
An Optimization Framework for Fixed-point
Digital Signal Processing

Lam Yuet Ming

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

©The Chinese University of Hong Kong

August, 2003

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or the whole of the materials in this thesis in a

proposed publication must seek copyright release from the Dean of the Graduate

School.

/ C j ^ 系、

kr . 一 a
f 2 9 _ 2i l)

JgJ
UNIVERSITY 姻 量

An Optimization Framework for Fixed-point

Digital Signal Processing

Submitted by

Lam Yuet Ming

for the degree of Master of Philosophy in

Computer Science and Engineering

at the Chinese University of Hong Kong

in July, 2003

Abstract

Fixed-point hardware implementation of signal processing algorithms can often

achieve higher performance with lower computational requirements than a floating-

point implementation. However, the design of such systems is hard due to the

difficulties of addressing quantization issues. This work presents an optimization

approach to determining the wordlengths of signals in a fixed-point digital signal

processing system which enables users to achieve a given quality criteria with min-

imum hardware resources, resulting in reduced cost and perhaps lower power con-

sumption for VLSI implementation. These techniques lead to an automated op-

timization based design methodology for fixed-point based signal processing sys-

tems.

i

A framework involving a fixed-point class and an optimizer was developed.

The object oriented class, called Fixed, consists of a fixed-point class to analyze

fixed-point quantization effects. The Fixed class can simulate fixed-point opera-

tions such as addition, subtraction, multiplication and division where each operator

uses wordlengths of arbitrary precision. Calculations are done using both fixed-

point and floating-point formats and the floating-point calculations are used as a

reference to determine the quantization error. An optimizer based on the simplex

method and one-dimensional optimization approach was developed to minimize a

user defined cost function, thus finding an implementation which balances hardware

cost and user defined quality criteria.

This framework was applied to an isolated word recognition system based on

a vector quantizer (VQ) and a hidden Markov model (HMM) decoder using linear

predictive cepstral coefficients (LPCCs) as features. Utterances from the TIMIT

TI 46-word database were used for both training and recognition. The isolated

word recognition system was simulated using the fixed-point class, optimization

of wordlengths was done using the optimizer. A 28.5% hardware cost reduction

was achieved. Such an approach leads to clear advantages in both design effort

and hardware resource utilization over the traditional approaches where the same

wordlength is used for all operators.

ii

定點數位信號處理的優化框架

林粤明

香港中文大學

計算機卿與工程學課程

哲學碩士論文

2 0 0 2 年 7 月

摘要

信號處理演算法的定點硬體實現通常比浮點實現達到較高的性能與較低的計算要求。然而，設計這樣

的系統的艱難歸結於處理量化問題的困難。此論文提出一種優化方法去確定定點數位信號處理系統

的信號詞長,使用戶達到固指定的質量標準與最小硬體資源,以及在VLSI實現時，可以達到減少費用

和可能比較低的功率消耗。這些技術爲基於定點的信號處理系統提供一種基於自動優化的設計方法

論°

此論文開發了^固包含了定點類和優化器(optimizer)的框架°這個物件導徵的類，mn Fixed,包含了

一個定點類用以分析定點量化作用。能模仿定點運算，譬如加法，丨蔽去，乘法和除法，各種運算中的

詞長是可以任意的。演算同時使用了定點和浮點格式，浮點演算被用作參考去計算量化錯誤。優化器

使用單缸方法和一維優化方法去最小化一個用戶定義的成本函數，尋找平衡硬體費用和用戶定義質量

標準的實現。

這個框架被應用到一個非連續單詞語音辨識系統，這個系統建構與向量量化器(VQ)和隱馬可夫模型

(HMM)解碼器，線性所賓測謝系數(LPCCs)被用作語音辨iH^徵。在這個應用中，TIMrr TI 46詞

匯數據庫被用來進行訓練和識別。定點類被用作模仿這個單詞語音辨識系統，優化器被用作詞長的優

化。實驗結果表明，此框架降低了 28.5%的硬體成本°相對與傳統方法在所有運算中使用相同的詞長，

這個方法的好處在與設計工時的節省和硬體資源的充分運用

Acknowledgments

Special thanks will be given to Prof. LEONG Heng-Wai Philip for his help and

guidances through my master studies. I would also want to thank Prof. LEE, Kin

Hong and Prof. CHAN, Lai Wan for their suggestions and to be my thesis markers.

iii

Contents

1 Introduction 1

1.1 Motivation 1

1.1.1 Difficulties of fixed-point design 1

1.1.2 Why still fixed-point? 2

1.1.3 Difficulties of converting floating-point to fixed-point 2

1.1.4 Why wordlength optimization? 3

1.2 Objectives 3

1.3 Contributions 3

1.4 Thesis Organization 4

2 Review 5

2.1 Introduction 5

2.2 Simulation approach to address quantization issue 6

2.3 Analytical approach to address quantization issue 8

2.4 Implementation of speech systems 9

2.5 Discussion 10

2.6 Summary 11

3 Fixed-point arithmetic background 12

3.1 Introduction 12

3.2 Fixed-point representation 12

3.3 Fixed-point addition/subtraction 14

iv

3.4 Fixed-point multiplication 16

3.5 Fixed-point division 18

3.6 Summary 20

4 Fixed-point class implementation 21

4.1 Introduction 21

4.2 Fixed-point simulation using overloading 21

4.3 Fixed-point class implementation 24

4.3.1 Fixed-point object declaration 24

4.3.2 Overload the operators 25

4.3.3 Arithmetic operations 26

4.3.4 Automatic monitoring of dynamic range 27

4.3.5 Automatic calculation of quantization error 27

4.3.6 Array supporting 28

4.3.7 Cosine calculation 28

4.4 Summary 29

5 Speech recognition background 30

5.1 Introduction 30

5.2 Isolated word recognition system overview 30

5.3 Linear predictive coding processor 32

5.3.1 The LPC model 32

5.3.2 The LPC processor 33

5.4 Vector quantization 36

5.5 Hidden Markov model 38

5.6 Summary 40

6 Optimization 41

6.1 Introduction 41

6.2 Simplex Method 41

V

6.2.1 Initialization 42

6.2.2 Reflection 42

6.2.3 Expansion 44

6.2.4 Contraction 44

6.2.5 Stop 45

6.3 One-dimensional optimization approach 45

6.3.1 One-dimensional optimization approach 46

6.3.2 Search space reduction 47

6.3.3 Speeding up convergence 48

6.4 Summary 50

7 Word Recognition System Design Methodology 51

7.1 Introduction 51

7.2 Framework design 51

7.2.1 Fixed-point class 52

7.2.2 Fixed-point application 53

7.2.3 Optimizer 53

7.3 Speech system implementation 54

7.3.1 Model training 54

7.3.2 Simulate the isolated word recognition system 56

7.3.3 Hardware cost model 57

7.3.4 Cost function 58 .

7.3.5 Fraction size optimization 59

7.3.6 One-dimensional optimization 61

7.4 Summary 63

8 Results 64

8.1 Model training 64

8.2 Simplex method optimization 65

8.2.1 Simulation platform 65

vi

8.2.2 System level optimization 66

8.2.3 LPC processor optimization 67

8.2.4 One-dimensional optimization 68

8.3 Speeding up the optimization convergence 71

8.4 Optimization criteria 73

8.5 Summary 75

9 Conclusion 76

9.1 Search space reduction 76

9.2 Speeding up the searching 77

9.3 Optimization criteria 77

9.4 Flexibility of the framework design 78

9.5 Further development 78

Bibliography 80

vii

List of Figures

3.1 Two's complement integer format 13

3.2 Fixed-point representation for fraction number 13

3.3 Parallel adder 15

3.4 Two's complement multiplication 17

3.5 Block diagram of divider using restoring-division 20

4.1 Fixed-point class declaration 23

4.2 IEEE 754 double-precision format 25

4.3 Arithmetic calculation using fixed-point object 26

5.1 Isolated word recognition system 31

5.2 LPC model of speech 33

5.3 Block diagram of the LPC feature analysis 34

5.4 Frame blocking process 35

5.5 Vector quantization process 36

5.6 Left-to-Right HMM 38

5.7 Trellis representation of Left-to-Right HMM 39

6.1 Reflection 43

6.2 One-dimensional optimization 47

6.3 Golden section search 49

7.1 Block diagram of the framework 52

7.2 Optimizer executes fixed-point application iteratively 54

viii

7.3 Overview of isolated word recognition system optimization flow . . 55

7.4 System level optimization using simplex method 60

7.5 LPC processor's fraction size optimization using simplex method . . 61

7.6 System level optimization using one-dimensional optimization . . . 62

8.1 Recognition accuracy for different configurations of VQ codebook

size and number of HMM states 65

8.2 Recognition accuracy when sweep the fraction size of the whole

system • 68

8.3 Recognition accuracy when sweep the fraction size of the LPC pro-

cessor 69

8.4 Recognition accuracy when sweep the fraction size of the VQ . . . 70

8.5 Recognition accuracy when sweep the fraction size of the HMM

decoder 71

ix

List of Tables

3.1 Fixed-point representation of fractional number 2.875 using differ-

ent notation 14

8.1 System level optimization using the simplex method 66

8.2 LPC processor optimization using the simplex method 67

8.3 System level optimization using one-dimensional optimization . . . 72

8.4 Result comparison between applying exhaustive search, the golden

section search and simplex method in system level optimization . . 73

8.5 Results using different optimization criteria in LPC processor opti-

mization 74

X

Chapter 1

Introduction

1.1 Motivation

1.1.1 Difficulties of fixed-point design

The productivity of digital integrated circuit designers has been significantly im-

proved by using high level synthesis techniques in recent times, these techniques

can allow the designers concentrate more on high level issues, e.g. algorithm and

architecture. Although higher productivity is obtained, the difficulties of addressing

quantization effects in designing fixed-point system remain unchanged.

Because of the limited dynamic range of fixed-point representations of signals

in a design, underflow and overflow problems may occur. When designing a fixed-

point system, the designer needs to assign appropriate wordlength to each variable.

Simulation programs, typically constructed using high level languages are of-

ten used to develop and verify the algorithms. Unfortunately, up to now, there is

no direct support for the representation of fixed-point arbitrary precision fractional

numbers in high level programming languages and digital signal processing (DSP)

chips. Fixed-point system design typically starts from a floating-point description

which offers wider dynamic range and is hence less susceptible to quantization er-

rors.

1

Chapter 1 Introduction 2

1.1.2 Why still fixed-point?

For signals with low dynamic range, fixed-point arithmetic offers advantages over

floating-point in terms of performance, power consumption and hardware cost since

fixed-point arithmetic is more efficient, a floating-point implementation may double

or triple the hardware requirements compared with corresponding fixed-point im-

plementation [Kai79]. Although there are some DSP chips support floating-point

arithmetic, experimental results shows that using fixed-point arithmetic can reach

higher clock rate [BM91], and lower cost, e.g. lower memory usage [FBM98]. Be-

cause of these benefits, fixed-point arithmetic is often used in a wide range of DSP

applications where signals have relatively low dynamic ranges.

1.1.3 Difficulties of converting floating-point to fixed-point

Since fixed-point arithmetic is widely used in hardware implementations, the prob-

lem of converting an algorithmic description, which typically uses floating-point

arithmetic in some high level programming language such as C, to a hardware effi-

cient fixed-point description needs to be addressed. This process is tedious and error

prone, because of the limited dynamic range of fixed-point representations. Some

issues, e.g. overflow, underflow, rounding/truncation error, should be handled dur-

ing transformation. Typical design analyzes the quantization effect manually by

observing the ranges of variables and assign enough wordlength for each variable,

but this is low efficiency and time consuming. As a result, bit-accurate simulation

of the fixed-point design is necessary to analyze these quantization effects on an

algorithmic level in order to be realized on hardware, in this way, the designer can

concentrate on higher level design issues.

Chapter 1 Introduction 3

1.1.4 Why wordlength optimization?

Longer wordlengths will result in smaller quantization errors, but in order to reach a

given error level, some intermediate variables, which will not contribute to the quan-

tization error of final result, can be truncated in wordlengths. Wordlength optimiza-

tion can be done based on this phenomenon. There are a number of advantages for

wordlength optimization, such as lower cost and lower power consumption. These

advantages can benefit some low power and small area designs, e.g. mobile devices,

smart cards, PDAs, etc.

1.2 Objectives

The main objective of this research work was to develop a methodology for the

design and optimization of fixed-point system. The detailed research aims were:

• Formulate a systematic methodology for addressing quantization issues in the

fixed-point system.

• Explore the utility of this approach using isolated word recognition system as

a realistic example.

1.3 Contributions

In this work, a framework was introduced to address the quantization issue in fixed-

point systems. The main contributions of this dissertation are as follows:

• A C++ fixed-point class, called Fixed, was developed to simulate fixed-point

arithmetic. All variables in an original floating-point description are changed

to be of the Fixed type. Using overloading, the fixed-point description can be

made to be very similar to the floating-point description, so minimal changes

to the source code are required.

Chapter 1 Introduction 4

• An optimizer was developed to perform hardware cost/wordlength optimiza-

tion, the optimizer can be used to minimize a cost function which is designed

by the user. Since wordlength is monotonic decreasing with quantization er-

ror and monotonic increasing with hardware cost, if the cost function takes

the error and hardware cost into account, optimal wordlengths can be found

for all variables which can balance the hardware cost and error.

• This framework was applied to an isolated word recognition system, the sys-

tem was simulated using the fixed-point class, optimization of wordlength

was done using the optimizer. The design is very flexible, each part is de-

veloped independently, different experiments can be done easily. Optimal

wordlengths were found which can balance the hardware cost and recogni-

tion accuracy.

• To the best of my knowledge, this is the first time an optimization of variable

wordlengths has been applied to the isolated word recognition problem. This

study has led to insights into the precision requirements in such systems.

1.4 Thesis Organization

In Chapter 2, a review of related work on fixed-point quantization issues and speech

system implementation is given. Chapter 3 introduces background to fixed-point

arithmetic and Chapter 4 presents the implementation of the fixed-point class. Chap-

ter 5 introduces the background to an isolated word recognition system and Chapter

6 introduces the optimization background. In Chapter 7，the framework and word

recognition system design methodology are presented. Some experimental results

are given in Chapter 8. Finally, the conclusion is presented in Chapter 9.

Chapter 2

Review

2.1 Introduction

Fixed-point hardware implementations of signal processing algorithms can often

achieve higher performance with lower computational requirements than corre-

sponding floating-point implementations. However, the design of such systems is

hindered by the difficulty of addressing quantization issues, which includes quanti-

zation effect analysis of fixed-point system and hardware cost/wordlength optimiza-

tion.

