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Abstract 

Third generation (3G) personal communication systems (PCS) will accommodate 

many types of traffic including voice, video, and other high-speed data. Variable data 

rate transmission is required to support these services. Multicode CDMA is one of 

the options being considered within the 3G standardization efforts for achieving 

variable data rate transmission. However, the major drawback of multicode CDMA is 

its large amplitude fluctuation and consequently the whole performance is degraded. 

A general scheme of multicode CDMA system with constant amplitude 

transmission is presented and analyzed in this thesis. By the proposed delicate 

selection of Hadamard code sequences, the interference caused by the non-linear 

operation in this multicode scheme can be minimized. On the other hand, there are 

parity check bits generated by the non-linear operation in the scheme. To utilize these 

parity check bits efficiently, a combination of linear block code and this multicode 

scheme is considered. The multicode schemes combined with Hamming codes, 

Gallager's codes, and zigzag codes are analyzed respectively. Iterative decoding for 

the combined systems is efficient to recover the information bits. The iterative 

decoding methods are discussed in details. Through analysis and simulation, results 

show that the performance of combined scheme is greatly improved. 
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摘 要 

3G無線個人通訊系統（PCS)將容納多種類型傳輸，包括音頻，視頻和其 

他高速率數據，可變數據速率傳輸對於提供這類服務是必需的。多碼CDMA 

(multicode CDMA)是在3G標準中用於達到可變數據速率傳輸的考慮方案之 

一。但是，多碼CDMA系統的主要缺點是多碼信號有很大的幅度波動，因此， 

系統整體性能將降低。 

本文提出並分析了一種普遍型的恆幅度傳輸多碼CDMA系統。由於方案中 

的非錢性操作所造成的干擾可以通過選擇Hadamard碼序列達到最小{fc另一方 

面，方案中的非綫性操作可以產生奇偶校驗位。爲了更加有效的利用該奇偶校 

驗位，本文考慮錢性編碼和該多碼方案的結合方式，並且分別硏究了與 

Hamming碼，Gallager’s碼和zigzag碼結合的方案。因爲叠代解碼對於該系統的 

信息恢復是非常有效的，本文將著重討論疊代解碼方法。通過分析和仿真，結 

果顯示通過這種結合方案，系統性能大大提高。 
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Chapter 1 Introduction 

Chapter 1 

Introduction 

Nowadays, with the prosperity of wireless systems such as GSM, wireless 

multimedia applications become a part of our daily life. However current wireless 

systems cannot meet the consumer's growing expectation on various service and 

high quality of service (QoS). So in the next-generation wireless systems, it is 

expected that different classes of traffics are supported with their respectively 

required quality of service (QoS), which is drastically different from the existing 

second-generation wireless systems. Therefore, a necessity of variable data rate 

transmission for such integrated services is rapidly growing in the circle of wireless 

mobile communications. The proposed third generation wireless standards 

UMTS/IMT-2000 [1-3] uses wide-band CDMA (WCDMA) to address the higher and 

variable rate requirements of multimedia applications. 

To achieve the specified rate, two types of approaches are being considered, of 

which one is the variable spreading factor (VSF) scheme using a single code and the 

other is multicode direct sequence CDMA (DS-CDMA) based on parallel multiple 
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Chapter 1 Introduction 

orthogonal codes (MOC). In this thesis, I will focus on multicode CDMA and its 

combination with error-correcting codes. One of the disadvantages of conventional 

multicode CDMA is its large amplitude fluctuation, since the multicode signals suffer 

from significant distortion through a nonlinear device. The performance of whole 

system degrades dramatically. In this thesis, a multicode CDMA system with 

constant amplitude transmission is mainly considered. In order to fully utilize the 

error-control capability of such a system, the combination with error-correcting 

coding scheme has to be investigated. 

In this chapter, to provide the background knowledge for this research work, an 

introduction on multirate scheme is given firstly, in which basics of VSF and 

multicode scheme are introduced respectively. Secondly, a detailed description on 

multicode CDMA system is given thereafter. 

1.1 Multirate Scheme 

Several options are being considered within the 3G standardization efforts for 

achieving variable data rates. Assuming fixed bandwidth, these may be classified as 

varying spreading factor (VSF) CDMA [4] [5] and multicode CDMA where multiple 

orthogonal spreading codes are assigned to given user [6] [7]. There are some more 

discussions and analysis on multirate schemes in [8] [9]. 

Important considerations in the design of multirate schemes are good code 
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Chapter 1 Introduction 

utilization efficiency, small amplitude variance, and the ability to achieve a wide 

range of transmission rates [10]. Additionally, good error performance in multipath 

and multiuser environments is desired. In this thesis, the property of amplitude 

variance of multirate signals is our major concern. 

1.1.1 VSF Scheme 

In a DS-CDMA system, each multiple-access user is assigned a unique signature 

code. In the forward (base station to mobile terminal) link, the assigned codes are 

mutually orthogonal [11]. In the second-generation wireless CDMA system IS-95, 

each mobile user is assigned a single orthogonal constant spreading factor (OCSF) 

code. To obtain variable transmission rate, each user is assigned a single variable 

spreading factor (VSF) code, which is known as VSF-CDMA; usually the orthogonal 

spreading codes are used, so such VSF scheme is also known as OVSF-CDMA. In 

order to keep orthogonality among different codes, generations of orthogonal 

spreading codes with variable spreading factors are important. Tree-structured 

generation [12] is an efficient and practical method of codes generation, which is 

shown as follows. 

• OVSF codes are generated from a tree-structured set ，which has a 

length of TV chips [12]. Spreading codes of different lengths are deployed in channel 

spreading. Orthogonality is kept between different codes to provide variable 

spreading factors. In [12], the code generation matrix is shown below: 
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Chapter 1 Introduction 
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Figure 1.1: OVSF code tree 
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Chapter 1 Introduction 

The code tree generated by code matrix C n is illustrated in Figure 1.1. 

According to WCDMA, the spreading factors starting from 4 can be used. Codes 

from C4 to C256 are shown with the corresponding spreading factors from 4 to 256. 

To keep orthogonality in code assignment, there is an assignment constraint. In the 

tree, a code is not orthogonal with its parent-code or child-codes. For example, when 

C 1 6 � is used, its parent-code and child-codes C32� and €32(2) cannot be 

used. Iteratively, the parent-code of C s � and the child-codes of €32(1) and €32(2) 

cannot be used also. OVSF codes are assigned to different users and operated 

following the rule of orthogonal spreading. Due to the inherent orthogonality, 

cross-correlation performance is optimal to support multi-user code assignment. 

In a VSF scheme, the spreading ratio is reduced as the data rate increases. 

Therefore, a higher data rate access is realized by using a smaller spreading factor 

code. However, when a user tries to transmit at a very high bit rate in VSF-CDMA, 

the spreading factor may become too small to maintain good (low) cross correlation 

among different user codes. At the receiver side, using VSF scheme, only one RAKE 

receiver is required per user, so the hardware complexity of receiver is quite low. 

Therefore, the VSF scheme is suitable in forward link. 

1.1.2 Multicode Scheme 

In the multicode scheme, additional parallel codes are allocated as the data rate 

increases. Figure 1.2 illustrates the multicode transmission scheme. The data stream 

with a high bit rate is split into A/̂  parallel channels, each with data rate Rb, which can 

5 



Chapter 1 Introduction 

be viewed as basic rate [3]. Walsh codes are usually used in N parallel channels, 

which are thus called orthogonal codes (MOC) channels since Walsh codes are 

mutually orthogonal. Therefore, multirate transmission is realized by assigning a 

specific number of code channels according to the specific data rate. More code 

channels are assigned when a higher data rate transmission is required [3]. Compared 

to VSF scheme, the spreading factor of multicode scheme keeps constant, so there is 

no such a problem of small spreading gain when a high rate transmission is in need. 

i i 
Code 1 

R=腿 h 3 — — ^ • ( + ) — — • 
JL i L 

. Code 2 

3 _ _ ^  
i L 

CodeN 

Figure 1.2: Multicode transmitter scheme 

With multicode transmission, the mapping of simultaneously transmitted 

services into frames can be performed in two different ways: firstly, services are 

transmitted simultaneously in different frames and in different codes; secondly, 

services are mapped into the same frame, in which bits are then mapped into 

different codes [3]. 

Multicode scheme requires multiple transceiver units to support higher data 
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Chapter 1 Introduction 

rates, thus resulting in increased hardware complexity. Therefore, in terms of 

hardware complexity, OVSF scheme is preferable over multicode scheme. However, 

multicode scheme can be deployed in the reverse (mobile terminal to base station) 

link or uplink. The major problem in the multicode scheme is the large envelope 

variance in the multicode signals, namely, the large peak-to-average power ratio 

(PAP), because the transmitted signal is a linear sum of each parallel code channel 

signal. This problem will be discussed further in details in the following section. 

1.2 Multicode CDMA System 

1.2.1 System Model 

In [6], multicode CDMA was proposed as a system that realizes all the 

VSF-CDMA features without the problem of very small spreading gain of high rate 

users. A conventional multicode CDMA transmitter architecture is shown in Figure 

1.3. In this multicode scheme, M code channels are assigned to the user. At receiver 

side, there are M RAKE receivers used to recover the signals on each code channel. 

Walsh codes, used in the multicode scheme, have zero cross-correlation when they 

are time-synchronized. However, because multipath delays can introduce significant 

non-zero cross-correlation between the orthogonal codes, combination of Walsh code 

and PN sequences is more appropriate [7][13][14], which is beyond the scope of this 
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thesis. 

r 1 
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p / s 

Wc PN gen. j - W^.,  

• SUM ~~• decision … • 

(b) Receiver 

Figure 1.3: A conventional multicode CDMA system model 

Now we consider this uplink multicode DS-CDMA system, where the user is 

assigned M code channels represented by the vector, W = [Wq , ŵ  • f ‘ The 

spreading code waveform, w. (0，is 
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Chapter 1 Introduction 

= (卜/T；)， （1.2) 
/=0 

where p{t) is the chip waveform, N is the sequence length, and is the chip used 

at time instant i. 

Usually, Hadamard matrix plays the role of W, and each Hadamard code 

sequence is used as spreading code on each code channel. The bit stream is 

allocated to each code channel. Thus the multicode signal can be expressed as 

(1.3) 

M-l 
SM = (1.3) 

i=0 

in which b'^^can be viewed as the vector of BPSK symbols [18]. Now, with the 

description of multicode scheme, we proceed to analyze the envelope variation of 

multicode signals in next sub-section. 

1.2.2 Envelope Variation of Multicode Signal 

There are several kinds of measure for the envelope variation, one of which is the 

peak-to-average power ratio (PAP) [31] defined as 

PAP 二 — ⑴ / (1.4) 

•(on 
in which 五[.]is the expectation operator and s(t) is the waveform of multicode 

signal. In the definition of PAP, the numerator stands for peak power while the 

denominator means the average power of multicode signal. The PAP of signal with 
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Chapter 1 Introduction 

constant amplitude is 1 (OdB), which means that there is no envelope variance in this 

signal. A larger PAP means a large envelope variation in the signal. Another one is 

the complementary cumulative distribution function (CCDF) of PAP, which is an 

extended approach showing the details of distribution of PAP 

(CCDF = Pr(PAP > PAP。））[31]. CCDF is a function ofPAPo, which is a base level. 

CCDF shows the probability of potential large PAP. However, in this thesis, a 

multicode signal with constant amplitude is mainly investigated, so the expression 

for envelope variation does not matter too much. 

