
Efficient Approaches in Interconnect-driven 
71oorplanning 

LAI Tsz Wai 

A Thesis Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Master of Philosophy 

in 

Computer Science and Engineering 

©The Chinese University of Hong Kong 

August, 2003 

The Chinese University of Hong Kong holds the copyright of this thesis. 

Any person(s) intending to use a part or the whole of the materials in this 

thesis in a proposed publication must seek copyright release from the Dean of 

the Graduate School. 



UNIVERSITY y ^ J 
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Abstract 

As technology moves into the deep submicron era, the complexity of VLSI cir-

cuit design grows rapidly. Interconnect optimization has become an important 

concern in floorplanning today. In this thesis, two fast and effective approaches 

in interconnect-driven floorplanning are proposed. 

The first approach measures the wiring congestion as the wire density on 

the boundary of different regions in a floorplan. These regions can be defined 

naturally by using the twin binary trees (TBT) floorplan representation. In 

order to increase the efficiency of our floorplanner, a fast algorithm for the 

least common ancestor (LCA) problem is used to compute the wire density. 

Prom the experimental results, the number of unroutable wires can be reduced 

efficiently by using this kind of interconnect-driven floorplanning. 

The second approach is called the simple buffer planning method. It aims 

at improving the feasibility of buffer insertion of the output floorplan solution. 

It counts the number of blocked nets without computing the exact buffer loca-

tions. Dynamic programming and a table look-up approach are used to decide 

whether a net is blocked. The decision can be made in constant time with 

a linear pre-processing time. We combine the simple buffer planning method 

with the wire density evaluation model in a two-stage simulated annealing pro-

cess. Experimental results have shown its efficiency in reducing the number of 

unroutable wires due to wiring congestion and unsuccessful buffer insertion. 
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摘要 

隨著科技發展逐漸遠離次微求的紀元’超大規模集成電路設計的複雜 

性正在迅速增長，這個現象在模件間的互連最為明顯。故此，在現今的佈 

局規劃中’優化互連電路已經成為一個很重要的考慮因素。在這篇論文中 

’我們將會發表兩個既簡單而有效率的優化互連電路佈局規劃方案。 

在第一個方案中’我們以孿生二又樹作為佈局規劃的表示法。在佈局 

規劃中，不同的區域會被擎生二又樹表示法自然地定義出來。在這些區域 

的邊界上’我們會以電路密度來量度線路擠擁的情况。為了增加佈局規劃 

的效率’我們用了一個解決「最近公祖先」的快速算法來計算線路密度， 

實驗證明這個方法可以在短時間内減少不可繞的線路數目。 

第二個方案叫傲「簡單緩衝編制方法」，這個方案旨在提高緩衝嵌入 

的可行性°這個模型會利用以格子為基礎的傳統方法將佈局劃分為二維空 

間的格子結構，這個模型能夠在不需準確計算最佳緩衝位置下’數算出有 

多少個被阻塞的網絡。我們可以運用動態規劃和表格查詢的方法去決定一 

個網絡是否被阻塞’而借助一個線性時間的預處理’我們就可以在常數時 

間内作出這個決定°我們利用二級模擬降溫法將電路密度評估方案和這個 

簡單的緩衝編制方案一起放在佈局規劃中’實驗結果證明這些方案能有效 

地減少那些因為線路擠擁和未能嵌入緩衝所做成的不可繞線路。 
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Chapter 1 

Introduction 

In 1960s, integrated circuit (IC) technology was widely used in computers for 

microprocessor, memory module and other interface chips. With the advances 

of the Very Deep Sub-Micron (VDSM) technology, IC has evolved from Small 

Scale Integration (SSI) , which consists of a few transistors, to Very Large Scale 

Integration (VLSI), which consists of millions of transistors. According to the 

Moore's Law [10], it was predicated that the number of transistors in an IC 

would double every 1.5 years. Therefore, it is possible to build a processor with 

billions of transistors running at several GHz. In the coming years, the tech-

nology of VLSI will continue to scale down as shown by the prediction in Table 

1.1. The transistors will become smaller, less resistive, faster and conducting 

more electricity. Also, the interconnections in a chip will become longer and 

denser in the future. This rapid growth has brought many challenges to VLSI 

circuits and its automation. 

Year 1997 1999 2001 2003 2006 2009 
Technology (fim) 0 . ^ 0.18 ~0.15 0.13 0.1 0.07 
Number of transistors 11M~ 21M " i m " 76M "^OM 520M 
Across chip clock (MHz) 750 I W 1400 1600 2000 2500 
Chip size (cm^) 3.00" 3.40 ~3M~ 4.30 5.20 6.20  
Wiring levels | 6 | 6-7 | 7 | 7 | 7-8 | 8-9 

Table 1.1: Technology roadmap [9]. 
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Chapter 1 Introduction 2 

1.1 VLSI Design Cycle 

Prom designing a chip specification to producing a packaged VLSI chip, sev-

eral steps are involved in the VLSI design cycle as shown in Figure 1,1. These 

steps include system specification, architectural design, functional design, logic 

design, circuit design, physical design, fabrication, and packaging and testing. 

System Specification 

Architectural Design 

1 

Functional Design 

Logic Design 

1 

Circuit Design 

Physical Design 

Fabrication 

Packaging and Testing 

Figure 1.1: A simple VLSI design cycle [1]. 
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System specification is a high level descriptions of the requirements of the 

design. It specifies the size, speed, power, and functionality of the VLSI 

system. After defining the system specification, we can design the basic ar-

chitecture of the system in architectural design. In architectural design, a 

Micro-Architectural Specification (MAS) is obtained by making decisions on 

the number of ALUs and floating point units, the number and structure of 

pipelines, the size of caches, and whether using Reduced Instruction Set Com-

puter (RISC) or Complex Instruction Set Computer (CISC), etc. Given a 

MAS, we can predict the system performance, die size, power consumption, 

etc. After the architectural design, the main functional units of the system and 

their interconnections are identified in functional design. In functional design, 

a timing diagram of the units is obtained. It specifies the input, output and 

timing of each unit without specifying the internal details of each unit. The 

information of the timing diagram can help to make improvement on the over-

all design process. It can also facilitate the efficiency of debugging the whole 

system before moving to the later steps. 

In logic design, the boolean expressions, control flow, word width, register 

allocation of the design are derived. These logical information is described 

in a Register Transfer Level (RTL) description, which consists of boolean ex-

pressions and timing information. RTL is then expressed in a Hardware De-

scription Language (HDL), such as VHDL and Verilog. Using this description, 

the logic design of the system is simulated and tested to verify its correctness. 

Based on the logic design, the circuit representation is developed in circuit 

design. By considering the speed and power requirement of the design, the 

boolean expressions in logic design are converted into a detailed circuit dia-

gram, which is called a netlist. In this circuit representaion, the cells, gates, 

transistors and interconnections are defined. Then, the circuit representation 

will be converted into a geometric representation, which is called a layout, in 
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physical design. Both the circuit elements and interconnections are expressed 

in geometric representation. Before the fabrication step, various verifications 

and validation checks are performed on the layout. After a final checking of 

the layout, a chip is produced in the fabrication step. Finally, the chip will be 

packaged and then tested in packaging and testing to ensure that it functions 

well and can meet all the system specifications. 

In this thesis, we will focus on physical design in the design cycle. Due to 

the huge number of circuit elements, interconnects and system requirements, 

physical design is further partitioned into several phases to reduce the design 

complexity and produce better management. 

1.2 Physical Design Cycle 

In VLSI design cycle, physical design converts a circuit diagram into a circuit 

layout. A layout is a geometric representation of the circuit, so that the cir-

cuit can be converted into a photo-lithographic mask in fabrication. Due to 

the complexity of VLSI chip design, physical design is partitioned into several 

phases for better management as shown in Figure 1.2. These phases include 

partitioning, floorplanning, placement, routing, compaction, and extraction 

and verification. If the design requirements, like timing and size, cannot be 

achieved, we may need to go back to some phases or even the beginning of the 

cycle to repeat the process again. 

Due to the huge number of transistors contained in a VLSI chip in the 

deep submicron era, it is difficult to provide an efficient computer aided design 

(CAD) tools to solve the physical design problem. Therefore, the first phase 

in the physical design cycle will be circuit partitioning. In this phase, a large 
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Circuit Design 

： - 、： -々‘”- ~ ~“ 
\ r . 、亡 

Physical Design i * 1 � ‘ 
：：•'•.•• NO 1 � Partitioning ~•~： r 

^ , YES X Can violation be fixccTv 
• Floorplanmng ~ " " " K ^ y re-floorplannin^ 

1 
Placement .;八 “？ 

....... ..:-:... ..、•..：.....："、，： } f ‘ , ‘ 
i� ^ , ^ 

NO � -
NO timing, size oWp> “ 

Routin ^ YES ^ Can violation be fixeaS^ 

Can routinĝ v. 
complete 

YES . ” 
！; …、 

Compaction NO 

L_ ‘ •f. 
Extraction and Verification � i - � 

？ir ，：、 
’ ( f "�V及、>、 

、、广 � J � 
广“ ir - “斤 1 ：^ 轉 f 

�I s timing ok?^> r-T：  

YES 、： > — - ^ 

Fabrication 

Figure 1.2: Physical design cycle [1]. 
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circuit will be partitioned into smaller sub-circuits (modules) recursively, so 

that the problem size is small enough to be solved efficiently. After partition-

ing, the layout of the entire large circuit can be obtained by designing each 

sub-circuit separately and recursively in a bottom-up fashion. 

In the second phase, floorplanning, a planning of the layout which can opti-

mize the circuit size and performance is made based on the circuit specification. 

The information in the specification includes the sizes and possible shapes of 

the modules, and the interconnections between the modules. In this phase, the 

decision on the shapes of the modules and the pin positions are made. After 

floorplanning, the internal logic cells in each module are placed exactly in the 

third phase - placement. The floorplanning and placement will affect the over-

all circuit performance significantly. It is better to evaluate the timing and size 

of the circuit accurately during the floorplanning and placement phase before 

moving to the later phases. If the circuit requirements cannot be achieved, we 

may need to go back to the earlier phases again, like partitioning or even the 

logic designing step. 

After floorplanning and placement, we can perform routing on the place-

ment solution. In the routing phase, the interconnections between the modules 

are completed by global routing and then detailed routing. In global routing, 

the routing regions of the interconnections between the modules are planned. 

Finally, the point-to-point connections between the pins of the modules are 

completed in detailed routing. If some nets are unroutable, we may need to 

rip-up and reroute them. If there still remain some unroutable wires, we need 

to go back to some previous phases. 

After the routing phase, most geometric information have been worked out. 

The layout will be compressed to obtain a smaller chip size in compaction. In 
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the extraction and verification phase, the layout will be checked for any design 

rule violation. A circuit is extracted from the layout of which the performance 

and reliability will be verified before the fabrication step. It is observed that 

the quality of the solutions in the earlier phases plays an important role to in-

crease the efficiency of the physical design cycle. These critical phases include 

partitioning, floorplanning and placement. In this thesis, we will focus on the 

floorplanning problem in the VLSI physical design cycle. 

1.3 Floorplanning 

In the VLSI design cycle, floorplanning plays an important role. After cir-

cuit partitioning, the initial specification for each module can be obtained. It 

includes the areas of the modules, the possible shapes (aspect ratios) of the 

modules, the number of terminals (pins) of the modules and the netlists (inter-

connections between the modules) of the circuit. In the floorplanning phase, 

we are going to plan the position and shape of each module. The floorplan 

obtained should optimize the circuit in terms of chip area, total wirelength, 

routability, delay of critical path and heat dissipation. Minimizing the chip 

area can reduce the deadspace and increase the yield. As technology moves 

into the deep submicron era, circuit sizes and complexities grow rapidly. The 

interconnections between modules will become longer and denser in the fu-

ture, so minimizing the interconnect cost in floorplanning has become ever 

more important than before. The following defines the floorplanning problem: 

Problem Formulation 1.1 (Floorplanning) Given a set of modules (Mi, 

M2, Ms, .. • Mn) with areas (Ai, A2 ,As, ... An) respectively, each module Mi 

is associated with two aspect ratio bounds CLri and a si, that specify the lower and 

upper bound of the aspect ratio of module Mi respectively such that ari < ^ < 

CLsi where hi and Wi are the height and width of Mi respectively. We want to 



Chapter 1 Introduction 8 

obtain a non-overlap packing of the set of modules by finding the position (xi, yi) 

and dimension {wi, hi) for each module Mi so that the circuit performance can 

be optimized. 

As the floorplanning problem is proved to be NP-complete, different ap-

proaches have been employed to solve it. These approaches include analytical 

approach, simulated annealing approach, genetic algorithm approach, force di-

rected approach and constraint based approach. 

In 1991，a linear programming approach [11] is proposed. It is based on a 

mixed integer linear program. The placement constraints are treated as linear 

functions with integer variables. For a problem with n blocks, the number 

of linear functions is (9(n^) and this method is only practical for circuit with 

at most n = 10 modules. In 1998, a convex formulation [12] is proposed to 

solve the floorplan area minimization problem. By handling the aspect ratio 

constraints indirectly, the number of variables and constraints can be reduced. 

Besides solving the floorplanning problem by linear programming, it can 

also be solved by stochastic searching methods. Many floorplanners are based 

on the simulated annealing approach [2’ 3, 13’ 14’ 15, 16，17，18] or the genetic 

approach [5，19]. Simulated annealing [2，3] is commonly used in floorplan-

ning. The pseudo-code of a general simulated annealing algorithm is shown 

in Figure 1.3. In simulated annealing based floorplanner, a floorplan is rep-

resented by a floorplan representation (for example, sequence representation 

or tree representation) and the quality of a floorplan is evaluated by a cost 

function. The annealing process starts with an initial floorplan solution xq at 

temperature Tq. In each iteration, a small change will be made to the solution 

and the temperature T will be cooled down according to the cooling rate c. 

Each floorplan solution will be evaluated by the cost function. If there is a 
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cost reduction, the modified solution will be accepted as a new solution. Oth-

erwise, the acceptance of a worse solution will be determined randomly with 

a probability of e-kM/t where A; is a constant to adjust the order of magni-

tude and A / is the drop in the value at the cost function before and after the 

modification. There will be a higher chance to accept a worse solution at high 

temperature. This feature allows the annealing process to climb out of local 

minima. Finally, the annealing process will terminate when the temperature 

is cooled down to the terminating temperature Tt. 

Another stochastic searching approach is genetic algorithm [5]. In this 

approach, evolutionary mechanism is applied. The pseudo-code of a general 

genetic algorithm is shown in Figure 1.4. The algorithm starts with a set of 

initial solutions called population. By using two types of genetic operators, 

crossover and mutation, a better population can be obtained iteratively by 

means of evolution. Here, evolution refers to the improvement of the pop-

ulation quality. In crossover, a new solution is created by combining two 

solutions in the population. In mutation, a solution is picked randomly and a 

small change is applied on it. 

Many floorplanners use simulated annealing with a proper floorplan rep-

resentation. Most of the floorplan representations are designed to represent 

the topological relationship between the modules. A well designed floorplan 

representation can increase the efficiency and effectiveness of the simulated an-

nealing process by providing a faster floorplan realization and solution space 

with less redundancy. In the next section, different types of floorplan repre-

sentations will be introduced. 



Chapter 1 Introduction 10 

Simulated Annealing (TV, To, Tt, c) 
1. X = Xq /* Initial solution */ 
2. T = To /* Initial temperature */ 
3. While(T > Tt) 
4. For loop =1 to N 
5. x' = mutate(a;) 
6. A / = cost (a;') - cost(a:) 
7. r = random number between 0 and 1 
8. If (A/ < 0 or r < exp(-A;A//T)) 
9. X = x' 
10. Endif 
11. Endfor 
12. T = T X c /* Cool Down */ 
13. Endwhile 
14. return x 

Figure 1.3: Simulated annealing [2, 3, 4]. 

Genetic Algorithm(P, R � � R m ) 

1. X = {xi, 2；2，..., xp} /* Initial Population */ 
2. While (stopping criterion is not met) 
3. X ' = 0 
4. / * Create children by crossover */ 
5. While(number of children created < P x Rc) 
6. select two solutions, Xi and Xj, from X 
7. x' = crossover (a；!, Xj) 
8. X' = X'\J {x'} . 
9. Endwhile . 
10. select P solutions from X U X ' as a new population and call it X 
11. While(number of solutions mutated < P x Rm) 
12. select one solution Xk from X 
13. x' = mutate 
14. X ' - X ' U {x'} 
15. Endwhile 
16. X = X' 
17. Endwhile 
18. return the best solution in X  

Figure 1.4: Genetic algorithm [5’ 4]. 
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1.3.1 Types of Floorplan and Floorplan Representations 

There are three main kinds of floorplan: slicing, non-slicing and mosaic floor-

plan as shown in Figure 1.5. A slicing floorplan is shown in Figure 1.5(a). It 

is a floorplan that can be obtained by recursively dividing a rectangle into two 

by using either a horizontal or a vertical cut. A widely used slicing floorplan 

representation is normalized Polish expression [20], which is proposed in 1986. 

It used a binary slicing tree to represent the slicelines and the modules. It can 

represent a slicing floorplan with no redundancy and the size of the solution 

space is where n is the number of modules. 

�fe: 
Slicing Non-slicing Mosaic 

(a) (b) (c) 

Figure 1.5: Examples of the three main kinds of floorplans. 

A non-slicing floorplan is any general floorplan that is not necessarily ob-

tained by recursively dividing a rectangle into two as shown in Figure 1.5(b). It 

is the most general kind of floorplan. There are many representations proposed 

recently for this kind of general floorplan. A sequence pair (SP) representation 

for non-slicing floorplan is proposed in paper [13]. It uses a pair of sequences 

to represent the topological relations between the modules. It is widely used 

recently because of its simplicity. However, its solution space is 0((n!)^), which 

is very large and redundancies exist. After SP is proposed, another non-slicing 

floorplan representation called bounded-sliceline grid (BSG) is proposed in pa-

per [21]. An n-by-n grid structure is used to place n modules. The size of 

its solution space is 0(n!C(n2’ n)), which is also very large and contains a lot 

of redundancies. For both SP and BSG, constraint graphs are needed to be 
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constructed for floorplan realization, and it is a time consuming process. In 

1999, an 0-tree representation with a significant reduction in the size of the 

solution space is proposed in paper [22]. A floorplan can be re-

alized directly from its 0-tree representation in linear time. In 2000，a B*-tree 

representation which is very similar to 0-tree and shares the same advantages 

is proposed in paper [14]. Although both 0-tree and B*-tree have a very small 

solution space and floorplan realization can be preformed very efficiently, they 

can only represent partial topological information and module dimensions are 

needed to define the topological relationships between the modules. 

In 2000, a new kind of floorplan called mosaic floorplan is proposed in pa-

per [6]. Mosaic floorplan is very similar to non-slicing floorplan except that 

it contains no empty rooms as shown in Figure 1.5(c). Each module corner, 

except those at the four corners of the chip, is formed by a T-junction. In 

mosaic floorplan, the non-crossing segment of a T-junction can slide along the 

crossing segment and represents the same packing as shown in Figure 1.6. The 

first mosaic floorplan representation is corner block list (CBL) which is pro-

posed in paper [6]. In this paper, a floorplan is represented by three sequences. 

The size of the solution space of CBL is [15]. Floorplan realization of 

CBL can be performed in linear time. However, not all CBL will correspond 

to a valid floorplan. Additionally, as mosaic floorplan cannot represent those 

non-slicing floorplans with empty rooms, an extended CBL (ECBL) represen-

tation is proposed in paper [23], that includes dummy blocks of zero area in 

the set of modules to represent all non-slicing structures. In paper [7], another 

mosaic floorplan representation - twin binary trees (TBT) is proposed. It has 

a smaller solution space of and has an one-to-one mapping to 

all mosaic floorplan. Based on TBT, a representation called twin binary se-

quences (TBS) is proposed in paper [15], that can generate every non-slicing 

floorplan uniquely and efficiently without redundancy in linear time. As a new 
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and promising floorplan representation, TBT is used in our research work and 

in our floorplanners. In conclusion, the categories of floorplans can be summa-

rized as in Figure 1.7. Slicing floorplan is a subset of mosaic floorplan, while 

mosaic floorplan is a subset of general floorplan. 

