
Compressing the Illumination-Adjust able
Images with Principal Component Analysis

Pun-Mo Ho

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy .

in

Computer Science and Engineering

�T h e Chinese University of Hong Kong

December, 2002

The Chinese University of Hong Kong holds the copyright of this thesis.

'Any person(s) intending to use a part or the whole of the materials in this

‘thesis in a proposed publication must seek copyright release from the Dean of

‘ the Graduate School.

M 18 m m i j

1

Abstract

The ability to change illumination is a crucial factor in image-based modeling

and rendering. Image-based relighting offers such capability. However, the

trade-off is the enormous increase of storage requirement. In this thesis, we

propose a compression scheme that effectively reduces the data volume while

maintaining the real-time relighting capability. The proposed method is based

on principal component analysis (PCA). A block-wise PCA is used to practi-

cally process the huge input data. The output of PCA is a set of eigenimages

and the corresponding relighting coefficients. By dropping those low-energy

eigenimages, the data size is drastically reduced. To further compress the data,

eigenimages left are compressed using transform coding and quantization while

the relighting coefficients are compressed using uniform quantization. We also

suggest the suitable target bit rate for each phase of the compression method

in order to preserve the visual quality. Finally, we proposed real-time engine

that relights images from the compressed data.

i

摘要

在基於圖像的模型與緣制技術中，能夠控制光照是很重要的。而

基於圖像的光照技術就能提供此項功能。然而，傭存所需就會因

此大大增加。在這論文中，我們提議一個能夠有效地減低儲存需

要而同時能夠維持實時光照能力的壓縮方案。我們提議的這個方

案是基於主要成份分析°在實踐中，首先我們會用基於塊的主要

成份分析來初步減低資料的分量。經此步驟後，我們會得到一系

列的本徵圖像與其光照系數。若我們把低能量的本徵圖像與其光

照系數扔掉，那末原來的資料的分量就能夠大大地減少。為了能

進一步壓縮資》斗，保留的本徵圊像會進行交換編碼與量化，而保

留的光照系數就會被均勻量化。在這論文中，我們亦為每個壓縮

步驟提供一個可維持視覺質素的位速率°最後，我們提議一個能

夠用由以上方案壓縮而成的資料來重新光照圖像的實時光照器。

I •

ii

Acknowledgments

First, I wish to express my gratitude to my supervisor Prof. Tien-Tsin Wong for

giving continuous support and guidance in my research. I would like to thank

Dr. Chi-Sing Leung, Dr. Shi-Hang Or, Prof. Chi-Shing Lui, and Prof. Ho-Man

Lee for giving me helpful advice. I would also like to thank my colleagues,

Tak-Fu Tung, Tsz-Yeung Wong, Cheuk-Man Lee, Wai-Man Pang, and others

who have helped me in these two years. I would like to express my deepest

gratitude to my parents and family. Finally, I would like to give special thanks

to my girl friend, Maggie, and my lovely hamsters.

iii

Contents

1 Introduction 1

1.1 Background 1

1.2 Existing Approaches 2 •

1.3 Our Approach 3

1.4 Structure of the Thesis 4

2 Related Work 5

2.1 Compression for Navigation 5

2.1.1 Light Field/Lumigraph 5

2.1.2 Surface Light Field 6

2.1.3 Concentric Mosaics 6

2.1.4 On the Compression 7

2.2 Compression for Relighting 7

2.2.1 Previous Approaches 7

“ 2.2.2 Our Approach 8

3 Image-Based Relighting 9

3.1 Plenoptic Illumination Function 9

‘ 3.2 Sampling and Relighting 11

3.3 Overview 13

3.3.1 Codec Overview 13

3.3.2 Image Acquisition 15

iv

3.3.3 Experiment Data Sets 16

4 Data Preparation 18

4.1 Block Division 18

4.2 Color Model 23

4.3 Mean Extraction 24

5 Principal Component Analysis 29

5.1 Overview 29

5.2 Singular Value Decomposition 30

5.3 Dimensionality Reduction 34

5.4 Evaluation 37

6 Eigenimage Coding 39

6.1 Transform Coding 39

6.1.1 Discrete Cosine Transform 40

6.1.2 Discrete Wavelet Transform 47

6.2 Evaluation 49

6.2.1 Statistical Evaluation 49

6.2.2 Visual Evaluation 52

7 Relighting Coefficient Coding 57

7.1 Quantization and Bit Allocation 57

“ 7.2 Evaluation 62

7.2.1 Statistical Evaluation 62

7.2.2 Visual Evaluation 62

.8 Relighting 65

8:1 Overview 66

8.2 First-Phase Decoding 66

8.3 Second-Phase Decoding 68

V

8.3.1 Software Relighting 68

. 8.3.2 Hardware-Assisted Relighting 71

9 Overall Evaluation 81

9.1 Compression of lAIs 81

9.1.1 Statistical Evaluation 81

9.1.2 Visual Evaluation 86

9.2 Hardware-Assisted Relighting 86

10 Conclusion 89

Bibliography 90

vi

List of Figures

1.1 Image-based relighting 2

3.1 Geometric components of the plenoptic and plenoptic illumina-

tion functions 10 ‘

3.2 Sampling on the grid points of spherical coordinate system. . . . 11

3.3 Samples of different light sources 12

3.4 Relighting of panorama 13

3.5 Overview of encoding and decoding 14

3.6 The capturing system setup 15

3.7 Capturing work flow 16

3.8 Four data sets tested throughout the experiments 17

4.1 Three samples from the data set 'attic' 19

4.2 Three samples from the data set 'ding' 19

4.3 Three samples from the data set 'forbidden' 20

“ 4.4 Three samples from the data set 'cover' 20

4.5 Strong correlation is observed in the pixel values among images. 21

4.6 A divide-and-conquer approach is used to make the computation

tractable and introduce parallelism 22

4 7 A color image block is linearized to form a data vector 23

4.8 Error comparison between PCA on grouped data and PCA on

separated channel data 25

4.9 The mean image blocks of data set 'attic' 26

vii

4.10 The mean image blocks of data set 'ding' 27

4.11 The mean image blocks of data set 'forbidden' 27

4.12 The mean image blocks of data set 'cover' 28

5.1 M 二 A B 30

5.2 Each row of M is a linear combination of rows in B 34

5.3 The singular value decreases rapidly. 35

5.4 PSNR vs number of eigenimages used for reconstruction 38

6.1 The first 6 tiled eigenimages {Y channel) of 'attic' 41

6.2 The first 6 tiled eigenimages (Y channel) of 'ding' 42

6.3 The first 6 tiled eigenimages {Y channel) of 'cover' 42

6.4 The first 6 tiled eigenimages {Y channel) of 'forbidden' 43

6.5 Matrix B is rebinned to form the tiled eigenimages 44

6.6 The 1-D wavelet decomposition 47

6.7 One-level 2-D wavelet decomposition 49

6.8 One-level and two-level 2-D wavelet transforms using Daubechies

9/7 wavelet for 'ding' 50

6.9 One-level and two-level 2-D wavelet transforms using Daubechies

9/7 wavelet for 'cover' 51

6.10 PSNR versus target bit rate for eigenimage coding (RB) using

DCT 53

.. 6.11 PSNR versus target bit rate for eigenimage coding (RB) using

DWT 54

6.12 Visual artifacts introduced by encoding eigenimages using DCT

with different target bit rates 55

‘ 6.13 Visual artifacts introduced by encoding eigenimages using DWT

with different target bit rates 56

viii

7.1 Each data source is formed by grouping elements from the same

“ columns in different Aj 58

7.2 Histograms of the first six data sources 61

7.3 PSNR versus target bit rate for coding of relighting coefficients

(RA) 63

7.4 Visual artifacts introduced by encoding relighting coefficients

with different target bit rates 64

8.1 Relighting procedure 66

8.2 Four neighboring samples are needed for interpolation 69

8.3 Coefficient arrangements for software relighting 70 .

8.4 Bilinear interpolation 71

8.5 The pixel shader 72

8.6 2D dot product look-up operation 73

8.7 Linear combination of textures 75

8.8 The relighting coefficients are expanded to the same size as the

eigenimages 76

8.9 Coefficient arrangements for hardware relighting 77

8.10 Generalized offset texture 79

9.1 PSNR versus compression ratio for Spherical Harmonics 83

9.2 Visual comparision for all the compression methods 85

.. 9.3 Hammersley points on sphere with 1000 samples 87

9.4 The visual artifacts due to hardware relighting 88

J." ‘

ix

List of Tables

3.1 Characteristics of tested data sets 17

9.1 Comparison of compression ratios of different encoding methods. 84

9.2 Frame rate and error measurement of hardware-accelerated re- •

lighting 87

X

Chapter 1

Introduction

1.1 Background

Image-based relighting [1, 2, 3] offers the image-based entities, such as light

field [4], lumigraph [4, 5], concentric mosaic [6] and panorama [7], an ability

to change the illumination. Image-based relighting can be used in computer

games. It always has chance that the background of a computer game has to be

changed constantly, for example from day to night. As the quality of modern

computer games is demanding, loads of beautiful scenes are required. This

hinders the smoothness of the computer game if the game has to stop every

time a scene needed to be rendered. Image-based relighting shows its usefulness

because rendering time for image-based relighting is independent of the scene

complexity. Otherwise, thousands of triangles have to be rendered if we use

”traditional graphics approach. Image-based relighting depends on samples of

a scenery illuminated under different lighting directions. Given such set of

images, we can generate the scenery under any desired directions. Figure 1.1

illustrates this idea. Through image-based relighting, we can generate images

with light sources locating at the white dots, where samples are taken, as well
* "

as the red dots, where samples are not taken originally.

Since the representation is image-based and no geometry is used in the

1

• Chapter-1 Introduction 2

^ ^ — \ ： 一 ： 一 • ^ ^ 國

… 漏 • •
Images with lighting conditions not sampled originally <r*d dots)

Imagvft tftk*n under different lighting conditions (while dots)

Figure 1.1: Image-based relighting.

computation of reflected radiance, the rendering {relighting) time is indepen-

dent of scene complexity and can be in real-time. However, the data size is

enormous when the illumination information is included in the image-based

representation. For a 1024 x 256 color image captured under 1,200 illumi-

nation conditions, 900MB storage size is required if no compression is done.

Therefore, data.compression is a must.

1.2 Existing Approaches

There have been several work [4, 8, 9] in compressing data for image-based

navigation such as light field and panorama. It seems that compression meth-

ods for image-based navigation may also be applied for image-based relighting.

However, there is a fundarrierital difference between the nature of image data

from these two categories. Data for image-based navigation is more related

to geometry while data for image-based relighting is more related to surface

reflectance.

The simplest way to compress a collection of images is to use still image

coding such as JPEG and JPEG 2000. They are proven to be the most ef-

fective way for compressing still images by their widely usage in still image

coding nowadays. However, they are not effective in compressing illumination-

adjustable images because they cannot make use of the data correlation among

Chapter 1 Introduction 3

any two individual images. In other words, they cannot make use of the data

correlation along the lighting domain. In order to make use the data correla-

tion along the lighting domain, we can use MPEG to compress illumination-

adjustable images. However, they can only use one dimension of them because

MPEG is tailor-made for movies, which are moving forward or backward in

one direction only. But the lighting domain of illumination-adjustable images

are 2D in nature. Therefore, MPEG is still unable to fully make use of the

data correlation. Thus, without considering the data nature, the compression

algorithm cannot effectively reduce the data volume.

1.3 Our Approach

Unfortunately, there have been less work in compressing image-based repre-

sentation for relighting. Wong et al. [1] compressed the relighting data us-

ing spherical harmonics. Higher compression ratio is obtained by exploit-

ing the inter-pixel correlation [10]. However, compressing illumination data

with spherical harmonics suffers from imprecise reconstruction of highlight

and shadows. In this thesis, we propose a compression scheme based on prin-

cipal component analysis (PCA). There have been some previous work [11，

12, 13, 14] using PC A. While their focuses are mainly on recognition and/or

representation, our focus is on the practicality, effectiveness and efficiency of

.,the compression algorithm.

We use a block-based approach to reduce the problem to a manageable

size. The output of PCA is a set of principal components and their corre-

sponding coefficients. Most energy of the original data are packed in a few

principal components after PCA. Hence, by dropping most of the low-energy

components, the data size can be drastically reduced. We then apply trans-

form coding and quantization to further compress the high-energy components.

At the same time, the coefficients are compressed using uniform quantization.

Chapter 1 Introduction 4

The proposed method compresses image-based relighting data to a small size

•that can be rapidly transferred through Internet. To demonstrate its ability of

preserving visual quality, we evaluate the compressed data by measuring the

reconstruction error. Moreover, we also consider the capability of real-time

relighting from the compressed data.

The work in this thesis has been submitted to several organizations such

as [15] and [16 .

1.4 Structure of the Thesis

We first give a review on existing compression methods for image-based rep-

resentation in Chapter 2. Then the image-based relighting representation is

briefly described in Chapter 3. From Chapter 4 to Chapter 7, we present the

proposed compression method in detail. The relighting is then described in

Chapter 8. Overall evaluation is given in Chapter 9. Finally, conclusions are

drawn and future directions are discussed in Chapter 10.

(

»

Chapter 2

Related Work

In recent years, lots of work in image-based modeling and rendering have been

done. However, not most of the work have been devoted to the compression

issue of image-based data. We roughly classify the previous work into two main

categories, namely compression for navigation and compression for relighting.

2.1 Compression for Navigation

2.1.1 Light Field/Lumigraph

There are several representations proposed for image-based navigation. Levoy

and Hanrahan [4] and Gortler et al. [5] proposed the light field and lumigraph

representations respectively. Both use a two-plane parameterization to repre-

sent radiance along ray passing through the enclosed light slab. As pointed out

by Chai et al. [17], a large number of samples may be required for a smooth

view interpolation. Therefore compression is crucial. Levoy and Hanrahan [4

used vector quantization and entropy coding for compression. On the other

hand, Gortler et al. [5] proposed a transform coding for encoding the data.

‘ Utilizing the disparity maps, Magnor and Girod [18, 8] proposed the MPEG-

like codec for light field. Zhang and Li [19] proposed a multiple reference frame

(MRF) prediction approach for compressing the lumigraph. To progressively

5

Chapter 2 Related Work 6

transfer the compressed light field, Peter and Straber [20] used a 4D wavelet

decomposition approach for compression. Ihm et al [21] proposed the spheri-

cal light field representation. Unlike the two-plane structure in light field and

lumigraph, it is spherical in nature. They proposed to use a wavelet-based

method for compression. The compression ratio was about the same as the

one described in [4]. Bajaj et al. [9] proposed a general compression scheme

for high dimensional data such as light field. They focused on high compres-

sion ratio and fast random access issues. They used wavelet-based transform

coding for compression. Indexing and table lookups were heavily used.

2.1.2 Surface Light Field

Miller et al. [22] proposed the surface light field，which was a hybrid geometric-

based and image-based model. The idea was to allow each surface element to

have its own light field. They proposed to use block-based transform coding

for compression. Block cache was used to speed up decompression. Wood et

al. [23] and Chen et al. [24] proposed to use principal component analysis and

vector quantization for compressing the surface light field.

