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Abstract 
The family of subspace recognition methods represents the state-of-the-art in 

face recognition. PCA, LDA and Bayesian analysis are three of the most 
representative subspace based face recognition approaches. In this thesis, we show 
that they can be unified under the same framework. The difference of face images 
can be modeled as three major components: intrinsic difference, transformation 
difference, and noise. A unified framework is then constructed by using the face 
difference model and a detailed subspace analysis on the three face difference 
components. We explain the inherent relationship among different subspace 
methods and their unique contributions to the extraction of discriminating 
information from the face difference. PCA and Bayes can be viewed as 
intermediate steps of LDA. However, conventional LDA fails to attain the best 
performance without significant changes in each individual step. 

Starting from the framework, a unified subspace analysis is developed using 
PCA, Bayes, and LDA as three steps. A 3D parameter space is constructed using 
the three subspace dimensions as axes. Searching through this parameter space, 
we achieve better recognition performance than the standard subspace methods. 
Analyzing the special requirement in each step, the unified subspace analysis 
adopts different training data at different steps. It avoids the conflicts between the 
large class number and small sample size in face recognition. 

The drawbacks of standard subspace methods can be well analyzed under this 
framework. Taking advantage of the unified subspace analysis, several other 
novel subspace based face recognition approaches have been developed in this 
thesis, including discriminant analysis in dual intrapersonal subspaces and 
eigentransformation. 

When the transformation difference between face images is significant, it can 
no longer be modeled as a Gaussian distribution, and the difference of face images 
cannot even be modeled as the linear composition of the three components 
(intrinsic difference, transformation difference, and noise). In this case, the 
framework for subspace methods will not work well. It is also a critical problem 
for conventional PCA, Bayes, and LDA. We develop an eigentransformation 
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approach to transform different style of face images into the same modality, such 
that the transformation difference can be significantly reduced. In this thesis, this 
novel approach is applied to two particular applications: recognizing face photos 
using sketch drawings and hallucination. In face sketch recognition, by 
transforming a photo into a sketch, we reduce the difference between photo and 
sketch significantly. A Bayesian classifier is then used to recognize the probe 
sketch from the synthesized pseudo-sketch. We also successfully apply 
eigentransformation to face hallucination, i.e. rendering the high-resolution face 

image from the low-resolution one. 

% 
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摘要 

在當今人像識別技術的最新發展中，基于子空間的人像識別技術是一 

類重要的方法。主分量分析、線性判別式分析和貝葉斯分析是三種最具有 

代表性的基于子空間的人像識別方法。論文中，我們將證明它們可以統一在 

同一個理論框架中。人臉圖像的差異可以分解成三個主要成分：由於身份不 

同引起的固有差異，由於光纖、姿勢、表情不同引起的變換差異，以及噪 

聲。基于這個人臉差異模型，通過對人臉差異的三個主要成分進行詳細的子 

空間分析，我們爲基于子空間的人像識別技術建立了一個統一的理論框架。 

這一理論框架論證了三種不同的子空間人像識別方法的內在聯繫，在從人臉 

差異中提取分類信息時它們各自不同的作用。主份量分析和貝業斯分析可以 

看做線性判別式分析的中間步驟。然而，傳統的線性判別式分析因爲沒有認 

識到這一點，從而不能對每一個步驟加以改進，取得最佳的識別效果。 

基于這一理論框架，利用主分量分析、貝業斯分析和線性判別式分析 

作爲三個子步驟，我們提出了子空間綜合分析算法。利用三個子空間的維數 

作爲軸向量，我們構造了一個三維參數空間。搜索這個參數空間，可以得到 

比傳統的子空間算法更好的識別效果。通過分析每個步驟的特定要求，子空 

間綜合分析算法在訓練中針對不同的步驟采用不同的訓練集。它成功的解決 

了人像識別中遇到的類別數目多，訓練樣本少的問題。 

在這個理論框架下，我們可以淸楚的分析傳統的基于子空間的人像識 

別方法存在的不足。除了子空間綜合分析算法外，論文中進而又提出了其它 

幾種新的基于子空間的人像識別算法，包括基于雙重類內變化子空間的線性 

判別式算法和基于主分量分析的子空間轉換算法。 

有時由於外界因素的存在，人臉圖像會有較大的變換差異，不能用高 

斯分布進行近似。人臉的圖像差異甚至不能表達成三種成分(固有差異、變 

換差異、噪聲)的線性組合。基于子空間分析的理論框架就會失效。這也是 

傳統主份量分析、貝葉斯分析、和線性判別式分析所共同遇到的一個重要問 
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題。我們提出了一個基于主份量分析的空間變換方法，可以將不同“風格” 

的人臉圖像轉換爲同一 “風格”，這樣變換差異就會被有效地減小。論文 

中，我們將這個新方法用于兩個特殊的應用：利用素描畫像識別照片和人臉 

圖像分辨率的增強。在畫像識別的應用中，我們將照片轉換成畫像，這樣就 

有效的減少了照片與畫像之間的差異。這個方法還可以用于從低分辨率的人 

臉圖像中恢復出高分辨率的人臉圖像。 

iv 



Acknowledgments 
Here I would like to acknowledge all the people who had assisted me during the 

past two years of my graduate studies at the Chinese University of Hong Kong. I 
am most grateful to my supervisor, Dr. Xiaoou Tang. All the research work in this 
thesis is completed under his professional and careful direction. He has proposed 
many important and valuable ideas and suggestions for my research, and helped 
me greatly improve the presentation of this thesis. I have learnt so much from him 
in the past two years. I am very fortunate to be able to complete my postgraduate 
study under his direction. 

I would like to thank Prof. Jianzhuang Liu. He gave some very useful 
suggestions to my work. I also would like to thank all my partners in the 
multimedia laboratory, Feng Lin, Lifeng sha, Feng Zhao, Zhifeng Li, Bo Luo, 
Hua Shen, Tong Wang, and Dacheng Tao. We have lived and studied for two 
years. I always can get kindly help and encouragement from them. 

I owe my sincere thanks to my parents, for their never fading love, care, 
understanding and encouragement. 

V 



Table of Contents 
Abstract i 
Acknowledgments v 
Table of Contents   
List of Figures viii 
List of Tables x 
Chapter 1 Introduction 1 
1.1 Face recognition 1 
1.2 Subspace based face recognition technique 2 
1.3 Unified framework for subspace based face recognition 4 
1.4 Discriminant analysis in dual intrapersonal subspaces 5 
1.5 Face sketch recognition and hallucination 6 
1.6 Organization of this thesis 7 
Chapter 2 Review of Subspace Methods 8 
2.1 PCA 8 
2.2 LDA 9 
2.3 Bayesian algorithm 12 
Chapter 3 A Unified Framework 14 
3.1 PCA eigenspace 16 
3.2 Intrapersonal and extrapersonal subspaces 17 
3.3 LDA subspace 18 
3.4 Comparison of the three subspaces 19 
3.5 L-ary versus binary classification 22 
3.6 Unified subspace analysis 23 
3.7 Discussion 26 
Chapter 4 Experiments on Unified Subspace Analysis 28 
4.1 Experiments on FERET database 28 
4.1.1 PCA Experiment 28 
4.1.2 Bayesian experiment 29 
4.1.3 Bayesian analysis in reduced PCA subspace 30 
4.1.4 Extract discriminant features from intrapersonal subspace 33 
4.1.5 Subspace analysis using different training sets 34 
4.2 Experiments on the AR face database 36 
4.2.1 Experiments on PCA, LDA and Bayes : 37 
4.2.2 Evaluate the Bayesian algorithm for different transformation 38 
Chapter 5 Discriminant Analysis in Dual Subspaces 41 
5.1 Review of LDA in the null space of and direct LDA 42 
5.1.1 LDA in the null space of 42 

vi 



5.1.2 Direct LD A. 43 
5.1.3 Discussion 44 
5.2 Discriminant analysis in dual intrapersonal subspaces 45 
5.3 Experiment 50 
5.3.1 Experiment on FERET face database 50 
5.3.2 Experiment on the XM2VTS database 53 
Chapter 6 Eigentransformation: Subspace Transform 54 
6.1 Face sketch recognition 54 
6.1.1 Eigentransformation 56 
6.1.2 Sketch synthesis 59 
6.1.3 Face sketch recognition 61 
6.1.4 Experiment  
6.2 Face hallucination 69 
6.2.1 Multiresolution analysis 71 
6.2.2 Eigentransformation for hallucination 72 
6.2.3 Discussion 75 
6.2.4 Experiment 77 
6.3 Discussion 83 
Chapter 7 Conclusion 85 
Publication List of This Thesis 87 
Bibliography 88 

vii 



List of Figures 
Figure 1 -1 Examples of face appearance changes under different disturbing factors 2 
Figure 2-1 Eigenvectors and eigenvalues for a 2D distribution 9 
Figure 2-2 Compare PCA and LDA for a two-class problem 10 
Figure 2-3 Example of simultaneous diagonalization of S^ and Sb 11 
Figure 2-4 Decompose image space into principal subspace F and complementary subspace F . 

Figure 3-1 Diagram of the unified framework for subspace based face recognition 16 
Figure 3-2 Energy distribution of three components 7, f , md N on eigenvectors in three 

subspaces 二” 
Figure 3-3 Relationship of the PCA, Bayes, and LDA subspaces 21 
Figure 3-4 Use average intrapersonal variation distribution to approximate that for each 

individual class 二。 
Figure 3-5 3D parameter space 二� 
Figure 4-1 Example of normalized face image 2 9 
Figure 4-2 Recognition accuracy of PCA on the FERET database 29 
Figure 4-3 Recognition accuracy of the Bayesian algorithm on the FERET database 30 
Figure 4-4 Accuracy surface for the Bayesian analysis in the PCA subspace 32 
Figure 4-5 Highest accuracy of the Bayesian analysis in each PCA subspace 33 
Figure 4-6 Accuracies using different number of discriminant features extracted from 

intrapersonal subspace ^ ^ 
Figure 4-8 Subspace analysis for different training sets  
Figure 4.9 Samples for the seven transformations in AR database 36 
Figure 4-10 First five eigenfaces for different subspaces  
Figure 4-11 Accuracies of direction correlation and Bayesian algorithm for different 

transformations 4 0 
Figure 5-1 Direct LDA for a two-class problem 4 4 
Figure 5-2 Analysis different LDA approaches 45 
Figure 5-3 Training discriminant vectors in dual intrapersonal subspaces 47 
Figure 5-4 Recognition accuracy comparison of the new method with Bayesian face recognition. 

Figure 5-5 Accumulative scores for the new method, Bayes (Mahalanobis distance), Fisherface, 
LDA in null space, and direct LDA 52 

Figure 5-6 Recognition accuracies of Fisherface, LDA in null space, direct LDA, and the new 
method using different number of persons for training on the FERET database 53 

Figure 6-1 Examples of photo-sketch pairs 55 
Figure 6-2 Eigentransformation procedure 57 
Figure 6-3 Eigentransformation with the assumption that the transformation between photo and 

sketch is linear ^^ 
Figure 6-4 Framework of the face sketch synthesis system 61 
Figure 6-5 Face sketch recognition using eigentransformation and the Bayesian classifier 62 
Figure 6-6 Facial sketch synthesis based on full face 64 
Figure 6-7 Generate photo from the input sketch 65 
Figure 6-8 Comparison of the direct eigentransformation (first row) with separate transformation 

on texture and shape (second row)  

viii 



Figure 6-9 Comparison of accumulative match score between our automatic recognition method 
and human performance 6 9 

Figure 6-10 Multiresolution analysis in spatial domain 7 0 
Figure 6-11 System diagram using eigentransformation for hallucination 73 
Figure 6-12 Eigenfaces sorted by eigenvalues, ê  is the ith eigenface 76 
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Chapter 1 
Introduction 
1.1 Face recognition 

Automatic face recognition as an important Biometrics technique has drawn 
more and more attention in recent years. Comparing to other individual 
identification techniques, face recognition is more convenient under real world 
operation conditions, since it does not require those being watched to cooperate. It 
has been widely used in law enforcement identification, banking and security 
system access authentication, and anti-terrorist video surveillance, etc. 

A general statement of automatic face recognition is described in [83]: "Given 
still or video images of a scene, identify or verify one or more persons in the 
scene using a stored database of faces.” Therefore, the two main tasks of face 
recognition are outlined as two categories, 

• Face identification: Given an unknown face as input, the system 
determines the identity through a one-to-many matching with all the 
known individuals in the database. The system usually returns the N most 
similar reference faces to the test face. 

• Face verification: The system confirms or rejects the claimed identity of 
the input face. 

The main challenge for face identification and verification is that even though 
human faces share similar features, face images belonging to the same individual 
may have very different under different conditions. The factors affecting face 
appearance include, 

• Pose 
• Lighting 
• Expression 
• Session changes 
參 \Vith/or without decoration and occlusion 
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(a) Pose changes (b) Lighting changes (c) Expression changes 

(d) Session changes (e) with/without decoration (f) With/without occlusion 

Figure 1 -1 Examples of face appearance changes under different disturbing factors. 

Some example face images affected by these factors are shown in Figure 1. In 
face recognition study, it is critical to distinguish whether the appearance variation 
is caused by face identity or other disturbing factors. 

1.2 Subspace based face recognition technique 

Many face recognition techniques have been developed over the past thirty 
years. A detailed survey can be found in [62] [83]. Most of the face recognition 
techniques can be categorized into two classes: feature-based methods and 
appearance-based methods. Feature-based methods extract the geometrical 
relationship and other parameters of face features for matching. Appearance-based 
approaches view a 2D image as a vector in the high dimensional image space. A 
suitable metric is then used for face matching in the image space or its subspace. 
A comparative study by Bmnelli and Poggio [61] shows that appearance-based 
techniques have superior performance than feature-based techniques. 

Face image appearance began to be used for recognition in the early 1980s. 
Baron [65] develops a direct appearance-based matching procedure: correlation 
between 2D raw images. Because of the high dimensionality of the raw image, the 
direct correlation is expensive to compute. In order to reduce the dimensionality 
of the original face image, many subspace methods have been developed to 
extract more compact features for face recognition. The eigenface method (PCA) 
developed by Turk and Pentlend [47][51][52] is a major breakthrough for the 
appearance-based techniques. The method uses the Karhunen-Loeve Transform to 
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produce a most expressive subspace for face representation and recognition. 
Inspired by the eigenface approach, several appearance-based subspace methods 
have been developed. LDA or Fisher Face [58][84][35][85][22] is an example of 
the most discriminating subspace methods. Linear Discriminant Analysis (LDA) 
is adopted to seek a set of features best separating face classes. Another important 
subspace method is the Bayesian algorithm using probabilistic subspace proposed 
by Moghaddam [8] [9] [10] [11]. Different from other subspace techniques, which 
classify the test face image into L classes for L individuals, the Bayesian 
algorithm casts the face recognition task into a binary pattern classification 
problem with each of the two classes, intrapersonal variation and extrapersonal 
variation, modeled by a Gaussian distribution. 

Many other subspace methods are more or less modification or extension of the 
above three methods. Pentlend et. al. [5] extend the eigenface method to view-
based and modular eigenspaces. Craw et. al. [29] normalize the face image to a 
shape-free vector based on 34 fiducial points as the preprocessing for eigenface 
techniques. Independent Component Analysis (ICA) [54][55][48], nonlinear PCA 
(NLPCA) [41]，Kernel PCA (KPCA) [13][53] are all the generalizations of PCA 
to address higher order statistical dependencies. Kernel-based Fisher Discriminant 
Analysis (KFDA) [23] [60] extracts nonlinear discriminanting features. 
“Evolutionary Pursuit" [17] searches for the optimal basis in the whitened PCA 
space. Coarse-to-fine hierarchical discriminating subspaces are implemented by 
applying PCA and LDA projection recursively [80][21]. To improve the 
generalization ability of LDA on different data sets，several modifications are 
proposed, such as the Enhanced FLD model [16], LDA mixture model [25], and 
direct LDA [28] etc. 

In addition to processing original image directly, subspace methods can also 
model other features, such as shape and wavelet features. Cootes and Taylor 
developed Active Appearance Model (AAM) [75][74][1] to explicitly model both 
shape and texture. Liu and Wechsler apply Enhanced Fisher Classifier on face 
recognition based on integrated shape and texture [18]，and on Gabor features [19:. 
PCA and LDA have also been integrated with Fourier and wavelet descriptors 
[14][20]. 
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1.3 Unified framework for subspace based face recognition 

In this thesis, we develop a unified framework to study the three subspace face 
recognition methods: PCA, LDA and the Bayesian algorithm. As discussed earlier, 
the three methods represent three major approaches for subspace based face 
recognition. PCA has become an evaluation benchmark for face recognition. Both 
LDA and Bayesian algorithms have achieved superior performance in the FERET 
competition compared to other methods [40] [41]. A unified framework on the 
three methods will greatly help to understand the family of subspace methods for 
further improvement of the methods. 