F Fl 
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Figure 1.6: A property of mosaic floorplan [6]. 
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Figure 1.7: Categories of floorplans [7]. 

1.3.2 Interconnect-driven Floorplanning 

Traditionally, most floorplanners [19，24，25，13’ 21, 22，6，15] aim at minimiz-

ing the chip area so as to increase the yield. However, as technology moves 

into the deep submicron era, the number of transistors, the complexity of a 

circuit and the number of interconnections between the modules are increasing 

rapidly. The interconnections between modules will become longer and denser 

in the future. In some advanced systems, a significant portion of about 80% of 

the clock cycle is consumed by interconnections [9]. In the international tech-

nology roadmap for semiconductors in 2001 [8], it has been predicted that the 
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delay of global wire will continue to increase with the scaling down of the tech-

nology, especially for the wires without buffer insertion as shown in Figure 1.8. 

It has been shown that the interconnect delay for a wire without repeater 

insertion will increase quadratically as the wirelength increases, while it will 

only increase linearly with proper repeater insertions [26, 27，28]. Also, it is 

shown that the delay of a 2cm global interconnect can be reduced by a factor 

of 7x by optimal buffer insertion [29]. Interconnect optimization in floorplan-

ning has become ever more important than before. As floorplanning is at the 

beginning phase of the VLSI physical design cycle, an interconnect-optimized 

floorplan will favor the applicability and performance of the later stages like 

global routing, detailed routing, buffer insertion, and, most importantly, allow 

timing closure to be achieved earlier. Recently, the major approaches for in-

terconnect optimization are congestion control, buffer planning, device sizing, 

and wire sizing and spacing. In this thesis, we will focus on congestion control 

and buffer planning in floorplanning. 

There are many congestion optimization floorplanners [30, 31，32，16，33， 

34，35) proposed in recent years. In 1999, a multi-stage simulated annealing 

approach is proposed in paper [30] to address the congestion control problem. 

In interconnect planning, simple geometry routing is performed based on L-

shaped and Z-shaped wires. A three-stage simulated annealing approach is 

used to combine the three different interconnect estimation methods. These 

three methods are the half-perimeter bounding box wirelength estimation, L-

shaped routing and Z-shaped routing. In 2000，Chang et al. proposed a four-

stage simulated annealing approach for interconnect-driven floorplanning in 

paper [32]. In their multi-layer global wiring planning, interconnect topology 

optimization, layer assignment, buffer insertion, and wire sizing and spacing 
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are performed. In addition, it also provides an optional post-processing opti-

mization for the resulting floorplan. In 2001, Lou et al. proposed a probabilis-

tic approach to estimate routing congestion in paper [34]. The probabilistic 

model computes all possible ways that a router can route a net. Congestion 

is estimated by computing the probabilistic track usage of each grid. In 1999， 

Wang et al. studied the behavior of congestion minimization in paper [31 . 

It is shown that the congestion cost alone is a poorly behaved cost function. 

There is a correlation between wirelength and congestion, and we should need 

to consider them together. A new objective called overflow with look-ahead is 

proposed to reduce congestion. In 2000, Wang et al. pointed out in paper [16 

that the bounding box router used in paper [31] cannot measure congestion 

accurately, so a realistic global router is used instead. In addition, two post-

processing algorithms, the flow-based cell-centric algorithm and the net-centric 

algorithm, are proposed. 

Reducing wiring congestion in floorplanning is not enough. We should also 

consider buffer insertion so that timing closure can be achieved as early as 

possible [36, 37] in the design cycle. In 1999, Cong et al. proposed the con-

cept of feasible region for buffer insertion in paper [36]. A buffer clustering 

technique is used to plan the buffer locations effectively. In paper [37], the 

concept of independent feasible region is proposed. A similar clustering tech-

nique is used to place the buffers greedily in the available space. In 2000, 

Tang and Wong proposed to make use of the max-flow min-cut algorithm in 

network flow to place the buffers in polynomial time in paper [38]. In pa-

per [39], Dragon et al. reduced the buffer planning problem to an integer 

multi-commodity flow problem. It routes the net by using available buffer 

blocks, such that the separation x between adjacent buffers are controlled to 

be within a range [low, up]. In 2001, Alpert et al. modelled the buffer planning 

problem in a tile graph in paper [40]. A four-stage heuristic is proposed to plan 



Chapter 1 Introduction 16 

the wires and the buffers. These four stages are initial steiner tree construc-

tion, wire congestion reduction, buffer assignment and final post-processing. 

In 2002, a probabilistic model to estimate wiring congestion and buffer plan-

ning is proposed in paper [17]. The estimations are based on the demand and 

supply analysis of the routing and buffer resources. Dynamic programming is 

used to estimate the buffer usage. In paper [18], the best buffer locations with 

respect to the variable interval buffer insertion constraint are computed using 

dynamic programming. After the buffer locations are decided, probabilistic 

analysis is applied to estimate the wiring congestion. 

lOOi  
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Figure 1.8: Relative delay for global wiring versus feature size [8]. 
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1.4 Motivations and Contributions 

As stated before, floorplanning plays an important role in the VLSI physical 

design cycle. It sets up a ground work for a good layout. A good layout is 

important for the later stages in the physical design cycle. In this deep sub-

micron era, the number of transistors and interconnects are growing rapidly. 

The wires will become longer and denser in the future. More routing space 

and buffers are needed to ensure timing closure and design convergence. If 

we did not carefully plan the routes of the nets and reserve sufficient spaces 

for buffer insertions when we were designing a circuit layout, there would be 

a high chance of having a lot of unroutable wires in the routing phase. As 

a result, we need to plan the routing spaces and buffer locations as early as 

possible in floorplanning. 

Our research is focused on interconnect-driven floorplanning which includes 

congestion control and buffer planning. Firstly, we have reviewed several litera-

tures about floorplanning. They include floorplan representations, congestion 

control and buffer planning in floorplanning. As our methods are based on 

simulated annealing, we need to study some recent floorplan representations, 

. and choose one of them to be used in our floorplanners. We have used the 

twin binary trees representation (TBT) [7] in our research work finally. 

We make use of the characteristic of TBT and propose a novel congestion 

estimation method. It is called wire density. It provides a simple, indirect but 

efficient congestion evaluation model other than the complicated grid-based 

approach [30，16]. Instead of estimating the congestion at each grid using 

global routing, we evaluate congestion as the wire density passing through the 

boundary of different regions in a floorplan. It is because a floorplan, that 

has high wire density on average, has a greater chance of having congestion 
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problem. In addition, we have made use of a fast algorithm [41] for the least 

common ancestor (LCA) problem to compute the wire densities at different 

regions efficiently. Experimental results have shown that an interconnect opti-

mized floorplan of a complex circuit can be obtained in less than three minutes. 

Thirdly, we propose a table look-up approach to solve the buffer planning 

problem. This simple buffer planning evaluation method aims at improving 

the feasibility of buffer insertions of the floorplan solution. Also, it aims at 

considering buffer planning efficiently without accurately computing the best 

possible buffer locations. In our method, we are going to determine whether a 

net can have all its buffers inserted. In order to achieve an efficient evaluation, 

we will use dynamic programming and a table look-up approach to obtain such 

buffer planning information in constant time. In this approach, a floorplan is 

divided into a two-dimensional grid structure. The concept of feasible grid 

is introduced. By accessing the look-up tables, we can decide whether a net 

is blocked because of buffer insertion failure immediately. Together with the 

congestion control by the wire density evaluation model, experimental results 

have shown the efficiency and effectiveness of our floorplanner in reducing the 

number of unroutable wires. 

1.5 Organization of this Thesis 

This thesis is organized as follows. After giving an introduction and back-

ground information in this chapter. We will give a literature review on floor-

planning. We will review on different floorplan representations in Chapter 2， 

and different approaches in congestion estimation and buffer planning in Chap-

ter 3. After the literature review on related research areas, our proposed 

interconnect-driven floorplanners will be presented. In Chapter 4, details of 

the wire density model to evaluate congestion will be given. In Chapter 5， 
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the idea and implementation of our simple buffer planning method will be 

discussed. We will also combine the wire density model and the simple buffer 

planning method in our floorplanner. Experimental results of this floorplanner 

and other interconnect-driven floorplanners [17，18] will be compared. Finally, 

a conclusion is drawn in Chapter 6. 



Chapter 2 

Literature Review on Floorplan 

Representation 

In floorplanning, the characteristics of a floorplan representation can greatly 

affect the performance of a searching process in terms of size of the solution 

space, memory usage and ease of floorplan realization for evaluation. There 

are three kinds of floorplans: slicing, non-slicing and mosaic floorplan. In this 

chapter, representations for these three kinds of floorplans will be reviewed. 

2.1 Slicing Floorplan Representation 

2.1.1 Normalized Polish Expression 

A slicing floorplan can be obtained by cutting the chip recursively into rectan-

gular modules using horizontal and vertical slicelines. In 1986, Wong and Liu 

described this kind of hierarchical structure by a rooted binary tree, called slic-

ing tree, in paper [20]. In this slicing tree, an internal node is labelled by a V 

or a '+ ’ to represent a vertical or horizontal sliceline respectively while the leaf 

nodes corresponding to the circuit models are labelled with the module names 

as shown in Figure 2.1. A Polish expression can be obtained by performing 

a post-order traversal on the slicing tree. A normalized Polish expression is 

20 
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defined as a Polish expression with no consecutive *'s or +，s. It is shown that 

a normalized Polish expression can be obtained by performing a post-order 

traversal on a slicing tree, which is constructed by always representing the 

cuts from right to left and from top to bottom. In their paper, it is shown that 

there exists a one-to-one correspondence between the normalized Polish expres-

sion and the slicing floorplan. The size of the solution space and the memory 

usage of this representation is and 9(n{\lgri\ + 1) - 1) bits 

respectively where n is the number of modules. Also, a slicing floorplan can 

be realized from its normalized PE in 0(n) time. 

r m 
V 八 / \ 

1 2 1 2 + 5 

V t " ^ 八 
Floorplan 4 3 

Slicing tree 

Normalized Polish Expression: 12*43+5*+ 

Figure 2.1: An example of a normalized Polish expression. 

2.2 Non-slicing Floorplan Representations 

2.2.1 Sequence Pair (SP) 

In 1995, Murata et al. proposed a non-slicing floorplan representation called 

sequence pair (SP) in paper [13]. A sequence pair of a set of modules is a 

pair of combinations of the module labels. For example, s = {abed, bacd) is 

a sequence pair of the set of modules {a, b, c, d}. We can derive the relative 

positions between the modules from a sequence pair s by the following rules: 
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1. If s = (•.. a • • • 6. •.，•. • a. •. 6 • •.)’ module b is on the right side of mod-
ule a. 

2. If 5 = (• • - a- • - b- •' , • • •6- • -a- • •), module b is below module a. 

A sequence pair can be converted into a floorplan layout by constructing a 

pair of constraint graphs which represent the horizontal and vertical placement 

relationships. Each constraint graph has a source and a sink to denote the chip 

boundaries. In the horizontal constraint graph Gh{Vh,Eh), the source and 

the sink represent the left-most and the right-most boundaries of the chip re-

spectively while those of the vertical constraint graph Gv{Vv,Ev) represent 

the bottom-most and the top-most boundaries of the chip respectively. A di-

rected edge {u,v) in Gh(Vh, Eh) denotes that module u is on the left side of 

module v, and its weight w{u,v) is the width of module u (Wu). Similarly, a 

directed edge {u,v) in Gv(Vv, Ey) denotes that module u is at the bottom of 

module v, and its weight w(u,v) is the height of module u {hu). The position 

of each module can be obtained by finding the longest path from the source 

to each vertex in GH{VH, EH) and GV{VV, EY). An example is shown in Fig-

ure 2.2. In their paper, the two constraint graphs can be constructed directly 

from the sequence pair by the following rules: 

1. If s = (• • • a … 6 … ’ … a … 6 …），add a directed edge (a, b) weighted 

Wa to Gh-

2. If s = (• • • a • •. 6 . . • • -b- • -a- •'), add a directed edge (6，a) weighted 
hb to Gy. 

The time complexity of this floorplan realization is O(n^) where n is the 

number of modules. However, it can be optimized to 0{nloglogn) in paper [42]. 
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The memory usage and the size of the solution space of the sequence pair rep-

resentation are 6{2n{\lgn])) bits and 0((n!)^) respectively. 

< 2 4 — — 0 

SP = (13245,41352) G ^ V ^ E^) G ^ V ^ E^) 

Figure 2.2: An example SP and its corresponding constraint graphs. 

2.2.2 Bounded-sliceline Grid (BSG) 

Nakatake et al. proposed another non-slicing floorplan representation using a 

meta-grid structure in paper [21] in 1996. This meta-grid is called bounded-

sliceline grid (BSG). The circuit modules are placed in the rooms defined by 

the BSG structure Ubsg. 

Definition 2.1 A BSG structure Ubsg is constructed by a set of horizontal 

line segments Hij and a set of vertical line segments Vij as follows: 

{Vij I € Z"*" and i j is an even number} 
Ubsg = ‘ 

(J {Hi�j I e and i + j is an odd number} 

where 

Hij = {(re, y) I + l and y = j} 

Vij = {(a：,y) \x,yeR,x = iandj-l<y<j-\-l} 

For a floorplan with n modules, the greatest dimension of the BSG is n x n. 

The rectangular spaces bounded by the horizontal and vertical segments are 



Chapter 2 Literature Review on Floorplan Representation 24 

defined as rooms as shown in Figure 2.3. In this representation, circuit mod-
ules will be placed in these rooms. 

To realize a floorplan, a horizontal constraint graph Gh{Vh, Eh) and a ver-

tical constraint graph GV(VV, EY) are constructed. Except the source and the 

sink, Vh is the set of center points of HI，J while VY is the set of center points 

of Vij. The edges of the graphs are the edges connecting the adjacent center 

points of the line segments. An example is shown in Figure 2.4. If an edge e 

passes a room, that has a module, its weight in G/I and GY will be the width 

and the height of that module respectively. If the room is empty, the weight 

will be zero. Similar to sequence pair, the longest path finding algorithm is 

performed to compute the layout of the floorplan. The time complexity of this 

floorplan realization is O(n^) and the size of the solution space of the repre-

sentation is - n)l). By storing the coordinates of each room that 

has a module, the memory usage of BSG is 0(2n(flgnD) bits. 

个 个 

(«,") 

(0.0) A- (0.0) 

] \ room 
H.. v.. 

•J I.J 
Figure 2.3: BSG structure and rooms. 
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Figure 2.4: An example of floorplan realization using BSG. 

2.2.3 O-tree 
In 1999, Guo et al. proposed an 0-tree representation for non-slicing floorplan 

in paper [22]. An 0-tree is an ordered tree which can have an arbitrary num-

ber of branches (children) for each internal node. A horizontal and a vertical 

0-tree are needed to give an admissible placement. A placement is admissible 

if and only if the placement is compacted and no modules in the placement 

can move down or move left. The horizontal 0-tree gives a placement, which 

is compacted in the x-direction, while the vertical 0-tree gives a placement, 

which is compacted in the y-direction. Given the dimensions of the modules, a 

vertical 0-tree can be constructed from a horizontal 0-tree, which represents 

the placement, and vice verse. Therefore, either a horizontal 0-tree or a verti-

cal O-tree is stored in the actual implementation. Using the horizontal 0-tree 

as an example, an O-tree T � i s a rooted directed tree. The root represents 

the left boundary of the chip. There is a directed edge connecting a parent 
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to its child if the child is on the right side of its parent with zero separation 

in the x-direction as shown in Figure 2.5. The weight of the edge is equal to 

the width of the module represented by the parent. The weights of the edges 

connecting to the root will be zero. The vertical 0-tree can be constructed 

similarly by using the bottom edge as the root of the tree. 

In the actual implementation, an 0-tree is encoded into two sequences 

(T, tt). T is a 2n bits string used to identify the branching structure of the tree 

where n is the number of modules. It can be obtained by visiting the tree using 

depth first search (DFS). A bit '0' is added for a move that descends an edge, 

while a bit '1' is added for a move that ascends an edge. The permutation tt 

is the sequence of module visited in the depth first search. 

The memory usage and the size of the solution space of 0-tree are 0(n(2 + 

\lgn])) bits and respectively. Floorplan realization of 0-tree 

using constraint graphs can be done in linear time. The drawback of 0-tree is 

that it can only represent partial topological information. A particular 0-tree 

can correspond to different placement solutions, for example, Figure 2.5 and 

2.6 show two floorplans that correspond to the same 0-tree. The dimensions 

of the modules are needed to give a unique placement solution. 

2.2.4 B*-tree 

Based on the 0-tree representation, Chang et al. proposed the B*-tree repre-

sentation in paper [14] in 2000. Similar to 0-tree, a horizontal and a vertical 

B*-tree are needed to give an admissible placement. Using the horizontal 

B*-tree as an example, a B*-tree is an ordered binary tree whose root is the 

bottom-left module, which can be constructed in a recursive fashion according 
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Figure 2.5: An example O-tree. 
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Floorplan O-tree 

Figure 2.6: Another floorplan that corresponds to the same O-tree in Fig-
ure 2.5. 
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to the depth first search order. Starting from the root, the left sub-tree is 

constructed before the right sub-tree. The left child of module Ui is the lowest 

unvisited module located immediately on the right hand side of th. Similarly, 

the right child of module n̂  is the leftmost unvisited module located immedi-

ately on top of Hi. An example is shown in Figure 2.7. Similar to 0-tree, the 

size of the solution space of B*-tree is and floorplan realization 

can be performed in linear time. Similar to 0-tree, B*-tree can only represent 

partial topological information and module dimensions are needed to give the 

rest of the topological relationships between the modules. 

\ A 

蕴 ( A 

Floorplan B*-tree 

Figure 2.7: An example B*-tree. 

2.3 Mosaic Floorplan Representations 

2.3.1 Corner Block List (CBL) 

In 2000, Hong et al. proposed the concept of mosaic floorplan and its first rep-

resentation called corner block list (CBL) in paper [6]. In their paper, a corner 

block is defined as the upper rightmost block in a floorplan. A corner block 
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list consists of a 3-tuple {S, L, T) and is obtained by recursive block deletion 

of the floorplan. 

A corner block is deleted in each block deletion step, the labelling of the 

deleted block is then added to S. L records the type of the corner block. There 

are two types of corner blocks and are defined by the T-junction at its bottom 

left corner. If the T-junction is a T rotated by 90° anticlockwisely (h), the 

corner block is said to be vertically oriented and a bit '0' is recorded in L. If 

the T-junction is an inverted T (丄)，the corner block is said to be horizon-

tally oriented and a bit '1' is recorded in L. The list T will store the number 

of T-junctions covered by the bottom edge or by the left edge of the corner 

block if it is vertically or horizontally oriented respectively. The number of I's 

corresponds to the number of T-junctions covered. A bit '0' is added to T to 

delimit each block deletion record. The information of the last deleted block 

will not be added to L nor T. Finally, a CBL is obtained by writing these lists 

in the reserve order. An example is shown in Figure 2.8. 

The memory usage of this 3-tuple representation is 6[n{Z +�Zgn"|)) bits 

where n is the number of modules. The size of the solution space is 0(n!2^") 

15]. Besides, a CBL can be transformed to its corresponding floorplan in 0(n) 

time by using block insertion, which is a reversed operation of block deletion. 

Also, CBL can only be used to represent a mosaic floorplan which cannot have 

empty rooms as in non-slicing floorplan. As a result, paper [23] solves this 

problem by inserting a more than sufficient number (0(n^)) of extra dummy 

blocks. 
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Figure 2.8: An example to compute CBL from a floorplan. 
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2.3.2 Twin Binary Trees (TBT) 

The twin binary trees (TBT) floorplan representation was first proposed in the 

paper [7] in 2001. It shows an one-to-one mapping between TBT and mosaic 

floorplan. The definition of twin binary trees is as follows: 

Definition 2.2 The set of twin binary trees TBTn C TreCn x TreCn is 

the set: 

TBTn = {(亡 1’ 亡2) I 亡1，亡2 G Treen and 没(ti) = ^^fe)} 

where Treen is the set of all binary trees with n nodes, and 6{t) is the labelling 

oft. 

