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Abstract 

Satisfiability problem is a well-known NP-complete problem. It consists of testing 
whether the clauses in a Conjunctive Normal Form can all be satisfied by certain 
consistent assignment of binary values to variables. If it is consistent, the problem is 
said to be satisfiable; otherwise, it is unsatisfiable. The 3-SAT randomized problem is 
the smallest NP-complete problem in SAT. In literature, many transformations have 
been proposed in converting the satisfiability problem into an integer programming 
problem. These transformations usually create nonlinear integer programming prob-
lems that are very difficult to solve. 

The dim of this work is to generate a novel simple equivalent linear integer, program-
ming model. This simple integer programming model is then solved by our suggested 
branch-and-bound linear relaxation programming algorithm. The order principle in 
the branch-and-bound method is derived from the Totally Unimodularity property 
of the constraint matrix. Computational results show that the proposed algorithm 
is very effective for both randomly generated 3-SAT problems and some hard 3-SAT 
problems reported in literature. 

viii 
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摘 要 

可滿足性問題(Satisfiability problem)是一個非常著名的NP完全問題。它是指檢驗 

是否存在一種對一組布林變量的賦值使得由若干個子句組成的合取範式的集合爲 

真。如果存在賦值滿足全部子句，此問題被稱爲可滿足的，否則，此問題是不可滿 

足的。每個子句只含有三個文字的隨機可滿足性問題(3-SAT)是可滿足性問題中的 

最小的NP完全問題。關於把滿足性問題轉化爲整數規劃問題，文獻中多有提及。 

遺憾的是這些轉換通常因爲生成了非線性的整數規劃問題而使問題變得更加難以解 

決。 

我們這項研究工作的目的是産生一個新穎簡單而與原問題等價的線性整數規劃問 

題。這個簡單的整数規劃模型可用我們提出的分支定界線性鬆驰演算法求解。在分 

之定界法中的變量排序原則是來自約束係数矩陣的單模性質。大量的計算結果表 

明，對於隨機産生的3-SAT問題和一些非常難的3-SAT問題，我們的演算法都是非 

常有效的。 
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Chapter 1 

Introduction 

1.1 Satisfiability Problem 

The prepositional satisfiability problem (SAT) consists of finding a truth assignment 

that satisfies all the clauses in S [satisfiahle) or showing that none exists (unsatisfi-

able). 

SAT problem has been classified as the first NP-complete problem. If each clause 

exactly contains r literals, the problem is called an r-SAT problem. 2-SAT problem is 

solvable in polynomial time ([AU74, Coo71, RD77, AT79]), and 3-SAT is the smallest 

NP-complete subproblem of SAT with its computation time 0(2几).If the ratio of the 

number of clauses to the number of variables is approximately equal to around 4.25 

for a random 3-SAT problem, the problem is very difficult to solve. 

1.2 Motivation of the Research 

Besides Davis-Putman-Loveland procedure and Satz methods, satisfiability problems 

can be solved by integer programming methods or semidefinite programming meth-

ods. Many transformations have been proposed in literature, but they usually create 

1 
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nonlinear integer programming models which may not be solved as easily as the orig-

inal ones. Based on this consideration, a novel simple model that is equivalent to the 

original problem is proposed. 

In the section of solving the proposed integer programming model, we focus on the 

Totally Unimodularity property of the constraint matrix. From the Totally Unimod-

ularity property theory, if the constraint matrix is Totally Unimodular, it can be 

solved by its linear relaxation. In literature, researchers have discussed how to solve 

SAT if the constraint matrix is Totally Unimodular[CC95], and how to recognize the 

Totally Unimodular matrix[CCKV01]. However, the majority of SAT problems is not 

totally unimodular in its initial setting. Thus, we develop a branch-and-bound rule 

that can make the constraint matrix closer and closer to a totally unimodular one in 

the process of fixing variables one by one. In this way, the probability of solving the 

SAT problem by linear program relaxation will increase in the middle of the solution 

process. 

The above consideration motivates us lo develop a procedure to convert the conjunc-

tive norm form (CNF) SAT problem into a novel simple equivalent integer program-

ming problem, and then solve it by our proposed branch and bound algorithm. 

1.3 Overview of the Thesis 

This thesis is organized as follows. Chapter 2 gives a brief review of the satisfia-

bility problem, its history, some typical and popular solution techniques, and some 

useful information on the internet. We mainly discuss the basic DPL search algo-

rithm and three important improvements to the basic algorithm: Satz, heuristics and 

local search, and relaxations. Integer programming formulation and its continuous 
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relaxation are important tools for this research. We provide some basic integer pro-

gramming formulations for logic problems in Chapter 3 and for the SAT problem in 

Chapter 4, and explain the equivalence between the IP formulation and the original 

SAT problem. An example is given in Chapter 4 to illustrate the model conversion. 

Some classes of logic problems are solvable by linear programming. We introduce two 

types of them in Chapter 5: unimodularity and totally unimodularity. Totally uni-

modularity is the theoretical foundation of this thesis. Based on totally unimodularity 

(TU) theorems, some matrix research results are described in Chapter 6. In Chapter 

7，we introduce our TU-based branch-and-bound algorithm in details. A simple ex-

ample is given to illustrate this algorithm step by step. In order to test the efficiency 

of our algorithm, we perform large-scale computational experiment in Chapter 8 for 

some hard problems posted on SAT-related web-pages. Chapter 9 summarizes the 

research contributions and discusses possible future work. 



Chapter 2 

Satisfiability Problem 

In this chapter I give the background of this thesis. Satisfiability (SAT) problem 

is the first NP-complete problem[Coo71]. SAT is also a footstone of computational 

complexity theory, and it is of commercial importance because of the great benefit 

from a highly efficient SAT solver for thousands of practical combinatorial problems. 

Its applications include graph coloring, Boolean N-queen induction, circuit diagnosis 

and scheduling problem [Roj, Wal99 . 

There are 6 sections in this chapter. The first section presencs the definition of 

satisfiability problem. The second briefly discusses the history of SAT. The third 

describes a basic search algorithm for solving SAT. The fourth describes the general 

improvements to this algorithm. The fifth discusses benchmarks for evaluating a SAT 

tester's performance. We will list some recently released solvers in the last section. 

4 
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2.1 Satisfiability Problem 

2.1.1 Basic Definition 

In prepositional logic area, atomic propositions xi, • • • , Xj, • • • , Xn can be either true 

or false. A truth assignment is an assignment array of "true" or "false" to every atomic 

proposition. A literal is an atomic proposition Xi or its negation (complement) Xi. 

A clause is a disjunction of literals and is satisfied by a given truth assignment if at 

least one of its literals is true. Otherwise, the clause is unsatisfied. [CC95 

The set of S clauses can be represented by the conjunctive normal form (CNF) 

ies jePi jeNi 

where Pi is the set of x's subscript in i-th clause, N.： is the set of x's subscript in z-th 

clause. 

Consider a propositional formula S in Conjunctive Normal Form (CNF) on a set of 

Boolean variables Xi, X2, • • •,工n, the satisfiability (SAT) problem consists of testing 

whether clauses in S can all be satisfied by some consistent assignment of truth 

values (1 or 0) to variables. If it is the case, S is said satisfiable; otherwise, S is 

said unsatisfiable. If each clause exactly contains r literals, the subproblem is called 

r-SAT problem. 3-SAT is the smallest NP-complete sub-problem of SAT. [Li99: 

2.1.2 Phase Transitions 

Phase transition phenomenon is an interesting property of uniform Random-3-SAT. 

i. e.，when systematically change (increasing or decreasing) the number of clauses, 

k, for fixed problem size n, a rapid change in satisfiability occurs. More precisely, 
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when the number of clauses, k, is small enough for problem size n, almost all prob-

lems are satisfiable; when k is increased to some critical k = k,, the problem sud-

denly turns to be very difficult to be satisfied, i.e., with probability zero, we can 

find a satisfiable assignment to such a problem. Beyond k', almost all instances 

are unsatisfiable. Intuitively, k' characterizes the transition between a region of un-

derconstrained instances which are almost satisfiable and overconstrained instances 

which are mostly unsatisfiable [CKT91]. We call this k' the phase transition critical 

number/ratio. For Random-3-SAT, this phase transition phenomenon occurs approx-

imately at k' = 4.26n for large n; for smaller n, the critical ratio of clauses/variable 

{k'/n) is slightly higher (around 4.27). Furthermore, for growing n the transition crit-

ical value k' becomes increasingly sharp. The problems from phase transition region 

are generally called hard problems. Man)' researchers use test-sets sampled from the 

phase transition region of uniform Random-3-SAT to test their algorithms. Similar 

phase transition phenomena have been observed for other classes of SAT, including 

uniform Random k-SAT with /c ：> 4. But uniform Random-3-SAT is still the most 

popular instances for solver testing and algorithm research. In section 2.5.2, we will 

talk about this phenomena again. 

2.2 History 

As early as 1971, Stephen Cook has proved that SAT is NP-complete in his paper [？] 

that defined the notion of NP-completeness. 

SAT problems can be regarded as a class of special cases of constraint satisfaction 

problems(CSF), in which each variable can take one of a finite number from a set of 

possible values. A plenty of solution techniques on CSP can be found in literature. 
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Dechter and Mackworth both provide excellent overviews in 1992 [Dec92, Mac92 . 

The first SAT search algorithm is owed to Davis and Putnam [DP60] and has been 

named as the Davis-Putnam procedure, or simply DP. In fact, we should mention 

that 50 years earlier before Davis and Putnam published their algorithm in 1960, L. 

Lowenheim has actually discovered it [CS88]. The difference between DP and the later 

version contributed by Davis, Logeman, and Loveland [DLL62], which well known as 

DPL, is as follows: DPL uses a splitting rule to replace the original problem by two 

smaller subproblems, whereas DP uses a variable elimination rule to replace the orig-

inal problem usually by one larger siibproblem [DR94, Fre95]. DPL is implemented 

more often than DP due to the four key disadvantages of variable elimination rule: it 

is more difficult to implement than the splitting rule; it tends to rapidly increase the 

length and number of clauses; it tends to generate a lot of redundant clauses; and it 

rarely generates new unit clauses [DLL62, Fre95 . 

There has been a common understanding that the history of SAT search techniques 

since 1960 has largely been the history of the various techniques that researchers have 

proposed to speed up and improve DPL. 

Recently, the international interest in SAT algorithms has never been so high. Many 

professional web-pages and recent conferences have been set up to emphasized both 

analytical and experimental research on SAT [BB93, Com93]. Many people have 

been involved in SAT research and have developed much fast SAT testers. We will 

list some in the later section. 
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2.3 The Basic Search Algorithm 

In literature, many kinds of methods have been released for solving Conjunctive Nor-

mal Form Satisfiability (CNF-SAT) problems. 

As we all know, The Davis-Putnam-Loveland procedure (DPL)[DLL62] is the best 

complete algorithm to solve SAT problems. It was named after Martin Davis, George 

Logemann and Donald Loveland in 1962 [DLL62]. It is also one of the major practical 

methods for the SAT problems. The basic idea of the DPL procedure was presented in 

DP60]. Figure 2.1 shows the basic version of DPL. It is a depth-first search algorithm 

through the set of all possible truth assignments until it either finds a satisfying truth 

assignment or detects the entire possible solution space without finding any. 

Function Search(S') = 
case Truth-Vector(5) of 

T ^ (true, Trirtli-AssignmeirtC*?)) 
F=> (false,Truth-Assignment(5)) 
I=4> l e t /=an open l i t e r a l in tha open clauses of S , 

ibool,v)=Sea.Tch(S[l T]) 

in i f bool then (true, v) e lse Search(5[/ ^ F]) end; 

Figure 2.1: The basic search algorithm 

Initially, we call it with So(F). This function takes an argument vector as the system 

state and returns a <truth value, truth assignment> pair. The literal I in this function 

is called the premise, and the proposition associated with I is called the branching 

proposition or branching variable. 
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2.4 Some Improvements to the Basic Algorithm 

In this section we briefly describe the main ways in which we can improve the basic 

search algorithm and explain the basic idea behind each of them. These techniques 

are conceptually general and well known, although not all of them are necessarily 

useful in practice. 

2.4.1 Satz by Chu-Min Li 

To our best knowledge, Satz, contributed by Chu-Min Li, is the fastest DPL procedure 

on random 3-SAT problems [Li99]. Roughly speaking, Satz is a very simple DPL 

procedure in which the next branches on the variable reduce the largest number of 

clauses in S at every node. More precisely, let 'w{x) be the number of clauses reduced 

when X is assigned 1, and 'w{x) the number of clauses reduced when x is assigned 0. 

The weight of x is defined by the equation suggested by Freeman in his PhD thesis 

Fre95]: ' . ' 

H{x) = w(x) * w(x) * 1024 + w(x) + (2.4.1) 

Satz branches on x with the largest H{x). Note that there is a balance in this 

equation. If w{x) » w(x) or w{x) » w(x), x will generally not be selected as a 

branching variable. 

We have known that the basic idea of the DPL procedure is to construct a binary 

search tree for solving 5, each recursive call constituting a node of the tree. It is well 

known that given the number of variables, some problems, when the ratio of clause 

number to variable number is approximately equal to around 4.25, are much harder 

than others, necessitating construction of a much larger tree. In [Li99], Chu-Min 
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Li pointed out that the mean height of a search tree is somewhat irrelevant in the 

hardness of random 3-SAT problems when using a DPL, and if a search tree is larger, 

it is only because the search tree is wider. One of the objectives to implement a DPL 

procedure is to minimize the mean height of search trees (depth-first algorithm in 

DPL). Li figures out through experimental study that the essential objective should 

be minimizing the width (instead of the mean height) of search trees, which roughly 

implies using constraints to find contradictions (or reach the dead-node) as early as 

possible. 

Based on such consideration, Chu-Min Li makes some improvements to DPL proce-

dure. First, Li modifies the branching rule of Satz in order to generate more and 

stronger constraints. It is indicated that i) the constraint is stronger if it suppresses 

more solutions; ii) binary clauses sharing complementary literals can remove much 

more solutions and have more chances to lead to a dead-node where all solutions are 

removed. The improved DPL procedure suggested by Li branches next on the variable 

that can generate siibproblems in which more binary) clauses share complementary 

literals. So, the weight of the literal x is revised to: 

w{x) = [/(o+/(ni 
IVl'is produced by x = l 

where I and I' denote two different literals, and / ( [ ) is the number of binary occur-

rences of I ill S if there is a sufficient number (larger than 10 as suggested by Li) of 

binary clauses in S otherwise it is the number of weighted occurrences of I in S. A 

clause of length > 2 is counted as 5一 (�—2) binary occurrences. The weight w{x) can be 

similarly defined. The weight of variable x is then obtained by simply replacing the 

value of both w{x) and w[x) in Freeman's formula in (2.4.1). 

Li also suggested to use a looking further forward technique to search a dead-node. 
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The idea of a lookahead algorithm, or constraint propagator, is to set up a function 

that takes a state vector S and returns a state vector S' such that the function runs in 

low-order polynomial time. The satisfaction of S' is equivalent with the satisfaction of 

S, but S' is in some sense easier to be satisfied than S. For example, S' may have more 

valued propositions than S. In other words, S' may have fewer open propositions or 

clauses than 5, or S' may stipulate some relationship between the truth values of two 

of more open propositions in S [Fre95 . 

Typically, many SAT search methods use more than one lookahead algorithm at ev-

ery node of the search tree to simplify the remaining problem as much as possible. 