2.1.3 Concentric Mosaics

Unlike the 4D nature of light field / lumigraph, concentric mosaics proposed by

Shum and He [6] was 3D. A standard MPEG4 codec was used to compress these

concentric mosaics in their paper. Wu et al. [25] proposed a smart-rebinning

scheme for concentric mosaics. The idea was to rebin the data before compres-

sion in order to expose more correlations among data. Leung and Chen [26

proposed a MPEG-like motion compensation method for compressing the con-

centric mosaics.

Chapter 2 Related Work 7

2.1.4 On the Compression

Li et al. [27] surveyed three categories of image-based rendering compression

algorithms. The block coder was simple and fast in decoding, but the com-

pression ratio was usually not high. The reference block coder could achieve

both good compression ratio and fast rendering. Finally, the high dimensional

wavelet coder could also achieve high compression ratio and fast rendering.

However, the coder was more complex and relatively difficult to implement.

2.2 Compression for Relighting

2.2.1 Previous Approaches

Nimeroff et al. [28] used steerable basis function to relight images due to natural

illumination. Compression could be achieved by storing coefficients of the basis

functions.

Wong et aL[l\ proposed to treat each pixel as a 'surface element' and mea-

sured its apparent bidirectional reflection distribution function (BRDF). By

looking up this pixel BRDF, relighting could be performed. They used spher-

ical harmonics [29] to transform the radiance values to frequency domain.

The spherical harmonic coefficients were then rebinned and compressed using

transform coding [10]. A high compression ratio was achieved. However, due

.,to the global support nature of spherical harmonic transform, sharp shadow

and specular highlight were usually smoothened and might not be accurately

represented. Our method is better than spherical harmonic transform coding

as shown in Chapter 9.

‘ Belhumeur and Kriegman [11] have proven that three basis images are suf-

ficient to span the illumination cone of images containing Lambertian surfaces.

Their concern was mainly on the object recognition under various illumina-

tion conditions. Epstein et a/. [12] have empirically shown that 5 to 7 basis

Chapter 2 Related Work 8

images are enough for representing scene containing specular objects. The ba-

sis images can be extracted using principal component analysis. Zhang [13

proposed a hybrid geometric-based and image-based representation model for

relighting. He also used principal component analysis to reduce the data di-

mensionality. Nishino et al.[14\ proposed the appearance compression scheme.

The geometry of the scene was captured by laser range finder while the ap-

pearance (texture) of the object was represented by eigen-textures which were

extracted by principal component analysis.

2.2.2 Our Approach

Our proposed compression method is designed for image-based relighting. It

also employs principal component analysis as a tool to reduce the data dimen-

sionality. Unlike previous work in object recognition and hybrid representation,

we treat the image-based relighting as a sampling and reconstruction problem

of the plenoptic function. The problem is pure image-based. We make no

assumption on the surface types and no restriction on the trajectory of the

light source. As the focus of most previous work is not compression, not many

attentions have been paid on optimization of compression ratio, practicability,

error analysis, random access ability, and real-time decompression. In contrast,

we shall address these issues thoroughly in this thesis.

Chapter 3

Image-Based Relighting

For the completeness of this thesis, we give a brief description of the illumination-

adjustable image representation previously proposed. The details can be found .

in [1]. Our image representation is based on the general plenoptic function.

We treat the image synthesis as a problem of sampling and reconstruction of

the plenoptic function.

3.1 Plenoptic Illumination Function

The original plenoptic'function [30] describes the radiance received along any

viewing direction (9y, (f)y) arriving at any point {Ex, Eŷ Ez) in space, at any

time t and over any range of wavelength A. A similar concept known as light

field was coined by Gershun [31] to describe the radiometry properties of light

in space. The plenoptic function is formulated as follows,

•• I = (3.1)

where I is the radiance, [Ex, Ey, Ez) or E is the position of the center of

projection or the v iewpo int ,(氏，or V specifies the viewing direction in

spherical coordinate, t is the time parameter, and A is the wavelength.

Basically, the function is formulated to mimic an ideal human eye. It tells

us how the environment looks like when our eye is positioned at E. Figure 3.1

9

Chapter 3 Image-Based Relighting 10

身测
(a) (b)

Figure 3.1: Geometric components of the (a) plenoptic and (b) plenoptic illu-
mination functions.

illustrates the geometric components of the function graphically. The time

parameter t models all other unmentioned factors such as the change of illu-

mination and the change of scene. When t is constant, the scene is static and •

the illumination are fixed.

We extended the plenoptic function to include the illumination compo-

nent [1]. To do so, we extract an illumination component from the aggregate

time parameter t and explicitly specify it in the following new formulation,

I. = Pi(Oi, (j^u ‘ (K, Ey, E,, A), (3.2)

—•

where {6i, </>/) or L specifies the direction of a directional light source illumi-

nating the scene, and t' is the time parameter after extracting the illumination

component.

„ We call this new formulation the plenoptic illumination function. It de-

scribes the lighting direction of a directional light, which emits unit radiance,

illuminating the scene. The new function tells us what we see when the whole

scene is illuminated by a directional light source with the lighting direction

•-L} (Figure 3.1).
iWe define L in local coordinate system.

Chapter 3 Image-Based Relighting 11

3.2 Sampling and Relighting

Sampling the plenoptic illumination function is actually a process of taking pic-

tures. The time parameter t' (the scene) is assumed fixed and the wavelength

parameter A is conventionally sampled and reconstructed at three positions

(red, blue and green). As we are interested in constant-viewpoint images, pa-• —
rameter E is also fixed. Hence the sampling of the viewing direction V depends

on the projection manifold we used. The manifold can be planar, cylindrical

or spherical. We sample the illumination component L on the grid points of

spherical coordinate system (Figure 3.2).

(a) (b)
Figure 3.2: (a) Sampling the lighting direction at the grid points on the sphere,
(b) A sampled plenoptic function.

Given a desired light vector which is not one of the samples, the desired

image of the scene can be estimated by interpolating the samples. We shall

discuss the interpolation in Chapter 8. Even though the sampled plenoptic

一 illumination function only tells us how the environment looks like when it is

illuminated by a directional light source with unit intensity, other illumination

configuration can be simulated by making use of the linearity property of light.

The. relighting can be done by calculating the following formula for each pixel

•and for each red, green and blue channel.
y ‘

n

；^P；他 办,辦,劝， (3.3)
i

. Chapter 3 Image-Based Relighting 12

where n is the total number of light sources, (Oj, (/>}) specifies the desired lighting

direction, Z” of the i-th light source, P;(6'|,0i) is the result of interpolating
—^ •

the samples given the desired light vector (6'； ,</)；) (parameters E, t' and A

are dropped for simplicity), Lr is the radiance along ("1，刹）due to the i-th

light source, and x is the position where the actual reflection takes place.

P/ is the estimated radiance by interpolating the samples. The above for-

mula is a local illumination model. It allows lis to manipulate three parameters,

namely the direction, the color, and the number of light source. Figure 3.3

shows the result of using the above illuiniiiation model (Equation 3.3) with dif-

ferent types of light sources [1]. Figure 3.4 shows that the same illumination

model can be applied to panoramic images [3] as well.

- . • 關

_ _

(C) ⑷

Figure 3.3: (a) Point light source, (b) directional light source, (c) spotlight,
and (d) slide projector source.

. Chapter 3 Image-Based Relighting 13 ••••••
� （e) (f)

Figure 3.4: Relighting of panorama, (a)-(c): indoor attic scene, and (d)-(f): .
outdoor city scene.

3.3 Overview

3.3.1 Codec Overview

The compression of illumination-adj ustable image can be divided into four

main phases, namely data preparation, principal component analysis, eigenim-

age coding and relighting coefficient coding. Figure 3.5(a) illustrates the main

phases. The input images (images of different illumination conditions) are

color-transformed and divided into 'blocks' during data preparation (Chap-

ter 4). Next, during the principal component analysis (PCA) (Chapter 5),

-the dimensionality of each 'block’ is reduced. The outcomes of PCA are a

set of principal components {eigenirnages) and the corresponding coefficients

{relighting coefficients). They are separately encoded in the next two phases.

The eigenirnages are encoded using transform coding (Chapter 6) while the

"relighting coefficients are uniforiiily quantized (Chapter 7). Both of them are

then further compressed using entropy coding.

On the other hand, the decoding is basically the inverse of the processes

(Figure 3.5(b)). However, since we only need to obtain the image of a specific

lighting condition, we only decompress a few sets of relighting coefficients eacli

time. Given a desired lighting condition, the corresponding desired relighting

t

•
-

^

^
‘

(B
)

—
”
加

啊
�

T
^

j
^

Qu
an

tiz
ati

on

g
S

，
請

"
?

•
^

Co
dm

g
,

Go
dm

g
ei

ge
m

m
ag

es

^
I

一

…

L
i,i
__

i»
w
>
iT
in
l •

-J

I

,
_

J

f
^

，
W

p
二

:
cS

S
^

t
，

f
S

J
im

ag
es

Pr

ep
ar

ati
on

^

^
An

aly
sis

^

w

“
醫

…
"

丨
丨

•
…

U
-

,
J

. •

.
q

co
m

pr
es

se
d

to

“
O

U

ni
fo

rm

>
re

lig
ht

in
g

_
0

/A

re
li,

ht
in

s
>

.
广

�
�

J
co

e^
ci

en
ts

-

霸

�
,

co
ef

fic
ie

nt
s

g
1

Se
co

nd
-p

ha
se

,

^
Fi

rs
t-

ph
as

e
de

co
di

ng

de
co

di
ng

$

g
-

-
"i

]
1

T
I

•
‘

p
：

”
“

I
n

v
e

r
s

e
li

ei
ge

ni
m

ag
es

\

I
co

m
pr

es
se

d
u；̂

^^

"^
^P

y
^

De
qu

an
tiz

at
io

n
^

Tr
an

sf
or

m

W

—
~

I
ei

ge
ni

m
ag

es

f
-

D
ec

�
d_

ng
Co

di
ng

i|

X

口

f
fc

ir
if
T
l

I
I

I
_••『

a
'^

in
 J

tn

m
m

m
m

.M
m

•

•
議

_
|

j
^

,
|

丨

j 丨

Li
ne

ar

I
L

re
lit

5-

g

I
丨

-
�

-
:_

-
:二

：
二

J
Co

m
bi

na
tio

n
f^

 im
ag

es

s
一

i

i I

_
—

一
」

I
二

co

m
pr

es
se

d
1

jr
^

^
”

l
n"

'

||

De
te

rm
in

at
io

ni

^
|

I
re

lig
ht

in
g

+
:

�
[二

^

D
e

q
u

a
n

ti
z

a
ti

o
n

^
de

sir
ed

 re
lig

ht
in

g
\

f
co

ef
fic

ie
nt

s
|

L
l

^
^

—
:—

:��L
^：

^"
"^
--
--
--
--
」
--

辟
^»

^-

�

L
de

sir
ed

 li
gh

iin
^

\
co

nd
iti

on

I—
»

. Chapter 3 Image-Based Relighting 15

coefficients are interpolated. Then the reconstruction (or relighting) can be

easily done by linearly combining the eigenimages with the interpolated re-

lighting coefficients as weights. We shall describe in details the relighting in

Chapter 8.

3.3.2 Image Acquisition

Although image acquisition is not our main focus, for the completeness of the

thesis, we will briefly introduce how we capture the illumination-adjust,able •

images. Pang [32] develops a portable capturing system for image-based re-

lighting. Figure 3.6 shows the system setup.

BiH
(a) System setup

• _關
, - (b) object anci (c) capturing (d) spotlight and

checker board camera tracking camera

Figure 3.6: The capturing system setup.

Two cameras are required. The capturing camera is for recording the re-

• fleeted radiance from the object/scene while the tracking camera is for tracking

Chapter 3 Image-Based Relighting 16

the light vector. The tracking camera is attached to the spotlight, which is

the only light source in the system. The checker board helps the tracking

camera to locate the current position of the light source. The work flow of the

capturing system is shown in Figure 3.7.

I W I

I I r ^ ^ ^ ^ ^ ^ i n ^ j
I g- '̂ 'aiJjd raptumg cameras i i
！ t ‘ 人 . ‘ 广 入 • 1

广 - - 二 ^ ^ ^ ^ ^ 二 •

I A c q w e iina^es frcpi tracking I
I ： ^ fttt capping c^eras 门 |

I f ^ s I
I ； r r — T ^ I
I Store both light vector J |
I and reference, image |
丨 丨 猛：么麵：工', I

I I

Figure 3.7: Capturing work flow.

The two cameras have to be calibrated beforehand in order to make them

distortion-free. During capturing, user can move the spotlight freely. After

the light vector has been recognized using the information from the tracking

camera, the image from the capturing camera and the light vector are stored.

The system keeps running until enough samples have been taken.

3.3.3 Experiment Data Sets

‘ Four data sets (Figure 3.8) are used in our experiments. They are 'ding',

'attic', 'forbidden' and 'cover'. The first three sets are synthetic while the last

one contains real-world images captured using the image acquisition system

. Chapter 3 Image-Based Relighting 17

Data setResolution~Sampling rate~Real/Synthetic W i t h “
{6 X (/)) Shadow

512 X 512 30 X 40 Synthetic Y ^
attic 1024 X 256 15 x 20 Synthetic No
forbidden 1024 x 256 30 x 40 Syntlietic Yes
cover 256 x 256 45 x 90 Real Yes

Table 3.1: Characteristics of tested data sets.

described in Section 3.3.2. While tlie data set 'attic' contains no shadow, all .

other data sets contain shadow. Table 3.1 shows the characteristics of each

data set. mmmm
國 HMlWi

, (C) ⑷
Figure 3.8: Four data sets tested throughout the experiments: (a) 'ding', (b)
'attic', (c) ‘cover, arid (d) 'forbidden'. Data set 'cover' contains real-world
images while others are synthetic.

Chapter 4

Data Preparation

The goal of data preparation is to reorganize (rebin) and preprocess the input

data in order to maximize the correlation among neighboring data. So the

principal component analysis in the following stage can effectively reduce the

data dimensionality. There are three major steps, namely block division, color

transform, and mean extraction. Block division aims at breaking down the

data in order to facilitate and speed up the principal component analysis pro-

cess. By transforming the data to another color domain, we try to make use

the human inability in order to improve the performance (higher compression

ratio with better reconstruction quality). Mean extraction tries to zero mean

the input data in order to optimize the data for principal component analysis.

4.1 Block Division

The input is a set of images with the same view, but with different illumination

condition. Figures 4.1, 4.2, 4.3, and 4.4 show three samples from each of our

data sets, 'attic', 'ding', 'forbidden', and 'cover', each illuminated by a single

•directional light source from different direction. Note that shadow is present in

‘ the sample images. We sample the direction of light source on a spherical grid

as illustrated on the left hand side of Figure 4.5. Hence each image corresponds

to a grid point. The image set is indexed by (/>】）for i = 0, • • • — 1 and

18

,Chapter 4 Data Preparation 19

w^m
• H B
i^lEilH

Figure 4.1: Three samples from the data set 'attic', each illuminated with
different lighting condition.

• • • • I i m ^ ^ ^ f f H H H B H

Figure 4.2: Three samples from the data set 'diiig'.

