaning with fixed probability problems

generator, and K is the number of literals per clause. So each instance consists

of N clauses, and each clause contains exactly K literals. Each clause is selected

independently and randomly from the set of possible clauses.

In Section 2.1.2, we have known that some problems are very difficult to solve when

the ratio of clause number /variable number is close to some fixed number. Koutsou-

pias, Papadinitriou and Mitchell et al described this phenomenon in [KP92, DBL92 .

Koutsoupias and Papadinitriou pointed that the majority of fixed clause length prob-

lems are very easy to satisfy (for K = 3), i. e., a greedy local search algorithm can

always succeed to find a satisfying assignment if one exists. Mitchell et al. showed ex-

perimentally that, when there exists some relationship in < P,N,K ：>, the problems

are very difficult to solve on the average. Dubois's estimates of the crossover points

{N/P) for 9 values of K are listed in Figure 2.2 [DABC96 .

Because the problems near the crossover point are very difficult to solve on average,

they are suitable to be benchmarks.

16

k Crossover Point
3 4.24

~ir~ 9.88
21.05
43.31

7 87.70
"~8~ 176.41
" V 353.88
~ W 708.78

726816.49

Figure 2.2: Some crossover points for Random /c-SAT

2.6 Software and Internet Information for SAT solv-

ing

We can find many SAT testers/solvers on the Internet. We list here some of them in

two classes.

2.6.1 Stochastic Local Search Algorithms (incomplete)

• GSAT, Version 41 (contributed by Henry Kautz and Bart Selman)

• Walks AT, Version 35 (contributed by and Bart Selman)

2.6.2 Systematic Search Algorithms (complete)

• EQSATZ (version 2.0 of Feb. 2001; contributed by Chu-Min Li)

• GRASP (version of Feb. 2000; contributed by Joao P. Marques da Silva)

• NTAB (via James Crawford's home page)

17

• POSIT, Version 1.0 (contributed by Jon W. Freeman)

• REL_SAT, Version 2.00 (contributed by Roberto Bayardo)

• REL_SAT, Version 1.0 (contributed by Roberto Bayardo)

• REL_SAT, E-mail access (maintained by Roberto Bayardo)

• REL_SAT-rand, Version 1.0 (contributed by Henry Kautz)

• SATO, Version 3.2.1 (contributed by Hantao Zhang)

• Satz213 (new version) (contributed by Chu-Min Li)

• Satz (contributed by Chu-Min Li)

• Satz-rand, Version 4.7 (contributed by Henry Kautz)

• Satz-rand, Version 2.0 (contributed by Carla Gomes, Henry Kautz, and Bart

Selman)

2.6.3 Some useful Links to SAT Related Sites

• SATLIB — The Satisfiability Library:

http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/

• SATLIVE — Up-to-date links to satisfiability problem:

http://www.satlive.org

• The Sat-Ex Site: The experimentation web site around the satisfiability prob-

lem:

http://www.Iri.fr广Simon/satex/

http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/
http://www.satlive.org

Chapter 3

Integer Programming Formulation
for Logic Problem

In this chapter, I give a survey of the connection between propositional logic and

integer programming.

In propositional logic, several problems, such as satisfiability, MAX SAT and logical

inference, can be formulated as integer programs.

A truth assignment satisfies the set of S clauses:

V xj V (V ^j) for all i e s,
jePi jeNi

if and only if the corresponding 0,1 vector satisfies the following system of inequalities:

[CC95]
y^ Xj — ^^ Xj >1 — |iVi| for all i G s,
jePi jeNi

where the value of is the number of xs in the 2-th clause.

Given a 0, ± 1 matrix A, n{A) is the vector whose i-tli component ni{A) is the

number of -I's in the z-th row of A. The vector of all I's is denoted by 1. Under such

denotement, the above system of inequalities takes the form

Ax>l- n(A) (3.0.1)

18

19

3.1 SAT Problem

Given a set S of clauses, the satisfiability problem(SAT) consists of finding a truth

assignment that satisfies all the clauses in S or show that none exists. Eqiiivalently,

SAT consists in finding a 0,1 solution x to (3.0.1) or show that none exists. [CC95

3.2 MAXSAT Problem

Given a set S of clauses and a weight vector w whose components are indexed by

the clauses in the weighted maximum satisfiability problem (MAXSAT) is to find a

truth assignment that maximizes the total number of weighted satisfing clauses. The

integer programming formulation of MAXSAT is:

Min YlT=i 叫Si

Ax-\-s>l- n{A)

X e { 0 , l } " , s G {0,1 广

where ^ is a 0, ± 1 matrix.

3.3 Logical Inference Problem

Given a set S of clauses (the premises) and a clause C(the conclusion), logical infer-

ence ill prepositional logic consists of deciding whether every truth assignment that

satisfies S also satisfies the conclusion C.

The clause C can be formulated by an inequality using transformation (3.0.1):

cx>l — n(c),

20

where c is a 0，土 1 vector and n(c) is the number of components in (c) which is equal

to —1. Therefore, C cannot be deduced from S if and only if the integer programming

problem

min{cx :Ax>l- n{A), x € {0 ,1}" } (3.3.1)

has a solution with the optimal value —n{c).

3.4 Weighted Exact Satisfiability Problem

Let a vector w be the weights associated with the atomic propositions vecter a;, and

let be a set of clauses, S' be a subset of S. The weighted exact satisfiability problem

consists of finding a truth assignment (if any) such that[CC95]:

• Every clause in S is satisfied and, in every clause of S', there exists exactly one

literal that assumes the value true, and

• The sum of the weights of the atomic propositions that assume the- value true

is maximized.

The formulation is the following integer programming model:

Max E二 WiXi

Ax>l- n{A)

A'x = l - n{A')

X e {0,1}"

where A' is the row submatrix of A corresponding to S'. Note that the logical infer-

ence problem is a special case of the weighted exact satisfiability problem.

21

The above four problems are NP-hard in general but SAT and logical inference can

be solved efficiently for Horn clauses, clauses with at most two literals and several

other related clauses [CH91, Tru90 .

Chapter 4

Integer Programming Formulation
for SAT Problem

In the last chapter, we introduce the integer programming formulations for some logic

problems. In this chapter, we will focus on the integer programming formulation for

3-SAT.

4. i From 3-CNF SAT Clauses to Zero-One IP Con-

straints

111 literature, many transformation have been proposed for converting the satisfiability

problem into an integer programming problem. These transformations usually create

nonlinear integer programming problems, which are generally very difficult to solve.

Actually, we can convert the CNF clauses into IP constraints by a novel simple way:

we can interpret "rci" as "1 — Xi'，and the symbol of “•” as "+" operation.

In addition, each literal can only take a boolean value 0 or 1, and each clause will

be true if at least one literal takes the value 1. Therefore, we can convert the CNF

22

23

clause into an IP constraint. For example:

(xi V 3：2 V Xs) Xi + 0；2 + X3 > 1

{xi V V 3:3) + (1 - 0:2) +X3 > 1

{xi V 52 V 2:3) (1 - Xi) + (1 - Xs) + > 1

(^2 VX3 V X5) => { I - X2) + (1 - Xs) + (1 - 2:5) > 1

4.2 Integer Programming Model for 3-SAT

According to the clause transformation rule of last section, we construct an integer

programming model for 3-SAT problem:

{IP) Min I's (4.2.1)

s.t. Ax + s > l - n{A) (4.2.2)

x e {0,1}", s G {0,1}^ (4.2.3)
V • ； V

I .
where A is an m by n, 0, ±1 matrix, n{A) is a vector whose z-th component ni(A) is

the number of "—1" in the z-tli row of A, and 1 is a vector whose components are all

Is.

4.3 The Equivalence of the SAT and the IP

If the original SAT problem is feasible (satisfiable), the corresponding integer pro-

gramming problem (IP) should achieve the optimal value of 0. If the original SAT

problem is infeasible (unsatisfiable), the corresponding integer programming problem

(IP) cannot achieve zero optimal value. Therefore, the original SAT problem and the

above integer programming model (IP) are equivalent.

24

4.4 Example

In order to implement the transformation, we randomly generate a 5-variable 3-SAT

problem. There are 22 (= 4.25 x 5) clauses where each clause contains exactly 3

literals. The problem is listed below:

V V Xi

Xl V 0；2 V X3

XsV XiV X4

V X2 V Xi

Xi V Xa V X2

无5 V无 2 V Xi

X^W XsV X2

V Xi V

Xi V X4 V X5

X4 V V

V Xs V

X2 V Xi V 0；4

V Xs V

Xi V V X̂

X4 V V Xi

3：5 V V Xi

X4 V Xi V Xs

X2 V a；! V 0；5

25

3；5 V 0；4 V

V 0；4 V X5

XsVXiV X2

V V Xi

Then, we convert this SAT problem into integer programming problem:

E22
i = l Si

s.t. —Xi — X2 — X4 Si > —2

Xi X2 - X3 S2 > 0

-Xi + Xs + 0；4 + 53 > 0

Xi — X2 — X4 S4 > —1

-Xi + + X3 + 55 > 0

X 1 - X 2 - Xr, + Sq > - 1

: -X2 + X3 一 X5 丄 S7 > - 1

- x i - X3 - xs + sg > - 2

Xi + 0：4 + 3：5 + Sg > 1

-Xs - X 4 - X5 + Sio > - 2

Xs X4 - X5 Sn > 0

Xi X2 X 4 S i 2 > 1

-X2 - 0；3 + Xs + Si3 > - 1

—Xi + 0：4 - 2:5 + 5I4 > — 1

X 1 - X 2 - X 4 + Si5 > - 1

Xi-Xs-\-X5 + S16 > 0

26

-Xi + 0；3 + 0；4 + Si7 > 0

Xi - X2 + X5 + S18 > 0

X2 + X4 + X5 + Si9 > 1

-Xi + 0；4 + 0：5 + S20 > 0

Xi - X2 + Xs S21 > 0

- x i - X 2 - X4 + S22 > - 2

Now, we can use a branch-and-bound algorithm to solve the above zero one linear

integer problem, then check the satisfiability of the original problem. Branch-and-

bound algorithm is a simple method for solving IP problems. In Chapter 6，we will

derive our reasonable branching rule and bound rule for our problem formulation.

Chapter 5

Integer Solvability of Linear
Programs

In general, linear programming problems are much easier to solve than discrete opti-

mization problems, and the algorithms for linear programming are important in their

own right. A natural question is when we will be iucky to find an integral optimal

solution to a linear programming relaxation of an integer optimization problem. It

turns oui that if the polyhedron, possesses the integer extrema property, then the

linear program always achieves its optimum at an integer point. In this section, we

will present some classic results in literature.

5.1 Unimodularity

We consider the integer programming problem:

{IP) Min cx

s.t. Ax = b

X e zi.

27

28

Definition 5.1.1. The constraint matrix A is said to be Unimodular if every basis

matrix B oi A has determinant, de力(5) = ±1.

The following classic result of Veinott and Dantzig (1968) [VD68] shows the implica-

tions for integer solvability.

Theorem 5.1.1. (Unimodularity and Equality Linear Programs). Let A be

an integer matrix with linearly independent rows. Then the following are equivalent:

1. A is unimodular.

2. Extreme points of S^ = {x : Ax = b^x > 0} are integral for any integer right-

hand-side b.

3. Every basis submatrix B of A has an integral inverse .

Now returning to (/P)，it is clear that when A is unimodular, the linear programming

•••• relaxation min{cx : AX = b,x e solves (JP).

5.2 Totally Unimodularity

We consider the integer programming problem:

{IP) Max cx

s.t. Ax <h

X e ZJ,

where A is an integer matrix with full row rank, and b is an integer column vector.

29

From the linear programming theory, we know that basic feasible solutions (including

slack variables) take the form: x = {xb, Xn) = 0) where B is an m x m

nonsingular submatrix of (A, I) and I is an m x m identity matrix.

Observation 5.2.1. (Sufficient Condition) If the optimal basis B has det(B) = ±1，

the linear programming relaxation solves (IP) with integral b. [Wol98

Proof. From Cramer's rule, = B*/det{B) where B* is the adjoint matrix. The

entries of B* are all products of terms of B. Thus B* is an integral matrix, and as

det{B) = ±1，B—i is also integral. Thus is integral for all integral b. •

Now, we have another question — when one will always be lucky, i. e.，when do all

bases or all optimal bases satisfy det(B) = ±1?

Definition 5.2.1. A matrix A is totally unimodular (TU) if every square submatrix

of A has determinant +1, -1 or 0.

Hoffman and Kruskal's (1956) classic result on total unimodularity[HK56] is as fol-

lows:

Theorem 5.2.1. (Totally Unimodularity and Inequality Linear Programs)

Let A be an integer matrix. Then the following are equivalent.

1. Every susbmatrix of A has determinant ±1 or 0.

2. Extreme points of S- = {x : Ax > b,x > 0} are integral for any integer right-

hand-side h.

3. Every nonsingular submatrix of A has an integer inverse.

Proof. Please refer to the detailed proof in [PR88]. •

30

Example 5.2.1. Matrices that are not TU:

/ \ (^ / o i l ^ / l Q l ^
1 1 (- 1 - 1 \

, ， 1 0 1 , 1 1 0 ,

V 1 -1 / 1-1 1]

Example 5.2.2. Matrices that are TU:

(\ / X (0 1 0 0 0 \
1 - 1 - 1 0

/ \ 0 1 1 1 1
1 1 - 1 0 0 1

， ， 1 0 1 1 1 ,

, - 1 - 1 / 0 1 0 - 1

\ I 1 0 0 1 0
\ 0 0 1 0 /
\ ^ 1 0 0 0 0 y

The most prominent class of totally unimodular matrices are those that arise from

the vertex-arc incidence matrix of a directed graph.