The labelling of a binary tree can be obtained by performing an in-order 

traversal on the tree. When the traversed node has no left children, a bit '0' is 

added to the sequence. Similarly, if the traversed node has no right children, 

a bit '1' is added to the sequence. The first '0' and the last '1' in the labelling 

are omitted. If the pair of trees are twin binary to each other, the labelling of 

t2 will be the complement of that of ti, i.e., 0(ti) = 0%t2). 

Given a mosaic floorplan F, a pair of trees (“，亡2) can be constructed by 

travelling along the slicelines. The root of is the upper right corner of the 

chip. By connecting the upper right corners of all the modules, the tree edges 

connecting to the left child are the horizontal slicelines while the tree edges 

connecting to the right child are the vertical slicelines. Similarly for 艺2’ the 

root of t2 is the lower left corner of the chip. By connecting the lower left 

corners of all the modules, the tree edges connecting to the right child are 

the horizontal slicelines while the tree edges connecting to the left child are 

the vertical slicelines. It has been shown that the pair of trees constructed in 

this way must be twin binary to each other. Besides, it is observed that the 

in-order traversal of the pair of trees are the same [15]. An example is shown 
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in Figure 2.9，e{ti) = 10010 and 叫2�= 01101, so e{ti)=沪0^2). In addition, 

their in-order traversals are both ABCFDE. The size of the solution space of 

TBT is 0(n!23"/ni.5). 

' A X A X 
F E 0 M 0 火 1 0 1 

0 1 0 1 

t丨 

Figure 2.9: Construction of TBT from a floorplan. 

2.3.3 Twin Binary Sequences (TBS) 

Based on TBT, Young et al. proposed a representation called twin binary 

sequences (TBS) in paper [15] in 2002. It has been shown that the pair of trees 

(ii,亡2) constructed from a mosaic floorplan must be twin binary to each other 

where 9{ti) = 6^(12) and the in-order traversal of the pair of trees are the same. 

Based on these characteristics, a sequence tt is used to represent the in-order 

traversal of the trees and a sequence a is used to represent the labelling 6{ti) 

and 0卞2). However, the in-order traversal and the labelling together cannot 

identify a pair of trees uniquely. Therefore, two more bit sequences are needed 

to identify them uniquely. These two sequences will record the structural 

information of the tree with a bit '0' representing the root of the tree and a 

node that is the right child of its parent and a bit '1' representing a node that 

is the left child of its parent. A sequence {3 is used to store these directional 

bit for following the order of tt while another sequence 0 is used to store 

the directional bits for 亡2 similarly. Therefore, the twin binary sequences is a 
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4-tuple representation s = (tt, a, /?, The TBS for the example in Figure 2.9 

is s 二（TT = ABCFDE, a = 10010’ P = 000111, (3' = 001001). 

Definition 2.3 A twin binary sequence s for a floorplan with n modules 

is a 4-tuple: 

s = (7r，a’/5，"'） 

where tt is an in-order traversal sequence of the n modules, and both (a, P) 

and (a^, must satisfy condition (1) and (2): 

In the following, we assume that a = 0；10；20；3 ... an-i and (3 = …Pn 

1. In the bit sequence 如2 •.. Pn-idn-iPn (I3[alf3!,al ... I减—A)， 

the number of O's is one more than the number of 1，s. 

2. For any prefix of the bit sequence piaip2ci2 •.. Pn-ic^n-A (P'laljS'^a^ ... 

Pn-i^n-iPn)> 仇e number of O's is more than or equal to the number of 

Vs. 

Floorplan realization of TBS is very efficient as stated in paper [15]. It 

can be done by scanning the sequences once from right to left. Given a TBS 

s = (tt, a，/?，/?')’ we will start with an initial packing P with module 7r„ only. 

The algorithm then processes the modules from right {-Kn-i) to left (tti). As-

sume that we are processing module tTJ now, if the corresponding oli is equal 

to '0，，it means that tt̂  is going to be inserted to the packing P from the 

top pushing TTi+i, 7ri+2，•.. , TTfc downward where k is the smallest number such 

that i < k < n and 风 = 1 . After adding module tt̂  to the packing P, 

伐+i，/?i+2’... ,pk are deleted from /?. The operation is similar when ai is 

equal to '1'. For AI = 1, Tr̂  is going to be inserted to the packing P from 

the left pushing 77^+1,7rj+2,... , TCfc to the right where k is the smallest number 
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such that i < k < n and /？̂  = 1. After adding module tTJ to the packing P, 

A+i, A+2, . . . ’ Afc are deleted from An example is shown in Figure 2.10. 

The size of the solution space and the memory usage of this representation are 

0(n!237ni.5) and 0(n(3 + [Zpn]) — 1) bits. In addition, it is shown that every 

non-slicing floorplan can be generated uniquely and efficiently by inserting an 

exact number of empty rooms to a mosaic floorplan represented by a TBS. 

Besides, the lower bound and upper bound on the number of empty rooms are 

n — 2i/n + 1 and n — 1 respectively. 

2.4 Summary 

In this chapter, we have reviewed several floorplan representations for slicing 

floorplan, non-slicing floorplan and mosaic floorplan. A table summarizing 

the characteristics of these representations is shown in Table 2.1. For slicing 

floorplan, the most popular representation is the normalized Polish expression 

(PE) [20]. This representation is simple to use and floorplan realization can 

be done in linear time. However, it can represent slicing floorplan only. 

For non-slicing floorplan, a widely used representation is sequence pair (SP) 

13]. It is also a simple representation which contains two sequences of module 

labellings. The disadvantage of SP is its large solution space. There exists a 

large amount of redundancy in this representation. Another non-slicing floor-

plan representation is the bounded-sliceline grid (BSG) representation [21]. Its 

solution space is also large and it contains a lot of redundancies. There are 

two tree representations for non-slicing floorplan, 0-tree [22] and B*-tree [14]. 

These two representations have smaller solution space and less redundancies 

exists. Floorplan realization using 0-tree and B*-tree can be done in linear 

time because its tree structure has already contained part of the topological 
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Figure 2.10: A floorplan realization example of TBS. 
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information. However, the dimensions of the modules are needed to be pro-

vided to represent the rest of the topological information. 

A mosaic floorplan can be expressed with three sequences in the corner 

block list (CBL) representation [6]. Its solution space is small but not all 

CBL can correspond to a floorplan. Another mosaic floorplan representation 

is the twin binary trees (TBT) representation [7], which has no redundancy. 

Similar to TBT, twin binary sequences (TBS) [15] represents the pair of trees 

into four sequences. Floorplan realization can be performed in linear time. 

All these mosaic floorplan representations can make use of mosaic floorplan as 

an intermediate step to the general non-slicing floorplan by inserting empty 

rooms. In this technique, TBS can insert an exact number of empty rooms so 

that the size of the solution space and the running time will not be affected 

significantly in comparison with other mosaic floorplan representation. 

Floorplan Size of Memory usage Time complexity 
representation solution space (bits) of floorplan 

realization 
Slicing floorplan 

normalized PE | | 没(n(l + \lgn\) - 1) | Q(n) 
Non-slicing floorplan  

SP 0((n!)^) 6>(2n([/pn])) 0{nloglogn) 
BSG - n)!) e(2n{\lgn])) 0(n') 

0-tree/B*-tree I e{n{2 + \lgn])) 0(n) 
. Mosaic floorplan 

CBL 0(n!2加) 0(n(3-h [Ign])) 0(n) 
TBT/TBS 0(n!23"/ni.” 列n(3 + \lgn]) - 1) 0(n) 

Table 2.1: Comparisons of different kinds of floorplan representations. 
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3.1 Wirelength Estimation 

In a circuit, the wirelength is related to circuit delay and routing demand 

31, 32]. Many floorplaners [20, 43，15, 31，32, 17，18] consider wirelength re-

duction as their major objective. However, the correlation between the real 

circuit wirelength and the wirelength estimated in floorplanning depends on 

the accuracy of the wirelength estimation process. For a two-pin net, the wire-

length is usually computed as the shortest Manhattan distance between the 

source and the sink. However, for a multi-pin net, the situation becomes com-

plicated. It is difficult to obtain a balance between the estimation efficiency 

and the accuracy. 

There are three main kinds of wirelength estimation methods as shown in 

Figure 3.1. Figure 3.1(a) shows a simple but rough estimation method, which 

is called the half-perimeter hounding box approach. It measures the wirelength 

as the half-perimeter of the smallest bounding box containing the set of pins. 

37 
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The second approach is called the minimum spanning tree (MST) approach as 

shown in Figure 3.1(b). A MST is constructed to connect all the pins with the 

minimum length. Using the well-know Prim's algorithm [44], a MST can be 

computed in O(klgk) where k is the number of pins. Figure 3.1(c) shows the 

third estimation approach. It is called the rectilinear Steiner tree (RST) ap-

proach. The connections are rectilinear and steiner points are added to remove 

the overlapping net segments. These overlapping net segments can increase 

the wirelength by 6% to 9% [45]. RST is the most accurate wirelength esti-

mation method among these three approaches. However, its running time is 

much longer than those of the others. 

i ^ i |.~rn~~ r ^ ~ ~ ~ ~ ~ “ I Steiner point 

i z z z z l 口 = 

iUU44i| I/I fflTFF 
Half-perimeter Minimum Rectilinear 
bounding box spanning tree steiner tree 

(a) (b) (c) 

Figure 3.1: Different kinds of wirelength estimation methods. 

3.2 Congestion Optimization 

As the trend of the VLSI circuit design is going to have a huge number of 

interconnects, wiring congestion within a circuit has become a major concern in 

the VLSI physical design cycle. Congestion control in floorplanning is needed. 

Most congestion control approaches [30, 31，32, 16，33，34，35] are based on 

the estimations obtained by some global routing like operations. In these 

approaches, a floorplan is first divided into a two-dimensional grid structure 

as shown in Figure 3.2. Wires are routed in these grid units. There are 
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different kinds of routing models proposed. In Figure 3.3(a), an L-shaped 

routing is shown. A net is routed with exactly one bend in this simplest 

routing model. In Figure 3.3(b), a net is routed with two bends and it is 

known as Z-shaped routing. In general, a more realistic routing model should 

allow multi-bends in the route. This general routing model is called multi-

bend routing as shown in Figure 3.3(c). Congestion overflow occurs in a grid 

when there are too many wires passed through the grid. It means that the 

interconnect demand has exceeded the supply of routing resources. Usually, the 

grid capacity (routing resources) can be computed according to the technology 

parameters, likes the number of metal layers, wire spacing and wire width 

as shown in Figure 3.4. Normally, a metal layer can only be used to place 

either horizontal or vertical wires. Different metal layers have different routing 

purposes with different technology parameters. For example, the upper metal 

layers are usually used for power or ground routing with thicker wires and 

larger wire spacing. The lower metal layers are usually used for local routing 

with thinner wires and smaller wire spacing. Using these parameters, we can 

compute how many routes can be placed inside a grid. After all the nets are 

routed using a suitable routing model, congestion will be evaluated in each 

grid as shown in Figure 3.5(a). We can estimate congestion based on two 

congestion estimation models. The first one is called the track usage model In 

Figure 3.5(b), congestion is estimated as the horizontal and vertical track usage 

inside a grid. The second model is called the grid-boundary crossing model as 

shown in Figure 3.5(c). In this model, congestion is estimated as the number 

of routes crossing the four boundaries of a grid. Although these two estimation 

methods are different, their idea are the same. In the following sections, we will 

study in depth different literatures to address the congestion control problem 

using different routing models and different congestion estimation models. 
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Figure 3.2: A two-dimensional grid structure constructed from a floorplan. 
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Figure 3.3: Different kinds of routing models. 
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Figure 3.4: Metal layers for routing. 
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Figure 3.5: Different congestion estimation models. 

3.2.1 Integrated Floorplanning and Interconnect Plan-

ning 

In 1999，Chen et al. proposed a floorplanner integrated with interconnect 

planning in paper [30]. It uses simple geometry routing to route the nets and 

estimate the congestion along the grid boundaries. A floorplan is divided into 

a two-dimensional grid structure in the same way as global routing. Conges-

tion is estimated as the expected number of nets crossing each grid boundary. 

At the beginning, all multi-pin nets are decomposed into two-pin nets using 

the minimum spanning tree approach. Then, the pin positions are assigned 

using the intersection-to-intersection method. Given a two-pin net connecting 

modules A and B, a line is drawn to connect the centers of the modules. The 

two I/O pins will be placed at the intersection points between the line and the 

boundaries of the modules as shown in Figure 3.6. The nets are routed based 

on L-shaped routing or Z-shaped routing one by one. Finally, congestion is 

estimated as the expected number of nets crossing each grid boundary. 

The floorplanner is based on a three-stage simulated annealing process. At 

high temperature, the annealing process behaves like a random walk and it 



Chapter 3 Literature Review on Interconnect Optimization in Floorplanning 42 

I 搏1 1 1 fff 
EEESliln 
三 = : : t � : 

Figure 3.6: I/O pins assignment using intersection-to-intersection method. 

is not sensitive to the cost function. It is because the large value of T has 

dominated the value of AC in the term —AC/T^ which determines whether 

a worsening move will be accepted. A rough wirelength estimation approach, 

half-perimeter bounding box, is used in this stage. In the second stage, the 

congestion cost is estimated using the L-shaped routing model. In addition, 

the wirelength is estimated by the minimum spanning tree approach. Finally, 

in the third stage, a more accurate routing model, Z-shaped model, is used for 

congestion estimation. 

In their paper, the concept of temperature adjustment during cost function 

transition is explained. In order to cope with the discontinuity in switching 

the cost functions, the temperature is needed to be adjusted. In the transition 

between different stages, the difference in the order of magnitude of AC can 

be very large. It may lead to a sudden drop or rise in the acceptance rate 

P and the simulated annealing process may end prematurely. Therefore, the 

initial temperature T' of the next stage should be adjusted to maintain the 

original acceptant rate P. To achieve this, the original order of magnitude 

of AC old using the old cost function is first computed, and the new order of 

magnitude of ACnew using the new cost function is then computed. The initial 
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temperature T' for the next stage can be computed as follows: 

T I ^new rp 
= A x T o 

where To is terminating temperature of the pervious stage. Using the new 

temperature T', the transition of cost function can be performed smoothly. 

3.2.2 Multi-layer Global Wiring Planning (GWP) 

Chang et al. proposed an interconnect-driven floorplanner with multi-layer 

global wire planning in paper [32] in 2000. They considered several intercon-

nect optimization steps during floorplanning. They are interconnect topology 

optimization, layer assignment, buffer insertion, wiring sizing and spacing. 

The floorplanner is consisted of a four-stage simulated annealing process and 

an optional post-processing step. 

Similar to paper [30], a rough cost function is used when temperature is 

high while a more accurate cost function is used when the temperature is low. 

In the first stage of the annealing process, the area, the longest wirelength and 

the total wirelength, which is estimated by the half-perimeter bounding box 

approach, are considered. The aim of considering the longest wirelength is to 

reduce the interconnect delay. It is because delay is directly proportional to 

the length of the critical path [28]. After the first stage, a good initial solution 

for interconnect optimization is obtained. In the second stage, delay is evalu-

ated as the maximum net delay instead of the longest wirelength. The circuit 

delay is computed by a global wire planning under area constraint (GWP-A) 

method. This GWP-A method uses binary search and greedy wire packing to 

optimize layer assignment, wire sizing, wire spacing and buffer insertion. In 

the greedy wire packing, short wires are placed on lower metal layers while 

long wires are placed on upper metal layers in a greedy bottom-up manner 

46]. Then, for each metal layer, the wire width and spacing are computed by 
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binary search. The binary search finds the optimal value for the wire width 

and spacing given the target delay. After obtaining the optimal wire width 

and spacing, the delay and the optimal number of buffers can be computed 

using the closed from expression in [47'. 

In the third stage, congestion is considered in the cost function. It can 

be computed by a global wire planning under routibility constraint (GWP-R) 

method. After defining the layer assignment and wire parameters in GWP-A, 

the congestion cost can be computed by using the Z-shaped routing model as 

in paper [30]. In the fourth stage, a more accurate model is used in GWP-R to 

evaluate congestion. It is the fast global routing using the GA-tree algorithm 

[48]. For each net, a routing graph is constructed by representing the nodes as 

the grids and the edges as the routes between adjacent grids. Larger weight is 

assigned to the edge crossing congested grid boundary. The route of a net can 

be found by computing a min-cost A-tree using the GA-tree algorithm. After 

all the nets are routed, congestion is estimated as the average number of nets 

passing through the grid boundaries. 

3.2.3 Estimating Routing Congestion using Probabilis-

tic Analysis 

In 2001, Lou et al. proposed an accurate and detailed probabilistic analysis 

to estimate wiring congestion in paper [34]. The routing model used in the 

paper is the general multi-bend routing. It is a more realistic routing model 

resembling global routing. In their paper, a floorplan is first divided into a 

two-dimensional grid structure. Then, multi-pin nets will be decomposed into 

sets of two-pin nets. Probabilistic analysis of the horizontal and vertical track 

usage will be performed within the bounding box bounded by the source and 
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the sink of each net. 

The congestion estimation model used in this paper is the same as in Fig-

ure 3.5(b). In a grid, congestion is estimated as the horizontal track usage and 

vertical track usage. Similar to paper [30], for a net covering a bounding box 

of dimension (m x n), the expected number of nets passing through the grid 

(z, j ) is calculated as follows: 

咖 = l i f t - 糊 ( 3 . 1 ) 
where j) and Py(i, j) denote the probabilistic horizontal and vertical track 

usage in grid (i,j) respectively, while and Fy{i,j) are the number of 

possible routes using the horizontal and vertical tracks of grid (z, j) respec-

tively. F(m, n) is the total number of possible routes of the net where the 

bounding box containing the source and the sink has a dimension oimxn. 

The term F(m, n) can be computed using dynamic programming as follows: 

{1 if m = 1 or n = 1 

(3.2) 
F{m - l ,n) + F(m, n - 1) otherwise 

A look-up table is constructed to store each possible F{i,j). It is because the 
computation of F'{i,j) is also dependent on F{i,j) as follows: 

‘ 

F ( m ’ n - 1) if i=l or j=l 

1 if i=l and j=n 

F^iij) = F(m,n-J+1)+F(m,n-J) if i=l and l<j<n 

F(m — 2 + 1, n — 1) if l<i<m and j=l 
(幼 (饥 饥一吼 州)otherwise 

(3.3) 
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< 

F{m — 1，n) if i=l or j=l 

1 if i=l and j=n 

F y ( i J ) = F ( m - l , n - ; + l ) if i=l and l<j<n 
F^m-i+l,n)+Fim-i,n) if and j=l 

‘ 作力巧rn-i,n-j+iHiy-i，j)i^(m-i+i，n-j>i) otherwise 
\ ^ 

(3.4) 

This probabilistic approach is quite efficient and accurate because the ex-

pected number of the track usage can be computed directly using the look-up 

table F[i,j). Furthermore, the horizontal track and vertical track usage are 

estimated separately, this provides a more detailed and accurate evaluation 

for wiring congestion. Experimental results have shown that their estimation 

have high correlation with the post-route congestion measures. 

3.2.4 Congestion Minimization During Placement 

In 1999, Wang and Sarrafzadeh proposed in paper [31] a study of the cor-

relation between wirelength and congestion. A consistent routing model is 

introduced. It is shown that wirelength minimization can reduce congestion 

globally. In addition, a new congestion minimization objective, called overflow 

minimization with look-ahead, is used in a post processing phase. 