,Chapter 4 Data Preparation 20

•HHH
im̂ n̂iiî^̂ îiiiiiiiiî îiiiiii

Figure 4.3: Three samples from the data set 'forbidden'.

mmm
Figure 4.4: Three samples from the data set 'cover'.

,Chapter 4 Data Preparation 21

j = (),••• I. The set contains altogether rn = pq images.

If we select a pixel in the image (as in Figure 4.5) and pick all values

associated with this pixel, it is not surprising that these values are higlily

correlated. Because these values are the radiances reflected from the same

surface element visible through the pixel window under various illumination

conditions. In other words, the variation in reflection is mainly due to the

bidirectional reflection distribution function (BRDF) of that surface element.

• ！ • /ft X� r ^ Mo)
水) • (0丄）

Figure 4.5: Strong correlation is observed in the pixel values among images.

Since the input images are higlily correlated, we apply PCA to bring down

the data dimensionality. One can linearize each 2D image (probably a 2D array

of pixel values) to a ID array of pixel values. Then all ID arrays (images) are

stacked to form a data matrix M. However, this matrix is prohibitively large

for computation. For example, a gray scale image of 256 x 256 sampled

under m=1200 lighting conditions forms a 1200 x 65535 data matrix. The

computation of the principal coniponeiits of this matrix is impractical.

We propose a divide-and-conquer approach wliicli subdivides the images

into blocks. Multiple block-wise PC As are then applied on the correspond-

ing blocks. Spatially neighboring blocks are handled independently. If each

image is subdivided into w blocks, we perform w block-wise PC As and each

on different set of blocks as illustrated in Figure 4.6. With this block-based

,Chapter 4 Data Preparation 22

approach, the computation becomes tractable and the memory requirement is

also reduced. Moreover, the computation can be trivially parallelized.

- ss%%v
附\ H H Divide-and-Conquer \

\ . • • _ _ 塵 塵 \
\ 國 “ ^̂ “

image-wise PCA WBKKk block-wise PCA

Figure 4.6: A divide-and-conquer approach is used to make the computation
tractable and introduce parallelism.

Since spatially neighboring blocks are handled independently, block-wise

PC As can be trivially parallelized. The block-wise PCA also helps in captur-

ing higli-frequency features, like highlight and shadows, with fewer number of

principal components. However, the subdivision leads to overhead which in

turn reduces the compression ratio. We shall discuss the overhead shortly. In

general, the smaller the block is, the higher the parallelism is, but the lower

the compression ratio is.

In our system, we choose a block size of 16 x 16. Altliougli tlie block size

of 8 X 8 is widely used in transform coding like JPEG [33], there is too much

storage overhead. Since we employ traiisforiii coding in the later stage, it is

desirable to keep the block size to be multiple of 8 x 8 in order to avoid any

artifacts due to the boundaries. On the other hand, a block size of 32 x 32 (or

above) brings up the size of the matrix, makiiig the computation expensive.

This is not desirable. However, a block size of 16 x 16 introduces less overhead

while maintaining the compatibility with standard transform codec. A similar

strategy is used in designing the size of iiiacroblock in MPEG standard [34 .

,Chapter 4 Data Preparation 23

4.2 Color Model

In our applications, we handle color images. By converting the pixel val-

ues from RGB to YCrCt color model, we separate the luminous component

(Y) from the chrominuous components (CV and Ci). Hence we can allocate

more bits for human-sensitive luminous coniponent while less bits for human-

insensitive chrominuous components during compression in the later stage.

We use the following two matrices [35] for forward and backward traiisforiiis

between color models. .

The forward transform, from RGB to YCrCb,

Y 0.2990 0.5870 0.1140 R

Cr = 0.5000 -0.4187 -0.0813 G (4.1)

Cb -0.1687 -0.3313 0.5000 B

The backward transforin, from YCrCh to RGB,

R 1 1.40200 0.00000 Y

G = 1 -0.71414 -0.34414 C, (4.2)

B 1 0.00000 1.77200 Cb

The range of the original RGB pixel values is [0,1] (we map pixel values

“from [0,255] to [0,1]). The corresponding ranges of cliamiels Y, C ” and Ci, are

0, 1], [-0.5, 0.5], and [-0.5, 0.5] respectively.

16x16 ^ H P l i ^
E y block •pMHjn linearize v r r

= • • _ � Cf
16x16 16x18x3

col(ĵ irTjage cIno^HI data vector
block

Figure 4.7: A color image block is linearized to form a data vector. Its Y, Cr
and Ci data are grouped inside the same vector.

Chapter 4 Data Preparation 24

Since there exists high correlation between values in the three channels

iyCrCb), we group values from the three channels and perform PCA on them

as a whole (mixed channel PCA). Figure 4.7 illustrates how a color image block

is linearized and forms a data vector. On the other hand, if we perform PCA

separately on each channel (separated channel PCA), the storage requirement

will increase (as each PCA generates additional set of coefficients and princi-

pal components). From our experiments, we found that mixed channel PCA

not just reduces storage overhead, but also preserves image quality. Figure 4.8

compares the reconstruction errors between mixed channel PCA and separated

channel PCA. The horizontal axis indicates the number of eigenimages used

to reconstruct the image. As the number of eigenimage increases, the recon- ‘

struction error decreases. The error due to mixed channel PCA is almost the

same as the error level due to separated channel PCA when more than four

eigenimages are used for reconstruction. This phenomenon is consistent in

different data sets.

4.3 Mean Extraction

It is beneficial to perform mean extraction on the data matrix in prior to PCA.

Just like the mean extraction performed in the previously proposed SVD-based

still image coders such as [36]. The mean extraction, also known as rank-

one update, shifts the centroid of the data cloud to origin and usually allows

more precise reconstruction in compare to that without mean extraction, it is

believed that this is more likely to provide higher compression ratio given the

same error tolerance.

Unlike previous approaches [14], we compute the mean image (mean vector)

over m input images instead of a scalar mean value. The mean vector offers

a more accurate computational base for PCA. Each input image is subtracted

by the mean image before forming the data matrix for PCA. During image

,Chapter 4 Data Preparation 25

Mean Squared Error vs Number of Eigenirnages Kept for Dataset 'Ding'

80 1 1 1 1
Mixed Channel PCA I

L Separated Channel PCA ----米…

-

-

-

-

. 糸 ^ ^ ^ i
0 2 4 6 8 10

Number of eigenirnages kept

Figure 4.8: Error comparison (MSE) between PCA on grouped data and PCA
on separated channel data. Data set 'ding' is used in this experiment.

J.

Chapter 4 Data Preparation 26

reconstruction, the mean image is added to recover the images. Since we

• perform block-wise PCA, we compute w mean image blocks instead of a single

mean image. The mean corrected data is now of range [—1,1]. Figures 4.9，

4.10，4.11, and 4.12 show the computed mean image blocks (we tile the mean

image blocks) of all the data sets. The images are all stretched to [0..255] in

order to allow a better visualization. The original images of the chrominuous

channels should look much dimmer.

Y channel

Cr channel

Cb channel

Figure 4.9: The mean image blocks of data set 'attic'. The mean image blocks
are tiled according to their original position in the image. Note that all images
are scaled to [0..255] in order to increase the contrast for visualization. The

‘ images for Cr and Cb are dimmer originally.

Chapter 4 Data Preparation 27

Y channel CV channel Ct channel

Figure 4.10: The mean image blocks of data set 'ding'.

Y channel

Cr channel

Cb channel

Figure 4.11: The mean image blocks of data set 'forbidden'.

Chapter 4 Data Preparation 28

•圖•
Y channel CV channel Cb channel

Figure 4.12: The mean image blocks of data set 'cover'.

Although there are w mean image blocks, you cannot figure out any arti- .

facts at the boundaries. It is because the mean of each set of corresponding

pixels in the data set is independent of the block size.

J

Chapter 5

Principal Component Analysis

After block dividing, color transforming, and mean extracting the input data,

we attempt to reduce the data volume in this phase. Principal component anal-

ysis, more specifically, singular value decomposition, is used. All aspects con-

cerning singular value decomposition that are related to our work, such as how

singular value decomposition can reduce the data volume, will be discussed.

At the end of this chapter, we give an evaluation on how the performance of

singular value decomposition is in reducing data volume.

5.1 Overview

After data preparation, all data vectors are stacked to form a data matrix M

and block-wise PCA is applied to M. Our goal is to reduce the dimensionality

. o f input data (m data vectors). The output of PCA can be well approximated

by k basis images (eigenimages) and their corresponding coefficients {relighting

coefficients). Since k �m , the data volume is drastically reduced by keeping

Only k eigenimages and the relighting coefficients.

Figure 5.1 illustrates this dimensionality reduction process graphically.

‘ Each row of data matrix M corresponds to one input image block. Hence

each row contains n = 16 x 16 x 3 scalars. Through PCA, we can decompose

the data matrix into two matrices, A and B. The beauty of PCA is that most

29

Chapter- 5 Principal Component Analysis 30

energy of data matrix M concentrates in the first few components of the de-

composed matrices (first few columns of A and first few rows of B). In other

words, by keeping only the first k coniponeiits {i.e. keeping the first k colunins

of A and first k rows of B), we can preserve most energy of the input data

and achieve compression.

^^ relighting ^H. coefficients J^^ •” -p. . , f.i .1 丨 i ’ eigenimages

罕 = A X y f c r ^ I A X ^ f i f e 甲

• ： J I : kxn、！il
m X n m X m m X n m x k

Figure 5.1: Using PCA, we approximate the original data matrix (M) by two
smaller matrices A and B.

5.2 Singular Value Decomposition

Singular value decomposition and its development was mainly established by

five mathematicians: Eugenio Beltrami (1835-1899), Camille Jordan (1838-

1921), James Joseph Sylvester (1814-1897), Erchard Schmidt (1876-1959), and

Hermann Weyl (1885-1955). For the history of SVD, interested parties can

refer to [37 .

We use singular value decomposition (SVD) [38, 37] as the PCA tool to

extract the principal components. SVD factorizes an rn x n matrix M into 3

matrices,

^ M = USVT (5.1)

where matrices U arid V'^ are of dimensions rn x in and in x n respectively.

They are both unitary matrices. A unitary matrix, say U, guarantees that

U 印 = I

Chapter 5 Principal Component Analysis 31

where U " , which is always equal to U一丄’ denotes the adjoint matrix of U

• and I is an identity matrix. In our case, the adjoint matrices U " and (V^)^

are equal to U^ and (V^)^ respectively. The columns of U are called the left

singular vectors of M while the rows of V^ are called the right singular vectors

of M. Matrix S is a diagonal matrix of dimension m x m. Its elements are

the singular values of M. These elements of S are conventionally sorted in

descending order, such that,

5o > S i > S2 > • • • > Sm-l > 0

Note that the singular values are non-negative.

In practical, the algorithms for SVD assume that m is always bigger than

or equal to n. We can always satisfy this condition by transposing the matrix

M whenever n > m,

M - USV^

M^ = (U S V y

= V S U ^

Because S is a diagonal square matrix, S is equal to S^. As V and U^ are

unitary matrices by definition and S is a diagonal matrix, so V S U ^ is a result

of SVD of M^. However, the dimensions of the matrices seem to be having

problems. According to the definition, we expect the dimensions of V，S, and

U^ to be n x n , n x n , and nxm respectively. But, we have now the dimensions

n X m, m X m, and m x m. This can be explained by inspecting the rank of

M.

By definition, rank of a matrix is the number of non-zero singular values of

it and is bounded by min{m,n). In other words, there are some zero singular

Chapter 5 Principal Component Analysis 32

values in S if it is of dimension m x m with m>n^

So

S = 知-1
0

0

Therefore, the diagonal square matrix S can be 'downsized' to n x n by remov-

ing the zero singular values. It is also not difficult to conclude that V and U^

can be resized to n x n and nxm. Hence, whenever m < n (number of samples •

is fewer than total number of pixels in the blocks of all three channels), we

can safely transpose M and apply the SVD routine on M^. The matrices U,

S, and V for M can then be obtained. For the rest of the thesis, we assume

m > n unless otherwise specified.

The singular values in S may be large in magnitude while the values in

U and V^ are relatively small. More specifically, the singular values in S is

bounded by [0’ ^mnj while the values in U and V are bounded by [—1,1

(note that M is of range [—1,1]). For a color data set with 1200 samples using

block size of 16 x 16, the singular values are bounded by [0,960]. Storage

and manipulation of both large and small values may harm the accuracy {e.g.

when a small floating-point value is divided by a large floating-point value). It

is also not desirable to compress data source containing both large and small

values.

. By splitting the singular values into two halves (taking square roots) and

multiply them to U and V^, we evenly distribute the energy of singular values

Chapter 5 Principal Component Analysis 33

to obtain an m x m matrix A and an m x n matrix B.
厂 “

0 . . . 0

0 v ^ . . . 0
A = U x � (5.2)

； ；••• 0

0 0 …

0 . . . 0

0 JTl . . . 0 rr
B= V X V^ (5.3)

； ；••• 0

0 0 . . . y/Sm-1 .

In the mean time, we do not need to store any values of S. From our

experimental data, we find that most elements in A and B fall into the range

of [-1,1] . This nice property facilitates our hardware-assisted relighting in

Chapter 8. However there are rare cases that some values are out of this

range. For example, if

- 0 . 3 1.0

M = - 0 . 1 - 0 . 1

- 0 .2 -0 .3

The mean of M is zero. Applying SVD on it, we get

0.9704 0.2396] � 1 � 1
“TT 1.0734 0 -0.2216 -0.9751

U = -0.0702 0.4040 S = V =
0 0.2962 0.9751 -0.2216

-0.2312 0.8828 � L �

By splitting S into two halves, we get

. r 1.0054 0.1304 1 � 1
TTC10 5 —0.2296 1.0103

= -0.0727 0.2199 S^'^V^ =
-0.5307 -0.1206

-0.2395 0.4805 �

Chapter' 5 Principal Component Analysis 34

There are two elements in US().5 and that exceed the range [-1,1 .

The visual artifacts due to this during hardware-assisted relighting (there is

no harm to software relighting as the precision problem is negligible) will be

discussed iii Chapter 8.

By splitting S evenly into two halves, the matrix M is now rewritten as

M = A B (5.4)

Every row of M (image block) can be reconstructed by linearly combining all

rows in B. The corresponding weights (coefficients) are kept in a row in A.

Figure 5.2 illustrates this reconstruction graphically. We call the rows in B the

basis images or eigenimages and the weights in A the relighting coefficients.

M relighting^fficients eigenimages

• — ‘ = 、•令糾 ” - X \ W

•

• = 。 . . + 。 . 3 匪 + 。 . 1 _ + …

-Figure 5.2: Each row (image block) of M is a linear coiiibinatioii of rows
(eigenimages) in B.

5.3 Dimensionality Reduction

SVD packs the energy to a few coiiiponeiits. Figure 5.3 shows that the singular

value drops rapidly from the first to the fourth singular values. Hence, the

image blocks can be well approximated by linearly combiiiiiig only the first

few eigeiiiiiiages. In this way, the matrix M can be approximated by

M - A B A B (5.5)

Chapter 5 Principal Component Analysis 35

50000 1 1 1
• Ding …-4— “

45000 - I -

40000 - -

35000 - -

J 30000 - -
n >
rt 25000 - -

D)

m 20000 - -
15000 - -

10000 - -

5000 - . -

0 I „ . … I _ I _ I _ I _ _ I _ I _ I _ I _ _ I _ I _ _ i _ _ _ i _ I — —
0 5 10 15 20

Order

Figure 5.3: The singular value decreases rapidly (data set: 'ding').

where the m x A; matrix A is formed by keeping only the first k columns of A

and the kxn matrix B is formed by keeping the first k rows of B (Figure 5.1).

