
Intelligent Strategy

for

Two-person Non-random Perfect Information Zero-sum Game

TONG Kwong-Bun

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Information Engineering

� The Chinese University of Hong Kong

December 2002

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person (s) intending to use a part of or whole of the materials in the thesis

in a proposed publication must seek copyright release from the Dean of the

Graduate School.

i

)f
^©^sUbrary s^simy^/

Acknowledgement

First, I would like to express my deep gratitude to my supervisor, Professor Wing-shing Wong.

It is fair to say that none of this work would have been possible without his encouragement,

support and unlimited guidance throughout these years. I admire him for his broad knowledge

and deep insight, as well as for his trust and patience. He is also so kind that he helped me

with his full effort when I was in trouble. This manuscript has been improved considerably

from its first draft thanks to comments from Prof. Wing-shing Wong. He read the thesis

several times and made incisive suggestions which forced me to add some materials and made

the whole thesis more substantial. He also kindly help improving the language of the thesis

which hopefully has made it easier to read.

I would like to thank Prof. Will W. Ng who have tutored me much on minimax searching

and introduced me the ACM Computer Chinese Checkers competition during my undergrad-

uate studies. His previous input was invaluable in transforming my rough ideas into the

research result that I have obtained. I would also like to thank Mr. Clarence C. Y. Chan and

Mr. Kenny W. I. Lam for providing me their source and binary file of their Chinese Checkers

program respectively. Without their donation, I would not have been able to participate the

competition and complete my research.

I am pleased to express my gratitude to all my former and present lab-mates at Performance

Evaluation Laboratory, who have created an excellent atmosphere there, especially Dr. Simon

L. Y. Chan, Dr. Terence H. L. Chan, Mr. K. K. Leung, Mr. H. Y. Kwan, Mr. Eric K. Hu,

Mr. Andy Y. F. Cheng, Mr. Calvin C. S. Chan, Mr. S. W. Ho, Mr. W. C. Chan and Mr.

Michael W. Y. Ge. In these years, Mr. K. K. Leung shared his research experience with me

and gave me a lot of good ideas, Mr. H. Y. Kwan had had a lot of stimulating discussion with

ii

me and Mr. Andy Y. F. Cheng provided a complete technical support for me. Without their

help and encouragement, none of my work would be possible.

Finally, I would like to thank my family. I thank my mother and father for supporting me

over the years, through love and friendship. I thank my sister for helping take care of me as I

grew up. And I thank my brother-in-law for being my friend throughout these years. It is to

my family that this thesis is dedicated.

iii

Abstract

This thesis describes a new strategy to achieve a new plateau in computer chess performance.

Experimental results show that the improvements can reduce search effort by 60%. The

significant reduction of search effort gives room for deeper search in which better performance

can be guaranteed.

Good human players conduct a highly selective look-ahead search in which they only rarely

miss decisive variations. In the presence of a good evaluation function, selective Alpha-Beta

searches based on ProbCut can approximate the focussed human search behavior. However,

ProbCut still have to search many more path in order to come up with decisions of competitive

quality. This thesis shows that there is still room for improvement.

In this work, we have developed a probabilistic forward pruning framework for two-person

non-random perfect information zero-sum game. By reformulating Euro's ProbCut idea, we

developed a generalised version of ProbCut called GPC such that other Alpha-Beta variants

algorithms can benefit from it and result in a decreased search effort.

We also find that if the ordering of child moves is reasonably good, we can immediately

stop the search and return the best minimax value found so far, once a shallow search yield

a value outside the current search window. Experiments show that we can speedup the game

of Chinese Checkers by 3 times.

In this thesis, we also developed a new strategy for two-person non-random perfect infor-

mation zero-sum game. The strategy is the integration of forward pruning and node-cutting

heuristic. By using the correlation and pattern information of the move ordering function,

result of a short-depth search can be used to decide when to stop the search while keeping a

reliable minimax value. Simulation results show that our strategy is superior in terms of the

iv

hit rate of minimax value as well as the speed of finding the minimax.

V

摘要

本論文旨在硏究開發一新策略提昇計算機下棋的表現。實驗结果顯示搜尋工作量

可以減少逹百分之60 °搜尋工作量的大幅度減低給予計算機更多的空間作更深

入的搜尋，從而保証有更優異的表現。

好棋手能夠高度地選擇性向前搜尋’他們很少錯過決定性變異的搜尋。在一個優

良的評估函數協助下，ProbCut選擇性阿爾貝他(selective Alpha-Beta)搜尋可以

有接近好棋手的集中搜尋行爲，然而，爲了作出具競爭質素的決定’ ProbCut

仍需要搜尋許多路徑’本論文顯示這仍存在改善空間。

在這論文裏’我們爲二人非隨機完全資訊零總和(two-person non-random

perfect information zero-sum)遊戲爲本’開發一個機率向前修剪構架

(probabilistic forward pruning framework)。我們重新演繹 ProbCut 並推廣出一

個廣義版本，我們稱之爲GPC，使之其他阿爾貝他變異算法亦能降低其搜尋工

夫從而受益。

我們并且發現如果走法排列(move ordering)不俗，一次淺深度搜尋出的 minimax

値在當前的搜尋視窗(search window)之外’我們能立刻停止整個搜尋並傳回目

前覓得的最佳minimax値，實驗顯示我們能夠加快中國跳棋搜尋速度逹3倍之

多0

在這份論文中’我們還開發了一個新方案。這個策略是綜合了向前修剪技術和

node-cutting heuristic °基於走法排列的相互關係和式樣資訊，短深度搜尋的結

果可以用作決定何時停止搜尋而仍然保留可靠的minimax値。實驗结果顯示我

們的方案在正確minimax値的命中率及取得minimax値的速度都有優越的表現。

Contents

1 Introduction 1

1.1 An Overview 1

1.2 Tree Search 2

1.2.1 Minimax Algorithm 2

1.2.2 The Alpha-Beta Algorithm 4

1.2.3 Alpha-Beta Enhancements 5

1.2.4 Selective Search 9

1.3 Construction of Evaluation Function 16

1.4 Contribution of the Thesis I7

1.5 Structure of the Thesis 19

2 The Probabilistic Forward Pruning Framework 20

2.1 Introduction 20

2.2 The Generalized Probabilistic Forward Cuts Heuristic 21

2.3 The GPC Framework 24

2.3.1 The Alpha-Beta Algorithm 24

2.3.2 The NegaScout Algorithm 25

2.3.3 The Memory-enhanced Test Algorithm 27

2.4 Summary 27

3 The Fast Probabilistic Forward Pruning Framework 30

3.1 Introduction 30

vi

3.2 The Fast GPC Heuristic 30

3.2.1 The Alpha-Beta algorithm 32

3.2.2 The NegaScout algorithm 32

3.2.3 The Memory-enhanced Test algorithm 35

3.3 Performance Evaluation 35

3.3.1 Determination of the Parameters 35

3.3.2 Result of Experiments 38

3.4 Summary 42

4 The Node-Cutting Heuristic 4 3

4.1 Introduction 43

4.2 Move Ordering 43

4.2.1 Quality of Move Ordering 44

4.3 Node-Cutting Heuristic 46

4.4 Performance Evaluation 48

4.4.1 Determination of the Parameters 43

4.4.2 Result of Experiments 50

4.5 Summary 55

5 The Integrated Strategy �

5.1 Introduction 56

5.2 Combination of GPC, FGPC and Node-Cutting Heuristic 56

5.3 Performance Evaluation 58

5.4 Summary 63

6 Conclusions and Future Works g^

6.1 Conclusions 64

6.2 Future Works 65

A Examples g了

B The Rules of Chinese Checkers 7 3

vii

C Application to Chinese Checkers 75

Bibliography ^^

viii

List of Figures

1.1 The Minimax Function 3

1.2 The Alpha-Beta Function 4

1.3 The Aspiration Window Searching Function 6

1.4 The NegaScout Function 8

1.5 The Memory-enhanced Test Function 10

1.6 The Memory-enhanced Test Driver Function 11

1.7 The ProbCut enhanced AlphaBeta Algorithm 14

1.8 The MultiProbCut enhanced AlphaBeta Algorithm 15

2.1 The idea of Generalized Probabilistic Forward Cuts Heuristic 22

2.2 The idea of Generalized Probabilistic Forward Cuts Heuristic (Max node). . . . 22

2.3 The idea of Generalized Probabilistic Forward Cuts Heuristic (Min node). . 23

2.4 The Alpha-Beta Algorithm enhanced with Generalized Probabilistic Forward

Cuts Heuristic 26

2.5 The NegaScout Algorithm enhanced with Generalized Probabilistic Forward

Cuts Heuristic 28

2.6 The MTD Algorithm enhanced with Generalized Probabilistic Forward Cuts

Heuristic 29

3.1 The idea of Fast Generalized Probabilistic Forward Cuts Heuristic (Max node). 31

3.2 The idea of Fast Generalized Probabilistic Forward Cuts Heuristic (Min node). 32

3.3 The AlphaBeta Function enhanced with FGPC heuristic 33

3.4 The NegaScout Function enhanced with FGPC heuristic 34

ix

3.5 The M T Function enhanced with FGPC heuristic 36

3.6 Relation between / (c j) and g{ci) in Learner III 37

3.7 The Average Search Time Per Move for Each Algorithm 38

3.8 The Average Number of Node Visited Per Move for Each Algorithm 39

3.9 The Average Number of Bottom Position Visited Per Move for Each Algorithm. 39

3.10 The Average Number of Same Move obtained Per Move for Each Algorithm. . 40

3.11 The Average Number of Same Value obtained Per Move for Each Algorithm. . 40

3.12 The Average Winning Percentage for Each Algorithm (Match against 100 dif-

ferent players) 41

3.13 The Average Winning Percentage for Each Algorithm (Match against Learner

III) 41

4.1 An Example of Early Pruning 44

4.2 An Example of Late Pruning 45

4.3 An Example of No Pruning 45

4.4 The idea of node-cutting 47

4.5 The idea of node-cutting (2) 48

4.6 The conditional distribution Fx|y=o of Learner III 49

4.7 The conditional distribution Fx\y=2 of Learner III 49

4.8 The conditional distribution Fx\y=6 of Learner III 50

4.9 The Average Search Time Per Move for Learner III enhanced with Node-

Cutting Heuristic 5I

4.10 The Average Number of Node Visited Per Move for Learner III enhanced with

Node-Cutting Heuristic 51

4.11 The Average Number of Bottom Position Visited Per Move for Learner III

enhanced with Node-Cutting Heuristic 52

4.12 The Average Number of Same Move obtained Per Move for Learner III enhanced

with Node-Cutting Heuristic 52

4.13 The Average Number of Same Value obtained Per Move for Learner III en-

hanced with Node-Cutting Heuristic 53

X

4.14 The Average Winning Percentage for Learner III enhanced with Node-Cutting

Heuristic (Match against 100 different players) 53

4.15 Result of Learner III against Learner III enhanced with Node-Cutting Heuristic. 54

5.1 The idea of integrated strategy 57

5.2 The idea of integrated strategy (2) 58

5.3 The Average Search Time Per Move for Learner III enhanced with integrated

strategy 59

5.4 The Average Number of Node Visited Per Move for Learner III enhanced with

integrated strategy 59

5.5 The Average Number of Bottom Position Visited Per Move for Learner III

enhanced with integrated strategy 60

5.6 The Average Number of Same Move obtained Per Move for Learner III enhanced

with integrated strategy 60

5.7 The Average Number of Same Value obtained Per Move for Learner III en-

hanced with integrated strategy 61

5.8 The Average Winning Percentage for Learner III enhanced with integrated

strategy (Match against 100 different players) 61

5.9 Result of Learner III against Learner III enhanced with integrated strategy. . . 62

A . l The example tree 68

A.2 The Minimax example (step 1) 68

A.3 The Minimax example (step 2) 68

A.4 The Minimax example (step 3) 69

A.5 The Minimax example (step 4) 69

A.6 The Alpha-Beta example 70

A.7 The ProbCut example 7I

A .8 The GPC-AB example 72

B.l The board of Chinese Checkers 74

xi

Chapter 1

Introduction

1.1 An Overview

To develope intelligent computer players for board games is a challenge which Artificial In-

telligence research has been addressing since the field began. In 1949, Shannon started to

surmise how computers could play chess. He proposed the idea that computers would need an

evaluation function to successfully compete with human players [39]. In principle, one has to

consider, for a given position, all possible moves, then all moves for the opponent and then all

responses for opponent's moves, and so on until to the end of game. Each of the paths ends in

a win, loss or draw. By working backward from the end one can determine whether there is a

forced win, the position is a draw or is a loss. This is the general idea of Shannon's minimax

search algorithm. However, it is not feasible to construct and compute such a tree. A typical

chess game last about 40 moves and in each position there is on average legal moves, that

is, in the order of 30. There will be variations to be calculated from the initial position

[28]. For the case of Othello, another classic game that is in general less complex than chess,

it last for 30 moves and on average 10 legal moves for each position [34]. The total number

of moves counting from start game is 10®° which is still not feasible to modern computer. As

a result, a heuristic evaluation function is needed. The general procedure of an intelligent

program starts by looking ahead a few moves at a time and then evaluate the resulting board

positions. In general, as no simple and exact evaluation is a priori known, evaluations must be

1

. Chapter 1 Introduction

based on game-specific knowledge to approximate the true function. Shannon suggested using

a linear polynomial with variable coefficients to represent the evaluation function. Evaluation

was made with respect to several selected parameters. In his chess, material advantage, pawn

formation, positions of pieces, commitments, attacks and options and mobility was considered

as the parameters. The construction of an intelligent program then falls into two problems,

one is the method for fast tree searching and the other is the way to construct a good eval-

uation function. The former is related to the efficiency of the intelligent program while the

latter is related to the quality of it. Researchers have paid attention to both problems. In this

chapter we will discuss the previous works in these fields.

1.2 Tree Search

This section provides some background on minimax search algorithms. We briefly introduce

the minimax function, and the concept of a cutoff. To find the value of the minimax function,

one does not have to search the entire problem space. Some parts can be pruned; they are

said to be cut off. The extension of basic minimax algorithm, Alpha-Beta, is discussed. Next

we discuss common enhancements to Alpha-Beta.

1.2.1 Minimax Algorithm

Of central importance in most game-playing programs is the search algorithm. In trying to find

the move to make, a human player would typically try to look ahead a few moves, predicting

the replies of the opponent to each move, and the responses to these replies, and select the

move that looks most promising. In other words, the space of possible moves is searched trying

to find the best line of play. Game-playing programs mimic this behavior. They search each

line of play to a certain depth and evaluate the position. Assuming that both players play

perfectly, choose the move with the highest probability of winning for them, in each position

the value of the best move is returned to the parent position. In a zero-sum game the loss

of one player is the gain of the other. Player A tries to maximize the chance of winning the

game; players B tries to maximize B's chance, which is equivalent to minimizing A's chances.

Therefore, the process of backing up the value of the best move for alternating sides is called

2

. Chapter 1 Introduction

function Minimax(n) - > f
if « = LEAFNODE then return eval(n);
else if/i = MAXNODE then

-00;
c <r- firstchildO);
while c * NOCHILD do

g — max(g, Minimax(c));
c < - nextbrother(c);

else /• n is a min node •/
g<-+00；

c < - firstchildO);
while c 本 NOCHILD do

g < - min(g，Minimax(c));
c < - nextbrother(c);

return g;

Figure 1.1: The Minimax Function.

minimaxing; two-player search algorithms are said to perform a minimax search.

Figure 1.1 gives the recursive minimax function in pseudo code. The code takes a node

n as input parameter and returns /„，the minimax value for node n. Every node is either a

leaf, a min, or a max node. An evaluation function, eval, exists that returns the minimax

value for each board position at a leaf node. The functions firstchild and nextbrother exists,

returning the child node and brother nodes. If no child or brother exists, these functions will

return NOCHILD. The minimax function traverses the tree in a depth-first order. The min

and max operations implement the backing-up of the scores of nodes from a deeper level. The

value of g represents an intermediate value of a node. When all children have been searched

g becomes /，the final minimax value.

In many games it is not feasible to search all paths to the end of the game, because the

complete minimax tree would be too huge. The evaluation function is changed to return a

heuristic assessment.

An example of how a tree is traversed by the minimax algorithm is shown in appendix A.

