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Abstract 

This thesis describes a new strategy to achieve a new plateau in computer chess performance. 

Experimental results show that the improvements can reduce search effort by 60%. The 

significant reduction of search effort gives room for deeper search in which better performance 

can be guaranteed. 

Good human players conduct a highly selective look-ahead search in which they only rarely 

miss decisive variations. In the presence of a good evaluation function, selective Alpha-Beta 

searches based on ProbCut can approximate the focussed human search behavior. However, 

ProbCut still have to search many more path in order to come up with decisions of competitive 

quality. This thesis shows that there is still room for improvement. 

In this work, we have developed a probabilistic forward pruning framework for two-person 

non-random perfect information zero-sum game. By reformulating Euro's ProbCut idea, we 

developed a generalised version of ProbCut called GPC such that other Alpha-Beta variants 

algorithms can benefit from it and result in a decreased search effort. 

We also find that if the ordering of child moves is reasonably good, we can immediately 

stop the search and return the best minimax value found so far, once a shallow search yield 

a value outside the current search window. Experiments show that we can speedup the game 

of Chinese Checkers by 3 times. 

In this thesis, we also developed a new strategy for two-person non-random perfect infor-

mation zero-sum game. The strategy is the integration of forward pruning and node-cutting 

heuristic. By using the correlation and pattern information of the move ordering function, 

result of a short-depth search can be used to decide when to stop the search while keeping a 

reliable minimax value. Simulation results show that our strategy is superior in terms of the 
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hit rate of minimax value as well as the speed of finding the minimax. 
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摘要 

本論文旨在硏究開發一新策略提昇計算機下棋的表現。實驗结果顯示搜尋工作量 

可以減少逹百分之60 °搜尋工作量的大幅度減低給予計算機更多的空間作更深 

入的搜尋，從而保証有更優異的表現。 

好棋手能夠高度地選擇性向前搜尋’他們很少錯過決定性變異的搜尋。在一個優 

良的評估函數協助下，ProbCut選擇性阿爾貝他(selective Alpha-Beta)搜尋可以 

有接近好棋手的集中搜尋行爲，然而，爲了作出具競爭質素的決定’ ProbCut 

仍需要搜尋許多路徑’本論文顯示這仍存在改善空間。 

在這論文裏’我們爲二人非隨機完全資訊零總和(two-person non-random 

perfect information zero-sum)遊戲爲本’開發一個機率向前修剪構架 

(probabilistic forward pruning framework)。我們重新演繹 ProbCut 並推廣出一 

個廣義版本，我們稱之爲GPC，使之其他阿爾貝他變異算法亦能降低其搜尋工 

夫從而受益。 

我們并且發現如果走法排列(move ordering)不俗，一次淺深度搜尋出的 minimax 

値在當前的搜尋視窗(search window)之外’我們能立刻停止整個搜尋並傳回目 

前覓得的最佳minimax値，實驗顯示我們能夠加快中國跳棋搜尋速度逹3倍之 
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在這份論文中’我們還開發了一個新方案。這個策略是綜合了向前修剪技術和 

node-cutting heuristic °基於走法排列的相互關係和式樣資訊，短深度搜尋的結 

果可以用作決定何時停止搜尋而仍然保留可靠的minimax値。實驗结果顯示我 

們的方案在正確minimax値的命中率及取得minimax値的速度都有優越的表現。 
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Chapter 1 

Introduction 

1.1 An Overview 

To develope intelligent computer players for board games is a challenge which Artificial In-

telligence research has been addressing since the field began. In 1949, Shannon started to 

surmise how computers could play chess. He proposed the idea that computers would need an 

evaluation function to successfully compete with human players [39]. In principle, one has to 

consider, for a given position, all possible moves, then all moves for the opponent and then all 

responses for opponent's moves, and so on until to the end of game. Each of the paths ends in 

a win, loss or draw. By working backward from the end one can determine whether there is a 

forced win, the position is a draw or is a loss. This is the general idea of Shannon's minimax 

search algorithm. However, it is not feasible to construct and compute such a tree. A typical 

chess game last about 40 moves and in each position there is on average legal moves, that 

is, in the order of 30. There will be variations to be calculated from the initial position 

[28]. For the case of Othello, another classic game that is in general less complex than chess, 

it last for 30 moves and on average 10 legal moves for each position [34]. The total number 

of moves counting from start game is 10®° which is still not feasible to modern computer. As 

a result, a heuristic evaluation function is needed. The general procedure of an intelligent 

program starts by looking ahead a few moves at a time and then evaluate the resulting board 

positions. In general, as no simple and exact evaluation is a priori known, evaluations must be 
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. Chapter 1 Introduction 

based on game-specific knowledge to approximate the true function. Shannon suggested using 

a linear polynomial with variable coefficients to represent the evaluation function. Evaluation 

was made with respect to several selected parameters. In his chess, material advantage, pawn 

formation, positions of pieces, commitments, attacks and options and mobility was considered 

as the parameters. The construction of an intelligent program then falls into two problems, 

one is the method for fast tree searching and the other is the way to construct a good eval-

uation function. The former is related to the efficiency of the intelligent program while the 

latter is related to the quality of it. Researchers have paid attention to both problems. In this 

chapter we will discuss the previous works in these fields. 

1.2 Tree Search 

This section provides some background on minimax search algorithms. We briefly introduce 

the minimax function, and the concept of a cutoff. To find the value of the minimax function, 

one does not have to search the entire problem space. Some parts can be pruned; they are 

said to be cut off. The extension of basic minimax algorithm, Alpha-Beta, is discussed. Next 

we discuss common enhancements to Alpha-Beta. 

1.2.1 Minimax Algorithm 

Of central importance in most game-playing programs is the search algorithm. In trying to find 

the move to make, a human player would typically try to look ahead a few moves, predicting 

the replies of the opponent to each move, and the responses to these replies, and select the 

move that looks most promising. In other words, the space of possible moves is searched trying 

to find the best line of play. Game-playing programs mimic this behavior. They search each 

line of play to a certain depth and evaluate the position. Assuming that both players play 

perfectly, choose the move with the highest probability of winning for them, in each position 

the value of the best move is returned to the parent position. In a zero-sum game the loss 

of one player is the gain of the other. Player A tries to maximize the chance of winning the 

game; players B tries to maximize B's chance, which is equivalent to minimizing A's chances. 

Therefore, the process of backing up the value of the best move for alternating sides is called 
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. Chapter 1 Introduction 

function Minimax(n) - > f 
if « = LEAFNODE then return eval(n); 
else if/i = MAXNODE then 

-00; 
c <r- firstchildO); 
while c * NOCHILD do 

g — max(g, Minimax(c)); 
c < - nextbrother(c); 

else /• n is a min node •/ 
g<-+00； 

c < - firstchildO); 
while c 本 NOCHILD do 

g < - min(g，Minimax(c)); 
c < - nextbrother(c); 

return g; 

Figure 1.1: The Minimax Function. 

minimaxing; two-player search algorithms are said to perform a minimax search. 

Figure 1.1 gives the recursive minimax function in pseudo code. The code takes a node 

n as input parameter and returns /„，the minimax value for node n. Every node is either a 

leaf, a min, or a max node. An evaluation function, eval, exists that returns the minimax 

value for each board position at a leaf node. The functions firstchild and nextbrother exists, 

returning the child node and brother nodes. If no child or brother exists, these functions will 

return NOCHILD. The minimax function traverses the tree in a depth-first order. The min 

and max operations implement the backing-up of the scores of nodes from a deeper level. The 

value of g represents an intermediate value of a node. When all children have been searched 

g becomes /，the final minimax value. 

In many games it is not feasible to search all paths to the end of the game, because the 

complete minimax tree would be too huge. The evaluation function is changed to return a 

heuristic assessment. 

An example of how a tree is traversed by the minimax algorithm is shown in appendix A. 
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. Chapter 1 Introduction 

function AlphaBeta(n, alpha, beta) g 
ifn = LEAFNODE then return eval(/2); 
else if « = MAXNODE then 

c <— firstchild(n); 
while g < beta and c 本 NOCHILD do 

g max(g, AlphaBeta(c, alpha, beta)); 
alpha <r- max{alpha, g); 
c <— nextbrother(c); 

else /* n is a min node */ 

c < - firstchild(/2); 
while g > alpha and c * NOCHILD do 

g min(g, AlphaBeta(c, alpha, beta))', 
beta <- min{beta, g); 
c <— nextbrother(c); 

return g; 

Figure 1.2: The Alpha-Beta Function. 

1.2.2 The Alpha-Beta Algorithm 

In fact, to find the value of the minimax function, one does not have to search the entire 

problem space. Some parts can be pruned; they are said to be cut-off. This pruning idea 

builds up the Alpha-Beta algorithm. The enhancement to the minimax algorithm, in the best 

case，can search up to twice the search depth of full minimax. 

Figure 1.2 gives the pseudo code for Alpha-Beta algorithm. It consists of the minimax 

function, plus two extra input parameters and cut-off tests. The alpha and beta parameters 

together are called the search window. At max nodes, current p is a lower bound on the 

return value. This lower bound is passed to the children as the alpha parameter. Whenever 

any of these children finds it can no longer return a value above that lower bound, further 

searching is useless and is stopped. At min nodes, current g is an upper bound. Parameter 

beta passes the bound on so that any max children with a lower bound greater than beta can 

stop searching. This is called cut-off. Together, alpha and beta form a search window which 

can be regarded as a task for a node to return a value that lies inside the window. 

The g denotes the return value of an Alpha-Beta call. There are 3 cases for the return 

value: 
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. Chapter 1 Introduction 

1. a < g < P (success) 

2. g < a (failing low) 

9 > 13 (failing high) 

For case 1，the search is success. The minimax value is equal to g. If it is case 2，it is failing 

low. It means that the correct minimax value is smaller than g, or from another point of 

view, g is the upper bound of it. Analogously, if it is case 3, it is failing high. The correct 

minimax value is greater than g. g is the lower bound of the true value. After each recursive 

Alpha-Beta calls, the lower and upper bounds become tighter until they converge. Usually 

Alpha-Beta is called with an initial window of (—oo, +oo) to make sure the algorithm can find 

the minimax value. 

The benefits of the algorithm come from the elimination of subtrees without search once 

it is proven their value must lie outside the alpha-beta search window. Subtrees eliminated 

in this manner are said to be cut-off. In the optimal case, for uniform trees of depth d and 

branching factor w, only 1(；1"�21 + _ 工 je^f nodes need be considered [19]. This can be 

said as the best case of Alpha-Beta. 

Since its introduction in 1958 by Newell, Shaw and Simon [27], many additional heuristics 

and enhancements have been applied to achieve further speed-up. They are discussed in the 

following subsections. 

A complete example of how a tree is traversed by the Alpha-Beta algorithm is shown in 

appendix A. 

1.2.3 Alpha-Beta Enhancements 

Move Ordering 

The effectiveness of Alpha-Beta cut-offs is maximized if the best move is considered first at all 

interior nodes of the search tree. The size of the search tree built by the depth-first Alpha-Beta 

algorithm largely depends on the order in which branches are considered at interior nodes. 

The minimal game tree arises if the branch leading to the best minimax score is considered 

first at all interior nodes. Examining them in worst to best order results in the maximal tree. 

As a result, a way to improve the effectiveness of Alpha-Beta pruning is to improve the 

order in which child positions are examined. On a perfectly ordered uniform tree Alpha-Beta 
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. Chapter 1 Introduction 

function AspWin(n, estimate, delta) f 
alpha <— estimate - delta; 
beta <- estimate + delta; 
g < - AlphaBeta(«, alpha, beta); 
if g< alpha then 

g < - AlphaBeta(«, -oo, g) ; 
else if g > beta then 

g <r- AlphaBeta(n, g, +00); 
return g; 

Figure 1.3: The Aspiration Window Searching Function. 

will cut-off the maximum number of nodes. The approach is usually by using game-dependent 

knowledge to make a guess decision to order the moves. For example, in chess it is often wise 

to try moves that will capture an opponent's piece first, and in Othello certain moves near 

the corners are often better. 

In real applications, like checkers, chess or Othello, however it is not easy to obtain perfect 

move ordering. An inexpensive estimation function is good enough if it is simple, can be 

compute fastly, and is close to perfect ordering, at least in the first few sibling nodes. Best-

first move ordering becomes a reasonably good alternative as we will likely examine the best 

child first. 

