
Automatic Construction and Adaptation of
Wrappers for Semi-Structured Web

Documents

Wong Tak Lam

M
A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of
Master of Philosophy

in
Systems Engineering and Engineering Management

© The Chinese University of Hong Kong
June 2003

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in the thesis in a

proposed publication must seek copyright release from the Dean of the Graduate

School.

/ l - / 统 系 餘 書 圓 、 1

y j 8 • 2fflj看

^^^"niNIVERSITY嚼I

摘要

許多現存的封裝（ W r a p p e r) 學習方法只能夠處理結構簡單的文件。爲

了處理更蜜富的半結構文件如互聯網網頁，以及減少使用者的負荷，我

們 發 展 了 一 套 新 的 封 裝 歸 納 提 案 ° 我 們 的 提 案 運 用 了 兩 階 段 的 自 動 學

習工作，分別稱爲階式紀錄結構推論及抽取規則歸納，在階式記錄結

構推論中，我們會自動爲訊息來源的紀錄產生階式結構的描述，在抽

取規則歸納中，對應階式記錄結構中的每一個節點的抽取規則會被歸

納。這樣的設計能夠抽取含有缺掉的屬性項，多重値的屬性項，以及

沒有次序限制的屬性項。我們亦發展了一套構架去處理封裝適應的問

題，我們的構架試圖使早前學習得到的封裝及早前收集得到的詞囊適

應到一個先前未被看見之網站。這是一個兩階段，以及運用了多種學

習範式的方法，用以消除封装適應的挑戰。第一階段是從先前未被看

見之網站當中搜尋潛在的候選劍練樣本，我們發展了一個修改了的最

鄰近分類法，用以辨認出適當的文字片斷作爲潛在的候選訓練樣本。

潛 在 的 候 選 圳 練 樣 本 隨 後 會 被 一 個 文 字 片 斷 分 類 模 型 所 分 類 ， 「 良

好」的潛在的候選訓練樣本會被視爲先前未被看見之網站的機器柱釋刘

練樣本。根據機器往釋訓練樣本，一個爲先前未被看見之網站而全新

定造的封裝便能學習得到。我們陳述封裝歸納及封裝適應在不同領域

之網钻的實驗結果。

i

Abstract

Many existing wrapper learning methods can only handle documents with

simple structures. To handle a richer set of semi-structured documents such

as Web documents and minimize the burden of users, we develop a new wrap-

per induction approach. Our approach employs a two-stage learning task,

namely, hierarchical record structure inference and extraction rule induction.

In hierarchical record structure inference, we automatically generate a repre-

sentation of hierarchical structure for the records in an information source. In

extraction rule induction, extraction rules are induced for each node in the hi-

erarchical record structure. This design is able to extract records which have

missing attribute items, multi-valued attribute items, and attribute items

in unrestricted order. We also develop a framework to solve the wrapper

adaptation problem. Our framework attempts to adapt a previously learned

wrapper and previously collected lexicons to an unseen Web site. It is a two-

stage method employing multiple learning paradigms in order to tackle the

challenges in wrapper adaptation. The first stage is to seek potential training

example candidates from the unseen Web site. A modified nearest neighbour

classification model is developed for identifying appropriate text fragments

as potential training example candidates. The potential training example

ii

candidates will then be classified by a text fragment classification model in

the second stage. Those "good" candidates will be considered as machine

annotated training examples for the unseen Web site. Based on the machine

annotated training examples, a new wrapper tailored to the unseen Web site

can be learned. We present experimental results on wrapper induction and

wrapper adaptation for different real-world Web sites of different domains.

iii

Acknowledgments

There are many people whom I would like to thank for their support and

contributions to this research.

Firstly, I would like to express my sincere gratitude to my research ad-

visor, Prof. Wai Lam. His constant encouragement and advice contributed

a great deal in this research. I would also like to thank Prof. Youhua Chen

and Prof. Chuen Chi Yang for their helpful suggestions and comments on

improving the quality of my work.

Next, I would like to thank my family for their support during my research

study. My parents always support me in every challenge I undertake and

provide me a comfortable and warm environment. My brother and sister-in-

law, Eric and Vivian always give me endless encouragement.

Thanks must go to my friends, Fan, Ivy, Rachel, Jelly, Foo, Kevin, Jian

Feng, for their daily support and help. Zoe, Monkey, Cindy, No, Wai, Siu

Ming always give me encouragement.

Lastly, I would dedicate my work to my best friend Natalie. She is my

source of love and joy. Thanks for her valuable support and encouragement

in my daily life.

iv

Contents

1 Introduction i
1.1 Wrapper Induction for Semi-structured Web Documents . . . 1
1.2 Adapting Wrappers to Unseen Web Sites 6
1.3 Thesis Contributions 7
1.4 Thesis Organization g

2 Related Work 10
2.1 Related Work on Wrapper Induction 10
2.2 Related Work on Wrapper Adaptation 16

3 Automatic Construction of Hierarchical Wrappers 20
3.1 Hierarchical Record Structure Inference 22
3.2 Extraction Rule Induction 30

3.3 Applying Hierarchical Wrappers 38

4 Experimental Results for Wrapper Induction 40

5 Adaptation of Wrappers for Unseen Web Sites 52
5.1 Problem Definition 52
5.2 Overview of Wrapper Adaptation Framework 55
5.3 Potential Training Example Candidate Identification 58

5.3.1 Useful Text Fragments 58
5.3.2 Training Example Generation from the Unseen Web Site 60
5.3.3 Modified Nearest Neighbour Classification 63

V

5.4 Machine Annotated Training Example Discovery and New Wrap-
per Learning 64
5.4.1 Text Fragment Classification 64
5.4.2 New Wrapper Learning 69

6 Case Study and Experimental Results for Wrapper Adapta-
tion 71
6.1 Case Study on Wrapper Adaptation 71
6.2 Experimental Results 73

6.2.1 Book Domain 74
6.2.2 Consumer Electronic Appliance Domain 79

7 Conclusions and Future Work 83

Bibliography 88

A Detailed Performance of Wrapper Induction for Book Do-
main 95

B Detailed Performance of Wrapper Induction for Consumer
Electronic Appliance Domain 99

vi

List of Figures

1.1 A sample of a Web page about book catalog 4
1.2 An excerpt of the HTML texts for the Web page shown in

Figure 1.1 5

3.1 The hierarchical record structure for the book information
shown in Figure 1.1 21

3.2 A situation for "cover" 25
3.3 The outline of the hierarchical record structure inference al-

gorithm 25
3.4 The outline of the funcion Reduce_Nodes used by the hierar-

chical record structure inference algorithm 26
3.5 A sample of training example for the record structure inference

algorithm 28
3.6 An other sample of training example for the record structure

inference algorithm 28
3.7 The raw record structure constructed by the record structure

inference algorithm from the training examples as shown in
Figures 3.5 and 3.6 28

3.8 A sampe of possible resulting hierarchical record structure . . 29
3.9 Different training examples from the Web site as shown in

Figure 1.1 for the hierarchical record structure inference 31
3.10 Examples of semantic classes organized in a hierarchy 33
3.11 The outline of the extraction rule induction algorithm 34
3.12 The Generate.And.Test function used by the extraction rule

induction algorithm 35

vii

3.13 The Post-Prune function used by the extraction rule induction
algorithm 35

3.14 The score functions used by the rule induction algorithm . . . 37
3.15 The Find-BesLN function, and the Find_Common_Pattern

function used by the rule induction algorithm 37

3.16 A sample of extraction rule for the final price of the Web page
shown in Figure 1.1 39

4.1 A sample of a testing Web page of S5 46
4.2 The hierarchical record structure for the book information in

the Web sites SI, S2, and SlO 48
4.3 A sample of a testing Web page of S18 50

5.1 A sample of a Web page containing book records coming from
a different Web site shown in Figure 1.1 53

5.2 An excerpt of the HTML texts for the Web page shown in
Figure 5.1 54

5.3 Our wrapper adaptation framework 56
5.4 A sample of Web page about networking books 60
5.5 An excerpt of the HTML texts for the Web page shown in

Figure 5.4 61

viii

List of Tables

4.1 Information sources for experiments 42
4.2 The number or user annotated training records for learning

wrapper for each Web site 43
4.3 A sample of a user annotated training example for the Web

page shown in Figure 1.1 43
4.4 Performance summary of our wrapper induction approach on

the Web sites containing book catalogs 45
4.5 Performance summary of our wrapper induction approach on

the Web sites containing consumer electronic appliance 48

5.1 Normalized character-level edit distances between tokens . . . 68

6.1 Samples of a machine annotated training example obtained by
adapting the wrapper from the Web site S8 (Figure 1.1) to the
Web site shown in S7 (Figure 5.1) 72

6.2 Experimental results of applying a learned wrapper without
adaptation from one Web site to extract contents from the
remaining sites in the book domain 75

6.3 Experimental results of adapting a learned wrapper from one
Web site to the remaining sites in the book domain 77

6.4 Average extraction performance on title, author, and price for
the book domain for the cases of without adaptation and with
adaptation when training examples of one particular Web site
are provided, (prec. refers to precision) 78

ix

6.5 Experimental results of applying a learned wrapper without
adaptation from one Web site to extract contents from the
remaining sites in the consumer electronic appliance domain. 80

6.6 Experimental results of adapting a learned wrapper from one
Web site to the remaining sites in the consumer electronic
appliance domain 81

6.7 Average extraction performance on model number, description,
and price for the electronic appliance domain for the cases of
without adaptation and with adaptation when training exam-
ples of one particular Web site are provided, (prec. refers to
precision) 82

A.l Performance of our wrapper induction approach for each test-
ing page in the Web sites Si (P and R refer to precision and
recall respectively.) 95

A.2 Performance of our wrapper induction approach for each test-
ing; page in the Web sites S2 (P and R refer to precision and
recall respectively.) 95

A.3 Performance of our wrapper induction approach for each test-
ing page in the Web sites S3 (P and R refer to precision and
recall respectively.) 96

A.4 Performance of our wrapper induction approach for each test-
ing page in the Web sites S4 (P and R refer to precision and
recall respectively.) 96

A.5 Performance of our wrapper induction approach for each test-
ing page in the Web sites S5 (P and R refer to precision and
recall respectively.) 96

A.6 Performance of our wrapper induction approach for each test-
ing page in the Web sites S6 (P and R refer to precision and
recall respectively.) 96

A.7 Performance of our wrapper induction approach for each test-
ing page in the Web sites S7 (P and R refer to precision and
recall respectively.) 97

V

A.8 Performance of our wrapper induction approach for each test-
ing page in the Web sites S8 (P and R refer to precision and
recall respectively.) 97

A.9 Performance of our wrapper induction approach for each test-
ing page in the Web sites S9 (P and R refer to precision and
recall respectively.) 97

A.10 Performance of our wrapper induction approach for each test-
ing page in the Web sites SIO (P and R refer to precision and
recall respectively.) 98

A.11 Performance of our wrapper induction approach for each test-
ing page in the Web sites Sll (P and R refer to precision and
recall respectively.) 98

B.l Performance of our wrapper induction approach for each test-
ing page in the Web sites S12 (P and R refer to precision and
recall respectively.) 99

B.2 Performance of our wrapper induction approach for each test-
ing page in the Web sites S13 (P and R refer to precision and
recall respectively.) 100

B.3 Performance of our wrapper induction approach for each test-
ing page in the Web sites S14 (P and R refer to precision and
recall respectively.) 100

B.4 Performance of our wrapper induction approach for each test-
ing page in the Web sites S15 (P and R refer to precision and
recall respectively.) 100

B.5 Performance of our wrapper induction approach for each test-
ing page in the Web sites S16 (P and R refer to precision and
recall respectively.) 101

B.6 Performance of our wrapper induction approach for each test-
ing page in the Web sites S17 (P and R refer to precision and
recall respectively.) 101

xi

B.7 Performance of our wrapper induction approach for each test-
ing page in the Web sites S18 (P and R refer to precision and
recall respectively.) 102

B.8 Performance of our wrapper induction approach for each test-
ing page in the Web sites S19 (P and R refer to precision and
recall respectively.) 102

xii

Chapter 1

Introduction

1.1 Wrapper Induction for Semi-structured

Web Documents

The continuous and rapid growth of World Wide Web provides a vast amount

of online electronic documents. Users usually obtain information from the

Web by manual browsing and keyword searching. However, the lack of au-

tomation and large quantity of imprecise data returned raise the need for a

system that can extract precise and useful information automatically. Infor-

mation Extraction (IE) systems aim at extracting such kind of information

from text documents. The data extracted can be stored in a database or

used for other intelligent tasks [16，47, 57]. Different kinds of IE systems are

proposed to extract information from different kinds of documents. One kind

of IE systems is designed to extract information from natural language texts.

For example, in the Message Understanding Conferences (MUCs) [14，15],

1

the perpetrator names, victim names, instruments, and locations of attack

are extracted from a collection of newswire articles on Latin American terror-

ism. The other example is the question answering task of the Text REtrieval

Conference (TREC) [17]. The goal of this task is to find short phrases for

answering questions from a collection of texts. Natural language processing

(NLP) techniques such as syntactic parsers are usually employed for extract-

ing information from natural language texts. Another kind of IE systems is

designed to extract information from structured texts [8]. Uniform syntactic

rules such as labels and mark-up tags are employed to deal with the rigid for-

mat of structured texts. Unlike natural language texts and structured texts,

semi-structured texts are characterized by the fact that they are not fully

well formatted and are not totally grammatically correct. HTML and XML

documents are examples of semi-structured documents. Various IE systems

are designed to deal with semi-structured documents [1, 5, 19, 24, 50]. A

promising approach for extracting information from semi-structured docu-

ments is to make use of wrappers.

A wrapper usually consists of extraction rules or extraction patterns,

which can identify the attribute items of interest. In the past, wrappers

are constructed manually by human experts [33]. The manual construction

of wrapper is time-consuming, tedious, and error-prone. Wrapper learning

systems try to solve this problem by automatically constructing wrappers

from the user provided training examples. Several wrapper learning sys-

tems [10, 12, 22’ 23，35, 36，38，39, 46，50] have been proposed. They make

use of machine learning techniques to discover the wrappers from the user

annotated training examples.

2

Figure 1.1 shows a sample of a Web page containing information about

book catalog^ Figure 1.2 depicts the excerpt of the HTML text document

associated with the Web page. The attribute items of interest are book

title, author(s), list price, final price. In this example, the last record has

a book title "Foundations of Visual C + + Programming for Windows 95",

a list of authors "Paul Yao”，"Joseph Yao", a list price "39.90" and a final

price "19.99". A user can simply provide few training examples of attribute

items on a Web page via a graphical user interface. Wrapper induction

aims at discovering the extraction rules of the wrapper from these training

examples. The learned wrapper is able to extract precise attribute items

from different Web pages of a particular Web site where the user annotated

training examples have been provided.

Some of the wrapper learning systems construct single-slot extraction

rules which can identify a single attribute item. However, the relationship

between the attribute items in a record cannot be well represented. Some

systems construct multi-slot extraction rules which can identify one or more

attribute items in a record. However, these wrappers may fail when the

records contain missing attribute items, multi-valued attribute items, or at-

tribute items in unrestricted order. Stalker [46] used hierarchical record

structure to represent the relationship of the attribute items. This record

structure can solve some shortcomings of the single-slot and multi-slot extrac-

tion rules. However, users have to provide the hierarchical record structure

to the wrapper learning system in advance.

iThe URL associated with the Web page shown in Figure 1.1 is

www. halfpricecomputerbooks.com.

3

rtrtYi cc Libt PPiLk；: dyryo T uu âVH：令 / .yv Îfgpr . . — ,
“ , Our PricR! • 31.«6 retail locations. ^

sea t-ull ca'mQorv map 一 宏.
- C+ + /C* Proar�mers Guide for Winrinŵ �nfip ^ ordo.hô . ^

ZTgrr^Xm Author: Konald D. Reeves Published: 2001
List Pnco: + You 8avo: 25.00 Our p

^ f f i s B l . 24.99 I
TX C+ + Fpr Fortran Programmers 1:

BhRuAINI Author: Ira Pohl Published: 1997 �. . Rl i l l List Price: + You Save: • 20.00 Our ® SSS^ Price: + 19.99 |
^^illlPggn Ct•� Oblect DdUbases : PrugratTunltiq with itm � . IflU^ Odmn standard fObiect Tachnology Seriô f) 5 tdtiunaj Author: Dai/id Jordan Published: 1997 戴

List Price: + 89:94 You Save: • 19.98 Our m

^ Pric«: • 19.97 •
麗

f ^ The Visual C + + 5 Programmers Referenrp； B Windom 95/Nt | How to Order Authop： Rlchattl C. Leinecker Published: 1997 靈 rnntflTt Info List Prico: 49.90 You Bavo: + 25.00 Our m =2： 二Y Price: + 24.99 |
FAQ/Help J
二 = 广 Masterina Microsoft Visual C+ + 2 Programming, |

H 二 二 ' 二 >̂ ithDisk I intemaiio� FAQ Author: Michael Young Published: 1996 8 1�(>1‘1=«�� List Price: + +4r9« You Save: • 22.50 Our I
Mrice: + 22.49 i

Foiinriationii； of Visual C+f Prnntvimminc] fnr
Win̂iQWS 95 £
Author: Paul Yao, Joseph Yao Publ ished: 1995 邏
L i s t P r i c e ; > Y O U S O V B : 2 D . 0 0 O u r PricR： + t9.<)9 B：

I I

Figure 1.1: A sample of a Web page about book catalog

4

 〈 font face= "Verdana, Arial, Helvetica, sans-serif size="2" color:“#666666”> The Visual C++ 5 Programmers Reference: Windows 95/Nt < / a > < / b >

 < b > Author: < / b > Richard C. Leinecker < b> Published: < / b > 1997
 < b >

List Price: 〈strike〉49.98 </strike>

 You Save: 25.00

 Our Price: 24.99

 < / b >

 〈 font face= "Verdana, Arial, Helvetica, sans-serif

size="2" color= “#666666" > Mastering Microsoft Visual C++ 2

Programming, with Disk < / a > < / b >
 < b > Author: < / b > Michael Young &:nbsp; < b >

Published: < / b > 1996
 < b > List Price: <img src="images/arrow.gif' width="10" height="8"

hspace="5">〈strike〉44.98〈/strike〉 &:nbsp; You Save: <img src="images/arrow.giP'

width="10’’ height="8" hspace="5”> 22.50 Our Price： <img src="images/arrow.gif'

width=:“10” height="8" hspace="5"> 22.49

 〈 font

face:"Verdana, Arial, Helvetica, sans-serif size="2" color:“#666666”>

Foundations of Visual C++ Programming for Windows 95 < / a > < / b >
 < b > Author: < / b > Paul

Yao, Joseph Yao fcnbsp; < b> Published: < / b > 1995
 < b > List Price: <img

src= "images/arrow.gif width="10" height="8" hspace="5">〈strike〉39.98〈/strike〉

You Save: 20.00 Our

Price: 19.99 &;nbsp; < / b >

Figure 1.2: An excerpt of the HTML texts for the Web page shown in Fig-

ure 1.1

5

1.2 Adapting Wrappers to Unseen Web Sites

As the layout format of Web sites changes from time to time, a previously

constructed wrapper may become obsolete sooner or later. Wrapper mainte-

nance aims at re-learning a new wrapper when the current wrapper can no

longer extract correct information. Some methods [37, 42] are proposed to

evaluate the validity of the wrappers. However, they can only partially solve

the wrapper maintenance problem.