Theorem 5.2.2. Totally Unimodularity of Vertex-Arc Incidence Matrices.

Every vertex-arc incidence matrix of a directed graph is totally unimodular.

Proof. Please refer to the detailed proof in [PR88]. •

Observation 5.2.2. If A is TU, aij G {+1，—1,0} for all z, j.[Wol98；

Proposition 5.2.3. A matrix A is TU if and only if [Wol98]

1. the transpose matrix A^ is TU.

2. the matrix {A, I) is TU.

3. the matrix (^) is TU.

31

From this proposition, we know that the linear solvability of the model in Section

4.2 is in fact the totally unimodularity of matrix [A, /], further more, the totally

unimodularity of matrix A itself.

Proposition 5.2.4. (Sufficient Conditions) A matrix A is TU if [Wol98]

1. CLij G {+1，—1,0} for all i, j.

2. Each column contains at most two nonzero coefficients (X ^ i Wij\ ^ 2).

3. There exists a partition (Mi, M2) of the set M of rows such that each column j

contains two nonzero coefficients satisfies J] ^ij — S ^ij —
ieMi ieM2

Proof. Please refer to the detailed proof in [Wol98] •

Now returning to (IP), it is clear that when A is totally iinimodiilar, the linear

programming relaxation max{cx : Ax < b, x E R'^j solves (IP).

What if a matrix's origin is not known to be, a, vertex-arc incidence? It may still

be possible to be totally unimodular, i.e., it may also be that the matrix is totally

unimodular but not of network origin.

The nice property of TU matrix motivates us to find a branching order to force a

revised coefficient matrix A to be closer to TU, and eventually, to find the optimal

integer solution by solving linear programs.

Seymour's decomposition theorem of totally unimodular matrices [SeySO] represents

a recent elegant result. The decompositions involved in his theorem are 1-separations,

2-separations and 3-separations which Seymour defined in [SeySO]. He used matroid

theory to prove this decomposition theorem.

32

5.3 Some Results on Recognition of Linear Solv-

ability of IP

Perfect, ideal and balanced matrices have beautiful polyhedral properties that have

been recognized in the last 30 years due to their special structures.

A 0’ 士 1 matrix A is perfect if the fractional generalized set packing polytope {x :

Ax < 1 — n{A)^ 0 < x < 1} has only integral extreme points. It is ideal if the

fractional generalized set covering polyhedron {x : Ax > 1 — n(74)，0 > x > 1} has

only integral extreme points. It is balanced if, in every square submatrix with two

nonzero entries per row and per column, the sum of the entries is a multiple of four.

The study of the characteristics of TU in [HK56] shows that a totally unimodular

matrix is both perfect and ideal. The class of balanced 0, 土 1 matrices also properly

includes totally unimodular 0, 士 1 matrices [CCKVOl .

As far as we know, no algorithm is known for perfection and idealness recognition.

However, Conforti et al give a polynomial time algorithm for checking balancedness

CCKVOO]. This algorithm is complicated and its computational complexity, although

polynomial, is rather high.

Chapter 6

TU Based Matrix Research Results

It is obvious that totally unimodular matrices are highly desirable in discrete opti-

mization, especially in SAT problems, because they assure an integer solvability (for

integer right-hand-sides). When the matrices are known to be arise from a vertex-arc

incidence matrix, we have already seen (in Theorem 5.2.2) that total unimodularity

is guaranteed.

But in the real world applications, the constraint matrices are often not of totally

unimodular. We have the following results from investigation of all 0, 士 1 2x2，and

0,1 3x3 matrices.

6.1 2x2 Matrix's TU Property

There are 81 (=3^) 2x2 (0, 土 1) matrices, among which only 8 cases are non-totally

unimodular (determinant is not equal to 0, 1 or -1).

(1 i) ’ （ i 1)’（ -1 - 1) ’
Vi - 1； v - 1 1 / V 1 - W v - 1 1 ；

/ 1 - 1 W - 1 1 W 1 / - I 1 \

V 1 1 M 1 i y ' V - 1 - J v - i - 1 /

33

34

Observation 6.1.1. For any 2x2 (0, ±1) matrix Â it is not totally unimodular if

and only if the two entries in one row have the same sign, while the two entries in

the other row have different sign.

6.2 Extended Integer Programming Model for SAT

In problem (IP), if Xi is regarded as a new variable Xn+i (suppose n variables), we

can get the extended IP model with no negative coefficient in the constraint matrix

for the original SAT problem.

For example, n=b\

Xi V X2 V X2, 2；3 + Xe + x-j

xi + xe = 1

X2 + 2； 7 = 1

V V --•̂ � Xy + 0；8 + Ô io 》1

X2 + 3：7 = 1

+ 2：8 = 1

X^ + 0；10 = 1

In this extended model, we have doubled variables, and n more clauses. We can

formulate this model by the following matrix form

Min I's

(IP) s.t. AnewX + Si > 1

(/，/):C + S2 = 1

a: € s G { 0 , 1 } ^ + ^

35

where Anew is an m by 2n 0-1 matrix, / is an n by n matrix, and s = [s ,̂ s^'.

It is easy to see the linear solvability of this new model is in fact the totally unimodu-
「4 1 ‘

larity of the matrix /m+n，and further more, the totally unimodularity
…In Iri- _

'a ‘
oi matrix .

. I n In_

6.3 3x3 Matrix's TU Property

Since all 2x2 0-1 matrices are totally unimodular, here, we investigate the totally

unimodularity property of 3x3 0 — 1 matrices.

There are 512 (=2^) candidates. We enumerate all possible 3 x 3 0-1 matrices and

exclude those whose determinant is 0，1 or -1, there are 108 non-totally unimodular in-

stances left. Furthermore, we find these instances have certain common characteristic

by induction.

Lemma 6.3.1. Given four points: A(ai,a2, as)； 62,63)； C'(ci, 02,03) and

the volume of the tetrahedron constituted by the four points is:

ai a2 as 1

1 , b2 t>3 1
V = ^det{)

CI C2 C3 1

di d2 ds 1
Proof. This is a well-known result in analytic geometry, we give a brief proof here.

— > — > — >
V is sixth of the volume of the parallelepiped constituted by AB, AC, AD. And

— > — > — > — >

the volume of the latter one is |(AB, AC, AD)\. AB = {61 — ai, 62 — <̂ 2, h — <̂ 3},

AC 二 {ci - ai, C2 — ^2’ C3 - as}, AD = {di - ai,d2 — <22, <̂3 _ ^s}- So,

36

— ai 62 — <22 63 — as

V = -det{[AB,AC,AD]) = ci - aj C2 - 02 03-03)

di — ai d2 — a2 ds — as

fll 02 1

1 62 bs 1
=ldet{)

Ci C2 C3 1
di d2 ds 1

Note that V should be the absolute value of the determinant. •

Theorem 6.3.2. For a 3x3 0-1 matrix, only when there is exactly one zero per row

and per column, its determinant is not 1, -1 or 0, i. e., it is not Totally Unimodular.

Proof. From Lemma 6.3.1, the volume of the tetrahedron constituted by the four

points ^(01,02,03), 5(61,62,63), C(Ci’C2’C3) and D(0,0,0) should be:

tti 0.2 a3 1 r
tti a2 as

1 62 h 1 1
-det{) = -det{ hi 62 63)

Ci C2 C3 1
Cl C2 C3

0 0 0 1 」

So,
ai a2 as

det(bi 62 63) =6y

Cl C2 C3

A spacial point A, if the elements of A can only have the value 0 or 1, can be one of

these 8 points: (0, 0, 0), (1, 0，0), (0, 1, 0), (0, 0, 1), (1, 1，0), (1, 0, 1)，(0, 1, 1)，（1,

1, 1). They are just the 8 vertices of an unit cube (see Figure 6.1).

37

^ (1 , 0 , 1)

‘ ‘ ^ M
\ X
, • 、 - 、 — 靜

(1 , 1 , 0)

Figure 6.1: Determinant-Volume Relationship

If we fix the origin (0，0, 0), together with any other 3 vertices of this cube, say,

A(ai,a2^ as), 62, ̂ 3) and C(ci, 02,03), it forms a tetrahedron. Only the tagged

vertices in Figure 6.1 can form a tetrahedron with volume 1/3. Any other 3 vertices

together with the origin form tetrahedron with volume 0 or 1/6, i. e.，according to

lemma 6.3.1, only the determinant formed by points (0，1, 1)，(1, 0, 1), (1, 1，0) can

not get the value of 0 or 1 •

Chapter 7

Totally Unimodularity Based
Branching-and-Bound Algorithm

After converting the 3-CNF-SAT problem into an IP problem, a totally unimodularity

based branchiiig-and-bound method is proposed to find out whether the problem is

feasible, and furthermore, what the feasible solution is.

7.1 Introduction

There are many methods proposed in literature to solve an integer programming

problem, such as Branch-and-Bound methods, Cutting Planes methods, etc. Among

the methods for solving an integer programming problem, branch-and-bound and

cutting planes are two typical solution schemes. Although branch-and-bound method

is very popular, the time complexity is 0(2^) in the worst case where n is the number

of variables. In this thesis, we propose a totally unimodularity based branch-and-

bound method as the skeleton of our searching algorithm. In this algorithm, we set

up a branching rule, and bounding rule. Then a binary search tree is constructed (see

Figure 7.1) for the search procedure. Each node of the tree represents one recursive

38

39

(^ R o ^

… … A A /-
• • • • • • • Y • X • • • • • •

Figure 7.1: Binary Search Tree

We prune the hopeless branch according our proposed bound rule., end- continue

the branching procedure in the rest promising branches (nodes) till finding out the

feasible solution for the SAT problem.

7.1.1 Enumeration Trees

Enumeration trees analysis belongs to enumerative approaches to integer program-

ming. These approaches take advantage of the fact that in a bounded integer linear

programming (ILP) or mixed integer linear programming (MILP), the set of values of

the integer variables is finite. The basic idea of enumerative methods can be explained

using a tree.[Wol98

40

Example

We use a simple example which is from [Wol98] to illustrate the application of enu-

meration tree approach in integer programming.

If we are asked to select some numbers in distinct positive integers to make them sum

to 8, how can we do?

Letting
(

1 if j is one of the integers chosen,
工j =

I 0 otherwise.

we require all solutions to

8

= 8
(7.1.1)

Xj = 0,1 for all j

(O) (Q)

经 €=9)

^^^^ J^ —

Figure 7.2: Example for Enumerate search tree

The solutions are given by the unique paths from vertex Root to each of the vertices

marked by an asterisk in Figure 7.2. Each edge imposes a constraint, and each vertex

41

j represents the constraint set of (7.1.1) in addition to the constraints given by the

edges along the unique path Pj from Vq to Vj. A line underneath a vertex indicates

that no further exploration from that vertex can be profitable. Such vertex is said to

be fathomed.

Suppose that the problem is to find some a; € 5, then vertex j restricts x to where

Sj is the intersection of S with the set of points satisfying the constraints given by

the edges of Pj. If Pj has k-\-l vertices:

yo =巧(ohVj ⑴ ， … = Vj

then S = 5j(o) 5 S j � ̂ ••• 2 S认k�= Sj

Vj(k-i) is called the predecessor of Vj, which in turn is called a successor of its pre-

decessor. Note that a vertex has a unique predecessor but generally more than one

successor[GN72 .

Branching •.

A vertex that is not fathomed and its corresponding constraint set has not been

separated is called a live vertex. Branching means choosing a live vertex to consider

next for fathoming or separation. A common rule for branching is branching to one of

the successive vertices of the vertex currently being considered. If the current vertex

j is fathomed, one simply backtracks along Pj until a vertex having at least one live

successor is encountered [GN72]. One can select one of these successive vertices to do

branching. If no live vertices are left, the enumeration process is complete.

42

7.1.2 The Concept of Branch and Bound

Branch and bound is an optimization technique that uses the basic tree enumeration

described in the previous section. It involves calculating upper bounds and lower

bounds on the objective function, in order to accelerate the fathoming process and

thereby to curtail the enumeration. For the problem

max z{x), X e S. (7.1.2)

The bounds are determined as follows.

Upper Bounds

If the enumeration is at vertex j. The problem to be considered at Vj is

max z{x), X G Sj (7.1.3)

Let

z{x*{j)) if of � solves (7.1.3),

Zj = - o o if Sj 二 0 ,

oo if (7.1.3) is unbounded.
、

An upper bound Zj > z* may be determined by considering the relaxation of (7.1.3).

Lower Bounds

A lower bound Zj satisfies Zj < Zj. One way to calculate a lower bound is to find any

X G Sj and let Zj = z{x). If Vk is the predecessor of Vj, then Zj < z^., which yields

an important result that Zj < ZQ.

43

Fathoming by Bounds

Vertex j is fathomed if either

(a) Zj = Zj, or

(b)乏j < 4

In case (a) no better solution can be found to (7.1.3). When case (b) occurs, no

successor of Vj can yield a solution that improves on the best known solution to

(7.1.2).

7.2 TU Based Branching Rule

Since totally unimodularity is a very nice property for solving an integer programming

problem, it is very natural to force the constraint matrix to be close to this state

by fixing some variables. In the last chapter, we have presented the non-totally

unimodular (bad) cases for 2 x 2 0, 士 1 and 3 x 3 0，1 matrices. The branching

variable selection rule can be expressed like the follows:

The variable that will yield the largest decrease in the number of “bad”

cases by fixing this variable should be selected as the next branching vari-

able.

