
Pronunciation Modeling for 

Cantonese Speech Recognition 

KAM Patgi 

A Thesis Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Master of Philosophy 

in 

Electronic Engineering 

© The Chinese University of Hong Kong 

July 2003 

The Chinese University of Hong Kong holds the copyright of this thesis. Any 
person(s) intending to use a part or whole of the materials in the thesis in a proposed 
publication must seek copyright release from the Dean of the Graduate School. 



iH ��� 

！ ^ 2 9 • • 

w ^ X l i b r a r y system 
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The primary goal of automatic speech recognition (ASR) is to produce a textual 

transcription for spoken input. This can be done by establishing a mapping between 

the extracted acoustic features and the underlying linguistic representations. Given 

the high variability of human speech, each linguistic symbol may have multiple 

pronunciations. Pronunciation modeling for ASR is aimed at providing a mechanism 

by which speech recognition systems can be adapted to pronunciation variability. 

The objective of this thesis is to investigate various types of pronunciation variations 

in Cantonese speech and incorporate pronunciation model (PM) in Cantonese ASR 

in order to improve the performance of recognition. 

In a large-vocabulary continuous speech recognition (LVCSR) system, three 

knowledge sources are involved: pronunciation lexicon, acoustic model and 

language model. A decoding algorithm is used to search for the most likely word 

sequence. Based on this framework, pronunciation modeling can be done by 

explicitly modifying these knowledge sources and/or improving the decoding 

technique. 

There are two types of pronunciation variations, namely phone change and 

sound change. Phone change means that a phoneme is completely realized as another 

phoneme. Sound change happens when the acoustic realization is ambiguous 

between two phonemes. 

ii 



Phone change can be handled by constructing an augmented dictionary to 

include alternative pronunciations at lexical level or expanding the search space to 

include pronunciation variants at decoding level. 

Sound change can be handled by adjusting the acoustic model through 

Gaussian mixtures sharing and adaptation or modifying the state output probability 

to include variation information during the search process. 

In this research, different approaches as mentioned above have been 

investigated for pronunciation modeling of Cantonese. The effectiveness of these 

approaches is evaluated with extensive experimental results. When compared with 

the baseline system, among the various methods, relative error reduction of 7.30%, 

5.45% and 8.17% are achieved in a Cantonese LVCSR task when we apply 

pronunciation modeling at lexical level, acoustic model level and decoding level 

respectively. 
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摘 要 

自動語音識別(ASR)的主要目標是把人的口述語言逐詞逐句地轉換爲相應的書 

面語言(文字）。它能通過在所提取的聲學特徵和語言學的表示之間構建一個映 

射來實現。但口語有很大的可變性，每個語言學上的符號可有多個讀法。發音 

模型(Pronunciation Model)爲語音識別系統提供了一個自動適應發音變化的機 

制。 

大辭彙量連續語音識別系統（LVCSR)主要包括三個知識源：發音詞 

典，聲學模型和語言模型以及一個用來搜索最佳詞序列的解碼器。發音模型能 

擴充知識源和改進解碼器的捜索技術。 

發音變異可分爲兩類：音素替換（Phone Change)和音位變體（Sound 

Change)�音素替換從一個音素完全變爲另外一個音素，音位變體是同一個音 

位的多個音，這些音常常介於兩個音素之間。不同層次上的發音模型能處理不 

同類型的發音變異。 

音素替換：在詞條層次上，通過構建一個大的發音詞典來處理，這個詞 

典包括了所有可能發生的音素替換；或者在解碼層次上，通過擴展搜索空間來 

處理。 

音位變體：在聲學模型層次上，通過用高斯混合分量共用及自適應的方 

法來重新訓練聲學模型來實現；或者通過在搜索過程中改良馬爾可夫模型的狀 

態輸出槪率來實現。 

本論文將討論上述處理發音變異的方法以及用詳細的實驗結果來比較這 

些方法的性能。在廣東話大詞彙量連續語音識別系統中，分別於詞條層次’聲 

學模型層次和解碼層次上應用發音模型，與基線試驗結果相比，相對錯誤率減 

少率分gu爲 7.30%, 5.45% and 8.17%� 
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Chapter 1 

Introduction 

speech communication is the dominant mode of human interaction and information 

exchange. Most conventional computer operating systems and applications depend 

on keyboard and mouse as user input. Spoken language technology is developed to 

make computer systems more user-friendly as the computer will have the 

fundamental human abilities to speak, listen, understand and leam. 

Automatic speech recognition (ASR) has become a hot topic of research for 

many years. Statistical methods of converting spoken utterances into meaningful text 

have been extensively investigated in recent years. However, due to the large 

variability of speech, the performance of ASR systems is considered inadequate in 

many aspects. Researches are undergoing to take into account the variability of 

speech in the ASR process. One of the directions is to provide a mechanism by 

which speech recognition systems can be adapted to pronunciation variations. 

The research described in this thesis is aimed at handling different types of 

pronunciation variations in continuous Cantonese speech by incorporating 

pronunciation model into the ASR system. The ultimate goal is to improve the 

accuracy of recognition. 

1.1 Automatic Speech Recognition 

Given an input speech utterance, ASR is to produce a highly probable hypothesis of 

the underlying word sequence being spoken. This can be done by establishing a 

mapping between properly extracted acoustic features and linguistic representations. 

The research on ASR started over 50 years ago. Many different approaches in ASR 
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evolved in these years. Recently a statistical approach is commonly adopted [l]-[4 . 

In this approach, as shown in Figure 1.1，speech recognition is accomplished with 

three knowledge sources, namely the pronunciation lexicon, the acoustic model (AM) 

and the language model (LM). They together define a search space from which the 

most likely sentence(s) or word string(s) can be determined with an efficient search 

algorithm [4:. 

— 一 — 一 — 一 — 1 

I Knowledge Sources i 

•I j 
Pronunciation I 

I Lexicon I I 
I I 
I Language I Acoustic 濯 | 
j I Model I 如 ' I 

I  
Input \ Z 

Speech r - X ^ 
Waveform AcoustlC J Decoder I • Recognized 

Analysis Acoustic Word Sequence 
Feature 
Vectors 

Figure 1.1: Block diagram of an ASR system 

The acoustic model characterizes statistical variation of the acoustic 

properties of sound units. It produces the probability for the input acoustic features 

being observed. The pronunciation lexicon provides constraints on the combination 

of the sound units being modeled at the lowest linguistic level to form a lexical word. 

The language model provides the constraints on how words can be connected to 

form a sentence. The lexicon and the language model are independent of the acoustic 

observations. The decoder is responsible for deciding the most probable and 

legitimate word sequence. 

1.2 Pronunciation Modeling in ASR 

Speech exchanges information between a speaker and a listener. It begins with a 

message in the brain, which activates muscular movements to produce speech 
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sounds. Speech is a complex combination of information from many different levels, 

including discourse, semantics, syntax, phonology, phonetics and acoustics. This 

makes the actual realization of a particular speech sound contain a great deal of 

variability. Pronunciation variations seriously deteriorate the performance of an ASR 

system if they are not handled properly. Factors causing pronunciation variation can 

be divided into two categories: inter-speaker and intra-speaker. The major difficulty 

for unrestricted, speaker-independent continuous speech recognition is due to the 

diversified speaker characteristics such as dialectal accents, speaking styles, gender 

and psychological conditions. Even the speech produced by the same speaker may 

� contain substantial variation, which may be caused by co-articulation, speaking rate, 

physical and emotional condition [5] [6]. All these problems make continuous speech 

recognition a very difficult task. 

Given the high variability of human speech, the mapping between the acoustic 

features and the underlying linguistic representations is not one-to-one. Different 

linguistic symbols can give rise to similar speech sounds while each symbol may 

have multiple pronunciations. Pronunciation modeling of ASR is aimed at providing 

a mechanism by which speech recognition systems can be adapted to pronunciation 

variability. 

Pronunciation variations can be roughly classified into two types: phone 

change and sound change [6] [7]. A phone change happens when a canonical 

(baseform) phoneme is realized as another (surfaceform) phoneme. The baseform 

pronunciation is assumed to be the "standard" pronunciation that the speaker is 

supposed to use. Surfaceform pronunciations are the actual pronunciations that 

different speakers may use. Phone change can be considered as the baseform 

phoneme being substituted by another (surfaceform) phoneme. A sound change 

happens at a lower level, e.g. phonetic or sub-phonetic level. Acoustically, the sound 

unit is neither the baseform nor any surfaceform phoneme. 

Phone change can be handled by replacing the baseform transcription by the 

actual pronunciation observed in acoustic signal, which is the surfaceform 

transcription. This is accomplished by augmenting the standard baseform lexicon 

with additional pronunciation variants for each word entry [8]-[ll] or expanding the 
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search space to include those variations during sentence decoding [12]. M.K. Liu et 

al suggested to build an accent-specific Chinese syllable pronunciation variation 

dictionary by using context-independent and context-dependent syllable confusion 

matrices [8]. C. Huang et al proposed a method of accent modeling through 

pronunciation dictionary adaptation (PDA) [9]. These are the most straightforward 

methods to expand the lexicon by using realistic variation information directly 

observed from speech data. However, due to imperfect recognition results, the 

observed variation may not be accurate. To solve this problem, Byrne et al started 

from a hand-labeled corpus to build an augmented pronunciation lexicon using an 

iterative approach [10]. This augmented lexicon is supposed to contain more 

accurate surfaceform information to cope with pronunciation variation. 

To handle a sound change, pronunciation modeling must be applied at a lower 

level, for example, at state or Gaussian mixture level in a Hidden Markov Model 

based ASR system. The acoustic model is usually trained with only the knowledge 

about baseform pronunciations and no alternative pronunciations are considered at 

all. It is assumed that the speakers always follow the standard pronunciations and 

realize them exactly all the time. This convenient but obviously inadequate 

assumption renders the acoustic model thus trained to be unable to represent the 

variations of speech sounds. It would be useful to refine the acoustic model by taking 

into account the realistic pronunciations [6] [7] [13] [14]. Y. Liu and M. Saraclar used 

the surfaceform model in the existing set of acoustic models to refine the baseform 

model. Y. Liu proposed using partial change phone model (PCPM) as well as 

auxiliary decision tree to model partial changes [6]. M. Saraclar et al suggested to 

refine the acoustic model by sharing the Gaussian mixture pdf s [14]. In this method, 

all the mixture components in the surfaceform models are used to enrich the 

baseform models. This may lead to a problem that some inappropriate surfaceform 

mixture components are also used. V. Venkataramani et al refined the acoustic 

model by MLLR method [13]. It requires extra training data with pronunciation 

variations for the adaptation process. M. Saraclar et al also trained a new set of 

acoustic model based on both baseform and surfaceform pairs [7 . 
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1.3 Objectives of the Thesis 

The main objective of this thesis is to investigate different types of pronunciation 

variations in Cantonese speech and incorporate pronunciation model (PM) in 

Cantonese ASR in order to improve the performance of recognition. 

Two types of variations, phone change and sound change, are considered. As 

their characteristics are different, different methods of modeling are used. We 

replace the baseform phoneme by the surfaceform phoneme to handle phone change. 

This can be done by incorporating the PM into the lexicon to form an augmented 

lexicon with variation information. However, adding all variations into the lexicon 

will cause confusion results in degradation of recognition. Therefore, different 

ranking and pruning methods are investigated in order to include only those useful 

variations. 

In order to cope with sound changes, we investigate different algorithms to 

refine the acoustic model. The refinement of acoustic model includes sharing of 

Gaussian mixture components and mixture adaptation. 

Apart from augmenting the knowledge source, PM can be incorporated in the 

search process. Pronunciation modeling in decoding process not only can deal with 

phone change by expanding the search space, but also can handle sound change by 

modifying the calculation of the state output probability to include variation 

information. 

1.4 Thesis Outline 

In the next two chapters, the background knowledge for Cantonese continuous 

speech recognition will be provided. Cantonese phonology and phonetics will be 

introduced in Chapter 2. The concept of phone change and sound change will also be 

explained. The fundamentals of large-vocabulary continuous speech recognition 

(LVCSR) for Cantonese will be discussed in Chapter 3. 
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The construction of pronunciation model is introduced in Chapter 4. The 

PMs we used are context-independent IF confusion matrix and context-dependent 

decision tree pronunciation model. These models will be used for pronunciation 

modeling at different levels, as discussed in Chapter 5，6 and 7. 

In Chapter 5, pronunciation modeling at lexical level to handle phone change 

will be presented. Different methods of constructing a pronunciation variation 

dictionary (PVD) will be evaluated with recognition experiments. 

In Chapter 6, we focus on incorporating PM in acoustic model to handle 

sound change. Different techniques are investigated to refine the acoustic model to 

include the variation information by sharing or adaptation of Gaussian mixture 

components. 

In Chapter 7, we present the method of pronunciation modeling at decoding 

level. The search space is expanded dynamically during sentence decoding for 

handling phone change and the calculation of the state output probability is modified 

to deal with sound change by including variation information. 

Chapter 8 will conclude this thesis with some suggestions for future research. 
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Chapter 2 The Cantonese Dialect 

Chapter 2 

The Cantonese Dialect 

speech signals are composed of analog sound patterns that serve as the basis for a 

discrete and symbolic representation of the spoken language. These discrete symbols 

are typically phonemes, syllables, and words. Phoneme is the basic contrastive sound 

in the phonological system of a particular language or dialect [l]-[3]. A word is 

made up of a sequence of phonemes, which essentially define the pronunciation of 

the words. Table 2.1 shows the phoneme sequence for the Chinese phrase 香港中文 

大學(CUHK) spoken in Cantonese. 

Chinese 香 港 中 文 大 學 
phrase 

Phoneme , 
sequence h oeg k og ts ug m m t ai h ok 

(IPAi) 

Initial/Final 
sequence /h/ /oeng/ /g/ /ong/ /z/ /ung/ /mJ /an/ /d/ /aai/ /h/ /ok/ 
(LSHK^)  

Table 2.1: Phoneme sequence of Chinese phrase 香港中文大學 spoken in Cantonese. 

To study the phenomenon of pronunciation variation in Cantonese speech, a 

good understanding of this language is indispensable. This chapter will describe the 

phonology and phonetics of Cantonese. Phonology is the science of language that 

deals with the distribution and patterning of speech sounds and the rules that govern 

the formation of valid sounds from the sound units. Phonetics is the study of speech 

sounds and their production, classification and transcription, 

1 International Phonetic Alphabet 
2 The phonetic symbols for Cantonese proposed by the Linguistic Society of Hong Kong 
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Chapter 2 The Cantonese Dialect 

2.1 Cantonese 一 A Typical Chinese Dialect 

Cantonese is one of the most dominant Chinese dialects used in Southern China, 

Hong Kong and among many overseas Chinese communities. It is spoken by more 

than 60 millions people all over the world [1]. The basic unit of written Cantonese is 

Chinese character [2]. Chinese characters are ideographic, meaning that characters 

contain no information about pronunciation. They are generally homophonic [2 . 

Each pronunciation will map to many Chinese characters. On the other hand, 

Chinese is homographic [2], meaning that the same character can have several 

pronunciations with different meanings. 

Each Chinese character has its own meaning(s) and can play a linguistically 

independent role [2]. A Chinese word may consist of one or more characters. Each 

word has a specific meaning and can be used individually. In written Chinese, words 

are connected together one after another in a sentence without explicit boundaries. 

Segmentation of a sentence into words by different readers may be different. There 

are more than ninety thousand words in Chinese and the number of commonly used 

characters is about ten thousand. Most (more than 70%) Chinese words are bisyllabic. 

Monosyllabic words form a substantial set of frequently used words. 

The pronunciation of Cantonese is usually represented in the form of 

syllables [3][4]. Syllable is the basic unit in spoken Cantonese. Each Cantonese 

syllable represents many Chinese characters while each Chinese character can have 

several pronunciations represented by different syllables. Some examples of 

homophones and homographs in Cantonese are listed in Table 2.2. 

zungl 中,宗,忠,忠,終，縱，鐘,… 

Homophones  
man4 文,民,玟，雯,紋，聞,… 

行 hong2, hong4, hang4, haang4 
Homographs “ 

生 sangl,saangl 

Table 2.2: Example of Cantonese homophones and homographs. 
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2.1.1 Cantonese Phonology 

As a spoken language, Cantonese is quite different from Western languages. Like 

Mandarin, Cantonese is monosyllabic. Each Chinese character is pronounced as a 

single syllable sound. Cantonese is also a tonal language. The tone of a syllable 

carries lexical meaning, i.e. the variation in the pitch pattern of a syllable changes it 

to another character. Cantonese is said to have nine citation tones according to the 

pitch contours as shown in Figure 2.1. The first six tones are called non-entering 

tone while the remaining ones are called entering tone. The entering tones, carried 

by syllables that end with -p, -t, -k, are generally regarded as short counterparts of 

the non-entering tones 1, 3 and 6 respectively. As a result, a six-tone system is 

commonly used for Cantonese. 

I ] "j "J ] ] 1 ] I 
i ^ . - , ！ 

I—_1二二 I—__」—_,—匕L 二」—•—.！——…L二 3 
Taiel Tcne2 Tone 3 Tone 4 Tone 5 Tone 6 T^ Tone 3 TCTie6 

K A Level fBgh Rising K̂ Goiî  Low Level Low Rising LowGdng Entering Mddle Entering Lew Entering ^ ^ ^ ^ W ^ ^ ^   m\ ^ Ht̂  市 Si5 事 Si6 色 sM 攝 sip3 食 sik6 
V ) V 、 ， 一) 

Y V 
Not>enleriiig tones Entering tones 

Figure 2.1: Pitch profiles of nine citation tones in Cantonese. 

A Cantonese syllable has a structured form of a beginning Initial (I) followed 

by a Final (F) [3] [4]. A Final can be further decomposed into a vowel nucleus and a 

consonant coda. Table 2.3 shows the structure of a Chinese word. The Chinese word 

我 in (we) consists of two syllables. The first syllable, “ngo”，is formed by the Initial 

/ng/ and the Final /o/. The second syllable is formed by the Initial /m/ and the Final 

/un/. 

Chinese word Chinese character Base syllable IF units 
我 ngo /ng/ /o/ 

我作， {f， mun ImJ /un/ 

Table 2.3: Structure of a Chinese word. 
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Altogether there are 19 Initials and 53 Finals in Cantonese. Initials and Finals 

are combined under certain phonological constraints. There are more than 600 

legitimate Initial-Final (IF) combinations listed in Appendix I [5]. Each of these IF 

combinations is also referred to as a base syllable. For phonemic transcription at IF 

level, the LSHK scheme is adopted in our work. IP A symbols for the Cantonese 

Initials and Finals are also given in Appendix 11. 

If different tones are considered, there are about 1,800 Cantonese tonal 

syllables. The phonological structure of Cantonese syllables is shown as in Figure 

2.2. The numbers in the brackets () are the total number of the respective units. The 

units shown in square brackets [] are optional and may not appear in a syllable. We 

define the null Initial to represent a deleted Initial in a syllable with only the Final 

part. In Cantonese, all Initial onsets are consonants while all nuclei are vowels. 

Cantonese codas fall into three main classes: stop, nasal and vowel. Except for the 

short vowel -a-, the vowel nucleus can be a Final by itself. 

— Tonal Syllable (1,800) 
Base Syllable (665) 一 

Initial (19) Final (53) — Tone (6) 
[Onset] ( 1 9 ) N u c l e u s (8) | [Coda] (8) 

Figure 2.2: Phonological structure of Cantonese syllables. 

In speech recognition, the base syllable and the tone can be recognized 

individually because they primarily concern different acoustic aspects of speech 

signals. In this thesis, we will only focus on recognition of the base syllable. 

2.1.2 Cantonese Phonetics 

In linguistic theory, sound units can be divided into two types: phonemes and phones 

-3][4]. Phoneme is the smallest speech unit in the formation of a particular language 

or dialect. It forms the smallest set of unambiguous symbols that altogether will be 

sufficient for representing the language [3] [4]. Phoneme is language and dialect 

dependent. Replacing any of the phoneme in a syllable would result in another 
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syllable, for example, replacing Initial /z/ in "zung" by Id results in another syllable 

“cung，’. 

Phones, on the other hand, are the smallest sound-building units that are 

physically differentiable [3][4]. Different phones are formed physically by changing 

the place and manner of articulation during speech production. They are the 

fundamental sound categories that describe the range of acoustic features. Phones are 

generally classified into two categories: consonants and vowels. 

Consonants are typically featured by noise-like properties in acoustic speech 

signals [3]. Different consonants are related to where and how the air flowing in the 

vocal tract is interrupted. In Cantonese, consonants always play the role of Initials, 

e.g. /b/，/d/, /g/，/p/, /t/, /k/, and codas, e.g. -p, -t, -k, etc. 

Vowels are featured by the periodic and voiced properties of speech signals. 