Li's looking further forward technique actually uses a lookahead algorithm ——unit 

propagation in two levels. If the satisfaction of a literal I reduces many clauses, i. 

e., it introduces many strong constraints by unit propagation, it probably leads to 

an imminent dead-node which can be reached by further (second level) unit propa-

gations. If Unitpropagation{F U { / } ) reduces more than T (empirically fixed to 65 

for hard random 3-SAT problems) clauses, then tor every variable y in the newly 

produced binary clauses occurring both positively and negatively in binary clauses, 

Umtpropagation{F U { / } U {y}) and Unitpropagation{F U { / } U {y}) should be ex-

ecuted. If both propagations reach a dead-node, then I should be satisfied [Li99 . 

These two propagations are called unit propagations of second level. This technique 

enables Satz to reach dead-node earlier so as to narrow a search tree and speed up 

the resolution. 



12 

2.4.2 Heuristics and Local Search 

Optimization methods can be classified to two main categories - exact and approx-

imate methods. Exact methods perform a systematic search for optimal solutions, 

while approximate methods can not theoretically guarantee to find optimal or even 

feasible solutions. It is designed to find a relative "good" or near-optimal solutions 

quickly. In operations research, approximate methods are commonly termed heuris-

îcs [Wal99]. Heuristics have received much interests in recent years due to their 

practical applications [Ree93, RSOR96, AL97 . 

Local search is an important class of heuristics with a long history for combinatorial 

optimization. Research work on local search can date back to 1950s and 1960s, when 

methods for the travelling salesman problem are presented. The basic idea of local 

search is to start from one of a feasible solution and iteratively make changes to 

improve the current solution. All variations of local search methods in literature have 

the common idea of local moves which a,re transitions in the space of all possible 

solutions no matter it is feasible or infeasible, typically according to a strategy that 

works by improving the local gradient of a measure of the solution quality (a strategy 

called hillclimbing) [Wal99 . 

Recently, local search techniques have gotten much success for model finding in propo-

sitional satisfiability [SLM92, Gu92, GW93]. This kind of local search strategies is 

also termed as iterative repair: Given a problem stated in terms of some variables and 

some constraints, one first generates an initial truth assignment of all variables. Nor-

mally it will violate a number of constraints. Iteratively, variable values are changed 

in order to reduce the number of conflicts with the constraints, i. e.，in order to repair 

the current variable assignment to iteratively close to a satisfying variable assignment. 
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Among many efficient local search strategies for SAT, the Walks at Strategy con-

tributed by Selman, Kautz, and Cohen[SKC94, MSK97] is the most successful one. 

The basic Walksat strategy performs a greedy local search equipped with a "noise" 

strategy. In [Wal99], Joachim Paul Walser discribes the method as follows: Initially, 

all variables are assigned a random value from {0,1}. It then iteratively selects a 

violated clause, from which it selects a variable such that changing its value yields 

the largest increase in the total number of satisfied clauses. If no such variable exists, 

a variable from this clause is selected randomly according to some detailed scheme. 

Such variable changes are repeated a fixed maximal number of iterations and then 

a restart takes place. If no satisfying assignment is found after a fixed number of 

restart, the procedure is terminated unsuccessfully. 

2.4.3 Relaxation 

If there exist some spedal cases of SAT and other appropriate problems which can 

be solved in low-order polynomial time, we can use Relaxation. Part of the algorithm 

proposed in this thesis use the idea of Relaxation. Given a CNF formula S, the idea of 
i. 

Relaxation here is to construct a subproblem SP{S) such that it can be solved in low-

order polynomial time, and solving it can sometimes indicate the satisfiability of the 

original problem. Although the subproblem need not be a SAT problem, generally it 

is. Two general techniques are used to construct such low-order subproblem [Fre95]: 

1). deleting some clauses from S until the resulting problem is a special case (easy 

problem) of SAT[JSD93], or 2). deleting literals from each of the clauses in S until 

the resulting problem is a special case of SAT. The special cases of SAT are 2-SAT 

(every clause has at most 2 literals) and Horn-SAT (every clause has at most one 
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positive literal). Both of the two special cases are solvable in linear time[APT79, 

DG84, Scu90 . 

2.5 Benchmarks 

We need some benchmark problems to evaluate the performance of a SAT tester/solver. 

Generally, there are two main classes: specific problems, which may be encodings of 

real-world practical problems; and randomly generated problems, which can be very 

difficult to solve but with rare practical application. 

2.5.1 Specific Problems 

There are two widely known collections of specific problems. The fist was contributed 

by Mitterreiter and Radermacher in 1991 [MR91], and the second was created in con-

junction form with the Second DIMACS Implementation Challenge in 1993 [Com92 . 

The first collection is available via anonymous FTP from dimacs. rutgers. edu/pub/ 

challenge/sat/benchmarks/cnf/f aw. cnf . Z. The second collection are currently 

available via anonymous FTP from ftp:/ /climacs.rirtgers.edu/pub/diallenge/ 

sat/benchmarks. 

2.5.2 Randomly Generated Problems 

We can also create benchmark problems by some random problem generators. One of 

this type of benchmarks is fixed probability problems which is due to Goldberg[Gol79 . 

There are three parameters to generate the instances (P, N, p), where P is the number 

of propositions, N is the number of clauses, and p (0 < p < 0.5) is a fixed number 
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indicating the common appearance probability for each proposition /; Its complement 

I appears with probability p; neither I nor I appears with probability 1 — 2p; clauses 

containing 0 or 1 literals are not allowed. The N clauses are generated independently, 

and within each clause, a given proposition I also appears independently. 

Another class of randomly generated problems is fixed clause length problems, which 

is due to Franco and Paull [FP83]. Instances are generated from three parameters 

(P, N, K)^ where P and N have the same meaning with fixed probability problems 

generator, and K is the number of literals per clause. So each instance consists 

of N clauses, and each clause contains exactly K literals. Each clause is selected 

independently and randomly from the set of possible clauses. 

In Section 2.1.2, we have known that some problems are very difficult to solve when 

the ratio of clause number /variable number is close to some fixed number. Koutsou-

pias, Papadinitriou and Mitchell et al described this phenomenon in [KP92, DBL92 . 

Koutsoupias and Papadinitriou pointed that the majority of fixed clause length prob-

lems are very easy to satisfy (for K = 3), i. e., a greedy local search algorithm can 

always succeed to find a satisfying assignment if one exists. Mitchell et al. showed ex-

perimentally that, when there exists some relationship in < P,N,K ：>, the problems 

are very difficult to solve on the average. Dubois's estimates of the crossover points 

{N/P) for 9 values of K are listed in Figure 2.2 [DABC96 . 

Because the problems near the crossover point are very difficult to solve on average, 

they are suitable to be benchmarks. 
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k Crossover Point 
3 4.24 

~ir~ 9.88 
21.05 
43.31 

7 87.70 
"~8~ 176.41 
" V 353.88 
~ W 708.78 

726816.49 

Figure 2.2: Some crossover points for Random /c-SAT 

2.6 Software and Internet Information for SAT solv-

ing 

We can find many SAT testers/solvers on the Internet. We list here some of them in 

two classes. 

2.6.1 Stochastic Local Search Algorithms (incomplete) 

• GSAT, Version 41 (contributed by Henry Kautz and Bart Selman) 

• Walks AT, Version 35 (contributed by and Bart Selman) 

2.6.2 Systematic Search Algorithms (complete) 

• EQSATZ (version 2.0 of Feb. 2001; contributed by Chu-Min Li) 

• GRASP (version of Feb. 2000; contributed by Joao P. Marques da Silva) 

• NTAB (via James Crawford's home page) 
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• POSIT, Version 1.0 (contributed by Jon W. Freeman) 

• REL_SAT, Version 2.00 (contributed by Roberto Bayardo) 

• REL_SAT, Version 1.0 (contributed by Roberto Bayardo) 

• REL_SAT, E-mail access (maintained by Roberto Bayardo) 

• REL_SAT-rand, Version 1.0 (contributed by Henry Kautz) 

• SATO, Version 3.2.1 (contributed by Hantao Zhang) 

• Satz213 (new version) (contributed by Chu-Min Li) 

• Satz (contributed by Chu-Min Li) 

• Satz-rand, Version 4.7 (contributed by Henry Kautz) 

• Satz-rand, Version 2.0 (contributed by Carla Gomes, Henry Kautz, and Bart 

Selman) 

2.6.3 Some useful Links to SAT Related Sites 

• SATLIB — The Satisfiability Library: 

http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/ 

• SATLIVE — Up-to-date links to satisfiability problem: 

http://www.satlive.org 

• The Sat-Ex Site: The experimentation web site around the satisfiability prob-

lem: 

http://www.Iri.fr广Simon/satex/ 

http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/
http://www.satlive.org


Chapter 3 

Integer Programming Formulation 
for Logic Problem 

In this chapter, I give a survey of the connection between propositional logic and 

integer programming. 

In propositional logic, several problems, such as satisfiability, MAX SAT and logical 

inference, can be formulated as integer programs. 

A truth assignment satisfies the set of S clauses: 

V xj V ( V ^j) for all i e s, 
jePi jeNi 

if and only if the corresponding 0,1 vector satisfies the following system of inequalities: 

[CC95] 
y^ Xj — ^^ Xj >1 — |iVi| for all i G s, 
jePi jeNi 

where the value of is the number of xs in the 2-th clause. 

Given a 0, ± 1 matrix A, n{A) is the vector whose i-tli component ni{A) is the 

number of -I's in the z-th row of A. The vector of all I's is denoted by 1. Under such 

denotement, the above system of inequalities takes the form 

Ax>l- n(A) (3.0.1) 

18 
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3.1 SAT Problem 

Given a set S of clauses, the satisfiability problem(SAT) consists of finding a truth 

assignment that satisfies all the clauses in S or show that none exists. Eqiiivalently, 

SAT consists in finding a 0,1 solution x to (3.0.1) or show that none exists. [CC95 

3.2 MAXSAT Problem 

Given a set S of clauses and a weight vector w whose components are indexed by 

the clauses in the weighted maximum satisfiability problem (MAXSAT) is to find a 

truth assignment that maximizes the total number of weighted satisfing clauses. The 

integer programming formulation of MAXSAT is: 

Min YlT=i 叫Si 

Ax-\-s>l- n{A) 

X e { 0 , l } " , s G {0,1 广 

where ^ is a 0, ± 1 matrix. 

3.3 Logical Inference Problem 

Given a set S of clauses (the premises) and a clause C(the conclusion), logical infer-

ence ill prepositional logic consists of deciding whether every truth assignment that 

satisfies S also satisfies the conclusion C. 

The clause C can be formulated by an inequality using transformation (3.0.1): 

cx>l — n(c), 
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where c is a 0，土 1 vector and n(c) is the number of components in (c) which is equal 

to —1. Therefore, C cannot be deduced from S if and only if the integer programming 

problem 

min{cx :Ax>l- n{A), x € {0 ,1}" } (3.3.1) 

has a solution with the optimal value —n{c). 

3.4 Weighted Exact Satisfiability Problem 

Let a vector w be the weights associated with the atomic propositions vecter a;, and 

let be a set of clauses, S' be a subset of S. The weighted exact satisfiability problem 

consists of finding a truth assignment (if any) such that[CC95]: 

• Every clause in S is satisfied and, in every clause of S', there exists exactly one 

literal that assumes the value true, and 

• The sum of the weights of the atomic propositions that assume the- value true 

is maximized. 

The formulation is the following integer programming model: 

Max E二 WiXi 

Ax>l- n{A) 

A'x = l - n{A') 

X e {0,1}" 

where A' is the row submatrix of A corresponding to S'. Note that the logical infer-

ence problem is a special case of the weighted exact satisfiability problem. 
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The above four problems are NP-hard in general but SAT and logical inference can 

be solved efficiently for Horn clauses, clauses with at most two literals and several 

other related clauses [CH91, Tru90 . 



Chapter 4 

Integer Programming Formulation 
for SAT Problem 

In the last chapter, we introduce the integer programming formulations for some logic 

problems. In this chapter, we will focus on the integer programming formulation for 

3-SAT. 

4. i From 3-CNF SAT Clauses to Zero-One IP Con-

straints 

111 literature, many transformation have been proposed for converting the satisfiability 

problem into an integer programming problem. These transformations usually create 

nonlinear integer programming problems, which are generally very difficult to solve. 

Actually, we can convert the CNF clauses into IP constraints by a novel simple way: 

we can interpret "rci" as "1 — Xi'，and the symbol of “•” as "+" operation. 

In addition, each literal can only take a boolean value 0 or 1, and each clause will 

be true if at least one literal takes the value 1. Therefore, we can convert the CNF 

22 
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clause into an IP constraint. For example: 

(xi V 3：2 V Xs) Xi + 0；2 + X3 > 1 

{xi V V 3:3) + (1 - 0:2) +X3 > 1 

{xi V 52 V 2:3) (1 - Xi) + (1 - Xs) + > 1 

(^2 VX3 V X5) => { I - X2) + (1 - Xs) + (1 - 2:5) > 1 

4.2 Integer Programming Model for 3-SAT 

According to the clause transformation rule of last section, we construct an integer 

programming model for 3-SAT problem: 

{IP) Min I's (4.2.1) 

s.t. Ax + s > l - n{A) (4.2.2) 

x e {0,1}", s G {0,1}^ (4.2.3) 
V • ； V 

I . 
where A is an m by n, 0, ±1 matrix, n{A) is a vector whose z-th component ni(A) is 

the number of "—1" in the z-tli row of A, and 1 is a vector whose components are all 

Is. 

4.3 The Equivalence of the SAT and the IP 

If the original SAT problem is feasible (satisfiable), the corresponding integer pro-

gramming problem (IP) should achieve the optimal value of 0. If the original SAT 

problem is infeasible (unsatisfiable), the corresponding integer programming problem 

(IP) cannot achieve zero optimal value. Therefore, the original SAT problem and the 

above integer programming model (IP) are equivalent. 



24 

4.4 Example 

In order to implement the transformation, we randomly generate a 5-variable 3-SAT 

problem. There are 22 (= 4.25 x 5) clauses where each clause contains exactly 3 

literals. The problem is listed below: 

V V Xi 

Xl V 0；2 V X3 

XsV XiV X4 

V X2 V Xi 

Xi V Xa V X2 

无5 V无 2 V Xi 

X^W XsV X2 

V Xi V 

Xi V X4 V X5 

X4 V V 

V Xs V 

X2 V Xi V 0；4 

V Xs V 

Xi V V X̂  

X4 V V Xi 

3：5 V V Xi 

X4 V Xi V Xs 

X2 V a；! V 0；5 
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3；5 V 0；4 V 

V 0；4 V X5 

XsVXiV X2 

V V Xi 

Then, we convert this SAT problem into integer programming problem: 

E22 
i = l Si 

s.t. —Xi — X2 — X4 Si > —2 

Xi X2 - X3 S2 > 0 

-Xi + Xs + 0；4 + 53 > 0 

Xi — X2 — X4 S4 > —1 

-Xi + + X3 + 55 > 0 

X 1 - X 2 - Xr, + Sq > - 1 

: -X2 + X3 一 X5 丄 S7 > - 1 

- x i - X3 - xs + sg > - 2 

Xi + 0：4 + 3：5 + Sg > 1 

-Xs - X 4 - X5 + Sio > - 2 

Xs X4 - X5 Sn > 0 

Xi X2 X 4 S i 2 > 1 

-X2 - 0；3 + Xs + Si3 > - 1 

—Xi + 0：4 - 2:5 + 5I4 > — 1 

X 1 - X 2 - X 4 + Si5 > - 1 

Xi-Xs-\-X5 + S16 > 0 
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-Xi + 0；3 + 0；4 + Si7 > 0 

Xi - X2 + X5 + S18 > 0 

X2 + X4 + X5 + Si9 > 1 

-Xi + 0；4 + 0：5 + S20 > 0 

Xi - X2 + Xs S21 > 0 

- x i - X 2 - X4 + S22 > - 2 

Now, we can use a branch-and-bound algorithm to solve the above zero one linear 

integer problem, then check the satisfiability of the original problem. Branch-and-

bound algorithm is a simple method for solving IP problems. In Chapter 6，we will 

derive our reasonable branching rule and bound rule for our problem formulation. 