Techniques such as iterative deepening [15] and history heuristic [37] have shown that it is 

possible to achieve excellent move ordering. We can, therefore, obtain the function by these 

techniques. 

Aspiration Window 

Aspiration Search was first discussed and analyzed by Brudno [4], Marsland [23] and Marsland 

and Campbell [22]. In many games the values of parent and child nodes are correlated. There-

fore we can obtain cheap estimates of the result that a search to a certain depth will return. 

We do a relatively cheap search to a shallow depth to obtain this estimate. This estimate can 

be used to create a small search window. This window is known as an aspiration window, 

since we aspire that the result will be within the bounds of the window. With this window 

an Alpha-Beta search is performed. If it succeeds, that is the returned value lies inside the 
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. Chapter 1 Introduction 

small search window, then we have found the minimax value cheaply. If it fails (either failing 

low or failing high), then a re-search must be performed. Since failed search would return 

a bound, this re-search can also benefit from a window smaller than (—00, +00). Aspiration 

window searching is commonly used at the root of the tree. One option for the estimate is to 

evaluate the current position. Aspiration window searching usually do more efficiently than 

Alpha-Beta(n, —00, +00). Figure 1.3 shows the pseudo code of aspiration window searching. 

NegaScout 

SCOUT [29] algorithm was motivated by the desire to reduce search effort by testing node 

values rather than by evaluating nodes. Full evaluation of a node is time consuming while 

node value testing is not. SCOUT offers little in the way of speedup over Alpha-Beta. Reine-

feld has done some modifications to the algorithm to provide addtional cut-offs and named as 

NegaScout [32]. 

Pushing the idea of a smaller search window to the limit is the use of null-window. By 

assuming the minimax values are integer-valued, we can have a null-window if we choose alpha 

as beta — 1. This Alpha-Beta null-window search ensures the highest number of cutoffs as we 

can never find out a minimax value in between alpha and beta. We always obtain either failing 

low or failing high. However, the returned value serves as the bound of true minimax value. 

By using a null-window search, we can test the value of a node in a quick manner rather than 

evaluating it. 

Figure 1.4 shows the pseudo code of NegaScout. It uses a wide search window for the first 

child but a null-window to the other children. At a max node the minimax value of the its 

first child node should be the greatest. If one of the null-window searches for other children 

returns a bound that is greater, then that child is indeed a better move and re-search with 

a wide window is needed to determine its minimax value. Analogously, at a min node the 

minimax value of its first child node should be the least. If the null-window searches show one 

of the brothers has a smaller minimax value, than that one becomes the most desired move 

and re-search is performed to determine its minimax value. NegaScout finds more cutoffs than 

Alpha-Beta and resulted in faster running time. 

Using the technique of transposition table [41], which is commonly used in chess programs 
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Chapter 1 Introduction 

function NegaScout(«，alpha, beta) — g 
ifn = LEAFNODE then return eval(/i); 
c firstchild(«); 
g <— NegaScout(c, alpha, beta); 
c < - nextbrother(c); 
i f n = M A X N O D E then 

b <- max(g, alpha)-, 
while g < beta and c * NOCHILD do 

t < - NegaScout(c, b,b+ 1); 
/* the last two ply o f the tree return an accurate value */ 
if c = LEAFNODE or firstchild(c) = LEAFNODE then g<r- t ; 
if t > max(g, alpha) and t < beta then t < - NegaScout(c, t, beta); 
g niax(g, 0； 

c <— nextbrother(c); 
b <r- max{b, t); 

else /* n is a min node */ 
b <- min(g, beta); 
while g > alpha and c 本 NOCHILD do 

t < - NegaScout(c, 6 - 1 , b)\ 
/* the last two ply o f the tree return an accurate value */ 
i fc = LEAFNODE or firstchild(c) = LEAFNODE then 
if t < max(g, beta) and t < alpha then t < - NegaScout(c, alpha, t); 
g < - min(g, beta)', 
c < - nextbrother(c); 
b <r- min(Z), f)； 

return g ; 

Figure 1.4: The NegaScout Function. 
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. Chapter 1 Introduction 

to prevent re-searching of already evaluated positions, Negascout examines 20 to 30 percent 

fewer terminal nodes than alpha-beta algorithm [32]. Almost in the same time, Campbell and 

Marsland published a similar algorithm named as PVS (principal variation search) [21, 9]. 

But due to its complex implementation, it was not widely used. 

Memory-enhanced Test 

The previous subsection showed how null-widow Alpha-Beta searches can be used as an ef-

ficient method to compute the bounds. Plaat generalized the null-window searches to form 

M T D ( / ) algorithm as shown in Figure 1.5 and 1.6. MT is a null-window Alpha-Beta function 

with memory storage. The value and information of visited nodes are stored. They will be 

restored when re-visiting them. Since MT use the null-window search technique, it will always 

encounter the problem of re-visiting many visited nodes. With the help of memory storage, 

MT can save the overhead of re-search visited nodes. MTD is the driver function of MT. The 

driver function control the null-window test value for each MT function call. By choosing 

proper test value, the bounds of minimax value will converge and the desired minimax value 

is found. 

At the root of a tree the return bounds from each MT function call are stored in upperbound 

(after Alpha-Beta failing low) and lowerbound (after Alpha-Beta failing high). The bounds 

delimit the range of possible values for the minimax value. Each time M T D ( / ) calls MT 

it gets a value back that narrows the range, and the algorithm is one step closer to hitting 

the minimax value. In order to get rid of the overhead inherent in multiple re-searches, 

storing nodes as well as their bounds in memory by transposition table is suggested. However, 

M T D ( / ) needs, and also makes use of a good first guess in order to find the minimax value 

efficiently. This can be done by feeding back the minimax value of last move, provided that 

the value is not oscillating. The improvement of M T D ( / ) over Alpha-Beta is even more than 

that of NegaScout over Alpha-Beta [31, 30]. 

1.2.4 Selective Search 

Besides traditional full-width fixed-depth minimax search, we can have non full-width fixed-

depth search. Unlike computer, human player would not examine all possible moves for a given 
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function MT(«, gamma, depth) g 
if depth = 0 then /* leaf node */ 

retrieve(n) 
if n.lowerbound = -oo and n.upperbound = +00 then 

g <- evaluate(n); 
else if n.upperbound = +00 then 

g = n.lowerbound; 
else 

g = n.upperbound; 
else if « = MAXNODE then 

c <— firstchild(n); 
/* g > gamma causes a beta cutoff {beta = gamma) */ 
while g < gamma and c 本 NOCHILD do 

retrieve(c); 
if c.upperbound > gamma then 

g' <— MT(c, gamma, d -1) ; 
else 

g' c.upperbound', 
g <- max(g, gy, 
c <- nextbrother(c); 

else /• « is a MINNODE */ 
g<~+00; 
c <— firstchild(/i); 
/* g< gamma causes an alpha cutoff {alpha = gamma - 1) */ 
while g > gamma and c * NOCHILD do 

retrieve(c); 
if c.lowerbound < gamma then 

g' <— MT(c, gamma, d - 1); 
else 

g' <— c.lowerbound', 
g < - min(g, gO； 

c <— nextbrother(c); 
/* Traditional transposition table storing o f bounds */ 
i f g > gamma then /* Fail high result implies a lower bound */ 

n.lowerbound <— g; 
store n.lowerbound', 

else /* Fail low result implies an upper bound */ 
n,upperboimd <- g; 

store n.upperbound', 
return g\ 

Figure 1.5: The Memory-enhanced Test Function. 
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function MTDF(rao^/ depth) — g 

upperbound <— +00; 
lowerbound <——00; 

repeat 
if g = lowerbound then gamma < — 1 else gamma <— g; 
g yn:{root, gamma, depth)', 
if g < gamma then upperbound <— g else lowerbound <— g; 

until lowerbound > upperbound', 
return g\ 

Figure 1.6: The Memory-enhanced Test Driver Function. 

board position but using their experience, narrow the game tree by pruning those unpromising 

variations in advance such that they can search to rather deep levels. This is how the idea of 

selective search comes from. 

According to Shannon's description [39], tree search can be classified as two major types. 

Traditional full-width minimax searches are considered as Type-A strategies while selective 

searches are considered as Type-B strategies. Forward pruning is the major technique used 

by many selective search strategies. Unlike Alpha-Beta, due to its backtracking style of tree 

traversal, which only prunes nodes that will not be chosen, forward pruning techniques ignore 

all nodes that do not look very promising, thereby running the risk of missing the correct 

choice. We will discuss several well-known forward pruning techniques in the next part of this 

subsection. 

Razoring 

One heuristic that has been used to define a selective strategy is to expand only nodes that 

look at least as good as the current best. This heuristic defines a technique called razoring 

[3], a procedure that, at first glance, looks strikingly similar to Alpha-Beta. In fact, the 

only difference between them lies in the criteria used for determining the potential of a node. 

Alpha-Beta relies on backed up minimax value, razoring on a static evaluation. Thus, while 

razoring prunes nodes that do not look good, Alpha-Beta only eliminates nodes that are not 

good. Unlike Alpha-Beta, razoring cannot guarantee that it will find the minimax value. Ra-

zoring should be used in addition to Alpha-Beta, not instead of it. In the worst case, razoring 
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will prune the same nodes as Alpha-Beta, with only the added cost of some extra evaluations. 

In the average case, however, razoring will prune nodes earlier than Alpha-Beta, narrow the 

branching factor more rapidly, and deepen the search, all in exchange for occasionally missing 

the best choice. The preliminary experiments described by [3] showed that in the exchange, 

razoring gained, on the average, an order of magnitude over Alpha-Beta in a four-ply tree, in 

terms of the number of nodes expanded. 

B* 

The B* algorithm [2] uses a simple heuristic of a very different nature. It “terminates the 

search when an intelligent move can be made". This algorithm was motivated by the desire 

to avoid the horizon effect by defining natural criteria for terminating search. The search 

proceeds in a best-first manner, and attempts to prove that one of the potential next moves 

is, in fact, the best. By concentrating only on the part of the tree that appears to be most 

promising, B* (and best-first searches in general) avoids wasting time searching the rest of 

the tree. Berliner's adaptation of best-first searches to game-trees included the first modifi-

cation to Shannon's original model. Instead of associating a single value with each node, B* 

uses two evaluation functions, one to determine an optimistic value, or upper bound, and one 

for a pessimistic value, or lower bound. The search is conducted with two proof procedures, 

PROVEBEST, which attempts to raise the lower bound of the most promising node above the 

upper bounds of its siblings, and DISPROVEREST, which tries to lower the upper bounds of 

the siblings beneath its lower bound. The search terminates when the most promising choice 

has been proven best. 

Although B* sounds particularly appealing from both the speedup and cognitive modeling 

viewpoints, it does have its drawback. Like all best-first searches, a good deal of storage space 

is needed to keep track of the promising nodes. 

Conspiracy Search 

Conspiracy search uses a heuristic to “ attempt to stabilize the value of the root" [24]. The 

value of a node is stable if deeper searches are unlikely to have any major effect on it. In a 

conspiracy search, the root's stability is measured in terms of conspiracy numbers, the number 
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of leaves whose values must change to affect its value. If the number of conspirators required 

to change the root value is above a certain threshold, the value is assumed to be accurate. At 

any given point during the search, the possible values of the root are restricted to the interval 

[Vmin, Vmax], where Vmin and Vmax are the values of its minimum and maximum accessible 

descendants at the search frontier, respectively. To update the range, either prove that the 

minimizing player can avoid Vmax，or that the maximizing player can avoid Vmin • The decision 

of which to prove at each point can be made with the help of the conspiracy numbers. 

ProbCut 

The original minimax algorithm searches the entire game tree up to a certain depth and even 

with its efficient improvements such as Alpha-Beta pruning, null-window NegaScout search 

and M T D ( / ) is only allowed to prune backwards since they have to compute the correct min-

imax value. It was found that evaluations obtained from searches at different depths have 

strong correlation, provided that a reasonably good evaluation function exists [5]. The result 

of a shallow search can be used to decide with a prescribed likelihood whether a deep search 

would yield a value outside the current search window. Buro generalized the idea and came 

up with the probabilistic forward cuts heuristic [5]. 

