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摘要 

光突發交換因其易實現、高帶寬利用率和適用性而被看作是未來可 

提供兆兆比特交換的可行解决方案之一。在光突發交換中，多個數 

據包在源處積聚成一個較大的數據突發，然後再發送到目的端。通 

過在發送數據突發前送出它的控制信息幷不等待其回應的方式，在 

中間節點處預留帶寬。因爲控制信號和數據是分開發送，在處理控 

制信息時，中間節點就不需要緩存來臨時儲存數據。這在光存儲技 

術還非常薄弱的時期是一個很大的優點。電路交換中的由于建立連 

接和在包交換中的頭信息的處理引起的過耗，在突發交換中分別用 

單程預留和突發積聚的方式解决。因此，光突發交換可以在需要的 

時候提供電路或者包交換，而只需調整預留方式和突發數據長度。 

~ 我們提出一種新的方案用雙重洗牌交換網絡來實現光突發交換機結 

m。這種網絡原本設計爲包交換機。在我們的設計中，此網絡的書 

, 入口和網絡內都不需要光緩存來存儲數據。數據可以通過一個路由 

‘ 標志通過該網絡。這說明該網絡不需要中央控制器因此有很好的可 

擴展性。可以證明改雙重洗牌-交換網絡的複雜度是NlogN,很接近香 

農極限。我們也相信改網絡的無緩存和异步的特性很適合光突發交 
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換。它的自路由的性質亦可在低丟包率和高流量的情况下降低系統 

的複雜度。 
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Abstract 

The optical burst switch (OBS) has been highly regarded as a viable 

solution on providing terabit switching in the near future because of its 

easy implementation, high bandwidth utilization and flexibility. In optical 

burst switching, multiple packets are aggregated into a larger burst at the 

source before sending to the destination. Bandwidth is reserved in each 

intermediate node by one-way protocols in which data burst are sent after 

its control packet without waiting for the acknowledgment. As the control 

and data are sent separately, no buffering in the intermediate nodes are 

needed to store data temporarily while the control packet is being 

processed. This is highly preferable as optical R A M development is still in 

its early stage. In fact, the O B S compromises the circuit and the packet 

switching schemes. The overhead caused by connection setup in circuit 

switching and the headers in packet switching are remedied by means of 

the one-way reservation and the burst aggregation, respectively. Therefore, 

‘ ‘the O B S scheme can also provide circuit or packet switching when 

necessary, simply by adjusting the reservation scenario and the burst length 

of the scheme. 
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W e propose a novel approach to implement the O B S switch fabric by the 

dual shuffle-exchange network (DSN). The D S N was originally developed 

to support packet switching. It uses the idea of deflection routing to solve 

the problem of packet contention. As a result, no buffer is needed to queue 

the packets at the input or inside the network. Packets can be properly 

routed through the D S N simply by a routing tag. This implies that the 

network does not need a central controller and thus is highly scalable. It 

can be shown that the complexity of D S N is of the order MogA^, which is 

above the Shannon's lower bound on switch complexity. It is believed that 

DSN 'S buffer-less and asynchronous natures are highly preferable in the 

O B S environment. Its self-routing property can substantially reduce the 

system complexity while still achieving low blocking probability and high « 

throughput. 
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Chapter 1 

Introduction to Optical Burst Switching 

With the rapid development on the dense wavelength division multiplexing 

( D W D M ) technology, an optical fiber link can provide a dramatic amount 

of bandwidth available. On the other hand, optical switching technology is 

facing a lot of challenges. Challenges like how to avoid the O/E/0 

conversions needed, how to provide asynchronous transmission for 

variable,sized packets and also the requirement of optical buffering in 

order to handle bursty traffic. Optical Burst Switching (OBS) is one such 

method for transporting traffic directly over a bufferless optical W D M 

network [1-12]. 

Circuit and packet switching have been very commonly used in our daily 

data communications. Burst switching, on the other hand, is less common. 

In circuit switching, a path between two stations has to be setup first in 

> ‘order to allow data to be transfer. Resource reservation is started from time 

you setup the connection to the time the connection is disconnected. In 

packet switching, data are broken down into small packets for transmission. 

Each packet is switched individually. The resources can be shared by 

different sources. 
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Circuit switching is advantageous when constant data rate is given or high 

bandwidth guarantee is needed. However, it is not suitable under bursty 

traffic conditions and the bandwidth utilization is low. Packet switching 

works well with variable rate traffic like data traffic, and can achieve 

higher utilization. 

Circuit switching uses two-way reservation schemes that would result in 

high latency. While packet switching has a large buffer requirement and 

complicated control and strict synchronization issues. Optical burst 

switching (OBS) has been proposed to achieve the balance between the 

circuit switching and the packet switching. It is based on one way 

reservation protocols which a data burst (a number of packets) follows a 

corresponding control packet without waiting for an acknowledgment. 

Table 1-1 compares the three switching paradigms qualitatively. 

Table 1-1 Comparison among the three 
switching paradigms. 

,Optical Bandwidth Latency Optical Overhead Adaptivit 
Switching Utilization (set-up) Buffer y (traffic 
Paradigms & fault) 

Circuit Low High Not Low Low 

required 

Packet High Low Required High High 

^ O B S H i ^ L ^ n S L ^ High 
required 
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1.1 OBS Network Architecture 

— J r " " ^ ^ ^ Legacy Switch , J S 

control channel T ^ ^ Burst Switch 

i 

Figure 1-1 OBS Network Architecture 

In optical burst switching networks, the source would combine small sized 

packets, which destined to the same destination, to form a large burst. This 

burst would be switched through the network ail-optically. This burst would 

have a common header, which would be sent before the data burst. The 

header would contain information like, the destination address, burst length 

“ and the time when the data burst start transmission. The header is sent before 

and separately with data burst is because in this way, the data burst can be 

buffered at the source while switches have time to configure themselves 

‘ according to the header information. The data burst would start transfer 

without waiting for acknowledgements from the switches. Figure 1-1 shows 

an O B S network. It consists of edge nodes (pc and server) and core nodes 

(the green circles). A n O B S network consists of optical burst switches 

interconnected with W D M links. Each W D M fiber links can carry a large 
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number of wavelengths, which can also be seen as a channel. The control 

packet can be transmitted in the switch in band with the data burst, or be 

transmitted separately in a different control channel. 

Figure 1-2 illustrates a possible structure of a core node. There are 

incoming and outgoing fiber links, each of which has a number of 

wavelengths for carrying data bursts (solid lines) and one additional 

wavelength for carrying control packets (dotted lines). Every control 

packet is processed by the electronic control module inside an OSN, which 

generates appropriate control signals to set up the wavelength converters, 

FDL buffers, and switching fabric. The optical switching fabric switches 

each burst on an incoming wavelength as it arrives (i.e., without having to 

synchronize it with other incoming bursts). 

