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Abstract 

Integrated Circuit (IC) is an essential component of many computing facilities 

today. In order to achieve complicate functionalities, one single chip inside a 

computer is actually comprised of millions of transistors. This makes the chip 

design process a lot more difficult and complicated than before. As huge cir-

cuits are hard to be managed efficiently, decomposition of complex systems into 

finer sub-systems is important in the design cycle. After decomposition, each 

sub-system can be designed and further improved independently and simulta-

neously to make the design process faster and simpler. Therefore, partitioning 

is an important technique used in the design cycle. 

Circuit partitioning plays an important role in the physical design cycle. 

A good partitioning of a system will lead to feasible solutions in the succeed-

ing processes such as floorplanning’ placement and routing. There are several 

aspects to be considered in the partitioning process, such as the interface con-

nections between sub-circuits, the delay of the critical path and the size of 

each partition, etc. 

We studied some previous works on circuit partitioning, and focused on 

their performance on cut-size and delay minimization. We found that acyclic 

partitioning is an effective way to upper bound the largest number of inter-

partition delays along any path. Therefore, in this thesis, two approaches are 

proposed to solve the acyclic multi-way circuit partitioning problem. The first 
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one is a clustering based approach. We developed a new acyclic multi-way 

partitioning algorithm. A modified fanout free cone decomposition is used to 

pre-cluster a given network, followed by another similar decomposition process 

to further partition the clustered network. The second one is a network flow 

based approach. We proposed a net modelling method to ensure an acyclic 

partitioning when the max-flow min-cut algorithm is applied. The basic idea 

of these two approaches is to maintain an acyclic partitioning on all the com-

binational paths. Both of these two approaches aim at minimizing the number 

of cuts along the critical paths. Experiments are carried out to investigate the 

performance of these proposed approaches. Results show that both of them 

are competitive with many current existing algorithms. 
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摘要 

現今很多電子產品都有應用到集成電路的技術。一塊細小的晶片’其 

實是由數百萬的電晶體所組成的°隨著科技發展，人們對電子產品的要求 

越來越高，電子產品的内部結構日益複雜，故晶片的體積成為重要的設計 

考慮。然而，設計複雜的晶片並不容易。由於設計員很難同一時間管理與 

設計魔大的電路，所以將系統分割成為多個次系統是必要的。這樣’設計 

隊伍便能同時有效和獨立地設計和優化各次系統°故集成電路分割是在晶 

片設計中不可或缺的技巧。 

集成電路分割技術在整個設計過程當中扮演一個很重要的角色。優良 

的分割技術能令到往後的步驟如佈局規劃、配置和繞線得到成功的結果° 

在集成電路分割過程中，設計隊伍須要考慮次系統間的交叉連結、訊號的 

最大延遲和各次系統的大小等問題° 

我們研究過一些已有的電路分割技術’特別集中在縮減次系統間的交 

叉連結和改善訊號延遲等技術°我們發現非循環式的次系統分割能有效地 

減少因分割次系統而帶來的訊號延遲。我們在這論文中提出了兩個方法， 

第一個方法建基於聚類技術。我們開發了 一個全新的非循環式多方向分割 

方法，先用零输出端圓錐分解來群集系統，然後再用類似的手法更進一步 

的分割該系統。第二個方法建基於網络流技術°我們提出的網絡塑型可保 

言正當引用「最大流最小切」方法時’會得到一個非循環式的分割。本論文 

提出的兩個方法旨在令所有組合式的路徑非循環，而維持最少的臨界路徑 

被切次數。對比現有的分割技術’實驗結果證明我們提出的方法能更有效 

地找到優良的分割。 
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Chapter 1 

Introduction 

1.1 Preliminaries 

Today, the sizes of computers or electronic appliances are becoming smaller 

and smaller. It would be difficult to imagine that a tiny chip is actually 

consisted of billions of transistors. The advanced technology on fabrication of 

VLSI (Very Large Scale Integration) circuits has made the size of a chip as 

small as a nail possible. Indeed, it is a complicate process from the design 

to the fabrication of a single chip. It involves a large number of steps and 

a huge amount of computational power. In this thesis, we will concentrate 

on one important aspect in the physical design process, which is, the circuit 

partitioning problem. 

1.2 Motivations 

In VLSI system design, it is common that a system is consisted of millions of 

transistors. Such a huge circuit is hard to be managed efficiently. As a result, 

decomposition of these complex systems into finer sub-systems is important. 

Each sub-system can then be designed and further improved independently 

and simultaneously to make the design process faster and simpler. 
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Chapter 1 Introduction 2 

Partitioning plays an important role in the physical design cycle of VLSI 

circuits. A good partitioning of a system will lead to feasible solutions for the 

succeeding processes such as floorplanning, placement and routing. As the in-

terconnection delay between partitions are relatively large and not preferable, 

we usually need to reduce the number of interface connections between sub-

systems, which is called the min-cut problem in the partitioning process. A 

min-cut partitioning can minimize the number of interconnections. However, 

one combinational path may be cut by the partitions several times. As the 

overall delay of a circuit is the delay along the critical paths, multiple cuts on a 

single combinational path will affect the delay of the whole circuit. Therefore, 

the number of cuts along a path is also an important aspect to be considered 

beside the cut size. In order to improve the performance of the circuit, the 

number of partitioning cuts along each path must be considered. 

Acyclic partitioning is an effective way to upper bound the largest number 

of inter-partition delay along any path. The acyclic multi-way partitioning 

problem was defined in [6]. It differs from the general partitioning problem 

because it restricts the edges between different partitions from forming a di-

rected cycle. An acyclic partitioning ensures that all paths are cut by the 

partitions by at most k - 1 times only where k is the number of partitions. 

This can effectively reduce the delay caused by the partition cuts. Although 

the number of partition cuts along any path is limited, the partitioning solu-

tion may be over constrained. As the overall delay of a circuit is defined by 

the delay along the longest combinational path, some solutions with better cut 

sizes may be eliminated because of the acyclic constraints. Some move based 

algorithms like FM can be applied in such a process to improve the cut size as 

a post-processing step. 
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1.3 Contributions 

We studied some previous works on circuit partitioning. In order to reduce the 

delay of the circuit, the number of cuts along each path must be considered. 

We proposed two approaches to solve the problem. One is based on the clus-

tering technique, and the other is based on the network flow technique. The 

basic idea of these two approaches is to maintain an acyclic partitioning on all 

the combinational paths. Both of these two approaches aim at minimizing the 

number of cuts along the critical path. 

In the first method, a clustering based approach is used. We developed 

a new acyclic multi-way partitioning algorithm. A modified fanout free cone 

decomposition is used to pre-cluster a given network. This decomposition ef-

fectively reduces a given network to a smaller and sparser one and maintain 

the acyclic property of the network. After that, a modified version of this 

decomposition step will be used again to further partition the clustered net-

work into the desired number of partitions. The size constraint is set to the 

predefined partition size in the partitioning phase as we want to fill up each 

partition as much as possible. 

The second method is a network flow based approach. We proposed a net 

modelling method to ensure an acyclic partitioning when the Max-Flow Min-

Cut algorithm is applied. We successfully limit the number of cuts of each 

combinational path to A: - 1 by applying the Max-Flow Min-Cut algorithm 

where k is the number of partitions. Then a FM post processing improvement 

step is applied on the resultant partitioning to further improve the overall cut-

size. Our proposed algorithm can reduce the delay of the circuit caused by 

the repeated inter-partition cut efficiently while considering the cut-size at the 

same time. 
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1.4 Organization of the Thesis 

After this brief introduction, there will be an overview of the VLSI physical 

design cycle in Chapter 2. It includes some background knowledge about VLSI 

design cycle and physical design cycle. 

In Chapter 3’ we will describe some recent approaches on circuit parti-

tioning. It starts with a study of circuit representation, delay modelling and 

partitioning objectives. Some typical partitioning algorithms will be revised. 

Delay driven circuit partitioning and acyclic partitioning will also be discussed. 

Ill Chapter 4，our clustering based approach to solve the acyclic multi-way 

partitioning problem will be presented. We will start with an introduction 

to some existing approaches and techniques in clustering based partitioning. 

Then, an overview of our approach will be provided, followed by the details of 

our algorithm. The experimental results and a conclusion will be presented at 

the end. 

In Chapter 5, we will present our network flow based partitioning algo-

rithm. Previous works on net modelling and network flow based partitioning 

will be introduced. We will then propose our net modelling for acyclic par-

titioning. The properties and effects of our net modelling method will be 

discussed. Lastly, the experimental results and a conclusion will be given. 

A conclusion of this thesis will appear in Chapter 6. 



Chapter 2 

VLSI Physical Design 

Automation 

2.1 Preliminaries 

The applications of computing facilities are more and more common today. It 

is not surprising to find that we are surrounded by a huge number of com-

puter related machines in daily life, such as our personal computers, the ATM 

machines which were commonly adopted, and many electronic appliances. In-

tegrated Circuits (IC) are one of the essential components of those computing 

facilities. To perform complicate calculations, the chips inside a computer 

consists of millions of transistors, which are refereed as Very Large Scale Inte-

gration (VLSI) chips. As the complexities of computers increase from time to 

time, the number of transistors involved increases accordingly. On the other 

hand, it is favorable to keep the size of the chips as small as possible. Therefore, 

the problems encountered during the chip design process has become more and 

more difficult and complicate. 

In a VLSI design process, several steps will be involved. Details will be 

discussed in Section 2.2. As physical design is a very important step in the 

VLSI design cycle, we will focus on it in Section 2.3, followed by a summary 
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Chapter 2 VLSI Physical Design Automation 6 

in Section 2.4. 

2.2 V L S I Design Cycle [1 

To produce a packaged chip, we need to go through a series of steps. A flow 

chart of the VLSI design cycle is shown in Figure 2.1. Details of each step are 

described as follow: 

2.2.1 System Specification 

It is necessary to list out important aspects of the system, such as what the 

system can perform and what constraints are required to be satisfied. These as-

pects include the functionality of the system, the size constraints of the system 

and the expected performances, etc. Engineers will work on the subsequent 

design to fulfill this specification. 

2.2.2 Architectural Design 

This is a step to design the basic architecture of the system, such as how many 

ALUs will be used, and what is the size of the cache, etc. Architects can 

estimate the power consumption and the system performance basing on this 

architecture, which can help to estimate whether the specification can be met. 

2.2.3 Functional Design 

This is a step to specify the behavior of the system, without specifying the 

detailed internal design. This can be done by stating the inputs and outputs 

of each unit. Besides, interconnections between different units will also be 

defined. 
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‘ System ^ 
Specification J 

‘ Architectural ^ 
Design J 

Functional Design! 

> ‘ 

Logic Design I 

Circuit Design I 

厂 I 
Physical Design I 

> ‘ r \ 

Fabrication I 

‘ Packaging & ~ ^ 
Testing J 

Figure 2.1: VLSI Design Cycle 
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2.2.4 Logic Design 

Aspects like the control flow of the systems and the logic operations in each 

circuit will be defined in this step. Boolean expressions will be used to describe 

the logic operations. Those expressions will be simplified as much as possible in 

order to make the design compact. Simulation and testing will also be carried 

out to verify the correctness of the system. 

2.2.5 Circuit Design 

Circuit representation of the system can be made basing on the logic design. 

In this step, the speed and performance of the circuit will be taken into ac-

count. Circuit elements and the interconnections between these elements will 

be defined. 

2.2.6 Physical Design 

In physical design, engineers will convert the circuit design into a geomet-

ric representation, which is called a layout. There are many aspects to be 

considered, such as where to place the elements, how the interconnections be-

tween the elements should be made, what the most favorable dimensions of the 

chip is, etc. These steps are actually very complex and each involves several 

sub-steps. A detailed discussion of physical design can be found in the next 

section. 

2.2.7 Fabrication 

This is the step that produces the chip from its physical design. The electronic 

components are built by layering different materials onto a base made of silicon, 

which is called a wafer. A large wafer can be used to produce many chips. 

Prototypes will first be made for testing before mass production of the chips 
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is carried out. 

2.2.8 Packaging and Testing 

After testing and checking the prototype, the chips will be mass produced. 

Before packaging each individual chip, a final verification will be performed 

to ensure that all the requirements are fulfilled and the chip is functioning 

properly. 