3

. Chapter 1 Introduction

function AlphaBeta(n, alpha, beta) g
ifn = LEAFNODE then return eval(/2);
else if « = MAXNODE then

c <— firstchild(n);
while g < beta and c 本 NOCHILD do

g max(g, AlphaBeta(c, alpha, beta));
alpha <r- max{alpha, g);
c <— nextbrother(c);

else /* n is a min node */

c < - firstchild(/2);
while g > alpha and c * NOCHILD do

g min(g, AlphaBeta(c, alpha, beta))',
beta <- min{beta, g);
c <— nextbrother(c);

return g;

Figure 1.2: The Alpha-Beta Function.

1.2.2 The Alpha-Beta Algorithm

In fact, to find the value of the minimax function, one does not have to search the entire

problem space. Some parts can be pruned; they are said to be cut-off. This pruning idea

builds up the Alpha-Beta algorithm. The enhancement to the minimax algorithm, in the best

case，can search up to twice the search depth of full minimax.

Figure 1.2 gives the pseudo code for Alpha-Beta algorithm. It consists of the minimax

function, plus two extra input parameters and cut-off tests. The alpha and beta parameters

together are called the search window. At max nodes, current p is a lower bound on the

return value. This lower bound is passed to the children as the alpha parameter. Whenever

any of these children finds it can no longer return a value above that lower bound, further

searching is useless and is stopped. At min nodes, current g is an upper bound. Parameter

beta passes the bound on so that any max children with a lower bound greater than beta can

stop searching. This is called cut-off. Together, alpha and beta form a search window which

can be regarded as a task for a node to return a value that lies inside the window.

The g denotes the return value of an Alpha-Beta call. There are 3 cases for the return

value:

4

. Chapter 1 Introduction

1. a < g < P (success)

2. g < a (failing low)

9 > 13 (failing high)

For case 1，the search is success. The minimax value is equal to g. If it is case 2，it is failing

low. It means that the correct minimax value is smaller than g, or from another point of

view, g is the upper bound of it. Analogously, if it is case 3, it is failing high. The correct

minimax value is greater than g. g is the lower bound of the true value. After each recursive

Alpha-Beta calls, the lower and upper bounds become tighter until they converge. Usually

Alpha-Beta is called with an initial window of (—oo, +oo) to make sure the algorithm can find

the minimax value.

The benefits of the algorithm come from the elimination of subtrees without search once

it is proven their value must lie outside the alpha-beta search window. Subtrees eliminated

in this manner are said to be cut-off. In the optimal case, for uniform trees of depth d and

branching factor w, only 1(；1"�21 + _ 工 je^f nodes need be considered [19]. This can be

said as the best case of Alpha-Beta.

Since its introduction in 1958 by Newell, Shaw and Simon [27], many additional heuristics

and enhancements have been applied to achieve further speed-up. They are discussed in the

following subsections.

A complete example of how a tree is traversed by the Alpha-Beta algorithm is shown in

appendix A.

1.2.3 Alpha-Beta Enhancements

Move Ordering

The effectiveness of Alpha-Beta cut-offs is maximized if the best move is considered first at all

interior nodes of the search tree. The size of the search tree built by the depth-first Alpha-Beta

algorithm largely depends on the order in which branches are considered at interior nodes.

The minimal game tree arises if the branch leading to the best minimax score is considered

first at all interior nodes. Examining them in worst to best order results in the maximal tree.

As a result, a way to improve the effectiveness of Alpha-Beta pruning is to improve the

order in which child positions are examined. On a perfectly ordered uniform tree Alpha-Beta

5

. Chapter 1 Introduction

function AspWin(n, estimate, delta) f
alpha <— estimate - delta;
beta <- estimate + delta;
g < - AlphaBeta(«, alpha, beta);
if g< alpha then

g < - AlphaBeta(«, -oo, g) ;
else if g > beta then

g <r- AlphaBeta(n, g, +00);
return g;

Figure 1.3: The Aspiration Window Searching Function.

will cut-off the maximum number of nodes. The approach is usually by using game-dependent

knowledge to make a guess decision to order the moves. For example, in chess it is often wise

to try moves that will capture an opponent's piece first, and in Othello certain moves near

the corners are often better.

In real applications, like checkers, chess or Othello, however it is not easy to obtain perfect

move ordering. An inexpensive estimation function is good enough if it is simple, can be

compute fastly, and is close to perfect ordering, at least in the first few sibling nodes. Best-

first move ordering becomes a reasonably good alternative as we will likely examine the best

child first.

Techniques such as iterative deepening [15] and history heuristic [37] have shown that it is

possible to achieve excellent move ordering. We can, therefore, obtain the function by these

techniques.

Aspiration Window

Aspiration Search was first discussed and analyzed by Brudno [4], Marsland [23] and Marsland

and Campbell [22]. In many games the values of parent and child nodes are correlated. There-

fore we can obtain cheap estimates of the result that a search to a certain depth will return.

We do a relatively cheap search to a shallow depth to obtain this estimate. This estimate can

be used to create a small search window. This window is known as an aspiration window,

since we aspire that the result will be within the bounds of the window. With this window

an Alpha-Beta search is performed. If it succeeds, that is the returned value lies inside the

6

. Chapter 1 Introduction

small search window, then we have found the minimax value cheaply. If it fails (either failing

low or failing high), then a re-search must be performed. Since failed search would return

a bound, this re-search can also benefit from a window smaller than (—00, +00). Aspiration

window searching is commonly used at the root of the tree. One option for the estimate is to

evaluate the current position. Aspiration window searching usually do more efficiently than

Alpha-Beta(n, —00, +00). Figure 1.3 shows the pseudo code of aspiration window searching.

NegaScout

SCOUT [29] algorithm was motivated by the desire to reduce search effort by testing node

values rather than by evaluating nodes. Full evaluation of a node is time consuming while

node value testing is not. SCOUT offers little in the way of speedup over Alpha-Beta. Reine-

feld has done some modifications to the algorithm to provide addtional cut-offs and named as

NegaScout [32].

Pushing the idea of a smaller search window to the limit is the use of null-window. By

assuming the minimax values are integer-valued, we can have a null-window if we choose alpha

as beta — 1. This Alpha-Beta null-window search ensures the highest number of cutoffs as we

can never find out a minimax value in between alpha and beta. We always obtain either failing

low or failing high. However, the returned value serves as the bound of true minimax value.

By using a null-window search, we can test the value of a node in a quick manner rather than

evaluating it.

Figure 1.4 shows the pseudo code of NegaScout. It uses a wide search window for the first

child but a null-window to the other children. At a max node the minimax value of the its

first child node should be the greatest. If one of the null-window searches for other children

returns a bound that is greater, then that child is indeed a better move and re-search with

a wide window is needed to determine its minimax value. Analogously, at a min node the

minimax value of its first child node should be the least. If the null-window searches show one

of the brothers has a smaller minimax value, than that one becomes the most desired move

and re-search is performed to determine its minimax value. NegaScout finds more cutoffs than

Alpha-Beta and resulted in faster running time.

Using the technique of transposition table [41], which is commonly used in chess programs

7

Chapter 1 Introduction

function NegaScout(«，alpha, beta) — g
ifn = LEAFNODE then return eval(/i);
c firstchild(«);
g <— NegaScout(c, alpha, beta);
c < - nextbrother(c);
i f n = M A X N O D E then

b <- max(g, alpha)-,
while g < beta and c * NOCHILD do

t < - NegaScout(c, b,b+ 1);
/* the last two ply o f the tree return an accurate value */
if c = LEAFNODE or firstchild(c) = LEAFNODE then g<r- t ;
if t > max(g, alpha) and t < beta then t < - NegaScout(c, t, beta);
g niax(g, 0；

c <— nextbrother(c);
b <r- max{b, t);

else /* n is a min node */
b <- min(g, beta);
while g > alpha and c 本 NOCHILD do

t < - NegaScout(c, 6 - 1 , b)\
/* the last two ply o f the tree return an accurate value */
i fc = LEAFNODE or firstchild(c) = LEAFNODE then
if t < max(g, beta) and t < alpha then t < - NegaScout(c, alpha, t);
g < - min(g, beta)',
c < - nextbrother(c);
b <r- min(Z), f)；

return g ;

Figure 1.4: The NegaScout Function.

8

. Chapter 1 Introduction

to prevent re-searching of already evaluated positions, Negascout examines 20 to 30 percent

fewer terminal nodes than alpha-beta algorithm [32]. Almost in the same time, Campbell and

Marsland published a similar algorithm named as PVS (principal variation search) [21, 9].

But due to its complex implementation, it was not widely used.

Memory-enhanced Test

The previous subsection showed how null-widow Alpha-Beta searches can be used as an ef-

ficient method to compute the bounds. Plaat generalized the null-window searches to form

M T D (/) algorithm as shown in Figure 1.5 and 1.6. MT is a null-window Alpha-Beta function

with memory storage. The value and information of visited nodes are stored. They will be

restored when re-visiting them. Since MT use the null-window search technique, it will always

encounter the problem of re-visiting many visited nodes. With the help of memory storage,

MT can save the overhead of re-search visited nodes. MTD is the driver function of MT. The

driver function control the null-window test value for each MT function call. By choosing

proper test value, the bounds of minimax value will converge and the desired minimax value

is found.

At the root of a tree the return bounds from each MT function call are stored in upperbound

(after Alpha-Beta failing low) and lowerbound (after Alpha-Beta failing high). The bounds

delimit the range of possible values for the minimax value. Each time M T D (/) calls MT

it gets a value back that narrows the range, and the algorithm is one step closer to hitting

the minimax value. In order to get rid of the overhead inherent in multiple re-searches,

storing nodes as well as their bounds in memory by transposition table is suggested. However,

M T D (/) needs, and also makes use of a good first guess in order to find the minimax value

efficiently. This can be done by feeding back the minimax value of last move, provided that

the value is not oscillating. The improvement of M T D (/) over Alpha-Beta is even more than

that of NegaScout over Alpha-Beta [31, 30].

1.2.4 Selective Search

Besides traditional full-width fixed-depth minimax search, we can have non full-width fixed-

depth search. Unlike computer, human player would not examine all possible moves for a given

9

Chapter 1 Introduction

function MT(«, gamma, depth) g
if depth = 0 then /* leaf node */

retrieve(n)
if n.lowerbound = -oo and n.upperbound = +00 then

g <- evaluate(n);
else if n.upperbound = +00 then

g = n.lowerbound;
else

g = n.upperbound;
else if « = MAXNODE then

c <— firstchild(n);
/* g > gamma causes a beta cutoff {beta = gamma) */
while g < gamma and c 本 NOCHILD do

retrieve(c);
if c.upperbound > gamma then

g' <— MT(c, gamma, d -1) ;
else

g' c.upperbound',
g <- max(g, gy,
c <- nextbrother(c);

else /• « is a MINNODE */
g<~+00;
c <— firstchild(/i);
/* g< gamma causes an alpha cutoff {alpha = gamma - 1) */
while g > gamma and c * NOCHILD do

retrieve(c);
if c.lowerbound < gamma then

g' <— MT(c, gamma, d - 1);
else

g' <— c.lowerbound',
g < - min(g, gO；

c <— nextbrother(c);
/* Traditional transposition table storing o f bounds */
i f g > gamma then /* Fail high result implies a lower bound */

n.lowerbound <— g;
store n.lowerbound',

else /* Fail low result implies an upper bound */
n,upperboimd <- g;

store n.upperbound',
return g\

Figure 1.5: The Memory-enhanced Test Function.

10

. Chapter 1 Introduction

function MTDF(rao^/ depth) — g

upperbound <— +00;
lowerbound <——00;

repeat
if g = lowerbound then gamma < — 1 else gamma <— g;
g yn:{root, gamma, depth)',
if g < gamma then upperbound <— g else lowerbound <— g;

until lowerbound > upperbound',
return g\

Figure 1.6: The Memory-enhanced Test Driver Function.

board position but using their experience, narrow the game tree by pruning those unpromising

variations in advance such that they can search to rather deep levels. This is how the idea of

selective search comes from.

According to Shannon's description [39], tree search can be classified as two major types.

Traditional full-width minimax searches are considered as Type-A strategies while selective

searches are considered as Type-B strategies. Forward pruning is the major technique used

by many selective search strategies. Unlike Alpha-Beta, due to its backtracking style of tree

traversal, which only prunes nodes that will not be chosen, forward pruning techniques ignore

all nodes that do not look very promising, thereby running the risk of missing the correct

choice. We will discuss several well-known forward pruning techniques in the next part of this

subsection.

Razoring

One heuristic that has been used to define a selective strategy is to expand only nodes that

look at least as good as the current best. This heuristic defines a technique called razoring

[3], a procedure that, at first glance, looks strikingly similar to Alpha-Beta. In fact, the

only difference between them lies in the criteria used for determining the potential of a node.

Alpha-Beta relies on backed up minimax value, razoring on a static evaluation. Thus, while

razoring prunes nodes that do not look good, Alpha-Beta only eliminates nodes that are not

good. Unlike Alpha-Beta, razoring cannot guarantee that it will find the minimax value. Ra-

zoring should be used in addition to Alpha-Beta, not instead of it. In the worst case, razoring

11

. Chapter 1 Introduction

will prune the same nodes as Alpha-Beta, with only the added cost of some extra evaluations.

In the average case, however, razoring will prune nodes earlier than Alpha-Beta, narrow the

branching factor more rapidly, and deepen the search, all in exchange for occasionally missing

the best choice. The preliminary experiments described by [3] showed that in the exchange,

razoring gained, on the average, an order of magnitude over Alpha-Beta in a four-ply tree, in

terms of the number of nodes expanded.

B*

The B* algorithm [2] uses a simple heuristic of a very different nature. It “terminates the

search when an intelligent move can be made". This algorithm was motivated by the desire

to avoid the horizon effect by defining natural criteria for terminating search. The search

proceeds in a best-first manner, and attempts to prove that one of the potential next moves

is, in fact, the best. By concentrating only on the part of the tree that appears to be most

promising, B* (and best-first searches in general) avoids wasting time searching the rest of

the tree. Berliner's adaptation of best-first searches to game-trees included the first modifi-

cation to Shannon's original model. Instead of associating a single value with each node, B*

uses two evaluation functions, one to determine an optimistic value, or upper bound, and one

for a pessimistic value, or lower bound. The search is conducted with two proof procedures,

PROVEBEST, which attempts to raise the lower bound of the most promising node above the

upper bounds of its siblings, and DISPROVEREST, which tries to lower the upper bounds of

the siblings beneath its lower bound. The search terminates when the most promising choice

has been proven best.

Although B* sounds particularly appealing from both the speedup and cognitive modeling

viewpoints, it does have its drawback. Like all best-first searches, a good deal of storage space

is needed to keep track of the promising nodes.

Conspiracy Search

Conspiracy search uses a heuristic to “ attempt to stabilize the value of the root" [24]. The

value of a node is stable if deeper searches are unlikely to have any major effect on it. In a

conspiracy search, the root's stability is measured in terms of conspiracy numbers, the number

12

. Chapter 1 Introduction

of leaves whose values must change to affect its value. If the number of conspirators required

to change the root value is above a certain threshold, the value is assumed to be accurate. At

any given point during the search, the possible values of the root are restricted to the interval

[Vmin, Vmax], where Vmin and Vmax are the values of its minimum and maximum accessible

descendants at the search frontier, respectively. To update the range, either prove that the

minimizing player can avoid Vmax，or that the maximizing player can avoid Vmin • The decision

of which to prove at each point can be made with the help of the conspiracy numbers.

ProbCut

The original minimax algorithm searches the entire game tree up to a certain depth and even

with its efficient improvements such as Alpha-Beta pruning, null-window NegaScout search

and M T D (/) is only allowed to prune backwards since they have to compute the correct min-

imax value. It was found that evaluations obtained from searches at different depths have

strong correlation, provided that a reasonably good evaluation function exists [5]. The result

of a shallow search can be used to decide with a prescribed likelihood whether a deep search

would yield a value outside the current search window. Buro generalized the idea and came

up with the probabilistic forward cuts heuristic [5].

The ProbCut selective search heuristics permits pruning of subtrees that are unlikely to

affect the minimax value and uses the time saved for analysis of probably more relevant

variations. This approach is based of the fact that values returned by minimax searches of

different depths are highly correlated, provided that a reasonably good evaluation function

and, if necessary, a quiescence search [1] [14] is used. A quiescence search extends the search

at a leaf position until a quiet position is reached. In chess, “ quiet" is usually defined as no

captures present and not in check. In this case, a shallow search result Vs is a good predictor

for the deep minimax value Vd.

