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Abstract 

Signboard detection is important for such computer vision applications 

as video surveillance and content based visual information retrieval. 

Previous researches on this topic focus mainly on application-specific 

signboards such as car plates and traffic signs. Color segmentation, gradient 

analysis and Hough transform are widely used. Some papers also use neural 

networks or symmetry transforms to detect signs. However these methods 

are often restricted to some specific conditions, e.g., the shape of car plates 

and color of traffic signs. In this thesis, we will present a system that can 

detect generic signboards in images. The signs can be any polygons, not 

necessarily restricted to traffic signs or car plates. They can also be posters 

or doorplates and so on. The only assumption made is that a signboard has 

to be formed by straight boundaries. 

At first, the image is pre-processed, through edge and comer detection. 

Then, we use the gradient-based Hough transform to detect straight lines. 

After that, by finding the intersections of the lines and checking the density 
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of each segment, we can obtain the candidates as the boundaries of 

signboards. Finally, the location of the signboards can be accurately 

detected with the processing of finding closed circuits and deleting 

redundant segments. 

The performance of our generic signboard detection algorithm is 

promising. It gives correct and accurate results in more than 90% of the 

experiments, which clearly demonstrates the effectiveness and robustness 

of the new method. 
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摘要 

標牌識別在諸如攝像監控、基於內容的圖像資訊檢索等等電腦視 

覺應用方面有著舉足輕重的作用。先前的關於此方向的硏究都主要集 

中在有特定目標的標牌檢測上，比方說汽車牌照，或者是交通指示牌 

等的檢測。常用的方法有顔色分割、梯度分析和哈夫變換。有些論文 

也提到用神經元網路或者對稱轉換的方法。但是我們可以看到，這些 

方法對所要檢測的目標有很多的限制。比方說，規定汽車牌照的形狀， 

或者交通指示牌的顔色。 

在本論文裏面，我們將提出一個可以檢測一般性標牌的系統。這 

些標牌可以是任意的多邊形，並不局限於汽車牌照和交通指示牌。它 

可以是一張海報，一個門牌等等。我們對標牌的唯一限制就是’它的 

邊緣必須是直線。也就是說，它不能有弧線的邊緣。 

首先，圖像將會進行預處理。這個過程包括邊緣和轉角檢測。然 

後，我們利用基於梯度的哈夫變換，將圖像中間的直線檢測出來°通 

過尋找直線的交叉點、檢查線段上面點數的密度，我們可以得到可能 
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的組成標牌邊緣的線段。通過線段找到合適的閉合曲線，和刪除多餘 

線段，標牌的具體位置能夠被準確的檢測出來。 

實驗結果說明，本文所提出的一般性標牌檢測演算法，能夠準確 

檢測出超過百分之九十的實驗圖像中的標牌位置。這清楚表明了新演 

算法的有效性。 
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Chapter 1 

Introduction 

It is estimated that 75% of the information received by a human is 

visual [1]. When one receives and uses visual information, we refer to this 

process as perception or understanding. When the job is done by a 

computer, we call it computer image processing and recognition. The 

manipulation of images by computer is a relatively recent development in 

terms of humans' ancient fascination with visual stimuli. In its short history, 

it has been applied to practically every type of imagery, with varying 

degrees of success. 

Computer vision is the science that develops the theoretical and 

algorithmic basis by which useful information about the world can be 

automatically extracted and analyzed from an observed image, image set, 

or image sequence [2]. 
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1.1 Object Detection 
In computer vision, detection refers to anything from identifying a 

location to identifying and registering components of a particular object 

class at various levels of detail [3]. One could require a precise outline of 

the object in the image, or the detection of a certain number of well-defined 

landmarks on the object, or a deformation from a prototype of the object 

into the image. The object itself may have different degrees of variability. It 

may be a rigid 2D object, such as a fixed computer font or a 2D view of a 

3D object, or it may be a highly deformable object, such as the left 

ventricle of the heart. All these are considered object-detection problems, 

where detection implies identifying some aspects of the particular way the 

object is present in the image, --namely, some partial description of the 

object instantiation. 

We can find a variety of applications in object detection [4]. For 

example, one of the goals of Intelligent Transportation Systems (ITS) 

consists of improving traffic safety. One method is to deploy an on-board 

driver alert system against approaching warning signs such as stop sign, 

yield sign, etc. Thus detecting such road signs is useful [6]. Object 

detection can also be applied in building detection and model construction. 
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It is a problem of great economic importance, since manual delineation is 

extremely expensive, and there are a number of applications waiting for 

affordable 3D building data. So it's important to determine the shape and 

location of buildings within an aerial image robustly and accurately. 

Human beings are constantly sensing the environment and 

accumulating knowledge about the world. From their world knowledge, 

they can easily segment an image and build descriptions of the scene. Since 

most physical objects do not produce images that possess a single 

measurable characteristic, the problem of object detection is very difficult 

for computers. However, by noting that objects are usually composed of 

component parts that may possess a uniform characteristic and that are 

arranged in a particular way, a multistep subdivision of the problem may be 

devised. 

1.2 Signboard Detection 
Why we choose detecting signboards? It is due to the useful 

information contained in the signboards. There are all kinds of signboards 

in our daily life. When entering a building, it guides us to the correct room. 

When driving on the road, it tells us where to turn. So signboard detection 
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is critical for such computer vision applications as video surveillance and 

content based visual information retrieval. 

» 
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Chapter 2 

System Overview 

The purpose of this thesis is to describe an approach to a problem of 

great practical concern — detecting signboards in a scene from images of the 

scene. 

2.1 What is the problem? 
At the very beginning, let's have a general idea of what assumptions 

should be made to the signboards. 

Actually, we made only one assumption for the signboards. That is the 

signboards should be in shape of any polygons. Or, we can say, the 

boundaries of the signboards must be straight lines, not curves, such as the 

examples shown in Figure 2.1. 

This is why we call our work "generic" signboard detection. Of course, 

if the image's quality can be better, the background noise is small, the 

signboard is big (statistically more than 5% of the whole image's area), 
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the performance of the system will be better. But all of above are not 

necessary assumptions we made for the signboards. 