When a wrapper is found to be obsolete, a new wrapper may be re-learned

using previously collected training examples. Most likely, these training ex-

amples may also become invalid. Besides, the wrappers learned from a par-

ticular Web site typically cannot be applied to extract attribute items from

other sites. A separate effort is required to annotate a new set of training

examples in the new Web site so as to learn a new wrapper for the new site.

A possible solution for solving this problem is to address the issue of the

preparation of training examples. Several approaches [4，13, 45] have been

proposed to tackle the problem of preparing training examples. However,

manual work is still required in these approaches. Another solution is wrap-

per adaptation. Wrapper adaptation aims at adapting a previously learned

wrapper from a source Web site to a new, unseen target site in the same

domain. This can also solve the wrapper maintenance problem. Wrapper

adaptation problem has two challenges. One challenge is that the layout for-

mat of Web pages are different in different Web sites. The other challenge is

that the format of the attribute items may also be different in different Web

sites although they are referring to the same concept or object.

6

1.3 Thesis Contributions

We develop a framework to solve both the wrapper induction problem and

the wrapper adaptation problem. Our wrapper induction approach is a two-

stage learning task. The first stage is hierarchical record structure inference

and the second stage is extraction rule induction. Existing approaches for

wrapper induction can only handle records with simple and flat structure.

This poses a limitation on the representation of the structure of the records.

Muslea et al. [46] proposed a hierarchical record structure for representing

the structure of the records. However, the hierarchical record structure is

required to be identified by user in advance. In the first stage of our wrapper

induction approach, we try to automate the identification of the record struc-

ture by using a machine learning approach. Our system tries to automatically

generate a representation of hierarchical structure for the records in an Web

site based on the user annotated training examples. Our hierarchical record

structure is a tree-like structure which models the relationship between the

attribute items of a record. It allows missing attribute items, multi-valued at-

tribute items and attribute items in unrestricted order. Based on the learned

record structure, extraction rules are learned for the extraction task in the

second stage. A set of extraction rules are associated with each node in the

hierarchical record structure. In the rule induction process, we incorporate

both lexical and semantic generalization so that more expressive rules can

be learned. In most of the previous approaches, only the surrounding tokens

of the target attribute items are considered when constructing the wrappers.

We observe that in addition to the surrounding tokens, the semantic content

7

of the attribute item itself can be exploited to enrich the expressiveness of

the rules.

The objective of wrapper adaptation is to adapt the previously learned

wrapper to a new unseen Web site. Existing approaches for wrapper adap-

tation can either only partially solve the problem, or solve the problem in a

semi-automatic manner. We develop a wrapper adaptation framework which

can fully automate this task. The idea of our adaptation framework is to au-

tomatically seek some training examples for learning a new wrapper for the

unseen Web site. Our adaptation framework is a two-stage method employ-

ing multiple learning paradigms in order to tackle the challenges in wrapper

adaptation. The first stage is to seek potential training example candidates

from the unseen Web site. In the second stage the potential training exam-

ple candidates will then be classified by a text fragment classification model.

Those "good" potential training example candidates will be considered as

machine annotated training examples for the unseen Web site. Prom these

machine annotated training examples, a new wrapper for the unseen Web

site can be learned to extract information.

1.4 Thesis Organization

This thesis is organized as follows: Chapter 2 gives a review on the related

work for wrapper induction and wrapper adaptation. Chapter 3 presents the

detail of our wrapper induction approach. In Chapter 4, some experimental

results of our wrapper induction approach will be presented. Chapter 5

describes the detail of our wrapper adaptation framework. Chapter 6 presents

8

the experimental results for wrapper adaptation. We draw the conclusions

and present some ideas for future work in Chapter 7.

9

Chapter 2

Related Work

This chapter presents a brief review on the related work to wrapper induction

and wrapper adaptation.

2.1 Related Work on Wrapper Induction

Our wrapper induction approach is a two stage learning task. The first stage

is to infer the hierarchical record structure, which is used to represent the

relationship among the attribute items in a record. This task is related to

regular or tree grammar inference problems [28, 31]. One approach to in-

fer regular grammars is to introduce characterizable algorithms [26]. These

algorithms make various assumptions on classes of languages. For exam-

ple, Augluin focuses on k-reversible languages [2]. Some approaches employ

heuristic algorithms [6，43, 58]. A recent approach for inferring stochastic

regular grammars of text database structure based on state-merging method

has been developed [58]. Another approach has been proposed for regular

10

tree grammar inference from stochastic samples when structural information

is available [6]. All these existing approaches are not suitable for our task

since our record structure is hierarchical and allows multi-valued attribute

items, missing attribute items, and attribute items arranged in unrestricted

order. Moreover, these existing approaches require both positive and nega-

tive examples. In our hierarchical record structure inference, only positive

examples are available.

Wrappers usually consist of extraction rules or extraction patterns to

identify the attribute items of interest. The second stage of our wrapper

induction approach is to induce the extraction rules for identifying the at-

tribute items of interest. A number of different methods have been proposed

to automatically induce extraction rules. Compared to the manual wrapper

construction, these methods dramatically reduce both the time and effort

required to build a wrapper for an information source.

One kind of extraction rules is single-slot extraction rules. Such extrac-

tion rules can identify one attribute item each time. Many wrapper induction

systems can learn single-slot extraction rules. Kushmerick attempted to for-

malize the wrapper induction task. He proposed a system called WIEN [38

which can learn six wrapper classes using machine learning techniques. The

system tries to find the common prefix and su伍x of the attribute items at

character level. Hence the expressiveness of the extraction rules is quite

limited.

Freitag and Kushmerick introduced an approach, called BWI [23], to

building a trainable information extraction system. BWI makes use of boost-

ing technique to improve the performance of a simple machine learning al-

i i

gorithm. It learns relatively simple contextual patterns which identify the

prefixes and suffixes of the relevant text fields, and only capture the length

information of the relevant text fields.

RAPPIER [5] is an inductive logic programming system which employs

a specific-to-general learning algorithm for learning extraction rules. The

extraction rules include constraints on the words, part-of-speech tags from

a part-of-speech tagger [3] and semantic classes from WordNet [44]. Preitag

developed a system called SRV [22]. It uses relational learning algorithm to

generate first-order logic extraction patterns. The rule is able to incorporate

orthographic features, and other information such as tokens' lengths, part-

of-speech tags, semantic classes from WordNet, and link grammars. Both

RAPPIER and SRV pose constraints on the length of the attribute items. If

the length of the attribute items varies too much, RAPPIER and SRV may

not be able to identify the attribute items precisely.

Embley et al. [21] exploited a conceptual-modeling approach to extracting

structure data automatically. This approach is based on finding the record

boundary using several heuristics such as highest tag count, identifiable sep-

arator, etc. [20]. A disadvantage of this approach is that an ontology, which

describes the data of interest including the relationships, lexical appearance,

cardinality constraints, and context keywords, is needed to be defined by

expert in advance.

A system known as WAWA-IE [18] is developed for information extrac-

tion from texts based on theory refinement. It employs neural network and

part-of-speech tagging to achieve the task. It generates a set of candidate

extraction. Each candidate is then judged by the trained neural network and

12

output those candidate that exceeds a system-selected threshold. However,

users' instructions are needed to be provided to the system in advance.

(LP)2 [10] is a system developed by Ciravegna. It performs bottom-up

generalization from the training examples to discover the extraction rules.

Two kinds of extraction rules are induced by the system. One is tagging

rules which is to identify the attribute items. The other one is correction

rules which is to improve the precision, by correcting the mistake made by

of the tagging rules. It employs shallow natural language processing in the

generalization process of the extraction rules. However, the large search space

and the lack of intelligence make {LPf inefficient.

All the above systems learn single-slot extraction rules. This poses a

serious limitation on the systems as the relationships between the attribute

items are lost. The other kind of extraction rules is multi-slot extraction

rule. Such kind of extraction rules identifies one or more attribute items

simultaneously.

WHISK [50] is a system which can learn multi-slot extraction rules. It

can handle documents ranging from highly structured texts as well as natural

language texts. The extraction rule of WHISK uses multiple landmarks

for extracting multiple attribute items. Hence the relationship between the

attribute items can be retained. However, if there are missing attribute items,

multi-valued attribute items, or attribute items in unrestricted order, such

kind of extraction rules may fail.

Hsu, et al. developed a system known as SoftMealy [35]. They use finite-

state transducer (FST) to model information extraction problems. Soft-

Mealy can handle missing attribute items, multi-valued attribute items, and

13

attribute items in unrestricted order. However, in order to deal with these

requirements, it needs to have training examples that include all possible

combinations of the attribute items.

Multi-slot extraction rules can represent the relationship between the at-

tribute items. However, such rules will fail if the records contain missing at-

tribute items, multi-valued attribute items, or attribute items in unrestricted

order. Moreover, all the above approaches assume that the record structure

is flat. STALKER [46] is a wrapper learning method that can extract con-

tent from documents with hierarchical structure. Each slot or field of items

is associated with a set of extraction rules. It uses an embedded content

tree to group together the individual attribute items to assemble a multi-slot

record. It can extract attribute items from documents that contain complex

combinations of embedded lists and attribute items. A major disadvantage

is the requirement of providing a description of the record structure of the

document.

Recently, some statistical based methods are proposed for information

extraction tasks. Seymore et al. [49] explored the use of HMMs to learn

model structure from data and attempted to make the best use of labeled

and unlabeled data. Freitag and McCallum [24] demonstrated the ability of

shrinkage to improve the performance of HMMs for information extraction.

Chieu and Ng [9] proposed an approach using maximum entropy classifier

for extracting information from semi-structured and free texts. However,

extraction rules constructed by statistical methods are often difficult for users

to interpret.

Some methods focus on extracting information from tables and lists in

14

Web documents. Lim and Ng [41] constructed the content tree of the data

contents in a given HTML table. Wang et al. [53] proposed a semantic

search approach capable of extracting information from general tables. Se-

mantic ontology allows it to read tables in the same knowledge domain with

different layouts. Cohen et al. [11] developed a system called WL"̂ which con-

siders several different representations of the HTML document for wrapper

construction. Such representations include document-object model (DOM)

level, token level, and the two-dimensional geometry visual information of

tabular data. However, all of these methods only deal with structured table

or list layouts.

The existing approaches for wrapper induction can only handle records

with simple and flat structure. Single-slot and multi-slot extraction rules pose

a serious limitation on the structure representation of the records. Muslea

et al. [46] attempted to tackle the problems in single-slot and multi-slot

extraction rules by modeling the records with a hierarchical record structure.

As mentioned before, the record structure is required to be identified by user

in advance. To reduce the human effort in wrapper induction, we develop a

novel approach for automatically inferring the record structure by machine

learning approach. In addition, most of the previous approaches only consider

the surrounding tokens in construction of extraction rules. Our approach

also captures the semantic content of the attribute item itself to enrich the

expressiveness of the extraction rules.

15

2.2 Related Work on Wrapper Adaptation

As the layout format of Web sites changes from time to time, a previously

constructed wrapper may become obsolete sooner or later. Wrapper mainte-

nance aims at re-learning a new wrapper when the current wrapper can no

longer extract correct information.

RAPTURE [37] is a wrapper verification system. It verifies the validity

of the wrapper by performing regression testing on the data extracted by

the wrapper. WebCQ [42] is designed to monitor the changes of the Web

documents. Both of them can only partially solve the wrapper maintenance

problem.

Lerman et al. [40] tried to tackle the wrapper maintenance problem by

their DataPro algorithm. However, they assume that the format of attribute

items does not change over time. This requirement poses a serious limitation

for their approach.

When a wrapper is found to be obsolete, a new wrapper may be re-learned

using previously collected training examples. Most likely, these training ex-

amples may also become invalid. Besides, the wrappers learned from a par-

ticular information source typically cannot be applied to extract attribute

items from other sources. A separate effort is required to annotate a new set

of training examples in the new Web site, so as to learn a new wrapper for

that source.

A possible solution for solving this problem is to address the issue of

the preparation of training examples. Muslea et al. [45] proposed an active

learning technique called co-testing which asks the users to label an example

16

that maximizes the information conveyed to the learning system. However,

it can only partially reduce human effort in preparing training examples.

Brin's DIPRE [4] tackled this problem by continuously providing some

concept pairs (e.g., book title/author) to the system. DIPRE searches the

documents that contain the concept pairs and learns the extraction patterns.

The extraction patterns are then applied to other documents to find more

training examples.

Bootstrapping algorithms [27, 48] aim at reducing the number of training

examples. They initiate their training with a set of seed words and assume

that the seed words will be present in the training data. All the above systems

can only partially solve the problem. A separate effort is still required for

different Web sites.

lEPAD [7] generates extraction rules by finding repeated patterns in the

Web page using a data structure called PAT trees and performing multiple

string alignment on the discovered repeated patterns. It requires no train-

ing example for discovering the wrappers. However, the user is required to

manually select the extraction rules that contain their desired information.

ROADRUNNER [13] also attempts to solve the problem by eliminating

the need for training example preparation. The idea is based on the difference

and the similarity of the text content of the Web pages. However, by using

either ROADRUNNER or lEPAD, user cannot obtain the semantic meaning

of the extracted data, and the relationship between the extracted data.

DeLa [54] is a system developed for generating wrapper without using

training examples. The idea of DeLa is to find repeated patterns in the

Web page and discover a regular expression for the repeated patterns. It

17

also assigns labels to the extracted attribute items using several heuristics.

The extraction rule of DeLa is in the form of regular expression. Such regular

expression is similar to multi-slot extraction rule and hence will fail to extract

attribute items in unrestricted order. The assigned labels also require human

interpretation.

Wrapper adaptation aims at adapting a previously learned wrapper in an

information source to a new, unseen information source in the same domain.

Golgher et al. [30] tried to address the wrapper adaptation problem by a

query-like approach. This approach searches the exact matching of attribute

items in an unseen Web page. However, exact match of attribute items in

different Web sites is ineffective.

Wong et al. developed approaches for solving the wrapper adaptation

problem [55, 56]. The main idea of their approach is to automatically prepare

a new set of training examples in the unseen Web sites for inducing a new

wrapper. They make use of the extraction knowledge in the source site

to achieve this task. However, manual intervention is still required in this

method.

In summary, some of the existing methods for wrapper adaptation can

either only partially solve the problem, or solve the problem in a semi-

automatic manner. Some of them make use of the structure of Web pages

for extracting items without providing any training example. However, the

semantic meaning of the extracted attribute items requires human effort for

interpretation. Although Golgher et al. [30] proposed an automatic approach

to wrapper adaptation, they made some assumptions on the format of the at-

tribute items. We develop a fully automatic approach to solving the wrapper

18

adaptation problem. The idea of our approach is to automatically generate

training examples for learning a new wrapper for the new unseen Web site.

Our system can handle attribute items with ambiguous format in different

Web sites.

19

Chapter 3

Automatic Construction of

Hierarchical Wrappers

Our wrapper learning framework is composed of two stages. The first stage

is the hierarchical record structure inference task. The second stage is the

extraction rule induction task. Once a wrapper is learned after these two

tasks, it can be used for information extraction for the particular Web site.

The hierarchical record structure inference task attempts to infer the hi-

erarchical record structure of the Web documents based on the attribute

item samples given by users. Users only need to specify the attribute items

of interest and by annotating them in the document. The inference process

automatically infers the hierarchical record structure. For example, Fig-

ure 3.1 depicts a sample of hierarchical record structure which can model

the records contained in the Web page as shown in Figure 1.1. The inference

problem seems to share some resemblances with context-free or tree grammar

inference problems. However, our hierarchical record structure allows multi-

20

valued attribute items and missing attribute items. Ordinary context-free or

tree grammars are inadequate for representing the hierarchical record struc-

ture. Furthermore, only positive examples are available and they are likely

incomplete. To cope with these characteristics, we develop a viable record

structure inference algorithm. The detailed description of this algorithm is

discussed in Section 3.1.
root

book_title repetition (author) price

I 八
author list—price final_price

Figure 3.1: The hierarchical record structure for the book information shown

in Figure 1.1

The second stage is the extraction rule induction task. A set of extrac-

tion rules are induced for each node in the hierarchical record structure. One

unique characteristic of our rule induction approach is that it considers both

lexical and semantic generalization in the learning process. An extraction

rule mainly consists of three parts: the left pattern component, the target

pattern component, and the right pattern component. The rule induction

can optionally allow two kinds of knowledge: domain independent and do-

main specific semantic classes. Domain independent semantic classes are

used to recognize common contents such as city names and country names.

Domain specific knowledge is used to recognize specific content tailor-made

for a particular domain. For example, in online product catalogs, there is

21

a specific semantic class for the attribute item "price" that stores the key-

words, thesaurus, and symbols related to price like "price", "sell", and "buy".

The details of the extraction rule induction algorithm will be described in

Section 3.2.

After this two-stage learning process completes, attribute items from

other Web pages of the same Web site can be extracted by making use of

the inferred hierarchical record structure and applying the learned extraction

rules.

3.1 Hierarchical Record Structure Inference

The first stage is to infer a hierarchical record structure description for the

records in a Web site. The content of the Web site is automatically down-

loaded and tokenized. The relationship among attribute items of interest

is modeled by a hierarchical record structure. It is a tree-like structure in

which the leaf nodes are single attribute items. The root node in the struc-

ture represents the whole record. An internal node in the structure represents

a certain part of the content of its parent. An internal node normally com-

prises multiple attribute items. There is a special kind of internal node called

repetition. The child pattern under a repetition node can be repeated zero

or more times. Hence, a repetition node can model multi-valued attribute

items. In principle, the hierarchical record structure can have arbitrary many

levels of embedded data. There is no restriction on the order of the nodes in

the structure at the same level. Besides, it allows missing attribute items in a

record. An example of a hierarchical record structure is shown in Figure 3.1.

22

The record structure in this example contains a book title, a list of authors,

and a price. The price consists of a "list price" and an "our price". There is

no restriction on the order among items under a parent node. A record can

have any item missing.

In general, our hierarchical record structure shares some resemblances

with context-free tree grammars [31]. Recall that an ordinary tree grammar

is defined as a four-tuple Gt = (V, r, P, C) where F = A/‘ U E is the grammar

alphabet (nonterminal and terminals) and (V，r) denotes ranked alphabets.

Productions in P are of the form 7\ 7}，where 7\ and Tj are trees. (in %

is a finite set of "starting trees" and Ty denotes the set of trees with nodes

labeled by elements in V. However, our hierarchical record structure cannot

be fully represented by this ordinary tree grammar. The first difference is

that our hierarchical record structure allows missing alphabets. One could

model it by enumerating all combinations of all nonterminal nodes with the

rank ranging from 1 to r, where r is the rank of the original node. However,

the grammar will be extremely complicated and messy. The second differ-

ence is that our hierarchical record structure allows multi-valued alphabets.

In ordinary tree grammars, the rank of a node is finite and hence it can-

not effectively model multi-valued items. Third, in our hierarchical record

structure, the terminal alphabets can only appear once. Lastly, only positive

training examples are available in our inference process. Gold [29] proved

that regular language cannot be identified by only positive examples. In or-

der to cope with these properties, we propose a record structure grammar to

represent the hierarchical record structure.

Formally, our record structure grammar can be modeled by three-tuple

23

G' = (y, P, C) where V = NoUNrU^is the grammar alphabet. N�and Nr

are two kinds of nonterminals, namely, ordinary nonterminals and repetition

nonterminals respectively. There are no common alphabets among TV�, N ”

and E (i.e, iV�门 TV” fi I； = 0). Productions in P are of the form 7] I} ,

where 7] and 7} are trees. For any tree T, there is no restriction on the order

among the subtrees in T. Consider any production p of the form Ti Tj in

P. It denotes the fact that productions of the form Ti Tj exist such that Tj

is formed by removing any subtree in Tj. The set of repetition nonterminals,

Nr, can model repetition. The subtree under a repetition nonterminal can

repeat any number of times.