The ProbCut selective search heuristics permits pruning of subtrees that are unlikely to 

affect the minimax value and uses the time saved for analysis of probably more relevant 

variations. This approach is based of the fact that values returned by minimax searches of 

different depths are highly correlated, provided that a reasonably good evaluation function 

and, if necessary, a quiescence search [1] [14] is used. A quiescence search extends the search 

at a leaf position until a quiet position is reached. In chess, “ quiet" is usually defined as no 

captures present and not in check. In this case, a shallow search result Vs is a good predictor 

for the deep minimax value Vd. 

A simple way to express the relationship between Vs and Vd is a linear model of the form 

vd = axvs+b + e where a, b are real constants and e is a normally distributed error variable 

having mean 0 and variance (j^ . These parameters are estimated by linear regression applied to 

a large number of training pairs (vd(Pi), VsiPi)), where pi is input of different board positions. 

After computing the shallow search result Vs, the search is terminated in the current position 
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function AlphaBetaPC(«, depth, alpha, beta) g 
\{n = LEAFNODE then return eval(«); 

//ProbCut heuristic: 
else if depth = d then 

bound <r- xo\mA{beta - b + t * sigmd) / a); 
if (AlphaBetaPC(n, s, bound - 1，bound) > bound return beta; 
bound <— xo\mdi{alpha - b -1* sigmd) / a); 
if (AlphaBetaPC(/z, s, bound, bound + 1) < bound return alpha; 

// 

else if « = MAXNODE then 

c <- firstchild(n); 
while g < beta and c * NOCHILD do 

g <- max(g, AlphaBetaPC(c, depth -1’ alpha, beta)); 
alpha <r- max{alpha, g); 
c <— nextbrother(c); 

else /* n is a min node */ 

c <— firstchild(/i); 
while g > alpha and c 本 NOCHILD do 

g <r- min(g, AlphaBetaPC(c, depth - 1，alpha, beta)); 
beta mm{beta, g); 
c < - nextbrother(c); 

return g; 

Figure 1.7: The ProbCut enhanced AlphaBeta Algorithm. 

if and only if a x + 6, which is an unbiased estimator for Vd, lies outside of [ct 一 ta,/3 + ta] 

where t is an adjustable confidence parameter. The pseudo code of ProbCut heuristic is shown 

in figure 1.7. 

ProbCut was first implemented in its inventor's strong Othello program, LOGISTELLO 

which defeated the human world champion in 1997 [6]. With the help of ProbCut, the enhanced 

version beats original LOGISTELLO with a winning percentage of 74 percent. Later the 

inventor refined it to Multi-ProbCut (MPC) (figure 1.8) and EndCut. MPC allows pruning 

at different search depth together while EndCut allows a smooth transition from heuristic 

middle-game to exact endgame search that is able to find best moves in a limited time more 

often than the classic approach [7, 8]. The winning percentage of MPC against ProbCut 
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function AlphaBetaMPC(n, depth, alpha, beta) — g 
if n = LEAFNODE then return eval⑷； 

//MultiProbCut heuristic: 
else if depth < d then 

load a, b, sigma, game一stage; 
for i from 0 to NUMBER_OF_TRY do 

bound <— round(办eto - b + t * sigma) / a); 
if (AlphaBetaMPC(n, s, bound -1，bound) > bound return beta; 
bound rovind{alpha - b - t* sigma) / a); 
if (AlphaBetaMPC(n, s, bound, bound + 1) < bound return alpha; 

// 

else ifn = MAXNODE then 

c <— firstchild(«); 
while g < beta and c 本 NOCHILD do 

g < - max(g, AlphaBetaMPC(c, depth - 1, alpha, beta)); 
alpha <— max(a!pha’ g); 
c < - nextbrother(c); 

else /* n is a min node */ 

c firstchild(/2); 
while g > alpha and c 本 NOCHILD do 

g <r- min(g, AlphaBetaMPC(c, depth - 1, alpha, beta)); 
beta <— rmn{beta, g); 
c <— nextbrother(c); 

return g; 

Figure 1.8: The MultiProbCut enhanced AlphaBeta Algorithm. 
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enhanced version of LOGISTELLO is 72 percent. The result showed that MPC is even better. 

However, the major deficiency of ProbCut heuristic is that it can only apply to Alpha-Beta 

algorithms but not its enhancement variants algorithms such as NegaScout or MTD( / ) .The 

reason is simply that these algorithms usually make use of null-window search technique. As 

null-window is already the minimal window, any boundary tests apply to it must fail. The 

minimax value of a node cannot lie inside the current search window (that is, the null-window). 

The tests must either return failing high or failing low. We cannot gain any additional cut-offs 

but have to pay for the cost of boundary tests. 

Literatures [32][31][30] have already showed that M T D ( / ) and NegaScout out-perform 

Alpha-Beta. The search speed of Alpha-Beta is slow when compared with the state-of-the-art 

minimax search algorithm M T D ( / ) . The reduced search effort by ProbCut to Alpha-Beta is 

not as significant as that of M T D ( / ) or NegaScout. That is, the search time of M T D ( / ) and 

NegaScout algorithms are even shorter than ProbCut enhanced Alpha-Beta algorithm. In this 

case, there is no gain to use ProbCut unless we can find way to apply ProbCut to M T D ( / ) 

or NegaScout. We will discuss this issue in the next chapter. 

Others 

Moriarty and Miikkulainen showed that evolutionary neural networks can be used to perform 

selective search as well. Their focus networks [25] were evolved using genetic algorithms to 

direct a minimax search away from poor information. At each state in the search, the focus 

networks determines which moves look the most promising and a subset of possible moves are 

explored. They tested their focus networks in the game of Othello and result showed that 

the focus searches are able to defeat full-width searches while examining vastly fewer posi-

tions. Aritificial evolution provides a promising paradgm for developing better game-playing 

programs. 

1.3 Construction of Evaluation Function 

Even there is a fast minimax search, without a reasonably good evaluation function, the 

program could not make any intelligent move. Therefore, the Board evaluation function is the 
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most important component of an intelligent program. 

The model described by Shannon is a linear polynomial of weighted board features [39]. 

This is widely used in many successful intelligent programs. Usually evaluated score are 

assumed to be integer-valued. However, one may choose real number ranged from 0 to 1 for 

evaluation to represent the probability of winning. 

Devising a reasonably good board evaluation function is, in general, not an easy prob-

lem. Consequently, substantial work has been done on devising methods for automatically 

generating such functions. The earliest publication that actively employs machine learning 

was presented in 1959 by Samuel [35]. Samuel developed a checkers program that tried to 

find "the highest point in multidimensional scoring space" by using two players. The results 

from Samuel's experiment were impressive. In 1988, Sutton developed Samuel's ideas further 

and formulated methods for Temporal Difference Learning (TDL) [43]. Many researchers have 

since applied TDL to games. One of the most successful of these is Tesauro's backgammon 

program which achieved master-level status [44]. In 1993, Lorenz derived a framework for 

applying genetic algorithms to game evaluation function learning [20]. Besides, Ferrer and 

Martin [13], Sun and Wu [42] and Chisholm and Bradbeer [11] all successfully constructed 

good evaluation function for their Senet, Othello and Draughts programs by genetic algorithm 

respectively. Neural-Network was found to be useful in evolving intelligent game programs 

too. Chellapilla and Fogel made a great success in their checkers program [10]. Recently, evo-

lutionary algorithms were found to be successful in optimizing the board evaluation function. 

One example is Kendall and Whitwell [18]. They developed an evolutionary approach to tune 

a Chess evaluation function. 

1.4 Contribution of the Thesis 

This thesis aims at developing various heuristic in tree searching for two-person non-random 

perfect information zero-sum game. According to Jackson's description, non-random means 

that the allocation and positioning of resources in the game is purely deterministic. The 

term perfect information indicates that both player have complete knowledge regarding the 

disposition of both player's resources while zero-sum means that any potential gain to one 
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player will be reflected as a corresponding loss to the other player. Typical examples are 

Chess, Othello, Checkers and so on. In particular, the contributions of this research can be 

summerized as follows: 

• GPC-AB: A generalised version of ProbCut 

The efficient ProbCut selective extension is reformulated, making the heuristic practical 

to Alpha-Beta enhancement algorithms. ProbCut can be expressed intuitively as a 

null-window call to Alpha-Beta from parent node, yielding a new formulation called 

GPC-AB. 

• GPC: A selective search framework based on ProbCut 

Inspired by the GPC-AB reformulation, a new framework for selective minimax search 

is introduced. It is based on the null-window Alpha-Beta search. We present a simple 

framework of GPC that make calls to null-window Alpha-Beta search. Search results 

from previous passes are used to determine whether a deep search would be needed. 

The instances of this framework are readily incorporated into existing game-playing 

programs. 

• FGPC: A framework that can out-perform MTD(f) in time efficiency 

In the GPC framework the essential part of the search is formed by a null-window search. 

Based on this boundary testing technique, we introduce a new framework called FGPC. 

Value returned from null-window call is used to determine when to stop the search of 

current node as well as its parent node. Using our new framework, we are able to com-

pare the performance of FGPC to a number of well-known minimax search algorithms. 

A high performance game-playing program was used to ensure the generality and reli-

ability of the outcome. The results of these experiments were quite surprising, FGPC 

is comparable with full-width minimax search in performance and is out-performing in 

time efficiency. 

• Node-cutting heuristic: An effective pruning technique that is superior than full-width 

minimax search 

We formulate a heuristic, node-cutting. Node-cutting reduces the branching factor by 

the correlation of move ordering searched at different levels. Our experiments show 
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that node-cutting heuristic can guide the search to a more aggressive approach and take 

advantage of possible mistakes by the opponent. 

• An integrated strategy: Efficiently use of allocated time 

We introduce a technique to take better advantage of available time. It reduces the 

search tree size but maintaining a high rate of hitting the correct minimax value. 

1.5 Structure of the Thesis 

The organization of the thesis is as follows. In Chapter 2, a probabilistic forward pruning 

framework is described. This is a generalised selective search extension. In Chapter 3，a fast 

probabilistic forward pruning framework is proposed. The results of applying our heuristics 

to games are described. In Chapter 4, node-cutting heuristic is formulated. In Chapter 5, 

an integrated strategy is constructed. Finally, we will draw our conclusions and discuss the 

future works in the last chapter. 
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Chapter 2 

The Probabilistic Forward 

Pruning Framework 

2.1 Introduction 

It has long been known that the Alpha-Beta algorithm is an inefficient searching method that 

it searches all nodes to the same depth. No matter how bad a move is, it gets searched as 

deep as the most promising move [39]. Alpha-Beta algorithm uses the backed-up return values 

propagated from leaf nodes for the cut-off decisions. This kind of pruning method is named 

as backward pruning. Backward pruning will probably make sure that most of the nodes in 

the subtree of the bad move get pruned, but a more selective search strategy could help to 

make sure that really bad moves are not considered at all. In contrast to backward pruning, 

these strategies are called forward pruning. 

The previous chapter showed how the ProbCut heuristic is used in Alpha-Beta algorithm. 

This chapter generalizes the heuristic further. In the next section, we present a reformulation 

of ProbCut. The reformulation is based on the Alpha-Beta procedure. It examines the same 

leaf nodes in the same order as ProbCut. It is called Generalized Probabilistic Forward Cuts 

Heuristic (GPC). In section two, we will generalize the ideas behind GPC into a new framework 

that elegantly ties together a number of algorithms that are perceived to be dissimilar. The 
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last section summarizes our idea. 

2.2 The Generalized Probabilistic Forward Cuts Heuris-

tic 

Recall from previous chapter that the ProbCut selective search heuristics permits pruning of 

subtrees that are unlikely to affect the minimax value and uses the time saved for analysis of 

probably more relevant variations. This approach is based of the fact that values returned by 

minimax searches of different depths are highly correlated, provided that a reasonably good 

evaluation function and, if necessary, a quiescence search is used. In this case, a shallow search 

result is a good predictor for the deep minimax value. After computing the shallow search 

result, the search is terminated in the current position if and only if the unbiased estimator 

for the deep minimax value lies outside the search window. The core idea is the boundary 

tests. 

