
Delay Driven Multi-way Circuit Partitioning

Wong Sze Hon

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science & Engineering

�T h e Chinese University of Hong Kong

August, 2003

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

[n ^ ® 〕 ! ）

UNIVERSITY“―/M/
SYSTEMX^

Abstract

Integrated Circuit (IC) is an essential component of many computing facilities

today. In order to achieve complicate functionalities, one single chip inside a

computer is actually comprised of millions of transistors. This makes the chip

design process a lot more difficult and complicated than before. As huge cir-

cuits are hard to be managed efficiently, decomposition of complex systems into

finer sub-systems is important in the design cycle. After decomposition, each

sub-system can be designed and further improved independently and simulta-

neously to make the design process faster and simpler. Therefore, partitioning

is an important technique used in the design cycle.

Circuit partitioning plays an important role in the physical design cycle.

A good partitioning of a system will lead to feasible solutions in the succeed-

ing processes such as floorplanning’ placement and routing. There are several

aspects to be considered in the partitioning process, such as the interface con-

nections between sub-circuits, the delay of the critical path and the size of

each partition, etc.

We studied some previous works on circuit partitioning, and focused on

their performance on cut-size and delay minimization. We found that acyclic

partitioning is an effective way to upper bound the largest number of inter-

partition delays along any path. Therefore, in this thesis, two approaches are

proposed to solve the acyclic multi-way circuit partitioning problem. The first

ii

one is a clustering based approach. We developed a new acyclic multi-way

partitioning algorithm. A modified fanout free cone decomposition is used to

pre-cluster a given network, followed by another similar decomposition process

to further partition the clustered network. The second one is a network flow

based approach. We proposed a net modelling method to ensure an acyclic

partitioning when the max-flow min-cut algorithm is applied. The basic idea

of these two approaches is to maintain an acyclic partitioning on all the com-

binational paths. Both of these two approaches aim at minimizing the number

of cuts along the critical paths. Experiments are carried out to investigate the

performance of these proposed approaches. Results show that both of them

are competitive with many current existing algorithms.

iii

摘要

現今很多電子產品都有應用到集成電路的技術。一塊細小的晶片’其

實是由數百萬的電晶體所組成的°隨著科技發展，人們對電子產品的要求

越來越高，電子產品的内部結構日益複雜，故晶片的體積成為重要的設計

考慮。然而，設計複雜的晶片並不容易。由於設計員很難同一時間管理與

設計魔大的電路，所以將系統分割成為多個次系統是必要的。這樣’設計

隊伍便能同時有效和獨立地設計和優化各次系統°故集成電路分割是在晶

片設計中不可或缺的技巧。

集成電路分割技術在整個設計過程當中扮演一個很重要的角色。優良

的分割技術能令到往後的步驟如佈局規劃、配置和繞線得到成功的結果°

在集成電路分割過程中，設計隊伍須要考慮次系統間的交叉連結、訊號的

最大延遲和各次系統的大小等問題°

我們研究過一些已有的電路分割技術’特別集中在縮減次系統間的交

叉連結和改善訊號延遲等技術°我們發現非循環式的次系統分割能有效地

減少因分割次系統而帶來的訊號延遲。我們在這論文中提出了兩個方法，

第一個方法建基於聚類技術。我們開發了 一個全新的非循環式多方向分割

方法，先用零输出端圓錐分解來群集系統，然後再用類似的手法更進一步

的分割該系統。第二個方法建基於網络流技術°我們提出的網絡塑型可保

言正當引用「最大流最小切」方法時’會得到一個非循環式的分割。本論文

提出的兩個方法旨在令所有組合式的路徑非循環，而維持最少的臨界路徑

被切次數。對比現有的分割技術’實驗結果證明我們提出的方法能更有效

地找到優良的分割。

iv

Acknowledgments

I must take this chance to thank Professor Young Fung Yu, Evangeline, who

helped a lot in my work. Her constant encouragement and advises made me

possible to finish this work. She gave critical remarks and show me directions

sometimes. She is more than an advisor to me.

I also wish to express my sincere thanks to my markers in both years, Pro-

fessor Lee Kin Hong and Professor Wu Yu Liang, David. They have given me

invaluable advices and constructive suggestions to improve my work.

Thanks should also be given to my colleague, Steve, who has given me

opinions and encouragement time over time. Thanks to my friend, Jill, who

proof read my work several times, to improve the quality of the text.

Finally, I wish to thank my parents and my family for supporting me all

the time. Thank them for being there when I needed them.

V

Contents

1 Introduction 1

1.1 Preliminaries 1

1.2 Motivations 1

1.3 Contributions 3

1.4 Organization of the Thesis 4

2 VLSI Physical Design Automation 5

2.1 Preliminaries 5

2.2 VLSI Design Cycle [1] 6

2.2.1 System Specification 6

2.2.2 Architectural Design 6

2.2.3 Functional Design 6

2.2.4 Logic Design 8

2.2.5 Circuit Design 8

2.2.6 Physical Design 8

2.2.7 Fabrication 8

2.2.8 Packaging and Testing 9

2.3 Physical Design Cycle [1] 9

2.3.1 Partitioning 9

2.3.2 Floorplanning and Placement 11

2.3.3 Routing 11

vi

2.3.4 Compaction 12

2.3.5 Extraction and Verification 12

2.4 Chapter Summary 12

3 Recent Approaches on Circuit Partitioning 14

3.1 Preliminaries 14

3.2 Circuit Representation 15

3.3 Delay Modelling 16

3.4 Partitioning Objectives 19

3.4.1 Interconnections between Partitions 19

3.4.2 Delay Minimization 19

3.4.3 Area and Number of Partitions 20

3.5 Partitioning Algorithms 20

3.5.1 Cut-size Driven Partitioning Algorithm 21

3.5.2 Delay Driven Partitioning Algorithm 32

3.5.3 Acyclic Circuit Partitioning Algorithm 33

4 Clustering Based Acyclic Multi-way Partitioning 38

4.1 Preliminaries 38

4.2 Previous Works on Clustering Based Partitioning 39

4.2.1 Multilevel Circuit Partitioning [2] 40

4.2.2 Cluster-Oriented Iterative-Improvement Partitioner [3] • 42

4.2.3 Section Summary 44

4.3 Problem Formulation 45

4.4 Clustering Based Acyclic Multi-Way Partitioning 46

4.5 Modified Fan-out Free Cone Decomposition 47

4.6 Clustering Phase 48

4.7 Partitioning Phase 51

4.8 The Acyclic Constraint 52

4.9 Experimental Results 57

vii

4.10 Chapter Summary 58

5 Network Flow Based Multi-way Partitioning 61

5.1 Preliminaries 61

5.2 Notations and Definitions 62

5.3 Net Modelling 63

5.4 Previous Works on Network Flow Based Partitioning 64

5.4.1 Network Flow Based Min-Cut Balanced Partitioning [4] • 65

5.4.2 Network Flow Based Circuit Partitioning for Time-multiplexed

FPGAs [5] 66

5.5 Proposed Net Modelling 70

5.6 Partitioning Properties Based on the Proposed Net Modelling . 73

5.7 Partitioning Step 75

5.8 Constrained FM Post Processing Step 79

5.9 Experiment Results 81

6 Conclusion 86

Bibliography 88

viii

List of Figures

2.1 VLSI Design Cycle 7

2.2 Physical Design Cycle 10

3.1 Graph Representation of a Circuit 15

3.2 Directed Graph Representation of a Circuit 16

3.3 General Delay Modelling 35

3.4 Gain Update Operations for a Net in the FM Algorithm 36

3.5 Logic Replication 37

3.6 Net Modelling 37

4.1 Multilevel Circuit Partitioning 41

4.2 CLIP 43

4.3 A Directed Acyclic Graph Representation of a Combinational

Circuit 46

4.4 Two Different Cones of a Node 49

4.5 Two Different Fan-out Free Cones of a Node 49

4.6 Results Obtained from Modified MFFC Decomposition and MFFC

Decomposition 50

4.7 Clustering Algorithm 51

4.8 Find Cluster Algorithm 52

4.9 Fan-in Node Selection in the Clustering Phase 53

4.10 The Network Before and After Clustering 54

4.11 Partitioning Algorithm 54

ix

4.12 Find Partition Algorithm 55

4.13 An Example of the Clustering Phase 55

4.14 An Example of the Partitioning Phase 56

5.1 Transformation of hypergraph to a edge-capacitated network . • 64

5.2 Net Modelling of Combinational Net for Time-multiplexed FPGA

circuit partitioning 67

5.3 Net Modelling of Sequential Net for Time-multiplexed FPGA

circuit partitioning 68

5.4 Network Flow Based Multi-way Precedence Constrained Parti-

tioning 69

5.5 C-edges and S-edges 71

5.6 Net Modelling of Combinational Nets 72

5.7 Net Modelling of Sequential Nets 73

5.8 Uni-directional Cut 76

5.9 Multi-directional Cut 77

5.10 Multi-way Partitioning with Combinational Paths Cut by the

Partitions at Most A; - 1 times 78

5.11 Cut-size Reducing in the Post Processing Step 80

V

List of Tables

4.1 Characteristics of the Benchmarks 59

4.2 Results of Different Partitioning Algorithms 59

4.3 Runtime and Cut-size of Our Algorithm 59

5.1 Characteristics of the Benchmarks 82

5.2 Results of Our Algorithm Before and After the Constrained FM

Post Processing (8-Way Partitioning) 83

5.3 Results of Our Algorithm Before and After the Constrained FM

Post Processing (16-Way Partitioning) 84

5.4 Comparison of the Cut-size Results of our Algorithm with K-

FM and R-FM (8-Way Partitioning) 85

5.5 Comparison of the Cut-size Results of our Algorithm with K-

FM and R-FM (16-Way Partitioning) 85

5.6 Comparison of the Cut-size Results of this Network Flow Based

Algorithm and the Clustering Based Algorithm in Chapter 4

(8-Way Partitioning) 85

xi

Chapter 1

Introduction

1.1 Preliminaries

Today, the sizes of computers or electronic appliances are becoming smaller

and smaller. It would be difficult to imagine that a tiny chip is actually

consisted of billions of transistors. The advanced technology on fabrication of

VLSI (Very Large Scale Integration) circuits has made the size of a chip as

small as a nail possible. Indeed, it is a complicate process from the design

to the fabrication of a single chip. It involves a large number of steps and

a huge amount of computational power. In this thesis, we will concentrate

on one important aspect in the physical design process, which is, the circuit

partitioning problem.

1.2 Motivations

In VLSI system design, it is common that a system is consisted of millions of

transistors. Such a huge circuit is hard to be managed efficiently. As a result,

decomposition of these complex systems into finer sub-systems is important.

Each sub-system can then be designed and further improved independently

and simultaneously to make the design process faster and simpler.

1

Chapter 1 Introduction 2

Partitioning plays an important role in the physical design cycle of VLSI

circuits. A good partitioning of a system will lead to feasible solutions for the

succeeding processes such as floorplanning, placement and routing. As the in-

terconnection delay between partitions are relatively large and not preferable,

we usually need to reduce the number of interface connections between sub-

systems, which is called the min-cut problem in the partitioning process. A

min-cut partitioning can minimize the number of interconnections. However,

one combinational path may be cut by the partitions several times. As the

overall delay of a circuit is the delay along the critical paths, multiple cuts on a

single combinational path will affect the delay of the whole circuit. Therefore,

the number of cuts along a path is also an important aspect to be considered

beside the cut size. In order to improve the performance of the circuit, the

number of partitioning cuts along each path must be considered.

Acyclic partitioning is an effective way to upper bound the largest number

of inter-partition delay along any path. The acyclic multi-way partitioning

problem was defined in [6]. It differs from the general partitioning problem

because it restricts the edges between different partitions from forming a di-

rected cycle. An acyclic partitioning ensures that all paths are cut by the

partitions by at most k - 1 times only where k is the number of partitions.

This can effectively reduce the delay caused by the partition cuts. Although

the number of partition cuts along any path is limited, the partitioning solu-

tion may be over constrained. As the overall delay of a circuit is defined by

the delay along the longest combinational path, some solutions with better cut

sizes may be eliminated because of the acyclic constraints. Some move based

algorithms like FM can be applied in such a process to improve the cut size as

a post-processing step.

Chapter 1 Introduction 3

1.3 Contributions

We studied some previous works on circuit partitioning. In order to reduce the

delay of the circuit, the number of cuts along each path must be considered.

We proposed two approaches to solve the problem. One is based on the clus-

tering technique, and the other is based on the network flow technique. The

basic idea of these two approaches is to maintain an acyclic partitioning on all

the combinational paths. Both of these two approaches aim at minimizing the

number of cuts along the critical path.

In the first method, a clustering based approach is used. We developed

a new acyclic multi-way partitioning algorithm. A modified fanout free cone

decomposition is used to pre-cluster a given network. This decomposition ef-

fectively reduces a given network to a smaller and sparser one and maintain

the acyclic property of the network. After that, a modified version of this

decomposition step will be used again to further partition the clustered net-

work into the desired number of partitions. The size constraint is set to the

predefined partition size in the partitioning phase as we want to fill up each

partition as much as possible.

The second method is a network flow based approach. We proposed a net

modelling method to ensure an acyclic partitioning when the Max-Flow Min-

Cut algorithm is applied. We successfully limit the number of cuts of each

combinational path to A: - 1 by applying the Max-Flow Min-Cut algorithm

where k is the number of partitions. Then a FM post processing improvement

step is applied on the resultant partitioning to further improve the overall cut-

size. Our proposed algorithm can reduce the delay of the circuit caused by

the repeated inter-partition cut efficiently while considering the cut-size at the

same time.

Chapter 1 Introduction 4

1.4 Organization of the Thesis

After this brief introduction, there will be an overview of the VLSI physical

design cycle in Chapter 2. It includes some background knowledge about VLSI

design cycle and physical design cycle.

In Chapter 3’ we will describe some recent approaches on circuit parti-

tioning. It starts with a study of circuit representation, delay modelling and

partitioning objectives. Some typical partitioning algorithms will be revised.

Delay driven circuit partitioning and acyclic partitioning will also be discussed.

Ill Chapter 4，our clustering based approach to solve the acyclic multi-way

partitioning problem will be presented. We will start with an introduction

to some existing approaches and techniques in clustering based partitioning.