The face difference between two face images can be modeled as three major 
components: intrinsic difference 7 caused by face identity, transformation 
difference f caused by pose，lighting, and expression changes etc., and noise N. 
A unified framework is then constructed by using the face difference model and a 
detailed subspace analysis on the three face difference components. PCA, Bayes, 
and LDA are initially developed under different consideration, and seem quite 
different from each other on the surface. Using this framework we explain the 
inherent relationship among the three different subspace methods and their unique 
contributions to the extraction of discriminating information from the face 
difference. PCA and Bayes can be viewed as intermediate steps of LDA. PCA 
reduces the noise. Bayes reduces the transformation difference, but may lead to 
the increase of the noise level Based on PCA and Bayes, LDA further reduce the 
noise and compact the intrinsic difference to a small number of features. However, 
conventional LDA cannot attain the best performance without improving each 
individual step. 

Starting from the framework, a unified subspace analysis is proposed using 
PCA, Bayes, and LDA as three steps [87]. It is pointed out that the subspace 
dimension of each method can affect the recognition performance. It is a trade-off 
on how much noise and transformation difference are excluded, and how much 
intrinsic difference is retained. This eventually leads to the construction of a 3D 
parameter space that uses the three subspace dimensions as axes. Searching 
through this parameter space, we achieve better recognition performance than the 
standard subspace methods, which are all constrained on local areas of the 
parameter space. Analyzing the special requirement of each step, our unified 
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subspace analysis adopts different training data at different steps of training 
process. Using the training samples outside gallery, the PCA subspace and 
intrapersonal subspace are effectively improved to reduce the noise and 
transformation difference. Only the class centers of the individuals in the gallery 
are used in the final step of discriminant analysis, so that the extracted discrimiant 
features are specially tuned for the individual in the gallery. This helps to avoid 
the conflict between the large class number and small sample size in face 
recognition. 

The disadvantages of conventional subspace face recognition methods can be 
well understood under this framework. Starting from the framework, several other 
improvements to the subspace based face recognition are also proposed in this 
thesis. 

1.4 Discriminant analysis in dual intrapersonal subspaces 

The framework demonstrates that the high dimensional image space can be 
decomposed into intrapersonal principal subspace and its complementary 
subspace. Both subspaces contain discriminative information useful for 
recognition. Conventional LDA approaches, such as Fisherface, LDA in null 
space, and direct LDA, only apply discriminant analysis in one subspace, thus 
discards some discriminative information in the other subspace. The Bayesian 
algorithm makes use of the features in two subspaces, however it does not further 
apply discriminant analysis on the class centers. Moreover, in the Bayesian 
algorithm, computing the component in the intrapersonal complementary 
subspace is expensive since it does not compact the discriminative features to 
improve the recognition efficiency. Since Bayes can be viewed as the intermediate 
step of LDA, integrating the advantages of the two approaches, a novel face 
recognition approach is proposed to apply discriminant analysis in dual 
intrapersonal subspaces, and combine the two parts of discriminative features 
under a probabilistic model. It outperforms the Bayesian and LDA approaches in 
both recognition accuracy and computational efficiency. 
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1.5 Face sketch recognition and hallucination 

In this thesis, we also study the subspace methods on two particular 
applications: face sketch recognition [86][88]and hallucination [90]. An important 
application of face recognition is to assist law enforcement. However, in most 
cases, the photo image of a suspect is not available. The best substitute is often a 
sketch drawing based on the recollection of an eyewitness. Therefore, 
automatically searching through a photo database using a sketch drawing is very 
useful. It will not only help the police to locate a group of potential suspects, but 
may also help the witness and the artist to modify the sketch drawing of the 
suspect interactively based on the similar photos retrieved. 

However, due to the great difference between sketches and photos, and the 
unknown psychological mechanism of sketch generation, face sketch recognition 
is much more difficult than the normal face recognition based on photo image. 
Directly applying subspace framework is not practical. In this case, the 
transformation difference is too large to be modeled as Gaussian distribution, 
because photo and sketch are in different modalities. The face difference even 
cannot be modeled as linear composition of the three components (intrinsic 
difference, transformation difference, and noise). In this thesis, we develop an 
eigentransformation approach to transform a photo into a sketch, such that the 
difference between photo and sketch is significantly reduced. A Bayesian 
classifier is then used to recognize the probing sketch from the synthesized 
pseudo-sketch. 

The eigentransformation algorithm also can be applied to face image 
hallucination, rendering a high-resolution face image from a low-resolution one. 
In video surveillance, the faces of interest are often in small size because of the 
large distance between the camera and the objects. Image resolution becomes an 
important factor affecting face recognition performance. Since many detail facial 
features are lost in the low-resolution face images, the faces are often 
indiscernible. Our hallucination method is not only much helpful for recognition 
by human, but also make the automatic recognition procedure easier, since it 
emphasizes the face difference by adding more high frequency details. 
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1,6 Organization of this thesis 

The thesis is organized as following. In Chapter 2，we review three 
representative subspace face recognition methods, PCA, LDA, and the Bayesian 
algorithm. In Chapter 3, the three subspace methods are unified under a novel 
framework for subspace based face recognition, and a unified subspace analysis is 
proposed. Experimental analysis on the framework is given in Chapter 4. Chapter 
5 develops a novel face recognition approach applying dsicriminant analysis in 
dual intrapersonal subspaces. The eigentransformation algorithm is proposed and 
applied to face sketch recognition and hallucination in Chapter 6. Chapter 7 draws 
the conclusion of this thesis. 
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Chapter 2 
Review of Subspace Methods 

1 

In appearance-based approaches, a 2D face image is viewed as a vector in the 
image space. We formulate the face recognition problem as the following. A set 
of sample face images {i,} can be represented as a TV by M matrix =[无�，...，无似], 
where N is the number of pixels in the images and M is the number of samples. 
Each face image x̂  belongs to one of the L individual classes with 
^(x.) as the class label of x- . When a test image f is the input, the face 
recognition task is to find its class label in the database. Based on this formulation, 
a short review for the three subspace approaches is given in this section. 

2.1 PCA 

The PCA method uses the Karhunen-Loeve Transform for the representation 
and recognition of faces. A set of eigenvectors, also called eigenfaces, spans the 
subspace (eigenspace) of the image space. Eigenfaces are typically computed 
from the eigenvectors of sample covariance matrix C, 

M C = . (2-1) 
/=i 

where m is the mean face computed from the sample set 
汤 = 丄 ( 2 - 2 ) 

The eigenspace C/is spanned by the K eigenfaces with the largest eigenvalues, 
U = As shown in Figure 2-1, eigenvalues characterizes the variation of 
face set on the eigenfaces. The K eigenfaces with the largest eigenvalues capture 
the most variation of human face. For a face image x, it is removed of the mean 
face and projected to eigenspace defined by U to get the weight vector, 

= (2-3) 
w can be used for face representation and recognition, i can be optimally 
reconstructed from w using only K features with the minimum reconstruction 
error, 
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I 廣 
Figure 2-1 Eigenvectors and eigenvalues for a 2D distribution. 

M- is the eigenvector and A- is the eigenvalue. 

=Uw + m (2-4) 

In the recognition process, the prototype P for each individual class in the 
database and the test image f to be classified are projected onto the eigenspace to 
get the prototype weight vector Wp and test weight vector wj, 

(2-5) 

Wr=U^{T-m). (2-6) 
The face class is found to minimize the distance 

s=\\wr-w, II. (2-7) 

2.2 LDA 

The features extracted by PCA method are best for face representation, but not 
optimal for face classification. Different from PCA, the LDA method tries to find 
the subspace that best discriminates different face classes. A comparison of PCA 
and LDA is shown in Figure 2-2. For a two-class problem, a projection with the 
largest total scatter is not necessarily good for classification. The LDA projections 
are achieved by maximizing the between-class scatter matrix , while 
minimizing the within-class scatter matrix a n d �a r e defined as 

L 
Sb 二工 {rhi - m\mi - mj , (2-9) 

i=\ 
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PCA projection 

Class 1 ~ ^ ^ ^ ^ ^ �  
�� \ 

( � Class2 � /� ��� / 

LDA projection 
Figure 2-2 Compare PCA and LDA for a two-class problem. 

PCA chooses the projection with the maximum total scatter. LDA chooses the projection with 
minimum within-class variation and maximum between-class variation. Usually, LDA 
outperforms PCA in classification 
where m,- is the mean face for the individual class , and n̂  is the number of 
samples in class X .̂ 

The subspace for LDA is spanned by a set of vectors ff 二 ,..., ], satisfying 
W^SUW N 1 m W = argmax 丁 , O 川） 
W^S^W 

W can therefore be constructed by the eigenvectors of . Computing the 
eigenvectors of S'̂ S ,̂ is equivalent to simultaneous diagonalization of �a n d 
Sb [36]. First S^ is whitened by. 

(2-11) 

where O and © are the eigenvector matrix and eigenvalue matrix of 冰.Second, 
app ly PCA on class centers of the transformed data. To do this, we project the 
class centers onto ©一“之�r, thus the between-class matrix is transformed to Kb as， 

二 © - 1 " ① 义 ( 2 - 1 2 ) 

After computing the eigenvector matrix 平 and eigenvalue matrix 八 of 尺办，the 

overall projection vectors of LDA can be defined as 
W = (2-13) 

Since matrix/is invariant under transformation 平， 
= = (2-14) 

and 
中『尺6平二八， （2-15) 

we have 
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1械 > — > 

(a) (b) 

个 ’ 

•令 
丫 I 

> (c) Figure 2-3 Example of simultaneous diagonalization of S^ and S^,. 
(a): S^ and �； ( b ) After whitening by the eigenvectors and eigenvalues of S^ , S^ is 
transformed to I and �i s transformed to K^ ； (c): Projecting to the eigenvectors of K^ , is 
transformed to I, and SB is transformed to 八 

W 了 = ( 2 - 1 6 ) 

= (2-17) 
As shown in [28], fV is the eigenvector matrix of S'̂ S^ . A two-dimensional 
example of this process is shown in Figure 2-3. 

For recognition, the linear discriminant function for the class prototype P and 
test image f is thus computed as, 

d[f)=w'{f-p). (2-18) 

The face class is chosen to minimize \\d\\. 
Usually the dimension of face vector is far larger than the training samples 

( N � � M ) . Since the rank of S^ is at most M-L, when dealing with the high 
dimensional face data, will become singular, and the LDA vectors are difficult 
to compute. To avoid degeneration o f � ’ most LDA methods first reduce the data 
dimensionality by PCA, then apply discriminant analysis in the reduced PCA 
space. In Fisherface [58], the dimension of PCA space is fixed as M-L, and L-1 
LDA features are extracted for recognition. 
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2.3 Bayesian algorithm 

Different from other subspace methods, which classify the test face image f 
into L classes for L individuals, the Bayesian algorithm classifies the face 
intensity difference A = F-P as intrapersonal variation ( Q^ ) for the same 
individual and extrapersonal variation (Q五)for different individuals. The MAP 
similarity between two images is defined as the intrapersonal a posterior 
probability, 

_ /̂ (A|Q;)P(Q；) (2-19) 
—P(AIQ;)P(Q/) + P ( A I ‘ 

The more similar two face images, the larger 对/�，/2). Because of the high 
dimensionality, P(A|Q；) and P(A|Q^) are difficult to be estimated directly from 
the training set. So subspace estimation is used instead. Both P(A|Q；) and 
P(A|Q五）are modeled as Gaussian distribution. To estimate , as 
illustrated in Figure 2-4, PCA on the intrapersonal difference set {a|AgQ；} 

decomposes the image difference space into principal subspace F also called 
intrapersonal eigenspace, spanned by K the largest intrapersonal eigenvectors, and 
its orthogonal complementary space F , with the dimension N-K. The likehood 
can be estimated as the product of two independent marginal Gaussian densities in 
F and F , 

. i exp�+“A)) …)/2p)] exp[—|(‘(A)+…/p)] (2-20) 

" � L (2印产]一卜广 

p(a|q,) is an estimation to P(a|Q,) . In Eq. (2-20), df(A) is a Mahalanobis 
distance in F , referred as “distance-in-feature-space”（DIPS), 

= , (2-21) 

where 兄.is the principal component of A projecting to the ith intrapersonal 
eigenvector, and ；I, is the corresponding eigenvalue. 一 (A) is defined as 
"distance-from-feature-space" (DFFS), which is equivalent to PCA residual error 
in F . p is the average eigenvalue in F , 
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Figure 2-4 Decompose image space into principal subspace F and complementary subspace F • 
DIPS and DFFS are computed to estimate the likehood. 

p = (2-22) 

P(A|Q^) can be estimated in a similar way. The principal subspace computed 
from the set {a | A e Q^} is called extrapersonal eigenspace. 

In the matching process, the difference between the test image and the 
prototype in the database is first projected onto the intrapersonal and 
extrapersonal subspaces to estimate the Gaussian likehood by (2-20). The 
likehoods are combined in (2-19) and the class is found by comparing the 
similarity measure. 

An alternative maximum likehood (ML) measure is proved to be simpler but 
almost as effective as the above MAP measure [9]. It uses the intrapersonal 
likehood alone as the similarity measure, 

y(A) = P(A|Q,). (2-23) 
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Chapter 3 
A Unified Framework 

The three methods reviewed in Section 2 are developed under different 
circumstances by different researchers with different and specific considerations. 
Therefore, on the surface, these methods seem quite different from each other. In 
this study, instead of conducting a simple experimental comparison of the three 
methods, we formulate an in-depth subspace analysis to construct a unified 
framework for the three methods. Under this framework, we study the inherent 
connections of the three methods in order to discover the reason behind the 
different performances of each method under different circumstances. This is 
critically important for future development of new algorithms. 

To construct the framework, let us first look at the matching criterions and 
focus on the difference A = :r_P between the test image f and the prototype P. 
The matching criterion for PCA in (2-7) can be rewritten as 

(3-1) 
For the LDA method, according to (2-18), the linear discriminant function can 

also be expressed in terms of A, 
（均 

Finally, the probabilistic measure in the Bayesian analysis can be translated into 
a distance measure. In recognition, all the parameters in Eq. (2-20) are constant 
except and ^^(a) . So the ML measure is equivalent to evaluating the 
distance, 

Dj 厂(A)+P(A)/p. (3-3) 
Another distance D^ can be defined in the same way in the extrapersonal 

subspace. From (2-19), the MAP measure can be reformulated as 
冲 i , , 2 ) 二 — — ) , • (3-4) 
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Since p{Qj) and p(q^) are fixed in matching procedure, the MAP measure only 
depends on the ratio of the two likehoods 尸(A | Q,) and p(a|Q^), 

少 丨 … \ o c e x p [ — 丄 ( 3 - 5 ) 
• 1 2、，“」 

Therefore it can be further simplified to 
^Bayes=DJ-D, ( 3 - 6 ) 

From (3-1), (3-2), and (3-3), we can see that the recognition process of the three 
methods can be described by the same framework as shown in Fig. 3-1. When a 
test face image f is the input, we compute the difference A between f and each 
class prototype P . The difference A is then projected onto an image subspace to 
compute the feature vector V̂  . Finally based on the feature vector and the specific 
distance metric, A is classified as either intrapersonal variation or extrapersonal 
variation. 

The two central components of this framework are the image difference A and 
the subspace onto which A is projected. We model the image difference A by 
three key components: intrinsic difference ( 7 ) discriminating face identity; 
transformation difference ( f ) , arising from all kinds of transformations, such as 
expression, illumination, and pose changes; noise ( N ), which randomly 
distributes in the face images. 

The intrapersonal variation Q, is composed of f and ^ , since it comes from 
the same individual. Extrapersonal variation is not equivalent to / . In Q^, / , r , 
and N are coupled together, since T and N cannot be canceled when computing 
the difference of the images of two individuals. Therefore, we have, 

CLI 二 T + N , (3-7) 
Qe 二 7 + T + N . (3-8) 

7 contains the features discriminating different classes, F and N are the two 
components that deteriorate the recognition performance. Normally, N is of small 
energy. The main difficulty for face recognition comes from transformations, 
which can change the face image appearance substantially. Under a large 
transformation, f can potentially be greater than 7 [91]. A successful face 
recognition algorithm should be able to reduce the energy of f as much as 
possible without sacrificing much of 7. To improve recognition efficiency, it is 
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Figure 3-1 Diagram of the unified framework for subspace based face recognition. 

also beneficial to compact 7 onto a small number of features. We now analyze 
the behavior of the three subspaces for PCA, LDA and Bayes in order to discover 
how they suppress the F and N components, and compact 7 component in their 
respective subspaces. 