However, the major deficiency of ProbCut heuristic is that it can only apply to Alpha-Beta 

algorithms but not its enhancement variants algorithms such as NegaScout or MTD( / ) .The 

reason is simply that these algorithms usually make use of null-window search technique. As 

null-window is already the minimal window, any boundary tests apply to it must fail. The 

minimax value of a node cannot lie inside the current search window (that is, the null-window). 

The tests must either return failing high or failing low. We cannot gain any additional cut-offs 

but have to pay for the cost of boundary tests. 

Literatures [32][31][30] have already showed that M T D ( / ) and NegaScout out-perform 

Alpha-Beta. The search speed of Alpha-Beta is slow when compared with the state-of-the-art 

minimax search algorithm M T D ( / ) . The reduced search effort by ProbCut to Alpha-Beta is 

not as significant as that of M T D ( / ) or NegaScout. That is, the search time of M T D ( / ) and 

NegaScout algorithms are even shorter than ProbCut enhanced Alpha-Beta algorithm. In this 

case, there is no gain to use ProbCut unless we can find way to apply ProbCut to M T D ( / ) or 

NegaScout. Nevertheless, by reformulating ProbCut to perform boundary test for child nodes 

in parent level, selective search apply to Alpha-Beta enhancement variants algorithm that use 

null-window search technique is possible. 
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If depth is 1，boundary test is performed to determine if 
a deep search yield a value outside the current search window. 
Different to ProbCut, the boundary test is done on parent node n 
instead of child nodes c,. 

Figure 2.1: The idea of Generalized Probabilistic Forward Cuts Heuristic. 
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Figure 2.2: The idea of Generalized Probabilistic Forward Cuts Heuristic (Max node). 
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Figure 2.3: The idea of Generalized Probabilistic Forward Cuts Heuristic (Min node). 

The idea of GPC can be illustrated by figures 2.1，2.2 and 2.3. Let us first define n as an 

arbitary node of a game tree to be searched. Node n has w children where w is the branching 

factor of the tree. Then we define g(ci) be the result of shallow search and / ( c j ) be the deep 

minimax value of node Cj. 

A simple way to express the relationship between g(ci) and f ( c i ) is a linear model of the 

f o r m f(ci) = a X g(ci) + b + e where a, b are real constants a n d e is a n o r m a l l y d is tr ibuted error 

variable having mean 0 and variance cr̂  . These parameters are estimated by linear regression 

applied to a large number of training pairs {g{pi), f{Pi)), where pi is input of different board 

configurations. 

The search for node Ci can stop if and only if / ( c j ) lies outside the current search window. 

In other words, we continue the search for node Ci if and only if a < f { c i ) < /5 where a and 

are the lower bound and upper bound of the current search window respectively. 

For the case when node n is a max node, the lower bound of search window is continuously 

increasing. We let it be 7 such that o: < 7 < In this case, we have to perform a boundary 

test for f{ci) > 7 . Using the same idea as ProbCut, we have: 

/(ci) > 7 

场 a X g{ci) + 6 + e > 7 

a X g{ci) + 6 - 7 �e 
w � cr a 
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^ … ( C i 广 I � " ” ) 

分论。 > (2.1) 

CL 

Since — ^ is normally distrubuted with mean 0 and variance 1, / ( c j ) > 7 holds with 

probability of at least p if and only if g{ci) > ” 好 : ~ ^ where $ is the Normal distribution 

function. As a result, we use，-奸： i s l as the value of boundary test for g{ci). 

Similarly, for the case when node n is a min node the upper bound of search window is 

continuously decreasing. We let the upper bound be 7 such that a < 7 < Then we perform 

a boundary test for / ( c j ) < 7. 

f{Ci) < 7 

a X g{ci) + 6 + e < 7 
a X g(Ci) + b - j e < — 

a a 

a 
分 g(ci) < 丄 — (2.2) 

0/ 

f{ci) < 7 holds with probability of at least p if and only if g{ci) < 上 �. A s a result, 

we use 7 一 ^ as the value of boundary test for g{ci). 

Appendix A contains a detailed example of how a tree is searched by GPC, ProbCut and 

relevant algorithms. 

2.3 The GPC Framework 

GPC is a probabilistic forward pruning framework that generalized from the idea of ProbCut. 

GPC is easily applicable to other Alpha-Beta enhancement algorithms. In this section, we 

will illustrate how GPC is used together with Alpha-Beta and some well-known Alpha-Beta 

enhancement algorithms. 

2.3.1 The Alpha-Beta Algorithm 

Given an arbitary node, the search is terminated in the current position if and only if its 

minimax value already lies outside the current search window. The search window is passed 
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from its parent. If the parent is a max node, it will continue increasing the lower bound of 

the search window in trasversing its subtrees, until cut-off occurs (that is the lower bound is 

greater than the upper bound). For the same reason, it will continus lowering the upper bound 

of the search window in trasversing its subtree until cut-off occurs if the parent is a min node. 

As we can see, we can perform the boundary tests for subtrees in the parent node instead of 

performing the boundary tests in child nodes. This can be done by placing the boundary test 

code before the recursive call of Alpha-Beta function. The pseudo code is shown in figure 2.4. 

GPC-AB is equivalent to ProbCut. GPC-AB examines the same leaf nodes in the same 

order as ProbCut. They produce the same number of cut-offs. They not only make the same 

decision, but also obtain the same minimax value if given the same tree to them. Though 

the running time and complexity for both heuristic make no significant difference, GPC-AB 

give us a hints for us to apply selective search heuristic in Alpha-Beta enhancment algorithms 

which usually involve techniques of null-window search. Null-window search is not compatible 

with ProbCut since the search window is already the minimal window. We can never find 

a subtree that its minimax value does not lie outside the minimal search window. However, 

with the help of the reformulation of ProbCut, selective search heuristic to Alpha-Beta variants 

algorithms are applicable. 

2.3.2 The NegaScout Algorithm 

As described in previous chapter, NegaScout uses a wide search window for the first child, and 

a null-window for the other children. ProCut can be applied to the first child only, but cannot 

be applied to other children. As a max node the first node should be the highest, if one of the 

null-window searches returns a bound that is greater, then that child have to re-search with a 

wide window to determine its value. For a min node the first node should remain the lowest. 

If the null-window searches show one of the brothers to be lower, then re-search is needed. In 

both case，the search window for re-search use the result of null-window as the bound such 

that to reduce the search window for re-search. However, the previous null-window search is 

just a boundary test. The returned bound reduces the search window. It is not likely that the 

reduced search window would produce a failing low or failing high. As a result, the boundary 

test for ProbCut become useless. But if we put the tests before the recursive function call, we 
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function GPC-AlphaBeta(n, depth, alpha, beta) g 
ifn = LEAFNODE then return eval(«); 
else if w = MAXNODE then 

c firstchild(n); 
while g < beta and c t NOCHILD do 

//GPC heuristic: 
if level = then 

ub<r-g; 
gc <r- Tound{{ub -b-t* sigma) / a); 
gc' < - GPC-AlphaBeta(c, gc, gc + 1); 
if gc' < gc then 

c < - nextbrother(c); 
continue; 

g <r- max(g, GPC-AlphaBeta(c, depth -1，alpha, beta)); 
alpha <- max{alpha, g); 
c <- nextbrother(c); 

else /* n is a min node */ 

c <— firstchild(/i); 
while g > alpha and c 丰 NOCHILD do 

//GPC heuristic: 
if level = d+l then 

lb — g; 
gc <— round((/6 -b + t* sigma) / a)\ 
gc’ <- GPC-AlphaBeta(c, s,gc- 1, gc); 
if gc' > gc then 

c <r- nextbrother(c); 
continue; 

g <r- min(g, GPC-AlphaBeta(c, depth -1，alpha, beta)); 
beta rmn{beta, g); 
c <- nextbrother(c); 

return g; 

Figure 2.4: The Alpha-Beta Algorithm enhanced with Generalized Probabilistic Forward Cuts 
Heuristic. 

26 



Chapter 3 The Fast Probabilistic Forward Pruning Framework 

can obtain the same result as GPC-AB. The pseudo code is for GPC-NS is shown in figure 

2.5. 

2.3.3 The Memory-enhanced Test Algorithm 

The previous chapter described how M T D ( / ) merely uses the techniques of null-window search 

to perform a minimax search. The transformation of ProbCut to M T D ( / ) is not trivial. The 

mechanism of GPC is to perform the boundary test for child nodes in parent level. Like 

Alpha-Beta algorithm, though the search window is the minimal, M T D ( / ) have a loop that 

continuously updating the bound, either the lower bound or the upper bound, until cut-off 

occurs. As shown in figure 2.6’ the variable g and 7 are the bounds. Using the same method, 

we can reformulate the function to GPC-MTD( / ) . 

2.4 Summary 

In this chapter, we reforumulated the idea of ProbCut, an effective and successful selective 

search heuristic, such that it is not only applicable to Alpha-Beta algorithm but also applicable 

to other enhanced Alpha-Beta minimax search algorithms. Generalised ProbCut has the same 

behaviour as ProbCut. They both make the same move and obtain the same minimax value. 

They also produce the same amount of cut-offs. The generalised version used the core idea of 

ProbCut, the boundary tests, but is more generic such that it can be easily applied to other 

Alpha-Beta variants search algorithms. 
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function GPC-NegaScout(n, depth, alpha, beta) -> g 
if « = LEAFNODE then return eval(«); 
c < - firstchild(«); 
gamma < - GPC-NegaScout(c, level -1，alpha, beta); 
c < - nextbrother(c); 
i f c = M A X N O D E 

while gamma < beta and c 本 NOCHILD do 

//GPC heuristic: 
if depth = d+1 then 

ub <- gamma; 
gc <- Tound{{ub-b-t* sigma) / a); 

< - GPC-NegaScout(c, s, gc, gc + 1); 
if gc' < gc then 

c nextbrother(c); 
continue; 

alpha max(gamma, alpha); 
g < - GPC-NegaScout(c, level -1，alpha, alpha + 1); 
if g > alpha and g < beta then 

g <- GPC-NegaScout(c, level - l,g, beta); 
gamma < - max(g, gamma); 
c < - nextbrother(c); 

else /* c is min node */ 
while gamma > alpha and c 本 NOCHILD do 

//GPC heuristic: 
if depth = d+1 then 

lb <— gamma; 
gc <r- round((/Z? -b + t* sigma) / a); 
gc' < - GPC-NegaScout(c, gc - 1，gc); 
if gc ' > gc then 

c < - nextbrother(c); 
continue; 

beta <— Tmn{gamma, beta); 
g < - GPC-NegaScout(c, level - 1，beta -1, beta); 
if g > alpha and g < beta then 

g <- GPC-NegaScout(c, level -1，alpha, g ) ; 
gamma < - min(g，gamma); 
c < - nextbrother(c); 

return gamma; 

Figure 2.5: The NegaScout Algorithm enhanced with Generalized Probabilistic Forward Cuts 
Heuristic. 
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function GPC-MT(«, gamma, depth) — g 
if depth = 0 then /* leaf node */ 

retrieve(«) 
if n.lowerbound - -co and n.upperbomd = +co then 

g <— evaluate(«); 
else if n.upperbound = +00 then 

g = n.lowerbound-, 
else 

g = n.upperbound; 
else i f « = M A X N O D E then 

c < - firstchild(/3); 
/* g > gamma causes a beta cutoff {beta = gamma) */ 
while g < gamma and c 本 NOCHILD do 

retrieve(c); 
if c.upperbound > gamma then 

//GPC heuristic: 
if depth = d+i then 

gc round((M6 - b -1* sigmd) / a); 
gc' <- GPC-NegaScout(c, s, gc, gc+ 1); 
if gc' < gc then 

c < - nextbrother(c); 
continue; 

g ' < - MT(c, gamma, d - 1); 
else 

g ' c.upperbound-, 
g < - max(g, gO； 

c <r- nextbrother(c); 
else /* « is a MINNODE */ 

c <— firstchild(n); 
I* g< gamma causes an alpha cutoff {alpha = gamma - 1) */ 
while g > gamma and c 本 NOCHILD do 

retrieve(c); 
if c.lowerbound < gamma then 

//GPC heuristic: 
if depth = d+\ then 

lb — g‘, 
gc <- round((/6 - b + t* sigma) / a); 
gd <r- GPC-NegaScout(c’ s,gc - 1，gc); 
if gc' > gc then 

c <- nextbrother(c); 
continue; 

g' <- MT(c, gamma, d - 1); 
cise 

g' c.lowerbound', 
g min(g, gO； 

c <- nextbrother(c); 

/* Traditional transposition table storing of bounds */ 
if g > gamma then /* Fail high result implies a lower bound */ 

n.lowerbound <- g; 
store n.lowerbound', 

else /* Fail low result implies an upper bound */ 
n.upperbound g; 
store n.upperbound., 

return g; 29 

Figure 2.6: The MTD Algorithm enhanced with Generalized Probabilistic Forward Cuts 
Heuristic. 



