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撮要 

路徑選擇策略主要可分爲靜態路徑選擇及動態路徑選擇。由於靜態路徑選擇• 

會犠牲交換機本身的吞吐量，而動態選擇所需的處理器運算也很高，因此兩 

者均未能符合建構大型交換機的條件。路徑交換策略是一准靜態路徑選擇策 

略。它通過周期性地改變三級Clos網絡實現了靜態和動態路徑選擇策略的綜 

合。可是要實現建構大型交換機，我們還需要處理建立連接、釋放連接以及 

特發交通等的問題。總括來說，就是要把路徑按實際需要的分配給各路徑， 

同時避免動態路徑選擇所引致的高運算。在本篇論文中，我們硏究了一個簡 

單的路徑交換策略。籍著以路徑選擇策略爲基礎，改變當中部份路徑以達致 

建立連接、釋放連接，處理特發交通等目的。 
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Abstract 

Routing schemes can be classified into static and dynamic routing conventionally. 

Static routing, while providing service guarantees to individual calls, sacrifices 

the utilization of system. Dynamic routing, on the other hand, makes up for this 

deficiency. However, the price paid is in terms of the computational complexity. It 

is this complexity that makes dynamic routing scheme unsuitable for high-speed 

packet switches. In this paper we propose a simple yet efficient algorithm for 

switches which uses quasi-static routing schemes. By making use of the algorithm, 

the switch can decide to do the complex route recalculation under certain 

conditions(e.g. fixed intervals or performance falling under threshold), while 

. using the reconfiguration algorithm as a temporary measure to cater for the 

requirement change in between the recalculations. Besides, the reconfiguration 

algorithm can also be used to tackle the sudden burst into the inputs by allocating 

more capacity to a virtual path. 
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Chapter I Introduction 

Chapter 1 

Introduction 

As the world wide web (WWW) continues to grow, the enormous traffic 

generated in the communications network has presented challenges on the 

existing infrastructure. The next generation network would be required to carry 

traffic with various characteristics. Thus many researches have focused on 

building a single network infrastructure which is able to support multi-service 

traffic. The core, and challenging, issue here is to develop a switching system 

which could satisfy a diverse Quality of Service (QoS) requirements. As essential 

as QoS is that the switching system should also be capable of scaling up to very 

large size and supporting multicasting. 
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Chapter I Introduction 

1.1 General Types of Switch Architecture 

A switching fabric is generally made up from many switching elements. 

Switching elements are generally smaller in size, and could be implemented on a 

single board - although this is not necessarily a strict rule. A switching fabric 

could mostly be used for three functions, header translation, switching and 

buffering (or contention resolution). In this section we introduce four general 

types of switching architectures, input-buffered switch, output-buffered switch, 

crossbar-based switch and shared buffer memory switch. 

1.1.1 Input-Buffered Switch 

An input-buffered switch consists of a space switch with a buffer on every input 

to prevent contention (Figure 1.1). The buffers are controlled so that no 

contention arises within the switch. A problem with this type of switching fabric is 

- known as "head-of-line" (HOL) blocking. This happens when a packet is 

prevented from reaching a free output because other packets which are ahead of it 

. i n the buffer cannot be transmitted over the switch due to contention. The 

maximum throughput of this type of switches is limited to 58% [22], assuming the 
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— m i l  

— • II  
space-switch 

— m i l l  

Figure 1.1: An input-buffered switch 

number of inputs and outputs tend to infinity and uniform loading. 

A three-phase algorithm, also known as request-acknowledge-transmit [23], is 

often used to resolve contention in an input-buffered switch. The first two phases 

constitute an overhead, because no packet is transmitted. To relieve HOL blocking, 

we can iterate through the request-acknowledge phases using the look-ahead 

scheme [24] to allow packets not at the first of input queues be transmitted. The 

price paid here is higher contention-resolution overhead, since the 

request-acknowledgement phases is repeatedly done. 
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Chapter I Introduction 

1.1.2 Output-buffered switch 

Output-buffered switch is similar to input-buffered switch, but with the buffers 

located on the output side. Output-buffered switch does not have HOL blocking, 

but the internal bandwidth of the interconnect must be increased to allow multiple 

packets to pass through at the same time. Many packet scheduling algorithms 

have been proposed using output-buffered switch for this advantage [25] [26] [27], 

but output-buffered switch also suffers from an inherent drawback of having to 

operate at N times the line rate in a A -̂port switch. This attributes to a serious 

limitation in scaling up output-buffered switches, and is the reason why many 

researchers stick to input-buffered switches despite the effect of HOL blocking. 

1.1.3 Crossbar-based switch 

A crossbar-based switch consists of a crossbar arrangement with a buffer 

connecting an input to an output at each crosspoint. \n a N x N switch, we have N^ 

- b u f f e r s . Only packets destined to the correct address are passed into the buffer. A 

typical example of crossbar-based switch is the multi-stage self routing (MSSR) 

,switching element [28]. The increase in the amount of memory used in this type 

of switches is quite dramatic, scaling up with N. Thus crossbar-based switches are 
J"： 
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Chapter I Introduction 

generally not a feasible choice except for small switches. 

1.1.4 Shared buffer memory switch 

In a shared buffer memory switch, the switch keeps a central memory. Incoming 

packets are read into different queues in the memory according to their outputs. 

The queues share the central memory, and are allowed to grow as long as the total 

sum of the queue sizes does not exceed the total memory size. For the reason of a 

shared memory pool, shared buffer memory switches outperform output-buffered 

switches for the same amount of memory given. 

Figure 1.2 shows the architecture of a shared buffer memory switch. The 

memory actually contains N linked lists, each of which stores the packet destined 

to the output port particular output port. The main disadvantage of shared buffer 

memory switch is its complex control, where the switch is required to keep the 

linked lists in place. Shared buffer memory switches, like input-buffered switches, 

- also exhibit HOL blocking. 
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Figure 1.2: A shared buffer memory switch architecture 

1.2 From Clos Network to Cross-Path 

Switch 
Proposed by C. Clos in 1953, Clos Network [1] is the most important class of 

interconnection network ever studied. A three-stage Clos Network consists of 
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Chapter I Introduction 

three stages of switch modules. Each module in one stage is connected to every 

module of the next stage. The three-stage Clos Network is rearrangeably 

non-blocking [2]. By rearranging the existing connections, Clos Network is able 

to realize any permutations of inputs and outputs. 

Figure 1.3 shows sl N x N Clos Network. The first stage consists of A; = N/n 

input modules, each of dimension n x m. There are m central modules, each of 

dimension kx k. In the third stage, there are again k output modules of dimension 

m X n. 