Then, an overview of our approach will be provided, followed by the details of

our algorithm. The experimental results and a conclusion will be presented at

the end.

In Chapter 5, we will present our network flow based partitioning algo-

rithm. Previous works on net modelling and network flow based partitioning

will be introduced. We will then propose our net modelling for acyclic par-

titioning. The properties and effects of our net modelling method will be

discussed. Lastly, the experimental results and a conclusion will be given.

A conclusion of this thesis will appear in Chapter 6.

Chapter 2

VLSI Physical Design

Automation

2.1 Preliminaries

The applications of computing facilities are more and more common today. It

is not surprising to find that we are surrounded by a huge number of com-

puter related machines in daily life, such as our personal computers, the ATM

machines which were commonly adopted, and many electronic appliances. In-

tegrated Circuits (IC) are one of the essential components of those computing

facilities. To perform complicate calculations, the chips inside a computer

consists of millions of transistors, which are refereed as Very Large Scale Inte-

gration (VLSI) chips. As the complexities of computers increase from time to

time, the number of transistors involved increases accordingly. On the other

hand, it is favorable to keep the size of the chips as small as possible. Therefore,

the problems encountered during the chip design process has become more and

more difficult and complicate.

In a VLSI design process, several steps will be involved. Details will be

discussed in Section 2.2. As physical design is a very important step in the

VLSI design cycle, we will focus on it in Section 2.3, followed by a summary

5

Chapter 2 VLSI Physical Design Automation 6

in Section 2.4.

2.2 V L S I Design Cycle [1

To produce a packaged chip, we need to go through a series of steps. A flow

chart of the VLSI design cycle is shown in Figure 2.1. Details of each step are

described as follow:

2.2.1 System Specification

It is necessary to list out important aspects of the system, such as what the

system can perform and what constraints are required to be satisfied. These as-

pects include the functionality of the system, the size constraints of the system

and the expected performances, etc. Engineers will work on the subsequent

design to fulfill this specification.

2.2.2 Architectural Design

This is a step to design the basic architecture of the system, such as how many

ALUs will be used, and what is the size of the cache, etc. Architects can

estimate the power consumption and the system performance basing on this

architecture, which can help to estimate whether the specification can be met.

2.2.3 Functional Design

This is a step to specify the behavior of the system, without specifying the

detailed internal design. This can be done by stating the inputs and outputs

of each unit. Besides, interconnections between different units will also be

defined.

Chapter 2 VLSI Physical Design Automation 7

‘ System ^
Specification J

‘ Architectural ^
Design J

Functional Design!

> ‘

Logic Design I

Circuit Design I

厂 I
Physical Design I

> ‘ r \

Fabrication I

‘ Packaging & ~ ^
Testing J

Figure 2.1: VLSI Design Cycle

Chapter 2 VLSI Physical Design Automation 8

2.2.4 Logic Design

Aspects like the control flow of the systems and the logic operations in each

circuit will be defined in this step. Boolean expressions will be used to describe

the logic operations. Those expressions will be simplified as much as possible in

order to make the design compact. Simulation and testing will also be carried

out to verify the correctness of the system.

2.2.5 Circuit Design

Circuit representation of the system can be made basing on the logic design.

In this step, the speed and performance of the circuit will be taken into ac-

count. Circuit elements and the interconnections between these elements will

be defined.

2.2.6 Physical Design

In physical design, engineers will convert the circuit design into a geomet-

ric representation, which is called a layout. There are many aspects to be

considered, such as where to place the elements, how the interconnections be-

tween the elements should be made, what the most favorable dimensions of the

chip is, etc. These steps are actually very complex and each involves several

sub-steps. A detailed discussion of physical design can be found in the next

section.

2.2.7 Fabrication

This is the step that produces the chip from its physical design. The electronic

components are built by layering different materials onto a base made of silicon,

which is called a wafer. A large wafer can be used to produce many chips.

Prototypes will first be made for testing before mass production of the chips

Chapter 2 VLSI Physical Design Automation 9

is carried out.

2.2.8 Packaging and Testing

After testing and checking the prototype, the chips will be mass produced.

Before packaging each individual chip, a final verification will be performed

to ensure that all the requirements are fulfilled and the chip is functioning

properly.

2.3 Physical Design Cycle [1

Given a circuit representation of the design, engineers will try to produce an

exact layout of the design in the physical design step. The steps involved in

physical design are shown in Figure 2.2 and details are discussed as follows:

2.3.1 Part it ioning

Breaking down a big problem into smaller sub-problems is always a good strat-

egy to solve complex problems. As the complexity of the chip design process

increases, it is nearly impossible to design the whole chip all at once. Thus,

in the first step of physical design, engineers attempt to partition the circuit

into sub-circuits, which are called blocks, in order to make the design process

simpler and more efficient. After the decomposition, each sub-circuits can then

be designed and managed simultaneously and efficiently, which can greatly re-

duce the complexity of the subsequent designing steps. Factors like the sizes

of the blocks, the dimensions of the blocks and the interconnections between

different blocks should be taken into account.

Chapter 2 VLSI Physical Design Automation 10

J Y
Partitioning I

> ‘

Floorplanning & ^
Placement I

y ‘

Routing I

>

Compaction I

> ‘

Extraction & ^
Verification I

Figure 2.2: Physical Design Cycle

Chapter 2 VLSI Physical Design Automation 11

2.3.2 Floorplanning and Placement

Placing the blocks in such a way that all the constraints in area, block di-

mensions, interconnect length and delay, etc., are satisfied is the main concern

in this step. Floorplanning is the planning step to design how to place the

blocks. A compact design is favorable, but there are many important aspects

that should also be considered. For example, issues like the dimensions of each

block and the overall delay should also be taken into account.

After the planning step, the blocks will be placed exactly onto the chips

and this step is called placement. After this step, the dimensions of each block

and their positions are fixed. Floorplanning and placement are important as it

affects the ultimate design significantly and determines whether the required

specifications can be met.

2.3.3 Routing

This step aims at completing all the interconnections between the blocks. Ob-

jectives like minimizing the total wire length, minimizing the number of vias

and minimizing the critical delay etc. should be considered. This step can be

further divided into two sub-steps:

1. Global Routing: Planning different routes in a global view, without

fixing the exact path of each route. It is a rough plan to check whether

completing all interconnections is possible.

2. Detailed Routing: Complete each connection by giving exact informa-

tion such as the exact positions of the wires on the metal layers. After

detailed routing, the geometric layouts of all the nets will be known.

There may be cases in which some of the connections cannot be routed.

In such a situation, the technique rip-up and re-route, i.e. removing some of

Chapter 2 VLSI Physical Design Automation 12

the routed connections and re-route them in a different order, will be used.

If there are still connections that cannot be routed at the end, engineers may

need to go back to the earlier steps in the physical design cycle or even to the

login designing step and start the whole process all over again.

2.3.4 Compaction

As mentioned before, it is desirable to have a chip design as small as possible.

In this step, the layout will be compressed from different directions in order to

make the total area smaller. As the total area is smaller, the wire lengths will

be reduced, and thus the delay will also be reduced. During the compaction

process, rules regarding the design should be checked to make sure that there

is no violations.

2.3.5 Extraction and Verification

As the whole design process is an extremely complex process, verification of

each step is a must to ensure that everything works well before proceeding

to the fabrication step. It is necessary to make sure that no design rules is

violated in the final layout, such as the wire separation rule and the aspect

ratio rule etc. Besides, the functionalities of the circuits should also be verified

before proceeding to the next step. If any problem is discovered, engineers

may need to go back to the earlier designing steps to fix the problem.

2.4 Chapter S u m m a r y

Producing a thumb-big chip is a time consuming process. There are many

steps to go through, and many of which are computational expensive. Many

algorithms have been developed in CAD (Computer Aided Design) tools to

help accomplishing the tasks, but there are still many unresolved problems

Chapter 2 VLSI Physical Design Automation 13

and new challenges to be explored.

Physical design is a critical stage in the VLSI design process. In the physical

design process, circuit partitioning is a crucial step and our research will be

focused on performance driven circuit partitioning.

Chapter 3

Recent Approaches on Circuit

Partitioning

3.1 Preliminaries

Circuit partitioning is a critical stage in VLSI design. Today, it is usual that

a circuit contains several millions of transistors. The huge size makes the cir-

cuit designing problem not human manageable. Circuit partitioning is used

to break down a complex system into smaller subsystems, such that the de-

signers can manage the simpler subsystems separately. Each subsystem can

be designed independently to speed up the design process. Partitioning will

affect the performance of the whole circuit, such as the delay caused by inter-

partition connections. Good partitioning techniques can improve the overall

performance of the circuit. As the size and complexity of VLSI designs has

increased rapidly in recent years, the development of good partitioning algo-

rithms and tools are essential.

In this chapter, we will present some background on circuit partitioning like

circuit representation and delay modelling. Some commonly used partitioning

objectives will be discussed, which is then followed by several well-known par-

tition algorithms.

14

Chapter 3 Recent Approaches on Circuit Partitioning 15

3.2 Circuit Representation

In order to apply a partitioning algorithm to a given circuit, we must first

transform the circuit into a suitable representation. Recent approaches usually

attempt to solve the circuit partitioning problem by representing the circuit

as a graph. Graph is a straight forward representation of a network of gates

or modules, and the circuit partitioning problem can then be solved by some

graph partitioning methods in this way. A graph G{V, E), where V is a set of

nodes representing the circuit components such as logic gates, flip-flops，inputs

and outputs, and E is a set of edges representing the nets in the circuit con-

necting the circuit components. A feasible graph representation is illustrated

in Figure 3.1.

• Intput/Output

__•)) 〇 Gate

Figure 3.1: Graph Representation of a Circuit

Besides the basic circuit information, the signal flow direction can also be

integrated into the graph representation. It can be done by changing the edges

in the graph to directed edges. A directed graph representation is essential in

some partitioning problems such as unidirectional cut partitioning problem,

Chapter 3 Recent Approaches on Circuit Partitioning 16

acyclic partitioning problem, timing driven partitioning problem, etc. A di-

rected graph representation is illustrated in Figure 3.2.

• Intput / Output

〇 Gate

D l d — 1 I ^ n

D � � -

Figure 3.2: Directed Graph Representation of a Circuit

A circuit partitioning problem of aims at separating the set of nodes into

two or more disjoint subsets while optimizing the objective function. The most

typical objective is to minimize the total number of inter-partition edges. It

is called the min-cut objective. Beside the min-cut objective, there are sev-

eral other objectives which will be discussed in details in the following sections.

3.3 Delay Modelling

The delay of a partitioned circuit is an important aspect to be considered in

circuit partitioning. In most high performance systems today, the partition-

ing algorithm is required to be performance driven, that is, to minimize the

overall circuit delay. In order to evaluate the delay of a partitioned circuit, an

appropriate delay model is needed. In this section, we will introduce some of

them.

Chapter 3 Recent Approaches on Circuit Partitioning 17

The delay of a combinational circuit is the longest delay among all the

paths from a primary input to a primary output. The delay of a sequential

circuit is the longest delay among all the combinational paths of one of the

following four types:

1. Primary input to primary output: PI — PO

2. Primary input to flip-flop: PI —> FF

3. Flip-flop to primary output: FF — PO

4. Flip-flop to flip-flop: FF — FF

There are two basic models for estimating the delay of a circuit. They are

the unit delay model [7] and the general delay model [8]. In the unit delay

model, all gate delays are assumed to be zero. The interconnections connecting

gates ill the same partition are assumed to have zero delay. The interconnec-

tions connecting gates in two different partitions are assumed to have one time

unit delay. In the general delay model, each gate has an intrinsic gate de-

lay. Again, the interconnections connecting gates in the same partition are

neglected. A delay of D time units, where D is a constant, is accounted for

each interconnection connecting gates in two different partitions. An example

is shown in Figure 3.3.

We can deduce the delay of a combinational circuit using the two delay

models as discussed in [9]. Each node v has an intrinsic gate delay i{v). For

each V e V, d{v) is defined as the maximum delay along any path starting

from a primary input node and ending at v. d{s) is zero when s e PI where

PI is the set of primary input nodes. The delay values of all the other nodes

can be calculated using the following formula:

Chapter 3 Recent Approaches on Circuit Partitioning 18

d{v) = max {d'{u)} + i{v)
u£fanin{v)

{d{u) if u and v are in the same partition or u is a PI |

d(u) + D if u and v are not in the same partition)

The notation fanin{v) represents the fan-in of node v. If one of the nodes

is a primary input (P /) or a primary output (PO), there is no need to add

the value D to it. It is because we assume that primary input and output

nodes can physically be assigned to any partition without affecting the area

and delay. By applying this calculation recursively until all nodes are visited,

the delay of a combinational circuit can be computed which is equal to the

maximum value of d{v) where v G PO.

As mentioned before, the delay of a sequential circuit is the longest de-

lay among all the combinational paths of one of the following four types:

PI — PO, PI 4 FF, FF — PO and FF — FF. The delay of a se-

quential circuit can be computed using the method for combinational circuit

by replacing each FF by a PI node and a PO node. Replace each edge that

is connected to the FF node originally by an edge connecting to the corre-

sponding PO node and replace each edge that is connected from the FF node

originally by an edge connecting from the corresponding PI node. The circuit

is reduced to a combinational one in this way. By computing the maximum

delay among all the combinational paths, we can deduce the delay of the orig-

inal sequential circuit.

Chapter 3 Recent Approaches on Circuit Partitioning 19

3.4 Partitioning Objectives

In this section, we are going to introduce some constraints and objectives for

the circuit partitioning problem. In real life, we need to deal with one or more

of the following parameters at the same time.

3.4.1 Interconnections between Partitions

In a partitioned circuit, the delay between partitions are considered relatively

large and not preferred. Also, the number of terminals in each partition is

limited. In order to satisfy these constraints and requirements, circuit par-

titioner must consider the impact of the number of interconnections between

partitions. The number of interconnections between partitions should be min-

imized and this is the most typical objective in circuit partitioning. We call it

the min-cut partitioning problem.

