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Abstract 

In this thesis, we investigate issues on the blind channel estimation for space-time 

block coding (STBC) systems. The main objective is to design effective blind 

algorithms with the least overload to the system traffic. The algorithms should be 

adaptive to most communication environments. To achieve these goals, we consider 

a fully blind approach based on constant modulus algorithm (CMA) to most of the 

PSK signals in flat fading channels. In CMA, the constant modulus property of the 

signals is exploited and a deterministic solution is obtained. The ambiguity is totally 

removed by differential coding. We also consider a maximum likelihood approach 

for BPSK signals, so that we cover all of the PSK signals. A further improvement in 

performance is provided by a re-estimation operation. Assisted by channel coding, 

we pick out the correctly decoded data and re-encode them, thus we re-estimate the 

channel with these correct codewords. The idea of re-estimation is to treat the correct 

data as training-sequences, but we only use the transmitted data themselves. In the 

case of frequency selective fading channel, we resort to OFDM to convert the 

channel to a number of flat fading subchannels. The channel estimation method 

derived for flat fading channels is applied to each subchannel. Numerical simulations 

are conducted to illustrate the performance of blind CMA estimation and the addition 

step of re-estimation. 
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摘 要 

本文主要研究了空時編碼通信系統中盲信道估計的問題。爲了最大的減小 

系統開銷，需要設計一種有效的盲估計算法。同時爲了保證算法的普適性，此 

算法必須在大多數通信條件下均適用。在平衰落信道中，針對相移鍵控信號， 

我們考慮了一種基於常包絡算法的全盲估計方法。此算法利用了信號的常包絡 

屬性並且能得到問題的確定解。同時我們利用了差分編碼，消除了盲估計中的 

模糊性。由於BPSK信號的特殊性，我們也針對BPSK信號考慮了最大似然估 

計算法。除此以外，為進一步提高盲估計的性能，我們設計了一種再估計操 

作。在採用信道編碼後，我們選出正確解碼的碼字並重新編碼，利用這些正確 

碼字去重新估計信道。再編碼的思想是將正確解碼的碼字視作訓練序列，但事 

實上我們只用到了傳輸的数據本身。在頻選衰落信道中，我們借助於OFDM 

將信道轉化為若干個平衰落子信道。對於每個子信道，可以利用在平衰落條件 

下得到的估計方法。數值仿真實驗的結果顯示了常包絡盲估計以及再估計算法 

的性能。 
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Chapter 1: Introduction 

Chapter 1 

Introduction 

1.1 Review of space-time coding and blind 

channel estimation 

To combat the destructive fading effect of wireless link, it 's an effective way to 

employ diversity technique where multiple antennas are deployed at the transmitter 

or/and the receiver end to provide multiple independent copies of received signals [1]. 

There are basically two kinds of diversity schemes [11]: transmit diversity and 

receive diversity. In the actual applications, the receive diversity in the downlink is 

usually hard to realize [24], because diversity requires that antennas be spaced with a 

distance of the order of several carrier wavelengths, while the physical constraint of 

the mobile set makes it difficult to accommodate two or more antennas. What 's more, 

it 's cost effective to assemble multiple antennas at the base station instead of at each 

mobile set. Taking these considerations into account, transmit diversity is more 

applied in downlink. 

Space-time coding is a method of transmitter diversity combined with coding [2]. 

It introduces spatial and temporal redundancy into the coding process, and thus can 

enhance the level of diversity. For instance, a 2-antenna space-time block coding 

scheme transmit two data ^1,52 according to the following code matrix [11]: 
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Chapter 1: Introduction 

Si 
幸 本 

where "*" means conjugate. This kind of block coding is most appealing for easy 

recovery of received symbols and good performance, and the orthogonal structure of 

the code matrix is generalized to an arbitrary number of transmit antennas in [2]. 

Based on this coding scenario, an open-loop diversity technique named Space-Time 

Transmit Diversity (STTD) is developed which incorporates the use of Walsh code 

[24]. This diversity scheme has been adopt by 3GPP. 

However, the decoding process of space-time block code requires the perfect 

channel state information be presented [2]. Traditionally, the channel information is 

estimated using a training sequence that is sent together with the data. But this will 

greatly decrease the efficiency because the training sequence is usually known to the 

receiver and hence bears no information. This is more serious in a fast fading 

environment where training sequence has to be sent from time to time to track the 

variance of the channel [17]. In order to release this extra burden, a variety of blind 

channel estimation methods have been developed. In these blind schemes, the 

channel is estimated using the transmitted messages themselves, so there is no need 

to send training sequence. 

The commonly used blind estimation methods include moment-based and 

maximum likelihood (ML) methods [17]. These approaches can be classified into 

two categories depending on the input source symbols. If the input is assumed to be 

random with prescribed statistics, the estimation approach is considered to be 

statistical. On the other hand, if the source doesn't have a statistical description, the 

corresponding estimation algorithm is said to be deterministic. Based on these 

methods, many papers developed channel estimation and equalization schemes for 
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Chapter 1: Introduction 

flat fading channels and frequency selective fading channels, and also for both single 

user and multiuser cases [18]-[21]. 

In this thesis, we develop our own estimation schemes based on existing methods. 

The transmission model for our basic algorithm is a flat fading and single user model. 

We will exploit a deterministic constant modulus algorithm (CMA) [9] and a 

deterministic ML method [27]. Constant modulus algorithm can be considered part 

of the second-order moment methods, and it employs the constant modulus property 

of most of the communication signals, such as PSK signals. Compared to other 

moment methods, CMA is easier to implement and is more effective in a sense that it 

doesn't impose much constraint on the source statistic and the channel structure. The 

deterministic ML method used in this thesis will incorporate the finite alphabet 

property of the signal constellation, and iterate between estimates of the channel and 

the input. 

By multicaiTier modulation scheme, the estimation methods for flat fading 

channels can also be extended to frequency selective fading channels, or multipath 

channels. In multipath environment, the superposition of the signal replicas with 

different time delay will incur intersymbol interference (ISI) as illustrated in [4], 

especially for wideband signal which has a relatively short symbol duration. 

Multicarrier modulation transfers a frequency selective channel into several flat 

fading channels, and equivalently enlarges the symbol duration in time domain to 

eliminate the ISI. Orthogonal frequency division multiplexing (OFDM) is an 

effective multicarrier scheme. FFT is introduced into OFDM which will facilitate the 

modulation procedure and make it possible to realize multicarrier modulation in real 

applications. 

3 



Chapter 1: Introduction 

1.2 Introduction of space-time coding system 

In this section, we describe the model of a space-time coded transmission system. 

This model use the Alamouti's space-time block coding scheme with two transmit 

antennas and one receive antenna [11]. It's showed in [2] that Alamouti's coding 

scheme is the only rate one space-time coding scheme for complex constellations. 

There exist other space-time block codes with rate lower than one for more transmit 

antennas, and the transmission processes for those codes are similar to Alamouti's 

code. However, due to the more complicated structures of those codes, the channel 

estimation for them needs to be carefully considered. For simplicity, we adopt 

Alamouti 's code for two transmit antennas in this thesis. 

The structure of the transmitter and receiver for a flat-fading channel is depicted 

in Figure 1.1. The signals S ,̂S2 are transmitted according to the space-time block 

code matrix (see [11]): 

SI S 9 
c= \ I (1.1) 

In this matrix, the columns represent antennas and the rows correspond to symbol 

durations. That is, at the first symbol duration, is sent at antenna 1 and s : is sent 

* \ /  

^ ^ Y ^ ^ ^ ^ 
, space-time ^ ^ ？ s p a c e - t i m e _ _ 2， \ 
"encoder * decoder 

Figure 1.1: Alamouti's space-time coding transmission scheme 
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Chapter 1: Introduction 

at antenna 2, while at the second symbol duration, - s^ is sent at antenna 1 and •sj" is 

sent at antenna 2. All the symbols are transmitted pairwise in such a manner. 

We assume that the two channels are flat fading and remain constant over several 

data blocks. Suppose the channel coefficients are hy and h^, then the received 

signals could be expressed as (see [11]): 

1 I (1.2) 
厂2 = -S*2K + 介2 + "2 

where zz, and n^ are complex zero mean additive white Gaussian noise. 

To simplify the notations, we rewrite the expressions of the received signals in a 

matrix form: 

� W ^ ' : ] [ � ] + [叫 （1.3) 
3 �" ^ i J l A � L " 2 � 

or equivalently: 

][叫+h] (1-4) 
, 2 �l A 丨」1^2� 

_ � "1 r ~ i r 一 

» /z /z s n 
Let R= ‘ H = 1 2 , s 二 \ , N 二 \ , then we have the simplified 

X � L"2* -“丨*」 W 

expression: 

R = HS + N (1.5) 

To retrieve and s^ from the received vector R , we would exploit the 

orthogonal property of the code matrix. Notice that the code matrix C is a complex 

orthogonal matrix given that ŝ  and s: is of modulus one (see [2]): 

C"C: = /2 (1.6) 
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Chapter 1: Introduction 

where “ “ “ means conjugate transpose and is a 2 by 2 identity matrix. This 

orthogonal property of the code matrix also implies a certain kind of orthogonal 

structure in the channel matrix H，which could be seen from the following equation: 

„ - " , 2 + " 2 2 0 

H H H = 2 2 (1.7) 
0 /ii + h^ 

一 — 

This suggests a linear processing in the decoding algorithm. If we pre-multiply the 

received vector R with a so called equalization matrix [10]: 

H = h (1.8) 
+|"2| h i + N l A - " 1 �- 8 l _ 

we will obtain two decoded signals q and Cj: 

=GR = S + GN (1.9) 
1_�2� 

The two symbols c, and c^ are then sent to the maximum-likelihood detector and 

produce the estimate of for each of the constellation symbols s in the alphabet A: 

= arg min c,. (1.10) 
seA 

From the decoding process, we can see that the orthogonal structure of the code 

matrix makes it easy to decode by linearly combining of the two received signals. 