Figure 2.1. Examples of signboards. 

2.2 Review of previous work 
Object detection is quite an application-oriented process. 

Unfortunately there are few works focus on the signboard we refer to. But 

we can reference to other relevant applications. Such similar applications 

include car plate detection, or traffic sign detection [5]-[19:. 

Several approaches for the recognition of traffic signs have appeared 

in the literature. Line detection using Hough Transform and difference of 

gray value are among the major approaches [12]. However, using Hough 

Transform alone is very sensitive to deformation of a plate boundary and 

needs much memory. 
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Blancard [15] has used shape processing to recognize traffic signs. 

The use of color for traffic sign recognition has also been investigated by 

researchers[16]-[19]. In [16] Kehtamavaz et al. have shown that the 

combination of color and shape processing provides a reliable approach for 

recognizing stop signs in the presence of brightness changes. Kang et al. 

；16][17] further investigated this approach by employing a recognition 

technique in which color segmentation is followed by an invariant signature 

descriptor and a neural network classifier. Estable et al. [18] have described 

a traffic sign recognition approach that performs color segmentation by an 

artificial neural network and a color connection algorithm. These 

approaches can get good results. Dong-Su Kim [14] employed symmetry 

transform and image warping method. These approaches can get fairly 

good results. But among them, there are some other assumptions made for 

the object at the beginning. For example the shape or comer of the car 

license / traffic sign [15][17:. 

The previous works have given us great help in signboard detection. 

Although there are shortcomings in Hough transform, it is still an effective 

approach in detecting lines, which will be used in the thesis. Then the work 

emphasis on the sign locating process, which overcomes the problems 
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brought by Hough transform. Moreover, we want to propose a method that 

can detect generic signboards, not restricted to the assumptions like color or 

shape. 

2.3 System Outline 
There are generally four parts in the system we proposed, as shown in 

Figure 2.2. 

1 i Remove I , • I 
1 ！ , 1 , Line | 
I 丨 Redundant 1 • 厂 … > 
I 丨 o + 丨 Fitting I 
] I Segments 1 I 

！ I f I i 
Edge 丨 ： i I 

Detection 丨 | Fi^^d 丨 I 

丨 丨 Close I I 

i I Circuits | | 

1 I ^ i I 

;5r [ I I ] 

Corner __I Gradient-based j _ Line j i 

Detection j Hough Transform I Verification | | 

Pre-processing Finding Candidate Lines Signboard Locating Post-processing 

Figure 2.2. System Flowchart. 

At first, the image is pre-processed through edge and comer detection. 

Then, we use gradient-based Hough transform to find the candidate lines 

that may form the boundaries of the sign. 
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The main process is the locating of signboards. It is assumed that the 

signboard's boundaries can form a close circuit. So the system turns to find 

the close circuits. On the bases of traditional depth-first-search, we propose 

a new search method that gradually reduces the point's number in the 

process. Thus the time consumed can be decreased. At the same time, there 

will be some remaining redundant segments. Then we develop a new 

method inspired by image coloring to remove those redundant segments. 

The last procedure is post-processing, which is consisted of line fitting 

algorithm. After all these processes, the signboard can be detected 

accurately. In the following chapters, we'll describe specifically on each 

step of the system. Conclusions will be made on the experiment results. 
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Chapter 3 

Preprocessing 

The images taken outdoors usually have cluttered background. This 

may cause big errors in the detection step. Thus pre-processing is necessary. 

The pre-processing is used to erase the messy points roughly, in order for a 

better performance in the processing steps afterwards. 

Unlike car license plates, the signboard's color varies. Thus we cannot 

take the "color" feature into consideration. This is one of the reasons that 

make our system more compatible than others. 

The pre-processing is consisting of two parts: edge detection & comer 

detection. Edge detection is used to find the possible points that form the 

sign's boundary. Then by comer detection, we can delete the comer points 

appropriately. Thus the irrelevant small segments can be removed 

naturally. 
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3.1 Edge Detection 
One important feature of the signboards in an image is its boundaries. 

Thus this property becomes the clue of the detection process. Edge 

detection is a straight method to detect such boundaries. 

Edges are significant local changes of gray level or color in an image. 

Edge detection is an operation that determines if a pixel in an image is an 

edge point, i.e. a member of an edge. 

There are many methods for edge detection. We'll explain three most 

frequently used edge detection methods here. 

3-1-1 Gradient-Based Method 

Basically, the idea underlying most edge-detection techniques is the 

computation of a local derivative operator [27]. From Figure 3.1, we can 

see that the magnitude of the first derivative can be used to detect the 

presence of an edge, and the second derivative can be used to determine 

whether an edge pixel lies on the dark or light side of an edge. Note that the 

second derivative has a zero crossing at the midpoint of a transition in gray 

level, shown in Figure 3.1. Thus zero crossings provide a powerful 

approach for locating edges in an image. 
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(a) (b) 
Figure 3.1. First and Second derivative of the image. 

The first derivative is obtained by using the magnitude of the gradient 

at that point. The gradient of an image of continuous spatial 

coordinates r and s, is 
dx{r,s) 

。 [ 琳 力 ] = [ 幻 = $ (3.1) 

‘ L ds . 

Hence, 

Magnitude of G[x(r,s)] = ̂ G] + G] (3.2) 
r Q \ 

Direction of G[x(r,s)] = ^ (3.3) 
y^rj 

12 



In discrete image coordinates, it can be achieved by convoluting the 

image's pixels with some kind of masks as Figure 3.2. 

AAi l 
Ai lA 
Z7 Zs |z9 

(a) 
1 0 0 1 
0 - 1 - 1 0 

(b) Roberts 

-1 -1 -1 - 1 0 1 

0 0 0 -1 0 1 

1 1 1 - 1 0 1 

(c) Prewitt 

-1 -2 -1 - 1 0 1 

0 0 0 -2 0 2 

1 2 1 - 1 0 1 

(c) Sob el 

Figure 3.2. Edge detection operators. 