Design of such systems center around analyzing and improving the quantization

error of the fixed-point system, finding the wordlength requirements for fixed-point

variables, and optimizing wordlengths for fixed-point variables which can reach

specified quality criteria or balance the performance and hardware cost. In this

chapter, some related work are reviewed. Since this work used an isolated word

recognition system as an example, the implementations of speech systems are also

reviewed.

This chapter is organized as follows. Section 2.2 presents the work using sim-

ulation approaches to address the quantization issue while Section 2.3 presents the

work using analytical approaches. Section 2.4 introduces some implementations of

speech systems. Section 2.5 and 2.6 are discussion and summary.

5

Chapter 2 Review 6

2.2 Simulation approach to address quantization is-

sue

The simulation approach collects quantization information, e.g. quantization er-

ror, through simulation using realistic data. Wordlengths of variables are chosen

heuristically while observing some quality criterion, this process is repeated with

different configurations of wordlengths and stop when a specified quality criterion

is met. One drawback using this approach is the long simulation time, especially

for some complex systems. The other drawback is, the results obtained through

simulation is dataset dependent and it is hard to choose a representative dataset.

Since manual fixed-point design is error prone, simulation of fixed-point design

or transformation from floating-point descriptions to fixed-point implementations is

required. The integer type in a high level programming language can be used to

simulate a fixed-point format [RJ87]. C++ object classes have also been used to

simulate a fixed-point format [WM94], a fixed-point format fraction number being

represented using an object class, some information, e.g. the amplitude, wordlength,

are stored in the object class and the calculation is handled by the class. The object

class proposed by Jersak and Willems [MM98] used a similar approach.

Kim et. al. [SKW95] proposed C++ object classes to simulate fixed-arithmetic

using operator overloading. Firstly, the floating-point type in the original code is re-

placed with a range estimating C++ class "fSig", then a simulation-based approach

is applied to determine the range of variables using realistic data. Another C++

object class, called "gFix", is used to simulate fixed-point arithmetic and record

the error. The wordlengths of variables were determined based on these collected

information. Based on this work, Sung and Kum [WK95] proposed a searching-

based approach to perform wordlength optimization. The fixed-point system is

simulated using C++ object class, optimization is done to find minimum hardware

cost implementation while meeting a specific error requirement. Wordlength opti-

mization was done using two approaches, the heuristic and exhaustive approaches.

Chapter 2 Review 7

Firstly, the lower bound of wordlength of each variables are determined by set-

ting the wordlength of other variables to very large. For the heuristic approach,

each variable starts from the lower bound, and the wordlength of each variable is

increased alternately until the error requirement is satisfied. For the exhaustive ap-

proach, wordlengths of all variables are increased simultaneously, until the error

requirements are satisfied. The wordlength of each variable are then decreased until

the error requirement test fails. A tool to transform a floating-point program into

fixed-point implementation using ANSI-C integer types proposed by Kum et. al.

[KJWOO] was also based on the developed object class [SKW95]. Wordlengths of

variables are determined based on the collected quantization information after sim-

ulation. Moreover, the number of shift operations in the transformed code is mini-

mized, the minimization is done by minimize a cost function which take account of

the number of shift operations. The number of shift operations is hardware depen-

dent, for a DSP processor with a barrel shifter, like TMS320C25, TMS320C50 and

TMS320C60, the cost of a shift operation is one cycle, for DSP processor without a

barrel shift, like Motorola 56000，the cost of a n-bits shift operation is n cycles. Fi-

nally, the floating-point type is replaced by an integer type, and appropriate scaling

codes are inserted.

Keding et. al. [HMMH98] proposed a system called FRIDGE to find the wordlength

requirements of variables, an interpolative approach is introduced, and this approach

depends much on human knowledge. Fixed-point variables are modeled as a C++

class. The designer should input some information to some fixed-point variables

which are critical or already known in the system, such as wordlength, integer

wordlength. Wordlengths of other variables are determined using propagation rules

and the analysis of the data flow. Simulation is then applied to check if the accuracy

constraints are fulfilled. If the requirement is not achieved, the designer needs to

make adjustment to the inputted information. Another drawback of this work is the

designer need to put much efforts during optimization.

Chapter 2 Review 8

The work proposed by Chang and Hauck [MS02] address on wordlength opti-

mization in the MATLAB environment. A piece of code is appended into to original

code to find the dynamic range of each variable, the dynamic range can be used to

calculate the wordlengths of variables, these wordlengths are considered as lower

bound. Propagation rules are used to find an upper bound for the wordlength of

each variable. During optimization, for each variable, the wordlength is set to the

lower bound, then the impact of that change over all variables is propagated and the

change in hardware cost for that variable is recorded. This procedure is repeated

for other variables and the change in hardware cost is sorted in decreasing order.

This information is presented to the designer to decide which variables should be

more tightly constrained in wordlength. One drawback with this approach is, the

selection process is very much dependent on human experience.

2.3 Analytical approach to address quantization is-

sue

Analytical approaches analyze the quantization error of computation based on a

theoretical framework, an error expression often being derived [P. 91’ SW98]. The

wordlength of a fixed-point variable are usually derived from the signal-flow graph,

local annotations, interpolation, and propagation of ranges of variables. This ap-

proach can give true upper bounds and achieve a faster run time than a simulation

approach, but the result may be very conservative and lead to a gross overestimation

of variable wordlengths [RLP+99].

Fiore [Pau98] addressed the quantization error of the addition of two uncorre-

lated values that are truncated/rounded prior to addition. Two methods were in-

troduced for rounding which can reduce the hardware complexity and maintain a

certain variance. The first method called LR, it basically ORing the most significant

Chapter 2 Review 9

bits of the parts to be truncated and input the result as carry input of the least sig-

nificant bit of the adder chain. The second method called RLR, simply inputs 1 as

carry input to the least significant bit of the adder chain. Some experiments shows

that the variance using LR/RLR is close to the results using truncation/rounding.

Wadekar and Parker [SA98] proposed to reduce the wordlength of some vari-

ables that do not contribute significantly to the final result. A worse-case error

estimation model is introduced, the error propagated from the input to output. Two

examples, discrete cosine transform and 5 x 5 matrix determinant, were used and a

genetic algorithm was applied to minimize the hardware cost and reach a specified

error bound at the same time. In the genetic algorithm, the quality of the final result

depends on the population size [Voj02], but the population size is bounded by the

available computing resources, since the computational power is proportional to the

population size.

The work proposed by Cmar et. al. [RLP+99] using both analytical and simu-

lation approaches. The integer size of a fixed-point variable is determined by using

a statistical method or propagation of dynamic range. But, as pointed out by the

author, range propagation can become unstable and cause explosion when applied

to feedback signals. To determine the fraction size of fixed-point variable, a simula-

tion approach is used. An object class is introduced to represent a variable in fixed-

point format, simulation is carried out to collect the error between a fixed-point

and floating-point system, fraction size is determined by comparing the calculation

results between fixed-point and floating-point arithmetic.

2.4 Implementation of speech systems

optimizing recognition accuracy and real time performance are the major consider-

ations of most previous approaches. Some popular DSP chips such as the TMS320

series [KGR97] have been widely used for implementing speech recognition sys-

tems [YYOO, KJK95, NNS+99]. Kim et. al. [SIYS96] proposed a VLSI chip for

Chapter 2 Review 10

isolated speech recognition system which can recognize 1000 isolated words per

second. Bliss and Scharf [WL89] proposed a ring architecture to perform hidden

Markov model (HMM) decoding in parallel. In this architecture, each processing el-

ement will calculate predecessors serially. N processing elements can compute the

score for all HMM states in parallel. Under the development of field-programmable

gate array (FPGA) technique, FPGA chips have higher density and clock rate, im-

plement more complicated systems on FPGA chip becomes realizable, it is often

chosen to achieve high performance, Vargas et. al. [FRDOl] proposed a FPGA

implementation of a HMM decoder which is 500 times faster than a classic imple-

mentation. A speech recognition system proposed by Melnikoff et. al. [SSM02],

can process speech 75 times real time using a Xilinx Virtex XCVIOOO chip.

Hidden Markov models (HMMs) are widely used in modem speech recognition

systems because HMM-based speech recognition systems have proven to yield high

recognition accuracy. Some speech systems focus on improving implementation

of HMM to get better recognition accuracy. Zhang et. al. [YCR+94] proposed

using multiple hidden Markov models, each word in the vocabulary contains three

vector quantization methods and three hidden Markov models. Gholampour and

Nayebi [IK99] introduced a cascade HMM/ANN model to improve the recognition

accuracy.

2.5 Discussion

Analytical approaches require extensive knowledge of both the algorithm and hard-

ware architecture, moreover, it is hard to develop an error model for complicated

systems. Wordlength optimization is tedious, in the work proposed by Hui et. al.

[GKZ98], in order to find an optimal allocation of a variable precision, the authors

needed to implement several systems using different numerical formats, such as

single fixed-point format, double fixed-point format and floating-point format. A

Chapter 2 Review 11

simulation-based approach seems be a better choice, since it can reduce the bur-

den of designer, all jobs being done by computer. But some simulation approaches,

e.g. [MS02], still require the designer to be involved in the optimization process,

the designer should analyze the simulation result and make decision to constrain

which variables. Although some work has been done to optimize some fixed-point

systems using a searching-based method, e.g. [WK95], the goal of this work is to

provide a tool for assisting fixed-point system design and optimization, using this

tool, designers can have a much clearer idea of the wordlength requirements of their

hardware design.

Previous fixed-point implementations of speech recognition systems concen-

trated on optimizing recognition accuracy and real time performance, and quanti-

zation effects in fixed-point arithmetic were seldom directly addressed. With im-

provements in speech models and VLSI technology, speech recognition accuracy

is much higher than in the past, and designing a speech recognition system with

real time performance is not that difficult. However quantization issues remain

a problem when designing a fixed-point hardware system, this work performing

wordlength/hardware cost optimization of an isolated word recognition system, it is

more complicated than most of previous optimization work for filters.

2.6 Summary

In this chapter, we have review some related work on fixed-point design and imple-

mentation, including the simulation of fixed-point arithmetic, analytical and simu-

lation approach to address the quantization effect and optimization. Some imple-

mentations of speech system also reviewed.

Chapter 3

Fixed-point arithmetic background

3.1 Introduction

Fixed-point arithmetic is widely used in digital signal processing systems, because

it has a simpler implementation than floating-point arithmetic. A brief introduction

to fixed-point arithmetic is given in this chapter.

This chapter is organized as follows. Section 3.2 introduces fixed-point num-

ber representations. In Section 3.3, fixed-point addition/subtraction is introduced.

Fixed-point multiplication is introduced in Section 3.4 and fixed-point division is

described in 3.5, the last section is the summary.

3.2 Fixed-point representation

There are several notations commonly used to represent a binary integer, such as

sign-and-magnitude, one's complement and two's complement notations. Two's

complement format is the most commonly used format [Amo94].

Figure 3.1 is an n-bit two's complement integer format, the first bit Xn-i is the

sign bit. The absolute value of an n-bit two's complement integer is:

n - 2

AbsoluteValue = -Xn-i . + ' (3.1)
i=0

12

Chapter 3 Fixed-point arithmetic background 13

X n - l X n - 2 X n - 3 X 3 X 2 X i X q

Sign bit

Figure 3.1: Two's complement integer format

D e c i m a l po i n t

Xn-l Xn-2 Xn-3 … ^ n - k . ^n-k-l . . . X3 X2 Xi Xq

H H H

Integer S i z e Fract ion S i z e

Figure 3.2: Fixed-point representation for fraction number

For an n-bit two's complement integer, the dynamic range it can represent is

— 2 " - i，一 1 — 1]. Using the two's complement format, a negative integer can be

represented by inverting all bits of the positive integer and adding one, as shown:

= X + (3.2)

To represent a fraction number, a decimal point can be inserted into the integer

format shown in Figure 3.1，as shown in Figure 3.2. The Integer Size is the number

of bits used to represent the integer part, and the Fraction Size is the number of bits

used to represent the fraction part. The absolute value of an n-bit fraction number

with fraction size k is:
n - 2

AbsoluteValue = (l /2^)[-a:n-i . (3.3)
i=0

The smallest non-zero fraction number it can represent is ± l / 2 \ and the dy-

namic range is [_ 2 " - 知 - 1 , - 1/2知

Chapter 3 Fixed-point arithmetic background 14

Notation Fixed-point Decimal
format value

7.1 "OQQQQlQ.l ~ 2.500
6.2 ~QQQ010.11 ~ 2.750

— 5 . 3 00010.111 2.875
— 4 . 4 0010.1110 2.875

Table 3.1: Fixed-point representation of fractional number 2.875 using different
notation

The decimal place can be varied for different integer size and fraction size. In

Figure 3.2，a notation (integer size k, fraction size n-k) is used. Table 3.1 shows the

representation of 2.875 using different notation.

3.3 Fixed-point addition/subtraction

Addition is straightforward, since all fraction numbers are represented in two's com-

plement format. Using equation 3.2, subtraction can also be done as shown:

A-B = A + {-B)

=A + B-{-l

= A + two's complement of B. (3.4)

As a result, subtraction A - B can be done by addition of A to the two's com-

plement of B. The scaling issue must also be addressed. The fraction sizes of the

two operands maybe different, and hence a shift operation must be done to align the

decimal points before addition. Consider two numbers, A = 2...aiao with

Chapter 3 Fixed-point arithmetic background 15

a3 b3 a2 b2 al bl aO bO

1 1 i
S3 s2 si sO

Figure 3.3: Parallel adder

fraction size k, and B = with fraction size m, when m > k,

n-2 n-2

A + B = (l / 2 ” [- a „ _ i . 2 n - i + E a r 2 ” + (l /2，[-&„- i . 2 " - i + X l 6 r 2 l
i=0 i=0

n-2

= (1 / 2 爪) { 2 爪 - 知 [- a „ _ i . 一 1 + +

i=0

n-2

[-&„_1.2"-1 + ；^&厂2《]} (3.5)

t = 0

From equation 3.5，one can see that A should be shifted left by m — k bits to

align the decimal point with B. The result has an integer size n — k and fraction size

m, which are the maximum integer size and fraction size of the two input operands.

For the hardware implementation of addition/subtraction using a parallel archi-

tecture, all result bits are calculated at the same time. Figure 3.3 shows the block

diagram of a 4-bit ripple-carry adder. The carry is propagated from the least signif-

icant bit to most significant bit, the result can be obtained within one cycle. Four

1-bit full adders are needed.