Chapter 5 

Integer Solvability of Linear 
Programs 

In general, linear programming problems are much easier to solve than discrete opti-

mization problems, and the algorithms for linear programming are important in their 

own right. A natural question is when we will be iucky to find an integral optimal 

solution to a linear programming relaxation of an integer optimization problem. It 

turns oui that if the polyhedron, possesses the integer extrema property, then the 

linear program always achieves its optimum at an integer point. In this section, we 

will present some classic results in literature. 

5.1 Unimodularity 

We consider the integer programming problem: 

{IP) Min cx 

s.t. Ax = b 

X e zi. 

27 
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Definition 5.1.1. The constraint matrix A is said to be Unimodular if every basis 

matrix B oi A has determinant, de力(5) = ±1. 

The following classic result of Veinott and Dantzig (1968) [VD68] shows the implica-

tions for integer solvability. 

Theorem 5.1.1. (Unimodularity and Equality Linear Programs). Let A be 

an integer matrix with linearly independent rows. Then the following are equivalent: 

1. A is unimodular. 

2. Extreme points of S^ = {x : Ax = b^x > 0} are integral for any integer right-

hand-side b. 

3. Every basis submatrix B of A has an integral inverse . 

Now returning to (/P)，it is clear that when A is unimodular, the linear programming 

•••• relaxation min{cx : AX = b,x e solves (JP). 

5.2 Totally Unimodularity 

We consider the integer programming problem: 

{IP) Max cx 

s.t. Ax <h 

X e ZJ, 

where A is an integer matrix with full row rank, and b is an integer column vector. 
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From the linear programming theory, we know that basic feasible solutions (including 

slack variables) take the form: x = {xb, Xn) = 0) where B is an m x m 

nonsingular submatrix of (A, I) and I is an m x m identity matrix. 

Observation 5.2.1. (Sufficient Condition) If the optimal basis B has det(B) = ±1， 

the linear programming relaxation solves (IP) with integral b. [Wol98 

Proof. From Cramer's rule, = B*/det{B) where B* is the adjoint matrix. The 

entries of B* are all products of terms of B. Thus B* is an integral matrix, and as 

det{B) = ±1，B—i is also integral. Thus is integral for all integral b. • 

Now, we have another question — when one will always be lucky, i. e.，when do all 

bases or all optimal bases satisfy det(B) = ±1? 

Definition 5.2.1. A matrix A is totally unimodular (TU) if every square submatrix 

of A has determinant +1, -1 or 0. 

Hoffman and Kruskal's (1956) classic result on total unimodularity[HK56] is as fol-

lows: 

Theorem 5.2.1. (Totally Unimodularity and Inequality Linear Programs) 

Let A be an integer matrix. Then the following are equivalent. 

1. Every susbmatrix of A has determinant ±1 or 0. 

2. Extreme points of S- = {x : Ax > b,x > 0} are integral for any integer right-

hand-side h. 

3. Every nonsingular submatrix of A has an integer inverse. 

Proof. Please refer to the detailed proof in [PR88]. • 
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Example 5.2.1. Matrices that are not TU: 

/ \ ( ^ / o i l ^ / l Q l ^ 
1 1 ( - 1 - 1 \ 

, ， 1 0 1 , 1 1 0 , 

V 1 -1 / 1-1 1 ] 

Example 5.2.2. Matrices that are TU: 

( \ / X ( 0 1 0 0 0 \ 
1 - 1 - 1 0 

/ \ 0 1 1 1 1 
1 1 - 1 0 0 1 

， ， 1 0 1 1 1 , 

, - 1 - 1 / 0 1 0 - 1 

\ I 1 0 0 1 0 
\ 0 0 1 0 / 
\ ^ 1 0 0 0 0 y 

The most prominent class of totally unimodular matrices are those that arise from 

the vertex-arc incidence matrix of a directed graph. 

Theorem 5.2.2. Totally Unimodularity of Vertex-Arc Incidence Matrices. 

Every vertex-arc incidence matrix of a directed graph is totally unimodular. 

Proof. Please refer to the detailed proof in [PR88]. • 

Observation 5.2.2. If A is TU, aij G {+1，—1,0} for all z, j.[Wol98； 

Proposition 5.2.3. A matrix A is TU if and only if [Wol98] 

1. the transpose matrix A^ is TU. 

2. the matrix {A, I) is TU. 

3. the matrix (^) is TU. 
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From this proposition, we know that the linear solvability of the model in Section 

4.2 is in fact the totally unimodularity of matrix [A, /], further more, the totally 

unimodularity of matrix A itself. 

Proposition 5.2.4. (Sufficient Conditions) A matrix A is TU if [Wol98] 

1. CLij G {+1，—1,0} for all i, j. 

2. Each column contains at most two nonzero coefficients ( X ^ i Wij\ ^ 2). 

3. There exists a partition (Mi, M2) of the set M of rows such that each column j 

contains two nonzero coefficients satisfies J] ^ij — S ^ij — 
ieMi ieM2 

Proof. Please refer to the detailed proof in [Wol98] • 

Now returning to (IP), it is clear that when A is totally iinimodiilar, the linear 

programming relaxation max{cx : Ax < b, x E R'^j solves (IP). 

What if a matrix's origin is not known to be, a, vertex-arc incidence? It may still 

be possible to be totally unimodular, i.e., it may also be that the matrix is totally 

unimodular but not of network origin. 

The nice property of TU matrix motivates us to find a branching order to force a 

revised coefficient matrix A to be closer to TU, and eventually, to find the optimal 

integer solution by solving linear programs. 

Seymour's decomposition theorem of totally unimodular matrices [SeySO] represents 

a recent elegant result. The decompositions involved in his theorem are 1-separations, 

2-separations and 3-separations which Seymour defined in [SeySO]. He used matroid 

theory to prove this decomposition theorem. 
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5.3 Some Results on Recognition of Linear Solv-

ability of IP 

Perfect, ideal and balanced matrices have beautiful polyhedral properties that have 

been recognized in the last 30 years due to their special structures. 

A 0’ 士 1 matrix A is perfect if the fractional generalized set packing polytope {x : 

Ax < 1 — n{A)^ 0 < x < 1} has only integral extreme points. It is ideal if the 

fractional generalized set covering polyhedron {x : Ax > 1 — n(74)，0 > x > 1} has 

only integral extreme points. It is balanced if, in every square submatrix with two 

nonzero entries per row and per column, the sum of the entries is a multiple of four. 

The study of the characteristics of TU in [HK56] shows that a totally unimodular 

matrix is both perfect and ideal. The class of balanced 0, 土 1 matrices also properly 

includes totally unimodular 0, 士 1 matrices [CCKVOl . 

As far as we know, no algorithm is known for perfection and idealness recognition. 

However, Conforti et al give a polynomial time algorithm for checking balancedness 

CCKVOO]. This algorithm is complicated and its computational complexity, although 

polynomial, is rather high. 



Chapter 6 

TU Based Matrix Research Results 

It is obvious that totally unimodular matrices are highly desirable in discrete opti-

mization, especially in SAT problems, because they assure an integer solvability (for 

integer right-hand-sides). When the matrices are known to be arise from a vertex-arc 

incidence matrix, we have already seen (in Theorem 5.2.2) that total unimodularity 

is guaranteed. 

But in the real world applications, the constraint matrices are often not of totally 

unimodular. We have the following results from investigation of all 0, 士 1 2x2，and 

0,1 3x3 matrices. 

6.1 2x2 Matrix's TU Property 

There are 81 (=3^) 2x2 (0, 土 1) matrices, among which only 8 cases are non-totally 

unimodular (determinant is not equal to 0, 1 or -1). 

( 1 i ) ’ （ i 1 )’（ -1 - 1 ) ’ 
Vi - 1； v - 1 1 / V 1 - W v - 1 1 ； 

/ 1 - 1 W - 1 1 W 1 / - I 1 \ 

V 1 1 M 1 i y ' V - 1 - J v - i - 1 / 

33 
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Observation 6.1.1. For any 2x2 (0, ±1) matrix Â  it is not totally unimodular if 

and only if the two entries in one row have the same sign, while the two entries in 

the other row have different sign. 

6.2 Extended Integer Programming Model for SAT 

In problem (IP), if Xi is regarded as a new variable Xn+i (suppose n variables), we 

can get the extended IP model with no negative coefficient in the constraint matrix 

for the original SAT problem. 

For example, n=b\ 

Xi V X2 V X2, 2；3 + Xe + x-j 

xi + xe = 1 

X2 + 2； 7 = 1 

V V --•̂ � Xy + 0；8 + Ô io 》1 

X2 + 3：7 = 1 

+ 2：8 = 1 

X^ + 0；10 = 1 

In this extended model, we have doubled variables, and n more clauses. We can 

formulate this model by the following matrix form 

Min I's 

(IP) s.t. AnewX + Si > 1 

(/，/):C + S2 = 1 

a: € s G { 0 , 1 } ^ + ^ 
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where Anew is an m by 2n 0-1 matrix, / is an n by n matrix, and s = [s ,̂ s^'. 

It is easy to see the linear solvability of this new model is in fact the totally unimodu-
「4 1 ‘ 

larity of the matrix /m+n，and further more, the totally unimodularity 
…In Iri- _ 

'a ‘ 
oi matrix . 

. I n In_ 

6.3 3x3 Matrix's TU Property 

Since all 2x2 0-1 matrices are totally unimodular, here, we investigate the totally 

unimodularity property of 3x3 0 — 1 matrices. 

There are 512 (=2^) candidates. We enumerate all possible 3 x 3 0-1 matrices and 

exclude those whose determinant is 0，1 or -1, there are 108 non-totally unimodular in-

stances left. Furthermore, we find these instances have certain common characteristic 

by induction. 

Lemma 6.3.1. Given four points: A(ai,a2, as)； 62,63)； C'(ci, 02,03) and 

the volume of the tetrahedron constituted by the four points is: 

ai a2 as 1 

1 , b2 t>3 1 
V = ^det{ ) 

CI C2 C3 1 

di d2 ds 1 
Proof. This is a well-known result in analytic geometry, we give a brief proof here. 

— > — > — > 
V is sixth of the volume of the parallelepiped constituted by AB, AC, AD. And 

— > — > — > — > 

the volume of the latter one is |(AB, AC, AD)\. AB = {61 — ai, 62 — <̂ 2, h — <̂ 3}, 

AC 二 {ci - ai, C2 — ^2’ C3 - as}, AD = {di - ai,d2 — <22, <̂3 _ ^s}- So, 
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— ai 62 — <22 63 — as 

V = -det{[AB,AC,AD]) = ci - aj C2 - 02 03-03 ) 

di — ai d2 — a2 ds — as 

fll 02 1 

1 62 bs 1 
=ldet{ ) 

Ci C2 C3 1 
di d2 ds 1 

Note that V should be the absolute value of the determinant. • 

Theorem 6.3.2. For a 3x3 0-1 matrix, only when there is exactly one zero per row 

and per column, its determinant is not 1, -1 or 0, i. e., it is not Totally Unimodular. 

Proof. From Lemma 6.3.1, the volume of the tetrahedron constituted by the four 

points ^(01,02,03), 5(61,62,63), C(Ci’C2’C3) and D(0,0,0) should be: 

tti 0.2 a3 1 r 
tti a2 as 

1 62 h 1 1 
-det{ ) = -det{ hi 62 63 ) 

Ci C2 C3 1 
Cl C2 C3 

0 0 0 1 」 

So, 
ai a2 as 

det( bi 62 63 ) =6y 

Cl C2 C3 

A spacial point A, if the elements of A can only have the value 0 or 1, can be one of 

these 8 points: (0, 0, 0), (1, 0，0), (0, 1, 0), (0, 0, 1), (1, 1，0), (1, 0, 1)，(0, 1, 1)，（1, 

1, 1). They are just the 8 vertices of an unit cube (see Figure 6.1). 



37 

^ ( 1 , 0 , 1 ) 

‘ ‘ ^ M 
\ X 
, • 、 - 、 — 靜 

( 1 , 1 , 0 ) 

Figure 6.1: Determinant-Volume Relationship 

If we fix the origin (0，0, 0), together with any other 3 vertices of this cube, say, 

A(ai,a2^ as), 62, ̂ 3) and C(ci, 02,03), it forms a tetrahedron. Only the tagged 

vertices in Figure 6.1 can form a tetrahedron with volume 1/3. Any other 3 vertices 

together with the origin form tetrahedron with volume 0 or 1/6, i. e.，according to 

lemma 6.3.1, only the determinant formed by points (0，1, 1)，(1, 0, 1), (1, 1，0) can 

not get the value of 0 or 1 • 



Chapter 7 

Totally Unimodularity Based 
Branching-and-Bound Algorithm 

After converting the 3-CNF-SAT problem into an IP problem, a totally unimodularity 

based branchiiig-and-bound method is proposed to find out whether the problem is 

feasible, and furthermore, what the feasible solution is. 

7.1 Introduction 

There are many methods proposed in literature to solve an integer programming 

problem, such as Branch-and-Bound methods, Cutting Planes methods, etc. Among 

the methods for solving an integer programming problem, branch-and-bound and 

cutting planes are two typical solution schemes. Although branch-and-bound method 

is very popular, the time complexity is 0(2^) in the worst case where n is the number 

of variables. In this thesis, we propose a totally unimodularity based branch-and-

bound method as the skeleton of our searching algorithm. In this algorithm, we set 

up a branching rule, and bounding rule. Then a binary search tree is constructed (see 

Figure 7.1) for the search procedure. Each node of the tree represents one recursive 

38 
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( ^ R o ^ 

… … A A /-
• • • • • • • Y • X • • • • • • 

Figure 7.1: Binary Search Tree 

We prune the hopeless branch according our proposed bound rule., end- continue 

the branching procedure in the rest promising branches (nodes) till finding out the 

feasible solution for the SAT problem. 

7.1.1 Enumeration Trees 

Enumeration trees analysis belongs to enumerative approaches to integer program-

ming. These approaches take advantage of the fact that in a bounded integer linear 

programming (ILP) or mixed integer linear programming (MILP), the set of values of 

the integer variables is finite. The basic idea of enumerative methods can be explained 

using a tree.[Wol98 
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Example 

We use a simple example which is from [Wol98] to illustrate the application of enu-

meration tree approach in integer programming. 

If we are asked to select some numbers in distinct positive integers to make them sum 

to 8, how can we do? 

Letting 
( 

1 if j is one of the integers chosen, 
工j = 

I 0 otherwise. 

we require all solutions to 

8 

= 8 
(7.1.1) 

Xj = 0,1 for all j 

(O) (Q) 

经 €=9) 

^^^^ J^ — 

Figure 7.2: Example for Enumerate search tree 

The solutions are given by the unique paths from vertex Root to each of the vertices 

marked by an asterisk in Figure 7.2. Each edge imposes a constraint, and each vertex 
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j represents the constraint set of (7.1.1) in addition to the constraints given by the 

edges along the unique path Pj from Vq to Vj. A line underneath a vertex indicates 

that no further exploration from that vertex can be profitable. Such vertex is said to 

be fathomed. 