We have developed a hierarchical record structure inference algorithm

tailored to our problem. Before presenting the inference algorithm, we intro-

duce a notion, called "cover". A tree/subtree "cover" T) if and Tj follow

the situation shown in Figure 3.2. In this figure, A, B, and C denote different

subtrees and "=>" denotes the tree in left hand side "cover" the tree in right

hand side. It describes that a newly formed tree will cover the ordinary tree

by moving any one of the subtree one level higher. Recall that a leaf node in

our hierarchical record structure represents an attribute item and an internal

node represents certain content of its parent. In order to extract the content

of an internal node or a leaf node, the content of its parent is required to be

identified in advance. Therefore, we can deduce that the most general record

structure is the one without any internal node. Although this kind of record

structure gives the least hierarchical information of the record, it can handle

most variations in the record structure in practice. The idea of "cover" is to

relax some restrictions on the hierarchical record structure in order to han-

24

die more variations of the records although some of the information of the

internal node may be lost.

八
八 ^ / \

A B

Figure 3.2: A situation for "cover"

Function Hierarchical Structure Inference

1 Construct the raw record structure from examples
2 foreach label ？; of the nodes
3 if the nodes labeled with v have parents which have different

labels • • • , v'j^) where k > 1
4 Reduce.Nodes

5 end if
6 if the proportion of the number of training example that

have more than one node labeled with v to the number of
total training examples is greater than a threshold

7 Create a repetition node as the parent of this node
8 end foreach

Figure 3.3: The outline of the hierarchical record structure inference algo-
rithm

Figure 3.3 shows the outline of our hierarchical record structure inference

algorithm. Figure 3.4 shows the function Reduce一Nodes used by the hierarchi-

cal record structure inference algorithm. We illustrate our algorithm through

a simple example. Suppose there are fifteen training examples as shown in

25

Function Reduce Nodes

1 foreach v'̂ in (？；̂, • • •

2 m = number of training examples that have a node labeled with v\
3 fi = number of training examples that have a node labeled with v, which is

also a child of the node labeled with
4 Estimate the probability Prob{v[) that a node labeled with v \s a child of the node

labeled with v̂ by calculating f i / r i i
5 end foreach
6 p j = the highest probability among pi , --- ,pk
7 'if Pj is significantly higher than all the others
8 Move all the subtrees of the nodes labeled with v to the node

labeled with v which is also a children of the node labeled with v'j
9 Delete all the subtrees whose root is labeled with v and are not

children of the nodes labeled with v'j
10 else P j is not significantly higher than the probabilities of N - 1 nodes

11 Form a new node n' under the common ancestor of these N nodes
12 Move all the subtree whose root is labeled with v and are children of

these N nodes
13 Delete all the subtrees whose root is labeled with v except

the newly created one
14 end if

Figure 3.4: The outline of the funcion Reduce-Nodes used by the hierarchical
record structure inference algorithm

26

Figure 3.5 and five training examples as shown in Figure 3.6. The algorithm

first will create the raw record structure as shown in Figure 3.7. The number

within the square brackets in Figure 3.7 shows the number of training ex-

amples containing the node. In this raw record structure, two leaf nodes are

labeled with D and have different parents. We refer the node D under the

node B as Db and the node D under the node C as D�. The probability that

D will be a child of B is estimated by 15/20 = 0.75 and the probability that

D will be a child of C is estimated by 5/20 = 0.25. The algorithm decides if

the probability that the node Dt will appear is significantly higher than the

probability that the node Dc will appear. If the probability that the node

Db will appear is significantly higher than the probability that the node Dc

will appear, the subtree of Dc will be moved to the position under D^ and

Dc will be removed. The resulting hierarchical record struture will be the

same as the one shown in Figure 3.5. If the probability that the ode Db

will appear is not significantly higher than the probability that the node Dc

will appear, a new node will be formed under their common ancestor (root).

Their subtrees will be placed under the newly formed node. Both Db and Dc

are then removed. The resulting hierarchical record structure will be same

as the one shown in Figure 3.8.

Hoeffding proved that the confidence range of Bernoulli variable with

probability p and observed frequeny f out of n tries is given by Hoeffding

bound [34]:

f f x 2
p < y — log - with probability larger than (1 - t). (3.1)

Ti V 2?t» t

Based on the Hoeffding bound, the probability that a node labeled with v

27

root

A B C

D

Figure 3.5: A sample of training example for the record structure inference

algorithm

root

A B C

D

Figure 3.6: An other sample of training example for the record structure

inference algorithm

root [20]

A [20] B [20] C [20]

D ri51 D『51

Figure 3.7: The raw record structure constructed by the record structure

inference algorithm from the training examples as shown in Figures 3.5 and

3.6

28

root

A B C D

Figure 3.8: A sampe of possible resulting hierarchical record structure

will be a child of the node v'- {Prob{vy'^) is significantly higher than the

probability that the node labeled with v will be a children of a node Vj

{Prob{vy'.)) if the difference of the estimated probabilities is larger than the

sum of their confidence range, that is:

M f^j / r ^ 2 / 1 1 、 ，、

——-> - — + — = 3.2
〜 ； r i v ' j V 2 t ^ J

where fx is the number of training examples containing the node labeled with

V which is a child of the node x, and Uy is the number of training examples

containing the node y. The probability of a wrong rejection is kept below 2t.

Hence, the higher the value of t, the more likely that accepting the hypothesis

that Prob(Djj0 > Prob{vy'.). Refer to the above mentioned example, if t is

set to 0.2, we will accept that Proh{Di) > Prob(Dc).

Suppose there exists N nodes labeled with v have Prob(vx) where oc is N

distinct labeled internal node, and there is no node in these N nodes with

Prob{vx) significantly higher than the others, (step 10 of the Reduce—Nodes

function), we have to reduce these N highest probability nodes into a single

node. In our algorithm, we form a new node under the common ancestor of

these N highest probability nodes. All the subtrees of these nodes will be

placed under the newly created node. These N nodes are then removed. The

idea of this approach is based on the idea of "cover" mentioned above. Placing

29

a node in a higher level of the hierarchy will cover more general sequence and

the resulting hierarchical record structure will be more general.

If the proportion of the number of examples containing more than one

nodes labeled with v to the total number training examples is greater than a

threshold, such node labeled with v will be placed under a repetition node.

Figure 3.9 depicts four different training examples from the Web site as

shown in Figure 1.1 for the hierarchical record structure inference algorithm.

Some of the training examples consist of a "final price" under the "price"

node, while some of them consist of a "final price" under the "root" node.

Some of them contain "list price". Some of them contain more than one

"author". Our record structure inference algorithm infers the hierarchical

record structure from these training examples. The resulting hierarchical

record structure for the records in the Web site as shown in Figure 1.1 is

shown in Figure 3.1.

3.2 Extraction Rule Induction

After a hierarchical record structure is inferred in the first stage, the next

stage is extraction rule induction. Recall that each node in the record struc-

ture corresponds to a certain part of the record. A set of extraction rules are

learned for each node in the structure. The nodes in the structure are pro-

cessed in a depth-first order. The set of rules are responsible for extracting

that particular item from its parent field. If a node is a repetition, the set

of extraction rules are applied to extract a field that may contain multiple

items. After that, the extraction rules of the child node will be applied it-

30

root root

list—price finaLprice

(i) (iii)

root root

book_titIe author price book_titIe price

I - 八
final—price list—price finaLprice

(ii) (iv)

Figure 3.9: Different training examples from the Web site as shown in Fig-

ure 1.1 for the hierarchical record structure inference

eratively to extract multiple individual attribute items. Refer to Figure 3.1,

there is a set of extraction rules associated with the "root" which identifies

each record inside the documents. There is also a set of extraction rules

associated with the node “repetition(author)” which is applied to the "root"

node to identify the text fragment regarding the whole list of authors from

the record. The set of extraction rules associated with "author" will be ap-

plied to the node "repetition(author)" iteratively to identify the individual

author attribute items.

An extraction rule consists of three distinct components: the left pattern

component, the target pattern component, and the right pattern component.

The left pattern component describes a sequence of left delimiters of the tar-

get attribute item. Each delimiter can be a raw token or a semantic class.

It instructs the wrapper to scan and consume the content of the document

31

and matches with the sequence of delimiters in the pattern description. Sim-

ilarly, the right pattern component describes a sequence of right delimiters of

the target attribute item. It instructs the wrapper to scan and consume the

content of the document and matches with the sequence of delimiters in the

pattern description. The target pattern component describes the semantic

concept of the attribute item. It consists of a list of raw tokens or semantic

classes. It instructs the wrapper to test if the text fragment contains the

pattern. A text fragment will be extracted only if it matches with the left

pattern component, the right pattern component, and contains the target

component.

A raw token can be a lexical term like HTML tag, or a lexical string in the

free texts. A semantic class represents a more general concept. We organize

lexical terms and semantic classes in a hierarchical manner. Each token or

semantic class can be generalized to another semantic class. The semantic

classes can be either domain independent or domain specific. Consider the

following fragment of a HTML document:

Now Sell : $ < B > 265.95 < /B > < BR >

The semantic classes of the tokens is shown in Figure 3.10. Domain indepen-

dent semantic classes include TEXT, DIGIT, FLOAT, PUNCT, HTML.TAG,

HTML-LAYOUT, HTML-FONT，and HTML—PARAGRAPH. CURRENCY

is a domain specific semantic class representing currency literals like "$".

To extract the price attribute item from the example, our rule induction

algorithm will learn the following extraction rule:

Left pattern component: (<CURRENCY>, semantic—class),

32

ANY

TEXT PUNCT CURRENCY HTML—TAG

I I I
New Sell DIGIT : $ HTML—LAYOUT

I 八
FLOAT HTML-FONT HTML—PARAGRAPH

I 八
265.95

Figure 3.10: Examples of semantic classes organized in a hierarchy

(“，，, token).

Target pattern component: (<FLOAT〉，semanUc-class).

Right pattern component: (“,,, token),

(“
，，，token).

where (X, token) represents that X is a token string. (Y, semantic.class)

represents that y is a semantic class.

Our rule induction algorithm discovers extraction rules based on training

examples associated with a node in the hierarchical record structure. The

training examples are text fragments corresponding to the content repre-

sented by the node in the record structure. Figure 3.11 presents the outline

of the extraction rule induction algorithm. It is a sequential covering al-

gorithm. When there are some uncovered positive examples in the training
33

pool, it tries to learn a rule that covers as many positive examples as possible

by invoking the function Generate—And—Test. The best rule learned will be

inserted into the rule set. Examples covered by the rule set will be removed

from the training pool. Once all positive examples in the training pool have

been covered, a post-pruning process is required to refine the rule set by the

function Post一Prune. Figures 3.12 and 3.13 depict the outline of the functions

Generate-And-Test and Post-Prune. Finally, the rule set is returned.

Function Extraction Rule Learning

1 {Rule-Sets} = empty.
2 {Inst} = user-labeled training samples
3 Struct = Hierarchical Record Structure
4 foreach node n in Struct
5 {Inst-n} = training instances for node n in { Ins t }
6 RuleSet-n = rule set of node n in Struct = empty
7 while {Inst-n} is not empty
8 Rule = Generate_And_Test({/nst-n}
9 {Rule-5et-n} = {RuleSet』} U Rule

10 Remove_Covered_lnstances({/nst_n})

11 Post_Prune({/?i7/e_Set-n}
12 add Rule-Set-n to {RuleSets}

13 return {RuleSets}

Figure 3.11: The outline of the extraction rule induction algorithm

In each iteration, our algorithm tries to select the shortest example that

is not covered by the current rule set as the seed. Then a left pattern will be

generated by scanning w tokens before the seed. After that, we generate all

the combinations of the token strings, as well as their semantic classes. Each

34

Function Generate-AncLTest({lnst-n})

1 seed = the shortest instance in {Inst-n}
2 {left-tokens} = w tokens before the seed
3 {Left-Candidates} = all combinations of the token strings and

their semantic classes in {left-tokens}
4 foreach candidate in {Left-Candidates}

5 Score_Left_Candidate(ca/7£y/c/ate, {Inst.n})
6 {Best-Left} = Find.Best-N{{Left-Candidates})

7 {right-tokens} = w tokens after the seed
8 {Right-Candidates} = all combinations of the token strings and

their semantic classes in {right-tokens}
9 foreach candidate in { R i g h t - C a n d i d a t e s }

10 Score_Right-Candidate(canc//cyate, {Inst-n})

11 {Best.Right} = Find-Best-N{{Right-Candidates})

12 {Candidate-Rules、= {Best-Left} x [Best.Right]

13 foreach candidate—rule in { C a n d i d a t e - R u l e s }

14 Score.Ru\e{candidate.rule, {Inst-n})

15 best一rule = the best candidate-rule in { C a n d i d a t e - R u l e s }

16 Find_Common_Pattern(6est_rt7/e, {Inst-n})
17 return the best-rule

Figure 3.12: The Generate.And.Test function used by the extraction rule
induction algorithm

Function Post.Prune({Rule-Set})

1 foreach rule in {RuleSet}

2 if precision of rule is less than a pre-defined threshold a
3 remove rule from {RuleSet}
4 sort the rules in descending of precision

Figure 3.13: The Post-Prune function used by the extraction rule induction
algorithm

35

combination acts as a candidate for the left pattern component of the rule.

These candidates will be scored by the function Score—LefLCandidate. Next,

Ni best left pattern candidates will be selected by the function Fin<LBest-N.

Then, N2 best right pattern candidates will be selected in a similar manner.

The Candidate-Rules will be generated by forming combinations of the 7Vi

best left pattern candidates and N2 best right pattern candidates. The best

rule will be obtained after each candidate rule in the Candidate-Rules is

tested. After that, the patterns in the content of training examples covered

by the best rule will be found by the function Find.Common-Pattern. These

patterns will become the target pattern component of the best rule. Finally,

the best rule will be returned by the function and the rule will be added into

the rule set.

In the function Post-Prune, each rule in the rule set will apply to the

training examples individually. Their precisions will be calculated. If the

precision is less than a pre-defined threshold a, the rule will be removed

from the rule set. The rules in the rule set will be sorted in descending order

of their precisions.

Figures 3.14 and 3.15 describe some functions used by the extraction rule

induction algorithm. In the Score-Left.Candidate function, the left pattern

component candidate tries to "tag" the start positions of the attribute item.

In the Score-Right-Candidate function, the right pattern component candi-

date tries to "tag" the end position of the attribute item. In the Score-Rule

function, the candidate rule tries to "tag" the start and end positions of

the attribute item. The number of correct and wrong "tag" will be calcu-

lated. The score is computed by dividing the number of wrong "tag" by the

36

Function Score.Left-Candidate(left-pattern, inst-n)

1 apply left-pattern in {inst-n} to "tag" the start position
2 count the number of correct, and wrong "tag"
3 return score = wrong/correct

Function Score. Righ t_ Ca n did a te (righ t-pa ttern, inst-n)

1 apply right-pattern in {inst-n} to "tag" the end position
2 count the number of correct, and wrong "tag"
3 return score = wrong/correct

Function Score-Rule(candidate-rule, inst-n)

1 apply candidate-rule in {inst-n} to "tag" the start and end positions
2 count the number of correct, and wrong "tag"
3 return score = wrong/correct

Figure 3.14: The score functions used by the rule induction algorithm

Function Find.Best-N(candidates)

1 return the N best candidates with
1. lowest value of score
2. highest number of correct tag
3. most specific patterns

Function Find.Common.Pattem(best-rule, inst-n)

1 return the semantic classes which are:
1. contained by most of the training examples covered by the best.rule
2. specific semantic classes

Figure 3.15: The Find-Best-N function, and the Find_Common_Pattern
function used by the rule induction algorithm

37

number of correct "tag". The smaller the score, the better the candidate

is. In the Find-BesLN function, N best candidates are returned. A can-

didate will be preferred if: 1) It has a smaller value of score; 2) It has a

higher number of correct "tag" ； 3) It is a more specific pattern component

or rule. A pattern is said to be more specific than other patterns if 1) it

consists of more token strings, or 2) the semantic classes are more specific.

A semantic class is said to be more specific if the semantic class is located

at a lower level of the semantic class hierarchy. For example, as shown in

Figure 3.10, the semantic class "HTML_FONT" is more specific than the

semantic class “HTML丄AYOUT". In the Find.Common.Pattern function,

the training examples covered by the best rule will be tested if they contain

some common patterns. We consider patterns such as DIGIT, FLOAT, or

some domain specific semantic classes like CURRENCY. If the proportion

that the training examples containing one or more common pattern exceeds

a threshold /3, these common patterns will be returned. Figure 3.16 depicts

one of the extraction rule learned by our extraction rule induction algorithm

for the final price of the Web page as shown in Figure 1.1.

3.3 Applying Hierarchical Wrappers

In order to extract the attribute items of interest from a Web page or a doc-

ument, our wrapper makes use of the inferred hierarchical record structure

and the sets of learned extraction rules. The document is first broken down

into a sequence of tokens. Based on the inferred hierarchical record structure,

the induced extraction rules for the root node in the structure are applied to

38

Left pattern component: (“Our”, token),

("Price", token),

(“:，，，token),

(< HTMLJMG. TA G>, semantic.class).

Target pattern component: (<FLOAT>, semantic.class).

Right pattern component: (“ ，’, token),

("&nhsp;", token),

(“，，，token),

(< HTML.FONT. TA G>, semantic.class).

Figure 3.16: A sample of extraction rule for the final price of the Web page

shown in Figure 1.1

the sequence of tokens to obtain each record. Then the content correspond-

ing to each internal node is extracted. If the node is a repetition node, the

extraction rules of the repetition node will be applied to extract a text frag-

ment. After that, the extraction rules of the child node will be applied to this

fragment to extract multiple individual attribute items. Each attribute item

is extracted independently among its siblings in the structure. Finally, we

group together the individual attribute items to assemble multi-slot records.

39

Chapter 4

Experimental Results for

Wrapper Induction

In order to demonstrate the effectiveness of our wrapper induction approach,

we have conducted extensive experiments to extract items from a variety of

real-world Web sites containing online book catalogs and consumer electronic

appliance catalogs. Table 4.1 depicts the Web site name and the URL address

used in our experiment. T1 to T3, SI to Sll are book catalogs. The attribute

items of interest are title, author, and price of the books. T1 to T3 are used

for parameter tuning. S12 to S19 are consumer electronic appliance catalogs.

The attribute items of interest are the model number, description, and price

of the products. For each Web site, we have manually collected a number

of Web pages and all records from each page for evaluation purpose. The

total number of Web pages and the total number of records collected are

also depicted in Table 4.1. Some of these Web sites contain records with

hierarchical structure. Most of them contain records with missing attribute

40

items, multi-valued attribute items or attribute items in unrestricted order.

For each Web site, we randomly selected one Web page and used the

annotated records in this page for training examples. The remaining records

in other Web pages of the Web site are reserved for evaluating the extraction

performance. Table 4.2 depicts the number of user annotated training records

for learning a wrapper for each Web site. Table 4.3 shows a sample for

training record for the Web site S8. Based on the user annotated training

examples, a wrapper is induced for each Web site. In order to measure

the extraction performance, the answers extracted by the system will be

compared with the correct answers. We use two metrics, namely, precision

and recall, which are widely used in information retrieval tasks, to evaluate

the extraction performance. Their definitions are as follows:

Definition 4.1 Precision is defined as the number of attribute instances for

which the system correctly identifies divided by the total number of attribute

instances it extracts.