Given an error tolerance, we can determine the number of eigenimages re-

quired for approximation. Different error metrics have been proposed. We

use the Frobenius norm of the differences between the original and the recon-

structed matrices as our error metric. It is the squared truncation error of

-keeping the first k eigenimages, ek, which is defined as
m—l

= = (5.6)
” i=k

Error ê is also the sum of squared singular values corresponding to the dropped

components. Dividing e^ by the number of elements in M, we obtain the
J-

mean-squared-error (MSE) between the original and the approximation. Hence

the user can specify an error tolerance in term of MSE and the number of

eigenimages required can then be determined.

Chapter 5 Principal Component Analysis 36

Here, we include two more error metrics for reference. Zhang [13] proposed

•• the information loss
/•爪一 1 s2

I-W = (5-7)
V Eî o si

From the equation, we know that the lower the information loss is, the better

the quality is. Nishino et aLproposed the eigenratio, which was defined as

OT (5.8)

From the equation, we know that the higher the eigenratio is, the better the

quality is. Both metrics depend on the Frobenius norm, which we use as our

error metric.

There are plenty SVD algorithms in the literature. The common one can be

found in [39]. But in practical, it is not efficient nor effective. The algorithm

is iteration-based. It refines all singular vectors and singular values in each

iteration. Therefore, the worst case is that we may wait until the last iteration

for the result. However, we are only interested in a few singular vectors. In

our experiment, keeping 9 singular vectors is enough (Section 5.4). However,

the total number of singular vectors is m, which is the number of samples. For

the data set 'ding', we have 1200 samples. It is obviously that computing all

1200 singular vectors is not cost effective if we are only interested in 9 singular

vectors. Moreover, the time complexity of the algorithm is O(mn^).

Fortunately, there are other iteration methods for computing only a few

‘desired singular vectors and singular values. Berry et al. implemented Lanc-

zos and subspace iteration-based methods for computing the first few largest

• singular vectors and singular values in their SVDPACKC package [40]. From

their experiments, they found that the block Lanczos method outperformed

other methods, say subspace iteration, trace minimization, and single-vector

Lanczos. Therefore, it is much more cost effective to use block Lanczos method

in our system as we are only interested in the first few largest singular vectors

and singular values.

Chapter 5 Principal Component Analysis 37

5.4 Evaluation

As mentioned before, the radiance values are mainly due to the underlying

BRDF of the visible surface element. The ability of PCA to reduce the di-

mensionality highly depends on the BRDF and geometry. If the surface is

Lambertian, Belhumeur and Kriegman [11] have proven that three eigenim-

ages are sufficient to approximate. For real-world specular surfaces, Epstein

et al. [12] empirically showed that 5 to 7 dimensions were sufficient for ap-

proximation. However, they are only some lower boundaries for the number

of eigenimages we should use. Most previous work assumed shadowing was

absent. However, shadow due to nearby geometry is unavoidable in real world. .

This shadow may increase the dimensionality for representation. In our work,

we make no assumption on the surface reflectance, shadowing, and geometry.

The number of eigenimages depends on the required accuracy.

To determine the number of required eigenimages, we plot a graph of recon-

struction error versus the number of eigenimages. Instead of MSE, we measure

the reconstruction error using peak signal-tonoise ratio (PSNR). The recon-

struction errors are calculated using Equation 5.6. Since we calculate the

errors directly from the singular values, the errors may not be accurate as the

truncation errors due to the precision of data type are avoided. However, we

believe that the overall shape of the result is not affected. From Figure 5.4,

we find that 9 eigenimages give more than 46 dB which is sufficient for rep-

resentation even shadow is present. Therefore, rather than use 7 eigenimages,

we add 2 more in order to perserve more useful information (and thus a better

reconstruction quality). It is because, unlike the previous work, we will further

process the output data in a lossy way, we must keep a higher quality at this

moment. Hence, we use 9 eigenimages as default in our experiments.

Chapter 5 Principal Component Analysis 38

Peak Signal-to-Noise Ratio vs Number of Eigenimages used

55 I 1 1 1 1 1
Attic ——•!

I 45 - 乂 -

1 /
2 40 - / -

I /
I 35 - / -

30 - l -

25 1 1 1 1 1 0 5 10 15 20 25 30
Number of eigenimages used

- Figure 5.4: PSNR vs number of eigenimages used for reconstruction.

J；

Chapter 6

Eigenimage Coding

The compression ratio is unsatisfactory if we only use PCA to reduce the data

volume. In this chapter and next chapter, we discuss how we can further

compress the data after applying PCA. In this chapter, we discuss how to

compress the eigenimages using transform coding methods as they are images

in nature. Two transform coding methods, namely discrete cosine transform

and discrete wavelet transform, will be discussed. The performance of using

these two different transform coding methods will be given in the end of this

chapter, at where we shall see that discrete wavelet transform performs better

than discrete cosine transform does. We will also suggest the optimal target

bit rates based on our experiment results.

6.1 Transform Coding

After PCA, we obtain a set of eigenimages (matrix B) and the corresponding

.. relighting coefficients (matrix A). Since the properties of these two sets of

'values are different, we compress them differently. We first discuss the com-

pression of B^ for i = 0, • • • , ly - 1. The subscript i denotes which block we

‘ are referring as we divide the image into blocks.

In fact, each eigenimage is itself an image. Figures 6.1，6.2，6.3, and 6.4

shows the first 6 eigenimages of the Y channel from four tested data sets. Note

39

Chapter 6 Eigenimage Coding 40

that each image is scaled to the range [0,255]. The j-th row in B^ gives three

• 16 X 16 blocks (y, Cr and Cb blocks) in the j-th eigenimage. We then tile the

blocks according to their positions in the original image and form three tiled

eigenimages. Figure 6.5 illustrates such tiling. Note that we separate the Y,

Cr, and Cb during tiling. Therefore we have altogether 3k tiled eigenimages

after tiling. Each tiled eigenimage is in the same resolution as the original

input images. The tiled eigenimages are denoted as Ej for c = Y, Cr, or Cb

and = 0 ’ . . . — 1.

Since we perform block-wise PCA, it is not surprising that boundary is

observable in the tiled eigenimages. It seems that low-order eigenimages are

smoother than high-order eigenimages. As natural images mainly contain low-

frequency signal, it is natural to have low frequency low-order eigenimages and

high frequency high-order eigenimages. In this sense, eigenimages are some-

what analogous to Fourier-transformed images. We compress the tiled eigen-

images using transform coding methods. Two transform coding methods, the

discrete cosine transform (DCT) and the discrete wavelet transform (DWT),

have been tested. Discrete cosine transform is used due to its effectiveness

in compressing still images as proven by the popularity of its usage in image

coding nowadays. However, the new standard, JPEG 2000, has a better per-

formance, especially in low bit rates, in compressing still images comparing to

JPEG. Discrete wavelet transform is used in JPEG 2000, therefore we also try

. t o compress the eigenimages using discrete wavelet transform in this phase.

6.1.1 Discrete Cosine Transform

We use the 2-D discrete cosine transform [41]. The forward transform is

^ 彻 … = —) +) E E /(工，y) cos cos (6.1)
工=0 y=0

Chapter 6 Eigenimage Coding 41

fflHHH

Figure 6.1: The first 6 tiled eigenimages {Y channel) of 'attic'.

Chapter 6 Eigenimage Coding 42

Figure 6.2: The first 6 tiled eigenimages {Y channel) of 'ding'.

H H H H H H H I B W ^ ^ ' T M B u m i l l l l l l l l l l l l l ^
^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^HHHHB

^M^^BWHBII^^Wmi ^ ^ ^ ^ ^ m ^ H i ^ ^ l

I^MimilHK^B I ^ H ^ H H ^ H

o n
Figure 6.3: The first 6 tiled eigenimages (T channel) of 'cover'.

Chapter 6 Eigenimage Coding 43

Figure 6.4: The first 6 tiled eigenimages {Y channel) of 'forbidden'.

.. Chapter 6 Eigenimage Coding 44

m

m y-th eigenimages

y-throw — 】

— ^ IHI T^c,
^ ^ ； . c^ �hg m m '

一 = m m
A Q

T T
m

Figure 6,5: Matrix B is rebinned to form the tiled eigenimages.

wliere u, v == 0,1,2,..., N - 1, f(x, y) denotes the image block, and C(u, ti)

denotes the transformed DCT coefficients. The backward transform is

f (工,y) = E £ —) +) � � ”)c o s cos ^ ^ (6.2)
u=0 i’=0

where x, y = 0,1，2,..., N - 1. In both Equations 6.1 and 6.2, a is

- ‘ \ [i if u = 0
—) = (6 . 3)

,The parameter N is the DCT block size (assuming the block is a square). In

our case, since we use DCT block size 8x8, therefore N is equal to 8. Note that

. this DCT block size is different from the block size mentioned in Chapter 4.

Since we apply 8 x 8 block-based DCT on the tiled eigenimages, boundaries

between blocks (16 x 16) in the eigenimages shall not introduce any artifact.

To DC transforni an image (image block) means to transforin the values

of the image from the spatial domain to the frequency doiiiaiu. As real-life

images are usually consisted of low frequency data, so we can allocate fewer

Chapter 6 Eigenimage Coding 45

storage space to high frequency data in order to compress the data. We can

..allocate fewer storage space to high frequency data and more to low frequency

data through quantization.

Bit Allocation and Quantization

To quantize the DCT coefficients, we apply non-uniform quantization. An

overall target bit rate RB is specified for the whole eigenimage encoding process

by the user. The bit rate is then sub-allocated to three channels according to

the ratio of Ej : E?” ： 五 = 2 : 1 : 1’ since human vision is more sensitive to

luminous channel Y than the chrominuous channels Cr and Cb- Same bit rate

is then assigned to all tiled eigenimages in the same channel (in despite of their

orders). The rationale is that we believe it is visually important to preserve

high-frequency details in high-order eigenimages even though they contribute

less energy. For example, if RB = 3.0, then bit rates for Ej, Ef\ and Ef^ are

4.5, 2.25, and 2.25 for every j respectively. That is,

channel \ eigenimage Ŝ '̂

Y 4.5 4.5 4.5 . . .

Cr 2.25 2.25 2.25 . . .

Cb 2.25 2.25 2.25 . . .

For each tiled eigenimage, we use DCT block size 8 x 8, so 64 data sources

(one for each DCT coefficient) are formed. The number of samples in each

‘ d a t a source is equal to the number of blocks in a single image. Each source is

quantized by the generalized Lloyd algorithm [42]. The bit rate of each source

’. is calculated in the following manner. The distortion for a data source S - [43

can be modeled by

where D is the distortion, R^^ is the encoding rate in bits/sample, crj is the

variance of the source, and is a user-defined constant.

Chapter 6 Eigenimage Coding 46

Constant a^ depends on the density of source as well as the type of encoding

• method used. In this thesis, we assume that it is independent of the encod-

ing rate. The DC (first) component of DCT is assumed to have a Gaussian

distribution as described in [44]. All other sources are modeled as Laplacian

sources. Empirically, constant a^ is chosen to be 2.7 and 4.5 for Gaussian and

Laplacian sources respectively [45 .

Following the common practice in image compression [43] [45] [46], we let

RB be the target bit rate and H be the number of sources. Let N be total

number of values in an eigenimage, N^ be the number of samples in source

and p^ = Nf^/N be the normalized weight for source S^. We have
H-l •

E � = w
M=0

H-l

/ i = 0

The bit allocation problem can be regarded as a minimization of the following

function,
H-l

(6.4)
=̂0

subject to the constraint
H-l

= RB-
n=0

Using the Lagrangian multiplier techniques, the solution of the above opti-

mization problem is

) H_ 1
‘ R , = RB + 1 \ o g , { a , a l) l o g 2 (a M) } . (6.5)

i / = 0

Intuitively speaking, the number of bit allocated to a source should be
y：

increased if the variance of samples in that source is large. After quantization,

we perform arithmetic coding [47] on the quantized values to further reduce

the data size. The usual reduction of this entropy coding is around 5% - 6%.

Chapter 6 Eigenimage Coding 47

6.1.2 Discrete Wavelet Transform

There is a trend of using discrete wavelet transform in image coding since the

introduction of JPEG 2000 standard [48]. DWT, which is used in JPEG 2000,

preserves better image quality in low bit rate than DCT, which is used in

JPEG, does.

While discrete cosine transform is analyzing the frequency, discrete wavelet

transform is analyzing the scale. The generic form of wavelet transform is an

1-D wavelet transform. The overview of it is illustrated in Figure 6.6. An

input signal, or vector, is first passed to the low-pass and high-pass filters,

which we name them as h and g respectively. The output vectors are then

downsampled by a factor of two. For example, an input vector with length 8

will have an output vector with length 4. The output vectors from the low-

pass filter are the approximation coefficients while the output vectors from the

high-pass filter are the detail coefficients.

approximation coefficients

/ \
�� 4 5 6 7 j g ^ �身 ： • � 2 . 1 i i 7 : i ， L * j ^ j ^ 3 �

[-0.7 -0.7 -0.7 -0.7] i L ^ L Z J [-2 -2]

\ /
detail coefficients

h L o w - p a s s filter ^ High-pass filter Downsampling by a f a c t o r of 2

Figure 6.6: The 1-D wavelet decomposition.

By passing through one set of low-pass and high-pass filters, we say that

one-level wavelet transform is done. Two-level wavelet transform can be done

by passing the approximation coefficients to the low-pass and high-pass filters

again. By this, we have a new set of approximation coefficients and detail

Chapter 6 Eigenimage Coding 48

coefficients pair. While the old detail coefficients will be kept, the old approx-

. i m a t i o n coefficients are abandoned. In other words, i-level wavelet transform

gives 1 set of approximation coefficients and i sets of detail coefficients. The-

oretically, we can have infinite levels. However, as the input vectors are finite

and the length is discrete, we can have at most log21 levels, where I denotes

the input length.

With separable filters, 2-D wavelet transform can be computed by using

1-D transform. Figure 6.7 depicts an overview of an one-level 2-D wavelet de-

composition. Each row of the input is first applied an 1-D wavelet transform

(through the high-pass and low-pass filters). Each column of the outputs is

then applied 1-D wavelet transform vertically. We have totally four sets of out-

puts, one for the approximation coefficients and three for the detail coefficients:

the approximation coefficients (low-pass on row and column), the horizontal

detail coefficients (high-pass on row, low-pass on column), the vertical detail

coefficients (low-pass on row, high-pass on column), and the diagonal detail co-

efficients (high-pass on row and column). Two-level 2-D wavelet transform can

be done by repeating the process on the approximation coefficients. Figures 6.8

and 6.9 show the results of one-level and two-level 2-D wavelet transforms us-

ing Daubechies 9/7 filters on the data sets 'ding' and 'cover' respectively. The

outputs are tiled in the following manner

Approximation coefficients Horizontal detail coefficients

“ Vertical detail coefficients Diagonal detail coefficients

The coefficients are then quantized and coded. There are many algorithms

for coding the coefficients, for example the embedded zero-tree wavelet coding

(EZW) [49]. We have adopted the DWT package "EPWIC" developed by

Buccigrossi and Simoncelli [50] in our system.