[•JiiiiL.丨.11丨厕IA— out-of-band signaling 
Electronic control module 

about 80 channels i i 
X v ^ P ^ o — ] — W x 

l ^ v ^ e n — — ’ \ / - v j 

. . . ^ ^ to — 

‘ ‘ Demux 广 Space switch Mux 

Figure 1-2 A possible structure of a core 
node 
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1.2 Offset Time and Reservation Schemes 

Burst switching techniques are well developed in electronic area, a number 

of signaling schemes have already been proposed to reserve network 

resources in different ways. One of them is that when a source wants to 

send data in the network, it sends a request signal first. This request signal 

is processed by all the switches along its path. This request would be 

accepted when all the switches agree to carry this data transmission. A 

confirmation would be sent back to the source and the source would start 

transmitting the data. Another approach is that the source can send a 

request to the network and does not wait for the confirmation. After 

sending the request, the source would start transmitting the data 

immediately. In this way, as some of the switches along its path may not be 

able to carry the data traffic and the data would be dropped there. These 

two kinds of signaling scheme are adopted in optical network. 

Each of two signaling schemes mentioned above have their own 

disadvantages when applied to on optical network. The first scheme is 

similar to a tell-and-wait scheme. Tell-and-wait ( T A W ) systems would 

have the problem of high latency and low bandwidth utilization. The 

^ - second scheme is similar to a tell-and-go (TAG) system. In T A G system, 

as the data burst is sent immediately after the control header is sent, while 

the header is being processed at the switch, the data burst would have to 

wait at the intermediate switching nodes. This requires optical buffering in 

each switching node. It is not appealing as optical buffering is still 
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immature. Therefore, an intermediate scheme known as Just Enough Time 

(JET) was proposed in [1]. 

In JET, in order to avoid buffering at the intermediate switches inside the 

network, control header and the data burst are sent separately by an offset 

time, as shown in Figure 1-3. The control header is processed by each 

switch node inside the network while the data can be buffered at the source. 

This implies that the offset time should be equal or larger -than the total 

processing time by all the intermediate nodes. In this way, buffering at 

intermediate switch node can be avoided. The control signal can also carry 

the information on the duration of the burst so that the switch node can 

know when it would become available again and can accept another burst. 

This technique is known as Delayed Reservation (DR) [1]. A further 

improvement of the JET scheme can be obtained by reserving resources at 

the optical burst switch from the time the burst arrives at the switch, rather 

than from the time its control packet is processed at the switch. 

- S 1 2 D 

‘ . T \ L 

“ 丁 control 2V、、、 

. - 21、、、、、\ 

Figure 1 -3 The use of offset time in OBS. 
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In [1] a variation of JET was proposed which supports quality of service. 

Data belonging to high-priority class would have a larger offset time. A 

burst with larger offset time implies that it has the right to reserve 

resources at the first place as other bursts cannot reserve them now as they 

do not have such a large offset time. 

1.3 Research Objectives 

In this thesis, we investigate the O B S network architecture, its advantages, 

issues, core switching network designs, reservation policies and related 

concepts. Our research is concentrated on Core Switching Network 

Designs in O B S networks. 

W e propose a novel approach to implement the O B S switch fabric by the 
« 

Dual Shuffle-exchange Network (DSN). The D S N was originally 

developed to support packet switching. It uses the idea of deflection 

routing to solve the problem of packet contention. As a result, no buffer is 

. needed to queue the packets at the input or inside the network. Packets can 

be properly routed through the D S N simply by a routing tag. This implies 

, that the network does not need a central controller and thus is highly 

‘ scalable. It can be shown that the complexity of D S N is of the order NlogN, 
y ' 

which is above the Shannon's lower bound on switch complexity. W e 

discovered that DSN ' S buffer-less and asynchronous natures are highly 

preferable in the O B S environment. Its self-routing property can 
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substantially reduce the system complexity while still achieving low 

blocking probability and high throughput. 

1.4 Overview 

This report consists of six chapters. This chapter has outlined a brief 

introduction to optical burst switching as well as the research objectives. 

Chapter 2 covers prior art on core switching fabric designs in optical 

networks. Chapter 3 proposes the concept of implementing Optical Burst 

Switching routers using Dual Shuffle-exchange Network. Chapter 4 

introduces some schemes to handle output multiplexing and to improve the 

performance of the proposed architecture. In Chapter 5, another approach, 

named vertical expansion, is also proposed to improve the performance. As 

8 x 8 M E M S switches are available, we have some modifications on our 

existing switch in order to make use of these switches. Analysis on these 

modifications is also discussed in Chapter 5. Chapter 6 concludes the thesis. 
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Chapter 2 

Prior art on Optical Burst Switching 

In this chapter, we describe an optical burst switch architecture proposed 

by Jonathan Turner. This switch architecture gives us appealing 

performance results. However, it requires a lot of expensive optical 

components and complicating routing algorithms. 

2.1 WDM crossbar architectures 

The scalable burst switch architecture proposed is shown in Figure 2-1. It 

is based on a three-stage Clos (or multistage Benes) interconnection 

network. External links are connected to a set of I/O modules (lOM). The 

burst switch elements (BSE) are x J switching elements and this switch 

architecture can support up to S external links (each carrying h W D M 

channels). This implies each stage can have d BSEs. 

‘ There are two wavelength converting switch designs, both use optical 
J ' 

modulators and tunable lasers to transfer a signal from an input wavelength 

to a tunable output wavelength. The first design also use optical crossbars 

to provide space division switching, while the second substitutes 

wavelength grating routers ( W G R ) for the crossbars. 
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— H lOM I— |—H lOM I—• 

: BSE BSE B S E ： 
• • 

~ H lOM k A k A [—H I〇M I— 

— H lOM \-*\ W M U \J 卜 I〇M [—• 

： BSE B S E B S E ： 
• • 

—*\ I〇M |—• —>1 I〇M [—• 
d r n ^ ~ 

Figure 2-1 A Scalable Burst Switch 
Architecture proposed by J.Turner [3] 

2.2 Switch Based on Optical Crossbars 

Figure 2-2 shows the first wavelength converting switch design. Each fiber 

is connected to a de-multiplexer which separates the different wavelength 

channels. The separated wavelength channels will then propagate through 

some Tunable Wavelength Converters, which would quickly change the 

input burst to any available wavelengths channels out of its destined output 

port. The converted burst would then propagate through an h ^ d crossbar 

switch. The h x d crossbar switch can be composed by a number o{ d x d 

crossbar switches. In this way, the expensive large-sized crossbar switch 

, can be avoided. As there can be more than two bursts destined to the same 

‘ output port, each output of the crossbar is followed by a passive 

wavelength multiplexer. As long as these bursts are with different 

wavelengths, they can share the same multiplexer and crossbar output. 
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To route an incoming burst to its destined output, the wavelength of the 

incoming burst is converted to any available wavelengths available at the 

destination. The crossbar is configured to allow burst signal to reach its 

destined output port. The crossbar is a non-blocking switch which can 

ensure no internal blocking if there are enough available wavelengths at the 

output destination to convert to. As there may be no internal buffering at 

the switch, bursts that can't find free wavelength at its destined output 

would be dropped. But since the number of wavelength channels in each 

fiber is high, the probability of dropping is quite low. 