3.4.2 Delay Minimization

The performance of a circuit depends on the delay along the critical paths of

the whole circuit. As discussed before, the delay between partitions are con-

sidered relatively large and not preferred. Although the cut-size minimization

objective can reduce the probability that a critical path crosses the parti-

tions multiple times, it does not guarantee any delay minimization. For the

objective of delay minimization, we are required to minimize the number of

inter-partition cuts along the critical paths.

Chapter 3 Recent Approaches on Circuit Partitioning 20

3.4.3 Area and Number of Partitions

If we had no limitations on the area and the number of partitions, the result-

ing partitions would be too large or too small, or there would be too many

partitions. If a partition is too large, the entire partition cannot be fitted into

a chip or a module. If a partition is too small, there will be a wastage of

resources. On the other hand, a large number of partitions may result in an

increase in the number of inter-partition interconnections. A small number of

partitions may leave the design of the sub-circuit still too complex for han-

dling. In circuit level design, partitions of balanced-sizes are preferred, given

the required number of partitions.

3.5 Partitioning Algorithms

Many algorithms have been proposed to deal with the partitioning problem.

In this section, we will review some well-known algorithms to solve the cir-

cuit partitioning problem, we will classify the algorithms according to their

partitioning objectives. The first one is cut-size driven partitioning. It is the

most typical problem in circuit partitioning. It aims at minimizing the num-

ber of interconnections between partitions. The second one is delay driven

partitioning. It aims at minimizing the delay of the final partitioned circuit.

The third one is acyclic partitioning problem. It aims at producing an acyclic

partitioning solution. The delay driven partitioning problem and the acyclic

partitioning problem are closely related to our research which will be intro-

duced in Chapter 4 and Chapter 5.

Chapter 3 Recent Approaches on Circuit Partitioning 21

3.5.1 Cut-size Driven Partitioning Algorithm

In this section, we will review several well-known cut-size driven algorithms.

The objective of these algorithms is to obtain two balanced partitions with the

cut-size minimized or with a ratio balanced cut-size between the two partitions

minimized.

Firstly , we will introduce some iterative improvement approaches, the

Kernighan-Lin {KL) Algorithm [10] and the Fiduccia-Mattheyses (F M) Al-

gorithm [11]. They are all iterative improvement algorithms using greedy strat-

egy. KL and FM starts with an initial partitioning, and components are then

moved between the partitions to improve the cut-size. The process stops when

a local minimum is reached. As the solution of the KL and FM algorithm

may be trapped in local minima, multiple trials with different initial partitions

are needed for higher quality solutions.

After that, we will introduce some stochastic searching approaches. They

are the Simulated Annealing approach and the Genetic Algorithm. Simulated

Annealing {SA) is a general purpose searching technique. It mimics the process

of metal cooling and freezing into crystalline structure with minimum energy

(the annealing process). The current solution is updated until a terminating

condition is reached. Genetic Algorithm {GA) is a class of searching method

inspired by genetic evolution. It simulates the natural selection process in

evolution to locate good solutions. It starts with a set of random solutions

(population). The population evolutes over generation and is replaced by the

offspring in the next generation. The population is refined gradually during

the evolutional process.

Then, we will introduce the network flow based approaches. The network

Chapter 3 Recent Approaches on Circuit Partitioning 22

flow based approaches use the technique and characteristics of the Max-Flow

Min-Cut computation to solve the partitioning problem.

A number of heuristic steps have been developed to improve the partition-

ing algorithms. They include logic replication [4’ 12，13], multilevel approach

2’ 14] and clustering [2]. In logic replication, some nodes are selected and du-

plicated in two or more partitions in order to reduce the cut-size. In multilevel

approach, a sequence of successive grouping steps will be applied to the nodes

in the circuit until the number of nodes is smaller than a given threshold. Af-

ter the grouping steps, a move based partitioning algorithm such as FM will

be applied to the clustered circuit to obtain a bisection. The next step is to

un-group the nodes at the highest level in the partitioned result and use it as

the initial solution for the next FM computation. Clustering [2] is another

useful pre-processing step that groups the nodes in a network into clusters.

This can significantly reduce the problem size and produce a simpler clustered

network before applying a partitioning algorithm.

Kernighan-Lin (KL) Algorithm [10

The Kernighan-Lin {KL) algorithm is based on pairwise swapping of cells

between two partitions in order to maximize the gain after swapping. The

gain of a pairwise swapping is the change in the number of inter-partition

connections after the swapping. The greater the gain, the smaller the cut-size

is resulted after the swapping. The KL Algorithm is the first well known and

widely extended partitioning heuristic. It is a local searching algorithm and

produces partitions of equal size. The gain of swapping a pair of cells a and b

where a e A and b e B is defined as follow:

Gab = Da -hDb- 2Cab

Chapter 3 Recent Approaches on Circuit Partitioning 23

where Cab = cost between cell a and cell b

Di = External cost of cell i - Internal cost of cell i

—EyeB Ciy — J2xeA Cia：

(Assuming that cell i is in partition A)

The algorithm starts with an edge weighted graph which is partitioned into

two subsets (A, B) initially, where |A| = 二 n. The algorithm will work

in an iterative manner. The gain value for each pair (a, b) where a e A and

b e B is first computed. The pair having the maximum gain will be exchanged

temporally and locked, so that the two swapped nodes will not be swapped,

again. The gain value Qi of the selected pair will be recoded and the new gain

values for those remaining free nodes will be updated. Then, the next pair of

nodes with the maximum gain will be selected and exchanged. This swapping

process will be repeated until all nodes are locked. Finally, a /c is chosen to

maximize the value of G 二 9i • If � 0， i t means that a reduction in the

number of inter-partition connections can be made by swapping the selected

nodes between A and B. Permanent swapping will then be performed up to

and including step k to maximize the overall gain. A new partition is obtained

and this is defined as one pass. In the next pass, the same process will be

repeated using the result of the previous pass as the starting partition. These

passes will be performed until there is no further improvement in cut-size (i.e.,

G < 0). The time complexity of a simple implementation of the KL Algorithm

is 0{n^) per pass.

The KL Algorithm has been widely used in industry because of its effec-

tiveness and its simple implementation. However, the time complexity of the

Chapter 3 Recent Approaches on Circuit Partitioning 24

algorithm is quite high. In addition, this approach is not flexible for unbal-

anced partitioning since the KL algorithm will always result in a balanced

partitioning.

Fiduccia-Mattheyses (FM) Algorithm [11

In view of the drawbacks of the KL algorithm, Fiduccia and Mattheyses pre-

sented a new algorithm to modify KL Algorithm in 1982. In the new algorithm,

the run time of one pass is reduced to linear. Similar to KL, FM starts with

a balanced partition {A, B). It moves a cell to the opposite partition in each

step instead of swapping a pair of cells as in the KL algorithm. The algorithm

works in an iterative manner. The gain value of each cell is first calculated

and the cell with the highest gain value will be moved to the opposite parti-

tion. One important feature of the major characteristic of the FM algorithm

is that it considers the gain updates of the critical nets only. We will discuss

in details the definition of a critical net and the gain calculation process later.

A free cell with the highest gain will be chosen to be moved to the opposite

partition temporally and locked if the balance ratio constraint is preserved

after the move. The value of the balance ratio r is specified by the user and

is defined as |>1|/(|A| + \B\) for a partitioning (A, B). To maintain the bal-

ance ratio constraint, the following situation must be satisfied after each move:

rW - Smax < 1^1 < + Smax

where W =\A\-\- \B\ and Smax is the maximum size of a cell

If the movement is allowed, the gain value gi of such move will be recorded.

The process continues until all the cells are locked. Similar to the KL algo-

rithm, a k will be chosen to maximize the value oi G = 9i • Permanent

swapping will be performed up to and including the step k to maximize the

Chapter 3 Recent Approaches on Circuit Partitioning 25

overall gain. A new partitioning is obtained and this is defined as one pass.

In the next pass, the same process will be repeated using the result of the

previous pass as the starting partition. These passes will be performed until

there is no further improvement in cut-size (i.e., G < 0).

One important observation of the FM algorithm is that the number of gain

update due to a net is limited. For a bipartition {A, B), a net is regarded as

a critical net if the move of a cell on it will result in a change in cut-size due

to this net. Notice that a net is critical either A{n) or B{n) is equal to 0 or

1, where A{n) and B{n) are the number of cells of net n in partition A and B

respectively. Besides, a net will never critical again if it has one locked cell on

each partition.

The authors have proved that no more that four update operations are

performed for each net in one pass of the algorithm. An example is shown in

Figure 3.4.

In KL, the dominant factor in determining the time complexity is the se-

lection process in finding the pair of modules with the largest gain. This takes

O(n^) time. In FM, two sorted bucket lists are maintained to improve the

runtime complexity of the cell selection process. Besides, it is proved that the

number of updates in one pass due to a net is upper bounded by a constraint.

The runtime of one pass of the FM algorithm can be done in 0(m) time where

m is the number of net. Besides, the single cell movements in FM provides

flexibility for unbalanced partitioning.

Chapter 3 Recent Approaches on Circuit Partitioning 26

Simulated Annealing (SA)

Simulated Annealing (SA) is a general purpose searching technique. It mimics

the process of metal cooling and freezing into crystalline structure with min-

imum energy (the annealing process). The algorithm was originally proposed

in [15] for finding the equilibrium configuration of a collection of atoms at a

given temperature. The idea of using SA as an optimization tool is introduced

in [16]. However, it is suggested in [17] and the author proposed to use it as a

general technique for different optimization problems.

In [18], the authors apply the Simulated Annealing technique in the cir-

cuit partitioning problem. Given a randomly generated partitioning solution,

a node is selected randomly to move from one partition to another partition

in each iteration of the annealing process . The gain of a move is defined by

the following ratio cut formula which is proposed in [19]:

Gain = c w 力 .

where \A\ and \B\ is the size of the two partitions

If the movement gives a better gain {GaiUnew — GaiUoid < 0), the move

will be accepted. However, if the movement does not give a better gain, SA

will still accept the move with probability eT叩、where 6 is the change in the

gains of the two solutions, and T is the current temperature value, which is

controlled by the cooling rate of the annealing process. This is defined as one

iteration. SA can prevent the candidate solution from trapping in a local min-

ima by accepting a worse solution with a certain probability. The temperature

value T is a function of the number of moves performed. After each iteration,

T will be scaled down by a cooling faction a where 0 < a < 1. The algorithm

stops if there is no changes in the gain of the solution after t iterations.

Chapter 3 Recent Approaches on Circuit Partitioning 27

Genetic Algorithm (GA)

Genetic Algorithm is a class of searching methods inspired by genetic evolu-

tion. It is initialized by Darwin's theory of natural selection of evolution [20 .

GA starts with a set of random solutions (population) of the problem. Unlike

other searching techniques, it operates on a population of solutions instead of a

single solution. The population evolves over the generations and is iteratively

replaced by the offspring in the next generation.

The use of Genetic Algorithm to solve the partitioning problem is proposed

in [21]. The authors suggested to encode a partitioning solution as a binary

string of C genes where C is the number of nodes in the graph. Each gene

represents the partition to which each node belongs. For example, the string

100101] represents a graph of six nodes where node 1, 4 and 6 are assigned

to partition one, and node 2,3 and 5 are assigned to partition two. As stated

before, GA starts with a set of random solutions (population). In the partition-

ing problem, we need to ensure that the random solutions in the population

represent balanced partitionings.

In each iteration, two solutions are selected from the population as the

parents. The probability for selecting an individual as a parent is proportional

to its fitness value. The fitness value Fi of a solution i is defined as follow:

Fi = (a - a) + (a - a) / 3

where Cyj is the largest cut-size in the population

Cb is the smallest cut-size in the population

Ci is the cut-size of solution i.

Chapter 3 Recent Approaches on Circuit Partitioning 28

The two selected solutions, which are called parents, will then crossover

and mutate to give a new solution. During the crossover, the parents will be

mixed partially to generate a new solution. In such a process, an unbalanced

partitioning solution may be resulted (number of ones + number of zeros).

The mutation process will then be applied to randomly complement some bits

of the solution to make it a valid balanced partitioning. The new solution will

be added to the population while the solution with the lowest fitness values

will be removed from the population. By repeatedly applying this process to

the population, the quality of the population will be improved. The algorithm

stops when there is no improvement after N generations where N is given by

the user and the final solution will be the smallest cut-size solution Cb in the

population.

Network Flow Approach

The network flow based approach makes use of the Max-Flow Min-Cut algo-

rithm to partition a circuit. The network flow technique can find a min-cut

bipartition which is not necessarily balanced. The time complexity of the Max-

Flow Min-Cut computation is 0{\V\\E\) where \E\ is the number of edges and

V\ is the number of vertices.

In order to apply the Max-Flow Min-Cut algorithm in circuit partitioning,

we must first model the circuit in such a way that the Max-Flow Min-Cut

computation can be applied. This is called net modelling. We can model a

circuit by a graph G such that when we apply the network flow algorithm,

the min-cut in G is equal to the min-cut in the real circuit. Besides, only a

two-way partition can be obtained in applying the Max-Flow Min-Cut compu-

tation once, a general method to obtain a balanced or multi-way partitioning

is by performing the Max-Flow Min-Cut algorithm recursively. However, this

Chapter 3 Recent Approaches on Circuit Partitioning 29

approach may increase the time complexity. Some good heuristics can be used

to generate a balanced partition or an r-balanced partition. In the method

proposed in [22], after applying the simple Max-Flow Min-Cut computation

to obtain a min-cut, the sizes of the two partitions S and T are checked. It

tries to obtain a balanced partition in a recursive manner. If the size is too

small, all the nodes in S and a node chosen from T are collapsed to the source

s. By increasing the flow in the current network, a different cut-size with a

larger S will be found. Similarly, if the size |5| is too large, all the nodes in T

and a node chosen from S are collapsed to the sink t. The Max-Flow Min-Cut

computation will be applied repeatedly until the desired size is obtained.

In this thesis, we have also proposed a network flow based partitioning

method, which will be introduced in Chapter 5. Detailed discussions on flow

network and net modelling will be given in Chapter 5.