.. Chapter 6 Eigenimage Coding 49

approximation coefficients horizontal detail coefficients

Inn nn n
xXX XXX
^ 1212 |i242|
今I-令令, 令 令 ^ g g g g g g
^ ^ ^ T

_ 42 g h 12 ->_ pi
_ _<>-12<0- g h •">‘，一— i i
_ —12 <~ g h -> 12 崎

input
T] I A A I h h\••
tVT TT Y
T 1 ~ T ； H : i

i i
I I I

vertical detail coefficients diagonal detaTi coefficients

Figure 6.7: One-level 2-D wavelet decomposition.

6.2 Evaluation
6.2.1 Statistical Evaluation

To evaluate the performance of our eigenimage coding, we measure the re-

_ construction error versus the overall target bit rate. The target bit rate we

measure only accounts for transform coding and quantization, but excludes

the contribution of arithmetic coding. We reconstruct m images usiiig com-
A 八

‘pressed eigenimages in B and uncompressed relighting coefficients in A. In

the 'ding' example, rn = 1200. The m reconstructed images are compared

‘ with m control images to compute the PSNR. To investigate the error solely

due to eigenimage coding, we use the images reconstructed from uncompressed

A ami uncompressed B as the control images. Figures 6.10 and 6.11 sliow

the statistics of four data sets. From the figures, we can find that DWT out-

performs DCT especially in low bit rates. When bit rate is around 1, DWT

Chapter 6 Eigenimage Coding 50

_

w

•
(b)

Figure 6.8: (a) One-level and (b) two-level 2-D wavelet transforms using
Daubechies 9/7 wavelet for 'ding'.

Chapter 6 Eigenimage Coding 51

•
I —

•

(b)

Figure 6.9: (a) One-level and (b) two-level 2-D wavelet transforms using
Daubechies 9/7 wavelet for 'cover'.

Chapter 6 Eigenimage Coding 52

can reach about 40dB (mean squared error below 25) already while DCT can

. reach about 30dB only. Among the four data sets, performance on data sets

'attic' is the worst in both DWT and DCT cases. It is because the scenery of

'attic' is the most complex one among the four data sets. On the other hand,

performance on data sets 'cover' is the best one because there is large region

of dark area and the scenery is relatively simpler. As DWT performs better

than DCT, especially in low bit rate, we suggest to use DWT for compressing

the eigenimages in this phase.

6.2.2 Visual Evaluation

Besides the statistical evaluation, we also evaluate the coding visually. Fig-

ure 6.12 compares the reconstructed images from the forbidden city data set

using DCT in a side-by-side manner. From left to right, top to bottom, the

target bit rate increases from 0.1 to 4.0. When a low bit rate is specified, the

reconstruction exhibits blocky artifact and image details are lost. Since we

apply DCT-based coding to eigenimages, the visual artifact is similar to the

artifact of JPEG images at low bit rate. The quality improves as the bit rate

increases. There is no significant artifact when the bit rate is raised to 3.0.

Figure 6.13 compares reconstructed images from the same data set but using

DWT this time. The target bit rate increases from 0.1 to 1.0. By using DWT,

a relatively lower bit rate can achieve a better reconstruction quality. It does

“ not have the blocky artifacts occurred in DCT coding. This confirms to the

founding of using DWT for low bit rate coding of images. From the above

‘ figure and statistics, 3.0 bit is a cost-effective choice for eigenimage coding

using DCT as it returns more than 35 dB in each test case. However, 1.0 bit

is enough if DWT is used in eigenimage coding.

.. Chapter 6 Eigenimage Coding 53

Mean Squared Error vs Target Bit Rate for Coding of Eigenirnages (Rg) using DCT

250 ^ 1 1 1 1 1

\ Attic I
\ Ding ----米…
\ Forbidden-•Q

^ \ Cover A-

驾 200 - \ -

I \
^ 150 - \ -B \ \
i \ \

\ \ • • .

(0 \ \
g- \\ w .\ \

1 50 - -

乏 、 . . . \ \
A.. . . .��� , - . " V - ^

0 ‘ --.系…----1-教•物._ Ifrn I K U
0 1 2 3 4 5 6

Target bit rate for coding of eigenirnages

(a)

Peak Signal-to-Noise Ratio vs Target Bit Rate for Coding of Eigenirnages (Rg) using DCT

70 1 1 1 1 1
Attic t ~
Ding …-米---

Forbidden 日…..•.

60 - Cover A “
. . . .A •

一 A- 米 3
no , - _ --：：：:::：：^^-'-^"

r � - ,
- g 40 - .A , 来 , B e：：：-^^ -

I 20 - -
Q.

10 - -

0 1 1 1 1 1
0 1 2 3 4 5 6

Target bit rate for coding of eigenirnages

(b)

Figure 6.10: PSNR versus target bit rate for eigenimage coding {RB) using
DCT.

.. Chapter 6 Eigenimage Coding 54

Mean Squared Error vs Target Bit Rate for Coding of Eigenimages (Rg) using DWT

25 1 1 1 1 I
Anic I
Ding ----米---

L Forbidden ….…日
Cover -A-

-

-

-

• -̂aa •…--- I:圾乂 I” �
0 1 2 3 4 5 6

Target bit rate for coding of eigenimages

(a)

Peak Signal-to-Noise Ratio vs Target Bit Rate for Coding of Eigenimages (Rg) using DWT

70 1 1 1 1 1
Attic I
Ding -…米…

. . Forbidden …---.El•……
60 - Cover A - -

^^ _,. -yCy. - • '

^^ A ... 来 “、；•-•.7“.？.？•，•-.•••Pjl̂ ...".?••！•？,“：̂^ 专

s. 50 - .•• '̂ ••••““ , , -
.2 A . 米 zg：；；；；；：̂̂̂̂̂̂^̂

/ | 4 � - •

1 30 - -
W ‘ I 20 - -
0.

10 - -
•f.

0 1 1 1 1 1

0 1 2 3 4 5 6
Target bit rate for coding of eigenimages

(b)

Figure 6.11: PSNR versus target bit rate for eigenimage coding (RB) using
DWT.

.. Chapter 6 Eigenimage Coding 55

i p H H I H I t ^

(a) 0.1 bit

(b) 1.0 bit (c) 2.0 bit.

(d) 3.0 bit (e) 4.0 bit

Figure 6.12: Visual artifacts introduced by encoding eigenimages using DCT
with different target bit rates.

.. Chapter 6 Eigenimage Coding 56

•
(a) 0.1 bit

(b) 0.3 bit (c) 0.5 bit

.'.•ml^B
(d) 0.7 bit (e) 1.0 bit

’ Figure 6.13: Visual artifacts introduced by encoding eigenimages using DWT
with (lifFerent target bit rates.

Chapter 7

Relighting Coefficient Coding

After discussed how we compress eigenirnages, we will discuss how we compress

the relighting coefficients obtained after PCA in this chapter.. As relighting

coefficients are not like eigenirnages in nature, we should not compress them

using the same method. Uniform quantization is suggested for compressing

them. Again, we will give an evaluation on the performance of compressing

relighting coefficients using the suggested method at the end of this chapter.

7.1 Quantization and Bit Allocation

Unlike the eigenimage, the relighting coefficients in Aj for i = 0, • • • , it; - 1

do not resemble an image. The total number of coefficients is much larger

than the total number of pixels in eigenirnages. It may not be practical to

. c o m p r e s s them using non-uniform quantization as the training of codebook is

time-consuming. Instead, we encode them using uniform quantization.

. We find that the variances of values from the same column of different Ai

' for i = 0, • • • , ly - 1 are similar. Hence we group them into the same data

source. Figure 7.1 illustrates how data sources are formed. Since there are k

'' columns in Ai, there are k data sources. The user specifies an overall target

bit rate, RA, for encoding the relighting coefficients.

Again we would like to minimize the total distortion error in Equation 6.4 [43 .

57

Chapter- 7 Relighting Coefficient Coding 58

/ V 公
A , A , ^ ,

• •• .、芝 .、5 •••

… …
^ o u r c e j y y sou r ce / ^

Figure 7.1: Each data source is formed by grouping elements from the same
columns in different Aj.

Just like the bit allocation in Section 6.1.1, the optimal bit allocation for each

source <9" is,

1 1
i?'" == + - log2(a"cr=.) — { Y ^ 莎 \og.,{a,.al)} . (7.1)

The above equation is different from Equation 6.5 as RB is now replaced

by RA- Moreover, as all k data sources contain same number of coefficients,

we can substitute H = k and p^ = 1/k. Figure 7.2 shows the histograms of

“ the first 6 data sources from data set 'cling'. All of them exhibit a Laplacian

distribution. Hence we set constant dp. to be 4.5.

� Then we can determine the step size A " for the //,-tli source by

. A 卜 響 （7.2)

y.

where max" is the maximum value of the //,-tli source.

Just like the eigenimage encoding, the quantized religlitiiig coefficients are

further coded using arithmetic coding to reduce the storage requirement. The

rough reduction due to arithmetic coding is arouiid 35%.

Chapter 7 Relighting Coefficient Coding

~
:0

C1l
oD e a..

0.4

0.3

0.2

0.1

o ~~~~**~~~~~~#H~L---~~##~~#*H*~~~~~~----~
-1 .5 -1 o

Value

(b)

0.5 1.5

59

Chapter 7 Relighting Coeffici ent Coding

~
:0
(Ij

.D e
0..

~
:0
(Ij

.D e
0..

0.6

0.5

0.4

0.3

0.2

0.1

0
-1.5 -1

Data Distributions of the Relighting Coefficients of 83

-0.5 o
Value

(C)

0.5

Data Distributions of the Relighting Coefficients of 84

Ding ._+-

1.5

0.6 .---------.---------,---------,---------,----------,----------,
Ding ---+-

0.5

0.4

0.3

0.2

0.1

o L-______ ~~~~~~~~~~~~~, :~::~:~:~I : I ~:I :I~, , ~,'~;:~::'~;;~'~:I~II~"·~I : I~':~' ~;. ~----~
-1 .5 -1 -0.5 0 0.5 1 1.5

Value

(cl)

60

Chapter 1 Relighting Coefficient Coding 61

• Data Distributions of the Relighting Coefficients of B5

0 . 6 1 1 1 1 ；

十 Ding ~ I ~

0.5 - -

0.4 - -

S 0.3 - -

2 Q.

0.2 - -

0.1 - -

0 ' _ I 1 I _ 誦 _ 隱 隨 _ 画 睡 �1 1 ^ 睡 睡 画 細 • M B H I - n H I —

-1.5 -1 -0.5 0 0.5 1
Value

(e)
Data Distributions of the Relighting Coefficients of Bg

0.6 1 1 1 1 r - ；

十 Ding ~ I ~

0.5 - -

0.4 - -

« 0.3 - -

2 Q.

0 .2 - -

0.1 - -

-1.5 -1 -0.5 0 0.5 1 1.5

i- Value

�

Figure 7.2: Histograms of the first six data sources.

Chapter 1 Relighting Coefficient Coding 62

7.2 Evaluation

7.2.1 Statistical Evaluation

We measure the reconstruction error solely due to the encoding of relighting

coefficients. To do so, we reconstruct m images from compressed A and uncom-

pressed B. The reconstructed images are compared to the same control images

in Section 6.2. We measure the PSNR as RA increases (Figure 7.3). From the

statistics, we find that the performance in low bit rates is not good as it can

only give us a PSNR under 30dB. However, the performance seems improving

linearly as shown in Figure 7.3. The slopes of the four tested data sets are

almost the same. Just like the results of coding eigenimages, the performance

on coding the data set 'attic' is the worst while that on coding the data set

'cover' is the best one. Therefore, the complexity of the scenery seems affecting

the performance on coding both eigenimages and relighting coefficients.

7.2.2 Visual Evaluation

Again we evaluate the coding visually. Figure 7.4 shows the reconstructed

images from the data set of panoramic forbidden city. Unlike the visual artifact

in eigenimage encoding, image details are not lost (the details within each block

can still be observed clearly). Instead, the major visual artifact introduced at

low bit rate is the tone inconsistency among the neighboring blocks. This is

because relighting coefficients are mainly responsible for information in the

illumination dimension. Low bit rate in coding relighting coefficients in some

sense is analogous to the undersampling of illumination dimension. The tone

inconsistency becomes unobservable when the target bit rate is increased to

4.0. Prom the above figure and statistics, 4.0 bit is a good choice among the

tested data sets as it gives more than 30dB and reduces the tone inconsistency.

Chapter- 7 Relighting Coefficient Coding 63

Mean Squared Error vs Target Bit Rate for Coding of Relighting Coefficients (Ra)

9 0 0 1 1 1 1
-t Attic ~ I
A Ding -…米…

800 • '"N \ Forbidden ..•”•.B...... •
宏 \ . \ C o v e r A
§ 7 0 0 • \ \ -
\ \
1 600 - \ \ -
2 \ \
I 5 0 0 - \ -

I 4 0 0 - \ \ -
^ . . 頃 \ -

i 3 0 0 - 气 \ \ -

i 2 � � •米 、 - � � : � i . . \ X -

1 0 0 - A . U -
"“•• -I:.-:------劣....

0 I I ••¥’••::"一—
0 1 2 3 4 5

Target bit rate for coding of relighting coefficients

(a)

Peak Signal-to-Noise Ratio vs Target Bit Rate for Coding of Religthing Coefficients (R^)

5 0 I 1 1 1 1 1
AUic ~ h —
Ding —糸…

Forbidden ……日……•、：
4 5 - C o v e r A “

一

m A " '

.2 . •米 ，夕-

- I 35 - •
o . A -

.監 z 务.....

. 20 - ^̂ ：̂：：：：：̂^̂"̂ -

1 5 ‘ ‘ ‘ ‘
0 1 2 3 4 5

Target bit rate for coding of relighting coefficients

(b)

Figure 7.3: PSNR versus target bit rate for coding of relighting coefficients
•

Chapter- 7 Relighting Coefficient Coding 64

(a) 0.1 bit

(b) 1.0 bit (c) 2.0 bit

(b) 3.0 bit (c) 4.0 bit

Figure 7.4: Visual artifacts introduced by encoding relighting coefficients with
different target bit rates.

Chapter 8

Relighting

After discussing how we compress illumination-adjust able images in the previ-

ous chapters, we are going to discuss in this chapter how we can relight images

given the illumination-adjustable images compressed using our method, or we

can say, using our image-based relighting representation model. Relighting is a

decoding procedure. However, if we decompress the compressed illumination-

adjustable images, we mean to reconstruct all the input data. On the other

hand, if we relight an image from the compressed illumination-adjustable im-

ages, we try to reconstruct the image at a desired lighting condition only. This

requires the random accessibility of our representation model. The latter sce-

nario is more meaningful and useful as we are often interested in one particular

lighting condition at a moment only. Relighting involves the processes of inter-

polation and reconstruction. In designing the relighting engine, our primary

- concern is the speed. We trade the memory consumption for speed. To do so,

we keep the eigenimages and the set of relighting coefficients in memory for

. fast reconstruction. For the rest of this chapter, we will discuss the relight-

‘ i n g procedure in details. The relighting procedure is divided into two phases,

namely first-phase and second-phase decoding. For second-phase decoding, we

have two implementations, software relighting and hardware-assisted relight-

ing. Hardware-assisted relighting helps us in achieving real-time relighting by

using commodity hardware display boards.