Although the result can be obtained within one cycle, the propagation delay

required to propagate the carry from least significant bit to most significant bit is

0(n). Alternate implementations can be used to improve this delay, e.g. carry-look-

ahead adders and carry-skip adders [Isr02] at the expense of increased hardware

requirements. The number of 1-bit full adders required using parallel approach is

0 (n) for an n-bit addition/subtraction.

Chapter 3 Fixed-point arithmetic background 16

3.4 Fixed-point multiplication

Let the multiplier and multiplicand be A = a„_ia„_2...aiao and B = bn-ibn-2---bibQ

respectively. A sequential multiplication operates by scanning the multiplier A bit

by bit, and forming the product a j B for the jth bit, a new partial product is

obtained by summing a j B and previous partial product P � ,a total of n — 1 itera-

tions is required to calculate the final product. The expression for this recursive step

is

= p (j � + a j . B - 2 j - , (3.6)

where 尸(。）=0. One can see that product a j B is aligned before added to

previous partial product P � ’ it is because the weight of a^+i is double that of aj .

As a result, at step j, ajB should shift to left j bits. Using this notation, i^(n-i) can

be calculated as

尸…一 1) = + . B . 2"-2

= + a„_3 • B . + an-2. B . 2

=ao • 5 . 2�+ ai • 5 . 2i + …+ a„_3 • B . 3 + an-2 . B .
n - 2

= Y ^ < h . B � j
j=o

n - 2

= (^ a 厂 (3.7)
j=0

Using the above result, if the multiplier A and multiplicand B are both positive,

the product can be calculated as

n - l

Product = A-B = (f a厂 2勺• B
j=o
n - 2

= C L j . 2勺• B {since an-i = 0)
j=o

= 尸 (" ） （3.8)

Chapter 3 Fixed-point arithmetic background 17

b2 bl bO

X a2 al aO

邓"’ , J b2xa0 b2xa0 blxaO bOxaO
extended ——__

+ b2xal b lxal bOxal

询二， A q3 q3 q2 ql qO
extended __； i i i n

+ b2xa2 blxa2 b0xa2 ‘* Carry 1

s4 s3 s2 si sO

Figure 3.4: Two's complement multiplication

The above calculation result can also be used if applied to two's complement

multiplication. When the multiplicand B is negative and the multiplier A is positive,

the product calculation is same as above, except that partial product P � must be

sign extended before the addition. When the multiplier is negative, using equation

3.1，the product can be calculated as follows where again, all partial products are

sign extended before addition.

Product = A ‘ B
n-2

= (— . + 2 ” •召

i=0
n-2

=—a„_i.2"-i.B + ^ a r 2 � 5
i=0

= 尸 — B . a„_i . (3.9)

To perform an n x n bits multiplication, from equation 3.7, n — 2 additions are

required to calculate 尸("-i), and from equation 3.9，extra one addition is required to

calculate the final product, as a result, total number of addition is n — 1. Hardware

implementation of parallel multiplication is performing all these additions in one

cycle. Figure 3.4 shows an example of a 3 x 3 bits two's complement multiplication.

In this figure, the partial product is sign extended. a2B is inverted, addition is done

with carry in 1. Since when A is negative, subtraction is performed instead, this

process is shown by equation 3.9’ as mentioned before, subtraction is equivalent to

Chapter 3 Fixed-point arithmetic background 18

addition of one operand to the two's complement of the other operand as shown by

equation 3.4.

Since summing P � and a j B is an n-bit addition, and total number of iteration

is n — 1，in order to perform summation of all partial products in one cycle, by ap-

proximation, O(n^) 1-bit full adders should be used for an n x n bits multiplication.

Some parallel architectures, such as array structure [Isr02], can be used to perform

this parallel addition.

3.5 Fixed-point division

Consider a division A/B, assume the quotient is Q and the remainder is R which

are defined by

A = B-Q + R. (3.10)

Assuming that all variables are unsigned firstly, a sequence of subtractions and

shifts is done to determine the quotient Q = go仍…Qn-i. At iteration i, the remain-

der is compared to the divisor B, if the remainder is larger than B, the corresponding

quotient bit is set to 1，otherwise, set to 0. The expression for this recursive step is

r, = - . B • (3.11)

where r^ is the remainder at iteration i and ro = A. qi-i is determined by

comparing r^.i to B . The final remainder can be obtained after n iterations

as

Tn = Tn-l 一 Qn-l ' B -

= r n - 2 一 qn-2 ' B - 2' - Qn-i . B . 2�

=To — qo . B . — qi . B • -…—qn-2 • 5 • - g^-i • B • 2°

= r o - (qo • 2" + . + …+ qn-2 . + Qn-i . 2。）. 5

= A - Q ' B , (3.12)

Chapter 3 Fixed-point arithmetic background 19

where rn = R- For two's complement division, the process is similar, except

that to determine the quotient bit, either subtraction or addition is used based on the

signs of ri_i and B, as shown below:

i f ri-i a n d B h a v e t h e same s i g n , t h e n {

n = - qi-i . B . 2

}

e l s e {

ri = n—1 + Qi-i . B . 2“；

}

i f ri a n d r^-i h a v e t h e same s i g n , t h e n {

s e t Qi-i t o 1;

}

e l s e {

s e t Qi-i t o 0;

n = ri_i ;

}

From the above algorithm, one can see that, when 7\ and t v i have different

signs, ri is restored to the previous value r^-i. This method is therefore called

restoring division [CZS02]. In this method, the main arithmetic operations are ad-

dition and subtraction ri = r^-i 士 . B. As mentioned by previous section,

subtraction can be done using addition, an n-bit adder is needed. Although B is left

shifted n — i bits, the lower bits are all zero, calculation of these lower n — i bits

can be ignored, an n-bit adder is enough.

Figure 3.5 shows the block diagram of the divider using restoring division. In

this diagram, register Q and B are used to store dividend and divisor initially, an n-

bit adder is used, which can be constructed by n 1-bit full adders. By approximation,

the number of 1-bit full adders required for an n-bit division is 0{n).

Chapter 3 Fixed-point arithmetic background 20

B R Q

, set quotient bit

/ add/sub
L. A control unit

"-bit adder /

Figure 3.5: Block diagram of divider using restoring-division

3.6 Summary

In this chapter, background on fixed-point arithmetic was introduced. The two's

complement representation was introduced and methods for implementing addi-

tion/subtraction, multiplication and division were discussed. Hardware cost for each

arithmetic operation was estimated based on the arithmetic algorithms and their ba-

sic hardware implementations, the hardware cost was estimated in terms of 1-bit

full adders.

Chapter 4

Fixed-point class implementation

4.1 Introduction

In order to analyze quantization effects of fixed-point arithmetic in fixed-point dig-

ital signal processing system, a fixed-point class, called Fixed, was developed to

simulate fixed-point arithmetic in the C++ language. All operands are Fixed type,

fixed-point calculated was handled internally by the fixed-point class. The detailed

implementation of the fixed-point class will be described in this chapter.

This chapter is organized as follows. Section 4.2 introduce how to use overload-

ing feature of the C++ language to simulate a fixed-point system. Some features

and implementation of the fixed-point class are presented in Section 4.3. The last

section is the summary.

4.2 Fixed-point simulation using overloading

In this work, we employ the simulation-based approach to analyze the quantization

effects associated with each variable and collect statistical information from each

variable during simulation. A fixed-point class, called Fixed, was developed to

achieve this goal. All operands in a fixed-point system are defined as Fixed, some

methods are implemented to handle the fixed-point arithmetic operations, such as

21

Chapter 4 Fixed-point class implementation 22

addition, subtraction, multiplication and division. In the following, an example will

be given to show how to use this fixed-point class to simulate fixed-point arithmetic.

The overloading feature of the C++ language was used and the code for a fixed-

point simulation is very similar to ks floating-point one. It is possible to convert

a floating-point program into fixed-point implementation by just changing the vari-

able definitions, rest of the program being unchanged. Or using this class to develop

system simulation description as using floating-point type. For example, the follow-

ing floating-point program:
I

float a;

float b;

float c;

a = 1.23;

b = 4.56;

c = a + b;

can be transformed into the fixed-point implementation:

Fixed a(4, 5);// integer size 4, fraction size 5

Fixed b(5, 6);// integer size 5, fraction size 6

Fixed c(5, 5);// integer size 5, fraction size 5

a = 1.23;

b = 4.56;

c = a + b ;

In the above fixed-point program, since the “ = “ operator is overloaded, frac-

tion numbers 1.23 and 4.56 will be converted into fixed-point format and stored in

Fixed objects a and b. The "a + b” statement will be handled by the overloaded

operator “ + “ and the result will be a Fixed object. When assigned to c, the sum

will be rounded to the precision of c.

Chapter 4 Fixed-point class implementation 23

i n c l u d e < s t d i o . h >

i n c l u d e < s t d l i b . h >

c l a s s F i x e d
{

p r i v a t e :

int I n t e g e r S i z e ;

int F r a c t i o n S i z e ;

M Y _ F L O A T S i n g l e M a x ;

M Y _ F L O A T S i n g l e M i n ;

MY—FLOAT A r r a y M a x ;

M Y _ F L O A T A r r a y M i n ;

int isArray；

F i x e d * a r r a y P t r ;

MY—INT F i x e d V a l u e ;

M Y _ F L O A T F l o a t V a l u e ;

p u b l i c :

//// c o n s t r u c t o r ////

F i x e d (i n t , int, M Y _ F L O A T) ;

//// e n d c o n s t r u c t o r ////

//// r e t u r n v a l u e / / / /

MY—FLOAT g e t Q e r r 0 ;

int g e t l W L 0 ;

//// e n d r e t u r n v a l u e / / / /

//// for a r r a y use ////

M Y _ I N T s e t A r r a y (F i x e d *);

//// e n d for a r r a y use ////

//// o v e r l o a d o p e r a t o r ////

F i x e d o p e r a t o r = (Fixed);

F i x e d o p e r a t o r = (const MY一FLOAT);

F i x e d o p e r a t o r + (Fixed);

F i x e d o p e r a t o r 一 (Fixed);

F i x e d o p e r a t o r * (Fixed);

F i x e d o p e r a t o r / (Fixed);

//// e n d o v e r l o a d o p e r a t o r ////

//// c a l c u l a t e cos ////

F i x e d m c o s (i n t , int);

//// e n d c a l c u l a t e cos ////

}

Figure 4.1: Fixed-point class declaration

Chapter 4 Fixed-point class implementation 24

4.3 Fixed-point class implementation

Figure 4.1 shows the declaration of the fixed-point class. A fixed-point object is

defined to represent two's complement fractions with arbitrary precision in fixed-

point format. Detailed implementation is introduced as follows.

4.3.1 Fixed-point object declaration

A fixed-point variable can be declared as:

Fixed VariableName;

Fixed VariableName (IntegerSize, FractionSize)；

Fixed VariableName (IntegerSize, FractionSize, FloatingPointValue)；

The parameters IntegerSize/FractionSize are used to define the integer/fraction

size of the fixed-point format in Figure 3.2 of the previous chapter. By defining

different IntegerSize and FractionSize for each object, all variables in a fixed-

point system can be of arbitrary wordlength. These two values are stored in the

private variables Integer Size/FractionSize of the object as shown in Figure 4.1.

If IntegerSize/FractionSize is not specified when declaring a variable, default

values will be used.

The parameter FloatingPointValue is stored in the private variable FloatValue

of the object as shown in Figure 4.1 and FixedValue will store the corresponding

fixed-point representation. In Figure 4.1，MY J NT is a longlong type, which is

64-bit integer, used to simulate fixed-point format. MY JFLOAT is a double type,

it is used to simulate floating-point format. Double is IEEE 754 double-precision

floating-point format, which is 64-bits in length [JD99] [WilOO]. From the most sig-

nificant to least significant bit, a double has a sign bit, 11-bits exponent and 52-bits

fraction as shown in Figure 4.2.

Chapter 4 Fixed-point class implementation 25

»

64 bits
M •

1 11 52

< 叫 , •

Sign Exponent Fraction

Figure 4.2: IEEE 754 double-precision format

4.3.2 Overload the operators

In order to overload the fixed-point operators, namely addition, subtraction, multi-

plication and division, corresponding methods were implemented in the fixed-point

class. The following shows the method signatures:

Fixed Fixed::operator + (Fixed) { implementation }

Fixed Fixed::operator - (Fixed) { implementation }

Fixed Fixed::operator • (Fixed) { implementation }

Fixed Fixed::operator / (Fixed) { implementation }

Fixed Fixed::operator = (const MY_FLOAT) { implementation }

Fixed Fixed::operator = (Fixed) { implementation }

Where “::，’ is called scope resolution operator, the notation "ClassName: :MethodName"

means the method "MethodName" is belong to class "ClassName". A mathematical

expression

C = A operator B (4.1)

can be regarded as

C = A.operator(B) (4.2)

and handled by corresponding methods. One can see that, all methods take a

Fixed object as input, and the returned result is also a Fixed object. Note that, the

Chapter 4 Fixed-point class implementation 26

Operand FixedValu | j ,) FixedValu I , ^ . r>
^ 叙 FloalValue FloatValue Operand B

A c I [� — ... e I L 厂 r

(I Fixed-point^ ^loat ing-point \ L _ Operator

I

I

I

I

FixedValu "V . . . ,] Operand FloatValue ~ „ e j C

Figure 4.3: Arithmetic calculation using fixed-point object

assignment operator is also overloaded. If the input operand is a fraction number,

this method will convert this fraction number into fixed-point format and stored in

the Fixed object at a precision specified by the target object. If the input is a Fixed

object, this method will round it to the target object's precision.

4.3.3 Arithmetic operations

The fixed-point class performs all calculations using both fixed-point and IEEE

754 double precision formats. The calculation result using fixed-point arithmetic

is stored in FixedValue, and the calculation result using floating-point arithmetic

is stored in FloatValue. This process can be shown by Figure 4.3. It is assumed

throughout this work that calculations done in double precision floating-point are

without error.

To avoid loss of precision during calculation, for addition, subtraction and di-

vision, the result use the maximum integer and fraction sizes of the two input

operands. For multiplication, the product's wordlength is the summation of the two

input operands' wordlengths minus one. This calculation result will be rounded to

Chapter 4 Fixed-point class implementation 27

the target operand's precision when performing assignment operation by the over-

loaded “=“ope ra to r .