In this thesis, we consider the PAP of the discrete-time multicode signal instead 

of the continuous-time signal. Different from (1.4)，PAP of the discrete-time signal 

can be written as 

PAP = E ^ ， 
刚 2 ] 

in which, s stands for the discrete-time signal sequence. 

From (1.3), it is easy to see that 

max I 5 max 1 | 2 = M2. (1.5) 

k,b 

If we assume that both bits and code chips are random and independent and the 

symbols are equally probable, we have (see [18]) 
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M-\ y 

_ /=o _ 
M f 

= Mm-liY 
t^L I ) (1.6) 
M f JU\ , . 

二 2-似 X 如 2 - 4 泌 + 4/2) 
/=o V ^ J 

=M2 - 2 M 2 + M 2 + M = M . 

Therefore, for multicode signal, PAPmax is M. PAPmax increases as the number of 

code channels increases. If many code channels are used for multicode scheme, the 

PAPmax will be very large. Consequently, the envelope variance of multicode signal 

will be large. 

1.2.3 Drawback of Multicode Scheme 

From previous sub-section, we note that conventional multicode signals have large 

envelope variation and this is the major drawback of multicode scheme. Now, we 

present the effect of large envelope variation to further understand the problem 

caused. 

From the view of mobile terminals, i.e. handset, most of power is consumed by 

the RF power amplifier, and thus the power efficiency of this amplifier is very 

important. Figure 1.4 illustrates the amplitude input-output characteristics (AM-AM) 

of a typical RF power amplifier. Practically, a typical RF power amplifier is a 

nonlinear device, and such power amplifier that has high power efficiency operates 

near the saturation point. However, in this region the AM-AM characteristics of the 
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Chapter 1 Introduction 

amplifier are non-linear. This non-linearity has negative effects such as increased 

out-of-band radiation, namely, spectral spreading, and decreased performance 

(increased bit error rate) [18]. Therefore, a larger envelope variation in signals leads 

to more out-of-band radiation and thus a lower spectral efficiency. Moreover, 

because a large envelope variance forces the amplifier to work in the active (linear) 

region, such signal suffers less power efficiency [18]. 

0) 丨 / 丨^^ 

I I / / 
I Ideal / / i Saturation 
"5 丨 lueeiy / region 

3 / Actu^ J / / / / 
/ / Active 

/Cut-off 丨 / 「egion 

/ region J 
L _ < • 

Input Amplitude 

Figure 1.4: AM-AM characteristics of a typical RF power amplifier 
If the transmitted signal has a large envelope variation, there are two possible 

options (see [18]): 

1) Set the operation point of the amplifier in the saturation region, and thus get a 

high power efficiency，but large out-of-band radiation; 

2) Use a back-off for the input signals so that operation point is set in the active 

(linear) region and thus get a low power efficiency but a high spectral 
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Chapter 1 Introduction 

efficiency. 

Any way between these two methods cannot radically resolve the problem caused by 

large envelope variance. Thus, constant (or near constant) amplitude transmission is 

more suitable and prevailing in wireless applications. 

Conventional multicode signal having a large envelope variation suffers large 

out-of-band radiation and lower spectral efficiency，so the bit error rate (BER) 

performance is degraded. Therefore, minimizing envelope variation of multicode 

signals or reducing its PAP is a necessity so that the performance of multicode 

scheme can be improved greatly. In this thesis, a general scheme of multicode 

CDMA system with constant amplitude transmission is proposed and analyzed. In 

this system, multicode signal has no envelope variance and thus the performance of 

system is improved. 

1.3 Organization of the Thesis 

In this thesis, we will focus on the multicode CDMA system with constant amplitude 

transmission and its combination with efficient coding schemes. Then, we proceed to 

describe a multicode scheme with bounded PAP transmission, in which such 

multicode signal has small envelope variance and more code channels with less 

interference are available. 

In Chapter 2，several novel studies on the minimization of envelope variation of 

multicode signals are introduced in details and summarized. From the related work, 
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Chapter 1 Introduction 

we can have a better understanding of methods of PAP minimization. In Chapter 3，a 

multicode CDMA system with constant amplitude transmission is proposed and the 

selection of Hadamard code sequences is also presented in details. The performance 

of this multicode scheme is evaluated. In Chapter 4，the multicode scheme combined 

with coding scheme is considered. Multicode schemes combined with Hamming 

codes, Gallager's codes, and zigzag codes are analyzed respectively. An iterative 

decoding based on message passing algorithm is discussed and the performance of 

the systems with this iterative decoding is evaluated. In Chapter 5，we will discuss 

the multicode scheme with small envelope variance. Chapter 6 contains the 

conclusions and future work. 
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Chapter 2 

Related Work on Minimization of 

PAP of Multicode CDMA 

The major problem with multicode scheme is the large envelope variation, namely, 

the large peak-to-average power ratio (PAP), because the transmitted signal is a sum 

of all the parallel code channel signals. A large variation results in a large 

out-of-band radiation and lower spectral efficiency of the overall system, and bit 

error rate performance is degraded. To solve this problem, reducing the PAP, which is 

a key factor in the mobile station with high power amplifier (HPA), should be well 

considered. Several studies have been carried out to decrease PAP. In this chapter, 

three efficient methods of reducing PAP are presented and summarized respectively 

in each subsection. 
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Chapter 2 Related Work on Minimization of PAP of Multicode CDMA 

2.1 Constant Amplitude Coding 

In [15], Wada proposes a constant amplitude coding scheme, by which multicode 

CDMA system with constant amplitude transmission can be realized. The possible 

rates of the multicode transmission are 1/3，1/9，and so on. The multicode 

transmission of 1/3 rate is realized by using the rate 3/4 constant amplitude coding. 

Similarly, the rate 1/9 multicode transmission can be done by rate 9/16 constant 

amplitude coding [15]. Firstly, the simplest example of rate 3/4 constant amplitude 

coding is described as follows. 

For example, the behavior of inverse Walsh-Hadamard Transform (IWHT) is 

shown by making use of 4x4 Hadamard matrix as below 

(\ 1 1 r 

(2.1) 

、1 -1 -1 

Thus, orthogonal code sequences are written as w �= {1,1,1，1}，= {1,-1,1,-1}， 

Wj = {1,1,-1,-1}，and W3 = {1，一 1，一1，1} . For example, when the information bit 

stream (=1111) is transmitted, the amplitude of transmitted signal s], becomes 

Wo + w, + W2 + {4,0,0,0}) . Table 2.1 shows the behavior of amplitude 

fluctuations when 4x4 Hadamard code sequences are used. 

16 



Chapter 2 Related Work on Minimization of PAP of Multicode CDMA 

Table 2.1: Amplitude patterns of transmitting signal using 4x4 Hadamard matrix 

i b； ^ i b) 5； 

~ 0~ ~ 0 0 0 0 - 4 , 0，0，0 "~8 1000 -2，2，2，2 

1 0 0 0 1 - 2 , - 2 , - 2 , 2 ~ 9 i M 0，0，0，4 

" 2 0 0 1 0 - 2， 2 , - 2 , - 2 ~ k 0’ 4, 0, 0 
" 3 O O n 0, 0,-4, 0 T " 1011 2, 2,-2, 2— 
~ 4 0 1 0 0 - 2 , - 2 , 2,-2 ~~C 0, 0，4，0 

" 5 ^ 0,-4, 0，0 ~D~ 1101 2,-2, 2，2~ 
~ 6 ~ ~ m b 0，0，0,-4 1110 2, 2, 2,-2~ 
T 0111 \ F 1111 4，0，0，0 

In Table 2.1, the cases of constant amplitude transmissions are written in bold fonts. 

It is obvious that transmitted signals with constant amplitude levels are achieved 

when the number of “1” within the information bit stream b; is odd [15]. When the 

information bit stream (= 1111) is transmitted, the amplitude of transmitted signal 

Sp becomes w �+ w, + w? + 冰3(= {4，0，0，0}) • However, when the information bit 

stream 1110) is transmitted，the amplitude of transmitted signal s^ becomes 

Wq+w^+w^-冰3(= {2,2,2,-2}). From this example, we notice that the sign(s) of 

one code sequence or three sequences changes, the amplitude becomes —2 or 2 

[15].Therefore, the signal with constant amplitude levels can be achieved when the 

information bit stream b; is satisfied with the following condition as shown 

• (2.2) 

where = (^0^.1^,2^,3) and notation © is denoted as the operation of 
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"exclusive OR" [15]. When any arbitrary three bits 6,�， ，and b̂  ^ are 

transmitted, the constant amplitude transmission can be realized by using 3 

generated as 

(2-3) 

in which b)) is made from b. ^, b^, and 6, 2 [15]. Thus, the rate 3/4 encoder can 

be realized based on (2.3) as shown in Figure 2.1 

Encoder (rate 3/4) 

bj,�！ ……丨 b i�j 

b,. i 丨 b. 1 
b' c/o - ^ n i 4 x 4 

" S / P i i IWHT + 
°i.2 I ！ "i,2 ^ 

Figure 2.1: Constant amplitude encoder with rate 3/4 

Based on this rate 3/4 encoder, we proceed to introduce the realization of the rate 

1/9 multicode transmission with rate 9/16 encoder. In this scheme, 16x16 Hadamard 

matrix is involved and can be expressed as 

仏 付4 "4、 
H, -H, H, -H, (2.4) 

16 H , H , - H , - H , 

The amplitude of transmitted signal, ，can be expressed as 
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二 ，，，*^/’(3))， （2.5) 

in which each element is expressed as 

~ C ^ / ’ 0 ， ， ， ) 

- Ĉ /’4,*̂ /’5，*̂ /’6，*̂z.’7) 
4 、 （2.6) 

~ Ĉ /’12，S/,13,*̂ /’14，*̂ /,15). 

Since can be considered as the bit stream constructed by four of 4-bits 

streams, as Z ? 广 = ， e a c h ŝ ^̂ y, •s；!⑴，•̂；！⑵，and can be calculated 

from (2.4) and expressed as follows (see [15]), 

4 4 4 4 
S ‘ /A\ — S； + S； + S； + S！ 

^ r̂  4 ^̂  4 4 
= ^io 一 ^ix + 一 

4 � 4 � 4 � 4 � 4 ( 2 - 7 ) 
*̂ /，(2) = \ + - 2 - S i� 

4 � 4 � 4 � 4 � 4 
• ^ / ’ � = \ - - + • 

From (2.7)，we notice that constant amplitude transmission can be realized by the 

selection of ŝ^̂  for any arbitrary 义，，and ŝ^̂  • Hence，we first consider the 

method of the constant amplitude transmission for •s,̂。）by the choice of b:，and 

every is generated by the rate 3/4 encoder. Next, the replacement of bit stream is 

used for construction of rate 9/16 encoder, whose rule is shown in Table 2.2 
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Table 2.2: Rule of the replacement of bit streams 

q b： V br； 

1 OOm -2,-2,-2, 2 0001 
~2 -2, 2,-2,-2 0100 

~4 0 1 ^ -2，-2，2，-2 0010 

~7 m i 2，-2，-2，-2 1000 

~8 - 2， 2， 2， 2 0111 

" b I M I 2’ 2，-2，2 1101 

" d i m 2， -2，2，2 1011 

~E m o 2 ， 2 ， 2 , -2 1110 

In Table 2.2，br\為 is denoted as the replacement bit stream of b �. T h e replacement 

is done by simply changing amplitude levels 2 and - 2 into binary number 1 and 0 

[15]. Thus each replacement bit stream is expressed as 

K " , ' i A | A ,， A ， 3 ) … � 
(2.8) 

K = (b%obr\’�bf\’2br\，3) 
brl =(办广,3 A 3 A 3 A'3,3) 

In order to achieve constant amplitude in the signal •s,̂。），the replacement bit 

streams must satisfy with the following condition 

br^ e e br^l ㊉ bril =(1111). (2.9) 

This condition means that the number of “1，’ is always kept as an odd number. Thus, 

we can select the bit stream bt): by using the equation (see [15]) 

br' = br'ebr'@br.'. (2.10) 

'3 '0 '1 '2 \ z 
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Finally, Figure 2.2 shows the constant amplitude encoder with rate 9/16. 