A simple way to express the relationship between Vs and Vd is a linear model of the form

vd = axvs+b + e where a, b are real constants and e is a normally distributed error variable

having mean 0 and variance (j^ . These parameters are estimated by linear regression applied to

a large number of training pairs (vd(Pi), VsiPi)), where pi is input of different board positions.

After computing the shallow search result Vs, the search is terminated in the current position

13

. Chapter 1 Introduction

function AlphaBetaPC(«, depth, alpha, beta) g
\{n = LEAFNODE then return eval(«);

//ProbCut heuristic:
else if depth = d then

bound <r- xo\mA{beta - b + t * sigmd) / a);
if (AlphaBetaPC(n, s, bound - 1，bound) > bound return beta;
bound <— xo\mdi{alpha - b -1* sigmd) / a);
if (AlphaBetaPC(/z, s, bound, bound + 1) < bound return alpha;

//

else if « = MAXNODE then

c <- firstchild(n);
while g < beta and c * NOCHILD do

g <- max(g, AlphaBetaPC(c, depth -1’ alpha, beta));
alpha <r- max{alpha, g);
c <— nextbrother(c);

else /* n is a min node */

c <— firstchild(/i);
while g > alpha and c 本 NOCHILD do

g <r- min(g, AlphaBetaPC(c, depth - 1，alpha, beta));
beta mm{beta, g);
c < - nextbrother(c);

return g;

Figure 1.7: The ProbCut enhanced AlphaBeta Algorithm.

if and only if a x + 6, which is an unbiased estimator for Vd, lies outside of [ct 一 ta,/3 + ta]

where t is an adjustable confidence parameter. The pseudo code of ProbCut heuristic is shown

in figure 1.7.

ProbCut was first implemented in its inventor's strong Othello program, LOGISTELLO

which defeated the human world champion in 1997 [6]. With the help of ProbCut, the enhanced

version beats original LOGISTELLO with a winning percentage of 74 percent. Later the

inventor refined it to Multi-ProbCut (MPC) (figure 1.8) and EndCut. MPC allows pruning

at different search depth together while EndCut allows a smooth transition from heuristic

middle-game to exact endgame search that is able to find best moves in a limited time more

often than the classic approach [7, 8]. The winning percentage of MPC against ProbCut

14

. Chapter 1 Introduction

function AlphaBetaMPC(n, depth, alpha, beta) — g
if n = LEAFNODE then return eval⑷；

//MultiProbCut heuristic:
else if depth < d then

load a, b, sigma, game一stage;
for i from 0 to NUMBER_OF_TRY do

bound <— round(办eto - b + t * sigma) / a);
if (AlphaBetaMPC(n, s, bound -1，bound) > bound return beta;
bound rovind{alpha - b - t* sigma) / a);
if (AlphaBetaMPC(n, s, bound, bound + 1) < bound return alpha;

//

else ifn = MAXNODE then

c <— firstchild(«);
while g < beta and c 本 NOCHILD do

g < - max(g, AlphaBetaMPC(c, depth - 1, alpha, beta));
alpha <— max(a!pha’ g);
c < - nextbrother(c);

else /* n is a min node */

c firstchild(/2);
while g > alpha and c 本 NOCHILD do

g <r- min(g, AlphaBetaMPC(c, depth - 1, alpha, beta));
beta <— rmn{beta, g);
c <— nextbrother(c);

return g;

Figure 1.8: The MultiProbCut enhanced AlphaBeta Algorithm.

15

. Chapter 1 Introduction

enhanced version of LOGISTELLO is 72 percent. The result showed that MPC is even better.

However, the major deficiency of ProbCut heuristic is that it can only apply to Alpha-Beta

algorithms but not its enhancement variants algorithms such as NegaScout or MTD(/) .The

reason is simply that these algorithms usually make use of null-window search technique. As

null-window is already the minimal window, any boundary tests apply to it must fail. The

minimax value of a node cannot lie inside the current search window (that is, the null-window).

The tests must either return failing high or failing low. We cannot gain any additional cut-offs

but have to pay for the cost of boundary tests.

Literatures [32][31][30] have already showed that M T D (/) and NegaScout out-perform

Alpha-Beta. The search speed of Alpha-Beta is slow when compared with the state-of-the-art

minimax search algorithm M T D (/) . The reduced search effort by ProbCut to Alpha-Beta is

not as significant as that of M T D (/) or NegaScout. That is, the search time of M T D (/) and

NegaScout algorithms are even shorter than ProbCut enhanced Alpha-Beta algorithm. In this

case, there is no gain to use ProbCut unless we can find way to apply ProbCut to M T D (/)

or NegaScout. We will discuss this issue in the next chapter.

Others

Moriarty and Miikkulainen showed that evolutionary neural networks can be used to perform

selective search as well. Their focus networks [25] were evolved using genetic algorithms to

direct a minimax search away from poor information. At each state in the search, the focus

networks determines which moves look the most promising and a subset of possible moves are

explored. They tested their focus networks in the game of Othello and result showed that

the focus searches are able to defeat full-width searches while examining vastly fewer posi-

tions. Aritificial evolution provides a promising paradgm for developing better game-playing

programs.

1.3 Construction of Evaluation Function

Even there is a fast minimax search, without a reasonably good evaluation function, the

program could not make any intelligent move. Therefore, the Board evaluation function is the

16

. Chapter 1 Introduction

most important component of an intelligent program.

The model described by Shannon is a linear polynomial of weighted board features [39].

This is widely used in many successful intelligent programs. Usually evaluated score are

assumed to be integer-valued. However, one may choose real number ranged from 0 to 1 for

evaluation to represent the probability of winning.

Devising a reasonably good board evaluation function is, in general, not an easy prob-

lem. Consequently, substantial work has been done on devising methods for automatically

generating such functions. The earliest publication that actively employs machine learning

was presented in 1959 by Samuel [35]. Samuel developed a checkers program that tried to

find "the highest point in multidimensional scoring space" by using two players. The results

from Samuel's experiment were impressive. In 1988, Sutton developed Samuel's ideas further

and formulated methods for Temporal Difference Learning (TDL) [43]. Many researchers have

since applied TDL to games. One of the most successful of these is Tesauro's backgammon

program which achieved master-level status [44]. In 1993, Lorenz derived a framework for

applying genetic algorithms to game evaluation function learning [20]. Besides, Ferrer and

Martin [13], Sun and Wu [42] and Chisholm and Bradbeer [11] all successfully constructed

good evaluation function for their Senet, Othello and Draughts programs by genetic algorithm

respectively. Neural-Network was found to be useful in evolving intelligent game programs

too. Chellapilla and Fogel made a great success in their checkers program [10]. Recently, evo-

lutionary algorithms were found to be successful in optimizing the board evaluation function.

One example is Kendall and Whitwell [18]. They developed an evolutionary approach to tune

a Chess evaluation function.

1.4 Contribution of the Thesis

This thesis aims at developing various heuristic in tree searching for two-person non-random

perfect information zero-sum game. According to Jackson's description, non-random means

that the allocation and positioning of resources in the game is purely deterministic. The

term perfect information indicates that both player have complete knowledge regarding the

disposition of both player's resources while zero-sum means that any potential gain to one

17

. Chapter 1 Introduction

player will be reflected as a corresponding loss to the other player. Typical examples are

Chess, Othello, Checkers and so on. In particular, the contributions of this research can be

summerized as follows:

• GPC-AB: A generalised version of ProbCut

The efficient ProbCut selective extension is reformulated, making the heuristic practical

to Alpha-Beta enhancement algorithms. ProbCut can be expressed intuitively as a

null-window call to Alpha-Beta from parent node, yielding a new formulation called

GPC-AB.

• GPC: A selective search framework based on ProbCut

Inspired by the GPC-AB reformulation, a new framework for selective minimax search

is introduced. It is based on the null-window Alpha-Beta search. We present a simple

framework of GPC that make calls to null-window Alpha-Beta search. Search results

from previous passes are used to determine whether a deep search would be needed.

The instances of this framework are readily incorporated into existing game-playing

programs.

• FGPC: A framework that can out-perform MTD(f) in time efficiency

In the GPC framework the essential part of the search is formed by a null-window search.

Based on this boundary testing technique, we introduce a new framework called FGPC.

Value returned from null-window call is used to determine when to stop the search of

current node as well as its parent node. Using our new framework, we are able to com-

pare the performance of FGPC to a number of well-known minimax search algorithms.

A high performance game-playing program was used to ensure the generality and reli-

ability of the outcome. The results of these experiments were quite surprising, FGPC

is comparable with full-width minimax search in performance and is out-performing in

time efficiency.

• Node-cutting heuristic: An effective pruning technique that is superior than full-width

minimax search

We formulate a heuristic, node-cutting. Node-cutting reduces the branching factor by

the correlation of move ordering searched at different levels. Our experiments show

18

. Chapter 1 Introduction

that node-cutting heuristic can guide the search to a more aggressive approach and take

advantage of possible mistakes by the opponent.

• An integrated strategy: Efficiently use of allocated time

We introduce a technique to take better advantage of available time. It reduces the

search tree size but maintaining a high rate of hitting the correct minimax value.

1.5 Structure of the Thesis

The organization of the thesis is as follows. In Chapter 2, a probabilistic forward pruning

framework is described. This is a generalised selective search extension. In Chapter 3，a fast

probabilistic forward pruning framework is proposed. The results of applying our heuristics

to games are described. In Chapter 4, node-cutting heuristic is formulated. In Chapter 5,

an integrated strategy is constructed. Finally, we will draw our conclusions and discuss the

future works in the last chapter.

19

Chapter 2

The Probabilistic Forward

Pruning Framework

2.1 Introduction

It has long been known that the Alpha-Beta algorithm is an inefficient searching method that

it searches all nodes to the same depth. No matter how bad a move is, it gets searched as

deep as the most promising move [39]. Alpha-Beta algorithm uses the backed-up return values

propagated from leaf nodes for the cut-off decisions. This kind of pruning method is named

as backward pruning. Backward pruning will probably make sure that most of the nodes in

the subtree of the bad move get pruned, but a more selective search strategy could help to

make sure that really bad moves are not considered at all. In contrast to backward pruning,

these strategies are called forward pruning.

The previous chapter showed how the ProbCut heuristic is used in Alpha-Beta algorithm.

This chapter generalizes the heuristic further. In the next section, we present a reformulation

of ProbCut. The reformulation is based on the Alpha-Beta procedure. It examines the same

leaf nodes in the same order as ProbCut. It is called Generalized Probabilistic Forward Cuts

Heuristic (GPC). In section two, we will generalize the ideas behind GPC into a new framework

that elegantly ties together a number of algorithms that are perceived to be dissimilar. The

20

Chapter 3 The Fast Probabilistic Forward Pruning Framework

last section summarizes our idea.

2.2 The Generalized Probabilistic Forward Cuts Heuris-

tic

Recall from previous chapter that the ProbCut selective search heuristics permits pruning of

subtrees that are unlikely to affect the minimax value and uses the time saved for analysis of

probably more relevant variations. This approach is based of the fact that values returned by

minimax searches of different depths are highly correlated, provided that a reasonably good

evaluation function and, if necessary, a quiescence search is used. In this case, a shallow search

result is a good predictor for the deep minimax value. After computing the shallow search

result, the search is terminated in the current position if and only if the unbiased estimator

for the deep minimax value lies outside the search window. The core idea is the boundary

tests.

However, the major deficiency of ProbCut heuristic is that it can only apply to Alpha-Beta

algorithms but not its enhancement variants algorithms such as NegaScout or MTD(/) .The

reason is simply that these algorithms usually make use of null-window search technique. As

null-window is already the minimal window, any boundary tests apply to it must fail. The

minimax value of a node cannot lie inside the current search window (that is, the null-window).

The tests must either return failing high or failing low. We cannot gain any additional cut-offs

but have to pay for the cost of boundary tests.

Literatures [32][31][30] have already showed that M T D (/) and NegaScout out-perform

Alpha-Beta. The search speed of Alpha-Beta is slow when compared with the state-of-the-art

minimax search algorithm M T D (/) . The reduced search effort by ProbCut to Alpha-Beta is

not as significant as that of M T D (/) or NegaScout. That is, the search time of M T D (/) and

NegaScout algorithms are even shorter than ProbCut enhanced Alpha-Beta algorithm. In this

case, there is no gain to use ProbCut unless we can find way to apply ProbCut to M T D (/) or

NegaScout. Nevertheless, by reformulating ProbCut to perform boundary test for child nodes

in parent level, selective search apply to Alpha-Beta enhancement variants algorithm that use

null-window search technique is possible.

21

Chapter 2 The Probabilistic Forward Pruning Framework

y^vooi node

/ (a A

If depth is 1，boundary test is performed to determine if
a deep search yield a value outside the current search window.
Different to ProbCut, the boundary test is done on parent node n
instead of child nodes c,.

Figure 2.1: The idea of Generalized Probabilistic Forward Cuts Heuristic.

门 (a ’P) Case \:J{c,)<y
max n o d e ^ ^ j C ^ J[c,)

X 山丫’⑴ ^ ^ Ac,)- C
Dnc=£^ KJ … k g) W … L J -oo 1 - 0>0 : : : I O +00
Direction orscarch C/ C“i ŵ
(from left to righl) ̂ / \ \ g(Cy) Y

examined subtrees: / f \

m 叫 产 ,) A I \ Case2:Ac,)>y
whcrcaSY<p / 8(c,)\ \ 八 " r

/) \ Ac 丨)

/ \ \ Ac,).
L i A -oo 1'""'''."/ . • o" e-«-| +00

g(c,) y
The search for node c, can be ignored if case 1 occurs.

Figure 2.2: The idea of Generalized Probabilistic Forward Cuts Heuristic (Max node).

22

Chapter 3 The Fast Probabilistic Forward Pruning Framework

^ (a ’ P) Case l:y(c,)>7
min / (c ,)

(f ^ O (^a’Y) - _ •̂ c,)- � Ac,r
X c , , e ~ 1 J 0 0 I + 0 0

(fromlcftlorighi) ^ /\\\ y 容⑷
examined subtrees: / /) \

min(p ,只c ,) , A c , ,)) - y L _ d i 1 \
wherea<ySP / \ Casc 2:/(c,) <y

Z ^ A -00 1 . 0 O O I +00

只c‘） Y g(c,)
The search for node c, can be ignored if case 1 occurs.

Figure 2.3: The idea of Generalized Probabilistic Forward Cuts Heuristic (Min node).

The idea of GPC can be illustrated by figures 2.1，2.2 and 2.3. Let us first define n as an

arbitary node of a game tree to be searched. Node n has w children where w is the branching

factor of the tree. Then we define g(ci) be the result of shallow search and / (c j) be the deep

minimax value of node Cj.

A simple way to express the relationship between g(ci) and f (c i) is a linear model of the

f o r m f(ci) = a X g(ci) + b + e where a, b are real constants a n d e is a n o r m a l l y d is tr ibuted error

variable having mean 0 and variance cr̂ . These parameters are estimated by linear regression

applied to a large number of training pairs {g{pi), f{Pi)), where pi is input of different board

configurations.

The search for node Ci can stop if and only if / (c j) lies outside the current search window.

In other words, we continue the search for node Ci if and only if a < f { c i) < /5 where a and

are the lower bound and upper bound of the current search window respectively.

For the case when node n is a max node, the lower bound of search window is continuously

increasing. We let it be 7 such that o: < 7 < In this case, we have to perform a boundary

test for f{ci) > 7 . Using the same idea as ProbCut, we have:

/(ci) > 7

场 a X g{ci) + 6 + e > 7

a X g{ci) + 6 - 7 �e
w � cr a

23

Chapter 3 The Fast Probabilistic Forward Pruning Framework

^ … (C i 广 I � " ”)

分论。 > (2.1)

CL

Since — ^ is normally distrubuted with mean 0 and variance 1, / (c j) > 7 holds with

probability of at least p if and only if g{ci) > ” 好 : ~ ^ where $ is the Normal distribution

function. As a result, we use，-奸： i s l as the value of boundary test for g{ci).

Similarly, for the case when node n is a min node the upper bound of search window is

continuously decreasing. We let the upper bound be 7 such that a < 7 < Then we perform

a boundary test for / (c j) < 7.

f{Ci) < 7

a X g{ci) + 6 + e < 7
a X g(Ci) + b - j e < —

a a

a
分 g(ci) < 丄 — (2.2)

0/

f{ci) < 7 holds with probability of at least p if and only if g{ci) < 上 �. A s a result,

we use 7 一 ^ as the value of boundary test for g{ci).