Chapter 3 

The Fast Probabilistic Forward 

Pruning Framework 

3.1 Introduction 

The previous chapter showed how the probabilistic forward pruning framework, GPC, is used 

in Alpha-Beta and its enhancement algorithms. GPC allows selective search to be applicable 

to those algorithms. This chapter takes the idea further. In the next section, the enhanced 

forward pruning framework is described. This is a framework that can further reduce the 

search effort significantly. The third section will show the result of simulations. The last 

section summarizes our idea. 

3.2 The Fast GPC Heuristic 

GPC is a simple but effective framework. It makes use of null-window search to perform 

boundary tests. Null-window search is powerful and fast. Though it cannot find out the 

minimax value, null-window would lead to early alpha or beta cut-off, returning a bound in 

either case. This useful information give us hints that what the minimax value look likes. 

GPC starts with a null-window shallow search for each child, then uses the returned bound 

to determine whether to have full-depth search for them or not. For the case if we have a good 
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The search for node n can be stopped as soon as case 1 occurs. 
The subtree c, and subtrees right after c, will not be searched. 
Node It will return the best obtained maximum value, that is y. 

Figure 3.1: The idea of Fast Generalized Probabilistic Forward Cuts Heuristic (Max node). 

move ordering: the nodes are sorted in such a way that value of nodes are in monotonic order 

or best-first order, we can stop the search as soon as we found one child that its minimax value 

lies outside the search window. The current subtree and its sibling subtrees can be pruned in 

advance. This makes up the idea of Fast GPC. 

The idea of FGPC is shown in figures 3.1 and 3.2. Let us first define n as an arbitary node 

of a game tree to be searched. Node n has w children where w is the branching factor of the 

tree. Then we define g{ci) be the result of shallow search and f {c i ) be the result of the deep 

minimax value of node Cj. 

A simple way to express the relationship between g{ci) and / ( q ) is a linear model of the 

form f{ci) = ax p (c i )+ 6 + e where a, b are real constants and e is a normally distributed error 

variable having mean 0 and variance a^ . These parameters are estimated by linear regression 

applied to a large number of training pairs {g{pi), f{pi)), where pi is input of different board 

positions. 

The search for node n can stop as soon as one of the child node, say a, its deep minimax 

value f{ci) lies outside the current search window. In other words, the search for node n will 

continue if and only if a < f { c i ) < P where a and ^ are the lower bound and upper bound of 

the current search window respectively and Cj is the current examining node. 

FGPC obtains more cut-offs than GPC in general. As a result, FGPC reduces the search 

effort much more than that of GPC and thus turns out to be faster. The following subsections 
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Figure 3.2: The idea of Fast Generalized Probabilistic Forward Cuts Heuristic (Min node), 

will illustrate how FGPC is used together with Alpha-Beta and its enhanced algorithms. 

3.2.1 The Alpha-Beta algorithm 

This subsection describes the use of FGPC heuristic in the standard Alpha-Beta algorithm. 

The modified Alpha-Beta algorithm is shown in figure 3.3. When compare with the standard 

version, a null-window test is added inside the control loop of FGPC-AB. As describe in 

previous section, a null-window test consumes insignificant computation time. But the gain 

is, if the return value of the null-window test does imply that the testing node is beyond our 

desired score region, a series of nodes and subtrees will be pruned. The total time for running 

is reduced significantly. The time benefit we gain is much more than we pay. The set of 

experiments we conducted are described in the next section. 

3.2.2 The NegaScout algorithm 

This subsection describes the use of FGPC heuristic in NegaScout, a well-known Alpha-Beta 

Enhancement algorithm. The modified algorithm, FGPC-NS can be found in figure 3.4. The 

result of our conducted experiments are described in the next section. 
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function FGPC-AlphaBeta(«, depth, alpha, beta) -> g 
\{n = LEAFNODE then return eval(«); 
else if « = MAXNODE then 

c < - firstchild(n); 
while g < beta and c ^ NOCHILD do 

//FGPC heuristic: 
if level = d+\ then 

ub <~ g; 
gc <— round{(ub - b -t* sigmd) / a); 
gc' < - FGPC-AlphaBeta(c, s, gc, g c + 1); 
if gc' < gc then return g; 

g < - max(g, FGPC-AlphaBeta(c, depth -1, alpha, beta)); 
alpha <- m2ix{alpha, g); 
c < - nextbrother(c); 

else /* n is a min node */ 

c <— firstchild(«); 
while g > alpha and c * NOCHILD do 

"FGPC heuristic: 
if level = d+1 then 

Ib^g; 

gc <— round((/6 -b + t* sigmd) / a); 
gc' < - FGPC-AlphaBeta(c, s,gc-\, gc); 
if gc' > gc then return g; 

g <- minCgj FGPC-AlphaBeta(c, depth - 1’ alpha, beta)); 
beta <— mm{beta, g); 
c < - nextbrother(c); 

return g; 

Figure 3.3: The AlphaBeta Function enhanced with FGPC heuristic. 
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function FGPC-NegaScout(«, depth, alpha, beta) -> g 
ifn = LEAFNODE then return eval(n); 
c <— firstchild(«); 
gamma <- GPC-NegaScout(c, level -1，alpha, beta); 
c <— nextbrother(c); 
i fc = MAXNODE 

while gamma < beta and c * NOCHILD do 

HFG?C heuristic: 
if depth = d+\ then 

ub <- gamma; 
gc roimd((w 办 - b - t * sigma) / a); 
gc' < - FGPC-NegaScout(c, s, gc, gc+ 1); 
if gc' < gc then return gamma; 

alpha <r- max{gamma, alpha); 
g <- FGPC-NegaScout(c, level - \ , alpha, alpha + 1)； 

if g > alpha and g < beta then 
g < - FGPC-NegaScout(c, level - \,g, beta); 

gamma max(g, gamma)-, 
c < - nextbrother(c); 

else /* c is min node */ 
while gamma > alpha and c ^ NOCHILD do 

//FGPC heuristic: 
if depth = d+\ then 

lb <— gamma; 
gc <- round((/Z)-b + t* sigma) / a); 
gc' <- FGPC-NegaScout(c, s, gc - l , g c ) ; 
ifgc' > gc then return gamma; 

beta <- vmnigamma, beta); 
g FGPC-NegaScout(c, level - 1 , beta - \ ,beta); 
i f g > alpha and g < beta then 

g < - FGPC-NegaScout(c, level -1, alpha, g); 
gamma ^ vmn{g, gamma); 
c < - nextbrother(c); 

return gamma; 

Figure 3.4: The NegaScout Function enhanced with FGPC heuristic. 
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3.2.3 The Memory-enhanced Test algorithm 

This subsection describes the use of FGPC heuristic in M T D ( / ) , the state-of-the-art minimax 

search algorithm. Figure 3.5 shows the FGPC-MT function. The experimental results are 

shown in the next section. 

3.3 Performance Evaluation 

3.3.1 Determination of the Parameters 

In this section, we present some experimental results in order to get a rough idea on the 

performance of the proposed framework. In our experiments, we mainly test the performance 

of standard Alpha-Beta, NegaScout and Memory-enhanced Test algorithm with and without 

FGPC. The comparison between GPC and FGPC is shown in later part. 

The game of Chinese Checkers is used for testing purpose. Our test programs are based 

on Learner III, the Champion of ACM-HK Computer Chinese Checkers Competition 2002. 

Learner III use M T D ( / ) as the minimax search algorithm and look-ahead 3 levels for middle-

game. No opening books are being used. We will have a detail description of Learner III on 

Appendix C. 

In our experiments, our test programs only replace the search algorithm M T D ( / ) with 

Alpha-Beta and NegaScout (with and without GPC or FGPC) in the middle-game. The 

remaining parts of Learner III are remaining unchanged. We implement the algorithms in C 

language and our parameters are set as s = 0，d = 2 where s is the depth of shallow search 

while d is the depth of deep minimax search. All programs are run under linux platform on a 

P4 2.4GHz general purpose computer. 

Figure 3.6 show 9669 evaluation pairs with linear approximation. The goodness of fit is 

visually obvious. The reason is that the evaluation function of Learner III is good enough and 

stable. By linear regression method, we find that the parameters needed for GPC and FGPC 

are a = 0.9527,6 = 24.1225,(7 = 407.3506. We choose the parameter t = 1.3 (p = 90.32%) 

such that 少-1(0.9032) = 1.3 

NegaScout is the current algorithm of choice by most chess programmers and M T D ( / ) 

35 



Chapter 3 The Fast Probabilistic Forward Pruning Framework 

function FGPC-MT(/i, gamma, depth) g 
if depth = 0 then /* leaf node */ 

retrieve(/j) 
\in.lowerbound = -oo and n.upperbound = +00 then 

g evaluate(/j); 
else if n.upperbound = +qo then 

g = n.lowerbound-, 
else 

g = n.upperbound-, 
else if n = MAXNODE then 

c firstchild(«); 
/ * g > gamma causes a beta cutoff {beta = gamma) */ 
while g < gamma and c * NOCHILD do 

retrieve(c); 
if c.upperbound > gamma then 

//FGPC heuristic: 
if depth = d+1 then 

ub<r-g; 
gc <- round((M6 - b -t* sigma) / a); 
gc, < - GPC-NegaScout(c, s, gc, g c + 1); 
if gc' < gc then return g; 

g ' <- MT(c, gamma, d - 1); 
else 

g' <— c.upperbound; 
g <- max(g, gO； 

c <r- nextbrother(c); 
else /* /J is a MINNODE */ 

g<~+QO; 
c <- firstchild(/7); 
/* g< gamma causes an alpha cutoff {alpha = gamma - 1) */ 
while g > gamma and c 本 NOCHILD do 

retrieve(c); 
if c.lowerbound < gamma then 

//FGPC heuristic: 
depth = d+\ then 

gc <- round((/6 -b + t* sigma) / a); 
gc' <- GPC-NegaScout(c, s,gc- 1, gc); 
if gc' > gc then return g; 

g' <- MT(c, gamma, d - 1); 
else 

g' c.lowerbound-, 
g <r- min(g, gO； 

c <- nextbrother(c); 
/* Traditional transposition table storing of bounds */ 
if g > gamma then /* Fail high result implies a lower bound */ 

n.lowerbound <- g; 
store n.lowerbound-, 

else /* Fail low result implies an upper bound */ 
n.upperbound <—g； 

store n.upperbound.’ 
return g; 

Figure 3.5: T h e M T Function enhanced with F G P C heuristic. 
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Figure 3.6: Relation between / ( c i ) and g{ci) in Learner III. 

is the current the state-of-the-art minimax search algorithm, therefore we have chosen these 

algorithms as our baseline. 

The algorithms we compared are denoted as: 

• AB: The standard AlphaBeta algorithm 

• GPC-AB: The standard AlphaBeta algorithm enhanced with GPC heuristic 

• FGPC-AB: The standard AlphaBeta algorithm enhanced with FGPC heuristic 

• NS: The NegaScout algorithm 

• GPC-NS: The NegaScout algorithm enhanced GPC heuristic 

• FGPC-NS: The NegaScout algorithm enhanced FGPC heuristic 

• MTD: The MTD(f) algorithm 

• GPC-MTD: The MTD(f) algorithm enhanced GPC heuristic 

• FGPC-MTD: The MTD(f) algorithm enhanced FGPC heuristic 
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Figure 3.7: The Average Search Time Per Move for Each Algorithm. 