In Wada's scheme, a multicode scheme with constant amplitude transmissions is 

achieved. However, the redundant bits used in the construction of multicode signals 

with constant amplitude are simply lost at the receiver side. Therefore, in each case 

of rate 9/16 and 3/4，in terms of BER performance, the quantities of the degradation 

are 2.50dB (= 101og(9/16)) and 1.23dB (=101og(3/4)) respectively. In case of 

nonlinear amplifier, Wada's scheme outperforms the conventional multicode scheme, 

so Wada's scheme is effective when using HPA. 

Encoder (rate 9/16) 

/̂•oJ Rate 3/4 K̂  ^ 
encoder 

^ S/P 一勾 Rate 3/4 I _ _ ^  
encoder 

S Rate 3/4 ^ ^ 
1 encoder —— “ 16x16 

c IWHT 
i K L—  
i-H I 1 I 1 

——i br；, A br；^ § b：, 
它 I I T̂  ^ O if g U C Jh 

<D a  (D ^ O  
-a b心 0) M 

Figure 2.2: Constant amplitude encoder with rate 9/16 
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2.2 Multidimensional Multicode 

Scheme 

In [16] and [17], multidimensional multicode scheme was proposed based on Wada's 

coding scheme. However, this scheme increases the data rate by compensating a loss 

in the information rate incurred by the constant envelope signal. 

The multidimensional signaling based on M-parallel orthogonal multicode 

channels is designed as follows [16]: 

1) The MxM Hadamard matrix H^ is extended into the matrix E of size 

M-by-N, as 

五 [付mI 付A J …丨付 A/]， （2.11) 

where N = GM . 

M 
2) Each submatrix E輔 ( m ) , where m = 1，is multiplied by a 

N 
row vector where e = 0,1,---,G-1, G = — ’ of G^G orthogonal 

M 

matrix such that 

E 捕 ( m ) �P : = [/3e’oH德(m) | P J ^ 據 W I ^ 12) 
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. in which, p^ = {p^ ̂ ， , ’..., Pe’G-\)，如d the submatrics are expressed as 

follows 

Ĥ  = [Hl̂  (0) I HIm ⑴卜• I HIM (y 一 ， 

五 鬚 = [ E L (0) I E l , � I …j E I n (令 - l)f， 

五Âx̂V (劝=[仏xM (间丨…丨仏xA/M]， 

where T denotes the transpose of a matrix. 

Therefore, a set of row vectors = 0，1，. ••，G — 1} is able to carry additional 

log2G-bit information on 4-parallel channel [16]. When 1-bit is used for constant 

envelope by rate 3/4 constant amplitude coding, there are 3-bit data transmitted by 

4-parellel multicode signals. In Wada's scheme, the 1-bit precoding for constant 

envelope is simply lost. Therefore, the performance is degraded. However, in this 

multidimensional multicode scheme, any subset of Ŵ； with row vectors 

{fi^ | e = 0,l,---,2^ -1} may be selected to convey 1 <L'<log2 G bits, so this 

multidimensional signaling preserving orthogonality among all multicode signals can 

transmit totally (3 + L)M / 4 bits at most on the M-parallel multicode chaimels[l 7]. 
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仏 』 ） 

] r  
议 Constant 
r - ^ Amplitude ——\ 

Coding V 

~ ~ • s/p — •• A) : . < ^ 5 ( 0 

• AmpNtudl Z ! > „ 沖 -
^M . Coding Y “ 

\ 
4 2 

手-1) ^ 

Figure 2.3: Multidimensional multicode scheme 

Figure 2.3 shows the block diagram of Multidimensional multicode scheme. The 

output signal S(t) can be thus expressed as 

M-\ M-l G-\ 

S(t) = . nt - (/ + SMK) (2.13) 
m=0 /=0 g=0 

where denote the input M-parallel data, the sequences [w<,„> o，...,w<;«>，c-i] are 

YYi 

the row vectors sending the additional data, in which < m > = — ( [ ^ � i s the 

greatest integer not exceeding x) [16]. And {c„} is the user-specified scrambling code. 

In Figure 2.3 and ( 2 . 1 3 ) ， = 0，. - s ^ - l } are the arbitrary data groups inputted 

to the module of "Constant Amplitude Coding", and {b„,} are encoded M-parallel data. 

By the multidimensional signaling, the additional information data can be conveyed by 
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{P^}. Thus this scheme can transmit more information bits than Wada's scheme in one 

time slot and {P^} can compensate the simply lost energy of redundant bits. 

2.3 Precoding for Multicode Scheme 

To minimize the envelope variations or PAP, another method called Precoding was 

proposed in [18]. This precoder is a non-linear high-rate block code especially 

designed for the set of spreading codes used. However, the precoder can be made 

independent of the spreading codes if a user-specific spreading code is concatenated 

with a set of Hadamard or conference sequences. The resulting spreading codes are 

orthogonal [18]. In this coding scheme, an algorithm named envelope-decreasing 

algorithm is used to design a precoder with a lower maximum envelope than that for 

the uncoded case. Besides Walsh codes, another set of spreading codes that has the 

same properties as the Hadamard matrix based on concatenation, is a concatenation 

based on a conference matrix. A conference matrix Hn is an nxn matrix with all 

diagonal elements equal to zero and the other elements of +1 or -1’ which satisfies 

H „ H l = ( n - 1 ) / „ . In this matrix, we can observe that a zero element (in the diagonal) 

means that the corresponding chip will not be transmitted. Moreover, in [18] it is 

proven that there exists an )-precoder such that the crest factor is reduced by at 

least 5.6dB compared to the uncoded system with n-1 codes and asymptotically as 

n-^oo, the reduction in the crest factor approaches 6dB. However, finding such 

precoder is a really tough and complex job. 
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2.4 Summary 

Three novel studies, constant amplitude coding scheme, multidimensional multicode 

scheme, and precoding scheme, on minimization of PAP of multicode signals are 

presented in details in this chapter. 

Constant amplitude coding scheme (Wada's scheme) is the simplest and most 

efficient scheme. However, in this scheme, the redundant bits used for construction of 

signals with constant amplitude are not efficiently used at the receiver side, so the 

performance is surely degraded some decibels, although multicode scheme with 

constant amplitude transmissions is achieved and this scheme mitigates the effects of 

nonlinear device such as HP A. 

In multidimensional multicode scheme based on Wada's scheme, the additional 

bits can be conveyed by multidimensional signaling to compensate the lost energy of 

redundant bits in Wada's scheme, so the degradation of performance of Wada's 

scheme is avoided. However, the complexity of its receiver is surely increased. More 

details of analysis on its receiver and performance can found in [16]. 

Constant amplitude transmission is realized in the first two schemes, while in 

precoding scheme，PAP of multicode signals can be reduced to a certain level. 

Although in this scheme, constant amplitude transmission cannot be achieved, it has a 

higher efficiency in practical application and has been adopted in current WCDMA 

system. 
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Chapter 3 

Multicode CDMA System with 

Constant Amplitude Transmission 

In Chapter 2, we have presented and summarized the three novel methods of 

minimizing PAP of multicode signals. In those methods, "constant amplitude coding" 

proposed by Wada [15] is a simplest and very efficient scheme. However, this 

scheme may be fulfilled only in some cases but di伍cult to be generalized. The 3/4 

coding scheme of Wada's scheme is equivalent to a rate 3/4 single parity check code. 

However, other cases of Wada's scheme (i.e. 9/16 coding scheme) cannot be simply 

expressed by parity check code. Therefore, the data bits cannot be efficiently used, so 

the performance is degraded. In this chapter, we proceed to discuss a general scheme 

of multicode scheme with constant amplitude transmission. In this scheme, a 

nonlinear operator is used for construction of multicode signal with constant 

amplitude. This scheme is more flexible and it can be used for any odd value of M 

(number of code channels). Moreover, through analysis of this scheme, it is obvious 
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that 3/4 Wada's scheme is just the special case of the proposed scheme. Unlike 

Wada's scheme, all the data bits can be efficiently used for the detection on 

information bits, so the performance of this scheme is superior to that of Wada's 

scheme. 

3.1 System Model 

The input information of 众-th user is a stream of M-dimensional vector c(k). The A:-th 

user is provided M binary vectors h„t, i < m < M, chosen from the columns of the 

Hadamard matrix of dimension N, where N>M. The notation H is used to denote the 

matrix [Ho, H!,…，Hm-j]. 

Each M-dimensional vectors c(k) is passed through the following non-linear 

operator to give an N-dimensional vector [32] 

d�k�= signQHc…）. (3.1) 

This sign function is defined as 

= . (3.2) 
-1, A： < 0 

In equation (3.1)，the sign function operates on each element of the vector in its 

argument. With this non-linear operation, each element of /幻 is of unit magnitude. 

The Figure 3.1 illustrates the multicode transmitter scheme with constant 

amplitude transmissions. In this figure, c/ (1 < / < M ) is the bit being transmitted by 

/-th code channel assigned with hi{\<i<M). 
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C, ——\ 
厂〜 \ — — 

C2 K J ) •(+>—• Sign - > d 

： 厂 〜 / 
Cm 丨 

Figure 3.1: The multicode transmitter scheme with constant amplitude transmissions 

Subscripts of all the elements in equation (3.1) are omitted for convenience since 

the case of multiuser is not considered in this thesis. From equation (3.1)，we can 

find that each of the M elements of c is spread by a column of H, which is an 

N-dimensional vector. Therefore, He can be viewed as a multicode CDMA signal 

[32]. In general, a multicode CDMA signal has a non-constant envelope. The sign 

function in (3.1) forces a constant envelope in d. 

In general, we may not be able to recover c from d. However, [32] mentions that 

through a careful choices of h„„ the m-th element of c，namely c„„ can be recovered 

from d by 

= signihld) (3.3) 

In fact, d can be expressed as [19] 

M M M 

m=l m= /i=m+l ^ • ) 

…+ A / … c 似 V V…。办M 

In equation (3.4)，° denotes the Hadamard product. The parameters pm are given by 
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A) = 0， 

M - l ； if M is odd 

H PT 
M ； if M is even (3.5) 

. i T j 
- i f M + \is a multiple of 4 

Pm — ̂  
[yOp if M + \is not a multiple of 4 

A|<A ybr / = 2，3，...，M-1 

For all odd value of M’ pm with even subscripts vanishes. So only odd value of Mis 

considered. 
To show the properties of d, we take M=3 and 5 as an example. For M=3, 

1 3 I 
d = --CxCiC^h, o t h � t h , (3.6) 

SO d can be considered as a multicode signal with four component codes: hi, h2, hs, 

and h j % %• The data on the component codes are not independent. The data bit on 

the fourth component code is a parity check bit on the other three data bits. Note that 

this structure of coding is equivalent to 3/4 constant coding scheme. 