What 's more, in the following section, we will also see that this code structure is able 

to achieve the full diversity gain. 

1.3 Diversity gain of space-time coding 

The diversity gain provided by space-time codes could be seen from the 

enhancement of the signal to noise ratio in the received signals. 
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Chapter 1: Introduction 

In a communication system without transmit diversity, the received signal 

disturbed by noise is 

r = hs + n (1.11) 

The transmitted signal is recovered as 

s = h - ' r = s + h- 'n (1.12) 

Assume the energy of the signal is normalized to 1, then the signal to noise ratio in 

the estimate s is 

办 2 

SNR = — (1.13) 

where cr~ is the variance of the Gaussian noise n. 

If space-ti me coding is deployed, from (2.2), the first recovered signal in a space-

time block could be represented as 

~ 1 (u* ui'''] 1 U* , ( " i l 

h, + " 2 V l J K + " 2 � " ” 

The signal to noise ratio in Jj is (see [11]) 

麗 ( 1 . 1 4 ) 

a 

So is the expression of SNR in ？之. 

Comparing (1.13) and (1.14), we can see that the aforesaid scheme of space-time 

coding achieves the full transmit diversity. 

1.4 Re-estimation 

In practical communication systems, error correcting codes are widely used to 

correct the errors that are cause by noise or interference during the transmission 

period. Usually nothing more is done on the decoded data. But generally the decoded 
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Chapter 1: Introduction 

data bear much fewer errors than the rough received data depending on the correcting 

ability of the particular code, and they perform like training symbols. Thus we are 

motivated to re-encode the detected data and re-estimate the channel with these data 

to further improve the performance of blind channel estimation. 

With the re-encoded data, many techniques available for training-based channel 

estimation could be applied here, and iterative operations are also applicable. Since 

the performance of blind approaches is generally much worse than training-based 

approaches, it's expected that the additional re-estimation will provide a significant 

improvement in the performance over the original result. 

1.5 Notations 

Most of the notations in this thesis are standard. Vectors and matrices are italic 

small and capital letters, respectively. The matrix transpose, the complex conjugate, 

the Hermitian and pseudoinverse are denoted by ，’，“* ”，“ “ “ and “ + “ respectively. 

And E{ •) denotes the mathematical expecation. 

1.6 Outline of thesis 

In Chapter 2, we will consider the blind estimation method for BPSK signals. We 

first investigate some estimation methods for BPSK signals exploiting the finite 

alphabet property. Then a deterministic ML estimation method is proposed, and the 

detected results serve as the start up of our re-estimation scheme. The bit error rate 

performance of the ML estimation and the re-estimation scheme is presented. The 

mean square errors (MSB) of the estimates compared to the actual channel are also 

illustrated. 
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Chapter 1: Introduction 

In Chapter 3, we propose a blind estimation method based on CMA for other 

PSK signals in a flat fading environment. The ambiguity inherent in the blind 

approach is analyzed and totally removed by differential coding, thus this is fully 

blind approach compared to other blind approaches which need a few pilot symbols 

to remove the ambiguity. A further re-estimation is also presented. Numerical 

simulation is processed for QPSK and 8PSK signals. 

In Chapter 4，we consider the case of frequency selective fading channels. 

OFDM is incorporated to transfer the channel into several flat fading subchannels so 

that the CMA methods developed in Chapter 3 could be applied to each subchannel. 

The CMA method is then followed by re-estimation. Numerical results are also 

presented. 

In Chapter 5，conclusions for this work will be draw and possible extensions will 

be discussed. 

9 
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Chapter 2 

Estimation for BPSK Signals 

In this chapter, we consider the blind channel estimation method for space-time 

coded transmission of BPSK signals. The channels are assumed to be flat fading 

channels. We propose a deterministic maximum likelihood approach with iterative 

operations. After that, we illustrate the idea of re-estimation and show the detailed 

algorithm. Numerical simulation results show the BER performance of the estimation 

methods and the mean square error of the channel estimates. 

2.1 Introduction to maximum likelihood 

estimation 

ML method is one of the most popular parameter estimation algorithms. They are 

usually optimal for large data samples as they approximate the minimum variance 

unbiased estimators. The problem in this aspect is to estimate the deterministic 

parameter 6 given a probabilistic model of the observation. Let the likelihood 

function of the observation y and the parameter 6 to be f{y\6), then the estimate 

of 6 is determined subject to (see [17]) 

^ = a r g m a x / ( y ; ^ ) (2.1) 
0eQ 
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Chapter 2: Estimation for BPSK signals 

Depending on the model of the source signal, the estimate can be derived either 

in a statistical way or a deterministic way [27]. For the statistical way, the 

distribution of the input sequence is known and the only unknown parameter is the 

channel, i.e. 6 = h. If no statistical model is assumed for the input sequence, the 

estimation is a deterministic estimation, and the unknown parameter is <9 = }). 

In this case, we have to estimate both the channel and the input jointly, although we 

may only be interested in estimating the channel. 

In ordinary communications, the source symbols are from a variety of 

constellations. To deal with this finite alphabet input, particular deterministic ML 

algorithms should be designed. Generally this is solved by iterative operations 

between the estimates of the input and the channel. There has been work on this 

problem [22] [23]. In this thesis, we will also propose a deterministic ML algorithm 

incorporated with the finite alphabet property of BPSK signals. 

In Chapter 1, we have mentioned the CMA blind estimation method. However, as 

we will explain in Chapter 3，this method is not suitable for BPSK signal, since its 

constellation only has two symbols "1" and "-1" and does not posses sufficient phase 

richness. To demonstrate the performance of re-estimation, we adopt the ML method 

as the start up of blind estimation. The CMA approach will be illustrated for other 

PSK signals such as QPSK and 8PSK in the next two chapters. 

2.2 System model 

In this section, we describe the system model of the space-time coding system for 

BPSK signals. We employ a deterministic ML algorithm to blindly estimate the 

channel, and re-estimation operation is appended. 

11 



Chapter 2: Estimation for BPSK signals 

The diagram of the system structure is showed in Figure 2.1. Two binary 

message sequences are generated randomly: 

i...,b(i)[mlb(i)[m + ll...), i = 1,2 

b(i)[m]J = l2 Reed- B P S K � � ) [ " ]�D i f f e r e n t i a l • ^ � [ ” ]̂R " W  
^ = ; 4 mod. ^ ^ encoder 一 ： ： - 心 ⑵ [ ” ] 丫 

Transmitter 

V 讽厂 I [ “ ] • DML Differential 印)[乂 BPSK 石(,]_ 
“ e s t i m a t o r decoder demod. decoder 

？(綱 

Space- h. Least-祁)[”] ^^ 
time ^ square ^ encoder 一 

decoder estimator 

Receiver 

Figure 2.1: Block diagram of the transmission system for BPSK signals 

All the binary symbols are independent and assigned “0” and "1" with equal 

probability. Each stream is then encoded by a (15,7) Reed-Solomon code [29] and 

modulated to two streams of BPSK signals respectively, denoted as c(i)[n] • After 

that, the symbols corresponding to each Reed-Solomon codeword in c(i)[n] are 

differential encoded respectively and then concatenated. By default, every 

differential encoded sequence is lead by symbol one. Finally, the two differential 

12 



Chapter 2: Estimation for BPSK signals 

encoded streams s{i)[n] are sent to space-time encoder, encoded and transmitted as 

described in Chapter 1. As shown in the figure, s(l)[n] and s{2)[n] are transmitted 

simultaneously in the first time slot from the two transmit antennas, and 

and 5(1)[；2]* in the second time slot. 

Now we describe the channel model. We assume the signals transmitted from 

each antenna undergo independent frequency non-selective Rayleigh fading. The 

channel response could be expressed by a complex-valued impulse: 

H,{t) = h,S{t-T\ / = 1,2 

where /i,. for / = 1,2 are independent and identically distributed complex Gaussian 

random variables with zero mean and unit variance, and T is the time delay. 

Therefore the amplitudes of the channel coefficients are Rayleigh distributed. During 

the period when our interested signals are being transmitted, the channels are 

assumed to be invariant. 

At the receiver side, the superposition of the signals which pass through the two 

channels arrives at the receive antenna and disturbed by additive white Gaussian 

noise. The received signals could be expressed as 

_r2[n]\~[-si2)[nT ^ K D W ^ I A � 

The received signals are first sent to a DML channel estimator. The channel and the 

input signals are jointly estimated. As usual, the two sequences of detected signals 

s(i)[n] are demodulated and decoded coherently [30] to b(i)[m]. These estimates of 

binary messages are then re-encoded to re-estimate the channel with a least-square 

estimator. The detection and re-estimation process can be iterated. 