Appendix A contains a detailed example of how a tree is searched by GPC, ProbCut and

relevant algorithms.

2.3 The GPC Framework

GPC is a probabilistic forward pruning framework that generalized from the idea of ProbCut.

GPC is easily applicable to other Alpha-Beta enhancement algorithms. In this section, we

will illustrate how GPC is used together with Alpha-Beta and some well-known Alpha-Beta

enhancement algorithms.

2.3.1 The Alpha-Beta Algorithm

Given an arbitary node, the search is terminated in the current position if and only if its

minimax value already lies outside the current search window. The search window is passed

24

Chapter 3 The Fast Probabilistic Forward Pruning Framework

from its parent. If the parent is a max node, it will continue increasing the lower bound of

the search window in trasversing its subtrees, until cut-off occurs (that is the lower bound is

greater than the upper bound). For the same reason, it will continus lowering the upper bound

of the search window in trasversing its subtree until cut-off occurs if the parent is a min node.

As we can see, we can perform the boundary tests for subtrees in the parent node instead of

performing the boundary tests in child nodes. This can be done by placing the boundary test

code before the recursive call of Alpha-Beta function. The pseudo code is shown in figure 2.4.

GPC-AB is equivalent to ProbCut. GPC-AB examines the same leaf nodes in the same

order as ProbCut. They produce the same number of cut-offs. They not only make the same

decision, but also obtain the same minimax value if given the same tree to them. Though

the running time and complexity for both heuristic make no significant difference, GPC-AB

give us a hints for us to apply selective search heuristic in Alpha-Beta enhancment algorithms

which usually involve techniques of null-window search. Null-window search is not compatible

with ProbCut since the search window is already the minimal window. We can never find

a subtree that its minimax value does not lie outside the minimal search window. However,

with the help of the reformulation of ProbCut, selective search heuristic to Alpha-Beta variants

algorithms are applicable.

2.3.2 The NegaScout Algorithm

As described in previous chapter, NegaScout uses a wide search window for the first child, and

a null-window for the other children. ProCut can be applied to the first child only, but cannot

be applied to other children. As a max node the first node should be the highest, if one of the

null-window searches returns a bound that is greater, then that child have to re-search with a

wide window to determine its value. For a min node the first node should remain the lowest.

If the null-window searches show one of the brothers to be lower, then re-search is needed. In

both case，the search window for re-search use the result of null-window as the bound such

that to reduce the search window for re-search. However, the previous null-window search is

just a boundary test. The returned bound reduces the search window. It is not likely that the

reduced search window would produce a failing low or failing high. As a result, the boundary

test for ProbCut become useless. But if we put the tests before the recursive function call, we

25

Chapter 3 The Fast Probabilistic Forward Pruning Framework

function GPC-AlphaBeta(n, depth, alpha, beta) g
ifn = LEAFNODE then return eval(«);
else if w = MAXNODE then

c firstchild(n);
while g < beta and c t NOCHILD do

//GPC heuristic:
if level = then

ub<r-g;
gc <r- Tound{{ub -b-t* sigma) / a);
gc' < - GPC-AlphaBeta(c, gc, gc + 1);
if gc' < gc then

c < - nextbrother(c);
continue;

g <r- max(g, GPC-AlphaBeta(c, depth -1，alpha, beta));
alpha <- max{alpha, g);
c <- nextbrother(c);

else /* n is a min node */

c <— firstchild(/i);
while g > alpha and c 丰 NOCHILD do

//GPC heuristic:
if level = d+l then

lb — g;
gc <— round((/6 -b + t* sigma) / a)\
gc’ <- GPC-AlphaBeta(c, s,gc- 1, gc);
if gc' > gc then

c <r- nextbrother(c);
continue;

g <r- min(g, GPC-AlphaBeta(c, depth -1，alpha, beta));
beta rmn{beta, g);
c <- nextbrother(c);

return g;

Figure 2.4: The Alpha-Beta Algorithm enhanced with Generalized Probabilistic Forward Cuts
Heuristic.

26

Chapter 3 The Fast Probabilistic Forward Pruning Framework

can obtain the same result as GPC-AB. The pseudo code is for GPC-NS is shown in figure

2.5.

2.3.3 The Memory-enhanced Test Algorithm

The previous chapter described how M T D (/) merely uses the techniques of null-window search

to perform a minimax search. The transformation of ProbCut to M T D (/) is not trivial. The

mechanism of GPC is to perform the boundary test for child nodes in parent level. Like

Alpha-Beta algorithm, though the search window is the minimal, M T D (/) have a loop that

continuously updating the bound, either the lower bound or the upper bound, until cut-off

occurs. As shown in figure 2.6’ the variable g and 7 are the bounds. Using the same method,

we can reformulate the function to GPC-MTD(/) .

2.4 Summary

In this chapter, we reforumulated the idea of ProbCut, an effective and successful selective

search heuristic, such that it is not only applicable to Alpha-Beta algorithm but also applicable

to other enhanced Alpha-Beta minimax search algorithms. Generalised ProbCut has the same

behaviour as ProbCut. They both make the same move and obtain the same minimax value.

They also produce the same amount of cut-offs. The generalised version used the core idea of

ProbCut, the boundary tests, but is more generic such that it can be easily applied to other

Alpha-Beta variants search algorithms.

27

Chapter 3 The Fast Probabilistic Forward Pruning Framework

function GPC-NegaScout(n, depth, alpha, beta) -> g
if « = LEAFNODE then return eval(«);
c < - firstchild(«);
gamma < - GPC-NegaScout(c, level -1，alpha, beta);
c < - nextbrother(c);
i f c = M A X N O D E

while gamma < beta and c 本 NOCHILD do

//GPC heuristic:
if depth = d+1 then

ub <- gamma;
gc <- Tound{{ub-b-t* sigma) / a);

< - GPC-NegaScout(c, s, gc, gc + 1);
if gc' < gc then

c nextbrother(c);
continue;

alpha max(gamma, alpha);
g < - GPC-NegaScout(c, level -1，alpha, alpha + 1);
if g > alpha and g < beta then

g <- GPC-NegaScout(c, level - l,g, beta);
gamma < - max(g, gamma);
c < - nextbrother(c);

else /* c is min node */
while gamma > alpha and c 本 NOCHILD do

//GPC heuristic:
if depth = d+1 then

lb <— gamma;
gc <r- round((/Z? -b + t* sigma) / a);
gc' < - GPC-NegaScout(c, gc - 1，gc);
if gc ' > gc then

c < - nextbrother(c);
continue;

beta <— Tmn{gamma, beta);
g < - GPC-NegaScout(c, level - 1，beta -1, beta);
if g > alpha and g < beta then

g <- GPC-NegaScout(c, level -1，alpha, g) ;
gamma < - min(g，gamma);
c < - nextbrother(c);

return gamma;

Figure 2.5: The NegaScout Algorithm enhanced with Generalized Probabilistic Forward Cuts
Heuristic.

28

Chapter 2 The Probabilistic Forward Pruning Framework

function GPC-MT(«, gamma, depth) — g
if depth = 0 then /* leaf node */

retrieve(«)
if n.lowerbound - -co and n.upperbomd = +co then

g <— evaluate(«);
else if n.upperbound = +00 then

g = n.lowerbound-,
else

g = n.upperbound;
else i f « = M A X N O D E then

c < - firstchild(/3);
/* g > gamma causes a beta cutoff {beta = gamma) */
while g < gamma and c 本 NOCHILD do

retrieve(c);
if c.upperbound > gamma then

//GPC heuristic:
if depth = d+i then

gc round((M6 - b -1* sigmd) / a);
gc' <- GPC-NegaScout(c, s, gc, gc+ 1);
if gc' < gc then

c < - nextbrother(c);
continue;

g ' < - MT(c, gamma, d - 1);
else

g ' c.upperbound-,
g < - max(g, gO；

c <r- nextbrother(c);
else /* « is a MINNODE */

c <— firstchild(n);
I* g< gamma causes an alpha cutoff {alpha = gamma - 1) */
while g > gamma and c 本 NOCHILD do

retrieve(c);
if c.lowerbound < gamma then

//GPC heuristic:
if depth = d+\ then

lb — g‘,
gc <- round((/6 - b + t* sigma) / a);
gd <r- GPC-NegaScout(c’ s,gc - 1，gc);
if gc' > gc then

c <- nextbrother(c);
continue;

g' <- MT(c, gamma, d - 1);
cise

g' c.lowerbound',
g min(g, gO；

c <- nextbrother(c);

/* Traditional transposition table storing of bounds */
if g > gamma then /* Fail high result implies a lower bound */

n.lowerbound <- g;
store n.lowerbound',

else /* Fail low result implies an upper bound */
n.upperbound g;
store n.upperbound.,

return g; 29

Figure 2.6: The MTD Algorithm enhanced with Generalized Probabilistic Forward Cuts
Heuristic.

Chapter 3

The Fast Probabilistic Forward

Pruning Framework

3.1 Introduction

The previous chapter showed how the probabilistic forward pruning framework, GPC, is used

in Alpha-Beta and its enhancement algorithms. GPC allows selective search to be applicable

to those algorithms. This chapter takes the idea further. In the next section, the enhanced

forward pruning framework is described. This is a framework that can further reduce the

search effort significantly. The third section will show the result of simulations. The last

section summarizes our idea.

3.2 The Fast GPC Heuristic

GPC is a simple but effective framework. It makes use of null-window search to perform

boundary tests. Null-window search is powerful and fast. Though it cannot find out the

minimax value, null-window would lead to early alpha or beta cut-off, returning a bound in

either case. This useful information give us hints that what the minimax value look likes.

GPC starts with a null-window shallow search for each child, then uses the returned bound

to determine whether to have full-depth search for them or not. For the case if we have a good

30

Chapter 3 The Fast Probabilistic Forward Pruning Framework

门 (a , P) Case 1 -.Jic) < y
max nodeK^^n J{c,)

_ _ _ r ^ . n fx^^'x … x ? x) C
^ ^ c ^ , 1 •-.：：.：： . . j I +00

Direction of search /f\ C样 ‘
(from lento right) ̂ _ /\\\ g(Ci) Y

examined subtrees: / f \

,Ac,.,))-t/ M \ r„„„ 2•frc^>•v

/ \ \ •/(�').
L 4 ^ -00 1'""'；"''"" . e Q 0 I +00

似 gic,) Y
The search for node n can be stopped as soon as case 1 occurs.
The subtree c, and subtrees right after c, will not be searched.
Node It will return the best obtained maximum value, that is y.

Figure 3.1: The idea of Fast Generalized Probabilistic Forward Cuts Heuristic (Max node).

move ordering: the nodes are sorted in such a way that value of nodes are in monotonic order

or best-first order, we can stop the search as soon as we found one child that its minimax value

lies outside the search window. The current subtree and its sibling subtrees can be pruned in

advance. This makes up the idea of Fast GPC.

The idea of FGPC is shown in figures 3.1 and 3.2. Let us first define n as an arbitary node

of a game tree to be searched. Node n has w children where w is the branching factor of the

tree. Then we define g{ci) be the result of shallow search and f {c i) be the result of the deep

minimax value of node Cj.

A simple way to express the relationship between g{ci) and / (q) is a linear model of the

form f{ci) = ax p (c i)+ 6 + e where a, b are real constants and e is a normally distributed error

variable having mean 0 and variance a^ . These parameters are estimated by linear regression

applied to a large number of training pairs {g{pi), f{pi)), where pi is input of different board

positions.

The search for node n can stop as soon as one of the child node, say a, its deep minimax

value f{ci) lies outside the current search window. In other words, the search for node n will

continue if and only if a < f { c i) < P where a and ^ are the lower bound and upper bound of

the current search window respectively and Cj is the current examining node.

FGPC obtains more cut-offs than GPC in general. As a result, FGPC reduces the search

effort much more than that of GPC and thus turns out to be faster. The following subsections

31

Chapter 3 The Fast Probabilistic Forward Pruning Framework

P) Case l:y(c,)^Y
min nodê r'C.n

o o c = 0 O 由a,i)…̂ T̂ /(̂ O- � MY
Direction or .e.rch C, C,., V C, C. © \ •……:…..,.0:.:.0.、： ：. | +=0
(r_ 丨cru。_ . ^ ^ . . / I K Y

examined subtrees: / /) \
min(P.yic,),....Ac.,))=y Ad \ \

wherea<YSP / g{c,)\ \ Casc 2:/(c,) <y

/ \ \
L 6 ^ -00 1 0 0 0 I +00

•̂ c') Y 二
The search for node n can be stopped as soon as ease ！ occurs. ‘
The subtree c, and subtrees right after c, will not be searched.
Node n will return (he best obtained minimum value, that is y.

Figure 3.2: The idea of Fast Generalized Probabilistic Forward Cuts Heuristic (Min node),

will illustrate how FGPC is used together with Alpha-Beta and its enhanced algorithms.

3.2.1 The Alpha-Beta algorithm

This subsection describes the use of FGPC heuristic in the standard Alpha-Beta algorithm.

The modified Alpha-Beta algorithm is shown in figure 3.3. When compare with the standard

version, a null-window test is added inside the control loop of FGPC-AB. As describe in

previous section, a null-window test consumes insignificant computation time. But the gain

is, if the return value of the null-window test does imply that the testing node is beyond our

desired score region, a series of nodes and subtrees will be pruned. The total time for running

is reduced significantly. The time benefit we gain is much more than we pay. The set of

experiments we conducted are described in the next section.

3.2.2 The NegaScout algorithm

This subsection describes the use of FGPC heuristic in NegaScout, a well-known Alpha-Beta

Enhancement algorithm. The modified algorithm, FGPC-NS can be found in figure 3.4. The

result of our conducted experiments are described in the next section.

32

Chapter 3 The Fast Probabilistic Forward Pruning Framework

function FGPC-AlphaBeta(«, depth, alpha, beta) -> g
\{n = LEAFNODE then return eval(«);
else if « = MAXNODE then

c < - firstchild(n);
while g < beta and c ^ NOCHILD do

//FGPC heuristic:
if level = d+\ then

ub <~ g;
gc <— round{(ub - b -t* sigmd) / a);
gc' < - FGPC-AlphaBeta(c, s, gc, g c + 1);
if gc' < gc then return g;

g < - max(g, FGPC-AlphaBeta(c, depth -1, alpha, beta));
alpha <- m2ix{alpha, g);
c < - nextbrother(c);

else /* n is a min node */

c <— firstchild(«);
while g > alpha and c * NOCHILD do

"FGPC heuristic:
if level = d+1 then

Ib^g;

gc <— round((/6 -b + t* sigmd) / a);
gc' < - FGPC-AlphaBeta(c, s,gc-\, gc);
if gc' > gc then return g;

g <- minCgj FGPC-AlphaBeta(c, depth - 1’ alpha, beta));
beta <— mm{beta, g);
c < - nextbrother(c);

return g;

Figure 3.3: The AlphaBeta Function enhanced with FGPC heuristic.

33

Chapter 3 The Fast Probabilistic Forward Pruning Framework

function FGPC-NegaScout(«, depth, alpha, beta) -> g
ifn = LEAFNODE then return eval(n);
c <— firstchild(«);
gamma <- GPC-NegaScout(c, level -1，alpha, beta);
c <— nextbrother(c);
i fc = MAXNODE

while gamma < beta and c * NOCHILD do

HFG?C heuristic:
if depth = d+\ then

ub <- gamma;
gc roimd((w 办 - b - t * sigma) / a);
gc' < - FGPC-NegaScout(c, s, gc, gc+ 1);
if gc' < gc then return gamma;

alpha <r- max{gamma, alpha);
g <- FGPC-NegaScout(c, level - \ , alpha, alpha + 1)；

if g > alpha and g < beta then
g < - FGPC-NegaScout(c, level - \,g, beta);

gamma max(g, gamma)-,
c < - nextbrother(c);

else /* c is min node */
while gamma > alpha and c ^ NOCHILD do

//FGPC heuristic:
if depth = d+\ then

lb <— gamma;
gc <- round((/Z)-b + t* sigma) / a);
gc' <- FGPC-NegaScout(c, s, gc - l , g c) ;
ifgc' > gc then return gamma;

beta <- vmnigamma, beta);
g FGPC-NegaScout(c, level - 1 , beta - \ ,beta);
i f g > alpha and g < beta then

g < - FGPC-NegaScout(c, level -1, alpha, g);
gamma ^ vmn{g, gamma);
c < - nextbrother(c);

return gamma;

Figure 3.4: The NegaScout Function enhanced with FGPC heuristic.