Input stage Middle stage Output stage 

： \ / • A X 众 • \ / ： M X A7 F ^ 

———— 

•• k input modules m central modules k output modules 

Figure \ 3 \ k N x N C l o s Network 
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Chapter I Introduction 

The original proposal of Clos Network was dedicated to circuit-switching 

systems, in which a path from an input to an output is established and owned by a 

connection during the time of conversation. Ever since Asynchronous Transfer 

Mode (ATM) [19] becomes prevalent as the underlying technology enabling 

broadband integrated services digital network (B-ISDN), many researches have 

been done making use of the Clos Network as the model of large scale ATM 

switch architecture. The major problem of the adoption of Clos Network falls in 

the path and bandwidth assignment for each connection request. For this purpose 

two different approaches have been developed. The first is the static routing 

scheme, such as multirate circuit switching [6], in which a path is established for 

each connection such that the peak capacity is reserved along the path and it is 

sufficient to carry the connection at any time. The second is dynamic routing 

scheme, such as straight matching [7], where the connection pattern is computed 

on a slot-by-slot basics. 

- Neither of these schemes serve good for developing a large-scale ATM 

switching fabric. The static routing scheme, though being able to guarantee the 

.bandwidth for each individual connection, fails to achieve high system utilization 

because it does not exploit the full advantage of statistical multiplexing gain. On 
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Chapter I Introduction 

the other hand, dynamic routing scheme requires a dynamic route assignment. 

Route assignment within the network is performed by means of control algorithm. 

In [3], a looping algorithm is proposed for this purpose in Benes Network, which 

is a Clos Network composed entirely of 2 x 2 switching elements. Some other 

parallel control algorithms include [4] and [5]. However, these routing algorithms 

are not feasible in packet switching systems since they require a relatively long 

period to execute. 

The proposal of cross-path switch is motivated under these circumstances. 

Cross-path switch is built on a 3-stage Clos Network with the path switching [8] 

algorithm. Path-switching uses a quasi-static routing scheme, which is a 

compromise of the static and dynamic routing schemes. The routing of path 

switching is based on the concept of virtual path within the Clos Network. A 

virtual path is said to comprise of all virtual circuits interconnecting any incoming 

port and any outgoing port on a particular pair of modules. The scheduling of path 

- switching consists of two steps, the capacity allocation and the route assignment. 

The capacity allocation is to find the capacity C,y > A,) for each virtual path (/,/), 

,where denotes the requested capacity of the virtual path at call setup. This step 

can be carried out by optimizing some objective function subject 

9 



Chapter I Introduction 

to Cjj = ,C,.. = m. The objective function is chosen with accordance to the 

stochastic characteristic of the traffic on virtual paths and the quality of services 

requirements of calls. 

In the route assignment stage, the capacity matrix is converted into a finite 

number, F, of regular bipartite multigraphs based on time-space interleaving 

principle. Each bipartite multigraph represents a particular connection pattern of 

central modules in the Clos Network. Edge coloring is performed to assign m 

distinct colors to m edges of each node such that no two adjacent edges have the 

same color. It is well known that a regular bipartite multigraph with degree m is 

m-colorable [20][21]. Each color corresponds to a central module, and the color 

assigned to an edge corresponds to a connection in the respective virtual path (see 

Figure 1.4). 

To construct the cross-path switch, any nonblocking, self-routing switch 

fabric can be used as the building block of the first two stages. The switch 

modules of the third stage must be capable of resolving output port contentions, 

and either the Batcher-banyan network (STARLITE) with extended outputs [9] or 

‘knockout switch [10] can be employed for this purpose. Path switching is 

J 
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— — — slot 0 

g 
I 2 I 

time slot 1 „ , . Bipartite graph representation Frame-based connection � & r � 
representation 

Figure 1.4: Bipartite graph representatation 

completely distributed. Global information is still required in the calculation of 

the routes, but it is not on a slot-by-slot basis. The routing tables calculated can be 
stored in the local memory of input modules, and be updated only if the traffic 

- matrix changes significantly and the switch performance becomes unacceptable. 
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1.3 Motivation and Organization 
Cross-path switch, as we have seen, is a good candidate for building next 

generation switching fabric. As introduced above, the routing tables are updated 

only if the switch performance becomes unacceptable. An obvious issue here is if 

update is required too often, then cross-path switch falls into the same drawback 

as other packet switches with dynamic routing schemes, when the recalculation 

takes too much time to be desirable. Note that even with a few call setups, the 

switch can become unstable since the incoming traffic rate is larger than the 

service rate. In this thesis, we are going to study this issue and develop an 

adaptive algorithm which will cater for changes in the traffic matrix. 

In Chapter 2 we develop a tools for our algorithm - a one-step route 

reconfiguration procedure in Clos Network. While looping algorithms can be used 

to achieve similar purpose, we show that by restricting ourselves to a sub-optimal 

rearrangement we could actually reallocate a central module to the virtual path in 

need in one step. This gives the advantage of being simple in the core of the 

algorithm. In Chapter 3, we develop the frame-based reconfiguration scheme for 

‘cross-path switch. The scheme makes use of the one-step reconfiguration 
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Chapter I Introduction 

procedure described in Chapter 2, and extra information on the needs of the 

virtual paths is obtained through two matrices. These two matrices are updated 

when packets pass through the central switch, thus the algorithm does not rely on 

external information to calculate the route reallocation. Simulation results are also 

given in this Chapter. In Chapter 4，we study a more general analysis on 

frame-based reconfiguration schemes. In particular, we try to establish the 

maximum packet delay increase resulted by adopting any kind of frame-based 

reconfiguration algorithms. Chapter 5 concludes our work and provides further 

research possibilities. 

J 
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Chapter 2 

Route Reconfiguration in Clos 
Network 

In this chapter, we will discuss the route reconfiguration issues in Clos Network. 

The original development of a rearrangeably non-blocking Clos Network requires 

the number of rearrangements in the connection matrix up to the order of the sizes 

of the input and output modules. Here, we establish a simple scheme to rearrange 

the connection matrix in one step, with the tradeoff of being a sub-optimal 

rearrangement. We will also show the condition under which this scheme can be 

“ a p p l i e d . Since cross-path switch is actually a path-switched Clos Network, the 

development in this chapter will be useful when we proceed to the frame-based 

reconfiguration scheme in the following chapters. 

i 
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Chapter 2 Route Reconfiguration in Clos Network 

2.1 Connection Matrix in Clos Network 

A Clos Network is characterized by five independent parameters. We have r/, n 

and n modules in stages 1, 2 and 3 respectively. The dimensions of the modules 

are nj x r2, r j x r j and r： x ns respectively. For a symmetric switch the number of 

inputs is equal to the number of outputs, and thus N = nin =収3, and there are • 

only four independent parameters. The connections of a 3-stage Clos Network can 

be described in the form of a connection matrix. Figure 2.1 shows the connection 

state of a switch, and the respective connection matrix. Row i corresponds to 

first-stage module i and column / corresponds to third-stage module /. Entry (/，/) 

is associated with the middle-stage modules. The figure shows that input module 

2 is being switched to output module 4 via three central modules, A, B and C, 

therefore entry (2,4) in the connection matrix becomes {A,B,C}. In other words, 

entry (/，/) contains the symbols or labels of the middle-stage modules that are used 

- to connect module i in stage 1 to module j in stage 3. 