Suppose that the problem is to find some a; € 5, then vertex j restricts x to where 

Sj is the intersection of S with the set of points satisfying the constraints given by 

the edges of Pj. If Pj has k-\-l vertices: 

yo =巧(ohVj ⑴ ， … = Vj 

then S = 5j(o) 5 S j � ̂ ••• 2 S认k�= Sj 

Vj(k-i) is called the predecessor of Vj, which in turn is called a successor of its pre-

decessor. Note that a vertex has a unique predecessor but generally more than one 

successor[GN72 . 

Branching •. 

A vertex that is not fathomed and its corresponding constraint set has not been 

separated is called a live vertex. Branching means choosing a live vertex to consider 

next for fathoming or separation. A common rule for branching is branching to one of 

the successive vertices of the vertex currently being considered. If the current vertex 

j is fathomed, one simply backtracks along Pj until a vertex having at least one live 

successor is encountered [GN72]. One can select one of these successive vertices to do 

branching. If no live vertices are left, the enumeration process is complete. 
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7.1.2 The Concept of Branch and Bound 

Branch and bound is an optimization technique that uses the basic tree enumeration 

described in the previous section. It involves calculating upper bounds and lower 

bounds on the objective function, in order to accelerate the fathoming process and 

thereby to curtail the enumeration. For the problem 

max z{x), X e S. (7.1.2) 

The bounds are determined as follows. 

Upper Bounds 

If the enumeration is at vertex j. The problem to be considered at Vj is 

max z{x), X G Sj (7.1.3) 

Let 

z{x*{j)) if of � solves (7.1.3), 

Zj = - o o if Sj 二 0 , 

oo if (7.1.3) is unbounded. 
、 

An upper bound Zj > z* may be determined by considering the relaxation of (7.1.3). 

Lower Bounds 

A lower bound Zj satisfies Zj < Zj. One way to calculate a lower bound is to find any 

X G Sj and let Zj = z{x). If Vk is the predecessor of Vj, then Zj < z^., which yields 

an important result that Zj < ZQ. 



43 

Fathoming by Bounds 

Vertex j is fathomed if either 

(a) Zj = Zj, or 

(b)乏j < 4 

In case (a) no better solution can be found to (7.1.3). When case (b) occurs, no 

successor of Vj can yield a solution that improves on the best known solution to 

(7.1.2). 

7.2 TU Based Branching Rule 

Since totally unimodularity is a very nice property for solving an integer programming 

problem, it is very natural to force the constraint matrix to be close to this state 

by fixing some variables. In the last chapter, we have presented the non-totally 

unimodular (bad) cases for 2 x 2 0, 士 1 and 3 x 3 0，1 matrices. The branching 

variable selection rule can be expressed like the follows: 

The variable that will yield the largest decrease in the number of “bad” 

cases by fixing this variable should be selected as the next branching vari-

able. 

7.2.1 How to sort variables based on 2x2 submatrices 

From Observation 6.1.1, the specific form of 2 x 2 0, ±1 non-totally unimodular matrix 

is known. We design the following algorithm to get a variable order based on the above 

branching rule: 
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1. Construct the non-TU counter Eij： 

Considering columns i and j, define a variable Eij{i < j), for Xi and Xj, to 

measure the number of such "bad" matrices produced by columns i and j : 

where ef̂  is the number of rows which have the pairs with the same signs, and 

efj the rows which have the pairs with different signs. 

2. Get the variable order 

(a) Generate a table (Eij)• 

(b) The weight vector for each variable, denoted by w (with component Wi), 

is defined as follows: 

= L Eii + Eji 
j>i j<i 

(c) Find the largest one from Wî  say it is Wk, then the current branch variable 

is Xk. 

(d) Change the weight vector (for each i): 

Wi - Eik if 2 < /c 
w；! = < 0 if i = k 

Wi - Eki Hi > k 
\ 

(e) If there exists any Wi > 0，goto step 2c; otherwise, stop this part of sorting 

process. 
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7.2.2 How to sort the rest variables 

In order to reduce the computation time, we first order the variables according to the 

2x2 totally unimodular rule. After this process, all of the remaining 2x2 submatrices 

in the coefficient matrix constituted by the rest variables are totally unimodular. We 

need to consider the TU property of its 3x3 submatrices. 

Recall that for a 3x3 0-1 matrix, only when there is exactly one zero per row and 

per column, the determinant is not 1，-1 or 0, i.e., it is not Totally Unimodular. For 

example: 

/ 1 1 0 \ / 1 0 1 \ / 0 1 1 \ / 0 1 1 \ 

1 0 1 , O i l ， 1 1 0 , 1 0 1 ， 

\ 0 1 1 y \ 1 1 0 / \ 1 0 1 / \ 1 1 0 y 

In fact, they are all constituted by row vectors: (1, 1, 0)，（1，0, 1) and (0, 1, 1). 

Naturally, we have the following branch algorithm: 

1. Model revision 

We revise the current (0, 土1) model to our extended IP model (0-1 model in 

Chapter 6.2) after deleting those variables ordered in the previous section 7.2.1. 

2. Construct the noii-TU counter E ^ 

Considering columns z, j and k, we define a variable E啡{i < j < k), for Xi, Xj 

and Xk, to measure the number of such "bad" matrices produced by the columns 

z, j and k : 

Eijk = ^ijk X ̂ ijk X ^Ijk 

where 计 is the number of rows which have exactly one zero in the first position 

i, efjk is the number of rows which have exactly one zero in the second position j, 
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and is the number of rows which have exactly one zero in the third position 

k. 

3. Get the variable order 

(a) Generate a table {Eijk). 

(b) The weight vector for each variable, denoted by w (with component Wi), 

is defined as follows: 

Wi = ^ Eijk + ^ Ejik + ^ Ejki 
j,k:i<j<k j,k:j<i<k j,k-.j<k<i 

(c) Find the largest one from Wî  say it is Wk̂  then the current branch variable 

is Xk. 

(d) Change the weight vector (for each i): 

Wi - Eijk - E ^ikj — E Ejik if i<k 
j:i<j<k j:i<k<j j-.j<i<k 

û i = < 0 if i = k 

Wi - Ekij - E Ejki — E Ekji iii> k 
, j:k<i<j j-.j<k<i j:k<j<i 

(e) If there exists any Wi > 0, goto step 3c; otherwise, ordering process com-

plete. 

7.3 TU Based Bounding Rule 

The most common way to solve integer programs is to use implicit enumeration, 

or Branch-and-Bound, in which linear programming relaxations provide the bounds 

generally. In this work, we propose another bound rule according to the relationship 

between the satisfiability problem and the associated integer programming problem. 
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1. If the optimal objective value is nonzero, this node is pruned. 

2. If the optimal objective value is zero, and the optimal solution is integral, this 

node is one of the feasible solutions to the original SAT problem. 

3. If the optimal objective value is zero, but the optimal solution is not integral, 

this node is active, i. e., it needs further branching. 

7.4 TU Based Branch-and-Bound Algorithm 

Having a branching order and bound rule, our branch-and-boimd procedure shapes. 

In this section, we list the algorithm step by step: 

1. Solve the linear relaxation of the original problem. 

(a) If the optimal objective value 2 > 0, terminate with a conclusion that the 

problem is uns'ituificMe. 

(b) If 2： = 0 and the solution is integer, the problem is satisfiable. Stop. 

2. Sort variables according section 7.2.1, get the first part of the branching order. 

3. 2 1 

4. Choose the i-th variable Xj according to the order. Then assign value 0, 1 to it. 

Every assignment is corresponding to a linear programming. 

Solve the linear programming problem with Xj = 1 and Xj = 0. 

(a) If z > 0, prune this branch 
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(b) If 2 = 0 and the solution is an integer, the problem is satisfiable. The 

optimal solution of the linear programming is the feasible solution of the 

original problem. Stop. 

(c) If z = 0, but the linear programming optimal solution is not integer, this 

node is still active. We enter its two children nodes into binary search tree 

with the (z + l)th variable setting at 0 and 1，respectively. 

5. Deal with the active nodes with width-first rule using the same branching strat-

egy. 

6. If all ill being branching variables are used up, sort the rest variables according 

to section 7.2.2, and add all unsorted variables to the tail in a natural order. 

If no active node left, stop with a decision that the problem is unsatisfiable; 

otherwise, i<=i + 1，switch the search to the next layer, and go to step 4. 

In this thesis, we use ILQG Cplex as a solver for all the linear rela:,iations of the 

subproblems. ILOG Cplex delivers high-performance, robust, flexible optimizers for 

solving linear, mixed-integer and quadratic programming problems in mission-critical 

resource allocation applications. CPLEX Callable Library provides a C application 

program interface (API) that allows all CPLEX features to be accessed from multiple 

programming languages. In this thesis, we use C language to implement the whole 

search procedure, including calling ILOG Cplex as a linear programming solver in C 

procedure. 
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7.5 Example 

In Chapter 2, we have known that the randomly generated problems with a number 

of clauses/number of variables ratio close to the crossover point are very difficult to 

solve on average. Thus they are suitable to serve as benchmarks for tester/solvers 

comparison. 

We use the program mkcnf.c (spare executable suplied is mkcnf) to generate a random 

constant-clause-length CNF formula in Dimacs challenge format (number of variables: 

10, number of clauses: 42): The first clause means Xio V xy V x^. 
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10 -7 4 -3 -10 -2 
9 2 3 -4 -10 -6 

- 6 - 3 1 4 3 - 6 
-1 -4 -10 8 1 9 
-1 8 10 2 - 5 1 

-10 -7 -8 -7 -9 5 
1 - 8 5 10 -8 7 
6 10 -2 -9 3 5 

-8 -7 4 -4 -7 -10 
3 -1 -7 -9 -8 -3 
2 5 6 -10 8 -7 

-3 -1 -8 -2 -9 5 
4 6 7 -2 -6 8 
5 -6 7 6 -1 -2 
6 7 -9 4 -6 1 
2 -9 -10 8 -1 -6 
7 - 1 - 2 -7 5 8 

-3 -4 2 7 -4 3 
-9 -10 -8 -6 -10 -9 
-3 -4 1 - 1 9 -3 
-7 -8 -9 6 - 7 8 

We convert the Dimacs challenge format to our integer programming model: 
42 

Min ^ Si 
i=l 

Xio - X7 + 0；4 + 5i > 0 —rC3 — Xio - X2 S2 > -2 

X q X 2 + X3 + S3 > 1 - Xio - XQ + S^ > - 2 

-Xe - X3 + Xi + S5 > - 1 + Xa - X6 + S6 > 0 
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-Xi - X 4 - Xio + S7 > - 2 Xs + Xi Xq Ss > 1 

- X i +X8 + Xio + Sq>0 X2 - X5 Xi Sio > 0 

-Xio - X7 -X8-\- Su > - 2 -X7 - Xg + 0；5 + Su > —1 

Xi - X8 + + Sis > 0 Xio -X8 + X7 + Su > 0 

xe + Xio - + Si5 > 0 -XQ + Xs + Xs + S16 > 0 

-Xg - X7 + X4-\- S I 7 > - 1 -X4 - X7 - Xio + SI8 > - 2 

X3 - Xi - X7 S i 9 > - 1 -Xq - X g - X3-\- S20 > - 2 

工 2 + + + S21 > 1 -Xio + Xg - X7 + 6.22 > —1 

-;r3 - Xi - X8 + S23 > - 2 -X2 - 2:9 + X5 + S24 > —1 

X4Xe + X7 S25 > 1 - X2 -Xe-\-X8 + S26 > - 1 

X5 - Xg + X7 527 > 0 Xe - Xi - X2 + S28 > —1 

Xq + X7 — Xq S 2 9 > 0 X4 — Xq Xi S 3 0 > 0 

• - Xg - Xio + 531 > - 1 Xg - Xi - Xq + .-32 >. -1 

X7 - Xi - X2 S33 > -1 -X7 + X5 + ；2：8 + 534 > 0 

- X s S35 > - 1 XT - X4 + X3 + S36 > 0 

—Tg — Xio 一 + S37 > " 2 -Xq — Xio - Xg + S38 > —2 

- ^ 3 - X4 + rri + 539 > —1 —Xi + Xg - 0；3 + S40 > —1 

- X j - Xs - Xq-\- S41 > - 2 Xe - X7 Xg-\r S42 > 0 

X i e { 0 , i } , Si e { 0 , 1 } 

The constraint can be rewritten simply as Ax + s>r. Coefficient matrix A is a 0, 士 1 

matrix in Appendix A. Now, we use our TU-based branch-and-bound algorithm to 

check whether this problem is satisfiable. 
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Step 1 Do linear programming for the relaxation of the original problem. The op-

timal objective value is 0，but the optimal solution is not integer-valued. We 

need to do branch-and-bound. 

Step 2 Sort the variables. We compute the value of Eij in Table 7.1 for every 2 

columns (variables) in A: 

五ij. I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 
1 - 3 x 0 T x 3 2 x 1 1 x 1 1 x ^ 1 x 1 1 x 1 1 x 1 ' 
2 ~ - 2 x 1 0 x 1 2 x 2 "O X 1 0 x 1 2 x 1 1 x 2 
3 了 - - 3 x 1 1 x 0 1 x F 1 x 1 2 x 0 2 x 2 1 x 0 
4 丁 - — - - 0 x 0 2 x Y 2 X 3 0 X 1 0 X 0 4 X 0 
5 了 - - — - - 1 x 1 1 x 2 1 x 1 — 0 x 3 0 x 0 
6 - - — - - - - ~ 2 x 2 Tx 2 1 x 1 3 x 0 
7 了 - - - ~ - ~ - - 3 x 4 T x 1 4 x 1 

~ 8 ~ - - - - - - ~ - 4 x 0 3 x 2 
9 I - I - I - I - I - I - I - I - I - I 3 x~Q~ 

Table 7.1: Table Eij for every pair columns 

Where the first number in each lattice is the number of rows which have the 

pairs with the same signs, and the second number is the number of rows which 

have the pairs with different signs, the product is the value of E”. 

Now the weight vector Wi in Table 7.2 can be calculated by formula: 

购 二 [ Eij + ^ Eji 
j>i j<i 

The largest Wi is W7, so the first branching variable should be xj. We should 

revise Wi for cutting out the seventh column {xj). We can get a revised Wi in 
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叫 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 『  
I 12 I 17 I 15 I 7 I 20 I 32 I 27 I 10 I 1 � 

Table 7.2: Original table of variable weight Wi 

20 I 12 I 16 I 9 I 5 I 16 I 0 I 15 I 8 I 9 

Table 7.3: The first-revised table of variable weight Wi 

Table 7.3 by: 

Wi - Ei7 if i <7 

UJi = < 0 if i = 7 

Wi — Eji if i > 7 
\ 

The largest number in Wi is Wi, so the second branching variable is Xi. 

Then, we revise Wi in Table 7.4. The largest number is wq. SO the third 

branching variable is 

We continue to revise Wi in Table 7.5. The largest number in Wi is ws. So the 

fourth branching variable is 0:3. 

Revision continues in Table 7.6. The largest number is Wiq. SO the fifth branch-

ing variable is xiq. 