3.3.2 Result of Experiments 

One measure for comparing search algorithm performance is elapsed CPU time. However, any 

timing results are machine and implementation dependent. Another measure is the number 

of bottom positions (NBP), or sometimes called leaf nodes, examined. NBP has been used 

extensively in the literature [15], [9], [40] and [26]. Another measurement is the size of the 

tree. The node count (NC) measure counts all nodes in the tree where computaton occurs. 

This includes interior, leaf and any nodes in subtrees built as part of leaf node evaluation. 

This count has been shown to be strongly correlated with program running time by Schaeffer 

[36]. 

Since the execution time overhead of the enhancements is negligible, the computational 

cost being deminated by leaf node evaluation and the expansion of nodes. By comparing the 

measurement of NBP and NC as well as the elapsed CPU time, we can obtain a full picture 

for the performance of the proposed heuristics. 

As shown from figure 3.7, the search time per move is reduced more than half after using 

GPC. The search effort is reduced even over 60% after FGPC. For example, FGPC-AB use 

37% search effort of AB, FGPC-NS use 38% search effort of NS and FGPC-MTD use 34% 

search time of MTD only. FGPC-AB, FGPC-NS and FGPC-MTD have speed-up of 2.7 times, 

2.6 times and 2.9 times respectively. The time reduced for FGPC is much more than that of 
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H 8S 8% J n 85.8% _ Q 85.8% 

80.0% 國 PI "i r J n M �� 门 

El i l l ! ? I 
0.0% ____I__^__I_^_I_I L_j_iMi_1 1_Î S__I I__I灘I , 
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Figure 3.11: The Average Number of Same Value obtained Per Move for Each Algorithm. 
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Figure 3.13: The Average Winning Percentage for Each Algorithm (Match against Learner 
III). 
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GPC. 

The graph of NBP (figure 3.9) and NC (figure 3.8) consistent with the result of computation 

time. The number of bottom position and number of node visited are reduced with the same 

factor if FGPC is used. 

Besides time efficiency, we also measure the quality of move. Figure 3.10 shows the percent-

age of cases in which the algorithm would select the same move as M T D ( / ) while figure 3.11 

shows the frequency that the algorithm would reported the same minimax value as M T D ( / ) . 

The high percentage indicated that both GPC and FGPC are good estimator and consist most 

search result of M T D ( / ) . 

Furthermore, we would like to measure the quality of play for each algorithm. We selected 

100 different Chinese Checkers player programs that have similar strength as Learner III to 

have matches against our test programs. The result is shown in figure 3.12. The average 

winning percentage of algorithms using GPC and FGPC are closed to algorithms without 

using them. Apart from that, figure 3.13 shows the winning percentage of each algorithms 

match against Learner III. The winning percentage of MTD is 50%, which consistent with the 

fact that Learner III actually uses M T D ( / ) as the search algorithm. For algorithms enhanced 

with FGPC, their winnning percentage is higher than algorithms enhanced with GPC. As 

time is saved but performance can almost remain the same, FGPC is clearly a better choice. 

3.4 Summary 

In this chapter, we modify our GPC heuristic such that the search effort is significantly 

reduced. Experiments were conducted and showed that our idea outperformed previous suc-

cessful heuristic and algorithms in time efficiency. Other results borne out by experiments are 

that the memory requirements of all algorithms are perfectly acceptable for typical tourna-

ment play, since only a small subset of the visited nodes has to be stored in memory. The 

instances of this framework are readily incorporated into existing game-playing programs. We 

believe that our selective search framework work efficiently and effectively. 
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Chapter 4 

The Node-Cutting Heuristic 

4.1 Introduction 

The previous chapter showed how forward pruning techniques are used in tree searching. The 

idea of forward pruning strategies is, by reducing the number of moves to be considered, to 

reduce the computation time without lowering the quality of play. Apart from the heuristics 

discussed in previous chapters, cutting down the branching factor of the game tree is another 

workable idea. In the next section, we will discuss the effect of the quality of move ordering. 

Some properties are found. In section three, we generalize the idea to formulate our node-

cutting heuristic. Some experiments are conducted and the results are shown in section four. 

The last section summarizes our proposed idea. 

4.2 Move Ordering 

Recalled from Alpha-Beta algorithm, it is essential that the best moves are to be searched 

first in order to maximize the number of cut-off occurs, resulting to minimize the search time. 

The other successful Alpha-Beta enhanced algorithms including NegaScout and M T D ( / ) also 

rely on the quality of move ordering. Though we obtain the same minimax value eventually, 

badly ordered game tree consumes more time for searching as the rate of having cut-off is very 

limited. 
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nodes with black dot are pruned 

Figure 4.1: An Example of Early Pruning. 

For a max position, the best move is the one whose minimax value is the highest. Analo-

gously, the best move of a min position is the one with the lowest minimax value. In order for 

a cut-off to be occurred, perfect ordering is not necessary, provided that the best move appears 

at the front. The examples are shown in figures 4.1’ 4.2 and 4.3. The best move of each node 

is marked by an asteria. It can be seen easily that the earlier the best move appears, the 

earlier the cut-off occurs. As a result, despite of constructing perfect move ordering, best-first 

ordering is an alternative simpler solution. 

In practice, move ordering is done by a move ordering function which is an inexpensive 

estimatior of the board evaluation function. Similar to evaluation function, move ordering 

function is usually accomplished by game-depedent knowledge and heuristics. However, tech-

niques such as iterative deepening [15] and history heuristic [37] have described how to achieve 

excellent move ordering. We can, therefore, obtain the function by these techniques. 

4.2.1 Quality of Move Ordering 

The quality of evaluation function can be fully reflected by the quality of play since it deter-

mines the game playing strength. The more accurate the evaluation function we have, the 

higher chance we would go into the win position. The measure of quality of move ordering 
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Figure 4.2: An Example of Late Pruning. 
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Figure 4.3: An Example of No Pruning. 
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becomes the measure of the position where the best move appears. The quality of move or-

dering directly affects the overall search speed. The more accurate the move ordering function 

we have, the more cut-offs would occur thus the more search speedup would gain. 

4.3 Node-Cutting Heuristic 

One of the major time constraints in chess type games is that the running time is highly affected 

by the branching factor of game tree, even we have a fast search algorithm and successful 

forward pruning heuristic. We aim at, by reducing the branching factor by heuristic, ignoring 

the unpromising moves in advance to further speedup the overall search time. 

We find that, for a given reasonably good move ordering function, the best move of an 

arbitrary board position is usually appearing at the front. The best child in this case is just 

the desired move. And, though the ordering positions of the desired move when searched at 

different look-ahead level are not always the same, they are highly correlated. 

Let the distribution function Fy(x) = P{Y < y) characterize the random variable Y 

ranging from 0 to u; - 1 where w is the branching factor. The probability p = P{Y = y) for 

node n is the probability of the event that the best move is the y-th branch. Fy(y) is estimated 

from practical data of Chinese Checkers program Learner III. The compiled statistics revealed 

that the static values around 0 occured very frequently. It means that the move ordering is 

done pretty well. For this reason, a normal distrubution could not fit these data well according 

to statistical tests. Hence, we define a distribution function F y i ( y ) approximating our data 

as an estimate of Fy (y ) . It seems that the exact shape of the distribution function is not 

really important for the results of the simulation runs; only the values around 0 must have a 

significantly higher probability. 

Analogously, we let the conditional distribution function Fx\Y=y{x) = P{X < x\Y = y) 

characterize the random variable X ranging from 0 to w; - 1 where w is the branching factor. 

The probability p = P ( X = x\Y = y) for node n is the probability of the event that the best 

move is the x-th branch given that y-th. branch is the best move obtained by a short depth 

minimax search. Fx\Y=y{x) is, again estimated from practical data of Chinese Checkers 

program Learner III. The compiled statistics revealed that the static values around y occured 
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y^vooX node 

A 
y is the random variable ranging from 0 to w-1 
where w is the branching factor. 
Cy is the best move of node n computed by a short depth � search. 

Figure 4.4: The idea of node-cutting. 

very frequently. It means that the ordering position of the desired move when searched at 

different look-ahead level are not always the same, but are highly correlated provided that 

a reasonably good move ordering function is existed. For this reason, a normal distrubution 

could not fit these data well according to statistical tests. Hence, we define a conditional 

distribution function Fxi|yi=y(rE) approximating our data as an estimate of It 

seems that the exact shape of the conditional distribution function is not really important for 

the results of the simulation runs; only the values around y must have a significantly higher 

probability. 

The idea of node-cutting heuristic is illustrated in figures 4.4 and 4.5. The flow is described 

as follows: 

Step 1: If current depth is d + 1’ then follow step 2，otherwise jump to step 6. 

Step 2: Perform a short depth minimax search (depth = s). 

Step 3: The desired move is found and it's position is label as y. 

Step 4: Calculate x such that Fx\Y=y{x) = p where p is an adjustable parameter. 

Step 5: Ignore all move positioned after x. 

Step 6: Perform the real minimax search with the reduced game tree. 
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^"-N^a，P) 小 An arbitrary conditional distribution function for F^^y” 

Perform deep search J ： J 

~ ~ © 1  
A'is the random variable ranging from 0 to w-1 X w 
where w is the branching factor. 
The child nodes located after a: will be ignored completely. 
Only nodes before x will be examined. 

Figure 4.5: The idea of node-cutting (2). 

If we use aspiration NegaScout or M T D ( / ) algorithms we may experience with re-search 

some already visited nodes. In these cases, we can store the calculated x value so that we can 

directly jump to step 6 when revisiting those nodes. 

4.4 Performance Evaluation 

4.4.1 Determination of the Parameters 

In this section, we present some experimental results in order to get a rough idea on the 

performance of the proposed idea. In our experiments, we use the game of Chinese Checkers 

to test the performance of node-cutting heuristic. In our 9669 board test positions, we find that 

the average branching factor of Chinese Checkers in middle-game is 67.8, which is reasonably 

large and is very suitable for testing our heuristic. 

Figures 4.6, 4.7 and 4.8 show the conditional distribution function of Learner III. The 

result is obtained by measuring 9669 different board positions. We choose s to be 1 and d 

to be 2. It should be noticed that the meaning of the value s here is not the same as that 

of GPC. It can be seen that values around y have a significantly higher probability. This 

result is consistent with our expectation. The reason is that the ordering of move has strong 

correlation. The defined conditional distribution Fxi\Yi=y{x) can be estimated from these 

graphs. 
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Figure 4.6: The conditional distribution Fx\y=:o of Learner III. 
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Figure 4.7: The conditional distribution Fx\y=2 of Learner III. 
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Figure 4.8: The conditional distribution Fx\y=6 of Learner III. 

Since M T D ( / ) is the current state-of-the-art minimax search algorithm, we choose this 

algorithm as our baseline. 

The algorithms we compared are denoted as: 

• MTD: The MTD(f) algorithm 

• MTD-NC-95: The MTD(f) algorithm enhanced with node-cutting heuristic (p = 0.95) 

• MTD-NC-96: The MTD(f) algorithm enhanced with node-cutting heuristic (p = 0.96) 

• MTD-NC-97: The MTD(f) algorithm enhanced with node-cutting heuristic (p = 0.97) 

• MTD-NC-98: The MTD(f) algorithm enhanced with node-cutting heuristic (p = 0.98) 

• MTD-NC-99: The MTD(f) algorithm enhanced with node-cutting heuristic (p = 0.99) 

4.4.2 Result of Experiments 

Figures 4.9 to 4.15 show the comparison of 3 ply searches between Learner III with and without 

using node-cutting heuristic. It can be seen easily that node-cutting heuristic actually can 
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Figure 4.9: The Average Search Time Per Move for Learner III enhanced with Node-Cutting 
Heuristic. 
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Figure 4.10: The Average Number of Node Visited Per Move for Learner III enhanced with 
Node-Cutting Heuristic. 
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Figure 4.11: The Average Number of Bottom Position Visited Per Move for Learner III 
enhanced with Node-Cutting Heuristic. 
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Figure 4.12: The Average Number of Same Move obtained Per Move for Learner III enhanced 
with Node-Cutting Heuristic. 
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Figure 4.13: The Average Number of Same Value obtained Per Move for Learner III enhanced 
with Node-Cutting Heuristic. 
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Figure 4.14: The Average Winning Percentage for Learner III enhanced with Node-Cutting 
Heuristic (Match against 100 different players). 
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Figure 4.15: Result of Learner III against Learner III enhanced with Node-Cutting Heuristic. 

speedup the search from 1.5 times to 2.2 times and maintain the same move for over 95 percent. 