For A/=5, 

3 5 1 5 5 5 

3 (3.7) 

8 

In this case, d can be considered as a multicode signal with six component codes: hi, 

hs, and hj%... together with some interference. The data bit on the last 
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component code is a parity check bit on the other data bits. 

These results show that the nonlinear operation in (3.1) can be considered as a 

linear code providing a parity check bit, which is followed by spreading with 

multicodes [32]. From the view of coding scheme, it is equivalent to single parity 

check (SPC) code. 

In general, the resultant multicode signal (3.4 excluding po) generated by the 

proposed scheme consists of three components: conventional multicode signal (first 

term), a parity check bit (last term) and interference (middle term). When the ML 

sequence detector is used, there is no interference. The interference term takes 

negative effect, when the matched-filters are used for the scheme. In the next section, 

we discuss how to minimize the effect caused by interference component in order to 

recover c from d better using (3.3) for the case of matched-filters. 

3.2 Selection of Hadamard Code 

Sequences 

Firstly, an important property of Hadamard code sequences has to be described. In 

[20], Ahmed and Rao provide an exponential definition for Hadamard matrix H. We 

denote H(w, v) for the element of w-th row and v-th column in H. Let w, and v, 

denote the i-ih bit in the binary representations of integers w and v respectively, that 

is 
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i^)<lecmal = K - 1 州 " - 2 ) — ， 

and 

(^) decimal = i^n-l )binary . 

Then, the elements H(w, v) o f / / c a n be generated using the relation 

,1-1 

Z 

H{w,v) = (-1)'=° ， = 0,1,..., N - 1 (3.8) 

where N is the order of Hadamard matrix H, and n = logj N. 

From equation (3.8)，the product of the two functions will be 
n-\ «-l />-! 

// (W,V)// (M，V) = (-1)'=。 •(一 1)'=° =(-1)卜-0 '=。 

- (3.9) 
= = I"J(-1)("®")'� '=(-1)'=° = N(weu,v), 

(=0 /=0 

since the addition of binary terms of the same index should be carried out by 

Modulo-2. 

From equation (3.9), this property can be extended to higher-order products using 

Module-2 addition (exclusive-or) of the corresponding rows of Hadamard 

matr ix :H(w,v)H(x ,v) . . .H(z ,v) = / / O © ; c © � 0 2:，v). This property is the same for 

the columns of Hadamard matrix due to its symmetric structure. 

In equation (3.4)，there are ' = ( � “M ) 二 之似]component codes, among which 
t'o 1,2/+ l j 

most of the energy is distributed on hi, h�,HM, and h°h2 …�hM. Since the energy 

on the interference components is relatively small, a simple ignorance of them from 

resultant signal by receiver has little effect to the performance of whole system. Then, 
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the resulting signal is made of conventional multicode signal and its parity check bit, 

from which the information bits can be covered. However, this result is based on the 

assumption that any of component codes on interference terms is different from any 

of hi, h2, HM, and hi�h2…�hy. Otherwise, the multicode component may be 

contaminated by interference component and thus the performance of system may be 

greatly degraded. 

Followed by the property of Hadamard code sequence presented at the beginning 

of this subsection, we know that the product of two Hadamard code sequences, Hi 

'and Hp produces another Hadamard code sequence, written as � i / y = H泡严 for 

convenience [21]. In general, this property can be extended to the case of multiple 

Hadamard products written as: / / , � / / ) � … � = î ,®)© ®广 Since a Hadamard code 

sequence can be uniquely determined by its subscript, we consider the binary 

representation of its subscript for each Hadamard code sequence. For the Hadamard 

matrix of dimension N, which is a set of all N Hadamard code sequences, the set of 

all their N binary indexes is a vector space if each binary index is viewed as a vector 

of dimension log2M For the Hadamard matrix of dimension N=4, the vector space is 

{00,01,10,11}. 

Since the Hadamard product is equivalent to the summation of vectors in the 

vector space over GF(2), the selection of Hadamard code sequence can be made 

1 Hi denotes {i+l)-Xh column of Hadamard matrix (o</< A^-l), while hj denotes 
selected Hadamard code sequences fory-th code channel (o<y <m). 
2 / 0 j denotes bit-by-bit XOR operation of binary representation of i andy. 
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through the selection of index (subscript) of Hadamard code sequence. The basis of 

the vector space may be selected because summation vector of any two or more of 

non-zero basis vectors differs from any of basis vectors. For the Hadamard matrix of 

N=16, the basis of its vector space is {0000, 0001，0010，0100，1000}，so Ho, Hi, H2, 

H4, and Hs can be selected out. 

Therefore, hi, /12，...，and Hm should be selected and each product of any odd 

number (3，5, ...) out of them should not be equal to any one of them. If Ho is 

selected for hj, the criterion will be changed to that each product of any number (>1) 

out of h2’ hs,..., and Hm should not be equal to any one of /j:，h’..” and If the 

index of ///(/=0,2,..,A^-1) is rewritten into binary form v/ for hj, the criterion can be 

put in this way that a linearly dependent set { V2, V3,..., vm} of vectors should be 

selected for h2, hs,..., and Hm. We can consider all the index vectors as a vector space 

S = {V丨，v2，."，v"_,} = { 0 0 ^ , . . . , n ^ } . (3.10) 
logj N log2 N 

Therefore, we can choose the orthogonal basis of Sas the candidate for h2, hs”", and 

hM. 

Take M=5 and N=\6 for example. vo={0000} is selected for hi at first. Then, the 

orthogonal basis of5'={0001, 0010，...，1111}，which is {0001, 0010，0100, 1000}，is 

selected for h � , h s ’ lu, and hs. Thus, Ho’ Hu H2, //^and Hg are used for the proposed 

multicode CDMA system. These codes are shown below: 

3 We can consider this binary form as a vector of log2A^-dimension 
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(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 
Hi — (1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 - 1 ) 
H2 ~ (1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 - 1 - 1 ) 
H4 — (1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 "1 - 1 - 1 ) 
7/5= (1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1) 

By the theory of linear algebra, we know that such M codes can be selected from 

at least codes (Â xÂ  Hadamard matrix) for optimal code selection (the perfect 

case of no interference from other component codes). 

Also, from the relationship between Walsh function and Rademacher function, 

we can find another way to interpret this code selection. In [22]，we know that a 

complete set of Walsh functions in natural order can be obtained from selected 

Rademacher function products. For n independent binary variables, there are 2" 

Walsh functions, of which n+\ are Rademacher functions [23]. Hadamard matrix is a 

modified Walsh matrix by interchanging certain rows, so Hadamard matrix can be 

expressed by product series of Rademacher functions (see [23]): 

//(w，v) = 0 w , J ? „ _ , . ， w = (3 n ) 

//(0，v) =及。 

For n=3, from (3.12)，we can find that in this code selection only Rademacher 

functions are selected out for hi,h2,."，and Hm-
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"1 1 1 1 1 1 1 1] î o 

1 - 1 - 1 - 1 - R, 

1 1 一 一 1 1 一 一 R^ 
1 一 — 1 1 - - 1 R̂ R̂  

H. = 2 3 (3.12) 
8 1 1 1 1 - - - - R, 

1 - 1 - - 1 - 1 

1 1 _ - - — 1 1 R 凡 
_1 - - 1 - 1 1 

If is used to denote the (w)decimai, 

(3-13) 

where GR is defined as follow 

Gr = ... . (3.14) 
及2 

_及丨_ 

Therefore, if the middle terms are ignored due to their little energy, and the last 

term is considered only, then we can use the expression (3.12) for code selection. We 

can select P Hadamard sequences out of Hadamard matrix {P>M). Firstly, 

Rademacher functions R, (/=0，1，."，M) are selected. Secondly, P-MA Hadamard 

sequences have to be selected out of the remaining columns in Hadamard matrix 

based on the criterion 

；④义2 •㊉ Zp 关 / = 1，2”..，户 (3.15) 

where X,- denotes the (Odecimai of the i-th selected Hadamard code sequence, which is 

corresponding to hi if it is used for the i-th code channel. Anyway, this code 
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searching can be viewed as a suboptimal code selection, since there may exist more 

interference between multicode term and interference term. By this code selection, 

more suitable Hadamard code sequences could be selected out than that by optimal 

code selection. 

As to the optimal code selection which is of most interest, in general, Ho and 

(0 < / < log2 N - \ ) may be selected, so the component code with one parity check 

bit is Hn. Therefore, for the Hadamard matrix of dimension N, the maximum number 

M of code channels is log2A^+l. By this optimal selection of Hadamard code 

sequences, all the component codes are different from each other. Therefore, the 

component of multicode signal is not affected by the interference component and the 

information bits can be well recovered. 

3.3 The Optimal Receiver for the 

Multicode System 

There are some redundant bits in the transmitted signals generated by nonlinear 

operations in the multicode scheme. Without loss of their energy, the optimal receiver 

is analyzed in this section, in which the maximum-likelihood (ML) sequence detector 

and maximum a posteriori (MAP) detector (a symbol-by-symbol detector) are 

considered respectively. 
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3.3.1 The Maximum-Likelihood Sequence Detector 

Given the observation sequence r = {r;，，...，〜} at the receiver side, the detector 

determines the sequence c = that maximizes the conditional pdf 

p(j\’r”…’ rN I c). At the transmitter side of the proposed multicode scheme, each 

M-dimensional vector a is passed through nonlinear operator to give an 

N-dimensional vector d = 5/g«(Ha)，in which set of code sequences is considered as 

a vector. In the case of an additive noise channel, the observation sequence at its 

receiver side can be expressed as r = d + n , where n is the noise vector. Therefore, 

the conditional pdf /̂(广““之，…，广“| c) is equivalent to the conditional pdf 

/7(广1，广2，...,"" I s), where s = sign{Uc). 

Assuming that only an AWGN channel is considered, for any given transmitted 

sequence s，the joint pdf of “！，广？，...，〜may be expressed as a product of N 

marginal pdfs [24]， 

N w 1 (r -s y 
p[r”r”…,rN I s) = [树r^t I = f l ^ ^ T ^ e x p - - ^ ― f -

众=1 &=1 _ ZC7„ � 
(3.16) 

广 1 � “ V 1 
- 1 exp - f (r「〜）  - p ^ exp 丄 2 ‘ {y/lTraJ L 2cr„ _ 

where the N noise components are zero-mean uncorrelated Gaussian random 

variables with a common variance a^ . 

By taking logarithm on (3.16) and neglecting the terms that are independent of 
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r = {尸1，尸2，...，广"}，it is found that an equivalent ML sequence detector which selects 

the sequence c = {Ci，C2，."，c^} producing the sequence s = that 

minimizes the euclidean distance metric [24] 

= (3.17) 
k=\ 

In searching the sequence to minimize the euclidean distance Z)(r,s), it is 

obvious that we must compute the distance Z)(r,s) for every possible sequence 

c = {Ci，C2，...，} and keep the record for the minimum distance. However, since the 

total number of the sequences is 2似，the complexity of computation increases 

exponentially with the number of code channels. 