Clustering Approach

The sizes of the partitioning problems grow significantly in recent years. In

order to deal with complicated circuit, a pre-processing step, clustering, is pro-

posed and applied to the partitioning problem to improve the efficiency of the

subsequent partitioning method and the solution quality. The clustering steps

will group the strongly connected nodes in the original circuit together to form

clusters. This can reduce the problem size significantly. As the nodes in one

cluster will be treated as one node in the subsequent partitioning method, the

nodes in the same cluster will be assigned to the same partition in the final

solution. Since the aim of the cut-size driven partitioning algorithms is to min-

imize the cut-size between partitions, it is good to put the strongly connected

nodes in the same cluster to reduce the inter-partition cut-size.

Chapter 3 Recent Approaches on Circuit Partitioning 30

However, the clustering technique alone cannot produce a partitioning so-

lution and it is usually applied together with some iterative algorithms like

the FM algorithm. Since clustering can reduce the problem size significantly,

it is useful in solving large size problems. However, since some nodes are pre-

clustered and they will not be separated again in the subsequent partitioning

method, some good solutions with small cut-size will be eliminated.

Multilevel Approach

In a multilevel approach, the partitioning process is performed in a hierarchical

structure which is divided into two phases, coarsening and uncoarsening. In

the coarsening phase, node which are strongly connected will be grouped to-

gether recursively. For example, given an original circuit which is represented

by a hypergraph, Hq, a new hypergraph Hi is obtained from Hq by grouping

the strongly connected nodes together. This coarsening step will be applied

to the hypergraph Hi again to give another hypergraph H2. This step will

be repeated until the number of node in the condensed hypergraph is smaller

than a given threshold.

In the uncoarsening phase, a move based partitioning algorithm such as

the FM algorithm will be applied to the hypergraph H^, A partitioning

solution will then be obtained. The next step is to un-group the nodes in the

partitioned hypergraph Hn back to Hn-i without changing the partitioning

result. This un-grouped partitioning result will be used as the initial solution

for the next FM computation. This ungrouping and FM computation steps

will be applied to the hypergraph repeatedly until all the nodes in the original

hypergraph Hi are obtained. A partition of the original circuit will then be

obtained at the end.

Chapter 3 Recent Approaches on Circuit Partitioning 31

Logic Replication

The logic replication technique can be used to reduce cut-size. This is done

by replicating some nodes from one partition to another. An example is il-

lustrated in Figure 3.5. Hwang and El Gamal proposed a min-cut replication

algorithm for determining the replication set for a /c-way partitioning such that

the cut-size of the partition is minimized [12, 13]. However, their algorithm is

not optimal in hypergraph. Yang and Wong proposed a Min-Cut Replication

Algorithm in [2]. This algorithm provides a method to find the min-area min-

cut replication sets in a partitioned hyergraphs optimally.

Given a bi-partitioned circuit, the algorithm first models it as a flow net-

work using the modelling as shown in Figure 3.6. In the bi-partitioned flow

network (f/, C/'), the source s is connected to the primary input nodes with

infinite capacity and the primary output nodes are connected to the sink t

with infinite capacity. A Max-Flow Min-Cut computation is then applied to

the flow network to obtain a, s — t min-cut. The replication set C is the set

of nodes that belongs to the sink side T except those which are originally in

partition U'. The set C is then duplicated in U' and new bi-partitioned circuit

becomes ([/, U'\jC). This method can be applied to the multi-way partition-

ing problem. Given a /c-way partitioned circuit {JJi,U2,…,f4)，the Max-Flow

Min-Cut computation will be applied to each pair {Si, Ui) for alH < /c where

Si = Uj}. The replication set obtained in each computation will be

replicated to the subset Ui. The time complexity is 0{k\V\\E\) where k is the

number of partitions in the circuit, V and E axe the numbers of vertices and

edges respectively.

Chapter 3 Recent Approaches on Circuit Partitioning 32

3.5.2 Delay Driven Partitioning Algorithm

In this section, we will review some delay driven partitioning algorithms.

Performance Driven Multiway Partitioning[23

In [23], the author proposed a relaxed acyclic partitioning algorithm for perfor-

mance driven partitioning problems. This algorithm can minimize the delay

and cut-size at the same time. It takes the delay caused by inter-partition

edges and the overall cut-size into account by cooperating them in the cost

function. Given a hypergraph representation of a circuit G{V, E), a biparti-

tion (S / , Bt) is obtain by sorting the nodes in topological order. The first half

of the nodes will be assigned to the first partition Bf and the other half will

be assigned to the second partition Bt. An A-counter and a R-counter are

defined for each node as follow:

a(工）二 r \{y\y e FO{x) a n d y G Bf}\ if X e Bf ^

a 1 \{y\y e FI{x) and y G Bt}\ if x e Bt I

, �f \{y\y G FI{x) and y e Bt}\ - a{x) if x e Bf \
r{x)= < >

I \{y\y e FO{x) and y e Bf}\ - a(x) if x e Bt)

FI(x) and FO{x) represent the fan-in and fan-out of the node x respectively.

The value r(x) represents the reduction in backward edges if x is moved to

the other partition. The R-counter will then be incorporated into the FM gain

function as follows:

h(x) = OL • g{x) + (3 . r{x)

Chapter 3 Recent Approaches on Circuit Partitioning 33

where a and (3 are the weighting constants subject to user adjustment and

g{x) is the gain value of cell x as defined in the original FM algorithm for

estimating the reduction of the overall cut-size. The cell movements in the

algorithm will be based on the value h{x) while the value of g{x) and r(x) will

be updated during the FM iterations.

3.5.3 Acyclic Circuit Partitioning Algorithm

The acyclic multi-way partitioning problem was defined in [6]. It differs from

the general partitioning problem in the requirement that the edges between

different partitions cannot form a directed cycle. As stated in [6], acyclic

multi-way partitioning finds applications in pipelining of multi-chip designs,

partitioning based logic minimization, and parallel circuit simulations. Beside,

acyclic partitioning is an effective way to upper bound the largest number of

inter-partition delay along a path. This can generally decrease the number of

partition cuts along the critical paths and the delay of the circuit will also be

reduced.

Acyclic Multi-way Partitioning of Boolean Networks [6]

Many existing partitioning algorithms have shown that pre-clustering can effec-

tively improve the solution quality. However, most of them do not take signal

directions into account. Therefore, it is not possible to apply them directly

to obtain acyclic partitionings. An algorithm with pre-clustering followed by

a restricted version of the FM Algorithm for acyclic multi-way partitioning

was proposed in [6]. As traditional clustering methods do not take signal di-

rections into account, it is not possible to apply them for acyclic clustering.

Therefore, a maximum fan-out free cone (MFFC) decomposition clustering

technique is used. The MFFC decomposition was proposed in [24] and it can

Chapter 3 Recent Approaches on Circuit Partitioning 34

produce an acyclic clustered network. After clustering the network, a k-way

acyclic FM algorithm will be applied on the condensed network and produce

a final partitioning. The k-way acyclic FM algorithm is similar to the origi-

nal FM algorithm. It constructs a /c-way acyclic partitioning by applying the

two-way algorithm recursively. For example, for a four-way partitioning, a

two-way partitioning will be first produced by applying the original two-way

algorithm. Then, each of these two partitions will be further partitioned into

two partitions. Beside considering the gain of a cell, the movement of a free

cell will be accepted only if the move does not violate the area constraints and

the acyclic constraints.

Chapter 3 Recent Approaches on Circuit Partitioning 35

Assume that D = 2 and gate delay = 1

O Combinational node

Sequential node

• Critical path

Delay = 6 Delay = 5

(a) (b)

Figure 3.3: General Delay Modelling

Chapter 3 Recent Approaches on Circuit Partitioning 36

Initial Before first move.

5 0 0 0 0 [L
A B C A B C

•

After first move. Cell gains Before second move,
are updated.

力 _ fi fi _ 庄
A B C A B C

After second move. Cell Before third move,
gains are updated.

m m \k • • w
A B C A B C

<

After third move. No more
operations since all cells are
locked.

C A B

Figure 3.4: Gain Update Operations for a Net in the F M Algor i thm

Chapter 3 Recent Approaches on Circuit Partitioning 37

^ ^ ^ Replication Set

^ vJ vJ
(a) There are 2 partitions, (b) After replication of the

and the cut-size is 3 set, the cut-size is
without replication. reduced to 1.

Figure 3.5: Logic Replication

yO
L - 4 : >

Figure 3.6: Net Modelling

Chapter 4

Clustering Based Acyclic

Multi-way Partitioning

The content of this chapter has been published in a paper in the proceedings

of the 13认 ACM Great Lakes Symposium on VLSI in 2003 [25].

4.1 Preliminaries

Many existing partitioning algorithms have shown that clustering can effec-

tively improve the solution quality. However, most of them do not take the

signal direction into account. Therefore, it is not possible to apply them di-

rectly to obtain acyclic partitionings. In [6], an algorithm based on the max-

imum fan-out free cone decomposition followed by a restricted version of the

FM algorithm was proposed for the acyclic multi-way partitioning problem.

In this chapter, we will show that a simple two-phase clustering process based

on a modified fan-out free cone decomposition can yield superior acyclic multi-

way partitioning than that in [6 .

Our algorithm is based on clustering by computing the modified fan-out

free cones. Fan-out free cone clustering can be used to reduce a graph to a

smaller and sparser one, and maintain the acyclic property at the same time.

38

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 39

Beside cut size consideration, the longest delay of a path is also an impor-

tant issue to be considered. Acyclic partitioning is an effective way to upper

bound the largest number of inter-partition delay along any path. The acyclic

multi-way partitioning problem was defined in [6]. It differs from the general

partitioning problem because of the restriction that the edges between differ-

ent partitions of a solution cannot form a directed cycle. Acyclic multi-way

partitioning finds applications in pipelining of multi-chip designs, partitioning

based logic minimizations, and parallel circuit simulations as described in [6 .

Experimental results showed that our algorithm compares favorably with the

previous best acyclic multi-way partitioning algorithm in cut-size.

In the following sections, we will discuss the acyclic multi-way partition-

ing problem and present a clustering based partitioning algorithm to solve

the problem. We will first present some previous works on clustering based

partitioning in Section 4.2. Then, we will formulate the multi-way acyclic

partitioning problem in Section 4.3. Our clustering based acyclic multi-way

partitioning method will be introduced in Section 4.4. The details of our al-

gorithm will be discussed in Section 4.5 to 4.8. In Section 4.9, we will present

some experimental results. Finally, a summary will be given in Section 4.10.

4.2 Previous Works on Clustering Based Par-

titioning

When dealing with very large circuits, the performance of the traditional group

migration partitioning techniques [10, 11] will be degraded. One solution is

to group the cell into a larger cluster. Using cluster techniques, the problem

size will be reduced. Most of the clustering methods are done in a bottom up

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 40

manner. This means that each cell belongs to its own cluster at first and these

clusters are gradually merged to form several larger clusters. In this section, we

will introduce some clustering techniques integrated with group migration ap-

proaches. Multilevel clustering [2] and Cluster-Oriented Iterative-Improvement

Partitioner [3] will be discussed in the following sections.

4.2.1 Multilevel Circuit Partitioning [2；

The multilevel partitioning method continuously clusters the cells into larger

clusters until the solution is tractable. Given a hypergraph representation of a

circuit, Ho, a new hypergraph Hi is obtained from Hq by grouping the strongly

connected nodes together. This step is called coarsening. This coarsening step

will be applied recursively process, i.e., this coarsening step will be applied to

the hypergraph Hi again and form a hypergraph H:. This will be repeated

until the number of node in the condensed hypergraph is smaller than a given

threshold. After the coarsening step, the move based partitioning algorithm

FM will be applied to the hypergraph H^. The FM algorithm is applied to

obtain an initial rough partitioning of these clusters. Secondly, the cluster is

uncoarening down a level. FM algorithm is applied again to refine the solu-

tion. These coarsening and refinement is repeated until the clusters are all

uncoarsened. An example is illustrated in Figure 4.1.

The strategy used to cluster the cells is greedy weighted matching algo-

rithm. Connectivity is the aspect used as the matching criterion. The higher

the connectivity between the cells, the greater the chance they will form a

new cluster. The connectivity is inversely proportional to the cell area and

the number of cells in their connected net. Before this multilevel circuit par-

titioning is proposed, two phase clustering method is used. The basic idea of

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 41

h H tt

彭 1 娜 ？ 麵

Figure 4.1: Multilevel Circuit Partitioning

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 42

two phase clustering are the same as multilevel clustering. The difference is

that two phase clustering will only coarsen the cells once from the first level to

second level. The FM algorithm is then applied to produce an initial solution.

Finally, uncoarsening and refinement is done from second level to first level.

Although two phases clustering is faster than multilevel clustering, the result

obtained may not be as good as the multilevel one. By using as many levels as

possible in multilevel clustering, the slower coarsening gives more chances for

the FM refinement to obtain better solutions. Furthermore, slower coarsening

reduces the differences between the partition instances in consequent levels.

The refinement takes fewer passes to converge so it will not take too long to

complete one problem instance.

4.2.2 Cluster-Oriented Iterative-Improvement Partitioner

3

Cluster-Oriented Iterative-Improvement Partitioner [3] (CLIP) is designed to

improve the weaknesses of the iterative partitiong algorithms. For the FM

algorithm, the selection of the base cell is based on the previous movement.

However, it is claimed to be shortsightedness. Besides, it will be easily trapped

into local minimas. The major idea of CLIP is to move strongly connected cells

to one partition sequentially. This strongly connected cells group is defined as

a cluster. The clusters themselves are weakly connected.

The objective of the algorithm is to move the cells in the same cluster to

one side. It means that clustes will not be cut and thus, result in small cut size

after partitioning. Once a cell in a cluster is moved from A to B, more weight is

given to the gain of its strongly connected neighbors to increase the probability

that they will also be moved to B. An example is shown in Figure 4.2. Like

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 43

traditional iterative group migration algorithm, CLIP starts with an initial

partition with initial gains computed. The cell with maximum gain is moved

first. After moving the first cell, the gains of all cells are reset to zero while

maintaining their original ordering in the bucket list structure. Only the gains

of the neighbors of the moved cell are updated. This process ensures that the

strongly connected cells group (cluster) will be moved to the same side with

higher priority. The algorithm repeated until all the cells are moved.