2.3 Physical Design Cycle [1 

Given a circuit representation of the design, engineers will try to produce an 

exact layout of the design in the physical design step. The steps involved in 

physical design are shown in Figure 2.2 and details are discussed as follows: 

2.3.1 Part it ioning 

Breaking down a big problem into smaller sub-problems is always a good strat-

egy to solve complex problems. As the complexity of the chip design process 

increases, it is nearly impossible to design the whole chip all at once. Thus, 

in the first step of physical design, engineers attempt to partition the circuit 

into sub-circuits, which are called blocks, in order to make the design process 

simpler and more efficient. After the decomposition, each sub-circuits can then 

be designed and managed simultaneously and efficiently, which can greatly re-

duce the complexity of the subsequent designing steps. Factors like the sizes 

of the blocks, the dimensions of the blocks and the interconnections between 

different blocks should be taken into account. 
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J Y 
Partitioning I 

> ‘ 

Floorplanning & ^ 
Placement I 

y ‘ 

Routing I 

> 

Compaction I 

> ‘ 

Extraction & ^ 
Verification I 

Figure 2.2: Physical Design Cycle 
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2.3.2 Floorplanning and Placement 

Placing the blocks in such a way that all the constraints in area, block di-

mensions, interconnect length and delay, etc., are satisfied is the main concern 

in this step. Floorplanning is the planning step to design how to place the 

blocks. A compact design is favorable, but there are many important aspects 

that should also be considered. For example, issues like the dimensions of each 

block and the overall delay should also be taken into account. 

After the planning step, the blocks will be placed exactly onto the chips 

and this step is called placement. After this step, the dimensions of each block 

and their positions are fixed. Floorplanning and placement are important as it 

affects the ultimate design significantly and determines whether the required 

specifications can be met. 

2.3.3 Routing 

This step aims at completing all the interconnections between the blocks. Ob-

jectives like minimizing the total wire length, minimizing the number of vias 

and minimizing the critical delay etc. should be considered. This step can be 

further divided into two sub-steps: 

1. Global Routing: Planning different routes in a global view, without 

fixing the exact path of each route. It is a rough plan to check whether 

completing all interconnections is possible. 

2. Detailed Routing: Complete each connection by giving exact informa-

tion such as the exact positions of the wires on the metal layers. After 

detailed routing, the geometric layouts of all the nets will be known. 

There may be cases in which some of the connections cannot be routed. 

In such a situation, the technique rip-up and re-route, i.e. removing some of 
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the routed connections and re-route them in a different order, will be used. 

If there are still connections that cannot be routed at the end, engineers may 

need to go back to the earlier steps in the physical design cycle or even to the 

login designing step and start the whole process all over again. 

2.3.4 Compaction 

As mentioned before, it is desirable to have a chip design as small as possible. 

In this step, the layout will be compressed from different directions in order to 

make the total area smaller. As the total area is smaller, the wire lengths will 

be reduced, and thus the delay will also be reduced. During the compaction 

process, rules regarding the design should be checked to make sure that there 

is no violations. 

2.3.5 Extraction and Verification 

As the whole design process is an extremely complex process, verification of 

each step is a must to ensure that everything works well before proceeding 

to the fabrication step. It is necessary to make sure that no design rules is 

violated in the final layout, such as the wire separation rule and the aspect 

ratio rule etc. Besides, the functionalities of the circuits should also be verified 

before proceeding to the next step. If any problem is discovered, engineers 

may need to go back to the earlier designing steps to fix the problem. 

2.4 Chapter S u m m a r y 

Producing a thumb-big chip is a time consuming process. There are many 

steps to go through, and many of which are computational expensive. Many 

algorithms have been developed in CAD (Computer Aided Design) tools to 

help accomplishing the tasks, but there are still many unresolved problems 
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and new challenges to be explored. 

Physical design is a critical stage in the VLSI design process. In the physical 

design process, circuit partitioning is a crucial step and our research will be 

focused on performance driven circuit partitioning. 



Chapter 3 

Recent Approaches on Circuit 

Partitioning 

3.1 Preliminaries 

Circuit partitioning is a critical stage in VLSI design. Today, it is usual that 

a circuit contains several millions of transistors. The huge size makes the cir-

cuit designing problem not human manageable. Circuit partitioning is used 

to break down a complex system into smaller subsystems, such that the de-

signers can manage the simpler subsystems separately. Each subsystem can 

be designed independently to speed up the design process. Partitioning will 

affect the performance of the whole circuit, such as the delay caused by inter-

partition connections. Good partitioning techniques can improve the overall 

performance of the circuit. As the size and complexity of VLSI designs has 

increased rapidly in recent years, the development of good partitioning algo-

rithms and tools are essential. 

In this chapter, we will present some background on circuit partitioning like 

circuit representation and delay modelling. Some commonly used partitioning 

objectives will be discussed, which is then followed by several well-known par-

tition algorithms. 

14 
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3.2 Circuit Representation 

In order to apply a partitioning algorithm to a given circuit, we must first 

transform the circuit into a suitable representation. Recent approaches usually 

attempt to solve the circuit partitioning problem by representing the circuit 

as a graph. Graph is a straight forward representation of a network of gates 

or modules, and the circuit partitioning problem can then be solved by some 

graph partitioning methods in this way. A graph G{V, E), where V is a set of 

nodes representing the circuit components such as logic gates, flip-flops，inputs 

and outputs, and E is a set of edges representing the nets in the circuit con-

necting the circuit components. A feasible graph representation is illustrated 

in Figure 3.1. 

• Intput/Output 

__•) ) 〇 Gate 

Figure 3.1: Graph Representation of a Circuit 

Besides the basic circuit information, the signal flow direction can also be 

integrated into the graph representation. It can be done by changing the edges 

in the graph to directed edges. A directed graph representation is essential in 

some partitioning problems such as unidirectional cut partitioning problem, 
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acyclic partitioning problem, timing driven partitioning problem, etc. A di-

rected graph representation is illustrated in Figure 3.2. 

• Intput / Output 

〇 Gate 

D l d — 1 I ^ n 

D � � -

Figure 3.2: Directed Graph Representation of a Circuit 

A circuit partitioning problem of aims at separating the set of nodes into 

two or more disjoint subsets while optimizing the objective function. The most 

typical objective is to minimize the total number of inter-partition edges. It 

is called the min-cut objective. Beside the min-cut objective, there are sev-

eral other objectives which will be discussed in details in the following sections. 

3.3 Delay Modelling 

The delay of a partitioned circuit is an important aspect to be considered in 

circuit partitioning. In most high performance systems today, the partition-

ing algorithm is required to be performance driven, that is, to minimize the 

overall circuit delay. In order to evaluate the delay of a partitioned circuit, an 

appropriate delay model is needed. In this section, we will introduce some of 

them. 
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The delay of a combinational circuit is the longest delay among all the 

paths from a primary input to a primary output. The delay of a sequential 

circuit is the longest delay among all the combinational paths of one of the 

following four types: 

1. Primary input to primary output: PI — PO 

2. Primary input to flip-flop: PI —> FF 

3. Flip-flop to primary output: FF — PO 

4. Flip-flop to flip-flop: FF — FF 

There are two basic models for estimating the delay of a circuit. They are 

the unit delay model [7] and the general delay model [8]. In the unit delay 

model, all gate delays are assumed to be zero. The interconnections connecting 

gates ill the same partition are assumed to have zero delay. The interconnec-

tions connecting gates in two different partitions are assumed to have one time 

unit delay. In the general delay model, each gate has an intrinsic gate de-

lay. Again, the interconnections connecting gates in the same partition are 

neglected. A delay of D time units, where D is a constant, is accounted for 

each interconnection connecting gates in two different partitions. An example 

is shown in Figure 3.3. 

We can deduce the delay of a combinational circuit using the two delay 

models as discussed in [9]. Each node v has an intrinsic gate delay i{v). For 

each V e V, d{v) is defined as the maximum delay along any path starting 

from a primary input node and ending at v. d{s) is zero when s e PI where 

PI is the set of primary input nodes. The delay values of all the other nodes 

can be calculated using the following formula: 
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d{v) = max {d'{u)} + i{v) 
u£fanin{v) 

{d{u) if u and v are in the same partition or u is a PI | 

d(u) + D if u and v are not in the same partition ) 

The notation fanin{v) represents the fan-in of node v. If one of the nodes 

is a primary input ( P / ) or a primary output (PO), there is no need to add 

the value D to it. It is because we assume that primary input and output 

nodes can physically be assigned to any partition without affecting the area 

and delay. By applying this calculation recursively until all nodes are visited, 

the delay of a combinational circuit can be computed which is equal to the 

maximum value of d{v) where v G PO. 

As mentioned before, the delay of a sequential circuit is the longest de-

lay among all the combinational paths of one of the following four types: 

PI — PO, PI 4 FF, FF — PO and FF — FF. The delay of a se-

quential circuit can be computed using the method for combinational circuit 

by replacing each FF by a PI node and a PO node. Replace each edge that 

is connected to the FF node originally by an edge connecting to the corre-

sponding PO node and replace each edge that is connected from the FF node 

originally by an edge connecting from the corresponding PI node. The circuit 

is reduced to a combinational one in this way. By computing the maximum 

delay among all the combinational paths, we can deduce the delay of the orig-

inal sequential circuit. 
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3.4 Partitioning Objectives 

In this section, we are going to introduce some constraints and objectives for 

the circuit partitioning problem. In real life, we need to deal with one or more 

of the following parameters at the same time. 

3.4.1 Interconnections between Partitions 

In a partitioned circuit, the delay between partitions are considered relatively 

large and not preferred. Also, the number of terminals in each partition is 

limited. In order to satisfy these constraints and requirements, circuit par-

titioner must consider the impact of the number of interconnections between 

partitions. The number of interconnections between partitions should be min-

imized and this is the most typical objective in circuit partitioning. We call it 

the min-cut partitioning problem. 

3.4.2 Delay Minimization 

The performance of a circuit depends on the delay along the critical paths of 

the whole circuit. As discussed before, the delay between partitions are con-

sidered relatively large and not preferred. Although the cut-size minimization 

objective can reduce the probability that a critical path crosses the parti-

tions multiple times, it does not guarantee any delay minimization. For the 

objective of delay minimization, we are required to minimize the number of 

inter-partition cuts along the critical paths. 
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3.4.3 Area and Number of Partitions 

If we had no limitations on the area and the number of partitions, the result-

ing partitions would be too large or too small, or there would be too many 

partitions. If a partition is too large, the entire partition cannot be fitted into 

a chip or a module. If a partition is too small, there will be a wastage of 

resources. On the other hand, a large number of partitions may result in an 

increase in the number of inter-partition interconnections. A small number of 

partitions may leave the design of the sub-circuit still too complex for han-

dling. In circuit level design, partitions of balanced-sizes are preferred, given 

the required number of partitions. 

3.5 Partitioning Algorithms 

Many algorithms have been proposed to deal with the partitioning problem. 

In this section, we will review some well-known algorithms to solve the cir-

cuit partitioning problem, we will classify the algorithms according to their 

partitioning objectives. The first one is cut-size driven partitioning. It is the 

most typical problem in circuit partitioning. It aims at minimizing the num-

ber of interconnections between partitions. The second one is delay driven 

partitioning. It aims at minimizing the delay of the final partitioned circuit. 

The third one is acyclic partitioning problem. It aims at producing an acyclic 

partitioning solution. The delay driven partitioning problem and the acyclic 

partitioning problem are closely related to our research which will be intro-

duced in Chapter 4 and Chapter 5. 
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3.5.1 Cut-size Driven Partitioning Algorithm 

In this section, we will review several well-known cut-size driven algorithms. 

The objective of these algorithms is to obtain two balanced partitions with the 

cut-size minimized or with a ratio balanced cut-size between the two partitions 

minimized. 

Firstly , we will introduce some iterative improvement approaches, the 

Kernighan-Lin {KL) Algorithm [10] and the Fiduccia-Mattheyses ( F M ) Al-

gorithm [11]. They are all iterative improvement algorithms using greedy strat-

egy. KL and FM starts with an initial partitioning, and components are then 

moved between the partitions to improve the cut-size. The process stops when 

a local minimum is reached. As the solution of the KL and FM algorithm 

may be trapped in local minima, multiple trials with different initial partitions 

are needed for higher quality solutions. 

After that, we will introduce some stochastic searching approaches. They 

are the Simulated Annealing approach and the Genetic Algorithm. Simulated 

Annealing {SA) is a general purpose searching technique. It mimics the process 

of metal cooling and freezing into crystalline structure with minimum energy 

(the annealing process). The current solution is updated until a terminating 

condition is reached. Genetic Algorithm {GA) is a class of searching method 

inspired by genetic evolution. It simulates the natural selection process in 

evolution to locate good solutions. It starts with a set of random solutions 

(population). The population evolutes over generation and is replaced by the 

offspring in the next generation. The population is refined gradually during 

the evolutional process. 