_ - < ^ _ y ~ 
. N H i ^ I H Ii i/j 

, i X i 

iTWcj— / 

Figure 2-2 Wavelength converting switch 
. using Tunable Wavelength Converters 

(TWC), Optical Crossbars and Passive 
Multiplexors and Demultipleors [3] 

2.3 Switch Based on Wavelength Grating Routers 

A n alternative design for a wavelength converting switch is shown in 

Figure 2-3. This design uses a passive wavelength grating router ( W G R ) to 

replace the optical crossbars used in the previous design. Thus, the tunable 

11 



wavelength converters are the only active components. Since the 

wavelength routers have h inputs and h outputs, there are h/d fibers 

connecting each input section with each output section. For h = 256 and d 

=8, there will be 32 fibers connecting each input section with each output 

section. In this design, the tunable wavelength converters serve two 

purposes. 

First they are used to switch signals to different wavelengths so that there 

will be no wavelength contention at the output fiber links. Secondly, they 

switch the signals to different wavelengths so that the Wavelength Grating 

Router (WGRs) can provide space switching according to this given 

information. By switching the wavelength to the set of h/d wavelengths 

that destined to the desired output, the signal can be forwarded to its 

desired output port. The drawback of this design is the number of choice of 

wavelengths is reduced as in the previous design; we have h wavelengths 

to choose from while we only have hid to choose from in this design. This 

may lead to extra blocking. That is the destined output address still have 

free wavelength channels available, not at the input section, all the 

available wavelength channels are used. Another drawback of this design is 

‘ that it requires complex algorithm to control the tunable wavelength 

converters to serve the two purposes mentioned above. 

12 
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Figure 2-3 Wavelength switch Tunable 
Wavelength Converters (TWC) and 

Passive Wavelength Grating Routers 
(WGR).[3] 
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Chapter 3 

Proposed Architecture 

In this project, we propose a novel approach to implement the O B S switch 

fabric by the Dual shuffle-exchange network (DSN) [13]. The D S N was 

originally developed to support packet switching. It uses the idea of 

deflection routing to solve the problem of packet contention. As a result, no 

buffer is needed to queue the packets at the input or inside the network. 

Packets can be properly routed through the D S N simply by a routing tag. 

This implies that the network does not need a central controller and thus is 

highly scalable. It can be shown that the complexity of D S N is of the order 

NlogN, which is above the Shannon's lower bound on switch complexity. 

‘ W e discovered that DSN's buffer-less and asynchronous natures are highly 

preferable in the O B S environment. Its self-routing property can 

‘.substantially reduce the system complexity while still achieving low 

blocking probability and high throughput. 

3.1 Basics of Dual Shuffle Exchange Network 

Figure 3-1 shows an 8 x 8 Dual Shuffle-exchange Network with 5 stages. 

W e define N as the number of input ports of the switch and L be the 

number of stages, A^ = 8 and I = 5 in this case. The 4 x 4 switching 

14 



modules inside the network are interconnected in this way such that 

packets from any input ports can self-route to its destination port in « = 

log2Â  stage if there is no packet contention. This connection pattern also 

permits an error-correcting routing algorithm. When contention occurs 

inside a 4 x 4 switching module, the loser packet will be deflected to one 

of the idle output ports available. A one-stage routing instruction will be 

added to this packet based on which output port this packet is deflected. By 

successfully following this routing instruction in the next stage, the 

deflected packet can return to the state where it was deflected and resume 

its routing. Successive deflections can also be corrected by this algorithm. 

Figure 3-2 shows the state-transition diagram of this error-correcting 

algorithm.'Each state represents the number of remaining stages the packet 

still have to go through until it reaches its destination. Theoretically, all 

loss probability requirements (Pioss) can be achieved by means of 

increasing L and it has been shown [13] that L is analytically bounded by 

L ‘ 2.793« - 3.554 ln(«+l) + 3.554 InP^'' + 1.162 (3.1) 

‘.Since each stage consists of Nil switch modules, the complexity of the 

D S N for a given Pioss is therefore M o g M 
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Figure 3-1 An 8x8 Dual Shuffle-
exchange Network 

P P P P P 

… G i n s 
q q q q 

Figure 3-2 Markov Chain for bounding L 
[13] 

3.2 Dual Shuffle-exchange Network 

One way to look at the dual shuffle-exchange network is to consider it as 

being constructed of two sub-networks, a shuffle network (SN) and an 

‘ unshuffle network (USN) -- the mirror image of the shuffle network, as 

‘ illustrated in Figure 3-3. Both S N and U S N networks have the self-routing 

property. A routing tag would be given to each arriving packet based on 

the packet's destination address. Normally, the routing is simply the binary 

representation of packet's destination address port. One bit of the routing 

tag is examined in each stage. For example, if the destination address is 
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010, then the first bit is examined in the first stage. The packet would be 

forwarded to the upper link when bit ‘0’ is read and would be forwarded to 

the lower link when bit ‘1，is read. In the second stage, the second bit is 

examined and the packet is forwarded to the lower link. Then '0' is read at 

the third stage and the packet is forwarded to the upper link and reaches its 

output destination address 010. However, contention might occur at every 

stage. Typical solution is to deflect one of the incoming packets to another 

output port and that packet will have to be routed again starting from the 

first bit. Consider a packet needs one more stage to reach its destination 

and is unluckily deflected; the penalty of this collision could be very large. 

Therefore, Dual Shuffle-exchange Network is designed so that when a 

packet is deflected from node i to node j , we must have a link in the reverse 

direction connecting node j to node i’ the packet can travel back to node j 

from node i, correcting the deflection in one step, as shown in Figure 3-4. 

000 ~ aj~ID QJ”10 01~10 0 1 ~ 000 

‘ 0 0 1 、 厂 00 1 1 00 1 1 00 1 1 00 1 1 00 一 二Y 

(a) 
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Figure 3-3 Construction of a dual shuffle 
network using a shuffle-exchange and a 

“ unshuffle exchange networks: (a) 
• Shuffle-exchange network, (b) Unshuffle-

exchange network, (c) Dual shuffle-
exchange network. 
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JfiSiUJation destoiataon 

Coirectiii® enor ot A 

Destination of A: 101 Destination of B: 100 packet A  
jacket B ==—== 

Figure 3-4 Correcting deflection in one 
step 

3.3 Proposed Architecture based on DSN 

Figure 3-5 shows our proposed switching node architecture. There are d 

incoming and d outgoing optical fibers; each contains h+1 wavelength 

channels. One of the channels is reserved for control signals. Each of the d 

‘ input fibers is connected to an optical demultiplexer that separates the 

different wavelength channels before propagating through the central 

- switching fabric. The central switching fabric is SL dh X dh D S N switch. 

‘ Outputs of the D S N switch are then connected to distinct multiplexers and 

wavelength converters to ensure no wavelength contention in each output 

fiber. This switch can be operated to support a number of optical burst 

switching protocol, like Just-Enough-Time (JET) signaling protocol. 

However in this thesis, simulation are based on the Just-In-Time (JIT) [14] 
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signaling protocol. In JIT, the basic switching modules inside the switch 

are directly reserved for the incoming burst immediately after the arrival of 

the request message, and remain until the arrival of a release message. 