15 
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Stage 3 module 
1 2 3 r, 

J - ^ A 1 1 — n 
一 一 一 一 - ' ， 二 、 \ 1 

~ ~ f ^ ^ ' [ i m B � � � � p 3 ~ ^ 2 {A’B’C}  
r r •一•二二 3 

2 \、 一,， 
�� ‘‘ 3 stage 1 

C module 

r. I I I 
Figure 2.1: Connection pattern and its respective connection matrix 

Definition 2.1 (Conditions of a Legitimate Connection Matrix) Let Sa and Sb 

be the sets of symbols in any row A and column B respectively. Define a legitimate 

connection matrix as one which satisfies the following conditions: 

1. Each row can have at most nj symbols: 

I非“丨 （2.1) 

2. Each column can have at most n^ symbols: 

(2.2) 

S. The symbols in each row or each column must be distinct. There can be at 

most r2 symbols in each row or column. 

(2.3) 
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Chapter 2 Route Reconfiguration in Clos Network 

Without making impact to our theme of discussion we ignore the number of 

inputs Hi and outputs n^ in the following. (2.1) and (2.2) are assumed to be 

satisfied unless otherwise specified. Notice that a legitimate connection matrix 

may not fully utilize the capacity of the switch since the central modules may or 

may not be allocated. In practice the central modules are allocated to some virtual 

paths even if they are not used. Thus we further restrict ourselves by defining the 

full-utilization connection matrix as follows. 

Definition 2.2 (Full-utilization connection matrix) Let Sa and Sb be the sets of 

symbols in any row A and column B respectively. A full-utilization connection 

matrix is defined as one which contains exactly rj symbols in each row or column. 

Also, these r�symbols must be distinct. 

i.e. = (2.4) 

The definition of a full-utilization connection matrix largely reduces the possible 

set of connection matrix in a Clos Network. As we shall see this definition also 

introduces difficulty in rearranging central modules in a Clos Network. 

1 7 
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2.2 Rearranging Central Modules in Clos 

Network 
Suppose that we have a rearrangeably non-blocking Clos Network. An intuitive 

problem is how could we rearrange the central modules such that all the calls can 

be satisfied. Figure 2.2(a) shows part of a 4 x 4 connection matrix. The concerned 

central modules, C and D, are being allocated to different virtual paths. However, 

since C has been allocated to row 3 while D has been allocated to column 3, the 

virtual path (3,3) is being deprived of the access of either C or D. Assume that we 

try to allocate D to (3,3). Thus there is a contention between (1,3) and (3,3) for 

module D. By allocating module C to (1,3) we resolve the contention between 

(1,3) and (3,3), but raise another contention between (1,3) and (1,4) for module C. 

By a similar token we can traverse the chain until we finally have no contention. 

The resultant connection matrix is shown in Figure 2.2(b). Alternatively we could 

first allocate C to (3,3). This results in the connection matrix shown in Figure 

2.2(c). The number of rearrangements starting with module C or D is different, 

� one of which results in fewer steps. 

1 8 
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1 2 3 4 1 2 3 4 1 2 3 4 

1 D " C 1 C " p 1 D - C 

2 p j 2 C I 2 p j 

3 C I 1- 3 C ~ I ] ) J - 3 D ~ J { ： 

4 C — D I 4 P - - - 1 — C L 4 C — | — D 

(a) (b) (c) 
Figure 2.2: Two different ways to rearrange in a 4 x 4 connection matrix 

Using this rearrangement technique it is guaranteed that every virtual path in a 

3-stage Clos network could be allocated with enough central modules as long as 

(2.4) is satisfied. The rearrangement complexity, unfortunately, scales up with the 

number of input and output modules. In [1] it is shown that the number of 

rearrangements is at most min(n，r3) - 1. As r； and rs increase when we build a 

large switching fabric, this rearrangement technique becomes inappropriate for its 

purpose. 
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2.3 Changing the Connection Matrix 
The section above shows the difficulty in rearranging central modules in Clos 

Network. In reality, the connection matrix will change under three conditions: 

1. A new call being set up. 

2. An existing call being released. 

3. The incoming traffic having an incoming traffic different from the rate it 

requested at call setup. 

Condition (3) can actually be viewed as a combination of conditions (1) and (2). 

Thus what we have to deal with is connection setup and release. Now assume that 

we ignore the issue with system utilization for a moment, so we could save our 

trouble from having to deal with connection release (because the existing 

connections are adequate for the requirements of the virtual paths). Using the 

conventional rearrangement technique as described in the previous section, we 

conclude the procedure for setting up a new connection as follows, assuming {i,j) 

be the virtual path requesting the new connection. 

i 
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Chapter 2 Route Reconfiguration in Clos Network 

1. Check the connection matrix such that 

number of central modules unused + capacity of new request < m 

, for row i and column ; in the connection matrix. 

2. If (1) is not satisfied, the connection is rejected. Otherwise accept the 

connection and proceed to (3). 

3. For each token requested, find an unused central module in either row i or 

column /. Perform chain rearrangements as shown in Section 2.2. 

2.4 One-Step Route Reconfiguration 
In this section we develop a rearrangement technique which allows us to 

rearrange central modules in a full-utilization connection matrix in one step. The 

proposed technique is concerned about the virtual path which requests new central 

module only, and does it at the cost of other virtual paths. By this we mean that 

some virtual paths will be sacrificed in order to fulfill a request. Therefore we 

have a sub-optimal reconfiguration scheme instead of an optimal one from 

Section 2.2. The benefit in return is a lower complexity in the reconfiguration 

procedure. 

i: 
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Chapter 2 Route Reconfiguration in Clos Network 

Assuming that we are working with a 3-stage Clos Network. Also assume that we 

have, by some means, determined that virtual path (//，//) contains surplus capacity 

while {i2,j2) is in lack of capacity. Thus the objective is to reallocate a central 

module from (iiji) to (/2J.2), which we refer to donor and receiver below. Let A be 

a central module allocated to (iiji) but not to (i2,j2) so that it is available for 

rearrangement. We also assume that every central module should be allocated to 

some virtual path, as stated in Equation (2.4). 

Theorem 2.1 (One-step reconfiguration condition) Given that we want to 

rearrange one central module from virtual path (//，•//) to (z?,/^). The 

reconfiguration can be completed in one step {rearrangement) if and only if i! = i � 

orji =j2. 