They are generated by periodic oscillation of the vocal cord producing periodic air 

flowing through the vocal tract. Different vowels are produced by changing the size 

of the vocal tract. In Cantonese, vowels always play the role of syllable nucleus, for 

example, -aa-, -a-, -i-, -yu-, -u-, -e-, -oe-, -eo- and -o-. 

2.2 Pronunciation Variation in Cantonese 

Acoustic speech can be represented in terms of either phonemes or phones. 

Phonemic transcription, also known as baseform or canonical transcription, 

represents a spoken utterance by a sequence of phonemes [6]. Baseform transcription 

is the standard pronunciation that a speaker is supposed to use. It does not contain 

variation information. 

On the other hand, phonetic transcription, also referred as surfaceform 

transcription, is the transcription in accordance with actual phone realizations. The 

representation of speech in terms of baseform or surfaceform may be very different. 

Table 2.4 shows the baseform and some possible surfaceform transcriptions for the 

word我們. 
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Chinese word Baseform Possible surfaceforms  
ngo mun — 

� o mun 
我們 ngo mun ngo wun — 

o wun  

Table 2.4: Baseform and some possible surfaceform transcriptions of the word 我們 

2.2.1 Phone Change and Sound Change 

Pronunciation variations can be roughly classified into two types: phone change and 

sound change [3][6][7]. Phone change is the realization of a baseform phoneme by 

another surfaceform phoneme where the surfaceform can be identified. It is a 

complete change of one phoneme to another, for example, /n/ changes to /I/, 

symbolized as /n/->/l/. 

Sound change is the pronunciation variation between two phonemes. Even 

human transcribers can hardly agree on the identity of the surfaceform. It is a partial 

change [6] of baseform phoneme with its surfaceform, for example, /n/ varies with /I/, 

symbolized as /n/~/l/. When the pronunciation of a phone is ambiguous between the 

realizations of two phonemes, it is not appropriate to label the phone by either one of 

these two phonemes. Thus, sound change cannot be modeled by simply substituting 

the canonical phoneme with another phoneme. 

Over the past 15 years, sociolinguists have focused their attention on 

phonetic variations in Cantonese by correlating phonetic variables with social 

characteristics of speakers such as sex, age and educational level. These 

sociolinguistic studies have revealed that systematic patterns underlie the phonetic 

variations [3]. Table 2.5 shows the observations from several sociolinguistic studies 

of phonetic variations in Cantonese. 
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/ny->/l/ Phone change of nasal to lateral. 
/n/~/l/ Sound change between nasal and lateral  

/ng/^/null/ Phone change of velar nasal to null Initial. 
Initial /ng/�/null/ Sound change between velar nasal and null Initial.  

consonants /gw/->/g/ Phone change of labialized velar to delabialized velar 
before back round vowel /� / • (Delabialization of 
labialized velar.) 

/gw/�/g/ Sound change between labialized and delabialized velars. 
/ng/->/ni/ Phone change of velar nasal to bilabial syllabic 

Nasal before/after labial consonants. (Labial assimilation of 
syllables velar nasal.) 

/ng/~/m/ Sound change between velar and bilabial nasal syllabic. 
-ng->-n Phone change of velar nasal Final to dental nasal Final, 
-ng �- n Sound change between velar nasal Final and dental nasal 

j^inai Final.  
consonants or -p Phone change of velar stop Final to dental or glottal stop 

Final. 
-k ~ -t or -p Sound change between velar stop Final and dental or  

glottal stop Final.  

Table 2.5: Observations of phonetic variations in Cantonese from sociolinguistic 
studies 

One of the reasons that explains these observations is the distinct 

physiological characteristics among different speakers [3]. For example, /n/今/!/, 

/ng/->/null/, /gw/->/g/ is correlated with the sex and age of a speaker [8]. Bourgerie 

found that female uses more /I/ for /n/ and /null/ for /ng/ than male. The older age 

group has a much lower frequency of /I/, /null/ and /g/ than younger speakers. 

The use of /V for /n/, /null/ for /ng/ and /g/ for /gw/ are also inversely 

correlated with the formality of the speech situation [8]; as the level of formality 

declines, the frequency of /I/, /null/ and /g/ increases. 

Bauer stated that these variations may also be related to the developments in 

neighboring dialects of the Pearl River Delta [3]: in Panyu and Shunde, /null/ 

regularly corresponds to both standard Cantonese Initial /ng/ and /null/, but in the 

Dongguan-Guancheng dialect, /ng/ corresponds to both standard Cantonese Initial 

/ng/ and /null/. The plain velar Initial /g/ corresponds regularly to the standard 

Cantonese labialized velar /gw/ in Conghua, Zhongshan-Shiqi, Xinhui, Taishan. 

Bauer even attributed one's pronunciation changes to influence from one's mother 
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who was from the Dongguan district where Dongguan area had reported phonetic 

changes o f -ng^-n , -k—-t or -p. 

Phone change and sound change can also occur through the mutual influence 

of adjacent phonemes [3]. Assimilation is a kind of phonetic change in which one 

phoneme becomes similar to a neighboring phoneme by acquiring a phonetic feature 

of it. When the preceding syllable ended in a nasal consonant, Ho found that a nasal 

assimilation effect in which subjects used more /n/ than /I/ [9], for example, "soeng 

nei" ？息你(think of you). Labial dissimilation has probably been the cause of the 

change /gw/^/g/ when they occur before the vowel nucleus /o/ [3]，for example, 

changing "gwok"國（country) to "gok"角（comer). The sequence of the two lip-

rounded segments /w/ and /o/ has become redundant or unnecessary with the second 

one driving out the first. The change /ng/->/m/ is due to the fact that when velar 

nasal /ng/ occurred in the environment of a bilabial sound segment, say /p/, its place 

of articulation assimilated to bilabial under the influence of the neighboring bilabial 

sound /p/ or -p. For example, "sap ng"十五(fifteen) becomes "sap m" through the 

perseverance of the bilabial closure of Final -p into the articulation of the following 

nasal syllabic. This phenomenon is termed asperseveratory assimilation [3]. 

Other pronunciation variations may occur due to dialectal accent of non-

native speakers. These speakers may have difficulties to master some of the 

Cantonese pronunciations. They sometimes use the pronunciation of their own native 

language to pronounce a Cantonese word, for example, " n g o "我 ( m e ) will be 

pronounced as "wo" by a native Mandarin speaker. 

2.2.2 Notation for Different Sound Units 

In this section, the notations for different sound units we used in this thesis are 

defined. The baseform and the surfaceform sequences at Initial-Final level are 

denoted as B and S, respectively. Both of them are expressed using the LSHK 

scheme. A baseform IF and a surfaceform IF are denoted by b and s respectively. 

The notation / / represents an IF, for example /aa/. Vowel and coda can be 

represented by -vowel- and -coda, for example, -aa-, -a�-i- and -p, -t, -k respectively. 

16 



Chapter 2 The Cantonese Dialect 

{ } indicates an IF sequence, for example {/ng/ /o/ /m/ Am/}. “ ” refers to a syllable, 

for example “ngo”. Surfaceform phoneme will be used only to represent the 

realization of baseform phoneme having phone change, such as, /b/ /p/, /ng/ 

/null/, Iml /w/, /gw/ 今 /g/, /n/今 /I/, /aai/ + /ai/, etc. It will not be used to 

represent sound change. 

2.3 Summary 

In this chapter, we gave a general introduction to the Cantonese dialect. The 

phonology and the phonetics of Cantonese were described. The definition of 

baseform transcription and surfaceform transcription is given. We also discussed 

about the two major categories of pronunciation variations, namely phone change 

and sound change, in Cantonese. Phone change can be represented by substitution 

with a different surfaceform phoneme while the ambiguous pronunciations caused 

by sound change would make surfaceform transcription uncertain. 
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Chapter 3 

Large-Vocabulary Continuous 

Speech Recognition for Cantonese 

In this chapter, the fundamental principles of large-vocabulary continuous speech 

recognition (LVCSR) will be reviewed. Subsequently the details of a Cantonese 

LVCSR system will be described. This system will be used as the experimental 

baseline for the investigation of various pronunciation modeling approaches. 

The ultimate goal of a speech recognition system is to convert the input 

speech utterance into its written form. The technology is multi-disciplinary, 

requiring the use of advanced techniques in signal processing, pattern recognition 

and linguistic processing. One of the most successful and widely used approaches of 

speech recognition is the statistical approach. This approach, without relying on the 

knowledge of an expert, offers a way to systematically organize the knowledge about 

the speech communication process. Given an input utterance, speech recognition is 

formulated as a probabilistic process to determine the most likely word sequence. It 

involves three knowledge sources, namely acoustic model, pronunciation lexicon 

and language model, as shown in Figure 3.1. 
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I 1 
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Input y / 
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„ Observed ' W o r d Sequence 
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mmmmmmmmmmmmM 
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Figure 3.1: Block diagram of a typical speech recognition system. 

3.1 Feature Representation of the Speech Signal 

Digitized speech signal first go through the acoustic front-end, which extracts a 

sequence of feature vectors from the time-domain signals. The feature vectors 

provide a compact spectral and temporal representation of the speech signal. Feature 

extraction is performed on a frame basis. Each short-time frame is analyzed to 

generate a feature vector. The most commonly used features in speech recognition 

include Mel Frequency Cepstral Coefficient (MFCC) [1]，Linear Predictive Coding 

(LPC) [2], Perceptual Linear Prediction (PLP) [3], etc. They all use a small number 

of parameters to represent the properties of speech signal. In this research, MFCC 

will be used. 

3.2 Probabilistic Framework of ASR 

Given an acoustic signal, a sequence of feature vectors O is obtained by feature 

extraction. The goal of ASR is to find the most probable word sequence W that 

maximizes 
the probability/Y同O), i.e. 
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^ * = a r g m a x P ( ^ | 0 ) (3 .1 ) 
w 

P(W\0) is also commonly known as the a posterior probability. According to the 

Bayesian decision rule, equation (3.1) can be rewritten as 

W = argmaxP{0 | W)P{W) (3 .2 ) 
w 

where P(W) denotes the a priori probability of the word sequence W and P(0\W) 

represents the probability of the acoustic features O being observed when W is 

spoken. P(W) is given by the language model while P(0\W) is computed based on 

the acoustic model and the pronunciation lexicon. Usually W is represented as a 

sequence of sub-word units, denoted by B. If the acoustic model is built based on 

these sub-word units, equation ( 3.2 ) becomes 

炉* = a r g m a x P ( r ) P ( 0 | B)P(B | W) ( 3.3 ) 
w 

where P(0\W) has been decomposed into P(0\B) and P(B\W). P(0\B) is the 

probability of O being observed when B is given. It is computed from the sub-word 

acoustic model. P(B\W), obtained from the lexicon, gives the probability that JV is 

pronounced as the sub-word sequence B. For conventional lexicon in which a single 

realization is assumed for each word, P(B\ W) always equals to 1.0. 

3.3 Hidden Markov Model for Acoustic Modeling 

Acoustic model computes the probability of the acoustic features O being observed 

when the word sequence W is given. Word-level acoustic model is seldom used for 

large vocabulary applications, as the number of models required would be too large 

to be practical. Instead, sub-word level acoustic model is often used, for examples, 

phoneme or IF models (for Chinese). Sub-word acoustic model gives the probability 

P(0\B) for O given the sub-word sequence B. 

A powerful statistical method for representing the speech signal is Hidden 

Markov Model (HMM) [4]. An HMM is a finite-state machine. Each state is defined 
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with a probability density function (pdf). Each transition between the states is also 

governed by a probability. Figure 3.2 shows the structure of an HMM. The number 

of states depends on the complexity of the unit being modeled. In practice, we 

known the observed vector sequence O only, while the underlying state sequence is 

hidden. Therefore, it is termed as "Hidden" Markov Model. 

The pdf at each HMM state is typically a mixture of multivariate Gaussian 

distribution functions. At a particular time instant, the probability of the feature 

vector Ot being generated from state j, also termed as state output probability, is 

computed as 

M 

Pj (义）=Z ^Jm ； �X j m ) 
m=\ 

1 1 (3 .4) 

where M is the number of Gaussian mixture components in the y-th state, and wjm is 

the weight for the m-th mixture component. N(Ot;iUpn，马m) denotes the multivariate 

Gaussian distribution with the mean vector jujm and covariance matrix Ejm. 

In Figure 3.2，the HMM that models the Cantonese Initial Pol is shown as an 

example. It has three states denoted by /J?(l), 0 ( 2 ) and /_Z?(3). Each state is 

associated with M Gaussian pdf s to model the output distribution. Given the 

acoustic observation sequence, 01,02,…,07, the state output probability is given by 

Pi(0i),pi(02),...,P3(07). The probability of the transition from state i to state j is 

denoted by ay. 

22 



Chapter 3 Large- Vocabulary Continuous Speech Recognition for Cantonese 

y^ajs 

I — ^ [ L b ( 2 ) j — { 3 ) | — • HMM states 

I j I I Gaussian Mixtures for HMM states 

/ I� I / \ / x I / I V I / \ I /V I I / I \ / � I / \ ( 
/ I \ I / � / � 

I / I \ I ' \ I / � I 
i _ t � , I • I — • I 
1 I I 1 Observation sequence oi, 02,.. 07 

I Oi O2 O3 I O4 0 5 丨 O e O 7 I 

i pj(oO pj(02) pi(o\ P2(04) P2(0s) j PsM p ^ � \ State output probability 
‘ I I I for the observation sequence 

Figure 3.2: An example of HMM. 

An HMM is fully specified when the state transition probabilities aij and the 

means jUjm, co-variance matrix Zjm and mixture weights wjm are given. These 

parameters are determined in the training process using the Baum-Welch re-

estimation algorithm (forward-backward algorithm) [4] [5；. 

Figure 3.3 shows different levels of acoustic representation. Given a 

sequence of acoustic feature vectors as the training data, the individual vectors are 

first aligned to the states. The probability functions are estimated from the statistics 

of all the training vectors assigned to a particular state. Therefore, each state is 

associated with a number of Gaussain mixture component pdfs. 
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I b ^^^^^ Phoneme level HMM for /b/ 
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Figure 3.3: Different levels of acoustic representation. 

Due to co-articulation, the acoustic realization of a phoneme is usually 

affected by its neighbors. Context-dependent acoustic model is often used. In this 

research, right context biphone models are employed. For example, the HMM I_b 

that models the Initial Pol is expanded to a set of right context-dependent HMMs, 

which are denoted by I_b+F_aa, I_b+F—an, etc. The prefixes I_ and F_ denote 

Initial and Final models respectively. “+” denotes the connection of the base phone 

and the right context in a biphone model. In such a way, the total number of models 

would increase dramatically. To deal with this problem, decision-tree based state 

clustering approach [6] are used to allow sharing of model parameters among similar 

models. 
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3.4 Pronunciation Lexicon 

Pronunciation lexicon essentially provides constraints on the combination of sub-

word acoustic model to form a word model which describes the pronunciation of the 

word in terms of these sub-word units. It contains a baseform transcription for each 

word in the form of a sub-word sequence. 

3.5 Statistical Language Model 

A language model provides the constraints on how words can be concatenated 

together to form a sentence. Let W : w” be a sequence of n words. The a 

priori probability of JVis given by 

n 

P{W) 二 户(W”W2，...,W„) = P"[尸(w,. I ( 3.5 ) 
/ 二1 

where P(wi\wi,w2,...., Wi.i) is the probability that the word w, is preceded by the 

sequence w i , w 2 , W f " . In reality, it is impossible to consider the entire word history. 

Instead, only a few preceding words are considered. This leads to the so-called n-

gram language model, in which n-1 preceding words are considered. For example, 

bi-gram (n = 2) specifies the probability of Wi" followed by W/, 

i.e. Ffw.jwi.jJ. This probability is usually obtained with a statistical approach from a 

large amount of training data. Let c(w/_/，w,) be the frequency count of the sequence 

(w/_7，w/), i.e. Wi-j followed by w“ and c(w,-j) be the total count of w/.； in the training 

data. The bi-gram probability can be computed by 

剩 〜 ) 二 ( ) 
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3.6 Decoding 

The decoding process, also known as search process, finds an optimal sequence of 

words from a search space, which is formed by the pronunciation lexicon, the 

acoustic model and the language model. The search space is a compact structure that 

covers all legitimate word sequences. The algorithms for search are generally 

categorized as one-pass versus multi-pass search. In a one-pass search, all 

knowledge sources are used at a time to decode an utterance, whilst in a multi-pass 

search, knowledge sources are applied at different stages during decoding. 

The forward Viterbi search is commonly employed [7]-[9]. Viterbi algorithm 

is a time-synchronous search, which employs dynamic programming technique to 

process all possible paths at the same time and to keep only the one with maximum 

score. The score is the cumulative probability density of the observations given by 

the HMMs and the score given by the LM. 

3.7 The Baseline Cantonese LVCSR System 

In this research, the effectiveness of different pronunciation modeling strategies will 

be compared based on a Cantonese continuous speech recognition system. In 

addition to the LVCSR task, the pronunciation models are also evaluated in a 

domain-specific task (stock domain). Details of the baseline system and the 

recognition tasks are given in the following sections. 

3.7.1 System Architecture 

A Cantonese LVCSR system consists of the components depicted in Figure 3.4. In 

our work, MFCC is used as the acoustic features. Each speech frame is represented 

by a 39 dimensional feature vector with 12 MFCCs and the speech energy of the 

frame, as well as their first and second order derivatives. The analysis window is 25 

ms with 10 ms frame shift. 
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Figure 3.4: Block diagram of Cantonese LVCSR. 

For Cantonese LVCSR, right context-dependent Initials and Finals are 

usually used as the basic units for acoustic modeling using HMM. In this research, 

the acoustic model being used is a set of cross-word bi-IF HMMs trained with 20 

hours of continuous speech from the CUSENT corpus, which will be described in 

detail in the following section. The number of states for modeling Cantonese Initial 

and Final are three and five respectively. The number of Gaussian mixture 

components for each state is 16. 

The pronunciation lexicon contains Chinese word entries with the 

corresponding baseform IF sequence transcription. In the LVSCR task, the lexicon 

consists of about 6,500 entries in which about 60% are poly-character words and the 

others are single-character words [6]. The baseform pronunciation for each entry is 

obtained from CUDICT [10]. In stock domain task, the lexicon contains 1,147 words. 

The language model used is a word bi-gram using the 6,500-word lexicon 

mentioned above. The training corpus for N-gram modeling was complied from five 

Hong Kong newspapers consisting of about 98 million characters. For the stock 

domain task, the language model used is a word bi-gram train from 2095 stock 

queries. 
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We use a one-pass decoder for continuous Cantonese speech recognition [11, 

The search space is a tree-structured lexicon constructed based on the baseform 

lexicon. The search algorithm is forward Viterbi search. A word lattice is resulted 

from this Viterbi search. When the utterance end is reached, the most probable word 

sequence is obtained by back-tracing the best path. 

3.7.2 Speech Databases 

The training speech data we used is the CUSENT corpus developed by the Chinese 

University of Hong Kong [12]. CUSENT is a read speech corpus of continuous 

Cantonese sentences, which is designed to be rich in phonetic context. A semi-

automatic process was adopted in the creation of the sentence corpus. Chinese 

sentences are selected from four local newspapers of Hong Kong. The selection 

ensures that the coverage of intra-syllable (onset-nucleus) and inter-syllable (coda-

onset) contexts is adequate and balanced. The corpus includes 5,100 training 

sentences and 600 testing sentences. The sentences were uttered by speakers of both 

genders. Table 3.1 gives a summary of CUSENT. 

Training Set Testing Set 

No. of Speakers 68 12 

No. of Utterances 20 K 1.2 K 

No. of Syllables 292.8 K 11.7 K 

Total Length (hours) 20 1.1 

Average Sentence Length 10 5 9 7 
(No. of Syllables) ‘ • 

Table 3.1: Statistics of the CUSENT corpus. 

The training set of CUSENT is used to train both the acoustic model and the 

pronunciation model. The pronunciation modeling algorithms are tested in the 

LVCSR task using CUTEST, which is the test set of CUSENT. CUSENT was not 

designed specifically for pronunciation modeling. Being a read-speech corpus, it 

may not contain much variation information. Nevertheless, with its rich phonetic 
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coverage, commonly occurred variations in read speech are expected to be included. 

The proposed methods are also evaluated in a domain-specific application of 

Cantonese ASR that deals with 1300 utterances of spoken queries on stock 

information recorded from 13 speakers, named as STOCKIEST. 

3.8 Summary 

In this chapter, we reviewed a statistical approach for LVCSR. The details of a 

Cantonese LVCSR system were described. 

An ASR system consists of three knowledge sources, namely, acoustic model, 

pronunciation lexicon and language model. Acoustic model gives the probability of 

the acoustic features being observed when the sub-word sequence is given. 

Pronunciation lexicon provides constraints on the combination of sub-word units 

forming a word. Language model gives the probability of a word sequence. 