4.3.4 Automatic monitoring of dynamic range

During calculation, the fixed-point class can monitor the dynamic range of each

variable, and store the absolute maximum/minimum values in private variables

SingleMax/SingleMin. After each calculation, the absolute result is compared

with the existing maximum/minimum values. If it is larger than the maximum value,

it will be stored in SingleMax, on the other hand, it will be stored in SingleM in

if it is smaller than the minimum value. The minimum integer size of each variable

which guarantees that overflow will not occur, can be calculated from SingleMax

using the following equation

Integer Size = int {log^ SingleMax) + 2; (4.3)

The minimum integer size required to represent the positive number SingleMax

is mt(log2 SingleMax) + 1. Since all numbers are using two's complement format,

additional one bit is needed for the sign bit. As a result, int(log� SingleMax) + 2

bits are required. A method, called getlWLQ, is provided by this fixed-point class

to retrieve the minimum integer size.

4.3.5 Automatic calculation of quantization error

Since the fixed-point class performs operations using both fixed-point and floating-

point arithmetic, the quantization effects between fixed-point and floating-point

arithmetic are easily analyzed. Using the floating-point result as a reference, quan-

tization error is computed as follows

^ …, FixedValue - FloatValue
Qe作=2G* iQg F l ^ ^ ^ e • (� . ^)

A method, called getQerrQ, is implemented to get the quantization error of a

Fixed object.

Chapter 4 Fixed-point class implementation 28

4.3.6 Array supporting

The fixed-point class supports arrays, an array can be declared as follows

Fixed VariableName[NumberOfElements];

It can also be declared dynamically using malloc as follows

Fixed *VariableName;

VariableName = (Fixed •) malloc (sizeof(Fixed) * NumberOfElements)；

In Figure 4.1, the private variable is Array is used to indicate whether this object

is an element of an array. ArrayMax/ArrayMin are used to store the absolute

maximum/minimum value of an array. Each array element has a pointer that point

to a Fixed object, the pointer address is stored in the private variable arrayPtr. If

any element's value is updated, ArrayMax/ArrayMin of the Fixed object, which

is pointed by array Ptr, will be updated if the updated value of this element is a

new maximum/minimum value of the entire array. As a result, after finishing all

fixed-point computation, ArrayMax/ArrayMin of the Fixed object pointed to

by array Ptr will store the absolute maximum/minimum value of the entire array.

The method, setArray{Fixed^), is used to save the pointer value to array Ptr.

The minimum integer size of an array can be calculated as follows

Integer Size = mt(log2 ArrayMax) + 2; (4.5)

4.3.7 Cosine calculation

A method was implemented to compute the cosine function cos(2 * tt * i/N). A

set of results for i from 0 to TV were calculated using double precision format, for

a given input i, the double precision cosine result is converted into a fixed-point

format and stored in the Fixed object, note that it is rounded to the target operand's

precision during conversion. From the application program's point of view, it is a

look up table implementation of the cosine function. The following is the simplified

pseudo code:

Chapter 4 Fixed-point class implementation 29

Fixed Fixed::mcos(int i, int N)
{

cosResult = cos (2.0 * PI * i / N);

result = Fixed(this->IntegerSize, this->FractionSize, cosResult);

return result;

}

4.4 Summary

A fixed-point class is developed to simulated fixed-point arithmetic, overloading is

used, the fixed-point simulation program is very similar to a corresponding floating-

point description. In this chapter, some features and implementation, which are

convenient for quantization effect analysis, are introduced, e.g. automatic dynamic

range monitoring, automatic quantization error calculation. A look up table imple-

mentation of an cosine function was presented. This class was used to simulate

a fixed-point isolated word recognition system which will be introduced in a later

chapter.

Chapter 5

Speech recognition background

5.1 Introduction

To analyze the quantization effects in a non-trivial example, an isolated word recog-

nition system was studied. In this chapter, the isolated word recognition system is

introduced.

This chapter is organized as follows. An overview of the isolated word recogni-

tion system is presented in Section 5.2, the system is constructed based on the linear

predictive coding, vector quantization and hidden Markov model. Section 5.3 in-

troduce the linear predictive coding model applied in speech. In Section 5.4，vector

quantization is introduced while Section 5.5 explain the hidden Markov model used

to calculate the score of input speech. The last section is a summary.

5.2 Isolated word recognition system overview

There are many hardware implementations of isolated word recognition systems, ir-

respective of the implementations, trade-offs between performance and complexity

always exists. In order to get higher recognition accuracy, some complex models

can be used, on the other hand, simple models can be used, but the recognition ac-

curacy will be lower. In this section, the isolated word recognition system used in

this work will be introduced.

30

Chapter 5 Speech recognition background 31

VQcodebook __JflMMforwordl�
f for word 1 \

/ J VQcodebook __JHMMforword2[\
/ 产 for�vord2 \ \

/ I VQcodebook _ _ J hmM for word 3 Find "utput
data 一 LPC for word 3 Maximum word,

1 proctor ^ 力 = r

\ N J VQcodebook _ _ J hmM for word 4 Z /

• •

• •

Figure 5.1: Isolated word recognition system

Figure 5.1 is the block diagram of the isolated word recognition system. The

system contains three components: the linear predictive coding (LPC) processor,

the vector quantizer (VQ) and the hidden Markov model (HMM) decoder. In the

system, a common LPC processor was used for all word models, each word model

has one VQ and one HMM decoder, hence for an iV-word isolated word recognition

system, N VQs and N HMM decoders are required. All states of the HMM decoder

share the same VQ codebook.

Vectors of the linear predictive cepstral coefficients (LPCCs) were extracted

from the input speech data by an common LPC processor. One vector of the LPCC

represents the spectrum of an all-pole model that can best model the speech spec-

trum over a certain period. The LPCC vectors were passed to a vector quantizer,

which transforms the continuous data into a discrete representation. This process

chooses the best codebook vector to represent an input LPCC vector, a sequence

of codebook indices that specify the corresponding codebook vectors having mini-

mum distances with the LPCC vectors is produced. A HMM decoder was used to

Chapter 5 Speech recognition background 32

calculate the score for the vector quantizer's output sequence. For an isolated word

recognition system containing N words, N scores will be obtained and the word

‘ with the maximum score is chosen as the output word. The detailed background

of the LPC processor, VQ and HMM decoder will be introduced in the following

sections.

5.3 Linear predictive coding processor

Linear predictive coding (LPC) theory has been used in speech recognition sys-

tem for many years, a large number of recognizers were constructed based on LPC

theory. It is because LPC has the following advantages:

1. LPC provides a good approximation to speech signal, k is more effective for

voiced regions, and acceptable for unvoiced regions [LB93].

2. The mathematical calculation in LPC is simple, and is suitable for both soft-

ware and hardware implementations.

In the past, due to the limitation of hardware technology, reaching real time

performance was very difficult, and the second point made it easier to reach real

time performance.

5.3.1 The LPC model

In an LPC model, speech sample s(m) at time m can be approximated as a linear

combination of the previous t speech samples:
t

s{m) = ^ ans{m — n) + Gu{m) (5.1)
n = l

where Gu(m) is an excitation term. Transformed into the z-domain, we obtain the

transfer function:

则 二 r ^ ^ i i ； ^ • (5.2)

Chapter 5 Speech recognition background 33

gain(G)

u(m) ” s(m)

— K x) — 1 - 1 ：) " 广 — •

Figure 5.2: LPC model of speech

As shown in Figure 5.2, the normalized excitation source u(m) is scaled by the

gain G. In speech recognition, the LPC feature analysis finds the filter coefficients

a„ that can best model the speech data, which are used for further processing in the

recognition process. It is noted that, the higher the filter order, the better the spoken

sounds it can model.

5.3.2 The LPC processor

The LPC processor is used to find the filter coefficients a-a, the processing, called

the LPC feature analysis, contains six operations, which are preemphasis, frame

blocking, windowing, autocorrelation, LPC analysis, conversion to cepstral coeffi-

cients. Figure 5.3 shows the block diagram of LPC feature analysis including the

above operations. The following will introduce each part in detail.

1. Preemphasis: A low-order filter is used in this stage to flatten the input speech

signal, typically, a fixed first-order system is widely used:

H{z) = 1 - a z - i , 0.9 < a < 1.0. (5.3)

Using this fixed first-order filter, for the input speech signal s{m), we have

the output p(m):

p(m) = s(m) — as(m — 1)， where a = 0.9375. (5.4)

Chapter 5 Speech recognition background 34

frame size separation
F distance D

speech | 1 I ~ i * “ I I

p(m) iK-m)
咖 ） > preemphasis • frame blocking • windowing

w — ^ — … 删 —

^ n conversion to Otn 明

cepstral LPC analysis autocorrelation
coefficients

Figure 5.3: Block diagram of the LPC feature analysis

Although 0.95 is commonly used for a , a value of 0.9375 is often chosen in

fixed-point implementations [LB93]. In this work, 0.9375 was used for a .

2. Frame blocking: By given the frame size F and separation distance D’ the

preemphasized speech signal, p{m) is blocked into a number of frames in this

stage. Figure 5.4 shows the blocking process, one can see that the continuous

speech signal is being cut into pieces, each piece is called a frame. Each

frame has frame size F, the next frame started at a distance, D samples, to

the previous frame, and overlap F — D samples.

Assume total number of samples is M for an input speech, the number of

frames is N = M/D�the blocking process can be done by the following

equation:

XnU) = v{nD + f) , where 0 < n < A ^ - l , 0 < f < F. (5.5)

3. Windowing: After frame blocking, a problem raised, there are discontinuities

at the border of each frame, windowing is used to solve this problem. The

most widely used method is the Hamming windowing:

Pnif) = (0.54 - 0 . 4 6 c o s (- ^ ^)) x (/) , where 0 < / < F - 1. (5.6)

Chapter 5 Speech recognition background 35

：distance D j j i i i
f �distance Pj j j j

I I I / \ preemphasized
/ \ ! ！ /T \ 1/ \ speech signal

I fran)e 1, frame sijze F I
！* i i ^

i fraii^e 2, frame size F
r j *

frame 3, frame size F ^

Figure 5.4: Frame blocking process

4. Autocorrelation analysis: The data after windowing is further autocorrelated

using the following equation:

F - l - f c

Tnik) = Pn{f)Pn{f + k), wheve 0<k<t (5.7)
f=0

5. LPC analysis: This process will calculate the filter coefficients after auto-

correlation, the Durbin's algorithm is usually used [LB93].

丑(0) = r„(0) (5.8)

. = 训 - “ 」 (3 . 9)

a f) = ki (5.10)

c^ = l < j < i - l (5.11)

五 ⑷ = (1 - (5.12)

ag = a f , 1 (5.13)

6. Conversion to cepstral coefficients: The LPC coefficients a^ were converted

to cepstral coefficients. Using cepstral coefficients as features in speech recog-

nition have been shown to be more reliable [LB93]. The conversion involves

Chapter 5 Speech recognition background 36

codebook

/ / I k \ , ,
input vectors / / V \ codebook indices

^ J ~ I Find
. . . v (2) v(l) n r " ^ minimum »• . . . i(3) i(2)

“ “ y ^ / distance “ “
\ ^ c(4) /

\ •: /

Calculate distance
between each input

vector and each
codebook vector

Figure 5.5: Vector quantization process

the following calculations:

k
Cn = an + y^(-)Cfca„_fc’ where I <n<t. (5.14)

t l ^

5.4 Vector quantization

One advantage of using vector quantization is reducing the data rate, the high input

speech data rate is transfered into a low data rate representation. The codebook

of VQ is a discrete representation of continuous speech data. The VQ will find a

codebook index specifying the codebook vector that best represents a given spectral

vector. The codebook vectors can be obtained by clustering a set of training vec-

tors, thus the codebook vectors representing the spectral variability observed in the

training set [L693], the K-means clustering algorithm is used in this work.

Figure 5.5 shows the vector quantization processing, for an input vector se-

quence V{v{l), v(2), v(3), . . . ， v (N) } , VQ will calculate the vector distance be-

tween each vector in codebook C{c(l) , c(2),c(3),..., c(P)} and each input vector

Chapter 5 Speech recognition background 37

v(n), and the codebook index with minimum distance will be chosen as output. Af-

ter vector quantization, a sequence of codebook indices /{ i (l) , i(2), i(3), . . . ， i (N)]

will be produced.

The vector distance between an input vector v{n) and each vector in codebook

is calculated using:

K

d{v{i), c{j)) = X] [外) � —c � �f , (5.15)
k=i

where v(i)(k) is the kth element of the input vector v{i), c{i){k) is the kth element

of the codebook vector c{i), K is the vector length. The following is the pseudo

code for vector quantization.

for p from 1 to codebook_size {

distance(p) = 0;

for k from 1 to vector_length {

temp = (v(n) (k) - c(p) (k))*(v(n) (k) - c(p) (k));

distance(p) = distance(p) + temp;

}

}
i (n) = arg minp (distance (p));

In the above pseudo code, i{n) is the nth element of the output codebook indices

sequence as shown in Figure 5.5. Similar input vectors are clustered together in

vector quantization, one can see that the data rate is reduced significantly. This

advantage will benefit most HMM based speech recognition system using vector

quantization, because HMM decoding is time consuming, lower data rate will make

real time performance become realizable in the past. Furthermore, the storage size

is reduced for spectral analysis data, only the codebook will be stored, as a result, it

is more suitable for hardware implementation.

Chapter 5 Speech recognition background 38

3.00 a i 1 3.22

Figure 5.6: Left-to-Right HMM

5.5 Hidden Markov model

Hidden Markov models (HMMs) are widely used in modern speech recognition

systems because HMM-based speech recognition systems have proven to yield high

recognition accuracy. The Viterbi algorithm is used to find the most likely state

sequence and likehood score for a given observation sequence. In this section, the

background theory of HMM and the Viterbi algorithm will be introduced.

Given an observation sequence O = {0i02.-.0t), HMM decoding calculates

P{0\\), which is the probability of the input observation sequence for a given

model A, the result means how much chance the utterance represented by model

A will produce the observation sequence O.
\

Figure 5.6 shows a basic three-state left-to-right HMM. A HMM is a proba-

bilistic finite state machine (FSM) and has a set of state transaction and observation

probabilities. The state transaction probability is the probability of state transaction

from one to another, and the observation probability is the probability that a state

emit a particular observation. In this figure, 50, SI, S2 are the states, aij is the

probability of state transaction from i to j. Figure 5.7 is the trellis representation

showing all possible state transaction paths.