Figure 3.2 shows three convolution masks to compute the derivative at 

point labeled Z5. Let's consider Sobel operator, which is the most 

frequently used operator, for example. It contains two operators. They are 

convolved with a digital image x{m,n) to produce Sj^(m,n) & (爪， 

13 



whose magnitudes represent the amount of changes in horizontal and 

vertical directions respectively. 

The edge magnitude E^ (m, n) = ̂ Jsl + S: , (3.4) 

direction 五 = _jl (3.5) 

A point (m’n) is said to be an edge point if E^(m,n) is larger than 

a threshold. 

The algorithm is shared among all other operators in Figure 3.2. The 

performances of the masks vary [28]. The Roberts operator responds best 

on sharp transitions in low-noise images. The Prewitt and Sobel operators, 

being three by three, handle more gradual transitions and noisier images 

better. 

3-1.2 Laplacian of Gaussian 

The edge detection operators in Figure 3.2 use only the first derivative. 

A more elaborate approach is to impose an additional requirement that an 

edge point should also be a local maximum in edge magnitude, i.e., the 

derivative of gray level should be zero [28:. 

For an image x{r,s) of continuous spatial coordinates r and the 2D 

equivalent of the derivative is the Laplacian operator, which is 
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= + 0 (3.6) 
dr OS 

For an image x{m,n) of discrete spatial coordinates m and n, the 

Laplacian operator may be approximated by a discrete space LSI system of 

impulse response: 
"0 1 0] � 1 1 1 ] � 1 4 r 
1 - 4 1 or 1 - 8 1 or 4 - 2 0 4 (3.7) 
0 1 0 1 1 1 1 4 1 

_ 」 L 」 L —' 

In many cases, images contain noise, which may result in spurious 

edges. Applying a smoothing operation to the image before edge detection 

can reduce the noise level and so the spurious edges. A commonly used 

smoothing operator is Gaussian filter. Thus the Laplacian of Gaussian 

method is stated as following: 

> Use a Gaussian filter to smooth out noises first and then 

> Use the Laplacian operator to detect the locations of the zero crossings 

of the 2nd derivative 

> Identify the detected locations as edge points if the magnitudes of the 

first derivative are larger than a threshold. 

3.1.3 Canny edge detection 

The Canny method finds edges by looking for local maxima of the 

gradient. The method uses two thresholds, to detect strong and weak edges, 
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and includes the weak edges in the output only if they are connected to 

strong edges. This method is therefore less likely than the others to be 

"fooled" by noise, and more likely to detect true weak edges. Thus it is the 

edge detection method we use in the system. 

The Canny edge detector in discrete spatial coordinates is 

> Use a Gaussian filter to smooth out noises, 

> Compute G{x(m,n)), the gradient of x(m,n) 

G^ (x(m, n)) = {x(m + l,n)- x(m, n) + +1，� +1) - x(m’ n + l)}/2 (3.8) 

G„(x(m,n)) 二 {;c(m,n + X)-x(m,n) + x(m +1，� +1)-x{m +1,w)}/2 (3.9) 

Magnitude of G[x{m,n)\ = M{m,n)=拟 + G] (3.10) 
r Q \ 

Direction of G[；c(m,/2)] = 6>(m,«) = tan'' (3.11) 

> Apply nonmaxima suppression to M{m, n) to form N{m, n) 

• Find = 

• Compare M{m,n) with its two neighbors along the direction 

given by ^{m, n). If M{m, n) is not greater than both neighbors, 

then N{m,n) is set to zero, otherwise M{m,n). 

> Apply double thresholding to N{m, n) to form the edge map. 

• Apply two thresholds q & ~ « to form T\ {m, n) & 7\ (m, n). 

• Use T人m,n) to link edges in I\(jn,n). 
16 
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Figure 3.3 shows an example of Canny edge detection. We can see 

that the boundary of the signboard is detected. But for different images, the 

result will sometimes not be so satisfying. The leaves beside the signboard 

in Figure 3.4 cause a large amount of edges. Thus the system needs the 

comer detection process afterwards to remove them. 

3.2 Corner Detection 
As we can see from Figure 3.4, some images cannot get good results 

after Canny edge detection. It is mainly because of the messy background. 

In here, we apply a comer detection method. 

The approach comes from the fact that the signboards have relatively 

straight long boundaries. But the noise of the background may be short 

discontinuous segments. So if the comers of both sign and noise are 

detected [29] and removed, the noise will be shorter, but no obvious effects 

happen to the sign's boundaries. Thus we can denoise the whole image so 

that to make it easier for the processing afterwards. 

How do we detect comer features? How do we detect comer features? 

Consider the spatial image gradient, [£"” 五」�（the subscripts indicate 

partial differentiation, e.g., A generic image point, p, a 
(JJi 

neighborhood Q ofp, and a matrix, C, defined as 18 



c 4 x ? �娶 f ' l (3.12) 

Where the sums are taken over the neighborhood Q. This matrix 

characterizes the structure of the gray levels. How? 

The key to the answer is in the eigenvalues of C and their geometric 

interpretation. Notice that C is symmetric, and can therefore be 

diagonalized by a rotation of the coordinate axes; thus, with no loss of 

generality, we can think of C as a diagonal matrix: 

C 二 (3.13) 

The two eigenvalues,义！ and 义2，are both nonnegative. Let us 

assume The geometric interpretation o f �a n d 义2 can be 

understood through a few particular cases. First, consider a perfectly 

uniform Q: the image gradient vanishes everywhere, C becomes the null 

matrix, and we have ；= = 0. Second, assume that Q contains an ideal 

black and white step edge: we have ；1�二 义1 > 0 , and the eigenvector 

associated with is parallel to the image gradient. Note that C is rank 

deficient in both cases, with rank 0 and 1 respectively. Third, assume that Q 

contains the comer of a black square against a white background: as there 

are two principal directions in Q, we expect > A2 > 0, and the larger the 
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eigenvalues, the stronger (higher contrast) their corresponding image lines 

are. At this point, you have caught on with the fact that the eigenvectors 

encode edge directions, the eigenvalues edge strength. A comer is identified 

by two strong edges; therefore as >^2, a, comer is a location where the 

smaller eigenvalue, JI2, is large enough. 