A y A 

h I 
廿 I 廿 -

Space 

d s n switch & 

converters 

I 脅 
H 、\j"-

Figure 3-5 Block diagram of the 
proposed architecture. 

3.4 Analysis on blocking due to output contention 

There are two ways to have blocking (or loss) in this D S N switch. One of 

them is due to the insufficient number of stages available. In this case, 

some bursts are deflected too many times in the switch and cannot fully-

routed at the end of the switch. Another one happens when there are 

already too much bursts occupying a specific output fiber. In this case, 

even if the burst can fully routed in the switch, it does not have a free 
t 

‘ ‘wavelength channel to leave the switch. This is called output contention. In 

this section, we will discuss the blocking due to output contention. 

Blocking due to insufficient number of stages will be discussed in Chapter 

4.5. 
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Assume the traffic on each input port is independent and have the 

following arriving pattern. 

一 Mean = V认 * 

一 Mean = M X ~ • 

Figure 3-6 On-Off burst arrival 

Durations times of burst and idle periods are exponentially distributed with 

mean l//x and 1/X respectively. Simple models like Poisson process can't 

capture the important characteristics of the sources, we model it using the 

On-Off model as shown in the following figure, 

,“^ 
_ 0 0 

‘ Figure 3-7 On-Off model 

丄 

Input loading = p= ^ =-—— (3.2) 

丄+丄 A + 

Id X 

21 



Define d be the number of fibers, h be the number of wavelengths in each 

fiber, then the number of active input ports as seen by an arriving burst can 

be calculated by the following transition diagram. 

dh A (dh-1) A (dh-i) A 2 A , � ,\ , � , � 

A 2 a 0+1) ^^ (dh-l) fi . 

Figure 3-8 Transition diagram for On-Off 
source 

The states of the diagram depict the number of active input ports. Then we 

have the limiting probability tt/ 

： 卞 ' . 义 ⑵ ( i - p r v 

= ^ (3.3) 

“ Given we have i active input channels out of dh, the probability that a 

specific output fiber have k active channels follows a binomial distribution 

(k>h implies that k-h bursts have already been dropped): 

p M = 】 - 1 一去 （3.4) 
V ^ A " / V d j 

Therefore the arriving burst would be dropped if its destination fiber has 

equal or more than h active channels and the probability equals 
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1 dh-lf i _ 
p�双,!>•，众） 

“i=h L k=h 
r "1 (3 5) 1 dh-\ (fjU^ dh-lf / V 1 � ' - ' , 1 V “ 

=I 1 r ^ 1 - 1 丄 

The analysis and simulation results are presented in Figure 3-9. 

r • 
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JQ / 
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: / / 1e-005 / / H 

/ / 1 
/少 ， 

一 0 . 6 5 0 . 7 0 . 7 5 0 . 8 0 . 8 5 0 . 9 0 . 9 5 1 

inpul traffic 

Figure 3-9 Analysis and Simulation 
‘ Results on blocking due to output 

contention 

J " 

3.5 Implementation issues on the 4 x 4 switching module. 

For each 4 x 4 switching module, four output links are connected to the 

next stage while another four output links are connected to the space 

multiplexers. Therefore, 4 additional 1 x 2 switches are needed as 

illustrated in Figure 3-10. 
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To space mux 个 

00 1 X 2 switch 二 — 00 

4x4 1 X 2 switch 二 — 01 

Deflection  
10 switch 1 X 2 switch 二— i o 

11 1 X 2 switch 11 

Figure 3-10 Block diagram of a 4 x 4 
switch module. [13] 

If we implement the 4 x 4 switching module using a non-blocking crossbar 

switch, a total of 16 cross-points are needed. It was showed that [13] in the 

packet switching environment, a two-stage banyan switch as shown in 

Figure 3-ll(a)y is a possible alternative. Granted that a burst may be 

deflected because of "internal conflict" even when there is no contending 

burst for the same "external output" (see Figure 3-11(b)), the increase in 

the overall deflection probability is actually quite small. The non-blocking 

and banyan design alternatives will be compared in more detail in the next 

subsection. 

J ' 
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^ ^ routing bit routing bit 

used h©re used here 
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� 1 厂 � 1 

A A —、 
日 10 —’ —‘ [-• �.-""]" — to 
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B defied s internally 

Figure 3-11 (a) A 4 x 4 banyan deflection 
switch; (b) An example of internal conflict 

when there is no output conflict. [13] 

3.6 Analysis: Non-blocking versus banyan. 

As bursts are separated to the shuffle and unshuffle plane, the internal 
‘ traffic model in each plane is changed as follows, 

' Diverted to another plane 

- M e a n : 1 / " + ^ 

i- • I 

2 1 
" M e a n : ! " + — •• 

A fi 
Figure 3-12 On-Off burst arrival for the 

two internal planes 
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N o w the new idle time is formed by adding two idle time and one burst 
length. The new idle time is not exponential distributed but a 
hypoexponential distribution. However, for simplicity reason, we assume 

the newly formed idle time is still exponential distributed. Let — be the 
a 

mean idle time for internal traffic 

1 2 1 
一 = T + 一 (3.6) 
a X f j , 

U.X 
a = —^—— (3 7) 

/1 + 2// 

The on-off model is modified as follows for internal planes,‘ 

<x.= � 

• 0 © 

Pi 

Figure 3-133 On-Off model for internal 
planes 

Let us first derive the deflection probability of an internally non-blocking 

switching module. When a new burst arrives at this non-blocking 

.switching module, it will see at least one output port is idle, or equivalently 
t 

. ' 0 to 3 output ports are being occupied. Assuming each burst is equally 

likely to destine to one of the four output ports, the burst length is 

exponential with mean 1/jU. and idle time is exponential with mean Mot, 

Figure 3-14 depicts a transition diagram for this 4 x 4 non-blocking 
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switching module. The states of the transition diagram are the number of 

busy output ports seen by a new arriving burst. 

. / — V 

冗 � = T ^ 47 (3.8) 
(ju + a) - a 

4 a 3 a 2 a 

o o o o 
‘ Figure 3-14 Transition diagram for Non-

• blocking switch. 

After obtaining the limiting probabilities tt,，the deflection probability for 

non-blocking switching module can be calculated as follows 

, ( 3 2 1 ) 
=1— + - ^ 1 + 7 ^ 2 + 7 ^ 3 

\ ^ ^ ^ J 

‘ —1 MiM + ccf 

‘ ‘ ( M V 
- I V 

( j u A ^ ( uA y 
+ ————^—— 

—1 1 6 - 8 p 

(3.9) 
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Similarly, the transition diagram in Figure 3-15 depicts one of the cross-

points in Figure 3-11. With the same set of parameters as above, we obtain 

the deflection probability for the whole banyan switch as follows 

1 ( 1 丫 

qb 

(3.10) 
+ -a 

^ i - f i i ^ r 

2 a 

..O^O 
u 

Figure 3-15 Transition diagram for a 2 x 
2 cross-point. 