Chapter 5 Speech recognition background 39

aoi ^ ^ ai2
so ———>(SI ———>(S2) •

\ aoo \ a i l \ a22

aoi a i2
so A SI ———H S2

\ aoo \ a i l \ a22

Figure 5.7: Trellis representation of Left-to-Right HMM

Traditional Viterbi algorithm

P{0\X) of course can be calculated by enumerating all possible paths in the trellis

diagram (see Figure 5.7) over the entire observation sequence. Totally, there are N ?

possible paths, where N is the number of HMM states and T is the length of the

observation sequence. Assume q = (gi, g2，qs,...) is one of the state traversal path,

the probability can be calculated as follow:

P{0\X) = Y.P(0\q,X)P{q\X)
allq

= 倘 (5-16)

all q

In practice, an alternative approach, called the Viterbi algorithm associated with

a max function is used. Where P{0\X) is approximated by the probability associ-

ated with the best state sequence q = (gi, 92，奶，…)that maximizes P (0 , q\X).

The iterative process to calculate the score for an observation sequence O =

{oi02...ot) is shown below. Assume the observation probability for an input symbol

ot at state j is Pj{ot), the score along the best state sequence at time t and ends in

state j is ht(J), the number of HMM states is N.

Chapter 5 Speech recognition background 40

1. Looping:

ht{j) = m^JJit-i{i)aij]pj{ot) (5.17)

2. Stop:

H = (5.18)

By using the max function, calculation can be reduced. But since multiplica-

tion is performed for each iteration, underflow problem may occur, an alternative

approach is introduced.

Alternative Viterbi approach

To overcome the underflow problem, taking logarithms in Equation 5.17, results in

the following procedures:

1. Looping:

htU) = ^max [/if_i(i) + (5.19)

2. Stop:

H = max[^T(i)] (5.20)

Using this approach, computation is reduced since the main operations are ad-

dition rather than multiplication. This approach is very suitable for hardware im-

plementation, and was adopted in this work.

5.6 Summary

Background of an isolated word recognition system was introduced in this chapter.

The isolated word recognition consists of the LPC processor, VQ and HMM de-

coder using the Viterbi algorithm, the output of HMM decoder are the word scores,

and the highest is taken to be the recognized word.

Chapter 6

Optimization

6.1 Introduction

To perform wordlength optimization of fixed-point system, one difficulty is that,

the objective function cannot be stated as explicit functions of the design variables

for most of implementations. For example, in speech recognition, the recognition

accuracy cannot be stated in terms of wordlength. As a result, traditional analytical

methods is difficult to be applied to all systems and a simulation searching-based

method can be used. The cost is obtained through simulation, and a searching

method is applied to find the optimal solution.

This chapter is organized as follows. In Section 6.2, the simplex method is

introduced. Section 6.3 present the one-dimensional optimization approach, which

significantly reduces the search space. Section 6.4 is a summary.

6.2 Simplex Method

The Nelder-Mead simplex method [JR65], published in 1965, is widely used in non-

linear unconstrained optimization. The Nelder-Mead method attempts to minimize

an object function of n variables, the minimization process depends on the function

value, no derivative information is required, the Nelder-Mead thus was classed as

41

Chapter 6 Optimization 42

direct search method [Sin96]. Because of these features, it can be regarded as a

general optimization method for wordlengths optimization in fixed-point systems.

In simplex method, a set of n + 1 initial point is formed for n-dimensional

space, then reflection, expansion and contraction process are applied to find optimal

solution.

6.2.1 Initialization

At the beginning, the user should supply a base point and guess scale. A set o f n + 1

initial point is generated using the following equations:

Xo = 凡 (6.1)

Xi = Xu i = 1,2,…,n (6.2)

In the above equations, Xu is the base point and p is the guess scale, Ui is the

unit vector along the ith coordinate axis. In the geometric figure's point of view, the

n + 1 initial points formed is called a simplex.

For example, if Xq = [4’ 5,6] and p = 2, the initial points are:

Xq = Xu = [4,5,6'

= Xu -\-pui = [6,5,6

X2 = Xu + pu2 = [4’ 7,6

；C3 = = [4,5,8；

6.2.2 Reflection

Among all the n + 1 points Xq, Xi, ...,Xn in the simplex, if Xw is the point with

worst value of the objective function, it is expected that Xr obtained by reflecting

Xw to the opposite side, will yield a better value. Based on the above, a new simplex

is formed by accepting the new point Xr and deleting Xw.

Chapter 6 Optimization 43

Xj

X4

Figure 6.1: Reflection

The reflection process can be illustrated by Figure 6.1，in this figure, the old sim-

plex is constructed by Xo, Xi,X2, X3, assume that X3 has the worst objective func-

tion value. After applying reflection, a new point X4 is obtained,

will form the new simplex. The following equation can be used to calculate the

reflected point:

Xr = (l + a)Xc — aXy, (6.3)

where X.^ is the point which has the worst objective function value and Xc is

the centroid of all the points Xi for i = 0,1,2...n, except i = w. In Figure 6.1,

Xc is the centroid of Xo, Xi , X2. a is the reflection coefficient, which is defined as

follows:

distance between Xc and Xr 4)
distance between Xc and X^

For the standard Nelder-Mead method, a nearly universal choice for a is 1.

Using reflection, if the function value f{Xr) < f(Xw) and f{Xr) > f{Xb), where

Xb is the point yield best function value, Xyj is replaced by Xr to form a new

simplex.

Chapter 6 Optimization 44

6.2.3 Expansion

Using reflection, if f (X r) < f{Xb), it is expected that a point which has a better

function value can be obtained if we move along the direction pointing from Xc to

Xr- A new point Xe, obtained by further expand Xr in the direction pointing from

Xc to Xr, will be used to test the function value, this is called expansion. Xe can be

obtained using the following equation:

Xe = (3Xr + (1 - l3)Xc (6.5)

/3 is the expansion coefficient, which is defined as follows:

^ _ distance between Xc and Xe
distance between Xc and Xr

One can see that (3 must be larger than 1，for standard Nelder-Mead method, a

good choice is 2.

If the expansion point is a new best point, that means f{Xe) < f{Xb), X^ is

replaced by Xe and the reflection process will restart again. Otherwise, if f{Xe) >

f{Xb), Xw is replaced by Xr, and the reflection process is restarted.

6.2.4 Contraction

After reflection, X^, will be replaced by Xr if the following two conditions are

satisfied for a reflection point Xr：

(1) f{Xr) > f(Xi), where i = 0 , l ,2 , . . . ,n , i^w
0

(2) f{Xr) <

Xyj will remain unchanged if only the following condition satisfy for a reflection

point Xr'.

f{Xr) > f{X^)

Chapter 6 Optimization 45

Contraction is then applied to contract the simplex, a new point, generated using

the following equation, will be used to test the objective function.

Xt = I X ^ + (1 - (6.7)

where 7 is the contraction coefficient, which is defined as follows:

distance between Xc and Xt 幻

7 distance between Xc and X^

For standard Nelder-Mead method, 7 is usually set to 去.The reflection process

will be restarted depending on the function value f{Xt) as follows:

• f{Xt) < min[f{Xr), f{Xw)]'. That means the contraction was a success,

replace X^̂ by Xt, and restart the reflection process.

• f [X t) > min l f (Xr) , f{Xw)]: Contraction is a failure, for i = 0，1,2’ ...,n,

replace Xi by {Xi + Xb)/2, and restart the contraction.

6.2.5 Stop

The reflection process will stop if the number of iterations reaches a maximum

number, or if the following condition is satisfied:

‘ 丨 脳 I + 丨 肌) I < “ (吻

where e is an user defined tolerance.

6.3 One-dimensional optimization approach

When performing wordlength optimization, one difficulty is that, the search space

is very large. To overcome this problem, instead of optimizing global system, each

variable is exhaustively searched between given bounds independently, which will

Chapter 6 Optimization 46

result in search space reduction. This is a trade-off between accuracy and execu-

tion time. The one-dimensional optimization approach may get trapped in a local

minima.

6.3.1 One-dimensional optimization approach

Detailed implementation of one-dimensional optimization approach can be summa-

rized as the following pseudo code, for a system consist of n variables Xi , X2, •^3,

each variable has a wordlength search space bound [L{i),U{i)] for i = 1,2,3, ...,n,

where L(i) is the lower bound of Xi and U{i) is the upper bound of Xi.

\\ Initialization

For i = 1 to n {

WordLength(i) = U(i);

}

MinFunctionValue = f(U(l), U(2), U(3), ..., U(n));

\\ Minimize each variable alternatively

For i = 1 to n {

\\ Sweep wordlength of Xi

For WordLength(i) = U(i) to L(i) {

CurrentFunctionValue = f(WordLength(1), WordLength(2), ..., WordLength(n));

\\ Store the minimum wordlength

if CurrentFunctionValue < MinFunctionValue then {

MinFunctionValue = CurrentFunctionValue;

MinWordLength(i) = WordLength(i)；

}

}
WordLength (i) = MinWordLength(i);

}

In the above pseudo code, MinWordLength{i) is the minimum wordlength of

足 .

The one-dimensional optimization can be illustrated by Figure 6.2，assume a

system consist of three variables the optimization process is broken

into three parts. From the left to the right, suboptimize the wordlength of Xi , X2

and X3 in sequence. When optimizing the wordlength of one variable, the others are

Chapter 6 Optimization 47

(— 1

I Xi I ^ X2 ^ X3

Sweep the Wordlength of X2 Wordlength of X3
wordlength of Xi keep constant keep constant

I
r*—— ——I

1 I J I J
Xi X2 ~ j ^ X3
Z i f i I

Wordlength of Xi Sweep the Wordlength of X3
keep constant wordlength of X2 keep constant

I
j— — —J

X, X2 h*- X3 I

L i

Wordlength of Xi Wordlength of X2 Sweep the
keep constant keep constant wordlength of X3

Figure 6.2: One-dimensional optimization

keep constant. Exhaustive search is used to sweep the wordlength in each dimension

as shown in the pseudo code.

6.3.2 Search space reduction

Using the one-dimensional optimization approach, the search space is reduced sig-

nificantly. Assume a system consists of n variable Xi ,X2,X3, ...,Xn, each has

uniform distance b between L(i) and U{i), that means:

constant = h = U{i) — L(i), where 2 = 1 , 2 , 3 , n . (6.10)

Original, using exhaustive search, the search space is b^. Using the one-dimensional

Chapter 6 Optimization 48

optimization approach, the search space is 6xn. For example, a system consisting

of 20 variables and each of wordlength 16，the search space using exhaustive search

is 2016. Using one-dimensional optimization approach, the search space is only

20x16.

6.3.3 Speeding up convergence

When optimizing one variable using one-dimensional optimization approach, in-

stead of using exhaustive search, to enhance the search convergence, some less brute

force search method can be used, e.g. search with accelerated step size [Sin96], bi-

section search, golden section search [WSWB92], etc. This section introduces the

golden section search method which is used in this work.

The golden section search method is similar to bisection method [WSWB92],

where the solution is bracketed in an interval (a, c), then an intermediate point b is

chosen to test the function value. The next interval will converge to (a, h) or (6’ c),

which is smaller than the original one. This process is repeated until the interval is

smaller than an specified bound.

Instead of keeping track of two points in the bisection method, the golden sec-

tion search method keeps track of three point in each iteration. As illustrated in

Figure 6.3, originally, the minimum is bracketed by (Xi^Xi), and X^ is the inter-

mediate point. The function is evaluated at X4，which is the intermediate point of

{Xi,X2), since / (X4) < f{Xi), f{Xi) is replaced by X4, the minimum is bounded

by (X4, X2). The function is then evaluated at X5, which is the intermediate point

of {X3, X2), since / (X5) < /(X2)’ X2 is replaced by X^, the minimum is brack-

eted by {X4, X5). This process continues until the bracket is small than an specified

interval.

Assume the initial three points are a, 6’ c, the golden section search method can

be summarized as follows:

Xo = a;

Chapter 6 Optimization 49

X、，iteration 1

\ \
V \ iteration 2 X2

I I
i bracket after iteration 1 i i

I i

j bracket after iteration 2 |
I I

Figure 6.3: Golden section search

Xa = c;

if interval (6,c) smaller than interval (a,6) then {

= b;

Xi = intermediate point of (a, b);

} else {

Xi = b;

X2 = intermediate point of {b, c)；

}

\\ Evaluate the two intermediate points

/ l = /(^i)；

/2 = /(X2);
\\ Execute iteratively

while interval (XofXs) larger than a constant {

if /2 > f l then {

= X2 ；

X2 = Xi ;
XI = intermediate point of {Xq, X3);

/2 = /l；

Chapter 6 Optimization 50

} else {

Xq = Xi ;
= ^2；

X2 — intermediate point of {Xq.X^);

n = /2；

/2 = /(X2);

}

}

\\ Now, the minimum point is either Xi or X 2 , which are the two

intermediate points

if /2 < f l then {

Minimum point is X2；

} else {

Minimum point is Xi；

. }

In the above pseudo code, f l and / 2 is used to store the function value of the

two intermediate points. Finally, when the outer bound (Xq, X3) smaller than a

specified interval, the looping is terminated. The minimum point is either Xi or

X2, after comparing their function values, the minimum point can be obtained.

6.4 Summary

Optimization background was introduced in this chapter. Two optimization ap-

proaches, the simplex method and one-dimensional optimization approach, were

introduced. The search space is reduced by using a one-dimensional optimization

approach. Furthermore, the golden section method can be used to speed up the

optimization.

Chapter 7

Word Recognition System Design

Methodology

7.1 Introduction

A framework was introduced to address the quantization issues of fixed-point sys-

tems, flexibility and easy to be extensible are the major consideration of this frame-

work. It is applied to an isolated word recognition system to explore the utility of

this approach. In this chapter, detailed design of the framework is introduced.

This chapter is organized as follows. In Section 7.2，the architecture of frame-

work is introduced. Section 7.3 present how to apply this framework to an isolated

word recognition system. The last section is a summary.

7.2 Framework design

Figure 7.1 shows the block diagram of the framework, which consists of a fixed-

point class and an optimizer. Fixed-point application is simulated using the fixed-

point class, and the optimizer is used to find optimal wordlength.

51

Chapter 7 Word Recognition System Design Methodology 52

Fixed-point class

integer fraction quantization
size size error

input parameters Optimizer fraction
(number of ''ze • Fixed-point

variables, which ——• one- application
optimization dimensional

approach, etc.) optimization

, ^ Simplex cost
optimal fraction ^ method ^ function

size cost

Figure 7.1: Block diagram of the framework

7.2.1 Fixed-point class

As introduced in the previous chapter, the fixed-point class was developed using the

C++ language. Currently, it can simulate fixed-point arithmetic including addition,

subtraction, multiplication and division, cosine operation is implemented using a

look up table.

The fixed-point class can simulate fixed-point arithmetic at a precision specified

by the user, i.e. the user can specify the fraction size for each variable. Quantization

error, which is calculated using floating-point calculation result as a reference, can

be obtained by the class automatically.