A decoder applies the Viterbi algorithm to find an optimal sequence of words 

from the search space formed by the knowledge sources. 
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Chapter 4 Pronunciation Model 

Chapter 4 

Pronunciation Model 

Pronunciation modeling in automatic speech recognition (ASR) is aimed at 

providing a mechanism by which the recognition systems can be adapted to 

pronunciation variation. This is done with a descriptive or predictive pronunciation 

model (PM) from which surfaceform pronunciations can be derived from the 

baseform pronunciation and its phonetic context. The basis for establishing a PM is 

the information about pronunciation variation. Generally speaking, the approaches 

can be divided into two categories: knowledge-based and data-driven [1'. 

In the knowledge-based approach, pronunciation variation is derived from 

linguistic knowledge. Based on linguistic studies or enumerated information 

dictionaries, certain rules for pronunciation variation are formulated. These rules 

typically concern deletions, insertions and substitutions of phonemes. The 

effectiveness of knowledge-based approaches depends on whether there exist 

appropriate linguistic references that fit the intended use. As a matter of fact, 

linguistic studies have a completely different perspective and focus from engineering 

applications. The pronunciation variation information thus obtained is usually 

inadequate to describe what is happening in real speech data. 

In the data-driven approach, the information about pronunciation variation is 

obtained from speech data. By contrasting the actual realization of these data to their 

baseform pronunciations, pronunciation variants are observed. Reliable labeling of 

acoustic realization can be attained by human inspection of spectrographic display. 

However, this is very time-consuming and costly, especially because the amount of 

required data is usually large. In practice, the acoustic realizations are obtained 

automatically using speech recognition techniques. In comparison with manually 

labeled data, automatically recognized transcriptions are more appropriate for 
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pronunciation modeling because they are based on the same acoustic evidence as the 

ASR system [2]. Riley et al proposed to use a hand-labeled corpus as a bootstrap to 

establish a set of rules, which provide constraints for subsequent automatic 

transcription \2'. 

This research adopts the data-driven approach. PM is developed based on a 

large corpus, namely CUSENT, which contains 20 hours of continuous speech 

collected at the Chinese University of Hong Kong (CUHK) [3]. Two different PMs 

are used: IF confusion matrix (CM) and decision tree pronunciation model (DTPM). 

CM is a context-independent PM that predicts surfaceform from only the baseform. 

DTPM is a context-dependent PM which makes prediction of surfaceform depending 

on the phonetic context of the baseform. 

4.1 Pronunciation Modeling at Different Levels 

Pronunciation modeling can be done at different levels, for example, word level, 

phone level and state level [4；. 

Word-level pronunciation model (WLPM) specifies the probability that a 

word is pronounced as a particular surfaceform. It can be built by observing the 

realization of each word directly from the PM training data. However, many word 

entries in the lexicon may not be covered in the training data. In most cases, WLPM 

is built from phone-level pronunciation model (PLPM), where alternative 

pronunciations of a word can be obtained by replacing a phoneme in the word by a 

surfaceform phoneme. 

Phone-level pronunciation model (PLPM) gives the probability that a 

baseform phoneme sequence is pronounced as a surfaceform phoneme sequence. 

This is equivalent to find a set of the possible variants for a particular phoneme (IF) 

unit. It provides a probabilistic description of the mapping between baseform 

phonemes (IF) and surfaceform phonemes (IF). 
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PLPM can be obtained by aligning the baseform transcription with the 

surfaceform transcription of a training corpus and computing the frequency of 

occurrences for each surfaceform. As a result, a probabilistic confusion matrix is 

obtained [5]. Alternatively, decision-tree based approach can be used to build a 

context-dependent PLPM, which is able to make prediction of surfaceform 

phonemes (IF) given the baseform phoneme (IF) and its context [4] [6], These two 

types of PLPMs will be discussed in the later section. 

For HMM based acoustic model, it is also possible to develop the PM at a 

sub-phonetic level, i.e. HMM state level. State-level pronunciation model (SLPM) 

gives the probability that a baseform state sequence is pronounced as the 

surfaceform state sequence. 

SLPM can be obtained by aligning baseform state sequence with surfaceform 

state sequence and computing the frequency of occurrences for each surfaceform 

state. SLPM can be used to modify the acoustic model in a way that the states of 

each sub-word HMM can either be adapted by the surfaceform states, or include the 

parameters of the surfaceform states. The SLPM has a finer resolution than PLPM. 

However, the number of parameters of SLPM would be significantly greater than 

that of the PLPM, obviously because of the additional information being included. 

This calls for more storage space and computation time. Also, the state sequence 

obtained in the recognition process is constrained by the acoustic model which is 

built at phone level. Thus we believe that PLPM and SLPM contain similar 

information. PLPM will be used throughout this research. 

As stated in Chapter 3，speech recognition can be formulated as a 

probabilistic search process as follows 

W - arg max P{W)P{0 | B)P{B \W) (4 .1) 
w 

where P(B\W) is the probability that Wis realized as the sub-word sequence B. If B 

is defined by the baseform pronunciation lexicon, P(B\W) always equals to 1.0 

because B is the only legitimate realization of W. By incorporating PLPM, the 
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probability P(Sk\B) for the 众-th pronunciation variant sequence Sk of B is introduced, 

and equation ( 4.1 ) is re-written as 

W* = argmaxP(IV)P(0 | | B)P(B | W) ( 4.2 ) 
w 

where P(0\Sk) is the acoustic likelihood of Sk. 

4.2 Phone-level pronunciation model and its 

Application 

Two types of PLPM are discussed in this section: IF conflision matrix (CM) and 

decision tree pronunciation model (DTPM). CM is built directly by observing the 

realizations of all baseform phonemes in the training data. It makes a prediction of 

surfaceform from the baseform without considering its phonetic context. The 

training of DTPM applies an optimization process to cluster a set of phonemes 

according to their contextual information. Decision tree based prediction makes use 

of the phonetic context of the baseform. It is considered to be more precise than 

context-independent prediction as pronunciation variation is obviously affected by 

co-articulation. 

4.2.1 IF Confusion Matrix (CM) 

An IF confusion matrix (CM) characterizes the mapping between baseform IF and 

surfaceform IF, and for each surfaceform realization, specifies its probability. CM is 

obtained by the following procedures as illustrated in Figure 4.1: 

1. The baseform transcription for the training corpus, for example CUSENT, is 

obtained from the baseform dictionary, which consists of standard Cantonese 

pronunciation of the words. 
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2. Surfaceform transcription is obtained from the output of phone (IF) recognition. 

The phone recognition is constrained such that the recognized output must be a 

sequence of I-F pairs. This constraint greatly enhances the recognition accuracy 

over unconstrained phone recognition. By aligning the recognized surfaceform 

with the baseform IF sequence, a phone recognition accuracy of 90.33% is 

observed. 

3. For each utterance, the surfaceform transcription is aligned with its baseform 

transcription using dynamic programming. The confused pairs of baseform and 

surfaceform IF units are identified. 

4. For a particular baseform IF unit b and surfaceform IF unit Sk, the total number 

of times that b is confused with Sk is counted and denoted by C(b —Sk). Then the 

variation probability (VP), P(sk\b), is estimated as 

k 

5. A threshold is set to prune those less frequent surfaceform pronunciations in 

order to assure the augmented lexicon does not contain irrelevant 

pronunciations. Such odd events are probably due to recognition errors. Indeed, 

unconstrained phone recognition is known to be fairly erroneous. On the other 

hand, including all variations would increase the homophone rate and cause 

severe confusion in recognition. Adding these pronunciations will deteriorate 

the recognition performance. The threshold can be set in terms of either 

absolute count or variation probability. 

Typically, for each baseform IF unit, a number of possible surfaceform units 

are found. Table 4.1 shows part of the CM in the form of a table for the Initial units 

/m/ and /ng/, and the Final units /o/ and /un/. Both Iml and /ng/ have one alternative 

variation, whilst /o/ and /un/ do not. The full matrix obtained from CUSENT is 

shown in Appendix III. 
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Orthographic 
transcription 

(CUSENT) 

I Training 
“ “ ； I speech data 

Segmentation (CUSENT) 

I 1 -1: ^ _ 1 _ _ ^ 
^ 7 Dictionary Phone 

Baseform • , . 
, . lookup recognition lexicon^^ j:二—J ,, 

Baseform Surfaceform 
transcription transcription 

\ z————— ———— 
IBaseform : /ng/ 7m/ 7un/.. 

Alignment jSurfaceform : /null/ /o/ /w/ /un / . . 

I 
IF confusion matrix 

Baseform Surfaceform VP 
/m/ /m/ 0.8 
Iml /w/ 0.2 
/ng/ /ng/ 0.3 
/ng/ /null/ 0.7 
/o/ /o/ 1.0 
/un/ /un/ 1.0 

Figure 4.1: Construction of CM. 

Baseform b Surfaceform s Variation Probability (VP) 

/m/ /m/ 0.8 

Iml /w/ 0.2 

/ng/ /ng/ 03 

/ng/ /null/ 0.7 

/o/ /of 1.0 

/un/ /un/ 1.0 

Table 4.1: CM in table form for Initial /m/ and /ng/, and Final /o/ and /un/ with the 
corresponding variation probabilities. 
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Both the baseform and the surfaceform representations use the same set of 

phonemic units, which are modeled by the same set of acoustic models. Replacing a 

baseform IF by a surfaceform IF is equivalent to using another (surfaceform) IF 

model to produce the acoustic score. If a speaker pronounces the phoneme with 

variation, this surfaceform acoustic score is supposed to be higher than the baseform 

acoustic score. In this way, we provide another path having a higher acoustic score 

in the search process. 

4.2.2 Decision Tree Pronunciation Model (DTPM) 

Decision tree pronunciation model (DTPM) is essentially a context-dependent PM 

used to predict the surfaceform IFs given the baseform IF. As shown in Figure 4.2，a 

decision tree contains many nodes that are organized in a hierarchical way. Each 

node in the decision tree is featured by a binary question (yes/no answer) about the 

phonetic features regarding the context of the baseform. The leaves of the tree 

illustrate the best predictions (surfaceform IFs) based on the training data. 

C N / \ Y 
^ � <CbLbRb> 

V 
V V y \；  

Rb=/s/ ？ ) /eon/ 0.03, 
/oeng/ 0.97 

y � ^ — — ^ 

( \ < /oeng/ Id /s/ > 
/an/ 0.07, 
/oeng/ 0.93 

\  

< /oeng/ /s/ /s/ > 

Figure 4.2: Decision tree based prediction of pronunciation variation for the Final 
/oeng/. 
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The training process of a DTPM is shown as in Figure 4.3. The baseform IF 

transcription together with the surfaceform transcription obtained from the phone 

recognition form a set of training vectors with phonetic context. The training applies 

an optimization process to cluster a set of phoneme with contextual information [7 • 

A set of questions about the phonetic context are designed. When the lexical tree 

grows, all possible questions are tried at each node to split the data. The question that 

generates the best partitions is selected. The best question is the one that minimizes 

the total conditional entropy of the surfaceform realizations of a phoneme given its 

phonetic context. This process is applied recursively on each branch, until the 

stopping criterion is met. The stopping criterion requires a minimal number of 

samples on the parent node and child node. 

One decision tree is built for each Initial and Final. Therefore, a total of 73 

decision trees are needed for Cantonese. 

CUSENT , ^ T H / 
, ( U=/k/? ) Tree for/oeng/ 

6: Id /oeng/ Isl /at/..… V ^ ^ 
S: Id /eon/ Isl /at/..... | n / \ Y 

N J \ Y 
Training vectors: ^ \  
<Cb Lb Rb Cs U Rs> / " ^ ^ ^ / s / T ^ ？ 

</c/ /sil/ /oeng/ /c/ /sil/ /eon/ > ^ ^ ^ ^ 
</oeng/ /c/ /s/ /eon/ /c/ /s/> N / \ Y ^ / \ ^ 
</s/ /oeng/ /at/ /s/ /eon/ /at/> / \ / \  
• f 一.03,、 
• ^ ^ [ /oeng/0.97 

^―： ： R \ Y 
I V < /oeng/ Id Isl > 

• f /an/ 0 . 0 7 , ‘ 
^ . . . L /oeng/ 0.93 
Optimization | ^ ^ 

process 隱 ^ 
m冗“ ： - x . 二 < /oeng/ /s/ /s/ > 

Figure 4.3: Construction of decision tree. 

In our research, different sets of decision trees are designed for different 

purposes. Context-dependent decision tree (CDDT) concerns the left and right 

phonetic context. Left context-dependent decision tree (LCDDT) concerns only the 

left phonetic context of the baseform and surfaceform. 
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As the amount of training data is limited, the number of training samples 

retained at a leaf node may be very small. The prediction in each leaf may 

correspond to only some rarely occurred training samples. Therefore, we divide the 

phone set into classes according to their phonetic features and design a set of 

questions concerning these features for building the tree, termed as phonetic class 

decision tree (PCDT). We believe that phones belonging to the same class will have 

similar effect on their neighborings. The question set is listed in Appendix IV. Left 

phonetic class decision tree (LPCDT) considers only the phonetic features of the 

preceding phoneme. Appendix V shows a complete CDDT and PCDT for /aang/ 

obtained from CUSENT. 

Let the baseform and surfaceform units under consideration be denoted as Cb 

and Cs. Let U and Ls be the left baseform context and the left surfaceform context 

respectively, and Rb and Rs be the right baseform context and the right surfaceform 

context respectively. DTPM can be used to predict the surfaceform IF (Cs) given the 

baseform IF (Cb) and the phonetic context (Lb, Rb). For prediction, the baseform IF 

together with its left and right context form a vector <Cb U Rb� . An example is 

shown in Figure 4.4. The input vector representing the baseform unit /oeng/ is 

</oeng/ Id /s/>. This vector is then processed by the respective decision tree to 

obtain the predicted pronunciation variants and the corresponding VPs. 

CDDT and PCDT can be used to refine the CM [6][8]. This will be discussed 

in the following section. On the other hand, LCDDT and LPCDT can be 

incorporated in the search process to make online surfaceform prediction for 

baseform phoneme [8] since the right context for an IF model in the search space is 

not known in the forward Viterbi search. 
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j B: /c/ /oeng/ /s/ /at/ •.… 

I J Tree for /oeng/ 

^ ^ r ~ � 
, C U=/k/? J 
Input vector : ^ ^ 
</oeng/ Id /s/> _ ^ ^ ^ 

C L b = / c / ? ) 

V V 
广 ^ ^ r /eon/ 0.03, 

？ / o e n g / 0.97 

V  
< /oeng/ /c/ /s/ > 

Variations obtained /an/0.07’ 
from DTPM /oeng/ 0.93 

Prediction: ^ ^ ^ ^ ^ 
/eon/ 0.03, /oeng/ 0.97 

Figure 4.4: Prediction of variations using DTPM. 

4.2.3 Refinement of Confusion Matrix 

As stated in Section 4.2.1, CM can be obtained from the alignment between 

baseform transcription and phone recognition output. The phone recognition output 

may contain errors. In this section we describe a method to obtain more accurate 

surfaceforms by using CDDT or PCDT [6][8]. The refined surfaceforms are used to 

modify the CM. The method can be summarized by the following procedures as 

illustrated in Figure 4.5. 
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Baseform 
transcription 1 — — | — ^ ― — 

(CUSENT) 

Surfaceform  
transcription CDDT/PCDT I CDDT/PCDT 一 

(CUSENT) construction ^ ^ construction 

i''cddt/pcdt| 2"^cddt/pcdt|  
Pron. network Pron. network | • 

expansion expansion I 

Pron. network! Pron. networkj  

Phone I Phone 
recognition recognition 

refined 5 | _ refined | 

Alignment J Alignment | • 

refined CM refined CM 

Figure 4.5: CM refinement by DTPM. 

1. Baseform transcription is obtained from the baseform dictionary. Surfaceform 

transcription is obtained by automatic phone recognition. 

2. The baseform and surfaceform transcriptions are used as training data to 

construct the first set of DTPM, denoted as CDDT/PCDT. 

3. DTPM is applied to the baseform transcription to obtain a pronunciation 

network with pronunciation alternatives. 

4. Constrained phone recognition is performed on the same data using the 

pronunciation network. The result is a new surfaceform transcription, named as 

l̂ t refined S. The refined surfaceform attains a phone accuracy of 92.15%, as 

compared with 90.33% in the unrefined case. 

5. Refined surfaceform and the original baseform transcription are used to 

establish a refined CM, named as refined CM. 
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6. The alignment between the baseform and the refined surfaceform transcription 

over the training data are used to train another set of DTPM, named as 

CDDT/PCDT. Repeating step 2 to step 5, refined CM can be obtained in the 

same way except the surfaceform pronunciation are chosen from the 

alternatives generated by a new set of DTPM. 

4.3 Summary 

In this chapter, we introduce the role of PM in ASR, i.e. providing a mechanism by 

which ASR can be adapted to pronunciation variability. The construction and uses of 

different types of PMs are discussed. 

We have adopted a data-driven approach to obtain pronunciation variation 

from a set of Cantonese speech data. Two types of phone-level pronunciation model 

(PLPM) are constructed: IF confusion matrix (CM) and decision tree pronunciation 

model (DTPM). 

CM is a context-independent PLPM which gives the probability that a 

baseform phoneme is realized as a surfaceform phoneme. CM can be refined by 

using DTPM. DTPM is essentially a context-dependent PLPM used to predict the 

surfaceform phonemes (IF) given the baseform phoneme (IF) and its phonetic 

context. Context-dependent decision tree (CDDT) concerns the left and right 

phonetic context. Left context-dependent decision tree (LCDDT) concerns only the 

left phonetic context. If the phone set is divided into classes according to their 

phonetic features and questions are designed based on the phonetic features, the trees 

are termed as phonetic class decision tree (PCDT). Left phonetic class decision tree 

(LPCDT) considers only the phonetic features of the preceding phoneme. 

43 



Chapter 4 Pronunciation Model 

References 

:1] H. Strick et al, "Modeling Pronunciation Variation for ASR: A Survey of the 

Literature", Speech Communication, Vol.29, pp.225-246, 1999. 

'2] M. Riley et al, “Stochastic Pronunciation Modeling from Hand-labeled 

Phonetic Corpora", Speech Communication, Vol.29, pp. 209-224, 1999. 

；3] W.K. Lo et al, "Development of Cantonese Spoken Language Corpora For 

Speech Applications", in Proceedings of ISCSLP-98, pp. 102-107，Singapore, 

1998. 

—4] Y. Liu, "Pronunciation Modeling for Spontaneous Mandarin Speech 

Recognition", Ph.D. Thesis, The Hong Kong University of Science and 

Technology, 2002. 

'5] M.K. Liu et al, "Mandarin Accent Adaptation Based on Context-

Independent/Context-Dependent Pronunciation Modeling", in Proceedings of 

ICASSP-00, Vol.2, pp.1025-1028, Istanbul, 2000. 

.6] W. Byrne et al. "Pronunciation Modeling Using a Hand-labeled Corpus for 

Conversational Speech Recognition", in Proceedings of ICASSP-9S, Vol.l, 

pp.12-15, Seattle, 1998. 

[7] http://festvox.Org/docs/speech_tools-l.2.0/x3475.htm 

[8] P. Kam et al, "Modeling Pronunciation Variation for Cantonese Speech 

Recognition", in Proceedings ofPMLA-02, pp.12-17, Denver, 2002. 

44 

http://festvox.Org/docs/speech_tools-l.2.0/x3475.htm


Chapter 5 Pronunciation Modeling at Lexical Level 

Chapter 5 

Pronunciation Modeling at Lexical 

Level 

This chapter will be focused on the incorporation of pronunciation model (PM) into 

the pronunciation lexicon to deal with phone change. This is accomplished by 

augmenting the standard baseform lexicon with additional pronunciation variants to 

construct a pronunciation variation dictionary (PVD). 

The pronunciation lexicon in our Cantonese LVCSR system defines how a 

word is formed by Initial (I) and Final (F) units. This is essentially to provide 

constraints on the combination of IF units. Conventionally, the lexicon includes only 

the baseform transcription for each word. If a phone change occurs in the 

pronunciation of a word, the baseform transcription will no longer reflect the actual 

pronunciation [1]. If such alternative pronunciations are not included in the lexicon, 

the correct word can never by recognized because the respective surfaceform IF 

sequence is not allowed in the search space [l]-[6]. Instead, another word that is 

acoustically similar to that surfaceform pronunciation will probably be retrieved. 

For example, the baseform transcription for the Chinese word 我{R is {/ng/ 

/o/ /m/ Am/}. If/ng/ can be completely realized as /null/ and /ml can be realized as 

/w/, then the surfaceform transcription {/null/ /o/ /m/ Am/}, {/ng/ /o/ /w/ /un/} and 

{/null/ /o/ /w/ /un/} should be added into the lexicon. In this way, four paths are 

allowed to represent 我fR in the search space. 