Definition 4.2 Recall is defined as the number of attribute instances for

which the system correctly identifies divided by the total number of actual

attribute instances.

In the parameter tuning process described below, we also make use of an

evaluation metric called F-measure [51] which is defined as follows:

n 2 X recall x precision , �

F-measure = — (4.1)
recall + precision

In our wrapper induction approach, three parameters are needed to be

determined in advance. The first parameter is the window size w in the

41

Web site Number N u m b e r ~
(URL) of pages of records

T l lBookstreet.com |~5 i25
(http://www.lbookstreet.com)

T2 DigitalGuru Technical Bookshops 17
(http://www.digitalguru.com)

T3 Jim's Computer Books ~7
(http://www.vstore.com/cgi-bin/pagegen/vstorecomputers/jimsbooks/)

51 Amazon.com |~5 125
(http://www.amazon.com)

52 Barnes Noble.com ~5
(http://www.barnesandnoble.com)

53 BookCloseouts.com 3 112
(http://www.bookcloseouts.com)
Powell's Books
(http: / / www.powells.com)
Words Worth Books 10
(http: / / www.wordsworth.com)

S6 bookpool.com "~5 I^i
(http://www.bookpool.com)
half.com “ 6
(http: / /half, ebay.com)

58 Half Price Computer Books ~5
(http:/ / www.halfpricecomputerbooks.com)

59 Discount-PCBooks.com ~~14 nO
(http://www.discount-pcbooks.com)

510 mmistore.com ~ I l n O
(http:/ / www.mmistore.com)

511 eCampus.com " T l nO
(http://www.ecampus.com)

512 l-888Camcorder.com ~To lOO
(http: / / store.yahoo.com /1888camcorder)

513 American eSuperstore.com
(http: //store.yahoo. com / americanesuperstore)

514 220Appliances.com 8 1I3
(http://www.220appliances.com)
Circuit City 6 IW
(http://www.circuitcity.com)

S16 Etronics.com 12
(http://www.etronics.com)

S 1 7 D V D Overseas Electronics 13 f l o
(http://www.dvdoverseas.com)

518 Cambridge Sound Works 12
(http://www.hifi.com)

519 BestBuy.com 4
(http://www.bestbuy.com)

Table 4.1: Information sources for experiments

42

http://www.lbookstreet.com
http://www.digitalguru.com
http://www.vstore.com/cgi-bin/pagegen/vstorecomputers/jimsbooks/
http://www.amazon.com
http://www.barnesandnoble.com
http://www.bookcloseouts.com
http://www.powells.com
http://www.wordsworth.com
http://www.bookpool.com
http://www.halfpricecomputerbooks.com
http://www.discount-pcbooks.com
http://www.mmistore.com
http://www.ecampus.com
http://www.220appliances.com
http://www.etronics.com
http://www.dvdoverseas.com
http://www.hifi.com
http://www.bestbuy.com

Number of Number of Number of
Web site user annotated Web site user annotated Web site user annotated

label training records label training records label training records
T1 一 10 S I 1 0 一S12 10
T2 一 6 S 2 ~ 10 一S13 10
T 3 ~ 10 — S3 10 - S14 10

一 S4 10 — S 1 5 10
一 S 5 ~ 10 一S16 8
一 S6 10 一S17 10
— S7 10 — S 1 8 10
一 S8 10 一S19 10
一 ^ 8 . —

—sio 10 -
I I Sll 10 I I

Table 4.2: The number or user annotated training records for learning wrap-

per for each Web site

Attribute item Field value

Book Title: Foundations of Visual C + +

Programming for Windows 95

Author: Paul Yao

Author: Joseph Yao

Final Price: 19.99

Table 4.3: A sample of a user annotated training example for the Web page

shown in Figure 1.1

43

Generate-And-Test function described in Section 3.2 in Chapter 3. The sec-

ond parameter is the threshold a used in the Post-Prune function described

in Section 3.2 in Chapter 3. The third parameter is the threshold used

in the Find一Common_Pattern function described in Section 3.2 in Chapter

3. In order to determine the values of the parameters, we randomly chose

three Web sites, labeled as Tl，T2, and T3, for tuning the parameters. We

exhaustively conducted experiments for these three Web sites with different

parameter values. A wrapper is automatically generated for each of the Web

sites using the user annotated training examples. The wrapper is then used

to extract records from other Web pages in the same Web sites. The aver-

age of the F-measure, which is defined as the combination of precision and

recall, is used for the evaluation of the parameter settings. We selected the

parameter setting that achieves the highest performance. Then this set of

parameters will be used in all the remaining testing sites in our experiments.

The parameters selected were w = A, a = 0.1, and P = 0.8.

Table 4.4 shows the performance of our wrapper induction approach on

the Web sites containing book catalogs. It depicts the precision (P) and recall

(R) of each attribute item of interest of all records in a particular Web site.

The result illustrates that our wrapper induction approach is very effective.

The overall average of both precision and recall are over 94%. Detailed

performance of each page in each Web site is depicted in Appendix A. Some

of the Web sites such as S3, S7, S8, and S9 contain records with relatively

simple record structure. Our wrapper induction approach can handle these

Web site very effectively. The precision and recall for extracting attribute

items from these Web sites are close to, or even reach 100%. Some of the Web

44

Title Author Price
Web site P (%) R (%) P (%) R (%) P (%) R (% f

51 Amazon.com 97.0 97.0 97.0 98.0 97.0 98.0
52 “ Barnes k Nobel.com 90.6 100.0 ~ 100.0 66.7 97.9 100.0
53 BookCloseouts.com “ 100.0 100.0 100.0 100.0 100.0~~100.0
54 PowelFs Books “ 99.0 99.0 80.2 97.0 1 0 0 . 0 1 0 0 . 0
55 “ WordsWorth Books 100.0 100.0 97.8 100.0 75.6 75X~
5 6 _ boQkpool.com 100.0 99.0 _ 100.0 9 9 . 0 ~ 100.0 99.0
57 half.com 100.0 100.0 94.0 100.0 97.0 97.0
58 “ Half Price Computer Books 100.0 100.0 "TOO.O 100.0 91.3 9 1 ^
59 DiscQunt-PCBQoks.com 100.0 100.0 100.0 100.0 1 0 0 . 0 1 0 0 . 0
SIQ mmistore.com 100.0 100.0 " 100.0 100.0 100.0 100.0
S l l eCampus.com 96.0 96.0 100.0 98.0 100.0 100.0

Average 97.0 99.2 95.8 96.2 94.8 95.0

Table 4.4: Performance summary of our wrapper induction approach on the
Web sites containing book catalogs

sites, for example SI, S2, and SIO, contain book records with one or more

authors. A sample of the hierarchical record structure inferred by the system

for these Web sites is shown in Figure 4.2. Our wrapper induction can still

handle these Web sites effectively. The precision of our wrapper induction

approach on the extraction of attribute items are over 90% in most of the

cases.

S5 shows a less satisfactory performance on the attribute item price. Fig-

ure 4.1 shows one of the testing HTML pages of S5. The price of the first

record is "44.95". The following shows the corresponding excerpt of the

HTML text:

...
Our Price: $44.95
<i><A HREF= "/searches/

isbnsearch.asp?isbn=0132870797&sessionID=ww74255237011">Read ...

The price of the third record is "35.96". The following shows the correspond-

45

i i ^ l i a i M i f 1
.i^ri'ft•；^anirg^ 二 1 Cqi Programming With Java -- §

Author Event ^ Cornell, Gary / Paperback / 12/1/Q2 S
Wehavetherr^™J| Our Price： $44,95 §

^^^Bsms^^m Read more about this title,.. §
The Writer's Desk 芸

ŷfrâ abSit̂ tĥ selves foundations of Programming Languages : Design and Implementation -- 5
and the^books™™ ^^�恤,^eyed/Paperback / 12/1/02 m

Our Price: $71.95 「丨

weekly c o n t e s t R e a c J mae djout OUs'tUfe.,.
Try your hard at our
weekly first lines contest. Tuomas 3. Lukka's Object-Oriented Programming in Perl —

. , • ； Lukka, Tuomas J./Lukka, T. J. / Paperback / 12/1/02
The Indepisndent : Our Price: $35.96 ~ You Save: $4,00 (10.00%)
BBsteaibr Lict _ • ficad more dxx/t ihb title...

、 ； C I lent/Server Programming With Javabeans - j

二 識 Orfali, Robert/ Harkey. Dan / Pap^back / 11/1/02 fe

you Our Price: $54,99 g
ship, 13 this secu-o, Read more dxxjt this title... p
and ovar/thing sico. S

ŝ̂ jgtg-；；；^̂ Inferno Programming With Limbo — ~
woridwidBShimim Stanley-Marbell, Philip / Paperl^ck /10/1/02 |
you name It.,. Our Price: $59.99 _

Read more at?out this title.., £
send us feedback g g

Visual Basic .Net Internet Prcxjramminq - B
M M Franklin, Carl / Paperback /10/1/02 S
WDTdsworth ,,��) Our Price: $45.00 ~ You Sa^e: $5,00 (10.00%) |

Figure 4.1: A sample of a testing Web page of S5

46

ing excerpt of the HTML text:

. . . < b r > O u r Price: $35.96 �< N O B R > < f o n t c o l o r = # 9 9 0 0 3 3 > You ...

In our experiment, we only randomly used few user annotated records as

training examples for inducing the wrapper. The training set we used for

S5 only contained training examples having the format similar to the first

record in Figure 4.1. The following shows the extraction rule induced for the

attribute item price of S5:

Left pattern component: (Our, token),

("Price", token),

(“:”，token),

(T\ token).

Target pattern component: (<FLOAT>, semantic-class).

Right pattern component: (“
 ”，token),

(“<i>,，’ token).

(“<HTML-LINK>”，semantic一class),

(“Read，，, token).

Therefore, it cannot correctly extract the attribute item price if the records

are formatted as the format of the third record in Figure 4.1. However, we

believe that our wrapper induction approach can achieve a more satisfactory

performance by providing more training examples to the system.

Table 4.5 shows the performance of our wrapper induction approach on

the Web sites containing consumer electronic appliance catalogs. It depicts

the precision (P) and recall (R) of each attribute item of interest of all records

in a particular Web site. The result illustrates that our wrapper induction

47

root

book-title repetition (author) price

author

Figure 4.2: The hierarchical record structure for the book information in the

Web sites SI, S2, and SIO

Model number ~Description~ Price
Web site P (%) R (%) P (%) R (%) P (%) R

l-888Camcorder.com 100.0 100.0 100.0 100.0 100.0 100.0
513 American eSuperstore.conT 100.0 97.8 93.3 100 .0100 .0
514 220Appliances.com —100.0 1 0 0 . � 1 0 0 . 0 100.0 100 .0100 .0

Circuit City 96.0 95.0 100.0 99.0 “ 100.0 98.4
Etronics.com 99.0 100.0 90.0 97X~ 98.0 99.0

517 DVD Overseas Electronics "lOQ.O lOO.O" 96.0 100.0 100.0~~100.0
518 Cambridge SoundWorks 100.0 87.1 52.9 86.3 1 0 0 . 0 8 7 T ~

BestBiiy.com 100.0 97.9 82.0 52.1 100.0 96.5
Average 99.4 97.2 89.3 91.1 99.8 97.6

Table 4.5: Performance summary of our wrapper induction approach on the
Web sites containing consumer electronic appliance

48

approach is very effective. The overall average of both precision and recall

are over 89%. Detailed performance of each page in each Web site is depicted

in Appendix B. Some of the Web sites, such as S12, S13, and S14，contain

records with attribute items displayed in fixed order. Our wrapper induction

approach can handle these Web sources effectively. The precision and recall

for extracting attribute items from these Web sites are close to, or even reach

100%. Some Web sites, such as S15, S16, and S19 contain records with miss-

ing attribute item price. In addition to the price attribute item, some of these

Web sites contain similar information like the "list price" or "save" as well.

Still, our wrapper induction approach performs very well on extracting pre-

cise contents from these Web sources with extraction performance exceeding

90% in most of the cases.

The extraction performance for the attribute item description in S18 and

S19 is less satisfactory. The reason for the extraction performance for S19 is

similar to that for S5 in the book domain. Some records in the testing set

of the experiment have a different format from the records in the training

set. Figure 4.3 shows a testing HTML page of S18 in our experiment. The

correct description for the first record in Figure 4.3 is:

"The perfect blend of high-performance video and audio combined

with 6-disc convenience in one surprisingly slim package."

However, the induced wrapper incorrectly extracts the following text frag-

ment as description:

"NEW! The perfect blend of high-performance video and audio combined

with 6-disc convenience in one surprisingly slim package."

Similar extractions also occur in extracting the description of the third and

49

IM

^ Onkyo DV-CP701 6-Disc Progressive Scan DVD §
Changer I i livlmliimi g-

^ - 圓 丨 s
fi . i r n ? — , '11.' The perfect blend of high-performance video and audio I ' ^ H W j f B W »
8 combined with 6-disc convenience in one surprisingly 酵

slim package. s
$279.99 B

- — --“——•.- 1
I

S Sony DVP-CX875 300 + 1 Disc Progressive Scan S
^ ^ ^ ^ ^ ^ DVD/CD Mega Gianger ‘ ! • “ ？ S

“ ^ j g r n / m m ^ 八丨丨 f̂ your media storage needs are taken care of with [S 1 2 3 E 1 S Z 3 .芸
g Sony's newest "big boy". Progressive scan processing |、v»KWj f jp [| | 雪:
8 provides film-like picture performance on compatible

^ i
險 Sony DVP-NS725P Progressive Scan DVD Player I - •.'/Wnŷ jp̂ 1

A/EWy rw -̂rpgymm
K a ^ ^ ^ g S j j i This new player from Sony is nol only packed with . “ ！ 二 〒

features but also promises breath-taking picture quality C ^ K Z E I E l
previously unheard of at this low price point!
$149.99

- �^
i

^ Sony SLV-D500P Progressive Scan DVD S
Ployei/VHS VCR I f �ffMIM B

^ MW! I � � • g
<0 -gTfijLijfiiSilfiPg**： This space-saver is filled with all the features you need 會

Figure 4.3: A sample of a testing Web page of S18

forth reocrds in Figure 4.3. The reason for such incorrect extraction is that

some of the training examples in the training set have the format similar to

the second record in Figure 4.3. The left pattern component of the extraction

rule mis-locates the left boundary of the description and includes additional

tokens in the extracted data. However, the extracted data still contains the

content of the description.

The encouraging result of our wrapper induction shows that our wrapper induction approach is capable of extracting content from Web pages with a flat or hierarchical structure. It can handle records which have missing attribute items, multi-valued attribute items, and attribute items in unre-

50

stricted order. The result also demonstrates that our approach can handle a

range of real-world online product catalog Web sites.

51

Chapter 5

Adaptation of Wrappers for

Unseen Web Sites

5.1 Problem Definition

Most of the wrapper induction techniques are able to automatically learn a

wrapper from a few user annotated training examples. The learned wrapper

is able to effectively extract precise information from different Web pages

located in the same Web site where the user annotated training examples have

been provided. However, the learned wrapper cannot be applied to extract

information from other new unseen Web sites even in the same domain, A

separate effort is required to prepare a new set of user annotated training

examples, in order to learn a new wrapper for the new Web site.

For instance, Figures 5.1 shows another Web page containing a book cat-

alogi. Figure 5.2 depicts the excerpt of the HTML text document associated

iThe URL associated with the Web page shown in Figure 5.1 is www.half.com.

52

http://www.half.com

it
..... — .恐•

WtMt C how to Program: Introducing C4 + and Java 3RD BK&CDR (with CD- S
^ g P ROM) Harvey M. Deitel, Paul J. Deitel 妄,

^ Paperback. 2000 - Buy it for iO.OO (Gavo 0S%) §

PPIBffl C十 t : How to Prugrarri Harvey M. Deitel |
• f f l W > p̂ pprhank Tgxthnnk. 1.QQ4 - Buy it for �n .QQ (Save 96%)

l O
‘ I

- ••• —.•••.•.••.,丨 -

D.ata,..StTUCtut:e.s...aiid..P.r.QO.ram..D.esi.Qii.in..C..±.� Robert L. Kruse, Alexander

位.；J. i
f f U > P p̂gr&acK, V m - Buy it for $39.00 (Save 46%) i
一一 — ^ ； 班

— 一 ‘ “ “ ”~ ™““ “ : 〜 : : . 一 —•‘.•• g；

Program PevBlopment & Design Using C++ |；
> Paperback Textbupk. 2000 - Buy it for $34.00 (save 51%) S

.."...“" ？!!t}

. �

B Programming with C-n-： Program Design Including Data Structures £

Davondar Malik, D. S. Malik £
> t t e M k . , — - Buy it for $45,00 (Save 35%) |；

i
— E；
• 二 ..j C.+ Pronrammlnn: From Problam Analysis to Prnpram npgigr. 妾

V Davendar Malik, D. S. Malik H-
» Paperback. 2002 - Buy it for i32,99 (Save Sl%) 芸：

Lî &snd _

^

Figure 5.1: A sample of a Web page containing book records coming from a

different Web site shown in Figure 1.1

53

<TD WIDTH="100

Program Development & Design Using C + + < /B> < /A> &:nbsp;
 <FONT

FACE= "Verdana,Geneva,Arial" SIZE="2"> » Paperback

Textbook, 2000 < / a> - Buy it for <font

color:“#CCOOOO’’> $34.00 < /a> (Save 51</TD> < /TR> <TR> <TD C0LSPAN=3>

〈TABLE WIDTH="100<TD WIDTH="100</TD> < /TR> </TABLE> < /TD> < / T R > <TR> <TD

WIDTH=50 VALIGN=TOP> <IMG

BORDER=0 SRC="http://art.half.ebay.com/prod70/1581141.jpeg" WIDTH=56 HEIGHT=70

ALIGN=ABSMIDDLE> < / A > < /TD> <TD WIDTH="100<FONT FACE= "Verdana.Geneva,Arial"

size="2"> < B >

Programming with C + + : Program Design Including Data Structures < / B > < / A > &!;nbsp;

Davendar Malik, D. S. Malik

»

Paperback Textbook, 2002 < / a> fenbsp; - Buy it for <a

href:=:“http://half.ebay.com/cat/buy/prod.cgi?cpid=1108738972&domain_id=:1856&meta」d=l”> <font

color=“#CCOOOO’’> $45.00 < / a> (Save 35</TD> < /TR>

Figure 5.2: An excerpt of the HTML texts for the Web page shown in Fig-

ure 5.1

54

http://half.ebay.com/cat/buy/prod.cgi?cpid=5254706&domain_id=1856&:metaJd=r'
http://half.ebay.com/cat/buy/prod.cgi?cpid=5254706&domain%e3%80%8dd=1856&meta%e3%80%8dd=l%e2%80%9d
http://half.ebay.corn/cat/buy/prod.cgi?cpid=5254706&:dornain_id=1856&:metaJd=l
http://half.ebay.com/cat/buy/prod.cgi?cpid=1108738972&:domain_id=1856&:metaJd=l
http://art.half.ebay.com/prod70/1581141.jpeg
http://half.ebay.com/cat/buy/prod.cgi?cpid=1108738972&domain_id=1856&meta-id=l
http://half.ebay.com/cat/buy/prod.cgi?cpid=1108738972&domain_id=:1856&meta%e3%80%8dd=l%e2%80%9d

with the Web page. The Web pages in Figures 5.1 and 1.1 are collected from

different Web sites. Both Web pages are about "programming books". Al-

though the wrapper learned from Figure 1.1 is able to extract book records

from Web pages in the same site very effectively, it cannot be applied to

extract information from the Web page shown in Figure 5.1. In order to

extract information in Figure 5.1, the user has to provide a new set of user

annotated training examples. Then a new wrapper tailored to the Web site

shown in Figure 5.1 can be learned.