Then, we will introduce the network flow based approaches. The network 
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flow based approaches use the technique and characteristics of the Max-Flow 

Min-Cut computation to solve the partitioning problem. 

A number of heuristic steps have been developed to improve the partition-

ing algorithms. They include logic replication [4’ 12，13], multilevel approach 

2’ 14] and clustering [2]. In logic replication, some nodes are selected and du-

plicated in two or more partitions in order to reduce the cut-size. In multilevel 

approach, a sequence of successive grouping steps will be applied to the nodes 

in the circuit until the number of nodes is smaller than a given threshold. Af-

ter the grouping steps, a move based partitioning algorithm such as FM will 

be applied to the clustered circuit to obtain a bisection. The next step is to 

un-group the nodes at the highest level in the partitioned result and use it as 

the initial solution for the next FM computation. Clustering [2] is another 

useful pre-processing step that groups the nodes in a network into clusters. 

This can significantly reduce the problem size and produce a simpler clustered 

network before applying a partitioning algorithm. 

Kernighan-Lin (KL) Algorithm [10 

The Kernighan-Lin {KL) algorithm is based on pairwise swapping of cells 

between two partitions in order to maximize the gain after swapping. The 

gain of a pairwise swapping is the change in the number of inter-partition 

connections after the swapping. The greater the gain, the smaller the cut-size 

is resulted after the swapping. The KL Algorithm is the first well known and 

widely extended partitioning heuristic. It is a local searching algorithm and 

produces partitions of equal size. The gain of swapping a pair of cells a and b 

where a e A and b e B is defined as follow: 

Gab = Da -hDb- 2Cab 
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where Cab = cost between cell a and cell b 

Di = External cost of cell i - Internal cost of cell i 

—EyeB Ciy — J2xeA Cia： 

(Assuming that cell i is in partition A) 

The algorithm starts with an edge weighted graph which is partitioned into 

two subsets (A, B) initially, where |A| = 二 n. The algorithm will work 

in an iterative manner. The gain value for each pair (a, b) where a e A and 

b e B is first computed. The pair having the maximum gain will be exchanged 

temporally and locked, so that the two swapped nodes will not be swapped, 

again. The gain value Qi of the selected pair will be recoded and the new gain 

values for those remaining free nodes will be updated. Then, the next pair of 

nodes with the maximum gain will be selected and exchanged. This swapping 

process will be repeated until all nodes are locked. Finally, a /c is chosen to 

maximize the value of G 二 9i • If � 0， i t means that a reduction in the 

number of inter-partition connections can be made by swapping the selected 

nodes between A and B. Permanent swapping will then be performed up to 

and including step k to maximize the overall gain. A new partition is obtained 

and this is defined as one pass. In the next pass, the same process will be 

repeated using the result of the previous pass as the starting partition. These 

passes will be performed until there is no further improvement in cut-size (i.e., 

G < 0). The time complexity of a simple implementation of the KL Algorithm 

is 0{n^) per pass. 

The KL Algorithm has been widely used in industry because of its effec-

tiveness and its simple implementation. However, the time complexity of the 
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algorithm is quite high. In addition, this approach is not flexible for unbal-

anced partitioning since the KL algorithm will always result in a balanced 

partitioning. 

Fiduccia-Mattheyses (FM) Algorithm [11 

In view of the drawbacks of the KL algorithm, Fiduccia and Mattheyses pre-

sented a new algorithm to modify KL Algorithm in 1982. In the new algorithm, 

the run time of one pass is reduced to linear. Similar to KL, FM starts with 

a balanced partition {A, B). It moves a cell to the opposite partition in each 

step instead of swapping a pair of cells as in the KL algorithm. The algorithm 

works in an iterative manner. The gain value of each cell is first calculated 

and the cell with the highest gain value will be moved to the opposite parti-

tion. One important feature of the major characteristic of the FM algorithm 

is that it considers the gain updates of the critical nets only. We will discuss 

in details the definition of a critical net and the gain calculation process later. 

A free cell with the highest gain will be chosen to be moved to the opposite 

partition temporally and locked if the balance ratio constraint is preserved 

after the move. The value of the balance ratio r is specified by the user and 

is defined as |>1|/(|A| + \B\) for a partitioning (A, B). To maintain the bal-

ance ratio constraint, the following situation must be satisfied after each move: 

rW - Smax < 1^1 < + Smax 

where W =\A\-\- \B\ and Smax is the maximum size of a cell 

If the movement is allowed, the gain value gi of such move will be recorded. 

The process continues until all the cells are locked. Similar to the KL algo-

rithm, a k will be chosen to maximize the value oi G = 9i • Permanent 

swapping will be performed up to and including the step k to maximize the 
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overall gain. A new partitioning is obtained and this is defined as one pass. 

In the next pass, the same process will be repeated using the result of the 

previous pass as the starting partition. These passes will be performed until 

there is no further improvement in cut-size (i.e., G < 0). 

One important observation of the FM algorithm is that the number of gain 

update due to a net is limited. For a bipartition {A, B), a net is regarded as 

a critical net if the move of a cell on it will result in a change in cut-size due 

to this net. Notice that a net is critical either A{n) or B{n) is equal to 0 or 

1, where A{n) and B{n) are the number of cells of net n in partition A and B 

respectively. Besides, a net will never critical again if it has one locked cell on 

each partition. 

The authors have proved that no more that four update operations are 

performed for each net in one pass of the algorithm. An example is shown in 

Figure 3.4. 

In KL, the dominant factor in determining the time complexity is the se-

lection process in finding the pair of modules with the largest gain. This takes 

O(n^) time. In FM, two sorted bucket lists are maintained to improve the 

runtime complexity of the cell selection process. Besides, it is proved that the 

number of updates in one pass due to a net is upper bounded by a constraint. 

The runtime of one pass of the FM algorithm can be done in 0(m) time where 

m is the number of net. Besides, the single cell movements in FM provides 

flexibility for unbalanced partitioning. 
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Simulated Annealing (SA) 

Simulated Annealing (SA) is a general purpose searching technique. It mimics 

the process of metal cooling and freezing into crystalline structure with min-

imum energy (the annealing process). The algorithm was originally proposed 

in [15] for finding the equilibrium configuration of a collection of atoms at a 

given temperature. The idea of using SA as an optimization tool is introduced 

in [16]. However, it is suggested in [17] and the author proposed to use it as a 

general technique for different optimization problems. 

In [18], the authors apply the Simulated Annealing technique in the cir-

cuit partitioning problem. Given a randomly generated partitioning solution, 

a node is selected randomly to move from one partition to another partition 

in each iteration of the annealing process . The gain of a move is defined by 

the following ratio cut formula which is proposed in [19]: 

Gain = c w 力 . 

where \A\ and \B\ is the size of the two partitions 

If the movement gives a better gain {GaiUnew — GaiUoid < 0), the move 

will be accepted. However, if the movement does not give a better gain, SA 

will still accept the move with probability eT叩、where 6 is the change in the 

gains of the two solutions, and T is the current temperature value, which is 

controlled by the cooling rate of the annealing process. This is defined as one 

iteration. SA can prevent the candidate solution from trapping in a local min-

ima by accepting a worse solution with a certain probability. The temperature 

value T is a function of the number of moves performed. After each iteration, 

T will be scaled down by a cooling faction a where 0 < a < 1. The algorithm 

stops if there is no changes in the gain of the solution after t iterations. 
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Genetic Algorithm (GA) 

Genetic Algorithm is a class of searching methods inspired by genetic evolu-

tion. It is initialized by Darwin's theory of natural selection of evolution [20 . 

GA starts with a set of random solutions (population) of the problem. Unlike 

other searching techniques, it operates on a population of solutions instead of a 

single solution. The population evolves over the generations and is iteratively 

replaced by the offspring in the next generation. 

The use of Genetic Algorithm to solve the partitioning problem is proposed 

in [21]. The authors suggested to encode a partitioning solution as a binary 

string of C genes where C is the number of nodes in the graph. Each gene 

represents the partition to which each node belongs. For example, the string 

100101] represents a graph of six nodes where node 1, 4 and 6 are assigned 

to partition one, and node 2,3 and 5 are assigned to partition two. As stated 

before, GA starts with a set of random solutions (population). In the partition-

ing problem, we need to ensure that the random solutions in the population 

represent balanced partitionings. 

In each iteration, two solutions are selected from the population as the 

parents. The probability for selecting an individual as a parent is proportional 

to its fitness value. The fitness value Fi of a solution i is defined as follow: 

Fi = ( a - a ) + ( a - a ) / 3 

where Cyj is the largest cut-size in the population 

Cb is the smallest cut-size in the population 

Ci is the cut-size of solution i. 
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The two selected solutions, which are called parents, will then crossover 

and mutate to give a new solution. During the crossover, the parents will be 

mixed partially to generate a new solution. In such a process, an unbalanced 

partitioning solution may be resulted (number of ones + number of zeros). 

The mutation process will then be applied to randomly complement some bits 

of the solution to make it a valid balanced partitioning. The new solution will 

be added to the population while the solution with the lowest fitness values 

will be removed from the population. By repeatedly applying this process to 

the population, the quality of the population will be improved. The algorithm 

stops when there is no improvement after N generations where N is given by 

the user and the final solution will be the smallest cut-size solution Cb in the 

population. 

Network Flow Approach 

The network flow based approach makes use of the Max-Flow Min-Cut algo-

rithm to partition a circuit. The network flow technique can find a min-cut 

bipartition which is not necessarily balanced. The time complexity of the Max-

Flow Min-Cut computation is 0{\V\\E\) where \E\ is the number of edges and 

V\ is the number of vertices. 

In order to apply the Max-Flow Min-Cut algorithm in circuit partitioning, 

we must first model the circuit in such a way that the Max-Flow Min-Cut 

computation can be applied. This is called net modelling. We can model a 

circuit by a graph G such that when we apply the network flow algorithm, 

the min-cut in G is equal to the min-cut in the real circuit. Besides, only a 

two-way partition can be obtained in applying the Max-Flow Min-Cut compu-

tation once, a general method to obtain a balanced or multi-way partitioning 

is by performing the Max-Flow Min-Cut algorithm recursively. However, this 
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approach may increase the time complexity. Some good heuristics can be used 

to generate a balanced partition or an r-balanced partition. In the method 

proposed in [22], after applying the simple Max-Flow Min-Cut computation 

to obtain a min-cut, the sizes of the two partitions S and T are checked. It 

tries to obtain a balanced partition in a recursive manner. If the size is too 

small, all the nodes in S and a node chosen from T are collapsed to the source 

s. By increasing the flow in the current network, a different cut-size with a 

larger S will be found. Similarly, if the size |5| is too large, all the nodes in T 

and a node chosen from S are collapsed to the sink t. The Max-Flow Min-Cut 

computation will be applied repeatedly until the desired size is obtained. 

In this thesis, we have also proposed a network flow based partitioning 

method, which will be introduced in Chapter 5. Detailed discussions on flow 

network and net modelling will be given in Chapter 5. 

Clustering Approach 

The sizes of the partitioning problems grow significantly in recent years. In 

order to deal with complicated circuit, a pre-processing step, clustering, is pro-

posed and applied to the partitioning problem to improve the efficiency of the 

subsequent partitioning method and the solution quality. The clustering steps 

will group the strongly connected nodes in the original circuit together to form 

clusters. This can reduce the problem size significantly. As the nodes in one 

cluster will be treated as one node in the subsequent partitioning method, the 

nodes in the same cluster will be assigned to the same partition in the final 

solution. Since the aim of the cut-size driven partitioning algorithms is to min-

imize the cut-size between partitions, it is good to put the strongly connected 

nodes in the same cluster to reduce the inter-partition cut-size. 



Chapter 3 Recent Approaches on Circuit Partitioning 30 

However, the clustering technique alone cannot produce a partitioning so-

lution and it is usually applied together with some iterative algorithms like 

the FM algorithm. Since clustering can reduce the problem size significantly, 

it is useful in solving large size problems. However, since some nodes are pre-

clustered and they will not be separated again in the subsequent partitioning 

method, some good solutions with small cut-size will be eliminated. 

Multilevel Approach 

In a multilevel approach, the partitioning process is performed in a hierarchical 

structure which is divided into two phases, coarsening and uncoarsening. In 

the coarsening phase, node which are strongly connected will be grouped to-

gether recursively. For example, given an original circuit which is represented 

by a hypergraph, Hq, a new hypergraph Hi is obtained from Hq by grouping 

the strongly connected nodes together. This coarsening step will be applied 

to the hypergraph Hi again to give another hypergraph H2. This step will 

be repeated until the number of node in the condensed hypergraph is smaller 

than a given threshold. 