The augmented lexicon PVD is a word-level pronunciation model (WLPM) 

which gives the probability P{Sw,k\ W) that a word sequence W is being pronounced 
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as the A:-th surfaceform pronunciation, Sw,k [6]. If multiple pronunciations of words 

are included in the lexicon, P(B\W) in the conventional search equation given in 

equation (4.1 ) is replaced by P(Sw,k\ W). Thus we have 

炉* = argmaxP(W)P(0 | S^ J尸(知，* I『） (5 .1 ) 
w ‘ ‘ 

where P(0\Sw,k) is obtained from the acoustic model. 

In our research, phone-level pronunciation model (PLPM) is used to build the 

PVD to handle pronunciation variations. Alternative pronunciations of a word can be 

obtained by replacing a phoneme in the word by a surfaceform phoneme. 

5.1 Construction of PVD 

PVD is an augmented lexicon that includes alternative pronunciations of words. To 

build a PVD, we have to decide what the variants are and which of them should be 

included in the lexicon. We adopt the data-driven approach as described in Chapter 4 

originated by M.K. Liu et al [2] to derive the pronunciation variants from a PLPM. 

Specifically, we use IF confusion matrix (CM) and refined IF confusion matrix 

(refined CM), which give the possible variants with the corresponding VPs of a 

particular baseform IF unit as discussed in Section 4.2.1 and 4.2.3. 

The entire process of PVD construction is shown as in Figure 5.1. "PVD" 

means the pronunciation variation dictionary built directly using a CM. PVD，， 

and ‘‘2nd pvD,，are the pronunciation variation dictionaries built by the and 

refined CM. 
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Figure 5.1: PVD construction by CM and refined CM. 

PVD contains the surfaceform transcriptions s^.k for the /-th word Wi with the 

corresponding word variation probabilities P(s^.k\wi). This probability is obtained by 

multiplying the variation probabilities (VPs) of all individual surfaceform IFs 

composing the word given by equation ( 5.2 ). 

I î) = = I K = ̂ Î-̂ NŴ K I 
‘ N (5 .2) 

二 n 户 1 办")？(〜>'.) 
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where bi b2 …bN and su sja …SkN are the baseform and A:-th surfaceform IF sequences 

for the word W/ respectively. the probability of the baseform IF sequence 

given Wi, is always equal to one. P(skn\bn) is the VP for the w-th surfaceform IF in the 

transcription. 

Table 5.1 shows part of the PVD with the word Wi be 我 f l The baseform IF 

sequence is {/ng/ /o/ /m/ /un/}. From Table 4.1 in Chapter 4，we have P(/null/\/ng/)= 

0.7, P(/o/\/o/) = 1 P(/m/\/m/) = 0.8, and P(/un/\/un/) = 1. Then, by equation ( 5.2 ), 

P({lmx\y /o/ ImJ /un/} |我們）=0.7 X 1 X 0.8 X 1 = 0.56. 

Wi by,. s^.k P(s,^.k\wi) 

/ng/ /o/ /m/ /un/ 0.24 

/null/ /o//m//uny 0.56 
我們 /ng/ /o/ /m/ /un/  

/ng/ /o//w//un/ 0.06 

/null//o//w//un/ 0.14 

Table 5.1: The word 我{H with its surfaceforms and word variation probabilities. 

The probability P(Sw,k\ W) is composed of the word variation probabilities 

P(sy .̂k\wi) of each word in the word sequence by equation ( 5.3 ). This probability 

can be used in the decoding process to find a particular pronunciation variant that 

maximizes the probability P(W\0). 

ny『)二 rp(�’ J 州,•） （5.” 
i 

5.2 PVD Pruning by Word Unigram 

Word frequency is an important factor to be considered in building the PVD. In 

Chinese, a longer word generally has a smaller chance to occur. Many researchers 

have proved that words with a small unigram tend to have fewer variations in their 

pronunciations [7][8]. However, in our approach of building the PVD, a larger 

number of variants tend to be introduced for long words. This is because these 
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variants are obtained by phoneme substitution and long words consist of more 

phonemes. 

In order to solve this problem, we use the word unigram to control the 

number of alternative pronunciations to be added into the baseform lexicon. The 

higher the unigram, the more the alternatives should be added. The procedures are as 

follows: 

1. PVD is built using the method above by CM. However, the threshold is set 

looser in order to include more variations at the beginning. 

2. The word alternatives in the PVD are ranked by P(s^.k\wi). 

3. Word unigrams for all words in the PVD are found from the LM. 

4. The word unigram is used to scale the number of variations N^. for each word. 

The N^. variations with the highest word variation probabilities P(s^.k\wi) will be 

included in the PVD. The maximum number of variations for each word was 

limited to 10. The word unigram ranges from 0 to 0.04. There are 97.6% of the 

words with unigram between 0 and 0.025. The word unigram together with a 

scaling factor of 4000 limits the range of N^. from 0 to 10. 

5.3 Recognition Experiments 

5.3.1 Experiment 1 —Pronunciation Modeling in LVCSR 

In Experiment 1’ the effectiveness of using different PVDs is evaluated in Cantonese 

LVCSR. The factors affecting the performance of PVD will be investigated. 
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Experimental Conditions: 

As described in Section 3.7, the testing data is from CUTEST, which contains 1200 

sentences (about 1.1 hours) recorded from 6 male speakers and 6 female speakers. 

39-(iimensional MFCC feature vectors are used. The acoustic model is a set of cross-

word bi-IFs. The search engine is a one-pass decoder based on tree-structure lexicon 

9]. PM is trained with the 20 hours CUSENT corpus. 

Experimental Results: 

(1) The use ofPVDs with different VP thresholds 

Table 5.2 shows the recognition results with PVDs that adopt different VP thresholds 

(VP Th) ranging from 0.02 to 0.2. "WER" stands for word error rate. “No. of IF 

variants" is the total number of IF variants including the originally 73 IFs. “PVD 

size" is the total number of entries in the PVD. It is found that the use of PVD 

achieves a better performance of recognition. The extent of improvement varies with 

VP Th. If the threshold is too stringent, i.e. VP Th is very high, many frequently 

pronounced variations may not be included in the PVD. If VP Th is small, a large 

number of variants would be included. As a result, the search space is enlarged and 

more ambiguities are introduced to the searching process. A threshold of 0.05 

appears to give the most significant improvement on the accuracy. In this case, the 

average number of pronunciation variants (including the baseform) per IF unit is 

1.30 (95/73). The average number of variants per word is 1.33 (8568/6451). 

“""“I VPTh VPTh I VPTh VP Th VP Th  
Saseline o.02 0.05 0.10 0.15 0.20 

— W E R (%) 25.34 “ 23.91 _23.49 2 3 . 7 ~ 23.64 “ 23.58 
Relative WER 5.54 7.30 6.47 6.71 6.95 
Reduction (%) 

No. of IF variants 73 129 95 82 79 78 
PVD size 6451 20840 8568 7356 7210 7171 “ 

Table 5.2: WER(%) of LVCSR task using PVDs with different VP Th. 

(2) The use of different PVDs with VP Th 二 0.05 
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Table 5.3 shows the recognition results of using different PVDs with the same VP 

Th = 0.05. It is noted that all PVDs have similar performance. The purpose of 

iterative refining is to deal with possible phone recognition errors in order to obtain a 

refined surfaceform. From the results, refining the PVD with CDDT or PCDT seems 

not to be helpful. This may be due to the fact that the amount of data used to train the 

context-independent CM is quite large. The mis-recognized surfaceforms tend to be 

very diverse as opposed to the case with fewer training data. The VPs for these mis-

recognized surfaceforms are much smaller than that of the baseform and the 

surfaceforms that are true pronunciation variations. Therefore, after pruning with the 

VP Th, the CM would no longer include those mis-recognized surfaceforms. In other 

words, most of the unreliable information caused by phone recognition error has 

already been removed. 

On the other hand, the acoustic model being used is a set of context-

dependent HMMs. This may explain why adding contextual information via decision 

tree does not help much. 

It is found that PCDT does not perform better than CDDT. The choice of the 

additional paths in the expanded pronunciation network during phone recognition 

also depends on the acoustic model Although CDDT may produce more unreliable 

paths than PCDT, as long as the true path is there, it will be retrieved by the decoder 

with the aids of AM. Therefore, dividing the phone set into classes according to their 

phonetic features for building the tree may not do any further help. 

“ 1 St CDDT 12"�CDDT PCDT PCDT 
Baseline PVD pyj^ PVD PVD PVD 

一 WER (%) - 25.34 "23.49 23.54 23.55— 23.53 ‘ 23.56 
Relative WER 7.30 7.10 7.06 7.14 7.02 
Reduction (%) 

No. of IF variants 73 95 93 93 93 93 
PVD size 6451 8568 8358 8358 8358 8358~~ 

Table 5.3: WER(%) of LVCSR task using different PVDs with VP Th 二 0.05. 

51 



Chapter 5 Pronunciation Modeling at Lexical Level 

Result Analysis for PVD with VP Th = 0.05: 

To have a better understanding about how the PVD really affect the recognition 

performance, the recognition results of using the PVD with VP Th = 0.05 is 

compared with that of the baseline system. Table 5.4 shows the performance table of 

all the variants that were added to the lexicon. It reveals the relationship between the 

recognition performance and several important factors including the frequency of 

occurrences of baseform and surfaceform units, variation probability, lexical tree 

expansion factor and character level confusion. The followings are the definitions of 

the symbols used in this table. 

b - Baseform IF unit 
s - Surfaceform IF unit 
I - Number of characters improved in character recognition 
D - Number of characters degraded in character recognition 
T - No change in character recognition performance 
Ob - Occurrence count of Z? in testing data 
Os - Occurrence count of s in testing data 
VP - Variation Probability 
Ns - No. of nodes for s in the original baseform lexical tree 
Nexps - No. of nodes for s in the expanded lexical tree 
EF - Expansion factor = Nê ps ̂ ^s 
Cs - No. of characters represented by s in original baseform lexicon 
Cexps - No. of characters represented by s in expanded lexicon 
Xs - No. of confusing characters represented by ^ in expanded lexicon 

b s I I I T \ Ob \ Os \ VP \ s Ns I ^^ I Q I Qc口s 恭 
aak aa 5 1__11__156 369 0.108 ^^ n g 219 1.86 83 134 104 
aat aa 8 1 17 176 369 0.099 
aak a ^ ^ 0 156 176 0.084 aat 50 101 2.02 21 51 33 

aan~ 94 112 1.19 88 106 61 
aang an 1 2 _ _ 2 _ _ 2 0 383 0.063 ^^ 166 252 1.52 120 167 136 
ang an 17 1 52 191 383 0.271 
aang ang "~0 1 1 ~ ~ ^ 191 0.076 ang 68 86 1.26 29 47 31 

^ ^ T Z I Z J "0-069 ap 50 75 1.50 20 43 27 
ak at _ 6 0 l 6 90 333 0.173 at 84 127 1.51 42 62 41 
^ e " “ 6 ” " " “ ^ 82 0.115 e 56 1.21 32 43 29 

― ^ ； 3 7 8 0.099 “ ing 196 209 1.07 ~141 156 118 
3 ^ ^ 0.060 in 172" 213 1.24 92 128 106 

^ i Z J Z . ^ ^ ^ ~ ~ i 253 295 “ 1.17 114 147 130 
m 10 _2 90 6 "0.815 m “ 1 11 11 1 9 9 

— ^ 0 1 4 237 396 0.080 o 119 203 1.71 75 119 107 
^ 419 0.075 ong 126 151 1.20 104 127 39 

― ^ g n ~ ~ 4 s T 226 915 " o ^ g 189 245 1.30 208 245 97 
k ^ [ ^ l o l l j ~ ~ 1 ^ — 3 3 9 0.147 k 84 87 1.04 70 86 23 

- 2 1 0 735 0.768— 1 " W 218 1.36 T T T 220 184 
257 154 0.595 “ null 15 62 4.13 21 82 38 

mil i 0 ~ ~ 4 0 . 0 7 2 ng 47 62 1.32 61 82 38 
Total I 190 I 37 I 617 I | 660 l | 735 l | 

Table 5.4: Performance table with VP Th = 0.05 
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The total number of surfaceform IFs being recognized is 844. It means that 

there are 844 times that the surfaceform models give higher scores than the baseform 

models. Out of the 844 cases, 190 cause improvement in character recognition, 37 

cause degradation and 617 do not have any effect. The improvement is due to the 

fact that pronunciation variation can be represented by a more realistic surfaceform 

model. For example, if a person mis-pronounces the Chinese character 百(hundred) 

as {/b/ /aat/} instead of {/b/ /aak/}，the surfaceform model /aat/ gives a higher 

acoustic score. The original baseform dictionary only contains the mapping between 

百 and {/b/ /aak/}, ) \ (eight) and {/b/ /aat/}. However, the PVD also contains the 

realization of 百 as {/b/ /aat/} Therefore, the decoder will be able to retrieve the 

correct word 百.The degradation is due to confusion. In the PVD, each word may 

have more pronunciations and consequently each pronunciation is now representing 

more characters. For example, {Pol /aat/} represents both characters 百 and J\. 

Factors Affecting the Performance of PM 

From Table 5.4, we can observe that most of the added variations lead to 

performance improvement, in particular, /ang/^/an/, /ng/^/m/, /gw/-^/g/, /n/^/1/ 

and /ng/^/null/. This is related to a number of factors: (1) occurrences of baseform 

and surfaceform IF, (2) variation probability, (3) lexical tree expansion factor, and (4) 

character level confusion 

(1) Frequency of occurrences of baseform and surfaceform 

The more frequent the occurrence of a baseform IF is, the more probably its 

surfaceform variants would be touched. For example, Ob for Initial /ng/ and Final 

/ng/ are much larger than Os for Initial /null/ and Final /m/. Therefore, the number of 

improvement is large. On the other hand, higher occurrence of a surfaceform IF in 

testing data Os increases the chance of confusion. For example, Os for /g/ and /V are 

much larger than Ob for /gw/ and /n/, introducing a lot of confusion. 

The occurrence of the baseform IF in testing data Ob is related to the word 

unigram of the word containing that IF. The larger the word unigram, the larger the 
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occurrence of the IF, the more the variation should be added. Therefore, word 

unigram can be used for PVD pruning. 

(2) Variation probability {VP) 

Being obtained from a large amount of acoustic data, variation probability reflects 

the likeliness of a realistic pronunciation. Adding the variations with large VPs 

makes it possible to handle frequently occurred variations. Therefore, this leads to 

improvement of recognition performance. Also, VP contributes to the path score in 

the search process. For example, even Ob is much smaller than Os for /ang/今/an/ 

and /gw/->/g/ and they show a large number of improvement due to large 

VPs. 

(3) Lexical tree expansion factor 

Lexical tree expansion factor (EF) is the ratio of the count of an IF in expanded 

surfaceform lexical tree {Nexps) to the count in original baseform lexical tree {Ns). In 

general, large expansion factor will increase the confusability during decoding and 

cause degradation in recognition. 

PM 
/A/̂ /Y/ 
ICI-^IM 

^^^^ Lexi⑶丨 tree  

X Y Z Lexicon ^ — — • ( ) •Q • ^ 
^ ^ ^ - K ) b node 

/A//B//C//D/ _ _ Root Node aZ.: B C D � 
>v. /A//X//Y//Z/ 0 — • O t ^ . T - ^ U ~ ~ • node 

No. of b node No. of s node EF=Ns/N狄ps 
aTI AT2  
B:1 B: 1 Y:2/l =2 
C:1 C:1 
D:1 D:1 A: 2/1 =2 
X: 1 X:1  
Y:1 Y:2 
Z:1 Z:1 

Figure 5.2: Calculation of lexical tree expansion factor. 
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Figure 5.2 shows a simple example that explains the expansion factor. 

Suppose the lexicon contains only two words, wi and W2, with IF transcription /A/ 

/B/ /C/ /D/ and IN 1X1 lYI /Z/. With the PM predicting /A/ to be /Y/ and /C/ to be /A/, 

the numbers of surfaceform nodes for both /Y/ and /A/ are increased by one. 

Originally, /Y/ only corresponds to one character. After the expansion, it represents 2 

characters. If the speaker really utters the baseform /Y/，only one possible character 

can be chosen in the original search space. However, in the expanded lexical tree, the 

choice becomes more, the confusability is increased. For example, the expansion 

factor for /ng/ /null/ is large {EF = 4.13), therefore, it causes a large number of 

degradation {D = 8). 

(4) Character level confusion 

A Chinese character consists of an Initial (7) and a Final {F). The introduction of a 

surfaceform I will give another representation for this character with the succeeding 

F. This character will confuse with the existing characters formed by the surfaceform 

/ and F in the baseform lexicon. Similarly, the introduction of a surfaceform F will 

cause confusion to the existing character formed by the preceding I and the 

surfaceform F. Character level confusion considers the overlapping of the preceding 

or succeeding IF for the baseform and surfaceform. If the overlapping is large, the 

baseform IF and the surfaceform unit share the same set of preceding or succeeding 

units. Then, the introduction of s given b will cause a lot of confusions. 

With character confusion Without character confusion 

baseform lexicon surfaceform lexicon baseform lexicon surfaceform lexicon 

： ： : : 
/b/ /aa/ 2 /b/ /aa/ 2 /b/ /aa/ 2 /b/ /aa/ 2 
/b/ /at/ 3 PM: /b/^/p/ /b/ /at/ 3 /b/ /at/ 3 PM: /b/^/p/ /b/ /at/ 3 
l/b/ /aak/ 3| , > /aak/ 31 Ihl 二 3 , > /b/ /aa^ 3 
/b/ /aan/ 1 /b/ /aan/ 1 /b/ /an/ 1 /b/ /an/ 1 

： : ： ： 
1/p/ /aak/ 3| /p/ /aa/ 2 丨？丨(aak/ 3 丨？丨丨，’ I 
/p/ /aan/ 3 V /at/ 3 /p/ W 3 P ' f \ 

： l/p/ /aak/ 61 : /p/ /aat/ 3 
！ l/p/ /aan/ 41 /p/ /an/ 1 

Consider/p/ ： Consider/p/ /p/ /aak/ 3 
Cs = 6 Q = 6 /p/ /aan/ 3 

M f _ _ _ ： _ _ 

Figure 5.3: Calculation of character level confusion. 

55 



Chapter 6 Pronunciation Modeling at Acoustic Model Level 

For example, as shown in Figure 5.3, /p/ is a surfaceform of Pol. The tables 

show the occurrences of the syllables with Initial Pol and /p/ in the baseform or 

surfaceform lexicon. The number of each entry is the number of characters 

represented by that IF combination in the baseform or surfaceform lexicon. In the 

case with character confusion, the baseform lexicon contains 2 characters with an 

Initial /b/ followed by a Final /aa/，3 characters with an Initial /b/ followed by Final 

/at/，3 characters followed by /aak/ and 1 characters followed by /aan/. And, there are 

3 characters with /p/ followed by /aak/, 3 characters followed by /aan/. The number 

of characters represented by /p/ in the original baseform lexicon Cs is 6. Allowing /b/ 

to be realized as /p/ will make the number of characters represented by /p/ in the 

expanded lexicon Cexps becomes 15. 10 out of 15 are being shared among /b/ and /p/. 

This will cause confusion. 

If there is no character confusion, /b/ and /p/ do not have overlapping 

succeeding Final. No character is being shared among /b/ and /p/ after lexicon 

expansion. 

We can see that larger character level confusion will result in more 

performance degradation. For example, /n/ -> /I/ shows large number of degradation. 
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Result Analysis for Different PVDs: 

Table 5.5 is the performance table when different PVDs are used. It can be seen that 

the behavior of the variants is similar among all PVDs. 

" I 5 I PVD 1 St CDDT PVD CDDT PVD 1 ̂^ PCDT PVD PCDT PVD 
- 一 / | z ) | r / | z ) | r 一 / | / ) 丨 厂 / | 1 ) | 7 / 
_aak aa 5 1 11 5 " T " 11 5 2 11 " T " 2 l l " 5 2 11 

aat aa— 8 ~ T ~ 17 8 1 15 8 1 15 T ~ 1 15 8 1 15 
aak aat— 6 “~Q~ 7 4 0 6 0 6 " T ~ 0 6 4 0 L 
aang aan~ 1 ~T" 4 1 ~ T ~ 4 ~ T ~ 1 4 1 1 1 1 4_ 
aang an 1 2 0 2 2 0 ~2 2 0~ 2 2 0 2 ^ 
ang an l Y " 1 17~ 1 50 T ? ~ ~ 1 51 T T 1 50 17 1 50 
aang an 厂 0 ~ T ~ 1 0 1 1 ~Q~ 1 1 0 1 1 0 1 \_ 
aap ap _ ~ 1 1 3 1 1 3 1 1 3 ~ 1 3 1 1 3 _ 
ak at ~~ 6 "~0~ 16 5 “~Q~ 15 5 0 14 5 0 14 5 0 14 
ek e~~ 0 ~ 0 ~ 6 0 0 6 —0 0 0 0 6 0 0 ^ 

ing— 0 Q " 2 0 0 2 0 Q 2 ~ 0 ~ 0 0 2_ 
im in 1 1 3 - - - - - - - - - ―二 ^ ^ ^ ^ 
it i — 1 0 5 - - - - - - ： ： ： ： ： 

10 2 65 10 2 65 10 2 65 10 2 65 
ok ~ o 2 0 ~ ~ i r ~ 2 ~ ~ 0 ~ ~ ~ ~ 0 ~ ~ i T 2 _ _ 0 _ _ 1 2 2 _ _ 0 _ _ 
on ong 5 1 ~ ~ 1 2 5 2 ~ ~ H ~ ~ 5 2~ 11 _ 5 2 _ _ U 5 2 _ _ ^ 

21 3 35 " I T 4 35 21 3 35 21 3 35 
kw k ~0 0 2 0 0 2 0 0 2 0~ 0 2 0 0 ^ 

208 ~ n " " “ 7 1 13 208 70 13 208 
146 35 9 146 35 9 148 

null ng i 0 4 1 0 4 f " 0 _ _ 4 1 0 4 1 0 4 _ 
Total 190 37 617 185 38 597 187 39 596 186 38 597 185 38 599 

Table 5.5: Performance table of using different PVDs with VP Th = 0.05. 