Figure 3-16 and 3-17 plots the deflection probability of the two switching 

‘ node designs. And also by differentiating the difference between q„ and g^, 

‘ we obtain the maximum absolute difference is no bigger than 0.1142 at p = 

0.571. 
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Figure 3-16 Deflection probability on 
banyan node and non-blocking node 
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Figure 3-17 Difference in deflection 
probability between the two node 

designs 
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Chapter 4 

Output multiplexing 

With the deflection routing property of the D S N , when a burst has finished 

its routing at any stage, it can be outputted from the network. Therefore for 

each fiber, we have a multiple of h internal output ports but only h output 

wavelength channels available. These internal output ports have to be 

multiplexed before it can be forwarded to a free wavelength channels. In 

this section, we propose three implementation schemes to handle the output 

multiplexing. The analytic results on performance between banyan and 

non-blocking nodes are validated by simulation here also. 

4.1 First Scheme. 

Consider a system with 8 input/output fibers and number of wavelength 

channels contained in each fiber is 32. The first fiber would be connected 

. to the ports of D S N having port numbers starting from 0 to 31, that is 0000 

0000 to 0001 n i l . As we can see, the last 5 bits are don't care bits. One 

way to assign routing tag to control packet is to have three actual routing 

bits and 5 don't care bits (in reality, each routing bit here should be leaded 

by a bit carrying information on which plane this control packet should go, 
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but for simplicity reason, we just omit these bits here). When a don't care 

bit is read by a switching node, the node can forward the control packet to 

one of the two output ports of the same plane. However, it is not necessary 

for a fiber having continuous port numbers. W e can assign ports with port 

number 0000 0000, 0000 1000, 0000 2000 and up to 1111 1000 to the first 

fiber. In this way, the don't care bits would becomes the first 5 routing bits. 

As control packet can reach the destination starting from any input port of 

the D S N switch, the first five don't care routing bits can be omitted, 

resulting in routing tag with only three bits, which carry fiber information 

only. This assignment scheme is very appealing as shorter routing tag 

should require smaller number of stages in general. 

To handle output multiplexing for this assignment scheme, internal output 

ports with the same port number address would share the same output 

wavelength channel. These output ports would be connected to a 

multiplexer and then follow by a passive wavelength converter which 

performs fixed wavelength conversion. In this way, we have h multiplexers 

for each fiber and each multiplexer would be serving (L-D+1) internal 

. output ports, as shown in Figure 4-1. Whenever a fully-routed control 

‘ packet finds its corresponding multiplexer being occupied, this control 

• packet would have to be deflected as if it is deflected due to contention 

inside the network. When this control packet is fully-routed again, it can 

try another multiplexer. The multiplexer has to give feedback control 
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signal to each switching node so that the node can know whether the 

multiplexer is being occupied. 

^ o o i ~ l o a y ^ o o i [ D Q ^ m o o i ~ ./ 

冗 10 拿 l o ^ l J ^ i o � 

A DOj 1 00' A 00 I 1 00 A DO I . 

_ I L J i LL JJ LL _ _ 

^ r ^ l T i ^ j z r j • • • 
L-Df1 ^ ： 

interna Fixed ； 

outputs from i wavelength  
stages | � - converter 

Control signal 

‘ Figure 4-1 Scheme 1 hardware 
implementation 

As deflected packet would return to the original state where it was being 

deflected, in actual implementation, it is not wise to have internal output 

ports with the same port number address sharing the same output 

wavelength channel. Consider Figure 4-2, a control packet has finished it 

routing and it wants to exit from port 1111 (dashed line). However, the 
t 

. ‘multiplexer is occupied. The packet would be deflected and then come 

back to the same state. It is highly likely that the multiplexer is still being 

occupied. Therefore, it is better to have internal output ports with different 

port number addresses sharing the same output wavelength channel. 
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Figure 4-2 deflected control packet 
would revisit the same state 

4.2 Simulation on the first scheme. 

Figure 4-3 plots the simulated loss probability as a function of the number 

of available stages of the switch. The input traffic loadings in the figure are 

0.5 (d = 8, h = 128) and 0.571 (d = 32, h = 32)，which brings us the 

maximum difference in loss probability between the non-blocking nodes 

- and the banyan nodes as described in the previous section. From the graph, 

we see that the performances of the two node designs are almost identical 

‘ . f o r traffic load of 0.5. The number of stages needed for a fixed loss 

probability in the banyan design is slightly higher than that in the non-

blocking design for input load of 0.571. This favorable observation was 

already suggested in Figure 4-4. In packet-based Dual Shuffle-exchange 

Network, the performance difference is negligible for small n. 
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Figure 4-3 (scheme 1) Loss probability 
versus number of stages for banyan and 

‘ non-blocking node. 
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On the other hand, this design does not inherit the characteristic of rapid 

drop in loss probability with little increase in stages. In Figure 4-5, Pioss 

drop significantly with the increase in L. However, we cannot see this 

favorable feature in our simulation. The loss probability in our simulation 

is simply decreasing linearly. It is suspected that this drawback is due to 

the difficulty in finding a free multiplexer although there are free 

wavelengths available in that fiber. 

“ \ \ \ 
10-̂  Sonbiockini \\ \ \ \ \ 

jwiich •Ument \\ \ \ \ \ 

B 一 Y \ \ \ \ 
iwiteh «Umtnt v 、\ 、 \ 

\ 

l O ' M " " " " I ~ I ~ I ~ I I " " " " I ~ I i i I I ~ ~ 
- 0 5 10 15 20 25 30 35 40 45 50 55 60 

Number of stages ( L ) 

‘ Figure 4-5 Pioss versus L for various rr, 
packet DSN [13] 

W e have simulation on the loss probability versus the input load with 

various setups. Figure 4-6 shows simulation results of {d, h) = (8, 128), (8, 

64) and (16，64). The number of stages tested here is 20. It is observed that, 

‘ for various numbers of stages, the differences among those fiber-
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wavelength combinations are not remarkable. This observation is not 

encouraging as the loss probability is expected to be reduced notably when 

the wavelengths are doubled, as suggested by the Erlang B formula. This 

further suggests that the problem may aroused from the fact that the control 

packet could not find free multiplexers to reach the output fibers 

1 I I I I I I I ： 

f z 1 
&. 0,001 - /// -

. 丨 : 

le-005 - -
0=81̂=128 -r-

d=16h=l28 — 
d=8 h=4 •‘ 

1e 006 1 1 1 1 1 1 1  
0.2 0.3 04 0.5 0.6 0.7 0.8 0 9 1 

Input Traffic 

- Figure 4-6 (scheme 1) Loss probability 
' versus input traffic load for various 

combinations of o'and h. 

Figure 4-7 shows the loss probability versus loads for J = 8,16 and 32. The 

‘ number of wavelengths tested here is 64 and the input load is 0.5 as usual. 
J" ‘ 

It is showed that although the number of fibers is doubled, which implies 

the number of input ports is also doubled; the extra number of stages 

needed is small. When we increase the number of fibers from 8 to 32，the 

extra number of stages needed is at most 8 as observed from the figure. 
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Figure 4-7 (scheme 1) Loss probability 
versus L for various combinations of d 

- and h. 