In the uncoarsening phase, a move based partitioning algorithm such as 

the FM algorithm will be applied to the hypergraph H^, A partitioning 

solution will then be obtained. The next step is to un-group the nodes in the 

partitioned hypergraph Hn back to Hn-i without changing the partitioning 

result. This un-grouped partitioning result will be used as the initial solution 

for the next FM computation. This ungrouping and FM computation steps 

will be applied to the hypergraph repeatedly until all the nodes in the original 

hypergraph Hi are obtained. A partition of the original circuit will then be 

obtained at the end. 
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Logic Replication 

The logic replication technique can be used to reduce cut-size. This is done 

by replicating some nodes from one partition to another. An example is il-

lustrated in Figure 3.5. Hwang and El Gamal proposed a min-cut replication 

algorithm for determining the replication set for a /c-way partitioning such that 

the cut-size of the partition is minimized [12, 13]. However, their algorithm is 

not optimal in hypergraph. Yang and Wong proposed a Min-Cut Replication 

Algorithm in [2]. This algorithm provides a method to find the min-area min-

cut replication sets in a partitioned hyergraphs optimally. 

Given a bi-partitioned circuit, the algorithm first models it as a flow net-

work using the modelling as shown in Figure 3.6. In the bi-partitioned flow 

network (f/, C/'), the source s is connected to the primary input nodes with 

infinite capacity and the primary output nodes are connected to the sink t 

with infinite capacity. A Max-Flow Min-Cut computation is then applied to 

the flow network to obtain a, s — t min-cut. The replication set C is the set 

of nodes that belongs to the sink side T except those which are originally in 

partition U'. The set C is then duplicated in U' and new bi-partitioned circuit 

becomes ([/, U'\jC). This method can be applied to the multi-way partition-

ing problem. Given a /c-way partitioned circuit {JJi,U2,…,f4)，the Max-Flow 

Min-Cut computation will be applied to each pair {Si, Ui) for alH < /c where 

Si = Uj}. The replication set obtained in each computation will be 

replicated to the subset Ui. The time complexity is 0{k\V\\E\) where k is the 

number of partitions in the circuit, V and E axe the numbers of vertices and 

edges respectively. 
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3.5.2 Delay Driven Partitioning Algorithm 

In this section, we will review some delay driven partitioning algorithms. 

Performance Driven Multiway Partitioning[23 

In [23], the author proposed a relaxed acyclic partitioning algorithm for perfor-

mance driven partitioning problems. This algorithm can minimize the delay 

and cut-size at the same time. It takes the delay caused by inter-partition 

edges and the overall cut-size into account by cooperating them in the cost 

function. Given a hypergraph representation of a circuit G{V, E), a biparti-

tion ( S / , Bt) is obtain by sorting the nodes in topological order. The first half 

of the nodes will be assigned to the first partition Bf and the other half will 

be assigned to the second partition Bt. An A-counter and a R-counter are 

defined for each node as follow: 

a(工）二 r \{y\y e FO{x) a n d y G Bf}\ if X e Bf ^ 

a 1 \{y\y e FI{x) and y G Bt}\ if x e Bt I 

, �f \{y\y G FI{x) and y e Bt}\ - a{x) if x e Bf \ 
r{x)= < > 

I \{y\y e FO{x) and y e Bf}\ - a(x) if x e Bt ) 

FI(x) and FO{x) represent the fan-in and fan-out of the node x respectively. 

The value r(x) represents the reduction in backward edges if x is moved to 

the other partition. The R-counter will then be incorporated into the FM gain 

function as follows: 

h(x) = OL • g{x) + (3 . r{x) 
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where a and (3 are the weighting constants subject to user adjustment and 

g{x) is the gain value of cell x as defined in the original FM algorithm for 

estimating the reduction of the overall cut-size. The cell movements in the 

algorithm will be based on the value h{x) while the value of g{x) and r(x) will 

be updated during the FM iterations. 

3.5.3 Acyclic Circuit Partitioning Algorithm 

The acyclic multi-way partitioning problem was defined in [6]. It differs from 

the general partitioning problem in the requirement that the edges between 

different partitions cannot form a directed cycle. As stated in [6], acyclic 

multi-way partitioning finds applications in pipelining of multi-chip designs, 

partitioning based logic minimization, and parallel circuit simulations. Beside, 

acyclic partitioning is an effective way to upper bound the largest number of 

inter-partition delay along a path. This can generally decrease the number of 

partition cuts along the critical paths and the delay of the circuit will also be 

reduced. 

Acyclic Multi-way Partitioning of Boolean Networks [6] 

Many existing partitioning algorithms have shown that pre-clustering can effec-

tively improve the solution quality. However, most of them do not take signal 

directions into account. Therefore, it is not possible to apply them directly 

to obtain acyclic partitionings. An algorithm with pre-clustering followed by 

a restricted version of the FM Algorithm for acyclic multi-way partitioning 

was proposed in [6]. As traditional clustering methods do not take signal di-

rections into account, it is not possible to apply them for acyclic clustering. 

Therefore, a maximum fan-out free cone (MFFC) decomposition clustering 

technique is used. The MFFC decomposition was proposed in [24] and it can 
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produce an acyclic clustered network. After clustering the network, a k-way 

acyclic FM algorithm will be applied on the condensed network and produce 

a final partitioning. The k-way acyclic FM algorithm is similar to the origi-

nal FM algorithm. It constructs a /c-way acyclic partitioning by applying the 

two-way algorithm recursively. For example, for a four-way partitioning, a 

two-way partitioning will be first produced by applying the original two-way 

algorithm. Then, each of these two partitions will be further partitioned into 

two partitions. Beside considering the gain of a cell, the movement of a free 

cell will be accepted only if the move does not violate the area constraints and 

the acyclic constraints. 
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Assume that D = 2 and gate delay = 1 

O Combinational node 
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Delay = 6 Delay = 5 
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Figure 3.3: General Delay Modelling 
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Chapter 4 

Clustering Based Acyclic 

Multi-way Partitioning 

The content of this chapter has been published in a paper in the proceedings 

of the 13认 ACM Great Lakes Symposium on VLSI in 2003 [25]. 

4.1 Preliminaries 

Many existing partitioning algorithms have shown that clustering can effec-

tively improve the solution quality. However, most of them do not take the 

signal direction into account. Therefore, it is not possible to apply them di-

rectly to obtain acyclic partitionings. In [6], an algorithm based on the max-

imum fan-out free cone decomposition followed by a restricted version of the 

FM algorithm was proposed for the acyclic multi-way partitioning problem. 

In this chapter, we will show that a simple two-phase clustering process based 

on a modified fan-out free cone decomposition can yield superior acyclic multi-

way partitioning than that in [6 . 

Our algorithm is based on clustering by computing the modified fan-out 

free cones. Fan-out free cone clustering can be used to reduce a graph to a 

smaller and sparser one, and maintain the acyclic property at the same time. 

38 
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Beside cut size consideration, the longest delay of a path is also an impor-

tant issue to be considered. Acyclic partitioning is an effective way to upper 

bound the largest number of inter-partition delay along any path. The acyclic 

multi-way partitioning problem was defined in [6]. It differs from the general 

partitioning problem because of the restriction that the edges between differ-

ent partitions of a solution cannot form a directed cycle. Acyclic multi-way 

partitioning finds applications in pipelining of multi-chip designs, partitioning 

based logic minimizations, and parallel circuit simulations as described in [6 . 

Experimental results showed that our algorithm compares favorably with the 

previous best acyclic multi-way partitioning algorithm in cut-size. 

In the following sections, we will discuss the acyclic multi-way partition-

ing problem and present a clustering based partitioning algorithm to solve 

the problem. We will first present some previous works on clustering based 

partitioning in Section 4.2. Then, we will formulate the multi-way acyclic 

partitioning problem in Section 4.3. Our clustering based acyclic multi-way 

partitioning method will be introduced in Section 4.4. The details of our al-

gorithm will be discussed in Section 4.5 to 4.8. In Section 4.9, we will present 

some experimental results. Finally, a summary will be given in Section 4.10. 

4.2 Previous Works on Clustering Based Par-

titioning 

When dealing with very large circuits, the performance of the traditional group 

migration partitioning techniques [10, 11] will be degraded. One solution is 

to group the cell into a larger cluster. Using cluster techniques, the problem 

size will be reduced. Most of the clustering methods are done in a bottom up 
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manner. This means that each cell belongs to its own cluster at first and these 

clusters are gradually merged to form several larger clusters. In this section, we 

will introduce some clustering techniques integrated with group migration ap-

proaches. Multilevel clustering [2] and Cluster-Oriented Iterative-Improvement 

Partitioner [3] will be discussed in the following sections. 

4.2.1 Multilevel Circuit Partitioning [2； 

The multilevel partitioning method continuously clusters the cells into larger 

clusters until the solution is tractable. Given a hypergraph representation of a 

circuit, Ho, a new hypergraph Hi is obtained from Hq by grouping the strongly 

connected nodes together. This step is called coarsening. This coarsening step 

will be applied recursively process, i.e., this coarsening step will be applied to 

the hypergraph Hi again and form a hypergraph H:. This will be repeated 

until the number of node in the condensed hypergraph is smaller than a given 

threshold. After the coarsening step, the move based partitioning algorithm 

FM will be applied to the hypergraph H^. The FM algorithm is applied to 

obtain an initial rough partitioning of these clusters. Secondly, the cluster is 

uncoarening down a level. FM algorithm is applied again to refine the solu-

tion. These coarsening and refinement is repeated until the clusters are all 

uncoarsened. An example is illustrated in Figure 4.1. 

The strategy used to cluster the cells is greedy weighted matching algo-

rithm. Connectivity is the aspect used as the matching criterion. The higher 

the connectivity between the cells, the greater the chance they will form a 

new cluster. The connectivity is inversely proportional to the cell area and 

the number of cells in their connected net. Before this multilevel circuit par-

titioning is proposed, two phase clustering method is used. The basic idea of 
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Figure 4.1: Multilevel Circuit Partitioning 
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two phase clustering are the same as multilevel clustering. The difference is 

that two phase clustering will only coarsen the cells once from the first level to 

second level. The FM algorithm is then applied to produce an initial solution. 

Finally, uncoarsening and refinement is done from second level to first level. 

Although two phases clustering is faster than multilevel clustering, the result 

obtained may not be as good as the multilevel one. By using as many levels as 

possible in multilevel clustering, the slower coarsening gives more chances for 

the FM refinement to obtain better solutions. Furthermore, slower coarsening 

reduces the differences between the partition instances in consequent levels. 

The refinement takes fewer passes to converge so it will not take too long to 

complete one problem instance. 

4.2.2 Cluster-Oriented Iterative-Improvement Partitioner 

3 

Cluster-Oriented Iterative-Improvement Partitioner [3] (CLIP) is designed to 

improve the weaknesses of the iterative partitiong algorithms. For the FM 

algorithm, the selection of the base cell is based on the previous movement. 

However, it is claimed to be shortsightedness. Besides, it will be easily trapped 

into local minimas. The major idea of CLIP is to move strongly connected cells 

to one partition sequentially. This strongly connected cells group is defined as 

a cluster. The clusters themselves are weakly connected. 

The objective of the algorithm is to move the cells in the same cluster to 

one side. It means that clustes will not be cut and thus, result in small cut size 

after partitioning. Once a cell in a cluster is moved from A to B, more weight is 

given to the gain of its strongly connected neighbors to increase the probability 

that they will also be moved to B. An example is shown in Figure 4.2. Like 
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traditional iterative group migration algorithm, CLIP starts with an initial 

partition with initial gains computed. The cell with maximum gain is moved 

first. After moving the first cell, the gains of all cells are reset to zero while 

maintaining their original ordering in the bucket list structure. Only the gains 

of the neighbors of the moved cell are updated. This process ensures that the 

strongly connected cells group (cluster) will be moved to the same side with 

higher priority. The algorithm repeated until all the cells are moved. 

O I o o h o 

o o — — • > 〇 

^ o o 〇 〇 

o 〇 o o 〇 

V 
Once a cell is moved to 
the other side, its strongly • 门 
connected neighbours will U 
gain more weight to move. ^ 八 

o o 
Finally, cells in the same v J 
cluster are more likely to 
be moved to the same Q Q 
side. Q 

〇 

Figure 4.2: CLIP 
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Unlike the FM algorithm which moves the cells based on the previous cell 

movement, CLIP concentrates on the strongly connected neighbors. It can 

explore a wider solution space and get better solution. However, the size of 

the cluster is difficult to control. If the whole circuit is strongly connected, 

balanced partitioning is difficult to achieved. After partitioning, the whole 

clusters will be stayed on one side. Several re-grouping will be applied after 

each cell movement, forming the new clusters. That is, the cluster sets are 

changing throughout the algorithm. 