Furthermore, the fixed-point class can monitor the dynamic range of each vari-

able during calculation, integer size is calculated using the range information ob-

tained by the class during simulation.

Using an object oriented concept and overloading, the fixed-point class is ex-

tensible, new overloading of operators can be appended by adding new methods in

Chapter 7 Word Recognition System Design Methodology 53

the fixed-point class and do not affect the design of the optimizer and application

program.

7.2.2 Fixed-point application

The fixed-point application is a simulation program which implements the desired

functionality of a fixed-point system. Using overloading, it has been shown by

previous chapter, it is very easy to simulate an algorithm and the fixed-point imple-

mentation is very similar to its corresponding C++ floating-point description.

Users can construct a cost function and return the cost as shown in Figure 7.1.

The cost function is defined by users, because the cost function may vary depending

on the system's behaviors.

7.2.3 Optimizer

The optimizer is developed using the Perl language, which can perform wordlength

optimization using two approaches, the one-dimensional optimization approach and

simplex method, both optimization methods process based on a user defined cost

function.

Some parameters, e.g. using which optimization approach, number of variable

and initial guesses, should be provided by the user. The optimizer executes the

fixed-point application iteratively with different configurations of fraction size and

costs are determined.

Figure 7.2 illustrates how the optimizer executes the fixed-point application iter-

atively. The optimizer reads in a function handler, and call this function iteratively,

within the function, the fixed-point application will be executed and the cost will be

calculated.

Chapter 7 Word Recognition System Design Methodology 54

Optimizer Function
/

/

. . z
z execute fixed-

&function ^ point application,
\ calculate cost.

\
\

\ …. \

\
nJ

Figure 7.2: Optimizer executes fixed-point application iteratively

7.3 Speech system implementation

This framework was applied to an isolated word recognition system which was in-

troduced in the previous chapter. The isolated word recognition system consists of

three parts, the LPC processor, the vector quantizer and HMM decoder. A user ap-

plication program was developed to simulated the isolated word recognition system,

all arithmetic operations were handled by the fixed-point objects. Minimum integer

size can be obtained by the fixed-point class through simulation, optimization was

done to minimize the fraction size. The optimization proceed based on a cost func-

tion which take recognition accuracy and hardware cost into account. By minimize

the integer size and fraction size, minimum hardware cost implementation can be

found. The above process is illustrated in Figure 7.3.

7.3.1 Model training

The VQ codebook and HMM parameters need to be trained, the trained model will

be used during recognition. One set of utterances from the TIMIT TI 46-word

database [LDC] containing 20 words from 8 males and 8 females were used for both

training and recognition. There were 26 utterances for each word, 10 utterances

Chapter 7 Word Recognition System Design Methodology 55

Model training
using floating-point Fixed Class

arithmetic ^ 1

/ \ ——^^ \
/ Trained models: \ Isolated word \

/ V Q codebook \ recognition system \
\ and H M M j described using \

\ parameters / Fixed \

Minimum
Fraction Size Integer Size
Optimization

Minimum / M i n i m u m C i r c i ^
Fraction Size Area ^

Figure 7.3: Overview of isolated word recognition system optimization flow

were used for training and 16 utterances were used for recognition.
A frame size of 30ms was chosen for the frame blocking process in the LPC

processor and 12th order LPCCs were used. The sampling frequency for this set of

TIMIT utterances was 12.5KHz. Thus the number of samples in each frame is:

12500 samples/second x 30 ms = 375 samples. (7.1)

The VQ codebook and HMM parameter training was done using floating-point

arithmetic. To choose the codebook size and number of HMM states, different

configurations of codebook size and number of states were tested. The configuration

with maximum recognition accuracy was selected. The selection process can be

described by the following pseudo code,

for different codebook size {

Chapter 7 Word Recognition System Design Methodology 56

train VQ codebook;

calculate VQ output sequence using trained codebook;

for different number of HMM states {

train HMM parameters;

calculate recognition accuracy;

}

}

choose the codebook size and number of HMM states yield highest

recognition accuracy;

7.3.2 Simulate the isolated word recognition system

A user program written in the C++ language was developed to simulate the isolated

word recognition system. All operands are represented in fixed-point object, over-

loading was used, the following program shows a segment of the codes to simulate

the autocorrelation step in LPC processor which is described by previous chapter.

int m ,n;

for (m = 0; m <= p_order; m++)
{

autosum = 0.0;

for (n = 0 ; n < win_size-m; n++) {

wswsF = cwsF[n] * cwsF[n+m]；

Chapter 7 Word Recognition System Design Methodology 57

autosum = autosum + wswsF; •

}

R[m] = autosum;

}

In the above codes, autosum and wswsF are fixed-point object type Fixed,

cwsF and R are array of Fixed. One can see that using overloading, the program is

similar to a normal floating-point implementation, and it is very easy for a user to

simulate the algorithm using the Fixed class.

7.3.3 Hardware cost model

In the calculation of hardware costs, only arithmetic components are taken into ac-

count. Since this work focus on wordlength optimization, the change in wordlength

will mostly affect the size of arithmetic components, and it is assumed that other

components, e.g. registers, memories, interfaces, do not occupy significant re-

sources.

When estimating the arithmetic circuit area, since addition, subtraction, multi-

plication and division can be implemented using adders, circuit area is counted as

the number of one-bit full adders used for each arithmetic operation. The following

descriptions detail the arithmetic circuit size estimation for each operation.

• addition/subtraction: Assume parallel adder/subtractor is used, and the result

chooses the maximum integer and fraction size of the two input operands, the

number of full one-but full adders (i.e. the circuit size) used is:

Circuit size = Max{Il, 12) + Max{Fl, F2), (12)

where (/ I and F l) / (/ 2 and F2) are the integer size and fraction size for the

first/second operand.

Chapter 7 Word Recognition System Design Methodology 58

• multiplication: Assume parallel multiplier is used. The circuit size of an n

bit X m bit multiplier is:

Circuit size = n x m. (7.3)

• division: Assume restoring-division is used. As introduced in the previous

chapter, the main operation involved in this algorithm is addition, and the

circuit size is same as addition/subtraction:

Circuit size = Max(Il, 12) + Max{Fl, F2), (7.4)

where (/ I and F l) / (/ 2 and F2) are the integer size and fraction size for the

two input operands.

The total arithmetic circuit size is calculated by summing the circuit size of all

operators for the entire isolated word recognition system. For example, to calculate

the circuit size for the autocorrelation, pseudo code shown by Section 7.3.2. Assume

integer size for cwsF, wswsF and auto sum are 1�Iw and la respectively, fraction

size for cwsF, wswsF and autosum are F�F^ and Fa respectively. Circuit size

for multiplication cwsF[n] x cwsF[n + m] is:

5 l = (/ c + F e) x (/ e + F e) , (7 . 5)

circuit size for addition autosum + wswsF is:

S2 = Max{Ia, In,) + Max{Fa, F^), (7.6)

the total circuit size for the autocorrelation is s i + S2.

7.3.4 Cost function

Since this work focuses on how to reach certain recognition accuracy with minimum

hardware cost, the cost function will take the circuit size and recognition accuracy

into account. The following cost function was used:

cost = a*CircuitSize + (5^RegAcy (7.7)

Chapter 7 Word Recognition System Design Methodology 59

where RegAcy is the recognition accuracy calculated using fixed-point arith-

metic, and a and /? are the weightings of circuit area and recognition accuracy

respectively. Note that a and jS can be adjusted for different weightings of circuit

area and recognition accuracy.

In this work, the following condition was added to compute the cost:

if (RegAcy < expectRegAcy) {

penalty = expectRegAcy - RegAcy;

cost = cost + VeryLargeValue * penalty;

}

where expectRegAcy is a user defined expected recognition accuracy. In this

work, it is the recognition accuracy of a floating-point system. A penalty is added

to the cost when the recognition accuracy is smaller than the expected recognition

accuracy, because we want to reach the same recognition accuracy as the floating-

point system.

7.3.5 Fraction size optimization

The minimum integer size for each operand can be obtained by the fixed-point class

after simulation. The optimization stage will find the minimum fraction size for

each operand using the optimizer, which will result in minimum circuit size while

achieving the same recognition accuracy as that of a floating-point system.

The optimization process is divided into two stages. In the first stage, it opti-

mizes the fraction size from the entire system's point of view, and then in the second

stage, it further optimizes the fraction size of the LPC processor. The Nelder-Mead

simplex method [JR65] was used to minimize the hardware cost based on a user

defined cost function which takes recognition accuracy and hardware cost into ac-

count, finding an implementation which balances hardware cost and recognition

accuracy.

Chapter 7 Word Recognition System Design Methodology 60

System level optimization

To perform optimization, a technique, called variable grouping, was used to reduce

the search space. In this stage, the isolated word recognition system is divided into

three parts, namely the LPC processor, VQ and HMM decoder, all operands in each

part use uniform fraction size, the optimization steps are shown in Figure 7.4, the

optimizer was used to find optimal wordlength of each part.

LPC
processor

z
Z 1 z y

, Z ，r
(\

^.''iFraction
Optimizer <-� g j™- VQ

N

、
、、、

,, S
V s

、、
N
\ \ 】r

s

、、、
� � �H M M

decoder

Cost

Recognition Accuracy

Figure 7.4: System level optimization using simplex method

LPC processor's fraction size optimization

Since the LPC processor occupies most of the hardware resources, using variable

grouping, the LPC processor was further divided into four parts, namely preempha-

sis and windowing, autocorrelation analysis, LPC analysis, and cepstral coefficient

Chapter 7 Word Recognition System Design Methodology 61

conversion. All operands in each part use uniform fraction size, optimization was

done to minimize these four fraction sizes as shown in Figure 7.5.

LPC processor

preemphasis
/ and windowing

/
f

/ ,
/ •

*
t

/

/ autocorrelation
/

/Fraction — VQ —
Optimizer 丨“̂::、、别 z e s decoder

�������������

\ 、、、、、
“ \ � � � � ‘ LPC analysis

� \
、、、 I. — —• y — 丨

、\

���� cepstral
� coefficient

Cost

conversion

Recognition Accuracy

Figure 7.5: LPC processor's fraction size optimization using simplex method

7.3.6 One-dimensional optimization

In order to analyze the optimization behaviors of the simplex method and one-

dimensional optimization approach, one-dimensional optimization was applied to

system level optimization. Using one-dimensional optimization and variable group-

ing, the search space is reduced significantly. The isolated word recognition system

consists of 48 variables, assume wordlength of each variable is b bits, the search

space is 48 * 6 without variable grouping. This becomes 3*6 after applying variable

grouping. Using variable grouping, the number of wordlength conversion opera-

tions in the resulting fixed-point hardware implementation can be reduced, since

Chapter 7 Word Recognition System Design Methodology 62

the number of distinct wordlengths is reduced. The optimization steps are shown in

Figure 7.6.

All operands use ^ ^ . . .
L r . Sweep fraction size of

the same fraction ^ , ‘
whole system

size
: /

c, f ‘ • r Z Minimum LPC
Sweep fraction size of / , . . . \

i LPC processor — < V r o c c s s o r s fraction s i z e ^
/ implementation

VO^^dHMM°use - ~ • Sweep fraction size of _ / M i n i m u m VQ f r a c t i o ^ X
\ VQ ^ s . size implementation /

different fraction s i z e ^

\ e ^ - Z Minimum HMM
�S w e e p fraction size of / r ‘• . \

u w x , . J fraction size >
HMM decoder \ . , ‘ ‘. /

\ implementation /

Figure 7.6: System level optimization using one-dimensional optimization

1. Optimizing whole speech system's fraction size: The whole system uses a

uniform fraction size, which is varied to find a configuration which yield min-

imum cost.

2. Optimizing the LPC processor's fraction size: Fix the fraction size of the

VQ and HMM decoder, vary the fraction size of the LPC processor to find a

configuration which yields minimum cost.

3. Optimizing the VQ's fraction size: Fix the fraction size of the LPC processor

and HMM decoder, vary the fraction size of the VQ to find a configuration

which yields minimum cost.

Chapter 7 Word Recognition System Design Methodology 63

4. Optimizing the HMM decoder's fraction size: Fix the fraction size of the

LPC processor and VQ, vary the fraction size of the HMM decoder to find a

configuration which yields minimum cost.

7.4 Summary

In this chapter, the framework used to address the quantization issue of fixed-point

system was introduced. This framework was applied to an isolated word recognition

system. The detailed implementations, e.g. the speech model training, cost function

design, wordlength optimization flow, were presented.

Chapter 8

Results

8.1 Model training

One set of utterances from the TIMIT TI 46-word database [LDC] containing 20

words from 8 males and 8 females were used, there were 26 utterances for each

word, 10 were used for training and 16 were used for recognition.

The isolated word recognition system uses 12th order LPCCs, in order to choose

the VQ codebook size and number HMM state, using the method introduced in

previous chapter, different configurations of codebook size and number of state

were tested, the configuration with maximum recognition accuracy was selected.

Figure 8.1 shows the recognition accuracy for different configurations of VQ

codebook size and number of HMM states. In principle, the smaller codebook size

and number of states, the betters, since the hardware cost can be reduced. In this fig-

ure, one can see that the improvement of recognition accuracy becomes insignificant

when number of HMM states and codebook size increased. Practically, codebook

size 64 and 12 HMM states were used, this configuration doesn't yield maximum

recognition, but this configuration can reach a certain level of recognition accuracy

with relative low cost.

64

Chapter 8 Results 65

90 I 1 1 1 1 1 1 1 i 1

8。- 二::二：二二各 ： 二 -

/W.,二：修一二二，一二：二

70 - / / X Z • -

§ 0 / / h

1 6 ° - y / A-"' -

a-" -
// H M M 4 +

/ H M M 6 A
40 - / H M M S • -

- f H M M 10 X

H M M 12 〇

H M M 14 •
3 0 I 1 1 1 I I I I I

0 16 32 48 64 80 96 112 128 144 160

V Q codebook size

Figure 8.1: Recognition accuracy for different configurations of VQ codebook size
and number of HMM states

8.2 Simplex method optimization

Using a VQ codebook size of 64 and 12 HMM states, the recognition accuracy using

floating-point arithmetic is 81.3%. This recognition accuracy was used as reference

during hardware cost optimization.