13 



Chapter 2: Estimation for BPSK signals 

2.3 Deterministic ML algorithm 

In this section, we illustrate the deterministic ML algorithm which is used to 

perform blind channel estimation. With space-time coding, the received signals could 

be expressed as the following equation: 

" r i 1 r 52 r 

r , -1 "2 
： = ： ： 7 + ： (2.2) 

l A � 

- 厂 2 ) 1 ： 」 • ^ “ - 1 � L 灯2众-

In this equation, there are totally k space-time code block being transmitted. To 

simplify notations, we rewrite (2.2) in an equivalent form: 

R,=S,h + N, (2.3) 

Then the deterministic ML problem (2.1) becomes: given R^，estimate h by 

ih,{s„}) = arg max f(R, ； h, S,) (2.4) 

When the noise N,̂  is white Gaussian noise with zero mean, the ML estimates can be 

obtained by the nonlinear least square optimization (see [2]): 

{？ J ) = a r g m i n | | / ? , - 5 , i | f (2.5) 

There are two variables S,. and h in the above maximum likelihood criteria. 

When h is known, the problem becomes the problem of space-time decoding, and 

the search space is limited to the signals constellation. When is determined, at the 

presence of white noise, the estimate of h can be derived by a least square method 

(see [28]): 

h = S+kRk (2.6) 

14 
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Inspired by this fact, an estimation algorithm that iterates between estimates of the 

channel h and the input signals S,. is obtained [23]. To reduce computational 

complexity, in each iteration we restrict the space-time decoding within the newly 

received code block (>2又-一̂, ) . 

Assume two streams of data are differential encoded, denoted as 

= Oi，>?3’...”?2l-i) and 5(2) = (52,54,...,52^), where the two first symbols 

and are equal to one by default. The two sequences 5(1) and S{2) are then space-

time encoded and transmitted as in (2.2). Our deterministic ML algorithm could be 

summarized as follows: 

Algorithm 2.1 

Deterministic maximum likelihood estimation algorithm: 

1. specify L: the number of space-time code blocks used to perform estimation. 

2. k=i, considering equation (2.3), given R^ and (^； =^2 = 1 ) , estimate h 

by a least square method: 

3. k=k+i. Given R,, k> 2, decode (r^k-x^^ik) and detect 卜i，？2 众）using the 

estimate h . Thus the estimate 瓦 . i s derived. 

4. With R/̂  and 瓦.，est imate h by (2.6): 

5. If k=L, end estimation, otherwise go to step 2. 

15 



Chapter 2: Estimation for BPSK signals 

2.4 Re-estimation 

Error correcting codes are used to correct errors in the received signals that occur 

during the transmission. This is accomplished by adding redundancy into the 

transmitted data [29]. If the errors could be removed, the correct codewords will be 

the same as the symbols that are actually transmitted through the channel. Therefore 

we may view these correct codewords as training symbols. We are motivated by this 

fact to exploit the approach of re-estimating the channels with the correctly decoded 

data. Since the receiver knows both the received signals and the transmitted signals, a 

variety of simple and effective estimation methods available in training-based 

estimation could be applied here. 

As the correcting ability of the code is limited to a certain extent, not all the 

errors can be corrected. But for re-estimation, we require the correct codewords so 

that the data are really training-like. Therefore the re-estimation operation is 

performed across more than one codeword and hopefully the probability that there 

exists correctly decoded codewords will increase. 

Now we describe the re-estimation scheme for our space-time coding system. 

Recall that in last section when we come up with the deterministic ML estimation 

algorithm, we showed that the first and second symbols in each space-time code 

block make up of two differential encoded sequences. This is done by first 

constructing two sequences each containing N codewords, and then differential 

encode each codeword and concatenate them. When re-estimating, we select the 

codewords at the position where both the two codewords in the two sequences are 

correctly decoded. This is depicted in Figure 2.2. In this figure, the correctly decoded 

codewords are picked out from 5(1) = ) and S{2) = {s^.s^,...,s孔)to 

16 
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form two clean sequences and 8 \ 2 ) which may be shorter than 5(1) and 

5(2) . Also, we pick out the received signals corresponding to these codewords, and 

suppose they are denoted as R'. Then we can reconstruct the transmission equation 

for the signals in and ： 

R' = S'h + n (2.7) 

where h = [//, h, is the channel vector, n is white noise, and 

- / / _ 

S2 
一 ,* f* 

• • 

is the space-time code matrix made from 5J" and S'2. 

From (2.7), the least-square estimate of h could be obtained as (see [28]): 

(2.8) 

Symbols in one space-
time code block 

^ ^  
5(1) C K J I . . . C C E 

5(2)1 C W I . . . I C I C I C \ \ 
•S'⑴ I c I … I c c 

5'(2) I C I … I C I C 

C: The codeword is correctly decoded 
E: The errors in this codeword can't be corrected 

Figure 2.2: Choose the correct decoded codewords for re-estimation 
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2.5 Application to other constellations 

In the illustration of iterative maximum likelihood estimation and re-estimation 

method, we see no constraint on the selection of signal constellations. In this thesis, 

the main focus will be the constellations with constant modulus, however, we point 

out here that the re-eslimation method can be applied to all constellations, as long as 

the initial estimate of the channel is provided by some other estimation method. 

Maximum likelihood estimation is a good candidate that serves as the estimation 

method to start the operation. When signals from constellations with non-constant 

modulus, such as QAM modulation, are transmitted, the channel estimation with 

maximum likelihood algorithm is also available. 

We will demonstrate the feasibility of application of ML algorithm and re-

estimation to non-constant modulus constellations in the next section. 

2.6 Simulation results 

In this section, the performance of our proposed DML and re-estimation 

algorithm is evaluated via Monte Carlo simulation. The BER performance of the 

system and the mean square errors (MSE) of the channel estimates are presented. 

For transmit diversity, we use the space-time block coding scheme with two 

transmit antennas as showed in Figure 1.1. The channels from the two transmit 

antennas to the receive antenna are assumed to be flat Rayleigh fading, and are 

generated independently. Each channel is modeled as a single impulse and the fading 

coefficient is a complex Gaussian variable with zero mean and unit variance. For the 

error-correction code, we use the (15,7) Reed-Solomon code over GF{2^). 
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In our simulation, due to the (15,7) RS code, all the message data in one 

realization of simulation contains two sequences, each with 2SxN bits, where N is the 

number of codewords in one sequence. Therefore each differential encoded sequence 

consists of (60+l )xN BPSK signals. The blind D M L estimate is obtained using all 

these signals, and the result of the re-estimation is used to detect these signals again. 

We consider the performance of the estimation scheme with respect to the variance 

of the received SNR. 

Figure 2.3 shows the BER performance of the D M L estimation and the scheme 

with additional re-estimation. The parameters are N=3 and M=2. The performance of 

the ideal case where the channel information is known is also presented for 

comparison. From this figure, i t 's observed that the re-estimation method based on 

D M L outperforms the original D M L method by about 2 dB. 

Figure 2.4 shows the M S E of the estimated channels. Assume the normalized 

actual channel is h，and the normalized estimate of the channel is h , then the MSE 

of h is computed as [30]: 

~ f ~ 
MSE(h) = E h-h (2.9) 

V / 

The expectation is obtained by average over all the realizations. We can see f rom this 

figure that the re-estimation achieves a more accurate estimate of the channels. 

Figure 2.5 is the BER performance for 16 Q A M signals with M L estimation and 

re-estimation. N=5 codewords are transmitted, and the number of iteration is 1 and 3 

repectively. There is an about 0.5 dB improvement with re-estimation, however it 's 

still much worse than the ideal case. 
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Figure 2.3: BER performance for BPSK 
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Figure 2.4: MSE of the channel estimates 
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Figure 2.5: BER performance for 16 Q A M signals 

2.7 Summary 

In this chapter, we consider blind channel estimation and re-estimation for BPSK 

signals over flat fading channel. We propose a deterministic maximum likelihood 

estimation algorithm to blindly estimate the channel. The D M L estimation is 

followed by a re-estimation using the detected symbols. Simulation results show the 

performance of the D M L and re-estimation. A significant improvement provided by 

re-estimation is observed. The mean square error of the estimated channels by the 

two methods is also presented. 
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Chapter 3 

Estimation for Flat Fading Channels 

In this chapter, we consider the blind channel estimation method for PSK signals 

in flat fading channels. We develop a fully blind channel estimation method based on 

the constant modulus algorithm (CMA) and the ambiguity in the estimation is totally 

removed by differential coding. We also propose a re-estimation scheme with the 

help of error correcting codes to improve the performance of blind estimation. The 

transceiver model for flat fading channel is established, and simulation results shows 

that the re-estimation scheme can achieve a significant improvement in performance 

over the simply blind estimation. 

3.1 Introduction of constant modulus algorithm 

(CMA) 

The CMA is developed in the context of blind beamforming or blind equalization, 

where the situation could be described by a simple data model [9]: 

X=AS (3.1) 

In this formula, X : mxn is the received or observed signal matrix, A:mxd is the 

array response matrix in blind beamforming problem, or the matrix that represents 

the channel response in blind equalization problem, S:dxn is the transmitted signal 

matrix. Our target is to factorize X into the product of two matrices A and S 
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subject to a certain structural property. Once A is known, the goal of channel 

estimation is achieved. 