3.1 PCA eigenspace 
Eigenfaces are computed from the ensemble covariance matrix C. Equation (2-

1) shows that C is derived from all training face images subtracting of the mean 
face. We will show that C also can be computed from the face difference set, 

containing all the differences between any pair of face images in the 
training set. 

Theorem 1. The eigenspace of PCA characterizes the difference between any 
two face images, which may belong to the same individual or different individuals. 

Proof. In order to prove Theorem 1, we only need to show that the covariance 
matrix C for the image set also be computed as 

1 M M 
/=i y=i 

Since C is the ensemble covariance matrix for the training face images, from Eq. 
(2-1), we have 

M 
C = — mX^i - mY . M 
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Replace m with Eq. (2-2)， 
M / - 一 、 / 一 - \T 

广 - + _ Xj + • • • + ^M 
C = Y X： X： — 

t r l 似 人 ^ ) 
M M 

1 似 r A/ M , \ 
z i f e - . f e - . r (3-9) 

Rewrite C using different subscripts (exchange i and j)， 
1 M �M M ‘ 

似 J=\ I I=\ K=\ _ 

Change the order of summation, 
1 A / �M M , , , \ 

^ = . (3-10) 

Average (3-9) and (3-10), 
1 1 M M M . 
L M / = 1 J = L LC = L 

1 M M , X / 

Removing the scale ^ will not affect the eigenvectors of C, thus 

C = 无 yfe-力)^ (3-12) 
i=\ j=\ 

Therefore, the eigenvectors for the training set {xj can also be computed as the 
eigenvectors for the set of face difference fe —无J. This shows that the PCA 
eigenspace characterizes the variations between any two face images in the 
training data set. 

3.2 Intrapersonal and extrapersonal subspaces 
In the Bayesian algorithm, intrapersonal subspace and extrapersonal subspace 

are used to characterize the two kinds of variation Q, and Q五.The eigenvectors 
of intrapersonal subspace are computed from the image difference set 

- x j l i{xi) = i{xj)}, for which the covariance matrix is 
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c , 二 ( 3 -13) 

The eigenvectors of extrapersonal subspace are derived from the difference set 
^ X i - X j ) \ w i t h covariance matrix 

； 格 (3-14) 

啦；M� 
Comparing Cj and Q with C, we derive the following theorem, 
Theorem 2. The intrapersonal subspace and extrapersonal subspace are the two 

components of the PCA eigenspace, and the extrapersonal eigenfaces are similar 
to the PCA eigenfaces. 

Proof. From Eq. (3-12), we have 
MM 

C 二 ZZ(无 , -无y)(无无 y f . 
/ = 1 J=\ 

= (3-15) 
C is composed of C, and Q . Therefore the intrapersonal subspace and 

extrapersonal subspace are simply the two components of the standard eigenspace. 
Since the sample number for C五 is far greater than the sample number of C；, the 
energy of C^ usually dominates the computation of C . Therefore, the 
extrapersonal eigenfaces are similar to the standard eigenfaces. 

In Qf , r and 7 are coupled together. Therefore as discussed later, the 
extrapersonal subspace, which is similar to the standard eigenspace, cannot 
contribute much to separating f and 7 . In fact, the improvement of the Bayesian 
algorithm over the PCA method benefits mostly from the intrapersonal subspace. 
The ML measure using the intrapersonal subspace alone is almost as effective as 
the MAP measure using the two subspaces [10]. So we will focus on intrapersonal 
subspace and the ML measure for the Bayesian algorithm in the later discussion. 

3.3 LDA subspace 
The subspace for LDA is derived from the within-class scatter matrix and the 

between-class scatter matrix. Similar to the analysis of the PCA and Bayesian 
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approaches in the previous sections, we can also study the LDA subspace using 
image difference subspace. 

Theorem 3. The within-class scatter matrix is identical to C；, the covariance 
matrix of the intrapersonal subspace, which characterizes the distribution of face 
variation for the same individuals. Using the mean face image to describe each 
individual class, the between-class scatter matrix characterize the variation 
between any two mean face images. 

Proof. For simplicity, we assume that each class has the same sample number n. 
Similar to the proof of Theorem 1, we have, 

L 

/=1 Xf^eX-^ 

- i t (3-16) 

Therefore, 

L 
Sf^ = y^^ n�rh�-m){mi - fhY 

i=\ 

L L 
= 会 ( 汤 汤 v X 汤 . ( 3 - 1 7 ) 

i=\ 7=1 

This shows that �i s the covariance matrix of the face difference set {(m,--my)|. 

3.4 Comparison of the three subspaces 

PCA and LDA are initially developed considering class variation. According to 
the three theorems, they also can be illustrated in the view of face difference as 
Bayes. We now can compare these subspaces on how to process the face 
difference model. As mentioned earlier, a good subspace for recognition should 
b e a b l e t o s e p a r a t e d i s c r i m i n a t i n g i n f o r m a t i o n 7 f r o m t h e d e t e r i o r a t i n g f a c t o r s 

f a n d N , a n d c o m p a c t 7 i n t o a s m a l l n u m b e r o f f e a t u r e s . 

We first look at the PCA subspace as shown in Fig. 3-2 (a). Since PCA 
subspace characterizes difference between any two face images, it concentrates 
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Figure 3-2 Energy distribution of three components 7 , f , and TV on eigenvectors in three 
subspaces. 

both f and 7 as structural signals on a small number of principal eigenvectors. 
By selecting the principal components, most noise encoded on the large number 
of trailing eigenvectors is removed from f and 7. PCA also compacts the feature 
space, since many dimensions where face images have almost zero projections 
have been removed. However, because of the continuing presence of f , the PCA 
subspace is not ideal for face recognition. 

For the Bayesian algorithm, the intrapersonal subspace plays a critical role, 
while the extrapersonal subspace cannot contribute much to separating f and 7 
since it is similar to the PCA subspace containing both f and 7 as structural 
signal. Since intrapersonal variation only contains f and N , PCA on the 
intrapersonal variation arranges the eigenvectors according to the energy 
distribution of f , as shown in Fig. 3-2 (b). When we project a face difference A 
(either intrapersonal or extrapersonal) onto the intrapersonal subspace, most 
energy of the f component will concentrate on the first few largest eigenvectors, 
while the 7 and N components are randomly distributed over all of the 
eigenvectors. This is because 7 and N are somewhat independent of F , which 
forms the principal vectors of the intrapersonal subspace. In Eq. (3-3) and (2-21), 
the Mahalanobis distance in F weights the feature vectors by the inverse of 
eigenvalues. This effectively reduces the f component since the principal 
components with large eigenvalues are significantly diminished. is also a 
distinctive feature for recognition, since it throws away most of the component f 
on the largest eigenvectors, while keeps the majority of 7 , in the complementary 
subspace F . 
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Figure 3-3 Relationship of the PCA, Bayes, and LDA subspaces. 

The Bayesian algorithm successfully separates F from 7. However, 7 and N 
are still coupled on the small eigenvectors. Even though N is usually of small 
energy, when it is normalized by the small eigenvalues in Eq. (2-21) and (3-3), the 
effect of could be significantly enlarged in the probabilistic measure. Another 
drawback for the Bayesian algorithm is that the intrinsic difference is not 
compacted, spreading over F and F . It leads to high computation cost. In Bayes, 
DFFS requires computing the reconstruction error at every match, and its 
computation cost is equivalent to the correlation of two high dimensional vectors. 
An efficient computation using only DIFS is proposed in [10]. But when the 
feature number is small, its performance is poor, since the main component in F is 
f. 

Finally, we look at the LDA subspace. The LDA procedure can be divided into 
three steps. First, PCA is generally used to reduce the data dimensionality. As 
discussed earlier, noise N is significantly reduced in this step. In the second step, 
to whiten the within-class scatter matrix we first compute its eigenvector matrix 
(D and eigenvalue matrix © . From Theorem 3, we know that � spans the 
intrapersonal subspace, therefore 0 essentially represents the energy distribution 
of f . The whitening process projects data onto intrapersonal subspace O and 
normalizes them by . We can see that this process is essentially the same as 
the Bayesian analysis. It reduces f in the same manner. 

In the third step of LDA, the PCA is again applied on the whitened class centers. 
In the process of averaging images in each class to compute the class centers, the 
noise N is further reduced in this step. This is useful since N may have been 
enlarged to a certain degree in the second step whitening process. Since both f 
and TV have been reduced up to this point, the main energy in the class centers is 

21 



Table 3-1 Behavior of subspace on characterizing the face image difference. 

‘ Decompose Face Image Difference  
Algorithm Subspace principal space I Complementary space 

PCA Eigenspace f + 7 N  
Intrapersonal subspace T I + N  Bayes : ~ Extrapersonal subspace T + I ！  

LDA LDA subspace / f + N  

the intrinsic difference 7. However, as shown in Fig. 3-2 (b), 7 is obtained by 
discarding principal component f in the intrapersonal subspace, so 7 spreads 
over the entire eigenvector axis after the whitening. The PCA on the class centers 
therefore serves two purposes. First, it can further reduce the noise as PCA 
usually does. Second, it compacts the energy of 7 onto a small number of 
principal components, as shown in Fig. 3-2 (c). 

Finally, the subspace analysis results of the three methods on the image 
difference model are summarized in Table 3-1. Instead of a simple combination of 
the three methods, the main contribution of our subspace analysis is to study the 
unique contribution of each subspace to the processing of face difference model. 
The degree of control over the 7 , f and N components in the face image 
difference depends on the dimensionality of the three subspaces, the PCA 
subspace (dp)’ intrapersonal subspace (di), and LDA subspace (dl). 

3.5 L-ary versus binary classification 

Under this framework, we find that face recognition can be treated as a binary 
classification problem for intrapersonal and extrapersonal variations, instead of a 
X-ary classification problem. It is the fundamental difference from other pattern 
recognition problems, and critical for the success of subspace based methods. For 
normal pattern recognition, when there are enough samples for each class, a 
Bayesian classifier can be used based on the covariance matrices estimated for 
each individual class, 

L{X,m,) = l ( x - m , Y r " { X l n ( | F, |) (3-18) 
where r, is the covariance matrix for each pattern class. 

However, for face recognition, there are usually too few samples for each class 
to correctly estimate the class covariance matrix. Therefore, it is difficult to use a 

22 



《…泛•••汉 0 / ••议 . • O q 
V _ £ l _ _ U )L � ll ^ J L 

V" V “ ® © i} J} 
• 八 

(a) (b) 

Figure 3-4 Use average intrapersonal variation distribution to approximate that for each 
individual class. 

When the class scatter matrices are consistent like (a), the average intrapersonal variation 
distribution can be used to approximate to that for each individual class. Otherwise like (b), it is 
not appropriate to replace I ] with A . 
L-ary Bayesian classifier directly. Fortunately, human faces are not only similar in 
structure, but also in facial variations. We share similar facial expressions. This 
means people tend to have similar intrapersonal variation. Thus we can pool a 
large number of face classes together to estimate an average covariance matrix 八 
to reflect the intrapersonal variation. As shown in Fig. 3-4 (a), when all of the 
individuals have similar scatter matrix, spanning in the same direction, A is a 
good approximation of r,. . This is generally not the case for many pattern 
recognition problems where sample distribution for each class is different from 
each other as shown in Fig. 3-4 (b). 

3.6 Unified subspace analysis 

From this framework, it is found that that PCA and Bayes can be viewed as 
intermediate steps of LDA. However，conventional LDA does not attain the best 
performance possible without improving each individual step. The subspace 
dimension of each subspace method can affect the recognition performance. It is a 
trade-off on how much noise and transformation difference are included, and how 
much intrinsic difference is included. It also implies that the intrapersonal 
variation of one face can be estimated from the samples of other faces. Based on 
these considerations, we propose a unified subspace analysis method for face 
recognition as follows: 

(1) Project face vectors to PCA subspace and adjust the PCA dimension (dp) to 
reduce most noise. 
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(2) Apply Bayesian analysis in the reduced PCA subspace and adjust the 
dimension {di) of intrapersonal subspace. Since human faces share similar 
intrapersonal variation, the transformation f for a testing individual can be 
estimated from faces of others. Therefore, different from the standard subspace 
methods, our intrapersonal subspace is computed from an enlarged intrapersonal 
difference set that contain individuals both inside and outside of the gallery, so 
that the intrapersonal subspace is robust to all the transformations in the test set. 
PCA subspace is also computed from this enlarged training set. 

(3) For the L individuals in the gallery, compute their training data class centers. 
Project all the class centers onto the intrapersonal subspace, and then normalize 
the projections by intrapersonal eigenvalues to compute the whitened feature 
vectors. 

(4) Apply PCA on the whitened feature vector centers to compute a 
discriminant feature vector of dimension dl. 

This algorithm has two major improvements over traditional subspace methods. 
First, it provides a new parameter space to improve recognition performance. The 
method controls the 7 , f and N components in the image difference by 
adjusting the dimensionality of the three subspaces. The interaction of the three 
parameters greatly affects the system performance. Using each of the three 
subspace dimensions as a parameter axis, the algorithm provides a three-
dimensional parameter space, as shown in Fig. 3-5. 

The original PCA, LDA, and Bayes methods only occupy some local lines or 
areas in the 3D parameter space. PCA changes parameters in the dp direction on 
line AD. DIFS and DFFS of the Bayesian algorithm change on the line DEF in the 
di direction. Fisher Face [58] corresponds to point B {dp=di=M-L, dl=L-l) in the 
graph. All these methods change parameters only in the local regions. However, 
for our new algorithm, optimal parameters may be searched in the full 3D space. 
We can clearly see the advantage of this in the experiments. 

The second improvement of the algorithm is the adoption of different training 
data at different steps of the training process according to the special requirement 
of the step. In traditional method, the same training data is used throughout the 
algorithm. The conflict requirements of each step limit the optimization ability of 
the algorithm. For example, in the LDA method, and Sr come from the same 
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Figure 3-5 3D parameter space. 
dp, di, and dl are the dimensionalities of PCA subspace, intrapersonal subspace, and LDA 
subspace. 

training data. Normally, only the individuals in the gallery are selected for training. 
The samples for each class may be too few to estimate the transformation 
difference f to be appeared in testing, since sometimes there is only one sample 
for each individual in the gallery. When there are not enough training samples, the 
intrapersonal eigenvectors with very small eigenvalues are sensitive the slight 
change on training set, and the LDA classifier is unstable. Including the training 
samples outside gallery can improve the PCA subspace and the intrapersonal 
subspace. However, if we add to the training set with many more individuals who 
are not in the gallery, the between-class scatter matrix S^ maybe too distracted to 
extract optimal features targeting the discrimination of the individuals in the 
gallery. 

In order to accomodate this conflicting requirements, we use different training 
set for different steps. For the PCA and intrapersonal subspace estimation (step-
1,2) we use an enlarged intrapersonal difference set that contain individuals both 
inside and outside of the gallery to effectively estimate f and TV. Then for the 
discriminant analysis step (step-3,4), we only use the class centers of the 
individuals who are in the gallery, so that the features extracted are specially 
tuned for the individuals in the gallery. 
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3.7 Discussion 

Starting from a the face difference model that decomposes a face difference 
into three major components, intrinsic difference 7, transformation difference T， 
and noise N，we unify the three major subspace face recognition methods, PCA, 
Bayes, and LDA under the same framework. Using this framework we discover 
how each of the three methods contributes to the extraction of discriminating 
information 7 in the face difference. This eventually leads to the construction of a 
3D parameter space that use the three subspace dimensions as axes. Searching 
through this parameter space, we achieve better recognition performance than the 
standard subspace methods. 

This framework provides a better understanding on how to select proper 
training set for face recognition. We find that when computing the intrapersonal 
subspace, the training set should contain the transformations that may appear in 
the test set of the application. Especially, since the intrapersonal variation for one 
individual can be estimated from that of others, to compute the intrapersonal 
eigenspace for the Bayes and LDA methods we can add the samples of 
individuals not in the gallery into the training set. On the other hand，in the third 
step of the LDA algorithm, the between-class matrix is used to extract 
discriminating difference among different individuals. It is better that the samples 
computing the between-class matrix come from the same individuals as the ones 
in the gallery. 

Under this framework, we can discover many parameter regions unexplored by 
previous research. For example, as we discussed earlier, LDA is performed based 
on the Bayesian analysis in the intrapersonal eigenspace. Since the intrapersonal 
complementary subspace also contains some distinctive features for recognition, 
we can easily extend the standard LDA to the complementary subspace. This 
effectively corresponds to the cube EFGH-KLMN in the parameter space as 
shown in Fig. 3-5. Further more, we can perform LDA in both the intrapersonal 
eigenspace and the complementary subspace, and then combine the two parts of 
discriminative features together. 