O I o o h o

o o — — • > 〇

^ o o 〇 〇

o 〇 o o 〇

V
Once a cell is moved to
the other side, its strongly • 门
connected neighbours will U
gain more weight to move. ^ 八

o o
Finally, cells in the same v J
cluster are more likely to
be moved to the same Q Q
side. Q

〇

Figure 4.2: CLIP

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 44

Unlike the FM algorithm which moves the cells based on the previous cell

movement, CLIP concentrates on the strongly connected neighbors. It can

explore a wider solution space and get better solution. However, the size of

the cluster is difficult to control. If the whole circuit is strongly connected,

balanced partitioning is difficult to achieved. After partitioning, the whole

clusters will be stayed on one side. Several re-grouping will be applied after

each cell movement, forming the new clusters. That is, the cluster sets are

changing throughout the algorithm.

4.2.3 Section Summary

The major contribution for clustering approaches is the reduction in problem

size. As the size of VLSI circuits grows rapidly, the runtime of the circuit

partitioner will increase. In order to adapt future needs, clustering of cells can

maintain the effectiveness of traditional partitioning techniques. Clustering

groups strongly connected cells into clusters. Cluster is then used as the basic

unit for the partitioning algorithm. It can ensure that the strongly connected

clusters will not be partitioned while the weakly interconnections between clus-

ters will be. In this section, two clustering algorithms are discussed. In the

multilevel approach, cells are first grouped into clusters and then iterative im-

provement algorithm is applied. While in CLIP, there is no explicit grouping

strategy to gruop cells into clustes. Cells can be regrouped during each pass

to achieve minimum cut size. To conclude, CLIP is a flexible algorithm for

clustering. It can explore wider solution space for optimal solution. However,

it is difficult to define the number of clusters to achieve a good solution.

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 45

4.3 Problem Formulation

In this chapter, we want to solve the acyclic multi-way partitioning problem in

a combinational network. A combinational circuit is represented by a directed

acyclic graph G(V，E) where K is a set of nodes representing the gates and E

is a set of directed edges representing the interconnections between the gates.

The fan-out of a node is the number of edges incident from it and the fan-in of

a node is the number of edges incident to it. Primary input is a node with zero

fan-in and primary output is a node with zero fan-out. In the given acyclic

graph G, each node in V is assigned a unit weight except the primary input

and output nodes. The primary input and output nodes are assigned a zero

weight each. The weight represents the area occupied by the node. We assume

that the areas occupied by the gates are the same which is one unit area. Note

that an acyclic partitioning of a sequential circuit can be obtained as follow.

We can compute an acyclic partitioning of the combinational network obtained

by removing all the sequential elements. Then we can put back the sequential

elements into the proper partitions.

Figure 4.3 shows an example of a directed acyclic graph representation of

a combinational circuit. The primary input and and output nodes are colored

in black and other nodes are colored in white.

Definition 4.1 (An Acyclic K - W a y Partitioning Problem) Given a di-

rected acyclic graph GiV, E), partition the set of nodes V into k disjoint subsets

Vi, V2, ... ， Vfc, such that the sizes of the subsets do not exceed the size con-

straints Ai, A2, ... , Ak, the cut-size is minimized, and the partitioned solution

is acyclic, i.e. there is no partitions Vi and Vj such that ij^j, and there are

directed paths running from Vi to Vj and from Vj to Vi.

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 46

Figure 4.3: A Directed Acyclic Graph Representation of a Combinational Cir-
cuit

4.4 Clustering Based Acyclic Multi-Way Par-

titioning

For clustering based acyclic multi-way partitioning, the system clock is first

removed from the given network. Then, the given network is clustered into a

sparser network. We use an idea similar to that of the maximum fan-out free

cone to cluster the nodes. The maximum fan-out free cone decomposition aims

at minimizing the number of edges coming out from a cluster. This is a good

strategy since it reduces the total number of edges inside a clustered network

globally. After the decomposition, the number of edges is equal to the number

of clusters because there is only one edge coming out from each fan-out free

cone. This produces a good initial solution for the partitioning process since

we aim at minimizing the cut size between the resultant partitions. After the

clustering phase, the nodes inside a cluster are collapsed to form one node. As

a result, the clustered network becomes simpler and sparser. The number of

edges and nodes are fewer comparing with the original network. It is easier

to perform the subsequent partitioning task as the size of the solution space

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 47

is directly proportional to the number of nodes and edges. In our algorithm,

we will use the modified fan-out free cone decomposition to perform clustering.

Details of the process will be discussed in next section.

In the partitioning phase, we use a method similar to that in the clustering

phase because we believe that the modified fan-out free cone decomposition

is a good strategy. In the partitioning phase, the size constraint is set to the

predefined partition size as we want to fill up each partition as much as pos-

sible. We will work on the clustered network in this phase. As a clustered

node is actually a collection of nodes, the weight of each clustered node can be

large. Therefore, it is hard to obtain an ideal fan-out free cone to fit the size

of a partition. In such case, we will first find a maximally fit cone to put into

a partition. Then, we will try to fill up the partition as much as possible by

taking in smaller cones until no other match is possible. We will discuss this

selection process in details in Section 4.7.

4.5 Modified Fan-out Free Cone Decomposi-

tion

We use the idea of fan-out free cone to find the clusters and partitions while

maintaining the acyclic condition. An input cone of v, denoted by cone(v), is a

set of nodes consisting of v and a subset of its predecessors such that any path

connecting a node in cone(v) to v lies entirely in cone{v). We can observe that

there exists many input cones for a specific node (see Figure 4.4). A fan-out

free cone of v, FFC{v), is an input cone of v such that any fan-out of a node in

FFC{v), except that of node v, must also be in FFC{v). Fan-out free cone of

a node is again not unique. An example is illustrated in Figure 4.5. However,

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 48

the number of fan-out edges from any fan-out free cone must be equal to one.

We have made use of this size flexibilities to match the size constraints in the

clustering and partitioning phases.

Figure 4.4 and 4.5 show the cone and fan-out free cone of a node inside a

network. The cones in the figures are shaded in grey. You can observe that

there exists many cones and fan-out free cones for a specific node inside the

same network.

In our modified fan-out free cone decomposition, after we locate a cone of

a node, we will remove the nodes inside the cone and the edges connecting

this cone with other nodes in the network before proceeding to form the next

cluster. As a result, some nodes connected to the cone will become a primary

output node after removal. This step gives a higher probability for later steps

to form larger clusters or partitions. A simple example is shown in Figure 4.6.

Note that the number of fan-out edges from a cone may be larger than one in

this modified decomposition method. Experimental results have shown that it

is valuable to do such a modification.

4.6 Clustering Phase

In the clustering phase, the given network is clustered to form a sparser net-

work using the modified maximum fan-out free cone decomposition. Initially,

a primary output is selected randomly. It acts as the starting point of the

clustering process. We denote this selected node as v and assign it to a cluster

C. We will try to fill up the cluster by taking in nodes step by step until the

predefined cluster size is reached. We select a fan-in node from C randomly

and denote it as u. A testing process is then be performed on u to ensure that

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 49

U 翻
/ - V --- �

1 • �̂̂ ^^ Hjk

v^ -、仏： T ��
T ：:、广、 � � -

N N . N
\ \ ^ -^ � � * � �

、、、、 ‘丨…_i…丨,‘丨…丨""""'' ：、…、、 �

Figure 4.4: Two Different Cones of a Node

11 11 /fPl 11 11 11
/ p] �

^ K^ W ^ v ^ w

S r ^ ^ S r V l n
V，r J …r ' r W J w w

fly W
Figure 4.5: Two Different Fan-out Free Cones of a Node

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 50

Assume that the maximum cluster size is 2

g y • , IMlp
/ X j S j / I (MFFC Decomposition) ' K /
/ J L H ^ Clustering without removal of) j / jUJC^S^

/ \ V edges | ~ / / (^ /

/ j / (Modified MFFC Decomposition) / /

^ / \ . • Clustering with removal of edges ^ s A

^ K /

Figure 4.6: Results Obtained from Modified MFFC Decomposition and MFFC
Decomposition

the newly clustered nodes do not violate the property of modified fan-out free

cone. If we assign node u into cluster C, the node that can be reached from

node u must also be assigned into cluster C. Otherwise, the fan-out free prop-

erty cannot be maintained. Therefore, we need to find the number of nodes

that can be reached from node u. If the cluster C can take in the whole set

of nodes that can be reached from u, we will cluster all these nodes into C.

Otherwise, we will reject this fan-in node u and try another one. If no nodes

can be selected, the process will stop and one cluster is formed. An example

of the selection process is given in Figure 4.9. The resultant cluster will have

a size equal to or smaller than the predefined cluster size. After one cluster is

formed, we will remove the clustered nodes and the edges connecting the new

cluster with other nodes in the network. We will then work on the remaining

network similarly as mentioned before. We will build another cluster by start-

ing from a randomly picked primary output node of the remaining network

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 51

and repeat the above process until all the nodes are clustered. The algorithm

is given in Figure 4.7 and Figure 4.8, and an example of the whole process is

shown in Figure 4.13.

Clustering(Network)
1. dolist = 0
2. Do
3. If do l i s t�0
4. i = a randomly selected node in dolist
5. Else if there is a primary output node
6. i = a randomly selected primary output node
7. Else exit
8. cluster = cluster + 1
9. Find_Cluster(Network, dolist, i)
10. Remove the clustered nodes and their edges from the network
11. End-DO

Figure 4.7: Clustering Algorithm

4.7 Partitioning Phase

In the partitioning phase, the clustered network is partitioned into desired size

(Figure 4.10). Basically, the approach used in partitioning is the same as that

in clustering. The main difference is that we work on the clustered network

and the cluster size constraint is set to the partition size constraint in this

phase. There is no limit for the number of clusters in the clustering phase. In

the partitioning phase, we must keep the number of partitions to a predefined

value. Therefore, we cannot treat the size of each partition as loosely as in

the clustering phase. We must fit each partition as much as possible. In the

clustering phase, if no fan-in nodes can be selected to be put into a cluster

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 52

Find_Cluster(Network, delist, i)
1. Add the fan-in nodes of i to locaLdolist
2. While locaLdolist are tested is not empty
3. If locaLdolist>0
4. i = a randomly selected node from locaLdolist
5. j = numbers of node that can be reached by i
6. If current_cluster_size + j <max—cluster_size
7. Assign the set S of nodes that can be reached by i to

the current cluster
8. Add all the fan-in nodes of S to dolist and locaLdolist
9. Remove the clustered nodes from dolist and locaLdolist
10. Else exit

Figure 4.8: Find Cluster Algorithm

anymore, we will close the cluster and continue the clustering process with a

new empty cluster. However, in the partitioning phase, if no fan-in clusters can

be selected to put into a partition anymore, we will first remove the currently

partitioned clusters together with their incoming edges from the network and

then continue with another cluster that is a primary output of the remaining

network to put into the partition until the partition size is reached or no clus-

ter can be fit into it. The algorithm is given in Figure 4.11 and Figure 4.12，

and an example of the whole partitioning process is shown in Figure 4.14.

4.8 T h e Acyclic Constraint

In this section, we are going to discuss how to satisfy the acyclic constraint.

As we are performing acyclic partitioning, we must ensure that the acyclic

property is not violated in each clustering and partitioning step. We have the

following lemmas about the correctness of our algorithm. We have proved the

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 53

Assume that the maximum cluster size is 3

\ ^ Number of nodes that can be m ^ Number of nodes that can be
U y reached by this grey node U V reached by this grey node
K / (except the clustered nodes) = 0 尺 / (except the clustered nodes) = 1

/ Y j f current cluster size + 1 + 0 = 2 / \ / current cluster size + 1 + 1 = 4
/ It is smaller than 3. Accepted. / | j J _ _ j ^ s larger than 3. Rejected.

The number of nodes that can
be reached by this grey node

t - (except the clustered nodes) = 0
“current cluster size +1 +0 = 3

It is equal to 3. Accepted.
(Cluster Full)

Figure 4.9: Fan-in Node Selection in the Clustering Phase

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 54

M l M i y y y y

M M a R / p ^

糧 ^ W
Is Pr
9 T I I

‘―iLî ‘ ^ •

V
Figure 4.10: The Network Before and After Clustering

Partitioning(Clustered_Network)
1. dolist = 0
2. Do
3. If dolist>0
4. i = a randomly selected cluster from dolist
5. Else if there are primary output clusters
6. i = a randomly selected primary output cluster
7. Else exit
8. partition = partition + 1
9. Find_Partition(Network, dolist, i)
10. If current partition is not full yet
11. partition = partition - 1
12. Remove the partitioned clusters and their edges from the network
13. End-Do

Figure 4.11: Partitioning Algorithm

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 55

Find_Partition(Network, delist, i)
1. Add the fan-in nodes of i to locaLdolist
2. While locaLdolist are tested is not empty
3. If locaLdolist>0
4. i = a randomly selected node from locaLdolist
5. j = numbers of node that can be reached by i
6. If current_partition_size + j <max.partitionjsize
7. Assign the set S of nodes that can be reached by i to

the current cluster
8. Add all the fan-in nodes of S to delist and locaLdolist
9. Remove the partitioned clusters from dolist and locaLdolist
10. Else exit

Figure 4.12: Find Partition Algorithm

Assume that the maximum cluster size is 2

Figure 4.13: An Example of the Clustering Phase

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 56

Assume that the maximum partition size is 2

t ® |) 攀
/ ！ ^ Partition Is not yet full. Continue

j m / to fill it with another starting ,,
Partition Is full. Start anew M j l ^ i / ： s
partition. ^ ^ j

This way will be followed in the
clustering phase.

Figure 4.14: An Example of the Partitioning Phase

lemmas to show the correctness of our algorithm.

Lemma 4.1 The modified maximum fan-out free cone clustering process pro-

duces acyclic clustered network only.

Proof: 111 the clustering phase, we use fan-out free cone as our clustering

criteria. It is easy to observe that the decomposition keeps the signal flow in

one single direction. We start the clustering process from a primary output.

It means that we find a fan-out free cone for a primary output. As it is a pri-

mary output, its fan-out free cone does not have any outgoing edges. It means

that there are only fan-in edges going into that cone. Then the nodes in that

cluster are removed and another starting node is selected for the next cluster.