By analyzing the recognition results in detail, we observe that there are three 

Initials that are always confused. The labialized {lip-rounded) velar /gw/ is confused 

with delabialized velar /g/. Nasal Iwi is confused with the lateral (tongue rolled) III. 

Nasal /ng/ is always deleted. It is found that pronunciation variations for the Finals 

occur mainly in codas. Nasal codas, for example, -ng, -n and -m are always confUsed. 

Unvoiced stops, for example, -k, -t and -p are also easily confused. These 

observations agree with that from the linguistic study described in Section 2.2.1. 
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5.3.2 Experiment 2 — Pronunciation Modeling in Domain 

Specific task 

In this experiment, the methods described above are evaluated in a continuous 

Cantonese speech recognition application in the stock domain. This experiment aims 

at investigating domain dependence of pronunciation variations in Cantonese. We 

also try to examine the effectiveness of a PM trained with a relatively small amount 

of data. 

Experiment Conditions: 

The testing data, STOCKIEST, contains 1300 sentences (about 65 minutes) 

recorded from 13 speakers. The acoustic model and the search engine are the same 

as the previous experiment. PM is trained by the CUTEST corpus. 

Experimental Results: 

(1) The use of PVDs with different VP Th 

Table 5.6 shows the recognition results with PVDs that adopt different VP Th from 

0.05 to 0.25. It can be seen that the use of PVD achieves a better performance of 

recognition and the extent of improvement varies with VP Th. 

Different from the previous experiment, the result shows that a threshold of 

0.05 does not give the most significant improvement on the accuracy. For the general 

domain task in Experiment 1, it is observed that most of the variants added will lead 

to more improvement than degradation although the threshold is small (VP Th = 

0.05). However, the case is different in this experiment. This is because the PM 

training data for stock task are 1200 utterances from CUTEST. The amount is not 

large enough to train a reliable PM. Therefore, when the threshold is set to 0.05, 

many unreliable variations are added due to imperfect recognition. However, in the 

general domain, the training data contain 20341 utterances from CUSENT. As there 

are larger amount of data for training the PM, the PM is more reliable. Even the 
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threshold is set small, the variations added are still reflecting the actual realization of 

the baseform. 

From Table 5.6, it is found that the optimal threshold of VP is 0.2. The 

average number of variations per IF unit for this threshold is 1.11 (81/73). The 

average number of variations per word is 1.21 (1511/1247). By using this threshold, 

a relative WER reduction of 7.30% can be achieved. 

r ~ “ I VP Th VP Th I VP Th VP Th VP Th  
f e l i n e o.o5 0.10 0.15 0.20 0.25 

WER(%) 12.06 12.01 11.46 ~ T L 2 5 ~ 11.18 " 11.26 
Relative WER o ^ ^ ^ ^ 6.63 
Reduction (%) 

No. of IF v a r i a n t 73 110 — 93 87 81 — 80 
PVD size 1247 6213 1887 1671 1511 1499 

Table 5.6: WER(%) of stock domain task using PVDs with different VP Th. 

(2) The use of different PVDs with VP Th = 0.2 

Table 5.7 shows the recognition results of using different PVDs with same VP Th 二 

0.2. “2nd CDDT/ PCDT PVD" performs a little better than CDDT PVD" and 

"PVD". This may be due to the fact that the number of data used to train the CM is 

small. The mis-recognized surfaceform seem to be biased to certain IFs. The VPs for 

these surfaceforms are comparable to those which are true pronunciation variations. 

If small VP Th is used for pruning, these mis-recognized surfaceforms cannot be 

pruned away. On the other hand, if large VP Th is used for pruning, useful 

surfaceforms will also be removed. Therefore, the CM obtained is not very reliable. 

Refining the CM by CDDT" and CDDT" or by using "PCDT" will reduce 

the number of mis-recognized surfaceforms, making the CM more reliable. 

“""“ IST CDDT 1 C D D T PCDT PCDT 
Baseline p y p p y p p y p PVD 

“ W E R (%) — 12.06 “ 11.18 ~ 11.21 —11.17 ~1~1.17 11.17 
Relative WER 7.3O 7.04 7.38 7.38 7.38 
Reduction (%) 

No. of IF 73 81 81 81 81 81 
variants  

— P V D size 1247 1511 1511 1511 1511 1511 “ 

Table 5.7: WER(%) of stock domain task using different PVDs with VP Th = 0.2. 
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Result Analysis for PVD using VP Th = 0.05: 

Table 5.8 shows the performance table of part of the variants that were added to the 

lexicon with VP Th = 0.05. The total number of surfaceform IFs being recognized is 

1427. Out of the 1427 cases, 109 cause improvement in character recognition and 71 

cause degradation. The net improvement accounts for the little increase in 

recognition accuracy. 

一 b s \ I \D \ T \ Ob \ Os \ VP \ s 卜 | | 五 | C叫  
aa aak"" 1 "T" 14 639 84 0.064 _ 
aat aak Z H Z ^ ^ 84 J ^ aak 13 133 10.23 6 41 30 
aap aak 0 0 3 18 84 0.375 
ak aak" 0 ~Q i " " 43 0.122 
at ak 1 ~Y~ 14 895 43 " o ^ ak 64 6.4 4 11 0 
o ou “ 1 ~ 6 2 8 1859 ~480 0.059 ou 130 “ 263 2.023 24 44 36 

^ 工 工 ^ ^ ^ ： ^ ^ ^ 二 ~ 2 7 43 13 
ng 1 1 2 24 921 220 0.061 

—eon an " 0 T " 7 72 509 0.080 an 28 “ 50 1.79 14 31 19 
“ w 3 "T~ 27 1013 926 0.064 m 85 “ 122 1.44' 26 46 20 

“ng 9 695 921 427 0.720 null 37 69 1.86 5 14 5 
~ 12 22 1.83 7 8 2 

_ ng m — ~ ^ ~ ~ 2 . 0 8 1 3 3 
gw g 5 5 2 " 163 1 9 ^ 0.257 148 165 1.11 58 68 28 

Total 109 71 1247 I I I I 12820 3748 I I I I 

Table 5.8: Performance table with VP Th = 0.05. 

From Table 5.8, it is found that some variations can never give improvement 

and have to be filtered out. The upper part shows the variations added causing more 

degradation. The lower part shows the variations added causing more improvement. 

In this domain-specific task, the lexical tree expansion factor and character 

level confusion are more significant than those in the general domain task. This is 

because in a domain specific task, the dictionary size is small. After expansion, even 

a small increase in the number of entries will show large effect in the whole lexicon 

and lexical tree. Therefore, expansion factor and character level confusion are more 

sensitive in the domain specific task. 

For example, /aa/, /aat/, /aap/ and /ak/ can all be realized as /aak/. Originally, 

/aak/ occurs in the baseform lexical tree only 13 times in 6 different characters. After 

adding the surfaceforms in the lexicon, /aak/ occurs 133 times in the expanded 
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lexical tree representing 41 characters. Both the expansion factor and character level 

confusion are very large. If one makes the correct pronunciation of /aak/, there will 

be 41 instead of 6 possible choices of characters. The wrong word would be 

retrieved more often. 

In general, the higher the expansion factor or larger the character level 

confusion, the larger the confusability, the poorer the recognition performance. The 

larger the VP and Ob, the more the chance for the PM to be applied results in more 

improvement. 

Result Analysis for PVD using VP Th = 0.2: 

Table 5.9 shows the performance table of all the variants that were added to the 

lexicon with VP Th set to be 0.2. The expansion factor and character level confusion 

are reduced results in less degradation. It is observed that most of the variants added 

will lead to more improvement than degradation. 

b s I 7 I I T \ OB \ Os \ VP \ s Ns N^^nS \ EF \ Cs \ C咖s Xs 
_ _ 0 . 3 7 5 13 17 1.31 6 8 0 
~ ~ Q ~ ~ ^ 43 54 64 1.19 7 11 0 

^ ^ 工 0 - 5 3 8 28 37 1.32 14 21 6 
； ； 0.219 e — 12 22 1.83 7 8 2 

_ n L _ 102 m 12 25 2.08 1 3 3 
nr. n ^ J j _ _ ^ 0 3 ^ _ ong 41 1.05 17 18 3 
aw "1^0.257 g _ 148 165 1.11 58 68 28 

~ ~ 5 8 " W 0.854 1 “ 51 63 1.24 27 34 7 
null " s T 11 702 427 null 37 69 1.86 5 14 5 

Total I 99 I 22 I 979 | l l00 | 2820 2929 I I I I 

Table 5.9: Performance table with VP Th - 0.2. 

61 



Chapter 5 Pronunciation Modeling at Lexical Level 

Result Analysis for different PVDs using VP Th = 0.2: 

Table 5.10 is the performance table when different PVDs are used. Same variations 

are added in all PVDs. The performance for the variants is similar among all PVDs. 

" Z ? I 5 I PVD CDDT PVD CDDT PVD PCDT PVD PCDT P ^ 
“ ~ I \ D r y I \ D \ T D \ T ^ I \ D \ T / I D I ~ 

aap aak 0 0 — 3 0 0 3 —0 0 ~ 3 ~ 0 0 3 0 ~Q~ 3 
ak at - 0 0 "T^ 0 17 ~0~ 0 17 0 0 1?" 0 0 "TT 

ang an 3 0 70 3 ~ 0 ~ 69 3 0 69 ~ 3 ~ 0 70~ 3 0 "vo" 
ek e - 5 0 16 5 0 16 ~ T ~ 0 16 ~5 0 " T ^ 5 0 16 

~ ng m 30 2 30 65 2 65 " W 2 30 2 65 
- g w g - 8 3 54 8 ~ 3 54 8 3 54 ~8 3 8 3 54 

n 1 — 2 6 “ 52 2 T ~ 52 2 6 52 ~ T ~ 6 2 6 52 
ng null 51 11 ' ^ m ^ l ~ ~ 1 1 708 " s T 11 " W s i 11 704 

Total 99 22 978 99 22 985 "W 22 "984 | 99 | 22 | 985 | 99 | 22 | 981 

Table 5.10: Performance table of using different PVDs with VP Th = 0.2. 

5.3.3 Experiment 3 — PVD Pruning by Word Unigram 

Experiment Conditions: 

In Experiment 3, the method of PVD pruning by word unigram is evaluated in the 

same stock domain-specific task. The acoustic model, PM and the search engine are 

the same as the previous experiment. The word unigram obtained by LM is used for 

PVD pruning. 

Experiment Results: 

From Table 5.11, it is observed that the performance of pruned PVD achieves the 

best performance. This shows that word unigram is an important factor for 

controlling the number of variations to be added in the PVD. 
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Baseline PVD (VP Th 0.05) Pruned PVD by word unigram 
一 WER (%) - 12.06 12.01 11.08 

Relative WER ^ ^ 
Reduction (%) 

No. of IF variants 73 110 110 
一 PVD size 1247 6213 1863 ~ 

Table 5.11. WER(%) of stock domain task using PVD pruned by word unigram. 

5.4 Summary 

In this chapter, we discussed the incorporation of pronunciation model (PM) into the 

pronunciation lexicon to handle phone change. IF confusion matrix (CM) is used for 

augmenting the baseform lexicon with additional pronunciation variants to build a 

Pronunciation Variation Dictionary (PVD). From the result, it is found that that the 

use of PVDs achieves a better performance of recognition. We also investigated the 

use of CDDT and PCDT to obtain the refined PVDs. It is found that decision-tree 

based refinement of PVD does not lead to additional performance improvement 

when large amount of training data is used. However, refined PVD performs a little 

better when small amount of training data is used. Word unigram can be used for 

PVD pruning. It is observed that the performance of pruned PVD achieves the best 

performance. 

The effectiveness of different sets of PVDs is evaluated in a Cantonese 

LVCSR task and a stock domain task. It is found that a small VP Th can be used for 

sufficient PM training data and a larger VP Th must be used if the amount of training 

data is not enough. The performance of the variants added can be explained by 

several factors including the (1) occurrences of baseform and surfaceform IF, (2) 

variation probability, (3) lexical tree expansion factor, and (4) character level 

confusion. 
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Chapter 6 

Pronunciation Modeling at Acoustic 

Model Level 

In this chapter, we will discuss the incorporation of pronunciation model (PM) into 

the acoustic model to deal with sound change. This is done by refining the acoustic 

model to include variation information. 

We have discussed the methods to handle phone change which happens when 

a canonical phoneme is realized as a different phoneme. Such a change can be 

modeled by converting the baseform phoneme to a surfaceform phoneme. On the 

other hand, sound change happens at a lower level, i.e. phonetic or sub-phonetic 

level [1][2]. When sound change occurs, the pronunciation is ambiguous between the 

baseform phoneme and its surfaceform phoneme. It cannot be modeled by simply 

replacing the canonical phoneme with another phoneme. To deal with a sound 

change, pronunciation modeling must be applied at a sub-model level, for example, 

at the states of HMMs or the Gaussian mixture components ofHMM states. 

In general, acoustic models are trained with the assumption that the training 

data follow the baseform pronunciations exactly. This convenient but apparently 

wrong assumption renders the acoustic model thus trained to be inadequate to 

represent the variations of speech sounds. It would be useful to refine the acoustic 

model by taking into account the realistic pronunciations. 

Three algorithms of acoustic model refinement are investigated in this 

chapter: (1) sharing Gaussian mixture components of HMM states in both baseform 

and surfaceform models; (2) adapting the mixture components of the baseform 
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models towards those of the surfaceform models; (3) selectively reconstructing new 

acoustic model through sharing or adapting, 

6.1 Hierarchy of HMM 

HMM is a finite state model that characterizes the acoustic signal in a statistical way. 

The number of states is determined by the complexity of a phone. The observation 

probability at each HMM state is usually modeled by a continuous probability 

density function (pdf). In the simplest case, it is a Gaussian distribution. 

If the acoustic signals contain a great deal of variability, the distribution of 

features may not be well represented by a single Gaussian pdf. Instead, the acoustic 

vectors for training a particular state are divided into M categories, each being 

represented by a Gaussian pdf. Therefore, each HMM state is associated with a 

mixture of M multivariate Gaussian pdf s that model the acoustic variation. If more 

mixture components are used, the statistical distribution of the acoustic signals 

would be better represented. 

Figure 6.1 shows the HMMs for the Cantonese Initials /b/，/d/ and /p/. Each 

model has 3 states. Each state in an HMM is associated with M Gaussian mixture 

component pdf s, denoted diS m(l)’m(2)…m(M), 
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Mixture pool 

Figure 6.1: HMMs for Cantonese Initials fb/, /&/ and /p/. 

6.2 Sharing of Mixture Components 

In this approach, the mixture components in the surfaceform models are used to 

enrich the baseform models such that they have a better coverage of acoustic 

variability [3:. 

Suppose that the predicted surfaceform of the baseform phoneme /b/ is /p/. 

This prediction can be made by the pronunciation model (PM) as described in 

Chapter 4. CM with VP Th = 0.05 is used here as the PM. As shown in Figure 6.2, 

each of the phonemes /b/ and /p/ is modeled by a three-state HMM. We can use the 

surfaceform model to refine the baseform model I_b, This is done by tying the 

mixture component pdf s of the surfaceform model to the baseform model. The 

parameters of the model I j? are included in the model I_h to form a complementary 

acoustic model to represent the realistic acoustics. 
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(baseform model) (surfaceform model) 

l_b I_p 

( ) ^\m(l) Y /\ 八 … 八 、 
\rn(l) m(2) m(M) / ) 

m(2) m(M) J 

Figure 6.2: Mixture component sharing of surfaceform model I j> with baseform 
model I J). 

We first align the states of the baseform and surfaceform models. It is 

assumed that both models have exactly the same number of states. Then the n-ih 

state in the baseform model is mapped to the n-th state of the surfaceform model. 

For each state of the baseform model, the observation probability density 

function is modified by including the contribution of the surfaceform output 

observation pdf s. Let the observation pdf of the original baseform statey be 

M 

PJ = Z N{OT ； HM , IJM ) (6 .1) 
m~\ 

where M is the number of Gaussian mixture components, and wjm is the weight for 

m-th mixture component of state j. The modified pdf is given as 

p 广(o) 二 P�Sk=b\b). Pj P(s, I b). (o,) (6 .2) 
k=\ 

Sk^b 
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where K is the total number of surfaceform pronunciations for the baseform 

pronunciation b, qk人oi) is the output pdf of the j-th state of the k-th surfaceform Sk, 

P(sk=b\b) is the VP for a baseform to be realized as itself, and P(sk\b) is the VP for a 

baseform to be realized as Sk, 

The number of mixtures in the modified baseform model depends on the 

number of surfaceform pronunciations. More surfaceform pronunciations will bring 

in more mixture components to the modified baseform model. As the number of 

mixture components of each state is changed after the sharing process, re-estimation 

of model parameters is needed. 

6.3 Adaptation of Mixture Components 

Although the previous approach yields an acoustically complementary model, it also 

increases the model size by including more mixture components. As a result, it costs 

more storage for the additional model parameters and requires more computation in 

decoding. On the other hand, if the surfaceform model is actually very similar to the 

baseform model, including those similar mixture components in the modified 

baseform model can be unnecessarily superfluous. 

In this section, we describe another method that refines the baseform model 

by adapting its existing Gaussian mixture components instead of introducing extra 

components. The states of the baseform and surfaceform models are first aligned to 

form a one-to-one mapping. The baseform mixture component pdf s are adapted 

towards the nearest surfaceform components. Within each pair of states, we need to 

pair up the baseform and surfaceform mixture component pdf s with the smallest 

distance as shown in Figure 6.3. 
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(baseform model) (surfaceform model) 

Smallest KLD \ 
/ ntn(l) J \ X - "卜 »KsO) J \ \ 

/ mnd) J \ \ •卜‘ ms(2) / \ \ 

mB(3) J \ ’... 'ns(3) j \  

\ = I . . . z = / 
\ mn(M)八 < V ^ 附s(M)八 / 

Figure 6.3: Mapping between baseform and surfaceform mixture component pdf s 
with smallest KLD. 

The distance between two mixture component pdf s can be calculated by the 

Kullback-Leibler divergence (KLD) [4], which is an information-theoretic measure 

for finding the similarity between two given pdf s. Specifically, when these pdf s, 

denoted as f and g, are multivariate Gaussian, the symmetric KLD has a closed form 

as 

d{f,g) 二 全加 ceKSpi - M,)(Mf - M,y ( 6 3 ) 

where [i and D are the mean vectors and the co-variance matrices of the two pdf s 

respectively. 

Let mB(i), ms(i), for / 二 1 to M, be the M baseform and surfaceform mixture 

components respectively in that pair of states. We compute the KLDs between all 

possible pairs of mixture components, (jnB(i), msO)). Each of the surfaceform 
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mixture components is paired up with the nearest baseform mixture component in 

KLD. That is, for each m s ( j ) , we find 

i = arg min d (m^ (/), m^ (j)) (6 .4) 
ms (0 

As a result, a particular baseform mixture component msft) may be 

associated with k surfaceform components. For example, in Figure 6.3，there are two 

surfaceform pdfs , ms(l) and ms(2) being mapped to the baseform pdf mB(l). To 

modify mB(i), we first compute the centroid cs of the k surfaceform mixture 

components, weighted by the corresponding mixture weights. For example, the 

centroid pdf between ms(l) and ms(2) is shown as in Figure 6.4. 

(baseform model) (surfaceform model) 

l_b 

綱 

/ \ smallest KLD �讯 ^ � 

/ _(�)八-……\ ……• J \ 
Centroid j \ 

V I / V scaled by 
J \ mixture weight • / 

Figure 6.4: Centroid cs of 2 surfaceform mixture components, ms(l) and ms(2). 