We now summarize the procedure for locating the comers: 

The input is formed by an image, I, and two parameters: the threshold 

on T, and the linear size of a square window (neighborhood), say 

2N+1 pixels. 

> Compute the image gradient over the entire image; 

> For each image point p, 

• Form the matrix C (in eq. 3.11) of over a 

(2A^ + l)x(2iV + l) neighborhood Q oip\ 

• Compute 义2, the smaller eigenvalue of C; 

• If 义2〉r, save the coordinates of p into a list, L. 

> Sort L in decreasing order of . 

> Scanning the sorted list top to bottom: for each current point, p, 

delete all points appearing further on the list which belong to the 

neighborhood of p. 

20 



The output is a list of feature points for which ；1�> : a n d whose 

neighborhoods do not overlap. 

After the comers are detected, the short segments become shorter, 

while the long boundaries have no change. Then remove the segment 

shorter than a threshold; the image can be much clear, shown in Figure 3.5. 

Thus the main processing can be applied to this image. 

Figure 3.5. Cutting short segments after comer detection. 
Left: Comers detected; Right: Edges after deleting short segments. 
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Chapter 4 

Finding Candidate Lines 

4.1 Hough Transform 

4.1.1 What is Hough Transform 

The Hough transform [30] is a standard tool in image analysis that 

allows recognition of global patterns in an image space by recognition of 

local patterns (ideally a point) in a transformed parameter space. In 

particular, it is used in our system to detect straight lines. 

The basic idea of this technique is to find straight lines that can be 

parameterized in a suitable parameter space. 

4.1.2 Parameter Space 

We can analytically describe a line segment in a number of forms. 

However, a convenient equation for describing a set of lines uses the 

following parameter form: 
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d = xcos0 + ysm6 ( 4 . 1 ) 

where d is the length of a normal from the origin to this line and 6 

is the angle with the normal. (See Figure 4.1) For any point on this line, 

d and 6 are constant. 

� H/ 
Y 

Figure 4.1. Parameters used in the Hough transform. 

The edge points after the preprocessing are the input of the Hough 

transform. The coordinates of the points are known. Therefore they serve as 

constants in the parametric line equation, while d and 0 are unknown 

variables. If we plot the possible {d,6) values defined by each point's 

coordinates in xy image space map to curves (i.e., sinusoids) in the polar 

Hough parameter space. This point-to-curve transformation is the Hough 

transformation. When viewed in Hough parameter space, points that are 
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collinear in the xy space become readily apparent as they yield curves, 

which intersect at a common {d,6) point. See in Figure 4.2. 

4.1.3 Accumulator Array 

In order to describe the parameter space, the Hough transform 

algorithm requires an accumulator array whose dimension corresponds to 

the number of unknown parameters (2 parameters for lines) in the equation 

of the family of curves being sought [2]. The transform is implemented by 

quantizing the Hough parameter space into finite intervals or accumulator 

cells. 

The Hough transform runs like this: for each edge point {x,y), 

calculate the distance d = xcosO ^ ysinO, for every possible value from 0 

to 360 of 6 . Thus a curve of (<i,6>) is made by edge point (x,少).Peaks 

in the accumulator array represent strong evidence that a corresponding 

straight line exists in the image. 

In order to illustrate the Hough transform in detail, we begin with an 

example shown in Figure 4.2 [31]. (a) is the original image, and (b) is the 

input of Hough transform, (c) shows the curves in parameter space, or 

accumulator array. The more curves overlapped, the more lighter the color 

is. By seeking for these peaks in the accumulator array, we can get the most 
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possible lines' parameters {d,6). (d) in Figure 4.2 shows the result of 

Hough transform. 

(a) (b) 

• ^^^ 
• ^^m mSim 

(c) (d) 
Figure 4.2. Illustration of Hough Transform. 

4.2 Gradient-based Hough 
Transform The main problem with the classic Hough transform comes from the huge computational workload. Because for every point in the edge map, we 
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need to calculate 360 {d,6) pairs for them, if quantization interval is 1 

degree for angle 6. 

The basic idea of the gradient-based Hough transform [32] comes 

from the idea that, point is most likely belong to the line that has the same 

gradient as the point. If we can calculate the gradient of the point, then we 

assume that the line passing through that point must have the same gradient. 

Then the parameter 6 is unique. So there is only one parameter pair for 

that point. Although this algorithm is sometimes not so accurate due to the 

gradient error, it is still used because the great amount of time it saved. 

Because in classic Hough transform, the parameter 0 is changing from 0 

to 360 degrees. Although in this algorithm, there is only one value for 6. 

The gradient error can be overcome in the post processing steps. 

4.2.1 Direction of Gradient 

The relationship between parameter 6 and the direction of gradient 

is illustrated in Figure 4.3. r represents the vertical gradient, c represents 

the horizontal gradient. Thus we have 

tg{0) = -. (4.2) 
c 

26 



K ^ x 

tg{0) = -
c 

Y、， 

Figure 4.3. Direction of gradient. 

The horizontal and vertical gradient is calculated using Sobel operator 

in Figure 4.4. 

-1 -2 -1 - 1 0 1 

0 0 0 -2 0 2 
1 2 1 - 1 0 1 

..Vertical Horizontal Gradient ��Giadient 

Figure 4.4. Sobel operator for direction of gradient. 

Let's see a simple example in Figure 4.5 (a) shows a straight line with 

0 二 71.5°. The rectangular part is enlarged into (b). They are convolved 

with the Sobel operator respectively; r and c are their result. Then using 

(4.2), we can thus get the gradient's direction angle for each point. 
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(b) 

Figure 4.5. An example of gradient calculation. 

We can see from Figure 4.5(b) that the 4-neighborhoods of the edge 

points can represent the angle accurately (Their gradients are 71.5°. Errors 

will occur at the edge points and their 8-neighbors. But we don't need to 

worry about it. These points cannot make up a peak in the accumulator at 

all. They don't even belong to the line decided by their coordinates and the 

wrong gradient angle. 

4.2.2 Accumulator Array 

In our application, parameter 0 means the angle between the normal 

and the x-axis. The edge points are all in the area with x > 0,;； > 0. Thus 
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the range for 6 is [0,180) & (270,360) • The range for d is (0, dmax), 

where dmax=length(diagonal of the image). 