7.2.1 How to sort variables based on 2x2 submatrices

From Observation 6.1.1, the specific form of 2 x 2 0, ±1 non-totally unimodular matrix

is known. We design the following algorithm to get a variable order based on the above

branching rule:

44

1. Construct the non-TU counter Eij：

Considering columns i and j, define a variable Eij{i < j), for Xi and Xj, to

measure the number of such "bad" matrices produced by columns i and j :

where ef̂ is the number of rows which have the pairs with the same signs, and

efj the rows which have the pairs with different signs.

2. Get the variable order

(a) Generate a table (Eij)•

(b) The weight vector for each variable, denoted by w (with component Wi),

is defined as follows:

= L Eii + Eji
j>i j<i

(c) Find the largest one from Wî say it is Wk, then the current branch variable

is Xk.

(d) Change the weight vector (for each i):

Wi - Eik if 2 < /c
w；! = < 0 if i = k

Wi - Eki Hi > k
\

(e) If there exists any Wi > 0，goto step 2c; otherwise, stop this part of sorting

process.

45

7.2.2 How to sort the rest variables

In order to reduce the computation time, we first order the variables according to the

2x2 totally unimodular rule. After this process, all of the remaining 2x2 submatrices

in the coefficient matrix constituted by the rest variables are totally unimodular. We

need to consider the TU property of its 3x3 submatrices.

Recall that for a 3x3 0-1 matrix, only when there is exactly one zero per row and

per column, the determinant is not 1，-1 or 0, i.e., it is not Totally Unimodular. For

example:

/ 1 1 0 \ / 1 0 1 \ / 0 1 1 \ / 0 1 1 \

1 0 1 , O i l ， 1 1 0 , 1 0 1 ，

\ 0 1 1 y \ 1 1 0 / \ 1 0 1 / \ 1 1 0 y

In fact, they are all constituted by row vectors: (1, 1, 0)，（1，0, 1) and (0, 1, 1).

Naturally, we have the following branch algorithm:

1. Model revision

We revise the current (0, 土1) model to our extended IP model (0-1 model in

Chapter 6.2) after deleting those variables ordered in the previous section 7.2.1.

2. Construct the noii-TU counter E ^

Considering columns z, j and k, we define a variable E啡{i < j < k), for Xi, Xj

and Xk, to measure the number of such "bad" matrices produced by the columns

z, j and k :

Eijk = ^ijk X ̂ ijk X ^Ijk

where 计 is the number of rows which have exactly one zero in the first position

i, efjk is the number of rows which have exactly one zero in the second position j,

46

and is the number of rows which have exactly one zero in the third position

k.

3. Get the variable order

(a) Generate a table {Eijk).

(b) The weight vector for each variable, denoted by w (with component Wi),

is defined as follows:

Wi = ^ Eijk + ^ Ejik + ^ Ejki
j,k:i<j<k j,k:j<i<k j,k-.j<k<i

(c) Find the largest one from Wî say it is Wk̂ then the current branch variable

is Xk.

(d) Change the weight vector (for each i):

Wi - Eijk - E ^ikj — E Ejik if i<k
j:i<j<k j:i<k<j j-.j<i<k

û i = < 0 if i = k

Wi - Ekij - E Ejki — E Ekji iii> k
, j:k<i<j j-.j<k<i j:k<j<i

(e) If there exists any Wi > 0, goto step 3c; otherwise, ordering process com-

plete.

7.3 TU Based Bounding Rule

The most common way to solve integer programs is to use implicit enumeration,

or Branch-and-Bound, in which linear programming relaxations provide the bounds

generally. In this work, we propose another bound rule according to the relationship

between the satisfiability problem and the associated integer programming problem.

47

1. If the optimal objective value is nonzero, this node is pruned.

2. If the optimal objective value is zero, and the optimal solution is integral, this

node is one of the feasible solutions to the original SAT problem.

3. If the optimal objective value is zero, but the optimal solution is not integral,

this node is active, i. e., it needs further branching.

7.4 TU Based Branch-and-Bound Algorithm

Having a branching order and bound rule, our branch-and-boimd procedure shapes.

In this section, we list the algorithm step by step:

1. Solve the linear relaxation of the original problem.

(a) If the optimal objective value 2 > 0, terminate with a conclusion that the

problem is uns'ituificMe.

(b) If 2： = 0 and the solution is integer, the problem is satisfiable. Stop.

2. Sort variables according section 7.2.1, get the first part of the branching order.

3. 2 1

4. Choose the i-th variable Xj according to the order. Then assign value 0, 1 to it.

Every assignment is corresponding to a linear programming.

Solve the linear programming problem with Xj = 1 and Xj = 0.

(a) If z > 0, prune this branch

48

(b) If 2 = 0 and the solution is an integer, the problem is satisfiable. The

optimal solution of the linear programming is the feasible solution of the

original problem. Stop.

(c) If z = 0, but the linear programming optimal solution is not integer, this

node is still active. We enter its two children nodes into binary search tree

with the (z + l)th variable setting at 0 and 1，respectively.

5. Deal with the active nodes with width-first rule using the same branching strat-

egy.

6. If all ill being branching variables are used up, sort the rest variables according

to section 7.2.2, and add all unsorted variables to the tail in a natural order.

If no active node left, stop with a decision that the problem is unsatisfiable;

otherwise, i<=i + 1，switch the search to the next layer, and go to step 4.

In this thesis, we use ILQG Cplex as a solver for all the linear rela:,iations of the

subproblems. ILOG Cplex delivers high-performance, robust, flexible optimizers for

solving linear, mixed-integer and quadratic programming problems in mission-critical

resource allocation applications. CPLEX Callable Library provides a C application

program interface (API) that allows all CPLEX features to be accessed from multiple

programming languages. In this thesis, we use C language to implement the whole

search procedure, including calling ILOG Cplex as a linear programming solver in C

procedure.

49

7.5 Example

In Chapter 2, we have known that the randomly generated problems with a number

of clauses/number of variables ratio close to the crossover point are very difficult to

solve on average. Thus they are suitable to serve as benchmarks for tester/solvers

comparison.

We use the program mkcnf.c (spare executable suplied is mkcnf) to generate a random

constant-clause-length CNF formula in Dimacs challenge format (number of variables:

10, number of clauses: 42): The first clause means Xio V xy V x^.

50

10 -7 4 -3 -10 -2
9 2 3 -4 -10 -6

- 6 - 3 1 4 3 - 6
-1 -4 -10 8 1 9
-1 8 10 2 - 5 1

-10 -7 -8 -7 -9 5
1 - 8 5 10 -8 7
6 10 -2 -9 3 5

-8 -7 4 -4 -7 -10
3 -1 -7 -9 -8 -3
2 5 6 -10 8 -7

-3 -1 -8 -2 -9 5
4 6 7 -2 -6 8
5 -6 7 6 -1 -2
6 7 -9 4 -6 1
2 -9 -10 8 -1 -6
7 - 1 - 2 -7 5 8

-3 -4 2 7 -4 3
-9 -10 -8 -6 -10 -9
-3 -4 1 - 1 9 -3
-7 -8 -9 6 - 7 8

We convert the Dimacs challenge format to our integer programming model:
42

Min ^ Si
i=l

Xio - X7 + 0；4 + 5i > 0 —rC3 — Xio - X2 S2 > -2

X q X 2 + X3 + S3 > 1 - Xio - XQ + S^ > - 2

-Xe - X3 + Xi + S5 > - 1 + Xa - X6 + S6 > 0

51

-Xi - X 4 - Xio + S7 > - 2 Xs + Xi Xq Ss > 1

- X i +X8 + Xio + Sq>0 X2 - X5 Xi Sio > 0

-Xio - X7 -X8-\- Su > - 2 -X7 - Xg + 0；5 + Su > —1

Xi - X8 + + Sis > 0 Xio -X8 + X7 + Su > 0

xe + Xio - + Si5 > 0 -XQ + Xs + Xs + S16 > 0

-Xg - X7 + X4-\- S I 7 > - 1 -X4 - X7 - Xio + SI8 > - 2

X3 - Xi - X7 S i 9 > - 1 -Xq - X g - X3-\- S20 > - 2

工 2 + + + S21 > 1 -Xio + Xg - X7 + 6.22 > —1

-;r3 - Xi - X8 + S23 > - 2 -X2 - 2:9 + X5 + S24 > —1

X4Xe + X7 S25 > 1 - X2 -Xe-\-X8 + S26 > - 1

X5 - Xg + X7 527 > 0 Xe - Xi - X2 + S28 > —1

Xq + X7 — Xq S 2 9 > 0 X4 — Xq Xi S 3 0 > 0

• - Xg - Xio + 531 > - 1 Xg - Xi - Xq + .-32 >. -1

X7 - Xi - X2 S33 > -1 -X7 + X5 + ；2：8 + 534 > 0

- X s S35 > - 1 XT - X4 + X3 + S36 > 0

—Tg — Xio 一 + S37 > " 2 -Xq — Xio - Xg + S38 > —2

- ^ 3 - X4 + rri + 539 > —1 —Xi + Xg - 0；3 + S40 > —1

- X j - Xs - Xq-\- S41 > - 2 Xe - X7 Xg-\r S42 > 0

X i e { 0 , i } , Si e { 0 , 1 }

The constraint can be rewritten simply as Ax + s>r. Coefficient matrix A is a 0, 士 1

matrix in Appendix A. Now, we use our TU-based branch-and-bound algorithm to

check whether this problem is satisfiable.

52

Step 1 Do linear programming for the relaxation of the original problem. The op-

timal objective value is 0，but the optimal solution is not integer-valued. We

need to do branch-and-bound.

Step 2 Sort the variables. We compute the value of Eij in Table 7.1 for every 2

columns (variables) in A:

五ij. I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10
1 - 3 x 0 T x 3 2 x 1 1 x 1 1 x ^ 1 x 1 1 x 1 1 x 1 '
2 ~ - 2 x 1 0 x 1 2 x 2 "O X 1 0 x 1 2 x 1 1 x 2
3 了 - - 3 x 1 1 x 0 1 x F 1 x 1 2 x 0 2 x 2 1 x 0
4 丁 - — - - 0 x 0 2 x Y 2 X 3 0 X 1 0 X 0 4 X 0
5 了 - - — - - 1 x 1 1 x 2 1 x 1 — 0 x 3 0 x 0
6 - - — - - - - ~ 2 x 2 Tx 2 1 x 1 3 x 0
7 了 - - - ~ - ~ - - 3 x 4 T x 1 4 x 1

~ 8 ~ - - - - - - ~ - 4 x 0 3 x 2
9 I - I - I - I - I - I - I - I - I - I 3 x~Q~

Table 7.1: Table Eij for every pair columns

Where the first number in each lattice is the number of rows which have the

pairs with the same signs, and the second number is the number of rows which

have the pairs with different signs, the product is the value of E”.

Now the weight vector Wi in Table 7.2 can be calculated by formula:

购 二 [Eij + ^ Eji
j>i j<i

The largest Wi is W7, so the first branching variable should be xj. We should

revise Wi for cutting out the seventh column {xj). We can get a revised Wi in

53

叫 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 『
I 12 I 17 I 15 I 7 I 20 I 32 I 27 I 10 I 1 �

Table 7.2: Original table of variable weight Wi

20 I 12 I 16 I 9 I 5 I 16 I 0 I 15 I 8 I 9

Table 7.3: The first-revised table of variable weight Wi

Table 7.3 by:

Wi - Ei7 if i <7

UJi = < 0 if i = 7

Wi — Eji if i > 7
\

The largest number in Wi is Wi, so the second branching variable is Xi.

Then, we revise Wi in Table 7.4. The largest number is wq. SO the third

branching variable is

We continue to revise Wi in Table 7.5. The largest number in Wi is ws. So the

fourth branching variable is 0:3.

Revision continues in Table 7.6. The largest number is Wiq. SO the fifth branch-

ing variable is xiq.

The fifth revision is given in Table 7.7. The largest number is W2. So the sixth

"^TTl 2 3 |4|5| 6 | 7 | 8 | 9 | 1 0
w 山 I 12 I 10 I 7 I 4 I 13 I - I 9 I 7 I 8

Table 7.4: The second-revised table of variable weight Wi

54

叫 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 0

Table 7.5: The third-revised table of variable weight Wi

叫 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 0
I - I 6 I 0 I 0 I 3 I - I - I 7 I 2 I 8_

Table 7.6: The fourth-revised table of variable weight Wi

branching variable is X2-

The sixth revision is given in Table 7.8. The largest number is w .̂ So the

seventh branching variable is x^.

The seventh revision is given in Table 7.9. Now, all the components of Wi are of

non-positive values, i. e.’ all unsorted variables are incomparable in the sense

of 2x2 submatrices. We have the variable order:

Step 3 Initialization

Step 4 Do linear programming for every nodes in the binary search tree.