In the simulation, the cases of 5 and 7 code channels are considered. The ML 

detector and the hard detector are used for signal detection respectively. The optimal 

and suboptimal code selection are both used for the simulation. When the ML 

detector is used, there is no interference. However, in the second case, 

matched-filters with hard decision are used, so the interference term takes negative 

effect on the performance. The simulation result is shown in Figure 3.2. From the 

result, it is obvious that the case with ML receiver is superior to the case of hard 

decision in terms of BER performance, since the ML receiver provides the optimal 

performance of the proposed scheme. For the case of ML detector, the slight 

difference of performance between the cases of 5 and 7 channels is caused by 

different numbers of possible sequences. For 5 code channels, the set of possible 
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sequences has elements, while the set of possible sequences has H elements for 7 

code channels. Therefore, the case of 5 code channels has a slightly better 

performance that of 7 code channels, if the lengths of output multicode signals are 

equal. In addition, for the second case, the degradation of performance of 7 code 

channels is caused not only by the bigger set of sequences, but also by the 

interference of code channels, because of matched-filters used in the receiver. Due to 

Hadamard matrix of order 16 used, 5 Hadamard code sequences are selected by the 

optimal code selection while 7 Hadamard code sequences can be only selected by the 

suboptimal code selection, which causes additional interference of code channels. 

Although the optimal performance is provided, the ML receiver is hard to be 

implemented in the practice, because the computation will be very complicated when 

the number of code channels is not small. Therefore, a feasible receiver providing 

near-optimal performance attracts more interests and will be considered and analyzed 

in the next chapter. 
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-K- N=16, M=5 with hard decision ! 

N=16, M=7 with hard decision 、） 
I I I I I 1 1  
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SNR (dB) 

Figure 3.2: The BER performance of ML detector versus simple hard decision 

3.3.2 Maximum A Posteriori Probability Detector 

This detector makes symbol-by-symbol decision based on the computation of the 

maximum a posteriori probability (MAP) for each detected symbol. On the basis of 

the received sequence r = {r;，厂2，...，""}，we compute the posterior probabilities 

Pr(c, = A I r,，广2，...，厂"）l<i<M;Ae {-1，+1}， （3.18) 

for the 2 possible symbol values and choose the symbol with the largest probability 

[24]. The equation (3.18) can be rewritten as 
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Pr(e,=^"、..，〜) = P r ( � ^ A _ = , =t (3.19) 

Since the denominator is common for both probabilities, the maximum a 

posteriori (MAP) criterion is equivalent to choosing the value of c,. that maximizes 

the numerator of (3.19). Thus, the criterion for deciding on the transmitted symbol c/ 

is (see [24]) 

Ci = arg maxPr(r,，r^，…，| c. 二 A)Pr(c. = A). (3.20) 

When the symbols are equally probable, the probability Pr(c. = A) may be 

dropped from the computation. In [24], the MAP algorithm for symbol-by-symbol 

detector is written in details as follows. The algorithm for computing the 

probabilities in (3.20) begins with the first symbol cj. We have 

c, =arg maxPr(A"i，，."，"" = = � 

= arg max I…IPrOi，尸2，..•，尸at |Ci，C2，.",CM)Pr(C2，."，ĉ  k i )Pr(c , ) (3.21) 
C2 CM 

= arg maxZ…ZPr(/̂ i，/̂ 2，...，〜|Ci，c:2，...，^W)Pr(Ci，C2”..，C;iJ, 
C2 CM 

where c, denotes the decision on c!. The joint probability Pr (c"c2，…，may 

be omitted if the symbols are equally probable and statistically independent. 

For detection of the symbol c^，we have 

？2 = arg maxPr(ri，r2，...，r" | c^ = j )Pr(C2 = A) 

= arg maxZ…ZPr(ri，r2，...，〜I C2，."，C似）Pr(c3，...，c似 (3.22) 
(2 Cj CM 

= arg max]^�ZPr(ri’r2，...，^V k2”..，c )̂Pr(C2，".，CM). 
CI C3 CM 
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In general, the algorithm for detecting the symbol c,. is as follows [24]: upon 

reception of r = {r,,，."，〜}，we compute 

Ci =arg maxPr(r,,r2,...,r^ k,.)Pr(c.) 

V V- (3.23) 
=arg max ^ P r ( r ,，， . . .，�I c,.，c,.̂,，…，c似)Pr(c,.，（；+！，…，c似). 

c … C M 

The joint probability may be omitted if the symbols are 

equally probable and statistically independent. 

In this simulation, the cases of 5 and 7 code channels are considered. The MAP 

detector and the hard detector are used for signal detection respectively. The optimal 

and suboptimal code selection are both used for the simulation. The simulation result 

is shown in Figure.3.3. MAP detector is also an optimal detector, which minimizes 

the symbol-by-symbol errors. However, in this simulation, information bits are 

transmitted randomly, and symbols "0" and "1" are equally probable, so the MAP 

detector and ML detector provide the identical optimal performance of the system. 

Similar to ML detector, the complexity of computation of MAP detector 

increases exponentially with the number of code channels, so this optimal MAP 

detector is not practical. An iterative MAP detector involved with iterative decoding 

will be discussed later. This kind of detector can provide near-optimal performance 

and the complexity level of computation is much lower than that of optimal detector. 
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Figure 3.3: The BER performance of MAP detector versus simple hard decision 
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Chapter 4 

Multicode CDMA System Combined 

with Error-Correcting Codes 

In the previous chapter, we have introduced a general multicode scheme with 

constant amplitude transmissions and investigated the performance of such scheme 

with the optimal receivers. This multicode scheme can be considered as a SPC 

coding scheme due to one parity check bit generated. However, if we consider this 

multicode scheme as a standalone coding scheme, this single parity check bit can 

hardly improve the performance of whole system significantly. Thus, the 

combination of this multicode scheme and error-correcting coding scheme is 

inevitable. The proposed multicode system with a precoder is shown in Figure 4.1, 

which is a general version of multicode system combined with error-correcting codes. 

On the other hand, we have noticed that the complexity level of computation of the 

optimal detector is extremely high when the number of code channels is not small 

and size of the error-correcting code is big, so a suboptimal receiver providing near 
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optimal performance with less complexity of computation is necessary. In this 

chapter, an iterative decoder with message passing algorithm is considered, and 

scenarios of Hamming code, Gallager's code, and zigzag code applied in the 

precoder is investigated respectively. The analysis begins with the simplest case of 

Hamming code. 

Conventional 
Multicode Scheme 

1 j I 1 

J i 「 h i i 

一 一 
^ 召 丨人h 2 s I 

Information S ^̂  | • f f l • U -UTsi^ iTW 

bits precoder [—• S/P • g* • j ^ \  
. ？ •丨 h 

2 • ！ r - K 1 
• c^i A i 

K^)^^^^― i 
• L J 

Figure 4.1: Transmitter scheme of proposed multicode system with precoder 

4.1 Hamming Codes 

In this scenario, Hamming encoder plays the role of the precoder in Figure 4.1. 

Information bits are encoded into Hamming codes by precoder and then fed into 

input buffer. After M encoded bit streams are stored in the buffer, the input bits 

rearranged by the input buffer are fed into the multicode scheme. By this multicode 

scheme, M more parity check bits are generated by this multicode scheme. Data 

pattern of system is shown in Figure 4.2，where we can find that the whole data 
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pattern is a linear coding scheme known as a product code or a turbo block code. 

Therefore, the combination of Hamming code and the proposed system may greatly 

improve the performance of this multicode system. 

P,. is the parity check bit Cj , is the information bit 
iror i-th code channel fir i-th code channel 

S 

Pl’r … P l , 1 …^1,1 — ^ 
Data Patterr w 

in Input ~ ° 

Buffer § I 

PM,r ••• PM,1 ^M.k … C M , I ~ ^ 8 

PP is the parity check bK CPj is the parity check bit 
of {Pj,: for all i} generated of : for all i} generated 

by sign function by sign function 

Figure 4.2: Data pattern of proposed system 

To optimally decode this product codes, maximum likelihood decoding can be 

done by searching all possible message bits {Qj： 1 < i< M, 1 <j <K). However, the 

complexity of computation increases exponentially by the size of the product codes, 

so it is infeasible when the size is not small. Therefore, an iterative decoding 

algorithm known as message passing algorithm [25] is used, which will be presented 

in details in the next section. Following the idea of graphic decoding given by [26], a 

parity check matrix of the product codes can be written out, by which the product 

codes can be represented in bipartite graph [26]. For M=3 and (L,K) Hamming codes 

are used as precoder, the parity check matrix of the product code is as 
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V 0 0 0" 

0 J 0 0， (4.1) 
0 0 7 0 
1 I I I 

where J is the parity check matrix of Hamming code and / is an LxL identity matrix. 

Based on (4.1) or its bipartite graph, this iterative decoding is performed by shuttling 

the message between code bits and parity check bits. Through finite number of 

iteration of this decoding, the performance is getting near to that of ML decoding. 

The complexity of computation of this iterative decoding algorithm is much lower 

than that of ML decoding, so this decoding scheme is feasible in the actual 

applications. 

4.2 Gallager's Codes 

4.2.1 Encoding of Gallager's Codes 

Gallager's code, also known as low-density parity check (LDPC) code, is firstly 

proposed and analyzed by Gallager [27]. A LDPC code is specified by a sparse 

matrix containing mostly O's and relatively few I's. An {nj,k) LDPC code is a code 

of block length n with a parity check matrix, where each column contains a small 

fixed number j of 1 ’s and each row contains a small fixed number k of 1 ’s. Such 

LDPC code is often known as a regular Gallager's code. In [27], Gallager also 

proposes a random construction for parity check matrix, which is introduced as 
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follows. 

The {nj,k) parity check matrix is divided into j submatrics with each containing a 

single 1 in each column. The first submatrix contains all its 1 ’s in descending order; 

that is, the i-th row contains I's in column {i-l)k+l to ik [27]. Table 4.1 shows an 

example of the first submatrix for «=20,y=3, and ^=4 

Table 4.1: The first submatrix for /i=20,y=3, and 
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

The other submatrices are merely column permutations of the first submatrix. The 

ensemble of {nj,k) LDPC code is achieved by random permutations of the columns 

of each of the bottom j-\ submatrices with equal probability assigned to each 

permutation [27]. The parity check matrix of a (20,3,4) code may be (due to the 

random permutation) illustrated in Table 4.2. 

It is obvious that a {nj,k) LDPC parity check matrix has M=nJ/k rows and at 

least (/-I) rows are linearly dependent. Thus the codes have a slightly higher 

information rate than the matrix indicates [27]. The coding 

, „ �n - n j / k 1 .., 
rate/? > = 1 - j / k . n 
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Table 4.2: Example of parity check matrix for «=20，戶 3，and k=4 
1 丨 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 

We can also notice that this type of matrix does not have the check digits 

appearing in diagonal form, namely the systematic form. Therefore, encoding 

message block with Gallager's encoder is a problem. However, there are two ways to 

deal with this problem. 

The first simple approach is to transform parity check matrix H into systematic 

form H，using Gauss-Jordan reduction. Systematic matrix H’ can be expressed as 

H'=[I\R], where / i s an M-hy-Midentity matrix indicating check digits and Risa. 

matrix of size M x{n-M). However, by this approach, the sparseness of the matrix 

may be lost due to the row operations involved in the Gauss-Jordan reduction. If the 

systematic form of H for encoding, the systematic form H�has to be used for 
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decoding. Moreover decoding is fast if the matrix is sparse, so the decoding with H� 

may take longer time due to lack of sparseness. 

Another approach [33] to deal with this problem is shown as follows. Given a 

codeword u and an M by TV̂  parity check matrix H, we have ulTM). Let us assume 

that the message bits, s, are located at the end of the codeword and the check bits, c, 

occupy the beginning of the codeword, i.e. u=[c\s]. Also let, H=[A\B], where ^ is an 

M-hy-M matrix and 5 is a matrix of size M x{n-M). Then 

Ac + Bs = 0=>c = A~^Bs, 

which can be used to compute the check bits as long as A is non-singular and not 

only when ^ is an identity matrix (H in systematic form). If the parity check matrix 

H do not have non-singular submatrix A, we can rearrange the columns of the parity 

check matrix in order to make A a non-singular matrix. Since no row operation is 

done throughout the procedure, the sparseness of the matrix is not affected. Therefore 

encoding by this approach is more efficient. 