65

. Chapter 8 Relighting 66

8.1 Overview

Second-phase
First-phase decoding decoding

j, y — i
...... _ !i UflMT _ L relit

\ r ComWnai« “images
compressed ^ il ["SSSSSaST^ ~S ！

iH 二 H^^^^Lmi-^^^l
desired l^kHng ^

condition

Figure 8.1: R,eliglitiiig procedure.

The relighting procedure is revealed in Figure 8.1 (same as Figure 3.5(b)).

It can be divided into two major phases. In the first phase, the compressed

eigenimages and relighting coefficients are decompressed into memory. Since

the image is usually relit under a user-defined lighting condition, we only need

to reconstruct a limited number of images each time. Hence in the second

phase, the relighting engine interpolates the relighting coefficients and synthe-

sizes the desired image by linear combination.

8.2 First-Phase Decoding

, All preprocesses are done in the first-phase decoding. In this phase, the relight-

‘ i n g engine expands all compressed eigenimages and the relighting coefficients

into main memory (Figure 8.1). Note that the decoding is done only once

‘ during the initialization. This allows the second-phase decoding to access the

necessary eigenimages and coefficients in real-time.

Recall that the block-wise eigenimages are rebiiiiied to form an image-wise

eigenimages before the transform coding. Hence there is no need to rebin

. the decompressed eigenimages as they are already in an image form. The

Chapter 8 Relighting 67

only process needed is to convert them from YCRCB to RGB color space.

. As the reconstruction is a linear process (linear combination of eigenimages),

the color transform can be simply applied to the eigenimages instead of the

reconstructed images. The correctness of this color transform is not difficult

to show by the following derivation.

R Coo Coi C02 Y

G = Cio Cii Ci2 Cr

B C20 C21 C22 Cb

where (R, G, B) and {Y, CR, CB) are the reconstructed pixel values in RGB

and YCrCb spaces respectively, Ci/s are elements in the color transformation

matrix. Each reconstructed pixel value is the linear combination of, fej's, pixel

values from the eigenimages, i.e.

Y = AO^O + FLI^R H 1- FLFC-I^FC-I

Cr = aobo"- + aib^' + • • • + ak-ib^L^

Cb = aob^' + aifef" + • • • +

where aj is the relighting coefficient from matrix A and b'j is the i-channel

pixel value from the j-th eigenimage in matrix B. By reordering the terms,

we can rewrite R as

R = CqqY + CoiCr + C02C6

- =ao(coob^ + + 0026?") +

+ coi6fr + C026?) +

afc-i(coo^-i + coib^Li + 0)26?、）

- = a o b ^ + a i 6 f + . • • + ak-ib^_i

where b^ is the pixel value from the j-th. eigenimage transformed to RGB

color space. Similar derivation can be applied to channels G and B, As the

Chapter 8 Relighting 68

number of eigenimages is small (in our tested cases, 9)，it is more efficient to

• color-transform the eigenimages than the reconstructed images. This reduces

the workload during relighting.

8.3 Second-Phase Decoding

Second-phase decoding mainly deals with the user request during run-time.

Figure 8.2 depicts the reconstruction and interpolation process. For each light

vector {di,(f)i) specified by the user, at most four neighboring images (blue dots)

on the grid points are reconstructed. Each of them is reconstructed by linearly

combining the eigenimages with the corresponding relighting coefficients as •

weights (see Section 5.2 and Figure 5.2). Then these reconstructed images are

bi-linearly interpolated to synthesize the desired image (red dot). In practice,

there is no need to reconstruct these four images. As the interpolation is linear,

we can simply bi-linearly interpolate the four sets of relighting coefficients and

synthesize the desired image by linearly combining the eigenimages with the

interpolated coefficients as weights. The mean image is then added to shift

the values back to the original range (Section 4.3). If there are more than one

directional light sources used for relighting, the above process is repeated for

each light source and the result is accumulated (summed) to generate the final

desired image. Sections 8.3.1 and 8.3.2 describe the procedure in details for

software relighting and hardware-assisted relighting respectively.

8.3.1 Software Relighting

Software relighting is only a contrast wording to hardware-assisted relighting.

It means that we do not need extra hardware assistance in the relighting pro-

cedure. However, we are still able to make optimization in order to accelerate

the relighting process, although the speed is unable to compare with hardware-

assisted relighting.

. Chapter 8 Relighting 69

desired

Figure 8.2: The relighting due to one light source (red dot) requires the recon-
structioii and interpolation of at most four neighboring samples (blue dots).

Ill order to efficiently relight the image, we arrange the relighting coeffi-

cients in the memory so that coefficients being accessed in the same relighting

pass are grouped together. When interpolating the relighting coefficients, w

relighting coefficients (one for each block, there are w blocks in an image) of

the same order are accessed simultaneously. Hence, we group those w coef-

ficients together in order to speed up the memory access. Figure 8.3 shows

the arrangement of relighting coefficients for the data set 'ding'. They are

the relighting coefficients corresponding to the first eigenimage. It is a ma-

trix with sub-matrices of w coefficients. Since there are at most four sets of

relighting coefficients being looked up in one relighting pass, four neighboring

sub-matrices (highlighted as boxes in Figure 8.3) may be accessed at the same

time.

. Interpolation is a must if we want to relight images with lighting directions

that do not appear in the samples. To relight an image with lighting direction

1 at (t,/;), we need four images with the nearest lighting directions to that

is the lighting directions at (x, y), (x, y + 1), (x + 1, y), and (x + 1, y + 1) in

Figure 8.4. As we sample our lighting directions on a regular grid, x is equal

to [tj while y is equal to . We use bi-linear interpolation in our system. Let

the image with lighting directions at (x, y) be Im(x, .}/), bi-linear interpolation

. Chapter 8 Relighting 70

Blf̂ĤH il • •
H H

Figure 8.3: Coefficient arrangements for software relighting,

is defined as
Irn(t, p) = {y + 1- p){x + 1 - t)Im(x, y) +

(p-y){x^l-t)Irn(x,y-\-l) +

(p-y)(t-x)Im(x^l,y^l) (8.1)

In other words, the image Irn{t’p) is a linear combination of the images

Im{x, I/), Im{x + 1, y), hn{x, y + 1)，and Im(x + 1, + 1). In practical,

we do not perform the bi-linear interpolation in the image domain. Instead,

. w e can bi-linearly interpolate the relighting coefficieuts thanks to the linear

combination property. Just like the reasoning of transforming the eigenimages

... from YCrCs to RGB instead of transforming the relit image (Section 8.2),

the correctness of bi-linearly interpolating the relighting coefficients instead of

the relit images can be derived easily. We do not include it in this thesis.

Although we can make the above optimizations in the relighting process,

the relighting frame rate is still not satisfactory. Using a PIII 800MHz com-

puter, it requires 1 to 2 seconds for relighting an image given a desired lighting

Chapter 8 Relighting 71

• (x,yrt))

(t，P) 一

(x’y> (iri ,y)

Figure 8.4: Bilinear interpolation.

condition. In next section, we will talk about how we can achieve real-time

relighting by using commodity display boards.

8.3.2 Hardware-Assisted Relighting

With the advances of current graphics hardware, we are able to perform parallel

operations on consumer-level graphics boards, such as nVidia GeForce 4 or ATI

Radeon 8500. These graphics boards are equipped with graphics processing

unit (GPU) to execute user-defined shader (machine-code like program) [51 .

The architecture is basically a SIMD design, a single shader is executed on

multiple data (such as pixels or vertices).

This motivates us to utilize the commodity hardware for relighting purpose.

. Since the major process during relighting is the linear combination of eigen-

images, this can be straightforwardly implemented by storing each eigenimage

in the texture unit of the hardware. The SIMD-based hardware is efficient in

“performing parallel per-pixel operations such as multiplication, addition, and

subtraction. Pixels in the texture can be manipulated (multiplied, added or

subtracted) in parallel. Due to the limitation of our specific hardware, only

four texture units can be used in one shader pass. The whole reconstruction re-

quires multiple passes. We are going to describe how we can map our problem

. Chapter 8 Relighting 72

such that we can make use of these display boards.

The Programmable Pixel Shader

The display board we use (nVidia GeForce. 3) contains two major units, namely

vert,ex shader and pixel shader. The vertex shader is responsible for vertex-

oriented process. User can define/program their desired actions on the vertices.

However, we do not use this shader in our system. Therefore we are not going

to introduce anything related to it. On the other hand, we depend heavily on .

the pixel shader. The pixel shader contains two modules, namely the texture

shader and the register combiner.

output
textures

input ^ ^ H I — • .⑶mbinerO
texture 0 ^ ^ ^ ；̂ "

S r e 1 T 會 " H H " ^ ^ combiner 1
Texture Shader ‘ I

texture 2 H H H H W I 1

||H||HH| 0) combiner
input • — • ^ • ― • 5 1 ^ - 1
texture 3 ‘ | | H H "

other elements
^ p u m p output

_ Figure 8.5: The pixel shader.

Texture shader is responsible for texture fetching and filtering. In other

words, given a set of input textures (2D arrays of pixels), how we shall look

up pixels among them. The look-up process can be done using texture shader

operations. Some tricky texture shader operations are used in our implemen-

tation, which will be discussed later on. The looked up textures are stored in

the output textures. For nVidia GeForce 3, there are totally four input tex-

tures and four output textures in the texture shader. Each pixel in an input

texture is accompanied by a texture coordinate, which can be defined by users.

The output textures are the inputs of the register combiner. Besides, other

. Chapter 8 Relighting 73

elements, such as diffuse color, fog color, and so on, are fed to the register com-

biner too. However, they are not used in the implementation of our relighting

engine. Register combiner is responsible, for blending (applying arithmetics

on) the fetched or filtered textures. At most eight stages of register combiner

actions, which are carried out in series, can be defined. We name one run of

texture shader and register combiner as one shader pass.

There are several categories of texture shader operations. We will only

introduce those operations which are related to our system. One of the op-

erations is conventional textures operation. Actually, it is a definition rather

than an operation, although 'operation' is the official naming. The conven-

tional textures can be ID, 2D, rectangular, or cube map. In our case, 2D

and rectangular textures are useful. As their names tell, 2D and rectangu-

lar textures can be considered as 2D arrays of pixels. The difference is that

2D textures must be of dimensions which are power of two while rectangular

textures can be. of any dimensions. Each texture of this category consumes

one texture unit. So, we can have at most four such textures in one shader

pass. Eigenimages, relighting coefficients, and offset texture are 'defined' as

2D/rectangular textures in our relighting engine. We will introduce the offset

texture later on.

•
texO >

texl m m _ _ ^ Ux=texO texcoord(texl) 一

tex2 Uy=texO • texcoord(tex2) _ ^ tex2(Ux.Uy)
tex3

• h >
Texture Shader

• Figure 8.6: 2D dot product look-up operation.

Chapter 8 Relighting 74

Another useful operation is the dot product look-up operation, which is

• a bit complicated. It is mainly used for look-up purpose (do not mix up

with per-pixel operations). Figure 8.6 illustrates the 2D dot product look-up

operation. A 2D dot product look-up operation takes three textures in one

pass. Without loss of generality, we assume that the first three input textures

are used. In Figure 8.6, the parameter Û； is the dot product of tex^ and

the texture coordinates of texl (texcoord(texl)) while the parameter Uy is

the dot product of texQ and the texture coordinates of tex2 (texcoord(tea:2)).

They are used to look up the texture defined in the input texture tex2. Texture

coordinates can be defined by specifying four coordinates for the corners of the

input texture. Texture coordinates for other pixels in the texture are calculated •

by interpolating these four coordinates. If we define four identical coordinates,

then all texture coordinates of pixels in the texture will be the same. After the

2D dot product look-up operation, the output texture is the looked up texture

tex2{\Jx,Uy). We shall discuss the usefulness of this operation shortly.

After texture shader operations, the output textures are passed to the

register combiner. The operations of register combiner are mainly for blending

textures. In other words, given the output textures, the register combiner

applies arithmetics among the output textures. For example, given two output

textures (for simplicity, assumed the textures are in gray scale),

0.1 0.7 1 r 0.3 0.2
and ,

- 0.2 0.4 J [0.2 0.5

if we apply addition on them in the register combiner, we will get
r-

. 0.4 0.9

0.4 0.9 ‘

‘ If we apply multiplication on them, we will get

0.03 0.14

0.04 0.2

. Chapter 8 Relighting 75

More complex arithmetics can also be done on the textures in the register

combiner. However, in our implementation, addition and multiplication are

more than enough for our purpose.

Relighting using Pixel Shader

By using the operations (2D/rectangular textures, 2D dot product look-up,

and texture blending) just introduced, we can re-formulate our relighting prob-

lem such that the relighting process can be achieved in real-time. If we store .

the eigenimages and relighting coefficients in the input textures, what we want

to do is a linear combination of them (Figure 8.7). However, there are limita-

tions and other problems that have to be solved.

\ l \ r\ K K K K K K
X bf,] + a； X bj + fli X bj + “3 x bj + . . . + a*., x

N N N N N N N N N \

Figure 8.7: Linear combination of textures.

In order to facilitate the shader operations, we have to expand the relighting

coefficients to the same size as the eigenimages (Figure 8.8). In other words, as

‘ one coefficient is responsible for one block of the eigenimages, each coefficient

needs to grow to a size same as the block size (i.e. a block with size 16 x 16

• having its coefficients all equal to the same value). By expanding each set of

relighting coefficients, the shader simply needs to multiply the two textures in

the register combiner. However, if we expand it in the first-phase decoding,

memory is wasted due to having too many repeated values. We can use 2D

dot product look-up operation for the expansion. We shall discuss it shortly.

In Section 8.3.1, we have mentioned that interpolation is needed for re-

lighting images with lighting directions that do not appear in the samples. We

- ‘have to interpolate the four sets of relighting coefficients. However, by using

Chapter 8 Relighting 76

oxpanded relighting CMfficients eigenimage

mm
relighting coefficiBnts

Figure 8.8: The relighting coefficients are expanded to the same size as the
eigenimages.

nVidia GeForce 3, we can leave the interpolation work to the shaders. As the

interpolation in the shaders can only be done on adjacent pixels, we have to

rebin the relighting coefficients such that each sub-block contains the relighting

coefficients corresponding to a block of the corresponding eigenimages. The

rebinned first set of relighting coefficients for the Y channel of the data set

'ding' is shown in Figure 8.9. It is not surprising that a rough appearance

of the 'ding' can be outlined, as each pixel in a 'relight' block (p x q) here

corresponds to the same 'image' block (16 x 16) of the eigenimages. Hereafter,

we distinguish these two kinds of blocks as 'image' block and 'relight' block.

The rebin process should be carried out in the first-phase decoding in order to

save the relighting time.