The next selected node must be another primary output node in the original

network or a fan-in node of the previously formed cluster (thus a primary out-

put node of the remaining network after removing the first cluster). If it is a

primary output node of the original network, the case is same as before and

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 57

the signal direction can be preserved. If it is a fan-in node of the previously

formed cluster, a fan-out free cone including that node will be located. The

fan-out edges from this cluster will only flow in a direction from the current

cluster to the previously formed clusters while the fan-in edges are coming from

the nodes which are not yet clustered. As a result, it keeps the signal flow in

one single direction. As this property can be maintained during the formation

of each cluster, the final clustered network does not contain any cycle. Q .E .D.

Lemma 4.2 The partitioning process produces an acyclic partitioned network

only.

Proof: In partitioning phase, we perform the same process as clustering. The

main difference is that we do not start a new partition for each cone. This

process does not affect the signal direction. The fan-out edges still flow in a

direction from the current partition to a previously formed partition while the

fan-in edges only come from a cluster which is not yet partitioned. The final

partition thus does not contain any cycle. Q .E .D .

4.9 Experimental Results

In order to evaluate the performance of our algorithm, we implemented our

clustering based partitioning method using C language. The testing platform

is Sun Ultra 5/270. The benchmarks are obtained from ISCA85. These data

sets contain information of the signal direction. Therefore, we can use it to

test our algorithm. Moreover, we can compare our results with that of an-

other clustering based algorithm [6] using the same data suit which is the

latest best results of this problem. We compared our results with three algo-

rithms, K-AFM, K-MAFM and liMetis. The experimental results of K-AFM

and K-MAFM are obtained from [6]. The experimental results of liMetis is

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 58

obtained by using the package provided by the Department of Computer Sci-

ence & Engineering, University of Minnesota. Note that K-AFM, K-MAFM

and our algorithm consider acyclic constraint but hMetis is a general purpose

partitioner. For all the experiments, the number of partitions is 8 and each

partition allows 士5% deviation from its target size. The maximum cluster

size for K-AFM and K-MAFM is 1/2 of the target partition size. The results

of K-AFM, K-MAFM and hMetis are shown in Table 4.2 are the best par-

titioning results obtained by running the program ten times. The results of

our algorithm are also the best results obtained by running the program until

ten partitioning results are generated. Table 4.1 shows the characteristics of

the benchmarks. Table 4.2 shows the cut-size results of different partitioning

algorithms. Table 4.3 shows the runtime and cut-size of our algorithm. Note

that the runtimes of K-AFM and K-MAFM are not shown because they are

not reported in [6 .

In comparisons with K-AFM and K-MAFM, our algorithm gives better

performance in most of the cases. For smaller circuits, our algorithm is not as

good as K-AFM algorithm. However, the results of our algorithm are better

for large size circuits. The average improvement to the K-MAFM algorithm

is 30%. Our method out-performs K-MAFM when the circuit size increases.

This result suggests that the performance of the FM algorithm drops when the

size of the circuit increases.

4.10 Chapter S u m m a r y

In this chapter, we presented a new acyclic multi-way partitioning algorithm.

We first use the modified fanout-free cone decomposition to cluster a given net-

work. This decomposition effectively reduces the given network to a smaller

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 59

Circuit No. of Gates No. of Pis No. of E d g ^
: c 8 8 0 — 383 60 = 729 :
“ c l 3 5 5 一 546 — 41 1064 “
~cl908 880 一 32 1064
“c267Q — 1193 — 233 2076 “
“c3540 1669 50 2939 “
“C5315 ~ ~ 2307 178 4386 “
C6288 2416 32 4800]

Table 4.1: Characteristics of the Benchmarks

Circuit Cluster K-AFM K-MAFM liMetis Our Algorithm
K=8 size (net-cut) (net-cut) (net-cut) (net-cut)

: c 8 8 Q 28 = 1 5 6 52 60 68
cl355 37 — 1 8 4 23 51 80
cl9Q8 57 — 3 2 7 112 70 84
C2670 89 443 246 51 115

c3540 — 107 575 232 143 137
c5315 155 866 238 111 218
c6288 153 491 487 128 373

Table 4.2: Results of Different Partitioning Algorithms

Circuit Cluster Our Algorithm Our Algorithm
K=8 size (net-cut) Runtime (Sec)

= c 8 8 0 ~ 68 ^ 23.6 =
~cl355 3 7 — 80 34.3

cl908 57 84 26.7
c2670 ~ ^ 115 41.3

- c3540 107 137 61.8 一

“c5315 155 218 114.4 “
[~c6288 153 373 85.2

Table 4.3: Runtime and Cut-size of Our Algorithm

Chapter 4 Clustering Based Acyclic Multi-way Partitioning 60

and sparser one while maintaining the acyclic property of the network. Then

we use this decomposition again to further partition the clustered network

into the desired number of partitions. Our algorithm is able to obtain acyclic

multi-way partitioning solutions with smaller cut-sizes comparing with the best

algorithm reported previously [6 .

I

Chapter 5

Network Flow Based Multi-way

Partitioning

5.1 Preliminaries

In this chapter, we will present a network flow based partitioning algorithm.

This network flow based algorithm uses the technique of net modelling and

network flow to partition a circuit. As discussed before, the delay of a path is

an important issue to be considered in partitioning. Our proposed algorithm

aims at minimizing the longest delay along the critical path and the cut sizes

between the partitions. Our modelling ensures that all the nodes on a combi-

nation path of the circuit will be partitioned in an acyclic manner. We have

made use of a specific net modelling to achieve this propose.

We will first review the notations and definitions of a flow network in the

next section. The network flow approach can be applied in our acyclic parti-

tioning problem after modelling the circuit as a flow network. We will introduce

the net modelling in Section 5.3. Some previous works on network flow based

partitioning will be discussed in Section 5.4. Our proposed net modelling will

be introduced in Section 5.5 and the properties of our modelling will be dis-

cussed in Section 5.6. After that, we will introduce our algorithm in details

61

Chapter 5 Network Flow Based Multi-way Partitioning 62

from Section 5.7 to 5.8. In Section 5.9, we will present some experimental

results.

5.2 Notations and Definitions

Let us review some basic notations and definitions in network flow [26]. A flow

network G = (V, G) is a directed graph in which each edge {u,v) e E has a

capacity c(w’ v) > 0. If (u, v) • E, we assume that c(u, v) = 0. There are two

distinguished nodes in a flow network G, a source s and a sink t. A flow in

G is a real-valued function f : V x V ^ K that satisfies the following three

properties:

1. Capacity constraint: For all u,v eV, f{u,v) < c[u,v).

2. Skew symmetry: For all u,v eV, f{u,v) = —f{v, u).

3. Flow conservation: For all u,v eV - { s , t } , J2vev fi'^^'^) = 0.

The term f{u,v) is called the net flow from vertex u to vertex v. It can be

positive or negative. The value of a flow f is defined as |/| = 幻ev/(<5, tO-

A s — t cut of a flow network G = {V,E) is a partition of V into S and T

where T 二 - such that s e S and t e T. The capacity of a cut is the

sum of the capacities on the forward edges, that is, the edges from S to T.

An augmenting path is simply a path from the source 5 to the sink t that can

push more flow from s to t . A max-flow / is a flow of maximum value from s

to t.

In network flow based partitioning, a well know theorem, Max-Flow Min-

Cut Theorem [27], is used. The theorem is given as follows.

Chapter 5 Network Flow Based Multi-way Partitioning 63

Theorem 5.1 (Max-Flow Min-Cut Theorem [27]) Given a flow network

G and a maximum s — t flow in G, let S = {v ^ V : 3 an augmenting path

from s to V in G }, and let T = V — S. Then the s — t cut (5, T) is a cut of

minimum capacity which is equal to |/| and f saturate all forward edges from

S to T.

As the minimum capacity cut can be obtain by a maximum s — t flow, the

Max-Flow Min-Cut Theorem can be used to construct a partitioning solution

with minimum cut size in a network. However the Max-Flow Min-Cut Al-

gorithm only guarantees that a minimum cut of the network is obtained but

there is no constraints in the sizes of the two partitions. Some heuristics have

been developed to control the partition sizes. We will introduce them in the

following sections.

5.3 Net Modelling

As discussed in Chapter 3, hypergraph is a general representation for circuits.

In order to apply the Max-Flow min-cut algorithm in circuit partitioning, we

must be able to model a hypergraph such that the Max-Flow Min-Cut algo-

rithm can be applied accordingly. In [28], the authors have showed that the

Max-Flow Min-Cut Theorem could be applied to a hypergraph for finding a

min-cut for a circuit. Based on the technique discussed in [29，22], a hyper-

graph can be transformed into an edge-capacitated network. The basic idea

of the method is to model it as a directed graph with addition edges. The

transformation is shown in Figure 5.1. The transformation method is as fol-

low: For a net v — W i , W 2 , a d d two dummy nodes, di and dk, with weight

0. Then, add an edge from di to dk with unit capacity, and add edges from v

and wi,w2,... to di with capacity oo, and add edges from d] to v and ...

with capacity oo.

Chapter 5 Network Flow Based Multi-way Partitioning 64

Figure 5.1: Transformation of hypergraph to a edge-capacitated network

The net modelled in such a way contains two dummy nodes with a unit

capacity edge connecting them. A minimum cut must occur on the unit edge

between the dummy nodes because cutting other edges will lead to infinite

cut-size.

5.4 Previous Works on Network Flow Based

Partitioning

Since the sizes of the partitions obtained by the Max-Flow Min-Cut algorithm

cannot be controlled, a general method to obtain balanced partitions is to

apply the Max-Flow Min-Cut algorithm repeatedly to achieve the target size.

Although the Max-Flow Min-Cut algorithm can be operated in polynomial

time, repeated application may also lead to a long runtime. Some techniques

have been proposed to improve it. In this section, we will introduce some

network flow based partitioning techniques. We will use some techniques pro-

posed in these previous literatures in our algorithm. The paper on network

flow based min-cut balanced partitioning [4] and network flow based circuit

Chapter 5 Network Flow Based Multi-way Partitioning 65

partitioning for time-multiplexed FPGAs [5] will be discussed in the following

sections.

5.4.1 Network Flow Based Min-Cut Balanced Partition-

ing [4

In this paper, the authors proposed an efficient algorithm to produce a bal-

anced partition using the Max-Flow Min-Cut technique. The major contribu-

tion of this paper is the effective implementation of the repeated Max-Flow

Min-Cut algorithm to achieve a balanced partitioning. This approach has the

same time complexity as one Max-Flow Min-Cut computation rather than n

repeated Max-Flow Min-Cut computations.

The algorithm starts with modelling the net using the method discussed in

Section 5.3. An example is shown in Figure 5.1. Since the resultant minimum

net-cut may not correspond to a balanced partitioning, a balancing heuristic

is proposed. It allows the partition sizes to vary from (1 — £)rW to (l + £)rW.

After applying the simple Max-Flow Min-Cut computation once to obtain a

min-cut, the sizes of the two partitions S and T are checked. It tries to obtain

a balanced partitioning in a recursive manner. If the size |5| is too small, all

the nodes in S and a node chosen from T are collapsed to the source s. By

applying the Max-Flow Min-Cut algorithm again, a different cut-size with a

larger S will be resulted. Similarly, if the size |5| is too large, all the nodes in

T and a node chosen from S are collapsed to the sink t.

The strategy to pick the node from the larger partition to be collapsed is

as follows: when the remaining circuit is very large, a node is picked randomly

because it is too time consuming to try all possible nodes and locate the one

with the minimum cut-size. However, if the remaining circuit is small enough,

Chapter 5 Network Flow Based Multi-way Partitioning 66

it would be better to try all the remaining nodes and pick the one with the

minimum cut-size. In the algorithm, a threshold size R is set such that the

choices of the two strategies can be made.

After collapsing the nodes, we need to find the cut again using an incremen-

tal flow computation. The incremental flow computation can find a new cut

with an asymptotic time complexity the same as one Max-Flow Min Cut com-

putation. Instead of invoking the Max-Flow Min-Cut computation from the

beginning again, additional flow that saturates the bridging edges of the cut

is found and augmented to the flow network. This incremental Max-flow Min-

Cut technique makes it practical to handle large circuits. The overall time

complexity of the algorithm is the same as that of applying the Max-Flow

Min-Cut algorithm once, which is

5.4.2 Network Flow Based Circuit Partitioning for Time-

multiplexed FPGAs [5

Time-multiplexed FPGAs is used to reduce complex circuit density by making

use of timesharing reconfigurable computing facilities. A large circuit is par-

titioned into multiple stages and is fitted into a time-multiplexed FPGA such

that the same hardware is being used in all the stages. However, there are a

lot of constraints in using time-multiplexed FPGAs. For example, the limited

number of buffers (interconnection between partitions), the limited area of the

FPGA and the precedence constraints that must be satisfied in partitioning a

circuit in order to ensure a correct execution order. The algorithm proposed in

5] can give a /c-way precedence constrained partitioning for time-multiplexed

FPGA.

There are two precedence constraints corresponding to the combinational

Chapter 5 Network Flow Based Multi-way Partitioning 67

nodes and the flip-flop nodes. First, each combinational node must be sched-

uled at a stage not later than any of its output nodes. The second precedence

constraint is related to the flip-flop nodes. As the outputs of a flip-flop node

will be used in the next cycle, each flip-flop node must be scheduled at a stage

not earlier than any of its output nodes. The modellings for the combinational

nodes and the sequential nodes are shown in Figure 5.2 and Figure 5.3 respec-

tively.

Two-terminal Net:

00

Multi-terminal Net:

^ ^ 00

Figure 5.2: Net Modelling of Combinational Net for Time-multiplexed FPGA
circuit partitioning

The a-bounded uni-directional bi-partitioning method, which is similar to

the network flow based min-cut balanced partitioning method in paper [4

(Section 5.4.1), is used to cut the flow network. A bi-partitioning of the cir-

cuit, S and T, will be produced. The number of nodes in S is controlled by

the value a which is given by user. It allows the size of S to deviate between

(1 - €)a and (1 + £:)a so that S can be fitted into an FPGA. The algorithm will

partition the circuit into k stages iteratively. Firstly, an As Soon As Possible

(ASAP) and an As Late As Possible (ALAP) scheduler will schedule the nodes

Chapter 5 Network Flow Based Multi-way Partitioning 68

Two-terminal Net: ^ ^ ① ^ ^

Multi-terminal Net:

Figure 5.3: Net Modelling of Sequential Net for Time-multiplexed FPGA cir-
cuit partitioning

in the flow network. The AS"乂P scheduler assigns the earliest possible stage

to each node and the ALAP scheduler assigns the latest possible stage to each

node according to the precedence constraints. Nodes with the same ASAP

stage and ALAP stage are pre-assigned as a fixed node to the specified stage

to reduce the complexities of the later partitioning process. Other nodes with

different ASAP stage and ALAP stage can be assigned to different possible

stages and are called flexible nodes.