The fifth revision is given in Table 7.7. The largest number is W2. So the sixth 

"^TTl 2 3 |4|5| 6 | 7 | 8 | 9 | 1 0  
w 山 I 12 I 10 I 7 I 4 I 13 I - I 9 I 7 I 8 

Table 7.4: The second-revised table of variable weight Wi 
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叫 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 0 

Table 7.5: The third-revised table of variable weight Wi 

叫 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 0 
I - I 6 I 0 I 0 I 3 I - I - I 7 I 2 I 8_ 

Table 7.6: The fourth-revised table of variable weight Wi 

branching variable is X2-

The sixth revision is given in Table 7.8. The largest number is w .̂ So the 

seventh branching variable is x^. 

The seventh revision is given in Table 7.9. Now, all the components of Wi are of 

non-positive values, i. e.’ all unsorted variables are incomparable in the sense 

of 2x2 submatrices. We have the variable order: 

Step 3 Initialization 

Step 4 Do linear programming for every nodes in the binary search tree. 

The first node is {0:7 = 1}. We get the optimal objective value 0 of the linear 

relaxation by setting Xj to 1, the optimal solution is not integral; the second 

叫 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 0 

Table 7.7: The fifth-revised table of variable weight Wi 
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小 |2|3|4|5|6|7|8|9|10 
~ W i - " " “ 0 " " “ - 0 i - ~ ~ ~ 1 

Table 7.8: The sixth-revised table of variable weight wi 

7 小 |2|3|4|5|6|7|8|9|10 
~ W i ~ - - " 0 ~ ~ 0 " " “ - ~ ~ ~ 0 0 ~ 

Table 7.9: The seventh-revised table of variable weight Wi 

node is [x j = 0}. We get the optimal objective value 0, optimal solution is still 

fractional. Figure 7.3 depicts all the linear relaxations, once we get a positive 

optimal objective value at one node, we prune this branch (which is marked by 

a pair of shears in the figure). In this example, we find a satisfying solution 

using only the branching variable from the consideration of 2x2 non-totally 

unimodular submatrix. Empirically, most small satisfiable problems with the 

number of variables ixo more than 50 can be solved in the first phase. The 

information of each linear programming iteration including optimal objective 

value and optimal variable values is listed in Appendix B. 

As depicted in Figure 7.3, only 15 linear programming (nodes) and 4 layers in a binary 

search tree are needed to find the satisfying truth assignment (which is marked by an 

asterisk in the figure), and its computation time is 0.01 second. Compared with the 

worst scenario of this problem (computation time 0(2^°)), our algorithm appears to 

be very promising. 
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( x ^ 

fval=0.5 fval=0.5 fval=l fval=1.5 fval=0.75 

fval=2 fval=0 with integer 
optimal solution 

Figure 7.3: Binary Search Tree of the Example 



Chapter 8 

Numerical Result 

In this chapter, experimental results for the proposed TU-based branch-and-bound 

algorithm are presented in the first section. We discuss the performance of this 

algorithm by comparing it with IP solver of ILOG CPLEX under the same computing 

environment in the second section. The complete results can be found in Appendix 

C and Appendix D. 

8.1 Experimental Result 

We use Uniform Random-3-SAT as the main test-set for our algorithm. Uniform 

Random-3-SAT is a family of SAT problems obtained by randomly generating 3-

CNF formulae in the following way: For an instance with n variables and k clauses, 

each of the k clauses is constructed from 3 literals which are randomly drawn from 

the 2n possible literals (the n variables and their negations) such that each possible 

literal is selected with the same probability of l/2n. Clauses are not accepted for 

the construction of the problem instance if they contain multiple copies of the same 

literal or if they are tautological (i.e., they contain a variable and its negation as a 

57 
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literal). Each choice of n and k thus induces a distribution of Random-3-SAT in-

stances. Uniform Random-3-SAT is the union of these distributions over all n and k. 

The test-sets provided in http: //www. inte l l ekt ik . informatik.tu-darmstadt. de 

/SATLIB/Benchmarks/SAT/RNDSSAT/descr . html are sampled from the phase tran-

sition region of uniform Random 3-SAT. We use the test-sets for n =20, 50，75 and 

100. 

Table 8.1, Table 8.2, Table 8.3 and Table 8.4 list the mean, standard deviation, 

minimal value and maximal value of the completion time, the number of layers and 

nodes being searched in the binary search tree for n=20, n=50，n=75 and n=100 on 

100 samples, respectively. 

# of Layers # of Nodes Completion Time (sec.) 
"Mean 2.82 10.89 0.0228 

S.D. 1.6229 8.3906 0.0136 
~Min 0 1 0.0000 
~Max I 6 I 37 I 0.0600 

Table 8.1: Statistical Result of TU-based B&B for n=20, m=91 

# of Layers # of Nodes Completion Time (sec.) 
"Mean 6.13 92.83 0.3931 
— S.D. 2.5172 76.4462 0.2736 
— Mill 0 1 0.0400 
"Max 15 343 1.31 

Table 8.2: Statistical Result of TU-based B&B for n=50, m=218 

When n < 100’ all of the selected randomly generated 3-SAT instances can be solved 

by the TU-based branch-and-bound algorithm within 3 minutes. 
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# of Layers # of Nodes Completion Time (sec.) 
Mean 9.11 703.98 4.858 

"^ypT" 3 . 1 5 ^ ~ 1 0 0 8 . 5 ^ 5.6417 
Mill 3 8 0.07 

‘ M a x 18 6502 37.07 

Table 8.3: Statistical Result of TU-based B&B for n=75, m=325 

善 of Layers # of Nodes Completion Time (sec.) 
"Mean 11.52 3165.91 37.1802 
~S.D. 3.6362 3316.752 35.8724 

Mill 3 — 12 0.42 
"Max 19 17478 164.44 

Table 8.4: Statistical Result of TU-based B&B for n=100, m=430 

8.2 Statistical Results of ILOG CPLEX 

For the sake of comparison, we use the IP solver of ILOG CPLEX to solve the same 

problems under the same computing environment. 

Table 8.5 lists the mean, variance, minimal value and maximal value of the completion 

time on 100 samples using CPLEX IP solver. Table 8.6 lists the mean, variance, 

minimal value and maximal value of the nodes used to solve the problem by CPLEX 

IP solver. CPLEX excels our algorithm only at 3 indexes (denotes by an asterisk). 

n=20，m二91 n=50，rn=218 n二75，m=325 ii=100, m=430  
Mean" 0.0394 — 0.5842 5.5548 39.8416 “ 
S.D. - 0.01994 0.4614 6.2550 — 40.0356 “ 
Mill 0 0.02 * — 0.07 1.18 
Max 0.09 2.46 37.36 222.64 

Table 8.5: Completion Time of CPLEX IP Solver 
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n=20, m=91 n=50，m=218 n=75, m=325 n=100, m^43Q 
MeaiT 9.2698 * 144.5618 — 964.9897 4139.81 
S.D._ 8.8831 一 149.6657 1498.664 4622.361 
Min 1 “ 1 1 * 15 
Max 41 692 12472 27900 

Table 8.6: Number of Nodes Used for CPLEX IP Solver 

A complete numerical results for CPLEX can be found in Appendix D. 

Table 8.7 lists the gain of our approach on 3 important indexes: mean number of 

nodes being searched, mean completion time and maximum number of nodes being 

searched among those 100 sample instances against CPLEX IP solver. Clearly, our 

approach outperforms CPLEX IP solver. 

Gain in n=20’m=91 n=:50’m=218 ri=75,m=325 n=100,m=430~ 
Mean no. of nodes -15% 56% 37% 31% 

Mean time 73% 一 49% 14% — 7% 
Max no. of nodes 11% 102% 60% 一 

Table 8.7: The gain of TU-based B&B on CPLEX IP solver 



Chapter 9 

Conclusions 

This chapter summarizes our research contributions and discusses potential future 

work. 

9.1 Contributions 

The main contributions of this research are as follows: 

1. We actively use the Totally Unimodular theory to solve SAT problems. In 

literature, people usually pay attention to the solvability of the problem if the 

constraint matrix has already been totally unimodular, and how to check the 

totally unimodularity of the constraint matrix. In many situations, however, the 

constraint matrix of an integer optimization problem is not totally unimodular. 

Our reseaxcli can thus deal with general problems without any assumption of 

totally unimodularity. 

2. We find the common characteristics for all non-totally unimodular 2 x 2 (0，±1) 

and 3 x 3 0 - 1 matrices, and prove the form excliisiveness of the non-totally 

unimodular 3x3 0-1 matrices. See Theorem 6.3.2. 
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3. Based on the matrix research results, we derive an efficient algorithm to make 

the constraint matrix closer to the state of totally unimodularity step by step. 

It can also be regarded as the process of approaching a solvable state by linear 

relaxation. 

4. Through the comparison with ILOG CPLEX — a very powerful solver for opti-

mization problems, we find our algorithm is very efficient when n is not more 

than 100. 

5. This algorithm can be also extended to situations where the decision variables 

are not binary and the components of the coefficient matrix take values from 

—1，0，and 1. 

9.2 Future Work 

One obvious extension of this research would be to siudy the common characteristics 

of non-totally unimodularity for high-order square matrixces (we only studied 2x2 

and 3x3 matrices). This will help us to get more efficient branching order for branch-

and-bound process. 

In fact, after we exclude the 3 x 3 non-totally unimodular submatrices, we have 

noticed that, for 0,1 square matrix, if there are at most 3 Is in every row, all even-

sized matrices are totally unimodular (e.g. 4x4, 6x6，• • •). In the case of odd-sized 

matrix, when there are exactly two Is per row and per column, the matrix is non-

totally unimodular. 

Despite the good performance on many instances, the proposed TU-based branch-and-

bound algorithm does not have a very good performance on many other large-sized 
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problems. Especially, for unsatisfiable SAT problem, our algorithm is not so good 

because we must search the entire binary tree to get such unsatisfiability conclusion. 

It could take months or even years to solve some of them. And, optimizing the 

variable sorting part is another extension of this research. 



Appendix A 

The Coefficient Matrix A for 
Example in Chapter 7 

Xi X2 Xz 3；4 3：5 Xg X7 Xs XQ Xiq 

0 I 0 I 0 - 1 I 0 I 0 = -1 0 I 0 
0 -1 ~ A ~ 0 — 0 0 0 0 0 -1 

~ " Q 1 1 0 — 0 0 " ~ 0 0 1 0 
— 0 0 0 -1 ~ 0 -1 " 0 0 Q " -1 

1 “ 0 -1 0 ~ 0 -1 _ 0 0 “ 0 —~0 ~~~ 
0 0 1 1 0 - 1 — 0 Q “ 0 ~ ~ 0 ~ ~ 

—"^I 0 — 0 ~ -1 ~ c " " 0 0 0 0 -1 
1 0 0 0 ~ 0 0 0 1 1 0 ~ ~ 

-1 “ 0 0 ~ 0 0 ~ 0 — 0 1 0 ~ ~ 1 ~~~ 
1 1 0 0 一 1 0 0 0 0 ~~0~~ 
0 0 0" " “ 0 0 0 " -1 ~ 0 -1 
0 “ 0 0 ~ 0 ~ i ~ ~ 0 ~ -1 0 -1 0 一 

1 0 0 0 ~ ~ 1 ~ ~ 0 0 - 1 0 0 
0 — 0 0 ~ 0 0 ~ ~ 0 1 -1 “ 0 1 — 

0 ~ " T ~ Q 0 0~~ 1 0 0 0 1 
0 — 0 1 0 1 — 0 0 0 0 
0 “ 0 0 “ 1 ~ ~ 0 ~ 0 -1 - 1 . 0 0 一 

0 “ 0 0 ~ - 1 0 0 - 1 0 “ 0 - 1 

-1 ~ ~ 0 1 0 0 0 -1 0 ~ ~ 0 " " “ 0 
0 “ 0 -1 0 ~ ~ 0 ~ ~ 0 0 -1 “ -1 0 — 
0 — 1 0 0 ~ F 1 ~ 0 0 " " “ 0 ~ ~ 0 
o | o | o | o | o | o | - i | i | o | -1 ~ ~ 
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Appendix B 

The Detailed Numerical 
Information of Solution Process for 
Example in Chapter 7 

fval Xi X2 X3 X4 X5 Xq X7 Xs Xq Xio 

0.000 0.143 0.571 0.000 0.714 0.714 0.571 0.714 "Q.143 0.714 0.000 
0.000 0.000 0.667 0.000 1.000 0.667 0.667 1.000 0.333 0.667 0.000 
0.000 0.222 0.444 0.444 0.444 0.667 0.667 0.000 0.111 0.667 0.111 
0.500 1.000 0.500 |"0.500 0.500 0.500 0.500 1.000 0.500 0.500 0.500 
0.000 0.000 0.667 0.000 1.000 0.667 0.667 1.000 0.333 0.667 0.000 
0.000 1.000 0.000 0.500 0.500 0.500 0.500 0.000 0.500 0.500 0.500 
0 . 0 0 0 0 . 0 0 0 1.000 0.500 0.500 0.500 0.500 0.000 0.500 0.500 0.500 
0.000 0.000 0.500 0.000 1.000 0.500 1.000 1.000 0.500 0.000 0.000 
0.500 0.000 0.500 0.500 0.500 0.500 0.000 1.000 0.500 0.500 0.500 
0.500 1.000 0.000 0.500 0.500 1.000 1.000 0.000 0.500 0.500 0.500 
1.000 1.000 0.000 0.500 0.500 1.000 0.000 0.000 0.500 0.500 0.500 
1.500 0.000 0.750 0.500 0.500 1.000 1.000 0.000 0.750 0.250 0.750 
0.750 0.000 0.750 0.500 0.500 0.750 0.000 0.000 0.750 0.000 0.750 
2.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 

0.000 0.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 
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Appendix C 