In Chapter 1, we established the transmission model of space-time coding system, 

and we derived the equation of the received signals (1.5). If the noise is not 

considered temporally, the received signals can be expressed as 

R = HS (3.2) 

where R is the received signal vector, H is the channel matrix, S is the transmitted 

signal vector. In view of this, the blind channel estimation problem for space-time 

coding system could also be thought of as a problem of factorization of R . 

There are basically two approaches to compute the factorization of X . One is to 

exploit the structural characteristic of the channel matrix A [25] [26]. The other is to 

focus on the signal matrix S [9]. However, the latter is more promising since it does 

not have much limitation on the channel characteristic and receiver design. The 

properties of the signals S may be the spectral self-coherence of communication 

signals, or the statistical properties, e.g., the assumed independence of the sources 

allows to separate non-Gaussian signals based on their high-order cross-correlations. 

Another widely used property is the constant modulus of the communication signals 

such as FSK and PSK signals. Based on this property the estimation method known 

as the constant modulus algorithm (CMA) is developed. 

The idea of CMA has its root in [12][13]. They are usually implemented as 

stochastic gradient-descent optimizers of a modulus error cost function and rely on 

iterative steps. However, there are some drawbacks to this iterative operation [14]. 

First, it only provides a heuristic solution to the factorization problem, since it 's not 

guaranteed that the gradient descent techniques will reliably converge to all minima 

of the cost function. Second, the convergence of the CMA to the correct solution 
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depends greatly on the initialization step, and in this respect, the global convergence 

has only be proven for infinite sets of data and the scenarios that admit a perfect 

solution. Finally, as many other iterative algorithms, the convergence of iterative 

CMA is usually slow and irregular. 

An analytical approach of CMA is proposed in [9]. The constant modulus 

factorization problem is transformed into a generalized eigenvalue problem and is 

solved analytically via a simultaneously diagonalization of a set of matrices. This is a 

deterministic algorithm, and only a finite set of data is need. As for the special case 

of channel estimation for space-time coded system, a more simple algorithm is 

proposed in [10] which takes advantage of the specific structure of the channel 

matrix H in (3.2), and the factorization problem is dealt with by solving a linear 

equation system. Nevertheless, the factorization is not unique generally, and the 

ambiguity is inevitable. Traditionally this problem is solved by sending a few pilot 

symbols, which leads to what is called semi-blind estimation algorithm. 

To provide a fully blind estimation method, we will first start with the algorithm 

in [10] to estimate the channel. Then we suggest a detection scheme that use 

differential coding and exploit the characteristics of space-time coding to remove the 

ambiguity which is inherent in the estimation, so that we do not need to deliberately 

send the pilot symbols. 

3.2 System model for flat fading channels 

In this section, we describe the system model based on space-time coding for 

flat-fading channels. QPSK modulation is used for demonstration. The structures of 

the transmitter and receiver are depicted in Figure 3.1. The user generates two 

streams of binary message: 

24 



Chapter 3: Estimation for Flat Fading Channels 

b{i)=(…冲)[0]力(0[1],冲)[2]’...） i = 1,2 

All the binary symbols are independent, and assigned to "0" or "1" with equal 

probability. Each stream is then encoded by a (15,7) Reed-Solomon code and 

modulated to two streams of QPSK signals respectively, denoted as c(i)[n]. After 

that, the symbols corresponding to each Reed-Solomon codeword in c(0[n] are 

differential encoded respectively and then concatenated. By default, every 

differential encoded sequence is lead by symbol one. In the next section, we will 

show that differential coding is necessary for the purpose of blind CMA channel 

estimation. Finally, the two differential encoded streams s(i)[n] are sent to space-

time encoder and transmitted by the two antennas as shown in the figure. 

卜 ⑵ ( 綱 V 
bmm], i = i a Reed- Differential $ 广 -

Solomon ~ • 乂 � • , • time \ / 
1 e.Koder mod encoder encoder • K D W ��[ n ] 丫 

Transmitter 

. \ � [ , : ] , n [ n ] • Space-time 印 ) \ Differential 印 ) [ ,乂 QPSK — ^ ^ 丨 ^ 卯 ’ ] •  
decoder decocfer demod decoder 

〜 A 

Ih 丨 h   

�I A L e a s t - 视 [ „ ] Differential 一 QPSK 一、 ^ ^；；。 — 
一 ~ ^ channel square ^ encoder — mod — Soloi^on ^ 

estimator estimator encoder 

_ r 

Receiver 

Figure 3.1: Block diagram of transmitter and receiver for QPSK signals 
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The two channels from the two transmit antennas to the receive antenna are 

assumed to be independent flat fading channels. The superposition of the signals 

which pass through the two channels arrives at the receive antenna and disturbed by 

additive white Gaussian noise. We denote these received signals as r.[n],i = 1,2: 

"r,[“] 1 �• K l ) [ “ ] � " 1 1 �� 

= * 十 （j.j) 
3 [ " ] � L - " �̂ � [ “ ] � [ A � L " 2 � 

where /i,,/^ are AWGN. The receiver uses these noisy signals to blindly estimate 

the channel with CMA first, and then sends them to the space-time decoder along 

with the estimated channels to obtain the estimates of the transmitted symbols 

？(/)!>]. The two sequences of s{i)[n] are decoded with non-coherently differential 

decoding and Reed-Solomon decoding. The first estimates of the binary messages 

b(i)[n] are derived. Next we re-encode the messages bii)[n] into symbols •？(/)!>] 

as the transmitting process and send them back to a least square channel estimator. 

At the least square estimator, the channels is re-estimated using s(i)[n] and r.[n], 

and the channel estimates are sent to space-time decoder to detect the transmitted 

signals again. This time, with the least square estimates, the coherent differential 

decoding could be applied. We may also iterate the re-estimation. 

3.3 Blind estimation with CMA 

3.3.1 Problem statement 

Here we state the problem to be solved using CMA [9]: 

Problem 1: For a given data matrix X : m x n , find a factorization 
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with A and S full rank, and S^ =1. Or equivalently, find a full rank matrix W so 

that 

WX =S, I � 1 = 1 

Now we examine our transmission equation of space-time coding. According to 

equation (3.2), if we consider n consecutive blocks of received data, we will have a 

similar equation: 

R = HS (3.4) 

Different from (3.2), in this equation,尺 is a 2xn matrix: 

R = \ \ … (3.5) 

S is also a 2xn matrix: 

… ] (3.6) 
… 一 

The channel matrix H has the form 

� ( 3 . 7 ) 

Jh -"1� 

I t 's full rank for nonzero /?, and h^. The matrix S is also full rank for general 

sources and sufficiently large n. Therefore when we select the signals from 

constellations of modulus one, it 's possible to factorize R into the product of two 

matrices H and S with the following algorithm so as to achieve the goal of channel 

estimation. Although factorization is the original intention, we will focus on the 

equivalent problem, that is, to find a equalization matrix G so that 
GR = S (3.8) 
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3.3.2 Estimating channel with CMA 

Next we will establish the constant modulus algorithm to compute the matrix G 

and connect this CMA algorithm to the fully blind detection of signals by differential 

coding. 

i . Fonnidating the problem: 

In Chapter 1, we presented the decoding method for space-time coded 

transmission in a flat-fading environment: 

！ = (3.9) 

If transmitted symbols are of constant modulus, such as QPSK, 8PSK signals, and 

without loss of generality we assume the modulus is one, then in a noise free case, ŝ  

and S2 are constrained by: 

〜 2 〜 * 1 
A = = 1 

= = 1 

Replace 5, and s^ with the expression in (3.9)，we obtain two equations (see in [9]): 

_ "1 � * 
〜 〜 * r "I 厂1 厂 * 1 S{ 
V l = [•？1 <?2] * .厂1 丫1.. 

3 � L<?2_ 
� * * * * " ! � * • • *17- (3 10) 

=厂 1 厂1 ’厂1 厂2’厂1 厂2,广2厂2 jL?l溶1’ 1 2 ’ 1<?2，<?22� 

= P i ) ' 
= l 

and 

r * • T ‘*! * §2 
•V2 = [•？2 1 ] * 丫1. 

1 / 2 � L - 1 � 

� * * * • C3 i n 
=厂 2 厂2，一厂I 厂2,一厂1 厂2,厂1 厂 1 U溶1«?1’ 1 容2，<?1 2，<?2«^2� ^ • , 

= P i y 
= i 
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�j^i "1 
Let the 2x4 matrix P̂  = ，we thus obtain an equation system: 

1 _ 卢 2 」 

P , y = I (3.12) 

Suppose the channel remains constant for N consecutive data blocks, then we can 

obtain N matrices P、，P”…，Pn with the same method, and each matrix satisfies the 

equation: 

Pj= I (3.13) 

Stack these matrices together, we arrive at an equation as in [9] ‘ 

] p" 

Py= '9= ^ (3.14) 
• * 

- P " � 2颜 L1�2;VX1 

Our goal is to derive the vector J from (3,5) and retrieve g^ and g^ from y . 