4.2.3 Section Summary 

The major contribution for clustering approaches is the reduction in problem 

size. As the size of VLSI circuits grows rapidly, the runtime of the circuit 

partitioner will increase. In order to adapt future needs, clustering of cells can 

maintain the effectiveness of traditional partitioning techniques. Clustering 

groups strongly connected cells into clusters. Cluster is then used as the basic 

unit for the partitioning algorithm. It can ensure that the strongly connected 

clusters will not be partitioned while the weakly interconnections between clus-

ters will be. In this section, two clustering algorithms are discussed. In the 

multilevel approach, cells are first grouped into clusters and then iterative im-

provement algorithm is applied. While in CLIP, there is no explicit grouping 

strategy to gruop cells into clustes. Cells can be regrouped during each pass 

to achieve minimum cut size. To conclude, CLIP is a flexible algorithm for 

clustering. It can explore wider solution space for optimal solution. However, 

it is difficult to define the number of clusters to achieve a good solution. 
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4.3 Problem Formulation 

In this chapter, we want to solve the acyclic multi-way partitioning problem in 

a combinational network. A combinational circuit is represented by a directed 

acyclic graph G(V，E) where K is a set of nodes representing the gates and E 

is a set of directed edges representing the interconnections between the gates. 

The fan-out of a node is the number of edges incident from it and the fan-in of 

a node is the number of edges incident to it. Primary input is a node with zero 

fan-in and primary output is a node with zero fan-out. In the given acyclic 

graph G, each node in V is assigned a unit weight except the primary input 

and output nodes. The primary input and output nodes are assigned a zero 

weight each. The weight represents the area occupied by the node. We assume 

that the areas occupied by the gates are the same which is one unit area. Note 

that an acyclic partitioning of a sequential circuit can be obtained as follow. 

We can compute an acyclic partitioning of the combinational network obtained 

by removing all the sequential elements. Then we can put back the sequential 

elements into the proper partitions. 

Figure 4.3 shows an example of a directed acyclic graph representation of 

a combinational circuit. The primary input and and output nodes are colored 

in black and other nodes are colored in white. 

Definition 4.1 (An Acyclic K - W a y Partitioning Problem) Given a di-

rected acyclic graph GiV, E), partition the set of nodes V into k disjoint subsets 

Vi, V2, ... ， Vfc, such that the sizes of the subsets do not exceed the size con-

straints Ai, A2, ... , Ak, the cut-size is minimized, and the partitioned solution 

is acyclic, i.e. there is no partitions Vi and Vj such that ij^j, and there are 

directed paths running from Vi to Vj and from Vj to Vi. 
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Figure 4.3: A Directed Acyclic Graph Representation of a Combinational Cir-
cuit 

4.4 Clustering Based Acyclic Multi-Way Par-

titioning 

For clustering based acyclic multi-way partitioning, the system clock is first 

removed from the given network. Then, the given network is clustered into a 

sparser network. We use an idea similar to that of the maximum fan-out free 

cone to cluster the nodes. The maximum fan-out free cone decomposition aims 

at minimizing the number of edges coming out from a cluster. This is a good 

strategy since it reduces the total number of edges inside a clustered network 

globally. After the decomposition, the number of edges is equal to the number 

of clusters because there is only one edge coming out from each fan-out free 

cone. This produces a good initial solution for the partitioning process since 

we aim at minimizing the cut size between the resultant partitions. After the 

clustering phase, the nodes inside a cluster are collapsed to form one node. As 

a result, the clustered network becomes simpler and sparser. The number of 

edges and nodes are fewer comparing with the original network. It is easier 

to perform the subsequent partitioning task as the size of the solution space 
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is directly proportional to the number of nodes and edges. In our algorithm, 

we will use the modified fan-out free cone decomposition to perform clustering. 

Details of the process will be discussed in next section. 

In the partitioning phase, we use a method similar to that in the clustering 

phase because we believe that the modified fan-out free cone decomposition 

is a good strategy. In the partitioning phase, the size constraint is set to the 

predefined partition size as we want to fill up each partition as much as pos-

sible. We will work on the clustered network in this phase. As a clustered 

node is actually a collection of nodes, the weight of each clustered node can be 

large. Therefore, it is hard to obtain an ideal fan-out free cone to fit the size 

of a partition. In such case, we will first find a maximally fit cone to put into 

a partition. Then, we will try to fill up the partition as much as possible by 

taking in smaller cones until no other match is possible. We will discuss this 

selection process in details in Section 4.7. 

4.5 Modified Fan-out Free Cone Decomposi-

tion 

We use the idea of fan-out free cone to find the clusters and partitions while 

maintaining the acyclic condition. An input cone of v, denoted by cone(v), is a 

set of nodes consisting of v and a subset of its predecessors such that any path 

connecting a node in cone(v) to v lies entirely in cone{v). We can observe that 

there exists many input cones for a specific node (see Figure 4.4). A fan-out 

free cone of v, FFC{v), is an input cone of v such that any fan-out of a node in 

FFC{v), except that of node v, must also be in FFC{v). Fan-out free cone of 

a node is again not unique. An example is illustrated in Figure 4.5. However, 
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the number of fan-out edges from any fan-out free cone must be equal to one. 

We have made use of this size flexibilities to match the size constraints in the 

clustering and partitioning phases. 

Figure 4.4 and 4.5 show the cone and fan-out free cone of a node inside a 

network. The cones in the figures are shaded in grey. You can observe that 

there exists many cones and fan-out free cones for a specific node inside the 

same network. 

In our modified fan-out free cone decomposition, after we locate a cone of 

a node, we will remove the nodes inside the cone and the edges connecting 

this cone with other nodes in the network before proceeding to form the next 

cluster. As a result, some nodes connected to the cone will become a primary 

output node after removal. This step gives a higher probability for later steps 

to form larger clusters or partitions. A simple example is shown in Figure 4.6. 

Note that the number of fan-out edges from a cone may be larger than one in 

this modified decomposition method. Experimental results have shown that it 

is valuable to do such a modification. 

4.6 Clustering Phase 

In the clustering phase, the given network is clustered to form a sparser net-

work using the modified maximum fan-out free cone decomposition. Initially, 

a primary output is selected randomly. It acts as the starting point of the 

clustering process. We denote this selected node as v and assign it to a cluster 

C. We will try to fill up the cluster by taking in nodes step by step until the 

predefined cluster size is reached. We select a fan-in node from C randomly 

and denote it as u. A testing process is then be performed on u to ensure that 
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Assume that the maximum cluster size is 2 
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Figure 4.6: Results Obtained from Modified MFFC Decomposition and MFFC 
Decomposition 

the newly clustered nodes do not violate the property of modified fan-out free 

cone. If we assign node u into cluster C, the node that can be reached from 

node u must also be assigned into cluster C. Otherwise, the fan-out free prop-

erty cannot be maintained. Therefore, we need to find the number of nodes 

that can be reached from node u. If the cluster C can take in the whole set 

of nodes that can be reached from u, we will cluster all these nodes into C. 

Otherwise, we will reject this fan-in node u and try another one. If no nodes 

can be selected, the process will stop and one cluster is formed. An example 

of the selection process is given in Figure 4.9. The resultant cluster will have 

a size equal to or smaller than the predefined cluster size. After one cluster is 

formed, we will remove the clustered nodes and the edges connecting the new 

cluster with other nodes in the network. We will then work on the remaining 

network similarly as mentioned before. We will build another cluster by start-

ing from a randomly picked primary output node of the remaining network 
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and repeat the above process until all the nodes are clustered. The algorithm 

is given in Figure 4.7 and Figure 4.8, and an example of the whole process is 

shown in Figure 4.13. 

Clustering(Network) 
1. dolist = 0 
2. Do 
3. If do l i s t�0 
4. i = a randomly selected node in dolist 
5. Else if there is a primary output node 
6. i = a randomly selected primary output node 
7. Else exit 
8. cluster = cluster + 1 
9. Find_Cluster(Network, dolist, i) 
10. Remove the clustered nodes and their edges from the network 
11. End-DO 

Figure 4.7: Clustering Algorithm 

4.7 Partitioning Phase 

In the partitioning phase, the clustered network is partitioned into desired size 

(Figure 4.10). Basically, the approach used in partitioning is the same as that 

in clustering. The main difference is that we work on the clustered network 

and the cluster size constraint is set to the partition size constraint in this 

phase. There is no limit for the number of clusters in the clustering phase. In 

the partitioning phase, we must keep the number of partitions to a predefined 

value. Therefore, we cannot treat the size of each partition as loosely as in 

the clustering phase. We must fit each partition as much as possible. In the 

clustering phase, if no fan-in nodes can be selected to be put into a cluster 
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Find_Cluster(Network, delist, i) 
1. Add the fan-in nodes of i to locaLdolist 
2. While locaLdolist are tested is not empty 
3. If locaLdolist>0 
4. i = a randomly selected node from locaLdolist 
5. j = numbers of node that can be reached by i 
6. If current_cluster_size + j <max—cluster_size 
7. Assign the set S of nodes that can be reached by i to 

the current cluster 
8. Add all the fan-in nodes of S to dolist and locaLdolist 
9. Remove the clustered nodes from dolist and locaLdolist 
10. Else exit 

Figure 4.8: Find Cluster Algorithm 

anymore, we will close the cluster and continue the clustering process with a 

new empty cluster. However, in the partitioning phase, if no fan-in clusters can 

be selected to put into a partition anymore, we will first remove the currently 

partitioned clusters together with their incoming edges from the network and 

then continue with another cluster that is a primary output of the remaining 

network to put into the partition until the partition size is reached or no clus-

ter can be fit into it. The algorithm is given in Figure 4.11 and Figure 4.12， 

and an example of the whole partitioning process is shown in Figure 4.14. 

4.8 T h e Acyclic Constraint 

In this section, we are going to discuss how to satisfy the acyclic constraint. 

As we are performing acyclic partitioning, we must ensure that the acyclic 

property is not violated in each clustering and partitioning step. We have the 

following lemmas about the correctness of our algorithm. We have proved the 
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Assume that the maximum cluster size is 3 

\ ^ Number of nodes that can be m ^ Number of nodes that can be 
U y reached by this grey node U V reached by this grey node 
K / (except the clustered nodes) = 0 尺 / (except the clustered nodes) = 1 

/ Y j f current cluster size + 1 + 0 = 2 / \ / current cluster size + 1 + 1 = 4 
/ It is smaller than 3. Accepted. / | j J _ _ j ^ s larger than 3. Rejected. 

The number of nodes that can 
be reached by this grey node 

t - (except the clustered nodes) = 0 
“current cluster size +1 +0 = 3 

It is equal to 3. Accepted. 
(Cluster Full) 

Figure 4.9: Fan-in Node Selection in the Clustering Phase 
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Figure 4.10: The Network Before and After Clustering 

Partitioning(Clustered_Network) 
1. dolist = 0 
2. Do 
3. If dolist>0 
4. i = a randomly selected cluster from dolist 
5. Else if there are primary output clusters 
6. i = a randomly selected primary output cluster 
7. Else exit 
8. partition = partition + 1 
9. Find_Partition(Network, dolist, i) 
10. If current partition is not full yet 
11. partition = partition - 1 
12. Remove the partitioned clusters and their edges from the network 
13. End-Do 

Figure 4.11: Partitioning Algorithm 
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Find_Partition(Network, delist, i) 
1. Add the fan-in nodes of i to locaLdolist 
2. While locaLdolist are tested is not empty 
3. If locaLdolist>0 
4. i = a randomly selected node from locaLdolist 
5. j = numbers of node that can be reached by i 
6. If current_partition_size + j <max.partitionjsize 
7. Assign the set S of nodes that can be reached by i to 

the current cluster 
8. Add all the fan-in nodes of S to delist and locaLdolist 
9. Remove the partitioned clusters from dolist and locaLdolist 
10. Else exit 

Figure 4.12: Find Partition Algorithm 

Assume that the maximum cluster size is 2 

Figure 4.13: An Example of the Clustering Phase 
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Assume that the maximum partition size is 2 
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Figure 4.14: An Example of the Partitioning Phase 

lemmas to show the correctness of our algorithm. 

Lemma 4.1 The modified maximum fan-out free cone clustering process pro-

duces acyclic clustered network only. 

Proof: 111 the clustering phase, we use fan-out free cone as our clustering 

criteria. It is easy to observe that the decomposition keeps the signal flow in 

one single direction. We start the clustering process from a primary output. 