Experimental Result 

C.l # of variables: 20, # of clauses: 91 

Problem Name Number of Layers Number of Nodes Completion Time(sec.) 
uf20-01.cnf 3 10 “ 0.0200 

uf20-01Q.cnf “ 2 4 0.0200 “ 
uf20-0100.cnf 4 22 0.0400 

uf2Q-01000Ta^ 5 20 0.0400 ~ ~ 
uf2Q-0101.cnf 2 5 —0.0200 

• uf20-01Q2^nf 3 了 10 0.0200 — 
uf20-01Q3.cnf 4 — ~~ 0.0400 
uf2Q-Q104.c"^" 2 — 6 0.0200 
uf20-01Q5.c"^ 5 20 0.0400 
uf20-01Q6.cnf 2 — 6 0.0200 ~ 
u f 2 0 - Q 1 0 7 . c i ^ 6 6 0.0400 
uf20-Q108.c"I^ 3 — 10 — 0.0100 
uf20-0109.c"^" 6 — 25 — 0.0400 
uf20-011.cnjr~ 1 3 0.0100 
uf20-Q110.c"Z~ 2 4 — 0.0200 
uf20-0111.ci^ 4 — 17 0.0200 一 

i i f20-0112.d 3 10 0.0100 — 

uf20-0113.d 3 - 11 0.0300 

uf20-0114.c"l^ 2 4 — 0.0000 

uf20-0115.c"^ 3 I 15 I 0.0200 — 
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Problem Name Number of Layers Number of Nodes Completion Time(sec.) 
uf20-0116.cnf 4 “ 19 0.0300 
uf20-0117.cnf 4 “ 22 0.0300 
uf20-Q118.cnf 5 “ 24 0.0400 
uf20-0119.cnf 4 16 0.0400 一 

uf20-012.cnf 1 3 0.0000 
uf20-Q120.cnf 2 " i ~ 0.0200 
uf20-Q121.cnf 3 8 0.0100 
uf20-0122.cnf 5 — 4 0.0300 
uf20-Q123.cnf 3 10 0.0300 
uf20-0124.cnf 2 6 0.0100 
iif2Q-0125.cnf 5 18 0.0400 
uf20-0126.cnf 0 1 0.0000 
uf20-0127.cnf 1 3 0.0000 
iif20-0128.cnf 3 9 0.0300 
uf20-0129.cnf 2 4 0.0100 
uf20-013.cnf 0 1 0.0000 
uf20-0130.cnf 0 1 — 0.0000 
uf20-0131.cnf 1 2 0.0000 
uf20-0132.c"^ 3 14 0.0300 
iif20-0133.cnf 4 _ 16 0.0300 一 

uf20-Q134.cnf 4 T " 22 — 0.0400 
uf20-0135.ci^ 2 5 0.0200 
uf2Q-Q136.c"^ 6 28 0.0500 
uf20-0137.c"^ 0 — 1 — 0-0000 
uf20-0138.cnf 3 一 11 0.0200 
uf20-0139.^^ 0 1 一 0-0000 

uf2Q-Q14.c^ 3 9 0.0100 — 
uf20-Q140.ciZ~ 3 一 13 — 0-0300 
uf20-0141.cii^ 4 21 0.0300 
uf20-Q142.cnf 4 14 0.0300 — 
u f 2 0 - 0 1 4 3 . d 1 2 0.0200 
uf2Q-Q144.^^ 0 1 0-0000 
uf20-Q145.cnf 6 22 0.0300 
uf20-0146.cnf 4 24 0.0300 
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Problem Name Number of Layers Number of Nodes Completion Time(sec.) 
uf20-Q147.cnf 3 “ 8 0.0100 
uf2Q-0148.cnf 3 “ 9 0.0200 
uf20-0149.cnf 4 20 0.0300 
uf20-Q15.cnf 1 “ 3 0.0100 
uf20-0150.cnf 4 14 0.0400 
uf20-0151.cnf 3 9 0.0100 
uf20-0152.cnf 0 1 0.0200 
uf2Q-0153.cnf 2 “ 4 ~ a O l Q Q 
uf20-Q154.cnf 4 14 0.0300 
uf20-0155.cnf 6 37 0.0500 
uf20-0156.cnf 2 6 0.0200 
uf2Q-0157.c^ 0 — 1 — 0.0100 
uf2Q-0158.cnf 0 1 0.0000 
uf2Q-0159.cnf 5 30 0.0300 
uf20-Q16.cnf 3 8 0.0300 ~ 

uf2Q-0160.cnf 2 6 0.0200 
uf20-0161.cnf 3 10 0.0200 

_ uf20-Q162.cnf 5 19 0.0400 
uf2Q-Q163.c^ 1 2 — 0 ^ 0 0 ~ 

—iif20-0164.o^ 0_ ？ 1 0.0100 
“uf20-0165.cnf 2 6 — 0.0300 

uf20-0166.cnf 2 ~ 6 0.0300 
uf20-0167.c"^ 1 — 2 0.0000 
uf20-Q168.cnf 3 12 0.0300 
uf20-Q169.cnf 1 2 — 0.0200 
uf20-017.cnf 4 18 0.0300 
uf20-017Q.c"i^ 3 8 — 0.0100 — 
uf2Q-Q171.^^ 1 3 0.0200 — 
uf20-0172.ci^ 0 1 _ 0-0200 
iif20-0173.^^ 5 26 0.0500 
uf20-0174.cnf 2 6 0.0200 
uf2Q-Q175.a^ 5 23 0-0400 
uf20-0176.cnf 4 22 0.0300 
uf20-0177.cnf | 3 丨 9 | 0.0200 
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Problem Name Number of Layers Number of Nodes Completion Time (sec.) 
uf2Q-Q178.cnf 2 5 0.0100 
uf2Q-0179.cnf 3 ~ 8 — 0.0300 
iif20-018.cnf 4 19 0.0300 
uf20-Q180.cnf 4 19 0.0400 
uf2Q-0181.cnf 5 33 0.0600 
uf20-0182.cnf 2 7 0.0200 
uf20-0183.cnf 4 16 — 0.0300 
uf20-0184.cnf 3 11 0.0300 
uf20-Q185.cnf 3 12 0.0200 
uf2Q-0186.cnf 2 6 — 0.0300 
uf20-0187.cnf 2 4 0.0100 
uf20-Q188.cnf 4 13 0.0200 

C.2 # of variables: 50, # of clauses: 218 

Problem Name Number of Layers Number of Nodes Completion Time(sec.) 
“uf5Q-Ql.cnf 8 198 0.7300 

uf50-QlQ.cnf 5 42 —"aiQQO 
uf50-0100.cnf 10 0.8200 
uf50-Q1000.cnf 4 27 0.1400 
uf50-0101.cnf 7 118 0.5800 
uf50-01Q2.cnf 6 56 0.2500 
uf50-Q103.cnf 6 59 0.2700 
uf50-01Q4.^^ 7 105 0.4600 
uf50-0105.^^ 3 9 0.0800 
u f 5 Q - 0 1 0 6 . ^ ^ 6 64 0.3100 
uf50-0107.c^ 8 132 0.5100 
uf50-0108.cnf 6 51 0.2700 — 
uf50-0109.cnf 0 1 0.0400 
uf5Q-011.cnf 9 211 0.8900 — 
uf50-0110xnf 9 180 0.6900 ~ 
uf50-0111.cnf 8 “ 109 0.4800 
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Problem Name Number of Layers Number of Nodes Completion Time(sec.) 
uf50-0112.cnf 10 243 0.8700 
uf50-0113.cnf 7 196 0.6300 
uf50-0114.cnf 5 46 0.2100 
uf50-0115.cnf 2 7 0.0800 
uf50-0116.cnf 4 18 0.0900 
uf50-0117.cnf 5 32 0.1600 
uf50-Q118.cnf 8 167 0.5800 
uf50-0119.cnf 5 54 0.2800 
uf50-Q12.cnf 4 18 0.1000 

uf5Q-0120.cnf 6 62 0.2900 
uf5Q-Q121.cnf 6 52 0.2800 
uf50-Q122.cnf 4 19 0.1000 
uf5Q-0123.cnf 8 216 0.7600 
uf50-Q124.cnf 8 238 0.7300 
uf5Q-0125.cnf 7 112 0.4700 
uf50-0126.cnf 5 56 0.2100 
uf50-0127.cnf 4 16 0.1000 
uf5Q-0128.cnf 7 168 — 0.6700 
uf50-0129.cnf 14 256 0.9900 

—uf50-013.a^ 5 • ； 42 一 0.2400 — 

—iif50-013Q.cnf 6 70 0.3700 
uf50-0131.c"iii^ 3 12 0.1000 
uf50-Q132.c"^ 4 26 0.1600 
uf50-Q133.c"i^ 5 — 46 0.2600 
uf50-0134.c"^ 10 169 0.8500 ~ 
uf5Q-0135.^i^ 6 66 — 0.2900 — 
uf50-0136.^5~ 0 1 一 0.0400 ~ 

uf50-Q137.^^ 7 74 0.3200 
uf50-0138.cnf 5 45 0.1600 
uf50-0139.^^ 6 68 0.3400 
uf50-Q14.c^ 6 77 0.3400 — 
uf5Q-014Q.c^ 7 111 0.4900 
uf50-0141.^i^ 6 80 0.3500 
uf50-0142.cnf 9 143 0.6000 
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Problem Name Number of Layers Number of Nodes Completion Time(sec.) 
uf5Q-0143.ciT" 6 — 74 0.3400 — 
uf50-0144.cnf 5 46 0.2700 
uf50-Q145.cnf 6 “ 75 0.2900 
uf5Q-0146.cnf 6 75 0.3500 
uf50-0147.cnf 7 116 0.5500 
uf50-0148.cnf 10 “ 180 0.7500 
uf50-0149.cnf 3 12 0.0700 
uf50-015.cnf 5 39 0.2200 
uf50-Q15Q.cnf 6 — 82 0.3300 
uf5Q-0151.cnf 7 188 0.7500 
uf50-0152.cnf 6 81 0.3900 
uf50-0153.cnf 6 94 0.3900 
uf50-0154.cnf 8 228 0.6800 
uf5Q-Q155.cnf 6 66 0.3000 
uf50-0156.c"^ 5 38 0.2100 
uf50-Q157.cnf 5 38 0.1500 
uf50-0158.cnf 7 118 0.5200 — 
uf50-Q159.cnf 7 83 “ —03600 “ 
uf5Q-016.cnf 5 62 0.2400 
uf50-0160. (^ 7 98 0.4200 
uf5Q-0161.cnf 5 “ '—36 0.1600 “ 
uf5Q-Q162.c^ 4 “ 20 0.1200 一 

uf50-Q163.cnf 15 343 1.1800 
uf50-0164.5^ 0 1 0.0500 
uf5Q-0165.cnf 6 72 0.3600 
uf50-0166.cnf 3 35 0.1900 
uf5Q-0167.^^ 9 207 0.8500 
uf50-Q168.^i^ 4 17 0.1200 
uf5Q-Q169.cnf 6 78 0.4200 
uf50-Q17.cnf 6 “ 100 0.4400 ~ 
uf5Q-Q170.cnf 5 37 0-1800 — 
uf50-0171.cnf 7 “ 118 0.4900 
uf50-Q172.cnf 9 329 1.3100 — 
uf50-0173.cnf 10 162 0.6700 ~~ 
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Problem Name Number of Layers Number of Nodes Completion Time (sec.) 
“uf50-0174.cnf 7 ~ 112 0.4800 
“uf50-0175.cnf 3 12 0.0900 
“uf50-0176.cnf 9 ~ 203 — 0.7500 

uf50-Q177.c"i^ 10 “ 229 0 8 ^ 
uf50-0178.c"i^ 2 ~ 7 0.0400 
uf50-0179.cnf 6 55 03000 

“uf50-018.cnf 2 5 0.0700 
uf50-Q180.cnf 11 一 240 ~ ~ 

“uf50-0181.cnf 4 23 0.1500 
uf50-Q182.c"nF 8 102 04400 
uf50-Q183.c"^ 4 26 K i m 

“uf50-0184.ci^ 4 19 — 0.1000 
“uf50-Q185.cnf 7 118 0.5100 

uf5Q-0186.c"^ 6 - 60 0.3500 
uf50-Q187.c^ 7 123 0.5100 
uf50-Q188.cnf | 5 | 41 0 2 ^ 

C.3 # of variables: 75, # of clauses: 325 

Problem Name Number of Layers Number of Nodes Completion Time(sec.) 
“ u f 7 5 - 0 1 . c n f ~ 8 253 2.2800 — 

uf75-01Q.c^ 3 - 8 0.2000 
uf75-Q10Q.cnf 13 “ 1578 9.4100 

“iif75-011.cn厂 9 560 ~~ 4.6700 
“uf75-012.cn厂 13 1526 9.0600 

uf75-013.cnf 6 “ 84 0.6900 
uf75-014.cnf 8 398 2.7100 

“uf75-Q15.cn"r~ 11 628 4.5200 
uf75-016.cnf 6 “ 80 0.8900 
uf75-Q17.ci^ 6 “ 96 0.5700 
uf75-018xnf 4 18 0.2800 
iif75-Q19.cnf 10 535 4.1000 
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Problem Name "Number of Layers Number of Nodes Completion Time(sec.) 
uf75-02.cnf 11 1288 8.6100 

uf75-Q20.cnf 14 1676 12.1500 
uf75-021.ci"^ 10 - 792 5.6800 
uf75-022.ci"5~" 10 ~ 366 ~ ~ 3.2600 
uf75-023.ci"^ 12 1054 一 7.2000 

uf75-024.ci"^ 12 - 930 6.2200 
uf75-025.cnf 6 107 0.7400 
uf75-026.cnf 12 1715 11.1900 
uf75-Q27.ci"ir~ 7 — 136 一 1.0100 

uf75-028.ciZ~ 9 397 2.8600 
uf75-029.cnf 7 188 1.6900 — 
uf75-03.cnl~ 13 910 7.2000 

uf75-030.cnf 11 — 1020 6.3800 
uf75-Q31.cnf 8 256 1.9800 
uf75-032.cnr~ 7 “ 214 1.7900 
uf75-033.cnf 6 103 0.8800 
uf75-034.cnf 9 “ 466 2.7300 
uf75-Q35.ciif 8 252 1.7600 
uf75-036.cnf 8 323 2.5400 
uf75-Q37.ci"^ 15 ‘ 6502 37.0700 

” . uf75-038.cnf 8 “ 316 3.0200 
uf75-Q39.cnf 12 1672 12.5100 
uf75-04.cnf 8 — 281 3.0100 

uf75-04Q.cnf 9 ^ 2.8300 
uf75-041.ci^ 10 448 3.7400 
uf75-042.cnf 9 “ ^ 4.6300 
uf75-043.cnf 11 517 4.1200 
uf75-Q44.cnf 7 145 1.5700 
uf75-045.cnf 5 ^ 0.4300 
uf75-046.cnf 12 1038 7.8200 
uf75-047.cnf 7 ^ 1.6000 
uf75-048.cnf 12 1321 — 9.1300 
iif75-Q49.ci^ 7 207 ~ ~ 1.6300 
uf75-Q5.cnf 12 2305 16.0100 
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Problem Name Number of Layers Number of Nodes Completion Time (sec.) 
uf75-050.cnf 3 “ 10 0.2100 
uf75-051.ciif~ 18 一 5341 24.6300 

uf75-052.cnf 10 746 6.1000 
uf75-053.cnf 9 327 2.7100 
uf75-Q54.cnf 6 94 0.9900 
uf75-055.cnf 10 “ 741 5.7700 
uf75-056.cnf 10 “ 471 3.5600 
uf75-057.cnf 14 946 7.3500 
uf75-Q58.ci"^ 10 668 4.8400 
uf75-059.cnf 6 125 0.8100 
uf75-06.cnf 12 1858 — 13.0900 
uf75-06Q.cnf 7 173 1.6900 
uf75-061.cnf 5 35 0.3900 
uf75-062.cnf 8 302 2.9200 
uf75-063.cnf 9 333 ~~ 2.5300 
uf75-064.cnf 8 245 1.7900 “ 
uf75-065.cnf 10 720 5.0400 
uf75-066.cnf 10 “ 727 — 5.4400 
iif75-Q67.cnf 7 202 — “ 1.6600 一 

u f 7 5 - 0 6 8 . c i ^ 9 379 2.8100 
“ uf75-069.cnf 8 343 2.5900 ~ 

uf75-07.cnf 6 85 0.8800 
uf75-Q70.cnf 13 — 851 7.2500 
uf75-071.cnf 11 1808 12.7500 
uf75-Q72.cnf 8 255 2.2500 
uf75-Q73.ciT~ 9 559 — 3.4100 
uf75-074.cnf 8 235 2.4100 
uf75-075.cnf 10 770 7.0100 “ 
u f 7 5 - 0 7 6 . c i ^ 17 — 2036 _ 14.1900 “ 
u f 7 5 - 0 7 7 . c i ^ 5 38 0.4700 
u f 7 5 - 0 7 8 . c i ^ 6 108 — 1.0700 一 

uf75-079.cnf 17 1164 ~ ~ 8.6100 
uf75-08.cnf 9 626 4.8000 — 

uf75-08Q.cnf | 4 | 19 | 0.29000 



76 

Problem Name Number of Layers Number of Nodes Completion Time (sec.) 
uf75-Q81.cnf 7 142 1.2400 
uf75-082.cnf 10 “ 995 7.5300 
uf75-083.cnf 8 “ 248 1.8500 
uf75-Q84.cnf 10 “ 306 2.8000 
uf75-Q85.cnf 3 “ 13 0.0700 
iif75-Q86.ci^ 16 4705 — 25.5100 
uf75-087.cnf 3 “ 14 0.2200 
uf75-088.cnf 6 112 1.0500 
uf75-089.cnf 8 302 2.2500 
uf75-Q9.cnf 5 33 0.4100 
uf75-09Q.cnf 13 1168 8.3700 
uf75-091.cnf 12 476 3.6100 
uf75-Q92.ci^ 8 352 2.8000 
uf75-Q93.ciT~ 8 — 236 1.8700 ~ 
uf75-094.cnf 9 358 2.1500 
uf75-095.cnf 7 202 2.0200 
iif75-Q96.cnf 11 1086 “ 7.2100 
uf75-097.cnf 15 866 7.5100 ” 
ut75-098.ciTr~ 11 1146 “ 8.0800 