\ 
� 

e'二 e - 1 8 0 � 

d=_d 

y Y 

Figure 4.6. Ranges of the parameters in Hough transform. 

/ \ I y \ 

But as we calculate 0 = — , a negative value will be resulted 

when 6 is larger than 180. Therefore the real value of 6 should be 
(r\ 0 = tg-' - +360° if e = tg-' — <0 (4.3) 

ycj KcJ 

For convenience, we define the line with 0 G (270,360) to (90,180). 

See in Figure 4.6. From the definition before, 6>, d are shown in the figure. 
But we use 6̂ ’ instead of 6, which 

(9 = 6>-180° if <9 >180° (4.4) 
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Therefore the range for 6 is [0,180). Then the distance is 

d = 0-d if 6>>180, (4.5) 

as illustrated in Figure 4.6. Then the range for d is (-dmax, dmax). 

As the algorithm runs, each point (x, ;；) is transformed into a 

parameter {d,6) point. Quantize such parameters d SiQ into two arrays: 

qd 8iq“ These two arrays have the same size with the image. They record 

the quantized d f o r each point. The range of 6 is [0,180)，totally 

180 degrees. Suppose the quantization interval is 5° . Then there will be 

180/5=36 angles for one point to calculate the distance d. But if we use 

gradient information, we only need to calculate once. So it saved 

35/36=97.22% time. 

When the parameters (qt,qd) are calculated, the corresponding 

accumulator cell A(qt, qd) is incremented by one. 

4.2.3 Peaks in the accumulator array 

As we have discussed before, the straight lines will create a peak in 

the accumulator. By seeking for such peaks, we can get the parameters of 

the lines. 

But because of the quantization error of the parameters, the lines will 

not be very accurate. So once the peak A(qt, qd) is found, we search back 
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to the points that belong to this line. Usually the neighborhoods are 

correctly represented by the parameters. So these points' neighborhoods are 

also considered as the line's points. Also the accumulator cell A(qt,qd)，s 

neighborhoods are set to be zero. Thus it won't result in many closed nearly 

parallel lines, as shown in Figure 4.2. But what is the appropriate value of 

{qt, qd) we assigned to this line? 

qt 二 ̂  二 (4.6) 
n n 

where (x,y) are the coordinates of the line's points and their 

neighborhoods, n is the number of these points. By such method, the 

errors can be reduced. And the parameters {qt, qd) are adjusted. 

We now summarize the procedure for the gradient-based Hough 

transform as follows: 

> Compute r and c using Sobel operator in Figure 4.4. 

> Compute parameter 0: 

• For points with c 二 = 
iM • For points with c^O^ 6 = —. 

• If 6><0=^6> = 6> + 360Mf 6> = 180° 6> = 0° 

> Compute parameter d : 
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d = X cos 6 y sin 6 

> Adjust d&G'. 

For points with (9 > 180° = -180° & (i = 0 — 丄 

> Quantize d 8cG into two arrays: qd Sc qt. These two arrays 

have the same size with the image. They recorded the quantized 

d 8iQ for each point. 

> Create an accumulator A. For each point with r^ >0，and 

has the parameter {qd.qO), increase the accumulator cell with 1: 

A{qd,qe) = A{qd,qe) + \ 

> Search for the peaks in the accumulator A. The coordinates of 

these peaks represent the quantized parameters for the straight 

lines. 

4.2.4 Performance of Gradient-based 

Hough Transform 

The result of the gradient-based Hough transform is shown in Figure 

4.7 & Figure 4.8. 
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Figure 4.7. Result of gradient based Hough transform (1). 

• I H H 

h H h h h 
Figure 4.8 Result of gradient based Hough transform (2). 

Compare Figure 4.7 with Figure 4.2(d), we can see that the gradient 

based Hough transform can get as good performance as classic Hough 
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transform. In addition, due to the peak-seeking method we used in 4.2.3， 

the straight lines are more accurate and unique. The most attractive 

property of gradient-based Hough transform is the great reduction of time 

and memory consuming comparing with classic Hough transform. 
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Chapter 5 

Signboards Locating 

5.1 Line Verification 
In the previous chapter, the lines of the signboards are detected using 

gradient-based Hough transform. Here we have one question now: which 

segments of the lines are the sign's boundaries? 

5.1.1 Line Segmentation 

After Hough transform, what we get are the most possible lines in the 

image. In order to find out the two ends of the boundary segments, we can 

use the equations of the lines to get their intersections. 

The input are the parameters {d,0) found by the gradient based 

Hough transform. Therefore the equation of the line with the parameters 

{d,6) is: 

tgO-x + y = - ^ (if 没关 90°) cos (9 
x = d (if 0 = 90') (5.1) 
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Three parameters (a.,b.,c.) are recorded for these lines: 

= tgO \ a . = 1 
< (if O^W) \b.=0 (if (9 = 90°) (5.2) 
广 - c , = d C- — K I 

� c o s ^ 

Also there are four lines we should not ignore: four borders of the 

image. Their equations are: y = l,y = y^^= = . {x^^，少咖又) 

represents the size of the image. Then the four sets of parameters should be 

added into the series: 
� r C C 

a = 0 a 二0 a = l a = 1 
< b = \A b = l Ab = OA b = 0 (5.3) 
厂 1 | ^C”max = 1 = -̂ max 

After all the parameters (d,0) are transformed into and 

the four borders are added, we can get the intersections of each two lines: 

Suppose the two lines are of the parameters and 

{â ,办2, ), then their intersections are: 
X 二 c A - c A = (5.4) 

-�2匕\ a礼-a^b� 

By this means, the lines are divided into segments caused by the 

intersections of each other. This step is important and useful especially 

when the polygon's comers are covered by other objects. In this case, there 

is no point on the comer of the boundary segments. Thus make the 

boundary incomplete, as shown in Figure 5.1. But if we find the 
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intersections of the boundaries (shown as the emphasized point in Figure 

5.1(b)), the segments will be extended automatically, and then complete the 

whole boundary. 

4 
(a) (b) 

Figure 5.1. Line segmentation when the comer is covered. 