It means that we find a fan-out free cone for a primary output. As it is a pri-

mary output, its fan-out free cone does not have any outgoing edges. It means 

that there are only fan-in edges going into that cone. Then the nodes in that 

cluster are removed and another starting node is selected for the next cluster. 

The next selected node must be another primary output node in the original 

network or a fan-in node of the previously formed cluster (thus a primary out-

put node of the remaining network after removing the first cluster). If it is a 

primary output node of the original network, the case is same as before and 
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the signal direction can be preserved. If it is a fan-in node of the previously 

formed cluster, a fan-out free cone including that node will be located. The 

fan-out edges from this cluster will only flow in a direction from the current 

cluster to the previously formed clusters while the fan-in edges are coming from 

the nodes which are not yet clustered. As a result, it keeps the signal flow in 

one single direction. As this property can be maintained during the formation 

of each cluster, the final clustered network does not contain any cycle. Q .E .D. 

Lemma 4.2 The partitioning process produces an acyclic partitioned network 

only. 

Proof: In partitioning phase, we perform the same process as clustering. The 

main difference is that we do not start a new partition for each cone. This 

process does not affect the signal direction. The fan-out edges still flow in a 

direction from the current partition to a previously formed partition while the 

fan-in edges only come from a cluster which is not yet partitioned. The final 

partition thus does not contain any cycle. Q .E .D . 

4.9 Experimental Results 

In order to evaluate the performance of our algorithm, we implemented our 

clustering based partitioning method using C language. The testing platform 

is Sun Ultra 5/270. The benchmarks are obtained from ISCA85. These data 

sets contain information of the signal direction. Therefore, we can use it to 

test our algorithm. Moreover, we can compare our results with that of an-

other clustering based algorithm [6] using the same data suit which is the 

latest best results of this problem. We compared our results with three algo-

rithms, K-AFM, K-MAFM and liMetis. The experimental results of K-AFM 

and K-MAFM are obtained from [6]. The experimental results of liMetis is 
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obtained by using the package provided by the Department of Computer Sci-

ence & Engineering, University of Minnesota. Note that K-AFM, K-MAFM 

and our algorithm consider acyclic constraint but hMetis is a general purpose 

partitioner. For all the experiments, the number of partitions is 8 and each 

partition allows 士5% deviation from its target size. The maximum cluster 

size for K-AFM and K-MAFM is 1/2 of the target partition size. The results 

of K-AFM, K-MAFM and hMetis are shown in Table 4.2 are the best par-

titioning results obtained by running the program ten times. The results of 

our algorithm are also the best results obtained by running the program until 

ten partitioning results are generated. Table 4.1 shows the characteristics of 

the benchmarks. Table 4.2 shows the cut-size results of different partitioning 

algorithms. Table 4.3 shows the runtime and cut-size of our algorithm. Note 

that the runtimes of K-AFM and K-MAFM are not shown because they are 

not reported in [6 . 

In comparisons with K-AFM and K-MAFM, our algorithm gives better 

performance in most of the cases. For smaller circuits, our algorithm is not as 

good as K-AFM algorithm. However, the results of our algorithm are better 

for large size circuits. The average improvement to the K-MAFM algorithm 

is 30%. Our method out-performs K-MAFM when the circuit size increases. 

This result suggests that the performance of the FM algorithm drops when the 

size of the circuit increases. 

4.10 Chapter S u m m a r y 

In this chapter, we presented a new acyclic multi-way partitioning algorithm. 

We first use the modified fanout-free cone decomposition to cluster a given net-

work. This decomposition effectively reduces the given network to a smaller 
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Circuit No. of Gates No. of Pis No. of E d g ^ 
: c 8 8 0 — 383 60 = 729 : 
“ c l 3 5 5 一 546 — 41 1064 “ 
~cl908 880 一 32 1064 
“c267Q — 1193 — 233 2076 “ 
“c3540 1669 50 2939 “ 
“C5315 ~ ~ 2307 178 4386 “ 
C6288 2416 32 4800 ] 

Table 4.1: Characteristics of the Benchmarks 

Circuit Cluster K-AFM K-MAFM liMetis Our Algorithm 
K=8 size (net-cut) (net-cut) (net-cut) (net-cut) 

: c 8 8 Q 28 = 1 5 6 52 60 68 
cl355 37 — 1 8 4 23 51 80 
cl9Q8 57 — 3 2 7 112 70 84 
C2670 89 443 246 51 115 

c3540 — 107 575 232 143 137 
c5315 155 866 238 111 218 
c6288 153 491 487 128 373 

Table 4.2: Results of Different Partitioning Algorithms 

Circuit Cluster Our Algorithm Our Algorithm 
K=8 size (net-cut) Runtime (Sec) 

= c 8 8 0 ~ 68 ^ 23.6 = 
~cl355 3 7 — 80 34.3 

cl908 57 84 26.7 
c2670 ~ ^ 115 41.3 

- c3540 107 137 61.8 一 

“c5315 155 218 114.4 “ 
[~c6288 153 373 85.2 

Table 4.3: Runtime and Cut-size of Our Algorithm 
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and sparser one while maintaining the acyclic property of the network. Then 

we use this decomposition again to further partition the clustered network 

into the desired number of partitions. Our algorithm is able to obtain acyclic 

multi-way partitioning solutions with smaller cut-sizes comparing with the best 

algorithm reported previously [6 . 

I 



Chapter 5 

Network Flow Based Multi-way 

Partitioning 

5.1 Preliminaries 

In this chapter, we will present a network flow based partitioning algorithm. 

This network flow based algorithm uses the technique of net modelling and 

network flow to partition a circuit. As discussed before, the delay of a path is 

an important issue to be considered in partitioning. Our proposed algorithm 

aims at minimizing the longest delay along the critical path and the cut sizes 

between the partitions. Our modelling ensures that all the nodes on a combi-

nation path of the circuit will be partitioned in an acyclic manner. We have 

made use of a specific net modelling to achieve this propose. 

We will first review the notations and definitions of a flow network in the 

next section. The network flow approach can be applied in our acyclic parti-

tioning problem after modelling the circuit as a flow network. We will introduce 

the net modelling in Section 5.3. Some previous works on network flow based 

partitioning will be discussed in Section 5.4. Our proposed net modelling will 

be introduced in Section 5.5 and the properties of our modelling will be dis-

cussed in Section 5.6. After that, we will introduce our algorithm in details 

61 
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from Section 5.7 to 5.8. In Section 5.9, we will present some experimental 

results. 

5.2 Notations and Definitions 

Let us review some basic notations and definitions in network flow [26]. A flow 

network G = (V, G) is a directed graph in which each edge {u,v) e E has a 

capacity c(w’ v) > 0. If (u, v) • E, we assume that c(u, v) = 0. There are two 

distinguished nodes in a flow network G, a source s and a sink t. A flow in 

G is a real-valued function f : V x V ^ K that satisfies the following three 

properties: 

1. Capacity constraint: For all u,v eV, f{u,v) < c[u,v). 

2. Skew symmetry: For all u,v eV, f{u,v) = —f{v, u). 

3. Flow conservation: For all u,v eV - { s , t } , J2vev fi'^^'^) = 0. 

The term f{u,v) is called the net flow from vertex u to vertex v. It can be 

positive or negative. The value of a flow f is defined as |/| = 幻ev/(<5, tO-

A s — t cut of a flow network G = {V,E) is a partition of V into S and T 

where T 二 - such that s e S and t e T. The capacity of a cut is the 

sum of the capacities on the forward edges, that is, the edges from S to T. 

An augmenting path is simply a path from the source 5 to the sink t that can 

push more flow from s to t . A max-flow / is a flow of maximum value from s 

to t. 

In network flow based partitioning, a well know theorem, Max-Flow Min-

Cut Theorem [27], is used. The theorem is given as follows. 
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Theorem 5.1 (Max-Flow Min-Cut Theorem [27]) Given a flow network 

G and a maximum s — t flow in G, let S = {v ^ V : 3 an augmenting path 

from s to V in G }, and let T = V — S. Then the s — t cut (5, T) is a cut of 

minimum capacity which is equal to |/| and f saturate all forward edges from 

S to T. 

As the minimum capacity cut can be obtain by a maximum s — t flow, the 

Max-Flow Min-Cut Theorem can be used to construct a partitioning solution 

with minimum cut size in a network. However the Max-Flow Min-Cut Al-

gorithm only guarantees that a minimum cut of the network is obtained but 

there is no constraints in the sizes of the two partitions. Some heuristics have 

been developed to control the partition sizes. We will introduce them in the 

following sections. 

5.3 Net Modelling 

As discussed in Chapter 3, hypergraph is a general representation for circuits. 

In order to apply the Max-Flow min-cut algorithm in circuit partitioning, we 

must be able to model a hypergraph such that the Max-Flow Min-Cut algo-

rithm can be applied accordingly. In [28], the authors have showed that the 

Max-Flow Min-Cut Theorem could be applied to a hypergraph for finding a 

min-cut for a circuit. Based on the technique discussed in [29，22], a hyper-

graph can be transformed into an edge-capacitated network. The basic idea 

of the method is to model it as a directed graph with addition edges. The 

transformation is shown in Figure 5.1. The transformation method is as fol-

low: For a net v — W i , W 2 , a d d two dummy nodes, di and dk, with weight 

0. Then, add an edge from di to dk with unit capacity, and add edges from v 

and wi,w2,... to di with capacity oo, and add edges from d] to v and ... 

with capacity oo. 



Chapter 5 Network Flow Based Multi-way Partitioning 64 

Figure 5.1: Transformation of hypergraph to a edge-capacitated network 

The net modelled in such a way contains two dummy nodes with a unit 

capacity edge connecting them. A minimum cut must occur on the unit edge 

between the dummy nodes because cutting other edges will lead to infinite 

cut-size. 

5.4 Previous Works on Network Flow Based 

Partitioning 

Since the sizes of the partitions obtained by the Max-Flow Min-Cut algorithm 

cannot be controlled, a general method to obtain balanced partitions is to 

apply the Max-Flow Min-Cut algorithm repeatedly to achieve the target size. 

Although the Max-Flow Min-Cut algorithm can be operated in polynomial 

time, repeated application may also lead to a long runtime. Some techniques 

have been proposed to improve it. In this section, we will introduce some 

network flow based partitioning techniques. We will use some techniques pro-

posed in these previous literatures in our algorithm. The paper on network 

flow based min-cut balanced partitioning [4] and network flow based circuit 
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partitioning for time-multiplexed FPGAs [5] will be discussed in the following 

sections. 

5.4.1 Network Flow Based Min-Cut Balanced Partition-

ing [4 

In this paper, the authors proposed an efficient algorithm to produce a bal-

anced partition using the Max-Flow Min-Cut technique. The major contribu-

tion of this paper is the effective implementation of the repeated Max-Flow 

Min-Cut algorithm to achieve a balanced partitioning. This approach has the 

same time complexity as one Max-Flow Min-Cut computation rather than n 

repeated Max-Flow Min-Cut computations. 

The algorithm starts with modelling the net using the method discussed in 

Section 5.3. An example is shown in Figure 5.1. Since the resultant minimum 

net-cut may not correspond to a balanced partitioning, a balancing heuristic 

is proposed. It allows the partition sizes to vary from (1 — £)rW to (l + £)rW. 

After applying the simple Max-Flow Min-Cut computation once to obtain a 

min-cut, the sizes of the two partitions S and T are checked. It tries to obtain 

a balanced partitioning in a recursive manner. If the size |5| is too small, all 

the nodes in S and a node chosen from T are collapsed to the source s. By 

applying the Max-Flow Min-Cut algorithm again, a different cut-size with a 

larger S will be resulted. Similarly, if the size |5| is too large, all the nodes in 

T and a node chosen from S are collapsed to the sink t. 

The strategy to pick the node from the larger partition to be collapsed is 

as follows: when the remaining circuit is very large, a node is picked randomly 

because it is too time consuming to try all possible nodes and locate the one 

with the minimum cut-size. However, if the remaining circuit is small enough, 
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it would be better to try all the remaining nodes and pick the one with the 

minimum cut-size. In the algorithm, a threshold size R is set such that the 

choices of the two strategies can be made. 