-uf75-Q99.cnf 8 | 257 | 2.5500 一 

C.4 # of variables: 100, # of clauses: 430 

Problem Name Number of Layers Number of Nodes Completion Time (sec.) 
-uflOO-Ol.cnF" 10 1694 ~ 20.7900 

uflOO-OlQ.c^ 14 — 4471 — 52.6700 — 
uflOQ-OlOO.cnf 6 99 1.4400 
i i f lOO-01000 j 9 750 一 12.7300 一 

uflOO-OlQl.cnf 10 999 15.7400 
uflQQ-0102.cnf 15 3323 48.5700 

“uflQ0-01Q3.cnf 14 一 4869 “ 62.2300 
uflQ0-0104.cnf 18 17478 164.4400 — 
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Problem Name Number of Layers Number of Nodes Completion Time(sec.) 
uflQQ-QlQ5.cnf 9 657 10.5500 
ufl00-0106.cnf 15 7563 96.1100 
uflQ0-0107.cnf 6 95 1.4900 
uflQ0-QlQ8.cnf 16 6762 75.2600 
ufl0Q-Q109.cnf 9 826 11.7500 
uflQO-Qll.cnf 15 6790 80.6000 

uflOQ-OllO.cnf 14 8361 93.4500 一 

uflOQ-Olll.cnf 11 2012 24.7500 
ufl00-0112.cnf 12 1674 20.6800 
ufl00-0113.cnf 16 — 9511 101.7100 
ufl 00-0114.cnf 13 3079 41.3300 
ufl00-Q115.cnf 8 263 3.6000 
u f l O O - 0 1 1 6 . ^ 12 — 1931 25.4700 
iifl00-0117.cnf 10 933 12.9000 
iiflQO-OllS.cnf 6 101 1.2200 
ufl00-Q119.cnf 7 185 2.1400 
ufl0Q-012.cnf “ 14 2978 31.6000 

uflQQ-012Q.cnf 8 403 5.9900 
ufl00-Q121.cnf 15 — 11854 — 124.8900 
ufl00-0122.cnf 12 — 2342 ？6.2700 
u f l 0 0 - 0 1 2 3 . ^ 13 — 4206 "51.4400 
ufl00-Q124.cnf 5 68 0.8900 
u f l 0 0 - 0 1 2 5 . ^ 10 — 1157 17.3000 
ufl0Q-0126.cnf 17 — 8710 110.5600 
ufl00-0127.c"^ 19 — 10210 115.3500 — 
uflQ0-0128.c"^ 9 561 8.4400 — 
uf l00-0129.c^ 14 2976 — 37.6500 一 

ufl00-Q13.cnf 15 3998 50.7300 
uflQQ-0130.cnf 16 9555 101.0200 “ 
ufl00-0131.c"^ 11 2315 — 29.1700 — 
ufl0Q-0132.cnf 14 5090 70.5900 

“uflQ0-Q133.c"i^ 15 12727 145.8600 
~ ufl00-0134.cnr 13 4736 “ 58.1100 
“ufl00-Q135.cnf 13 1568 21.1000 — 
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Problem Name Number of Layers Number of Nodes Completion Time (sec.) 
ufl00-Q136.cnf 8 354 5.2400 
ufl00-0137.cnf 11 1696 25.3100 
ufl00-Q138.cnf 7 164 1.9600 
ufl0Q-0139.cnf 12 2842 29.8800 
ufl00-014.cnf 14 3807 39.9900 

ufl00-Q14Q.cnf 11 2308 26.0400 
uflQ0-0141.cnf 13 3713 52.6900 
uflQ0-0142.cnf 9 679 9.0500 
ufl00-Q143.cnf 13 3128 39.4400 
uflQ0-0144.ciif 11 1732 23.0200 
uflQ0-0145.cnf 16 4380 54.6300 
uflQ0-0146.cnf 11 1072 15.6100 
ufl00-0147.cnf 6 126 2.1200 
uflOQ-Q148.cnf 16 3349 45.5500 
ufl00-0149.cnf 10 1540 18.7500 
ufl00-015.cnf 11 1588 18.6700 
uflQ0-0150.cnf 9 832 ~ ~ 8.3800 
uflQ0-Q151.cnf 5 41 ~ ~ 0.8600 
ufl00-Q152.cnf 14 5774 73.6200 

. uflQ0-Q153.cnf 12 _ “ 3473 ：；6.8800 
… uflQ0-0154.cnf 19 — 10995 — 122.7200 

uflOQ-Q155.cnf 12 3136 37.3200 
ufl00-0156.cnf 11 1584 20.8500 
ufl00-0157.cnf 18 2038 25.7500 
ufl00-0158.cnf 15 — 8964 — 92.8700 
ufl00-0159.cnf 14 3269 35.1800 
uflOQ-OlG.cnf 18 一 7376 75.8500 

ufl00-Q160.cnf 14 5451 52.2400 
ufl00-0161.cnf 10 1117 15.9000 
ufl00-0162.cnf 6 95 — 1.4900 
ufl00-0163.cnf 14 — 6066 66.7200 
ufl00-0164.cnf 5 ^ 0.4700 
ufl00-0165.cnf 10 lOM 12.4600 
ufl00-0166.cnf 12 ^ 35.7400 
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Problem Name Number of Layers Number of Nodes Completion Time (sec.) 
ufl00-Q167.cnf 12 2795 34.8200 
uflQQ-Q168.cnf 14 3698 41.9000 
iifl00-Q169.cnf 11 1143 16.4100 
ufl0Q-017.cnf 15 7271 — 83.0200 
ufl00-0170.^ 8 ~ 275 一 3.5700 

u f l Q O - 0 1 7 1 . ^ 14 5856 — 77.1900 
ufl00-0172.cnf 11 1803 21.5400 
uflQQ-0173.cnf 14 3306 43.5000 
uflQ0-0174.cnf 12 2438 31.6900 
ufl00-0175.cnf 10 1423 21.7900 
ufl00-0176.cnf 10 1139 13.0900 
ufl00-0177.cnf 13 3467 — 32.2400 — 
ufl00-0178.cnf 11 1286 16.0900 
ufl00-Q179.cnf 11 1029 16.2500 
uflOQ-Q18.cnf 5 37 0.7100 

ufl00-018Q.cnf 17 5853 65.5500 
ufl0Q-0181.cnf 8 436 ~~ 5.9600 
uflQQ-Q182.cnf 4 — 18 — 0.4200 
ufl00-Q183.cnf 13 4334 — 61.1800 
uflOQ-OlM.cnf 12 “ 1725 21.9100 
ufl00-bl85.cnf 5 — 55 “ 0.9900 
uf lOO-0186.^ 5 41 0.5800 
ufl00-0187.cnf 9 399 5.3400 
uf lOO-0188.^ 3 I 12 I 0.4500 



Appendix D 

Experimental Result of ILOG 
CPLEX 

D.l # of variables: 20, # of clauses: 91 

Problem Name Number of Nodes Completion Time (sec.) 
uf20-01.cnf -1 0.0300 

~uf20-QlQ.cnf “ 14 0.0600 
~uf20-0100.cnF - 0.0100 — 

uf20-01000.c^ 7 0.0500 
~uf2Q-01Ql.cnr 10 一 0.0700 

uf20-0102.cnf “ 17 0.0600 
~uf20-QlQ3.cnF 11 0.0500 
~uf20-0104.cnF - 0.0200 
-iif20-0105.cn 厂 41 0.0900 
-uf20-0106.cn 厂 13 — 0.0600 

-uf20-0107.cn 厂 17 0.0500 

~^f2Q-0108.cnf “ 12 0.0700 
~uf2Q-Q109.cnf 2 0.0400 
~~uf20-011.cnf 2 0.0400 
~uf20-0110.cnf - 0.0200 

uf20-0111.cnf “ 6 0.0600 
—uf20-0112.cn 厂 - 0.0200 

iHere the mark "-" means no branch-and-bound algorithm used in solving this integer program-
ming problem 
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Problem Name Number of Nodes Completion Time (sec.) 
~uf20-0113.cnf 14 — 0.0500 

uf20-0114.cn厂 17 — 0.0600 

~uf20-0115.cnr" - — 0.0200 
~uf2Q-0116.cnf 12 0.0500 
~uf2Q-Q117.cnf 14 0.0600 
~uf2Q-Q118.cnr" - 0.0200 
~uf20-Q119.cnf 27 0.0700 
~uf20-Q12.cnf - 0.0200 

uf2Q-012Q.cnf - — 0.0300 
uf20-0121.cnf 2 — 0.0500 

—uf2Q-0122.cnf~ 5 — 0.0400 
—uf2Q-Q123.cnf~ 3 0.0400 
一 iif20-0124.cnf~ - — 0.0100 

uf2Q-0125.cnf 4 — 0.0400 
uf20-0126.cn"r" - — 0.0100 

-uf20-0127.cn"F 3 0.0500 
~ uf20-0128.cn"r" 3 — 0.0300 
-uf2Q-Q129.cnf 2 — 0.0200 

uf20-Q13.cnf - 0.0100 
uf2Q-013Q.cnf - . — 0.0100 

~ uf20-0131.cn"F " “ 0.0300 
~ uf20-0132.cnf 2 0.0600 
~uf2Q-0133.cnf - 0.0200 
一 uf20-0134.cnf - 0.0300 
-uf20-0135.cnT~ - 0.0300 
-uf2Q-Q136.cnT" 32 ~ 0.0900 
~uf20-Q137.cnf~ - 0.0400 
-uf20-0138.cnf 5 0.0500 
~ uf20-0139.cnT" - 0.0200 
-uf20-014.cnr~ 14 0.0600 
-uf20-Q140.cnT" 3 0.0600 

uf2Q-0141.cnf~ 13 0.0500 
“uf20-0142.cnf - 0.0400 

uf20-Q143.cnf - — 0.0200 
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Problem Name Number of Nodes Completion Time (sec.) 
~uf2Q-0144.cnF - 0.0100 

uf20-0145.cnf 4 0.0400 
~uf20-0146.cnF 3 0.0400 

uf2Q-0147.cnf 2 0.0300 
—uf20-0148.cn 厂 2 0.0500 

~uf20-Q149.cnf - — 0.0300 
uf20-015.cnf - 0.0100 
uf20-015Q.cnf 1 0.0500 

~uf2Q-Q151.cnf~ 3 0.0500 
~iif2Q-Q152.cnf~ - 0.0000 
~uf2Q-0153.cnf - 0.0300 

uf20-0154.cnf 3 0.0400 
—uf20-0155.cnf— 3 0.0500 

uf2Q-Q156.ci^ 2 0.0300 
iif20-0157.c^ - 0.0100 
uf2Q-0158.c"^ - 0.0000 
uf20-0159.cnf 了 0.0400 

uf20-016.cnf i 0.0700 
uf20-0160.cnf 3 0.0400 
uf20-0161.c^ 30 0.0400 

""uf20-0162.cnf - “ 0.0100 
uf20-0163.cnf 4 0.0400 
uf20-Q164.cnf - 0.0100 

~uf2Q-Q165.cnf 2 ~ ~ 0.0400 
"~^f2Q-0166.cnf 3 0.0400 
~^f20-Q167.cnf 2 0.0400 

uf20-0168.cnF 2 0.0400 
iif20-0169.cnf~ - — 0.0200 
iif2Q-017.cnf 12 — 0.0700 

~[If20-017Q.cnf 15 0.0700 
"Tif20-0171.cnf - 0.0200 
"~^f2Q-Q172.cnf “ - 0.0100 
~uf20-0173.cnf~ 5 ~ ~ 0.0500 

uf20-0174.cnf 2 0.0600 
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Problem Name Number of Nodes Completion Time(sec.) 
uf20-0175.ci^ 2 0 0 ^ 

Tf20-0176.cnf 24 0.0700 
Tf20-0177.cnf 8 0.0400 
Tf2Q-0178.cnf 18 0.0600 
~^0-0179.cnf — 22 0.0700 

uf20-018.cnr~ 11 OO™ 
uf20-Q180.ci^ 5 0.0500 

"~^20-0181.cnf - 0.0200 
iif20-0182.ci^ - 0.0200 
uf20-0183.c^ 3 0.0400 

"~df20-0184.cnf - 0.0300 
"~[^20-0185.cnf - 0.0300 
~^20-0186.cnf 12 0.0600 

uf2Q-0187.c^ 2 0.0200 
uf20-0188.cnf [ 9 — 0.0600 

D.2 # of variables: 50, # of clauses: 218 

Problem Name Number of Nodes Completion Time (sec.) 
iifSO-Ol.cnf 356 1.0400 
ufSO-QlO-cnT" 7 0.2100 
uf50-Q100.c^ 214 0.8800 
uf50-010QQ.cnf 8 0.1900 
iif50-0101.c"^ 74 0.4200 
iif50-0102.cnf - 0.0700 
uf50-0103.cnf 0.3700 
uf50-Q104.c^ 130 0.4900 
uf50-01Q5.cnf - 0.0300 
iif50-0106.ci^ 330 1.3300 

"~^0-0107.cnf “ 231 0.7900 ~ ~ 
"~[If50-0108.cnf “ 91 0.4900 ~ ~ 

uf50-0109.ciJ~ - 0.0400 
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Problem Name Number of Nodes Completion Time(sec.) 
~~uf5Q-011.cnf 358 1.4000 

uf50-QllQ.cnf 96 0.5800 
uf50-0111.cnf 22 0.3100 

~uf50-Q112.cnf 240 0.8500 
uf50-0113.cnf 30 0.2900 

~Tif50-0114.cnf 120 0.6400 
~uf50-0115.cnf 1 一 0.1200 

uf50-0116.cnf 156 0.7200 
uf50-0117.ciZ~ 7 — 0.2900 

~uf50-0118.cnf 251 一 0.8200 
~uf50-0119.cnf 65 ~ ~ 0.4600 
~ iif50-Q12.cnf 116 — 0.6000 
"^f50-0120.cnf 161 0.5900 
~^f5Q-0121.cnf 154 0.6700 
~uf50-0122.cnf 164 — 0.5900 
~uf50-0123.cnf 76 ~ ~ 0.4500 
~uf50-0124.cnf 54 ~ ~ 0.4000 
~^f5Q-Q125.cnf 352 1.3900 
~uf50-0126.cnf~" 17 0.2400 — 
"~^f50-Q127.cnf 552 1.6400 
"~^f50-Q128.cnf 232 1.0400 
~uf50-0129.cnf 157 0.7500 
—uf50-013.cnf 95 ~ ~ 0.4000 
"Tif5Q-Q130.cnf 4 0.2400 
~uf50-Q131.cnf 34 — 0.4100 
"~^f50-Q132.cnf 160 0.6600 
~uf50-Q133.cnf 188 0.8700 
"Tif50-0134.cnf 68 0.4200 

uf50-Q135.cnf “ 131 0.7300 
~Tif50-Q136.cnf - 0.0400 

uf50-0137.cnf “ - 0.0500 
~[^f50-0138.cnf - 0.0400 
"~[lf50-0139.cnf 一 663 2.1000 