The algorithm runs in an iterative manner. It starts with assigning nodes

to the first stage until all nodes are assigned to the k stages. In the i认 it-

eration, the Max-Flow Min-Cut algorithm is applied to partition the flexible

nodes with AaSAP stage i and A L A P stage i + 1. After the computation,

the nodes in S are assigned to stage i. All the unassigned nodes with latest

possible stage z + 1 are assigned to stage z + 1. The algorithm is illustrated

in Figure 5.4. The time complexity of this multi-way precedence constrained

partitioning algorithm is 0{k\V\\E\).

Chapter 5 Network Flow Based Multi-way Partitioning 69

1 Iteration j

Fixed Node ^ ^ [y Q x

—Ip
Stage 1

Stage 1 + I
Fixed Node — 1 1 / / ^ t

- I P ！

stage 2 ,
«

• • P l l l l l P ^

^ /

,/ \
stage k-1 Stage k

Figure 5.4: Network Flow Based Multi-way Precedence Constrained Partition-
ing

Chapter 5 Network Flow Based Multi-way Partitioning 82

5.5 Proposed Net Modelling

In Max-Flow Min-Cut based algorithms, the system clock is first removed from

the given network. Then, the circuit is transformed into a network flow instant

by some net modelling method. The net modelling method can affect the per-

formance of the algorithm and determines the characteristics of the resultant

partitioning like the precedence of the nodes in the partitions.

As the delay of the critical path is crucial in determining the circuit per-

formance, our proposed algorithm aims at minimizing the delay of the critical

path and the cut size between the partitions. In order to reduce the delay of

the circuit, we must reduce the number of partition cuts on the critical path.

As introduced in the previous chapter, acyclic partitioning is a general way to

reduce the delay caused by partition cut. In order to achieve an acyclic parti-

tioning for the nodes along a combinational path, a net modelling method that

can ensure unidirectional cut in the Max-Flow Min-Cut computation is needed.

We found that the net modelling method used in time-multiplexed FPGAs [5

(Section 5.4.2) can be applied in our case after some modifications. In time-

multiplexed FPGAs, the order of execution and the number of buffers between

consecutive stages are constrained. The nodes in a time-multiplexed FPGAs

have precedence constraints between them. These precedence constraints are

similar to the unidirectional cut constraints in our acyclic partitioning problem

. F o r example, let input(v) = {u\u is an input node of v }. Given a s — t cut

(5, T) , using the net modelling in FPGAs, there are only two possible situa-

tion: either v and input (v) are in the same partition of v in T and input{v)

in S. Both situations are equivalent to producing a unidirectional cut in a

bi-partitioning. This modelling feature satisfies the unidirectional constraint

in our problem.

Chapter 5 Network Flow Based Multi-way Partitioning 71

In a sequential circuit, we classified the edges into two categories, c-edges

and s-edges. S-edges are fan-out edges of the flip-flop nodes, while the remain-

ing edges are c-edges. An example is illustrate in Figure 5.5. The delay of a

sequential circuit is defined as the longest delay among all the combinational

paths which can be classified into the following four types: (1)P / —» PO,

{2)PI FF, (3)FF — PO and �F F — FF. Our net modelling aims at

producing an acyclic partitioning along these four types of paths.

- - o - 々 - 各 - ？ - o —

I ^ ^ ^ Combinational node
<

Sequential node

• S-Egde

• C-Edge

Figure 5.5: C-edges and S-edges

In our proposed modelling, we will enforce the precedence constraints on

the combinational paths (a path that consists of c-edges) only because the cir-

cuit delay depends on the longest delay among these combinational paths. On

the other hand, there is no constraints on the cutting direction of the s-edges.

It is because the s-edges are carrying signal for the next cycle and they do not

affect the overall delay. S-edge can thus be considered as an input edge for the

next clock cycle. This relaxation will allow the Max-Flow Min-Cut computa-

tion to find a better solution with a better cut-size without over-constraining

the solution. The modelling is described below and examples are shown in

Figure 5.6 and Figure 5.7. Notice that a combinational net is a net with a

Chapter 5 Network Flow Based Multi-way Partitioning 72

combinational node as the input and a sequential net is a net with a flip flop

node as the input.

Combinational Net: For a two-terminal combinational net v w, add an

edge from v t o w with unit capacity, and add an edge from w t o v with capacity

oo. For a multi-terminal combinational net v Wi,W2,..., add a dummy node

with weight 0. Then, add an edge from v to the dummy node with capacity

one, and add edges from the dummy node to Wi,W2,... with capacity oo, and

an add edges from Wi,W2,... to v with capacity oo. (Figure 5.6)

Sequential Net: For a two-terminal or a multi-terminal sequential net f f —

wi, W 2 , a d d two dummy nodes, di and 0?2，with weight 0. Then, add an

edge from di to dk with unit capacity, and add edges from f f and ^ /；丄，… t o

di with capacity oo, and add edges from d) to f f and 1<；1，1(；2，…with capacity

00. (Figure 5.7)

Two-terminal Net:

00

Multi-terminal Net:
00

^ ^ 00

Figure 5.6: Net Modelling of Combinational Nets

Chapter 5 Network Flow Based Multi-way Partitioning 73

/ y/oO

Figure 5.7: Net Modelling of Sequential Nets

5.6 Partitioning Properties Based on the Pro-

posed Net Modelling

By using the above net modelling, we can obtain a bi-partitioning by applying

the Max-Flow Min-cut algorithm on the flow network. The size of the min-cut

in the flow network will correspond to the min-cut in the real circuit. Also,

the number of partition cuts on each combinational path is limited by the

above modelling. We have the following lemmas about the correctness of our

modelling.

Lemma 5.1 Using the proposed net modelling, the minimum cut-size obtained

by the Max-Flow Min-Cut computation corresponds correctly to the real min-

imum cut-size of the original circuit, and the cutting edges on each combina-

tional path is unidirectional

Proof:

For a combinational net, if u is the input node and V is the set of output

nodes, there will be an edge from each node v e V to u with capacity oo.

Chapter 5 Network Flow Based Multi-way Partitioning 74

Therefore, it will never be the case that v is in A and w is in A in the min-cut

solution (So, the unidirectional property is satisfied). Therefore, in a min-cut

solution {A, A), either u and v are in the same partition, or u G A and v ^ A

(Figure 5.8). If u and all the nodes in V are in the same partition, the dummy

node will also be located in the same partition as the cut-size will increase

otherwise. If u is in A and one node € F is in A, the dummy node will be

located in A because an infinite cut-size will be resulted otherwise. In both

cases, the cut-sizes are counted correctly (zero in the former case and one in

the later case).

For a sequential net, (let ff be the input node and V be the set of output

nodes) there will be an edge from dummy node di to d] with capacity one.

Notice that the nodes in V and the node ff are all symmetric in this mod-

elling. If any two nodes in { / / } |J V are separated in two partitions, di must

be in A and 6,2 must be in A because all the nodes in the net have infinite

edges connecting to di and have infinite edges connecting from d: and infinite

cut-size will be resulted otherwise. The count in cut-size is also correct in this

case (the count is one). If all the nodes in { / / } |J V are in A, di will also be in

A because an infinite cut-size will be resulted otherwise. Then 而 will also be

in A because the cut-size will be increased otherwise. The count in cut-size is

zero ill this case and corresponds correctly to the real cut-size. If all the nodes

in { / / } U V are in A, d) will also be in A because an infinity cut-size will be

resulted. Then di will also be in A because the cut-size will be increased oth-

erwise. The count in cut-size is zero in this case which corresponds correctly

to the real cut-size. (Figure 5.9) Q .E .D.

Lemma 5.2 Using the proposed net modelling, all combinational paths will be

cut by the partitions at most k — 1 times where k is the number of partitions.

Chapter 5 Network Flow Based Multi-way Partitioning 75

Proof:

We have proved in Lemma 5.1 that a combinational path must be cut unidi-

rectionally using the proposed modelling. The number of partition cuts along

any combinational path is at most k — 1 where k is the number of partitions

because if the number of partition cuts along a combinational path is larger

that k — 1, there must be an edge e(u,v) on this path being cut in backward

direction, i.e., u e A and v E A. (Figure 5.10) Q .E .D.

5.7 Partitioning Step

After modelling the circuit as a flow network, the Max-Flow Min-Cut algo-

rithm is applied on the network to obtain a min-cut. We implemented the

partitioning algorithm using the recursive method proposed in [22] which is

already discussed in Section 5.4.1. After applying the simple Max-Flow Min-

Cut computation to obtain a min-cut, the sizes of the two partitions S and T

are checked. If the size |5| is too small, all the nodes in S and a node chosen

from the other partition T are collapsed to the source s. By applying the

Max-Flow Min-Cut algorithm again, a different cut-size with a larger S will

be resulted. Similarly, if the size |5| is too large, all the nodes in T and a node

chosen from S are collapsed to the sink t. The strategy to pick the node from

the larger partition to be collapsed is as follows: when the remaining circuit

is very large, a node is picked randomly. However, when the remaining circuit

becomes small enough, we will try all the remaining nodes and pick the one

with the minimum cut-size. Besides, we will not pick a node that will generate

an infinite cut-size after collapsing. After selecting and collapsing the nodes,

we need to find another cut by using the incremental flow computation until

the desired balance ratio is achieved.

Chapter 5 Network Flow Based Multi-way Partitioning 76

S 00 t

Unit Cut

‘ t _

®
Unit Cut

• � ®
Infinity Cut (Impossible)

Figure 5.8: Uni-directional Cut

Chapter 5 Network Flow Based Multi-way Partitioning 77

Figure 5.9: Multi-directional Cut

Chapter 5 Network Flow Based Multi-way Partitioning 78

As only a bi-partitioning can be obtained in one Max-Flow Min-Cut com-

putation, we will use a recursive manner to perform the /c-way partitioning

until the desired number of partitions is obtained. We have already proved

that all c-edges are cut in the same direction with acyclic property in the pre-

vious section. After applying the Max-Flow Min-Cut computation recursively,

any combinational path will be cut by the partitions at most k-1 times where

k is the number of partitions as shown in Figure 5.10.

V w f v v ^ '

V

Figure 5.10: Multi-way Partitioning with Combinational Paths Cut by the
Partitions at Most k — 1 times

Chapter 5 Network Flow Based Multi-way Partitioning 79

5.8 Constrained F M Post Processing Step

111 order to improve the quality of the partitioning, we will perform a post

processing step on the partitioning result after the Max-Flow Min-Cut based

computation. A constrained version of the FM algorithm will be applied on

the partitioning result. The constrained FM is similar to the original FM,

except that some constraints are considered during the iterative moves.

We imposed the unidirectional constraint on combinational paths in the

Max-Flow Min-Cut based computation. Although it can reduce the delay by

limiting the partition cuts along a path, it may eliminate some possible non-

acyclic solutions which have the same delay but with a better cut-size. The

FM post processing step can reduce this effect of over-constraining the solu-

tion by the acyclic constraint. It may find a solution with a smaller cut-size

without affecting the overall delay of the circuit. An example is shown in Fig-

ure 5.11. Experimental results show that the cut-size can be improved by this

constrained FM post-processing step in most cases.

The aim of the FM post processing step is to minimize the cut-size without

affecting the delay of the overall circuit. The partitioning result of the Max-

Flow Min-Cut based computation is used as a starting point. The original

FM has already discussed in Section 3.5.1. In the constrained version, we only

allow the movements of cells that do not lead to an increase in the number of

partition cuts along the critical paths. At each step, the maximum gain cell is

selected for moving to another partition. If such movement will increase the

longest circuit delay, it will be rejected and the movement with the second

largest cell gain will be considered. We will apply the constrained FM post

processing on each pair of partitions, (1,2), (1,3) ... {k - 1, k).

Chapter 5 Network Flow Based Multi-way Partitioning 80

M M rH M

V Y ' ^ y ^ Y Sriy
•mmmmtm-

J

ITTi h
U V h V

• Y l

ft g
V n

Y

After moving the gate that shaded in
Originally, the cut-size is 4. black to another partition, the cut-size is

reduced to 2. However, the result is
cyclic.

Figure 5.11: Cut-size Reducing in the Post Processing Step

Chapter 5 Network Flow Based Multi-way Partitioning 81

5.9 Experiment Results

We implemented our network flow based partitioning method using the C lan-

guage. The testing platform is Sun Ultra 5/270. The benchmarks are obtained

from Partitioning 93 originated from the Design Automation Conference 1993.

The information of signal direction is provided in this data set. For all the ex-

periments, the number of partitions is 8 or 16. Each partition is allowed to

have a 土5% deviation from its target size. Table 5.1 shows the character-

istics of the benchmarks. The results of the 8-way and 16-way partitioning

are shown in Table 5.2 and Table 5.3. The cut-sizes and delays before and

after the constrained FM posting processing step are also reported. The av-

erage improvements for 8-way and 16-way partitioning are 6.81% and 8.24%

respectively. In this experiment, we assumed that the gate delay and the inter-

partition delay are one and two respectively. Table 5.4 and Table 5.5 show the

results of K-FM (fc-way FM) algorithm and R-FM (recursive FM) algorithm

on some of the data sets. The experimental results of K-FM and R-FM are

obtained from [30]. They are all /c-way partitioning algorithm without con-

sidering acyclic constraint. The results of R-FM are better than ours as they

do not consider acyclic constraints and the number of partition cuts along a

combinational path is thus not limited. We compare our results with them

because they are closest possible in terms of the problem being solved as long

as we know. By comparing our results with K-FM and R-FM, we can see how

much worse in cut-size is resulted because of the acyclic constraint. We expect

to gain in delay but the delays of K-FM and R-FM are not shown because they

are not reported in [30]. Table 5.6 compares the results of this network flow

based algorithm and the clustering based algorithm proposed in Chapter 4.

The results of the clustering based algorithm is generally better than that of

the network flow based algorithm.