The expansion and interpolation problem mentioned above (that is, for the

pixels within the same 'image' block of the output texture, the same relighting

, coefficient in tex2 is being looked up) can be achieved simultaneously by using

2D dot product look-up operation. If we view this problem in a mathematical

sense, for example, if the 'image' block size we use is 2 x 2 and the image size

. Chapter 8 Relighting 77

HHHIH9HHHHHI

i : I i

Figure 8.9: Coefficient arrangements for hardware relighting,

is 6 X 6, what the relighting coefficients we hope to have are
tex2(p,t) tex2{p,t) tex2(<t> + p, t) tex2{<t> + v, tex2(2<^ + p, t) tex2(2«S + p, <)

Ux2{p, t) tex2(p,t) tex2{4' + p,t) tea;2(<^ + p, f) (ea;2(2<^ + p, «) tex2{24-+ p,t)
tex2(p,6 + t) tex2(p,(f + t) tex2{<P + p, 0 + t) 1ex2i4> + p, 0 + t) tea:2(2<^ + p , d + t) tex2(:24'+ p, e + t)
tex2(p,$ + t) tex2{p,e + t) tex2(<i> + p, 0 + t) tex2{<p + p, 6 + t) tex2{24'+ p, 0 + t) tex-2{24> + p, 0 + t)

tex2(p ,2 (/ + t) tex2{p,-20 + t) tex2(<p + p, 20 + t) tex2(<p + p,-20 + t) tei2(2<^> + p, 26 + t) iex2C24'+ p, 2$ + t)
tex2{p,2e +t) tea::2(p’26M-. t) tex2(4' + p,2e + t) tex2(</. + p, 26' + t) (ei2(2</> + p, 2</+ <) iex2{24- + p, 26 + t) •

where (p, t) is the desired lighting direction and 0 < p < (j) and 0 <t <6. In

other words, we are trying to set Û； and U^ to be
m •

^ p p ^P + P '2<p-\- p + p
p V <t>-\'V • + 7> '24^ + P f p

- u , = “ … … a n d
^ V P <P + P • + TP 2(p + p 2<p + p

p p + p + p + p '24> + p
p p + p (p + p 24* + p 2</> 4- p

t i t t i t
t t t t t t

‘ y T 一 $ +1 6f + t + f 0 + i 0 + t e + t
y 一 H + i (f + i e +1 0 +1 0 + t (t + t *

26 +t 2$ + i 20 + t 2tf + i + i 2(f + i
20 + t 2e + t 2(f + t 2y + t 20 -f i 2$ -f t i L- •

Actually, they can be reduced to

Ux = [p V + p + p 2</. + p] and
t
t

y tt + i
‘ 20 + f

• 20 + t

Chapter 8 Relighting 78

So, for pixel of the output texture (expanded relighting coefficients) at (i, j) ,

• we should look up the pixel of the input texture tex2 at (Ua;(i, j) , Uy(i , i)) or

simply where the texture tex2 stores the rebinned relighting

coefficients. Note that the coordinate {i,j) here means column i and row j.

In order to set Ux and Uy, we have to define an offset texture which is

stored in texO. Using the same example ('image' block size is 2 x 2 and the

image size is 6 x 6), then we should have the offset texture,

_ (0,0,1) (0,0,1) (1,0,1) (1,0,1) (2,0,1) (2,0,1)

(0,0,1) (0,0,1) (1,0,1) (1,0,1) (2,0,1) (2,0,1)

(0,1,1) (0,1,1) (1,1,1) (1,1,1) (2,1,1) (2,1,1)

(0,1,1) (0,1,1) (1,1,1) (1,1,1) (2,1,1) (2 , 1 , 1) . “

(0,2,1) (0,2,1) (1,2,1) (1,2,1) (2,2,1) (2,2,1)

(0,2,1) (0,2,1) (1,2,1) (1,2,1) (2,2,1) (2,2,1) • •

Each element in the texture is a tuple because it is a color pixel (3 channels).

And if we fix texture coordinates of all the pixels of texl and tex2 to be

constants ((/), 0,p) and (0,0, t), then after applying the 2D dot product look-up

operation in the texture shader, we shall get the Ux and Uy that are with

the desired values mentioned above. Take the element (2,2,1) in the offset

texture as example, we will have the corresponding elements in Ux and Uy to

be (2,2, !).((/), 0,p) = 2(f)+ p and (2,2,1).(0,6', t) = 26 + t respectively.

In summary, by using the 2D dot product look-up operation in the texture

- shader with the offset texture in texO and the relighting coefficients in tex2

and texture coordinates of all the pixels of texl and tex2 to be constants, we

• expand each relighting coefficient stored in tex2 to the size same as the 'image'

block size (2 x 2 in the example) and each set of the relighting coefficients to

the size same as the eigenimage (6 x 6 in the example). To generalize, the

offset texture should have the same size as the eigenimages. Values in each

block of the offset texture are all equal to the "block" coordinate. Figure 8.10

illustrates the idea.

Chapter 8 Relighting 79

. r T
16 (0.0.1) (1,0,1) (S，0,1)

* � ‘ I

(0.1.1)
t blocks

(0，t1 丨 （s,t，1)
去

‘ \i h
s blocks

Figure 8.10: Generalized offset texture.

We have used 3 textures for expanding and interpolating the relighting

coefficients. The only texture left can be used for storing an eigenimage so that

we can multiply the relighting coefficients with an eigenimage in the register

combiner in one shader pass. The corresponding register combiner code is as

follow,

1. MRCl.O

2. constO = (1.0, 1.0， 1.0, 0 .0) ;

3. { rgb{ spare1 = tex2.a*tex3; } }

- 4. { rgb{

5. discard = constO;

� 6. discard = spare1;

7. spareO = sumO ；

8. scale_by_oneJialf() ; } }

9. out.rgb = spareO；

10. out.a = unsigned.invert(zero)；

Chapter 8 Relighting 80

Register combiner codes look like assembly codes. Line 1 of the code above

• indicates that this is a piece of codes for the register combiner. Line 2 tries to

set a constant (1.0,1.0,1.0,0.0). Each outermost pair of braces encloses one

stage of register combiner actions (remember that we have at most 8 stages of

register combiner actions, which are carried out in series). Line 3 defines one

stage of register combiner actions, which tries to multiply the input textures

tex2 and texS, where tex2 stores the expanded and interpolated relighting

coefficients and tex3 stores the corresponding eigenimage. The token tex2.a

means the alpha channel of the input texture tex2. Let's recall that all three

channels of an pixel share the same relighting coefficient. We can save space

if we only use the alpha channel. The product is stored in the temporary

register spar el. The second stage of register combiner actions tries to scale

the values in spar el to the range [0,1] (add l，s，the constant constO, to spar el

and divided the sum by two). It is because the product is in the range [-1,1

while the pixel shader will clamp the output to the range [0,1]. Line 9 and 10

set the channels (RGB and alpha respectively) of the output. The function

unsigned driver t[zero) is simply 1 because there is no 'one' but 'zero' defined

in the shader.

After obtaining the products of the relighting coefficients and the eigenim-

ages, we have to add them up to complete the linear combination. This can

be easily done by setting the textures in the texture shader as the products

_ and adding them up using the register combiner. The linear combination takes

several shader passes, therefore the quality of the relit images is affected due to

precision loss (precision of the shaders is limited to 8 bits when our system was

‘ b e i n g built). Moreover, there is trade-off to utilize current commodity hard-

ware. Besides the precision of current graphics hardware is limited to 8-bit per

‘ pixel, all computations must be taken within the range of [0,1]. Even though

we distribute energy evenly to matrices A and B during SVD (Section 5.2),

error still exists. The evaluation result will be given in Chapter 9.

Chapter 9

Overall Evaluation

In this chapter, we evaluate the compression method we proposed as well as

the relighting engine we implemented. We compare the performances of us- •

ing M-JPEG, MPEG, spherical harmonics, and our method for compressing

illumination-adj ustable images in terms of reconstruction PSNR. For hardware-

assisted relighting, we evaluate the reconstruction PSNR as well as the relight-

ing speed in terms of frame rate.

9.1 Compression of lAIs

9.1.1 Statistical Evaluation

To evaluate the overall performance of the proposed PCA-based encoding

method, we compare it to other video encoding methods. Just like video com-

pression, we also compress multiple images. Therefore, it is more appropriate

to compare our method to video compression methods. However, there is fun-

damental difference between our image-based relighting application and video

playback. Video playback is usually ID (either forward or backward playback)

r while relighting is 2D as the user moves the light source on a spherical sur-

face. In addition to video compression methods, we also compare to method

that is tailor-made for compressing illumination-adjustable images [10]. The

81

Chapter 9 Overall Evaluation 82

comparison results reveal that our method out-performs the video compression

• methods and the tailor-made method.

We use the setting suggested in previous sections {k = 9, RA= 4.0, and RB

二 3.0 for DCT while k = 9, RA = 4.0, and RB = 1.0 for DWT) to compress

the four data sets. The compression ratios and reconstruction errors are then

measured and recorded. The same four data sets are then compressed using two

video coding methods, Motion JPEG (M-JPEG) and MPEG, and the tailor-

made method, Spherical Harmonics. We want to determine the compression

ratios of them given the same image quality (in terms of PSNR) •

Since we cannot directly control the desired image quality during video

compression and the tailor-made method, we can only estimate the compres- •

sion ratio in the following manner. For each coding method and each data set,

we compress the data set using different target bit rates. The corresponding re-

construction errors are measured. Then a graph of reconstruction error against

the target bit rate is plotted and the compression ratio giving the 'same' im-

age quality is estimated from this graph. The graphs for data sets 'attic' and

'forbidden' are shown in Figures 9.1. Not all parts of the graphs are of interest

because we do not compress images with bad reconstruction quality (both vi-

sually and statistically) in practice. The same is for compression ratio, we do

not compress images with too small compression ratio. Therefore, we highlight

the areas (enclosed by the green rectangles) that are of interest in the graphs.

^ Using this method, we tabulate the compression ratios of M-JPEG, MPEG,

and Spherical Harmonics (S.H.) in Table 9.1. Because we can only obtain the

results of compressing the data sets 'attic' and 'forbidden' using the spherical

‘harmonics method, the results of compressing the data sets 'ding' and 'cover'

are missing.

‘ In every case (excluding the one using DCT in compressing eigenimages for

the data set 'attic'), the proposed method out-performs the other methods. It

. Chapter- 9 Overall Evaluation 83

Peak Signal-lo-Noise Ratio vs Compression Ratio b r Dalasel "Attic*

38 1 1 1 1
Our Method (DWT) - H ~

n Spherical Harmonics ..来
36 - M-JPEG n

% .来 MPEG A
34 - . 米 、 \ .

m b * - �
？ 32- \ _

^ 30 • o -A \ -
« \
0 A \

1 2« - O •.仓.A � _

言 T \
匚 2 6 - \
™ \

rt 24 - \

0- \
22 - \ _

20 - V
i,

1 8 1 ‘ ‘ ‘

0 50 100 1 50 200 250

Compression ratio

(a)

Peak Signal-to-Noise Ratio vs Compression Ratio lor Dalasel "Forbidden'

36 r— 1 1 1 1 1 1 1 1 1
m Our Melhod (DWT) I

k 、 Spherical Harmonics
、\\ M-JPEG n -

mi �� MPEG A
32 - L \ 、\, -

^ 30 - • \ -

I a A \ 9 26 • \
I ��
(v ^ . \
c 24 - -
O)

' •一 ‘ w
‘ io 22 - \ � . -

QJ
Q- 、

2 0 - -

. -V,

18 - �.�-

16 I I 1 I I I I 1 1
0 100 200 300 400 500 600 700 800 900 1000

Compression ratio

(b)

Figure 9.1: PSNR versus compression ratio for Spherical Harmonics using data
. ‘ s e t s (a) 'attic' and (b) 'forbidden'.

Chapter 9 Overall Evaluation 84

Data s e t P S N R (dB) M-JPEG M P E G K W . O u r method
" d i i ^ g ^ ^ V a 5 3 8 ^

• attic 31.0 42.5 57.4 150.3 97.8
cover 39.1 42.0 43.0 n/a 575.2
forbidden 33.2 22.9 54.7 103.0 373.4

(a) Using DCT in eigenimage coding

" D ^ s e t PSNR (dB) M-JPEG MPEG S.H. Our method
I h ^ WA 440 n/a 756.3

attic 30.8 44.6 61.3 157.3 174.4
cover 39.5 38.2 42.0 n/a 737.3
forbidden 32.1 28.0 74.7 103.0 483.9

(b) Using DWT in eigenimage coding

Table 9.1: Comparison of compression ratios of different encoding methods.

is expected that M-JPEG is the worst because it does not exploit the coher-

ence among images. But our method also out-performs MPEG. The result

may be due to the fact that MPEG can only exploit coherence among the two

consecutive frames (ID) while our method can utilize coherence in 2D. It is

also shown that for all data sets, using DWT in eigenimage coding can give a

higher compression ratio while maintaining almost the same relighting quality.

On the other hand, it is expected that the tailor-made method, that is the S.H.

method, performs better than M-JPEG and MPEG. By using spherical har-

monics, with PSNR's around 31dB and 32dB, compression ratios for data sets

'attic' and 'forbidden' are about 150 and 103 respectively. However, by using

our method, the corresponding compression ratios are 174 and 484 respectively.

“ Referring to Table 9.1, the S.H. method performs better in compressing the

data set 'attic' if we use DCT in our method, but it does not perform better

， than our method using DWT. Moreover, we should use DWT in compressing

the eigenirnages as it is proved in the previous chapter (Section 6.2) that DWT

performs better than DCT does. In other words, our method also out-performs

the S.H. method, which is tailor-made for compressing illumination-adjustable

images, especially for the data set 'forbidden'.

. Chapter- 9 Overall Evaluation 85

9.1.2 Visual Evaluation

• • •
(c) S.H. (120) (d) Our Method (322)

Figure 9.2: Visual comparison for all tlie compression methods. The numbers
in the brackets are the compression ratios.

Besides statistical evaluation, we also have a visual evaluation. Figure 9.2

shows reconstructed images from the compressed data using different methods

for the data set 'forbidden'. The compression ratios are 103, 125’ 120, and 322

for M-JPEG, MPEG, S.H., and our method respectively. M-JPEG performs

‘ the worst among all the compression methods. Severe visual artifacts appear

ill the reconstructed image. MPEG performs better than M-JPEG. However,

• ‘ the fences are still blurred. The detail of theiii cannot be seen. Tlie S.H.

method and our method perform the best. The details of the fences can be

seen clearly. Comparing to the original image, all three images are almost

identical visually. However, with almost the same visual quality, our method

can have a compression ratio 322 while the S.H. can only have 120. In other

• words, our method out-performs the S.H. method. Therefore, our method

. Chapter- 9 Overall Evaluation 86

out-performs all the three methods in this visual evaluation.

Ill summary, our method out-performs all of the above methods both statis-

cally and visually. Moreover, our proposed method not just effectively com-

presses data but also facilitates the user retrieval pattern (2D) in our relighting

application.

9.2 Hardware-Assisted Relighting

To evaluate the performance of hardware-assisted relighting, we measure the

relighting speed and quality of the relit images.

To measure the relighting speed, we cast. 1000 light sources and ask the

system to relight the images. We use the Hammersley points [52] to generate

the lighting directions. Figure 9.3 shows 1000 Hammersley points on a sphere.