Proof. Let A be the central module to be reallocated. 

<=)We are going to show that if i! ？^12 and j] #力，then the reconfiguration takes 

more than one step to complete. In this case, central module A is allocated to 

(//,//), so A does not appear in (12,Ji) or (//’力）of the connection matrix. However, 

' s ince all central modules are allocated to some virtual paths in the connection 
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matrix, A should be allocated to some (/队力)and (j2’jo), where k ^ii, i�and /o #//, 

72. Therefore, when A is reallocated from (//，//) to {iiji), conflicting allocation 

exists in row i�((/2J2) and (J2Jo) both containing A ) and column j2 ( (/2J2) and 

{inji) both containing A ). Thus we need at least two more steps to complete the 

reconfiguration. 

= > ) I n the following we describe the details of a one-step reconfiguration. 

Clearly, module A has to be reallocated from {iiji) to (J2J2). We also have from 

above that ij = 12 or ji =力.Without loss of generality we assume z/ = 12. By the 

property of full utilization module A should have also be allocated to (in,j2) as well. 

When the reconfiguration occurs, we have conflicting allocation in (/0J2) and 

{12,.h)- This is countered by removing the allocation of A in iinj2)' Thus the virtual 

path (ioj2) becomes the victim in this one-step reconfiguration. Now module A is 

not allocated on either row k or column // in the connection matrix. We complete 

the reconfiguration by allocating A to (io, ji). 

• 
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To illustrate the theorem, let us consider an example. Figure 2.3(a) shows a 4 x 4 

capacity matrix with 3 central modules A, B and C. Now suppose that we want to 

allocate one central module to (3,2). If (4,1) is going to donate the central module 

C, then the connection in Figure 2.3(b) results. Observe that there are contentions 

for central module C in both row 3 and column 1. (3,1) and (3,2) both contend for 

module C in the row, and (2,2) and (3,2) contend for the same module in the 

column. Thus we need 2 more rearrangements to arrive at Figure 2.3(c). 

Indeed, we could compare the reconfiguration procedure if we had chosen 

(2,2) to donate the central module. Again, central module C is being rearranged. 

What makes it simple is we could instantly find the owner of module C in row 3, 

in this case being (3,1), and declare it as the victim. Thus the rearrangements 

required are putting C in (3,2) and (2,1), while removing them from (2,2) and 

(3,1). The resultant capacity matrix is shown on Figure 2.3(d). 

^ ^ C A，B A’B C 

_ B _ _ C ^ _ B _ _ C ^ _B 丛 B’C A 

A’C B A ’ C C B A C B A C B 

‘ |A’C| B |A，C| B A,C B 一 A’C B 

Figure 2.3: An example of one-step route reconfiguration 
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2.5 Closing Remarks 
In this chapter, we have established an algorithm allowing us to rearrange one 

central module from a virtual path to another in one step. The algorithm fulfills 

the requirement of the receiver virtual path, while sacrificing others to attain the 

purpose. The reduction in complexity comes in two ways. First, only one 

rearrangement has to be performed. Second, the donor virtual path has to be in the 

same row or column as the receiver virtual path in order that one-step 

reconfiguration can be done. This largely reduces the number of virtual paths to 

consider as the switch size increases. 
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Chapter 3 

Frame-Based Reconfiguration 
Scheme in Cross-Path Switch 

In previous chapter we showed how we can perform rearrangement for a Clos 

Network in order to reallocate a central module from a donor virtual path to a 

receiver virtual path. The algorithm assumes that the donor and receiver are found 

by some means. In this chapter we proceed to apply the one-step reconfiguration 

to a cross-path switch. In particular, we will establish a way to trace the 'progress' 

of each virtual path in the connection matrix. Using this information, we will then 

- determine the donor and receiver and presents the complete picture of the 

reconfiguration scheme in cross-path switch. The last section of this chapter gives 

. t h e results of our simulation. 

2 6 



Chapter 3 Frame-Based Reconfiguration Scheme in Cross-Path Switch 

3.1 Route Assignment in Cross-Path Switch 

In this section, we define the parameters used to characterize the route assignment 

in a cross-path switch. A cross-path switch employs a quasi-static routing scheme, 

and therefore comprises of time slots repeating itself in a periodic manner. The 

route assignment of the time slots is pre-determined from the requirements of the 

virtual paths. Thus the requirements of virtual paths are satisfied every frame. So 

Cross-path switch is said to satisfy the performance guarantees in the long run, 

3.1.1 Requirement Matrix and Capacity Matrix 

In a 3-stage Clos Network of size kxmx k, where k is the number of input/output 

modules and m is the number of central modules, we have a total of k x k virtual 

paths. Each of these virtual paths requests certain capacity from the switch. Thus 

we can represent the requirements by a requirement matrix of size kxmxk. 

• After the calculation of some sort of route assignment algorithm like the 

path-switching algorithm, the switch will decide to allocate central modules to the 

virtual paths. This allocation can be any number, but the switch usually allocates 

in a way that the requirements are satisfied. Under this condition, the {i,j)-th 
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element in the capacity matrix is required to be larger than or equal to the {i,j)-th 

element in the requirement matrix. In a quasi-static routing scheme, each frame is 

divided into time slots. The switch repeats the route pattern every frame. So the 

condition becomes that the total sum of capacity is greater than or equal to the 

total sum of requirement over a number of time slots. 

We denote the requirement matrix and the capacity matrix as R and C 

respectively. R,j and Cjj denotes the corresponding (J’f)-th element in the matrices. 

Intuitively the following conditions are satisfied: 

YAi 么 m j = 0’ 1,2’ …N-I (3.1) 
i 

YAi-m /• = 0, 1, 2, ... N-1 (3.2) 
i 

j = 0，1,2，...N-l (3.3) 
i 

i = 0, 1,2，…N-l (3.4) 

Equations (3.1) and (3.2) are direct result of the capacity restriction in a Clos 

Network. Equations (3.3) and (3.4) comes from Equation (2.4)，requiring that all 

central modules be allocated. 

i 
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3.1.2 Allocation Vector 

An Allocation Vector F i s the vector containing the connection matrices of every 

time slot of a frame. The connection matrices state the actual central modules 

allocated to the virtual paths in a particular time slot. Figure 3.1 shows a 3 x 4 x 3 

cross-path switch with frame size F = 1. The requirement matrix R and capacity 

matrix C are shown, with the allocation vector V and the actual route assignment 

in time slots 1 and 2 

I 0 I 1 I 0 I 1 
"O 3 3 ] � 0 4 4~] 0 A, B C, D 0 A, B C, D 

/?=13：3 c = 2 3 3 1 C，DA’B 1 B ,D C A 

3 1 1 6 1 1 — 
L 」 L 」 2 合:B 2 A , c D B 

Time slot 1 Time slot 2 

. _ _ 
D D 

� Time slot 1 Time slot 2 

Figure 3.1: Requirement matrix R, Capacity matrix C, Allocation vector Vand 

switch connection 
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3.2 Progress Tracing in Cross-Path Switch 
Dynamic routing algorithm requires the present information of every inputs and 

outputs to calculate the route connection, and therefore suffers from complexity 

issues inherently. One of the approaches to solve this problem is to use previous 

information instead of present information. By doing this we assume that virtual 

paths are more likely to be busy if they are presently busy. To gather previous 

information we mark certain indicators as packets pass through the central switch, 

thus we do not have to refer to the input and output modules. The information 

could be used to estimate the requirement of the virtual paths in the coming slot. 