The congestion estimation model used in this paper is the grid boundary 

crossing model. Bounding box routing, which is similar to L-shape routing, is 

used. Congestion overflow can be computed as de — Se where de is the routing 

demand on grid boundary e, which can be computed as the number of nets 

passing through e. The term Sg is the routing supply. It can be computed 

as the maximum number of nets that are allowed to cross e according to the 

technology parameters. In their paper, the concept of consistency between the 
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routing model for wirelength estimation and the realistic routing model for 

congestion evaluation is proposed. Intuitively, the router used for wirelength 

calculation should be the same as that for congestion evaluation. However, 

experimental results show that consistency does not necessarily mean equiv-

alent. Assume that the wirelength is computed in grid unit, a router used 

for computing wirelength and a realistic router for congestion estimation are 

said to be consistent if their computed values of wirelength are the same. It 

is because each unit of wirelength will contribute to one net crossing a grid 

boundary, which is similar to the definition of the routing demand de in con-

gestion computation. As a result, if the routing model used for computing 

wirelength is consistent with the realistic router for computing congestion, we 

can reduce the wiring congestion by minimizing the wirelength only. 

The congestion control is divided into two phases. In the first phase, the 

wirelength is minimized by the simulated annealing process. Experimental 

results show that global congestion is reduced after the first phase. A post 

processing is then done in the second phase to reduce local congestion. The ob-

jective function used in this post processing step is called overflow minimization 

with look-ahead. This post-processing step is a greedy algorithm and moves a 

cell or exchanges two cells if the move can reduce the direct overflow cost. The 

direct overflow cost of a move can be computed as max{de, Sg} — Se}， 

where de and d'̂  are the routing demand of e before and after the move re-

spectively. A larger value of the direct overflow cost implies a larger reduction 

on the overflow of the edge e after the move. Notice that the cost will be 

zero if de < Sg and d'̂  < Se. In order to climb out of the local minima, the 

objective function is modified as 7nax{de, Se — S}— min{d'e, Se — where 6 is 

an adjustable parameter. The introduction of will reduce the chance of the 

cost to be zero even de < Sg and d'̂  < Se. It leads to a modification on the 

solution even the routing demand does not exceed the routing supply. 
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3.2.5 Modelling and Minimization of Routing Conges-

tion 

Wang and Sarrafzadeh proposed paper [16], which is a follow up of [31], in 

2000. In their paper, the authors show the correlation between the estima-

tion obtained by a global router using the bounding box routing [31] and the 

realistic routing congestion measures. It is shown that the estimation of the 

bounding box approach proposed in [31] does not correlate well with the fi-

nal congestion measures. Therefore, a realistic global router is used in their 

paper to estimate congestion. Furthermore, two post processing approaches 

are proposed to improve the performance on congestion control. They are the 

flow-based cell-centric algorithm and the net-centric algorithm. 

Recall from [31] that reducing wirelength can reduce global congestion in 

the packing； Although congestion is reduced globally, congested spots will still 

occur in the highly connected clusters in the process of wirelength reduction. 

In order to balance all the wires to avoid these local congested spots, some 

post processing steps are needed. It is shown that the post processing step 

using the overflow minimization with look-ahead objective in [31] does not 

perform well. It is because it randomly moves the cells that lead to congestion 

reduction without locating the congested spots in the packing directly. As a 

result, two new algorithms are proposed. The first one is the flow-based cell-

centric algorithm. It models cell movements as a transportation problem and 

places cells into grids by using the max-flow min-cut algorithm [49] as shown 

in Figure 3.7. In the flow network, the source s is connected to all cells ci with 

weight 1 because one cell can only be placed in one grid. All the grids gj will 

be connected to the sink t with weight Sj where sj is the maximum number 
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of cells Qj can hold. The edges connecting the cell-grid pairs (q , Qj) represent 

the cell moves. There is a weight Wij associates with each edge to denote the 

transportation (congestion) cost. By using the path augmentation method [50] 

of the network flow algorithm, cell assignments with the minimum congestion 

cost are found. 

Figure 3.7: Flow-based cell-centric algorithm. 

In the second approach, nets which lead to congested region are moved. 

Weight is assigned to each net to denote the congestion cost, which is equal to 

the number of overflowed grid boundaries it crosses. The nets are then sorted 

in a non-increasing order of these weights. By following this order, all the cells 

in the nets will be moved to reduce overflow. The operations will be repeated 

until there is no more reduction. 

3.3 Buffer Planning 

As we discussed before, interconnect optimization is a trend and a requirement 

in current VLSI physical design. In the previous section, we have reviewed on 
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some literatures to address the congestion problem. Unfortunately, the reduc-

tion of wiring congestion cannot reduce the delay of wires to achieve timing 

closure. To reduce the delay of the long critical wires, buffers are needed to 

be inserted along the wires. It has been studied that without buffer insertion, 

interconnect delay will increase quadratically with wirelength, but is linear 

with proper buffer insertions [51’ 28]. However, buffers consume silicon spaces 

and cannot be placed wherever we want. As a result, a good buffer planning 

can significantly improve the performance of a circuit as shown in Figure 3.8. 

In order to achieve a better performance, we should take buffer insertions into 

account in floorplanning. 

In buffer planning, we have to consider the separation x between adjacent 

buffers. This separation x should be controlled to be within a range [low, up], 

that can be given by the users or computed by using the Elmore delay model 

[52]. Using this interval [low, up], the regions for buffer insertions can be de-

fined. These regions are called feasible regions [36，37]. This concept is widely 

used in buffer planning. In this section, several literatures using different ap-

proaches to place the buffer positions are reviewed. 

— ； . \ _ ： 書 

Buffer 

Figure 3.8: A better layout leads to a better routing with buffer insertions. 
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3.3.1 Buffer Clustering with Feasible Region 

In 1999, Cong et al. first proposed the concept of feasible region (FR) for 

buffer insertion in paper [36]. Using the concept of feasible region, an effective 

buffer block planning (BBP) algorithm to perform buffer clustering is proposed. 

A feasible region is defined as a region where a buffer of a wire can be placed 

in anywhere of it such that the delay constraint of the net can still be satisfied. 

The feasible regions for inserting k buffers by modelling the driver/buffer as a 

switch-level RC circuit [29] is shown in Figure 3.9. By using the Elmore delay 

model [52] with the key parameters for delay computation in Table 3.1，the 

feasible regions can be computed as follows: 

For a long enough wire with length I, the minimum number of buffers n 

needed to be inserted to meet the delay constraint Dreq is 

n= \ (3.5) 
2Ki  

where 

Ki = RbCb + Db 

K2 = Dreg + ^ ( a - Cif + - Rdf 

—{RoCb + CoRb)l — Db — RdCb — RbCi 

K3 = ^RqCQI^ + {RoCl + CoRd)l — Dreq 

After computing the minimum number of buffers required, n, the feasible 

region of the i仇 buffer â âx W] can be computed as: 

Xmin{̂ ) = niax|0, 2KI J 

(3.6) 

“、 . r Ks-^JKi-mKe. 
^maxKl) = m m J 
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where 

厂 _ ( n + l)RoCo 
八 4 - 2 z ( n - i + 1) 

K — Co{Rb — Rd) , Ro(Ci — Cb) + RqCQI 
八 5 - I n - z + 1 十 

Ke = nDt - � + C如 + (z - l)Rt + (二 f f 
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Figure 3.9: Feasible regions of k buffers. 

Symbols Parameters Values 
RQ Unit wire resistance {fl/mm) 0.075 
Co Unit wire capacitance (fF/mm) 0.118 
Cf Unit wire fringing capacitance (fF/mm) 0.0641 
Db Intrinsic repeater delay (ps) 36.4 
Cb Buffer capacitance ( fF) 23.4 
Ci Load capacitance ( fF ) 23.4 
Rb Buffer resistance (Q) 180 
Rd Driver resistance (f2) 180 

Table 3.1: Key parameters in the Elmore delay model using the 0.18/im tech-
nology [9 . 

After defining the feasible regions, the buffers of different nets are clustered 

into buffer blocks and placed in the empty spaces of the packing greedily. Given 
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a floorplan, the positions and dimensions of the routing channels are computed 

by building a horizontal and vertical polar graphs [53], which is similar to the 

floorplan realization using constraint graphs. Then, the channels are divided 

into grids as shown in Figure 3.10. Buffers will be inserted into these grids to 

form buffer blocks. 

In the buffer block planning algorithm, a buffer will be inserted into the 

best grid for each net in each iteration. The algorithm will pick the grid with 

the largest amount of space for buffer insertions first, so that the overall floor-

plan area will not be increased. In each iteration, buffers are inserted into 

the picked grid greedily. If the buffer insertion demand exceeds the amount of 

empty space in a grid, the buffers with a smaller feasible region size will have 

a higher priority to be inserted in the grid. It is because buffers with a larger 

feasible region size will have a higher chance of successful buffer insertion. 

If all the grids with empty space are used up, circuit modules will be shifted 

in order to make additional space for the buffers. The circuit module lying 

besides the channel with the largest buffer insertion demand will be picked 

to move first. It is because most of the unplaced buffers can be inserted into 

the grids of this new empty space without further expanding the chip area. If 

the picked grid is resulted from shifting a circuit module, only one buffer will 

be chosen to be inserted in that iteration. If there are more than one buffers 

which can be inserted into that grid, the one with the smallest feasible region 

size will be inserted. After inserting a buffer into a picked grid, the feasible 

regions of the unplaced buffers of the same net, the one which just has a buffer 

inserted, will be updated. The algorithm will terminate when all the buffers 

are placed. 
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Figure 3.10: Buffer block planning. 
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3.3.2 Routability-driven Repeater Clustering Algorithm 

with Iterative Deletion 

After the authors of paper [36] proposed the concept of feasible region, Sarkar et al. 

proposed the concept of independent feasible region (IFR) in paper [37]. Re-

called from [36] that, the feasible regions of the unplaced buffers axe needed 

to be recomputed when a buffer of the same net is placed. To address this 

problem, an analytical formula to compute the independent feasible region is 

proposed. The independent feasible region of a buffer is defined as the region 

where a buffer can be inserted such that the delay constraint of the wire is 

satisfied, assuming that the other buffers of the same wire are placed in what-

ever positions in their corresponding IFRs. It means that the placement of a 

buffer in its IFR does not depend on the position of the other buffers of the 

same net as long as they are in their corresponding IFRs. In addition, as the 

algorithm in [36] does not consider wiring congestion during buffer insertions, 

a congestion driven repeater block planning algorithm based on iterative dele-

tion is proposed. 

In their paper, each driver/repeater is modelled as a switch level RC cir-

cuit. In order to provide an uniform probability to place the buffers, the width 

of each IFR ( W I F E ) is the same as shown in Figure 3.11. By using the Elmore 

delay model [52] with the key parameters for delay computation as shown in 

Table 3.1, the computation of each IFR is as follows: 

For a long enough wire with length I which needs n buffers, the width of 

each IFR {WIFR) to meet the target delay DTGT with optimal delay DOPT is 

= (3.7) 
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where 

= + D(Rk,CiJ - oon) 

+ D[Rb, Cb, Xi - + nDb 

D(R, CJ) = P + (RCo + RoC)l + RC 

After obtaining the width of each IFR (WIFR), the independent feasible region 

of the i仇 buffer [rĉ rimCO, ĵ̂ axCOl can be computed as: 

.^minii), Xmax{i)\ = (o^i — ， ( x i + ( 3 . 8 ) 

After computing the IFRs, the buffer locations can be planned using a congestion-

driven iterative deletion [54] algorithm. A floorplan is first divided into a two-

dimensional grid structure for routing. Then, for each IFR computed, it is 

further divided into finer two-dimensional grids, which are called candidate 

repeater block (CRB) locations, for buffer insertions as shown in Figure 3.12. 

The algorithm first computes the set of CRBs St to place the buffer b. If the 

whole IFR of buffer b is covered by a circuit block, the boundaries of the circuit 

block are used for buffer insertion. A bipartite graph G(V, E) is constructed 

to represent the relationship of the buffers and the CRBs. The set of vertices 

V is defined as the set of buffers and the CRBs Sb. Each edge (6, c) denotes 

a placement of a buffer 6 to a CRB c G Sb- In each iteration, the edge with 

the highest cost will be deleted where the cost is dependent on the congestion 

estimated by a Z-shaped simple global router as in [30] and the usage of the 

CRBs. After obtaining an assignment for each buffer b, the iterative deletion 

process is stopped and a congestion optimized buffer block planning is resulted. 
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Figure 3.12: Repeater block planning. 
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3.3.3 Planning Buffer Locations by Network Flow 

Tang and Wong proposed a network flow approach to plan the buffer locations 

in paper [38]. The algorithm places the buffers in the feasible regions defined 

in paper [36]. It makes use of the empty space between circuit blocks for buffer 

insertions to avoid chip area expansion. By modelling the problem as a net-

work flow problem, a buffer planning solution can be obtained by using the 

min-cost max-flow algorithm [50]. 

In their paper, the empty space between circuit blocks are divided into 

different buffer zones Zi for buffer insertions. Each buffer zone has a cost 

to specify its routability. Similar to [36], only one buffer can be inserted for 

each net at a time. It is because the feasible regions of the other buffers in 

the same net are needed to recompute once its previous buffer is placed. As 

a result, each net will contribute one feasible region in the layout only. The 

algorithm will divide the FRs into a set of disjoint buffer rooms ri bounded by 

the boundaries of the FRs as shown in Figure 3.13. 

After defining the set of buffer zones Z = {Zi , Z2，…,Zm} and the set of 

buffer rooms = { n , r2,.. . , Vyj) to place the set of buffers B = {61,62,...， 

a flow network G = {V, E) can be constructed. The set of vertices V will be the 

source 5, the sink t, and the elements in the set Z, R and B. The set of edges 

E will be (s, bi) Vi = 1’ 2，.. • ’ n’ (bi, rj) Vi = 1,2,... ’ n and Vj = 1，2，•. • ’ 

where rj included in the FR of bi, (rj,rj) Vj 二 1,2, . . . ,w (note that each rj 

has a corresponding rJ)，（r;‘,Zk) = 1,2,... ,w and VA: = 1，2,…,m where 

there is an intersection between Vj and Zk, and (zk, t) V/c 二 1,2, . . . , m. The 

weights of the edges (s, bi) and (bi,rj) are 1. As a buffer room r � m a y belong 

to several FRs, so the edge (r)-，r'j) with weight equal to the area of rj is needed 

to bound the maximum number of buffers being inserted in rj. As only the 
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intersecting area between the buffer zones and FRs can have buffer insertions, 

the weight of the edge (r̂ -, Zk) is the size of the intersecting area between Vj 

and Zk. Finally, the weight of the edge {zk^ t) is equal to the area of Zk as 

the number of buffer insertions in a buffer zone is limited by the area of the 

zone. Recall that each buffer zone has a cost to specify its routability, so a 

min-cost max-fiow algorithm can be applied to obtain a minimum cost buffer 

assignment. 

/ - Buffer zone Z. (channel) 

4 U ‘ 
k Feasible region f̂  divided 
j X v 厂2 5 L---1 into buffer rooms r. 

f ^̂  v V V 厂 - M o d u l e 

Z �� 
躲:•gl 

Figure 3.13: Buffer zones and buffer rooms. 

GX； 

< — > < > <—> 

Buffers Buffer rooms Buffer zones 

Figure 3.14: Flow network flow of the example in Figure 3.13. 
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3.3.4 Buffer Planning using Integer Multicommodity Flow 

Dragon et al. proposed a buffer planning approach using integer multicom-

modity flow in paper [39]. The buffers are constrained to be separated by 

an interval x where x G [low, up]. The terms low and up can be computed 

similarly as in paper [36，37]. In their paper, the repeater parity constraint is 

considered. It will choose to use an inverter or a co-located pair of inverters 

(buffer) according to the signal parity condition. 

For the integer multicommodity flow, a graph G{V, E) is constructed for 

a problem with k nets (s ,̂ U) where 1 < i < k and n buffer blocks r̂  where 

I <i <n. The set V consists of the set of sources S = {si, S2,... , Sk} ,the set 

of sinks T = {̂ i,亡2’ • • •，tk} and the set of buffer blocks R = {n,�2，. •.，r^}. 

There are two types of edges. The first type of edges is (u, u) which is a loop 

to denote a co-located pair of inverters where u £ R. The second type of edges 

is (u, v) where u,v £ R and the distance between u and v is within the interval 

low, up]. Integer linear programming is used to find a multicommodity flow 

such that the sum of flows of all the commodities is maximized. In the integer 

linear programming, the capacity of the source and the sink is equal to one 

while that of a buffer block is equal to the buffer's block capacity. This ensures 

that the number of paths passing through a buffer block will not exceed its 

capacity. 

3.3.5 Buffer Planning Problem using Tile Graph 

In 2001, Alpert et al. proposed to use tile graph to plan buffer locations and 

to estimate wiring congestion in paper [40]. In their method, a floorplan is 

divided into a two-dimensional grid structure and this structure is represented 

by a tile graph. A four-stage heuristic called resource allocation for buffer and 
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interconnect distribution (RABID) is then applied to optimize the routability 

of the floorplan. 

Given a tile graph G(V； E), the set of vertices V is the tiles and the set of 

edges E is e{u, v) where u and v are neighboring tiles. Buffers are assumed 

to be inserted into the tiles and each tile v £ V has a limited capacity B{v). 

For wiring congestion, the grid boundary crossing model is used. In the tile 

graph, a grid boundary is represented by an edge e[u, v). Therefore, there is a 

weight We{u,v) assigned to each edge to specify the maximum number of wires 

that can cross the boundary between tile u and tile v. Using this tile graph, 

the amount of routing resources can be represented. 

The RABID algorithm is divided into four stages, initial steiner tree con-

struction, wire congestion reduction, buffer assignment and final post-processing. 

At the beginning, each net is routed as a rectilinear steiner tree. The wiring 

congestion will then be optimized in the second stage. In the second stage, all 

nets will be ripped-up and rerouted until the routing demand does not exceed 

the routing supply. It means that We{u,v) < We{u,v) v) e E where We{u,v) 

is the number of wires crossing the boundary between tile u and tile v. The 

following cost function is used to evaluate congestion: 

f '̂ e{u,v) + 1 .r < ^ 
COSt[e{u, V)) = }队(¥)—切+ 1 ^e{u,v) (3 9) 

[ 0 0 otherwise 

When the number of wires crossing a boundary increases, the value of the term 

^e{u,v) — We(u,v) will decrease and the cost will increase. After planning the 

routes for all the nets, buffers are placed in the third stage. In the third stage, 

a net with longer delay will have a higher priority to have buffer insertions. 
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The buffers are placed such that the following cost function is minimized: 

( + 1 -f b{v) 1 
= B { v ) - b{v) V 顺 < 1 (3.10) 

I oo otherwise 

where h{v) is the number of buffers inserted into tile v and p{v) is the expected 

number of nets passing through v. In the last stage, the unroutable wires will 

be ripped-up and rerouted. 

3.3.6 Probabilistic Analysis for Buffer Block Planning 

In 2002, Sham and Young proposed a probabilistic method to estimate con-

gestion with buffer insertion taken into consideration in paper [17]. In their 

paper, adjacent buffers are constrained to be inserted at a flexible interval from 

each other as in [36，37’ 39]. A floorplan is divided into a two-dimensional grid 

structure. Probabilistic analysis on successful buffer insertion is performed in 

each grid. Congestion information is then computed according to the buffer 

insertion analysis. 

In their paper, the constraint to place buffers are expressed as a variable 

interval buffer insertion constraint [low, up] ̂  where low and up can be given 

by the users or computed analytically according to the Elmore delay model as 

follows: 

聽 - V + Cf) X (2 * 10 * grid-unit) 

广P — Ro * [Co + Cf) (10 * grid一unii) 

Using this constraint, the probability that a route I of wire k will have a buffer 

inserted at grid (cc,y), notated by bJnsert(x,y, I, k), can be computed as: 

b-insert(x, y, I, k) = 二二) (3.12) 
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where N(dist) is the number of feasible ways of buffer insertions for I which 

will insert a buffer at the grid {x, y) that is at a shortest Manhattan distance 

dist from the source of I, and total is the total number of feasible ways of 

buffer insertions for I. An example to demonstrate the computation is shown 

in Figure 3.15. In actual implementation, dynamic programming is used to 

compute b-insert. Finally, the probability of successful buffer insertion at 

grid (a;, y), which can hold b-space[x,y) buffers, notated by bsuccess{x^ y), is 

computed as: 

b_success{x, y) = min i 1 ， — 办 : I (3.13) 

After computing the expected buffer usage {b-success{x,y)) for each grid, the 

expected number of wires {weight{x,y)) passing through a grid (x, y) with 

respect to the buffer insertion constraint can be computed as: 

wezghtix^y) - ^ 遞 腿 ⑴ （ ^均 

where Lk is the set of all routes for wire k, Lk{x^ y) is the set of all routes 

for wire k passing through the grid {x, y), and rsuccess (V) is the probability 

that the route I can be routed successfully from the source to the sink and 

satisfies the buffer insertion constraint. The computation of r jsuccess(l) is 

based on the computed b-success{x, y) as shown in Figure 3.16. In practical 

implementation, the computation of weight{x, y) is also performed by dynamic 

programming. 