The first node is {0:7 = 1}. We get the optimal objective value 0 of the linear

relaxation by setting Xj to 1, the optimal solution is not integral; the second

叫 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 0

Table 7.7: The fifth-revised table of variable weight Wi

55

小 |2|3|4|5|6|7|8|9|10
~ W i - " " “ 0 " " “ - 0 i - ~ ~ ~ 1

Table 7.8: The sixth-revised table of variable weight wi

7 小 |2|3|4|5|6|7|8|9|10
~ W i ~ - - " 0 ~ ~ 0 " " “ - ~ ~ ~ 0 0 ~

Table 7.9: The seventh-revised table of variable weight Wi

node is [x j = 0}. We get the optimal objective value 0, optimal solution is still

fractional. Figure 7.3 depicts all the linear relaxations, once we get a positive

optimal objective value at one node, we prune this branch (which is marked by

a pair of shears in the figure). In this example, we find a satisfying solution

using only the branching variable from the consideration of 2x2 non-totally

unimodular submatrix. Empirically, most small satisfiable problems with the

number of variables ixo more than 50 can be solved in the first phase. The

information of each linear programming iteration including optimal objective

value and optimal variable values is listed in Appendix B.

As depicted in Figure 7.3, only 15 linear programming (nodes) and 4 layers in a binary

search tree are needed to find the satisfying truth assignment (which is marked by an

asterisk in the figure), and its computation time is 0.01 second. Compared with the

worst scenario of this problem (computation time 0(2^°)), our algorithm appears to

be very promising.

56

(x ^

fval=0.5 fval=0.5 fval=l fval=1.5 fval=0.75

fval=2 fval=0 with integer
optimal solution

Figure 7.3: Binary Search Tree of the Example

Chapter 8

Numerical Result

In this chapter, experimental results for the proposed TU-based branch-and-bound

algorithm are presented in the first section. We discuss the performance of this

algorithm by comparing it with IP solver of ILOG CPLEX under the same computing

environment in the second section. The complete results can be found in Appendix

C and Appendix D.

8.1 Experimental Result

We use Uniform Random-3-SAT as the main test-set for our algorithm. Uniform

Random-3-SAT is a family of SAT problems obtained by randomly generating 3-

CNF formulae in the following way: For an instance with n variables and k clauses,

each of the k clauses is constructed from 3 literals which are randomly drawn from

the 2n possible literals (the n variables and their negations) such that each possible

literal is selected with the same probability of l/2n. Clauses are not accepted for

the construction of the problem instance if they contain multiple copies of the same

literal or if they are tautological (i.e., they contain a variable and its negation as a

57

58

literal). Each choice of n and k thus induces a distribution of Random-3-SAT in-

stances. Uniform Random-3-SAT is the union of these distributions over all n and k.

The test-sets provided in http: //www. inte l l ekt ik . informatik.tu-darmstadt. de

/SATLIB/Benchmarks/SAT/RNDSSAT/descr . html are sampled from the phase tran-

sition region of uniform Random 3-SAT. We use the test-sets for n =20, 50，75 and

100.

Table 8.1, Table 8.2, Table 8.3 and Table 8.4 list the mean, standard deviation,

minimal value and maximal value of the completion time, the number of layers and

nodes being searched in the binary search tree for n=20, n=50，n=75 and n=100 on

100 samples, respectively.

of Layers # of Nodes Completion Time (sec.)
"Mean 2.82 10.89 0.0228

S.D. 1.6229 8.3906 0.0136
~Min 0 1 0.0000
~Max I 6 I 37 I 0.0600

Table 8.1: Statistical Result of TU-based B&B for n=20, m=91

of Layers # of Nodes Completion Time (sec.)
"Mean 6.13 92.83 0.3931
— S.D. 2.5172 76.4462 0.2736
— Mill 0 1 0.0400
"Max 15 343 1.31

Table 8.2: Statistical Result of TU-based B&B for n=50, m=218

When n < 100’ all of the selected randomly generated 3-SAT instances can be solved

by the TU-based branch-and-bound algorithm within 3 minutes.

59

of Layers # of Nodes Completion Time (sec.)
Mean 9.11 703.98 4.858

"^ypT" 3 . 1 5 ^ ~ 1 0 0 8 . 5 ^ 5.6417
Mill 3 8 0.07

‘ M a x 18 6502 37.07

Table 8.3: Statistical Result of TU-based B&B for n=75, m=325

善 of Layers # of Nodes Completion Time (sec.)
"Mean 11.52 3165.91 37.1802
~S.D. 3.6362 3316.752 35.8724

Mill 3 — 12 0.42
"Max 19 17478 164.44

Table 8.4: Statistical Result of TU-based B&B for n=100, m=430

8.2 Statistical Results of ILOG CPLEX

For the sake of comparison, we use the IP solver of ILOG CPLEX to solve the same

problems under the same computing environment.

Table 8.5 lists the mean, variance, minimal value and maximal value of the completion

time on 100 samples using CPLEX IP solver. Table 8.6 lists the mean, variance,

minimal value and maximal value of the nodes used to solve the problem by CPLEX

IP solver. CPLEX excels our algorithm only at 3 indexes (denotes by an asterisk).

n=20，m二91 n=50，rn=218 n二75，m=325 ii=100, m=430
Mean" 0.0394 — 0.5842 5.5548 39.8416 “
S.D. - 0.01994 0.4614 6.2550 — 40.0356 “
Mill 0 0.02 * — 0.07 1.18
Max 0.09 2.46 37.36 222.64

Table 8.5: Completion Time of CPLEX IP Solver

60

n=20, m=91 n=50，m=218 n=75, m=325 n=100, m^43Q
MeaiT 9.2698 * 144.5618 — 964.9897 4139.81
S.D._ 8.8831 一 149.6657 1498.664 4622.361
Min 1 “ 1 1 * 15
Max 41 692 12472 27900

Table 8.6: Number of Nodes Used for CPLEX IP Solver

A complete numerical results for CPLEX can be found in Appendix D.

Table 8.7 lists the gain of our approach on 3 important indexes: mean number of

nodes being searched, mean completion time and maximum number of nodes being

searched among those 100 sample instances against CPLEX IP solver. Clearly, our

approach outperforms CPLEX IP solver.

Gain in n=20’m=91 n=:50’m=218 ri=75,m=325 n=100,m=430~
Mean no. of nodes -15% 56% 37% 31%

Mean time 73% 一 49% 14% — 7%
Max no. of nodes 11% 102% 60% 一

Table 8.7: The gain of TU-based B&B on CPLEX IP solver

Chapter 9

Conclusions

This chapter summarizes our research contributions and discusses potential future

work.

9.1 Contributions

The main contributions of this research are as follows:

1. We actively use the Totally Unimodular theory to solve SAT problems. In

literature, people usually pay attention to the solvability of the problem if the

constraint matrix has already been totally unimodular, and how to check the

totally unimodularity of the constraint matrix. In many situations, however, the

constraint matrix of an integer optimization problem is not totally unimodular.

Our reseaxcli can thus deal with general problems without any assumption of

totally unimodularity.

2. We find the common characteristics for all non-totally unimodular 2 x 2 (0，±1)

and 3 x 3 0 - 1 matrices, and prove the form excliisiveness of the non-totally

unimodular 3x3 0-1 matrices. See Theorem 6.3.2.

61

62

3. Based on the matrix research results, we derive an efficient algorithm to make

the constraint matrix closer to the state of totally unimodularity step by step.

It can also be regarded as the process of approaching a solvable state by linear

relaxation.

4. Through the comparison with ILOG CPLEX — a very powerful solver for opti-

mization problems, we find our algorithm is very efficient when n is not more

than 100.

5. This algorithm can be also extended to situations where the decision variables

are not binary and the components of the coefficient matrix take values from

—1，0，and 1.

9.2 Future Work

One obvious extension of this research would be to siudy the common characteristics

of non-totally unimodularity for high-order square matrixces (we only studied 2x2

and 3x3 matrices). This will help us to get more efficient branching order for branch-

and-bound process.

In fact, after we exclude the 3 x 3 non-totally unimodular submatrices, we have

noticed that, for 0,1 square matrix, if there are at most 3 Is in every row, all even-

sized matrices are totally unimodular (e.g. 4x4, 6x6，• • •). In the case of odd-sized

matrix, when there are exactly two Is per row and per column, the matrix is non-

totally unimodular.

Despite the good performance on many instances, the proposed TU-based branch-and-

bound algorithm does not have a very good performance on many other large-sized

63

problems. Especially, for unsatisfiable SAT problem, our algorithm is not so good

because we must search the entire binary tree to get such unsatisfiability conclusion.

It could take months or even years to solve some of them. And, optimizing the

variable sorting part is another extension of this research.

Appendix A

The Coefficient Matrix A for
Example in Chapter 7

Xi X2 Xz 3；4 3：5 Xg X7 Xs XQ Xiq

0 I 0 I 0 - 1 I 0 I 0 = -1 0 I 0
0 -1 ~ A ~ 0 — 0 0 0 0 0 -1

~ " Q 1 1 0 — 0 0 " ~ 0 0 1 0
— 0 0 0 -1 ~ 0 -1 " 0 0 Q " -1

1 “ 0 -1 0 ~ 0 -1 _ 0 0 “ 0 —~0 ~~~
0 0 1 1 0 - 1 — 0 Q “ 0 ~ ~ 0 ~ ~

—"^I 0 — 0 ~ -1 ~ c " " 0 0 0 0 -1
1 0 0 0 ~ 0 0 0 1 1 0 ~ ~

-1 “ 0 0 ~ 0 0 ~ 0 — 0 1 0 ~ ~ 1 ~~~
1 1 0 0 一 1 0 0 0 0 ~~0~~
0 0 0" " “ 0 0 0 " -1 ~ 0 -1
0 “ 0 0 ~ 0 ~ i ~ ~ 0 ~ -1 0 -1 0 一

1 0 0 0 ~ ~ 1 ~ ~ 0 0 - 1 0 0
0 — 0 0 ~ 0 0 ~ ~ 0 1 -1 “ 0 1 —

0 ~ " T ~ Q 0 0~~ 1 0 0 0 1
0 — 0 1 0 1 — 0 0 0 0
0 “ 0 0 “ 1 ~ ~ 0 ~ 0 -1 - 1 . 0 0 一

0 “ 0 0 ~ - 1 0 0 - 1 0 “ 0 - 1

-1 ~ ~ 0 1 0 0 0 -1 0 ~ ~ 0 " " “ 0
0 “ 0 -1 0 ~ ~ 0 ~ ~ 0 0 -1 “ -1 0 —
0 — 1 0 0 ~ F 1 ~ 0 0 " " “ 0 ~ ~ 0
o | o | o | o | o | o | - i | i | o | -1 ~ ~

64

5

o
o
o
o
o
o
o
o
l
^
o
o
o
o
o
l
^
l
^
o
o
o
o

0
1
^
0
0
0
0
1
^
0
1
^
0
0
0
0
0
1
^
1
^
0
1
1
^
0

1
^
0
0
1
0
0
0
0
0
1
0
1
0
0
1
^
0
0
0
1
^
1

o
o
l
o
l
o
l
o
o
o
l
l
^
o
l
o
o
o
o
T
^
I
^

0
0
1
1
^
1
^
1
1
1
^
0
1
^
0
0
0
0
0
1
^
0
0
0
1
-

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

o
o
l
o
o
o
o
l
o
o
o
o
l
^
T
^
O
O
T
^
O
O
O

1
^
0
0
0
0
0
0
0
0
0
0
0
1
^
1
0
0
1
^
1
^
0
0

0
1
^
0
1
^
0
1
^
0
0
1
0
1
^
0
1
0
0
0
0
0
0
0

l
o
o
o
o
T
^
o
l
o
l
^
l
^
o
o
o
o
o
l
l
^
o
o

^

-

n

————————————————————

o

c

Appendix B

The Detailed Numerical
Information of Solution Process for
Example in Chapter 7

fval Xi X2 X3 X4 X5 Xq X7 Xs Xq Xio

0.000 0.143 0.571 0.000 0.714 0.714 0.571 0.714 "Q.143 0.714 0.000
0.000 0.000 0.667 0.000 1.000 0.667 0.667 1.000 0.333 0.667 0.000
0.000 0.222 0.444 0.444 0.444 0.667 0.667 0.000 0.111 0.667 0.111
0.500 1.000 0.500 |"0.500 0.500 0.500 0.500 1.000 0.500 0.500 0.500
0.000 0.000 0.667 0.000 1.000 0.667 0.667 1.000 0.333 0.667 0.000
0.000 1.000 0.000 0.500 0.500 0.500 0.500 0.000 0.500 0.500 0.500
0 . 0 0 0 0 . 0 0 0 1.000 0.500 0.500 0.500 0.500 0.000 0.500 0.500 0.500
0.000 0.000 0.500 0.000 1.000 0.500 1.000 1.000 0.500 0.000 0.000
0.500 0.000 0.500 0.500 0.500 0.500 0.000 1.000 0.500 0.500 0.500
0.500 1.000 0.000 0.500 0.500 1.000 1.000 0.000 0.500 0.500 0.500
1.000 1.000 0.000 0.500 0.500 1.000 0.000 0.000 0.500 0.500 0.500
1.500 0.000 0.750 0.500 0.500 1.000 1.000 0.000 0.750 0.250 0.750
0.750 0.000 0.750 0.500 0.500 0.750 0.000 0.000 0.750 0.000 0.750
2.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000