However, there are also several problems open to discuss. One problem is how 
to find the optimal parameters. Searching through the whole 3D parameter space 
may be time consuming. A possible strategy is suggested as the steps of our 
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experiments in Section 4. First, observe the dp-di accuracy surface to decide dp 
and di, and the choose dl according to the accuracy curve in LDA subspace. For 
further simplicity, the range of dp can be first narrowed down by observing the 
PCA (Mahalanobis) accuracy curve. When much noise is included in the PCA 
subspace, the PCA (Mahalanobis) accuracy will greatly drop. This stagery can 
lead to some good parameters, although they are not necessarily optimal. 

In this framework, the intrapersonal variation is modeled as Gaussian 
distribution, and it is assumed that f and 7 can be separated by PCA on 
intrapersonal difference set. However, for significant f , such as large changes in 
pose, this assumption may break down. The face difference may not be modeled 
as linear composition of 7, f , N. This is also a crucial problem to standard 
subspace methods and better understanding of this framework. To solve this 
problem, one way is to "normalize" the large lighting and pose changes using 
such approaches as 3D model before subspace analysis. Another way is to model 
the intrapersonal difference as more complex distribution, such as Gaussian 
Mixture Model (GMM). It may also be helpful to apply ICA, or kernel PCA to 
face image before further linear subspace analysis, since they can address the high 
order dependencies of different factors. 

Another assumption for this framework is that human face share similar 
structural and intrapersonal variation. It is not suitable for general pattern 
recognition problems. So we should be careful to extend this framework to other 
applications. For example, it is usually not desirable to add extra samples not in 
the gallery into the training set. 

27 



Chapter 4 
Experiments on Unified Subspace Analysis 

In this section, we conduct experiments on two data sets from the FERET face 
database [56] and the AR face database [4] to evaluate the unified subspace 
analysis. In the preprocessing procedure, all the images are normalized for scaling, 
translation, and rotation, such that the eye centers are in fixed positions. A 27x41 
mask template is used to remove the background and most of the hair. Histogram 
equalization is applied to the face images for photometric normalization. An 
example of the normalized face image is should in Figure 4-1. Before subspace 
analysis, the image vector is normalized to zero mean and unit variance. 

4.1 Experiments on FERET database 

In the first data set, we select 1195 persons from the FERET database, with two 
face images (FA/FB) for each person. Images of 495 persons are used for training, 
and the remaining 700 persons are used for testing. So there are totally 990 face 
images in the training set, 700 face images in the gallery and 700 face images for 
probe. This data set is selected so that the individuals for training and testing are 
separated, and there is a large class number with a small sample number for each 
class. 

4.1.1 PCA Experiment 
We use the Euclid and Mahalanobis distance measures for the PCA recognition. 

The recognition accuracy for different number of eigenvectors {dp) is shown in 
Fig. 4-2. The accuracy of direct correlation is 84.1%. We use direct correlation as 
a benchmark since it is essentially a direct use of image difference without 
subspace analysis. When dp is small, the PCA result with Euclid measure is worse 
than correlation. As dp increases, it steadily approaches the benchmark. There is 
no noticeable improvement when using the Mahalanobis measure. It reaches peak 
accuracy (84.3%) with around 150 eigenvectors, and then drops with further 
increase of dimensionality. For Mahalanobis measure, since each dimension needs 
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M 
Figure 4-1 Example of normalized face image. 

to be normalized by its corresponding eigenvalue, the high dimensional 
components with small eigenvalues are significantly magnified. Since these 
dimensions tend to contain more noise than structural signal, they will deteriorate 
the recognition results. This explains the drop of recognition accuracy when dp is 
increased. The overall results in Fig. 4-2 shows that PCA is no better than direct 
correlation in term of recognition accuracy. This confirms the analysis in Section 
3.1 and Section 3.4. Even though PCA can effectively reduce subspace dimension 
and remove noise N , it cannot decouple the intrinsic difference 7 and 
transformation difference f to improve recognition accuracy. 
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Figure 4-2 Recognition accuracy of PCA on the FERET database. 

4.1.2 Bayesian experiment 
Experimental results for the Bayesian algorithm are reported in Fig. 4-3. The 

Bayesian algorithm has achieved around 10% improvement over direct correlation. 
We notice that the Bayesian algorithm is stable for different intrapersonal 
eigenvector number K. The eigenvectors of the intrapersonal subspace are 
arranged by the energy of f . When only a small number of eigenvectors are 
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selected, the principal space does not have enough information on 7 , so the 
accuracy of DIPS is low (below 60% for 20 eigenvectors). The lost information 
can be compensated from DFFS in the complementary space. So the accuracy of 
ML is high, around 93%, since it combines the two components together. 
However, even for small K，the computation cost of ML and DFFS is high, 
equivalent to correlation of two high dimensional vectors. When we use Euclid 
instead of Mahalanobis distance measure for DIFS, the recognition accuracy 
drops greatly, and becomes even worse than PCA. Since the main component in 
the intrapersonal eigenspace is f , without using the eigenvalues to reduce f , the 
Euclid distance has to compute face difference mainly based on f . On the 
contrary, the eigenvalue normalization of the Mahalanobis in PCA does not help 
to improve the PCA recognition accuracy as shown in Fig. 4-2. This is because in 
the PCA subspace, f and 7 are coupled together, thus the eigenvalues cannot 
reflect the energy distribution of f alone in order to effectively reduce f . 
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Figure 4-3 Recognition accuracy of the Bayesian algorithm on the FERET database. 

4.1.3 Bayesian analysis in reduced PCA subspace 
After comparing the PCA and Bayesian methods individually, we now use a set 

of experiments to investigate how these two subspace dimensions in our 3D 
parameter space may interact with each other. We first apply PCA on the raw face 
vector to reduce the dimensionality and remove the noise. Then the Bayesian 
analysis is implemented in the reduced PCA space. This corresponds to the dp-di 
plane in the 3D space in Fig. 3-5. 
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Results are reported in Table 4-1. The vertical direction is the dimension of the 
PCA subspace {dp) and the horizontal direction is the dimension of the 
intrapersonal subspace (di), refered as the intrapersonal eigenvector number K in 
Eq. (2-21). For better viewing of the results, the dp-di accuracy surface is also 
plotted in Fig. 4-4. There are two benchmark curves in the 3D space of Fig. 4-4. 
One is accuracy curve of the traditional PCA method as reported in the second 
column in Table 4-1. It is used to evaluate the improvement of the Bayesian 
analysis. The second curve is the DIFS curve of the standard Bayesian algorithm 
based on raw face vectors, equivalent to the DIFS (Mahalanobis) curve in Figure 
4-3. It is reported in the bottom row of Table 4-1. We compare it with DIFS 
curves in different PCA subspaces. Since there are 990 face images and 495 
classes in the training set, the rank of the within-class scatter matrix is bounded by 
495. The maximum value for di is min|j^,495}. 

The shape of the dp-di accuracy surface clearly reflects the effect of noise N. 
When dp is small, there is little noise in the PCA subspace. So the recognition 
accuracy monotonically increases with di as more discriminating information 7 is 
added, and finally reaches the highest point at the full dimensionality of the 
intrapersonal subspace. However, as dp increases, noise begins to appear in the 
PCA subspace and causes a change in the accuracy curve shape. The curve starts 
to decrease after reaching a peak point before di reaches the full dimensionality. 
The decrease in accuracy at the end of the curve is because noise distributed on 
the small eigenvectors is magnified by the inverse of the small eigenvalues. 

This effect of noise is especially severe when both dp and di are around 495, i.e. 
the largest possible di. In this region, the accuracy becomes as low as 67%. 
Because of the large dp, noise has become a fairly significant problem. When di 
becomes the same size as dp, all the energy in the PCA subspace, including noise, 
are selected for the Bayesian analysis. Noise concentrated on the last few very 
small eigenvectors will be drastically magnified because of the very small 
eigenvalues. Therefore, we observe a low accuracy region around the area where 
both dp and di equal 495. Interestingly, for this training set, the parameters 
proposed in Fisher face [42] actually falls into this region. This shows the 
importance of the parameter selection for a given training set. 
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We plot the highest accuracy of each accuracy curve of different dp in Fig. 4-5. 
The maximum point with 96% accuracy could be found at (dp=150, di=l50). In 
this PCA subspace, noise has been removed and all of the eigenvectors can be 
used for Bayesian recognition. A pre-step of PCA can improve the performance of 
Bayes. More experimental results can be found in our previous work [89 . 

Table 4-1 Recognition accuracy of Bayesian analysis in reduced PCA subspace (%). 

n DIFS 
Euclid Dp 10 I 20 I 50 I 100 150 200 250 300 

93.7 ~N/A N/A N/A N/A N/A N/A 
80.7 27.1 85.4 95.4 N/A N/A N/A N/A N/A 
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~ 8 l l ~ ~ 5 8 . 0 8L3" 89.3 9 2 3 " 95.3 N/A N/A N/A 
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“ 8 3 . 1 s K T 80.6 87.9 93.7 93.7 94.4 93.0 N/A 

87.1 91.0 92.3 92.9 94.3 N/A 
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Figure 4-4 Accuracy surface for the Bayesian analysis in the PCA subspace. 
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Figure 4-5 Highest accuracy of the Bayesian analysis in each PCA subspace. 

4.1.4 Extract discriminant features from intrapersonal subspace 
We now investigate the effect of the third dimension dl in the 3D parameter 

space. For ease of comparison, we choose four representative points on the dp-di 
surface, and report the accuracy along the dimensions of dl as shown in Fig. 4-6. 
The curves first increase to a maximum point and then drop with further increase 
of dl. For traditional LDA, the dl dimension is usually chosen asL-1, which 
corresponds to the last point of the curve with di = 495. The result is clearly much 
lower than the highest accuracy in Fig. 4-6. As discussed in Section 3, this 
dimension mainly serves to compact 7 and remove more noise N , so the 
dimensionality should be reasonably small instead of being fixed by L. The best 
results on the plots are indeed better than using the first two dimensions only. 
Figure 4-7 compares the recognition accuracies using small feature number for 
each step of the framework. For Bayes, DIFS measure is used for comparison, 
since ML measure is in high computation cost even for small feature number. It 
clearly demonstrates the improvement on recognition efficiency. 

As shown by these experiments, although we have not explored the entire 3D 
parameter space, better results are already found comparing to the standard 
subspace methods. A careful investigation of the entire parameter space should 
lead to further improvement. 
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Figure 4-6 Accuracies using different number of discriminant features extracted from 
intrapersonal subspace. 
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Figure 4-7 Recognition accuracies using small feature number for each step of the framework. 

4.1.5 Subspace analysis using different training sets 
As discussed earlier, different training sets can be used in the steps of 

framework. To better illustrate this improvement, a small data set is constructed 
from the FERET database. The data set contains 100 persons, and there are four 
face images taken in two different sessions for each person. Two face images are 
in gallery, and another two are for probe. Although the data set size is much 
smaller, recognizing face images of different sessions usually is much more 
difficult than recognition of FA/FB set with only expression changes. 

As shown in Figure 4-8, we study the subspace analysis performance in three 
different ways of using training sets. First, in case (I), we use the 200 samples in 
the gallery as training set throughout the steps of subspace analysis. It is also the 
conventional way for LDA. In the experiment, the optimal parameter on the dp-di 
accuracy surface is found at (dp二UQ, di=70). The accuracy curve with difference 
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discriminative feature number is plotted in Figure 4-8. The performance is poor, 
because training set is too small. To reinforce the training set, we add another 
1204 samples of 400 persons outside the gallery to the training set. The PCA 
subspace and the intrapersonal subspace are computed from the 1404 samples of 
500 persons. By Bayesian analysis in the PCA subspace, we choose dp=JOO, 
di=100. The only difference between case (II) and case (III) is the between-class 
scatter matrix In case (II)，is computed from class centers of all the 500 
persons, while in case (III)，Sf, is just computed from the class centers of 100 
people in gallery. The performance of both (II) and (III) is much better than (I), 
because the extra training samples outside the gallery effectively improve the 
PCA subspace and intrapersonal subspace. Because human faces share similar 
intrapersonal variation, the transformation difference in the probe set can be more 
accurately estimated using the larger training set. However, the performance of 
(III) is even better than (II). The discriminative features are more compacted on 
small number of features. In case (II), the Sb is computed from 500 people. The 
additional data serves mainly as distraction for the extraction of optimal features 
discriminating the 100 people in the gallery. In case (III), only the centers of 
classes in the gallery are used to compute S^, the derived features are specially 
tuned for the people to be recognized. This improvement is notable when the 
gallery size is relatively small. It is much easier to find the discriminative features 
recognizing 100 people than 500 people. 
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Figure 4-8 Subspace analysis for different training sets. 
(I): All the three steps use the 200 samples of 100 people in the gallery for training.(II)： All the 
three steps use the 1404 samples of 500 people including 400 people outside the gallery for 
training. (Ill) PCA subspace and intrapersonal subspace are computed from the 1404 samples, and 
the LDA subspace (between-class scatter matrix) are computed from only the 200 samples in the 
gallery. 
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4.2 Experiments on the AR face database 

In order to study the properties of the framework under different data 
conditions, we conduct a second set of experiments using a data set from the AR-
face database. Ninety people are selected from the AR-face database. For each 
individual, 14 face images taken in two sessions are selected. For each session, 
there are 7 face images under 7 different transformations as listed in Table 4-2. 
Face images of the seven transformations for a sample individual are shown in Fig. 
4-9. In this experiment, face images in the first session are used for training and 
gallery, and face images in the second session are used as probe set. Different 
from experiment on FERET database, in this experiment the individuals for 
training and test are the same. The training set has a smaller class number and a 
larger sample number under various transformations for each class. So we can 
evaluate the recognition performance under different transformations. 

The first five eigenfaces for each subspace are shown in Fig. 4-10. Since the 
training face images are all from the same session, the main transformations come 
from variation of expression and lighting. In the first five eigenfaces for PCA, the 
first, second, and fourth eigenfaces characterize the intrapersonal lighting 
variation; the third and fifth eigenfaces characterize the hairstyle and moustache 
variation, belonging to the intrinsic extrapersonal difference of this training set. 
The first five eigenfaces for extrapersonal eigenspace in Fig. 4-10 (b) are similar 
to those of the standard eigenspaces as pointed out in Theorem 2 earlier. The first 
five eigenfaces for intrapersonal eigenspace only characterizes intrapersonal 
expression and lighting transformations of the same individuals. The vectors for 
LDA on the other hand are not affected much by lighting and expression changes. 

Table 4-2 Seven transformations for each individual class in each session from AR database. 
Expression Lighting  

Neutral g^^^ Frown Cry— Left Right Front r I 2 I 3 I 4 I 5 I 6 I 7 
；， 

Figure 4.9 Samples for the seven transformations in AR database. 
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K f ^ 
(a) PCA subspace (b) Extrapersonal subspace 

(c) Intrapersonal subspace (d) LDA subspace 
Figure 4-10 First five eigenfaces for different subspaces. 

4.2.1 Experiments on PCA, LDA and Bayes 
The 630 face images in the first session are used as training set to compute the 

standard PCA eigenspace, intrapersonal and extrapersonal subspaces for the 
Bayesian algorithm, and the LDA subspace. We report the best recognition 
accuracy of the three algorithms in Table 4-3. The PCA method uses the Euclid 
distance and the Bayesian algorithm uses the ML similarity measure for 
recognition. The 630 face images in the first session are used as the gallery and 
the 630 face images in the second session are used as the probe set. 

Unlike experiment in Section 4.1, the Bayesian algorithm is not much better 
than the PCA method in this experiment. The transformation in the training set is 
mainly caused by lighting and expression. For every face image in the test set, 
there is a corresponding face image under the same transformation in the 
reference set. Using nearest neighbor classifier, the difference caused by lighting 
and expression is largely canceled in A. The main transformation factor in A 
affecting the recognition is caused by different sessions, e.g. the change of 
hairstyle, but not lighting and expression varying in the same session. The 
intrapersonal subspace cannot characterize the kind of transformation factor f 
that needs to be overcome, so recognition cannot be much improved by the 
Bayesian algorithm. We will illustrate this point further in the later experiments. 

The LDA method gives the best performance. The main contribution comes 
from the last step of LDA. Because there are only 90 individuals in both the 
training set and the gallery, it is easier to seek their difference by applying PCA to 
class centers. As reported in Table 4-4, we apply Bayesian analysis in the reduced 
PCA space, with 300 for Dp and D .̂ If all of the 300 dimensions of the whitened 
intrapersonal subspace are used for recognition, the accuracy is only 80.8%. If 
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LDA selects 89 most distinctive features from the whitened intrapersonal space, 
then the accuracy is improved to 86%. 

Table 4-3 Recognition result of PCA, LDA, and Bayes (ML) on AR databse. 

— PCA LDA Bayes ( M L ) ~ 
Accuracy 81.6% 86.0% 82.9% 

Table 4-4 Recognition accuracies of LDA on AR database using different feature number. 