Another important point for Gallager's code is its graph representation by which 

the coding structure is more comprehensive. Every block code can be represented by 

bipartite graph [26], which consists of check nodes and bit nodes. Often bipartite 

graph is used for the representation of Gallager's code. To illustrate this coding graph, 

a small example is given. We consider the following parity check matrix 

Âl X2 X^ X^ X^ X-j 

1 1 1 0 1 0 0 
1 1 0 1 0 1 0 
1 0 1 1 0 0 1. 
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In this parity check matrix, x^^x^^-'-.x^ represent the codeword bits indicating the 

bit nodes in bipartite graph. The 1 ’s in each row stands for the connections between 

the check nodes and corresponding bit nodes. Figure 4.3 shows the bipartite graph 

for this coding example, in which circles stand for the check nodes indicated by 

parity check bits, and squares stand for the bit nodes. 

This graph representation for Gallager's codes plays an important role in 

decoding the Gallager's codes. The message passing algorithm used in the decoding 

is derived based on this bipartite graph. 

Figure 4.3: The bipartite graph for the example 

4.2.2 Multicode Scheme combined with Gallager's 

Code 

In the previous subsection, the case of Hamming code is a small example of 

combined scheme. In order to improve the performance of whole system 

dramatically, Gallager's encoder is considered as the precoder. Base on Figure 4.1， 

the scheme can be depicted into Figure 4.4，in which S/P module is ignored for 
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simplicity, and input buffer is converted into a random interleaver, which sends out 

M bits per time slot. The output of compound (global) coding scheme of the whole 

system can be viewed as serial concatenation code (SCC) with Gallager's code as the 

outer code and SPC code as the inner code, so this coding structure contributes to 

improvement of the performance. 

outer encoder innsr encoder 
r 1 I 1 
I Gallaaer、s ‘ • . • ！ ^ Multicode . ！ ‘  

_ ojiii«iy«i » _ nterleaver ~ - ^ h o m o — Sign ~ 
I Encoder i i Scheme i 

I I I J 

Figure 4.4: Proposed multicode system with Gallager's codes 

The concatenation of Gallager's code and SPC code can be viewed as a new 

Gallager's code instead of SCC. Therefore an iterative decoding algorithm with 

respect to the new Gallager's code is used so that the parity check bits generated by 

the multicode scheme are fully utilized. From the bipartite graph of Gallager's code, 

the structure of global coding scheme is more pellucid. Take M=3 for example. If the 

assumed bipartite graph of original Gallager's code is shown in Figure 4.5(a), the 

bipartite graph of new Gallager's code may be depicted as Figure 4.5(b). Since there 

is a random interleaver between Gallager's encoder and the multicode scheme, the M 

links between original codeword bit nodes and a new parity check node are randomly 

set. Thus it is obvious that this construction of new Gallager's code follows the idea 

of random construction proposed by Gallager [27], but the new code is an irregular 
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Gallager's code [28]. 

Check Nodes 

Codeword Bit Nodes 

(a) 
Check Nodes 

/ New Codeword Bit 

[ J Q 0 [p D p j i 

/Codeword Bit Nodes^,---'''''^ 

New Check Nodes 

(b) 
Figure 4.5: (a) Bipartite graph of original Gallager's code; 

(b) Bipartite graph of the new Gallager's code. 

If the parity check matrix of original Gallager's code (L is the length of the 

code and R is the number of parity check bits of the code) is written as Q, an RxL 

matrix, then the parity check matrix of new Gallager's code is written as 

「2 0] 
P /J， （4.2) 

in which P, determined by the interleaver, is an {L/M)xL matrix, which is 
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randomly set and contains M 1 's in each row and one 1 in each column, and I is an 

{L/M)x(L/M) identity matrix. With this parity check matrix and its bipartite graph, 

the iterative decoding can be performed. 

4.2.3 Iterative Decoding of the Multicode Scheme 

An iterative decoding with message passing algorithm is to be analyzed in this 

subsection. The message passing (MP) algorithm is an APP algorithm only if the 

code graph has no cycles, however, this algorithm performs remarkably well on 

Gallager's codes. 

At the receiver side, after obtaining coded information bits contained by the 

corresponding Hadamard code sequences, the decoding with respect to the whole 

equivalent Gallager's code is performed by MP algorithm, an instance of 

sum-product algorithm [29]. The following convention is necessary for description of 

MP algorithm, {xj} stands for the codeword bits of whole equivalent Gallager's code 

and N channels output r. Let M{j) be the set of parity nodes connected to the code bit 

Xj, and N{m) be the set of bit nodes connected to the w-th parity check node. q„,j{a) 

is the probability that the bit j of r whose value is given by the information obtained 

via the M-\ check bits apart from check m. r^j{a) is the probability of check bit m 

being satisfied by bit j of r，if r) is suppose to be fixed at the value a e {0,1} and the 

other N-\ bits have a separable distribution given by � �： / e N{m) \ j. Then the 

decoding procedure is executed by passing the message (information) between parity 
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check bits and codeword bits, whose probability domain decoding algorithm is 

shown as follows (see [25] and [29]). 

0) Initialization: 

The variables ql^ are initialized to 

for j = 0，...’7V"1 

(rj-n' 

⑴ 丨 = " 7 = 7 e x p 2�' 
^llTra^ 

end 

1) Check node updates., (see Figure 4.6) 

foi7. = 0,...’"-1 

for m G M{j) 

〜乂0)=4{1+ n[uo)-�""..(i)]} 
2 i'BN(m)\{j) 

� � = | { 1 一 n k „ / . ( o ) - � / . � ] } 
2 i'eN{m)\{j) 

end 

end 
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Check node 

盧fcv 
bit nodes 

Figure 4.6: (Check node updates) Message passing from check node m to bit node j 

2) Bit node updates', (see Figure 4.7) 

The constant a and p are chosen to make ^(0) + ^(1) = 1. 

for j = 0，".，7V"1 

M l ) 二 凡 r K • � 
m'eM{j)\m 

end 

The q j ’s are updated as: 

fory = 0,...,7V-1 

ni'eMiJ) 

qjm^M FKv•� 
m'eMU) 

end 
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Check nodes 

( T ) ( T ) • • • ( m ) • • • ( m ) 

bit node j 

Figure 4.7: (Bit node updates) Message passing from bit node j to check node m 

3) Verify parity checks 

fory = 0，".，"-l 

if then 义乂 二 0 

else Xj - 1 

end 

if (finite number of iteration) o r ( / / ^ i = = 0 ) 

done 

else 

go to (1) 

end 

From above, the details of messages shuttling between check nodes and bit 

nodes are well unveiled. Moreover, a fact is evident that the decoding can be 
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performed only via the parity check matrix involve in the scheme, although the 

bipartite graph of the code is mentioned throughout the algorithm. Therefore, 

determining the parity check matrix of the global code of the whole scheme is 

necessary and enough for the decoding part. However, there are some conditions on 

the structure of a parity check matrix, under which the MP algorithm can perform 

well. Although the analysis on the structure of a parity check matrix is beyond the 

scope of this thesis, these conditions are met for all the codes in this chapter due to 

their particular structure, which has been proved in their original work. 

4.3 Zigzag Codes 

Zigzag code as an instance ofLDPC code has been proposed in [30]. It can be simply 

encoded, due to its regular structure. A zigzag code can be represented graphically as 

shown in Figure 4.8，in which the square nodes stand for the information bits: 

{d{ij)}, i = 1，2，. • .，/，j = 1，2，.. .，J, and the circle nodes represent parity check bits: 

{p{i)}J = 1，2,. .，/ . The encoding procedure is straightforward. The parity check bits 

are generated progressively as follows 

7=1 

p{j) = ̂  d{U j) + P(i -1) mod 2，i = 2，3,. .，I. (4.3) 

The code is systematic with coding rate J/(J +1). It is obvious that the zigzag code 

is completely parameterized by the pair (I, J). The error-correcting capability of the 
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zigzag code itself is weak since it has a minimum distance d^^ = 2 for any pair 

(/，J) [30]. However, the concatenated zigzag code is more powerful and useful, 

which is considered in our combined multicode scheme. 

d(1.1) 

\ \ \ 
^ C r d(i,2) 

Figure 4.8: Graph representation of the zigzag code with J=3 

With zigzag encoder as the precoder, the structure of this combined scheme is 

illustrated in Figure 4.9’ in which parallel concatenated zigzag code with M 

constituent encoders is used before multicode scheme. The output signal may be 

rearranged as [output 1，output 2]. Thus, the equivalent coding scheme of whole 

system is a kind of hybrid-concatenated code. From aspect of the compound coding 

scheme, the decoding procedure is performed based on the parity check matrix of the 

compound code, similarly to case of Gallager's code. 
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Figure 4.9: Proposed multicode system with zigzag code 

If the parity check matrix of (C/, V, M) concatenated zigzag code is written as Q, 

a iV •M)x{U-V + V-M) matrix, Q can be divided into sub-matrices Q^ and 0凡， 

i.e. 0 = [& Qp、…]，in which Q^ is the matrix with respect to the message bits and 

Qp is the matrix with respect to parity check bits in z-th constituent code. If the 

output bits are arranged as [output 1，output 2]，the parity check matrix of compound 

code is written as 

0 e , . … Q p m O" 

T Ic 0 ... 0 0 ， （4.4) 

0 0 /p … I p Ip_ 

in which T, determined by S/P module, contains M i ' s in each row and one 1 in each 

column, and/ is a ^LLx^LLidentity matrix while T isa FxFidentity matrix, 
C M M P 

Therefore, with the parity check matrix of (4.4)，the iterative decoding algorithm 

can be executed according to the previous subsection. 
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4.4 Simulation Results and Discussion 

In the simulation, we consider M=3 code channels for multicode and AWGN channel 

for transmission. By the optimal selection of Hadamard code sequence, Ho, H“ and 

H2 are selected out of 4x4 Hadamard matrix for three code channels. In this simple 

case, there is no interference component in the resultant multicode signal d. Message 

passing algorithm is used for iterative decod ing .� 

Simulation A\ (15,11) Hamming code is applied in the precoder. Its result is shown 

in Figure 4.10. In proposed scheme, the performance is improved with an increase in 

the number of iterations However, at BER of 10"^ improvement between 10 and 15 

iterations is less than 0.2 dB while more than 1 dB is achieved by 2 iterations over 1 

iteration. With 15 iterations, SNR is about 5.3 dB at BER of 10"̂ . From Figure 4.10， 

it is found that at BER of 10'̂  with 15 iterations, the system with precoder achieves 

more than 1.6 dB over the system without precoder, which applies ML (optimal) 

detection. Compared with the conventional multicode scheme with identical precoder, 

the proposed scheme achieves about 1.3 dB at BER of 10'̂  with 15 iterations. 
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10"V 1 . 1 1 q 

芸 10'' r -e- 1 iteration ^ ^ 

: H B - 2 iterations ： 

-O- 5 iterations \\\ 、 ] 

-V- 10 iterations \\ \ 

1 0 - 5 「 1 5 iterations \ 0 \ : 

； — W i t h o u t precoder (ML detection) \ = 

Con\ABntional multicode scheme \\、〉 

with precoder (15 iterations) 

10"® I 1 ‘ 1 1 ‘ ^ 

1 2 3 4 5 6 7 

Eb/No (dB) 

Figure 4.10: BER Performance of proposed system with (15,11) Hamming code 
using iterative decoding algorithm 

Simulation B. (504,252) Gallager's code of coding rate-1/2 is applied in the precoder. 