34

Chapter 3 The Fast Probabilistic Forward Pruning Framework

3.2.3 The Memory-enhanced Test algorithm

This subsection describes the use of FGPC heuristic in M T D (/) , the state-of-the-art minimax

search algorithm. Figure 3.5 shows the FGPC-MT function. The experimental results are

shown in the next section.

3.3 Performance Evaluation

3.3.1 Determination of the Parameters

In this section, we present some experimental results in order to get a rough idea on the

performance of the proposed framework. In our experiments, we mainly test the performance

of standard Alpha-Beta, NegaScout and Memory-enhanced Test algorithm with and without

FGPC. The comparison between GPC and FGPC is shown in later part.

The game of Chinese Checkers is used for testing purpose. Our test programs are based

on Learner III, the Champion of ACM-HK Computer Chinese Checkers Competition 2002.

Learner III use M T D (/) as the minimax search algorithm and look-ahead 3 levels for middle-

game. No opening books are being used. We will have a detail description of Learner III on

Appendix C.

In our experiments, our test programs only replace the search algorithm M T D (/) with

Alpha-Beta and NegaScout (with and without GPC or FGPC) in the middle-game. The

remaining parts of Learner III are remaining unchanged. We implement the algorithms in C

language and our parameters are set as s = 0，d = 2 where s is the depth of shallow search

while d is the depth of deep minimax search. All programs are run under linux platform on a

P4 2.4GHz general purpose computer.

Figure 3.6 show 9669 evaluation pairs with linear approximation. The goodness of fit is

visually obvious. The reason is that the evaluation function of Learner III is good enough and

stable. By linear regression method, we find that the parameters needed for GPC and FGPC

are a = 0.9527,6 = 24.1225,(7 = 407.3506. We choose the parameter t = 1.3 (p = 90.32%)

such that 少-1(0.9032) = 1.3

NegaScout is the current algorithm of choice by most chess programmers and M T D (/)

35

Chapter 3 The Fast Probabilistic Forward Pruning Framework

function FGPC-MT(/i, gamma, depth) g
if depth = 0 then /* leaf node */

retrieve(/j)
\in.lowerbound = -oo and n.upperbound = +00 then

g evaluate(/j);
else if n.upperbound = +qo then

g = n.lowerbound-,
else

g = n.upperbound-,
else if n = MAXNODE then

c firstchild(«);
/ * g > gamma causes a beta cutoff {beta = gamma) */
while g < gamma and c * NOCHILD do

retrieve(c);
if c.upperbound > gamma then

//FGPC heuristic:
if depth = d+1 then

ub<r-g;
gc <- round((M6 - b -t* sigma) / a);
gc, < - GPC-NegaScout(c, s, gc, g c + 1);
if gc' < gc then return g;

g ' <- MT(c, gamma, d - 1);
else

g' <— c.upperbound;
g <- max(g, gO；

c <r- nextbrother(c);
else /* /J is a MINNODE */

g<~+QO;
c <- firstchild(/7);
/* g< gamma causes an alpha cutoff {alpha = gamma - 1) */
while g > gamma and c 本 NOCHILD do

retrieve(c);
if c.lowerbound < gamma then

//FGPC heuristic:
depth = d+\ then

gc <- round((/6 -b + t* sigma) / a);
gc' <- GPC-NegaScout(c, s,gc- 1, gc);
if gc' > gc then return g;

g' <- MT(c, gamma, d - 1);
else

g' c.lowerbound-,
g <r- min(g, gO；

c <- nextbrother(c);
/* Traditional transposition table storing of bounds */
if g > gamma then /* Fail high result implies a lower bound */

n.lowerbound <- g;
store n.lowerbound-,

else /* Fail low result implies an upper bound */
n.upperbound <—g；

store n.upperbound.’
return g;

Figure 3.5: T h e M T Function enhanced with F G P C heuristic.

36

Chapter 3 The Fast Probabilistic Forward Pruning Framework

X 1 o« Relation between f(Cj) and g(c丨)in Learners
i-5| 1 1 1 1 ！

卜 . - 丨 . 一 丨 - - 丨 - 顯 …

- 丨 丨 j T l 丨 -
3 - � - V -

-�.5............丨....:̂ ^̂….丨.........................….........................-

...........丨.—........丨一_

- 1 . 5 ' 1 1 1 1 1 1
- 1 . 5 - 1 - 0 . 5 0 0.5 1 1.5 2

丨）

Figure 3.6: Relation between / (c i) and g{ci) in Learner III.

is the current the state-of-the-art minimax search algorithm, therefore we have chosen these

algorithms as our baseline.

The algorithms we compared are denoted as:

• AB: The standard AlphaBeta algorithm

• GPC-AB: The standard AlphaBeta algorithm enhanced with GPC heuristic

• FGPC-AB: The standard AlphaBeta algorithm enhanced with FGPC heuristic

• NS: The NegaScout algorithm

• GPC-NS: The NegaScout algorithm enhanced GPC heuristic

• FGPC-NS: The NegaScout algorithm enhanced FGPC heuristic

• MTD: The MTD(f) algorithm

• GPC-MTD: The MTD(f) algorithm enhanced GPC heuristic

• FGPC-MTD: The MTD(f) algorithm enhanced FGPC heuristic

37

Chapter 3 The Fast Probabilistic Forward Pruning Framework

1.2 -._...- - - -

1.0262

: |。：
m 0.3805 0 .3989 0.4 “ H l̂ _ _ ‘

� 2旧 麗 園 國 i i - 圏 i � - g 9

AB GPC-AB FGPC- NS GPC-NS FGPC- MTD GPC- FGPC-
AB NS MTD MTD

Figure 3.7: The Average Search Time Per Move for Each Algorithm.

3.3.2 Result of Experiments

One measure for comparing search algorithm performance is elapsed CPU time. However, any

timing results are machine and implementation dependent. Another measure is the number

of bottom positions (NBP), or sometimes called leaf nodes, examined. NBP has been used

extensively in the literature [15], [9], [40] and [26]. Another measurement is the size of the

tree. The node count (NC) measure counts all nodes in the tree where computaton occurs.

This includes interior, leaf and any nodes in subtrees built as part of leaf node evaluation.

This count has been shown to be strongly correlated with program running time by Schaeffer

[36].

Since the execution time overhead of the enhancements is negligible, the computational

cost being deminated by leaf node evaluation and the expansion of nodes. By comparing the

measurement of NBP and NC as well as the elapsed CPU time, we can obtain a full picture

for the performance of the proposed heuristics.

As shown from figure 3.7, the search time per move is reduced more than half after using

GPC. The search effort is reduced even over 60% after FGPC. For example, FGPC-AB use

37% search effort of AB, FGPC-NS use 38% search effort of NS and FGPC-MTD use 34%

search time of MTD only. FGPC-AB, FGPC-NS and FGPC-MTD have speed-up of 2.7 times,

2.6 times and 2.9 times respectively. The time reduced for FGPC is much more than that of

38

Chapter 3 The Fast Probabilistic Forward Pruning Framework

25000.0 -
>1760.0

20000.0 • - -

15000 0 • I � —
11335.0

10000.0 n 8438.3 8802.4 7931 Q
變 r m p—] •

* r > 4704 2 I I
5000.0 ， � _ �n 3753.1 w\ 39，0.7 2924.7

. 0.0 I 11, M , � 1 , 1 l , r i i _ i | ‘ | _ H
AB GPC- FGPC- NS GPC-NS FGPC- MTD GPC- FGPC-

AB AB NS MTD MTD

Figure 3.8: The Average Number of Node Visited Per Move for Each Algorithm.

>0539.0

20000.0 - •國 - — -
B

15000.0 “

麗 10526.0
10000.0 ‘ ^̂ â 77S2 ̂ 2

議 隱 ‘ 6676.5
5000.0 - 圓 _ , _ , _ ‘39_.0 3。[̂ .4 面

AB GPC- FGPC- NS GPC-NS FGPC- MTD GPC- FGPC-
AB AB NS MTD MTD

Figure 3.9: The Average Number of Bottom Position Visited Per Move for Each Algorithm.

39

Chapter 3 The Fast Probabilistic Forward Pruning Framework

100 0% ^̂ ^ .,1111,J. 95.5 vî 9.5*5*/'̂
H 8S 8% J n 85.8% _ Q 85.8%

80.0% 國 PI "i r J n M �� 门

El i l l ! ? I
0.0% ____I__^__I_^_I_I L_j_iMi_1 1_Î S__I I__I灘I ,

AB GPC- FGPO NS GPC-NS FGPC- MTD GPC- FGPC-
AB AB NS MTD MTD

Figure 3.10: The Average Number of Same Move obtained Per Move for Each Algorithm.

100.0% 100.0% 100.0%
100.0% … 鬥 乃 95.5% _ 95.5%

_ r~| 8S 8% ‘ ""“ 85 8% III pTj 85.8%

-•J ^ n t ? n I H H
• 。 - 1 1 1 1 > ；：
40.0% - H I . � ； « ^ W CJ ̂

^ P ^ I '' J I
0.0% 丨翻• \s.\ • t i l . _ I _ , N , _ , _ ,

AB GPC- FGPC- NS GPC-NS FCPC- MTD GPC- FGPC-
AB AB NS MTD MTD

Figure 3.11: The Average Number of Same Value obtained Per Move for Each Algorithm.

40

Chapter 3 The Fast Probabilistic Forward Pruning Framework

100.00% - -
90.00% --...."...-
80.00% 71.75./, 7 2 . 5 0 % 7 1 . 7 5 % 7 1 . 7 5 % 7 2 . 5 0 % 7 1 . 7 5 % . 7 5 % 7 2 . 5 0 % 7 1 .

70.00% - 國 n r-| 門 ra - m 网 ra m
60.00% - - B 今 ” ^ \'4 L^ M
50.00% • R - I I ：̂ I I h J F FJ -
40.00% _ I ^ k'l _ m i j
30.00% _ % v c - _ _ B y l b

20.00% -國 . .謹 . . . 2 ^ [S yJl r ^ pJ V-
10.00% 國 % F .丨 ^
0.00% 醒丨 I 國 I 關 r 网 r LJl I I Ld Eli 丨‘叫 I

AB GPC- FGPC- NS GPC-NS FGPC- MTD GPC- FGPC-
AB AB NS MTD MTD

Figure 3.12: The Average Winning Percentage for Each Algorithm (Match against 100 different
players).

100.0%� - -
Q̂ Q̂

80.0% -

70.0%

M 50.0% 50：0% 50.0% 50.0% 50.0% 50.0%
50•抓-_ • • ifi ri m
40.0% - ……‘..PI ^J 輪

30.0% - H... 25.0% _ I 25.0% p y 25.0% |

•0.0% -._...........I _ _ _ _ _ _ S i
0.0% ™ I 隱I~I 圓 ~ I M_i—^S_I Irfi L^_I rz„]_I M _ I

AB GPC- FGPC- NS GPC-NS FGPC- MTD GPC- FGPC-
AB AB NS MTD MTD

Figure 3.13: The Average Winning Percentage for Each Algorithm (Match against Learner
III).

41

Chapter 3 The Fast Probabilistic Forward Pruning Framework

GPC.

The graph of NBP (figure 3.9) and NC (figure 3.8) consistent with the result of computation

time. The number of bottom position and number of node visited are reduced with the same

factor if FGPC is used.

Besides time efficiency, we also measure the quality of move. Figure 3.10 shows the percent-

age of cases in which the algorithm would select the same move as M T D (/) while figure 3.11

shows the frequency that the algorithm would reported the same minimax value as M T D (/) .

The high percentage indicated that both GPC and FGPC are good estimator and consist most

search result of M T D (/) .

Furthermore, we would like to measure the quality of play for each algorithm. We selected

100 different Chinese Checkers player programs that have similar strength as Learner III to

have matches against our test programs. The result is shown in figure 3.12. The average

winning percentage of algorithms using GPC and FGPC are closed to algorithms without

using them. Apart from that, figure 3.13 shows the winning percentage of each algorithms

match against Learner III. The winning percentage of MTD is 50%, which consistent with the

fact that Learner III actually uses M T D (/) as the search algorithm. For algorithms enhanced

with FGPC, their winnning percentage is higher than algorithms enhanced with GPC. As

time is saved but performance can almost remain the same, FGPC is clearly a better choice.

3.4 Summary

In this chapter, we modify our GPC heuristic such that the search effort is significantly

reduced. Experiments were conducted and showed that our idea outperformed previous suc-

cessful heuristic and algorithms in time efficiency. Other results borne out by experiments are

that the memory requirements of all algorithms are perfectly acceptable for typical tourna-

ment play, since only a small subset of the visited nodes has to be stored in memory. The

instances of this framework are readily incorporated into existing game-playing programs. We

believe that our selective search framework work efficiently and effectively.

42

Chapter 4

The Node-Cutting Heuristic

4.1 Introduction

The previous chapter showed how forward pruning techniques are used in tree searching. The

idea of forward pruning strategies is, by reducing the number of moves to be considered, to

reduce the computation time without lowering the quality of play. Apart from the heuristics

discussed in previous chapters, cutting down the branching factor of the game tree is another

workable idea. In the next section, we will discuss the effect of the quality of move ordering.

Some properties are found. In section three, we generalize the idea to formulate our node-

cutting heuristic. Some experiments are conducted and the results are shown in section four.

The last section summarizes our proposed idea.

4.2 Move Ordering

Recalled from Alpha-Beta algorithm, it is essential that the best moves are to be searched

first in order to maximize the number of cut-off occurs, resulting to minimize the search time.

The other successful Alpha-Beta enhanced algorithms including NegaScout and M T D (/) also

rely on the quality of move ordering. Though we obtain the same minimax value eventually,

badly ordered game tree consumes more time for searching as the rate of having cut-off is very

limited.

43

Chapter 4 The Node-Cutting Heuristic

root 0
node

w . … © … @
min node eyiST min node min node

(/ (i) © @ ^ ^ / 八
b c d f g h j k I

^ ' ―̂ ‘

nodes with black dot are pruned

Figure 4.1: An Example of Early Pruning.

For a max position, the best move is the one whose minimax value is the highest. Analo-

gously, the best move of a min position is the one with the lowest minimax value. In order for

a cut-off to be occurred, perfect ordering is not necessary, provided that the best move appears

at the front. The examples are shown in figures 4.1’ 4.2 and 4.3. The best move of each node

is marked by an asteria. It can be seen easily that the earlier the best move appears, the

earlier the cut-off occurs. As a result, despite of constructing perfect move ordering, best-first

ordering is an alternative simpler solution.

In practice, move ordering is done by a move ordering function which is an inexpensive

estimatior of the board evaluation function. Similar to evaluation function, move ordering

function is usually accomplished by game-depedent knowledge and heuristics. However, tech-

niques such as iterative deepening [15] and history heuristic [37] have described how to achieve

excellent move ordering. We can, therefore, obtain the function by these techniques.

4.2.1 Quality of Move Ordering

The quality of evaluation function can be fully reflected by the quality of play since it deter-

mines the game playing strength. The more accurate the evaluation function we have, the

higher chance we would go into the win position. The measure of quality of move ordering

44

Chapter 4 The Node-Cutting Heuristic

root 0
node

0 … 0 … 0
^ m i n node min node min node

0 0 © ® (i)© ® 丄 \
b c d f g h j k I

V ‘

nodes with black dot are pruned

Figure 4.2: An Example of Late Pruning.

root
0

^ ; > T < m a x node

© … ® … ®

^ TIC min node min node min node

® (^ 0 © 0 ®
b c d f g h j k I

Figure 4.3: An Example of No Pruning.

45

Chapter 4 The Node-Cutting Heuristic

becomes the measure of the position where the best move appears. The quality of move or-

dering directly affects the overall search speed. The more accurate the move ordering function

we have, the more cut-offs would occur thus the more search speedup would gain.

4.3 Node-Cutting Heuristic

One of the major time constraints in chess type games is that the running time is highly affected

by the branching factor of game tree, even we have a fast search algorithm and successful

forward pruning heuristic. We aim at, by reducing the branching factor by heuristic, ignoring

the unpromising moves in advance to further speedup the overall search time.