Wrapper adaptation aims at adapting a previously learned wrapper of

a particular source Web site to a new unseen target Web site in the same

domain. For example, through wrapper adaptation, the previously learned

wrapper from the Web page shown in Figure 1.1 can be utilized and a new

wrapper can be discovered for extracting attribute items in the Web page

shown in Figure 5.1. This capability can also help solving the wrapper main-

tenance problem. In this paper, we present our framework for tackling the

wrapper adaptation.

5.2 Overview of Wrapper Adaptation Frame-

work

Figure 5.3 depicts our wrapper adaptation framework. The idea of our ap-

proach for wrapper adaptation is to first automatically identify some machine

annotated training examples in the unseen Web site. The machine annotated

training examples, corresponding to certain text fragments from Web pages

55

Discovered extraction FIT"~7TZiTT I fZ.TZ I
rules in the source Potent�a� Training Text Fragment

Source Website Example Candidate Classification 1/
Webs“e \ 、 Identification f \

f Wrapper 1 f N Content Wrapper] v Ne�v wrapper
Induction Modified Classification Model Induction "比 unseen

J \ J v̂) Web sile
Training ^ \ , . „ ^ Neighbour ^ ~ ； ^ \ /)
e^„y,lesfrom ^TflttsTurce Classification Model Approximate Matching Machine a,motmed
the source ileim Jrom the iource '' ® traming examples
WebSite WebSite � 丨、 丨 for the unseen Web sile

W r a p p e r Adapta t i on

Figure 5.3: Our wrapper adaptation framework

in the unseen site, are automatically annotated by our wrapper adaptation

approach. To achieve this, we make use of the previously discovered wrapper

and the extracted attribute items from the source Web site. After machine

annotated training examples are obtained, a new wrapper can be learned to

extract information for the unseen Web site.

Our wrapper adaptation framework is a two-stage method employing mul-

tiple learning paradigms. In the first stage, a modified nearest neighbour

algorithm is developed to seek potential training example candidates in the

unseen Web site. In the second stage, a text fragment classification model is

proposed to classify the potential training example candidates. Those "good"

potential training example candidates will be selected as machine annotated

training examples for the unseen Web site. Prom these machine annotated

training examples, a new wrapper for the unseen Web site can be learned to

extract information.

The objective of the first stage is to seek some potential training example

candidates from the unseen Web site. We make use of the extraction rules

of the wrapper previously discovered in the source Web site. Recall that

the target pattern component of the extraction rules captures the semantic

class of the attribute items of interest. This semantic information will be

56

utilized to locate the potential training example candidates in the unseen site.

Another characteristic of our technique is to automatically generate some

auxiliary example pages. Auxiliary example pages are Web pages from the

same unseen Web site, but containing different attribute item content. Under

the same Web site, we observe that generally the text fragments regarding

the attribute items in different pages are different, while the text fragments

regarding the layout format are similar in different pages. Based on this

observation, a modified nearest neighbor classification model is developed

to identify the appropriate text fragments for potential training example

candidates. One of the challenges in wrapper adaptation problem is that

Web pages in different Web sites have different layout format. In this stage,

the layout format of the Web pages is analyzed in a site-independent manner

with the modified nearest neighbour classification model.

In the second stage, a text fragment classification model is employed to

classify the "good" potential training example candidates. The attribute

items previously extracted from the source Web site embody rich knowledge

about the content of the attribute items. The idea of text fragment classi-

fication is to use a classification model to capture the characteristics of the

attribute items. This model consists of two components. The first component

is a content classification model. This content classification model considers

several features to characterize the content of the attribute items. In the

second component, we develop a lexicon approximate matching technique.

The previously extracted attribute items from the source Web site can be

treated as a large lexicon of the corresponding attribute items. This lexicon

provides another useful clue for locating "good" potential training example

57

candidates. Those selected "good" potential training example candidates

will become machine annotated training examples for the unseen Web site.

This text fragment classification model is proposed to tackle the challenge of

different layout format of attribute items in different Web sites.

After obtaining the machine annotated training examples, a new wrapper

for the unseen Web site can be discovered by our wrapper induction approach.

5.3 Potential Training Example Candidate Iden-

tification

Recall that in the first stage of our wrapper adaptation framework, the objec-

tive is to seek potential training example candidates. We introduce a concept

called useful text fragment.

5.3.1 Useful Text Fragments

A Web page can be regarded as a sequence of text tokens. A token can be

a word, number, punctuation, date, HTML tag, specific ASCII character, or

some domain specific contents such as manufacture names.

Definition 5.1 We define a segment to be a sequence of continuous tokens

in a Web page not containing any HTML tag, and is immediately before

and after tokens belonging to the semantic class delimiter. The delimiter

semantic class contains user defined tokens such as HTML tag, punctuation,

specific ASCII characters, or some domain specific contents.

58

Definition 5.2 We define a seed to be a segment of a Web page which

contains certain semantic meaning.

We can generate some text fragments by extending the seeds forward and

backward. A parameter T is used to control the extending window size.

Definition 5.3 For a seed s, Pre-Seed(s) is defined as the set of the positions

of the 2-th token immediately before s, where i = 1, • • • , T.

Definition 5.4 For a seed s, After-Seed(s) is defined as the set of the posi-

tions of the i-th token immediately after s, where i = 1 , . . . , T.

Definition 5.5 For a seed s, Extended-Seed(s) is defined as the set of text

fragments whose starting position and ending position are indicated by the

cross product of Pre-Seed(s) and After-Seed(s).

For instance, consider a seed cq in a Web page and suppose T is set to 3.

We get {Pre-Seed(co)} = {si, S2, S3} where Si is the position of the z-th token

immediately before c。，and {After-Seed(co)} = {ei, 62,63} where Sj is the

position of the j-th token immediately after cq. Then {Extended-Seed(co)}

becomes the set of text fragments whose starting position and ending position

is indicated by the set as follows:

{(si，ei), (si, 62), (si, 63), (52，ei), (s2,62), (S2,63), (S3，ei), (S3,62), (S3,63)}.

We define the useful text fragment (UTF) of a Web page as follows:

Definition 5.6 For a Web page P, we define UTF(P) as:

= Us{Extended-Seed(s)}

where s are all the seeds found in P.

59

5.3.2 Training Example Generation from the Unseen

Web Site

• H f
；"•；

Network File System Version 4 Brent Callaqhan 芸.
^ a p i » Hardcover. 1999 - Buy it for j:29.39 (Save 41%) 妄

P i
i-

装
F jOTH I Metwnrk Cfihllnq Handbonk Chris Clark P
M p f f i Q » Hardcover. 2001 - Buy it for $3,59 (Gave 9496)

•_ . ‘

|

.ii .ii_i * Notwork ArchitQctLiro and Design: A Field Cii ido for IT Concul tants J.

二 r F. Di Marzio, J. F. Di Marzio
I产 、Paperback. 2QQ1 - Buy it for £6.98 (Save 82%)]

,__-.’*<™-«—.-™-—_*-，-. - "一 .. •-•-•-..“,••,，，̂ A. J.… • „ Sjj^

P:
The Terror Network Claire Sterling • �

» Paperback. 1985 - Buy it for £0.75 (Save 81%) |；
•”_..'

‘ m Network Performance Basellning £
a b u H l » Hdidcover. 2000 - Buy it for $0.44 (Save 87%) £
|*r««\(MMm.t

— 芸
5
w：

PSm Network Pross Encvclopodia of Networking Womer Foibol 赛.

» Hardcover. 1999 - Buy it for $10.00 (Save 88%) a

资 B

‘• - — - —.•一- - .. •

Figure 5.4: A sample of Web page about networking books

Our wrapper adaptation will automatically annotate some machine an-

notated training examples in one of the Web pages in the unseen Web site.

We call the Web page where the machine annotated training examples will

be automatically annotated as main example page. Relative to a main ex-

ample page, auxiliary example pages are Web pages from the same Web site,

but containing different attribute item content. Generally, under a partic-

ular Web site, the text fragments regarding the attribute item content are

60

< / T D > <TD WIDTH="100 < B >

The Terror Network < / B > < / A > &;nbsp; Claire Sterling
〈FONT

FACE= "Verdana,Geneva,Arial" S IZE: "2" > » Paperback,

1985 < / a > &:nbsp; - Buy it for <font

color="#CCOOOO"> $0.75 < / a > (Save 81</TD> < / T R > < T R > <TD C0LSPAN=3>

<TABLE WIDTH="100<TD WIDTH="100</TD> < / T R > </TABLE> < / T D > < / T R > < T R > <TD

WIDTH=50 VALIGN=TOP> < IMG

BORDER=0 SRC="http://art.half.ebay.eom/prod70/1770674.jpeg" WIDTH=51 HEIGHT=70

AL IGN=ABSMIDDLE> < / A > < / T D > <TD WIDTH="100<FONT FACE= "Verdana,Geneva,Arial"

size="2"> < B >

Network Performance Baselining < / B > < / A > < B R > <FONT

FACE= "Verdana,Geneva,Arial" S IZE:“2" > » Hardcover,

2000 < / a > - Buy it for 〈font

color="#CCOOOO”> $6.44 < / a > (Save 87</TD> < / T R >

Figure 5.5: An excerpt of the HTML texts for the Web page shown in Fig-

ure 5.4

61

http://half.ebay.com/cat/buy/prod.cgi?cpid=3051974&domain_id:=1856&:meta%e3%80%8dd=l%e2%80%99%ef%bc%8c
http://half.ebay.com/cat/buy/prod.cgi?cpicl=3051974&domain%e3%80%8dd=1856&:metaJd=r
http://half.ebay.com/cat/buy/prod.cgi?cpid:=3051974&:domain_id=1856&meta%e3%80%8dd=l%e2%80%99%e2%80%99
http://art.half.ebay.eom/prod70/1770674.jpeg
http://half.ebay.com/cat/buy/prod.cgi?cpid=5019677&:domainJd=1856&meta-id=l
http://half.ebay.com/cat/buy/prod.cgi?cpid=5019677&domain_ici=1856&:meta%e3%80%8dd=:r%3e%e3%80%88font

different, while the text fragments regarding the layout format are similar in

different Web pages. This observation gives a good indication for locating

the attribute items.

Auxiliary example pages can be automatically obtained from different

pages easily in a Web site. One typical method is to supply different key-

words or queries automatically to the search engine provided by the Web

site. For instance, consider the book catalog associated with the Web page

shown in Figure 5.1. This Web page is generated by supplying the keyword

"PROGRAM" to the search engine provided by the Web site. Suppose a

different keyword such as "NETWORK" is supplied to the search engine, a

new Web page as shown in Figure 5.4 is returned. Only a few keywords are

needed for a domain and they can be easily chosen in advance. The Web

page in Figure 5.4 can be regarded as an auxiliary example page relative to

the Web page in Figure 5.1. The text content of the auxiliary example pages

provides very useful clues for seeking appropriate text fragments related to

the attribute item of interest. Figures 5.2 and 5.5 show the excerpt of the

HTML text document associated with the Web page shown in Figures 5.1

and 5.4 respectively. The bolded text fragments are related to the attribute

items of interest, while the remaining text fragments are related to the format

layout. The text fragments related to attribute items are very different in

different Web pages, whereas the text fragments related to the format layout

are very similar.

We provide some formal definitions of main example page and auxiliary

example page as follows:

62

Definition 5.7 We define main example page, M, as one of the Web pages

in the unseen Web site where the machine annotated training examples will

be obtained.

Definition 5.8 We define auxiliary example page, A{M), as a Web page

under the same Web source as the main example page M, but it contains

different attribute item content from those in the main example page M.

Based on the properties of the main example page and auxiliary exam-

ple pages, a modified nearest neighbour classification model is developed to

identify the potential training example candidates.

5.3.3 Modified Nearest Neighbour Classification

Recall that the target pattern component of the previously discovered ex-

traction rules from the source Web site contains the semantic class of the

attribute item. Prom the main example page M of the unseen target Web

site, we can obtain the set UTF(M) based on the semantic class of the at-

tribute items. Prom an auxiliary example page A(M), we can also obtain the

set UTF(A(M)). As mentioned in the previous subsection, the text fragments

regarding the attribute items in the main example page are less likely to ap-

pear in the auxiliary example page, while the text fragments regarding the

layout format will probably appear in both of the main example page and the

auxiliary example page. Hence, all the elements in UTF(A(M)) are treated

as negative instances relative to the text fragment regarding the attribute

items in the main example page M.

63

Definition 5.9 Suppose we have two text fragments ti and 亡2 with m and n

tokens respectively. We define the similarity between the two text fragments

tl and t2, 5(^1,^2), as:

k
• = - — — ^ (5.1)

maxjm, n| ‘

where k is the number of tokens in ti matched with the tokens in 亡2.

The goal of our modified classification model to classify the potential

training examples from UTF(M). To achieve this task, for each element in

UTF(M), we first find its nearest neighbour in UTF(A(M)) based on our

defined similarity measure. If the similarity between the element in UTF(M)

and its nearest neighbour in UTF(A(M)) exceeds a threshold, 9, it will be

classified as negative instance. On the other hand, if the similarity is below

0，it will be classified as a potential training example candidate.

Once the potential training example candidates for an attribute item are

identified, they are processed by a text fragment classification model in the

second stage to classify those candidates that likely become the machine

annotated training examples for the unseen Web site.

5.4 Machine Annotated Training Example Dis-

covery and New Wrapper Learning

5.4.1 Text Fragment Classification ，

Text fragment classification is designed to classify "good" candidates for sub-

sequent learning process. The text fragment classification model consists of

64

two major components, namely, content classification and lexicon approxi-

mate matching.

Content Classification

We identify some features for characterizing the content of the attribute item.

A classification model can then be learned to classify the "good" potential

training example candidates. The features used are as follows:

• the number of characters in the content

• F2: the number of tokens in the content

• F3: the average number of characters per token

• F4： the proportion of the number of digit number to the number of

tokens

• F5： the proportion of the number of floating point number to the num-

ber of tokens

• Fe： the proportion of the number of alphabet to the number of char-

acters

• F7： the proportion of the number of upper case characters to the num-

ber of characters

• Fs： the proportion of the number of lower case characters to the number

of characters

• Fg： the proportion of the number of punctuation to the number of

characters

65

• Fio： the proportion of the number of HTML tags to the number of

tokens

• Fii： the proportion of the number of tokens starting with capital letter

to the number of tokens

• Fi2： whether the content starts with a capital letter

These features are chosen because they can effectively characterize the

format of the attribute items. For example, a book title usually starts with

a capital letter and contains less proportion of HTML tags. Some of the

features are also used in [37]. With the above feature design, a classification

model can be learned from a set of training examples. The content classifi-

cation model will return a score, which indicates the degree of confidence

being "good" potential training example candidates. f i will be normalized

to a value between 0 and 1.

The content classification model is learned from a set of training examples

composed of a set of positive attribute content examples and negative attribute

content examples. The set of positive attribute content examples are those

manual annotations obtained from the main example page, Ms, of the source

site S. Then we obtain the UTF (Ms) based on the semantic class of the

target pattern component of the extraction rules for the source site S. Those

elements in UTF (Ms) which are not in the set of positive attribute content

examples are collected to become the negative attribute content examples.

Next, the values of the features F i i l < i < 12) of each positive and negative

attribute content example can be computed. As a result, a set of training

examples for the content classification is prepared. To learn the content

66

classification model, we employ Support Vector Machines [52] to achieve this

task.

Lexicon Approximate Matching

For each attribute item in the same domain, we maintain a lexicon by stor-

ing the previously automatically collected attribute items from the source

site. For example, there is a lexicon containing entries for the model number

attribute in the electronic appliance domain. This previously discovered lex-

icon can help determine good training examples for an unseen site. Precisely,

the content of a lexicon can be taken into consideration for classifying the

potential training example candidates. French et al. [25] discussed the ef-

fectiveness of approximate word matching in information retrieval. We pose

the problem of classifying potential training example candidates as a lexicon

approximate matching task. We make use of edit distance [32] to handle this

task. Basically, our lexicon approximate matching algorithm is a two-level

matching algorithm. At the lower level, we compute the character-level edit

distance of a given pair of tokens. At the upper lever, we compute the token-

level edit distance of a given pair of text fragments. We will illustrate our

algorithm by an example.

Suppose we obtain a potential training example candidate of model num-

ber ''PANASONIC DVDCV52' and a particular entry 'TAN DVDRV32K”

in the lexicon. (Actually these two model numbers are obtained from two

different Web sites in our electronic appliance domain experiment. They re-

fer to the same brand of product, but different model number.) At the lower

level, we compute the character-level edit distance between two tokens with

67

the cost of insertion, deletion, and modification of a character all equal to

one. Then the character-level edit distances computed are normalized by the

longest length of the tokens. For example, the normalized character-level

edit distance between “PAN” and “PANASONIC” is 0.667. Table 5.1 shows

the character-level edit distances between the tokens in this example.

PAN DVDRV32K

PANASONIC 0.667 1.000

DVDCV52 1.000 0.375

Table 5.1: Normalized character-level edit distances between tokens

At the upper level, we compute the token-level edit distance between a

potential training example candidate and a lexicon entry, with the cost of

insertion and deletion of a token equal to one, and the cost of modification

of a token equal to the character-level edit distance between the tokens. The

token-level edit distance obtained is then normalized by the largest number

of tokens among the training example candidate and the lexicon entry. For

instance, the normalized token-level edit distance between “PANASONIC

DVDCV52'' and “PAN DVDRV32K” is 0.521.

Both of the character-level and token-level edit distance can be computed

efficiently by dynamic programming. We describe briefly the calculation of

the token-level edit distance. Suppose a potential training example candi-

date c consists of a sequence of tokens Ci，…,c^. Let the set of previously

discovered lexicons be /丄，户，...，where each ” is represented by a sequence of

tokens l\, • • • Then the token-level edit distance D(c, P) between c and

each P is computed by dynamic programming with the following recursive

68

equation:

Dm,n(C, = min j 1 + Dm,n-l{c, (5.2)

1 + 勺

where D爪’o(c’ /') = m, i ^ � , „ (c，= n, and d(p, q) is the normalized character-

level edit distance between token p and q.

The score, /2, of a potential training example candidate is then computed

as follows:

/2 = m p { " (c，Z ” } (5.3)

where D'{c, l^) = 1 - D饥，„(c’ / ') /max{m, n}.

In the text fragment classification, the score from content classification

and lexicon approximate matching will be computed. The final score Score{c)

of each potential training example candidate c is given by:

Score{c) = wfi + (1 — w)f2 (5.4)

where f i and /2 are the score obtained in content classification and lexicon

approximate matching respectively; ly is a parameter controlling the weight of

the content classification and lexicon approximate matching and 0 < il； < 1.

5.4.2 New Wrapper Learning

After the
scores of the potential training example candidates are computed,

our framework will select "good" candidates as machine annotated train-

ing examples for the unseen site. The N best potential training example
69

candidates will be selected as the machine annotated training examples for

wrapper induction for the unseen site.