Unfortunately, from the expression of y : 

T y 

J = [gigl^ gi8*2^ g i82 ' 828*21 (3.15) 

we can't not get the exact value of and We could only know ,容2I and 

，and there is an inevitable phase ambiguity here: we don't know the angles of ^^ 

and 溶2. This will cause problem in the detection of signals. However, we will see 

later that this problem could be solved via using differential coding. 

2. Resolving the equation: 

Now we focus on solving the equation system (3.14). As stated in [10], this is a 

non-homogeneous equation system, hence its solution could be represented as the 
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summation of a particular solution to (3.14) and the general solutions to the 

homogeneous equation system 

= (3.16) 

Before going on with seeking the solution to (3.14)，we need to show a fact first 

[10]: For digital constant modulus signals with reasonably large constellations or 

sufficient phase richness, the INxA- matrix P derived from the received signals has 

rank 3 with possibility nearly one. We will see that this rank condition helps to solve 

(3.14). 

Consider the first two rows of P , or namely Pj: 

卜“，广1厂2，叫 (3.17) 
1 • * * * \ ， 

_厂2厂2 , 一 ， 一 ’ 厂 1 _ 

In a noise free case, we can factorize P! into the product of two matrices, and each 

matrix contains only the transmitted signals or the channel coefficients respectively: 

hih;, hji2, hi hi, h^hl 

�>V’j\ S^S*2, S^S^, 一仏2， (h*y, -hK 
p — • 

一 一 * ? ! * " ! ? 〕 ， K � , 办22’ 一("1*)2，一 "1*办2 (3.18) 

Stack all the factorization together, we have 

P= -M (3.19) 

J^SN _ 

Notice that matrix M could be written as 

M = H T ® H H (3.20) 
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where H is the channel matrix presented in equation (2.1)，and means 

Kronecker product. The 4x4 matrix M is nonsingular, which could be easily 

verified. 

In [9], i t 's proved that for statistically independent signals with sufficient phase 

richness, the rank of P^ is 3 with great probability, and this probability approaches 1 

as the number of signals in P^ increases. Also, it 's shown that for BPSK signals, a 

rank deficiency will occur, and the matrix P^ will only have rank 2. While for other 

PSK signals, such as QPSK and 8PSK, and with large enough number of 

independent signals, P^ will have rank 3. Since M is a nonsingular matrix, the 

matrix P has the same rank as P^ • In the following paragraph, we only consider the 

situation where P has rank 3. It 's shown that the rank 3 condition of P is essential 

in finding the solution to (3.14). 

Now we come back to equation (3.14). If no noise is considered, P has rank 3. 

However, in the presence of additive white noise, P will be of full rank generally. 

Thus the particular solution of (3.14) could be derived by premultiplying both sides 

with the pseudoinverse of P : 

"ii rr 
y = P ' ' 1 = ( P * P r ' P * - 1 (3.21) 

• • 

_lj [1_ 

The general solution to the homogeneous equation system (3.16) could be expressed 

as the linear combination of the basis of the kernel of P • Since the 2Nx4 matrix P 

has rank 3，the dimension of the kernel of P is 1，and it 's in fact the right singular 

vector of P corresponding to the singular value zero. We denote this general solution 
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as y^. After f inding�丨)and y^, we may express the solution to (3.14) as follows up 

to an unknown coefficient 入： 

J = 义 ( 3 . 2 2 ) 

To determine A, we will make use of the special structure of J . In equation 

(3.10) and (3.11), we could observe that y could be written as the Kronecker 

product of two vectors as in [9]: 

= 82Y ®[8*i sll 

and the elements of y has the relationship: 

= K 2 ) K 3 ) (3.23) 

where y(i) means the /th element of y . Substitute (3.22) into the above equation, 

we will obtain a quadratic equation with respect to A [10]. This quadratic equation 

has two solutions i , and ，which are corresponding to two solutions of y , 

denoted as � and J � ). 

3.3.3 Solving the ambiguity problem 

W e have the problem that we can' t tell which of the two solutions ？̂⑴ and 歹⑵ 

stands for the actual channel. This is the source of ambiguity problem. The ambiguity 

in the estimated channel occurs in three cases [10]: the phase reverse in the channel 

coefficient, the interchanging of cochannel coefficients, or the combination of the 

above two cases. This ambiguity will in turn incur the phase reverse in the detected 

signals or swap of the two signal sequences. Our task is to remove these ambiguities 

without extra information. 

We now reveal all the possible cases of estimates that could not be distinguished 

at present. Due to the special orthogonal structure of space-time code matrix, if two 
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signals [5, s^] are transmitted in one code block, they could be detected as 

- S 2 ] , [ -� ’2 -^i] and [̂ 2 - ^ J . Correspondingly, instead of the actual 

channel [/z, l i , ] , the channels could be estimated with ambiguity as [-h^ - / i j , 

- h ^ / i j and [/z， - / i , ] respectively. Consider all these four possible cases of 

channel estimates, we may divide them into two groups: 

{[/,, / / J , [-h, -h,]},{[-K 办 1]’ [办2 —办 1]} (3.24) 

The two channels in the first group exhibit the ambiguity of phase reverse, while the 

two in the second group exhibit both phase reverse and swap ambiguity. 

To solve the ambiguity problem, we first analyze the equation (3.23) to 

investigate the underlying ambiguity in the two solutions J � and 歹⑵ .From the 

expression of v in (3.10) or (3.11)，the items y(l) and y(4) are positive real 

numbers, so according to (3.22), for different and 5 � � and 歹⑵⑴ should 

be different. So is J’�（4) and J �（ 4 ) . We have showed that g^ and g^ are 

proportional lo li* and in Chapter 1’ hence consider all the four cases of possible 

outcome of channel estimation listed above and the equation (3.15), we may 

conclude the relationship between the two solutions: 

5 5 � � 二 产 ( 4 ) ，v < ' ) � = 产 ( 1 ) ， 产 � = - 产 ⑵ ，J � � 二 - 产 � 

Or equivalently: 

^^(T 4刊 2， 1及汗 H及 1(2)|2，及1,?, = 一 g i ( � ? ) * (3.25) 

Each group in (3.24) will provide one solution to the equation system (3.14), but we 

cannot distinguish which one in the group is provided. 

From (3.25) we may obtain the relationship between the coefficients in the two 

solutions: 
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(3.26) 

Here the symbols c! and Cj are some constant values that satisfy 

c, = c. = 1 
1 2 (3.27) 

* 1 
C1C2 = - l 

which means c, = -c^ . Therefore (3.26) becomes: 

斤)二 c i,，容?丨容 r ) * (3.28) 

Suppose the first solution 及！⑴ and g^i) are related to the actual channel, then the 

signals detected by ^p) and 容f) are 

" .； ]卜 ( 2 ) 斤） I k " 

= 1 (3.29) 
• (I) * (1) V* 

We see that the signals derived by the second solution are just the swap of the two 

actual signals up to a constant efficient which remains uncertain to us. The job of 

removing the ambiguity becomes discriminating the two solutions or designing a 

detection scheme which can retrieve the symbols 5,. correctly. 

1. Ambiguity of phase reverse 

This ambiguity could be merged into the problem that the angles of the 

coefficients g, and g , cannot be determined. From vector y , we are only able to 

know the amplitude of g, and g^ ： 

h h V M (3.30) 
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On the other hand, the ambiguity of phase reverse may also be thought of a problem 

of unknown angle since -h^ leads to 一 and - h : leads to - g j» and only the 

angles of g^ and are changed. Thereby these two problems could be solved in the 

same way. 

Differential coding is introduced here to remove both the phase reverse 

ambiguity and the problem of unknown angles of the coefficients gj and g � . F r o m 

vector y we can derive the quotient between g! and g2： 

^ = M (3.31) 
？⑴ 

and assume the angle of gi is a , then 

� i 1 O 1 -VI� 

Lw - 斤 聰 丫 
L ( 州 ) � � ] ( 3 . 3 2 ) 

ja ja 
kik" k i k 雨 

-k l"顿 -kr .“ 
Substitute (3.32) into (3.8)，we derive: 

r , . Ml 
* = 1 (3.33) 

f M r ; �s Z 

It 's observed that instead of the actual signals, we obtain a phase-shifted version of 

detected symbols, and the value of the phase shift does not change for different 

transmitted signals. Naturally, if we view all of the first symbols in each space-time 

coded block as one data sequence, we can eliminate this phase shift via differential 

encoding and non-coherent differential decoding. The same method could be applied 
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to all the second symbols. Therefore we resolve the problem of unknown angles of 

g^ and • What 's more, since the phase reverse could be included in the unknown 

angle a，the phase reverse ambiguity is also eliminated. 

As a result of the above deduction, since the two symbols in one space-time 

block are dealt with separately, the constant coefficients ĉ  and - c ; in (3.29) could 

be eliminated in the process of differential decoding, although they would be 

uncertain. 

2. Ambiguity of channel swap 

The ambiguity of swap arises when we detect symbols using the estimated 

channels in the second group in (3.24). For our particular problem, as 

aforementioned, the phase shift in (3.29) has already been removed, so the only 

remaining problem is the reverse order of the two channel coefficients. As a result of 

the swap, after differential decoding we will obtain two data sequences 

corresponding to ihc two source sequences except that the order of the two sequences 

is reversed. 