0.000 0.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000

66

Appendix C

Experimental Result

C.l # of variables: 20, # of clauses: 91

Problem Name Number of Layers Number of Nodes Completion Time(sec.)
uf20-01.cnf 3 10 “ 0.0200

uf20-01Q.cnf “ 2 4 0.0200 “
uf20-0100.cnf 4 22 0.0400

uf2Q-01000Ta^ 5 20 0.0400 ~ ~
uf2Q-0101.cnf 2 5 —0.0200

• uf20-01Q2^nf 3 了 10 0.0200 —
uf20-01Q3.cnf 4 — ~~ 0.0400
uf2Q-Q104.c"^" 2 — 6 0.0200
uf20-01Q5.c"^ 5 20 0.0400
uf20-01Q6.cnf 2 — 6 0.0200 ~
u f 2 0 - Q 1 0 7 . c i ^ 6 6 0.0400
uf20-Q108.c"I^ 3 — 10 — 0.0100
uf20-0109.c"^" 6 — 25 — 0.0400
uf20-011.cnjr~ 1 3 0.0100
uf20-Q110.c"Z~ 2 4 — 0.0200
uf20-0111.ci^ 4 — 17 0.0200 一

i i f20-0112.d 3 10 0.0100 —

uf20-0113.d 3 - 11 0.0300

uf20-0114.c"l^ 2 4 — 0.0000

uf20-0115.c"^ 3 I 15 I 0.0200 —

67

68

Problem Name Number of Layers Number of Nodes Completion Time(sec.)
uf20-0116.cnf 4 “ 19 0.0300
uf20-0117.cnf 4 “ 22 0.0300
uf20-Q118.cnf 5 “ 24 0.0400
uf20-0119.cnf 4 16 0.0400 一

uf20-012.cnf 1 3 0.0000
uf20-Q120.cnf 2 " i ~ 0.0200
uf20-Q121.cnf 3 8 0.0100
uf20-0122.cnf 5 — 4 0.0300
uf20-Q123.cnf 3 10 0.0300
uf20-0124.cnf 2 6 0.0100
iif2Q-0125.cnf 5 18 0.0400
uf20-0126.cnf 0 1 0.0000
uf20-0127.cnf 1 3 0.0000
iif20-0128.cnf 3 9 0.0300
uf20-0129.cnf 2 4 0.0100
uf20-013.cnf 0 1 0.0000
uf20-0130.cnf 0 1 — 0.0000
uf20-0131.cnf 1 2 0.0000
uf20-0132.c"^ 3 14 0.0300
iif20-0133.cnf 4 _ 16 0.0300 一

uf20-Q134.cnf 4 T " 22 — 0.0400
uf20-0135.ci^ 2 5 0.0200
uf2Q-Q136.c"^ 6 28 0.0500
uf20-0137.c"^ 0 — 1 — 0-0000
uf20-0138.cnf 3 一 11 0.0200
uf20-0139.^^ 0 1 一 0-0000

uf2Q-Q14.c^ 3 9 0.0100 —
uf20-Q140.ciZ~ 3 一 13 — 0-0300
uf20-0141.cii^ 4 21 0.0300
uf20-Q142.cnf 4 14 0.0300 —
u f 2 0 - 0 1 4 3 . d 1 2 0.0200
uf2Q-Q144.^^ 0 1 0-0000
uf20-Q145.cnf 6 22 0.0300
uf20-0146.cnf 4 24 0.0300

69

Problem Name Number of Layers Number of Nodes Completion Time(sec.)
uf20-Q147.cnf 3 “ 8 0.0100
uf2Q-0148.cnf 3 “ 9 0.0200
uf20-0149.cnf 4 20 0.0300
uf20-Q15.cnf 1 “ 3 0.0100
uf20-0150.cnf 4 14 0.0400
uf20-0151.cnf 3 9 0.0100
uf20-0152.cnf 0 1 0.0200
uf2Q-0153.cnf 2 “ 4 ~ a O l Q Q
uf20-Q154.cnf 4 14 0.0300
uf20-0155.cnf 6 37 0.0500
uf20-0156.cnf 2 6 0.0200
uf2Q-0157.c^ 0 — 1 — 0.0100
uf2Q-0158.cnf 0 1 0.0000
uf2Q-0159.cnf 5 30 0.0300
uf20-Q16.cnf 3 8 0.0300 ~

uf2Q-0160.cnf 2 6 0.0200
uf20-0161.cnf 3 10 0.0200

_ uf20-Q162.cnf 5 19 0.0400
uf2Q-Q163.c^ 1 2 — 0 ^ 0 0 ~

—iif20-0164.o^ 0_ ？ 1 0.0100
“uf20-0165.cnf 2 6 — 0.0300

uf20-0166.cnf 2 ~ 6 0.0300
uf20-0167.c"^ 1 — 2 0.0000
uf20-Q168.cnf 3 12 0.0300
uf20-Q169.cnf 1 2 — 0.0200
uf20-017.cnf 4 18 0.0300
uf20-017Q.c"i^ 3 8 — 0.0100 —
uf2Q-Q171.^^ 1 3 0.0200 —
uf20-0172.ci^ 0 1 _ 0-0200
iif20-0173.^^ 5 26 0.0500
uf20-0174.cnf 2 6 0.0200
uf2Q-Q175.a^ 5 23 0-0400
uf20-0176.cnf 4 22 0.0300
uf20-0177.cnf | 3 丨 9 | 0.0200

70

Problem Name Number of Layers Number of Nodes Completion Time (sec.)
uf2Q-Q178.cnf 2 5 0.0100
uf2Q-0179.cnf 3 ~ 8 — 0.0300
iif20-018.cnf 4 19 0.0300
uf20-Q180.cnf 4 19 0.0400
uf2Q-0181.cnf 5 33 0.0600
uf20-0182.cnf 2 7 0.0200
uf20-0183.cnf 4 16 — 0.0300
uf20-0184.cnf 3 11 0.0300
uf20-Q185.cnf 3 12 0.0200
uf2Q-0186.cnf 2 6 — 0.0300
uf20-0187.cnf 2 4 0.0100
uf20-Q188.cnf 4 13 0.0200

C.2 # of variables: 50, # of clauses: 218

Problem Name Number of Layers Number of Nodes Completion Time(sec.)
“uf5Q-Ql.cnf 8 198 0.7300

uf50-QlQ.cnf 5 42 —"aiQQO
uf50-0100.cnf 10 0.8200
uf50-Q1000.cnf 4 27 0.1400
uf50-0101.cnf 7 118 0.5800
uf50-01Q2.cnf 6 56 0.2500
uf50-Q103.cnf 6 59 0.2700
uf50-01Q4.^^ 7 105 0.4600
uf50-0105.^^ 3 9 0.0800
u f 5 Q - 0 1 0 6 . ^ ^ 6 64 0.3100
uf50-0107.c^ 8 132 0.5100
uf50-0108.cnf 6 51 0.2700 —
uf50-0109.cnf 0 1 0.0400
uf5Q-011.cnf 9 211 0.8900 —
uf50-0110xnf 9 180 0.6900 ~
uf50-0111.cnf 8 “ 109 0.4800

71

Problem Name Number of Layers Number of Nodes Completion Time(sec.)
uf50-0112.cnf 10 243 0.8700
uf50-0113.cnf 7 196 0.6300
uf50-0114.cnf 5 46 0.2100
uf50-0115.cnf 2 7 0.0800
uf50-0116.cnf 4 18 0.0900
uf50-0117.cnf 5 32 0.1600
uf50-Q118.cnf 8 167 0.5800
uf50-0119.cnf 5 54 0.2800
uf50-Q12.cnf 4 18 0.1000

uf5Q-0120.cnf 6 62 0.2900
uf5Q-Q121.cnf 6 52 0.2800
uf50-Q122.cnf 4 19 0.1000
uf5Q-0123.cnf 8 216 0.7600
uf50-Q124.cnf 8 238 0.7300
uf5Q-0125.cnf 7 112 0.4700
uf50-0126.cnf 5 56 0.2100
uf50-0127.cnf 4 16 0.1000
uf5Q-0128.cnf 7 168 — 0.6700
uf50-0129.cnf 14 256 0.9900

—uf50-013.a^ 5 • ； 42 一 0.2400 —

—iif50-013Q.cnf 6 70 0.3700
uf50-0131.c"iii^ 3 12 0.1000
uf50-Q132.c"^ 4 26 0.1600
uf50-Q133.c"i^ 5 — 46 0.2600
uf50-0134.c"^ 10 169 0.8500 ~
uf5Q-0135.^i^ 6 66 — 0.2900 —
uf50-0136.^5~ 0 1 一 0.0400 ~

uf50-Q137.^^ 7 74 0.3200
uf50-0138.cnf 5 45 0.1600
uf50-0139.^^ 6 68 0.3400
uf50-Q14.c^ 6 77 0.3400 —
uf5Q-014Q.c^ 7 111 0.4900
uf50-0141.^i^ 6 80 0.3500
uf50-0142.cnf 9 143 0.6000

72

Problem Name Number of Layers Number of Nodes Completion Time(sec.)
uf5Q-0143.ciT" 6 — 74 0.3400 —
uf50-0144.cnf 5 46 0.2700
uf50-Q145.cnf 6 “ 75 0.2900
uf5Q-0146.cnf 6 75 0.3500
uf50-0147.cnf 7 116 0.5500
uf50-0148.cnf 10 “ 180 0.7500
uf50-0149.cnf 3 12 0.0700
uf50-015.cnf 5 39 0.2200
uf50-Q15Q.cnf 6 — 82 0.3300
uf5Q-0151.cnf 7 188 0.7500
uf50-0152.cnf 6 81 0.3900
uf50-0153.cnf 6 94 0.3900
uf50-0154.cnf 8 228 0.6800
uf5Q-Q155.cnf 6 66 0.3000
uf50-0156.c"^ 5 38 0.2100
uf50-Q157.cnf 5 38 0.1500
uf50-0158.cnf 7 118 0.5200 —
uf50-Q159.cnf 7 83 “ —03600 “
uf5Q-016.cnf 5 62 0.2400
uf50-0160. (^ 7 98 0.4200
uf5Q-0161.cnf 5 “ '—36 0.1600 “
uf5Q-Q162.c^ 4 “ 20 0.1200 一

uf50-Q163.cnf 15 343 1.1800
uf50-0164.5^ 0 1 0.0500
uf5Q-0165.cnf 6 72 0.3600
uf50-0166.cnf 3 35 0.1900
uf5Q-0167.^^ 9 207 0.8500
uf50-Q168.^i^ 4 17 0.1200
uf5Q-Q169.cnf 6 78 0.4200
uf50-Q17.cnf 6 “ 100 0.4400 ~
uf5Q-Q170.cnf 5 37 0-1800 —
uf50-0171.cnf 7 “ 118 0.4900
uf50-Q172.cnf 9 329 1.3100 —
uf50-0173.cnf 10 162 0.6700 ~~

73

Problem Name Number of Layers Number of Nodes Completion Time (sec.)
“uf50-0174.cnf 7 ~ 112 0.4800
“uf50-0175.cnf 3 12 0.0900
“uf50-0176.cnf 9 ~ 203 — 0.7500

uf50-Q177.c"i^ 10 “ 229 0 8 ^
uf50-0178.c"i^ 2 ~ 7 0.0400
uf50-0179.cnf 6 55 03000

“uf50-018.cnf 2 5 0.0700
uf50-Q180.cnf 11 一 240 ~ ~

“uf50-0181.cnf 4 23 0.1500
uf50-Q182.c"nF 8 102 04400
uf50-Q183.c"^ 4 26 K i m

“uf50-0184.ci^ 4 19 — 0.1000
“uf50-Q185.cnf 7 118 0.5100

uf5Q-0186.c"^ 6 - 60 0.3500
uf50-Q187.c^ 7 123 0.5100
uf50-Q188.cnf | 5 | 41 0 2 ^

C.3 # of variables: 75, # of clauses: 325

Problem Name Number of Layers Number of Nodes Completion Time(sec.)
“ u f 7 5 - 0 1 . c n f ~ 8 253 2.2800 —

uf75-01Q.c^ 3 - 8 0.2000
uf75-Q10Q.cnf 13 “ 1578 9.4100

“iif75-011.cn厂 9 560 ~~ 4.6700
“uf75-012.cn厂 13 1526 9.0600

uf75-013.cnf 6 “ 84 0.6900
uf75-014.cnf 8 398 2.7100

“uf75-Q15.cn"r~ 11 628 4.5200
uf75-016.cnf 6 “ 80 0.8900
uf75-Q17.ci^ 6 “ 96 0.5700
uf75-018xnf 4 18 0.2800
iif75-Q19.cnf 10 535 4.1000

74

Problem Name "Number of Layers Number of Nodes Completion Time(sec.)
uf75-02.cnf 11 1288 8.6100

uf75-Q20.cnf 14 1676 12.1500
uf75-021.ci"^ 10 - 792 5.6800
uf75-022.ci"5~" 10 ~ 366 ~ ~ 3.2600
uf75-023.ci"^ 12 1054 一 7.2000

uf75-024.ci"^ 12 - 930 6.2200
uf75-025.cnf 6 107 0.7400
uf75-026.cnf 12 1715 11.1900
uf75-Q27.ci"ir~ 7 — 136 一 1.0100

uf75-028.ciZ~ 9 397 2.8600
uf75-029.cnf 7 188 1.6900 —
uf75-03.cnl~ 13 910 7.2000

uf75-030.cnf 11 — 1020 6.3800
uf75-Q31.cnf 8 256 1.9800
uf75-032.cnr~ 7 “ 214 1.7900
uf75-033.cnf 6 103 0.8800
uf75-034.cnf 9 “ 466 2.7300
uf75-Q35.ciif 8 252 1.7600
uf75-036.cnf 8 323 2.5400
uf75-Q37.ci"^ 15 ‘ 6502 37.0700