4.3 Second Scheme: Tunable wavelength converter. 

In the previous sub-section, we leamt that the performance of the proposed 

D S N switch may be heavily affected by output multiplexing. Theoretically, 

‘ the output multiplexing should be implemented in a better way. In the first 

scheme, when a control packet has been fully routed, it would be converted 

‘ to a fixed wavelength if the corresponding multiplexer is not already being 

occupied by another burst come from another internal switching node. If it 

is the case, it has to be deflected to another "set" of internal nodes which 

share the same specific output wavelength channel. This limitation is not 

essential; a fully routed burst should have h wavelength channels to choose 

from. However, consider we would be having h{L-D^\) internal output 
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ports connected to one specific output fiber, a h{L-D+\) x h switch is 

necessary here for each fiber. On the other hand, we might consider using 

tunable wavelength converter to implement output multiplexing, as shown 

in Figure 4-8. Every outgoing link from the internal nodes is followed by a 

tunable wavelength converter which its output is connected to the external 

output fiber. This requires some sort of output controlling unit to keep 

track of which wavelength channels are being occupied and which are free 

on the other hand. When a control packet has reached its final destination, 

the controller would tell the corresponding tunable wavelength converter 

which wavelength it should change the burst to. The drawback of this 

design is that tunable wavelength converter is still immature and very 

expensive. 
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Figure 4-8 Second scheme - hardware 
implementation 
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It can be showed that the D S N switch architecture is very attractive in 

building optical burst switches when tunable wavelength converter can be 

employed. Figure 4-9 shows the performance difference between the two 

multiplexing schemes. With input loading of 0.5，cf = 8 and h = 128, the 

second scheme has comparable performance with the packet-based D S N 

switch. W e also notice that the difference between the banyan switching 

node and the non-blocking switching node is again very small for the 

second scheme. Simulation results with various numbers of fibers are given 

in Figure 4-10. Number of wavelengths tested here is 64 and numbers of 

fibers are 8, 16 and 32. It shows that the performance difference between 

the banyan design and the non-blocking design grows with the increase of 

d. ： 

1 1 1 1 1 1 1 1 ： 

Daoyan with T'AC > , 
( \ non DiocKing *iih TWO X — 
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• \ 

一 . \ : 
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Figure 4-9 Performance difference 
between first and second schemes 
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Next, we test our second design to see how the blocking performance 

varies with different numbers of wavelength channels available inside the 

fibers. W e plot the blocking performances of the switch against various 

loads with h = 6A and h = 128 both on Figure 4-11 and Figure 4-12. Figure 

4-11 shows simulation results on the switch with d = % and L = \2 while 

figure 4-12 is based on architecture with 16 fibers and 16 stages. Both 

figures show that the 128-wavelengths configuration performs better than 

the 64-wavelengths configuration with input loading starting from 0.6. 

These results are what we have been expecting as it shows the beauty of 

the Erlang B formula and W D M technology; with higher channel counts, 

the blocking performance would become lower. 
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4.4 Third Scheme: Route to specific wavelength port. 

W e have showed that our second scheme would be very promising when 

tunable wavelength converters become mature in some later time. In the 

meantime, there is still some room for improvement. As we have proved 

that the problem of our first scheme lies on the output multiplexing; where 

control packets have enough instructions to reach its destined output fiber 

easily, but still have to find a free wavelength channels blindly. In this sub-

section, we modify our design by giving the control packets not only the 

instructions required to reach its output fiber, but also the instructions 

needed to reach a particular free wavelength channel. In the first scheme, 

the minimum stage a burst needs to travel is Xogid where d is the number of 

fibers. N o w as the burst also needs routing instructions to reach a particular 

wavelength channel, at least log2<i + \0g2h stages are needed. The way how 

multiplexers is connected is the same as the first scheme, as shown in 

Figure 4-13，expect feedback signals from multiplexer is not needed and an 

一 input controlling unit is needed to record which wavelength channel is 

being occupied so that it could easily assign a free wavelength channel to a 

, newly arrived control packet. 

* 
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Figure 4-13 scheme 3 implementation 

Figure 4-14 shows blocking performance differences between the three 

schemes. Scheme 2 performs the best but it requires tunable wavelength 

converter. Scheme 3 is better than the first scheme especially when lower 

blocking probability is needed. The parameters tested here is d=S,h = 128, 

offered load is 0.5. Figure 4-15 and 4-16 give us information about how 

much stages are needed while the number of fibers or the number of 

wavelengths is doubled. Again, the result is encouraging. It seems an 

increase of 4 stages is enough to tackle a double in the d and h. Notice that 

in this scheme with p = 0.5, a system with h = 128 performs worse than a 

‘ system with h = 64, as opposed to the inverse observations in Scheme 1 

and 2. Figure 4-17 compares Scheme 3 with the two wavelength 

converting switch designs proposed by J. Turner as described in Chapter 2. 

W e show that with L = 40，we can achieve better performance than the one 

which uses passive wavelength grating router. 
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4.5 Analysis on blocking due to insufficient stages 

In this section, we calculate blocking due to insufficient number of stages 

in the switch. 

^ P i+i 

P ‘ Stage i 

P i+1,0 

Figure 4-18 Definitions of p, and/)̂ ^ 

As shown in .Figure 4-18, we define p,，y be the amount of input at stage i 

that is j steps away from its destination. Then we have pi,o as the amount of 

traffic that leave the switch at stage /-I. W e then also define /?, as the 

amount of traffic going to stage i. Now we have 

N 

Pi=Y.Puj (4.1) 
“ y=i 

‘ • 丨 A + 丨 , 0 (4.2) 
i- ‘ 

As shown in previous section, the undeflected and deflected probabilities 

in each switching module are 
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1 6 - 8 p . 

A = 7 7 - 4 (4 .3 ) 
1 6 - A 

仏 = 1 — A (4.4) 

By the deflection routing operations of Dual Shuffle-exchange Network, 

we have the following equations 

A+i’o = PiPiA (4.5) 

A+i,丨=PiPi,2 (4.6) 

P m j = PiPi’j+\”iPij-\ (4.7) 

A + u = 仏 八 „ + 仏 ( 4 . 8 ) 

By recursively applying these equations, we can obtain all the Pi,o. Then we 

can have the blocking probability due to insufficient number of stages 

Ps,a,e (4.9) 
Po 

while Po is equal to the applied load to the switch. Figure 4-19 shows the 

result between analysis and simulation for d=S and h=\2S. The difference 

might be due to the inaccurate approximation of the idle period. As bursts 

keep leaving the switch at each stage, this results in the increase of length 

of idle periods. In this way, the idle periods are no longer exponentially 
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distributed. Actually, they have a hypoexponential distribution which is 

resulted from adding exponential distributions. This inaccuracy might lead 

to incorrect calculation of deflection probability and therefore the overall 

blocking probability. 
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\ � “ 
0.1 二 Analysis h 

• \ • 

• Simulation \ \ -

0.01 - \ \ -
I : V -
(0 \ J 
爸 \ \ ^ 0.001 r \ \ A 

5 \ 
CO ‘ . 