Here we introduce two indicator matrices in cross-path switch to aid us in 

tracing the requirements of the virtual paths. We refer to these two matrices as M! 

and M2. Ml and M2 slyq kx k matrices, where k is the number of input and output 

modules. Mi{i,j) denotes the {i,j)th element in the matrix M/. M]{i,J) is 

incremented by \ /R” for each packet going from input module i to output module / 

through the central switch. Likewise M2(iJ) is incremented by 1/Cy for each 

transmitted packet through (ij). 
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Thus the value of M�(J’f) and M2{ij) are calculated as 

. , " • � #of packets transmitted c\ 
M,(,，_;)= (丄” 

Rii 

, , / . . � #of packets transmitted ( � 
M办J�= (丄 

c". 

To see how Mi and M2 works we shall look at two cases. The first case is when a 

virtual path transmits at its requested rate {Rjj). Over m frames 

M 人 i,j�= m 

M^(iJ) = m -— =mp 
V '7 y 

The second case is when a virtual path transmits at saturation, after m frames 

' R . . /P 
\ 'I J 

M^{iJ) = m 

Thus by reviewing M； and M2 we could estimate the requirement of the virtual 

“ path in the coming slot. Route update can then be done at the end of a frame based 

on the values of M； and M2. In the next section, we continue to develop the 

• methodology to choose a donor and receiver. 
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3.3 Implementing Frame-Based 

Reconfiguration 
In this section we propose a frame-based reconfiguration scheme for cross-path 

switch. Without getting into the detailed discussion we will first outline the 

algorithm. The following sub-section gives more details in each step of the 

algorithm. 

General flow of the reconfiguration algorithm: 

1. Calculate the running sum of the mark matrices Mi and M2 over m frames. 

2. Find a receiver virtual path. 

3. If (2) exists, proceed to find a donor virtual path. If (2) does not exists, 

proceed to the next frame and go back to (1). 

4. If both donor and receiver exist, reconfigure a central module from the donor 

to the receiver using one-step reconfiguration, otherwise proceed to the next 

frame and go back to (1). 

5. Proceed to the next frame and go back to (1). • 
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3.3.1 Recognizing Receiver Virtual Path 

Without referring to peripheral information from the input and output modules, we 

are going to find hints to allocate capacity to virtual paths which are in need of 

them. As in many packet scheduling algorithms, such as Virtual Clock[l 1], Fair 

Queueing (FQ) [12] and its weighted version (WFQ) also called Packetized 

Generalized Processor Sharing (PGPS) [13], Self-Clocked Fair Queueing (SCFQ) 

[14], and Worst-case Fair Weighted Fair Queueing (WF^Q) [15], the processor 

will choose to satisfies the requirements of all the channels first. After the 

requirements are satisfied, the remaining of capacity is allocated in a proportional 

manner to the channels. 

We apply the same principle here. A backlogged virtual path is a virtual path 

which has unserved packets awaiting. Therefore, we allocate the unused capacity 

to facilitate these backlogged virtual paths. As a result, a backlogged virtual path 

takes over the capacity of other virtual paths which do not need them. Due to this 

principle, busy virtual paths will take away the capacity of idle virtual paths. If 

, later, the idle virtual paths becomes busy again, we can resume their capacity. So 

we have two types of receiver candidates. The latter has a priority higher than the 
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former one because the capacity allocated is smaller than its requirement. Virtual 

paths which are under-allocated but suffer from backlogging should be dealt with 

first. 

In determining the receiver virtual path out of all backlogged virtual paths, we 

look for the one with the longest queue size. By doing so we have better ability to 

deal with bursts at the cost of making it more vulnerable to malicious attacks. 

With these observations we conclude the methodology of finding a receiver as 

follows: 

1. Find all backlogged virtual paths. 

2. Among these virtual paths, choose those with Rjj > Q such that Cij/Rij is 

minimum. This minimum virtual path is deemed as the receiver. Resolve 

randomly if there is more than one. 

3. If (2) does not exist, choose the virtual path with the longest queue length 

from (1). 

3.3.2 Finding Donor Virtual Path 

, V i r t u a l paths which hold up capacities while idle contributes to a low system 

utilization. Reconfigurations are meant to reallocate these capacities to others 
J 
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which are in need of them. Idle virtual paths are characterized by having # of 

packets transmitted < mCjj, so 

# of packets transmuted = ^从 j) < m (3.7) 

Cij 

On the other hand, we could still find a donor even if none of the virtual paths is 

idle. Virtual paths being given more tokens than they requested, which we refer to 

as greedy virtual paths, should be deprived of the extra tokens when others are in 

need of them. 

Greedy virtual paths, by definition, have # of packets transmitted > mRij, so 

^ of packets transmitted =似丨•，,•）> ^ (3 8) 

Now we can summarize the procedure of finding donor virtual path as follows, 

assuming (iojo) be the selected receiver: Note that the donor should be in the same 

row or column as the receiver, as we have shown in Chapter 2. 

1. Find mm(M2(i,j)) where M2(zj.) < m and i = in or j = jo in the connection 

matrix. 

2. If (1) does not exist, find max{Mi{i,j)) where Mi{i,j) > m and i = in or J = jn 

‘ in the connection matrix. 
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3.4 Simulation Results 
To evaluate the performance of the proposed reconfiguration scheme we choose to 

perform a simulation. This section concludes the results from the simulation, and 

gives us further insight in the effectiveness of the proposed scheme. 

In our simulation we have a switch of size 3 x 4 x 3 . The 3 x 3 = 9 virtual 

paths request a random amount of capacity Rjj from the switch, and the switch will 

only accept the call under condition (3.1) and (3.2). Incoming packets are 

generated to the inputs of the virtual paths as Poisson process with rate Rjj. The 

packets pass through a token bucket, and get queued at the input modules. 