If the baseform has K surfaceform pronunciations, there will be K centroids 

generated. Let them be denoted as ...c妆.All these K individual centroids and the 

baseform component are weighted by the corresponding VPs. A combined centroid 

is then obtained from these centroids and the baseform component. This VP 

weighted combined centroid becomes the modified baseform mixture mB(i)，. For 

example, Figure 6.5 shows that baseform Pol has two surfaceforms, /p/ and /d/. Then, 
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m � is associated with two centroids, csj and c幻.mB(l), csj and c勾 are weighted by 

the corresponding VPs, 0.8，0.15 and 0.05. A centroid of these 3 mixture components 

is computed. This VP weighted centroid is the modified baseform mixture msO)，. 

l_b (baseform) 
VP义8 /jD(lst surfaceform) 

I \ l \ f \ VP=0.15 

f 八 \ [ centroid scaled I 刚 ,⑵八 ] • ) \ by mixture , 乂、 \ \ • weight � I 

V : V : y 

乂 、 八 二)， /_d (2nd surfaceform) 
VP=0.05 

Centroid scaled 八 八 八 

\ weight ^ / 

Figure 6.5: VP weighted centroid of 2 surfaceform centroids and the baseform 
component. 

The weighted centroid, fc, of k mixture components can be found by 

minimizing the weighted divergence as 

k 
{/V,2V} = argmin2>„"(y: , /«) (6 .5) 

I^C 工 C n=\ 

where an is the weighting coefficient of the «-th pdf, In calculating the individual 

centroid cs for the k surfaceform mixtures, the mixture weight is used for an. In 
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calculating the VP weighted optimal centroid, mB(i) \ the VP is used for a". Similar 

to the derivation in [4], if diagonal co-variances are used, the /-th component of the 

centroid is 

^ l t i a “ 2 : : i ( / ) + i::i(/)) , “ � 
(6.0 ) 

“ i 

6.4 Combination of Mixture Component Sharing 

and Adaptation 

Both of the approaches described in Section 6.2 and 6.3 attempt to adjust the 

baseform models using the mixture components in the surfaceform models. In the 

case of adaptation, the baseform pdf s are shifted towards the corresponding 

surfaceform pdf s. If the surfaceform pdf is far away from the baseform one, the 

extent of modification would be substantial and consequently the modified pdf may 

fail to model the original baseform. In the case of mixture sharing, as we mentioned 

earlier, including more mixture components into the baseform models may be 

superfluous. Thus, we propose to combine these two approaches. The idea is to 

perform adaptation using the surfaceform components that are close to the baseform, 

and at the same time, to use those relatively distant components for sharing. 

We first try to analyze the KLD between the mixture component pdf s in the 

baseform HMMs and the nearest surfaceform pdf s in the surfaceform HMMs. Let Sk 

be a predicted surfaceform realization of the baseform phoneme b. In our research, 

the acoustic model is a set of right-context bi-IF HMMs. Given the context-

independent IF unit b’ we can find a number of context-dependent HMMs that 

correspond to b or Sk. For each state pair, the KLDs for all possible mixture pairs, i.e. 

(rriBfi), rnsO)) are computed. Each of the surfaceform mixture components is paired 

up with the nearest baseform mixture component in KLD. After that, M KLDs can 

be obtained if each state contains M mixture components. If N HMMs are found for 
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the unit b, we can compute Nx M KLDs for each state. The distributions of these 

KLDs are plotted for this variation pair. Figure 6.6 shows the KLD distribution for 

some of the variation pairs /aak/-^/aa/, /aak/->/aat/, /aang/^/aan/ and /aang/—/an/. 

/aak/ -> /aa/ /aak/ -> /aat/ 

1 0 0 ‘ “ . state 1 1 0 0 f ‘ ‘ ‘ s tate 1 ‘ 
50 ' 1 50 L 

0 • . 0 • ‘ ‘ • 
0 100 200 300 400 500 0 100 200 300 400 500 

State 2 100 ^^• 
50 I 50 I 
0 I* , • • 0 ™ ‘ 

0 100 200 300 400 500 0 100 200 300 400 500 

^ ‘ ^ ^ ^ ^ ^ 芒 ― ! ‘ ^ ^ ^ 
g 50 . <§ J 

0 ‘ 0 LMta- • ‘ 
0 100 200 300 400 500 0 100 200 300 400 500 

100 [ ‘ state 4 1 ‘ ‘ ‘state 4 • 
50 50 • 
QI ^ ‘ olifc ——.——•—— 

0 100 200 300 400 500 0 100 200 300 400 500 
100 f ‘ 100 ‘ sSTT 

50 50 L 

oLfc-ia^ .—— oW———•——•——•—— 
0 100 200 300 400 500 0 100 200 300 400 500 

KLD KLD 

F_aang -> F_aan F—aang -> F_an 

20 . state 1 • 20 - state 1 . 

o l L _ _ _ , _ _ , _ _ , _ _ • ^ 
0 100 200 300 400 500 0 100 29O 300 400 500 

20 .1 State 2 . 20 state 2 . 
oiL— , , ol•• ‘—— 

0 100 200 300 400 500 0 100 200 300 400 500 

芒 20 state 3 . 20 • state 3 

^ q I A ^ I ol - I 
0 100 200 300 400 500 0 100 200 300 400 500 

20 . s t a t e 4 . 20 - s t a t e 4 . 

qlI l ___,___,__ ol 丨• 
0 100 200 300 400 500 0 100 200 300 400 500 

2q State 5 . c 20 - state 5 . 

ml § M^ _   
0 1 0 0 200 300 400 500 0 1 0 0 200 300 400 500 

KLD KLD 

Figure 6.6: KLD distributions for variation pair /aak/今/aa/, /aak/—/aat/, 
/aang/ /aan/ and /aang/—/an/. 
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From the KLD distributions for different variations, the following 

observations can be made: 

(1) The distribution of KLD varies among different variation pairs. 

(2) Two main types of distributions can be identified. One is showing consistently 

small KLD (<50), while the others showing a wider range of KLD values. 

(3) Small value of KLD is obtained when a vowel nucleus remains unchanged or a 

consonant Initial/coda is substituted by another phoneme in the same phone class. 

For example, for the cases of /aat/^/aa/, /aak/今/aat/, the baseform and 

surfaceform units have the same vowel nucleus. It is noted that the first two 

states of their HMMs show very small KLD values. Similar observation is made 

in the last 3 HMM states for /aak/->/aat/, /ak/->/at/, /aang/今/aan/, /im/—/in/, 

which involves substituted codas. It is also found in the first few states in mis-

pronounced Initials, for example, /n/->/l/, /ng/->/null/ and /null/^/ng/. 

(4) Widely-distributed KLD is observed for those confused pairs of phonemes with 

the vowel nucleus completely changed or the coda deleted. For example, the 

baseform and surfaceform units have different vowel nuclei for the cases of 

/aang/->/ang/, /aap/->/ap/, /eng/"^/ingA It is noted that the first 3 states of their 

H M M S show large KLD values. Similar phenomenon is observed in the last 3 

HMM states for /aak/今/aa/, /aat/—/aa/，/ek/-^/e/, /it/->/i/, /ok/今/o/ in which 

stop codas are deleted. Such kind of distribution is also found in the last 2 states 

in velar lip-rounded Initials mixed with velar Initials, for example, /gw/->/g/, 

/kw/->/k/. 

Based on the above discussion, we plot the KLD distributions according to 

the type of variation (see Figure 6.7). These types of variation are: (1) Finals with 

deleted stop coda; (2) Finals with stop coda interchanged; (3) Finals with nasal coda 

interchanged; (4) Finals with vowel identity changed; (5) mis-pronounced Initial and 

(6) velar lip-rounded Initial changes to velar Initial. 
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Figure 6.7: KLD distributions for different types of pronunciation variations. 
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Small KLD means that the mixture components of the baseform and 

surfaceforms are similar. In this case, the baseform components are adapted towards 

the surfaceform. In the case of a widely-distributed KLD, the surfaceform 

components should not be used to adapt the baseform components, but be kept along 

with the modified baseform model in order to characterize irregular pronunciations 

explicitly. In this way, a combined approach of baseform model refinement is 

formulated as shown in Table 6.1. “SI，’，“S2’，,...，“S5，，stand for state 1, state 2， . . .， 

state 5 of an HMM respectively. “A” and "S" stand for adaptation and sharing of 

mixture components respectively. At each state, either adaptation or sharing is 

performed based upon their KLD distributions. 

SI S2 S3 S4 S5 

Final with Deleted Stop Coda A A S S S 

Final with Stop Coda Interchanged A A A A A 

Final with Nasal Coda Interchanged A A A A A 

Final with Vowel Identity Changed S S S A A 

Mis-Pronounced Initial A A A ~ — 

Velar Lip-Rounded Initial change to Velar Initial A S S -- --

Table 6.1: Mixture combination in different states using adaptation or sharing for 
different variation types. 

6.5 Recognition Experiments 

Experimental Conditions: 

CUTEST is used as the testing data. The acoustic model is refined by the methods 

mentioned above. IF confusion matrix with VP Th 二 0.05 is used. 
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Experimental Results: 

The experimental results for different refining methods are shown as in Table 6.2. 

Three baseline systems are prepared with different number of mixture components in 

the acoustic model. "Sharing" refers to HMM mixture component sharing discussed 

in Section 6.2. “Adaptation，，refers to HMM mixture component adaptation 

discussed in Section 6.3. "Combined" refers to HMM refinement using both 

"sharing" and “adaptation，，discussed in Section 6.4. The number of mixture 

components in the acoustic model for "Baseline 1”，"Baseline 2” and "Baseline 3” 

are intentionally made the same as that of "Adaptation", "Sharing" and "Combined" 

respectively, so that fair comparison would be possible. In general, a better 

recognition performance can be attained by refining the parameters in the baseform 

acoustic model. 

Baseline 1 Baseline 2 Baseline 3 Sharing Adaptation Combined 

(32144) (37505) (34042) (37505) (32144) (34042) 

No retrain 25.34 24.34 24.93 24.38 24.70 24.87 

Retrained N/A N/A N/A 23.96 N/A 24.57 

Table 6.2: WER(%) of LVCSR task using three different HMM refining methods. 
Figures inside () are the numbers of mixture components in different 

model sets. 

Experimentally we found that the optimal threshold of variation probability 

(VP) to prune less frequent surfaceforms is 0.05. The KLD thresholds for HMM 

sharing and adaptation are set at 300 and 50 respectively. By using these thresholds, 

the relative WER reductions are 3.79% and 2.53% for "sharing" and "adaptation" 

respectively compared with "Baseline 1”. The error reduction can be further 

improved to 5.45% when the model parameters are re-estimated in the case of 

"sharing". As no extra mixture component is included in the models for "adaptation", 

no re-estimation is done to prevent any loss of surfaceform information. 

From the results, it is found that including surfaceform mixture components 

in the acoustic model gives better recognition performance than adapting the 
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baseform mixture components. This may be due to the fact that extra mixture 

components are used for representing the acoustic model. The number of mixture 

components used in the model set for "sharing" is 16.7% more than that for 

"adaptation". Another reason is that not all surfaceform mixture components are 

appropriate for adaptation. Some of them may represent irregular or idiosyncratic 

pronunciations. Therefore, we may want to choose selectively those useful mixture 

components for refining the acoustic model rather than merge them all with the 

baseform mixtures. 

Combining "sharing" and "adaptation" reduces WER by 1.85%. The relative 

error reduction can be further improved to 3.04% when the models are re-estimated. 

This approach keeps a small number of mixture components in the model set while 

solving the problems in "adaptation". With only 6.4% more mixture components 

than the "adaptation" approach, it obtains good performance improvement. 

In general, better recognition accuracy can be attained with a model set 

having larger number of mixtures. Both "sharing" and "combined" increases the 

number of mixtures of the model set. In order to have a fair comparison, "baseline 2” 

and "baseline 3" are trained so that the number of mixtures of the model sets is the 

same as "sharing" and "combined" respectively. 

Comparing with "baseline 2”，the relative WER reduction for "sharing" 

change from 5.45% to 1.56%. Comparing with "baseline 3”，the relative WER 

reduction for "combined" change from 3.04% to 1.44%. This illustrates that the 

improvement is partially due to pronunciation modeling and partly contributed by 

the increase in number of mixtures of the model set. 

6.6 Result Analysis 

In this section, we try to analyze the recognition results in detail and explain the 

causes that lead to performance improvement. The baseline recognition results are 

used for a contrastive reference to reveal which variations cause improvement. 

80 



Chapter 6 Pronunciation Modeling at Acoustic Model Level 

6.6.1 Performance of Sharing Mixture Components 

Table 6.3 is a performance table for the first method "sharing". Ms is the surfaceform 

model used to refine the baseform model Mb. "Improve" refers to the count of 

improved cases with the respective total count of occurrences. Positive value means 

improvement while negative value means degradation. For example, by using the 

surfaceform models F—aa and F—aat to refine the baseform model F—aak, a net 

improvement of 6 is attained in 156 occurrences of /aak/. In most situations, the 

refined models show improvement in recognition accuracy. 2316 IFs in the 

recognized output correspond to the modified models. 97 out of these 2316 are 

improved. 

Ms used to refine Mb Confused Ms  
Mb \ Ms ‘ Improve Mb Ms Improve 

F aak F aa/F aak/ 6 /156 F aaF aa -4 /369 — — 
Faat  

F—aang Fjian/F_aang/ 3 / 2 0 F_aan F_aan -2 /412 
— —F an/f—ang F an F_an -2 /383 

F—aat —F aa/F—aat 2 /176 
F ak F ak/F at 3 / 9 0 F at F at -1 /333 

F:ang —Fan/F—ang 19/191 
_F im F im/F_ in 2 / 8 1 F in F in -5 / 508 

F — n � F jn/F —n兄 10/90 ~F_ m F_m - 2 / 6 
F o / F ~ j j k 7 / 237 F_o F o -3 / 3 % ~ 

F—on F on/F ong 4 / 9 7 F on^ F ong 3 /419 
； ] T ^ I gw — 7/226 1 g 1 ^ -7/915 
_l_n — I l/I—n 21 /302 II II -5/735 

I:ng 一I ng/I_null 15 /257 “ 
I null I ng/I_null 1/154 

Total I 97/2316 I • 

Table 6.3: Performance table for "sharing". 

The attained improvement can be explained as in Figure 6.8, which uses the 

pdf s of the baseform model I^gw and the surfaceform model I_g as examples. 

Originally, if a speaker pronounces /gw/ correctly, the acoustic probability of the 

model I_gw is higher than that of the surfaceform model I_g. Thus, correct 

recognition can be obtained. On the other hand, if one pronounces with variations 

such that the observation Ogw is closer to the surfaceform model, the output 
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probability of the surfaceform model I_g will be higher than that of the baseform 

model I_gw. 

If the baseform model is modified by PM, the pdf of the refined baseform 

model I b e c o m e s a combination of the baseform and surfaceform mixture 

components. The output probability is now higher for the refined baseform model. 

Then the correct phoneme can be recognized. 

Wrong recognition without using PM 

Without Variation With Variation 

Mb : I_gw Mb : I_gw 

/ Ms:/_g i_g 

I A \ 
— _ _ / \ _ — / pgM 
Ogw Pg(Ogw) Ogw Wrong 

: recognition 

Correct recognition after using PM 

Without Variation With Variation 

Mb : /_gw — 

J \ _ _/ Pg(Ogw) 
Ogw Pg(Ogw) O 炒 

Figure 6.8: Improvement in recognizing the baseform /gw/ after mixture component 
sharing. 
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However, the incorporation of PM may also cause confusion when the 

surfaceform s is pronounced. The column "Confused M/’ in Table 6.3 shows that 

being the surfaceform model of others, degradation in recognition will be introduced. 

This can be explained as in Figure 6.9. /g/ is the surfaceform of /gw/. If one 

pronounces /g/ correctly, originally, the output probability is higher for the correct 

model I_g. If PM is used to modified I I _ g w ‘ will contain surfaceform mixtures 

of I_g. This will cause confusion, as the observation is now closer to the refine 

model I_gwRecognition error will be introduced. 

Confusion of recognizing s 

Without PM With PM 

——\_/ — Pgf-g) 1 — I - / \ ~ I 咖 
� � 

Figure 6.9: Degradation in recognizing the surfaceform /g/ after mixture component 
sharing. 
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6.6.2 Performance of Mixture Component Adaptation 

Table 6.4 is a performance table for the second method “adaptation”. In most cases, 

the refined models shown improvement in recognition accuracy. This can be 

explained as in Figure 6.10. 

Ms used to refine Mb Confused Ms  
Mb ^ Improve Mb Ms Improve 

F_aakF_aa/F_aak/ 6 /156 F—aa""""F_aa 2 / 369 
F—aat  

F_aang F_aan/F一aang/ 3 / 2 0 F_aan F—aan -5 /412 
F—an/F—ang F an F an -2 / 383 

F—aat —F aa/F—aat 2 /176 “ 
F_ak F_ak/F_at 3 / 9 ^ F—at F—at ~T7 333 

F ang F—an/F—ang 17 /191 
FJm F_im/F_in 1 / Sl~~ FJn F in 508 
Fn 只 Fm/Fjng 10/90 F—m F_m 0 / 6 
F——of~ f—o/F:ok 2 / 237 F—o F_o 2 / 396 
F_on F—on/F ong 1 /97 F ong F ong -3 /419 
/—， I g/I gw — 7 /226 1 g -1 /915 “ 
I—n— I_l/I_n 12/302~ II II -16/735 

I—n哭 ~ 7 ng/I_null 19/257 
I null I ng/fnull 0/154 

Total 85 /2316 ‘ 

Table 6.4: Performance table for "adaptation". 

Similar to the case of “sharing，，，if variations occur, the output probability of 

the surfaceform model Ijg is higher than that of the baseform model I_gw. The pdf 

of the refined baseform model I w i l l shift towards the surfaceform model The 

output probability is now higher for I_gw\ Then the correct phoneme can be 

recognized. 

On the other hand, if correct pronunciation /g/ is made. The pdf of the refined 

baseform model I w i l l shift towards the surfaceform model. The observation is 

now closer to I R e c o g n i t i o n error will be introduced due to confusion. 
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Improvement in recognizing b 

Without PM With PM 

^ ^ ^ A \ \ r i 
——」\^ 1 l - V I 厂 g … 。 

Ogw Ogw 

Degradation in recognizing s 

Without PM WithPM 

• / ， 口 Mb..I，丨,••、Mb'.. I，’ 

——— Pgrog) ] 1 I 她） 
_ _ L!!__ 

Figure 6�10: Improvement in recognizing b and degradation in recognizing s after 
mixture component adaptation. 

6.7 Summary 

In this chapter, we refine acoustic model for handling sound change in pronunciation 

by the methods of: sharing the surfaceform Gaussian mixture components with those 

of the baseform; adapting mixture components of the baseform towards those of the 

surfaceforms; selectively to share or to adapt the models using the distribution 

information of the KLD between mixture component pair of baseform and 

surfaceform. 

There are two main types of distributions of KLD between baseform and 

surfaceform mixture component pairs, one is showing consistently small KLD (<50)， 

while the others showing a wider range of KLD. They actually reflect different types 
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of pronunciation variations. Small KLD is usually found when a vowel nucleus 

remains unchanged or a consonant Initial/coda interchanged with another phoneme 

in the same phone class. Wide-Range KLD are found when a vowel nucleus is 

changed or a stop coda deleted or velar lip-rounded Initials mixed with velar Initials. 
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Chapter 7 

Pronunciation Modeling at Decoding 

Level 

Due to co-articulation, the pronunciation of a phoneme is affected by its neighboring 

context. Pronunciation modeling at lexical level and acoustic model level makes use 

of IF confusion matrix for context-independent prediction of pronunciation 

variations. Context-dependent variations caused by co-articulation are not considered. 

Augmenting the lexicon with pronunciation variants can handle only intra-word 

variation, i.e. context-dependent variations within the word. In order to deal with 

context-dependent cross-word variations, we make an attempt to use PM at decoding 

level. 

Both phone change and sound change can be handled at decoding level. In the 

case of phone change, the search space is expanded dynamically to include variation 

information during sentence decoding. As for sound change, the computation of 

acoustic scores during the search process can be modified to take into account the 

surfaceform information. 

7.1 Search Process in Cantonese LVCSR 

The decoding process of a speech recognizer aims at finding a sequence of words 

whose corresponding acoustic and language models best match the input signal. The 

search process in our baseline Cantonese LVCSR system is a one-pass search [1:. 

The pronunciation lexicon, the acoustic model and the language model are used to 

form a search space from which the most likely word sequence is decoded. The 
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search space is a lexical tree constructed based on the baseform lexicon. The lexical 

tree specifies all legitimate connections for the baseform bi-IF HMMs. A branch of 

the lexical tree is shown in Figure 7.1. Each node on the lexical tree represents a 

base IF which corresponds to all context-dependent HMMs with this base IF as the 

core. For example, in Figure 7.1, the node with base IF /ang/ carries the bi-IF HMMs 

of F_ang+I_z, F—ang+I—s and F_ang+I_g. 