” . uf75-038.cnf 8 “ 316 3.0200
uf75-Q39.cnf 12 1672 12.5100
uf75-04.cnf 8 — 281 3.0100

uf75-04Q.cnf 9 ^ 2.8300
uf75-041.ci^ 10 448 3.7400
uf75-042.cnf 9 “ ^ 4.6300
uf75-043.cnf 11 517 4.1200
uf75-Q44.cnf 7 145 1.5700
uf75-045.cnf 5 ^ 0.4300
uf75-046.cnf 12 1038 7.8200
uf75-047.cnf 7 ^ 1.6000
uf75-048.cnf 12 1321 — 9.1300
iif75-Q49.ci^ 7 207 ~ ~ 1.6300
uf75-Q5.cnf 12 2305 16.0100

75

Problem Name Number of Layers Number of Nodes Completion Time (sec.)
uf75-050.cnf 3 “ 10 0.2100
uf75-051.ciif~ 18 一 5341 24.6300

uf75-052.cnf 10 746 6.1000
uf75-053.cnf 9 327 2.7100
uf75-Q54.cnf 6 94 0.9900
uf75-055.cnf 10 “ 741 5.7700
uf75-056.cnf 10 “ 471 3.5600
uf75-057.cnf 14 946 7.3500
uf75-Q58.ci"^ 10 668 4.8400
uf75-059.cnf 6 125 0.8100
uf75-06.cnf 12 1858 — 13.0900
uf75-06Q.cnf 7 173 1.6900
uf75-061.cnf 5 35 0.3900
uf75-062.cnf 8 302 2.9200
uf75-063.cnf 9 333 ~~ 2.5300
uf75-064.cnf 8 245 1.7900 “
uf75-065.cnf 10 720 5.0400
uf75-066.cnf 10 “ 727 — 5.4400
iif75-Q67.cnf 7 202 — “ 1.6600 一

u f 7 5 - 0 6 8 . c i ^ 9 379 2.8100
“ uf75-069.cnf 8 343 2.5900 ~

uf75-07.cnf 6 85 0.8800
uf75-Q70.cnf 13 — 851 7.2500
uf75-071.cnf 11 1808 12.7500
uf75-Q72.cnf 8 255 2.2500
uf75-Q73.ciT~ 9 559 — 3.4100
uf75-074.cnf 8 235 2.4100
uf75-075.cnf 10 770 7.0100 “
u f 7 5 - 0 7 6 . c i ^ 17 — 2036 _ 14.1900 “
u f 7 5 - 0 7 7 . c i ^ 5 38 0.4700
u f 7 5 - 0 7 8 . c i ^ 6 108 — 1.0700 一

uf75-079.cnf 17 1164 ~ ~ 8.6100
uf75-08.cnf 9 626 4.8000 —

uf75-08Q.cnf | 4 | 19 | 0.29000

76

Problem Name Number of Layers Number of Nodes Completion Time (sec.)
uf75-Q81.cnf 7 142 1.2400
uf75-082.cnf 10 “ 995 7.5300
uf75-083.cnf 8 “ 248 1.8500
uf75-Q84.cnf 10 “ 306 2.8000
uf75-Q85.cnf 3 “ 13 0.0700
iif75-Q86.ci^ 16 4705 — 25.5100
uf75-087.cnf 3 “ 14 0.2200
uf75-088.cnf 6 112 1.0500
uf75-089.cnf 8 302 2.2500
uf75-Q9.cnf 5 33 0.4100
uf75-09Q.cnf 13 1168 8.3700
uf75-091.cnf 12 476 3.6100
uf75-Q92.ci^ 8 352 2.8000
uf75-Q93.ciT~ 8 — 236 1.8700 ~
uf75-094.cnf 9 358 2.1500
uf75-095.cnf 7 202 2.0200
iif75-Q96.cnf 11 1086 “ 7.2100
uf75-097.cnf 15 866 7.5100 ”
ut75-098.ciTr~ 11 1146 “ 8.0800

-uf75-Q99.cnf 8 | 257 | 2.5500 一

C.4 # of variables: 100, # of clauses: 430

Problem Name Number of Layers Number of Nodes Completion Time (sec.)
-uflOO-Ol.cnF" 10 1694 ~ 20.7900

uflOO-OlQ.c^ 14 — 4471 — 52.6700 —
uflOQ-OlOO.cnf 6 99 1.4400
i i f lOO-01000 j 9 750 一 12.7300 一

uflOO-OlQl.cnf 10 999 15.7400
uflQQ-0102.cnf 15 3323 48.5700

“uflQ0-01Q3.cnf 14 一 4869 “ 62.2300
uflQ0-0104.cnf 18 17478 164.4400 —

77

Problem Name Number of Layers Number of Nodes Completion Time(sec.)
uflQQ-QlQ5.cnf 9 657 10.5500
ufl00-0106.cnf 15 7563 96.1100
uflQ0-0107.cnf 6 95 1.4900
uflQ0-QlQ8.cnf 16 6762 75.2600
ufl0Q-Q109.cnf 9 826 11.7500
uflQO-Qll.cnf 15 6790 80.6000

uflOQ-OllO.cnf 14 8361 93.4500 一

uflOQ-Olll.cnf 11 2012 24.7500
ufl00-0112.cnf 12 1674 20.6800
ufl00-0113.cnf 16 — 9511 101.7100
ufl 00-0114.cnf 13 3079 41.3300
ufl00-Q115.cnf 8 263 3.6000
u f l O O - 0 1 1 6 . ^ 12 — 1931 25.4700
iifl00-0117.cnf 10 933 12.9000
iiflQO-OllS.cnf 6 101 1.2200
ufl00-Q119.cnf 7 185 2.1400
ufl0Q-012.cnf “ 14 2978 31.6000

uflQQ-012Q.cnf 8 403 5.9900
ufl00-Q121.cnf 15 — 11854 — 124.8900
ufl00-0122.cnf 12 — 2342 ？6.2700
u f l 0 0 - 0 1 2 3 . ^ 13 — 4206 "51.4400
ufl00-Q124.cnf 5 68 0.8900
u f l 0 0 - 0 1 2 5 . ^ 10 — 1157 17.3000
ufl0Q-0126.cnf 17 — 8710 110.5600
ufl00-0127.c"^ 19 — 10210 115.3500 —
uflQ0-0128.c"^ 9 561 8.4400 —
uf l00-0129.c^ 14 2976 — 37.6500 一

ufl00-Q13.cnf 15 3998 50.7300
uflQQ-0130.cnf 16 9555 101.0200 “
ufl00-0131.c"^ 11 2315 — 29.1700 —
ufl0Q-0132.cnf 14 5090 70.5900

“uflQ0-Q133.c"i^ 15 12727 145.8600
~ ufl00-0134.cnr 13 4736 “ 58.1100
“ufl00-Q135.cnf 13 1568 21.1000 —

78

Problem Name Number of Layers Number of Nodes Completion Time (sec.)
ufl00-Q136.cnf 8 354 5.2400
ufl00-0137.cnf 11 1696 25.3100
ufl00-Q138.cnf 7 164 1.9600
ufl0Q-0139.cnf 12 2842 29.8800
ufl00-014.cnf 14 3807 39.9900

ufl00-Q14Q.cnf 11 2308 26.0400
uflQ0-0141.cnf 13 3713 52.6900
uflQ0-0142.cnf 9 679 9.0500
ufl00-Q143.cnf 13 3128 39.4400
uflQ0-0144.ciif 11 1732 23.0200
uflQ0-0145.cnf 16 4380 54.6300
uflQ0-0146.cnf 11 1072 15.6100
ufl00-0147.cnf 6 126 2.1200
uflOQ-Q148.cnf 16 3349 45.5500
ufl00-0149.cnf 10 1540 18.7500
ufl00-015.cnf 11 1588 18.6700
uflQ0-0150.cnf 9 832 ~ ~ 8.3800
uflQ0-Q151.cnf 5 41 ~ ~ 0.8600
ufl00-Q152.cnf 14 5774 73.6200

. uflQ0-Q153.cnf 12 _ “ 3473 ：；6.8800
… uflQ0-0154.cnf 19 — 10995 — 122.7200

uflOQ-Q155.cnf 12 3136 37.3200
ufl00-0156.cnf 11 1584 20.8500
ufl00-0157.cnf 18 2038 25.7500
ufl00-0158.cnf 15 — 8964 — 92.8700
ufl00-0159.cnf 14 3269 35.1800
uflOQ-OlG.cnf 18 一 7376 75.8500

ufl00-Q160.cnf 14 5451 52.2400
ufl00-0161.cnf 10 1117 15.9000
ufl00-0162.cnf 6 95 — 1.4900
ufl00-0163.cnf 14 — 6066 66.7200
ufl00-0164.cnf 5 ^ 0.4700
ufl00-0165.cnf 10 lOM 12.4600
ufl00-0166.cnf 12 ^ 35.7400

79

Problem Name Number of Layers Number of Nodes Completion Time (sec.)
ufl00-Q167.cnf 12 2795 34.8200
uflQQ-Q168.cnf 14 3698 41.9000
iifl00-Q169.cnf 11 1143 16.4100
ufl0Q-017.cnf 15 7271 — 83.0200
ufl00-0170.^ 8 ~ 275 一 3.5700

u f l Q O - 0 1 7 1 . ^ 14 5856 — 77.1900
ufl00-0172.cnf 11 1803 21.5400
uflQQ-0173.cnf 14 3306 43.5000
uflQ0-0174.cnf 12 2438 31.6900
ufl00-0175.cnf 10 1423 21.7900
ufl00-0176.cnf 10 1139 13.0900
ufl00-0177.cnf 13 3467 — 32.2400 —
ufl00-0178.cnf 11 1286 16.0900
ufl00-Q179.cnf 11 1029 16.2500
uflOQ-Q18.cnf 5 37 0.7100

ufl00-018Q.cnf 17 5853 65.5500
ufl0Q-0181.cnf 8 436 ~~ 5.9600
uflQQ-Q182.cnf 4 — 18 — 0.4200
ufl00-Q183.cnf 13 4334 — 61.1800
uflOQ-OlM.cnf 12 “ 1725 21.9100
ufl00-bl85.cnf 5 — 55 “ 0.9900
uf lOO-0186.^ 5 41 0.5800
ufl00-0187.cnf 9 399 5.3400
uf lOO-0188.^ 3 I 12 I 0.4500

Appendix D

Experimental Result of ILOG
CPLEX

D.l # of variables: 20, # of clauses: 91

Problem Name Number of Nodes Completion Time (sec.)
uf20-01.cnf -1 0.0300

~uf20-QlQ.cnf “ 14 0.0600
~uf20-0100.cnF - 0.0100 —

uf20-01000.c^ 7 0.0500
~uf2Q-01Ql.cnr 10 一 0.0700

uf20-0102.cnf “ 17 0.0600
~uf20-QlQ3.cnF 11 0.0500
~uf20-0104.cnF - 0.0200
-iif20-0105.cn 厂 41 0.0900
-uf20-0106.cn 厂 13 — 0.0600

-uf20-0107.cn 厂 17 0.0500

~^f2Q-0108.cnf “ 12 0.0700
~uf2Q-Q109.cnf 2 0.0400
~~uf20-011.cnf 2 0.0400
~uf20-0110.cnf - 0.0200

uf20-0111.cnf “ 6 0.0600
—uf20-0112.cn 厂 - 0.0200

iHere the mark "-" means no branch-and-bound algorithm used in solving this integer program-
ming problem

80

81

Problem Name Number of Nodes Completion Time (sec.)
~uf20-0113.cnf 14 — 0.0500

uf20-0114.cn厂 17 — 0.0600

~uf20-0115.cnr" - — 0.0200
~uf2Q-0116.cnf 12 0.0500
~uf2Q-Q117.cnf 14 0.0600
~uf2Q-Q118.cnr" - 0.0200
~uf20-Q119.cnf 27 0.0700
~uf20-Q12.cnf - 0.0200

uf2Q-012Q.cnf - — 0.0300
uf20-0121.cnf 2 — 0.0500

—uf2Q-0122.cnf~ 5 — 0.0400
—uf2Q-Q123.cnf~ 3 0.0400
一 iif20-0124.cnf~ - — 0.0100

uf2Q-0125.cnf 4 — 0.0400
uf20-0126.cn"r" - — 0.0100

-uf20-0127.cn"F 3 0.0500
~ uf20-0128.cn"r" 3 — 0.0300
-uf2Q-Q129.cnf 2 — 0.0200

uf20-Q13.cnf - 0.0100
uf2Q-013Q.cnf - . — 0.0100

~ uf20-0131.cn"F " “ 0.0300
~ uf20-0132.cnf 2 0.0600
~uf2Q-0133.cnf - 0.0200
一 uf20-0134.cnf - 0.0300
-uf20-0135.cnT~ - 0.0300
-uf2Q-Q136.cnT" 32 ~ 0.0900
~uf20-Q137.cnf~ - 0.0400
-uf20-0138.cnf 5 0.0500
~ uf20-0139.cnT" - 0.0200
-uf20-014.cnr~ 14 0.0600
-uf20-Q140.cnT" 3 0.0600