0.0001 - \ 、 

. : \ 
. \ \ 1 

1e-005 - \ \ 

: i 
1e-006 i — — — J —J V i - , … … � 

‘ 10 15 20 25 30 35 40 

Number of stages L 

Figure 4-19 Analysis and Simulation 
“ results on the third scheme. 

48 



Chapter 5 

Vertical expansion and 8 x 8 MEMS 
switches 

By analyzing the delay of the switch on various input traffic loads, we find 

out that the performance of the switch would remarkably drop when the 

input traffic is high. On the other hand, while the number of ports a D S N 

switch should have is a power of 2，it is not necessary for the values of d 

and h to be also powers of 2. Therefore, it is possible for us to decide how 

many ports from the D S N switch can be left unconnected to the optical 

fibers. In this way, in the view of the incoming traffic to the switch, the 

D S N switch is vertically expanded. It can be shown that for high input 

- traffic load, vertical expansion would give better performance than 

horizontal expansion (by increasing the number of stages) for the same 

‘ complexity. D S N with 8 x 8 M E M S switching nodes are also discussed 

‘ here 
i ‘ 

5.1 Delay analysis of DSN 

In our burst traffic model for internal planes, we assume burst length is 

exponential distribution with mean 1//̂  idle time length is exponential 

distribution with mean VOL 
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As presented in Section 3.6, the deflection probability of an internally non-

blocking switching node is 

� ” (5.1) 
( a + ju) -a l o - p 

Probability for successful routing 

P … ( 5 . 2 ) 

Let Ti denote the expected additional number of stages would have taken 

by a burst in state i before reaching its destination. Then T" is the expected 

number of stages to a burst has to visit before leaving the switch, where n 

is the length of a routing tag. It can be logjd or \0g2dh. As illustrated in 

Figure 3-2, we have [13] 

( 丄 」 

- p-q p-q p L p � （5 3) 

With a large n, the latter part becomes less dominant and can be neglected. 

• Then we have [13] 

J- " 

T„ » = ^ (5.4) 

p-q 1 6 - 1 6 p + p 

Figure 5-2 has plotted the equation (5.4), we can see that the delay is large 

starting from input traffic around 0.8. W e might want to reduce the traffic 
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seen from each node by 20% in order to guarantee small delay. This can be 

achieved by vertical expansion. 

100，--

8 0 厂 

C 
>h (d 

t • 
< . 

4 0 ^ 

20 . 
..... 

-等 _ ~ • 

0 .. 一 

0 0 2 OA 0 6 0 8 1 

liiOul Traffic 

‘ Figure 5-1 The average delay of Dual 
Shuffle-exchange Network with n = 8 

5.2 Vertical Expansion. 

Lower blocking probability is achieved normally by increasing the number 

“ of stages (horizontal expansion). However, it is also possible to reduce 

blocking by means of not connecting some of the input/output ports to the 

‘ optical fibers, as illustrated in Figure 5-3. As the ratio of ports with input 

traffic to the total number of input ports is decreased, one can see the 

switch as vertically expanded. These unconnected ports will be distributed 

as evenly as possible among the input/output ports so that every node in 

each stage should have almost the same amount of input traffic. 
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Figure 5-2 The architecture of DSN 
switch with vertical expansion 

5.3 Simulation results on vertical expansion 

In this section, we show that vertical expansion can give better result than 

horizontal expansion in some case. The red line shown in Figure 5-3 is 

with configuration of J = 8, = 128 and L = 24. While keeping the same 

number of nodes in each stage, the switch is vertically expanded by 1.143 

when h is reduced to 112. I is decreased to 21 so as to compensate this 

vertical expansion. (Since the number of nodes in each stage is unchanged, 

•• h and L should be changed in proportional). A vertical expansion by 1.33 

would make h = 96 and L =18. As it is suggested by the analysis from the 

, . previous sub-section, our D S N switch would have unsatisfactory 

performance when working at traffic rate from 0.8 to 1. In order to avoid 

this traffic rate region, we can have a vertical expansion of 1.25. Therefore 

expansion values 1.143 and 1.33 are tested here and should give better 
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performance when traffic rate is high, as shown in Figure 5-3. Simulation 

is based on the third output multiplexing scheme. 

One may argue that the way we proved vertical expansion can give better 

performance is incorrect as the value of h is changed. But as suggested by 

the Erlang B formula, while the customers {d x h) to servers {h) ratio is 

kept constant, the blocking probability would becomes lower when we 

have more customers or servers. Therefore, as we do vertical expansion by 

reducing h, the blocking probability should be higher as opposed to what 

Figure 5-3 shows. 

vertical expansion » 1 
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！ \ 

I ‘ ‘ \ 1 
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Figure 5-3 Percentage change in 
blocking probability for vertical 

expansion = 1.143 and 1.33 
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5.4 Building DSN with 8 x 8 MEMS switches. 

Microelectromechanical systems ( M E M S ) [15-20] switches are regarded 

as the most promising technology to achieve functionality. Based on their 

structure and operation, M E M S switches can be divided [19] into two-

dimensional (2D) M E M S switches and three-dimensional (3D) M E M S 

switches. In a typical 2D switch, the mirrors simply flap up and down in 

the optical equivalent of a cross-bar switch. When they're down, light 

beams pass straight over them. When they're up, they deflect the beam to a 

different output port. The biggest single block of 2D M E M S switches 

reported so far is a 32 x 32 switch already [20]. As Dual Shuffle-exchange 

Network uses 4 x 4 switching nodes, we have to make some modification 

in order to fully utilize the advantages of the bigger-sized M E M S switches. 

For simplicity reasons, we first focus on 8 x 8 M E M S switches. There are 

at least two ways to build a self-routing, one-step error correcting network 

based on the concept of Dual Shuffle-exchange Network. One of them is to 

expand the bandwidth of the existing links. In Figure 5-4, a D S N with 

‘every link doubled is shown. As every stage has one more path to the next 

stage, the deflection probability can be made lower in this way. The other 

. ‘ way to build the network is to change the structure of the underlying 

shuffle network. For a typical shuffle network, the switching nodes are 

divided into two halves vertically. Each node is connected to its previous 

stage with one link from the upper half and one link from the lower half. 

N o w as we are using 8 x 8 nodes to build a 'Dual' network, the two 
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underlying networks (one and its mirror image) should be built by 4 x 4 

nodes. Therefore, the shuffle network is now divided into four equal parts 

vertically. Each node is connected to its previous stage with one link from 

each quarter, as shown in Figure 5-5. In this way, the network is again self-

routed and each stage could process two bits from the routing tag. 

iJlQ……— lilD QHj ^：一：—QJI| ^…—...QQj   

m™- nn 叫 no 瓜 nn 叫 、 耻 nn ^ nn 

00 T；̂  , , n 00 , 〜 广 0 0 ， r i � �0 0 iri�:,丨n 00 , / . 

X -I uQ.O'' Ĵ QOj J f oilj dlDV J f oDj UID" J f oHj ^ 

^ ^ n / ^ n i / f c i i S ^ i i i ^ i i ^ 
— i ui n] [n Jij pi u] [ii ii] -

Figure 5-4 Dual Shuffle-exchange 
Network with each links doubled 

‘ 
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• [ • • 

I Z Z ] [ Z I D 

• Figure 5-5 Quarter shuffle. Each node is 
‘ connected to its previous stage with one 

‘ link from each quarter 

5.5 Prove of the proposed Quarter shuffle network 

W e label the links of the switch in a binary fashion. N o w the top link is 

00...00 and the bottom is 11...11. Then the modules in the quarter shuffle 

network is connected in the way that outgoing link XnXn-i ...X2X1 of a stage 

is connected to incoming link Xn-2Xn-3.. .XnXn-i of the next stage as shown in 

, Figure 5-6. That is two cyclic left shifts of the link label. 
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. Figure 5-6 Quarter Shuffle with link 
labels. 