As shown from figure 4.9, the computation time per move can reduced at least 33% if 

enhanced with node-cutting heuristic. For example, MTD-NC-95 only consume 45% time of 

Learner III but obtain an even higher winning percentange. 

The graph of NBP (figure 4.11) and NC (figure 4.10) have shown that node-cutting's 

execution time performance is proportional to the leaf node count and the number of static 

evaluations. The number of bottom position and the number of node visited decrease when 

the value of p decreases. 

Besides time efficiency, we also measure the quality of move. Figure 4.12 shows the percent-

age of cases in which the algorithm would select the same move as Learner III while figure 4.13 

shows the frequency that the algorithm would reported the same minimax value as Learner 

III. It can be seen that both figures are at least 95%, higher than that of GPC. This high 

percentage indicated that node-cutting heuristic can maintain most search result of Learner 

III and often hit the true minimax value. 

Furthermore, we would like to measure the quality of play. We selected 100 different 

Chinese Checkers player programs that have similar strength as Learner III to have matches 

against our test programs. The result is shown in figure 4.14. The average winning percentage 

of algorithms enhanced with node-cutting heuristic are even higher than algorithms without 

using it. Apart from that, figure 4.15 shows the winning percentage of each algorithms match 
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against Learner III. The winning percentage of MTD is 50%, which consistent with the fact 

that Learner III actually use M T D ( / ) as the search algorithm. It can be seen that Learner 

III enhanced with node-cutting heuristic have a stronger game playing strength. 

The reason of node-cutting heuristic can obtain a high winning percentage is that minimax 

algorithm does not promote risk taking. Minimax algorithm always assume the opponent will 

make the best move even though its selected move resulting in a sure loss. Often in losing 

situations the best move may not be towards the highest min or max value, especially if it will 

still result in a loss. Node-cutting heuristic can guide a search to a more aggressive approach 

and take advantage of possible mistakes by the opponent. This can explain the reason of 

obtaining higher winning percentage. 

The general performance of Node-Cutting heuristic is that it saves close to half of original 

search time but has a generally higher quality of play. By choosing a proper value of p, we 

can obtain the best winning percentage as well as minimizing the search time. 

4.5 Summary 

In this chapter, we proposed a node-cutting heuristic that is applicable to game tree of two-

person non-random perfect-information zero-sum board game. Experiments were conducted 

and results showed that node-cutting lowered the number of total expanded nodes resulted 

in reducing the search time and also superior in terms of probability of hitting the mimimax 

value. We believe that our node-cutting heuristic is useful in the area of game, and especially 

large branching factor game. 
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Chapter 5 

The Integrated Strategy 

5.1 Introduction 

The previous chapter showed how forward pruning techniques and Node-Cutting heuristic 

could speedup the search. We push this idea further in this chapter. In the next section, 

we will discuss the effect of combined strategy. In sections three and four, we integrate our 

strategy into a typical board game, Chinese Checkers. Experiments and results are shown in 

section three. The last section summarizes our proposed strategy. 

5.2 Combination of GPC, FGPC and Node-Cutting Heuris-

tic 

Recalled from previous chapters, the mechanism of forward pruning heuristic is to eliminate 

unpromising move in advance by looking a few steps forward instead of a full-depth search. 

Node-cutting heuristic is to remove unpromising move at early stage by performing a short 

depth search. However, occasionaly there exists cases that node-cutting heuristic terminates 

the search prematurely. In order to avoid this undesirable effect, we try to combine GPC, 

FGPC and node-cutting heuristic. We observe that we can prevent the premature termination 

of search and simultaneously obtain a reliable result. 

We can make efficient use of the allocated time. For the first few child nodes, we will 
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S ^ r o o t node 

遍 I 
y is the random variable ranging from 0 to w-1 
where w is the branching factor. 
c, is the best move of node n computed by a short depth {s) search. 

Figure 5.1: The idea of integrated strategy. 

examine them if they will not yield a value outside the current search window since child 

nodes order at the front usually contain good moves, if a reasonably good move ordering 

function exists. But for the rest of the child nodes, it is not likely to have good moves (by 

the practical result obtained from Chinese Checkers) such that its minimax value would be 

propagated to parent. We can perform FGPC such that once a child node's value lie outside 

the current search window, the search would be stopped and propagate the best obtained 

value to its parent. As a result, the child subtrees position after it will not be examined. It 

maintains a high number of cut-offs but the quality is still guranteed since fast cut-offs will 

not occur at the first few nodes. 

Figures 5.1 and 5.2 describes the idea of the integrated strategy. The new strategy is easily 

incorporated into existing game-playing programs and the modification is quite trival that we 

will not describe much in here. 

We take the advantage of GPC, FGPC and node-cutting. The new stretagy not only 

reduces the search tree size but also maintains a high rate of hitting the correct minimax 

value. The next section will show the experimental results to support it. 
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A'is the random variable ranging from 0 to w-l X w 
where w is the branching factor. 
The child nodes located before x will use GPC heuristic while 
child nodes located after at will use FGPC heuristic. 

Figure 5.2: The idea of integrated strategy (2). 

5.3 Performance Evaluation 

In order to demonstrate the potential of our work as a practical searching tool some ex-

periments have been run. In our experiments, same as previous chapters, we use the same 

parameters to test the performance of our new strategy. 

The algorithms we compared are denoted as: 

• MTD: The MTD(f) algorithm 

• MTD-IS-95: The MTD(f) algorithm enhanced with integrated strategy (p = 0.95) 

• MTD-IS-96: The MTD(f) algorithm enhanced with integrated strategy (p = 0.96) 

• MTD-IS-97: The MTD(f) algorithm enhanced with integrated strategy (p = 0.97) 

• MTD-IS-98: The MTD(f) algorithm enhanced with integrated strategy (p = 0.98) 

• MTD-IS-99: The MTD(f) algorithm enhanced with integrated strategy (p = 0.99) 

Figures 5.3 to 5.9 show the comparison of 3 ply searches between Learner III with and 

without using integrated strategy. Speedup is the ratio of the number of nodes visited while 

the term same move states the percentage of cases in which both versions selected the same 

move. It can be seen easily that integrated strategy actually can speedup the search up to 2.5 

times and maintain the same move with more than 94 percent. 
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Figure 5.3: The Average Search Time Per Move for Learner III enhanced with integrated 
strategy. 

9000.0 � - -
7931.0 8000.0 — . . - - “ 

7000.0 -辩.........~..“.- - -

6000.0 - - -
5000.0 -....... ^ ........- — - - -

4000.0 _ 3382.0 ~ 3419.8 3481.6 3565.1 3686,4 

3000.0 - 丨轻赛 ......-...... i/k ‘ h • ............ 

2000.0 Jl̂ M̂ ‘ * ,....‘L̂ * I  
1000.0 - H 1 S I 

Q Q I 1 ^^^^ • 11 • I I I M I I ’ j I I � I I 

MTD MTD-IS-95 MTD-IS-96 MTD-IS-97 MTD-IS-98 MTD-IS-99 

Figure 5.4: The Average Number of Node Visited Per Move for Learner III enhanced with 
integrated strategy. 
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Figure 5.5: The Average Number of Bottom Position Visited Per Move for Learner III en-
hanced with integrated strategy. 
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Figure 5.6: The Average Number of Same Move obtained Per Move for Learner III enhanced 
with integrated strategy. 
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Figure 5.7: The Average Number of Same Value obtained Per Move for Learner III enhanced 
with integrated strategy. 
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Figure 5.8: The Average Winning Percentage for Learner III enhanced with integrated strategy 
(Match against 100 different players). 
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Figure 5.9: Result of Learner III against Learner III enhanced with integrated strategy. 

As shown in figure 5.3, the computation time per move can reduced 60% after using Node-

Cutting heuristic. For instance, MTD-IS-95 have a speedup of 2.5 times but obtain an even 

higher winning percentange than M T D times. 

The graph of NBP (figure 5.5) and NC (figure 5.4) are consistent with the result of com-

putation time. The number of bottom position and number of interior node visited decrease 

when the value of p decreases. 

Besides time efficiency, we also measure the quality of move. Figure 5.6 shows the percent-

age of cases in which the algorithm would select the same move as Learner III while figure 5.7 

shows the frequency that the algorithm would reported the same minimax value as Learner 

III. The high percentage indicated that integrated strategy can maintain most search result 

of Learner III as well as minimizing the search speed. 

Furthermore, we would like to measure the quality of play. We selected 100 different 

Chinese Checkers player programs that have similar strength as Learner III to have matches 

against our test programs. The result is shown in figure 5.8. The average winning percentages 

of algorithms enhanced with integrated strategy are even higher than algorithms without using 

it. Apart from that, figure 5.9 shows the winning percentage of each algorithms match against 

Learner III. The winning percentage of M T D is 50%, which consistent with the fact that 

Learner III actually use M T D ( / ) as the search algorithm. It can be seen that Learner III and 

Learner III enhanced with integrated strategy having the similar game playing strength. 
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The general performance of integrated strategy is that it saves more than half of original 

search time but maintains a generally higher play strength. By choosing a proper value of p, 

w e can o b t a i n t h e b e s t winning percentage as well as minimiz ing t h e search t ime . 

5.4 Summary 

In this chapter, we combined our proposed heuristics to formulated the integrated strategy 

framework. Experimental results shows that the combination of GPC, FGPC and node-

cutting results in about 60 percent time reduction over conventional full-width search. The 

combination yields the same factor of fewer total nodes as compared to the original algorithm. 

These results showed that our strategy allocates time efficiently and successfully. We believe 

that using our forward pruning and node-cutting heuristics together, time is save significantly 

and saved time can allow us to search deeper for a better result. 
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Chapter 6 

Conclusions and Future Works 

6.1 Conclusions 

Most game-playing programs choose their moves by searching a large tree of potential continu-

ations. The problem with tree searching is that the search space grows exponentially with the 

depth of the search. The original minimax algorithms waste most of their time by analyzing 

irrelevant lines. On the other hand, efficient and intelligent pruning techniques are required 

to reduce the search space. We aim at making more efficient use of the allocated time. 

The central idea of this thesis concerns about selective pruning for game tree of two-person 

non-random perfect information zero-sum game. Firstly, we have described a forward pruning 

framework. We reformulate ProbCut to GPC, a generalised selective search extension to 

alpha-beta algorithm. GPC examines the same leaf nodes in the same order as ProbCut. 

They produce the same number of cut-offs, obtain the same minimax value and make the 

same move for a given game tree. 

We also propose a fast forward pruning framework, modified from GPC. The results of 

applying our heuristics to game are described. The modified framework reduces the search 

effort significantly. It outperformed previous effective and successful heuristic, ProbCut, in 

time efficiency. In order to demonstrate the potential of our work as a practical searching tool 

some experiments have been run. Experiment showed that the search speed can speedup by 

almost 3 times in the game of Chinese Checkers. 
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Apart from those discussed forward pruning strategies, cutting down the branching factor 

of a game tree is another workable way to reduce the computation time without lowering the 

quality of play significantly. In this work, we formulated a node-cutting heuristic. By using 

the pattern and correlation of move ordering function, node-cutting heuristic can speedup the 

search and obtain a higher winning percentage than full-width minimax search. Our node-

cutting heuristic is useful in the area of game, and especially large branching factor game. 

Finally, we constructed an integrated strategy that is the combination of GPC, FGPC 

and node-cutting heuristic. We can perform a fast selective search but still maintain a high 

rate of hitting the maximum value. Ken Thompson showed that search depth was strongly 

correlated with performance in chess [45]. Searching one move (or one ply) deeper made a 

huge difference in performance. We believe that using our forward pruning and node-cutting 

heuristic together, time is saved significantly and more room for deeper search is guaranteed. 

6.2 Future Works 

There are a number of possible future extensions of this work under consideration. The 

research described in the previous chapters has uncovered a number of interesting avenues for 

further research. We list the following: 

• GMPC: Generalised Multi-ProbCut 

All experiments in this work were performed for fixed s and d values. Multiple s and d 

value pairs that used by MPC were not tested. We believe that since game tree of GPC 

and ProbCut are same in size, the behavior of GMPC will not be different from that of 

MPC. However, experiments are needed to show whether this is indeed the case. 