We propose a method to discriminate which of the two sets of detected sequences 

is of reverse order. This method will resort to the space-time coding structure. Only 

the received signals are used and no labeling symbols are needed. With odd 

subscripts and even subscripts, we denote the two sequences that are about to be 

space-time encoded with correct order as: 

S1 = ("S"!，h，... ’ •S"2Af_l ) ’ ~ ('̂ 2 ' ' • • •' ) (3.34) 

The noise free received signals could be expressed as: 
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_ r - —1 p - — 

厂 1 

/ 2 J [ -

h p i l (3.35) 

and this is what actually happens in the transmission procedure. 

Now we consider the case where the order of the two sequences is reversed, i.e. 

we have 

S1 二，〜，…,"̂lA/)，S2 ~ ('S'l»'S'3 5• • •») (3.36) 

Then we conslruct the transmission equation according to the first code block and the 

corresponding received signals: 

厂 n 厂 1厂 r, s, 5, h, 1 = 2 1 (3.37) 
• * 7 / \ Z 

[ / 2 �卜 丨 " ^ z J l A � 

Since we know the values of the signals, we may estimate h[,h2 as: 

[ " : ] = [ ‘ � 。 ] 下 ] = [ ' 2 。 订 。� ] � " i ] = A � M (3.38) ,/ • • • * * * U 

Jhj 卜丨•， 2 � 1 / 2 �卜丨> ^ 2 �卜 2 "^iJA� L"2� 
Then we use / ; j \ / � to compute the channel output of the transmitted signals ^4,53： 

「：；]=卜卞']=卜 利 （3.39) 
/ * * 7 / • * 1 

/ 4 �卜 3 " ^ ^ ^ J I A �卜 3 L"2」 

By enumerating among the finite alphabet of the communication signals, it's 

observed that the product: 

‘ & M a * * ^ 
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厂 "I 厂 

is not always equal to ^̂  ^ , and consequently the vector �，is not always 
卜 4 >^3」 1/4 _ 

r 
equal to ^ . What's more, it could be inferred that if the source symbols are 

generated randomly, and with enough large number of samples, the received signals 

•， ]r 

will be different from the computed signals 

/ t / / ir 
,3 » ” • •，厂2/V-i，� ‘ 

with probability one. 

The above analysis implies an algorithm to discriminate the two sets of 

sequences using the received signals only. This also works when the noise is 

presented. The steps of the discrimination algorithm are summarized as follows: 

Algorithm 3.1： 

1. Given two sets of sequences (3.12) and (3.13), and the corresponding 

received signals R - [r,,r^,..., ,t^a/ T • 

2. For cach set, estimate the channels h;,h; using the first transmitted code 

block and the corresponding received signals. 

3. For each set, compute the received signals |/"3'，厂4'，...，广2'"-1，广2'"�using the 

estimated channel ! i ; J /” and then calculate the square error between the 

actually received signals [厂3’厂4,…,"zam，"z/vF and |/*3'’厂4'’".，心-1’厂2;]�. 

Suppose the errors are denoted as ê  and 62. 

4. Compare c � a n d e ” and choose the set of sequences corresponding to the 

smaller error as the actually transmitted sequences. 
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With this algorithm, we are able to discard the sequences with reverse order, thus 

the ambiguity of channel swap could be eliminated. 

3.4 Re-estimation for flat fading channels 

The re-estimation operation is just like the re-estimation method illustrated in 

Chapter 2. After space-lime decoding and channel decoding, the transmitted signals 

are detected into two sequences, and each sequence contains N messages. If at some 

position, the corresponding codewords in the two sequences are both correctly 

decoded, that is, the transmitted signals corresponding to these messages could be 

correctly recovered, we use these signals and the corresponding received signals to 

estimate the channel again. 

The recovering process is accomplished by re-encoding the messages. Each 

codewords needs to be differential encoded independently, for we don't know 

whether the preceding codeword is correctly decoded or not. 

3.5 Estimation algorithm 

In this section, we summarize the details of the CMA estimation method and re-

estimation algorithm in accordance with our transmission system for flat fading 

channels. 

Algorithm 3.2 

Blind CMA channel estimation and re-estimation algorithm for flat 

fading channels: 

1. Definition of parameters: 
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N : Number of Reed-Solomon codewords in one sequence. The blind channel 

estimation is performed over these codewords. 

M\ Maximum number of iterations during re-estimation. 

2. Given the received signals = |̂1，厂2’...，广2乙-1’厂2乙]『only, use CMA to 

estimate the equalization matrix G as in (1.2): 

1) Form an equation system: 

1 p_ 

户2 .3；= 1 (3.40) 
• • 
• • 

IAJ2LX1 

where 

_ 2 • • 2 ' 
_ 厂2,.-l，厂2/-1厂2,_’ ‘ hi 
= 2 » * 2 

_ 厂 2 / ， 一 '21-1 厂2/，一 '2/ ’ 厂2/-1 _ 

2) Compute the particular solution y^ to (3.40) and the general solution y^ 

to the coiTesponding homogeneous equation system. 

3) Let y = y,,-\- . Compose the equation with respect to 入 as: 

= ？(2)?(3) 

Solving this equation leads to two solutions of \ and correspondingly two 

vcclors J � and 产 . 

4) Two equalization matrices are derived from J � and 歹⑵ : 

• ⑴ 产⑵ 
G, = , � * ， i = 1.2 

厕 . , )⑷ - (厕 ) * 
35(0(2) 

/ -

3. Solve ihe ambiguity problems: 
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1) For each G丨 ,decode the received signals by (1.9) and then apply 

differential decoding and RS decoding. 

2) Re-encode the decoded data by RS encoding and differential encoding, 

and obtain two sets of sequences. Find the set of sequences with the 

correct order by Algorithm 3.1. Suppose this set of sequences is denoted 

by [S丨工_} 

4. For the two sequences {5",,50}, pick out the correctly decoded parts and the 

� 
corresponding rcceivcd signals, then re-estimate the channel vector h 

according lo Scction 3.4. 

5. Use ihe estimated channels h to decode the received signals, and then apply 

dilTerciUial decoding and RS decoding. We arrive at the estimate of the 

binary messages /7(/")[///], and finish this round of re-estimation and detection. 

6. If the number of iterations of re-estimation reaches M, end the operations and 

take /了(/•)[///] as the final detection. Otherwise re-encode b (0[m] by RS 

r 

encoding and dilTcrcnlial encoding into two sequences j , and then go 

to Step 4. 

3.6 Application to multi-antenna system 

Besides ihe famous Alamouti's space-time code for two antennas, there exist 

other orthogonal space-time codes for multiple antennas [2]. It 's also possible to 

apply CMA and the relevant blind channel estimation and re-estimation method to 

the muUi-antcnna case. 

For 11 antennas, the space-time code is also defined by an nxn code matrix: 

41 



Chapter 3: Estimation for Flat Fading Channels 

C 

where the rows of C are corresponding to time-slots and the columns of C are 

corresponding lo antennas. The received signals could be expressed as: 

X=Ch + N (3.41) 

where h is the vector representing the n channels, and N is white noise. Just as the 

case for 2 antennas, the received signals can also be expressed as: 

X=HS + N (3.42) 

where H is an //x// channel matrix, and the nxl vector S is made of the transmitted 

constant-modulus signals. From (3.42) we see that the CMA can also be applied to 

factorize X, except that the procedure to find the solution and to remove the 

ambiguity would be a little complicated. 

3.7 Simulation results 

In this section, we evaluate the performance of our proposed estimation scheme 

in terms of bit error rate by Monte Carlo simulation. Through simulation, we 

demonstrate ihc performance of the proposed blind CMA estimation method and the 

re-estimalion algorithm. The results show that when we perform re-encoding and re-

estimation aficr we obtain the blind estimates by CMA, there is a significant 

improvement in the BER performance over the CMA estimation only. The two 

channels of the wireless link are modeled as flat fading channels, and we also use 

(15,7) Recd-Solomon code over 

First we illustrate the performance of our estimation method applied to different 

constellations. We have stated that CMA estimation method could be applied to all 

constant modulus PSK signals except BPSK signal, because the phase space of the 
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latter is not rich enough and it 's difficult to process the factorization. Here we 

employ QPSK and 8PSK to demonstrate the performance of the estimation method 

for different P S K signals. 

As aforementioned, the source symbols are made of two sequences, and each 

sequence contains N Reed-Solomon codewords. For QPSK modulation, each RS 

codeword includes 30 symbols and corresponds to 31 symbols after differential 

encoding. Hence (here are totally 3ixN symbols in each sequence. For 8PSK 

modulation, cach RS codeword includes 20 symbols and there are totally 2lxN 

symbols in each sequences. Our estimation algorithms are processed over all these 

symbols, and the result of re-estimation is used to detect these symbols again. The 

BER performance is evaluated according to the received SNR level. 

Figure 3.2 and Figure 3.3 show the BER performance of the estimation approach 

for both QPSK and 8PSK signals. In the simulation, N is chosen to be 3，and the 

maximum number of iteration steps of re-estimation is M =2. We can see from these 

figures that ai low SNR level, the performance of re-estimation is almost the same as 

that without re-csiimation. This is because with lower SNR, there will be more errors 

in the dcieclcd symbols by blind estimation, and we can' t pick out the correctly 

decoded codewords wilh great probability. While at high SNR level, there will be 

more corrccily decoded codewords, and they perform like a training sequence. 