3.3.7 Fast Buffer Planning and Congestion Optimiza-

tion 

In 2003, Wong and Young proposed another approach to estimate congestion 

with buffer planning in paper [18]. The same buffer insertion constraint as 
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Figure 3.15: An example of computing bJnsert(x, y, I, k) at each grid. 
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Figure 3.16: An example of computing r.success{l). 
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in [17] is used. Instead of using probabilistic approach to estimate the buffer 

locations, the exact buffer locations are computed in their paper. Probabilistic 

analysis is then performed to estimate congestion given the selected buffer plan. 

In this paper, a floorplan is also divided into a two-dimensional grid struc-

ture. The nets are processed one after another for buffer insertions. Given a 

net, the bounding box bounded by the source and the sink are found. The 

algorithm will scan the grids in the bounding box from the source to the sink 

row by row. For each grid (x, y) which can be a feasible region for buffer inser-

tion, the best previous buffer location is computed by dynamic programming 

assuming that a buffer is inserted at {x, y). A cost is assigned to each grid 

which can be computed as: 

cost{x, y) = resource{x, y) + min {cost{a, b)) (3.15) 
{a,b)eR{x,y) 

where 

/ � / � no. of buffers in fx, y) 
resource{x, cong{x, y) + * JT-^——：""“子~t 

max. no. of buffers in (x, y) 

,cong{x, y) is the congestion cost at grid (x, y) and R{x, y) is the set of grids 

(a, h) such that (a, h) is at a distance d from the grid (a;, y) where d G [low, up]. 

Prom this cost function, it is observed that the algorithm will pick the grid 

(a, b) in the feasible region y) with the minimum cost as the best previous 

buffer location of a buffer inserted at grid (x, y) as shown in Figure 3.17. After 

finding the best previous buffer location (a, b), its cost value will be computed 

and stored at (a;, y). When the sink is reached, the algorithm can backtrack 

the sequence of best previous buffer locations for the net. 

After buffer planning, congestion will be estimated using probabilistic method. 
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Firstly, each net will be broken into a set of sub-nets consisting of all source-

buffer pair, buffer-buffer pairs and buffer-sink pair. Congestion will be com-

puted for each subnet independently as follows: 

no. of possible routes for k passing (x, y) 
‘ k total no. of possible routes for k • 

Best previous buffer location of a buffer inserted at (x, y) 

B f l ^ ^ E ^ ^ m Possible previous buffer 
locations R(x, y) 

HH I “力 

Figure 3.17: Computation of the best possible previous buffer location (a, 6) 
of {x,y) in R{x,y). 

3.4 Summary 

In this section, we review the previous works on congestion optimization and 

buffer planning. In congestion optimization, a floorplan is usually divided into 

a two-dimensional grid structure as in global routing. Simple global routing is 

performed to obtain the route for each net. As the number of wires that can 

pass through a grid is bounded, so over-congestion may occur when the routing 

demand of a grid exceeds the routing supply. In the literatures reviewed, most 

of them evaluate congestion as the expected number of wires passing through 

the grids or the expected number of wires passing across the grid boundaries. 

Different routing model can be used at different stages of the optimization. In 

an earlier stage, a rough but efficient routing model, for example, L-shaped 

or Z-shaped routing, can be used to obtain a good initial solution. When a 

later stage is reached, a more realistic routing model, for example, multi-bend 
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routing can be used. 

For buffer planning, several previous works have been studied. The con-

cept of buffer insertion inside feasible region is widely used. As the separation 

between adjacent buffers are constrained, the locations for buffer insertion are 

also constrained. These feasible regions can be computed according to the 

Elmore delay model [52]. Besides this insertion constraint, buffers should also 

be inserted such that the chip area is not affected as buffers also consume 

silicon resources. As a result, many approaches insert buffers in the empty 

space between circuit modules greedily. Similar to congestion optimization, 

some of the approaches divided the floorplan or the feasible regions into a two-

dimensional grid structure. Buffers are assumed to be placed in the grids to 

form buffer blocks. Among the literatures reviewed, three major approaches 

can be concluded. One approach is to assign buffers into the grids by using 

graph algorithms, such as network flow, multicommodity flow and bipartite 

graph matching. Another approach is to use probabilistic methods to estimate 

the feasibility of buffer insertion in each grid. The last approach is to use 

dynamic programming to find the best possible buffer locations satisfying the 

buffer insertion constraint before evaluating the wiring congestion. Consider-

ing both wiring congestion and buffer insertion will be a major direction in 

many designing steps. Furthermore, efficiency will also be an important factor 

to be considered when the technology continues to scale down. 



Chapter 4 

Congestion Evaluation: Wire 

Density Model 

The paper [55] on the content of this chapter has appeared in the proceedings 

of the Design, Automation and Test in Europe(DATE) 2003. [55] 

4.1 Introduction 

In the deep-submicron era, the complexities of VLSI circuits are growing 

rapidly. The interconnections between modules will become longer and denser 

in the future. Therefore, interconnect optimization in floorplan design has be-

come ever more important than before. As floorplanning is at the beginning 

phase of the VLSI design cycle, an interconnect-optimized floorplan will favor 

the applicability and performance of the later stages like placement, global 

routing, detailed routing, etc, and, most importantly, allow timing closure to 

be achieved earlier. 

Recently, some routability-driven floorplanners [30，34’ 35，16，17] are pro-

posed, and most of them use the grid-based approach to measure the con-

gestion of a floorplan. In this method, a floorplan is divided into grids as in 

global routing. At each grid, the expected number of nets passing through is 

68 
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recorded as a weight to measure congestion. Although this approach is direct 

and simple, such kind of routing-oriented estimation is time consuming if it 

is performed in each iteration of the simulated annealing process. It is not 

practical for complex circuit designs. Therefore, a new and fast congestion 

evaluation model using a suitable floorplan representation will be very useful. 

In order to provide a simple and efficient congestion evaluation model other 

than the complicated grid-based approach, an indirect congestion evaluation 

model, wire density, is proposed. Instead of estimating the congestion at each 

grid using global routing, we evaluate congestion as the wire density on the 

boundary of different regions in a floorplan. It is because a floorplan that has 

high wire density on average have a greater chance of having congestion prob-

lem. An example is shown in Figure 4.1. We use twin Unary trees (TBT) as 

the floorplan representation because the regions to be evaluated can be nat-

urally defined by the TBT representation. For a floorplan with n modules, 

n — 1 regions are defined by each tree. In order to provide more regions for 

evaluation, we have constructed an additional pair of trees, which is the mirror 

of the original pair of trees. To increase the efficiency of our floorplanner, we 

have made use of a fast algorithm [41] for the least common ancestor (LCA) 

problem to compute the wire density. Experimental results have shown that 

an interconnect optimized floorplan of a complex circuit can be obtained in 

less than three minutes. 

boundary of 
high wire density 

~ 7 i A r T T " 
B g A 二 B 二 C 

Floorplan A Floorplan B 

Figure 4.1: Floorplan A is more congested than floorplan B. 
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This chapter is divided into seven sections. Section 4.2 will give an overview 

of our floorplanner. In Section 4.3 and 4.4, the ideas and implementation 

details of the wire density congestion evaluation model will be described and 

explained. Finally, experimental results will be shown in Section 4.5. 

4.2 Overview of Our Floorplanner 

In this section, we will give a brief introduction to our routability-driven floor-

planner with the new wire density congestion evaluation model. Our floor-

planner is based on the TBT floorplan representation and simulated annealing 

process. Given a candidate floorplan solution, the total wirelength of the nets 

is estimated by the half-perimeter bounding box approach. The congestion 

cost is estimated by the wire density which is computed as the number of nets 

passing per unit length of the boundary of a region. These regions are defined 

by the TBT representation naturally and hierarchically. The estimation of 

wire density will start from the leaf nodes and follow the post-order traversal 

of the tree. Each tree can provide n — 1 samples, i.e., n — 1 regions, for wire 

density estimation. In order to obtain more samples, two additional trees are 

constructed from the original pair of TBT to provide a total of 4(n — 1) wire 

density values. 

I. B || B i l l 

A ————n 八 I, 
C D 一 _ C D C 鬥 

> t i k • 
_ ‘ ： “ * F  
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Figure 4.2: Regions induced by ti and t̂ . 
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Figure 4.3: Formation of R{D). 

4.3 Wire Density Model 

, In order to improve the routability of a floorplan solution in an efficient way, 

an indirect but effective congestion evaluation model is used. This model aims 

at measuring congestion as the wire density (number of nets per unit length) 

on the boundary of different regions in the floorplan as shown in Figure 4.2. 

Definition 4.1 Given a TBT (ti, t2), the region R(i) covered by module i 

in t G 亡2} is the rooms occupied by module i and the modules in the subtree 

rooted at i in t. 

As shown in Figure 4.3, the region R(D) covered by module D in ti includes all 

the rooms occupied by module D and the modules C, F and E in its subtree. 

We can obtain n — 1 wire density values for a tree with n nodes. It is because 

R(root) is the whole packing and there will be no nets passing through the 

boundary of the packing. The following gives the equation of the wire density 

estimation: 

WD, = ^ (4.1) 

where WDi is the wire density of R{i), Ni is the total number of nets passing 

through the boundary of R{i) and Pi is the normalized half-perimeter of R{i). 

The details of the computation of Ni and Pi will be given in the coming sections. 

We choose TBT as the floorplan representation in our floorplanner because 

it can define the regions for evaluation naturally. Also, a lot of fast and simple 
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tree algorithms can be used in our congestion evaluation. We start the esti-

mation of wire density from the leaf nodes and follow the post-order traversal 

of the tree to compute the terms Ni and Pi at each node i. Using dynamic 

programming, the information computed at the child nodes is used to compute 

the wire density of the parent node. 

4.3.1 Computation of Ni 

The term Ni, which is the total number of nets passing through the boundary 

of R{i), can be computed as follow: 

= + + (4.2) 

where l{i) is the left child of i, r{i) is the right child of i, N^ is the number 

of nets connected to module i, M/ is the offset for the adjustments due to net 

merging and net completion, and it is computed as follow: 

3 3 

K = + (4-3) 
j=2 3=2 

where m) and cj are the number of nets merged and completed when j subnets 

of a single net meet at i. The value j is the number of subnets of a single net 

that meet at i. The value of j can be either two or three. 

The adjustment for net merging m) is needed because the repeated count-

ing of an identical net in N ' � N明 and iVV(i) will over-estimate the number of 

nets. For j=2, two subnets coming from R{l{i)), R{r{i)) or module z of a single 

net are merged. For j = 3, three subnets coming from R(l{i)), R{r{i)) and 

module i of a single net are merged. The term mj is multiplied by j — 1 because 

we need to keep one counting in Ni rather than j counting. In Figure 4.4, we 

consider the situation when we reach module D during the post-order traver-

sal. We use thick solid lines to represent merged nets. There is one net merged 
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between module D and i?(C), one between module D and R(E), and one be-

tween R(C) and R[E), so = 3. There is also one net merging between 

module D, R(C) and R(E), so mf 二 1. 

Similarly, the adjustment for net completion cj is needed because the re-

peated counting of an identical net in N ,̂ Ni� i�and Nr{i) will over-estimate the 

number of nets. The j in cj has the same meaning as that in mj. The term 

dj is multiplied by j because the net has completed and all the counts should 

be eliminated. In Figure 4.4，we use thick dotted lines to represent completed 

nets. There is one net completed between module D and R(C), two nets com-

pleted between module D and R{E), three nets completed between R{C) and 

R(E), so c? = 1 + 2 + 3 = 6. There is also one net completed between module 

D, R{C) and R{E), so cf = 1. Finally, M^ = m? + 2mf + 2cf + 3cf = 3 

+ 2(1) + 2(6) + 3(1) = 20 

In Figure 4.4，the term No is computed as N'D NC -\r NE - M'D where 

N'D = 10’ Nc = 13’ NE = 11 and M'D = 20. As a result, ND = 10 + 13 

+ 11 - 20 = 14. There are 14 nets passing through the boundary of R(D). 

The value of N[ can be obtained easily as the net specification is given in the 

floorplanning phase. However, the term M/ will vary for different packings, a 

naive method to compute M[ will make the time complexity of the congestion 

model becomes 0(mn) where n is the total number of nets and m is the total 

number of modules. It is not practical for complex circuits. Therefore, we 

have made use of an efficient algorithm for the least common ancestor (LCA) 

problem to compute M!. The details of the implementation will be given in 

Section 4.4. 
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Figure 4.4: An example of computing ND' 

4.3.2 Computation of Pi 

The term Pi, which is the normalized half-perimeter of R{f), can also be com-

puted easily by following the post-order traversal of a tree. As the tree edges 

of TBT represent the width and height of the rooms occupied by the modules, 

we will separate the half-perimeter Pi of region R{i) into the horizontal (pA) 

and vertical (Py) portions to make the operation simple. The pseudo code is 

shown in Figure 4.5. 

In the pseudo-code, Wi and hi are the width and height of the room occupied 

by module i. The computation of P{i) is divided into four cases. Line 3-6 show 

the case where module i is a leaf node as in Figure 4.6(a). Figure 4.6(b) shows 

the case on line 7-10 where module i has a left child l{i) only. Figure 4.6(c) 

shows the case on line 11-14 where module i has a right child r{i) only. Line 

15-18 show the last case where module i has both left child l{i) and right child 

r{i) in Figure 4.6(d). Finally, on line 19, Pj^ and P^ are normalized by the chip 

width and height respectively to maintain a uniform order of magnitude. As 

dynamic programming is applied in the computation, the time complexity of 

HalfPerimeter(t) to compute the normalized half-perimeters of all the (n — 1) 

regions is only 0(n). 
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HalfPerimeter(tree t) 

1. For j = 1 to n where (7r(l), 7r(2),... , 7r(n)) is the post-order 
traversal of the tree t 

2. i = 7r(j) 
3. If i is a leaf node 
4. Pi" = Wi 
5. P? = hi 
6. Endif 
7. If i has left child l{i) only 
8. Pt = w, + PH^ 
9. Py = max{hi, P；^} 

10. Endif 
11. If i has right child r{i) only 
12. P!" = max{wi,尸;J《）} 

13. = 
14. Endif 
15. If i has both left l(i) and right r{i) child , 
16. Pt = max{(wi + P[l办 P/j”} 
17. P^ = max{(h, + P,^,)} 
18. Endif 

uh nv 10 P.= ^ I iJ  
' ^ chip-width chip-height  

Figure 4.5: Algorithm to find the normalized half perimeter, 

(a) (b) 

(c) (d) 

Figure 4.6: Cases in P{i) computation. 
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4.3.3 Usage of Mirror TBT 

After discussing the computation of Ni and Pi, we can evaluate the wire density 

for and t). By the characteristic of the TBT representation, the WDi 

computed from ti represent the wire densities of the boundaries facing the 

upper right direction while those computed from t2 represent the wire densities 

of the boundaries facing the lower left direction. Each tree can give n — 1 

statistical samples for the wire density evaluation where n is the number of 

modules. In order to increase the effectiveness of our congestion model, a pair 

of mirror TBT, which is based on the original pair of TBT, are constructed. 

Definition 4.2 Given a pair of TBT (ti, t])’ its mirror TBT (ts, t4) is a 

pair of TBT such that: 

(1) In t3, l{i) = j if i = l(j) in 力2 and r{i) = j ifi = in ti. 

(2) In U, l{i) = j if i = r(j) in t? and r(i) = j if i = r(j) in ti. 

where l{i) is the left child of i and r{i) is the right child of i. 

Actually, the mirror TBT can be imagined as the TBT constructed from a 

packing which is rotated 90° counterclockwise as shown in Figure 4.7. Together 

with mirror TBT, our congestion model can give 4(n — 1) wire density values 

which consider in four routing directions (upper right for ^i, lower left for 亡2’ 

upper left for ts and lower right for ^4). As sufficient statistical samples are 

considered, the routability of a packing can be estimated accurately. 

4.4 Implementation 

4.4.1 Efficient Calculation of Ni 

In this section, a detailed explanation of using the LCA algorithm to compute 

Ni will be given. Recall from Section 4.3.1 that the major difficulty of finding 
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Figure 4.7: Construction of mirror TBT from TBT. 

NI is the high computational cost of finding the term M[. Instead of computing 

M[ for each module i one by one, we are going to compute all M- incrementally 

by visiting each net one by one. An example is shown in Figure 4.8. In this 

example, we need to find the nodes 5 , C and D where adjustments are needed 

due to net merging and completion for net p. Net p will merge at node B, C 

and D and finally complete at B. The nodes, where adjustments are needed, 

are LCA{u, v) where (u, v) are some module pairs in the net. For a net with k 

modules, A; — 1 LCAs should be found for adjustments. It is observed that we 

cannot get the correct LCAs where adjustments are needed by just picking the 

module pairs arbitrarily. For example, the LCAs obtained by simply selecting 

the three adjacent module pairs from the original net specification of p in 

Figure 4.8 are LCA{A, C) = B, LCA(C, E) = D and LCA{E, F) = D which 

are not the correct set of LCAs {B, C, D} where adjustments are needed. 

Therefore, the following lemma is used to find the correct set of LCAs where 

adjustments are needed for a net. 

Lemma 4.3 Given a tree t of n nodes (representing n modules) and a net p 

connecting k modules (mi,m2,... , mfc). The set of nodes Lp in t where two 

or more subnets of p meet (adjustment is needed) is 
k-i 

Lp = { ( J LCA{mT,(i),m^^i+i))} 
i=l 

where (m̂ r)”，m7r(2)，...，爪冗⑷）is a permutation of the k modules obtained by 
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following the pre-order traversal of the tree t. (In Figure 4.8, Lp = {B, C, D} 

and the permutation for the modules connected by net p following the pre-order 

traversal is (ACFE).) 

Proof: The proof is done by induction on the depth of the tree t. The pre-

order traversal of t of depth n + 1 can be expressed as ABnCn where A is 

the root, and Cn represent the pre-order traversal of the left subtree of A 

rooted at B and the right subtree of A rooted at C with depth smaller than 

or equal to n respectively, and n is the larger value of the depths of the left 

and right subtree of A. 

(1) When n = 1, the pre-order traversal of t is {ABiCi). as shown in Fig-

ure 4.9(a). There are three cases for t. 

Case 1: If A has both left and right subtrees, i.e., Bi and Ci represent 

B and C respectively. The pre-order traversal is ABC. There are four 

cases for the net p. 

(a) p = {C, B, A}. The subnet of net p will meet (twice) at node A. The 

permutated p is {̂ 4, B, C}, and the LCAs found according to the lemma 

are correct since LCA{A, B) = A and LCA{B, C) = A. 

(b) p = {B, A}. The subnet of net p will meet at node A. The permu-

tated p is {A, B}, and the LCA found according to the lemma is correct 

since LCA(A, B) 二 A 

(c) p = {C, A}. The subnet of net p will meet at node A. The permu-

tated p is {A, C}, and the LCA found according to the lemma is correct 

since LCA{A, C) = A. 

(d) p = {C, B}. The subnet of net p will meet at node A. The permu-

tated p is {J5, C}, and the LCA found according to the lemma is correct 

since LCA{B, C) = A. 

Case 2: If A has left subtree only, i.e., Bi represents B and Ci is an 

empty string. The pre-order traversal of t is AB. Similar to case 1(b), 
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the proposition is true. 