~~uf5Q-014.cnf “ 72 0.4600 
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Problem Name Number of Nodes Completion Time(sec.) 
~uf50-Q14Q.cnF 2 0.1300 
-iif50-0141.cn厂 - — 0.0300 
~uf5Q-Q142.cnf “ 72 0.3800 
~uf50-0143.cnf 100 0.6100 

uf50-Q144.cnf 216 0.9800 . 
~uf50-0145.cnf “ 107 0.6100 

uf50-0146.cn厂 81 — 0.5900 
~ uf50-Q147.cnf~ 692 — 2.4600 
“uf50-0148.cnf~ 33 — 0.3500 
~uf50-0149.cnf “ 120 0.5400 
~uf5Q-015.cnf “ 32 0.3500 

uf5Q-015Q.cnf~ 225 — 0.9500 
~uf50-0151.cn"F 197 — 0.7800 

uf50-0152.c^ 4 0.1900 
uf50-Q153.cnf 128 “ 0.7900 
uf5Q-0154.cnF" 21 ~~ 0.2600 
uf50-0155.cnf — 119 0.6800 

“uf50-0156.cnf 3~ 0.1500 
-uf5Q-0157.cnT~ 3 0.2100 

iif50-0158.c^ 100 0.5900 
“uf50-0159.cnf~ 224 0.8200 

uf50-016.cnf 49 0.3500 
_ uf50-0160.cn"F 84 0.4200 
Tf5Q-0161.cnf - 0.0200 — 
“uf50-Q162.cnT~ 89 0.5500 
—uf50-0163.cnT~ 544 1.8200 
~uf5Q-0164.cnf~ - 0.0200 
“uf50-0165.cn"F - — 0.0300 
~if5Q-0166.cnf~ 17 0.2700 
~uf50-Q167.cnf~ 64 0.5500 
~uf5Q-Q168.cnf~ 45 0.3700 
~uf5Q-0169.cnf~ 2 0.1300 
~uf5Q-017.cnf 161 0.6900 
~uf50-Q170.cnf~ 87 0.5700 
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Problem Name Number of Nodes Completion Time (sec.) 
uf50-0171.cnf 299 1.0800 
uf50-0172.cnf~ 97 — 0.6700 

~uf50-0173.cnf 252 — 1.0300 
~uf50-Q174.cnf 53 — 0.4500 
~[rf5Q-Q175.cnf 115 0.5300 
~^f50-0176.cnf 374 1.2000 
~f50-Q177.cnf 11 0.2500 
~ilf50-0178.cnf 13 0.1900 
"^f50-0179.cnf 212 0.9200 
~uf50-018.cnf 27 — 0.2800 
~uf5Q-0180.cnf 213 — 0.8100 

uf50-0181.cnf 507 “ 1.7300 
~uf50-0182.cnf 455 — 1.3300 
一 uf50-Q183.cnf 5 “ 0.1800 
~uf50-0184.cnf 8 ~ ~ 0.2500 
“uf5Q-0185.ci"^ - 0.0500 ~ ~ 

uf50-0186.cnf 82 0.5800 
~^f50-Q187.cnf “ 130 0.5700 
~^f50-0188.cnf “ 0.4700 

D.3 # of variables: 75, # of clauses: 325 

Problem Name Number of Nodes Completion Time (sec.) 
—uf75-01.cnf 4 _ 0.5200 
" "^ -OlO.cn f — 5 0.3000 
~uf75-Q100.cnf~ 870 5.0800 

uf75-Qll.cnf 1642 — 6.9600 
~~Lif75-012.cnf “ 1539 8.6800 

~ ^ - 0 1 3 . c n f — 528 3.2500 
~Tf75-014.cnf “ 451 3.2000 — 
~uf75-015.cnf “ 312 2.4100 
~~uf75-016.cnf 1594 10.8000 
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Problem Name Number of Nodes Completion Time(sec.) 
uf75-Q17.cnf 234 2.0000 
uf75-018.cnf 94 1.3300 
uf75-019.cnf 1829 11.9800 

—uf75-Q2.cnf 91 _ 0.7400 
iif75-02Q.cnf 408 2.9700 

~~uf75-021.cnf 1057 5.7800 
~uf75-022.cnf 1243 ~ ~ 7.4300 
~uf75-Q23.cnf 194 — 2.1700 
~uf75-024.cnf 565 3.6300 
~iif75-Q25.cnf 176 1.5700 
~uf75-Q26.cnf 3744 15.2300 

uf75-Q27.cnf 6 — 0.5100 
uf75-028.cnf 1292 ~ ~ 5.2900 

~~uf75-029.cnf 390 3.3600 
uf75-03.cnf 1299 — 9.4300 

~~uf75-Q3Q.cnf 42 0.8500 
~uf75-031.cnf 446 3.5400 
~~uf75-032.cnf 173 2.0200 
—uf75-033.cnf" 480 3.8000 
~~iif75-034.cnf 1108 6.4000 

" uf75-Q35.cn"r~ 1055 — 6.7400""" 
~ uf75-036.cnf 3154 37.3600 
~~iif75-037.cnf 862 4.8000 
~~uf75-Q38.cnf 752 4.3400 
~uf75-039.cnf 12472 10.6100 
—uf75-04.cnf 1836 10.0500 
—uf75-040.cnf 228 2.2500 
~uf75-Q41.cnf 313 2.9700 
~ uf75-042.cnf~ 1959 — 10.1100 
~~uf75-043.cnf “ 162 1.8300 
~~uf75-Q44.cnf “ 2461 16.0000 
~~uf75-045.cnf “ 516 3.0300 
~~uf75-046.cnf “ 1938 9.6100 
~~uf75-047.cnf 一 494 3.0800 



88 

Problem Name Number of Nodes Completion Time(sec.) 
uf75-048.cnf 30 0.9500 
uf75-049.cnf 779 4.9700 
uf75-05.cnf 671 5.5800 
uf75-050.cnf - 0.0700 
uf75-051.cnf 624 3.9500 
uf75-052.ci^ 536 4.2100 
uf75-053.ci^ 155 1.9100 
iif75-Q54.ci^ 1.2400 
uf75-055.ciijr~ 4082 19.9700 
uf75-Q56.cnf “ 292 2.7500 

~uf75-057.cnf 1172 7.3700 
uf75-058.cnf 79 1.2000 
uf75-059.ciZ~ 2269 12.2000 

iif75-Q6.cnf _ 4504 31.0300 
uf75-06Q.cnf 165 1.5800 
uf75-061.cnf 232 2.2800 
uf75-Q62.cnf 1262 9.3800 
uf75-063.cnf 251 — 2.3700 
uf75-064.cnf 303 1.8100 

. uf75-065.ci^ 182 1.3500 
uf75-066.ciJ~ 166 1.8300 "“ 

~£75-067.€11£ “ 1 ~0.4100 
~df75-068.cnf 196 1.6900 ~~~ 
~~df75-069.cnf 749 4.7000 
~~iif75-07.cnf 2305 13.4600 ~ ~ 
~~uf75-070.cnf 607 4.0100 

iif75-071.cnf 1055 6.2200 
uf75-072.cnf 238 2.3300 

uf75-Q73.cnf 12 0.6500 
uf75-074.cnf 144 1.6800 
uf75-075.cnf 1013 “ 5.7600 
uf75-Q76.cnf 400 3.0100 “ 
uf75-077.cnf — 306 2.2200 “ 

T f 7 5 - 0 7 8 . c n f “ 859 4.8300 ~ ~ 
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Problem Name Number of Nodes Completion Time(sec.) 
~uf75-079.cnf “ 2112 14.4800 
—uf75-08.cnf 10 — 0.6200 

uf75-08Q.cnf 167 一 1.88000 

uf75-Q81.cnf 2400 — 26.0900 
—uf75-082.cnf — 775 — 5.0100 
~uf75-Q83.cnf 669 4.5300 
~uf75-084.cnf ~ 896 — 5.5800 
~uf75-Q85.cnf ~ - — 0.0800 
~uf75-Q86.cnf 907 7.7800 
~uf75-087.cnf 154 — 1.1300 
~~iif75-088.cnf 537 3.3700 
~^if75-089.cnf 339 2.2900 
—uf75-09.cnf 360 — 2.7400 
~uf75-090.cnf 1476 — 13.5100 
~~[if75-Q91.cnf 592 3.6500 
~uf75-Q92.cnf~ 167 — 2.0700 
~iif75-093.cnf 176 1.7700 
~uf75-Q94.cnf~ 189 1.7100 
~uf75-095.cnf 1476 — 8.9100 
~uf75-096.cnf~ 1150 ~ ~ 6.1400 

uf75-097.cnf 3025 ~ ~ 16.6^Q" 
~uf75-098.cnf - 0.0800 
~uf75-099.cnf 220 2.4500 

D.4 # of variables: 100, # of clauses： 430 

Problem Name Number of Nodes Completion Time (sec.) 
""TTflOO-OLcnf “ 4920 53.9200 ~ 

uflQQ-OlO.cnf 5728 — 48.3900 
TflOO-OlOO.cnf - 2437 19.3300 
"iZlQO-OlOOO.cnf" 979 10.1600 
TflOO-OlOl.cnf 6489 68.7500 
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Problem Name Number of Nodes Completion Time(sec.) 
uflQ0-QlQ2.cnr 1199 15.7400 

~7fl00-Q103.cnf “ 7435 68.4200 
~ufl00-0104.cnf 386 — 6.8600 
~ufl0Q-0105.cnf 3568 — 33.3000 
~ufl00-0106.cnf 20261 — 1 5 8 . 3 4 0 0 

ufl00-01Q7.ci^ 2424 27.0000 
~iifl0Q-01Q8.cnf 297 — 4.0500 
~ifl00-01Q9.cnf 10874 ~ ~ 111.3400 

uflOQ-Oll.cnf" 2590 25.2700 
~ufl0Q-Q110.cnf 7139 — 63.0900 
TflOO-Olll.cnf “ 3571 36.7100 
~ufl00-0112.cnf 609 — 7.7800 
~uf 100-0113.cnf 16003 — 133.9400 
~ f 100-0114.cnf - 9756 103.6300 
~Lif 100-0115.ciif 8267 — 85.9100 
~if 100-01 IG.cnf ~ ~ 2613 — 28.1100 
~uflQQ-Q117.cnf 332 5.2900 
TflOO-OllS.cnf 16693 133.2900 
"~uf 100-01 IQ.cnf 15 ~ ~ 1.1800 

uflQQ-012.c5~ 407' 4.3700 
ufl00-0120.cii^ 955 10.7800""“ 

TflQ0-0121.cnf 6215 59.0400 
~ufl00-Q122.cnr 1287 14.9400 
~ufl00-Q123.cnr 11495 — 114.9100 
Tfl00-0124.cnf - 414 5.3400 
~iifl00-0125.cnf 5851 62.8900 
~iiflQ0-0126.cnf 14508 141.9500 
"~iifl00-Q127.cnf 8209 76.6900 

ufl00-0128.cnf “ 4885 55.3600 
~ufl00-0129.cnf 3543 ~~ 38.3500 
~"ufl00-013.cnf— 6072 ~ ~ 52.8900 
~flQ0-Q130.cnf “ 4773 46.4800 
~^flQ0-0131.cnf" 1147 13.6400 

ufl00-Q132.cnF 2524 27.9900 
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Problem Name Number of Nodes Completion Time(sec.) 
~uflQQ-0133.cnf 1811 — 17.5300 
~uflQQ-0134.cnr 1973 ~ ~ 21.0600 
~ufl00-0135.cnf 1697 16.1200 
~uflQ0-0136.cnf 73 — 2.0400 
Tfl00-0137.cnf - 777 8.6900 
~flQQ-Q138.cnf “ 3337 28.2900 
~ufl00-0139.cnr 2788 27.9800 
~ufl0Q-014.cnf 1584 — 16.3700 
~iiflQ0-Q140.cnr 5884 53.2300 
~uflQ0-0141.cnr 3858 44.2400 
~Lifl00-0142.cnr 6652 ~ ~ 62.0300 
~uflQ0-Q143.cnf 1281 13.3000 
~iflQQ-0144.cnf 192 3.2700 
~ifl00-0145.cnr 3705 42.9100 
~ufl00-0146.cnf 669 — 8.3300 
"~iiflOQ-Q147.cnf 492 5.6400 
~uflQ0-Q148.cnf 2636 27.9500 
TflQ0-0149.cnf “ 2884 25.4400 

ufl00-Q15.cnf — 6806 — 70.9800 
iiflQ0-015Q.cnf 4094 36.1200 
uflQ0-0151.ciif 2616 — 29.0000 

~flQQ-0152.cnf “ 9855 99.1700 
"^00-0153.cnf 9443 69.1100 — 
~5l00-0154.cnf 10813 109.5400 
TflQ0-0155.cnf 1276 16.8500 
~ufl00-0156.cnf “ 609 7.4100 
~ifl00-0157.cnF 78 — 2.3300 

ufl0Q-0158.cnf 3796 “ 36.8400 
~Lifl00-0159 .cnF 4943 53.2400 

~[Zl00-016.cnf - 6525 65.1300 一 

TflOO-OieO.cnf - 3800 36.2500 
TflOQ-Q161.cnf “ 407 5.5200 
~uflQQ-0162.cnf 6205 62.2000 
~uflOQ-Q163.cnF 4741 44.2400 
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Problem Name Number of Nodes Completion Time(sec.) 
ufl00-Q164.cnf 214 3.5100 

~ufl00-0165.cnr 706 一 8.8100 

~iifl00-0166.cnf 2731 ~ ~ 22.6900 
~iiflQ0-0167.cnf 382 5.7500 
~ufl00-0168.cnr 5205 一 53.5900 

~iifl00-Q169.cnr 1992 一 22.1700 

~ufl00-017.cnf~ 27900 222.6400 

~uflQ0-0170.cnr 3443 一 40.3100 

~ufl0Q-0171.cnr 680 一 8.9000 

"^1QQ-Q172.cnf 583 7.5800 
~[IflQ0-Q173.cnf “ 5257 53.7800 
~^1Q0-Q174.cnf “ 256 3.7300 
"~5l00-Q175.cnf “ 3081 35.5200 
~^100-0176.cnf 440 5.1300 
~^100-0177.cnf “ 2593 21.2500 
~uflQ0-0178.cnf 9384 — 90.2600 
~^100-Q179.cnf 857 9.8200 

uflOQ-Q18.cnf 550 — 7.2900 
~^100-0180.cnf 1641 16.6500 

uflQQ-OlSl.cnf 7155 77.4800 、： 

~[Ifi00^182.cnf 2243 21.5900 
~[Ifl00-0183.cnf 4999 58.4700 
~ufl00-0184.cnf 3717 39.6200 
~ifl00-0185.cnr 1088 一 9.6800 
~ufl00-0186.cnr 102 一 1.9400 
~LiflQ0-0187.cnr 1081 一 12.6200 
~^lQ0-0188.cnf 531 6.2400 
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