8.2.1 Simulation platform

The isolated word recognition system was developed using the Fixed class. Since

fixed-point arithmetic was simulated using objects, the execution time is much

longer than a floating-point implementation using primitive C++ float type. Specif-

ically, 7.35 hours were required to perform recognition for all words using fixed-

point simulation on an Intel Pentium 4 2.2GHz processor. Parallel computing was

Chapter 8 Results 66

LPC processor VQ HMM decoder Total
fraction size/ fraction size/ fraction size/ Circuit
LPC circuit VQ circuit HMM circuit Size
size size size

Before
optimization 24/9064 24/841 24/195 10100
After
optimization 24/9064 8/185 21/177 9426

Table 8.1: System level optimization using the simplex method

used carry out the simulation such that each iteration was divided into a number of

sub-jobs and executed in parallel using a Linux cluster.

The cluster [mm] formed from 16 Dual Intel Xeon 2.2GHz PCs, each with 1

GB RAM, a total of 32 processors. The PCs are networked via Myrinet [Myr].

There are 5120 words to be recognized in each iteration of optimization process.

These were divided into 10 sub-jobs and executed in parallel, there are 512 words

to be recognized in each sub-jobs and each sub-job is executed on a single PC. The

execution time for each iteration is 0.76 hour, which is 9.5 times faster than using

single PC. The performance cannot reach 10 times faster because of the overheads

of submitting jobs to the cluster and collecting results.

8.2.2 System level optimization

The isolated word recognition system was divided into the LPC processor, the VQ

and HMM decoder, the simplex method is used to find optimal wordlengths for

each part which can reach the same recognition accuracy of a floating-point system.

After optimization, the wordlengths found for these three parts are 24 bits, 8 bits and

21 bits respectively, the circuit size is 9426, compared with a system using uniform

fraction size of 24 bits, a 6.67% circuit size reduction is obtained. These results are

illustrated in Table 8.1.

Chapter 8 Results 67

Before LPC After LPC
optimization optimization

Preemphasis and windowing
fraction size 24 20
Autocorrelation
fraction size 24 31
LPC analysis
fraction size 24 20
Cepstral conversion
fraction size 24 19
LPC processor
circuit size 9 0 ^ ^
Total
circuit size 9426 7219

Table 8.2: LPC processor optimization using the simplex method

8.2.3 LPC processor optimization

From table 8.1, one can see that the circuit size of the LPC processor is the largest.

Further optimization was done to reduce the hardware cost of the LPC processor,

as introduced in previous chapter, the LPC processor is divided into four parts, they

are preemphasis and windowing, autocorrelation analysis, the LPC analysis and

cepstral coefficient conversion, simplex method was used to find minimum fraction

size for each part.

Table 8.2 shows the circuit size before and after the LPC processor's fraction

size optimization. Before optimization, the LPC processor uses a uniform fraction

size of 24 bits, and circuit size of LPC processor is 9064. After optimization, frac-

tion sizes of 20 bits, 31 bits, 20 bits and 19 bits were found for the preemphasis and

windowing, autocorrelation analysis, LPC analysis and cepstral coefficient conver-

sion respectively. The LPC processor's circuit size after optimization is 6857, and

the total circuit size after optimization is 7219.

Before any optimization, for a uniform fraction size of 24 bits, the circuit size

is 10100 for the isolated word recognition system. After performing system level

Chapter 8 Results 68

90 I 1 1 1 1 1 1 1 1

80 _ X X "X* X " ' O K . /K ^ ^ ^ ^ _

70 - -

6。- / -

1
• 50 - / -

|4。- / “

江 30 - -

20 - / -

10 - / -

-f——1 Recognition accuracy using fixed-point arithmetic +
^ ^ Recognition ycuracy using floating-point arithmetic X

16 18 20 22 24 26 28 30 32
Fraction size for all operands

Figure 8.2: Recognition accuracy when sweep the fraction size of the whole system

optimization and LPC processor optimization, the circuit size is 7219. Thus an

overall improvement of 28.5% was achieved.

8.2.4 One-dimensional optimization

One-dimensional optimization was applied to system level optimization, Figure 8.2

shows the recognition accuracy when performing optimization step 1，where all

operands use the same fraction size. In this diagram, the line with markers " x "

represents the recognition accuracy using floating-point arithmetic, and the line with

markers “+，’ represents the recognition accuracy using fixed-point arithmetic. It can

be seen when all operands use a fraction size of 24 bits, the fixed-point calculation

reaches the same recognition accuracy as floating-point arithmetic.

The line with markers “+’，in Figure 8.3 represents the recognition accuracy

Chapter 8 Results 69

90 I 1 1 1 1 1 1 1 1

80 • X “ “ " X X • … … 幹 … — ^ — — ^ — — — — _

70 - -

60 - / -

i
8 50 - -

I
•§, 40 - / -

I
30 - / -

20 - / -

10 - / -
+ Recognition accuracy using fixed-point arithmetic +

Recognition accuracy using floating-point arithmetic X

16 18 20 22 24 26 28 30 32

Fraction size for the L P C processor

Figure 8.3: Recognition accuracy when sweep the fraction size of the LPC proces-
sor

obtained using fixed-point arithmetic after system level optimization step 2，the line

with markers " x " is the recognition accuracy using floating-point arithmetic. In

this step, the VQ and HMM decoder have fraction size of 24 bits, and the LPC

processor's fraction size is varied. It can be seen that when the LPC processor uses

a fraction size of 24 bits, the fixed-point calculation can reach the floating point

calculation's recognition accuracy.

Figure 8.4 shows the recognition accuracy when performing system level opti-

mization step 3，in this step, the LPC processor and HMM decoder have a fraction

size of 24 bits, and the fraction size of VQ is varied. The line with markers “+’’ and

" x " represent the recognition accuracy using fixed-point and floating-point arith-

metic respectively. It shows that, at a VQ fraction size of 8 bits, the fixed-point

calculation has the same recognition accuracy as floating-point arithmetic.

Chapter 8 Results 70

90 I 1 1 1 1 1 1 1 1

QQ _ X' "X X 'X' t K — — ^ _

/ _
广 / _

r � - -
1, 40 - / -

I
30 - / -

2 0 - / -

10 - / -

/ Recognition accuracy using fixed-point arithmetic +

H 1" ^ 丨 Recognition accuracy using floating-point arithmetic)><
0 2 4 6 8 10 12 14 16

Fraction size for the V Q

Figure 8.4: Recognition accuracy when sweep the fraction size of the VQ

Figure 8.5 shows the recognition accuracy when performing system level opti-

mization step 4，in this step, the LPC processor's fraction size is fixed at 24 bits,

VQ fraction size fixed at 8 bits, and the HMM decoder's fraction size is varied. The

line with markers ‘‘+’，and " x " represent the recognition accuracy using fixed-point

and floating-point arithmetic respectively. It can be seen that fraction size 1 bit is

sufficient for the HMM decoder.

Table 8.3 shows the circuit size before and after system level fraction size op-

timization using one-dimensional optimization approach. After optimization, opti-

mal fraction sizes of 24 bits, 8 bits and 1 bit were found for the LPC processor, the

VQ and HMM decoder respectively. Circuit size before optimization was 10100.

After optimization, it is reduced to 9306，a 7.86% improvement.

A fraction size of 1 bit was sufficient for the HMM decoder. It is because in

Chapter 8 Results 71

90 1 1 1 1 1 1 1 1

X X ^ ^ ~ ~ ^ ~ ~ ^ ~ 米 ~ ^ _

70 - -

6 0 - -

>> ra
I—

8 50 - -
n5 c q
t 40 - -
o g
DC

30 - -

2 0 - -

1 0 - -

Recognition accuracy using fixed-point arithmetic +
^ ^ 丨 Recognition accuracy using floating-point arithmetic

0 2 4 6 8 10 12 14 16
Fraction size for the H M M decoder

Figure 8.5: Recognition accuracy when sweep the fraction size of the HMM de-
coder

HMM decoding, the scores for all words are sorted and the word with highest score

will be chosen as the recognized word. Although there are some errors for smaller

fraction sizes, using fixed-point arithmetic can still obtain the same score sequence

as using floating-point arithmetic. Furthermore, since the HMM state transaction

probabilities are computed in the logarithmic domain when using the Viterbi algo-

rithm, the integer part is the most important factor that affects the scores.

8.3 Speeding up the optimization convergence

Table 8.4 shows a comparison between different optimization approaches applied

to system level optimization, which are the simplex method, one-dimensional opti-

mization with exhaustive search and one-dimensional optimization with the golden

Chapter 8 Results 72

LPC processor VQ HMM decoder T o t a l ~
fraction size/ fraction size/ fraction size/ Circuit
LPC circuit VQ circuit HMM circuit Size
size size size

Before
optimization 24/9064 24/841 24/195 10100
After
optimization 24/9064 8/185 1/57 9306

Table 8.3: System level optimization using one-dimensional optimization

section search.

Using the exhaustive search method, the number of iterations required to op-

timize three fraction sizes in system level optimization is 107. Using the golden

section search method, the number of iterations required is 35 (3 times faster).

Using the golden section search, the fraction sizes found for the LPC processor,

VQ and HMM decoder are 24 bits, 8 bits and 5 bits, and the total circuit size is 9330.

It is a little bit worse than the result found using exhaustive search, which are 24

bits, 8 bits and 1 bit, and the total circuit size is 9306. It is because of the drawback

of the golden section search, the searching may get trapped into a local optimum.

However, the searching converges very quickly compared with exhaustive search, it

can be considered as a quick wordlength estimation method when designing fixed-

point systems.

Using the simplex method, the number of iterations is 84，the optimized cost is

worse than using exhaustive search. As introduced in previous chapter, a penalty

is added to the cost when recognition accuracy smaller than the reference value,

because we want to reach the same recognition accuracy as a floating-point system.

As a result, the cost will be very large when recognition accuracy smaller than the

reference value. This design of the cost function will affect the reflection process

of the simplex method, where three dimensions are reflected at the same time. If

the reflection point has a LPC processor fraction size smaller than 24 bits, since

Chapter 8 Results 73

Golden section Simplex method
Exhaustive search search

LPC processor
fraction size 7A ^ 'TA

fraction size 8 8 8
HMM decoder
fraction size 1 5 21
Total
circuit size ^ •
Percentage of
cost improvement 7.86% 7.62 % 6.67 %
Number of
iteration Q 0 7 |_35 |_84

Table 8.4: Result comparison between applying exhaustive search, the golden sec-
tion search and simplex method in system level optimization

the recognition accuracy is smaller than the reference value, the cost becomes very

large. Although this reflection point may contains a smaller fraction size for the

HMM decoder, this reflection is regarded as unsuccessful. Because of this reason,

the HMM decoder's fraction size may not be able to converge to global optimum.

8.4 Optimization criteria

The optimizations done above used recognition accuracy and circuit size as opti-

mization criteria. It is possible to use any criteria, quantization error being a possible

alternative. Table 8.5 shows the LPC processor's optimization result using different

optimization criteria, both results were obtained using the simplex method.

The average quantization error of the LPC processor is -60.5dB at fraction size

of 24 bits, which is calculated as follows:

Chapter 8 Results 74

Recognition accuracy Quantization error of LPC
Optimization criteria and Circuit size and Circuit size
Preemphasis and windowing
fraction size 20 20
Autocorrelation
fraction size 31 31
LPC analysis
fraction size 20
Cepstral conversion
fraction size 19 J 2
LPC processor
circuit size

Improvement 24.3% 21.9%
Recognition
accuracy 81.3% 81.3%

Table 8.5: Results using different optimization criteria in LPC processor optimiza-
tion

•HZ Z g ^ f E L W f：： ™)

avgQerr = ^ — — (8.1)

where Qerr[j][k] is the quantization error of the kth element of the jth LPCCs,

P is the LPC order, N is the total number of LPCC vectors in each word, W is the

total number of words used in recognition.

Optimization was done based on the cost function using circuit size and average

quantization error as criteria, a penalty is added when the average quantization is

error less than —60.5 dB. The circuit size of the LPC processor before optimization

is 9064 with a uniform fraction size of 24 bits. Using recognition accuracy and

circuit size as optimization criteria, the circuit size of the LPC processor is 6857

after optimization, the improvement is 24.3%. Using the average quantization error

and circuit size as optimization criteria, the circuit size of the LPC processor is 7075

after optimization, a 21.9% reduction. Using average quantization error of the LPC

Chapter 8 Results 75

processor and circuit size as criteria, the result is similar to that using recognition

accuracy and circuit size as criteria.

8.5 Summary

This chapter presented the results for the optimization of an isolated word recogni-

tion system. An overall circuit size reduction of 28.5% was achieved. The golden

section search method can be used to speed up the searching and was shown to be

3 times faster than an exhaustive search. The results using different optimization

criteria were also analyzed. Using average quantization error of the LPC processor

as criteria, a 21.9% circuit size reduction of the LPC processor was obtained, while

a 24.3% reduction was achieved using recognition accuracy as criteria.

Chapter 9

Conclusion

A framework was introduced to address the quantization issues of fixed-point sys-

tem, an isolated word recognition system was used to explore the utility of the

framework. The isolated word recognition system uses 12th order LPCCs, code-

book size 64 and 12 HMM states, the recognition accuracy is 81.3% using floating-

point arithmetic, this recognition accuracy was used as reference during hardware

cost optimization. An application program was developed to simulate the speech

system using the fixed-point class, when all operands use a uniform fraction size

of 24 bits, the circuit size is 10100. After performing hardware cost optimization

using the optimizer, the circuit size is 7219, a 28.5% reduction was obtained. The

problems addressed are stated below:

9.1 Search space reduction

One-dimensional optimization and variable grouping were used to reduce the search

space. The isolated word recognition system contains 48 variables, each variable

has fraction size 32 bits, the search space is after applying the one-dimensional

optimization, the search space becomes 48 x 33. Using variable grouping, the

speech system was divided into three components, the LPC processor, the VQ

and HMM decoder, each part uses uniform fraction size, the search space becomes

76

Chapter 9 Conclusion 77

3 X 33. Variable grouping was used to further optimize the cost of the LPC pro-

cessor, where the LPC processor is divided into the preemphasis and windowing,

the autocorrelation, the LPC analysis and the cepstral coefficient conversion. After

applying the one-dimensional optimization to optimize the speech system in system

level optimization, a 7.86% circuit size reduction was obtained, which is a little bit

better than the simplex method, where a 6.67% reduction was achieved.

9.2 Speeding up the searching

The golden section search method was used to speed up searching. Using this ap-

proach, the searching can be 3 times faster than exhaustive search and achieve sim-

ilar results. In the system level optimization, the difference between the final costs

was only 0.24%. Using exhaustive search, the fraction sizes of the LPC processor,

VQ and HMM decoder were 24 bits, 8 bits and 1 bit respectively, however, fraction

sizes of 24 bits, 8 bits and 5 bits were obtained using the golden section search.

Since the searching converges very quickly using the golden section search, the

one-dimensional optimization with the golden section search can be considered as

a quick wordlength estimation method.