Case 3: If A has right subtree only, i.e., Bi is an empty string and Ci 

represents C. The pre-order traversal of t is AC. Similar to case 1(c), 

the proposition is true. 

Hence, the proposition is true when n= 1. 

(2) Assume that the proposition is true when n = k, and the pre-order 

traversal of t is ABkCk as shown in Figure 4.9(b). 

When n = /c + 1，the pre-order traversal of t will be ABk+iCk+i. We 

can re-write it as A(BDkEk){CFkGk) as in the example of Figure 4.9(c). 

Let B^ and B̂  be the first and last node of the permutated subnet of 

net p in BDkEk respectively, and C^ be the first node of the permutated 

subnet of net p in CFkGk. There are three cases for t\ 

Case 1: A has both \eh(BDkEk) and right(CF^Gfe) subtrees. There are 

five cases for the net p. 

(a) p resides in the \eit{BDkEk) or right(CFfcGfc) subtree of A com-

pletely. According to the inductive hypothesis, the proposition is true. 

(b) p resides in the left subtree of A and node A. According to the 

inductive hypothesis, the LCAs found from the left s\ihtree{BDkEk) are 

correct. There is one more node that the subnet of net p will meet, 

which is A, and it will be found correctly according to the lemma since 

LCA{A, B^) = A. 

(c) p resides in the right subtree of A and node A. This case is proved 

similarly to case 1(b). 

(d) p resides in the left and right subtrees of A but not node A. Accord-

ing to the inductive hypothesis, the LCAs found from the left and right 

subtrees of A are correct. There is one more node that the subnet of net 

p will meet, which is A, and it will be found correctly according to the 

lemma since LCA{B\ C^) = A 
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(e) p resides in the left and right subtrees of A and node A. According 

to the inductive hypothesis, the LCAs found from the left and right sub-

trees of A are correct. There is one more node that the subnet of net p 

will meet (twice), which is A, and it will be found correctly according to 

the lemma since LCA{A, B^) = A and LCA(B\ C^) = A. 

Case 2: A has left subtree only. This case is proved similarly to case 

1(a) and case 1(b). 

Case 3: A has right subtree only. This case is proved similarly to case 

1(a) and case 1(c). . 

Hence, the proposition is true for n = A; + 1. 

By the principal of induction, the lemma is true. Q.E.D. 

After obtaining the set Lp of a net p, we can update the value of the corre-

sponding Mica. As shown in Figure 4.8，M^, M'�and M^ will be incremented 

by 1 because net p will be merged when they are visited. Finally, M/ of the 

shallowest module i in the set Lp will be further incremented by 1 because the 

net is going to be completed there. In Figure 4.8，this shallowest module is B. 

The same operation will be performed for each net to find all M[. Finally, we 

can apply equation (4.2) to find all Ni values for wire density computation. 

Net completion 
——^ Net/7={A, C, E,F} 

LCA(A, C)  
y^gd - Preorder Tree Traversal: 

E) BADCFE 
J -Net-list: 

P = { A , C , E , F ) 
- Permutated Net-list in preorder: 

Net merging 為 ACFE  

� 

Figure 4.8: Using LCA to compute Ni. 



Chapter 4 Congestion Evaluation: Wire Density Model 81 
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Figure 4.9: Proof of our M/ computation. 

4.4.2 Solving the LCA Problem Efficiently 

In paper [41], an efficient and simple LCA algorithm is proposed. It reduces 

the LCA problem to the Range Minimum Query (RMQ) problem. By ap-

plying the Sparse Table (ST) algorithm for RMQ, the LCA problem can be 

solved in constant time with pre-processing time of 0{nlogn) using dynamic 

programming. The details of this algorithm is shown in Appendix A. 

4.4.3 Cost Function 

The cost function for the simulated annealing process of our floorplanner is 

shown as follow: 

cost = A + a(HP) + (3{WD) (4.4) 

where A is the chip area of the floorplan, HP is the total wirelength estimated 

by the half-perimeter bounding box approach, WD is the summation of all the 

wire density values of the floorplan, and a and j3 are the weights to describe 

the importance of these three terms. In our floorplanner, a and (3 are set such 

that the ratio of the importance of the three terms is A : HP : WD = 2:2:1. 

4.4.4 Complexity 

Efficiency is one of the major advantages of our wire density congestion model. 

Recall from equation (4.1), the computation of the wire density WDi is divided 
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into two parts, Ni and Pi. The operations needed to compute Ni for all i is the 

pre-processing of the LCA sparse table {0{nlogn)), the computation of all M/ 

{0(k)) and the computation of equation (4.2) (0(n)), so the time complexity 

of finding Ni will be 0(nlogn) + 0{k) + 0(n) = O(nlogn) + 0(k) where n 

is the total number of modules and k is the total number of pins in all nets. 

Usually, the magnitude of k is much greater than that of n, so we treat the 

time complexity of computing Ni as 0{k) here. Secondly, the time complexity 

of computing Pi for all i is 0{n). As a result, the time complexity of our 

congestion estimation method is 0{k) only. 

4.5 Experimental Results 

We have implemented two floorplanners for testing. One is a traditional floor-

planner without considering congestion, the other one is a routability-driven 

floorplanner using our wire density model. Both floorplanners are based on 

the TBT floorplan representation and simulated annealing process. For the 

six MCNC benchmarks, only amiSS, ami49 and play out are used. We did not 

use hp, xerox and apte because it is expected that these simple circuits will 

not have routability problem. In addition, three more data sets (n2000, n2500 

and nSOOO) are generated to demonstrate the performance of our floorplanner 

for complex circuits. The detailed specifications of the data sets are shown 

in Table 4.1. The experiments are performed using a PC with a Pentium IV 

1.4GHz processor and 512MB memory. We use a simple global router to eval-

uate the performance of the floorplanners. 

Experimental results are shown in Table 4.2 and 4.3. The term unroutable 

wire are the wire that cannot be routed in the shortest Manhattan distance 

due to congestion and the wire that cannot have successful buffer insertions 

with respect to the variable buffer insertion constraint [low, up]. We use the 
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data in paper [9] to compute the parameters of the router. We use the feature 

values of the 0.18fim technology for all data sets. In this wire density model, 

we count the average number of nets crossing a unit grid boundary without 

performing global routing. The accuracy of this method has been shown in 

the experimental result. It shows a significant reduction in the number of 

unroutable wires when comparing with the traditional floorplanner which con-

sider area and wirelength only. The number of unroutable wires have been 

reduced by about 22% on average. For the efficiency, as we have made use of 

the tree structure and the fast LCA algorithm, the computation of all the wire 

density values can be done in linear time. Prom the experiment, the runtime 

of our floorplanner for a complex circuit with three thousand nets (nSOOO) is 

less than three minutes. Therefore, our boundary crossing model is a good 

evaluation model in terms of accuracy and efficiency. 

4.6 Conclusion 

In this chapter, we present a new congestion evaluation model using wire 

density as a measurement. We use TBT as the floorplan representation because 

the regions for evaluation can be defined by the TBT representation naturally 

and the fast and simple tree algorithms, for example, the LCA algorithm, can 

facilitate the efficiency of our congestion model. By using the regions defined 

by the TBT and the mirror TBT, sufficient samples can be taken for congestion 

evaluation. The time complexity of the whole congestion estimation method 

is linear with respect to the number of two-pin nets. Experiments have shown 

that this congestion evaluation model is efficient and effective when dealing 

with complex circuit designs. The number of unroutable wires can be greatly 

reduced in a short time. 
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Data Number of Number of Number Number of 
Modules 10 Pins of Nets decomposed two-pin nets 

ami33~ 33 — 42 123 304 — 
ami49 . 49 22 408 ~ 535 

playout “ 62 192 1611 一 2122 
n2000 60 — 200 2000 2782 — 
n2500 75 — 200 2500 3450 
113000 90 200 3000 4139 — 

Table 4.1: Specifications of the data sets. 

Floorplanner Deadspace Wire Number of Runtime Time per Iterations 
(%) Length Unroutable (s) Iterations 

( lOVm) Wires (ms)  
ami33 . . .  

Traditional 10.31 21.25 15.03 21.05 0.16 129702 “ 
Ours 11.72 21.79 11.44 42.54 0.30 140502 

aini49  
Traditional 10.87 386.45 14.53 25.54 0.20 129702 “ 

Ours 17.71 402.87 9.96 75.65 0.50 152602 
playout 

Traditional 10.25 284.78 170.54 30.64 0.24 129702 一  

Ours 16.13 302.88 134.19 86.22 0.62 139902 一 

Table 4.2: Experimental results of our wire density model on MCNC Bench-
mark. 

Floorplanner Deadspace Wire Number of Runtime Time per Iterations 
(%) Length Unroutable (s) Iterations 

(10^/im) Wires (ms)  
n2000 _ _ . _ 

Traditional 11.56 102.60 581.75 35.41 0.27 129702 
Ours 15.69 113.28 456.87 95.97 0.76 125594 

n2500 
Traditional 14.08 141.09 887.35 37.54 0.29 129702 一 

Ours 17.78 158.44 737.72 121.25 0.95 127020 
n3000 

Traditional 16.37 177.77 1299.75 46.95 0.36 129702 — 
Ours 20.16 205.43 1068.89 151.39 1.19 127502 

Table 4.3: Experimental results of our wire density model on complex circuit. 



Chapter 5 

Buffer Planning: Simple Buffer 

Planning Method 

5.1 Introduction 

Buffer insertion is usually performed after routing in the VLSI physical design 

cycle. In deep submicron VLSI designs, it has been shown that the intercon-

nect delay for a wire without buffer insertion will increase quadratically as 

the wirelength increases, while it will only increase linearly with proper buffer 

insertions [26，27, 28]. Also, it is shown that the delay of a 2cm global in-

terconnect can be reduced by a factor of 7x by optimal buffer insertion [29]. 

Therefore, buffer insertion is very important in improving the circuit perfor-

mance. However, buffers also consume silicon resources. If buffers are not 

carefully planned at the beginning of the design cycle, buffer insertions will be 

difficult due to the insufficiency in space in the final circuit layout. To address 

. t h i s problem, we consider buffer planning earlier in the floorplanning phase. 

Once buffers are considered in floorplanning, there is a greater chance to have 

successful buffer insertions after routing. 

Some previous buffer planning approaches [36, 37’ 38，39, 40, 17，18] aim 

85 
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at computing the best possible buffer locations. However, this kind of com-

putations are time consuming. When efficiency is a major concern, it is not 

practical, especially for complex circuit designs, to have this kind of detailed 

buffer planning in the early designing stage. A new buffer planning method 

that can simplify this complicated process will be very useful. We believe that 

an approximate buffer planning in the floorplanning phase is already good 

enough to improve the flexibility of buffer insertion. Also, an approximate 

planning can lead to a simpler implementation and thus a better performance 

of the floorplanner. 

Our simple buffer planning method aims at improving the feasibility of 

buffer insertions of the output floorplan solution. The number of nets blocked 

due to unsuccessful buffer insertion is counted. We assume that buffers are 

constrained to be inserted for long enough wires such that the distance between 

adjacent buffers should be within a range of [low, up]. This constraint is called 

the variable interval buffer insertion constraint [17，18]. In our method, we are 

going to determine whether a net can have all its buffers inserted successfully. 

In order to achieve an efficient evaluation, we use dynamic programming and 

a table look-up approach to obtain these routability information in constant 

time with a linear pre-processing time. In this approach, a floorplan is divided 

into a two-dimensional grid structure. Feasible grid is defined as a grid that 

contains pin and/or has sufficient space for buffer insertions. Two look-up 

tables are constructed using dynamic programming to store the routability 

information between these feasible grids. By accessing the look-up tables, we 

can decide immediately whether a net is blocked due to unsuccessful buffer 

insertion. 

This chapter is divided into six sections. In Section 5.2, a brief review of 

the variable interval buffer insertion constraint will be given. Section 5.3 will 
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give an overview of our floorplanner. In Section 5.4 and 5.5, the ideas and im-

plementation will be described and explained in details. Finally, experimental 

results and a conclusion will be given in Section 5.6 and 5.7 respectively. 

5.2 Variable Interval Buffer Insertion Constraint 

In some interconnect-driven floorplanners [17’ 18], the variable interval buffer 

insertion constraint is used to constrain the buffer locations. In this constraint, 

an interval [low, up] is specified by the user or computed based on the Elmore 

delay model [52]. This interval will be used to constrain the separations be-

tween adjacent buffers of a net. Based on the feature values of the 0.18/im 

technology as shown in Table 5.1, we can compute this interval using equa-

tion 5.1. According to this constraint, the distance between the source of a net 

and the first buffer, between any two consecutive buffers, and between the last 

buffer and the sink of a net is required to lie between low and wp inclusively. 

In this chapter, we simplify the name of the variable interval buffer insertion 

constraint as interval constraint. 

{ / _ 一 /MRb*c,+Dh) 1 

… � —Y fi„*(Co+C/) A {2*\0*grid-unit) /r 
— 1 . J 

^y — y Ro*{Co+Cf)人{10*grid.unit) 

Parameters Values 
Ro - unit wire resistance {Q,/mm) 0.075 
Co - unit wire capacitance {fF/mm) 0.118 
Cf - unit wire fringing capacitance {fF/mm) 0.0641 
Db - intrinsic repeater delay (ps) 36.4 
Cb - load capacitance/buffer capacitance { fF) 23.4 
Rb - driver resistance/buffer resistance {Q.) 180 

Table 5.1: Feature values in the 0.18/Lim technology [9 . 
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Definition 5.1 A net or a subnet is said to be blocked if none of its shortest 

Manhattan distance routes can have all its required buffers inserted to satisfy 

the interval constraint. Otherwise, it is said to be routable. 

5.3 Overview of Our Floorplanner 

In this section, we will give a brief overview of our floorplanner using the sim-

ple buffer planning method and the wire density evaluation model. Given the 

information of the modules and the netlists, a two-stage simulated anneal-

ing approach is used to obtain an interconnect-driven floorplan. In the first 

phase of the annealing process, we consider area, total wirelength (estimated 

by the half-perimeter bounding box approach) and wire density (as described 

in Chapter 4) in the cost function. When the temperature is cooled down and 

the annealing process enters its second stage, we will use the minimum span-

ning tree (MST) approach to estimate the total wirelength instead of using 

the half-perimeter bounding box approach. Furthermore, we will consider one 

more factor, the buffer insertion feasibility, in the cost function. The feasibil-

ity of buffer insertion is evaluated by our simple buffer planning method. A 

floorplan is divided into a two-dimensional grid structure as in global routing. 

We assume that the wires are routed over-the-cell in their shortest Manhat-

tan distances and multi-bend routing is allowed. Buffers are constrained to 

be inserted in un-occupied space for long enough wires such that the interval 

constraint is satisfied. Two look-up tables, which store the routability infor-

mation between any pair of feasible grids, will be constructed. Finally, we 

count the number of blocked nets by checking with the look-up tables directly 

to evaluate the buffer insertion feasibility. 
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5.4 Buffer Planning 

5.4.1 Feasible Grids 

In order to improve the feasibility of buffer insertion in the final floorplan solu-

tion, a simple buffer planning method is introduced. This method is based on 

a table look-up approach to compute the number of blocked nets efficiently. In 

this approach, a floorplan will be divided into a two-dimensional grid structure 

as in global routing. Buffers are allowed to be inserted in un-occupied space 

only. Also, we define a list F of feasible grids as follows: 

Definition 5.2 A grid is a feasible grid in F if one or both of the following 

conditions are satisfied: 

1. A grid contains a pin of a net. 

2. A grid can hold a certain number (X) of buffers, i.e., empty space > Ax 

bujfer.size, where X is a constant 

Condition 1 is needed because we need to consider the grids that contain a 

pin in our table look-up approach. Other feasible grids are required to have 

enough space to hold at least a certain number (入） o f buffers as required by 

condition 2. In our method, we will not plan the exact buffer locations for 

each net. Therefore, we need to tighten up the definition of a feasible grid that 

allows buffer insertions by introducing the constant 入.In Section 5.6，we will 

show how the constant A correlates with the routability of a floorplan by some 

experimental analysis. In Figure 5.1，we show some examples of feasible grids 

in a floorplan. 

5.4.2 Table Look-up Approach 

In our simple buffer planning method, we are not interested in computing the 

best possible buffer locations. We are only interested in determining whether 
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Figure 5.1: Examples of feasible grids. 

a net can have all its required buffers inserted successfully. After simplifying 

the problem, a lot of global routing works can be saved. In order to increase 

the efficiency of our floorplanner, a look-up table constructed using dynamic 

programming is used to compute the number of blocked nets. In this approach, 

we define the grids that contain pin and/or have sufficient space for buffer 

insertions as feasible grids. It is obvious that the buffers, the source and the 

sink of a net are all located at these feasible grids. Therefore, a look-up table 

L storing boolean routability information between pairs of feasible grids can 

be used in the blocked net counting. 

Definition 5.3 A routability look-up table L is a two-dimensional table 

defined as follows: 

L[ij] = {0 orl I 

where i and j are the indices of list F, |F| is the total number of feasible grids, 

and 

{ 0 if a net or subnet connecting F[i] and F[j] is blocked 
(5.2) 

1 if a net or subnet connecting F[i] and F[j] is routable 

As stated before, the pins of the modules are located at feasible grids, we can 

determine whether a net is blocked instantly by looking at L. For a floorplan, 

two look-up tables (Li, L2) are constructed for the two routing directions as 

shown in Figure 5.2. For Li, a net is routed from upper-left to lower-right, or 
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vice verse as shown in Figure 5.2(a). For L2, a net is routed from upper-right 

to lower-left, or vice verse as shown in Figure 5.2(b). 

• • 

• • 

(a) (b) 

Figure 5.2: Two routing directions. 

二 二 二 n 二二二二二二二二 二 二 二 ！ 二 二 二 二 二 二 
= 二 = 二 mi二二二二二二二 =二 = = 15 = = 二 = = = = 
二二二二二 3 二二 n 二二 =二 二二二二二 I I 
= = = 二 = = = = 运 = = = = = = 4_ 
~ ~ ~ ~ ~ ~ ~ ~ T T T " "  

0 m 

d = Shortest Manhattan distance from ’ = Index of the feasible grid ordered 
the lower right comer of the floorplan by d 

Figure 5.3: Indices of the feasible grids. 

5.5 Implementation 

5.5.1 Building the Look-up Tables 

After locating all the feasible grids, we can start to construct the look-up 

tables. The look-up tables can be constructed by performing a forward step 

and then a backward step in each feasible grid visited as shown in Figure 5.4(a). 

We will demonstrate the idea of the construction and the usage of Li only. The 
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_ _ _ 
— 2 "̂ 一 — • Forward Step Backward Step 

(a) (b) (c) 

Figure 5.4: Forward step and backward step. 

operations on L2 are similar. To simplify the explanation, we assume that the 

source s is always on the left of the sink t. For the routing direction represented 

by Li as in Figure 5.2(a), we will construct the look-up table by visiting the 

feasible grid closest to the lower right corner of the floorplan to the feasible 

grid closest to the upper left corner of the floorplan. As a result, we need to 

compute the shortest Manhattan distance di from the lower right corner of the 

floorplan for each feasible grid Then, the feasible grids are indiced by a 

non-descending order of their d values as shown in Figure 5,3. These indices 

will be used in ordering the elements in the list F. It means that F[l] is the 

feasible grid closest to the lower right corner of the floorplan. For the feasible 

grids with the same d value, they will be arranged in an non-descending order 

of their distances from the lower boundary of the floorplan. For each feasible 

grid a reachable list R{i) will be constructed and maintained. 

Definition 5.4 A reachable list R{i) of a feasible grid F[z] is a list contain-

ing the set of all feasible grids F[k] such that F[/c] is a possible descendent 

buffer location of a buffer inserted at i.e., there exists a shortest Man-

hattan distance path from F[i] to such that buffers can be inserted at 

F[k] and some other grids along the path in such a way that the insertion 

constraint can be satisfied. 
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The pseudo-code of the look-up table construction is given in Figure 5.5. The 

construction starts from the first feasible grid F[l]. Suppose we are visiting 

feasible grid F[i] now. In the forward step, we are going to find all the feasible 

grids F[j]s located at the upper left side of the feasible grid F[z] such that the 

shortest Manhattan distance between F[i] and F[j] is x where x G [low, up]. 