Dp \ Di \ 1 0 ^ 3 0 50~~ 70 80 89 All 
300 300 0.551 0.713 0.748 0.787 0.827 0.851 0.860 0.808 

4.2.2 Evaluate the Bayesian algorithm for different transformation 
Experiment in Section 4.2.1 implies that the transformation in training set 

should be consistent with that for test. We will evaluate the performance of the 
Bayesian algorithm under different transformations in this part. Conclusion is also 
suitable to LDA because of their relationship. We use the 90 neutral face images 
in the first session as gallery and 630 face images in the second session as probe 
set. Since the difference caused by lighting and expression cannot be canceled by 
the face difference, the recognition task is much more difficult than that in Section 
4.2.1. The following experiment will illustrate how the Bayesian algorithm 
overcomes the expression and lighting transformations. The 630 face images for 
probe are divided into three groups. As described in Table 4-5, Probe set (I) 
includes Transformation 1, neutral face images. Probe (II) includes 
Transformation 2, 3, and 4, which is used to test the performance under 
expression variation. Probe set (III) includes Transformation 5, 6, and 7, used to 
test the performance under lighting variation. Selecting different face images in 
session one, we also design three training sets, which produce different 
intrapersonal subspace. Training set (I) includes Transformation 1, 2，3, and 4. 
The subspace derived from this set is presumed to characterize the expression 
variation. Training set (II) includes Transformation 1, 5, 6, 7. The subspace 
derived from this set is expected to characterize the lighting variation. Training set 
(III) includes all of the seven transformations, so it is expected to characterize 
both expression and lighting variation. 
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The recognition accuracies on the three probe sets using direct correlation and 
the Bayesian algorithm based on the three different training sets is reported in 
Table 4-6 and Fig. 4-11. For all these algorithms, the accuracies on probe (I)， 
neutral face images, change little. For direct correlation, the recognition accuracy 
drops greatly on probe (II) and (III) because of the difference between probe 
image and image in gallery caused by expression and lighting variation. The 
Bayesian algorithm can reduce the effect of the transformation to some extent, but 
different training sets lead to different performances. For training set (I), 
containing face images of different expressions, the accuracy on probe set (II) 
having expression variation has been greatly improved, but the accuracy on probe 
set (III) with lighting variation has no improvement to direct correlation. Similarly, 
Bayesian algorithm based on training set (II), improves the performance on probe 
(III), but is not effective on probe set (II). The face images in training set (III) 
contains both expression and lighting transformation, so the accuracy on both 
probe set (II) and (III) has been improved. So in order to improve the robustness 
of the Bayesian algorithm, training set must contains the kind of transformation 
that may appear in the test. 

Table 4-5 The testing and training sets for different transformations. 

: “ . Image  Transformation Number 
� 1,2,3,4 360 

Training set (II) 1,5,6,7 360 
(III) 1,2,3,4,5,6,7 630 
(I) 1 90 

Testing set (II) 2,3,4 270 
(III) 5,6,7 270 

Table 4-6 Recognition results of direct correlation and Bayesian algorithm for different transformations. 

Test (I) Test (II) Test (III) 
Direct C o r r e l a t i o n 8 5 . 6 % ~59.3% 28.5% 

Training (I)— 88.9% “ 84.1% 28.9% 
® Training (II) 91.1% 61.4% 87.4% 
( ) I Training (III) I 88.7% 81.1% 75.6% 
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Figure 4-11 Accuracies of direction correlation and Bayesian algorithm for different 
transformations. 
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Chapter 5 
Discriminant Analysis in Dual Subspaces 

When dealing with the high dimensional face data, LDA often suffers from the 
small sample size problem. When there are not enough training samples, the 
within-class scatter matrix may become singular, and it is difficult to compute 
the LDA vectors. It also may lead to the overfitting problem. LDA vectors are 
tuned to the training set with the existence of noise，since is not well estimated. 
Our framework shows that the high dimensional image space can be decomposed 
into intrapersonal principal space, spanned by the eigenvectors of , and its 
complementary subspace, also called the null space of . One way to avoid 
matrix singularity is to first remove the null space of . In a two-stage 
PCA+LDA [5 8] [84], the data dimensionality was first reduced by PCA, and LDA 
was performed in the reduced PCA subspace, in which is non-singular. In a 
enhanced LDA model proposed by Liu et. al. [16], a small set of eigenvectors of 
S was chosen, and the zero and trivial eigenvalues were excluded to avoid w , 
overfitting for noise. However, Chen et. al. [38] suggested that the null space 
spanned by the eigenvectors of with zero eigenvalues contains the most 
discriminant information. A LDA method in the null space of within-class scatter 
matrix was proposed. It chooses the projection vectors maximizing the between-
class scatter matrix with the constraint that is zero. But this approach discards 
the discriminative information outside of the null space of . Yu. et. al. [28 
proposed a direct LDA algorithm, and claimed that it took advantage of all the 
information both within and outside of the null space of . It first removes the 
null space of the between-class scatter matrix, and assumes that no discriminative 
information exists in this space. In this thesis, we find that the optimal 
discriminant vectors do not necessarily lie in the subspace spanned by the class 
centers. Considering all the above LDA approaches, they all lost some 
discriminative information in the high dimensional data space. 
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Our framework has proved that the Bayesian algorithm can be viewed as the 
intermediate step of LDA. Different from LDA, which extracts discriminative 
features in only one subspace, the Bayesian algorithm makes use of the 
information in two subspaces, but it does not further extract distinctive features to 
further separate the class centers. Moreover, in the Bayesian algorithm, computing 
the component in the intrapersonal complementary subspace is expensive, since it 
requires computing the reconstruction error. Starting from this framework, we 
propose a novel face recognition approach, which applies discriminant analysis in 
dual intrapersonal subspaces, and combines the two parts of discriminative 
features under a probabilistic model. It integrates the advantages of the Bayesian 
and LDA algorithms. This novel approach is also much more efficient than Bayes, 
since the matching in both of the two intrapersonal subspaces is based on low 
dimensional features. Experiments on the FERET database and the XM2VTS 
database [37] clearly demonstrate the superiority of this new method. 

5.1 Review of LDA in the null space of and direct LDA 

In Section 2.2，we have reviewed the popular Fisherface [58] based on the 
PCA+LDA. In this section, before giving our novel approach, we will first review 
another two modified LDA approaches, LDA in the null space of , and direct 
LDA. 

5.1.1 LDA in the null space of � 
The LDA approach in Section 2.2 is performed in the principal subspace of S^, 

in which W^SJV^O. However, the null space of 〜，in which = also 
contains much discriminative information, since it is possible to find some 
projection vectors W satisfying = 0 and fV^S^PV^O， and the Fisher 
criteria (2-10) definitely reaches its maximum value. A LDA in the null space of 

was proposed by Chen et. al. [38]. It chooses the projection vectors 
maximizing Ŝ  with the constraint that is zero. First, the null space of is 
computed as, 

= 0 (V 〜二 I ) (5-1) 
The between-class scatter matrix Sb is projected to the null space of , 
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云b=vTSbV. (5-2) 
Choose the eigenvectors U of with the largest eigenvalues A, 

U^Sî U = A. (5-3) 
The LDA transformation matrix is defined as jv = VU. 

This LDA approach utilizes the discriminative information in the null space of 
But unfortunately, as the rank of increases, the null space of becomes 

small, and much discriminative information outside it is discarded [28 . 

5.1.2 Direct LDA 
Yu et. al. [28] proposed a direct LDA method, and it was claimed to take 

advantage of all the discriminative information within and outside of the null 
space of In this approach, is first diagonalized, and the null space of & is 
removed, 

= (5-4) 

where Y are eigenvectors and D^ are the corresponding non-zero eigenvalues of 
Sb. S^ is transformed to 

尺 , Z ) 严 广 〜 切 严 . (5-5) 

Kw is diagonalized by eigenanalysis, 
u T k j J = Dw. (5-6) 

The LDA transformation matrix for classification is defined as, 
W = YD-b”hJD:m. (5-7) 

In direct LDA, the null space of 5办 is first removed. It is assumed that the null 
space of Sb contains no discriminative information at all. This assumption is not 
true. In direct LDA, projection vectors are restricted in the subspace spanned by 
class centers. But the optimal discriminant vectors do not necessarily lie in the 
subspace spanned by class centers. This point can be clearly illustrated in the 
Figure 5-1. For a binary classification problem, using direct LDA, the derived 
discriminant projection vector is constrained to the line passing through the two 
class centers. But according to the Fisher criteria (2-10), the optimal discriminant 
vector should be the in direction of line B. Furthermore, direct LDA also 
encounters the singularity problem of . To keep the information in the null 
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Figure 5-1 Direct LDA for a two-class problem. 
Using direct LDA, the discriminant vector is constrained to the line A passing through the two 
class centers m^ and m^ . But according to the Fisher criteria, the optimal discriminant 
projection should be line B 

space of , D^ has to contain zero eigenvalues. But in (5-7), the data is 
whitened by D'J'^ for classification, and singularity will occur in this case. 

5.1.3 Discussion 
As discussed above, all these proposed LDA approaches have lost some 

discriminative information in the data space. This point can be further illustrated 
in Figure 5-2. A is the subspace spanned by the eigenvectors of S冰,and B is the 
subspace spanned by the eigenvectors of 乂. Since the total scatter matrix S, is 
equal to the summarization of S^ and Ŝ  [36], 

& = 、 + ‘ （5-8) 

the face space is composed of A and B. When B c A as shown in Figure 5-2 (a), 
LDA in the principal subspace of can keep all the discriminative information 
in data space. When A c B as shown in Figure 5-2 (b), direct LDA can keep all 
the discriminative information. When A n B = (|) as shown in Figure 5-2 (c), LDA 
in the null space of can keep all the discriminative information. But when A 
and B are only partially intersected as shown in Figure 5-2 (d), some 
discriminative information will definitely be lost using the conventional LDA 
approaches. 

Furthermore, conventional LDA approaches suffer from the problem of 
overfitting. LDA vectors are tuned to the training set with the existence of noise. 
As suggested in [24], an eigenvector will be very sensitive to small perturbation if 
its eigenvalue is close to another eigenvalue of the same matrix. The eigenvectors 
of Sw with very small eigenvalues are unstable. They may contain discriminative 
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Figure 5-2 Analysis different LDA approaches. 
A is the subspace spanned by the eigenvectors of B is the subspace spanned by 〜，and A u 
B is the whole data space. In case (a), B q A, LDA in the principal space of can keep all the 
discriminative information. In case (b), A e B, direct LDA can keep all the discriminative 
information. In case (c), A n B = (j), LDA in the null space of can keep all the discriminative 
information. In case (d), A and B are only partially intersect, and so discriminative information in 
data space will definitely be lost in conventional LDA approaches. 

information, but also may be very sensitive to noise. In (2-13) and (5-8), LDA in 
the principal subspace of and direct LDA all need to whiten with the inverse of 
eigenvalues of Some trivial eigenvalues are not well estimated because of the 
small sample size problem, but they can substantially change the LDA vectors. If 
data vector is whitened on noisy eigenvectors, overfitting will happen. For LDA 
in the null subspace of the rank of is sensitive to noise. r{sj is 
bounded by min{M-L,N), where M is the total training sample number, L is the 
class number, and TV is the dimensionality of the data vector. is almost equal 
to this bound because of the existence of noise. When the sample number is very 
large, the null space of becomes very small, so much discriminative 
information outside this null space will be lost [38；. 

5.2 Discriminant analysis in dual intrapersonal subspaces 
Bayesian face recognition could combine the discriminative features in 

transpersonal principal and complementary subspaces under a probabilistic model. 
Since Bayesian algorithm can be viewed as an intermediate step of LDA, this 
implies that LDA can be simultaneously applied in the principal and null 
subspaces of to make full use of the discriminative information in data space, 
and the two parts of discriminative features can be combined under a probabilistic 
model. Based on this, we develop a novel discriminant analysis method. At the 
training stage, 
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1. Compute the within-class scatter matrix and between-class scatter matrix 
Sb from the training set. 

2. Apply eigenanalysis to and compute the principal subspace F, with K 
eigenvectors 厂=[̂ ^̂ ”…，於尺],and its complementary subspace F . Estimate 
the average eigenvalue p in F . 

3. All of the class centers are projected to F and normalized by eigenvalues. 
The between-class scatter matrix is transformed to 

尺f =八—厂〜7八-1Z2， （5-9) 

where 八 is the eigenvalue matrix for F . Apply eigenanalysis to the 
transformed between-class scatter matrix K : , and compute Ip eigenvectors 
Tp with the largest eigevalues. The Ip discriminative vectors in F are 
defined as 

= (5-10) 
4. Project all the class centers to F and compute the reconstruction difference 

as 

= [I-VV']A (5-11) 

where A 二 [mi,...,mj is the class center matrix. In fact, 4 is the projection of 
jl into F . In F , the between-class scatter matrix is transformed to 

Kl=[l-VV')s,{l-VV') (5-12) 
Apply eigenanalysis to the transformed between-class scatter matrix K^, 
and compute I, eigenvectors 平�of 尺 f with the largest eigenvalues. The 
Ic discriminative vectors in the F are defined as 

Wc (5-13) 

For recognition, 
1. All the prototype faces {xj \ in the gallery are projected to the discriminant 

vectors in F to get 
a 卜 wTpXj. (5-14) 

They are also projected to the discriminant vectors in F to get 

(5-15) 
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Figure 5-3 Training discriminant vectors in dual intrapersonal subspaces. 

are stored as low dimensional features. 
2. At the runtime, when a data vector x, is input, it is also projected to the 

discriminant vectors in the dual subspaces to get low dimensional feature 
vectors 

a『：wh (5-16) 
a^ = W^x, (5-17) 

3. Class is found to minimize the distance measure as 
(5-18) 

The method of discriminant analysis in dual subspaces has several advantages 
to conventional LDA and Bayes methods. 

(1) In this approach, LDA is generalized to take advantage of discriminative 
information in the full face space, while other LDA approaches all lose some 
distinctive information. As discussed in Section 5.1, in principal and null 
subspaces of LDA vectors are computed using different criterions, 

腿 ^ ^ (5-19) 

W^pSJVp^O 
Wc = argmax Wg (5-20) 

< Ŵ Ŝ Wc = 0 
Both of the two parts of discriminative features are effective for classification. In 
f，after whitening, the intrapersonal variation has been effectively reduced, such 
that WpSJVp = j . J n F , most of the intrapersonal variation has been removed, so 
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we have W^SJVp «0 . Both the discriminative features contribute to the class 
centers in the two subspaces. However they cannot by directly combined, 

d = I 时{x - Xj I ' + \wl (X - Xj f . (5-21) 
The principal subspace of �h a s been whitened, so projection vectors in Wp are 
not orthonormal. The two subspaces have different metric scales. It is 
unreasonable, at least not optimal, to combine the distances in the two subspaces 
directly. Using Eq. (5-18), we develop a much better way to combine the two 
parts of features. In this approach, the null space of is also whitened by the 
average residue eigenvalue. In (5-18), - 5 , � and |碎尸『/厂 computed under 
the same metric scale measure the distances in two subspaces equally whitened by 
the eigenvalue spectrum of S^. 

(2) It is more stable and insensitive to noise than other LDA approaches. The 
eigenvectors of S^ with very small eigenvalues are unstable and sensitive to small 
perturbation. This approach avoids computing these unstable eigenvectors by 
grouping them into the complementary subspace to encode discriminative 
information. The eigenvalue spectrum of �i s better estimated, and it avoids 
whitening with very small eigenvalues. 

(3) This approach is also an improvement to the Bayesian face recognition. It is 
more effective for classification and efficient in computation compared with Eq 
(3-3). Besides effective reducing the intrapersonal variation like the Bayes, it 
further separates class centers, and removes some noise disturbance by 
compacting the discriminative features. Computing the reconstruction error s^{x) 
in (3-3) is expensive. Its computation cost is comparable to the correlation 
between two high dimensional data vectors. Although an efficient computation is 
proposed in [10], by computing the Mahalanobis distance in F，it is at the cost of 
discarding the information in F . Our approach is much more effective, since it 
only needs to compute the distances of +/, features. LDA can be interpreted 
under a probabilistic model. When each class has the same sample number n, the 
intrapersonal likehood estimated from LDA features, 

， [ exp [4 | | . r -^-yf ]， ( 5 .22 ) 
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is close to the optimal approximation to (2-20) using low dimensional features. 
This can be shown by Lemma 1. 

Lemma 1. When each class has the same sample number n, the distance 
K 2 

a^-a^j ' in F is the optimal approximation to the Mahalanobis distance Y^-j- in 
i=\ I 

F using Ip features; the distance \af -a^ in F is close to the optimal 
approximation to the reconstruction error £ {̂x) using 1�features. 