Now, there are 4 x 4 switch elements in any stage. Therefore we can 

label it using (n-2) bits. The four incoming and the four outgoing links 

‘ connected to the switch element Xn-2.. .xi are labeled Xn.2.. .xiOO if the two 

„ routing bits are 00，to link Xn-2...xi01 if the two routing bits are 01 and so 

‘ on. 

‘ Let the source and the destination addresses of a packet be S = sn...si and 

D = dn-.-di, respectively. The destination address will be used for routing 

starting from the most significant bit to the least significant bit. Initially, 

the packet occupies link Sn...Si, at the entrance to the shuffle-exchange 

network. After the first shuffle, its link label is Sn-2Sn-3...siSnSn-i at the input 
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to the first-stage switching node. Bit dndn-i is used to switch this packet 

outgoing link Sn-2Sn-3.. .Sidndn-i. W e see that SnSn-i has been replaced by dndn-

1. By another shuffle and exchange, the packet would occupy link Sn-4Sn-

5...sidndn.idn-2dn-3. Repeating the process, we see that the output links of 

the successive switching stages traversed by a packet is 

S = Sn...Si Sn-2Sn-3...Sidndn-l"^... 

S n - i S n - i - l . . . S i d n d n - l . . . d n - i + z d n - j + l — 

dn...di = D 

5.6 Comparison between Quarter shuffle and doubled links 

approaches 

In this section, we are going to compare these two new designs analytically. 

For both designs, the transition diagrams are the same as shown in Figure 

3-8 with number of states changed to 8. The limiting probabilities for each 

state are 

- 8 ) g . . 

. « 
‘ . � r (5 .5) 

+ - a 

The differences between these two designs are the deflection probability in 

each node and the number of routing bits that would be processed in one 

stage. 

58 



For the second design, as each output link is independent, the deflection 

probability is 

V /=o o y 

= 1 - / ( 7 ) 7 8 (5.6) 
(a + ju) -

6 4 - / / 

As each stage can process 2 bits, n is reduced by half. The delay of the 

switch is 

T = I 4 4 V ) 
, “ 2 ( 6 4 

For the first design with all the links doubled, as outputs are not 

independent, it is harder to arrive on the deflection probability. Define D as 

the output port number that the new arriving burst destined. Define P{i) as 

the probability that for an arriving burst can reach D when there are i bursts 

“ in the switching node. Trivially, as there are two output ports for each port 

number 

PiO)=P{\)=\ (5.8) 

冲 丫 (5.9) 
v4y 16 
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It happens when all the two previous bursts are destined to D. For i=3, 

burst is deflected when all the three previous bursts have the same 

destination D or any two of them destined to D 

P ⑶ = = M (5.10) 
" 43 64 

Things start tricky when i is equal to 4, as other bursts would have been 

deflected to D also. Our strategy is to choose the port number with less 

busy ports for deflection. 

• (5.11) 
\ , 44 256 

The value 1 in the end of (5.11) is happened when the first three bursts 

nv 
destined to the same address other than D ( — ) and the last one of them 

“ is deflected to D (^). Then the fourth one also wants to reach D (^). The 

first three bursts have 3 values to choose from. Therefore, this probability 

equals 

n v 1 1 1 
3x 7 x - x - = — (5.12) 

3 4 4 

In the same way, P(5) and P{6) can be obtained 
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= = (5.13) 
\ , 1024 \ , 2048 

For i = 7，we have only one output port available, therefore 

= i (5.14) 
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Figure 5-7 Probability that for an arriving 
burst can reach its destined output when 
there are /bursts in the switching node. 
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Figure 5-8 Deflection probability 
difference between quarter shuffle and 

doubled links 

Figure 5-7 shows P(i) against i. The deflection probability can be 

calculated by multiplying P{i) with tt,. Deflection probabilities of the two 

designs are shown in Figure 5-8. The average delay can then be obtained 

“ and is shown in Figure 5-9. W e can see that both designs of D S N with 8 x 

__ 8 nodes perform better than the D S N with 4 x 4 nodes. The quarter shuffle 

‘ is better when load is smaller as this implies that there is not so much 

deflection and therefore it simply visits its minimum stages it needed, 

which is smaller. On the other hand, when load is high, that means a lot of 

deflection would occur. The doubled links design has smaller deflection 

probability; therefore the delay on this design is smaller. Simulation result 

supporting the analysis is shown in Figure 5-10. 
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Chapter 6 
Conclusion 

In this thesis, we propose a novel approach to implement Optical Burst 

Switching (OBS) using the Dual Shuffle-exchange Network (DSN) as 

the core switching fabric. D S N possesses the self-routing property 

which allows major simplifications on the complex crossbars setup 

mechanisms. In addition, its asynchronous and buffer-less natures are 

highly preferable in the optical environment. W e also show that with an 

appropriate error-correcting routing algorithm, the output wavelength 

contentions can be reduced by means of internal deflection routing. 

W e have studied the performance of three D S N switch schemes for use 

in O B S routers. These schemes differ mainly from how they handle 

output multiplexing. The first one requires the less central controlling 

unit. W e assign each incoming burst with a routing tag, instructing it to 

”reach one (but not a specific one) of wavelength channels of its destined 

output fiber. However, this wavelength channel might have already 

‘ ‘ been occupied. In this way, the burst would be deflected to other 

wavelength channel until it can find a free wavelength channel or it is 

dropped at the end of the switch. 
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The second scheme introduces the use of Tunable Wavelength 

Converter to handle output multiplexing. When a burst has reached an 

output port of its destined output fiber, it immediately converts to one of 

the free wavelength available in the destined output fiber. This scheme 

gives a much better result than the first scheme but Tunable Wavelength 

Converters are still immature and expensive. In the third scheme, rather 

than instructing each arriving burst to reach its output fiber, we instruct 

each burst to reach a particular wavelength channel of its destined 

output fiber. In this way, the bursts do not need to be deflected in order 

to find a free wavelength channel. However, a central controller is 

needed to record which wavelength channel is being occupied so that it 

could easily find a free wavelength channel for a newly arrived data burst. 

W e also propose vertical expansion architecture based on D S N . W e find 

that with vertical expansion of 1.33，we can further reduce the blocking 

probability especially for high input traffic rates. As 8 x 8 M E M S 

switches are available, we have designed two schemes to make use of 

these switches and have improved the performance of switch. 
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