Recall that our hierarchical record structure models the whole record in a

tree-like structure. The record consists of different attribute items. The ma-

chine annotated training examples obtained have not grouped in a record. We

adopt the discovery of repeated pattern approach [7] to discover the record

boundary and group the candidates into records. This method can automat-

ically identify the repeated pattern in a Web page, by making use of PAT

trees. The repeated pattern will be considered to determine if it contains use-

ful information. Candidates within two repeated patterns are then grouped

to the same record. The records will become the training examples for the

unseen site. Users could optionally scrutinize discovered training examples

to improve the quality of the training examples. However, in our experiment,

we did not conduct manual intervention and the adaptation was conducted

in a fully automatic way. A new tailor-made wrapper to the unseen site can

be learned by our wrapper induction approach. The newly learned wrapper

can then be applied to the remaining pages in the unseen target Web site.

70

Chapter 6

Case Study and Experimental

Results for Wrapper

Adaptation

6.1 Case Study on Wrapper Adaptation

Chapter 4 demonstrates the performance of our wrapper induction approach.

For example, the wrapper learned from S8 (Figure 1.1) by our system can

extract records from the Web pages in the same site very effectively. How-

ever, if we apply the learned wrapper directly to extract records from S7

(Figure 5.1), it cannot extract any record. We apply our wrapper adapta-

tion framework to tackle this problem. After the first stage, some machine

annotated training examples for S7, such as the two samples shown in Ta-

ble 6.1, are automatically obtained. The last column of Table 6.1 shows the

score of the attribute item calculated by our wrapper adaptation framework.

71

Attribute item Field value Score

Example 1 Book Title: Programming with C++: 0.63

Program Design Including Data Structures

Final Price: 45.00 1.00

Example 2 Author: Steve Heller 0.60

Final Price: 4.99 1.00

Table 6.1: Samples of a machine annotated training example obtained by

adapting the wrapper from the Web site S8 (Figure 1.1) to the Web site

shown in S7 (Figure 5.1).

Example 1 has a book title with score 0.63 and a final price with score 1.0.

Example 2 has an author with score 0.60 and a final price with score 1.0.

Users can optionally scrutinize the machine annotated training examples to

improve the quality of the training examples. In this case study, we did not

conduct manual intervention and the adaptation was conducted in a fully au-

tomatic way. We applied our wrapper induction approach to learn a wrapper

for S7 from the machine annotated training examples. Although some of the

machine annotated training examples are incomplete and contain missing at-

tribute items, our wrapper induction approach can still learn the hierarchical

record structure and extraction rules from incomplete examples.

The newly learned wrapper was then applied to Web pages within the

Web site S7. We obtained very promising results: the precision and recall for

title are 100.0% and 95.0% respectively; the precision and recall for author

are 94.3% and 73.5% respectively; the precision and recall for final price

are 100.0% and 92.5% respectively. Hence, the extraction performance with

72

applying our wrapper adaptation approach is much better than the extraction

performance without adaptation.

6.2 Experimental Results

In order to demonstrate the effectiveness of our wrapper adaptation ap-

proach, we have conducted extensive experiments to extract items from a

variety of real-world Web sites containing online book catalogs and consumer

electronic appliance catalogs as shown in Table 4.1.

For each domain, we conducted two sets of experiments. The first set

of experiments is to simply apply the hierarchical record structure and ex-

traction rules learned from one particular Web site without adaptation to

all other sites for information extraction. This experiment can be treated

as a baseline for our wrapper adaptation approach. The second set of ex-

periments is to adapt the hierarchical record structure and extraction rules

learned from one particular Web site to other sites automatically by our

wrapper adaptation approach.

In our framework, three parameters are needed to be determined in ad-

vance. The first parameter is the threshold 9 in the modified nearest neigh-

bour classification model described in Section 5.3.3 in Chapter 5. The second

parameter is the weight w in the text fragment classification model described

in Section 5.4.1 in Chapter 5. The last parameter is the N in the N best po-

tential training example candidates as described in Section 5.4.2 in Chapter

5. In order to determine the values of the parameters, we randomly chose

three Web sites, labeled as Tl , T2, and T3, for tuning the parameters. We

73

exhaustively conducted experiments for these three Web sites with different

parameter values. The wrapper discovered from one particular Web site is

adapted to the remaining two sites. The average of the F-measure is used

for the evaluation of the parameter settings^. We selected the parameter

setting that achieves the highest performance. Then this set of parameters

will be used in all the remaining testing Web sites in our experiments. The

parameters selected were 0 = 0.5，w = 0.3, and N = 5.

6.2.1 Book Domain

Table 6.2 shows the results of the the first set of experiments for the book

domain. The i仇 row in Table 6.2 represents an experiment of extracting

contents from all the Web sites by using the wrapper learned from the site

labeled as Si. Each cell in Table 6.2 is divided into two sub-columns and

three sub-rows. The three sub-rows represent the extraction performance of

the attribute items, namely, title, author, and price of the books respectively.

The two sub-columns represent the precision (P) and recall (R) for extracting

the attribute items of interest respectively. These results are obtained by

simply applying the learned wrapper from one Web site to the remaining

sites without adaptation.

The diagonal cells of Table 6.2 shows the capability of extracting informa-

tion from Web pages originating from the same Web site. This is, in fact, the

experimental result of our wrapper induction and is also shown in Table 4.4.

Other cells in Table 6.2 represent the results of extracting information with-

1 F-measure is defined in Equation 4.1.

74

SI S2 S3 S4 S5 S6 S7 S8 S9 siO sil

P R P R P R P R P R P R P R P R P R P I ^ P J ^

51 97.0 97.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.O ^ ~ q .O ^ “

9 7 , 0 9 8 . 0 0 0

97.0 98.0 0.0

5 2 0 . 0 0 . 0 9 0 , 6 1 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0.0 0.0 100.0 67.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 . 0 0 . 0 9 7 . 9 100.0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

5 3 0 . 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 1 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

54 0.0 0.0 0.0 0.0 0.0 0.0 99.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.O ^

0.0 0.0 0.0 0.0 0.0 0.0 80.2 97.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 100.0 0 . 0 0 . 0 0 . 0 0 . 0 Q.O 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

5 5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 1 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.8 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 7 5 . 6 7 5 . 6 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

5 6 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 9 9 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 100.Q 9 9 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

5 7 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 1 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 97.0 97.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 8 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 1 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 1 . 3 91.3 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

5 9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 8 4 . 3 1 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 84.3 1 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 84.3 84.3 0.0 0.0 0.0 0.0

S U 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 1 0 0 . 0 0 . 0 0 . 0

0.0 0 .0 0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0

0.0 0.0 0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0

S I] 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 , 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 6 . 0 9 6 . 0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 100.0 98.0

0.0 100.0 100.0

Table 6.2: Experimental results of applying a learned wrapper without adap-

tation from one Web site to extract contents from the remaining sites in the

book domain.

75

out applying our wrapper adaptation framework. The result indicates that

no learned wrapper from a particular Web site can be applied to extract

attribute items from other sites.

Table 6.3 shows the results of the the second set of experiment for the

book domain. These results are obtained by adapting a learned wrapper from

one Web site to the remaining sites using our wrapper adaptation approach.

The result indicates that the extraction performance is very satisfactory.

Table 6.4 summarizes the average extraction performance on title, author,

and price respectively for the cases of without adaptation and with adapta-

tion when training examples of one particular Web site are provided. The

first column shows the Web sites where training examples are given. Each

row summarizes the results obtained by using the learned wrapper of the Web

site in the first column and applying to all other sites for extraction. Essen-

tially, it summarizes the results in Tables 6.2 and 6.3. The result indicates

that the extraction rules of a particular Web site cannot be directly applied

to others without adaptation. After applying our wrapper adaptation ap-

proach, the wrapper learned from a particular Web site can adapt to other

sites. The results show that our wrapper adaptation approach achieves a very

promising performance especially compared with the performance obtained

without adaptation. SlO cannot extract the price attribute from other Web

sites with and without adaptation. The reason is that the price attribute of

the records in SIO contains items with a totally different format.

76

S I S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S I O s i l

P R P R P R P R P R P R P R P R P R P I ^ P J ^

5 1 • - 1 0 0 . 0 1 0 0 . 0 2 7 . 5 1 0 0 . 0 4 4 . 0 9 9 . 2 1 1 . 3 1 0 0 . 0 9 8 . 4 5 0 . 0 1 0 0 . 0 9 5 . 0 1 0 0 . 0 9 0 . 0 8 5 . 4 8 7 . 2 1 6 . 0 1 0 0 . o | 0 . 0 ^ “

- - 1 0 0 . 0 7 3 . 3 4 3 . 8 9 4 . 6 7 . 7 1 2 . 0 1 5 . 2 6 9 . 4 8 6 . 1 5 0 . 0 9 5 . 7 5 8 . 4 1 0 0 . 0 9 0 . 0 4 2 . 7 8 7 . 2 5 0 . 2 100.0 4 1 . 5 6 4 . 5

- - 3 6 . 3 9 9 . 2 0 . 0 0 . 0 1 0 0 . 0 1 0 0 . 0 7 8 . 0 7 8 . 0 1 0 0 . 0 5 0 . 0 1 0 0 . 0 9 2 . 5 3 3 . 3 9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 . 4 1 0 0 0

52 0.0 0.0 - • 0.0 0.0 87.3 99.2 23.9 100.0 68.9 50.0 100.0 95.0 64.7 33.0 85.4 87.2 0.0 ^ ^ 3 g

8 5 . 3 98.4 - - 9 9 . 1 1 0 0 . 0 7 . 7 1 2 . 0 2 0 . 8 7 4 . 5 2 5 . 8 2 0 . 2 9 5 . 7 5 8 . 4 1 0 0 . 0 9 0 . 0 8 5 . 4 8 7 . 2 0 . 0 0 . 0 4 8 . 0 9 8 . 2

3 . 6 9 9 . 2 - - 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 7 8 . 0 7 8 . 0 100.0 5 0 . 0 100.0 9 2 . 5 3 3 . 3 9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 . 2 1 0 0 . 0

5 3 0 . 0 0 . 0 3 8 . 3 9 0 . 0 - - 9 8 . 4 9 9 . 2 1 0 0 . 0 1 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 9 5 . 0 1 0 0 . 0 3 3 . 0 8 3 . 7 8 7 . 2 3 4 . 4 1 0 0 . 0 0 . 0 0 0

1 0 . 5 7 4 . 2 4 3 . 4 7 4 . 2 - - 0 . 0 0 . 0 2 2 . 5 100.0 0 . 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 9 0 . 0 8 0 . 4 8 7 . 2 0 . 0 0 . 0 4 1 . 0 6 4 . 5

4 . 3 9 9 . 2 3 5 . 9 9 7 . 5 - - 0 . 0 0 . 0 7 8 . 0 7 8 . 0 1 0 0 . 0 5 0 , 0 1 0 0 . 0 9 2 , 5 3 3 . 3 9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 . 3 1 0 0 0

5 4 4 5 . 9 9 8 . 4 0 . 0 0 . 0 5 0 . 0 1 0 0 . 0 - - 1 0 . 5 1 0 0 . 0 3 3 . 3 0 . 8 1 0 0 . 0 9 5 . 0 1 0 0 . 0 9 0 . 0 8 0 . 4 8 7 . 2 1 . 2 9 0 . 0 6 . 9 96.4

0 . 4 2 6 . 6 1 0 0 . 0 7 3 . 3 0 . 0 0 . 0 - - 0 . 0 0 . 0 100.0 5 0 . 0 9 4 . 3 7 3 . 5 1 0 0 . 0 9 0 . 0 4 2 . 7 8 7 . 2 1 , 7 1 0 0 . 0 2 5 . 4 9 8 . 2

3 . 9 9 9 . 2 3 6 . 3 9 9 . 2 1 0 0 . 0 1 0 0 . 0 - - 7 8 . 0 7 8 . 0 1 0 0 . 0 5 0 . 0 1 0 0 . 0 9 2 . 5 3 3 . 3 9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 . 4 LOO.O

5 5 0 . 0 0 . 0 1 0 0 . 0 1 0 0 . 0 5 0 . 0 1 0 0 . 0 7 6 . 5 9 9 . 2 - - 8 2 . 7 5 0 . 0 1 0 0 . 0 0 . 8 8 9 . 1 9 0 . 0 0 . 0 0 . 0 2 . 4 8 0 . 9 1 8 . 0 ~ 9 6 . 4

8 . 9 7 4 . 2 0 . 0 0 . 0 0 . 0 0 . 0 8 . 6 9 5 , 2 - - 0 . 0 0 . 0 8 3 . 1 8 6 . 7 1 0 0 . 0 9 0 . 0 8 0 . 4 8 7 . 2 8 . 0 100.0 4 6 . 8 9 8 . 2

4 . 3 9 9 . 2 3 6 . 3 9 9 . 2 0 . 0 0 . 0 1 0 0 . 0 1 0 0 . 0 - - 1 0 0 . 0 5 0 . 0 1 0 0 . 0 9 2 . 5 3 3 . 3 9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 . 1 1 0 0 . 0

5 6 4 8 . 8 9 7 . 6 1 0 0 . 0 1 0 0 . 0 2 7 . 1 7 9 . 5 2 0 . 0 0 . 8 0 . 0 0 . 0 - - 1 0 0 . 0 9 5 . 0 1 0 0 . 0 9 0 . 0 4 2 . 7 8 7 . 2 1 0 0 . 0 1 0 0 . 0 0 . 0 0 . 0

8 5 . 3 9 8 . 4 1 0 0 . 0 1 5 . 8 3 5 . 1 9 6 . 4 7.7 1 2 . 0 1 3 . 3 6 9 . 4 - - 9 3 . 9 9 4 . 7 1 0 0 . 0 9 0 . 0 8 5 . 4 8 7 . 2 3 7 . 5 1 0 0 . 0 6 7 . 1 9 8 . 2

5 . 0 9 9 . 2 3 6 . 3 9 9 . 2 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 7 8 . 0 7 8 . 0 - - 1 0 0 . 0 9 2 . 5 3 3 . 3 9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 . 1 1 0 0 . 0

5 7 8 . 9 9 8 . 4 7 5 . 2 7 3 . 3 2 7 . 1 7 9 . 5 9 9 . 2 9 9 . 2 3 6 . 6 1 0 0 . 0 0 . 0 0 . 0 - - 1 0 0 . 0 3 3 . 0 8 0 . 4 8 7 . 2 1 . 4 9 0 . 0 7 7 . 9 9 6 . 4

8 4 . 1 9 8 . 4 1 0 0 . 0 7 3 . 3 3 5 . 1 9 6 . 4 0 . 0 0 . 0 9 8 , 0 1 0 0 . 0 4 6 . 3 5 0 . 0 - - 1 0 0 . 0 9 0 . 0 0 . 0 0 . 0 7 6 . 9 1 0 0 . 0 0 . 0 0 . 0

6.6 99.2 98.3 100.0 0.0 0.0 0.0 0.0 78.0 78.0 1 0 0 . 0 50.0 - - 33.3 90.0 0.0 0.0 0.0 0.0 10.4 100.0

5 8 0 . 0 0 . 8 1 0 0 . 0 7 3 . 3 2 7 . 7 7 9 . 5 9 9 . 2 9 9 . 2 1 1 . 8 1 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 9 5 . 0 - - 8 0 . 4 8 7 . 2 1 5 . 8 l o O . O 0 . 0 ^ “

1 4 . 4 7 4 . 2 1 0 0 . 0 6 5 . 0 8 9 . 9 9 5 . 5 0 . 0 0 . 0 2 1 . 1 9 3 . 9 1 0 0 . 0 5 0 . 0 9 4 . 3 7 3 . 5 - - 8 5 . 4 8 7 . 2 5 8 . 5 1 0 0 . 0 4 1 . 5 6 4 . 5

4 . 4 9 9 . 2 3 6 . 3 9 9 . 2 1 0 0 . 0 1 0 0 . 0 0 . 0 0 . 0 7 8 . 0 7 8 . 0 1 0 0 . 0 5 0 . 0 1 0 0 . 0 9 2 . 5 - - 0 . 0 0 . 0 0 . 0 0 . 0 9 . 4 1 0 0 . 0

5 9 1 . 5 2 4 . 8 5 0 . 0 1 0 0 . 0 3 6 . 8 7 9 . 5 9 7 . 6 9 9 . 2 3 3 . 3 1 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 9 5 . 0 1 0 0 . 0 9 0 . 0 - - 1 . 2 9 5 4

5 0 . 0 7 4 . 2 9 8 . 9 7 3 . 3 1 0 0 . 0 1 0 0 . 0 0 . 0 0 . 0 9 7 . 3 7 4 . 5 1 0 0 . 0 5 0 , 0 9 5 . 7 5 8 . 4 1 0 0 . 0 9 0 . 0 - - 1.5 IQQ.O 4 5 . 8 8 9 . 1

0 . 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 1 0 0 . 0 0 , 0 0 . 0 7 8 . 0 7 8 . 0 1 0 0 . 0 5 0 . 0 1 0 0 . 0 9 2 . 5 3 3 . 3 90.0 - - o . O 0 . 0 0 . 0 0 . 0

S I C 1 4 . 0 9 8 . 4 1 0 0 . 0 7 3 . 3 3 6 . 8 7 9 . 5 9 7 . 6 9 9 . 2 0 . 0 0 . 0 9 8 , 4 5 0 . 0 1 0 0 . 0 9 5 . 0 1 0 0 . 0 9 0 . 0 8 5 , 5 1 0 0 . 0 - - 3 4 . 5 9 5 4

5 8 . 6 9 9 . 2 9 8 . 7 6 5 . 0 1 0 0 . 0 1 0 0 . 0 0 . 0 0 . 0 5 . 6 9 0 . 8 0 . 0 0 . 0 9 3 . 2 4 8 . 7 1 0 0 . 0 9 0 . 0 2 3 . 4 1 0 0 . 0 - . 4 1 . 5 6 4 . 5

0.0 0 .0 0.0 0.0 0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - . 0.0 0.0

S I] 1 1 . 3 9 7 . 6 9 7 . 6 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 3 5 . 8 9 9 . 2 1 0 . 9 1 0 0 . 0 9 8 . 4 5 0 . 0 6 6 . 3 9 5 . 0 1 0 0 . 0 3 3 . 0 0 . 0 0 . 0 2 7 . 6 l O O . O ~ ！

6 4 . 2 98.4 0 . 0 0 . 0 1 0 0 . 0 9 8 . 2 1 . 6 9 5 . 2 4 . 5 1 0 0 . 0 7 1 , 4 2 0 . 2 0 . 0 0 . 0 1 0 0 . 0 9 0 . 0 8 0 . 4 8 7 . 2 9 7 . 3 1 0 0 . 0 - -

4 . 3 9 9 . 2 3 6 . 3 9 9 . 2 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 7 8 . 0 7 8 . 0 1 0 0 . 0 5 0 . 0 1 0 0 . 0 9 2 . 5 3 3 . 3 9 0 . 0 0 . 0 0 . 0 0 . 0 0 , 0 - -

Table 6.3: Experimental results of adapting a learned wrapper from one Web

site to the remaining sites in the book domain.