Therefore with higher SNR, the additional step of re-estimation outperforms the 

blind C M A esiimaiion and its performance is very close to the ideal case where the 

channels are known to the receiver. 
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Figure 3.3: BER for 8PSK, N=3, M=2 
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Next we adjust the parameters N and M to see the difference. Figure 3.4 shows 

the performances for N=5. QPSK signals are employed in the simulation. Comparing 

Figure 3.2 and 3.4, it is observed that as N grows larger, the performance of re-

estimation gets closer to the ideal case. The reason is that for larger N, the probability 

to have correctly decoded codewords is also larger, hence the performance of re-

estimation also improves greatly. What 's more, since all of the data are used to 

estimate the channel, ihe result of estimation could be very close to the ideal case. 

1 0 。 二 … — — 二 二 二 ： —：二二二： —二二= _」 I H 
E：三三三三三三三E三三三三三三三三I三三三：三三三：| -e- CMA only ；: 
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Figure 3.4: BER for QPSK, N=5, M=2 
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Figure 3.5: BER for QPSK, N=3 

Figure 3.5 shows the performance for different number of iterations in re-

estimation. QPSK modulation is used and N is set to 3. The two curves of re-

estimation shows (he performance for one and three iterations respectively. It's 

observed that increasing the number of iterations does not provide evident 

improvement to the system performance. 

3.8 Summary 

In this chapter, a fully blind CMA channel estimation method for flat fading channel 

is presented. Based on this method, an additional re-estimation algorithm is also 

presented. With our proposed algorithm, the ambiguity inherent in blind estimation 

problem is removed. Then with the assistance of error correction codes, we re-
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encode the detcctcd symbols of blind estimation and re-estimate the channel. 

Simulation results show that the additional step of re-estimation outperforms the 

simply blind estimation and its BER performance could be close to the ideal case 

with known channels. ‘ 
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Chapter 4 

Estimation for Frequency Selective 

Fading Channels 

In this chapter, we propose the blind estimation and re-estimation scheme for 

frequency selective fading channels. We apply OFDM to convert the frequency 

selective channel to several flat fading channels, so that the estimation method 

derived in Chapter 3 can be used. A system model based on this scheme is 

established, and simulation results are presented. 

4.1 Introduction of space-time coded OFDM 

In Chapter 3, we derived the fully blind estimation method based on CMA and 

the re-estimation scheme for flat fading channel. However, in practical applications, 

most of the wireless link is multipath or frequency-selective fading, and the channel 

is modeled as the suiiimaiion of a number of complex impulses each with different 

time-delay, or simply speaking, a FIR filter [1]. Accordingly the received signal 

sequence is the convolution of the input signal sequence with the impulse response of 

the channel. This is the case especially for wideband digital communication, where 

the symbol duration is so short that the path delay could not be ignored and the 

coherence bandvvidih is much smaller than the signal bandwidth [30]. 
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Under such assumptions, the data model in Chapter 3: 

X =AS (4.1) 

will have a different structure from what is analyzed in Chapter 3. Assume the 

maximum order of Ihe channel is L, then the received signal could be represented as 

a convolutional form [27]: 

L 

r[n] = Y^i[i]s[n-i] (4.2) 
;=0 

where r[/z] is the received signal, li[n] is the channel coefficient, and is the 

input signal. In (4.2), we have neglected the noise. Equation (4.2) could also be 

written in a matrix form of (4.1), where the matrices are defined as below: 

_ 厂 [ 0 ] “ 

L:� 

_r[N-\]_ 

~]i\L] h[L-\] MO] -

//[L] h[L-l] h[0] 
A = 

• • • • • 

h[L] h[L-l] h[0] 

‘对-乙]“ 
s[-[L-\]] 

S = ‘‘ (4.3) 

N is the number of available output samples of the channel. We say that the channel 

matrix A has a Hankcl or Toeplitz structure. This structure has enough information 

to determine the factorization, and lots of work has been done on blind equalization 

for such FIR system [15][16]. 
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However, it 's difficult to apply space-time coding directly in this FIR channel, 

for the orthogonaliLy of the channel matrix in (1.1) no longer exists in the Toeplitz 

structure of the channel matrix, and the receiver will not benefit from the full 

transmit diversity as in flat fading channel. 

Since space-time coding is originally designed to combat channel fading [11], 

and this is separated from that of channel equalization, we may think of transforming 

the frequency selective fading channel into several flat fading channels. If so, we can 

apply space-time coding to provide transmit diversity for high data rate transmission 

and the channel esiimillion method derived in Chapter 3 could be used here. 

Orthogonal frequency division multiplexing (OFDM) is a suitable modulation choice 

to solve this problem. OFDM splits a high rate data stream into a number of lower 

rate streams that are iransmitted simultaneously over a number of subcarriers [30]. 

Because for ihe lower rate parallel subcarriers，the symbol duration increase to a 

great extent, the dispersion in lime caused by multipath delay spread is significantly 

decreased, and for each siibcarrier, the multipath channel performs like a flat fading 

channel. Then luiiurally, space-time coding could be applied to each subcarrier. 

There has been work on ihe combining of space-time codes and OFDM. In [5], a 

basic spacc-lime coded OFDM system is introduced, where the signals after space-

time coding ai-e directly sent lo the orthogonal modulation components. The 

comparison of ihc performance of space-time coded OFDM and the conventional 

Reed-Solomon codcd OFDM is presented. In [6], different transmitter diversity 

schemes including spacc-lime coding combined with OFDM are presented, and the 

performance of cach diversity scheme are compared. The incorporation of error 

correction codes with spacc-lime coded OFDM is also proposed in [7]. 
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No matter wliai kind of combination scheme of space-time coding and OFDM, 

reliable and accurate channel state information is always required for space-time 

decoding. In [10]，a simple blind channel estimation method based on a deterministic 

variant of CMA is presented. To resolve the ambiguity problem, they resort to an 

exhaustive search among the estimates and two pilot symbols are needed. Here we 

propose a fully blind channel estimation and re-estimation scheme for space-time 

coded OFDM system. This scheme is similar to that for flat fading channel which is 

depicted in Chapicr 3. The ambiguity is eliminated by differential coding and 

comparing the square error computed from the two possible estimates. 

4.2 System model 

In this seel ion we present a space-time coded OFDM system with Reed-Solomon 

coding as the model based on which our channel estimation method for frequency-

selective fading environment is developed. We stress the difference of the coding 

process fro in ihc model for flat fading channels. The user data are encoded with RS 

code in frcqucncy domain, i.e. across different frequency tones, instead of in time 

domain as that in Chapter 3. The codewords are then differential encoded in time 

domain for ihe purpose of CMA csliination. 

The structures of the iransmitter and receiver are shown in Figure 2.3 and Figure 

2.4. We still have iwo iransmil antennas and one receive antenna here. The encoding 

and modulaling pioccss is just like that for flat fading case, except that before 

differential encoding, the QPSK signals are sent to a serial to parallel converter. The 

two blocks of ihe oiiipul of ihc S/P converter, denoted as {c(i)[t, k], k=l,2, ...’K} for 

/=1，2，are disliibuied in frequency domain respectively to be assigned to different 

tones of OFDM. The tones are indexed by k. Then for N consecutive time intervals 
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t=n, n+1, n+2, ..., n+N-l, the two streams of symbols at a particular tone k, i.e. 

{c(i)[t, k], I - n, n+l , n+2, ..., n+N-l}, are differential encoded into {s(i)[t, k], t= n’ 

n+1, n+2, 

RS cm.k] 
"(/)[/，川],/= .1’2 encoder, S/P N Differential 

QPSK converter ^ encoder 
mod 

\ i 1, 聊’幻’-聊’幻* 
肝 T ( e 

N Space-

V r ~ 碰 ’ 幻 ’ — e n = e r 
】Fr:T I、 

Figure 4.1: Transmitter of space-time coded OFDM system 

'办礼'丨丨,，（l| y�,�-丨書 I 印 p / s — S f f ^ 
m i / tlccoder ^ decoder ^ conv. RS 

decoder 

1~̂ ^ 
h,\ k]\ I Mi-11  

Blind L e a s t - ,聊’幻 

\ channel square : Reencoder ^  
eslinialor estimator 

Figure 4.2: Rcccivcr of space-time coded OFDM system 
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…，n+N}. By default, the first symbol s(i)[n, k] of the differential encoded sequence 

is assumed to be !. For the A'lh tone, the two streams s(i)[t,k] for i=l,2 are then 

space-time cncodcd according to the following code matrix: 

「乂l)�U1 
(4.4) 

s (i)[a]� 

The output signals of the space-time encoder are sent to IFFT component to 

modulate the orthogonal frequencies, and the two antennas simultaneously transmit 

the modulated OFDM signals. 