3.4.1 Fixed Requirement Matrix 

Table 3.1 shows the simulation results of frame-based reconfiguration scheme 

under fixed requirement matrix. The virtual paths have a fixed requirement matrix, 

but with different initial capacity matrix. The frame size F of the switch is 3, and 

m = 3. The first major column shows an ideal initial capacity matrix. In this case, 

since the switch performs ideally and a low mean delay (1.62) is observed. On the 

other hand, starting with the same ideal capacity matrix, reconfiguration scheme 

J 
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will actually hurt the overall system performance (mean delay = 1.80). 

Fortunately, the achievable mean delay is close to the ideal value, and shows that 

reconfiguration scheme can meet an acceptable level. In the second major column, 

we randomly choose an initial capacity matrix such that the requirements are still 

satisfied. Since the capacity matrix is no longer ideal, we observe a serious 

performance degradation (mean delay = 3.68). However，in this case, • 

reconfiguration scheme could help us to rectify the capacity allocation. The 

encouraging result is that out scheme does not only improve the performance, but 

also pushes it close to the ideal case (mean delay = 1.85). 
！ I  

Ideal initial cap. Matrix Random initial cap. Matrix 
Reconfigure? Yes No Yes No 

Req. matrix � 3 1 2I � 3 1 2] � 3 1 2 ] [3 1 2I 
2 2 2 2 2 2 2 2 2 2 2 2 

[2 4 3J [2 4 3J 2 4 3 2 4 3 

Initial cap. matrix � 6 3 3] �6 3 3l � 7 2 3] � 7 2 3] 
3 4 5 3 4 5 3 5 4 3 5 4 

[3 5 4] [3 5 4J [2 5 5J |_2 5 5 J 

Final cap. matrix 「4 4 4-1 � 6 3 3] 「7 2 31 「7 2 3I 
4 4 4 3 4 5 3 6 3 3 5 4 

4 4 4 3 5 4 2 4 6 2 5 5 

匕 J l _ J L J L J 

‘ Mean delay 1.80 1.62 [ 1.85 3.68 

Table 3.1: Performance of reconfiguration algorithm under fixed traffic requirements 
J 
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3.4.2 Time-Varying Requirement Matrix 

Under time-varying requirement matrix, if the capacity matrix remains unchanged, 

then obviously some virtual paths will become unstable because eventually we 

will have Rjj > C,y. This scenario gives the same situation as if connections are set 

up or released. Basically, the capacity matrix should change to reflect the varying 

need of the virtual paths. 

Figure 3.2 shows a graph of average delay against input load under 

time-varying requirement matrix. The requirement matrix is randomly created 

every 100 frames, and is allowed to run under reconfiguration algorithm. Observe 

that the ideal uniform traffic curve actually represents a lower bound on the 

system performance, since we can simply allocate the capacity evenly to all 

virtual paths and no other allocation will out-perform it. With reconfiguration 

scheme applied, though the requirement matrix varies, the scheme is able to bring 

the mean delay close to the ideal case (while not optimal). Comparing to the case 

. without reconfiguration, the mean delay gradually shoots up as the input load 

increases. The figure shows that the reconfiguration algorithm can be used under 

the situations that connections are to be set up or released in the virtual paths. This 

saves the complexity of having to recalculate the capacity allocation. 
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1 6 � 

14 -

1 2 -

10 

8 • ~ ideal uniform traffic 

6 一 — • ~ w/ reconfiguration 

w/o reconfiguration 

4 - • 

0 ‘ ‘ ‘ ‘ ‘ 

0 0.2 0.4 0.6 0.8 1 

Figure 3.2: Performance of reconfiguration algorithm under time-varying traffic 

3.5 Deadlocks in reconfigurations 
Using one-step reconfiguration, we are able to gain simplicity in rearranging a 

central module from a donor to a receiver. However, it is also obvious that the 

rearrangement hurts others by introducing a victim virtual path. This victim path, 

regardless of being too busy or idle, takes one less token than it is used to. 

There are cases where reconfiguration algorithms fall into deadlocks. It results in 

the choice of donor and receiver swapping back and forth. This can be recognized 
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from the decrease in system performance. Consider the example shown in Figure 

3.3. In Figure 3.3(a) we see that virtual path (1,1) is in need of new tokens, since 

it requested a capacity of 1 but given zero token. Virtual path (2,1) becomes the 

donor, and by default (1,2) becomes the victim and (2,2) is the benefited virtual 

path. The resulting route assignment is shown on Figure 3.3(b). During the next 

frame, virtual path (1,2) becomes the receiver (in the previous frame it was the • 

victim), virtual path (2,2) becomes donor, (1,2) becomes the victim and (2,1) 

becomes the benefited virtual path. The resulting configuration gives back the 

route assignment in Figure 3.3(a). 

It would seem that this is the most severe barrier in the adoption of frame-based 

reconfiguration schemes. But the fact is it only happens when the switch is fully 

loaded. Therefore 2 approaches to avoid these deadlocks are: 

1. Avoid full utilization in the switch. 

2. Observe the mean delay (maximum packet delay). Recalculate the route 

“ assignment using path-switching algorithm when it reaches a certain 

threshold. 

i 
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req = 1 req = 1 req = 1 req = 1 
cap = 0 cap = 1 reconfiguration _ cap = 1 cap = 0 
receiver victim victim receiver 

req = 0 req = 0 req = 0 req = 0 
1 reconfiguration ^ ^ 

cap = 1 cap = 0 < cap = 0 cap = 1 
donor benefited benefited donor 

(a) (b) 
Figure 3.3: An example of deadlock in reconfigurations 

3.6 Closing Remarks 
In this chapter we employed the one-step route reconfiguration that we developed 

in chapter 2 in cross-path switch. This leads to our frame-based reconfiguration 

scheme. Though being sub-optimal compared to path-switching calculated 

assignment, we recognize immediately the advantages of doing so. First, 

variations of incoming traffic, induced by call setup, call release or traffic bursts, 

- are catered to without recalculation of route assignment. Second, the system 

utilization is increased as idle virtual paths donate their central modules to the 

busy paths. We also showed by simulation that the reconfiguration scheme is 

efficient under both static and time-varying input traffic. To further improve the 
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usefulness of frame-based reconfiguration scheme, the path-switching algorithm 

is used jointly with the reconfiguration scheme. Route assignment is calculated 

periodically based on the path-switching algorithm to give an optimal allocation, 

while the reconfiguration scheme is used to support the requirements between 

recalculations. In some cases, frame-based reconfiguration schemes can make 

unfavourable reconfigurations and fall into instability. This is countered by either • 

not fully-loading the switch, or by recalculating the route assignment with 

path-switching algorithm when the system performance falls below a certain 

threshold. 
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Chapter 4 

Performance and Delay Tradeoff in 
Frame-Based Reconfiguration 
Scheme 

The core issue of any reconfiguration scheme is to reallocate unused capacity 

from idle virtual paths to busy virtual paths. Thus we raise the system utilization 

and robustness against burstiness by reconfiguring the central modules. This does 

not come for free. The cost is the increase in maximal packet delay. By 

considering a simplified model, we will derive in this section the increase in the 

maximum packet delay by employing frame-based reconfiguration scheme, then 

we will introduce some parameters to the reconfiguration scheme so that we can 

bound the maximum delay increase to a value of our choice. 

y 
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4.1 Service Curve and Cross-Path Switch 
Before we begin with our discussion we will first characterize the service 

constraint. Suppose that session i traffic is fed to the network which may be 

shared by other sessions. Let7 :̂,,"(r，/) be the amount of session i traffic output 

from it during the interval (x,t). The service constraint to each session is defined 

as follows. 