We find that, for a given reasonably good move ordering function, the best move of an

arbitrary board position is usually appearing at the front. The best child in this case is just

the desired move. And, though the ordering positions of the desired move when searched at

different look-ahead level are not always the same, they are highly correlated.

Let the distribution function Fy(x) = P{Y < y) characterize the random variable Y

ranging from 0 to u; - 1 where w is the branching factor. The probability p = P{Y = y) for

node n is the probability of the event that the best move is the y-th branch. Fy(y) is estimated

from practical data of Chinese Checkers program Learner III. The compiled statistics revealed

that the static values around 0 occured very frequently. It means that the move ordering is

done pretty well. For this reason, a normal distrubution could not fit these data well according

to statistical tests. Hence, we define a distribution function F y i (y) approximating our data

as an estimate of Fy (y) . It seems that the exact shape of the distribution function is not

really important for the results of the simulation runs; only the values around 0 must have a

significantly higher probability.

Analogously, we let the conditional distribution function Fx\Y=y{x) = P{X < x\Y = y)

characterize the random variable X ranging from 0 to w; - 1 where w is the branching factor.

The probability p = P (X = x\Y = y) for node n is the probability of the event that the best

move is the x-th branch given that y-th. branch is the best move obtained by a short depth

minimax search. Fx\Y=y{x) is, again estimated from practical data of Chinese Checkers

program Learner III. The compiled statistics revealed that the static values around y occured

46

Chapter 4 The Node-Cutting Heuristic

y^vooX node

A
y is the random variable ranging from 0 to w-1
where w is the branching factor.
Cy is the best move of node n computed by a short depth � search.

Figure 4.4: The idea of node-cutting.

very frequently. It means that the ordering position of the desired move when searched at

different look-ahead level are not always the same, but are highly correlated provided that

a reasonably good move ordering function is existed. For this reason, a normal distrubution

could not fit these data well according to statistical tests. Hence, we define a conditional

distribution function Fxi|yi=y(rE) approximating our data as an estimate of It

seems that the exact shape of the conditional distribution function is not really important for

the results of the simulation runs; only the values around y must have a significantly higher

probability.

The idea of node-cutting heuristic is illustrated in figures 4.4 and 4.5. The flow is described

as follows:

Step 1: If current depth is d + 1’ then follow step 2，otherwise jump to step 6.

Step 2: Perform a short depth minimax search (depth = s).

Step 3: The desired move is found and it's position is label as y.

Step 4: Calculate x such that Fx\Y=y{x) = p where p is an adjustable parameter.

Step 5: Ignore all move positioned after x.

Step 6: Perform the real minimax search with the reduced game tree.

47

Chapter 4 The Node-Cutting Heuristic

^"-N^a，P) 小 An arbitrary conditional distribution function for F^^y”

Perform deep search J ： J

~ ~ © 1
A'is the random variable ranging from 0 to w-1 X w
where w is the branching factor.
The child nodes located after a: will be ignored completely.
Only nodes before x will be examined.

Figure 4.5: The idea of node-cutting (2).

If we use aspiration NegaScout or M T D (/) algorithms we may experience with re-search

some already visited nodes. In these cases, we can store the calculated x value so that we can

directly jump to step 6 when revisiting those nodes.

4.4 Performance Evaluation

4.4.1 Determination of the Parameters

In this section, we present some experimental results in order to get a rough idea on the

performance of the proposed idea. In our experiments, we use the game of Chinese Checkers

to test the performance of node-cutting heuristic. In our 9669 board test positions, we find that

the average branching factor of Chinese Checkers in middle-game is 67.8, which is reasonably

large and is very suitable for testing our heuristic.

Figures 4.6, 4.7 and 4.8 show the conditional distribution function of Learner III. The

result is obtained by measuring 9669 different board positions. We choose s to be 1 and d

to be 2. It should be noticed that the meaning of the value s here is not the same as that

of GPC. It can be seen that values around y have a significantly higher probability. This

result is consistent with our expectation. The reason is that the ordering of move has strong

correlation. The defined conditional distribution Fxi\Yi=y{x) can be estimated from these

graphs.

48

Chapter 4 The Node-Cutting Heuristic

Fx|Y-O
I I I I I I i 1 1

1 - :• i i i ； : i

0.9 - ： : ： -

? 0 . 8 - /••：• •： -D /
CO /
® /

g I

d 0.6 I i : : ； -

I 0.5 - \ ：• ： ： ； ； -

0 0.4 - ； :• ； ； ： ： •: .‘. -

S 0.3 - i ： ： ： ； -
0

0.2 - ： ： ： ； ： ： ‘； ''、 -

0.1 - � ‘� ： ： ： ： ： ； i -

qI 1 1 1 1 i I I 1 I
0 10 20 30 40 50 60 70 80 90 100

X

Figure 4.6: The conditional distribution Fx\y=:o of Learner III.

1 1 1 1 1 1 1 i 1

1 - I — ； i i ：

0.9 - - •； -

10.8 - •.… .‘: -
w /
<0 /
1 0.7 - / i r i- i ； : ； -
3 / ：
o 0.6 - ； 丨 ；- ： .i < -
8
m
E 0.5 - r r ： : : \ i -o

•5 0.4 - ； :、 ；- ； ： •； -

2 0.3 ： ： ； -
Q

0.2 L 丨 ‘： r ； ： ： ； ： -

0.1 - ； ： ： ： ： ： ： ^ -

qI 1 1 1 1 i I i I I
0 10 20 30 40 50 60 70 80 90 100

X

Figure 4.7: The conditional distribution Fx\y=2 of Learner III.

49

Chapter 4 The Node-Cutting Heuristic

FJ(|y„6
r ！ ！ ！ ！ ！ ！ ！ 1

�.9-........； 丨 ： ：........-

E0.8- .： ；

\ 7
/ ； ； ； ： ： ： -•5 I ：

E : ： ： ： ： ： ： ： ：
0 0.6 - j ^ :• ： ； ；

§ i ： ： ： ： ： i i ；
§ 0 . 5 - … … ^ r • ； -

I
•5 0.4 - ； ， ；- ： ： ： .： ；

I" / ： ： i ： ： ： i i ；

ri......；..._.....！.......丨..........丨.....................…...…：.........i.........：........-
0.2 I r ：• ； ： ： .； j

0.1 - ； ： ；

o' 1 1 1 i i i i i i
0 10 20 30 40 50 60 70 80 90 100

X

Figure 4.8: The conditional distribution Fx\y=6 of Learner III.

Since M T D (/) is the current state-of-the-art minimax search algorithm, we choose this

algorithm as our baseline.

The algorithms we compared are denoted as:

• MTD: The MTD(f) algorithm

• MTD-NC-95: The MTD(f) algorithm enhanced with node-cutting heuristic (p = 0.95)

• MTD-NC-96: The MTD(f) algorithm enhanced with node-cutting heuristic (p = 0.96)

• MTD-NC-97: The MTD(f) algorithm enhanced with node-cutting heuristic (p = 0.97)

• MTD-NC-98: The MTD(f) algorithm enhanced with node-cutting heuristic (p = 0.98)

• MTD-NC-99: The MTD(f) algorithm enhanced with node-cutting heuristic (p = 0.99)

4.4.2 Result of Experiments

Figures 4.9 to 4.15 show the comparison of 3 ply searches between Learner III with and without

using node-cutting heuristic. It can be seen easily that node-cutting heuristic actually can

50

Chapter 4 The Node-Cutting Heuristic

0.45 r - — -
r 0 .3989

0.4 - - -.........._...- —

0.35 - 1 3 - — - -

‘ l ^ p — 0 .2656 ••••••‘

： - M 0 1 7 9 0 ： 0 .1905 ' j n � 2 I

0.1 - h f f l •• U^SI - - — 二 ..
0.05 • l ^ P ^ � *

0 I ^ S ~ ~ I ~ _ I _ _ _ L _ 1 . 1 I , I J .

MTD MTD-NC-95 MTD-NC-96 MTD-NC-97 MTD-NC-98 MTD-NC-99

Figure 4.9: The Average Search Time Per Move for Learner III enhanced with Node-Cutting
Heuristic.

9000.0 �—.••.”—-— - - -
7931.0

8000.0 -

7000.0 -. J- - - -

‘ m “ “ 4200 .8 4 ， [―]

4000.0 - • 3 5 8 6 . 3 — • ：

3000.0 ^^^ • •••丨 驾 eLf” • （S??
2000.0 - j r - V -約............

1000.0 - I j ^ * <
0.0 ~ ~ ~ ~ ‘ ~ L j _ _ I _ _ E l J _ _ , _ _ ^ ^ . 1 I , I 1 .

MTD MTD-NC-95 MTD-NC-96 MTD-NC-97 MTD-NC-98 MTD-NC^99

Figure 4.10: The Average Number of Node Visited Per Move for Learner III enhanced with
Node-Cutting Heuristic.

51

Chapter 4 The Node-Cutting Heuristic

8000.0 r—-—.— -
7000.0 -•,.�

_ _ m — —

5000.0 “‘…….Hm̂ -“•“•…— — -•….—- 4344 3……

4000.0 - - 1 ？ I I
• 2798.5 3004.1 ^ ^ [―1 科，

• _ ® 二 i F
2000.0 “‘ oî Sî ÊSeÊ ra'

• m 1 : 1 - a k i
1000.0 "... ^̂ ^̂ ^ B̂

0.0 ~ ‘ ~ ~ • l ^ s a l _ _ , _ l : , . : , . „ i _ , _ _ r I__ ,_ .
MTD MTD-NC-95 MTD-NC-96 MTD-NC-97 MTD-NC-98 MTD-NC-99

Figure 4.11: The Average Number of Bottom Position Visited Per Move for Learner III
enhanced with Node-Cutting Heuristic.

100 0% [• 95.7% 96.6%—97.6% 98.3% 99.2%

圓 I y.....I I -
40.0% - 驚 ^ P j * *

20.0% -• ^ . ^ ^ ^ ^

0.0% — ~ ‘ ~ ~ 逾 ~ I ~ 1 - 3 _ _ , I __ , _ ,
MTD MTD-NC-95 MTD-NC-96 MTD-NC-97 MTD-NC-98 MTD-NC-99

Figure 4.12: The Average Number of Same Move obtained Per Move for Learner III enhanced
with Node-Cutting Heuristic.

52

Chapter 4 The Node-Cutting Heuristic

100.0% [•綱抓 „ . 9 5 . 7 % 9 6 . 6 % 9 7 . 6 % 9 8 J % 9 9 . 2 %

_ 岡 國 n 口 n
80.0% - ^ ^ 、广 .…rv*?̂ ! I . _ ••.

爨 IS _ . it
60.0% - • fT 1 •*，；...

隱、_；: f Ifr ‘ ； 1
40.0% - ^ ！ - p ^ ' j 办,

隱 德 I q -
20.0% - …--",,’, 小内......- tt …• �

0.0% 酬 > h i 、 h i I _ , I,..：•.…,__L
MTD MTD-NC-95 MTD-NC-96 MTD-NC-97 MTD-NC-98 MTD-NC-99

Figure 4.13: The Average Number of Same Value obtained Per Move for Learner III enhanced
with Node-Cutting Heuristic.

100.00% r -

！！!!T , , nco/ 7S 7 8 . 2 5 % 7 8 . 7 5 % 7 7 . 5 0 % 80.00% - 71:75% 73.75% /a.^s /o •
70.00% - K ! _ F ^ ^) " T l

隱-..._ .U—.J\ 义 - j ti.....
50.00% - ^ ^ — J ^ l j 逝 ^ 1............

40.00% -....... [J k I * 苟 p S � %

纖 - 1 b . 3 _ 3 a-..
20.00% •-..."jp^ 1^1 K^: ^........... I^J
10.00% - h — - 帮 ,^^ •
0.00% ————‘~‘ ‘——I~~——I_L—J——I_BuJ I i I

MTD MTD-NC-95 MTD-NC-96 MTD-NC-97 MTD-NC-98 MTD-NC-99

Figure 4.14: The Average Winning Percentage for Learner III enhanced with Node-Cutting
Heuristic (Match against 100 different players).

53

Chapter 4 The Node-Cutting Heuristic

100.0% r - -

80.0% -................-.......-....……75.0% 7 5 . 0 %……”75.0% 7 5 . 0 %

70,0% - I � , I ** S , -

_ - 5 0 . 0 % , — V ^ - 5d:0%_
50.0% - I _| v?J — ， ,, , I -1

40.0% - J - . . 综 � — � • . .

30.0% “ I I I B ^ }

20.0% - 隱 ，：，L * .
0.0% 丨酬 1 F^l .丨綱 .丨:;、1 .丨、’I . L i .

MTD MTD-NC-95 MTD-NC-96 MTD-NC-97 MTD-NC-98 MTD-NC-99

Figure 4.15: Result of Learner III against Learner III enhanced with Node-Cutting Heuristic.

speedup the search from 1.5 times to 2.2 times and maintain the same move for over 95 percent.

As shown from figure 4.9, the computation time per move can reduced at least 33% if

enhanced with node-cutting heuristic. For example, MTD-NC-95 only consume 45% time of

Learner III but obtain an even higher winning percentange.

The graph of NBP (figure 4.11) and NC (figure 4.10) have shown that node-cutting's

execution time performance is proportional to the leaf node count and the number of static

evaluations. The number of bottom position and the number of node visited decrease when

the value of p decreases.

Besides time efficiency, we also measure the quality of move. Figure 4.12 shows the percent-

age of cases in which the algorithm would select the same move as Learner III while figure 4.13

shows the frequency that the algorithm would reported the same minimax value as Learner

III. It can be seen that both figures are at least 95%, higher than that of GPC. This high

percentage indicated that node-cutting heuristic can maintain most search result of Learner

III and often hit the true minimax value.

Furthermore, we would like to measure the quality of play. We selected 100 different

Chinese Checkers player programs that have similar strength as Learner III to have matches

against our test programs. The result is shown in figure 4.14. The average winning percentage

of algorithms enhanced with node-cutting heuristic are even higher than algorithms without

using it. Apart from that, figure 4.15 shows the winning percentage of each algorithms match

54

Chapter 4 The Node-Cutting Heuristic

against Learner III. The winning percentage of MTD is 50%, which consistent with the fact

that Learner III actually use M T D (/) as the search algorithm. It can be seen that Learner

III enhanced with node-cutting heuristic have a stronger game playing strength.

The reason of node-cutting heuristic can obtain a high winning percentage is that minimax

algorithm does not promote risk taking. Minimax algorithm always assume the opponent will

make the best move even though its selected move resulting in a sure loss. Often in losing

situations the best move may not be towards the highest min or max value, especially if it will

still result in a loss. Node-cutting heuristic can guide a search to a more aggressive approach

and take advantage of possible mistakes by the opponent. This can explain the reason of

obtaining higher winning percentage.

The general performance of Node-Cutting heuristic is that it saves close to half of original

search time but has a generally higher quality of play. By choosing a proper value of p, we

can obtain the best winning percentage as well as minimizing the search time.

4.5 Summary

In this chapter, we proposed a node-cutting heuristic that is applicable to game tree of two-

person non-random perfect-information zero-sum board game. Experiments were conducted

and results showed that node-cutting lowered the number of total expanded nodes resulted

in reducing the search time and also superior in terms of probability of hitting the mimimax

value. We believe that our node-cutting heuristic is useful in the area of game, and especially

large branching factor game.

55

Chapter 5

The Integrated Strategy

5.1 Introduction

The previous chapter showed how forward pruning techniques and Node-Cutting heuristic

could speedup the search. We push this idea further in this chapter. In the next section,

we will discuss the effect of combined strategy. In sections three and four, we integrate our

strategy into a typical board game, Chinese Checkers. Experiments and results are shown in

section three. The last section summarizes our proposed strategy.

5.2 Combination of GPC, FGPC and Node-Cutting Heuris-

tic

Recalled from previous chapters, the mechanism of forward pruning heuristic is to eliminate

unpromising move in advance by looking a few steps forward instead of a full-depth search.

Node-cutting heuristic is to remove unpromising move at early stage by performing a short

depth search. However, occasionaly there exists cases that node-cutting heuristic terminates

the search prematurely. In order to avoid this undesirable effect, we try to combine GPC,

FGPC and node-cutting heuristic. We observe that we can prevent the premature termination

of search and simultaneously obtain a reliable result.

We can make efficient use of the allocated time. For the first few child nodes, we will

56

Chapter 5 The Integrated Strategy

S ^ r o o t node

遍 I
y is the random variable ranging from 0 to w-1
where w is the branching factor.
c, is the best move of node n computed by a short depth {s) search.