The channels for all the frequency tones could be viewed as independent flat 

fading channels, so for each tone, just like flat fading case, the received signals after 

demodulated using a FFT component could be expressed as: 

� / - l i a j " ! � ‘ � ’ �[ a ] si2)[t,k] T/i,[/：]] , w � 

= + (4. J； 

_/-2[a]�！_-、’*�[“ ' ]Ai)[“]�L"2_ uhW_ 

where h^[k],Iu_[k] are the channel coefficients for the k th tone, and n^W^n^W are 

white Gaussian noise. • 

At the receiver side, on receiving Ihe channel output and demodulating them into 

baseband signals as in (4.5), ihc channels for each tone are first blindly estimated by 

CMA estimator. The estimator produces two sets of channel estimates with 

ambiguity. Then using these two sets of estimated channels, the received signals are 

space-time dccodcd and dilTereniial dccoded into c(/)[?,/：] and c(i)[t,kY . After 

passing through the P/S converter, they are mapped into binary bits and RS decoded, 

and we obtain the first rcsulis /了(/•)!/’川 1 and b{i)[t,m]\ Next these results of first 

estimation arc re-cncodcd and sent to the discriminator and lease-square estimator to 

re-estimate the channel. 
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4.3 Estimation Algorithm 

From the system model established above, we can see that as a result of 

multicarrier transmission, the data with lower data rate are space-time coded and 

transmitted through flat fading channels for each frequency tone. Thus the blind 

CMA esiimaiion nicihod and rc-csiimation algorithm we developed in last chapter 

could be applied to cach tone respectively. 

In OFDM, \vc have one more dimension 一 frequency dimension. In our system 

model, the Reed-Solomon coding is performed in frequency domain, instead of in 

time domain as described in Chapter 3. Therefore the blind estimation and re-

estimation in the lime domain do not have to be implemented over an integer 

multiple of the length of a RS codeword, and we can freely choose the length of data 

used to estimate the channel. Of course, the length should be large enough for CMA 

estimation and discrimination between the two possible sets of solution. This feature 

is more advanlagcous when ihe channel is time-variant and remains constant only 

over a small number of chila. This is evident when we use codes whose codeword has 

a large codelcngih. 

We summarize ihc steps o � o u r estimation method in Figure 4.3. Suppose we 

have totally K IVcciucncy loncs, ami for each tone, the two sequences of received 

signals and arc expressed as in (4.1). Also for each tone, assume there 

are N message symbols lo be dilTereniial encoded, i.e. there are N +1 symbols in the 

encoded sequence. And \vc allow the maximum number of iterations to be M. Then 

we will Stan our blind eslimiition with ihe received signals: 

/\)["] = k[l，/(l’":lU'l,'U2,/:l’r2[2,/:]’...，ri[A^ + l,/:]’r2[^ + l ’ ^ ] r 
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Figure 4.3: Blind CM A and re-estimation for space-time coded OFDM 

We do not choose only ihc convcily decoded codewords. This is because when 

we re-encode differenlially in lime domain, all the data are needed, while the RS 
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coding in frequency domain can't ensure that all the symbols in each time slot are 

correct. Therefore in this coding scheme, the operation of re-estimation will 

outpeiform ilie blind esiiniaiion lo a larger extent with a relatively high SNR where 

more codewords will be correctly decoded. 

4.4 Simulation results 

In this section, we evaluate ihe performance of our proposed estimation scheme 

for frequency selective channel by Monte Carlo simulation. Just as the results 

depicted in last chapter, the additional operation of re-estimation outperforms the 

blind CiVlA esiiinaiion ai high SNR level. The performances under different 

conditions are presented. 

In simulation, we will focus on evaluating the performance of the estimated 

channels. We assume ih:.u the OFDM signals are already properly demodulated and 

the space-time coded signals lYom each frequency tone undergo independent flat 

fading channels rcspeciivcly. Therefore the received signals could be expressed as in 

(4.5). 

For cach spacc-tinie coded ininsmission period, two OFDM blocks are 

transmitted, and cach block forms a (15,7) Reed-Solomon codeword. By QPSK 

modulation, each OFDM block contains 30 symbols, which are corresponding to 30 

equispaced frequency lones. The differenlial coding is conducted for N consecutive 

symbols at each lone, and results in a sequence with N+l symbols. We evaluate the 

BER performance according lo ihe received SNR level. 

Figure 4.4 shows the BKR pcrfc^nnance for the blind estimation scheme with 

iV=10. We can observe from this rigiire that when the SNR is higher than 4 dB, the 

re-estimation approach will ouiperform Ihe blind C M A estimation for about 0.8 dB. 
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While at low SNR level, the performances of both the two approaches are almost the 

same. However, there is still an about 1.5 clB deficit for the re-estimation compared 

with the ideal case. This is partly clue to the small number of data samples to re-

estimate. But oil the other hand, it is also an advantage of space-time coded OFDM 

that we can choosc ihe number of samples freely. 
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iMOLire 4.4: BHR for space-lime coded OFDM, N=iO 

It 's also observed in Figure 4.4 I hat ihe performance of re-estimation does not 

improve much when ihc number of ileniiions M is larger than 3’ or the re-estimation 
already converges aficr 3 ileralions. 

Figure 4.5 shows ilic pcrfoririance when N二5 and M=3. We can see that a 1 dB 

improvement could be ohiaincd by re-estimation over blind C M A estimation when 

the SNR is higher ihaii 4 clB. 
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Figure 4.6: RFR for space-time coded OFDM, M=3 
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Figure 4.6 shows the comparison of re-estimation for N=5 and N=U). The 

number of iterations is set to 3. As the number of symbols in each sequence to 

estimate increases, iherc is a slight improvement in performance correspondingly. 

And it 's expected thai the performance will get closer to the ideal case as the number 

iVcontinues to increase. 

4.5 Summary 

In this chapter, a space-time coded OFDM transmission system for frequency 

selective fading environment is modeled, and the blind CMA channel estimation and 

re-estimation scheme are proposed based on the system model. Due to OFDM, the 

frequency selcciivc channel is transferred to a number of flat fading subchannels, and 

the channel estimation method developed in Chapter 3 is applied for each subchannel. 

Numerical simulations arc condLicted, and the result shows the similar conclusions as 

the case of flat fading channels: the additional re-estimation approach outperforms 

the blind CMA csiiniaiion in this particularly designed OFDM system. 
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Chapter 5 

Conclusions and Future Work 

5.1 Coiiciiisioiis 

In this thesis, we have investigated the blind channel estimation method for both 

flat fading channels and IVcquency selective channels. As many communication 

signals are of constant modulus’ an analytical CMA is exploited, and based on this, a 

fully blind approach, which could remove the ambiguity inherent in blind estimation 

problem without extra pilot symbols, is proposed. We have also proposed a re-

estimaiioii scheme beyond ilic ordinary blind estimation approaches. Simulation 

results show the significant improvement in the performance brought by re-

estimation. CMA is proved to be suitable for signals with rich phase space, such as 

QPSK and 8PSK, and it will degrade and be difficult for BPSK signals. Therefore we 

develop ii detenriiiiisiic ML blind csiimalion method as the initial step for re-

estimation and show the improvement for BPSK signals. All the above discussion is 

based on flat lading and single user environment. For frequency selective channel, 

OFDM is employed to transfer the frequency selective channel to a number of flat 

fading subchannels so thai ihe nlgoriilnii derived above could be applied to each 

subchannel. 

The idea of re-esiimaiioii is just simple but effective. It introduces the benefit of 

training-based esiiiiiation into blind channel estimation problems: with the correct 
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data ava i I8b le to the recci v 1', some near optilnal estimation method could be 

employed. What' s more, it \V il l outperforn1 the training-based estimation: due to the 

self-recoveri ng natu re of bl i nd esti marion, all of the data are candidates to perform 

estimation , which \\ ill ill turn improve the accuracy of the estimate, while in training

based case only a mall porti on of the transmitted signals is used to estimate. This is 

especial ly the ca e at hi gh I leve l. 

5.2 111 r r r 

In this th sis. nl y th t\ O<l1lt nna pace-time coding scheme is exploited. In 

real syst ms, th r- shou ld he mol' tra nsmit antennas with space-time coding scheme. 

The transnlission pro ess is si mi lar to two-antenna case, but it's more complicated to 

appl y the cSl im~1Lio l 111cthu 1 to mu lti transl11it antenna systems due to the different 

code structures. 'vVc \V i 11 study the structure of different space-time block codes and 

modi fy the cha nnel C:l i ll1at inn meth od to work in different cases. 

As is s en in til e tll sis, the C If est i mation lnethod is easy' to implement and is 

an attr:lc li ve sti m ~1l ic I' nw hod 1'0 1' C Ilstant lnodulus signals. However in practical 

applications, nstc ll (\ i ns \Vi t h non-constant modulus are widely used. Among 

these con t Il ali oll' ~1l\~ 16 0 /\ /1 ~l1ld 6-+ QAM modulations. They are adopted by 

man y communica ti oll . t'1IH.h n.l: due to efficiency. We have demonstrated the 

feasi bili ty of th app li ll l ion of ch:ln n I re-estimation to these constellations. 

However, \Vc wi ll 't ill explore other channel estimation method, such as subspace

based m th d r otli' r m;l xilll Ll Il1 like lihood estimation method, to improve the 

perf rm ance of Ll r t lilld ch:lll nc l estimat ion and re-estimation algorithm for non

constan t modu lus s i g n~ll. . 
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Recently, a lot of effeetive coding schemes other than the systematic codes have 

appeared. Strong codes such as Turbo code and low-density parity check code are 

becoming part of ilic promising codes for future wireless communications. It 's a 

challenging task lo develop a suitable re-estimation scheme based on these coding 

schemes. 
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