Proof. Let A，be feature vectors of face difference A) projected to F and 
K 2 

whiten by eigenvalues. Then, V - ^ is the norm of the feature vector A -̂, 

< (5-23) 

Apply PCA to the set {a? According to the Theorem 1, the covariance matrix is 

i 

= 2M*S� 

where, S: , , and S � a r e the within-class scatter matrix, between-class scatter 
matrix, and total scatter matrix when all samples are projected to F and whitened 
by eigenvalues. Since S二 二 I , 

C = 2M*{s^+l). (5-24) 
So the Ip largest eigenvectors of C are equal to the largest eigenvectors of S �. 
a � - a ^ 2 -g computed from the Ip most dominant axes for the distribution of {a?}， 

K 2 
so it is the optimal estimation to Y ^ using Ip features. 

Let Ay be feature vectors of face difference Â  projected onto F , 
= (5-25) 

In the similar way, the covariance matrix of set {a }̂ is, 
C = + 劝 （5-26) 
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where S^ and are the within-class scatter matrix and between-class scatter 
matrix inF . is close to zero in F (when F is exactly the null space of 〜， 

S^ is definitely zero), so S^ is almost equal to C. The 1�la rges t eigenvectors of 
2 , 

S^ are almost equal to the 1�largest eigenvectors of C. So af -a^ is close to 
the optimal approximant to £^{x) using 1�features. 

Since the Mahalanobis distance characterizes the intrapersonal likehood, from 
Lemma 1，we can get the following conclusion. When each class has the same 
sample number, the intrapersonal likehood estimated from LDA features are close 
to the optimal approximation to (2-20) estimated by probabilistic visual model 
using low dimensional features. 

5.3 Experiment 
In this section, we apply this novel approach to face recognition and compare it 

with conventional LDA approaches and the Bayesian face recognition by 
experiments on the data sets from the FERET face database and the XM2VTS 
database. Three conventional LDA approaches are selected for comparison: 
Fisherface, LDA in the null space of , and direct LDA. Preprocessing for face 
image is similar to Section 4. 

5.3.1 Experiment on FERET face database 
The data set for experiment is similar to that of Section 4.1. Among the selected 

1195 persons from the FERET database, 495 persons are used for training, and the 
remaining 700 persons are used for testing. For each testing person, one face 
image is in the gallery and the other is for probe. 

First, we compare the new method with the Bayesian face recognition. Figure 5-
4 reports their recognition accuracies with different feature number. The feature 
number for the new method is the summation of discriminative feature numbers in 
F and F . In this experiment, we set Ip equal to 1 � . The feature number for the 
Bayesian algorithm is the dimensionality {K) of F. Three similarity measures, 
DIFS, DFFS, and ML (DIFS+DFFS), for the Bayes are evaluated. But the feature 
number only affects DIFS on computation cost. Even for small K, DFFS and ML 
require high computational cost, since they need to compute the reconstruction 
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error. When the feature number is small, the recognition accuracy of DIFS is low, 
because too much discriminative information is lost in the complementary 
subspace. The new method outperforms DIFS at the same computational cost. It 
can achieve above 96% recognition accuracy, while the best performance for the 
three Bayesian distance measures is about 93%. This clearly demonstrates the 
superiority of the new method over the Bayesian algorithm. The improvement is 
due to that the new method utilizes the discriminative information in two 
subspaces and further extracts the face intrinsic difference based on class centers. 

The new method also outperforms conventional LDA approaches. Figure 5-5 
reports the accumulative scores comparison with Fisherface, LDA in the null 
space of and direct LDA. The novel method has reduced 50% error rate than 
conventional approaches. The performance of LDA approaches is affected by the 
size of spaces spanned by and Sb . Figure 5-6 and Table 5-1 report the 
recognition accuracies of the four LDA approaches, selecting different number of 
people as training set. When only a small number of people are selected for 
training, e.g. 50, the spaces spanned by S^ and & are small. Fisherface and direct 
LDA have very low recognition accuracies of 70%, because too much 
discriminative information has been discarded when removing the null spaces of 

and Sb in the first step. LDA in the null space of is better in this case. As 
the training set increases, the performance of Fisherface and direct LDA improves, 
since space dimensionalities of and & increase, and much more discriminative 
information is included. But the accuracy for the null space of ^^ significantly 
drops when 495 people are selected for training, because the null space is much 
smaller for large training set. The new approach is barely affected by the size of 
training set, and almost achieves the same high accuracies in different cases. This 
further proves that the new approach integrates the advantages of other LDA 
approaches. 
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Figure 5-4 Recognition accuracy comparison of the new method with Bayesian face recognition. 
Feature number for new method is the summation of feature numbers in principal subspace and 
complementary subspace. The feature number for Bayes (DIFS, DFFS, and ML) is the 
dimensionality of the intrapersonal principal subspace. 
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Figure 5-5 Accumulative scores for the new method, Bayes (Mahalanobis distance), Fisherface, 
LDA in null space, and direct LDA. 

Table 5-1 Recognition accuracies of Fisherface, LDA in null space, direct LDA, and the new 
method using different numbers of persons for training on the FERET database. 

50 100 300 495 
Fisherface 0.7743 0.8827 0.9271 — 0.93 
LDA in Null s ^ ^ 0.8800 0.9200 “ 0.9271 0.8786  
Direct LDA 0.7229 0.8357 “ 0.9141 0.9270 
New Method 0.8740 0.9143 0.9500 0.9629 
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Figure 5-6 Recognition accuracies of Fisherface, LDA in null space, direct LDA, and the new 
method using different number of persons for training on the FERET database. 

5.3.2 Experiment on the XM2VTS database 
The data set from the XM2VTS database contains 295 people with 4 face 

images for each person. We use a cross-validation analysis for testing. The 1180 
face images are partitioned into 4 folders. Each folder contains one face image for 
each individual. For each experimental trial, one folder is chosen as the probe set, 
and the remaining three folders are used as the gallery and training set. The 
recognition accuracies of the new method and other conventional methods on the 
four experimental trials and their mean accuracies are reported in Table 5-2. The 
results again clearly demonstrates the effectiveness of the new method. 

Table 5-2 Face recognition accuracies on the four experimental trials of the data set from the 
XM2VTS database. 

Bayes (ML) FisherFace n t u ^ a L Direct LDA New method 
i ^ 0.9525 0.9593 — 0.9695 0.9085 0.9898 
2 0 . 9 6 2 7 — 0.9492 0.9627 一 0.9017 0.9864 
3 0 . 9 4 9 2 — 0.9661 0.9797 一 0.9356 0.9898 
4 0 . 9 6 9 5 — 0.9661 0.9763 0.9288 0.9898 

Mean 0.9585 0.9602 0.9721 0.9186 0.9890 
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Chapter 6 
Eigentransformation: Subspace Transform 

In our framework, it is assumed that the intrapersonal variation is modeled as 
Gaussian distribution, f and 7 can be separated by PCA on the intrapersonal 
difference set. However, when sometimes f is significant, this assumption may 
break down. The face difference even cannot be modeled as linear composition of 
7 , f , and TV. An extreme example is using face sketch to recognize face photo. 
Since face photo and sketch are in different modality, it is very difficult to directly 
recognize sketch from photos using conventional subspace methods. We can think 
the two kinds face images are in different subspaces. To alleviate this difficulty, 
we develop an eigentransformation algorithm [86] to transform different 
“stylistic,, face images into one modality, thus the significant transformation 
difference f can be effectively reduced. It can be viewed as the transformation 
between different face subspaces. In this thesis, eigentransformation is 
successfully applied to face sketch recognition. It is also found that it can be used 
for hallucination, rendering high-resolution face image from the low-resolution 
one. The two particular applications are described in this chapter. 

6.1 Face sketch recognition 

An important application of face recognition is to assist law enforcement. 
Automatic retrieval of photos of suspects from police mug-shot database can help 
the police narrow down potential suspects quickly. However, in most cases, the 
photo image of a suspect is not available. The best substitute is often a sketch 
drawing based on the recollection of an eyewitness. Therefore, automatically 
searching through a photo database using a sketch drawing is very useful. It will 
not only help the police to locate a group of potential suspects, but may also help 
the witness and the artist to modify the sketch drawing of the suspect interactively 
based on the similar photos retrieved. 

However, due to the great difference between sketches and photos, and the 
unknown psychological mechanism of sketch generation, face sketch recognition 
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Figure 6-1 Examples of photo-sketch pairs. 

is much more difficult than the normal face recognition based on photo image. 
During the past three decades, many face recognition techniques have been 
proposed, however, few effective face sketch recognition systems can be found in 
previous researches. Methods using traditional photo-based face recognition 
techniques such as the eigenface method [63] and the elastic graph matching 
method [81] have been tested with very small sketch datasets. In [63], the sketch 
was normalized in geometry and blurred by a Gaussian filter in preprocessing, and 
then recognized by the eigenface method. The experiment includes only 7 
sketches. The method in [81] recognized face sketches using Elastic Graph 
Matching [40], and was tested on 13 sketches only. 

Photo and sketch have different modalities as shown by some samples in Figure 
6-1. The key for sketch-based face photo recognition is to reduce the difference 
between the two modalities. In this thesis, we develop a sketch synthesis method 
based on separate transformation of photo texture and shape. This method 
significantly reduces the difference between photo and sketch. We show that the 
synthesized sketch by the separate transformation is a good approximation to the 
real one when the transformation procedure can be approximated as linear. A 
Bayesian classifier combining texture and shape features is then designed to 
recognize the probing real sketch from the synthesized pseudo-sketches. To 
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evaluate face sketch recognition performance on a large database, we construct a 
database containing photo-sketch pairs of 606 people. Experiments show that our 
method is much more effective than using the convectional photo-based methods 
directly. The new method is also shown to outperform human beings. 

6.1.1 Eigentransformation 
It is difficult to directly match photo and sketch since they are in different 

modalities. The starting point of our algorithm is to transform photo into sketch, 
so that recognition can be performed in the same modality. The relationship 
between photo and sketch is learnt from a set of training photo-sketch pairs using 
an eigentransformation procedure. 

6.1.1.1 Algorithm 
Face image can be reconstructed from eigenfaces in the PCA representation. 

Since eigenface is computed from the training set, we can show that the 
reconstructed face image can also be expressed as the linear combination of 
training samples. 

We represent the photo training set by an TV by M matrix,[戶”戶2”..,戶m j, where 
p. is the photo vector, N is the number of image pixel, and M is the number of 
training samples. In PCA, a set of eigenvectors 五p=h，...，％], also called 
eigenfaces, are computed from the covariance matrix, 

M 
片 戶 广 〜 厂 ( 6 - 1 ) 

i=\ 

where m尸 is the photo mean face, and Ap is the photo sample matrix, 
Ap = h - f h p , … , P m[戶’ 1,…戶 V j. (6-2) 

According to the singular value decomposition theorem, Ep also can be computed 
from, 

Ep:ApVpk-r , (6-3) 
where V̂  and A" are the eigenvector and eigenvalue matrix for A^Ap. 

For a new face photo P , it can be reconstructed from the eigenfaces by, 

(6-4) 
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Figure 6-2 Eigentransformation procedure. 

where Wp is the weight vector computed by projecting the face photo onto the 
eigenfaces, 

S=ETp(P — fhp~). (6-5) 
From (6-3) and (6-5), the reconstructed photo can be represented by 

1 
+ (6 -6 ) 

where c = K̂A-；''̂ ^ = • Equation (6-6) can be rewritten as, 
M 

尹 丨 ( 6 - 7 ) 

i=\ 

This shows that the reconstructed photo is an optimal approximation to the 
original face photo using a linear combination of the M training photos. Replacing 
each training photo with its corresponding sketch S)，and replacing the mean 
photo mp with the mean sketch , we get, 

_ M _ o � 

+ (6 -8 ) 
i=\ 

Ŝ  is the synthesized sketch expected to resemble the real sketch. The 
eigentransformation procedure is shown in Figure 6-2. 

6.1.1.2 Linear assumption 
Two conditions are needed for the eigentransformation to work: 

• A new face can be reconstructed from training samples by PCA. 
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Figure 6-3 Eigentransformation with the assumption that the transformation between photo and 
sketch is linear. 

We use the dotted arrow to represent the drawing process 

• The transformation between photo and sketch can be approximated as a 
linear process. 

Assuming that there is a linear transformation matrix T that can ideally 
transform a photo to sketch, the transformation can be expressed as 

S = TP. (6-9) 
For the training set, we have 

S)=TFi, (6-10) 
rhs:Tjfip. (6-11) 

As shown in Figure 6-3, when P is projected onto the photo eigenspace, a 
group of coefficients on the training set can be obtained, from which 
p̂  and 艮 can be reconstructed by the linear combination of training photos and 
training sketches respectively. From Eq. (6-7) and (6-8), replacing and fĥ  with 
(6-10) and (6-11), we have 

Sr=Yc,TP\+Tmp=T 二 TP" (6-12) /=i V'=i 
This shows that the reconstructed sketch is in fact a sketch drawn based on P,. 

Photo-based face recognition studies [59] have shown that for eigenface 
reconstruction P, is close to P because of the facial structural similarity. 
Therefore, comparing Eq. (6-9) and (6-12), we see that the reconstructed sketch 
Ŝ  should be similar to 5 . The linear requirement is critical for Eq. (6-12) to hold. 
The linear assumption is not unreasonable since some highpass-filered images are 
actually sketch-like. For a simple example, the edge gradient map obtained by 
linear edge detector can be seen as a line drawing sketch. Thus it is possible to use 
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linear operator to generate sketch-like images from the original photo. Of course, 
for the real sketch drawn manually, the transform cannot be strictly linear, but an 
approximation. 

Even though the transformation may be simplified to be linear, the 
transformation matrix T is still too complicated to be expressed explicitly. For an 
image of size 128 by 128, the length of the image vector is 128^. So the matrix T 
has 1284 elements to be defined. Eigentransformation takes advantage of the 
linear property and face structural similarity to generate the sketch by using only a 
small number of training samples without actually deriving the large 
transformation matrix. 

6.1.2 Sketch synthesis 
Since the performance of the sketch synthesis by eigentransformation depends 

on the linear assumption. Given the fairly complex structure of human face, this 
assumption is rather difficult to be demonstrated. Since the difference between 
sketch and photo exists in both texture and shape, corresponding points in the 
sketch and photo can be quite different without proper alignment, thus the process 
becomes difficult to be described by a linear process. However, if we separate the 
texture and shape, and then treat them independently, a closer linear 
correspondence can then be established. 

The shape distortion is somewhat caused by that the artist tries to exaggerate 
some distinctive features just like caricature. For example, if a face has a big nose 
in a photo, the nose drawn in the sketch will be even bigger. A study in [26, 
suggested that the shape exaggeration could be approximated as, 

Gs=E{pp-G 力+Gp, (6-13) 

where Gp is the photo shape vector, G, is the sketch shape vector, G； is the mean 
photo shape, and E is the exaggeration matrix. The difference between the photo 
shape and the mean shape is exaggerated. Averaging both sides of Eq. (6-13), we 
get the mean shape of sketch, 

G； 二 E[G; -G;)+G; =G；. (6-14) 
The mean shapes of photo and sketch are actually the same. Subtract Eq. (6-13) 
from Eq. (6-14), we have, 

[G,-G:)={E^liG^-G；) (6-15) 
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Thus we prove that the shape transformation between photo and sketch can be 
approximated as linear. 

The texture in a sketch is formed by the grayscale changes in small local areas. 
It is reasonable to assume that the grayscale around a fiducial point in the sketch 
is mainly influenced by the grayscale around the same fiducial point in the photo. 
However, because of shape distortion, the same fiducial points have different 
coordinates in different photos and sketches, thus it is difficult to derive the linear 
relation for the local texture transformation. Therefore it is necessary to separate 
the shape from texture. 

We represent face shape with a graph containing the coordinates of a set of 
fiducial points. A mean shape is computed from the training set. In order to 
remove shape factor, we warp the face image to the mean shape using the affine 
interpolation based on a set of triangles. After alignment, the fiducial points in 
different face photos and sketches finally correspond to the same position. We 
observe that the sketch grayscales after shape alignment also has a similar style of 
exaggeration as the sketch shape as shown by Eq. (6-13). If an area in photo is 
light color, the artist will leave it blank in the sketch; if an area is relatively dark, 
the artist tends to emphasize it more with shade texture. Therefore, at least within 
a s m a l l local neighbor, there is a linear trend, thus a linear relation similar to Eq. 
(6-15) can be derived for texture transform. Of course, this is a very rough 
approximation, since an artist will not decide on the grayscale of a small area only 
based on the grayscales of the same area in the photo. For precise description of 
the texture transformation, the whole picture has to be taken into consideration. 

Finally, the sketch synthesis system based on separate shape and texture 
eigentransformation can be implemented through the following steps, as shown in 
Figure 6-4: 

• For an input face photo P , locate all the fiducial points on the face graph 
model to extract shape information. 

• Warp the face image to a mean face shape derived from training set to 
separate the texture Ip and shape Gp from the photo image. 