F_ang+I_z —i 丨一z FJ 
F_ang+I_s r\ ^ 恆指 
F—arml—g ^ ^ 

丨 h 1 / F—ang L n g F_an L h F_ong 

< " 4 ) ~ K ) ~ ^ K ) ~ K 3 ~ K 3 ~ 
F - a n g \ Ls 胜 赃 衝 

\ F_ei L d F_ei L c F_aan 

. V ~ K ) K ) ~ K ) K ) ~ 
� n m m 

~ K ) — K ) — — ^ 壞帳 
l_w F 一 a a i 丨一z F_oeng 

Figure 7.1: A branch of the lexical tree contracted by the baseform lexicon. 

Forward Viterbi search is adopted in the LVCSR system. It is a token-based 

search process. A token is defined with the following items: node identity, path score, 

path history and the corresponding acoustic model. During the search, each token 

represents a search path reaching a particular lexical node. The propagation of tokens 

follows the paths defined in the lexical tree in which only the paths connecting 

consecutive bi-IF HMMs are activated. Bi-gram language model is used and a word 

record is created whenever a search path reaches a word-end node. A word lattice is 

resulted from this Viterbi search. When the utterance end is reached, the most 

probable word sequence is obtained by back-tracing the best path from the word 

lattice. 
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7.2 Model-Level Search Space Expansion 

To deal with context-dependent inter-word pronunciation variations, some 

researchers suggested to add a group of multi-words into the lexicon [2][3]. However, 

this method can only handle a limited number of these variations. Another way is to 

incorporate PM at decoding level [4]. 

To incorporate PM at decoding level, the surfaceform pronunciation 

dictionary is not needed. The search works all the way with the baseform lexicon. 

Thus, the search space is the same as the baseline system. On the other hand, the 

search process is modified in the way that the number of alive tokens is increased to 

account for the pronunciation variations. Each bi-IF connection is expanded to the 

predicted surfaceform dynamically during the search. The paths leading to 

alternative pronunciations are also allowed to propagate in the search process. 

I 1 
I b: /ang/ | , 
I HMM: F_ang+I_z 丨 � • 

4 'fO~^ 面 旨 - & ， ， 」 
I HMM: F_ang+I_s \ \ / 
I J / — Token (PM) 

Root Node 丨 \ / I一s F_ang b node s node 

0 — • O ~ • O - ^ - K ) — — 胜 
F_ang j—  

F_an ^"p b: /ang/ b: /ang/ 

I Cb=/ang/,Lb=/h/ j \ _ : F一angH_z HMM: F—an+l—z 
I Prediction Cs= /an/ j L b： /ang/ b: /ang/ 
L………‘‘……一………………•……•"…一J S: /ang/ s: /an/ 

HMM: F_ang+I_c HMM: F_an+I_c 
L b: /ang/ b: /ang/ 

s: /ang/ s: /an/ 
HMM: F—ang+l—s HMM: F_an+I_s 

Figure 7.2: Token expansion with the incorporation of PM. 

Figure 7.2 explains the operation of token expansion in the modified search 

process. In the baseline system, there are two nodes (I一z and I一s) connected to the 
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node F ang. Therefore, two bi-IF HMMs are stored in this node and thus two alive 

tokens are recorded at the node F ang. 

A set of context-dependent decision tree pronunciation models (DTPM) as 

described in Section 4.2.2 is used to predict the surfaceform IF (s) from the baseform 

IF (b) and its context during decoding. It should be noted that the right context is not 

yet known in the forward Viterbi search. Therefore, left context-dependent decision 

tree (LCDDT) and left phonetic class decision tree (LPCDT) are used. 

With the DTPM, predictions can be made with the prior knowledge of the 

current baseform IF (Cb) and the left baseform context (Lb). For example, in Figure 

7.2, given the contextual information (Cb 二 /ang/, U = /h/), a surfaceform /an/ is 

predicted for the baseform node F ang. The nodes I—h, F ang and I_z have the 

surfaceforms /k/, /an/ and Id respectively. 

The incorporation of PM increases the number of alive tokens. Apart from the 

original tokens carrying the baseform information, additional tokens are created to 

carry the surfaceform information. For example, two tokens at node F ang are 

expanded to six tokens. With these additional tokens, each bi-IF connection is 

modified to allow the paths propagate to alternative pronunciations. 

The search process is modified to find the word sequence W that maximizes 

the probability contributed by the surfaceform acoustic likelihood P(O\S0, variation 

probability P(SK\B) and the language model P(W), i.e. 

F * 二 argmaxP(W)P(0 | S,)P(S, | B)P(B | ( 7.1 ) 
w 

where Sk is the ^-th pronunciation variant sequence for the baseform sub-word 

sequence B. The probability P(Sk\B) is obtained from the prediction using LCDDT or 

LPCDT. 
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7.3 State-Level Output Probability Modification 

To deal with sound change, pronunciation modeling must be applied at a sub-model 

level. Acoustic model is usually trained with only assuming the baseform 

pronunciation without considering alternative pronunciations. In the previous chapter, 

we have discussed the refinement of the acoustic model by taking into account 

realistic pronunciations such that they can better represent the variations of speech 

sounds. However, those approaches can only handle context-independent sound 

change. In the following, the method "State-Level Output Probability Modification" 

is investigated to deal with context-dependent sound change. 

The incorporation of PM in the search process neither change the original 

search space nor increase the number of alive tokens to carry the information of 

pronunciation variations. Instead, it is the way of computing acoustic score to be 

modified to take into account the easily confused surfaceform states. 

During the search process, the acoustic score is given by the state output 

probability Pj{ot), which is a mixture of Gaussian distributions as follows 

M 

Pj � =Z �N{Ot ； ，T^jm) ( 7.2 ) 
m=l 

With the DTPM, predictions can be made with the prior knowledge of 

current baseform IF (Cb) and left baseform context (U). Given the predicted 

surfaceforms, the way of computing the state output probability is modified as 

凡•, (o,) = P(Sk P(s, IZO. q,j (o,) (7 .3) 
J k=\ 

where K is the number of surfaceform pronunciations for a particular baseform 

pronunciation b, P(sk=b\b) and P(sk\b) are the VPs obtained from the DTPM given 

the left context, qkjiot) is the state output probability of the k-th predicted 

surfaceform Sk state/ 
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This method is very similar to the method of "Sharing of Mixture 

Components" as described in Section 6.2. The only difference is that PM is 

dynamically added during the decoding process with the context information. 

Different context may give rise to different predictions in this method. 

7.4 Recognition Experiments 

7.4.1 Experiment 1 — Model-Level Search Space 

Expansion 

In this experiment, the method "Model-Level Search Space Expansion" is evaluated 

in the LVCSR task. The search engine is modified such that DTPM is added 

dynamically during the search process to handle phone change. 

Experimental Results: 

Table 7.1 shows the recognition results of "Model-Level Search Space Expansion" 

using LCDDT and LPCDT with VP Th = 0.05 and 0.2. It can be seen that the 

incorporation of PM in decoding process improves the recognition performance. As 

the surfaceform path does not exist in the baseline system, the correct word sequence 

can never be retrieved for the utterance with phone change. This method generates 

the surfaceform paths by using LCDDT and LPCDT. The correct word sequence can 

be retrieved and a better performance can be obtained. 

‘ n L C D D T LCDDT LPCDT LPCDT 
Baseline y p j^i Q.QS VP Th 0.2 VP Th 0.05 VP Th 0.2 

WER (%) 25.34 23.53 23.27 23.66 23.29 
Relative WER 7.14 8.17 6.63 8.09 
Reduction (%) 

Table 7.1: WER(%) of LVCSR task with “Model-Level Search Space Expansion" 
‘ using LCDDT/LPCDT. 

Unlike the results attained with the lexical-level approach, better 

performance is observed for VP Th = 0.2 than VP Th = 0.05. This is because the 
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pronunciation model used is context-dependent DTPM. The number of parameters 

needed for training a DTPM is more than that for training a context-independent IF 

confusion matrix (CM). This suggests that the amount of PM training data from 

CUSENT is probably enough to train a reliable CM but may not be adequate to train 

a precise DTPM. Rare predictions from DTPM should be pruned to improve the 

reliability. This account for the better performance with VP Th 二 0.2. 

As described above, the amount of training data to train LCDDT is 

inadequate. Intuitively, LPCDT should perform better than LCDDT. Nevertheless, it 

is found that the performance of LPCDT and LCDDT does not show a notable 

difference. This contradicting result can be explained by the aid of the acoustic 

model and the language model. "Model-Level Search Space Expansion" only 

expands the search space according to the DTPM to include more paths leading to 

different surfaceforms. However, the choice of these additional paths also depends 

on the AM and LM. Though LCDDT may produce more unreliable paths than 

LPCDT, as long as the true path is there, the true path is still possible to be selected 

by the decoder with the aids of AM and LM. Therefore, LPCDT only achieves a 

similar performance as LCDDT. 

7.4.2 Experiment 2 — State-Level Output Probability 

Modification 

In this experiment, the method "State-Level Output Probability Modification" is 

evaluated in the LVCSR task. The search process is modified in such a way that the 

calculation of the state output probability takes into account the predicted 

surfaceform. 

Experimental Results: 

Table 7.2 shows the recognition results of "State-Level Output Probability 

Modification" using LCDDT and LPCDT with VP Th = 0.05 and 0.2. It is found that 

using both LCDDT and LPCDT for this method does not affect the recognition 
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accuracy that much. It even deteriorates the recognition performance for VP Th = 

0.05. 

r r “ ~ ~ LCDDT LCDDT LPCDT LPCDT  
Baseline vPTh0 .05 VP Th 0.20 VP Th 0.05 VP Th 0.20 

— W E R (%) 一 25.34 27.21 “ 25.07 ~ 27.13 ~ 2 5 . 0 5 
Relative WER - i … 冗< i T3 J ,0 /� -7.38 1.07 -7.06 1.14 Reduction (%) 

Table 7.2: WER(%) of LVCSR task with "State-Level Output Probability 
Modification" using LCDDT/LPCDT. 

The performance of this approach is not comparable with that obtained in 

Chapter 6, in which the method "Sharing of Mixture Components" can be regarded 

as its context-independent counterpart. The observation can be explained mainly by 

two reasons, the amount of PM training data and the contribution of the far-away 

Gaussian mixtures in the surfaceform HMM. 

As we mentioned in the previous section, the amount of training data may not 

be enough to train a set of reliable context-dependent DTPM. Therefore, not all the 

predicted surfaceform HMMs are appropriate to be included in the computation of 

the state output probability for the baseform model. Unlike "Model-Level Search 

Space Expansion" where only one of the predicted surfaceform is applied for each 

token, all the Gaussian mixtures of all the predicted surfaceform HMMs are used in 

calculating the state output probability. The unreliable predictions may lead to a 

smaller state output probability to the baseform model, which will result in incorrect 

recognition. Therefore, the performance obtained with VP Th 二 0.2 is better than VP 

Th 二 0.05 as more unreliable predictions are filtered. The result is not comparable to 

the one achieved in "Sharing of Mixture Components" in Section 6.2. It suggests that 

the context-independent CM is more reliable than the context-dependent DTPM. As 

we use the same training data for both, the one with fewer parameters, i.e. context-

independent CM would be more reliable. 

Moreover, in "Sharing of Mixture Components", a KLD threshold is 

imposed so that the Gaussian mixtures of the surfaceform model which are far away 

from that of the baseform model are not considered in the calculation of the state 

output probability. However, we did not filter these “far-away” Gaussian mixtures in 
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the method described in the previous section. These mixtures will lower the state 

output probability. Therefore, this method only shows little improvement. 

7.5 Summary 

In this chapter, we discussed the incorporation of PM at decoding level in order to 

handle context-dependent, inter-word phone change and context-dependent sound 

change. We proposed the method "Model-Level Search Space Expansion" to handle 

phone change. The search space is expanded dynamically by increasing the number 

of alive tokens to contain variation information during sentence decoding. To deal 

with sound change, we proposed the method, "State-Level Output Probability 

Modification". The calculation of the state output probability in the search process is 

modified to consider also the surfaceform information. 
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Chapter 8 

Conclusions and Suggestions for 

Future Work 

8.1 Conclusions 

The work described in this thesis contributes to the study of pronunciation variations 

in continuous Cantonese speech. Different approaches of incorporating 

pronunciation models (PM) into Cantonese ASR system are investigated and 

analyzed with comprehensive experimental results. 

Phone change and sound change are the two major types of pronunciation 

variations that we have considered. Phone change is the complete change of a 

baseform phoneme to another surfaceform phoneme. Phone change can be modeled 

by providing the baseform phoneme together with the surfaceform realization either 

at lexical level or decoding level. Sound change is caused by pronunciation 

ambiguity between the baseform phoneme and the surfaceform phoneme. Sound 

change can be handled by modifying the parameters of baseform models at acoustic 

model level or by including the surfaceform parameters in the computation of 

baseform state output probability at decoding level. 

In our study, pronunciation model is a set of phone level pronunciation 

models (PLPM) trained from a large speech corpus. The PLPMs include context-

independent IF confusion matrix (CM) and context-dependent decision tree 

pronunciation model (DTPM). PLPMs are integrated with different knowledge 
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sources, including the lexicon and the acoustic model, and the decoder in the ASR 

system. 

The baseform lexicon is augmented with variation information obtained from 

CM to build a pronunciation variation dictionary (PVD). By replacing the baseform 

transcription of each word in the lexicon by the surfaceform transcriptions, phone 

change can be handled. It is found that the recognition performance can be further 

improved by pruning the PVD with word unigram information. This verifies that 

words with a small unigram tend to have fewer variations in their pronunciations. 

Performance analysis is performed in order to gain insight into the process of 

pronunciation modeling. The analysis shows that although incorporating 

pronunciation model leads to improvement on recognition accuracy, it may also 

deteriorate the recognition performance in some cases. This is due to the increased 

conflisability when the number of characters represented by a pronunciation is 

increased. It is found that the inclusion of only a few common variations would lead 

to significant performance improvement. These variations are /ang/^/an/, /ng/->/m/, 

/gw/->/g/, /n/->/l/ and /ng/^/null/. It can be said that such a simple modification is 

already fairly effective to deal with phone change in Cantonese read speech. 

The acoustic model is refined by CM to deal with sound change. In our work, 

the approaches of sharing or adaptation of Gaussian mixture components are 

investigated. Sharing of mixture components supplements the baseform model to 

better represent the realistic pronunciations. However, both model size and 

computation are increased. Including mixture components of similar surfaceform 

model in the modified baseform model is also redundant. Adaptation of mixture 

components effectively adjusts the baseform model to be acoustically more accurate. 

Performance improvement is observed in the case that the Gaussian mixture 

components of the baseform and the surfaceform models are close to each other. 

Then, we combine the two approaches in such a way that the surfaceform 

components that are close to the baseform are used for adaptation, and relatively 

distant components are used for sharing. Again, it is found that the refinement of 

only a few models can give improvement. They are /ang/�/an/, /ng/~/m/, /gw/~/g/, 

/n/�/!/, /ng/�/null/. However, the incorporation of PM may also cause confusion 

when the surfaceform is pronounced. 
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The decoding algorithm is modified such that dynamic search space 

expansion is allowed during the search process to handle phone change. The 

calculation of state output probability could take into account the variation 

information to handle sound change. When dealing with phone change using search 

space expansion, the recognition accuracy is increased as the search paths with 

surfaceform pronunciations are allowed. In addition, cross-word context-dependent 

DTPM can be applied at decoding level. More sophisticated PM can be used in this 

level as opposed to lexical level or acoustic model level. However, only minimal 

improvement is obtained in handling sound change at decoding level. This suggests 

that context-dependent PM may not be as good as context independent PM in 

dealing with sound change when the number of PM training data is not enough. 

In general, the improvement for dealing with phone change is higher than 

that for sound change. Indeed, it is very difficult to accurately define sound change. 

The causes leading to sound change are not easily identified. It is difficult to tackle 

sound change effectively. The methods proposed in this thesis may not be effective 

to deal with the so-called sound change. 

8.2 Suggestions for Future Work 

Pronunciation modeling is a large research topic. Though pronunciation modeling at 

different levels of Cantonese LVCSR is investigated in this research, many have to 

be done in order to handle other types of variation in speech. Here, we present some 

suggestions to improve the current system. 

1. Accent Speech and Spontaneous Speech 

In this research, the framework for the incorporation of PM in different components 

of the ASR was discussed. Also, the evaluation techniques are developed such that 

we can analysis the contribution of every variation. In this stage, only read speech is 

under testing. Spontaneous speech and accented speech will contain even more 

variations than read speech. Spontaneous speech being uttered with less concern in a 

less formal condition will contain more variations. Speakers would tend to preserve 
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only the most informative words [1][2]. Function word will be uttered with more 

variations. Also, fast speaking rates tend to coincide with significant phonological 

reduction [l]-[3]. Accented speech contains a lot of variations as native and non-

native Cantonese speakers use different phone sets when they speak. Non-native 

speakers either do not know the exact phone should be used or they use phone 

belonging to the phone set of their mother tongue language to utter a Cantonese 

word. Therefore, both phone substitution and sound change will occur frequently. 

Being provided the framework, it is possible to extend our works to deal with 

these kinds of variations. 

2. Other Variations such as Deletion and Insertion 

In the proposed framework, only the variations due to substitution of phoneme are 

handled. As mentioned in the previous paragraph, deletion and insertion are also 

found in spontaneous speech. Towards a practical system, it is crucial to handle the 

variations caused by deletions and insertions. 

At lexical level, deletion/insertion could be handled by a PVD with word 

entries having more/fewer phonemes than the baseform pronunciation. Deletion may 

also be considered at acoustic model level by modifying the baseform model such 

that some of the HMM states could be skipped. At decoding level, deletion/insertion 

is handled by providing more paths in the search space. 

3. Integration of Pronunciation Modeling at Different Levels 

In this thesis, pronunciation modeling at lexical level, acoustic model level and 

decoding level are presented and compared. All of these methods show contributions 

to recognition accuracy. However, these methods are applied independently to the 

ASR system. It would be nice to have all the proposed methods be integrated in a 

single system. Intuitively, the system having all these features in pronunciation 

modeling could perform better as PM at each level shows improvement. On the other 

hand, some points should be noted in building such a system: 1) PM applied to 
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different levels may show redundancy, 2) dealing with phone change and sound 

change simultaneously may not be appropriate, etc. 
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Appendix I Base Syllable Table 

Initial 
Final I b I C I d I f | g | gw | h | j | k | kw | 1 | m | n ' ng p s t w z 

a a 氺 氺 氺 * * * * * * 氺 * * * * 氺 * * * * * 

““^ ^ ^ 5 ^ * Z 5 * * * ~ * * * * * * * 
aak * * * * * * * * * * * * * * * * * * 
aam * * * * ~ * * * ^ * ^ * 
aan * * Z J * * * * * * *~ * * * * * * * * 
aang * i * * * ~ * * * * * * 

* * * * * * * * “ * * * ^ 

“ ^ 5 * ^ * * * * * * * * * * * * * 
* * i * * * * * ~ * * * * * *_ 

“ ^ ^ 5 S S i * * * * * * * * * * * * * * 
~ ^ * S * * * * * * * * ^ 
“ ^ * 5 S * * * * * * * * * * * 
~ ~ i H； S S * * * * * * * ~ * 

J ； * * * * * * * ~T~ * * * * * * 
~ “ i * * * * * 氺 * “ * * ^ 

“ ^ * S * * * * * * * ~ * * * * * * 
~ ~ 5 i i * * ~ * * "^T" * ~T~ * * * 
~ I S i i 5 * * * * * * " * * * ； 

^ 5 H； z * * * ~ * * * * * 
“ ^ ^ ； * * * * 氺 ^ 

* * * * ~ ~ ~ * * * * * * ~ 
* ； * * » * * * * * ；^ 
；—Z 5 5 * * * * 

eon * * I  
z * * * 

eot * 
~ ; ；T S * * * * ！L_ 
~ik * * S * 氺 ~ ~ * * * * * * 

； * * 1 —氺 "^T" * ~ * 
~ ^ ； ； ； * ~ * * * 氺 * * * ^ 

； * ； * * ~ ~ ~ * * * * * * 
—^ ；— r ~ * * * * * 

r^ —； ； ； * * “ » * * * * * * ^ 
~r； r * r * ~ * ~ » * * * ^ 

m * 
ng * 

； ； ； ； ~ * * * * * * * * * * * ；^ 
—^ * 5 ~ * * * * — * * 
―^ ； ^ * * ； ^ ^ 

Z Z 5 * * * * * * 
oeng * Z  

~ ^ 5 5 * * * * * * * *_ * ^ 
~ ^ — * — 5 * S S * * * * * 厂 * * * * * * * 
~Zn * * 5 5 * * * * * * * * * * * * 
―^—；—；—； ； * * * “ ~ * * * * * ~ * * 

Z Z Z ^ Z Z Z L Z Z Z Z Z Z Z Z Z Z Z ~ Z Z  
—^ ；—； ；; T" * * * * * f * * * * ：!_ 

； ； ~ * ‘ * * 
~ ~ * * * * * 

— ；; J 5 5 * 5 * * * * * * * * _* 
~ S 5 * * * * * 

；;; Z Z ^ ^ * 5 * * * * * * * * 
ung 本 军不个 

： ；: 氺 * * 氺 氺 水 

Ut * I 
^ * * * 

yu * 
yun * * 氺 氺 氺 * * 氺 ^ 

~— 5 * * * * * * * * Table I: Legitimate Initial/Final combinations for Cantonese base syllables. 
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Appendix II Cantonese Initials and 

Finals 

一 LSHK IPA LSHK IPA 一 

b — p j — j  
d t m m  
g k n n  

gw kw ng 5 
p ph s s  
t th - f f 
^ kh 一 h h 

kw kwh z ts 
1 1 — c tsh 
w w  

Table II: List of Cantonese Initials. 