uf2Q-0141.cnf~ 13 0.0500
“uf20-0142.cnf - 0.0400

uf20-Q143.cnf - — 0.0200

82

Problem Name Number of Nodes Completion Time (sec.)
~uf2Q-0144.cnF - 0.0100

uf20-0145.cnf 4 0.0400
~uf20-0146.cnF 3 0.0400

uf2Q-0147.cnf 2 0.0300
—uf20-0148.cn 厂 2 0.0500

~uf20-Q149.cnf - — 0.0300
uf20-015.cnf - 0.0100
uf20-015Q.cnf 1 0.0500

~uf2Q-Q151.cnf~ 3 0.0500
~iif2Q-Q152.cnf~ - 0.0000
~uf2Q-0153.cnf - 0.0300

uf20-0154.cnf 3 0.0400
—uf20-0155.cnf— 3 0.0500

uf2Q-Q156.ci^ 2 0.0300
iif20-0157.c^ - 0.0100
uf2Q-0158.c"^ - 0.0000
uf20-0159.cnf 了 0.0400

uf20-016.cnf i 0.0700
uf20-0160.cnf 3 0.0400
uf20-0161.c^ 30 0.0400

""uf20-0162.cnf - “ 0.0100
uf20-0163.cnf 4 0.0400
uf20-Q164.cnf - 0.0100

~uf2Q-Q165.cnf 2 ~ ~ 0.0400
"~^f2Q-0166.cnf 3 0.0400
~^f20-Q167.cnf 2 0.0400

uf20-0168.cnF 2 0.0400
iif20-0169.cnf~ - — 0.0200
iif2Q-017.cnf 12 — 0.0700

~[If20-017Q.cnf 15 0.0700
"Tif20-0171.cnf - 0.0200
"~^f2Q-Q172.cnf “ - 0.0100
~uf20-0173.cnf~ 5 ~ ~ 0.0500

uf20-0174.cnf 2 0.0600

83

Problem Name Number of Nodes Completion Time(sec.)
uf20-0175.ci^ 2 0 0 ^

Tf20-0176.cnf 24 0.0700
Tf20-0177.cnf 8 0.0400
Tf2Q-0178.cnf 18 0.0600
~^0-0179.cnf — 22 0.0700

uf20-018.cnr~ 11 OO™
uf20-Q180.ci^ 5 0.0500

"~^20-0181.cnf - 0.0200
iif20-0182.ci^ - 0.0200
uf20-0183.c^ 3 0.0400

"~df20-0184.cnf - 0.0300
"~[^20-0185.cnf - 0.0300
~^20-0186.cnf 12 0.0600

uf2Q-0187.c^ 2 0.0200
uf20-0188.cnf [9 — 0.0600

D.2 # of variables: 50, # of clauses: 218

Problem Name Number of Nodes Completion Time (sec.)
iifSO-Ol.cnf 356 1.0400
ufSO-QlO-cnT" 7 0.2100
uf50-Q100.c^ 214 0.8800
uf50-010QQ.cnf 8 0.1900
iif50-0101.c"^ 74 0.4200
iif50-0102.cnf - 0.0700
uf50-0103.cnf 0.3700
uf50-Q104.c^ 130 0.4900
uf50-01Q5.cnf - 0.0300
iif50-0106.ci^ 330 1.3300

"~^0-0107.cnf “ 231 0.7900 ~ ~
"~[If50-0108.cnf “ 91 0.4900 ~ ~

uf50-0109.ciJ~ - 0.0400

84

Problem Name Number of Nodes Completion Time(sec.)
~~uf5Q-011.cnf 358 1.4000

uf50-QllQ.cnf 96 0.5800
uf50-0111.cnf 22 0.3100

~uf50-Q112.cnf 240 0.8500
uf50-0113.cnf 30 0.2900

~Tif50-0114.cnf 120 0.6400
~uf50-0115.cnf 1 一 0.1200

uf50-0116.cnf 156 0.7200
uf50-0117.ciZ~ 7 — 0.2900

~uf50-0118.cnf 251 一 0.8200
~uf50-0119.cnf 65 ~ ~ 0.4600
~ iif50-Q12.cnf 116 — 0.6000
"^f50-0120.cnf 161 0.5900
~^f5Q-0121.cnf 154 0.6700
~uf50-0122.cnf 164 — 0.5900
~uf50-0123.cnf 76 ~ ~ 0.4500
~uf50-0124.cnf 54 ~ ~ 0.4000
~^f5Q-Q125.cnf 352 1.3900
~uf50-0126.cnf~" 17 0.2400 —
"~^f50-Q127.cnf 552 1.6400
"~^f50-Q128.cnf 232 1.0400
~uf50-0129.cnf 157 0.7500
—uf50-013.cnf 95 ~ ~ 0.4000
"Tif5Q-Q130.cnf 4 0.2400
~uf50-Q131.cnf 34 — 0.4100
"~^f50-Q132.cnf 160 0.6600
~uf50-Q133.cnf 188 0.8700
"Tif50-0134.cnf 68 0.4200

uf50-Q135.cnf “ 131 0.7300
~Tif50-Q136.cnf - 0.0400

uf50-0137.cnf “ - 0.0500
~[^f50-0138.cnf - 0.0400
"~[lf50-0139.cnf 一 663 2.1000

~~uf5Q-014.cnf “ 72 0.4600

85

Problem Name Number of Nodes Completion Time(sec.)
~uf50-Q14Q.cnF 2 0.1300
-iif50-0141.cn厂 - — 0.0300
~uf5Q-Q142.cnf “ 72 0.3800
~uf50-0143.cnf 100 0.6100

uf50-Q144.cnf 216 0.9800 .
~uf50-0145.cnf “ 107 0.6100

uf50-0146.cn厂 81 — 0.5900
~ uf50-Q147.cnf~ 692 — 2.4600
“uf50-0148.cnf~ 33 — 0.3500
~uf50-0149.cnf “ 120 0.5400
~uf5Q-015.cnf “ 32 0.3500

uf5Q-015Q.cnf~ 225 — 0.9500
~uf50-0151.cn"F 197 — 0.7800

uf50-0152.c^ 4 0.1900
uf50-Q153.cnf 128 “ 0.7900
uf5Q-0154.cnF" 21 ~~ 0.2600
uf50-0155.cnf — 119 0.6800

“uf50-0156.cnf 3~ 0.1500
-uf5Q-0157.cnT~ 3 0.2100

iif50-0158.c^ 100 0.5900
“uf50-0159.cnf~ 224 0.8200

uf50-016.cnf 49 0.3500
_ uf50-0160.cn"F 84 0.4200
Tf5Q-0161.cnf - 0.0200 —
“uf50-Q162.cnT~ 89 0.5500
—uf50-0163.cnT~ 544 1.8200
~uf5Q-0164.cnf~ - 0.0200
“uf50-0165.cn"F - — 0.0300
~if5Q-0166.cnf~ 17 0.2700
~uf50-Q167.cnf~ 64 0.5500
~uf5Q-Q168.cnf~ 45 0.3700
~uf5Q-0169.cnf~ 2 0.1300
~uf5Q-017.cnf 161 0.6900
~uf50-Q170.cnf~ 87 0.5700

86

Problem Name Number of Nodes Completion Time (sec.)
uf50-0171.cnf 299 1.0800
uf50-0172.cnf~ 97 — 0.6700

~uf50-0173.cnf 252 — 1.0300
~uf50-Q174.cnf 53 — 0.4500
~[rf5Q-Q175.cnf 115 0.5300
~^f50-0176.cnf 374 1.2000
~f50-Q177.cnf 11 0.2500
~ilf50-0178.cnf 13 0.1900
"^f50-0179.cnf 212 0.9200
~uf50-018.cnf 27 — 0.2800
~uf5Q-0180.cnf 213 — 0.8100

uf50-0181.cnf 507 “ 1.7300
~uf50-0182.cnf 455 — 1.3300
一 uf50-Q183.cnf 5 “ 0.1800
~uf50-0184.cnf 8 ~ ~ 0.2500
“uf5Q-0185.ci"^ - 0.0500 ~ ~

uf50-0186.cnf 82 0.5800
~^f50-Q187.cnf “ 130 0.5700
~^f50-0188.cnf “ 0.4700

D.3 # of variables: 75, # of clauses: 325

Problem Name Number of Nodes Completion Time (sec.)
—uf75-01.cnf 4 _ 0.5200
" "^ -OlO.cn f — 5 0.3000
~uf75-Q100.cnf~ 870 5.0800

uf75-Qll.cnf 1642 — 6.9600
~~Lif75-012.cnf “ 1539 8.6800

~ ^ - 0 1 3 . c n f — 528 3.2500
~Tf75-014.cnf “ 451 3.2000 —
~uf75-015.cnf “ 312 2.4100
~~uf75-016.cnf 1594 10.8000

87

Problem Name Number of Nodes Completion Time(sec.)
uf75-Q17.cnf 234 2.0000
uf75-018.cnf 94 1.3300
uf75-019.cnf 1829 11.9800

—uf75-Q2.cnf 91 _ 0.7400
iif75-02Q.cnf 408 2.9700

~~uf75-021.cnf 1057 5.7800
~uf75-022.cnf 1243 ~ ~ 7.4300
~uf75-Q23.cnf 194 — 2.1700
~uf75-024.cnf 565 3.6300
~iif75-Q25.cnf 176 1.5700
~uf75-Q26.cnf 3744 15.2300

uf75-Q27.cnf 6 — 0.5100
uf75-028.cnf 1292 ~ ~ 5.2900

~~uf75-029.cnf 390 3.3600
uf75-03.cnf 1299 — 9.4300

~~uf75-Q3Q.cnf 42 0.8500
~uf75-031.cnf 446 3.5400
~~uf75-032.cnf 173 2.0200
—uf75-033.cnf" 480 3.8000
~~iif75-034.cnf 1108 6.4000

" uf75-Q35.cn"r~ 1055 — 6.7400"""
~ uf75-036.cnf 3154 37.3600
~~iif75-037.cnf 862 4.8000
~~uf75-Q38.cnf 752 4.3400
~uf75-039.cnf 12472 10.6100
—uf75-04.cnf 1836 10.0500
—uf75-040.cnf 228 2.2500
~uf75-Q41.cnf 313 2.9700
~ uf75-042.cnf~ 1959 — 10.1100
~~uf75-043.cnf “ 162 1.8300
~~uf75-Q44.cnf “ 2461 16.0000
~~uf75-045.cnf “ 516 3.0300
~~uf75-046.cnf “ 1938 9.6100
~~uf75-047.cnf 一 494 3.0800

88

Problem Name Number of Nodes Completion Time(sec.)
uf75-048.cnf 30 0.9500
uf75-049.cnf 779 4.9700
uf75-05.cnf 671 5.5800
uf75-050.cnf - 0.0700
uf75-051.cnf 624 3.9500
uf75-052.ci^ 536 4.2100
uf75-053.ci^ 155 1.9100
iif75-Q54.ci^ 1.2400
uf75-055.ciijr~ 4082 19.9700
uf75-Q56.cnf “ 292 2.7500

~uf75-057.cnf 1172 7.3700
uf75-058.cnf 79 1.2000
uf75-059.ciZ~ 2269 12.2000

iif75-Q6.cnf _ 4504 31.0300
uf75-06Q.cnf 165 1.5800
uf75-061.cnf 232 2.2800
uf75-Q62.cnf 1262 9.3800
uf75-063.cnf 251 — 2.3700
uf75-064.cnf 303 1.8100

. uf75-065.ci^ 182 1.3500
uf75-066.ciJ~ 166 1.8300 "“

~£75-067.€11£ “ 1 ~0.4100
~df75-068.cnf 196 1.6900 ~~~
~~df75-069.cnf 749 4.7000
~~iif75-07.cnf 2305 13.4600 ~ ~
~~uf75-070.cnf 607 4.0100

iif75-071.cnf 1055 6.2200
uf75-072.cnf 238 2.3300

uf75-Q73.cnf 12 0.6500
uf75-074.cnf 144 1.6800
uf75-075.cnf 1013 “ 5.7600
uf75-Q76.cnf 400 3.0100 “
uf75-077.cnf — 306 2.2200 “

T f 7 5 - 0 7 8 . c n f “ 859 4.8300 ~ ~

89

Problem Name Number of Nodes Completion Time(sec.)
~uf75-079.cnf “ 2112 14.4800
—uf75-08.cnf 10 — 0.6200

uf75-08Q.cnf 167 一 1.88000

uf75-Q81.cnf 2400 — 26.0900
—uf75-082.cnf — 775 — 5.0100
~uf75-Q83.cnf 669 4.5300
~uf75-084.cnf ~ 896 — 5.5800
~uf75-Q85.cnf ~ - — 0.0800
~uf75-Q86.cnf 907 7.7800
~uf75-087.cnf 154 — 1.1300
~~iif75-088.cnf 537 3.3700
~^if75-089.cnf 339 2.2900
—uf75-09.cnf 360 — 2.7400
~uf75-090.cnf 1476 — 13.5100
~~[if75-Q91.cnf 592 3.6500
~uf75-Q92.cnf~ 167 — 2.0700
~iif75-093.cnf 176 1.7700
~uf75-Q94.cnf~ 189 1.7100
~uf75-095.cnf 1476 — 8.9100
~uf75-096.cnf~ 1150 ~ ~ 6.1400

uf75-097.cnf 3025 ~ ~ 16.6^Q"
~uf75-098.cnf - 0.0800
~uf75-099.cnf 220 2.4500

D.4 # of variables: 100, # of clauses： 430

Problem Name Number of Nodes Completion Time (sec.)
""TTflOO-OLcnf “ 4920 53.9200 ~

uflQQ-OlO.cnf 5728 — 48.3900
TflOO-OlOO.cnf - 2437 19.3300
"iZlQO-OlOOO.cnf" 979 10.1600
TflOO-OlOl.cnf 6489 68.7500