• Null-window Boundary Test 

The main idea of ProbCut and GPC is that they make use of boundary test to determine 

whether a deep search is necessary. However, in some cases, one does not have to test 

both the upper and lower bounds of a search window but either one is enough. More 

analysis and experiments are needed to gain a better understanding. 
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• Properties of Move Ordering 

The node-cutting heuristic makes use of the correlation of the location of the best-move 

that searche in different depth. This property shows there are much room for further 

research in move ordering. Chapter 4 only scratches the surface of this. 

• GPC, FGPC and Node-cutting 

In addition to more analysis, more experiments are needed to gain a deeper insight 

and gain a better understanding of the relation between GPC, FGPC and node-cutting 

heuristic. 

• Efficiently use of allocated time 

Our experiments show the results of Alpha-Beta algorithm and its variants enhanced 

with our heuristics. Applying different heuristics to the same algorithm at different 

game stage may be a good model to understand the effectiveness and efficiency of this 

kind of time allocation. 
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Examples 

To illustrate an idea of how the search algorithms described in previous chapters work, we give 

a simple example in this Appendix. For simplicity, we just show crucial steps of the algorithm 

(figure A . l ) and it is easy to generalize to a complete one based on these steps. The figures 

beside the nodes are the minimax values of them. The example of the minimax algorithm is 

illustrated by graphs (figures A.2-A.5). Since the flow of tree traversed by other algorithms are 

similar, we just show the value changed and result in tables (figures A.6-A.8) for simplicity. 

The parameters used in the examples are listed as follow: d = 2,s = l，a = 1，& = 0’(7 = 

10，少-i(p) = 1.5. The values for an, Pn, and of each node traversed by each alogrithm are 

shown in the following figures. 
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root 

node 

^ ^ min node 

3 E Q E 

^ A _L J_ _'” Q P t u w X ^ ab ad ae 

41 5 12 90 101 80 -1 0 10 0 3 6 3 5 50 3 6 -1 0 

Figure A.l : The example tree, 

root 

node 

C^ vO min node 

^aA A A 
I g I 1/ I h i I I o p I IjJ IjJ |_vv lag ab ac^ \ae 

41 5 12 90 101 80 -1 0 10 0 36 35 50 36 -1 0 

Figure A.2: The Minimax example (step 1). 

root 
may node 

^ min node 

I g 1/ I I I I M I / M |o1 IpI r n [u] Q Hn ^ 

41 5 12 90 101 80 -1 0 10 0 36 35 SO 36 -1 0 

Figure A.3: The Minimax example (step 2). 

68 



Appendix A Examples 

root 

node 

J^minnode 

aX 
e 1/ I h I I i I m| o | p t u | w| oo] [a^ a^ ae 
41 5 12 90 101 80 -1 0 10 0 36 35 SO 36 -1 0 

Figure A.4: The Minimax example (step 3). 

root 

^^^^iiLjmax node 
min node 

I e I 1/1 I /»I h i I /1 r ^ IpI \ t\ 1h| m m H 
41 5 12 90 101 80 -1 0 10 0 36 35 50 36 -1 0 

Figure A.5: The Minimax example (step 4). 

69 



Appendix A Examples 

t n C^ gn Cut-off? 
1 a -co +00 -00 
2 6 -00 +00 +00 
3 c -00 +00 -00 
4 c/ -00 +00 +00 
5 e -00 +00 41 
6 d -00 41 41 
7 / -00 41 5 
8 J -00 5 5 
9 c 5 +00 5 
10 g 5 +00 +00 
11 h 5 +00 12 
12 g 5 12 12 
13 i 5 12 90 
14 g 5 12 12 
15 c 12 +00 12 
16 b -00 12 12 
17 j -00 12 -00 
18 k -00 12 +00 
19 I -00 12 101 
20 k -00 12 101 
21 m -00 12 80 
22 k -00 12 80 
23 j 80 12 80 Yes 
24 b -00 12 12 
25 a 12 +00 12 
26 q 12 +00 +00 
27 r 12 +00 -00 
28 s 12 -00 +00 
29 t 12 -00 10 
30 5 12 10 10 Yes 
31 r 12 +00 10 
32 V 12 +00 +00 
33 w 12 +00 36 
34 V 12 36 36 
35 AT 12 36 35 
36 V 12 35 35 
37 r 35 +00 35 
38 q 12 35 35 
3 9 少 1 2 3 5 - 0 0 

40 z 12 35 +00 
41 aa 12 35 50 
42 z 12 35 50 
43 ah 12 35 36 
44 z 12 35 36 
45 y 36 35 36 Yes 
46 q 12 35 35 
47 a 35 +00 35 Finished 

Figure A.6: The Alpha-Beta example. 
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t H ^ ^ g« Remark 
1 a -00 +00 -00 
2 6 -00 +00 +00 
3 C - 0 0 + 0 0 - 0 0 

4 c +00-1 +CO -00 P-test 
5 d + 0 0 - 1 + 0 0 5 2 

6 c +00 - 1 +00 5 2 
7 g +00 - 1 +00 103 
8 c +00 - 1 +00 103 
9 c -00 -00 + 1 -00 a-test 
10 d -00 -00 + 1 52 

11 c 52 -00+ 1 52 cut-off 
12 d -00 +00 +00 
13 e -00 +00 41 
14 d -00 41 41 
15 / -00 41 5 
16 i/ -00 5 5 
17 c 5 +00 5 
18 g 5 + 0 0 + 0 0 
19 h 5 +00 12 
20 g 5 12 12 
21 i 5 12 90 
22 g 5 12 12 
23 c 12 -h» 12 
24 b -00 12 12 
25 j -co 12 -00 
26 j 26 27 -00 P-test 
27 k 26 27 50 
28 j 50 27 50 cut-off 
29 y -00 12 12 ProbCut cut-off 
30 b -00 12 12 
31 a 12 12 
32 q 12 4oo +00 
33 r 12 +00 -00 
3 4 r + 0 0 - 1 + 0 0 - 0 0 P - t e s t 

35 s +00 - 1 +00 23 
36 r +00 - 1 +00 23 
3 7 V + 0 0 - 1 + 0 0 3 8 

38 r +00 - 1 +00 38 
39 r -3 -2 -00 a-test 
40 s -3 -2 23 
41 r 23 -2 23 cut-off 
42 s 12 +00 +00 
43 t 12 -k» 10 
44 s 12 10 10 cut-off 
45 r 12 +00 10 
46 V 12 +00 +00 
47 w 12 +00 36 
48 V 12 36 36 
49 X 12 36 35 
50 V 12 35 35 
51 r 35 -hx) 35 
52 q 12 35 35 
53 y 12 35 -oo 
54 y 49 50 -oo p-test 
55 z 49 50 54 
56 y 54 50 54 cut-off 
57 y 49 50 50 ProbCut cut-off 
58 q 12 35 35 
59 fl 35 +00 35 Finished 
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t a. ou ^ £« Remark 
1 O -00 +00 -00 
2 b -00 +00 +00 
3 c +00 - 1 +00 -00 P-test 
4 d +00 - 1 +00 52 
5 c +00 - 1 +00 52 
6 g +00 - 1 +00 1 03 
7 c 400-1 +00 103 
8 c -00 +00 -00 
9 d -c» +00 +00 
10 e -00 +00 41 
11 d -00 41 41 
12 / -00 41 5 
13 -00 5 5 
14 c 5 +00 5 
15 g 5 +00 +00 
16 h 5 +00 12 
17 g 5 12 12 
18 i 5 12 90 
19 g 5 12 12 
20 c 12 +00 12 
21 b -00 12 12 
22 j 26 27 -00 P-test 
23 k 26 27 50 
24 j 50 27 50 cut-off 
25 b -00 12 12 GPC cut-off 
26 a 12 +00 12 
27 q 12 +00 +00 
28 r +00 - 1 -foo -00 P-test 
29 5 +00 - 1 +00 23 
30 r +00 - 1 +00 23 
31 V +00 - 1 +00 3 8 
32 r +00 - 1 +00 3 8 
33 r 12 +00 -00 
34 s 12 +00 +00 
35 t 12 +00 10 
36 s 12 10 10 cut-off 
37 r 12 +00 10 
38 V 12 4oo +00 
39 w 12 +00 36 
40 V 12 36 36 
41 A： 12 36 35 
42 V 12 35 35 
43 r 35 +00 35 
44 q 12 35 35 
45 y 49 50 -oo p-test 
46 z 49 50 54 
47 y 54 50 54 cut-off 
48 q 12 35 35 GPC cut-off 
49 a 35 +00 35 Finished 

Figure A .8 : T h e G P C - A B example . 
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The Rules of Chinese Checkers 

Chinese Checkers is played on a six-pointed star-shape board by two, three, four or six players. 

As shown in figure B . l , there are 121 positions on the board. At the beginning of a game, 

each player's ten marbles occupy a triangular area at an opposite side of the board. We call 

this the home area of a player. The other triangular areas are call neutral zones. 

Since the board is embedded in a hexagonal grid, each position on it is generally connected 

to neighbors in six directions, except when located at the boundary or a corner, in which 

case the position has 5，4，or 2 neighbors. At each turn, a player can move any one of his 

marbles into a neighboring position, provided that such a position exists and is not already 

occupied by another marble, either belonging to him or his opponent. A marble may also in 

one move, make a sequence of jump over other marbles, which either belong to the player or 

his opponent. Each jump must be made according to the follow rule. Suppose that a marble 

at A jumps over a marble at B. The former will land at position C, where B is equidistance 

from A and C, and A, B, and C are colinear. The jump is only allowed if every position on 

the line A C (inclusive) exists, and none of these are occupied before the jump except A and 

B. When a marble is moved to an adjacent position, or takes a sequence of jumps, it may 

not end up in a position in a neutral zone. The intermediate steps of a sequence of jumps, 

however, may use positions in the neutral zones. 

The objective of the game is to move all of one's marbles into home area of one's opponent 

before one's opponent moves all his marbles into one's own home area. A game is considered 
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m 

眷藝眷•⑩⑩眷眷镥眷參 

春眷譽眷•春春__眷 

••••••• 

# 
Figure B.l : The board of Chinese Checkers. 

a draw if player 1 makes the first move of the game, and player 2 moves all his marbles into 

player I's home area one move after player 1 moves all his marbles into player 2's home area. 
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Application to Chinese Checkers 

In the game of Chinese Checkers, each player in turn moves a marble on the board to a de-

sired destination. The board evaluation function is used to select the most desirable move 

by evaluating each resulting board configuration. Unlike previous efforts to implement com-

puter game players, Chinese Checkers is not a well-understood game. There is no literature 

describing good Chinese Checkers strategy. The evaluation function of Learner III is used 

in conjunction with M T D ( / ) search mechanism to evaluate board position at a deep level. 

Learner III look-ahead 3 levels for middle-game and 4 levels for endgame. No opening books 

are used in the start-game. 

In Learner Ill 's evaluation function, it consists of 3 features. They are mobility, positioning 

and piece power. Mobility is the number of current legal moves. In Chinese Checkers, a move 

is either a simple move or a jump. A simple move is to move the marble to one of the six 

adjacent vacant positions. A jump is to move the marble over a marble with none or some 

vacant positions in between. A series of jump is a sequence of jump that the destination of 

a jump is the start of another jump. As we know, a jump is in general more benefit than 

a move as it can move much further by a single move. So mobility is further divided into 

two sub-features, they are move mobility and jump mobility. As we expected, jump mobility 

should weighted more. Positioning is the score of a particular position if a marble located 

in it. Positions that near the destination should scored higher than positions that near the 
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home, as expected. Piece power is the power of each marble. In Chinese Checkers, the front-

side marbles does not share the same amount of power as the back-side marbles. Marbles at 

the back-side is, in general, more important and need marbles at the front-side to take care 

them. The final score, counting from all the above features, is the score difference between 

the two players. The weighing coefficients of the above features are integers ranged from 0 to 

8 inclusively. They are combined and self-tuned adaptively by genetic algorithm [42]. 
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