77

Title Author Price

Without With Without With Without With

Adaptation Adaptation Adaptation Adaptation Adaptation Adaptation

Source prec. recall prec. recall prec. recall prec. recall prec. recall prec. recall

51 0.0 0.0 58.3 82.1 0.0 0.0 58.3 69.9 0.0 0.0 45.7 61.0

52 0.0 0.0 43.0 46.8 0.0 0.0 56.8 63.9 0.0 0.0 52.4 71.0

53 0.0 0.0 55.5 60.4 0.0 0.0 29.8 49.0 0.0 0.0 36.1 60.7

54 0.0 0.0 42.8 75.8 0.0 0.0 46.5 59.9 0.0 0.0 46.1 70.9

55 0.0 0.0 51.9 61.7 0.0 0.0 33.6 63.2 0.0 0.0 38.3 63.1

56 0.0 0.0 53.9 65.0 0.0 0.0 62.5 76.2 0.0 0.0 46.2 75.9

57 0.0 0.0 50.7 75.7 0.0 0.0 54.0 60.8 0.0 0.0 32.7 51.7

58 0.0 0.0 43.5 63.5 0.0 0.0 60.5 70.4 0.0 0.0 42.8 61.9

59 0.0 0.0 42.9 76.6 0.0 0.0 68.9 71.0 0.0 0.0 41.1 41.1

510 0.0 0.0 66.7 78.2 0.0 0.0 52.1 65.8 0.0 0.0 0.0 0.0

511 0.0 0.0 54.8 77.5 0.0 0.0 51.9 68.9 0.0 0.0 55.2 70.9

Table 6.4: Average extraction performance on title, author, and price for the

book domain for the cases of without adaptation and with adaptation when

training examples of one particular Web site are provided, (prec. refers to

precision)

78

6.2.2 Consumer Electronic Appliance Domain

Table 6.5 shows the results of the the first set of experiments for the con-

sumer electronic appliance domain. The i仇 row in Table 6.5 represents an

experiment of extracting contents from all the Web sites by using the wrap-

per learned from the site labeled as Si. Each cell in Table 6.5 is divided

into two sub-columns and three sub-rows. The three sub-rows represent

the extraction performance of the attribute items, namely, model number,

description, and price of the products respectively. The two sub-columns

represent the precision (P) and recall (R) for extracting the attribute items

of interest respectively. These results are obtained by simply applying the

learned wrapper from one particular Web site to the remaining sites without

adaptation.

The diagonal cells of Table 6.5 shows the capability of extracting informa-

tion from Web pages originating from the same Web site. This is, in fact, the

experimental result of our wrapper induction and is also shown in Table 4.5.

Other cells in Table 6.5 represent the results of extracting information with-

out applying our wrapper adaptation framework. The result indicates that

no learned wrapper from a particular Web site can be applied to extract

attribute items from other sites except S12 and S13. Since the layout format

of S12 and S13 are very similar^, the wrapper learned from one of these Web

sites can apply to each other. However, it is not true for other Web sites. In

general, the extraction rules of a particular Web site cannot be applied to

and S13 use the same display template provided by www.yahoo.com for their

layout format. This is also indicated by their URL's as shown in Table 4.1.

79

http://www.yahoo.com

S 1 2 S 1 3 S 1 4 S 1 5 S 1 6 S 1 7 S l 8 S 1 9

P R | P R | P R P R P R P R P R P R

S I S 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 I 0 . 0 0 . 0

1 0 0 . 0 1 0 0 . 0 9 3 . 3 9 3 . 3 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SI� 1 0 0 , 0 1 0 0 . 0 1 0 0 . 0 9 7 . 8 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

1 0 0 . 0 1 0 0 . 0 9 3 . 3 93.3 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 .0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

sit 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 6 . 0 9 5 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 9 9 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 9 8 . 4 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

S l (0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 9 . 0 1 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 0 . 0 9 7 . 8 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 8 . 0 9 9 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

s n 0 . 0 0 . 0 0 . 0 0 . 0 O.O O.O O.O O.O O.O O.O lOO.O lOO.O 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 6 . 0 1 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 0 0 0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0

s u 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 87.1 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 52.9 86.3 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 87.1 0.0 0.0

Sli 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 0 0 . 0 9 7 . 9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 82.0 52.1

0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 96.5

Table 6.5: Experimental results of applying a learned wrapper without adap-

tation from one Web site to extract contents from the remaining sites in the

consumer electronic appliance domain.

80

others.

Table 6.6 shows the results of the the second set of experiment for the

electronic domain. These results are obtained by adapting a learned wrap-

per from one Web site to the remaining sites using our wrapper adaptation

approach. The result indicates that the extraction performance is very sat-

isfactory.

S12 S13 S14 ~ S 1 5 S16 S17 S18 S19

P R I P R I P R | p R I P R P R I P R P R

S I : - - 0 0 6 4 . 9 100 0 0 99.1 1 0 0 9 8 8 8 . 2 7 6 8 8 . 5 0 0

- - 0 0 0 0 0 0 90.7 98 0 0 0 0 0 0

• - 100 100 100 100 0 0 98.1 99.1 100 88.2 57.9 100 52.5 98.5

Sic 70.9 100 - - 91.9 100 0 0 99.1 100 85.8 88.2 25.9 41.4 " o 0

0 0 - - 0 0 24.6 100 90.7 98 72.1 87.7 0.3 20.4 0 0

1 0 0 - - 1 0 0 1 0 0 6 5 . 8 1 0 0 9 8 . 1 9 9 . 1 1 0 0 8 8 . 2 5 7 . 9 1 0 0 5 2 . 5 9 8 . 5

8 0 1 0 0 0 0 - - 0 0 9 9 . 1 1 0 0 8 9 . 8 8 8 . 2 9 . 4 4 7 . 8 0 0

0 0 0 0 - - 0 0 9 0 . 7 9 8 4 1 8 7 . 7 0 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0 - - 1 0 0 1 0 0 9 8 . 1 9 9 . 1 1 0 0 8 8 . 2 5 7 . 9 1 0 0 5 2 . 5 9 6 . 9

S I J 0 0 0 0 0 0 - - 9 9 . 1 1 0 0 0 0 1 . 4 1 0 0 0 0

0 0 0 0 0 0 - - 9 0 . 7 9 8 8 2 . 3 8 7 . 7 0 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 - - 9 8 . 1 9 9 . 1 1 0 0 8 8 . 2 5 7 . 9 1 0 0 5 2 . 5 9 6 . 9

S i e 9 9 1 0 0 0 0 9 7 . 4 1 0 0 9 . 4 9 9 . 2 - - 8 9 . 8 8 8 . 2 1 7 . 4 8 8 . 5 0 0

0 0 0 0 5 1 . 7 9 2 . 9 0 0 - - 4 3 . 5 8 7 . 7 0 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 6 5 . 8 1 0 0 - - 1 0 0 8 8 . 2 5 7 . 9 1 0 0 5 2 . 5 9 8 . 5

S n 1 0 0 1 0 0 0 0 8 9 . 7 1 0 0 0 0 9 9 . 1 1 0 0 - - 5 9 . 1 8 8 . 5 ~ 0 o

0 0 0 0 4 8 . 2 9 2 . 9 8 . 5 1 0 0 9 0 . 7 9 8 - 0 0 0 o

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 6 5 . 8 1 0 0 9 8 . 1 9 9 . 1 - - 5 7 . 9 1 0 0 5 2 . 5 9 8 . 5

S l { 5 0 1 0 0 0 0 9 4 . 2 1 0 0 0 0 9 9 . 1 1 0 0 4 4 . 1 8 8 . 2 - - ~ 0 o

0 0 0 0 0 0 0 0 9 0 . 7 9 8 4 0 . 8 8 7 . 7 0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 6 5 . 8 1 0 0 9 8 . 1 9 9 . 1 1 0 0 8 8 . 2 - - 5 2 . 9 9 8 . 5

S H 0 0 3 2 . 7 9 8 0 0 0 0 9 9 . 1 1 0 0 0 0 0 0 - -

0 0 0 0 9 9 . 1 9 2 . 9 0 0 9 0 . 7 9 8 8 4 . 5 8 7 . 7 1 0 . 9 4 7 . 8 - -

I 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 6 5 . 8 1 0 0 9 8 . 1 9 9 . 1 1 0 0 8 8 . 2 5 7 . 9 1 0 0 - -

Table 6.6: Experimental results of adapting a learned wrapper from one Web

site to the remaining sites in the consumer electronic appliance domain.

Table 6.7 summarizes the average extraction performance on model num-

ber, description, and price respectively for the cases of without adaptation

and with adaptation when training examples of one particular Web site are

81

Model number Description Price

Without With Without With Without With

Adaptation Adaptation Adaptation Adaptation Adaptation Adaptation

Source prec. recall prec. recall prec. recall prec. recall prec. recall prec. recall

512 14.3 14.0 48.8 55.1 13.3 13.3 13.3 15.0 14.3 14.3 73.4 84.1

513 14.3 14.3 53.3 61.1 14.3 14.3 26.1 42.5 14.3 14.3 82.5 98.0

514 0.0 0.0 40.0 49.5 0.0 0.0 18.4 26.0 0.0 0.0 87.3 97.8

515 0.0 0.0 14.0 27.8 0.0 0.0 24.0 25.8 0.0 0.0 87.3 97.8

516 0.0 0.0 45.0 68.9 0.0 0.0 13.2 25.1 0.0 0.0 82.8 98.2

517 0.0 0.0 49.7 56.7 0.0 0.0 20.5 40.4 0.0 0.0 82.5 99.7

518 0.0 0.0 41.1 56.7 0.0 0.0 18.3 25.8 0.0 0.0 88.5 98.0

519 0.0 0.0 18.3 27.5 0.0 0.0 39.6 45.3 0.0 0.0 89.1 98.2

Table 6.7: Average extraction performance on model number, description,

and price for the electronic appliance domain for the cases of without adap-

tation and with adaptation when training examples of one particular Web

site are provided, (prec. refers to precision)

provided. The meaning of the precision and recall figures is the same as Ta-

ble 6.4. The result indicates that the extraction of the attribute items fails

without adaptation in all cases except S12 and S13. After applying our wrap-

per adaptation approach, the wrapper learned from a particular Web site can

adapt to other sites. The results show that our wrapper adaptation approach

achieves a very satisfactory extraction performance for the attribute items

model number and price. The extraction performances for the attribute item

model number are not impressive for S15 and S19. The reason is that the

model number in S15 is particularly short while the model number in S19

is particularly long. The extraction performance on attribute description is

fair. This is due to the fact that the content of the description in different

Web sites is quite different and involves a large portion of natural language.

82

Chapter 7

Conclusions and Future Work

We have developed a new wrapper induction approach for precise information

extraction from semi-structured Web documents. Our approach can handle

a richer set of Web pages. In order to minimize the user burden and enrich

the expressiveness of extraction rules, our approach employs a two-stage

learning task, namely, hierarchical record structure inference and extraction

rule induction. In hierarchical record structure inference, a representation of

hierarchical structures for the records in an information source is generated

automatically. The design of hierarchical record stricture can handle records

which have missing attribute items, multi-valued attribute items, and items

in unrestricted order. Compared with single-slot and multi-slot extraction

rule, hierarchical record structure gives richer information about the records.

Our record structure inference algorithm can also automatically infer the

correct hierarchical record structure based on the statistics of the training

examples. This reduce the human work in identifying the hierarchical record

structure.

83

For extraction rule induction in the second stage, the extraction rules as-

sociated with each node in the hierarchical record structure are induced au-

tomatically. We have incorporated both lexical and semantic generalization

to enrich the expressiveness of the extraction rules. Both domain indepen-

dent and domain specific semantic classes are considered. These semantic

classes are organized in a hierarchy. This organization improves the gener-

alization process in extraction rule induction. Our extraction rule considers

the semantic content of the attribute items. Such representation can enrich

the expressiveness and improve the accuracy of the extraction rule. We have

conducted experiments on a range of real-world Web sites in two different do-

mains. The experimental results show the generality of our approach. Our

approach is capable of extracting records in a wide range of Web sites in

different domains effectively.

We have also developed a framework for wrapper adaptation. Wrapper

adaptation aims at adapting a previously learned wrapper to an unseen target

Web site. To achieve this goal, we propose a wrapper adaptation framework

which can automatically seek good training examples for the unseen Web

site. It is a two-stage method employing multiple learning paradigms in or-

der to tackle the challenges in wrapper adaptation. The first stage is to seek

potential training example candidates from the unseen Web site. We make

use of extraction rules previously discovered from a particular site to seek

potential candidates of training examples for the unseen site. A main exam-

ple page and some auxiliary example pages are automatically generated for

analysis. A modified nearest neighbour classification model is developed for

identifying appropriate text fragments as potential training example candi-

84

dates. This design shows that auxiliary example pages provide very useful

information for information extraction in Web pages. Based on the informa-

tion from auxiliary example pages, the modified nearest neighbour model is

able to classify the potential training example candidates by using machine

learning technique effectively.

The potential training example candidates will then be classified by a text

fragment classification model in the second stage. The idea is to use a classi-

fication model to capture the characteristics of the attribute items of interest.

Those "good" candidates will be considered as machine annotated training

examples for the unseen Web site. The text fragment classification model con-

sists of two components. One component is the content classification model.

Several kinds of features are considered to characterize the content of the

attribute items. The other component is the lexicon approximate matching.

The attribute items previously extracted in the source sites can be viewed as

a set of lexicons. This lexicon provides an additional clue for selecting the

machine annotated training examples. An approximate matching algorithm

is developed to utilize this lexicon. The design of these two components can

handle the ambiguity in the format of the attribute items in different Web

sites. Based on the machine annotated training examples, a new wrapper

tailored to the unseen Web site can be learned. We have conducted experi-

ments on a number of Web sites in two domains. The experimental results

demonstrate that our wrapper adaptation framework achieves encouraging

results. The learning paradigms incorporated in our framework can effec-

tively seek training examples for learning a new wrapper for the new unseen

Web sites automatically. In today's web-oriented infrastructure, our wrapper

85

adaptation approach can be applied to automatically integrate information

from different Web sites. Our approach can effectively reduce human effort

in the construction of wrappers for information extraction.

Further research can be explored to improve the effectiveness. One direc-

tion is to make use of some natural language processing (NLP) techniques to

handle the free text portion of a Web page. Prom the experiment, it can be

observed that the extraction performance for the attribute items having high

portion of free text, such as the attribute item description in the consumer

electronic appliance domain, is not as good as the extraction performance

for other attribute items. The reason is that it is difficult to capture the

semantic content of this kind of attribute items. NLP techniques, such as

part-of-speech tagging and lexical semantic tagging may be useful in extrac-

tion of this kind of attribute items. However Web pages are semi-structured

documents and not natural language documents, NLP techniques cannot be

applied to Web pages directly. Certain modifications should be made in order

to incorporate NLP techniques in our information extraction approach.

Our system currently considers domain dependent semantic classes in the

extraction rule induction. Another direction of our future work is to incor-

porate more background knowledge. Very often, users may already have

some background information or knowledge about the domain. For exam-

ple, user may have knowledge about the length information of the attribute

items and the information of the key attribute item. We hope to develop

a mechanism that can consider such information in the wrapper induction

or wrapper adaptation process. The mechanism must be robust enough so

that users can incorporate their domain knowledge into the system easily. A

86

rule-based system may be worthy for investigation.

87

Bibliography

1] B. Adelberg. NoDoSE-a tool for semi-automatically extracting struc-
tured and semistructured data from text documents. In SIGMOD 1998,
Proceedings ACM SIGMOD International Conference on Management
of Data, pages 283-294, June 1998.

2] D. Angluin. Inference of reversible language. Journal of the ACM,
29(3):741-765, July 1982.

3] E. Brill. Some advances in rule-based part of speech tagging. In Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence,
pages 722-727, July 1994.

4] S. Brin. Extracting patterns and relations from the World Wide Web. In
Proceedings of the International Workshop on the Web and Databases,
pages 172-183, June 1998.

5] M. Califf and R. Mooney. Relational learning of pattern-match rules
for information extraction. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence, pages 328-334, July 1999.

6] R. Carrasco, J. Oncina, and J. Calera-Rubio. Stochastic inference of
regular tree language. Machine Learning, 44(1/2):185-197, July 2001.

7] C. H. Chang and S. C. Lui. lEPAD: information extraction based on
pattern discovery. In Proceedings of the Tenth International Conference
on World Wide Web, pages 681-688, May 2001.

88

8] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon-
staninou, J. Ullman, and J. Widom. The TSIMMIS project: Integration
of heterogeneous information sources. In Proceedings of the Sixteenth
Meeting of the Information Processing Society of Japan, pages 7-18,
October 1994.

9] H. L. Chieu and H. T. Ng. A maximum entropy approach to information
extraction from semi-structured and free text. In Proceedings of the
Eighteenth National Conference on Artificial Intelligence, pages 786-
791, July 2002.

10] F. Ciravegna. (LP)^ an adaptive algorithm for information extraction
from Web-related texts. In Proceedings of the IJCAI-2001 Workshop on
Adaptive Text Extraction and Mining held in conjunction with the Seven-
teenth International Joint Conference on Artificial Intelligence (IJCAI),
pages 1251-1256, August 2001.

11] W. W. Cohen, M. Hurst, and L. S. Jensen. A flexible learning system for
wrapping tables and lists in HTML documents. In Proceedings of the
Eleventh International World Wide Weh Conference, pages 232-241,
May 2002.

12] W. W. Cohen, M. Hurst, and Lee. Jensen. A flexible learning system
for wrapping tables and lists in html documents. In Proceedings of the
Eleventh International World Wide Web Conference, pages 232-241，

May 2002.

13] V. Crescenzi, G. Mecca, and P. Merialdo. ROADRUNNER: Towards
automatic data extraction from large web sites. In Proceedings of the
27th Conference on Very Large Data Bases, pages 109-118, September
2001.

14] Defense Advanced Research Projects Agency. Proceedings of the Sixth
DARPA Message Understanding Conference (MUC-6). Morgan Kauf-
mann Publisher, Inc., 1995.

89

15] Defense Advanced Research Projects Agency. Proceedings of the Sev-
enth Message Understanding Conference (MUC-7). Morgan Kaufmann
Publisher, Inc., 1998.

16] R. B. Doorenbos, O. Etzioni, and D. S. Weld. A scalable comparison-
shopping agent for the World-Wide Web. In Proceedings of the First
International Conference on Autonomous Agents, pages 39-48, February
1997.

17] E. M. Voorhees and L. P. Buckland. The Eleventh Text REtrieval Con-
ference (TREC 2002). National Institute of Standards and Technology,
November 2002.

18] T. Eliassi-Rad and J. Shavlik. A theory-refinement approach to in-
formation extraction. In Proceedings of the Eighteenth International
Conference on Machine Learning, pages 130-137, June 2001.

19] D. W. Embley, D. Campbell, R. Smith, and S. Liddle. A conceptual-
modeling approach to extracting data from the Web. In Proceedings
of the 17th International Conference on Conceptual Modeling (ER,98),
pages 78-91, November 1998.

20] D. W. Embley, Y. S. Jiang, and Y. K. Ng. Record-boundary discovery in
Web documents. In Proceedings of 1999 ACM SIGMOD International
Conference on Management of Data, pages 467-478, June 1999.

21] D. W. Embley, D. M.，Campbell, Y. S. Jiang, S. W. Liddle, D. W.
Lonsdale, Y. K. Ng, and R. D. Smith. Conceptual-model-based data
extraction from multiple-record Web. Data and Knowledge Engineering,
31(3):227-251, November 1999.

22] D. Freitag. Information extraction from HTML: Application of a general
machine learning approach. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pages 517-523, July 1998.

90

23] D. Preitag and N. Kushmerick. Boosted wrapper induction. In Proceed-
ings of the Seventeenth National Conference on Artificial Intelligence,
pages 577-583, July 2000.

24] D. Freitag and A. McCallum. Information extraction with HMMs and
shrinkage. In Proceedings of the AAAI-99 Workshop on Machine Learn-
ing for Information Extraction, pages 31-36, July 1999.

25] J. C. French, A. L. Powell, and E. Schulman. Applications of approxi-
mate word matching in information retrieval. In Proceedings of the Sixth
International Conference on Information and Knowledge Management,
pages 9-15，November 1997.

26] P. Garcia and E. Vidal. Inference of k-testable languages in the strict
sense and application to syntatic pattern recognition. IEEE Trans-
actoins on Pattern Analysis and Machine Intelligence, 12(9):920—925,
September 1990.