一 LSHK IPA II LSHK IPA LSHK IPA 
i i am • ip ip 

^ y an ^n it it 
u u ang ^ ^ ik 
e e aam am yut yt 

^ oe aan an ut ut 
o 0 aang ag uk uk 
^ a m m ^  
^ im ng 5 ^ et 
^ in ui ui oek oek 

iq ei d ot ot 
^ ^ eoi ^ ^ � k 
^ un oi oi ^ 叩 

^ ug ai m ^ 对 

^ ^ aai ai ak 它 k 
^ ^ iu iu ^ ap 
^ ^ ^ ou ^ ^ at 

^ ^ au mx aak ak 
^ og aau au  

Table III: List of Cantonese Finals. 
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Appendix III IF confusion matrix 

-Q OD J： - E C o g a. ^ N 

b 94.66 0.00 1.21 0.29 0.11 0.01 0.02 0.03 0.02 0.00 0.22 0.48 0.06 0.02 0.12 1.83 0.01 0.12 0.57 0.02 

c 0.00 93.87 0.00 0.05 0.07 0.01 0.02 0.06 0.04 0.00 0.03 0.00 0.01 0.01 0.00 0.00 1.62 0.35 0.01 3.63 

d 1.19 0.06 93.31 0.06 0.71 0.00 0.02 0.19 0.12 0.01 1.11 0.08 0.47 0.07 0.06 0.08 0.04 1.52 0.01 0.53 

f 0.63 0.09 0.20 97.69 0.03 0.03 0.16 0.00 0.00 0.01 0.09 0.03 0.01 0.05 0.08 0.18 0.23 0.21 0.15 0.06 

g 0.12 0.06 0.94 0.02 93.64 1.38 0.14 0.35 1.57 0.13 0.27 0.01 0.12 0.19 0.15 0.11 0.00 0.19 0.12 0.20 

gw 0.18 0.00 0.21 0.18 28.85 67.10 0.03 0.00 0.40 0.91 0.09 0.00 0.06 0.12 0.21 0.09 0.00 0.15 0.85 0.06 

h 0.01 0.08 0.03 0.06 0.09 0.02 95.90 0.39 0.41 0.17 0.29 0.15 0.08 0.27 0.55 0.39 0.03 0.39 0.15 0.01 

j 0.06 0.19 0.14 0.03 0.36 0.00 0.10 96.66 0.09 0.00 0.57 0.07 0.17 0.10 0.12 0.01 0.05 0.14 0.08 0.32 

k 0.01 0.32 0.18 0.04 2.51 0.09 0.33 0.10 92.91 1.02 0.06 0.00 0.05 0.08 0.03 0.21 0.03 1.60 0.09 0.14 

kw 0.00 0.00 0.00 0.13 0.54 1.07 0.27 0.13 14.21 82.71 0.00 0.00 0.00 0.00 0.13 0.27 0.00 0.27 0.13 0.00 

1 0.18 0.01 0.43 0.05 0.12 0.00 0.05 0.33 0.00 0.00 96.06 0.36 1.25 0.23 0.28 0.07 0.06 0.07 0.12 0.06 

m 0.40 0.00 0.02 0.02 0.02 0.01 0.03 0.02 0.00 0.02 0.44 96.90 0.12 0.12 0.19 0.08 0.01 0.00 1.37 0.00 

n 0.19 0.00 0.51 0.02 0.07 0.03 0.10 0.53 0.03 0.00 73.08 0.82 22.07 0.89 0.67 0.03 0.02 0.03 0.27 0.03 

ng 0.19 0.02 0.13 0.13 0.42 0.13 1.45 0.88 0.40 0.04 1.77 2.00 0.55 35.99 52.83 0.10 0.02 0.04 1.43 0.02 

null 0.15 0.18 0.06 0.00 0.18 0.00 0.49 0.58 0.12 0.12 0.80 0.80 0.31 6.59 85.41 0.06 0.03 0.00 0.98 0.06 

p 3.43 0.06 0.14 0.42 0.14 0.00 0.30 0.00 0.26 0.12 0.10 0.28 0.06 0.04 0.06 92.47 0.02 1.66 0.26 0.02 

s 0.00 0.70 0.05 0.31 0.02 0.00 0.02 0.02 0.00 0.00 0.05 0.00 0.01 0.00 0.02 0.01 97.74 0.03 0.01 0.89 

t 0.06 0.61 2.04 0.02 0.26 0.00 0.36 0.04 1.07 0.01 0.41 0.02 0.22 0.08 0.09 0.82 0.10 93.22 0.04 0.32 

w 0.57 0.01 0.01 0.07 4.35 0.64 0.09 0.02 0.19 0.15 0.20 1.67 0.01 0.16 0.22 0.14 0.02 0.02 91.10 0.05 

z 0.00 2.89 0.27 0.05 0.15 0.00 0.01 0.71 0.03 0.00 0.08 0.01 0.03 0.01 0.01 0.00 1.55 0.13 0.01 93.90 

Table IV: Confusion matrix for Initials 
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0.08 ~ ~ ~ 8.70 2.58 1.83 2.00 1.29 9.59 2.06 90.39 aa 

0.00 0.00 1.27 0.00 0.88 0.00 0.46 0.46 0.00 0.82 92.27 1.12 aai 

0.00 4.33 0.04 0.08 2.77 4.74 1.14 0.34 0.26 71.91 0.29 1.39 aak 

1 . 2 6 0 . 0 0 0.00 0.12 0.21 1.16 4.79 1.10 90.02 0.26 0.00 0.43 aam 

0.16 0.28 0.03 0.16 1.26 0.08 17.81 90.82 3.24 0.97 0.60 1.06 aan 

0.04 0.00 0.00 0.00 0.08 0.00 56.85 1.00 0.70 0.07 0.05 0.08 aang 

0 . 0 8 “ 0.46 0.01 0.12 0.46 78.97 0.00 0.04 0.44 1.99 0.07 0.12 aap 

0.00 1.48 0.05 0.04 78.74 1.91 0.00 0.26 0.15 7.49 0.22 1.63 aat 

0.00 0.17 0.00 90.76 0.13 0.25 0.00 0.06 0.07 0.41 0.02 0.40 aau 

0.00 0.17 93.00 0.00 0.17 0.00 0.00 0.04 0.00 0.19 1.75 0.07 ai 

0.04 ^ ~ 0.04 0.17 0.33 0.00 0.02 0.00 0.79 0.05 0.13 ak 

94.81 O M ^ 0.00 0.04 0.00 0.68 0.02 1.36 0.07 0.00 0.05 am 

0.83 ^ ^ 0.00 0.08 0.08 5.48 1.34 0.26 0.04 0.05 0.04 an 

0.51 ^ ^ ^ 0.08 0.00 6.62 0.16 0.26 0.07 0.00 0.01 ang 

0.28 ^ ^ 0.17 5.82 0.00 0.00 0.07 0.37 0.00 0.13 ap 

0.08 14.24 0.30 0.20 2.35 0.83 0.00 0.08 0.04 1.69 0.02 0.45 at 

0.20 ^ 0.01 3.45 0.21 0.58 0.23 0.04 0.48 0.11 0.00 0.25 au 

0.00 ^ 0 . 5 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.02 e 

0.00 ^ 0.82 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 ei 

0.00 ^ 0.07 0.00 0.04 0.00 0.00 0.02 0.00 0.04 0.02 0.01 ek 

0.00 ^ ^ 0.00 0.00 0.00 0.23 0.02 0.00 0.11 0.00 0.01 eng 

0.00 ^ hTs 0.04 0.00 0.00 0.00 0.02 0.00 0.00 0.22 0.01 eoi 

0.20 0.00 0.00 0.00 0.00 0.46 0.10 0.00 0.00 0.00 0.00 eon 

0.00 r ^ ^ 0.00 0.17 0.17 0.00 0.00 0.00 0.11 0.02 0.05 eot 

0.00 ^ ^ 0 . 0 4 0.00 0.00 0.00 0.00 0.00 0-00 0.07 0.00 i 

g 0.04 0.68 0.20 0.00 0.00 0.00 0.23 0.00 0.00 0.04 0.02 0.02 ik 

^ 0.00 ^ ^ 0 . 0 0 0.00 0.00 0.00 0.02 0.04 0.00 0.02 0.00 im 

0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 in 

0.00 ^ ~ 0.09 0.00 0.00 0.00 0.68 0.02 0.00 0.00 0.00 0.00 ing 

0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ip 

0.00 ^ 0.05 0.00 0.76 0.00 0.00 0.00 0.00 0.00 0.10 0.01 it 

0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 iu 

0 . 2 0 0 . 0 0 0.00 0.00 0.00 0.00 0.23 0.00 0.04 0.00 0.00 0.00 m 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 ng 

0.12 0.23 0.01 0.16 0.55 0.25 0.23 0.10 0.07 0.19 0.05 0.76 o 

0.00 0.00 0.01 0.00 0.00 0.08 0.00 0.02 0.00 0.00 0.00 0.00 oe 

0.00 0.68 0.04 0.00 0.25 0.08 0.00 0.00 0.00 0.30 0.07 0.05 oek 

0 . 2 8 “ 0.17 0.17 0.12 0.17 0.17 0.68 0.48 0.48 0.45 0.22 0.20 oeng 

0.00 0.06 0.48 0.20 0.08 0.00 0.00 0.14 0.00 0.11 0.98 0.27 oi 

0.08 0.40 0.01 0.04 0.67 1.08 0.00 0.00 0.00 1.05 0.02 0.11 ok 

0.00 0.00 0.01 0.00 0.00 0.00 0.46 0.40 0.04 0.04 0.00 0.00 on 

0.20 0.06 0.00 0.12 0.08 0.17 0.23 0.30 0.44 0.11 0.00 0.13 ong 

0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ot 

0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ou 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 u 

0.00 0.00 0.16 0.00 0.00 0.00 . 0.00 0.00 0.00 0.00 0.00 0.00 ui 

0.00 0.57 0.00 0.08 0.04 0.00 0.00 0.00 0.00 0.04 0.00 0.00 uk 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 un 

0.35 0.00 0.00 0.00 0.04 0.00 0.00 0.02 0.04 0.00 0.00 0.00 ung 

0.00 0.00 0.01 0.04 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 ut 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 yu 

0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.01 yun 

0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 yut 



I 卯 X lO'O 00.0 00.0 ZO.O OO.O oro eo.o OO.O 00_0 90.0 OO.O P£'0 

I unX OO'O OO'O OO'O ZO'O OO'O KTO WXO OO'O OO'O t'0'0 乙 rO £Z'0 
I n̂ 00.0 00.0 OO'O 乙0.0 00.0 80.0 ll.O OO'O 00.0 9i'0 00.0 90.0 

I 本n OO'O OO.O 00.0 Z.0'0 ZO'O OO'O 00.0 00.0 OO'O OO'O 00.0 LVO 

ISun lO'O 8e"0 eO'O OO'O 90.0 OO'O 00.0 00.0 OO'O eO'O 16.0 OO'O 

I^~ oro eo'o oo.o zo'o 90"0 oo.o oo.o oo'o oo'o 90.0 no 00.0 
I n̂ eo'o eo'o os'o so'o z.ro 乙 o.o lo'o oo'o oo'o îo'o oo'o O8.0 
Iin~ OO'O OO'O OO'O OO'O 00.0 00.0 00.0 OO'O 01.0 00.0 OO'O 

I n OO'O 00.0 OO'O OO'O £0.0 00.0 00.0 OO.O OO'O lO'O OO'O 00.0 

Iiio~~ OO'O OO.O 80.0 ZO'O IP'l OO'O ZO'O 00.0 00.0 K).0 00.0 00.0 

IJO“ OO'O OO'O 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 

I3uo ZZ'O 9S"l 00.0 SO.O 60.0 OO'O 00.0 00.0 OO'O OO'O 00.0 OO'O 

Iuooro sro oo.o oo.o oo.o oo.o oo.o oo.o oo.o oo'o no oo.o 
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Appendix IV Phonetic Question Set 

A phonetic question used for the decision-tree based clustering essentially classifies 

all phonetic contexts into two groups. A set of Initial/Final contexts is defined for 

each phonetic question. Any IF having a context belongs to this set of IF contexts is 

equivalent to an answer "yes" to the question. 

There are four major types of phonetic questions defined in this work: 1) 

maimer of articulation of the adjacent onset/coda, 2) place of articulation of the 

adjacent onset/coda, 3) the vowel identity of the adjacent nucleus, and 4) the 

adjacent LF identity. All the questions are listed in the following tables. 

Question context set Question context set^  

left = silence? (silence} left 二 i?  

left = labial onset? ~{ b, p, m, w, m } left 二 { u, aau, au, iu, ou } 

left = alveolar onset? {d’t, n, c, z, s, j} left = nasal coda? {*m,*n, *ng}  
left 二 velar onset? { 9’ k ’ ng, gw, kw, ng } left = stop coda? {*k } 

left - lip-round onset? { w, gw, kw} left = labial coda? *p } 

left = lateral onset? left = alveolar coda? {*n, *t} 

left = vocal onset? {h} left = velar coda? [ng, *k } 

left 二 dental-labial onset? { f } left = m? {*m}  

left = plosive onset? { b, d, g, gw, p, t, k, kw} left 二 n? � 

left = nasal onset? — { m, n, ng } left = ng? {*叩} 

left 二 fricative onset? _ {s, f, h ^ left = p? W  

left = affricate onset? {z, c} left 二 t?  
left = pan fricative onset? {s, f, h, z, c} left 二 k?  

left = approximate onset? T T ^ j > left = labial? { b, p, m, w, *m,-p } 
'left = glide onset? {w,j} left 二 alveolar? {d. t, n. c. z, s, j. *n’ *t} 

left = aspirated onset? { P’ t, k, kw. c} left = velar? {g，k，ng,gw’ kw, *ng,k} 
left 二 unaspirated onset? {b.d.g.gw.z} 一 left = nasal? {m’n’ng，*m, *n, *ng } 

r 
+ 72 questions on the left INTIAL/FINAL identity  

Table VI: Phonetic questions on left context. 

3 The context starts with a * refers to any Final with the specified coda. 
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Question context set Question context set"*  
right = silence? {silence} right = front vowel? { e i , eng, e, ek}  
right = labial? {b, p, m, w, m } right = middle vowel? {a*, aa*} 

(front-back)  

right = alveolar? {d, t, n, c, z, s, j} right = back vowel? { o l ou, on, ong, o, ot, ok, 

right = velar? {g, k , ng, gw, kw, ng } right = round vowel? {u*. o*, oe*. eo*, yu*} 

right = lip-round? {w, gw, kw} right = unround vowel? {a*, aa*, i*, ei, eng, e, ek} 

right = lateral? { I } right = high vowel? { i*, u*, yu* } 

risht = vocal? { h } right = middle vowel? {ai, au, am, an, ang, ap, at, 
^ ak, e*’ oe*} 

(high-low)  

right 二 dental-labial? {f} right = low vowel? {aa*, oi, ou, on, ong, o, ot, 

ok} 
right 二plosive? { b, d, g, gw, p, t, k, kw} right = aa? {aa*}  

right = nasal? { m, n’ ng } right 二 a?  

right 二fricative? {s, f. h } right = i? iH  

right = affricate? {z, c } right = yu? (yu*}  

right 二 pan fricative? {s, f, h, z, c} right = u?  

right = approximant? {I. w , j} right = e? {ei, eng, e, ek}  

right = glide? {w, j} — right 二 oe? (oe*’ eo* } 

right = aspirated? { p, t, k, kw, c} right = o?  

right = unaspirated? { b’ d, g, gw, z }  

+ 72 questions on the right INITIAL/FINAL identity    

TableVII: Phonetic questions on right context. 

4 The context ends with a * refers to any Final with the specified nucleus. 
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Appendix V CDDT and PCDT 

/aang/ ^ yes 

C Lb = /s/? ) • no 

C Rb = /m/? ) C Rb二/m/?) 

a: { /aam/: 0.08, /aang/: 0.25, /am/: 0.25, /an/: 0.17, /ang/: 0.25 } 
b: { /aan/: 0.11, /aang/: 0.53, /an/: 0.08, /ang/: 0.13, /ik/: 0.03, /ing/ 0.08, /oeng/: 0.05 } 
c: { /aang/: 0.38, /an/: 0.44, /ang/: 0.13，/eon/: 0.06 } 
d： {/aa/: 0.02, /aam/: 0.02, /aan/: 0.13, /aang/: 0.60, /an/: 0.08, /ang/: 0.13, /eon/: 0.01 } 
e： {/aa/: 0.05，/aak/: 0.05, /aam/: 0.1，/aan/: 0.4, /aang/: 0.3，/an/: 0.05, /oeng/: 0.05 } 
f： {/aa/: 0.12, /aam/: 0.35, /aan/: 0.23, /aang/: 0.23, /ang/: 0.04, /au/ 0.04 } 
g： {/aam/: 0.17, /aan/: 0.08, /aang/: 0.42, /an/: 0.08, /eng/: 0.08, /m/: 0.08, /ong/: 0.08 } 
h： { /aa/: 0.01, /aai/: 0.01, /aak/: 0.04, /aam/: 0.01, /aan/: 0.10, /aang/: 0.77, /ang/: 0.03, 

/o/: 0.01 } 
i： { /aa/: 0.08, /aan/: 0.5, /aang/: 0.25, /ang/: 0.08, /on/: 0.08 } 
j： { /aak/: 0.01, /aam/: 0.03, /aan/: 0.25, /aang/: 0.66, /an/: 0.01, /ang/: 0.03, /on/, 0.01 } 

Figure I: CDDT for the Final /aang/. 
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‘ /aang/ • yes ^ 

no ( Lb is fricative? J 

Z " ' “ 

C Rb is labial? J ( Rbis labial?) 

C r • (^-/siv^^ O 

广"""""A ib 
(Lb is approximant?) ^ ^ ^ ^ ^ ^ 

a: {/aa/: 0.08, /aan/: 0.50, /aang/: 0.25，/ang/: 0.08, /on/: 0.08 } 
b: {/aan/: 0.41, /aang/: 0.59 } 
c: {/aan/: 0.58, /aang/: 0.42 } 
d: {/aan/: 0.24, /aang/: 0.76 } 
e: {/aam/: 0.17, /aan/: 0.17, /aang/: 0.67 } 
f: { /aa/: 0.01, /aai/: 0.01, /aak/: 0.05，/aam/: 0.01, /aan/: 0.10, /aang/: 0.77, /ang/: 0.01, 

/o/: 0.01,/on/: 0.01 } 
g： { /aa/: 0.05, /aak/: 0.05, /aam/: 0.10, /aan/: 0.40, /aang/: 0.30, /an/: 0.05, /oeng/: 0.05 } 
h: { /aa/: 0.09, /aam/: 0.36, /aan/: 0.27, /aang/: 0.23, /au/: 0.05 } 
i： { /aam/: 0.13, /aan/: 0.10, /aang/: 0.55, /an/: 0.03, /ang/: 0.10，/eng/: 0.03, /m/: 0.03, 

/ong/: 0.03 } 
j： {/aang/: 0.38, /an/: 0.44, /ang/: 0.13, /eon/: 0.06 } 
k: { /aa/: 0.07, /aang/: 0.73, /an/: 0.07, /ang/: 0.07, /eon/: 0.07 } 
1： { /aa/: 0.02, /aan/: 0.11，/aang/: 0.56, /an/: 0.13, /ang/: 0.19 } 
m: { /aan/: 0.14，/aang/: 0.52, /an/: 0.07, /ang/: 0.12, /ik/: 0.02, /ing/: 0.07, /oeng/: 0.05 } 
n: { /aa/: 0.04, /aam/: 0.17, /aan/: 0.09，/aang/: 0.30, /am/: 0.13, /an/: 0.09, /ang/: 0.17 } 

Figure 11PCDT for the Final /aang/. 
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