After collapsing the nodes, we need to find the cut again using an incremen-

tal flow computation. The incremental flow computation can find a new cut 

with an asymptotic time complexity the same as one Max-Flow Min Cut com-

putation. Instead of invoking the Max-Flow Min-Cut computation from the 

beginning again, additional flow that saturates the bridging edges of the cut 

is found and augmented to the flow network. This incremental Max-flow Min-

Cut technique makes it practical to handle large circuits. The overall time 

complexity of the algorithm is the same as that of applying the Max-Flow 

Min-Cut algorithm once, which is 

5.4.2 Network Flow Based Circuit Partitioning for Time-

multiplexed FPGAs [5 

Time-multiplexed FPGAs is used to reduce complex circuit density by making 

use of timesharing reconfigurable computing facilities. A large circuit is par-

titioned into multiple stages and is fitted into a time-multiplexed FPGA such 

that the same hardware is being used in all the stages. However, there are a 

lot of constraints in using time-multiplexed FPGAs. For example, the limited 

number of buffers (interconnection between partitions), the limited area of the 

FPGA and the precedence constraints that must be satisfied in partitioning a 

circuit in order to ensure a correct execution order. The algorithm proposed in 

5] can give a /c-way precedence constrained partitioning for time-multiplexed 

FPGA. 

There are two precedence constraints corresponding to the combinational 
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nodes and the flip-flop nodes. First, each combinational node must be sched-

uled at a stage not later than any of its output nodes. The second precedence 

constraint is related to the flip-flop nodes. As the outputs of a flip-flop node 

will be used in the next cycle, each flip-flop node must be scheduled at a stage 

not earlier than any of its output nodes. The modellings for the combinational 

nodes and the sequential nodes are shown in Figure 5.2 and Figure 5.3 respec-

tively. 

Two-terminal Net: 

00 

Multi-terminal Net: 

^ ^ 00 

Figure 5.2: Net Modelling of Combinational Net for Time-multiplexed FPGA 
circuit partitioning 

The a-bounded uni-directional bi-partitioning method, which is similar to 

the network flow based min-cut balanced partitioning method in paper [4 

(Section 5.4.1), is used to cut the flow network. A bi-partitioning of the cir-

cuit, S and T, will be produced. The number of nodes in S is controlled by 

the value a which is given by user. It allows the size of S to deviate between 

(1 - €)a and (1 + £:)a so that S can be fitted into an FPGA. The algorithm will 

partition the circuit into k stages iteratively. Firstly, an As Soon As Possible 

(ASAP) and an As Late As Possible (ALAP) scheduler will schedule the nodes 
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Two-terminal Net: ^ ^ ① ^ ^ 

Multi-terminal Net: 

Figure 5.3: Net Modelling of Sequential Net for Time-multiplexed FPGA cir-
cuit partitioning 

in the flow network. The AS"乂P scheduler assigns the earliest possible stage 

to each node and the ALAP scheduler assigns the latest possible stage to each 

node according to the precedence constraints. Nodes with the same ASAP 

stage and ALAP stage are pre-assigned as a fixed node to the specified stage 

to reduce the complexities of the later partitioning process. Other nodes with 

different ASAP stage and ALAP stage can be assigned to different possible 

stages and are called flexible nodes. 

The algorithm runs in an iterative manner. It starts with assigning nodes 

to the first stage until all nodes are assigned to the k stages. In the i认 it-

eration, the Max-Flow Min-Cut algorithm is applied to partition the flexible 

nodes with AaSAP stage i and A L A P stage i + 1. After the computation, 

the nodes in S are assigned to stage i. All the unassigned nodes with latest 

possible stage z + 1 are assigned to stage z + 1. The algorithm is illustrated 

in Figure 5.4. The time complexity of this multi-way precedence constrained 

partitioning algorithm is 0{k\V\\E\). 
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1 Iteration j  

Fixed Node ^ ^ [ y Q x 

—Ip  
Stage 1 

Stage 1 + I 
Fixed Node — 1 1 / / ^ t 

- I P ！ 

stage 2 , 
« 

• • P l l l l l P ^ 

^ / 

,/ \ 
stage k-1 Stage k 

Figure 5.4: Network Flow Based Multi-way Precedence Constrained Partition-
ing 
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5.5 Proposed Net Modelling 

In Max-Flow Min-Cut based algorithms, the system clock is first removed from 

the given network. Then, the circuit is transformed into a network flow instant 

by some net modelling method. The net modelling method can affect the per-

formance of the algorithm and determines the characteristics of the resultant 

partitioning like the precedence of the nodes in the partitions. 

As the delay of the critical path is crucial in determining the circuit per-

formance, our proposed algorithm aims at minimizing the delay of the critical 

path and the cut size between the partitions. In order to reduce the delay of 

the circuit, we must reduce the number of partition cuts on the critical path. 

As introduced in the previous chapter, acyclic partitioning is a general way to 

reduce the delay caused by partition cut. In order to achieve an acyclic parti-

tioning for the nodes along a combinational path, a net modelling method that 

can ensure unidirectional cut in the Max-Flow Min-Cut computation is needed. 

We found that the net modelling method used in time-multiplexed FPGAs [5 

(Section 5.4.2) can be applied in our case after some modifications. In time-

multiplexed FPGAs, the order of execution and the number of buffers between 

consecutive stages are constrained. The nodes in a time-multiplexed FPGAs 

have precedence constraints between them. These precedence constraints are 

similar to the unidirectional cut constraints in our acyclic partitioning problem 

. F o r example, let input(v) = {u\u is an input node of v }. Given a s — t cut 

(5, T) , using the net modelling in FPGAs, there are only two possible situa-

tion: either v and input (v) are in the same partition of v in T and input{v) 

in S. Both situations are equivalent to producing a unidirectional cut in a 

bi-partitioning. This modelling feature satisfies the unidirectional constraint 

in our problem. 
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In a sequential circuit, we classified the edges into two categories, c-edges 

and s-edges. S-edges are fan-out edges of the flip-flop nodes, while the remain-

ing edges are c-edges. An example is illustrate in Figure 5.5. The delay of a 

sequential circuit is defined as the longest delay among all the combinational 

paths which can be classified into the following four types: ( 1 )P / —» PO, 

{2)PI FF, (3)FF — PO and �F F — FF. Our net modelling aims at 

producing an acyclic partitioning along these four types of paths. 

- - o - 々 - 各 - ？ - o — 

I ^ ^ ^ Combinational node 
<  

Sequential node 

• S-Egde 

• C-Edge 

Figure 5.5: C-edges and S-edges 

In our proposed modelling, we will enforce the precedence constraints on 

the combinational paths (a path that consists of c-edges) only because the cir-

cuit delay depends on the longest delay among these combinational paths. On 

the other hand, there is no constraints on the cutting direction of the s-edges. 

It is because the s-edges are carrying signal for the next cycle and they do not 

affect the overall delay. S-edge can thus be considered as an input edge for the 

next clock cycle. This relaxation will allow the Max-Flow Min-Cut computa-

tion to find a better solution with a better cut-size without over-constraining 

the solution. The modelling is described below and examples are shown in 

Figure 5.6 and Figure 5.7. Notice that a combinational net is a net with a 
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combinational node as the input and a sequential net is a net with a flip flop 

node as the input. 

Combinational Net: For a two-terminal combinational net v w, add an 

edge from v t o w with unit capacity, and add an edge from w t o v with capacity 

oo. For a multi-terminal combinational net v Wi,W2,..., add a dummy node 

with weight 0. Then, add an edge from v to the dummy node with capacity 

one, and add edges from the dummy node to Wi,W2,... with capacity oo, and 

an add edges from Wi,W2,... to v with capacity oo. (Figure 5.6) 

Sequential Net: For a two-terminal or a multi-terminal sequential net f f — 

wi, W 2 , a d d two dummy nodes, di and 0?2，with weight 0. Then, add an 

edge from di to dk with unit capacity, and add edges from f f and ^ /；丄，… t o 

di with capacity oo, and add edges from d) to f f and 1<；1，1(；2，…with capacity 

00. (Figure 5.7) 

Two-terminal Net: 

00 

Multi-terminal Net: 
00 

^ ^ 00 

Figure 5.6: Net Modelling of Combinational Nets 
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/ y/oO 

Figure 5.7: Net Modelling of Sequential Nets 

5.6 Partitioning Properties Based on the Pro-

posed Net Modelling 

By using the above net modelling, we can obtain a bi-partitioning by applying 

the Max-Flow Min-cut algorithm on the flow network. The size of the min-cut 

in the flow network will correspond to the min-cut in the real circuit. Also, 

the number of partition cuts on each combinational path is limited by the 

above modelling. We have the following lemmas about the correctness of our 

modelling. 

Lemma 5.1 Using the proposed net modelling, the minimum cut-size obtained 

by the Max-Flow Min-Cut computation corresponds correctly to the real min-

imum cut-size of the original circuit, and the cutting edges on each combina-

tional path is unidirectional 

Proof: 

For a combinational net, if u is the input node and V is the set of output 

nodes, there will be an edge from each node v e V to u with capacity oo. 
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Therefore, it will never be the case that v is in A and w is in A in the min-cut 

solution (So, the unidirectional property is satisfied). Therefore, in a min-cut 

solution {A, A), either u and v are in the same partition, or u G A and v ^ A 

(Figure 5.8). If u and all the nodes in V are in the same partition, the dummy 

node will also be located in the same partition as the cut-size will increase 

otherwise. If u is in A and one node € F is in A, the dummy node will be 

located in A because an infinite cut-size will be resulted otherwise. In both 

cases, the cut-sizes are counted correctly (zero in the former case and one in 

the later case). 

For a sequential net, (let ff be the input node and V be the set of output 

nodes) there will be an edge from dummy node di to d] with capacity one. 

Notice that the nodes in V and the node ff are all symmetric in this mod-

elling. If any two nodes in { / / } |J V are separated in two partitions, di must 

be in A and 6,2 must be in A because all the nodes in the net have infinite 

edges connecting to di and have infinite edges connecting from d: and infinite 

cut-size will be resulted otherwise. The count in cut-size is also correct in this 

case (the count is one). If all the nodes in { / / } |J V are in A, di will also be in 

A because an infinite cut-size will be resulted otherwise. Then 而 will also be 

in A because the cut-size will be increased otherwise. The count in cut-size is 

zero ill this case and corresponds correctly to the real cut-size. If all the nodes 

in { / / } U V are in A, d) will also be in A because an infinity cut-size will be 

resulted. Then di will also be in A because the cut-size will be increased oth-

erwise. The count in cut-size is zero in this case which corresponds correctly 

to the real cut-size. (Figure 5.9) Q .E .D. 

Lemma 5.2 Using the proposed net modelling, all combinational paths will be 

cut by the partitions at most k — 1 times where k is the number of partitions. 
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Proof: 

We have proved in Lemma 5.1 that a combinational path must be cut unidi-

rectionally using the proposed modelling. The number of partition cuts along 

any combinational path is at most k — 1 where k is the number of partitions 

because if the number of partition cuts along a combinational path is larger 

that k — 1, there must be an edge e(u,v) on this path being cut in backward 

direction, i.e., u e A and v E A. (Figure 5.10) Q .E .D. 

5.7 Partitioning Step 

After modelling the circuit as a flow network, the Max-Flow Min-Cut algo-

rithm is applied on the network to obtain a min-cut. We implemented the 

partitioning algorithm using the recursive method proposed in [22] which is 

already discussed in Section 5.4.1. After applying the simple Max-Flow Min-

Cut computation to obtain a min-cut, the sizes of the two partitions S and T 

are checked. If the size |5| is too small, all the nodes in S and a node chosen 

from the other partition T are collapsed to the source s. By applying the 

Max-Flow Min-Cut algorithm again, a different cut-size with a larger S will 

be resulted. Similarly, if the size |5| is too large, all the nodes in T and a node 

chosen from S are collapsed to the sink t. The strategy to pick the node from 

the larger partition to be collapsed is as follows: when the remaining circuit 

is very large, a node is picked randomly. However, when the remaining circuit 

becomes small enough, we will try all the remaining nodes and pick the one 

with the minimum cut-size. Besides, we will not pick a node that will generate 

an infinite cut-size after collapsing. After selecting and collapsing the nodes, 

we need to find another cut by using the incremental flow computation until 

the desired balance ratio is achieved. 
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S 00 t 

Unit Cut 

‘ t _ 

® 
Unit Cut 

• � ® 
Infinity Cut (Impossible) 

Figure 5.8: Uni-directional Cut 
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Figure 5.9: Multi-directional Cut 
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As only a bi-partitioning can be obtained in one Max-Flow Min-Cut com-

putation, we will use a recursive manner to perform the /c-way partitioning 

until the desired number of partitions is obtained. We have already proved 

that all c-edges are cut in the same direction with acyclic property in the pre-

vious section. After applying the Max-Flow Min-Cut computation recursively, 

any combinational path will be cut by the partitions at most k-1 times where 

k is the number of partitions as shown in Figure 5.10. 