27] R. Ghani and R. Jones. A comparison of efficacy and assumptions of
bootstrapping algorithms for training information extraction systems.
In Proceedings of the Workshop on Linguistic Knowledge Acquisition
and Representation: Bootstrapping Annotated Language Data held in
conjunction with the Third International Conference on Language Re-
sources and Evaluation, June 2002.

28] T. Goan, N. Benson, and 0 . Etzioni. A grammar inference algorithm for
the World Wide Web. In Proceedings of the AAAI Spring Symposium
on Machine Learning in Information Access, pages 41—48，March 1996.

29] E. M. Gold. Language identification in the limit. Information and
Control, 10:447-474, 1967.

30] P. B. Golgher and A. S. da Silva. Bootstrapping for example-based
data extraction. In Proceedings of the Tenth International Conference
on Information and Knowledge Management, pages 371-378, November
2001.

91

31] R. C. Gonzalez and M. G. Thomason. Syntactic pattern recognition -
An introduction. Addison-Wesley Publishing Company, Inc., 1978.

32] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge,
1997.

33] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Ex-
tracting semistructured information from the Web. In Workshop on
Management of Semistructured Data, 1997.

34] W. Hoeffding. Probability inequalitites for sums of bounded random
variables. American Statistical Association Journal, 58:13—30, 1963.

35] C. Hsu and M. Dung. Generating finite-state transducers for semi-
structured data extraction from the Web. Journal of Information Sys-
tems, Special Issue on Semistructured Data, 23(8):521—538，November
1998.

36] C. Knoblock, S. Minton, J. Ambite, N. Ashish, J. Modi, 1. Muslea,
A. Philpot, and S. Tejada. Modeling Web sources for information inte-
gration. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence, pages 211—218，July 1998.

37] N. Kushmerick. Regression testing for wrapper maintenance. In Pro-
ceedings of the Sixteenth National Conference on Artificial Intelligence,
pages 74-79, July 1999.

38] N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Ar-
tificial Intelligence, 118(1/2):15-68，April 2000.

39] N. Kushmerick and B. Thomas. Adaptive information extraction: Core
technologies for information agents. In Intelligents Information Agents
R&D In Europe: An AgentLink Perspective, pages 79-103, 2002.

40] K. Lerman and S. Minton. Learning the common structure of data. In
Proceedings of the Seventeenth National Conference on Artificial Intel-
ligence, pages 609—614，August 2000.

92

41] S. J. Lim and Y. K. Ng. An automated approach for retrieving hierarchi-
cal data from HTML tables. In Proceedings of the Eighth International
Conference on Information and Knowledge Management, pages 466-474,
November 1999.

42] L. Liu, C. Pu, and W. Tang. WebCQ - Detecting and delivering infor-
mation changes on the Web. In Proceedings of the Ninth International
Conference on Information and Knowledge Management, pages 512-519,
November 2000.

43] L. Miclet. Structural methods in pattern recognition. Springer-Verlag,
1986.

44] G. Miller. Wordnet: A lexical database for english. Communication of
the ACM, 38(11):29—41，November 1995.

45] I. Muslea, S. Minton, and C. Knoblock. Selective sampling with redun-
dant views. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence, pages 621-626, August 2000.

46] I. Muslea, S. Minton, and C. Knoblock. Hierarchical wrapper induction
for semistructured information sources. Journal of Autonomous Agents
and Multi-Agent Systems, 4(l/2):93-114, March 2001.

47] U. Y. Nahm and R. J. Mooney. Using information extraction to aid the
discovery of prediction rules from text. In KDD-2000 Workshop on Text
Mining, August 2000.

48] E. Riloff and R. Jones. Learning dictionaries for information extraction
by multi-level bootstrapping. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence, pages 1044-1049, July 1999.

49] K. Seymore, A. McCallum, and R. Rosenfeld. Learning hidden markov
model structure for information extraction. In Proceedings of the AAAI-
99 Workshop on Machine Learning for Information Extraction, pages
37-42, July 1999.

93

50] S. Soderland. Learning information extraction rules for semi-structured
and free text. Machine Learning, 34(1/3):233—272, February 1999.

51] C. J. van Rijsbergen. Information Retrieval. Butterworths, London,
1979.

52] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer,
1995.

53] H. L. Wang, S. H. Wu, I. C. Wang, C. L. Sung, W. L. Hsu, and W. K.
Shih. Semantic search on internet tabular information extraction for
answering queries. In Proceedings of the Ninth International Conference
on Information and Knowledge Management, pages 243-249, November
2000.

54] J. Wang and F. H. Lochovsky. Data extraction and label assignment
for Web databases. In Proceedings of the Twelfth International World
Wide Web Conference, pages 187-196, May 2003.

55] T. L. Wong and W. Lam. Adapting information extraction knowledge
for unseen Web sites. In Proceedings of the 2002 IEEE International
Conference on Data Mining, pages 506—513，December 2002.

56] T. L. Wong, W. Lam, and W. Wang. Beyond supervised learning of
wrappers for extracting information from unseen Web sites. In Proceed-
ings of the Fourth International Conference on Intelligent Data Engi-
neering and Automated Learning, March 2003.

57] J. Y. Yang, E. S. Lee, and J. G. Choi. A shopping agent that automat-
ically constructs wrappers for semi-structured online vendors. In The
Second International Conference on Intelligent Data Engineering and
Automated Learning, pages 368-373, December 2000.

58] M. Young-Lai and F. W. M. Tompa. Stochastic grammatical inference
of text database structure. Machine Learning, 40(2):111—137, August
2000.

94

Appendix A

Detailed Performance of
Wrapper Induction for Book
Domain

Title Author Price
Page label P (%) R (%) P (%) R (%) P (%) R T i W
P2 92.0 92.0 92.0 95.8 92.0 95.8—
P3 96.0 96.0 —96.0 96.0 96.0 9 6 ^
P4 100.0 100.0 "lOO.Q 100.0 100.0 100.0
P5 100.0 100.0 100.0 100.0 100.0 l o oT"

Table A.l: Performance of our wrapper induction approach for each testing
page in the Web sites Si (P and R refer to precision and recall respectively.)

Title Author Price
Page label P (%) R (%) P (%) R (%) P (%) R
P2 82.8 100.0 100.0 66.7 100.0 l O Q y
P3 88.9 100.0 "lOO.O 79.2 — 100.0 lOoT"
P4 92.3 100.0 "lOO.O 58.3 — 100.0 1 0 0 ^
P5 100.0 100.0 100.0 62.5 91.7 100.0—

Table A.2: Performance of our wrapper induction approach for each testing
page in the Web sites S2 (P and R refer to precision and recall respectively.)

95

Title Author Price
Page label P (%) R (%) P (%) R (%) P (%)
P2 100.0 100.0 100.0 100.0 100.0 1 0 ^
P3 100.0 100.0 100.0 100.0 100.0 100.0

Table A.3: Performance of our wrapper induction approach for each testing
page in the Web sites S3 (P and R refer to precision and recall respectively.)

Title Author Price
Page label P (%) R (%) P (%) R (%) P (%) R (%)
P2 100.0 100.0 56.8 100.0 100.0 100.0
P3 100.0 100.0 ~96.0 96.0 100.0 100.0
P4 100.0 100.0 88.9 96.0 100.0 100.0
P5 96.0 96.0 96.0 96.0 100.0 1 0 ^

Table A.4: Performance of our wrapper induction approach for each testing
page in the Web sites S4 (P and R refer to precision and recall respectively.)

Title Author Price
Page label P (%) R (%) P (%) R (%) P (%) R~(%)~
P2 100.0 100.0 100.0 100.0 70.0 70.0
P3 100.0 100.0 "TQO.Q 100.0 “ 70.0 70.0

"1P4 100.0 lOOT" 100.0 100.0 90.0 90.0
P5 100.0 100.0 "Too.o 100.0 “ 50.0 5oTo~
P6 100.0 100.0 "TOQ.Q 100.0 “ 80.0 80.0
P7 100.0 100.0 "TQO.Q 100.0 “ 80.0 8QT~
P8 100.0 100.0 "~80.0 100.0 “ 70.0 70.0
P9 100.0 100.0 100.0 100.0 “ 80.0 80.0
PIO 100.0 100.0 100.0 100.0 90.0 90.0

Table A.5: Performance of our wrapper induction approach for each testing
page in the Web sites S5 (P and R refer to precision and recall respectively.)

Title Author Price
Page label P (%) R (%) P (%) R (%) P (%) R
P2 100.0 100.0 100.0 100.0 100.0 100.0
P3 100.0 100.0 100.0 100.0 100.0 lOOT"
P4 100.0 100.0 100.0 100.0 - 100.0 100.0
P5 100.0 96.0 100.0 96.0 100.0 96.0 ~

Table A.6: Performance of our wrapper induction approach for each testing
page in the Web sites S6 (P and R refer to precision and recall respectively.)

96

Title Author Price
Page label P (%) R (%) P (%) R (%) P (%) R
P2 100.0 100.0 90.0 100.0 95.0 95.0 ~

P3 100.0 100.0 95.0 100.0 —95.0 95.0

P4 100.0 100.0 90.0 100.0 100.0 100.0

P5 100.0 100.0 95.0 100.0 100.0 100.0

P6 100.0 100.0 100.0 100.0 95.0 9 5 X ~

Table A.7: Performance of our wrapper induction approach for each testing
page in the Web sites S7 (P and R refer to precision and recall respectively.)

Title Author Price
Page label P (%) R (%) P (%) R (%) P (%)
P2 100.0 100.0 100.0 100.0 85.0 85.0

P3 100.0 100.0 "Togo loo.o —loo.o loo.o

P4 100.0 100.0 100.0 100.0 —100.0 100.0
P5 100.0 100.0 100.0 100.0 80.0 80.0 _

Table A.8: Performance of our wrapper induction approach for each testing
page in the Web sites S8 (P and R refer to precision and recall respectively.)

Title Author Price
Page label P (%) R (%) P (%) R (%) P (%) R (%)
P2 100.0 100.0 100.0 100.0 100.0 100.0

P3 100.0 100.0 100.0 100.0 100.0 100.0

P4 100.0 100.0 100.0 100.0 100.0 100.0

P5 100.0 100.0 100.0 100.0 —100.0 100.0

P6 100.0 100.0 100.0 100.0 —100.0 100.0

P7 100.0 100.0 100.0 100.0 "LOO.O 100.0

P8 100.0 100.0 100.0 —100.0 100.0

P9 100.0 100.0 100.0 100.0 —100.0 100.0—

PIQ 100.0 100.0 100.0 100.0 "lOO.O 100.0—

Pll 100.0 100.0 100.0 100.0 "IQO.Q IQQ.O"

P12 100.0 100.0 "Too.o 100.0 “ 100.0 lOO^

P13 100.0 100.0 100.0 100.0 100.0 IQO.O"

P14 100.0 100.0 100.0 100.0 100.0 IQO.O"

Table A.9: Performance of our wrapper induction approach for each testing
page in the Web sites S9 (P and R refer to precision and recall respectively.)

97

Title Author Price
Page label P (%) R (%) P (%) R (%) P (%)
P2 100.0 100.0 100.0 100.0 100.0 100.0
P3 100.0 100.0 100.0 100.0 100.0 100.0 -
P4 100.0 100.0 100.0 100.0 100.0 100.0
P5 100.0 100.0 100.0 100.0 100.0 i o O ~
P6 100.0 100.0 100.0 100.0 “ 100.0 100.0
P7 100.0 100.0 " I m p 100.0 "loo.o lOO.O

P8 100.0 100.0 100.0 100.0 “ 100.0 100.0
P9 100.0 100.0 100.0 100.0 100.0 100.0-
PIQ 100.0 100.0 100.0 100.0 —100.0 100.0
P l l 100.0 100.0 100.0 100.0 100.0 100.0

Table A.10: Performance of our wrapper induction approach for each testing
page in the Web sites SIO (P and R refer to precision and recall respectively.)

Title Author Price
Page label P (%) R (%) P (%) R (%) P (%) R (%)
P2 100.0 100.0 100.0 90.0 100.0 i o M ~
P3 100.0 100.0 Too.o 100.0 100.0
P4 100.0 100.0 100.0 100.0 “ 100.0 ioao~
P5 100.0 100.0 100.0 100.0 ~10Q.0 100.0
P6 100.0 100.0 100.0 100.0 —100.0 100.0 一

P7 100.0 100.0 100.0 100.0 "IQO.Q 100.0
P8 100.0 100.0 100.0 100.0 - 100.0 100.0
P9 100.0 100.0 100.0 100.0 —100.0 100.0
PIO 70.0 70.0 100.0 90.0 —100.0 lOO.O"
P l l 90.0 90.0 100.0 100.0 100.0 100.0

Table A.11: Performance of our wrapper induction approach for each testing
page in the Web sites Sll (P and R refer to precision and recall respectively.)

98

Appendix B

Detailed Performance of
Wrapper Induction for
Consumer Electronic Appliance
Domain

Model Number Description Price
Page label P (%) R (%) P (%) R (%) P (%) R (%)
P2 100.0 100.0 100.0 100.0 100.0 100.0
P3 100.0 100.0 100.0 100.0 100.0 100.0
P4 100.0 100.0 "Too.o 100.0 100.0 100.0
P5 100.0 100.0 100.0 100.0 “ 100.0 1000~
P6 100.0 100.0 100.0 100.0 —100.0 100.0
P7 100.0 100.0 "Too.o 100.0 100.0 100^
P8 100.0 100.0 100.0 100.0 “ 100.0 iqoT~
P9 100.0 100.0 "Too.o 100.0 - 100.0 100.0
PIQ 100.0 100.0 100.0 100.0 100.0 100.0

Table B.l: Performance of our wrapper induction approach for each testing
page in the Web sites S12 (P and R refer to precision and recall respectively.)

99

Model Number Description Price
Page label P (%) R (%) P (%) R (%) P (%) R (%)_

P2 100.0 100.0 90.0 90.0 100.0 100.0—
P3 100.0 100.0 "lOQ.O 100.0 "iQQ.Q 100.0—
P4 100.0 80.0 "lOQ.Q 1QQ.0~ 100.0 l o W
P5 100.0 100.0 ~50.0 50.0 “ 100.0 l O W
P6 100.0 100.0 "lOO.O lOQ.O" 100.0 l o W
P7 100.0 100.0 "loo.o 100.0— 100.0 l o W
P8 100.0 100.0 "IQO.Q 100.0— 100.0 IQQT"
P9 100.0 100.0 "lOQ.Q 100.0— 100.0 IQQT"

PIQ 100.0 100.0 100.0 100.0 100.0 100.0

Table B.2: Performance of our wrapper induction approach for each testing
page in the Web sites S13 (P and R refer to precision and recall respectively.)

Model Number Description Price
Page label P (%) R (%) P (%) R (%) P (%) R j % y
P2 100.0 100.0 100.0 100.0 100.0 100.0
P3 100.0 100.0 100.0 IQO.O" 100.0 1Q0T~
P4 100.0 100.0 " 1 ^ . 0 100.0 100.0 100.0—
P 5 100.0 100.0 " l o o . o 100.0 100.0 100.0
P6 100.0 100.0 100.0 100.0 100.0—
P7 100.0 100.0 100.0 100.0 ~ 100.0 100.0
P8 100.0 100.0 100.0 100.0 100.0 1 0 ^

Table B.3: Performance of our wrapper induction approach for each testing
page in the Web sites S14 (P and R refer to precision and recall respectively.)

Model Number Description Price
Page label P (%) R (%) P (%) R (%) P (%) R j % y
P2 100.0 100.0 100.0 100.0 100.0 100.0—
P3 100.0 95.0 " l ob . o 95.0 " 100 .0 94.1~

P4 100.0 100.0 " l o b . o 100.0 - 100.0 100.0

P5 90.0 90.0 "Too.o 100.0 “ 100.0 100.0
P6 90.0 90.0 100.0 100.0 100.0 1 0 0 . �

Table B.4: Performance of our wrapper induction approach for each testing
page in the Web sites S15 (P and R refer to precision and recall respectively.)

100

Model Number Description Price
Page label P (%) R (%) P (%) R (%) P (%) R (%)
P2 100.0 100.0 90.0 100.0 90.0 90.0
P3 100.0 100.0 100.0 100.0 100.0 100.0
P4 100.0 100.0 83.3 100.0 100.0 100.0
P5 100.0 100.0 100.0 100.0 100.0 100.0
P6 100.0 100.0 90.0 90.0 100.0 100.0
P7 100.0 100.0 80.0 100.0 100.0 100.0
P8 100.0 100.0 100.0 100.0 100.0 100.0
P9 90.0 100.0 90.0 100.0 90.0 100.0
PlO 100.0 100.0 70.0 87.5 100.0 100.0
P11 100.0 100.0 100.0 100.0 100.0 100.0
P12 100.0 100.0 90.0 100.0 100.0 100.0

Table B.5: Performance of our wrapper induction approach for each testing
page in the Web sites 816 (P and R refer to precision and recall respectively.)

Model Number Description Price
Page label P (%) R (%) P (%) R (%) P (%) R (%)
P2 100.0 100.0 90.0 100.0 100.0 100.0
P3 100.0 100.0 100.0 100.0 100.0 100.0
P4 100.0 100.0 66.7 100.0 100.0 100.0
P5 100.0 100.0 100.0 100.0 100.0 100.0
P6 100.0 100.0 100.0 100.0 100.0 100.0
P7 100.0 100.0 100.0 100.0 100.0 100.0
P8 100.0 100.0 100.0 100.0 100.0 100.0
P9 100.0 100.0 100.0 100.0 100.0 100.0
PlO 100.0 100.0 100.0 100.0 100.0 100.0
P11 100.0 100.0 100.0 100.0 100.0 100.0
P12 100.0 100.0 100.0 100.0 100.0 100.0
P13 100.0 100.0 100.0 100.0 100.0 100.0

Table B.6: Performance of our wrapper induction approach for each testing
page in the Web sites 817 (P and R refer to precision and recall respectively.)

101

Model Number Description Price
Page label P (%) R (%) P (%) R (%) P (%) R (%)_

P2 100.0 55.6 35.7 55.6 100.0 55.6—
P3 100.0 41.7 " ^ . 7 41.7 "lOQ.Q 41.7~

P4 100.0 100.0 —62.2 IQQ.O" 100.0 IQQT "

P5 100.0 100.0 —59.3 94.1 — 100.0 lOOT"
P6 100.0 50.0 —33.3 50.0 ~ 100.0 5 0 ^

P7 100.0 81.8 47.4 81.8 "lOO.Q 81.8—
P8 100.0 100.0 54.5 100.0 100.0 1 0 ^

P9 100.0 100.0 ~46.2 100.0 "iQQ.O 100.0—
PIO 100.0 100.0 52.6 100.0 100.0 I Q ^
P l l 100.0 83.3 83.3 ~ 100.0 83.3—
P12 100.0 100.0 66.7 100.0 100.0 lOOT"

Table B.7: Performance of our wrapper induction approach for each testing
page in the Web sites S18 (P and R refer to precision and recall respectively.)

Model Number Description Price
Page label P (%) R (%) P (%) R (%) P (%) R
P2 100.0 100.0 47.4 47.4 100.0 100.0—
P3 IQQ.O 97.1 ~ a O 0.0 " 100.0 96.7—
P4 100.0 97.7 97.6 95.3 100.0 95.8—

Table B.8: Performance of our wrapper induction approach for each testing
page in the Web sites S19 (P and R refer to precision and recall respectively.)

102

I

C U H K L i b r a r i e s

••llllllll