By using this method, we can avoid overcrowding some of the samples, which

is a problem if we use random numbers. The time required to finish relighting

the 1000 relit images is recorded.

m
%。；

Figure 9.3: Hammersley points on sphere with 1000 samples.

Table 9.2 shows that the relighting speed of our data sets is in real-time (we

use 9 eigenimages for each case). All data sets can reach 18 or above frames

per second. Actually, the relighting speed mainly depends on two parameters,

namely number of eigenimages used (i.e. nuinber of shader passes) and image

• resolution. In our experiment, all data sets use 9 eigenimages, therefore only

Chapter 9 Overall Evaluation 87

the image resolution varies. The data set 'cover' has a smaller resolution, that

• is why it has a faster relighting speed. Although the shader is claimed to

process the pixels in parallel, we believe that the shader has a limit on the

image resolution, therefore image resolution still affects the relighting speed.

Data set frame rate (fps) PSNR (dB)
"dĥ r^ ^

attic 18.9 28.9
cover 76.9 27.9
forbidden 28.7

Table 9.2: Frame rate and error measurement of hardware-accelerated relight-
ing.

To measure the relighting quality, we reconstruct m images from uncom-

pressed A and uncompressedB. The reconstructed images are compared to the

same control images in Section 6.2. By this, we can measure the errors solely

due to the hardware. Table 9.2 shows the results. Although the precision in

the shader is limited to 8-bit per pixel, the PSNR for each data set is around

28. If the precision of the next generation shaders increases, the reconstruction

relighting quality will become much better in the future. Figure 9.4 shows the

visual artifacts due to hardware relighting. The artifacts are mainly due to

the truncations of data (relighting coefficients) that exceed the range [—1，1 .

X：

. Chapter- 9 Overall Evaluation 88

(a)

E m i i
� (c) (d) •

Figure 9.4: The visual artifacts due to hardware relighting, (a) and (c): visual
artifacts, (b) and (d): the corresponding relit images using software relighting.

Chapter 10

Conclusion

In this thesis, we proposed a block-wise PCA-based method for compressing

image-based relighting data. Since the data volume is enormous, we divide-

and-conquer the problem in order to make it manageable. The eigenimages

and relighting coefficients are compressed separately according to their data

natures. A high compression ratio is achieved (Table 9.1) while maintaining

the visual quality. It out-performs standard video coding method as it exploits

the data correlation specific to image-based relighting. To facilitate real-time

relighting, we utilize consumer-level graphics hardware to synthesize the de-

sired images. The real-time performance also demonstrates the advantage of

image-based approach. Unfortunately, current hardware introduces error to

the synthesized images due to the limited data precision. The problem will

be solved once the next-generation high-precision graphics hardware becomes

- available. Currently we store equal number of eigenimages for each block. The

compression ratio can be further increased if the number of eigenimages adapts

� to the image content. For instance, constant background may require less num-

ber of eigenimages. Moreover, our proposed compression scheme is generic for

compressing image-based data. It can also compress other image-based data

such as Light field. However, as our proposed method is tailor-made for com-

pressing illumination-adjustable images, further investigation must be made

in prior to applying it on other image-based data.

89

Bibliography

1] Tien Tsin Wong, Pheng Ann Heng, Siu Hang Or, and Wai Yin Ng,

"Image-based rendering with controllable illumination," in Eighth Eu-

rographics Workshop on Rendering, June 1997, pp. 13-22.

2] Yizhou Yu and Jitendra Malik, "Recovering photometric properties of

architectural scenes from photographs," in SIGGRAPH '98 Conference

Proceedings. ACM SIGGRAPH, July 1998’ Annual Conference Series.

3] Tien-Tsin Wong, Chi-Wing Fu, and Pheng-Ann Heng, "Interactive re-

lighting of panoramas," IEEE Computer Graphics & Applications, vol.

21, no. 2, pp. 32-41，March-April 2001.

4] Marc Levoy and Pat Hanrahan, "Light field rendering," in SIGGRAPH,

August 1996, pp. 31-42.

5] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F.

- Cohen, "The lumigraph," in SIGGRAPH, August 1996，pp. 43-54.

6] Heung Yeung Shum and Li Wei He, "Rendering with concentric mosaics,"

‘ in SIGGRAPH, August 1999, pp. 299-306.

7] Shenchang Eric Chen, "QuickTime VR - an image-based approach to vir-
I

tual environment navigation," in Computer Graphics Proceedings, Annual

Conference Series, SIGGRAPH'95, August 1995, pp. 29-38.

90

8] Marcus Magnor and Bernd Girod, "Data compression for light-field ren-

• dering," in IEEE transactions on CSVT�April 2000，vol. 10, pp. 338-343.

9] Chandrajit Bajaj, Insung Ihm, and Sanghun Park, "3D RGB image com-

pression for interactive applications," ACM Transactions on Graphics,

vol. 20, pp. 10-38, January 2001.

10] Tien-Tsin Wong, Chi-Wing Fu, Pheng-Ann Heng, and Chi-Sing Leung,

"The plenoptic illumination function," IEEE Transactions on Multimedia,

vol. 4, no. 3, September 2002.

11] Peter N. Belhumeur and David J. Kriegman, "What is the set of images

of an object under all possible lighting conditions?," in IEEE Conference

on Computer Vision and Pattern Recognition, 1996, pp. 270-277.

12] Russell Epstein, Peter W. Hallinan, and Alan L. Yuille, "5+/-2 eigenim-

ages suffice: An empirical investigation of low-dimensional lighting mod-

els," in Proceedings of IEEE Workshop on Physics-Based Modeling in

Computer Vision, Cambridge, Massachusett, June 1995, pp. 108-116.

13] Zhengyou Zhang, "Modeling geometric structure and illumination varia-

tion of a scene from real images," in Internation Conference on Computer

Vision, January 1998.

14] Ko Nishino, Yoichi Sato, and Katsushi Ikeuchi, "Eigen-texture method:

Appearance compression based on 3D model," in IEEE Conference on

Computer Vision and Pattern Recognition, June 1999, vol. 1, pp. 618-624.

15] Pun-Mo Ho, Tien-Tsin Wong, and Chi-Sing Leung, "PCA-based com-

pression for image-based relighting," Submitted to IEEE International

Conference on Multimedia and Expo, July 2003.

91

16] Pun-Mo Ho, Tien-Tsin Wong, and Chi-Sing Leung, "Compressing the

•• illumination-adjustable images with principal component analysis," Sub-

mitted to IEEE Transactions on Circuits and Systems for Video Technol-

ogy, 2003.

17] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung Shum,

"Plenoptic sampling," in Computer Graphics (SIGGRAPH 2000 Proceed-

ings), July 2000.

18] Marcus Magnor and Bernd Girod, "Hierarchical coding of light fields with

disparity maps," in ICIP, October 1999.

19] Cha Zhang and Jin Li, "Compression of lumigraph with multiple reference

frame (mrf) prediction and just-in-time rendering," in IEEE Conference

on Data Compression, 2000, pp. 253-262.

20] Ingmar Peter and Wolfgang Straber, "The wavelet stream - progressive

transmission of compressed light field data," in IEEE Visualization, 1999.

21] Insung Ihm, Sanghoon Park, and Rae Kyoung Lee, "Rendering of spher-

ical light fields," in Pacific Graphics, 1997.

22] Gavin Miller, Steven Rubin, and Dulce Ponceleon, "Lazy decompression

of surface light fields for precomputed global illumination," in Proceedings

of the Eurographics Workshop, 1998.

23] D.N. Wood, D.I. Azuma, K. Aldinger, B. Curless, T. Duchamp, D.H.

�. Salesin, and W. Stuetzle, "Surface light fields for 3D photographs," in

‘ SIGGRAPH, 2000.

) [24] W.C. Chen, J.Y. Bouguet, M.H. Chu, and R. Grzeszczuk, "Light field

mapping: Efficient representation and hardware rendering of surface light

fields," in SIGGRAPH, 2002.

92

25] Y. Wu, C. Zhang, J. Li, and J. Xu, "Smart-rebinning for compression of

•• concentric mosaics," in ACM Multimedia, 2000.

26] Wing Ho Leung and Tsuhan Chen, "Compression with mosaic prediction

for image-based rendering applications," in IEEE International Confer-

ence on Multimedia and Expo, 2000, vol. 3，pp. 1649-1652.

27] Jin Li, Heung Yeung Shum, and Ya Qin Zhang, "On the compression

of image based rendering scene," International Journal of Image and

Graphics, vol. 1, no. 1, pp. 45-61, 2001.

28] Jeffry S. Nimeroff, Eero Simoncelli, and Julie Dorsey, "Efficient re-

rendering of naturally illuminated environments," in Fifth Eurographics

Workshop on Rendering, June 1994, pp. 359-373.

29] R. Courant and D. Hilbert, Methods of Mathematical Physics, Interscience

Publisher, Inc, 1953.

30] Edward H. Adelson and James R. Bergen, "The plenoptic function and the

elements of early vision," in Computational Models of Visual Processing,

Michael S. Landy and J. Anthony Movshon, Eds., chapter 1，pp. 3—20.

MIT Press, 1991.

31] A. Gershun, "The light field," Journal of Mathematics and Physics, vol.

XVIII, pp. 51-151，1939, Translated by P. Moon and G. Timoshenko.

32] Wai-Man Pang, "A portable capturing system for image-based relighting,"

� M.Phil. Thesis, Department of Computer Science, the Chinese University

of Hong Kong, July 2002.

‘ [33] G. K. Wallace, "The JPEG still image compression standard," Commu-

nications of the ACM, vol. 34, no. 4，pp. 30-44, April 1991.

93

34] Didier Le Gall, "MPEG: A video compression standard for multimedia

• applications," Communications of the ACM, vol. 34, no. 4, pp. 46-58,

April 1991.

35] Eric Hamilton, "JPEG file interchange format, version 1.02,"

http://www.jpeg.org/public/jfif.pdf’ September 1992.

36] C.S. McGoldrick, W.J. Dowling, and A. Bury, "Image coding using the

singular value decomposition and vector quantization," in Fifth Inter-

national Conference on Image Processing and its Applications, 1995, pp.

296-300.

37] G.W. Stewart, "On the early history of the singular value decomposition,"

Tech. Rep. CS-TR-2855, Department of Computer Science, University of

Maryland, College Park, 1992.

38] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns

Hopkins University Press, 1989.

39] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.

Vetterling, Numerical Recipes in C: The Art of Scientific Computing,

Cambridge University Press, 1993.

40] Michael Berry, Theresa Do, Gavin O'Brien Vijay Krishna, and Sowmini

Varadhan, "Svdpackc (version 1.0) user's guide,".

41] Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing,

� Addison-Wesley, 1993.

42] R. M. Gray, Source Coding Theory, Kluwer Academic, 1990.

•r

43] N.S. J ay ant and P. Noll, Digital Coding of Waveforms: Principles and

Applications to Speech and Video, Prentice-Hall, 1984.

94

http://www.jpeg.org/public/jfif.pdf%e2%80%99

44] R.C. Reininger and J.D. Gibson, "Distribution of the two-dimensional

dct coefficients for images," IEEE Transactions on Communications, vol.

COM-31, pp. 835-839, 1983.

45] A. N. Akansu and M. J. T. Smith, Multiresolution Signal Decomposition:

Transforms, Subands, and Wavelets, Academic Press, 1992.

46] R. L. Joshi, H. Jafarkani, J. H. Kasner, T. R. Fischer, N. Farvardin, M. W.

Marcellin, and R. H. Bamberger, "Comparison of different methods of

classification in subband coding of images," IEEE Transactions on Image

Processing, vol. 6, pp. 1473-1486, 1997.

47] A.M. Tekalp, Digital Video Processing, Prentice-Hall, 1998.

48] Athanassios Skodras, Charilaos Christopoulos, and Touradj Ebrahimi,

"The jpeg 2000 still image compression standard," September 2001.

49] J. Shapiro, "Embedded image coding using zerotrees of wavelet coeffi-

cients," in IEEE Transactions on Signal Processing, Dec 1993, vol. 4.

50] R.W. Buccigrossi and E.P. Simoncelli, "Image compression via joint sta-

tistical characterization in the wavelet domain," in IEEE Transactions

on Image Processing, December 1999.

51] Erik Lindholm, Mark J. Kilgard, and Henry Moreton, "A user-

‘ programmable vertex engine," in Proceedings of SIGGRAPH 2001, Au-

gust 2001, pp. 149-158.

. 52] T.T. Wong, W.S. Luk, and P.A. Heng, "Sampling with Hammersley and

Halton points," in Journal of Graphics Tools, 1997, vol. 2.

95

-
 »

•

,
 ,

,

I
f

«
 >

 ,

 ,

V

广
 .

 .

 .

V

‘
 ；

 ,

 •

..

？

：

：

r

-

T

*

f

.

-

‘

.

 .
<

i

-

,

-

•

-

.

•

,

 .,

一

-

^

.

广
 .
作

v
r

,

L

？

o

,

：
 .,

 .

 •

 -

 .

 •

 .

；

.

.

广

.

.

.

.

 ：

：、...

慕
靠

》

 ：？.

：

、
/

r

^
^
f

>

？

 〜
-

—
—
.

.

...：？.

/
k
-
：
、

‘

.

.

.

.

.
.
.

•

i

-

r
.

.
 «

 .

 ..

 .
.
"
:
.
(
，
-
.

-
、
：
」r
.
-
 A...

-
 •

...

i
 r、
h

.

.
 •

、
-

 .

 “
 _
:
:

、
:

 •

....

 .
H

-
“
 ..

.
V

..
 •

 '

-

‘

 -

‘

>

.

：

：

/
 /

 .

.

.

.

-

V

V
.
 f

气

v

.

.

...
 ..
.
.
.
.
.
卞
.
：
•

 .

 .
.

 -

 \

 ,

.

.

.

 .

、；
 ；.

“i

.

.

‘

.
 ..

*

I
崎

V

 二

，
 -
.

.

‘

^

v
s
 ：

 •

 -
 .
-
r
v

.,

 .
1

.-A-.‘.

 ”.，.；
 -
.
；
.
.
:

 --

-

^

-

^

-
 ‘

 •

 •

t

•

^
 ̂

-

i
 ̂

-

>
 -

 •
/

‘

 •

i
r
j
^

'
 :

 -
 -

 •

 -

 •

 -
 •
.

 .

 .

^
 f
/
y

 V

 ̂

 ̂
^
^

 ̂

 ̂

 ̂

•
•
 •

•
-

 ,

二
，
：

.

.

 .
.
.
•
•
•
、

 ；.

.

.

.

.

•

•

-
 .

:
个

.

,

,

.

.

.

.
 -

 •

 -

“
务
：

-

•
、
；
V
 •
二

V
:

 ’....

：

；

、

.

.

.

1

r

-

一

\

i
v

‘

.

 .
.
.

.

、

.

、；，,

-

：

.

.

-

v.,.

：

.

.

•

-

.

：

•

.

，
？
 ？

f

•

-

.

“

 ...

-

 -
.
.

：

^
 V

 #

i
n
^
v
"

\
 ‘

.

.

.

.

.

：

 .

I
T
V
V
-

：

•
•
 ..

•

,

.

/

•

 •
：
 ：

』

• - . •

aeTTiOhDD

圓 lliiiil
saLJBjqn >|HnD