90

Problem Name Number of Nodes Completion Time(sec.)
uflQ0-QlQ2.cnr 1199 15.7400

~7fl00-Q103.cnf “ 7435 68.4200
~ufl00-0104.cnf 386 — 6.8600
~ufl0Q-0105.cnf 3568 — 33.3000
~ufl00-0106.cnf 20261 — 1 5 8 . 3 4 0 0

ufl00-01Q7.ci^ 2424 27.0000
~iifl0Q-01Q8.cnf 297 — 4.0500
~ifl00-01Q9.cnf 10874 ~ ~ 111.3400

uflOQ-Oll.cnf" 2590 25.2700
~ufl0Q-Q110.cnf 7139 — 63.0900
TflOO-Olll.cnf “ 3571 36.7100
~ufl00-0112.cnf 609 — 7.7800
~uf 100-0113.cnf 16003 — 133.9400
~ f 100-0114.cnf - 9756 103.6300
~Lif 100-0115.ciif 8267 — 85.9100
~if 100-01 IG.cnf ~ ~ 2613 — 28.1100
~uflQQ-Q117.cnf 332 5.2900
TflOO-OllS.cnf 16693 133.2900
"~uf 100-01 IQ.cnf 15 ~ ~ 1.1800

uflQQ-012.c5~ 407' 4.3700
ufl00-0120.cii^ 955 10.7800""“

TflQ0-0121.cnf 6215 59.0400
~ufl00-Q122.cnr 1287 14.9400
~ufl00-Q123.cnr 11495 — 114.9100
Tfl00-0124.cnf - 414 5.3400
~iifl00-0125.cnf 5851 62.8900
~iiflQ0-0126.cnf 14508 141.9500
"~iifl00-Q127.cnf 8209 76.6900

ufl00-0128.cnf “ 4885 55.3600
~ufl00-0129.cnf 3543 ~~ 38.3500
~"ufl00-013.cnf— 6072 ~ ~ 52.8900
~flQ0-Q130.cnf “ 4773 46.4800
~^flQ0-0131.cnf" 1147 13.6400

ufl00-Q132.cnF 2524 27.9900

91

Problem Name Number of Nodes Completion Time(sec.)
~uflQQ-0133.cnf 1811 — 17.5300
~uflQQ-0134.cnr 1973 ~ ~ 21.0600
~ufl00-0135.cnf 1697 16.1200
~uflQ0-0136.cnf 73 — 2.0400
Tfl00-0137.cnf - 777 8.6900
~flQQ-Q138.cnf “ 3337 28.2900
~ufl00-0139.cnr 2788 27.9800
~ufl0Q-014.cnf 1584 — 16.3700
~iiflQ0-Q140.cnr 5884 53.2300
~uflQ0-0141.cnr 3858 44.2400
~Lifl00-0142.cnr 6652 ~ ~ 62.0300
~uflQ0-Q143.cnf 1281 13.3000
~iflQQ-0144.cnf 192 3.2700
~ifl00-0145.cnr 3705 42.9100
~ufl00-0146.cnf 669 — 8.3300
"~iiflOQ-Q147.cnf 492 5.6400
~uflQ0-Q148.cnf 2636 27.9500
TflQ0-0149.cnf “ 2884 25.4400

ufl00-Q15.cnf — 6806 — 70.9800
iiflQ0-015Q.cnf 4094 36.1200
uflQ0-0151.ciif 2616 — 29.0000

~flQQ-0152.cnf “ 9855 99.1700
"^00-0153.cnf 9443 69.1100 —
~5l00-0154.cnf 10813 109.5400
TflQ0-0155.cnf 1276 16.8500
~ufl00-0156.cnf “ 609 7.4100
~ifl00-0157.cnF 78 — 2.3300

ufl0Q-0158.cnf 3796 “ 36.8400
~Lifl00-0159 .cnF 4943 53.2400

~[Zl00-016.cnf - 6525 65.1300 一

TflOO-OieO.cnf - 3800 36.2500
TflOQ-Q161.cnf “ 407 5.5200
~uflQQ-0162.cnf 6205 62.2000
~uflOQ-Q163.cnF 4741 44.2400

92

Problem Name Number of Nodes Completion Time(sec.)
ufl00-Q164.cnf 214 3.5100

~ufl00-0165.cnr 706 一 8.8100

~iifl00-0166.cnf 2731 ~ ~ 22.6900
~iiflQ0-0167.cnf 382 5.7500
~ufl00-0168.cnr 5205 一 53.5900

~iifl00-Q169.cnr 1992 一 22.1700

~ufl00-017.cnf~ 27900 222.6400

~uflQ0-0170.cnr 3443 一 40.3100

~ufl0Q-0171.cnr 680 一 8.9000

"^1QQ-Q172.cnf 583 7.5800
~[IflQ0-Q173.cnf “ 5257 53.7800
~^1Q0-Q174.cnf “ 256 3.7300
"~5l00-Q175.cnf “ 3081 35.5200
~^100-0176.cnf 440 5.1300
~^100-0177.cnf “ 2593 21.2500
~uflQ0-0178.cnf 9384 — 90.2600
~^100-Q179.cnf 857 9.8200

uflOQ-Q18.cnf 550 — 7.2900
~^100-0180.cnf 1641 16.6500

uflQQ-OlSl.cnf 7155 77.4800 、：

~[Ifi00^182.cnf 2243 21.5900
~[Ifl00-0183.cnf 4999 58.4700
~ufl00-0184.cnf 3717 39.6200
~ifl00-0185.cnr 1088 一 9.6800
~ufl00-0186.cnr 102 一 1.9400
~LiflQ0-0187.cnr 1081 一 12.6200
~^lQ0-0188.cnf 531 6.2400

Bibliography

AL97] E. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Op-

timization. Wiley-Interscience Series in Discrete Mathematics and Opti-

mization. Wiley, 1997.

APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time

algorithm for testing the truth of certain quantified boolean formulas.

Information Processing Letters, 8(3): 121-123， 1979.

AT79] M. F. P. Bengt Aspvall and R. E. Tarjan. A linear-time algorithm for

testing the truth of certain quantified boolean formulas. Information Pro-

• cessing Letters, 8:121—123, Marcll 1979.

•AU74] J. H. A. V. Alio and J. Ullman. The Design and Analysis of Computer

Algorithm. Addison-Wesley, 1974.

BB93] Michael Buro and Hans Kleine Buning. Report on a SAT competition.

EATCS Bulletin, 49:143-151，1993.

CC95] Michele Conforti and Gerard Cornuejols. A class of logic problems solvable

by linear programming. Journal of the ACM, 42(5):1107-1112, 1995.

CCKVOO] Michele Conforti, Gerard Cornuejols, Ajai Kapoor, and Kristina Vuskovic.

Balanced 0, ±1 matrices part i: Decomposition. Technical report, Septem-

per 2000.

93

94

CCKVOl] Michele Conforti, Gerard Cornuejols, Ajai Kapoor, and Kristina Vuskovic.

Perfect, ideal and balanced matrices. European Journal of Operations

Research, 133:455-461, 2001.

CH91] V. Chandru and J. N. Hooker. Extended horm sets in propositional logic.

Journal of the ACM, 38:205-221, January 1991.

CKT91] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the

Really Hard Problems Are. In Proceedings of the Twelfth International

Joint Conference on Artificial Intelligence, IJCAI-91, Sidney, Australia,

pages 331—337，1991.

Com92] September 1992. DIMACS Challenge Committee. The Second DIMACS

International Algotithm Implementation Challenge: General Information.

Available via anunumous FTP from dimacs. rutgers. edu.

Com93] May 1993. DIMACS Challenge Committee. Satisfiability Suggested For-

mat. Available via anunymous FTP from dimacs. rutgers. edu.

Coo71] S. Cook. The complexity of theorem proving processing. In Proceedings of

the Third Annual ACM Symposium, Theory of Computing, pages 151-158,

1971.

CS88] Vasek Chvatal and Endre Szemeredi. Many hard examples for resolution.

Journal of the ACM, 35(4):759-768, 1988.

DABC96] 0. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. SAT versus UN-

SAT. Discrete Mathematics and Theoretical Computer Science, 26:415—

436，1996.

DBL92] Mitchell D., Selman B., and H. Levesque. Hard and easy distributions

of SAT problems. In Proceedings of the Tenth National Conference on

Artificial Intelligence (AAAI-92), pages 459-465, 1992.

95

Dec92] Rina Dechter. Constraint networks. In Stuart C. Shapiro, editor, Ency-

clopedia of Artificial Intelligence. John Wiley and Sons, New York, 2nd

edition, 1992.

DG84] William F. Dowling and Jean H. Gallier. Linear-time algorithms for test-

ing the satisfiability of propositional horn formula. Journal of Logic Pro-

gramming, 3:267-284, 1984.

DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine pro-

gram for theorem-proving. Communications of the ACM, 5(7):394-397,

1962.

DP60] M. Davis and H. Putman. A computing procedure for quantification the-

ory. Journal of ACM, 7:201-215, 1960.

DR94] Rina Dechter and Irina Rish. Directional resolution: The Davis-Putnam

procedure, revisited. In Jon Doyle, Erik Sandewall, and Pietro Torasso,

editors, KR'94： Principles of Knowledge Representation arid Reasoning,

pages 134-145. Morgan Kaufmann, San Francisco, California, 1994.

FP83] J. Franco and M. Paull. Probabilistic analysis of the Davis-Putnam proce-

dure for solving the satisfiability problem. Discrete Applied Mathematics,

5:77-87, 1983.

Fre95] Jon William Freeman. Improvement to Propositional Satisfiability Search

Algorithms. PhD thesis, University of Pennsylvania, 1995.

GN72] Robert S. Garfinkel and George L. Nemhauser. Integer Programming.

Wiley-Interscience, 1972.

Gol79] Allen Goldberg. On the complexity of the satisfiability problem. Tech-

nical Report 16, Courant Institute of Mathematical Science, New York

University, New York, 1979.

96

Gu92] J. Gu. Efficient local search for very large-scale satisfiability problems.
SIGART Bulletin 3, 1(1992):8-12，1992.

GW93] I. Gent and T. Walsh. Towards an understanding of hill-climbing pro-

cedures for SAT. In Proceedings of the Eleventh National Conference on

Artificial Intelligence (AAAI-93), pages 28—33，1993.

HK56] A. J. Hoffman and J. B. Kruskal. Integral boundary points of convex poly-

hedar. In H. W. Kuhn and A. W. Tucker, editors, Linear Inequalities and

Related Systems, pages 223-246. Princeton University Press, Princeton,

1956.

JSD93] Brigitte Jaumard, Mihnea Stan, and Jacques Desrosiers. Tabu search

and a quadratic relaxation for the satisfiability problem, October 1993.

Presented at the DIMACS Challenge II Workshop.

KP92] Elias Koutsoiipias and Christos Papadimitriou. On the greedy algorithm

for satisfiability. Information Processing Letters, 43:53-55, 1992.

Li99] Chu-Min Li. A constraint-based approach to narrow search trees for sat-

isfiability. Information Processing Letters, 71:75-80, 1999.

Mac92] Alan K. Mackworth. Constraint satisfaction. In Stuart C. Shapiro, editor,

Encyclopedia of Artificial Intelligence. John Wiley and Sons, New York,

2nd edition, 1992.

MR91] Mitterreiter and F. J. Radermacher. Experiments on the running time

behavior of some algorithms solving prepositional logic problems. Tech-

nical report, Forschungsinstitut fiir anwendiingsorieiitierte Wissensverar-

beitung, Ulm, 1991.

97

MSK97] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local
search. In Proceedings of the Fourteenth National Conference on Artificial

Intelligence (AAAI-97), 1997.

PR88] R. Gary Parker and Ronald L. Rardin. Discrete Optimization. Academic

Press, 1988.

RD77] J. N. E. M. Reingold and N. Deo. Combinatorial Algorithms: Theory and

Practice. Prentice-Hall, 1977.

Ree93] C. R. Reeves, editor. Modem Heuristic Techniques for Combinatirial

Priblems. Halsted Press, 1993.

Roj] M. C. R. Rojas. From quasi-solutions to solution: An evolutionary algo-

rithm to solve csp.

RSOR96] V. Rayward-Smitli, 1. Osman, and C. Reeves, editors. Modern Heuristic

Search Methods. Wiley, 1996.

Scu90] Maria Brazia Sciitelia. A note on dowling and gallier's top-down algo-

rithm for propositional horn satisfiability. Journal of Logic Programming,

8(3):265-273, May 1990.

Sey80] P. D. Seymour. Decomposition of regular matroids. Journal of Combina-

torial Theory (B), 28:305-359, 1980.

SKC94] B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local

search. In Proceedings of the Twelfth National Conference on Artificial

Intelligence (AAAI-94), pages 337-343, 1994.

SLM92] B. Selman, H. Levesque, and D. Mitchell A new method for solving hard

satisfiability problems. In Proceedings of the Tenth National Conference

on Artificial Intelligence (AAAI-92), pages 440-446, 1992.

98

Tru90] K. Truemper. Polynomial theorem proving I. central matrices. Tech. Rep.

UTDCS, pages 34—90, 1990.

VD68] A. F. Jr. Veinott and G. B. Dantzig. Integral extreme points. SI AM

Review, 10:371-372，1968.

WalQQ] J. P. Walser. Integer Optimization by Local Search: A Domain-

Independent Approach, volume 1637 of Lecture Notes in Artificial Intelli-

gence. Springer, 1999.

Wol98] L. A. Wolsey. Integer Programming. Wiley, New York, 1998.

CUHK L i b r a r i e s

DDM07730M