Definition 4.1 (Service Constraint) Let Si(-) be a non-decreasing non-negative 

function, where Si(0) = 0. The network element guarantees session i a service 

curve of Si if for any t, there exists maximum t <t such that 

RUT,t)>S^{t-T), (4.1) 

given that there is no session i packet stored in the network element at time r. 

- In other words, a service curve gives the minimum amount of service provided by 

a network element to a session when it is busy. From the definition we observe 

‘ t h a t the service curve Si is always at the right side of the traffic output 二,. 
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Figure 4.1 shows an example of a service curve Sj for session i in its busy period. 

It is a straight line with slope r,-, which is the reserved service rate of the session. 

Stiliadis and Varma introduced in [16] a general class of packet scheduling servers, 

called Latency-Rate servers. £(/^servers are characterized by two parameters, 

namely the latency 6 and the allocated rate r,. The latency of a server is the 

worst-case delay as seen by a packet of session i. Thus L^^ servers provides • 

service guarantees of (0,r,). Examples of LR servers include Weighted Fair 

Queueing [12], VirtualClock [11], Self-Clocked Fair Queueing [14], Weighted 

Round Robin [17], Deficit Round Robin [18], exhibit this property and therefore 

belong to this class. Cross-path switch also belongs to the class of LR servers and 

therefore guarantees a session of service (6,r,). 

4.2 Service Curve of Cross-Path Switch 

under Reconfiguration 
When reconfiguration scheme is applied to a cross-path switch, a virtual path 

- (session) i can be deprived of all its capacity under long duration of idle period. If 

it becomes backlogged in a later time, the reconfiguration scheme will reconfigure 

i.: 
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packets r,' I \ 

— Z — r a — 一 丨 

0 time t 

Figure 4.1: A service curve 

central modules to it until the requirement of the virtual path is satisfied. Figure 

4.2 shows an example of the service curve under reconfiguration scheme. The 

virtual path is guaranteed a service (6,r,) when no reconfiguration is applied. 

However, as reconfiguration scheme is used, the session could start from zero 

capacity. When the virtual path becomes busy, central modules are gradually 

allocated to this virtual path until it attains the requested rate. Thus the slope 

increases until it equals that without reconfiguration. 
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出 X z丨 
I 50 Z Z I 
« y delay incre^e^X ！ 
I 40 ——no reconfig ! 
1 3 0 1 — I 

Q _ _乙 . i • ‘ 
0 2 4 6 time 8 ⑴ 12 14 

Figure 4.2: Service curve of cross-path switch 

Note that the horizontal distance between the curves represents the delay increase 

due to reconfiguration being applied. The delay increase attains it maximum value 

when the slope equals, i.e. when all reconfigurations are done. The delay increase 

remains constant thereafter as long as the virtual path does not get capacity more 

than it requested. 
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4.3 Impact of Reconfiguration Algorithms to 

Maximum Delay Increase 
Reconfiguration algorithms improve the utilization of the switch. At the same 

time the switch achieves better average delay. However, since central modules are 

being reconfigured from idle virtual paths to busy virtual paths, the inability to 

immediately reallocate back the central modules to the virtual paths which were 

previously idle induces an increase in the maximum delay of cross-path switch. In 

this section we first show the maximum delay increase induced by reconfiguration 

algorithms. In the second part we add constraints to our reconfiguration algorithm 

to bound the delay to an arbitrary value. 

Theorem 4.1 (Maximum Delay Increase of Reconfiguration Algorithms) The 

frame-based reconfiguration algorithm induces a maximum delay increase of 

— m + k � + k (4.2) 

where F is the frame size, m is the number of central modules and k is the number 

“ of input/output modules. 

Proof: To simplify the model, first assume that only 2 virtual paths are sharing the 
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resource, and the virtual path that we are concerned with has requested C time 

slots per frame. The frame size is F and the switch size is k x m x k. The 

worst-case delay increase happens when our virtual path is being taken away with 

all the capacity that it was allocated, and start to transmit at its requested rate. 

Consider the n-th packet being served after the virtual path goes busy. When 

no reconfiguration is introduced the virtual path transmit at a rate of C, and thus 

the n-th packet is served in the \nlc^ frame after the latency of the concerned 

server. 

On the other hand, if a virtual path is being stripped of all its capacity, then it 

starts to serve zero packet in the first frame, one packet in the second frame and 

so on. Thus the number of packets served over d frames 

r 0+1+2+…+(t/-i) j < c “，、 
={ / / � \ (4.3) 

0 + l + 2 + ... + C + C(t/-(C + l)) , d > C 

We focus on the case d > C because it is when the maximum delay occurs from 

the observation in Section 4.2. To proceed, note that the n-th packet departs when 

‘ the number of packets served > n. 

J 
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Le. 0 + \ + 2 + ... + C + C{d-{C + \))>n 

-C{C + \)+C{d-{C + \))>n 

乂 + M (4.4) 
C 2 

The delay increase is given by D(n), where 

n C + l l � � 

- r T - C (4.5) 

「c+i"! < — 
一 2 

As the assumption suggests this only counts the competition between 2 virtual 

paths. In reality, there are k virtual paths competing the same resource {Fm central 

modules), where k is the number of input/output modules of the switch. 

Assuming that a correct decision is made for every reconfiguration, such that the 

route allocation converges. 

i； 
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Thus the worst-case delay 

"c, +1]「C2+11 「 c , + r 
=—+ — + . . . + — 

1 1 2 

< — ! + 1 + — ^ +1 + ...+ — ~ +1 
9 9 2 

、 “ 、 丄 ） 、 ） (4.6) 

= -[(C, +C2+…+ 众]+介 

£�(Fm + k)+k 

• 

This worst-case happens when we have all but one virtual path being idle for 

some time, causing the reconfiguration algorithm to allocate all central modules to 

the busy path eventually. And then all in a sudden, these idle virtual paths begin to 

transmit simultaneously, and our concerned virtual path is being reallocated with 

its requested capacity at the very last. 