It means that F[j] can be the previous buffer location of a buffer inserted at 

F[i] as shown in Figure 5.4(b). For each F[j] found, its reachable list R{j) will 

be updated as follows: 

R{j) U R{i) U {F[i]} if F[i] has sufficient space for 

R{j) = ‘ buffer insertions (5.3) 

R{j) U {F[i]} otherwise 
\ 

It means that if F[j] can be the previous buffer location of a buffer inserted 

at F[i]’ a net or subnet connecting F � and F[j] is routable. Therefore, we 

add the feasible grid F � to the reachable list R(j). Furthermore, if F � have 

sufficient space for buffer insertions (condition 2 is satisfied), can act as 

an intermediate buffer location for a net connecting F[j] and a feasible grid 

in R{i). It means that the feasible grids in R{i), which are the possible de-

scendent buffer locations of a buffer inserted at F[i], can also be the possible 

descendent buffer locations of a buffer inserted at F[j]. As a result, we append 

R{i) to R(J). Notice that R(i) has already been found as F[i] is closer to the 

lower right corner than F[j] and F[i] must be visited earlier than F[j] in the 

construction. 

After the forward step, we will update the routability look-up table by ex-

amining the reachable list of F[i] in the backward step. As each feasible grid 

F[k] in R{i) can be a possible descendent buffer location of a buffer inserted 

at i.e., there exists a shortest Manhattan distance route such that buffers 

can be inserted along the path to satisfy the interval constraint, we will mark 

the table entry L[i, /c] as 1 to indicate that a net or subnet connecting F[z] and 
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F[A;] is routable. “ 

After visiting all the feasible grids, the construction of the look-up table is 

completed. By reading from the table, we will know which nets are blocked 

instantly. 

buildTable(F = {F[1],F[2],…，F[n]}) 
1. /* Initialization */ 
2. All LliJ] = 0 
3. All R{i) = NULL /* All reachable lists are empty initially*/ 
4. For i = 1 to n where n is the number of feasible grids 
5. /* Forward Step */ 
6. For all F[j] which can be the previous buffer locations of 
7. If F[z] have sufficient space for buffer insertions 
8. _ =丑⑴ U R(i) U {F[i\} 
9. Else 
10. RU) = R{j) U {F[i]} 
11. Endif 
12. Endfor 
13. /* Backward Step */ 
14. For each F[k] in R{i) 
15. Lli.k] = 1 
16. Endfor 
17.Endfo r  

Figure 5.5: Psuedo code to build the look-up table. 

5.5.2 An Example of Look-up Table Construction 

Based on the feasible grids found in Figure 5.3. An example to construct the 

routability look-up table is shown in Figure 5.6 - 5.14. Assume that the inter-

val constraint is [3，4] and we are going to show how the routability look-up 

table L[l …9，1... 9] can be constructed. 
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We first visit the feasible grid F[l] as in Figure 5.6. In the forward step, 

it is found that F[4] and F[5] are the possible previous buffer locations for a 

buffer inserted at F[l]. As a result, we append R{1) and {F[l]} to i?(4) and 

R{5). In the backward step, as R{1) is an empty list, no operations is done. 

Then, F[2j is being visited as shown in Figure 5.7. F[5] is found to be a 

possible previous buffer location for a buffer inserted at F[2]. R{2) and {F[2]} 

are appended to i?(5), and R(5) now contains {F[l], F[2]}. It means that both 

F[l] and F[2] are possible descendent buffer locations for a buffer inserted at 

F[5]. In the backward step, as R(2) is an empty list, no operations is done. 

In the third iteration, F[3] is being visited as in Figure 5.8. As no feasible 

grids is found to be a possible previous buffer location of a buffer inserted at 

F[3], so there is no operations in the forward step. In the backward step, R(3) 

is an empty list and no operations is needed. 

When we visit F[4] as in Figure 5.9, we found that F[6] can be a possible 

previous buffer location of a buffer inserted at F[4], so R(Q) is updated to 

contain {F[l], F[4]}. Since i?(4) = {F[l]}, it means that a net or subnet con-

necting F[4] and F[l] is routable. Therefore, we mark the table entry L[4,1 

as 1 in the backward step. 

When we visit F[5] as in Figure 5.10, F[6] and F[7] are found to be the 

possible previous buffer locations of a buffer inserted at F[5]. As a result, R{b) 

and {F[5]} are appended to R{6) and R{7). As R{b) contains the feasible grids 

F[l] and F[2], so the table entries L[5,1] and L[5,2] are marked as 1 in the 

backward step. 
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After visiting F[5], F[6] is being visited as in Figure 5.11. Recall from Fig-

ure 5.1 that F[6] is a feasible grid with pin but has insufficient space for buffer 

insertions. It means that F[6l cannot be an intermediate buffer location. As 

a result, we only append {F[6]} to the reachable list of its possible pervious 

buffer location F[9] instead of appending R{Q) and {F[6]} to R(9). This is 

because a net or subnet connecting F[9] and the feasible grids in R{Q) can-

not be routed without violating the interval constraint if F[6] must act as an 

intermediate buffer location. In the backward step, since R(6) = {F[l], F[2], 

F[3], F[4]}, the table entries L[6,1), L[6,2], L[6,3] and L[6,4] are marked as 1. 

We do the same operations for F[7], F[S] and F[9] as shown in Figure 5.12， 

5.13 and 5.14 respectively. After visiting the last feasible grid F[9], the con-

struction of the look-up table is finished. If there is a net connecting F[l] and 

F[9], we can look-up the table entry L[9, 1] to examine whether it is blocked. 

As shown in Figure 5.14, L[9, 1] is set to 1，it means that the net is not blocked. 

-

Forward Step: 
R(5) = R(5)UR(1)U{F[1]} = {F[1]} 

^ ^ 一 一 一 一 R �= R � UR(1)U{F[1]} = {F[1]} 
m  

T T I I Backward Step: 
JtmLlU一一 R ( i ) = : { } 

Figure 5.6: Table construction when visiting F[l]. 
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_ 
； Forward Step: 

-g y R � =R ( 5 ) U R(2) U{F[2]} = {F[l] , F[2]} 

— J 
7 Backward Step: 

= : 二 = I _ 二 I B I 二 R⑵二 

Figure 5.7: Table construction when visiting F[2]. 

|_ Forward Step: 

No feasible grids found as a possible previous buffer 
location. 

I I I 丨|6| I |5| 
一 二 一 4 Backward Step: 

= = 二 = i 国二 = 0!I 二二 R(3) = {} 
Figure 5.8: Table construction when visiting F[3 . 
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-

S�— Forward Step: 
8 7 ： R(6) = R(6)UR(4)U{F[4]} = {F[1],F[4]} 

T T 
M Backward Step: 

： — 一 W - - — - R ⑷ = {F[i]} 
i 二 一 一 L [ 4 ’ l ] = l 

Figure 5.9: Table construction when visiting F[4]. 

一 9_ 一 Forward Step: 

二二二二二二 = = 二二二二二 R(6) = R(6)UR(5) U{F[5]} = {F[1]. F[2], F[4],F[5]} 
J l " R(7) = R(7)U R � U{F[5]} = {F[l], F[2], F[5]} 

= = = = = 1 二 = B = = = = 
_4 B ackward S tep: 

二二二二二二二二 I I I 二二 R(5) = {F[1],F[2]} 
L[5, 1] = L[5,2] = 1 

Figure 5.10: Table construction when visiting F[5]. 
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Forward Step: 
1 R(9) = R(9)U{F[6]} = {F[6]} 

较 Grid F[6] has insufficient space for buffer insertion, so 
i I — ！ 而 J R(6) will not be appended to R(9). 

T " T � Backward Step: 
一 一 R(6) = {F[1], F[2], F[4], F[5]} 

L[6, 1 ] = L[6, 2] = L[6,4] = L[6, 5] = 1 

Figure 5.11: Table construction when visiting F[6].  

u Forward Step: 

" I g R(9) = R(9)UR(7)U{F[7] }= {F[1], F[2], F[5], F[6], F[7]} 
6 J 

"J Backward Step: 
J J J 一 一 R(7) = {F[1],F[2],F[5]} 

L[7, 1] = L[7, 2 ] = L [ 7 , 5 ] = 1 
Figure 5.12: Table construction when visiting F[7 . 
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Z Z " ^ l l ! Z Z Z Z Z Z Z Z Forward Step: 
圓 No feasible grids found as a possible previous buffer 

W："̂  " i j ? location. 

二 二 = A二二二2二二二二 
_4 Backward Step: 

二 = = 二二二二 = I !I二二 R(8)=U 

Figure 5.13: Table construction when visiting jP[8].  

E j Forward Step: 

No feasible grids found as a possible previous buffer 
8 2_ location. 

二 二 二 二 ！ = 二 二 I 二 二 二 二 
± Backward Step: 

二 = = _ 二 _ 二 _ 1 ! 1 1 _ _ R(9) = {F[l] , F[2], F[5], F[6], F[7]} 
L[9, 1] = L[9, 2] = L[9, 5] = L[9, 6] = L[9, 7] = 1 

Figure 5.14: Table construction when visiting F[9]. 
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5.5.3 A Faster Approach for Building the Look-up Ta-

bles 

The above section has described the basic methodology to construct the look-

up table. As shown in the pseudocode in Figure 5.5, the running time is 

dominated by the for-loop in line 4, 6 and 14. In line 14, the number of feasible 

grids in the reachable list can grow rapidly and it will affect the performance of 

the construction. In order to reduce the runtime, the number of feasible grids 

in reachable lists should be reduced, while the routability look-up table should 

be constructed correctly. In this section, a reduced reachable list with a smaller 

size will be proposed to reduce the runtime. Also, we have changed the data 

structure of the routability look-up table such that the operations on different 

elements of a reduced reachable list can all be performed simultaneously in 

one operation. A page table with bitwise operations will be introduced to 

compute the routability information correctly and efficiently. Notice that in 

the original method, we just need to store a bit ‘0’ or '1’ for each table entry, 

so one bit is enough for one entry. In this faster implementation, we will 

use a 64-bit long integer variable as one page to store 64 table entries as in 

Figure 5.15. Therefore, the memory requirement of the floorplanner can be 

reduced. Each row in the table is refereed as a directory, which contains a set of 

64-bit pages. The runtime can be reduced because the operations on different 

bits of each integer variable can be performed simultaneously by some fast 

bitwise operations. Details of the optimized algorithm is shown in Figure 5.16. 

A 3-tuple (dir-uo, page-no, offset) is used to address a table entry L[z, j] where 

dirjTW is the directory number which is equal to i, page-no is the page number 

which is computed as U/64�and offset is the bit position in one page and 

is computed as j — 64*page-no. In this section, we use D[i] to denote the 
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directory i where 

D[i] = [jL[iJ] 
i=i 

Definition 5.5 A reduced reachable list R'(i) of a feasible grid is a 

list containing the set of feasible grids F[k] such that F[/!：] can be a possible 

next buffer location of a buffer inserted at F[i . 

(dir_no, page_no, offset)  

I  

• • • • 

I ‘ T =]：：：： :i = 1 
> F 鲁 

11111 I I I 11111 H 1111 in : 

L , - 丨 ^ ^ 

•••••• •小 

< r ^ > 
pZI] 

64 

Figure 5.15: A page table structure. 

Similar to Section 5.5.1, each feasible grid visit is divided into two phases: 

forward step and backward step. When we visit F[i] in the forward step, we 

will first find all the possible previous buffer locations F[j] of a buffer inserted 

at F[z] in the forward step. We will then update the table entry L[j,i] to 

1. The index i will be translated into {page.no =x, offset=y) and the bit at 

directory j, page x and offset y will be set to 1 to indicate that there exists 

a route between F[i] and F[j] which can be routed in its shorest Manhattan 

distance and satisfy the interval constraint. Then, we will update the reduced 
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fastBuildTable(F = {F[l], F[2],...，F[n]}) 
1. /* Initialization */ 
2. page size = 64 
3. All L[{\ = 0 
4. All R'{i) = NULL /* All reduced reachable lists are empty */ 
5. For z = 1 to n where n is the number of feasible grids 
6. /* Forward Step */ 
7. page-no = floor (i/pagesize) 
8. offset = i — pagejno^pagesize 
9. For all F[j] which can be the previous buffer locations of F[i] 
10. If have sufficient space for buffer insertions 
11. R'U) = R'U) U {F[i]} 
12. Endif 
13. setBit(j, page-no, offset, 1) 
14. Endfor 
15. /* Backward Step */ 
16. For each F[k] in R'{i) 
17. D[i\ = D\i] OR D[k] 
18. Endfor 
IQ.Endfor  

Figure 5.16: Psuedo code to build the look-up table based on bitwise opera-
tions. 
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reachable list R'(j) as follows: 

{ R ' { j ) = R'(j) U {F[z]} if F[i] has sufficient space for buffer insertions 

No update otherwise 

(5.4) 

If F[2] have sufficient space for buffer insertions, can act as an interme-

diate buffer location. If a net or subnet connecting and F[k] is routable 

{L[i, k] = 1), a net or subnet connecting F[j] and F[k] is also routable (L[j, /c]= 

1) with F[i] as an intermediate buffer location. We will update the values of 

L[j, k] according to the values of L[i, fc] when F[j] is being visited. Therefore, 

we append {F[i]} to R'{j), and we can refer back to when we visit F[j 

in some later iteration. 

When we visit F[ji], we will update the routability look-up table by ex-

amining the feasible grids in the reduced reachable list R'(j) in the backward 

step. Assume that F[i] is in R'(j). Recall from the operations done when 

is being visited, L[j, i] has already been updated. Now, we only need to update 

L[j, A:] where F[k] is a possible descendent buffer location of a buffer inserted 

at F[i]. This update can be done by a bitwise OR operation to propagate the 

routability information from F[i] to F[j] as in line 17 of the pseudo code in 

Figure 5.16. Notice that the routability information of F[i] has already been 

computed and all its possible descendent buffer locations F[k] are found and 

marked. Suppose a net or subnet connecting F[i] and F[k] is routable, L[z, k] 

should have already been marked as 1. If F[i] has sufficient space to insert 

buffers, a net or subnet connecting F[j] and Flk] is also routable by using 

as an intermediate buffer location. The table entry L[j, k] can also be set to 1 

by performing an OR operation on the directory i and j as: 

D[j] = D[j] OR D[i\ 

L[i, k] = L[j, k] OR L[i, fc] VA; = 1,2,--- , |F| 
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5.5.4 An Example of the Faster Look-up Table Con-

struction 

An example to illustrate this faster algorithm is shown in Figure 5.17-5.22. 

In Figure 5.17, F[l] is being visited. In the forward step of F[l], it is found 

that F[4] and F[5] can be the possible previous buffer locations of a buffer 

inserted at F[l]. Therefore, we set the table entry L[4,1] and L[5,1] as 1 using 

the setBit operation. Furthermore, we append {F[l]} to i?'(4) and i?'(5). As 

R'{1) is an empty list, no bits is needed to be set in the backward step. 

In the second iteration, F[2] is being visited as in Figure 5.18. F[5] is found 

to be a possible previous buffer location for a buffer inserted at F[2] in the 

forward step. The table entry L[5,2] is set to 1 using the setBit operation. 

Also, {F[2]} are appended to and R'{5) now contains {F[1]，F[2]}. As 

R ' � is an empty list, no bits is needed to be set in the backward step. 

In the third iteration, F[3] is being visited as in Figure 5.19. As no feasible 

grids is found to be a possible previous buffer location of a buffer inserted at 

F[3], there is no operations in the forward step. In the backward step, as R'(3) 

is an empty list, no bits is set. 

After visiting F[3], F[A] is being visited as in Figure 5.20. In the forward 

step, F[6] is found to be a possible previous buffer location of a buffer inserted 

at F[4]. Therefore, F[4] is appended to the reduced reachable list R'{Q) and 

L[6, 4] is marked as 1. In the backward step, as i?'(4) contains {F[l]}, it means 

that F[l] can be the next possible buffer location of a buffer inserted at F[4]. 

Therefore, we propagate the routability information of F[l] to F[4] using the 

bitwise OR operation. 
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In the visit of F[5] as shown in Figure 5.21，F[<o] and F[7] are found to be 

the possible previous buffer locations of a buffer inserted at F[5]. As a result, 

F[5] is appended to R'{Q) and R'{7). At the same time, the table entries L[6,5] 

and L[7, 5] are marked as 1. In the backward step, i?'(5) is found to contain 

F[l] and F[2], so, we will propagate the mutability information of F[l] and 

F[2] to F[4] using the bitwise OR operation. 

When we visit F[6j as in Figure 5.22, as F[Q] is a feasible grid with pin 

but have insufficient space for buffer insertions, we will not append {F[6]} to 

R'(9) which is a possible previous buffer location of a buffer of F[6]. It is 

because F[6] cannot be an intermediate buffer location and it is not needed 

to propagate its routability information to F[9]. Therefore, we just set the 

table entry L[9, 6] to 1 in the forward step. In the backward step of F[6], 

the routability information of F[4] and F[5] are propagated to F[6] by using 

the bitwise OR operation. As shown in Figure 5.22, after the backward step, 

the bits Z/[6,1] and L[6,2] are successfully set to 1 (because L[4,1], L[5,1 

and L[5,2] are 1). This gives the same result as in the fundamental method in 

Figure 5.11. The table entities L[6,1], L[6,2], L[6,4] and L[6,5] are all set to 1. 

5.5.5 I /O Pin Locations 

In our method, multi-pin nets will be first decomposed into two-pin nets. 

These two-pin nets will be evaluated independently. We use the minimum 

spanning tree (MST) method to decompose the multi-pin nets. Then, we use 

the intersection-to-intersection method to determine the locations of the I/O 

pins. The grids containing the I/O pins will be the source and sink of the 

route in our simple buffer planning method. 
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— Forward Step: 
^ R'(5) = R'(5)U{F[1]} = {F[1]} 
— — ：——L[5,1] = 1 D[5]|Ho|o|o|o|o|o|o|o| 

— 4 —— ： — — R ' ( 4 ) = R'(4)U{F[1]} = {F[1]} 
2 — L[4 ,1] = 1 D[4]|Ho|o|o|Q|o|o|o|o| 
_4  

Backward Step: 
R ' ( l ) = { } 

Figure 5.17: A faster table construction when visiting F[l\. 

9 Forward Step: 
: : : = 二 二 二 二 二 ] 二二二 R'(5) = R'(5) U {F[2]} = {F[l], F[2]}  

_8 2 二二二二 = L[5 ,2] = 1 D[5]|I|I|O|O|O|Q|O|O|O| 

二 二 二 二 二 二 二 二 ： 
— Backward Step: 

= = 二 二 二 二 一 I B ! 二 二 R'(2)=u 

Figure 5.18: A faster table construction when visit ing[2 . 

！ 
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9 Forward Step: 
一 No feasible grids found as a possible previous buffer  

H location. 

ZZZZ二!二二二二 
4 Backward Step: 

= = = = 二 ] 二 = 0 ! I = = R'(3)=U 

Figure 5.19: A faster table construction when visiting F[3 .  

Forward Step: 

_ 二 _ = 二 二 二 = = 二 二 二 = R'(6) = R'(6)U{™} = {F[4]}  
L[6, 4] = I D[6] |0|0|0|1|0|0|0|0|0| 

二二二二二 2 = = I 二二二二 _ _ _ _ _ _ 
= 二— H —二二 Backward Step: d[4] |i|o|o|o|o|o|o|o|o| 

R' (4 )= {F [1 ] } OR 
D[4] = D[4] O R D [ l ] D[i] |o|o|o|o|o|oroT^ 

II 
D[4] |i|o|o|o|o|o|o|o|o| 

Figure 5.20: A faster table construction when visiting F[4 . 
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Forward Step: 
R ' ( 6 ) = R ' ( 6 ) U { F [ 5 ] } = { F [ 4 ] , F [ 5 ] } 

— L[6, 5] = 1 D[6] |o|o|o| iH :|o|o|o|o| 

R'(7) = R'(7) U{F[5]) = {F[5]} _ _ _ _ _ _ 
4- — M L[7,5] = 1 Dm |o|o|o|o| i|o|o|oT̂  
^ BJ 

Backward Step: D[5] | i | i | o|o|o|o|o|o|o| 

R'(5)={F[1] ,F[2]} OR 
D[5] = D[5] ORD[L] ORD[2] D[1] |O|O|O|O|O|O|5T^ 

• • • • • • • • 
D[2] |0|0|0|0|0|0|0|0|0| 

I I I I I I I I I I I I I 丨 N  
D[5] |L|L|0|Q|0|0|0|0|0| 

Figure 5.21: A faster table construction when visiting F[5]. 