Its result is shown in Figure 4.11. The compound code of proposed scheme is 

(672,420) Gallager's code of coding rate-3/8. In this scheme, the performance is 

improved with an increase in the number of iterations, however at BER of 10" 

improvement between 15 and 20 iterations is less than 0.1 dB while more than 0.9 

dB is achieved by 10 iterations over 5 iterations. With 20 iterations, SNR is about 2.6 

dB at BER of 10"̂ . Compared with the system without precoder using ML (optimal) 
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detection, multicode scheme combined with Gallager's code dramatically improves 

the performance at low SNR. And in comparison of the conventional multicode 

scheme with identical precoder, the proposed scheme achieves about 0.3 dB at ICT* 

with 20 iterations. Although the improvement is slightly, the most important point is 

the signal of combined scheme with ECC has constant amplitude, while the signal of 

conventional multicode scheme with identical precoder has a large envelope 

variation. 

“ , ) 
山 1 iteration -

m 2 iterations : 

5 iterations \\ 

10 iterations \ \ 亡̂  

15 iterations \ \ -

Iq-5 20 iterations \ 

—t— Without precoder (ML detection) \ V 

ConNAsntional multicode scheme \ ： 

with precoder (20 iterations) 、、 
10"® I I I I I 1 1 1 1 ‘ 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 
Eb/No (dB) 

Figure 4.11: BER Performance of proposed system with (504,252) Gallager's code 
using iterative decoding algorithm 
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Simulation C: (100,3,3) zigzag code of coding rate-1/2 is applied in the precoder. Its 

result is shown in Figure 4.12. The coding rate of global equivalent code is 3/8. In 

this scheme, performance is improved with an increase in the number of iterations, 

however at BER of 10"̂  improvement between 15 and 20 iterations is less than 0.1 

dB while more than 0.6 dB is achieved by 10 iterations over 5 iterations. With 20 

iterations, SNR is about 2.9 dB at BER of 10"̂ . Compared with the system without 

precoder using ML (optimal) detection, the system with zigzag coding has a much 

better performance at low SNR. And compared with the conventional multicode 

scheme with identical precoder, the proposed scheme achieves more than 0.15 dB at 

10-3 with 20 iterations. Although the improvement is slightly, the most important 

point is the signal of combined scheme with ECC has constant amplitude, while the 

signal of conventional multicode scheme with identical precoder has a large envelope 

variation. 
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Figure 4.12: BER Performance of proposed system with (100,3,3) zigzag code using 
iterative decoding algorithm 

In this chapter, we have investigated multicode CDMA system with constant 

envelope transmission combined with error-correcting codes. Hamming code, 

Gallager's code, and zigzag code are analyzed respectively. Through analysis, it is 

found that the structure of coding scheme of the combination is equivalent to that of 

concatenated coding scheme, which guarantees the good performance of whole 

system. An iterative decoding based on massage passing algorithm is described in 

details. The complexity of computation of this decoding scheme increases as the 
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number of iteration increases (the performance is getting better), but the complexity 

level is much less than that of ML or MAP detector, whose complexity increase 

exponentially with the size of code and the number of code channels. The system 

with precoder achieves much better performance over that without precoder and 

outperforms the conventional multicode scheme with identical precoder. Block code 

with large size such as Gallager's code and zigzag code selected as outer code can 

dramatically improve the performance since the new compound (global) code has a 

better error-correcting capacity. 
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Chapter 5 

Multicode CDMA System with 

Bounded PAP Transmission 

In chapter 3’ a general scheme of multicode CDMA system with constant amplitude 

transmission has been proposed and analyzed in details. In that scheme, PAP of 

multicode signal is OdB, since the envelope of the signal maintains constant, but the 

number of code channels is small when the spreading gain (order of Hadamard 

matrix) is fixed. In this Chapter, two basic ideas on multicode scheme with bounded 

PAP transmission are introduced. In these schemes, envelope variance of multicode 

signal does exist, but PAP is small and upper bounded. Therefore, this kind of 

multicode signal is also suitable for wireless applications. 
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5.1 Quantized Multicode Scheme 

5.1.1 System Model 

In the previous multicode scheme with constant amplitude transmission [32], a sign 

function implements a nonlinear signal processing on the conventional multicode 

signal. From another point of view, we can consider this kind of signal processing as 

an extreme quantization on the conventional multicode signal, because it has only 

two quantization levels {+1, -1}. Naturally, an extreme quantization will cause more 

interference due to its distortion, so the interference will be less if a loose 

quantization is used. Now, we consider a quantization algorithm as shown below. 

d = quanti{Hc) = quanti{s), 

3 ， i f - < x < V 
J 2 

1’ i f O < x < ^ (5.1) 
quanti{x) - j y 

- 1 ， i f 一 一 < x < 0 
J 2 

一 3 ， i f - F < x < - j , 

in which V is the maximum value of signal amplitude. If M code sequences are 

selected from Hadamard matrix H, the possible maximum value of amplitude is M, 

and then 厂 can be replaced by M. To better understand this quantization, Figure 5.1 

gives an example. 
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voltage. 

+V  

3 

3 

+V/2  

1 
0 • 

time 
-1 

-V/2  

-3 

•V -

Figure 5.1: An example of the quantization 

Sign function has been replaced by this kind of quantization module. The 

proposed multicode CDMA system should be modified and the new transmitter 

scheme could be depicted as Figure 5.2, in which hph!’…,h^ are the Hadamard 

code sequences selected from Hadamard matrix. 

I r hi I 
b ' . 。 I ——» I 

M bi.1 I ‘ j Y 
S / p ‘ j v J ^ S U M - j • quatization - > ( 7 ) ~ ~ 

• 丨 丨 ""“0 W , 
• I i PN gen. 

I I— K 丨 
V ” I >1 I 

IWHT 

Figure 5.2: Transmitter scheme of quantized multicode CDMA system 
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5.1.2 Interference of Code Channels 

Now we should analyze the effect of this quantization and then present code 

selection by which the interference of code channels is minimized. Knowing the 

interference among the code channels introduced by the quantization, we have to find 

the energy distribution on each Hadamard code sequences Hi where 

N is the order of Hadamard matrix {N > M) by checking every output of the 

correlation in the receiver. Figure 5.3 illustrates its correlation-type receiver. 

H。  

r - ^ — — ^ ( 1 / N ) * S U M ( . r ^ p � 

Y i f ——^ (1/N)*SUM(.)~}~^ PI 

~ ~ • LPF > • 

• 

W。 PN gen. ！^ Ĥ .̂   

——(1/NRSUM(.)"J—• PM.I 

Figure 5.3: Correlation-type receiver of quantized multicode system 

Hi stands for z-th column of Hadamard Matrix H, and p/ stands for each output of 

correlation. By checking p,.，we can know the energy distribution on each Hadamard 

sequences Hi, 

Assuming that the code selection of multicode scheme with sign function is also 

valid for this quantized multicode system, we can get some results shown as follows. 
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Firstly, we choose Rademacher functions Ri as candidate sequences, where 

f H, i = 0 
R.=\ 1 (5.2) 

And there are logj N +1 Rademacher functions in Hadamard matrix of order N. 

Now we consider several cases of M=3, 5，and 7，since the code channels of 

these numbers are possibly used in practice. The interference is measured by the 

energy distribution on all the possible code channels, which is calculated by 

collecting all the possible input information bits. 

In the case of M=3, the minimum order of Hadamard matrix should be 4. H\, Hi, 

and Hi are selected. The energy distribution is show in Table 5.1. 

Table 5.1: The energy distribution of 3 code channels with N=A 

IP/I |p2| |pj| 
一 1 I 1 I 1 I 0 

Because in this case the multicode signal keeps unchanged from the quantization, 

there is no interference from other unselected Hadamard sequences and no any 

parity-check bit generated. 

In the case of 5 code channels, Hadamard matrix of order A^=16 is used. H], H2, 

Hs’ Hs, and //pare selected followed the basic idea of code selection. Table 5.2 shows 

the energy distribution. 
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Table 5.2: The energy distribution of 5 code channels with "=16 

~TP/I |p2l Ipil IP Î Ipil M |p7| \p8\ 
7/8 m m 1/8 m m m iTs"" 

IPPI \PJO\ IP"| M |p/j| \PI4\ IP/JI IPMI  
1/8 1/8 1/8 1/8 1/8 1/8 1/8 “ 

There is little interference from other unselected Hadamard sequences and no any 

f y V 
parity-check bit generated. The energy of multicode signal is 5x - =3.8281， 

voy 

f l V 
while the energy of interference is l l x - =0.1719 • Thus, the 

signal-to-interference ratio is 22.2, or 13.5dB，while signal-to-interference ratio of 

multicode scheme with sign function is 5.4，or 7.3dB (with parity check bit energy 

counted into signal energy). 

In the case of 7 code channels which is of most interest, Hadamard matrix of 

order N=64 is used. Hi, Z/】，H3’ H5, Hg, Hn, and H33 are selected. The energy only 

distributes on p；, p2, pj, pj, p9, p"，and pjiplus p ^ with absolute value 1/2. There is 

no interference from other unselected Hadamard sequences and one parity-check bit 

generated on code Hf^. Moreover, we can also check another case of 7 code channels 

with N=Y6 instead of A^=64. H“ H2, H3，H5, Hg, Hg, and Hjs are selected as candidate 

code sequences. The result shows that no interference from other Hadamard 

sequences, and there is a parity check bit on H?. By checking all the sets of 

Hadamard code sequences (when the order of Hadamard matrix is fixed and N>M), 

the identical results are presented. Therefore, a general expression for this case can 
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be derived as below: 

1 7 1 
d = - 7C1C2...C7V办2。"•。办7 • 

From this expression, it is obvious that there is no interference and one parity check 

bit is generated in the case of 7 code channels. For this case, the code selection is 

much easier, due to the clear structure of the expression. 

From checking the specific cases, which are possibly used in the practice, it 

found that interference among code channels is little or none, so this quantized 

multicode scheme is feasible and valuable. Moreover, the PAP of the output signal is 

upper bounded by a certain value due to the same quantization performed on every 

case. However, general mathematical analysis and optimal selection of Hadamard 

code sequences are given here, which is left for the future work. 

5.2 Parallel Multicode Scheme 

5.2.1 System Model 

In the multicode scheme with constant amplitude transmissions, the number of code 

channels is small when the spreading gain (order of Hadamard matrix) is fixed. On 

other hand, if number of the required code channels is not small, the minimum 

spreading gain will be very large. To solve this problem, a parallel multicode CDMA 

system is proposed based on the multicode scheme with sign function, as shown in 

74 



Chapter 5 Multicode CDMA System with Bounded PAP Transmissions 

Figure 5.4. 

For the least envelope variance of resulting multicode signal, three multicode 

modules with sign function are connected parallel. Therefore, in this scheme, the 

number of possible code channels is three times of that of pure multicode scheme 

with sign function when the spreading gain is fixed. 