• Apply eigentransformation to the photo texture and shape respectively to 
generate texture and shape G, for the sketch. 
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Figure 6-4 Framework of the face sketch synthesis system. 

• Warp the generated texture from the mean shape to the sketch shape to 
produce the final synthesized sketch 5 . 

6.1.3 Face sketch recognition 
Face sketch recognition is based on the matching between the probing real 

sketch and the synthesized pseudo-sketch from photo. In this section, we present 
the PCA and Bayesian classifiers for recognition. For classification, we extract a 
set of salient geometric measures from the face graph to represent the shape 
feature, including the sizes and relative positions of nose, eyes, eyebrows, and 
face contours etc., and the texture vector is normalized by the shape. 

6.1.3.1 PCA classifier 
Let GeRN�and / e R^' represent the shape and texture vectors, where Â , and 

are the vector length for shape and texture. The feature vectors used here is 
similar to the features used for photo-based recognition in active shape models 
74] • Eigenspaces for shape and texture are computed from the sketch training set. 
In the PCA classifier, feature vectors are projected to eigenspaces to get the low 
dimensional features, 

x = Ea{G-ma), (6-16) 
y = Ej{ i -m, \ (6-17) 

where Ej are the eigenvector matrices of shape and texture respectively, 
and mc and m； are the averages of shape and texture respectively. The shape and 
texture features are normalized to unit norms, and form an integrated feature, 

f 一T - r 
f = . (6-18) 

Ul^ll ll^llj 
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Figure 6-5 Face sketch recognition using eigentransformation and the Bayesian classifier. 

Classification is based on the Euclid distance, 
II- (6-19) 

where f , and z, are the integrated features for probe sketch and pseudo-sketch 
from photo. 

6.1.3.2 Bayesian Classifier 
Although eigentransformation let the matching be performed in the same 

modality, the synthesized sketch is still not a perfect estimation to the real one. To 
further reduce the effect of transformation error at recognition stage we use the 
Bayesian classifier in this section. A is defined as the difference between the real 
sketch and synthesized sketch. 

In our algorithm, we separate the face image into shape and texture, and assume 
that they are independent. The Bayesian classifier is modified to integrate the two 
kinds of information by, 

= = (6-20) 

A, and Ac are the face difference in texture and shape, where ^(A, \Qj) and 
p(�G IQ/) are the intrapersonal likehoods for texture and shape respectively. 

Figure 6-5 describes the diagram of sketch recognition using 
eigentransformation and Bayesian classifier. The procedure is divided into two 
stages: training and runtime. There are two training sets. Training set I is for 
eigentransformation, and training set II is used to compute the probabilistic 
subspace for Bayesian classifier. At the training stage, 
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• Use training set I to compute the photo-to-sketch eigentransform 
coefficients. 

• Photos and sketches in training set II are separated into shape and texture. 
• Photo texture and shape {/—G /̂} in training set II are transformed to 

pseudo-sketches . 
• The texture and shape probabilistic subspaces are derived from training 

sketches G,,-}, and pseudo-sketches { /名 / , ( ^ . 
At the runtime stage, 

• The photo and sketch for matching are separated into texture and shape. 
• The photo texture and shape are transfromed to pseudo-sketch 

• Texture and shape features for sketch and pseudo-sketch are input to 
Bayesian classifier, and the face sketch is recognized. 

6.1.4 Experiment 
6.1.4.1 Sketch synthesis performance 

The data set for sketch synthesis contains 188 persons. For each person, there is 
a face photo and two sketches drawn by different artists. We adopt the "leave-one-
out" methodology. For each time, one person is selected for testing and the photos 
and sketches for the remaining 187 people are used as training set. Figure 6-6 
gives some results of our sketch synthesis system. For each input face photo (a), 
(b) (d) give two generated sketches based on two kinds of sketch training sets 
drawn by different artists. The individual for testing is not in the training set. Our 
result is very similar to the real sketch on both texture and shape. In the generated 
sketch face, the skin color has been transformed to thesis texture, and there is 
noticeable shadow just like that added by pencil. The distinctive features on the 
face photo have been captured and exaggerated. The two artists have different 
drawing styles. The sketch drawn by artist A has a heavier shadow effect. The 
sketch drawn by artist B has lighter shadow and thinner lines, perhaps caused by a 
sharper pencil, and has a bigger exaggeration in shape. These stylistic differences 
caused by artists and drawing tools, can be noticeably exhibited on our generated 
sketches. Using different training sets, output of our system will involve different 
styles. 
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Figure 6-6 Facial sketch synthesis based on full face. 
(a) is the input face photo, (b) is the generated sketch based on the training set drawn by 
artist A, (c) is the sketch drawn by artist A according to the input photo, (d) is the generated 
sketch based on the training set drawn by artist B, and (e) is the sketch drawn by artist B 
according to the input face photo. 
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Figure 6-7 Generate photo from the input sketch, 
(a) is the input sketch drawn by the artist, (b) is the generated photo, and (c) is the real photo. 

In an inverse procedure, our system can also generate a photo from the input 
sketch, just exchanging the positions of sketch and photo. Some results are shown 
in Figure 6-7. Contrary to sketch generation, which exaggerates features, the 
generated photo is similar with the real photo, and some distinctive features are 
de-emphasized, tending to the mean face. 

Figure 6-8 shows the improvement of separating the face image into texture and 
shape. The first row is the results of applying eigentransformation directly on face 
images, which are just aligned by eye centers. The output images are blurred and 
have aliasing noise because of the non-linear difficulty. When texture and shape 
are separated, the results as shown in the second row, have clear and sharp 
appearance. 
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Figure 6-8 Comparison of the direct eigentransformation (first row) with separate 

transformation on texture and shape (second row). 
(a) the input photo; (b) the synthesized sketch; (c) the sketch drawn by the artist. 

6.1.4,2 Sketch recognition performance 
To evaluate the face sketch recognition performance on large database, we 

construct a sketch database containing 606 people. For each people, there is a 
frontal photo face image, and a face sketch drawn by an artist. In this experiment, 
the 606 people are partitioned into three sets. Training set I and II contain 153 
photo-sketch pairs each, and the testing set contains 300 photo-sketch pairs. 
Human hair is discriminative feature for short-term recognition, but it may vary 
significantly over a long period. We remove most of the hair and background in 
preprocessing. 

Table 6-1 reports the sketch recognition accuracies using three different 
classifiers applied on four kinds of features, “copped face", texture, shape and the 
integration of texture and shape. The direct PCA method treats the probing sketch 
as a regular photo, and match photo and sketch in the eigenspace computed from 
the photo training set. The recognition performance is poor. The low accuracy on 
shape demonstrates that the reason for photo and sketch look alike is not because 
of the geometrical similarity of facial components. 

The second classifier is PCA based on eigentransformation. The matching is 
performed between the probing sketch and the synthesized sketch in the 
eigenspace computed from the training sketches. It achieves significant 
improvement to the direct PCA method, since the match is performed in the same 
modality after transformation. The experiment also shows the improvement of 
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transforming face texture and shape separately and integrating them in recognition. 
It is much better than applying transformation on the "cropped face" without 
separating texture and shape. In the third classifier, the Bayesian algorithm further 
reduces the transformation error. The Bayesian classifier based on 
eigentransformation integrating texture and shape feature has the highest 
recognition accuracy 81.3%. 

In Table 6-2, we compare our new method with two conventional face 
recognition method, eigenface [51] and Elastic Graph Matching (EMG) [40]，both 
of which have been successfully applied to face photo recognition. As discussed 
in the introduction, both methods [63][81] have also been tested on very small 
datasets of sketches in previous study. The results in Table 6-2 clearly 
demonstrate the superiority of our algorithm over these conventional methods. 
Using a testing set containing 300 photo-sketch pairs, the first match for 
conventional methods is no more that 30%, and the tenth rank is no more than 
60%. Our algorithm significantly improves the first match to 80%, and the tenth 
rank to 97%. 

Table 6-1 Recognition accuracies using different features and classifiers (%). 

Cropped face Texture Shape Texture + Shape 
PCA 6.3 5.3 30.7 25.0 

Eigentransform 33 y 45 0 35.3 75.0 
+ PCA ； 

Eigentransform 743 56.7 53.0 81.3 
+ Bayes ‘ _J  

Table 6-2 Acumulative match score for eigenface, EGM, and the novel method (%).  
| l | 2 | 3 | 4 | 5 | 6 | 7 丨 8 丨 9 丨10 

Eigenface 6.3 8.0 9.0 9.3 | 11.3 | 13.3 14.0 14.0 14.3 16.0  
E ^ ” 3 40 0 43.0 46.7 48.7 53.0 54.3 56.3 57.7 

New method 81.3 91.0 94.7 95.7 96.7 97.0 97.0 97.0 97.0 

6.1.4.3 Comparison with human recognition 
We conduct two experiments to compare the new method with sketch 

recognition by human beings. If we can demonstrate that automatic recognition by 
computers can perform better than human beings, we can then use computers to 
systematically conduct large-scale search in a large photo-ID database. 
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We select 100 photo-sketch pairs from the testing set for human recognition. 
Similar to automatic recognition, the hair is removed in the cropped faces. Thirty 
candidates are asked to do the test. In the first experiment, a sketch is shown to a 
human test candidate for a period of time, then the sketch is taken away before the 
photo search starts. The candidate tries to memorize the sketch, then go on to 
search the photo database without the sketch reference in front. The candidate can 
go through the database and are allowed to select up to 10 photos that are similar 
to the sketch. He can then rank the selected photos according to the similarity 
level to the sketch. This is closer to real application scenario. Since, people 
usually see the sketch of a criminal suspect in a newspaper or on TV briefly, then 
they have to rely on their memory to match the sketch with the suspect in real life. 

For the second experiment, we allow the test candidate to look at the sketch 
while they search through the photo database. This simulates the case when an eye 
witness looks though the police database for a suspect. 

The encouraging experimental results in Figure. 6-9 shows that a computer can 
perform better than a human being. The human performance for the first 
experiment is much lower. This is not only because of the difference between 
photo and sketch, but also because of the memory distortion, since it is difficult to 
precisely memorize the sketch. In fact, people are very good at distinguishing 
familiar faces, such as relatives and famous public figures, but are not very good 
at distinguishing strangers. Given the good automatic recognition results, we can 
now perform automatic searching of a large database using a sketch just like using 
a regular photo. This is extremely important for law enforcement application 
where a photo is often not available. 
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Figure 6-9 Comparison of accumulative match score between our automatic recognition method 
and human performance. 

6.2 Face hallucination 
In video surveillance, the faces of interest are often in small size because of the 

large distance between the camera and the objects. Image resolution becomes an 
important factor affecting face recognition performance. Since many detail facial 
features are lost in the low-resolution face images, the faces are often 
indiscernible. For identification, especially by human, it is useful to render a high-
resolution face image from the low-resolution one. This technique is called face 
hallucination or face super-resolution [68] [69:. 

The simplest way to increase image resolution is a direct interpolation of input 
images with such algorithms as nearest neighbour or cubic spline. However, the 
performance of direct interpolation is usually poor since no new information is 
added in the process. A number of super-resolution techniques have been 
proposed in recent years [6][7][15][30][31][43][44][64][67][68][72][82]. Most try 
to produce a super-resolution image from a sequence of low-resolution images 
[6][7][44][45][46][64][67] [72]. Some other approaches [30][31][82] are based on 
learning from training set containing high- and low- resolution image pairs, with 
the assumption that high-resolution images are Markov random field (MRF) 
[30][67][82]. These methods are more suitable for synthesizing local texture, and 
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are usually applied to generic images without special consideration on the 
property of face images. 

Baker and Kanade [68] [69] [70] develop a hallucination method based on the 
property of face image. Abandoning the MRF assumption, it infers the high 
frequency components from a parent structure by recognizing the local features 
from the training set. Liu et. al. [15] develop a two-step statistical modeling 
approach integrating global and local parameter models. Both of the two methods 
use complicated probabilistic models and are based on an explicit resolution 
reduction function, which is sometimes difficult to obtain in practice. 

Since face images are well structured and have similar appearance, they span a 
small subset in the high dimensional image space [62] [83]. In a study by Penev 
and Sirovich [59], face images are shown to be well reconstructed by PCA 
representation with 300-500 dimensions. Zhao et. al. [84] show that the 
dimensionality of face space is insensitive to image size. Moghaddam [8] down 
samples face images to 12 by 21 pixels and still achieves 95% recognition 
accuracy on 1800+ face images from the Feret database. These studies imply that 
facial components are highly correlated and the high frequency details of face 
images may be inferred from the low frequency components, utilizing the face 
structural similarity. 

Resolution can be viewed as a kind of “style,，. Face images with different 
resolutions are in different spaces. Instead of using a probabilistic model, in [90] 
we apply eigentransformation to face hallucination. Using a small training set, the 
method can produce satisfactory results. Hallucination can effectively improve the 
resolution of face image, thus makes it much easier for a human being to 
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recognize a face. However, how much information has been extracted from the 
low-resolution image by the hallucination process and its contribution to 
automatic face recognition have not been studied before. In our method, PCA is 
applied to the low-resolution face image. In the PCA representation, different 
frequency components are independent. By selecting the number of eigenfaces, 
we could extract the maximum amount of facial information from the low-
resolution face image and remove the noise. We also study the face recognition 
performance using different image resolutions. For automatic recognition, a low 
resolution bound is found through experiment. We find that hallucination may 
help the automatic recognition process, since it emphasizes the face difference by 
adding some high frequency details. 

6.2.1 Multiresolution analysis 
Viewing a 2D image as a vector, the process of getting a low-resolution face 

image from the high-resolution one can be formulated as 
(6-21) 

Here, is the high-resolution face image vector to be rendered, with length N as 
the total pixel number. is the observed low-resolution face image vector with 
length s^N, where s is the downsampling factor (0<5 < l ) . / / i s the transformation 
matrix involving blurring and downsampling process. The bluring operation can 
be estimated from the point-spread function of camera. In practice, it is often 
simplified as a Gaussian filter. The term n represents the noise perturbation to the 
low-resolution face image captured by camera. A detailed discussion on the super-
resolution reconstruction constraints can be found in [68 • 

The hallucination problem can be discussed under the framework of 
multiresolution analysis. As shown in Figure 6-10, a process of iterative 
smoothing and downsampling decomposes the face image into different bands, 
B。..，，Bk. The low frequency component is encoded in the downsampled low-
resolution image, and the difference between the original face image and the 
smoothed image contains the high frequency detail. In this decomposition, 
different frequency bands are not independent. Some components of the high-
frequency bands, can be inferred from the low frequency band B,. 
This is a starting point for hallucination. Many super-resolution algorithms 
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assume the dependency as homogeneous Markov Random Fields (MRFs), i.e. the 
pixel only relies on the pixels in its neighborhood. This is an assumption for 
general images. It is not optimal for the face class without considering face 
structural similarity. A better way to address the dependency is using PCA, in 
which different frequency components are independent. 

Many studies [52][59] on face space have shown that a face image can be 
reconstructed from eigenfaces in the PCA representation. Like the multiresolution 
analysis, PCA also decomposes face image into different frequency components. 
The difference is that the PCA method utilizes the face distribution to decorrelate 
face structure into independent frequency components, thus can encode face 
information more concisely. Our algorithm first employs PCA to extract as much 
useful information as possible from a low-resolution face images, and then 
renders a high-resolution face image by eigentransformation. 

6.2.2 Eigentransformation for hallucination 
We have a training set containing low-resolution face images, and 

corresponding high-resolution face images. Let [7i,..Jm] represent the low-
resolution training face image set, from which the eigenfaces 五 , f o r 
low-resolution face images can be computed. As described in Section 6.1.1, apply 
PCA to the input low-resolution face image x； to compute the principal 
components, 

Wi = E I { X I - r h i ) (6-22) 

and xi can be reconstructed as the linear combination of the low-resolution 
training face images, 

=Lc+mi, (6-23) 
M 

where Y/；- is the mean face of the low-resolution training faces, 
M合 

/> = [ P i ” . J , M ] = � i — � , . . . , ‘ — * / ] ,� / and A/ are the eigenvectors matrix and 
eigenvalues matrix of iJ L , E!=丄厂,八7"2, and c^V^PC^'^w^ 二 [ci”",c 似]E q . (6-23) 
can be rewritten as, 

M — �i=Ld + rh「工 cPi + 讯 I (6-24) 
/=i 
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Figure 6-11 System diagram using eigentransformation for hallucination. 