The delay increase, as shown above, scales up as the switch size increases. It 

is not desired for the purpose of providing QoS. In many cases, we would like to 

bound the maximum delay increase to a value of our choice. 
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In the study of bounding the maximum delay increase, it can be observed that 

the extra delay by employing the reconfiguration algorithm comes from the 

inability to recover the requested capacity for a virtual path after the path has 

given up the capacity. Thus, the delay increment can be restricted in two ways: 

1. By not allowing any particular virtual path to give up too much of its capacity.. 

In other words, we require C/R > a, where 0 <a< 1. 

2. By speeding up the reallocation rate when a need arises. This can be done by 

reallocating multiple central modules in one reconfiguration. That is, we 

could reallocate b central modules from the chosen donor to the receiver in 

every reconfiguration, where b> 0. 

Theorem 4.2 (Maximum Delay Increase of Reconfiguration Algorithms 

under Constraints a, b) The frame-based reconfiguration algorithm, when 

applied under the conditions C/R > a ai any time and reconfigured in batch size 

of b, attains a maximum delay increase of 

’ ~ \ \ - a f F m ^ { \ - a ) k b y k (4.7) 
2b 
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Proof. We follow the same line of derivation as shown in Theorem 4.1. Let P be 

the greatest integer such that 

C-ph>aC (4.8) 

Equation (4.8) describes our reconfiguration controls, which reallocate b central 

modules in one shot and require C/R > a. Notice that an idle virtual path can, in . 

the worst case, recover the requested capacity in frames. 

Consider again at frame c I , i fd> / ] ,# of packets served 

= {C-fib)+{C-(fi-\)b)+... + C + C{d-{/5 + \)) 
1 (4 9) 

= -{C + C-fibX/3 + \)+C{d-{/^ + l)) . 

Again, the n-th packet departs if 

^{C + C-l3b\l3 + \)+C{d-{p + \))>n 

(4.10) 

C 2C \ ’ 

y 
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So the delay of the n-th packet, D(n) is given by 

D{n) = d-舍 

么舍 + 去 + - 舍 (4.11) 

2C ^ ’ 

From (4.8), 

0 C-aC C-aC 
P= - < 7 ( 4 . 1 2 ) 

L 办 J b 

Substituting (4.12) into (4.11) we have 

m ? J (4.13) 

i 
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The worst-case delay, when considering k virtual paths competing the same 

resource, becomes 
r 1 r n r 1 一 

±{\-aXcX\-a) + h) + + +.••+ -{\-alC,{\-a) + b) 
2b lb lo 

处 (4.14) 

=-^[(1- af Fm + {\-a)kbY k 

• 

We double-check our derivation by substituting « = 0 and ^ = 7, which reduces to 

the case when there is no reconfiguration control. After substitution we have the 

worst-case delay given by 

,which agrees with our result in Theorem 4.1. 

y 
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4.4 Numerical Example 

To illustrate our results, let us consider a cross-path switch with size 32 x 48 x 32. 

To satisfy the rearrangeably non-blocking condition of Clos Network, the number 

of central modules must be greater than or equal to the number of input/output 

ports at the first stage/third stage modules. Thus in effect we could have 32 x 48 = 

1536 input/output ports and the switch we are considering is a 1536 x 1536 switch. 

The frame size is set to 3. Using the results in the previous section, we obtain 

Figure 4.3. Notice that since there are 32 input modules, and only one module will 

be taken care of in one cycle, the minimum achievable delay is 32. a can actually 

be viewed as the proportional of "unreconfigurable" central modules in the switch. 

As a increases, we choose to make more "static tokens" to the virtual paths. Thus 

the value of maximum delay decreases. On the other hand, if we raise the value of 

b, we use less time to rearrange the "dynamic tokens". In a similar manner we 

,. shorten the maximum delay. 

i 
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250 

1200 K 1 — H 

I I — b = 2 | 

Sl50 b = 3 � 

iioo ^  

.--.— 

0 ‘ ‘ ‘ ‘ 

0 0.2 0.4 ,, 0.6 0.8 1 
alpha 

Figure 4 .3: max. delay increase v.s. alpha 

4,5 Closing Remarks 
In this chapter we established, in general case, the maximum delay increase 

induced by employing the class of reconfiguration schemes in cross-path switch. 

The derivation does not concern how the actual reconfiguration is performed. 

Instead, for any reconfiguration scheme which (1) reconfigures in every frame, (2) 

•• reconfigure only one central module in every reconfiguration, (3) chooses the 

correct module to reconfigure, the derived bound holds. We also developed two 

5 7 



•‘ Chapter 4 Performance and Delay Tradeoff in Frame-Based Reconfiguration Scheme 

constraints in which we could bound the maximum delay increase. The derived 

bounds can serve as a guidance when we develop any type of frame-based 

reconfiguration scheme in cross-path switch. 
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Chapter 5 

Conclusions and Future Research 

In this thesis, we have developed a frame-based reconfiguration scheme for 

cross-path switch and established the maximum delay increase in adopting such 

kind of frame-based algorithms. A rather surprising result from our work is we 

actually do not have to start with a decent route configuration and yet we can still 

take the reconfiguration procedure and the results will still be fine. We also saw 

that there are cases where the algorithm does not converge. This is recognized 

from the increase of the mean delay of packets, and can be viewed as time when a 

total recalculation of the path-switching algorithm is required. 

Reconfiguration schemes are meant to reallocate capacities from idle virtual paths 

• to busy virtual paths, therefore as we could see, with the adoption of our 

algorithm, the average delay is actually lowered, while the maximum delay is 
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increased. Therefore, although we observed maximum delay increase from our 

simulation and analysis, the algorithm actually gives the switch higher utilization, 

and thus lower delay, in most cases. Sometimes, with very adverse situations, 

when we have no knowledge of the incoming traffic, we would like to be more 

pessimistic on the delay bounds. Under such condition we could impose some 

controls on the reconfiguration scheme, such that the maximum packet delay 

increase is bounded to a value of our choice. This makes the reconfiguration 

algorithm very viable for application in next generation switches as being able to 

support diverse QoS requirement in the switching element. 

5.1 Suggestions for Future Research 

The path-switching algorithm calculates the route assignment by optimizing 

certain objective function under the full-utilization capacity constraints. Therefore, 

- the objective function is actually closely related to the route reconfiguration. In 

this thesis, we assumed that we have no knowledge of this objective function, and 

instead used the traffic we saw on the fly to estimate the forth-coming traffic 

pattern. Indeed, it is possible that we can further push the performance of the 
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reconfiguration scheme by taking the objective function into consideration as 

well. 

Multicast QoS guarantee is another issue in cross-path switch. The 

discussion in this thesis is based on individual virtual paths. Thus, while QoS can 

still be guaranteed in some ways, multicasting virtual paths are not considered. It 

would be interesting to see the reconfiguration schemes being extended to include 

multicast traffic in it. 

y 
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