I

Chapter 5 Network Flow Based Multi-way Partitioning 82

Circuit Pis POs FFs Gates Nets Delay
“ s 2 7 . x n f — 8 1 13 — 24 6 “
-s2Q8.xnf 2 8 104 127 14 “
~s298.xnf 7 6 U 133 154 9

s344.xnf ~13 11 —15 175 —203 20 “
~s349.xnf 1 3 " " “ H 176 ~ 2 Q 4 ~ 20
~382 .xn f 7 6 179 207 “ 9
~s40Q.xnf ~ 7 6 ^ 185 213 9
~s420.xnf 2 212 251 28
“s444.xnf ~ 7 6 202 — 230 11 “
~s51Q.xnf ~23 7 217 246 12
~s526.xnf 6 ^ 214 9
~s526n.xnf ~ 6 ^ 215 243 9
~s82Q.xnf ~ ~ l 9 T 294 10
“s832.xnf 22 19 一 5 292 ~ 319 10 “

~s838.xnf 2 W 422 56
“s953.xnf 20 23 ~ 2 9 424 —473 16 “
~sll96.xnf " l 8 ~ ~ 1 4 547 24
~sl238.xnf ~ l 8 ~ ~ 1 4 Is" 526 22
~sl423.xnf 5 7i 731 59
“s5378.xnf 3 9 ~ ~ 4 9 ~ ~ 2 9 5 8 —3176 25 “

“s9234.xnf W 22 5825 ~6076 58 “
sl32Q7.xnf 35 121 669 8620 9324 ~

"sl5850.xnf 18 87 ~597 10396 一10984 61 “
s35932.xnf ~ ~ 1 7 2 8 17793 19560 ~ ^ ~

"s38417.xnf 3 2 ~ ~ I Q 6 2 3 8 1 5 _25483 47 _
|"s38584.xnf 16 278 1452 20705 22173 52 |

Table 5.1: Characteristics of the Benchmarks

Chapter 5 Network Flow Based Multi-way Partitioning 83

Circuit Before C-FM After C-FM % Improvement
(cut-size) (Delay) (cut-size) (Delay) (cut-size)

s27.xnf 9 — 1 4 9 14 0 —
s208.xnf 64 — 2 4 64 24 0 —

-s298.xnf — 72 ~ ~ 7 0 16 2.78
s344.xnf - 63 28 54 — 28 14.29
s349.xnf ~ 68 28 60 28 — 11.76
s382.xnf — 71 18 71 — 18 0
s40Q.xnf 70 — 15 52 15 25.71

-s420 .xnf 66 36 66 36 0
s444.xnf 91 19 85 — 19 6.59

“s510.xnf m 2 0 157 ~ 2 0 ~ 2.48
s526.xnf 一 134 1 5 ~ 134 — 15 0

s526n.xnf 134 15 121 15 9.70
s820.xnf 202 20 179 20 11-39
s832.xnf — 180 22 180 _ 22 0
s838.xnf — 197 64 177 — 64 10.15
s953.xnf — 261 ~ ~ ^ 261 25 0

sll96.xnf 271 ~ ~ ^ 2 5 4 36 6.27
sl238.xnf — 311 ^ 259 34 16.72
sl423.xnf 213 71 187 71 12.21
s5378.xnf 502 34 502 34 0
s9234.xnf 584 71 ~ 580 71 0.68

sl3207.xnf 582 ~ ~ ^ ~ 507 68 12-89
sl585Q.xnf 572 65 571 65 0.17
s35932.xnf 806 ^ 7 4 1 37 8.06
s38417.xnf 970 ^ 8 2 0 53 15.46
s38584.xnf 1395 56 1258 56 9.82 |

Table 5.2: Results of Our Algorithm Before and After the Constrained FM
Post Processing (8-Way Partitioning)

Chapter 5 Network Flow Based Multi-way Partitioning 84

Circuit Before C-FM After C-FM % Improvement"!
(cut-size) (Delay)- (cut-size) (Delay) (cut-size)

s27.xnf — 16 " " “18 14 18 — 12.50
s208.xnf 75 — 2 4 70 24 “ 6.67 —
s298.xnf 110 17 110 17 — 0
s344.xnf 102 ^ 9 8 30 “ 3.92 —
s349.xnf 98 30 98 30 0 —
s382.xnf 112 " " “ 1 9 ~ ~ 100 19 10.71 一

s400.xnf - 113 l 8 ~ ~ 104 18 7.96 —
s420.xnf 107 44 90 44 — 15.89
s444.xnf 131 ~ ~ ^ ~ 111 23 — 15.27 “
s51Q.xnf — 212 2 3 ~ 192 23 — 9.43 “
s526.xnf 184 16 167 16 9.24 —

s526n.xnf ~ 184 1 6 1 7 5 16 一 4.89 “
s82Q.xnf — 304 2 0 ~ 257 20 15.46

• s832.xnf 269 26 一 221 26 17.84
s838.xnf - 257 68 2 5 7 ~ ~ 68 0

-s953.xnf 339 27 320 27 5.60
- s l l96 .xnf — 371 39 331 39 10.78

sl238.xnf - 424 ~ 40 4 2 4 ~ ~ 40 0
sl423.xnf 291 77 216 77 — 25.77 “
s5378.xnf — 707 36 ~ 627 36 11.32
s9234.xnf 911 78 900 78 — 1.21 “

sl3207.xnf 854 TO785 70 — 8.08 “
sl5850.xnf 883 71 883 71 — 0 “
s35932.xnf _ 1263 39 1190~~ 39 5.78 —
s38417.xnf _ 1376 — 55 1252 55 9.01 —
s38584.xnf 2019 58 1880 58 6.88

Table 5.3: Results of Our Algorithm Before and After the Constrained FM
Post Processing (16-Way Partitioning)

Chapter 5 Network Flow Based Multi-way Partitioning 85

Circuit K-FM R-FM Our Results
sl3207.xnf 827 — 209 507
sl5850.xnf 811 228 571
s35932.xnf 1818 294 741
S38417.XIT 2506 — 449 820
s38584.xnf 2209 314 1258

Table 5.4: Comparison of the Cut-size Results of our Algorithm with K-FM
and R-FM (8-Way Partitioning)

Circuit K-FM R-FM Our Results
sl3207.xnf 945 — 270 785
sl5850.xnf 1167 — 320 883
s35932 . "^ 3375 373 — 1190
s38417.xnf 2837 604 1252
s38584.xnf 3825 434 1880

Table 5.5: Comparison of the Cut-size Results of our Algorithm with K-FM
and R-FM (16-Way Partitioning)

Circuit Clustering Based AlgorithnT Network Flow Based Algorithm
c880 — 68 96 —
cl35 一 80 82

cl908 — 84 124
c2670 ~ ~ 115 146
c3540 137 280
c5315 — 218 308
c6288 373 301

Table 5.6: Comparison of the Cut-size Results of this Network Flow Based
Algorithm and the Clustering Based Algorithm in Chapter 4 (8-Way Parti-
tioning)

Chapter 6

Conclusion

Today, it is common that a system is consisted of millions of transistors. Such

a huge circuit is hard to be managed efficiently. As a result, decomposition

of these complex systems into finer sub-systems is important in the design

process. Each sub-system can then be designed and further improved inde-

pendently and simultaneously to make the design process faster and simpler.

As the size and complexity of the systems today increase rapidly, more

computer aided design tools are required. The development of partitioning al-

gorithms is vital, and it will be essential for the partitioning algorithms to take

circuit performance into account. We studied some previous works on circuit

partitioning, which include iterative algorithm, network flow based approach,

clustering approach, stochastic searching technique, etc. In order to reduce the

delay caused by the partition cuts, we take the number of partition cuts along

each path into account. We proposed two approaches to solve the problem,

of which one is based on an acyclic clustering technique, and the other one is

based on the network flow technique.

The basic idea of these two approaches is to maintain an acyclic parti-

tioning of all the combinational paths. Both of them aim at minimizing the

86

Chapter 6 Conclusion 87

number of partition cuts along the critical paths. In the first method, a mod-

ified fanout-free cone decomposition is first used to cluster a given network.

This decomposition can effectively reduce the given network to a smaller and

sparser one and maintains the acyclic property in the clustering. We then

use a similar decomposition to further partition the clustered network into

the desired number of partitions. Our algorithm is able to obtain an acyclic

multi-way partitioning solution with smaller cut-sizes comparing with the best

algorithm reported previously [6]. The second method is a network flow based

approach. We proposed a net modelling method to limit the number of par-

tition cuts on a combinational path by maintaining the acyclic property. We

make use of the Max-Flow Min-Cut algorithm to generate the min-cut edge

and use it in a recursive manner to obtain a multi-way partitioning. An con-

strained FM post processing step is then applied on the resultant partitioning

to further improve the cut-size. Our proposed algorithms can reduce the delay

of the circuit caused by the partition cuts efficiently while taking the cut-size

into account at the same time.

Bibliography

1] N. A. Sherwani, Algorithms for VLSI Physical Design Automation, pages

1-8，Kluwer Academic Publishers, 1999.

2] C. J. Alpert, J.-H. Huang, and A. B. Kahng, Multilevel circuit partition-

ing^ in Proceedings of the 34th annual conference on Design automation

conference, pages 530-533, ACM Press, 1997.

3] S. Dutt and W. Deng, Vlsi circuit partitioning by cluster-removal using

iterative improvement techniques, in Proceedings of the 1996 IEEE/ACM

international conference on Computer-aided design, pages 194-200, IEEE

Computer Society Press, 1996.

.4] H. H. Yang and D. F. Wong, New algorithms for min-cut replication in

partitioned circuits, in Proceedings of the 1995 IEEE/ACM international

conference on Computer-aided design, pages 216-222, IEEE Computer

Society Press, 1995.

5] H. Liu and D. F. Wong, Network flow based circuit partitioning for time-

multiplexed fpgas, in Proceedings of the 1998 IE EE/ACM international

conference on Computer-aided design, pages 497-504, ACM Press, 1998.

6] J. Cong, Z. Li, and R. Bagrodia, Acyclic multi-way partitioning of boolean

networks, in Proceedings of the 31st annual conference on Design automa-

tion conference, pages 670-675, ACM Press, 1994.

88

7] E. L. Lawler, K. N. Levitt, and J. Turner, Module clustering to minimize

delay in digital networks, in IEEE Transactions on Computers, volume

C-18, pages 47-57, 1996.

8] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vinvrntrlli, On clustering

for minimum delay/area, in Proc. Int. Conf. Computer-Aided Design,

pages 6-9, 1991.

9] J. D. Huang, J. Y. Jou, W. Z. Shen, and H. S. Chuang, On circuit

clustering for area/delay tradeoff under capacity and pin constraints, in

IEEE Transcation on VLSI System, volume 6, pages 634-642, 1998.

10] B, Kerniglian and S. Lin, An efficient heuristic procedure for partitioning

graphs, in The Bell System Technical Journal, pages 291-307, 1970.

11] C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for improv-

ing network partitions, in Proceedings of the nineteenth design automation

conference, pages 175-181, 1982.

.12] J. Hwang and A. E. Gamal, Optimal replication for min-cut partitioning,

in ICCAD, pages 432-435, 1992.

.13] J. Hwang and A. E. Gamal, Min-cut replication in partitioned network,

ill Transaction of IEEE on CAD, pages 96-106, 1995.

14] G. Karypis and V. Kumar, Multilevel k-way hypergraph partitioning,

in Proceedings of the 36th ACM/IEEE conference on Design automation

conference, pages 343-348，ACM Press, 1999.

15] N. Metropolis, A. Rosenbliith, M. N. Rosenbluth, A. Teller, and E. Teller,

Equations of state calculations by fast computing machines, in J. Chem.

Phys 21, pages 1087-1092, 1958.

89

[16] M. Pincus, A monte carlo method for the approximate solution of certain

types of constrained optimization problems, in Oper. Res. 18, pages 1225-

1228’ 1970.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated

annealing，in Science, Number 4598, 13 May 1983, volume 220，4598,

pages 671-680, 1983.

[18] T. W. Manikas and J. T. Cain, Genetic algorithms vs. simulated an-

nealing: A comparison of approaches for solving the circuit partitioning

problem, in Technical Report 96-101, Department of Electrical Engineer-

ing, The University of Pittsburgh, 1996.

[19] Y. Wei and C. Cheng, Ratio cut partitioning for hierarchical designs, in

Transaction of IEEE on CAD of IC^ pages 911-921, 1991.

[20] J. H. Holland, Adaptation in natural and artificial systems, in University

of Michigan, 1975.

[21] T. Bui and B. Moon, Genetic algorithms for graph bisection, in Technical

Report CS-93-07, Department of Computer Science, Pennsylvania State

University, 1993.

221 H. Yang and D. F. Wong, Efficient network flow based min-cut balanced

partitioning, in 1994 IEEE/ACM international conference on Computer-

aided design, pages 50-55, IEEE Computer Society Press, 1994.

23] J. Cong and S. K. Lim, Performance driven multiway partitioning, in

IEEE/ACM Asia South Pacific Design Automation Conference, 2000.

24] J. Cong and Y. Ding, On area/depth trade-off in hit-based fpga technol-

ogy mapping, in Proceedings of the 30th ACM/IEEE Design Automation

Conference, pages 213—218, 1993.

90

[25] E. S. H. Wong, E. F. Y. Young, and W. K. Mak, Clustering based acyclic

應Iti-way partitioning, in Proceedings of the 13th ACM Great Lakes Sym-

posium on VLSI, pages 203-206’ ACM Press, 2003.

[26] T. H. Gormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-

rithms, page 580，MIT Press, 1990.

[27] J. R. Ford and D. R. Fulkerson, Flow in Networks, Princeton University

Press, 1962.

[28] T. C. Hu and K. Moerder, VLSI Circuit Design: Theory and Design,

pages 87—93，IEEE Press, 1985.

[29] E. Lawler, Combinatorial Optimization: Network Flow and Matroids,

Holt, Rinehart, and Winston, 1976.

[30] J. Cong and S. K. Lim，Multiway partitioning with pairwise movement,

in IEEE International Conference on Computer Aided Design, pages 512—

516, 1998.

91

I

TTTTiDhDD
•

saLJBjqLi »H门：）