Here, c describes weight that each training face contributes in reconstructing the 
input face. The sample face that is more similar to the input face, has a greater 
weight contribution. Replacing each low-resolution image by its corresponding 
high-resolution sample J?" and replacing fhi with the high-resolution mean face 
rhh we have, 

M 一 

X, . (6-25) 
i=l 

jê  is expected to be an approximation to the real high-resolution face image. 
This reconstructed face should meet two necessary conditions in order to 

adequately approximate the original high-resolution face image. First, after 
resolution reduction of x；,, the output should produce the low-resolution input 
face image. Second, x̂ , should be face-like at the high-resolution level. The first 
condition can be proved easily. From Eq. (6-21), without considering the noise 
perturbation, the transformation between high-resolution face image and low-
resolution face image can be approximated as a linear operation. For the training 
set, we have 

I'丨二 Hh�, (6-26) 

MI 二 HRH/, . (6-27) 
From (6-26) and (6-27), replacing r and m； with (6-26) and (6-27), we have 

M f M _ _ ^ ri=Y,CiHh\+Hmh^H Yc^h^+fh^ =历h. {0-Z^) (=1 v/=i 
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For the second condition, Eq. (6-25) shows that x̂  is the linear combination of 
high-resolution face images, so it should approximately be face-like at high-
resolution level. Of course, some nonface-like distortion may be involved, since 
the combination coefficient c, is not computed from the high resolution training 
data. We can reduce these nonface-like distortions by reconstructing x,̂  from the 
high-resolution eigenfaces. Let E, and A, 二diag^A�，…，义k) be the eigenface and 
eigenvalue matrixes computed from the high-resolution training images. The 
principal components of x̂  projecting on the high-resolution eigenfaces are 

(6-29) 
The eigenvalue ；I, is the variance of high-resolution face images on the ith 
eigenface. If the principal component Wf,{i) is much larger than 又"nonface-like 
distortion may be involved for the zth eigenface dimension. To reduce the 
distortion, we apply constraint on the principal component according using the 
eigenvalue, 

W ( / w h � 厂 l w , { i } \ < a ^ “ � � (6 -30) 
"、尸 1 sign(w, (/))* a杯 I (01> a ^ 

We use a杯 to bound the principal components. Here, « is a positive scale 
parameter. The final hallucinated face image is reconstructed by 

(6-31) 
The diagram of the hallucination algorithm based on eigentransformation is 

shown in Figure 6-11. When a low-resolution image xj is input, it is 
approximated by a linear combination of the low-resolution images using the PCA 
method, and we get a set of coefficients on the training set. Keeping 
the coefficients and replacing the low-resolution training images with the 
corresponding high-resolution ones, a new high-resolution face image can be 
synthesized. The synthesized face image is projected onto the high-resolution 
eigenfaces and reconstructed with constraints on the principal components. This 
transformation procedure is called eigentransformation, since it uses the 
eigenfaces to transform the input image to the output results. 
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6.2.3 Discussion 
Similar to other multiscale analysis methods, PCA also decomposes face 

images into different frequency components. Figure 6-12 shows some eigenfaces, 
which are sorted by eigenvalues. Eigenfaces with large eigenvalues are "face-like", 
and characterize low frequency components. Eigenfaces with small eigenvalues 
are "noise-like", and characterize high frequency details. PCA is optimal for face 
representation because the K largest eigenfaces account for most of the energy and 
are most informative for face image set. The eigenface number K controls the 
detail level of the reconstructed face. As K increases, more details are added to the 
reconstructed face. Different from other multiscale analysis, in PCA, the 
frequency components are computed by decorrelation based on face structure, 
thus the different components in PCA are independent in probabilistic distribution. 
This property is important for the success of the eigentransformation algorithm. 

In the eigentransformation algorithm, the hallucinated face image is synthesized 
by the linear combination of high-resolution training images and the combination 
coefficients come from the low-resolution face images using the PCA method. 
The algorithm improves the image resolution by inferring some high frequency 
face details from the low-frequency facial information by taking advantage of the 
correlation between the two parts. Because of the structural similarity among face 
images, in multiresolution analysis, there exists strong correlation between the 
high frequency band and low frequency band. For high-resolution face images, 
PCA can compact these correlated information onto a small number of principle 
components. Then, in the eigentransformation process, these principal 
components can be inferred from the principal components of the low-resolution 
face image by mapping between the high- and low-resolution training pairs. 
Therefore, some information in the high frequency bands are partially recovered. 

In practice, the low-resolution image is often disturbed by noise that has a flat 
distribution on all the eigenvectors. For low-resolution face images, the energy on 
small eigenvectors is small, thus sometimes is overwhelmed by noise. The 
information on these noisy components (eigenfaces after K as shown in Fig. 6-13) 
is lost, and cannot be recovered since the components on different eigenvectors 
are independent in the PCA representation. By selecting an optimal eigenface 
number K, we can extract the facial information and remove the noise. Since is 
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Figure 6-13 Extract facial information in the PCA space of low-resolution face image. 

reconstructed from the K eigenfaces, given an optimal value of 尺 F, encodes the 
maximum amount facial information recoverable in the low-resolution face image. 

By adjusting the value of 尺 the eigentransformation method can control noise 
distortion. It makes full use of the facial information encoded in ^ to render high-
resolution face image. We have shown that the hallucinated face image is face-
like and could produce r； after resolution reduction. Although these conditions do 
not guarantee that the hallucinated face image is exactly the same as the original 
high-resolution face image, it does provide a face-like possible solution to F；. This 
solution helps to infer high frequency components from the low frequency facial 
features, thus significantly improves the appearance of the face image. 

We have noticed that some studies [8] use face images of small size for 
automatic face recognition, and have achieved satisfactory results. Through 
experiments, we would like to explore how the face resolution affects the 
recognition performance, and whether there is enough information for the low-
resolution face images to distinguish different faces. Given the significant 
improvement of the face appearance by the hallucination process, it is interesting 
to investigate whether the hallucination helps automatic recognition. Since more 
high frequency details are recovered, we expect the hallucination process to help 
the recognition performance. 
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6.2.4 Experiment 

6.2.4.1 Hallucination experiment 
The hallucination experiment is conducted on a data set containing 188 

individuals with one face image for each individual. Using the "leave-one-out" 
methodology, at each time, one image is selected for testing and the remaining are 
used for training. In preprocessing, the face images are aligned by the two eyes. 
The distance between the eye centers is fixed at 50 pixels, and the image size is 
fixed at 117x125 . Images are blurred by averaging neighbour pixels and down 
sampled to low-resolution images. Here, we use the eye center distance de to 
measure the face resolution. 

Some hallucination results are shown in Fig. 6-14. The input face images are 
down sampled to 23x25, with de equal to 10. Compared with the input image and 
the Cubic B-Spline interpolation result, the hallucinated face images have much 
clearer detail features. They are good approximation to the original high-
resolution images. 

We study the hallucination performance using different resolutions as input. 
The eye center distance is down sampled to 20, 15, 10, 7, and 5. An example is 
shown in Fig. 6-6, where (a) is the original face image. In Fig. 6-15 (b), the first 
row is input face images with different resolutions; the second row is the result of 
Cubic B-Spline interpolation; and the third row is the hallucination result. Figure 
6-16 reports the average RMS error per pixel in intensity for the 188 face images 
under different resolutions. For a very low resolution, the low-resolution and 
direct interpolated face images are practically indiscernible, and the RMS error of 
Cubic B-spline interpolation increases quickly. The performance of hallucination 
by eigentransformation is much better. When de is down sampled to 10, the result 
of eigentransformation is still satisfactory. For further lower resolutions, there are 
some distortions on the eyes and mouth, but hallucinated images are still clear and 
face-like. 
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Figure 6-14 Hallucinated face images by eigentransformation. 
In Fig. 6-17, we add zero mean Gaussian noise to the low-resolution face 

image. If no constraint is add to the principal components, the hallucinated face 
images in Fig. 6-17 (d) are with noise distortion and somewhat not face-like. 
Adding constraints on the principal components using Eq. (6-30)，the 
reconstructed face images remove most of the noise distortion and retain most of 
the facial characteristics as shown in Fig. 6-17 (e). 

As discussed in Section 6.2.3, some high frequency detail is lost in the process 
of bluring and downsampling, or overwhelmed by noise. Selecting the eigenface 
number in eigentransformation, we could control the detail level by keeping 
maximum facial information while removing most of the noise disturbance. In Fig. 
6-18，we add zero mean Gaussian noises with four different standard deviations (o") to the low-resolution face image with de equal to 10 (size of 23x25) . The 
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image intensity is between 0 and 1. Two different eigenface number K，50 and 
180, are used in the eigentransformation. When only 50 eigenfaces are used in the 
eigentransformation, the hallucinated face images lose some individual 
characteristics. Although the edges and contours are clear, the hallucinated faces 
are more like a mean face. When eigenface number is equal to 180，more 
individual characteristics are added to the hallucinated face images. For relatively 
small noise (o-= 0.03,0.05 ), these characteristics are similar to the original high-
resolution face image. But for large noise ( <7 = 0.1,0.2 ), even though the 
hallucinated faces are still face-like, the added characteristics start to deviate from 
those of true face. So when the noise is small, larger eigenface number is more 
suitable, since it can characterize the face better with more individual detail 
characteristics. When noise is large, small eigenvector number is better. Although 
the hallucinated faces contain less individual facial characteristics, it is more face-
like. In practice, we could estimate the noise effect and choose the proper detail 
level for hallucination. 

6.2.4.2 Recognition experiment 
We study the recognition performance using low-resolution face images and 

hallucinated face images. Two hundred and ninety five individuals from the 
XM2VTS face database [37] are selected, with two face images in different 
sessions for each individual. One image is used as reference, and the other is used 
for testing. We use direct correlation for recognition, which is perhaps the 
simplest face recognition algorithm. The reason for using this simple 
classification algorithm is that our focus is on the comparison of recognition 
ability of the low-resolution and hallucinated face images rather than a 
sophisticated classification algorithm. The recognition accuracies over different 
resolutions are plotted in Fig. 6-19. When de is reduced from 50 to 10, there is 
only slight fluctuation on recognition accuracy using low-resolution face images. 
When de is further reduced to 7 and 5, the recognition accuracy for low-
resolution face images drops greatly. Resolution with de equal to 10 is perhaps a 
lower bound for recognition. Below this level there may not be enough 
information for recognition. This is also consistent with the hallucination 
experiment in Fig. 6-15. Satisfactory hallucination results can be obtained when 
de is equal to or larger than 10. 
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We also try to explore whether hallucination can contribute to automatic face 
recognition. We expect hallucination to make the recognition procedure easier, 
since it emphasizes the face difference by adding some high frequency details. In 
this experiment, the low-resolution testing image is hallucinated by reference face 
images, but the face image of the testing individual is excluded from the training 
set. As shown in Fig. 6-19, the hallucination improves the recognition accuracy 
when the input face images have very low resolutions. The improvement seems 
not as significant as the improvement in the face appearance. Further investigation 
in psychology study may be needed to address this phenomenon. It seems that 
human visual system can better interpret the added high frequency details. 

6.2.4.3 Conclusion 
Because of the structural similarity, face images can be synthesized from the 

linear combination of other samples. Based on this property of face images, 
hallucination can be implemented by eigentransformation. By selecting the 
frequency level in the PCA representation, our method extracts maximum facial 
information from the low-resolution face images and is robust to noise. The 
resolution and quality of face images are greatly improved over the low-resolution 
images. The hallucination process not only helps a human being to identify faces 
but also makes the automatic face recognition procedure easier. It will be 
interesting to study why the hallucinated image is significantly better perceived by 
a human being than by the automatic recognition system. 
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Figure 6-15 Hallucinated face images using different resolutions as the input. 
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Figure 6-16 RMS error per pixel in intensity using Cubic spline interpolation and hallucination 
by eigentransformation. 

The intensity is between 0 and 1. The resolution is marked by eye center distance 
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Figure 6-17 Adding constrain to the principal components of the hallucinated face images. 
(a)： Original high resolution face images; (b): Low-resolution face images with i/e=10，and the size 
23x25 ; (c): Low resolution face images added zero mean 0.03 standard variation Gaussian noise; 
(d): Hallucinated face images from (c) without constraints on the principal components; (e): 
Hallucinated face images from (c) with constraints on the principal components, (e) is more face-
like and less noisy comparing to (d), and it retains most of the facial characteristics of(d). 

0 . 9 1 . I I ‘   
. — £) Low-resolut ion face i m a g e 

0 . 8 5 - <1 Ha l luc ina ted face i m a g e — 

0 . 8 - _ 

J 0 . 7 5 - • 

t . � 0 \-s \ X 
^ O . B - \ \ 

\ 
0 . 5 5 - V t) 

0 . 5 - • 

2 0 15 10 7 5 
E y e center d is tance after resolut ion reduct ion 

Figure 6-18 Recognition accuracy using low-resolution face images and hallucinated face 
images based on XM2VTS database. 

The resolution is marked by eye center distance with 50, 20, 15, 10, 7, and 5. 
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Figure 6-19 Hallucinating face with additive zero mean, Gaussian noise. 
The input face image is 23x25. (a): Original high-resolution face image; (b): Low-resolution 
face images with noise; (c): Hallucinated face images using different eigenface number. K is the 
eigenface number in eigentransformation, and o* is the standard variation of Gaussian noise. 

6.3 Discussion 
In this section, we study the matching between face images with significant and 

definite transformation, which is referred as “style，，. The transformation is so 
significant that the face image cannot be directly matched using standard subspace 
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methods. However, for a kind of style, the transformation is not arbitrary, but can 
be approximated as some definite function. For a face image for matching, the 
style is previous known, and some training face images undergoing the same 
transformation can be collected to leam the transformation procedure. In the study 
of this section, photo-sketch, and face images with different resolutions are all 
viewed as different stylistic face images. For more examples, face images wearing 
glasses, with some fixed poses and under fixed lighting source all can be viewed 
as undergoing some definite transformations. To eliminate the transformation 
difference, a normal way is to derive the explicit transformation function, such as 
using 3D model to normalize pose and lighting changes. However, in many cases, 
the transformation function is too complex to be computed. The advantage of 
eigentransformation is that it is able to perform the transformation using the one-
to-one mapping between training samples without knowing the transformation 
function. It utilizes the face structural similarity. Face images with the same style 
construct a subspace. Eigentransformation realizes the transformation between 
different subspaces. Since face images are in different modalities, gray levels in 
pixels or eigenfaces are not identical in different subspaces. Eigentransformation 
assumes that the w e i g h t s c on training samples are somewhat invariant to 
transformations. In intuition, the more similar is the training sample to the input 
face, the greater is its weight on reconstruction. We have proved that this 
assumption is reasonable when transformation can be approximated as linear. In 
this thesis, eigentransformation is applied to face sketch recognition and 
hallucination. However, we have shown that it also can be applied to normalizing 
pose transformation and remove the effect of glass. This is a direction for our 
further study. 
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Chapter 7 
Conclusion 

In this thesis, we extensively study the subspace methods for face recognition. 
The unique contribution, disadvantage, and relationship of different subspace 
methods can be well understood under the proposed framework. The framework 
breaks down the limits on conventional subspace methods. It unifies and improves 
different subspace methods to attain the best recognition performance using a 
unified subspace analysis. It is helpful to develop novel subspace methods for face 
recognition. Here, we would like to discuss several possible directions for further 
study. 

In this thesis, all the discussion for subspace analysis is based on linear 
projection. However, in practice the face distribution can be more complex and a 
linear PCA on the face difference set may not be able to decorrelate higher order 
dependencies of different components, thus 7 , f , and Â  may not be fully 
separated. A potential solution to this problem is to project the image vectors into 
a higher dimensional space by a nonlinear function. Based on this consideration, 
kernel PCA and kernel LDA have been developed recently. With the new 
framework, the starting point of the kernel approaches does not have to be limited 
to the standard subspace methods. We can propose a kernel based improvement 
based on the best point in the new parameter space. 

When there are too many faces in the dataset, the face distribution may be too 
complex to be classified using a linear subspace. Some approaches, such as LDA 
mixture model [25], have been proposed to partition the face classes in the gallery 
into several clusters, and compute the discriminnat vectors for each cluster 
respectively. The classification problem seems to be simplified, since the class 
number in each cluster is reduced. However, training sample number in each 
cluster is also reduced, so the transformation difference cannot be well estimated. 
Furthermore, in this approach, the training samples must come from the face 
classes in the gallery. When the face class in the gallery has few samples, it will 
heavily suffer from the small sample size problem. Our framework first proposes 
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to use different training data in different steps. It can effectively release the 
difficulty encountered by the mixture model. 

In this thesis, we apply eigentransformation to face sketch recognition and 
hallucination. It also can be used to remove the great transformation difference 
caused by poses changes or wearing glasses, since face images wearing glasses or 
under fixed posed all can be viewed as undergoing some definite transformations. 
The subspace face recognition system can be further improved. When a probe face 
image is input, first judge whether it undergoes some definite transformation, and 
use eigentransformation to eliminate the great transformation difference. Then a 
unified subspace analysis is applied to extract the discriminant features for 
recognition. 
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