一 Forward Step: 
g Grid F[6] has insufficient space for buffer insertion, so 

二 二 二 E 二 一 二 一 二 二 二 二 二 {F[6] 1 will not be appended to R'(9). 
J — L [9 , 6 ] = 1 D[9] |o|o|Q|o|o| l|o|o|o| 

一 p t Q J  

T Backward Step: D[6] |o|o|o| i| i|o|o|o|o| 
二二二二二二二二 二二 _ = 剛 ， F [ 5 ] l OR 
= = = = 二 二 二 二 二 二 二 二 二 D[6] = D[6] OR D[4] OR D[5] D[4] |I |O|O|O|O|Q|OTO 

OR 
D[5] |1|1|0|0|0|0|0|0|0| 

I I I I I I I I I I I I I II  
D[6] |i|i|o|Mi|oroTFf̂  

Figure 5.22: A faster table construction when visiting F[6 . 



Chapter 5 Buffer Planning: Simple Buffer Planning Method 110 

5.5.6 Cost Function 

In our floorplanner, we combine the wire density evaluation model in Chapter 4 

with this simple buffer planning method in a two-stage simulated annealing 

process. In the first stage of the annealing process, we use the same cost 

function as in Chapter 4, which is: 

cost = A + a{HP) + (5(WD) (5.5) 

where A is the area of the floorplan, HP is the total wirelength estimated 

by the half-perimeter bounding box approach, and WD is the wire density 

estimated by the wire density model, a and P are weights to describe the 

importance of these three terms. In the first stage, a and P are set such that • 

the ratio of the importance of the three terms A : HP : WD is 2 : 2 : 1. 

After about 40% of the total number of iterations, the second stage of the 

annealing process is started. In the second stage, the area, wirelength, wiring 

congestion and buffer insertion feasibility will be considered. The cost function 

is shown as follows: 

cost = A + a(MST) + I3{WD) + jiBN) (5.6) 

where MST is the total wirelength estimated by the minimum spanning tree 

approach, and BN is total number of blocked two-pin nets. In the second 

stage, a, (3 and 7 are set such that the ratio of the importance of the four 

terms A : MST : WD : BiV is 2 : 2 : 1 : 1. 

In the second stage, we use the MST approach to estimate wirelength in-

stead of the half-perimeter bounding box approach. It is because we want to 

obtain a more accurate estimation of the wirelength when the solution is being 

fine toned. Besides, the nets have already been decomposed into two-pin nets 
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using the MST approach in the second phase in order to evaluate the buffer in-

sertion feasibility. Therefore, the MST wirelength can be computed efficiently 

without spending much extra effort. 

5.5.7 Complexity 

The goal of our simple buffer planning method is to evaluate a floorplanner 

on its buffer insertion feasibility efficiently and accurately. By using the table 

look-up approach, the decision on whether a net is blocked can be made in 

constant time. 

If we construct a look-up table using the original method described in Sec-

tion 5.5.1，we need to visit all the feasible grids in F once. In each visit, we will 

examine the feasible grids that can be a possible previous buffer location of a 

buffer inserted at the visiting grid in the forward step and the feasible grids 

in the reachable list of the visited grid in the backward step. The number of 

feasible grids that can be a possible previous buffer location is bounded by the 

interval [low, up], which is a constant. Therefore, the pre-processing time of 

the look-up table approach is 0{RM\F\), where RM is the maximum number 

of feasible grids in a reachable list. However, if we construct a look-up table 

using the faster method described in Section 5.5.3, we will examine the feasible 

grids that can be a possible previous buffer location or a possible next buffer 

location of a buffer inserted at the visiting grid in each visit. The number of 

these feasible grids is bounded by the interval [low, up], which is a constant. As 

a result, the pre-processing time of the faster look-up table approach is 0(|F|). 

After constructing the table using the faster method, we have to examine each 

decomposed two-pin net one by one to see if it is blocked. As a result, the 

total time complexity of our simple buffer planning method is 0{\F\ + k) for 
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each iteration of the annealing process where k is the total number of two-pin 

nets. 

5.6 Experimental Results 

We have implemented a floorplanner with our simple buffer planning method 

and wire density model for testing. Three MCNC benchmarks {amiSS, ami49 

and play out) are used. In addition, three more data sets [n2000, n2500 and 

nSOOO) are generated randomly to demonstrate the performance of our floor-

planner for complex circuit designs. The detailed specifications of the data 

sets are shown in Table 4.1. The experiments are performed using a PC with 

a Pentium IV 1.4GHz processor and 512MB memory. We use a simple global 

router to evaluate the performance of the floorplanner. We have performed two 

sets of experiments. In Section 5.6.1, we will show an experiment to determine 

a value for A in defining feasible grids. In Section 5.6.2’ we will compare the 

results of our floorplanner with other interconnect-driven floorplanners [17,18 . 

5.6.1 Selected Value for A 

In Section 5.4.1, we describe the definition of feasible grid. One of the condi-

tions that a grid is a feasible grid is that it can hold at least A buffers. However, 

it is difficult to find a suitable value of A for different data sets. 

It is expected that when A is too small, even a grid with not much space 

will be treated as a feasible grid. In fact, it has insufficient space to hold the re-

quired number of buffers. It results in an increase in the number of unroutable 

wires reported by the simple global router. On the other hand, when the value 

of A is too large, there will be less feasible grids in the floorplan solution. This 

affects the accuracy of the estimations obtained by the simple buffer planning 
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method. It is because a grid, that have sufficient space for the required buffer 

insertions, may not be treated as a feasible grid in the buffer planning process. 

It is expected that as the number of nets in a circuit increases, a larger A is 

needed. It is because more buffers are needed to be inserted to achieve the op-

timize delay of these complex circuits designs, for example, n2500 and nSOOO. 

Therefore, the feasible grids defined by a larger A can provide more buffer in-

sertions supplies (silicon resources) for the increased buffer insertions demands. 

We have performed an experiment to explore the relationship between A 

and the number of unroutable wires reduced. The experimental results for 

the three MCNC benchmarks are shown in Figure 5.23 and that for the three 

complex circuit designs are shown in Figure 5.24. We choose a value for A 

that leads to a maximum reduction in the number of unroutable wires for each 

data set as shown in Table 5.2. The experimental results show the influences 

of different A values on the number of unroutable wires, which is the same as 

the prediction. 

一 Data Set ami33 ami49 playout n2000 n2500 n3000 
A —25 50 - 250 500 750 

Number of 
unroutable 6.88 8.72 107.60 430.17 694.46 988.40 

wires 

Table 5.2: Selected values of A for different data sets. 

5.6.2 Performance of Our Floorplanner 

In this section, we compare the results of our floorplanner with the other two 

interconnect-driven floorplanners [17, 18]. Table 5.3 shows the experimental 

results of the MCNC benchmarks and Table 5.4 shows the results of the com-

plex circuit designs. As defined before, the term unroutable wire refers to the 
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Figure 5.23: Different A values for the MCNC benchmarks. 
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Figure 5.24: Different A values for the randomly generated complex circuit 
designs. 
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wire that cannot be routed in the shortest Manhattan distance due to con-

gestion or due to unsuccessful buffer insertions. We use the data in paper [9 

to compute the parameters of the simple global router for evaluation. We use 

the feature values in the 0.18/im technology for all the data sets. In addition, 

the results of a traditional floorplanner based on the TBT representation, and 

the interconnect-driven floorplanners in [17] and [18] based on the sequence 

pair representation are included in the tables for comparison. Results show-

that the number of unroutable wires have reduced a lot when the simple buffer 

planning method and wire density model are used together. For the MCNC 

benchmarks, our floorplanner has 44% reduction on the number of unroutable 

wires when comparing with the traditional floorplanner, while the floorplanner 

in [17] has 33% reduction on the number of unroutable wires when comparing 

with the traditional floorplanner. However, when comparing with the floor-

planer in [18], [18] shows a better performance in reducing unroutable wires. 

It shows a 57% reduction on the number of routable wires when comparing 

with the traditional flooplanner. The results are similar for the three large 

data sets. For the large data sets, we did not compare the results with the 

floorplanner in [17]. It is because the running time of [17] will be too long 

to finish the test. The wirelength results of the four floorplanners are similar 

but our floorplanner gives a floorplan with a sightly larger deadspace of about 

3.92% larger on average. 

For the running time, our floorplanner have the shortest time per iterations 

among the three interconnect-driven floorplanners. The total running time of 

our floorplanner on the data sets amiSS and ami49 are longer than that of [18 

but the growth in running time of our floorplanner is much slower than that 

of [18]. For play out and the other large data sets, our running time is faster 

than that of [18] although the number of iterations is larger in our method. It 

shows that our table look-up approach is more adaptable for complex circuit 
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designs. The simple buffer planning method helps in reducing the number 

of unroutable wires that have unsuccessful buffer insertions, while the wire 

density evaluation model helps in reducing the wiring congestion. Using these 

two models together, an interconnect-optimized floorplan can be obtained in 

less than 14 minutes for a circuit with three thousand nets. 

Floorplanner Deadspace Wire Number of Runtime Time per Iterations 
(%) Length Unroutable (s) Iterations 

(10^/im) Wires jms)  
— ami33 — 

Traditional 10.31 21.25 15.03 21.05 0.16 1 2 9 7 0 厂 

[17] 11.80 20.59 9.63 678.45 9.15 74163~~ 
[18] 12.39 “ 23.21 3.88 290.69 3.92 — 7 4 1 6 3 

Ours 11.63 22.18 6.88 653.75 4.23 1 5 4 5 5厂 

ami49  
" l ^ d i t i o n a l 10.87 386.45 14.53 25.54 0.20 1 2 9 7 0厂 

[17 10.80 379.80 10.00 789.46 10.64 7 4 1 6 3 ~ 
18 11.24 384.55 — 6.75 369.18 — 4.98 74163 

Ours — 398.39 8.72 — 688.73 — 4.49 153282 
playout  

~ ^ d i t i o n a l 10.25 284.78 170.54 30.64 0.24 1 2 9 7 0厂 

[17] 10.38 ~^90.56 ~~115.88 3498.23 37.74 9 2 7 0 3 ~ 
[18] ~~ 11.74 274.74 ~ 9 4 . 5 0 9 1 2 ： ^ 9.84 92703~ 

Ours 16.83 298.90 107.60 720.44 4.66 154443 

Table 5.3: Comparison of our simple buffer planning method with other floor-
planners on MCNC benchmark. 

5.7 Conclusion 

In this chapter, we propose a new buffer planning approach in floorplanning 

called the simple buffer planning method. This method aims at providing an 

algorithm to count the number of blocked nets efficiently. It is based on a table 

look-up approach with bitwise operation and dynamic programming. Feasi-

ble grids are defined as grids that contain pin and/or have sufficient space 

for buffer insertions. The routability information between any pair of fea-

sible grids are stored in the routability look-up table. The construction of 

the routability look-up table can be done in linear time and the decision on 
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Floorplanner Deadspace Wire Number of Runtime Time per Iterations 
(%) Length Unroutable (s) Iterations 

(lO /̂xm) Wires {ms)  
n2000 — 

~ I ^ d i t i o n a l 11.56 102.60 581.75 35.41 0.27 1 2 9 7 0厂 

[18] — 15.35 114.65 416.47 14.20 9 2 7 0 3 ~ 
Ours 17.72 114.42 430.17 761.50 4.95 1 5 3 9 8厂 

n2500 ~ ~ 
" l ^ d i t i o n a l 14.08 141.09 887.35 37.54 0.29 1 2 9 7 0厂 

[18] 16.51 155.37 ~~675.61 1701.46 18.35 9 2 7 0 3 ~ 
Ours 20.26 173.21 694.46 774.83 4.99 155199 

n3000 — 
" ^ a d i t i o n a l 16.37 177.77 1299.75 46.95 0.36 129702 

[18] 一 18.45 194.47 970.45 " 1 ^ 6 . 8 5 20.68 9 2 7 0 3 ~ 
Ours 20.88 208.80 988.40 832.05 5.34 155909 

Table 5.4: Comparison of our simple buffer planning method with other floor-
planners on complex circuit designs. 

whether a net is blocked can be made in constant time by accessing the table 

directly. In our floorplanner, we put this simple buffer planning method with 

the wire density evaluation model together in a two-stage simulated annealing 

process. Experimental results show that our floorplanner can reduce more un-

routable wires than the floorplanner using probabilistic approach [17]. When 

comparing with the floorplanner in [18], [18] can reduce more unroutable wires. 

However, the running time of our floorplanner is faster than that of [18] for 

more complex circuit designs. It is because the running time of our approach 

grows in linear time with respect to the circuit size. Therefore, our approach 

is more adaptable to complex circuit designs in the deep submicron technology. 
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Conclusion 

At the beginning of this thesis, we have given an overview of the VLSI de-

sign cycle with emphasis on physical design. In the physical design cycle, we 

focus on the floorplanning phase. We have reviewed the literatures on floor-

plan representation and interconnect-driven floorplanning. We are interested 

in interconnect-driven floorplanning as it is a major concern in the deep sub-

micron VLSI design. We have studied different approaches to estimate wiring 

congestion and plan the buffer locations in floorplanning. 

In our research, we use a mosaic floorplan representation, twin binary trees 

(TBT), in our floorplanners. We propose two methods, which aim at providing 

efficient and novel approach to address the interconnect optimization problem. 

The time complexity of the two methods are linear. The first approach we 

proposed is the wire density model, which is used to estimate the wiring con-

gestion of a floorplan. We use TBT as the floorplan representation because the 

tree structures can define the regions for evaluation naturally. We have made 

use of the fast and simple tree algorithm, the LCA algorithm, to facilitate the 

efficiency of our congestion estimation process. By using the regions defined by 

the TBT and the mirror TBT, sufficient samples can be taken for congestion 

evaluation. The time complexity of the whole congestion estimation method 

is linear with respect to the number of two-pin nets. Experiments have shown 

118 
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that this congestion evaluation method is efficient and accurate when dealing 

with complex circuit designs. For a circuit with three thousand nets, the num-

ber of unroutable wires can be greatly reduced by about 18% in less than three 

minutes when comparing with a traditional floorplanner which considers area 

and wirelength only. 

The second approach we proposed is the simple buffer planning method, 

which addresses the buffer insertion problem. This method aims at providing 

an algorithm to count the number of blocked nets efficiently. It is based on a ta-

ble look-up approach with bitwise operation and dynamic programming. Fea-

sible grids are defined as grids that contain pin and/or have sufficient space for 

buffer insertions. The routability between all pairs of feasible grids are stored 

in a routability look-up table. The construction of the look-up table can be 

done in linear time and the decision on whether a net is blocked can be made 

in constant time by accessing the table directly. In our floorplanner, we put 

this simple buffer planning method with the wire density evaluation model to-

gether in a two-stage simulated annealing process. Experimental results show 

that our floorplanner can reduce more unroutable wires than the floorplanner 

using probabilistic approach [17]. When comparing with the floorplanner in 

18] that finds the best buffer locations, [18] can reduce more unroutable wires. 

However, the running time of our floorplanner is faster than [18] for large cur-

cuits. The running time of our approach grows in linear time with respect to 

the number of feasible grids and the number of two-pin nets. Therefore, our 

approach is more adaptable to complex circuit designs. 



Appendix A 

An Efficient Algorithm for the 

Least Common Ancestor 

Problem 

In 2000，Bender and Colton proposed a simple and fast algorithm for the Least 

Common Ancestor (LCA) problem in paper [41]. In this chapter, the algorithm 

is described. This algorithm models the LCA problem to the range minimum 

query (RMQ) problem. A faster algorithm for RMQ can be done in constant 

time after a pre-processing time of 0{nlgn). The definition of LCA and RMQ 

are as follows: 

Definition A . l Given a rooted binary tree T with n nodes，the least common 

ancestor (LCA) of nodes u andv, LCA[u,v), is the node furthest from the root 

that is an ancestor of both u and v. 

Definition A.2 Given an array A with n elements, the range minimum query 

of index i and j, RMQAihj), ^ the index of the smallest element in the 

subarray A[i.. .j . 

The reduction of the LCA problem to the RMQ problem starts from express-

ing the rooted tree T with n nodes into three arrays {E,L,R). The array 

120 
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五[1，... , 2n — 1] stores the nodes visited in an Euler Tour of T, where E[i] is 

the label of the i 仇 node visited in the Euler tour. The array L[l,...，2n - 1: 

stores the level of the nodes in E, where L[i] is the level of node E[i]. The 

level is defined as the distance between the node and the root. Finally, the 

array . . . , n] is the index of the representative of node i, which is defined 

as the index of the first occurrence of node i in E. The time complexity of this 

transformation is 0{n). An example is shown in Figure A.l. 

T 
index 1 2 3 4 5 6 7 8 9 10 11 12 13 ^ 

E丨巾丨4丨2丨5丨2丨1丨3丨6丨7丨6丨3丨1丨 

L I 1|2|3丨2丨3丨2| 1 I 2| 3|4| 3|2| 1 | / / V ^ 
[Q/<§ 後（ 

node 1 2 3 4 5 6 7 ^ ^ V 
R I l|2|8|3|5|9|l0| N ^ 

Euler Tour of T 

Figure A.l: An example of the three arrays {E, L, R). 

After modelling T into the three arrays [E, L, R), we can compute LCA[u, v) 

by finding the node with lowest level between the first occurrences of u and 

V in the Euler tour, i.e., E[R[u],.., , o r E[R[v],... The index 

of this lowest level node can be found by RMQL{RIU\, R[v]). Consequently, 

LCA{u,v) is computed as EIRMQL{R[U], i^H)). It takes O(n^) running time 

to build a table M[1 . . . n，1... n] storing the RMQ of all pairs (w, It means 

that we need a O(n^) pre-processing time to achieve a constant time LCA 

query. In paper [41], a faster approach is proposed. 

Besides building a n x n size brute-force table, a faster approach builds 

a sparse table ST[1... n, 1 . . . [lgn\] with a smaller size, which is n[lgn\. A 

sparse table entry j] stores the value of RMQL{i,i-\- 2巧，i.e., the index 

of the lowest level node in the sub-array of L starting with index i and size . 
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Instead of storing the RMQ of all nodes pairs in the original approach, this 

faster approach stores the RMQ of different blocks of nodes with fixed size 2) 

systematically where 1 < j < [lgn\. Therefore, the size of the table can be 

smaller and the pre-processing time can be faster. Each entry ST[iJ] can be 

computed by comparing the two minima of its two constituent blocks of size 

2—1 using dynamic programming as follow: 

讨j = 1 

I i + 1 otherwise 

if 3 > 1 

= I ST[i,3 - 1] ^fL[ST[i,3 _ 1]] < L[ST[i + - 1]] 
， + 1’ j _ 1] otherwise 

An example of a sparse table is shown in Figure A.2. The RMQ{iJ) can be 

computed by comparing the minima of the two overlapping blocks of size 2\ 

where k = [ ( j - i ) � t h a t covers the entire range [i, j . 

RMQiih j) = min{ST[i, /c],5r[z -2^ + 1, A;]} (A.l) 

Finally, the LCA{u,v) can be computed as E[RMQL{R[U\, R[v])] in constant 

time with 0{nlgn) pre-processing time. 

X 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 I 1|2丨4丨4丨6丨7丨7丨8丨9丨11抄3|、 

2 T T T T T T T T T 2 ^ ^ ~ ~ 
3 i h l ? ! ? ! ? ! ? ! p fe lhw\ "r 

Figure A.2: An sparse table example with size 13. 
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