5.1.2 Density Checking 

In 5.1.1, the lines are divided into segments. If the segment is really 

the boundary, there must many points with the same gradient and distance 

lying on that line. So if we check the point's density on the segment, then 

the segments with the density over a threshold (set to be 0.4 in the 

experiment) are kept, and other segments are removed. See Figure 5.2. (a) 

is the output of gradient-based Hough transform. They are the straight lines 

in the image. Figure 5.2(b) shows the points that contribute in the 

accumulator cells in (a). And also these points are the bases of density 

checking process. 
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(a) (b) 

Figure 5.2. Lines and the points belonging to them. 

Checking density process is to project the points on the segment. And 

then check such a segment's density. 

Given a segment with parameters (a,b,c). Firstly, plot the segment; 

see the example in Figure 53(a). It is a segment from Figure 5.2. Then and 

extend its width as shown in Figure 5.3(b). 

Secondly, Find the overlapping points in both the segment and the 

points contribute to the accumulator cell. In the example, it means to find 

the points being white both in Figure 5.3(b) and Figure 5.2(b). 
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If the point's density is larger than a threshold (set to be 0.4 in the 

experiment), then the segment is kept. Otherwise, the segment will be 

removed. Figure 5.4(b) shows such a result after density checking. 

• 

(a) (b) 
Figure 5.3. Expand the segment's width. 

39 



• 
(a) (b) 

Figure 5.4. Result of density checking. 

5.2 Finding Close Circuits 
Till now, the most possible segments that formed the signboards are 

found. It is supposed that if they can form some close circuits, then the 

circuits are the signboards we detect. Some of the segments may not be 

connected due to the noise, but in fact they are connected. So we must first 

merge some intersections that are close enough. Then the task ahead is to 

find the close circuits. 
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There are many methods to find close circuits. Mainly are using 

depth-first-searching method [33]. It is a classical and effective method. If 

we want to find out every possible closed circuit, depth-first search should 

be used for every points, that may seem too tedious and memory 

consuming. In our system, the time and memory consuming is a key factor 

that we're considering about. 

® ® 

® r — � ® | � 

©‘- ® b 
(a) (b) 

Figure 5.5. Illustration of finding close circuits (1). 

The main idea of the proposed algorithm is trying to reduce the 

number of vertex in the image. Therefore the complexity will be smaller. 

We'll explain it using the example shown in Figure 5.5 
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At first, assign a number randomly to each of the point. Delete the 

points with only one segment connected with them. For example, the point 

9 in Figure 5.5 (a) is such a point. There is only one segment ‘19’ 

connected with point 9. "Delete" here means delete the point and all the 

segments that end at this point. The image after "deleting" is shown in 

Figure 5.5(b). Repeat such a check until every point is connected with more 

than 1 segment. If no point remained, the algorithm terminates. 

� � 

d d b 
(a) (b) 

Figure 5.6. Illustration of finding close circuits (2). 

Then begin with the first point remained. Find the first loop starts and 

ends at it. Number the loop as loop No.l. And record the loop's points and 

segments. In the example of Figure 5.5(b), the first point is point No. 1. It 
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can get a result using the DFS in Figure 5.6(a). The thick lines represent the 

first close circuit. Put the loop's points (1，4,8) into a point set PI. Thus the 

two sets are 

PI = {1,4,8} (5.5) 

Regard the point-set PI as only one point. This point has the same 

priority as other points. Then the points remained are: PI, 2, 3，5，6 and 7. 

The only difference between PI and other points is that, there may exist 

two segments connecting one point and PI, while there must be only 1 

segment connecting two ordinary points. For example there are 2 segments 

connecting 5 and PI. But this property will not affect the processing 

afterwards. 

Then, try to find another closed circuit. In the example, such a closed 

circuit is shown in thick lines of Figure 5.6(b). The path is: P1-5-P1. 

Because some of its points comes from the point set PI, then point 5 is also 

added into point set PI. Thus 

PI = {1,4,5,8} (5.7) 

as shown in Figure 5.6(b) 

Repeat finding the closed circuits. In the example the next closed 

circuit is shown in dotted lines of Figure 5.7(a). In this close circuit, every 

43 



vertex is an ordinary point (not in point set). So classify the points 2, 3，6 

and 7 into point set P2. 

P2 = {2,3,6,7} (5.8) 

Now there are only two points in the image: PI & P2. And no close 

circuit exists. We'll begin check the connections between point sets. In the 

example, there is a segment connecting point sets PI and P2. In this case, 

these two sets are merged into one point: PI, shown in Figure 5.7(b). 

Continue such a checking until the point sets are all isolated. Then the 

finding process terminates. The results are the point sets. In the example, 

the result is point set PI. 

t f 
PI 

j P2 j 

(a) (b) 

Figure 5.7. Illustration of finding close circuits (3). 
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The signboard's boundaries are detected. Although there are some 

redundant segments, but at least, we did not miss any of the true segments. 

Removing redundant segments are processed afterwards. 

So let's summarize the finding signboards algorithm as follows: 

> Number all the vertexes in the image. 

> Delete the points with only one segment connecting with them. 

Double check until no such points exist. 

> Find a close circuit. 

• If the vertexes of the circuit are all ordinary points: 

Create a point set P- to record the vertexes. Shrink them 

into only one point P .̂ 

• If one of the vertexes is point set 

Merge all the points in the circuit into point set P.. 

• If more than one of the vertexes are point set, for example, 

p.,Pj(assume i < j <... <n): 

Merge all the points in the circuit into point set P̂，and 

Merge all the points in P” … i n t o P. 

Delete point set P”...P^. 

> Repeat finding close circuits until no close circuits exist. 
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> Check the connections between each of the point sets. If there is a 

segment connecting P. & P�(assume i < j )，then merge P^ 

& Pj into P .̂ And delete point set Pj. 

> Repeat checking until all the point sets are isolated. 

> The output is the point sets remained. 

This method is more efficient than classic DFS. It reduces the point's 

number gradually. Although it may add some redundant segments in the 

result, but at least, it won't miss any close circuit at all. 