Figure 5.1: The idea of integrated strategy.

examine them if they will not yield a value outside the current search window since child

nodes order at the front usually contain good moves, if a reasonably good move ordering

function exists. But for the rest of the child nodes, it is not likely to have good moves (by

the practical result obtained from Chinese Checkers) such that its minimax value would be

propagated to parent. We can perform FGPC such that once a child node's value lie outside

the current search window, the search would be stopped and propagate the best obtained

value to its parent. As a result, the child subtrees position after it will not be examined. It

maintains a high number of cut-offs but the quality is still guranteed since fast cut-offs will

not occur at the first few nodes.

Figures 5.1 and 5.2 describes the idea of the integrated strategy. The new strategy is easily

incorporated into existing game-playing programs and the modification is quite trival that we

will not describe much in here.

We take the advantage of GPC, FGPC and node-cutting. The new stretagy not only

reduces the search tree size but also maintains a high rate of hitting the correct minimax

value. The next section will show the experimental results to support it.

57

Chapter 5 The Integrated Strategy

P) 个 An arbitrary conditional distribution function for F ŷ .

S i ^ S z o V V o W Ucw / : (� ” ”

Perform GPC Perform FGPC / J
~ 0 © 1

A'is the random variable ranging from 0 to w-l X w
where w is the branching factor.
The child nodes located before x will use GPC heuristic while
child nodes located after at will use FGPC heuristic.

Figure 5.2: The idea of integrated strategy (2).

5.3 Performance Evaluation

In order to demonstrate the potential of our work as a practical searching tool some ex-

periments have been run. In our experiments, same as previous chapters, we use the same

parameters to test the performance of our new strategy.

The algorithms we compared are denoted as:

• MTD: The MTD(f) algorithm

• MTD-IS-95: The MTD(f) algorithm enhanced with integrated strategy (p = 0.95)

• MTD-IS-96: The MTD(f) algorithm enhanced with integrated strategy (p = 0.96)

• MTD-IS-97: The MTD(f) algorithm enhanced with integrated strategy (p = 0.97)

• MTD-IS-98: The MTD(f) algorithm enhanced with integrated strategy (p = 0.98)

• MTD-IS-99: The MTD(f) algorithm enhanced with integrated strategy (p = 0.99)

Figures 5.3 to 5.9 show the comparison of 3 ply searches between Learner III with and

without using integrated strategy. Speedup is the ratio of the number of nodes visited while

the term same move states the percentage of cases in which both versions selected the same

move. It can be seen easily that integrated strategy actually can speedup the search up to 2.5

times and maintain the same move with more than 94 percent.

58

Chapter 5 The Integrated Strategy

0 45 „石：汤 9 - - - -

0.4 • E m "“ -
Q B̂̂ M - —
0.3 • •fflm ———- - -

0.25 - ' I , , . ^ H -

02 - _ 0.1576 0.1569 0.1600 0.1639 0.1696
0.15 - r r ^ [~7~| ~ ~ n F^n............

0.1 _ _ . \ H ^ r：....
0.05 “ - ； I 线

�[_ . m . m • m . m M
MTD MTD-IS-95 MTD-IS-96 MTD-IS-97 MTD-IS-98 MTD-IS-99

Figure 5.3: The Average Search Time Per Move for Learner III enhanced with integrated
strategy.

9000.0 � - -
7931.0 8000.0 — . . - - “

7000.0 -辩.........~..“.- - -

6000.0 - - -
5000.0 -....... ^- — - - -

4000.0 _ 3382.0 ~ 3419.8 3481.6 3565.1 3686,4

3000.0 - 丨轻赛-...... i/k ‘ h •

2000.0 Jl̂ M̂ ‘ * ,....‘L̂ * I
1000.0 - H 1 S I

Q Q I 1 ^^^^ • 11 • I I I M I I ’ j I I � I I

MTD MTD-IS-95 MTD-IS-96 MTD-IS-97 MTD-IS-98 MTD-IS-99

Figure 5.4: The Average Number of Node Visited Per Move for Learner III enhanced with
integrated strategy.

59

Chapter 5 The Integrated Strategy

8000 0 r.•‘ - - -
7000 0 *•

6000.0 • — -
5000.0 -....... ^ — - - -

4000.0 - - - - - :：..

3000.0 - 裝 . — 2 6 1 7 . 32649.4270L7 . . .2773,6 ？878.9

2000.0 -…\ _ ，， ^

1000.0 ^ ，“ — flj •

MTD MTD-IS-95 MTD-IS-96 MTD-IS-97 MTD-IS-98 MTD-IS-99

Figure 5.5: The Average Number of Bottom Position Visited Per Move for Learner III en-
hanced with integrated strategy.

100.0%
100.0% -……p-̂ 94.1% 94.3% 94.6% 94.9% 95,3%

8 — • 鐘 參 圏 J ；; —

60.0% - 1 鐘 齊：

40.0% t^^S 3 ^ ^ ^

騰 • f J ^ W-
20,0*̂0 I 確* 、 *

0.0% ~ H ~ ‘ ~ . ~ L ^ U _ � - • : ：
MTD MTD-IS-95 MTD-IS-96 MTD-IS-97 MTD-IS-98 MTD-IS-99

Figure 5.6: The Average Number of Same Move obtained Per Move for Learner III enhanced
with integrated strategy.

60

Chapter 5 The Integrated Strategy

100.0%
100.0% e^M 94.1% 94.3% 94.6% 94.9% 95,3%

國 * ‘ :;:‘：

瞧 “ I I —̂ I P _ —
= I S _ S _ I
—° I ： 广 ^ ！ I i
2Q Q̂ ^ - ^̂ ^̂ ^ ^ p tl^* i ‘,

o . (. / . 丨 圓 」 I I I 1 I j ' I I � H I L J �

MTD MTD-lS-95 MTD-IS-96 MTD-IS-97 MTD-IS-98 MTD-IS-99

Figure 5.7: The Average Number of Same Value obtained Per Move for Learner III enhanced
with integrated strategy.

100.00%�-IT....-..•‘..._....-- -——..._-
90.00% _•..‘_•••"..—— -......-

80.00% - 7 1 . 7 5 � / � 7 3 . 5 0 % 7 3 . 5 0 % 7 i . 7 5 % 7 5 . 0 0 % 7 6 . 5 0 %

70.00% - i ^ g " p f TT" r ^ � — L J

60.00% '""" ^H‘.-..... ^ ‘ •••�, Î n............
50.00% - • •遽 ^ I : . ！^ I ' ' J . . .
40.00% I B 丨 f F " — 二 r J I

mm 4>. rr ； I f l M
蘭 • _ m •广 H 声 寒 . — r a

=• _ _ || L ^—國
MTD MTD-IS-95 MTD-IS-96 MTD-IS-97 MTD-IS-98 MTD-IS-99

Figure 5.8: The Average Winning Percentage for Learner III enhanced with integrated strategy
(Match against 100 different players).

61

Chapter 5 The Integrated Strategy

100.0̂ '̂ r
90.0% - - - — - —.......-...……- - -

80.0% •.'"•• —‘
70.0% - .—— -.•....-...-

6ao% - 5 0 . 0 % — 5 0 . 0 % ~56：0% " 5 0 . 0 % 5 0 . 0 % 5 0 . 0 %
50.0% - i n l ^ j . … ！ ^ r—-I p r q
40.0% - gjjjB '̂ ……- I t f

30.0% - —- ...丨纖I I I • P̂
20-0% - • 閨 鬧
10.0% “ yHK • •• l^t «1 J
00% ~ ~ ~ ‘ _ l ^ f l _ _ I _ _ I S l ^ J _ _ I _ _ , _ ^ S l _ , Zl__1

MTD MTD-IS-95 MTD-IS-96 MTD-IS-97 MTD-IS-98 MTD-IS-99

Figure 5.9: Result of Learner III against Learner III enhanced with integrated strategy.

As shown in figure 5.3, the computation time per move can reduced 60% after using Node-

Cutting heuristic. For instance, MTD-IS-95 have a speedup of 2.5 times but obtain an even

higher winning percentange than M T D times.

The graph of NBP (figure 5.5) and NC (figure 5.4) are consistent with the result of com-

putation time. The number of bottom position and number of interior node visited decrease

when the value of p decreases.

Besides time efficiency, we also measure the quality of move. Figure 5.6 shows the percent-

age of cases in which the algorithm would select the same move as Learner III while figure 5.7

shows the frequency that the algorithm would reported the same minimax value as Learner

III. The high percentage indicated that integrated strategy can maintain most search result

of Learner III as well as minimizing the search speed.

Furthermore, we would like to measure the quality of play. We selected 100 different

Chinese Checkers player programs that have similar strength as Learner III to have matches

against our test programs. The result is shown in figure 5.8. The average winning percentages

of algorithms enhanced with integrated strategy are even higher than algorithms without using

it. Apart from that, figure 5.9 shows the winning percentage of each algorithms match against

Learner III. The winning percentage of M T D is 50%, which consistent with the fact that

Learner III actually use M T D (/) as the search algorithm. It can be seen that Learner III and

Learner III enhanced with integrated strategy having the similar game playing strength.

62

Chapter 5 The Integrated Strategy

The general performance of integrated strategy is that it saves more than half of original

search time but maintains a generally higher play strength. By choosing a proper value of p,

w e can o b t a i n t h e b e s t winning percentage as well as minimiz ing t h e search t ime .

5.4 Summary

In this chapter, we combined our proposed heuristics to formulated the integrated strategy

framework. Experimental results shows that the combination of GPC, FGPC and node-

cutting results in about 60 percent time reduction over conventional full-width search. The

combination yields the same factor of fewer total nodes as compared to the original algorithm.

These results showed that our strategy allocates time efficiently and successfully. We believe

that using our forward pruning and node-cutting heuristics together, time is save significantly

and saved time can allow us to search deeper for a better result.

63

Chapter 6

Conclusions and Future Works

6.1 Conclusions

Most game-playing programs choose their moves by searching a large tree of potential continu-

ations. The problem with tree searching is that the search space grows exponentially with the

depth of the search. The original minimax algorithms waste most of their time by analyzing

irrelevant lines. On the other hand, efficient and intelligent pruning techniques are required

to reduce the search space. We aim at making more efficient use of the allocated time.

The central idea of this thesis concerns about selective pruning for game tree of two-person

non-random perfect information zero-sum game. Firstly, we have described a forward pruning

framework. We reformulate ProbCut to GPC, a generalised selective search extension to

alpha-beta algorithm. GPC examines the same leaf nodes in the same order as ProbCut.

They produce the same number of cut-offs, obtain the same minimax value and make the

same move for a given game tree.

We also propose a fast forward pruning framework, modified from GPC. The results of

applying our heuristics to game are described. The modified framework reduces the search

effort significantly. It outperformed previous effective and successful heuristic, ProbCut, in

time efficiency. In order to demonstrate the potential of our work as a practical searching tool

some experiments have been run. Experiment showed that the search speed can speedup by

almost 3 times in the game of Chinese Checkers.

64

Chapter 6 Conclusions and Future Works

Apart from those discussed forward pruning strategies, cutting down the branching factor

of a game tree is another workable way to reduce the computation time without lowering the

quality of play significantly. In this work, we formulated a node-cutting heuristic. By using

the pattern and correlation of move ordering function, node-cutting heuristic can speedup the

search and obtain a higher winning percentage than full-width minimax search. Our node-

cutting heuristic is useful in the area of game, and especially large branching factor game.

Finally, we constructed an integrated strategy that is the combination of GPC, FGPC

and node-cutting heuristic. We can perform a fast selective search but still maintain a high

rate of hitting the maximum value. Ken Thompson showed that search depth was strongly

correlated with performance in chess [45]. Searching one move (or one ply) deeper made a

huge difference in performance. We believe that using our forward pruning and node-cutting

heuristic together, time is saved significantly and more room for deeper search is guaranteed.

6.2 Future Works

There are a number of possible future extensions of this work under consideration. The

research described in the previous chapters has uncovered a number of interesting avenues for

further research. We list the following:

• GMPC: Generalised Multi-ProbCut

All experiments in this work were performed for fixed s and d values. Multiple s and d

value pairs that used by MPC were not tested. We believe that since game tree of GPC

and ProbCut are same in size, the behavior of GMPC will not be different from that of

MPC. However, experiments are needed to show whether this is indeed the case.

• Null-window Boundary Test

The main idea of ProbCut and GPC is that they make use of boundary test to determine

whether a deep search is necessary. However, in some cases, one does not have to test

both the upper and lower bounds of a search window but either one is enough. More

analysis and experiments are needed to gain a better understanding.

65

Appendix Conclusions and Future Works

• Properties of Move Ordering

The node-cutting heuristic makes use of the correlation of the location of the best-move

that searche in different depth. This property shows there are much room for further

research in move ordering. Chapter 4 only scratches the surface of this.

• GPC, FGPC and Node-cutting

In addition to more analysis, more experiments are needed to gain a deeper insight

and gain a better understanding of the relation between GPC, FGPC and node-cutting

heuristic.

• Efficiently use of allocated time

Our experiments show the results of Alpha-Beta algorithm and its variants enhanced

with our heuristics. Applying different heuristics to the same algorithm at different

game stage may be a good model to understand the effectiveness and efficiency of this

kind of time allocation.

66

Appendix A

Examples

To illustrate an idea of how the search algorithms described in previous chapters work, we give

a simple example in this Appendix. For simplicity, we just show crucial steps of the algorithm

(figure A . l) and it is easy to generalize to a complete one based on these steps. The figures

beside the nodes are the minimax values of them. The example of the minimax algorithm is

illustrated by graphs (figures A.2-A.5). Since the flow of tree traversed by other algorithms are

similar, we just show the value changed and result in tables (figures A.6-A.8) for simplicity.

The parameters used in the examples are listed as follow: d = 2,s = l，a = 1，& = 0’(7 =

10，少-i(p) = 1.5. The values for an, Pn, and of each node traversed by each alogrithm are

shown in the following figures.

67

Appendix A Examples

root

node

^ ^ min node

3 E Q E

^ A _L J_ _'” Q P t u w X ^ ab ad ae

41 5 12 90 101 80 -1 0 10 0 3 6 3 5 50 3 6 -1 0

Figure A.l : The example tree,

root

node

C^ vO min node

^aA A A
I g I 1/ I h i I I o p I IjJ IjJ |_vv lag ab ac^ \ae

41 5 12 90 101 80 -1 0 10 0 36 35 50 36 -1 0

Figure A.2: The Minimax example (step 1).

root
may node

^ min node

I g 1/ I I I I M I / M |o1 IpI r n [u] Q Hn ^

41 5 12 90 101 80 -1 0 10 0 36 35 SO 36 -1 0

Figure A.3: The Minimax example (step 2).

68

Appendix A Examples

root

node

J^minnode

aX
e 1/ I h I I i I m| o | p t u | w| oo] [a^ a^ ae
41 5 12 90 101 80 -1 0 10 0 36 35 SO 36 -1 0

Figure A.4: The Minimax example (step 3).

root

^^^^iiLjmax node
min node

I e I 1/1 I /»I h i I /1 r ^ IpI \ t\ 1h| m m H
41 5 12 90 101 80 -1 0 10 0 36 35 50 36 -1 0

Figure A.5: The Minimax example (step 4).

69

Appendix A Examples

t n C^ gn Cut-off?
1 a -co +00 -00
2 6 -00 +00 +00
3 c -00 +00 -00
4 c/ -00 +00 +00
5 e -00 +00 41
6 d -00 41 41
7 / -00 41 5
8 J -00 5 5
9 c 5 +00 5
10 g 5 +00 +00
11 h 5 +00 12
12 g 5 12 12
13 i 5 12 90
14 g 5 12 12
15 c 12 +00 12
16 b -00 12 12
17 j -00 12 -00
18 k -00 12 +00
19 I -00 12 101
20 k -00 12 101
21 m -00 12 80
22 k -00 12 80
23 j 80 12 80 Yes
24 b -00 12 12
25 a 12 +00 12
26 q 12 +00 +00
27 r 12 +00 -00
28 s 12 -00 +00
29 t 12 -00 10
30 5 12 10 10 Yes
31 r 12 +00 10
32 V 12 +00 +00
33 w 12 +00 36
34 V 12 36 36
35 AT 12 36 35
36 V 12 35 35
37 r 35 +00 35
38 q 12 35 35
3 9 少 1 2 3 5 - 0 0

40 z 12 35 +00
41 aa 12 35 50
42 z 12 35 50
43 ah 12 35 36
44 z 12 35 36
45 y 36 35 36 Yes
46 q 12 35 35
47 a 35 +00 35 Finished

Figure A.6: The Alpha-Beta example.