9.3 Optimization criteria

The cost function used in this work was based primarily on recognition accuracy,

since this is a direct measure of the system's performance. However, as described

in Section 8.4, other optimization criteria such as quantization error could be used,

and in fact may be more suitable for other applications with real valued outputs such

as filtering etc.

Chapter 9 Conclusion 78

When optimizing the cost of the LPC processor, the results obtained using dif-

ferent optimization criteria were compared. Using recognition accuracy as a crite-

ria, a cost of 6857 was obtained for the LPC processor, which is a 24.3% improve-

ment, while a cost of 7075 was obtained using average quantization error of the

LPCCs as criteria, the improvement is 21.9%, the simplex method was applied to

do the experiments, the difference of the optimized cost is 2.4%.

9.4 Flexibility of the framework design

Using object oriented concept, each part of the framework can be developed inde-

pendently, modification to one part will not affect the design of other parts. Using

overloading, the fixed-point simulation description can be developed easily. Since

optimization was done based on a cost function, by modifying the attributes of the

cost function, different optimization results can be analyzed easily.

The fixed-point class can automatically trace the range information of each vari-

able and determine the integer size, moreover, it can perform calculations using both

floating-point and fixed-point arithmetic simultaneously and calculate the quantiza-

tion error automatically. Quantization effect of the fixed-point system can be ana-

lyzed conveniently.

9.5 Further development

Currently, the cost model only considers the hardware cost of arithmetic compo-

nents, other components, e.g. memories, interfaces, were assumed occupying in-

significant resources. A more accurate model can be developed, which will take

these factors into account. Moreover, timing constraint can also be considered, e.g.

logic delay, clock cycles can be added into the cost.

A more robust error reporting mechanism can be used. For example, each object

can be associated with a flag, which can indicate arithmetic error, such as overflow

Chapter 9 Conclusion 79

and underflow, occurred during simulation.

Bibliography

[Amo94J Amos R. Omondi. Computer Arithmetic Systems: Algorithms, Archi-

tecture and Implementation. Prentice Hall, 1994.

[BM91] B. Nowrouzian and M.J. Svihura. High speed real-time design and

implementation of Cauer-type Jaumann digital filters. In Proceedings

of the 34th Midwest Symposium on Circuits and Systems, pages 692-

695, 1991.

[CZS02] Carl Hamacher, Zvonko Vranesic, and Safwat Zaky. Computer Orga-

nization, fifth edition. McGraw-Hill Companies, Inc, 2002.

[FBM98] Fengying Yao, Bizhou Li, and Min Zhang. A fixed-point DSP im-

plementation for a low bit rate vocoder. In Proceedings of the 5th

International Conference on Solid-State and Integrated Circuit Tech-

nology, pages 365-368, 1998.

[FRDOl] Fabian Luis Vargas, Rubem Dutra Ribeiro Fagundes, and Daniel Bar-

ros Junior. A FPGA-Based Viterbi Algorithm Implementation for

Speech Recognition Systems. In IEEE International Conference on

Acoustics, Speech, and Signal Processing, pages 1217-1220, Vol.2,

2001.

[GKZ98] Guanghui Hui, Kwok-Chiang Ho, and Zenton Goh. A robust speaker-

independent speech recognizer on ADSP2181 fixed-point DSP. In

80

1998 Fourth International Conference on Signal Processing’ pages

694-697 vol.1, 1998.

IHMMH98] H. Keding, M. Willems, M. Coors, and H. Meyr. FRIDGE: A Fixed-

Point Design And Simulation Environment. In Design, Automation

and Test in Europe (DATE-98), 1998.

[IK99] Iman Gholampour and Kambiz Nayebi. High performance telephony

speech recognition via cascade HMM/ANN hybrid. In International

Symposium on Signal Processing and Its Applications, pages 645-648

vol.2, 1999.

[Isr02] Israel Koren. Computer Arithmetic Algorithms. Prentice Hall, 2002.

[JD99] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach 2nd Edition. Morgan Kaufmann, 1999.

[JR65] J. Nelder and R. Mead. A simplex method for function minimization.

In Computer Journal, Vol 7, pages 308-313, 1965.

[Kai79] Kai Hwang. Computer Arithmetic: Principles, Architecture, and De-

sign. John Wiley & Sons, Inc, 1979.

[KGR97] Kun-Shan Lin, Gene A. Frantz, and Ray Simar, Jr. The TMS320 Fam-

ily of Digital Signal Processors. Texas Instruments, 1997.

[KJK95] K.K. Shin, J.C.H. Poon, and K.C. Li. A fixed-point DSP based Can-

tonese recognition system. In IEEE International Symposium on In-

dustrial Electronics, pages 390-393 vol.1, 1995.

[KJWOO] Ki-II Kum, Jiyang Kang, and Wonyong Sung. AUTOSCALER for C:

an optimizing floating-point to integer C program converter for fixed-

point digital signal processors. In IEEE Transactions on Circuits and

81

Systems II: Analog and Digital Signal Processing, Vol 47, Issue: 9,

pages 840-848，2000.

[LB93] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech

Recognition. Prentice Hall PTR, 1993.

[LDC] LDC. http://wmv.ldc.upenn.ediL

[mm] Department of Computer science and Engineering, the Chinese University of

Hong Kong. http://www. cse. cuhLedu. hk/corner/tecWdoc/systein/hpc/myrinet/.

[MM98] M. Jersak and M. Willems. Fixed-Point Extended C Compiler Al-

lows More Efficient High-Level Programming of Fixed-Point DSPs.

In 9th International Conference on Signal Processing Applications &

Technology (ICSPAT'98), 1998.

[MS02] Mark L. Chang and Scott Hauck. Precis: A Design-Time Precision

Analysis Tool. In IEEE Symposium on Field-Programmable Custom

Computing Machines, pages 229-238, 2002.

[Myr] Myricom, Inc. http://mvw.myri.com/.

[NNS+99] Nishida, Y.，Nakadai, Y, Suzuki, Y., Sakurai, T.’ Kurokawa, T.’ and

Sato, H. Voice recognition focusing on vowel strings on a fixed-point

20-MIPS DSP board. In IEEE International Conference on Acoustics,

Speech, and Signal Processing, pages 137-140 vol.1, 1999.

[P. 91] P. W. Wong. Quantization and Roundoff Noises in Fixed-Point FIR

Digital Filters. In IEEE Transactions on Signal Processing, Vol 39,

No 7，1991.

[Pau98] Paul D. Fiore. Lazy Rounding. In 1998 IEEE Workshop on Signal

Processing Systems (SiPS'98), 1998.

82

http://wmv.ldc.upenn.ediL
http://www
http://mvw.myri.com/

[RJ87] R. A. Pepe and J. D. Rogers. Simulation of Fixed-Point Operations

with High-Level Languages. In IEEE Transactions on Acoustics,

Speech, and Signal Processing, Vol. 35, No 1,, 1987.

[RLP+99] R. Cmar, L. Rijnders, R Schaumont, S. Vemalde, and I. Bolsens. A

Methodology and Design Environment for DSP ASIC Fixed Point Re-

finement. In Proceedings of the Design Automation and Test in Europe

conference, pages 271-276, 1999.

[SA98] Suhrid A. Wadekar and Alice C. Parker. Accuracy Sensitive Word-

Length Selection for Algorithm Optimization. In International Con-

ference on Computer Design - ICCAD, 1998.

[Sin96] Singiresu S. Rao. Engineering optimization, theory and practice, third

edition. John Wiley & Sons, Inc., Wiley Eastern Limited, Publishers,

and New Age International Publishers, Ltd, 1996.

[SIYS96] Sung-Nam Kim, In-Chui Hwang, Young-Woo Kim, and Soo-Won

Kim. A VLSI chip for isolated speech recognition system. In IEEE

Transactions on Consumer Electronics, Volume: 42, Issue: 3, pages

458467，1996.

[SKW95] S. Kim, K. Kum, and W. Sung. Fixed-Point Optimization Utility for

C and C++ Based Digital Signal Processing Programs. In Workshop

on VLSI and Signal Processing, Osaka, November 1995.

[SSM02] S.J. Melnikoff, S.F. Quigley, and M. J. Russell. Implementing a Sim-

ple Continuous Speech Recognition System on an FPGA. In Field-

Programmable Custom Computing Machines, pages 275-276, 2002.

[SW98] Seehyun Kim and Wonyong Sung. Fixed-Point Error Analysis and

Word Length Optimization of 8x8 IDCT Architectures. In IEEE

83

Transactions on Circuits and Systems for Video Technology Volume

8 Number 8’ pages 935-940，December 1998.

[Voj02] Vojin G. Oklobdzija. The Computer Engineering Handbook. CRC

Press LLC, 2002.

[WilOO] William Stallings. Computer organization and architecture, fifth edi-

tion. Prentice-Hall, Inc, 2000.

[WK95] Wonyong Sung and Ki-II Kum. Simulation-Based Word-Length Opti-

mization Method for Fixed-Point Digital Signal. In IEEE Transactions

on Signal Processing, Vol 43, No 12, December 1995.

[WL89] William G. Bliss and Louis L. Scharf. Algorithms and Architectures

for Dynamic Programming on Markov Chains. In IEEE Transactions

on Acoustics, Speech and Signal Processing, pages 900-912, Vol.37,

Issue: 6，1989.

[WM94] William Cammack and Mark Paley. Fixpt: A C++ Method for De-

velopment of Fixed Point Digital Signal Processing Algorithms. In

Proceeding of the Twenty-Seventh Hawaii International Conference

on System Science, Vol. I: Architecture, 1994.

[WSWB92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian

P. Flannery. Numerical Recipes in C: The Art of Scientific Computing

Second Edition. Cambridge University Press, 1992.

[YCR+94] Y. Zhang, C.J.S. deSilva, R. Togneri, M. Alder, and Y. Attikiouzel.

Speaker-independent isolated word recognition using multiple hidden

Markov models. In IEEE Proceedings of Vision, Image and Signal

Processing, Volume: 141, Issue: 3, pages 197-202, 1994.

[YYOO] Yifan Gong and Yu-Hung Kao. Implementing a high accuracy

speaker-independent continuous speech recognizer on a fixed-point

84

DSP. In IEEE International Conference on Acoustics, Speech, and

Signal Processing, pages 3686-3689 vol.6, 2000.

85

Publications

Full Length Conference Papers

• Y.M. Lam, M.W. Mak and P.H.W. Leong: Fixed-Point Implementations of

Speech Recognition Systems, Proceedings of the International Signal Pro-

cessing Conference, DALLAS 2003

86

.、.-...

.

.

.

 ..
•
.
,

I

•
 •

 •

 •

 -

‘
.

-

‘
•

•

.

•

：

 •

,

 ..

•
 •
.

 .

•
 •
«

 ••

：

,
-
:
.
.
-
、
-

•
 •
.
.
.

；

.
-
；

.

.

.

.

.
：

.

丨

/

 .
-

.

 .

 •

 •

 •

 .

V

 •

.

 .
.
.

,

.

-

 •
：；

..

•

•

•

 ‘

•

>
 ‘

•

 ‘

 .

 .

 ..

.V.

.•

 ,.

.

 •

V
 .

 .

-

 -

 .

.

.

.

.

 •”.：..，-

；
-

•
•
 .

 .
 •

V

•
•
 •
-

 •

A

V

：
‘

0

 •
 *

.
.
A

••..

 .
 .

J
.
、•

:

 :
 ’•

-
i
w

.

.

•

 .

 .
 .

 :

(

 f
 墓

V
:
藝

:

 ..
.
.
:

 .
 •
 •

 •

J

.

 ••

 ‘

?、....ri
 广
.

-

%

.

 .

.

.

.

 •

 v
.
.
.
.
.
」,
,
.
〔.
.
，
.

.

,

-

 .
.
.
.
.
.
.
.
.
.
.
:
-
‘
.
.
.

...,.、、.？...：v:.

.

.
•

•

.

.

•

:

 :
•
.
,
•
、
：
•
•
.
.
:
/
-
•
:
-
.

.

•

.

.
-
r
.
.
.

.

 •’�

J
 V

.

V

'
 ••

 ̂

.
 •

 •
.

 .

 •

•
•
‘

.

.
;
‘
 -

\
.

 -
 .

v(..「，，：...

.

.
 •

 .
.
.
.
.
.
.

y

'

 -
 '

 .

•v-r-T

 .

•

 .
.
.

•

‘

,

-

:

:

 1
.

二

•

•

•

 •.

 .
.

:
.
)
；
？
c
>
)

.

 .

 .
.
.

 •
•
•
•
.
.
•

 •

 •

 .

 .

 .

 ..

.V.

..::

 .

 ,

 .
•
；

.

.
 ：
：
.
.
•
.
.
.
•
:

 :
、
•

 •.

、、，-’...：。M__醫

•

.

身

、

書

f

.
 •

 •

V

 -

.

.

 -
•

.

 、
二

.

.

.

.
广
-
.
:
_
 •.

 .

 .

 .

v
“
H
J
r
\
a
r
v
-
、.

‘

 •

 :

 V

-
 ..

 ...

 :

 :

V

,

.
r
 1

•
‘

.
 ••

-
i
f

•

I

......
 :

I

•
 .

 •

\

 ?
 »

r

•
 .

 .

 <

 -

 V

-
 ‘
 •
•

 •
.

 •

J

•

•
.
.
.

.

;

r
 .

 >
•
、
，
.
；
(
、
•
;
.

 .
,

 >
4
:
,
 ？,

.

 •

 、.
 •

 .

-.••r.

..

.
.
.

:

、
>

 „

 ...

V
.
.
:
 .V

-
,
「
：

.

 .

 .

 •

 •

J
•

 -

 ̂
•

 .

 -
 .、•

 .

:

 •

 .

•

•

.

.

•

.

.

.

.

•

.

.

•

;

•

.

.

-

,

』
.

.

.

•

.

.

.

.
-
-
.
•
、
.
.
.
"
：
.
•
.
.
.

 ‘.‘：；

 .
 ,

.
〈t
T
:
.
，
，
.
:
.
.

•
 -
•
.
’
-
.

 .

 •

 .
 •

 >

 -

 ,

v

•

一
 •.

、

，

 •
•

，

•

•

 ̂
 r

•

il̂

Ĵ̂
PK一.：；

A”：二‘...

 ：.；

 •
一
 .
、
V

‘
.
.
.
：

.
.
：
,

.
)
」
；
.
；
.
o
r
.
.
:
④
〔
一
一
一
詹
案

CUHK L i b r a r i e s

__圓11111111
• • M D 7 7 i a 5