國國 
(a) (b) 

Figure 5.8. Signboards found in the image. 
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Figure 5.8 shows the result of this step. The signboards can be 

detected correctly. But at the same time, there are some redundant 

segments still remain, as (b) in Figure 5.8，or (b) in Figure 5.7. If such 

redundant segments exist, we need to remove them appropriately, which 

will be described in the next session. 

5.3 Remove Redundant 

Segments 
Although the closed loops can be detected, there exist some redundant 

segments that we have discussed before. The problem can be generally 

classified into three kinds, shown in Figure 5.9. The middle line in (a), the 

smaller rectangle in (b), and the connecting segment in (c), are redundant 

segments that appeared in our experiments. Since there are no algorithms 

specified for this goal, we designed an algorithm to achieve it. 

The algorithm is originally comes from the idea of coloring. It tries to 

color the background pixels, which also surround the outer closest circuit. 
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Then the line pixels with these colored pixels around are the pixels we want. 

Let's specify the algorithm using the example of Figure 5.9(a). 

(a) (b) (c) 
Figure 5.9. Three types of redundant segments. 

At the beginning, it is defined that ‘1’ is for the line pixels, which are 

black in Figure 5.9, and '0' is for the other pixels (white)."Colored" means 

the value of the point is 2. Of course, there is no point with value 2 at the 

beginning, because the points are either 0 or 1. C in Figure 5.10 shows the 

values of Figure 5.9(a). 

"0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 [0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 *̂= 000 0 1000010000010000 
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0_ 

Figure 5.10. Remove Redundant Segments (1). 
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The searching order is from left to right, and up to down direction. 

First, expand the lines. It means change the 8-neighbours of the line 

points from 0 to 1 �S e t the new matrix as D, shown in Figure 5.11. Why is 

that? Because we only concern about the values of the line points' 

8-neighborhoods. So the neighbor points should be identified at first. 

"0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 

0 = 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 5.11. Remove Redundant Segments (2). 

Among the line's neighborhood points, try to find the first uncolored 

background pixel in C. That means C(x, y) = 0 and D(x, y) = l. Because 

the searching order is from left to right, and up to down direction, then the 

first such pixel must be a left upper most background pixel. Color it into 2. 

In the example, this pixel is (4,4), which is bracketed in Figure 5.10 and 

Figure 5.11. 
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Color the background pixels in the same area (outer or inner 

background) with point (4,4). It means, scan the pixels on its right side and 

on the same row with it until we find a pixel which cannot satisfy the 

following conditions: C(x,y) = 0 & = 1. The coloring direction is 

shown in Figure 5.12. Then color all these pixels into 2. Thus D becomes 

the matrix shown in Figure 5.13. 

'0 0 0 to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 m 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
0( 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 

" = 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 ( F O O O O O O O O O O O O O O O O ^ 

Figure 5.12. Remove Redundant Segments (3). 

Then find the next non-line and non-colored pixel (x,y). In addition, it 

should satisfy that at least one of its 4-neighbours is colored. Thus we can 

make sure that such pixel is also in the same outer or inner background area 

as the previous colored pixels. Such pixel is (5,17) which is bracketed 

shown in Figure 5.13. 
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'0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 
0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 [1] 0 0 0 

0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

0 0 0 2 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 2 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 2 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 

� 0 0 0 2 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 2 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 2 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 5.13. Remove Redundant Segments (4). 

"0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0" 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 
0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 2 0 0 0 
0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 2 0 0 0 
0 0 0 2 1 1 0 0 1 1 1 0 0 0 1 1 2 0 0 0 
0 0 0 2 1 1 0 0 1 1 1 0 0 0 1 1 2 0 0 0 
0 0 0 2 1 1 0 0 1 1 1 0 0 0 1 1 2 0 0 0 

化 0 0 0 2 1 1 0 0 1 1 1 0 0 0 1 1 2 0 0 0 

0 0 0 2 1 1 0 0 1 1 1 0 0 0 1 1 2 0 0 0 
0 0 0 2 1 1 0 0 1 1 1 0 0 0 1 1 2 0 0 0 
0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 2 0 0 0 
0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 2 0 0 0 

0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 5.14. Remove Redundant Segments (5). 

The same coloring process is applied to this point (5,17). Then D is 

colored as shown in Figure 5.14. 

Now there is no point is neighbored with the colored points and 

satisfied the condition C{x,y) = 0 8LD{x,y) = \ . The coloring process 

terminates here. 
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The redundant points can be identified now. Observe the line points, 

which are 1 in C (Figure 5.10). The colored image is shown in Figure 5.15. 

Red parts are the colored pixels. We can tell that the pixels around the 

segments we want are both red and white (white for background pixels). 

But the pixels around the redundant segments are all white. Thus we can 

identify the redundant pixels very easily. 

The result of coloring process for Figure 5.9(b) and (c) is also shown 

in Figure 5�16(a). 

(a) (b) 
Figure 5.15. Result of coloring process. 

This method can identify the redundant lines cleverly. The neighbors 

of the inner segments (Figure 5.9 a & b) are all 0. The neighbors of the 

connecting segments (Figure 5.9c) are 2. And the neighbors of the pixels on 

the lines that we really want are 1 and 2. Also, this method is very fast, 

because only the neighbors of the line points are considered. Thus we can 

save time effectively. 
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Figure 5.16. More results of coloring process. 
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Chapter 6 

Post processing 

The post processing is mainly adjusting the lines detected from the 

previous steps. After all the steps, the signboards are detected. But some 

times the borders are not so accurate (Figure 6.1). In order for a better 

performance, we apply such a post processing to adjust the position of the 

lines. 
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Figure 6.1. Signboards detected without post processing. 

At first, let's find the factors that cause such errors. 

1. Gradient error 
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2. Quantization error 

3. Errors caused by merging close points 
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Figure 6,2. Gradient error. 

In section 4.2.1 we introduced the calculation of gradient. That's is the 

angle 6 between the line's normal and x-axis. The gradient is the result of 

convolution with the operator shown in Figure 4.4. The operator's size is 

3x3. So it cannot reflect the gradient's changes outside that range. Let's 

look at an example shown in Figure 6.2. 
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The angle 6 should be 78.7° for the line in Figure 6.2. But after the 

calculation of gradient discussed in chapter 4，the result is quite different. 