V w f v v ^ ' 

V 

Figure 5.10: Multi-way Partitioning with Combinational Paths Cut by the 
Partitions at Most k — 1 times 
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5.8 Constrained F M Post Processing Step 

111 order to improve the quality of the partitioning, we will perform a post 

processing step on the partitioning result after the Max-Flow Min-Cut based 

computation. A constrained version of the FM algorithm will be applied on 

the partitioning result. The constrained FM is similar to the original FM, 

except that some constraints are considered during the iterative moves. 

We imposed the unidirectional constraint on combinational paths in the 

Max-Flow Min-Cut based computation. Although it can reduce the delay by 

limiting the partition cuts along a path, it may eliminate some possible non-

acyclic solutions which have the same delay but with a better cut-size. The 

FM post processing step can reduce this effect of over-constraining the solu-

tion by the acyclic constraint. It may find a solution with a smaller cut-size 

without affecting the overall delay of the circuit. An example is shown in Fig-

ure 5.11. Experimental results show that the cut-size can be improved by this 

constrained FM post-processing step in most cases. 

The aim of the FM post processing step is to minimize the cut-size without 

affecting the delay of the overall circuit. The partitioning result of the Max-

Flow Min-Cut based computation is used as a starting point. The original 

FM has already discussed in Section 3.5.1. In the constrained version, we only 

allow the movements of cells that do not lead to an increase in the number of 

partition cuts along the critical paths. At each step, the maximum gain cell is 

selected for moving to another partition. If such movement will increase the 

longest circuit delay, it will be rejected and the movement with the second 

largest cell gain will be considered. We will apply the constrained FM post 

processing on each pair of partitions, (1,2), (1,3) ... {k - 1, k). 
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After moving the gate that shaded in 
Originally, the cut-size is 4. black to another partition, the cut-size is 

reduced to 2. However, the result is 
cyclic. 

Figure 5.11: Cut-size Reducing in the Post Processing Step 
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5.9 Experiment Results 

We implemented our network flow based partitioning method using the C lan-

guage. The testing platform is Sun Ultra 5/270. The benchmarks are obtained 

from Partitioning 93 originated from the Design Automation Conference 1993. 

The information of signal direction is provided in this data set. For all the ex-

periments, the number of partitions is 8 or 16. Each partition is allowed to 

have a 土5% deviation from its target size. Table 5.1 shows the character-

istics of the benchmarks. The results of the 8-way and 16-way partitioning 

are shown in Table 5.2 and Table 5.3. The cut-sizes and delays before and 

after the constrained FM posting processing step are also reported. The av-

erage improvements for 8-way and 16-way partitioning are 6.81% and 8.24% 

respectively. In this experiment, we assumed that the gate delay and the inter-

partition delay are one and two respectively. Table 5.4 and Table 5.5 show the 

results of K-FM (fc-way FM) algorithm and R-FM (recursive FM) algorithm 

on some of the data sets. The experimental results of K-FM and R-FM are 

obtained from [30]. They are all /c-way partitioning algorithm without con-

sidering acyclic constraint. The results of R-FM are better than ours as they 

do not consider acyclic constraints and the number of partition cuts along a 

combinational path is thus not limited. We compare our results with them 

because they are closest possible in terms of the problem being solved as long 

as we know. By comparing our results with K-FM and R-FM, we can see how 

much worse in cut-size is resulted because of the acyclic constraint. We expect 

to gain in delay but the delays of K-FM and R-FM are not shown because they 

are not reported in [30]. Table 5.6 compares the results of this network flow 

based algorithm and the clustering based algorithm proposed in Chapter 4. 

The results of the clustering based algorithm is generally better than that of 

the network flow based algorithm. 

I 
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Circuit Pis POs FFs Gates Nets Delay 
“ s 2 7 . x n f — 8 1 13 — 24 6 “ 
-s2Q8.xnf 2 8 104 127 14 “ 
~s298.xnf 7 6 U 133 154 9 

s344.xnf ~13 11 —15 175 —203 20 “ 
~s349.xnf 1 3 " " “ H 176 ~ 2 Q 4 ~ 20 
~382 .xn f 7 6 179 207 “ 9 
~s40Q.xnf ~ 7 6 ^ 185 213 9 
~s420.xnf 2 212 251 28 
“s444.xnf ~ 7 6 202 — 230 11 “ 
~s51Q.xnf ~23 7 217 246 12 
~s526.xnf 6 ^ 214 9 
~s526n.xnf ~ 6 ^ 215 243 9 
~s82Q.xnf ~ ~ l 9 T 294 10 
“s832.xnf 22 19 一 5 292 ~ 319 10 “ 

~s838.xnf 2 W 422 56 
“s953.xnf 20 23 ~ 2 9 424 —473 16 “ 
~sll96.xnf " l 8 ~ ~ 1 4 547 24 
~sl238.xnf ~ l 8 ~ ~ 1 4 Is" 526 22 
~sl423.xnf 5 7i 731 59 
“s5378.xnf 3 9 ~ ~ 4 9 ~ ~ 2 9 5 8 —3176 25 “ 

“s9234.xnf W 22 5825 ~6076 58 “ 
sl32Q7.xnf 35 121 669 8620 9324 ~ 

"sl5850.xnf 18 87 ~597 10396 一10984 61 “ 
s35932.xnf ~ ~ 1 7 2 8 17793 19560 ~ ^ ~ 

"s38417.xnf 3 2 ~ ~ I Q 6 2 3 8 1 5 _25483 47 _ 
|"s38584.xnf 16 278 1452 20705 22173 52 | 

Table 5.1: Characteristics of the Benchmarks 
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Circuit Before C-FM After C-FM % Improvement 
(cut-size) (Delay) (cut-size) (Delay) (cut-size) 

s27.xnf 9 — 1 4 9 14 0 — 
s208.xnf 64 — 2 4 64 24 0 — 

-s298.xnf — 72 ~ ~ 7 0 16 2.78 
s344.xnf - 63 28 54 — 28 14.29 
s349.xnf ~ 68 28 60 28 — 11.76 
s382.xnf — 71 18 71 — 18 0 
s40Q.xnf 70 — 15 52 15 25.71 

-s420 .xnf 66 36 66 36 0 
s444.xnf 91 19 85 — 19 6.59 

“s510.xnf m 2 0 157 ~ 2 0 ~ 2.48 
s526.xnf 一 134 1 5 ~ 134 — 15 0 

s526n.xnf 134 15 121 15 9.70 
s820.xnf 202 20 179 20 11-39 
s832.xnf — 180 22 180 _ 22 0 
s838.xnf — 197 64 177 — 64 10.15 
s953.xnf — 261 ~ ~ ^ 261 25 0 

sll96.xnf 271 ~ ~ ^ 2 5 4 36 6.27 
sl238.xnf — 311 ^ 259 34 16.72 
sl423.xnf 213 71 187 71 12.21 
s5378.xnf 502 34 502 34 0 
s9234.xnf 584 71 ~ 580 71 0.68 

sl3207.xnf 582 ~ ~ ^ ~ 507 68 12-89 
sl585Q.xnf 572 65 571 65 0.17 
s35932.xnf 806 ^ 7 4 1 37 8.06 
s38417.xnf 970 ^ 8 2 0 53 15.46 
s38584.xnf 1395 56 1258 56 9.82 | 

Table 5.2: Results of Our Algorithm Before and After the Constrained FM 
Post Processing (8-Way Partitioning) 
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Circuit Before C-FM After C-FM % Improvement"! 
(cut-size) (Delay)- (cut-size) (Delay) (cut-size) 

s27.xnf — 16 " " “18 14 18 — 12.50 
s208.xnf 75 — 2 4 70 24 “ 6.67 — 
s298.xnf 110 17 110 17 — 0 
s344.xnf 102 ^ 9 8 30 “ 3.92 — 
s349.xnf 98 30 98 30 0 — 
s382.xnf 112 " " “ 1 9 ~ ~ 100 19 10.71 一 

s400.xnf - 113 l 8 ~ ~ 104 18 7.96 — 
s420.xnf 107 44 90 44 — 15.89 
s444.xnf 131 ~ ~ ^ ~ 111 23 — 15.27 “ 
s51Q.xnf — 212 2 3 ~ 192 23 — 9.43 “ 
s526.xnf 184 16 167 16 9.24 — 

s526n.xnf ~ 184 1 6 1 7 5 16 一 4.89 “ 
s82Q.xnf — 304 2 0 ~ 257 20 15.46 

• s832.xnf 269 26 一 221 26 17.84 
s838.xnf - 257 68 2 5 7 ~ ~ 68 0 

-s953.xnf 339 27 320 27 5.60 
- s l l96 .xnf — 371 39 331 39 10.78 

sl238.xnf - 424 ~ 40 4 2 4 ~ ~ 40 0 
sl423.xnf 291 77 216 77 — 25.77 “ 
s5378.xnf — 707 36 ~ 627 36 11.32 
s9234.xnf 911 78 900 78 — 1.21 “ 

sl3207.xnf 854 TO785 70 — 8.08 “ 
sl5850.xnf 883 71 883 71 — 0 “ 
s35932.xnf _ 1263 39 1190~~ 39 5.78 — 
s38417.xnf _ 1376 — 55 1252 55 9.01 — 
s38584.xnf 2019 58 1880 58 6.88 

Table 5.3: Results of Our Algorithm Before and After the Constrained FM 
Post Processing (16-Way Partitioning) 
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Circuit K-FM R-FM Our Results 
sl3207.xnf 827 — 209 507 
sl5850.xnf 811 228 571 
s35932.xnf 1818 294 741 
S38417.XIT 2506 — 449 820 
s38584.xnf 2209 314 1258 

Table 5.4: Comparison of the Cut-size Results of our Algorithm with K-FM 
and R-FM (8-Way Partitioning) 

Circuit K-FM R-FM Our Results 
sl3207.xnf 945 — 270 785 
sl5850.xnf 1167 — 320 883 
s35932 . "^ 3375 373 — 1190 
s38417.xnf 2837 604 1252 
s38584.xnf 3825 434 1880 

Table 5.5: Comparison of the Cut-size Results of our Algorithm with K-FM 
and R-FM (16-Way Partitioning) 

Circuit Clustering Based AlgorithnT Network Flow Based Algorithm 
c880 — 68 96 — 
cl35 一 80 82 

cl908 — 84 124 
c2670 ~ ~ 115 146 
c3540 137 280 
c5315 — 218 308 
c6288 373 301 

Table 5.6: Comparison of the Cut-size Results of this Network Flow Based 
Algorithm and the Clustering Based Algorithm in Chapter 4 (8-Way Parti-
tioning) 



Chapter 6 

Conclusion 

Today, it is common that a system is consisted of millions of transistors. Such 

a huge circuit is hard to be managed efficiently. As a result, decomposition 

of these complex systems into finer sub-systems is important in the design 

process. Each sub-system can then be designed and further improved inde-

pendently and simultaneously to make the design process faster and simpler. 

As the size and complexity of the systems today increase rapidly, more 

computer aided design tools are required. The development of partitioning al-

gorithms is vital, and it will be essential for the partitioning algorithms to take 

circuit performance into account. We studied some previous works on circuit 

partitioning, which include iterative algorithm, network flow based approach, 

clustering approach, stochastic searching technique, etc. In order to reduce the 

delay caused by the partition cuts, we take the number of partition cuts along 

each path into account. We proposed two approaches to solve the problem, 

of which one is based on an acyclic clustering technique, and the other one is 

based on the network flow technique. 

The basic idea of these two approaches is to maintain an acyclic parti-

tioning of all the combinational paths. Both of them aim at minimizing the 

86 



Chapter 6 Conclusion 87 

number of partition cuts along the critical paths. In the first method, a mod-

ified fanout-free cone decomposition is first used to cluster a given network. 

This decomposition can effectively reduce the given network to a smaller and 

sparser one and maintains the acyclic property in the clustering. We then 

use a similar decomposition to further partition the clustered network into 

the desired number of partitions. Our algorithm is able to obtain an acyclic 

multi-way partitioning solution with smaller cut-sizes comparing with the best 

algorithm reported previously [6]. The second method is a network flow based 

approach. We proposed a net modelling method to limit the number of par-

tition cuts on a combinational path by maintaining the acyclic property. We 

make use of the Max-Flow Min-Cut algorithm to generate the min-cut edge 

and use it in a recursive manner to obtain a multi-way partitioning. An con-

strained FM post processing step is then applied on the resultant partitioning 

to further improve the cut-size. Our proposed algorithms can reduce the delay 

of the circuit caused by the partition cuts efficiently while taking the cut-size 

into account at the same time. 
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