70

Appendix A Examples

t H ^ ^ g« Remark
1 a -00 +00 -00
2 6 -00 +00 +00
3 C - 0 0 + 0 0 - 0 0

4 c +00-1 +CO -00 P-test
5 d + 0 0 - 1 + 0 0 5 2

6 c +00 - 1 +00 5 2
7 g +00 - 1 +00 103
8 c +00 - 1 +00 103
9 c -00 -00 + 1 -00 a-test
10 d -00 -00 + 1 52

11 c 52 -00+ 1 52 cut-off
12 d -00 +00 +00
13 e -00 +00 41
14 d -00 41 41
15 / -00 41 5
16 i/ -00 5 5
17 c 5 +00 5
18 g 5 + 0 0 + 0 0
19 h 5 +00 12
20 g 5 12 12
21 i 5 12 90
22 g 5 12 12
23 c 12 -h» 12
24 b -00 12 12
25 j -co 12 -00
26 j 26 27 -00 P-test
27 k 26 27 50
28 j 50 27 50 cut-off
29 y -00 12 12 ProbCut cut-off
30 b -00 12 12
31 a 12 12
32 q 12 4oo +00
33 r 12 +00 -00
3 4 r + 0 0 - 1 + 0 0 - 0 0 P - t e s t

35 s +00 - 1 +00 23
36 r +00 - 1 +00 23
3 7 V + 0 0 - 1 + 0 0 3 8

38 r +00 - 1 +00 38
39 r -3 -2 -00 a-test
40 s -3 -2 23
41 r 23 -2 23 cut-off
42 s 12 +00 +00
43 t 12 -k» 10
44 s 12 10 10 cut-off
45 r 12 +00 10
46 V 12 +00 +00
47 w 12 +00 36
48 V 12 36 36
49 X 12 36 35
50 V 12 35 35
51 r 35 -hx) 35
52 q 12 35 35
53 y 12 35 -oo
54 y 49 50 -oo p-test
55 z 49 50 54
56 y 54 50 54 cut-off
57 y 49 50 50 ProbCut cut-off
58 q 12 35 35
59 fl 35 +00 35 Finished

71
Figure A.7: The ProbCut example.

Appendix A Examples

t a. ou ^ £« Remark
1 O -00 +00 -00
2 b -00 +00 +00
3 c +00 - 1 +00 -00 P-test
4 d +00 - 1 +00 52
5 c +00 - 1 +00 52
6 g +00 - 1 +00 1 03
7 c 400-1 +00 103
8 c -00 +00 -00
9 d -c» +00 +00
10 e -00 +00 41
11 d -00 41 41
12 / -00 41 5
13 -00 5 5
14 c 5 +00 5
15 g 5 +00 +00
16 h 5 +00 12
17 g 5 12 12
18 i 5 12 90
19 g 5 12 12
20 c 12 +00 12
21 b -00 12 12
22 j 26 27 -00 P-test
23 k 26 27 50
24 j 50 27 50 cut-off
25 b -00 12 12 GPC cut-off
26 a 12 +00 12
27 q 12 +00 +00
28 r +00 - 1 -foo -00 P-test
29 5 +00 - 1 +00 23
30 r +00 - 1 +00 23
31 V +00 - 1 +00 3 8
32 r +00 - 1 +00 3 8
33 r 12 +00 -00
34 s 12 +00 +00
35 t 12 +00 10
36 s 12 10 10 cut-off
37 r 12 +00 10
38 V 12 4oo +00
39 w 12 +00 36
40 V 12 36 36
41 A： 12 36 35
42 V 12 35 35
43 r 35 +00 35
44 q 12 35 35
45 y 49 50 -oo p-test
46 z 49 50 54
47 y 54 50 54 cut-off
48 q 12 35 35 GPC cut-off
49 a 35 +00 35 Finished

Figure A .8 : T h e G P C - A B example .

72

Appendix B

The Rules of Chinese Checkers

Chinese Checkers is played on a six-pointed star-shape board by two, three, four or six players.

As shown in figure B . l , there are 121 positions on the board. At the beginning of a game,

each player's ten marbles occupy a triangular area at an opposite side of the board. We call

this the home area of a player. The other triangular areas are call neutral zones.

Since the board is embedded in a hexagonal grid, each position on it is generally connected

to neighbors in six directions, except when located at the boundary or a corner, in which

case the position has 5，4，or 2 neighbors. At each turn, a player can move any one of his

marbles into a neighboring position, provided that such a position exists and is not already

occupied by another marble, either belonging to him or his opponent. A marble may also in

one move, make a sequence of jump over other marbles, which either belong to the player or

his opponent. Each jump must be made according to the follow rule. Suppose that a marble

at A jumps over a marble at B. The former will land at position C, where B is equidistance

from A and C, and A, B, and C are colinear. The jump is only allowed if every position on

the line A C (inclusive) exists, and none of these are occupied before the jump except A and

B. When a marble is moved to an adjacent position, or takes a sequence of jumps, it may

not end up in a position in a neutral zone. The intermediate steps of a sequence of jumps,

however, may use positions in the neutral zones.

The objective of the game is to move all of one's marbles into home area of one's opponent

before one's opponent moves all his marbles into one's own home area. A game is considered

73

Appendix B The Rules of Chinese Checkers

m

眷藝眷•⑩⑩眷眷镥眷參

春眷譽眷•春春__眷

•••••••

Figure B.l : The board of Chinese Checkers.

a draw if player 1 makes the first move of the game, and player 2 moves all his marbles into

player I's home area one move after player 1 moves all his marbles into player 2's home area.

74

Appendix C

Application to Chinese Checkers

In the game of Chinese Checkers, each player in turn moves a marble on the board to a de-

sired destination. The board evaluation function is used to select the most desirable move

by evaluating each resulting board configuration. Unlike previous efforts to implement com-

puter game players, Chinese Checkers is not a well-understood game. There is no literature

describing good Chinese Checkers strategy. The evaluation function of Learner III is used

in conjunction with M T D (/) search mechanism to evaluate board position at a deep level.

Learner III look-ahead 3 levels for middle-game and 4 levels for endgame. No opening books

are used in the start-game.

In Learner Ill 's evaluation function, it consists of 3 features. They are mobility, positioning

and piece power. Mobility is the number of current legal moves. In Chinese Checkers, a move

is either a simple move or a jump. A simple move is to move the marble to one of the six

adjacent vacant positions. A jump is to move the marble over a marble with none or some

vacant positions in between. A series of jump is a sequence of jump that the destination of

a jump is the start of another jump. As we know, a jump is in general more benefit than

a move as it can move much further by a single move. So mobility is further divided into

two sub-features, they are move mobility and jump mobility. As we expected, jump mobility

should weighted more. Positioning is the score of a particular position if a marble located

in it. Positions that near the destination should scored higher than positions that near the

75

Appendix C Application to Chinese Checkers

home, as expected. Piece power is the power of each marble. In Chinese Checkers, the front-

side marbles does not share the same amount of power as the back-side marbles. Marbles at

the back-side is, in general, more important and need marbles at the front-side to take care

them. The final score, counting from all the above features, is the score difference between

the two players. The weighing coefficients of the above features are integers ranged from 0 to

8 inclusively. They are combined and self-tuned adaptively by genetic algorithm [42].

76

Bibliography

[1] Don F. Beal, "Experiments with the null-move," Advances in Computer Chess 5, pp.

65-79，Amsterdam, 1989. Elsevier Science Publishers.

[2] H. J. Berliner, "The b* tree search algorithm: A best-first proof procedure," Artificial

Intelligence, no. 21，pp. 23-40, 1979

[3] J. A. Birmingham and P. Kent, "Tree searching and tree pruning techniques," Advances

in Computer Chess, M. R. B. Clarke, Ed. Edinburgh Univ. Press, Edinburgh, Scotland,

pp. 89-96，1977

[4] A. L. Brudno, "Bounds and valuations for abridging the search of estimates," Problems

of Cybernetics, Pergamon Press, Elmsford, N.Y., pp. 225-241，1963.

[5] Michael Euro, "ProbCut: An Effective Selective Extension of the Alpha-Beta Algorithm,"

Journal of the International Computer Chess Association, 18(2), pp. 71-76’ 1995.

[6] Michael Euro, "The Othello match of the year: Takeshi Murakami vs Logistello," Journal

of the International Computer Chess Association, 20(3), pp. 189-193, 1997.

[7] Michael Euro, "Experiments with Multi-ProbCut and a new high-quality evaluation func-

tion for Othello. In H.J. van den Herik and H. lida, editors," Games in AI Research, pp.

77-96, 2000.

[8] Michael Euro, "Improving Heuristic Mini-Max Search by Supervised Learning," Artificial

Intelligence, vol. 134 (1-2)，pp. 85-99, 2002.

77

[9] Murray S. Campbell and T. Anthony Marsland, "A comparision of minimax tree search

algorithm," Artificial Intelligence, vol. 20’ pp. 347-367, 1983.

[10] Kumar Chellapilla and David B. Fogel, "Anaconda Defeats Hoyle 6-0: A Case Study

Competing an Evolved Checkers Program against Commercially Available Software,"

Proceedings of the 2000 Congress on Evolutionary Computation, IEEE Press, Piscataway,

NJ, pp. 857-863, 2000.

[11] Kenneth J. Chisholm and Peter V. G. Bradbeer, "Machine Learning Using a Genetic

Algorithm to Optimise a Draughts Program Board Evaluation Function," IEEE Interna-

tional Conference on Evolutionary Computation, pp. 715-720, 1997.

[12] Carl Ebeling, "All the Right Moves," PhD thesis, Department of Computer Science,

Carnegie-Mellon University, Pittsburgh, PA, MIT Press, Cambridge, Massachusetts,

1987.

[13] Gabriel J. Ferrer and Worthy N. Martin, "Using Genetic Programming to Evolve Board

Evaluation Functions," IEEE International Conference on Evolutionary Computation,

vol. 2，pp. 747-752, 1995.

[14] Peter W. Prey, editor, Chess Skill in Man and Machine, Springer-Verlag, New York, NY,

1977.

[15] J. Gillogly, "Performance analysis of the technology chess program," PhD thesis, Depart-

ment of Computer Science, Carnegie-Mellon University, 1978.

[16] Rattikorn Hewett and Krishnamurthy Ganesan, "Consistent Linear Speedup in Parallel

Alpha-Beta Search," Proceedings of Fourth International Conference on Computing and

Information, pp. 237-240, 1992.

[17] Hermann Kaindl, Reza Shams and Helmut Horacek, "Minimax Search Algorithms with

and without Aspiration Windows," lEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 13，no. 12, pp. 1225-1235, Dec. 1991.

[18] Graham Kendall and Glenn Whitwell, "An Evolutionary Approach for the Tuning of a

Chess Evaluation Function using Population Dynamics," Proceedings of the 2001 Congress

on Evolutionary Computation, vol. 2, pp. 995-1002, 2001

[19] Donald E. Knuth and Ronald W. Moore, "An analysis of alpha-beta pruning," Artificial

Intelligence, vol. 6，no. 4, pp. 293-326, 1975.

[20] David H. Lorenz and Shaul Markovitch, "Derivative Evaluation Function Learning Using

Genetic Operators," Games: Planning and Learning, Papers from the AAAI 1993 Fall

Symposium, Raleigh, North Carolina, October 22-24’ AAAI Press, Menlo Park, Califor-

nia. Technical Report FS9302, 1993

[21] T . Anthony Marsland, "Relative performance of the alpha-beta algorithm," Newsletter

of the International Computer Chess Association, vol. 5’ no. 2，pp. 21-24’ 1982

[22] T . Anthony Marsland and M. Campbell, "Parallel search of strongly ordered game trees,"

Computing Surveys, 14(4), pp. 533-551, December 1982.

[23] T . Anthony Marsland, "Relative efficiency of alpha-beta implementations," Proceedings

of the 8th International Conference on Artificial Intelligence, Morgan Kaufmann, Los

Altos, Calif., pp. 763-766, 1983

[24] David Allen McAllester, "A new procedure for growing min-max trees," Tech. rep., MIT

Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,

Mass., July 1985.

[25] David E. Moriarty and Risto Miikkulainen, "Improving Game-Tree Search with Evolu-

tionary Neural Networks," Proceedings of the First IEEE Conference on Evolutionary

Computation, vol. 1，pp. 496 -501, 1994

[26] Agata Muszycka and Rajjan Shinghal, "An empirical comparison of pruning strategies in

game trees," IEEE Transactions on Systems, Man and Cybernetics, 15(3), pp. 389-399,

May/June 1985.

[27] Allen Newell, Cliff Shaw and Herbert Simon "Chess playing programs and the problem of

complexity," IBM Journal of Research and Development, vol. 4, no. 2, pp. 320-335, 1958.

Also in Computers and Thought, Feigenbaum and Feldman (eds.), pp. 39-70, McGraw-

Hill, 1963.

[28] N. J. Nilsson, Principles of Artificial Intelligence, Tioga Publ., Palo Alto, Calif., 1980.

[29] J. Pearl, "Scout: A simple game-searching algorithm with proven optimal properties"

Proc. First Annu. Nat. Conf. Artificial Intelligence, Stanford, CA., 1980.

[30] Aske Plaat, "Research Re: search k Re-search," PhD Thesis, Tinbergen Institute and

Department of Computer Science, Erasmus University Rotterdam, Thesis Publishers,

Amsterdam, The Netherlands, Jun. 20，1996.

[31] Aske Plaat, Jonathan SchaefFer, Wim Pijls and Arie de Bruin, "Best-First Fixed-Depth

Minimax Algorithms," Artificial Intelligence, vol. 87，no. 1-2, pp. 255-293, Nov. 1996.

[32] Alexander Reinefeld, "An Improvement to the Scout Tree Search Algorithm," ICCA

Journal, vol. 6，no. 4, 1983.

[33] R.L. Rivest, “Game Tree Searching by MinMax Approximation," Artificial Intelligence,

vol. 34，no. 1，pp. 77-96, 1988.

[34] P. Rosenbloom, "A World Championship-level Othello Program," Artificial Intelligence,

vol. 34, pp. 77-96, 1982.

[35] A. L. Samuel, "Some Studies in Machine Learning Using the Game of Checkers," IBM J.

Res. Dev., vol. 3，1959.

[36] Jonathan Schaeffer, "Experiments in Search and Knowledge," PhD thesis, Department

of Computing Science, University of Waterloo, Canada, 1986.

[37] Jonathan Schaeffer, "The History Heuristic and Alpha-Beta Search Enhancements in

Practice," lEE Transactions on Pattern Analysis and Machine Intelligence, 11(1), pp.

1203-1212, November 1989.

[38] Jonathan Schaeffer and Aske Plaat, "New Advances in Alpha-Beta Searching," Proceed-

ings of the 1996 ACM 24th annual conference on Computer science, Feb. 1996.

[39] Claude E. Shannon, "Programming a Computer for Playing Chess," Philosophical Mag-

azine, ser. 7, vol. 41，no. 314，，pp. 256-275, 1950.

[40] James H. Slagle and John K. Dixon, "Experiments with some programs that search game

trees," Journal of the ACM, vol. 2’ pp. 189-207, April 1969.

[41] David Slate and Larry Atkin, "Chess 4.5 - the Northwestern University chess program,"

Chess Skill in Man and Machine, P. W. Prey Ed., New York:Springer-Verlag, pp. 82-118，

1977.

[42] Chuen-Tsai Sun and Ming-Da Wu, "Self-Adaptive Genetic Algorithm Learning in Game

Playing," IEEE International Conference on Evolutionary Computation, vol. 2, pp. 814-

818’ 1995.

[43] R. S. Sutton, "Learning to Predict by the Methods of Temporal Differences," Machine

Learning, vol. 3，pp. 9-44, 1988.

[44] G. J. Tesauro, "TD-Gammon, A Self-teaching Backgammon Program, Achieves Master-

level Play," Neural Computation, vol. 6, pp. 215-219, 1994.

[45] Ken Thompson, "Computer Chess Strength," Advances in Computer Chess 3�M. Clarke

(ed.), PP. 55-56, 1982.

_

_

CUHK L i b r a r i e s

l i
QDM07tbMA