————> SUM • Sign ~ - • 

• 厂 h, M 

^ S/P ~~•(x)-—» SUM ——• Sign SUM 

————^ SUM • Sign ~ - ~ • 

Figure 5.4: Transmitter of the parallel multicode scheme 

5.2.2 Selection of Hadamard Code Sequences 

A. Optimal Code Selection 

By a good code selection for {/?„«}，we hope that there is no interference among 

these terms in (3.4). By the knowledge of the property of Hadamard matrix, which 
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can be expressed by 

Hi。Hi。…。Hi = 丑 ， （5.3) 

in which //yis the (/+l)-//2 column of Hadamard matrix, we can further describe the 

code selection more explicitly. We can view this set of 67, 62, ... , a binary form 

of index of Hadamard sequences selected for h“ h2, ...，HM, as the basis of a 

particular vector space, which is spanned with odd combinations of bj, b2, ...，BM, 

due to the structure of (3.4). Because the combinations are performed in GF(2), the 

number of elements in the vector space is finite and upper bounded by 

(M-\)/2f M � 

y = 2^"'. If there is no interference among these terms in (3.4)，the 

S I2/ + 1J 
number of distinct elements in the vector space should be and such M 

Hadamard code sequences are good for generating multicode signal with constant 

envelope. Rademacher function is one of the solutions, which is analyzed in Chapter 

3. 

However, this vector space is only subset of whole vector space of 

log2A^-dimension. Thus, there probably exist two or more such vector spaces, whose 

elements are totally distinct. The scenario is shown below, 
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(SD 
Figure 5.5: A scenario of many non-overlapped vector spaces 

In Figure 5.5, S is the whole vector space containing N elements, while Si is a vector 

space spanned by one of the subsets chosen from bi, bz, ...，b^,. Each Si contains 

2似-1 distinct elements. Since they do not overlap between each other, there is no 

interference among these sets of M Hadamard code sequences. From this idea, we 

can use more Hadamard sequences to produce the multicode signal. One possible 

scheme is that we can select three sets of M Hadamard code sequences such that 

three vector spaces thus spanned are non-overlapped. Each set is used to produce one 

multicode signal with constant amplitude, and finally we add these three multicode 

signals together to form the final resultant multicode signal. 

According to Figure 5.4, the input information bits are 

严={ci，c2”..，c^，...，c2;^，."，c3^}，which are split by S/P module into three vectors 

C:(')={CI,I，CI,2，...，CI’M}� C(2)={C2’I，C2,2，...，C2’m 广，and C(3)={C3,I，C3’2,".，C3,M}\ 

The relationship between a in c了似 and Cj,k in c()) can be clarified by 

i = {j-l)*M + k . Thus, the final multicode signal 5 can be expressed as 

s = j ^ s i g n ( H U \ c ( j � �， i n which H^'^ = . For example, we 
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consider the case of N=\6 and M=3. We can search for the three sets of M good 

Hadamard code sequences. The result may be l/”={J^2’ 场，付P}, Hy, Hjs}, 

and f P � = { H i ’ Hs’ Now we will check whether they are good Hadamard code 

sequences. The vector space Si spanned with the binary form of {2，3，9} is {2, 3，9， 

12}. The vector space S2 spanned with the binary form of {4，7，13} is {4，7，13,10}. 

The vector space S3 spanned with the binary form of {1，8，14} is {1，8，14，11}. We 

find the number of elements in each vector space is 4 and three vector spaces are 

non-overlapped, so they are one of the optimal code selections. 

B. Suboptimal Code Selection 

For M=3, it is quite easy to find such good Hadamard code sequences, however, 

if M is larger than 3，i.e. 5, maybe you cannot find solution using the searching 

method in a tolerant period of time. To solve this problem, we can use the similar 

algorithm to find suboptimal solutions. In (3.4)，terms with p, and PM have the 

major energy. So if there is no interference between these two terms and other terms, 

the case is also a good solution. Now, we can change the scenario in Figure 5.5 into 

another scenario, which is shown in Figure 5.6. 
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(fD 
Figure 5.6: A scenario of three overlapped vector spaces 

In this scenario, we find that vector spaces Si，S2，S3 have some overlapped area. 

If the basis, which spans S/，and the element corresponding to the parity check bit are 

not located in the overlapped area, we consider this code selection as a suboptimal 

solution. For example, we consider the case of A^=64, M=5. We can also use the 

searching method to find three sets of M good Hadamard code sequences. In this 

searching procedure, only the elements corresponding to the information bits and the 

parity check bit are guaranteed to be out of the overlapped area, so the complexity of 

searching procedure is lower. The result may be 

ffHH7,H丨 I，HI9,HI3,H35"^, 

//2)= {H!4, H22. H38, H26, H28}, 

lf�={H3,H5,H9,Hi7,H33l 

Now we will check whether they are good Hadamard code sequences by Table 5.3. 
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Table 5.3: Three vector spaces spanned with selected sets of sequences 
Index of Decimal representation of vector space thus spanned 

sequences 
7’ 11，19’ 13，35 ~l7\h 19,13，35，49，31，1，47，25，55，41，21，59，37，61 
14，22，38，26，28 14，22，38，26，28，64，62，2，4，50，52，16，42，44，24，40 

3，5，9，17，33 3，5，9，17，33，63，15，23，39，27，43，51，29, 45，53，57 

In Table 5.3, the numbers in bold fonts represent the corresponding Hadamard code 

sequences on which the major energy is distributed. We find that the elements in bold 

are unique in the whole vector space, so they are surely out of the overlapped area. 

Therefore, these three sets of Hadamard code sequences are one of suboptimal code 

selection. 

C. Brief Discussion on PAP 

Now we consider the PAP of final multicode signal For simplicity, the 

symbols of “-1” and "+l" in 严 are equally probable and M is 3. Letting 

r, = 7 / �c �， w e analyze the distribution o f n . Since “-1” and in c � are equally 

probable and the values of elements o f / / D are only"-l" and “+1”，the distribution of 

n has nothing to do with the structure of//丨).Thus the distribution of n is shown in 

Table 5.4. 

Table 5.4: The probability distribution of r\  
~~ri I -3 I -1 I 1 I 3  

m 3/8 3/8 1/8 
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Therefore, d\ is uniformly distributed on {-1,+1}. Similarly, we know that the 

probability distribution of 5 is the same as that of r\ since probability distributions of 

ri, "2，and n are same. The average power Pave of signal s is 可if]，so 

3 1 
P = l x 2 x - + 9 x 2 x - = 3. And, the potential maximum power P,„ax of signal 5 is 

8 8 

9. Therefore, we know that PAP is 3 for this multicode signal s. 

D. Summary 

Although the envelope of multicode signal s is not constant, the envelope 

variance is small enough for transmission, and PAP is upper bounded. More 

importantly, Hadamard code sequences are utilized more efficiently than for the pure 

multicode scheme with sign function. In this scheme, a searching method, which is 

done by randomly searching possible solution, is used for the code selection, and the 

results of the cases mentioned above show that there exists a solution. However, a 

more efficient algorithm is necessary when the case is more complicated, and the 

performance of this scheme under HPA should be tested in order to evaluate the 

improvement over pure multicode scheme with sign function. All of these are left in 

the future work. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

In this thesis, we mainly investigate the multicode CDMA system with constant 

amplitude transmission. Since large amplitude fluctuation of multicode signal is the 

major drawback of multicode scheme in wireless applications, the multicode scheme 

with constant amplitude attracts our interest. Analysis on the previous studies on 

minimization of the envelope variance of multicode signal give a torch guiding a way 

to the research on multicode CDMA system with constant amplitude transmission. 

Of these previous schemes, Wada's scheme is the simplest and efficient scheme. In 

terms of minimization of envelope variance. However, Wada's scheme is limited in 

some cases and the data bits are not efficiently used in its receiver. So a general 

scheme with high performance is necessary. In Chapter 3，a general scheme of 

multicode CDMA system with constant amplitude transmission is introduced. In this 

scheme, multicode signal of constant amplitude is realized by a nonlinear operator, 
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sign function. Through analysis, it is found that 3/4 Wada's scheme is a special case 

of this general scheme. The nonlinear operation on the conventional multicode signal 

introduces a parity check bit and some interference. To minimize such interference, 

selection of Hadamard code sequences is proposed based on the property of 

Hadamard matrix. The simulation results show that the performance of multicode 

scheme is improved since the parity check bit is used in the signal detection in its ML 

or MAP receiver. 

However, one parity check bit can hardly improved the whole performance 

greatly, so more efficient utilization of redundant bits attracts our focus. The 

combination of linear code and this scheme is the direct solution. In Chapter 4，we 

consider three combination cases of Hamming codes, Gallager's codes, and zigzag 

codes. From the view of whole combined scheme, global coding is equivalent to 

another linear coding scheme, serial or hybrid concatenation coding scheme. To 

efficiently decode the compound code, an iterative decoding method based on coding 

graph is thus analyzed. The performance of these three combined schemes using the 

iterative decoding algorithm is evaluated and simulation results show a dramatic 

improvement. 

In multicode scheme with constant amplitude transmissions, the number of code 

channels is small when the spreading gain (order of Hadamard matrix) is fixed; on 

other hand, if the number of required code channels is not small, the minimum 

spreading gain will be very large. To combat this problem, two schemes with 

bounded PAP transmission are proposed in Chapter 5. Their common highlights are 
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that small envelope variance is allowed, and the PAP of resulting signal is upper 

bounded. 

As a conclusion, the research on the general scheme of multicode CDMA 

system with constant amplitude transmission proposes a perspective of more 

powerful multirate CDMA system with multicode scheme. 

6.2 Future Work 

Firstly, with respect to the schemes proposed in Chapter 5，general mathematical 

analysis is the major work, which is necessary to understand the mechanism in-depth 

and improve the schemes. A more efficient code selection is also needed, and the 

performance of these schemes under nonlinear device, i.e. HPA, should be tested in 

order to evaluate the improvement over pure multicode scheme with sign function. 

Secondly, an idea of concatenated multicode CDMA comes into this research. In 

the scheme with constant amplitude transmission, the output signal can be viewed as 

a stream of binary bits, and this property hints a chance of a concatenation of this 

scheme. An example of this idea is shown in Figure 6.1，in which it is evident that 

more code channels can be assigned to the user while the final signal has no envelope 

variance. In the standalone multicode scheme with constant amplitude transmission, 

by the optimal code selection, at most logj Â  + 1 channels can be used when the 

spreading gain is N’ namely the order of the Hadamard matrix. However, in this 
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(\ \ 
concatenated multicode scheme, at most 3- — .logziV + l code channels can be 

used when the spreading gain is N and the order of the Hadamard matrix in each 

module is ‘>[n . For example, If N=\6, the number of code channels can be assigned 

is 9 in the concatenated multicode scheme while the number is 5 in the previous 

multicode scheme. Moreover, the Hadamard code sequences can be reused without 

causing any interference. Therefore, the underlying structure of the concatenated 

multicode scheme is an interesting point. If one multicode scheme is considered as a 

coding scheme, the global code of this whole scheme is not a simple concatenated 

codes but a nonlinear code. How to efficiently decode this global code is a question 

to be answered, and an efficient receiver structure is important to be proposed in a 

further work. 

Q ^ Multicode Scheme with 
1 Constant Amplitude 

r 」Mul t icode scheme with ^ Multicode Scheme with S 
• Constant Amplitude — Constant Amplitude 

Q . Multicode Scheme with 
3 Constant Amplitude 

Figure 6.1: An example of concatenated multicode scheme 

Looking at the whole multicode scheme, there is still a lot of work in the future. 

The multicode schemes proposed in this thesis should be investigated in other more 
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complicated scenarios such as multi-user environment and multi-path channel. More 

aspects of multicode scheme will be considered in the future work and further 

improvements are expected under these considerations. 
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