There are many angles: 45°, 71° and 90°. Since 90° appeared most 

frequently, it may probably contribute a peak in the accumulator array. 

Then the line's gradient will at last be resulted in 90°. The error is 

90° - 78.7° = 11.3°. Then the result is the dotted line in Figure 6.2. 

One of the reasons is due to the quantization error. In the gradient 

based Hough transform, the angle 6 and distance d are quantized to the 

parameters qt and qd. 

The other reason is due to the merging of close points. This is at the 

beginning of finding close circuit, discussed in 5.2 . The signboards are 

detected in the condition that the boundaries can make a close circuit. But 

because of the noise, some part of the boundaries cannot be detected by 

Hough transform. The merged point is the middle of two close points. Thus 

the error of the point's locations is caused. 

So we use the least-square error method to adjust these segments. 

What should be the input of this process? We use the points in the edge 

map. The coordinates (x.,兄.)of the edge points are known. 
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Then find the points that corresponding the segments we found. 

Assume the accurate line should be 

y = kx + b (6.1) 

k and b are unknown. 

The error of the line to each edge point is: 

R. =Joc + b-y ( 6 . 2 ) 

The square error of the line to the whole points is: 

(p{k,b) 二 iRf = +办一兄.）2 (6.3) 

If we want the square error to be as small as it can, then (p{k,b) 

should satisfy 

(6.4) 

From equation (6.4), the values of k and b can be calculated. Then the 

line decided by these two parameters is the line that most appropriately fit 

the edge points. 

Result of post processing is shown in Figure 6.3. Compare it with 

Figure 6.1, the signboard's boundaries are much more accurate. 
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Figure 6.3. Result of post processing. 
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Chapter 7 

Experiments and Conclusion 

In the previous chapters, we have introduced our system to detect 

signboards in an image. The system consists of four parts: pre-processing, 

gradient-based Hough transform, signboards locating, and post-processing. 

This chapter presents the experimental results, discusses some problems in 

the system, and gives the conclusion finally. 

7.1 Experimental Results 
In the experiment, we have tested the system on 104 images. Figure 

7.1, Figure 7.2, Figure 7.3 and Figure 7 A show some of the results. 

• • • • H H 巧 F t — — 
• — — • S i i r 

Figure 7.1. Experimental Result. 
Left: Result of pre-processing; 
Middle: Result of gradient-based Hough transform; 
Right: Detected signboard superimposed on the original image. 
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Figure 12. Experimental Result. 

Left top: Original Image; Right top: Result of pre-processing; 
Left bottom: Result of gradient-based Hough transform; 
Right bottom: Detected signboard superimposed on the original image.. 
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Figure 7.3. Experimental Result. 

Left top: Result of gradient-based Hough transform; 
Right top: Result after density checking; 
Left bottom: Result of finding close circuit; 
Right bottom: Detected signboard superimposed on the original image.. 
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Figure 7.4. Experimental Result. 

Left: Result after pre-processing; 
Middle: Result of density checking, 
Right: Detected signboard superimposed on the original image-

Table 7.1. Experiment Data. 

Total images Success Fail Success Rate 
^ 97 I 7 I 93.3% 

The experimental data are listed in Table 7.1. From the experimental 

results and data, we see that the system performs very well on more than 90 

percent of the images. The average time consumed by the algorithm using 

Matlab is about 5 seconds per image of 300x400 pixels, on a 1.8G Pentium 

IV PC. Below we will first discuss the reasons that cause the system failure 

on some images, and then present some special cases. 

1. The boundaries cannot be extracted in the edge detection due to 

the poor image quality. Especially when the other part of the image has 
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great gradient changes, but the boundary doesn't have such a gradient 

change. The system is sensitive to edges. If it failed to find the correct 

edges, it will fail at the very beginning. 

2. Gradient error can cause the system fail to detect the signboards. 

It is a key factor in gradient-based Hough transform. If the gradient error is 

too big, the line's parameters {d,0) cannot contribute a peak in the 

accumulator. Thus we cannot extract the signboard's boundaries. 

3. The boundaries of the signboard are not complete. For example 

the signboard is behind of a large object. Of course, if the object is not very 

large, the system can make the boundaries complete automatically. But 

since such a threshold is used (a threshold to determine how close the two 

points are considered as they're connected), sometimes the boundary 

cannot be found correctly. 

In the following, some of the advantages of the system are listed. 

1. The system is robust to noise. 

In the pre-processing step, noise is removed by detecting comers in 

the edge map. Noise is mainly caused by the background. 
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Figure 7.5. Result when the noise is not ignorable. 

2. A big problem of using Hough transform is that it's quite 

time-consuming. But our method can overcome it successfully. It is due 

to the following methods we use. First, in pre-processing, the comer 

detection is applied to delete the small segments that are not belonging to 

the boundaries of the sign. Second, we use the gradient information of the 

edge points. Third, we quantized d and 6 appropriately. 

3. In addition, the algorithm can also detect the sign that is even 

covered partly, shown in Figure 7.6. Of course, the covered part should not 
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be too larger. Otherwise, the algorithm will deem it that there doesn't exist 

such a segment. 

^ m PARKING _ 

• . o n i ^ m 
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Figure 7.6. Result when the signboard is partly covered. 
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7.2 Conclusion 
In the work, we have developed a system to detect generic signboards 

in images. The signs can be any polygons, not limited to rectangles or 

triangles. In this method, we first apply an edge detection and comer 

detection in pre-processing step. Then the gradient-based Hough transform 

is used to find straight segments. After that, signboards are detected by 

checking the point density of each segment, finding a closed circuit and 

removing redundant lines. Precise signboard positions are obtained further 

by line fitting. Our method can also detect signboards when their 

boundaries are overlapped or the background is very complicated. 

Promising results have been obtained. The experiments show that the 

system gives a correct rate of 93.3%. 

For future work, we may apply more information on the image. For 

example, hue in images and temporal information in videos. Because we 

ignored such information in the system, which may make the method more 

generalized. But adding more information will probably improve the 

system's result. 
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